ENI S.p.A. UPSTREAM DICS

SERVIZI DI MONITORAGGIO AMBIENTALE CAMPO BONACCIA NW

MONITORAGGIO DELL'AREA INTERESSATA DALL'INSTALLAZIONE DELLA PIATTAFORMA BONACCIA NW

FASE DI PRODUZIONE

RAPPORTO FINALE

3° ANNO

(dal pre-survey a dicembre 2018)

RAPPORTO n. 10

OPERATORE SCIENTIFICO: CNR – IRBIM ANCONA

COORDINATORE: GIANNA FABI

RESPONSABILE SCIENTIFICO: ALESSANDRA SPAGNOLO

RAPPORTO A CURA DI:
GIANNA FABI
ALESSANDRA SPAGNOLO
ENRICO NICOLA ARMELLONI
MIRENO BORGHINI
DANIELE CASSIN
ANNA MARIA DE BIASI
AMELIA DE LAZZARI
ALESSIO GOMIERO
LUDMILA KOZINKOVA
ANNALISA MINELLI
VERA SALVALAGGIO

ANCONA, 2019

INDICE

1.	INTE	RODUZI	ONE	1
2.	MAT	ERIALI	E METODI	5
	2.1.	CAMI	PIONAMENTO IN MARE	5
		2.1.1.	INDAGINI FISICHE E CHIMICHE DELLA COLONNA D'ACQUA	5
			MISURE CORRENTOMETRICHE	
			INDAGINI FISICHE E CHIMICHE DEI SEDIMENTI E SULLA COMUNITÀ	
			BENTONICA	8
		2.1.4.	ECOTOSSICOLOGIA DEI SEDIMENTI	
		2.1.5.	ANALISI DI INQUINANTI E DI BIOMARKER NEI MITILI INSEDIATI SULLE	
			PARTI IMMERSE DELLA PIATTAFORMA	11
		2.1.6.	INDAGINI SUL POPOLAMENTO ITTICO	12
			2.1.6.1 Campionamenti di pesca	12
			2.1.6.2 Investigazioni acustiche	12
			2.1.6.3 Indagini video in prossimità della piattaforma	
		2.1.7.	RILEVAMENTO DEL PASSAGGIO DI CETACEI E RETTILI MARINI	14
	2.2.	ANALI	SI DI LABORATORIO E ANALISI DEI DATI	15
			INDAGINI FISICHE E CHIMICHE DELLA COLONNA D'ACQUA	
			INDAGINI FISICHE E CHIMICHE DEI SEDIMENTI	
		2.2.3.	ECOTOSSICOLOGIA DEI SEDIMENTI	
		2.2.5.	2.2.3.1 Dunaliella tertiolecta	
			2.2.3.2 Vibrio fischeri (sistema Microtox®)	
			2.2.3.3 Corophium orientale	
			2.2.3.4 Crassostrea gigas	
			2.2.6.5 Ricerca di metalli pesanti in <i>Hediste diversicolor</i>	
		2.2.4.	ANALISI DI INQUINANTI E DI BIOMARKER NEI MITILI INSEDIATI SULLE	
			PARTI IMMERSE DELLA PIATTAFORMA	
			2.2.4.1 Inquinanti organici e inorganici	
			2.2.4.2 Biomarker	35
		2.2.5.	INDAGINI SULLA COMUNITÀ BENTONICA	40
		2.2.6.	INDAGINI SUL POPOLAMENTO ITTICO	44
			2.2.6.1 Campionamenti di pesca	44
			2.2.6.2 Investigazioni acustiche	
			2.2.6.3 Indagini video in prossimità della piattaforma	48
3.	RISU	LTATI.		49
	3.1.	INDA	GINI FISICHE E CHIMICHE DELLA COLONNA D'ACQUA	49
		3.1.1.		
			FLUORESCENZA INDOTTA	49
		3.1.2.	Nutrienti	53
		3.1.3.	PIGMENTI CLOROFILLIANI E PARTICELLATO SOSPESO	58
		3.1.4.	Idrocarburi totali, Idrocarburi alifatici, Idrocarburi	
			POLICICLICI AROMATICI, BTEX	62
		3.1.5.	GLICOLE ETILENICO	
		3.1.6.	METALLI PESANTI	
		3.1.7.	CONSIDERAZIONI E ANALISI DEI DATI SUL CICLO ANNUALE	
			3.1.7.1 Indagini fisiche, chimiche e biologiche	
			3.1.7.2 Metalli e inquinanti organici	68

3.2.	MISU	RE CORRENTOMETRICHE	69
3.3.	INDA	GINI FISICHE E CHIMICHE DEI SEDIMENTI	75
	3.3.1.	GRANULOMETRIA	75
	3.3.2.	IDROCARBURI POLICICLICI AROMATICI	79
	3.3.3.	IDROCARBURI TOTALI	84
	3.3.4.	METALLI PESANTI	86
	3.3.5.		
	3.3.6.	TOTAL ORGANIC CARBON (TOC)	101
3.4.	ECOT	OSSICOLOGIA DEI SEDIMENTI	104
	3.4.1.	DUNALIELLA TERTIOLECTA	104
	3.4.2.	VIBRIO FISCHERI (SISTEMA MICROTOX®)	105
	3.4.3.	COROPHIUM ORIENTALE	105
		CRASSOSTREA GIGAS	
	3.4.5.	RICERCA DI METALLI PESANTI IN HEDISTE DIVERSICOLOR	108
3.5.		SI DI INQUINANTI E DI BIOMARKER NEI MITILI INSEDIATI PARTI IMMERSE DELLA PIATTAFORMA	112
	3.5.1.	INQUINANTI ORGANICI E INORGANICI	112
		3.5.1.1 Materia organica estratta (MOE)	112
		3.5.1.2 Idrocarburi Alifatici (IA)	113
		3.5.1.3 Idrocarburi Policiclici Aromatici (IPA)	
		3.5.1.4 Metalli pesanti	
	3.5.2.	BIOMARKER	
		3.5.2.1 Stress on stress	
		3.5.2.2 Micronuclei	
		3.5.2.3 Valutazione del contenuto di lipofuscine	
		3.5.2.4 Valutazione del contenuto di lipidi neutri	121 122
		3.5.2.6 Catalasi	
		3.5.2.7 Malondialdeide	
		3.5.2.8 Metallotioneine	
		3.5.2.9 Polymerase Chain Reaction (qPCR)	
3.6.	INDA	GINI SULLA COMUNITÀ BENTONICA	
		Densità (N) e Biomassa (P)	
	3.6.2.		
	0.0.2.	DOMINANZA	
		RICCHEZZA SPECIFICA TOTALE (S)	
		RICCHEZZA SPECIFICA MEDIA(S _M)	
		DIVERSITÀ SPECIFICA (H')	
		MULTIDIMENSIONAL SCALING (MDS)	
	3.6.8.	VALUTAZIONE DELLO STATO AMBIENTALE	
		3.5.8.1 Indice W di Clarke	
		3.5.8.2 Indice AMBI	
		3.5.8.3 Indice BENTIX	
	260	3.5.8.4 Stato ecologico	
a =		MYTILUS GALLOPROVINCIALIS	
3.7.		GINI SUL POPOLAMENTO ITTICO	
	3.7.1.	CAMPIONAMENTI DI PESCA	
		3.7.1.1 Ricchezza specifica e Diversità specifica	
		3.7.1.2 Rendimenti di pesca e composizione delle catture	213

		3.7.1.3 Affinità delle specie catturate con i substrati duri	216
		3.7.1.4 PERMANOVA e Principal Coordinate analysis (PCO)	219
		3.7.2. INVESTIGAZIONI ACUSTICHE	220
		3.7.3. Indagini video in prossimità della piattaforma	240
	3.8.	RILEVAMENTO DEL PASSAGGIO DI CETACEI E RETTILI MARINI	243
4.	CONCI	LUSIONI	245
5.	BIBLIC	OGRAFIA	255
ALL	EGATO	A Schede tecniche della strumentazione utilizzata nelle indagini	I
		- ALL. A1 Indagini fisiche e chimiche della colonna d'acqua	
		- ALL. A2 Indagini fisiche e chimiche dei sedimenti	VII
		- ALL. A3 Indagini sulla comunità bentonica	XII
		- ALL. A4 Indagini sul popolamento ittico	XIV
		- ALL. A5 Analisi in Mytilus galloprovincialis	XX
ALI	LEGATO	B Schede granulometriche 6° survey post lavori (estate 2018)	XXVIII

PARTECIPANTI AL PROGRAMMA

Coordinatore Responsabile Scientifico	G. Fabi A. Spagnolo	CNR - IRBIM Ancona CNR - IRBIM Ancona
Analisi chimiche e fisiche colonna d'acqua	A. Boldrin F. Acri D. Cassin M. Casula L. Dametto A. De Lazzari S. Leoni G. Lorenzetti G. Manfè S. Pasqual A. Pesce S. Pasqual M. Borghini P. Celentano	CNR - ISMAR Venezia
Misure correntometriche	M. Borghini P. Celentano	CNR - ISMAR La Spezia CNR - ISMAR La Spezia
Analisi dei sedimenti ed ecotossicologia	A.M. De Biasi G. Bontà Pittali S. Dell'Ira L. Kozinkova M. Pertusati S. Polese O. Spinelli	CIBM Livorno uga CIBM Livorno
Biomarker e inquinanti in Mytilus galloprovino	cialis A. Gomiero	NORCE Research Institute Norvegia
Comunità bentonica	C. Cuicchi T. Manarini L. Montagnini P. Polidori E. Punzo V. Salvalaggio A. Santelli P. Strafella	Cooperativa Mare Ricerca Ancona Cooperativa Mare Ricerca Ancona Cooperativa Mare Ricerca Ancona CNR - IRBIM Ancona
Comunità ittica	P. Polidori E.N. Armellini C. Ferrà Vega F. Masnadi A. Minelli M. Scanu A.N. Tassetti	CNR - IRBIM Ancona
Censimento mammiferi e rettili marini	V. Salvalaggio P. Strafella C. Ferrà Vega	CNR - IRBIM Ancona CNR - IRBIM Ancona CNR - IRBIM Ancona

Hanno inoltre collaborato allo svolgimento dei campionamenti in mare i Sigg.ri G. Gaetani e A. Marziali imbarcati sulla M/R Tecnopesca II del CNR–IRBIM Ancona utilizzata per le indagini.

1. INTRODUZIONE

In riferimento al Decreto n. 0000222 del 09/09/2014 emesso dal Ministero dell'Ambiente e della Tutela del Territorio e del Mare il CNR-IRBIM di Ancona è stato incaricato da ENI S.p.A. – UPSTREAM DICS di effettuare un monitoraggio volto a valutare il potenziale impatto ambientale conseguente l'installazione della piattaforma Bonaccia NW e della condotta sottomarina collegante tale piattaforma alla già esistente Bonaccia.

Bonaccia NW è installata in Adriatico centrale, a circa 60 km in direzione Est dalla costa marchigiana di Ancona, su un fondale di circa 87 m nella zona delle sabbie pelitiche del largo.

L'area in cui è stata posizionata la struttura è particolarmente interessante dal punto di vista idrodinamico in quanto, trovandosi sulla mid-line, non è influenzata in maniera consistente dalla circolazione generale dell'Adriatico (verso Nord nel versante croato e verso Sud in quello italiano). Tuttavia, in alcuni periodi dell'anno può essere soggetta a un maggiore idrodinamismo dovuto al passaggio sul fondo di acque dense formatesi nel Nord Adriatico durante la stagione invernale con caratteristiche chimico-fisiche differenti da quelle presenti in zona e che possono modificare le caratteristiche biogeochimiche e la distribuzione spaziale dei sedimenti. La parte più superficiale, vista l'ubicazione della piattaforma, può essere interessata da eventi di Bora anche abbastanza consistenti, che possono determinare variazioni brusche di correnti nella parte più superficiale della colonna d'acqua (10-20 m).

Sulla base di tali considerazioni e delle esperienze condotte o tuttora in corso dal CNR-IRBIM presso analoghe strutture situate in Adriatico centro-settentrionale (Fabi *et al.*, 2001; 2002; 2003; 2004a; 2005a; 2005b; 2006; 2010a; 2010b; 2013; 2015a; 2016a; 2017a; 2019a; 2019b; 2019c) e delle prescrizioni dell'ARPAM, per quanto concerne la piattaforma si è ritenuto opportuno proporre un programma di monitoraggio comprendente le seguenti indagini:

- 1. caratteristiche idrologiche della colonna d'acqua (correnti, temperatura, salinità, ossigeno disciolto, sali nutritivi, fluorescenza, ecc.);
- caratteristiche delle comunità fito- e zooplanctoniche (come da indicazioni ARPAM del 06/02/2015, Prot. 003920);
- 3. caratteristiche fisiche e chimiche dei sedimenti presenti nel fondo mobile circostante;
- 4. ecotossicologia dei sedimenti circostanti;
- 5. caratteristiche delle comunità bentoniche presenti nei sedimenti circostanti;

- 6. analisi di inquinanti in organismi marini (*Hediste diversicolor*);
- 7. analisi di inquinanti e di biomarkers in organismi marini (*Mytilus galloprovincialis*) insediati sulle parti sommerse della piattaforma;
- 8. evoluzione del popolamento ittico;
- 9. rilevamento del passaggio di cetacei.

Il monitoraggio comprende le seguenti fasi (Tab. 1-I):

- a. Fase precedente alla posa in opera della struttura;
- b. Fase di installazione della piattaforma e perforazione dei pozzi: le indagini ai punti 1) e 2) dell'elenco sopra riportato sono state condotte su base bimestrale per tutta la durata della fase: le indagini di cui ai punti 3-6 sono state effettuate nel corso di un survey. Il rilevamento del passaggio di cetacei è avvenuto mediante operatori MMO (Leonori et al., 2016).
- c. Fase di produzione: le indagini previste ai punti 1 (solo correntometria), 3-9 verranno condotte per 5 anni dopo la fine dei lavori di installazione delle strutture e perforazione dei pozzi. Per le indagini sedimentologiche, ecotossicologiche, sulla comunità bentonica e la ricerca di inquinanti e biomarkers in organismi marini sono previsti survey stagionali (inverno ed estate). I campionamenti per lo studio della comunità ittica saranno mensili, mentre l'osservazione di mammiferi marini sarà effettuata mediante 3 campionamenti/mese. Le indagini previste al punto 1 (eccetto correntometria) verranno effettuate per tutta la durata dell'esercizio dell'impianto mediante campionamenti bimestrali. Le indagini di cui al punto 2 non sono previste in questa fase.

d. Fase di fine produzione:

- pre-smantellamento: verranno condotte le indagini di cui ai punti 3-5 e 7-8; eccetto lo studio della comunità ittica si prevede un survey per ogni tipologia di indagini che verrà effettuato subito prima dell'inizio dei lavori di smantellamento. Per la comunità ittica verranno condotti 3 survey;
- smantellamento: in questa fase verranno condotte le indagini di cui ai punti 1, 3-5
 e 8; si prevede come minimo n. 1 survey che potrà essere ripetuto in funzione della durata dei lavori;
- 3. post-smantellamento: tutte le indagini di cui ai punti 3-5 e 7-8 verranno condotte per un periodo di 3 anni dallo smantellamento della piattaforma. Quelle riguardanti i sedimenti e la comunità bentonica si svolgeranno in inverno e/o

estate, il popolamento ittico verrà invece investigato mensilmente. Le indagini riguardanti la colonna d'acqua (punto 1) avranno la durata di 1 anno e si svolgeranno con cadenza bimestrale.

Per le fasi a) e b) sono stati previsti monitoraggi semplificati rispetto a quelli successivi all'installazione a causa dell'assenza fisica della struttura (pre-survey) e di problemi tecnici e di sicurezza legati alla presenza dei mezzi di lavoro (fase di installazione).

Per quanto concerne la fase d), data la lunga durata della fase di produzione di una piattaforma, si precisa che le modalità di monitoraggio e le indagini sono state redatte sulla base delle esperienze maturate sino ad oggi, ma è verosimile che nel tempo gli approcci metodologici riguardanti sia la dismissione delle strutture che le metodiche di monitoraggio ambientale si evolveranno. Pertanto il piano proposto potrebbe necessitare di modifiche sulla base delle nuove conoscenze acquisite.

Nel presente rapporto sono descritti i risultati conseguiti per la piattaforma Bonaccia NW dal pre-survey al 3° anno post lavori di installazione.

Tab. 1-I – Survey previsti durante il programma di monitoraggio ambientale.

Fase	Comparti d'indagine	Piattaforma Bonaccia NW
	Colonna acqua	1-3 survey
am	Comunità planctoniche	1-3 survey
per	Sedimenti	1 survey
Ante operam	Ecotossicologia dei sedimenti	1 survey
Ant	Comunità bentonica	1 survey
	Rilevamento cetacei	3-5 survey
	Colonna acqua	Per tutta la durata della fase
43	Comunità planctoniche	Per tutta la durata della fase
Cantiere	Sedimenti	Per tutta la durata della fase
ant a	Ecotossicologia dei sedimenti	Per tutta la durata della fase
	Comunità bentonica	Per tutta la durata della fase
	Rilevamento cetacei	*
	Correntometria	Per tutta la durata della fase
	Colonna acqua	Per tutta la durata della fase
	Sedimenti	5 anni
Zio	Ecotossicologia dei sedimenti	5 anni
Esercizio	Comunità bentonica	5 anni
E	Comunità ittica	5 anni
	Analisi inquinanti e biomarker in organismi marini	5 anni
	Rilevamento cetacei	5 anni
	Colonna d'acqua	**
ente	Sedimenti	1 survey
e. am	Ecotossicologia dei sedimenti	1 survey
Pre	Comunità bentonica	1 survey
Pre smantellamento	Comunità ittica	3 survey
S	Rilevamento cetacei	Ad ogni occasione
nto	Colonna acqua	Per tutta la durata della fase
mento	Sedimenti	Per tutta la durata della fase
ella	Ecotossicologia dei sedimenti	Per tutta la durata della fase
Smantella	Comunità bentonica	Per tutta la durata della fase
Sm	Rilevamento cetacei	Ad ogni occasione
_	Colonna acqua	1 anno
Post smantellamento	Sedimenti	3 anni
st am	Ecotossicologia dei sedimenti	3 anni
Post	Comunità bentonica	3 anni
nan	Comunità ittica	3 anni
IS	Rilevamento cetacei	Ad ogni occasione

^{*} Monitoraggio in continuo da parte di operatori MMO (rif. DM punto A.7-a) ** Incluso nella fase di Esercizio

2. MATERIALI E METODI

Come già accennato nel Cap. 1, la piattaforma Bonaccia NW è ubicata a circa 60 km in direzione Est dalla costa marchigiana di Ancona, su un fondale di circa 87 m (fig. 2.1). Le coordinate del punto in cui è avvenuta l'installazione della struttura sono riportate in Tab. 2-I. I lavori di posa in opera sono terminati a fine gennaio 2016.

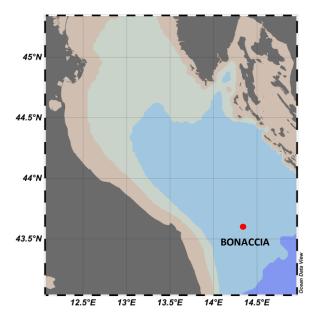
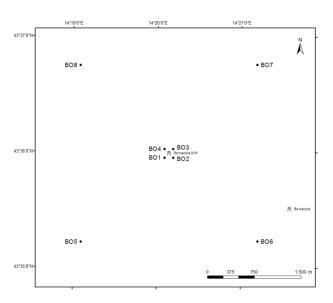


Fig. 2.1 - Ubicazione della piattaforma Bonaccia NW.

Tab. 2-I – Coordinate geografiche del punto in cui è stata installata la piattaforma Bonaccia NW.

Sito	Coordinate Geografiche	
Piattaforma Bonaccia NW	43°35'59'',289N 14°20'08'',604E	

2.1. CAMPIONAMENTO IN MARE


2.1.1. CARATTERISTICHE FISICHE E CHIMICHE DELLA COLONNA D'ACQUA

Per lo studio delle caratteristiche fisiche e chimiche della colonna d'acqua nel 3° anno di produzione (2018) sono stati condotti solo 3 dei sei survey previsti (maggio, ottobre e novembre) a causa delle condizioni meteo-marine avverse che hanno caratterizzato i periodi in cui tali monitoraggi erano stati pianificati.

Il campionamento, come da disciplinare tecnico, è stato effettuato in 8 stazioni disposte a croce lungo le direttrici NW-SE e NE-SW e aventi come punto di intersezione la piattaforma, di cui 4 poste entro un raggio di 100 m dalla piattaforma stessa e 4 a una distanza di circa 2000 m da essa (fig. 2.1; Tab. 2-I).

In tutte le stazioni sono stati misurati parametri in continuo mediante una sonda multiparametrica (CTD; All. A1-I) della Sea Bird modello SBE19plusV2 equipaggiata, oltre che con i sensori standard di pressione, temperatura e conducibilità, con un fluorimetro Turner - Cyclops7 per la misurazione della concentrazione di clorofilla *a*, con un torbidimetro (Backscatterometro) Turner - Cyclops7 per la misurazione del particellato sospeso (TSM) e con un sensore di ossigeno SBE43 per la determinazione della concentrazione di ossigeno disciolto e con un altimetro Teledyne Benthos Altimetro PSA-916. La sonda è stata calibrata dalla Ditta costruttrice per i parametri di pressione, temperatura e conducibilità. I sensori di ossigeno disciolto, fluorescenza e torbidità sono stati calibrati con campioni raccolti *in situ* durante ogni campagna e analizzati per il contenuto di ossigeno disciolto (metodo Winkler), di pigmenti clorofilliani (Chl, metodo HPLC) e per il contenuto di materiale particellato totale (TSM, metodo gravimetrico).

La sonda ha una frequenza di acquisizione di 4 serie di dati al secondo (4 Hz).

Fig. 2.2 - Schema di campionamento adottato nella fase di produzione della piattaforma per le indagini idrologiche.

Tab. 2-II - Coordinate geografiche dei siti di campionamento utilizzati per le indagini idrologiche.

Stazione	Distanza da Bonaccia NW (m)	Posizione rispetto alla piattaforma	Coordinate geografiche
BO1	100	SW	43° 35' 57"N 14° 20' 05"E
BO2	100	SE	43° 35' 57"N 14° 20' 12"E
BO3	100	NE	43° 36' 02"N 14° 20' 12"E
BO4	100	NW	43° 36'0 2"N 14° 20' 05"E
BO5	2000	SW	43° 35' 13"N 14° 19' 06"E
BO6	2000	SE	43° 35' 14"N 14° 21' 12"E
BO7	2000	NE	43° 36' 45"N 14° 21' 11"E
BO8	2000	NW	43° 36' 45"N 14° 19' 05"E

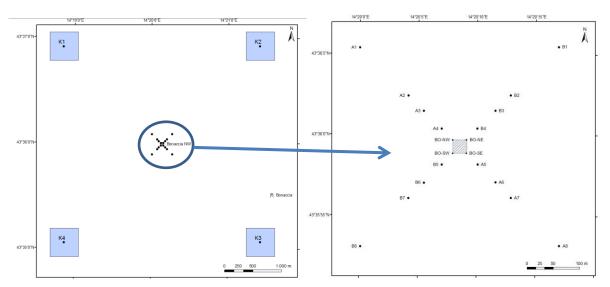
Lungo la colonna d'acqua sono stati registrati i seguenti parametri:

- profondità (pressione);
- temperatura;
- conducibilità (da cui si ricava la salinità);
- ossigeno disciolto;
- fluorescenza;
- torbidità (Backscatterometro).

Presso ogni stazione sono stati anche prelevati campioni di acqua a 4 quote (superficie, -20 m, -40 m e fondo) mediante "rosette" Sea-Bird Electronics mod. SBE 32C Carousel Water Sampler con bottiglie GO da 5 litri accoppiata alla sonda CTD SBE19 plusV2 (All. A1-I). Su tali campioni sono stati misurati i seguenti parametri:

- ossigeno disciolto tramite metodo Winkler;
- azoto inorganico come Ammoniaca, Nitriti e Nitrati;
- fosforo inorganico disciolto come Ortofosfato;
- silicio inorganico disciolto come Ortosilicato;
- carico solido totale come peso secco;
- concentrazione di pigmenti clorofilliani;
- Idrocarburi totali;
- Idrocarburi alifatici (IA);
- Idrocarburi Policiclici Aromatici (IPA);
- Solventi organici aromatici (BTEX);
- metalli pesanti (alluminio, arsenico, bario, cadmio, cromo, ferro, indio, mercurio, nichel, piombo, rame, silicio, vanadio, zinco);
- glicole etilenico.

Tutti i campioni raccolti sono stati mantenuti in luogo fresco e al buio fino al momento delle analisi. I campioni dei nutrienti e i filtri per i solidi sospesi e per i pigmenti clorofilliani sono stati conservati a -20°C fino al momento dell'analisi.


2.1.2. MISURE CORRENTOMETRICHE

Analogamente al 1° semestre 2018, anche nel 2° è stato posizionato un ormeggio correntometrico in prossimità di Bonaccia NW (coordinate dell'ormeggio: 43°35,991'N, 014°20,108'E) a circa 86 m di profondità. Tale ormeggio era costituito da un correntometro acustico Teledyne RDI (All. A1-II), del peso in acqua di circa 13 kg, da tre

boe di spinta in materiale plastico con spinta positiva di circa 20 kg ciascuna, da uno sganciatore acustico Edge Tech e da una zavorra di ferro a perdere di circa 95 kg. Tale strumento è stato periodicamente controllato e i dati sono stati scaricati. Il correntometro acustico (ADCP), oltre a registrare la direzione e la velocità della corrente nei vari strati, misura la temperatura e la pressione nel luogo in cui è posizionato. La sua accuratezza è di circa 0,3 cm/s e la risoluzione di 0,1 cm/s. Lo strumento è stato settato per effettuare registrazioni ogni ora in 25 celle da 4 m, coprendo in questo modo gran parte della colonna d'acqua. Sono stati registrati dati sino al 31 dicembre 2018. Nel presente report si riportano i dati relativi al 2° semestre 2018. Per i precedenti fare riferimento a Fabi *et al.*, 2016b, 2017b, 2017c, 2018, 2019d.

2.1.3. INDAGINI FISICHE E CHIMICHE DEI SEDIMENTI E SULLA COMUNITÀ BENTONICA

Nel 2018, analogamente ai due anni di indagine precedenti, i prelievi hanno interessato un'area di circa 2000x2000 m all'interno della quale sono state posizionate 20 stazioni lungo due transetti ortogonali tra di loro e aventi come punto di intersezione la piattaforma stessa (fig. 2.3). Il primo transetto (transetto A) è stato orientato da NW verso SE e il secondo (transetto B) da NE verso SW, ortogonalmente alla linea di costa. Le stazioni sono state poste a distanze crescenti dalla struttura (<5 m, 30 m, 60 m, 120 m, 250 m). Sono stati campionati anche 4 siti di controllo posizionati in modo random all'interno di aree (500x500 m) situate a circa 2000 m dalla struttura.

Fig. 2.3 - Schema di campionamento utilizzato per le indagini sedimentologiche e sulla comunità bentonica nella fase di produzione di Bonaccia NW, con il particolare dei 20 siti posti attorno alla piattaforma.

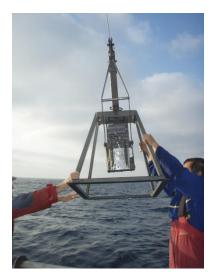
In Tab. 2-III sono riportate distanza dal punto "Bonaccia NW", posizione geografica e profondità di ciascuna stazione campionata nell'estate 2018, ovvero nel 6° survey post lavori di installazione.

Tab. 2-III - Dati identificativi delle stazioni di campionamento utilizzate nel 6° survey post lavori di installazione per le indagini sedimentologiche e sulla comunità bentonica. In rosso i punti di campionamento in corrispondenza di Bonaccia NW.

	Distanza dal sito Bonaccia NW (m)	Posizione rispetto alla piattaforma	Coordinate geografiche	Profondità (m)
A1	250	NW	43°36'181N 14°20'070E	87,3
A2	120	NW	43°36'127N 14°20'104E	87,4
A3	60	NW	43°36'106N 14°20'130E	87,0
A4	30	NW	43°36'095N 14°20'154E	86,9
BO NW	0	NW	43°36'090N 14°20'167E	87,0
BO SE	0	SE	43°36'066N 14°20'205E	86,4
A5	30	SE	43°36'053N 14°20'213E	86,7
A6	60	SE	43°36'060N 14°20'249E	87,0
A7	120	SE	43°36'054N 14°20'303E	87,2
A8	250	SE	43°35'999N 14°20'375E	87,6
B1	250	NE	43°36'186N 14°20'356E	85,7
B2	120	NE	43°36'139N 14°20'261E	86,6
В3	60	NE	43°36'107N 14°20'236E	86,8
B4	30	NE	43°36'111N 14°20'211E	86,8
BO NE	0	NE	43°36'098N 14°20'213E	86,4
BO SW	0	SW	43°36'076N 14°20'166E	87,1
B5	30	SW	43°36'071N 14°20'154E	87,0
B6	60	SW	43°36'042N 14°20'170E	86,9
В7	120	SW	43°36'030N 14°20'121E	86,7
B8	250	SW	43°35'975N 14°20'041E	86,3
K1	2000	NW	43°36'977N 14°19'003E	84,8
K2	2000	NE	43°36'999N 14°21'763E	85,4
K3	2000	SE	43°34'792N 14°21'432E	85,2
K4	2000	SW	43°35'066N 14°18'985E	85,7

Indagini fisiche e chimiche dei sedimenti - Tutte le stazioni sono state campionate mediante box-corer (fig. 2.4; All. A2-I).

In situ sono stati rilevati i seguenti parametri:


- aspetto macroscopico (colore, odore, eventuale presenza di frammenti di conchiglie, concrezioni, ecc.);
- tessitura;
- presenza di strutture sedimentarie di varia natura;

Da ciascun campione, dopo la descrizione degli aspetti sopra elencati, sono state prelevate porzioni di sedimento ripartite in due aliquote per le seguenti analisi:

- granulometria;
- Idrocarburi Policiclici Aromatici (IPA);

- Idrocarburi totali;
- metalli pesanti (alluminio, arsenico, bario, cadmio, cromo, ferro, indio, mercurio, nichel, piombo, rame, silicio, vanadio, zinco);
- sostanza organica totale;
- Total Organic Carbon (TOC).

I campioni sono stati congelati e conservati a -18° C ad eccezione di quelli utilizzati per la granulometria, mantenuti a $+4^{\circ}$ C.

Fig. 2.4 – Box-corer utilizzato per le indagini fisiche e chimiche dei sedimenti.

Indagini sulle comunità bentoniche - Tutte le stazioni sono state campionate mediante una benna di tipo Van Veen avente una capacità di 12 l e un'apertura di 0,095 m² (fig. 2.5; All. A3-I). Presso ogni stazione sono state effettuate 6 repliche. I campioni sono stati lavati e setacciati con maglia da 0,5 mm (All. A3-II) e fissati in formaldeide diluita in acqua di mare al 5%.

Fig. 2.5 – Benna Van Veen utilizzata per le indagini sulla comunità bentonica.

2.1.4. ECOTOSSICOLOGIA DEI SEDIMENTI

Presso le stazioni di campionamento BO SE, A3, B3, A6, B6, K1, K2, K3 e K4 (fig. 2.3)

sono stati prelevati mediante benna Van-Veen anche campioni di sedimento per lo

svolgimento dei seguenti saggi ecotossicologici:

- Dunaliella tertiolecta (accrescimento);

- *Vibrio fischeri* (variazione della bioluminescenza);

- Corophium orientale (mortalità dopo 10 giorni);

- Crassostrea gigas (embriotossicità).

La ricerca di inquinanti è stata effettuata su esemplari di Hediste diversicolor; le prove di

bioaccumulo hanno riguardato i seguenti metalli pesanti: alluminio, arsenico, bario,

cadmio, cromo, ferro, indio, mercurio, nichel, piombo, rame, silicio, vanadio, zinco.

Dal campione di sedimento è stata prelevata solo la porzione superficiale (5-10 cm)

eliminando lo strato di fango venuto a contatto con le pareti della benna, al fine di evitare

eventuali contaminazioni. Il materiale così ottenuto è stato posto in recipienti puliti e

conservato a circa 5°C.

2.1.5. ANALISI INQUINANTI E BIOMARKER NEI MITILI INSEDIATI SULLE PARTI IMMERSE

DELLA PIATTAFORMA

Nel 1° anno post lavori di installazione della piattaforma Bonaccia NW e nel 1° semestre

2017 non era stato possibile eseguire tale tipo di analisi per la mancanza di esemplari di

Mytilus galloprovincialis adesi sulle parti sommerse della struttura (Fabi et al., 2016b;

2017b; 2017c). Pertanto tali indagini sono iniziate nell'estate 2017. I campioni sono stati

prelevati vicino gli anodi sacrificali e lontano da essi, oltre che da un impianto di

mitilicoltura situato al largo di Senigallia (AN) in un'area di mare aperto. Quest'ultimo

campione è considerato come controllo.

Le taglie medie degli esemplari prelevati nell'estate 2018 dai due siti della piattaforma e al

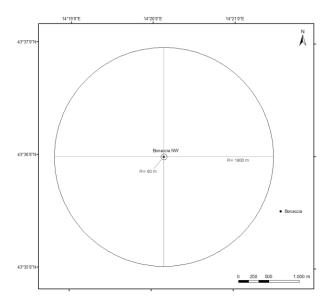
controllo (lunghezza della conchiglia \pm dev.st) sono state le seguenti:

1. Controllo: 55,7±5,9 mm

2. Vicino anodo: 78,1±6,5 mm

3. Lontano anodo: 80,2±7,7 mm.

11

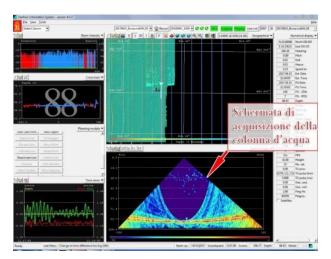

2.1.6. INDAGINI SUL POPOLAMENTO ITTICO

2.1.6.1 Campionamenti di pesca

Analogamente ai primi due anni di indagini, anche nel 2018 sono stati condotti campionamenti di pesca mensili sia nei pressi della piattaforma Bonccia NW (entro un raggio di 50 m dalla struttura), sia in due aree di controllo prive di substrati duri naturali o artificiali, situate sulla stessa batimetria della struttura e a una distanza di circa 1800 m, in modo da non essere influenzate dalla sua presenza. I campionamenti presso le due aree di controllo sono stati condotti in due dei quattro quadranti (NW, NE, SW e SE) intorno alla piattaforma, scelti in maniera casuale ad ogni campionamento (fig. 2.6).

Lo strumento utilizzato è una rete da posta tipo "tremaglio" (All. 4-I).

La rete veniva calata al tramonto e salpata all'alba del giorno seguente, per una permanenza in mare di circa 12 h. I campionamenti sono stati effettuati contemporaneamente nei tre siti, al fine di operare nelle medesime condizioni meteo-marine. In tutti i tre anni (2016-2018) sono stati effettuati 12 campionamenti, ma nel dicembre 2016 le reti da pesca sono state perse e dunque non si dispone di dati per quel mese.


Fig. 2.6 - Schema di campionamento per le indagini sulla comunità ittica mediante campionamenti di pesca.

2.1.6.2 Investigazioni acustiche

Le investigazioni acustiche, condotte contemporaneamente ai campionamenti di pesca, sono state eseguite con sistema multibeam echosounder (MBES; Kongsberg Simrad EM3002D; All. 4-II) installato a bordo della Tecnopesca II di proprietà del CNR-IRBIM Ancona sino a dicembre 2016, sostituito nel 2017 con il sistema MBES Kongsberg

EM2040CD (QAll. A4-III). Questo nuovo strumento è un multibeam echosounder ad alta risoluzione che lavora a frequenze variabili che possono essere scelte dall'utente in un range che va da 200 a 400 kHz modulabili di 10 in 10. Il sistema, oltre alla completa mappatura del fondale marino, è in grado di acquisire dati acustici riguardanti la colonna d'acqua (fig. 2.7) restituendo dati geometrici e morfologici di eventuali aggregazioni di pesce e/o altri riflettori presenti lungo la colonna stessa e relative immagini tridimensionali.

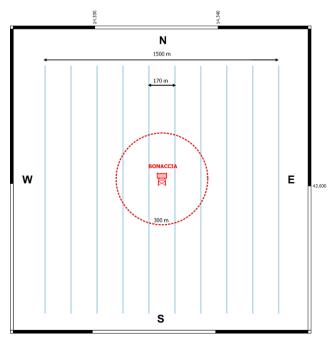

La fig. 2.8 illustra lo schema di campionamento adottato durante i survey che è consistito 10 transetti, di interasse pari a 170 m circa. L'area investigata è centrata sulla piattaforma e ha dimensioni 1500x1500 m. Negli schemi planari di campionamento dei vari mesi si evidenzia un'area circolare di raggio 300 m dalla piattaforma in quanto, da studi effettuati (Scarcella *et al.*, 2011), si è potuto determinare che tale è l'area di influenza della struttura in ambiente naturale: la circonferenza in planimetria definisce una colonna d'acqua cilindrica entro la quale si può apprezzare la variazione di popolazione ittica nel tempo e relazionarla all'esistenza della struttura.

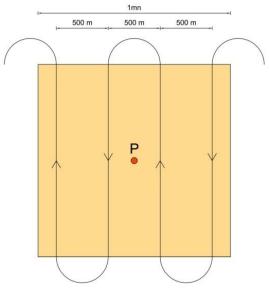
Fig. 2.7 - Schermata di acquisizione dati del software SIS utilizzato dal sistema multibeam EM2040CD. Il sistema è in grado di visualizzare e acquisire dati acustici relativi alla colonna d'acqua.

Un totale di 800 beam acustici è stato campionato digitalmente, creando un'immagine della porzione di massa d'acqua insonificata dal trasduttore. Considerando una profondità media di circa 76 m e un angolo di apertura del cono acustico di 160° in totale, è stato possibile investigare circa 360 m di areale per ogni transetto effettuato.

Tutti i campionamenti sono stati eseguiti nello stesso arco temporale della giornata (dalle 11:00 alle 16:00 circa), con condizioni di mare da calmo a poco mosso.

Fig. 2.8 - Schema di campionamento adottato durante i survey effettuati con MBES. Al centro il simbolo della piattaforma e il limite dei 300 m (in rosso).

2.1.6.3 Indagini video in prossimità della piattaforma


Durante i survey, ogni qualvolta vi fossero condizioni di buona visibilità, sono state realizzate riprese con telecamera subacquea Quasi Stellar Color (All. 4-IV) che consente la visione diurna a colori del fondo in condizioni di scarsa luminosità e torbidità a grandi profondità (≥ 200 m 200 m), con intensità di appena 2 millesimi di lux. Le registrazioni sono state effettuate immergendo la telecamera in prossimità della piattaforma a vari step di profondità, controllando contemporaneamente le registrazioni dal monitor del notebook ad essa collegato: in tal modo si sono acquisiti filmati sulle aggregazioni rilevate ed è stata individuata la quota a cui sono state riscontrate nella colonna d'acqua.

2.1.7. RILEVAMENTO DEL PASSAGGIO DI CETACEI E RETTILI MARINI

Gli avvistamenti di cetacei attorno alla piattaforma sono stati effettuati in un'area di circa 1 mn² avente al centro il punto Bonaccia NW. All'interno di tale area sono stati tracciati dei transetti distanti circa 500 m l'uno dall'altro e percorsi a una velocità media di 5 nodi (fig. 2.9).

Durante il survey due operatori osservavano simultaneamente l'eventuale presenza di cetacei registrandola sul quaderno di campo annotando l'ora, il numero degli esemplari, la loro posizione rispetto alla piattaforma e, ove possibile, la specie. Tali survey sono stati condotti sia nel corso delle campagne di campionamento della colonna d'acqua, dei

sedimenti e delle comunità bentonica e ittica, sia durante apposite crociere. Ogni anno effettuati 3 avvistamenti/mese.

Fig. 2.9 - Schema di campionamento adottato per gli avvistamenti dei cetacei nell'area interessata dalla presenza della piattaforma Bonaccia NW. P = piattaforma.

2.2. ANALISI DI LABORATORIO E ANALISI DEI DATI

2.2.1. INDAGINI FISICHE E CHIMICHE DELLA COLONNA D'ACQUA

I campioni di acqua raccolti sono stati analizzati in laboratorio per valutare il contenuto dei sali nutritivi disciolti (nitrati, nitriti, ammonio, ortofosfati e ortosilicati), dell'ossigeno disciolto, dei solidi totali sospesi (TSM: Total Suspended Matter) e della concentrazione di pigmenti clorofilliani. Sono stati inoltre ricercati i vari inquinanti elencati nel Cap. 2.1.1.

Ossigeno disciolto - E' stato quantificato direttamente a bordo con metodo Winkler (1888): i campioni di acqua appena raccolti sono stati fissati con una soluzione di cloruro di manganese e una soluzione alcalina di ioduro di sodio, e conservati al buio fino alla determinazione. La titolazione è stata effettuata con tiosolfato di sodio con metodo potenziometrico ed elettrodo di platino, entro le 4 h successive, utilizzando la buretta automatica Metrohm Basic Titrino 794 (All. A1-III) e confronto con soluzione standard di iodato di potassio (Strickland e Parsons, 1972; Saggiomo *et al.*, 1990). Le analisi di ossigeno disciolto effettuate sono state utilizzate per calibrare i valori misurati dal sensore SBE 43 installato sulla sonda CTD- SBE19plusV2 per i profili in continuo.

Sali nutritivi - I campioni per l'analisi dei macro-nutrienti inorganici sono stati prelevati dalle bottiglie di campionamento, dopo filtrazione con filtro in fibra di vetro Whatman

GF/F (porosità = 0,7 μ m; Ø = 47 mm), e conservati al buio ad una temperatura di -20°C fino all'analisi.

L'analisi dei nutrienti è stata eseguita tramite un analizzatore colorimetrico automatico EasyChem PlusTM della ditta Systea s.r.l. (All. A1-IV), seguendo le metodiche esposte in Grasshoff *et al.* (1999), in particolare:

- azoto da ammoniaca N-NH₃: il metodo prevede che l'ammoniaca reagisca in ambiente alcalino con fenolo e ipoclorito per formare blu di indofenolo letto a 660 nm;
- azoto da nitriti N-NO₂: lo ione nitrito è fatto reagire in ambiente acido con sulfanilamide e naftiletilendiamina per formare un composto diazoico di colore rosso.
 L'assorbanza del prodotto di reazione è misurata a 540 nm;
- azoto da nitrati N-NO₃: il metodo si basa sulla loro riduzione a nitriti e sul successivo dosaggio dei nitriti totali utilizzando la metodica sopra esposta. La riduzione viene effettuata facendo passare il campione attraverso una colonna di cadmio fornita dalla ditta Systea s.r.l.;
- ortofosfati P-PO₄: il campione viene trattato con ammonio molibdato in ambiente acido;
 il complesso che ne risulta viene ridotto con acido ascorbico a blu di molibdeno. Si misura l'intensità della colorazione così prodotta a 880 nm;
- ortosilicati Si-SiO₄: il metodo automatico prevede la misurazione fotometrica del prodotto di riduzione (blu di molibdeno) che si forma in presenza di acido ascorbico, quando lo ione silicio reagisce con ammonio molibdato in ambiente acido. Il complesso è letto a 880 nm; l'acido ossalico viene addizionato allo scopo di eliminare le interferenze dei fosfati.

Per ogni parametro i limiti di rilevabilità (IRSA-CNR, 1994) sono:

- $N-NH_3$: 0,05 μ M;
- $N-NO_2$: 0,01 μ M;
- $N-NO_3$: 0,10 μ M;
- P-PO₄: 0,01 μM;
- Si-SiO₄: 0,02 μM.

Pigmenti clorofilliani - I campioni per la determinazione delle diverse clorofille sono stati prelevati mediante bottiglie idrologiche e filtrati a bordo, immediatamente dopo il prelievo, su filtri in fibra di vetro Whatman GF/F (porosità = 0,7 μ m; Ø = 47 mm), e opportunamente conservati in freezer a -20°C fino al momento dell'analisi. La filtrazione è stata effettuata per aspirazione, con la minore depressione possibile per evitare la rottura

delle cellule, in ogni caso minore di 200 mm Hg⁻¹.

Le analisi delle clorofille *a, b* e *c* sono state effettuate secondo il metodo Vidussi *et al.* (1996) mediante HPLC (High Performance Liquid Chromatography; All. A1-V) HP 1090 dotato di detector DAD (photodiode array detector), utilizzando una colonna *Synergy-Hydro Reversed-phase* (150 mm x 3 cm x 4 μm). I dati sono stati acquisiti tramite integratore HP 3396 series II. L'estratto è stato iniettato attraverso un loop di 200 μl e l'eluizione ha previsto un flusso pari a 0,8 ml/min con un gradiente binario lineare fra il solvente A (metanolo:ammonio acetato 0.5 N, 70:30 v:v) e il solvente B (metanolo puro), avente il seguente programma (minuti, %A, %B): 0, 75, 25 - 1, 50,50 - 15, 0, 100 - 18,5, 0, 100 - 19, 75, 25. L'identificazione dei pigmenti è stata effettuata per confronto con standard esterni (DHI Laboratories) settando la lunghezza d'onda per la lettura a 440 nm. I valori di clorofilla sono stati utilizzati per calibrare i dati del sensore di fluorimetria Turner Cyclops-7 installato sulla sonda CTD- SBE19plusV2 per i profili in continuo.

TSM (solidi sospesi totali) - Il carico solido totale è stato determinato con la seguente procedura: i campioni prelevati mediante bottiglie idrologiche sono stati filtrati *in situ* su filtri in fibra di vetro Whatman GF/F (porosità = 0.7 μm; Ø = 47 mm), pesati a freddo con bilancia analitica Mettler 0,01 mg (All. A1-V) e riposti in singoli portafiltri numerati. La filtrazione è stata effettuata per aspirazione, con la minore depressione possibile per evitare la rottura delle cellule, in ogni caso minore di 200 mm Hg⁻¹. Per eliminare i residui salini il filtro è stato risciacquato nella fase finale della filtrazione del campione per 3 volte con acqua Milli-Q. Al termine dalla filtrazione i filtri sono stati conservati a -20°C in essiccatore fino al momento dell'analisi. La determinazione in laboratorio del peso secco totale è avvenuta per via gravimetrica, dopo essiccazione a 50-60°C per 4 ore, secondo le indicazioni riportate da Strickland and Parsons (1972). Il peso dei singoli filtri combusti è stato sottratto al peso del filtro corrispondente su cui è stato filtrato il campione. Le concentrazioni di TSM (total suspended matter) sono state espresse in mg/l. I valori di TSM sono stati utilizzati per calibrare i dati del sensore di torbidità Turner Cyclops-7 installato sulla sonda CTD- SBE19plusV2 per i profili in continuo.

Per la misura di inquinanti lungo la colonna d'acqua sono state utilizzate le metodiche elencate in Tab. 2-IV.

Metalli pesanti - Eccetto il silicio, per tutti gli altri metalli stata adottata la tecnica della spettrometria di massa a plasma accoppiato induttivamente, indicata con la sigla ICP-MS. Tale tecnica sfrutta l'utilizzo di una torcia al plasma ICP per produrre la ionizzazione del campione e uno spettrometro di massa separa e rileva gli ioni prodotti.

Si è proceduto con l'agitazione del campione e il trasferimento di 100 ml in una beuta da 125 ml; dopo l'aggiunta di 5 ml di acido nitrico, la beuta è stata riscaldata su una piastra e il campione è stato fatto evaporare fino al raggiungimento di un volume di 10-20 ml. Completata la mineralizzazione, alla soluzione sono state aggiunte due successive aliquote di 5 ml di acqua. Una volta raffreddato, il campione è stato portato a volume con acqua per la successiva introduzione nello strumento di analisi. Lo strumento usato è uno spettrometro di massa con sorgente al plasma ICP-MS 7500ce, con cella di collisione Shield Torch e sistema ISIS, Agilent Technologies, dotato di autocampionatore ASX520, Cetac (All. A1-VI).

Per la valutazione del silicio la base del metodo consiste nella misura delle intensità delle radiazioni elettromagnetiche emesse dagli atomi/ioni eccitati delle specie presenti nel campione, mediante tecniche spettrometriche con sorgente al plasma (ICP-OES). Il campione è trasportato nel plasma, dove, in seguito a fenomeni di eccitazione, avviene la produzione dello spettro di emissione composto dalle righe caratteristiche degli elementi presenti. Tali righe, dopo essere state separate mediante un sistema di dispersione, vengono inviate su un rivelatore (fotomoltiplicatore o a stato solido) che produce un segnale elettrico di intensità proporzionale all'intensità delle righe di emissione. Le intensità di emissione vengono rilevate, simultaneamente o in sequenza, e la concentrazione di analita presente nel campione viene determinata per confronto con una soluzione di riferimento a concentrazione nota.

Per la misurazione del silicio è stato utilizzato uno spettrometro simultaneo ad emissione atomica con plasma ad accoppiamento indotto ICP-AES Vista-MPX dotato di autocampionatore SPS-3, Varian (All. A1-VII).

Solventi organici aromatici (BTEX) - La determinazione è stata effettuata mediante gascromatografia accoppiata a spazio di testa dinamico ("Purge & trap"). Soltanto i composti scarsamente solubili in acqua, relativamente volatili, tendono ad occupare lo spazio di testa e quindi possono essere trasferiti nel gascromatografo; in tal modo è possibile minimizzare eventuali interferenze e/o contaminazioni della colonna gascromatografica e del rivelatore.

Il metodo prevede l'estrazione dalla matrice acquosa delle sostanze organiche volatili, con bassa solubilità in acqua, mediante il gorgogliamento di un gas inerte (elio) direttamente nelle vials di campionamento (40 ml). I composti così estratti vengono intrappolati in apposito materiale adsorbente. Terminata l'estrazione, la trappola viene riscaldata e gli

analiti sono trascinati dal flusso del gas all'interno del gas cromatografo equipaggiato con rilevatore a massa.

Lo strumento utilizzato per la determinazione dei BTEX è uno spettrometro di massa quadrupolare HEWLETT-PACKARD GC/MS 5973 Network, munito di 1 autocampionatore a 51 posizioni per spazio di testa 4552 Purge & Trap e sistema di Purge & Trap Eclipse 4660 O.I. Analytical (All. A1-VIII).

Tab. 2-IV - Elenco degli inquinanti analizzati lungo la colonna d'acqua e metodi di analisi utilizzati.

METALLI			
		limite	
	unità di misura	rilevabilità	metodo
Alluminio	μg/L	0,1	EPA 6020A
Arsenico	μg/L	0,1	EPA 6020A
Bario	μg/L	0,1	EPA 6020A
Cadmio	μg/L	0,1	EPA 6020A
Cromo	μg/L	0,1	EPA 6020A
Ferro	μg/L	5	EPA 6020A
Mercurio	μg/L	0,1	EPA 6020A
Nichel	μg/L	0,1	EPA 6020A
Piombo	μg/L	0,1	EPA 6020A
Rame	μg/L	0,1	EPA 6020A
Vanadio	μg/L	0,1	EPA 6020A
Zinco	μg/L	0,1	EPA 6020A
Indio	μg/L	0,1	EPA 6020A
Silice	mg/L	0,01	EPA 200.7
SOLVENTI ORGANICI AROMATICI (BTEX)			
Benzene	μg/L	0,1	EPA 5030C + EPA 8260C
Etilbenzene	μg/L	1	EPA 5030C + EPA 8260C
Stirene	μg/L	1	EPA 5030C + EPA 8260C
Toluene	μg/L	1	EPA 5030C + EPA 8260C
Xilene	μg/L	1	EPA 5030C + EPA 8260C
ALTRE SOSTANZE			
Idrocarburi totali (n-esano)	μg/L	30	EPA 5021A + EPA 3510C + 8015D
Etilenglicole	mg/L	10	M.U. 1367:99
Idrocarburi policiclici aromatici	μg/L	0,01-0,1	EPA 3510C + EPA 8310
Idrocarburi alifatici	μg/L	1	EPA 3510C + EPA 8270D

EPA METHOD 6020A, 2007 - Inductively coupled plasma-mass spectrometry.

EPA METHOD 200.7, 2001 - Determination of metals and trace elements in water and wastes by inductively coupled plasma-atomic emission spectrometry.

EPA METHOD 5030C, 2003 - Purge-and-trap for aqueous samples.

EPA METHOD 8260C, 2006 - Volatile organic compounds by gaschromatography/ mass spectrometry (gc/ms).

EPA METHOD 5021A, 2003 - Equilibrium headspace.

 $EPA\ METHOD\ 3510C,\ 1996\ -\ Separatory\ funnel\ liquid\ extraction.$

EPA METHOS 8015D, 2003 - Nonhalogenated organics using gc/fid.

EPA METHOD 8310, 1986 - Polynuclear aromatic hydrocarbons.

EPA METHOD 8270D, 2007 - Semivolatile organic compounds by gas chromatography/mass spectrometry (gc/ms).

M.U. 1367:99 - Metodi Unichim, Qualità dell'acqua: determinazione di glicoli: etilenico, dietilenico, propilenico, dipropilenico e trietilenico - Metodo gascromatografico.

Idrocarburi totali - Questo parametro relativamente alle acque è da intendersi come somma delle due seguenti classi:

a) i composti che, dopo i processi di estrazione e purificazione, sono rivelati mediante

- GC-FID, su colonna capillare non polare con tempi di ritenzione compresi tra quelli del n-decano (C10 H22) e del n-tetracontano (C40 H82) (frazione estraibile).
- b) i singoli idrocarburi, determinati mediante spazio di testa e analisi in gascromatografia con rivelatore FID, compresi tra il n-pentano (C5 H12) e in n-decano (C10 H12) inclusi (frazione volatile).

Analisi frazione volatile: Il metodo è applicabile a una vasta gamma di composti organici che hanno una volatilità sufficientemente elevata da essere efficacemente rimossi dal campione, mediante la procedura di equilibrio in spazio di testa.

In laboratorio, parte del campione d'acqua è stato trasferito in una vial per spazio di testa. All'interno della vial è stato inoltre aggiunto un modificatore di matrice e il relativo standard interno; successivamente, la vial chiusa e ben mescolata è stata posizionata nell'autocampionatore e mantenuta a temperatura ambiente. Il modificatore di matrice ha lo scopo di ben separare i composti volatili all'interno dello spazio di testa. Circa 1 ora prima dell'analisi, le singole fiale sono state riscaldate e miscelate per vibrazione meccanica.

L'autocampionatore ha quindi pressurizzato le vials con gas elio il quale ha spinto la miscela gassosa, formatasi nello spazio di testa attraverso una linea di trasferimento riscaldata, nella colonna GC. Le analisi sono eseguite utilizzando un GC con rilevatore a fiamma (FID).

Analisi frazione estraibile: In un cilindro graduato è stato misurato 1 l di campione che è stato travasato dal cilindro nell'imbuto separatore. Tale imbuto è stato agitato energicamente per circa 2', con sfiato periodico per scaricare la pressione in eccesso. Lo strato organico è stato lasciato separato dalla fase acquosa per un minimo di 10' e si è ripetuta l'estrazione per altre due volte con porzioni fresche di solvente; al termine di tali operazioni i tre estratti di solvente sono stati uniti. L'essiccazione del campione dell'estratto è avvenuta tramite passaggio dello stesso su colonna di vetro, riempita con 20 g di sodio solfato anidro. Successivamente è stata eseguita la concentrazione in evaporatore rotante per effettuare il cambio del solvente per la successiva analisi cromatografica condotta mediante l'impiego si gascromatografo con rilevatore a fiamma (FID) con colonna capillare.

Gli idrocarburi totali sono stati determinati con un gascromatografo GC 8000 FISONS INST. con colonna capillare e rivelatore F.I.D., munito di autocampione per spazio di testa statico a 50 posizioni (All. A1-IX).

Idrocarburi Policiclici Aromatici (IPA) e Idrocarburi Alifatici (IA) - I campioni di acqua sono stati preparati utilizzando la stessa metodica di laboratorio appena descritta per

l'analisi della frazione estraibile degli Idrocarburi totali sino all'essiccazione del campione dell'estratto tramite passaggio dello stesso su colonna di vetro, riempita con 20 g di sodio solfato anidro. Successivamente, per IPA e IA è stata eseguita la concentrazione in evaporatore rotante per effettuare il cambio del solvente (acetonitrile e isoottano rispettivamente per analisi di IPA e IA) per la successiva analisi cromatografica.

Nel caso degli **IPA**, la concentrazione di 16 IPA (priority pollutants per la USEPA) (Naftalene, Acenaftene, Acenaftilene, Fluorene, Fenantrene, Antracene, Fluorantene, Pirene, Benzo(a)antracene, Crisene, Benzo(b)Fluorantene, Benzo(k)Fluorantene, Benzo(a)Pirene, Dibenzo(a,h)Antracene, Benzo(g,h,i)Perilene, Indenopirene) è stata determinata con cromatografo liquido ad alte prestazioni HPLC PE 200, accoppiato a un rivelatore a fluorescenza programmabile serie 200A. La colonna utilizzata è una Supelcosil LC-PAH (L = 150 mm ϕ = 3 cm, 5 micron) a fase inversa (All. A1-X). L'eluizione è avvenuta in gradiente ed è stata eseguita con acetonitrile-acqua come fase mobile ad un flusso di 0,8 ml/min. La colonna è stata termostatata a 40°C. Un programma di lunghezza d'onda variabile è stato sviluppato per consentire il rilevamento ottimale di tutti i composti. L'identificazione e la quantificazione dei composti si basa sul confronto con i tempi di ritenzione e sulla misurazione dell'area dei picchi di standard di riferimento esterni. Il limite di rilevabilità è compreso tra 0,01 e 0,1 µg/l. Campioni di bianco sono stati eseguiti per l'intera procedura. Recupero e precisione sono stati validati con campioni riferimento certificati. La metodica è stata ulteriormente verificata tramite periodica attività di intercalibrazione internazionale.

Gli IA sono analizzati mediante gascromatografia capillare con gascromatografo Agilent 7820A accoppiato a rilevatore di massa sistema MSD Agilent 7820A accoppiato a rilevatore di massa sistema MSD Agilent Serie 5977A con autocampionatore a 50 posizioni (All. A1-XI).

L'identificazione degli IA si basa sul confronto con il tempo di ritenzione di soluzioni standard e la quantificazione è stata determinata dalle curve di taratura per ciascun composto analizzando cinque standard esterni. I limiti di rilevazione sono stati misurati con il metodo della curva di calibrazione e campioni di bianco sono stati eseguiti per l'intera procedura. Recupero del campione e precisione sono stati validati con campioni di riferimento certificati. La metodica è stata ulteriormente verificata tramite periodica attività di intercalibrazione internazionale.

Glicole etilenico - È stato misurato nei campioni di acqua mediante tecnica gas cromatografica utilizzando il rilevamento a ionizzazione di fiamma (FID). L'analisi in

campioni d'acqua di mare non prevede la preparazione del campione, che è stato pertanto iniettato direttamente nello strumento previo prelievo di aliquota tarata.

Analogamente agli idrocarburi totali, l'etilenglicole è stato determinato con un gascromatografo GC 8000 FISONS INST. con colonna capillare e rivelatore F.I.D., munito di autocampione per spazio di testa statico a 50 posizioni (All. A1-IX).

I dati raccolti sono stati restituiti in forma grafica in modo da descrivere l'andamento dei parametri lungo la colonna d'acqua, lungo transetti e spazialmente utilizzando appositi software.

Per l'acquisizione e l'elaborazione dei dati registrati e raccolti tramite le sonde CTD è stato utilizzato un software fornito dalla casa produttrice seguendo le norme suggerite dall'UNESCO (UNESCO, 1988) e riportate sul manuale "Handbook of method protocols" (Artegiani, 1996); le grandezze derivate, come salinità e anomalie della densità, sono state calcolate secondo gli algoritmi dell'UNESCO (UNESCO, 1983).

Per le varie elaborazioni grafiche sono stati utilizzati il software GrapherTM Vers. 11.3. della Golden Software, Inc., e il software Ocean Data View © Vers: 4.7.7 (Schlitzer, 2016).

Nel presente report sono discussi i risultati relativi al 2° semestre 2018. Per i precedenti consultare Fabi *et al.*, 2015b, 2016b, 2016c, 2017b, 2017c, 2018 e 2019d.

2.2.2. INDAGINI FISICHE E CHIMICHE DEI SEDIMENTI

Granulometria - In laboratorio i campioni di sedimento sono stati pesati tal quali per la determinazione del peso umido utilizzando una bilancia elettronica tipo "Europe" (All. A2-II). Successivamente sono stati posti in contenitori di alluminio e introdotti in stufa (All. A2-III) a 110°C per almeno 24 h. Una volta raggiunta la completa essiccazione si è proceduto alla misurazione del peso secco.

Per la separazione in sabbie e peliti ogni campione è stato immerso in acqua tiepida sino alla sua completa disgregazione; si è quindi proceduto alla setacciatura con maglie da 63 μ . Il materiale trattenuto dal setaccio, definito come sabbie, è stato fatto essiccare in stufa a 130°C per almeno 24 h ed è stato sottoposto ad indagine granulometrica, ovvero è stata analizzata la distribuzione percentuale in peso dei grani costituenti il campione secondo le loro dimensioni. Per questa analisi è stato utilizzato un set di setacci (All. A2-IV) aventi dimensioni delle maglie decrescenti (4000 μ , 2000 μ , 1000 μ , 500 μ , 250 μ , 125 μ , 63 μ). Una volta terminata la setacciatura sono stati pesati i residui di ogni setaccio ed è stata

determinata la percentuale conchigliare presente. I dati così ottenuti sono stati riportati su un diagramma semilogaritmico e uniti mediante la cosiddetta "curva granulometrica".

Le peliti (materiale inferiore a 63μ) sono state fatte decantare ed essiccare in stufa a 130° C sino a completa evaporazione. E' stata quindi eseguita l'aerometria mediante l'utilizzo di un densimetro (All. A2-V) per terreni secondo il metodo di Casagrande basato su due proprietà: a) velocità con cui si depositano i grani in sospensione in un liquido viscoso in quiete dipende dal volume, dalla forma e dal peso dei granuli stessi (Legge di Stokes); b) la densità della sospensione ad un dato istante è funzione della qualità del prodotto solido non ancora depositato.

IPA - Per la determinazione degli IPA ogni campione è stato scongelato e privato dell'eventuale frazione più grossolana; in seguito, l'analisi è stata compiuta su un'aliquota di circa 20 g (peso umido), mentre una seconda aliquota è stata utilizzata per la determinazione del peso secco.

La determinazione degli IPA è stata effettuata mediante gas cromatografia utilizzando un Gas cromatografo doppia colonna (All. A2-VI). I componenti della miscela (IPA), separati tra loro, sono stati rilevati con la tecnica FID (rilevatore ionizzazione di fiamma), che consente di valutare i tempi di ritenzione e l'ampiezza dei picchi relativi. Il limite di rilevabilità dello strumento è 0,2 µg/kg.

Sono stati ricercati nei siti di campionamento i 16 IPA indicati dall'EPA come contaminanti di interesse prioritario, espressi in µg/kg di sostanza secca: Naftene, Acenaftalene, Acenaftene, Fenantrene, Antracene, Fluorantene, Pirene, Benz(a)Antracene, Crisene, Benzo(b)Fluorantene, Benzo(k)Fluorantene, Benzo(a)Pirene, DiBenzo(a,h) Antracene, Fluorene, Benzo(g,h,i)Perilene, Indeno(1,2,3,c,d)Pirene. Le rette di calibrazione sono state preparate con la tecnica della standardizzazione esterna utilizzando come IPA di riferimento il Perilene, che permette anche di normalizzare le aree dei picchi dei singoli componenti la miscela e di confrontarle tra loro ai fini della quantizzazione.

Idrocarburi totali - Per gli idrocarburi leggeri (C<12) sono stati seguiti i metodi EPA 5021A (2003a) e EPA 8015D (2003b). 5 g di sedimento sono posti in vial in cui sono stati aggiunti 10 ml di acqua procedendo al riscaldamento della miscela a 65°C per 1 h. Successivamente 0,5 ml sono stati iniettati nello spazio di testa in Gascromatografia (GC) con rilevatore FID (All. 2-VI).

Gli idrocarburi pesanti (C>12) sono stati determinati seguendo il metodo ISO 16703 (2004). I campioni sono stati essiccati all'aria e una quantità nota omogeneizzata è stata estratta mediante sonificazione con acetone /n-eptano. Nella soluzione estraente è stata

aggiunta la soluzione di riferimento per la finestra dei tempi di ritenzione (RTW) contenente n-tetracontano e n-dodecano. L'estratto è stato purificato su colonna Florisil. Un'aliquota dell'estratto purificato è stata quindi analizzata in GC-FID ed è stata misurata l'area totale dei picchi presenti nell'intervallo delimitato dalle due soluzioni di riferimento di n-tetracontano e n-dodecano. La quantità di idrocarburi è stata determinata mediante confronto con una soluzione di riferimento esterno costituito da quantità uguali di due differenti tipi di oli minerali.

Metalli pesanti - Sono stati analizzati i seguenti elementi, espressi in percentuale o mg/kg di sostanza secca: alluminio, arsenico, bario, cadmio, cromo, ferro, indio, mercurio, nichel, piombo, rame, silicio, vanadio e zinco.

La mineralizzazione dei campioni è stata effettuata su circa 0,3 g di sostanza secca, mediante un sistema di digestione a microonde opportunamente programmato, aggiungendo a 3 ml di HNO₃, 1 ml di HCl e 4 ml di H₂O.

Al termine della mineralizzazione i campioni sono stati filtrati e portati a un volume finale di 25 ml utilizzando acqua ultrapura. Gli acidi impiegati sono tutti rigorosamente ultrapuri. L'analisi per la determinazione del **mercurio** è stata condotta mediante tecnica AAS previa decomposizione termica ed amalgamazione (DMA-80 Analizzatore Diretto del Mercurio FKV; All. A2-VII) seguendo la metodica EPA 7473 (2007a). La prova è stata effettuata direttamente sul campione tal quale (senza passaggio di mineralizzazione) pesando aliquote comprese tra 10 e 100 mg.

Le determinazioni di **cadmio, arsenico** e **piombo** sono state condotte mediante spettroscopia di assorbimento atomico in fornetto di grafite (Varian SpectrAA-240Z. All. A2-VIII), secondo la procedura EPA 7010 (2007b).

Le concentrazioni di **alluminio**, **bario**, **cromo**, **nichel**, **rame**, **silicio**, **ferro**, **vanadio** e **zinco** sono state ottenute mediante tecnica mediante tecnica ICP-AES (Varian ICP-720ES; All. A2-IX) seguendo la metodica EPA 6010C (2007c).

La mineralizzazione del campione di sedimento è stata effettuata su circa 0,45 g di sostanza secca mediante un sistema di digestione a microonde opportunamente programmato, utilizzando una miscela acida composta da a 9 ml di HNO₃, 3 ml di HCl (acidi concentrati). Al termine della mineralizzazione i campioni sono stati filtrati e portati a un volume finale di 25 ml utilizzando acqua Millipore.

L'analisi per la determinazione dell'indio è stata effettuata tecnica ICP-MS (Agilent Mod. 7700; All. A2-X) previa mineralizzazione acida impiegando un sistema "Digiprep" specifico per l'introduzione di campioni nell'ICP MS. Sono stati utilizzati circa 0,5 g di

sostanza secca, mineralizzati con 10 ml di Acido Nitrico e portati a un volume finale di 50 ml utilizzando acqua Millipore.

L'accuratezza delle procedure di digestione e di analisi dei campioni è stata verificata impiegando i materiali standard di riferimento (LGC 6137 o MESS-3).

In Tab. 2-V si riportano i dettagli relativi al controllo di qualità del dato analitico per i metalli ricercati.

Al As Ba Cd \mathbf{Cr} Cu Fe Hg In Si \mathbf{v} Zn Accuratezza (minima accettabilità del 25% 25% 25% 30% 25% 25% 20% 25% nd 25% 25% 25% 25% recupero) Incertezza (%) 21 25 25 25 21 20 20 20 nd 20 21 nd 20 20 LOQ (mg/kg) 170 0.3 1.2 0.02 1,2 1,2 170 0.005 0.02 1,2 0.3 5 1.2 1,2 0.07 LOD (mg/kg) 0.2 0.002 0.04 0.12 0.002 0.01 0.25 0,07 205 0.07 0,6

Tab. 2-V - Accuratezza, incertezza, LOQ e LOD relativi ai metalli ricercati.

Sostanza organica - La determinazione della sostanza organica è stata eseguita mediante calcinazione in muffola: sono stati prelevati circa 3 g di sostanza essiccata (in stufa per 48h a 40°C) che sono stati successivamente posti in muffola a 375°C fino a peso costante.

TOC - Il TOC è stato determinato seguendo il Metodo VII.3 - Determinazione del carbonio organico (metodo walkley-black, DM 13/09/1999 – Min. Politiche Agricole). Il carbonio organico è stato ossidato ad anidride carbonica, in condizioni standardizzate, con soluzione di potassio bicromato in presenza di acido solforico. La velocità della reazione viene favorita dall'innalzamento della temperatura conseguente alla brusca diluizione dell'acido. Dopo un tempo stabilito, la reazione è stata interrotta per aggiunta di opportuna quantità di H₂O e la quantità di potassio bicromato che non ha reagito è stata determinata per titolazione con una soluzione di ferro (II) solfato eptaidrato. Il punto finale della titolazione è stato accertato con l'aggiunta di un opportuno indicatore di ossidoriduzione.

2.2.3. ECOTOSSICOLOGIA DEI SEDIMENTI

2.2.3.1 Dunaliella tertiolecta

Il saggio di crescita algale con la cloroficea *Dunaliella tertiolecta* è stato eseguito secondo le indicazioni riportate nella linea guida ASTM E1218-04 (2004a). Il saggio consiste nell'esposizione di una quantità definita di clone algale in condizioni di crescita esponenziale a diverse diluizioni di campione (nella fattispecie elutriato) e al controllo negativo costituito da sola acqua marina artificiale. Prima dell'inoculo del clone algale,

tutti i trattamenti, compreso il controllo, sono stati arricchiti con macro- e micronutrienti secondo le specifiche riportate in USEPA (1995).

<u>Preparazione degli elutriati</u> - L'elutriato è stato preparato secondo il metodo ICRAM (2001), utilizzando come acqua di lavorazione il medium preparato secondo le specifiche riportate nella norma UNI EN ISO 10253:2000 (2000).

Esecuzione del saggio – Il saggio con *D. tertiolecta* è stato condotto in triplicato, effettuando 5 diluizioni a partire dal campione tal quale; come supporto sono state utilizzate piastre sterili di polistirene da 24 pozzetti della capacità di 3 ml ciascuno. Parallelamente, per ogni piastra è stato eseguito anche un test con un controllo negativo costituito da acqua di diluizione (acqua di mare ISO a cui sono state aggiunte concentrazioni note di nutrienti). A ciascuna diluizione e al controllo è stata aggiunta una concentrazione nota di clone algale in rapporto di 1:1000. Una volta inoculato il clone algale (concentrazione iniziale 2x10³ cellule ml¹), le piastre sono state trasferite per 72 h in camera fitologica a condizioni di temperatura e luminosità controllate (T = 20±2°C, luminosità < 10000 lux). Al termine dell'esposizione è stata verificata la crescita algale nel campione, espressa come densità algale, mediante lettura al Coulter Counter; si è proceduto quindi al conteggio delle tre repliche del campione tal quale e del controllo e al loro confronto statistico, per verificare eventuali aumenti o diminuzioni significative della crescita algale nel campione rispetto al controllo e procedere eventualmente alla lettura delle altre diluizioni.

Espressione e analisi dei dati – I risultati del saggio possono essere riportati come percentuale di inibizione della crescita algale e, qualora la tossicità del campione lo consenta, in termini di EC₅₀ o EC₂₀. L'EC₅₀ e l'EC₂₀ si calcolano utilizzando il foglio Excel sviluppato dalla DTU (Danmarks Tekniske Universitet) denominato "KOK457T3" che utilizza i programmi statistici LOG457.EXE e LOG457W.EXE elaborati per la determinazione della relazione concentrazione-effetto in endpoint continui (Christensen *et al.*, 2009).

Sulla base dei risultati espressi in termini di inibizione/stimolazione della crescita e dell'analisi statistica del dato eco-tossicologico (eseguita secondo lo schema USEPA, 1991), i risultati del saggio possono essere suddivisi nelle seguenti categorie:

- assenza di effetto: percentuale di inibizione/stimolazione inferiore al 20% ed assenza di differenze significative;
- presenza di significativo effetto eutrofizzante: percentuale di biostimolazione > 20% e
 differenza significativa rispetto alla crescita nel controllo;

 presenza di significativo effetto tossico: inibizione della crescita > 20% e differenza significativa con il controllo.

 $\overline{QA/QC}$ - La sensibilità di ogni clone algale impiegato per i test con i campioni di elutriato è stata verificata mediante il test di controllo positivo eseguito con bicromato di potassio il cui risultato, espresso come EC_{50} , è stato confrontato con i dati della carta di controllo del laboratorio il cui intervallo è compreso tra 5,8 e 9,9 mg/l come cromo; altri parametri che devono essere rispettati affinché il test sia considerato valido sono:

- la densità cellulare dopo 72 h deve aumentare di un fattore non inferiore a 16 rispetto al valore di partenza (2x10³ cellule ml⁻¹);
- il coefficiente di variazione nei controlli e nel campione tal quale (CV%) ≤15%.

2.2.3.2 Vibrio fischeri (sistema Microtox®)

<u>Preparazione dell'elutriato</u> - Gli elutriati sono stati preparati dai sedimenti freschi secondo il protocollo indicato in ICRAM (2001).

Un'aliquota del sedimento da testare è stata unita con il volume calcolato dell'acqua di mare naturale filtrata in rapporto 1:4. Le sospensioni ottenute sono state poste in agitazione per 1 h e centrifugate a temperatura di 10°C per 20' a 3000 rpm. Il sopranatante, che rappresenta l'elutriato, è stato prelevato con cautela e conservato a temperatura di -30°C.Prima dell'allestimento del test sono misurati il pH e la salinità dell'elutriato. La scala di tossicità adottata è riportata in Tab. 2-VI.

Tab. 2-VI - Scala di tossicità adottata per il saggio Microtox[®].

Criterio	Tossicità
EC20 ≥ 90%	Assente
$EC20 < 90\%$ e $EC50 \ge 90\%$	Bassa
$20\% \le EC50 < 90\%$	Media
EC50 < 20%	Alta

2.2.3.3 Corophium orientale

Il saggio effettuato con esemplari di *Corophium orientale* è stato allestito secondo il protocollo ISO 16712:2005(E) (2005). Il principio del saggio biologico "a breve termine" (di tossicità acuta) consiste nell'esposizione di un numero stabilito di organismi per 10 gg al sedimento tal quale, con la finalità di stimare la percentuale di mortalità degli organismi stessi.

Gli anfipodi sono campionati setacciando il loro sedimento nativo con setaccio a maglia di 0,5 mm, che permette di selezionare organismi di ~4 mm idonei per il test, scartando gli

individui maturi e le forme giovanili. Gli anfipodi selezionati sono quindi stati portati in laboratorio e acclimatati alle seguenti condizioni del test:

temperatura dell'acqua: 16±2°C

- salinità: 36±2‰

illuminazione: continua

O₂ disciolto nell'acqua sovrastante il sedimento: >60%.

Procedimento del saggio - Circa 200 cc di sedimento da testare sono stati introdotti in un barattolo di vetro da 1 l e sono stati aggiunti circa 750 cc di acqua di mare naturale filtrata. Per ogni campione sono state allestite 4 repliche. Dopo 24 h sono stati immessi 25 individui in ciascun barattolo. Come sedimento di controllo è stato utilizzato il sedimento nativo proveniente da un sito non contaminato. I barattoli contenenti gli organismi sono stati coperti per ridurre l'evaporazione dell'acqua, posti alla temperatura di 16±2°C e areati in continuo. Dopo 10 gg è stato vagliato il contenuto di ogni barattolo contando gli organismi ancora vivi. Sono stati considerati morti gli anfipodi che, dopo una delicata stimolazione, non mostravano alcun movimento degli arti. La sensibilità degli organismi (96hLC50) è stata determinata tramite l'esposizione per 96 h alle concentrazioni di 0,8; 1,6; 3,2 e 6,4 mg l⁻¹ CdCl₂.

All'inizio e alla fine del saggio biologico sono stati misurati i seguenti parametri dell'acqua sovrastante il sedimento: pH, salinità, NH₄⁺ e ossigeno disciolto.

Elaborazione dei dati - Il saggio biologico è considerato valido quando la mortalità media all'interno del sedimento di controllo è ≤15% e quando la mortalità nella singola replica per l'intero periodo di esposizione è ≤20%. Sia nei campioni da testare che nel sedimento di controllo sono state calcolate le percentuali medie (± deviazione standard) degli anfipodi morti. La percentuale di mortalità rilevata in ogni campione è stata confrontata con quella nel sedimento di controllo. Il livello di tossicità è stato valutato prendendo in considerazione la percentuale di mortalità degli organismi osservata nei campioni da saggiare, corretta con la formula di Abbott (M). La scala adottata per la quantificazione della tossicità è riportata in Tab. 2-VII.

Tab. **2-VII** – Scala di tossicità relativa al test con *C. orientale*.

Tossicità a lungo termine	Giudizio
M<15%	Assente
15% <m≤30%< th=""><th>Bassa</th></m≤30%<>	Bassa
30 <m≤60%< th=""><th>Media</th></m≤60%<>	Media
M>60%	Alta

2.2.3.4 Crassostrea gigas

Il test di embriotossicità con *C. gigas* è stato eseguito in accordo con la linea guida standard ASTM E724-98 (2004b). Il saggio si basa sulla stima della percentuale di larve normoformate (larve D-shape) al termine delle 48 h di esposizione alla matrice di saggio, in questa circostanza rappresentata dall'elutriato.

<u>Preparazione degli elutriati</u> - L'elutriato è stato preparato secondo il metodo ICRAM (2001), utilizzando come acqua di lavorazione il medium preparato secondo le specifiche riportate nella guida ASTM E724-98 (2004b).

Esecuzione del saggio – Il test di embriotossicità è stato eseguito esponendo zigoti di *C. gigas* fecondati da meno di 4 h a diverse diluizioni del campione di elutriato da saggiare. Come acqua di diluizione è stato utilizzato il medium ASTM a S = 34. Il saggio è stato condotto utilizzando delle piastre sterili in polistirene con 24 pozzetti da 3 ml come supporto, in cui sono stati inoculati 60-70 zigoti per ml. L'esposizione è stata quindi condotta in triplicato, in condizioni di temperatura controllata (20°C), al buio, per 48 h. Al termine del test, il contenuto di tutti i pozzetti è stato fissato con una goccia di formalina tamponata ed è stata determinata la percentuale di larve normoformate (larve D) impiegando un microscopio ottico invertito.

QA-QC - La sensibilità di ogni batch di *C. gigas* è stata valutata mediante l'esecuzione del test con sostanza di riferimento (Cu); i risultati di tale test devono rientrare nei limiti della carta di controllo intralaboratorio (5-33 µl/l). La % di larve normalmente sviluppate nel controllo con la sola acqua di diluizione deve inoltre essere superiore al 70%.

Espressione e analisi dei dati – I risultati del saggio di embriotossicità possono essere espressi sia in termini di percentuale di successo del test normalizzata (S%) rispetto alla risposta del controllo (acqua marina artificiale), sia in termini di EC_{50} , qualora la distribuzione dei dati relativi alle singole repliche ne consenta il calcolo tramite il software Trimmed Spearman Karber v3.1 messo a disposizione da USEPA nel proprio portale. I dati di EC_{50} sono successivamente trasformati in unità di tossicità (TU) secondo l'equazione EC_{50} 0.

Al dato di tossicità è stato associato un giudizio qualitativo secondo lo schema riportato in Tab. 2-VIII.

Tab. 2-VIII - Scala di tossicità per il saggio di embriotossicità con *C. gigas* (da Losso *et al.*, 2007).

Parametro	Giudizio di Tossicità		
S > TL	Assente	Semiscala	C> 50
$50 < S \le TL$	Bassa	dell'effetto	S>50
$1 \le TU \le 2$	Media	Semiscala delle T.U.	S≤50
$2 \le TU \le 4$	Alta		
$TU \ge 4$	Molto alta	1.0.	

Dove:

 $S = [(Sopravvisuti campione) / (Sopravvissuti controllo)] \cdot 100$

TL = Toxicity limit = Controllo · 90% del controllo

2.2.3.5 Ricerca di metalli pesanti in Hediste diversicolor

<u>Procedimento del test</u> - Il test di bioaccumulo è stato eseguito secondo i protocolli ASTM E1688-97a (1998; reapproved 2007) ed EPA/600//R-93/183 (1993).

Gli organismi non maturi di *Hediste diversicolor* (taglia 6-10 cm) sono stati campionati manualmente dalle porzioni di un sedimento estuario.

Dopo il trasporto in laboratorio, sono stati sottoposti a spurgo per 3 gg in sabbia quarzifera sommersa in acqua proveniente dal sito di campionamento, areata continuamente. La salinità dell'acqua sovrastante la sabbia quarzifera è stata gradualmente portata al 36±2‰, ovvero a un livello corrispondente alla salinità richiesta nel test.

Allestimento del test - Il test è stato allestito in tre repliche per ogni campione di sedimento da testare poste in barattoli di vetro da 1 lt. In ogni barattolo sono stati inseriti ~300 cm³ di sedimento da testare, ai quali sono stati aggiunti circa 600 ml di acqua di mare naturale filtrata (36±2‰). I barattoli sono stati quindi sistemati in camera condizionata, coperti e areati in continuo. Dopo 24 h dall'introduzione dei sedimenti sono stati registrati i parametri di inizio del test (pH, salinità, NH₄⁺ e ossigeno disciolto) e in ogni barattolo sono stati immessi 5 individui di *H. diversicolor*. Per l'intera durata del test i barattoli sono stati mantenuti alla temperatura di 16±2°C, aerati e illuminati senza alcun fotoperiodo. Come sedimento di controllo è stato utilizzato un sedimento nativo proveniente da un sito non contaminato. Il sedimento di controllo non contiene contaminanti o li contiene in concentrazioni molto basse. Il confronto tra il sedimento testato e il controllo consiste nella misura del livello di bioaccumulo. Il confronto degli organismi di controllo all'inizio e alla fine del periodo di esposizione indica se la contaminazione è avvenuta dall'acqua o dal sistema di esposizione. La mortalità degli organismi nel sedimento di controllo non dovrebbe superare il 10%.

Dopo 28 gg sono stati annotati i parametri finali del test e sono stati recuperati gli organismi dai singoli barattoli tramite setacciatura; gli individui vivi sono stati contati e

reinseriti in barattoli contenenti sabbia quarzifera e acqua di mare filtrata. Dopo 3 gg i policheti spurgati sono stati recuperati e lavati in acqua distillata per 1 h per liberarli dal muco e dai residui della sabbia. Successivamente, sono stati congelati e sottoposti ad analisi chimica.

<u>Elaborazioni dei dati</u> - Per valutare l'eventuale bioaccumulo nei tessuti degli organismi è stata adottata la seguente formula:

$$D = (Ce - Cb)$$

dove: **D** – variazione (riferita al bianco, ovvero alla quantità di metallo pesante presente nei tessuti degli organismi prima dell'inizio del test) della concentrazione dei metalli pesanti nei policheti a seguito dell'esposizione al sedimento da testare.

Cb - concentrazione del metallo nei tessuti degli organismi prima (bianco) della loro esposizione ai sedimenti testati;

Ce - concentrazione del metallo nei tessuti degli organismi dopo la loro esposizione ai sedimenti testati.

Si ritiene significativa al fine della valutazione del bioaccumulo una differenza ≥20%.

I limiti di quantificazione strumentale dei vari metalli sono riportati in Tab. 2-IX.

Tab. 2-IX - Limiti di rilevabilità (LoQ) per i metalli pesanti ricercati negli esemplari di *Hediste diversicolor*.

Campione	Al	As	Ba	Cd	Cr	Cu	Fe	Ni	In	Pb	Si	V	Zn	Hg
L.o.Q.	170	0,3	1,2	0,01	1,2	1,2	170	1,2	0,2	0,3	8	1,2	1,2	0,005

2.2.4. ANALISI DI INQUINANTI E DI BIOMARKER NEI MITILI INSEDIATI SULLE PARTI IMMERSE DELLA PIATTAFORMA

2.2.4.1 Inquinanti organici e inorganici

E' stata prevista la determinazione di:

- Idrocarburi Policiclici Aromatici (IPA);
- Materia organica estratta (MOE);
- Idrocarburi Alifatici (IA);
- Metalli pesanti (Alluminio, Arsenico, Bario, Cadmio, Cromo, Ferro, Indio, Mercurio, Nichel, Piombo, Rame, Silicio, Vanadio, Zinco).

IPA e Materia organica estratta – Gli esemplari di mitilo sono stati scongelati e le parti molli sono state separate dalla conchiglia in maniera tale da ottenere circa 50 g di peso umido per ciascun sito. Gli organismi, così suddivisi e selezionati, sono stati pesati in un contenitore di vetro senza coperchio, previamente tarato, pulito con solventi (acetone, esano) e asciugato per evitare qualsiasi tipo di contaminazione. Successivamente, le parti

molli in questi contenitori sono state liofilizzate fino a completa essiccazione (processo che avviene in circa 3-5 gg) e poi pesate.

L'intero processo analitico la determinazione degli IPA è stato diviso in tre fasi distinte: estrazione e isolamento dei contaminanti dalla matrice, purificazione dell'estratto, determinazione analitica finale del composto.

I campioni di mitili liofilizzati (3 g) sono stati sottoposti ad una tecnica basata su estrazione in apparato Soxhlet (All. A5-I) a 120°C per 8 h, evaporati a 50°C per la determinazione della Materia Organica Estratta (MOE) e successivamente ripresi e purificati su colonna allumina/gel di silice. La purificazione e la separazione degli estratti è stata effettuata su colonna di gel di silice e sodio solfato anidro (Na₂SO₄) (attivati a 130°C per 24 h). La colonna è stata eluita con 32 ml di esano, seguiti da 15 ml di una soluzione esano:diclorometano (1:1 v/v). Durante le analisi dei campioni sono state effettuate prove in bianco. La frazione contenente gli IPA è stata concentrata sotto blando flusso d'azoto per il raggiungimento di un volume finale di circa 0,5 ml, trasferita in acetonitrile e impiegata per la determinazione analitica degli IPA. La determinazione qualitativa e quantitativa degli IPA è avvenuta mediante cromatografia liquida ad alta pressione (HPLC - High Performance Liquid Chromatography) con rivelatore a serie di fotodiodi (Waters® PDA 996) e con rivelatore a fluorescenza (Waters® 474 Scanning Fluorescence Detector) in serie (All. A5-II). Per quanto riguarda le condizioni di corsa, la fase mobile iniziale è costituita da acetonitrile (40%) ed acqua (60%), fino al raggiungimento di un gradiente lineare al 100% di acetonitrile, ad una velocità di corsa di 1,5 ml min⁻¹ per 50'. È stata usata una colonna cromatografica Supelcosil LC-PAH HPLC (25 cm x 4,6 mm, 5 µm) (All. A5-IIa). Dal peso dell'estratto è stato ricavato anche il valore della MOE (Materia Organica Estratta).

La formula finale per il calcolo della concentrazione degli analiti, espresso in ng/g di tessuto liofilizzato, è la seguente:

$$C(ng/l) = \frac{Area\ picco\ x\ Conc\ Std\ x\ vol\ finale}{Area\ picco\ Std\ x\ g.\ Peso\ secco}$$

Con area si intende l'area dei picchi risultati nel cromatogramma.

Le rette di taratura sono state ottenute iniettando quattro soluzioni a concentrazione nota dello standard TLC Polynuclear Aromatic Hydrocarbon Mix (Supelco), contenente i 16 composti considerati inquinanti prioritari previsti dall'EPA: Naftalene, Acenaftilene, Acenaftene, Fluorene, Fenantrene, Antracene, Fluorantene, Pirene, Benzo(a)Antracene, Crisene, Benzo(b)Fluorantene, Benzo(k)Fluorantene, Benzo(a)Pirene, Dibenzo(a,h,)Antra-

cene, Benzo(g,h,i,)Perilene e Indeno(1,2,3-c,d)Pirene.

Idrocarburi alifatici - Sono stati considerati gli IA con un numero di atomi di carbonio >15, perchè meglio rappresentativi di un possibile inquinamento da sostanze xenobiotiche. Gli indici di distribuzione considerati sono:

- l'idrocarburo presente in maggiore concentrazione (major hydrocarbon, MH);
- il rapporto **LMW/HMW**, ovvero il rapporto tra la frazione di idrocarburi a basso peso molecolare (<n-C20) e la frazione ad alto peso molecolare (>n-C21): tale rapporto è circa uguale a 1 nei prodotti da petrolio, nelle alghe e nel plancton, mentre si abbassa in batteri, animali marini, piante superiori e sedimenti;
- il Carbon Preference Index (**CPI**), dato dal rapporto tra le n-paraffine a numero dispari di atomi di carbonio e quelle a numero pari di atomi di carbonio. Anche tale indice in prodotti derivanti dal petrolio presenta valori prossimi all'unità, mentre aumenta se sono presenti idrocarburi d'origine biologica. Questo è dovuto al fatto che molti organismi (batteri, alghe, piante superiori, ecc.) sintetizzano preferenzialmente idrocarburi a numero dispari di atomi di carbonio.

Le analisi degli IA sono state condotte su 2 μl di campione precedentemente estratto e purificato su colonnina di gel di silice e allumina. Il sistema impiegato è un GC-FID della Perkin Elmer (All. A5-III); l'iniezione è avventa tramite autocampionatore, mentre per la quantificazione si è proceduto al confronto delle aree sottese ai picchi prodotti da un'iniezione di IA certificati e a concentrazione nota. La programmazione del gascromatografo è stata la seguente: la temperatura iniziale di 45°C è stata mantenuta per 3'; successivamente, con un gradiente di 12°C min⁻¹ sono stati raggiunti 275°C e mantenuti per 12'. Il flusso del carrier (He) è regolato a 15,5 ml/min. La colonna utilizzata è una SOPB-5 Supelco 30m (All. A5-IIIa) (Ø = 0,2 mm; spessore del film interno: 0,2 mm).

Metalli pesanti - Due aliquote di circa 2,5 g di campione liofilizzato per ogni sito di prelievo sono state mineralizzate a riflusso con 30 ml di acido nitrico concentrato. I campioni, posti in un apposito pallone da 250 ml, sono stati sottoposti a digestione a freddo per 20-30' e portati ad ebollizione per circa 2 h in forno a microonde *ETHOS 900*[®] della *Milestone* (All. A5-IV). La mineralizzazione è stata eseguita secondo la procedura ICRAM (2001). Le soluzioni risultanti sono state filtrate attraverso un filtro di cellulosa e portate a un volume di 100 ml con acqua MilliQ. Un simile procedimento è stato effettuato anche con un'uguale quantità di acido per ottenere il bianco da sottrarre ai valori dei campioni ottenuti per via strumentale.

La determinazione strumentale di **alluminio**, **bario**, **vanadio**, **cadmio**, **cromo**, **nichel**, **rame**, **piombo**, **indio**, **silicio** e **ferro** è stata effettuata mediante ICP-OES, una tecnica molto sensibile per la determinazione di questi elementi generalmente presenti in concentrazioni minori. Per le analisi ci si è avvalsi di uno spettrofotometro ad assorbimento atomico *AAnalyst* 700[®] della Perkin Elmer in configurazione Autosampler AS40[®] – Mercuriy/Hydride System MHS-10[®] (All. A5-V). Lo **zinco** è stato analizzato direttamente in fiamma aria-acetilene (*F-AAS*) con lo stesso strumento e quantificato da una curva di calibrazione costruita da concentrazioni note dell'elemento. La temperatura della fiamma a cui avviene l'atomizzazione è di 2300°C. Il **mercurio** è stato determinato mediante il kit supplementare "FIAS 400 Flow Injection for Atomic Spectroscopy System" per analisi dei vapori ottenuti per riduzione a freddo con NaBH4 secondo la seguente reazione:

$$Hg^{2+} + 2BH^{4-}$$
 \longrightarrow $Hg(g) + H_2(g) + B_2H_6$

I campioni sono stati pre-trattati con H₂SO₄ e K₂MnO₄ in modo da ossidare la sostanza organica. La reazione con NaBH₄ riduce il mercurio presente in forma ionica a mercurio metallico il quale, assieme all'idrogeno gassoso liberato dalla reazione, viene trasportato dal flusso di gas inerte nella cella al quarzo dove è stata misurata la sua assorbanza tramite il Flow Injection Mercury System FIMS 400® della Perkin-Elmer (All. A5-Va). Per evitare assorbimenti di tipo molecolare, nelle analisi che richiedono lunghezze d'onda nella zona dell'ultravioletto è stato impiegato il correttore di fondo al deuterio.

Il dosaggio dell'**arsenico** è stato ottenuto in HG-AAS utilizzando il *Flow Injection Analysis System FIAS* 400[®] di Perkin Elmer con lettura in GF-AAS e correttore di fondo Zeeman, *4100 ZL*, Perkin-Elmer (All. A5-Vb).

Le lunghezze d'onda utilizzate per i singoli metalli analizzati sono riportate in Tab. 2-X, mentre in Tab. 2-XI sono indicati i limiti di rilevabilità per tutti gli inquinanti ricercati.

Tab. 2-X - Lunghezze d'onda utilizzate per i metalli analizzati.

Metallo	Lunghezze d'onda
Al	308,215
As	193,696
Ba	445,403
Cd	226,502
Cr	267,716

Metallo	Lunghezze d'onda
Cu	324,754
Hg	194,227
Ni	231,604
V	294,402
Zn	213,856

Metallo	Lunghezze d'onda
In	203,606
Fe	239,562
Pb	220,353
Si	251,607

Tab. 2-XI - Limiti di rilevabilità (LOD) per tutti gli inquinanti ricercati negli esemplari di M. galloprovincialis.

Parametro	Unità mis.	LOD
Arsenico	mg/kg As	0,15
Cadmio	mg/kg Cd	0,01
Cromo	mg/kg Cr	0,1
Alluminio	mg/kg Al	0,5
Mercurio	mg/kg Hg	0,05
Piombo	mg/kg Pb	0,1
Rame	mg/kg Cu	0,1
Zinco	mg/kg Zn	0,5
Nichel	mg/kg Ni	0,1
Vanadio	mg/kg V	0,15
Bario	mg/kg Ba	0,1
Indio	mg/kg In	0,5
Ferro	mg/kg Fe	0,5
Silicio	mg/kg Si	1
Naftalene	μg/kg	2
Acenaftilene	μg/kg	2
Acenaftene	μg/kg	2
Fluorene	μg/kg	2
Fenantrene	μg/kg	2
Antracene	μg/kg	2
Fluorantene	μg/kg	2
Pirene	μg/kg	2
Benzo[a]antracene	μg/kg	2
Crisene	μg/kg	2
Benzo(b)fluorantene	μg/kg	2

Parametro	Unità mis.	LOD
Benzo(k)fluorantene	μg/kg	2
Benzo[a]pirene	μg/kg	2
Indeno[1,2,3-cd]pirene	μg/kg	2
Dibenzo[a,h]antracene	μg/kg	2
Benzo[ghi]perilene	μg/kg	2
C15	μg/kg	10
C16	μg/kg	10
C17	μg/kg	10
C18	μg/kg	10
C19	μg/kg	10
C20	μg/kg	10
C21	μg/kg	10
C22	μg/kg	10
C23	μg/kg	10
C24	μg/kg	50
C25	μg/kg	10
C26	μg/kg	10
C27	μg/kg	10
C28	μg/kg	10
C29	μg/kg	10
C30	μg/kg	10
C31	μg/kg	10
Pristano	μg/kg	10
Fitano	μg/kg	20

2.2.4.2 Biomarker

In Tab. 2-XII è riportata la batteria di Biomarkers prevista nella Specifica Tecnica.

Tab. 2-XII - Batteria di biomarkers eseguiti sui mitili raccolti presso la piattaforma Elettra e nel sito di controllo.

Indici di stress generale	Indici di esposizione	Danno genotossico	Espressione genomica
Livello fisiologico	Livello biochimico		
	Catalasi (attività enzimatica - presenza di contaminati organici ossigeno reattivi)	Test dei micronuclei (genotossicità complessiva).	q-PCR
Sopravvivenza in aria	Malondialdeide (stress ossidativo - presenza di contaminati organici)		
	Metallotioneine (presenza di elementi in tracce)		
Livello cellulare	Livello cellulare		
Stabilità delle membrane	Livelli di lipofuscine		
lisosomali	(stress ossidativo)		
	Livelli di lipidi neutri (presenza di contaminati organici)		

Sopravvivenza in aria - L'analisi è stata effettuata su un campione di 30 organismi per ciascun sito (VA, LA e controllo) i quali, subito dopo l'arrivo in laboratorio, sono stati

lavati, asciugati e mantenuti a temperatura costante (18±1°C) in un contenitore a tenuta stagna con tasso di umidità a saturazione.

Quotidianamente sono stati registrati e asportati gli individui morti fino ad esaurimento degli organismi, registrando LT_{50} e LT_{90} . Sono stati considerati morti gli individui con le valve aperte che non rispondevano a nessuna sollecitazione.

Valutazione della stabilità delle membrane lisosomiali - In laboratorio le ghiandole digestive di 5 mitili provenienti da ciascun sito sono state tagliate mediante criostato (All. A5-VI) precedentemente raffreddato in ghiaccio in modo tale da ottenere delle sezioni trasversali dei tubuli disposti parallelamente all'asse longitudinale della ghiandola stessa e poste in fila su apposito supporto in alluminio (chuck). Successivamente, il supporto con i frammenti è stato posto per 15" in un piccolo recipiente contenente N-esano, precedentemente raffreddato con azoto liquido. Il chuck è stato poi avvolto in 4-5 strati di Parafilm e posto immediatamente a -80°C. Al momento dell'analisi, per mezzo del criostato, sono state ottenute sezioni di 10-20 μm di spessore con un'angolatura di taglio di 15°. Le sezioni sono state quindi trasferite su vetrini tenuti a temperatura ambiente. La stabilità della membrana lisosmiale è stata testata attraverso l'enzima N-acetyl-hexosaminidase che ha come substrato il naphtol As-BI N-acetyl-β-D-glucosaminide.

Le sezioni preparate come descritto in precedenza sono state trattate in una vaschetta di Hellendal con un tampone destabilizzante le membrane lisosomiali a 37°C per tempi diversi (0, 3, 5, 10, 15, 20, 30, 40') in modo da determinare il tempo di trattamento richiesto per labilizzare interamente le membrane lisosomiali (periodo di labilizzazione). Il set di vetrini è stato trasferito nel mezzo di incubazione del substrato contenente napthol As-BI N-acetyl-β-D-glucosaminide precedentemente disciolto in 2,5 ml di 2-metossietanolo e portato a volume con il tampone citrato contenente Polipep, un polipeptide a bassa viscosità che agisce come stabilizzante per le sezioni. L'incubazione con il substrato è stata di 20' a 37°C nella vaschetta di Hellendal in un bagno agitante. I vetrini sono stati successivamente risciacquati in acqua di mare filtrata a temperatura ambiente o in una soluzione di NaCl al 3% a 37°C per 2' prima del loro trasferimento per 10' a temperatura ambiente in un tampone fosfato pH 7,4 contenente il colorante diazoinico fast violet B blue. I vetrini, risciacquati in acqua corrente per 5', sono stati successivamente fissati con gelatina glicerinata. Le sezioni così ottenute sono state analizzate mediante un sistema di analisi d'immagine al microscopio ottico (All. A5-VII) per la determinazione del periodo di labilizzazione lisosomiale. Le analisi sono state eseguite almeno in quintuplicato.

Valutazione dell'attività dell'enzima catalasi - In laboratorio tale attività è stata determinata in aliquote di ghiandola di mitilo (3 pool di 5 individui per ogni stazione di prelievo) preventivamente lavate con una soluzione di NaCl (0,9%), omogeneizzate in 4 volumi di tampone Tris-HCl pH 7,4 contenente saccarosio e infine centrifugate (All. A5-VIII), prima a 2.000 x g per 10' per eliminare la frazione lipidica, e successivamente a 9.000 x g per 30' per ottenere la frazione citosolica. L'attività dell'enzima di catalasi è stata determinata per via spettrofotometrica (Aebi, 1974; All. A5-IX) a 240 nm valutando la diminuzione in assorbanza dell'estratto dovuta al consumo di H₂O₂.

Concentrazione di malondialdeide (MDA) - Il metodo applicato si basa sulla reazione cromogenica tra N-metil-2-fenilindolo (NMPI) con MDA a caldo. Una molecola di MDA reagisce con due molecole di NMPI a formare un composto colorante (carbocianina) la cui assorbanza è rilevabile allo spettrofotometro (All. A5-IX) ad una opportuna lunghezza d'onda.

Al momento dell'analisi 3 pool provenienti da ogni sito di prelievo costituiti ciascuno da 3 ghiandole digestive sono stati lavati con una soluzione di NaCl (0,9%), omogeneizzati in 2 volumi di tampone Tris-HCl contenente β-mercaptoetanolo come antiossidante e centrifugati (All. A5-VIII) a 10.000 x g per 10' a 4°C. A 100 μl di supernatante estratto sono stati aggiunti 650 μl di NMPI, 100 μl di acqua distillata e 150 μl di HCl (37%). Il campione è stato quindi incubato a caldo, raffreddato in ghiaccio, centrifugato a 10.000 x g e infine letto allo spettrofotometro. La concentrazione di MDA è stata stimata utilizzando come riferimento una curva standard a concentrazioni crescenti di tetrametossipropano (TMOP). La concentrazione totale in proteine del campione è stata determinata attraverso il metodo di Bradford (1976).

Dosaggio di metallotioneine - I tessuti provenienti da 3 pool di 5-7 individui per ogni sito di prelievo sono stati omogeneizzati in 3 volumi di Saccoroso/Tris-HCl addizionati di Leupeptina e β-mercaptoetanolo. L'omogenato è stato quindi centrifugato (All. A5-VIII) per ottenere una frazione solubile contenente le metallotioneine. Il sopranatante è stato successivamente precipitato con etanolo-cloroformio con il duplice scopo di rimuovere i tioli a basso peso molecolare e concentrare le metallotioneine; 1 ml di citosol è stato quindi addizionato con 1,05 ml di etanolo freddo e cloroformio e centrifugato a 6.000 x g per 10'. Il sopranatante così ottenuto è stato addizionato di 3 volumi di etanolo freddo e mantenuto a -20°C per 1 h e quindi centrifugato a 6.000 x g per 10' in rotore oscillante. Il pellet è stato lavato una volta con etanolo e cloroformio nel buffer di omogeneizzazione, ricentrifugato, insufflato con azoto e risospeso in NaCl 0,25 M addizionato di 150 μl di HCl

e EDTA. Ai campioni così risospesi è stato aggiunto DTNB (acido ditiobisnitrobenzoico) preparato al momento dell'uso e quindi sono stati centrifugati a 3.000 x g. L'assorbanza è stata valutata per via spettrofotometrica (All. A5-IX) misurandola a 412 mn.

Accumulo di lipofuscine nei lisosomi – Le sezioni di 5 individui provenienti da ciascun sito preparate al criostato (All. A5-VI) sono state fissate in calcio-formolo a 4°C, risciacquate in acqua distillata e poste nel mezzo di reazione contenente cloruro di ferro e potassio ferrocianuro per 5°. Successivamente, sono state lavate in acido acetico, risciacquate in acqua, montate su vetrino ed analizzate mediante un sistema di analisi d'immagine al microscopio ottico (All. A5-X) per la determinazione della colorazione dei lisosomi dovuta all'accumulo di lipofuscine.

Accumulo di lipidi neutri nei lisosomi - Le sezioni, derivanti da 5 individui per ciascun sito preparate al criostato (All. A5-VI) con la stessa modalità seguita per la valutazione della stabilità delle membrane lisosomiali, sono state fissate in calcio-formolo per 15' a 4°C, risciacquate in acqua distillata e poste in una soluzione di trietilfosfato. Successivamente sono state colorate con una soluzione di oil red in trietilfosfato a 20°C per 15', lavate in trietilfosfato per 30", risciacquate in acqua distillata e montate con gelatina.

Le sezioni così ottenute sono state analizzate al microscopio ottico (All. A5-VII) mediante un sistema di analisi d'immagine che determina la percentuale di colorazione dei lisosomi dovuta all'accumulo dei lipidi neutri insaturi.

Micronuclei - L'allestimento dei preparati citologici è stato effettuato direttamente sul campione fresco lo stesso giorno di arrivo. L'emolinfa di ogni individuo (per un totale di 5 esemplari per campione) è stata prelevata dal muscolo adduttore posteriore con una siringa contenente Alsever (soluzione salina al 33‰ composta di NaCl, Na citrato x 2H₂O, acido citrico x 1H₂O e glucosio a pH fisiologico). Alcune gocce della sospensione cellulare, fissata in metanolo:acido acetico, sono state posizionate su vetrino e colorate con Giemsa. Per ogni mitilo sono state osservate al microscopio ottico (All. A5-VII) circa 2000 cellule di emociti e su queste sono state determinate le frequenze di micronuclei e delle anomalie nucleari (Ottaviani e Franceschini, 1997).

Real Time PCR (q-PCR) - La metodologia prevede l'amplificazione selettiva e quantificazione in vitro di una sequenza di DNA target. Ciò è reso possibile dall'impiego di diversi prodotti chimici fluorescenti detti *reporter* che correlano l'amplificazione con l'intensità della fluorescenza (Higuchi *et al.*, 1993). Nella presente esperienza di monitoraggio è stata prevista l'estrazione del RNA dalle cellule delle ghiandole digestive di mitilo, la retrostrascrizione dell'RNA in cDNA e infine l'amplificazione del cDNA

tramite PCR. In questo caso, rispetto alla sequenza completa rappresentata dall'intero RNA, il metodo di studio si è focalizzato sulla quantificazione di due sequenze geniche, MT_{10} ed MT_{20} , responsabili della sintesi delle metallotioneine (Dondero *et al.*, 2005).

La tecnologia di q-PCR adottata ha previsto:

- l'utilizzo di fluorocromi intercalanti del DNA tipo SYBR Green, una molecola fluorescente non specifica che si lega al solco minore del DNA a doppio filamento (eccitazione/emissione massima a 494/521 nm);
- l'impiego di sonde ad idrolisi tipo "TaqMan". Questa fase consiste in una sequenza oligonucleotidica che, come i primers della PCR, viene disegnata per essere complementare alla sequenza bersaglio del gene da amplificare. Tale sequenza presenta all'estremità 5' un fuoroforo "reporter" come HEX (esacloro-6-carbossifluorescina) e all'estremità 3' una molecola "quencher" rappresentata dal TAMRA (6-carbossitetrametilrodamina);
- l'uso di acqua RNA-se e DNA-se free.

Operativamente, 0,1 gr di ghiandola digestiva è stato omogenato in Trizol e incubato a temperatura ambiente per 5' per favorire la completa dissociazione dei complessi nucleoproteici. Sono stati quindi aggiunti 100 μl di cloroformio e dopo 3' l'estratto è stato centrifugato (10.000 x g per 5' a 4°C; All. A5-VIII) realizzando una separazione in due fasi: una inferiore arricchita in fenolo rosso e una superiore acquosa contenente l'RNA. La fase acquosa è stata trasferita in una eppendorf e l'RNA raccolto è stato concentrato mediante precipitazione per mezzo di trattamenti sequenziali a base di alcool isopropilico ed etanolo (75%) seguiti da centrifugazione a 10.000 x g per 10' a 4°C. Il surnatante ottenuto è stato quindi eliminato e il pellet depositato sul fondo della provetta è stato risospeso in 100 mM sodio acetato ed etanolo (100%). Il passaggio successivo ha previsto la purificazione attraverso trattamento con LiCl (8M), incubato a -20°C per 30' e centrifugato a 20.000 x g per 30'; il surnatante è stato quindi eliminato. Il pellet cosi ottenuto è stato nuovamente risospeso in etanolo (75%) per la fase di analisi o conservato a -20°C. E' seguita la quantificazione dell'RNA ottenuto tramite lettura a diverse bande come λ= 230, 260 e 280.

Per la fase successiva di sintesi del cDNA sono stati prelevati 0,1 g di RNA totale, incubato a 70° C per 5' con appropriate quantità di oligoTprimers. Successivamente, sono stati aggiunti in rapida sequenza il tampone di reazione, il mix di desossiribonucleotidi trifosfato (dNTP), l'acqua deionizzata nuclease free, e il RevertAid M-MuLV Reverse Transcriptase[®]. E' stato quindi impostato il seguente ciclo termico di PCR:

- Incubazione della miscela a 37°C per favorire l'annealing degli oligo(d)T;

- incubazione at 40°C per 40-60';

- Incubazione a 50°C per 20';

interruzione della reazione tramite riscaldamento at 70°C per 10';

raffreddamento.

Alla fine della reazione di amplificazione, l'analisi dei risultati è stata operata attraverso il metodo comparativo cicli soglia. Dall'analisi delle curve di amplificazione sono stati desunti i parametri fondamentali alla quantificazione delle molecole inizialmente presenti nel campione come il ciclo soglia e la linea soglia di reazione.

L'efficienza della reazione di PCR è stata valutata tramite i cambiamenti di espressione genica del campione sulla base di un controllo esterno atraverso un campione di riferimento e un gene di riferimento (house-keeping), la cui espressione mantiene gli stessi livelli indipendentemente da variazioni ambientali (Livak e Schmittingen, 2001).

2.2.5. INDAGINI SULLA COMUNITÀ BENTONICA

Durante le analisi di laboratorio le sei repliche prelevate in ciascuna stazione sono state trattate separatamente. Il sorting è stato compiuto con l'ausilio di uno stereomicroscopio e di un microscopio ottico (All. A3-III e A3-IV) e l'identificazione degli organismi è stata effettuata al più basso livello sistematico possibile. Gli individui appartenenti allo stesso gruppo sono stati contati e pesati (All. A3-V). Per ogni stazione sono stati quindi calcolati i seguenti indici medi utilizzando i dati relativi alle 6 repliche:

Densità (N): $N ind/0,095 m^2$

Biomassa (P): $gr/0.095 m^2$

Indice di Dominanza (D; May, 1975): $D = n_i/N$

dove n_i = numero di individui della specie i-esima; N = numero totale di individui.

Ricchezza specifica totale (S; Pielou, 1974): Numero totale di specie presenti nelle

sei repliche

Ricchezza specifica media (S_m): Numero medio di specie presenti nelle

sei repliche

<u>Diversità specifica di Shannon-Weaver</u> (H'): $H' = -\sum p_i \cdot Log \ p_i$

dove: p_i = frequenza numerica della specie i-esima rispetto al totale degli individui (Pielou, 1974).

Le affinità biocenotiche o le preferenze ecologiche (Pérès e Picard, 1964; Bellan Santini e Ledoyer, 1972; Amouroux, 1974; Bourcier *et al.*, 1979; Bellan *et al.*, 1980; Nodot *et al.*, 1984; Salen-Picard, 1985; Augier, 1992; Bianchi *et al.*, 1993; Poppe e Goto; 1991; 1993;

Rinelli e Spanò, 1997; Chimenz Gusso *et al.*, 2001) sono state ricercate per tutti i taxa determinati a livello di specie.

Con i dati di densità delle singole specie sono state calcolate le curve di dominanza cumulativa. Per ricercare eventuali somiglianze tra le stazioni campionate e l'evoluzione temporale delle comunità rinvenute nell'intero period di indagine, con i dati di densità è stata effettuata, previa trasformazione dei dati in $\sqrt{2}$, un'analisi statistica multivariata utilizzando il pacchetto software PRIMER (Clarke e Warwick, 2001).

Infine, per valutare lo stato ecologico dell'area, sono stati confrontati i risultati di tre differenti indici (l'indice W di Clarke, l'indice AMBI e l'indice BENTIX; Clarke e Warwick, 2001; Borja *et al.* 2000; Simboura e Zenetos, 2002; Muxika *et al.*, 2007; Borja e Mader, 2008), seguendo quanto suggerito da Teixeira *et al.* (2007).

L'indice W prevede l'integrazione dei dati di abbondanza numerica e di biomassa dei singoli taxa. Tale metodo si basa sul presupposto che in aree stabili è favorita la presenza di specie con una "strategia k", con ciclo vitale lungo, grandi dimensioni corporee degli individui adulti, raramente dominanti numericamente ma dominanti in termini di biomassa. Al contrario, nelle comunità disturbate, viene favorita la presenza di specie con "strategia r", dette anche opportuniste, caratterizzate da un ciclo vitale breve e piccola taglia corporea, che generalmente risultano dominanti numericamente (Pianka, 1970).

L'indice si basa sulla seguente formula:
$$\sum_{i}^{S} (B_i - A_i) / [50 (S-1)]$$

dove: B_i e A_i = biomassa e abbondanza della specie i-esima; S = Ricchezza specifica totale.

Questo indice oscilla da -1 a +1 e indica nel primo caso la presenza di una comunità fortemente disturbata e, nel secondo, la presenza di un ambiente non perturbato. Nel caso in cui il valore sia vicino allo 0, l'ambiente è da considerare moderatamente perturbato (Craeymeersch, 1991). Per ottenere una classificazione della qualità dell'ambiente si è deciso di utilizzare gli intervalli di valori dell'indice W riportati in Tab. 2-XIII.

Tab. 2-XIII - Classificazione della qualità dell'ambiente in base al range di valori dell'indice W.

Classificazione dell'ambiente	W
Non disturbato	$1,000 \ge W \ge 0,700$
Leggermente disturbato	$0,699 \ge W \ge 0,300$
Moderatamente disturbato	$0,299 \ge W \ge -0,100$
Povero	$-0.101 \ge W \ge -0.500$
Pessimo	$-0.501 \ge W \ge -1.000$

L'indice AMBI assume valori compresi tra 0 (ambiente non inquinato o disturbato) a 7

(ambiente estremamente inquinato o disturbato).

Basandosi essenzialmente sul rapporto percentuale delle specie presenti nel campione, previamente suddivise in 5 gruppi ecologici in base al grado di tolleranza o sensibilità a un gradiente di stress ambientale, consente di classificare, come richiesto dalla Direttiva 2000/60/EC, gli ambienti marini costieri nelle seguenti categorie:

- 1. non disturbati ($0 \le AMBI \le 1$);
- 2. leggermente disturbati (1≤AMBI≤3,5);
- 3. moderatamente disturbati (3,5≤AMBI≤5);
- 4. molto disturbati (5≤AMBI≤6);
- 5. estremamente disturbati (6≤AMBI≤7).

I gruppi ecologici nei quali vengono raggruppate le specie (il cui elenco disponibile nel software AMBI 5.0 è aggiornato a luglio 2017) sono identificati soprattutto in base alla loro sensibilità ad arricchimenti organici:

- gruppo I: Specie molto sensibili ad arricchimento organico e presenti solo in condizioni ambientali ottimali.
- gruppo II: Specie indifferenti all'arricchimento organico, sempre presenti in basse densità senza particolari variazioni nel tempo.
- gruppo III: Specie tolleranti a un eccessivo arricchimento organico nei sedimenti. Queste specie possono essere presenti in condizioni normali, ma le loro popolazioni sono stimolate da un aumento di sostanza organica.
- gruppo IV: Specie opportuniste di secondo ordine.
- gruppo V: Specie opportuniste di primo ordine.

Gli intervalli di valori dell'indice AMBI e la conseguente classificazione della qualità dell'ambiente sono riportati in Tab. 2-XIV.

Tab. 2-XIV - Classificazione della qualità dell'ambiente in base al range di valori dell'indice AMBI.

Environmental Classification	AMBI
Ambiente non inquinato	$0.0 < AMBI \le 1.2$
Ambiente leggermente inquinato, di transizione	$1,2 < AMBI \le 3,3$
Ambiente moderatamente inquinato	$3,3 < AMBI \le 5,0$
Ambiente fortemente inquinato	$5,0 < AMBI \le 6,0$
Ambiente estremamente inquinato	Azoico

Infine, l'indice BENTIX è stato sviluppato per stabilire gli impatti causati da fattori di stress generalizzati e non discrimina tra disturbo di origine naturale o antropogenica.

Questo indice si basa sulla suddivisione dei taxa di fondo mobile (per i quali è fornita una

lista) in 2 principali gruppi ecologici:

- 1. gruppo 1 (GS): include specie sensibili a un disturbo in generale;
- 2. gruppo 2 (GT): include specie tolleranti a un disturbo o a uno stress.

Una volta composti i due gruppi sopra citati, viene applicato il seguente algoritmo:

$$BENTIX = (6 \times \% GS + 2 \times \% GT)/100$$

dove: %G = percentuale della somma delle densità di ciascun gruppo sulla densità totale registrata nella stazione di campionamento.

Sulla base dei risultati ottenuti, per ogni sito di campionamento è stato possibile stilare una classifica della qualità dell'ambiente secondo i criteri riportati in Tab. 2-XV. In Tab. 2-XVI è infine riportata la classificazione dello stato ecologico dell'ambiente indicata in Bettencourt *et al.* (2004) sulla base della combinazione di tre differenti indici.

Tab. 2-XV - Classificazione della qualità dell'ambiente in base al range di valori dell'indice BENTIX (Zenetos *et al.*, 2004).

Environmental Classification	BENTIX
Ambiente non inquinato	$4,5 \le BENTIX < 6$
Ambiente leggermente inquinato, di transizione	$3,5 \le BENTIX < 4,5$
Ambiente moderatamente inquinato	$2,5 \le BENTIX < 3,5$
Ambiente fortemente inquinato	$2 \le BENTIX < 2,5$
Ambiente estremamente inquinato	Azoico

Tab. 2-XVI - Classificazione dello stato ecologico derivata dalla combinazione di tre differenti indici (Bettencourt *et al.*, 2004).

Indice n. 1	Indice n. 2	Indice n. 3	Stato ecologico	
non disturbato	non disturbato	non disturbato	alto	
non disturbato	non disturbato	leggermente disturbato	alto/buono	
non disturbato	leggermente disturbato	leggermente disturbato	buono	
leggermente disturbato	leggermente disturbato	leggermente disturbato	buono	
leggermente disturbato	leggermente disturbato	moderatamente disturbato	buono/moderato	
leggermente disturbato	moderatamente disturbato	moderatamente disturbato	moderato	
moderatamente disturbato	moderatamente disturbato	moderatamente disturbato	moderato	
moderatamente disturbato	moderatamente disturbato	fortemente disturbato	moderato/povero	
moderatamente disturbato	fortemente disturbato	fortemente disturbato	povero	
fortemente disturbato	fortemente disturbato	fortemente disturbato	povero	
estremamente disturbato	fortemente disturbato	fortemente disturbato	povero/pessimo	
estremamente disturbato	estremamente disturbato	fortemente disturbato	pessimo	
estremamente disturbato	estremamente disturbato	estremamente disturbato	pessimo	

2.2.6. INDAGINI SUL POPOLAMENTO ITTICO

2.2.6.1 Campionamenti di pesca

Tutti gli individui delle specie presenti nelle catture sono stati portati in laboratorio e

determinati dal punto di vista sistematico secondo Whitehead *et al.* (1986) per le specie ittiche e Fisher *et al.* (1987) per i crostacei e i molluschi. Inoltre, su ciascun esemplare sono stati rilevati i seguenti parametri morfometrici:

- lunghezza totale (pesci; al ½ cm inferiore);
- lunghezza del mantello (molluschi cefalopodi; al ½ cm inferiore);
- lunghezza del carapace (crostacei; al mm inferiore);
- peso fresco (al g inferiore).

Per *Sardina pilchardus* e *Engraulis encrasicholus* sono stati rilevati solo il numero e il peso complessivo.

Le varie specie ittiche catturate sono state suddivise in pelagiche (P), necto-bentoniche (NB) e bentoniche (B). Inoltre, per comprendere meglio l'influenza della piattaforma Elettra sulla fauna originaria, ciascuna specie è stata definita come "attratta" (AT), "parzialmente attratta" (PA) o "non attratta" (NA) in base alla sua affinità con i substrati duri, naturali o artificiali (Bombace *et al.*, 1994). Le specie definite "attratte" hanno un habitat limitato e sono strettamente dipendenti dai substrati duri. Esse utilizzano tali substrati, naturali o artificiali, per rifugiarsi e, probabilmente, "pascolano" su di essi o nelle loro immediate vicinanze. Quelle definite "parzialmente attratte" sono generalmente specie mobili, che possono essere temporaneamente attratte dai fondi duri, ma si possono osservare anche in aree prive di tali substrati. Le specie "non attratte" invece non hanno alcun rapporto con la piattaforma e, di norma, sono reperibili sul fondale originario.

Poiché la permanenza in mare dell'attrezzo variava nelle diverse stagioni e a volte la rete poteva subire dei danni a causa delle cattive condizioni meteo-marine, i dati di cattura delle singole specie sono stati standardizzati come numero e peso di individui pescati con 500 m di rete e 12 h.

Per le tre zone (piattaforma e 2 controlli) sono state calcolate sia la Ricchezza specifica totale (S_{tot}), intesa come numero totale di specie rilevato in tutto il periodo di survey, sia la Ricchezza specifica totale media (S_{mtot}). E' stata inoltre calcolata la Ricchezza specifica media stagionale (S_{mstag}).

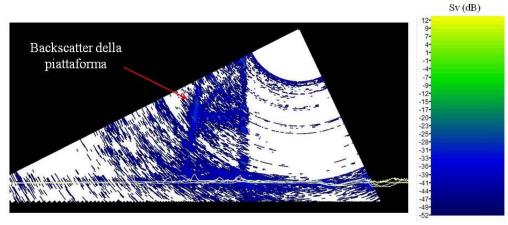
L'indice di Shannon-Weaver (H'), per la cui definizione si rimanda al capitolo precedente, è stato applicato anch'esso ai dati relativi ad ogni singolo campionamento in tutti i tre siti per determinare sia il valore totale medio (H'_{mtot}), sia le medie stagionali (H'_{mstag}).

I rendimenti di pesca sono stati calcolati sia in termini numerici (n. ind/500m/12h) che ponderali (kg/500m/12h) sull'intero periodo e stagionalmente.

Per confrontare i risultati ottenuti per i suddetti indici e per i dati di cattura in numero e peso dei principali gruppi di specie è stato effettuato un confronto statistico tra la piattaforma e i siti di controllo considerando i tre anni di indagine, utilizzando un'analisi della varianza a due vie bilanciate a fattori fissi (Lindman, 1992). Prima di svolgere l'analisi statistica, sono stati applicati i test di Kolmogorov-Smirnov e Bartlett per verificare rispettivamente la distribuzione normale dei dati e l'omogeneità delle varianze. Al fine di ridurre l'influenza dei valori di cattura elevati ma saltuari in numero e in peso è stata testata e applicata la trasformazione logaritmica $[\log_{10}(x)+1]$. Quando anche questa trasformazione non è risultata sufficiente al rispetto delle precedenti ipotesi, il confronto statistico è stato effettuato tramite il test non parametrico di Kruskal-Wallis (Zar, 1984).

Quando i test ANOVA o Kruskal-Wallis sono risultati significativi, i confronti multipli tra i vari livelli del fattore studiato sono stati calcolati utilizzando rispettivamente il test HSD di Tukey o il *comparative non parametric* Wilcoxon rank test (Zar, 1984).

Al fine di comparare l'intero *fish assemblage* rinvenuto nelle tre aree monitorate è stata effettuata un'analisi multivariata su permutazioni a due vie (PERMANOVA; Oksanen *et al.*, 2016), per testare l'ipotesi nulla di nessuna differenza tra le catture dei tre siti e di nessuna differenza tra i tre anni. Questa analisi è basata su una matrice di dissimilarità di Bray-Curtis, calcolata sui dati di abbondanza di ciascuna specie trasformati per radice quarta. Quando il test precedente è risultato significativo, i confronti multipli tra i vari livelli del fattore studiato sono stati calcolati utilizzando il *pairwise test* (Arbizu, 2017).


La *Principal Coordinate analysis* (PCO; Anderson 2001), calcolata sulla base della matrice di Bray-Curtis utilizzata nella precedente analisi, è stata applicata come metodo di ordinamento per visualizzare le differenze nel popolamento dei tre siti. Su questa rappresentazione sono stati sovrapposti i vettori di correlazione delle 10 specie che influenzano maggiormente la distribuzione dei vari punti.

2.2.6.2 Investigazioni acustiche

L'elaborazione dei dati inerenti la colonna d'acqua, rilevati tramite MBES, è stata eseguita con il software Echoview (Myriax, Tasmania).

Dopo la conversione dei *raw data*, è stato eseguito lo *screening* dettagliato degli ecogrammi bidimensionali relativi a ciascun transetto. Una volta individuata una possibile aggregazione di pesce (*target*), sono stati selezionati i ping contenenti l'aggregazione creando un sottoinsieme dell'ecogramma. In presenza di rumore di fondo ben distinguibile dal target, è stata applicata una pulizia del dato utilizzando una procedura di

mascheramento. D'altra parte, nel caso di intenso e diffuso rumore di fondo dovuto alla presenza di strutture e/o oggetti in grado di creare un forte *backscatter* e *scattering* dell'impulso acustico, non è stato possibile individuare alcun banco di pesce per l'alto livello di mascheramento. Questo avviene per esempio in prossimità della piattaforma stessa (fig. 2.10) la cui base, costituita da pali che si estendono verticalmente lungo tutta la colonna d'acqua, causa intensi fenomeni di *backscatter* e di *scattering* omnidirezionale. Inoltre, gli impulsi che penetrano negli spazi tra i pali della piattaforma possono venire riflessi più volte prima di tornare ai trasduttori o perdersi nell'ambiente circostante. Per tale motivo sono stati presi in considerazione solo quei *target* chiaramente distinguibili dall'intenso rumore di fondo.

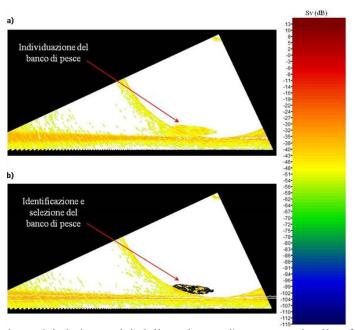


Fig. 2.10 - Ecogramma multibeam in prossimità della piattaforma Bonaccia NW. Il forte *backscatter* dovuto alla presenza della struttura e lo *scattering* omnidirezionale degli impulsi acustici impediscono il rilevamento di eventuali aggregazioni di pesce nelle vicinanze della piattaforma e/o tra i pali della stessa. Sv=Volume backscatter strength.

Una volta individuato, il banco di pesce è stato estratto tramite la procedura *target detection* e l'algoritmo *cruise-scanning* per piattaforme (tipo imbarcazioni) in movimento (fig. 2.11). Visto che il sistema EM2040CD non può essere calibrato per il riconoscimento di particolari specie ittiche, si è considerato un *volume backscatter strenght* (Sv) compreso tra -35 +64 dB, intervallo scelto a seguito di un controllo di qualità del dato effettuato al fine di isolare il rumore. Questa procedura, oltre a fornire l'immagine tridimensionale del *target* permette di estrarne le caratteristiche metriche e acustiche che, quando possibile, sono state usate come misure per confrontare la distribuzione dei due macrogruppi individuabili in base alla distanza dalla piattaforma (il primo comprendente i banchi rilevati entro 300 m dalla struttura e il secondo quelli individuati nelle zone periferiche). Di seguito si riporta la descrizione delle caratteristiche metriche e variabili acustiche estratte per ogni *target* tridimensionale (Tab. 2-XV e 2-XVI).

Completata l'individuazione dei banchi di pesce, sono state create scene tridimensionali delle porzioni di colonna d'acqua investigate, includendo anche il fondale marino e la struttura Clara NW.

Nel presente rapporto sono riportati i risultati relativi al periodo di indagine lugliodicembre 2017. Per i risultati precedenti consultare Fabi *et al.*, 2016b, 2017b e 2017c.

Fig. 2.11 - Elaborazione dei dati acustici della colonna d'acqua tramite il software Echoview. a) Individuazione di un'aggregazione di pesce in un ping durante lo *screening* dell'ecogramma. b) Identificazione e selezione del *target* tramite la procedura *Target detection*. La scala a colori sulla destra rappresenta il *volume backscattering strength* (Sv) in dB e si riferisce a entrambi a) e b).

Tab. 2-XV - Descrizione delle caratteristiche metriche relative ai target tridimensionali (aggregazioni di pesce) individuati durante la procedura di *Target detection* del software Echoview.

Caratteristica metrica	Unità	Descrizione
Superficie	m ²	Superficie del target (include la superficie di eventuali vacuoli individuati all'interno del target).
Lunghezza NS	m	Lunghezza massima del target lungo l'asse Nord-Sud.
Lunghezza EW	m	Lunghezza massima del target lungo l'asse Est-Ovest.
Profondità minima	m	Profondità minima del target.
Profondità massima	m	Profondità massima del target.
Altezza	m	Altezza del target (dalla profondità massima alla profondità minima).
Volume	m ³	Volume del target (non include il volume di eventuali vacuoli individuati all'interno del target).
Centro geometrico (LAT)	gradi	Latitudine del punto geometrico centrale del target.
Centro geometrico (LONG)	gradi	Longitudine del punto geometrico centrale del target.
Centro geometrico profondità	m	Profondità del punto geometrico centrale del target.
Ruvidità	m ⁻¹	Superficie del target diviso il volume del target.
n. vacuoli	-	Numero di vacuoli individuati all'interno del target.
Volume totale vacuoli	m^3	Volume totale dei vacuoli individuati all'interno del target.

Tab. 2-XVI - Descrizione delle variabili acustiche relative ai target tridimensionali (aggregazioni di pesce) individuati durante la procedura di *Target detection* del software Echoview.

Variabile acustica	Unità	Descrizione
Sv medio	dB re 1 m ⁻¹	Volume backscatter strength all'interno del target.
n. campioni	-	Numero di campioni validi all'interno del target.
n. ping	-	Numero di ping analizzati che intersecano il target.
n. beam	-	Numero di beam analizzati che intersecano il target.
Sv minimo	dB re 1 m ⁻¹	Valore minimo del volume backscatter strength all'interno del target.
Sv massimo	dB re 1 m ⁻¹	Valore massimo del volume backscatter strength all'interno del target.
Densità	Kg m ⁻³	Densità volumetrica di pesce espressa in unità di massa.

2.2.5.3 Indagini video in prossimità della piattaforma

Le immagini video registrate mediante telecamera in prossimità della piattaforma sono state analizzate per verficarne la qualità e per avvalorare i risultati ottenuti con i campionamenti di pesca e con le investigazioni tramite MBES per avere un riscontro sull'effettivo potere attrattivo della struttura.

3. RISULTATI

3.1. CARATTERISTICHE FISICHE E CHIMICHE DELLA COLONNA D'ACQUA

Vengono qui di seguito sono discussi i risultati relativi al 2° semestre 2018. Per i precedenti consultare Fabi *et al.*, 2015b, 2016b, 2016c, 2017b, 2017c, 2018 e 2019d.

3.1.1. TEMPERATURA, SALINITÀ, TORBIDITÀ, OSSIGENO DISCIOLTO E FLUORESCENZA INDOTTA

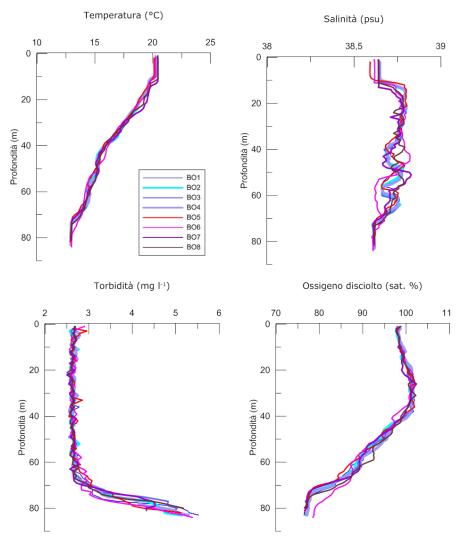
Nel mese di **ottobre 2018** la colonna d'acqua ha presentato nei primi 10 m di profondità valori costanti sia di temperatura che di salinità (fig. 3.1). La temperatura è andata poi via via diminuendo raggiungendo il minimo di 12,88°C in prossimità del fondo, mentre la salinità ha seguito un trend opposto, dapprima aumentando in tutte le stazioni sino a circa 38,8 psu, poi attestandosi su valori leggermente più bassi e prossimi a quelli superficiali (minimo di 38,59 psu in superficie nella stazione BO5).

Sia la temperatura che la salinità hanno mostrato in superficie un aumento di valori procedendo da Sud verso Nord, mentre al fondo è stato osservato un aumento della temperatura e un decremento della salinità da Ovest verso Est (fig. 3.2).

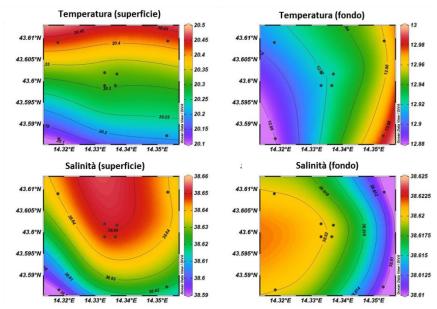
La torbidità è risultata in media pari a $2,88\pm0,59$ mg l⁻¹, con valori più o meno costanti fino a circa 65-70 m in aumento verso il fondo, dove è stato raggiunto il massimo in BO3 (5,53 mg l⁻¹; fig. 3.1).

L'ossigeno disciolto ha presentato una saturazione media di 93,50±8,13%, con un massimo di 102,39% a 27 m di profondità nella stazione BO7. L'andamento, dopo un lieve aumento sino a 27 m è apparso decrescente e al fondo è stato registrato il minimo nel sito BO1 (76,40%; fig. 3.1).

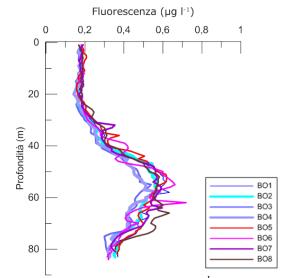
Per la fluorescenza *in situ* sono stati registrati picchi di concentrazione tra i 50 e i 60 m, con un massimo di 0,72 µg l⁻¹ nella stazione BO6 a 62 m (fig. 3.3).

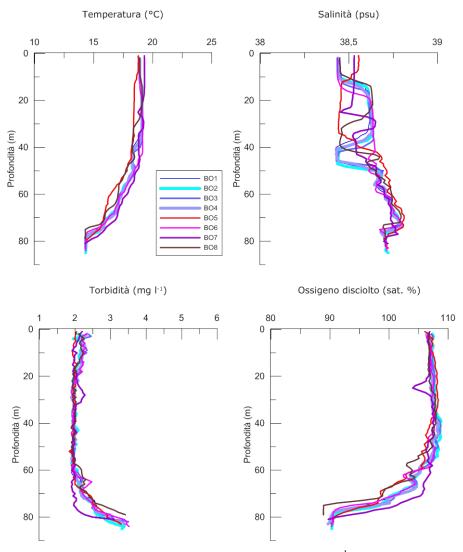

A **novembre** era presente uno strato omogeneo di circa 35-40 m (fig. 3.4). La temperatura è risultata mediamente più alta rispetto ad ottobre, con un minimo assoluto di 14,28°C registrato sul fondo delle stazioni BO7 e BO8.

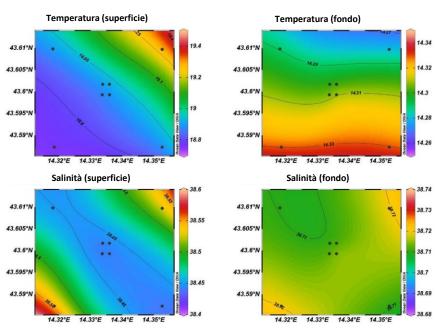
La salinità, pressoché uguale a quella di ottobre, è risultata variabile fino a circa 50 m, per poi omogeneizzarsi fino al fondo. Il suo valore medio è stato pari a 38,62±0,11 psu, con un range di 38,42-38,81 psu. Le distribuzioni areali hanno evidenziato un chiaro aumento


della temperatura da SW verso NE in superficie e da Nord verso Sud al fondo (fig. 3.5).

La torbidità è risultata in media pari a 2,13±0,30 mg l⁻¹, con valori più o meno costanti fino a circa 60 m in aumento verso il fondo fino a raggiungere un massimo di 3,52 mg l⁻¹ in corrispondenza della stazione BO6 (fig. 3.4). La saturazione dell'ossigeno disciolto è risultata maggiore rispetto ad ottobre, con una concentrazione media di 104,80±9,69% e un massimo di 108,79%. Verso il fondo si è assistito a una riduzione sino a raggiungere una saturazione pari a 88,88% nella stazione BO8 (fig. 3.4).


La fluorescenza *in situ* ha mostrato una certa variabilità, con i valori massimi registrati più o meno in tutte le stazioni entro i primi 10 m, a parte un picco al di sotto dei 20 m registrato in BO7. In media la fluorescenza è stata pari a $0.35\pm0.05~\mu g~l^{-1}$, con concentrazioni più basse rispetto al periodo precedente (massimo di $0.47~\mu g~l^{-1}$ nella BO3 a 10~m; fig. 3.6).


Fig. 3.1 - Profili di temperatura (°C), salinità (psu), torbidità (mg l⁻¹) e ossigeno disciolto in % di saturazione (sat %). **Ottobre 2018**.


Fig. 3.2 - Mappe areali rappresentanti la temperatura (°C) e la salinità (psu) in superficie e al fondo. **Ottobre 2018**.

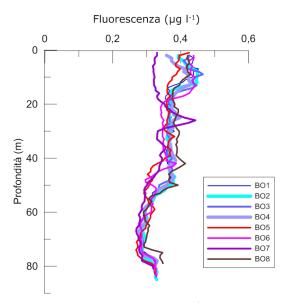

Fig. 3.3 - Profili di fluorescenza (μ g Γ^{-1}). **Ottobre 2018**.

Fig. 3.4 - Profili di temperatura (°C), salinità (psu), torbidità (mg l⁻¹) e ossigeno disciolto in % di saturazione (% sat). **Novembre 2018**.

Fig. 3.5 - Mappe areali rappresentanti la temperatura (°C) e la salinità (psu) in superficie e al fondo. **Novembre 2018**.

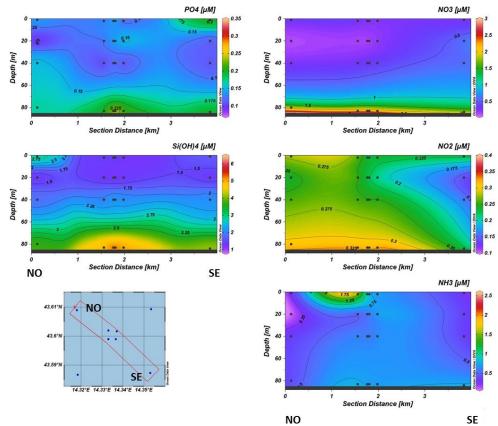
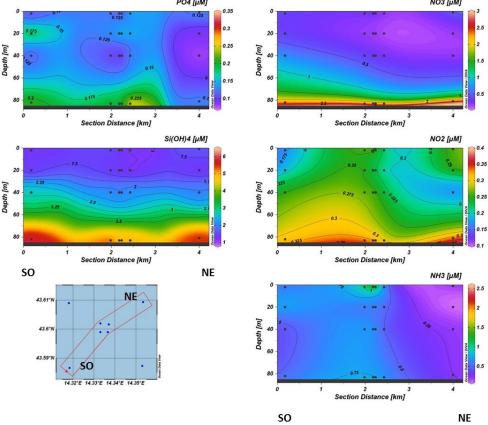
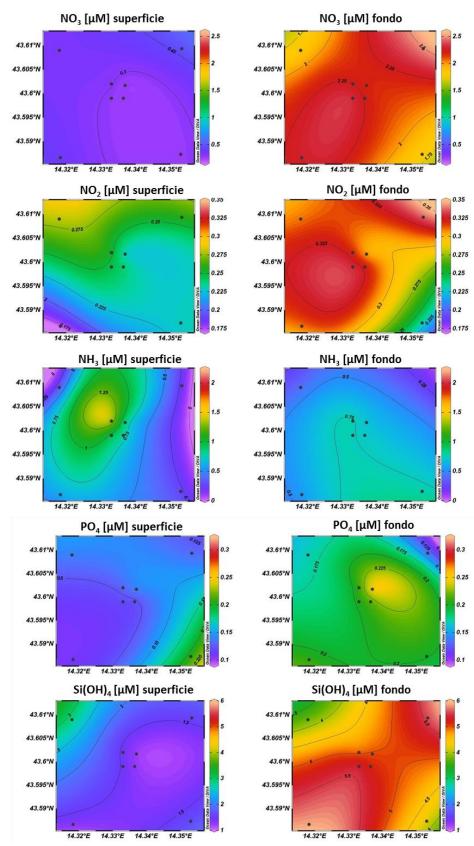
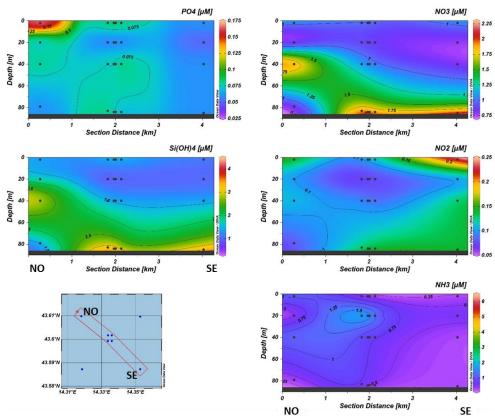


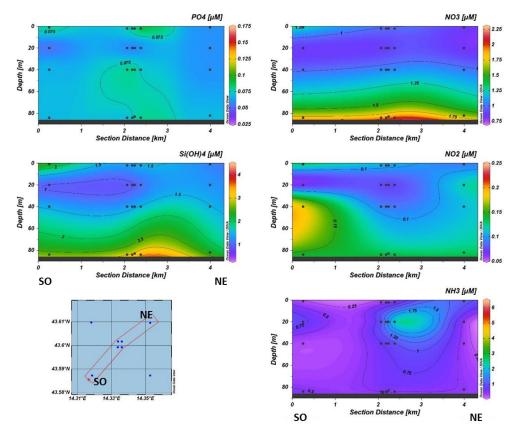
Fig. 3.6 - Profili di fluorescenza (μg l⁻¹). **Novembre 2018**.


3.1.2. NUTRIENTI

Nell'**ottobre 2018** le concentrazioni medie di NO₃, NO₂ e NH₃ sono state pari a 0,79 \pm 0,84 μ M, 0,25 \pm 0,05 μ M e 0,56 \pm 0,39, rispettivamente (figg. 3.7a, 3.7b e 3.8). I massimi di NO₃ (2,51 μ M) e NO₂ (0,35 μ M) sono stati registrati al fondo, mentre l'NH₃ (massimo pari a 2,23 μ M in BO₃) ha presentato valori più alti nello strato superficiale e sub-superficiale in alcune stazioni più prossime alla piattaforma. Gli PO₄ sono risultati mediamente presenti con 0,15 \pm 0,05 μ M, con un massimo al fondo della stazione BO₄ (0,32 μ M). Anche gli Si(OH)₄, mediamente pari a 2,50 \pm 1,58 μ M, hanno raggiunto le concentrazioni maggiori al fondo, con un massimo nella stazione BO₁ (5,95 μ M).


A **novembre** (figg. 3.9a, 3.9b e 3.10) le concentrazioni di NO_3 e NH_3 sono state in generale più alte rispetto al survey precedente anche se mediamente non sono state evidenziate differenze (1,19±0,45 μ M e 0,70±0,68 μ M, rispettivamente). I NO_2 invece sono risultati in media circa la metà rispetto ad ottobre (0,11±0,4 μ M), con un massimo assoluto superficiale nella stazione BO6 (0,23 μ M). Il massimo di NO_3 (2,21 μ M) è stato invece registrato al fondo della BO3. L' NH_3 ha presentato una concentrazione massima (4,00 μ M) pari a quasi il doppio rispetto ad ottobre, misurata a 20 m sempre nella stazione BO3. Sia i PO_4 che gli $Si(OH)_4$ sono apparsi inferiori rispetto alla campagna precedente; i loro massimi sono stati registrati rispettivamente in superficie della stazione BO8 (0,17 μ M) e al fondo della BO3 (4,10 μ M).


Fig. 3.7a. Sezioni verticali delle stazioni BO8, BO4, BO1, BO3, BO2, BO6 rappresentanti le concentrazioni (μ M) di nitriti (NO₂), nitrati (NO₃), ortofosfati (PO₄) ortosilicati (Si(OH)₄) e ammoniaca (NH₃). **Ottobre 2018**.


Fig. 3.7b - Sezioni verticali delle stazioni BO5, BO1, BO2, BO4, BO3, rappresentanti le concentrazioni (μ M) di nitriti (NO₂), nitrati (NO₃), ortofosfati (PO₄) ortosilicati (Si(OH)₄) e ammoniaca (NH₃). **Ottobre 2018**.

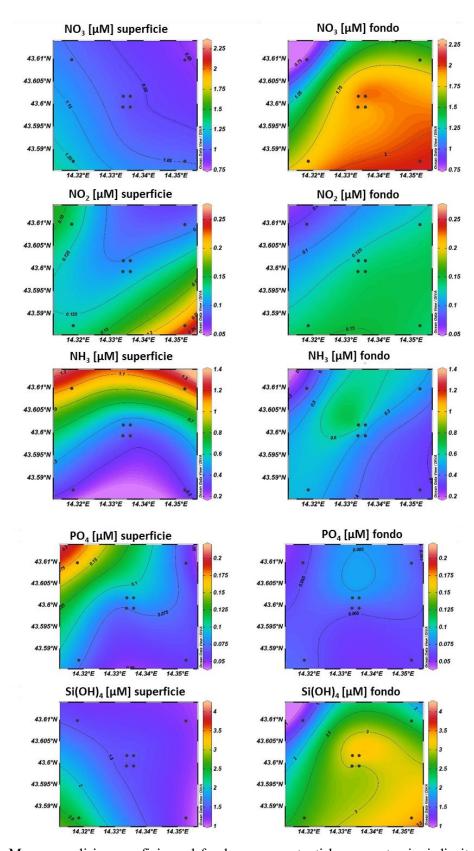
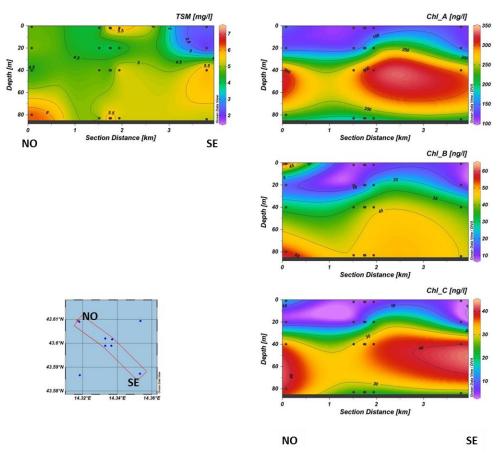
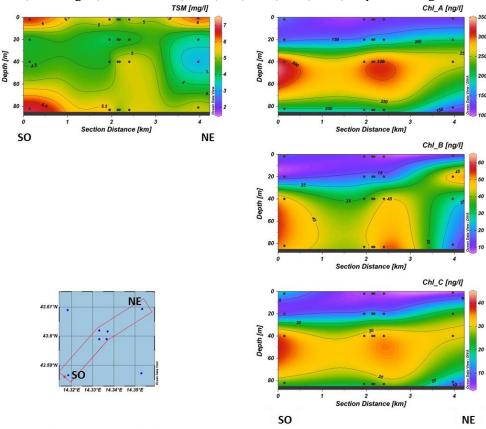

Fig. 3.8 - Mappe areali in superficie e al fondo rappresentanti le concentrazioni di nitriti (NO_2) , nitrati (NO_3) , ammoniaca (NH_3) , ortofosfati (PO_4) e ortosilicati $(Si(OH)_4)$ espresse in μM . **Ottobre 2018**.

Fig. 3.9a. Sezioni verticali delle stazioni BO8, BO4, BO1, BO3, BO2, BO6, rappresentanti le concentrazioni (μM) di nitriti (NO₂), nitrati (NO₃), ortofosfati (PO₄) ortosilicati (Si(OH)₄) e ammoniaca (NH₃). **Novembre 2018**.

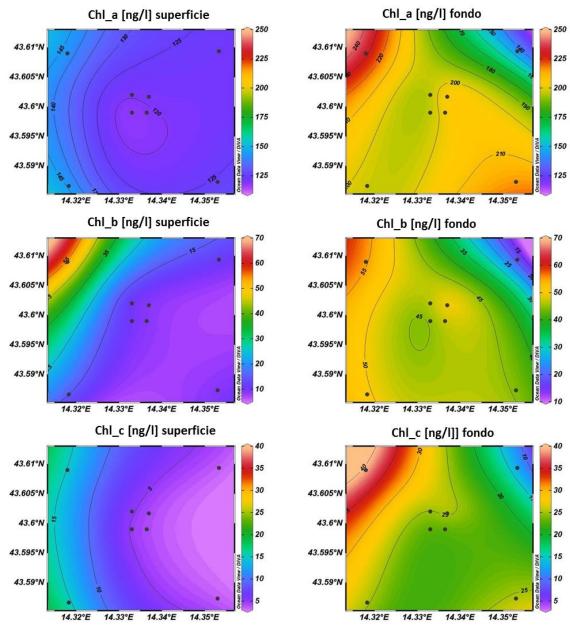
Fig. 3.9b. Sezioni verticali delle stazioni BO5, BO1, BO2, BO4, BO3, BO7 rappresentanti le concentrazioni (μM) di nitriti (NO₂), nitrati (NO₃), ortofosfati (PO₄) ortosilicati (Si(OH)₄) e ammoniaca (NH₃). **Novembre 2018**.

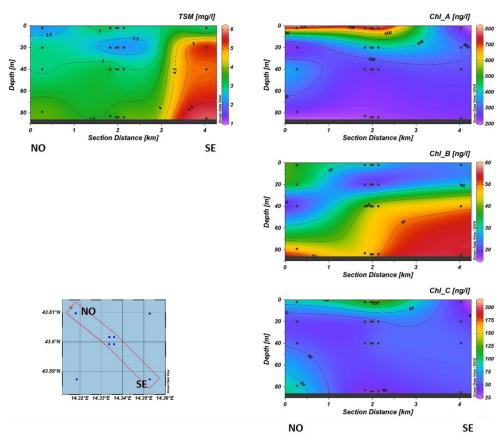

Fig. 3.10. Mappe areali in superficie e al fondo rappresentanti le concentrazioni di nitriti (NO_2), nitrati (NO_3), ammoniaca (NH_3), ortofosfati (PO_4) e ortosilicati ($Si(OH)_4$) espresse in μM . **Novembre 2018**.

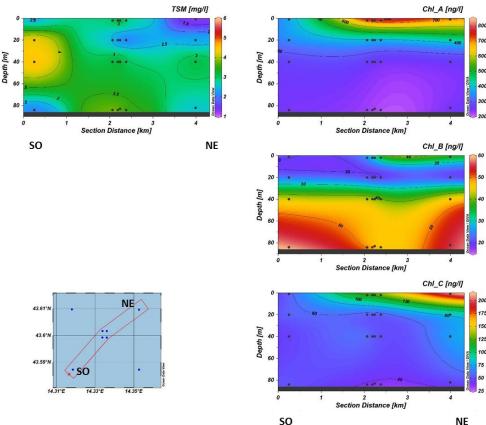
3.1.3. PIGMENTI CLOROFILLIANI E PARTICELLATO SOSPESO


Ad **ottobre 2018** (figg. 3.11a, 3.11b e 3.12) la clorofilla a ha raggiunto una concentrazione media di 197,75±74,37 ng Γ^1 , con un massimo di 330,40 ng Γ^1 a 40 m nella stazione BO5. Chl b e Chl c sono risultate mediamente pari a 29,72±17,59 ng Γ^1 e 19,48±13,53 ng Γ^1 . La massima concentrazione di Chl c (41,76 ng Γ^1) è stata registrata negli strati intermedi, precisamente a 40 m nella stazione BO6, quella di Chl b (58,13 ng Γ^1) al fondo della BO4. In questo periodo il TSM (4,84±1,43 mg Γ^1) ha raggiunto un massimo di 6,93 mg Γ^1 al fondo della BO5.

A **novembre** (figg. 3.13a, 3.13b e 3.14) la clorofilla a è risultata più abbondante rispetto ad ottobre, con una media di 376,70±187,06 ng l⁻¹ e un massimo di 805,10 ng l⁻¹ in superficie nella stazione BO2. La Chl c (67,96±37,41 ng l⁻¹) è risultata maggiormente presente della Chl b (36,16±12,65 ng l⁻¹). I rispettivi massimi di queste due componenti sono stati registrati in superficie della BO7 (206,12 ng l⁻¹) e sul fondo della BO5 (58,54 ng l⁻¹).


Il TSM è risultato mediamente simile ad ottobre $(3,20\pm1,20 \text{ mg I}^{-1})$ ma il massimo assoluto, misurato al fondo della stazione BO6, è stato inferiore, essendo pari a 5,85 mg I⁻¹.


Fig. 3.11a - Sezioni verticali dei siti BO8, BO4, BO1, BO3, BO2, BO6, rappresentanti le concentrazioni di particellato sospeso (TSM; mg 1^{-1}), clorofilla a (Chl a), b (Chl b) e c (Chl c), espresse in ng 1^{-1} . **Ottobre 2018**.


Fig. 3.11b - Sezioni verticali delle stazioni BO5, BO1, BO2, BO4, BO3, BO7, rappresentanti le concentrazioni di particellato sospeso (TSM; mg 1^{-1}), clorofilla a (Chl a), b (Chl b) e c (Chl c), espresse in ng 1^{-1} . **Ottobre 2018**.

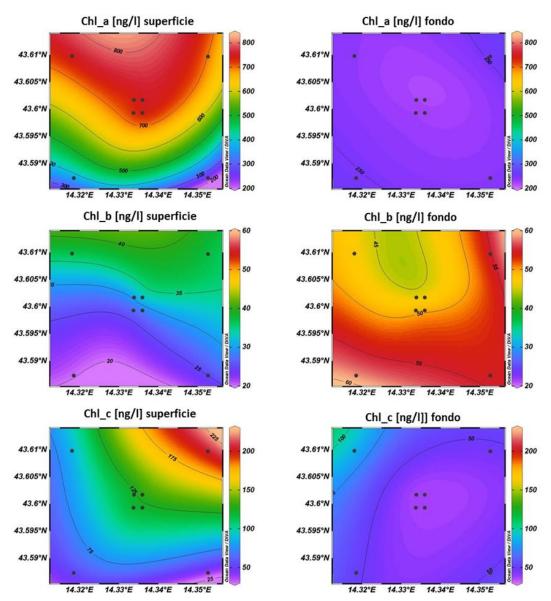

Fig. 3.12 - Distribuzione in superficie e al fondo delle concentrazioni di clorofilla a (*Chl a*), clorofilla b (*Chl b*) e clorofilla c (*Chl c*), espresse in ng 1^{-1} . **Ottobre 2018**.

Fig. 3.13a - Sezioni verticali dei siti BO8, BO4, BO1, BO3, BO2, BO6, rappresentanti le concentrazioni di particellato sospeso (TSM; mg 1^{-1}), clorofilla a (Chl a), b (Chl b) e c (Chl c), espresse in ng 1^{-1} . **Novembre 2018**.

Fig. 3.13b - Sezioni verticali dei siti BO5, BO1, BO2, BO4, BO3, BO7 rappresentanti le concentrazioni di particellato sospeso (TSM; mg l^{-1}), clorofilla a (Chl a), b (Chl b) e c (Chl c), espresse in ng l^{-1} . **Novembre 2018**.

Fig. 3.14 - Mappe areali in superficie e al fondo rappresentanti le concentrazioni di clorofilla a ($Chl\ a$), clorofilla b ($Chl\ b$) e clorofilla c ($Chl\ c$), espresse in $ng\ l^{-1}$. **Novembre 2018**.

3.1.4. IDROCARBURI TOTALI, IDROCARBURI ALIFATICI, IDROCARBURI POLICICLICI AROMATICI, BTEX

Gli Idrocarburi Policiclici Aromatici (IPA), gli Idrocarburi totali e i BTEX (Tabb. 3-I e 3-II) sono risultati sempre e ovunque al di sotto dei limiti di rilevabilità strumentale. Gli Idrocarburi Alifatici (IA; Tab. 3-I) sono stati quantificati esclusivamente nel campione prelevato a 40 m di profondità nel sito BO3 nella crociera di ottobre, peraltro con una concentrazione molto prossima al limite strumentale.

 $\textbf{Tab. 3-I} \text{ -} \text{ Concentrazioni } (\mu g/l) \text{ di Idrocarburi totali, IA e IPA registrate nelle diverse stazioni e alle diverse quote nei survey condotti a d ottobre e novembre 2018.}$

	Ott	tobre 2018	}	Novembre 2018					
Stazione	Idroc. totali (n-esano)	IA (C10-C32)	IPA (16 IPA)	Idroc. totali (n-esano)	IA (C10-C32)	IPA (16 IPA)			
BO1 sup	< 30	< 1	< 0,01	< 30	< 1	< 0,01			
BO1 20 m	< 30	< 1	< 0,01	< 30	< 1	< 0,01			
BO1 40 m	< 30	< 1	< 0,01	< 30	< 1	< 0,01			
BO1 fondo	< 30	< 1	< 0,01	< 30	< 1	< 0,01			
BO2 sup	< 30	< 1	< 0,01	< 30	< 1	< 0,01			
BO2 20 m	< 30	< 1	< 0,01	< 30	< 1	< 0,01			
BO2 40 m	< 30	< 1	< 0,01	< 30	< 1	< 0,01			
BO2 fondo	< 30	< 1	<0,01	< 30	< 1	< 0,01			
BO3 sup	< 30	< 1	< 0,01	< 30	< 1	< 0,01			
BO3 20 m	< 30	1,06	< 0,01	< 30	< 1	< 0,01			
BO3 40 m	< 30	< 1	< 0,01	< 30	< 1	< 0,01			
BO3 fondo	< 30	< 1	< 0,01	< 30	< 1	< 0,01			
BO4 sup	< 30	< 1	< 0,01	< 30	< 1	< 0,01			
BO4 20 m	< 30	< 1	< 0,01	< 30	< 1	< 0,01			
BO4 40 m	< 30	< 1	< 0,01	< 30	< 1	< 0,01			
BO4 fondo	< 30	< 1	< 0,01	< 30	< 1	< 0,01			
BO5 sup	< 30	< 1	< 0,01	< 30	< 1	< 0,01			
BO5 20 m	< 30	< 1	< 0,01	< 30	< 1	< 0,01			
BO5 40 m	< 30	< 1	< 0,01	< 30	< 1	< 0,01			
BO5 fondo	< 30	< 1	< 0,01	< 30	< 1	< 0,01			
BO6 sup	< 30	< 1	< 0,01	< 30	< 1	< 0,01			
BO6 20 m	< 30	< 1	< 0,01	< 30	< 1	< 0,01			
BO6 40 m	< 30	< 1	< 0,01	< 30	< 1	< 0,01			
BO6 fondo	< 30	< 1	< 0,01	< 30	< 1	< 0,01			
BO7 sup	< 30	< 1	< 0,01	< 30	< 1	< 0,01			
BO7 20 m	< 30	< 1	< 0,01	< 30	< 1	< 0,01			
BO7 40 m	< 30	< 1	< 0,01	< 30	< 1	< 0,01			
BO7 fondo	< 30	< 1	<0,01	< 30	< 1	< 0,01			
BO8 sup	< 30	< 1	<0,01	< 30	< 1	<0,01			
BO8 20 m	< 30	< 1	< 0,01	< 30	< 1	< 0,01			
BO8 40 m	< 30	< 1	< 0,01	< 30	< 1	< 0,01			
BO8 fondo	< 30	< 1	< 0,01	< 30	< 1	< 0,01			

 $\textbf{Tab. 3-II} \text{ - Microinquinanti organici (BTEX; } \mu\text{g/l}) \text{ determinati nelle diverse stazioni e alle diverse quote nel corso dei survey condotti ad ottobre e novembre 2018.}$

		Otto	bre 2018			Novembre 2018						
Stazione	Benzene	Etilbenzene	Stirene	Toluene	Xilene	Benzene	Etilbenzene	Stirene	Toluene	Xilene		
BO1 sup	<0,1	<1	<1	<1	<1	<0,1	<1	<1	<1	<1		
BO1 20 m	< 0,1	<1	<1	<1	<1	< 0,1	<1	<1	<1	<1		
BO1 40 m	< 0,1	<1	<1	<1	<1	< 0,1	<1	<1	<1	<1		
BO1 fondo	< 0,1	<1	<1	<1	<1	< 0,1	<1	<1	<1	<1		
BO2 sup	<0,1	<1	<1	<1	<1	< 0,1	<1	<1	<1	<1		
BO2 20 m	< 0,1	<1	<1	<1	<1	< 0,1	<1	<1	<1	<1		
BO2 40 m	< 0,1	<1	<1	<1	<1	< 0,1	<1	<1	<1	<1		
BO2 fondo	<0,1	<1	<1	<1	<1	< 0,1	<1	<1	<1	<1		
BO3 sup	< 0,1	<1	<1	<1	<1	< 0,1	<1	<1	<1	<1		
BO3 20 m	< 0,1	<1	<1	<1	<1	< 0,1	<1	<1	<1	<1		
BO3 40 m	< 0,1	<1	<1	<1	<1	< 0,1	<1	<1	<1	<1		
BO3 fondo	< 0,1	<1	<1	<1	<1	< 0,1	<1	<1	<1	<1		
BO4 sup	<0,1	<1	<1	<1	<1	< 0,1	<1	<1	<1	<1		
BO4 20 m	< 0,1	<1	<1	<1	<1	< 0,1	<1	<1	<1	<1		
BO4 40 m	< 0,1	<1	<1	<1	<1	< 0,1	<1	<1	<1	<1		
BO4 fondo	< 0,1	<1	<1	<1	<1	< 0,1	<1	<1	<1	<1		
BO5 sup	<0,1	<1	<1	<1	<1	< 0,1	<1	<1	<1	<1		
BO5 20 m	< 0,1	<1	<1	<1	<1	< 0,1	<1	<1	<1	<1		
BO5 40 m	< 0,1	<1	<1	<1	<1	< 0,1	<1	<1	<1	<1		
BO5 fondo	< 0,1	<1	<1	<1	<1	<0,1	<1	<1	<1	<1		
BO6 sup	<0,1	<1	<1	<1	<1	< 0,1	<1	<1	<1	<1		
BO6 20 m	< 0,1	<1	<1	<1	<1	< 0,1	<1	<1	<1	<1		
BO6 40 m	<0,1	<1	<1	<1	<1	< 0,1	<1	<1	<1	<1		
BO6 fondo	<0,1	<1	<1	<1	<1	<0,1	<1	<1	<1	<1		
BO7 sup	< 0,1	<1	<1	<1	<1	< 0,1	<1	<1	<1	<1		
BO7 20 m	< 0,1	<1	<1	<1	<1	< 0,1	<1	<1	<1	<1		
BO7 40 m	<0,1	<1	<1	<1	<1	< 0,1	<1	<1	<1	<1		
BO7 fondo	<0,1	<1	<1	<1	<1	< 0,1	<1	<1	<1	<1		
BO8 sup	<0,1	<1	<1	<1	<1	<0,1	<1	<1	<1	<1		
BO8 20 m	<0,1	<1	<1	<1	<1	< 0,1	<1	<1	<1	<1		
BO8 40 m	<0,1	<1	<1	<1	<1	< 0,1	<1	<1	<1	<1		
BO8 fondo	<0,1	<1	<1	<1	<1	<0,1	<1	<1	<1	<1		

3.1.5. GLICOLE ETILENICO

Il glicole etilenico è sempre risultato inferiore al limite di rilevabilità strumentale (Tab. 3-III).

Tab. 3-III - Concentrazioni (mg/l) di Glicole etilenico registrate nelle diverse stazioni e alle diverse quote nel corso dei survey condotti condotti ad ottobre e novembre 2018.

Stazione	Ott. 2018	Nov. 2018		
BO1 sup	< 10	< 10		
BO1 20 m	< 10	< 10		
BO1 40 m	< 10	< 10		
BO1 fondo	< 10	< 10		
BO2 sup	< 10	< 10		
BO2 20 m	< 10	< 10		
BO2 40 m	< 10	< 10		
BO2 fondo	< 10	< 10		
BO3 sup	< 10	< 10		
BO3 20 m	< 10	< 10		
BO3 40 m	< 10	< 10		
BO3 fondo	< 10	< 10		

Stazione	Ott. 2018	Nov. 2018		
BO4 sup	< 10	< 10		
BO4 20 m	< 10	< 10		
BO4 40 m	< 10	< 10		
BO4 fondo	< 10	< 10		
BO5 sup	< 10	< 10		
BO5 20 m	< 10	< 10		
BO5 40 m	< 10	< 10		
BO5 fondo	< 10	< 10		
BO6 sup	< 10	< 10		
BO6 20 m	< 10	< 10		
BO6 40 m	< 10	< 10		
BO6 fondo	< 10	< 10		

Stazione	Ott. 2018	Nov. 2018		
BO7 sup	< 10	< 10		
BO7 20 m	< 10	< 10		
BO7 40 m	< 10	< 10		
BO7 fondo	< 10	< 10		
BO8 sup	< 10	< 10		
BO8 20 m	< 10	< 10		
BO8 40 m	< 10	< 10		
BO8 fondo	< 10	< 10		

3.1.6. METALLI PESANTI

Le concentrazioni dei metalli determinati nella colonna d'acqua nelle campagne oggetto di questa relazione sono riportate in Tab. 3-IV.

Nell'ottobre 2018 cadmio, mercurio, ferro e indio sono risultati sempre al di sotto dei rispettivi limiti di rilevabilità. Anche il piombo e il rame sono risultati molto spesso non rilevabili essendo stati quantificati in meno del 15% dei campioni, mostrando peraltro una distribuzione spaziale casuale. Tutti gli altri elementi considerati sono risultati sempre misurabili pur con qualche eccezione. Lo zinco, per esempio, non è stato rilevato in tre campioni. Questa specie chimica ha mostrato la maggiore variabilità spaziale, raggiungendo un CV medio pari a quasi il 100%. Il massimo (37,5 µg l⁻¹) è stato raggiunto al fondo della stazione BO5.

Anche l'**alluminio**, il **cromo** (assente in BO8, 40 m) e il **nichel** (non rilevato a 40 m nelle stazioni BO5 e BO8) hanno evidenziato una variabilità piuttosto elevata (CV medio >30%), e l'alluminio, in particolare, un maggiore concentrazione media nelle stazioni lontane rispetto a quelle prossime alla piattaforma (\pm dev.st.; 8,38 \pm 1,35 e 4,23 \pm 2,31 μ g Γ^1 rispettivamente). I massimi per alluminio e nichel sono stati raggiunti al fondo della stazione BO5 (11,58 μ g Γ^1 e 0,46 μ g Γ^1 rispettivamente) quello del cromo a quota 40 m della BO1 (0,28 μ g Γ^1).

Arsenico, **bario**, **vanadio** e **silicio** (quest'ultimo non rilevato in superficie nella BO6) sono invece risultati meno variabili, soprattutto i primi tre metalli (CV medio <10%; CV del silicio ~ 25%). Mentre le distribuzioni di arsenico e vanadio sono apparse omogenee, i valori maggiori di bario e silicio sono stati rilevati sempre alle quote di fondo. Le concentrazioni massime di As, Ba, V e Si sono state rispettivamente 2,08 μg l⁻¹ (BO4, fondo), 8,98 μg l⁻¹ (BO5, fondo), 1,01 μg l⁻¹ (BO1, 40 m) e 0,22 mg l⁻¹ (BO7, fondo).

Anche nel mese di **novembre cadmio**, **ferro**, **mercurio** e **indio** sono risultati non quantificabili, così come il **piombo** e il **rame** (quest'ultimo quantificato solo in BO1, superficie). Il **nichel** è stato rilevato solo in 8 campioni prevalentemente raccolti nelle stazioni vicine a Bonaccia NW, ma sempre con concentrazioni molto vicine al proprio limite di rilevabilità; comunque, il massimo di 0,71 µg l⁻¹ è stato registrato in superficie della BO5 posizionata a 2000 m dalla piattaforma. Una situazione simile ad ottobre è stata evidenziata anche per **alluminio** e **zinco**, i quali hanno mostrato la consueta alta variabilità spaziale (CV medio ~67%). Per quanto riguarda le loro concentrazioni, tuttavia, è stata evidenziata una generale diminuzione rispetto al survey precedente, non rilevando altresì

particolari andamenti nella distribuzione spaziale e lungo la colonna d'acqua. I massimi rispettivi sono stati pari a 5,92 μg l⁻¹ (BO8, superficie) e 18,05 μg l⁻¹ (BO5, fondo).

Tutti gli altri elementi analizzati, così come ad ottobre, sono risultati sempre al di sopra dei propri limiti di rilevabilità. **Arsenico**, **bario**, **vanadio** e **silicio** hanno mostrato anche in questo survey la consueta bassa variabilità nella distribuzione delle concentrazioni e i rispettivi valori medi $(1,65\pm0,15~\mu g~l^{-1};~7,50\pm0,30~\mu g~l^{-1};~1,11\pm0,10~\mu g~l^{-1};~0,14\pm0,03~m g~l^{-1})$ sono risultati molto simili a quelli della crociera di ottobre. Anche i valori massimi non si discostano molto da quelli misurati nel survey precedente e sono stati raggiunti rispettivamente in superficie $(1,96~\mu g~l^{-1})$, al fondo della BO2 $(8,13~\mu g~l^{-1})$, a 40 m della stazione BO6 $(1,28~\mu g~l^{-1})$ e, infine, al fondo della BO1 $(0,19~m g~l^{-1})$. Anche in questo survey bario e silicio hanno evidenziato i valori massimi delle concentrazioni alle quote di fondo.

Tab. 3-IV – Metalli pesanti (µg/l; Si in mg/l) determinati nell'ottobre e nel novembre 2018.

	Ottobre 2018													
Stazione	Al	As	Ba	Cd	Cr	Fe	Hg	Ni	Pb	Cu	V	Zn	In	Si
BO1 sup	4,06	1,56	7,72	< 0,1	0,19	< 5	< 0,1	0,40	< 0,1	0,14	0,96	9,00	< 0,1	0,14
BO1 20 m	2,84	1,67	7,66	< 0,1	0,22	< 5	< 0,1	0,24	< 0,1	< 0,1	0,92	0,50	< 0,1	0,12
BO1 40 m	2,29	1,62	8,30	< 0,1	0,28	< 5	< 0,1	0,27	0,12	< 0,1	1,01	6,35	< 0,1	0,13
BO1 fondo	2,30	1,95	8,72	< 0,1	0,17	< 5	< 0,1	0,23	< 0,1	< 0,1	0,83	< 0,1	< 0,1	0,21
BO2 sup	1,64	1,69	7,40	< 0,1	0,26	< 5	< 0,1	0,24	< 0,1	< 0,1	0,85	4,70	< 0,1	0,13
BO2 20 m	4,35	1,71	7,40	< 0,1	0,26	< 5	< 0,1	0,23	< 0,1	< 0,1	0,92	5,60	< 0,1	< 0,1
BO2 40 m	1,86	1,78	8,11	< 0,1	0,17	< 5	< 0,1	0,22	< 0,1	< 0,1	0,84	< 0,1	< 0,1	0,13
BO2 fondo	9,56	1,52	8,91	< 0,1	0,14	< 5	< 0,1	0,24	< 0,1	< 0,1	0,98	< 0,1	< 0,1	0,19
BO3 sup	1,97	1,92	7,73	< 0,1	0,13	< 5	< 0,1	0,20	< 0,1	< 0,1	0,92	0,47	< 0,1	0,11
BO3 20 m	3,18	1,77	7,28	< 0,1	0,23	< 5	< 0,1	0,25	< 0,1	< 0,1	0,87	2,80	< 0,1	0,11
BO3 40 m	3,58	1,72	8,16	< 0,1	0,19	< 5	< 0,1	0,25	< 0,1	< 0,1	0,89	23,74	< 0,1	0,13
BO3 fondo	3,85	2,02	8,63	< 0,1	0,17	< 5	< 0,1	0,21	< 0,1	< 0,1	0,89	21,05	< 0,1	0,19
BO4 sup	7,27	1,75	7,41	< 0,1	0,22	< 5	< 0,1	0,22	< 0,1	< 0,1	0,96	4,43	< 0,1	0,10
BO4 20 m	5,51	1,39	7,49	< 0,1	0,22	< 5	< 0,1	0,16	0,11	< 0,1	0,83	3,30	< 0,1	0,11
BO4 40 m	6,64	1,75	8,24	< 0,1	0,25	< 5	< 0,1	0,16	< 0,1	< 0,1	0,91	13,62	< 0,1	0,16
BO4 fondo	6,74	2,08	8,75	< 0,1	0,18	< 5	< 0,1	0,16	< 0,1	< 0,1	0,77	1,19	< 0,1	0,21
BO5 sup	9,15	1,84	7,79	< 0,1	0,25	< 5	< 0,1	0,27	< 0,1	1,37	0,86	7,76	< 0,1	0,11
BO5 20 m	7,29	1,55	7,52	< 0,1	0,25	< 5	< 0,1	0,18	< 0,1	< 0,1	0,85	5,20	< 0,1	0,11
BO5 40 m	6,83	1,85	8,25	< 0,1	0,22	< 5	< 0,1	< 0,1	< 0,1	< 0,1	0,81	6,31	< 0,1	0,15
BO5 fondo	11,58	1,75	8,98	< 0,1	0,22	< 5	< 0,1	0,46	0,25	0,12	0,91	37,16	< 0,1	0,19
BO6 sup	9,51	1,73	7,52	< 0,1	0,19	< 5	< 0,1	0,26	< 0,1	< 0,1	0,75	5,14	< 0,1	< 0,1
BO6 20 m	6,78	1,96	7,56	< 0,1	0,17	< 5	< 0,1	0,17	< 0,1	< 0,1	0,86	1,35	< 0,1	0,11
BO6 40 m	8,77	1,77	7,98	< 0,1	0,17	< 5	< 0,1	0,19	< 0,1	0,30	0,89	8,66	< 0,1	0,12
BO6 fondo	8,55	1,78	8,45	< 0,1	0,25	< 5	< 0,1	0,22	< 0,1	< 0,1	0,89	7,51	< 0,1	0,18
BO7 sup	7,69	1,77	7,42	< 0,1	0,15	< 5	< 0,1	0,33	0,22	0,31	0,75	10,22	< 0,1	0,12
BO7 20 m	7,76	1,77	7,42	< 0,1	0,12	< 5	< 0,1	0,13	< 0,1	< 0,1	0,85	3,37	< 0,1	0,13
BO7 40 m	10,55	1,57	7,81	< 0,1	0,27	< 5	< 0,1	0,23	< 0,1	< 0,1	0,82	7,34	< 0,1	0,13
BO7 fondo	8,68	1,67	8,45	< 0,1	0,13	< 5	< 0,1	0,33	0,11	< 0,1	0,78	13,87	< 0,1	0,22
BO8 sup	7,54	1,77	7,33	< 0,1	0,13	< 5	< 0,1	0,22	< 0,1	0,11	0,91	6,71	< 0,1	0,14
BO8 20 m	8,29	1,80	7,48	< 0,1	0,20	< 5	< 0,1	0,10	< 0,1	< 0,1	0,89	8,07	< 0,1	0,11
BO8 40 m	6,83	1,23	7,76	< 0,1	< 0,1	< 5	< 0,1	< 0,1	< 0,1	< 0,1	0,86	0,26	< 0,1	0,13
BO8 fondo	8,23	1,58	8,39	< 0,1	0,23	< 5	< 0,1	0,27	< 0,1	< 0,1	0,77	6,52	< 0,1	0,21

Tab. 3-IV – Continuo.

_							Noven	bre 2018	3					
Stazione	Al	As	Ba	Cd	Cr	Fe	Hg	Ni	Pb	Cu	V	Zn	In	Si
BO1 sup	1,74	1,36	7,43	< 0,1	0,17	< 5	< 0,1	< 0,1	< 0,1	0,20	1,04	5,96	< 0,1	0,12
BO1 20 m	2,11	1,68	7,45	< 0,1	0,20	< 5	< 0,1	0,16	< 0,1	< 0,1	0,90	3,67	< 0,1	< 0,1
BO1 40 m	3,02	1,51	7,61	< 0,1	0,18	< 5	< 0,1	0,31	< 0,1	< 0,1	0,96	4,96	< 0,1	< 0,1
BO1 fondo	1,85	1,77	7,84	< 0,1	0,26	< 5	< 0,1	0,12	< 0,1	< 0,1	1,07	2,06	< 0,1	0,19
BO2 sup	2,17	1,96	7,55	< 0,1	0,11	< 5	< 0,1	0,20	< 0,1	< 0,1	0,95	4,70	< 0,1	< 0,1
BO2 20 m	1,69	1,61	7,33	< 0,1	< 0,1	< 5	< 0,1	< 0,1	< 0,1	< 0,1	1,09	3,48	< 0,1	< 0,1
BO2 40 m	2,75	1,74	7,25	< 0,1	0,10	< 5	< 0,1	< 0,1	< 0,1	< 0,1	1,19	1,76	< 0,1	< 0,1
BO2 fondo	4,59	1,63	8,13	< 0,1	0,19	< 5	< 0,1	< 0,1	< 0,1	< 0,1	1,26	< 0,1	< 0,1	0,18
BO3 sup	1,23	1,40	7,54	< 0,1	0,27	< 5	< 0,1	0,33	< 0,1	< 0,1	1,05	0,11	< 0,1	< 0,1
BO3 20 m	4,41	1,53	7,45	< 0,1	0,14	< 5	< 0,1	0,20	< 0,1	< 0,1	1,07	15,05	< 0,1	< 0,1
BO3 40 m	1,16	1,42	7,10	< 0,1	0,21	< 5	< 0,1	< 0,1	< 0,1	< 0,1	1,09	3,78	< 0,1	< 0,1
BO3 fondo	1,80	1,67	7,36	< 0,1	0,11	< 5	< 0,1	0,19	< 0,1	< 0,1	1,04	15,77	< 0,1	0,15
BO4 sup	0,80	1,48	7,23	< 0,1	< 0,1	< 5	< 0,1	< 0,1	< 0,1	< 0,1	0,97	< 0,1	< 0,1	< 0,1
BO4 20 m	1,76	1,60	7,51	< 0,1	0,11	< 5	< 0,1	< 0,1	< 0,1	< 0,1	1,09	< 0,1	< 0,1	< 0,1
BO4 40 m	1,02	1,57	7,55	< 0,1	< 0,1	< 5	< 0,1	< 0,1	< 0,1	< 0,1	1,08	< 0,1	< 0,1	< 0,1
BO4 fondo	1,60	1,84	8,00	< 0,1	< 0,1	< 5	< 0,1	< 0,1	< 0,1	< 0,1	1,16	1,77	< 0,1	0,14
BO5 sup	2,16	1,68	7,18	< 0,1	< 0,1	< 5	< 0,1	0,71	< 0,1	< 0,1	1,07	6,82	< 0,1	0,12
BO5 20 m	0,55	1,75	7,46	< 0,1	< 0,1	< 5	< 0,1	< 0,1	< 0,1	< 0,1	1,03	< 0,1	< 0,1	0,11
BO5 40 m	1,35	1,71	7,13	< 0,1	< 0,1	< 5	< 0,1	< 0,1	< 0,1	< 0,1	1,20	< 0,1	< 0,1	0,11
BO5 fondo	4,67	1,58	7,95	< 0,1	0,15	< 5	< 0,1	< 0,1	< 0,1	< 0,1	1,13	18,05	< 0,1	0,17
BO6 sup	2,60	1,74	7,40	< 0,1	< 0,1	< 5	< 0,1	< 0,1	< 0,1	< 0,1	1,15	7,31	< 0,1	0,11
BO6 20 m	1,72	1,56	7,21	< 0,1	0,10	< 5	< 0,1	< 0,1	< 0,1	< 0,1	1,18	< 0,1	< 0,1	0,11
BO6 40 m	3,93	1,53	7,66	< 0,1	< 0,1	< 5	< 0,1	< 0,1	< 0,1	< 0,1	1,28	< 0,1	< 0,1	0,12
BO6 fondo	3,86	1,69	8,03	< 0,1	< 0,1	< 5	< 0,1	< 0,1	< 0,1	< 0,1	1,26	< 0,1	< 0,1	0,17
BO7 sup	1,93	1,48	7,00	< 0,1	0,14	< 5	< 0,1	< 0,1	< 0,1	< 0,1	1,19	< 0,1	< 0,1	< 0,1
BO7 20 m	4,28	1,68	7,38	< 0,1	< 0,1	< 5	< 0,1	< 0,1	< 0,1	< 0,1	1,13	5,46	< 0,1	0,11
BO7 40 m	5,20	1,92	7,11	< 0,1	< 0,1	< 5	< 0,1	< 0,1	< 0,1	< 0,1	1,24	< 0,1	< 0,1	< 0,1
BO7 fondo	5,47	1,85	7,47	< 0,1	< 0,1	< 5	< 0,1	< 0,1	< 0,1	< 0,1	1,12	2,61	< 0,1	0,15
BO8 sup	5,92	1,81	7,74	< 0,1	< 0,1	< 5	< 0,1	< 0,1	< 0,1	< 0,1	1,06	2,93	< 0,1	< 0,1
BO8 20 m	5,60	1,76	7,24	< 0,1	< 0,1	< 5	< 0,1	< 0,1	< 0,1	< 0,1	1,10	7,04	< 0,1	< 0,1
BO8 40 m	3,70	1,61	7,99	< 0,1	< 0,1	< 5	< 0,1	< 0,1	< 0,1	< 0,1	1,22	8,00	< 0,1	0,17
BO8 fondo	4,21	1,69	7,61	< 0,1	0,11	< 5	< 0,1	< 0,1	< 0,1	< 0,1	1,20	4,06	< 0,1	< 0,1

3.1.7. CONSIDERAZIONI E ANALISI DEI DATI SUL CICLO ANNUALE

3.1.7.1 Indagini fisiche, chimiche e biologiche

In questo capitolo vengono analizzati i risultati dei monitoraggi effettuati nell'area della piattaforma Bonaccia NW durante il 2018 nelle campagne di maggio (ENI1_2018), ottobre (ENI3_2018), novembre (ENI4_2018).

La temperatura nello strato superficiale è variata da un minimo di 18,8°C nella campagna di novembre fino a un massimo di 25,0°C registrato a maggio. La salinità, sempre in superficie, è variata da 35,4 a 38,7 psu con i minimi in maggio e i massimi a ottobre. La variabilità delle condizioni termo-aline al fondo è risultata più contenuta, con temperature comrese nel range 9,9-14,3°C e salinità fra 38,3 e 38,7 psu.

La concentrazione di materiale sospeso ha mostrato in generale una tendenza ad aumentare

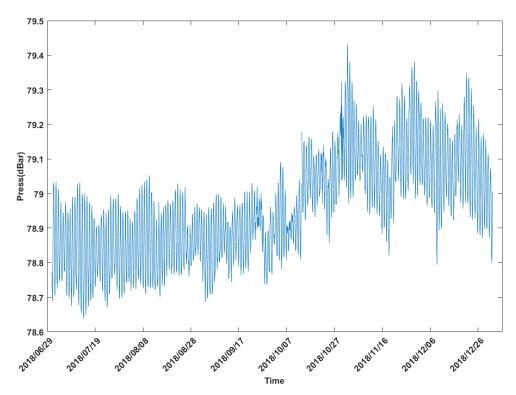
verso il fondo in tutte le situazioni ma in modo particolarmente evidente in ottobre. Per l'ossigeno disciolto i valori più elevati della percentuale di saturazione si sono osservati a novembre intorno ai 40 m, mentre i minimi si sono registrati a ottobre, verso il fondo; non sono stati tuttavia evidenziati periodi di anossia o ipossia in tutto il periodo.

L'attività fotosintetica, misurata *in situ* come fluorescenza, è stata maggiore in superficie nei mesi di maggio e di novembre, presentando anche picchi di concentrazione più spostati verso il fondo nel mese di ottobre.

La clorofilla a è risultata mediamente più elevata in primavera è minima in ottobre, confermando quanto descritto per l'Adriatico centrale da Totti $et\ al.$ (2000). La clorofilla b (caratteristica delle alghe verdi -Prasinophyceae- e delle Euglenophyta) ha avuto un massimo in maggio, mentre i massimi di abbondanza delle diatomee, come evidenziato dai valori di Chl c, sono stati osservati a novembre, periodo in cui si sviluppano generalmente le fioriture di questo gruppo nel bacino (Totti $et\ al.$, 2000).

3.1.7.2 Metalli e inquinanti organici

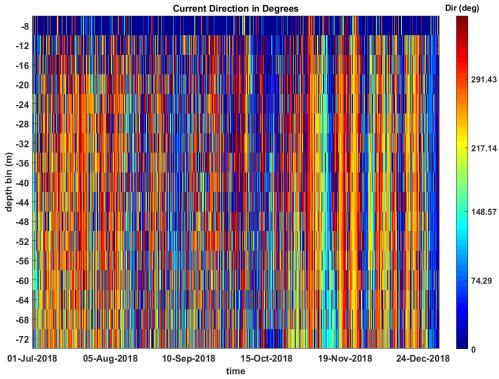
Anche per quanto riguarda gli inquinanti inorganici e organici, le osservazioni effettuate nel secondo semestre 2018 (EN3 ed ENI4) sono state confrontate con i risultati ottenuti nel monitoraggio del primo semestre 2018 (ENI1).

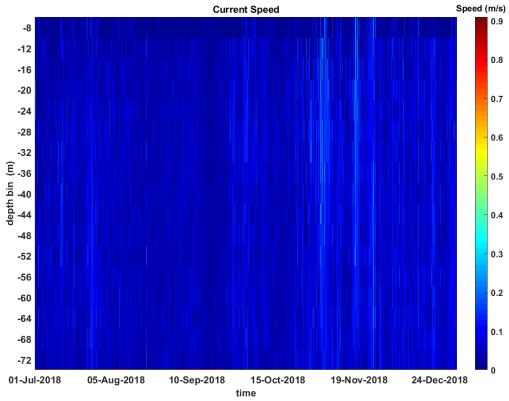

I composti organici sono sempre stati estremamente scarsi. Per i metalli pesanti sono state rilevate alcune differenze tra i due semestre. Più nello specifico, tutti gli elementi considerati hanno mostrato una netta diminuzione delle concentrazioni medie tra maggio e il semestre successivo. Unica eccezione a questo andamento è stata evidenziata dall'alluminio, il quale ha mostrato un aumento in ottobre quando, comunque, le maggiori concentrazioni sono state rilevate nelle stazioni distanti dalla piattaforma, come già sottolineato nella sezione dei risultati. Tali aumenti, tuttavia, rientrano nei range considerati naturali per questo elemento.

E' stata anche rilevata una diffusa omogeneità nella colonna d'acqua eccetto per silicio e bario, maggiormente presenti alle quote di fondo. Tale andamento per questi due elementi è probabilmente da mettere in relazione a fenomeni di risospensione evidenziati altresì anche dal netto aumento a questa quota del carico solido sospeso.

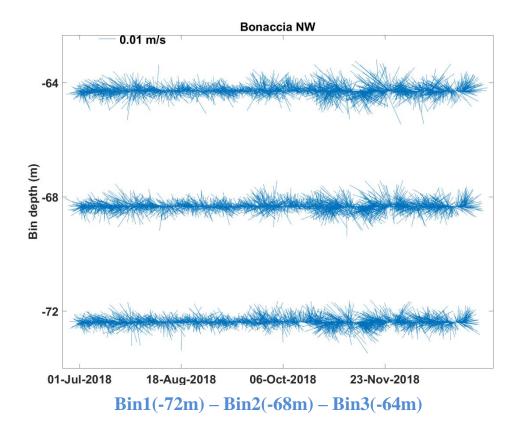
3.2. MISURE CORRENTOMETRICHE

Nella presente sezione si riportano i risultati relativi al 2° semestre 2018. Per il periodo di indagine precedente consultare Fabi *et al.*, 2016c, 2017b, 2017c, 2018 e 2019d.


Dal grafico della pressione (fig. 3.15) è emerso un buon equilibrio dell'ormeggio durante l'intero periodo di osservazione. Infatti, non sono avvenuti abbattimenti significativi del correntometro tali da poter creare problemi alle misure. La variazione di pressione nel mese di ottobre è dovuta al recupero e successiva messa in mare dell'ormeggio.


Fig. 3.15 - Pressione misurata nel periodo luglio - dicembre 2018 dal correntometro posizionato presso Bonaccia NW.

Per quanto concerne le misure corerntometriche (figg. 3.16 - 3.18), durante il periodo preso in esame si sono osservate numerose rotazioni con brevi fasi di stasi. Nei mesi di luglio e agosto la corrente ha avuto una direzione verso Nord-Ovest con rotazioni verso Sud-Ovest e velocità media non superiore a 0,1 m/s con un picco a 0,2 – 0,3 m/s durante i primi giorni di agosto. Nel periodo settembre - ottobre la direzione è stata essenzialmente settentrionale, con rotazione tra Nord-Est e Nord-Ovest e velocità tra 0,1 e 0,2 m/s. Dal mese di novembre al successivo la corrente ha assunto un carattere molto uniforme su tutta la colonna d'acqua, inizialmente scorrendo verso Sud-Est con picchi di velocità fino ai 0,4 m/s, successivamente alternando periodi con direzione Sud-Ovest e Nord-Ovest e, infine,


ruotando nuovamente verso Nord-Est negli ultimi giorni del 2018.

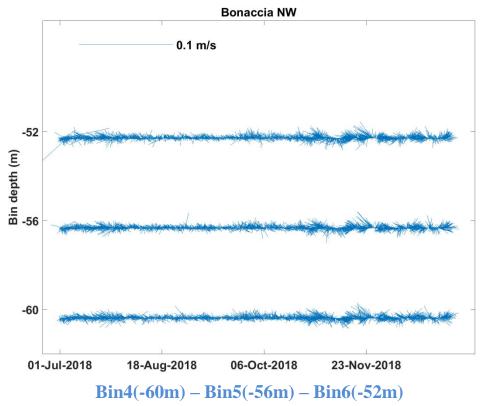


Fig. 3.16 - Contour plot della direzione della corrente lungo la colonna d'acqua ottenuti con il correntometro ADCP nel periodo luglio - dicembre 2018.

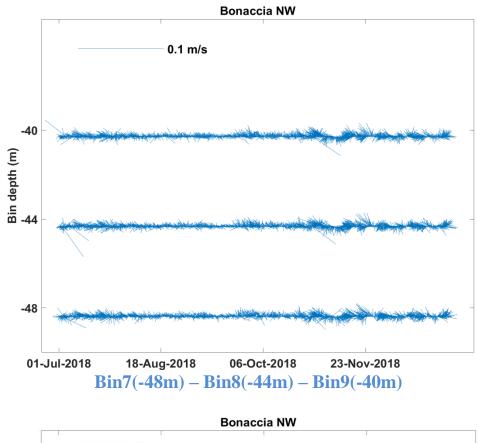


Fig. 3.17 - Contour plot della velocità della corrente lungo la colonna d'acqua ottenuti con il correntometro ADCP nel periodo luglio - dicembre 2018.

Fig. 3.18 - Stickplot delle correnti (medie giornaliere) lungo la colonna d'acqua (dal fondo verso la superficie) ottenuti con il correntometro ADCP nel periodo luglio - dicembre 2018.

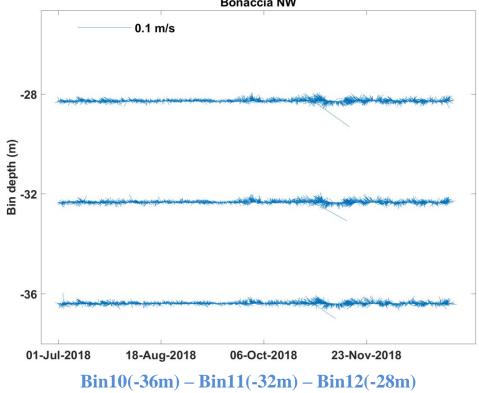


Fig. 3.18 - Continuo.

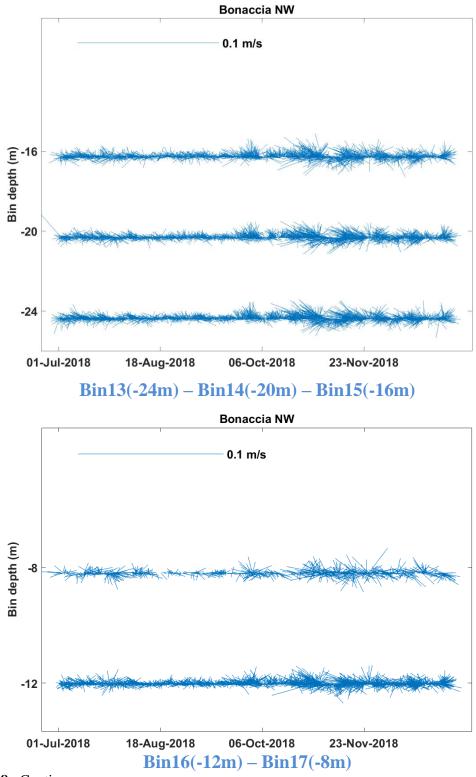
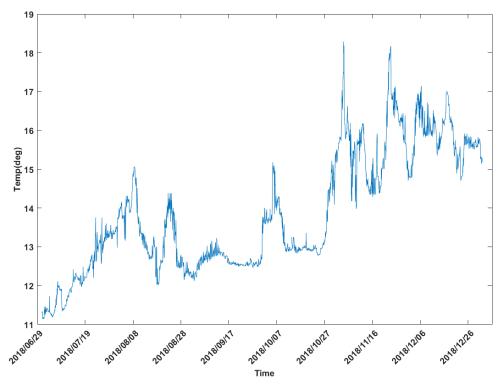



Fig. 3.18 - Continuo.

Per quanto concerne infine la temperatura misurata sul fondo dall'ADCP (fig. 3.19), durante il periodo in esame ha subito un incremento, seppure con delle oscillazioni, passando da circa 11°C misurati a luglio fino a circa 16°C a fine dicembre. Nella seconda metà di novembre si sono registrati due picchi fino a 18°C.

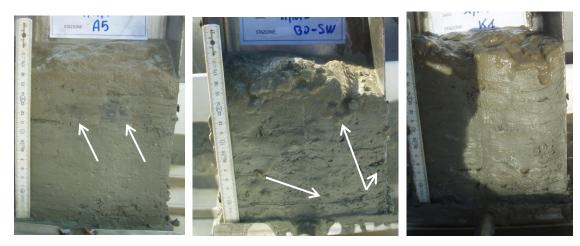


Fig. 3.19 - Andamento della temperatura registrata in prossimità del fondale dall'ADCP nel periodo luglio - dicembre 2019.

3.3. INDAGINI FISICHE E CHIMICHE DEI SEDIMENTI

3.3.1. GRANULOMETRIA

All'analisi visiva tutti i sedimenti monitorati nel 6° survey post lavori di installazione di Bonaccia NW (estate 2018) sono apparsi di colore grigio-nocciola, molto simili tra loro e inodori, con uno strato ossidato sottile di circa 0,3-05 cm come nei monitoraggi precedenti. Solo i sedimenti prelevati da A5 e BO SW hanno presentato alcune striature nerastre (fig. 3.20). Nulla di anomalo è stato evidenziato negli altri siti adiacenti alla piattaforma; unicamente in BO SW è stato rilevato abbondante biodetrito sulla parte più superficiale. Nessun campione è risultato maleodorante.

Fig. 3.20 - Estate 2018. Campioni di sedimento prelevati dai siti A5, BO SW (le frecce indicano alcune striature nerastre) e K1.

Le indagini dell'estate 2018 hanno confermato la dominanza della frazione sabbiosa che nell'area circostante la piattaforma ha raggiunto il massimo in B8 (69,23%) e il minimo in A8 (50,42%; fig. 3.21 e Tab. 3-V). Fra i controlli questa componente è apparsa maggiormente variabile (36,17-73,59%). La restante parte dei campioni era costituita in prevalenza da silt, mentre l'argilla è stata sempre al di sotto del 18% eccetto in K4.

Rispetto al pre-survey i siti A, B e BO hanno mostrato variazioni lievi, tutte inferiori al 10%. I cambiamenti maggiori sono avvenuti nei controlli K2, K3 e K4. Nei primi due casi (K2 e K3) si è verificato un aumento di sabbia rispettivamente del 17,4 e del 13,1%, in entrambi compensato da una riduzione paragonabile di silt e argilla. In K4, al contrario, la sabbia è diminuita di circa il 20% con conseguente aumento di silt e argilla.

La dominanza della sabbia era già stata segnalata durante il pre-survey. Il massimo era stato registrato in A6 (61,05%) e il minimo in K2 (56,15%). La restante parte del campione

era costituita in prevalenza da silt, che oscillava tra 24,99% (K2) e 21,86 % (A6).

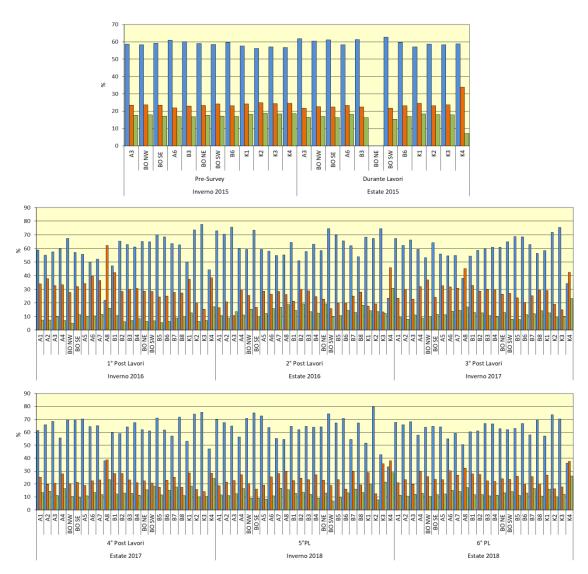


Fig. 3.21 - Ripartizione delle classi granulometriche, espresse in percentuale, nei sedimenti analizzati nell'intero periodo.

Le indagini dell'estate 2015 condotte durante i lavori di installazione avevano confermato i risultati appena descritti: nell'area circostante la piattaforma la frazione sabbiosa era ancora dominante, con un picco in BO SW (62,77%) e il minimo in A6 (58,29%). Queste percentuali erano in accordo con quanto osservato nei controlli, dove questa frazione oscillava tra 57,03% (K1) e 59,85 % (K4). La pelite era costituita in prevalenza da silt e in misura minore da argilla. La differenza tra le due componenti era comunque modesta, limitata a pochi punti percentuale. Anche per queste componenti non si rilevavano differenze rispetto ai siti di controllo.

Anche nel 1° survey post lavori rimaneva confermata la predominanza della frazione

sabbiosa che, eccetto in A8 (21,80%), era compresa tra il 47,07% (B1) e il 70,04% (B5) lungo i transetti e tra il 44,31% (K4) e il 77,60% (K3) nei controlli. La pelite era costituita in tutti i campioni soprattutto dal silt, che risultava la frazione dominante unicamente in A8 con il 62,21%. L'argilla era sempre presente in percentuali inferiori al 10%.

Nell'estate 2016 (2° post lavori) era stata rilevata un'elevata variabilità di comportamenti. La frazione sabbiosa, pur rimanendo dominante in tutti i campioni (tranne in K4) aveva mostrato sensibili cambiamenti rispetto all'inverno, aumentando in quasi tutti i siti A (in particolare in A8) e in B1 e riducendosi nelle altre stazioni del transetto B. Anche nei controlli erano avvenute variazioni discordi tra loro.

Anche nell'inverno 2017 era stata confermata in quasi tutti i campioni dei transetti la prevalenza di sabbia, che in A1, B5 e B6 rappresentava quasi il 70% del campione. Nelle restanti stazioni oscillava tra 54,26% (B1) e 66,18% (A3). La parte pelitica era ancora costituita prevalentemene da silt. I controlli K1, K2 e K3 erano anch'essi dominati dalla sabbia mentre in K4 era ancora il silt ha presentare la percentuale maggiore.

Nell'estate successiva (4° post lavori) la frazione sabbiosa esibiva percentuali intorno al 60% o superiori. Nei siti della piattaforma esse erano comprese tra il 60,95% di BO NE e il 69,39% di BO NW. Lungo i transetti le percentuali più elevate di sabbia si rilevavano in A5, B5 e B8. Per la frazione fine la componente maggiormente rappresentata era ancora una volta il silt. Particolare era risultata la composizione granulometrica del campione A8 che, come precedentemente, aveva un'elevata frazione pelitica costituita per il 38,67% da silt e per il 23,27% dall'argilla. In K2 e K3 la sabbia era rimasta superiore al 70%, in K1 era diminuita e in K4 aumentata.

Nell'inverno 2018 è stata confermata la prevalenza di sabbia ovunque eccetto in K4, caratterizzato da percentuali paragonabili delle tre frazioni. La pelite era ancora costituita più da silt che da argilla, anche se in alcuni casi la differenza era bassa e in alcuni casi trascurabile.

Nell'estate 2018 si è verificato un decremento della sabbia in 9 stazioni A e B, nei siti BO e in K2; solo in BO SE e BO SW tale decremento è stato di oltre il 10%, testimoniando che si tratta di cambiamenti molto modesti. La variazione maggiore si è verificata in K3 dove la sabbia è aumentata dal 42,71% (inverno) al 70,23% in estate a scapito soprattutto del silt.

Tab. 3-V - Composizione percentuale delle principali classi granulometriche dei sedimenti analizzati nei sei survey sinora effettuati. Le stazioni di campionamento poste in corrispondenza della piattaforma sono evidenziate in rosso. Nel Durante lavori di installazione non è stato possibile campionare il sito BO NE.

		PS			DL			1° PL			2° PL			3° PL			4° PL			5° PL			6° PL	
	Sabbia	Pe	lite	Sabbia	Pe	elite	Sabbia	Pe	lite	Sabbia	Pe	lite	Sabbia	Pe	lite	Sabbia	Pel	lite	Sabbia	Pel	lite	Sabbia	Pe	lite
_	Sabbia	Silt	Argilla																					
A1							58,90	33,91	7,18	72,88	16,38	10,73	67,22	23,40	9,38	61,40	25,15	13,45	69,74	18,64	11,62	67,66	20,93	11,41
A2							55,01	37,72	7,27	70,40	20,69	8,92	62,18	29,96	7,86	65,78	19,72	14,50	67,50	21,45	11,05	65,84	23,48	10,68
A3	58,69	23,54	17,77	61,86	21,73	16,41	57,57	32,67	9,76	75,71	10,66	13,64	66,18	22,65	11,18	68,33	20,45	11,22	64,81	22,70	12,49	68,15	19,88	11,96
A4							59,61	33,27	7,12	59,65	29,22	11,13	59,26	31,99	8,74	55,75	27,78	16,47	56,40	27,18	16,43	57,71	29,45	12,84
BO NW	58,31	23,76	17,93	60,38	22,58	17,04	67,35	27,69	4,96	59,24	25,42	15,35	53,19	36,80	10,01	69,39	20,23	10,38	70,77	20,33	8,90	63,93	25,78	10,29
BO SE	59,30	23,53	17,17	61,17	22,45	16,38	56,91	31,82	11,27	73,39	16,58	10,03	64,30	24,15	11,55	69,22	21,26	9,52	75,00	15,97	9,03	64,62	23,64	11,73
A5							55,70	34,12	10,19	59,26	28,51	12,22	55,99	32,60	11,40	70,21	18,81	10,98	72,65	19,01	8,34	64,15	23,46	12,38
A6	61,05	21,86	17,09	58,29	23,41	18,30	50,16	39,47	10,38	57,98	26,29	15,73	54,53	31,70	13,77	64,30	22,32	13,38	63,62	25,56	10,82	54,85	30,10	15,05
A7							52,06	36,38	11,56	54,86	28,35	16,79	54,67	30,78	14,55	65,18	23,08	11,74	55,15	28,13	16,72	59,13	26,79	14,08
A8							21,80	62,21	15,99	55,24	26,06	18,70	37,97	45,09	16,94	38,07	38,67	23,27	54,46	30,05	15,49	50,42	32,38	17,19
B1							47,07	42,32	10,60	64,49	21,12	14,39	54,26	32,74	12,99	59,65	28,00	12,35	64,61	22,73	12,66	60,44	27,83	11,73
B2							65,41	28,40	6,19	50,98	29,90	19,12	58,66	28,63	12,71	58,86	28,19	12,95	62,03	24,59	13,38	60,96	27,26	11,78
В3	60,11	23,06	16,83	61,26	22,40	16,34	62,89	29,96	7,15	57,62	28,80	13,58	59,87	29,59	10,55	64,20	23,15	12,65	64,57	23,45	11,97	66,79	22,43	10,77
B4							60,96	30,61	8,43	63,11	24,42	12,47	60,82	29,43	9,75	67,50	21,11	11,39	63,83	27,14	9,03	66,56	22,02	11,42
BO NE	59,00	23,36	17,64				65,14	28,56	6,30	58,26	22,64	19,09	60,79	26,41	12,81	62,10	22,37	15,53	64,07	22,88	13,05	62,78	24,06	13,16
BO SW	58,56	24,29	17,15	62,77	21,82	15,41	64,89	28,36	6,75	74,60	15,72	9,68	64,91	27,03	8,06	60,95	20,66	18,40	74,25	18,94	6,81	62,08	23,67	14,25
B5							70,04	24,38	5,59	69,87	19,53	10,60	68,62	23,59	7,79	70,99	17,49	11,52	67,21	23,34	9,45	63,06	25,91	11,03
В6	59,80	23,24	16,96	59,78	23,25	16,97	68,52	25,04	6,44	65,55	20,10	14,34	68,43	20,25	11,33	61,82	22,97	15,20	70,64	16,02	13,33	66,82	20,10	13,07
В7							63,58	27,64	8,78	61,98	25,04	12,98	62,94	25,11	11,95	57,08	25,29	17,63	54,49	29,37	16,14	57,90	25,65	16,45
В8							62,68	27,30	10,02	53,91	27,83	18,26	56,44	29,22	14,33	71,61	17,36	11,03	67,10	19,37	13,53	69,23	20,14	10,63
K1	57,62	24,15	18,23	57,03	24,49	18,48	50,01	37,27	12,72	68,17	17,67	14,16	58,35	28,94	12,71	53,00	28,51	18,48	51,73	28,69	19,59	57,11	26,93	15,96
K2	56,15	24,99	18,86	58,72	23,17	18,11	73,57	20,06	6,37	67,24	19,14	13,61	71,75	18,86	9,38	73,98	15,93	10,09	79,78	12,48	7,73	73,59	16,19	10,22
K3	57,14	24,42	18,44	58,39	23,71	17,90	77,60	15,44	6,96	74,48	13,34	12,19	75,50	14,83	9,67	75,49	14,19	10,32	42,71	35,70	21,59	70,23	17,64	12,13
K4	56,80	24,62	18,58	59,85	22,88	17,27	44,31	38,51	17,18	23,46	45,73	30,82	34,21	42,53	23,26	47,23	28,42	24,35	33,24	37,95	28,81	36,17	37,58	26,25

3.3.2. IDROCARBURI POLICICLICI AROMATICI

Nell'estate 2018 gli IPA sono stati rinvenuti in maniera sporadica, tanto che nessuno è stato quantificato in tutte le stazioni (Tab. 3-VI). Il fenantrene è stato il composto più diffuso, essendo stato rilevato in 19 stazioni su 24, seguito da naftalene e antracene presenti in 12 siti, ma tutti in concentrazioni prossime al limite strumentale.

Gli altri composti sono risultati presenti al massimo in 10 siti. Acenaftene e acenaftilene non sono stati rilevati come già nell'inverno 2018.

Gli IPA totali hanno presentato tenori irrisori, come in tutto il periodo di indagine precedente, tanto che anche le differenze sono da ritenersi trascurabili (fig. 3.22).

Solo nel 3° survey post lavori di installazione condotto nell'inverno 2017 si era verificato un incremento di questi composti determinato essenzialmente dal naftalene che, in molte stazioni tra cui tre controlli, aveva superato il suo LCB indicato da ICRAM-APAT (2007) e dal DM 173/2016. Comunque, la concentrazione maggiore del naftalene era stata registrata in K4, così come quella degli IPA totali, escludendo che la sua origine fosse esclusivamente correlata alla presenza della piattaforma. Nel complesso gli IPA totali erano rimasti molto al di sotto dell'LCB anche in quel survey che è rimasto un caso isolato. Anche nell'ultimo monitoraggio, infatti, i tenori sono rimasti molto bassi e non indicano in alcun modo una situazione di alterazione dell'area circostante Bonaccia NW.

Tab. 3-VI - Concentrazioni degli Idrocarburi Policiclici Aromatici (μg/kg s.s.) nei sedimenti prelevati dal pre-survey al 6° monitoraggio post lavori. Le stazioni poste in corrispondenza della piattaforma sono evidenziate in rosso. Ove disponibili sono anche riportati gli LCB e i valori chimici cautelativi per le sostanze Pericolose Prioritarie (PP)* indicati da ICRAM-APAT (2007) e le concentrazioni riportate nella tabella 2.5 del DM 173/2016. LQ = limite di rilevabilità strumentale (0,2 μg/kg). Durante i lavori di installazione non è stato possibile campionare il sito BO NE. In neretto le concentrazioni superiori ai limiti di riferimento.

	DM						Pre-su	rvey (i	nverno	2015)]	Durant	e lavoi	i (estat	e 2015)			
	173/2016	LCB/PP	A3	BO NW	BO SE	A6	В3	BO NE	BO SW	В6	K1	K2	К3	K4	A3	BO NW	BO SE	A6	В3	BO NE	BO SW	В6	K1	K2	К3	K4
Acenaftene		7	<lq< td=""><td><lq< td=""><td></td><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td></td><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td></td><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td></td><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td></td><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td></td><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td></td><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td></td><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td></td><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td></td><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td></td><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td></td><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td></td><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td></td><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td></td><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td></td><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td></td><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>		<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""></lq<></td></lq<>	<lq< td=""></lq<>
Acenaftilene			<lq< td=""><td><lq< td=""><td></td><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td></td><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td></td><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td></td><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td></td><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td></td><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td></td><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td></td><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td></td><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td></td><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td></td><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td></td><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td></td><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td></td><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td></td><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td></td><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td></td><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>		<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""></lq<></td></lq<>	<lq< td=""></lq<>
Antracene	24	47 (24)*	2,2	2,3	1,6	1,7	1,9	1,7	1,5	2,1	2,1	3,2	2,3	2,6	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td></td><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td></td><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td></td><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td></td><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td></td><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>		<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""></lq<></td></lq<>	<lq< td=""></lq<>
Benzo (a) antracene	75	75	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td>1,4</td><td><lq< td=""><td><lq< td=""><td>1,4</td><td>0,5</td><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td></td><td>1,2</td><td>0,7</td><td><lq< td=""><td><lq< td=""><td><lq< td=""><td>0,8</td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td>1,4</td><td><lq< td=""><td><lq< td=""><td>1,4</td><td>0,5</td><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td></td><td>1,2</td><td>0,7</td><td><lq< td=""><td><lq< td=""><td><lq< td=""><td>0,8</td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td>1,4</td><td><lq< td=""><td><lq< td=""><td>1,4</td><td>0,5</td><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td></td><td>1,2</td><td>0,7</td><td><lq< td=""><td><lq< td=""><td><lq< td=""><td>0,8</td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td>1,4</td><td><lq< td=""><td><lq< td=""><td>1,4</td><td>0,5</td><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td></td><td>1,2</td><td>0,7</td><td><lq< td=""><td><lq< td=""><td><lq< td=""><td>0,8</td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td>1,4</td><td><lq< td=""><td><lq< td=""><td>1,4</td><td>0,5</td><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td></td><td>1,2</td><td>0,7</td><td><lq< td=""><td><lq< td=""><td><lq< td=""><td>0,8</td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td>1,4</td><td><lq< td=""><td><lq< td=""><td>1,4</td><td>0,5</td><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td></td><td>1,2</td><td>0,7</td><td><lq< td=""><td><lq< td=""><td><lq< td=""><td>0,8</td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td>1,4</td><td><lq< td=""><td><lq< td=""><td>1,4</td><td>0,5</td><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td></td><td>1,2</td><td>0,7</td><td><lq< td=""><td><lq< td=""><td><lq< td=""><td>0,8</td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td>1,4</td><td><lq< td=""><td><lq< td=""><td>1,4</td><td>0,5</td><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td></td><td>1,2</td><td>0,7</td><td><lq< td=""><td><lq< td=""><td><lq< td=""><td>0,8</td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	1,4	<lq< td=""><td><lq< td=""><td>1,4</td><td>0,5</td><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td></td><td>1,2</td><td>0,7</td><td><lq< td=""><td><lq< td=""><td><lq< td=""><td>0,8</td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td>1,4</td><td>0,5</td><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td></td><td>1,2</td><td>0,7</td><td><lq< td=""><td><lq< td=""><td><lq< td=""><td>0,8</td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	1,4	0,5	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td></td><td>1,2</td><td>0,7</td><td><lq< td=""><td><lq< td=""><td><lq< td=""><td>0,8</td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td></td><td>1,2</td><td>0,7</td><td><lq< td=""><td><lq< td=""><td><lq< td=""><td>0,8</td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td></td><td>1,2</td><td>0,7</td><td><lq< td=""><td><lq< td=""><td><lq< td=""><td>0,8</td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td></td><td>1,2</td><td>0,7</td><td><lq< td=""><td><lq< td=""><td><lq< td=""><td>0,8</td></lq<></td></lq<></td></lq<></td></lq<>		1,2	0,7	<lq< td=""><td><lq< td=""><td><lq< td=""><td>0,8</td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td>0,8</td></lq<></td></lq<>	<lq< td=""><td>0,8</td></lq<>	0,8
Benzo (a) pirene	30	80 (30)*	<lq< td=""><td><lq< td=""><td>0,7</td><td>0,5</td><td>1,0</td><td>1,0</td><td>0,4</td><td></td><td>1,3</td><td>1,0</td><td>1,0</td><td>0,6</td><td><lq< td=""><td>1,0</td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td>0,7</td><td>0,5</td><td>1,0</td><td>1,0</td><td>0,4</td><td></td><td>1,3</td><td>1,0</td><td>1,0</td><td>0,6</td><td><lq< td=""><td>1,0</td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td>0,7</td><td>0,5</td><td>1,0</td><td>1,0</td><td>0,4</td><td></td><td>1,3</td><td>1,0</td><td>1,0</td><td>0,6</td><td><lq< td=""><td>1,0</td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td>0,7</td><td>0,5</td><td>1,0</td><td>1,0</td><td>0,4</td><td></td><td>1,3</td><td>1,0</td><td>1,0</td><td>0,6</td><td><lq< td=""><td>1,0</td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td>0,7</td><td>0,5</td><td>1,0</td><td>1,0</td><td>0,4</td><td></td><td>1,3</td><td>1,0</td><td>1,0</td><td>0,6</td><td><lq< td=""><td>1,0</td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td>0,7</td><td>0,5</td><td>1,0</td><td>1,0</td><td>0,4</td><td></td><td>1,3</td><td>1,0</td><td>1,0</td><td>0,6</td><td><lq< td=""><td>1,0</td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td>0,7</td><td>0,5</td><td>1,0</td><td>1,0</td><td>0,4</td><td></td><td>1,3</td><td>1,0</td><td>1,0</td><td>0,6</td><td><lq< td=""><td>1,0</td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td>0,7</td><td>0,5</td><td>1,0</td><td>1,0</td><td>0,4</td><td></td><td>1,3</td><td>1,0</td><td>1,0</td><td>0,6</td><td><lq< td=""><td>1,0</td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td>0,7</td><td>0,5</td><td>1,0</td><td>1,0</td><td>0,4</td><td></td><td>1,3</td><td>1,0</td><td>1,0</td><td>0,6</td><td><lq< td=""><td>1,0</td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td>0,7</td><td>0,5</td><td>1,0</td><td>1,0</td><td>0,4</td><td></td><td>1,3</td><td>1,0</td><td>1,0</td><td>0,6</td><td><lq< td=""><td>1,0</td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td>0,7</td><td>0,5</td><td>1,0</td><td>1,0</td><td>0,4</td><td></td><td>1,3</td><td>1,0</td><td>1,0</td><td>0,6</td><td><lq< td=""><td>1,0</td></lq<></td></lq<></td></lq<>	<lq< td=""><td>0,7</td><td>0,5</td><td>1,0</td><td>1,0</td><td>0,4</td><td></td><td>1,3</td><td>1,0</td><td>1,0</td><td>0,6</td><td><lq< td=""><td>1,0</td></lq<></td></lq<>	0,7	0,5	1,0	1,0	0,4		1,3	1,0	1,0	0,6	<lq< td=""><td>1,0</td></lq<>	1,0
Benzo (b) fluorantene	40	(40)*	3,1	4,1	2,2	3,4	2,8	4,7	4,5	2,8	4,8	1,4	<lq< td=""><td>9,1</td><td>1,9</td><td>1,9</td><td>3,1</td><td>3,6</td><td>2,2</td><td></td><td>3,6</td><td>3,6</td><td>3,7</td><td>2,2</td><td>1,0</td><td>4,3</td></lq<>	9,1	1,9	1,9	3,1	3,6	2,2		3,6	3,6	3,7	2,2	1,0	4,3
Benzo (g, h,i) perilene	55	(55)*	2,6	3,3	2,5	2,9	2,9	3,0	2,7	2,8	4,5	1,8	1,5	5,4	2,0	1,3	2,3	2,2	1,7		2,4	2,4	2,8	1,7	1,3	2,8
Benzo (k) fluorantene	20		1,6	2,1	1,5	1,8	1,7	2,0	2,6	1,7	2,3	1,5	1,1	3,4	1,8	1,0	2,1	1,5	2,0		2,0	2,1	3,4	2,3	0,6	3,0
Crisene	108	108	1,1	1,2		1,3	1,0	1,3	1,3		2,4	<lq< td=""><td><lq< td=""><td>3,0</td><td>0,5</td><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td></td><td>1,4</td><td>0,8</td><td><lq< td=""><td><lq< td=""><td><lq< td=""><td>0,9</td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td>3,0</td><td>0,5</td><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td></td><td>1,4</td><td>0,8</td><td><lq< td=""><td><lq< td=""><td><lq< td=""><td>0,9</td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	3,0	0,5	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td></td><td>1,4</td><td>0,8</td><td><lq< td=""><td><lq< td=""><td><lq< td=""><td>0,9</td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td></td><td>1,4</td><td>0,8</td><td><lq< td=""><td><lq< td=""><td><lq< td=""><td>0,9</td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td></td><td>1,4</td><td>0,8</td><td><lq< td=""><td><lq< td=""><td><lq< td=""><td>0,9</td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td></td><td>1,4</td><td>0,8</td><td><lq< td=""><td><lq< td=""><td><lq< td=""><td>0,9</td></lq<></td></lq<></td></lq<></td></lq<>		1,4	0,8	<lq< td=""><td><lq< td=""><td><lq< td=""><td>0,9</td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td>0,9</td></lq<></td></lq<>	<lq< td=""><td>0,9</td></lq<>	0,9
Dibenzo (a, h) antracene		6	<lq< td=""><td><lq< td=""><td></td><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td></td><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td></td><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td></td><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td></td><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td></td><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td></td><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td></td><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td></td><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td></td><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td></td><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td></td><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td></td><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td></td><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td></td><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td></td><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td></td><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>		<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""></lq<></td></lq<>	<lq< td=""></lq<>
Fenantrene	87	87	1,0	<lq< td=""><td><lq< td=""><td>1,0</td><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td>1,8</td><td>1,0</td><td><lq< td=""><td>2,2</td><td>1,1</td><td>1,1</td><td><lq< td=""><td><lq< td=""><td><lq< td=""><td></td><td>1,5</td><td>1,3</td><td>1,6</td><td><lq< td=""><td><lq< td=""><td>1,7</td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td>1,0</td><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td>1,8</td><td>1,0</td><td><lq< td=""><td>2,2</td><td>1,1</td><td>1,1</td><td><lq< td=""><td><lq< td=""><td><lq< td=""><td></td><td>1,5</td><td>1,3</td><td>1,6</td><td><lq< td=""><td><lq< td=""><td>1,7</td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	1,0	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td>1,8</td><td>1,0</td><td><lq< td=""><td>2,2</td><td>1,1</td><td>1,1</td><td><lq< td=""><td><lq< td=""><td><lq< td=""><td></td><td>1,5</td><td>1,3</td><td>1,6</td><td><lq< td=""><td><lq< td=""><td>1,7</td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td>1,8</td><td>1,0</td><td><lq< td=""><td>2,2</td><td>1,1</td><td>1,1</td><td><lq< td=""><td><lq< td=""><td><lq< td=""><td></td><td>1,5</td><td>1,3</td><td>1,6</td><td><lq< td=""><td><lq< td=""><td>1,7</td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td>1,8</td><td>1,0</td><td><lq< td=""><td>2,2</td><td>1,1</td><td>1,1</td><td><lq< td=""><td><lq< td=""><td><lq< td=""><td></td><td>1,5</td><td>1,3</td><td>1,6</td><td><lq< td=""><td><lq< td=""><td>1,7</td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td>1,8</td><td>1,0</td><td><lq< td=""><td>2,2</td><td>1,1</td><td>1,1</td><td><lq< td=""><td><lq< td=""><td><lq< td=""><td></td><td>1,5</td><td>1,3</td><td>1,6</td><td><lq< td=""><td><lq< td=""><td>1,7</td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	1,8	1,0	<lq< td=""><td>2,2</td><td>1,1</td><td>1,1</td><td><lq< td=""><td><lq< td=""><td><lq< td=""><td></td><td>1,5</td><td>1,3</td><td>1,6</td><td><lq< td=""><td><lq< td=""><td>1,7</td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	2,2	1,1	1,1	<lq< td=""><td><lq< td=""><td><lq< td=""><td></td><td>1,5</td><td>1,3</td><td>1,6</td><td><lq< td=""><td><lq< td=""><td>1,7</td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td></td><td>1,5</td><td>1,3</td><td>1,6</td><td><lq< td=""><td><lq< td=""><td>1,7</td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td></td><td>1,5</td><td>1,3</td><td>1,6</td><td><lq< td=""><td><lq< td=""><td>1,7</td></lq<></td></lq<></td></lq<>		1,5	1,3	1,6	<lq< td=""><td><lq< td=""><td>1,7</td></lq<></td></lq<>	<lq< td=""><td>1,7</td></lq<>	1,7
Fluorantene	110	113	1,3	1,5	1,1	1,4	1,3	1,8	1,6	1,2	3,0	<lq< td=""><td><lq< td=""><td>3,2</td><td>0,9</td><td>0,8</td><td><lq< td=""><td>1,1</td><td><lq< td=""><td></td><td>3,4</td><td>1,3</td><td>1,5</td><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td>3,2</td><td>0,9</td><td>0,8</td><td><lq< td=""><td>1,1</td><td><lq< td=""><td></td><td>3,4</td><td>1,3</td><td>1,5</td><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	3,2	0,9	0,8	<lq< td=""><td>1,1</td><td><lq< td=""><td></td><td>3,4</td><td>1,3</td><td>1,5</td><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	1,1	<lq< td=""><td></td><td>3,4</td><td>1,3</td><td>1,5</td><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<>		3,4	1,3	1,5	<lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""></lq<></td></lq<>	<lq< td=""></lq<>
Fluorene	21	21	<lq< td=""><td><lq< td=""><td></td><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td></td><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td></td><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td></td><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td></td><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td></td><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td></td><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td></td><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td></td><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td></td><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td></td><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td></td><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td></td><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td></td><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td></td><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td></td><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td></td><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>		<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""></lq<></td></lq<>	<lq< td=""></lq<>
Indeno (1,2,3 - c, d) pirene	70	(70)*	3,4	3,4	2,7	3,7	3,3	3,3	3,2	2,8	4,6	1,9	1,0	6,8	2,9	2,0	3,6	3,3	2,6		3,2	3,6	4,5	2,8	1,4	4,5
Naftalene	35	35	<lq< td=""><td>1,9</td><td>1,4</td><td></td><td></td><td>1,5</td><td>1,7</td><td>1,7</td><td>1,5</td><td>1,3</td><td></td><td>1,9</td><td><lq< td=""><td>1,3</td><td>1,4</td><td><lq< td=""><td><lq< td=""><td></td><td>1,6</td><td>1,3</td><td>1,2</td><td>1,5</td><td><lq< td=""><td>1,6</td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	1,9	1,4			1,5	1,7	1,7	1,5	1,3		1,9	<lq< td=""><td>1,3</td><td>1,4</td><td><lq< td=""><td><lq< td=""><td></td><td>1,6</td><td>1,3</td><td>1,2</td><td>1,5</td><td><lq< td=""><td>1,6</td></lq<></td></lq<></td></lq<></td></lq<>	1,3	1,4	<lq< td=""><td><lq< td=""><td></td><td>1,6</td><td>1,3</td><td>1,2</td><td>1,5</td><td><lq< td=""><td>1,6</td></lq<></td></lq<></td></lq<>	<lq< td=""><td></td><td>1,6</td><td>1,3</td><td>1,2</td><td>1,5</td><td><lq< td=""><td>1,6</td></lq<></td></lq<>		1,6	1,3	1,2	1,5	<lq< td=""><td>1,6</td></lq<>	1,6
Pirene	153	153	1,4	1,7	1,3	1,5	1,3	1,8	1,7	1,3	3,1	<lq< td=""><td><lq< td=""><td>3,0</td><td>0,7</td><td>0,8</td><td><lq< td=""><td>0,8</td><td><lq< td=""><td></td><td>2,4</td><td>1,0</td><td>1,2</td><td><lq< td=""><td><lq< td=""><td>1,2</td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td>3,0</td><td>0,7</td><td>0,8</td><td><lq< td=""><td>0,8</td><td><lq< td=""><td></td><td>2,4</td><td>1,0</td><td>1,2</td><td><lq< td=""><td><lq< td=""><td>1,2</td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	3,0	0,7	0,8	<lq< td=""><td>0,8</td><td><lq< td=""><td></td><td>2,4</td><td>1,0</td><td>1,2</td><td><lq< td=""><td><lq< td=""><td>1,2</td></lq<></td></lq<></td></lq<></td></lq<>	0,8	<lq< td=""><td></td><td>2,4</td><td>1,0</td><td>1,2</td><td><lq< td=""><td><lq< td=""><td>1,2</td></lq<></td></lq<></td></lq<>		2,4	1,0	1,2	<lq< td=""><td><lq< td=""><td>1,2</td></lq<></td></lq<>	<lq< td=""><td>1,2</td></lq<>	1,2
Totale	900	900	17,7	21,5	14,3	18,7	16,3	21,1	20,8	16,4	31,5	12,1	5,9	42,0	12,9	10,9	13,4	13,3	8,9		23,9	19,0	20,8	11,2	4,3	21,9

Tab. 3-VI - Continuo.

	DM	I CD/DD										1° sur	vey po	st lav	ori (in	verno	2016)									
_	173/2016	LCB/PP	A1	A2	A3	A4	BO NW	BO SE	A5	A6	A7	A8	B1	B2	В3	B4	BO NE	BO SW	B5	B6	B7	B8	K1	K2	К3	K4
Acenaftene		7	2,0	1,9	1,9	2,4	1,7	1,8	2,0	1,5	2,8	2,7	2,6	2,3	2,5	2,2	<lq< td=""><td><lq< td=""><td>1,8</td><td>1,3</td><td>1,9</td><td>1,7</td><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td>1,8</td><td>1,3</td><td>1,9</td><td>1,7</td><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	1,8	1,3	1,9	1,7	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""></lq<></td></lq<>	<lq< td=""></lq<>
Acenaftilene			<lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""></lq<></td></lq<>	<lq< td=""></lq<>
Antracene	24	47 (24)*	3,8	3,3	3,9	5,1	3,7	5,0	5,0	5,2	5,4	7,3	4,1	3,3	4,4	4,0	<lq< td=""><td><lq< td=""><td>10,0</td><td>3,5</td><td>4,6</td><td>5,5</td><td><LQ</td><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td>10,0</td><td>3,5</td><td>4,6</td><td>5,5</td><td><LQ</td><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<>	10,0	3,5	4,6	5,5	<LQ	<lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""></lq<></td></lq<>	<lq< td=""></lq<>
Benzo (a) antracene	75	75	<lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""></lq<></td></lq<>	<lq< td=""></lq<>
Benzo (a) pirene	30	80 (30)*	<lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""></lq<></td></lq<>	<lq< td=""></lq<>
Benzo (b) fluorantene	40	(40)*	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td>10,0</td><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><LQ</td><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td>10,0</td><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><LQ</td><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td>10,0</td><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><LQ</td><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td>10,0</td><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><LQ</td><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td>10,0</td><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><LQ</td><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td>10,0</td><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><LQ</td><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td>10,0</td><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><LQ</td><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td>10,0</td><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><LQ</td><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td>10,0</td><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><LQ</td><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	10,0	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><LQ</td><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><LQ</td><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><LQ</td><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><LQ</td><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><LQ</td><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><LQ</td><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><LQ</td><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><LQ</td><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><LQ</td><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<LQ	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""></lq<></td></lq<>	<lq< td=""></lq<>
Benzo (g, h,i) perilene	55	(55)*	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td>12,0</td><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td>12,0</td><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td>12,0</td><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td>12,0</td><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td>12,0</td><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td>12,0</td><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td>12,0</td><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td>12,0</td><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td>12,0</td><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	12,0	<lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""></lq<></td></lq<>	<lq< td=""></lq<>
Benzo (k) fluorantene	20		<lq< td=""><td><lq< td=""><td>11,0</td><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td>11,0</td><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td>11,0</td><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td>11,0</td><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td>11,0</td><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td>11,0</td><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td>11,0</td><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td>11,0</td><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td>11,0</td><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td>11,0</td><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td>11,0</td><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td>11,0</td><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td>11,0</td><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td>11,0</td><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	11,0	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""></lq<></td></lq<>	<lq< td=""></lq<>
Crisene	108	108	<lq< td=""><td><LQ</td><td><lq< td=""><td><lq< td=""><td><LQ</td><td><LQ</td><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<LQ	<lq< td=""><td><lq< td=""><td><LQ</td><td><LQ</td><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><LQ</td><td><LQ</td><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><LQ</td><td><LQ</td><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><LQ</td><td><LQ</td><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><LQ</td><td><LQ</td><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><LQ</td><td><LQ</td><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><LQ</td><td><LQ</td><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><LQ</td><td><LQ</td><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><LQ</td><td><LQ</td><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><LQ</td><td><LQ</td><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><LQ</td><td><LQ</td><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><LQ</td><td><LQ</td><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><LQ</td><td><LQ</td><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><LQ</td><td><LQ</td><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><LQ</td><td><LQ</td><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><LQ</td><td><LQ</td><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><LQ</td><td><LQ</td><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<>	<LQ	<LQ	<lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""></lq<></td></lq<>	<lq< td=""></lq<>
Dibenzo (a, h) antracene		6	<lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""></lq<></td></lq<>	<lq< td=""></lq<>
Fenantrene	87	87	1,2	1,0	1,2	1,6	<lq< td=""><td>1,6</td><td>2</td><td>1,6</td><td>1,9</td><td>2,2</td><td>1,2</td><td>1,0</td><td>1,2</td><td>1,1</td><td><lq< td=""><td><lq< td=""><td>2,1</td><td>1,3</td><td>1,3</td><td>1,6</td><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	1,6	2	1,6	1,9	2,2	1,2	1,0	1,2	1,1	<lq< td=""><td><lq< td=""><td>2,1</td><td>1,3</td><td>1,3</td><td>1,6</td><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td>2,1</td><td>1,3</td><td>1,3</td><td>1,6</td><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	2,1	1,3	1,3	1,6	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""></lq<></td></lq<>	<lq< td=""></lq<>
Fluorantene	110	113	2,0	1,9	2,1	2,6	2,0	3,0	2,6	2,6	3,2	3,7	2,3	1,6	2,0	2,1	<lq< td=""><td><lq< td=""><td>6,2</td><td>1,8</td><td>1,9</td><td>5,1</td><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td>6,2</td><td>1,8</td><td>1,9</td><td>5,1</td><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	6,2	1,8	1,9	5,1	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""></lq<></td></lq<>	<lq< td=""></lq<>
Fluorene	21	21	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td>1,0</td><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td>1,5</td><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td>1,0</td><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td>1,5</td><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td>1,0</td><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td>1,5</td><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td>1,0</td><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td>1,5</td><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td>1,0</td><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td>1,5</td><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td>1,0</td><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td>1,5</td><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td>1,0</td><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td>1,5</td><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td>1,0</td><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td>1,5</td><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td>1,0</td><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td>1,5</td><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	1,0	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td>1,5</td><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td>1,5</td><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td>1,5</td><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td>1,5</td><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td>1,5</td><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td>1,5</td><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	1,5	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""></lq<></td></lq<>	<lq< td=""></lq<>
Indeno(1,2,3-c,d) pirene	70	(70)*	3,0	3,9	3,7	3,1	3,9	5,1	4,4	4,7	6,0	12,0	5,4	2,6	3,8	3,5	8,6	<lq< td=""><td>9,6</td><td>3,3</td><td>3,8</td><td>6,4</td><td>7,8</td><td>5,1</td><td><lq< td=""><td>7,0</td></lq<></td></lq<>	9,6	3,3	3,8	6,4	7,8	5,1	<lq< td=""><td>7,0</td></lq<>	7,0
Naftalene	35	35	12,0	6,1	14,0	14,0	16,0	16,0	17,0	14,0	19,0	20,0	18,0	16,0	17,0	15,0	<lq< td=""><td><lq< td=""><td>18,0</td><td>14,0</td><td>15,0</td><td>19,0</td><td><lq< td=""><td><lq< td=""><td><lq< td=""><td>24,0</td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td>18,0</td><td>14,0</td><td>15,0</td><td>19,0</td><td><lq< td=""><td><lq< td=""><td><lq< td=""><td>24,0</td></lq<></td></lq<></td></lq<></td></lq<>	18,0	14,0	15,0	19,0	<lq< td=""><td><lq< td=""><td><lq< td=""><td>24,0</td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td>24,0</td></lq<></td></lq<>	<lq< td=""><td>24,0</td></lq<>	24,0
Pirene	153	153	<lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""></lq<></td></lq<>	<lq< td=""></lq<>
Totale	900	900	24,0	18,1	26,8	28,8	27,3	32,5	33,0	29,6	38,3	70,9	33,6	26,8	30,9	27,9	19,6		49,2	25,2	28,5	39,3	7,8	5,1		31,0

	DM	I CD/DD										2° su	rvey p	ost la	vori (e	state	2016)									
	173/2016	LCB/PP	A1	A2	A3	A4	BO NW	BO SE	A5	A6	A7	A8	B1	B2	В3	B4	BO NE	BO SW	B5	B6	B7	B8	K1	K2	К3	K4
Acenaftene		7	0,3	0,3	0,3	0,2	0,3	0,3	0,2	0,2	0,3	0,3	0,3	0,3	0,2	<lq< td=""><td>0,2</td><td>0,3</td><td>0,2</td><td>0,4</td><td>0,4</td><td>0,3</td><td>0,3</td><td>0,3</td><td>0,3</td><td>0,3</td></lq<>	0,2	0,3	0,2	0,4	0,4	0,3	0,3	0,3	0,3	0,3
Acenaftilene			0,5	0,5	0,5	0,4	0,4	0,5	0,5	0,5	0,5	0,5	0,4	0,5	0,4	0,4	0,5	0,5	0,5	0,5	0,5	0,6	0,4	0,5	0,5	0,5
Antracene	24	47 (24)*	0,9	0,9	0,8	0,7	0,7	0,8	0,8	0,8	0,8	0,8	0,7	0,8	0,8	0,6	0,8	0,8	0,8	0,8	0,8	0,9	0,7	0,9	0,8	0,8
Benzo (a) antracene	75	75	0,5	0,5	0,5	0,4	0,4	0,5	0,5	0,5	0,5	0,5	0,4	0,4	0,7	0,5	0,4	0,5	0,5	0,7	0,7	0,6	0,4	0,8	0,5	0,6
Benzo (a) pirene	30	80 (30)*	1,3	1,2	1,0	1,0	1,0	1,1	1,0	1,1	1,1	1,1	0,9	1,0	1,5	1,1	1,0	1,0	1,1	1,5	1,4	1,4	1,0	1,6	1,1	1,3
Benzo (b) fluorantene	40	(40)*	1,7	1,1	0,7	0,6	0,7	0,8	1,0	0,9	0,6	0,6	0,5	0,8	3,3	2,4	0,9	0,8	1,1	3,4	1,8	2,5	0,6	3,3	1,5	1,6
Benzo (g, h,i) perilene	55	(55)*	1,0	0,6	0,2	0,4	0,2	<lq< td=""><td>0,5</td><td>0,7</td><td><lq< td=""><td><lq< td=""><td><lq< td=""><td>0,4</td><td>1,4</td><td>1,0</td><td>0,3</td><td>0,4</td><td>0,4</td><td>1,7</td><td>1,5</td><td>1,4</td><td><lq< td=""><td>2,4</td><td>0,6</td><td>0,6</td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	0,5	0,7	<lq< td=""><td><lq< td=""><td><lq< td=""><td>0,4</td><td>1,4</td><td>1,0</td><td>0,3</td><td>0,4</td><td>0,4</td><td>1,7</td><td>1,5</td><td>1,4</td><td><lq< td=""><td>2,4</td><td>0,6</td><td>0,6</td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td>0,4</td><td>1,4</td><td>1,0</td><td>0,3</td><td>0,4</td><td>0,4</td><td>1,7</td><td>1,5</td><td>1,4</td><td><lq< td=""><td>2,4</td><td>0,6</td><td>0,6</td></lq<></td></lq<></td></lq<>	<lq< td=""><td>0,4</td><td>1,4</td><td>1,0</td><td>0,3</td><td>0,4</td><td>0,4</td><td>1,7</td><td>1,5</td><td>1,4</td><td><lq< td=""><td>2,4</td><td>0,6</td><td>0,6</td></lq<></td></lq<>	0,4	1,4	1,0	0,3	0,4	0,4	1,7	1,5	1,4	<lq< td=""><td>2,4</td><td>0,6</td><td>0,6</td></lq<>	2,4	0,6	0,6
Benzo (k) fluorantene	20		1,9	1,3	0,9	0,7	0,8	1,0	1,2	0,9	0,6	0,7	0,7	1,0	3,5	2,5	1,1	0,8	1,2	3,6	1,4	2,7	0,6	3,5	1,7	1,8
Crisene	108	108	0,6	0,4	0,3	0,4	0,3	0,3	0,4	0,6	0,3	0,2	0,2	0,3	1,4	1,0	0,4	0,4	0,4	1,5	1,2	0,9	0,3	1,8	0,7	0,7
Dibenzo (a, h) antracene		6	0,4	0,4	0,2	0,3	0,2	0,2	0,3	0,3	0,2	0,2	<lq< td=""><td>0,3</td><td>0,5</td><td>0,4</td><td>0,2</td><td>0,3</td><td>0,3</td><td>0,6</td><td>0,5</td><td>0,6</td><td><lq< td=""><td>0,8</td><td>0,3</td><td>0,3</td></lq<></td></lq<>	0,3	0,5	0,4	0,2	0,3	0,3	0,6	0,5	0,6	<lq< td=""><td>0,8</td><td>0,3</td><td>0,3</td></lq<>	0,8	0,3	0,3
Fenantrene	87	87	0,5	0,4	0,4	0,4	0,6	0,5	0,5	0,6	0,5	0,5	0,4	0,5	0,8	1,0	0,5	0,5	0,4	1,5	1,3	0,7	0,4	1,0	0,7	0,7
Fluorantene	110	113	1,2	1,1	1,0	1,0	1,0	1,1	1,1	1,2	1,1	1,1	0,9	1,0	1,7	1,4	1,1	1,1	1,1	1,9	1,7	1,4	1,0	1,8	1,3	1,3
Fluorene	21	21	0,4	0,4	0,4	0,3	0,4	0,4	0,4	0,4	0,4	0,4	0,3	0,4	0,3	0,3	0,4	0,4	0,4	0,6	0,6	0,5	0,3	0,4	0,3	0,4
Indeno(1,2,3-c,d) pirene	70	(70)*	1,6	1,0	0,5	0,7	0,4	0,4	0,8	1,1	0,4	0,2	0,3	0,7	2,1	1,6	0,5	0,7	0,8	2,8	2,2	2,3	0,4	3,6	1,0	0,9
Naftalene	35	35	<lq< td=""><td><lq< td=""><td>0,5</td><td>0,7</td><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td>0,5</td><td>0,7</td><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td>0,5</td><td>0,7</td><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td>0,5</td><td>0,7</td><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td>0,5</td><td>0,7</td><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td>0,5</td><td>0,7</td><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td>0,5</td><td>0,7</td><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td>0,5</td><td>0,7</td><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td>0,5</td><td>0,7</td><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td>0,5</td><td>0,7</td><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td>0,5</td><td>0,7</td><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td>0,5</td><td>0,7</td><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td>0,5</td><td>0,7</td><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td>0,5</td><td>0,7</td><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td>0,5</td><td>0,7</td><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td>0,5</td><td>0,7</td><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td>0,5</td><td>0,7</td><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	0,5	0,7	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""></lq<></td></lq<>	<lq< td=""></lq<>
Pirene	153	153	0,2	<lq< td=""><td><lq< td=""><td>0,2</td><td><lq< td=""><td>0,2</td><td>0,2</td><td>0,3</td><td>0,2</td><td><lq< td=""><td><lq< td=""><td>0,2</td><td>0,9</td><td>0,7</td><td><lq< td=""><td><lq< td=""><td>0,2</td><td>0,9</td><td>0,8</td><td>0,5</td><td><lq< td=""><td>0,7</td><td>0,4</td><td>0,4</td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td>0,2</td><td><lq< td=""><td>0,2</td><td>0,2</td><td>0,3</td><td>0,2</td><td><lq< td=""><td><lq< td=""><td>0,2</td><td>0,9</td><td>0,7</td><td><lq< td=""><td><lq< td=""><td>0,2</td><td>0,9</td><td>0,8</td><td>0,5</td><td><lq< td=""><td>0,7</td><td>0,4</td><td>0,4</td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	0,2	<lq< td=""><td>0,2</td><td>0,2</td><td>0,3</td><td>0,2</td><td><lq< td=""><td><lq< td=""><td>0,2</td><td>0,9</td><td>0,7</td><td><lq< td=""><td><lq< td=""><td>0,2</td><td>0,9</td><td>0,8</td><td>0,5</td><td><lq< td=""><td>0,7</td><td>0,4</td><td>0,4</td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	0,2	0,2	0,3	0,2	<lq< td=""><td><lq< td=""><td>0,2</td><td>0,9</td><td>0,7</td><td><lq< td=""><td><lq< td=""><td>0,2</td><td>0,9</td><td>0,8</td><td>0,5</td><td><lq< td=""><td>0,7</td><td>0,4</td><td>0,4</td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td>0,2</td><td>0,9</td><td>0,7</td><td><lq< td=""><td><lq< td=""><td>0,2</td><td>0,9</td><td>0,8</td><td>0,5</td><td><lq< td=""><td>0,7</td><td>0,4</td><td>0,4</td></lq<></td></lq<></td></lq<></td></lq<>	0,2	0,9	0,7	<lq< td=""><td><lq< td=""><td>0,2</td><td>0,9</td><td>0,8</td><td>0,5</td><td><lq< td=""><td>0,7</td><td>0,4</td><td>0,4</td></lq<></td></lq<></td></lq<>	<lq< td=""><td>0,2</td><td>0,9</td><td>0,8</td><td>0,5</td><td><lq< td=""><td>0,7</td><td>0,4</td><td>0,4</td></lq<></td></lq<>	0,2	0,9	0,8	0,5	<lq< td=""><td>0,7</td><td>0,4</td><td>0,4</td></lq<>	0,7	0,4	0,4
Totale	900	900	13,1	10,0	7,6	7,8	7,4	8,0	9,3	10,2	7,4	7,0	6,1	8,5	19,6	15,0	8,1	8,2	9,4	23,0	17,4	17,3	6,5	23,3	11,8	12,2

Tab. 3-VI - Continuo.

	DM	I CD/DD										3° sur	vey po	st lav	ori (in	verno	2017)									
_	173/2016	LCB/PP	A1	A2	A3	A4	BO NW	BO SE	A5	A6	A7	A8	B1	B2	В3	B4	BO NE	BO SW	B5	B6	B7	B8	K1	K2	К3	K4
Acenaftene		7	3,0	3,8	4,4	5,1	5,0	1,4	2,7	5,5	2,7	1,9	1,6	2,2	2,8	3,3	2,9	5,0	4,0	3,5	2,4	3,2	4,9	5,1	2,8	6,2
Acenaftilene			1,2	1,3	1,6	1,9	1,7	0,9	1,1	2,0	1,1	1,2	0,9	1,1	1,2	1,5	1,2	1,9	1,5	1,3	0,9	1,2	2,0	2,0	1,1	2,3
Antracene	24	47 (24)*	<lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""></lq<></td></lq<>	<lq< td=""></lq<>
Benzo (a) antracene	75	75	1,2	1,0	1,4	1,4	1,4	1,5	1,2	1,7	1,5	2,0	1,4	1,6	1,5	1,2	1,1	1,7	1,5	1,7	1,5	1,5	1,7	2,6	1,0	2,0
Benzo (a) pirene	30	80 (30)*	1,3	1,2	1,4	1,6	1,5	1,5	1,2	1,7	1,5	2,0	1,5	1,7	1,6	1,3	1,1	1,8	1,5	1,7	1,4	1,5	1,7	1,7	1,0	2,0
Benzo (b) fluorantene	40	(40)*	5,3	4,7	5,2	5,4	5,9	7,6	3,8	7,8	7,9	8,4	6,3	5,7	6,2	2,4	6,1	6,4	4,8	6,1	7,0	7,5	4,9	4,7	3,4	11,4
Benzo (g, h,i) perilene	55	(55)*	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td>0,7</td><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td>0,8</td><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td>0,7</td><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td>0,8</td><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td>0,7</td><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td>0,8</td><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td>0,7</td><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td>0,8</td><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td>0,7</td><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td>0,8</td><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td>0,7</td><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td>0,8</td><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td>0,7</td><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td>0,8</td><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td>0,7</td><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td>0,8</td><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	0,7	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td>0,8</td><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td>0,8</td><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td>0,8</td><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td>0,8</td><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td>0,8</td><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td>0,8</td><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td>0,8</td><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td>0,8</td><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	0,8	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""></lq<></td></lq<>	<lq< td=""></lq<>
Benzo (k) fluorantene	20		5,8	5,1	5,7	6,0	6,5	8,1	2,6	8,4	8,4	9,2	6,8	6,4	6,8	3,1	6,4	7,1	5,3	3,7	7,5	7,9	3,6	5,4	3,8	11,9
Crisene	108	108	1,4	1,2	1,3	1,3	1,4	1,9	1,5	1,9	1,9	2,0	1,6	1,4	1,5	0,6	1,5	1,5	1,4	2,2	1,7	1,8	2,0	1,1	0,8	2,7
Dibenzo (a, h) antracene		6	<lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""></lq<></td></lq<>	<lq< td=""></lq<>
Fenantrene	87	87	<lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""></lq<></td></lq<>	<lq< td=""></lq<>
Fluorantene	110	113	<lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""></lq<></td></lq<>	<lq< td=""></lq<>
Fluorene	21	21	5,0	5,3	5,7	7,2	6,3	1,8	4,3	7,5	4,6	3,8	2,7	3,7	4,7	3,8	3,9	6,5	5,8	4,9	4,2	5,2	6,5	7,8	4,4	8,1
Indeno(1,2,3-c,d) pirene	70	(70)*	1,4	1,3	1,3	1,5	1,7	2,4	1,9	2,2	2,7	2,3	2,1	1,8	1,8	<lq< td=""><td>1,8</td><td>2,0</td><td>1,3</td><td>3,1</td><td>2,2</td><td>2,6</td><td>2,1</td><td>1,1</td><td>1,0</td><td>3,2</td></lq<>	1,8	2,0	1,3	3,1	2,2	2,6	2,1	1,1	1,0	3,2
Naftalene	35	35	59,6	52,7	82,6	88,7	6,0	<lq< td=""><td></td><td>85,3</td><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td>47,5</td><td>59,2</td><td>112,7</td><td>76,3</td><td>17,7</td><td><lq< td=""><td>9,7</td><td>11,5</td><td>85,2</td><td>40,6</td><td>113,7</td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>		85,3	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td>47,5</td><td>59,2</td><td>112,7</td><td>76,3</td><td>17,7</td><td><lq< td=""><td>9,7</td><td>11,5</td><td>85,2</td><td>40,6</td><td>113,7</td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td>47,5</td><td>59,2</td><td>112,7</td><td>76,3</td><td>17,7</td><td><lq< td=""><td>9,7</td><td>11,5</td><td>85,2</td><td>40,6</td><td>113,7</td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td>47,5</td><td>59,2</td><td>112,7</td><td>76,3</td><td>17,7</td><td><lq< td=""><td>9,7</td><td>11,5</td><td>85,2</td><td>40,6</td><td>113,7</td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td>47,5</td><td>59,2</td><td>112,7</td><td>76,3</td><td>17,7</td><td><lq< td=""><td>9,7</td><td>11,5</td><td>85,2</td><td>40,6</td><td>113,7</td></lq<></td></lq<></td></lq<>	<lq< td=""><td>47,5</td><td>59,2</td><td>112,7</td><td>76,3</td><td>17,7</td><td><lq< td=""><td>9,7</td><td>11,5</td><td>85,2</td><td>40,6</td><td>113,7</td></lq<></td></lq<>	47,5	59,2	112,7	76,3	17,7	<lq< td=""><td>9,7</td><td>11,5</td><td>85,2</td><td>40,6</td><td>113,7</td></lq<>	9,7	11,5	85,2	40,6	113,7
Pirene	153	153	1,3	1,1	1,4	1,4	1,3	1,5	1,3	1,7	1,7	1,6	1,3	1,4	1,5	0,9	1,2	1,6	1,4	1,8	1,3	1,4	1,6	1,2	0,8	2,1
Totale	900	900	86,4	78,8	112,0	121,6	38,7	28,6	22,0	125,7	34,8	34,5	26,2	27,0	29,6	65,7	86,3	148,2	104,8	48,4	30,2	43,5	42,5	117,8	60,7	165,7

	DM	I CD/DD										4° su	rvey p	ost la	vori (e	state 2	2017)									
	173/2016	LCB/PP	A1	A2	A3	A4	BO NW	BO SE	A5	A6	A7	A8	B1	B2	В3	B4	BO NE	BO SW	B5	B6	B7	B8	K1	K2	К3	K4
Acenaftene		7	3,5	2,8	1,6	0,5	1,5	2,0	2,4	0,6	0,9	1,0	1,1	0,4	0,6	0,5	0,7	0,4	0,5	0,3	0,5	0,5	0,5	0,5	0,4	0,4
Acenaftilene			3,6	3,2	2,6	2,2	2,4	2,7	2,6	2,9	4,1	2,5	2,4	2,0	3,1	2,7	3,8	2,0	2,5	2,0	2,3	2,4	2,6	2,7	2,2	2,2
Antracene	24	47 (24)*	2,8	2,7	2,7	2,3	2,6	2,8	2,2	2,9	4,1	2,6	2,4	2,0	3,0	2,6	<lq< td=""><td><lq< td=""><td>2,5</td><td>2,0</td><td><lq< td=""><td>2,4</td><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td>2,5</td><td>2,0</td><td><lq< td=""><td>2,4</td><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	2,5	2,0	<lq< td=""><td>2,4</td><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	2,4	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""></lq<></td></lq<>	<lq< td=""></lq<>
Benzo (a) antracene	75	75	<lq< td=""><td><lq< td=""><td><lq< td=""><td>0,2</td><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td>0,1</td><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td>0,2</td><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td>0,1</td><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td>0,2</td><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td>0,1</td><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	0,2	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td>0,1</td><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td>0,1</td><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td>0,1</td><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td>0,1</td><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td>0,1</td><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td>0,1</td><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	0,1	<lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""></lq<></td></lq<>	<lq< td=""></lq<>
Benzo (a) pirene	30	80 (30)*	<lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""></lq<></td></lq<>	<lq< td=""></lq<>
Benzo (b) fluorantene	40	(40)*	3,9	3,3	3,7	1,4	3,0	5,1	3,0	<lq< td=""><td>5,0</td><td>8,5</td><td>6,7</td><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	5,0	8,5	6,7	<lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""></lq<></td></lq<>	<lq< td=""></lq<>
Benzo (g, h,i) perilene	55	(55)*	3,5	2,9	2,9	2,1	2,6	3,4	2,4	1,7	4,3	3,7	3,3	<lq< td=""><td><lq< td=""><td><lq< td=""><td>2,2</td><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td>1,6</td><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td>2,2</td><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td>1,6</td><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td>2,2</td><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td>1,6</td><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	2,2	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td>1,6</td><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td>1,6</td><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td>1,6</td><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td>1,6</td><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td>1,6</td><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td>1,6</td><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<>	1,6	<lq< td=""><td><lq< td=""></lq<></td></lq<>	<lq< td=""></lq<>
Benzo (k) fluorantene	20		0,2	<lq< td=""><td>0,2</td><td><lq< td=""><td><lq< td=""><td>0,5</td><td>0,3</td><td><lq< td=""><td><lq< td=""><td>2,0</td><td>1,3</td><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	0,2	<lq< td=""><td><lq< td=""><td>0,5</td><td>0,3</td><td><lq< td=""><td><lq< td=""><td>2,0</td><td>1,3</td><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td>0,5</td><td>0,3</td><td><lq< td=""><td><lq< td=""><td>2,0</td><td>1,3</td><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	0,5	0,3	<lq< td=""><td><lq< td=""><td>2,0</td><td>1,3</td><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td>2,0</td><td>1,3</td><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	2,0	1,3	<lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""></lq<></td></lq<>	<lq< td=""></lq<>
Crisene	108	108	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td>0,3</td><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td>0,7</td><td>0,4</td><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><LQ</td><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td>0,3</td><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td>0,7</td><td>0,4</td><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><LQ</td><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td>0,3</td><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td>0,7</td><td>0,4</td><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><LQ</td><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td>0,3</td><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td>0,7</td><td>0,4</td><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><LQ</td><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	0,3	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td>0,7</td><td>0,4</td><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><LQ</td><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td>0,7</td><td>0,4</td><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><LQ</td><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td>0,7</td><td>0,4</td><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><LQ</td><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td>0,7</td><td>0,4</td><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><LQ</td><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	0,7	0,4	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><LQ</td><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><LQ</td><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><LQ</td><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><LQ</td><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><LQ</td><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><LQ</td><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><LQ</td><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><LQ</td><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><LQ</td><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<>	<LQ	<lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""></lq<></td></lq<>	<lq< td=""></lq<>
Dibenzo (a, h) antracene		6	<lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""></lq<></td></lq<>	<lq< td=""></lq<>
Fenantrene	87	87	3,6	3,3	2,6	2,1	3,0	3,2	2,1	1,9	2,9	2,4	2,1	1,3	2,0	1,7	2,4	1,3	1,6	1,3	1,5	1,6	1,7	1,8	1,4	1,4
Fluorantene	110	113	3,6	3,3	3,4	2,6	3,9	3,7	2,7	2,8	4,9	3,8	3,6	2,0	3,0	2,6	3,7	2,0	2,4	1,9	2,3	2,4	2,6	2,7	2,2	2,1
Fluorene	21	21	3,6	3,0	0,5	0,3	0,6	1,0	2,2	0,5	0,3	0,2	0,2	0,4	0,2	0,2	0,6	0,4	0,4	0,4	0,4	0,2	0,6	0,5	0,5	0,2
Indeno(1,2,3-c,d) pirene	70	(70)*	2,4	1,4	1,4	0,3	1,0	2,5	1,5	<lq< td=""><td>1,7</td><td>3,5</td><td>3,0</td><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	1,7	3,5	3,0	<lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""></lq<></td></lq<>	<lq< td=""></lq<>
Naftalene	35	35	23,6	1,9	1,0	0,8	0,9	1,0	2,2	0,9	1,5	0,9	0,9	0,6	0,9	0,8	1,1	0,6	0,8	0,6	0,7	0,7	0,9	0,8	0,7	0,7
Pirene	153	153	2,1	1,9	2,1	1,4	2,4	2,2	1,7	1,4	2,8	2,5	2,3	1,0	1,5	1,3	1,8	1,0	1,2	0,9	1,1	1,2	1,3	1,3	1,0	1,0
Totale	900	900	56,4	29,8	24,9	16,0	24,2	30,1	25,5	15,6	32,5	34,2	29,6	9,7	14,2	12,4	16,4	7,6	11,9	9,3	8,9	11,4	10,1	11,9	8,4	7,9

Tab. 3-VI - Continuo.

	DM	I CD/DD										5° sur	vey po	ost lav	ori (in	verno	2018)									
	173/2016	LCB/PP	A1	A2	A3	A4	BO NW	BO SE	A5	A6	A7	A8	B 1	B2	В3	B4	BO NE	BO SW	B5	B6	B7	B8	K1	K2	К3	K4
Acenaftene		7	<lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""></lq<></td></lq<>	<lq< td=""></lq<>
Acenaftilene			<lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""></lq<></td></lq<>	<lq< td=""></lq<>
Antracene	24	47 (24)*	<lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""></lq<></td></lq<>	<lq< td=""></lq<>
Benzo (a) antracene	75	75	3	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td>3</td><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td>4</td><td><lq< td=""><td><lq< td=""><td>3</td><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td>3</td><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td>4</td><td><lq< td=""><td><lq< td=""><td>3</td><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td>3</td><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td>4</td><td><lq< td=""><td><lq< td=""><td>3</td><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td>3</td><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td>4</td><td><lq< td=""><td><lq< td=""><td>3</td><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td>3</td><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td>4</td><td><lq< td=""><td><lq< td=""><td>3</td><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td>3</td><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td>4</td><td><lq< td=""><td><lq< td=""><td>3</td><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td>3</td><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td>4</td><td><lq< td=""><td><lq< td=""><td>3</td><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td>3</td><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td>4</td><td><lq< td=""><td><lq< td=""><td>3</td><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	3	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td>4</td><td><lq< td=""><td><lq< td=""><td>3</td><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td>4</td><td><lq< td=""><td><lq< td=""><td>3</td><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td>4</td><td><lq< td=""><td><lq< td=""><td>3</td><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td>4</td><td><lq< td=""><td><lq< td=""><td>3</td><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td>4</td><td><lq< td=""><td><lq< td=""><td>3</td><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td>4</td><td><lq< td=""><td><lq< td=""><td>3</td><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td>4</td><td><lq< td=""><td><lq< td=""><td>3</td><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	4	<lq< td=""><td><lq< td=""><td>3</td><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td>3</td><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<>	3	<lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""></lq<></td></lq<>	<lq< td=""></lq<>
Benzo (a) pirene	30	80 (30)*	3	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td>3</td><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td>7</td><td><lq< td=""><td><lq< td=""><td>4</td><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td>3</td><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td>7</td><td><lq< td=""><td><lq< td=""><td>4</td><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td>3</td><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td>7</td><td><lq< td=""><td><lq< td=""><td>4</td><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td>3</td><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td>7</td><td><lq< td=""><td><lq< td=""><td>4</td><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td>3</td><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td>7</td><td><lq< td=""><td><lq< td=""><td>4</td><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td>3</td><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td>7</td><td><lq< td=""><td><lq< td=""><td>4</td><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td>3</td><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td>7</td><td><lq< td=""><td><lq< td=""><td>4</td><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td>3</td><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td>7</td><td><lq< td=""><td><lq< td=""><td>4</td><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	3	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td>7</td><td><lq< td=""><td><lq< td=""><td>4</td><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td>7</td><td><lq< td=""><td><lq< td=""><td>4</td><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td>7</td><td><lq< td=""><td><lq< td=""><td>4</td><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td>7</td><td><lq< td=""><td><lq< td=""><td>4</td><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td>7</td><td><lq< td=""><td><lq< td=""><td>4</td><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td>7</td><td><lq< td=""><td><lq< td=""><td>4</td><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td>7</td><td><lq< td=""><td><lq< td=""><td>4</td><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	7	<lq< td=""><td><lq< td=""><td>4</td><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td>4</td><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<>	4	<lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""></lq<></td></lq<>	<lq< td=""></lq<>
Benzo (b) fluorantene	40	(40)*	10	4	4	<lq< td=""><td>4</td><td>4</td><td>4</td><td>4</td><td>5</td><td>10</td><td>5</td><td>4</td><td>4</td><td>4</td><td>5</td><td>4</td><td>4</td><td>19</td><td>6</td><td>4</td><td>13</td><td>3</td><td>2</td><td>9</td></lq<>	4	4	4	4	5	10	5	4	4	4	5	4	4	19	6	4	13	3	2	9
Benzo (g, h,i) perilene	55	(55)*	6	3	2	<lq< td=""><td>3</td><td>2</td><td>2</td><td>3</td><td>4</td><td>6</td><td>3</td><td>3</td><td>3</td><td>3</td><td>3</td><td>2</td><td>2</td><td>12</td><td>4</td><td>2</td><td>8</td><td><lq< td=""><td><lq< td=""><td>5</td></lq<></td></lq<></td></lq<>	3	2	2	3	4	6	3	3	3	3	3	2	2	12	4	2	8	<lq< td=""><td><lq< td=""><td>5</td></lq<></td></lq<>	<lq< td=""><td>5</td></lq<>	5
Benzo (k) fluorantene	20		4	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td>2</td><td>4</td><td>2</td><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td>9</td><td>2</td><td><lq< td=""><td>3</td><td><lq< td=""><td><lq< td=""><td>3</td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td>2</td><td>4</td><td>2</td><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td>9</td><td>2</td><td><lq< td=""><td>3</td><td><lq< td=""><td><lq< td=""><td>3</td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td>2</td><td>4</td><td>2</td><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td>9</td><td>2</td><td><lq< td=""><td>3</td><td><lq< td=""><td><lq< td=""><td>3</td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td>2</td><td>4</td><td>2</td><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td>9</td><td>2</td><td><lq< td=""><td>3</td><td><lq< td=""><td><lq< td=""><td>3</td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td>2</td><td>4</td><td>2</td><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td>9</td><td>2</td><td><lq< td=""><td>3</td><td><lq< td=""><td><lq< td=""><td>3</td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td>2</td><td>4</td><td>2</td><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td>9</td><td>2</td><td><lq< td=""><td>3</td><td><lq< td=""><td><lq< td=""><td>3</td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td>2</td><td>4</td><td>2</td><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td>9</td><td>2</td><td><lq< td=""><td>3</td><td><lq< td=""><td><lq< td=""><td>3</td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	2	4	2	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td>9</td><td>2</td><td><lq< td=""><td>3</td><td><lq< td=""><td><lq< td=""><td>3</td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td>9</td><td>2</td><td><lq< td=""><td>3</td><td><lq< td=""><td><lq< td=""><td>3</td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td>9</td><td>2</td><td><lq< td=""><td>3</td><td><lq< td=""><td><lq< td=""><td>3</td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td>9</td><td>2</td><td><lq< td=""><td>3</td><td><lq< td=""><td><lq< td=""><td>3</td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td>9</td><td>2</td><td><lq< td=""><td>3</td><td><lq< td=""><td><lq< td=""><td>3</td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td>9</td><td>2</td><td><lq< td=""><td>3</td><td><lq< td=""><td><lq< td=""><td>3</td></lq<></td></lq<></td></lq<></td></lq<>	9	2	<lq< td=""><td>3</td><td><lq< td=""><td><lq< td=""><td>3</td></lq<></td></lq<></td></lq<>	3	<lq< td=""><td><lq< td=""><td>3</td></lq<></td></lq<>	<lq< td=""><td>3</td></lq<>	3
Crisene	108	108	5	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td>3</td><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td>7</td><td><lq< td=""><td><LQ</td><td>3</td><td><lq< td=""><td><lq< td=""><td>2</td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td>3</td><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td>7</td><td><lq< td=""><td><LQ</td><td>3</td><td><lq< td=""><td><lq< td=""><td>2</td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td>3</td><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td>7</td><td><lq< td=""><td><LQ</td><td>3</td><td><lq< td=""><td><lq< td=""><td>2</td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td>3</td><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td>7</td><td><lq< td=""><td><LQ</td><td>3</td><td><lq< td=""><td><lq< td=""><td>2</td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td>3</td><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td>7</td><td><lq< td=""><td><LQ</td><td>3</td><td><lq< td=""><td><lq< td=""><td>2</td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td>3</td><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td>7</td><td><lq< td=""><td><LQ</td><td>3</td><td><lq< td=""><td><lq< td=""><td>2</td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td>3</td><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td>7</td><td><lq< td=""><td><LQ</td><td>3</td><td><lq< td=""><td><lq< td=""><td>2</td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td>3</td><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td>7</td><td><lq< td=""><td><LQ</td><td>3</td><td><lq< td=""><td><lq< td=""><td>2</td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	3	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td>7</td><td><lq< td=""><td><LQ</td><td>3</td><td><lq< td=""><td><lq< td=""><td>2</td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td>7</td><td><lq< td=""><td><LQ</td><td>3</td><td><lq< td=""><td><lq< td=""><td>2</td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td>7</td><td><lq< td=""><td><LQ</td><td>3</td><td><lq< td=""><td><lq< td=""><td>2</td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td>7</td><td><lq< td=""><td><LQ</td><td>3</td><td><lq< td=""><td><lq< td=""><td>2</td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td>7</td><td><lq< td=""><td><LQ</td><td>3</td><td><lq< td=""><td><lq< td=""><td>2</td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td>7</td><td><lq< td=""><td><LQ</td><td>3</td><td><lq< td=""><td><lq< td=""><td>2</td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td>7</td><td><lq< td=""><td><LQ</td><td>3</td><td><lq< td=""><td><lq< td=""><td>2</td></lq<></td></lq<></td></lq<></td></lq<>	7	<lq< td=""><td><LQ</td><td>3</td><td><lq< td=""><td><lq< td=""><td>2</td></lq<></td></lq<></td></lq<>	<LQ	3	<lq< td=""><td><lq< td=""><td>2</td></lq<></td></lq<>	<lq< td=""><td>2</td></lq<>	2
Dibenzo (a, h) antracene		6	<lq< td=""><td><lq< td=""><td>3</td><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td>3</td><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td>3</td><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td>3</td><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td>3</td><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td>3</td><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td>3</td><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td>3</td><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td>3</td><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td>3</td><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td>3</td><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td>3</td><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td>3</td><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td>3</td><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td>3</td><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td>3</td><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td>3</td><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	3	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""></lq<></td></lq<>	<lq< td=""></lq<>
Fenantrene	87	87	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td>2</td><td>2</td><td>2</td><td>3</td><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td>2</td><td><LQ</td><td>3</td><td><lq< td=""><td><lq< td=""><td>3</td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td>2</td><td>2</td><td>2</td><td>3</td><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td>2</td><td><LQ</td><td>3</td><td><lq< td=""><td><lq< td=""><td>3</td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td>2</td><td>2</td><td>2</td><td>3</td><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td>2</td><td><LQ</td><td>3</td><td><lq< td=""><td><lq< td=""><td>3</td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td>2</td><td>2</td><td>2</td><td>3</td><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td>2</td><td><LQ</td><td>3</td><td><lq< td=""><td><lq< td=""><td>3</td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td>2</td><td>2</td><td>2</td><td>3</td><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td>2</td><td><LQ</td><td>3</td><td><lq< td=""><td><lq< td=""><td>3</td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td>2</td><td>2</td><td>2</td><td>3</td><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td>2</td><td><LQ</td><td>3</td><td><lq< td=""><td><lq< td=""><td>3</td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	2	2	2	3	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td>2</td><td><LQ</td><td>3</td><td><lq< td=""><td><lq< td=""><td>3</td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td>2</td><td><LQ</td><td>3</td><td><lq< td=""><td><lq< td=""><td>3</td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td>2</td><td><LQ</td><td>3</td><td><lq< td=""><td><lq< td=""><td>3</td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td>2</td><td><LQ</td><td>3</td><td><lq< td=""><td><lq< td=""><td>3</td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td>2</td><td><LQ</td><td>3</td><td><lq< td=""><td><lq< td=""><td>3</td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td>2</td><td><LQ</td><td>3</td><td><lq< td=""><td><lq< td=""><td>3</td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td>2</td><td><LQ</td><td>3</td><td><lq< td=""><td><lq< td=""><td>3</td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td>2</td><td><LQ</td><td>3</td><td><lq< td=""><td><lq< td=""><td>3</td></lq<></td></lq<></td></lq<>	2	<LQ	3	<lq< td=""><td><lq< td=""><td>3</td></lq<></td></lq<>	<lq< td=""><td>3</td></lq<>	3
Fluorantene	110	113	3	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td>2</td><td><lq< td=""><td><lq< td=""><td>4</td><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td>2</td><td>2</td><td><LQ</td><td>3</td><td><lq< td=""><td><lq< td=""><td>3</td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td>2</td><td><lq< td=""><td><lq< td=""><td>4</td><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td>2</td><td>2</td><td><LQ</td><td>3</td><td><lq< td=""><td><lq< td=""><td>3</td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td>2</td><td><lq< td=""><td><lq< td=""><td>4</td><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td>2</td><td>2</td><td><LQ</td><td>3</td><td><lq< td=""><td><lq< td=""><td>3</td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td>2</td><td><lq< td=""><td><lq< td=""><td>4</td><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td>2</td><td>2</td><td><LQ</td><td>3</td><td><lq< td=""><td><lq< td=""><td>3</td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td>2</td><td><lq< td=""><td><lq< td=""><td>4</td><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td>2</td><td>2</td><td><LQ</td><td>3</td><td><lq< td=""><td><lq< td=""><td>3</td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	2	<lq< td=""><td><lq< td=""><td>4</td><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td>2</td><td>2</td><td><LQ</td><td>3</td><td><lq< td=""><td><lq< td=""><td>3</td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td>4</td><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td>2</td><td>2</td><td><LQ</td><td>3</td><td><lq< td=""><td><lq< td=""><td>3</td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	4	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td>2</td><td>2</td><td><LQ</td><td>3</td><td><lq< td=""><td><lq< td=""><td>3</td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td>2</td><td>2</td><td><LQ</td><td>3</td><td><lq< td=""><td><lq< td=""><td>3</td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td>2</td><td>2</td><td><LQ</td><td>3</td><td><lq< td=""><td><lq< td=""><td>3</td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td>2</td><td>2</td><td><LQ</td><td>3</td><td><lq< td=""><td><lq< td=""><td>3</td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td>2</td><td>2</td><td><LQ</td><td>3</td><td><lq< td=""><td><lq< td=""><td>3</td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td>2</td><td>2</td><td><LQ</td><td>3</td><td><lq< td=""><td><lq< td=""><td>3</td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td>2</td><td>2</td><td><LQ</td><td>3</td><td><lq< td=""><td><lq< td=""><td>3</td></lq<></td></lq<></td></lq<>	2	2	<LQ	3	<lq< td=""><td><lq< td=""><td>3</td></lq<></td></lq<>	<lq< td=""><td>3</td></lq<>	3
Fluorene	21	21	<lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""></lq<></td></lq<>	<lq< td=""></lq<>
Indeno(1,2,3-c,d) pirene	70	(70)*	9	5	4	2	5	4	4	5	7	9	6	4	5	5	4	3	3	15	7	3	14	3	2	9
Naftalene	35	35	<lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""></lq<></td></lq<>	<lq< td=""></lq<>
Pirene	153	153	<lq< td=""><td><lq< td=""><td>3</td><td><lq< td=""><td><LQ</td><td>3</td><td><lq< td=""><td><lq< td=""><td>2</td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td>3</td><td><lq< td=""><td><LQ</td><td>3</td><td><lq< td=""><td><lq< td=""><td>2</td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td>3</td><td><lq< td=""><td><LQ</td><td>3</td><td><lq< td=""><td><lq< td=""><td>2</td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td>3</td><td><lq< td=""><td><LQ</td><td>3</td><td><lq< td=""><td><lq< td=""><td>2</td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td>3</td><td><lq< td=""><td><LQ</td><td>3</td><td><lq< td=""><td><lq< td=""><td>2</td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td>3</td><td><lq< td=""><td><LQ</td><td>3</td><td><lq< td=""><td><lq< td=""><td>2</td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td>3</td><td><lq< td=""><td><LQ</td><td>3</td><td><lq< td=""><td><lq< td=""><td>2</td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td>3</td><td><lq< td=""><td><LQ</td><td>3</td><td><lq< td=""><td><lq< td=""><td>2</td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td>3</td><td><lq< td=""><td><LQ</td><td>3</td><td><lq< td=""><td><lq< td=""><td>2</td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td>3</td><td><lq< td=""><td><LQ</td><td>3</td><td><lq< td=""><td><lq< td=""><td>2</td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td>3</td><td><lq< td=""><td><LQ</td><td>3</td><td><lq< td=""><td><lq< td=""><td>2</td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td>3</td><td><lq< td=""><td><LQ</td><td>3</td><td><lq< td=""><td><lq< td=""><td>2</td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td>3</td><td><lq< td=""><td><LQ</td><td>3</td><td><lq< td=""><td><lq< td=""><td>2</td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td>3</td><td><lq< td=""><td><LQ</td><td>3</td><td><lq< td=""><td><lq< td=""><td>2</td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td>3</td><td><lq< td=""><td><LQ</td><td>3</td><td><lq< td=""><td><lq< td=""><td>2</td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td>3</td><td><lq< td=""><td><LQ</td><td>3</td><td><lq< td=""><td><lq< td=""><td>2</td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td>3</td><td><lq< td=""><td><LQ</td><td>3</td><td><lq< td=""><td><lq< td=""><td>2</td></lq<></td></lq<></td></lq<></td></lq<>	3	<lq< td=""><td><LQ</td><td>3</td><td><lq< td=""><td><lq< td=""><td>2</td></lq<></td></lq<></td></lq<>	<LQ	3	<lq< td=""><td><lq< td=""><td>2</td></lq<></td></lq<>	<lq< td=""><td>2</td></lq<>	2
Totale	900	900	43	12	10	2	12	10	14	14	20	47	16	11	12	14	12	9	9	81	23	9	57	6	4	36

	DM	I CD/DD										6° su	rvey p	ost la	vori (e	state	2018)									
	173/2016	LCB/PP	A1	A2	A3	A4	BO NW	BO SE	A5	A6	A7	A8	B1	B2	В3	B4	BO NE	BO SW	B5	B6	B7	B8	K1	K2	K3	K4
Acenaftene		7	<lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""></lq<></td></lq<>	<lq< td=""></lq<>
Acenaftilene			<lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""></lq<></td></lq<>	<lq< td=""></lq<>
Antracene	24	47 (24)*	<lq< td=""><td><lq< td=""><td><lq< td=""><td>2,0</td><td>2,0</td><td>2,0</td><td>2,0</td><td><lq< td=""><td><lq< td=""><td>4,0</td><td>2,0</td><td><lq< td=""><td>2,0</td><td><lq< td=""><td>2,0</td><td><lq< td=""><td>2,0</td><td><lq< td=""><td>2,0</td><td><lq< td=""><td>2,0</td><td><lq< td=""><td><lq< td=""><td>2,0</td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td>2,0</td><td>2,0</td><td>2,0</td><td>2,0</td><td><lq< td=""><td><lq< td=""><td>4,0</td><td>2,0</td><td><lq< td=""><td>2,0</td><td><lq< td=""><td>2,0</td><td><lq< td=""><td>2,0</td><td><lq< td=""><td>2,0</td><td><lq< td=""><td>2,0</td><td><lq< td=""><td><lq< td=""><td>2,0</td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td>2,0</td><td>2,0</td><td>2,0</td><td>2,0</td><td><lq< td=""><td><lq< td=""><td>4,0</td><td>2,0</td><td><lq< td=""><td>2,0</td><td><lq< td=""><td>2,0</td><td><lq< td=""><td>2,0</td><td><lq< td=""><td>2,0</td><td><lq< td=""><td>2,0</td><td><lq< td=""><td><lq< td=""><td>2,0</td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	2,0	2,0	2,0	2,0	<lq< td=""><td><lq< td=""><td>4,0</td><td>2,0</td><td><lq< td=""><td>2,0</td><td><lq< td=""><td>2,0</td><td><lq< td=""><td>2,0</td><td><lq< td=""><td>2,0</td><td><lq< td=""><td>2,0</td><td><lq< td=""><td><lq< td=""><td>2,0</td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td>4,0</td><td>2,0</td><td><lq< td=""><td>2,0</td><td><lq< td=""><td>2,0</td><td><lq< td=""><td>2,0</td><td><lq< td=""><td>2,0</td><td><lq< td=""><td>2,0</td><td><lq< td=""><td><lq< td=""><td>2,0</td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	4,0	2,0	<lq< td=""><td>2,0</td><td><lq< td=""><td>2,0</td><td><lq< td=""><td>2,0</td><td><lq< td=""><td>2,0</td><td><lq< td=""><td>2,0</td><td><lq< td=""><td><lq< td=""><td>2,0</td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	2,0	<lq< td=""><td>2,0</td><td><lq< td=""><td>2,0</td><td><lq< td=""><td>2,0</td><td><lq< td=""><td>2,0</td><td><lq< td=""><td><lq< td=""><td>2,0</td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	2,0	<lq< td=""><td>2,0</td><td><lq< td=""><td>2,0</td><td><lq< td=""><td>2,0</td><td><lq< td=""><td><lq< td=""><td>2,0</td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	2,0	<lq< td=""><td>2,0</td><td><lq< td=""><td>2,0</td><td><lq< td=""><td><lq< td=""><td>2,0</td></lq<></td></lq<></td></lq<></td></lq<>	2,0	<lq< td=""><td>2,0</td><td><lq< td=""><td><lq< td=""><td>2,0</td></lq<></td></lq<></td></lq<>	2,0	<lq< td=""><td><lq< td=""><td>2,0</td></lq<></td></lq<>	<lq< td=""><td>2,0</td></lq<>	2,0
Benzo (a) antracene	75	75	2,0	<lq< td=""><td>2,0</td><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td>2,0</td><td><1</td><td>4,0</td><td><lq< td=""><td><lq< td=""><td>3,0</td><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td>5,0</td><td><lq< td=""><td>3,0</td><td><lq< td=""><td>4,0</td><td>5,0</td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	2,0	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td>2,0</td><td><1</td><td>4,0</td><td><lq< td=""><td><lq< td=""><td>3,0</td><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td>5,0</td><td><lq< td=""><td>3,0</td><td><lq< td=""><td>4,0</td><td>5,0</td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td>2,0</td><td><1</td><td>4,0</td><td><lq< td=""><td><lq< td=""><td>3,0</td><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td>5,0</td><td><lq< td=""><td>3,0</td><td><lq< td=""><td>4,0</td><td>5,0</td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td>2,0</td><td><1</td><td>4,0</td><td><lq< td=""><td><lq< td=""><td>3,0</td><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td>5,0</td><td><lq< td=""><td>3,0</td><td><lq< td=""><td>4,0</td><td>5,0</td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td>2,0</td><td><1</td><td>4,0</td><td><lq< td=""><td><lq< td=""><td>3,0</td><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td>5,0</td><td><lq< td=""><td>3,0</td><td><lq< td=""><td>4,0</td><td>5,0</td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	2,0	<1	4,0	<lq< td=""><td><lq< td=""><td>3,0</td><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td>5,0</td><td><lq< td=""><td>3,0</td><td><lq< td=""><td>4,0</td><td>5,0</td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td>3,0</td><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td>5,0</td><td><lq< td=""><td>3,0</td><td><lq< td=""><td>4,0</td><td>5,0</td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	3,0	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td>5,0</td><td><lq< td=""><td>3,0</td><td><lq< td=""><td>4,0</td><td>5,0</td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td>5,0</td><td><lq< td=""><td>3,0</td><td><lq< td=""><td>4,0</td><td>5,0</td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td>5,0</td><td><lq< td=""><td>3,0</td><td><lq< td=""><td>4,0</td><td>5,0</td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td>5,0</td><td><lq< td=""><td>3,0</td><td><lq< td=""><td>4,0</td><td>5,0</td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td>5,0</td><td><lq< td=""><td>3,0</td><td><lq< td=""><td>4,0</td><td>5,0</td></lq<></td></lq<></td></lq<>	5,0	<lq< td=""><td>3,0</td><td><lq< td=""><td>4,0</td><td>5,0</td></lq<></td></lq<>	3,0	<lq< td=""><td>4,0</td><td>5,0</td></lq<>	4,0	5,0
Benzo (a) pirene	30	80 (30)*	<1	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td>5,0</td><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><1</td><td><lq< td=""><td><lq< td=""><td>4,0</td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td>5,0</td><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><1</td><td><lq< td=""><td><lq< td=""><td>4,0</td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td>5,0</td><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><1</td><td><lq< td=""><td><lq< td=""><td>4,0</td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td>5,0</td><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><1</td><td><lq< td=""><td><lq< td=""><td>4,0</td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td>5,0</td><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><1</td><td><lq< td=""><td><lq< td=""><td>4,0</td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td>5,0</td><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><1</td><td><lq< td=""><td><lq< td=""><td>4,0</td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td>5,0</td><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><1</td><td><lq< td=""><td><lq< td=""><td>4,0</td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td>5,0</td><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><1</td><td><lq< td=""><td><lq< td=""><td>4,0</td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	5,0	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><1</td><td><lq< td=""><td><lq< td=""><td>4,0</td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><1</td><td><lq< td=""><td><lq< td=""><td>4,0</td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><1</td><td><lq< td=""><td><lq< td=""><td>4,0</td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><1</td><td><lq< td=""><td><lq< td=""><td>4,0</td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><1</td><td><lq< td=""><td><lq< td=""><td>4,0</td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><1</td><td><lq< td=""><td><lq< td=""><td>4,0</td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><1</td><td><lq< td=""><td><lq< td=""><td>4,0</td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><1</td><td><lq< td=""><td><lq< td=""><td>4,0</td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><1</td><td><lq< td=""><td><lq< td=""><td>4,0</td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><1</td><td><lq< td=""><td><lq< td=""><td>4,0</td></lq<></td></lq<></td></lq<>	<1	<lq< td=""><td><lq< td=""><td>4,0</td></lq<></td></lq<>	<lq< td=""><td>4,0</td></lq<>	4,0
Benzo (b) fluorantene	40	(40)*	<1	<lq< td=""><td><lq< td=""><td>5</td><td>5,0</td><td>4,0</td><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><LQ</td><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td>4,0</td><td>6,0</td><td><lq< td=""><td><lq< td=""><td><lq< td=""><td>8,0</td><td><lq< td=""><td><lq< td=""><td>15,0</td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td>5</td><td>5,0</td><td>4,0</td><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><LQ</td><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td>4,0</td><td>6,0</td><td><lq< td=""><td><lq< td=""><td><lq< td=""><td>8,0</td><td><lq< td=""><td><lq< td=""><td>15,0</td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	5	5,0	4,0	<lq< td=""><td><lq< td=""><td><lq< td=""><td><LQ</td><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td>4,0</td><td>6,0</td><td><lq< td=""><td><lq< td=""><td><lq< td=""><td>8,0</td><td><lq< td=""><td><lq< td=""><td>15,0</td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><LQ</td><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td>4,0</td><td>6,0</td><td><lq< td=""><td><lq< td=""><td><lq< td=""><td>8,0</td><td><lq< td=""><td><lq< td=""><td>15,0</td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><LQ</td><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td>4,0</td><td>6,0</td><td><lq< td=""><td><lq< td=""><td><lq< td=""><td>8,0</td><td><lq< td=""><td><lq< td=""><td>15,0</td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<LQ	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td>4,0</td><td>6,0</td><td><lq< td=""><td><lq< td=""><td><lq< td=""><td>8,0</td><td><lq< td=""><td><lq< td=""><td>15,0</td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td>4,0</td><td>6,0</td><td><lq< td=""><td><lq< td=""><td><lq< td=""><td>8,0</td><td><lq< td=""><td><lq< td=""><td>15,0</td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td>4,0</td><td>6,0</td><td><lq< td=""><td><lq< td=""><td><lq< td=""><td>8,0</td><td><lq< td=""><td><lq< td=""><td>15,0</td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td>4,0</td><td>6,0</td><td><lq< td=""><td><lq< td=""><td><lq< td=""><td>8,0</td><td><lq< td=""><td><lq< td=""><td>15,0</td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td>4,0</td><td>6,0</td><td><lq< td=""><td><lq< td=""><td><lq< td=""><td>8,0</td><td><lq< td=""><td><lq< td=""><td>15,0</td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	4,0	6,0	<lq< td=""><td><lq< td=""><td><lq< td=""><td>8,0</td><td><lq< td=""><td><lq< td=""><td>15,0</td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td>8,0</td><td><lq< td=""><td><lq< td=""><td>15,0</td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td>8,0</td><td><lq< td=""><td><lq< td=""><td>15,0</td></lq<></td></lq<></td></lq<>	8,0	<lq< td=""><td><lq< td=""><td>15,0</td></lq<></td></lq<>	<lq< td=""><td>15,0</td></lq<>	15,0
Benzo (g, h,i) perilene	55	(55)*	3,0	<lq< td=""><td><lq< td=""><td>3</td><td>3,0</td><td>2,0</td><td><lq< td=""><td><lq< td=""><td><lq< td=""><td>2,0</td><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td>3,0</td><td>3,0</td><td><lq< td=""><td><lq< td=""><td><lq< td=""><td>5,0</td><td><lq< td=""><td><lq< td=""><td>8,0</td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td>3</td><td>3,0</td><td>2,0</td><td><lq< td=""><td><lq< td=""><td><lq< td=""><td>2,0</td><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td>3,0</td><td>3,0</td><td><lq< td=""><td><lq< td=""><td><lq< td=""><td>5,0</td><td><lq< td=""><td><lq< td=""><td>8,0</td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	3	3,0	2,0	<lq< td=""><td><lq< td=""><td><lq< td=""><td>2,0</td><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td>3,0</td><td>3,0</td><td><lq< td=""><td><lq< td=""><td><lq< td=""><td>5,0</td><td><lq< td=""><td><lq< td=""><td>8,0</td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td>2,0</td><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td>3,0</td><td>3,0</td><td><lq< td=""><td><lq< td=""><td><lq< td=""><td>5,0</td><td><lq< td=""><td><lq< td=""><td>8,0</td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td>2,0</td><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td>3,0</td><td>3,0</td><td><lq< td=""><td><lq< td=""><td><lq< td=""><td>5,0</td><td><lq< td=""><td><lq< td=""><td>8,0</td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	2,0	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td>3,0</td><td>3,0</td><td><lq< td=""><td><lq< td=""><td><lq< td=""><td>5,0</td><td><lq< td=""><td><lq< td=""><td>8,0</td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td>3,0</td><td>3,0</td><td><lq< td=""><td><lq< td=""><td><lq< td=""><td>5,0</td><td><lq< td=""><td><lq< td=""><td>8,0</td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td>3,0</td><td>3,0</td><td><lq< td=""><td><lq< td=""><td><lq< td=""><td>5,0</td><td><lq< td=""><td><lq< td=""><td>8,0</td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td>3,0</td><td>3,0</td><td><lq< td=""><td><lq< td=""><td><lq< td=""><td>5,0</td><td><lq< td=""><td><lq< td=""><td>8,0</td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td>3,0</td><td>3,0</td><td><lq< td=""><td><lq< td=""><td><lq< td=""><td>5,0</td><td><lq< td=""><td><lq< td=""><td>8,0</td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	3,0	3,0	<lq< td=""><td><lq< td=""><td><lq< td=""><td>5,0</td><td><lq< td=""><td><lq< td=""><td>8,0</td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td>5,0</td><td><lq< td=""><td><lq< td=""><td>8,0</td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td>5,0</td><td><lq< td=""><td><lq< td=""><td>8,0</td></lq<></td></lq<></td></lq<>	5,0	<lq< td=""><td><lq< td=""><td>8,0</td></lq<></td></lq<>	<lq< td=""><td>8,0</td></lq<>	8,0
Benzo (k) fluorantene	20		<1	<lq< td=""><td><lq< td=""><td>4,0</td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td>4,0</td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td>4,0</td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td>4,0</td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td>4,0</td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td>4,0</td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td>4,0</td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td>4,0</td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td>4,0</td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td>4,0</td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td>4,0</td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td>4,0</td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td>4,0</td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td>4,0</td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td>4,0</td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td>4,0</td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td>4,0</td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td>4,0</td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td>4,0</td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td>4,0</td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td>4,0</td></lq<></td></lq<>	<lq< td=""><td>4,0</td></lq<>	4,0
Crisene	108	108	4,0	<lq< td=""><td>3,0</td><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td>4,0</td><td><LQ</td><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td>3,0</td><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td>3,0</td><td><lq< td=""><td>2,0</td><td><lq< td=""><td>3,0</td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	3,0	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td>4,0</td><td><LQ</td><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td>3,0</td><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td>3,0</td><td><lq< td=""><td>2,0</td><td><lq< td=""><td>3,0</td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td>4,0</td><td><LQ</td><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td>3,0</td><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td>3,0</td><td><lq< td=""><td>2,0</td><td><lq< td=""><td>3,0</td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td>4,0</td><td><LQ</td><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td>3,0</td><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td>3,0</td><td><lq< td=""><td>2,0</td><td><lq< td=""><td>3,0</td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td>4,0</td><td><LQ</td><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td>3,0</td><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td>3,0</td><td><lq< td=""><td>2,0</td><td><lq< td=""><td>3,0</td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td>4,0</td><td><LQ</td><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td>3,0</td><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td>3,0</td><td><lq< td=""><td>2,0</td><td><lq< td=""><td>3,0</td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	4,0	<LQ	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td>3,0</td><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td>3,0</td><td><lq< td=""><td>2,0</td><td><lq< td=""><td>3,0</td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td>3,0</td><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td>3,0</td><td><lq< td=""><td>2,0</td><td><lq< td=""><td>3,0</td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td>3,0</td><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td>3,0</td><td><lq< td=""><td>2,0</td><td><lq< td=""><td>3,0</td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td>3,0</td><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td>3,0</td><td><lq< td=""><td>2,0</td><td><lq< td=""><td>3,0</td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	3,0	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td>3,0</td><td><lq< td=""><td>2,0</td><td><lq< td=""><td>3,0</td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td>3,0</td><td><lq< td=""><td>2,0</td><td><lq< td=""><td>3,0</td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td>3,0</td><td><lq< td=""><td>2,0</td><td><lq< td=""><td>3,0</td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td>3,0</td><td><lq< td=""><td>2,0</td><td><lq< td=""><td>3,0</td></lq<></td></lq<></td></lq<>	3,0	<lq< td=""><td>2,0</td><td><lq< td=""><td>3,0</td></lq<></td></lq<>	2,0	<lq< td=""><td>3,0</td></lq<>	3,0
Dibenzo (a, h) antracene		6	5,0	<lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""></lq<></td></lq<>	<lq< td=""></lq<>
Fenantrene	87	87	<1	32,0	<lq< td=""><td>2,0</td><td>3,0</td><td>4,0</td><td>3,0</td><td><lq< td=""><td>3,0</td><td>2,0</td><td>2,0</td><td>3,0</td><td>2,0</td><td><lq< td=""><td>2,0</td><td>3,0</td><td>4,0</td><td>2,0</td><td>3,0</td><td>2,0</td><td><1</td><td>2,0</td><td>2,0</td><td>6,0</td></lq<></td></lq<></td></lq<>	2,0	3,0	4,0	3,0	<lq< td=""><td>3,0</td><td>2,0</td><td>2,0</td><td>3,0</td><td>2,0</td><td><lq< td=""><td>2,0</td><td>3,0</td><td>4,0</td><td>2,0</td><td>3,0</td><td>2,0</td><td><1</td><td>2,0</td><td>2,0</td><td>6,0</td></lq<></td></lq<>	3,0	2,0	2,0	3,0	2,0	<lq< td=""><td>2,0</td><td>3,0</td><td>4,0</td><td>2,0</td><td>3,0</td><td>2,0</td><td><1</td><td>2,0</td><td>2,0</td><td>6,0</td></lq<>	2,0	3,0	4,0	2,0	3,0	2,0	<1	2,0	2,0	6,0
Fluorantene	110	113	<lq< td=""><td>2,0</td><td><lq< td=""><td><lq< td=""><td>2,0</td><td><lq< td=""><td><lq< td=""><td>2,0</td><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td>2,0</td><td>2,0</td><td><1</td><td><1</td><td>2,0</td><td><1</td><td>2,0</td><td><1</td><td>2,0</td><td><1</td><td>2,0</td><td>9,0</td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	2,0	<lq< td=""><td><lq< td=""><td>2,0</td><td><lq< td=""><td><lq< td=""><td>2,0</td><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td>2,0</td><td>2,0</td><td><1</td><td><1</td><td>2,0</td><td><1</td><td>2,0</td><td><1</td><td>2,0</td><td><1</td><td>2,0</td><td>9,0</td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td>2,0</td><td><lq< td=""><td><lq< td=""><td>2,0</td><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td>2,0</td><td>2,0</td><td><1</td><td><1</td><td>2,0</td><td><1</td><td>2,0</td><td><1</td><td>2,0</td><td><1</td><td>2,0</td><td>9,0</td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	2,0	<lq< td=""><td><lq< td=""><td>2,0</td><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td>2,0</td><td>2,0</td><td><1</td><td><1</td><td>2,0</td><td><1</td><td>2,0</td><td><1</td><td>2,0</td><td><1</td><td>2,0</td><td>9,0</td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td>2,0</td><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td>2,0</td><td>2,0</td><td><1</td><td><1</td><td>2,0</td><td><1</td><td>2,0</td><td><1</td><td>2,0</td><td><1</td><td>2,0</td><td>9,0</td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	2,0	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td>2,0</td><td>2,0</td><td><1</td><td><1</td><td>2,0</td><td><1</td><td>2,0</td><td><1</td><td>2,0</td><td><1</td><td>2,0</td><td>9,0</td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td>2,0</td><td>2,0</td><td><1</td><td><1</td><td>2,0</td><td><1</td><td>2,0</td><td><1</td><td>2,0</td><td><1</td><td>2,0</td><td>9,0</td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td>2,0</td><td>2,0</td><td><1</td><td><1</td><td>2,0</td><td><1</td><td>2,0</td><td><1</td><td>2,0</td><td><1</td><td>2,0</td><td>9,0</td></lq<></td></lq<>	<lq< td=""><td>2,0</td><td>2,0</td><td><1</td><td><1</td><td>2,0</td><td><1</td><td>2,0</td><td><1</td><td>2,0</td><td><1</td><td>2,0</td><td>9,0</td></lq<>	2,0	2,0	<1	<1	2,0	<1	2,0	<1	2,0	<1	2,0	9,0
Fluorene	21	21	4,0	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td>3,0</td><td><lq< td=""><td><lq< td=""><td><lq< td=""><td>3,0</td><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td>3,0</td><td><lq< td=""><td><lq< td=""><td><lq< td=""><td>3,0</td><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td>3,0</td><td><lq< td=""><td><lq< td=""><td><lq< td=""><td>3,0</td><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td>3,0</td><td><lq< td=""><td><lq< td=""><td><lq< td=""><td>3,0</td><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	3,0	<lq< td=""><td><lq< td=""><td><lq< td=""><td>3,0</td><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td>3,0</td><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td>3,0</td><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	3,0	<lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""></lq<></td></lq<>	<lq< td=""></lq<>
Indeno(1,2,3-c,d) pirene	70	(70)*	4,0	<lq< td=""><td><lq< td=""><td>4,0</td><td>3,0</td><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td>3,0</td><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td>3,0</td><td>4,0</td><td><lq< td=""><td><lq< td=""><td><lq< td=""><td>4,0</td><td><lq< td=""><td><lq< td=""><td>8,0</td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td>4,0</td><td>3,0</td><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td>3,0</td><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td>3,0</td><td>4,0</td><td><lq< td=""><td><lq< td=""><td><lq< td=""><td>4,0</td><td><lq< td=""><td><lq< td=""><td>8,0</td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	4,0	3,0	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td>3,0</td><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td>3,0</td><td>4,0</td><td><lq< td=""><td><lq< td=""><td><lq< td=""><td>4,0</td><td><lq< td=""><td><lq< td=""><td>8,0</td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td>3,0</td><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td>3,0</td><td>4,0</td><td><lq< td=""><td><lq< td=""><td><lq< td=""><td>4,0</td><td><lq< td=""><td><lq< td=""><td>8,0</td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td>3,0</td><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td>3,0</td><td>4,0</td><td><lq< td=""><td><lq< td=""><td><lq< td=""><td>4,0</td><td><lq< td=""><td><lq< td=""><td>8,0</td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td>3,0</td><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td>3,0</td><td>4,0</td><td><lq< td=""><td><lq< td=""><td><lq< td=""><td>4,0</td><td><lq< td=""><td><lq< td=""><td>8,0</td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	3,0	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td>3,0</td><td>4,0</td><td><lq< td=""><td><lq< td=""><td><lq< td=""><td>4,0</td><td><lq< td=""><td><lq< td=""><td>8,0</td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td>3,0</td><td>4,0</td><td><lq< td=""><td><lq< td=""><td><lq< td=""><td>4,0</td><td><lq< td=""><td><lq< td=""><td>8,0</td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td>3,0</td><td>4,0</td><td><lq< td=""><td><lq< td=""><td><lq< td=""><td>4,0</td><td><lq< td=""><td><lq< td=""><td>8,0</td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td>3,0</td><td>4,0</td><td><lq< td=""><td><lq< td=""><td><lq< td=""><td>4,0</td><td><lq< td=""><td><lq< td=""><td>8,0</td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td>3,0</td><td>4,0</td><td><lq< td=""><td><lq< td=""><td><lq< td=""><td>4,0</td><td><lq< td=""><td><lq< td=""><td>8,0</td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	3,0	4,0	<lq< td=""><td><lq< td=""><td><lq< td=""><td>4,0</td><td><lq< td=""><td><lq< td=""><td>8,0</td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td>4,0</td><td><lq< td=""><td><lq< td=""><td>8,0</td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td>4,0</td><td><lq< td=""><td><lq< td=""><td>8,0</td></lq<></td></lq<></td></lq<>	4,0	<lq< td=""><td><lq< td=""><td>8,0</td></lq<></td></lq<>	<lq< td=""><td>8,0</td></lq<>	8,0
Naftalene	35	35	2,0	2,0	<lq< td=""><td>2,0</td><td>2,0</td><td><lq< td=""><td>2,0</td><td><lq< td=""><td>2,0</td><td><lq< td=""><td>2,0</td><td><lq< td=""><td>2,0</td><td><lq< td=""><td><lq< td=""><td>2,0</td><td><lq< td=""><td>2,0</td><td><lq< td=""><td>2,0</td><td><lq< td=""><td>2,0</td><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	2,0	2,0	<lq< td=""><td>2,0</td><td><lq< td=""><td>2,0</td><td><lq< td=""><td>2,0</td><td><lq< td=""><td>2,0</td><td><lq< td=""><td><lq< td=""><td>2,0</td><td><lq< td=""><td>2,0</td><td><lq< td=""><td>2,0</td><td><lq< td=""><td>2,0</td><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	2,0	<lq< td=""><td>2,0</td><td><lq< td=""><td>2,0</td><td><lq< td=""><td>2,0</td><td><lq< td=""><td><lq< td=""><td>2,0</td><td><lq< td=""><td>2,0</td><td><lq< td=""><td>2,0</td><td><lq< td=""><td>2,0</td><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	2,0	<lq< td=""><td>2,0</td><td><lq< td=""><td>2,0</td><td><lq< td=""><td><lq< td=""><td>2,0</td><td><lq< td=""><td>2,0</td><td><lq< td=""><td>2,0</td><td><lq< td=""><td>2,0</td><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	2,0	<lq< td=""><td>2,0</td><td><lq< td=""><td><lq< td=""><td>2,0</td><td><lq< td=""><td>2,0</td><td><lq< td=""><td>2,0</td><td><lq< td=""><td>2,0</td><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	2,0	<lq< td=""><td><lq< td=""><td>2,0</td><td><lq< td=""><td>2,0</td><td><lq< td=""><td>2,0</td><td><lq< td=""><td>2,0</td><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td>2,0</td><td><lq< td=""><td>2,0</td><td><lq< td=""><td>2,0</td><td><lq< td=""><td>2,0</td><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	2,0	<lq< td=""><td>2,0</td><td><lq< td=""><td>2,0</td><td><lq< td=""><td>2,0</td><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	2,0	<lq< td=""><td>2,0</td><td><lq< td=""><td>2,0</td><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<>	2,0	<lq< td=""><td>2,0</td><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<>	2,0	<lq< td=""><td><lq< td=""></lq<></td></lq<>	<lq< td=""></lq<>
Pirene	153	153	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td>2,0</td><td>3,0</td><td><lq< td=""><td><lq< td=""><td>3,0</td><td><lq< td=""><td><lq< td=""><td>2,0</td><td><lq< td=""><td>2,0</td><td><lq< td=""><td><lq< td=""><td>1,0</td><td><lq< td=""><td>2,0</td><td><lq< td=""><td>2,0</td><td>2,0</td><td><lq< td=""><td>3</td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td>2,0</td><td>3,0</td><td><lq< td=""><td><lq< td=""><td>3,0</td><td><lq< td=""><td><lq< td=""><td>2,0</td><td><lq< td=""><td>2,0</td><td><lq< td=""><td><lq< td=""><td>1,0</td><td><lq< td=""><td>2,0</td><td><lq< td=""><td>2,0</td><td>2,0</td><td><lq< td=""><td>3</td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td>2,0</td><td>3,0</td><td><lq< td=""><td><lq< td=""><td>3,0</td><td><lq< td=""><td><lq< td=""><td>2,0</td><td><lq< td=""><td>2,0</td><td><lq< td=""><td><lq< td=""><td>1,0</td><td><lq< td=""><td>2,0</td><td><lq< td=""><td>2,0</td><td>2,0</td><td><lq< td=""><td>3</td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td>2,0</td><td>3,0</td><td><lq< td=""><td><lq< td=""><td>3,0</td><td><lq< td=""><td><lq< td=""><td>2,0</td><td><lq< td=""><td>2,0</td><td><lq< td=""><td><lq< td=""><td>1,0</td><td><lq< td=""><td>2,0</td><td><lq< td=""><td>2,0</td><td>2,0</td><td><lq< td=""><td>3</td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	2,0	3,0	<lq< td=""><td><lq< td=""><td>3,0</td><td><lq< td=""><td><lq< td=""><td>2,0</td><td><lq< td=""><td>2,0</td><td><lq< td=""><td><lq< td=""><td>1,0</td><td><lq< td=""><td>2,0</td><td><lq< td=""><td>2,0</td><td>2,0</td><td><lq< td=""><td>3</td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td>3,0</td><td><lq< td=""><td><lq< td=""><td>2,0</td><td><lq< td=""><td>2,0</td><td><lq< td=""><td><lq< td=""><td>1,0</td><td><lq< td=""><td>2,0</td><td><lq< td=""><td>2,0</td><td>2,0</td><td><lq< td=""><td>3</td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	3,0	<lq< td=""><td><lq< td=""><td>2,0</td><td><lq< td=""><td>2,0</td><td><lq< td=""><td><lq< td=""><td>1,0</td><td><lq< td=""><td>2,0</td><td><lq< td=""><td>2,0</td><td>2,0</td><td><lq< td=""><td>3</td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td>2,0</td><td><lq< td=""><td>2,0</td><td><lq< td=""><td><lq< td=""><td>1,0</td><td><lq< td=""><td>2,0</td><td><lq< td=""><td>2,0</td><td>2,0</td><td><lq< td=""><td>3</td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	2,0	<lq< td=""><td>2,0</td><td><lq< td=""><td><lq< td=""><td>1,0</td><td><lq< td=""><td>2,0</td><td><lq< td=""><td>2,0</td><td>2,0</td><td><lq< td=""><td>3</td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	2,0	<lq< td=""><td><lq< td=""><td>1,0</td><td><lq< td=""><td>2,0</td><td><lq< td=""><td>2,0</td><td>2,0</td><td><lq< td=""><td>3</td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td>1,0</td><td><lq< td=""><td>2,0</td><td><lq< td=""><td>2,0</td><td>2,0</td><td><lq< td=""><td>3</td></lq<></td></lq<></td></lq<></td></lq<>	1,0	<lq< td=""><td>2,0</td><td><lq< td=""><td>2,0</td><td>2,0</td><td><lq< td=""><td>3</td></lq<></td></lq<></td></lq<>	2,0	<lq< td=""><td>2,0</td><td>2,0</td><td><lq< td=""><td>3</td></lq<></td></lq<>	2,0	2,0	<lq< td=""><td>3</td></lq<>	3
Totale	900	900	24,0	36,0	5,0	10,0	22,0	18,0	7,0	4,0	12,0	23,0	6,0	5,0	11,0	4,0	7,0	15,0	22,0	4,0	14,0	7,0	26,0	8,0	8,0	64,0

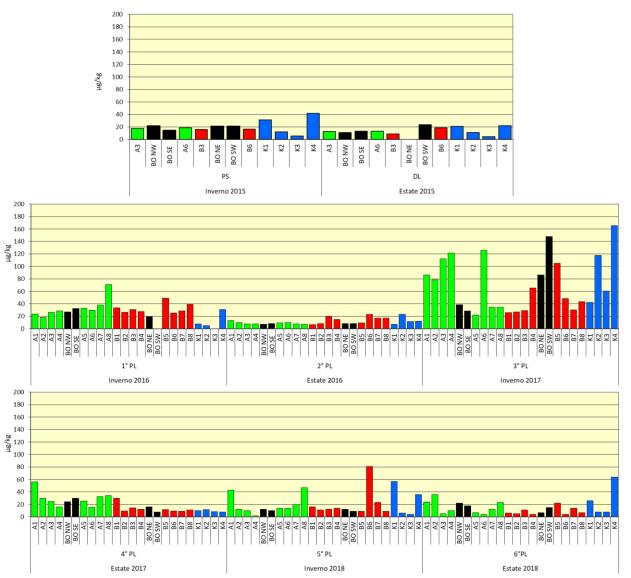


Fig. 3.22 - Concentrazioni (µg/kg s.s.) di IPA nei sedimenti prelevati nell'intero periodo. Le stazioni poste in corrispondenza della piattaforma sono evidenziate in nero.

3.3.3. IDROCARBURI TOTALI

Le concentrazioni degli idrocarburi leggeri (C<12) sono sempre risultate inferiori al limite di quantificazione.

Gli Idrocarburi pesanti (C>12) sono invece stati rilevati sin dal pre-survey, con la concentrazione maggiore dell'intero periodo di indagine proprio in quel monitoraggio presso il controllo K2 (182 mg/kg; Tab. 3-VII e fig. 3.23). Durante i lavori di installazione si erano ridotti in molti siti e nel 1° post lavori non erano stati affatto quantificati. Eccetto nel 3° post lavori in cui erano stati rilevati un po' ovunque, questi composti sono stati osservati in maniera sporadica e con tenori sempre molto bassi, tali da escludere un effetto

dovuto alla presenza della piattaforma.

Tab. 3-VII - Idrocarburi pesanti C>12 (mg/kg) rilevati nei sedimenti prelevati nel pre-survey (PS), durante (DL) e dopo (PL) le operazioni di installazione di Bonaccia NW. In rosso i siti corrispondenti alla piattaforma. Durante i lavori di installazione il sito BO NE non è stato campionato.

_	PS	DL	1° PL	2° PL	3° PL	4° PL	5° PL	6° PL
A1	<5	<5	<5	< 5	13,7	< 5	7	5,0
A2	<5	<5	<5	< 5	16,0	5,7	<5	<5
A3	7,1	17,4	<5	5,4	15,4	< 5	<5	<5
A4	<5	<5	<5	< 5	13,6	6,5	<5	8,0
BO NW	< 5,0	17,2	<5	6,5	12,1	6,9	<5	7,0
BO SE	24,2	18,8	<5	< 5	14,7	6,6	<5	<5
A5	<5	<5	<5	< 5	17,7	8,5	<5	<5
A6	62,9	17,3	<5	< 5	14,2	16,7	<5	<5
A7	<5	<5	<5	< 5	11,5	7,3	<5	<5
A8	<5	<5	<5	< 5	13,3	6,3	5	5,0
B1	<5	<5	<5	< 5	11,0	5,9	6	6,0
B2	<5	<5	<5	6,9	13,3	6,5	<5	<5
В3	34,9	13,3	<5	7,3	12,2	5,7	<5	<5
B4	<5	<5	<5	< 5	9,7	< 5	6	6,0
BO NE	74,4	-	<5	< 5	10,2	7,3	5	5,0
BO SW	38,8	19,6	<5	6,6	13,8	6,0	<5	7,0
B5	<5	<5	<5	5,9	9,6	6,0	6	9,0
B6	64,1	18,3	<5	5,4	12,7	8,1	9	8,0
B7	<5	<5	<5	< 5	9,1	6,0	<5	<5
В8	<5	<5	<5	< 5	10,8	< 5	<5	<5
K1	65,9	23,9	<5	< 5	14,1	< 5	6	7,0
K2	182,2	20,9	<5	7,5	10,3	< 5	5	5,0
K3	23,6	9,86	<5	10,4	9,7	< 5	<5	<5
K4	39,2	28	<5	5,5	10,5	5,8	<5	8,0

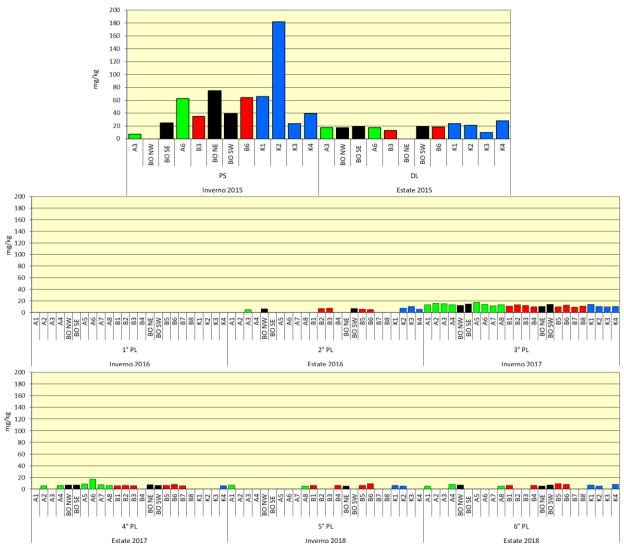


Fig. 3.23 - Idrocarburi pesanti (C>12) rilevati nell'intero periodo di indagine.

3.3.4. METALLI PESANTI

I contenuti dei metalli pesanti rilevati nell'intero periodo di indagine sono riportati in Tab. 3-VIII e in fig. 3.24. Nella discussione che segue vengono riportati riferimenti ai Livelli Chimici di Riferimento Nazionali (di seguito LCRN) indicati nel DM 173 2016 (tabella 2.5). I valori in colonna L1 sono i medesimi degli Standard di Qualità (SQA) riportati nei precedenti DM 56/2009, DM 260/2010 e DM 172/2015 per cadmio (0,3 mg/kg), mercurio (0,3 mg/kg), piombo (30 mg/kg), nichel (30 mg/kg), arsenico (12 mg/kg) e cromo totale (50 mg/kg). In tale tabella (tabella 2.5) sono inoltre indicati rame (40 mg/kg) e zinco (100 mg/kg).

Alluminio – Le concentrazioni di alluminio determinate nell'estate 2018 (6° survey post lavori di installazione) sono risultate molto modeste, oscillando tra 0,90% (BO SE) e

2,01% (A8) nell'area circostante la piattaforma e tra 0,77% e 2,22% ai controlli (rispettivamente K3 e K4), risultando pertanto perfettamente in linea.

Questi valori sono omogenei con quelli del pre-survey e per tutta la durata del monitoraggio sono rimasti bassi e confrontabili tra siti. Non ci sono anomalie da segnalare.

Arsenico – I tenori medi di arsenico nei siti A, B e BO, relativi all'estate 2018, sono risultati maggiori rispetto all'LCRN (± dev.st.; A: 20,05±3,39; B: 19,06±1,42; BO: 15,16±4,13 mg/kg); anche la media ai controlli ha superato tale limite risultando però inferiore alle altre tre (12,11±3,01 mg/kg). Analizzando le singole stazioni solo in BO NE, K3 e K4 le concentrazioni sono apparse inferiori all'LCRN.

Rispetto al pre-survey è avvenuto un aumento che ha riguardato tutte le stazioni e, pertanto, non è escluso che sia in parte legato alla naturale dinamica di questo metallo.

Prima della posa della piattaforma le concentrazioni erano tutte inferiori o simili al controllo K2 (9,78 mg/kg) tranne quella in A3, dove era stato segnalato il massimo assoluto (11,33 mg/kg) comunque inferiore all'LCRN.

I lavori di installazione non avevano comportato importanti variazioni mentre nel 1° post lavori lungo i transetti era avvenuto un diffuso incremento raggiungendo valori superiori all'LCRN. Tale superamento era stato registrato, ma in maniera più modesta, anche nei controlli K2 e K3. Nel 2° post, al contrario, l'arsenico si era ridotto pur rimanendo in molti siti superiori, anche se modestamente, all'LCRN.

Nel 3° post lavori condotto nell'inverno 2017 era stata rilevata una certa variabilità lungo i transetti e nei siti prossimi a Bonaccia NW e le concentrazioni erano per lo più superiori all'LCRN, anche nel controllo K1. Inoltre, in B1 si rilevava il valore maggiore (26,84 mg/kg) fino a quel momento.

Nel monitoraggio successivo era avvenuta una nuova riduzione generalizzata, pur restando alcune concentrazioni nell'area circostante la piattaforma maggiori dell'LCRN.

Una nuova inversione di tendenza era stata segnalata nell'inverno 2018 (5° post lavori): pur avendo l'incremento interessato anche i controlli, i tenori medi risultavano maggiori lungo i transetti e presso Bonaccia NW rispetto ai riferimenti. Inoltre, presso BO NE e BO SE erano stati rilevati i massimi assoluti dell'intero periodo di indagine, corrispondenti a quasi tre volte l'LCRN. Nell'ultimo survey, caratterizzato per lo più da decrementi, tali picchi non sono stati confermati e proprio presso la piattaforma sono avvenute le riduzioni maggiori.

Bario – I valori di bario relativi all'estate 2018 sono risultati diffusamente bassi, sebbene più elevati presso la piattaforma e in A8 rispetto ai controlli (massimo di 101,29 mg/kg in

A8; media ai controlli: 33,89±12,95 mg/kg). Analizzati nel complesso i dati di questo ultimo monitoraggio suggeriscono l'assenza di anomalie.

Nell'arco dell'indagine non sono mancati segnali di alterazione. Durante le operazioni di posa presso la piattaforma il bario aveva mostrato un deciso incremento, raggiungendo un valore medio pari a 208,26±18,24 mg/kg e due picchi in BO SE e BO SW (221,62 e 215,68 mg/kg rispettivamente), pari a 6 volte la media dei controlli.

Nel 1° survey post lavori era stato rilevato un picco in A8 pari a 4,5 volte la media dei riferimenti (34,39±11,47 mg/kg). Lungo il transetto B era stata segnalata una tendenza all'incremento di bario al ridursi della distanza dalla piattaforma dove, al di là delle differenze tra siti, si registrava un valore medio pari a 185,10±92,15 mg/kg che risultava essere oltre 5 volte la media dei controlli. In corrispondenza di BO NW era stato rilevato il picco stagionale pari a quasi 10 volte la media dei siti K.

Nell'estate 2016 (2° post lavori) era stata segnalata unicamente l'anomalia in B6 (407,76 mg/kg) pari a 11 volte la media dei riferimenti (36,18±7,49 mg/kg).

Nel 3° post lavori le concentrazioni erano maggiori presso Bonaccia NW e a breve distanza da essa, in particolare in A5 dove il tenore (369 mg/kg) era risultato pari a oltre 10 volte la media dei riferimenti (27,34±12,86 mg/kg).

Nell'estate 2017 (4° post lavori) la situazione era apparsa simile a quella della campagna precedente, con le concentrazioni più elevate nelle stazioni circostanti la piattaforma e in particolare in BO SE (220,06 mg/kg) e BO NE (194,02 mg/kg).

Nell'inverno 2018 (5° post lavori) è stato registrato il valore più elevato dell'intero periodo di studio in BO SE (410,95 mg/kg), pari a circa 17 volte la media dei controlli (24,79±8,62 mg/kg). Tale anomalia, seppur modesta in valore assoluto, era stata ricondotta alla presenza della piattaforma.

Nell'ultimo survey la situazione appare normalizzata: i picchi registrati sono apparsi molto bassi in valore assoluto e non sufficienti per essere considerati anomalie. La concentrazione in BO SW (64,64 mg/kg) è risultata inferiore alla corrispondente registrata prima dell'installazione della piattaforma (67,05 mg/kg).

Cadmio – Questo metallo è presente nell'area interessata dalla piattaforma in concentrazioni estremamente modeste, sempre notevolmente inferiori all'LCRN, e omogenee, e neanche i lavori di installazione hanno modificato questa situazione. Nell'ultimo monitoraggio i tenori medi sono risultati pari a 0,053±0,007 (transetto A), 0,056±0,005 (transetto B), 0,055±0,011 (BO) e a 0,059±0m011 mg/kg (controlli), pertanto non vi è assolutamente alcun segnale di alterazione dovuto alla presenza di Bonaccia NW.

Tab. 3-VIII - Concentrazioni (mg/kg s.s.; Al e Fe espressi in %) dei metalli in tracce presenti nei sedimenti prelevati nel pre-survey (PS), nel durante lavori (DL) e nei primi quattro monitoraggi post lavori (PL). In rosso le stazioni corrispondenti a Bonaccia NW. Nel durante lavori non è stato possibile campionare il sito BO NE. Si riportano, ove disponibili, anche i Livelli Chimici di Riferimento Nazionali (LCRN) indicati nel DM 173 2016 (tabella 2.5). I valori in grassetto indicano il superamento di tali limiti.

				Allun	inio							Arse	nico							Ba	rio			
											L	CRN =	12 mg/kg	g										
	PS	DL	1° PL	2° PL	3° PL	4° PL	5° PL	6° PL	PS	DL	1° PL	2° PL	3° PL	4° PL	5° PL	6° PL	PS	DL	1° PL	2° PL	3° PL	4° PL	5° PL	6° PL
A1			1,49	1,17	1,17	1,51	1,31	1,37			19,50	12,63	19,43	16,54	20,18	19,19			46,77	34,91	36,07	46,03	38,05	38,10
A2			1,36	1,32	1,01	1,07	1,19	1,26			21,86	11,88	20,60	16,71	18,61	20,52			44,57	48,39	39,24	38,63	38,15	41,28
A3	1,05	1,35	1,10	1,22	0,87	1,05	1,19	1,28	11,33	11,57	20,55	13,20	13,11	17,64	22,21	22,49	34,45	50,25	43,00	48,35	39,86	52,16	47,91	46,82
A4			1,09	1,50	0,86	1,17	1,28	0,96			17,95	11,35	24,08	8,34	12,14	17,35			53,89	57,92	40,51	33,68	38,07	46,62
BO NW	1,24	1,16	1,40	1,10	1,04	1,09	1,26	0,89	8,83	10,19	23,36	18,55	19,60	17,36	20,39	15,58	50,24	187,49	312,83	51,44	112,49	96,75	65,02	76,55
BO SE	1,25	1,32	1,63	1,65	0,89	0,99	0,94	0,90	9,80	11,87	21,07	11,48	9,71	18,59	34,58	19,87	54,80	221,62	172,25	63,89	109,50	220,06	410,95	94,44
A5			1,45	1,68	0,91	0,83	1,16	1,04			21,84	13,31	20,00	18,69	27,05	22,79			61,23	72,59	369,00	58,13	73,98	50,96
A6	1,58	1,19	1,27	1,60	1,08	1,16	1,25	1,32	7,60	13,90	27,20	11,35	16,16	20,06	18,41	22,48	54,31	48,74	47,59	65,24	43,58	50,49	49,90	51,78
A7			1,66	1,36	1,37	0,94	1,55	1,64			23,80	13,68	22,46	20,41	17,92	22,41			65,68	55,72	54,52	46,47	57,94	61,64
A8			2,42	1,68	1,41	1,48	1,34	2,01			14,67	13,13	13,92	9,88	16,35	13,19			155,44	60,09	63,85	91,54	54,54	101,29
B1			1,30	1,43	1,07	1,09	1,30	1,30			21,42	13,81	26,84	18,67	24,36	20,69			35,51	56,02	37,67	46,59	45,71	37,70
B2			0,86	1,52	1,10	1,28	1,23	1,43			22,88	14,53	19,85	17,36	25,89	18,45			32,47	57,51	39,24	55,68	47,48	52,39
В3	1,51	1,25	1,00	1,12	0,95	1,00	1,00	1,14	9,44	13,24	23,93	17,07	15,55	18,06	28,15	20,61	53,09	42,12	44,18	67,19	41,74	45,96	39,77	38,69
B4			1,03	1,16	0,80	1,04	1,08	1,00			23,42	15,52	14,80	19,65	23,97	16,27			60,02	45,00	29,94	72,07	50,21	38,93
BO NE	1,60		1,48	1,50	0,70	0,92	1,10	1,30	7,59		21,54	13,53	16,55	17,14	33,54	9,79	63,71		93,03	53,65	69,32	194,02	60,70	72,13
BO SW	1,49	1,44	1,17	1,60	0,82	0,98	1,07	1,20	9,76	10,40	20,75	11,78	20,43	18,17	20,61	15,38	67,05	215,68	162,38	46,99	57,80	38,51	64,22	64,64
B5			0,98	1,43	0,89	1,01	1,13	1,11			26,10	5,09	21,61	18,99	21,92	18,70			65,04	41,51	58,14	71,20	61,17	50,44
B6	1,89	1,18	1,11	1,23	1,13	0,98	0,98	1,43	7,81	13,33	25,65	15,20	13,19	17,76	22,96	19,85	75,02	47,96	46,14	407,76	51,34	49,79	39,70	66,46
В7			1,12	1,49	1,04	1,30	1,42	1,45			24,34	13,52	17,72	18,29	16,01	19,19			37,35	83,95	33,49	53,36	60,34	48,30
В8			1,23	0,88	1,36	0,94	1,11	1,27			21,27	18,95	18,62	20,88	19,19	18,69			37,54	82,14	39,04	29,05	33,69	34,10
K1	2,14	1,89	1,80	1,31	1,20	1,12	1,41	1,70	4,83	8,02	11,40	10,17	14,66	14,71	18,13	15,35	45,68	42,55	39,37	28,21	24,97	24,85	30,18	34,72
K2	0,84	0,99	1,04	1,27	0,93	1,02	0,85	1,41	9,78	10,60	15,58	13,06	10,97	13,55	13,04	13,91	18,87	28,54	27,29	33,62	21,36	26,85	22,77	35,22
K3	0,68	1,08	1,01	1,27	0,74	0,89	0,62	0,77	6,22	7,72	12,15	15,21	9,81	13,00	12,73	9,04	15,62	34,10	22,86	36,80	17,01	20,91	13,35	17,02
K4	2,58	1,76	2,22	2,19	2,06	1,47	1,54	2,22	3,92	7,21	11,05	5,20	10,06	13,19	15,23	10,14	56,04	39,40	48,04	46,08	45,99	33,90	32,47	48,59

Tab. 3-VIII - Continuo.

				Cadı	mio							Cro	mo]	Rame			
			LO	CRN = 0	,3 mg/k	g					L	CRN =	50 mg/k	g						LCRN	= 40 mg	/kg		
	PS	DL	1° PL	2° PL	3° PL	4° PL	5° PL	6° PL	PS	DL	1° PL	2° PL	3° PL	4° PL	5° PL	6° PL	PS	DL	1° PL	2° PL	3° PL	4° PL	5° PL	6° PL
A1			0,043	0,061	0,051	0,049	0,048	0,057			44,43	39,68	38,06	53,99	41,05	41,83			8,44	6,79	7,92	8,40	6,47	7,76
A2			0,047	0,055	0,046	0,050	0,046	0,062			40,95	42,22	34,29	42,71	38,63	42,19			8,99	8,04	6,77	7,81	6,70	7,77
A3	0,091	0,064	0,045	0,058	0,052	0,044	0,046	0,055	38,27	42,95	35,54	39,97	30,99	43,56	38,30	40,84	7,62	9,60	8,74	8,19	7,96	8,10	6,41	7,91
A4			0,050	0,062	0,045	0,041	0,052	0,049			35,17	43,75	32,84	46,10	41,26	33,57			9,43	7,71	6,98	7,59	8,30	6,66
BO NW	0,088	0,073	0,044	0,043	0,048	0,046	0,048	0,054	42,18	39,75	42,77	36,71	34,72	42,97	38,33	33,74	9,43	11,57	9,10	6,29	6,86	7,47	6,91	7,22
BO SE	0,085	0,076	0,045	0,056	0,052	0,046	0,050	0,044	44,22	44,32	50,37	48,05	31,59	38,15	32,70	31,93	9,45	11,62	13,54	10,24	7,43	6,07	5,20	6,64
A5			0,054	0,058	0,066	0,043	0,050	0,045			42,47	50,99	33,18	35,56	39,35	35,55			8,98	11,71	6,45	5,88	6,83	6,67
A6	0,088	0,059	0,045	0,058	0,050	0,045	0,051	0,047	48,71	41,69	40,53	47,29	34,87	43,31	38,41	41,04	10,46	9,53	10,23	10,40	7,48	6,89	6,66	8,32
A7			0,046	0,059	0,049	0,046	0,057	0,048			47,38	40,80	42,61	38,61	44,12	46,72			11,17	8,45	8,09	6,84	8,79	8,27
A8			0,053	0,056	0,054	0,052	0,054	0,064			61,37	49,21	43,77	50,78	42,92	57,52			14,31	9,15	9,17	10,73	10,23	12,01
B1			0,044	0,053	0,054	0,050	0,051	0,051			39,33	42,65	36,41	42,26	40,38	41,64			9,18	10,04	7,10	7,96	7,23	8,46
B2			0,042	0,050	0,053	0,046	0,048	0,058			31,94	44,80	35,30	47,71	40,38	41,88			6,88	9,21	6,45	8,73	8,16	7,65
В3	0,086	0,060	0,049	0,048	0,057	0,045	0,046	0,052	49,23	42,65	33,97	37,76	33,79	42,27	33,00	37,43	9,76	9,21	9,85	7,43	7,20	7,17	6,78	7,27
B4			0,045	0,053	0,057	0,045	0,055	0,048			34,14	37,76	29,47	41,19	35,78	35,88			9,35	8,18	6,11	7,35	10,23	7,38
BO NE	0,095		0,042	0,051	0,062	0,055	0,052	0,070	51,91		45,22	44,81	26,62	37,86	35,55	40,43	12,07		10,61	8,12	5,70	8,56	6,83	10,33
BO SW	0,087	0,082	0,049	0,054	0,059	0,049	0,046	0,052	48,82	45,30	37,29	46,31	30,17	40,00	33,67	38,00	10,39	13,71	8,75	10,17	6,26	7,53	6,30	7,76
B5			0,047	0,059	0,057	0,053	0,052	0,063			33,64	42,58	31,28	36,33	35,05	35,80			8,77	7,99	5,51	5,46	7,52	6,09
В6	0,085	0,060	0,044	0,051	0,060	0,044	0,046	0,062	59,63	41,05	36,17	39,17	36,37	36,13	33,68	43,17	11,20	9,63	6,69	7,61	8,39	7,16	7,38	8,68
В7			0,048	0,059	0,061	0,045	0,049	0,058			38,32	45,25	35,17	46,24	42,46	44,12			7,87	9,64	6,59	8,83	9,62	7,69
В8			0,050	0,055	0,066	0,045	0,046	0,053			38,27	30,67	40,85	38,35	35,21	39,38			8,58	6,12	7,67	5,59	6,98	7,93
K1	0,112	0,074	0,079	0,050	0,069	0,051	0,054	0,061	63,28	53,54	49,25	39,10	36,43	37,87	41,50	47,18	13,97	12,23	11,52	8,78	7,80	8,04	10,12	10,20
K2	0,087	0,133	0,037	0,052	0,063	0,049	0,048	0,055	32,48	34,77	34,00	40,37	31,73	36,46	29,30	40,22	6,49	7,63	6,30	5,88	6,37	5,13	4,33	7,51
K3	0,069	0,050	0,035	0,056	0,049	0,040	0,033	0,046	34,79	41,69	37,22	41,32	28,23	33,91	24,33	31,57	4,60	6,52	5,95	7,06	4,30	4,04	3,90	3,32
K4	0,101	0,065	0,045	0,062	0,085	0,051	0,061	0,073	70,89	51,67	58,36	59,75	52,64	49,14	43,72	57,31	16,31	12,81	13,87	14,51	11,90	10,23	11,41	12,08

Tab. 3-VIII - Continuo.

	Ferro							Indio							Mercurio									
																LCRN = 0.3 mg/kg								
	PS	DL	1° PL	2° PL	3° PL	4° PL	5° PL	6° PL	PS	DL	1° PL	2° PL	3° PL	4° PL	5° PL	6° PL	PS	DL	1° PL	2° PL	3° PL	4° PL	5° PL	6° PL
A1			1,93	1,66	1,63	2,01	1,63	1,66			< 0,02	< 0,02	< 0,02	< 0,02	< 0,02	< 0,02			0,016	0,017	0,018	0,020	0,018	0,018
A2			1,82	1,75	1,60	1,84	1,75	1,76			< 0,02	< 0,02	< 0,02	< 0,02	< 0,02	< 0,02			0,017	0,020	0,018	0,019	0,019	0,018
A3	1,70	1,84	1,70	1,78	1,45	1,84	1,69	1,76	< 0,02	< 0,02	0,03	< 0,02	< 0,02	< 0,02	< 0,02	< 0,02	0,020	0,014	0,019	0,022	0,018	0,016	0,018	0,020
A4			1,66	1,80	1,48	1,88	1,76	1,55			0,03	< 0,02	< 0,02	< 0,02	< 0,02	< 0,02			0,019	0,019	0,017	0,013	0,012	0,018
BO NW	1,78	1,70	2,01	1,85	1,59	1,91	1,82	1,44	< 0,02	0,03	0,06	< 0,02	< 0,02	< 0,02	< 0,02	< 0,02	0,020	0,012	0,016	0,012	0,019	0,014	0,017	0,016
BO SE	1,97	1,84	2,18	1,96	1,48	1,69	1,61	1,54	< 0,02	0,02	0,02	< 0,02	< 0,02	< 0,02	< 0,02	< 0,02	0,021	0,013	0,020	0,019	0,021	0,017	0,015	0,016
A5			1,87	2,15	1,50	1,69	1,81	1,66			< 0,02	< 0,02	< 0,02	< 0,02	< 0,02	< 0,02			0,019	0,017	0,019	0,016	0,017	0,017
A6	1,97	1,85	1,89	1,95	1,56	1,94	1,70	1,76	< 0,02	< 0,02	< 0,02	< 0,02	< 0,02	< 0,02	< 0,02	< 0,02	0,023	0,014	0,022	0,023	0,021	0,018	0,020	0,022
A7			2,04	1,79	1,74	1,78	1,88	1,84			< 0,02	< 0,02	< 0,02	< 0,02	< 0,02	< 0,02			0,021	0,025	0,023	0,019	0,023	0,021
A8			2,23	2,00	1,74	1,90	1,97	1,90			0,02	< 0,02	< 0,02	< 0,02	< 0,02	< 0,02			0,028	0,024	0,035	0,023	0,022	0,032
B1			1,75	1,91	1,58	1,82	1,82	1,71			< 0,02	< 0,02	< 0,02	< 0,02	< 0,02	< 0,02			0,019	0,022	0,020	0,020	0,018	0,022
B2			1,55	1,95	1,53	2,02	1,92	1,66			< 0,02	< 0,02	< 0,02	< 0,02	< 0,02	< 0,02			0,018	0,026	0,020	0,026	0,019	0,024
В3	2,08	1,81	1,71	1,79	1,52	1,86	1,61	1,63	< 0,02	< 0,02	< 0,02	< 0,02	< 0,02	< 0,02	< 0,02	< 0,02	0,019	0,014	0,016	0,027	0,019	0,023	0,019	0,019
B4			1,67	1,82	1,39	1,82	1,72	1,58			< 0,01	< 0,02	< 0,02	< 0,02	< 0,02	< 0,02			0,018	0,024	0,013	0,017	0,022	0,022
BO NE	2,14		1,94	1,91	1,33	1,77	1,73	1,56	< 0,02		0,03	< 0,02	< 0,02	< 0,02	< 0,02	< 0,02	0,027		0,019	0,022	0,015	0,018	0,019	0,022
BO SW	2,09	1,94	1,84	1,97	1,48	1,89	1,62	1,54	< 0,02	0,02	< 0,02	< 0,02	< 0,02	< 0,02	< 0,02	< 0,02	0,022	0,019	0,016	0,016	0,015	0,016	0,017	0,019
B5			1,71	1,62	1,50	1,69	1,74	1,58			< 0,02	< 0,02	< 0,02	< 0,02	< 0,02	< 0,02			0,017	0,019	0,013	0,015	0,018	0,012
B6	2,34	1,80	1,72	1,80	1,62	1,71	1,72	1,80	< 0,02	< 0,02	< 0,02	< 0,02	< 0,02	< 0,02	< 0,02	< 0,02	0,022	0,014	0,017	0,020	0,020	0,018	0,018	0,023
В7			1,72	1,93	1,59	2,04	1,92	1,73			< 0,02	< 0,02	< 0,02	< 0,02	< 0,02	< 0,02			0,018	0,023	0,017	0,020	0,023	0,021
B8			1,72	1,65	1,73	1,84	1,64	1,65			< 0,02	< 0,02	< 0,02	< 0,02	< 0,02	< 0,02			0,018	0,023	0,021	0,015	0,020	0,021
K1	2,29	2,00	1,88	1,65	1,48	1,67	1,76	1,75	< 0,02	< 0,02	< 0,02	< 0,02	< 0,02	< 0,02	< 0,02	< 0,02	0,027	0,020	0,025	0,020	0,023	0,021	0,026	0,028
K2	1,45	1,48	1,44	1,63	1,32	1,52	1,35	1,58	< 0,02	< 0,02	< 0,02	< 0,02	< 0,02	< 0,02	< 0,02	< 0,02	0,016	0,011	0,017	0,019	0,017	0,015	0,014	0,019
K3	1,19	1,44	1,35	1,77	1,10	1,46	1,07	1,08	< 0,02	< 0,02	< 0,02	< 0,02	< 0,02	< 0,02	< 0,02	< 0,02	0,011	0,008	0,011	0,017	0,010	0,013	0,018	0,010
K4	2,45	1,99	2,23	2,18	1,92	2,05	1,82	1,94	< 0,02	0,02	< 0,02	< 0,02	< 0,02	< 0,02	< 0,02	< 0,02	0,034	0,023	0,025	0,035	0,033	0,023	0,027	0,046

Tab. 3-VIII - Continuo.

	Nichel								Piombo							Silicio								
	LCRN = 30 mg/kg								LCRN = 30 mg/kg															
	PS	DL	1° PL	2° PL	3° PL	4° PL	5° PL	6° PL	PS	DL	1° PL	2° PL	3° PL	4° PL	5° PL	6° PL	PS	DL	1° PL	2° PL	3° PL	4° PL	5° PL	6° PL
A1			35,89	29,67	31,00	38,14	28,91	31,44			11,23	9,77	13,73	11,57	11,92	13,26			172,06	58,69	52,38	19,24	85,57	87,23
A2			33,83	32,56	26,93	34,33	30,79	30,73			13,14	11,01	14,55	12,26	17,17	14,08			130,00	29,82	23,14	22,98	87,07	57,04
A3	30,56	33,78	32,07	32,07	26,92	32,66	27,38	31,60	12,02	10,98	12,23	11,83	13,29	11,18	10,87	14,94	< 5	53,00	95,54	50,80	16,08	4,76	76,68	89,76
A4			29,80	33,33	24,13	36,96	33,30	26,07			10,19	11,93	13,47	10,59	11,58	12,56			116,39	33,37	8,26	7,72	87,40	72,58
BO NW	34,86	31,61	32,67	29,35	27,39	31,31	29,11	25,89	12,59	11,04	12,01	12,92	16,51	12,26	13,93	10,57	< 5	516,96	76,67	26,01	15,06	10,08	98,56	73,22
BO SE	38,32	33,25	40,06	37,69	27,42	28,43	26,17	26,05	12,73	11,86	13,51	12,97	13,37	8,10	10,71	11,85	< 5	476,29	80,71	20,11	12,63	7,85	63,11	62,50
A5			35,41	42,74	25,83	29,13	27,95	26,76			13,46	12,84	16,53	13,60	16,15	13,98			89,26	37,19	11,80	6,64	86,94	82,35
A6	38,47	33,63	36,60	38,43	27,33	33,56	28,70	32,31	13,72	12,55	14,00	12,48	17,30	10,53	10,09	14,53	20,95	133,97	266,14	34,44	9,91	14,67	82,60	66,23
A7			39,30	33,90	32,90	33,21	34,08	33,87			14,37	12,02	18,59	10,54	12,90	14,11			111,07	24,87	12,98	7,95	85,99	107,89
A8			50,87	37,83	35,54	42,84	37,78	43,93			13,97	12,30	15,57	10,51	15,07	14,71			142,39	32,02	23,12	6,25	97,83	79,26
B1			33,79	37,08	31,10	38,72	31,18	33,10			13,19	11,54	15,15	13,94	14,78	13,81			276,42	36,56	17,64	9,15	87,07	83,25
B2			27,60	35,61	27,40	41,94	34,77	30,16			11,90	10,88	14,98	13,82	17,81	12,41			112,35	26,92	16,17	5,22	77,93	81,44
В3	39,56	32,80	31,58	31,18	27,52	36,50	30,34	28,87	13,19	13,07	13,25	10,32	15,46	10,75	15,30	13,92	< 5	27,87	145,34	28,12	5,23	7,81	65,78	68,49
B4			30,68	32,47	23,05	32,96	29,79	27,45			13,12	10,29	12,81	13,00	15,58	9,91			110,42	36,99	7,21	10,54	83,35	86,57
BO NE	45,09		34,66	35,38	22,63	31,26	26,42	31,96	13,80		12,65	10,64	13,12	11,12	12,65	10,95	< 5		67,15	58,94	17,34	94,43	74,77	92,37
BO SW	40,17	36,49	27,48	38,72	23,89	35,74	25,63	27,79	13,07	12,54	10,81	10,60	15,09	10,17	8,34	12,10	< 5	608,78	142,72	34,92	24,38	12,21	84,93	114,88
B5			28,60	36,91	23,16	27,55	27,96	25,55			13,15	6,10	10,64	10,14	13,24	11,88			172,37	59,66	50,09	51,31	60,31	108,42
B6	44,92	33,33	29,54	30,43	29,10	30,76	30,60	33,68	13,53	13,84	12,77	9,76	10,21	7,03	13,08	13,99	26,38	35,18	136,38	60,24	42,29	42,12	42,31	87,39
В7			30,67	34,72	28,15	36,94	36,82	31,17			12,74	10,39	8,90	12,89	16,24	14,71			149,54	63,33	72,31	48,74	43,23	95,00
B8			31,90	26,65	31,85	29,21	27,24	31,07			12,26	9,19	10,47	13,48	12,05	12,67			296,54	64,48	28,76	61,26	39,03	81,09
K1	52,12	42,66	38,47	31,81	30,91	31,94	36,20	36,64	14,75	13,50	13,87	8,40	6,44	8,72	11,73	13,90	11,43	35,03	70,21	66,12	39,39	27,07	46,97	88,45
K2	26,35	26,75	25,46	29,51	25,20	27,51	20,85	29,52	9,54	12,17	9,13	8,19	4,70	4,62	8,67	12,06	< 5	17,66	51,03	55,89	31,61	29,82	41,73	129,92
K3	20,84	24,77	24,10	29,48	17,77	25,14	18,77	18,58	10,76	8,13	7,40	8,76	7,86	6,21	6,21	6,68	< 5	49,48	56,98	64,24	35,79	53,82	35,85	109,11
K4	57,67	42,92	46,91	51,38	43,52	41,78	39,50	43,06	14,94	14,02	12,85	10,15	12,37	16,33	14,67	14,48	34,41	33,46	71,76	48,97	42,12	30,04	50,04	105,39

Tab. 3-VIII - Continuo.

	Vanadio									Zinco								
									LCRN = 100 mg/kg									
	PS	DL	1° PL	2° PL	3° PL	4° PL	5° PL	6° PL	PS	DL	1° PL	2° PL	3° PL	4° PL	5° PL	6° PL		
A1			48,88	42,01	39,74	49,65	37,43	40,17			48,76	38,24	41,04	48,13	42,35	45,38		
A2			46,13	43,33	37,41	41,09	38,07	41,49			43,46	41,75	38,47	43,24	42,56	44,09		
A3	40,22	44,27	40,93	43,50	31,36	42,71	37,36	40,96	52,16	43,54	40,91	41,33	37,03	41,35	41,94	45,44		
A4			39,05	46,21	34,73	43,26	36,63	34,29			39,20	42,93	34,09	44,69	43,26	41,12		
BO NW	41,90	47,97	51,28	45,88	38,70	42,98	39,89	30,69	57,62	42,99	44,96	38,09	38,40	42,28	47,16	39,73		
BO SE	45,19	51,89	54,20	51,57	33,55	39,82	34,69	33,73	63,54	45,91	53,94	47,20	38,77	38,82	39,80	40,12		
A5			47,81	53,67	34,98	37,19	39,49	38,23			45,28	53,62	35,13	35,65	42,03	40,28		
A6	48,35	42,91	44,71	49,48	38,46	45,75	38,54	41,42	64,14	43,93	47,63	48,88	37,30	42,22	41,22	46,44		
A7			51,43	45,81	43,54	39,37	42,36	46,38			52,06	41,37	43,04	39,13	48,84	48,51		
A8			59,03	51,18	43,29	43,33	39,66	46,71			65,04	48,13	45,70	51,40	52,60	59,67		
B1			42,31	47,13	38,36	40,93	40,45	40,25			44,66	46,28	38,59	44,35	43,82	46,23		
B2			36,42	50,85	38,03	45,44	40,07	41,70			37,57	45,55	36,11	49,16	46,32	43,63		
В3	51,51	44,02	40,28	42,85	35,15	41,05	32,61	38,00	66,58	41,54	44,00	39,53	36,82	42,72	40,35	41,65		
B4			40,19	43,38	30,73	42,29	35,04	34,00			41,12	40,84	32,84	41,77	45,68	40,31		
BO NE	49,92		51,23	48,84	30,25	42,16	35,81	33,43	72,05		44,54	44,93	30,92	47,59	41,44	48,82		
BO SW	49,33	55,34	47,38	48,49	35,83	42,47	34,70	36,54	65,60	50,72	64,53	47,14	34,60	41,74	40,09	41,98		
В5			42,17	40,14	36,18	39,53	37,36	37,54			39,35	38,46	32,57	35,33	40,06	39,32		
В6	57,68	41,65	41,57	44,17	38,82	38,13	34,81	43,20	75,20	42,46	38,71	40,29	38,77	38,85	39,57	48,13		
В7			41,83	48,61	37,89	45,96	40,84	43,76			39,25	44,57	37,59	48,08	47,99	44,54		
В8			42,40	41,43	42,95	41,58	34,86	39,38			42,00	39,81	41,81	38,77	38,16	44,04		
K1	56,53	51,07	49,82	41,24	36,39	37,06	38,10	43,20	81,67	53,77	51,08	39,61	39,96	41,45	48,44	50,22		
K2	31,86	34,36	35,18	43,93	30,36	34,68	28,30	37,38	57,11	36,71	35,41	37,29	32,80	35,79	30,73	43,52		
K3	26,36	33,46	32,33	44,44	25,21	31,81	19,45	23,03	41,49	30,53	30,79	37,13	24,41	32,10	24,35	24,63		
K4	62,82	47,04	57,50	55,83	49,88	46,33	37,38	50,30	89,65	54,66	61,42	62,57	56,48	52,31	52,30	59,52		

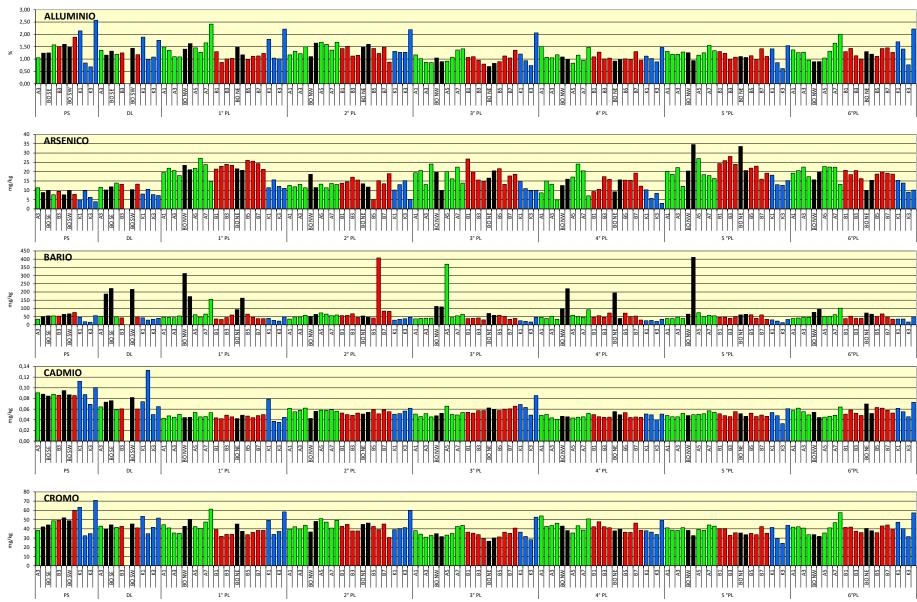


Fig. 3.24 - Concentrazioni (mg/kg; Al e Fe in %) dei metalli pesanti registrate nell'intero periodo. In nero le stazioni corrispondenti alla piattaforma.

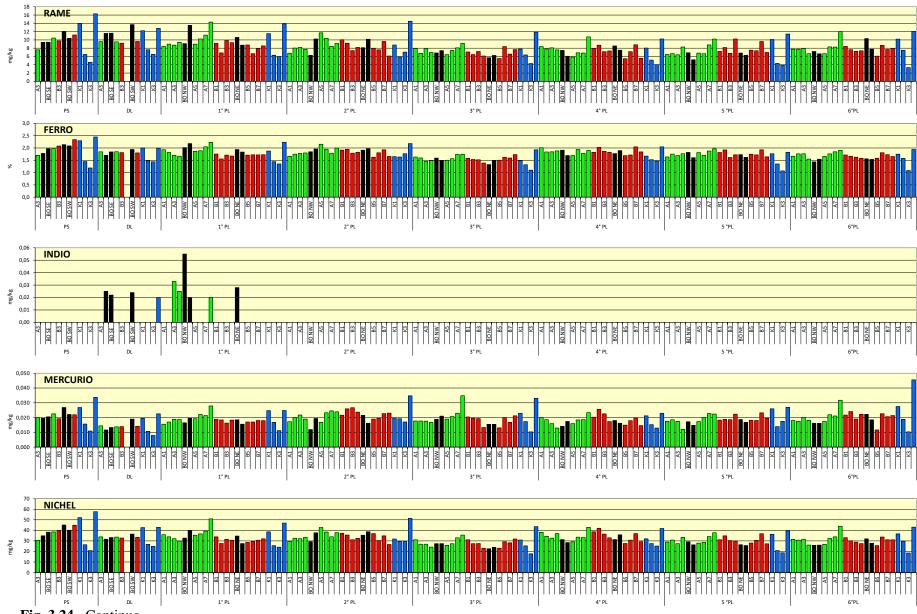


Fig. 3.24 - Continuo.

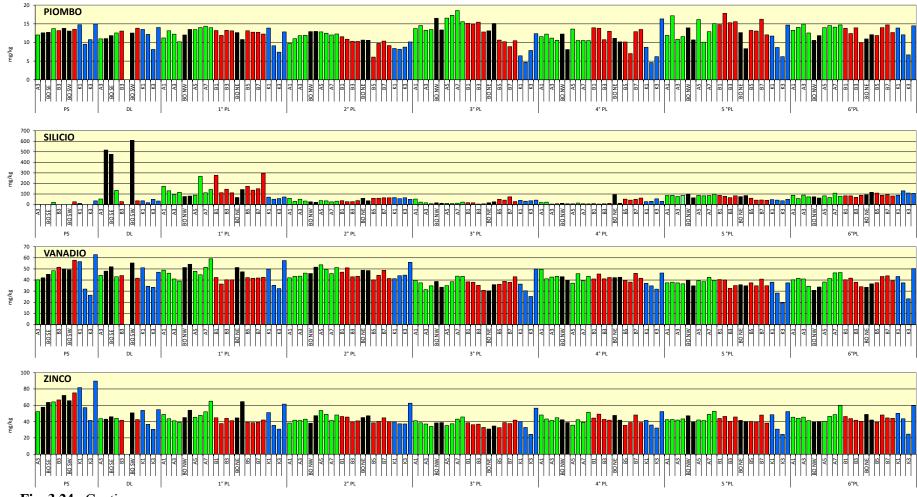


Fig. 3.24 - Continuo.

Cromo – Le concentrazioni di cromo hanno mostrato nel tempo variazioni modeste e sono rimaste, salvo rarissime eccezioni, inferiori all'LCRN.

In tutti i monitoraggi, a partire dal pre-survey, i massimi sono stati sempre rilevati in un controllo o, se in corrispondenza di un sito dei transetti, come nell'ultimo campionamento, il valore è sempre risultato molto simile a quello di un riferimento (nello specifico, A8: 57,52; K4: 57,31 mg/kg).

I dati suggeriscono che questo metallo non è influenzato dalla presenza di Bonaccia NW e che non vi è stato alcun cambiamento nella sua distribuzione a seguito della posa in opera della struttura.

Rame – Le concentrazioni di rame sono sempre state ampiamente al di sotto dell'LCRN, anche nell'ultimo monitoraggio in cui mediamente è stata riscontrata una grande omogeneità (A: 8,17±1,68: B: 7,64±0,80; BO: 7,99±1,63; K: 8,28±3,80 mg/kg) come precedentemente i tenori sono per lo più inferiori a quelli corrispondenti registrati nel presurvey. Inoltre, eccetto nel durante lavori e nel 1° survey post installazione, il massimo (comunque sempre molto basso) è stato registrato in un controllo escludendo un effetto di Bonaccia NW su questo metallo.

Ferro – Come emerso dall'indagine di pre-survey anche questo metallo è presente nell'area di studio in concentrazioni molto modeste, che nel pre-survey erano oscillate tra 1,19% (K3) e il 2,45% (K4). Nessuna variazione è stata indotta dai lavori di installazione, caratterizzati da percentuali di ferro omogenee come in tutto il periodo successivo. Nell'ultimo monitoraggio le concentrazioni medie sono risultate pari a 1,74±0,11% per il transetto A, a 1,67±0,08% per B, a 1,52±0,06% per i siti della piattaforma e a 1,59±0,37% per i controlli. Si esclude un effetto di Bonaccia NW sulla distribuzione di questo metallo.

Indio – Questo metallo è stato rilevato sporadicamente solo durante la realizzazione della piattaforma e nel 1° survey post lavori.

Mercurio – Anche le concentrazioni di mercurio sono sempre risultate molto modeste, ampiamente inferiori all'LCRN. Durante le attività di installazione questo metallo aveva esibito un diffuso decremento, mentre con l'entrata in produzione di Bonaccia NW si era verificato un lieve incremento che, comunque, aveva portato a concentrazioni sempre estremamente inferiori all'LCRN e simili a quelle del pre-survey. Nell'ultimo monitoraggio è stato raggiunto il massimo assoluto dell'intero periodo di indagine nel controllo K4, comunque circa 7 volte inferiore all'LCRN. E' evidente che la presenza della piattaforma non influenza in alcun modo la distribuzione del mercurio nei sedimenti.

Nichel – Nell'estate 2018 le concentrazioni medie di nichel sono risultate del tutto

confrontabili (A: 32,09±5,48; B: 30,13±2,76; BO: 27,92±2,82; K: 31,95±10,49 mg/kg).

Il picco registrato in A8 (43,93 mg/kg), inoltre, è perfettamente in linea con il controllo K4 (43,06 mg/kg). Le concentrazioni rilevate nell'area della piattaforma sono risultate lievemente inferiori rispetto alle corrispondenti del pre-survey, così come quelle di K1 e K4.

Nel tempo il nichel è rimasto più o meno costante. Solo nel 3° post lavori era avvenuto un decremento generalizzato degno di nota, seguito da un aumento nel monitoraggio successivo che aveva portato di nuovo il nichel ai livelli iniziali. Molto spesso è stato superato l'LCRN; già nel pre-survey solo le concentrazioni dei controlli K2 e K3 erano risultate inferiori a tale limite. Nell'ultimo campionamento i tenori sono risultati superiori nei siti posti ad almeno 60 m dalla piattaforma, in BO NE e nei riferimenti K1 e K4.

In generale è possibile affermare che non vi sono segnali di alterazione riconducibili alla presenza di Bonaccia NW.

Piombo – Nell'estate 2018 le concentrazioni di piombo sono risultate modeste, sempre inferiori all'LCRN come sin dal pre-survey, mediamente omogenee (A: 14,02±0,78; B: 12,91±1,54; BO: 11,37±0,72; K: 11,78±3,55 mg/kg) e in linea con quelle registrate prima dell'installazione. Neanche i lavori hanno influenzato la distribuzione di questo metallo.

Nell'inverno 2017 (3° post lavori) erano stati rilevati modesti incrementi, con il raggiungimento del massimo assoluto dell'intero periodo di monitoraggio in A7 (18,59 mg/kg), comunque anch'esso ampiamente inferiore all'LCRN, pertanto non indicatore di accumulo nei sedimenti.

Le variazioni osservate nel tempo rientrano nella naturale dinamica temporale del metallo e non sono imputabili alla presenza di Bonaccia NW.

Silicio – Durante il pre-survey il silicio non era stato quantificato nella maggior parte dei siti, mentre durante i lavori di installazione, rilevato ovunque, aveva mostrato concentrazioni molto eterogenee sia nei siti a 60 m dalla struttura (in A6 era risultato pari a 4 volte la media dei controlli, 11,95±2,67 mg/kg), sia in prossimità della piattaforma, dove la concentrazione media, pari a 534±67,9 mg/kg corrispondeva a circa 16 volte quella dei riferimenti. Anche nel 1° survey post lavori il contenuto di Si è apparso piuttosto variabile e maggiore lungo transetti e nell'area prossima a Bonaccia NW rispetto ai controlli, con picchi in B8 (296,54 mg/kg, pari a 4,8 volte la media dei riferimenti: 62,49±10,12 mg/kg), B1 (276,42 mg/kg; 4,4 volte la media di K) e A6 (266,14 mg/kg; 4,3 volte la media di K). Nell'estate 2016 la variabilità si era notevolmente ridotta e per la prima volta le concentrazioni erano apparse omogenee (A: 37,65±11,35; B: 47,04±16,37; BO:

35,00±17,09; K: 58,50±7,92 mg/kg). Un'elevata variabilità spaziale si è ripresentata nelle due stagioni del 2017, mentre nei due survey del 2018 i tenori sono apparsi maggiormente omogenei. Nel periodo invernale (5° post lavori) essi sono stati tendenzialmente più elevati lungo i transetti e presso la piattaforma rispetto ai controlli, ma tale situazione non è stata confermata in estate (A: 80,29±0,78; B: 86,46±1,54; BO: 85,74±0,72; K: 108,22±3,55mg/kg). Questi risultati confermano che il silicio è ampiamente variabile e che le discrepanze tra concentrazioni rilevate sono imputabili alle sue caratteristiche intrinseche.

Vanadio – Nell'estate 2018 le concentrazioni determinate nei siti A, B e BO sono risultate in linea con i controlli (A: 41,21±4,05; B: 39,73±3,23; BO: 33,60±2,39; K: 38,48±11,58 mg/kg) e con quanto registrato nel pre-survey.

Non sono state rilevate variazioni degne di nota in tutto il periodo, neanche durante le operazioni di installazione.

I dati suggeriscono pertanto che il vanadio non è influenzato dalla presenza di Bonaccia NW.

Zinco – In tutto il periodo di osservazione lo zinco è apparso presente in concentrazioni ampiamente inferiori all'LCRN. Interessante anche il fatto che i tenori maggiori siano stati rilevati nel pre-survey sia nell'area circostante la piattaforma, sia ai controlli. E' anche stata sempre riscontrata una notevole omogeneità. Infatti, solo nel 1° post lavori erano stati rilevati dei lievi picchi in A8 (65,04 mg/kg) e BO SW (64,53 mg/kg), comunque simili al controllo K4 (61,42 mg/kg). Nell'ultimo monitoraggio le concentrazioni medie (A: 46,37±6,01; B: 43,48±2,96; BO: 42,66±4,22; K: 44,47±14,79 mg/kg) hanno confermato l'omogeneità areale di questo metallo. Dunque, neanche lo zinco appare influenzato dalla presenza della piattaforma.

3.3.5. SOSTANZA ORGANICA

Le concentrazioni di sostanza organica determinate nell'estate 2018 lungo i transetti e presso Bonaccia NW sono rientrate nel range dei controlli compreso tra 7930 (K3) e 21661 (K4) mg/kg (Tab. 3-IX e fig. 3.25).

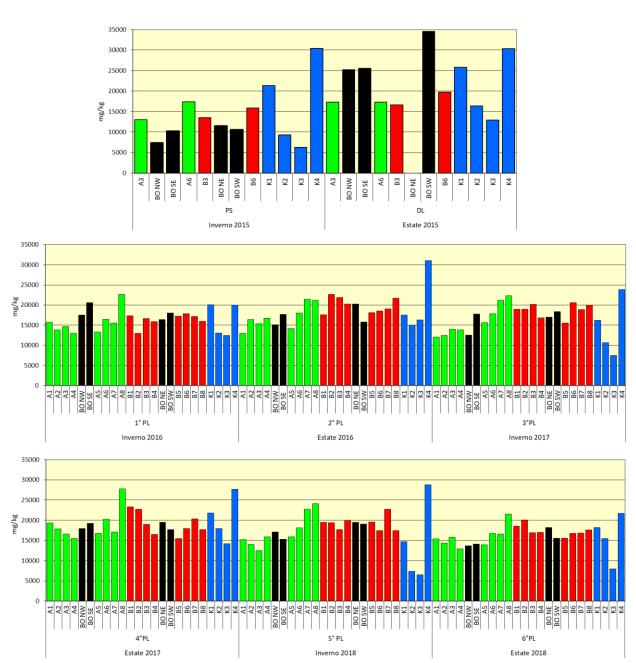
Prima dell'installazione di Bonaccia NW i valori erano apparsi eterogenei, soprattutto ai controlli dove erano state rilevate le concentrazioni minima e massima rispettivamente in K3 (6300 mg/kg) e in K4 (30400 mg/kg).

Con le operazioni di installazione era avvenuto un incremento, notevolmente più

accentuato attorno alla piattaforma, soprattutto in BO NW e BO SW dove i tenori erano oltre 3 volte quelli del pre-survey.

Tab. 3-IX – Concentrazioni di sostanza organica (mg/kg s.s.) rilevate nei sedimenti prelevati nell'intero periodo di indagine. In rosso le stazioni corrispondenti alla piattaforma. Durante i lavori non era stato possibile campionare BO NE. PS = pre-survey; DL = durante lavori di installazione; PL = post lavori.

	PS	DL	1° PL	2° PL	3° PL	4° PL	5° PL	6° PL
	Inv 2015	Est 2015	Inv 2016	Est 2016	Inv 2017	Est 2017	Inv 2018	Est 2018
A1			15690	12934	11991	19278	15177	15408
A2			13813	16371	12473	17824	14033	14351
A3	13000	17300	14724	15387	14027	16607	12461	15849
A4			13004	16732	13808	15433	15910	12949
BO NW	7400	25200	17530	15101	12544	17942	17124	13697
BO SE	10200	25500	20626	17662	17813	19246	15269	14061
A5			13321	14132	15600	16773	15865	13913
A6	17400	17300	16444	18031	17873	20259	18119	16767
A7			15549	21485	21222	17084	22700	16575
A8			22659	21226	22295	27749	24091	21534
B1			17349	17632	18974	23309	19473	18551
B2			12991	22626	18976	22759	19388	20079
В3	13500	16600	16638	21847	20175	18995	17674	16947
B4			15897	20213	16865	16476	20019	17041
BO NE	11500		16382	20295	17026	19522	19508	18231
BO SW	10600	34500	18018	15831	18374	17689	19080	15522
B5			17229	18129	15538	15493	19600	15542
В6	15900	19700	17858	18528	20589	17980	17411	16774
В7			17162	19084	18897	20374	22723	16829
B8			15933	21743	20022	17721	17459	17633
K1	21300	25800	20063	17484	16265	21826	14683	18192
K2	9300	16400	13022	15067	10678	17964	7374	15432
К3	6300	12900	12434	16304	7451	14209	6538	7930
K4	30400	30300	20034	31043	23847	27714	28750	21661


Nel 1° monitoraggio post lavori si era verificata un'inversione di tendenza: complessivamente le concentrazioni erano apparse diffusamente modeste e confrontabili tra transetti, controlli e siti in prossimità di Bonaccia NW. Nell'estate 2016 erano avvenute alcune variazioni rispetto all'inverno precedente ma tutte lievi. Quella di maggiore entità si rilevava nel controllo K4 dove la concentrazione, a seguito di un incremento, era tornata sui livelli del pre-survey e del durante lavori.

Nel 3° survey post lavori il contenuto di sostanza organica lungo i transetti e nei siti BO era rientrato nel range dei controlli e una situazione simile si era verificata anche nel campionamento successivo, caratterizzato da un incremento lungo quasi tutto il transetto A, in alcuni siti di B e in tutti i controlli. Anche nelle stazioni BO la sostanza organica era aumentata eccetto in BO SW.

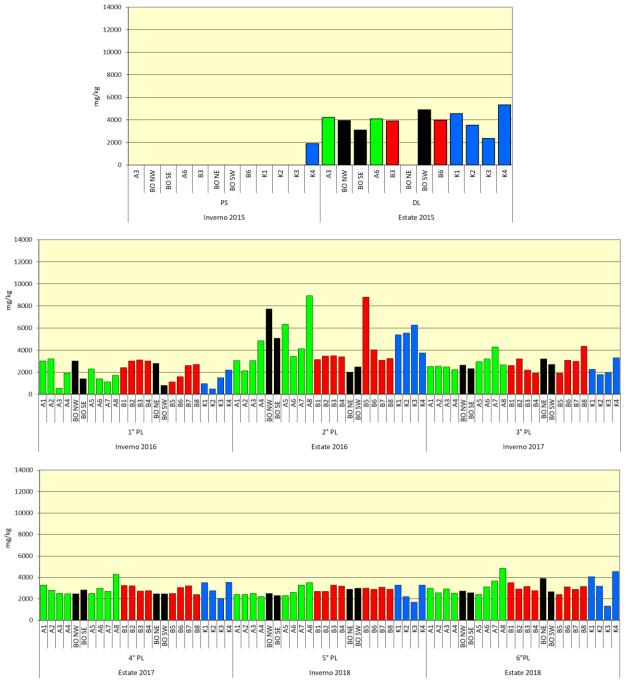
Nell'inverno 2018 la sostanza organica si è ridotta ovunque o è rimasta stabile tranne in A4, A7, B4, B5, B7 BO SW e K4 dove è trascurabilmente aumentata. E la riduzione è

continuata in molte stazioni anche nell'ultimo monitoraggio.

Rispetto al pre-survey la sostanza organica è incrementata nell'area circostante la piattaforma ma, come già detto, i tenori sono comunque in linea con i riferimenti e inferiori al controllo K4.

Fig. 3.25 - Concentrazioni di sostanza organica (mg/kg s.s.) rilevate nei sedimenti prelevati nell'intero periodo di indagine. In nero le stazioni campionate nel sito in cui è installata Bonaccia NW.

3.3.6. TOTAL ORGANIC CARBON (TOC)


Le concentrazioni di TOC determinate nell'estate 2018 lungo i transetti e presso Bonaccia NW sono rientrate nell'intervallo dei controlli, compreso tra 1340 (K3) e 4550 (K4)

mg/kg, eccetto quella di A8 (4840 mg/kg) risultata comunque in linea (Tab. 3-X, fig. 3.26). Nel pre-survey il TOC era stato rilevato unicamente in K4. Durante i lavori di installazione, invece, era apparso variabile nei vari siti ma nell'area circostante la struttura le concentrazioni erano simili a quelle dei controlli eccetto K3.

Una notevole variabilità è stata anche riscontrata dopo l'entrata in produzione di Bonaccia NW. Nel 1° post lavori i tenori erano diffusamente diminuiti, mentre avevano esibito un'impennata nel survey successivo, tanto che le concentrazioni raggiunte sono rimaste le più elevate dell'intero periodo di indagine. Le anomalie maggiori erano state registrate in in A8, B5 e BO NW. Nei survey successivi la situazione si è normalizzata e tale è rimasta sino all'estate 2018; le oscillazioni rilevate sono infatti del tutto compatibili con una naturale fluttuazione. Nel complesso la presenza di Bonaccia NW non sembra influenzare questa variabile.

Tab. 3-X – Total Organic Carbon (TOC) espresso in mg/kg s.s. rilevato nei sedimenti prelevati nei survey effettuati sinora. In rosso le stazioni in corrispondenza della piattaforma Bonaccia NW. Nel durante lavori il sito BO NE non è stato campionato. lq = limite di quantificazione. PS = presurvey; DL = durante lavori di installazione; PL = post lavori.

	PS Inv 2015	DL Est 2015	1° PL Inv 2016	2° PL Est 2016	3° PL Inv 2017	4° PL Est 2017	5° PL Inv 2018	6° PL Est 2018
A1			3000	3050	2500	3300	2500	2920
A2			3200	2120	2550	2810	2200	2540
A3	<loq< td=""><td>4200</td><td>540</td><td>3050</td><td>2480</td><td>2495</td><td>2500</td><td>2730</td></loq<>	4200	540	3050	2480	2495	2500	2730
A4			1900	4850	2220	2455	2300	2580
BO NW	<loq< td=""><td>3920</td><td>3000</td><td>7710</td><td>2640</td><td>2475</td><td>2300</td><td>2400</td></loq<>	3920	3000	7710	2640	2475	2300	2400
BO SE	<loq< td=""><td>3110</td><td>1400</td><td>5080</td><td>2330</td><td>2835</td><td>2600</td><td>3130</td></loq<>	3110	1400	5080	2330	2835	2600	3130
A5			2300	6330	2940	2515	3300	3690
A6	<loq< td=""><td>4080</td><td>1400</td><td>3430</td><td>3210</td><td>2995</td><td>3500</td><td>4840</td></loq<>	4080	1400	3430	3210	2995	3500	4840
A7			1100	4120	4270	2705	2700	3520
A8			1700	8920	2650	4305	2700	2920
B1			2400	3130	2610	3255	3300	3140
B2			3000	3450	3200	3215	3200	2750
В3	<loq< td=""><td>3900</td><td>3100</td><td>3480</td><td>2180</td><td>2740</td><td>2900</td><td>3910</td></loq<>	3900	3100	3480	2180	2740	2900	3910
B4			3000	3390	1900	2755	3000	2670
BO NE	<loq< td=""><td>-</td><td>2800</td><td>1960</td><td>3190</td><td>2475</td><td>3000</td><td>2410</td></loq<>	-	2800	1960	3190	2475	3000	2410
BO SW	<loq< td=""><td>4910</td><td>790</td><td>2460</td><td>2700</td><td>2460</td><td>2900</td><td>3110</td></loq<>	4910	790	2460	2700	2460	2900	3110
B5			1100	8810	1920	2500	3100	2900
B6	<loq< td=""><td>3970</td><td>1600</td><td>4010</td><td>3070</td><td>3050</td><td>2900</td><td>3160</td></loq<>	3970	1600	4010	3070	3050	2900	3160
В7			2600	3080	2990	3235	3300	4050
B8			2700	3230	4350	2410	2200	3200
K1	<loq< td=""><td>4560</td><td>960</td><td>5400</td><td>2260</td><td>3525</td><td>1700</td><td>1340</td></loq<>	4560	960	5400	2260	3525	1700	1340
K2	<loq< td=""><td>3530</td><td>470</td><td>5540</td><td>1780</td><td>2767</td><td>3300</td><td>4550</td></loq<>	3530	470	5540	1780	2767	3300	4550
К3	<loq< td=""><td>2350</td><td>1500</td><td>6270</td><td>1940</td><td>2045</td><td>2500</td><td>2920</td></loq<>	2350	1500	6270	1940	2045	2500	2920
K4	1900	5330	2200	3740	3290	3560	2200	2540

Fig. 3.26 - Total Organic Carbon (TOC) espresso in mg/kg s.s. rilevato nei sedimenti prelevati nell'intero periodo di indagine. In nero le stazioni corrispondenti alla piattaforma.

3.4. ECOTOSSICOLOGIA DEI SEDIMENTI

3.4.1. Dunaliella tertiolecta

QA-QC - Nell'estate 2018 il valore della EC₅₀ con $K_2Cr_2O_7$ (14,99 mg/l come cromo, LC=14,77 mg/l e UC=15,18 mg/l) sono rientrati nei limiti della carta di controllo intralaboratorio; i coefficienti di variazione tra le repliche nei campioni non diluiti, alla massima concentrazione, sono risultati conformi in quanto inferiori al 15%. La crescita algale nei controlli è sempre stata superiore rispetto al limite minimo consentito (fattore ≥16).

<u>Risultati del saggio</u> - I risultati del saggio relativo all'estate 2018 indicano l'assenza di un effetto tossico ovunque non essendo stata rilevata un'inibizione della crescita algale (Tab. 3-XI).

Tab. 3-XI - Parametri di contorno e risultati del saggio di tossicità con *D. tertiolecta* nel 6° survey post lavori. In rosso il sito della piattaforma.

campione	pН	Salinità (‰)	ΔG (%) 72 h	EC ₅₀ % (L.C. 95%)	EC ₂₀ % (L.C. 95%)	Tossicità
BO SE	7,95	34	-0,36	≥90	>100%	Assente
A3	7,93	34	-4,52	≥90	>100%	Assente
A6	7,90	34	5,01	≥90	>100%	Assente
В3	8,02	34	-1,97	≥90	>100%	Assente
В6	7,98	34	3,40	≥90	>100%	Assente
K1	7,92	34	1,25	≥90	>100%	Assente
K2	7,89	35	4,74	≥90	>100%	Assente
K3	7,83	34	10,65	≥90	>100%	Assente
K4	7,98	34	0,18	≥90	>100%	Assente

Confronto con i survey precedenti - Non si rilevano variazioni (Tab. 3-XII).

Tab. 3-XII – Risultati del test di tossicità eseguito con *D. tertiolecta* nei survey sinora condotti. In rosso la stazione in corrispondenza della piattaforma. PS = pre-survey; DL = durante lavori di installazione; PL = post lavori.

	PS Inv 2015	DL Est 2015	1° PL Inv 2016	2° PL Est 2016	3° PL Inv 2017	4° PL Est 2017	5° PL Inv 2018	6° PL Est 2018
BO SE	Assente	Assente	Assente	Assente	Assente	Assente	Assente	Assente
A3	Assente	Assente	Assente	Assente	Assente	Assente	Assente	Assente
A6	Assente	Assente	Assente	Assente	Assente	Assente	Assente	Assente
В3	Assente	Assente	Assente	Assente	Assente	Assente	Assente	Assente
B6	Assente	Assente	Assente	Assente	Assente	Assente	Assente	Assente
K1	Assente	Assente	Assente	Assente	Assente	Assente	Assente	Assente
K2	Assente	Assente	Assente	Assente	Assente	Assente	Assente	Assente
К3	Assente	Assente	Assente	Assente	Assente	Assente	Assente	Assente
K4	Assente	Assente	Assente	Assente	Assente	Assente	Assente	Assente

3.4.2. VIBRIO FISCHERI (SISTEMA MICROTOX®)

<u>QA-QC</u> – Nell'estate 2018 il valore della EC₅₀ a 15'=9,94 mg/l (LC=7,68 e UC=12,87) è rientrato nei limiti della carta di controllo del laboratorio.

<u>Risultati del test</u> – Tutti gli elutriati estratti dai sedimenti campionati nel 6° survey post lavori sono risultati privi di tossicità (Tab. 3-XIII).

<u>Confronto con i survey precedenti</u> - Non si rilevano variazioni (Tab. 3-XIV).

Tab. 3-XIII - Risultati del saggio biologico *V. fischeri* relativo al 6° survey post lavori. In rosso la stazione corrispondente a Bonaccia NW.

campione	pН	Salinità (‰)	% Effetto (15')	% Effetto (30')	EC ₂₀ (15/30')	EC ₅₀ (15/30')	Tossicità
BO SE	7,95	34	2,36	5,15	>90	>90	Assente
A3	7,93	34	6,53	7,49	>90	>90	Assente
A6	7,90	34	5,74	7,01	>90	>90	Assente
В3	8,02	34	6,14	7,15	>90	>90	Assente
В6	7,98	34	6,24	6,55	>90	>90	Assente
K1	7,92	34	7,12	8,96	>90	>90	Assente
K2	7,89	35	5,15	6,59	>90	>90	Assente
К3	7,83	34	7,55	10,21	>90	>90	Assente
K4	7,98	34	5,95	6,28	>90	>90	Assente

Tab. 3-XIV – Risultati del test di tossicità eseguito con *V. fischeri* nei survey condotti sinora. In rosso la stazione in corrispondenza della piattaforma. PS = pre-survey; DL = durante lavori di installazione; PL = post lavori.

_	PS Inv 2015	DL Est 2015	1° PL Inv 2016	2° PL Est 2016	3° PL Inv 2017	4° PL Est 2017	5° PL Inv 2018	6° PL Est 2018
BO SE	Assente	Assente	Assente	Assente	Assente	Assente	Assente	Assente
A3	Assente	Assente	Assente	Assente	Assente	Assente	Assente	Assente
A6	Assente	Assente	Assente	Assente	Assente	Assente	Assente	Assente
В3	Assente	Assente	Assente	Assente	Assente	Assente	Assente	Assente
B6	Assente	Assente	Assente	Assente	Assente	Assente	Assente	Assente
K1	Assente	Assente	Assente	Assente	Assente	Assente	Assente	Assente
K2	Assente	Assente	Assente	Assente	Assente	Assente	Assente	Assente
К3	Assente	Assente	Assente	Assente	Assente	Assente	Assente	Assente
K4	Assente	Assente	Assente	Assente	Assente	Assente	Assente	Assente

3.4.3. COROPHIUM ORIENTALE

Nell'estate 2018 la sensibilità rilevata degli organismi verso il tossico di riferimento $(CdCl_2)$ $LC_{50} = 3,43$ (LC = 3,11 mg/l e UC = 3,79 mg/l) è rientrata nella carta di controllo di laboratorio. La sopravvivenza degli organismi sul sedimento di controllo dopo 10 gg è risultata conforme, in quanto superiore al 85%. In Tab. 3-XV sono indicati i principali parametri chimici e fisici misurati all'inizio e alla fine del test eseguito nel 6° survey post lavori.

<u>Risultati del test</u> - Nel 6° survey post lavori non è stata rilevata alcuna tossicità (Tab. 3-XVI).

<u>Confronto con i survey precedenti</u> - Nell'intero periodo sono stati evidenziati solo deboli segnali di tossicità che hanno interessato solo o anche i controlli, con la sola eccezione del 3° survey post lavori di installazione (Tab. 3-XVII).

Tab. 3-XV – Parametri chimici e fisici dell'acqua sovrastante il sedimento testato osservati all'inizio e alla fine del test relativo al 6° survey post lavori. In rosso il sito sulla piattaforma.

iono		Iniz	io del te	est			Fi	ne del t	est	
campione	T (°C)	Salinità (%)	pН	NH_4^+ (mg/l)	O ₂ (%)	T (°C)	Salinità (%)	pН	NH ₄ ⁺ (mg/l)	O ₂ (%)
Controllo		36	8,15	0			36	8,13	1	
BO SE		36	8,01	0,5			37	8,04	0,5	
A3		36	8,03	0			37	8,00	0	
A6		36	8,02	0	. 05	16 ± 1	37	8,03	0	
В3	15 . 1	36	8,00	0			37	8,08	0	. 05
В6	15 ± 1	35	8,01	0	> 85		37	8,00	0	> 85
K1		36	8,20	0			37	8,02	0	
K2		36	8,01	0			37	8,01	0	
K3		36	8,03	0			37	8,01	0	
K4		36	8,02	0			37	8,02	0	

Tab. 3-XVI - Percentuali di mortalità degli organismi *C. orientale* osservati nel test di tossicità acuta relativo al 6° survey post lavori. In rosso il sito corrispondente a Bonaccia NW.

Campione	N. organismi esposti	% organismi morti (± dev. st. %)	% (corretta) organismi morti	Tossicità
Controllo	100	1 ± 0.80	0	-
BO SE	100	$8 \pm 1,30$	7	Assente
A3	100	4 ± 1,30	3	Assente
A6	100	$2 \pm 2,31$	1	Assente
В3	100	$7 \pm 2,00$	6	Assente
B6	100	$2 \pm 2{,}31$	1	Assente
K1	100	$2 \pm 2,31$	1	Assente
K2	100	6 ± 2,31	5	Assente
K3	100	5 ± 3,83	4	Assente
K4	100	6 ± 2,31	5	Assente

Tab. 3-XVII – Risultati del test di tossicità eseguito con *C. orientale* nei survey sinora condotti. In rosso il sito corrispondente alla piattaforma. PS = pre-survey; DL = durante lavori; PL = post lavori.

	PS Inv 2015	DL Est 2015	1° PL Inv 2016	2° PL Est 2016	3° PL Inv 2017	4° PL Est 2017	5° PL Inv 2018	6° PL Est 2018
BO SE	Assente	Assente	Assente	Assente	Assente	Assente	Assente	Assente
A3	Assente	Assente	Assente	Assente	Assente	Assente	Assente	Assente
A6	Assente	Assente	Assente	Bassa	Assente	Assente	Assente	Assente
В3	Assente	Assente	Assente	Assente	Bassa	Assente	Assente	Assente
B6	Assente	Assente	Assente	Assente	Assente	Assente	Assente	Assente
K1	Assente	Assente	Assente	Bassa	Assente	Assente	Assente	Assente
K2	Assente	Assente	Assente	Bassa	Assente	Assente	Assente	Assente
K3	Assente	Assente	Assente	Assente	Assente	Assente	Assente	Assente
K4	Assente	Assente	Bassa	Bassa	Assente	Assente	Assente	Assente

3.4.4. Crassostrea gigas

QA-QC - Il test eseguito nell'estate 2018 con la sostanza di riferimento ha prodotto una EC_{50} di 9,83µg/l di Cu (LC=9,13 e UC=10,57) che rientra nei limiti della carta di controllo; la percentuale media di larve D-shape normalmente sviluppate nel controllo (85±0,58%) è risultata superiore al limite del 70%.

<u>Risultati del saggio</u> - Nell'estate 2018 la tossicità è risultata bassa lungo i transetti e in due controlli. Altrove, incluso il sito della piattaforma, non è stata rilevata tossicità (Tab. 3-XVIII).

Tab. 3-XVIII - Risultati relativi al saggio di tossicità con *C. gigas* nei campioni prelevati nel 6° survey post lavori. In rosso il sito corrispondente alla piattaforma Bonaccia NW.

campione	Concentrazione	% media di larve normali ± dev.st	% media di larve malformate	Correzione Abbott larve malformate	EC ₂₀ (%)	EC ₅₀ (%)	Tossicità
Controllo		$84 \pm 0,58$	16	0			
	100	$70 \pm 2,00$	30	17			
BO SE	50	$77 \pm 1,73$	23	9	≥90	≥100	Assente
	25	$82 \pm 1,53$	18	3			
	100	$61 \pm 1{,}15$	39	28			
A3	50	$71 \pm 1,53$	29	15	68,3	≥100	Bassa
	25	$81 \pm 1,73$	19	4			
	100	$63 \pm 1,53$	37	25			
A6	50	$64 \pm 2,08$	28	15	74,4	≥100	Bassa
	25	$80 \pm 1,53$	20	5			
	100	$58 \pm 1,53$	42	31			
В3	50	$68 \pm 2{,}08$	32	19	59,6	≥100	Bassa
	25	$81 \pm 1{,}15$	19	4			
	100	$61 \pm 1,73$	39	28			
B6	50	$71 \pm 1,53$	29	16	67,5	≥100	Bassa
	25	$81 \pm 2,08$	19	4			
	100	$54 \pm 1{,}53$	46	36			
K1	50	$65 \pm 1,73$	35	23	62	≥100	Bassa
	25	$80 \pm 2,08$	20	6			
	100	$75 \pm 1,00$	25	11			
K2	50	$80 \pm 0,58$	20	6	≥90	≥100	Assente
	25	$83 \pm 1,15$	17	1			
	100	$69 \pm 1,00$	31	18			
K3	50	$77 \pm 2,08$	23	8	≥90	≥100	Assente
	25	$82 \pm 1,53$	18	3			
	100	$61 \pm 0,58$	39	28			
K4	50	$72 \pm 1,53$	28	15	67,3	≥100	Bassa
	25	$79 \pm 1,53$	21	7			

Confronto con i survey precedenti - Nell'arco dell'indagine la presenza di tossicità ha interessato sia i transetti, sia i controlli, senza tuttavia dare evidenza di un peggioramento delle condizioni dell'area a seguito della posa della piattaforma (Tab. 3-XIX). Durante i lavori nell'area circostante la struttura era stata rilevata tossicità bassa e media rispettivamente in A3 e A6, ma contemporaneamente anche nei controlli K1 e K4. Nel 1° survey dopo i lavori tutti i sedimenti analizzati (tranne in corrispondenza di Bonaccia NW)

inclusi i riferimenti avevano esibito tossicità bassa e media. La situazione era andata progressivamente migliorando, tanto che nel 3° post lavori la tossicità (bassa) era apparsa limitata ai controlli K2 e K3.

Nei tre survey successivi, invece, si è avuto un lieve peggioramento lungo i transetti, soprattutto nell'estate 2018 ma, anche in questo caso, la situazione è apparsa del tutto analoga a quella riscontrata nelle aree di controllo.

Va sottolineato che presso Bonaccia NW non è mai stata rilevata alcuna tossicità.

Tab. 3-XIX – Risultati del test di tossicità eseguito con *C. gigas* nell'intero periodo di indagine. In rosso la stazione in corrispondenza della piattaforma. PS = pre-survey; DL = durante lavori; PL = post lavori.

	PS Inv 2015	DL Est 2015	1° PL Inv 2016	2° PL Est 2016	3° PL Inv 2017	4° PL Est 2017	5° PL Inv 2018	6° PL Est 2018
BO SE	Assente	Assente	Assente	Assente	Assente	Assente	Assente	Assente
A3	Assente	Assente	Media	Assente	Assente	Bassa	Assente	Bassa
A6	Assente	Bassa	Media	Media	Assente	Assente	Bassa	Bassa
В3	Assente	Media	Bassa	Bassa	Assente	Bassa	Assente	Bassa
B6	Assente	Assente	Bassa	Bassa	Assente	Bassa	Bassa	Bassa
K1	Assente	Bassa	Bassa	Assente	Assente	Bassa	Bassa	Bassa
K2	Assente	Assente	Bassa	Assente	Bassa	Assente	Assente	Assente
К3	Assente	Assente	Media	Bassa	Bassa	Assente	Assente	Assente
K4	Assente	Media	Bassa	Bassa	Assente	Assente	Assente	Bassa

3.4.5. RICERCA DI METALLI PESANTI IN HEDISTE DIVERSICOLOR

I parametri chimici e fisici dell'acqua sovrastante il sedimento, registrati all'inizio e al termine del test effettuato nel 6° survey post lavori, sono riportati in Tab. 3-XX, mentre in Tab. 3-XXI sono indicate le mortalità degli organismi osservate, risultate tutte inferiori a quella del controllo.

<u>Risultati del saggio</u> - In Tab. 3-XXI sono riportate le concentrazioni dei metalli pesanti rilevate nel bianco (tempo 0') e quelle rilevate nei tessuti di *H. diversicolor* esposti ai sedimenti testati per 28 gg nell'estate 2018, mentre la Tab. 3-XXII mostra le differenze tra le concentrazioni dei metalli pesanti rilevate nei tessuti di *H. diversicolor* dopo l'esposizione ai sedimenti testati e quelle determinate nel bianco (0').

E' stato rilevato un bioaccumulo diffuso di **arsenico** e uno meno esteso spazialmente di **mercurio**, enrambi indipendenti dalla presenza della piattaforma avendo interessato anche i controlli. Il bioaccumulo di **bario** invece, essendo stato osservato esclusivamente nell'area circostante Bonaccia NW, è sicuramente correlabile ad essa. Tutti gli altri metalli ricercati o non sono stati rilevati, o hanno presentato negli organismi testati sui sedimenti campionati concetranzioni inferiori a quelle del bianco.

Tab. 3-XX - Parametri (chimico-fisici) dell'acqua sovrastante il sedimento, registrati all'inizio ed al termine del test di bioaccumulo condotto nel 6° survey post lavori. In rosso è evidenziata la stazione corrispondente alla piattaforma.

		Ir	nizio del te	st			F	ine del tes	it	
campione	Temp. (°C)	Salinità (%)	pН	NH ₄ ⁺ (mg/l)	O ₂ (%)	Temp.	Salinità (%)	pН	NH ₄ ⁺ (mg/l)	O ₂ (%)
Controllo		35	7,80	0,5-1			34	8,18	0,5	
BOSE		36	8,03	0,5-1			35	8,07	0,5	
A3		36	8,07	0			35	8,00	0	
A6		36	8,06	0		15 ± 1	35	8,01	0	
В3	15 ± 1	36	8,01	0	> 85		35	8,00	0	> 85
B6	13 ± 1	36	8,00	0	> 83		35	8,01	0	> 85
K1		36	8,03	0			35	8,01	0	
K2		36	8,02	0			35	8,01	0	
K3		36	8,03	0			35	8,08	0	
K4		36	8,03	0			35	8,06	0	

Tab. 3-XXI - Percentuali di mortalità degli organismi *H. diversicolor* osservate nel test di bioaccumulo condotto nel 6° survey post lavori. In rosso è evidenziata la stazione corrispondente alla piattaforma.

Campione	Numero degli organismi esposti	% degli organismi morti (± dev.st %)
Controllo	24	$90 \pm 8,25$
BO SE	24	$48 \pm 8,25$
A3	24	43 ± 0.00
A6	24	$38 \pm 8,25$
В3	24	$43 \pm 8,25$
В6	24	$33 \pm 8,25$
K1	24	$33 \pm 8,25$
K2	24	$62 \pm 8{,}25$
K3	24	57 ± 0,00
K4	24	$48 \pm 8{,}25$

Tab. 3-XXII - Concentrazioni (mg/kg; Al espresso in %) dei metalli pesanti rilevate nei tessuti di *H. diversicolor* nel 6° survey post lavori. In rosso è evidenziata la stazione corrispondente a Bonaccia NW. Bianco = organismi analizzati al tempo 0, prima dell'esposizione al sedimento da testare. Controllo = organismi sottoposti per 28 gg a un sedimento di controllo. n.r. = non rilevabile.

	Al	As	Ba	Cd	Cr	Cu	Fe	Ni	In	Pb	Si	V	Zn	Hg
Bianco	n.r.	0,63	n.r.	0,109	n.r.	21,25	377,75	4,17	n.r.	0,60	104,64	n.r.	145,27	0,084
Controllo	n.r.	0,70	n.r.	0,098	n.r.	23,06	370,25	2,91	n.r.	0,69	72,17	n.r.	188,73	0,119
BO SE	n.r.	10,91	16,28	0,062	n.r.	12,40	373,14	2,52	n.r.	0,63	91,98	n.r.	161,86	0,111
A3	n.r.	10,53	2,52	0,073	n.r.	35,66	351,74	3,20	n.r.	0,41	93,18	n.r.	138,95	0,098
A6	n.r.	10,14	3,81	0,069	n.r.	12,68	321,21	3,03	n.r.	0,48	95,33	n.r.	134,16	0,071
В3	n.r.	13,99	4,62	0,068	n.r.	17,71	364,92	4,22	n.r.	0,68	103,39	n.r.	148,14	0,119
В6	n.r.	9,98	5,08	0,068	n.r.	15,01	378,30	2,67	n.r.	0,45	92,78	n.r.	156,76	0,124
K1	n.r.	10,79	n.r.	0,069	n.r.	13,00	355,10	1,89	n.r.	0,45	79,83	n.r.	133,63	0,119
K2	n.r.	10,70	n.r.	0,053	n.r.	12,77	343,62	1,44	n.r.	0,48	90,62	n.r.	145,36	0,097
K3	n.r.	9,21	n.r.	0,054	n.r.	14,49	385,28	2,69	n.r.	0,50	98,97	n.r.	149,78	0,115
K4	n.r.	9,39	n.r.	0,064	n.r.	14,62	352,09	3,66	n.r.	0,56	103,25	n.r.	158,87	0,088

Tab. 3-XXIII - Differenze tra le concentrazioni dei metalli pesanti rilevate nei tessuti di *H. diversicolor* esposti al sedimento di controllo e ai sedimenti da testare e il bianco (0'). In rosso è evidenziata la stazione corrispondente alla piattaforma. In grassetto sono evidenziati i valori che indicano bioaccumulo da parte degli organismi. (bianco = organismi spurgati/non esposti ai sedimenti testati; controllo = organismi esposti al sedimento di controllo). n.c. = non calcolabile.

	Al	As	Ba	Cd	Cr	Cu	Fe	Ni	In	Pb	Si	V	Zn	Hg
Controllo	n.c.	0,07	n.c.	-0,01	n.c.	1,81	-7,50	-1,25	n.c.	0,09	-32,47	0,02	43,47	0,035
BO SE	n.c.	10,28	15,68	-0,046	n.c.	-8,85	-4,61	-1,64	n.c.	0,03	-12,66	n.c.	16,60	0,027
A3	n.c.	9,90	1,93	-0,036	n.c.	14,41	-26,01	-0,96	n.c.	-0,19	-11,46	n.c.	-6,32	0,014
A6	n.c.	9,51	3,22	-0,039	n.c.	-8,57	-56,54	-1,14	n.c.	-0,13	-9,31	n.c.	-11,11	-0,013
В3	n.c.	13,36	4,02	-0,040	n.c.	-3,54	-12,83	0,05	n.c.	0,07	-1,25	n.c.	2,87	0,035
В6	n.c.	9,35	4,48	-0,040	n.c.	-6,24	0,55	-1,49	n.c.	-0,15	-11,86	n.c.	11,49	0,040
K1	n.c.	10,16	n.c.	-0,040	n.c.	-8,26	-22,65	-2,27	n.c.	-0,16	-24,81	n.c.	-11,64	0,035
K2	n.c.	10,07	n.c.	-0,056	n.c.	-8,48	-34,13	-2,72	n.c.	-0,12	-14,02	n.c.	0,09	0,013
К3	n.c.	8,58	n.c.	-0,055	n.c.	-6,76	7,53	-1,48	n.c.	-0,10	-5,67	n.c.	4,51	0,031
K4	n.c.	8,76	n.c.	-0,045	n.c.	-6,64	-25,66	-0,51	n.c.	-0,04	-1,39	n.c.	13,60	0,004

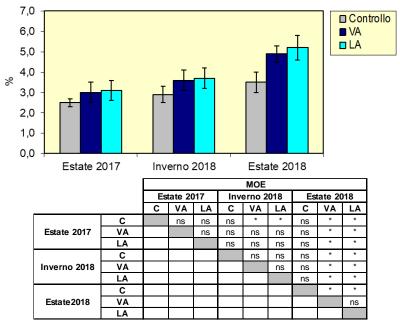
<u>Confronto con i survey precedenti</u> – Il fenomeno del bioaccumulo è apparso nel complesso trascurabile (Tab. 3-XXIV). Ha interessato alcuni metalli in maniera sporadica (**rame**, **cadmio**, **cromo**, **ferro**, **piombo**, **vanadio** e **zinco**), altri in modo più continuo.

Il **silicio** ha alternato periodi di bioaccumulo molto diffuso ad altri di completa assenza di accumulo, come l'ultimo survey. Questo elemento conferma dunque la sua elevata variabilità riscontrata anche nelle indagini sui sedimenti e, nel contempo, la sua grande abbondanza in natura.

Nichel e **mercurio** sono risultati bioaccumulati diffusamente nella maggior parte dei test eseguiti, anche nel pre-survey ad indicare, anche per loro, l'estraneità della piattaforma al fenomeno. L'**arsenico** è stato accumulato negli organismi test nel 1° survey post lavori di installazione e negli ultimi tre ma, analogamente ai due metalli precedentemente descritti, il fenomeno ha sempre riguardato almeno un sito di controllo e, dunque, non può essere direttamente correlato alla piattaforma.

Un cenno particolare merita il **bario** che, a differenza dei survey precedenti, nell'estate 2018 è risultato accumulato negli organismi testati con i sedimenti provenienti dei siti A e B e, soprattutto, con quello proveniente dal sito della piattaforma, suggerendo una sua origine antropica.

Tab. 3-XXIV - Confronto tra le differenze delle concentrazioni dei metalli pesanti con il bianco rilevate nel pre-survey (PS), nel durante lavori (DL) e nei primi sei monitoraggi post lavori (PL). Per una più immediata lettura il bioaccumulo è indicato dalle caselle rosse, mentre le concentrazioni inferiori o confrontabili con il bianco sono indicate in verde. n.c. = non calcolabile in quanto il metallo è risultato non rilevabile.


				A	Al							A	\S							E	a							C	d			
	PS	DL	1° PL			4° PL	5° PL	6° PL	PS	DL	1° PL			4° PL	5° PL	6° PL	PS	DL	1° PL			4° PL	5° PL	6° PL	PS	DL	1° PL			4° PL	5° PL	6° PL
BO SE	n.c.	n.c.	n.c.	n.c.	n.c.	n.c.	n.c.	n.c.	- ~							,	n.c.	n.c.	n.c.	n.c.		n.c.	n.c.									
A3	n.c.	n.c.	n.c.	n.c.	n.c.	n.c.	n.c.	n.c.									n.c.	n.c.	n.c.	n.c.	n.c.	n.c.	n.c.									
A6	n.c.	n.c.	n.c.	n.c.	n.c.	n.c.	n.c.	n.c.									n.c.	n.c.	n.c.	n.c.	n.c.	n.c.	n.c.									
В3	n.c.	n.c.	n.c.	n.c.	n.c.	n.c.	n.c.	n.c.									n.c.	n.c.	n.c.	n.c.	n.c.	n.c.	n.c.									
В6	n.c.	n.c.	n.c.	n.c.	n.c.	n.c.	n.c.	n.c.									n.c.	n.c.	n.c.	n.c.	n.c.	n.c.	n.c.									
K1	n.c.	n.c.	n.c.	n.c.	n.c.	n.c.	n.c.	n.c.									n.c.	n.c.	n.c.	n.c.	n.c.	n.c.	n.c.	n.c.								
K2	n.c.	n.c.	n.c.	n.c.	n.c.	n.c.	n.c.	n.c.									n.c.	n.c.	n.c.	n.c.	n.c.	n.c.	n.c.	n.c.								
K3	n.c.	n.c.	n.c.	n.c.	n.c.	n.c.	n.c.	n.c.									n.c.	n.c.	n.c.	n.c.		n.c.	n.c.	n.c.								
K4	n.c.	n.c.	n.c.	n.c.	n.c.	n.c.	n.c.	n.c.									n.c.	n.c.	n.c.	0,04	n.c.	n.c.	n.c.	n.c.								
				(Cr							(Cu							F	e							N	li			
	PS	DL	1° PL		3° PL	4° PL	5° PL	6° PL	PS	DL	1° PL			4° PL	5° PL	6° PL	PS	DL	1° PL			4° PL	5° PL	6° PL	PS	DL	1° PL			4° PL	5° PL	6° PL
BO SE	n.c.		n.c.	n.c.	n.c.	n.c.	n.c.	n.c.																								
A3	n.c.	n.c.	n.c.	n.c.	n.c.	n.c.	n.c.	n.c.																								
A6	n.c.	n.c.	n.c.	n.c.	n.c.	n.c.	n.c.	n.c.																								
В3	n.c.	n.c.	n.c.	n.c.	n.c.	n.c.	n.c.	n.c.																								
B6	n.c.	n.c.	n.c.	n.c.	n.c.	n.c.	n.c.	n.c.																								
K1	n.c.	n.c.	n.c.	n.c.	n.c.	n.c.	n.c.	n.c.																								
K2	n.c.	n.c.	n.c.	n.c.	n.c.	n.c.	n.c.	n.c.																								
K3	n.c.	n.c.	n.c.	n.c.	n.c.	n.c.	n.c.	n.c.																								
K4	n.c.	n.c.	n.c.	n.c.	n.c.	n.c.	n.c.	n.c.																								
				1	ĺn				l			I	b							5	li							,	7			
	PS	DL	1° PL		In 3° PL	4° PL	5° PL	6° PL	PS	DL	1° PL			4° PL	5° PL	6° PL	PS	DL	1° PL			4° PL	5° PL	6° PL	PS	DL	1° PL			4° PL	5° PL	6° PL
BO SE	PS n.c.	DL n.c.	1° PL			4° PL	5° PL	6° PL	PS n.c.	DL n.c.	1° PL			4° PL	5° PL	6° PL	PS	DL	1° PL			4° PL	5° PL	6° PL	PS n.c.	DL n.c.	1° PL n.c.			4° PL	5° PL	6° PL n.c.
A3				2° PL	3° PL						1° PL			4° PL	5° PL	6° PL	PS	DL	1° PL			4° PL	5° PL	6° PL				2° PL				
A3 A6	n.c.	n.c. n.c. n.c.	n.c. n.c. n.c.	2° PL n.c. n.c. n.c.	n.c. n.c. n.c.	n.c. n.c. n.c.	n.c. n.c. n.c.	n.c. n.c. n.c.	n.c.	n.c. n.c. n.c.	1° PL			4° PL	5° PL	6° PL	PS	DL	1° PL			4° PL	5° PL	6° PL	n.c. n.c. n.c.	n.c. n.c. n.c.	n.c.	2° PL n.c. n.c. n.c.	n.c.	n.c. n.c. n.c.	n.c. n.c. n.c.	n.c. n.c. n.c.
A3 A6 B3	n.c. n.c. n.c. n.c.	n.c. n.c. n.c. n.c.	n.c. n.c. n.c. n.c.	2° PL n.c. n.c. n.c. n.c.	3° PL n.c. n.c. n.c. n.c.	n.c. n.c. n.c. n.c.	n.c. n.c. n.c. n.c.	n.c. n.c. n.c. n.c.		n.c. n.c. n.c. n.c.	1° PL			4° PL	5° PL	6° PL	PS	DL	1° PL			4° PL	5° PL	6° PL	n.c. n.c. n.c.	n.c. n.c. n.c. n.c.	n.c. n.c. n.c. n.c.	2° PL n.c. n.c. n.c. n.c.	n.c. n.c. n.c.	n.c. n.c. n.c. n.c.	n.c. n.c. n.c. n.c.	n.c. n.c. n.c. n.c.
A3 A6 B3 B6	n.c. n.c. n.c. n.c.	n.c. n.c. n.c. n.c.	n.c. n.c. n.c. n.c.	2° PL n.c. n.c. n.c. n.c. n.c.	3° PL n.c. n.c. n.c. n.c. n.c.	n.c. n.c. n.c. n.c.	n.c. n.c. n.c. n.c.	n.c. n.c. n.c. n.c.	n.c.	n.c. n.c. n.c. n.c.	1° PL			4° PL	5° PL	6° PL	PS	DL	1° PL			4° PL	5° PL	6° PL	n.c. n.c. n.c. n.c.	n.c. n.c. n.c. n.c. n.c.	n.c. n.c. n.c. n.c. n.c.	2° PL n.c. n.c. n.c. n.c.	n.c. n.c. n.c. n.c.	n.c. n.c. n.c. n.c.	n.c. n.c. n.c. n.c.	n.c. n.c. n.c. n.c. n.c.
A3 A6 B3 B6 K1	n.c. n.c. n.c. n.c. n.c.	n.c. n.c. n.c. n.c. n.c.	n.c. n.c. n.c. n.c. n.c.	2° PL n.c. n.c. n.c. n.c. n.c. n.c.	3° PL n.c. n.c. n.c. n.c. n.c.	n.c. n.c. n.c. n.c. n.c.	n.c. n.c. n.c. n.c. n.c.	n.c. n.c. n.c. n.c. n.c.	n.c.	n.c. n.c. n.c. n.c. n.c.	1° PL			4° PL	5° PL	6° PL	PS	DL	1° PL			4° PL	5° PL	6° PL	n.c. n.c. n.c. n.c. n.c.	n.c. n.c. n.c. n.c. n.c.	n.c. n.c. n.c. n.c. n.c.	2° PL n.c. n.c. n.c. n.c. n.c.	n.c. n.c. n.c. n.c. n.c.	n.c. n.c. n.c. n.c. n.c.	n.c. n.c. n.c. n.c. n.c.	n.c. n.c. n.c. n.c. n.c.
A3 A6 B3 B6 K1 K2	n.c. n.c. n.c. n.c. n.c. n.c.	n.c. n.c. n.c. n.c. n.c. n.c.	n.c. n.c. n.c. n.c. n.c. n.c.	2° PL n.c. n.c. n.c. n.c. n.c. n.c.	3° PL n.c. n.c. n.c. n.c. n.c. n.c.	n.c. n.c. n.c. n.c. n.c. n.c.	n.c. n.c. n.c. n.c. n.c. n.c. n.c.	n.c. n.c. n.c. n.c. n.c. n.c.	n.c.	n.c. n.c. n.c. n.c. n.c. n.c.	1° PL			4° PL	5° PL	6° PL	PS	DL	1° PL			4° PL	5° PL	6° PL	n.c. n.c. n.c. n.c. n.c. n.c.	n.c. n.c. n.c. n.c. n.c. n.c.	n.c. n.c. n.c. n.c. n.c. n.c.	2° PL n.c. n.c. n.c. n.c. n.c.	n.c. n.c. n.c. n.c. n.c.	n.c. n.c. n.c. n.c. n.c. n.c.	n.c. n.c. n.c. n.c. n.c. n.c.	n.c. n.c. n.c. n.c. n.c. n.c.
A3 A6 B3 B6 K1 K2 K3	n.c. n.c. n.c. n.c. n.c. n.c.	n.c. n.c. n.c. n.c. n.c. n.c. n.c.	n.c. n.c. n.c. n.c. n.c. n.c. n.c.	2° PL n.c. n.c. n.c. n.c. n.c. n.c.	3° PL n.c. n.c. n.c. n.c. n.c. n.c.	n.c. n.c. n.c. n.c. n.c. n.c.	n.c. n.c. n.c. n.c. n.c. n.c.	n.c. n.c. n.c. n.c. n.c. n.c.	n.c.	n.c. n.c. n.c. n.c. n.c. n.c.	1° PL			4° PL	5° PL	6° PL	PS	DL	1° PL			4° PL	5° PL	6° PL	n.c. n.c. n.c. n.c. n.c. n.c.	n.c. n.c. n.c. n.c. n.c. n.c. n.c.	n.c. n.c. n.c. n.c. n.c. n.c.	2° PL n.c. n.c. n.c. n.c. n.c. n.c. n.c.	n.c. n.c. n.c. n.c. n.c.	n.c. n.c. n.c. n.c. n.c. n.c.	n.c. n.c. n.c. n.c. n.c. n.c.	n.c. n.c. n.c. n.c. n.c. n.c.
A3 A6 B3 B6 K1 K2	n.c. n.c. n.c. n.c. n.c. n.c.	n.c. n.c. n.c. n.c. n.c. n.c.	n.c. n.c. n.c. n.c. n.c. n.c.	2° PL n.c. n.c. n.c. n.c. n.c. n.c.	3° PL n.c. n.c. n.c. n.c. n.c. n.c.	n.c. n.c. n.c. n.c. n.c. n.c.	n.c. n.c. n.c. n.c. n.c. n.c. n.c.	n.c. n.c. n.c. n.c. n.c. n.c.	n.c.	n.c. n.c. n.c. n.c. n.c. n.c.	1° PL			4° PL	5° PL	6° PL	PS	DL	1° PL			4° PL	5° PL	6° PL	n.c. n.c. n.c. n.c. n.c. n.c.	n.c. n.c. n.c. n.c. n.c. n.c.	n.c. n.c. n.c. n.c. n.c. n.c.	2° PL n.c. n.c. n.c. n.c. n.c.	n.c. n.c. n.c. n.c. n.c.	n.c. n.c. n.c. n.c. n.c. n.c.	n.c. n.c. n.c. n.c. n.c. n.c.	n.c. n.c. n.c. n.c. n.c. n.c.
A3 A6 B3 B6 K1 K2 K3	n.c. n.c. n.c. n.c. n.c. n.c.	n.c. n.c. n.c. n.c. n.c. n.c. n.c.	n.c. n.c. n.c. n.c. n.c. n.c. n.c.	2° PL n.c. n.c. n.c. n.c. n.c. n.c. n.c. n.c	3° PL n.c. n.c. n.c. n.c. n.c. n.c.	n.c. n.c. n.c. n.c. n.c. n.c.	n.c. n.c. n.c. n.c. n.c. n.c.	n.c. n.c. n.c. n.c. n.c. n.c.	n.c.	n.c. n.c. n.c. n.c. n.c. n.c.		2° PL	3° PL				PS	DL	1° PL			4° PL	5° PL	6° PL	n.c. n.c. n.c. n.c. n.c. n.c.	n.c. n.c. n.c. n.c. n.c. n.c. n.c.	n.c. n.c. n.c. n.c. n.c. n.c.	2° PL n.c. n.c. n.c. n.c. n.c. n.c. n.c.	n.c. n.c. n.c. n.c. n.c.	n.c. n.c. n.c. n.c. n.c. n.c.	n.c. n.c. n.c. n.c. n.c. n.c.	n.c. n.c. n.c. n.c. n.c. n.c.
A3 A6 B3 B6 K1 K2 K3	n.c. n.c. n.c. n.c. n.c. n.c.	n.c. n.c. n.c. n.c. n.c. n.c. n.c.	n.c. n.c. n.c. n.c. n.c. n.c. n.c.	2° PL n.c. n.c. n.c. n.c. n.c. n.c. n.c. n.c	3° PL n.c. n.c. n.c. n.c. n.c. n.c. n.c. n.c	n.c. n.c. n.c. n.c. n.c. n.c. n.c.	n.c. n.c. n.c. n.c. n.c. n.c.	n.c. n.c. n.c. n.c. n.c. n.c. n.c. n.c.	n.c.	n.c. n.c. n.c. n.c. n.c. n.c.		2° PL	3° PL		5° PL		PS	DL	1° PL			4° PL	5° PL	6° PL	n.c. n.c. n.c. n.c. n.c. n.c.	n.c. n.c. n.c. n.c. n.c. n.c. n.c.	n.c. n.c. n.c. n.c. n.c. n.c.	2° PL n.c. n.c. n.c. n.c. n.c. n.c. n.c.	n.c. n.c. n.c. n.c. n.c.	n.c. n.c. n.c. n.c. n.c. n.c.	n.c. n.c. n.c. n.c. n.c. n.c.	n.c. n.c. n.c. n.c. n.c. n.c.
A3 A6 B3 B6 K1 K2 K3 K4	n.c. n.c. n.c. n.c. n.c. n.c. n.c.	n.c. n.c. n.c. n.c. n.c. n.c. n.c.	n.c. n.c. n.c. n.c. n.c. n.c. n.c.	2° PL n.c. n.c. n.c. n.c. n.c. n.c. n.c. n.c	3° PL n.c. n.c. n.c. n.c. n.c. n.c. n.c. n.c	n.c. n.c. n.c. n.c. n.c. n.c. n.c.	n.c. n.c. n.c. n.c. n.c. n.c. n.c. n.c.	n.c. n.c. n.c. n.c. n.c. n.c. n.c. n.c.	n.c. n.c. n.c. n.c.	n.c. n.c. n.c. n.c. n.c. n.c. n.c.		2° PL	3° PL				PS	DL	1° PL			4° PL	5° PL	6° PL	n.c. n.c. n.c. n.c. n.c. n.c.	n.c. n.c. n.c. n.c. n.c. n.c. n.c.	n.c. n.c. n.c. n.c. n.c. n.c.	2° PL n.c. n.c. n.c. n.c. n.c. n.c. n.c.	n.c. n.c. n.c. n.c. n.c.	n.c. n.c. n.c. n.c. n.c. n.c.	n.c. n.c. n.c. n.c. n.c. n.c.	n.c. n.c. n.c. n.c. n.c. n.c.
A3 A6 B3 B6 K1 K2 K3 K4	n.c. n.c. n.c. n.c. n.c. n.c. n.c.	n.c. n.c. n.c. n.c. n.c. n.c. n.c.	n.c. n.c. n.c. n.c. n.c. n.c. n.c.	2° PL n.c. n.c. n.c. n.c. n.c. n.c. n.c. n.c	3° PL n.c. n.c. n.c. n.c. n.c. n.c. n.c. n.c	n.c. n.c. n.c. n.c. n.c. n.c. n.c.	n.c. n.c. n.c. n.c. n.c. n.c. n.c. n.c.	n.c. n.c. n.c. n.c. n.c. n.c. n.c. n.c.	n.c. n.c. n.c. n.c.	n.c. n.c. n.c. n.c. n.c. n.c. n.c.		2° PL	3° PL				PS	DL	1° PL			4° PL	5° PL	6° PL	n.c. n.c. n.c. n.c. n.c. n.c.	n.c. n.c. n.c. n.c. n.c. n.c. n.c.	n.c. n.c. n.c. n.c. n.c. n.c.	2° PL n.c. n.c. n.c. n.c. n.c. n.c. n.c.	n.c. n.c. n.c. n.c. n.c.	n.c. n.c. n.c. n.c. n.c. n.c.	n.c. n.c. n.c. n.c. n.c. n.c.	n.c. n.c. n.c. n.c. n.c. n.c.
A3 A6 B3 B6 K1 K2 K3 K4	n.c. n.c. n.c. n.c. n.c. n.c. n.c.	n.c. n.c. n.c. n.c. n.c. n.c. n.c.	n.c. n.c. n.c. n.c. n.c. n.c. n.c.	2° PL n.c. n.c. n.c. n.c. n.c. n.c. n.c. n.c	3° PL n.c. n.c. n.c. n.c. n.c. n.c. n.c. n.c	n.c. n.c. n.c. n.c. n.c. n.c. n.c.	n.c. n.c. n.c. n.c. n.c. n.c. n.c. n.c.	n.c. n.c. n.c. n.c. n.c. n.c. n.c. n.c.	n.c. n.c. n.c. n.c.	n.c. n.c. n.c. n.c. n.c. n.c. n.c.		2° PL	3° PL				PS	DL	1° PL			4° PL	5° PL	6° PL	n.c. n.c. n.c. n.c. n.c. n.c.	n.c. n.c. n.c. n.c. n.c. n.c. n.c.	n.c. n.c. n.c. n.c. n.c. n.c.	2° PL n.c. n.c. n.c. n.c. n.c. n.c. n.c.	n.c. n.c. n.c. n.c. n.c.	n.c. n.c. n.c. n.c. n.c. n.c.	n.c. n.c. n.c. n.c. n.c. n.c.	n.c. n.c. n.c. n.c. n.c. n.c.
A3 A6 B3 B6 K1 K2 K3 K4	n.c. n.c. n.c. n.c. n.c. n.c. n.c.	n.c. n.c. n.c. n.c. n.c. n.c. n.c.	n.c. n.c. n.c. n.c. n.c. n.c. n.c.	2° PL n.c. n.c. n.c. n.c. n.c. n.c. n.c. n.c	3° PL n.c. n.c. n.c. n.c. n.c. n.c. n.c. n.c	n.c. n.c. n.c. n.c. n.c. n.c. n.c.	n.c. n.c. n.c. n.c. n.c. n.c. n.c. n.c.	n.c. n.c. n.c. n.c. n.c. n.c. n.c. n.c.	n.c. n.c. n.c. n.c.	n.c. n.c. n.c. n.c. n.c. n.c. n.c.		2° PL	3° PL				PS	DL	1° PL			4° PL	5° PL	6° PL	n.c. n.c. n.c. n.c. n.c. n.c.	n.c. n.c. n.c. n.c. n.c. n.c. n.c.	n.c. n.c. n.c. n.c. n.c. n.c.	2° PL n.c. n.c. n.c. n.c. n.c. n.c. n.c.	n.c. n.c. n.c. n.c. n.c.	n.c. n.c. n.c. n.c. n.c. n.c.	n.c. n.c. n.c. n.c. n.c. n.c.	n.c. n.c. n.c. n.c. n.c. n.c.
A3 A6 B3 B6 K1 K2 K3 K4 BO SE A3 A6 B3 B6	n.c. n.c. n.c. n.c. n.c. n.c. n.c.	n.c. n.c. n.c. n.c. n.c. n.c. n.c.	n.c. n.c. n.c. n.c. n.c. n.c. n.c.	2° PL n.c. n.c. n.c. n.c. n.c. n.c. n.c. n.c	3° PL n.c. n.c. n.c. n.c. n.c. n.c. n.c. n.c	n.c. n.c. n.c. n.c. n.c. n.c. n.c.	n.c. n.c. n.c. n.c. n.c. n.c. n.c. n.c.	n.c. n.c. n.c. n.c. n.c. n.c. n.c. n.c.	n.c. n.c. n.c. n.c.	n.c. n.c. n.c. n.c. n.c. n.c. n.c.		2° PL	3° PL				PS	DL	1° PL			4° PL	5° PL	6° PL	n.c. n.c. n.c. n.c. n.c. n.c.	n.c. n.c. n.c. n.c. n.c. n.c. n.c.	n.c. n.c. n.c. n.c. n.c. n.c.	2° PL n.c. n.c. n.c. n.c. n.c. n.c. n.c.	n.c. n.c. n.c. n.c. n.c.	n.c. n.c. n.c. n.c. n.c. n.c.	n.c. n.c. n.c. n.c. n.c. n.c.	n.c. n.c. n.c. n.c. n.c. n.c.
A3 A6 B3 B6 K1 K2 K3 K4 BO SE A3 A6 B3 B6 K1	n.c. n.c. n.c. n.c. n.c. n.c. n.c.	n.c. n.c. n.c. n.c. n.c. n.c. n.c.	n.c. n.c. n.c. n.c. n.c. n.c. n.c.	2° PL n.c. n.c. n.c. n.c. n.c. n.c. n.c. n.c	3° PL n.c. n.c. n.c. n.c. n.c. n.c. n.c. n.c	n.c. n.c. n.c. n.c. n.c. n.c. n.c.	n.c. n.c. n.c. n.c. n.c. n.c. n.c. n.c.	n.c. n.c. n.c. n.c. n.c. n.c. n.c. n.c.	n.c. n.c. n.c. n.c.	n.c. n.c. n.c. n.c. n.c. n.c. n.c.		2° PL	3° PL				PS	DL	1° PL			4° PL	5° PL	6° PL	n.c. n.c. n.c. n.c. n.c. n.c.	n.c. n.c. n.c. n.c. n.c. n.c. n.c.	n.c. n.c. n.c. n.c. n.c. n.c.	2° PL n.c. n.c. n.c. n.c. n.c. n.c. n.c.	n.c. n.c. n.c. n.c. n.c.	n.c. n.c. n.c. n.c. n.c. n.c.	n.c. n.c. n.c. n.c. n.c. n.c.	n.c. n.c. n.c. n.c. n.c. n.c.
A3 A6 B3 B6 K1 K2 K3 K4 BO SE A3 A6 B3 B6	n.c. n.c. n.c. n.c. n.c. n.c. n.c.	n.c. n.c. n.c. n.c. n.c. n.c. n.c.	n.c. n.c. n.c. n.c. n.c. n.c. n.c.	2° PL n.c. n.c. n.c. n.c. n.c. n.c. n.c. n.c	3° PL n.c. n.c. n.c. n.c. n.c. n.c. n.c. n.c	n.c. n.c. n.c. n.c. n.c. n.c. n.c.	n.c. n.c. n.c. n.c. n.c. n.c. n.c. n.c.	n.c. n.c. n.c. n.c. n.c. n.c. n.c. n.c.	n.c. n.c. n.c. n.c.	n.c. n.c. n.c. n.c. n.c. n.c. n.c.		2° PL	3° PL				PS	DL	1° PL			4° PL	5° PL	6° PL	n.c. n.c. n.c. n.c. n.c. n.c.	n.c. n.c. n.c. n.c. n.c. n.c. n.c.	n.c. n.c. n.c. n.c. n.c. n.c.	2° PL n.c. n.c. n.c. n.c. n.c. n.c. n.c.	n.c. n.c. n.c. n.c. n.c.	n.c. n.c. n.c. n.c. n.c. n.c.	n.c. n.c. n.c. n.c. n.c. n.c.	n.c. n.c. n.c. n.c. n.c. n.c.

3.5. ANALISI DI INQUINANTI E DI BIOMARKER NEI MITILI INSEDIATI SULLE PARTI IMMERSE DELLA PIATTAFORMA

3.5.1. INQUINANTI ORGANICI E INORGANICI

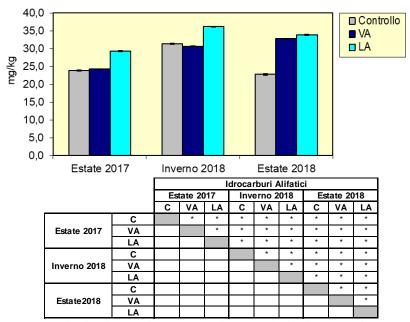
3.5.1.1 Materia organica estratta (MOE)

Il contenuto di MOE rilevato nell'estate 2018 è risultato per la prima volta significativamente superiore presso entrambi i siti della piattaforma rispetto al controllo e rispetto ai corrispettivi dei monitoraggi precedenti (fig. 3.27; Tab. 3-XXV). Essi sono anche maggiori rispetto a quanto rilevato in analoghe indagini condotte presso altre piattaforme offshore installate nell'Adriatico centro-settentrionale (Fabi *et al.*, 2005a; 2005b; 2010a; 2010b; 2015a).

Fig. 3.27 - MOE rilevata negli esemplari di *M. galloprovincialis* prelevati nell'estate 2017 e nelle due stagioni del 2018. VA = vicino anodo; LA = lontano anodo. Test U. ns = non significativo; * = significativo (p<0,05).

Tab. 3-XXV - Distribuzione MOE (%) e degli IA (mg/kg; ± dev.st.) rilevati nei tessuti di mitili prelevati dalla piattaforma Bonaccia NW e dal sito di controllo nell'estate 2017 e nelle due stagioni del 2018. VA = vicino anodo; LA = lontano anodo.

_	Controllo	VA	LA
Estate 2017	2,5±0,2	3,0±0,5	3,1±0,5
Inverno 2018	2,9±0,4	3,6±0,5	3,7±0,5
Estate 2018	3,5±0,5	4,9±0,4	5,2±0,6


3.5.1.2 Idrocarburi Alifatici (IA)

I livelli di IA nel segmento C_{15} - C_{31} analizzati nell'estate 2018 sono risultati compresi tra 22,8±0,2 mg/kg p.s. (controllo) e 33,9±0,1 mg/kg p.s. (LA; Tab. 3-XXVI e fig. 3.28). Tali risultati indicano un accumulo significativo di IA in entrambi i siti della piattaforma rispetto al controllo come nell'estate 2017. In inverno 2018, invece, rispetto ai mitili di riferimento solo gli IA rilevati negli esemplari LA erano risultati significativamente maggiori; quelli relativi al sito VA erano apparsi significativamente inferiori. Le ultime concentrazioni rilevate sono diminuite in LA e al controllo e sono aumentate in VA.

Tab. 3-XXVI - Distribuzione MOE (%) e degli IA (mg/kg; ± dev.st.) rilevati nei tessuti di mitili prelevati dalla piattaforma Bonaccia NW e dal sito di controllo nell'estate 2017 e nelle due stagioni del 2018. VA = vicino anodo; LA = lontano anodo.

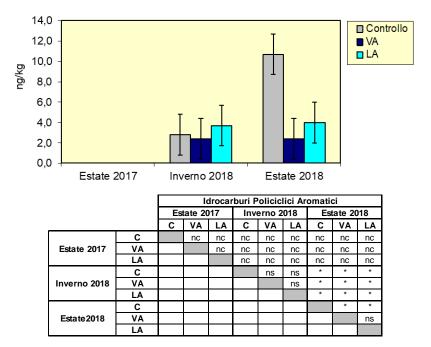
		Estate 2017		I	nverno 2018		E	state 2018 20	18
	Controllo	VA	LA	Controllo	VA	LA	Controllo	VA	LA
C15	$0,24\pm0,01$	0,081±0,01	0,058±0,01	0,28±0,01	0,09±0,01	0,06±0,01	0,20±0,01	0,06±0,01	$0,04\pm0,01$
C16	0,63±0,03	0,36±0,01	0,23±0,01	$0,72\pm0,03$	0,42±0,01	0,29±0,01	$0,59\pm0,03$	0,35±0,01	$0,25\pm0,01$
C17	$0,42\pm0,02$	0,24±0,01	0,14±0,01	$0,48\pm0,02$	0,28±0,01	$0,18\pm0,01$	$0,39\pm0,02$	0,35±0,01	$0,39\pm0,01$
C18	0,36±0,02	0,24±0,01	0,14±0,01	0,41±0,02	0,28±0,01	0,18±0,01	0,52±0,02	0,63±0,01	0,74±0,01
C19	$2,86\pm0,01$	1,44±0,01	2,02±0,01	3,28±0,01	1,71±0,01	2,60±0,01	2,71±0,01	1,41±0,01	2,22±0,01
C20	0,96±0,04	0,48±0,02	0,43±0,02	1,10±0,04	0,57±0,02	0,55±0,02	0,91±0,04	0,47±0,02	$0,47\pm0,02$
C21	0,27±0,01	0,16±0,01	0,09±0,01	0,31±0,01	0,19±0,01	0,11±0,01	0,25±0,01	0,15±0,01	0,09±0,01
C22	1,17±0,05	0,66±0,03	0,43±0,03	1,34±0,05	0,78±0,03	0,55±0,03	1,11±0,05	$0,79\pm0,03$	$0,47\pm0,03$
C23	0,63±0,02	0,41±0,01	0,23±0,01	0,72±0,02	0,48±0,01	0,29±0,01	0,59±0,02	0,49±0,01	0,25±0,01
C24	5,07±0,10	6,55±0,10	9,11±0,10	5,80±0,10	7,70±0,10	11,70±0,10	4,81±0,10	7,86±0,10	10,00±0,10
C25	0,96±0,04	1,01±0,03	0,33±0,02	1,10±0,04	1,20±0,03	$0,42\pm0,02$	0,91±0,04	5,25±0,03	1,68±0,02
C26	2,60±0,10	1,17±0,04	0,92±0,04	2,90±0,10	1,39±0,40	1,18±0,04	2,47±0,10	1,40±0,04	1,01±0,04
C27	0,27±0,01	0,32±0,01	0,09±0,01	0,31±0,01	0,38±0,01	0,11±0,01	0,25±0,01	0,38±0,01	$0,09\pm0,01$
C28	$0,70\pm0,02$	1,55±0,02	2,15±0,01	$0,80\pm0,02$	1,84±0,02	2,77±0,01	$0,66\pm0,02$	1,86±0,02	2,36±0,01
C29	5,90±0,08	8,86±0,04	12,14±0,04	10,78±0,08	12,54±0,04	14,60±0,04	5,60±0,08	10,6±0,04	13,3±0,04
C30	0,42±0,01	0,36±0,01	0,26±0,01	0,48±0,01	0,42±0,01	0,33±0,01	0,39±0,01	0,43±0,01	0,28±0,01
C31	0,39±0,01	0,24±0,01	0,17±0,01	0,44±0,01	0,28±0,01	0,21±0,01	0,37±0,01	0,28±0,01	0,18±0,01
Pristano	0,31±0,02	0,18±0,01	0,16±0,01	0,19±0,01	0,19±0,01	0,11±0,01	0,20±0,01	0,22±0,01	0,21±0,01
Fitano	0,17±0,03	0,09±0,02	0,09±0,02	0,35±0,02	0,21±0,02	0,20±0,02	0,12±0,02	0,16±0,02	0,17±0,02
ΣΙΑ	$23,9 \pm 0,1$	$24,3 \pm 0,1$	$29,3 \pm 0,12$	$31,4 \pm 0,1$	$30,7 \pm 0,1$	$36,2 \pm 0,1$	22,8 ± 0,2	$32,8 \pm 0,1$	$33,9 \pm 0,1$

L'analisi dell'abbondanza e della distribuzione dei livelli dei diversi omologhi investigati nell'estate 2018 ha confermato valori del rapporto LMW/HMW inferiori all'unità, indicando il predominio di sostanze di origine naturale nella miscela di IA investigati (Tab. 3-XXVII). Ad analoga conclusione si giunge anche analizzando i risultati dell'indice CPI. I livelli di C18/fitano e C17/pristano, che sino all'inverno 2018 avevano dato risultati contradditori rispetto agli altri indici, nell'ultimo monitoraggio, essendo superiori o prossimi a 3 suggeriscono anch'essi un'origine naturale degli IA rinvenuti. Infine, l'idrocarburo alifatico maggiormente accumulato (MH) è risultato sempre e ovunque il C₂₉.

Fig. 3.28 - Concentrazioni di IA rilevate negli esemplari di *M. galloprovincialis* prelevati nell'estate 2017 e nelle due stagioni del 2018. VA = vicino anodo; LA = lontano anodo. Test U. ns = non significativo; * = significativo (p<0,05).

Tab. 3-XXVII - Indici di distribuzione degli idrocarburi alifatici rilevati nei tessuti molli di mitili (*M. galloprovincialis*) prelevati presso la piattaforma Bonaccia NW e nel sito di controllo nell'estate 2017 e nelle due stagioni del 2018. VA = vicino anodo; LA = lontano anodo.

	Es	state 20	17	Inv	erno 20)18	Es	state 20	18
	C	VA	LA	C	VA	LA	C	VA	LA
MH	C_{29}								
LMW/HMW	0,32	0,14	0,12	0,27	0,13	0,12	0,33	0,12	0,14
CPI	1,74	1,12	1,12	2,26	1,27	1,06	1,70	1,38	1,17
C17/Pristano	1,34	2,60	0,88	1,35	1,33	0,88	3,15	2,16	2,23
C18/Fitano	2,08	1,30	0,88	2,12	1,46	0,88	2,59	2,86	3,43


3.5.1.3 Idrocarburi Policiclici Aromatici (IPA)

Dei 16 IPA ricercati nell'estate 2018 sono stati rilevati solo il fluorantene al controllo e il pirene ovunque (Tab. 3-XXVIII), con un contenuto complessivo di IPA significativamente superiore al controllo rispetto ai due siti della piattaforma (fig. 3.29). Gli IPA sono stati rilevati per la prima volta nell'inverno 2018 quando erano risultati quantitativamente comparabili tra i tre siti. In quel monitoraggio era stato quantificato solo il pirene. Dall'inverno, gli IPA totali sono rimasti stabili in piattaforma mentre sono notevolmente aumentati negli esemplari di riferimento.

Nel complesso i valori medi osservati appaiono inferiori a quelli registrati in aree marine e marino-costiere soggette a un moderato impatto antropico (Lima *et al.*, 2007; Carro *et al.*, 2006; Fabi *et al.*, 2005a; 2005b; 2006; 2010a; 2010b; 2016a; Gomiero *et al.*, 2015).

Tab. 3-XXVIII - Distribuzione degli Idrocarburi Policiclici Aromatici rilevati presso la piattaforma Bonaccia NW e nel sito di controllo nell'estate 2017 e nelle due stagioni del 2018. Valori espressi in ng/g p.s. LOD = limite di rilevabilità.

		Estate 2017]	nverno 2018	8		Estate 2018	
_	C	VA	LA	C	VA	LA	C	VA	LA
Naftalene	< LOD	< LOD	< LOD	< LOD	< LOD	< LOD	< LOD	< LOD	< LOD
Acenaftene	< LOD	< LOD	< LOD	< LOD	< LOD	< LOD	< LOD	< LOD	< LOD
Acenaftilene	< LOD	< LOD	< LOD	< LOD	< LOD	< LOD	< LOD	< LOD	< LOD
Fluorene	< LOD	< LOD	< LOD	< LOD	< LOD	< LOD	< LOD	< LOD	< LOD
Fenantrene	< LOD	< LOD	< LOD	< LOD	< LOD	< LOD	< LOD	< LOD	< LOD
Antracene	< LOD	< LOD	< LOD	< LOD	< LOD	< LOD	< LOD	< LOD	< LOD
Fluorantene	< LOD	< LOD	< LOD	< LOD	< LOD	< LOD	$2,9\pm2,0$	< LOD	< LOD
Pirene	< LOD	< LOD	< LOD	2,8±2,0	$2,4\pm2,0$	3,7±2,0	$7,8\pm2,0$	2,4±2,0	$4,0\pm2,0$
B[a]Antracene	< LOD	< LOD	< LOD	< LOD	< LOD	< LOD	< LOD	< LOD	< LOD
Crisene	< LOD	< LOD	< LOD	< LOD	< LOD	< LOD	< LOD	< LOD	< LOD
B[b]Fluorantene	< LOD	< LOD	< LOD	< LOD	< LOD	< LOD	< LOD	< LOD	< LOD
B[k]Fluorantene	< LOD	< LOD	< LOD	< LOD	< LOD	< LOD	< LOD	< LOD	< LOD
B[a]Pirene	< LOD	< LOD	< LOD	< LOD	< LOD	< LOD	< LOD	< LOD	< LOD
DiB[a,h]A	< LOD	< LOD	< LOD	< LOD	< LOD	< LOD	< LOD	< LOD	< LOD
BghiPerilene	< LOD	< LOD	< LOD	< LOD	< LOD	< LOD	< LOD	< LOD	< LOD
Indeno [c,d] pirene	< LOD	< LOD	< LOD	< LOD	< LOD	< LOD	< LOD	< LOD	< LOD
$\Sigma_{ m ipa}$				2,8±2,0	2,4±2,0	3,7±2,0	10,7±2,0	2,4±2,0	4,0±2,0

Fig. 3.29 - Concentrazioni di IPA rilevate negli esemplari di *M. galloprovincialis* prelevati nell'estate 2017 e nelle due stagioni del 2018. VA = vicino anodo; LA = lontano anodo. Test U. ns = non significativo; * = significativo (p<0,05; nc = non calcolabile.

3.5.1.4 Metalli pesanti

Nell'estate 2018 solo **cadmio** e **nichel** hanno evidenziato un accumulo significativo presso entrambi i siti della piattaforma rispetto al controllo (Tabb. 3-XXIX e 3-XXX; fig. 3.30). Rispetto alla stagione precedente è avvenuto un incremento di cadmio in LA e di nichel in enrambi i siti di Bonaccia NW.

L'alluminio è nuovamente risultato statisticamente più abbondante in VA ma, rispetto ai due monitoraggi precedenti caratterizzati da tenori assolutamente anomali in questo sito, la concentrazione si è notevolmente ridotta.

Il **vanadio**, invece, che nell'inverno 2018 si era notevolmente ridotto in piattaforma, nell'ultimo survey ha avuto una recrudescenza in LA con differenze statisticamente significative con gli altri due punti di prelievo, senza tuttavia raggiungere il tenore del 2017. Un risultato simile è stato ottenuto per l'**arsenico**: questo metallo era apparso maggiormente accumulato nei due siti della piattaforma, diventando poi comparabile con il controllo in inverno 2018. Nell'ultimo monitoraggio ha presentato una lieve ma significativa recrudescenza presso Bonaccia NW.

Lo **zinco** nell'ultimo survey è risultato significativamente meno abbondante nei mitili prelevati in VA, dove ha raggiunto il minimo dell'intera indagine per il sito, rispetto agli altri due campioni apparsi invece comparabili tra loro.

Il bioaccumulo di **ferro** e **silicio** è risultato significativamente maggiore al controllo, dove per entrambi è avvenuto un notevole incremento rispetto alle due stagioni precedenti.

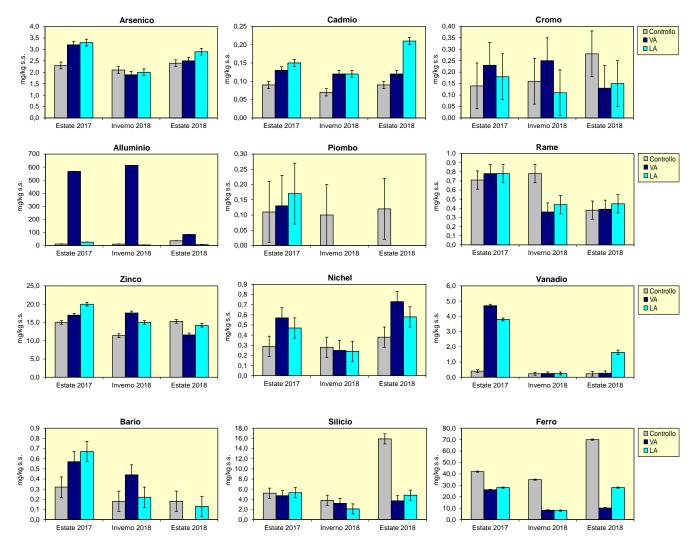
Nell'estate 2018 è stata confermata la non rilevabilità in piattaforma del **piombo** già verificatasi in inverno e il **bario** non è stato quantificato in VA. **Cromo** e **rame** hanno presentato concentrazioni comparabili. Il primo metallo è rimasto pressoché costante nel tempo, il rame ha confermato le concentrazioni invernali in piattaforma, caratterizzate da una riduzione rispetto all'estate 2017, e ha mostrato un decremento al controllo.

Indio e mercurio, infine, non sono mai stati rilevati.

Quanto osservato è in linea con le concentrazioni di metalli pesanti riportati in un precedente studio pluriennale condotto da Fattorini *et al.* (2008) e volto a valutare la biodisponibilità di metalli pesanti in mitili prelevati presso diverse piattaforme ubicate nel mare Adriatico settentrionale e centrale. È stata inoltre riscontrata una certa similitudine con quanto rilevato da Gorbi *et al.* (2008) presso la piattaforma "Giovanna" e da Fabi *et al.* (2005a; 2005b; 2006; 2010a; 2010b) presso altre strutture offshore.

Tab. 3-XXIX - Distribuzione dei metalli in traccia rilevati nei mitili (*Mytilus galloprovincialis*) campionati presso la piattaforma Bonaccia NW e nel sito di controllo nell'estate 2017 e nelle due stagioni del 2018. VA = vicino anodo; LA = lontano anodo. Valori espressi in mg/kg p.s. (± dev. st.). LOD = limite di quantificazione strumentale.

		Estate 2017]	nverno 2018	8		Estate 2018	
_	Controllo	VA	LA	Controllo	VA	LA	Controllo	VA	LA
As	2,30±0,15	3,2±0,15	$3,3\pm0,15$	2,10±0,15	1,89±0,15	2,00±0,15	2,40±0,15	2,50±0,15	2,90±0,15
Cd	$0,09\pm0,01$	0,13±0,01	0,15±0,01	$0,07\pm0,01$	0,12±0,01	0,12±0,01	$0,09\pm0,01$	0,12±0,01	0,21±0,01
Cr	$0,14\pm0,10$	0,23±0,10	$0,18\pm0,10$	$0,16\pm0,10$	0,25±0,10	0,11±0,10	$0,28\pm0,10$	$0,13\pm0,10$	0,15±0,10
Al	10,9±0,5	567,0±0,5	25,0±0,5	$10,4\pm0,5$	614,0±0,5	4,3,0±0,5	36,0±0,5	84,0±0,5	$7,4\pm0,5$
Hg	LOD	< LOD	< LOD	LOD	< LOD	< LOD	LOD	< LOD	< LOD
Pb	$0,11\pm0,10$	$0,13\pm0,10$	0,17±0,10	$0,10\pm0,10$	< LOD	< LOD	$0,12\pm0,10$	< LOD	< LOD
Cu	$0,71\pm0,10$	$0,78\pm0,10$	0,78±0,10	$0,78\pm0,10$	0,36±0,10	$0,44\pm0,10$	$0,38\pm0,10$	0,39±0,10	0,45±0,10
Zn	15,0±0,5	17,0±0,5	20,0±0,5	$11,4\pm0,5$	17,6±0,5	15,0±0,5	15,3±0,5	11,6±0,5	14,2±0,5
Ni	$0,29\pm0,10$	0,57±0,10	0,47±0,10	$0,28\pm0,10$	0,25±0,10	0,24±0,10	$0,38\pm0,10$	0,73±0,10	$0,58\pm0,10$
V	$0,40\pm0,1$	4,7±0,1	3,80±0,1	$0,23\pm0,1$	0,25±0,1	0,25±0,1	0,23±0,15	0,27±0,15	1,64±0,1
Ba	$0,32\pm0,10$	0,57±0,10	0,67±0,10	$0,18\pm0,10$	$0,44\pm0,10$	0,22±0,10	$0,18\pm0,10$	< LOD	$0,13\pm0,10$
Si	5,2±1,0	4,7±1,0	5,3±1,0	3,8±1,0	3,2±1,0	2,1±1,0	15,9±1,0	3,7±1,0	4,8±1,0
Fe	42,0±0,5	26,0±0,5	28,0±0,5	35,0±0,5	8,2±0,5	7,9±0,5	70,0±0,5	10,1±0,5	28,0±0,5
In	<lod< td=""><td>< LOD</td><td>< LOD</td><td><lod< td=""><td>< LOD</td><td>< LOD</td><td><lod< td=""><td>< LOD</td><td>< LOD</td></lod<></td></lod<></td></lod<>	< LOD	< LOD	<lod< td=""><td>< LOD</td><td>< LOD</td><td><lod< td=""><td>< LOD</td><td>< LOD</td></lod<></td></lod<>	< LOD	< LOD	<lod< td=""><td>< LOD</td><td>< LOD</td></lod<>	< LOD	< LOD


Tab. 3-XXX - Risultati dei confronti statistici relativi alla distribuzione dei metalli pesanti nei siti della piattaforma Bonaccia NW rispetto al controllo (test U - Mann-Whitney). * = p < 0.05; ns = non significativo, nc= non calcolabile.

					As											Cd											Cr				
		Estate	2017	Inv	verno :	2018	F	state 2	018			Est	tate 20	017	Inv	erno 2	018	Esta	ite 201	8			Eet	ate 20	17	Inv	erno 2	2018	F≈	ate 20	118
		C V		C	VA	LA	C	VA	LA			С	VA	LA	С	VA	LA	C	VA	_			C		LA	С	VA	LA	C		LA
	С	<u> </u>	* *	ns	*	*	ns	ns	*		С	Ü	*	*	•	*	*	ns	*	*		С	Ŭ	ns	ns	ns	ns	ns	ns	ns	ns
Estate 2017	VA		ns	*	*	*	*	*	ns	Estate 2017	VA			ns	*	ns	ns	*	ns		Estate 2017	VA		113	ns	ns	ns	ns	ns	ns	ns
Lotate 2017	LA		113		*	*	*		ns	LState 2017	LA			113	*	*	*		*		Latate 2017	LA			110	ns	ns	ns	ns	ns	ns
	C				ns	ns	ns		*		C					*		ns	*			C				113	ns	ns	ns	ns	ns
Inverno 2018	VA		-	-	113	ns	*			Inverno 2018	VA						ns	*	ns		Inverno 2018	VA					113	ns	ns	ns	ns
IIIVerrio 2010	LA			+		113	*		*	IIIVeIIIO 2010	LA						115		ns		iliverilo 2010	LA						113	ns	ns	ns
	C			+	+			ns			C								*			C							113	ns	ns
Estate 2018	VA			+	1	1		115		Estate 2018	VA										Estate 2018	VA								115	ns
Estate2010	LA		-	+-	+	+				Estate2016	LA										Estate2016	LA									115
	LA		-1					1			LA											LA									
					Al											Hg											Pb				
		Estate	2017	Inv	verno	2018	Es	state 2	018			Est	tate 20)17	Inv	erno 2	018	Esta	te 201	18			Est	ate 20	17	Inv	erno 2	2018	Est	ate 20)18
		C V	A LA	С	VA	LA	С	VA	LA			С	VA	LA	С	VA	LA	С	VA	LA			С	VA	LA	С	VA	LA	С	VA	LA
	С		*	ns	*	*	*	*	*		С		nc	nc	nc	nc	nc	nc	nc	nc		С		ns	ns	ns	nc	nc	ns	nc	nc
Estate 2017	VA			*	*	*	*	*	*	Estate 2017	VA			nc	nc	nc	nc	nc	nc	nc	Estate 2017	VA			ns	ns	nc	nc	ns	nc	nc
	LA			*	*	*	*	*	*		LA				nc	nc	nc	nc	nc	nc		LA				nc	nc	nc	ns	nc	nc
	С					*	*	*	*		С					nc	nc	nc	nc	nc		С					nc	nc	ns	nc	nc
Inverno 2018	VA			-		*	*	*	*	Inverno 2018	VA						nc	nc	nc	nc	Inverno 2018	VA						nc	ns	nc	nc
	LA						*	*	*		LA							nc	nc	nc		LA							nc	nc	nc
	С								*		С								nc	nc		С								nc	nc
Estate 2018	VA								*	Estate 2018	VA								11.0	nc	Estate 2018	VA									nc
	LA		1	1							LA									110		LA									
					•	•					•																				
					Cu											Zn						ı					Ni				
		Estate	2017	Inv	Cu verno :	2018	Es	state 2	018			Est	tate 20	017	Inv	Zn erno 2	018	Esta	ite 201	8			Est	ate 20	117	Inv	Ni erno 2	2018	Est	ate 20)18
		Estate C V		Inv		2018 LA	Es	state 2	018 LA			Est C	tate 20)17 LA	Inv	erno 2	018 LA	Esta C	ite 201 VA	8 LA			Est C	ate 20	117 LA	Inv		2018 LA	Est		
	Гс		A LA		verno						С							С		LA		С					erno 2 VA	LA			018 LA
Estate 2017	C VA	C V	A LA	С	verno :					Estate 2017	C VA					erno 2 VA	LA				Estate 2017	C VA			LA	С	erno 2		С		LA
Estate 2017		C V	A LA s ns	C ns	verno :				LA	Estate 2017						erno 2 VA	LA	С		LA	Estate 2017				LA	С	erno 2 VA	LA	C ns	٧A	LA *
Estate 2017	VA	C V	A LA s ns	ns ns	VA *	LA *	C *		LA *	Estate 2017	VA LA				C * *	VA *	ns *	ns *	VA *	ns *	Estate 2017	VA LA			LA	ns *	erno 2 VA	ns *	ns ns	٧A	LA *
Estate 2017	VA LA	C V	A LA s ns	ns ns	VA *	LA *	* * * * *	* * * * * * * * * * * * * * * * * * *		Estate 2017	VA				C * *	VA * ns	ns *	ns *	VA *	ns *		VA			LA	ns *	VA ns *	LA	ns ns ns	٧A	* ns
	VA LA C	C V	A LA s ns	ns ns	VA *	* * *	C *		LA *	-	VA LA C				C * *	VA * ns	ns *	C ns *	VA *	ns *	Estate 2017	VA LA C			LA	ns *	VA ns *	ns * *	ns ns ns	٧A	rs ns ns
	VA LA C VA	C V	A LA s ns	ns ns	VA *	* * *	C * * * ns	VA · · · ns	LA	-	VA LA C VA LA				C * *	VA * ns	ns *	C ns *	VA *	LA ns * * * ns		VA LA C VA LA			LA	ns *	VA ns *	ns * *	ns ns ns ns	٧A	rs ns ns *
	VA LA C VA LA	C V	A LA s ns	ns ns	VA *	* * *	C * * * ns	VA * * ns ns	LA · · · · ns	-	VA LA C VA				C * *	VA * ns	ns *	C ns *	VA *	LA ns *		VA LA C VA			LA	ns *	VA ns *	ns * *	ns ns ns ns	٧A	rs ns ns *
Inverno 2018	VA LA C VA LA C C	C V	A LA s ns	ns ns	VA *	* * *	C * * * ns	VA * * ns ns	LA * * ns ns ns	Inverno 2018	VA LA C VA LA				C * *	VA * ns	ns *	C ns *	VA *	LA ns * * ns ns ns	Inverno 2018	VA LA C VA LA			LA	ns *	VA ns *	ns * *	ns ns ns ns	٧A	rs ns ns *
Inverno 2018	VA LA C VA LA C VA	C V	A LA s ns	ns ns	VA *	* * *	C * * * ns	VA * * ns ns	LA * * ns ns ns	Inverno 2018	VA LA C VA LA C				C * *	VA * ns	ns *	C ns *	VA *	LA ns * * ns ns ns	Inverno 2018	VA LA C VA LA C VA			LA	ns *	VA ns *	ns * *	ns ns ns ns	٧A	rs ns ns *
Inverno 2018	VA LA C VA LA C VA	C V	A LA s ns	ns ns	VA *	* * *	C * * * ns	VA * * ns ns	LA * * ns ns ns	Inverno 2018	VA LA C VA LA C				C * *	VA * ns	ns *	C ns *	VA *	LA ns * * ns ns ns	Inverno 2018	VA LA C VA LA C VA			LA	ns *	VA ns *	ns * *	ns ns ns ns	٧A	rs ns ns *
Inverno 2018	VA LA C VA LA C VA	C V	A LA S ns ns	ns ns ns	verno	* * * * ns	C * * ns ns	VA * * ns ns	LA * * ns ns ns ns	Inverno 2018	VA LA C VA LA C	С			*	erno 2 VA * ns *	LA ns *	C ns * * * * * * ns	VA *	LA ns * * ns ns ns	Inverno 2018	VA LA C VA LA C VA	C		LA ns ns	C ns * ns	va ns * * ns	LA ns * ns ns	ns ns ns ns ns	٧A	LA * ns ns * * * ns
Inverno 2018	VA LA C VA LA C VA	C V	A LAS INS INS	ns ns ns	VA * * * * * * * * * * * * * * * * * * *	LA * * * * * ns	C * * ns ns	VA * * ns ns ns state 2	LA * * ns ns ns ns ns ns	Inverno 2018	VA LA C VA LA C	С	VA	LA *	C * * * * * * * * * * * * * * * * * * *	erno 2 VA * ns * *	LA ns * *	C ns * * * * * * ns	VA * * * * * * * * * * * * * * * * * * *	LA ns * * ns ns ns	Inverno 2018	VA LA C VA LA C VA	C	VA *	ns ns	ns * ns	VA ns * ns	LA ns * ns ns ns	ns ns ns ns ns	VA * ns * * * ate 20	* ns ns * * * ns ns ns * * * * ns
Inverno 2018	VA LA C VA LA C VA	C V	A LAS INS INS	ns ns ns	VA VA VA VA VV VV VV VA	LA * * * * * ns * * * * * LA * * * * * * * * * * * * *	C * * * ns ns C C	VA * ns ns ns v VA	LA * * ns ns ns ns	Inverno 2018	VA LA C VA LA C VA	Est	VA *		C * * * * * Inv	erno 2 VA * ns * * Ba erno 2	LA ns * * * * * * * * * * * * * * * * * *	C ns · · · · · · · · · · · · · · · · · ·	VA * * ns * * * VA * * * * * * * * * * * * * * *	LA ns * * ns ns ns s LA	Inverno 2018	VA C VA LA C VA LA	Est	va * tate 20	ns ns ns	ns * ns Inv	VA ns ns si erno 2 VA	LA ns * ns ns ns LA LA	ns ns ns ns ns	VA * ns * * * * * * * * * * * * *	* ns ns * * * ns ns
Inverno 2018 Estate 2018	VA LA C VA LA C VA LA C LA	C V	A LAS INS INS	ns ns ns	VA * * * * * * * * * * * * * * * * * * *	LA * * * * * ns	C * * ns ns	VA * * ns ns ns state 2	LA * * ns ns ns ns LA	Inverno 2018 Estate 2018	VA LA C VA LA C	Est	VA	17 LA	C * * * * * * * * * * * * * * * * * * *	Property of the second	LA ns * *	C ns * * * * * ns	va * * * * * * * * * * * * * * * * * * *	LA ns * * ns ns ns	Inverno 2018 Estate 2018	VA LA C VA LA VA LA	Est	VA *	ns ns ns 117 LA	Invo	NS Si Prino 2	LA ns * ns ns ns LA ns	ns ns ns ns ns	va * ns * * * * * * * * * * * * * * * * *	* ns ns * * * ns ns
Inverno 2018	VA LA C VA LA C VA LA C C VA	C V	A LAS INS INS	Inv	VA V Verno: VA V Verno: VA NS	LA * * * * ns * * * ns * * * LA ns * * * * * * * * * * * * * * * * * *	C * * * ns ns c C ns	VA * * ns ns ns v Ns v ns	LA * * * ns ns ns ns LA *	Inverno 2018	VA LA C VA LA C VA LA C	Est	VA	17 LA	tnv C ns	erno 2 VA * ns * * Ba erno 2	LA ns * * * * * * * * * * * * * * * * * *	C ns * * * * ns Estate C ns	VA * * ns * * * VA * * * * * * * * * * * * * * *	LA ns * * ns ns ns h LA	Inverno 2018	VA C VA LA C VA LA	Est	va * tate 20	ns ns ns	ns * ns Inv	VA ns ns si erno 2 VA	LA ns * ns ns ns LA LA	ns ns ns ns ns	VA * ns * * * * * * * * * * * * *	* ns ns * * * ns ns
Inverno 2018 Estate 2018	VA LA C VA LA C VA LA C VA LA C VA LA	C V	A LAS INS INS	Inv	Verno: VA VA VVerno: VVerno: VA NS *	LA * * * * * ns * * * * * * * * * * * * *	C * * * ns ns c C ns * *	vA ns ns ns ns vA r r r r r r r r r r r r r	LA * ns ns ns ns the second of the sec	Inverno 2018 Estate 2018	VA LA C VA LA C VA LA LA	Est	VA	17 LA	tnv C ns	Ba erno 2 VA ns r	LA ns	C ns · · · · ns Esta	vA * * ns * * tte 201 VA nc nc nc	LA ns * * ns ns ns s * * * * * * * * * * *	Inverno 2018 Estate 2018	VA LA C VA LA C VA LA LA LA	Est	va * tate 20	ns ns ns 117 LA	Investigation	VA NS * NS Si Earno 2 VA NS NS * N	LA ns * ns ns ns LA ns	ns ns ns ns ns	vA * ns * * * * * * * * * * * * *	LA * ns ns * * ns ns the second of the se
Inverno 2018 Estate 2018	VA LA C VA LA C VA LA C VA LA LA	C V	A LAS INS INS	Inv	Verno: VA VA VA VVerno: VVerno: VA NS *	LA * * * * ns * * *	C * * ns ns ns c C ns * ns	vA ns ns ns ns ns ns ns	LA * ns ns ns ns the second of the sec	Inverno 2018 Estate 2018 Estate 2017	VA LA C VA LA C VA LA C C VA LA C C C C C C C C C C C C C C C C C C	Est	VA	17 LA	tnv C ns	Ba erno 2 VA ns va range of the second of	LA ns	C ns * * * ns ns Estate C ns * * * ns ns ns * * * * * * * * * * *	rs + + + + + + + + + + + + + + + + + + +	LA ns ns ns ns - t ns ns - t ns ns - t	Inverno 2018 Estate 2018 Estate 2017	VA LA C VA LA C VA LA C VA LA C C VA C C C C C C C C C C C C C C C C	Est	va * tate 20	ns ns ns 117 LA	Investigation	vA ns * * ns si erno 2	ns	ns ns ns ns ns	vA * ns * * * * * * * * * * * * *	rs r
Estate 2018 Estate 2017	VA LA C VA LA C VA LA C VA LA C C VA LA	C V	A LAS INS INS	Inv	Verno: VA VA VVerno: VVerno: VA NS *	LA * * * * * ns * * * * * * * * * * * * *	C * * * ns ns c C ns * *	vA ns ns ns ns vA r r r r r r r r r r r r r	LA * ns ns ns ns the second of the sec	Inverno 2018 Estate 2018	VA LA C VA LA C VA LA LA	Est	VA	17 LA	tnv C ns	Ba erno 2 VA ns va range of the second of	LA ns	C ns · · · · ns Esta	vA * * ns * * tte 201 VA nc nc nc	LA ns * * ns ns ns ns * ns ns	Inverno 2018 Estate 2018	VA LA C VA LA C VA LA LA LA	Est	va * tate 20	ns ns ns 117 LA	Investigation	VA NS * NS Si Earno 2 VA NS NS * N	LA ns * ns ns ns LA ns	ns ns ns ns ns	vA * ns * * * * * * * * * * * * *	LA * ns ns * * ns ns the second of the se
Estate 2018 Estate 2017	VA LA C VA VA LA	C V	A LAS INS INS	Inv	Verno: VA VA VVerno: VVerno: VA NS *	LA * * * * ns * * *	Ess C ns ns ns	VA * * ns ns ns ns ns ns ns ns	LA * ns ns ns ns the second of the sec	Inverno 2018 Estate 2018 Estate 2017	VA LA C VA LA C VA LA C VA LA LA	Est	VA	17 LA	tnv C ns	Ba erno 2 VA ns va range of the second of	LA ns	C ns · · · ns Estate C C ns · · · ns ns ns ns	vA stee 201 VA v ns v v nc nc nc nc	LA ns * * ns	Inverno 2018 Estate 2018 Estate 2017	VA LA C VA LA C VA LA C VA LA	Est	va * tate 20	ns ns ns 117 LA	Investigation	VA NS * NS Si Earno 2 VA NS NS * N	ns	ns ns ns ns ns	vA ns * * * * * * * * * * * * ate 20 VA ns ns ns ns	rs r
Estate 2018 Estate 2017 Inverno 2018	VA LA C C VA LA C C VA C C VA C C C VA C C C C C C C C	C V	A LAS INS INS	Inv	Verno: VA VA VVerno: VVerno: VA NS *	LA * * * * ns * * *	Ess C ns ns ns	vA * ns ns ns ns r state 2 VA ns ns	LA * ns ns ns ns the second of the sec	Inverno 2018 Estate 2018 Estate 2017 Inverno 2018	VA LA C VA LA LA C VA LA C VA LA C C VA LA C C VA C C C C C C C C C C C C C C C C	Est	VA	17 LA	tnv C ns	Ba erno 2 VA ns va range of the second of	LA ns	C ns · · · ns Estate C C ns · · · ns ns ns ns	va * ns * * * * * * * * * * * * *	LA ns * * ns ns ns * * LA ns * ns ns * ns ns * ns ns	Estate 2018 Estate 2017 Inverno 2018	VA LA C C VA LA C C VA LA C C VA LA C C C C C C C C C C C C C C C C C C	Est	va * tate 20	ns ns ns 117 LA	Investigation	VA NS * NS Si Earno 2 VA NS NS * N	ns	ns ns ns ns ns	vA ns * * * * * * * * * * * * ate 20 VA ns ns ns ns	LA ns ns r ns ns r ns ns ns ns n
Estate 2018 Estate 2017	VA LA C VA VA C VA VA C VA	C V	A LAS INS INS	Inv	Verno: VA VA VVerno: VVerno: VA NS *	LA * * * * ns * * *	Ess C ns ns ns	VA * * ns ns ns ns ns ns ns ns	LA THE PROPERTY OF THE PROPER	Inverno 2018 Estate 2018 Estate 2017	VA LA C VA VA VA	Est	VA	17 LA	tnv C ns	Ba erno 2 VA ns va range of the second of	LA ns	C ns · · · ns Estate C C ns · · · ns ns ns ns	vA stee 201 VA v ns v v nc nc nc nc	LA ns * * ns	Inverno 2018 Estate 2018 Estate 2017	VA	Est	va * tate 20	ns ns ns 117 LA	Investigation	VA NS * NS Si Earno 2 VA NS NS * N	ns	ns ns ns ns ns	vA ns * * * * * * * * * * * * ate 20 VA ns ns ns ns	IA INS INS INS INS INS INS INS I
Estate 2018 Estate 2017 Inverno 2018	VA LA C C VA LA C C VA C C VA C C C VA C C C C C C C C	C V	A LAS INS INS	Inv	Verno: VA VA VVerno: VVerno: VA NS *	LA * * * * ns * * *	Ess C ns ns ns	VA * * ns ns ns ns ns ns ns ns	LA THE PROPERTY OF THE PROPER	Inverno 2018 Estate 2018 Estate 2017 Inverno 2018	VA LA C VA LA LA C VA LA C VA LA C C VA LA C C VA C C C C C C C C C C C C C C C C	Est	VA	17 LA	tnv C ns	Ba erno 2 VA ns va range of the second of	LA ns	C ns · · · ns Estate C C ns · · · ns ns ns ns	vA stee 201 VA v ns v v nc nc nc nc	LA ns * * ns ns ns * * LA ns * ns ns * ns ns * ns ns	Estate 2018 Estate 2017 Inverno 2018	VA LA C C VA LA C C VA LA C C VA LA C C C C C C C C C C C C C C C C C C	Est	va * tate 20	ns ns ns 117 LA	Investigation	VA NS * NS Si Earno 2 VA NS NS * N	ns	ns ns ns ns ns	vA ns * * * * * * * * * * * * ate 20 VA ns ns ns ns	LA ns ns r ns ns r ns ns ns ns n

Tab. 3-XXX – Continuo.

						Fe				
		Es	tate 20	017	Inv	erno 2	018	Est	ate 20	18
		С	VA	LA	С	VA	LA	С	VA	LA
	С		*	*	*	*	*	*		*
Estate 2017	VA			ns	*		*	*		*
	LA				*	*	*	*	*	ns
	С						*	*		*
Inverno 2018	VA						ns	*	*	*
	LA							*		*
	С									*
Estate 2018	VA									*
	LA									

						In				
		Es	tate 20)17	Inv	erno 2	2018	Esta	te 20	18
_		c	VA	LA	O	VA	LA	С	VA	LA
	С		nc	nc	nc	nc	nc	nc	nc	nc
Estate 2017	VA			nc	nc	nc	nc	nc	nc	nc
	LA				nc	nc	nc	nc	nc	nc
	C					nc	nc	nc	nc	nc
Inverno 2018	VA						nc	nc	nc	nc
	LA							nc	nc	nc
	С								nc	nc
Estate 2018	VA									nc
	LA									

Fig. 3.30 - Concentrazioni (mg/kg s.s. ± dev.st.) dei metalli in traccia rilevati nei mitili (*Mytilus galloprovincialis*) campionati presso la piattaforma Bonaccia NW e nel sito di controllo nell'estate 2017 e nelle due stagioni del 2018 VA = vicino anodo; LA = lontano anodo. Non sono riportati mercurio e indio in quanto inferiori al limite di rilevabilità strumentale ovunque.

3.5.2. BIOMARKER

In Tab. 3-XXXI sono riportati i risultati relativi ai mitili analizzati nell'intero periodo di indagine.

Tab. 3-XXXI - Valori medi dei biomarker (± dev. st.) determinati nei mitili campionati nll'estate 2017 e nei due survey del 2018 nel sito di controllo, vicino (VA) e lontano (LA) dall'anodo di sacrificio di Bonaccia NW.

			Estate 2017	
Biomarker	Unità di misura	Controllo	VA	LA
Stress on Stress	LT50 (giorni)	8,8	9,0	9,1
Micronuclei	frequenza ‰	0,7±0,2	$0,9\pm0,1$	$0,9\pm0,2$
Lipofuscine	densità ottica / pixels ²	6453±542	7497±639	7183±450
Lipidi neutri	densità ottica / pixels ²	12345±1903	14390±2012	16360±3419
Stabilità lisosmiale	min	60,0±5,5	46,0±5,0	50,0±3,0
Catalasi	μmol/min/mg di proteine	0,026±0,006	0,030±0,006	$0,029\pm0,005$
Malondialdeide	nmol Mda g ⁻¹ tessuto	45,0±12,0	50,5±9,5	54,1±11,0
Metallotioneine	μg MT/g	70,8±20,4	130,0±5,5	160,4±12,7
qPCR _{MT10}	Induzione	1,0	3,0	3,5
$qPCR_{MT20}$	mauzione	1,0	5,9	6,8

_			Inverno 2018			Estate 2018	
Biomarker	Unità di misura	Controllo	VA	LA	Controllo	VA	LA
Stress on Stress	LT50 (giorni)	8,5	8,9	9,2	8,5	8,9	8,0
Micronuclei	frequenza ‰	0,8±0,2	1,0±0,1	1,1±0,2	1,2±0,2	0,8±0,3	$0,9\pm0,2$
Lipofuscine	densità ottica / pixels ²	7392±326	8126±530	8261±630	8134±326	8316±235	8792±445
Lipidi neutri	densità ottica / pixels ²	9382±1739	10830±1629	11298±4539	11382±1325	10830±1851	10319±1261
Stabilità lisosmiale	min	60,5±3,5	50,5±3,5	50,0±5,0	50,0±3,5	45,5±2,5	35,0±5,0
Catalasi	μmol/min/mg di proteine	$0,029\pm0,007$	$0,035\pm0,007$	0,030±0,006	0,019±0,005	0,022±0,006	0,029±0,004
Malondialdeide	nmol Mda g ⁻¹ tessuto	33,5±10,5	40,5±8,5	39,5±8,0	29,5±11,0	28,2±10,5	31,9±9,5
Metallotioneine	μg MT/g	65,8±15,5	111,0±10,2	115,3±9,9	70,1±17,0	90,5±8,8	112,3±14,6
qPCR _{MT10}	Induzione	1,0	2,8	3,1	1,0	1,8	3,7
$qPCR_{MT20}$	muuzione	1,0	7,1	7,9	1,0	3,0	4,6

3.5.2.1 Stress on Stress

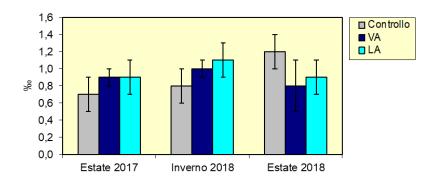
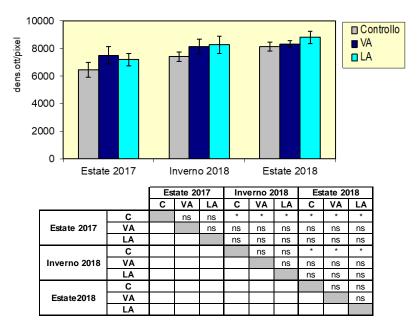

I mitili prelevati dai due siti della piattaforma Bonaccia NW nell'ultimo monitoraggio hanno presentato una sopravvivenza all'aria, misura dello stress on stress, uniforme con quella registrata negli esemplari di controllo, analogamente ai due survey precedenti (fig. 3.31). I tempi di sopravvivenza osservati sono apparsi simili, e in alcuni casi superiori, a quelli registrati in studi analoghi condotti su altre piattaforme offshore dell'Adriatico centro-settentrionale come PCMS-1 (Fabi *et al.*, 2005b), Calipso (Fabi *et al.*, 2006; Gomiero *et al.*, 2011; 2015), Naide (Fabi *et al.*, 2013), Clara Nord (Fabi *et al.*, 2010a), Clara Est (Fabi *et al.*, 2010b) e Annamaria B (Fabi *et al.*, 2016a).

Fig. 3.31 - Tempi di sopravvivenza all'aria riscontrati negli esemplari di M. galloprovincialis prelevati nell'estate 2017 e nelle due stagioni del 2018. VA = vicino anodo; LA = lontano anodo. Test di Kaplann-Meier. ns = non significativo; * = significativo (p <0,05).

3.5.2.2 Micronuclei

La distribuzione delle frequenze di micronuclei è risultata omogenea in tutti i tre monitoraggi (fig. 3.32). Ciò indica l'assenza di genotossicità negli organismi esaminati. Le frequenze rilevate sono infatti apparse estremamente contenute rispetto a quanto riportato per aree costiere (Bolognesi *et al.*, 1996; 2004) e confrontabili con quelle rilevate per altre piattaforme offshore dell'Adriatico (Fabi *et al.*, 2004a; 2005a; 2005b; 2006; 2010a; 2010b; 2013; 2015a).



		Est	tate 20)17	Inv	erno 2	2018	Esta	te 201	18
		O	VA	LA	O	۷A	LA	U	VA	LA
	ပ		ns	ns	ns	ns	ns	*	ns	ns
Estate 2017	٧A			ns	ns	ns	ns	ns	ns	ns
	LA				ns	ns	ns	ns	ns	ns
	C					ns	ns	ns	ns	ns
Inverno 2018	٧A						ns	ns	ns	ns
	LA							ns	ns	ns
	ပ								ns	ns
Estate 2018	VA									ns
	LA									

Fig. 3.32 - Frequenze medie (\pm dev.st.) dei micronuclei ottenute per gli esemplari di M. *galloprovincialis* prelevati nell'estate 2017 e nelle due stagioni del 2018 dalle parti sommerse di Bonaccia NW e dal controllo. VA = vicino anodo; LA = lontano anodo. Test ANOVA. ns = non significativo; * = significativo (p <0,05).

3.5.2.3 Valutazione del contenuto di lipofuscine

I livelli di lipofuscine dell'estate 2018 sono risultati compresi tra 8134±326 del sito di controllo e 8792±445 unità di densità ottica/pixel del sito LA (fig. 3.33), indicando una uniformità tra i tre siti anche in quest'ultima stagione e, dunque, confermando l'assenza di stress perossidativo a carico degli organismi prelevati dalla piattaforma. I livelli ottenuti sono apparsi nel complesso inferiori a quelli evidenziati in precedenti esperienze di monitoraggio in aree costiere in Adriatico settentrionale (Petrovic *et al.*, 2004) o su analoghe piattaforme offshore (Fabi *et al.*, 2006; 2010a; 2010b; 2013; 2016a; Gomiero *et al.*, 2011; 2015; Gorbi *et al.*, 2008).

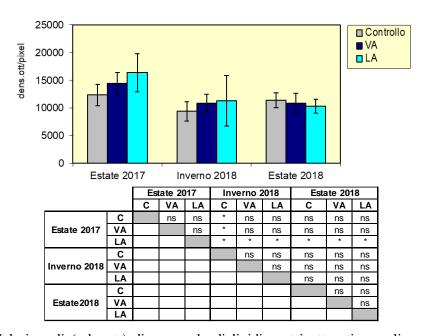


Fig. 3.33 - Valori medi (\pm dev.st.) di accumulo di lipofuscine ottenuti per gli esemplari di *M. galloprovincialis* prelevati nell'estate 2017 e nelle due stagioni del 2018 dalle parti sommerse di Bonaccia NW e dal controllo. VA = vicino anodo; LA = lontano anodo. Test ANOVA. ns = non significativo; * = significativo (p <0,05).

3.5.2.4 Valutazione del contenuto di lipidi neutri

Anche nell'estate 2018 è stata rilevata una distribuzione omogenea dei livelli di lipidi neutri tra i tre campioni di mitili (fig. 3.34). Ciò tende ad escludere un'alterazione biologica associata alla sintesi dei lipidi nell'organismo a causa della potenziale presenza di sostanze xeno-biotiche biodisponibili, quali i composti organici, capaci di alterare il normale metabolismo lipidico di un organismo marino. Il contenuto lipidico totale della ghiandola digestiva è, infatti, costituito per circa 1'80% da lipidi neutri insaturi ed è stato osservato che, in organismi esposti a contaminanti organici (PCB, IPA, diossine), avviene

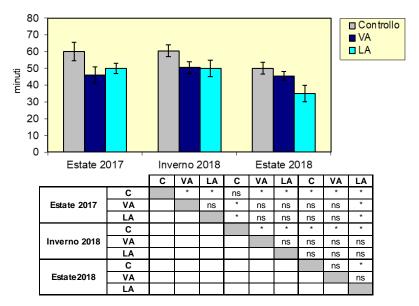

un incremento sostanziale dell'accumulo di lipidi neutri associati a lisosomi secondari. Confrontando i risultati ottenuti con la letteratura più recente le risposte evidenziate sono apparse nella norma e assimilabili a organismi soggetti a una bassa pressione antropica (Fabi *et al.*, 2006; 2010a; 2010b; 2013; 2016a; Gorbi *et al.*, 2008; Gomiero *et al.*, 2015).

Fig. 3.34 - Valori medi (\pm dev.st.) di accumulo di lipidi neutri ottenuti per gli esemplari di *M. galloprovincialis* prelevati nell'estate 2017 e nelle due stagioni del 2018 dalle parti sommerse di Bonaccia NW e dal controllo. VA = vicino anodo; LA = lontano anodo. Test ANOVA. ns = non significativo; * = significativo (p <0,05).

3.5.2.5 Stabilità delle membrane lisosomiali

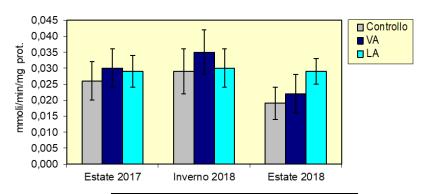
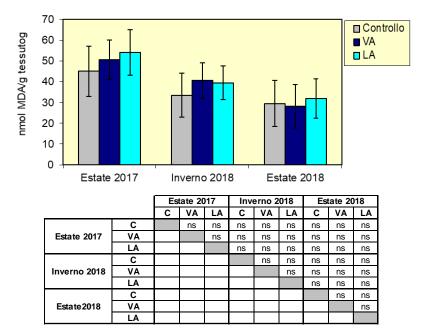

I mitili prelevati nell'estate 2018 dal sito LA hanno presentato un moderato ma significativo aumento della fragilità lisosomiale rispetto agli esemplari di controllo (fig. 3.35). Nei due monitoraggi precedenti tale situazione era stata rilevata presso entrambi i punti di prelievo di Bonaccia NW suggerendo, pertanto un lieve miglioramento in VA. Nel complesso, i tempi di destabilizzazione osservati sono comunque apparsi confrontabili a quelli osservati per organismi in discreto stato di salute (Donnini *et al.*, 2007). Essi sono inoltre risultati simili, e in alcuni casi superiori, agli analoghi registrati in precedenti indagini ambientali su strutture estrattive (Fabi *et al.*, 2006; 2010a; 2010b, 2013; 2015a; 2016a; Gorbi et al., 2008; Gomiero *et al.*, 2011; 2015) e in altre aree dell'alto Adriatico (Petrovic *et al.*, 2004).

Fig. 3.35 - Valori medi (\pm dev.st.) dei tempi di destabilizzazione ottenuti per gli esemplari di *M. galloprovincialis* prelevati nell'estate 2017 e nelle due stagoni del 2018 dalle parti sommerse di Bonaccia NW e dal controllo. VA = vicino anodo; LA = lontano anodo. Test ANOVA. ns = non significativo; * = significativo (p <0,05).

3.5.2.6 Catalasi

L'attività di catalasi misurata nelle ghiandole digestive dei bivalvi prelevati dai siti della piattaforma non ha mai presentato variazioni statisticamente significative rispetto agli esemplari di controllo (fig. 3.36). Nel complesso, le risposte osservate si collocano nel range riportato nella più recente letteratura inerente sia analoghi monitoraggi ambientali (Fabi *et al.*, 2005a; 2006; 2010a; 2010b; 2016a), sia la valutazione della qualità di aree marino-costiere (Bocchetti e Regoli, 2006).



		Est	tate 20)17	Inv	erno 2	2018	Esta	ite 20	18
		C	VA	LA	O	VA	LA	С	VA	LA
	C		ns	ns	ns	ns	ns	ns	ns	ns
Estate 2017	VA			ns	ns	ns	ns	ns	ns	ns
	LA				ns	ns	ns	ns	ns	ns
	O					ns	ns	ns	ns	ns
Inverno 2018	VA						ns	ns	ns	ns
	LA							ns	ns	ns
	ပ								ns	ns
Estate 2018	VA									ns
	LA									

Fig. 3.36 - Valori medi (\pm dev.st.) dell'attività della catalasi ottenuti per gli esemplari di *M. galloprovincialis* prelevati nell'estate 2017 e nelle due stagioni del 2018 dalle parti sommerse di Bonaccia NW e dal controllo. VA = vicino anodo; LA = lontano anodo. Test ANOVA. ns = non significativo; * = significativo (p <0,05).

3.5.2.7 Malondialdeide

I livelli medi determinati nei mitili prelevati dai due siti della piattaforma Bonaccia NW e in quelli di riferimento sono risultati statisticamente omogenei tra loro in tutti i monitoraggi (fig. 3.37). Alla luce di questo risultato e di quello relativo alla determinazione dell'attività di catalasi, è possibile escludere al momento la presenza di un effetto biologico associato allo stress ossidativo. Tuttavia, i livelli riscontrati appaiono nel complesso superiori agli analoghi osservati sia in esperimenti di biomonitoraggio attivo con mitili (Viarengo e Canesi, 1991) che presso analoghe piattaforme offshore (Fabi *et al.*, 2006; 2010a; 2010b; 2013).

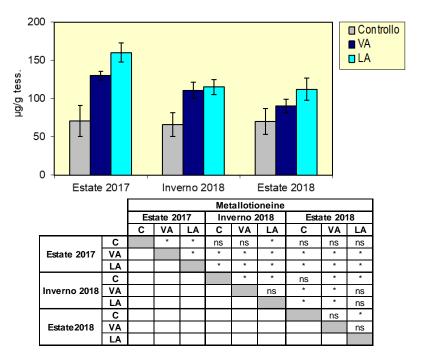


Fig. 3.37 - Valori medi (\pm dev.st.) di malondialdeide ottenuti per gli esemplari di *M. galloprovincialis* prelevati nell'estate 2017 e nei due survey effettuati nel 2018. VA = vicino anodo; LA = lontano anodo. Test di Mann – Whitney. ns = non significativo; * = significativo (p <0,05).

3.5.2.8 Metallotioneine

Nell'estate 2018 i livelli medi di metallotioneine sono risultati compresi tra $70,1\pm19,0~\mu g$ MT/g di tessuti dei mitili prelevati presso il controllo e $112,3\pm14,6~\mu g$ MT/g di tessuto in LA, unico sito a risultare statisticamente differente dal riferimento (fig. 3.38). Nei due monitoraggi precedenti i livelli di metallottioneine rilevati in entrambi i punti di prelievo della piattaforma erano risultati significativamente superiori a quelli del controllo.

Tutti i livelli osservati sono confrontabili con quelli osservati presso altre piattaforme metanifere (Fabi *et al.*, 2005a; 2006; 2010b; 2013; Gomiero *et al.*, 2011; 2015).

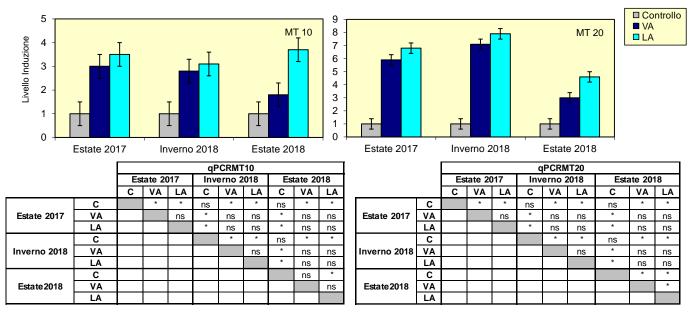


Fig. 3.38 - Valori medi (\pm dev.st.) di metallotioneine ottenuti per gli esemplari di *M. galloprovincialis* prelevati nell'estate 2017 e nei due survey effettuati nel 2018. VA = vicino anodo; LA = lontano anodo. Test di Mann – Whitney. ns = non significativo; * = significativo (p <0.05).

3.5.2.9 Polymerase Chain Reaction (qPCR)

L'analisi qPCR costituisce una tecnica d'indagine consolidata in campo biomedico e implementata con tecniche innovative per lo studio della qualità degli ambienti marini (Dondero *et al.*, 2005). La metodologia prevede l'amplificazione selettiva in vitro di una sequenza di DNA target. In particolare, nel corso del presente studio è stata approfondita la quantificazione di due sequenze geniche, MT10 ed MT20, responsabili della sintesi delle proteine metallo-chelanti metallotioneine (Dondero *et al.*, 2005). I risultati ottenuti in tutti i tre survey condotti sinora tendono a confermare la presenza di induzione sia dell'MT10 che dell'MT20 nei mitili di Bonaccia NW rispetto a quelli di controllo (fig. 3.39). L'espressione del secondo gene risulta correlata all'omeostasi di cationi tipicamente essenziali allo sviluppo e alla corretta funzionalità cellulare nel mitilo quali Ca, Mg, Zn, Fe e, in piccole quantità, Cu. Diversamente, il primo gene risulta indotto in presenza di cationi non essenziali quali As, Be, Cd, Cs, Hg e Pb.

I livelli di induzione per l'MT20 osservati nei mitili della piattaforma appaiono moderati rispetto a quelli osservati su mitili prelevati presso aree marine-costiere interessate da diverse attività tra cui industriali, agricole ed urbane Banni *et al.*, 2007) e presso analoghe aree marine soggette a sfruttamento di giacimenti di idrocarburi (Fabi *et al.*, 2015a; 2016a; 2019a).

Fig. 3.39 – qPCR rilevati negli esemplari di M. galloprovincialis prelevati nell'estate 2017 e nei due survey effettuati nel 2018. VA = vicino anodo; LA = lontano anodo. Test ANOVA. ns = non significativo; * = significativo (p <0,05).

3.6. INDAGINI SULLA COMUNITÀ BENTONICA

3.6.1. DENSITÀ (N) E BIOMASSA (P)

Nell'estate 2018 i due transetti hanno presentato andamenti della Densità molto simili (fig. 3.40) e caratterizzati da un picco nei due siti a ridosso di Bonaccia NW posizionati a Sud della struttura, con il massimo assoluto dell'intero periodo di indagine in BO SE (706,83±333,56 ind/0,095 m²) determinato principalmente dai numerosissimi esemplari del polichete *Filograna* sp (425,33 ind/0,095 m²; Tab. 3-XXXIX). Nonostante l'elevata variabilità registrata in questo sito, esso non è risultato comparabile con nessun'altra stazione. Anche il valore in BO SW (289,17±48,60 ind/0,095 m²), il secondo maggiore, non è apparso confrontabile on i transetti e con i controlli.

Le densità relative alle altre due stazioni corrispondenti alla piattaforma sono state molto inferiori; quella registrata in BO NW è risultata leggermente superiore ai siti del transetto A e simile solo ad A5 (148,00±6,26 e 124,83±4,00 ind/0,095 m² rispettivamente), mentre la densità ottenuta in BO NE (61,33±11,71 ind/0,095 m²) è stata la terza più bassa del monitoraggio estivo del 2018 dopo quelle di A8 e K1.

Rispetto all'inverno le uniche variazioni di nota si sono avute in BO SW e BO SE, mentre rispetto al pre-survey sono aumentati i valori in piattaforma (eccetto in BO NE rimasta praticamente identica) e nei siti a 60 m dalla struttura.

Come riscontrato in tutti i campionamenti condotti dopo l'installazione della piattaforma Bonaccia NW, anche nel 6° survey post lavori di installazione i policheti della famiglia Paraonidae hanno costituito il taxon più abbondante in tutta l'area indagata, seguiti in numerose stazioni dai policheti *Ophelina cylindricaudata*, *Paradiopatra calliopae* e *Aphelochaeta filiformis* (Tabb. 3-XXXII - 3-XXXIX). Come già anticipato in BO SE è stata rilevata una quantità elevatissima di *Filograna* sp, ma degne di nota in questo sito sono anche le densità dei bivalvi *Neopychnodonte cochlear* e *Anomia ephippium* e degli cnidari Actiniaria nd.

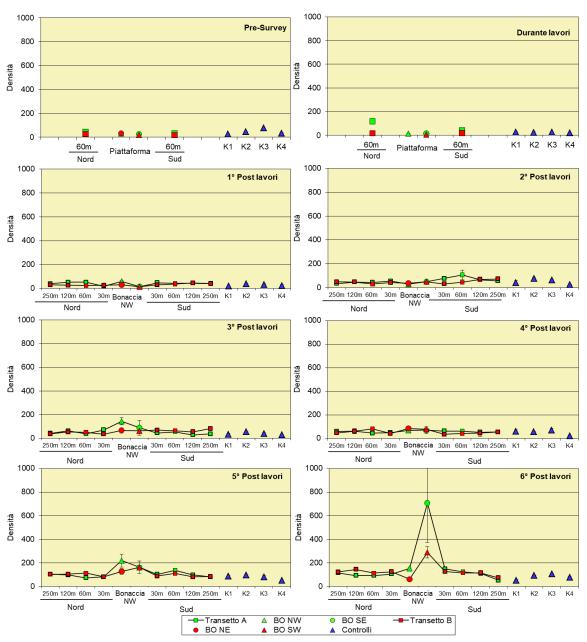


Fig. 3.40 – Densità (± e.s.) registrate presso i siti monitorati nel nell'intero periodo di indagine.

Tab. 3-XXXII – Lista e densità (n. ind/0,095 m²) delle specie rinvenute nelle stazioni campionate durante il **presurvey**. Per ogni sito è riportato il numero totale di taxa osservati. Sono anche indicate le Biocenosi di appartenenza dei taxa determinati a livello di specie. C = Bioc. del Coralligeno; DC = Bioc. del Detritico Costiero; DE = Biocenosi del Detritico Infangato; DL= Bioc. del Detritico del Largo; HP = Bioc. delle praterie di Posidonia; Lim = limicolo; Lre = Larga Ripartizione Ecologica; MI = Bioc. dei Fondi Mobili Instabili; Minut = minuticolo; Mixt = misticolo; MO = indicatore della presenza di materia organica; Sab = sabulicolo; SFBC = Bioc. delle Sabbie Fini Ben Calibrate; SGCF = Bioc. delle Ghiaie Fini sotto l'influsso delle Correnti di Fondo; Sm = substrato mobile; SVMC = Bioc. delle Sabbie Infangate di Moda Calma; VB = Bioc. dei Fanghi Batiali; VTC = Bioc. dei Fanghi Terrigeni Costieri.

		ĺ		Trans	etto A			Trans	etto B			Cont	rollo	
Stazione		Biocenosi	А3	BO NW	BO SE	A6	В3	BO NE	BO SW	В6	K1	K2	K3	K4
Distanza dalla f	utura piattaforma (m)		60	0	0	60	60	0	0	60	2000	2000	2000	2000
Cnidari														
Antozoi	Actiniaria nd	-								0,33		0,67		
Idrozoi	Hydroidea nd	-	0,33		0,33								1,00	
Crostacei														
Anfipodi	Ampelisca diadema	DE		1,33									0,67	
	Carangoliopsis spinulosa	VTC				0,33								
	Eriopisa elongata	VB		0,67		0,33								
	Harpinia dellavallei	VTC		0,33	0,33						0,33		1,00	
	Leucothoe lilljeborgi	MO									0,33			
	Liljeborgia psaltrica	DC		0,33										
	Orchomene grimaldii	VTC	1,33	1,00										
	Paraphoxus oculatus	Mixt			0,33						0,33		0,33	0,33
	Perioculodes longimanus	SFBC											0,33	
	Podoprion bolivari	С		0,67										
	Stenothoe sp	-	0,33											
0 "	Stenothoe tergestina	С	0,33								0.00			
Copepodi	Copepoda nd	VTC				4.00		0.44			0,33			
Decapodi	Alpheus glaber	Lim	2,00	2,00	2,00	1,00 2,00	2,00	0,44 1,00	0,33	1,00	1,33	2,33	0,67	1,67
	Callianassa subterranea	VB	2,00	2,00	2,00	2,00	2,00	1,00		1,00	1,33	2,33	0,67	1,67
	Chlorotocus crassicornis Goneplax rhomboides	VTC	0,67	0,33	0,33	0,33			0,33	0,33	0,33	0,33		0,33
	Processa sp	-	0,07	0,33	0,33	0,33				0,33	0,33	0,33	0,67	0,33
	Upogebia deltaura	DL	0,67		0,33	0,33			0,33				3,33	0,33
Isopodi	Anthura gracilis	Lim	5,07		0,33	5,07			5,55				5,55	5,55
юороа	Gnathia sp	-	0,33		0,00									
	Paragnathia sp	-	0,33											
Misidiacei	Misidiacea nd	-	-,	0,67										
Tanaidacei	Leptochelia savignyi	С		- , -										0,67
Echinodermi	. 0,													
Echinoidi	Brissopsis atlantica mediterranea	VB			0,33									
Oloturoidei	Holothurioidea nd	-								0,33				
Molluschi														
Bivalvi	Abra nitida	VTC					0,33							
	Abra prismatica	DC					0,33							
	Hiatella arctica	Sd	0,33											
	Kellia suborbicularis	DC											0,33	
	Kurtiella bidentata	VTC												0,67
	Nucula nitidosa	Lim			0,33	0,33	0,67	0,33	0,33					0,67
	Thyasira biplicata	Lim				0,33								
	Thyasira succisa	Lim											1,00	
	Timoclea ovata	Lre										0,67	3,33	
Gasteropodi		Lre	0,33											
	Cylichna cylindracea	SFBC						0,33						
	Hyala vitrea	VTC	0,33	0,33		0,33		0,33	1,33	0,33	0,33		2,00	3,67
	Melanella polita	DC			0,33									
	Turritella communis	VTC	0,67		0,33	0,33	0,33	1,67		1,00		1,33	1,00	
Nemertini				0.00									4.07	
Daliahati	Nemertea nd	-		0,33									1,67	
Policheti	Ampharata aqutifrana	VTC	0,67	0,67	1.67	0,33		0,67			1,00	3,00	8,33	
	Ampharete acutifrons Ampharetidae nd	V IC	0,67	0,67	1,67 0,33	0,33		0,67	0,33		1,00	3,00 1,67	5,00	
	Ampharetidae nd Ancystrosyllis groenlandica	- VB	0,33		0,33				0,33			0,33	5,00	
	Aphelochaeta filiformis	MO	1,33	0,67	1,33	1,00	0,33	0,44	0,33	0,33	3,00	5,00	9,33	0,67
ĺ	Aphelochaeta marioni	MO	2,33	5,07	1,00	.,00	0,33	1,44	0,33	5,50	5,00	5,00	0,67	0,67
	Aponuphis bilineata	SGCF	_,00	I	0,67		5,50	.,	0,67				5,07	5,57
	Aponuphis brimeata Aponuphis brementi	Lim			5,57			0,44	5,57			0,33	1,00	
	Capitella capitata	MO				0,33		I -,				1 .,00	.,00	
	Capitellidae nd	-				2,00		0,33						
	Chaetopteridae nd	-		0,33		0,33		.,						
	Chaetozone caputesocis	Lim		.,	0,33	.,				0,33		0,33		
	Chirimia biceps	MO						0,33				I		0,33
	Cirratulidae nd	-	0,33				0,33	l	0,33			0,33	1,00	0,33
	Eupanthalis kinbergi	DE	0,33											
	Glycera rouxii	MO	1,00	1,00	0,33	0,67		0,33	0,33	0,67	0,67		0,67	1,00
	Goniada maculata	VTC	0,33									0,67		
	Harmothoe sp	-		0,33	0,33									
	Labioleanira yhleni	VTC			1,33	0,33			0,33		0,33	0,33		0,33
ĺ	Lumbrineris gracilis	Sab					0,33					1,00		
ĺ	Marphysa bellii	Lim	1,00	0,67	0,33	1,67	1,00	1,22	0,33	1,00	0,33	0,67	0,67	0,67
ĺ	Melinna palmata	Minut						0,33	0,33				0,33	0,33
ĺ	Micronephtys sphaerocirrata	Sab			0,33	0,33								
1	Minuspio cirrifera	MO	0,67	1,33		1,00			0,33	0,33	0,33	1,00	2,00	
ĺ	Nephtys hystricis	VTC	1,00	0,67	1,33	0,33	0,33	1,11	0,33	0,33	0,67	0,67	0,33	0,33
ĺ	Nereididae nd	-					0,33							
	Ninoe sp	_	0,33	1	i	0,33	0,67	0,44	i		Ī	ı		ı

Tab. 3-XXXII – Continuo.

				Trans	etto A			Trans	etto B			Con	rollo	
Stazione		Biocenosi	A3	BO NW	BO SE	A6	B3	BO NE	BO SW	B6	K1	K2	K3	K4
Distanza dalla futur	ra piattaforma (m)		60	0	0	60	60	0	0	60	2000	2000	2000	2000
Policheti	• • •													
No	otomastus aberans	MO	1,00	2,33		1,67	1,67		2,00	0,33	2,00	4,00	1,33	0,67
Op	phelina cylindricaudata	Lim	9,00	4,33	3,33	3,33	4,33	3,33	3,00	5,00	4,33	3,00	2,33	4,33
O _I	phiodromus flexuosus	Sab				0,33		0,44					0,33	
Pa	aradiopatra calliopae	Lim	1,67	2,67		1,00	2,00	1,00	2,00	0,33	1,00	3,67	5,33	3,00
Pa	aralacydonia paradoxa	MO	3,33		1,00	0,67	2,00	0,33	1,00	0,67	1,67	1,00	1,00	0,67
Pa	araonidae nd	-	7,67	5,00	5,00	6,33	6,67	13,22	3,00	2,67	4,33	8,00	13,33	7,00
Pe	ectinaria koreni	Sab				0,33								
Pł	hylo foetida	SVMC				0,33								
Pł	hylo norvegica	Lim			0,33									
Pil	largidae nd	-	0,67	0,33	0,33	0,33	0,33				0,33		1,00	0,33
Po	oecilochetus serpens	VTC											0,33	0,33
Pr	rionospio ehlersi	Mixt	0,33						0,33			0,33		
Pr	rionospio sp	-		0,33		0,33	0,33			0,33				
Pr	rionospio steenstrupi	Lre		0,33										
Sa	abellidae nd	-	0,33										0,33	
Sc	coletoma fragilis	Lim										0,67		
Sc	coletoma sp	-		0,67				0,78						
Sc	coloplos armiger	Lre	0,33	0,33	0,33		0,33	0,67	0,67	0,33	0,33	0,33	1,00	0,33
Sp	pionidae nd	-			0,33	0,33							0,33	
Sp	piophanes bombyx	SFBC		0,33										
St	ternaspis scutata	VTC			0,33									
Sy	yllidae juv	-										0,33		0,33
Sy	yllis sp	-	0,33					0,44						
Te	erebellidae nd	-				0,67								
Τe	erebellides stroemi	MO										0,33		
Sipunculidi														
Oi	nchnesoma steenstrupi	VB	0,33	0,67							0,67	0,67	1,33	2,33
Pł	hascolion strombus	Lre											0,33	0,67
Si	puncula nd	-	1,33	1,00	1,33	2,00	2,33	1,78	0,67	1,00	1,00	1,33	1,33	1,33
Densità totale	-		44,00	32,00	27,00	30,67	27,33	33,22	19,33	17,00	25,33	44,33	76,33	34,33
Ricchezza specifica	a totale		37	31	32	35	22	26	24	20	23	30	39	29

Tab. 3-XXXIII – Lista e densità (n. ind/0,095 m²) delle specie rinvenute nelle stazioni campionate nel survey condotto **durante i lavori** di installazione. Per ogni sito è riportato il numero totale di taxa osservati. Sono anche indicate le Biocenosi di appartenenza dei taxa determinati a livello di specie. Per la legenda si rimanda alla Tab. 3-XXXII. La stazione BO NE non è stata campionata.

Cnidari Antozoi Actiniari Antozoi Hydroido Crostacei Anfipodi Eriopisa Leucoth Othoma Parapho Cumacei Cumacei Eudorell Decapodi Alpheus Calliana Gonepla Liocarci Process Solenoc Ulpogeb Isopodi Cirolana Eurydice Stomatopodi Rissoido Molluschi Bivalvi Mytilus (Mucula i Turritella Nemertini Nemerter Policheti Amphan Apheloc Aponupi Capitelli Chaeteco Ileone Glycera Glycera Harmott Labiolee Lumbrin Maldani Marphys Melinna Minuspi Nephrys Ninoe s Notoma Ophelini Ophiodn Paradio; Pilargis Poeciloo	ura piattaforma (m)	Biocenosi	A3 60	BO NW	BO SE	A6	B3	BO NE	BO SW	B6	K1	V۵	V٩	17.
Briozoi Briozoa Cnidari Antozoi Actiniari Idrozoi Hydroide Crostacei Anfipodi Eriopisa Leucoth Othoma Paraphe Cumacei Cumacei Eudoreli Decapodi Alpheus Calliana Goneple Liocarci Process Solenoc Upogeb. Isopodi Cirolana Eurydice Stomatopodi Rissoide Molluschi Bivalvi Mytilus a Mucula i Gasteropodi Hyala vi Turritelie Nemertin Nemerte Policheti Amphan Apheloc Aponupi Capitelli Chaetoz Cirratulic Eteone i Glycera Glycera Glycera Glycera Harmott Labiolese Lumbrin Maldani Marphys Melinna Minuspi Nephtys Nince s Notoma. Ophelini Ophiodri Paradioj Paralaci Paradioj Paralaci Phyllode Phylo ne Pilargids Pilargis Poeciloc	•	Dioceriosi	60							2	IN I	K2	K3	K4
Cnidari Antozoi Actiniari Idrozoi Hydroide Crostacei Anfipodi Eriopisa Leucoth Othoma Parapho Cumacei Cumacei Eudorell Decapodi Alpheus Calliana Goneple Liocarci Process Solenoc Upogeb. Isopodi Cirolana Eurydice Stomatopodi Rissoide Molluschi Bivalvi Mytilus o Nucula i Gasteropodi Hyala vi Turritelle Nemertini Nemerte Policheti Amphan Apheloc Aponupi Capitelli Chaetoz Cirratulic Eteone o Glycera Glycera Glycera Glycera Harmott Marphys Melinna Minuspi Nephtys Nince s Notoma Ophelini Ophiodr Paradio Paralaci Paraoric Phyllode Phylo ne Pilargids Poecilot	riozoa nd		JU	0	0	60	60	0	0	60	2000	2000	2000	2000
Cnidari Antozoi Actiniari Antozoi Hydroide Crostacei Anfipodi Eriopisa Leucoth Othoma Paraphe Cumacei Cumacei Eudoreii Decapodi Alpheus Calliana Gonepla Licocarci Process Solenoc Upogeb Isopodi Cirolana Eurydice Stomatopodi Rissoide Molluschi Bivalvi Mytilus (Mucula i Turritelle Nemertini Nemerter Policheti Amphan Apheloc Aponupi Capitellii Chaetoz Cirratulii Eteone Glycera Harmott Labiolee Lumbrin Maldanii Marphys Melinna Minuspi Nephrys Ninoe s Notoma Ophelidi Paradioj Paralaci Paradioj Paralaci Phyllode Phylo ne Pilargids Pilargis Poeciloo	riozoa nd													
Antozoi Actiniari Indrozoi Idrozoi Hydroide Crostacei Anfipodi Eriopisa Leucuth Othoma Paraphi. Cumacei Eudoreli Decapodi Alpheus Calliana Goneple Liocarcii. Process Solenoc Upogeb. Isopodi Cirolana Eurydice Stomatopodi Rissoide Molluschi Bivalvi Mytilus Indroduschi Bivalvi Mytilus Indroduschi Process Solenoc Apheloc		-	0,33											
Idrozoi Hydroide Crostacei Anfipodi Eriopisa Leucoth Othoma Parapho Cumacei Eudorell Decapodi Alpheus Calliana Gonepla Liocaroi Process Solenoc Upogeb. Isopodi Cirolana Eurydice Stomatopodi Rissoide Molluschi Bivalvi Mytilus a Nucula a Gasteropodi Hyala vi Turritelle Nemertini Nemertei Amphan Apheloc Aponupp Capitelli Chaetoz Cirratulic Eteone a Glycera Glycera Glycera Harmott Labiolee Lumbrin Marphys Melinna Minuspi Nephtys Ninoe s Notoma Ophelini Ophiodr Paradio Paradio Paradio Paradio Paradio Paradio Paradio Pilargis Poecilot														
Crostacei Anfipodi Eriopisa Leucoth Othoma Parapho Cumacei Cumacei Eudorell Decapodi Alpheus Calliana Gonepla Licoarci Process Solenoc Upogeb. Isopodi Cirolana Eurydice Stomatopodi Rissoide Molluschi Bivalvi Mytilus Nucula i Marentini Nemertini Nemertini Nemertini Policheti Amphar Apheloc Aponupi Capitellii Chaetoz Cirratulia Eteone Glycera Glycera Glycera Glycera Glycera Glycera Harmott Labiolee Lumbrin Marphys Molinna Minuspi Nephtys Ninoe s Notoma Ophelini Ophiodr Paradioj Paralacj Paraadioj Paralacj Paraorici Phyllode Phylo ne Pilargids Poecilote		-		0.00	0.00	0.00					0,33	0.00		
Anfipodi Eriopisa Leucoth Othoma Parapho Cumacei Cumace Eudorell Decapodi Alpheus Calliana Gonepla Licocanci Process Solenoc Upogeb. Isopodi Cirolana Eurydice Stomatopodi Rissoide Molluschi Bivalvi Mytilus ei Nucula in Turritella Nemertini Nemertei Amphana Apheloc Aphel	ydroidea nd	-		0,33	0,33	0,33					0,33	0,33		
Leucoth Othoma Paraphc Cumacei Cumace Eudorei Decapodi Alpheus Calliana Goneple Liocarci. Process Solenoc Upogeb. Isopodi Cirolana Eurydice Stomatopodi Rissoide Molluschi Bivalvi Mytilus o Turritelle Nemertin Nemerte Policheti Amphan Apheloc Aponupi Capitelli Chaetoz Cirratulic Eteone o Glycera Glycera Glycera Glycera Harmott Labioles Lumbrin Maldani Marphys Melinna Minuspi Nephtys Nince s Notoma Ophelin Ophiodr Paradioj Paralaci Phyllode Phylo ne Pilargids Poecilot	rianiaa alangata	VB	0.67								0,33			
Cumacei Cumacei Eudorell Decapodi Alpheus Calliana Goneple Liocarci Process Solenoc Upogeb. Isopodi Cirolana Eurydice Stomatopodi Rissoide Molluschi Bivalvi Mytilus o Nucula i Gasteropodi Hyala vi Turritelle Nemertini Nemertei Amphan Apheloc Apheloc Aponupi Capitelli Chaetoz Cirratulic Eteone o Glycera Glycera Glycera Harmott Marphys Melinna Minuspi Nephtys Nince s Notoma Ophelini Ophiodr Paradioj Paralaci Palargis Poecilot	riopisa elongata eucothoe lilljeborgi	MO	0,67			0,33					0,33			0,33
Cumacei Parapho Cumacei Cumacei Eudorell Decapodi Alpheus Calliana Gonepla Licocarci Process Solenoc Ulpogeb Isopodi Cirolana Eurydice Stomatopodi Rissoide Molluschi Bivalvi Mytilus (Mucula i Turritella Nemertini Nemerter Policheti Amphan Apheloc Aponupi Capitelli Chaeteco Cirratuli Eteone Glycera Harmott Labiolee Lumbrin Maldani Marphys Melinna Minuspi Nephtys Nince s Notoma Ophelin Ophiodr Paradioj Paralaci Paragio Pilargis Poeciloc	thomaera schmidtii	VB	0,33		0,33	0,33								0,33
Cumacei Cumacei Eudoreii Decapodi Alpheus Calliana Goneple Liocarcii Process Solenoc Upogeb Isopodi Cirolana Eurydice Stomatopodi Rissoide Molluschi Bivalvi Mytilus and Nucula in Gasteropodi Turritelle Nemertini Nemerte Policheti Amphana Apheloc	araphoxus oculatus	Mixt	0,33		0,33	0,33							0,33	
Decapodi Alpheus Calliana Goneple Liocarci Process Solenoc Upogeb. Isopodi Cirolana Eurydice Stomatopodi Rissoidi Molluschi Bivalvi Mytilus y Nucula Gasteropodi Hyala vi Turritelle Nemertini Nemertei Amphana Apheloc Apheloc Apheloc Apheloc Apheloc Giycera Giycera Giycera Giycera Harmott Labiolee Lumbrin Maldanii Marphys Melinna Minuspi Nephtys Nince s Notoma Ophelini Ophiodr Paradioj Paralaci Paraonii Phyllode Phylo ne Pilargide Pilargis Poeciloc	umacea nd	-	0,00		0,00	0,00							0,00	0,33
Decapodi Alpheus Calliana Gonepte Gonepte Solenoc Upogeb. Isopodi Cirolana Eurydice Stomatopodi Rissoide Molluschi Bivalvi Mytilus Nucula i Amphara Apheloc Aponupi Capitellii Chaetoz Cirratulii Eteone Glycera Glycera Glycera Harmott Labiolee Lumbrin Maldanii Marphys Molinna Minuspi Nephtys Nince s Notoma Ophelini Ophiodr Paradioj Paralacj Paraonii Phyllode Phylo ne Pilargide Pilargis Poecilot	udorella truncatula	Mixt												0,33
Calliana Gonepia Licocarci Process Solenco Upogeb. Isopodi Cirolana Eurydici Stomatopodi Rissoide Molluschi Bivalvi Mytilus a Nucula i Turritella Nemertini Nemerte Policheti Amphana Apheloc	lpheus glaber	VTC	0,33		0,33	1,00	0,67		0,33				0,67	0,00
Gonepla Liocarci Process Solenoc Upogeb. Isopodi Cirolana Eurydic Stomatopodi Rissoide Molluschi Bivalvi Mytilus e Nucula i Gasteropodi Hyala vi Turritella Nemertini Nemerte Policheti Amphan Apheloc	allianassa subterranea	Lim	3,00	2,67	1,67	5,00	0,33		0,33	2,00	3,00	1,00	-,	1,00
Process Solenoc Upogeb. Isopodi Cirolana Eurydict Stomatopodi Rissoide Molluschi Bivalvi Mytilus Inuritella Nemertini Nemerte Policheti Amphara Apheloc Aphelo	oneplax rhomboides	VTC	1,00			0,33			0,67	1,00	0,33			·
Solence Upogeb. Isopodi Cirolana Eurydict Stomatopodi Rissolde Molluschi Bivalvi Mytilus g. Nucula i Gasteropodi Hyala vi Turritelle Nemertini Nemerte Policheti Amphan Apheloc Aponupi Capitelli Chaetoz Cirratulii Eteone j. Glycera Glycera Glycera Glycera Glycera Harmott Labioles Lumbriri Maldanii Marphys Melinna Minuspii Nephtys Nince s Notoma. Ophelini Ophiodri Paradoi Paradoi Phyllode Phyllode Phyllode Pilargids Pilargids Poecilot	ocarcinus maculatus	Sab	0,33											
Isopodi Upogeb. Isopodi Cirolana Eurydice Stomatopodi Rissoide Molluschi Bivalvi Mytilus g. Nucula i Gasteropodi Hyala vi. Turritelle Nemertini Nemerte Policheti Amphan Apheloc Apheloc Apheloc Apheloc Apheloc Apheloc Apicera Glycera Glycera Glycera Glycera Harmoth Labiolee Lumbrin Maldanii Marphys Melinna Minuspi Nephtys Ninoe s Notoma Ophelini Ophiodr Paradioj Paralac; Paraonii Phyllode Pilargide Pilargide Pilargis Poecilot	rocessa sp	-		0,33		0,67								
Isopodi Cirolana Eurydick Stomatopodi Rissoide Molluschi Bivalvi Mytilus Nucula i Gasteropodi Hyala vi Turritelle Nemertini Nemerte Policheti Amphar Apheloc Apheloc Apheloc Apheloc Apheloc Apheloc Apicera Glycera Glycera Glycera Harmoti Labiolee Lumbrin Maldani Marphys Melinna Minuspi Nephtys Nince s Notoma Ophelin Ophiodr Paradioj Paralacj Paraonie Phyllode Pilargids Pilargids Poeciloc	olenocera membranacea	VB				0,33				0,33				
Eurydice Stomatopodi Rissoide Molluschi Bivalvi Mytilus e Nucula i Gasteropodi Turritelle Nemertin Nemerte Policheti Amphana Apheloca Aph	pogebia deltaura	DL	73,67	5,67	1,33	2,67	0,33		0,67	5,33	0,33			
Stomatopodi Rissolde Molluschi Bivalvi Mytilus y Nucula i Gasteropodi Hyala vi Turritelle Nemertini Nemerte Policheti Amphan Apheloc Alpheloc Alpheloc Apheloc Apheloc Apheloc Apheloc Apheloc Apheloc Alpheloc Alpheloc Apheloc Aphe	irolana borealis	Lre				0,33								
Molluschi Bivaly Mytilus Nucula I Gasteropodi Hyala vi Turritella Nemertini Nemerte Policheti Amphan Apheloc Apheloc Aponupi Capitelli Chaetoz Cirratulia Eteone Glycera Glycera Glycera Harmott Maldania Marphys Melinna Minuspi Nephtys Nince s Notoma Ophelini Ophiodr Paradioj Paralacj Paraonia Phylloda Pilargia Poecilot	urydice sp	-	4,67	1,67	0,67									
Bivalvi Mytilus et Nucula in Furritelle Nemertini Nemerterini Amphana Apheloc	issoides desmaresti	HP	0,33											
Gasteropodi Hyala vi Turritella Nemertini Nemerte Policheti Amphara Apheloc Apheloc Apheloc Apheloc Cirratulic Eteone i Glycera Glycera Glycera Glycera Glycera Glycera Glycera Harmott Labiolec Lumbrin Maldanii Marphys Melinna Minuspi Nephtys Ninoe s Notoma Ophelini Ophiodr Paradioj Paraanoi Phyllode Pilargis Poecilot														
Gasteropodi Hyala vi Turritella Nemertini Nemertini Nemertini Amphana Apheloc Apheloc Apheloc Apheloc Apheloc Capitelli Chaetoz Cirratulia Eteone a Glycera Glycera Glycera Harmott Labiolea Lumbrin Maldanii Marphys Melinna Minuspi Nephtys Nince s Notoma Ophelini Ophiodr Paradioj Paralaci Paraonia Phylloda Pilargida Pilargida Pilargis Poecilot	lytilus galloprovincialis	Lre	0,33											
Nemertini Nemerte Policheti Amphan Apheloc Apheloc Apheloc Aponupi Capitellii Chaetoz Cirratulii Eteone Glycera Glycera Harmott Labiolee Lumbrin Maldanii Marphys Melinna Minuspii Nephtys Ninne s Notoma Ophelini Ophiodr Paradioj Paraalocj Paraalocj Phyllod Phylo ne Pilargids Pilargids Poecilot	ucula nitidosa	Lim									0,33			
Nemertini Nemerter Policheti Amphan Apheloc Apheloc Aponupi Capitelli Chaetoz Cirratulii Eteone i Glycera Glycera Glycera Harmott Labioles Lumbrin Maldanii Marphys Melinna Minuspii Nephtys Ninoe s Notoma Ophelini Ophiodri Paradioj Paradoij Phyllode Phylo ne Pilargids Pilargis Poecilos		VTC	0,33		0,33		0,33		0,33	0,33		0,33		0,67
Nemerte Amphari Amphari Apheloc Apheloc Apheloc Apheloc Apheloc Apheloc Apheloc Capitelli Chaetoz Cirratulii Eteone j Glycera Glycera Glycera Harmott Labiolee Lumbriri Maldanii Marphys Melinna Minuspi Nephtys Ninoe s Notoma Ophelini Ophiodr Paradioj Paraanoi Phyllode Phylo ne Pilargide Pilargis Poecilot	urritella communis	VTC	1,00			1,00	0,67						0,33	
Policheti Amphan Apheloc Apheloc Apheloc Aponupi Capitelli Chaetoz Cirratulia Eteone Glycera Glycera Glycera Harmott Labiolee Lumbrin Maldania Marphys Melinna Minuspi Nephtys Nince s Notoma Ophelin Ophiodr Paradio Paraloc Paraloc Phyllode Phylo na Pilargide Pilargis Poecilos														
Amphan Apheloc Apheloc Apheloc Apheloc Aponupi Capitelli Chaetoz Cirratuli Eteone Glycera Glycera Glycera Harmott Labiolee Lumbrin Maldani Marphys Melinna Minuspi Nephtys Ninoe s Notoma. Ophelin Ophiodr Paradioj Paradioj Paraloc; Phyllod Phylo no Pilargids Pilargis Poeciloc	emertea nd	-	0,67	0,33		0,33							0,33	0,33
Apheloc Apheloc Apheloc Aponupi Capitelli Chaetoz Cirratulic Eteone Glycera Glycera Glycera Harmott Labiolea Lumbrin Maldanii Marphys Melinna Minuspii Nephtys Ninoe s Notoma Ophelini Ophiodr Paradioj Paraanic Phyllod Phylo nc Pilargide Pilargis Poecilot		\ /TO				0.07							0.00	0.00
Apheloc Aponupi Capitelli Chaetoz Cirratulic Eteone ; Glycera Glycera Glycera Harmoth Labiolee Lumbrin Maldanii Mephys Melinna Minuspi Nephtys Ninoe s Notoma Ophelin Ophiodr Paradio; Paraanic Phyllode Pilargide Pilargide Pilargis Poecilot	mpharete acutifrons	VTC	0.00		4.00	0,67	0.00		0.00		4.00	0.07	0,33	0,33
Aponupi Capitelli Chaetoz Cirratuli Eteone , Glycera Glycera Harmott Labiolee Lumbrin Maldani Marphys Melinna Minuspi Nephys Ninoe s Notoma Ophelin Ophiodr Paradioj Paradioj Paraloci Phyllode Phylone	phelochaeta filiformis	MO	2,00		1,00	0,67	0,33		0,33		1,00	0,67	0,33	0,67
Capitelli Chaetoz Cirratulic Eteone Glycera Glycera Glycera Harmott Labiolee Lumbrin Maldanii Marphys Melinna Minuspii Nephtys Ninoe s Notoma. Ophelim Ophiodr Paradioj Paraanic Phyllode Pilargide Pilargis Poecilos	phelochaeta marioni ponuphis brementi	MO	0,67				0,67					4.07		0,33
Chaetoz Cirratulic Eteone ; Glycera Glycera Glycera Harmott Labiolea Lumbrin Maldanii Marphys Melinna Minuspi Nephtys Ninoe s Notoma Ophelini Ophiodr Paradio; Paraanic Phyllode Pilargide Pilargide Pilargis Poecilot	•	Lim					0.00					1,67	0.00	
Cirratulic Eteone Glycera Glycera Glycera Glycera Harmott Labiolee Lumbrin Maldani Marphys Melinna Minuspi Nephtys Nince s Notoma Ophelin Ophiodr Paradio Paralo; Paralo; Phyllode Phylo ne Pilargide Pilargis Poecilos		Lim	0,33				0,33	co .					0,33 0,33	
Eteone Glycera Glycera Glycera Harmott Labioles Lumbrir Maldani Marphys Melinna Minuspi Nephtys Ninoe s Notoma Ophelin Ophiodr Paradioj Paraloci Phyllode Phylo n Pilargide Pilargis Poecilos	haetozone caputesocis	LIIII	0,33					ıat					0,33	
Glycera Glycera Glycera Glycera Glycera Harmott Labiolee Lumbrii Maldani Marphys Melinna Minuspii Nephtys Ninoe s Notoma. Ophelini Ophiodr Paradioj Paraanioj Phyllod Phylo n Pilargide Pilargis Poecilot		Sab				0,33		Non campionata					0,33	
Glycera Glycera Glycera Harmotf Labiolee Lumbrin Maldanii Maphys Melinna Minuspi Nephtys Ninoe s Notoma Ophelin Ophiodr Paradio Paranic Phyllode Phylo ne Pilargide Pilargis Poecilot	· ·	Lim				1,00	0,33	E G			0,33			
Glycera Harmott Labiolee Lumbrin Maldani Marphys Melinna Minuspin Nephtys Ninoe s Notoma Ophelin Ophiodn Paradioj Paralocj Paraoni Phyllode Phylo no Pilargide Pilargis Poecilos	-	MO				1,00	0,33	ca			0,33		1,00	1,00
Harmoth Labiolee Lumbrin Maldani Marphys Melinna Minuspii Nephtys Ninoe s Notoma Ophelini Ophiodr Paradio; Paradio; Paraloc; Parloc Pilargid Pilargis Poecilot		IVIO	0,33		1,00	1,00	0,33	no	0,33	0,67		0,67	0,33	1,00
Labiolea Lumbrir Maldanii Marphys Melinna Minuspii Nephtys Ninoe s Notoma. Ophelini Ophiodr Paradioj Paranioi Phyllode Phylo ne Pilargide Pilargis Poecilos	-	_	0,00		0,33	0,33	0,00	z	0,00	0,01		0,07	0,00	
Lumbrin Maldanii Marphys Melinna Minuspii Nephtys Nince s Notoma Ophelini Ophion Paradio; Paraonii Phyllode Phylo ne Pilargide Pilargis Poecilot	abioleanira yhleni	VTC			0,00	0,00					0,67			0,33
Maldani Marphys Melinna Minuspi Nephtys Ninoe s Notoma Ophelini Ophiodr Paradioj Paraoni Phyllodo Phylo no Pilargids Pilargids	umbrineris gracilis	Sab	1,00								0,33	1,00	0,67	0,00
Marphys Melinna Minuspii Nephtys Ninoe s Notoma Ophelini Ophiodr Paradio; Paraolio; Paraolio; Phyllod Phylo n Pilargid Pilargis Poecilot	aldanidae nd	-	1,00								0,00	1,00	0,33	0,33
Melinna Minuspii Nephtys Ninoe s Notoma Ophelini Ophiodr Paradioj Paranioj Paranioj Phyllode Phylo ne Pilargide Pilargis Poecilot	arphysa bellii	Lim	1,00	0,67	0,67	0,67	0,67		1,00	0,67	1,00		1,00	1,00
Minuspin Nephtys Ninoe s Notoma Ophelin Ophiodr Paradioj Paralocj Paralocj Phyllode Phylo no Pilargide Pilargis Poecilos	lelinna palmata	Minut	0,33	-,	-,	-,	-,		.,	-,	.,		.,	.,
Nephtys Nince s Notoma Ophelini Ophiodr Paradioj Paralori Phyllode Phylo ne Pilargida Pilargis Poecilos	linuspio cirrifera	MO	2,00	0,33		0,33				0,33	0,33			
Notoma Ophelin Ophiodr Paradio; Paralac; Paraoni Phyllodc Phylo no Pilargids Piergis Poecilos	ephtys hystricis	VTC	0,67	-,		1,67	0,33			-,	0,33	0,33	1,33	1,00
Notoma Ophelin Ophiodr Paradio; Paralac; Paraoni Phyllodc Phylo no Pilargids Piergis Poecilos						0,67				0,33				0,33
Ophelin Ophiodr Paradio; Paralac; Paraonic Phylo n Pilargida Pilargida Poecilos	otomastus aberans	MO	1,67	0,33	0,67		0,67			0,67	1,00	1,00	0,33	0,67
Ophiodr Paradioj Paralorij Paraonii Phyllodo Phylo no Pilargids Poecilot	phelina cylindricaudata	Lim	5,67			3,00	2,00			2,00	4,67	3,00	4,67	4,33
Paradio; Paralac; Paraonii Phyllod Phylo n Pilargida Pilargis Poecilot	phiodromus flexuosus	Sab				0,67					0,33			
Paralacj Paraonid Phyllodc Phylo no Pilargida Pilargis Poecilod	aradiopatra calliopae	Lim	1,33			1,33	1,33		0,33	0,33	2,00	2,00	1,67	1,33
Phyllodo Phylo no Pilargida Pilargis Poeciloo	aralacydonia paradoxa	MO	1,00	0,33		1,33	1,00			0,33	0,67	0,67	0,67	0,33
Phylo no Pilargida Pilargis Poeciloo	araonidae nd	-	9,00	0,33	4,67	9,00	4,33		0,33	2,00	6,33	6,00	6,00	3,00
Pilargida Pilargis Poeciloo	hyllodocidae nd	-									0,33			
Pilargis Poeciloo	hylo norvegica	Lim									0,33			
Poeciloo	ilargidae nd	-				1,00				0,67				
	ilargis verrucosa	Sab												0,33
Dui	oecilochetus serpens	VTC											0,33	
	rionospio sp	-				1,00					0,33		0,33	
	abellidae nd												0,33	
	calibregma inflatum	Lim	0,33			0,67							0,33	
	coletoma sp	.	1,00			0.5-							0.5-	
	coloplos armiger	Lre	0,33			0,67							0,67	0.00
	phaerodoridae nd		1.00							0.0-				0,33
	pionidae nd	-	1,00							0,67			0.00	
	piophanes bombyx erebellidae nd	SFBC											0,33	
Sipunculidi	лерешиае пи	-											0,33	
	spidosiphon muelleri	МО					0,33					0,33		
	spidosipriori muelleri nchnesoma steenstrupi	VB	0,33		0,67	1,67	1,00				1,67	1,67	0,33	1,00
	ipuncula nd	٧D	1,00	0,67	0,07	2,00	0,67		0,67		0,33	0,67	1,33	1,00
Densità totale	pariodia riu		118,33	13,67	14,33	42,33	16,67		5,33	17,67	27,00	21,33	25,67	20,67
Ricchezza specifica tot	ca totale		35	12	15	33	20		11	16	27,00	16	29	20,67

Tab. 3-XXXIV – Lista e densità (n. ind/0,095 m²) delle specie rinvenute nelle stazioni campionate nel 1° **survey post lavori**. Per ogni sito è riportato il numero totale di taxa osservati. Sono anche indicate le Biocenosi di appartenenza dei taxa determinati a livello di specie. Per la legenda si rimanda alla Tab. 3-XXXII.

							Trans	etto A									Trans	etto B						Con	trolli	
Stazione			A1	A2	A3	A4	BO NW	BO SE	A5	A6	A7	A8	B1	B2	В3	B4		BO SW	B5	В6	B7	B8	K1	K2	K3	K4
	piattaforma (m)	Biocenosi	250	120	60	30	0	0	30	60	120	250	250	120	60	30	0	0	30	60	120	250	2000	2000	2000	2000
Briozoi	(,																	_								
	Aetea truncata	HP					0,33																			l
	Briozoa nd	-					.,										0,33			0,33	0,33				0,33	l
	Schizoporella errata	Lre															-	0,33								İ
	Scrupocellaria scruposa	Sd					0,67	1,00	0,33			0,33		0,67			0,33	0,67	0,67	0,33				0,67		Ì
	Triticella flava											0,33		0,33			0,33									l
Cnidari																	-									Ì
Antozoi	Actiniaria nd	-																						0,33		Ì
	Funiculina quadrangularis	Lim																					0,33			l
Idrozoi	Hydroidea nd	-		0,33	0,33		0,33						0,33	0,33				0,33						0,33		l
Crostacei																										l
Anfipodi	Acidostoma nodiferum	Lre			0,33			0,33																		1 /
	Ampelisca diadema	DE				0,33					0,67															1 /
	Corophium sp	-								0,33	0,67		0,33													
	Eriopisa elongata	VB			0,33																					l
	Eusirus longipes	VTC													0,33											l
	Gammaropsis sp	-																0,33								Ì
	Orchomene grimaldii	VTC			0,33			1,33											0,33		0,33					
	Othomaera schmidtii	VB		0,33								0,67														
	Paraphoxus oculatus	Mixt					0,33														0,33					
	Phtisica marina	Lre			0,33																					
	Stenothoe sp	-					0,33																			1
Copepodi	Copepoda nd	-																								0,33
Cumacei	Eudorella truncatula	Mixt																				0,33				1
Decapodi	Alpheus glaber	VTC	0,33		0,33							0,67	0,33	0,33							0,33	0,33	0,33		0,33	0,33
	Anapagurus bicomiger	Lim					0,33																			1
	Anapagurus sp	-			0,33	0,67			0,33						0,67					0,33						
	Athanas sp	-												0,33					0,33							
	Callianassa subterranea	Lim	2,67	3,33	0,67		3,33		2,33	0,67	1,67	0,67	0,67	0,33	0,67	2,00	1,00	0,33	1,33		1,00	0,67	0,67	2,33	1,00	0,33
	Chlorotocus crassicornis	VB				0,33																				Ì
	Goneplax rhomboides	VTC	0,33	0,33	0,67			0,33		0,33		0,67	0,67	0,67		0,33	0,33	0,33	0,33		0,33				0,33	l
	Liocarcinus depurator	VB															0,67		0,33							Ì
	Paguridae nd	-													0,67							0,33				l
	Processa sp	-			0,67										0,33				0,33				0,33			
	Solenocera membranacea	VB																						0,33		Ì
	Upogebia deltaura	DL			0,33		0,33		0,33									0,33	2,00	0,33						
Isopodi	Bopyridae nd	-					0,33																			
	Gnathia sp	-		0,33		0,67	0,33			0,33					0,67					0,33	0,33					
Echinodermi																										
Oloturoidei	Holothurioidea nd	-			0,67	0,67	1,67	0,33		0,33		0,67	0,33		0,33	0,33	2,33	0,33	0,67	0,33						i
	Labidoplax digitata	VTC				1				l		0,33	0,33													i
Molluschi						1				l		l														i
Bivalvi	Aequipecten opercularis	DC				1	0,33			l		l														i
1	Anomia ephippium	Lre					0,67																			1
	Cardiomya costellata	DL				1	0,33			l		l														i
1	Hiatella arctica	Sd		0,33		1				l		l														i
	Neopycnodonte cochlear	Sd					0,33							0,67												1

Tab. 3-XXXIV – Continuo.

							Trans	setto A									Trans	setto B						Con	trolli	
Stazione		I	A1	A2	A3	A4	BO NW	BO SE	A5	A6	A7	A8	B1	B2	B3	B4	BO NE	BO SW	B5	B6	B7	B8	K1	K2	K3	K4
Distanza dalla	piattaforma (m)	Biocenosi	250	120	60	30	0	0	30	60	120	250	250	120	60	30	0	0	30	60	120	250	2000	2000	2000	2000
Molluschi	· · · · · · · · · · · · · · · · · · ·																									
	Nucula nitidosa	Lim												0,33												
	Nucula sulcata	Lim																						0,33		
	Parvicardium minimum	Mixt				0,33																				
	Poromya granulata	Mixt					0,33																			
	Scapharca demiri	Mixt																	0,33							
	Talochlamys multistriata	Mixt															0,33									
	Thyasira biplicata	Lim									0,33												0,33			
	Thyasira succisa	Lim										0,33									0,33					
	Timoclea ovata	Lre			0,67															0,67					0,67	
Gasteropodi	Bela brachystoma	Lre															0,33	0,33								
	Hyala vitrea	VTC									0,67			0,33		0,33		0,33		0,33					0,33	0,33
	Odostomia sp	-			0,33													-								
	Turritella communis	VTC		0,33																	0,33			0,33	1,33	
Nemertini				.,																	.,			.,	,	
	Nemertea nd	-	0,33	0,33	0,33		1,67		0,33	0,33		0,67	0,67						1,00		0,67	0,33		0,67	0,67	0,33
Policheti																										
	Ampharete acutifrons	VTC	0,33		0,33						0,33										0,67				0,33	
	Ampharetidae nd	-	0,33	0,33		0,33	0,67	0,33		0,67	0,67				0,33	0,33	0,33		1,00	0,33	1,00	1,33		0,33	1,00	
	Amphicteis gunneri	Lim							0,33			0,33														
	Ancystrosyllis groenlandica	VB						0,33				0,33						0,33	0,33	0,33			0,67		0,33	0,33
	Aphelochaeta filiformis	MO	3,67	2,67	2,67	1,67	2,33	1,67	3,33	2,67	1,67	2,67	3,67	2,00	3,33	2,00	2,00	0,67	2,67	1,67	3,67	3,67	0,33	2,33	3,00	1,00
	Aphelochaeta marioni	MO		0,33	0,33	0,33	0,67		0,33	0,33		0,67									1,00	2,00			0,33	
	Aponuphis brementi	Lim	0,33	0,33	0,67		0,33	0,67	0,67					0,33				0,33						1,00	0,33	
	Capitella capitata	MO																				0,33				
	Capitellidae nd	-		0,33			0,33			0,67		1,33	0,33			0,67				0,33	0,33		0,33	0,33		
	Chaetopteridae nd	-										0,33										0,33				
	Chaetozone caputesocis	Lim	0,33	0,33		0,33										0,33					0,33			0,33		
	Chirimia biceps	MO					0,33																			
	Cirratulidae nd	-		0,33			0,67		1,00	1,00	1,00	0,33	0,33	0,33	0,33		0,33			0,33	0,67	0,33				
	Ditrupa arietina	MI					0,67		0,33									0,33				0,33				
	Dorvillea rudolphii	HP																0,67								
	Drilonereis filum	Lim	0,33																	0,33					0,33	
	Eupanthalis kinbergi	DE																				0,33				
	Filograna sp	-						0,33										0,33								
	Glycera alba	Lim					0,33															0,33				
	Glycera rouxii	MO					1,67	0,33	1,00					0,33	0,67		1,00	0,33	0,67					1,00		
	Glycera sp	-	0,67	2,00	0,67	1,00	2,67	2,00	2,33	2,33	0,33	0,33	0,67	0,67	0,67	0,33	1,00	0,67	2,00	1,00	1,67	1,00		1,33	1,67	0,67
	Glycera tesselata	Sd	0,33		0,33	1,00	0,33		0,33	0,33	0,33		0,33			0,33	0,67		0,67		0,33					
	Goniada maculata	VTC										0,33					0,33									
	Harmothoe sp	- 1					0,67							l			0,33			l	l			0,33		
	Hydroides norvegicus	Sd												l	0,33		1			l	l					
	Labioleanira yhleni	VTC								0,33				l			l			0,33	0,33					
	Lumbrineriopsis paradoxa	Mixt			0,33									l			l			1	1					
	Lumbrineris gracilis	Sab	0,33	0,33				0,33						l	0,33	0,33	0,67			l	1,00				0,67	
	Macroclymene santanderensis	Sab	0,33											l			1			l	1					
	Maldanidae nd	-	0,33		0,33									l		0,33	l			l	0,33					0,33

Tab. 3-XXXIV – Continuo.

							Trans	etto A									Trans	etto B						Con	trolli	
Stazione			A1	A2	A3	A4	BO NW	BO SE	A5	A6	A7	A8	B1	B2	В3	B4	BO NE	BO SW	B5	В6	B7	B8	K1	K2	К3	K4
	piattaforma (m)	Biocenosi	250	120	60	30	0	0	30	60	120	250	250	120	60	30	0	0	30	60	120	250	2000	2000	2000	2000
Policheti																										
	Marphysa bellii	Lim	1,33	1,67	1,00		0,67		0,67	1,00	0,67	0,33	1,67	2,00		0.67	1,00	1,00	1,33	0,67	1,00	1,00	1,33		1,00	1,33
	Melinna palmata	Minut		0,33	,		1,00		.,-	0,33	.,.	.,		,		- , -	,	,	,		0,33	,	,	0,67	0,33	,
	Micronephtys sphaerocirrata	Sab	0,33																							
	Minuspio cirrifera	MO	0,33	1,00	1,00	0,33	1,00	0,33	1,33	0,33	1,00				0,33	0,33	2,00				0,33					
	Nephtys hombergi	SFBC						-				0,33			-											
	Nephtys hystricis	VTC	0,67	1,67	0,33	0,33			0,33		0,33	0,33	0,33	0,33		0,33		0,33		0,33	1,33	0,33	0,33	0,67	0,33	
	Nereididae nd	-					0,33																			0,67
	Ninoe sp	_		0,33		0,33			0,33	0,67					0,33	0,33					0,67	0,33				
	Notomastus aberans	MO	1,33	2,33	0,67	0,33			1,67	1,33		0,33	0,67	2,67	-,	0,33	0,33		1,00	1.00	2,00	.,	0,33	1,67	0,67	
	Ophelina cylindricaudata	Lim	3,33	1,00	0,67	-,			1.00	3,00	5,00	1.00	0,67	0,67	0,33	0.33	.,	0,33	,	2.33	1.67	5,33	0.67	4.00	1.67	0,33
	Ophiodromus flexuosus	Sab	0,33	,			0,33		1,33	0,33	0,33	0,67	0,33	0,33	0,33	.,	0,33	.,		,	, -	-,	0,33	,	0,33	-,
	Owenia fusiformis	SFBC			0,67	0,33	2,33	1,00	0,67	.,	0,33		.,	0,33	0,33	0,67	0,33		0,67				.,		.,	
	Panthalis oerstedi	VB			-,	-,	_,-,	.,	-,		0,33			-,	-,	-,	-,		-,							
	Paradiopatra calliopae	Lim	2,00	3,00	3,67	0,33		0,67	4,00	2,67	3,67	1,00	1,33	3,00	2,33	1,67	1,00	0,67	0,67	5,33	4,00	3,33	1,33	3,33	2,00	1,00
	Paralacydonia paradoxa	MO	0,33	1,67	1,33	0,67	1,00	-,-	1,00	1,33	1,33	1,00	0,33	-,	,	1,00	,	-,-	0,33	0,67	1,33	1,00	0,33	0,67	1,00	0,67
	Paraonidae nd	_	12,67	20,67	23,00	5,67	21,67	2,33	17,00	18,33	17,67	18,33	13,00	7,00	6,00	10,33	10,00	3,00	6,00	16,67	13,33	15,00	9,00	11,67	9,00	12,33
	Phyllodoce sp	_	,-	.,.	.,	0,33	0,33	,	,	-,		.,	-,	,	-,	-,	.,	-,	.,	-,-	.,	-,	.,	, ,	.,	,
	Pilargidae nd	_	0,67	3,33	1,67	0,67	1,00	0,33			0.67	0,33	0,67	0,33	0,33	0,33	0,33	0,33	1,00	0.67	1,33	0,67	0,33	1,33	0,67	
	Pilargis verrucosa	Sab		.,	,-	-,-	0,33	-,			.,.	.,	- , -	-,	-,	.,	.,	-,	0,33		,	.,.	-,	,	-,-	
	Pista sp	-					-,												-,					0,33		
	Poecilochetus serpens	VTC		0,67	0,33	0,33	0,33					0,33							0,33					.,		
	Prionospio ehlersi	Mixt	0,33	-,-	.,	-,	.,					.,							.,							
	Prionospio sp	_	0.67	0,33		0,33	0,67		1,33	0,33	0,33	1,33	0.33		1,00	0,33	0.67			1.00	0,33					0,33
	Sabellidae nd	_		0,33	1,67	1,00	0,67		1,33	0,33	0,33	,	.,	1.00	0,67	1.00	.,-		0,33	,	1,00					.,
	Scalibregma inflatum	Lim		.,	0,33	,	-,-		,	.,	.,	0,33		,	- , -	,			.,		,		0,33			
	Scoletoma sp	_	0,33		.,						0,33	.,			0,33				0,33				-,			0,33
	Scoloplos armiger	Lre	0,33	0,33	0,33					0,33	1,33	2,67	0,33		-,				.,	0,67	0,67	1,33		0.67	0,67	-,
	Sphaerodoridae nd	-														0,33										
	Spionidae nd	-	1,33	0,33	1,00	1,00	2,67	2,33	2,67	0,33	0,33	0,67				0,33	3,33	1,00	1,33	0,33	0,33				0,33	0,33
	Spiophanes bombyx	SFBC			0,33															•	0,33					
	Sthenelais boa	Lim			0,33																•					
	Syllidae juv	-					0,33												0,67							
	Terebellidae nd	-		0,33			0,33						0,33												0,33	
	Trachytrypane jeffreysii	VTC																							0,33	
Poriferi									l		l	l					l						l			
	Porifera nd	-					0,33		l		l	l					l						l			
Sipunculidi											l	l					l						l			
	Aspidosiphon muelleri	MO																	0,33	0,67					0,33	
1	Onchnesoma steenstrupi	VB	1,00	0,33	0,33				0.33	0,33	0.67		0,33			0.33			.,	.,	0,33			0.67	.,	
1	Sipuncula nd	-	1,67	0,33	1,33	0,67	2,00	0,67	-,	1,00	1,67	1,33	0,67	1,67	1,67	1,33	0,33	0,67	0,67		1,33	0,67	2,67	1,00	1,33	1,67
Densità totale	·		40,00	52,67	52,33	20,33	61,00	17,00	48,33	42,67	44,67	42,33	30,00	27,33	23,67	27,67	32,33	14,67	30,33	38,00	47,33	41,00	20,33	39,00	33,33	23,00
Totale comple	essivo		33	36	42	27	49	20	29	30	29	35	27	26	26	29	29	26	32	28	40	25	19	28	33	19

Tab. 3-XXXV – Lista, densità (n. ind. 0,095 m⁻²) e sigle delle biocenosi delle specie rinvenute nelle stazioni campionate nel **2**° **survey post lavori**. Per ogni sito è anche riportato il numero totale di taxa osservati. Sono anche indicate le Biocenosi di appartenenza dei taxa determinati a livello di specie. Per la legenda si rimanda alla Tab. 3-XXXII.

							Trans	etto A									Trans	setto B						Con	trolli	
Stazione			A1	A2	А3	A4	BO NW	BO SE	A5	A6	A7	A8	B1	B2	В3	B4	BO NE	BO SW	B5	В6	B7	B8	K1	K2	К3	K4
Distanza dalla p	oiattaforma (m)	Biocenosi	250	120	60	30	0	0	30	60	120	250	250	120	60	30	0	0	30	60	120	250	2000	2000	2000	2000
Briozoi	• •																									
	Aetea truncata	HP								0,33																1)
	Briozoa nd	-						0,33		0,33																
	Scrupocellaria scruposa	Sd		0,33		0,33			0,67		0,67						0,33									
	Triticella flava	Simbiosi	0,33		0,33	0,33													0,33						0,33	1)
Cnidari																										1)
Antozoi	Funiculina quadrangularis	Lim																				0,33				1)
Idrozoi	Hydroidea nd	-								0,33															0,33	
Crostacei																										1)
Anfipodi	Ampelisca diadema	DE								0,33		0,33					0,67						0,33			1)
	Corophium sp	-																			0,33					1)
	Ericthonius brasiliensis	Sd						2,67																		1)
	Eriopisa elongata	VB										0,33		0,67							0,33	0,33				1)
	Gammaropsis sp	-															0,33									1)
	Harpinia dellavallei	VTC																				0,33				1)
	Leptocheirus mariae	Mixt																0,33								1)
	Leucothoe incisa	SFBC																					0,33			1)
	Leucothoe lilljeborgi	MO								0,33																1)
	Leucothoe oboa	Lim										0,33														1)
	Maera grossimana	Sd															0,33							0,33		1)
	Orchomene grimaldii	VTC, VB				0,33												0,33								1)
	Paraphoxus oculatus	Mixt				0,33								0,33												1)
	Phtisica marina	Lre								0,33							0,33									1)
	Rhachotropis sp	-									0,33															1)
Cumacei	Cumacea nd	-																		0,33			0,67		0,33	
	Eudorella truncatula	Mixt				0,33		0,33	0,33			0,33		0,33							0,33					1)
Decapodi	Alpheus glaber	VTC									0,33						0,33		0,33			0,33	0,33		0,33	1)
	Anapagurus sp	-		0,33			1,00											0,33								1)
	Athanas nitescens	С																0,33								
	Callianassa subterranea	Lim	1,00	2,67	0,67	1,67	0,33	0,33	1,33	1,67	3,33	1,00	0,67	2,00	0,33	0,67	1,67	1,67	1,33	0,67	1,67	3,33	2,67	3,00	1,67	1,00
	Ebalia deshayesi	DC																0,33								1)
	Goneplax rhomboides	VTC		0,33	0,33	0,33				0,33	0,67	0,33	0,33	0,33	0,33	0,33		0,33	0,67				0,67	0,33	0,33	
	Liocarcinus depurator	VB				0,33		0,67										0,33								1 1
	Liocarcinus maculatus	Sab						0,33								0,33										1)
	Monodaeus couchi	Lre		0.00	0.00	0.00			0.07	0.07				0.00			0.00	0,33					0.07		0.00	1)
	Processa sp	- \/D		0,33	0,33	0,33			0,67	0,67				0,33			0,33						0,67		0,33	1)
	Solenocera membranacea	VB DL	4.00		0,33		0.00	0.00	0.00	0.07							0,33			0.00			0,33			
loopodi	Upogebia deltaura Gnathia sp	- DL	1,00 0,33	0.67		0,33	0,33	0,33	0,33	0,67 0,33		0.22								0,33			0,33		0.22	1)
Isopodi	Janiridae nd		0,33	0,67		0,33				0,33		0,33										0,33			0,33	1)
Misidiacei	Misidiacea nd																					0,33			0,33	1 1
Tanaidacei	Apseudes latreillii	Minut																			0,33				0,33	1)
ranaldacei	Leptognathia sp	- IVIIIIUL				0,33															0,33					1 1
Echinodermi	Loptogriatilia sp	1				0,33																				
Echinoidei	Princepolis atlantica moditoressa	VB								0,33					0,67							0,33				0,67
Ofiuroidei	Brissopsis atlantica mediterranea Amphiura chiajei	VTC					0,33			0,33					0,67			0,33				0,33				0,07
Charolaei	Ophiura albida	DC					0,33											0,33								
Oloturoidei	Holothurioidea nd	-	0,33			0,33	0,67	1,00	1,00	1,67		0,33	0,33	1,33		0,33		1,67			0,33	0,67		0,33		
Journal	Labidoplax digitata	VTC	0,55			0,55	0,07	1,00	1,00	1,07		0,55	0,55	1,55		0,55		1,07			0,55	0,07		0,55		0,33

Tab. 3-XXXV– continuo.

							Trans	setto A									Trans	setto B						Con	trolli	
Stazione		Dii	A1	A2	А3	A4	BO NW	BO SE	A5	A6	A7	A8	B1	B2	В3	B4	BO NE	BO SW	B5	B6	B7	B8	K1	K2	K3	K4
Distanza dalla j	piattaforma (m)	Biocenosi	250	120	60	30	0	0	30	60	120	250	250	120	60	30	0	0	30	60	120	250	2000	2000	2000	2000
Molluschi																										
Bivalvi	Abra prismatica	DC														0,33										
	Aequipecten opercularis	DC																0,33								
	Anomia ephippium	Lre																6,67								
	Azorinus chamasolen	Mixt																-,-								0,67
	Kurtiella bidentata	VTC						0,33																		-,
	Modiolarca subpicta	AP						0,33																		
	Nucula nitidosa	Lim						2,00						0,33	0,33			0,33							0,33	
	Nucula sulcata	Lim											0,33	0,00	0,00			0,00							0,00	
	Pecten jacobaeus	DC											0,00					0,33								
	Phaxas adriaticus	Sab					0,33											0,00								
	Timoclea ovata	Lre					0,67	1,00	1,00	0,33			0,33			0,33	0,67	0,33		0,67						
Caudofoveati	Falcidens gutturosus	Lim					0,07	1,00	0,67	0,00			0,00			0,00	0,07	0,00		0,01						
Gasteropodi	Hyala vitrea	VTC			0,33				0,01				0,33	0,33	1,00	0,67			0,33	0,33						0,33
Gasteropour	Turritella communis	VTC	1,00	1,33	0,67				0,33	0,33			0,33	0,00	1,00	0,07			0,00	1,00				0,33		0,33
Nemertini	rumena communis	V 10	1,00	1,55	0,07				0,55	0,55			0,55							1,00				0,55		0,55
Nemerum	Nemertea nd		0,33	0,33	0,33	1,33	1,00	1,67		2,67	0,67	0,67		0,33		0,67	0,33	0,33			0,33			1,00		
Pantopodi	Nemerica no	-	0,33	0,33	0,33	1,33	1,00	1,07		2,07	0,07	0,07		0,33		0,07	0,33	0,33			0,33			1,00		
Picnogonidi	Pycnogonida nd									0,33														0,33		
-	Pychogonida nd	_ ·								0,33														0,33		
Policheti	A 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1/70				0.07	4.00	0.07	0.00	4.00						0.00		0.00							4.00	
	Ampharete acutifrons	VTC	0.00	4.07	0.07	0,67	1,00	0,67	0,33	1,33	0.00	0.07		0.00		0,33	0.07	0,33	0.00	4.00	4.07	4.00	4.00		1,00	
	Ampharetidae nd		2,33	1,67	0,67	0,33	0,33	1,33	2,00	0,67	0,33	0,67		0,33	0,33		0,67	1,00	0,33	1,00	1,67	1,33	1,33	2,00	2,00	
	Amphicteis gunneri	Lim			0,33																					
	Ancystrosyllis groenlandica	VB											0,33													
	Aphelochaeta filiformis	MO	0,33	3,67	2,00	2,33	0,33	0,67	2,67	2,33	2,33	1,67	2,33	1,67	0,67	1,00	2,00	1,67	1,33	1,00	3,00	3,33	4,33	7,00	4,67	1,67
	Aphelochaeta marioni	MO	0,67			0,33		0,67																	0,33	
	Aponuphis brementi	Lim	0,67	0,33	0,67	0,67	0,67			0,33							0,33								1,00	
	Boccardia sp	-					0,33																			
	Capitellidae nd	-	0,33	0,67	1,00	0,33					0,67		1,33	0,67	0,33		1,33	1,33	0,33	0,33	0,67	2,33	0,67	3,00		0,67
	Chaetopteridae nd	-						0,33																		
	Chaetozone caputesocis	Lim			0,67	1,00	0,33		1,00	0,33	0,33				0,33										0,33	
	Chirimia biceps	MO						0,33																		
	Cirratulidae nd	-	0,33	0,33			0,33			0,33		0,67	1,00	0,67		0,33	0,67			0,33	0,33	0,33		0,33	0,67	0,67
	Ditrupa arietina	MI	0,33	0,33				0,67									0,33	0,33	0,67		0,67					
	Dorvillea rubrovittata	С																0,33								
	Drilonereis filum	Lim								0,33	0,33	0,33		0,33												
	Glycera alba	Lim				0,33		0,33	0,33			0,33	0,33					0,33		0,33	0,67					
	Glycera rouxii	MO	0,33	0,67		0,33	2,33	2,33	1,33	1,33	1,00	0,67			0,33	0,67	1,33	0,33	1,33		0,33			0,67	1,00	
	Glycera sp	-	2,00	2,00	1,67	2,33	2,00	1,00	4,00	1,00	2,00	1,00		0,33	0,33	1,67	2,33	1,33	2,33	1,00	1,33	2,00	0,67	0,67	1,67	
	Glycera tesselata	Sd			0,67	1,33	0,33	1,33	0,67	1,67						1,00	0,67	0,33			0,67	0,33	0,67	1,33		0,33
	Goniada maculata	VTC					0,33					0,33					0,33						0,33			
	Harmothoe sp	-		0,33	1,33			0,33	0,67	0,33	0,33					0,33		0,33	0,33	0,33	1,00	0,67		0,33		
	Hyalinoecia tubicola	DC				0,33																				
	Hydroides norvegicus	Sd								0,33				0,33				0,33								
	Labioleanira yhleni	VTC								0,67	0,33				0,33	0,33								0,33		
	Lumbrineris gracilis	Sab				0,33		0,33	0,33		0,33								0,33	0,33			1,00		0,33	
	Lumbrineris sp	-									1								0,33							
	Maldanidae nd	-						1,00											1						0,33	
	Marphysa bellii	Lim	0,33	1,00	0,33	2,00		,	0,67		1,00	0,33	1,67	1,00	0,67	1,67	1,33	1,67	1,00	0,67	1,00	2,00	1,00	1,33	0,67	0,67
	Melinna palmata	Minut	0,33	1 .,	0,33	0,67	0,67		1 -,	0,67	1,,,,,	0,33	.,	0,33		1 .,	.,	.,	.,,,,,	0,33	0,67	_,,,,	.,,,,	.,	-,	
	Minuspio cirrifera	MO	1,23	0,33	1,23	1 -,-/	1 -,-/	0,33	1,33	3,67	0,33	0,67	0,33	1 .,			0,33			1 .,	0,67	0,33		0,67	1,00	0,33

Tab. 3-XXXV – continuo.

Stazione		L	A 1	A2	А3	A4	BO NW	BO SE	A5	A6	A7	A8	B1	B2	В3	B4	BO NE	BO SW	B5	В6	В7	В8	K 1	K2	К3	K4
Distanza dalla p	iattaforma (m)	Biocenosi	250	120	60	30	0	0	30	60	120	250	250	120	60	30	0	0	30	60	120	250	2000	2000	2000	2000
Policheti	• •																									
	Nephtys hombergi	SFBC									0,33						0,33			1,00		0,33	0,67	0,33	0,33	
	Nephtys hystricis	VTC	0,33	1,00	0,33						1,00	0,33	1,00	0,33	0,33					0,33	1,33	0,67			0,67	0,33
	Nereididae nd	-		0,33						1,00	·		,		·					·	,					
	Ninoe sp	-		, i		0,67				0,67	0,67		0,33	0,67							0,33	0,33		0,33		0,33
	Notomastus aberans	МО	0,33	1,00	2,00	1,00			3,00		1,00	2,67	2,33	2,67	1,00	1,67	0,67	1,67		0,33	1,67	1,67	0,67	1,67	0,33	1,67
	Ophelina cylindricaudata	Lim	2,67	2,00	2,00	3,00	2,00	0,67	1,67	3,33	10,00	6,00	9,00	7,67	1,67	1,00		1,33	0,67	7,00	4,00	7,67	2,67	10,67	10,33	2,00
	Ophiodromus flexuosus	Sab		1,00	1,00	1,33			0,33	0,33	2,33	0,33	0,33	0,67		1,00	0,67	0,33				0,67			0,33	0,67
	Owenia fusiformis	SFBC		0,33	1,00	3,33	3,33	8,67	6,33	8,67							1,00	1,67								
	Paradiopatra calliopae	Lim	5,33	4,67	4,33	1,67	1,33	0,33	7,00	9,33	2,67	3,67	5,33	2,67	1,33	2,67	1,00	1,33	2,33	4,67	5,67	6,00	1,67	7,67	5,67	1,33
	Paralacydonia paradoxa	МО	0,67	0,33	1,33	1,00	1,00		0,33	0,67	1,67	1,00	2,00	1,67	0,67	0,67	0,67	0,67	0,33		1,00	2,67	0,67	2,00	1,67	1,00
	Paraonidae nd	-	7,33	14,00	13,67	14,33	1,00	3,67	25,00	42,33	21,33	24,33	10,67	13,00	14,67	18,33	10,00	9,33	10,33	16,67	28,00	23,67	11,67	21,67	14,00	7,33
	Paraprionospio pinnata	VTC			0,67																					
	Pectinaria koreni	Sab																0,33								
	Phyllodocidae nd	-							0,33																	
	Phylo norvegica	Lim										0,33		0,33												
	Pilargidae nd	-	1,33	0,33	1,00	0,67		0,33	1,00	0,67	2,33	1,33	1,00		0,33	0,67	0,33	1,33	1,00	1,33	2,67	2,00	1,33	0,33	2,67	0,33
	Pilargis verrucosa	Sab											0,33													
	Pista brevibranchia	Lim toll						0,67																		
	Poecilochetus serpens	VTC		0,33				0,67															0,33			
	Pomatoceros triqueter	Sd								0,33																
	Prionospio sp	-	0,33		0,33	0,67			0,67	0,67	0,67		0,33	0,33	0,67	1,00				0,33	1,67	0,67	1,00	1,33	0,33	0,33
	Sabellidae nd	-	1,33	2,00	0,33	2,00	2,00	4,00	4,33	5,33	1,33		0,33			0,67	0,67	2,00	0,67	0,67	0,67		1,67		0,67	
	Scalibregma inflatum	Lim		0,33		0,67			0,33		0,33					0,33					0,33			0,33		
	Scoletoma sp	-				0,33			0,33	0,67	0,33	0,33	0,33	0,33	0,33				0,33	0,33	0,67			1,00		
	Scoloplos armiger	Lre	0,33							0,67	1,33	1,33	1,67	1,00	0,67	1,00	0,33				2,33	2,67		0,67	2,00	
	Serpula vermicularis	AP							0,33			0,33						0,33								
	Sphaerodoridae nd	-								0,33																
	Spionidae nd	-	0,33	0,67	0,33	2,33	4,00	4,67	1,67	1,33	0,67	1,00	0,67	0,67	0,33	0,67	1,00	2,33	1,00			0,33		1,33	1,00	0,67
	Spiophanes bombyx	SFBC							0,67	0,33																0,33
	Sternaspis scutata	VTC						0,33		0,33																
	Sthenelais boa	Lim															0,67									
	Syllis sp	-								0,33																
	Terebellidae nd	-											0,33	0,33									0,33			0,67
Sipunculidi																										
	Aspidosiphon muelleri	MO			0,33			0,33															0,33			
	Onchnesoma steenstrupi	VB	0,67	0,33		0,33		0,67	0,67	0,33	0,67			0,33	0,67	0,33		0,33	0,33	0,33	0,67	1,00	0,33	0,33	1,00	1,00
	Phascolion strombus	Lre															0,33									1 1
	Sipuncula nd	-	0,33		2,00	1,67		2,67	1,00	2,00	1,67	2,33	1,33	1,33	1,33	1,33	0,67	3,00	2,00	2,33	1,00	2,67	2,00	2,33	1,67	igsquare
Densità totale			33,67	46,33	43,67	55,00	28,67	48,67	76,67	106,33	65,67	56,33	47,33	46,00	30,00	42,33	35,67	50,33	30,33	44,33	68,33	71,67	41,33	75,33	62,33	25,67
Ricchezza speci	fica totale		31	34	34	44	28	40	39	53	36	34	31	35	26	31	37	44	25	28	35	32	30	33	38	26

Tab. 3-XXXVI – Lista, densità (n. ind./0,095 m²) e sigle delle biocenosi delle specie rinvenute nelle stazioni campionate nel 3° **survey post lavori** (inverno 2017). Per ogni sito è anche riportato il numero totale di taxa osservati. Sono anche indicate le Biocenosi di appartenenza dei taxa determinati a livello di specie. Per la legenda si rimanda alla Tab. 3-XXXII.

							Trans	setto A									Trans	setto B						Con	trolli	
Stazione		Diagonasi	A1	A2	А3	A4	BO NW	BO SE	A5	A6	A7	A8	B1	B2	В3	B4	BO NE	BO SW	B5	B6	B7	B8	K1	K2	K3	K4
Distanza dalla	apiattaforma (m)	Biocenosi	250	120	60	30	0	0	30	60	120	250	250	120	60	30	0	0	30	60	120	250	2000	2000	2000	2000
Briozoi																										
	Aetea truncata	HP						0,33									0,33	0,33								
	Briozoa nd								0,33					0,67		0,33										
	Schizoporella errata	Lre		0,33	0,33	0,33	0,67		0,33						0,33	0,67	0,67	0,67	0,33			0,33				
	Scrupocellaria bertholleti	Sd							0,33																	
	Scrupocellaria scruposa	Sd			0,33	0,67	0,67	0,67								0,33	0,67	1,00	0,33					0,33	0,67	
	Triticella flava	Simbiosi				0,33				0,33		0,33	0,33	0,67	0,33	0,33	0,33	0,33		0,33	0,33					
Cnidari																										
Antozoi	Actiniaria nd							0,33		0,33					0,33					1,00						
	Anthozoa nd			0,33		0,33			0,67			0,33		0,33	0,67		0,33	0,33	0,67	0,33	0,67			0,33		0,33
	Edwardsia claparedii	SFBC		0,33													0,33									
	<i>Epizoanthus</i> sp						1,33	0,33									0,33					0,33				
	Stolonifera nd				0,33	0,33			0,33																	
Idrozoi	Hydroidea nd			0,67		0,67	1,00	0,67	1,00		0,33	0,33			0,33	0,33	0,33	0,67	0,33		0,33	0,33	0,33	0,33	0,33	
Crostacei																										
Anfipodi	Ampelisca diadema	DE				0,33	0,33	0,33							0,33			0,67				0,33		0,67		
	Corophium sp			0,33			0,33								0,33			0,33								
	Eriopisa elongata	VB												0,33			0,33			0,33				0,33		
	Eusirus longipes	VTC																0,33								
	Harpinia dellavallei	VTC												0,33								0,67	0,67			
	Jassa marmorata	Lre																							0,33	
	Leucothoe incisa	SFBC			0,33											0,33										
	Leucothoe lilljeborgi	MO													0,33											
	Liljeborgia psaltrica	DC																1,67								
	Orchomene grimaldii	VTC			1,33	0,33	9,00						0,33		2,00	1,00	0,33	5,67	0,67							
	Othomaera schmidtii	VB		0,33			0,33			0,33									0,33							0,33
	Paraphoxus oculatus	Mixt		0,67		1,00	0,33			1,00		0,67		0,33		0,33	0,33			1,00		0,33				
	Photis longicaudata	VTC																		0,67						
	Phtisica marina	Lre															0,33									
	Pseudolyrius kroyerii	SFBC																						0,33		
	Urothoe sp											0,33														
Cumacei	Cumacea nd			0,33		0,33										0,33			0,33					0,33		0,33
	Eudorella nana	Lim																				0,33				
	Eudorella truncatula	Mixt										0,67				0,33					1	0,33				1

Tab. 3-XXXVI – Continuo.

							Trans	etto A									Trans	setto B						Con	trolli	
Stazione		L	A1	A2	A3	A4	BO NW	BO SE	A5	A6	A7	A8	B1	B2	В3	B4	BO NE	BO SW	B5	B6	B7	B8	K1	K2	K3	K4
Distanza dallap	oiattaforma (m)	Biocenosi	250	120	60	30	0	0	30	60	120	250	250	120	60	30	0	0	30	60	120	250	2000	2000	2000	2000
Crostacei																				1	1	1				
Decapodi	Alpheus glaber	VTC		0,33	0,67		0,33	0,67	0,33			0,33					0,67	0,33		0,33	0,33			0,67		0,33
	Alpheus macrocheles	DC						0,33							0,33											
	Anapagurus sp				0,67			0,67																		
	Athanas nitescens	С			0,33											0,33										İ
	Callianassa subterranea	Lim	0,67	2,33	0,33	2,00	1,33		0,33	2,33		1,00	1,67	1,00	0,33	2,00	2,00	0,33	0,67	1,67	1,00	1,67	1,67	1,00	1,00	İ
	Ebalia deshayesi	DC																0,67								İ
	Eurynome aspera	DC						1,00																		İ
	Galathea intermedia	С						2,00									1,00									İ
	Galathea sp							0,33																0,33		
	Goneplax rhomboides	VTC	0,33		0,33	1,33	1,67	0,33	1,00	2,00	0,67	0,67	0,33	1,33	0,33	0,67	1,00	1,67	1,67	1,00	1,00	0,67	0,33	0,33		0,33
	Liocarcinus depurator	VB					0,67	0,33																		
	Liocarcinus maculatus	Sab															0,33	0,33								
	Macropodia linaresi							0,33																		
	Monodaeus couchi	Lre					0,33	1,67										0,33								
	Paguridae nd																	0,33	0,33							
	Pagurus cuanensis	Lre															0,33									
	Processa sp						0,33							0,33				0,33								
	Upogebia deltaura	DL			0,67		0,33	0,33	0,33			0,33							0,33							
Isopodi	Eurydice sp		0,33																							
	Gnathia sp		0,33			0,33									0,33							0,33				
Misidiacei	Misidiacea nd																0,33									
Ostracodi	Ostracoda nd			0,33																						
Stomatopodi																								0,33		
Tanaidacei	Apseudes spinosus	HP																						0,33		
	<i>Leptognathia</i> sp																				0,33	0,33				
Echinodermi																										
Echinoidei	Brissopsis atlantica mediterranea	VB	0,33							0,33														0,33		
Ofiurioidei	Amphiura chiajei	VTC					0,67											0,67	0,33							
	Ophiotrix fragilis	Lre						0,33																		
	Ophiura albida	DC							0,33										0,33							
Molluschi																										
Bivalvi	Abra nitida	VTC																					0,33	0.22		
	Abra prismatica	DC						0.67																0,33		
	Aequipecten opercularis	DC	1.00			0.67	22.00	0,67									F 22	0.22								1
	Anomia ephippium	Lre	1,00			0,67	33,00	4,67									5,33	0,33								1
	Atrina fragilis	VTC						0,33						0.22												1
	Hemilepton nitidum	С					4.22	4 22						0,33			0.00									1
	Hiatella arctica	Sd					1,33	1,33									0,33			0.22					0.22	1
	Kellia suborbicularis	DC															0.22			0,33					0,33	1
	Kurtiella bidentata	VTC				I							I	I	I	I	0,33	I		Ī			I			1

Tab. 3-XXXVI – Continuo.

							Trans	setto A									Trans	etto B						Con	trolli	
Stazione		Ī	A1	A2	А3	A4	BO NW	BO SE	A5	A6	A7	A8	B1	B2	В3	B4	BO NE	BO SW	B5	В6	B7	B8	K1	K2	K3	K4
Distanza dallapi	iattaforma (m)	Biocenosi	250	120	60	30	0	0	30	60	120	250	250	120	60	30	0	0	30	60	120	250	2000	2000	2000	2000
Molluschi																										
	Modiolarca subpicta	AP				0,33	0,67										0,33			0,33						
	Modiolula phaseolina	DC					4,67	3,67									1,00									
	Musculista senhousia	Lre					0,33																			
	Neopycnodonte cochlear	Sd					4,67	34,67									2,00	3,00								
	Nucula nitidosa	Lim																		0,33				0,33		
	Phaxas adriaticus	Sab																0,33								
	Pteria hirundo	Mixt						0,33									0,33									
	Saccella commutata	Mixt	0,33															0,33								
	Thyasira biplicata	Lim							0,33																	
	Thyasira succisa	Lim		0,33		0,33				0,33		0,33														
	Timoclea ovata	Lre	0,67	0,33	0,33	0,33	0,33	2,00	1,00	0,33							0,33	1,67	2,33	0,33					0,33	
	Venerupis aurea	SVMC	0,33																							
Caudofoveati	Falcidens gutturosus	Lim	0,33		0,67		0,33																			
Gasteropodi	Acteon tornatilis	SFBC																0,33								
	Bela brachystoma	Lre					0,33									0,33										
	Bittium latreillii	Sd					9,33	6,67	0,67								3,33									
	Hyala vitrea	VTC		0,67		0,67	1,00			0,67	0,33		0,33				0,67		0,67	0,67			0,33	1,00		0,33
	Mangelia coarctata	Sm														0,33		0,33								
	Polinices nitida	Sab						0,67																		
	Turritella communis	VTC	0,33	0,33	0,33	0,33		0,33	0,33	0,33		0,33					0,33	0,67		0,33	1,00	0,67			0,33	
Nemertini																										
	Nemertea nd		0,33	1,00	0,33	1,33	2,33	1,00	1,00	1,33	0,33	0,67	0,33	1,67	1,33	1,00	1,33	2,67	1,00	1,00	0,33	1,00		0,33	0,33	
Platelminti																										
	Platelminta nd						0,67																			
Policheti																										
	Ampharete acutifrons	VTC	0,67	1,33			1,00		2,67	0,67	0,33		0,67	1,00	1,33	0,33	1,00	0,67	1,00		0,67	1,67		1,00	0,33	
	Ampharetidae nd		0,33	1,00	0,67	1,00		1,33		0,67		1,67	0,33	0,67		0,33	0,33	0,33	0,33	1,00	1,33	4,67		2,67	1,33	
	Ancystrosyllis groenlandica	VB	0,67									0,67							0,33				0,33			
	Aphelochaeta filiformis	MO	0,67	2,33	3,33	3,67	2,00		1,00	4,00	1,67	2,00	2,67	3,00	2,67	1,00	2,33	1,67	3,00	2,33	2,67	4,33	0,67	2,33	4,33	1,67
	Aphelochaeta marioni	MO	0,33			0,67			0,67	0,33	0,33	1,00	0,67	0,33			0,67	0,33	0,33	1,33		2,00	1,33	1,00	0,33	
	Aponuphis brementi	Lim			1,00	0,33	0,33		0,33					0,33					0,67						0,67	
	Boccardia sp					0,33																				
	Capitella capitata	MO					1,67		0,67								1,00	1,33	0,67							
	Capitellidae nd			0,33													1,00		1,00							
	Chaetopteridae nd		0.22	0.67	0.22	0.22	0,33	0.22	0,33	0,33		0,33		0.22	0.22	0,33	0,33	0.67	0,33	0.67	0.67					0.22
	Chaetozone caputesocis	Lim	0,33	0,67	0,33	0,33	0,67	0,33	1,00					0,33	0,33		0,67	0,67		0,67	0,67					0,33
	Chirimia biceps	MO				0,33			0.22		0.22	4 22	0.22	4 22	1.00			0.67	0.22		0.22	0.22		0.22		
	Cirratulidae nd			0.67		0,67		0.22	0,33	0.22	0,33	1,33	0,33	1,33	1,00		0.22	0,67	0,33	0.67	0,33	0,33		0,33	0.67	
	Ditrupa arietina	MI		0,67	0.22		0.22	0,33	0,67	0,33				0,33			0,33	0.22	0.22	0,67		0,33			0,67	
	Dorvillea rudolphii	HP			0,33	0.22	0,33	0,33										0,33	0,33							
	Drilonereis filum	Lim				0,33													0,33							ullet

3-XXXVI – Continuo.

							Trans	etto A									Trans	etto B						Con	trolli	
Stazione		Di	A1	A2	А3	A4	BO NW	BO SE	A5	A6	A7	A8	B1	B2	В3	B4	BO NE	BO SW	B5	В6	B7	B8	K1	K2	КЗ	K4
Distanza dalla	piattaforma (m)	Biocenosi	250	120	60	30	0	0	30	60	120	250	250	120	60	30	0	0	30	60	120	250	2000	2000	2000	2000
Policheti																										
	Euclymene oerstedii	SFBC																						0,67		1
	Eupanthalis kinbergi	DE																				0,33				1
	Filograna sp							7,67																		1
	Glycera alba	Lim		0,33	0,33	0,33	1,67			0,33	0,33			0,33			0,33			0,67					0,67	1
	Glycera rouxii	MO	1,00	0,67		0,33		0,33	0,33					0,33		0,33		1,00	1,33	1,00						0,33
	Glycera sp		1,33	1,33	1,33	0,67	2,33	1,33	1,00	0,33	0,67	0,33	1,33	2,00	0,67	1,00	3,00	1,00	0,67	1,67	0,67	0,67	0,67	1,33	0,67	1
	Glycera tesselata	Sd	0,67	0,67	0,33	0,67	1,33		0,33	0,67			0,33	0,33	1,00	0,33	1,67		0,67				0,67	0,67	0,33	1
	Glycinde nordmanni	MO																				0,33				1
	Goniada maculata	VTC							0,33									0,33							0,33	1
	Harmothoe antilopes	Mixt			0,33																					1
	Harmothoe sp			0,67	0,33		0,33	3,00								0,33	1,33	0,67	0,33	0,33	0,67	0,67				1
	Hydroides norvegicus	Sd			0,33		5,00	0,67										0,67		0,33	0,33					1
	Inermonephtys inermis	Mixt		0,33															0,33							1
	Labioleanira yhleni	VTC									0,33			0,33		0,33		0,67		0,33						1 1
	Levinsenia oculata	MO		0,33																						1
	Lumbrineris gracilis	Sab				0,33				0,33				0,33					0,33	0,33	0,33			0,33		1
	Magelona alleni	VTC			0,33		0,33																			1
	Maldanidae nd				0,33	0,33								0,33			0,33		0,33	0,33				0,33		1 1
	Marphysa bellii	Lim	0,67	0,33	1,00	1,00	1,00		0,33	0,67	1,00	0,67	2,00	1,00	0,33	1,33	1,33	0,67	0,67	0,67	1,67	1,00	1,33	0,67	0,33	1,00
	Melinna palmata	Minut		0,33	0,33		0,67	0,33	1,67								0,33	0,33		0,67	0,33	0,33	0,33	0,33	0,33	0,33
	Micronephtys sphaerocirrata	Sab toll					0,67											0,33								1
	Minuspio cirrifera	MO		1,00									0,33					1,33	0,67	0,67	1,00	1,33				1
	Naineris sp																					0,33				1
	Nephtys hombergi	SFBC															0,33									1
	Nephtys hystricis	VTC		0,33		0,33			0,33						0,67			0,67			1,00	1,00	0,67	1,00		1
	Nereididae nd					0,33	0,33								0,33	0,33		0,33								1
	Ninoe sp		0,33	0,67	0,33		0,33	0,33			0,67			0,33	0,67		0,33	0,33	0,33	0,33	0,33	0,33		0,33		0,33
	Notomastus aberans	MO	0,67			0,33	1,00		0,33	1,00		0,33	1,67	1,00	0,67	0,33		0,33	2,00	1,33	1,00	1,67	3,33	0,67	0,33	1,67
	Ophelina cylindricaudata	Lim	2,00	2,33	0,67	1,00	1,00	0,33	1,00	2,33	2,33	2,33	1,33	1,33	0,67	3,00	3,00	0,67	6,00	1,67	4,33	7,67	1,33	5,33	6,67	1,33
	Ophiodromus flexuosus	Sab								0,33		0,67	0,33	0,33	0,33		0,33	0,33	0,67	0,33	1,00	1,00	0,33	0,67		0,33
	Owenia fusiformis	SFBC		1,00	0,33	0,67	0,33	0,33	2,00	0,33							0,33		1,00	0,33			0,33			1
	Paradiopatra calliopae	Lim	3,67	4,33	6,00	2,67	1,33	0,67	2,00	2,00	1,33	1,67	2,00	2,00	6,00	1,67	1,67	1,33	3,33	3,67	4,33	8,00	1,67	6,00	3,33	1,00
	Paralacydonia paradoxa	MO	0,67	0,67		1,00	0,33		1,00	1,00		0,33	1,33	0,33	0,67	0,33	1,00	0,33	0,67	2,67	0,33	1,00	0,33	1,00	0,67	0,33
	Paraonidae nd		17,67	23,00	10,33	28,67	25,33	0,67	5,67	19,33	13,33	12,33	12,33	19,00	18,67	10,67	8,00	9,00	16,00	22,67	19,00	24,00	9,67	14,00	8,33	12,33
	Paraprionospio pinnata	VTC					0,33																		0,33	
	Pectinaria koreni	Sab					0,33																0,33			
1	Phyllodoce sp		0,33		0,33			0,67	0,33						0,33			0,33								
	Phyllodocidae nd					0,67		0,33								0,33				0,33	0,33					
1	Phylo norvegica	Lim															0,33									
	Pilargidae nd		J	1,67	0,33	1,33	1,00	0,33	1,33	1,00	0,33	0,67	1,67	1,00	1,33	0,67	1,67	1,00	1,00	1,33	0,67	2,00	1,33	1,33	1,00	

3-XXXVI – Continuo.

							Trans	etto A									Trans	etto B						Con	trolli	
Stazione		Biocenosi	A1	A2	A3	A4	BO NW	BO SE	A5	A6	A7	A8	B1	B2	В3	B4	BO NE	BO SW	B5	В6	B7	B8	K1	K2	K3	K4
Distanza dalla p	piattaforma (m)	Bioceriosi	250	120	60	30	0	0	30	60	120	250	250	120	60	30	0	0	30	60	120	250	2000	2000	2000	2000
Policheti																										
	Pilargis verrucosa	Sab			0,33							0,67	0,33				0,33		0,33							0,33
	Pista cristata	Lim																		0,33						
	Pista sp						0,33																			
	Poecilochetus serpens	VTC							0,33												0,33					
	Pomatoceros triqueter	Sd						0,33																		
	Praxillella gracilis	Lim				0,33																		0,33		
	Prionospio ehlersi	Mixt															0,33									
	Prionospio sp			1,00		1,33	0,33		1,00				0,33			1,00	0,67	1,00	0,33		0,33	0,33		0,33		0,67
	Sabellidae nd			0,33		2,00	1,00		6,00	0,33	0,67			1,67	1,00	0,33	1,00	1,67	1,67	1,67	1,00	1,33				
	Scalibregma inflatum	Lim	0,33	0,33		0,67	0,33	0,33						0,67			0,33		0,67			0,33	0,33			
	Scoletoma impatiens	Mixt	0,33	0,33	0,67	0,33								0,33									0,33			
	Scoletoma sp					0,33				0,33	0,67			0,33	0,33					0,67	0,33	1,00				
	Scoloplos armiger	Lre		0,33								0,33								0,33	0,67	1,67	0,67	0,67	1,00	0,67
	Serpula vermicularis	AP					0,67																			
	Serpulidae nd					0,33		0,67	0,33																	
	Sphaerodoridae nd									0,33				0,67											0,33	
	Spionidae nd			2,00	0,33	3,67	8,33	0,33	1,00	5,33	0,67	0,33	0,67	1,33	2,67	1,33	2,67	3,00	7,00	1,67	1,67	1,33	1,00	1,67	0,67	0,33
	Spiophanes bombyx	SFBC	0,33	0,33			0,33					0,67										0,33		0,33	0,33	0,33
	Syllidae juv									0,33								0,33								
	Syllis parapari	SFBC															0,33		0,33					0,33		
	Terebellidae nd			1,33			0,33							0,33	0,33			0,33	0,33	0,33	0,33				0,33	
	Terebellides stroemi	MO				0,33			0,33					0,67												
Poriferi																										
	Porifera nd																0,33									
Sipunculidi																										
	Aspidosiphon muelleri	MO	0,33	0,33							0,67							0,33	0,33		0,33				0,33	
	Onchnesoma steenstrupi	VB	1,00	0,33			0,67		0,33	0,67		0,67		1,00		0,33			0,33	0,33	0,33	0,67		0,33	0,33	2,00
	Phascolion strombus	Lre			0,33				0,33	0,33							0,33		0,67					0,67		
	Sipuncula nd		2,00	1,00	0,67	1,00	2,00	0,33	1,67	1,33	1,00	1,00	2,33	0,33	1,67	1,00	1,00	2,00	1,00	1,67	0,33	3,00	1,33	0,33	1,33	1,33
Tunicati																										
Ascidiacei	Ascidia mentula	Lre																		0,33						<u> </u>
Densità totale			41,67	63,00	38,67	71,00	144,33	88,67	45,67	54,67	28,33	36,33	36,33	52,33	51,33	36,00	66,33	63,00	68,67	65,00	54,00	82,67	32,00	55,00	39,33	
Ricchezza speci	ifica totale		35	51	42	56	67	53	49	39	22	34	26	45	37	39	67	65	57	51	41	46	28	48	35	25

Tab. 3-XXXVII – Lista, densità (n. ind./0,095 m²) e sigle delle biocenosi delle specie rinvenute nelle stazioni campionate nel **4**° **survey post lavori**. Per ogni sito è anche riportato il numero totale di taxa osservati. Sono anche indicate le Biocenosi di appartenenza dei taxa determinati a livello di specie. Per la legenda si rimanda alla Tab. 3-XXXII.

								etto A										etto B							trolli	
Stazione		Biocenosi	A1	A2	А3	A4	BO NW	BO SE	A5	A6	A7	A8	B1	B2	B3	B4	BO NE	BO SW	B5	B6	B7	B8	K1	K2	K3	K4
	piattaforma (m)	Bioceriosi	250	120	60	30	0	0	30	60	120	250	250	120	60	30	0	0	30	60	120	250	2000	2000	2000	2000
Briozoi																										
	Briozoa nd			0,33			0,33	0,67								0,67	0,33				0,33					
	Schizoporella errata	Lre			0,33		0,67	0,67									0,67	0,67	0,33							
	Scrupocellaria scruposa	Sd					1,00	0,67	0,33	0,33							0,67	1,00	1,00				0,33	0,67	0,67	
	Triticella flava	Simbiosi	0,67		0,33				0,67	0,67								0,33	0,33			0,67				
Cnidari																										
Antozoi	Actiniaria nd					0,33			0,33									0,67								
	Anthozoa nd				0,33	0,67			0,67	0,33		1,00	0,33										1,00			
	Edwardsia claparedii	SFBC											0,33	0,33				0,33	0,33							
	<i>Epizoanthus</i> sp							18,33																		
	Funiculina quadrangularis	Lim							0,33																	
	Virgularia mirabilis	VTC									0,33															
Idrozoi	Hydroidea nd		0,33	0,33	0,33	0,33	0,67	0,33	0,67		0,33				0,67	0,67	0,67	1,00				0,33	0,67		0,33	
Crostacei																		•								
Anfipodi	Acidostoma nodiferum	Lre																0,33		0,33						
İ	Ampelisca diadema	DE					0,33		0,33			0,33					0,67	,						0,33	0,33	
	Aora gracilis	HP					-,		-,			.,					.,-				0,33			-,	-,	
	Corophium sp														0,33						.,					
İ	Eriopisa elongata	VB	1,00												-,										1,00	
	Harpinia dellavallei	VTC	0,67								0,67	1,00											1,00		0,33	
	Leucothoe incisa	SFBC	0,07								0,07	2,00	0,33										2,00		0,00	
	Leucothoe lilljeborgi	MO											0,00				0,33									
	Orchomene grimaldii	VTC				0,33			0,67			0,33					0,00	0,67	0,33		0,33		0,33			
	Paraphoxus oculatus	Mixt		0,33		0,33	0,33		0,33		1,00	1,67	0,33		0,33		0,33	0,07	0,67	0,33	0,67		0,33		0,33	
	Phtisica marina	Lre		0,55		0,55	0,55		0,55		1,00	1,07	0,55		0,55		1,33		0,07	0,55	0,07		0,55		0,55	
	Pseudolyrius kroyerii	SFBC					1,00										1,33									
	Pseudoprotella phasma	Lre	0,33				1,00																			
	Stenothoe sp	Lic	0,33				0,33																			
Cirripedi	Balanus perforatus	AP					0,33	0,33																		
Copepodi	Copepoda nd	Ar						0,33														0,33				
Cumacei	Cumacea nd														0,33		0,33					0,33				
Cumacer	Eudorella truncatula	Mixt				0,33									0,55		0,55				0,33		0,33			
	Leucon siphonatus	Lim				0,33															0,33		0,33			
Decapodi	Alpheus glaber	VTC			1,33	0,33		0,67			0,33	0,33			0,67	0,33	0,33								0,33	
Decapoui	Callianassa subterranea	Lim	1,67	0,67	0,33		1,33	1,00	1 00	0,33	2,00	2,33	1,00	0,67	1,33	0,55	2,33	1,67	1 22	0,67	0,67	1 22	1,67	1,00	0,55	
	Ebalia deshayesi	DC	1,07	0,67	0,33		1,33	1,00	1,00 0,33	0,33	2,00	2,33	1,00	0,67	1,33	0,67	2,33	1,67	1,33	0,67	0,67	1,33	1,07	1,00	0,67	
	Goneplax rhomboides	VTC	1,00		0,33		0,67	0,33	0,55	1,00		0,33	0,67		0,33			1,33	0,67	0,33	0,67	0,67		0,33		
	·	_	1,00		0,33		0,67	0,33	0,67	1,00		0,33	0,67		0,33			1,33	0,67	0,33	0,67			0,33		
	Jaxea nocturna	VTC					0.22										I			0.33		0,33				
	Liocarcinus depurator	VB				0.33	0,33										0.67	0.33		0,33						1
	Monodaeus couchi	Lre				0,33	0,33										0,67	0,33								
	Paguridae nd						0,33																			
	Processa sp						0,67					0,67			0,67		0,33									
	Solenocera membranacea	VB					I																	0,33	0,33	
	Upogebia deltaura	DL				0,33	I										0,33									
	Upogebia stellata	Lim																						I	0,33	1

Tab. 3-XXXVII – Continuo.

		•		•			Trans	setto A						-			Trans	etto B				•		Con	trolli	-
Stazione		Ī., .	A1	A2	А3	A4	BO NW	BO SE	A5	A6	A7	A8	B1	B2	В3	B4	BO NE	BO SW	B5	В6	B7	B8	K1	K2	КЗ	K4
Distanza dalla p	oiattaforma (m)	Biocenosi	250	120	60	30	0	0	30	60	120	250	250	120	60	30	0	0	30	60	120	250	2000	2000	2000	2000
Crostacei																										
Isopodi	Cirolanidae nd													7,67												
	Eurydice sp																							0,33		'
	Janira sp								0,33																	'
Misidiacei	Misidiacea nd		0,33																							'
Ostracodi	Ostracoda nd																					0,33				'
Echinodermi																										'
Echinoidei	Brissopsis atlantica mediterranea	VB	0,33	0,33								0,33											0,33			'
Ofiuroidei	Amphiura chiajei	VTC					0,33	0,33										0,33								'
Oloturoidei	Labidoplax digitata	VTC																•					0,67			'
	Trachythyone tergestina	VTC					0,33																· ·			'
Molluschi	, , ,																									'
Bivalvi	Abra prismatica	DC					0,33																			'
	Anomia ephippium	Lre				0,33	.,	0,67									2,00									'
	Arca noae	DC				.,		-,-									0,33									'
	Hiatella arctica	Sd				0,33											0,33									'
	Modiolarca subpicta	AP				-,		1,33									0,33									'
	Modiolula phaseolina	DC					0,67	_,-,									5,55									'
	Mytilus galloprovincialis	Lre					3,51	1,00									0,33									'
	Neopycnodonte cochlear	Sd				0,67		1,67									1,00									'
	Nucula sulcata	Lim	0,33	0,33		0,07		2,07									2,00					0,33				'
	Pandora pinna	Lim	0,00	0,00					0,33													0,00				'
	Parvicardium minimum	Mixt							0,33						0,33											'
	Plagiocardium papillosum	DC							0,33						-,		0,67									'
	Saccella commutata	Mixt						0,33	0,55								0,0.									'
	Timoclea ovata	Lre				0,67	0,33	0,33	0,67									1,67	0,33				0,33			'
Caudofoveati		Lim	0,33			0,33	1,33	0,00	0,33						0,33			2,07	0,00				0,00			'
Gasteropodi	Acteon tornatilis	SFBC	0,00	0,33		0,55	2,00		0,55						0,00											'
Gusteropour	Bela brachystoma	Lre		0,33			0,33	0,33	0,33				0,33					0,33								'
	Epitonium commune	Mixt	0,33				0,67	0,33	0,33				0,33					0,33								'
	Hyala vitrea	VTC	0,33	0,67		0,33	0,07	2,00	0,33	1,67	1,33	0,33	0,33	1,00	1,00	1,00	1,33	0,67		0,33			0,67	0,33	2,33	1,67
	Mangelia coarctata	Sm	0,33	0,07		0,33		2,00	0,33	1,07	1,55	0,33	0,55	1,00	1,00	1,00	1,33	0,07		0,33			0,07	0,33	2,33	1,07
	Turritella communis	VTC	1,33	0,33		0,33	0,67	0,33	1,00	0,33	1,00		0,33	0,33	0,33	0,33	1,00	0,67		0,33	0,67		0,67	0,33		'
Nemertini	rantena communis	110	1,55	0,33		0,33	0,07	0,33	1,00	0,55	1,00		0,55	0,55	0,55	0,55	1,00	0,07		0,33	0,07		0,07	0,33		'
	Nemertea nd		0,33	0,67	1,00	1,00	1,67	0,33	1,67		0,67	0,67		0,67	1,00	1,67	3,33	5,00	0,33	0,67	1,00	0,67	1,33	1,00		0.33
Policheti	remerca na		0,33	0,07	1,00	1,00	1,07	0,33	1,07		0,07	0,07		0,07	1,00	1,07	3,33	3,00	0,33	0,07	1,00	0,07	1,33	1,00		0,33
June	Ampharete acutifrons	VTC	0,67	0,33		1,33	0,33					0,33	0,33	0,33	1,33	0,33	1,00	1,67		0,33	1,00	0,67		0,33	3,33	l '
1	Ampharetidae nd	V 1C	0,67	2,00	1,33	0,67	1,33		1,00	1,33		0,33	0,33	0,33	0,67	0,33	0,33	0,33	0,33	0,33	1,00	0,87		0,55	1,00	l '
1	Amphicteis gunneri	Lim	0,07	2,00	1,33	0,07	1,33		1,00	1,33		0,33			0,07		0,33	0,33	0,33	0,33		0,33		0,07	1,00	l '
1	Amphinomidae nd														0,33		0,33									l '
	· ·	VB	I	I	0.22	0.32	I		0.67						0,33					0.32		0.33				'
	Ancystrosyllis groenlandica	MO	2 67	6 22	0,33	0,33	2,67	2 22	0,67	2.00	1 67	167	4 22	267	2 22	2 22	2,00	2.00	2.00	0,33 1,67	2.00	0,33	2.00	E 67	E 00	0,67
	Aphelochaeta filiformis		3,67	6,33	2,67	2,00		2,33	2,00	2,00	1,67	4,67	4,33	3,67	3,33	2,33	2,00	3,00	2,00		2,00	2,67	3,00	5,67	5,00	0,67
	Aphelochaeta marioni	MO	0,33	0,67	0,33	2,33	1,00	0,67	1,00	0,67		1,00	0,33	0,33	1,00	0,33		1,00	0,67	0,33	0,33	1,67	0,67	0,33	1,00	'
	Aponuphis brementi	Lim			0,33		0,67	1,00							0,33	0,33		0,67		0.22		0,33		0,33	0,67	l '
	Aquilaspio sexoculata	MO	<u> </u>																	0,33						

Tab. 3-XXXVII – Continuo.

							Trans	etto A									Trans	etto B						Con	trolli	
Stazione			A1	A2	A3	A4	BO NW	BO SE	A5	A6	A7	A8	B1	B2	В3	B4	BO NE	BO SW	B5	B6	B7	B8	K1	K2	K3	K4
Distanza dalla	a piattaforma (m)	Biocenosi	250	120	60	30	0	0	30	60	120	250	250	120	60	30	0	0	30	60	120	250	2000	2000	2000	2000
Policheti																										
	Capitellidae nd		1,00			0,67	0,33																0,67	0,33	0,33	'
	Chaetopteridae nd				0,33	0,33															0,33					0,33
	Chaetozone caputesocis	Lim		0,67			0,67	0,33	0,33				0,67			0,33									0,33	' !
	Chirimia biceps	MO																		0,33				0,33	0,33	'
	Cirratulidae nd		1,33	1,00	0,33	0,33	1,00	0,67	1,33	1,00	1,00	0,33	0,67	1,33	0,33	0,67		1,67				0,33	0,67	0,33	,	
	Cossura soyeri	Lim					0,33																			'
	Ditrupa arietina	MI						0,33																		'
	Dorvillea rudolphii	HP					0,33	0,33										1,33								'
	Drilonereis filum	Lim	0,33	0,33				0,33						0,33				· ·						0,33		0,33
	Euclymene droebachiensis	DE						,						,										,	0,33	' !
	Filograna sp																1,33								,	'
	Glycera alba	Lim					1,00	0,33		0,33					0,33		,	0,33							0,33	'
	Glycera rouxii	MO	0,67				1,00	0,33	0,33	,	0,33	0,33	0,33	0,33	0,33		0,33	1,00	0,33	0,33	0,33				0,33	'
	Glycera sp		0.33	1,67	0,67	1,33	1,00	3,33	1,33	0,67	0.67	1,67	0,67	1,00	1,00	4,00	3,33	1,67	2,00	1,33	1,33	0,33	0,33	1,67	0,67	'
	Glycera tesselata	Sd	.,	,	0,33	0,67	,		0,33	1.00	.,-	0,33	.,-	0,33	,	,		0,33	,	,	,	.,	1,00	,-	0,33	'
	Glycera tridactyla	SFBC			.,	.,.			0,33	,		.,		.,		0,33		.,	0,33				,		.,	'
	Harmothoe sp					0,33			0,33				0,67		0,33	.,	1,33		.,							'
	Hydroides norvegicus	Sd				0,33			.,				.,-		.,		,	1,00					0,33			
	Labioleanira yhleni	VTC		0,33	0,33	.,		0,33						0,33				,		0,33		0,33	-,		0,33	0,67
	Lumbrineris gracilis	Sab		0,33	.,			.,			0,33	0,33		0,33	0,67		0,33			.,		.,			0,33	.,.
	Magelona alleni	VTC		,,,,,		0,33			0,33		.,	.,		.,	.,-		.,								.,	'
	Maldanidae nd					.,			.,				0,33			0,33	0,33	0,33		1,00					0,33	
	Marphysa bellii	Lim	1,00	0,33	1,33	0,67	0,67		1,00	1,00	1,00	1,00	1,33	1,00	1,00	0,33	1,33	1,00	0,67	0,67	0,67	1,67	1,67	1,00	0,67	0,67
	Melinna palmata	Minut	,,,,	0,33	0,33	0,33	-,	0,33	_,-,	_,=,==	_,	_,	0,33	0,33	_,-,	5,55	0,67	_,	-,-:	2,21	,,,,,	0,33	_,	_,-,	,,,,,	-,-:
	Minuspio cirrifera	MO	0,67	1,00	.,	0,33		.,		0,33		0,33	.,	.,			-,-					.,	0,33			'
	Nematonereis unicornis	Mixt	.,.	,		0,33				-,		.,											0,33			'
	Nephtys hombergi	SFBC														0,33							0,33		0,33	'
	Nephtys hystricis	VTC	1,33	0,67	0,33		1,00	0,67	0,67	1,00	0,33	0,33	0,67	0,33	0,67	.,	0,33		0,67	0,33		1,00	1,67	0,67	0,67	'
	Nereididae nd		0,33	, ,	0,33		0,33	.,-	.,.	,	0,33	.,	.,-	.,	0,33		.,		.,.	.,		,	0,33	.,.	.,-	
	Ninoe sp		0,33		,			0,33	0,33	0,67	· ·	0,67		0,33	0,33					0,33	0,33		,			1,00
	Nothria conchylega	Sab				0,33																				' !
	Notomastus aberans	MO	1,00	1,33	0,67	0,67	1,00	1,00	0,33	1,00	0,33	1,33	2,67	0,33	2,00	0,67	3,33	3,67	0,33	0,33	1,00	0,33	1,33	2,33	3,00	0,67
	Ophelina cylindricaudata	Lim	4,67	3,00	2,33	1,67	5,00	5,00	2,67	8,67	6,00	7,00	6,33	6,67	7,00	3,33	3,33	4,00	4,00	4,33	5,67	4,33	8,00	8,00	7,33	1,67
	Ophiodromus flexuosus	Sab	0,67	0,33	,	0,33	0,67	0,33	0,67	0,33	0,33	,	· ·	,		,	1,33	1,33			0,33		1,33	,	1,00	
	Orbiniidae nd									0,33																'
	Owenia fusiformis	SFBC	0,33						0,33		0,33					0,33	1,00	0,67			0,33				0,67	'
	Paradiopatra calliopae	Lim	1,67	4,00	2,33	5,00	3,33	3,00	2,67	4,33	2,33	1,67	2,00	1,33	3,00	2,00	3,67	1,33	1,00	1,67	2,33	5,33	0,33	4,67	0,67	1,67
	Paralacydonia paradoxa	MO	3,00	1,00	0,33	2,33	1,33	1,67	1,33	1,00		0,33	1,33	1,67	1,33	1,67	1,33	1,33	1,67	0,33	2,00	1,00	2,33	0,33	1,00	' '
	Paraonidae nd		15,33	22,33	20,00	11,33	16,00	9,33	23,00	24,67	21,33	17,67	13,67	23,33	36,00	13,00	19,00	16,00	9,00	15,67	15,33	19,33	16,33	18,67	20,00	8,33
	Paraprionospio pinnata	VTC	1		· ·		1	0,33	· ·						1					0,67	1	1				l '
	Pectinaria koreni	Sab					0,33		0,33								0,67	1,00								
	Phyllodoce sp						0,33										0,33									
	Phyllodocidae nd				0,67		1								0,33		0,33									l '
	Pilargidae nd	I	2,33	0,67	1,00	0,33	1,33	1,00	0,33	1,00	1,67	1,00		1,00	2,67	1,00	2,33	2,33	1,00	2,33	0,67	2,00	1,33	0,67	2,00	0,33

Tab. 3-XXXVII – Continuo

							Trans	etto A									Trans	etto B						Con	trolli	
Stazione		Di	A1	A2	A3	A4	BO NW	BO SE	A5	A6	A7	A8	B1	B2	В3	B4	BO NE	BO SW	B5	В6	B7	B8	K1	K2	КЗ	K4
Distanza dalla p	iattaforma (m)	Biocenosi	250	120	60	30	0	0	30	60	120	250	250	120	60	30	0	0	30	60	120	250	2000	2000	2000	2000
Policheti																										
	Pilargis verrucosa	Sab		0,33		0,33								0,67								0,33				
	Pista brevibranchia	Lim																			0,33					
	Pista unibranchia	Lim																0,33								
	Poecilochetus serpens	VTC					0,33			0,33													0,33			0,33
	Pomatoceros triqueter	Sd					0,33										0,33									
	Praxillella gracilis	Lim																						0,33	0,33	
	Prionospio ehlersi	Mixt		0,33																						
	Prionospio sp			0,33	0,33	0,67	0,67			0,67		0,67	0,33	0,33		0,33			0,33	0,67	0,33	0,33	1,00		1,00	
	Prionospio steenstrupi	Lre		0,33																						
	Sabellidae nd			1,00		1,33	1,00		1,67						0,33	1,33		2,00	1,33	0,67	1,00	0,67	0,33		2,00	
	Scalibregma inflatum	Lim					0,67	0,33			0,33						0,33			0,67		0,33	0,33			
	Scoletoma impatiens	Mixt		0,33	0,33						0,33												0,33		0,67	0,33
	Scoletoma sp			0,33					0,33	0,33			0,67		1,00	0,33	0,33		0,33			0,33	0,33			
	Scoloplos armiger	Lre	3,00							0,33		1,67	2,00	0,67	0,33			0,33		0,33		1,00	1,33	1,67	0,67	0,33
	Serpula concharum	Sd							0,33																	
	Serpula vermicularis	AP				0,33																				
	Serpulidae nd																1,00									
	Sphaerodoridae nd														0,33		0,33									
	Spionidae nd		3,00	2,33	0,33	1,67	5,33	2,00	2,00	2,33	3,00	1,67	1,00		3,67	1,67	10,67	8,33	3,00	1,33	2,33	1,00	0,67	1,33	2,00	
	Spiophanes bombyx	SFBC					0,33					0,33					0,33								1,00	
	Syllidae juv							0,33														0,33				
	Syllis parapari	SFBC				0,33			0,33									0,33								
	Syllis sp						0,33																			
	Terebellidae nd		1,00	0,67		0,33		0,33			0,33	0,33			1,00		0,33	0,67							0,67	
	Terebellides stroemi	MO			0,33		0,33	0,33							0,33											
Poriferi																										
	Porifera nd							0,33																		
Sipunculidi																										
	Aspidosiphon muelleri	MO		0,33													0,67	0,33								
	Onchnesoma steenstrupi	VB	0,33	0,33	1,00			0,33	0,33	0,67			0,67	2,33	0,67				0,33	0,33	0,33	1,00	2,67	0,33	1,67	1,67
	Phascolion strombus	Lre				0,33	0,33		0,67									0,33							0,33	
	Sipuncula nd		1,00	1,67	1,33	1,67	1,67	1,00	1,33	2,33	2,33		0,67	2,00	1,00		1,67	2,33		1,00	1,00	1,33	0,33	2,00	0,67	1,00
Densità totale			59,67	61,33	44,67	49,00	69,33	70,00	62,00	63,00	52,00	54,67	46,33	61,33	81,00	40,67	85,67	79,00	35,00	41,67	44,33	54,00	59,67	57,00	70,33	22,00
Ricchezza speci	fica totale		43	43	35	51	60	51	54	33	29	36	33	31	45	29	58	49	29	36	31	37	44	32	49	18

Tab. 3-XXXVIII – Lista, densità (n. ind./0,095 m²) e sigle delle biocenosi delle specie rinvenute nelle stazioni campionate nel **5**° **survey post lavori**. Per ogni sito è anche riportato il numero totale di taxa osservati. Sono anche indicate le Biocenosi di appartenenza dei taxa determinati a livello di specie. Per la legenda si rimanda alla Tab. 3-XXXII.

							Trans	setto A									Trans	etto B						Con	trolli	
Stazione		Biocenosi	A1	A2	А3	A4	BO NW	BO SE	A5	A6	A7	A8	B1	B2	В3	B4	BO NE	BO SW	B5	B6	B7	B8	K1	K2	K3	K4
Distanza dalla	piattaforma (m)	bioceriosi	250	120	60	30	0	0	30	60	120	250	250	120	60	30	0	0	30	60	120	250	2000	2000	2000	2000
Briozoi																										
	Aetea truncata	HP						0,50						0,33				0,17							Ì	
	Briozoa nd																	0,17							Ì	
	Crisia sp																	0,17							Ì	
	Schizoporella errata	Lre			0,33	0,50	0,67	0,67	0,50	0,17						0,33	0,67	0,50	0,17						Ì	
	Scrupocellaria scruposa	Sd				0,50	0,83	1,00	1,00	1,00	0,17	0,17	0,17		0,33	0,67	1,00	1,00	0,83	0,50	0,33	0,17		1,00	1,00	0,17
	Triticella flava			0,67				0,17		0,33	0,17			0,17				0,17	0,17	0,33					0,33	
	Tubulipora sp						0,17	1,00	0,17	0,67						0,17	0,33	0,50		0,17	0,17				Ì	
Cnidari																									Ì	
Antozoi	Actiniaria nd					0,33	0,33	0,83	0,17									0,50						0,33	Ì	
	Anthozoa nd		0,17	0,17	0,50	0,67			1,00	1,50	1,33	0,33	0,33			0,17				0,17		0,33	0,50		0,17	0,17
	Edwardsia claparedii	SFBC										0,17	0,33					0,17			0,17				Ì	
	<i>Epizoanthus</i> sp					2,17	8,00	4,17	0,17									1,33							Ì	
	Funiculina quadrangularis	Lim							0,17		0,17			0,17											Ì	
	Pennatula rubra	Mixt												0,17											Ì	
	Virgularia mirabilis	VTC	0,17							0,17															Ì	
Idrozoi	Hydroidea nd		0,33	0,17		0,33	0,17	0,83	1,00	0,50	0,83	0,33	0,67	0,50	0,83	0,83	0,50	0,83	0,83	0,67	0,50	0,83	0,83	0,67	0,67	0,17
Crostacei																									Ì	
Anfipodi	Acidostoma nodiferum	Lre														0,17		0,17		0,17					l	
	Ampelisca diadema	DE			0,50	0,33	1,67	0,67	0,67	0,50	0,33	0,50	0,83	0,33	0,17	1,83	0,67	1,33	0,50	0,83		0,50	0,33	0,33	0,50	0,17
	Amphilochus sp				0,17																				Ì	
	Aora spinicornis	AP								0,33															Ì	
	Corophium sp							0,17	0,17		0,67				0,17	0,83		0,17		0,83	0,33		0,17		0,83	0,17
	Ericthonius brasiliensis	Sd										0,17													Ì	
	Eriopisa elongata	VB	0,83										0,17										0,17	0,33	0,67	
	Gammaropsis sp											0,17	0,17										0,17		Ì	0,17
	Harpinia dellavallei	VTC							0,33		0,83	0,83	1,17					0,33	0,17	0,33	0,33		0,67	1,33	0,17	
	Hippomedon massiliensis	Sab						0,33										0,17							Ì	
	Iphimedia sp	_																0,17							l	
	Leptocheirus guttatus	Sm																							0,17	
	Leptocheirus sp															0,17									0,17	
	Leucothoe incisa	SFBC										0,33	0,17		0,17	0,33	0,17		0,17						Ì	
	Leucothoe lilljeborgi	MO										0,17													Ì	0,50
	Lysianassa sp	6.1							0.47	0,17							0,17								Ì	
	Maera grossimana	Sd				0.47	4.00	0.67	0,17									0.47			0.47				0.47	
	Orchomene grimaldii	VTC				0,17	1,83	0,67	0,50	0.47		0.47		0.47		0.47		0,17	0.67		0,17			0.47	0,17	
	Othomaera schmidtii	VB		0.47	0.22	0.47	0.47	0.22	0.67	0,17	0.67	0,17	4 22	0,17	0.50	0,17 1,00	0.22		0,67 0,67	4.47	0,33	2.00	4.22	0,17	4.50	4 22
	Paraphoxus oculatus	Mixt		0,17	0,33	0,17	0,17	0,33	0,67	2,17	0,67	0,83	1,33	0,17	0,50	1,00	0,33		0,67	1,17	0,67	2,00	1,33	0,50	1,50	1,33
	Photis longicaudata Phtisica marina	VTC Lre						1,33		0,33							0,17	1,17			0,17		0,17		1	
		Lre						1,33		0,33							0,17	1,1/			0,17		0,33		Ì	
	Pseudoprotella phasma Stenothoe bosphorana	Lim																	0,17				0,33		Ì	
	•	LIIII				0,17	0,33											0.67	0,17				0,17		Ì	
	Stenothoe sp Synchelidium haplocheles	Mixt				0,17	0,53			0,17								0,67	0,17				0,17		1	
Copepodi	Copepoda nd	IVIIAL							0,17	0,17															1	
Cumacei	Cumacea nd		0,17	0,33		0,33			0,17				0,17	0,33	0,17				0,33	0,33					1	0,50
Cumacei	Eudorella truncatula	Mixt	0,17	0,33		0,33				0,17	1,33	0,33	0,17	0,83	0,17	0,17			2,17	1,00	0,17	0,33	0,67		0,33	0,50
1	Leucon siphonatus	Lim		0,17		0,17				0,17	1,33	0,33		0,03	0,33	0,17			0,17	1,00	0,17	0,33	0,87	0,17	0,33	
	Leacon sipnonatus	LIIII		1	1	0,1/		1	1	1	1			1	1	1	1	l	0,1/	1	1	l	0,33	U,1/		

Tab. 3-XXXVIII – Continuo.

								setto A									,	etto B						Con	trolli	
Stazione		Biocenosi	A1	A2	A3	A4	BO NW	BO SE	A5	A6	A7	A8	B1	B2	В3	B4	BO NE	BO SW	B5	B6	B7	B8	K1	K2	K3	K4
Distanza dalla	piattaforma (m)	Bioceriosi	250	120	60	30	0	0	30	60	120	250	250	120	60	30	0	0	30	60	120	250	2000	2000	2000	2000
Crostacei																										
Decapodi	Alpheus glaber	VTC			0,33	0,33	0,17	0,17	0,33		0,67				0,33	0,17	0,17	0,33	0,17			0,17		0,17	0,17	
	Anapagurus bicorniger	Lim				0,17																				
	Anapagurus sp																	0,33								
	Callianassa subterranea	Lim	1,50	3,00	1,83	0,33	1,83	0,67	1,50	1,17	2,00	1,17	1,00	1,67	1,17	1,00	1,50	1,00	1,83	3,50	1,50	2,17	6,00	1,33	2,00	0,83
	Ebalia deshayesi	DC						0,33	0,17			0,17							0,17							
	Eurynome aspera	DC						0,67										0,33								
	Galathea intermedia	С						0,33		0,17							0,50	1,00								
	Galathea sp					1,50	1,00	0,67																		
	Goneplax rhomboides	VTC	0,50	0,67	0,50	0,67	1,33	1,83	0,50	1,17	0,50	0,17	0,33	0,17	0,17	1,17	1,50	1,17	1,67	1,83	0,83	1,00		0,17	0,83	0,50
	Jaxea nocturna	VTC			0,17																					
	Liocarcinus depurator	VB														0,17										
	Liocarcinus maculatus	Sab						0,50																		
	Monodaeus couchi	Lre				1,83	2,67	2,50								0,50	1,83	2,33								
	Paguridae nd						0,33	0,67								0,33	0,50	0,17								
	Processa sp					0,17									0,17					0,17		0,17				
	Solenocera membranacea	VB										0,17														
Isopodi	Anthura gracilis	Lim																	0,33							
	Bopyridae nd																							0,17		
	Cirolana neglecta	Lre																0,33								
	Eurydice sp			0,17				0,17									0,50	0,33								
	Gnathia sp			0,17				0,17		0,50			0,67						0,33			0,50				
	Idotea sp																	0,17								
Ostracodi	Ostracoda nd										0,17						0,17					0,17				
Tanaidacei	Leptochelia savignyi	С					0,17															0,17				
	<i>Leptognathia</i> sp											0,33			0,50							0,50		0,50		0,17
Echinodermi																										
Echinoidei	Brissopsis atlantica mediterranea	VB				0,17		0,17		0,17	0,17					0,17	0,17			0,17		0,17	0,17	0,17		0,17
Ofiuroidei	Amphiura chiajei	VTC					0,83	0,83										1,17							0,17	
	Ophiotrix fragilis	Lre						0,67																		
	Ophiura albida	DC						0,50		0,17			0,17				0,67	0,33								
Oloturoidei	Labidoplax digitata	VTC																					0,33		0,17	0,17
	Trachythyone elongata	VTC	0,17				0,17																			
Molluschi																										
Bivalvi	Abra prismatica	DC				0,17			0,17	0,33				0,17			0,33			0,17			0,67			
	Anodontia fragilis	SFBC									0,17															
	Anomia ephippium	Lre				0,67	16,50	26,50									19,50	19,83								
	Arca noae	DC					0,17																			
	Azorinus chamasolen	Mixt			0,17						0,17															
	Cardiomya costellata	DL				0,17																				
	Coracuta obliquata	Sab															0,50								0,83	
	Hemilepton nitidum	C				0,17	4.22	4.00									0.00	2.02								
	Hiatella arctica	Sd				0,67	1,33	1,83									0,83	2,83								
	Hiatella rugosa	Sd						0,17																		
1	Kellia suborbicularis	DC					0,17			0,17					0.17			0.22		0,17				0,17		
	Kurtiella bidentata	VTC						0.50							0,17		0.22	0,33						0,17		
	Mimachlamys varia	DC				1.50	1.00	0,50									0,33	2.22								
	Modiolarca subpicta	AP				1,50	1,00	1,50									1,00	2,33				0.17				
	Modiolula phaseolina	DC					0,33										0.17	2,83				0,17				
	Montacuta phascolionis	Lre						0.17									0,17									
	Myrtea spinifera	MO				0.17	0.67	0,17				1					0.22]]
,	Mytilus galloprovincialis	Lre				0,17	0,67	2,50									0,33				1	1				

Tab. 3-XXXVIII – Continuo.

			ļ					etto A										setto B					ļ		trolli	
Stazione		Biocenosi	A1	A2	A3	A4	BO NW		A5	A6	A7	A8	B1	B2	В3	B4	BO NE	BO SW		B6	B7	B8	K1	K2	K3	K4
Distanza dalla p	piattaforma (m)	Dioceriosi	250	120	60	30	0	0	30	60	120	250	250	120	60	30	0	0	30	60	120	250	2000	2000	2000	2000
Molluschi																										1
Bivalvi	Neopycnodonte cochlear	Sd				0,17	44,33	11,00									14,17	29,50								1
	Nucula nitidosa	Lim				0,33																				1
	Nucula sulcata	Lim				0,17																		0,17		0,17
	Pandora pinna	Lim								0,17																
	Parvicardium minimum	Mixt						0,17	0,67																	
	Phaxas adriaticus	Sab					0,17				0,17						0,17									
	Plagiocardium papillosum	DC						0,17								0,17	0,17	0,33						0,33		
	Pteria hirundo	Mixt						0,83																		
	Tellimya ferruginosa	SFBC																0,83								
	Tellina serrata	DE				0,17																				
	Thyasira biplicata	Lim				0,50	0,17	0,33	0,33	0,17								0,33			0,17					
	Thyasira succisa	Lim							0,17	1,83																
	Timoclea ovata	Lre							1,17	0,33					0,33			0,67					0,33			
Caudofoveati	Falcidens gutturosus	Lim	1,00		0,17	4,50	3,00	0,33	1,83	0,67		0,33	0,50		1,00	0,50	1,50	0,33					0,33			
Gasteropodi	Acteon tornatilis	SFBC		0,17						0,17					0,17											
	Alvania sp														0,17		0,17									
	Bela brachystoma	Lre					0,17	0,17				0,17	0,17						0,17							
	Bittium latreillii	Sd															0,17	0,33								1
	Capulus ungaricus	DC						0,17																		1
	Cylichna cylindracea	SFBC								0,17																1
	Epitonium commune	Mixt											0,17													
	Hyala vitrea	VTC	0,83	1,50	0,50	0,33	0,17	0,83	0,17	2,83	1,83	1,17	1,17	0,33	1,50	0,67	1,33	3,50		0,17	0,83		0,83	0,67	2,33	1,33
	Polinices nitida	Sab					0,17																			
	Turritella communis	VTC	1,33	0,33			0,50	0,17	0,50	1,17	0,17		0,17	0,67	0,17	0,17	0,50	0,33		0,17	0,50			0,17		1
Nemertini								,	'		'		,			'	,			1	'					1
	Nemertea nd		0,83	1,17	1,50	3,33	6,33	5,83	2,83	5,17	1,17	1,17	1,17	2,00	1,50	2,83	4,00	5,50	1,67	3,33	1,33	1,67	2,00	1,83	0,83	0,83
Pantopodi						· ·		,	'		'		,			'	,		,	1	'					
Picnogonidi	Pycnogonida nd					0,17			0,17		0,17			0,17		0,33							0,17	0,17	0,17	
Platelminti						· ·			'		'			· ·		'							1			
	Platelminta nd							0,17									0,17							0,67	0,17	1
Policheti								-,									-,							.,.	"	
	Ampharete acutifrons	VTC	0,17	1,33	0,33	0,83	0,33	0,33	1,33	1,67		0,50	0,17	2,33	1,17	0,67	0,83	1,67	1,33	1,50	1,33	0,17	0,67	0,83	1,17	1
	Ampharetidae nd		2,67	2,50	1,83	1,00	0,67	1,17	2,00	3,33	0,83	0,67	0,50	0,17	1,33	1,33	0,17	0,83	1,17	1,67	0,83	0,83	-,	1,50	1,00	
	Amphicteis gunneri	Lim	, .	,	,	,	.,.	0,17	,	.,	.,	-,-	,,,,,,	'	,	,	0,17	0,17	,	,-	',	,,,,,,,		,	,	1
	Ancystrosyllis groenlandica	VB			0,17	0,17		0,17	0,33	0,17	0,33	0,17			0,17		-,	0,67	0,33	0,17	0,50					0,83
	Aphelochaeta filiformis	MO	7,67	5,83	2,17	2,83	4,83	2,67	5,17	5,50	4,00	3,50	4,17	5,17	7,00	3,17	2,83	2,00	2,83	5,50	2,83	3,50	5,17	8,00	5,50	2,83
	Aphelochaeta marioni	MO	1,50	0,83	1,67	1,67	2,00	1,50	1,67	2,17	1,00	1,83	3,17	1,50	2,67	2,00	1,67	1,00	4,00	3,17	1,50	2,67	2,67	1,17	1,67	_,==
	Aphroditidae nd		2,50	0,00	2,07	2,07	2,00	2,50	2,07	,_,	2,00	2,00	5,1,	2,50	2,07	2,00	2,07	2,00	.,00	3,1,	2,50	2,07	0,17	2,2,	1,07	1
	Aponuphis brementi	Lim	0,50	0,17		0,33	0,67	0,83	0,17						0,17	0,17	1,00	0,83					-,	0,33	1,50	1
	Capitella capitata	MO	0,50	0,1,		0,55	0,07	0,00	0,1,	0,33					0,1,	0,1,	2,00	0,00						0,55	1,50	1
	Capitellidae nd	1410	0,33				1,17	0,33		0,33	0,83	0,67	1,33	0,17		0,17	0,17	0,17			0,67	0,50	1,00	0,17	0,83	1,17
	Chaetopteridae nd		0,55		0,17		2,2,	0,55	0,17	0,55	0,00	0,0.	2,00	0,1,		0,17	0,50	0,33	0,33	0,17	0,07	0,33	2,00	0,1,	0,17	2,2,
	Chaetozone caputesocis	Lim	1,17	1,33	1,33	0,83	1,83	1,50	1,17	0,17		0,67	0,50	1,33		0,17	1,17	0,83	0,83	0,17		0,17	0,17		0,33	1
	Chirimia biceps	MO	-,	2,00	1,55	0,00	2,00	1,55		,,,,,		0,0.	0,50	1,55		,,,,,		0,00	0,00	, , ,		0,17	0,27	0,17	0,17	
	Cirratulidae nd	IVIO	0,17	0,33			0,33	0,17	0,50	0,67	1,33	0,33	0,50	0,17	0,67	1,50	0,17	0,17	0,50	0,17	1	0,50	1,00	0,17	0,1,	0,17
	Cossura soyeri	Lim	0,17	0,33			0,33	5,1,	0,30	0,50	1,33	0,33	0,50	0,17	5,07	1,30	5,17	0,17	0,30	0,1,	1	0,50	1,00	0,33	1	0,17
	Ditrupa arietina	MI				0 17		0,50	0,33	0,30	1		0,67	0,50	0,17	0,17		0,33	0,17	0,33	1	0,17			0,17	
	Ditrupa arietina Dorvillea rubrovittata	C				0,17 0,17	1,67	0,50		0,33			0,67	0,50	0,17	0,17		0,33	0,17	0,33		0,17			0,17	
	Dorvillea rudolphii	НР				0,17	0,33	0 22	0,17	0,33								1,83			1		0,17			
	Drilonereis filum	Lim				0,1/	0,33	0,33 0,17	0,17	0,17	0,17			0.17		1		1,00		0,17	1	1	0,17	0,17	1	0,17
	-	Lim						0,17	1	1	0,17			0,17		1				0,17	1	1		0,17	0.17	0,17
	Euclymene sp		I	1	1	ĺ	1	1	ĺ	ĺ	ĺ	1		ĺ	1	ı	I	1	1	1	1	1	1	1	0,17	1

Tab. 3-XXXVIII – Continuo.

						Trans											etto B								trolli	
Stazione	Biocenosi	A1	A2	A3	A4	BO NW	BO SE	A5	A6	A7	A8	B1	B2	B3	B4	BO NE	BO SW	B5	B6	B6	B7	B8	K1	K2	K3	K4
Distanza dalla piattaforma (m)	Bioceriosi	250	120	60	30	0	0	30	60	120	250	250	120	60	30	0	0	30	60	60	120	250	2000	2000	2000	2000
Policheti																										
Filograna sp							10,67	0,17									2,00		0,17	,17						
Glycera alba	Lim	0,17	1,17	0,50	0,33	0,33	0,33	0,17	0,17			0,17			0,17		0,17				0,33	0,17			0,33	
Glycera rouxii	MO	0,33		0,67	0,33		1,67	0,50	0,50	1,17	0,17	0,17	0,17	1,00		0,17	0,83	0,83	0,83	,83	0,17	0,50	0,17	0,17	0,67	
<i>Glycera</i> sp		1,67	1,00	0,33	0,67	1,17	2,33	2,00	3,00	2,00	3,33	2,17	2,17	2,67	3,00	2,00	2,00	1,83	2,00	,00	2,67	0,17	0,17	2,17	2,67	0,17
Glycera tesselata	Sd	0,17	0,17	1,00	1,00	2,33	0,17	0,17	1,00		0,33				1,33		1,00	0,50	0,33	,33	0,17		1,33			
Glycera tridactyla	SFBC								0,17										0,17	,17	0,17					
Goniada maculata	VTC						0,17		0,50			0,33		0,17											0,50	
Harmothoe sp		0,67	0,17		1,50	1,50	2,67		0,33			0,50		0,17		1,17	2,67									0,67
Hydroides elegans	Sd			0,17												0,33										
Hydroides norvegicus	Sd				0,33		1,00									1,00	0,83									
Hydroides stoichadon	Sd					0,17	0,17																			
Labioleanira yhleni	VTC	0,17	1,00				0,17				0,33		0,50			0,33			0,33	,33	0,17	0,17	0,50			
Lumbrineris gracilis	Sab	0,17					0,83	0,50	0,67	0,50	0,17	0,17	0,83	0,83		0,17	1,50	0,50	0,67	,67	0,50	0,17		1,67	0,67	
Magelona alleni	VTC				0,33			0,33	0,33					-	0,33			0,33								
Maldanidae nd		0,33				0,17						0,33			0,17	0,17	0,17		0,17	,17				0,17	0,17	
Malmgreniella lunulata	DE					1											0,17									
Marphysa bellii	Lim	2,00	1,17	0,50	1,33	2,67	0,17	1,17	1,83	1,17	1,50	1,50	0,67	1,17	1,83	1,67	1,67	0,67	1,83	,83	1,50	1,00	1,83	1,00	1,50	1,17
Megalomma vesiculosum	Lim	'					'	0,17				,		,	'	,	,		1		,	,	,		,	
Melinna palmata	Minut	0,33	0,67	0,67	0,33		0,17	0,50	1,50	0,33		0,33	0,17	0,50	0,50	0,17	0,33	0,33			0,17	0,33		0,17		
Micronephtys sphaerocirrata	Sab													-											0,17	
Micronephtys stammeri	VTC						0,33		0,17																,	
Minuspio cirrifera	МО	0,17	0,33	0,17	0,83		0,17	0,33	1,33		0,33			0.17	0,17		0,17		0,17	.17			0.17	0,67	0,50	
Nematonereis unicornis	Mixt	-,	, , , ,	/	.,		0,17	-,	,		.,	0,17		-,	- ,		-,		- '	<i>'</i>			- /	.,-	,,,,,	
Nephtys hombergi	SFBC						- ,				0,17	-,			0,17											
Nephtys hystricis	VTC	0,83	1,50	0,50	0,17	1,00	0,50	0,67	0,17	1,17	0,17	1,17	2,33	0,50	1,00	0,33	0,33	0,17	1,17	.17	0,17	0,50	1,00	1,50	0,83	0,33
Nereididae nd		0,33	,	-,	-/	0,83	.,	-,-	0,17	0,33	-/		,	0,17	0,33	-,	0,17	0,33	'	´	-,	,	,	,	0,17	, , , ,
Ninoe sp		0,17	0,50	0,67	0,83	1,67	1,17		0,33	0,17	0,50		0,17	0,17	1,17	0,33	-,	0,67	0,67).67	1,50	0,17	1,00	0,17	-,	0,83
Notomastus aberans	MO	1,50	-,	1,17	0,33	2,50	1,00	0,67	0,33	1,67	0,33	1,17	0,67	0,50	0,33	1,00	2,67	0,50	0,67		0,83	1,17	2,33	2,67	1,17	2,67
Ophelina cylindricaudata	Lim	14,83	10,00	6,33	6,00	8,17	1,83	6,67	11,83	7,50	10,17	12,83	10,67	9,83	8,33	6,17	2,33	6,83	9,17	· .	5,83	7,00	5,00	12,67	6,33	4,33
Ophiodromus flexuosus	Sab	0,17	0,17	0,33	1,17	0,67	0,67	0,33	0,67	0,50	0,50	0,33		0,17	-,	0,50	1,67	0,17	0,33		0,67	0,33	1,17	0,17	0,17	.,
Owenia fusiformis	SFBC	0,17	-,	-,	_,	-,-:	-,	0,50	0,33	0,17	-,	-,	0,17	0,33	0,33	-,	0,17	0,17	-,	· .	0,17	0,17	_,	0,17	-,	0,17
Paradiopatra calliopae	Lim	7,00	5,00	3,00	3,67	4,83	3,83	5,50	7,83	2,83	5,33	5,00	5,33	5,00	6,50	4,17	1,50	4,33	5,83		3,67	4,50	2,67	4,00	5,00	1,67
Paralacydonia paradoxa	MO	1,67	1,33	1,50	1,67	3,83	1,50	1,17	2,00	1,33	1,83	2,17	2,17	1,50	2,33	1,00	2,00	1,67	1,67		2,83	3,00	2,17	2,33	1,00	1,00
Paraonidae nd		36,83	39,83	34,33	18,50	56,33	20,33	32,17	42,17	39,17	29,00	38,00	38,00	50,50	20,50	23,67	20,33	25,50	35,33		31,50	32,00	25,67	26,50	20,00	16,33
Paraprionospio pinnata	VTC	50,05	55,05	3 .,33	10,50	30,33	20,55	52,17	0,17	55,17	0,17	30,00	30,00	30,30	0,33	23,07	20,00	23,30	33,33	,,,,,,	31,30	32,00	0,17	20,50	20,00	20,00
Pectinaria koreni	Sab				1,33	0,17	0,67	0,33	0,1,		0,1,				0,55	0,17	0,17						0,17			
Phyllodoce sp	345				1,55	0,67	0,50	0,55								0,17	0,33		0,17	17			0,17		0,17	
Phyllodocidae nd				0,33	0,17	0,07	1,17		0,17				0,17	0,17	0,17	0,17	0,33		0,17	,, 1,		0,17			0,17	
Phylo norvegica	Lim			0,55	0,1,		1,1,		0,1,				0,1,	0,1,	0,1,				0,17	17		0,1,				
Pilargidae nd	2	1,50	1,83	1,00	0,83	0,67	1,67	1,33	0,67	2,17	0,50	0,33	2,50	2,83	1,00	1,67	1,33	2,00	2,67		1,50	1,50	1,17	1,17	1,17	1,17
Pilargis verrucosa	Sab	1,50	1,05	1,00	0,03	0,07	0,17	0,33	0,07	2,17	0,50	0,55	0,17	2,03	1,00	1,07	1,55	2,00	2,07	.,07	1,50	0,17	0,50	1,17	1,17	0,17
Pista brevibranchia	Lim						0,17	0,33					0,17				0,17					0,17	0,50			0,17
Pista cristata	Lim								0,17				0,17		0,17		0,17				0,17					
Poecilochetus serpens	VTC					0,33			0,17	0,17					0,17		0,17		0,17		0,17					0,17
Pomatoceros triqueter	Sd				1,50	0,83	1		0,17	0,17	1				1	0,67	0,17		0,17	,, 1				1		0,17
Prionospio sp	3u	0,67	1,83	0,67	1,00	3,00	0,33	0,17	1,17	0,83	0,17	0,50	1,83	0,17	0,33	1,33	0,17	0,83	1,50	50	0,50	0,17	1,00	1,00	1,00	0,17
	Lre	0,67		0,67	1,00	3,00	0,33	0,1/	1,1/	0,65	0,17	0,50	1,03	0,17	0,33	1,33				· .	0,50	0,17	1,00	0,17	1,00	0,17
Prionospio steenstrupi	Lre		0,17		1	0.17	1				1				1			0,33	0,17	,1/				0,17		
Protula sp	1	0.50	1 17		0.02	0,17	1 17	1.00	2.67	0.22	1	1 17	1 50	0.22	1.00	0.17	1.50	1 17	1 02	02	0.50	1.00	0.17	1 17	1 22	0.17
Sabellidae nd	1:	0,50	1,17	0.17	0,83	1,33	1,17	1,00	2,67	0,33		1,17	1,50	0,33	1,00	0,17	1,50	1,17	1,83		0,50	1,00	0,17	1,17	1,33	0,17
Scalibregma inflatum	Lim	0,50		0,17	0,17	1,17	0,17	0,33	0,33	0,33			0,33	0,33		0,50	0,17	0,33	0,33		0,17	0,67	0,83	0,17	0,17	
Scolaricia capensis	_1	1	1		ı	ı	ı	1	1	l	ı	ı	1	I	ı	I	I	1	1		0,17			0,17	1	1

Tab. 3-XXXVIII – continuo.

							Trans	etto A									Trans	setto B						Con	trolli	
Stazione		Biocenosi	A1	A2	A3	A4	BO NW	BO SE	A5	A6	A7	A8	B1	B2	В3	B4	BO NE	BO SW	B5	В6	B7	B8	K1	K2	К3	K4
Distanza dalla	piattaforma (m)	bioceriosi	250	120	60	30	0	0	30	60	120	250	250	120	60	30	0	0	30	60	120	250	2000	2000	2000	2000
Policheti																										
	Scoletoma impatiens	Mixt	0,17						0,17		0,33	0,17		0,17		0,17	0,67	0,17	0,33				0,17	1,17		0,17
	Scoletoma sp								1,17	0,67			0,67	0,50	0,33	0,17	1,50		0,83	0,50	0,17	0,50	0,17	0,17		0,17
	Scoloplos armiger	Lre	2,00	0,83				0,17		0,33	1,67	2,33	2,83	2,83	0,50		0,17	0,83	0,33	1,17	1,00	2,83	3,00	2,17	0,83	1,67
	Serpula concharum	Sd							0,17																	
	Serpula sp																	0,17								
	Serpula vermicularis	AP						0,50										0,33								
	Serpulidae nd				0,17	0,50		1,83	0,50	0,17						0,33										
	Sigambra tentaculata	Mixt						1,00									0,17	0,83								
	Sphaerodoridae nd											0,67		0,50	0,50					0,67						
	Spionidae nd		3,50	1,50	1,17	1,67	6,17	5,17	7,00	4,50	3,50	1,50	2,33	2,50	4,17	3,00	3,83	5,17	5,33	3,67	3,00	1,83	1,83	3,00	3,00	
	Spiophanes bombyx	SFBC					0,17				0,17		0,33	1,17			0,17		0,17	1,67		0,67	0,50	0,67		0,67
	Sternaspis scutata	VTC					0,17																			
	Sthenelais boa	Lim																							0,33	
	Syllidae juv							0,33														0,50				Į.
	Syllis parapari	SFBC - Mixt							0,17								0,33	0,17		0,17					0,17	
	Syllis sp					0,17	0,33	1,50									0,50	0,67								
	Terebellidae nd		0,33			0,17	0,50	2,83	0,50		0,83	0,50	0,17		0,67	0,50	1,67	1,00		1,50	0,17	0,17	0,33	0,33	0,67	0,33
	Terebellides stroemi	MO			0,17		0,17	0,17		0,83		0,33			0,33	0,17	0,17					0,17	0,17	0,17	0,17	
Poriferi																										
	Porifera nd							0,17					0,17					0,17				0,33				
Sipunculidi																										
	Aspidosiphon muelleri	MO		0,33			0,17		0,50								0,50		0,17			0,17			0,17	
	Onchnesoma steenstrupi	VB	1,00	1,83	1,17		0,83	0,50	1,00	2,83	2,33	1,83	0,83	2,00	2,50		0,17	0,17	0,67	1,67	1,33	0,50	1,67	1,17	1,83	1,67
	Phascolion strombus	Lre		0,17			0,33		0,17								0,17	0,17		0,17						
	Sipuncula nd		2,00	2,33	1,17	1,17	1,83	2,17	2,67	4,00	2,00	1,50	2,83	4,00	1,33	1,00	2,50	2,67	4,33	2,17	2,67	1,67	1,83	1,50	1,17	2,00
Tunicati	According to the					0.47																				
Ascidiacei	Ascidia mentula	Lre				0,17			454 55							24.22		455.55								
Densità totale			103,83		72,50		219,00	160,83	101,50	136,33	97,00	81,50	101,17	104,17		81,33	127,00	160,83	87,17	111,00	 	84,33	86,50	94,67	81,00	50,50
Ricchezza spec	cifica totale		51	46	45	78	81	106	76	83	56	57	58	55	60	67	86	105	61	67	53	60	60	64	65	45

Tab. 3-XXXIX – Lista, densità (n. ind./0,095 m²) e sigle delle biocenosi delle specie rinvenute nelle stazioni campionate nel 6° **survey post lavori**. Per ogni sito è anche riportato il numero totale di taxa osservati. Sono anche indicate le Biocenosi di appartenenza dei taxa determinati a livello di specie. Per la legenda si rimanda alla Tab. 3-XXXII.

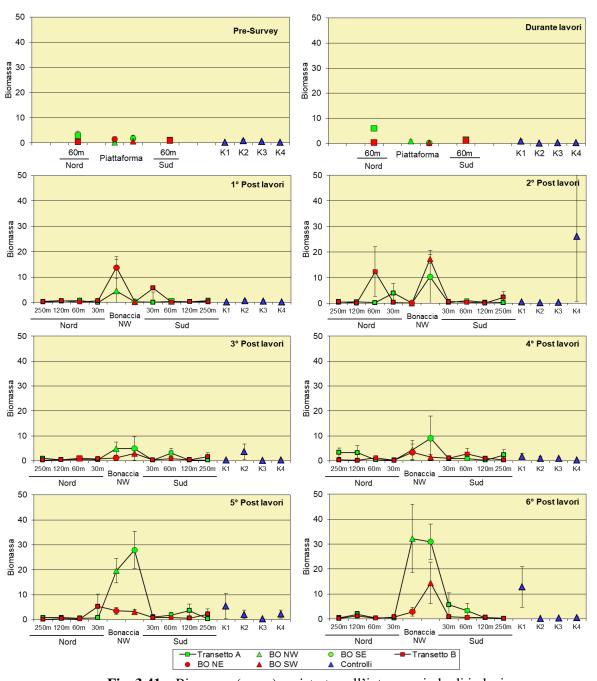
							Trans	etto A									Trans	etto B						Con	trolli	
Stazione			A1	A2	А3	A4	BO NW	BO SE	A5	A6	A7	A8	B1	B2	В3	B4	BO NE	BO SW	B5	В6	B7	В8	K1	K2	K3	K4
Distanza dalla	piattaforma (m)	Biocenosi	250	120	60	30	0	0	30	60	120	250	250	120	60	30	0	0	30	60	120	250	2000	2000	2000	2000
Briozoi																										1
	Aetea truncata	HP						0,50	0,17					0,17				0,17								
	Cellaria salicornioides	Mixt							0,50															0,17		
	Crisia sp		0,17					0,17																		
	Savignyella lafontii	С						0,33																		
	Schizoporella errata	Lre				0,83	0,83	1,00	0,50	0,17				0,17	0,33	0,17	0,33	0,50	0,67							
	Schizoporella magnifica	Sd																0,17								
	Scrupocellaria scruposa	Sd	0,17		0,67	0,67	0,67	0,83	1,00	0,83	0,67	0,17	0,17	0,67	0,67	0,67	0,33	0,83	1,00	0,67	0,17	0,17		0,83	0,67	
	Triticella flava			0,17	0,17		0,17		0,67	0,50				0,33	0,33	0,67	0,17	0,17	0,33				0,17		0,17	
	Tubulipora sp						0,50	0,33	1,00	0,50			0,17		0,33	0,33	0,33	0,50	0,33							
Cnidari																										
Antozoi	Actiniaria nd		0,17			0,50	0,50	48,17										0,83			0,33				0,50	
	Alcyonacea nd								0,17																	
	Anthozoa nd				0,17	0,17			0,83				0,17	0,33		0,50	0,33		0,67	0,67		0,50	0,33		0,17	0,33
	Edwardsia claparedii	SFBC										0,17	0,17			0,17			0,17		0,17					
	Epizoanthus sp					2,17		11,33	0,83							0,50		0,67								
	Funiculina quadrangularis	Lim							0,17																	
	Madreporaria nd							0,17	· ·																	
	Virgularia mirabilis	VTC	0,17					,							0,17	0,17										
Idrozoi	Hydroidea nd		0,50		0,33	0,67	0,50	0,83	0,17	0,17	0,50	0,17	0,83	0,67	0,17	0,33	0,33	1,00	0,50	0,50	0,50		0,33	0,17	0,17	0,33
Crostacei	•				,		,	,	· ·	· ·	,	,			,	,		,		,			,			
Anfipodi	Acidostoma nodiferum	Lre														0,17										
	Ampelisca diadema	DE		0,67	0,33	0,50	0,50		0,17	0,33	0,17	0,17	0,33	0,33	0,17	0,67	0,33	0,33	0,50	0,33		0,17	0,17	0,33	0,50	0,17
	Apherusa sp			,	0,17		,		· ·	· ·	,	,			,	,		,		,		,	,			
	Carangoliopsis spinulosa	VTC											0,17													
	Corophium sp							0,33	0,33							0,50		0,17								
	 Eriopisa elongata	VB	0,17					,	· ·	0,17	0,17	0,33	0,67			,		,				0,33		0,17	0,17	
	Gammaropsis sp						0,17	0,33			,	0,17										,				0,17
	Harpinia antennaria	Lim					,	,			0,17	,	0,17						0,33							
	Harpinia dellavallei	VTC					0,17			0,17	0,67	0,50	0,17		0,33			0,17		0,17	0,17		0,33	0,50	0,33	
	Harpinia sp						,				,	,			,			,		,			,	0,17		
	Leptocheirus guttatus	Sm														0,33									0,17	
	Leucothoe incisa	SFBC					0,17			0,17		0,17	0,17			0,33					0,17	0,17				
	Leucothoe oboa	Lim					,						- /			-,				0,17		/				
	Lysianassa sp						0,17													-,						
	Maera grossimana	Sd					,				0,17															
	Orchomene grimaldii	VTC	0,83		0,50	0,50	1,17		0,50		- /					0,50	0,17	0,17			0,33					
	Othomaera schmidtii	VB	.,		.,	, , , ,	0,50		.,	0,33					0,17	,,,,,	- 1	-,			,,,,,					0,17
	Paraphoxus oculatus	Mixt	0,17	0,33	0,33	0,83	0,33		0,50	1,17	0,67	0,33	0,17	0,33	1,00	0,67			0,50		0,50	0,50	0,50	0,17	0,17	0,33
	Phtisica marina	Lre	,	.,	.,	.,	.,	3,00	.,	,	-,-	.,	- /	.,	,	-,-	0,17	0,50	.,		,,,,,	-,	-,	- ,		0,33
	Stenothoe sp						0,50	1,17										0,33								1,23
1	Stenothoe tergestina	С					0,67	0,17	1			1						.,						1		1
	Urothoe sp						1,51	-,	0,17																	
Copepodi	Copepoda nd		0,17		0,33	0,50	0,17	0,33	0,67	0,83		1,00		0,17		0,17		0,67	0,67		0,33		0,50			
Cumacei	Cumacea nd		0,17	0,17	0,17	0,17	-,	1,23	-,-:	-,-3	0,17	_,,,,	0,17	0,33	0,17				0,17	0,17	1,23		-,-3	0,50		0,33
	Eudorella truncatula	Mixt	-,	-,=-	-,=-	0,50				0,17	0,50			0,83	-,	0,33	0,17		0,50	0,50		0,17	0,17	0,17	0,33	1,23
	Leucon siphonatus	Lim				1,23				-,	-,			1,23		1,23			0,17	1 -,-3		-,	0,17	-,	-,	

Tab. 3-XXXIX – Continuo.

Stazione																						1				-
		Biocenosi	A1	A2	A3	A4	BO NW	BO SE	A5	A6	A7	A8	B1	B2	В3	B4	BO NE	BO SW		В6	B7	B8	K1	K2	K3	K4
Distanza dalla	piattaforma (m)	Dioceriosi	250	120	60	30	0	0	30	60	120	250	250	120	60	30	0	0	30	60	120	250	2000	2000	2000	2000
Crostacei																										
Decapodi	Alpheus glaber	VTC	0,17		0,67				0,17							0,50			0,17					0,17		0,17
İ	Anapagurus bicorniger	Lim															0,17	0,17								
İ	Anapagurus sp																	0,17								
İ	Callianassa subterranea	Lim	2,50	2,33	2,50	1,17	1,50	1,50	1,17	1,17	2,00	1,00	2,50	2,00	1,17	1,67	0,33	1,33	1,83	2,00	1,83	2,17	1,83	2,00	2,17	0,67
İ	Ebalia deshayesi	DC					0,33							-			0,33				0,17				-	
İ	Eurynome aspera	DC					-											0,17								
İ	Galathea intermedia	С				0,17	0,33	0,17										0,67								
İ	Galathea nexa	С						0,17																		
İ	Galathea sp						0,50	0,50																		
İ	Goneplax rhomboides	VTC		0,33	0,33		0,50	· ·	1,17	0,67				0,50	0,33	0,83	0,50	0,33	0,67		0,50	0,17	0,33		0,17	
İ	Liocarcinus depurator	VB		0,17	,,,,,,		,,,,,,,		,	-,-				-,	.,	.,	-,	.,	.,-		.,	,	,,,,,,		-,	
İ	Liocarcinus maculatus	Sab		-,				0,17																		
İ	Monodaeus couchi	Lre				0,33	1,17	1,00		0,17						0,33	0,67	0,83								
İ	Paguridae nd					.,	0,17	0,17		-,	0,17			0,17		0,17	-,-	0,17								
İ	Processa sp					0,33	-,	0,50			-,			-,	0,17	-,		0,33							0,33	
İ	Upogebia deltaura	DL				-,		-,							-,	0,33		0,67				0,17			5,55	
Isopodi	Anthura gracilis	Lim		0,17												-,		-,				-,				
	Bopyridae nd			-,		0,17							0,17													
İ	Cirolana neglecta	Lre				0,1,							0,1,					0,33								
İ	Eurydice sp	Lic															0,17	0,33								
İ	Gnathia sp			0,17				0,17		0,17		0,17	0,50			0,17	0,17	0,33	0,33			0,17				
Misidacei	Misidiacea nd			0,1,			0,33	0,1,		0,1,		0,1,	0,50			0,1,		0,55	0,55			0,1,				
Ostracodi	Ostracoda nd			0,17			0,55		0,67		0,33			0,33	0,33	0,33	0,17					0,33				0,67
Tanaidacei	Leptochelia savignyi	С		0,17			0,17		0,07		0,33		0,17	0,55	0,33	0,33	0,17	0,17				0,33				0,07
l anarace.	Leptognathia sp						0,1,	0,50	0,33			0,17	0,1,		0,17			0,17	0,17		0,50	0,17		0,17	0,67	0,17
Echinodermi	zeprognatina sp							0,50	0,00			0,1,			0,1,			0,1,	0,1,		0,50	0,1,		0,1,	0,07	0,1,
Echinoidei	Brissopsis atlantica mediterranea	VB					0,17	0,17	0,17	0,17				0,17									0,33			
Ofiuroidei	Amphiura chiajei	VTC					0,50	1,00	0,17	0,17				0,17		0,83		0,33					0,33			
Onarolaei	Ophiotrix fragilis	Lre					0,50	0,67								0,03		0,33								
İ	Ophiura albida	DC						0,67									0,67	0,67								
Oloturoidei	Labidoplax digitata	VTC						0,07									0,07	0,07								0,17
Olotarolaer	Trachythyone elongata	VTC																0,33								0,17
Molluschi	rracity thy one clongata	1																0,33								
Bivalvi	Abra alba	Lim																				0,17		0,17		
Bivaivi	Abra prismatica	DC				0,17	0,33		0,50					0,33			0,33	0,50		0,17		0,17		0,17		
İ	Anodontia fragilis	SFBC				0,17	0,33		0,30					0,33			0,33	0,33	0,33	0,17						
İ	Anomia ephippium	Lre				0,83	5,67	11,67								0,50	0,83	2,33	0,33							
İ	Coracuta obliquata	Sab				0,03	3,07	0,17								0,30	0,03	2,33								
İ	Hemilepton nitidum	C						0,17													0,17					
İ	Hiatella arctica	Sd					0,50	2,33									0,50	0,83			0,17					0,17
İ	Kellia suborbicularis	DC					0,30	2,33		0,17					0,33		0,30	0,03	0,17	0,33				0,17		0,17
İ	Kurtiella bidentata	VTC	0,50				0,17		0,17	0,17					0,33			0,17	0,17	0,33				0,17		
ĺ	Mimachlamys varia	DC	0,30			1		0,17	0,17			1			0,33		0,17	0,17								
ĺ	•	AP	0.17				0.67		0.50							0.22		0.22								
ĺ	Modiolarca subpicta	DC AP	0,17				0,67 0,50	6,17	0,50							0,33	0,17	0,33		0,17						
ĺ	Modiolula phaseolina						0,50	4,67									0,17	1,17		0,17						
Í	Modiolus barbatus Mytilus galloprovincialis	Lre Lre				1	2,50	1,33 0,50				1				0,83	0,50									

Tab. 3-XXXIX – Continuo.

		_						etto A				1		1				setto B			ı	ı			trolli	
Stazione		Biocenosi	A1	A2	A3	A4	BO NW	BO SE	A5	A6	A7	A8	B1	B2	B3	B4	BO NE	BO SW	B5	B6	B7	B8	K1	K2	K3	K4
Distanza dalla p	piattaforma (m)	Bioceriosi	250	120	60	30	0	0	30	60	120	250	250	120	60	30	0	0	30	60	120	250	2000	2000	2000	2000
Molluschi																										Ī
Bivalvi	Neopycnodonte cochlear	Sd					3,33	19,33								0,33	1,33	6,33								
	Nucula nitidosa	Lim				0,17	0,33						0,17													
	Nucula sulcata	Lim	0,17																			0,17	0,17			
	Ostrea edulis	Sd	-															0,17								
	Parvicardium minimum	Mixt					0,33	0,50	0,33						0,33	0,33	0,33									0,17
	Phaxas adriaticus	Sab					0,17		· ·	0,17					,	,	,									'
	Plagiocardium papillosum	DC				0,17	,			· ·						0,17		0,17								
	Poromya granulata	Mixt								0,83	0,17					,										0,33
	Pteria hirundo	Mixt						0,67		· ·	,															'
	Scapharca demiri	Mixt						0,17																		
	Tellina nitida	SFBC						-,															0,17			
	Tellina serrata	DE						0.17															-,			
	Thyasira biplicata	Lim	0,17			0,17	0,67	1,00	0,50	0,33						0,17		1,00			0,17					
	Thyasira succisa	Lim	-,			-,	0,17	0,33	1,83	0,50		0,33	0,50	0,50	0,83	-,		0,67		0,33	-/				0,50	0,33
	Timoclea ovata	Lre					-,	1,83	1,00	0,50	0,33	-,	-,	5,55	0,33		0,33	0,50		-,			0,17		0,17	0,50
	Turtonia minuta	C						0,17	2,00	0,50	0,00				0,55		0,55	0,50					0,1,		0,1,	0,50
	Venerupis aurea	SVMC						0,17																		
Caudofoveati	•	Lim		0,67		2,50	1,17	4,00	1,17	0,17			0,33	0,17	0,83	0,67		1,33	1,33	0,17	1,17		0.83		0,17	
Gasteropodi	Acteon tornatilis	SFBC		0,07		2,30	1,17	4,00	1,1,	0,17			0,33	0,17	0,17	0,07		1,33	1,33	0,17	1,17		0,03		0,17	
dusteropour	Alvania sp	51 50							0,33	0,17					0,17											
	Bela brachystoma	Lre					0,50	0,50	0,55									0,17	0,17							
	Bittium latreillii	Sd					0,50	0,50	0,17								0,17	0,33	0,17							
	Cylichna cylindracea	SFBC							0,17								0,17	0,33			0,33					
	Epitonium commune	Mixt						0,33													0,33					
	Hyala vitrea	VTC	1,00	0,67	1,17	0,50	0,50	5,50	1,67	0,83	0,67	1,33	1,83	2,33	2,67	1,17		2,17	0,67	1,00	0,67	0,67	0,83	0,83	1,67	0,50
	Nudibranchia nd	VIC	1,00	0,07	1,17	0,30	0,30	0,17	1,07	0,03	0,07	1,33	1,05	2,33	2,07	1,17		2,17	0,07	1,00	0,07	0,07	0,03	0,03	1,07	0,50
	Philine scabra	Sab					0,17	0,17						0,17				0,33								
	Polinices nitida	Sab					0,17							0,17				0,33								
	Trophonopsis muricatus	Sd					0,17										0,17									
	Turritella communis	VTC	0,17	0,17			0,17		0,33	0,33	0,50		0,33	1,00	0,33		0,17			0,33	0,33				0,17	
Nemertini	Turritella communis	VIC	0,17	0,17			0,17		0,33	0,33	0,30		0,33	1,00	0,33					0,33	0,33				0,17	
ivemerum	Nemertea nd		2,00	2,00	1,83	3,17	7,67	8,83	6,83	3,67	2,33	1,67	4,17	2,67	2,67	4,33	4,50	12,50	4,17	4,00	2,33	2,17	1,00	2,00	3,00	1,00
Pantopodi	Nemerteand		2,00	2,00	1,03	3,17	7,07	0,03	0,63	3,07	2,33	1,07	4,17	2,07	2,07	4,33	4,30	12,30	4,17	4,00	2,33	2,17	1,00	2,00	3,00	1,00
Picnogonidi	Pycnogonida nd					0,17			0,17					0,17	0,33						0,17				0,17	
Platelmenti	rychogoliidanid					0,17			0,17					0,17	0,33						0,17				0,17	
Piateimenti	Platelminta nd							0,17								0,17	0,17							0,17	0,33	
Daliahati	Plateiminta no							0,17								0,17	0,17							0,17	0,33	
Policheti	A	VTC	2.02	1.67	1.00	1 22	1.00	1.00	0.00	1 17	1 17	0.22	2.17	4.67	2.50	1.50	0.67	2.50	2.50	0.67	2.50	0.67	0.02	0.67	2.00	1.00
	Ampharete acutifrons	VIC	2,83 1,00	1,67	1,00	1,33	1,00	1,83	0,83	1,17	1,17	0,33	3,17	4,67	2,50	1,50	0,67 1,50	3,50	2,50	0,67	2,50	0,67	0,83 0,17	0,67	2,00	1,00
	Ampharetidae nd	1:	1,00	1,67	1,17	1,67	0,83	1,00 0,17	3,17	1,67	1,83	0,17	0,83	4,33	0,83	3,17	1,50	2,33	1,33	2,50	4,83	1,17	0,17	1,67	8,83	
	Amphicteis gunneri	Lim VB			0,17	0.17	0.17		1.00	0,17	0,83	1 50	0.17		0.22	0,17		0,17	0.22		0,67			0,17 0,33		1.00
	Ancystrosyllis groenlandica	MO	7.50	c c7		0,17	0,17	1,00	1,00	0,50	,	1,50	0,17	0.00	0,33	c c7	2.17	10.50	0,33	C 02		2.67	2.02	,	0.02	1,00
	Aphelochaeta filiformis		7,50	6,67	4,17	4,50	5,83	7,67	7,33	7,17	6,00	3,17	8,50	9,00	4,83	6,67	2,17	10,50	9,67	6,83	6,00	3,67	2,83	8,33	8,83	4,67
	Aphelochaeta marioni	MO	2,00	0,83	1,50	1,50	1,67	1,00	3,50	1,83	1,33	1,00	4,00	3,67	1,67	1,17	1,50	4,67	3,17	1,33	2,00	0,83	1,67	1,33	2,17	1,00
	Aphroditidae nd	12		0.45	0.50	0.4-	4.00	0.00	0.65					0.67	0.22	0,17		4.00	0.50	0,17		0.45	0,17	0.67	4.00	1
	Aponuphis brementi	Lim	0.22	0,17	0,50	0,17	1,00	0,83	0,67	0.4-	0.22	0.47		0,67	0,33	0,67	0.45	1,00	0,50	0.45	0.67	0,17		0,67	1,83	0.50
	Capitellidae nd		0,33	0,33	0,17	0,17	0,67	0,17		0,17	0,33	0,17		0.55	0,17	0,50	0,17	4.05		0,17	0,67	0,67		0,50	0,67	0,50
	Chaetopteridae nd				0,17		1	0,67	0,33					0,50		0,17	0,50	1,00		0,50	1	1	I	ĺ	0,50	1


Tab. 3-XXXIX – Continuo.

						т		etto A										setto B						1	trolli	
Stazione		Biocenosi	A1	A2	A3	A4	BO NW	BO SE	A5	A6	A7	A8	B1	B2	В3	B4	BO NE	BO SW	B5	В6	B7	B8	K1	K2	K3	K4
Distanza da	lla piattaforma (m)	Dioceriosi	250	120	60	30	0	0	30	60	120	250	250	120	60	30	0	0	30	60	120	250	2000	2000	2000	2000
Policheti																										
	Chaetozone caputesocis	Lim	0,17	0,83	0,17		0,83	0,83	0,50	0,17		0,17		0,33	0,33	0,33	0,17	1,33	0,83	0,50		0,17			0,17	
	Chirimia biceps	MO											0,17			0,17				0,17				0,17	0,17	
	Cirratulidae nd			0,17		0,33	0,50	0,67	0,33	0,33	0,50	0,17	0,83	0,67	0,83	1,17			0,33	0,33	0,67		0,17			0,17
	Ditrupa arietina	MI				1,00	0,83	0,33		0,33				0,17		0,17		0,17								
	Dorvillea rudolphii	HP				0,33	0,50	1,83	0,67		0,17							0,50	0,33							
	Drilonereis filum	Lim		0,17					0,67		0,33	0,17								0,50	0,67		0,33			
	<i>Filograna</i> sp				0,50	0,83	1,83	425,33	6,50							1,00		28,67								0,17
	Glycera alba	Lim	0,17	0,50	0,83		1,00	1,17	0,50	0,17			0,33	0,67	0,17	0,33	0,17	0,33			0,50	0,50		0,17	0,17	
	Glycera rouxii	MO	0,17		0,33		0,17		0,67	1,00	0,67	0,33	0,17	0,50	0,50	0,17	0,17	0,33	0,17	0,67	0,33	0,83	0,50	0,17	0,17	0,33
	<i>Glycera</i> sp		1,00	0,67	0,50	0,33	1,00	2,33	0,83	2,00	2,00	1,50	1,33	2,50	1,83	1,17	0,83	0,50	2,50	1,33	1,33	1,50	1,33	0,83	1,33	0,67
	Glycera tesselata	Sd			0,83	0,33	0,50	0,83		0,33	0,67	0,33			0,33	0,83	0,50	0,83	0,17		0,17		0,50	0,83	0,67	0,50
	Glycera tridactyla	SFBC				0,33		0,50												0,17						
	Goniada maculata	VTC					0,17			0,33			0,33												0,17	
	Harmothoe antilopes	Mixt				0,17																				
	Harmothoe sp					0,33	0,67	3,50		0,17				0,17	0,33			0,67	0,17	0,33				0,17		
	Hydroides elegans	Sd					0,17										0,33									
	Hydroides norvegicus	Sd				0,33	1,00	1,50	0,83							0,17	0,50	2,17							0,17	
	Labioleanira yhleni	VTC		0,83	0,50				0,50		0,50		0,33	0,33						0,50	0,17	0,17				0,17
	Lumbrineris gracilis	Sab	0,83					0,83	0,50	0,33	0,67	0,33	1,00	0,50	1,00			1,00	0,50	0,33	0,67	0,33		0,50	1,50	
	Magelona alleni	VTC				0,33	0,17	0,67	0,17							0,83										
	Maldanidae nd		0,33	0,17														0,33						0,17	0,17	
	Marphysa bellii	Lim	1,00	1,67	0,83	1,33	1,00	1,33	1,33	1,17	1,67	1,67	1,67	1,67	0,83	1,50	1,33	1,33	0,83	1,33	1,67	0,83	2,33	0,83	0,67	1,00
	Melinna palmata	Minut	0,33	0,17	0,17	0,83	0,17	0,17	0,83	0,17			0,17	0,50		0,33	0,17	0,50	0,67		0,17	0,17		0,17	0,67	
	Minuspio cirrifera	MO	0,17	0,33	0,33	0,50									0,83	0,17				0,83			0,33	1,00	0,17	
	Nephtys hombergi	SFBC							0,17			0,17														
	Nephtys hystricis	VTC	0,67	0,67	0,33	0,67	0,67	1,33	0,50	0,83	0,33	0,17	0,67	0,33	0,17	0,33	0,50	0,83	0,50	1,00	0,67	0,50	0,17	1,00		0,17
	Nereididae nd		0,17				0,67		0,50	0,17	0,17				0,33	0,17	0,50	0,67	0,17		0,67		0,17		0,17	
	Ninoe armoricana	Lim	1,17	0,83	0,83	0,33	1,00	1,33	0,33	0,83	1,17	0,50		0,67	0,17	1,33	0,83	0,50	0,83	0,50	0,50	0,17	0,33	0,83	0,33	0,83
	Nothria conchylega	Sab						0,17											0,17							
	Notomastus aberans	MO	1,67		2,00	0,17	2,17	2,83	2,67	1,00	1,17	0,83	1,50	1,33		0,67		2,00	1,17	1,00	0,67	1,17	1,00	1,67	1,17	0,83
	Ophelina cylindricaudata	Lim	10,00	7,17	7,00	10,17	6,00	2,67	7,83	10,33	6,50	3,67	9,50	8,67	8,67	8,17	6,00	4,17	8,50	8,00	7,17	5,00	1,83	9,00	3,67	4,83
	Ophiodromus flexuosus	Sab	0,33	0,33	0,50	0,17	0,83	3,33	0,33	0,67	0,83	0,17	1,00	0,33	0,50	1,33		1,17	0,50	0,50	0,33	0,67		0,17	0,50	0,33
	Owenia fusiformis	SFBC	0,17				0,50			0,50	0,50			0,33	0,17	0,67		0,17	0,50	0,33	0,50	0,17				0,17
	Paradiopatra calliopae	Lim	5,33	4,33	6,50	3,00	3,00	4,67	7,67	6,17	4,67	2,33	7,00	6,67	4,50	7,17	2,33	2,17	5,50	7,67	7,50	2,50	2,17	3,17	4,67	2,67
	Paralacydonia paradoxa	MO	1,83	2,00	0,83	1,00	1,83	1,67	1,00	1,33	2,17	1,00	0,83	1,83	1,17	0,83	1,17	2,00	2,17	1,17	2,83	0,50	1,17	1,83	2,00	0,83
	Paraonidae nd		50,67	40,50	39,83	36,00	57,50	60,17	46,33	49,50	47,17	17,17	44,67	59,17	49,33	45,17	13,50	142,33	46,17	46,33	45,17	30,33	17,83	37,00	32,17	35,50
	Paraprionospio pinnata	VTC						0,33		0,17	0,17									0,33			0,17	0,17		
	Pectinaria koreni	Sab				0,83	1,17	2,83	0,17									3,83			0,50					
	Phyllodoce sp						0,17				0,17			0,17			0,17	0,50		0,17					0,17	
	Phyllodocidae nd	61.41.40	0,50		0,33	0.47		0,33		0,33	0,17			0,33				0,17		0,50	0,17	0,17			0,50	
	Phylo foetida	SVMC				0,17	0.47					0.4-						0.47					0.45			0.47
	Phylo norvegica	Lim					0,17				4.55	0,17		0.45	0.05			0,17	4.05			0.00	0,17			0,17
	Pilargidae nd	1 .	1,67	2,33	1,33	2,67	1,50	1,83	1,83	1,17	1,50	0,17	3,67	3,17	2,33	2,17		1,83	1,83	2,67	2,33	2,00	0,67	1,17	1,67	0,50
	Pilargis verrucosa	Sab							0,33			0,50									0,50	0,17			l	1,00
	Pista cristata	Lim					0,17	0,17	0,33		0,17					0,33		0,83			0,17				0,17	
	Pista unibranchia	Lim																0,17								
	Poecilochetus serpens	VTC				0,50	0,83		0,17	0,17	0,33		I	0,17	1		1	0,33		0,17			0,33	0,17	0,67	0,50

Tab. 3-XXXIX – Continuo.

							Trans	etto A									Trans	etto B						Con	trolli	
Stazione		Biocenosi	A1	A2	A3	A4	BO NW	BO SE	A5	A6	A7	A8	B1	B2	В3	B4	BO NE	BO SW	B5	В6	B7	B8	K1	K2	K3	K4
Distanza dalla	piattaforma (m)	Dioceriosi	250	120	60	30	0	0	30	60	120	250	250	120	60	30	0	0	30	60	120	250	2000	2000	2000	2000
Policheti																										
	Pomatoceros triqueter	Sd					0,67	0,50									0,17	0,50								
	Prionospio ehlersi	Mixt								0,17																
	Prionospio sp		1,00	0,83	0,67	0,50	1,50	1,00	1,17	0,33	1,67	0,33	1,17	1,17	1,50	1,17	1,17		0,33	0,83	0,33	1,00	0,50	1,33	1,33	0,33
	Prionospio steenstrupi	Lre		0,17									0,33						0,17							
	Sabellidae nd		2,33	1,17		0,83	1,33	1,17	0,50	1,83	0,50		2,00	1,50	1,50	1,83	0,50	1,67	1,00	0,67	1,00	0,33	0,50	0,33	4,33	0,17
	Scalibregma inflatum	Lim	0,17	0,33	0,50	0,17	1,67	0,83	0,67	0,17	0,83	0,33	0,17	0,17				0,50	0,50	0,17	0,50	0,17	0,33	0,17	0,50	
	Scoletoma impatiens	Mixt	0,17					0,33	0,50	0,17				0,17		0,33		0,17							0,17	0,33
	Scoletoma sp		0,83	0,17	1,83	0,50	0,50	0,33	1,17	0,67	0,67	0,50	0,83	1,67	0,83	0,50	0,67	1,17	1,00	0,50	0,17		0,33	0,50		0,33
	Scoloplos armiger	Lre	0,83	0,50	0,83		0,17	0,17		1,50	2,17	0,83	1,83	1,83	0,67		0,17	0,33	0,17	1,50	0,83	1,33	0,50	1,83	0,83	2,33
	Serpula vermicularis	AP				0,83		1,33										0,17								
	Serpulidae nd							0,67	0,17						0,17		0,50	0,83								
	Sigambra tentaculata	Mixt						0,17							0,33			1,00								
	Sphaerodoridae nd					0,33			0,33			0,33		0,33	0,17		0,67			0,17	0,33			0,17		0,33
	Spionidae nd		4,17	2,83	2,67	6,83	5,33	5,00	6,50	5,83	3,17	1,50	4,83	4,33	3,17	4,67	3,67	5,67	7,83	3,17	2,67	2,50	1,67	3,17	2,50	1,83
	Spiophanes bombyx	SFBC									0,67		0,50	0,17	0,33		0,33		0,17	0,17	0,33	0,17	0,17	0,67	0,17	0,67
	Sternaspis scutata	VTC					0,17	0,50	0,33					0,33												
	Syllidae juv		0,33			0,17		0,50	0,83		0,33				0,17			0,33				0,33			0,33	
	Syllis parapari	SFBC							0,17											0,17						
	Syllis sp					0,33		1,17					0,17				0,17	0,33								
	Terebellidae nd		0,17			0,17	0,17	1,50	0,17	0,67	0,17		1,50	0,17	0,67		0,17	1,50	0,33	0,50		0,33		0,50	0,50	0,17
	Terebellides stroemi	MO	0,17		0,17		0,33	0,83	0,83					0,17	0,17	0,33			0,17			0,17	0,17			
Poriferi																										
	Porifera nd1					0,33			0,17									0,17	0,17							
Sipunculidi																										
	Aspidosiphon muelleri	MO				0,17		0,33	0,67	0,33									0,17	0,33		0,17			0,17	0,33
	Onchnesoma steenstrupi	VB	1,33	1,00	0,83	1,83	0,67	0,83	2,00	2,00	1,67	1,33	1,17	1,50	1,33	2,00	0,33	0,83	0,67	1,00	0,17	0,67	1,00	0,17	0,83	2,00
	Phascolion strombus	Lre							0,33																	
	Sipuncula nd		1,50	2,50	1,83	1,50	1,83	2,67	2,17	3,33	2,00	1,17	2,33	2,00	1,67	1,50	1,83	2,67	4,50	4,33	4,67	1,83	1,67	1,50	1,17	1,50
Densità totale		-	114,50	92,67	92,33	105,00	153,17	706,83	148,00	124,83	110,00	52,00	122,83	144,33	112,83	124,50	61,33	289,17	125,67	114,67	114,67	72,33	52,33	94,00	104,50	76,83
Ricchezza spec	ifica totale		57	47	51	73	99	112	91	74	60	50	58	68	68	81	68	107	67	63	62	55	52	59	68	57

Per quanto riguarda la Biomassa (fig. 3.41; Tabb. 3-XL - 3-XLVII), in tutto il periodo di indagine sono stati registrati valori molto bassi e dei picchi caratterizzati da un'elevata variabilità, sempre determinati dal rinvenimento di uno o pochi esemplari di specie di grandi dimensioni (fig. 3.42). Nell'ultimo monitoraggio i valori anomali sonon stati evidenziati entro 30 m dalla piattaforma, soprattutto in BO NW e BO SE, e nel controllo K1. Nei primi due siti hanno inciso soprattutto le biomasse di *M. galloprovincialis* e *N. cochlear*, oltre che dell'echinoideo *Brissopsis atlantica mediterranea* risultato determinante al controllo.

Fig. 3.41 – Biomassa (± e.s.) registrate nell'intero periodo di indagine.

Tab. 3-XL – Lista e biomassa (gr/0,095 m²) delle specie rinvenute nelle stazioni campionate nel **presurvey**. * = <0,001 gr/0,095 m².

				etto A				etto B			Con	rollo	
Stazione		A3	BO NW	BO SE	A6	В3	BO NE	BO SW	B6	K1	K2	K3	K4
	utura piattaforma (m)	60	0	0	60	60	0	0	60	2000	2000	2000	2000
Cnidari													
Antozoi Idrozoi	Actiniaria nd Hydroidea nd	0,004		0,014					0,005		0,023	0,001	
Crostacei	nydroidea nd	0,004		0,014								0,001	
Anfipodi	Ampelisca diadema		0,002									*	
	Carangoliopsis spinulosa		*,***		0,001								
	Eriopisa elongata		0,001		*								
	Harpinia dellavallei		*	0,001						*		0,001	
	Leucothoe lilljeborgi									*			
	Liljeborgia psaltrica	*	0,001										
	Orchomene grimaldii Paraphoxus oculatus		0,001	*						*		*	*
	Perioculodes longimanus											*	
	Podoprion bolivari		0,002										
	Stenothoe sp	*											
	Stenothoe tergestina	*											
Copepodi	Copepoda nd				0.146		0.400			*			
Decapodi	Alpheus glaber Callianassa subterranea	0,072	0,033	0,027	0,146 0,033	0,065	0,123 0,018	0,007	0,031	0,063	0,094	0,007	0,055
	Chlorotocus crassicornis	0,072	0,000	0,021	0,000	0,005	0,010	0,301	0,001	0,003	0,034	0,007	0,055
	Goneplax rhomboides	0,921	0,044	0,216	*			0,001	0,002	0,002	0,005		0,051
	Processa sp				0,018							*	
	Upogebia deltaura	0,010		*	0,001			*				0,099	0,001
Isopodi	Anthura gracilis	*		*									
	Gnathia sp	*											
Misidiacei	Paragnathia sp Misidiacea nd		0,002										
Tanaidacei	Leptochelia savignyi		0,002										*
Echinodermi	zoprosnona savigny.												
Echinoidi	Brissopsis atlantica mediterranea			0,725									
Oloturoidei	Holothurioidea nd								*				
Molluschi													
Bivalvi	Abra nitida					0,004							
	Abra prismatica Hiatella arctica	0,005				-							
	Kellia suborbicularis	0,000										*	
	Kurtiella bidentata												*
	Nucula nitidosa			0,176	0,014	*	*	0,174					0,020
	Thyasira biplicata				0,002								
	Thyasira succisa										0.007	0,001	
Gasteropodi	Timoclea ovata Bela brachystoma	0,001									0,067	0,041	
Gasteropour	Cylichna cylindracea	0,001					*						
	Hyala vitrea	*	*		*		*	0,002	*	*		0,002	0,004
	Melanella polita			0,006				.,				.,	.,
	Turritella communis	0,484		0,280	0,245	0,017	1,114		0,537		0,539	0,153	
Nemertini													
	Nemertea nd		0,001									0,016	
Policheti	Ampharata aquifrana	*	*	0,001	*		*			0,001	*	0,002	
	Ampharete acutifrons Ampharetidae nd	*		*				*		0,001	0,002	0,002	
	Ancystrosyllis groenlandica										*	0,020	
	Aphelochaeta filiformis	0,001	*	*	*	*	0,001	*	*	0,001	0,001	0,002	*
	Aphelochaeta marioni	0,001		*		*	*	*				*	0,001
	Aponuphis bilineata			0,001				0,001					
	Aponuphis brementi						0,001				0,005	0,035	
	Capitella capitata Capitellidae nd				-		0,002						
	Chaetopteridae nd		0,004		0,289		0,002						
	Chaetozone caputesocis		0,004	0,002	0,200				0,004		0,009		
	Chirimia biceps						*						*
	Cirratulidae nd	*				0,023		0,036			0,018	0,001	0,005
	Eupanthalis kinbergi	1,243	*				*						
	Glycera rouxii	0,029	*	0,026	0,013		*	0,013	0,075	0,003	0.004	0,008	0,010
	Goniada maculata Harmothoe sp	<u> </u>	0,002	*							0,001		
	Labioleanira yhleni	I	0,002	0,090	0,001			0,044		0,001	0,001		0,001
	Lumbrineris gracilis	I		1 -,000	2,001	*		-,] -,551	0,001] -,551
	Marphysa bellii	0,014	0,063	0,014	0,044	0,071	0,100	0,004	0,164	0,003	0,028	0,046	0,048
	Melinna palmata						0,001	0,001				0,001	0,001
	Micronephtys sphaerocirrata	l .		*	*			1		l .			
	Minuspio cirrifera	*	*	0.050	*	0.004	0.011	*	*	*	*	*	*
1	Nephtys hystricis Nereididae nd	0,011	0,004	0,059	0,002	0,031	0,044	_	0,041	0,002	0,009	0,002	<u> </u>
	Ninoe sp	*		I	*	0,092	*			I			I
	Notomastus aberans	0,001	0,016		0,006	0,003		0,012	*	0,015	0,054	0,013	0,016
	Ophelina cylindricaudata	0,001	*	*	*	0,001	*	*	0,005	*	*	*	0,001
1	Ophiodromus flexuosus				*		*					*	
	Paradiopatra calliopae	0,002	0,001		*	0,002	0,001	0,002	*	0,002	0,005	0,005	0,003

Tab. 3-XL – Continuo.

			Trans	etto A			Trans	etto B			Con	trollo	
Stazione		A3	BO NW	BO SE	A6	B3	BO NE	BO SW	B6	K1	K2	K3	K4
Distanza dalla	futura piattaforma (m)	60	0	0	60	60	0	0	60	2000	2000	2000	2000
Policheti													
	Paralacydonia paradoxa	0,001		*	*	*	*	0,001	*	0,001	0,001	0,001	*
	Paraonidae nd	0,001	*	0,001	0,001	*	0,001	*	*	0,001	0,002	0,002	0,001
	Pectinaria koreni				0,010								
	Phylo foetida				0,002								
	Phylo norvegica			0,004									
	Pilargidae nd	*	*	*	*	*				*		0,001	*
	Poecilochetus serpens											0,001	0,002
	Prionospio ehlersi	*						0,001			*		
	Prionospio sp		*		*	*			*				
	Prionospio steenstrupi		0,001										
	Sabellidae nd	*										*	
	Scoletoma fragilis										0,004		
	Scoletoma sp		0,004				0,008						
	Scoloplos armiger	*	*	*		*	*	*	*	*	*	*	*
	Spionidae nd			*	*							*	
	Spiophanes bombyx		0,001										
	Sternaspis scutata			*									
	Syllidae juv										*		*
	Syllis sp	0,001					*						
	Terebellidae nd				0,176								
	Terebellides stroemi										0,001		
Sipunculidi											l '		
	Onchnesoma steenstrupi	*	0,001							*	*	0,001	0,004
	Phascolion strombus											0,002	*
	Sipuncula nd	0,003	0,007	0,010	0,005	0,012	0,001	0,002	0,005	0,001	0,004	0,003	0,001
Biomassa tota	ile	2,81	0,19	1,65	1,01	0,32	1,42	0,60	0,87	0,10	0,88	0,46	0,23

Tab. 3-XLI – Lista e biomassa (gr/0,095 m²) delle specie rinvenute nelle stazioni campionate nel survey condotto **durante i lavori di installazione**. * = <0,001 gr/0,095 m². La stazione BO NE non è stata campionata.

			Trans	etto A			Trans	etto B	-		Con	trollo	
Stazione		A3	BO NW	BO SE	A6	B3	BO NE	BO SW	B6	K1	K2	K3	K4
	futura piattaforma (m)	60	0	0	60	60	0	0	60	2000	2000	2000	2000
Briozoi													
	Briozoa nd	*											
Cnidari													
Antozoi	Actiniaria nd		*							0,553			
Idrozoi	Hydroidea nd		Î	0,002	0,021					0,002	0,001		
Crostacei Anfipodi	Eriopisa elongata	0,001								*			
Ariiipodi	Leucothoe lilljeborgi	0,001			0,001								*
	Othomaera schmidtii	0,002		0,001	0,001								
	Paraphoxus oculatus	*		*	*							*	
Cumacei	Cumacea nd												*
	Eudorella truncatula												*
Decapodi	Alpheus glaber	0,029		0,059	0,085	0,017		0,061				0,071	
	Callianassa subterranea	0,056	0,031	0,027	0,083	0,002		0,019	0,024	0,030	0,030		0,017
	Goneplax rhomboides	0,024			0,001			0,151	0,306	0,059			
	Liocarcinus maculatus	0,001											
	Processa sp		0,002		0,002				0.440				
	Solenocera membranacea	E 446	0.520	0,061	0,424	0,039		0,069	0,418	0,020			
Isopodi	Upogebia deltaura Cirolana borealis	5,446	0,528	0,061	0,198 0,112	0,039		0,069	0,415	0,020			
isopoui	Eurydice sp	0,011	0,006	0,001	0,112								
Stomatopodi		0,011	0,000	0,001									
Molluschi		3,010											
Bivalvi	Mytilus galloprovincialis	0,017											
	Nucula nitidosa									0,025			
Gasteropodi	Hyala vitrea	*		*		*		*	*		*		0,001
-	Turritella communis	0,196			0,361	0,273						0,165	
Nemertini													
	Nemertea nd	0,002	0,254		0,002							0,012	*
Policheti													
	Ampharete acutifrons				0,001							*	*
	Aphelochaeta filiformis	0,001		0,040	0,021	Î		•		0,001	Î	Î	Î
	Aphelochaeta marioni	-				_					0,035		_
	Aponuphis brementi Capitellidae nd					*					0,035	0,001	
	Chaetozone caputesocis	0,042					ata					0,001	
	Cirratulidae nd	0,042					campionata					*	
	Eteone picta				0,001		idu						
	Glycera alba				0,077	0,014	ča			0,007			
	Glycera rouxii				- , -		Non			.,		0,007	0,003
	Glycera sp	0,000		0,001	0,001	*	ž	*	0,001		*	0,001	
	Harmothoe sp			*	0,001								
	Labioleanira yhleni									0,055			0,005
	Lumbrineris gracilis	0,003								*	*	0,001	
	Maldanidae nd											0,014	*
	Marphysa bellii	0,198	0,125	0,036	0,059	0,037		0,026	0,032	0,155		0,052	0,264
	Melinna palmata	0,001	*						*	*			
	Minuspio cirrifera	0.004	Î		0.000	0.040			Î		0.047	0.000	0.040
	Nephtys hystricis	0,004			0,009 0,008	0,016			0,001	0,002	0,017	0,026	0,018 0,002
	Ninoe sp Notomastus aberans	0,010	0,024	0,009	0,008	0,002			0,001	0,011	0,015	0,001	0,002
	Ophelina cylindricaudata	0,010	0,024	0,009	*	*			*	*	*	0,001	0,003
	Ophiodromus flexuosus	2,001			*					*] -,,,,,] -,,50.
	Paradiopatra calliopae	0,001			0,001	0,002		*	*	0,001	0,002	0,001	0,001
	Paralacydonia paradoxa	0,001	*		0,002	0,003			*	*	0,001	*	*
	Paraonidae nd	0,001	*	*	0,001	*		*	*	0,001	*	0,001	*
	Phyllodocidae nd									*			
	Phylo norvegica									0,008			
	Pilargidae nd				*				*				
	Pilargis verrucosa												*
	Poecilochetus serpens											0,001	
	Prionospio sp				0,001					0,001		*	
	Sabellidae nd	*			*								
	Scalibregma inflatum Scoletoma sp	0,001			l -							l -	
	Scoloplos armiger	*			*							*	
	Sphaerodoridae nd												*
	Spionidae nd	*							*				
	Spiophanes bombyx											0,001	
	Terebellidae nd											0,007	
Sipunculidi													
	Aspidosiphon muelleri			I	I	0,025			I	I	0,027	I	I
	Onchnesoma steenstrupi	0,001		0,001	0,004	0,001				0,002	0,001	*	0,001
	Sipuncula nd	0,003	0,011	ļ	0,006	0,001		0,009	ļ	*	0,008	0,012	0,004
Biomassa totale		6,070	0,981	0,239	1,485	0,432		0,335	1,206	0,932	0,138	0,377	0,328

Tab. 3-XLII – Lista e biomassa (gr. 0,095 m⁻²) delle specie rinvenute nelle stazioni campionate nel 1° survey post lavori. * = <0,001 gr/0,095 m².

						Trans	etto A					1				Trans	etto B						Con	trolli	
Stazione		A1	A2	A3	A4	BO NW		A5	A6	A7	A8	B1	B2	В3	В4	BONE		B5	В6	В7	В8	K1	K2	K3	K4
	lla piattaforma (m)	250	120	60	30	0	0	30	60	120	250	250	120	60	30	0	0	30	60	120	250	2000	2000	2000	2000
Briozoi	na piatarorma (m)		120	- 00			_		- 00	120	200	200	120	- 00		Ť				120		2000	2000	2000	2000
	Aetea truncata Briozoa nd Schizoporella errata Scrupocellaria scruposa Triticella flava					0,001	0,001	0,004			0,001		*			0,002	0,002 0,001	0,004	0,001	*			0,002	*	
Cnidari Antozoi Idrozoi	Actiniaria nd Funiculina quadrangularis Hydroidea nd		0,001	0,004		0,043						*	0,009				*					*	0,057 0,001		
Crostacei Anfipodi	Acidostoma nodiferum Ampelisca diadema Corophium sp Eriopisa elongata			0,001	0,000		*		*	*		*													
	Eusirus longipes Gammaropsis sp Orchomene grimaldii Othomaera schmidtii Paraphoxus oculatus		0,005	*		*	0,001				0,001			0,001			*	*		*					
Copepodi Cumacei Decapodi	Phtisica marina Stenothoe sp Copepoda nd Eudorella truncatula Alpheus glaber	0,107		0,106		*					0,117	0,078	0,013							0,057	* 0,037	0,076		0,014	* 0,051
	Anapagurus bicorniger Anapagurus sp Athanas sp	0.004	0.040		0,004	0,017		0,001	0.000	0.007	0.000	0.000	0,007	0,003	0.000	0.000	0.000	0,003	0,001	0.000	0.000	0.004	0.000	0.040	0.045
	Callianassa subterranea Chlorotocus crassicornis Goneplax rhomboides Liocarcinus depurator	0,031	0,042	0,001	0,003	0,013	0,272	0,009	0,002	0,027	0,002	0,002	0,021	0,005	0,020	0,009 0,685 12,633	0,006	0,021 0,262 4,453		0,002	0,002	0,001	0,029	0,019	0,015
	Paguridae nd Processa sp Solenocera membranacea Upogebia deltaura			0,039		0,091		*						* 0,026			*	0,001	0,091		*	0,001	0,091		
lsopodi Echinoderm	Bopyridae nd Gnathia sp		*	0,001	0,001	*			*					*				0,023	*	*					
Oloturoide Molluschi	i Holothurioidea nd Labidoplax digitata			*	0,003	0,002	*		*		* 0,061	0,003		*	*	0,004	0,001	*	0,001						
Bivalvi	Aequipecten opercularis Anomia ephippium Cardiomya costellata Hiatella arctica		*			3,891 0,004 *							0.67												
	Neopycnodonte cochlear Nucula nitidosa Nucula sulcata Parvicardium minimum Poromya granulata				0,001	0,314							0,051										0,312		
	Scapharca demiri		1			1												0,019		1		1			

Tab. 3-XLII – Continuo.

						Trans	etto A									Trans	etto B						Con	trolli	
Stazione		A1	A2	А3	A4	BO NW	BO SE	A5	A6	A7	A8	B1	B2	В3	B4	BONE	BO SW	B5	В6	B7	B8	K1	K2	K3	K4
Distanza da	lla piattaforma (m)	250	120	60	30	0	0	30	60	120	250	250	120	60	30	0	0	30	60	120	250	2000	2000	2000	2000
Molluschi Bivalvi	Talochlamys multistriata Thyasira biplicata Thyasira succisa									*	0,001					0,004				*		0,054			
Gasteropo	Timoclea ovata c Bela brachystoma			0,002							0,001					0,002	0,002		0,041					0,003	
·	Hyala vitrea Odostomia sp Turritella communis		0,107	*						0,001			*		*	,	*		*	0,027			0,183	*	*
Nemertini	rumena communis		0,107																	0,021			0,103	0,433	
Nemerum	Nemertea nd Ampharete acutifrons	*	*	*		0,016		*	*	*	*	0,156						0,001		*	0,023		*	0,002	0,004
	Amphicteis gunneri	*	0,001		0,000	*	*	*	0,001	0,001	0,010			*	*	*		0,001	*	*	*		*	*	
	Ancystrosyllis groenlandica Aphelochaeta filiformis	0,001	0,001	0,001	0,000	*	* 0,001	*	0,001	0,001	0,001	0,001	0,027	0,001	0,001	*	*	0,001 0,001	*	*	0,001	*	0,001	*	0,001 0,001
	Aphelochaeta marioni Aponuphis brementi	0,007	*	*	0,000	* 0,001	0,001	* 0,001	*		*		*				*			*	*		0,028	* 0,009	
	Capitella capitata Capitellidae nd		*			*			0,001		0,002	*			0,005				*	*	*	*	*		
	Chaetopteridae nd Chaetozone caputesocis Chirimia biceps	0,001	0,001		0,000	*					0,068				0,001					0,002	0,024		0,001		
	Cirratulidae nd Ditrupa arietina		*			* 0,003		0,001 0,002	0,015	0,137	0,004	*	*	*		*	0,002		0,001	0,059	*				
	Dorvillea rudolphii Drilonereis filum Eupanthalis kinbergi	0,002															*		*		0,033			*	
	Filograna sp Glycera alba					*	*										*				*				
	Glycera rouxii Glycera sp Glycera tesselata	*	0,002	0,001	0,002 0,006	0,013 0,001 0,001	0,001 0,001	0,018 0,001 0,001	0,002	* 0,001	0,001	0,001 0,008	0,005	0,167	*	0,332 0,002 0,002	0,003 0,001	0,697 0,001 0,001	*	0,001	*		0,015	*	*
	Goniada maculata Harmothoe sp					0,001					0,302			*		0,006 0,003							0,001		
	Hydroides norvegicus Labioleanira yhleni Lumbrineriopsis paradoxa			0,001					0,013										0,012	0,032					
	Lumbrineris gracilis Macroclymene santanderens	0,001 0,002	*	3,001			0,001							0,001	0,001	0,002				0,001				0,002	
	Maldanidae nd	0,001		0,001											0,035					*					0,010

Tab. 3-XLII – Continuo.

						Trans	etto A									Trans	etto B						Con	trolli	
Stazione		A1	A2	A3	A4	BO NW	BOSE	A5	A6	A7	A8	B1	B2	B3	B4	BONE	BO SW	B5	В6	B7	B8	K1	K2	K3	K4
Distanza dal	la piattaforma (m)	250	120	60	30	0	0	30	60	120	250	250	120	60	30	0	0	30	60	120	250	2000	2000	2000	2000
Policheti																									
	Marphysa bellii	0,004	0,121	0,116		0,182		0,054	0,040	0,038	0,037	0,116	0,185		0,125	0,058	0,080	0,204	0,001	0,104	0,105	0,012		0,051	0,127
	Melinna palmata		0,001			*			*											*			*	*	
	Micronephtys sphaerocirrata	*																							
	Minuspio cirrifera	*	*	*	*	*	*	0,001	*	*				*	*	*				*					
	Nephtys hombergi										0,002														
	Nephtys hystricis	0,011	0,022	0,005	0,003			0,001		0,007	*	0,039	0,002		*		*		0,001	0,008	0,009	0,001	0,010	0,021	
	Nereididae nd					*														*					0,001
	Ninoe sp		0,001		0,001			*	0,001					0,004	0,004						0,001				
	Notomastus aberans	0,010	0,038	0,002	0,004			0,022	0,014		0,001	0,004	0,033		0,011	0,001		0,004	0,007	0,022		0,003	0,033	0,006	
	Ophelina cylindricaudata	0,001	0,001	*		_		*	0,001	0,001	*	*	*	*	*	*	*		0,001	*	*	_ *	0,001	*	*
	Ophiodromus flexuosus	_				0.004		*	_			0,001		· .								Î		•	
	Owenia fusiformis Panthalis oerstedi					0,001				0.104			-	"		0,001									
		0.001	0.000	0.004	0,001		*	0.001	0,002	-, -	0.001	0,001	0.000	0.000	0.001	0,002	*	*	0.003	0.003	0.001	0.001	0.000	0.004	0,001
	Paradiopatra calliopae Paralacydonia paradoxa	0,001	0,002	0,004 0,001	0,001	*		0,001	0,002	0,002 0,001	0,001	0,001	0,002	0,002	0,001	0,002		0,001	0,003	0,003	0,001	0,001	0,002	0,001	0,001
	Paraonidae nd	0,002	0,002	0,001		0,003	*	0,001	0,001	0,001	0,001	0,002	0.001	0.001	0,001	0,001	0,001	0,001	0,001	0,001	0,002	0,001	0,001	0,001	0.003
	Phyllodoce sp	0,002	0,003	0,003	*	0,003		0,002	0,002	0,003	0,002	0,002	0,001	0,001	0,001	0,001	0,001	0,001	0,001	0,001	0,002	0,001	0,001	0,001	0,003
	Pilargidae nd	*	0,001	*	*	*	*			0,001	*	*	*	*	*	*	*	*	*	*	*	*	*	*	
	Pilargis verrucosa		0,001			*				0,001								0,001							
	Pista sp																	0,001					0,001		
	Poecilochetus serpens		*	0,001	0.001	0,001					*							*					,,,,,,,		
	Prionospio ehlersi	0,001		,,,,,,,,	,,,,,,,,	,,,,,,,,																			
	Prionospio sp	*	*		*	*		*	*	*	*	*		*	*	*			0,001	*					*
	Sabellidae nd		*	*	*	*		*	*	*			*	*	0,001			*		*					
	Scalibregma inflatum			0,001							0,002											0,001			
	Scoletoma sp	0,001								0,006				*				*							*
	Scoloplos armiger	*	*	*					*	*	*	*							*	*	0,001		*	*	
	Sphaerodoridae nd														*										
	Spionidae nd	*	*	0,001	*	*	*	*	*	*	*				*	*	*	*	*	*				*	*
	Spiophanes bombyx			*																*					
	Sthenelais boa			*																					
	Syllidae juv					*												*							
	Terebellidae nd		*			0,003						0,002												0,001	
	Trachytrypane jeffreysii																							0,004	
Poriferi	5 "																								
0:	Porifera nd					*																			
Sipunculidi	A - mid- sin b - m man - H - i																	0.004	0.000					0.000	
	Aspidosiphon muelleri	0.004	*	*				*		0.004		*						0,001	0,009				0.004	0,032	
	Onchnesoma steenstrupi	0,001	*	0.004	0.003	0.000	*		0.003	0,001 0,001	*	0.004	0.006	0.000	0.000	0.004	0.000	0.006		0.002	*	0.004	0,001	*	0.005
Diamagas to	Sipuncula nd	0,018	0.640	0,004	0,002	0,008	0.200	0.422			0.000	0,001	0,006	0,009	0,009	0,004	0,009	0,006	0.475		0.244		0.774	0.607	0,005
Biomassa to	tale	0,219	0,610	0,780	0,034	4,627	0,280	0,122	0,439	0,333	0,803	0,446	0,750	0,222	0,701	13,755	0,254	5,714	0,175	0,334	0,241	0,156	0,771	0,607	0,221

Tab. 3-XLIII – Lista e biomassa (gr. 0,095 m⁻²) delle specie rinvenute nelle stazioni campionate nel **2**° **survey post lavori**. * = <0,001 gr. 0,095 m⁻².

		1										1										1			
Stazione							etto A	4.5							T 54	1	setto B BO SW					144		trolli	K4
	:	A1	A2	A3	A4	BO NW	BO SE	A5 30	A6	A7	A8	B1	B2	B3	B4	BO NE	_	B5	B6	B7	B8	K1	K2	K3	
Distanza dalla p Briozoi	Diattatorma (m)	250	120	60	30	0	0	30	60	120	250	250	120	60	30	0	0	30	60	120	250	2000	2000	2000	2000
Briozoi	A stop truppets								*																
	Aetea truncata Briozoa nd						*		*																
			*		0,001			0,001		0,002						*									
	Scrupocellaria scruposa	*		0,001	*			0,001		0,002								*						*	
0-141	Triticella flava			0,001																					
Cnidari	Fundamental de la companya del companya de la companya del companya de la company																				0.000				
Antozoi	Funiculina quadrangularis								0.000												0,006			0.000	
Idrozoi	Hydroidea nd								0,003															0,009	
Crostacei																									
Anfipodi	Ampelisca diadema								0,001		0,002					0,001						0,001			
	Corophium sp						*													*					
	Ericthonius brasiliensis												*							*					
	Eriopisa elongata										Ŷ									,	,				
	Gammaropsis sp															*									
	Harpinia dellavallei																				*				
	Leptocheirus mariae																*								
	Leucothoe incisa																					*			
	Leucothoe lilljeborgi								*																
	Leucothoe oboa										*														
	Maera grossimana															0,001							*		
	Orchomene grimaldii				*												*								
	Paraphoxus oculatus				*								*												
	Phtisica marina								*							*									
	Rhachotropis sp									*															
Cumacei	Cumacea nd																		*			*		*	
	Eudorella truncatula				*		*	*			0,001		*							*					
Decapodi	Alpheus glaber									0,116						0,005		0,032			0,065	0,113		0,031	
	Anapagurus sp		0,001			0,004											0,001								
	Athanas nitescens																0,004								
	Callianassa subterranea	0,004	0,033	0,018	0,008	0,001	0,011	0,019	0,006	0,070	0,005	0,003	0,003	0,001	0,002	0,014	0,017	0,023	0,009	0,003	0,008	0,014	0,023	0,006	0,003
	Ebalia deshayesi																0,002								
	Goneplax rhomboides		0,002	0,060	0,181				0,026	0,038	0,110	0,045	0,027	0,031	0,017		0,299	0,270				0,110	0,092	0,045	
	Liocarcinus depurator		•		3,717		10,254										5,913						•		
	Liocarcinus maculatus						0,002								*										
	Monodaeus couchi																0,012								
	Processa sp		*	*	0,013			*	0,003				*			0,001						0,007		*	
	Solenocera membranacea			0,012	.,.				-,							0,006						.,			
	Upogebia deltaura	0,176				0,032	0,020	0,001	*							.,			*			0,001			
Isopodi	Gnathia sp	*	*		*	-,		.,	*		*											.,		0,001	
100000	Janiridae nd					I					I										*			0,001	
Misidiacei	Misidiacea nd					I					I													0,001	
Tanaidacei	Apseudes latreillii	1				I					I		I					I		*				1 .,55.	
Echinodermi						I					I														
Echinoidei	Brissopsis atlantica mediterranea					I			0,760		I			12,168							2,110				24,663
Ofiuroidei	Amphiura chiajei	1				0,001			0,700		I		I	12,100			0,003	I			2,110				24,003
Olluloidei	Ophiura albida					0,001					I						0,003								
Oloturoids:		*					0.007	0.004	0.000		*	*	0.004		0.000		0.004	I		*	*		*		
Oloturoidei	Holothurioidea nd	1			Ī .	0,002	0,007	0,001	0,002		Ī		0,001		0,002		0,004	I		Ī					0.450
	Labidoplax digitata		<u> </u>	<u> </u>						<u> </u>				<u> </u>	1		<u> </u>		1	<u> </u>	I				0,158

Tab. 3-XLIII – continuo.

						Trans	etto A									Trans	etto B						Cor	trolli	
Stazione		A1	A2	A3	A4	BO NW	BO SE	A5	A6	A7	A8	B1	B2	B3	B4	BO NE	BO SW	B5	B6	B7	B8	K1	K2	К3	K4
Distanza dalla p	iattaforma (m)	250	120	60	30	0	0	30	60	120	250	250	120	60	30	0	0	30	60	120	250	2000	2000	2000	2000
Molluschi																									
Bivalvi	Abra prismatica														0,002										
	Aequipecten opercularis																4,589								
	Anomia ephippium																0,001								
	Azorinus chamasolen																								1,016
	Kurtiella bidentata						*																		
	Modiolarca subpicta						0,002																		
	Nucula nitidosa												0,001	0,001			0,001							0,061	
	Nucula sulcata											0,228													
	Pecten jacobaeus																6,423								
	Phaxas adriaticus					*																			
	Timoclea ovata					0,005	0,012	0,006	*			0,002			0,003	0,003	0,001		0,005						
	Leptognathia sp				*																				
Caudofoveati	Falcidens gutturosus							*																	
Gasteropodi	Hyala vitrea			0,001								*	*	0,001	0,001			*	*						*
	Turritella communis	0,173	0,442	0,109				0,116	0,104			0,071							0,009				0,023		0,143
Nemertini																									
	Nemertea nd	0,035	0,002	*	*	*	0,001		0,001	*	*		*		0,049	*	0,001			*			0,001		
Pantopodi																									
Picnogonidi	Pycnogonida nd								*														*		
Policheti																									
	Ampharete acutifrons				0,001	0,003	0,001	*	0,001						*		*							0,001	
	Ampharetidae nd	0,002	0,001	0,001	*	*	0,001	0,001	*	*	0,001		*	*		0,001	*	*	*	0,002	*	0,002	*	0,001	
	Amphicteis gunneri			0,001								*													
	Ancystrosyllis groenlandica						*				*	*													*
	Aphelochaeta filiformis	. *	0,001	0,001	0,001	*		0,001	0,001	0,001	*	*	0,001	*	0,001	*	0,001	*	*	0,001	0,00	0,001	0,001	0,001	*
	Aphelochaeta marioni						0,001																		
	Aponuphis brementi	0,010		0,001	0,001	0,001			0,001															0,028	
	Boccardia sp																								
	Capitellidae nd	_	0,005	0,010	0,007		0.040			,		0,002	0,003	0,001		0,003	0,002	0,004	0,002	0,001	0,00	0,001	0,005		0,001
	Chaetopteridae nd			0.004	0.000	0.000	0,018	0.000	0.000	0.000				0.004										*	
	Chaetozone caputesocis			0,001	0,006	0,002		0,008	0,002	0,002				0,001											
	Chirimia biceps		*						*		0.045	0.005	0.000		*	0.000			0.004	*				*	*
	Cirratulidae nd	*	*				*				0,015	0,025	0,003			0,002	0.000	*	0,061	*					
	Ditrupa arietina Dorvillea rubrovittata																0,002								
	Drilonereis filum								*	0,003	*		0,001												
	Glycera alba				*		0,001	0,001		0,003	*	*	0,001				*		0,153	0,001					
	Glycera rouxii	0,001	0,001		0,003	0,018	0,001	0,001	0,002	0,001	0,001			*	0,001	0,015	0,034	0,006	0,133	0,001			0,003	0,007	
	Glycera sp	0,001	0,001	0,002	0,003	0,001	*	0,023	0,002	*	*		*	*	0,001	0,002	0,007	0,000	*	*	0,00	0,001	*	0,007	
	Glycera tesselata	0,001	0,002	*	*	*	0,004	0,056	0,003						0,002	*	*	0,001		*	0,00		0,001	0,001	0,087
	Goniada maculata					0,003	0,001	0,000	0,012		*				0,000	*					0,00	0,001	0,001		0,001
	Harmothoe sp		*	0,003		-,	0,002	0,001	*	0,001					0,072		*	*	*	0,001	*	-,	0,001		
	Hyalinoecia tubicola			0,000	*		0,002	0,00.		0,001					0,072					0,001			0,001		
	Hydroides norvegicus								0,003				*				*								
	Labioleanira yhleni								*	0,013				0,068	0,081								0,010		
1	Lumbrineris gracilis				*		0,003	*		0,001				.,,				0,001	*			0,003	1	0,001	
1	Lumbrineris sp									1								0,309				1		l	
	Maldanidae nd					I	*																	0,001	
	Marphysa bellii	0,002	0,057	0,032	0,078			0,052		0,088	0,048	0,065	0,016	0,096	0,080	0,085	0,024	0,033	0,054	0,036	0,13	0,069	0,018	0,101	0,006
	Melinna palmata	*	· .	*	0,001	0,002		· .	0,002		0,002		*				· .		*	*					
	Minuspio cirrifera		*				*	*	0,001	*	*	*				*				*	*		*	*	*

Tab. 3-XLIII – continuo.

						Trans	etto A									Trans	setto B						Con	trolli	
Stazione		A1	A2	A3	A4	BO NW	BO SE	A5	A6	A7	A8	B1	B2	В3	B4	BO NE	BO SW	B5	B6	B7	B8	K1	K2	K3	K4
Distanza dalla pi	attaforma (m)	250	120	60	30	0	0	30	60	120	250	250	120	60	30	0	0	30	60	120	250	2000	2000	2000	2000
Policheti																									1
	Nephtys hombergi									0,003						*			0,017		0,003	0,018	0,006	0,007	
	Nephtys hystricis	0,009	0,015	0,003						0,007	0,001	0,003	0,006	0,003					0,003	0,023	0,005			0,005	0,001
	Nereididae nd		0,001						0,003																
	Ninoe sp				0,003				0,005	0,003		0,001	0,009							0,004	0,003		*		0,001
	Notomastus aberans	0,005	0,012	0,015	0,002			0,037		0,018	0,014	0,026	0,023	0,014	0,015	0,002	0,018		*	0,002	0,013	0,005	0,006	0,001	0,006
	Ophelina cylindricaudata	0,001	*	0,001	*	0,002	*	*	0,001	0,002	0,002	0,002	0,001	0,001	*		*	*	0,001	0,001	0,001	*	0,001	0,001	*
	Ophiodromus flexuosus		0,001	*	0,001			*	*	0,001	*	*	0,001		*	*	*				*			*	*
	Owenia fusiformis		*	*	0,001	*	0,008	0,001	0,001							*	*								
	Paradiopatra calliopae	0,003	0,002	0,003	0,001	0,001	*	0,007	0,006	0,001	0,001	0,001	0,001	0,001	0,002	0,001	0,002	0,001	0,001	0,003	0,002	*	0,002	0,003	0,001
	Paralacydonia paradoxa	0,001	*	0,001	0,001	0,001		*	0,001	0,001	0,001	0,001	0,001	*	0,001	0,001	*	*		*	0,001	*	0,001	0,002	0,001
	Paraonidae nd	0,001	0,003	0,001	0,001	*	0,001	0,003	0,004	0,003	0,004	0,001	0,002	0,002	0,003	0,001	0,001	0,001	0,002	0,004	0,003	0,002	0,003	0,001	0,001
	Paraprionospio pinnata			0,003																					
	Pectinaria koreni																*								
	Phyllodocidae nd							0,003																	
	Phylo norvegica										0,002		0,002												
	Pilargidae nd	*	*	*	*		*	*	*	0,001	*	0,001		*	*	*	*	*	*	*	*	*	*	0,001	*
	Pilargis verrucosa											*													
	Pista brevibranchia						0,002																		
	Poecilochetus serpens		0,001				*															*			
	Pomatoceros triqueter								0,006																
	Prionospio sp	*		*	*			*	0,001	0,001		*	*	0,001	*				*	*	*	*	*	*	*
	Sabellidae nd	*	0,001	*	*	*	0,001	0,001	0,002	*		*			*	*	0,001	*	*	*		*		*	
	Scalibregma inflatum		0,001		0,001			0,002		*					0,001					*			0,001		
	Scoletoma sp				0,002			0,001	0,006	*	*	0,002	*	*				*	0,001	0,001			*		
	Scoloplos armiger	*							*	*	*	*	*	0,001	*	*				0,001	0,001		*	*	
	Serpula vermicularis							*			*						*								
	Sphaerodoridae nd								*																
	Spionidae nd	*	*	*	0,001	0,002	0,002	*	*	*	*	*	*	*	*	*	0,001	*			*		*	*	*
	Spiophanes bombyx							*	*																*
	Sternaspis scutata						*		0,005																
	Sthenelais boa															0,004									
	Syllis sp								*																
	Terebellidae nd											0,002	0,001									0,001			0,002
Sipunculidi																									
	Aspidosiphon muelleri			0,001			*															0,039			
	Onchnesoma steenstrupi	0,001	*		*		0,001	0,002	*	0,002			*	0,001	*		0,001	0,001	*	*	0,001	*	*	0,001	0,002
ĺ	Phascolion strombus															0,009									
	Sipuncula nd	0,001		0,003	0,003		0,013	0,003	0,003	0,004	0,003	0,195	0,006	0,001	0,003	0,006	0,020	0,001	0,117	0,003	0,002	0,050	0,004	*	
Biomassa totale		0,429	0,586	0,284	4,040	0,085	10,378	0,358	1,016	0,385	0,216	0,677	0,112	12,394	0,343	0,164	17,384	0,684	0,439	0,091	2,365	0,511	0,206	0,319	26,094

Tab. 3-XLIV – Lista e biomassa (gr. 0,095 m⁻²) delle specie rinvenute nelle stazioni campionate nel 3° **survey post lavori**. * = <0,001 gr. 0,095 m⁻².

		I				Trans	setto A									Trans	setto B						Con	trolli	
Stazione		A1	A2	A3	A4	BO NW	BO SE	A5	A6	A7	A8	B1	B2	В3	B4	BO NE	BO SW	B5	В6	B7	B8	K1	K2	К3	K4
Distanza dalla	piattaforma (m)	250	120	60	30	0	0	30	60	120	250	250	120	60	30	0	0	30	60	120	250	2000	2000	2000	2000
Briozoi	, ,																								
	Aetea truncata						*									*	*								
	Briozoa nd							*					*		*										
	Schizoporella errata		0,012	0,023	0,026	0,074		0,003						0,061	0,077	0,145	0,014	0,057			0,005				
	Scrupocellaria bertholleti							0,001																	
	Scrupocellaria scruposa			0,001	*	*	0,003								*	0,001	0,001	0,002					0,001	0,001	
	Triticella flava				*				*		*	*	*	*	*	*	*		*	*					
Cnidari	-																								
Antozoi	Actiniaria nd						0,020		0,003					0,001					0,001						
	Anthozoa nd		*		*		.,	0,001	.,		*		*	*		0,004	*	0,001	0,011	*			0,001		*
	Edwardsia claparedii		*													*									
	Epizoanthus sp					0,003	0,008									0,001					0,014				
	Stoloniferand			0,002	0,005	.,	.,	0,003								.,					-,-				
Idrozoi	Hydroidea nd		0,002	,,,,,,	*	*	0,009	*		*	*			*	*	0,003	0,001	0,001		*	0,002	0,012	0,001	*	
Crostacei	.,,		-,				,,,,,,									-,	-,	-,			-,	-,	-,		
Anfipodi	Ampelisca diadema				0,001	0,001	*							*			*				0,001		*		
, unipoui	Corophium sp		*		0,001	*								*			*				0,001				
	Eriopisa elongata												0,001			*			*				*		
	Eusirus longipes												0,001				0,003								
	Harpinia dellavallei												*				0,003				*	*			
	Jassa marmorata																							*	
	Leucothoe incisa			*											*										
	Leucothoe lilljeborgi													*											
	Liljeborgia psaltrica																0,001								
	Orchomene grimaldii			0,001	*	0,007						*		0,002	0,001	*	0,005	*							
	Othomaera schmidtii		0,003	0,001		0,007			0,001					0,002	0,001		0,003	0,001							0,001
	Paraphoxus oculatus		*		*	*			*		*		*		*	*		0,001	*		*				0,001
	Photis longicaudata																		*						
	Phtisica marina															*									
	Pseudolyrius kroyerii																						*		
	Urothoe sp										*														
Cumacei	Cumacea nd		*		*										*			*					*		*
Cumacer	Eudorella nana																				*				
	Eudorella truncatula										*				*						*				
Dogonodi			0,245	0,081		0,046	0,027	0,070			0,043					0,069	0,113		0.144	0,054			0,017		0,005
Decapodi	Alpheus glaber		0,245	0,081		0,046		0,070			0,043			0.005		0,069	0,113		0,144	0,054			0,017		0,005
	Alpheus macrocheles			0.001			0,027							0,005											
	Anapagurus sp			0,001			0,016								0.005										
	Athanas nitescens	0.000	0.043	0,011	0.024	0.000		*	0.047		0.015	0.000	0.005	0.005	0,005	0.020	0.015	0.016	0.010	0.022	0.013	0.025	0.010	0.000	
	Callianassa subterranea	0,003	0,043	0,001	0,034	0,009			0,047		0,015	0,009	0,005	0,005	0,023	0,028	0,015 0,033	0,016	0,018	0,023	0,012	0,025	0,010	0,009	
	Ebalia deshayesi						0.006										0,033								
	Eurynome aspera						0,036									0.000									
	Galathea intermedia						0,018									0,009									
	Galathea sp						0,016																0,001		
	Goneplax rhomboides	0,004		0,124	0,220	1,153	0,004	0,049	0,496	0,007	0,032	0,031	0,140	0,809	0,405	0,300	0,883	0,062	0,210	0,065	0,027	0,013	0,006		0,267
Crostacei	tiidt					2.001	0.016												I						
	Liocarcinus depurator					2,981	0,016									0.010	0.000								
	Liocarcinus maculatus	I					l								I	0,019	0,002		I		I				
	Macropodia linaresi	I				l	0,015								I				I		I				
1	Monodaeus couchi	I				0,004	0,027								I		0,002		I		I				
1	Paguridae nd																0,001	0,001	I						
1	Pagurus cuanensis	I													I	0,074			I		I				
1	Processa sp	I		l _		0,001	l	1 .					0,004		I		0,005		I		I				
	Upogebia deltaura			0,019		0,008	0,024	0,008			*						I	0,004							
Isopodi	Eurydice sp	0,018																	I						
	Gnathia sp	*			*									*							*	I			

Tab. 3-XLIV – Continuo.

						Trans	etto A									Trans	setto B						Con	trolli	
Stazione		A1	A2	A3	A4	BO NW	BO SE	A5	A6	A7	A8	B1	B2	В3	B4	BO NE	BO SW	B5	B6	B7	B8	K1	K2	K3	K4
Distanza dalla p	iattaforma (m)	250	120	60	30	0	0	30	60	120	250	250	120	60	30	0	0	30	60	120	250	2000	2000	2000	2000
Crostacei																									
Misidiacei	Misidiacea nd															*									
Ostracodi	Ostracoda nd		*																						
Stomatopodi	Stomatopoda nd																						0,002		
Tanaidacei	Apseudes spinosus																						*		
	Leptognathia sp																			*	*				
Echinodermi																									
Echinoidei	Brissopsis atlantica mediterranea	0,481							2,053														2,770		
Ofiurioidei	Amphiura chiajei					0,005											0,015	*							
	Ophiotrix fragilis						0,005																		
	Ophiura albida							*										*							
Molluschi																									
Bivalvi	Abra nitida																					0,078			
	Abra prismatica																						0,001		
	Aequipecten opercularis						1,206																		
	Anomia ephippium	0,004			0,010	0,007	0,009									0,017	0,005								
	Atrina fragilis						1,658																		
	Hemilepton nitidum						·						0,001												
	Hiatella arctica					0,001	0,003						, ·			0,003									
	Kellia suborbicularis					,	·												*					*	
	Kurtiella bidentata															*									
	Modiolarca subpicta				0,001	0,002										0,001			*						
	Modiolula phaseolina				-,	0,005	0,007									*									
	Musculista senhousia					*	,,,,,,																		
	Neopycnodonte cochlear					0,041	1,394									0,055	1,566								
	Nucula nitidosa					-,	_,									5,555	_,		*				0,003		
	Phaxas adriaticus																0,002						5,555		
	Pteria hirundo						0,036									0,185	-,								
	Saccella commutata	0,001					0,000									0,103	0,004								
	Thyasira biplicata	0,001						*									0,00.								
	Thyasira succisa		*		*				*		*														
	Timoclea ovata	0,001	0,001	0,011	0,009	0,002	0,019	0,013	0,105							0,002	0,035	0,010	*					*	
	Venerupis aurea	0,001	0,001	0,011	0,003	0,002	0,013	0,013	0,103							0,002	0,033	0,010							
Caudofoveati		*		*		*																			
Gasteropodi	Acteon tornatilis																0,001								
Casteropour	Bela brachystoma					*									0,001		0,001								
	Bittium latreillii					0,169	0,199	0,018							0,001	0,078									
	Hyala vitrea		0,001		0,001	0,001	0,133	0,010	*	*		0,001				0,001		*	0,001			*	0,001		*
	Mangelia coarctata		0,001		0,001	0,001						0,001			0,004	0,001	0,001		0,001				0,001		
	Polinices nitida						0,034								0,004		0,001								
	Turritella communis	0,135	0,009	0,035	0,002		0,034	0,003	0,015		0,014				1	0,002	0,040		0,007	0,062	0,050			0,065	
Nemertini	rarricila communis	0,133	0,003	0,033	0,002		0,001	0,003	0,013		0,014					0,002	0,040		0,007	0,002	0,030			0,003	
	Nemertea nd	*	0,001	*	*	*	0,002	0,001	*	*	*	*	0,001	*	*	0,001	0,009	0,003	0,001	*	*		*	0,006	
Platelminti	Nemerica nu	1	0,001				0,002	0,001					0,001		1	0,001	0,003	0,003	0,001					0,000	
. atemini	Platelminta nd	1				0,002									1										
Policheti	r iaceimilità ilu					0,002													I						
rondieu	Ampharata acutifrans	*	0,002			0,001		0.003	*	*		*	*	*	*	*	0.001	*	I	0.002	0.001		*	0.001	
ĺ	Ampharete acutifrons	*		*	*	0,001	0.005	0,002	*		0.001	*	*		*	*	0,001	*	*	0,002	0,001		*	0,001	
	Ampharetidae nd	*	0,001				0,005				0,001	_						*				*			
	Ancystrosyllis groenlandica		0.001	0.001	*	*		*	0.001	*	0,001	*	*	0.001	*	*		0.000	0.001	0.001	*	*	*	0.001	*
	Aphelochaeta filiformis	*	0,001	0,001				-	0,001	*	0,001	*	*	0,001		*		0,002	0,001	0,001	Ţ		*	0,001	, T
	Aphelochaeta marioni	1		0.045	0.000	*		0.005	1	· •	· •	^	*			1	1	*	1		1	_ ^	1		
ĺ	Aponuphis brementi			0,015	0,003	*		0,006					*		I			1	I					0,019	
	Boccardia sp		<u> </u>		_											I .									

Tab. 3-XLIV – Continuo.

						Trans	etto A									Trans	setto B						Con	trolli	
Stazione		A1	A2	A3	A4	BO NW	BO SE	A5	A6	A7	A8	B1	B2	В3	B4	BO NE	BO SW	B5	В6	B7	B8	K1	K2	K3	K4
Distanza dalla	piattaforma (m)	250	120	60	30	0	0	30	60	120	250	250	120	60	30	0	0	30	60	120	250	2000	2000	2000	2000
Policheti																									
	Capitella capitata					*		*								*	*	*							
	Capitellidae nd		*													0,001		*							
	Chaetopteridae nd					0,002		0,004	0,028		0,106				0,003	0,001		0,001							
	Chaetozone caputesocis	*	0,005	0,001	0,001	0,013	*	0,002					*	0,002		0,001	0,003		0,002	0,003					0,001
	Chirimia biceps				0,001																				
	Cirratulidae nd				0,001			*		0,013	0,020	0,025	0,001	0,038			*	*		*	*		*		
	Ditrupa arietina		0,001				0,001	0,006	0,002				*			*			*		*			*	
	Dorvillea rudolphii			*		*	*										*	*							
	Drilonereis filum				0,001													0,003							
	Euclymene oerstedii																						0,737		
	Eupanthalis kinbergi																				1,457				
	Filograna sp						0,003																		
	Glycera alba		*	0,001	0,001	0,130			0,001	0,015			0,001			0,001			0,013					0,043	
	Glycera rouxii	0,161	0,010		0,002		0,065	*					0,177		0,059		0,011	0,067	0,002						0,012
	Glycera sp	0,001	0,007	*	*	0,008	0,002	*	*	0,001	*	0,001	0,001	*	0,014	0,008	*	0,017	0,001	*	*	*	*	*	
	Glycera tesselata	0,011	0,001	*	*	0,001		*	0,001			0,001	*	0,001	0,001	0,006		0,001				0,013	0,001	*	
	Glycinde nordmanni																				*				
	Goniada maculata							0,001									0,001							*	
	Harmothoe antilopes			*																					
	Harmothoe sp		0,001	0,001		*	0,038								0,001	0,003	0,002	*	0,002	0,001	*				
	Hydroides norvegicus			*		0,004	0,001										0,001		0,002	*					
	Inermonephtys inermis		*															0,006							
	Labioleanira yhleni									0,150			0,015		0,011		0,004		0,014						
	Levinsenia oculata		0,001																						
	Lumbrineris gracilis				0,003				*				*					*	*	0,001			0,001		
	Magelona alleni			*		*																			
	Maldanidae nd			0,145	*								*			*		*	0,006				*		
	Marphysa bellii	0,143	0,067	0,068	0,124	0,223		0,041	0,346	0,057	0,076	0,139	0,070	0,003	0,182	0,098	0,115	0,113	0,206	0,088	0,069	0,107	0,011	0,009	0,033
	Melinna palmata		*	0,001		0,001	0,001	0,004								*	*		0,001	*	0,001	0,001	0,001	*	0,002
	Micronephtys sphaerocirrata		_			*						*					1		_	*	_				
	Minuspio cirrifera		*									*					*	*	*	*	*				
	Naineris sp															0.004					0,001				
	Nephtys hombergi		0.014		0.000			0.000						0.020		0,001	0.000			0,077	0.001	0.050	0.021		
	Nephtys hystricis		0,014		0,006	*		0,008						0,020	*		0,003			0,077	0,001	0,050	0,021		
	Nereididae nd	*	0.005	0.005		*	0.004			0.001			*	0.002	-	0.004	*	0.001	0.001	0.005	*		0.001		0.003
	Ninoe sp		0,005	0,005	0.001	0.001	0,004	*	0,022	0,001	*	0,005		0,002	0.002	0,004	0.001	0,001	0,001	0,005 0,006		0.015	0,001	0,002	0,002
	Notomastus aberans Ophelina cylindricaudata	0,008	*	*	0,001	0,001	*	*	0,022	*	*	*	0,011	0,015	0,002	*	0,001 0,001	0,013	0,014		0,011	0,015 *	0,002	0,002	*
	Ophiodromus flexuosus	,							*		*	0,001	*	*		*	*	*	*	0,001	0,001	*	0,001	0,002	*
	Owenia fusiformis		*	*	*	*	*	0,003	*			0,001				*		*	*			*			
	Paradiopatra calliopae	0,003	0,008	0,004	0,010	0,003	0,001	0,003	0,002	*	0,001	0,002	*	0,007	0,002	0,002	0,003	0,005	0,003	0,002	0,009	0,002	0,006	0,002	0,001
	Paralacydonia paradoxa	*	0,008	0,004	*	*	0,001	0,002	0,002		*	0,002	0,001	*	*	*	0,003	0,003	0,003	*	*	*	0,000	0,002	*
	Paraonidae nd	0,002	0,002	0,001	0,003	0,007	*	0,001	0,001	0,001	0,002	0,001	0,001	0,002	0,001	0,001	0,001	0,001	0,004	0,002	0,003	0,001	0,001	0,001	0,002
	Paraprionospio pinnata	0,002	0,004	0,001	0,003	*		0,001	0,003	0,001	0,002	0,001	0,002	0,002	0,001	0,001	0,001	0,003	0,004	0,002	0,003	0,001	0,002	0,001	0,002
	Pectinaria koreni					0,014													I			*		0,001	
	Phyllodoce sp	*		0,008		0,014	0,011	*						*			0,030		I						
	Phyllodocidae nd			0,008	*		*								*		0,030		0,034	*					
	Phylo norvegica															0,004			0,034						
	Pilargidae nd		*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	

Tab. 3-XLIV – Continuo.

	LIV - Continuo.					Trans	etto A									Trans	setto B						Con	trolli	
Stazione		A1	A2	A3	A4	BO NW	BO SE	A5	A6	A7	A8	B1	B2	В3	B4	BO NE	BO SW	B5	В6	B7	B8	K1	K2	КЗ	K4
Distanza dalla p	iattaforma (m)	250	120	60	30	0	0	30	60	120	250	250	120	60	30	0	0	30	60	120	250	2000	2000	2000	2000
Policheti																									
	Pilargis verrucosa			*							*	*				*		*							*
	Pista cristata																		*						
	Pista sp					0,001																			
	Poecilochetus serpens							*												*					
	Pomatoceros triqueter						0,001																		
	Praxillella gracilis				0,001																		0,002		
	Prionospio ehlersi															0,002									
	Prionospio sp		*		*	*		0,001				*			*	*	*	*		*	*		*		*
	Sabellidae nd		*		*	0,001		0,026	*	*			*	*	*	0,001	0,001	*	0,001	0,001	*				
	Scalibregma inflatum	0,001	*		0,001	*	*						*			*		0,002			*	*			
	Scoletoma impatiens	*	*	0,001	*								*									*			
	Scoletoma sp				*				*	*			*	0,001					*	*	0,003				
	Scoloplos armiger		*								*								*	*	*	*	*	*	*
	Serpula vermicularis					*																			
	Serpulidae nd				0,001		*	*																	
	Sphaerodoridae nd								*				*											*	
	Spionidae nd		*	*	0,001	0,002	*	*	0,001	0,001	*	*	*	*	*	*	0,001	0,001	*	*	*	*	*	*	*
	Spiophanes bombyx	*	*			0,001					0,001										*		*	*	*
	Syllidae juv								*								*								
	Syllis parapari															*		*					0,001		
	Terebellidae nd		0,005			*							0,001	0,002			0,018	0,001	*	0,001				*	
	Terebellides stroemi				*			*					*												
Poriferi																									
	Porifera nd															0,056									
Sipunculidi																									
	Aspidosiphon muelleri	*	*							0,003							*	0,001		0,015				0,010	
	Onchnesoma steenstrupi	0,001	0,001			0,001		0,001	0,001		*		0,001		*			*	*	*	*		*	*	0,003
1	Phascolion strombus			0,002				*	0,002							0,011		0,001					0,013		
	Sipuncula nd	0,003	0,003	0,003	0,005	0,001	*	0,003	0,001	0,006	0,001	0,033	*	0,009	0,001	0,001	0,003	0,001	0,005	*	0,007	0,004	*	*	0,002
Tunicati																									
Ascidiacei	Ascidia mentula																		0,147						
Biomassa totale		0,981	0,455	0,570	0,474	4,942	4,969	0,284	3,134	0,256	0,316	0,253	0,435	0,987	0,794	1,200	2,960	0,401	0,859	0,412	1,678	0,323	3,617	0,175	0,341

Tab. 3-XLV – Lista e biomassa (gr. 0,095 m⁻²) delle specie rinvenute nelle stazioni campionate nel 4° survey post lavori. * = <0,001 gr. 0,095 m⁻².

		1																							
Stazione					T 44		etto A					D4	- DO		D4		etto B	D.F.	D.C.	D7		164	Con K2		1/4
	piattaforma (m)	A1 250	A2 120	A3 60	A4 30	BO NW	BO SE	A5 30	A6 60	A7 120	A8 250	B1 250	B2 120	B3 60	B4 30	BO NE 0	BO SW	B5 30	B6 60	B7 120	B8 250	K1 2000	2000	K3 2000	K4 2000
-	piattaiorina (in)	250	120	60	30	U	U	30	60	120	250	250	120	60	30	U	U	30	60	120	250	2000	2000	2000	2000
Briozoi	Briozoa nd Schizoporella errata		0,004	0,007		0,004 0,035 0,003	0,016 0,005 *	0.001	*						*	* 0,006	0,007 0,003	0,003		*		*	0.001	0.001	
	Scrupocellaria scruposa	*		*		0,003		0,001	*							0,014	0,003 *	*			*		0,001	0,001	
Cnidari	Triticella flava																								
Antozoi	Actiniaria nd				*			*									*								
AIILOZOI	Anthozoa nd			*	0,001			*	*		*	*										*			
	Edwardsia claparedii				0,001							*	*				0,001	0,009							
	Epizoanthus sp						0,113										0,001	0,003							
	Funiculina quadrangularis						-,	*																	
	Virgularia mirabilis									*															
Idrozoi	Hydroidea nd	0,006	0,002	*	0,001	0,003	*	*		*				*	0,011	0,002	*				*	0,004		*	
Crostacei	•																								
Anfipodi	Acidostoma nodiferum																0,001		0,001						
	Ampelisca diadema					*		*			*					*							*	*	
	Aora gracilis																			*					
	Corophium sp													*											
	Eriopisa elongata	0,002																						0,001	
	Harpinia dellavallei	*								*	*											0,001		*	
	Leucothoe incisa											*													
	Leucothoe lilljeborgi															*									
	Orchomene grimaldii				0,003			*			*						*	*		*		*			
	Paraphoxus oculatus		*		*	*		*		*	*	*		*		*		*	*	*		*		*	
	Phtisica marina					*										*									
	Pseudolyrius kroyerii	*				, T																			
	Pseudoprotella phasma Stenothoe sp					*																			
Cirripedi	Balanus perforatus						0,709																		
Copepodi	Copepoda nd						0,703														*				
Cumacei	Cumacea nd													*		*									
	Eudorella truncatula				*															*		*			
	Leucon siphonatus				*																				
Decapodi	Alpheus glaber			0,113			0,058			0,082	0,006			0,060	0,054	0,014								0,010	
	Callianassa subterranea	0,035	0,004	0,013		0,028	0,009	0,008	0,006	0,044	0,051	0,010	0,006	0,050	0,003	0,031	0,007	0,003	0,004	0,009	0,033	0,018	0,017	0,009	
	Ebalia deshayesi							0,001																	
	Goneplax rhomboides	0,349		0,030		0,081	0,033	0,706	0,500		0,019	0,074		0,820			1,066	0,907	0,030	0,908	0,093		0,029		
	Jaxea nocturna																				0,028				
	Liocarcinus depurator					3,147													2,246						
	Monodaeus couchi				0,075	0,030										0,006	0,031								
	Paguridae nd					*																			
	Processa sp					0,022					0,003			0,004		0,002								0.00-	
1	Solenocera membranacea				*											0.001							0,777	0,285	
	Upogebia deltaura			I	, ·	I		I								0,001								0,040	
Isopodi	<i>Upogebia stellata</i> Cirolanidae nd			I		I		I					0,005											0,040	
isopoui	Eurydice sp			I		I		I					0,005										*		
	Janira sp			I		I		*																	
Misidiacei	Misidiacea nd	*																							
Ostracodi	Ostracoda nd			I		I		I													*				
Juliuluui	O STI UCOUU IIU			1		1		1							i	i				i	•				

Tab. 3-XLV – Continuo.

						Trans	etto A									Trans	setto B						Con	trolli	
Stazione		A1	A2	A3	A4	BO NW	BO SE	A5	A6	A7	A8	B1	B2	B3	B4	BO NE	BO SW	B5	B6	B7	B8	K1	K2	K3	K4
Distanza dalla p	iattaforma (m)	250	120	60	30	0	0	30	60	120	250	250	120	60	30	0	0	30	60	120	250	2000	2000	2000	2000
Echinodermi																									
Echinoidei	Brissopsis atlantica mediterranea	2,176	2,977								2,131											1,068			
Ofiuroidei	Amphiura chiajei					*	0,001										0,011								
Oloturoidei	Labidoplax digitata						.,										-,-					0,077			
	Trachythyone tergestina					0,002																-,			
Molluschi	rradity tily one tergestilla					0,002																			
Bivalvi	Abra prismatica					0,001																			
Divalvi	Anomia ephippium				*	0,001	*									0,135									
	Arca noae															0,205									
	Hiatella arctica				*											0,203									
							0.001																		
	Modiolarca subpicta					0.004	0,001									0,001									
	Modiolula phaseolina					0,001	C 400									2 566									
	Mytilus galloprovincialis						6,499									2,566									
	Neopycnodonte cochlear				0,014		1,452									0,086									
	Nucula sulcata	0,017	0,002																		0,041				
	Pandora pinna							0,003																	
	Parvicardium minimum													*											
	Plagiocardium papillosum							*								*									
	Saccella commutata						0,003																		
	Timoclea ovata				0,049	*	0,005	0,001									0,042	*				0,138			
Caudofoveati	Falcidens gutturosus	*			*	0,001		*						*											
Gasteropodi	Acteon tornatilis		*																						
	Bela brachystoma					0,001	0,001	0,002				*					0,002								
	Epitonium commune	*				0,017						0,005													
	Hyala vitrea	*	0,001		*		0,001	*	0,002	*	*	0,001	0,001	*	0,001	0,001	*		*			0,001	*	*	0,002
	Mangelia coarctata	0,004																							
	Turritella communis	0,399	0,012		0,036	0,025	0,008	0,082	0,042	0,042		0,027	0,017	0,001	0,031	0,058	0,023		0,054	0,007		0,291	0,128		
Nemertini																									
	Nemertea nd	0,111	*	0,075	*	*	*	*		*	*		*	0,001	0,001	0,003	0,001	*	*	0,006	0,045	0,003	0,001		0,087
Policheti																									
	Ampharete acutifrons	*	*		0,001	*					*	*	0,001	*	*	0,001	*		*	*	*		0,001	0,001	
	Ampharetidae nd	*	*	*	*	*		0,002	*		*			*		*	0,002	*	*		*		*	*	
	Amphicteis gunneri															0,003									
	Amphinomidae nd													*		·									
	Ancystrosyllis groenlandica			*	*			*											*		*				
	Aphelochaeta filiformis	0,001	0,001	*	*	*	*	*	*	*	0,003	0,001	0,001	0,001	*	0,001	0,001	0,001	*	*	*	0,001	0,001	*	0,001
	Aphelochaeta marioni	*	*	*	*	0,001	*	*	*		*	*	*	*	*	-,	*	*	*	*	*	*	*	*	-,
	Aponuphis brementi			0,005		0,014	0,021							0,001	0,024		0,030				0,012		0,007	0,017	
	Aquilaspio sexoculata			-,		-,	-,							-,	-,		-,		*		-,		-,	-,	
	Capitellidae nd	0,001			0,001	0,001																0,001	*	*	
	Chaetopteridae nd	0,001		*	*	0,001														0,011		0,001			0,012
	Chaetozone caputesocis		0,004			0,002	0,001	*				0,002			*					0,011				0,002	0,012
	Chirimia biceps		0,004			0,002	0,001					0,002							0,026				0,001	*	
	Cirratulidae nd	0,002	0,016	*	0,001	*	0,010	*	*	*	*	*	*	*	*		*		0,020		*	*	*		
		0,002	0,016		0,001	*	0,010								1							1	•		
	Cossura soyeri						*								I		I					1			
	Ditrupa arietina					*									I							I			
	Dorvillea rudolphii	0.000	0.000			_	0.004						0.004		I		, T					1	0.004		0.000
	Drilonereis filum	0,002	0,002				0,001						0,001		I		I					1	0,001		0,002
	Euclymene droebachiensis														I	*	I					1		0,344	
	Filograna sp															*				<u> </u>					

Tab. 3-XLV – Continuo.

						Trans	etto A									Trans	setto B						Con	trolli	
Stazione		A1	A2	A3	A4	BO NW	BO SE	A5	A6	A7	A8	B1	B2	B3	B4	BO NE	BO SW	B5	B6	B7	B8	K1	K2	K3	K4
Distanza dalla	piattaforma (m)	250	120	60	30	0	0	30	60	120	250	250	120	60	30	0	0	30	60	120	250	2000	2000	2000	2000
Policheti																									
	Glycera alba					0,131	0,006		0,010					0,003			*							0,001	
	Glycera rouxii	0,020				0,588	0,035	0,003	-,	0,029	*	0,125	0,058	0,001		0,003	0,080	0,004	0,107	0,003				0,026	
	Glycera sp	*	0,002	*	0,012	*	0,002	*	*	0,008	0,064	*	*	*	0,003	0,014	0,006	0,010	*	0,001	*	*	*	*	
	Glycera tesselata		0,002	0,001	*		0,002	*	*	0,000	*		0,001		0,003	0,01.	*	0,010		0,001		*		0,001	
	Glycera tridactyla			0,001				0,103					0,001		0,006			0,017						0,001	
	Harmothoe sp				0,002			*				0,001		0,001	0,000	0,005		0,017							
	Hydroides norvegicus				*							0,001		0,001		0,003	*					*			
	Labioleanira yhleni		0,041	0,034			0,014						0,002						0,048		0,005			0,005	0,090
			0,041	0,034			0,014			*	*		*	*		*			0,046		0,003			0,003	0,030
	Lumbrineris gracilis		0,001		*			*																0,002	
	Magelona alleni											*			_									*	
	Maldanidae nd											•				0,003	0,003		0,178						
	Marphysa bellii	0,156	0,127	0,141	0,006	0,209		0,014	0,038	0,053	0,083	0,041	0,085	0,220	0,027	0,253	0,076	0,142	0,030	0,066	0,076	0,155	0,040	0,091	0,040
	Melinna palmata		*	*	*		0,001					0,002	0,001			0,002					*				
	Minuspio cirrifera	*	*		*				*		*											*			
	Nematonereis unicornis				*																	*			
	Nephtys hombergi														0,011							0,011		0,014	
	Nephtys hystricis	0,018	0,012	0,013		0,023	0,008	0,003	0,008	*	*	0,010	*	0,003		0,001		0,006	0,003		0,022	0,014	0,013	0,001	
	Nereididae nd	*		0,003		0,001				*				0,001								*			
	Ninoe sp	0,002					0,001	0,001	*		0,002		*	*					*	*					0,002
	Nothria conchylega				0,001																				
	Notomastus aberans	0,008	0,015	0,022	0,011	0,010	0,012	0,012	0,004	0,001	0,010	0,015	0,004	0,026	0,004	0,036	0,027	0,001	0,002	0,002	*	0,019	0,014	0,032	0,008
	Ophelina cylindricaudata	*	0,001	*	*	*	*	*	*	0,001	0,001	0,001	0,001	0,001	*	*	0,001	0,001	0,001	0,001	*	0,001	0,002	0,001	*
	Ophiodromus flexuosus	*	*		*	*	*	0,002	*	*						0,001	*			*		*		*	
	Orbiniidae nd								0,006																
	Owenia fusiformis	*						*		*					*	*	*			*				*	
	Paradiopatra calliopae	0,002	0,001	0,001	0,011	0,003	0,001	0,001	0,003	0,002	0,001	0,001	*	0,004	0,001	0,005	0,003	*	0,001	0,003	0,003	*	0,001	0,001	0,001
	Paralacydonia paradoxa	0,003	*	*	0,001	0,001	0,001	*	*	-,	*	*	*	0,001	0,001	0,001	0,001	0,001	*	0,001	*	*	*	*	-,
	Paraonidae nd	0,002	0,002	0,004	0,001	0,002	*	0,002	0,002	0,002	0,002	0,002	0,003	0,005	0,002	0,003	0,003	0,001	0,002	0,001	0,002	0,002	0,002	0,003	0,001
	Paraprionospio pinnata	-,	-,	-,	-,	-,	*	-,	-,	-,	-,	-,	2,222	-,	-,	2,222	-,	-,	0,001	-,	-,	-,	-,	2,232	-,
	Pectinaria koreni					*		*								0,002	0,001		0,001						
	Phyllodoce sp					0,001										*	0,001								
	Phyllodocidae nd			*		0,001								*		*									
	Pilargidae nd	*	*	*	*	*	*	*	*	*	0,001		*	*	*	*	*	*	*	*	*	0,001	*	*	*
			*		*						0,001		0,001								*	0,001			
	Pilargis verrucosa Pista brevibranchia												0,001							*					
																	0.002								
	Pista unibranchia																0,003					0.004			0.004
	Poecilochetus serpens								*													0,001			0,001
	Pomatoceros triqueter					_										,									
	Praxillella gracilis		0.000			1																	0,002	0,032	
	Prionospio ehlersi		0,002								*	*				I								*	
	Prionospio sp		*	0,001	*	0,001			*		*	*	*		*	I		*	*	*	*	0,001		*	1
	Prionospio steenstrupi		*			I																			
	Sabellidae nd		*		0,001	*		*						*	*	I	0,001	*	*	*	*	*		*	1
	Scalibregma inflatum				I	0,004	0,001			*					I	*			*		*	*			1
	Scoletoma impatiens		*	*		I				*												*		*	*
	Scoletoma sp		0,008					*	*			0,004		0,001	*	0,001		*			0,015	0,001			I

Tab. 3-XLV – Continuo.

					Trans	setto A									Trans	etto B							Con	trolli	
Stazione	A1	A2	A3	A4	BO NW	BO SE	A5	A6	A7	A8	B1	B2	B3	B4	BO NE	BO SW	B5	B6	B6	B7	B8	K1	K2	K3	K4
Distanza dalla piattaforma (m)	250	120	60	30	0	0	30	60	120	250	250	120	60	30	0	0	30	60	60	120	250	2000	2000	2000	2000
Policheti																									
Scoloplos armiger	*							*		*	*	*	*			*		*	*		*	*	*	*	*
Serpula concharum							*																		1 /
Serpula vermicularis				0,009																					1 /
Serpulidae nd															*										1 1
Sphaerodoridae nd													*		*										1 /
Spionidae nd	*	*	*	*	*	0,001	*	*	0,001	0,001	*		*	*	0,002	0,002	*	*	*	0,001	*	*	*	*	1 /
Spiophanes bombyx					*					*					*									*	1 /
Syllidae juv						*															*				1 /
Syllis parapari				*			*									0,001									1 /
Syllis sp					0,001																				1 /
Terebellidae nd	0,004	0,001		0,006		*			0,001	*			0,009		0,003	0,010								*	1 /
Terebellides stroemi			*		*	0,001							0,006												1 /
Poriferi																									1 /
Porifera nd						0,024																			1 /
Sipunculidi																									1 /
Aspidosiphon muelleri		0,006													0,004	*									1 /
Onchnesoma steenstrupi	*	0,001	*			0,001	0,001	*			0,002	0,001	0,001				*	*	*	*	0,001	0,002	*	0,001	0,008
Phascolion strombus				0,001	*		0,002									0,014								0,001	
Sipuncula nd	0,004	0,002	0,006	0,002	0,015	0,012	0,003	0,240	0,034		0,003	0,002	0,003		0,002	0,030		0,014	0,014	0,005	0,002	0,001	0,001	*	0,002
Biomassa totale	3,325	3,249	0,469	0,248	4,413	9,068	0,957	0,863	0,303	2,378	0,328	0,192	1,226	0,182	3,480	1,494	1,108	2,751	2,751	1,027	0,380	1,812	1,039	0,924	0,256

Tab. 3-XLVI – Lista e biomassa (gr. 0,095 m⁻²) delle specie rinvenute nelle stazioni campionate nel **5**° **survey post lavori**. * = <0,001 gr/0,095 m².

						Trans	etto A									Trans	etto B						Con	trolli	
Stazione		A1	A2	A3	A4	BO NW	BO SE	A5	A6	A7	A8	B1	B2	B3	B4	BO NE	BO SW	B5	В6	B7	B8	K1	K2	K3	K4
Distanza dall	a piattaforma (m)	250	120	60	30	0	0	30	60	120	250	250	120	60	30	0	0	30	60	120	250	2000	2000	2000	2000
Briozoi																									
	Aetea truncata						0,001						*				*								
	Briozoa nd																0,001								
	Crisia sp																*								
	Schizoporella errata			0,003	0,018	0,017	0,009	0,005	0,001						0,010	0,013	0,013	0,001							
	Scrupocellaria scruposa				0,004	0,001	0,001	0,002	0,002	*	*	*		*	*	0,008	0,004	*	*	*	*		0,003	0,006	*
	Triticella flava		*				*		*	*			*				*	*	*					*	
	Tubulipora sp					0,001	0,006	0,001	0,005						*	0,003	0,001		*	0,002					
Cnidari																									
Antozoi	Actiniaria nd				0,001	0,001	0,021	*									0,003						0,014		
	Anthozoa nd	*	*	*	0,006		,	*	0,001	*	*	*			*				*		*	*	1	0,001	0,003
	Edwardsia claparedii				.,				.,		0,008	0,030					0,003			0,181				, , , ,	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
	Epizoanthus sp				0,055	0,088	0,029	*			2,222	-,					0,003			-,					
	Funiculina quadrangularis				5,555	-,	0,020	0,036		0,037			0,002				,,,,,,								
	Pennatula rubra							,,,,,,,		,,,,,,,			0,032												
	Virgularia mirabilis	0,001							0,002				0,002												
Idrozoi	Hydroidea nd	0,004	0,001		*	0,001	0,005	0,002	0,002	0,002	0,002	0,002	*	*	0,004	0,001	0,013	*	0,002	*	*	0,008	*	0,001	*
Crostacei	Try di Olaca IIa	0,004	0,001			0,001	0,003	0,002	0,002	0,002	0,002	0,002			0,004	0,001	0,013		0,002			0,000		0,001	
Anfipodi	Acidostoma nodiferum														*		0,001		*						
Ampour	Ampelisca diadema			0,001	*	0,001	*	*	*	*	*	0,001	*	*	0,001	0,002	0,001	*	*		*	*	*	*	*
	Amphilochus sp			*		0,001						0,001			0,001	0,002	0,001								
	Arra spinicornis								*																
							*	*		*				*	*		*		*	*		*		*	*
	Corophium sp						-	-			*			-											
	Ericthonius brasiliensis	0,001									-	*										*	*	*	
	Eriopisa elongata	0,001									*	*													
	Gammaropsis sp							*		*	*	*					*	*	*	*		1	*	*	
	Harpinia dellavallei						0.000			'	·														
	Hippomedon massiliensis						0,003										*								
	Iphimedia sp																							*	
	Leptocheirus guttatus																								
	Leptocheirus sp										*	*		*	*	*								-	
	Leucothoe incisa										*	*		*	*	•		*							*
	Leucothoe lilljeborgi								*		*					*									*
	Lysianassa sp							*	*							•									
	Maera grossimana				*			*									*			*				*	
	Orchomene grimaldii				*	0,001	0,002										•							•	
	Othomaera schmidtii		*	*		*		*	0,002	*	0,003	*	0,001	*	0,001	*		0,003	*	0,005	*		0,002		*
	Paraphoxus oculatus		*	*	*	*			*	*	*	*	*	*	*	•		*	•	*	•		•	•	*
	Photis longicaudata																					*			
	Phtisica marina						*		*							*	*			*					
	Pseudoprotella phasma																					*			
	Stenothoe bosphorana				Ι.	l .												*				l .			
	Stenothoe sp				*	*											0,001	*				*			
	Synchelidium haplocheles								*																
Copepodi	Copepoda nd							*																	
Cumacei	Cumacea nd	*	*		*							*	*	*				*	*						*
	Eudorella truncatula		*		*				*	*	*		*	*	*			*	*	*	*	*		*	
1	Leucon siphonatus	I			*	1			1	l		1			1	1	1	*	1	1	1	*	*		

Tab. 3-XLVI – Continuo.

						Trans	etto A									Trans	etto B						Con	trolli	
Stazione		A1	A2	А3	A4	BO NW	BO SE	A5	A6	A7	A8	B1	B2	В3	B4	BO NE	BO SW	B5	B6	B7	B8	K1	K2	K3	K4
Distanza dalla	piattaforma (m)	250	120	60	30	0	0	30	60	120	250	250	120	60	30	0	0	30	60	120	250	2000	2000	2000	2000
Briozoi																									
Decapodi	Alpheus glaber			0,028	0,004	0,005	0,009	0,080		0,131				0,018	0,022	0,010	0,011	0,019			0,010		0,065	0,005	
	Anapagurus bicorniger				*																				
	Anapagurus sp																*								
	Callianassa subterranea	0,021	0,030	0,024	0,002	0,023	0,005	0,010	0,018	0,030	0,022	0,016	0,014	0,040	0,016	0,027	0,008	0,017	0,048	0,013	0,028	0,054	0,022	0,029	0,006
	Ebalia deshayesi						0,001	0,001			*						0.004	0,008							
	Eurynome aspera Galathea intermedia						0,001 0,005		0,001							0,001	0,001 0,005								
	Galathea sp				0,009	0,012	0,003		0,001							0,001	0,005								
	Goneplax rhomboides	0,154	0,407	0,102	0,009	0,012	0,002	0,186	0,194	0,181	0,006	0,023	0,053	*	0,061	0,029	0,252	0,672	0,202	0,084	0,027		0,006	0,082	0,048
	Jaxea nocturna	0,134	0,407	*	0,003	0,140	0,077	0,100	0,134	0,101	0,000	0,023	0,033		0,001	0,023	0,232	0,072	0,202	0,004	0,027		0,000	0,002	0,040
	Liocarcinus depurator														1,247										
	Liocarcinus maculatus						0,012								2,2 .,										
	Monodaeus couchi				0,408	0,132	0,154								0,018	0,015	0,568								
	Paguridae nd					0,001	0,043								0,001	0,001	*								
	Processa sp				0,002									0,001					*		*				
	Solenocera membranacea										0,209														
Isopodi	Anthura gracilis																	*							
	Bopyridae nd																						*		
	Cirolana neglecta																0,004								
	Eurydice sp		*				0,001									0,006	0,003								
	Gnathia sp		*				*		*			*						*			*				
	Idotea sp																*				*				
Ostracodi	Ostracoda nd					*				*						*					*				
Tanaidacei	Leptochelia savignyi					-					*			*							*		*		*
Echinodermi	Leptognathia sp										-														
Echinoidei	Brissopsis atlantica mediterranea				0,033		0,785		1,054	2,257					3,726	0,133			0,226		2,068	5,129	1,776		1,665
Ofiuroidei	Amphiura chiajei				0,033	0,009	0,015		1,054	2,237					3,720	0,133	0,205		0,220		2,000	3,123	1,770	*	1,005
Ondiolaci	Ophiotrix fragilis					0,003	0,018										0,203								
	Ophiura albida						0,013		*			*				0,004	*								
Oloturoidei	Labidoplax digitata															,						0,032		0,023	0,258
	Trachythyone elongata	*				0,004																			
Molluschi																									
Bivalvi	Abra prismatica				*			*	0,001				*			*			*			0,001			
	Anodontia fragilis									0,001															
	Anomia ephippium				0,001	0,021	0,076									0,103	0,024								
	Arca noae					0,027																			
	Azorinus chamasolen			0,353						0,436															
	Cardiomya costellata				0,002																				
	Coracuta obliquata				0,002																			-	
	Hemilepton nitidum Hiatella arctica				0,002	0,009	0,014									0,002	*								
	Hiatella rugosa				0,001	0,009	*									0,002									
	Kellia suborbicularis					*			*										*				*		
	Kurtiella bidentata													*			*						*		
	Mimachlamys varia						0,007									0,002									
	Modiolarca subpicta				0,001	0,003	0,001									0,001	*								
1	Modiolula phaseolina					*											0,002				*				
1	Montacuta phascolionis															*									
	Myrtea spinifera						*																		
	Mytilus galloprovincialis				*	8,855	7,389									1,657									

Tab. 3-XLVI – Continuo.

							etto A										setto B						,	trolli	
Stazione		A1	A2	A3	A4	BO NW	BO SE	A5	A6	A7	A8	B1	B2	B3	B4	BO NE	BO SW		В6	B7	B8	K1	K2	K3	K4
Distanza dalla p	iattaforma (m)	250	120	60	30	0	0	30	60	120	250	250	120	60	30	0	0	30	60	120	250	2000	2000	2000	2000
Molluschi																									
Bivalvi	Neopycnodonte cochlear				0,015	9,733	12,347									1,151	1,826								
	Nucula nitidosa				*																				
	Nucula sulcata				0,007																		0,026		0,014
	Pandora pinna								0,007														1		
	Parvicardium minimum						*	*	'																
	Phaxas adriaticus					*				0,293						0,002									
	Plagiocardium papillosum						*			-,					*	*	*						*		
	Pteria hirundo						6,584																		
	Tellimya ferruginosa																*								
	Tellina serrata				0,000																				
	Thyasira biplicata				0,012	*	0,002	0,001	*								0,002			*					
	Thyasira succisa				-,-		.,	*	*								.,								
	Timoclea ovata							0,001	*					*			0,006					*			
Caudofoveati		*		*	0,004	0,001	*	*	*		*	0,001		*	*	0,001	*					*			
Gasteropodi	Acteon tornatilis		*		-,	-,			*			,,,,,		*		-,									
	Alvania sp													*		*									
	Bela brachystoma					*	*				0,001	*						0,001							
	Bittium latreillii										5,555					0,003	0,003	-,							
	Capulus ungaricus						0,003									,,,,,,,	,,,,,,,								
	Cylichna cylindracea						0,000		*																
	Epitonium commune											0,002													
	Hyala vitrea	*	0,001	0,001	*	*	0,001	*	0,002	0,001	0,001	0,001	0,000	0,001	0,001	0,001	0,001		*	*		0,001	0,001	0,001	0,001
	Polinices nitida		0,001	0,001		*	0,001		0,002	0,001	0,001	0,001	0,000	0,001	0,001	0,001	0,001					0,001	0,001	0,001	0,001
	Turritella communis	0,471	0,017			0,026	0,020	0,086	0,076	0,003		0,012	0,239	0,045	0,012	0,029	0,010		0,010	0,034			0,006		
Nemertini	ramena commans	0, ., _	0,017			0,020	0,020	0,000	0,070	0,000		0,012	0,200	0,0 .5	0,012	0,023	0,010		0,010	0,00.			0,000		
	Nemertea nd	0,029	*	0,029	0,003	0,002	0,002	*	0,051	*	*	0,001	*	0,001	0,001	0,056	0,003	*	0,001	0,011	0,031	0,001	0,012	*	0,066
Pantopodi		3,525		0,000	-,	-,	-,		,,,,,			,,,,,		-,	3,000	,,,,,,	,,,,,,,		-,	3,022	-,	3,000	-,		,,,,,,
Picnogonidi	Pycnogonida nd				*			*		*			*		*							*	*	*	
Platelminti	. youngounda na																								
	Platelminta nd						*									*							*	*	
Policheti																									
	Ampharete acutifrons	*	0,001	*	*	*	*	*	*		*	*	0,001	*	*	*	0,001	*	0,001	*	*	*	0,001	*	
	Ampharetidae nd	*	0,001	0,001	*	*	*	0,001	0,001	*	*	*	*	*	*	*	0,002	*	*	*	*		*	*	
	Amphicteis gunneri		2,000	-,			*	-,	-,							0,001	*								
	Ancystrosyllis groenlandica			*	*		*	*	*	*	*			*		0,001	*	*	*	*					*
	Aphelochaeta filiformis	0,001	0,001	*	0,001	0,001	*	0,002	0,001	0,001	0,001	0,001	0,001	0,002	*	0,001	0,001	0,001	0,002	*	0,001	0,001	0,001	0,001	0,001
	Aphelochaeta marioni	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	0,001	*	*	*	*	*	*	5,552
	Aphroditidae nd																	-,				*			
	Aponuphis brementi	0,006	0,017		0,007	0,021	0,032	0,001						0,002	0,006	0,027	0,033						0,009	0,014	
	Capitella capitata	3,000	.,,,,,			-,,,	.,,,,,,	-,302	*					-,502	1,000	-,52.	2,000						2,003	2,011	
	Capitellidae nd	*				0,002	*		*	0,001	*	*	*		*	*	*			0,001	0,001	0,001	*	*	0,001
	Chaetopteridae nd			0,001		-,302		0,055		-,502					*	0,001	0,001	0,005	0,026	1,001	0,001	1,001		*	,,,,,,
	Chaetozone caputesocis	0,001	0,006	0,002	0,005	0,002	0,002	*	*		0,001	0,003	0,003		*	0,001	0,004	0,005	*		0,001	*		0,001	
	Chirimia biceps	.,	.,,,,,,	.,,,=	.,,,,,,	.,,,,,,	.,				-,	0,002	.,,,,,,,			.,	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	,,,,,,,			*	I	*	0,001	
	Cirratulidae nd	*	0,004			*	*	*	*	0,103	0,017	0,010	*	*	0,044	0,001	*	0,011	*		*	*	*	,,,,,,,	*
	Cossura soyeri		1,50,			*		*	*	1,200	-,52.	-,525			-,5.1	2,001		-,011				I			
1	Ditrupa arietina				*	*	*					0,001	*	*	*		*	*	*		*	I		*	
	Dorvillea rubrovittata				0,001				*			0,001					*								
	Dorvillea rudolphii				*	*	*	*	*								0,002					*			
	Drilonereis filum						*			*			*				0,002		*				*		*
	Euclymene sp																							0,029	

Tab. 3-XLVI – Continuo.

Statistics Sta			1					etto A									,	setto B					<u> </u>		ntrolli	
Ringsmars up			A1	A2	A3		BO NW	BO SE		A6	A7	A8	B1	B2	B3	B4	BO NE	BO SW		В6	B7	B8	K1	K2	K3	K4
Filegrams sp Gipter state Gipter sp	lla piattaforma	(m)	250	120	60	30	0	0	30	60	120	250	250	120	60	30	0	0	30	60	120	250	2000	2000	2000	2000
Company Comp																										
Cheeres or number Chee	Filograna	sp						0,001	*									*		*						
Cycle control Cycle Cycl	Glycera all	lba	*	*	0,003	0,002	0,033	0,001	0,001	0,001			0,006			0,001		0,002			0,002	0,001			0,001	
Gyerne trissactive (Grain distance) (Gra	Glycera ro	ouxii	0,010		0,003	0,003		0,089	0,006	0,007	0,026	*	0,001	0,002	0,078		*	0,020	0,004	0,127	0,001	0,002	0,003	0,008	0,011	
General InfoResidade General InfoResidade	<i>Glycera</i> sp	р	0,001	0,001	*	0,001	0,001	0,001	*	0,002	0,004	0,018	0,001	0,001	*	0,002	0,002	0,001	0,003	*	0,010	*	*	0,003	0,001	*
Comindamentive to Hammothree space Processing Register Support of the Processing Register Support of the Processing Register Support of the Processing Register Support of the Processing Register Support of the Processing Register Support of the Processing Register Support of the Processing Register Support of the Processing Register Support of the Processing Register Support of the Processing Register Support of the Processing Register Support of the Processing Register Support of the Processing Register Support of R	Glycera tes	esselata	*	*	*	0,002	0,001	*	*	*		*				0,002		0,002	*	*	*		0,002			
Martine-colored Martine-co	Glycera tri	ridactyla								0,018										0,018	0,009					
Principalities degrans Principalities deed Principalities degrans	Goniada n	maculata						*		*			0,001		*										0,001	
Prijuntified Convergitors Prijuntified Social Confidence Pri	Harmotho	oe sp	*	*		0,006	0,001	0,011		*			0,001		*		0,001	0,003								0,001
Pythologics introduction Color C	Hydroides	s elegans			*												*									
Labbleening vilent Lumbrier's gradis Magebra alkini Meldanidae nd Moltingrenelik knututa Marchysa beliai Mega forman veskubsum Meldanidae nd Moltingrenelik knututa Marchysa beliai Mega forman veskubsum Meldanidae nd Moltingrenelik knututa Marchysa beliai Mega forman veskubsum Meldanidae nd Moltingrenelik knututa Marchysa beliai Mega forman veskubsum Meldanidae nd Moltingrenelik knututa Marchysa beliai Mega forman veskubsum Meldanidae nd Moltingrenelik knututa Marchysa beliai Mega forman veskubsum Meldanidae nd Moltingrenelik knututa Marchysa beliai Mega forman veskubsum Meldanidae nd Moltingrenelik knututa Marchysa beliai Mega forman veskubsum Meldanidae nd Moltingrenelik knututa Marchysa beliai Mega forman veskubsum Meldanidae nd Moltingrenelik knututa Mortingrenelik knututa Moltingrenelik kn	Hydroides	s norvegicus				*		0,001									*	*								
Lumbriners gracilis Angelena aliani Maldanida nd Mamprisso belli Maldanida nd Maldanida nd Maldanida nd Maldanida nd Maldanida nd Maldanida nd	Hydroides	s stoichadon					*	*																		
Majeplana allari Malamida de di Malamida de di Malamida nullata Marphysa belli Megalomma veskulosum Melina palmata Marphysa belli Megalomma veskulosum Melina palmata Marphysa belli Megalomma veskulosum Melina palmata Micronephitys shareordirato Microneph	Labioleani	ira yhleni	0,016	0,166				0,015				0,031		0,008			0,004			0,024	0,040	0,001	0,022			
Midelanidae nel Midelanidae ne	Lumbriner	ris gracilis	*					0,006	*	*	*	*	*	0,001	*		*	*	*	*	0,002	*		0,003	0,001	
Modingreisida limilatra Modingreisida li	Magelona	a alleni				*			*	*						*			*							
Maraphysa belli Megolamma vesiculosum Melanna palmato Notamento Nota	Maldanida	ae nd	0,041				*						*			*	*	*		*				*	0,001	
Meglomma veskulosum Micronephitys sphaerocirrata Micronephitys sphaerocirrata Micronephitys sphaerocirrata Micronephitys stammeri Minuspho cirriferia Nematonereis unicomis Nephtys hombergi Nephtys hombergi Nephtys hombergi Nephtys hombergi Nephtys hombergi Nephtys hombergi Nematonereis unicomis Nephtys hombergi Nephtys hombergi Nematonereis unicomis Nephtys hombergi Nematonereis unicomis Nephtys hystricis Nephtys hystricis Nephtys hombergi Nematonereis unicomis Nephtys hystricis Nephtys hystricis Nephtys hystricis Nematonereis unicomis Nephtys hystricis Nephtys hystricis Nephtys hystricis Nematonereis unicomis Nephtys hystricis N	Malmgren	niella lunulata																0,002								
Melinna palmatat Micronephtys sphaerocirrata Micronephtys	Marphysa	a bellii	0,093	0,126	0,042	0,049	0,323	0,003	0,169	0,143	0,127	0,050	0,023	0,043	0,075	0,101	0,167	0,106	0,065	0,127	0,175	0,030	0,165	0,022	0,039	0,153
Micronephtys stammeri Minuspio cirriglera Nematocereis unicomis Nephtys harbricis Nephtys harbricis Nephtys harbricis Novembergi Nov	Megalomi	ıma vesiculosum			-				0,374										-				1			
Microephtys stammeri Minuspio cirrifera Nematoneresis unkcomis Nephtys hystries Nephtys hystries Nematoneresis unkcomis Nephtys hystries Nephtys hystries Nematoneresis unkcomis Nephtys hystries Nematoneresis unkcomis Nephtys hystries Nephtys hystries Nematoneresis unkcomis Nephtys hystries Nematoneresis unkcomis Nephtys hystries Nephtys hystries Nematoneresis unkcomis Nephtys hystries Nematoneresis unkcomis Nephtys hystries Nephtys hystries Notice and O,001 Ninoe sp Notomastus aberans O,016 O,002 O,004 O,004 O,005 O,004 O,005 O,	Melinna p	palmata	*	0,001	*	*		*	0,001	0,002	*		0,001	*	0,001	0,003	*	*	*		*	*		*		
Microephtys stammeri Minuspio cirrifera Nematoneresis unkcomis Nephtys hystries Nephtys hystries Nematoneresis unkcomis Nephtys hystries Nephtys hystries Nematoneresis unkcomis Nephtys hystries Nematoneresis unkcomis Nephtys hystries Nephtys hystries Nematoneresis unkcomis Nephtys hystries Nematoneresis unkcomis Nephtys hystries Nephtys hystries Nematoneresis unkcomis Nephtys hystries Nematoneresis unkcomis Nephtys hystries Nephtys hystries Notice and O,001 Ninoe sp Notomastus aberans O,016 O,002 O,004 O,004 O,005 O,004 O,005 O,	Microneph	htys sphaerocirrata																							*	
Minuspic cirifera Nemotonereis unicomis Nephtys hombergi Nephtys hystricis Nephtys h								*		*																
Nematonereis unicamis Nephtys hombergi Nephtys hombergi Nephtys hombergi Nephtys hombergi Nephtys hombergi Nephtys hystricis 0,012 0,048 0,001 0,002 0,001 0,001 0,001 0,001 0,002 0,001 0			*	*	*	*		*	*	*		*			*	*		*		*			*	*	*	
Nephtys hombergi Nephtys hystricis Nephtys hystricis Nephtys hystricis Nephtys hystricis Nephtys hystricis Nephtys hystricis Nephtys hystricis Nephtys hystricis Nephtys hystricis Nephtys hystricis Nereididae No.001 No.								*					*													
Nephtys hystricis 0,012 0,048 0,001 0,002 0,017 0,009 0,001	Nephtys h	hombergi										0,008				0,008										
Nereididae nd Ninos sp 0,001 0,007 0,009 0,002 0,001 0			0,012	0,048	0,001	0,002	0,017	0,031	0,011	0,002	0,015	0,002	0,008	0,008	0,005	0,015	0,003	0,005	0,001	0,010	0,001	0,006	0,005	0,023	0,001	0,004
Ninoe sp 0,007 0,009 0,002 0,001 0,005 0,001 0,005 0,004 0,016 0,009 0,004 0,016 0,009 0,004 0,016 0,009 0,004 0,006 0,001 0,006 0,001 0			0,001	,	,		0,001	,	'	*	*	,	,	,	*	*	,	0,001	0,001	,				,	0,002	,
Notomastus aberans	Ninoe sp		*	0,007	0,009	0,002	0,001	*		0,001	0,001	0,002		0,001	0,001	0,006	0,001		0,002	0,001	0,008	0,001	0,009	*		0,002
Ophelina cylindricaudata Ophilodromus flexuosus Ophilodromus flexuosus Ophilodromus flexuosus Owenia fusiformis Paradiopatra calliopae Paralacydonia paradoxa Ophilodromus flexuosus Owenia fusiformis Paradiopatra calliopae Paralacydonia paradoxa Ophilodromus flexuosus Owenia fusiformis Paradiopatra calliopae Paralacydonia paradoxa Ophilodromus flexuosus Owenia fusiformis Paradiopatra calliopae Ophilodromus flexuosus Owenia fusiformis Paradiopatra calliopae Ophilodromus flexuosus Owenia fusiformis Paradiopatra calliopae Ophilodromus flexuosus Owenia fusiformis Paradiopatra calliopae Ophilodromus flexuosus Owenia fusiformis Owenia fusifo		tus aberans	0,016	,				0,009	0,024			0,006	0,008	0,006				0,029						0,014	0,014	0,025
Ophiodramus flexuosus Owenia fusiformis Paradiopatra calliopae Q,001				0,001		*		*	*			-					*	*							*	*
Owenia fusiformis	•	•	*	*	*	*		0,001	*		*			,	*	,	*	*	*		0,001	*	*	*	*	
Paradiopatra calliopae	•	•	*					,	*	*	*	-,		*	*	*		*	*		*	*		*		*
Paralacydonia paradoxa	•	•	0,007	0,002	0,004	0,006	0,007	0,003	0,004	0,009	0,002	0,003	0,003	0,002	0,003	0,004	0,005	0,004	0,002	0,003	0,003	0,002	0,002	0,002	0,005	0,001
Paraonidae nd Paraprionospio pinnata Paraprionospio pinnata Pectinaria koreni Phyllodoce sp Phyllodocidae nd Phylonorvegica Pilargidae nd Pilargis verrucosa Pista cristata Poecilochetus serpens Pomatoceros triqueter Prionospio steenstrupi Protula sp Protula sp		•	0,001	*		0,001					*			*	*				0,001					0,001	*	0,001
Paraprionospio pinnata				0.004							0.004	-		0.003	0.004				-						0,002	0,002
Pectinaria koreni			'	,	,			,	'	*	,	*	,	,	,	*	,		,	,			*	,		,
Phyllodoce sp Phyllodocidae nd Phyllodocidae nd * <td></td> <td></td> <td></td> <td></td> <td></td> <td>0,041</td> <td>0,002</td> <td>0,007</td> <td>0,001</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>*</td> <td>*</td> <td></td> <td></td> <td></td> <td></td> <td>0,002</td> <td></td> <td></td> <td></td>						0,041	0,002	0,007	0,001								*	*					0,002			
Phyllodocidae nd						-,-			.,								*	0.002		*			.,		0,020	
Phylo norvegica * 0,001 * * * * * * * * * * * * * * * * * * *					*	*	.,	*		*				*	*	*		.,				*			.,-	
Pilargidae nd																				0.004						
Pilargis verrucosa			*	0,001	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*		*	*	*	*	*	*
Pista brevibranchia Pista cristata Poecilochetus serpens Pomatoceros triqueter Prionospio sp Prionospio steenstrupi Protula sp				,				*	*					*								*	*			*
Pista cristata Poecilochetus serpens Pomatoceros triqueter Prionospio sp * * * * * * * * * * * * * * * * * *	-													*				0.002								
Poecilochetus serpens										*						0.001		-,			0.002					
Pomatoceros triqueter							*			*	*					1 .,		*		*	-,					*
Prionospio sp * * * * 0,001 * * * 0,001<						0,011	0,002										0,002	0,001								
Prionospio steenstrupi Protula sp *		•	*	*	*			*	*	*	*	*	*	0,001	*	*		-,	*	0,001	*	*	0,001	*	*	*
Protula sp * *				*		.,,								.,					0,001	*			.,	*		
		•					*												-,001							
			*	*		0.026	0.001	*	*	*	*		*	*	*	*	*	*	*	*	*	*	*	*	*	*
Scalibregma inflatum * * * 0,001 * 0,001 * * 0,001 * * 0,001 * * 0,001 * * 0,001 * * 0,001 * * 0,001 * *			*		*	*		*	0.001	*	*			*	0.001		*	0.002	0.001	*	*	0.001	0.001	*	*	
Scalibregina injlatum	-	•					0,001		0,001						0,001			0,002	0,001		*	0,001	0,001	0.001		

Tab. 3-XLVI – Continuo.

					Trans	etto A									Trans	etto B						Con	trolli	
Stazione	A1	A2	A3	A4	BO NW	BO SE	A5	A6	A7	A8	B1	B2	В3	B4	BO NE	BO SW	B5	В6	B7	B8	K1	K2	K3	K4
Distanza dalla piattaforma (m)	250	120	60	30	0	0	30	60	120	250	250	120	60	30	0	0	30	60	120	250	2000	2000	2000	2000
Policheti																								
Scoletoma impatiens	*						*		0,001	*		*		*	0,001	*	*				*	*		*
<i>Scoletoma</i> sp							*	*			0,008	*	*	*	*		0,001	0,002	*	0,004	*	0,005		0,001
Scoloplos armiger	*	*				*		*	*	*	*	*	*		*	*	*	*	*	*	*	*	*	*
Serpula concharum							*																	
<i>Serpula</i> sp																*								
Serpula vermicularis						*										*								
Serpulidae nd			*	0,001		0,001	*	*						*										
Sigambra tentaculata						*									*	*								
Sphaerodoridae nd										*		*	*					*						
Spionidae nd	*	*	*	0,002	0,001	0,002	0,001	*	*	0,001	*	*	*	*	0,001	0,001	*	0,001	*	*	*	*	*	
Spiophanes bombyx					*				*		*	*			*		*	0,001		*	*	*		*
Sternaspis scutata					0,004																			
Sthenelais boa						*																	0,003	
Syllidae juv						*	*								*	*		*		*				
Syllis parapari				*	*		*											*					0,001	
Syllis sp	0.004					0,001	0.040		0.000	0.004	*		0.004	0.004	0,002	0,001		0.000	*	*	0.004	0.004	0.004	0.000
	0,001		0.004	0,001	0,080	0,047	0,012	0.045	0,002	0,001	•		0,001	0,001	0,060	0,004		0,002	*	·	0,001	0,001	0,001	0,002
Terebellides stroemi Poriferi			0,001		-	•		0,215		0,002			0,003	•	0,002					*	*	0,002	0,006	
Porifera nd						0,002					*					0,003				0,003				
Sipunculidi						0,002										0,003				0,003				
Aspidosiphon muelleri		0,002			*		0,001								0,007		*			*			0,021	
, ,	0,001	0,002	0,001		*	0,001	0,001	0,002	0,002	0,001	0,001	0,001	0,002		*	*	*	0,001	0,001	*	0,002	*	0,002	0,003
Phascolion strombus	0,001	0,001	0,001		*	0,001	0.002	0,002	0,002	0,001	0,001	0,001	0,002		0,003	0,003		*	0,001		0,002		0,002	0,003
	0,003	0,001	0,002	0,001	0,017	0,012	0,002	0,021	0,013	0,001	0,006	0,003	0,003	*	0,003	0,010	0,022	0,006	0,015	0,004	0,001	0,002	*	0,004
Tunicati	3,303	3,300	5,502	5,501	0,017	3,312	0,011	3,321	3,313	5,501	3,300	5,505	5,505		3,304	3,310	3,322	3,300	5,515	3,304	5,501	3,302		0,004
Ascidiacei Ascidia mentula				0,042																				
	0,901	0,855	0,634	0,821	19,670	27,958	1,096	1,859	3,700	0,405	0,182	0,429	0,306	5,325	3,574	3,233	0,863	0,862	0,615	2,236	5,464	2,039	0,328	2,263
Ricchezza specifica totale	51	46	45	78	81	106	76	83	56	57	58	55	60	67	86	105	61	67	53	60	60	64	65	45

Tab. 3-XLVII – Lista e biomassa (gr. 0,095 m⁻²) delle specie rinvenute nelle stazioni campionate nel 6° survey post lavori. * = <0,001 gr/0,095 m².

						Trans	setto A									Trans	etto B						Con	trolli	
Stazione		A1	A2	A3	A4	BO NW	BO SE	A5	A6	A7	A8	B1	B2	В3	B4	BO NE	BO SW	B5	B6	B7	B8	K1	K2	K3	K4
Distanza dalla	a piattaforma (m)	250	120	60	30	0	0	30	60	120	250	250	120	60	30	0	0	30	60	120	250	2000	2000	2000	2000
Briozoi																									
	Aetea truncata						*	*					*				*								
	Cellaria salicornioides							0,002															0,001		
	Crisia sp	*					*																		
	Savignyella lafontii						0,001																		
	Schizoporella errata				0,022	0,024	0,020	0,016	0,001				0,001	0,006	0,005	0,005	0,014	0,011							
	Schizoporella magnifica																0,006								
	Scrupocellaria scruposa	*		*	*	0,001	0,025	0,004	0,001	*	*	*	*	*	0,002	0,001	0,003	0,002	*	*	*		0,001	0,001	
	Triticella flava		*	*		*		*	*				*	*	*	*	*	*				*		*	
	Tubulipora sp					0,004	0,002	0,003	0,001			0,001		0,002	0,001	0,003	0,008	0,001							
Cnidari	, .								'			,		'	'	,		,							
Antozoi	Actiniaria nd	0,017			0,004	0,108	0,061										0,013			0,003				0,009	
	Alcyonacea nd	-,-			.,	.,	.,	0,002									.,.			.,				, , , , , ,	
	Anthozoa nd			*	*			*				*	*		0,002	*		0,001	*		*	*		*	*
	Edwardsia claparedii										0,012	0,015			0,009			0,017		0,152					
	Epizoanthus sp				0,055		0,112	0,005			-,	-,			0,002		0,001	-,		-,					
	Funiculina quadrangularis				0,033		0,111	0,103							0,002		0,001								
	Madreporaria nd						*	0,200																	
	Virgularia mirabilis	0,001												0,003	0,010										
Idrozoi	Hydroidea nd	0,002		0,001	*	0,004	0,064	0,001	0,001	0,004	0,001	0,038	0,001	*	0,003	*	0,003	*	0,001	*		0,002	*	*	0,011
Crostacei	Tiyatolaea na	0,002		0,001		0,004	0,004	0,001	0,001	0,004	0,001	0,030	0,001		0,003		0,003		0,001			0,002			0,011
Anfipodi	Acidostoma nodiferum														*										
7 iiiipoui	Ampelisca diadema		*	*	*	*		*	*	*	*	*	*	*	0,001	*	*	*	*		*	*	*	*	*
	Apherusa sp			*											0,001										
	Carangoliopsis spinulosa											*													
	Corophium sp						*	*							*		*								
		*							*	*	0,001	0,001									0,001		*	*	
	Eriopisa elongata					*	*				*	0,001									0,001		'		*
	Gammaropsis sp Harpinia antennaria									*	-	*						*							
						*			*	*	*	*		*			*		*	*		*	*	*	
	Harpinia dellavallei																		'				*		
	Harpinia sp														*								'	*	
	Leptocheirus guttatus					*			*		*	*			*					*	*				
	Leucothoe incisa																		*						
	Leucothoe oboa					*													'						
	Lysianassa sp									0,001															
	Maera grossimana	0.004		*	*	*		*		0,001					*	*	*			*					
	Orchomene grimaldii	0,001		*	_	-		-	0.000					0.004		-	*								0.004
	Othomaera schmidtii	*		*		0,004		*	0,002	*	*	*	*	0,001	*			*		*	*	*	*	*	0,001
	Paraphoxus oculatus		*	*	_	*	*	-		_		*				*	*	-			_	_		-	
	Phtisica marina					*	*									-	*								_
	Stenothoe sp					*	*										*								
	Stenothoe tergestina					*	*																		
	Urothoe sp							*																	
Copepodi	Copepoda nd	*		*	*	*	*	*	*		*		*		*		*	*		*		*			
Cumacei	Cumacea nd	*	*	*	*					*		*	*	*				*	*		l .		*		*
	Eudorella truncatula				*				*	*			*		*	*		*	*		*	*	*	*	
	Leucon siphonatus																	*			1	*		1	1

Tab. 3-XLVII – Continuo.

							etto A										etto B						Con	trolli	
Stazione		A1	A2	А3	A4	BO NW	BO SE	A5	A6	A7	A8	B1	B2	В3	B4	BO NE	BO SW	B5	B6	B7	B8	K1	K2	K3	K4
Distanza dalla	piattaforma (m)	250	120	60	30	0	0	30	60	120	250	250	120	60	30	0	0	30	60	120	250	2000	2000	2000	2000
Crostacei																									
Decapodi	Alpheus glaber	*		0,054				0,016							0,100			0,013					0,001		0,027
	Anapagurus bicorniger															0,002	0,002								
	Anapagurus sp																*								
	Callianassa subterranea	0,051	0,035	0,054	0,041	0,023	0,036	0,018	0,026	0,019	0,009	0,039	0,026	0,015	0,029	0,009	0,013	0,022	0,050	0,038	0,034	0,017	0,029	0,035	0,005
	Ebalia deshayesi					0,001										0,011				*					
	Eurynome aspera																0,001								
	Galathea intermedia				0,003	0,008	0,004										0,011								
	Galathea nexa						0,013																		
	Galathea sp					0,010	0,006																		
	Goneplax rhomboides		0,071	0,106		0,499		0,219	0,095				0,027	0,034	0,189	0,059	0,083	0,329		0,189	0,006	0,033		0,012	
	Liocarcinus depurator		1,294																						
	Liocarcinus maculatus				0.000	0.040	0,002		*						0.044	0.000	0.407								
	Monodaeus couchi				0,060	0,049	0,045		*						0,011	0,008	0,107								
	Paguridae nd				0.000	0,001	0.000			_			_	0,002	0,001									0.005	
	Processa sp				0,003		0,002							0,002	0,006		0,007				*			0,005	
Isopodi	Upogebia deltaura Anthura gracilis		*												0,006		0,007								
isopoui	Bopyridae nd				*							*													
	Cirolana neglecta																0,017								
	Eurydice sp															0,001	0,017								
	Gnathia sp		*				*		*		*	*			*	0,001	*	*			*				
Misidacei	Misidiacea nd					0,001																			
Ostracodi	Ostracoda nd		*			-,		*		*			*	*	*	*					*				*
Tanaidacei	Leptochelia savignyi					*						*					*								
	Leptognathia sp						*	*			*			*			*	*		*	*		*	*	*
Echinodermi																									
Echinoidei	Brissopsis atlantica mediterranea					7,068	1,213	4,794	2,911				0,713									12,487			
Ofiuroidei	Amphiura chiajei					0,011	0,049								0,022		0,046								
	Ophiotrix fragilis						0,027																		
	Ophiura albida						*									0,001	*								
Oloturoidei	Labidoplax digitata																								0,319
	Trachythyone elongata																0,003								
Molluschi																									
Bivalvi	Abra alba																				0,002		0,001		
	Abra prismatica				*	0,001		0,001					0,001			*	*		*						
	Anodontia fragilis														*	*	*	0,001							
	Anomia ephippium				0,001	0,040	0,021								*	*	0,003								
	Coracuta obliquata						*																		
	Hemilepton nitidum					0.004	0.000									0.004	0.004								*
	Hiatella arctica					0,004	0,003		*					*		0,001	0,001	*	*				*		_
	Kellia suborbicularis Kurtiella bidentata	*						*						*			*								
	Mimachlamys varia						0,002									0,003									
	Modiolarca subpicta	*				0,001	0,002	*							*	*	0,002								
	Modiolula phaseolina					*	0,012									*	*		*						
	Modiolus barbatus						*																		
	Mytilus galloprovincialis	1				14,452	3,173								0,026	2,057									

Tab. 3-XLVII – Continuo.

							etto A										etto B						Con	trolli	
Stazione		A1	A2	A3	A4	BO NW	BO SE	A5	A6	A7	A8	B1	B2	В3	B4	BO NE	BO SW	B5	B6	B7	B8	K1	K2	K3	K4
Distanza dalla p	piattaforma (m)	250	120	60	30	0	0	30	60	120	250	250	120	60	30	0	0	30	60	120	250	2000	2000	2000	2000
Molluschi																									
Bivalvi	Neopycnodonte cochlear					9,605	20,574								0,017	0,628	6,352								
	Nucula nitidosa				*	*	-,-					0,006			'	.,.	-,								
	Nucula sulcata	0,135										,,,,,,,									0,017	0,092			
	Ostrea edulis	1,200															7,394				-,	-,			
	Parvicardium minimum					0,002	*	*						*	*	*	.,								*
	Phaxas adriaticus					0,005			0,002																
	Plagiocardium papillosum				*	0,003			0,002						*		*								
	Poromya granulata								*	*															*
	Pteria hirundo						4,576																		
	Scapharca demiri						*																		
	Tellina nitida																					0,001			
	Tellina serrata						0,001															0,001			
	Thyasira biplicata	*			0,002	0,004	0,001	0,006	0,002						0,001		0,007			0,001					
	Thyasira succisa				0,002	*	*	*	*		*	*	*	*	0,001		*		*	0,001				*	*
	Timoclea ovata						0,001	0,005	*	*				*		0,013	0,004					*		*	0,001
	Turtonia minuta						0,001	0,003								0,013	0,004								0,001
							0,001																		
Caudafayaati	Venerupis aurea		*		0,002	*		0,001	*			*	*	0.001	*		*	*	*	*		*		*	
Caudofoveati					0,002	-	0,002	0,001	*				-	0,001				-							
Gasteropodi	Acteon tornatilis							*						'											
	Alvania sp					0.002	0.002										0.001	0.001							
	Bela brachystoma					0,002	0,002	0.000								0.000	0,001	0,001							
	Bittium latreillii							0,003								0,002	0,003			*					
	Cylichna cylindracea																			*					
	Epitonium commune	*			*	*				*								*		*					
	Hyala vitrea	1	0,001	0,001	*	*	0,004	0,001	0,001	*	0,001	0,001	0,002	0,003	0,001		0,001	*	0,001	*	0,001	0,001	0,001	0,001	*
	Nudibranchia nd						0,244																		
	Philine scabra					0,001							*				*								
	Polinices nitida					*																			
	Trophonopsis muricatus															0,009									
	Turritella communis	0,083	0,017			0,025		0,071	0,025	0,149		0,027	0,266	0,099					0,030	0,034				0,152	
Nemertini																									
	Nemertea nd	0,005	0,001	0,009	0,001	0,004	0,004	0,015	0,007	*	0,003	0,038	*	*	0,036	0,019	0,004	0,002	0,001	0,003	0,042	0,001	0,004	0,001	0,011
Pantopodi					_																				
Picnogonidi	Pycnogonida nd				*			*					*	*						*				*	
Platelmenti																									
	Platelminta nd						*								*	*							*	*	
Policheti																									
	Ampharete acutifrons	*	*	0,001	*	0,001	0,001	*	0,001	0,005	*	*	0,001	0,001	*	*	0,002	*	*	0,002	*	*	*	0,003	*
	Ampharetidae nd	*	0,001	*	*	*	*	0,001	*	0,001	*	*	0,001	*	0,002	*	0,001	*	0,001	0,001	*	*	0,001	0,003	
	Amphicteis gunneri						*		0,001						*		*						*		
	Ancystrosyllis groenlandica			*	*	*	*	0,001	*	*	0,001	*		*				*		*			*		*
	Aphelochaeta filiformis	0,001	*	0,001	0,001	0,001	0,001	0,001	0,001	0,001	0,001	0,001	0,002	0,001	0,001	*	0,002	0,001	0,001	0,001	*	*	0,001	0,001	0,001
	Aphelochaeta marioni	*	*	*	*	*	*	*	*	*	*	0,001	*	*	*	*	0,001	*	*	*	*	*	*	*	*
	Aphroditidae nd	1													*				*			*			
	Aponuphis brementi	1	0,017	0,009	0,007	0,024	0,035	0,039					0,024	0,006	0,017		0,066	0,020			0,006		0,009	0,067	
	Capitellidae nd	*	0,028	*	*	0,001	*		*	*	*			*	*	*			0,027	0,001	*		0,001	*	*
	Chaetopteridae nd	1	1	0,002	l		0,007	0,004			l		0,008	1	*	0,003	0,012		0,126	1	1			0,002	1

Tab. 3-XLVII – Continuo.

							etto A										etto B							trolli	
Stazione		A1	A2	A3	A4	BO NW	BO SE	A5	A6	A7	A8	B1	B2	В3	B4	BO NE	BO SW	B5	B6	B7	B8	K1	K2	K3	K4
Distanza dall	a piattaforma (m)	250	120	60	30	0	0	30	60	120	250	250	120	60	30	0	0	30	60	120	250	2000	2000	2000	2000
Policheti																									
	Chaetozone caputesocis	*	0,003	*		0,002	0,001	0,001	*		*		0,001	0,003	0,002	*	0,003	0,003	*		0,001			*	
	Chirimia biceps											0,001			0,020				0,035				*	0,001	
	Cirratulidae nd		*		*	*	*	*	0,039	0,021	*	*	*	*	*			*	*	*		*			*
	Ditrupa arietina				0,001	*	*		*				*		*		*								
	Dorvillea rudolphii				*	*	0,001	*		*							*	*							
	Drilonereis filum		0,025					0,002		0,001	*								0,002	0,001		0,001			
	Filograna sp			*	*	*	0,046	0,001							*		0,001								*
	Glycera alba	0,003	0,001	0,006		0,027	0,055	0,002	0,011			0,004	0,005	0,002	0,003	0,003	0,005			0,002	0,006		*	*	
	Glycera rouxii	0,005		0,001		0,031		0,010	0,072	0,018	0,004	*	0,027	0,016	0,013	0,002	0,014	0,002	0,025	0,002	0,017	0,014	0,002	0,004	0,001
	Glycera sp	0,001	0,001	*	*	0,001	0,002	*	0,001	0,001	0,003	*	0,002	0,002	0,001	*	*	0,003	*	0,001	0,001	*	0,001	*	*
	Glycera tesselata			0,001	0,001	0,001	0,004		*	*	*			*	0,002	0,005	0,002	*		*		0,001	0,001	*	0,002
	Glycera tridactyla				0,028		0,078												0,019						
	Goniada maculata					*			*			0,001												0,001	
	Harmothoe antilopes				0,005																				
	Harmothoe sp				0,001	0,002	0,063		*				*	*			*	*	*				*		
	Hydroides elegans					*										*									
	Hydroides norvegicus				*	0,001	0,001	*							*	*	0,001							*	
	Labioleanira yhleni		0,219	0,053				0,053		0,085		0,006	0,007						0,051	0,040	0,006				0,005
	Lumbrineris gracilis	0,001					0,007	*	0,002	0,003	*	0,001	0,001	0,001			*	*	*	0,002	*		*	0,002	
	Magelona alleni				*	0,001	*	*							*										
	Maldanidae nd	0,001	*														*						*	0,001	
	Marphysa bellii	0,058	0,128	0,052	0,111	0,092	0,151	0,166	0,063	0,080	0,125	0,027	0,026	0,079	0,234	0,025	0,081	0,341	0,073	0,137	0,063	0,185	0,041	0,022	0,052
	Melinna palmata	*	*	*	0,001	*	0,007	0,001	*			*	0,001		0,001	*	0,001	0,002		*	*		0,001	0,002	
	Minuspio cirrifera	*	*	*	*									*	*				*			*	*	*	
	Nephtys hombergi							0,005			0,013														
	Nephtys hystricis	0,005	0,016	0,002	0,010	0,030	0,037	0,006	0,005	0,003	0,002	0,007	0,001	0,003	0,004	0,020	0,046	0,006	0,040	0,011	0,004	0,002	0,015		0,002
	Nereididae nd	*				*		0,001	*	*				*	*	*	0,002	*		*		*		*	
	Ninoe armoricana	0,008	0,002	0,004	0,001	0,001	0,003	*	0,004	0,006	0,002		0,002	0,001	0,003	0,001	*	0,002	0,002	0,004	0,001	0,002	0,006	0,001	0,010
	Nothria conchylega						*											*							
	Notomastus aberans	0,016		0,019	0,002	0,018	0,025	0,021	0,017	0,011	0,016	0,014	0,009		0,011		0,012	0,010	0,025	0,006	0,006	0,008	0,009	0,010	0,004
	Ophelina cylindricaudata	0,002	0,001	0,001	0,002	0,001	*	0,001	0,002	0,001	*	0,001	0,001	0,001	0,001	*	*	0,001	0,001	0,001	0,001	*	0,001	*	0,001
	Ophiodromus flexuosus	0,001	*	*	*	*	0,003	*	*	*	*	*	*	*	*		*	*	*	*	0,002		*	*	*
	Owenia fusiformis	*				*			*	*			*	*	0,001		*	*	*	*	*				*
	Paradiopatra calliopae	0,003	0,002	0,004	0,004	0,003	0,004	0,007	0,004	0,004	0,001	0,006	0,004	0,003	0,005	0,003	0,006	0,005	0,003	0,002	0,001	0,001	0,003	0,009	0,002
	Paralacydonia paradoxa	0,001	*	*	*	0,001	*	*	*	*	*	*	*	*	*	*	0,001	0,001	*	0,001	*	*	*	0,001	*
	Paraonidae nd	0,005	0,004	0,004	0,004	0,005	0,006	0,005	0,005	0,005	0,001	0,004	0,006	0,005	0,006	0,001	0,010	0,005	0,004	0,005	0,003	0,002	0,004	0,003	0,004
	Paraprionospio pinnata						*		*	*									0,001			*	0,001		
	Pectinaria koreni				0,009	0,013	0,021	*									0,023			*					
	Phyllodoce sp					*				*			*			*	0,001		*					0,001	
	Phyllodocidae nd	*		*			*		*	*			*				*		*	*	*			*	
	Phylo foetida				0,005																				
	Phylo norvegica					0,002					0,003						*					*			0,003
	Pilargidae nd	*	*	*	*	*	*	*	*	*	*	*	*	*	*		*	*	*	*	*	*	*	*	*
	Pilargis verrucosa							*			*									0,001	*				0,001
	Pista cristata					0,002	*	*		0,001					0,001		0,002			*				*	
	Pista unibranchia																0,002								
	Poecilochetus serpens				*	0,004		*	*	*			*				*		*			0,001	*	*	0,001

Tab. 3-XLVII – Continuo.

						Trans	etto A									Trans	etto B						Con	trolli	
Stazione		A1	A2	A3	A4	BO NW	BO SE	A5	A6	A7	A8	B1	B2	В3	B4	BO NE	BO SW	B5	В6	B7	B8	K1	K2	K3	K4
Distanza dalla	piattaforma (m)	250	120	60	30	0	0	30	60	120	250	250	120	60	30	0	0	30	60	120	250	2000	2000	2000	2000
Policheti																									
	Pomatoceros triqueter					0,004	0,001									0,001	0,002								
	Prionospio ehlersi								*																
	Prionospio sp	0,001	*	*	*	*	*	*	*	0,001	*	*	*	0,002	*	*		*	*	*	*	*	*	*	*
	Prionospio steenstrupi		*									*						*							
	Sabellidae nd	*	*		0,003	*	*	*	*	*		*	*	*	*	*	*	*	*	*	*	*	*	0,001	*
	Scalibregma inflatum	*	*	*	*	0,003	0,002	0,001	*	0,003	*	*	*				0,001	0,001	*	0,001	*	*	*	0,001	
	Scoletoma impatiens	*					*	0,001	*				*		*		*							*	*
	Scoletoma sp	0,011	*	0,003	0,002	*	*	*	0,001	0,002	0,008	0,003	0,001	0,001	*	*	0,003	0,001	*	*		*	0,003		0,003
	Scoloplos armiger	*	*	*		*	*		*	*	*	*	*	*		*	*	*	*	*	*	*	*	*	*
	Serpula vermicularis				*		0,002										*								1
	Serpulidae nd						*	*						*		*	*								
	Sigambra tentaculata						0,001							*			*								
	Sphaerodoridae nd				*			*			*		*	*		*			*	*			*		*
	Spionidae nd	*	*	*	0,001	0,001	0,001	0,001	0,001	*	*	*	*	*	*	*	*	*	*	*	0,001	*	*	*	*
	Spiophanes bombyx									*		*	*	*		*		*	*	*	*	*	*	*	*
	Sternaspis scutata					0,001	0,001	*					0,003												
	Syllidae juv	*			*		*	*		*				*			*				*			*	
	Syllis parapari							*											*						
	Syllis sp				*		*					*				*	*								
	Terebellidae nd	*			0,003	0,002	0,057	*	0,004	*		0,004	0,001	0,002		*	0,002	0,001	0,012		*		0,031	0,001	0,003
	Terebellides stroemi	0,001		0,001		0,001	0,005	0,004					*	0,001	0,004		ŕ	*	,		*	0,001		,	,
Poriferi																									
	Porifera nd1				0,001			0,047									0,004	*							
Sipunculidi								,									ŕ								
	Aspidosiphon muelleri				*		0,001	0,003	0,015									0,001	0,025		0,003			0,005	0,021
	Onchnesoma steenstrupi	0,001	0,001	0,001	0,001	*	0,001	0,001	0,001	0,001	0,001	0,001	0,001	0,001	0,001	*	0,001	0,001	0,001	*	0,001	0,001	*	0,001	0,002
	Phascolion strombus			,				0,002					,	,			ŕ		,		,			,	
	Sipuncula nd	0,004	0,008	0,010	*	0,013	0,009	0,006	0,013	0,012	0,001	0,006	0,002	0,002	0,004	0,001	0,005	0,030	0,008	0,012	0,004	0,001	0,001	0,001	0,004
Biomassa totale		0,427	1,877	0,402	0,401	32,257	30,962	5,685	3,340	0,444	0,212	0,258	1,176	0,299	0,814	2,901	14,431	0,837	0,566	0,657	0,232	12,856	0,170	0,364	0,501
Ricchezza spec	cifica totale	57	47	51	73	99	112	91	74	60	50	58	68	68	81	68	107	67	63	62	55	52	59	68	57

Fig. 3.42 – Esemplari di *Brissopsis atlantica mediterranea* e *Liocarcinus depurator* rinvenuti rispettivamente in una replica prelevata dai siti B6 e A8 nel 4° survey post lavori.

3.6.2. AFFINITÀ BIOCENOTICHE DELLE SPECIE RINVENUTE

Sin dall'inizio del monitoraggio della piattaforma Bonaccia NW, i popolamenti bentonici rinvenuti sono risultati prevalentemente composti da taxa tipici di fondo mobile e, in particolare, da organismi limicoli (Lim; Tabb. 3-XLVIIIa e 3-XLVIIIb), seguiti dagli indicatori di materia organica nel sedimento (MO) e dai sabulicoli (Sab). A proposito di questi ultimi, interessante è apparso il loro incremento in termini di numero di individui nel 2° survey post lavori in corrispondenza di BO SE, sito caratterizzato, in quel survey, da un incremento cospicuo di sabbia nei sedimenti (Cfr. Cap. 3.3.1.).

Nel 6° survey post lavori la ripartizione tra i vari gruppi biocenotici è risultata per lo più confermata, sia per quanto riguarda la Ricchezza specifica che il numero di individui.

In corrispondenza di Bonaccia NW a partire dal 1° survey dopo l'installazione della piattaforma è stato registrato un lieve e costante incremento di taxa tipici di fondi rocciosi i quali in uno e entrambi gli ultimi due campionamenti hanno raggiunto il massimo numero di specie e organismi.

Tab. 3-XLVIII – Numero di taxa (a) e di individui (b) rinvenuti nell'intero periodo determinati a livello di specie suddivisi in base alla loro affinità biocenotica. In giallo sono indicati i gruppi più numerosi. Per la legenda si rimanda alla Tab. 3-XXXI.

a)		Trans	setto A			Trans	etto B			Con	trolli	
Pre-Survey	А3	BO NW	BO SE	A6	В3	BO NE	BO SW	В6	K1	K2	КЗ	K4
Sm												
Lim, VTC, VB	12	12	15	15	8	11	9	9	11	15	13	12
Sab, SFBC		1	- 1	3	1	2				1	2	
Mixt, DC, DE, DL, SGCF, SVMC	2	2	3	1	1		2		1	1	3	1
Minut						1	1				1	1
MO	6	4	4	6	4	5	6	5	6	5	6	6
AP, C, HP, Sd	3	1	- 1	1			1				1	2
Lre	2	2	1		1	1	1	1	1	2	3	2

		Trans	etto A			Trans	etto B			Con	trolli	
Durante lavori	А3	BO NW	BO SE	A6	В3	BO NE	BO SW	В6	K 1	K2	КЗ	K4
Sm						_						
Lim, VTC, VB	14	2	6	13	10	nata	6	7	12	7	11	9
Sab, SFBC	2			2		ě			2	1	2	1
Mixt, DC, DE, DL, SGCF, SVMC	2	1	2	2	1	įφ	1	1	1		1	1
Minut	1					campion						
MO	5	3	2	4	5		1	3	4	4	4	6
AP, C, HP, Sd	1					Non						
Lre	2			2		_					1	

					Trans	etto A									Trans	etto B						Con	trolli	
1° Post lavori	A1	A2	А3	A4	BO NW	BO SE	A5	A6	A7	A8	B1	B2	В3	В4	BO NE	BO SW	B5	В6	В7	B8	K1	K2	К3	K4
Sm																								
Lim, VTC, VB	12	12	15	5	6	5	8	7	10	15	9	10	4	9	6	9	8	8	14	7	10	10	14	7
Sab, SFBC	4	1	2	1	3	2	2	1	2	2	1	2	3	2	3		2		2		1		2	
Mixt, DC, DE, DL, SGCF, SVMC	1		2	2	5		1		1						1	1	2	1	1	2				
MI					- 1		1									1				1				
Minut		1			- 1			1											1			1	1	
MO	4	5	5	5	6	3	6	5	3	4	3	3	3	4	4	2	5	4	5	4	3	4	5	2
AP, C, HP, Sd	1	1	1	1	4	1	2	1	1	1	1	2	1	1	2	2	2	1	1			1		
Lre	1	1	4		1	1		1	1	1	1				1	2		2	1	1		1	2	

					Trans	etto A									Trans	etto B						Con	trolli	
2° Post lavori	A1	A2	А3	A4	BO NW	BO SE	A5	A6	A7	A8	B1	B2	В3	В4	BO NE	BO SW	B5	В6	В7	B8	K1	K2	КЗ	K4
Sm																								
Lim, VTC, VB	8	11	13	13	8	11	11	13	12	12	11	12	12	10	8	12	8	9	9	11	9	9	12	10
Sab, SFBC		2	2	3	2	3	4	3	3	1	2	1		2	3	3	1	2		2	3	1	3	2
Mixt, DC, DE, DL, SGCF, SVMC	1			3	2	2	2	2		2		2		1	1	4		1	1		2			1
MI	1	1				1									1	1	1		1					
Minut	1		1	1	1			1		1		1						1	2					
MO	5	5	4	5	3	6	5	5	5	5	4	3	4	4	5	4	3	2	5	4	4	5	6	4
AP, C, HP, Sd		1	1	2	1	3	3	4	1	1		1		1	3	5			1	1	1	2		1
Lre	1				1	1	1	3	1	1	2	1	1	2	4	3		1	1	1		1	1	

					Trans	etto A									Trans	etto B						Con	trolli	
3° Post lavori	A1	A2	А3	A4	BO NW	BO SE	A5	A6	A7	A8	B1	B2	В3	B4	BO NE	BO SW	B5	В6	В7	В8	K1	K2	КЗ	K4
Sm														1		1								
Lim, VTC, VB	13	15	13	16	20	9	15	13	8	10	8	14	9	9	16	15	15	16	12	12	11	14	11	9
Sab, SFBC	1	3	3	2	4	2	1	3		3	2	2	1	1	7	5	5	3	2	2	3	6	1	3
Mixt, DC, DE, DL, SGCF, SVMC	3	3	3	3	4	7	2	1		3		2	2	2	4	4	3	2		4	1	2	1	
MI		1				1	1	1				1			1			1		1			1	
Minut		1	1		- 1	1	1								1	- 1		1	1	1	1	1	1	1
MO	6	6	1	7	4	1	7	4	3	4	5	6	4	4	4	8	8	6	5	6	4	4	5	4
AP, C, HP, Sd	1	1	5	3	9	9	3	1			1	2	1	3	8	5	3	2	1		1	3	2	
Lre	2	3	3	3	6	4	3	2		1			1	2	6	4	3	3	1	2	1	2	3	1

					Trans	etto A									Trans	etto B						Con	trolli	
4° Post lavori	A1	A2	А3	A4	BO NW	BO SE	A5	A6	A7	A8	B1	B2	В3	B4	BO NE	BO SW	B5	В6	В7	B8	K1	K2	КЗ	K4
Sm	1																							
Lim, VTC, VB	16	14	11	11	18	17	16	11	11	12	11	11	14	10	11	13	8	15	10	14	14	14	18	8
Sab, SFBC	2	4		4	4	1	5	1	3	2	2	3	1	3	5	5	2		2	1	2		5	ĺ
Mixt, DC, DE, DL, SGCF, SVMC	1	3	1	4	5	1	5		2	2	2		2		5		1	1	2		4	1	4	1
MI						1																		i
Minut		1	1	1		1					1	1			1					1				
MO	6	6	5	5	6	6	5	5	3	6	5	5	6	4	6	6	5	7	5	4	5	5	6	2
AP, C, HP, Sd			1	5	3	5	3	2		1		1			5	4	1		1		3	1	2	
Lre	2	1	1	4	5	5	3	1		1	2	1	1		5	7	2	2		1	2	1	2	1

Tab. 3-XLVIII-Continuo.

					Trans	etto A									Trans	etto B						Con	trolli	
5° Post lavori	A1	A2	А3	A4	BO NW	BO SE	A5	A6	A7	A8	B1	B2	В3	В4	BO NE	BO SW	B5	В6	В7	В8	K1	K2	КЗ	K4
Sm																							1	
Lim, VTC, VB	19	14	16	23	23	26	25	28	17	17	16	17	17	20	18	25	18	19	19	14	19	21	21	14
Sab, SFBC	3	2	1	2	5	6	6	6	6	5	5	4	5	3	8	8	5	5	5	5	4	4	5	3
Mixt, DC, DE, DL, SGCF, SVMC	1	2	3	6	5	12	6	7	5	5	5	6	3	5	8	8	5	5	2	4	5	5	3	3
MI				1	1	1					1	1	1	1		1	1	1		1			1	
Minut	1	1	1	1		1	1	1	1		1	1	1	1	1	1	1		1	1		1		
MO	6	5	7	6	6	8	7	8	5	8	6	5	7	6	7	6	6	6	5	8	7	8	9	4
AP, C, HP, Sd	1	1	2	10	9	12	5	6	1	3	1	1	1	2	9	13	2	2	2	2	2	1	1	1
Lre	1	3	1	5	6	8	3	4	1	2	2	1	2	3	8	9	4	4	2	1	3	2	1	1

					Trans	etto A									Trans	etto B						Con	trolli	
6° Post lavori	A1	A2	А3	A4	BO NW	BO SE	A5	A6	A7	A8	B1	B2	В3	B4	BO NE	BO SW	B5	В6	В7	В8	K1	K2	К3	K4
Sm														1									1	
Lim, VTC, VB	20	20	18	18	31	24	30	26	20	17	21	21	21	22	13	28	18	20	21	18	20	20	21	17
Sab, SFBC	3	1	1	3	7	7	6	6	4	6	5	5	5	4	1	6	7	6	9	6	2	3	3	4
Mixt, DC, DE, DL, SGCF, SVMC	2	2	2	7	7	11	6	7	4	2	2	5	5	7	8	9	4	5	2	4	3	5	4	5
MI				1	1	1		1				1		1		1								
Minut	1	1	1	1	1	1	1	1			1	1		1	1	1	1		1	1		1	1	
MO	7	4	7	6	6	6	7	6	5	5	6	6	6	8	4	5	7	8	5	7	7	7	8	6
AP, C, HP, Sd	2	0	2	6	12	15	6	2	4	2	2	2	2	5	10	15	3	1	3	1	1	2	3	2
Lre	1	2	1	3	6	10	3	4	2	1	2	2	3	5	7	8	4	1	1	1	2	1	2	3

Tab. 3-XLVIII-Continuo.

b)		Trans	etto A			Trans	etto B			Con	trolli	
Pre-Survey	А3	BO NW	BO SE	A6	В3	BO NE	BO SW	В6	K1	K2	КЗ	K4
Sm												
Lim, VTC, VB	19,00	14,33	13,00	12,33	11,00	11,56	8,33	9,67	10,67	18,33	25,33	18,33
Sab, SFBC		0,33	0,33	1,00	0,33	0,78				1,00	0,67	
Mixt, DC, DE, DL, SGCF, SVMC	0,67	1,67	1,33	0,33	0,33		1,00		0,33	0,33	1,33	0,33
Minut						0,33	0,33				0,33	0,33
MO	9,67	5,33	3,67	5,33	4,33	2,89	4,33	2,33	8,00	11,33	15,00	4,00
AP, C, HP, Sd	1,33	0,67	0,33	0,67			0,33				3,33	1,00
Lre	0,67	0,67	0,33		0,33	0,67	0,67	0,33	0,33	1,00	4,67	1,00

		Trans	etto A			Trans	etto B			Con	trolli	
Durante lavori	А3	BO NW	BO SE	A6	В3	BO NE	BO SW	В6	K1	K2	КЗ	K4
Sm						_						
Lim, VTC, VB	16,33	3,33	4,00	18,33	7,67	campionata	3,00	6,67	15,00	10,00	11,33	11,00
Sab, SFBC	1,33			1,00		ũ			0,67	1,00	1,00	0,33
Mixt, DC, DE, DL, SGCF, SVMC	74,00	5,67	1,67	3,00	0,33	įφι	0,67	5,33	0,33		0,33	0,33
Minut	0,33					an						
MO	7,33	1,00	1,67	2,67	3,00	č	0,33	1,33	3,00	2,67	2,33	3,33
AP, C, HP, Sd	0,33					No						
Lre	0,67			1,00		_					0,67	

					Trans	etto A									Trans	etto B						Con	trolli	
1° Post lavori	A1	A2	А3	A4	BO NW	BO SE	A5	A6	A7	A8	B1	B2	В3	B4	BO NE	BO SW	B5	В6	В7	В8	K1	K2	К3	K4
Sm																								
Lim, VTC, VB	13,00	13,33	10,33	1,67	5,33	3,33	9,67	8,33	13,67	7,67	6,33	8,33	3,67	6,33	4,33	4,00	5,00	10,00	12,33	11,33	6,33	13,33	10,00	4,00
Sab, SFBC	1,33	0,33	1,00	0,33	3,00	1,33	2,00	0,33	0,67	1,00	0,33	0,67	1,00	1,00	1,33		1,00		1,33		0,33		1,00	
Mixt, DC, DE, DL, SGCF, SVMC	0,33		0,67	0,67	1,67		0,33		0,67						0,33	0,33	2,33	0,33	0,33	0,67				
MI					0,67		0,33									0,33				0,33				
Minut		0,33			1,00			0,33											0,33			0,67	0,33	
MO	5,67	8,00	6,00	3,33	7,00	2,33	8,67	6,00	4,00	4,67	4,67	5,00	4,33	3,67	5,33	1,00	5,00	4,00	8,33	7,00	1,00	5,67	5,33	1,67
AP, C, HP, Sd	0,33	0,33	0,33	1,00	1,67	1,00	0,67	0,33	0,33	0,33	0,33	1,33	0,33	0,33	1,00	1,33	1,33	0,33	0,33			0,67		
Lre	0,33	0,33	1,67		0,67	0,33		0,33	1,33	2,67	0,33				0,33	0,67		1,33	0,67	1,33		0,67	1,33	

					Trans	etto A									Trans	etto B						Con	trolli	
2° Post lavori	A1	A2	А3	A4	BO NW	BO SE	A5	A6	A7	A8	B1	B2	В3	B4	BO NE	BO SW	В5	В6	В7	В8	K1	К2	КЗ	K4
Sm																								
Lim, VTC, VB	12,00	14,33	11,67	13,00	6,33	5,67	14,33	19,00	21,00	13,67	19,67	16,33	8,00	8,33	6,00	8,67	7,00	15,33	15,67	22,33	10,00	24,33	23,33	8,00
Sab, SFBC		1,33	2,00	5,00	3,67	9,33	7,67	9,33	3,00	0,33	0,67	0,67		1,33	2,00	2,33	0,33	1,33		1,00	2,00	0,33	1,00	1,00
Mixt, DC, DE, DL, SGCF, SVMC	1,00			1,00	0,67	0,67	0,67	1,00		0,67		0,67		0,33	0,67	1,33		0,33	0,33		0,67			0,67
MI	0,33	0,33				0,67									0,33	0,33	0,67		0,67					
Minut	0,33		0,33	0,67	0,67			0,67		0,33		0,33						0,33	1,00					
MO	2,33	6,00	5,67	5,00	3,67	4,67	8,67	8,33	6,33	6,67	7,00	6,00	2,67	4,00	5,00	4,33	3,00	1,33	6,67	8,00	6,00	12,00	9,00	4,67
AP, C, HP, Sd		0,33	0,67	1,67	0,33	4,33	1,67	2,67	0,67	0,33		0,33		1,00	1,33	1,67			0,67	0,33	0,67	1,67		0,33
Lre	0,33				0,67	1,00	1,00	1,33	1,33	1,33	2,00	1,00	0,67	1,33	1,67	7,33		0,67	2,33	2,67		0,67	2,00	

					Trans	etto A									Trans	etto B						Con	trolli	
3° Post lavori	A1	A2	А3	A4	BO NW	BO SE	A5	A6	A7	A8	B1	B2	В3	B4	BO NE	BO SW	B5	В6	В7	B8	K1	K2	КЗ	K4
Sm														0,33		0,33								
Lim, VTC, VB	11,33	14,67	13,33	12,33	24,00	3,67	11,00	13,00	6,67	8,67	8,67	11,33	12,00	10,67	14,33	15,33	17,67	13,67	16,67	24,33	9,00	18,67	14,33	7,00
Sab, SFBC	0,33	1,67	1,00	1,00	1,67	1,00	2,00	1,00		2,00	0,67	0,67	0,33	0,33	2,33	1,67	2,67	1,00	1,33	1,33	1,00	2,67	0,33	1,00
Mixt, DC, DE, DL, SGCF, SVMC	1,00	1,33	1,67	1,67	5,67	6,67	0,67	1,00		1,67		0,67	0,67	0,67	2,00	3,33	1,00	1,33		1,33	0,33	1,00	0,33	
MI		0,67				0,33	0,67	0,33				0,33			0,33			0,67		0,33			0,67	
Minut		0,33	0,33		0,67	0,33	1,67								0,33	0,33		0,67	0,33	0,33	0,33	0,33	0,33	0,33
MO	3,67	5,33	3,33	6,67	5,00	0,33	4,33	6,33	2,67	3,67	6,67	5,67	4,33	2,00	5,00	6,67	9,00	9,33	5,33	10,67	5,67	5,00	6,00	4,00
AP, C, HP, Sd	0,67	0,67	1,67	1,67	24,00	47,00	1,33	0,67			0,33	0,67	1,00	1,00	9,67	5,33	1,33	0,67	0,33		0,67	1,33	1,00	
Lre	1,67	1,00	1,00	1,33	35,00	8,67	1,67	0,67		0,33			0,33	1,00	7,33	3,00	3,33	1,00	0,67	2,00	0,67	1,33	1,67	0,67

					Trans	etto A									Trans	etto B						Con	trolli	
4° Post lavori	A1	A2	А3	A4	BO NW	BO SE	A5	A6	A7	A8	В1	B2	В3	В4	BO NE	BO SW	В5	В6	В7	В8	K1	K2	КЗ	K4
Sm	0,33																							
Lim, VTC, VB	17,00	12,33	10,33	11,00	19,00	16,67	13,33	19,67	15,67	15,33	14,33	14,67	18,33	9,00	15,33	14,67	9,00	11,67	12,67	18,00	20,33	18,33	21,67	8,67
Sab, SFBC	1,00	1,33		1,33	2,33	0,33	2,00	0,33	1,00	0,67	0,67	1,33	0,67	1,00	3,67	3,67	0,67		0,67	0,33	1,67		3,33	ĺ
Mixt, DC, DE, DL, SGCF, SVMC	0,33	1,00	0,33	1,33	2,33	0,33	1,67		1,33	2,00	0,67		0,67		2,33		0,67	0,33	1,00		1,33	0,33	1,67	0,33
MI						0,33																		<u> </u>
Minut		0,33	0,33	0,33		0,33					0,33	0,33			0,67					0,33				
MO	9,33	10,67	4,33	7,67	7,33	6,33	5,00	5,00	2,33	8,00	9,00	6,33	8,33	5,00	8,00	10,33	5,00	3,67	5,67	5,67	7,67	9,00	10,67	1,33
AP, C, HP, Sd			0,33	2,33	1,67	4,33	1,00	1,33		0,33		0,33			2,67	3,67	1,00		0,33		1,67	0,67	1,00	ĺ
Lre	3,33	0,33	0,33	1,67	2,00	3,00	1,67	0,33		1,67	2,33	0,67	0,33		5,00	4,00	0,67	0,67		1,00	1,67	1,67	1,00	0,33

Tab. 3-XLVIII – Continuo.

					Trans	setto A									Trans	etto B						Con	trolli	
5° Post lavori	A1	A2	А3	A4	BO NW	BO SE	A5	A6	A7	A8	B1	B2	В3	В4	BO NE	BO SW	В5	В6	В7	В8	K1	K2	кз	K4
Sm																							0,17	
Lim, VTC, VB	34,67	30,00	17,50	22,00	32,50	17,17	25,67	38,67	22,33	24,83	27,00	29,00	25,50	23,83	23,17	19,83	21,00	28,83	19,83	18,33	23,50	26,83	26,50	13,50
Sab, SFBC	0,17	0,17	0,00	0,00	0,17	0,00	0,67	0,83	0,50	0,67	0,83	1,33	0,67	0,83	0,67	1,33	0,50	2,00	0,50	0,83	0,50	0,83	0,33	0,83
Mixt, DC, DE, DL, SGCF, SVMC	0,17	0,33	1,00	1,17	2,50	5,50	2,50	3,67	2,83	2,00	2,67	1,83	1,00	3,33	3,33	6,33	3,83	3,33	0,83	3,00	3,17	2,50	2,33	1,67
MI				0,17	1,67	0,50					0,67	0,50	0,17	0,17		0,33	0,17	0,33		0,17			0,17	
Minut	0,33	0,67	0,67	0,33		0,17	0,50	1,50	0,33		0,33	0,17	0,50	0,50	0,17	0,33	0,33		0,17	0,33		0,17		
MO	12,83	8,67	7,50	7,67	13,50	8,83	10,00	13,00	9,17	8,50	11,33	9,67	13,17	8,17	7,33	8,67	10,00	12,00	8,17	11,33	12,83	15,33	11,00	7,00
AP, C, HP, Sd	0,17	0,17	1,17	6,17	51,33	18,50	1,67	3,00	0,17	0,67	0,17	0,33	0,33	2,00	19,67	41,50	1,33	0,83	0,50	0,33	1,50	1,00	1,00	0,17
Lre	2,00	1,17	0,33	3,33	21,00	34,50	1,83	1,17	1,67	2,50	3,00	2,83	0,83	1,00	23,00	26,00	1,00	1,67	1,17	2,83	3,67	2,33	0,83	1,67
						setto A									Trans	etto B						Con	trolli	
6° Post lavori	A1	A2	А3	A4	BO NW	BO SE	A5	A6	A7	A8	B1	B2	В3	В4	BO NE	BO SW	B5	В6	В7	В8	K1	K2	КЗ	K4
Sm														0,33									0,17	
Lim, VTC, VB	28,67	24,67	25,17	25,00	27,17	34,00	35,00	29,17	24,50	15,83	31,33	33,50	26,50	31,17	13,50	26,33	26,67	26,50	28,00	15,17	14,83	21,33	21,17	16,33
Sab, SFBC	1,33	0,33	0,50	1,33	3,17	8,00	1,67	2,00	2,67	1,50	2,83	1,50	2,17	2,50	0,33	6,83	2,33	1,67	3,50	1,67	0,33	1,33	2,17	2,17
Mixt, DC, DE, DL, SGCF, SVMC	0,33	1,00	0,67	2,50	2,50	8,00	2,50	3,00	1,50	0,50	0,50	2,00	2,17	2,83	2,50	4,83	1,67	1,50	0,67	1,00	0,83	1,00	1,17	1,33
MI				1,00	0,83	0,33		0,33				0,17		0,17		0,17								
Minut	0,33	0,17	0,17	0,83	0,17	0,17	0,83	0,17			0,17	0,50		0,33	0,17	0,50	0,67		0,17	0,17		0,17	0,67	
MO	13,50	9,83	9,33	7,83	12,00	14,33	16,67	12,67	11,33	6,33	15,17	16,50	9,17	10,17	5,00	19,50	16,67	12,33	11,83	7,33	7,67	14,50	14,83	8,00
AP, C, HP, Sd			4 = 0		0.47	00 47	0.00	4 47	4.07	0.50	0.00	0.00	4 00	0.00	4 4 7	4447	4 50	0.07	0.50	0.47	0.50	4.07	1 EO	0,67
	0,33	0,00	1,50	2,67	9,17	36,17	3,33	1,17	1,67	0,50	0,33	0,83	1,00	2,33	4,17	14,17	1,50	0,67	0,50	0,17	0,50	1,67	1,50	0,07

3.6.3. DOMINANZA

Per la rappresentazione grafica della dominanza sono stati considerati i 26 taxa che nell'estate 2018 hanno complessivamente costituito circa l'83% delle comunità bentoniche, includendo i rimanenti nella categoria "altro" (fig. 3.43).

Data la complessità determinata dall'elevato numero di specie considerate, necessario a causa dell'evoluzione temporale dei popolamenti, la trattazione che segue avrà carattere generale evitando di dilungarsi in troppi particolari.

In tutti i survey condotti sinora i policheti della famiglia Paraonidae hanno sempre costituito il taxon più importante praticamente ovunque, ad eccezione del campionamento effettuato durante i lavori di installazione della piattaforma quando nell'area circostante Bonaccia NW era risultato dominante o comunque importante il crostaceo decapode *Upogebia deltaura*. Nella maggior parte delle stazioni, dopo i paraonidi hanno sempre raggiunto percentuali rilevanti i policheti *O. cilindricaudata*, *P. calliopae* e *A. filiformis*.

Sin dal 1° survey post lavori i siti BO e, in particolare, quello posto in direzione SE, hanno rappresentato un'eccezione al pattern di dominanza appena descritto. In queste stazioni, infatti, nei vari campionamenti hanno prevalso diversi taxa, quali i policheti spionidi, sabellidi e *Owenia fusiformis*, e i molluschi bivalvi *N. cochlear* e *A. ephippium*. L'importanza di queste due specie di molluschi si è notevolmente ridotta nell'estate 2017 quando sono stati sostituiti dallo cnidario *Epizoanthus* sp (26% in BO SE), è di nuovo aumentata in inverno 2018 e diminuita in estate. In quest'ultimo monitoraggio è stata registrata un'elevatissima percentuale di policheti serpuloidei appartenenti al genere

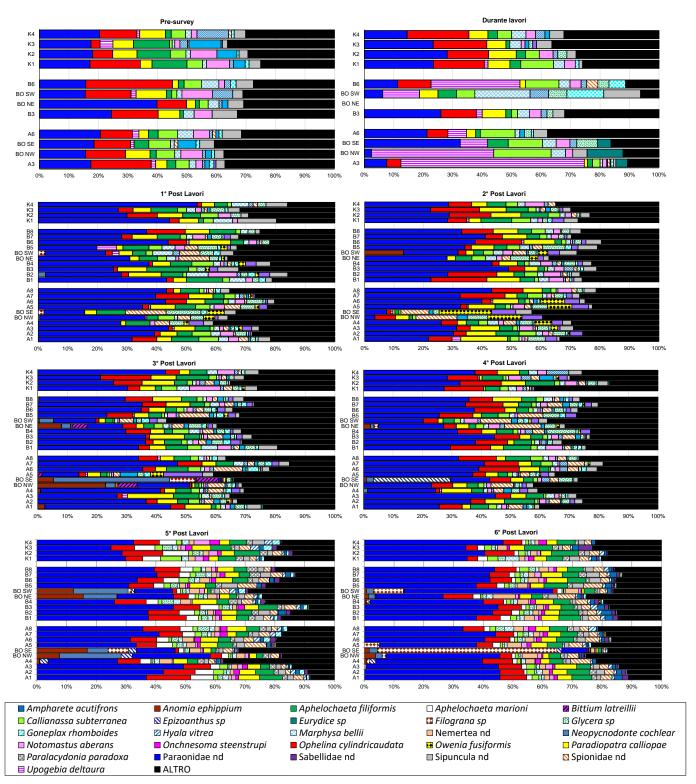
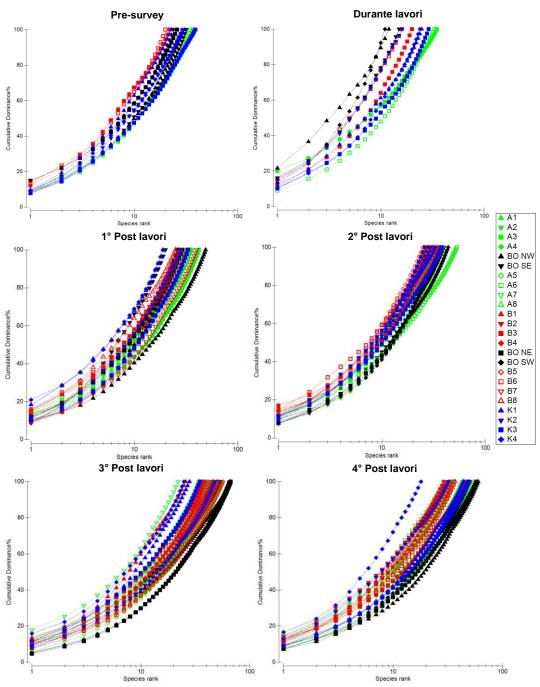



Fig. 3.51 - Valori percentuali di dominanza delle specie principali ottenuti nelle stazioni monitorate nei survey finora condotti.

La categoria "altro" si è leggermente ridotta nel corso del 2018, raggiungendo il minimo in A1 in inverno (8%).

Come nei precedenti campionamenti, anche nell'estate 2018 non si evidenziano particolari differenze tra le stazioni monitorate lungo i transetti e i controlli, così come confermato dalle curve di dominanza cumulativa (fig. 3.44). Per quanto concerne i siti a ridosso della piattaforma, è inoltre degno di nota il fatto che, già dal 3° survey post lavori, le curve relative siano risultate lievemente distaccate rispetto alle altre per la presenza di un popolamento più diversificato. Solo nell'ultimo monitoraggio la curva del sito BO SE evidenzia alla sua origine l'elevata dominanza di *Filograna* sp.

Fig. 3.44 - Curve di dominanza cumulativa ottenute per le stazioni campionate nell'intero periodo di indagine.

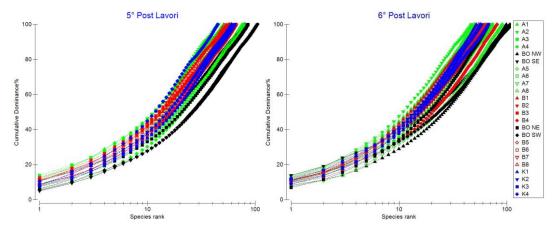
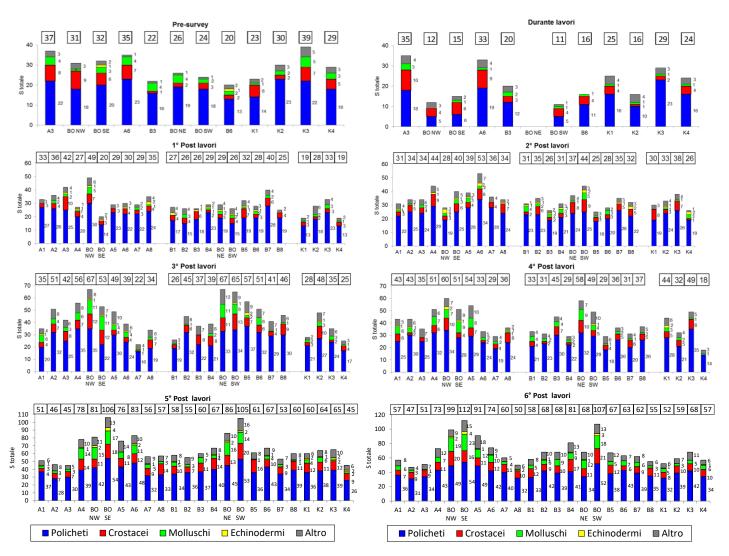


Fig. 3.44 – Continuo.

3.6.4. RICCHEZZA SPECIFICA TOTALE (S)

Nell'estate 2018 in tutta l'area monitorata sono stati rinvenuti 205 taxa appartenenti prevalentemente ai policheti, seguiti dai crostacei e dai molluschi come in tutti i monitoraggi precedenti (Tab. 3-XLIX). Rispetto al 1° monitoraggio post installazione della piattaforma, il numero di taxa campionati si è quasi raddoppiato, seguendo un trend caratterizzato da una lieve flessione nei periodi estivi. Il massimo assoluto sinora è stato ottenuto nell'inverno 2018 quando è stata rilevata la presenza di 216 taxa.


Tab. 3-XLIV – Ripartizione secondo il phylum di appartenenza e totale dei taxa rinvenuti prima (PS), durante (DL) e dopo (PL) l'installazione della piattaforma Bonaccia NW.

	PS	DL	1° PL	2° PL	3° PL	4° PL	5° PL	6° PL
Briozoi		1	5	4	6	4	7	9
Cnidari	2	2	3	2	6	7	8	9
Crostacei	24	16	27	34	44	36	55	51
Echinodermi	2		2	5	4	4	6	6
Molluschi	14	4	18	14	29	21	42	44
Nemertini	1	1	1	1	1	1	1	1
Pantopodi				1			1	1
Platelminti					1		1	1
Policheti	51	40	64	64	78	78	89	78
Poriferi			1		1	1	1	1
Sipunculidi	3	3	3	4	4	4	4	4
Tunicati					1		1	
Totale	97	67	124	129	175	156	216	205

Nell'ultimo monitoraggio i valori maggiori di S sono stati ottenuti in corrispondenza di Bonaccia NW, analogamente a quanto registrato, seppure in maniera meno evidente, sin dalla sua entrata in produzione (fig. 3.45). L'influenza della piattaforma è apparsa evidente anche a 30 m di distanza lungo l'asse NW – SE riducendosi nei siti più lontani i quali sono

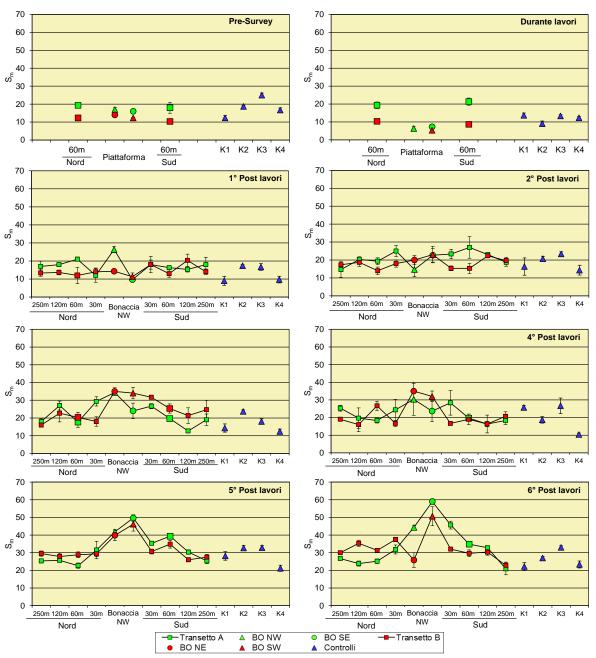
risultati comparabili con i controlli. Lungo B, invece, è stata osservata una situazione più omogenea con i controlli a tutte le distanze, distinguendosi solo la stazione BO SW.

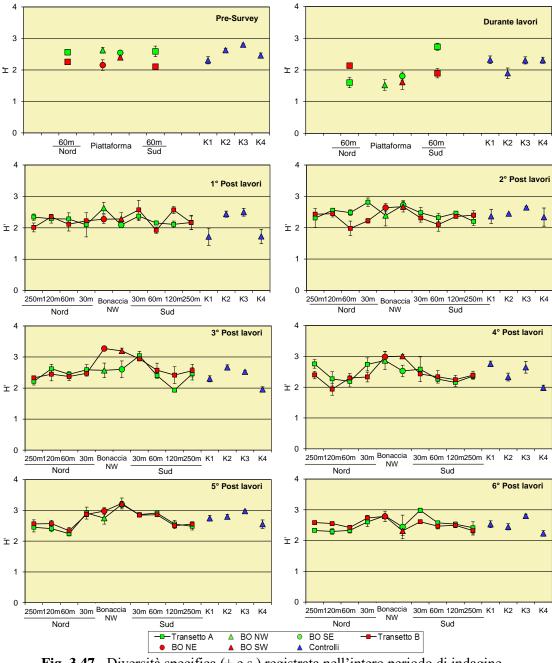
La peculiarità delle stazioni a ridosso della piattaforma e di quelle poste a 30 m da essa è una conseguenza del rinvenimento esclusivo di numerosi taxa tipici di substrati rocciosi come, ad esempio, i policheti *Serpula vermicularis*, *Hydroides elegans* e *Hydroides norvegicus*, i molluschi *Trophonopsis muricatus*, *N. cochlear* e *Ostrea edulis*, i crostacei *Galathea intermedia* e *Galathea nexa* e i briozoi *Savignyella lafontii* e *Schizoporella magnifica* (Tab. 3-XXXIX).

Fig. 3.45 - Ripartizione secondo il phylum di appartenenza delle specie rinvenute nelle singole stazioni campionate nell'intero periodo di indagine. Sono anche riportati i valori della Ricchezza specifica totale ottenuti per i vari siti (riquadri).

3.6.5. RICCHEZZA SPECIFICA MEDIA (S_M)

Analogamente ai survey precedenti, anche nel 6° post lavori S_m ha presentato lo stesso trend osservato per la Densità e la Ricchezza specifica totale (fig. 3.46).




Fig. 3.46 - Ricchezza specifica media (± e.s.) registrata nei survey condotti sinora.

In BO SE è stato raggiunto il massimo assoluto dell'intero periodo di indagine $(59,00\pm1,57)$ comparabile solo a BO SW $(50,67\pm5,36)$, a sua volta confrontabile con BO NW e A5. Questi siti hanno presentato valori di gran lunga superiori a quelli dei controlli. Nell'altra stazione corrispondente alla piattaforma (BO NE), invece, S_m si è ridotta risultando comparabile con le distanze maggiori e con i riferimenti.

Considerando l'intero periodo di campionamento, l'indice ha sempre mostrato variazioni altalenanti nel tempo, con valori di S_m che aumentavano, diminuivano o rimanevano costanti da un survey all'altro. Tuttavia appare ben chiara la tendenza ad un aumento della Ricchezza specifica media dopo la fine dei lavori di installazione della piattaforma, soprattutto nelle stazioni poste in prossimità di Bonaccia NW.

3.6.6. DIVERSITÀ SPECIFICA (H')

Nel 6° survey post lavori la Diversità specifica non ha seguito lo stesso trend osservato per gli indici precedentemente descritti (fig. 3.47).

Fig. 3.47 - Diversità specifica (\pm e.s.) registrata nell'intero periodo di indagine.

Infatti, i siti BO SE e BO SW sono risultati comparabili a tutti gli altri inclusi i controlli a causa di una flessione determinata dalla netta dominanza rispettivamente di *Filograna* sp (60%) e dei poliheti paraonidi (50%).

Il massimo (2,98±0,07) è stato registrato in A5 grazie a una percentuale inferiore di paraonidi e, nel contempo, all'elevato numero di specie rinvenute. In generale, comunque, gli andamenti di H' hanno rispecchiato le variazioni di importanza di questi policheti da un sito all'altro, anche nei riferimenti.

In tutto il periodo di monitoraggio non si evidenziano variazioni univoche dell'indice, ma l'intervallo dei valori è complessivamente rimasto simile nel tempo, se si eccettuano una riduzione in corrispondenza della piattaforma e nei siti a 60 m a Nord durante i lavori di installazione.

3.6.7. MULTIDIMENSIONAL SCALING (MDS)

L'MDS applicato ai dati di densità delle singole specie monitorate nell'intero periodo ha separato i diversi siti campionati non tanto dal punto di vista temporale quando da quello spaziale (figg. 3.48a e 3.48b). Si può infatti notare come, dal periodo coincidente con l'installazione di Bonaccia NW sino all'ultimo monitoraggio, le stazioni poste in corrispondenza della piattaforma appaiano, in misura più o meno evidente, discostate dal cluster principale comprendente i restanti siti dei transetti e i controlli.

Dal durante lavori fino al 2° survey post lavori, l'isolamento di tutte o alcune stazioni BO è correlabile ai bassi quantitativi registrati delle specie principali (figg. 3.48c - 3.48d), ritornati poi dal 3° post lavori in poi a livelli comparabili con quelli ottenuti nelle restanti stazioni monitorate, se non lievemente superiori. Nel 2° post, il distacco dei siti BO NW e BO SE è stato anche una conseguenza dei maggiori quantitativi di *O. fusiformis* (fig. 3.48e), una specie legata ai fondali sabbiosi che è aumentata notevolmente in quel survey come conseguenza delle elevate percentuali di sabbia nei sedimenti (Cfr. Cap. 3.3.1.).

La separazione di BO SE nell'inverno 2017 è stata invece una conseguenza del ridotto quantitativo dei taxa principali, del rinvenimento di numerose specie e dei maggiori quantitativi di altre come *N. cochlear* e *A. ephippium* (figg. 3.48f e 3.48g) che hanno reso anche gli altri siti BO peculiari anche nei monitoraggi successivi.

Fig. 3.48 – Rappresentazione bidimensionale dei siti campionati nei survey condotti sinora tramite il metodo del MultiDimensional Scaling. I cerchi verdi indicano i quantitativi in termini di densità delle singole specie.

3.6.8. VALUTAZIONE DELLO STATO AMBIENTALE

3.6.8.1 Indice W di Clarke

Nell'estate 2018 l'indice W di Clarke ha classificato tutta l'area investigata inclusi i controlli come leggermente disturbata o moderatamente disturbata (Tab. 3-L). Nei siti corrispondenti alla piattaforma è stato sempre rilevato un disturbo leggero con la sola eccezione di BO NW nel 2° survey post lavori di installazione.

Rispetto all'inverno 2018 si è leggermente esteso il disturbo moderato sia lungo i transetti che nei riferimenti.

3.6.8.2 Indice AMBI

Analogamente a quanto riscontrato sin dall'inizio del monitoraggio di Bonaccia NW, l'indice AMBI ha evidenziato ovunque un ambiente omogeneo e caratterizzato da un lieve disturbo, ad eccezione di poche stazioni risultate indisturbate in uno o più survey (Tab. 3-LI). Tra queste, AM SE è apparsa priva di disturbo a partire dal 2° survey post lavori di installazione sino a fine periodo.

Mentre sino all'estate 2017 era stata rilevata una netta prevalenza nelle comunità bentoniche di taxa indifferenti all'arricchimento organico e di specie sensibili (II e I gruppo ecologico rispettivamente), nel 2018 sono risultati maggiormente presenti i taxa tolleranti del III gruppo. L'importanza delle specie del IV e, soprattutto, del V gruppo ecologico (opportunisti di II e I primo ordine) è sempre risultata molto ridotta nel tempo.

3.6.8.3 Indice BENTIX

Ancora una volta il BENTIX ha fornito risultati più pessimistici rispetto ai due indici sopra descritti, come già accaduto in tutti i campionamenti effettuati dall'inizio della fase di produzione di Bonaccia NW (Tab. 3-XLII), classificando nell'estate 2018 tutti i siti inclusi i controlli come moderatamente disturbati eccetto A4 e BO NE (leggermente disturbati) e BO SE, per il quale anche il BENTIX come l'AMBI non ha rilevato disturbo. Rispetto all'inverno 2018 anche secondo il BENTIX, così come per l'indice W, si è esteso spazialmente attorno alla piattaforma il disturbo moderato, che è andato ad interessare anche i 4 controlli.

3.6.8.4 Stato ecologico

In Tab. 3-LIII è riportato lo stato ecologico relativo alle diverse stazioni campionate nell'intero periodo e derivato dalla combinazione dei tre indici. Nell'ultimo survey lo stato

è risultato compreso tra buono e moderato nell'area circostante la piattaforma, eccetto in BO SE dove lo stato è risultato alto/buono, e tra buono/moderato e moderato ai controlli.

Rispetto all'inverno 2018 è avvenuto un lieve peggioramento dello stato ambientale sia lungo i transetti che nei riferimenti e un lieve miglioramento in AM SE.

Rispetto invece al pre-survey le condizioni ai controlli non mostrano variazioni, mentre nell'area circostante la piattaforma sembra si siano ripristinate le stesse buone condizioni (o siano migliorate) solo in BO NE e BO SE.

Tab. 3-L – Valori dell'indice W di Clarke ottenuti per i siti monitorati nei survey condotti sinora. Nel durante lavori la stazione BO NE non è stata campionata.

	Stazione	W	Classificazione ambientale		Stazione	W	Classificazione ambientale		Stazione	W	Classificazione ambientale				
	A3	0,517	Leggermente disturbato		A1	0,286	Moderatamente disturbato		A1	0,378	Leggermente disturbato				
	BO NW	0,319	Leggermente disturbato		A2	0,369	Leggermente disturbato		A2	0,349	Leggermente disturbato				
	BO SE	0,477	Leggermente disturbato		А3	0,398	Leggermente disturbato		А3	0,281	Moderatamente disturbato				
	A6	0,452	Leggermente disturbato		A4	0,195	Moderatamente disturbato		A4	0,494	Leggermente disturbato				
>	В3	0,351	Leggermente disturbato		BO NW	0,504	Leggermente disturbato		BO NW	0,178	Moderatamente disturbato				
Ş	BO NE	0,487	Leggermente disturbato		BO SE	0,466	Leggermente disturbato		BO SE	0,545	Leggermente disturbato				
Pre-survey	BO SW	0,443	Leggermente disturbato		A5	0,208	Moderatamente disturbato		A5	0,221	Moderatamente disturbato				
Pre	В6	0,491	Leggermente disturbato		A6	0,377	Leggermente disturbato		A6	0,268	Moderatamente disturbato				
	K1	0,278	Moderatamente disturbato		A7	0,344	Leggermente disturbato		A7	0,240	Moderatamente disturbato				
	K2	0,338	Leggermente disturbato		A8	0,405	Leggermente disturbato		A8	0,237	Moderatamente disturbato				
	К3	0,282	Moderatamente disturbato	Ë		0,395	Leggermente disturbato	Ë	B1	0,334	Leggermente disturbato				
	K4	0,319	Leggermente disturbato	Post lavor	B2	0,405	Leggermente disturbato	Post lavori	B2	0,173	Moderatamente disturbato				
_	A3	0,369	Leggermente disturbato	ts (B3	0,411	Leggermente disturbato	Ŋ	B3	0,606	Leggermente disturbato				
	BO NW	0,362	Leggermente disturbato	Ğ	B4	0,467	Leggermente disturbato	ğ	B4	0,304					
	BO SE	0,362		Ť	BO NE	0,586		°	BO NE	0,304	Leggermente disturbato				
	A6	0,385	Leggermente disturbato		BO SW	0,544	Leggermente disturbato		BO NE	0,569	Leggermente disturbato				
<u>=</u>	B3	0,385	Leggermente disturbato		BO SW	0,544	Leggermente disturbato		BO SW	0,569	Leggermente disturbato				
lavori	BO NE	0,403	Leggermente disturbato		B6	0,312	Leggermente disturbato		B6	0,430	Leggermente disturbato				
Ę.	BO SW	0,496	Non campionata Leggermente disturbato		B7	0,312	Leggermente disturbato Leggermente disturbato		B7	0,317	Leggermente disturbato Moderatamente disturbato				
Durante	B6	0,490	Leggermente disturbato		B8	0,302	Leggermente disturbato		B8	0,173	Leggermente disturbato				
ă	K1	0,490	Leggermente disturbato		K1	0,343	Leggermente disturbato	ł	K1	0,333	Leggermente disturbato				
	K2	0,360			K2	0,343			K2	0,333					
	K3	0,380	Moderatamente disturbato		K3	0,331	Leggermente disturbato		K3	0,166	Moderatamente disturbato Moderatamente disturbato				
	K4	0,360	Leggermente disturbato		K4	0,439	Leggermente disturbato		K4	0,658					
_	N4	0,400	Leggermente disturbato		N4	0,334	Leggermente disturbato		N4	0,036	Leggermente disturbato				
					_			_							
	Stazione	W	Classificazione ambientale	1	Stazione	W	Classificazione ambientale	1	Stazione	W	Classificazione ambientale		Stazione	W	Classificazione ambientale
	Stazione A1	W 0,463		1	Stazione A1	-			Stazione A1	W 0,298	Classificazione ambientale Moderatamente disturbato		Stazione A1		
	A1	0,463	Leggermente disturbato		A1	0,482	Leggermente disturbato		A1	0,298	Moderatamente disturbato		A 1	0,210	Moderatamente disturbato
	A1 A2	0,463 0,364	Leggermente disturbato Leggermente disturbato		A1 A2	0,482 0,434	Leggermente disturbato Leggermente disturbato		A1 A2	0,298 0,305	Moderatamente disturbato Leggermente disturbato		A1 A2	0,210 0,362	Moderatamente disturbato Leggermente disturbato
	A1 A2 A3	0,463 0,364 0,380	Leggermente disturbato Leggermente disturbato Leggermente disturbato		A1 A2 A3	0,482 0,434 0,386	Leggermente disturbato Leggermente disturbato Leggermente disturbato		A1 A2 A3	0,298 0,305 0,343	Moderatamente disturbato Leggermente disturbato Leggermente disturbato		A1 A2 A3	0,210 0,362 0,281	Moderatamente disturbato Leggermente disturbato Moderatamente disturbato
	A1 A2 A3 A4	0,463 0,364 0,380 0,364	Leggermente disturbato Leggermente disturbato Leggermente disturbato Leggermente disturbato		A1 A2 A3 A4	0,482 0,434 0,386 0,365	Leggermente disturbato Leggermente disturbato Leggermente disturbato Leggermente disturbato		A1 A2 A3 A4	0,298 0,305 0,343 0,278	Moderatamente disturbato Leggermente disturbato Leggermente disturbato Moderatamente disturbato		A1 A2 A3 A4	0,210 0,362 0,281 0,251	Moderatamente disturbato Leggermente disturbato Moderatamente disturbato Moderatamente disturbato
	A1 A2 A3 A4 BO NW	0,463 0,364 0,380 0,364 0,397	Leggermente disturbato Leggermente disturbato Leggermente disturbato Leggermente disturbato Leggermente disturbato		A1 A2 A3 A4 BO NW	0,482 0,434 0,386 0,365 0,487	Leggermente disturbato Leggermente disturbato Leggermente disturbato Leggermente disturbato Leggermente disturbato		A1 A2 A3 A4 BO NW	0,298 0,305 0,343 0,278 0,384	Moderatamente disturbato Leggermente disturbato Leggermente disturbato Moderatamente disturbato Leggermente disturbato		A1 A2 A3 A4 BO NW	0,210 0,362 0,281 0,251 0,483	Moderatamente disturbato Leggermente disturbato Moderatamente disturbato Moderatamente disturbato Leggermente disturbato
	A1 A2 A3 A4 BO NW BO SE	0,463 0,364 0,380 0,364 0,397 0,346	Leggermente disturbato Leggermente disturbato Leggermente disturbato Leggermente disturbato Leggermente disturbato Leggermente disturbato Leggermente disturbato		A1 A2 A3 A4 BO NW BO SE	0,482 0,434 0,386 0,365 0,487 0,478	Leggermente disturbato Leggermente disturbato Leggermente disturbato Leggermente disturbato Leggermente disturbato Leggermente disturbato Leggermente disturbato		A1 A2 A3 A4 BO NW BO SE	0,298 0,305 0,343 0,278 0,384 0,452	Moderatamente disturbato Leggermente disturbato Leggermente disturbato Moderatamente disturbato Leggermente disturbato Leggermente disturbato		A1 A2 A3 A4 BO NW BO SE	0,210 0,362 0,281 0,251 0,483 0,321	Moderatamente disturbato Leggermente disturbato Moderatamente disturbato Moderatamente disturbato Leggermente disturbato Leggermente disturbato
	A1 A2 A3 A4 BO NW BO SE A5	0,463 0,364 0,380 0,364 0,397 0,346 0,324	Leggermente disturbato Leggermente disturbato Leggermente disturbato Leggermente disturbato Leggermente disturbato Leggermente disturbato Leggermente disturbato Leggermente disturbato		A1 A2 A3 A4 BO NW BO SE A5	0,482 0,434 0,386 0,365 0,487 0,478 0,463	Leggermente disturbato Leggermente disturbato Leggermente disturbato Leggermente disturbato Leggermente disturbato Leggermente disturbato Leggermente disturbato Leggermente disturbato		A1 A2 A3 A4 BO NW BO SE A5	0,298 0,305 0,343 0,278 0,384 0,452 0,348	Moderatamente disturbato Leggermente disturbato Leggermente disturbato Moderatamente disturbato Leggermente disturbato Leggermente disturbato Leggermente disturbato Leggermente disturbato		A1 A2 A3 A4 BO NW BO SE A5	0,210 0,362 0,281 0,251 0,483 0,321 0,384	Moderatamente disturbato Leggermente disturbato Moderatamente disturbato Moderatamente disturbato Leggermente disturbato Leggermente disturbato Leggermente disturbato Leggermente disturbato
	A1 A2 A3 A4 BO NW BO SE A5 A6	0,463 0,364 0,380 0,364 0,397 0,346 0,324 0,492	Leggermente disturbato Leggermente disturbato Leggermente disturbato Leggermente disturbato Leggermente disturbato Leggermente disturbato Leggermente disturbato Leggermente disturbato Leggermente disturbato		A1 A2 A3 A4 BO NW BO SE A5 A6	0,482 0,434 0,386 0,365 0,487 0,478 0,463 0,436	Leggermente disturbato Leggermente disturbato Leggermente disturbato Leggermente disturbato Leggermente disturbato Leggermente disturbato Leggermente disturbato Leggermente disturbato Leggermente disturbato		A1 A2 A3 A4 BO NW BO SE A5 A6	0,298 0,305 0,343 0,278 0,384 0,452 0,348 0,359	Moderatamente disturbato Leggermente disturbato Leggermente disturbato Moderatamente disturbato Leggermente disturbato Leggermente disturbato Leggermente disturbato Leggermente disturbato Leggermente disturbato		A1 A2 A3 A4 BO NW BO SE A5 A6	0,210 0,362 0,281 0,251 0,483 0,321 0,384 0,360	Moderatamente disturbato Leggermente disturbato Moderatamente disturbato Moderatamente disturbato Leggermente disturbato Leggermente disturbato Leggermente disturbato Leggermente disturbato Leggermente disturbato
	A1 A2 A3 A4 BO NW BO SE A5 A6 A7	0,463 0,364 0,380 0,364 0,397 0,346 0,324 0,492 0,385	Leggermente disturbato Leggermente disturbato Leggermente disturbato Leggermente disturbato Leggermente disturbato Leggermente disturbato Leggermente disturbato Leggermente disturbato Leggermente disturbato Leggermente disturbato Leggermente disturbato		A1 A2 A3 A4 BO NW BO SE A5 A6 A7	0,482 0,434 0,386 0,365 0,487 0,478 0,463 0,436 0,330	Leggermente disturbato Leggermente disturbato Leggermente disturbato Leggermente disturbato Leggermente disturbato Leggermente disturbato Leggermente disturbato Leggermente disturbato Leggermente disturbato Leggermente disturbato		A1 A2 A3 A4 BO NW BO SE A5 A6 A7	0,298 0,305 0,343 0,278 0,384 0,452 0,348 0,359 0,409	Moderatamente disturbato Leggermente disturbato Leggermente disturbato Moderatamente disturbato Leggermente disturbato Leggermente disturbato Leggermente disturbato Leggermente disturbato Leggermente disturbato Leggermente disturbato Leggermente disturbato		A1 A2 A3 A4 BO NW BO SE A5 A6 A7	0,210 0,362 0,281 0,251 0,483 0,321 0,384 0,360 0,283	Moderatamente disturbato Leggermente disturbato Moderatamente disturbato Moderatamente disturbato Leggermente disturbato Leggermente disturbato Leggermente disturbato Leggermente disturbato Leggermente disturbato Moderatamente disturbato
ori	A1 A2 A3 A4 BO NW BO SE A5 A6 A7 A8	0,463 0,364 0,380 0,364 0,397 0,346 0,324 0,492 0,385 0,433	Leggermente disturbato Leggermente disturbato Leggermente disturbato Leggermente disturbato Leggermente disturbato Leggermente disturbato Leggermente disturbato Leggermente disturbato Leggermente disturbato Leggermente disturbato Leggermente disturbato Leggermente disturbato		A1 A2 A3 A4 BO NW BO SE A5 A6 A7	0,482 0,434 0,386 0,365 0,487 0,478 0,463 0,436 0,330 0,503	Leggermente disturbato Leggermente disturbato Leggermente disturbato Leggermente disturbato Leggermente disturbato Leggermente disturbato Leggermente disturbato Leggermente disturbato Leggermente disturbato Leggermente disturbato Leggermente disturbato	ori	A1 A2 A3 A4 BO NW BO SE A5 A6 A7	0,298 0,305 0,343 0,278 0,384 0,452 0,348 0,359 0,409 0,256	Moderatamente disturbato Leggermente disturbato Leggermente disturbato Moderatamente disturbato Leggermente disturbato Leggermente disturbato Leggermente disturbato Leggermente disturbato Leggermente disturbato Leggermente disturbato Moderatamente disturbato		A1 A2 A3 A4 BO NW BO SE A5 A6 A7	0,210 0,362 0,281 0,251 0,483 0,321 0,384 0,360 0,283 0,280	Moderatamente disturbato Leggermente disturbato Moderatamente disturbato Moderatamente disturbato Leggermente disturbato Leggermente disturbato Leggermente disturbato Leggermente disturbato Leggermente disturbato Moderatamente disturbato Moderatamente disturbato
lavori	A1 A2 A3 A4 BO NW BO SE A5 A6 A7 A8	0,463 0,364 0,380 0,364 0,397 0,346 0,324 0,492 0,385 0,433	Leggermente disturbato Leggermente disturbato Leggermente disturbato Leggermente disturbato Leggermente disturbato Leggermente disturbato Leggermente disturbato Leggermente disturbato Leggermente disturbato Leggermente disturbato Leggermente disturbato Leggermente disturbato Leggermente disturbato		A1 A2 A3 A4 BO NW BO SE A5 A6 A7	0,482 0,434 0,386 0,365 0,487 0,478 0,463 0,436 0,330 0,503 0,322	Leggermente disturbato Leggermente disturbato Leggermente disturbato Leggermente disturbato Leggermente disturbato Leggermente disturbato Leggermente disturbato Leggermente disturbato Leggermente disturbato Leggermente disturbato Leggermente disturbato Leggermente disturbato Leggermente disturbato	lavori	A1 A2 A3 A4 BO NW BO SE A5 A6 A7 A8	0,298 0,305 0,343 0,278 0,384 0,452 0,348 0,359 0,409 0,256 0,170	Moderatamente disturbato Leggermente disturbato Leggermente disturbato Moderatamente disturbato Leggermente disturbato Leggermente disturbato Leggermente disturbato Leggermente disturbato Leggermente disturbato Leggermente disturbato Moderatamente disturbato		A1 A2 A3 A4 BO NW BO SE A5 A6 A7 A8	0,210 0,362 0,281 0,251 0,483 0,321 0,384 0,360 0,283 0,280 0,170	Moderatamente disturbato Leggermente disturbato Moderatamente disturbato Moderatamente disturbato Leggermente disturbato Leggermente disturbato Leggermente disturbato Leggermente disturbato Leggermente disturbato Moderatamente disturbato Moderatamente disturbato Moderatamente disturbato
ost lavori	A1 A2 A3 A4 BO NW BO SE A5 A6 A7 A8 B1 B2	0,463 0,364 0,380 0,364 0,397 0,346 0,324 0,492 0,385 0,433 0,358 0,445	Leggermente disturbato Leggermente disturbato Leggermente disturbato Leggermente disturbato Leggermente disturbato Leggermente disturbato Leggermente disturbato Leggermente disturbato Leggermente disturbato Leggermente disturbato Leggermente disturbato Leggermente disturbato Leggermente disturbato Leggermente disturbato Leggermente disturbato		A1 A2 A3 A4 BO NW BO SE A5 A6 A7	0,482 0,434 0,386 0,365 0,487 0,463 0,436 0,330 0,503 0,503	Leggermente disturbato Leggermente disturbato Leggermente disturbato Leggermente disturbato Leggermente disturbato Leggermente disturbato Leggermente disturbato Leggermente disturbato Leggermente disturbato Leggermente disturbato Leggermente disturbato Leggermente disturbato Moderatamente disturbato	ost lavori	A1 A2 A3 A4 BO NW BO SE A5 A6 A7 A8 B1 B2	0,298 0,305 0,343 0,278 0,384 0,452 0,348 0,359 0,409 0,256 0,170 0,273	Moderatamente disturbato Leggermente disturbato Leggermente disturbato Moderatamente disturbato Leggermente disturbato Leggermente disturbato Leggermente disturbato Leggermente disturbato Leggermente disturbato Leggermente disturbato Moderatamente disturbato		A1 A2 A3 A4 BO NW BO SE A5 A6 A7 A8 B1 B2	0,210 0,362 0,281 0,251 0,483 0,321 0,384 0,360 0,283 0,280 0,170 0,307	Moderatamente disturbato Leggermente disturbato Moderatamente disturbato Moderatamente disturbato Leggermente disturbato Leggermente disturbato Leggermente disturbato Leggermente disturbato Leggermente disturbato Moderatamente disturbato Moderatamente disturbato Moderatamente disturbato Leggermente disturbato Leggermente disturbato
Post lavori	A1 A2 A3 A4 BO NW BO SE A5 A6 A7 A8 B1 B2 B3	0,463 0,364 0,380 0,364 0,397 0,346 0,324 0,492 0,385 0,433 0,358 0,445 0,412	Leggermente disturbato Leggermente disturbato Leggermente disturbato Leggermente disturbato Leggermente disturbato Leggermente disturbato Leggermente disturbato Leggermente disturbato Leggermente disturbato Leggermente disturbato Leggermente disturbato Leggermente disturbato Leggermente disturbato Leggermente disturbato Leggermente disturbato Leggermente disturbato	Post lavori	A1 A2 A3 A4 BO NW BO SE A5 A6 A7 A8 B1 B2 B3	0,482 0,434 0,386 0,487 0,478 0,463 0,436 0,330 0,503 0,322 0,238 0,402	Leggermente disturbato Leggermente disturbato Leggermente disturbato Leggermente disturbato Leggermente disturbato Leggermente disturbato Leggermente disturbato Leggermente disturbato Leggermente disturbato Leggermente disturbato Leggermente disturbato Leggermente disturbato Leggermente disturbato Leggermente disturbato Leggermente disturbato Leggermente disturbato	Post lavori	A1 A2 A3 A4 BO NW BO SE A5 A6 A7 A8 B1 B2 B3	0,298 0,305 0,343 0,278 0,384 0,452 0,348 0,359 0,409 0,256 0,170 0,273 0,234	Moderatamente disturbato Leggermente disturbato Leggermente disturbato Moderatamente disturbato Leggermente disturbato Leggermente disturbato Leggermente disturbato Leggermente disturbato Leggermente disturbato Leggermente disturbato Moderatamente disturbato Moderatamente disturbato Moderatamente disturbato Moderatamente disturbato	Post lavori	A1 A2 A3 A4 BO NW BO SE A5 A6 A7 A8 B1 B2 B3	0,210 0,362 0,281 0,251 0,483 0,321 0,384 0,360 0,283 0,280 0,170 0,307 0,236	Moderatamente disturbato Leggermente disturbato Moderatamente disturbato Moderatamente disturbato Leggermente disturbato Leggermente disturbato Leggermente disturbato Leggermente disturbato Leggermente disturbato Moderatamente disturbato Moderatamente disturbato Moderatamente disturbato Leggermente disturbato Moderatamente disturbato Moderatamente disturbato Moderatamente disturbato
3° Post lavori	A1 A2 A3 A4 BO NW BO SE A5 A6 A7 A8 B1 B2 B3 B4	0,463 0,364 0,380 0,364 0,397 0,346 0,324 0,492 0,385 0,433 0,358 0,445 0,412 0,492	Leggermente disturbato Leggermente disturbato Leggermente disturbato Leggermente disturbato Leggermente disturbato Leggermente disturbato Leggermente disturbato Leggermente disturbato Leggermente disturbato Leggermente disturbato Leggermente disturbato Leggermente disturbato Leggermente disturbato Leggermente disturbato Leggermente disturbato Leggermente disturbato Leggermente disturbato Leggermente disturbato		A1 A2 A3 A4 BO NW BO SE A5 A6 A7 A8 B1 B2 B3 B4	0,482 0,434 0,386 0,365 0,478 0,463 0,436 0,330 0,503 0,503 0,238 0,402 0,290	Leggermente disturbato Leggermente disturbato Leggermente disturbato Leggermente disturbato Leggermente disturbato Leggermente disturbato Leggermente disturbato Leggermente disturbato Leggermente disturbato Leggermente disturbato Leggermente disturbato Leggermente disturbato Moderatamente disturbato Moderatamente disturbato Moderatamente disturbato	5° Post lavori	A1 A2 A3 A4 BO NW BO SE A5 A6 A7 A8 B1 B2 B3 B4	0,298 0,305 0,343 0,278 0,384 0,452 0,348 0,359 0,409 0,256 0,170 0,273 0,234 0,431	Moderatamente disturbato Leggermente disturbato Leggermente disturbato Moderatamente disturbato Leggermente disturbato Leggermente disturbato Leggermente disturbato Leggermente disturbato Leggermente disturbato Leggermente disturbato Moderatamente disturbato Moderatamente disturbato Moderatamente disturbato Moderatamente disturbato Leggermente disturbato		A1 A2 A3 A4 BO NW BO SE A5 A6 A7 A8 B1 B2 B3 B4	0,210 0,362 0,281 0,251 0,483 0,321 0,384 0,360 0,283 0,280 0,170 0,307 0,236 0,273	Moderatamente disturbato Leggermente disturbato Moderatamente disturbato Moderatamente disturbato Leggermente disturbato Leggermente disturbato Leggermente disturbato Leggermente disturbato Leggermente disturbato Moderatamente disturbato Moderatamente disturbato Moderatamente disturbato Leggermente disturbato Moderatamente disturbato Moderatamente disturbato Moderatamente disturbato Moderatamente disturbato
	A1 A2 A3 A4 BO NW BO SE A5 A6 A7 A8 B1 B2 B3 B4 BO NE	0,463 0,364 0,380 0,364 0,397 0,346 0,492 0,385 0,433 0,358 0,445 0,412 0,492 0,415	Leggermente disturbato Leggermente disturbato Leggermente disturbato Leggermente disturbato Leggermente disturbato Leggermente disturbato Leggermente disturbato Leggermente disturbato Leggermente disturbato Leggermente disturbato Leggermente disturbato Leggermente disturbato Leggermente disturbato Leggermente disturbato Leggermente disturbato Leggermente disturbato Leggermente disturbato Leggermente disturbato Leggermente disturbato Leggermente disturbato	Post lavori	A1 A2 A3 A4 BO NW BO SE A5 A6 A7 A8 B1 B2 B3 B4 BO NE	0,482 0,434 0,386 0,365 0,487 0,463 0,436 0,330 0,503 0,503 0,238 0,402 0,290 0,415	Leggermente disturbato Leggermente disturbato Leggermente disturbato Leggermente disturbato Leggermente disturbato Leggermente disturbato Leggermente disturbato Leggermente disturbato Leggermente disturbato Leggermente disturbato Leggermente disturbato Leggermente disturbato Leggermente disturbato Moderatamente disturbato Moderatamente disturbato Leggermente disturbato Moderatamente disturbato Leggermente disturbato	5° Post Iavori	A1 A2 A3 A4 BO NW BO SE A5 A6 A7 A8 B1 B2 B3 B4 BO NE	0,298 0,305 0,343 0,278 0,384 0,452 0,348 0,359 0,409 0,256 0,170 0,273 0,234 0,431 0,340	Moderatamente disturbato Leggermente disturbato Leggermente disturbato Moderatamente disturbato Leggermente disturbato Leggermente disturbato Leggermente disturbato Leggermente disturbato Leggermente disturbato Leggermente disturbato Moderatamente disturbato Moderatamente disturbato Moderatamente disturbato Leggermente disturbato Leggermente disturbato Leggermente disturbato Leggermente disturbato	Post lavori	A1 A2 A3 A4 BO NW BO SE A5 A6 A7 A8 B1 B2 B3 B4 BO NE	0,210 0,362 0,281 0,251 0,483 0,321 0,384 0,360 0,283 0,280 0,170 0,307 0,236 0,273 0,434	Moderatamente disturbato Leggermente disturbato Moderatamente disturbato Moderatamente disturbato Leggermente disturbato Leggermente disturbato Leggermente disturbato Leggermente disturbato Leggermente disturbato Moderatamente disturbato Moderatamente disturbato Leggermente disturbato Moderatamente disturbato Moderatamente disturbato Moderatamente disturbato Moderatamente disturbato Moderatamente disturbato Moderatamente disturbato Leggermente disturbato Leggermente disturbato
	A1 A2 A3 A4 BO NW BO SE A5 A6 A7 A8 B1 B2 B3 B4 BO NE BO SW	0,463 0,364 0,380 0,364 0,397 0,346 0,324 0,492 0,385 0,433 0,358 0,445 0,412 0,492 0,415 0,459	Leggermente disturbato Leggermente disturbato	Post lavori	A1 A2 A3 A4 BO NW BO SE A5 A6 A7 A8 B1 B2 B3 B4 B0 NE B0 SW	0,482 0,434 0,386 0,365 0,487 0,463 0,436 0,330 0,503 0,322 0,238 0,402 0,290 0,415 0,359	Leggermente disturbato Leggermente disturbato Leggermente disturbato Leggermente disturbato Leggermente disturbato Leggermente disturbato Leggermente disturbato Leggermente disturbato Leggermente disturbato Leggermente disturbato Leggermente disturbato Leggermente disturbato Moderatamente disturbato Moderatamente disturbato Leggermente disturbato Leggermente disturbato Leggermente disturbato Leggermente disturbato Leggermente disturbato Leggermente disturbato	5° Post Iavori	A1 A2 A3 A4 BO NW BO SE A5 A6 A7 A8 B1 B2 B3 B4 BO NE BO SW	0,298 0,305 0,343 0,278 0,384 0,452 0,348 0,359 0,409 0,256 0,170 0,273 0,234 0,431 0,340 0,325	Moderatamente disturbato Leggermente disturbato Leggermente disturbato Moderatamente disturbato Leggermente disturbato Leggermente disturbato Leggermente disturbato Leggermente disturbato Leggermente disturbato Leggermente disturbato Moderatamente disturbato Moderatamente disturbato Moderatamente disturbato Leggermente disturbato Leggermente disturbato Leggermente disturbato Leggermente disturbato Leggermente disturbato	Post lavori	A1 A2 A3 A4 BO NW BO SE A5 A6 A7 A8 B1 B2 B3 B4 BO NE BO SW	0,210 0,362 0,281 0,251 0,483 0,321 0,384 0,360 0,283 0,280 0,170 0,307 0,236 0,273 0,434 0,375	Moderatamente disturbato Leggermente disturbato Moderatamente disturbato Moderatamente disturbato Leggermente disturbato Leggermente disturbato Leggermente disturbato Leggermente disturbato Leggermente disturbato Moderatamente disturbato Moderatamente disturbato Moderatamente disturbato Moderatamente disturbato Leggermente disturbato Moderatamente disturbato Leggermente disturbato Leggermente disturbato Leggermente disturbato Leggermente disturbato Leggermente disturbato Leggermente disturbato
	A1 A2 A3 A4 BO NW BO SE A5 A6 A7 A8 B1 B2 B3 B4 BO NE BO SW	0,463 0,364 0,380 0,364 0,397 0,346 0,324 0,492 0,385 0,433 0,358 0,445 0,412 0,492 0,415 0,459 0,341	Leggermente disturbato Leggermente disturbato	Post lavori	A1 A2 A3 A4 BO NW BO SE A5 A6 A7 A8 B1 B2 B3 B4 B0 NE B0 SW B5	0,482 0,434 0,386 0,365 0,487 0,463 0,436 0,330 0,503 0,503 0,238 0,402 0,290 0,415 0,359 0,484	Leggermente disturbato Leggermente disturbato	5° Post Iavori	A1 A2 A3 A4 BO NW BO SE A5 A6 A7 A8 B1 B2 B3 B4 BO NE BO SW	0,298 0,305 0,343 0,278 0,384 0,452 0,348 0,359 0,409 0,256 0,170 0,273 0,234 0,431 0,340 0,325 0,321	Moderatamente disturbato Leggermente disturbato Leggermente disturbato Moderatamente disturbato Leggermente disturbato Leggermente disturbato Leggermente disturbato Leggermente disturbato Leggermente disturbato Moderatamente disturbato Moderatamente disturbato Moderatamente disturbato Moderatamente disturbato Leggermente disturbato Leggermente disturbato Leggermente disturbato Leggermente disturbato Leggermente disturbato Leggermente disturbato	Post lavori	A1 A2 A3 A4 BO NW BO SE A5 A6 A7 A8 B1 B2 B3 B4 BO NE BO SW B5	0,210 0,362 0,281 0,251 0,483 0,321 0,384 0,360 0,283 0,280 0,170 0,307 0,236 0,273 0,434 0,375 0,278	Moderatamente disturbato Leggermente disturbato Moderatamente disturbato Moderatamente disturbato Leggermente disturbato Leggermente disturbato Leggermente disturbato Leggermente disturbato Moderatamente disturbato Moderatamente disturbato Moderatamente disturbato Moderatamente disturbato Moderatamente disturbato Leggermente disturbato Leggermente disturbato Moderatamente disturbato Leggermente disturbato Leggermente disturbato Leggermente disturbato Leggermente disturbato Leggermente disturbato Moderatamente disturbato
	A1 A2 A3 A4 BO NW BO SE A5 A6 A7 A8 B1 B2 B3 B4 BO NE BO SW B5 B6	0,463 0,364 0,380 0,364 0,397 0,346 0,324 0,492 0,385 0,433 0,459 0,412 0,492 0,415 0,459 0,341 0,401	Leggermente disturbato Leggermente disturbato	Post lavori	A1 A2 A3 A4 BO NW BO SE A5 A6 A7 A8 B1 B2 B3 B4 BO NE BO SW B5 B6	0,482 0,434 0,386 0,487 0,483 0,463 0,436 0,503 0,503 0,322 0,238 0,402 0,290 0,415 0,359 0,484 0,499	Leggermente disturbato Leggermente disturbato Leggermente disturbato Leggermente disturbato Leggermente disturbato Leggermente disturbato Leggermente disturbato Leggermente disturbato Leggermente disturbato Leggermente disturbato Leggermente disturbato Leggermente disturbato Leggermente disturbato Moderatamente disturbato Moderatamente disturbato Leggermente disturbato Leggermente disturbato Leggermente disturbato Leggermente disturbato Leggermente disturbato Leggermente disturbato Leggermente disturbato	5° Post Iavori	A1 A2 A3 A4 BO NW BO SE A5 A6 A7 A8 B1 B2 B3 B4 BO NE BO SW B5 B6	0,298 0,305 0,343 0,278 0,384 0,452 0,348 0,359 0,409 0,256 0,170 0,273 0,234 0,431 0,340 0,325 0,321 0,306	Moderatamente disturbato Leggermente disturbato Leggermente disturbato Moderatamente disturbato Leggermente disturbato Leggermente disturbato Leggermente disturbato Leggermente disturbato Leggermente disturbato Leggermente disturbato Moderatamente disturbato Moderatamente disturbato Moderatamente disturbato Leggermente disturbato Leggermente disturbato Leggermente disturbato Leggermente disturbato Leggermente disturbato Leggermente disturbato Leggermente disturbato Leggermente disturbato	Post lavori	A1 A2 A3 A4 BO NW BO SE A5 A6 A7 A8 B1 B2 B3 B4 BO NE BO SW B5 B6	0,210 0,362 0,281 0,251 0,382 0,321 0,384 0,360 0,283 0,280 0,170 0,307 0,236 0,273 0,434 0,375 0,278	Moderatamente disturbato Leggermente disturbato Moderatamente disturbato Moderatamente disturbato Leggermente disturbato Leggermente disturbato Leggermente disturbato Leggermente disturbato Leggermente disturbato Moderatamente disturbato Moderatamente disturbato Moderatamente disturbato Leggermente disturbato Moderatamente disturbato Leggermente disturbato Leggermente disturbato Moderatamente disturbato Leggermente disturbato Leggermente disturbato Leggermente disturbato Moderatamente disturbato Moderatamente disturbato Moderatamente disturbato Moderatamente disturbato Moderatamente disturbato
	A1 A2 A3 A4 BO NW BO SE A5 A6 A7 A8 B1 B2 B3 B4 BO NE BO SW B5 B6 B7	0,463 0,364 0,397 0,346 0,324 0,492 0,385 0,445 0,412 0,492 0,415 0,459 0,341 0,401 0,399	Leggermente disturbato Leggermente disturbato	Post lavori	A1 A2 A3 A4 BO NW BO SE A5 A6 A7 A8 B1 B2 B3 B4 BO NE BO SW B5 B6 B7	0,482 0,434 0,386 0,463 0,463 0,436 0,330 0,503 0,322 0,238 0,402 0,290 0,415 0,359 0,484 0,499 0,457	Leggermente disturbato Leggermente disturbato	5° Post Iavori	A1 A2 A3 A4 BO NW BO SE A5 A6 A7 A8 B1 B2 B3 B4 B0 NE B0 SW B5 B6 B7	0,298 0,305 0,343 0,278 0,384 0,452 0,348 0,409 0,256 0,170 0,273 0,234 0,431 0,340 0,325 0,321 0,306 0,285	Moderatamente disturbato Leggermente disturbato Leggermente disturbato Moderatamente disturbato Leggermente disturbato Leggermente disturbato Leggermente disturbato Leggermente disturbato Leggermente disturbato Moderatamente disturbato Moderatamente disturbato Moderatamente disturbato Leggermente disturbato Leggermente disturbato Leggermente disturbato Leggermente disturbato Leggermente disturbato Leggermente disturbato Leggermente disturbato Leggermente disturbato Leggermente disturbato Leggermente disturbato Leggermente disturbato Leggermente disturbato	Post lavori	A1 A2 A3 A4 BO NW BO SE A5 A6 A7 A8 B1 B2 B3 B4 BO NE BO SW B5 B6 B7	0,210 0,362 0,281 0,251 0,483 0,321 0,360 0,283 0,280 0,170 0,236 0,273 0,434 0,375 0,278 0,282 0,297	Moderatamente disturbato Leggermente disturbato Moderatamente disturbato Moderatamente disturbato Leggermente disturbato Leggermente disturbato Leggermente disturbato Leggermente disturbato Leggermente disturbato Moderatamente disturbato Moderatamente disturbato Moderatamente disturbato Leggermente disturbato Moderatamente disturbato Leggermente disturbato Leggermente disturbato Moderatamente disturbato Leggermente disturbato Leggermente disturbato Leggermente disturbato Moderatamente disturbato Moderatamente disturbato Moderatamente disturbato Moderatamente disturbato Moderatamente disturbato Moderatamente disturbato
	A1 A2 A3 A4 BO NW BO SE A5 A6 A7 A8 B1 B2 B3 B4 BO NE BO SW B5 B6 B7 B8	0,463 0,364 0,380 0,364 0,397 0,346 0,492 0,385 0,443 0,445 0,445 0,445 0,445 0,45 0,45 0,45	Leggermente disturbato Leggermente disturbato	Post lavori	A1 A2 A3 A4 BO NW BO SE A5 A6 A7 A8 B1 B2 B3 B4 BO NE BO SW B5 B6 B7 B8	0,482 0,434 0,386 0,487 0,478 0,463 0,436 0,330 0,503 0,222 0,238 0,402 0,290 0,415 0,359 0,484 0,499 0,457 0,371	Leggermente disturbato Leggermente disturbato Leggermente disturbato Leggermente disturbato Leggermente disturbato Leggermente disturbato Leggermente disturbato Leggermente disturbato Leggermente disturbato Leggermente disturbato Leggermente disturbato Leggermente disturbato Leggermente disturbato Moderatamente disturbato Leggermente disturbato Leggermente disturbato Leggermente disturbato Leggermente disturbato Leggermente disturbato Leggermente disturbato Leggermente disturbato Leggermente disturbato Leggermente disturbato Leggermente disturbato Leggermente disturbato Leggermente disturbato Leggermente disturbato Leggermente disturbato Leggermente disturbato	5° Post Iavori	A1 A2 A3 A4 BO NW BO SE A5 A6 A7 A8 B1 B2 B3 B4 BO NE BO SW B5 B6 B7 B8	0,298 0,305 0,343 0,278 0,384 0,452 0,348 0,359 0,256 0,170 0,273 0,234 0,431 0,340 0,325 0,340 0,325 0,340	Moderatamente disturbato Leggermente disturbato Leggermente disturbato Moderatamente disturbato Leggermente disturbato Leggermente disturbato Leggermente disturbato Leggermente disturbato Leggermente disturbato Moderatamente disturbato Moderatamente disturbato Moderatamente disturbato Moderatamente disturbato Leggermente disturbato Leggermente disturbato Leggermente disturbato Leggermente disturbato Leggermente disturbato Leggermente disturbato Leggermente disturbato Leggermente disturbato Leggermente disturbato Leggermente disturbato Leggermente disturbato	Post lavori	A1 A2 A3 A4 BO NW BO SE A5 A6 A7 A8 B1 B2 B3 B4 BO NE BO SW B5 B6 B7 B8	0,210 0,362 0,281 0,251 0,321 0,384 0,360 0,283 0,280 0,170 0,307 0,236 0,273 0,434 0,375 0,278 0,278 0,278	Moderatamente disturbato Leggermente disturbato Moderatamente disturbato Moderatamente disturbato Leggermente disturbato Leggermente disturbato Leggermente disturbato Leggermente disturbato Leggermente disturbato Moderatamente disturbato Moderatamente disturbato Moderatamente disturbato Moderatamente disturbato Leggermente disturbato Leggermente disturbato Moderatamente disturbato Moderatamente disturbato Moderatamente disturbato Moderatamente disturbato Leggermente disturbato Leggermente disturbato Moderatamente disturbato Moderatamente disturbato Moderatamente disturbato Moderatamente disturbato Moderatamente disturbato Moderatamente disturbato
	A1 A2 A3 A4 BO NW BO SE A5 A6 A7 A8 B1 B2 B3 B4 BO NE BO SW B5 B6 B7 B8 K1	0,463 0,364 0,380 0,364 0,397 0,346 0,324 0,492 0,385 0,413 0,412 0,492 0,415 0,419 0,459 0,341 0,401 0,399 0,430	Leggermente disturbato Leggermente disturbato	Post lavori	A1 A2 A3 A4 BO NW BO SE A5 A6 A7 A8 B1 B2 B3 B4 BO NE BO SW B5 B6 B7 B8 K1	0,482 0,434 0,386 0,463 0,463 0,436 0,436 0,503 0,222 0,238 0,402 0,290 0,415 0,359 0,484 0,499 0,457 0,371	Leggermente disturbato Leggermente disturbato Leggermente disturbato Leggermente disturbato Leggermente disturbato Leggermente disturbato Leggermente disturbato Leggermente disturbato Leggermente disturbato Leggermente disturbato Leggermente disturbato Leggermente disturbato Leggermente disturbato Moderatamente disturbato Leggermente disturbato Leggermente disturbato Leggermente disturbato Leggermente disturbato Leggermente disturbato Leggermente disturbato Leggermente disturbato Leggermente disturbato Leggermente disturbato Leggermente disturbato Leggermente disturbato Leggermente disturbato Leggermente disturbato Leggermente disturbato Leggermente disturbato	5° Post Iavori	A1 A2 A3 A4 BO NW BO SE A5 A6 A7 A8 B1 B2 B3 B4 BO NE BO SW B5 B6 B7 B8 K1	0,298 0,305 0,343 0,278 0,384 0,452 0,348 0,359 0,409 0,256 0,170 0,273 0,234 0,431 0,340 0,325 0,325 0,321 0,306 0,285 0,389	Moderatamente disturbato Leggermente disturbato Leggermente disturbato Moderatamente disturbato Leggermente disturbato Leggermente disturbato Leggermente disturbato Leggermente disturbato Leggermente disturbato Moderatamente disturbato Moderatamente disturbato Moderatamente disturbato Leggermente disturbato Leggermente disturbato Leggermente disturbato Leggermente disturbato Leggermente disturbato Leggermente disturbato Leggermente disturbato Leggermente disturbato Leggermente disturbato Leggermente disturbato Leggermente disturbato Leggermente disturbato Leggermente disturbato Leggermente disturbato	Post lavori	A1 A2 A3 A4 BO NW BO SE A5 A6 A7 A8 B1 B2 B3 B4 BO NE BO SW B5 B6 B7 B8 K1	0,210 0,362 0,281 0,251 0,321 0,384 0,360 0,283 0,280 0,170 0,307 0,236 0,273 0,278 0,278 0,278 0,279 0,278 0,297	Moderatamente disturbato Leggermente disturbato Moderatamente disturbato Moderatamente disturbato Leggermente disturbato Leggermente disturbato Leggermente disturbato Leggermente disturbato Leggermente disturbato Moderatamente disturbato Moderatamente disturbato Moderatamente disturbato Leggermente disturbato Leggermente disturbato Moderatamente disturbato Moderatamente disturbato Moderatamente disturbato Moderatamente disturbato Leggermente disturbato Leggermente disturbato Moderatamente disturbato Moderatamente disturbato Moderatamente disturbato Moderatamente disturbato Moderatamente disturbato Moderatamente disturbato Moderatamente disturbato Moderatamente disturbato
	A1 A2 A3 A4 BO NW BO SE A5 A6 A7 A8 B1 B2 B3 B4 BO NE B5 B6 B7 B8 K1 K2	0,463 0,364 0,380 0,364 0,397 0,346 0,324 0,492 0,355 0,413 0,415 0,419 0,459 0,341 0,401 0,399 0,430 0,412 0,512	Leggermente disturbato Leggermente disturbato	Post lavori	A1 A2 A3 A4 BO NW BO SE A5 A6 A7 A8 B1 B2 B3 B4 BO NE B5 B6 B7 B8 K1 K2	0,482 0,483 0,365 0,487 0,478 0,463 0,436 0,503 0,322 0,290 0,415 0,359 0,484 0,499 0,457 0,371 0,473	Leggermente disturbato Leggermente disturbato Leggermente disturbato Leggermente disturbato Leggermente disturbato Leggermente disturbato Leggermente disturbato Leggermente disturbato Leggermente disturbato Leggermente disturbato Leggermente disturbato Leggermente disturbato Moderatamente disturbato Leggermente disturbato Leggermente disturbato Leggermente disturbato Leggermente disturbato Leggermente disturbato Leggermente disturbato Leggermente disturbato Leggermente disturbato Leggermente disturbato Leggermente disturbato Leggermente disturbato Leggermente disturbato Leggermente disturbato Leggermente disturbato Leggermente disturbato Leggermente disturbato Leggermente disturbato Leggermente disturbato	5° Post lavori	A1 A2 A3 A4 BO NW BO SE A5 A6 A7 A8 B1 B2 B3 B4 BO NE B5 B6 B7 B8 K1 K2	0,298 0,305 0,343 0,278 0,384 0,452 0,348 0,359 0,409 0,256 0,170 0,231 0,331 0,330 0,325 0,321 0,306 0,285 0,389	Moderatamente disturbato Leggermente disturbato Leggermente disturbato Moderatamente disturbato Leggermente disturbato Leggermente disturbato Leggermente disturbato Leggermente disturbato Leggermente disturbato Moderatamente disturbato Moderatamente disturbato Moderatamente disturbato Moderatamente disturbato Leggermente disturbato Leggermente disturbato Leggermente disturbato Leggermente disturbato Leggermente disturbato Leggermente disturbato Leggermente disturbato Leggermente disturbato Leggermente disturbato Leggermente disturbato Leggermente disturbato Leggermente disturbato Leggermente disturbato Leggermente disturbato Leggermente disturbato	Post lavori	A1 A2 A3 A4 BO NW BO SE A5 A6 A7 A8 B1 B2 B3 B4 BO NE BO SW B5 B6 B7 B8 K1 K2	0,210 0,362 0,281 0,251 0,321 0,384 0,360 0,283 0,280 0,170 0,307 0,236 0,273 0,278 0,278 0,278 0,279 0,297 0,230 0,551 0,204	Moderatamente disturbato Leggermente disturbato Moderatamente disturbato Moderatamente disturbato Leggermente disturbato Leggermente disturbato Leggermente disturbato Leggermente disturbato Leggermente disturbato Moderatamente disturbato Moderatamente disturbato Moderatamente disturbato Leggermente disturbato Moderatamente disturbato Leggermente disturbato Moderatamente disturbato Leggermente disturbato Leggermente disturbato Leggermente disturbato Moderatamente disturbato Moderatamente disturbato Moderatamente disturbato Moderatamente disturbato Moderatamente disturbato Moderatamente disturbato Moderatamente disturbato Moderatamente disturbato Moderatamente disturbato Moderatamente disturbato
	A1 A2 A3 A4 BO NW BO SE A5 A6 A7 A8 B1 B2 B3 B4 BO NE BO SW B5 B6 B7 B8 K1	0,463 0,364 0,380 0,364 0,397 0,346 0,324 0,492 0,385 0,413 0,412 0,492 0,415 0,419 0,459 0,341 0,401 0,399 0,430	Leggermente disturbato Leggermente disturbato	Post lavori	A1 A2 A3 A4 BO NW BO SE A5 A6 A7 A8 B1 B2 B3 B4 BO NE BO SW B5 B6 B7 B8 K1	0,482 0,434 0,386 0,463 0,463 0,436 0,436 0,503 0,222 0,238 0,402 0,290 0,415 0,359 0,484 0,499 0,457 0,371	Leggermente disturbato Leggermente disturbato Leggermente disturbato Leggermente disturbato Leggermente disturbato Leggermente disturbato Leggermente disturbato Leggermente disturbato Leggermente disturbato Leggermente disturbato Leggermente disturbato Leggermente disturbato Leggermente disturbato Moderatamente disturbato Leggermente disturbato Leggermente disturbato Leggermente disturbato Leggermente disturbato Leggermente disturbato Leggermente disturbato Leggermente disturbato Leggermente disturbato Leggermente disturbato Leggermente disturbato Leggermente disturbato Leggermente disturbato Leggermente disturbato Leggermente disturbato Leggermente disturbato	5° Post lavori	A1 A2 A3 A4 BO NW BO SE A5 A6 A7 A8 B1 B2 B3 B4 BO NE BO SW B5 B6 B7 B8 K1	0,298 0,305 0,343 0,278 0,384 0,452 0,348 0,359 0,409 0,256 0,170 0,273 0,234 0,431 0,340 0,325 0,325 0,321 0,306 0,285 0,389	Moderatamente disturbato Leggermente disturbato Leggermente disturbato Moderatamente disturbato Leggermente disturbato Leggermente disturbato Leggermente disturbato Leggermente disturbato Leggermente disturbato Moderatamente disturbato Moderatamente disturbato Moderatamente disturbato Leggermente disturbato Leggermente disturbato Leggermente disturbato Leggermente disturbato Leggermente disturbato Leggermente disturbato Leggermente disturbato Leggermente disturbato Leggermente disturbato Leggermente disturbato Leggermente disturbato Leggermente disturbato Leggermente disturbato Leggermente disturbato	Post lavori	A1 A2 A3 A4 BO NW BO SE A5 A6 A7 A8 B1 B2 B3 B4 BO NE BO SW B5 B6 B7 B8 K1	0,210 0,362 0,281 0,251 0,321 0,384 0,360 0,283 0,280 0,170 0,307 0,236 0,273 0,278 0,278 0,278 0,279 0,278 0,297	Moderatamente disturbato Leggermente disturbato Moderatamente disturbato Moderatamente disturbato Leggermente disturbato Leggermente disturbato Leggermente disturbato Leggermente disturbato Leggermente disturbato Moderatamente disturbato Moderatamente disturbato Moderatamente disturbato Leggermente disturbato Leggermente disturbato Moderatamente disturbato Moderatamente disturbato Moderatamente disturbato Moderatamente disturbato Leggermente disturbato Leggermente disturbato Moderatamente disturbato Moderatamente disturbato Moderatamente disturbato Moderatamente disturbato Moderatamente disturbato Moderatamente disturbato Moderatamente disturbato Moderatamente disturbato

Tab. 3-LI – Suddivisione percentuale nei 5 gruppi ecologici (I = specie molto sensibili; II = specie indifferenti all'arricchimento organico; III = specie tolleranti; IV = specie opportuniste di II ordine; V = specie opportuniste di I ordine) delle specie rinvenute nei siti monitorati nei survey condotti sinora e classificazione del disturbo ambientale secondo l'indice AMBI. In giallo è riportato il gruppo ecologico più rappresentativo in ciascuna stazione. Nel durante lavori la stazione BO NE non è stata campionata.

Stazione I(%) II(%) III(%) III(%) V(%) V(%) V(%) Mean AMBI Classificazione ambientale Legemmente disturbato Legemmente disturb	Non disturbato Leggermente disturbato
BO NW 36,00 38,20 20,20 5,60 0 1,43 Leggermente disturbato A6 32,20 44,80 17,20 4,60 1,10 1,47 Leggermente disturbato Leggermente disturbato A5 B3 36,70 43,00 17,70 2,50 0 1,20 Leggermente disturbato BO NW 46,40 26,80 19,60 7,10 0 1,31 Leggermente disturbato Non disturbato No	Leggermente disturbato Leggermente disturbato
BO SE 37.20 42.20 15.40 5.10 0 1.33 Leggemente disturbato Leggemente disturbato Leggemente disturbato BO NE 20.40 66.90 7.40 4.30 1.00 1.48 Leggemente disturbato BO NE 20.40 66.90 7.40 4.00 0 1.31 Non disturbato BG SE 38.70 41.50 16.90 2.80 0 1.26 BO SW 48.40 40.00 12.00 4.00 0 1.31 Non disturbato Leggemente disturbato Leggemente disturbato Non disturbato Non disturbato BG SE 23.60 48.00 32.70 14.90 3.00 0 1.71 Leggemente disturbato Non disturbato Non disturbato Non disturbato Non disturbato Non disturbato Non disturbato Non disturbato Non disturbato Non disturbato Non disturbato Non disturbato Non disturbato Leggemente disturbato Leggemente disturbato Leggemente disturbato Leggemente disturbato Leggemente disturbato Leggemente disturbato Leggemente disturbato Leggemente disturbato Leggemente disturbato Leggemente disturbato Leggemente disturbato Leggemente disturbato Leggemente disturbato Leggemente disturbato Leggemente disturbato Leggemente disturbato Leggemente disturbato Leggemente disturbato Leggemente disturbato	Leggermente disturbato Leggermente disturbato
A6 32.20 44.80 17.20 4.60 1.10 1.47 Leggemente disturbato BB NB NE 20.40 40.00 17.70 2.50 0 1.29 Leggemente disturbato BB O NE 40.40 40.00 12.00 4.00 0 1.41 Leggemente disturbato NG NSW 46.40 40.50 12.00 4.00 0 1.42 Leggemente disturbato NG NSW 46.40 40.50 12.00 4.00 0 1.44 Leggemente disturbato NG NSW 40.50 12.00 4.00 0 1.44 Leggemente disturbato NG NSW 40.50 12.00 4.00 0 1.45 Leggemente disturbato NSW 40.50 12.00 4.00 0 1.45 Leggemente disturbato NSW 40.50 12.00 4.00 0 1.46 NSW 40.50 12.00 4.00 0 1.46 NSW 40.50 12.00 4.00 0 1.46 NSW 40.50 12.00 4.00 0 1.46 NSW 40.50 12.00 4.00 0 1.46 NSW 40.50 12.00 4.00 0 1.46 NSW 40.50 12.00 4.00 0 1.46 NSW 40.50 12.00 4.00 0 1.46 NSW 40.50 12.00 4.00 0 1.40 0 1.42 Leggemente disturbato Leggemente disturbato NSW 40.50 12.50 12.50 0 0 1.50 NSW 40.50 12.50 12.50 12.50 NSW 40.50 12.50 12.50 12.50 NSW 40.50 12.50 12.50 NSW 40.50 12.50 12.50 NSW 40.50 12.50 NSW 40.50 12.50 NSW 40.50 12.50 NSW 40.50 12.50 NSW 40.50 12.50 NSW 40.50 12.50 NSW 40.50 12.50 NSW 40.50 12.50 NSW 40.50 12.50 NSW 40.50 12.50 NSW 40.50 12.50 NSW 40.50 NSW	Leggermente disturbato Leggermente disturbato Leggermente disturbato Leggermente disturbato Leggermente disturbato Leggermente disturbato Leggermente disturbato Leggermente disturbato Leggermente disturbato Leggermente disturbato Leggermente disturbato Leggermente disturbato Leggermente disturbato Leggermente disturbato Leggermente disturbato Leggermente disturbato Leggermente disturbato Leggermente disturbato Leggermente disturbato
B3 36,70 43,00 17,70 2,50 0 1,29 Legemente disturbato BO SW 46,40 26,80 19,60 7,40 4,30 1,00 1,48 Legemente disturbato BB 6 44,00 40,00 12,00 4,00 0 1,114 Non disturbato K12 23,60 43,30 36,50 27,00 1,40 0 1,71 Legemente disturbato K3 32,40 40,50 21,90 5,20 0 1,50 Legemente disturbato Non disturbato K4 49,50 32,70 13,60 8,20 2,50 0 0,56 Non disturbato Non disturbat	Leggermente disturbato Leggermente disturbato Leggermente disturbato Leggermente disturbato Leggermente disturbato Leggermente disturbato Leggermente disturbato Leggermente disturbato Leggermente disturbato Leggermente disturbato Leggermente disturbato Leggermente disturbato Leggermente disturbato Leggermente disturbato Leggermente disturbato Leggermente disturbato Leggermente disturbato Leggermente disturbato
K1 35,10 36,50 27,00 1,40 0 1,42 Leggemente disturbato K2 23,60 43,30 28,30 4,70 0 1,71 Leggemente disturbato K4 49,50 32,70 14,90 3,00 0 1,07 Non disturbato No	Leggermente disturbato Leggermente disturbato Leggermente disturbato Leggermente disturbato Leggermente disturbato Leggermente disturbato Leggermente disturbato Leggermente disturbato Leggermente disturbato Leggermente disturbato Leggermente disturbato Leggermente disturbato Leggermente disturbato Leggermente disturbato Leggermente disturbato Leggermente disturbato Leggermente disturbato Leggermente disturbato
K1 35,10 36,50 27,00 1,40 0 1,42 Leggemente disturbato K2 23,60 43,30 28,30 4,70 0 1,71 Leggemente disturbato K4 49,50 32,70 14,90 3,00 0 1,07 Non disturbato No	Leggermente disturbato Leggermente disturbato Leggermente disturbato Leggermente disturbato Leggermente disturbato Leggermente disturbato Leggermente disturbato Leggermente disturbato Leggermente disturbato Leggermente disturbato Leggermente disturbato Leggermente disturbato Leggermente disturbato Leggermente disturbato Leggermente disturbato Non disturbato
K1 35,10 36,50 27,00 1,40 0 1,42 Leggemente disturbato K2 23,60 43,30 28,30 4,70 0 1,71 Leggemente disturbato K4 49,50 32,70 14,90 3,00 0 1,07 Non disturbato No	Leggermente disturbato Leggermente disturbato Leggermente disturbato Leggermente disturbato Leggermente disturbato Leggermente disturbato Leggermente disturbato Leggermente disturbato Leggermente disturbato Leggermente disturbato Leggermente disturbato Leggermente disturbato Non disturbato
K1 35,10 36,50 27,00 1,40 0 1,42 Leggemente disturbato K2 23,60 43,30 28,30 4,70 0 1,71 Leggemente disturbato K4 49,50 32,70 14,90 3,00 0 1,07 Non disturbato No	Leggermente disturbato Leggermente disturbato Leggermente disturbato Leggermente disturbato Leggermente disturbato Leggermente disturbato Leggermente disturbato Leggermente disturbato Leggermente disturbato Leggermente disturbato Leggermente disturbato Non disturbato
R2	Leggermente disturbato Leggermente disturbato Leggermente disturbato Leggermente disturbato Leggermente disturbato Leggermente disturbato Leggermente disturbato Leggermente disturbato Leggermente disturbato Leggermente disturbato Non disturbato
R3 32,40 40,50 21,90 5,20 0 1,50 Leggermente disturbato Non disturbato	Leggermente disturbato Leggermente disturbato Leggermente disturbato Leggermente disturbato Leggermente disturbato Leggermente disturbato Leggermente disturbato Leggermente disturbato Non disturbato
BO NW BO SE 25,60 51,20 23,30 0 0 0 1,47 Leggermente disturbato B3 36,00 48,00 8,00 6,00 2,00 1,35 Leggermente disturbato B6 54,70 24,50 18,90 1,90 0 0 1,02 Non disturbato K1 42,50 36,30 18,80 2,50 0 0 1,10 Non disturbato K2 39,10 48,40 12,50 0 0 0 1,10 Non disturbato K3 35,50 51,30 9,20 2,60 1,30 1,24 Leggermente disturbato K4 50,00 35,50 12,90 1,60 0 0,99 Non disturbato A2 20,50 56,40 18,60 3,80 0,60 1,62 A3 28,00 57,30 12,10 2,50 0 0 1,34 Leggermente disturbato A2 27,60 51,70 15,50 5,20 0 1,47 Leggermente disturbato A4 27,60 51,70 15,50 5,20 0 1,47 Leggermente disturbato BO NW 17,90 57,80 19,10 4,60 0,60 1,68 Leggermente disturbato BA 2 2,440 0,00 1,70 1,40 2,70 1,28 BB 4 22,60 62,10 14,50 0,80 0 1,40 BO NE 15,20 66,10 0 17,10 2,90 3,80 1,79 BO NE 15,20 66,10 0 1,70 1,40 2,70 1,28 BO NE 15,20 61,00 17,10 1,40 2,70 1,28 BO NE 15,20 61,00 17,10 1,40 2,70 1,28 BO NE 15,20 61,00 17,10 1,40 2,70 1,28 BO NE 15,20 61,00 17,10 1,40 2,70 1,28 BO NE 15,20 61,00 17,10 1,40 2,70 1,28 BO NE 15,20 61,00 17,10 1,40 2,70 1,28 BO NE 15,20 61,00 17,10 1,40 2,70 1,28 BO NE 15,20 61,00 17,10 1,40 0,00 1,10 1,30 BO NE 15,20 61,00 17,10 1,40 0,00 1,10 1,30 BO NE 15,20 61,00 17,10 1,40 0,00 1,10 1,30 BO NE 15,20 62,00 1,30 1,20 1,40 0,00 1,10 1,30 BO NE 15,20 62,00 1,30 1,20 1,40 0,00 1,10 1,30 BO NE 15,20 62,00 1,30 1,20 1,40 0,00 1,10 1,30 1,24 BO NE 15,20 61,00 17,10 1,40 0,00 1,10 1,30 1,24 BO NE 15,20 61,00 1,40 0,00 1,10 1,30 1,24 BO NE 15,20 61,00 1,40 0,00 1,10 1,40 0,00 1,10 1,30 BO NE 15,20 1,40 0,00 1,10 1,40 0,00 1,10 1,40 0,00 1,10 1,40 0,00 1	Leggermente disturbato Leggermente disturbato Leggermente disturbato Leggermente disturbato Leggermente disturbato Leggermente disturbato Leggermente disturbato Non disturbato
BO NW BO SE 25,60 51,20 23,30 0 0 0 1,47 Leggermente disturbato B3 36,00 48,00 8,00 6,00 2,00 1,35 Leggermente disturbato B6 54,70 24,50 18,90 1,90 0 0 1,02 Non disturbato K1 42,50 36,30 18,80 2,50 0 0 1,10 Non disturbato K2 39,10 48,40 12,50 0 0 0 1,10 Non disturbato K3 35,50 51,30 9,20 2,60 1,30 1,24 Leggermente disturbato K4 50,00 35,50 12,90 1,60 0 0,99 Non disturbato A2 20,50 56,40 18,60 3,80 0,60 1,62 A3 28,00 57,30 12,10 2,50 0 0 1,34 Leggermente disturbato A2 27,60 51,70 15,50 5,20 0 1,47 Leggermente disturbato A4 27,60 51,70 15,50 5,20 0 1,47 Leggermente disturbato BO NW 17,90 57,80 19,10 4,60 0,60 1,68 Leggermente disturbato BA 2 2,440 0,00 1,70 1,40 2,70 1,28 BB 4 22,60 62,10 14,50 0,80 0 1,40 BO NE 15,20 66,10 0 17,10 2,90 3,80 1,79 BO NE 15,20 66,10 0 1,70 1,40 2,70 1,28 BO NE 15,20 61,00 17,10 1,40 2,70 1,28 BO NE 15,20 61,00 17,10 1,40 2,70 1,28 BO NE 15,20 61,00 17,10 1,40 2,70 1,28 BO NE 15,20 61,00 17,10 1,40 2,70 1,28 BO NE 15,20 61,00 17,10 1,40 2,70 1,28 BO NE 15,20 61,00 17,10 1,40 2,70 1,28 BO NE 15,20 61,00 17,10 1,40 2,70 1,28 BO NE 15,20 61,00 17,10 1,40 0,00 1,10 1,30 BO NE 15,20 61,00 17,10 1,40 0,00 1,10 1,30 BO NE 15,20 61,00 17,10 1,40 0,00 1,10 1,30 BO NE 15,20 62,00 1,30 1,20 1,40 0,00 1,10 1,30 BO NE 15,20 62,00 1,30 1,20 1,40 0,00 1,10 1,30 BO NE 15,20 62,00 1,30 1,20 1,40 0,00 1,10 1,30 1,24 BO NE 15,20 61,00 17,10 1,40 0,00 1,10 1,30 1,24 BO NE 15,20 61,00 1,40 0,00 1,10 1,30 1,24 BO NE 15,20 61,00 1,40 0,00 1,10 1,40 0,00 1,10 1,40 0,00 1,10 1,40 0,00 1,10 1,40 0,00 1,40	Leggermente disturbato Leggermente disturbato Leggermente disturbato Leggermente disturbato Leggermente disturbato Non disturbato
BO NW BO SE 25,60 51,20 23,30 0 0 0 1,47 Leggermente disturbato B3 36,00 48,00 8,00 6,00 2,00 1,35 Leggermente disturbato B6 54,70 24,50 18,90 1,90 0 0 1,02 Non disturbato K1 42,50 36,30 18,80 2,50 0 0 1,10 Non disturbato K2 39,10 48,40 12,50 0 0 0 1,10 Non disturbato K3 35,50 51,30 9,20 2,60 1,30 1,24 Leggermente disturbato K4 50,00 35,50 12,90 1,60 0 0,99 Non disturbato A2 20,50 56,40 18,60 3,80 0,60 1,62 A3 28,00 57,30 12,10 2,50 0 0 1,34 Leggermente disturbato A2 27,60 51,70 15,50 5,20 0 1,47 Leggermente disturbato A4 27,60 51,70 15,50 5,20 0 1,47 Leggermente disturbato BO NW 17,90 57,80 19,10 4,60 0,60 1,68 Leggermente disturbato BA 2 2,440 0,00 1,70 1,40 2,70 1,28 BB 4 22,60 62,10 14,50 0,80 0 1,40 BO NE 15,20 66,10 0 17,10 2,90 3,80 1,79 BO NE 15,20 66,10 0 1,70 1,40 2,70 1,28 BO NE 15,20 61,00 17,10 1,40 2,70 1,28 BO NE 15,20 61,00 17,10 1,40 2,70 1,28 BO NE 15,20 61,00 17,10 1,40 2,70 1,28 BO NE 15,20 61,00 17,10 1,40 2,70 1,28 BO NE 15,20 61,00 17,10 1,40 2,70 1,28 BO NE 15,20 61,00 17,10 1,40 2,70 1,28 BO NE 15,20 61,00 17,10 1,40 2,70 1,28 BO NE 15,20 61,00 17,10 1,40 0,00 1,10 1,30 BO NE 15,20 61,00 17,10 1,40 0,00 1,10 1,30 BO NE 15,20 61,00 17,10 1,40 0,00 1,10 1,30 BO NE 15,20 62,00 1,30 1,20 1,40 0,00 1,10 1,30 BO NE 15,20 62,00 1,30 1,20 1,40 0,00 1,10 1,30 BO NE 15,20 62,00 1,30 1,20 1,40 0,00 1,10 1,30 1,24 BO NE 15,20 61,00 17,10 1,40 0,00 1,10 1,30 1,24 BO NE 15,20 61,00 1,40 0,00 1,10 1,30 1,24 BO NE 15,20 61,00 1,40 0,00 1,10 1,40 0,00 1,10 1,40 0,00 1,10 1,40 0,00 1,10 1,40 0,00 1,40	Leggermente disturbato Leggermente disturbato Leggermente disturbato Leggermente disturbato Non disturbato
BO SE 25,60 51,20 23,30 0 0 1,47 Leggemente disturbato A6 32,30 46,00 18,50 3,20 0 1,39 Leggemente disturbato BO NE BO SW 50,00 37,50 12,50 0 0 0,94 Non disturbato K1 42,50 36,30 18,80 2,50 0 1,10 Non disturbato K2 39,10 48,40 12,50 0 0 1,10 Non disturbato K3 35,50 51,30 9,20 2,60 1,30 1,24 Leggemente disturbato K4 50,00 35,50 12,90 1,60 0 0,99 Non disturbato K4 50,00 35,50 12,90 1,60 0 0,99 Non disturbato A1 24,80 47,90 24,80 47,90 24,80 1,60 0,80 1,62 Leggemente disturbato A2 20,50 56,40 18,60 3,80 0,60 1,62 Leggemente disturbato A3 28,00 57,30 12,10 2,50 0 0 1,34 Leggemente disturbato A4 27,60 51,70 15,50 5,20 0 1,47 Leggemente disturbato A4 27,60 51,70 15,50 5,20 0 1,47 Leggemente disturbato A4 27,60 51,70 15,50 5,20 0 1,47 Leggemente disturbato A4 27,60 51,70 15,50 5,20 0 1,47 Leggemente disturbato A4 27,60 51,70 15,50 5,20 0 1,47 Leggemente disturbato A5 28,00 87,80 19,10 4,60 0,60 1,68 Leggemente disturbato A6 22,10 56,90 18,10 2,90 0 1,25 A6 27,00 51,70 15,50 5,20 0 1,47 Leggemente disturbato A6 22,10 56,90 18,10 2,90 0 1,53 BO NW 49,50 31,60 15,30 2,30 1,20 1,11	Leggermente disturbato Leggermente disturbato Leggermente disturbato Non disturbato
A6 32,30 46,00 18,50 3,20 0 1,39 Leggermente disturbato B3 36,00 48,00 8,00 6,00 2,00 1,35 Leggermente disturbato BO NE BO NE BO SW 50,00 37,50 12,50 0 0 0 0,94 Non disturbato B6 54,70 24,50 18,90 1,90 0 1,02 Non disturbato K1 42,50 36,30 18,80 2,50 0 0 1,10 Non disturbato K2 39,10 48,40 12,50 0 0 0 1,10 Non disturbato K3 35,50 51,30 9,20 2,60 1,30 1,24 Leggermente disturbato K4 50,00 35,50 12,90 1,60 0 0,99 Non disturbato A1 24,80 47,90 24,80 2,60 0 1,58 Leggermente disturbato A2 20,50 56,40 18,60 3,80 0,60 1,62 Leggermente disturbato A3 28,00 57,30 12,10 2,50 0 0 1,47 Leggermente disturbato A4 27,60 51,70 15,50 5,20 0 1,46 Leggermente disturbato A4 27,60 51,70 15,50 5,20 0 1,68 Leggermente disturbato BO NW 17,90 57,80 19,10 4,60 0,60 1,68 Leggermente disturbato BO NW 17,90 57,80 19,10 4,60 0,60 1,68 Leggermente disturbato BO NW 17,90 57,80 19,10 4,60 0,60 1,68 Leggermente disturbato BO NW 17,90 57,80 19,10 4,60 0,60 1,68 Leggermente disturbato BO NW 17,90 57,80 19,10 4,60 0,60 1,68 Leggermente disturbato BO NW 17,90 57,80 19,10 4,60 0,60 1,68 Leggermente disturbato BO NW 17,90 57,80 19,10 4,60 0,60 1,68 Leggermente disturbato BO NW 17,90 57,80 19,10 4,60 0,60 1,68 Leggermente disturbato BO NW 17,90 57,80 19,10 4,60 0,60 1,68 Leggermente disturbato BO NW 17,90 57,80 19,10 4,60 0,60 1,68 Leggermente disturbato BO NW 17,90 57,80 19,10 4,60 0,60 1,68 Leggermente disturbato BO NW 17,90 57,80 19,10 4,60 0,60 1,68 Leggermente disturbato BO NW 17,90 57,80 19,10 4,60 0,60 1,68 Leggermente disturbato BO NW 17,90 57,80 19,10 4,60 0,60 1,68 Leggermente disturbato	Leggermente disturbato Leggermente disturbato Non disturbato
B3 36,00 48,00 8,00 6,00 2,00 1,35 Leggermente disturbato B0 NE B0 NE B0 SW 50,00 37,50 12,50 0 0 0 0,94 Non disturbato B6 54,70 24,50 18,90 1,90 0 1,02 Non disturbato K1 42,50 36,30 18,80 2,50 0 1,10 Non disturbato K3 35,50 51,30 9,20 2,60 1,30 1,24 Leggermente disturbato K4 50,00 35,50 12,90 1,60 0 0,99 Non disturbato K4 50,00 35,50 12,90 1,60 0 0,99 Non disturbato K4 20,50 56,40 1,10 3,40 1,46 A1 24,80 47,90 24,80 2,60 0 1,58 Leggermente disturbato A2 20,50 56,40 18,60 3,80 0,60 1,62 Leggermente disturbato A3 28,00 57,30 12,10 2,50 0 0 1,47 Leggermente disturbato A4 27,60 51,70 15,50 5,20 0 1,47 Leggermente disturbato A4 27,60 51,70 15,50 5,20 0 1,68 Leggermente disturbato A4 27,60 51,70 15,50 5,20 0 1,68 Leggermente disturbato A4 27,60 51,70 15,50 5,20 0 1,68 Leggermente disturbato B5 29,20 57,30 12,40 0,00 1,10 1,30 B6 41,90 50,40 5,40 1,60 0,80 1,04 B7 25,10 54,90 16,40 2,60 1,00 1,49 B8 30,80 48,60 16,30 1,00 3,40 1,46 B7 25,10 54,90 16,40 2,60 1,00 1,49 B8 30,80 48,60 16,30 1,00 3,40 1,46 B7 25,10 54,90 16,40 2,60 1,00 1,49 B8 30,80 48,60 16,30 1,00 3,40 1,46 B7 25,10 54,90 16,40 2,60 1,00 1,49 B8 30,80 48,60 16,30 1,00 3,40 1,46 B8 30,80 48,60 16,30 1,00 3,40 1,46 B8 30,80 48,60 16,30 1,00 3,40 1,46 B8 30,80 48,60 16,30 1,00 3,40 1,46 B8 30,80 48,60 16,30 1,00 3,40 1,46 B8 30,80 48,60 16,30 1,00 3,40 1,46 B8 30,80 48,60 16,30 1,00 3,40 1,46 B8 30,80 48,60 16,30 1,00 3,40 1,40 B8 30,80 48,60 16,30 1,00 3,40 1,40 B8 30,80 48,60 16,30 1,00 1,40 B8 30,80 48,60 16,30 1,00 3,40 1,40 B8 30,80 48,60 16,30 1,00 3,40 1,46 B8 30,80 48,60 16,30 1,00 3,40 1,46 B8 30,80 48,60 16,30 1,00 3,40 1,46 B8 30,80 48,60 16,30 1,00 3,40 1,46 B8 30,80 48,60 16,30 1,00 3,40 1,46 B8 30,80 48,60 16,30 1,00 1,40 B8 30,80 48,60 16,30 1,00 1,40 B8 30,80 48,60 16,30 1,00 1,40 B8 30,80 48,60 16,30 1,00 1,40 B8 30,80 48,60 16,30 1,00 1,40 B8 30,80 48,60 16,30 1,00 1,40 B8 30,80 48,60 16,30 1,00 1,40 B8 30,80 48,60 16,30 1,00 1,40 B8 30,80 48,60 16,30 1,00 1,40 B8 30,80 48,60 16,30 1,00 1,40 B8 30,80 48,60 16,30 1,00 1,40 B8 30,80 48,6	Leggermente disturbato Non disturbato
BO SW 50,00 37,50 12,50 0 0 0,94 Non disturbato Non	Non disturbato
BO SW B6 54,70 24,50 18,90 1,90 0 1,02 Non disturbato Non disturba	
K2 39,10 48,40 12,50 0 0 1,10 Non disturbato K2 31,50 42,10 20,80 1,40 4,20 1,57 K3 35,50 51,30 9,20 2,60 1,30 1,24 Leggermente disturbato K3 41,00 38,80 16,30 3,90 0 1,57 K4 50,00 35,50 12,90 1,60 0 0,99 Non disturbato K3 41,00 38,80 16,30 3,90 0 1,25 K4 50,00 35,50 12,90 1,60 0 0,99 Non disturbato K3 41,00 38,80 16,30 3,90 0 1,25 K4 26,30 46,10 21,10 3,90 2,60 1,66 1,62 Leggermente disturbato A1 32,00 57,60 8,80 1,60 0 1,20 A2 20,50 56,40 18,60 3,80 0,60 1,62 Leggermente disturbato A2	
K2 39,10 48,40 12,50 0 0 1,10 Non disturbato K2 31,50 42,10 20,80 1,40 4,20 1,57 K3 35,50 51,30 9,20 2,60 1,30 1,24 Leggermente disturbato K3 41,00 38,80 16,30 3,90 0 1,57 K4 50,00 35,50 12,90 1,60 0 0,99 Non disturbato K3 41,00 38,80 16,30 3,90 0 1,25 K4 50,00 35,50 12,90 1,60 0 0,99 Non disturbato K3 41,00 38,80 16,30 3,90 0 1,25 K4 26,30 46,10 21,10 3,90 2,60 1,66 1,62 Leggermente disturbato A1 32,00 57,60 8,80 1,60 0 1,20 A2 20,50 56,40 18,60 3,80 0,60 1,62 Leggermente disturbato A2	Leggermente disturbato
K3 35,50 51,30 9,20 2,60 1,30 1,24 Leggermente disturbato Non disturbato K3 41,00 38,80 16,30 3,90 0 1,25 K4 50,00 35,50 12,90 1,60 0 0,99 Non disturbato Non disturbato K4 26,30 46,10 21,10 3,90 2,60 1,66 A1 24,80 47,90 24,80 2,60 0 1,58 Leggermente disturbato A2 23,80 56,20 16,20 3,20 0,50 1,51 A3 28,00 57,30 12,10 2,50 0 1,34 Leggermente disturbato A3 34,80 49,60 13,00 2,60 0 1,25 A4 27,60 51,70 15,50 5,20 0 1,47 Leggermente disturbato A4 22,10 56,90 18,10 2,90 0 1,53 BO NW 17,90 57,80 19,10 4,60 0,60 1,68 Leggermente disturba	Leggermente disturbato
K4 50,00 35,50 12,90 1,60 0 0,99 Non disturbato K4 26,30 46,10 21,10 3,90 2,60 1,66 A1 24,80 47,90 24,80 2,60 0 1,58 Leggermente disturbato Leggermente disturbato A2 20,50 56,40 18,60 3,80 0,60 1,62 Leggermente disturbato A2 23,80 56,20 16,20 3,20 0,50 1,51 A3 28,00 57,30 12,10 2,50 0 1,34 Leggermente disturbato A3 34,80 49,60 13,00 2,60 0 1,25 A4 27,60 51,70 15,50 5,20 0 1,47 Leggermente disturbato A4 22,10 56,90 18,10 2,90 0 1,53 BO NW 17,90 57,80 19,10 4,60 0,60 1,68 Leggermente disturbato BO NW 49,50 31,60 15,30 2,30 1,20 1,11	Leggermente disturbato
A1 24,80 47,90 24,80 2,60 0 1,58 Leggermente disturbato A2 20,50 56,40 18,60 3,80 0,60 1,62 Leggermente disturbato A3 28,00 57,30 12,10 2,50 0 1,34 Leggermente disturbato A4 27,60 51,70 15,50 5,20 0 1,47 Leggermente disturbato BO NW 17,90 57,80 19,10 4,60 0,60 1,68 Leggermente disturbato BO NW 17,90 57,80 19,10 4,60 0,60 1,68 Leggermente disturbato BO NW 49,50 31,60 15,30 2,30 1,20 1,11	Leggermente disturbato
A2 20,50 56,40 18,60 3,80 0,60 1,62 Leggermente disturbato Leggermente Leggerment	Leggermente disturbato
A3 28,00 57,30 12,10 2,50 0 1,34 Leggermente disturbato 27,60 51,70 15,50 5,20 0 1,47 Leggermente disturbato 27,80 NW 17,90 57,80 19,10 4,60 0,60 1,68 Leggermente disturbato 28,00 NW 17,90 57,80 19,10 4,60 0,60 1,68 Leggermente disturbato 29,00 NW 49,50 31,60 15,30 2,30 1,20 1,11	00
A4 27,60 51,70 15,50 5,20 0 1,47 Leggermente disturbato Leggermente disturbato Leggermente disturbato Leggermente disturbato Leggermente disturbato Leggermente disturbato Leggermente disturbato RA4 22,10 56,90 18,10 2,90 0 1,53 31,60 15,30 2,30 1,20 1,11	00
BO NW 17,90 57,80 19,10 4,60 0,60 1,68 Leggermente disturbato BO NW 49,50 31,60 15,30 2,30 1,20 1,11	
	00
A5 17,00 54,60 22,70 5,70 0 1,76 Leggermente disturbato A5 41,70 39,40 12,90 4,50 1,50 1,27	00
A6 20,80 58,40 15,20 4,00 1,61 Leggermente disturbato A6 23,30 49,10 26,40 1,20 0 1,58	
A7 29,20 52,30 13,80 4,60 0 1,41 Leggermente disturbato A7 28,20 58,80 9,40 3,50 0 1,32	
A8 17,20 54,90 22,10 2,50 3,30 1,80 Leggemente disturbato B1 18,00 58,40 21,30 1,10 1,10 1,64 Leggemente disturbato B2 35,40 44,30 19,00 1,30 0 1,29 Leggemente disturbato B2 21,90 56,80 16,80 4,50 0 1,56	
A8 17,20 34,90 22,10 2,50 3,30 1,80 Leggermente disturbato 5 A8 31,50 44,40 17,60 6,50 0 1,49	00
B2 35,40 44,30 19,00 1,30 0 1,29 Leggermente disturbato $\frac{1}{8}$ B2 21,90 56,80 16,80 4,50 0 1,56 1,45	
a R4 23.50 54.30 17.30 2.50 2.50 1.50 Leggements disturbate a R4 34.00 49.50 16.50 0 0 1.24	00
BO NE 18,50 52,20 21,70 7,60 0 1,78 Leggermente disturbato	00
BO SW 40,90 38,60 15,90 4,50 0 1,26 Leggermente disturbato BO SW 34,10 42,90 15,40 5,50 2,20 1,48	
B5 29.10 43.00 26.70 1.20 0 1.50 Legaermente disturbato B5 31.70 42.00 21.50 2.40 1.53	
B6 32,70 54,50 10,90 0,90 0,90 1,24 Leggermente disturbato B6 26,30 53,60 14,90 5,20 0 1,49	00
B7 23,90 50,00 20,30 5,10 0,70 1,63 Leggermente disturbato B7 27,50 53,70 15,00 3,80 0 1,43	00
B8 28,00 49,20 15,30 6,80 0,80 1,55 Leggemente disturbato B8 38,20 41,50 15,90 4,50 0 1,30	00
K1 27,90 57,40 13,10 0 1,60 1,35 Leggemente disturbato K1 22,90 44,80 27,10 5,20 0 1,72	
K2 30,40 46,10 21,70 0,90 0,90 1,44 Leggemente disturbato K2 39,30 44,20 14,10 2,50 0 1,20	
K3 22,90 54,20 21,90 1,00 0 1,52 Leggemente disturbato K3 42,40 32,20 21,20 3,40 0,80 1,32	
K4 16,90 72,30 10,80 0 0 1,41 Leggermente disturbato K4 26,20 54,80 17,90 1,20 0 1,41	

Tab. 3-LI – Continuo.

	Stazione	I(%)	II(%)	III(%)	IV(%)	V(%)	Mean AMBI	Classificazione ambientale
	A1	28,00	44,00	22,29	4,00	1,71	1,61	Leggermente disturbato
	A2	26,78	47,54	19,13	6,56	0	1,58	Leggermente disturbato
	A3	25,19	60,31	12,98	1,53	0	1,36	Leggermente disturbato
	A4	33,33	45,83	13,19	6,25	1,39	1,45	Leggermente disturbato
	BO NW	32,35	41,18	19,12	6,86	0,49	1,53	Leggermente disturbato
	BO SE	55,02	29,19	11,96	3,83	0	0,97	Non disturbato
	A5	25,54	57,07	12,50	4,89	0	1,45	Leggermente disturbato
	A6 A7	35,68	50,81	9,73	3,78 1,94	0	1,22	Leggermente disturbato
	A7 A8	29,68 24,07	52,90 49,38	15,48 23,46	3,09	0	1,35 1,58	Leggermente disturbato Leggermente disturbato
ori	B1	26,09	44,93	25,36	3,62	0	1,60	Leggermente disturbato
4° Post lavori	B2	25,14	61,20	10,93	2,73	0	1,37	Leggermente disturbato
st	B3	25,21	57,85	14,88	2,07	0	1,41	Leggermente disturbato
Pc	B4	23,97	55,37	17,36	3,31	0	1,50	Leggermente disturbato
4	BO NE	29,37	41,67	28,18	0,79	0	1,51	Leggermente disturbato
	BO SW	26,81	36,60	29,79	6,81	0	1,75	Leggermente disturbato
	B5	30,10	46,60	21,36	1,94	0	1,43	Leggermente disturbato
	B6	32,79	50,00	14,75	2,46	0	1,30	Leggermente disturbato
	B7	28,79	54,55	15,91	0,76	0	1,33	Leggermente disturbato
	B8	33,12	47,77	15,29	3,82	0	1,35	Leggermente disturbato
	K1	30,29	48,57	17,14	2,86	1,14	1,44	Leggermente disturbato
	K2	31,58	43,28	23,39	1,17	0,59	1,44	Leggermente disturbato
	K3	31,25	47,12	18,75	2,40	0,48	1,41	Leggermente disturbato
-	K4	42,42	48,49	9,09	0	0	1,00	Non disturbato
	A1	33,20	10,00	52,80	3,70	0,30	1,92	Leggermente disturbato
	A2	30,40	8,60	54,70	6,20	0	2,05	Leggermente disturbato
	A3	23,00	11,50	59,50	6,00	0	2,23	Leggermente disturbato
	A4	37,90	18,20	36,20	7,70	0	1,71	Leggermente disturbato
	BO NW	46,80	11,40	37,50	3,80	0,50	1,50	Leggermente disturbato
	BO SE	55,10	14,70	26,10	3,90	0,20	1,19	Non disturbato
	A5	30,50	14,20	50,60	4,80	0,00	1,95	Leggermente disturbato
	A6	32,40	15,50	46,70	4,80	0,50	1,88	Leggermente disturbato
	A7	26,30	12,50	57,10	3,30	0,90	2,10	Leggermente disturbato
	A8	31,50	15,10	48,30	4,30	0,80	1,92	Leggermente disturbato
Ë	B1	30,00	12,70	51,20	4,80	1,30	2,02	
Post lavori		-						Leggermente disturbato
St.	B2	29,10	13,50	52,60	4,70	0,20	2,00	Leggermente disturbato
Po	В3	26,50	11,10	59,20	3,30	0	2,09	Leggermente disturbato
2°	B4	33,00	20,70	40,20	5,80	0,20	1,79	Leggermente disturbato
	BO NE	50,70	13,40	32,00	3,70	0,10	1,34	Leggermente disturbato
	BO SW	54,80	15,90	25,90	3,30	0,10	1,17	Non disturbato
	B5	33,80	13,50	45,20	7,50	0	1,90	Leggermente disturbato
	В6	30,50	13,90	50,80	4,80	0	1,95	Leggermente disturbato
	В7	25,50	16,60	54,10	2,90	0,80	2,05	Leggermente disturbato
	B8	26,20	12,70	56,10	4,40	0,60	2,11	Leggermente disturbato
	K1	22,40	14,80	55,30	6,40	1,20	2,24	Leggermente disturbato
	K2	-		-			1,89	
		31,20	15,70	49,40	3,50	0,20		Leggermente disturbato
	K3	31,50	18,50	44,20	4,80	1,00	1,88	Leggermente disturbato
	K4	31,00	12,90	53,10	0,70	2,30	1,96	Leggermente disturbato

A1 A2	22,95	11,99	04.70				
A2		,	61,70	3,07	0,29	2,19	Leggermente disturbato
	25,45	10,29	59,93	3,97	0	2,15	Leggermente disturbato
A3	24,68	11,80	59,53	3,81	0	2,15	Leggermente disturbato
A4	34,24	10,29	51,45	3,86	0	1,88	Leggermente disturbato
NW C	25,42	11,99	57,38	4,77	0,44	2,14	Leggermente disturbato
O SE	74,64	10,88	13,04	1,42	0,02	0,62	Non disturbato
A5	31,21	10,56	53,48	4,76	0,00	1,98	Leggermente disturbato
A6	27,72	11,41	58,15	2,58	0,14	2,04	Leggermente disturbato
A7	21,92	13,70	60,58	3,50	0,30	2,20	Leggermente disturbato
A8	24,84	15,69	55,88	3,27	0,33	2,08	Leggermente disturbato
B1	27,38	10,08	57,08	5,45	0,00	2,11	Leggermente disturbato
B2	24,65	13,61	57,21	4,54	0,00	2,12	Leggermente disturbato
B3	26,01	11,66	57,10	5,08	0	2,13	Leggermente disturbato
B4	29,52	12,93	53,61	3,54	0,41	1,99	Leggermente disturbato
O NE	34,17	17,09	43,42	5,04	0,28	1,80	Leggermente disturbato
SW	25,76	7,52	62,65	4,08	0,00	2,18	Leggermente disturbato
B5	24,87	12,23	58,74	4,17	0	2,13	Leggermente disturbato
B6	28,78	10,32	57,12	3,63	0	2,04	Leggermente disturbato
B7	28,45	13,49	53,96	3,52	0,59	2,02	Leggermente disturbato
B8	23,15	11,34	61,11	3,47	0,93	2,22	Leggermente disturbato
K1	23,95	17,80	52,75	5,50	0,00	2,10	Leggermente disturbato
K2	22,91	10,84	61,46	4,26	0,53	2,23	Leggermente disturbato
K3	30,88	13,92	50,72	3,84	0,64	1,94	Leggermente disturbato
K4	22,98	10,28	64,11	1,97	0,66	2,21	Leggermente disturbato
	NW) SE A45 A46 A47 A88 B1 B22 B33 B44 D NE B55 B66 B77 B88 K1 K2 K3	25,42 74,64 25,42 74,64 27,72 21,92 24,84 27,38 24,65 23 24,65 23 24,65 23 24,65 23 24,17 25,76 35 24,87 28,78 24,87 28,78 28,45 28,78 28,45 28,45 28,45 28,45 28,78 28,45 28,	25,42 11,99 25,42 11,99 25,42 11,99 25,42 11,98 34,5 31,21 10,56 36 27,72 11,41 37 21,92 13,70 38 10,08 32 24,65 13,61 33 26,01 11,66 33 26,01 11,66 34 29,52 12,93 30 NE 34,17 17,09 25,76 7,52 38 24,87 12,23 36 28,78 10,32 37 28,45 13,49 38 23,15 11,34 30,88 13,92	25,42 11,99 57,38 13,04 10,88 13,04 A5 31,21 10,56 53,48 A6 27,72 11,41 58,15 A7 21,92 13,70 60,58 B1 27,38 10,08 57,08 B2 24,65 13,61 57,21 B3 26,01 11,66 57,10 B4 29,52 12,93 53,61 0 NE 34,17 17,09 43,42 25,76 7,52 62,65 B3 24,87 12,23 58,74 12	25,42 11,99 57,38 4,77 1,42 10,56 53,48 4,76 1,42 10,56 53,48 4,76 1,42 11,41 58,15 2,58 1,47 21,92 13,70 60,58 3,50 1,48 12,48 15,69 55,88 3,27 1,41 1,66 57,08 5,45 1,45 1,45 1,45 1,45 1,45 1,45 1,45	NW 25,42 11,99 57,38 4,77 0,44 O SE 74,64 10,88 13,04 1,42 0,02 A5 31,21 10,56 53,48 4,76 0,00 A6 27,72 11,41 58,15 2,58 0,14 A7 21,92 13,70 60,58 3,50 0,30 A8 24,84 15,69 55,88 3,27 0,33 B1 27,38 10,08 57,08 5,45 0,00 B2 24,65 13,61 57,21 4,54 0,00 B3 26,01 11,66 57,10 5,08 0 B4 29,52 12,93 53,61 3,54 0,41 D NE 34,17 17,09 43,42 5,04 0,28 C SW 25,76 7,52 62,65 4,08 0,00 B3 24,87 12,23 58,74 4,17 0 B3 24,87 12,23 58,74 4,17 0 B6 28,78 10,32 57,12 3,63 0 B7 28,45 13,49 53,96 3,52 0,59 B8 23,15 11,34 61,11 3,47 0,93 K1 23,95 17,80 52,75 5,50 0,00 K2 22,91 10,84 61,46 4,26 0,53 K3 30,88 13,92 50,72 3,84 0,64	NW 25,42 11,99 57,38 4,77 0,44 2,14 O SE 74,64 10,88 13,04 1,42 0,02 0,62 A5 31,21 10,56 53,48 4,76 0,00 1,98 A6 27,72 11,41 58,15 2,58 0,14 2,04 A7 21,92 13,70 60,58 3,50 0,30 2,20 A8 24,84 15,69 55,88 3,27 0,33 2,08 B1 27,38 10,08 57,08 5,45 0,00 2,11 B2 24,65 13,61 57,21 4,54 0,00 2,12 B3 26,01 11,66 57,10 5,08 0 2,13 B4 29,52 12,93 53,61 3,54 0,41 1,99 D NE 34,17 17,09 43,42 5,04 0,28 1,80 D NE 34,47 17,09 43,42 5,04 0,28 1,80 D NE 24,87 12,23 58,74 4,17 0 2,13 B36 28,78 10,32 57,12 3,63 0 2,04 B37 28,45 13,49 53,96 3,52 0,59 2,02 B8 23,15 11,34 61,11 3,47 0,93 2,22 K1 23,95 17,80 52,75 5,50 0,00 2,10 K2 22,91 10,84 61,46 4,26 0,53 2,23 K3 30,88 13,92 50,72 3,84 0,64 1,94

Tab. 3-LII – Valori dell'indice BENTIX ottenuti per i siti monitorati nei survey condotti sinora. Nel durante lavori la stazione BO NE non è stata campionata.

	Stazione	BENTIX	Classificazione ambientale		Stazione	BENTIX	Classificazione ambientale		Stazione	BENTIX	Classificazione ambientale
	A3	4,12	Leggermente disturbato		A1	3,60	Leggermente disturbato		A1	4,20	Leggermente disturbato
	BO NW	4,00	Leggermente disturbato		A2	3,47	Moderatamente disturbato		A2	3,73	Leggermente disturbato
	BO SE	4,05	Leggermente disturbato		А3	3,40	Moderatamente disturbato		А3	3,66	Leggermente disturbato
	A6	3,98	Leggermente disturbato		A4	3,61	Leggermente disturbato		A4	3,78	Leggermente disturbato
~	B3	3,95	Leggermente disturbato		BO NW	3,46	Moderatamente disturbato		BO NW	4,16	Leggermente disturbato
Presurvey	BO NE	3,73	Leggermente disturbato		BO SE	4,12	Leggermente disturbato		BO SE	4,16	Leggermente disturbato
ise.	BO SW	3,75	Leggermente disturbato		A5	3,30	Moderatamente disturbato		A5	3,77	Leggermente disturbato
<u>-</u>	B6	4,43	Leggermente disturbato		A6	3,25	Moderatamente disturbato		A6	3,59	Leggermente disturbato
	K1	3,71	Leggermente disturbato		A7	3,43	Moderatamente disturbato		A7	3,77	Leggermente disturbato
	K2	3,68	Leggermente disturbato		A8	2,87	Moderatamente disturbato		A8	3,35	Moderatamente disturbato
	К3	3,44	Moderatamente disturbato	vori	B1	3,16	Moderatamente disturbato	ost lavori	B1	3,86	Leggermente disturbato
	K4	3,90	Leggermente disturbato	<u>a</u>	B2	3,88	Leggermente disturbato	t la	B2	3,74	Leggermente disturbato
	A3	5,22	Non disturbato	Post	В3	3,75	Leggermente disturbato	Pos	В3	3,07	Moderatamente disturbato
	BO NW	5,51	Non disturbato	1°F	B4	3,54	Leggermente disturbato	2° F	B4	3,23	Moderatamente disturbato
	BO SE	4,14	Leggermente disturbato		BO NE	3,27	Moderatamente disturbato		BO NE	3,42	Moderatamente disturbato
	A6	4,39	Leggermente disturbato		BO SW	4,36	Leggermente disturbato		BO SW	4,24	Leggermente disturbato
lavori	В3	4,08	Leggermente disturbato		B5	3,98	Leggermente disturbato		B5	3,65	Leggermente disturbato
<u>a</u>	BO NE		Non campionata		B6	3,47	Moderatamente disturbato		B6	3,89	Leggermente disturbato
l g	BO SW	4,75	Non disturbato		B7	3,55	Leggermente disturbato		B7	3,35	Moderatamente disturbato
Durante	B6	4,79	Non disturbato		B8	3,46	Moderatamente disturbato		B8	3,75	Leggermente disturbato
-	K1	4,27	Leggermente disturbato		K1	3,77	Leggermente disturbato		K1	3,71	Leggermente disturbato
	K2	4,19	Leggermente disturbato		K2	3,86	Leggermente disturbato		K2	3,59	Leggermente disturbato
	К3	3,97	Leggermente disturbato		К3	3,60	Leggermente disturbato		К3	3,91	Leggermente disturbato
	K4	4,58	Non disturbato		K4	3,16	Moderatamente disturbato		K4	3,45	Moderatamente disturbato

	Stazione	BENTIX	Classificazione ambientale		Stazione	BENTIX	Classificazione ambientale		Stazione	BENTIX	Classificazione ambientale		Stazione	BENTIX	Classificazione ambientale
	A1	3,60	Leggermente disturbato		A1	3,40	Moderatamente disturbato		A1	3,62	Leggermente disturbato		A1	3,20	Moderatamente disturbato
	A2	3,38	Moderatamente disturbato		A2	3,13	Moderatamente disturbato		A2	3,45	Moderatamente disturbato		A2	3,28	Moderatamente disturbato
	A3	4,16	Leggermente disturbato		А3	3,38	Moderatamente disturbato		A3	3,22	Moderatamente disturbato		A3	3,35	Moderatamente disturbato
	A4	3,22	Moderatamente disturbato		A4	3,70	Leggermente disturbato		A4	3,83	Leggermente disturbato		A4	3,59	Leggermente disturbato
	BO NW	4,42	Leggermente disturbato		BO NW	3,64	Leggermente disturbato		BO NW	4,11	Leggermente disturbato		BO NW	3,25	Moderatamente disturbato
	BO SE	5,55	Non disturbato		BO SE	4,55	Non disturbato		BO SE	4,44	Leggermente disturbato		BO SE	5,30	Non disturbato
	A5	4,06	Leggermente disturbato		A5	3,52	Leggermente disturbato		A5	3,61	Leggermente disturbato		A5	3,42	Moderatamente disturbato
	A6	3,16	Moderatamente disturbato		A6	3,48	Moderatamente disturbato		A6	3,59	Leggermente disturbato		A6	3,32	Moderatamente disturbato
	A7	3,41	Moderatamente disturbato		A7	3,56	Leggermente disturbato		A7	3,36	Moderatamente disturbato		A7	3,28	Moderatamente disturbato
l	A8	3,45	Moderatamente disturbato	l	A8	3,56	Leggermente disturbato		A8	3,64	Leggermente disturbato		A8	3,45	Moderatamente disturbato
lavori	B1	3,45	Moderatamente disturbato	vori	B1	3,38	Moderatamente disturbato	Post lavori	B1	3,50	Moderatamente disturbato	vori	B1	3,31	Moderatamente disturbato
1 2	B2	3,22	Moderatamente disturbato	± a	B2	3,72	Leggermente disturbato	t la	B2	3,48	Moderatamente disturbato	t a	B2	3,24	Moderatamente disturbato
Post	В3	3,50	Leggermente disturbato	Post	В3	3,20	Moderatamente disturbato	Soc	B3	3,29	Moderatamente disturbato	၀င	B3	3,21	Moderatamente disturbato
÷	B4	3,98	Leggermente disturbato	٠ <u>+</u>	B4	3,51	Leggermente disturbato	2° I	B4	3,79	Leggermente disturbato	.9	B4	3,48	Moderatamente disturbato
	BO NE	4,36	Leggermente disturbato		BO NE	3,65	Leggermente disturbato		BO NE	4,26	Leggermente disturbato		BO NE	3,72	Leggermente disturbato
	BO SW	3,96	Leggermente disturbato		BO SW	3,34	Moderatamente disturbato		BO SW	4,41	Leggermente disturbato		BO SW	3,11	Moderatamente disturbato
	B5	3,53	Leggermente disturbato		B5	3,69	Leggermente disturbato		B5	3,63	Leggermente disturbato		B5	3,27	Moderatamente disturbato
	B6	3,32	Moderatamente disturbato		B6	3,54	Leggermente disturbato		В6	3,58	Leggermente disturbato		B6	3,45	Moderatamente disturbato
	B7	3,47	Moderatamente disturbato		B7	3,59	Leggermente disturbato		B7	3,41	Moderatamente disturbato		B7	3,44	Moderatamente disturbato
	B8	3,63	Leggermente disturbato		B8	3,65	Leggermente disturbato		B8	3,35	Moderatamente disturbato		B8	3,27	Moderatamente disturbato
	K1	3,54	Leggermente disturbato		K1	3,68	Leggermente disturbato		K1	3,48	Moderatamente disturbato		K1	3,39	Moderatamente disturbato
	K2	3,73	Leggermente disturbato		K2	3,61	Leggermente disturbato		K2	3,60	Leggermente disturbato		K2	3,24	Moderatamente disturbato
	К3	3,86	Leggermente disturbato		К3	3,34	Moderatamente disturbato		К3	3,68	Leggermente disturbato		К3	3,49	Moderatamente disturbato
	K4	3,21	Moderatamente disturbato		K4	3,70	Leggermente disturbato		K4	3,61	Leggermente disturbato		K4	3,19	Moderatamente disturbato

Tab. 3-LIII - Classificazione dello stato ecologico derivata dalla combinazione dei tre differenti indici.

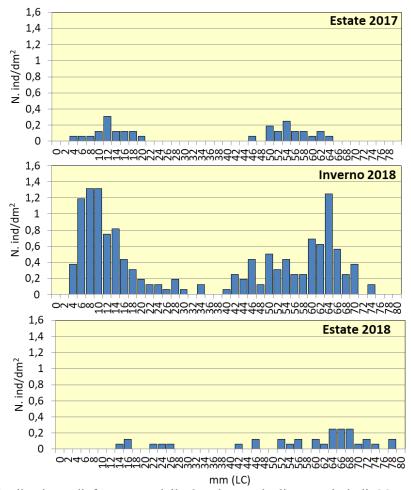
		W	AMBI	BENTIX	04-4
	Stazione	Classificazione ambientale	Classificazione ambientale	Classificazione ambientale	Stato ecologico
	A3	Leggermente disturbato	Leggermente disturbato	Leggermente disturbato	buono
	BO NW	Leggermente disturbato	Leggermente disturbato	Leggermente disturbato	buono
	BO SE	Leggermente disturbato	Leggermente disturbato	Leggermente disturbato	buono
	A6	Leggermente disturbato	Leggermente disturbato	Leggermente disturbato	buono
<u>~</u>	B3	Leggermente disturbato	Leggermente disturbato	Leggermente disturbato	buono
Ž	BO NE	Leggermente disturbato	Leggermente disturbato	Leggermente disturbato	buono
Pre-survey	BO SW	Leggermente disturbato	Leggermente disturbato	Leggermente disturbato	buono
4	В6	Leggermente disturbato	Non disturbato	Leggermente disturbato	buono
	K1	Moderatamente disturbato	Leggermente disturbato	Leggermente disturbato	buono/moderato
	K2	Leggermente disturbato	Leggermente disturbato	Leggermente disturbato	buono
	K3	Moderatamente disturbato	Leggermente disturbato	Moderatamente disturbato	buono/moderato
	K4	Leggermente disturbato	Non disturbato	Leggermente disturbato	buono
	A3	Leggermente disturbato	Non disturbato	Non disturbato	alto/buono
	BO NW	Leggermente disturbato	Non disturbato	Non disturbato	alto/buono
	BO SE	Leggermente disturbato	Leggermente disturbato	Leggermente disturbato	buono
l	A6	Leggermente disturbato	Leggermente disturbato	Leggermente disturbato	buono
Vor	B3	Leggermente disturbato	Leggermente disturbato	Leggermente disturbato	buono
<u>a</u>	BO NE		Non campiona	ita	
Durante lavori	BO SW	Leggermente disturbato	Non disturbato	Non disturbato	alto/buono
Ğ	B6	Leggermente disturbato	Non disturbato	Non disturbato	alto/buono
	K1	Leggermente disturbato	Leggermente disturbato	Leggermente disturbato	buono
	K2	Moderatamente disturbato	Non disturbato	Leggermente disturbato	buono
	K3	Leggermente disturbato	Leggermente disturbato	Leggermente disturbato	buono
	K4	Leggermente disturbato	Non disturbato	Non disturbato	alto/buono
	A1	Moderatamente disturbato	Leggermente disturbato	Leggermente disturbato	buono/moderato
	A2	Leggermente disturbato	Leggermente disturbato	Moderatamente disturbato	buono/moderato
	A3	Leggermente disturbato	Leggermente disturbato	Moderatamente disturbato	buono/moderato
	A4	Moderatamente disturbato	Leggermente disturbato	Leggermente disturbato	buono/moderato
	BO NW	Leggermente disturbato	Leggermente disturbato	Moderatamente disturbato	buono/moderato
	BO SE	Leggermente disturbato			
	A5		Leggermente disturbato	Leggermente disturbato	buono
		Moderatamente disturbato	Leggermente disturbato	Moderatamente disturbato	moderato
	A6	Leggermente disturbato	Leggermente disturbato Leggermente disturbato	Moderatamente disturbato Moderatamente disturbato	moderato buono/moderato
	A6 A7	Leggermente disturbato Leggermente disturbato	Leggermente disturbato Leggermente disturbato Leggermente disturbato	Moderatamente disturbato Moderatamente disturbato Moderatamente disturbato	moderato buono/moderato buono/moderato
-	A6 A7 A8	Leggermente disturbato Leggermente disturbato Leggermente disturbato	Leggermente disturbato Leggermente disturbato Leggermente disturbato Leggermente disturbato	Moderatamente disturbato Moderatamente disturbato Moderatamente disturbato Moderatamente disturbato	moderato buono/moderato buono/moderato buono/moderato
avori	A6 A7 A8 B1	Leggermente disturbato Leggermente disturbato Leggermente disturbato Leggermente disturbato	Leggermente disturbato Leggermente disturbato Leggermente disturbato Leggermente disturbato Leggermente disturbato	Moderatamente disturbato Moderatamente disturbato Moderatamente disturbato Moderatamente disturbato Moderatamente disturbato	moderato buono/moderato buono/moderato buono/moderato buono/moderato
st lavori	A6 A7 A8 B1 B2	Leggermente disturbato Leggermente disturbato Leggermente disturbato Leggermente disturbato Leggermente disturbato	Leggermente disturbato Leggermente disturbato Leggermente disturbato Leggermente disturbato Leggermente disturbato Leggermente disturbato Leggermente disturbato	Moderatamente disturbato Moderatamente disturbato Moderatamente disturbato Moderatamente disturbato Moderatamente disturbato Leggermente disturbato	moderato buono/moderato buono/moderato buono/moderato buono/moderato buono
Post lavori	A6 A7 A8 B1 B2 B3	Leggermente disturbato Leggermente disturbato Leggermente disturbato Leggermente disturbato Leggermente disturbato Leggermente disturbato Leggermente disturbato	Leggermente disturbato Leggermente disturbato Leggermente disturbato Leggermente disturbato Leggermente disturbato Leggermente disturbato Leggermente disturbato Leggermente disturbato	Moderatamente disturbato Moderatamente disturbato Moderatamente disturbato Moderatamente disturbato Moderatamente disturbato Leggermente disturbato Leggermente disturbato	moderato buono/moderato buono/moderato buono/moderato buono/moderato buono buono
1° Post lavori	A6 A7 A8 B1 B2 B3 B4	Leggermente disturbato Leggermente disturbato Leggermente disturbato Leggermente disturbato Leggermente disturbato Leggermente disturbato Leggermente disturbato Leggermente disturbato	Leggermente disturbato Leggermente disturbato Leggermente disturbato Leggermente disturbato Leggermente disturbato Leggermente disturbato Leggermente disturbato Leggermente disturbato Leggermente disturbato	Moderatamente disturbato Moderatamente disturbato Moderatamente disturbato Moderatamente disturbato Moderatamente disturbato Leggermente disturbato Leggermente disturbato Leggermente disturbato	moderato buono/moderato buono/moderato buono/moderato buono/moderato buono buono buono buono
1° Post lavori	A6 A7 A8 B1 B2 B3 B4 BO NE	Leggermente disturbato Leggermente disturbato Leggermente disturbato Leggermente disturbato Leggermente disturbato Leggermente disturbato Leggermente disturbato Leggermente disturbato Leggermente disturbato	Leggermente disturbato Leggermente disturbato Leggermente disturbato Leggermente disturbato Leggermente disturbato Leggermente disturbato Leggermente disturbato Leggermente disturbato Leggermente disturbato Leggermente disturbato	Moderatamente disturbato Moderatamente disturbato Moderatamente disturbato Moderatamente disturbato Moderatamente disturbato Leggermente disturbato Leggermente disturbato Leggermente disturbato Moderatamente disturbato	moderato buono/moderato buono/moderato buono/moderato buono/moderato buono buono buono buono buono/moderato
1° Post Iavori	A6 A7 A8 B1 B2 B3 B4 BO NE BO SW	Leggermente disturbato Leggermente disturbato Leggermente disturbato Leggermente disturbato Leggermente disturbato Leggermente disturbato Leggermente disturbato Leggermente disturbato Leggermente disturbato Leggermente disturbato	Leggermente disturbato Leggermente disturbato Leggermente disturbato Leggermente disturbato Leggermente disturbato Leggermente disturbato Leggermente disturbato Leggermente disturbato Leggermente disturbato Leggermente disturbato Leggermente disturbato Leggermente disturbato	Moderatamente disturbato Moderatamente disturbato Moderatamente disturbato Moderatamente disturbato Moderatamente disturbato Leggermente disturbato Leggermente disturbato Leggermente disturbato Moderatamente disturbato Leggermente disturbato	moderato buono/moderato buono/moderato buono/moderato buono buono buono buono buono buono/moderato buono buono/moderato buono
1° Post lavori	A6 A7 A8 B1 B2 B3 B4 BO NE BO SW	Leggermente disturbato Leggermente disturbato Leggermente disturbato Leggermente disturbato Leggermente disturbato Leggermente disturbato Leggermente disturbato Leggermente disturbato Leggermente disturbato Leggermente disturbato Leggermente disturbato Leggermente disturbato	Leggermente disturbato Leggermente disturbato Leggermente disturbato Leggermente disturbato Leggermente disturbato Leggermente disturbato Leggermente disturbato Leggermente disturbato Leggermente disturbato Leggermente disturbato Leggermente disturbato Leggermente disturbato Leggermente disturbato	Moderatamente disturbato Moderatamente disturbato Moderatamente disturbato Moderatamente disturbato Moderatamente disturbato Leggermente disturbato Leggermente disturbato Leggermente disturbato Moderatamente disturbato Leggermente disturbato Leggermente disturbato Leggermente disturbato	moderato buono/moderato buono/moderato buono/moderato buono buono buono buono buono buono/moderato buono buono buono buono buono buono buono
1° Post lavori	A6 A7 A8 B1 B2 B3 B4 BO NE BO SW B5 B6	Leggermente disturbato Leggermente disturbato Leggermente disturbato Leggermente disturbato Leggermente disturbato Leggermente disturbato Leggermente disturbato Leggermente disturbato Leggermente disturbato Leggermente disturbato Leggermente disturbato Leggermente disturbato Leggermente disturbato	Leggermente disturbato Leggermente disturbato Leggermente disturbato Leggermente disturbato Leggermente disturbato Leggermente disturbato Leggermente disturbato Leggermente disturbato Leggermente disturbato Leggermente disturbato Leggermente disturbato Leggermente disturbato Leggermente disturbato Leggermente disturbato Leggermente disturbato	Moderatamente disturbato Moderatamente disturbato Moderatamente disturbato Moderatamente disturbato Moderatamente disturbato Leggermente disturbato Leggermente disturbato Leggermente disturbato Moderatamente disturbato Leggermente disturbato Leggermente disturbato Leggermente disturbato Moderatamente disturbato Moderatamente disturbato	moderato buono/moderato buono/moderato buono/moderato buono buono buono buono buono buono/moderato buono buono buono buono buono buono buono
1° Post Iavori	A6 A7 A8 B1 B2 B3 B4 BO NE BO SW B5 B6 B7	Leggermente disturbato Leggermente disturbato Leggermente disturbato Leggermente disturbato Leggermente disturbato Leggermente disturbato Leggermente disturbato Leggermente disturbato Leggermente disturbato Leggermente disturbato Leggermente disturbato Leggermente disturbato Leggermente disturbato Leggermente disturbato Leggermente disturbato	Leggermente disturbato Leggermente disturbato Leggermente disturbato Leggermente disturbato Leggermente disturbato Leggermente disturbato Leggermente disturbato Leggermente disturbato Leggermente disturbato Leggermente disturbato Leggermente disturbato Leggermente disturbato Leggermente disturbato Leggermente disturbato Leggermente disturbato Leggermente disturbato	Moderatamente disturbato Moderatamente disturbato Moderatamente disturbato Moderatamente disturbato Moderatamente disturbato Leggermente disturbato Leggermente disturbato Leggermente disturbato Moderatamente disturbato Leggermente disturbato Leggermente disturbato Leggermente disturbato Leggermente disturbato Leggermente disturbato Moderatamente disturbato Leggermente disturbato	moderato buono/moderato buono/moderato buono/moderato buono
1° Post lavori	A6 A7 A8 B1 B2 B3 B4 BO NE BO SW B5 B6 B7 B8	Leggermente disturbato Leggermente disturbato Leggermente disturbato Leggermente disturbato Leggermente disturbato Leggermente disturbato Leggermente disturbato Leggermente disturbato Leggermente disturbato Leggermente disturbato Leggermente disturbato Leggermente disturbato Leggermente disturbato Leggermente disturbato Leggermente disturbato Leggermente disturbato	Leggermente disturbato Leggermente disturbato Leggermente disturbato Leggermente disturbato Leggermente disturbato Leggermente disturbato Leggermente disturbato Leggermente disturbato Leggermente disturbato Leggermente disturbato Leggermente disturbato Leggermente disturbato Leggermente disturbato Leggermente disturbato Leggermente disturbato Leggermente disturbato Leggermente disturbato Leggermente disturbato	Moderatamente disturbato Moderatamente disturbato Moderatamente disturbato Moderatamente disturbato Moderatamente disturbato Leggermente disturbato Leggermente disturbato Leggermente disturbato Moderatamente disturbato Leggermente disturbato Leggermente disturbato Leggermente disturbato Leggermente disturbato Moderatamente disturbato Moderatamente disturbato Moderatamente disturbato	moderato buono/moderato buono/moderato buono/moderato buono buono buono buono buono buono buono buono buono buono buono buono buono buono buono buono buono buono/moderato buono buono/moderato
1° Post Iavori	A6 A7 A8 B1 B2 B3 B4 BO NE BO SW B5 B6 B7 B8	Leggermente disturbato Leggermente disturbato Leggermente disturbato Leggermente disturbato Leggermente disturbato Leggermente disturbato Leggermente disturbato Leggermente disturbato Leggermente disturbato Leggermente disturbato Leggermente disturbato Leggermente disturbato Leggermente disturbato Leggermente disturbato Leggermente disturbato Leggermente disturbato Leggermente disturbato	Leggermente disturbato Leggermente disturbato Leggermente disturbato Leggermente disturbato Leggermente disturbato Leggermente disturbato Leggermente disturbato Leggermente disturbato Leggermente disturbato Leggermente disturbato Leggermente disturbato Leggermente disturbato Leggermente disturbato Leggermente disturbato Leggermente disturbato Leggermente disturbato Leggermente disturbato Leggermente disturbato Leggermente disturbato	Moderatamente disturbato Moderatamente disturbato Moderatamente disturbato Moderatamente disturbato Moderatamente disturbato Leggermente disturbato Leggermente disturbato Leggermente disturbato Moderatamente disturbato Leggermente disturbato Leggermente disturbato Leggermente disturbato Leggermente disturbato Moderatamente disturbato Leggermente disturbato Leggermente disturbato Leggermente disturbato Moderatamente disturbato Leggermente disturbato	moderato buono/moderato buono/moderato buono/moderato buono buono buono buono buono buono buono buono buono buono buono buono buono buono buono buono buono buono buono/moderato buono buono/moderato buono buono/moderato
1° Post lavori	A6 A7 A8 B1 B2 B3 B4 BO NE BO SW B5 B6 B7 B8 K1 K2	Leggermente disturbato Leggermente disturbato Leggermente disturbato Leggermente disturbato Leggermente disturbato Leggermente disturbato Leggermente disturbato Leggermente disturbato Leggermente disturbato Leggermente disturbato Leggermente disturbato Leggermente disturbato Leggermente disturbato Leggermente disturbato Leggermente disturbato Leggermente disturbato Leggermente disturbato Leggermente disturbato Leggermente disturbato	Leggermente disturbato Leggermente disturbato	Moderatamente disturbato Moderatamente disturbato Moderatamente disturbato Moderatamente disturbato Moderatamente disturbato Leggermente disturbato Leggermente disturbato Leggermente disturbato Moderatamente disturbato Leggermente disturbato Leggermente disturbato Leggermente disturbato Moderatamente disturbato Moderatamente disturbato Leggermente disturbato Leggermente disturbato Leggermente disturbato Leggermente disturbato Leggermente disturbato Leggermente disturbato	moderato buono/moderato buono/moderato buono/moderato buono
1° Post lavori	A6 A7 A8 B1 B2 B3 B4 BO NE BO SW B5 B6 B7 B8	Leggermente disturbato Leggermente disturbato Leggermente disturbato Leggermente disturbato Leggermente disturbato Leggermente disturbato Leggermente disturbato Leggermente disturbato Leggermente disturbato Leggermente disturbato Leggermente disturbato Leggermente disturbato Leggermente disturbato Leggermente disturbato Leggermente disturbato Leggermente disturbato Leggermente disturbato	Leggermente disturbato Leggermente disturbato Leggermente disturbato Leggermente disturbato Leggermente disturbato Leggermente disturbato Leggermente disturbato Leggermente disturbato Leggermente disturbato Leggermente disturbato Leggermente disturbato Leggermente disturbato Leggermente disturbato Leggermente disturbato Leggermente disturbato Leggermente disturbato Leggermente disturbato Leggermente disturbato Leggermente disturbato	Moderatamente disturbato Moderatamente disturbato Moderatamente disturbato Moderatamente disturbato Moderatamente disturbato Leggermente disturbato Leggermente disturbato Leggermente disturbato Moderatamente disturbato Leggermente disturbato Leggermente disturbato Leggermente disturbato Leggermente disturbato Moderatamente disturbato Leggermente disturbato Leggermente disturbato Leggermente disturbato Moderatamente disturbato Leggermente disturbato	moderato buono/moderato buono/moderato buono/moderato buono buono buono buono buono buono buono buono buono buono buono buono buono buono buono buono buono buono buono/moderato buono buono/moderato buono buono/moderato

Tab. 3-LIII – Continuo.

		w	AMBI	BENTIX	
	Stazione	Classificazione ambientale	Classificazione ambientale	Classificazione ambientale	Stato ecologico
	A1	Leggermente disturbato	Non disturbato	Leggermente disturbato	buono
	A2	Leggermente disturbato	Leggermente disturbato	Leggermente disturbato	buono
	A3	Moderatamente disturbato	Leggermente disturbato	Leggermente disturbato	buono/moderato
	A4	Leggermente disturbato	Leggermente disturbato	Leggermente disturbato	buono
	BO NW	Moderatamente disturbato	Leggermente disturbato	Leggermente disturbato	buono/moderato
	BO SE	Leggermente disturbato	Leggermente disturbato	Leggermente disturbato	buono
	A5	Moderatamente disturbato	Leggermente disturbato	Leggermente disturbato	buono/moderato
	A6	Moderatamente disturbato	Leggermente disturbato	Leggermente disturbato	buono/moderato
	A7	Moderatamente disturbato	Leggermente disturbato	Leggermente disturbato	buono/moderato
	A7 A8	Moderatamente disturbato		Moderatamente disturbato	moderato
i.	B1	Leggermente disturbato	Leggermente disturbato Leggermente disturbato	Leggermente disturbato	buono
Post lavori	B2	Moderatamente disturbato	Leggermente disturbato		buono/moderato
ost	B3	Leggermente disturbato	Leggermente disturbato	Leggermente disturbato Moderatamente disturbato	buono/moderato
	B4	00		Moderatamente disturbato	buono/moderato
2°		Leggermente disturbato	Leggermente disturbato		
	BO NE	Leggermente disturbato	Leggermente disturbato	Moderatamente disturbato	buono/moderato
	BO SW	Leggermente disturbato	Leggermente disturbato	Leggermente disturbato	buono
	B5	Leggermente disturbato	Leggermente disturbato	Leggermente disturbato	buono
	B6	Leggermente disturbato	Non disturbato	Leggermente disturbato	buono
	B7	Moderatamente disturbato	Leggermente disturbato	Moderatamente disturbato	moderato
	B8	Leggermente disturbato	Leggermente disturbato	Leggermente disturbato	buono
	K1	Leggermente disturbato	Leggermente disturbato	Leggermente disturbato	buono
	K2	Moderatamente disturbato	Leggermente disturbato	Leggermente disturbato	buono/moderato
	K3 K4	Moderatamente disturbato	Leggermente disturbato	Leggermente disturbato	buono/moderato
	A1	Leggermente disturbato Leggermente disturbato	Leggermente disturbato Leggermente disturbato	Moderatamente disturbato Leggermente disturbato	buono/moderato buono
	A2	Leggermente disturbato	Leggermente disturbato	Moderatamente disturbato	buono/moderato
	А3	Leggermente disturbato	Leggermente disturbato	Leggermente disturbato	buono
	A4	Leggermente disturbato	Leggermente disturbato	Moderatamente disturbato	buono/moderato
	BO NW	Leggermente disturbato	Non disturbato	Leggermente disturbato	buono
	BO SE A5	Leggermente disturbato Leggermente disturbato	Non disturbato Leggermente disturbato	Non disturbato Leggermente disturbato	alto/buono buono
	A6	Leggermente disturbato	Leggermente disturbato	Moderatamente disturbato	buono/moderato
	A7	Leggermente disturbato	Leggermente disturbato	Moderatamente disturbato	buono/moderato
ori	A8	Leggermente disturbato	Leggermente disturbato	Moderatamente disturbato	buono/moderato
Post lavori	B1 B2	Leggermente disturbato Leggermente disturbato	Leggermente disturbato Leggermente disturbato	Moderatamente disturbato Moderatamente disturbato	buono/moderato buono/moderato
st	B3	Leggermente disturbato	Leggermente disturbato	Leggermente disturbato	buono
	B4	Leggermente disturbato	Leggermente disturbato	Leggermente disturbato	buono
အိ	BO NE	Leggermente disturbato	Leggermente disturbato	Leggermente disturbato	buono
	BO SW	Leggermente disturbato	Leggermente disturbato	Leggermente disturbato	buono
	B5 B6	Leggermente disturbato Leggermente disturbato	Leggermente disturbato Leggermente disturbato	Leggermente disturbato Moderatamente disturbato	buono buono/moderato
	B7	Leggermente disturbato	Leggermente disturbato	Moderatamente disturbato	buono/moderato
	B8	Leggermente disturbato	Leggermente disturbato	Leggermente disturbato	buono
	K1	Leggermente disturbato	Leggermente disturbato	Leggermente disturbato	buono
	K2	Leggermente disturbato	Non disturbato	Leggermente disturbato	buono
	K3 K4	Leggermente disturbato Leggermente disturbato	Leggermente disturbato Leggermente disturbato	Leggermente disturbato Moderatamente disturbato	buono buono/moderato
	A1	Leggermente disturbato	Leggermente disturbato	Moderatamente disturbato	buono/moderato
	A2	Leggermente disturbato	Leggermente disturbato	Moderatamente disturbato	buono/moderato
	A3	Leggermente disturbato	Leggermente disturbato	Moderatamente disturbato	buono/moderato
	A4 BO NW	Leggermente disturbato Leggermente disturbato	Leggermente disturbato Leggermente disturbato	Leggermente disturbato Leggermente disturbato	buono buono
	BO NW	Leggermente disturbato Leggermente disturbato	Non disturbato	Non disturbato	alto/buono
	A5	Leggermente disturbato	Leggermente disturbato	Leggermente disturbato	buono
	A6	Leggermente disturbato	Leggermente disturbato	Moderatamente disturbato	buono/moderato
	A7 A8	Leggermente disturbato	Leggermente disturbato Leggermente disturbato	Leggermente disturbato	buono
ori	B1	Leggermente disturbato Leggermente disturbato	Leggermente disturbato Leggermente disturbato	Leggermente disturbato Moderatamente disturbato	buono buono/moderato
Post lavori	B2	Moderatamente disturbato	Leggermente disturbato	Leggermente disturbato	buono/moderato
ost	В3	Leggermente disturbato	Leggermente disturbato	Moderatamente disturbato	buono/moderato
4° Р	B4	Moderatamente disturbato	Leggermente disturbato	Leggermente disturbato	buono/moderato
`	BO NE BO SW	Leggermente disturbato Leggermente disturbato	Leggermente disturbato Leggermente disturbato	Leggermente disturbato Moderatamente disturbato	buono buono/moderato
	BO SW	Leggermente disturbato Leggermente disturbato	Leggermente disturbato Leggermente disturbato	Leggermente disturbato	buono/moderato buono
	B6	Leggermente disturbato	Leggermente disturbato	Leggermente disturbato	buono
	В7	Leggermente disturbato	Leggermente disturbato	Leggermente disturbato	buono
	B8	Leggermente disturbato	Leggermente disturbato	Leggermente disturbato	buono
	K1 K2	Leggermente disturbato Leggermente disturbato	Leggermente disturbato Leggermente disturbato	Leggermente disturbato Leggermente disturbato	buono buono
	K2 K3	Leggermente disturbato	Leggermente disturbato	Moderatamente disturbato	buono/moderato
	K4	Leggermente disturbato	Non disturbato	Leggermente disturbato	buono

Tab. 3-LIII – Continuo.

		w	AMBI	BENTIX	
	Stazione	Classificazione ambientale	Classificazione ambientale	Classificazione ambientale	Stato ecologico
	A1	Moderatamente disturbato	Leggermente disturbato	Leggermente disturbato	buono/moderato
	A2	Leggermente disturbato	Leggermente disturbato	Moderatamente disturbato	buono/moderato
	А3	Leggermente disturbato	Leggermente disturbato	Moderatamente disturbato	buono/moderato
	A4	Moderatamente disturbato	Leggermente disturbato	Leggermente disturbato	buono/moderato
	BO NW	Leggermente disturbato	Leggermente disturbato	Leggermente disturbato	buono
	BO SE	Leggermente disturbato	Non disturbato	Leggermente disturbato	buono
	A5	Leggermente disturbato	Leggermente disturbato	Leggermente disturbato	buono
	A6	Leggermente disturbato	Leggermente disturbato	Leggermente disturbato	buono
	A7	Leggermente disturbato	Leggermente disturbato	Moderatamente disturbato	buono/moderato
	A8	Moderatamente disturbato	Leggermente disturbato	Leggermente disturbato	buono/moderato
ori	B1	Moderatamente disturbato	Leggermente disturbato	Moderatamente disturbato	moderato
Post lavori	B2	Moderatamente disturbato	Leggermente disturbato	Moderatamente disturbato	moderato
ost	В3	Moderatamente disturbato	Leggermente disturbato	Moderatamente disturbato	moderato
ů 2	B4	Leggermente disturbato	Leggermente disturbato	Leggermente disturbato	buono
LC)	BO NE	Leggermente disturbato	Leggermente disturbato	Leggermente disturbato	buono
	BO SW	Leggermente disturbato	Non disturbato	Leggermente disturbato	buono
	B5	Leggermente disturbato	Leggermente disturbato	Leggermente disturbato	buono
	В6	Leggermente disturbato	Leggermente disturbato	Leggermente disturbato	buono
	B7	Moderatamente disturbato	Leggermente disturbato	Moderatamente disturbato	moderato
	B8	Leggermente disturbato	Leggermente disturbato	Moderatamente disturbato	buono/moderato
	K1	Leggermente disturbato	Leggermente disturbato	Moderatamente disturbato	buono/moderato
	K2	Leggermente disturbato	Leggermente disturbato	Leggermente disturbato	buono
	КЗ	Moderatamente disturbato	Leggermente disturbato	Leggermente disturbato	buono/moderato
	K4	Leggermente disturbato	Leggermente disturbato	Leggermente disturbato	buono
	A1	Moderatamente disturbato	Leggermente disturbato	Moderatamente disturbato	moderato
	A2	Leggermente disturbato	Leggermente disturbato	Moderatamente disturbato	buono/moderato
	А3	Moderatamente disturbato	Leggermente disturbato	Moderatamente disturbato	moderato
	A4	Moderatamente disturbato	Leggermente disturbato	Leggermente disturbato	buono/moderato
	BO NW	Leggermente disturbato	Leggermente disturbato	Moderatamente disturbato	buono/moderato
	BO SE	Leggermente disturbato	Non disturbato	Non disturbato	alto/buono
	A5	Leggermente disturbato	Leggermente disturbato	Moderatamente disturbato	buono/moderato
	A6	Leggermente disturbato	Leggermente disturbato	Moderatamente disturbato	buono/moderato
	A7	Moderatamente disturbato	Leggermente disturbato	Moderatamente disturbato	moderato
	A8	Moderatamente disturbato	Leggermente disturbato	Moderatamente disturbato	moderato
/ori	B1	Moderatamente disturbato	Leggermente disturbato	Moderatamente disturbato	moderato
Post lavori	B2	Leggermente disturbato	Leggermente disturbato	Moderatamente disturbato	buono/moderato
ost	В3	Moderatamente disturbato	Leggermente disturbato	Moderatamente disturbato	moderato
е Р	B4	Moderatamente disturbato	Leggermente disturbato	Moderatamente disturbato	moderato
•	BO NE	Leggermente disturbato	Leggermente disturbato	Leggermente disturbato	buono
	BO SW	Leggermente disturbato	Leggermente disturbato	Moderatamente disturbato	buono/moderato
	B5	Moderatamente disturbato	Leggermente disturbato	Moderatamente disturbato	moderato
	В6	Moderatamente disturbato	Leggermente disturbato	Moderatamente disturbato	moderato
	B7	Moderatamente disturbato	Leggermente disturbato	Moderatamente disturbato	moderato
	B8	Moderatamente disturbato	Leggermente disturbato	Moderatamente disturbato	moderato
	K1	Leggermente disturbato	Leggermente disturbato	Moderatamente disturbato	buono/moderato
	K2	Moderatamente disturbato	Leggermente disturbato	Moderatamente disturbato	moderato
	К3	Moderatamente disturbato	Leggermente disturbato	Moderatamente disturbato	moderato
	K4	Leggermente disturbato	Leggermente disturbato	Moderatamente disturbato	buono/moderato


3.6.9. MYTILUS GALLOPROVINCIALIS

Il campione prelevato nell'estate 2018 dalle parti sommerse della piattaforma Bonaccia NW era costituito da 35 esemplari, corrispondenti a 2,2 ind/dm², e aveva un peso fresco di 900 g. Il range di taglia è risultato compreso tra 14 e 78 mm LC e 26 esemplari, corrispondenti al 74% circa del campione, avevano raggiunto o superato la taglia minima commerciale di 50 mm LC (fig. 3.49). Analogamente ai campionamenti precedenti sono state individuate due coorti ben distinte: una rappresentata da individui di taglia compresa

tra 14 e 26 mm LC, l'altra costituita da mitili aventi lunghezza della conchiglia tra 42 e 78 mm LC.

Il campione dell'estate 2018 è apparso molto simile a quello dell'estate 2017, anche se la percentuale di mitili con LC \geq 50 mm in quel monitoraggio era risultata inferiore (49%).

L'inverno 2018 è stato invece caratterizzato da un quantitativo di esemplari decisamente superiore (14 ind/dm²), di cui il 40% con una taglia commercialmente idonea.

Fig. 3.49 - Distribuzione di frequenza delle lunghezze degli esemplari di *M. galloprovincialis* prelevati dalle parti sommerse di Bonaccia NW nell'estate 2017 e nei due monitoraggi effettuati nel 2018.

3.7. INDAGINI SUL POPOLAMENTO ITTICO

3.7.1. CAMPIONAMENTI DI PESCA

3.7.1.1 Ricchezza specifica (S) e Diversità specifica (H')

Nel corso dei campionamenti di pesca condotti nel periodo 2016-2018 sono state censite complessivamente 60 specie di cui 48 pesci, 5 molluschi e 6 crostacei. Di queste, 54 (45 pesci, 5 molluschi e 4 crostacei) sono comparse nelle catture effettuate nei pressi della piattaforma, 30 specie sono state censite presso C1 (23 pesci, 2 molluschi e 5 crostacei) e 33 in C2 (28 pesci, 2 molluschi e 3 crostacei; Tabb. 3-LIV – 3-LVI). Esclusivamente presso il sito di estrazione sono stati censiti i molluschi Aequipecten opercularis, Octopus vulgaris e Illex coindetii e i pesci Belone belone, Conger conger, Eutrigla gurnardus, Liza ramado, Lophius piscatorius, Merlangius merlangius, Mullus surmuletus, Polyprion americanus, Raja miraletus, Scomber scombrus, Scorpaena porcus, Scophthalmus rhombus, Seriola dumerili, Serranus hepatus, Spondilyosoma cantharus e Trachurus picturatus.

Nel controllo C1 sono state registrate catture esclusive dei crostacei *Munida rugosa* e *Scyllarus arctus* e del pesce *Zeus faber*, mentre solo in C2 è stata catturata la specie ittica *Psetta maxima*.

La Ricchezza specifica media ottenuta nell'intero periodo di indagine (S_{mtot}) è risultata significativamente superiore presso la piattaforma rispetto ai controlli (Tabb. 3-LVII e 3-LVIII). In effetti, analizzando gli andamenti stagionali (S_{mstag}; fig. 3.50) i valori nei pressi di Bonaccia NW sono sempre stati ampiamente superiori eccetto nell'estate 2018. Il loro trend è stato caratterizzato da oscillazioni che si sono ripetute negli anni, con valori in termini assoluti generalmente maggiori in inverno (valore massimo registrato nell'inverno 2017: 15,66±3,48). Comunque, l'elevata variabilità tra i mesi ha fatto sì che molte stagioni risultassero confrontabili tra loro nonostante le oscillazioni.

Gli andamenti di S_{mstag} ai controlli sono apparsi più costanti e con valori molto spesso comparabili tra loro.

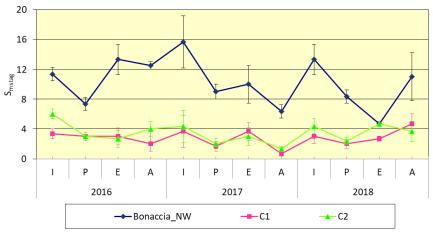
Tab. 3-LIV - Numero (n. ind/500m/12h) e peso (kg/500m/12h) delle specie catturate durante i campionamenti di pesca presso la **piattaforma Bonaccia NW** nel periodo 2016 - 2018. I = inverno; P = primavera; E = estate; A = autunno.

		-				20)16		-					20	17						-	20	18			-	тот	ALE
Bonaccia NW]	[1	P]	E	I	4		[]	P]	E	I	1	I		P		E		A			
			N.ind.	P(Kg)	N.ind.	P(Kg)	N.ind.	P(Kg)	N.ind.	P(Kg)	N.ind.	P(Kg)	N.ind.	P(Kg)	N.ind.	P(Kg)	N.ind.	P(Kg)	N.ind.	P(Kg)	N.ind.	P(Kg)	N.ind.	P(Kg)	N.ind.	P(Kg)	N.ind.	P(Kg)
Crostacei																												
Calappa granulata	В	AT																					3,33	0,92			3,33	0,92
Nephrops norvegicus	В	NA	3,06	0,11			8,84	0,66	1,13	0,08	14,85	1,38			1,80	0,23			1,68	0,11			7,83	0,40	4,42	0,24	43,61	3,20
Parapenaeus longirostris	В	NA			2,73	0,03	2,11	0,01	1,13	0,01	9,71	0,06	5,05	0,02	7,22	0,04			8,39	0,10					2,74	0,04	39,08	0,30
Squilla mantis	В	NA	3,06	0,13			2,11	0,17	2,82	0,14	9,71	0,36							-	-					1,68	0,08	19,38	0,89
Crostacei Totale			6,13	0,24	2,73	0,03	13,06	0,84	5,08	0,23	34,27	1,80	5,05	0,02	9,02	0,27	0,00	0,00	10,07	0,20	0,00	0,00	11,16	1,32	10,52	0,37	107.08	5,32
Molluschi																											,	- //
Octopus vulgaris	В	AT					2,24	6,28	1,13	2,45	2,47	4,32					1,80	2,49									7,64	15,54
Eledone cirrhosa	В	PA			2,73	0,73	2,47	1,63	2,82	0,68	, ,		18,00	9,49			,	, ,	5,03	3,40	10,07	4,45					41,12	20,38
Aequipecten opercularis	В	NA	18,38	0,17	3,71	0,04	4,21	0,08	,-	.,	2.29	0,07	.,	. , .	9,02	0,24			- ,	-,-	.,	, .					37,61	0,61
Cassidaria echinophora	В	NA	-,-	.,	- ,		,	.,			2,47	0,19															2,47	0,19
Illex coindetii	P	NA	2,50	0,14			4,49	0,35			2.29	0,21							6,71	0,53					1.68	0,32	17,67	1,54
Molluschi Totale			20,88	0,31	6,44	0,77	13,41	8,34	3,95	3,13	9,52	4,79	18,00	9,49	9,02	0,24	1,80	2,49	11,75	3,93	10,07	4,45	0,00	0,00	1,68	0,32	106,52	38,26
Pesci					.,,	3,	20,12		0,00	0,10	-,,-	.,,.,	10,00	.,	2,0=	.,	2,00	-,	,	-,,,,	20,01	.,	0,00	,	1,00	3,62	100,02	20,20
Conger conger	В	AT			l						l				l		l		1,68	0,08	1,68	2,36					3.36	2,44
Mullus surmuletus	В	AT	3,38	0,42	1	1		1		1	4,76	0,28		1	l	1	l		3,36	0,32	-,00	_,50		1	5,03	0,46	16,53	1,48
Polyprion americanus	В	AT	2,20	0,72	1	1	2.11	3,07		1	.,,,	0,20		1	l	1	l		2,20	0,02	1			1	5,05	5,40	2.11	3.07
Scorpaena notata	В	AT	2,50	0,04	2,73	0,10	2,24	0,12		1	12,94	0,54	9,00	0,39	l	1	l				1			1	6,10	0,31	35,51	1,50
Scorpaena porcus	В	AT	2,50	0.56	6,24	0,78	11.55	1.46			2,47	0,43	20.05	2.38	5.41	1.14	l		1.68	0.07	l				0,10	0,51	49.90	6.82
Scorpaena scrofa	В	AT	6,44	4,14	6,44	6,69	4,58	2,02	2,82	2,62	4,76	1,32	20,00	2,50	1,80	3,19	1,68	0,43	1,68	2,15	1,68	0,35	3,33	0,19			35,21	23,10
Phycis phycis	В	PA	0,	.,	0,	0,07	.,	2,02	2,02	2,02	1 .,,,	1,02			1.80	0,23	1,00	0,.5	1.68	0.33	1,00	0,00	5,55	0,	2.74	0,80	6,22	1,36
Chelidonichthys lucerna	В	NA		1	1	1	2,47	0,05	3,95	2,66	l			1	1,00	0,22	l		1,68	0,33	3,36	0,93		1	2,74	0,00	11,45	3,97
Citharus linguatula	В	NA	3,06	0,19			2,47	0,05	3,73	2,00									1,00	0,54	3,50	0,75	2,52	0,07	1,68	0,05	7,26	0,31
Eutrigla gurnardus	В	NA	3,38	0,19																			2,02	0,07	1,68	0,05	5,06	0,12
Lepidotrigla cavillone	В	NA	3,36	0,07													1,86	0,02			1,68	0,05			1,00	0,05	3,54	0,07
Lophius budegassa	В	NA					2.24	0,89			9,71	12,42	5,53	7,04			5,34	5,75	3,36	0,66	3,36	4,23			1,68	2,22	31,21	33,21
Lophius piscatorius	В	NA			3,71	1,41	2,11	0,08			9,71	12,42	2,23	7,04			3,34	3,73	5,50	0,00	3,30	4,23			1,00	2,22	5,82	1,49
Mullus barbatus	В	NA			3,/1	1,41	2,11	0,08			2,47	0,07					1,80	0,06							3,36	0,33	7,63	0,46
Phycis blennoides	В	NA	3,38	2,19	2,53	1,18	4,21	2,93	3,95	1,01	2,47	0,07	9,00	3,21	1,80	0,36	1,00	0,00							3,30	0,55	27,34	11,13
Raja asterias	В	NA	3,30	2,19	2,33	1,10	4,21	3,33	3,93	1,01	2,47	1,40	9,00	3,21	1,00	0,50											6,50	4,73
Raja miraletus	В	NA NA					4,21	3,33			2,29	1,40	3,00	0.95													3,00	0,95
Scophthalmus rhombus	В	NA NA											3,00	0,93	1,80	0,96											1,80	0,95
Scyliorhinus canicula	В	NA NA							1,13	0,45					1,80	0,96									1.68	0,77	2,81	1,22
Scyliorhinus stellaris									1,13	0,43			3.00	2,74											1,00	0,77		2,74
Solea solea	B B	NA NA											3,00	2,74					1,68	0,27					1,68	0,25	3,00 3,36	0,52
Squalus acanthias	В	NA NA													1,80	1,89			1,00	0,27					1,00	0,23	1,80	1,89
Torpedo marmorata	В	NA NA	5.00	£ 0.5	2.71	1,57			1,13	0,37	2,76	0,77			1,80	1,22			11,75	11.22	1,68	1,77			1,68	1,21	29,51	24,09
Trachinus draco	В	NA NA	5,00	5,85	3,71 2,73	0,08			1,13	0,37	2,76	0,77			1,80	1,22			11,/3	11,33	1,08	1,//			1,08	1,21	29,31	0,08
Uranoscopus scaber	В	NA NA			2,73	0,08													3,36	0,70					1,68	0,74	5,03	1,43
Spondilyosoma cantharus	NB	AT					2,11	0.21			2,47	0,64							3,30	0,70					1,08	0,74	5,03 4,58	0,95
Pagellus bogaraveo	NB	PA	140,46	11,27	3,71	0,34	8,92	0,31	3,95	0,13	2,47	0,04			10,43	0,35	1,80	0,09			l				11,75	0,62	181,02	13,26
Pagellus erythrinus	NB	PA PA	140,46	11,2/	3,/1	0,34	8,92	0,47	3,93	0,15	l		9,00	1,83	10,43	0,55	3,61	0,09			l				1,68	0,62	181,02	2,37
Serranus hepatus	NB	PA			l						l		3,00	0,11	l		3,01	0,49			l				1,00	0,03	3,00	0,11
Trisopterus m. capelanus	NB	PA	14,26	0,42	21.42	0,56	6,45	0.21	15,25	1,07	17,89	0.50		0,11	12,32	0.40	7,09	0,27	5,03	0,23	5,03	0,09	15 10	0.20	5,03	0,15	130,89	4,59
Merlangius merlangus	NB	NA NA	2,50	0,42	21,42	0,56	0,43	0,21	15,25	1,07	17,89	0,58	6,00	0,23	12,32	0,48	7,09	0,27	5,05	0,23	3,36	0,09	15,10	0,28	5,03	0,15	5,86	0,20
Merluccius merluccius	NB	NA NA	2,50 17,57		7,58	2,59	43,96	16.90	3,40	1,35	19,61	8,53	28,58	11,58	10,59	3,50	l		15,10	5,57	8,39	3,15	13,40	651	671	1,99	5,86 174,90	67,85
Pagellus acarne			17,57	6,27	1,58	2,39	45,90	16,80		0,07				0,35		0,32	l		15,10	3,37	8,39	3,13	15,40	6,51	6,71	1,99	174,90	0,90
Seriola dumerili	NB P	NA		1	1	1	18,95	6.12	1,13	0,07	2,47	0,16	6,00	0,33	5,41	0,32	l				1			1			18,95	6,42
Boops boops	P	AT	260 54	17,09	176.01	12,72	183,23	6,42	27.12	1.64	560,87	35,43	38,05	2,48	34,05	260	14.64	1.14	146,01	0.69	11.75	1.11	11,97	1.14	72.26	5,60	18,95 1546,52	104,62
Liza ramado	P	PA PA	268,54	17,09	176,91	12,72	2,11	13,91	27,13	1,64	300,87	33,43	38,03	2,48	34,03	2,68	14,64	1,14	140,01	9,68	11,75	1,11	11,9/	1,14	73,36	5,00	2,11	0,92
	P		7416	12.50	271	0.01	-	0,92	1604	216	27.50	6.21	12.00	1.00	90.01	12.04	l		£ 02	1.05	220.51	07.51	27.01	0.00	226	0.00		
Scomber japonicus		PA	74,16	12,56	3,71	0,81	24,28	5,74	16,94	3,16	27,50	6,21	12,00	1,68	80,91	12,94	1.00	0.44	5,03	1,05	320,56	87,51	27,91	9,69	3,36	0,66	596,36	142,01
Scomber scombrus	P	PA	9,19	1,52	7.50	0.27			2.02	0.00	4,57	0,56			601	0.24	1,68	0,44			1.00	004	5.50	0	1.00	0.04	15,44	2,52
Spicara maena Trasburus mediterraneus	P	PA	75.50	E 44	7,58	0,26			2,82	0,08	7,42	0,23			6,91	0,24	l		25.17	1.07	1,68	0,04	5,58	0,11	1,68	0,04	33,67	1,00
Trachurus mediterraneus	P	PA	75,53	5,44	1	1	20.12		19,76	1,19	23,13	2,04	00.50	1470	3,61	0,43	10.10	105	25,17	1,87	1,68	0,06	10.00		1.50	0.21	148,88	11,03
Trachurus picturatus	P	PA	220.05	10.01		2.22	38,43	6,42	40.00	2	193,92	30,31	89,68	14,73	30,68	3,76	12,12	1,85	45,31	5,56	10,07	1,33	10,00	1,25	1,68	0,24	431,89	65,45
Trachurus trachurus	P	PA	329,05	18,84	44,54	2,33	13,68	1,50	48,00	2,57	235,27	15,16	25,58	2,01	45,04	3,28	1,86	0,08	478,32	38,71	78,88	5,29			31,73	2,59	1331,95	92,36
Alosa fallax fallax	P	NA		1	1	1		1		1	l			1	1,80	1,00	l		1,68	2,01	1			1			3,48	3,01
Belone belone	P	NA	442.0-		1	1		1	2.02	0.00		0.40		1	8,63	0,65		0.00			10.45			1	4.60	0.00	8,63	0,65
Engraulis encrasicolus	P	NA	113,88	1,67	 				2,82	0,03	12,37	0,13			 		3,72	0,08	171,19	3,37	18,46	0,20			1,68	0,03	324,12	5,51
Pesci totale			1074,8	88,7	293,5	31,4	377,8	66,7	154,2	18,4	1152,1	117,5	267,5	51,7	266,6	38,6	57,2	10,7	924,8	84,3	473,3	108,5	89,8	19,2	167,6	19,2	5299,2	654,9
Totale complessivo			1101,8	89,3	302,7	32,2	404,3	75,8	163,2	21,8	1195,9	124,1	290,5	61,2	284,6	39,1	59,0	13,2	946,6	88,4	483,4	112,9	101,0	20,5	179,8	19,8	5512,8	698,5

Tab. 3-LV - Numero (n. ind/500m/12h) e peso (kg/500m/12h) delle specie catturate durante i campionamenti di pesca presso il **Controllo C1** nel nel periodo 2016 - 2018. I = inverno; P = primavera; E = estate; A = autunno.

C1			2016								2017								2018								TOTALE	
			I P			P	E A			4		ī	1	E A			4	T		P			F		\	IOIALE		
			N.ind.	P(Kg)	N.ind.			_	N.ind.	•	N.ind.	P(Kg)	N.ind.	P(Ko)	•	_			N.ind.	P(Kg)	•		N.ind.	P(Ko)	N.ind.		N.ind.	P(Kg)
Crostacei			14.1110.	I (IIg)	14.1114.	I (IIg)	14.1110.	I (IIg)	1 (and a	I (IIg)	14.IIIG.	I (IIg)	1 vallet.	I (IIg)	1 (in it	I (IIg)	11.1110.	I (III)	Time	I (IIg)	THIRD	I (IIg)	11.1110.	I (III)	11.IIIG.	I (IIg)	TUILLE	I (IIg)
Scyllarus arctus	В	AT			2,40	0,10																						
Munida rugosa	В	NA	2,55	0.06	_,	.,																						
Nephrops norvegicus	В	NA			4,58	0,50									1,71	0,11												
Parapenaeus longirostris	В	NA	2,82	0,01	2,11	0,01	2,18	0,02			6,99	0,03																
Squilla mantis	В	NA							2,35	0,11	2,35	0,06			3,43	0,09												
Crostacei totale			5,38	0,07	9,09	0,60	2,18	0,02	2,35	0,11	9,34	0,09			5,14	0,20												
Molluschi																												
Eledone cirrhosa	В	PA																							1,69	0,30	1,69	0,30
Cassidaria echinophora	В	NA									2,35	0,18															2,35	0,18
Molluschi totale											2,35	0,18													1,69	0,30	4,04	0,48
Pesci																												
Scorpaena notata	В	AT	2,47	0,09	2,11	0,04	2,18	0,11													1,64	0,08			3,68	0,25	12,09	0,57
Scorpaena scrofa	В	AT																							1,69	0,45	1,69	0,45
Phycis phycis	В	PA																							3,38	0,55	3,38	0,55
Chelidonichthys lucerna	В	NA							1,09	0,11											5,07	1,30			1,69	0,49	7,85	1,89
Citharus linguatula	В	NA									2,33	0,12											1,68	0,04	3,38	0,10	7,39	0,25
Lepidotrigla cavillone	В	NA											2,47	0,04													2,47	0,04
Lophius budegassa	В	NA	2,55	1,01			1,81	0,55			2,35	0,69			1,71	0,69			3,38	0,52			2,03	0,83	3,68	1,01	17,52	5,30
Mullus barbatus	В	NA			2,18	0,17													1,69	0,08	1,69	0,12					5,56	0,37
Raja asterias	В	NA					2,26	1,52							10,29	5,23							5,03	4,12			17,58	10,87
Scyliorhinus canicula	В	NA	2,55	1,31	4,80	1,69			5,45	1,31			9,90	3,45					6,76	2,02			16,42	5,35	11,83	2,86	57,72	17,99
Scyliorhinus stellaris	В	NA					2,18	7,85																			2,18	7,85
Trachinus draco	В	NA													1,71	0,14											1,71	0,14
Uranoscopus scaber	В	NA													1,76	0,34											1,76	0,34
Pagellus bogaraveo	NB	PA									2,35	0,08															2,35	0,08
Pagellus erythrinus	NB	PA									4,71	0,59			1,76	0,21											6,47	0,80
Trisopterus minutus capelanus	NB	PA	2,55	0,07			4,44	0,10			9,41	0,27			1,76	0,03											18,16	0,47
Zeus faber	NB	PA			2,40	0,05																					2,40	0,05
Merluccius merluccius	NB	NA	7,77	3,19	4,36	2,45	6,71	2,74	1,09	0,43	2,67	1,13	9,37	2,51	7,05	2,43	1,76	1,04	5,07	1,77	5,07	0,89	5,03	2,00	5,07	1,23	61,03	21,80
Mustelus mustelus	NB	NA	2,82	11,29							1						1						ĺ				2,82	11,29
Spicara maena	P	PA		l							l						l						3,53	0,06			3,53	0,06
Trachurus trachurus	P	PA		l							2,35	0,11					l				1,64	0,12	l				3,99	0,23
Alosa fallax fallax	P	NA		l							l				1,71	0,45	l						l				1,71	0,45
Engraulis encrasicolus	P	NA	5,65	0,08							2,35	0,04					3,69	0,05	1,69	0,05			1,76	0,03			15,14	0,25
Pesci totale		26,38	17,04	15,85	4,40	19,58	12,87	7,63	1,85	28,52	3,03	21,74	6,00	27,75	9,52	5,45	1,09	18,59	4,44	15,12	2,51	35,50	12,43	34,41	6,93	256,51	82,12	
Totale complessivo				17,12	24,94	5,00	21,76	12,89	9.98	1.96	40,21	3,30	21,74	6,00	32,89	9,72	5,45	1.09	18,59	4,44	15,12	2,51	35,50	12,43	37,79	7,25	295,72	83,70

Tab. 3-LVI - Numero (n. ind/500m/12h) e peso (kg/500m/12h) delle specie catturate durante i campionamenti di pesca presso il **Controllo C2** nel nel periodo 2016 - 2018. I = inverno; P = primavera; E = estate; A = autunno.


	2016								-					20	17						-	20)18	-	-	-	тот	ALE
C2				T	1	P	1	E		4		ſ	1	P	1	7.		A	1	r	1	P	1	E		A	101	ALE
			N.ind.	P(Kg)	N.ind.		N.ind.		N.ind.	_	N.ind.	P(Kg)	N.ind.	P(Kg)		P(Kg)			N.ind.	P(Ka)							N.ind.	P(Kg)
Crostacei			Timus	I (IIg)	14.ma	I (IIg)	TVIIIG	I (IIg)	TVIIIGI	I (IIg)	14.ma	I (IIIg)	14.IIId.	I (IIIg)	14.IIIG.	I (IIg)	Tunica	I (IIg)	T V.III.C.	1 (115)	TTING	I (IIg)	Times	I (IIg)	TUING	I (IIg)	11,11101	I (IIg)
Nephrops norvegicus	В	NA	2,86	0,33													0.00	0,00	1,68	0,22					1.68	0,10	6,21	0,65
Parapenaeus longirostris	В	NA	,	- ,	5,71	0,06					9,60	0,09					.,	.,	, , ,						,	., .	15,31	0,15
Sauilla mantis	В	NA	4.82	0,15			2.67	0.06			2,33	0.09							1.68	0.10							11.50	0.40
Crostacei totale			7,68	0,48	5,71	0,06	2,67	0,06			11,93	0,18					0,00	0,00	3,36	0,33					1,68	0,10	33,03	1,20
Molluschi																												
Cassidaria echinophora	В	NA			2,86	0,17																					2,86	0,17
Eledone cirrhosa	В	PA	2,42	1,45																							2,42	1,45
Molluschi totale			2,42	1,45	2,86	0,17																					5,28	1,62
Pesci					-																							
Scorpaena notata	В	AT	5,26	0,21	2,86	0,17					2,70	0,15	2,33	0,09									1,76	0,10			14,91	0,71
Scorpaena scrofa	В	AT																							1,68	2,35	1,68	2,35
Chelidonichthys lucerna	В	NA													1,76	0,17					1,68	0,24	3,45	1,28	3,36	0,53	10,25	2,23
Citharus linguatula	В	NA	2,42	0,16					2,19	0,12															1,68	0,09	6,29	0,36
Lepidotrigla cavillone	В	NA									5,03	0,08							5,03	0,07							10,06	0,15
Lophius budegassa	В	NA	2,42	0,40			1,90	0,57			2,40	0,96			3,53	0,46	1,76	0,98	5,03	0,40	1,69	0,26	1,69	0,25			20,43	4,29
Mullus barbatus	В	NA	4,85	0,21					1,10	0,03	2,70	0,08	2,40	0,12					1,68	0,11							12,73	0,56
Phycis blennoides	В	NA																			1,68	0,22					1,68	0,22
Psetta maxima	В	NA																					1,69	3,72	1,68	12,42	3,37	16,14
Raja asterias	В	NA					9,83	8,26							2,55	1,12					1,68	0,87					14,06	10,25
Scyliorhinus canicula	В	NA	7,66	2,79	14,71	4,54	1,90	0,68	1,10	0,26	6,99	1,85	6,14	1,59	1,76	0,64			1,68	0,59			7,06	2,75	11,75	9,04	60,75	24,74
Scyliorhinus stellaris	В	NA																					2,05	4,11			2,05	4,11
Solea solea	В	NA	2,40	0,31					1,10	0,15	2,40	0,37															5,90	0,83
Squalus acanthias	В	NA							2,67	0,89																	2,67	0,89
Torpedo marmorata	В	NA																					2,05	2,46			2,05	2,46
Uranoscopus scaber	В	NA									2,40	0,25															2,40	0,25
Pagellus bogaraveo	NB	PA																							1,68	0,06	1,68	0,06
Pagellus erythrinus	NB	PA																	3,36	0,44							3,36	0,44
Trisopterus minutus capelanus	NB	PA	2,42	0,06	6,00	0,15					4,73	0,14			1,76	0,02							3,45	0,08	1,68	0,04	20,05	0,49
Merluccius merluccius	NB	NA	7,22	2,66	10,71	3,39	8,71	2,16	1,10	0,30	2,33	0,88	7,13	2,42	13,93	5,21	1,76	0,67	8,39	3,37	3,36	0,82	3,82	1,54	1,68	0,89	70,14	24,32
Mustelus mustelus	NB	NA	8,57	15,53																							8,57	15,53
Pagellus acarne	NB	NA											l		1,76	0,11	ĺ										1,76	0,11
Boops boops	P	PA																	5,03	0,33			2,05	0,22			7,09	0,55
Scomber japonicus	P	PA			5,00	1,06							l				l										5,00	1,06
Spicara maena	P	PA							1,10	0,04			ĺ								1,68	0,05	1,76	0,09			4,54	0,18
Trachurus mediterraneus	P	PA	2,86	0,17									l				l										2,86	0,17
Alosa fallax fallax	P	NA							1,10	0,68			l		2,55	0,74	ĺ				1,68	0,98					5,33	2,40
Engraulis encrasicolus	P	NA	17,14	0,20															16,78	0,30							33,93	0,50
Pesci totale			63,23	22,70	39,29	9,31	22,34	11,67	11,46	2,47	31,68	4,76	18,00	4,22	29,60	8,47	3,52	1,65	46,99	5,62	13,44	3,44	30,85	16,60	25,17	25,42	335,57	116,33
Totale complessivo			73.34	24.63	47.86	9.53	25,01	11.73	11.46	2.47	43.61	4.94	18.00	4.22	29.60	8.47	3,52	1.65	50.35	5.94	13,44	3,44	30.85	16,60	26,85	25.53	373.88	119.15

Tab. 3-LVII – Valori medi (± e.s.) ottenuti per i vari indici nel periodo 2016-2018 presso la piattaforma Bonaccia NW e le due aree di controllo.

	Bonaccia NW	C1	C2
S _{mtot}	10,17±0,7	2,8±0,31	3,43±0,34
H' _{mtot}	0,71±0,03	0,34±0,04	0,43±0,05
N _{mtot}	157,51±30,14	8,45±2,39	10,89±1,45
P _{mtot}	19,95±3,39	2,39±0,46	3,42±0,69

Tab. 3-LVIII – Risultati dell'analisi della varianza applicata ai valori di Ricchezza specifica (S), Diversità specifica (H'), abbondanza (N) e biomassa (P). g.l = gradi di libertà; **; >> = altamente significativo; >= significativo. (C1 = Controllo 1; C2 = Controllo 2; P = Piattaforma).

TERP. 441	- 1	S	m	I	I'	ı	N]	P
Effetti	g.l.	Anov	a 2 vie	Kruskal	l - Wallis	Anova	a 2 vie	Anova	a 2 vie
64-	2.06	p - value	post-hoc	p - value	post-hoc	p - value	post-hoc	p - value	post-hoc
Sito	2; 96	<0,001 ***	P >> C1; C2	<0,001 ***	P >> C1; C2	<0,001 ***	P>> C1; C2	<0,001 ***	P >> C1; C2
A	2.06	p - value		p - value		p - value		p - value	
Anno	2; 96	0,58		0,65		0,29		0,47	
G".	4: 96			-	Anova	a 2 vie	-		
Sito x Anno	4; 90	0,62		0,47		0,79		0,65	

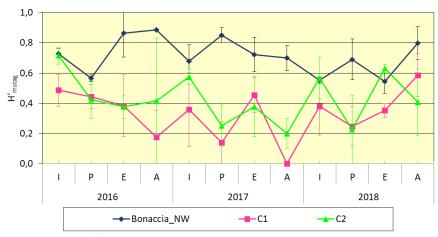


Fig. 3.50 - Ricchezza specifica media stagionale ottenuta per la piattaforma Bonaccia NW e per i due siti di controllo nel periodo 2016-2018. I = inverno; P = primavera; E = estate; A = autunno.

Anche il valore di Diversità specifica media di Shannon-Weaver relativo all'intero periodo di campionamento (H'_{mtot}) è risultato significativamente maggiore presso la piattaforma rispetto ai controlli, mentre gli anni sono apparsi comparabili statisticamente (Tabb. 3-LVIII e 3-LVIII).

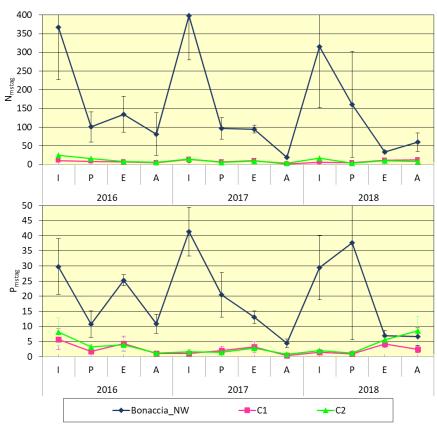
L'indice in corrispondenza di Bonaccia NW è sempre risultato superiore rispetto a uno o entrambi i controlli nei primi due anni; nel 2018, invece, solo in primavera è stato ottenuto un valore maggiore in piattaforma (fig. 3.51). Il massimo presso la struttura è stato rilevato nell'autunno 2016 (0,89±0,01) ed è corrisposto al massimo assoluto per tutti i tre siti.

Gli andamenti ai controlli sono apparsi più discontinui ma caratterizzati da valori molto spesso comparabili a causa dell'elevata variabilità nelle catture mensili. Il valore nullo in C1 nell'autunno 2017 è stato determinato dal rinvenimento di due sole specie in quel sito (Tab. 3-LIV).

Fig. 3.51 - Diversità specifica media stagionale ottenuta per la piattaforma Bonaccia NW e per i due siti di controllo nel periodo 2016-2018. I = inverno; P = primavera; E = estate; A = autunno

3.7.1.2 Rendimenti di pesca e composizione delle catture

Presso la piattaforma Bonaccia NW i rendimenti di pesca medi, calcolati sui primi tre anni di monitoraggio (2016 - 2018), sono risultati nettamente superiori sia in termini numerici che in peso rispetto ai siti di controllo come confermato dall'analisi statistica (Tabb. 3-LVII e 3-LVIII).


Il trend stagionale dei rendimenti di pesca in numero (fig. 3.52) relativo alla piattaforma ha avuto variazioni importanti, con picchi di abbondanza nelle stagioni invernali (2016: 367,27±140,11; 2017: 398,63±118,22; 2018: 315,52±163,72 ind/500m/12h) determinati, in larga misura, alle catture dei pesci pelagici a comportamento gregario *Boops boops* e *Trachurus trachurus*. Nei primi due anni i minimi sono stati raggiunti nei mesi autunnali (valore minimo nel 2017: 19,67±2,44 ind/500m/12h), anche se nel 2016 l'autunno è apparso confrontabile con le stagioni precedenti. Nel 2018, invece, il valore minimo è stato osservato in estate (33,66±3,66 ind/500m/12h), comunque comparabile sia alla primavera che all'autunno.

Nei siti di controllo gli andamenti sono stati costanti nel tempo e caratterizzati da valori sempre inferiori ai corrispettivi di Bonaccia NW.

Il trend in termini ponderali di Bonaccia NW è apparso molto simile a quello in numero (fig. 3.52), con rendimenti elevati registrati nelle stagioni invernali nei primi due anni

(valore massimo nel 2017: 41,34±8,05 kg/500m/12h). Nel 2018, invece, il rendimento migliore è stato ottenuto in primavera grazie alle abbondanti catture della specie ittica *Scomber scombrus* e dell'elasmobranco *Scyliorhinus canicula* (Tab. 3-LIV). Comunque, come per i rendimenti in numero, anche per quelli ponderali è stata osservata una variabilità elevatissima in alcuni periodi che ha reso le stagioni spesso confrontabili tra loro.

Il range dei valori ai controlli è stato molto ristretto essendo compreso tra 0,36±0,34 (autunno 2017) e 5,71±3,48 kg/500m/12h (inverno 2016) in C1 e tra 0,76±0,48 (autunno 2017) e 8,51±4,76 kg/500m/12h (autunno 2018) in C2. Solo nelle ultime due stagioni del 2018 i valori di C2 sono apparsi comparabili con quelli della piattaofrma.

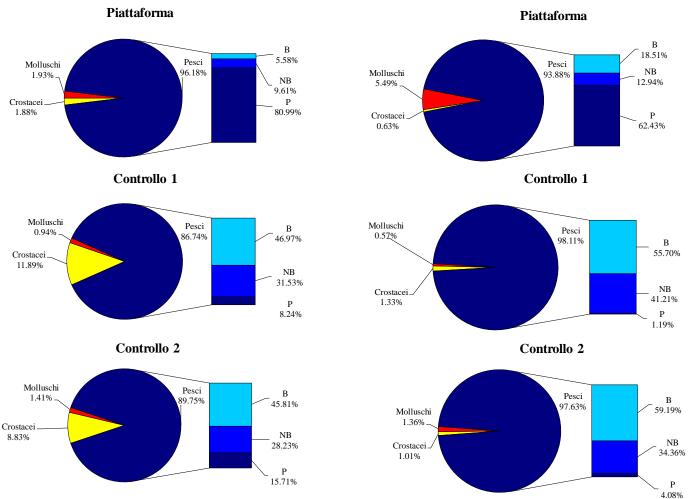


Fig. 3.52 - Rendimenti di pesca medi stagionali in termini numerici (N; n. ind/500m/12h) e ponderali (kg/500m/12h) registrati presso Bonaccia NW e nelle zone di controllo nel periodo 2016-2018.

I pesci hanno costituito la frazione dominante delle catture sia in termini numerici che ponderali (fig. 3.53).

Pesci bentonici - In totale sono state censite 26 specie ittiche appartenenti a questo gruppo, di cui 25 rinvenute presso la piattaforma, 13 presso C1 e 16 presso C2 (Tabb. 3-LIV – 3-LVI). Nell'ambito dei pesci, presso il sito di estrazione le specie bentoniche hanno

costituito il terzo gruppo in termini numerici (5,58%) e il secondo in termini ponderali (18,51%); le catture più abbondanti in numero e peso sono state rappresentate, rispettivamente, da *S. porcus* e *Lophius budegassa*. Nei due controlli i pesci bentonici hanno rappresentato il gruppo più importante sia dal punto di vista numerico (C1: 46,97%; C2: 45,81%) che ponderale (C1: 55,70%; C2: 59,19%), principalmente per le catture di grandi esemplari di *S. canicula* in entrambe le aree.

Fig. 3.53 - Composizione percentuale delle catture in numero (sinistra) e in peso (destra) effettuate nel periodo 2016-2018 presso Bonaccia NW e nei due siti di controllo. B = bentonico; NB = nectobentonico; P = pelagico.

Pesci necto-bentonici - Complessivamente sono state censite 10 specie, delle quali 8 catturate presso la piattaforma e 6 in ciascuno dei due controlli (Tabb. 3-LIV – 3-LVI). Nelle vicinanze della piattaforma questo gruppo è risultato il secondo per importanza numerica (9,61%) e il terzo per quella ponderale (12,94%) per le costanti catture di *Pagellus bogaraveo, Merluccius. merluccius* e *Trisopterus minutus capellanus*.

Nei due siti di riferimento i pesci necto-bentonici hanno rappresentato il secondo gruppo

sia in numero (C1: 31,53%; C2: 28,23%) che peso (C1: 41,21%; C2: 34,36%), anche in questo caso per i quantitativi soprattutto di *M. merluccius*.

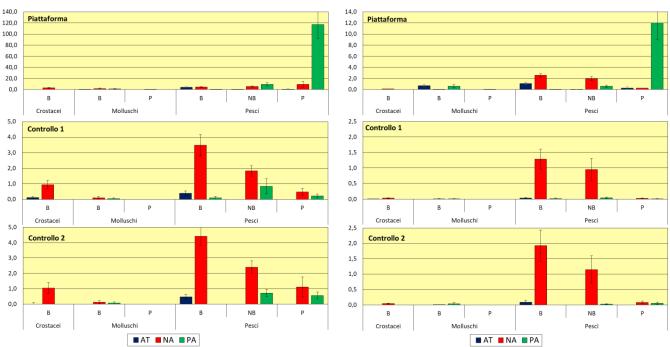
Pesci pelagici - In totale sono state censite 12 specie ittiche pelagiche, tutte catturate nei dintorni di Bonaccia NW, 4 presso C1 e 6 presso C2 (Tabb. 3-LIV – 3-LVI).

La frazione dei pesci pelagici ha rappresentato il primo gruppo per importanza presso la piattaforma sia numericamente (80,99%;) che dal punto di vista ponderale (62,43%). Le catture più rappresentative, in termini numerici, sono state quelle di *B. boops*, *Scomber japonicus* e *T. trachurus*, mentre dal punto di vista ponderale ha influito soprattutto *B. boops*.

Per quanto riguarda i siti di riferimento in C1 i pelagici si sono collocati al terzo posto sia in numero (8,24%) che in peso (1,19%); stesso risultato in C2 (N: 15,71%; P: 4,08%).

Crostacei - Questo sub-phylum è stato rappresentato da 6 specie, 4 censite presso la piattaforma, 5 in C1 e 3 in C2 (Tabb. 3-LIV – 3-LVI). Nei pressi della piattaforma i crostacei hanno rappresentato in termini numerici l'1,88% e solo lo 0,63% in peso. Nei siti di controllo hanno costituito una porzione maggiore delle catture, con l'11,89% in C1 e l'8,83% in C2. In termini di ponderali, invece, anche in queste aree le percentuali sono state basse (1,33% in C1 e 1,01% in C2).

Si segnala la presenza costante, sia presso la piattaforma Bonaccia NW, sia presso i siti di controllo, del decapode *Nephrops norvegicus*.


Molluschi - Sono state censite complessivamente 5 specie di molluschi, tutte presenti presso la piattaforma e 2 in ciascun controllo (Tabb. 3-LIV – 3-LVI). Nel sito di estrazione hanno rappresentato una porzione delle catture simile a quella dei crostacei (1,93%), mentre in peso sono apparsi più importanti (5,49%) per la presenza dei cefalopodi *O. vulgaris* ed *Eledone cirrhosa*, due specie di grandi dimensioni.

Nei due controlli i molluschi hanno rappresentato un frazione irrisoria delle catture, in termini sia numerici (C1: 0,94%; C2: 1,41%) che ponderali (C1: 0,57%; C2: 1,36%).

3.7.1.3 Affinità delle specie catturate con i substrati duri

L'analisi delle catture secondo il grado di affinità delle varie specie verso i substrati duri (fig. 3.54) ha evidenziato presso la piattaforma la dominanza numerica e ponderale di pesci pelagici PA (117,33±25,2 ind/500m/12h; 12,00±3,02 kg/500m/12h). Le altre categorie sono apparse tutte decisamente meno importanti e simili tra loro in numero. In peso, dopo i pelagici PA hanno inciso maggiormente, seppure con valori molto inferiori, i pesci bentonici e i necto-bentonici NA, seguiti dai pesci e dai molluschi bentonici AT.

Presso C1 i gruppi dei pesci bentonici e necto-bentonici NA sono risultati i più abbondanti numericamente (3,47±0,1 e 1,82±0,83 ind/500m/12h rispettivamente) e, soprattutto, in termini ponderali (1,28±0,02 e 0,95±0,04 kg/500m/12h). Consistente anche la frazione numerica di crostacei NA, confrontabile con i pesci necto-bentonici PA.

Fig. 3.54 - Numero (n. ind./500m/12h) e peso (kg/500m/12h) medi (\pm e.s.) delle specie attratte (AT), parzialmente attratte (PA) e non attratte (NA) ottenuti nelle catture effettuate nel periodo 2016-2018 nei tre siti. B = bentonico; NB = necto-bentonico; P = pelagico.

Anche in C2 le specie bentoniche e necto-bentoniche NA sono risultate le più importanti sia numericamente (4,42±0,02 e 2,40±0,71 ind/500m/12h) che in peso (1,93±0,01 e 1,15±0,03 kg/500m/12h) maggiormente rappresentate dallo squalo gattuccio (*S. canicula*) e dal merluzzo (*M. merluccius*). Anche in C2 numericamente sono apparsi relativamente importanti i crostacei NA.

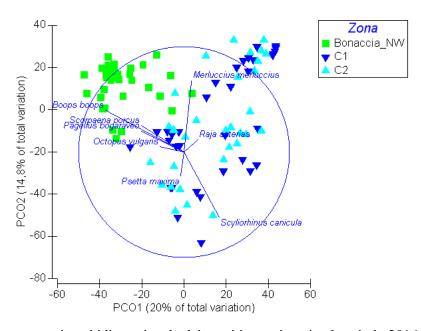
Presso entrambi i riferimenti è stata anche catturata una piccola porzione di pesci e crostacei AT.

Dall'elaborazione statistica (Tab. 3-LIX) si sono evidenziate differenze tra il sito di estrazione e i siti di riferimento all'interno di ogni categoria tassonomica (pesci, crostacei e molluschi), con le catture presso Bonaccia NW sempre superiori a quelle dei controlli.

In numero non sono state rilevate differenze solo per i pesci bentonici NA e PA e per i pelagici NA. In peso, per i crostacei AT, i molluchi PA, i pesci bentonici NA e PA, nectobentonici AT e PA e per i pelagici AT ed NA.

Tab. 3-LIX – Risultati dei test statistici ottenuti per la densità e la biomassa dei principali gruppi di specie presso la piattaforma Bonaccia NW e nei siti di controllo. g.l = gradi di libertà; **; >> = altamente significativo; KW = test di Krustal-Wallis test. P = Piattaforma; C1 = Controllo 1; C2 = Controllo 2. Le differenze significative sono evidenziate in rosso.

			Cros	stacei					Moll	luschi										Pe	sci						
Nu	mero		Bent	onici				Ben	tonici			Pela	igici		Bent	onici			No	cto-Benton	ci				Pelagici		
		Anova	a 2 vie	Kruskal	-Wallis		Kruskal	l-Wallis		Anov	a 2 vie	Kruska	-Wallis	Kruska	l-Wallis	Anov	a 2 vie	Anova 2 vie		Kruska	-Wallis			Anova 2 vie		Kruskal	1-Wallis
Effetti	g.l.	A	T	N	A	A	AT NA PA PA				A	A	T	NA	PA	AT	N	A	P	A	AT		NA	P	PA		
Sito	2;96	p	Post Hoc	p	Post Hoc	p	Post Hoc	p	Post Hoc	p	Post Hoc	p	Post Hoc	p	Post Hoc	p	p	p	p	Post Hoc	p	Post Hoc	p	Post Hoc	p	p	Post Hoc
Sito	2;90	0,045 *	C1 > P; C2	0,012 **	P > C1; C2	0,016 **	P > C1; C2	0,001 ***	P > C1; C2	0,012 **	P > C1;C2	0,001 ***	P >> C1; C2	<0,001 ***	P >> C1; C2	0,172	0,166	0,266	<0,001 ***	P >> C1; C2	<0,001 ***	P>C1;C2	0,045 *	P> C1;C2	0,385	<0,001 ***	P >> C1; C2
Anno	2;96	p		p		p		p		p	Post Hoc	p		p		p	p	p	p		p		p	Post Hoc	p	p	
Allilo	2;90	0,99		0,146		0,340		0,169		0,022 *	18 > 16; 17	0,600		0,155		0,185	0,897	0,215	0,090		0,274		0,041 *	16 <17; 18	0,192	0,821	
Sito x Anno	4:96		Anov	a 2 vie					Anov	a 2 vie										Anov	a 2 vie						
SILO X AIIIIO	+,90	0,362		0,777		0,37		0,902		0,306		0,069		0,190		0,693	0,369	0,72	0,017 **		0,791		0,362		0,717	0,996	


			Crost	acei				Mol	luschi									Pesci						
Pe	eso		Bento	nici			Bentonici Pelagici						Bent	onici			Necto-B	entonici				Pelagici		
		Anova	2 vie	Kruska	l-Wallis		Kruska	l-Wallis		Anova 2 vie	Anova 2 vie	Kruska	l-Wallis	Anova	ı 2 vie	Anova 2 vie	Kruskal	-Wallis	Anova 2 vie		Anova 2 vie		Kruskal	-Wallis
Effetti	g.l.	A	T	N	IA.	A	Т	N	IA.	PA	PA	A	ΛT	NA	PA	AT	N	A	PA	I	ΛT	NA	P	A
Sito	2;63	p	Post Hoc	p	Post Hoc	p	Post Hoc	p	Post Hoc	p	p	p	Post Hoc	p	p	p	p	Post Hoc	p	p	Post Hoc	P	p	Post Hoc
Sito	2,05	0,045 *	ns	0,011 **	P > C1; C2	0,016 **	P > C1; C2	0,001 ***	P >> C1; C2	0,31	0,162	< 0,001 ***	P >> C1; C2	0,99	0,780	0,549	< 0,001 ***	P >> C1; C2	0,804	0,045 *	ns	0,83	< 0,001 ***	P>> C1; C2
Anno	1;63	p		p		p	Post Hoc	p		p	p	p	Post Hoc	p	p	p	p	Post Hoc	p	p	Post Hoc	P	p	
Anno	1;05	0,99		0,222		0,048 *	ns	0,45		0,05	0,113	< 0,001 ***	16 > 18	0,061	0,530	0,175	<0,001 ***	16 >18	0,298	0,041 *	ns	0,305	0,571	
Sito x Anno	2;63	Anova 2 vie Anova 2 vie													Anova 2 vie									
Sito X Allilo	2,03	0,362		0,69		0,387		0,834		0,381	0,565	0,001 ***		0,575	0,217	0,67	0,033 *		0,964	0,362		0,810	0,943	

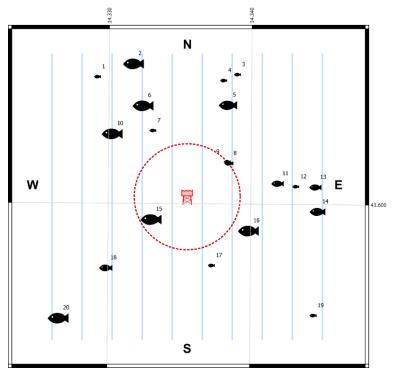
3.7.1.4 PERMANOVA e Principal Coordinate analysis (PCO)

L'analisi multivariata rappresentata in Tab. 3-LX ha evidenziato differenze altamente significative tra i popolamenti presenti in piattaforma rispetto ai due siti di controllo, come indicato dal *pairwise test*. Non è stata riscontrata, invece, una differenza significativa tra i due anni di monitoraggio. La rappresentazione bidimensionale, con il 34,8% della varianza spiegata, ha mostrato la generale contrapposizione del sito della piattaforma con i controlli. La sovrapposizione del grafico delle specie maggiormente coinvolte nella differenziazione dei siti sulla rappresentazione bidimensionale (fig. 3.62), suggerisce che tali differenze sono determinate da un pool di specie AT (es: *S. porcus*, *O. vulgaris*) e PA (es: *B. boops*, *P. bogaraveo*, *E. cirrhosa*) per quanto riguarda la piattaforma e di specie NA (es: *M. merluccius*, *R. asterias*, *S. canicula* e *P. maxima*) per quanto concerne i siti di controllo.

Tab. 3-LX – PERMANOVA basata sulle dissimilarità di Bray-Curtis sui dati di abbondanza trasformati dei popolamenti rinvenuti nei tre siti nel periodo 2016-2018. **, >> = altamente significativo. (P = Piattaforma; C1= Controllo 1; C2= Controllo 2).

Fattore	g.l.	MS	pseudoF	p	Pairwise test
Sito	2	2,88	9,37	0,001 ***	P>>C1;C2
Anno	2	0,413	1,34	0,137	
Sito x Anno	4	0,318	1,04	0,313	

Fig. 3.55 – Rappresentazione bidimensionale dei tre siti campionati nel periodo 2016-2018 tramite la Principal Coordinate analysis (PCO). C1 e C2 = controlli.


3.7.2. INVESTIGAZIONI ACUSTICHE

Vengono qui di seguito sono discussi i risultati relativi al 2° semestre 2018. Per i precedenti consultare Fabi *et al.*, 2016c, 2017b, 2017c, 2018 e 2019d.

Nel **luglio** 2018 sono stati rilevati 20 banchi di pesce di cui 1 solo a una distanza inferiore ai 300 m dalla piattaforma (fig. 3.56), precisamente a 241,2 m (n. 15; Tab. 3-LXI). L'aggregazione più distante è stata osservata a 999 m da Bonaccia NW (n. 20).

Il banco n. 10 ha presentato maggiore superficie, volume ed estensione EW (rispettivamente 4593,967 m², 2798,967 m³ e 31,426 m), mentre la maggiore lunghezza NS (33,357 m) è stata misurata per il n. 15 (Tab. 3-LXII).

Le profondità registrate per i centri geometrici delle aggregazioni variano da un minimo di 43,512 m (banco n. 9) a un massimo di 88,407 m (banco n. 14). Le variabili acustiche sono riportate in Tab. 3-LXIII.

Fig. 3.56 - Schema planare delle posizioni delle aggregazioni di pesce individuate durante il campionamento condotto nel lulgio 2018. La visualizzazione graduata dei banchi ne evidenzia le differenze volumetriche.

Tab. 3-LXI – Distanza (m) dalla piattaforma Bonaccia NW dei banchi di pesce individuati durante il campionamento condotto nel luglio 2018. In verde l'aggregazione entro 300 m dalla struttura.

Banco	Distanza da Bonaccia NW
1	863,1
2	826,2
3	754,5
4	697,2
5	575,7

Banco	Distanza da Bonaccia NW
6	587,5
7	436,7
8	303,0
9	301,4
10	568,3

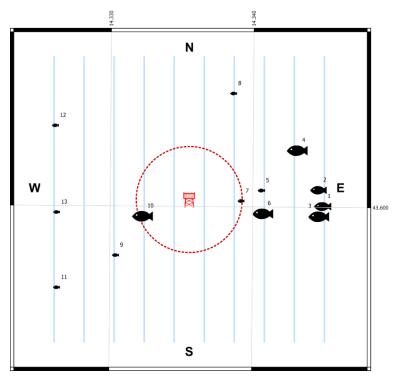
Banco	Distanza da Bonaccia NW
11	510,6
12	609,2
13	720,0
14	733,5
15	241,2

Banco	Distanza da Bonaccia NW
16	384,6
17	398,3
18	610,5
19	964,9
20	999,0

Tab. 3-LXII - Caratteristiche metriche dei banchi di pesce individuati nel luglio 2018. S = superficie, L = lunghezza, P = profondità, H = altezza, V = volume. In verde l'aggregazione entro 300 m dalla struttura.

Banco	S (m ²)	L NS (m)	L EW (m)	P minima (m)	P massima (m)	H (m)	V (m ³)	Centro geometrico (LAT)	Centro geometrico (LONG)	Centro geometrico profondità (m)	Ruvidità (m ⁻¹)	n. vacuoli	Volume totale vacuoli (m³)
1	57,038	9,065	3,387	82,316	85,101	2,785	15,345	43,606534	14,329067	83,624	3,717	0	0,000
2	687,841	12,588	17,365	59,234	73,531	14,297	606,922	43,607218	14,331615	63,522	1,133	0	0,000
3	61,762	5,849	2,321	66,541	70,322	3,781	18,585	43,606694	14,338884	68,550	2,988	0	0,000
4	120,651	11,990	6,489	84,839	86,373	1,534	30,931	43,606386	14,337913	85,748	3,901	0	0,000
5	336,531	9,898	8,948	84,233	86,999	2,766	131,870	43,605142	14,338257	85,900	2,265	0	0,000
6	443,996	15,084	14,677	83,366	87,023	3,657	174,936	43,605086	14,332304	85,664	2,484	0	0,000
7	95,265	7,322	5,202	84,545	87,237	2,692	29,990	43,603813	14,332982	85,945	3,177	0	0,000
8	232,209	10,192	12,255	40,896	47,336	6,440	64,485	43,602172	14,338336	44,405	3,486	0	0,000
9	93,957	4,632	6,145	41,692	45,055	3,363	24,342	43,602248	14,338211	43,512	3,376	0	0,000
10	4593,967	30,711	31,426	71,209	84,425	13,216	2798,976	43,603644	14,330156	77,752	1,586	47	26,792
11	208,870	7,395	8,039	83,836	86,932	3,096	89,741	43,601159	14,341771	85,521	2,130	0	0,000
12	58,811	6,987	3,880	85,261	86,990	1,729	15,845	43,601006	14,343036	86,301	3,712	0	0,000
13	191,335	9,534	9,199	83,122	86,656	3,534	86,849	43,600984	14,344421	85,164	2,203	0	0,000
14	378,675	30,274	11,285	86,855	89,620	2,765	112,937	43,599744	14,344593	88,407	3,258	0	0,000
15	1513,330	33,537	20,412	79,050	86,884	7,834	631,284	43,599295	14,332930	83,864	2,397	0	0,000
16	2868,196	25,134	22,844	63,602	81,363	17,761	1020,059	43,598748	14,339768	72,965	2,812	0	0,000
17	38,760	3,858	3,437	53,898	56,500	2,602	10,921	43,596960	14,337156	55,284	3,549	0	0,000
18	207,529	8,574	10,882	83,809	86,741	2,932	94,934	43,596802	14,329765	85,403	2,186	0	0,000
19	27,496	3,656	2,902	85,509	87,243	1,734	6,239	43,594448	14,344317	86,295	4,407	0	0,000
20	543,113	19,437	14,195	83,369	87,023	3,654	247,868	43,594232	14,326469	85,420	2,191	0	0,000

Tab. 3-LXIII - Variabili acustiche relative ai banchi di pesce individuati durante il campionamento condotto nel luglio 2018. In verde l'aggregazione entro 300 m dalla struttura.


Banco	Sv medio (dB re 1 m ⁻¹)	n. campioni	n. ping	n. beam	Sv minimo (dB re 1 m ⁻¹)	Sv massimo (dB re 1 m ⁻¹)	Densità (kg/m³)
1	-28,286	53	3	38	-34,847	-21,347	14,839
2	-29,979	2332	24	264	-34,993	-18,943	10,049
3	-18,630	70	2	27	-34,826	-11,751	137,096
4	-28,004	111	7	85	-34,847	-20,847	15,834
5	-24,431	245	6	104	-34,880	-17,347	36,047
6	-22,291	488	12	238	-34,880	-12,315	59,009
7	-25,855	104	5	55	-34,880	-20,413	25,969
8	-13,962	239	8	111	-34,962	-0,462	401,592
9	-19,922	102	5	46	-34,607	-10,107	101,818
10	-22,184	10978	35	1441	-34,971	-9,042	60,483
11	-24,333	292	8	98	-34,880	-15,815	36,874
12	-28,385	59	4	43	-34,880	-23,880	14,505
13	-24,709	318	10	127	-34,880	-15,847	33,812
14	-21,108	319	4	178	-34,977	-11,508	77,481
15	-18,843	1825	16	463	-34,986	-3,133	130,531
16	-30,481	3375	21	638	-34,977	-21,180	8,951
17	-24,400	54	3	25	-34,842	-17,945	36,310
18	-19,219	289	10	135	-34,880	-9,380	119,708
19	-32,566	20	2	15	-34,880	-30,880	5,538
20	-24,062	760	13	298	-34,880	-12,380	39,243

^{*}Sv = Volume backscattering strength

Ad **agosto** sono state rilevate 13 aggregazioni di pesce di cui 2 distanti meno di 300 m da Bonaccia NW (banchi n. 7 e 10; fig. 3.57). Il banchi n. 10 e n. 11 sono stati quelli sondati rispettivamente alla minore e alla massima distanza dalla piattaforma Tab. 3-LXIV). I valori maggiori di superficie (1894,819 m²), volume (771,072 m³) e lunghezza NS

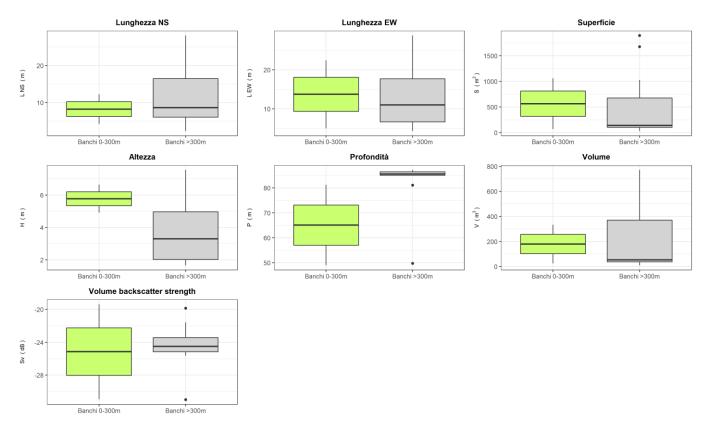
(28,076 m) sono stati registrati per il n. 6, menre la maggiore estensione EW è stata rilevata per il n. 3 (28,757 m; Tab. 3-LXV).

Le aggregazioni sono state sondate a profendità comprese tra 48,968 m (banco n. 7) e 87,251 m (n. 3). Le caratteristiche metriche dei banchi più o meno distanti di 300 m dalla piattaforma sono risultate confrontabili (fig. 3.58). Le variabili acustiche sono descritte in Tab. 3-LXVI.

Fig. 3.57 - Schema planare delle posizioni delle aggregazioni di pesce individuate durante il campionamento condotto in agosto 2018. La visualizzazione graduata dei banchi ne evidenzia le differenze volumetriche.

Tab. 3-LXIV - Distanza (m) dalla struttura Bonaccia NW dei banchi di pesce individuati durante il campionamento condotto in agosto 2018. In verde quelli rilevati entro 300 m dalla piattaforma.

Banco	Distanza da Bonaccia
1	748,2
2	726,5
3	731,1
4	670,0
5	404,1
6	414,8
7	284,1

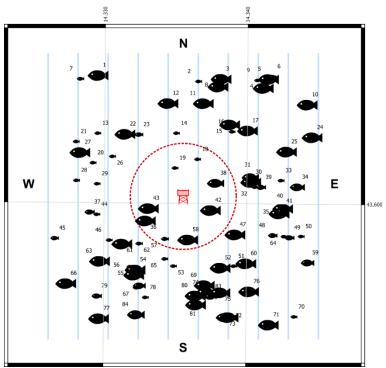

Banco	Distanza da Bonaccia
8	657,3
9	523,9
10	283,6
11	902,4
12	879,8
13	762,4

Tab. 3-LXV - Caratteristiche metriche dei banchi di pesce individuati nell'agosto 2018. S = superficie, L = lunghezza, P = profondita, H = altezza, V = volume. In verde le aggregazioni rilevate entro 300 m dalla piattaforma.

Banco	S (m ²)	L NS (m)	L EW (m)	P minima (m)	P massima (m)	H (m)	V (m ³)	Centro geometrico (LAT)	Centro geometrico (LONG)	Centro geometrico profondità (m)	Ruvidità (m ⁻¹)	n. vacuoli	Volume totale vacuoli (m³)
1	324,007	12,834	11,496	85,208	88,719	3,511	124,434	43,600159	14,344809	87,166	2,604	0	0,000
2	312,477	14,008	16,000	83,273	86,574	3,301	118,806	43,600985	14,344502	85,134	2,630	0	0,000
3	1677,596	21,644	28,757	83,429	89,804	6,375	616,008	43,599641	14,344549	87,251	2,723	0	0,000
4	1028,410	18,942	19,419	76,509	84,054	7,545	740,087	43,603000	14,343000	81,130	1,390	1	0,306
5	140,711	6,372	11,029	84,952	87,221	2,269	53,017	43,600935	14,340484	86,224	2,654	0	0,000
6	1894,819	28,076	24,045	83,273	88,528	5,255	771,072	43,599768	14,340619	86,588	2,447	1	0,313
7	69,537	4,231	5,026	46,443	51,347	4,904	25,240	43,600392	14,339063	48,968	2,755	0	0,000
8	113,096	8,644	7,199	85,510	87,205	1,695	38,670	43,605868	14,338482	86,449	2,925	0	0,000
9	115,135	5,763	8,718	84,106	86,530	2,424	49,232	43,597588	14,330281	85,416	2,339	0	0,000
10	1059,834	12,230	22,436	77,903	84,533	6,630	333,547	43,599597	14,332185	81,238	3,177	0	0,000
11	30,832	2,317	4,334	84,754	86,416	1,662	9,433	43,595924	14,326167	85,597	3,269	0	0,000
12	94,047	7,972	5,277	47,256	51,919	4,663	35,375	43,604175	14,325998	49,732	2,659	0	0,000
13	66,920	4,750	6,091	84,021	85,801	1,780	25,227	43,599759	14,326132	84,950	2,653	0	0,000

Tab. 3-LXVI - Variabili acustiche relative ai banchi di pesce individuati durante il campionamento di agosto 2018. In verde le aggregazioni rilevate entro 300 m dalla piattaforma.

Banco	Sv medio (dB re 1 m ⁻¹)	n. campioni	n. ping	n. beam	Sv minimo (dB re 1 m ⁻¹)	Sv massimo (dB re 1 m ⁻¹)	Densità (kg/m³)
1	-23,477	410	13	213	-34,986	-14,486	44,900
2	-24,152	437	15	225	-34,857	-11,357	38,441
3	-24,551	2046	22	851	-34,986	-10,986	35,067
4	-25,042	2264	17	393	-34,986	-17,955	31,318
5	-25,282	168	6	81	-34,890	-16,357	29,635
6	-23,374	2408	27	1017	-34,955	-10,923	45,984
7	-19,365	81	3	35	-34,826	-10,285	115,734
8	-25,645	119	8	73	-34,890	-16,890	27,261
9	-21,561	144	5	59	-34,858	-12,825	69,808
10	-30,928	1143	12	360	-34,890	-22,656	8,076
11	-30,993	29	2	15	-34,857	-28,357	7,956
12	-19,843	184	7	68	-34,693	-8,639	103,677
13	-24,507	82	4	44	-34,824	-19,324	35,422


Fig. 3.58 - Box plot di alcune caratteristiche metriche ed acustiche delle aggregazioni rilevate nell'agosto 2018. Sono mostrati il primo, la mediana, il terzo quartile e la presenza di eventuali *outliers*.

In **settembre** sono stati individuati 84 banchi di pesce, di cui 8 in prossimità di Bonaccia NW (fig. 3.59 e Tab. 3-LXVII). L'aggregazione più vicina (n. 42) è stata sondata a 160,6 m dalla piattaforma, la più lontana (n. 70) a 911,7 m.

Il banco n. 17 ha presentato la maggior estensione areale con 4331,217 m², il n. 66 il maggior volume (2143,252 m³). Le massime lunghezze NS ed EW sono state registrate per il banco n. 11, rispettivamente 46,127 m e 45,600 m (Tab. 3-LXVIII).

Le aggregazioni sono state sondate a profondità comprese tra 54,947 m (n. 19) e 85,557 m (n. 16).

In Tab. 3-LXIX sono riportate le variabili acustiche dei banchi. Le caratteristiche metriche dei banchi entro i 300 m dalla piattaforma e oltre tale distanza sono risultate assolutamente confrontabili (fig. 3.60).

Fig. 3.59 - Schema planare delle posizioni delle aggregazioni di pesce individuate durante il campionamento condotto nel settembre 2018. La visualizzazione graduata dei banchi ne evidenzia le differenze volumetriche.

Tab. 3-LXVII - Distanza (m) dalla piattaforma Bonaccia NW dei banchi di pesce individuati nel settembre 2018. In evidenza i banchi entro 300 m dalla piattaforma.

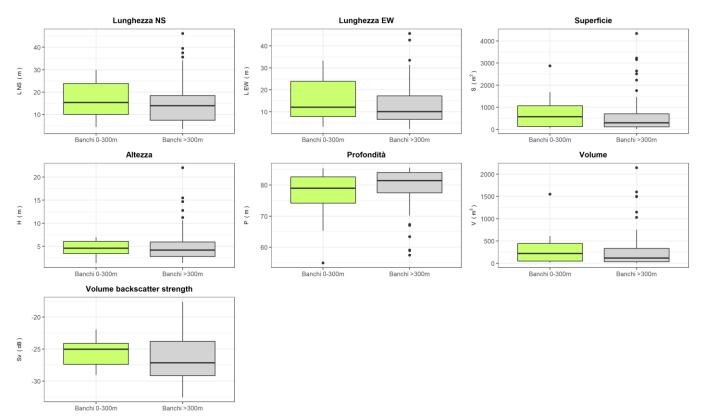
Banco	Distanza da Bonaccia NW	Banco	Distanza da Bonaccia NW	Banco	Distanza da Bonaccia NW
1	851,9	29	503,4	57	255,6
2	666,1	30	385,9	58	234,2
3	706,8	31	390,5	59	785,1
4	766,7	32	401,5	60	506,0
5	824,9	33	553,4	61	438,0
6	849,9	34	641,0	62	363,9
7	898,4	35	542,0	63	597,6
8	660,1	36	254,5	64	601,5
9	784,0	37	544,3	65	361,2
10	873,3	38	195,6	66	826,1
11	548,2	39	435,6	67	573,5
12	546,7	40	558,8	68	556,7
13	615,5	41	553,4	69	504,1
14	371,8	42	160,6	70	911,7
15	489,3	43	212,4	71	858,4
16	461,8	44	506,6	72	716,5
17	523,6	45	770,4	73	709,8
18	232,5	46	489,3	74	546,3
19	180,5	47	351,0	75	569,1
20	557,6	48	540,3	76	639,8
21	694,2	49	633,8	77	835,3
22	496,7	50	692,4	78	603,5
23	445,1	51	473,3	79	743,8
24	800,4	52	441,3	80	553,3
25	634,6	53	388,6	81	604,7
26	473,9	54	490,7	82	553,6
27	647,5	55	519,4	83	574,5
28	621,9	56	496,2	84	712,6

Tab. 3-LXVIII - Caratteristiche metriche dei banchi di pesce individuati nel settembre 2018. S= superficie, L= lunghezza, P= profondità, H= altezza, V= volume. In evidenza i banchi entro 300 m dalla piattaforma.

1 SIA,198	Banco	S (m ²)	L NS (m)	L EW (m)	P minima (m)	P massima (m)	H (m)	V (m ³)	Centro geometrico (LAT)	Centro geometrico (LONG)	Centro geometrico profondità (m)	Ruvidità (m ⁻¹)	n. vacuoli	Volume totale vacuoli (m³)
1276.595	1	848,198	22,355	19,044	75,240	80,636	5,396	338,135	43,606591	14,329409	77,655	2,390	0	0,000
4 990.554	2	79,423	7,095	3,470	82,659	85,196	2,537	29,746	43,606312	14,336438	83,950	2,670	0	0,000
S	3	1276,595	35,613	18,868	80,450	85,626	5,176	507,736	43,606448	14,338041	83,376	2,398	1	0,341
Fig. 116,549 S.322 7,060 S.1,774 S.3,809 2,716 S.5,669 34,560558 14,341644 S.2,668 3,187 0 0,000	4	969,554	29,203	19,836	81,636	84,339	2,703	428,629	43,606000	14,341000	83,308	2,262	0	0,000
Texas	5	675,897	24,762	12,059	72,669	77,257	4,588	350,718	43,606455	14,341362	75,286	1,927	0	0,000
Section Sect	6	116,549	8,322	7,069	81,174	83,890	2,716	36,569	43,606586	14,341644	82,668	3,187	0	0,000
9 26,013 3,596 2,513 83,325 84,829 1,504 6,406 43,60858 14,34881 84,098 4,061 0 0,000 10 955,046 17,173 22,253 75,299 79,817 4,518 413,591 43,601510 14,344091 77,567 2,281 0 0,000 11 315,2670 46,127 45,600 71,335 78,635 73,00 150,1408 43,601510 14,336806 75,459 2,983 0 0,000 12 583,039 19,744 12,964 73,505 77,178 3,673 198,478 43,601519 14,336836 75,459 2,983 0 0,000 13 10,143 5,138 4,849 82,779 8,605 2,826 30,241 43,60366 14,334915 84,407 3,963 0 0,000 14 10,143 5,138 4,849 82,779 8,605 2,826 30,241 43,60366 14,334915 84,402 2,702 0 0,000 15 762,179 18,426 11,855 71,202 81,270 10,008 42,60151 43,60135 44,38664 77,208 1,789 0 0,000 16 97,772 7,143 6,209 84,707 86,270 1,563 32,107 43,603759 14,338818 85,557 3,045 0 0,000 17 4331,217 32,295 42,604 63,054 78,844 15,400 160,0434 43,603827 14,339822 74,124 2,566 2,0819 18 57,007 7,011 3,238 842,22 85,605 14,04 21,099 34,603759 14,338818 85,557 3,045 0 0,000 19 60,547 4,483 5,977 55,300 57,314 4,104 18,905 43,601891 14,334835 54,947 32,303 0 0,000 20 192,153 5,890 4,126 44,726 88,664 3,028 46,251 43,60215 44,325082 67,075 3,945 0 0,000 21 48,260 4,616 2,777 5,5964 61,266 4,302 16,788 43,603191 14,334835 54,947 32,303 0 0,000 22 443,378 15,229 12,623 72,560 64,126 64,302 16,788 43,603500 14,334930 84,206 2,407 4,404 0,404	7	184,998	16,691	8,322	83,602	85,626	2,024	53,308	43,606401	14,328156	84,668	3,470	0	0,000
10 935,046 17,173 22,253 75,299 79,817 4,518 413,591 43,605169 14,334901 77,567 22,81 0 0,000 11 3152,670 46,127 45,600 71,335 78,655 73,00 150,1408 43,605199 14,334806 75,450 1,975 6 2,568 12 585,059 19,744 12,964 73,505 77,178 3,673 198,478 43,605191 14,334806 75,459 2,938 0 0,000 13 104,268 5,965 9,402 83,553 84,981 1,428 26,310 43,603605 14,329402 84,447 3,963 0 0,000 14 101,434 5,138 4,849 82,779 88,605 2,826 30,241 43,603605 14,334915 84,402 2,792 0 0,000 15 762,197 18,426 11,855 71,202 81,270 10,068 426,051 43,604125 14,33864 77,208 17,789 0 0,000 16 97,772 7,143 6,209 84,707 86,270 1,563 32,107 43,603759 14,338818 85,557 3,045 0 0,000 17 433,1217 32,295 42,604 63,054 78,844 15,490 1600,434 43,603607 43,493 83,492 2,286 0 2,081 18 57,027 7,011 3,238 84,222 88,026 1,404 21,059 43,00344 14,338415 83,907 2,298 0 0,000 20 192,153 5,890 41,24 64,726 68,664 3,928 46,251 43,603607 14,33885 84,947 3,203 0 0,000 21 48,200 4,616 2,672 56,664 61,266 43,02 14,64 20,484 43,603400 14,333425 84,401 3,244 4,276 4,484 4,276 4,484 4,	8	697,844	16,716	16,214	55,645	61,970	6,325	253,448	43,606055	14,337833	59,086	2,716	0	0,000
11 3152,670 46,127 45,600 71,335 78,635 7,300 1501,408 43,605199 14,336806 75,450 1.975 6 2.568 12 583,039 19,744 12,964 73,505 71,778 3,673 198,478 43,605191 14,334366 75,450 2.988 0.0000 14 101,434 5,138 4,849 82,779 8,8505 2,826 30,241 43,603665 14,334915 84,407 2,702 0.0000 15 762,197 18,426 11,855 71,202 81,270 10,008 42,6051 43,604355 43,34045 77,208 1,789 0.0000 16 97,772 7,143 6,209 84,707 86,270 1,563 32,107 43,603759 14,338945 87,208 1,789 0.0000 17 4331,217 32,295 42,604 63,054 78,544 15,400 16,00434 43,603827 14,338942 74,124 2,566 2,0819 18 57,027 7,011 32,388 84,222 85,626 1,041 21,009 43,003345 14,336945 84,007 2,708 0.000 19 60,547 4,483 5,957 53,000 57,134 4,104 21,009 43,003345 14,336416 84,007 2,708 0.000 19 192,153 5,800 4,124 64,726 68,654 3,928 46,251 43,603529 14,329082 67,075 3,945 0.000 22 443,278 15,229 12,023 72,301 76,422 4,061 224,582 43,00306 14,331435 74,207 19,44 0.0000 24 2642,470 37,508 31,280 64,945 76,699 14,704 1148,928 43,603506 14,331435 73,693 2,255 6 3,460 2,255 8,304 6,126 6,365 4,360 4,360 3,460 4,360 3,460 4,360 3,460 4,360 3,460 4,360 3,460 4,360	9	26,013	3,596	2,513	83,325	84,829	1,504	6,406	43,606385	14,340581	84,098	4,061	0	0,000
13	10	955,046	17,173	22,253	75,299	79,817	4,518	413,591	43,605169	14,344091	77,567	2,281	0	0,000
13	11	3152,670	46,127	45,600	71,335	78,635	7,300	1501,408	43,605199	14,336806	75,450	1,975	6	2,568
14	12	583,039	19,744	12,964	73,505	77,178	3,673	198,478	43,605191	14,334326	75,459	2,938	0	0,000
15 762,197 18,426 11,855 71,202 81,270 10,068 426,051 43,604125 14,338664 77,208 1,789 0 0,000 16 97,772 7,143 6,209 84,707 86,270 1,563 32,107 43,603759 14,338818 85,577 3,045 0 0,000 17 4313,171 32,295 42,604 63,054 78,544 15,490 160,434 43,603579 14,338818 85,577 74,124 2,596 2 0,819 18 57,027 7,011 3,238 84,222 85,626 1,404 21,659 43,602434 14,336416 84,967 2,708 0 0,000 20 192,153 5,890 4,124 64,726 68,654 3,928 46,251 43,60228 14,332808 67,075 3,945 0 0,000 21 48,200 4,616 2,672 56,964 61,266 4,302 16,784 43,603301 14,327890 58,949 2,875 0 0,000 22 24,4378 15,229 12,623 73,231 76,422 4,001 224,828 43,603500 14,331325 74,207 1,944 0 0,000 23 206,268 18,216 6,378 82,320 86,012 3,692 64,117 43,603382 44,332285 84,401 3,217 0 0,000 24 2642,470 37,508 31,280 64,945 79,649 14,704 1448,928 43,603500 14,331325 74,207 1,944 0 0,000 25 649,167 16,779 18,883 69,884 76,590 6,736 258,162 43,602767 14,342667 73,573 2,515 0 0,000 26 139,554 8,304 9,126 82,442 85,529 3,087 3,748 43,602488 14,30439 84,296 3,697 0 0,000 28 53,593 6,707 3,464 70,333 73,593 3,664 11,384 43,601224 14,327932 72,256 4,708 0 0,000 29 50,556 4,271 4,483 83,993 85,823 2,230 15,340 43,601660 14,34343 83,624 2,503 0 0,000 30 147,258 29,433 7,612 77,100 81,710 81,710 1,600 44,60044 1,434014 78,332 2,106 0 0,000 31 263,561 12,508 6,668 72,113 82,776 10,663 125,121 43,601442 43,40141 78,332 2,106 0 0,000 32 80,799 50,155 5,090 83,224 85,652 1,828 32,117 43,600444 41,434181 82,48 2,516 0 0,000 33 81,482 4,296 5,766 5,844 5,146 8,666 6,997 31,117 43,599018 14,342438 81,413 83,604 2,700	13	104,268	5,965	9,402	83,553	84,981	1,428	26,310	43,603635	14,329402	84,447	3,963	0	0,000
16	14	101,434	5,138	4,849	82,779	85,605	2,826	30,241	43,603666	14,334915	84,402	2,792	0	0,000
17 4331,217 32,295 42,604 63,054 78,544 15,490 1600,434 43,603827 14,339922 74,124 2,596 2 0,819 18 57,027 7,011 3,238 84,222 85,626 1,040 21,059 43,602344 14,336416 84,967 2,708 0 0,000 20 192,153 5,890 4,124 64,726 68,654 3,928 46,251 43,602128 14,329082 67,075 3,945 0 0,000 21 48,260 4,616 2,672 56,964 61,266 4,021 16,784 43,602101 14,327890 56,7075 3,945 0 0,000 22 443,378 15,229 12,623 72,361 76,422 40,61 224,828 43,603201 14,327890 58,949 2,875 0 0,000 23 206,268 18,216 6,378 82,320 86,012 3,692 64,117 43,603582 14,332285 84,401 3,217 0 0,000 24 2642,470 37,508 31,280 64,945 79,649 4,704 1148,928 43,603506 14,331325 74,207 1,944 0 0,000 25 649,167 16,719 18,883 69,845 76,509 6,736 258,162 43,602767 14,34468 73,505 2,255 6 3,460 25 649,167 16,719 18,883 69,845 76,509 6,736 258,162 43,602767 14,342676 73,573 2,515 0 0,000 26 139,554 8,304 9,126 82,442 85,529 3,087 37,748 43,602458 14,33049 84,296 3,697 0 0,000 27 614,819 14,640 17,271 65,944 75,140 91,96 245,680 43,602458 14,33049 84,296 3,697 0 0,000 29 50,556 4,271 4,483 83,593 85,823 2,230 15,240 43,601050 14,329138 84,844 3,296 0 0,000 30 1197,258 2,433 27,612 77,106 81,710 4,604 529,388 43,601050 14,329139 84,296 4,708 0 0,000 31 263,561 12,508 6,698 72,113 82,776 10,663 125,121 43,600948 14,340470 79,448 2,262 0 0,000 32 80,799 5,015 5,909 83,224 85,529 3,935 3,117 43,600948 14,340470 79,448 2,262 0 0,000 33 81,482 4,296 7,765 55,849 58,179 3,330 25,647 43,600948 14,340470 78,332 2,106 0 0,000 34 30,515 10,733 11,479 81,813 85,242 3,611 108,995 43,600948 14,343449 83,664 2,760 0 0,000	15	762,197	18,426	11,855	71,202	81,270	10,068	426,051	43,604125	14,338664	77,208	1,789	0	0,000
18	16	97,772	7,143	6,209	84,707	86,270	1,563	32,107	43,603759	14,338818	85,557	3,045	0	0,000
19	17	4331,217	32,295	42,604	63,054	78,544	15,490	1600,434	43,603827	14,339922	74,124	2,596	2	0,819
20	18	57,027	7,011	3,238	84,222	85,626	1,404	21,059	43,602344	14,336416	84,967	2,708	0	0,000
21 48,260 4,616 2,672 56,964 61,266 4,302 16,784 43,603201 14,327890 58,949 2,875 0 0,000 22 443,378 15,229 12,623 72,361 76,422 4,061 224,882 43,603806 14,331235 74,401 3,217 0 0,000 24 2642,470 37,508 31,280 64,945 79,649 14,704 1148,928 43,603506 14,331235 73,605 2,255 6 3,460 25 649,167 16,719 18,883 69,854 76,590 6,736 28,162 43,602767 14,342667 73,573 2,515 0 0,000 26 13,9554 8,304 9,125 88,242 88,5529 3,807 37,784 43,602658 14,328176 70,208 2,503 0 0,000 28 53,593 6,707 3,464 70,335 73,999 3,664 11,334 43,601264 14,327932 72,266 4,708 <td>19</td> <td>60,547</td> <td>4,483</td> <td>5,957</td> <td>53,030</td> <td>57,134</td> <td>4,104</td> <td>18,905</td> <td>43,601891</td> <td>14,334835</td> <td>54,947</td> <td>3,203</td> <td>0</td> <td>0,000</td>	19	60,547	4,483	5,957	53,030	57,134	4,104	18,905	43,601891	14,334835	54,947	3,203	0	0,000
22 443,378 15,229 12,623 72,361 76,422 4,061 224,582 43,603606 14,331325 74,207 1,944 0 0,000 23 206,268 18,216 6,378 82,320 86,012 3,692 64,117 43,603505 14,332285 84,401 3,217 0 0,000 24 2642,470 37,508 31,280 64,945 79,694 14,704 1148,928 43,603506 14,344458 73,605 2,255 6 3,460 25 649,167 16,719 18,883 69,854 76,590 6,736 258,162 43,602767 14,342667 73,573 2,515 0 0,000 26 139,554 8,304 9,126 82,442 85,599 3,087 37,748 43,602658 14,330439 84,296 3,607 0 0,000 28 53,593 6,707 3,464 70,335 73,364 11,384 43,601248 14,328932 2,296 0 0,000	20	192,153	5,890	4,124	64,726	68,654	3,928	46,251	43,602128	14,329082	67,075	3,945	0	0,000
23 206,268 18,216 6,378 82,320 86,012 3,692 64,117 43,603582 14,332285 84,401 3,217 0 0,000 24 2642,470 37,508 31,280 64,945 79,649 14,704 1148,928 43,603506 14,344458 73,503 2,255 6 3,460 25 649,167 16,719 18,883 69,854 76,590 6,736 258,162 43,602767 14,342667 73,573 2,515 0 0,000 26 139,554 8,304 9,126 82,442 88,529 3,087 37,748 43,602658 14,323176 70,208 2,503 0 0,000 28 53,593 6,670 3,404 70,335 73,999 3,664 11,384 43,601244 14,323173 72,96 4,708 0 0,000 30 1197,258 29,433 27,612 77,106 81,710 4,604 529,388 43,601203 14,340147 73,484 2,262 </td <td></td> <td>48,260</td> <td>4,616</td> <td></td> <td>56,964</td> <td>61,266</td> <td>4,302</td> <td>16,784</td> <td>43,603201</td> <td>14,327890</td> <td>58,949</td> <td>2,875</td> <td>0</td> <td>0,000</td>		48,260	4,616		56,964	61,266	4,302	16,784	43,603201	14,327890	58,949	2,875	0	0,000
24 2642,470 37,508 31,280 64,945 79,649 14,704 1148,928 43,603506 14,34458 73,605 2,255 6 3,460 25 649,167 16,719 18,883 69,884 76,590 6,736 258,162 43,602767 14,342667 73,573 2,515 0 0,000 26 139,554 8,304 9,126 82,442 85,529 3,087 37,748 43,60268 14,328176 70,208 2,503 0 0,000 28 53,593 6,707 3,464 70,335 73,999 3,664 11,334 43,601060 14,329383 84,894 3,296 0 0,000 29 50,556 4,271 4,483 83,593 85,823 2,230 15,340 43,601060 14,329383 84,894 3,296 0 0,000 31 263,561 12,508 6,698 72,113 82,766 10,663 125,11 43,601442 14,340141 78,332 2,106		443,378	15,229	12,623	72,361	76,422	4,061	224,582	43,603606	14,331325	74,207	1,944	0	0,000
25 649,167 16,719 18,883 69,854 76,590 6,736 258,162 43,602767 14,342667 73,573 2,515 0 0,000 26 139,554 8,304 9,126 82,442 85,529 3,087 37,748 43,602458 14,330439 84,296 3,697 0 0,000 28 53,593 6,707 3,464 70,344 75,140 9,196 245,680 43,602658 14,3304372 72,296 4,708 0 0,000 29 50,556 4,271 4,483 83,593 85,823 2,230 15,340 43,601060 14,329383 84,894 3,296 0 0,000 30 1197,258 29,433 27,612 77,106 81,710 4,604 529,388 43,601203 14,340171 79,448 2,262 0 0,000 31 263,561 12,508 6,698 72,113 82,776 10,663 125,121 43,601429 14,340141 78,332 2,166 <td></td> <td>206,268</td> <td>18,216</td> <td>6,378</td> <td>82,320</td> <td>86,012</td> <td>3,692</td> <td>64,117</td> <td>43,603582</td> <td>14,332285</td> <td>84,401</td> <td>3,217</td> <td>0</td> <td>0,000</td>		206,268	18,216	6,378	82,320	86,012	3,692	64,117	43,603582	14,332285	84,401	3,217	0	0,000
26 139,554 8,304 9,126 82,442 85,529 3,087 37,748 43,602458 14,330439 84,296 3,697 0 0,000 27 614,819 14,640 17,271 65,944 75,140 9,196 245,680 43,601268 14,328176 70,208 2,503 0 0,000 28 53,593 6,707 3,464 70,335 73,999 3,664 11,384 43,601224 14,327932 72,296 4,708 0 0,000 30 1197,258 29,433 27,612 77,106 81,710 4,604 529,388 43,601203 14,340177 79,448 2,262 0 0,000 31 263,561 12,508 6,698 72,113 82,776 10,663 125,121 43,60142 14,340141 78,332 2,106 0 0,000 32 80,799 5,015 5,999 83,224 85,052 1,828 32,117 43,601424 14,344276 87,485 31,177		2642,470	37,508	31,280	64,945	79,649	14,704	1148,928	43,603506	14,344458		2,255		3,460
27 614,819 14,640 17,271 65,944 75,140 9,196 245,680 43,602658 14,328176 70,208 2,503 0 0,000 28 53,593 6,707 3,464 70,335 73,999 3,664 11,384 43,601024 14,327932 72,296 4,708 0 0,000 30 1197,258 29,433 27,612 77,106 81,710 4,604 529,388 43,601203 14,340177 79,448 2,262 0 0,000 31 263,561 12,508 6,698 72,113 82,776 10,663 125,121 43,601442 14,340141 78,332 2,106 0 0,000 32 80,799 5,015 5,909 83,224 85,052 1,828 32,117 43,601289 14,340141 78,332 2,106 0 0,000 33 81,482 4,296 7,765 55,849 59,179 3,330 25,647 43,601289 14,342276 57,485 3,177	25	649,167	16,719	18,883	69,854	76,590		258,162	43,602767	14,342667			0	0,000
28 53,593 6,707 3,464 70,335 73,999 3,664 11,384 43,601224 14,327932 72,296 4,708 0 0,000 29 50,556 4,271 4,483 83,593 85,823 2,230 15,340 43,601060 14,329383 84,894 3,296 0 0,000 30 1197,258 29,433 27,612 77,106 81,710 4,604 529,388 43,601203 14,340177 79,448 2,262 0 0,000 31 263,561 12,508 6,698 72,113 82,776 10,663 125,121 43,601442 14,340141 78,332 2,106 0 0,000 32 80,799 5,015 5,909 83,224 85,052 1,828 32,117 43,601289 14,342276 57,485 3,177 0 0,000 34 30,515 10,735 11,479 81,813 85,424 3,611 108,895 43,600968 14,3434389 83,624 2,760	—	139,554	8,304	·	82,442	85,529	3,087	37,748	43,602458	14,330439			0	0,000
29 50,556 4,271 4,483 83,593 85,823 2,230 15,340 43,601060 14,329383 84,894 3,296 0 0,000 30 1197,258 29,433 27,612 77,106 81,710 4,604 529,388 43,601203 14,340177 79,448 2,262 0 0,000 31 263,561 12,508 6,698 72,113 82,776 10,663 125,121 43,601442 14,340141 78,332 2,106 0 0,000 32 80,799 5,015 5,909 83,224 85,052 1,828 32,117 43,600944 14,340450 84,149 2,516 0 0,000 34 300,515 10,735 11,479 81,813 85,424 3,611 10,8895 43,600968 14,343439 83,624 2,760 0 0,000 35 1756,324 39,486 33,445 72,846 85,626 12,780 73,368 43,599618 14,322818 82,786 2,290 </td <td>-</td> <td>·</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>-</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>	-	·						-						
30		·		·			1			•				
31 263,561 12,508 6,698 72,113 82,776 10,663 125,121 43,601442 14,340141 78,332 2,106 0 0,000 32 80,799 5,015 5,909 83,224 85,052 1,828 32,117 43,600944 14,340450 84,149 2,516 0 0,000 34 300,515 10,735 11,479 81,813 85,424 3,611 10,8895 43,600968 14,342439 83,624 2,760 0 0,000 35 1756,324 39,486 33,445 72,846 85,626 12,780 753,968 43,599615 14,342181 82,786 2,290 0 0,000 36 725,739 16,668 14,850 61,609 68,606 6,997 313,117 43,599618 14,322875 63,416 3,320 0 0,000 37 253,374 13,877 8,240 61,098 65,024 3,926 73,468 43,599618 14,322875 63,416 3,320	-			·										
32 80,799 5,015 5,909 83,224 85,052 1,828 32,117 43,600944 14,340450 84,149 2,516 0 0,000 33 81,482 4,296 7,765 55,849 59,179 3,330 25,647 43,601289 14,342276 57,485 3,177 0 0,000 34 300,515 10,735 11,479 81,813 85,424 3,611 108,895 43,600968 14,343439 83,624 2,760 0 0,000 35 1756,324 39,486 33,445 72,846 85,626 12,780 753,968 43,599615 14,342181 82,786 2,290 0 0,000 36 725,739 16,668 14,850 61,098 65,024 3.926 73,468 43,599615 14,342181 82,786 2,290 0 0,000 37 253,374 13,877 8,240 61,098 65,024 3.926 73,468 43,599615 14,342181 62,330 2,318		·					1							
33 81,482 4,296 7,765 55,849 59,179 3,330 25,647 43,601289 14,342276 57,485 3,177 0 0,000 34 300,515 10,735 11,479 81,813 85,424 3,611 108,895 43,600968 14,343439 83,624 2,760 0 0,000 35 1756,324 39,486 33,445 72,846 85,626 12,780 753,968 43,599615 14,342181 82,786 2,290 0 0,000 36 725,739 16,668 14,850 61,609 68,606 6,997 313,117 43,599201 14,332814 65,330 2,318 0 0,000 37 253,374 13,877 8,240 61,098 65,024 3,926 73,468 43,599618 14,328875 63,416 3,320 0 0,000 38 42,818 14,031 8,516 78,032 83,954 5,922 125,078 43,60140 14,33708 81,333 3,016 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>1</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>							1							
34 300,515 10,735 11,479 81,813 85,424 3,611 108,895 43,600968 14,343439 83,624 2,760 0 0,000 35 1756,324 39,486 33,445 72,846 85,626 12,780 753,968 43,599615 14,342181 82,786 2,290 0 0,000 36 725,739 16,668 14,850 61,609 68,606 6,997 313,117 43,599201 14,332814 65,330 2,318 0 0,000 37 253,374 13,877 8,240 61,098 65,024 3,926 73,468 43,599618 14,328875 63,416 3,320 0 0,000 38 428,818 14,031 8,516 78,032 83,954 5,922 125,078 43,601140 14,342377 81,830 3,016 0 0,000 39 216,502 8,998 6,606 81,046 85,148 4,102 72,345 43,601140 14,342434 81,613 1,664		,		·		,								
35 1756,324 39,486 33,445 72,846 85,626 12,780 753,968 43,599615 14,342181 82,786 2,290 0 0,000 36 725,739 16,668 14,850 61,609 68,606 6,997 313,117 43,599201 14,332814 65,330 2,318 0 0,000 37 253,374 13,877 8,240 61,098 65,024 3,926 73,468 43,599618 14,328875 63,416 3,320 0 0,000 38 428,818 14,031 8,516 78,032 83,954 5,922 125,078 43,601140 14,337708 81,830 3,016 0 0,000 40 602,974 18,739 12,103 79,099 84,083 4,944 362,456 43,599864 14,342434 81,613 1,664 0 0,000 41 165,174 9,352 9,888 81,878 84,030 2,430 63,999 43,599755 14,342434 81,613 1,664						· ·				,				
36 725,739 16,668 14,850 61,609 68,606 6,997 313,117 43,599201 14,332814 65,330 2,318 0 0,000 37 253,374 13,877 8,240 61,098 65,024 3,926 73,468 43,599618 14,328875 63,416 3,320 0 0,000 38 428,818 14,031 8,516 78,032 83,954 5,922 125,078 43,601140 14,337708 81,830 3,016 0 0,000 39 216,502 8,998 6,606 81,046 85,148 4,102 72,345 43,600945 14,340877 83,591 2,778 0 0,000 40 602,974 18,739 12,103 79,099 84,083 4,984 362,456 43,599864 14,342434 81,613 1,664 0 0,000 41 165,174 9,352 9,888 81,878 84,308 2,430 63,999 43,599757 14,337358 78,688 1,856	—													
37 253,374 13,877 8,240 61,098 65,024 3,926 73,468 43,599618 14,328875 63,416 3,320 0 0,000 38 428,818 14,031 8,516 78,032 83,954 5,922 125,078 43,601140 14,337708 81,830 3,016 0 0,000 39 216,502 8,998 6,606 81,046 85,148 4,102 72,345 43,600945 14,340877 83,591 2,778 0 0,000 40 602,974 18,739 12,103 79,099 84,083 4,984 362,456 43,599864 14,342434 81,613 1,664 0 0,000 41 165,174 9,352 9,888 81,878 84,308 2,430 63,999 43,599757 14,342349 83,165 2,581 0 0,000 42 2874,473 29,880 33,211 75,197 81,814 6,617 1548,702 43,599757 14,337358 78,688 1,856 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>														
38 428,818 14,031 8,516 78,032 83,954 5,922 125,078 43,601140 14,337708 81,830 3,016 0 0,000 39 216,502 8,998 6,606 81,046 85,148 4,102 72,345 43,600945 14,340877 83,591 2,778 0 0,000 40 602,974 18,739 12,103 79,099 84,083 4,984 362,456 43,599864 14,342434 81,613 1,664 0 0,000 41 165,174 9,352 9,888 81,878 84,308 2,430 63,999 43,599745 14,342349 83,165 2,581 0 0,000 42 2874,473 29,880 33,211 75,197 81,814 6,617 1548,702 43,599757 14,337358 78,688 1,856 11 6,099 43 1683,385 27,507 32,180 74,763 79,839 5,076 611,505 43,599831 14,329375 84,109 3,19						-								
39 216,502 8,998 6,606 81,046 85,148 4,102 72,345 43,600945 14,340877 83,591 2,778 0 0,000 40 602,974 18,739 12,103 79,099 84,083 4,984 362,456 43,599864 14,342434 81,613 1,664 0 0,000 41 165,174 9,352 9,888 81,878 84,308 2,430 63,999 43,599745 14,342349 83,165 2,581 0 0,000 42 2874,473 29,880 33,211 75,197 81,814 6,617 1548,702 43,599757 14,337358 78,688 1,856 11 6,099 43 1683,385 27,507 32,180 74,763 79,839 5,076 611,505 43,599831 14,333010 77,094 2,753 0 0,000 45 181,926 8,789 7,764 82,388 85,626 3,238 61,836 43,5998273 14,326436 84,160 2,942				·	·					-				,
40 602,974 18,739 12,103 79,099 84,083 4,984 362,456 43,599864 14,342434 81,613 1,664 0 0,000 41 165,174 9,352 9,888 81,878 84,308 2,430 63,999 43,599745 14,342349 83,165 2,581 0 0,000 42 2874,473 29,880 33,211 75,197 81,814 6,617 1548,702 43,599757 14,337358 78,688 1,856 11 6,099 43 1683,385 27,507 32,180 74,763 79,839 5,076 611,505 43,599503 14,333010 77,094 2,753 0 0,000 44 61,910 5,442 4,702 83,006 85,059 2,053 19,392 43,599503 14,329375 84,109 3,193 0 0,000 45 181,926 8,789 7,764 82,388 85,626 3,238 61,836 43,598273 14,326436 84,160 2,942 </td <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>														
41 165,174 9,352 9,888 81,878 84,308 2,430 63,999 43,599745 14,342349 83,165 2,581 0 0,000 42 2874,473 29,880 33,211 75,197 81,814 6,617 1548,702 43,599757 14,337358 78,688 1,856 11 6,099 43 1683,385 27,507 32,180 74,763 79,839 5,076 611,505 43,599831 14,333010 77,094 2,753 0 0,000 44 61,910 5,442 4,702 83,006 85,059 2,053 19,392 43,599503 14,329375 84,109 3,193 0 0,000 45 181,926 8,789 7,764 82,388 85,626 3,238 61,836 43,598273 14,326436 84,160 2,942 0 0,000 46 84,728 5,211 6,659 82,390 85,189 2,799 23,163 43,598192 14,330257 83,700 3,658 0 0,000 47 600,719 19,485 15,190 77														
42 2874,473 29,880 33,211 75,197 81,814 6,617 1548,702 43,599757 14,337358 78,688 1,856 11 6,099 43 1683,385 27,507 32,180 74,763 79,839 5,076 611,505 43,599831 14,333010 77,094 2,753 0 0,000 44 61,910 5,442 4,702 83,006 85,059 2,053 19,392 43,599503 14,329375 84,109 3,193 0 0,000 45 181,926 8,789 7,764 82,388 85,626 3,238 61,836 43,598273 14,326436 84,160 2,942 0 0,000 46 84,728 5,211 6,659 82,390 85,189 2,799 23,163 43,598192 14,330257 83,700 3,658 0 0,000 47 600,719 19,485 15,190 77,017 80,822 3,805 212,897 43,598493 14,341731 83,248 2,783 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>														
43 1683,385 27,507 32,180 74,763 79,839 5,076 611,505 43,599831 14,333010 77,094 2,753 0 0,000 44 61,910 5,442 4,702 83,006 85,059 2,053 19,392 43,599503 14,329375 84,109 3,193 0 0,000 45 181,926 8,789 7,764 82,388 85,626 3,238 61,836 43,598273 14,326436 84,160 2,942 0 0,000 46 84,728 5,211 6,659 82,390 85,189 2,799 23,163 43,598192 14,330257 83,700 3,658 0 0,000 47 600,719 19,485 15,190 77,017 80,822 3,805 212,897 43,598526 14,339095 78,969 2,822 0 0,000 48 192,834 10,448 10,164 81,674 84,733 3,059 69,289 43,598493 14,341731 83,248 2,783				·						·				
44 61,910 5,442 4,702 83,006 85,059 2,053 19,392 43,599503 14,329375 84,109 3,193 0 0,000 45 181,926 8,789 7,764 82,388 85,626 3,238 61,836 43,598273 14,326436 84,160 2,942 0 0,000 46 84,728 5,211 6,659 82,390 85,189 2,799 23,163 43,598192 14,330257 83,700 3,658 0 0,000 47 600,719 19,485 15,190 77,017 80,822 3,805 212,897 43,598526 14,339095 78,969 2,822 0 0,000 48 192,834 10,448 10,164 81,674 84,733 3,059 69,289 43,598493 14,341731 83,248 2,783 0 0,000 49 193,943 7,453 8,136 82,854 84,983 2,129 71,722 43,598383 14,342914 83,973 2,573														
45 181,926 8,789 7,764 82,388 85,626 3,238 61,836 43,598273 14,326436 84,160 2,942 0 0,000 46 84,728 5,211 6,659 82,390 85,189 2,799 23,163 43,598192 14,330257 83,700 3,658 0 0,000 47 600,719 19,485 15,190 77,017 80,822 3,805 212,897 43,598526 14,339095 78,969 2,822 0 0,000 48 192,834 10,448 10,164 81,674 84,733 3,059 69,289 43,598493 14,341731 83,248 2,783 0 0,000 49 193,943 7,453 8,136 82,854 84,983 2,129 71,722 43,598383 14,342914 83,973 2,573 0 0,000 50 93,305 6,591 6,738 82,935 85,324 2,389 28,701 43,598452 14,343714 84,286 3,251														
46 84,728 5,211 6,659 82,390 85,189 2,799 23,163 43,598192 14,330257 83,700 3,658 0 0,000 47 600,719 19,485 15,190 77,017 80,822 3,805 212,897 43,598526 14,330257 83,700 3,658 0 0,000 48 192,834 10,448 10,164 81,674 84,733 3,059 69,289 43,598493 14,341731 83,248 2,783 0 0,000 49 193,943 7,453 8,136 82,854 84,983 2,129 71,722 43,598383 14,342914 83,973 2,573 0 0,000 50 93,305 6,591 6,738 82,935 85,324 2,389 28,701 43,598452 14,343714 84,286 3,251 0 0,000 51 40,945 5,913 2,263 83,137 85,466 2,329 10,722 43,596912 14,339010 84,321 3,819 0 0,000 52 1180,360 17,770 17,328 78,609<														
47 600,719 19,485 15,190 77,017 80,822 3,805 212,897 43,598526 14,339095 78,969 2,822 0 0,000 48 192,834 10,448 10,164 81,674 84,733 3,059 69,289 43,598493 14,341731 83,248 2,783 0 0,000 49 193,943 7,453 8,136 82,854 84,983 2,129 71,722 43,598383 14,342914 83,973 2,573 0 0,000 50 93,305 6,591 6,738 82,935 85,324 2,389 28,701 43,598452 14,343714 84,286 3,251 0 0,000 51 40,945 5,913 2,263 83,137 85,466 2,329 10,722 43,596912 14,339010 84,321 3,819 0 0,000 52 1180,360 17,770 17,328 78,609 84,837 6,228 363,799 43,596827 14,338073 81,947 2,973 0 0,000														
48 192,834 10,448 10,164 81,674 84,733 3,059 69,289 43,598493 14,341731 83,248 2,783 0 0,000 49 193,943 7,453 8,136 82,854 84,983 2,129 71,722 43,598383 14,342914 83,973 2,573 0 0,000 50 93,305 6,591 6,738 82,935 85,324 2,389 28,701 43,598452 14,343714 84,286 3,251 0 0,000 51 40,945 5,913 2,263 83,137 85,466 2,329 10,722 43,596912 14,339010 84,321 3,819 0 0,000 52 1180,360 17,770 17,328 78,609 84,837 6,228 363,799 43,596827 14,338073 81,947 2,973 0 0,000														
49 193,943 7,453 8,136 82,854 84,983 2,129 71,722 43,598383 14,342914 83,973 2,573 0 0,000 50 93,305 6,591 6,738 82,935 85,324 2,389 28,701 43,598452 14,343714 84,286 3,251 0 0,000 51 40,945 5,913 2,263 83,137 85,466 2,329 10,722 43,596912 14,339010 84,321 3,819 0 0,000 52 1180,360 17,770 17,328 78,609 84,837 6,228 363,799 43,596827 14,338073 81,947 2,973 0 0,000														
50 93,305 6,591 6,738 82,935 85,324 2,389 28,701 43,598452 14,343714 84,286 3,251 0 0,000 51 40,945 5,913 2,263 83,137 85,466 2,329 10,722 43,596912 14,339010 84,321 3,819 0 0,000 52 1180,360 17,770 17,328 78,609 84,837 6,228 363,799 43,596827 14,338073 81,947 2,973 0 0,000				·										
51 40,945 5,913 2,263 83,137 85,466 2,329 10,722 43,596912 14,339010 84,321 3,819 0 0,000 52 1180,360 17,770 17,328 78,609 84,837 6,228 363,799 43,596827 14,338073 81,947 2,973 0 0,000				·										
52 1180,360 17,770 17,328 78,609 84,837 6,228 363,799 43,596827 14,338073 81,947 2,973 0 0,000		·		·										
. 331 I3D/M/I 1/D3DI D3331 X3/MXI X6//HI //I/I //4-UU31 //4-3U6/USI 1//2/////61 V5/611 2/H//I DI D/M/I	53	136,494	12,656	6,855	83,798	86,270	2,472	43,995	43,596827	14,334776	85,161	3,103		0,000

Tab. 3-LXVIII – Continuo.

Banco	S (m ²)	L NS (m)	L EW (m)	P minima (m)	P massima (m)	H (m)	V (m ³)	Centro geometrico (LAT)	Centro geometrico (LONG)	Centro geometrico profondità (m)	Ruvidità (m ⁻¹)	n. vacuoli	Volume totale vacuoli (m³)
54	528,802	18,352	13,187	76,860	81,605	4,745	217,932	43,596700	14,332114	79,302	2,426	0	0,000
55	559,952	13,956	12,904	74,350	84,534	10,184	286,529	43,596434	14,332025	80,635	1,954	0	0,000
56	74,313	9,952	4,227	82,653	85,355	2,702	15,901	43,596845	14,331728	84,050	4,673	0	0,000
57	158,541	11,074	9,328	84,174	86,270	2,096	57,860	43,598276	14,334166	85,390	2,740	0	0,000
58	865,504	22,655	21,107	77,244	81,120	3,876	390,443	43,598248	14,335790	79,197	2,217	0	0,000
59	290,417	11,149	10,331	82,090	86,606	4,516	97,675	43,597116	14,344193	84,455	2,973	0	0,000
60	696,445	21,354	23,524	81,709	86,270	4,561	292,593	43,597058	14,339878	84,013	2,380	0	0,000
61	702,713	11,340	17,476	63,820	70,276	6,456	246,053	43,598013	14,331170	67,294	2,835	0	0,000
62	208,535	8,159	11,789	74,139	80,006	5,867	54,430	43,598029	14,332360	77,647	3,741	0	0,000
63	643,792	16,402	14,602	78,329	83,543	5,214	278,571	43,597126	14,329614	81,356	2,311	0	0,000
64	67,698	5,162	5,726	82,665	84,485	1,820	22,819	43,598437	14,342515	83,614	2,967	0	0,000
65	104,531	6,630	4,156	75,488	78,973	3,485	27,939	43,597257	14,334157	77,379	3,528	0	0,000
66	3225,058	32,854	29,344	59,880	81,899	22,019	2143,252	43,595978	14,327262	74,481	1,505	0	0,000
67	165,027	9,037	7,053	78,512	83,448	4,936	57,160	43,595788	14,332211	81,025	2,887	0	0,000
68	345,579	12,814	11,848	75,266	80,085	4,819	93,027	43,595885	14,332406	77,339	3,856	0	0,000
69	1387,354	16,861	14,230	76,013	83,514	7,501	713,788	43,595931	14,336974	80,464	1,946	0	0,000
70	93,092	7,465	5,580	83,169	85,515	2,346	30,768	43,594352	14,343255	84,340	3,026	0	0,000
71	2509,981	27,861	26,895	73,263	84,495	11,232	1492,320	43,593941	14,341490	81,522	1,682	0	0,000
72	1473,313	20,369	25,057	79,140	85,626	6,486	669,383	43,594310	14,338666	83,252	1,919	0	0,000
73	301,516	20,369	6,376	82,373	85,626	3,253	124,188	43,594305	14,338399	84,157	2,428	0	0,000
74	704,488	34,103	9,598	77,905	82,938	5,033	278,302	43,595565	14,337113	80,667	2,500	0	0,000
75	964,212	16,687	22,238	76,792	83,626	6,834	394,874	43,595567	14,338077	80,862	2,442	0	0,000
76	2231,440	33,757	17,405	78,659	86,270	7,611	1030,433	43,595631	14,340090	82,215	2,052	0	0,000
77	814,004	15,367	12,552	81,714	86,914	5,200	296,244	43,594201	14,329583	84,374	3,027	0	0,000
78	100,754	6,972	8,018	76,054	79,603	3,549	25,757	43,595289	14,332820	77,964	3,912	0	0,000
79	171,747	11,171	4,294	80,992	85,082	4,090	74,331	43,595342	14,329422	83,112	2,311	0	0,000
80	661,328	16,651	19,944	77,353	83,149	5,796	332,794	43,595400	14,336335	80,351	1,987	0	0,000
81	285,166	13,477	5,130	76,002	83,507	7,505	172,574	43,594938	14,336372	79,758	1,652	0	0,000
82	461,774	16,651	9,429	77,353	83,149	5,796	251,737	43,595399	14,336356	80,345	1,834	0	0,000
83	225,879	15,690	9,982	75,589	80,167	4,578	87,417	43,595358	14,337410	77,980	2,584	0	0,000
84	341,926	14,085	12,612	77,773	80,908	3,135	127,626	43,594413	14,332190	79,340	2,679	0	0,000


Tab. 3-LXIX - Variabili acustiche relative ai banchi di pesce individuati durante il campionamento condotto nel settembre 2018. In evidenza i banchi entro 300 m dalla piattaforma.

Banco	Sv medio (dB re 1 m ⁻¹)	n. campioni	n. ping	n. beam	Sv minimo (dB re 1 m ⁻¹)	Sv massimo (dB re 1 m ⁻¹)	Densità (kg/m³)
1	-22,235	1051	17	373	-34,969	-8,539	59,770
2	-27,877	93	3	44	-34,810	-22,777	16,303
3	-22,498	1217	15	514	-34,777	-9,777	56,257
4	-17,648	1358	17	668	-34,744	-5,210	171,881
5	-21,634	1192	9	359	-34,861	-8,751	68,645
6	-28,857	112	6	64	-34,777	-22,744	13,011
7	-20,815	162	6	102	-34,810	-10,310	82,896
8	-27,063	979	15	318	-34,982	-15,599	19,664
9	-32,526	19	2	12	-34,777	-29,744	5,590
10	-29,971	1669	22	680	-34,969	-17,433	10,067
11	-22,225	5483	43	1496	-34,969	-8,397	59,906
12	-27,174	751	12	341	-34,969	-18,325	19,171
13	-29,186	81	8	68	-34,777	-23,777	12,062
14	-28,169	62	3	28	-34,810	-22,277	15,244
15	-22,918	1196	9	197	-34,971	-12,002	51,077
16	-25,261	100	5	57	-34,842	-17,342	29,778
17	-27,801	5275	38	1575	-34,982	-14,361	16,592
18	-22,410	77	3	39	-34,810	-15,310	57,412
19	-24,696	83	6	40	-34,788	-15,251	33,917
20	-29,539	59	4	32	-34,982	-23,982	11,121
21	-21,590	53	2	19	-34,969	-13,969	69,340

Tab. 3-LXIX – Continuo.

23	Banco	Sv medio (dB re 1 m ⁻¹)	n. campioni	n. ping	n. beam	Sv minimo (dB re 1 m ⁻¹)	Sv massimo (dB re 1 m ⁻¹)	Densità (kg/m³)
24	22	-20,880	805	11	267	-34,825	-7,251	81,657
25	23		206	5	103	-34,842	-18,310	16,820
20	24	-26,461	3931	30	1093	-34,969	-12,969	22,591
27	25	-26,956	783	16	262	-34,842	-15,842	20,156
28	26	-28,082	137	9	89	-34,842	-20,842	15,551
29	27	-25,310	864	17	265	-34,969	-15,361	29,442
30	28	-30,683	40	3	28	-34,933	-25,433	8,544
31	29	-31,117	50	4	28	-34,842	-27,310	7,732
31	30	-26,170	1672	23	641	-34,810	-16,574	24,154
33	31	-32,501	323	5	50	-34,971	-30,595	5,622
34	32	-23,829	100	5	55	-34,810	-15,277	41,406
34	33	-27,112	109	7	51	-34,978	-19,022	19,443
36	34	-28,749	351	10	164	-34,810	-20,744	13,339
36		-25,427		34	1013	-34,810	-13,810	28,661
37	36			13				19,624
38								12,484
39		,						12,467
40								26,213
41 -25,369 233 10 109 -34,744 -16,710 2 42 -24,776 5723 33 1415 -34,969 -12,933 3 43 -28,359 2256 31 978 -34,969 -18,504 1 44 -21,994 74 5 49 -34,810 -14,810 6 45 -29,108 200 7 89 -34,810 -14,810 6 46 -32,273 76 6 45 -34,777 -28,244 47 -27,868 657 13 297 -34,810 -16,310 3 48 -24,121 226 9 125 -34,810 -16,310 3 49 -25,712 157 7 72 -34,744 -17,244 2 50 -23,805 94 6 57 -34,810 -15,310 3 51 -28,170 42 2 23 <t-< td=""><td></td><td>,</td><td></td><td></td><td></td><td>,</td><td></td><td>20,879</td></t-<>		,				,		20,879
42 -24,776 5723 33 1415 -34,969 -12,933 3 43 -28,359 2256 31 978 -34,969 -18,500 1 44 -21,994 74 5 49 -34,810 -14,810 6 45 -29,108 200 7 89 -34,810 -22,244 1 46 -32,273 76 6 45 -34,777 -28,244 47 -27,868 657 13 297 -34,810 -18,643 1 48 -24,121 226 9 125 -34,810 -16,310 3 49 -25,712 157 7 72 -34,780 -15,310 4 50 -23,805 94 6 57 -34,810 -15,310 4 51 -28,170 42 2 23 -34,810 -15,310 4 51 -28,170 42 2 23 -3								29.049
43 -28,359 2256 31 978 34,969 -18,504 14 -44 -21,994 74 5 49 -34,810 -14,810 -64 45 -29,108 200 7 89 34,810 -22,244 1 46 -32,273 76 6 45 -34,777 -28,244 47 -27,868 657 13 297 -34,810 -16,310 3 48 -24,121 226 9 125 34,810 -16,310 3 48 -24,121 226 9 125 34,810 -16,310 3 34,777 -22 34,744 -17,244 2 2 34,744 -17,244 2 2 23 34,310 -23,777 1 5 25 -30,505 1074 16 387 34,777 -23,677 1 5 23,0505 1074 16 387 34,777 -23,677 1 5 24,077 -23,677 1 34,842 -13,10 1								33,298
44 -21,994 74 5 49 -34,810 -14,810 6 45 -29,108 200 7 89 -34,810 -22,244 46 -32,273 76 6 45 -34,777 -28,244 47 -27,868 657 13 297 -34,810 -18,643 1 48 -24,121 226 9 125 -34,810 -16,310 3 49 -25,712 157 7 72 -34,744 -17,244 2 50 -23,805 94 6 57 -34,810 -15,310 4 51 -28,170 42 2 23 -34,310 -12,377 1 52 -30,505 1074 16 387 -34,842 -21,310 1 54 -25,006 800 14 321 -34,842 -15,177 25,677 55 -28,739 728 11 130 34,879								14,591
45 -29,108 200 7 89 -34,810 -22,244 1 46 -32,273 76 6 45 -34,777 -28,244 47 -27,868 657 13 297 -34,810 -16,310 3 48 -24,121 226 9 125 -34,810 -16,310 3 49 -25,712 157 7 72 -34,744 -17,244 2 50 -23,805 94 6 57 -34,810 -15,310 4 51 -28,170 42 2 23 -34,310 -23,777 1 52 -30,505 1074 16 387 -34,777 -23,677 53 -29,449 156 7 86 54,842 -21,310 1 54 -25,006 800 14 321 34,842 -15,177 3 55 -28,739 728 11 130 -34,977								63,180
46		,						12,281
47 -27,868 657 13 297 -34,810 -18,643 1 48 -24,121 226 9 125 -34,810 -16,310 3 50 -23,805 94 6 57 -34,810 -15,310 4 50 -23,805 94 6 57 -34,810 -15,310 4 51 -28,170 42 2 23 -34,310 -23,777 1 52 -30,505 1074 16 387 -34,777 -23,677 53 -29,449 156 7 86 -34,842 -21,310 1 54 -25,006 800 14 321 -34,842 -21,310 1 55 -28,739 728 11 130 -34,842 -15,177 3 56 -29,815 61 4 40 -34,810 -23,310 1 57 -25,287 180 8 92 -34,842 -17,310 2 28,680 339								5,925
48 -24,121 226 9 125 -34,810 -16,310 3 49 -25,712 157 7 72 -34,744 -17,244 2 50 -23,805 94 6 57 -34,810 -15,310 4 51 -28,170 42 2 23 -34,310 -23,777 1 52 -30,505 1074 16 387 -34,777 -23,677 53 -29,449 156 7 86 -34,842 -21,310 1 54 -25,006 800 14 321 -34,842 -21,310 1 54 -25,006 800 14 321 -34,842 -21,310 1 55 -28,739 728 11 130 -34,977 -21,863 1 57 -22,287 180 8 92 -34,842 -17,310 2 2 28,73 18 18 14 40 -							- ,	16,338
49 -25,712 157 7 72 34,744 -17,244 2 50 -23,805 94 6 57 -34,810 -15,310 42 2 23 -34,310 -23,777 1 52 -30,505 1074 16 387 -34,777 -23,677 53 -29,449 156 7 86 -34,842 -21,310 1 54 -25,006 800 14 321 -34,842 -21,310 1 55 -28,739 728 11 130 -34,842 -15,177 3 56 -29,815 61 4 40 -34,810 -23,310 1 57 -25,287 180 8 92 -34,842 -17,310 2 58 -21,981 1281 18 476 -34,842 -16,777 1 59 -28,680 339 9 145 -34,847 -16,277 1								38,721
50 -23,805 94 6 57 -34,810 -15,310 44 51 -28,170 42 2 23 -34,310 -23,777 1 52 -30,505 1074 16 387 -34,777 -23,677 53 -29,449 156 7 86 -34,842 -21,310 1 54 -25,006 800 14 321 -34,842 -15,177 3 55 -28,739 728 11 130 -34,977 -21,863 1 56 -29,815 61 4 40 -34,810 -23,310 1 57 -25,287 180 8 92 -34,842 -17,310 2 58 -21,981 1281 18 476 34,969 9,004 6 59 -28,680 339 9 145 -34,875 -19,277 1 60 -26,497 1048 22 406 <t< td=""><td>_</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>	_							
51 -28,170 42 2 23 -34,310 -23,777 1 52 -30,505 1074 16 387 -34,777 -23,677 53 -29,449 156 7 86 -34,842 -21,310 1 54 -25,006 800 14 321 -34,842 -15,177 3 55 -28,739 728 11 130 -34,977 -21,863 1 56 -29,815 61 4 40 -34,810 -23,310 1 57 -25,287 180 8 92 -34,812 -17,310 2 58 -21,981 1281 18 476 -34,969 -9,004 6 59 -28,680 339 9 145 -34,875 -19,277 1 60 -26,497 1048 22 406 -34,842 -16,777 2 61 -29,189 891 16 277		,				,	,	26,840
52 -30,505 1074 16 387 -34,777 -23,677 53 -29,449 156 7 86 -34,842 -21,310 1 54 -25,006 800 14 321 -34,842 -15,177 3 55 -28,739 728 11 130 -34,977 -21,863 1 56 -29,815 61 4 40 -34,810 -23,310 1 57 -25,287 180 8 92 -34,842 -17,310 2 58 -21,981 1281 18 476 -34,969 -9,004 6 59 -28,680 339 9 145 -34,842 -16,777 2 60 -26,497 1048 22 406 -34,842 -16,777 2 61 -29,189 891 16 277 -34,825 -20,099 1 62 -30,355 131 10 74								41,641
53 -29,449 156 7 86 -34,842 -21,310 1 54 -25,006 800 14 321 -34,842 -15,177 3 55 -28,739 728 11 130 -34,977 -21,863 1 56 -29,815 61 4 40 -34,810 -23,310 1 57 -25,287 180 8 92 -34,842 -17,310 2 58 -21,981 1281 18 476 -34,899 -9,004 6 59 -28,680 339 9 145 -34,875 -19,277 1 60 -26,497 1048 22 406 -34,825 -19,277 1 61 -29,189 891 16 277 -34,825 -20,099 1 61 -29,189 891 16 277 -34,825 -20,099 1 62 -30,355 131 10								15,240
54 -25,006 800 14 321 -34,842 -15,177 3 55 -28,739 728 11 130 -34,977 -21,863 1 56 -29,815 61 4 40 -34,810 -23,310 1 57 -25,287 180 8 92 -34,842 -17,310 2 58 -21,981 1281 18 476 -34,969 -9,004 6 59 -28,680 339 9 145 -34,875 -19,277 1 60 -26,497 1048 22 406 -34,842 -16,777 2 61 -29,189 891 16 277 -34,825 -20,099 1 61 -29,189 891 16 277 -34,825 -20,099 1 62 -30,355 131 10 74 -34,744 -25,143 -23,310 64 -31,197 70 5		,				,		8,903
55 -28,739 728 11 130 -34,977 -21,863 1 56 -29,815 61 4 40 -34,810 -23,310 1 57 -25,287 180 8 92 -34,842 -17,310 2 58 -21,981 1281 18 476 -34,969 -9,004 6 59 -28,680 339 9 145 -34,875 -19,277 1 60 -26,497 1048 22 406 -34,842 -16,777 2 61 -29,189 891 16 277 -34,825 -20,099 1 62 -30,355 131 10 74 -34,744 -25,143 63 -30,245 973 14 265 -34,907 -25,310 64 -31,197 70 5 42 -34,277 -28,277 65 -27,232 70 3 29 -34,810 -20,210 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>11,352</td>								11,352
56 -29,815 61 4 40 -34,810 -23,310 1 57 -25,287 180 8 92 -34,842 -17,310 2 58 -21,981 1281 18 476 -34,969 -9,004 6 59 -28,680 339 9 145 -34,875 -19,277 1 60 -26,497 1048 22 406 -34,842 -16,777 2 61 -29,189 891 16 277 -34,825 -20,099 1 62 -30,355 131 10 74 -34,744 -25,143 63 -30,245 973 14 265 -34,907 -25,310 64 -31,197 70 5 42 -34,277 -28,277 65 -27,232 70 3 29 -34,810 -20,210 1 66 -29,174 6265 24 832 -34,971 -20,342 </td <td></td> <td>,</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>31,581</td>		,						31,581
57 -25,287 180 8 92 -34,842 -17,310 2 58 -21,981 1281 18 476 -34,969 -9,004 6 59 -28,680 339 9 145 -34,875 -19,277 1 60 -26,497 1048 22 406 -34,842 -16,777 2 61 -29,189 891 16 277 -34,825 -20,099 1 62 -30,355 131 10 74 -34,744 -25,143 63 -30,245 973 14 265 -34,907 -25,310 64 -31,197 70 5 42 -34,277 -28,277 65 -27,232 70 3 29 -34,810 -20,210 1 66 -29,174 6265 24 832 -34,971 -20,342 1 67 -21,830 176 6 67 -34,842 -11,744<		·				,		13,370
58 -21,981 1281 18 476 -34,969 -9,004 6 59 -28,680 339 9 145 -34,875 -19,277 1 60 -26,497 1048 22 406 -34,842 -16,777 2 61 -29,189 891 16 277 -34,825 -20,099 1 62 -30,355 131 10 74 -34,744 -25,143 63 -30,245 973 14 265 -34,907 -25,310 64 -31,197 70 5 42 -34,277 -28,277 65 -27,232 70 3 29 -34,810 -20,210 1 66 -29,174 6265 24 832 -34,971 -20,342 1 67 -21,830 176 6 67 -34,842 -11,744 6 68 -29,969 234 10 142 -34,842 -22,34								10,435
59 -28,680 339 9 145 -34,875 -19,277 1 60 -26,497 1048 22 406 -34,842 -16,777 2 61 -29,189 891 16 277 -34,825 -20,099 1 62 -30,355 131 10 74 -34,744 -25,143 63 -30,245 973 14 265 -34,907 -25,310 64 -31,197 70 5 42 -34,277 -28,277 65 -27,232 70 3 29 -34,810 -20,210 1 66 -29,174 6265 24 832 -34,971 -20,342 1 67 -21,830 176 6 67 -34,842 -11,744 6 68 -29,969 234 10 142 -34,842 -22,342 1 69 -30,694 1072 11 189 -34,971 -25,4								29,602
60 -26,497 1048 22 406 -34,842 -16,777 2 61 -29,189 891 16 277 -34,825 -20,099 1 62 -30,355 131 10 74 -34,744 -25,143 63 -30,245 973 14 265 -34,907 -25,310 64 -31,197 70 5 42 -34,277 -28,277 65 -27,232 70 3 29 -34,810 -20,210 1 66 -29,174 6265 24 832 -34,971 -20,342 1 67 -21,830 176 6 67 -34,842 -11,744 6 68 -29,969 234 10 142 -34,842 -12,439 69 -30,694 1072 11 189 -34,971 -25,439 70 -27,899 124 6 59 -34,810 -20,777 1								63,377
61 -29,189 891 16 277 -34,825 -20,099 1 62 -30,355 131 10 74 -34,744 -25,143 63 -30,245 973 14 265 -34,907 -25,310 64 -31,197 70 5 42 -34,277 -28,277 65 -27,232 70 3 29 -34,810 -20,210 1 66 -29,174 6265 24 832 -34,971 -20,342 1 67 -21,830 176 6 67 -34,842 -11,744 6 68 -29,969 234 10 142 -34,842 -22,342 1 69 -30,694 1072 11 189 -34,810 -20,777 1 71 -27,899 124 6 59 -34,810 -20,777 1 71 -27,058 5042 26 950 -34,971 -13,03		·		-				13,552
62 -30,355 131 10 74 -34,744 -25,143 63 -30,245 973 14 265 -34,907 -25,310 64 -31,197 70 5 42 -34,277 -28,277 65 -27,232 70 3 29 -34,810 -20,210 1 66 -29,174 6265 24 832 -34,971 -20,342 1 67 -21,830 176 6 67 -34,842 -11,744 6 68 -29,969 234 10 142 -34,842 -11,744 6 68 -29,969 234 10 142 -34,842 -22,342 1 69 -30,694 1072 11 189 -34,911 -25,439 70 -27,899 124 6 59 -34,810 -20,777 1 71 -27,058 5042 26 950 -34,971 -13,033		-,						22,402
63 -30,245 973 14 265 -34,907 -25,310 64 -31,197 70 5 42 -34,277 -28,277 65 -27,232 70 3 29 -34,810 -20,210 1 66 -29,174 6265 24 832 -34,971 -20,342 1 67 -21,830 176 6 67 -34,842 -11,744 6 68 -29,969 234 10 142 -34,842 -12,342 1 69 -30,694 1072 11 189 -34,971 -25,439 70 -27,899 124 6 59 -34,810 -20,777 1 71 -27,058 5042 26 950 -34,971 -13,033 1 72 -22,137 1583 24 449 -34,810 -9,744 6 73 -19,748 444 6 170 -34,810 -8,244								12,054
64 -31,197 70 5 42 -34,277 -28,277 65 -27,232 70 3 29 -34,810 -20,210 1 66 -29,174 6265 24 832 -34,971 -20,342 1 67 -21,830 176 6 67 -34,842 -11,744 6 68 -29,969 234 10 142 -34,842 -22,342 1 69 -30,694 1072 11 189 -34,971 -25,439 70 -27,899 124 6 59 -34,810 -20,777 1 71 -27,058 5042 26 950 -34,971 -13,033 1 72 -22,137 1583 24 449 -34,810 -9,744 6 73 -19,748 444 6 170 -34,810 -8,244 10 74 -20,471 788 8 341 -34,677		·				- ,-	,	9,216
65 -27,232 70 3 29 -34,810 -20,210 1 66 -29,174 6265 24 832 -34,971 -20,342 1 67 -21,830 176 6 67 -34,842 -11,744 6 68 -29,969 234 10 142 -34,842 -22,342 1 69 -30,694 1072 11 189 -34,971 -25,439 70 -27,899 124 6 59 -34,810 -20,777 1 71 -27,058 5042 26 950 -34,971 -13,033 1 72 -22,137 1583 24 449 -34,810 -9,744 6 73 -19,748 444 6 170 -34,810 -8,244 10 74 -20,471 788 8 341 -34,677 -9,108 8 75 -28,000 1233 19 348								9,451
66 -29,174 6265 24 832 -34,971 -20,342 1 67 -21,830 176 6 67 -34,842 -11,744 6 68 -29,969 234 10 142 -34,842 -22,342 1 69 -30,694 1072 11 189 -34,971 -25,439 70 -27,899 124 6 59 -34,810 -20,777 1 71 -27,058 5042 26 950 -34,971 -13,033 1 72 -22,137 1583 24 449 -34,810 -9,744 6 73 -19,748 444 6 170 -34,810 -8,244 10 74 -20,471 788 8 341 -34,677 -9,108 8 75 -28,000 1233 19 348 -34,969 -18,608 1 76 -22,721 3167 15 775								7,592
67 -21,830 176 6 67 -34,842 -11,744 6 68 -29,969 234 10 142 -34,842 -22,342 1 69 -30,694 1072 11 189 -34,971 -25,439 70 -27,899 124 6 59 -34,810 -20,777 1 71 -27,058 5042 26 950 -34,971 -13,033 1 72 -22,137 1583 24 449 -34,810 -9,744 6 73 -19,748 444 6 170 -34,810 -8,244 10 74 -20,471 788 8 341 -34,677 -9,108 8 75 -28,000 1233 19 348 -34,969 -18,608 1 76 -22,721 3167 15 775 -34,842 -10,108 5 77 -23,774 583 12 224				· ·	=/			18,915
68 -29,969 234 10 142 -34,842 -22,342 1 69 -30,694 1072 11 189 -34,971 -25,439 70 -27,899 124 6 59 -34,810 -20,777 1 71 -27,058 5042 26 950 -34,971 -13,033 1 72 -22,137 1583 24 449 -34,810 -9,744 6 73 -19,748 444 6 170 -34,810 -8,244 10 74 -20,471 788 8 341 -34,677 -9,108 8 75 -28,000 1233 19 348 -34,969 -18,608 1 76 -22,721 3167 15 775 -34,842 -10,108 5 77 -23,774 583 12 224 -34,875 -13,277 4 78 -31,126 94 8 59						- ,		12,095
69 -30,694 1072 11 189 -34,971 -25,439 70 -27,899 124 6 59 -34,810 -20,777 1 71 -27,058 5042 26 950 -34,971 -13,033 1 72 -22,137 1583 24 449 -34,810 -9,744 6 73 -19,748 444 6 170 -34,810 -8,244 10 74 -20,471 788 8 341 -34,677 -9,108 8 75 -28,000 1233 19 348 -34,969 -18,608 1 76 -22,721 3167 15 775 -34,842 -10,108 5 77 -23,774 583 12 224 -34,875 -13,277 4 78 -31,126 94 8 59 -34,842 -25,777 -23,686 243 4 71 -34,971 -18,439 <td< td=""><td></td><td>,</td><td></td><td></td><td></td><td>,</td><td></td><td>65,621</td></td<>		,				,		65,621
70 -27,899 124 6 59 -34,810 -20,777 1 71 -27,058 5042 26 950 -34,971 -13,033 1 72 -22,137 1583 24 449 -34,810 -9,744 6 73 -19,748 444 6 170 -34,810 -8,244 10 74 -20,471 788 8 341 -34,677 -9,108 8 75 -28,000 1233 19 348 -34,969 -18,608 1 76 -22,721 3167 15 775 -34,842 -10,108 5 77 -23,774 583 12 224 -34,875 -13,277 4 78 -31,126 94 8 59 -34,842 -25,777 79 -23,686 243 4 71 -34,971 -18,439 4 80 -20,539 975 17 295								10,071
71 -27,058 5042 26 950 -34,971 -13,033 1 72 -22,137 1583 24 449 -34,810 -9,744 6 73 -19,748 444 6 170 -34,810 -8,244 10 74 -20,471 788 8 341 -34,677 -9,108 8 75 -28,000 1233 19 348 -34,969 -18,608 1 76 -22,721 3167 15 775 -34,842 -10,108 5 77 -23,774 583 12 224 -34,875 -13,277 4 78 -31,126 94 8 59 -34,842 -25,777 -23,686 243 4 71 -34,971 -18,439 4 80 -20,539 975 17 295 -34,810 -8,177 8 81 -29,163 358 4 50 -34,981 -25,328		·						8,523
72 -22,137 1583 24 449 -34,810 -9,744 6 73 -19,748 444 6 170 -34,810 -8,244 10 74 -20,471 788 8 341 -34,677 -9,108 8 75 -28,000 1233 19 348 -34,969 -18,608 1 76 -22,721 3167 15 775 -34,842 -10,108 5 77 -23,774 583 12 224 -34,875 -13,277 4 78 -31,126 94 8 59 -34,842 -25,777 79 -23,686 243 4 71 -34,971 -18,439 4 80 -20,539 975 17 295 -34,810 -8,177 8 81 -29,163 358 4 50 -34,981 -25,328 1 82 -19,564 731 8 195		·						16,221
73 -19,748 444 6 170 -34,810 -8,244 10 74 -20,471 788 8 341 -34,677 -9,108 8 75 -28,000 1233 19 348 -34,969 -18,608 1 76 -22,721 3167 15 775 -34,842 -10,108 5 77 -23,774 583 12 224 -34,875 -13,277 4 78 -31,126 94 8 59 -34,842 -25,777 79 -23,686 243 4 71 -34,971 -18,439 4 80 -20,539 975 17 295 -34,810 -8,177 8 81 -29,163 358 4 50 -34,981 -25,328 1 82 -19,564 731 8 195 -34,810 -8,177 11		·						19,688
74 -20,471 788 8 341 -34,677 -9,108 8 75 -28,000 1233 19 348 -34,969 -18,608 1 76 -22,721 3167 15 775 -34,842 -10,108 5 77 -23,774 583 12 224 -34,875 -13,277 4 78 -31,126 94 8 59 -34,842 -25,777 79 -23,686 243 4 71 -34,971 -18,439 4 80 -20,539 975 17 295 -34,810 -8,177 8 81 -29,163 358 4 50 -34,981 -25,328 1 82 -19,564 731 8 195 -34,810 -8,177 11		·		24		,		61,137
75 -28,000 1233 19 348 -34,969 -18,608 1 76 -22,721 3167 15 775 -34,842 -10,108 5 77 -23,774 583 12 224 -34,875 -13,277 4 78 -31,126 94 8 59 -34,842 -25,777 79 -23,686 243 4 71 -34,971 -18,439 4 80 -20,539 975 17 295 -34,810 -8,177 8 81 -29,163 358 4 50 -34,981 -25,328 1 82 -19,564 731 8 195 -34,810 -8,177 11	73	-19,748	444	6	170		-8,244	105,971
76 -22,721 3167 15 775 -34,842 -10,108 5 77 -23,774 583 12 224 -34,875 -13,277 4 78 -31,126 94 8 59 -34,842 -25,777 79 -23,686 243 4 71 -34,971 -18,439 4 80 -20,539 975 17 295 -34,810 -8,177 8 81 -29,163 358 4 50 -34,981 -25,328 1 82 -19,564 731 8 195 -34,810 -8,177 11	74	-20,471		8	341		-9,108	89,727
77 -23,774 583 12 224 -34,875 -13,277 4 78 -31,126 94 8 59 -34,842 -25,777 79 -23,686 243 4 71 -34,971 -18,439 4 80 -20,539 975 17 295 -34,810 -8,177 8 81 -29,163 358 4 50 -34,981 -25,328 1 82 -19,564 731 8 195 -34,810 -8,177 11			1233					15,849
78 -31,126 94 8 59 -34,842 -25,777 79 -23,686 243 4 71 -34,971 -18,439 4 80 -20,539 975 17 295 -34,810 -8,177 8 81 -29,163 358 4 50 -34,981 -25,328 1 82 -19,564 731 8 195 -34,810 -8,177 11		-22,721	3167	15	775	-34,842	-10,108	53,445
79 -23,686 243 4 71 -34,971 -18,439 4 80 -20,539 975 17 295 -34,810 -8,177 8 81 -29,163 358 4 50 -34,981 -25,328 1 82 -19,564 731 8 195 -34,810 -8,177 11		-23,774	583	12		-34,875	-13,277	41,936
79 -23,686 243 4 71 -34,971 -18,439 4 80 -20,539 975 17 295 -34,810 -8,177 8 81 -29,163 358 4 50 -34,981 -25,328 1 82 -19,564 731 8 195 -34,810 -8,177 11	78		94	8	59	-34,842		7,716
80 -20,539 975 17 295 -34,810 -8,177 8 81 -29,163 358 4 50 -34,981 -25,328 1 82 -19,564 731 8 195 -34,810 -8,177 11	79	·	243					42,798
81 -29,163 358 4 50 -34,981 -25,328 1 82 -19,564 731 8 195 -34,810 -8,177 11	80	·	975	17	295			88,321
82 -19,564 731 8 195 -34,810 -8,177 11		·						12,127
		·						110,554
	83	-26,656	242	8	117	-34,777	-16,710	21,598
		·				,		15,986

 $[*]Sv = Volume\ backscattering\ strength$

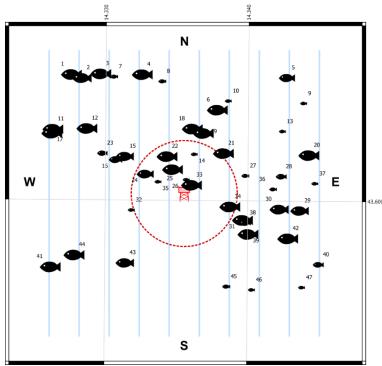


Fig. 3.60 –Box plot di alcune caratteristiche metriche ed acustiche delle aggregazioni rilevate nel settembre 2018. Sono mostrati il primo, la mediana, il terzo quartile e la presenza di eventuali *outliers*.

Nell'**ottobre** 2018 sono stati osservati 47 banchi di pesce (fig. 3.61) concentrati in gran parte nella zona centrale e settentrionale dell'area esaminata. Otto aggregazioni erano all'interno del raggio di 300 m da Bonaccia NW (Tab. 3-LXX), di cui la più vicina alla piattaforma (n. 33) rilevata ad appena 68,7 m di distanza; la più lontana (n. 1) è stata rilevata a 942,5 m.

Il banco n. 21 è stato il più rilevante per quanto riguarda l'estensione areale, la volumetria e la lunghezza NS (3157,847 m², 1902,170 m³ e 46,340 m rispettivamente; Tab. 3-LXXI). La maggiore lunghezza EW (24,294 m) è stata invece misurata per il n. 3. Le profondità alle quali sono state sondate le aggregazioni sono oscillate tra 55,116 m (banco n. 36) e 85,323 m (banco n. 35).

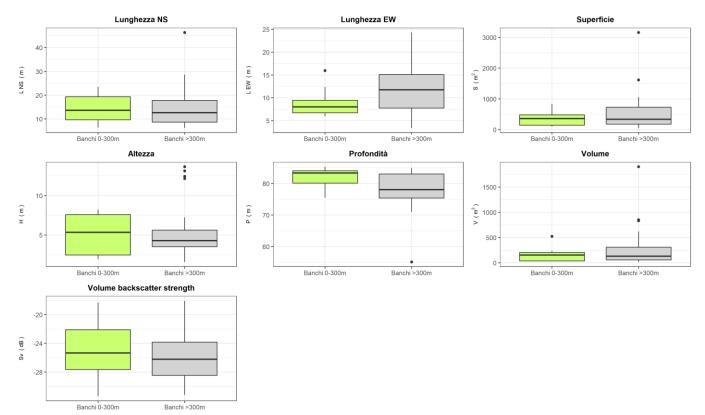
Le caratteristiche metriche dei banchi ricadenti all'interno del raggio di 300 m da Bonaccia NW e di quelli all'esterno di tale raggio sono risultate comparabili (fig. 3.62). Le variabili acustiche sono riportate in Tab. 3-LXXII.

Fig. 3.61 - Schema planare delle posizioni delle aggregazioni di pesce individuate durante il campionamento condotto nell'ottobre 2018. La visualizzazione graduata dei banchi ne evidenzia le differenze volumetriche.

Tab. 3-LXX - Distanza (m) da Bonaccia dei banchi di pesce individuati nell'ottobre 2018. In evidenza il banco rilevato entro 300 m da Bonaccia. In evidenza i banchi entro 300 m dalla piattaforma.

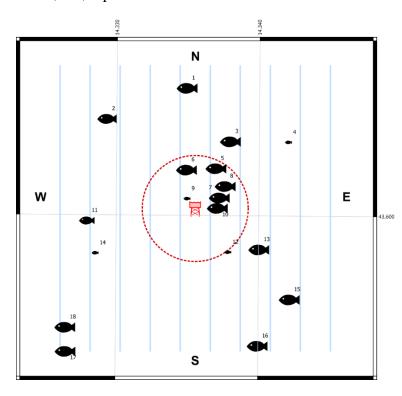
Banco	Distanza da Bonaccia NW
1	942,5
3	888,4
	840,2
4	728,0
5	878,8
6	517,2
7	785,6
8	659,6
9	845,3
10	585,6
11	840,0
12	675,8
13	655,0
14	237,6
15	409,6
16	446,3
17	835,3
18	380,0
19	367,0
20	734,3
21	321,2
22	245,4
23	529,6
24	259,4

Banco	Distanza da Bonaccia NW
25	165,3
26	89,2
27	354,3
28	550,7
29	651,0
30	535,2
31	351,2
32	319,8
33	68,7
34	258,5
35	176,1
36	494,7
37	732,8
38	369,9
39	415,6
40	846,1
41	864,8
42	627,7
43	512,6
44	714,4
45	563,9
46	650,5
47	837,0


Tab. 3-LXXI - Caratteristiche metriche dei banchi di pesce individuati nell'ottobre 2018. S = superficie, L = lunghezza, P = profondita, H = altezza, V = volume. In evidenza i banchi entro 300 m dalla piattaforma.

Banco	S (m ²)	L NS (m)	L EW (m)	P minima (m)	P massima (m)	H (m)	V (m ³)	Centro geometrico (LAT)	Centro geometrico (LONG)	Centro geometrico profondità (m)	Ruvidità (m ⁻¹)	n. vacuoli	Volume totale vacuoli (m³)
1	924,896	18,274	22,834	74,893	79,461	4,568	395,749	43,606486	14,327478	77,110	2,320	0	1
2	266,650	7,824	12,999	82,158	84,912	2,754	140,701	43,606310	14,328203	83,535	1,895	0	2
3	893,107	15,083	24,294	75,349	80,268	4,919	485,891	43,606529	14,329538	77,783	1,820	2	3
4	635,925	18,719	16,989	76,410	80,727	4,317	273,807	43,606505	14,332445	78,659	2,323	2	4
5	281,774	10,269	11,777	81,216	84,872	3,656	115,577	43,606387	14,342581	83,013	2,438	0	5
6	652,624	14,028	18,197	72,581	78,678	6,097	302,579	43,604727	14,337726	75,666	2,157	0	6
7	191,863	9,222	8,310	79,379	85,626	6,247	56,825	43,606377	14,330450	83,693	3,270	0	7
8	159,904	10,100	8,557	69,271	72,773	3,502	57,369	43,606156	14,333829	71,174	2,787	0	8
9	109,732	6,275	5,000	81,725	84,339	2,614	32,369	43,605081	14,343745	82,996	3,322	0	9
10	126,373	8,195	5,981	83,020	85,926	2,906	32,130	43,605176	14,338462	84,352	3,919	0	10
11	928,446	18,862	20,527	73,163	77,148	3,985	376,130	43,603691	14,326206	75,159	2,347	0	11
12	704,988	15,693	17,639	71,293	77,897	6,604	220,149	43,603741	14,328591	75,724	2,983	0	12
13	59,584	9,067	3,412	80,619	83,872	3,253	17,521	43,603644	14,342273	82,183	3,401	0	13
14	116,948	8,660	8,297	83,491	85,434	1,943	30,667	43,602449	14,336105	84,669	3,813	0	14
15	339,330	9,039	12,645	81,025	85,626	4,601	130,413	43,602328	14,331260	83,568	2,602	0	15
16	332,824	10,719	9,579	77,620	81,755	4,135	96,933	43,602153	14,330602	79,890	3,375	0	16
17	567,947	20,079	12,336	73,280	76,814	3,534	193,830	43,603486	14,326136	75,103	2,930	0	17
18	613,626	19,875	11,762	75,821	81,116	5,295	276,777	43,603755	14,335983	78,788	2,217	0	18
19	747,411	17,896	18,310	71,720	76,972	5,252	323,270	43,603534	14,336753	74,449	2,312	1	19
20	816,790	28,692	14,060	68,030	73,443	5,413	409,223	43,602449	14,344170	71,032	1,974	1	20
21	3157,847	46,340	23,082	66,218	78,657	12,439	1902,570	43,602517	14,338177	73,095	1,652	33	21
22	469,653	18,522	12,335	80,422	85,626	5,204	189,137	43,602340	14,334225	83,500	2,483	0	22
23	294,705	7,327	5,077	69,438	73,726	4,288	75,435	43,602475	14,329670	71,088	3,223	0	23
24	247,155	9,975	6,193	75,052	82,968	7,916	122,975	43,601437	14,332699	78,740	2,010	0	24
25	468,192	17,077	6,870	71,443	79,682	8,239	238,943	43,601677	14,334617	75,513	1,959	0	25
26	149,452	10,277	7,745	82,345	84,915	2,570	39,568	43,601152	14,335551	83,807	3,777	0	26
27	158,753	8,028	8,297	73,552	77,528	3,976	56,713	43,601370	14,339702	75,615	2,799	0	27
28	249,769	9,553	12,509	76,145	79,825	3,680	78,632	43,601349	14,342226	77,934	3,176	0	28
29	333,708	11,008	8,190	75,914	81,787	5,873	133,331	43,599619	14,343545	79,094	2,503	1	29
30	385,679	16,355	8,228	81,099	84,983	3,884	137,750	43,599683	14,342110	83,538	2,800	0	30
31	819,723	16,659	10,789	70,426	83,545	13,119	831,002	43,599124	14,339555	77,053	0,986	2	31
32	77,594	8,252	4,222	84,038	85,618	1,580	19,445	43,599589	14,331721	84,879	3,990	0	32
33	836,191	21,924	15,967	76,221	83,686	7,465	523,197	43,600890	14,335956	80,584	1,598	2	33
34	518,409	23,472	8,491	80,082	85,565	5,483	192,846	43,599801	14,338655	83,116	2,688		34
35	98,474	6,373	5,922	84,040	86,240	2,200	31,983	43,601034	14,333575	85,323	3,079		35
36	161,494	7,892	12,190	52,834	58,346	5,512	54,694	43,600695	14,341654	55,116	2,853		36
37	56,767	6,365	3,572	83,899	85,544	1,645	16,020	43,600996	14,344578	84,832	3,543		37
38	213,457	12,646	4,938	75,029	82,260	7,231	84,083	43,598981	14,339721	77,913	2,539		38
39	1614,089	24,068	11,669	65,555	79,210	13,655	619,561	43,598407	14,339945	71,984	2,605		39
40	194,655	15,289	4,301	76,666	80,912	4,246	78,925	43,596875	14,344872	78,804	2,466		40
41	436,856	15,095	14,689	77,680	83,059	5,379	190,062	43,596675	14,326097	80,332	2,239		41
42	835,864	17,668	15,475	74,301	80,043	5,742	315,734	43,598200	14,342736	77,660	2,647		42
43	438,732	17,847	11,765	71,056	74,342	3,286	132,282	43,596903	14,331317	72,459	3,081	0	43
44	1052,173	14,196	20,629	71,355	83,514	12,159	852,500	43,597291	14,327756	78,050	1,234		44
45	206,055	10,663	10,159	82,549	86,278	3,729	58,101	43,595723	14,338423	84,705	3,547		45
46	101,830	7,483	7,270	77,064	79,170	2,106	30,268	43,595563	14,340189	78,306	3,364		46
47	110,695	8,297	5,975	83,957	85,613	1,656	35,799	43,595700	14,343704	84,876	3,092		47

Tab. 3-LXXII - Variabili acustiche relative ai banchi di pesce individuati durante il campionamento condotto nell'ottobre 2018. In evidenza i banchi entro 300 m dalla piattaforma.


Banco	Sv medio (dB re 1 m ⁻¹)	n. campioni	n. ping	n. beam	Sv minimo (dB re 1 m ⁻¹)	Sv massimo (dB re 1 m ⁻¹)	Densità (kg/m³)
1	-27,522	1231	19	498	-34,969	-16,933	17,692
2	-19,585	388	10	149	-34,777	-8,777	110,017
3	-22,792	1480	21	435	-34,969	-10,539	52,581
4	-26,026	877	14	330	-34,969	-16,504	24,971
5	-28,204	357	10	139	-34,777	-21,177	15,121
6	-25,487	1020	17	324	-34,842	-16,342	28,265
7	-29,713	149	7	75	-34,810	-21,777	10,683
8	-27,518	193	7	85	-34,897	-18,861	17,711
9	-31,142	85	4	43	-34,744	-27,677	7,688
10	-30,464	92	6	49	-34,842	-24,277	8,986
11	-24,114	1116	17	468	-34,861	-12,788	38,776
12	-30,237	613	15	258	-34,933	-23,325	9,469
13	-29,133	56	1	21	-34,710	-24,710	12,209
14	-22,192	119	9	100	-34,810	-13,810	60,360
15	-25,851	490	13	180	-34,810	-13,744	25,998
16	-30,385	311	10	135	-34,710	-23,143	9,153
17	-27,548	670	11	306	-34,969	-18,433	17,587
18	-20,222	907	10	280	-34,969	-7,504	95,014
19	-28,114	1065	16	324	-34,969	-18,897	15,440
20	-22,044	1710	12	491	-34,982	-10,021	62,456
21	-22,045	7815	24	1287	-34,982	-8,751	62,440
22	-24,810	696	12	255	-34,810	-12,744	33,035
23	-25,183	72	3	34	-34,521	-18,021	30,317
24	-31,152	327	5	48	-34,920	-27,686	7,671
25	-31,337	607	6	84	-34,776	-26,802	7,351
26	-18,328	110	6	95	-34,810	-8,310	146,953
27	-26,580	200	8	104	-34,810	-19,310	21,976
28	-27,065	218	10	106	-34,842	-18,277	19,654
29	-28,669	526	8	148	-34,969	-21,039	13,585
30	-25,261	517	8	203	-34,777	-15,244	29,782
31	-23,873	1839	7	152	-34,920	-16,246	40,989
32	-26,193	71	4	52	-34,810	-20,310	24,027
33	-21,821	1776	15	448	-34,969	-9,108	65,747
34	-26,461	740	8	301	-34,875	-14,842	22,591
35	-25,871	97	5	48	-34,842	-19,310	25,879
36	-20,095	164	9	77	-34,902	-7,279	97,828
37	-21,828	46	3	33	-34,777	-13,310	65,652
38	-29,319	257	4	51	-34,879	-23,169	11,697
39	-29,121	2261	10	447	-34,982	-19,320	12,245
40	-24,039	418	5	114	-34,677	-13,074	39,457
41	-23,793	663	15	232	-34,810	-14,210	41,752
42	-27,197	1064	14	351	-34,969	-14,608	19,067
43	-26,399	497	12	264	-34,713	-12,638	22,912
44	-18,091	2109	16	257	-34,971	-4,971	155,218
45	-23,523	170	8	114	-34,875	-14,342	44,429
46	-30,401	103	6	58	-34,969	-23,433	9,118
47	-23,952	103	5	69	-34,777	-15,810	40,254

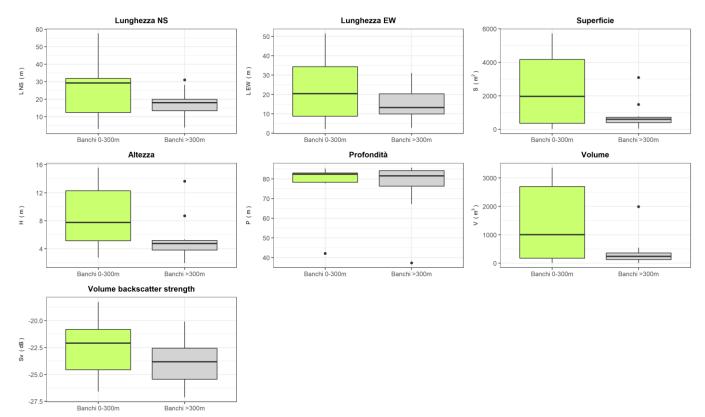
^{*}Sv = Volume backscattering strength

Fig. 3.62 –Box plot di alcune caratteristiche metriche ed acustiche delle aggregazioni rilevate nell'ottobre 2018. Sono mostrati il primo, la mediana, il terzo quartile e la presenza di eventuali *outliers*.

Durante il rilievo di **novembre** sono stati osservati 18 banchi di pesce (fig. 3.63), di cui 7 ad una distanza minore di 300 m da Bonaccia NW (Tab. 3-LXXIII). Il banco n. 9, posto ad appena 87,4 m dalla piattaforma, era il più vicino alla struttura, mentre il n. 17, rilevato a 1089,0 m, il più distante.

Fig. 3.63 - Schema planare delle posizioni delle aggregazione di pesce individuate nel novembre 2018. La visualizzazione graduata dei banchi ne evidenzia le differenze volumetriche.

Il banco n. 5 è risultato essere quello con maggior superficie (5718,650 m²) e maggior estensione NS (57,542 m; Tab. 3-LXXIV). L'aggregazione n. 8 è stata invece la più rilevante per volume (3360,658 m³) e la n. 7 per lunghezza EW (51,423 m). I banchi sono stati sondati tra 37,243 m (n. 4) e 85,649 m (n. 13). Le metriche dei banchi entro ed oltre i 300 m da Bonaccia NW sono apparse comparabili (fig. 3.64). Le variabili acustiche sono riportate in Tab. 3-LXXV.


Tab. 3-LXXIII - Distanza (m) da Bonaccia NW dei banchi di pesce individuati durante il campionamento di novembre 2018. In verde le aggregazioni rilevate entro 300 m dalla piattaforma.

Banco	Distanza da Bonaccia NW
1	695,4
2	726,0
3	435,1
4	645,8
5	262,7
6	237,5
7	148,1
8	212,9
9	87,4

Banco	Distanza da Bonaccia NW
10	118,5
11	624,0
12	293,9
13	416,1
14	623,7
15	727,4
16	839,5
17	1089,0
18	994,6

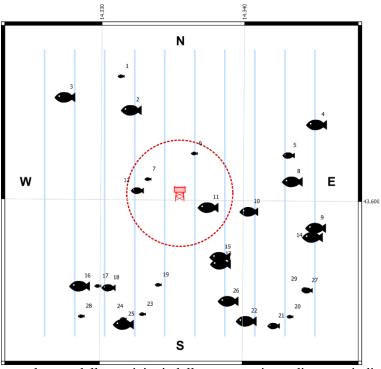
Tab. 3-LXXIV - Caratteristiche metriche dei banchi di pesce individuati nel novembre 2018. S = superficie, L = lunghezza, P = profondità, H = altezza, V = volume. In verde le aggregazioni rilevate entro 300 m dalla piattaforma.

Banco	S (m ²)	L NS (m)	L EW (m)	P minima (m)	P massima (m)	H (m)	V (m ³)	Centro geometrico (LAT)	Centro geometrico (LONG)	Centro geometrico profondità (m)	Ruvidità (m ⁻¹)	n. vacuoli	Volume totale vacuoli (m³)
1	648,040	18,066	21,393	79,889	84,842	4,953	240,450	43,606588	14,334815	82,234	2,695	0	0,000
2	485,645	18,708	8,737	83,400	85,531	2,131	139,350	43,604996	14,329217	84,725	3,348	0	0,000
3	597,710	21,175	19,166	82,080	86,492	4,412	245,912	43,603879	14,337882	84,141	2,431	0	0,000
4	100,151	3,727	11,075	35,829	39,014	3,185	27,033	43,603855	14,341927	37,243	3,598	0	0,000
5	5718,650	57,542	39,973	73,252	86,174	12,922	3272,517	43,602504	14,336884	82,389	1,747	24	10,411
6	1965,089	30,897	20,392	71,171	82,795	11,624	1005,373	43,602421	14,334818	77,693	1,815	4	1,069
7	4299,459	29,305	51,423	79,073	86,817	7,744	2121,699	43,601011	14,337135	83,506	2,013	11	4,616
8	4042,819	32,842	28,600	70,393	85,969	15,576	3360,658	43,601601	14,337540	78,775	1,203	13	7,832
9	25,623	3,020	2,230	40,752	43,484	2,732	6,124	43,600950	14,334844	42,058	4,184	0	0,000
10	648,154	16,041	13,445	78,375	85,444	7,069	325,646	43,600480	14,337000	82,440	1,990	0	0,000
11	337,285	17,925	6,172	65,055	69,696	4,641	111,581	43,599805	14,327848	67,101	3,001	0	0,000
12	69,337	8,811	4,099	83,515	86,723	3,208	19,451	43,598237	14,337737	85,191	3,565	0	0,000
13	1481,309	30,986	31,025	82,772	88,103	5,331	546,817	43,598384	14,339932	85,649	2,699	0	0,000
14	40,896	6,089	2,776	83,143	85,104	1,961	10,641	43,598153	14,328430	84,173	3,843	0	0,000
15	663,138	18,045	13,261	70,438	75,501	5,063	329,636	43,595848	14,342090	73,118	2,012	0	0,000
16	3090,819	28,236	28,057	72,424	86,072	13,648	1989,993	43,593475	14,339869	80,365	1,553	4	1,546
17	773,859	13,719	13,501	75,101	83,798	8,697	384,532	43,593135	14,326406	79,434	2,012	0	0,000
18	447,437	13,007	13,141	78,692	83,451	4,759	170,237	43,594366	14,326375	81,493	2,628	0	0,000

Fig. 3.64 – Box plot di alcune caratteristiche metriche ed acustiche delle aggregazioni rilevate nel novembre 2018. Sono mostrati il primo, la mediana, il terzo quartile e la presenza di eventuali *outliers*.

Tab. 3-LXXV - Variabili acustiche relative ai banchi di pesce individuati durante il campionamento condotto nel novembre 2018. In evidenza i banchi entro 300 m dalla piattaforma.

Banco	Sv medio (dB	n.	n. ping	n. beam	Sv minimo	Sv massimo	Densità
	re 1 m ⁻¹)	campioni	1 8		(dB re 1 m ⁻¹)	(dB re 1 m ⁻¹)	(kg/m ³)
1	-20,206	800	20	491	-34,805	-9,305	95,368
2	-22,341	304	8	198	-34,805	-11,305	58,334
3	-20,104	719	16	330	-34,870	-6,338	97,641
4	-23,850	163	10	84	-34,971	-13,400	41,209
5	-18,267	10730	39	2829	-34,838	-1,772	149,024
6	-22,100	3564	20	649	-34,999	-8,893	61,663
7	-19,957	6878	47	1877	-34,999	-4,172	101,003
8	-24,968	8453	25	655	-34,972	-13,664	31,859
9	-21,691	39	2	14	-34,811	-16,245	67,750
10	-24,150	933	13	195	-34,972	-15,664	38,457
11	-27,051	475	6	165	-34,999	-18,534	19,718
12	-26,600	63	3	37	-34,838	-21,305	21,877
13	-23,610	1714	28	701	-34,934	-7,902	43,549
14	-27,115	33	2	20	-34,772	-21,805	19,429
15	-24,621	1121	12	330	-34,999	-11,964	34,508
16	-22,793	4749	25	513	-34,994	-12,195	52,570
17	-23,830	621	10	97	-34,957	-17,017	41,395
18	-26,279	531	12	213	-34,805	-15,272	23,558


^{*}Sv = Volume backscattering strength

Infine, nel **dicembre** 2018 sono stati individuati 29 banchi (fig. 3.65), di cui 4 (n. 6, 7, 11 e 12) entro i 300 m dalla struttura (Tab. 3-LXXVI). Il più vicino è stato il n. 11, rilevato a 166,8 m da Bonaccia NW, il quale ha anche presentato una maggiore estensione NS

(35,917 m; Tab. 3-LXXVII). Tuttavia, il banco n. 26 è stato quello geometricamente più rilevante presentando i valori massimi di superficie occupata (4823,297 m²), volume (3981,028 m³) e lunghezza EW (38,301 m).

Le profondità alle quali sono state sondate le aggregazioni sono variate tra 50,456 m (n. 20) e 84,616 m (n. 1).

Le caratteristiche metriche dei banchi compresi entro i 300 m da Bonaccia NW e oltre tale distanza sono risultate assolutamente comparabili (fig. 366). Le variabili acustiche sono riportate in Tab. 3-LXXVIII.

Fig. 3.65 - Schema planare delle posizioni delle aggregazione di pesce individuate durante il campionamento condotto nel dicembre 2018. La visualizzazione graduata dei banchi ne evidenzia le differenze volumetriche.

Tab. 3-LXXVI - Distanza (m) da Bonaccia NW dei banchi di pesce individuati durante il campionamento di dicembre 2018. In verde le aggregazioni rilevate entro 300 m dalla piattaforma.

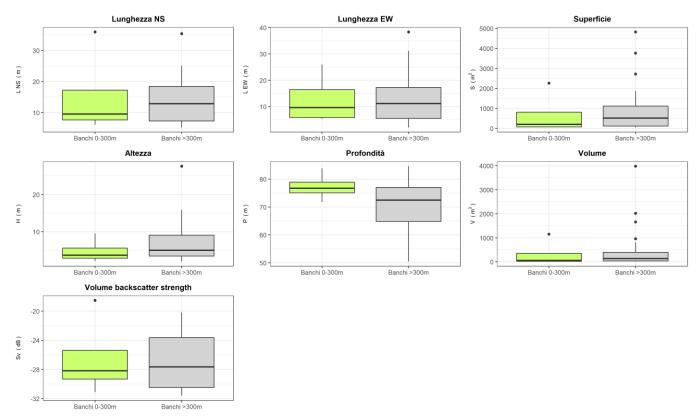
Banco	Distanza da
Danco	Bonaccia NW
1	753,7
2	558,7
3	860,5
4	864,3
5	647,9
6	246,9
7	210,3
8	634,2
9	783,7
10	394,3

Banco	Distanza da Bonaccia NW
11	166,8
12	250,2
13	447,2
14	780,2
15	411,5
16	769,3
17	697,7
18	664,8
19	523,1
20	921,4

Banco	Distanza da
Danco	Bonaccia NW
21	904,3
22	800,0
23	707,4
24	773,0
25	798,3
26	653,8
27	891,9
28	888,0
29	877,5

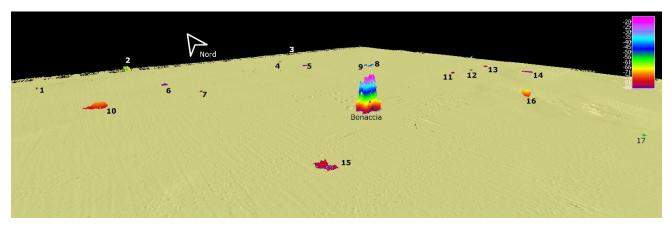
Tab. 3-LXXVII - Caratteristiche metriche dei banchi di pesce individuati nel dicembre 2018. S = superficie, L = lunghezza, P = profondita, H = altezza, V = volume. In verde le aggregazioni rilevate entro 300 m dalla piattaforma.

Banco	S (m ²)	L NS (m)	L EW (m)	P minima (m)	P massima (m)	H (m)	V (m ³)	Centro geometrico (LAT)	Centro geometrico (LONG)	Centro geometrico profondità (m)	Ruvidità (m ⁻¹)	n. vacuoli	Volume totale vacuoli (m³)
1	51,203	5,554	3,397	83,576	85,531	1,955	14,402	43,606374	14,331246	84,616	3,555	0	0,000
2	825,497	18,071	21,225	69,264	73,988	4,724	250,875	43,604671	14,332001	71,470	3,174	0	0,000
3	1862,594	18,691	31,161	72,165	82,105	9,940	811,153	43,605302	14,327345	76,999	2,296	1	1,295
4	1411,285	18,955	22,649	75,927	81,788	5,861	513,921	43,604000	14,345000	79,049	2,746	15	1,988
5	404,209	12,887	10,819	64,097	68,675	4,578	90,387	43,602420	14,343047	66,410	4,005	0	0,000
6	72,894	6,135	5,416	82,828	84,903	2,075	24,406	43,602477	14,336426	83,879	2,987	0	0,000
7	79,694	8,135	5,958	75,626	78,720	3,094	19,770	43,601154	14,333185	77,218	4,031	0	0,000
8	609,812	14,578	12,980	69,924	75,219	5,295	163,100	43,601095	14,343333	71,484	3,624	0	0,000
9	1248,427	23,425	17,303	72,626	83,962	11,336	959,729	43,598747	14,344999	78,532	1,301	0	0,000
10	515,688	13,989	13,597	70,656	75,339	4,683	135,409	43,599551	14,340304	73,615	3,540	0	0,000
11	2265,377	35,917	25,895	72,134	81,679	9,545	1149,361	43,599749	14,337437	76,176	1,956	8	3,498
12	324,078	11,035	13,276	69,810	74,060	4,250	93,938	43,600572	14,332458	71,822	3,450	0	0,000
13	3763,492	35,389	29,029	67,475	81,421	13,946	2021,167	43,596874	14,338342	74,371	1,834	21	13,937
14	886,526	18,437	11,207	67,629	75,407	7,778	281,223	43,598276	14,344779	72,722	3,112	0	0,000
15	2724,754	24,076	22,358	50,599	66,423	15,824	1660,251	43,597228	14,338292	59,319	1,636	24	10,126
16	671,868	14,256	16,040	70,960	78,152	7,192	341,819	43,595701	14,328476	74,257	1,966	1	0,277
17	56,952	5,279	2,129	78,601	81,103	2,502	16,217	43,595699	14,329730	79,830	3,206	0	0,000
18	232,732	9,874	8,792	75,190	79,023	3,833	102,307	43,595622	14,330492	77,180	2,275	0	0,000
19	89,066	6,843	5,475	76,008	79,164	3,156	28,608	43,595781	14,333968	77,678	3,113	0	0,000
20	144,446	7,327	6,681	48,302	52,126	3,824	37,081	43,594209	14,343219	50,456	3,895	0	0,000
21	193,851	8,161	5,501	60,643	68,158	7,515	90,879	43,593742	14,342090	64,828	2,133	0	0,000
22	1114,553	15,732	15,987	58,685	67,705	9,020	399,730	43,593982	14,340180	63,374	2,778	0	0,000
23	78,910	7,354	4,325	71,015	73,824	2,809	28,746	43,594282	14,332873	72,481	2,745	0	0,000
24	76,853	6,672	4,535	72,145	74,942	2,797	24,765	43,594029	14,331532	73,501	3,103	0	0,000
25	662,936	10,920	12,722	50,311	60,629	10,318	395,947	43,593768	14,331566	55,622	1,654	9	4,283
26	4823,297	25,016	38,301	44,881	72,484	27,603	3981,028	43,594992	14,338901	56,219	1,212	10	6,186
27	358,452	11,017	8,260	62,372	67,371	4,999	82,493	43,595559	14,344413	65,080	4,127	0	0,000
28	75,126	6,073	3,245	70,437	73,848	3,411	31,893	43,594154	14,328588	72,099	2,356	0	0,000
29	118,471	7,929	6,351	62,199	64,799	2,600	35,007	43,595625	14,344257	63,388	3,384	0	0,000


Tab. 3-LXXVIII - Variabili acustiche relative ai banchi di pesce individuati nel dicembre 2018. In verde le aggregazioni rilevate entro 300 m dalla piattaforma.

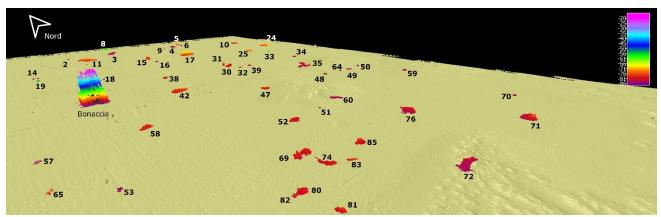
Banco	Sv medio (dB re 1 m ⁻¹)	n. campioni	n. ping	n. beam	Sv minimo (dB re 1 m ⁻¹)	Sv massimo (dB re 1 m ⁻¹)	Densità (kg/m³)
1	-26,290	46	3	26	-34,805	-19,272	23,495
2	-28,514	843	21	357	-34,999	-18,138	14,081
3	-26,724	2447	27	663	-34,999	-13,305	21,262
4	-23,174	5773	22	594	-34,991	-11,515	48,151
5	-31,291	214	10	132	-34,774	-23,690	7,428
6	-27,641	79	5	47	-34,805	-22,772	17,215
7	-31,123	63	5	40	-34,999	-26,964	7,721
8	-28,799	364	12	205	-34,977	-20,055	13,185
9	-27,942	1318	10	150	-34,972	-20,668	16,063
10	-30,565	405	13	207	-34,856	-22,783	8,779
11	-18,516	4149	25	866	-34,999	-2,320	140,734
12	-28,711	271	11	139	-34,838	-20,772	13,455
13	-20,181	7757	28	1126	-34,999	-3,594	95,910
14	-30,465	1043	11	339	-34,977	-24,171	8,985
15	-21,000	6880	22	848	-34,977	-5,937	79,430
16	-24,523	1253	15	288	-34,999	-12,320	35,297
17	-26,069	46	2	21	-34,638	-20,104	24,724
18	-27,659	369	8	127	-34,964	-20,393	17,145

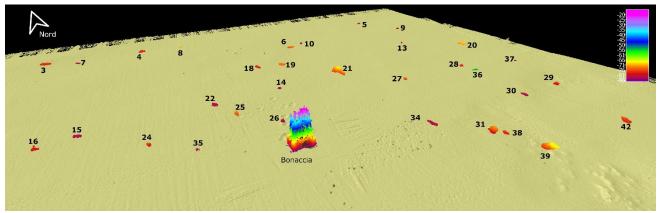
Tab. 3-LXXVIII – Continuo.

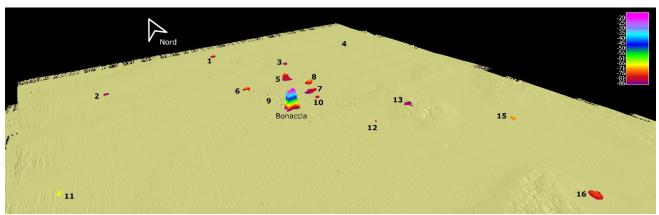

Banco	Sv medio (dB re 1 m ⁻¹)	n. campioni	n. ping	n. beam	Sv minimo (dB re 1 m ⁻¹)	Sv massimo (dB re 1 m ⁻¹)	Densità (kg/m³)
19	-22,461	102	5	51	-34,604	-12,569	56,746
20	-31,604	199	6	96	-34,976	-25,641	6,912
21	-30,518	233	4	37	-34,902	-26,966	8,875
22	-25,913	1789	17	407	-34,977	-12,133	25,630
23	-23,612	111	4	42	-34,671	-15,094	43,528
24	-28,563	87	4	41	-34,893	-21,856	13,922
25	-22,484	1475	12	214	-34,964	-12,709	56,446
26	-28,028	8935	28	735	-34,999	-16,870	15,746
27	-31,019	239	8	129	-34,774	-22,732	7,909
28	-23,583	119	3	36	-34,671	-16,555	43,825
29	-31,505	154	6	81	-34,973	-26,561	7,072

^{*}Sv = Volume backscattering strength

Fig. 3.66 –Box plot di alcune caratteristiche metriche ed acustiche delle aggregazioni rilevate nel dicembre 2018. Sono mostrati il primo, la mediana, il terzo quartile e la presenza di eventuali *outliers*.


Di seguito si riportano alcuni esempi di rappresentazioni tridimensionali delle aggregazioni di pesce rilevate nei campionamenti sopra descritti (figg. 3.67 - 3.72). Tali immagini permettono una percezione spazio-temporale dei singoli banchi nell'ambiente circostante la struttura.


Fig. 3.67 – Immagine tridimensionale di parte delle aggregazioni sondate nel luglio 2018. Al centro dell'immagine è visibile la struttura Bonaccia.


Fig. 3.68 – Vista da Nord Est della colonna d'acqua in cui stati individuati i banchi di pesce in agosto 2018. Al centro dell'immagine è visibile la struttura Bonaccia.

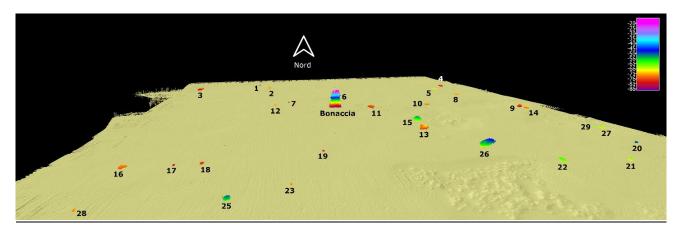

Fig. 3.69 – Vista da Sud Ovest di parte delle aggregazioni sondate nel mese di settembre 2018. Nell'immagine è visibile la struttura Bonaccia.

Fig. 3.70 – Immagine tridimensionale della colonna d'acqua in cui stati individuati i banchi di pesce durante il campionamento di ottobre 2018. Al centro dell'immagine è visibile la struttura Bonaccia.

Fig. 3.71 – Vista da Sud Ovest di parte dei banchi di pesce rilevati nel novembre 2018. Al centro dell'immagine è visibile la struttura Bonaccia.

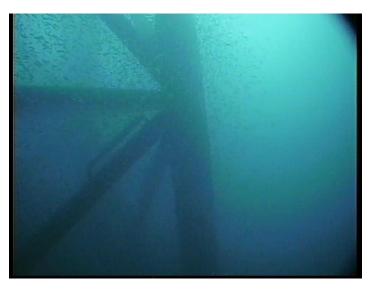


Fig. 3.72 – Vista tridimensionale da Sud della colonna d'acqua in cui stati individuati i banchi di pesce nel dicembre 2018. Nell'immagine è visibile la piattaforma Bonaccia.

3.7.3. INDAGINI VIDEO IN PROSSIMITÀ DELLA PIATTAFORMA

Durante il survey condotto nel **luglio 2018** non sono stati identificati tramite videocamera banchi di pesce in prossimità della piattaforma, mentre nei mesi di **agosto** e **ottobre** non è stato possibile realizzare registrazioni con la videocamera a causa della scarsa visibilità.

A **settembre** sono state individuate alcune aggregazioni consistenti di pesce pelagico (PA) tra i pali della piattaforma. Purtroppo la scarsa nitidezza delle immagini impedisce il riconoscimento visivo delle specie; la profondità alla quale i banchi sono stati rilevati va da 45 a 75 m (fig. 3.73).

Fig 3.73 – Pesce pelagico di vario tipo attorno alla piattaforma registrato nel rilievo di settembre 2018, Non è stato possibile riconoscere le specie a causa della scarsa nitidezza dell'immagine.

Nel mese di **novembre** è stata registrata la presenza di banchi di notevole entità composti da specie pelagiche PA come *T. trachurus* e *S. japonicus*. Le aggregazioni visibili in fig. 3.74 sono state sondate in prossimità del fondale ed erano costituite da specie nectobentoniche.

Fig 3.74 – Specie necto-bentoniche rilevate in prossimità della piattaforma e del fondo nel mese di novembre 2018.

Nel mese di **dicembre**, sempre in prossimità della piattaforma, sono state sondate poche aggregazioni e di ridotte dimensioni, da ricondursi principalmente a specie nectobentoniche PA come *T. minutus capelanus*. Gli esemplari sono stati sondati principalmente in prossimità del fondale (fig. 3.75).

Fig 3.75 – Pochi esemplari di *T. minutus capelanus* rilevati nel dicembre 2018 in prossimità del fondo a breve distanza da Bonaccia NW.

3.8. RILEVAMENTO DEL PASSAGGIO DI CETACEI E RETTILI MARINI

Nel pre-survey e nel periodo di produzione di Bonaccia NW (per la fase di installazione e perforazione dei pozzi consultare Leonori *et al.*, 2016) il primo avvistamento è avvenuto giorno 13 gennaio 2015 (Tab. 3-LXXIX). In quell'occasione, alle ore 13:41 è stata notata la presenza di due esemplari di *Tursiops truncatus* a circa 1 km di distanza verso NE dal punto stabilito per l'installazione di Bonaccia NW.

Tab. 3-LXXIX - Survey condotti durante i mesi di pre-survey (PS) e nei primi tre anni post lavori di installazione (PL) per l'avvistamento di cetacei e rettili marini nell'area in cui è installata la piattaforma Bonaccia NW.

		N. survey	N. avvist.
	Gennaio 2015	3	1
PS	Febbraio 2015	1	0
	Marzo 2015	2	0
DL	MMO (Leon	ori <i>et al</i> ., 2	2016)
	Gennaio 2016	3	0
	Febbraio 2016	3	0
	Marzo 2016	3	0
	Aprile 2016	3	0
	Maggio 2016	3	0
1° anno PL	Giugno 2016	3	0
1 anno PL	Luglio 2016	3	0
	Agosto 2016	3	0
	Settembre 2016	3	0
	Ottobre 2016	3	0
	Novembre 2016	3	0
	Dicembre 2016	3	0
	Gennaio 2017	3	0
	Febbraio 2017	3	0
	Marzo 2017	3	0
	Aprile 2017	3	0
	Maggio 2017	3	0
2° anno PL	Giugno 2017	3	0
Z anno PL	Luglio 2017	3	0
	Agosto 2017	3	0
	Settembre 2017	3	0
	Ottobre 2017	3	0
	Novembre 2017	3	0
	Dicembre 2017	3	0

		N. survey	N. avvist.
3° anno PL	Gennaio 2018	3	0
	Febbraio 2018	3	0
	Marzo 2018	3	0
	Aprile 2018	3	0
	Maggio 2018	3	0
	Giugno 2018	3	1
	Luglio 2018	3	3
	Agosto 2018	3	0
	Settembre 2018	3	0
	Ottobre 2018	3	0
	Novembre 2018	3	0
	Dicembre 2018	3	0

Dopo l'entrata in produzione della piattaforma sono avvenuti quattro avvistamenti nel corso del 3° anno di indagini. Il primo è successo il 6 giugno 2018 quando, alle ore 9:30, è stata notata la presenza di 4 esemplari di *T. truncatus* a circa 150 m di distanza da Bonaccia NW verso NW (fig. 3.76). Gli altri tre sono avvenuti a luglio: il giorno 12 a circa 500 m dalla piattaforma alle ore 11:30 è stata avvistata una dozzina di tursiopi a 500 m

dalla piattaforma verso Ovest, in avvicinamento alla struttura. Nello stesso giono è stata anche avvistata una tartaruga marina (*Caretta caretta*) a circa 500 verso SW da Bonaccia NW alle ore 12:00.

Il quarto avvistamento è stato il giorno 20 luglio alle ore 14:30. In quell'occasione circa 10 tursiopi sono stati notati alle ore 14:30 a 800 m di distanza dalla piattaforma verso NW.

Fig. 3.76 - Esemplari di *T. truncatus* avvistati nel giugno 2018 nei pressi della piattaforma Bonaccia NW.

4. CONCLUSIONI

In riferimento al Decreto n. 0000222 del 09/09/2014 emesso dal Ministero dell'Ambiente e della Tutela del Territorio e del Mare il CNR-IRBIM di Ancona è stato incaricato da ENI S.p.A. – UPSTREAM DICS di effettuare un monitoraggio volto a valutare il potenziale impatto ambientale conseguente l'installazione della piattaforma Bonaccia NW e della condotta sottomarina collegante tale struttura alla piattaforma Bonaccia. Gli aspetti indagati contemplati in tale monitoraggio sono stati scelti in base: a) alle specifiche riportate nel Decreto del Ministero dell'Ambiente e della Tutela del Territorio e del Mare; b) alle prescrizioni dell'ARPAM; c) alle conoscenze acquisite dal CNR-IRBIM di Ancona a partire dalla sua costituzione (1969) nel campo dell'oceanografia e della biologia marina in Adriatico e negli altri mari italiani; d) alle numerose esperienze effettuate dal CNR-ISMAR dal 1998 ad oggi presso altri impianti di estrazione off-shore installati in alto e medio Adriatico su diverse tipologie di fondale da 20 a 85 m di profondità (Regina, Anemone, Annalisa, Barbara NW, Calpurnia, Naomi-Pandora, PCMS-1, Calipso, Clara Est, Clara Nord, Naide, Tea, Annamaria B, pozzi sottomarini Bonaccia EST 2&3, Fauzia, Elettra; Fabi et al., 2001; 2002; 2003; 2004a; 2005a; 2005b; 2006; 2010a; 2010b; 2013; 2015a; 2016a; 2017a; 2019a; 2019b; 2019c); d) alle caratteristiche idrologiche e sedimentologiche della zona in cui è installata Bonaccia NW.

Per quanto concerne la piattaforma, è stato proposto un monitoraggio comprendente indagini riguardanti la colonna d'acqua (studio delle correnti, caratteristiche fisiche e chimiche), le comunità fito- e zooplanctoniche (solo nelle fasi di pre-survey e durante i lavori di installazione), i sedimenti (granulometria, IPA, idrocarburi totali, metalli pesanti, sostanza organica, TOC, ecotossicologia, bioaccumulo), la ricerca di inquinanti e lo studio di biomarkers in esemplari di *Mytilus galloprovincialis* insediati sulle parti sommerse della struttura, la composizione quali-quantitativa della comunità bentonica e del popolamento ittico.

Il monitoraggio comprende diverse fasi:

- a. fase precedente alla posa in opera della piattaforma (pre-survey);
- b. fase di installazione e perforazione dei pozzi;
- c. fase di esercizio:
- d. fase di fine esercizio.

Nella presente relazione sono riportati i risultati ottenuti dal pre-survey sino al 3° anno della fase di produzione della struttura (2018).

Caratteristiche fisiche e chimiche della colonna d'acqua – L'area di posa della piattaforma di estrazione Bonaccia NW è localizzata a circa 60 km dalla costa ed è caratterizzata da condizioni oceanografiche di mare aperto, risentendo solo in parte della circolazione costiera (Artegiani *et al.*, 1997a e 1997b). Le caratteristiche oceanografiche rilevate nel 2° semestre 2018 sono in accordo con la climatologia del bacino (Artegiani *et al.*, 1997a; Zavatarelli *et al.*, 1998) e confermano quanto già evidenziato nel corso dei monitoraggi condotti negli anni precedenti a partire dalla fase di pre-survey (Fabi *et al.*, 2015b, 2016b, 2016c, 2017b, 2017c, 2018 e 2019d).

Per quanto riguarda gli aspetti idrochimici considerati, non sono state osservate condizioni ipossiche o anossiche né nel 2° semestre 2018, né precedentemente, e le concentrazioni dei nutrienti sono sempre rientrate nei range dei valori noti per l'area (Zavatarelli *et al.*, 1998; Marini *et al.*, 2008).

Analogamente, anche la quantità dei pigmenti clorofilliani e le loro fluttuazioni sono sempre state conformi ai valori e ai trend osservati per l'Adriatico centrale (Totti *et al.*, 2000). Il carico solido sospeso ha presentato come di consueto un aumento della concentrazione nelle acque di fondo anche in ottobre e in novembre 2018. Questo andamento è stato osservato frequentemente in Adriatico ed è legato a possibili processi di risospensione e trasporto di sedimenti (Wang e Pinardi, 2002; Wang *et al.*, 2006).

Nel confronto fra le stazioni in prossimità della piattaforma, che più direttamente possono essere modificate nelle loro caratteristiche ambientali dalle attività connesse alla struttura, e quelle localizzate a 2000 m, considerate come controllo, in generale non sono emerse differenze degne di nota per quanto riguarda le condizioni oceanografiche.

Anche i parametri idrochimici non hanno presentato peculiarità nell'area della piattaforma rispetto a quella di riferimento eccetto $1'NH_3$, più abbondante in prossimità della struttura in ottobre alle quote superficiali. Le Chl b e Chl c, anche se di poco, sono risultate mediamente più alte nelle stazioni a 2000 m di distanza, mentre la Chl a, ha presentato concentrazioni medie maggiori nelle stazioni interne.

Per quanto riguarda gli inquinanti ricercati lungo la colonna d'acqua, l'analisi dei dati relativi al 2° semestre 2018 ha confermato quanto già rilevato sin dal pre-survey (Fabi *et al.*, 2015b, 2016b, 2016c, 2017b, 2017c, 2018 e 2019d), ovvero la completa assenza (concentrazioni sempre sotto il limite di rilevabilità) di alcuni metalli pesanti considerati tra i più tossici quali mercurio, cadmio e indio (Canli e Furness, 1995; Dong *et al.*, 2016). Anche piombo, rame e ferro sono risultati sempre non rilevabili fatta eccezione per pochissimi campioni.

Tra le specie chimiche normalmente rilevabili sono stati di nuovo distinti due differenti andamenti. L'arsenico, il bario, il vanadio e il silicio hanno sempre evidenziato una minima variabilità delle concentrazioni, sia nella distribuzione orizzontale sia in quella verticale. Cromo, nichel, alluminio e zinco sono invece risultati molto più variabili. Nel confronto tra i survey, come già indicato nell'analisi dei risultati, per alcune specie chimiche sono state rilevate notevoli fluttuazioni. Il nichel e il cromo, per esempio, sono passati da una completa rilevabilità nel mese di ottobre, ad una quasi totale assenza a novembre. Tutti questi trend tuttavia sono risultati entro i range già evidenziati nel periodo di indagine pecedente.

Per quanto riguarda gli inquinanti organici, è stata confermata la pressoché totale assenza di tutte le specie chimiche analizzate.

In conclusione, nel 2° semestre 2018 e, più in generale, nell'intero periodo di osservazione a partire dal pre-survey, in tutta l'area esaminata non è stato evidenziato alcun fenomeno di contaminazione ambientale in relazione alla presenza della piattaforma Bonaccia NW. Infatti, gli andamenti osservati per alcune specie chimiche sono verosimilmente da imputare alla variabilità delle condizioni idrologiche e meteoclimatiche della zona più che a fenomeni di generale contaminazione dell'area.

Infatti, tutti i metalli e i microinquinanti organici rilevati sono risultati ampiamente al di sotto dei limiti previsti dalle leggi attinenti agli obiettivi di qualità delle acque (es. i limiti riportati nella Direttiva 2008/105/EC) e confrontabili con i risultati ottenuti in altre aree non contaminate sia del Mediterraneo (Béthoux *et al.*, 1990; Annibaldi *et al.*, 2009), sia di altre zone d'Europa e del mondo (Law, 1978; Middelburg *et al.* 1988; Alves *et al.*, 1993; Crompton, 2006).

Alla luce di tutte le considerazioni effettuate non si evidenziano effetti su tutti i parametri analizzati per la colonna d'acqua relazionabili all'attività della piattaforma Bonaccia NW.

Misure correntometriche – In generale, l'area in cui è installata Bonaccia NW è caratterizzata da correnti molto variabili in direzione, e tale variabilità è stata confermata anche nel 2018. Nel 1° anno di produzione della piattaforma (2016; Fabi *et al.*, 2016c; 2017b), infatti, era stata rilevata una corrente prevalentemente diretta verso N/NW con alcune rotazioni verso Sud sino a circa metà luglio, periodo in cui si è ripristinata la direzione N/NW rimasta tale sino a metà dicembre quando la direzione è diventata SE.

Nel 1° semestre 2017 era stato registrato un andamento prevalente verso NE con rapide rotazioni, mentre nel 2° semestre erano stati interessati praticamente quasi tutti i quadranti con variazioni di direzione ogni 10-20 giorni (Fabi *et al.*, 2018; 2019d).

Nel 2018, pur essendo prevalente una direzione settentrionale, si è continuato a rilevare rapide rotazioni durante tutto l'anno, con velocità prevalentemente intorno a 0,1 m/s e picchi sporadici sino a 0,3-0,4 m/s.

Caratteristiche fisiche e chimiche dei sedimenti - L'area dove è stata installata la piattaforma Bonaccia NW è caratterizzata da un sedimento costituito in prevalenza da sabbia, con il silt e l'argilla presenti in percentuali confrontabili tra loro. Nell'intero periodo di indagine non sono state osservate alterazioni di rilievo nella composizione granulometrica dei sedimenti e quelle rilevate, in prevalenza nel 2° survey post lavori di installazione condotto nell'estate 2016, hanno interessato anche i controlli. Allo stato attuale non si rilevano differenze elevate rispetto al periodo antecedente l'installazione della piattaforma: nell'area circostante Bonaccia NW e nelle sue immediate vicinanze, infatti, le variazioni sono tutte inferiori al 10%. Come osservato in altri monitoraggi, anche nell'estate 2018 i cambiamenti maggiori sono apparsi a carico dei controlli e pertanto indipendenti dalla piattaforma.

Per quanto concerne gli <u>Idrocarburi Policiclici Aromatici</u>, durante il pre-survey e nelle prime due campagne post lavori di installazione i vari composti avevano presentato concentrazioni modeste, molto al di sotto dei valori di riferimento riportati in ICRAM-APAT (2017) e nel DM 173/2016. Nell'inverno 2017 (3° post lavori) era avvenuto un diffuso incremento dovuto quasi esclusivamente al Naftalene le cui concentrazioni erano risultate in molti siti maggiori del valore di riferimento. Tuttavia, tale situazione era stata osservata anche in tre controlli su quattro escludendo che la causa di questo incremento fosse esclusivamente correlata alla presenza della piattaforma. Inoltre gli IPA totali erano comunque ampiamente inferiori al limite ovunque.

L'inverno 2017 ha rappresentato un caso isolato e nei monitoraggi successivi gli IPA hanno conservato tenori molto bassi, tanto che anche le differenze da sito a sito sono da ritenere trascurabili.

Una diffusa presenza di <u>idrocarburi totali pesanti</u> (C>12) era stata individuata nell'area durante il pre-survey quando, in corrispondenza di un controllo, era stata raggiunta una concentrazione che, tuttora, rappresenta il massimo assoluto dell'intera indagine. Nella fase di produzione questi composti sono stati molto spesso non quantificati e, quando rilevati, hanno presentato concentrazioni molto modeste che escludono un effetto della piattaforma. Le concentrazioni degli <u>idrocarburi leggeri</u> (C<12) sono risultate sempre al di sotto del limite di rilevabilità strumentale.

Per quanto riguarda i metalli pesanti, si evidenzia che tutti sono presenti nell'area in basse

concentrazioni e, relativamente a quegli elementi per cui si dispone del livello chimico di riferimento nazionale (DM 173/2016), i tenori sono ampiamente inferiori a tale limite o, se maggiori (nichel, arsenico e cromo), essi riguardano anche le aree di controllo. La maggior parte dei metalli non ha subito variazioni considerevoli nel tempo rispetto al pre-survey. Solo l'arsenico, è risultato quasi sempre maggiormente concentrato nell'area circostante la piattaforma rispetto ai controlli.

Da segnalare anche il comportamento del bario che, pur presentando concentrazioni generalmente basse, ha manifestato occasionalmente dei picchi prevalentemente presso la struttura e a 30 m da essa. Nell'estate 2018 la situazione appare normalizzata.

Il silicio, infine, ha confermato un'elevata variabilità: non rilevabile quasi ovunque nel presurey, durante le operazioni di installazione in prossimità della struttura erano state registrate concentrazioni molto elevate, pari a 16 volte la media dei controlli. Dopo l'istallazione di Bonaccia NW la variabilità è apparsa accentuata sino alla fine del 2° anno, mentre nel 3° anno le concentrazioni sono state più omogenee.

Riguardo alla <u>sostanza organica</u>, il picco registrato in BO SW durante i lavori di installazione è rimasto un caso isolato nell'area circostante la piattaforma e pertanto non indica un'alterazione di questa variabile dovuta alla presenza della struttura. Infatti, in quasi tutti i monitoraggi effettuati nei tre anni successivi all'entrata in produzione le concentrazioni massime sono state rilevate in un controllo.

Infine, il <u>TOC</u>, rilevato nel pre-survey unicamente in un controllo, successivamente è stato osservato sempre e ovunque, ma in concentrazioni quasi sempre in linea tra i vari gruppi di siti (transetti, stazioni a ridosso della piattaforma e controlli). Qualche alterazione era stata riscontrata nel 2° monitoraggio post lavori di installazione, caratterizzato dai tenori più elevati dell'intero periodo di indagine, ma già dal survey successivo la situazione è apparsa normalizzata. Complessivamente la presenza di Bonaccia NW non sembra influenzare neanche questa variabile.

Ecotossicologia dei sedimenti – Nel 6° monitoraggio post installazione della piattaforma Bonaccia NW condotto nell'estate 2018 i saggi biologici con *Dunaliella tertiolecta*, *Vibrio fischeri* e *Corophium orientale* hanno confermato l'assenza di tossicità nell'intera area investigata già osservata sin dal pre-survey (deboli e sporadici segnali sono stati rilevati tra l'inverno 2016 e quello del 2017 solo per l'anfipode).

Per quanto concerne il test per lo sviluppo larvale di *Crassostrea gigas*, nell'estate 2018 si è leggermente estesa spazialmente una tossicità debole attorno alla piattaforma che, però, è stata osservata anche in un controllo e, pertanto, non è imputabile solo alla struttura. Da

rilevare che a ridosso di Bonaccia NW non è mai stata rilevata alcuna tossicità. Dunque, la presenza del disturbo osservato a partire dalla fase di installazione, avendo sempre o esclusivamente (3° survey post lavori) anche i riferimenti non è imputabile in modo inequivocabile alla presenza della piattaforma.

I risultati del test di bioaccumulo eseguito utilizzando esemplari di *Hediste diversicolor* hanno evidenziato nell'ultimo monitoraggio una biodisponibilità diffusa solo di arsenico e, in misura minore, di mercurio sia nell'area della piattaforma che nei controlli, pertanto non correlabile a Bonaccia NW come invece il bioaccumulo di bario rilevato esclusivamente entro 60 m dalla piattaforma. Nel complesso il fenomeno del bioaccumulo è apparso nel tempo trascurabile avendo interessato in modo sporadico moti metalli (rame, cadmio, cromo, ferro, piombo, vanadio e zinco) e non essendo stato rilevato affatto quello di altri (alluminio e indio). Nichel e mercurio sono risultati bioaccumulati diffusamente nella maggior parte dei test eseguiti, anche nel pre-survey ad indicare, anche per loro, l'estraneità della piattaforma al fenomeno. L'arsenico è stato accumulato negli organismi test nel 1° survey post lavori di installazione e negli ultimi tre ma, analogamente ai due metalli precedentemente descritti, il fenomeno ha sempre riguardato almeno un sito di controllo e, dunque, non può essere direttamente correlato alla piattaforma.

Analisi di inquinanti e biomarker in Mytilus galloprovincialis - L'applicazione della batteria di biomarker evidenzia l'assenza di una sindrome di stress negli organismi analizzati nell'estate 2018. Non è stato rilevato un rischio genotossico essendo i valori medi dei micronuclei nei mitili della piattaforma uniformi con il controllo analogamente ai monitoraggi precedenti, e simili a quelli riscontrabili su popolazioni provenienti da ambienti naturali (Bolognesi et al., 1996; 2004), né è stata evidenziata la presenza di stress perossidativo considerati i livelli di lipofuscine conformi tra i siti di prelievo e inferiori a quelli registrati in aree costiere dell'Adriatico settentrionale (Petrovic et al., 2004). Dai risultati si può anche escludere un'alterazione biologica associata alla sintesi dei lipidi nell'organismo a causa della potenziale presenza di sostanze xeno-biotiche biodisponibili o di un effetto biologico associato allo stress ossidativo visti i livelli della malondialdeide. Solo i test relativi alla stabilità delle membrane lisosomiali per il sito lontano anodo e alla sintesi ed espressione genica delle proteine metallo-chelanti (metallotioneine) per entrambi i siti di prelievo su Bonaccia NW tendono ad evidenziare alcune alterazioni a livello subcellulare. Nel primo caso si tratta di una misura dell'efficienza del comparto lisosomiale e di conseguenza dello stato di salute generale della cellula; nel secondo caso, invece, tramite un approccio sia spettrofotometrico che molecolare, viene valutata la presenza

(biodisponibile) di elementi metallici nell'ambiente acquatico. Tale risposta è stata ulteriormente confermata dai livelli di accumulo di taluni metalli in uno o entrambi i siti della piattaforma (cadmio, nichel, alluminio, vanadio e arsenico), tra i quali spicca l'alluminio vicino all'anodo dove la concentrazione è risultata oltre 2 volte quella rilevata al controllo. Tuttavia si evidenzia che, rispetto ai due monitoraggi precedenti caratterizzati da concentrazioni di alluminio eccessive in VA, il tenore in questo punto di prelievo si è enormemente ridotto pur restando anomalo.

L'accumulo degli Idrocarburi Policiclici Aromatici è risultato molto scarso in piattaforma, essendo questi composti significativamente più abbondanti negli esemplari di controllo; dei 16 congeneri ricercati, in tutti i tre survey è stato rilevato esclusivamente il Pirene nelle due stagioni del 2018 in tutti i tre siti di prelievo, assieme al Fluorantene al controllo nell'ultimo monitoraggio. Gli Idrocarburi Alifatici sono risultati statisticamente maggiori nei mitili di Bonaccia NW, per la prima volta sia in quelli raccolti vicino l'anodo sacrificale che in quelli lontano anodo. Tuttavia, l'applicazione degli indici di abbondanza ha permesso di verificare una predominanza di congeneri di origine naturale.

Comunità bentonica – Come già osservato in tutti i survey finora condotti, anche nell'estate 2018 le comunità bentoniche sono risultate nettamente dominate dai policheti appartenenti alla famiglia Paraonidae seguiti da *Ophelina cylindricaudata*, *Paradiopatra calliopae* e *Aphelochaeta filiformis*. Si è distinta solo la stazione corrispondente alla piattaforma posizionata a SE per la dominanza molto elevata di *Filograna* sp, un polichete serpuloideo le cui colonie sono costituite da un numero molto elevato di individui che formano dei veri e propri agglomerati con i loro tubi calcarei molto sottili e delicati. Questo genere di serpulidi, rinvenuto entro i 30 m da Bonaccia NW e, in minima quantità a 60 m a NW dalla piattaforma, può insediarsi su innumerevoli substrati inclusi briozoi, rocce e sabbia ed è considerato sensibile allo stress ambientale dagli indici AMBI e BENTIX.

In tutto il periodo i popolamenti sono apparsi costituiti soprattutto da organismi limicoli, seguiti dagli indicatori della materia organica. Si tratta per lo più di policheti e, in misura minore di crostacei e molluschi. A partire dalla fase di produzione i sedimenti limitrofi alla piattaforma sono però apparsi caratterizzati anche da organismi tipici di substrato duro o ecologicamente legati ad essi. La presenza di questi taxa rappresenta un fenomeno comune per le piattaforme offshore sia adriatiche che installate in altre aree (Wolfon *et al.*, 1979; Page *et al.*, 1999; Spagnolo *et al.*, 2002; 2006; Stachowitsch *et al.*, 2002; Fabi *et al.*, 2005c; 2007; Currie e Isaacs, 2005; Trabucco *et al.*, 2006; 2008; Manoukian *et al.*, 2010;

Gomiero *et al.*, 2013). Tuttavia, attorno a Bonaccia NW queste specie non sono mai apparse particolarmente importanti in termini di numero di individui eccetto nel 3° survey post lavori di installazione quando, in corrispondenza di BO NW e BO SE, è stata rilevata una netta dominanza rispettivamente dei bivalvi *Anomia ephippium* e *Neopycnodonte cochlear*, e negli ultimi due campionamenti.

Questi organismi in prossimità della piattaforma hanno incrementato progressivamente la ricchezza specifica in quell'area dove, nell'ultimo monitoraggio, sono stati raggiunti i valori in assoluto più elevati (siti BO SE e BO SW).

Ciò conferma che la presenza della struttura determina un arricchimento delle comunità rappresentate sia dai taxa tipici del substrato originario, sia da altri altrimenti assenti o rari. La valutazione dello stato ecologico relativa all'ultimo monitoraggio è risultata compresa tra buono e moderato nelle stazioni poste lungo i transetti e tra buono/moderato e moderato ai controlli. La stazione BO SE ha rappresentato nuovamente un'eccezione, essendo caratterizzata da uno stato ecologico compreso tra alto e buono. Rispetto al pre-survey le condizioni ai controlli non mostrano variazioni, mentre nell'area circostante la piattaforma sembra si siano ripristinate le stesse buone condizioni (o siano migliorate) solo in BO NE e BO SE.

Comunità ittica - I risultati dei survey di pesca effettuati nei primi tre anni di indagine con reti tremaglio hanno evidenziato valori di Ricchezza e Diversità specifica superiori presso la piattaforma Bonaccia NW rispetto ai due siti di riferimento, in linea con monitoraggi pregressi o in corso effettuati in Adriatico settentrionale presso altre strutture estrattive (es.: Fabi *et al.*, 2004b; 2017a; 2019a; 2019b; 2019c) e con alcuni studi condotti in altre aree (Stanley e Wilson, 1990; 1997; Schroeder *et al.*, 1999; Love Love *et al.*, 2000; 2005; Løkkerborg *et al.*, 2002, Pradella *et.al.* 2014). Anche i rendimenti di pesca sia in numero che in peso sono risultati superiori presso il sito di estrazione rispetto ai controlli sin dall'entrata in produzione di Bonaccia NW. E' stato ormai appurato dai numerosi studi sopra citati oltre che da da Bohnsack *et al.* (1991) che l'elevata concentrazione di organismi in prossimità della piattaforma è il risultato di vari fattori: la maggiore disponibilità di cibo, il minor rischio di predazione nelle vicinanze della piattaforma e, infine, l'effetto tigmotropico generato dai piloni sommersi.

Come altre piattaforme offshore Bonaccia NW ha esercitato un'azione attrattiva sulla comunità ittica durante tutto il periodo considerato, soprattutto nei confronti di alcune specie parzialmente attratte dai substrati duri sia pelagiche, quali *Boops boops, Trachurus picturatus* e *Scomber japonicus*, sia necto-bentoniche come *Pagellus bogaraveo*.

Presso la piattaforma, inoltre, sono state catturate in maniera esclusiva numerose specie di pesci con elevata affinità per i substrati duri, come il bentonico *S. porcus*, il nectobentonico *Spondilyosoma cantharus* e il pelagico *Seriola dumerili*. E' stato anche rilevato un insediamento del mollusco cefalopode *O. vulgaris*, anch'esso con un elevato grado di affinità per i substrati duri, e della cernia di fondale *Polyprion americanus*, specie non comune nell'area che predilige fondali duri. In prossimità della piattaforma si è registrata costantemente anche la presenza di due specie commercialmente importanti, il crostaceo *Nephrops norvegicus* e il pesce necto-bentonico *Merluccius merluccius*, entrambe caratteristiche del fondo mobile originario e comunemente catturate dalle marinerie locali. Attraverso l'analisi qualitativa delle catture è stata anche riscontrata la presenza nella zona di Selaci; in particolare, presso Bonaccia NW sono state censite 6 specie appartenenti a questo gruppo (*Scyliorhinus canicola, Scyliorhinus stellaris, Torpedo marmorata, Squalus acanthias, Raja miraletus* e *Raja asterias*), mentre esclusivamente ai controlli sono stati osservati esemplari di *Mustelus mustelus*.

Le indagini con metodologia acustica effettuate con il Multibeam Echosounder (MBES) hanno ormai appurato che vi è una maggiore concentrazione di banchi negli strati d'acqua più vicini al fondo durante le ore diurne di monitoraggio (Punzo et al., 2015) attribuibile all'etologia delle specie gregarie. Infatti, i banchi nell'arco della giornata compiono migrazioni verticali: nelle ore diurne (periodo in cui viene condotta l'indagine acustica) si trovano negli strati di acqua più profondi, mentre nelle ore notturne (periodo in cui vengono svolti i campionamenti di pesca), le aggregazioni salgono lungo la colonna d'acqua. Queste migrazioni verticali sono molto probabilmente legate all'opportunità di procurarsi nutrimento oltre che all'ottimizzazione bioenergetica e alla necessità di trovare riparo dai predatori (Pitcher 1986; Cardinale et al., 2003). Tale comportamento è tipico di specie pelagiche e, in particolar modo, di Engraulis encrasicolus, i cui esemplari tendono a formare banchi di notevoli dimensioni (Iglesias et al., 2003; Tsagarakis et al., 2012). Tali specie pelagiche di piccole dimensioni vengono generalmente catturate in quantità minore rispetto alla reale abbondanza durante i campionamenti di pesca a causa della selettività dell'attrezzo utilizzato e del suo posizionamento in prossimità del fondale nelle ore notturne.

In quest'ottica, la metodologia acustica può implementare i dati di cattura, sondando interamente la colonna d'acqua e permettendo di individuare queste specie che, dai dati acquisiti, erano presenti anche in banchi molto estesi.

Nel semestre di indagine ogni mese è stata registrata la presenza di aggregazioni di pesce

di notevoli dimensioni in prossimità del fondale e della piattaforma, come ad esempio i banchi n. 15 di luglio, il n. 10 di agosto, i n. 42 e 43 di settembre, i n. 5, 6, 7, e 8 di novembre e il n. 11 di dicembre, da ricondursi a specie pelagiche e necto-bentoniche parzialmente attratte dal substrato duro come *Pagellus* spp, *Trachurus* spp, e *Spicara maena*, la cui presenza nelle vicinanze della struttura è stata confermata anche dalle immagini registrate con telecamera. La stessa tipologia di banchi era stata individuata anche nei survey acustici effettuati nei periodi di indagine precedenti (Fabi *et al.*, 2016c, 2017b, 2017c, 2018 e 2019d).

Aggregazioni più superficiali sempre costituite da specie parzialmente attratte, come quelle rilevate ad agosto (n.7), settembre (n. 19) e a novembre (n. 9), erano verosimilmente costituite da esemplari di *B. boops* e *T. minutus capelanus*.

Oltre i 300 m di distanza dalla piattaforma in tutto il periodo sono stati sondati banchi anche di notevoli dimensioni (es.: n. 25 di gennaio 2018; nn. 26 e 29 di febbraio; n. 10 di luglio; nn. 3 e 6 di agosto) presumibilmente costituiti da esemplari di *E. encrasicolus*.

Rilevamento del passaggio di cetacei - Nell'intero periodo di indagine (ad esclusione delle fasi di installazione e perforazione dei pozzi i cui risultati sono riportati in Leonori *et al.*, 2016) sono avvenuti un solo avvistamento di cetacei nell'area circostante la piattaforma Bonaccia NW durante la fase di pre-survey e tre nel 3° anno successivo all'entrata in produzione di Bonaccia NW. E' pertanto ipotizzabile che l'area non sia assiduamente frequentata da questi organismi.

5. BIBLIOGRAFIA

- Aebi H. 1974. Catalase. Pagg. 671-684, in: Bergmeyer H.U. (Ed.), *Methods on enzymatic analysis*. Academic Press, London.
- Alves L.C., Allen L.A., Houk R.S.1993. Measurement of vanadium, nickel, and arsenic in seawater and urine reference materials by inductively coupled plasma mass spectrometry with cryogenic desolvation. *Anal. Chem.*, 65(18): 2468-2471.
- Amouroux J.M. 1974. Etude des peuplements infralittoraux de la côte du Roussillon. *Vie Milieu*, 24 (1) sèr. B: 209-222.
- Anderson M.J. 2001. A new method for non parametric multivariate analysis of variance. *Autral. Ecol.*, 26: 32-46.
- Annibaldi A., Truzzi C., Illuminati S., Scarponi G., 2009. Recent sudden decrease of lead in Adriatic coastal seawater during the years 2000–2004 in parallel with the phasing out of leaded gasoline in Italy. *Mar. Chem.*, 113: 238–249.
- Arbizu M. 2017. Pairwiseadonis: Pairwise multilevel comparison using adonis. R Packag. Version 0.0.
- Artegiani A. 1996. *Temperature and salinity measurements of seawaters, Handbook of method protocols*. MAST II Mediterranean Targeted Project. 34 pp.
- Artegiani, A., Bregant D., Paschini E., Pinardi N., Raicich F., Russo A. 1997a. The Adriatic Sea general circulation. Part I. Air-sea interactions and water mass structure, *J. Phys. Oceanogr.*, 27, 1492–1514.
- Artegiani, A., Bregant D., Paschini E., Pinardi N., Raicich F., Russo A. 1997b. The Adriatic Sea general circulation. Part II: Baroclinic Circulation Structure, *J. Phys. Oceanogr.*, 27: 1515–1532.
- ASTM. 1998. Standard guide for determination of the bioaccumulation of sediment-associated contaminants by benthic invertebrates. Standard ASTM E1688-97a. American Society for testing and materials, Philadelphia, PA: 1072-1121.
- ASTM. 2004a. Standard guide for conducting static toxitcity tests with microalghe. ASTM E1218-04-E1. 14 pp.
- ASTM. 2004b. Standard Guide for Conducting Static Acute Toxicity Tests Starting with Embryos of Four Species of Saltwater Bivalve Molluscs. ASTM E724-98. 21 pp.
- Augier H. 1992. *Inventaire et classification des biocénoses marines benthique de la Méditerranée*. Conseil de l'Europe. U.E.R. Des Sciences de la Mer et de l'Environnement de Luminy Marseille. 59 pp.
- Banni M., Dondero F., Jebali J., Guerbej H., Boussetta H., Viarengo A. 2007. Assessment of heavy metal contamination using real-time PCR analysis of mussel metallothionein MT10 and MT20 expression: a validation along the Tunisian coast. *Biomarkers*, 12(4): 369-383.
- Bellan Santini D., Ledoyer M. 1972. Inventaire des amphipodes gammariens récoltés dans la Région de Marseille. *Tethys*, 4 (4): 899-934.
- Bellan G., Bellan Santini D., Picard J. 1980. Mise en évidence de modèles eco-biologiques dans des zones soumises à perturbations par matières organiques. *Oceanol. Acta*, 3: 383-390.
- Béthoux J.P., Courau P., Nicolas E., Ruiz-Pino D. 1990. Trace metal pollution in the Mediterranean Sea. *Oceanol. Acta*, 13: 481–488.
- Bettencourt A., Bricker S.B., Ferriera J.G., Franco A., Marques J.C., Melo J.J., Nobre A., Ramos L., Reis C.S., Salas F., Silva M.C., Simas T., Wolff W. 2004. *Typology and reference conditions for Portuguese transitional and coastal waters*. Instituto da Agua. Instituto do Mar, Lisbon.
- Bianchi C.N., Ceppodomo I., Galli C., Sgorbini S., Dell'Amico F., Morri C. 1993. Benthos dei

- mari toscani. I: Livorno Isola d'Elba (Crociera ENEA 1985). *ENEA Arcipelago Toscano Serie Studi Ambientali*: 263-291.
- Bocchetti R., Regoli F. 2006. Seasonal variability of oxidative biomarkers, lysosomal parameters, metallothioneins and peroxisomal enzymes in the Mediterranean mussel *Mytilus galloprovincialis* from Adriatic Sea. *Chemosphere*, 65(6): 913-921.
- Bolognesi C., Rabboni R., Roggieri P. 1996. Genotoxicity biomarkers in *M. galloprovincialis* as indicators of marine pollutants. *Comp. Biochem. Physiol.*, 113C(2): 319-323.
- Bolognesi C., Fenzilli G., Lasagna C., Perrone E., Roggeri P. 2004. Genotoxicity biomarkers in *Mytilus galloprovincialis* wild versus caged mussels. *Mut. Res.*, 552: 153-162.
- Bombace G., Fabi G., Fiorentini L., Speranza S. 1994. Analysis of the efficacy of artificial reefs located in five different areas of the Adriatic Sea. *Bull. Mar. Sci.*, 55(2-3): 559-580.
- Borja A., Mader J. 2008. *Instructions for the use of the AMBI index software (version 4.1)*. AZTI-Tecnalia. 13 pp.
- Borja A., Franco J., Pérez V. 2000. A narine biotic index to establish the ecological quality of soft-bottom benthos within European estuarine and coastal environment. *Mar. Pollut. Bull.*, 40(12): 1100-1114.
- Bourcier M., Nodot C., Jeudy De Grissac A., Tine J. 1979. Répartition des biocénoses benthiques en fonction des substrats sédimentaires de la rade de Toulon (France). *Tethys*, 9: 103-112.
- Bradford M. 1976. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. *Anal. Biochem.*, 72 (1-2): 248-254.
- Canli M., Furness R.W. 1995. Mercury and cadmium uptake from seawater and from food by the Norway lobster *Nephrops norvegicus*. *Environ*. *Toxicol*. *Chem.*, 14: 819-828.
- Cardinale M, Casini M, Arrhenius F, Håkansson N. 2003. Diel spatial distribution and feeding activity of herring Clupea harengus and sprat Sprattus sprattus in the Baltic Sea. *Aquat. Liv. Res.*, 16:283-292.
- Carro N., Cobas J., Maneiro J. 2006. Distribution of aliphatic compounds in bivalve mollusks from Galicia after the Prestige oil spill: Spatial and temporal trends. *Environ. Res.*, 100(3): 339-348.
- Chimenz Gusso C., Gravina M.F., Maggiore F.R. 2001. Temporal variations in soft bottom benthic communities in Central Tyrrhenian Sea (Italy). *Archo Oceanogr. Limnol.*, 22: 175-182.
- Christensen E.R., Kusk, K.O., Nyholm N. 2009. Dose-response regressions for algal growth and similar continuous endpoint: calculation of effective concentrations. *Environ. Toxicol. Chem.*, 28: 826-835.
- Clarke K.R., Warwick R.M. 2001. *Change in Marine Communities: An Approach to Statistical Analysis and Interpretation*. 2nd Edition. PRIMER-E, Plymouth, Uk. 172 pp.
- Craeymeersch J.A. 1991. Applicability of the abundance/biomass comparison method to detect pollution effects on intertidal macrobenthic communities. *Hydrobiol. Bull.*, 24(2): 133-140.
- Crompton T.R. 2006. Analysis of Seawater. A Guide for the Analytical and Environmental Chemist. CRC Press, 297 pp.
- Currie, D.R., Isaacs, L.R, 2005. Impact of exploratory offshore drilling on benthic communities in the Minerva gas field, Port Campbell, Australia. *Mar. Environ. Res.*, 59: 217-233.
- DIRETTIVA 2008/105/CE, 2008. Standard di qualità ambientale nel settore della politica delle acque, recante modifica e successiva abrogazione delle direttive del Consiglio 82/176/CEE, 83/513/CEE, 84/156/CEE, 84/491/CEE e 86/280/CEE, nonché modifica della direttiva 2000/60/CE del Parlamento europeo e del Consiglio. Parlamento Europeo e Consiglio. 16 dicembre 2008.
- Dondero F., Piacentini L., Banni M., Reselo M., Burlando B., Viarengo A. 2005. Quantitative PCR analysis of two molluscan metallothionein genes unveils differential expression and regulation. *Gene*, 345: 259–270.
- Dong Y., Rosenbaum R.K., Hauschild M.Z. 2016. Assessment of metal toxicity in marine

- ecosystems: comparative toxicity potentials for nine cationic metals in coastal seawater. *Environ. Sci. Technol.*, 50: 269–278.
- Donnini F., Dinelli E., Sangiorgi F., Fabbri E. 2007. A biological and geochemical integrated approach to assess the environmental quality of a coastal lagoon (Ravenna, Italy). *Environ. Int.*, 33(7): 919-928.
- EPA. 1993. Guidance manual, Bedded sediment Bioaccumulation Tests. EPA/600/R-93/183. 246 pp.
- EPA. 2003a. *Volatile organic compounds in various sample matrices using equilibrium headspace analysis.* EPA METHOD 5021A. 25 pp.
- EPA. 2003b. Nonhalogenated organics using gc/fid. EPA METHODS 8015D. 37 pp.
- EPA. 2007a. Mercury in Solids and Solutions by Thermal Decomposition, Amalgamation, and Atomic Absorption Spectrophotometry. EPA METHOD 7473. 15 pp.
- EPA. 2007b. Graphite furnace atomic absorption spectrophotometry. EPA METHOD 7010. 24 pp.
- EPA. 2007c. *Inductively coupled plasma-atomic emission spectrometry*. EPA METHOD 6010C. 34 pp.
- Fabi G., De Ranieri S., Grati F., Marini M., Spagnolo A. 2001. *Servizi di monitoraggio ambientale campo Regina. III Anno di indagine. Rapporto finale*. Rapporto per Eni S.p.A. Divisione AGIP, Distretto di Ravenna. 185 + XXVII pp.
- Fabi G., De Ranieri S., Panfili M., Scarcella G., Spagnolo A. 2003. *Servizi di monitoraggio ambientale Campo Annalisa. III Anno di indagine. Rapporto Finale*. Rapporto per Eni S.p.A. Divisione AGIP, Distretto di Ravenna. 123 + XLVI pp.
- Fabi G., De Ranieri S, Manoukian S., Marini M., Scarcella G., Spagnolo A. 2004a. *Servizi di monitoraggio ambientale Campo Barbara NW. Rapporto conclusivo di tre anni di indagine* (2000 2002). Rapporto per Eni S.p.A. Divisione E&P, Distretto di Ravenna. 228 + XLIX pp.
- Fabi G., Grati F., Puletti M., Scarcella G. 2004b. Effects on fish community induced by the installation of two gas platforms (Adriatic sea). *Mar. Ecol. Progr. Ser.*, 273: 187-197.
- Fabi G., Boldrin A., De Ranieri S., Manoukian S., Nasci C., Scarcella G., Spagnolo A. 2005a. Servizi di monitoraggio ambientale Piattaforma di estrazione di idrocarburi gassosi "Naomi-Pandora". Rapporto conclusivo di due anni di indagine (2002-2003). Rapporto per Eni S.p.A. – Divisione E&P, Distretto di Ravenna. 201 + XXVIII pp.
- Fabi G., Ausili S., De Ranieri S., Nasci C., Spagnolo A. 2005b. Servizi di monitoraggio ambientale piattaforma di estrazione di idrocarburi gassosi "Porto Corsini Mare Sud I (PCMS-1)". Rapporto conclusivo di due anni di indagine. Rapporto per Eni S.p.A. Divisione E&P, Distretto di Ravenna. 95 + XI pp.
- Fabi G., De Ranieri S., Manoukian S., Marini M., Meneghetti F., Paschini E., Scarcella G., Spagnolo A. 2006. *Servizi di monitoraggio ambientale Campo Calipso. Rapporto finale di 4 anni di studio (2002-2005)*. Rapporto per Eni S.p.A. Divisione E&P, Distretto di Ravenna. 224 + XLII pp.
- Fabi G. De Ranieri S., Grilli F., Nasci C., Spagnolo A. 2010a. *Servizi di monitoraggio ambientale Campo Clara Nord. Rapporto conclusivo di tre anni di indagine (estate 2005 inverno 2008).* Rapporto per Eni S.p.A. Divisione E&P, Distretto di Ravenna. 240 + XLIII pp.
- Fabi G., Campanelli A., De Ranieri S., Nasci C., Polidori P., Punzo E. 2010b. *Servizi di monitoraggio ambientale Campo Clara Est. Rapporto conclusivo di tre anni di monitoraggio (estate 2005 inverno 2008)*. Rapporto per Eni S.p.A. Divisione E&P, Distretto di Ravenna. 353 + XLI pp.
- Fabi G., De Ranieri S, Manoukian S., Marini M., Nasci C., Scarcella G., Spagnolo A. 2013. *Servizi di monitoraggio ambientale Campo Naide. Rapporto conclusivo di 4 anni di monitoraggio, dal pre-survey al terzo anno dopo la posa (estate 2004 inverno 2008).* Rapporto per Eni S.p.A. Divisione E&P, Distretto di Ravenna. 397 + XLVI pp.

- Fabi G., De Biasi A.M., Gomiero A., Kozinkova L., Penna P.G., Polidori P., Spagnolo A. 2015a. Servizi di monitoraggio ambientale Campo Tea - Rapporto conclusivo dal pre-survey al terzo anno successivo alla posa in opera della piattaforma (2006-2010). Rapporto per Eni S.p.A. – Divisione E&P, Distretto di Ravenna. 251 + XLIV pp.
- Fabi G., Bernardi Aubry F., Boldrin A., Camatti E., De Biasi A., Kozinkova L., Salvalaggio V., Spagnolo A. 2015b. Servizi di monitoraggio ambientale Campo Bonaccia NW. Monitoraggio dell'area interessata dall'installazione della piattaforma Bonaccia NW e della condotta collegante Bonaccia NW a Bonaccia. Pre-survey (dicembre 2014 marzo 2015). Indagini fisiche e chimiche della colonna d'acqua e dei sedimenti, indagini sulle comunità planctoniche, ecotossicologia dei sedimenti e indagini sulla comunità bentonica. Rapporto n. 1. Rapporto per ENI S.p.A. Divisione E&P, Distretto di Ravenna. 132 + XXX pp.
- Fabi G., Spagnolo A., Borghini M., Campanelli A. De Biasi A.M., Gaetani A., Girasole M., Gomiero A., Kozinkova L., Polidori P., 2016a. *Servizi di monitoraggio ambientale Campo Annamaria B Piano Nazionale. Monitoraggio dell'area interessata dall'installazione della piattaforma. Rapporto finale di sei anni di indagine (dal pre-survey al 3° anno post lavori di installazione).* Rapporto per Eni S.p.A. UPSTREAM DICS. 258 + CXVIII pp.
- Fabi G., Spagnolo A., Borghini M., Cassin D., De Biasi A.M., De Lazzari A., Ferrà Vega C., Gaetani A., Kozinkova L., Salvalaggio V. 2016b. Servizi di monitoraggio ambientale Campo Bonaccia NW. Monitoraggio dell'area interessata dall'installazione della piattaforma Bonaccia NW e della condotta collegante Bonaccia NW a Bonaccia. Fase di produzione Rapporto semestrale (gennaio giugno 2016). Rapporto n. 3. Rapporto per ENI S.p.A. UPSTREAM DICS. 162 + LIII pp.
- Fabi G., Bernardi Aubry F., Camatti E., Cassin D., De Biasi A., Kozinkova L., Salvalaggio V., Spagnolo A. 2016c. Servizi di monitoraggio ambientale Campo Bonaccia NW. Monitoraggio dell'area interessata dall'installazione della piattaforma Bonaccia NW. Fase di posa in opera (aprile 2015 gennaio 2016). Indagini fisiche e chimiche della colonna d'acqua e dei sedimenti, indagini sulle comunità planctoniche, indagini sedimentologiche e indagini sulla comunità bentonica. Rapporto n. 2. Rapporto per ENI S.p.A. UPSTREAM DICS. 152 + XXVI pp.
- Fabi G., Spagnolo A., Borghini M., Campanelli A., De Biasi A.M., Ferrà Vega C., Gaetani A., Gomiero A., Kozinkova L. 2017a. *Monitoraggio ambientale Pozzi sottomarini Bonaccia Est 2 e Bonaccia Est 3. Monitoraggio dell'area interessata dall'installazione dei pozzi sottomarini e del sea-line collegante i pozzi con la piattaforma Bonaccia. Rapporto finale dal pre-survey al 3° anno post lavori di installazione (2009 2013).* Rapporto per Eni S.p.A. UPSTREAM, DICS. 236 + XCV pp.
- Fabi G., Spagnolo A., Borghini M., Cassin D., De Biasi A.M., De Lazzari A., Gaetani A., Kozinkova L., Polidori P., Salvalaggio V. 2017b. Servizi di monitoraggio ambientale Campo Bonaccia NW. Monitoraggio dell'area interessata dall'installazione della piattaforma Bonaccia NW e della condotta collegante Bonaccia NW a Bonaccia. Fase di produzione Rapporto finale 1° anno (gennaio dicembre 2016). Rapporto n. 3. Rapporto per ENI S.p.A. UPSTREAM DICS. 233 + LIII pp.
- Fabi G., Spagnolo A., Borghini M., Cassin D., De Biasi A.M., Ferrà Vega C., De Lazzari A., Gaetani A., Kozinkova L., Salvalaggio V. 2017c. Servizi di monitoraggio ambientale Campo Bonaccia NW Monitoraggio dell'area interessata dall'installazione della piattaforma Bonaccia NW e della condotta collegante Bonaccia NW a Bonaccia. Fase di produzione rapporto semestrale 2° anno (gennaio-giugno 2017). Rapporto n. 5. Rapporto per Eni S.p.A. UPSTREAM DICS. 173 + LIII pp.
- Fabi G., Spagnolo A., De Biasi A.M., Kozinkova L., Salvalaggio V. 2018. Servizi di monitoraggio ambientale Campo Bonaccia NW Monitoraggio dell'area interessata dall'installazione della condotta collegante Bonaccia NW a Bonaccia. Fase di produzione Rapporto Finale 2° anno (dal pre-survey a dicembre 2017). Rapporto n. 7. Rapporto per Eni S.p.A. UPSTREAM DICS. 87 + XIX pp.

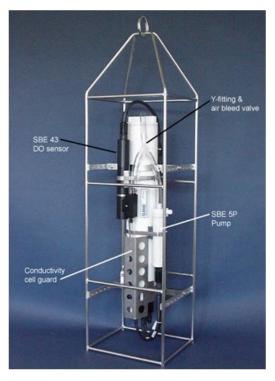
- Fabi G., Spagnolo A., Borghini M., Cassin D., De Biasi A.M., De Lazzari A., Girasole M., Gomiero A., Kozinkova L., Manarini T., Montagnini L., Scanu M., Tassetti A.N. 2019a. Servizi di monitoraggio ambientale Campo Elettra. Monitoraggio dell'area interessata dall'installazione della piattaforma. 4° anno della fase di produzione Rapporto finale Rapporto n. 14. Rapporto per Eni S.p.A. UPSTREAM, DICS. 273 + LVIII pp.
- Fabi G., Spagnolo A., Borghini M., Cassin D., De Biasi A.M., De Lazzari A., Kozinkova L., Masnadi F., Montagnini L., Tassetti A.N. 2019b. *Servizi di monitoraggio ambientale Campo Clara NW. Monitoraggio dell'area interessata dall'installazione della piattaforma Clara NW. Fase di produzione 3° anno Rapporto semestrale (gennaio giugno 2018). Rapporto n. 11.* Rapporto per Eni S.p.A. UPSTREAM, DICS. 160 + LII pp.
- Fabi G., Borghini M., Cassin D., De Biasi A.M., De Lazzari A., Girasole M., Gomiero A., Kozinkova L., Manarini T., Pellini G., Spagnolo A., Tassetti A.N. 2019c. *Servizi di monitoraggio ambientale Campo Fauzia. Monitoraggio dell'area interessata dall'installazione della piattaforma.* 4° anno della fase di produzione Rapporto finale Rapporto n. 14. Rapporto per Eni S.p.A. UPSTREAM, DICS. 351 + LVII pp.
- Fabi G., Spagnolo A., Armelloni E.N., Borghini M., Cassin D., De Biasi A.M., De Lazzari A., Kozinkova L., Salvalaggio V., Tassetti A.N. 2019d. *Servizi di monitoraggio ambientale Campo Bonaccia NW Monitoraggio dell'area interessata dall'installazione della piattaforma Bonaccia NW. Fase di produzione Rapporto semestrale 3° anno. Rapporto n. 8.* Rapporto per Eni S.p.A. UPSTREAM DICS. 151 + XLIX pp.
- Fattorini D., Notti A., Di Mento R., Cicero A.M., Gabellini M., Russo A., Regoli F. 2008. Seasonal, spatial and inter-annual variations of trace metals in mussels from the Adriatic Sea: a regional gradient for arsenic and implications for monitoring the impact of offshore activities. *Chemosphere*, 72: 1524–1533.
- Fisher W., Bauchot M.L., Schneider M. (Eds). 1987. Fishes FAO d'identification des espèces pour les besoins de la pêche. (Révision 1) Méditerranée et mer Noire. Zone de pêche 37. Vol. 1. Végétaux et Invertébrés. Pubblication préparée par la FAO, résultat d'un accord entre la FAO et la Commission des Communautés Européennes (Project GCP/INT/422/EEC) financée conjointement par ces deux organizations. Rome, FAO. 760 pp.
- Gomiero A., Da Ros L., Meneghetti F., Nasci C., Spagnolo A., Fabi G. 2011. Integrated use of biomarkers in the mussel *Mytilus galloprovincialis* for assessing off-shore gas platforms in the Adriatic Sea: Results of a two-year biomonitoring program. *Mar. Pollut. Bull.*, 62(11): 2483-2495.
- Gomiero A., Spagnolo A., De Biasi A., Kozinkova L., Polidori P., Punzo E., Santelli A., Strafella P., Girasole M., Dinarelli S., Viarengo A., Negri A., Nasci C., Fabi G. 2013. Development of an integrated chemical, biological and ecological approach for impact assessment of Mediterranean off shore gas platforms. *Chem. and Ecol.*, 29(7): 620-634.
- Gomiero A., Volpato E., Nasci C., Perra G., Viarengo A., Dagnino A., Spagnolo A., Fabi G. 2015. Use of multiple cell and tissue-level biomarkers in mussels collected along two gas fields in the northern Adriatic Sea as a tool for long term environmental monitoring. *Mar. Poll. Bull.*, 93(1-2): 228-244.
- Gorbi S., Lamberti C.V., Notti A., Benedetti M., Fattorini D., Moltedo G., Regoli F. 2008. An ecotoxicological protocol with caged mussels, *Mytilus galloprovincialis*, for monitoring the impact of an offshore platform in the Adriatic sea. *Mar. Environ. Res.*, 65(1): 34-49.
- Grasshoff K., Cremling K., Erhardt M. 1999. *Methods of seawater analysis*. Verlag Chemie, Weinheim, Germany. 600 pp.
- Higuchi R., Fockler C., Dollinger G., Watson R. 1993. Kinetic PCR analysis: real-time monitoring of DNA amplification reactions. *Biotechnology (NY)*, 11 (9): 1026-1030.
- ICRAM. 2001. Metodologie analitiche di riferimento. Programma di monitoraggio per il controllo dell'ambiente marino-costiero (triennio 2001-2003).
- ICRAM-APAT. 2007. Manuale per la movimentazione dei sedimenti marini. 72 pp.

- Iglesias M, Carrera P, Muiño R. 2003. Spatio-temporal patterns and morphological characterisation of multispecies pelagic fish schools in the North-Western Mediterranean Sea. *Aquat. Liv. Res.*, 16:541-548.
- IRSA-CNR. 1994. Metodi analitici per le acque. Istituto poligrafico e zecca dello Stato, Roma.
- ISO 2004. Determination of content of hydrocarbon in the range C10 to C40 by gas chromatography. ISO 16703:2004. 18 pp.
- ISO. 2005. Water quality determination of acute toxicity of marine or estuarine sediment to amphipods. ISO 16712:2005(E). 15 pp.
- Law R.J. 1978. Determination of petroleum hydrocarbons in water, fish and sediments following the Ekofisk blow-out. *Mar. Poll. Bul.*, 9: 321-324.
- Leonori I., Biagiotti I., Costantini I. 2016. *Progetto di monitoraggio cetacei durante la costruzione della piattaforma Clara NW*. Servizio di monitoraggio ambientale ENI S.P.A. Distretto Centro-Settentrionale (DICS). Rapporto Finale CNR-ISMAR Ancona. 140 pp.
- Lima I., Moreira S.M., Rendon-Von Osten J., Soares A.M., Guilhermino L. 2007. Biochemical responses of the marine mussel *Mytilus galloprovincialis* to petrochemical environmental contamination along the North-western coast of Portugal. *Chemosphere*, 66(7): 1230-1242.
- Livak J., Schmittingen T.D. 2001. Analysis of relative gene expression data using real-time quantitative PCR and the $2-\Delta\Delta$ CT. *Methods*, 25: 402-408.
- Løkkeborg S., Humborstad O.B., Jorgensen T., Soldal A.V. 2002. Spatio-temporal variations in gillnet catch rates in the vicinity of North Sea oil platform. *ICES J. Mar. Sci.*, 59: 294-299.
- Losso C., Picone M., Arizzi Novelli A., Delaney E., Ghetti P.F., Volpi Ghirardini A. 2007. Developing toxicity scores for embryotoxicity tests on elutriates with the sea urchin *Paracentrotus lividus*, the oyster *Crassostrea gigas* and the mussel *Mytilus galloprovincialis*. *Arch. Environ. Contam. Toxicol.*, 53: 220–226.
- Love M.S., Caselle J., Snook L. 2000. Fish assemblages around seven oil platforms in the Santa Barbara Channel area. *Fish. Bull.*, 98: 96–117.
- Love M.S., Schroeder M.D., Leanarz W.H. 2005. Distribution of Boccaccio (*Sebastes paucispinis*) and Cowcod (*Sebastes levis*) around oil platforms and natural outcrops off California with implication for larval production. *Bull. Mar. Sci.*, 77 (3): 397-408.
- Manoukian S., Spagnolo A., Scarcella G., Punzo E., Angelini R., Fabi G. 2010. Effects of two offshore gas platforms on soft-bottom benthic communities (north western Adriatic Sea, Italy). *Mar. Environ. Res.*, 70(5): 402-410.
- Marini M., Jones B.H, Campanelli A., Grilli F., Lee C.M. 2008. Seasonal variability and Po River plume influence on biochemical properties along western Adriatic coast. *J. Geophys. Res.*, 113 (C05S90), doi:10.1029/2007JC004370.
- May R.M. 1979. Patterns of Species Abundance and Diversity. Pagg. 81-120, *in*: Cody M.L. and Diamond J.M. (Eds). *Ecology and Evolution of Communities*, 4.
- Middelburg J.J., Hoede D., Van Der Sloot H.A., Van Der Weijden C.H., Wijkstra J. 1988. Arsenic, antimony and vanadium in the North Atlantic Ocean. *Geochim. cosmochim. Acta*, 52: 2871-2878.
- Muxika I., Borja A., Bald J. 2007. Using historical data, export judgement and multivariate analysis in assessing reference conditions and benthic ecological status, according to the European Framework Directive. *Mar. Pollut. Bull.*, 55: 13-29.
- Nodot C., Bourcier M., Juedy De Grissac A., Hursner S., Regis J., Tine J. 1984. Répartition des biocénoses benthiques en fonction des substrats sédimentaires de la rade de Toulon (France). 2. La Grande Rade. *Tethys*, 11: 141-153.
- Ottaviani E., Franceschini C. 1997. The invertebrate phagocytic immunocyte: clues to a common evolution of immune and neuroendocrine system. *Immunology Today*, 18: 169-174.

- Oksanen A.J., Blanchet F.G., Friendly M., Kindt R., Legendre P., Mcglinn D., Minchin P.R., Hara R.B.O., Simpson G.L., Solymos P., Stevens M.H.H., Szoecs E., Wagner H., 2016. *Vegan: Community Ecology Package*. https://github.com/vegandevs/vegan.
- Page, H.M., Dugan, J.E., Dugan, D.S., Richards, J.B., Hubbard, D.M. 1999. Effects of an offshore oil platform on the distribution and abundance of commercially important crab species. *Mar. Ecol. Progr. Series*, 185: 47-57.
- Pérès J.M., Picard J. 1964. Nouveau Manuel de Bionomie benthique de la Mer Mediterranée. *Recl. Trav. St. Mar. Endoume*, 31(47). 137 pp.
- Petrovic S., Semencic L., Ozetic B., Orzetic M. 2004. Seasonal variations of physiological and cellular biomarkers and their use in the biomonitoring of North Adriatic coastal waters (Croatia). *Mar. Pollut. Bull.*, 49(9-10): 713-720.
- Pianka E.R. 1970. On r- and k-selection. *Amer. Nat.*, 104: 592-597.
- Pielou E.C. 1974. *Population and Community Ecology: Principles and Methods*. Gordon and Breach Sci. Pubbl., New York. 424 pp.
- Pitcher T.J. 1986. Behaviour of teleost fishes. Fish and Fisheries Series 7. second ed. Champman & Hall, London: 363-439
- Poppe G.T., Goto Y. 1991. European Seashells (Polyplacophora, Caudofoveata, Solenogastra, Gastropoda). Vol. 1. Pubbl. by V.C. Hemmen, Grillparzerstr. 22, D-6200 Wiesbaden, Federal Republic of Germany. 352 pp.
- Poppe G.T., Goto Y. 1993. European seashells. Vol. II (Scaphopoda, Bivalvia, Cephalopoda). Hemmen V.C. (Ed.), Germany. 221 pp.
- Pradella N., Fowler A.M., Booth D.J., Macreadie P.I. 2014. Fish assemblages associated with oil industry structures on the continental shelf of north-western Australia. *J. Fish Biol.*, 84: 247-255.
- Punzo E, Malaspina S, Domenichetti F, Polidori P, Scarcella G, Fabi G. 2015. Fish detection around offshore artificial structures: preliminary results from hydroacoustics and fishing surveys. *J. Appl. Ichthyol.*, 31(S3): 48-59.
- Rinelli P., Spanò N. 1997. Distribuzione di crostacei decapodi ed echinodermi di ambienti detritici insulari. *Biol. Mar. Medit.*, 4: 440-442.
- Saggiomo V., Catalano G., Ribera d'Alcalà M. 1990. Ossigeno disciolto. Pagg. 91-103. In: Innamorati M., Ferrari I., Marino D., Ribera d'Alcalà M. (Eds.), *Metodi nell'ecologia del plancton marino*. Nova Thalassia, Vol. 11.
- Salen-Picard C. 1985. Indicateurs biologiques et sedimentation en milieu circalitoral Mediterraneen. *Rapp. p. v. Réu. Comm. Int. pour l'Explor. Sci. Mer Médit.*, 29: 5.
- Scarcella G., Grati F., Fabi G. 2011. Temporal and Spatial Variation of the Fish Assemblage Around a Gas Platform in the Northern Adriatic Sea, Italy. *Turkish J. Fish. Aquatic Sci.*, 11: 433-444.
- Schlitzer R., 2016. Ocean Data View. http://odv.awi.de.
- Schroeder D.M., Ammann J.A., Harding, L.A., MacDonald W., Golden T. 1999. Relative habitat value of oil and gas production platforms and natural reefs to shallow water fish assemblages in the Santa Maria Basin and Santa Barbara Channel, California. *Proc. Fifth Calif. Islands Symp.*: 493–498.
- Simboura N., Zenetos A. 2002. Benthic indicators to use in ecological quality classification of Mediterranean soft bottom marine ecosystem, including a new biotic index. *Medit. Mar. Sci.*, 3: 77-111.
- Spagnolo A., Panfili M., Giampieri A., Spegne R., Trovarelli L. 2002. Cambiamenti indotti sulla comunità bentonica di fondo mobile da una piattaforma estrattiva off-shore (Adriatico settentrionale). *Biol. Mar. Medit.*, 9(1): 191-198.
- Spagnolo A., Ausili S., Fabi G., Manoukian S., Puletti M. 2006. Realizzazione di una piattaforma

- estrattiva off-shore: effetti sul macrozoobenthos di fondo mobile. *Biol. Mar. Medit.*, 13(2): 60-61.
- Stachowitsch, M., Kikinger, R., Herler, J., Zolda, P., Geutebrück, E. 2002. Offshore oil platforms and fouling communities in the southern Arabian Gulf (Abu Dhabi). *Mar. Pollut. Bull.*, 44: 853-860.
- Stanley D.R., Wilson C.A. 1990. A fishery-dependent based study of fish species composition and associated catch rates around oil and gas structures off Louisiana. *Fish. Bull.*, 88: 719-730.
- Stanley D.R., Wilson C.A. 1997. Seasonal and spatial variation in the abundance and size distribution of fishes associated with a petroleum platform in the northern gulf of Mexico. *Canad. J. Fish. Aquatic Sci.*, 54: 1166-1176.
- Strickland J.D.H., Parsons T.R. 1972. A practical handbook of seawater analysis. *Bull. Fish. Res. Bd. Canada*, 167. 310 pp.
- Teixeira H., Salas F., Pardal M.A., Marques J.C. 2007. Applicability of ecological evaluatuon tools in estuarine ecosystem: a case of the lower Mondego estuary (Portugal). *Hydrobiologia*, 587: 101-112.
- Totti C., Civitarese G., Acri F., Barletta D., Candelari G., Paschini E., Solazzi A. 2000. Seasonal variability of phytoplankton populations in the middle Adriatic sub-basin. *J. Plankton Res.*, 22(9): 1735–1756.
- Trabucco B., Cicero A.M., Gabellini M., Virno Lamberti C., Di Mento R., Bacci T., Moltedo G., Tomassetti P., Panfili M., Marusso V., Cornello M. 2006. Study of the soft bottom macrozoobenthic community around an offshore platform (central Adriatic Sea). *Biol. Mar. Medit.*, 13(1): 659-662.
- Trabucco B., Bacci T., Marusso V., Lomiri S., Vani D., Marzialetti S., Cicero A.M., Di Mento R., De Biasi A.M., Gabellini M., Virno Lamberti C. 2008. Study of the macrofauna sorrounding off-shore platforms in the central Adriatic Sea. *Biol. Mar. Medit.*, 15(1): 141-143.
- Tsagarakis K, Giannoulaki M, Somarakis S, Machias A. 2012. Variability in positional, energetic and morphometric descriptors of European anchovy *Engraulis encrasicolus* schools related to patterns of diurnal vertical migration. *Mar. Ecol. Progr. Series*, 446: 243–258.
- UNI EN ISO. 2000. Saggio di inibizione della crescita di alghe marine con Skeletonema costatum e Phaeodactylum tricornutum. UNI EN ISO 10253:2000. 14 pp.
- UNESCO. 1983. Algorithms for computation of fundamental properties of seawater. Tech. Pap. Mar. Sci., 44. 53 pp.
- UNESCO. 1988. *The acquisition, calibration, and analysis of CTD data*. Tech. Pap. Mar. Sci., 54. 59 pp.
- USEPA. 1991. Short-term methods for estimating the cronic toxicity of effluents and receiving waters to freshwater organisms -Section 14- Green alga Selenastrum capricornutum growth test Method 1003.0. EPA/600/4-91/002. 334 pp.
- USEPA. 1995. Short-term methods for estimating the chronic toxicity of effluent and receiving waters to west coast marine and estuarine organisms. EPA/600/R-95/136. 15 pp.
- Viarengo A., Canesi L. 1991. Mussels as biological indicators of pollution. *Aquaculture*, 94(2–3): 225–243.
- Vidussi F., Claustre H., Bustillos-Guzmàn J., Cailliau C., Marty J. C. 1996. Determination of Chlorophylls and carotenoids of marine phytoplankton: separation of Chlorophyll a from divinylChlorophyll a and zeaxanthin from lutein. *J. Plankton Res.*,18(12): 2377-2382.
- Wang, X.H., Pinardi N. 2002. Modeling the dynamics of sediment transport and resuspension in the northern Adriatic Sea. *J. Geophys. Res.*, 107(C12): 1-23.
- Wang, X.H., Pinardi N., Malacic V. 2006. Sediment transport and resuspension due to combined motion of wave and current in the northern Adriatic Sea during a Bora event in January 2001: A numerical modelling study. *Cont. Shelf Res.*, 27(5): 613 633.

- Whitehead P.J.P., Bauchot M.L., Hureau J.C., Nielsen J., Tortonese E. (eds). 1986. Fishes of the North- Eastern Atlantic and Mediterranean. UNESCO, Voll. 1-2-3. 1473 pp.
- Winkler L.W. 1888. Die Bestimmung des im Wasser gelosten Sauerstoffes. *Chem. Ber.*, 21: 2843-2855.
- Wolfson, A., VanBlaricom, G., Davis, N., Lewbel, G.S. 1979. The marine life of an offshore oil platform. *Mar. Ecol. Progr. Series*, 1: 81-89.
- Zar J.H. 1984. Biostatistical analysis. Prentice Hall inc., Englewood Cliffs, New Jersey. 663 pp.
- Zavatarelli M., Raicich F., Bregant D., Russo A., Artegiani A. 1998. Climatological biogeochemical characteristics of the Adriatic Sea. *J. Mar. Syst.*, 18: 227-263.
- Zenetos A., Bellou N., Abousamra F. 2004. The use of BENTIX in Assessing Ecological Quality of coastal waters across the Mediterranean. Proceedings of an international workshop on the promotion and use of benthic tools for assessing the healt of coastal marine ecosystems. Intergovernmental Oceanographic Commission. Workshop Report n. 195: 19-22.


ALLEGATO A

SCHEDE TECNICHE DELLA STRUMENTAZIONE UTILIZZATA NELLE INDAGINI

<u>A1</u>

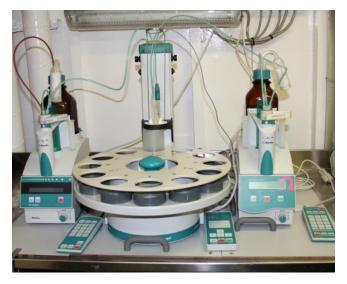
INDAGINI FISICHE E CHIMICHE DELLA COLONNA D'ACQUA

A1-I SONDA MULTIPARAMETRICA CTD e "ROSETTE"

CTD: Sonda multiparametrica CTD SBE 19plusV2 dotata dei seguenti sensori:

Sensore	Costruttore	Modello	Accuratezza	Intervallo di misura	Data calibrazione
Temperatura	Sea Bird Electronics	Interno	± 0,005 °C	-5:+35°C	12/02/2014
Conducibilità	Sea Bird Electronics	Interno	± 0,0005 S m ⁻¹	0:9 S m ⁻¹	12/02/2014
Pressione	Sea Bird Electronics	Druck	± 0,1 % fondo scala	0: 600 m	04/02/2014
Ossigeno	Sea Bird Electronics	SBE 43	± 0,1 ml L ⁻¹	0 : 15 ml L ⁻¹	calibrazione con Winkler ad ogni campagna
Fluorimetro	Turner Designs	Cyclops-7	± 0,01 μg L ⁻¹	0 : 50 μg L ⁻¹	calibrazione con campioni di Chl ad ogni campagna
Torbidimetro	Turner Designs	Cyclops-7	± 0,01 NTU	0 : 300 NTU	calibrazione con campioni di TSM ad ogni campagna

Campionatore: SBE 32C Carousel Water Sampler con bottiglie GO.


A1-II ADCP (ACOUSTIC DOPPLER CURRENT PROFILER)

Strumento	Costruttore	Modello	Risoluzione	Accuratezza	Intervallo di misura	Calibrazione
ADCP	Teledyne RD Instruments	Sentinel V	0,1 cm/s	± 0,3 cm/s	± 5 m/s (default) ±20 m/s (maximum)	Ad ogni deployment

Sensore	Costruttore	Modello	Risoluzione	Accuratezza	Intervallo di misura	Calibrazione
Temperatura	Teledyne RD Instruments	Sentinel V	0,1°C	± 0,4 cm/s	da -5°C a + 45°C	ad ogni deployment

A1-III TRITINO per la misurazione dell'ossigeno disciolto con il metodo Winkler

Sistema di titolazione automatico con Metrohm Basic Titrino 794 e campionatore

A1-IV ANALIZZATORE COLOROMITRICO AUTOMATICO EasyChem PlusTM per l'analisi dei sali nutritivi

A1-V HPLC per l'analisi dei pigmenti

<u>A1-</u> VI Analisi metalli pesanti - Spettrofotometro di massa ICP-MS 7500ce

A1- VII Analisi del Silicio - Spettrofotometro a emissione atomica ICP-AES Vista-MPX

<u>A1-</u> VIII Analisi BTEX - Spettrofotometro di massa quadrupolare HEWLWTT-PACKARD GC/MS 5973 Network

<u>A1-</u> IX Analisi Glicole etilenico e Idrocarburi totali - Gascromatografo GC FISONS INST.

A1- X Analisi cromotografica degli IPA - Cromatografo liquido HPLC Perkin Elmer PE 200, accoppiato a un rilevatore a fluorescenza PE serie 200A

A1- XI Analisi cromotografica degli IA - Gascromatografo Agilent 7820A accoppiato a un rilevatore di massa sistema MSD Agilent Serie 5977A.

A2

INDAGINI FISICHE E CHIMICHE DEI SEDIMENTI

A2-I BOX-CORER per il prelievo dei campioni

Materiale	Dimensione scatola campionatore (cm)
Ferro zincato	17x10x24,5h

A2-II BILANCIA ELETTRONICA

Le bilance elettroniche sono sensibili all'accelerazione di gravità; pertanto, in accordo con la direttiva 90/384, devono essere calibrate nel luogo di utilizzo con masse tarate in classe F1 che corrispondono a un peso di 200 g.

Strumento	Costruttore	Modello	Sensibilità	Capacità
Bilancia elettronica	Gibertini Elettronica S.r.l.	EU 2000	±0,01 g	1000 g

A2-III STUFA TERMOSTATA "HIGH PERFORMANCE"

Strumento	Costruttore	Modello	Capacità (litri)	Temperatura (°C)	Precisione (°C)
Stufa termostata	F.lli Galli G&P	2100	96	50 – 300	±2

Ogni sei mesi viene inserito un termometro per verificare che la temperatura della stufa resti costante. La lettura del termometro viene eseguita ogni 45 minuti per una durata totale della prova di 3 ore. E' accettata una variazione di 2°C rispetto alla temperatura iniziale.

A2-IV SETACCI

Strumento	Costruttore	Serie	Materiale	Diametro (mm)	Dimensione delle maglie (μ)
Setacci normalizzati	Giuliani Teconologie S.r.l.	ASTM	acciaio inox	100 - 200	63, 125, 250, 500, 1000, 2000, 4000

Periodicamente si verifica che le maglie abbiano mantenuto le dimensioni e la forma originaria e si testa la regolarità delle saldature.

A2-V DENSIMETRO

Strumento	Costruttore	Serie	Scala (ml)	Divisione (ml)	Zavorra	Taratura (°F)
Densimetro per terreni	Vetrotecnica	Normale ASTM	0,995 - 1,040	0,001	piombo	68/68

Lo strumento non necessita di verifica e taratura. Viene sostituito quando la scala graduata non è più visibile.

<u>A2-VI</u> GAS-CROMATOGRAFO DOPPIA COLONNA, RIVELATORE FID - PERKIN ELMER SIGMA3B – DUAL FID

Il controllo interno della taratura dello strumento viene effettuato preliminarmente all'avvio di ogni indagine commissionata. Il controllo esterno e l'eventuale taratura ordinaria sono condotti annualmente da un Tecnico incaricato dalla Ditta costruttrice, quando il controllo interno risulta sfavorevole.

A2-VII DMA 80 per la misurazione del MERCURIO

Consente di effettuare analisi per la determinazione diretta del contenuto di mercurio su matrici di varia natura, senza che si rendano necessari trattamenti chimici del campione.

A2-VIII VARIAN SPECTRA AA-240 Z per la misurazione di CADMIO e PIOMBO E ARSENICO

Spettrofotometro ad assorbimento atomico usato mediante l'impiego del fornetto di grafite con piattaforma pirolitica. La correzione del rumore di fondo è assicurata dalla correzione di background transversa "Zeeman" e dall'interpolazione polinomiale per la correzione delle interferenze. Al fine di ridurre il rumore di fondo e il limite di rivelabilità e di incrementare la sensibilità vengono utilizzate lampade monoelemento a catodo cavo.

A2-IX VARIAN ICP-720ES per la misurazione di ALLUMINIO, BARIO, FERRO, CROMO, NICHEL, RAME, SILICIO, VANADIO e ZINCO

Spettrofotometro ad emissione atomica al plasma ad accoppiamento induttivo (ICP) e lettura sequenziale. Il sistema di raccolta della radiazione emessa dal plasma è di tipo assiale. Il generatore di radiofrequenze è 40 MHz. Per il raffreddamento del plasma viene impiegato argon ultrapuro.

<u>A2-X</u> ICP-MS Agilent Mod. 7700 per la misurazione dell'INDIO

A3 INDAGINI SULLA COMUNITA' BENTONICA

A3-I BENNA VAN VEEN

Materiale	superficie di sedimento campionata (m²)
Acciaio	0,095

A3-II SETACCIO

Materiale	Lato maglia (mm)
Acciaio inox	0,5

A3-III MICROSCOPIO STEREO ZEISS STEMI 2000-C

Range dello zoom: 0,65x...5,0x.

A3-IV MICROSCOPIO OTTICO ZEISS AXIOLAB

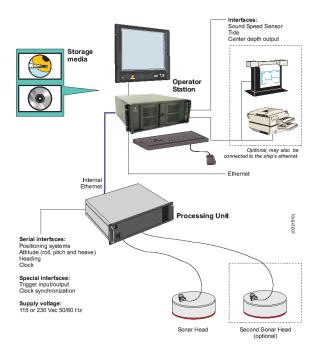
Obiettivi in dotazione: 10x, 40x, 100x.

A3-V BILANCIA ANALITICA

Strumento	Costruttore	Modello	Risoluzione	Capacità
Bilancia elettronica	Mettler Toledo	ML204	0,0001 g	220 g

A4 INDAGINI SULLA COMUNITA' ITTICA

A4-I RETE TREMAGLIO



Lunghezza totale: 300 m

	Pannello interno	Pannello esterno
materiale	Monofilamento di poliammide	Monofilamento di poliammide
altezza (m)	6	3
apertura maglia stirata (mm)	72	400
diametro filo (mm)	0,18	0,30
rapporto di armamento	0,35	0,50

	Lima dei galleggianti	galleggianti	Lima dei piombi
materiale	poliammide		
diametro (mm)	7		
quantità ogni metro		1	
tipo		B19-70	
spinta (g)		55	
peso (g/m)			120

A4-II MULTIBEAM ECHOSOUNDER KONGSBERG EM 3002

Features

The EM 3002 system uses frequencies in the 300 kHz band. This is an ideal frequency for shallow water applications, as the high frequency ensures narrow beams with small physical dimensions. At the same time, 300 kHz secures a high maximum range capability and robustness under conditions with high contents of particles in the water.

EM 3002 uses a powerful sonar processor unit in combination with 1 or 2 compact sonar heads. The high computing power of the EM 3002 sonar processor makes it possible to apply sophisticated and exact signal processing algorithms for beamforming, beam stabilisation, and bottom detection. In High Density processing mode the system has close to uniform acoustic footprints and resolution over the whole swath width, and therefore a much improved capability to detect objects and other details on the bottom.

EM 3002 will in addition to bathymetric soundings, produce an acoustic image of the seabed. The image is obtained by combining the acoustic return signals inside each beam, thus improving signal to noise ratio considerably, as well as eliminating several artifacts related to conventional sidescan sonars. The acoustic image is compensated for the transmission source level, receiver sensitivity and signal attenuation in the water column, so that reliable bottom backscatter levels in dB are obtained. The image is also compensated for acoustic ray bending, and thus completely geo-referenced, so that preparation of a sonar mosaic for a survey area based upon data from several survey lines is easy. Objects observed on the seabed image are correctly located and their positions can be readily derived.

Technical specifications

Operational specifications	
Frequencies	.293, 300, 307 kHz
Number of soundings per ping:	
Single sonar head	Max 254
Maximum ping rate	40 Hz
Maximum angular coverage:	
Single sonar head	130 degrees
Pitch stabilisation	Yes
Roll stabilisation	Yes
Heave compensation	Yes
Pulse length	150 μs

Range sampling rate	14, 14.3, 14.6 kHz
Depth resolution	1 cm
Transducer geometry	Mills cross
Beam spacing	Equidistant or equiangular

Beamforming:

- Time delay with shading
- Dynamically focused receive beams

Seabed image data

- Composed from beamformed signal amplitudes
- Range resolution 5 cm.
- Compensated for source level and receiver sensitivity, as well as attenuation and spherical spreading in the water column.
- Amplitude resolution: 0.5 dB.

External sensors

- Position
- Heading
- Motion sensor (Pitch, roll and heave)
- Sound velocity profile
- Sound velocity at transducer.
- Clock synchronisation (1 PPS)

Environmental and EMC specifications

The system meets all requirements of the IACS E10 specification. The Operator Station, LCD monitor and Processing Unit are all IP22 rated.

A4-III MULTIBEAM ECHOSOUNDER KONGSBERG EM EM 2040C

System diagram

Features

The EM 2040C-D (C for Compact – D for Dual Heads) is a shallow water multibeam echo sounder, ideal tool for high-resolution mapping and inspection application that fulfils and even surpasses the IHO-S44 special order and the more stringent LINZ specification.

The EM 2040C system operating frequency range is from 200 to 400 kHz enabling the user to choose on the fly the best operating frequency for the application in base of the depth.

The EM 2040C-D has three units: a sonar head (two for this system) where receiver and transmitter are integrated, a processing unit and a hydrographic workstation. For completeness, data input from a motion sensor and a positioning system is required, as is the sound speed profile of the water column between the transducers and the bottom. Sound speed at the transducer depth is an optional input and is highly recommended, especially for a dual head system.

Further features:

- Wide frequency range
- FM chirp
- Roll and pitch stabilisation
- · Yaw stabilisation
- · Nearfield focusing both on transmit and receive
- Short pulse lengths, large bandwidth
- Water column display
- · Seabed image
- Water column logging
- Dual swath

Technical specifications

Performance specifications

• Frequency range:

 $200-400\;kHz$

Maximum detected depth:
Minimum detected depth:
Maximum ping rate:
Number of soundings per ping (dual head):
Beam width (TX x RX) at 200 kHz:
Beam width (TX x RX) at 300 kHz:
Beam width (TX x RX) at 400 kHz:
1 x 1degrees

• TX source level at 300 kHz: 204.5 dB re 1 μ Pa at 1 m

• RX beam spacing: Equidistant, equiangle and high density

Coverage sector (dual head): 200 degrees at 200 – 320 kHz,
 Coverage sector (dual head): 170 degrees at 350 kHz,
 Coverage sector (dual head): 140 degrees at 400 kHz
 Transmit beam steering: Stabilised for pitch (+/- 10 degrees)

• Transmit beam steering: Stabilised for pitch (+/- 10 degrees)
• Receive beam steering: Stabilised for roll (+/- 15 degrees)

• Range resolution (defined as cT/2): 18.8 mm at 25 μ s pulse

Roll stabilised beams: +/-15 degrees
 Pitch stabilised beams: +/-10 degrees

• Yaw stabilised beams: +/-10 degrees

Pulse length: 14 μs -12ms
 System accuracy: better then 10 mm

System accuracy: better then 10 mm
 Depth resolution 1 cm
 Transducer geometry Mills cross

External sensors

- Position
- Heading
- Motion sensor (Pitch, roll and heave)
- Sound velocity profile
- Clock synchronisation (1 PPS)

Environmental and EMC specifications

The system fulfils and even surpasses the IHO-S44 special order and the more stringent LINZ specification.

A4-IV QUASI STELLAR COLOR

Quasi Stellar, derivata dalla Light Camera, deriva dall'applicazione di recenti tecnologie elettroniche e meccaniche. Costruita con componenti elettronici e meccanici di qualità (acciaio inossidabile, metacrilato, delrin), consente la visione diurna in bianco e nero (o a colori) del fondo in condizioni di scarsa luminosità e torbidità a grandi profondità, fino e oltre 200 m., con intensità di appena 2

millesimi di lux, ideale per la ricerca sistematica con i metodi della traina o del pendolo, consente un buon riconoscimento della tipologia del fondo e degli oggetti, anche seminterrati.

Caratteristiche generali: Trasmettitore video entro-contenuto, che permette la ricezione su qualsiasi televisore o videoregistratore (non occorrono monitor). Cavo ombelicale di piccolo diametro (4.2 mm.) rinforzato internamente con treccia in poliestere che assicura una trazione di oltre 80 Kg. Dimensioni e pesi contenuti: corpo 101,6 mm. di diametro per 280 mm. di lunghezza. L'alimentazione, fornita da batterie al piombo gelatinoso alloggiate nella consolle, assicura una lunga autonomia (maggiore di 24 h di servizio continuo) grazie al basso consumo della telecamera. Per periodi d'uso continuato, o se non si desidera ricorrere all'uso delle batterie, sono disponibili alimentatori a 220 V. Quasi Stellar è fornita in allestimento base con versioni operative a 100 e 200 m. di profondità, con pezzature di cavo ombelicale di analoga lunghezza e cavetto di collegamento al televisore.

ANALISI IN MYTILUS GALLOPROVINCIALIS

A5-I ESTRAZIONE LIQUIDO-SOLIDO A FLUSSO tipo Soxhlet

Materiale: Apparato elevatore, isomantello, pallone da 250 ml, un apparato di Soxhlet con refrigerante apposito, un ditale di carta, pinze e morsetti, due tubi di gomma, moderatore di ebollizione (sfere di pyrex), cilindro graduato da 250 ml, solvente organico d'estrazione, cilindretto graduato da 10 ml, pipette Pasteur, cristallizzatore, piastra riscaldante, ancoretta magnetica, imbuto, tettarelle, cotone, provetta o protettone da 250 ml.

<u>A5-II</u> CROMATOGRAFIA LIQUIDA Waters 996 PDA HPLC System (liquid chromatograph)

TIPO DI STRUMENTO: Cromatografo per comatrografia liquida ad alte pressioni (HPLC).

COSTRUTTORE Waters

SERIE 996 PDA

TIPO DI DETECTOR: Fluorescenza (Waters® 474 Scanning Fluorescence Detector) e UV-

Visivbile (rivelatore a serie di fotodiodi Waters® PDA 996)

VOLUME DI INIEZIONE: $5 \mu l$ CARRIER: Acqua/Acetonitrile

TIPO DI COLONNA: Supelcosil LC-PAH

LUNGHEZZA: **25 cm** DIAMETRO: **4.5 mm**

FASE: **C-18**

PARTICLE SIZE: 5 µm

INTEGRAZIONE ED ANALISI DEL DATO: Waters Millennium software®

<u>A5-IIa</u> SUPELCOSILTM LC-PAH HPLC Column (colonna per cromatografia liquida ad altre prestazioni-HPLC)

CARATTERISTICHE FISICHE: 5 µm diametro granuli, lunghezza × I.D. 25 cm × 4.6 mm

MATRICE (supporto): gel di silice a forma sferica

(Fase stazionaria): octadecyl silice

diametro granuli: 5 µm dimensione pori: 120 Å

<u>A5-III</u> GAS – CROMATOGRAFIA FID (Flame Ionization Detector Perkin Elmer) per l'analisi degli Idrocarburi Alifatici

TIPO DI STRUMENTO: gas cromatografo

COSTRUTTORE Perkin Elmer SERIE GC FID Autosystem

TIPO DI DETECTOR: FID (Flame Ionized Detector)

TECNICA DI INIEZIONE: Splitless VOLUME DI INIEZIONE: $2~\mu l$

CARRIER: Elio

TIPO DI COLONNA: Capillare LUNGHEZZA: 30 metri DIAMETRO: 0.2 mm

FASE: SOPB-5

SPESSORE DEL FILM: 0.2 μm

INTEGRAZIONE ED ANALISI DEL DATO: Software TotalCrom Perkin Elmer

A5-IIIa SUPELCO SPB-5

CARATTERISTICHE TECHNICHE: Lunghezza 30m, Ø 0.32mm MATRICE-Fase stazonaria 0.25mm, 95% difenil-, 5% dimetil-silicone)

A5-IV MINERALIZZATORE Milestone Ethos 900

TIPO DI STRUMENTO: Forno Mineralizzatore /estrattore

COSTRUTTORE Milestone

SERIE: 900

VOLUME DI INIEZIONE: 6 posizioni da 200 ml POTENZA SORGENTE: fino a 1600w

 $SOFTWARE\ DI\ CONTRIOLLO:\ \textbf{EasyControl\ software}^{\textcircled{\$}}$

<u>A5-V</u> SPETTROFOTOMETRIA DI ASSORBIMENTO ATOMICO Perkin-Elmer

TIPO DI STRUMENTO: Spettrofotometro ad assorbimento atomico a doppio raggio con

correttore di fondo Zeeman 4100 Z.

COSTRUTTORE: Perkin-Elmer.
SERIE: AAS 3030
LAMPADA: a catodo cavo.

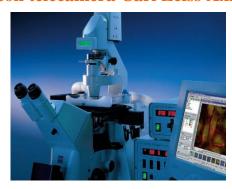
ACCESSORI OPZIONALI:

A5-Va

Flow injection Mercury system FIMS 400, Perkin-Elmer per il dosaggio/analisi del Hg

A5-Vb

Flow Injection Analysis System (FIAS 400, Perkin Elmer) per il dosaggio/analisi dell'As



A5-VI CRIOSTATO Leica CM1900

Strumento	Costruttore	Serie	Cabina	Refrigerante
Criostato	Leica	1900	Refrigerata fino a -50C°	Freon

<u>A5-VII</u> MICROSCOPIO invertito Carl Zeiss Axiocam 135 motorizzato con telecamera Carl Zeiss Axiovert HS

Main features Highly stable pyramid shape and low center of gravity for vibration-free work, min. 6 adaptation

options (12 drilled holes) e.g. for micromanipulators

Optovar revolver 3x motorized 6x objective nosepiece for HD DIC,

motorized

Optics ICS optics for finest image quality: special application objectives with long working distance

Objectives Reflected light: Epiplan, Epiplan-Neofluar, EC Epiplan-Neofluar

Transmitted light: Achroplan, Plan-Neofluar

Special: LD-Epiplan, LD-EC Epiplan-Neofluar (reflected light objective with long working

distance)

Modules Polarization optical shearing interferometer (TIC) to measure reflected light-phase objects(levels,

differences in height), MHT 10, DeepView

Illumination Reflected light 12V, 100W halogen

HBO 50W mercury vapor short arc lamp HBO 100W mercury vapor short arc lamp

XBO 75W xenon lamp

Reflected light/filter slider 3 positions for filters with 25 mm diameter

Reflector turret 5 positions, manual or motorized,

exchangeable

Light Trap High contrast, minimized stray light

Transmitted light 6V, 30W

12V, 100W

LCD-display, light manager

TelecameraAxiovert HS

Sensore Sony ICX 414, progressives readout Risoluzione 660(H) x 494 (V) = 330 K Pixels

Pixel Size 9.9 μ m (H) x 9.9 μ m (V)

Dimensione sensore 6,5 mm x 4,9 mm, equivalent to ½

Sensibilità spettale HSc appr. 400 bis 720 nm con BG 40 IR-blocking filter HSm appr. 350 bis 1000 nm

con BK7 protective cover glass

Dynamic Range Typical SNR 65 dB = 1:1800

Noise 117 e

Dark Current 0,7 LSB/s, equivalenti a to 5,4 e / Pixel/s

Fotogrammi / sec Appr. 54 fotogrammi/s in risoluzione normale fino a . 140 fotogrammi/s a

Tempo di esposizione da 0,25 ms fino a 60 s

Color optimisation Available for color model, default white point 3200 k

A5-VIII CENTRIFUGA Beckman Allegra 25R

Strumento	Costruttore	Modello	Range velocità	Range temperatura (°C)	Precisione	Diametro rotore
Centrifuga	Beckman	Allegra 25R	100-25000 rpm	0 – 50 piena velocità -30-40 a veloc. ridotta	±1	215 mm

A5-IX SPETTROFOTOMETRIA Shimadzu UV-1700 Pharma

Strumento	Costruttore	Serie	Lampada	Range lunghezza d'onda	Accuratezza lung. d'onda	Range fotometrico	Accuratezza fotometrica
Spettrofotometro	Shimadzu	UV 1700 Pharma	UV-VIS	195-1100 nm)	±0,5 nm	Trasmittanza 0- 100% T Assorbanza 0-4 A	±0,005 A

Taratura giornaliera ed esecuzione di curva standard di riferimento.

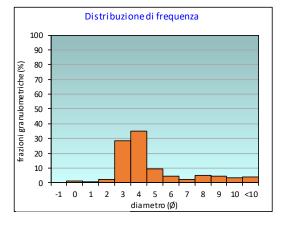
ALLEGATO B

SCHEDE GRANULOMETRICHE DEI SITI POSTI NELL'AREA DELLA PIATTAFORMA BONACCIA NW E DEI CONTROLLI

K1 - K4

<u>6° SURVEY POST LAVORI DI INSTALLAZIONE</u>

2° semestre 2018

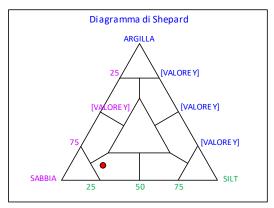


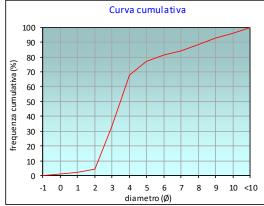
Stazione A1 (250 m NW)

PARAMETRI FISICI				
Peso specifico (g/cm³)	n.d.			
Umidità (%)	31,0			
Colore MUNSEL (codice)	n.d.			
Colore MUNSEL (nome)	n.d.			

	ø	μm	%	Freq. Comul. %
GHIAIA	-1	2000	0,0	0,0
	0	1000	1,1	1,1
	1	500	0,9	2,0
SABBIA	2	250	2,3	4,2
	3	125	28,6	32,9
	4	62,5	34,8	67,7
	5	31,2	9,4	77,1
LIMO	6	15,6	4,3	81,4
LIIVIO	7	7,8	2,5	83,8
	8	3,9	4,8	88,6
	9	2	4,3	92,9
ARGILLA	10	0,98	3,1	96,0
l	<10	<0.00	4.0	100.0

CLASSIFICAZIONE				
Shepard Sabbia siltosa				
Classazione	Molto mal classato			
Asimmetria	Molto positiva			
Appuntimento	Molto Leptocurtica			
	·			




PARAMETRI STATISTICI				
Media	Mi	4,31		
Mediana	Md	3,49		
Classazione	σ	2,32		
Asimmetria	S_{ki}	0,57		
Appuntimento	K _G	1,53		

PERCENTILE	Ø
5	2,03
16	2,41
25	2,73
50	3,49
75	4,78
84	7,04
95	9,69

CLASSE GRANULOMETRICA						
GHIAIA SABBIA LIMO ARGILLA						
0,0 67,7 20,9 11,4						

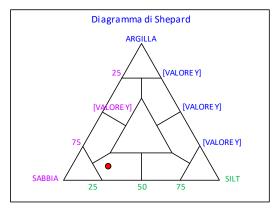
NOTE
n.d.

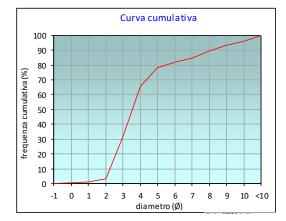
Stazione A2 (120 m NW)

PARAMETRI FISICI				
Peso specifico (g/cm³)	n.d.			
Umidità (%)	27,5			
Colore MUNSEL (codice)	n.d.			
Colore MUNSEL (nome)	n.d.			

	ø	μm	%	Freq. Comul. %
GHIAIA	-1	2000	0,0	0,0
	0	1000	0,4	0,4
	1	500	0,7	1,1
SABBIA	2	250	2,4	3,5
	3	125	27,9	31,4
	4	62,5	34,4	65,8
	5	31,2	12,5	78,4
LIMO	6	15,6	3,3	81,7
LIIVIO	7	7,8	3,2	84,9
	8	3,9	4,5	89,3
•	9	2	4,0	93,3
ARGILLA	10	0,98	2,9	96,2
	<10	<0,98	3,8	100,0

CLASSIFICAZIONE					
Shepard	Sabbia siltosa				
Classazione	Molto mal classato				
Asimmetria	Molto positiva				
Appuntimento	Molto Leptocurtica				
	·				

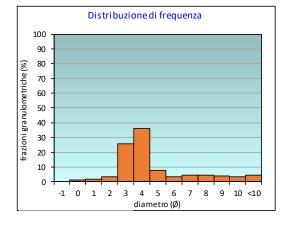

				Dis	tri b	uzi	one	di fr	equ	enz	a				
	100														
	90														
(%)	80														
frazioni granulometriche (%)	70														
netr	60														
oluc	50														
grar	40														
ioni	30														
frazi	20														
	10														
	0	Η.	_	_		_									
		-1	0	1	2	3	4 dian	5 netro	6 o (Ø)	7	8	9	10	<10	


PARAMETRI STATISTICI				
Media	Mi	4,24		
Mediana	Md	3,54		
Classazione	σ	2,21		
Asimmetria	S_{ki}	0,55		
Appuntimento	K _G	1,57		

	PERCENTILE	Ø
	5	2,05
	16	2,45
	25	2,77
	50	3,54
	75	4,73
-	84	6,73
	95	9,58

CLASSE GRANULOMETRICA						
GHIAIA	SABBIA	LIMO	ARGILLA			
0,0	65,8	23,5	10,7			

NOTE	
n.d.	

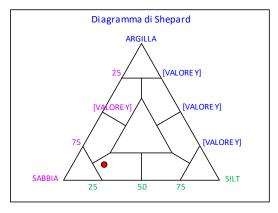


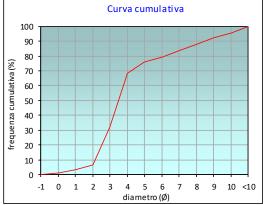
Stazione A3 (60 m NW)

PARAMETRI FISICI				
Peso specifico (g/cm³)	n.d.			
Umidità (%)	33,1			
Colore MUNSEL (codice)	n.d.			
Colore MUNSEL (nome)	n.d.			

	ø	μm	%	Freq. Comul. %
GHIAIA	-1	2000	0,0	0,0
	0	1000	1,3	1,3
	1	500	1,7	3,0
SABBIA	2	250	3,4	6,4
	3	125	25,5	31,9
	4	62,5	36,3	68,2
	5	31,2	7,6	75,8
LIMO	6	15,6	3,4	79,2
LIVIO	7	7,8	4,2	83,4
	8	3,9	4,6	88,0
	9	2	4,1	92,2
ARGILLA	10	0,98	3,3	95,4
	<10	<0.98	4,6	100,0

Sabbia siltosa Molto mal classato
Molto mal classato
Molto mal classato
Molto positiva
Molto Leptocurtica




PARAMETRI STATISTICI				
Media	Mi	4,33		
Mediana	Md	3,50		
Classazione	σ	2,44		
Asimmetria	S_{ki}	0,53		
Appuntimento	K _G	1,56		

PERCENTILE	Ø
5	1,59
16	2,38
25	2,73
50	3,50
75	4,90
84	7,12
95	9,86

CLASSE GRANULOMETRICA						
GHIAIA	SABBIA	LIMO	ARGILLA			
0,0	68,2	19,9	12,0			

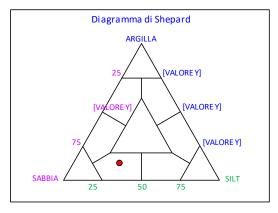
NOTE
n.d.

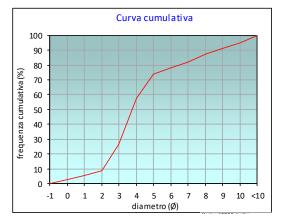
Stazione A4 (30 m NW)

PARAMETR	I FISICI
Peso specifico (g/cm³)	n.d.
Umidità (%)	29,8
Colore MUNSEL (codice)	n.d.
Colore MUNSEL (nome)	n.d.

	ø	μm	%	Freq. Comul. %
GHIAIA	-1	2000	0,0	0,0
	0	1000	2,9	2,9
	1	500	2,5	5,4
SABBIA	2	250	3,0	8,4
	3	125	18,4	26,8
	4	62,5	30,9	57,7
	5	31,2	16,3	74,0
LIMO	6	15,6	4,1	78,1
LIIVIO	7	7,8	4,0	82,1
	8	3,9	5,1	87,2
	9	2	4,1	91,3
ARGILLA	10	0,98	3,5	94,8
	<10	<0,98	5,2	100,0

CLASSIFICAZIONE				
Shepard	Sabbia siltosa			
Classazione	Molto mal classato			
Asimmetria	Molto positiva			
Appuntimento	Molto Leptocurtica			
	·			

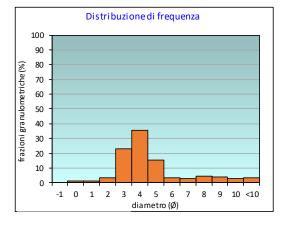

				Dis	trib	uzi	one	di fr	equ	enz	a			
	100	Т												ı
	90	+												
(%)	80	+												
iche	70	-												
frazioni granulometriche (%)	60	+												
ulor	50	+												
grar	40	+												
oni	30	+												
frazi	20	+												
	10	+												
	0	+-												
		-1	0	1	2	3	4 dian	5 netro	6 o (Ø)	7	8	9	10 <10	


PARAMETRI STATISTICI		
Media	Mi	4,51
Mediana	Md	3,75
Classazione	σ	2,64
Asimmetria	S_{ki}	0,41
Appuntimento	K _G	1,61

PERCENTILE	Ø
5	0,83
16	2,41
25	2,90
50	3,75
75	5,24
84	7,38
95	10,04

CLASSE GRANULOMETRICA							
GHIAIA	GHIAIA SABBIA LIMO ARGILLA						
0,0	0,0 57,7 29,5 12,8						

NOTE
n.d.

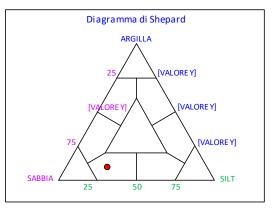


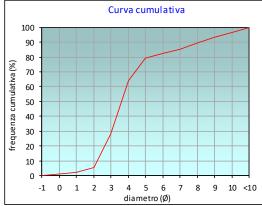
Stazione BO NW

PARAMETRI FISICI			
Peso specifico (g/cm³)	n.d.		
Umidità (%)	28,0		
Colore MUNSEL (codice)	n.d.		
Colore MUNSEL (nome)	n.d.		

	ø	μm	%	Freq. Comul. %
GHIAIA	-1	2000	0,0	0,0
	0	1000	1,1	1,1
	1	500	1,1	2,3
SABBIA	2	250	3,2	5,5
	3	125	22,9	28,5
	4	62,5	35,5	63,9
	5	31,2	15,2	79,2
LIMO	6	15,6	3,2	82,3
LIVIO	7	7,8	3,1	85,4
	8	3,9	4,3	89,7
	9	2	3,8	93,6
ARGILLA	10	0,98	2,8	96,4
	<10	<0.98	3.6	100.0

CLASSIFICAZIONE				
Shepard	Sabbia siltosa			
Classazione	Molto mal classato			
Asimmetria	Molto positiva			
Appuntimento	Molto Leptocurtica			
	·			

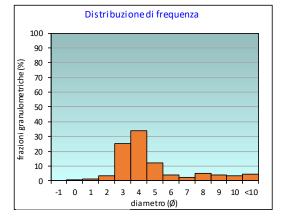



PARAMETRI STATISTICI		
Media	Mi	4,20
Mediana	Md	3,61
Classazione	σ	2,18
Asimmetria	S_{ki}	0,49
Appuntimento	K _G	1,67

PERCENTILE	Ø
5	1,84
16	2,46
25	2,85
50	3,61
75	4,73
84	6,54
95	9,51

CLASSE GRANULOMETRICA			
GHIAIA	SABBIA	LIMO	ARGILLA
0,0	63,9	25,8	10,3

NOTE	
n.d.	



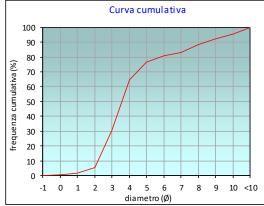
Stazione BO SE

PARAMETRI FISICI		
Peso specifico (g/cm³)	n.d.	
Umidità (%)	31,7	
Colore MUNSEL (codice)	n.d.	
Colore MUNSEL (nome)	n.d.	

	ø	μm	%	Freq. Comul. %
GHIAIA	-1	2000	0,0	0,0
	0	1000	0,6	0,6
	1	500	1,1	1,7
SABBIA	2	250	3,4	5,2
	3	125	25,3	30,5
	4	62,5	34,1	64,6
	5	31,2	12,0	76,6
LIMO	6	15,6	3,9	80,6
LIIVIO	7	7,8	2,6	83,1
	8	3,9	5,1	88,3
	9	2	4,2	92,4
ARGILLA	10	0,98	3,2	95,6
	<10	<0,98	4,4	100,0

Sabbia siltosa Molto mal classato
Molto mal classato
Molto mal classato
Molto positiva
Molto Leptocurtica

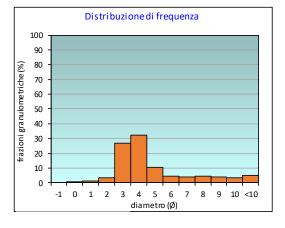



PARAMETRI STATISTICI		
Media	Mi	4,39
Mediana	Md	3,57
Classazione	σ	2,38
Asimmetria	S_{ki}	0,55
Appuntimento	K _G	1,55

PERCENTILE	Ø
5	1,95
16	2,43
25	2,78
50	3,57
75	4,86
84	7,17
95	9,81

CLASSE GRANULOMETRICA			
GHIAIA	SABBIA	LIMO	ARGILLA
0,0	64,6	23,6	11,7

NOTE	
n.d.	

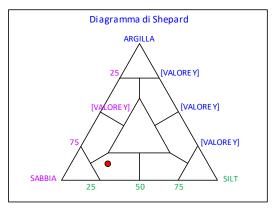


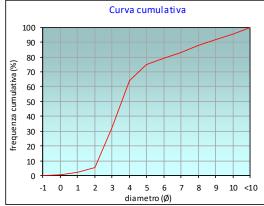
Stazione A5 (30 m SE)

n.d.
33,8
n.d.
n.d.

	ø	μm	%	Freq. Comul. %
GHIAIA	-1	2000	0,0	0,0
	0	1000	0,8	0,8
	1	500	1,2	2,0
SABBIA	2	250	3,5	5,5
	3	125	26,6	32,1
	4	62,5	32,1	64,2
LIMO	5	31,2	10,5	74,7
	6	15,6	4,4	79,1
	7	7,8	3,9	83,0
	8	3,9	4,6	87,6
	9	2	4,1	91,7
ARGILLA	10	0,98	3,5	95,2
	<10	<0.98	4,8	100,0

CLASSIFICAZIONE			
Sabbia siltosa			
Molto mal classato			
Molto positiva			
Leptocurtica			

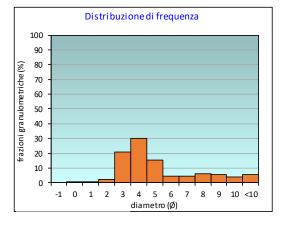



PARAMETRI STATISTICI			
Media	Mi	4,39	
Mediana	Md	3,56	
Classazione	σ	2,43	
Asimmetria	S_{ki}	0,55	
Appuntimento	K _G	1,41	

PERCENTILE	Ø
5	1,87
16	2,40
25	2,73
50	3,56
75	5,07
84	7,21
95	9,94

CLASSE GRANULOMETRICA						
GHIAIA SABBIA LIMO ARGILLA						
0,0 64,2 23,5 12,4						

NOTE
n.d.

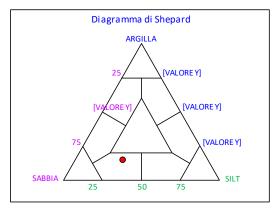


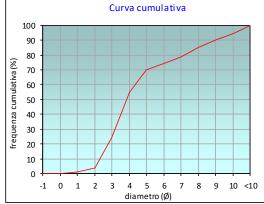
Stazione A6 (60 m SE)

PARAMETRI FISICI			
Peso specifico (g/cm³)	n.d.		
Umidità (%)	32,9		
Colore MUNSEL (codice)	n.d.		
Colore MUNSEL (nome)	n.d.		

	ø	μm	%	Freq. Comul. %
GHIAIA	-1	2000	0,0	0,0
	0	1000	0,3	0,3
	1	500	0,8	1,0
SABBIA	2	250	2,6	3,6
	3	125	20,9	24,5
	4	62,5	30,3	54,8
LIMO	5	31,2	15,1	70,0
	6	15,6	4,4	74,4
	7	7,8	4,3	78,6
	8	3,9	6,3	85,0
	9	2	5,3	90,3
ARGILLA	10	0,98	4,1	94,4
	<10	∠ ∩ ∩ 0	E 6	100.0

CLASSIFICAZIONE		
Shepard Sabbia siltosa		
Classazione	Molto mal classato	
Asimmetria	Molto positiva	
Appuntimento	Mesocurtica	

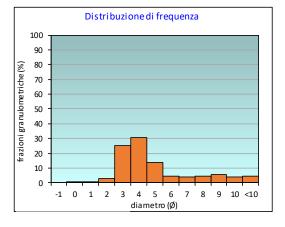



PARAMETRI STATISTICI				
Media M _i 4,76				
Mediana	Md	3,84		
Classazione	σ	2,53		
Asimmetria	S_{ki}	0,54		
Appuntimento	K _G	1,05		

PERCENTILE	Ø
5	2,07
16	2,59
25	3,02
50	3,84
75	6,15
84	7,85
95	10,11

CLASSE GRANULOMETRICA			
GHIAIA	SABBIA	LIMO	ARGILLA
0,0	54,8	30,1	15,0

NOTE
n.d.

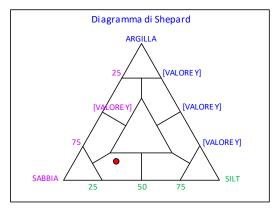


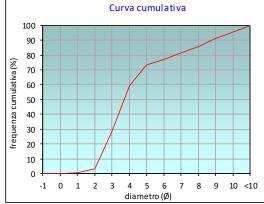
Stazione A7 (120 m SE)

PARAMETRI FISICI			
Peso specifico (g/cm³)	n.d.		
Umidità (%)	33,0		
Colore MUNSEL (codice)	n.d.		
Colore MUNSEL (nome)	n.d.		

	ø	μm	%	Freq. Comul. %
GHIAIA	-1	2000	0,0	0,0
	0	1000	0,1	0,1
	1	500	0,6	0,7
SABBIA	2	250	2,6	3,3
	3	125	25,0	28,2
	4	62,5	30,9	59,1
	5	31,2	13,9	73,0
LIMO	6	15,6	4,2	77,2
LIIVIO	7	7,8	4,2	81,4
	8	3,9	4,5	85,9
ARGILLA	9	2	5,4	91,3
	10	0,98	4,0	95,3
	<10	<0,98	4,7	100,0

CLASSIFICAZIONE			
Shepard	Sabbia siltosa		
Classazione	Molto mal classato		
Asimmetria	Molto positiva		
Appuntimento	Leptocurtica		

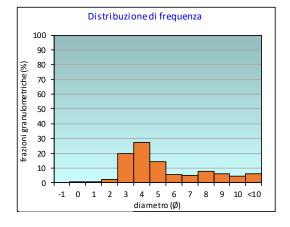



PARAMETRI STATISTICI			
Media	Mi	4,60	
Mediana	Md	3,70	
Classazione	σ	2,46	
Asimmetria	S_{ki}	0,56	
Appuntimento	K _G	1,24	

 PERCENTILE	Ø
5	2,07
16	2,51
25	2,87
50	3,70
75	5,47
84	7,58
95	9,92

CLASSE GRANULOMETRICA			
GHIAIA	SABBIA	LIMO	ARGILLA
0,0	59,1	26,8	14,1

NOTE
n.d.

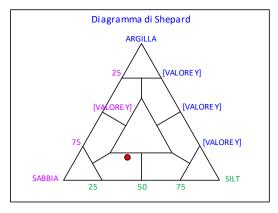


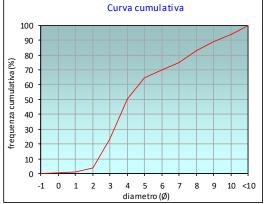
Stazione A8 (250 m SE)

PARAMETRI FISICI			
Peso specifico (g/cm³)	n.d.		
Umidità (%)	37,2		
Colore MUNSEL (codice)	n.d.		
Colore MUNSEL (nome)	n.d.		

	ø	μm	%	Freq. Comul. %
GHIAIA	-1	2000	0,0	0,0
	0	1000	0,4	0,4
	1	500	0,7	1,2
SABBIA	2	250	2,5	3,7
	3	125	19,5	23,1
	4	62,5	27,3	50,4
	5	31,2	14,2	64,6
LIMO	6	15,6	5,4	70,0
LIVIO	7	7,8	5,1	75,1
	8	3,9	7,7	82,8
ARGILLA	9	2	6,4	89,2
	10	0,98	4,6	93,8
	<10	<0.98	6.2	100,0

CLASSIFICAZIONE			
Shepard	Sabbia siltosa		
Classazione	Molto mal classato		
Asimmetria	Molto positiva		
Appuntimento	Platicurtica		
***************************************	·		

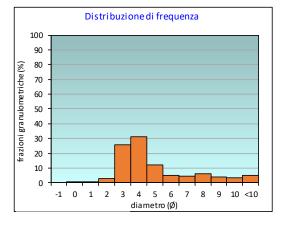



PARAMETRI STATISTICI				
Media	Mi	4,94		
Mediana	Md	3,98		
Classazione	σ	2,62		
Asimmetria	S_{ki}	0,52		
Appuntimento	K _G	0,85		

	PERCENTILE	Ø
	5	2,07
	16	2,63
	25	3,07
ı	50	3,98
j	75	6,98
ı	84	8,19
ı	95	10,19

CLASSE GRANULOMETRICA					
GHIAIA	SABBIA	LIMO	ARGILLA		
0,0	17,2				

NOTE
n.d.

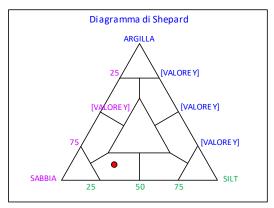


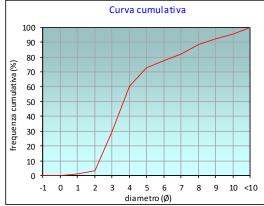
Stazione B1 (250 m NE)

PARAMETRI FISICI			
Peso specifico (g/cm³)	n.d.		
Umidità (%)	34,7		
Colore MUNSEL (codice)	n.d.		
Colore MUNSEL (nome)	n.d.		

	ø	μm	%	Freq. Comul. %
GHIAIA	-1	2000	0,0	0,0
	0	1000	0,3	0,3
	1	500	0,6	0,8
SABBIA	2	250	2,6	3,4
	3	125	25,9	29,3
	4	62,5	31,1	60,4
	5	31,2	12,2	72,6
LIMO	6	15,6	4,9	77,6
LIIVIO	7	7,8	4,6	82,1
	8	3,9	6,1	88,3
	9	2	3,8	92,1
ARGILLA	10	0,98	3,1	95,2
	<10	<0,98	4,8	100,0

CLASSIFICAZIONE				
Shepard Sabbia siltosa				
Classazione	Molto mal classato			
Asimmetria	Molto positiva			
Appuntimento	Leptocurtica			

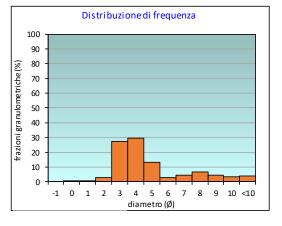



PARAMETRI STATISTICI				
Media	Mi	4,48		
Mediana	Md	3,66		
Classazione	σ	2,40		
Asimmetria	S_{ki}	0,55		
Appuntimento	K _G	1,22		

PERCENTILE	Ø
5	2,06
16	2,48
25	2,83
50	3,66
75	5,48
84	7,30
95	9,92

CLASSE GRANULOMETRICA						
GHIAIA	SABBIA	LIMO	ARGILLA			
0,0 60,4 27,8 11,7						

NOTE
n.d.

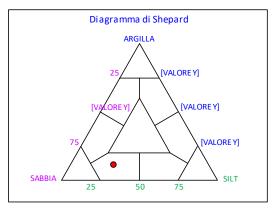


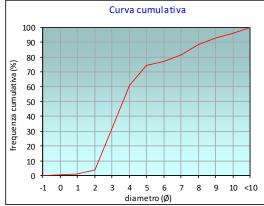
Stazione B2 (120 m NE)

PARAMETRI FISICI			
Peso specifico (g/cm³)	n.d.		
Umidità (%)	31,9		
Colore MUNSEL (codice)	n.d.		
Colore MUNSEL (nome)	n.d.		

	ø	μm	%	Freq. Comul. %
GHIAIA	-1	2000	0,0	0,0
	0	1000	0,4	0,4
	1	500	0,9	1,2
SABBIA	2	250	2,8	4,0
	3	125	27,5	31,5
	4	62,5	29,5	61,0
	5	31,2	13,4	74,4
LIMO	6	15,6	2,8	77,2
LIIVIO	7	7,8	4,3	81,5
	8	3,9	6,7	88,2
	9	2	4,5	92,8
ARGILLA	10	0,98	3,2	95,9
	<10	∠ ∩ ∩ 0	4.1	100.0

CLASSIFICAZIONE	
Shepard	Sabbia siltosa
Classazione	Molto mal classato
Asimmetria	Molto positiva
Appuntimento	Leptocurtica

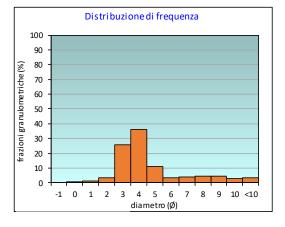



PARAMETRI STATISTICI		
Media	Mi	4,48
Mediana	Md	3,63
Classazione	σ	2,40
Asimmetria	S_{ki}	0,55
Appuntimento	K _G	1,28

PERCENTILE	Ø
5	2,04
16	2,44
25	2,76
50	3,63
75	5,23
84	7,37
95	9,71

CLASSE GRANULOMETRICA			
GHIAIA	SABBIA	LIMO	ARGILLA
0,0	61,0	27,3	11,8

NOTE
n.d.

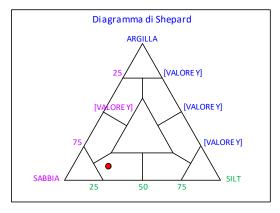


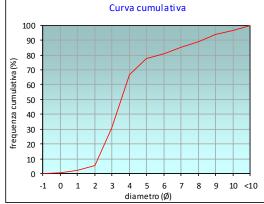
Stazione B3 (60 m NE)

PARAMETRI FISICI	
Peso specifico (g/cm³)	n.d.
Umidità (%)	30,9
Colore MUNSEL (codice)	n.d.
Colore MUNSEL (nome)	n.d.

	ø	μm	%	Freq. Comul. %
GHIAIA	-1	2000	0,0	0,0
	0	1000	0,7	0,7
	1	500	1,2	2,0
SABBIA	2	250	3,2	5,2
	3	125	25,5	30,7
	4	62,5	36,0	66,8
	5	31,2	10,8	77 <i>,</i> 6
LIMO	6	15,6	3,3	80,9
LIIVIO	7	7,8	4,1	84,9
	8	3,9	4,3	89,2
ARGILLA	9	2	4,6	93,8
	10	0,98	3,0	96,8
	<10	<0,98	3,2	100,0

CLASSIFICAZIONE	
Shepard	Sabbia siltosa
Classazione	Molto mal classato
Asimmetria	Molto positiva
Appuntimento	Molto Leptocurtica
	·

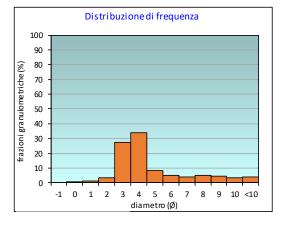



PARAMETRI STATISTICI		
Media	Mi	4,24
Mediana	Md	3,53
Classazione	σ	2,22
Asimmetria	S_{ki}	0,53
Appuntimento	K _G	1,54

PERCENTILE	Ø
5	1,93
16	2,42
25	2,77
50	3,53
75	4,76
84	6,78
95	9,40

CLASSE GRANULOMETRICA			
GHIAIA	SABBIA	LIMO	ARGILLA
0,0	66,8	22,4	10,8

NOTE
n.d.

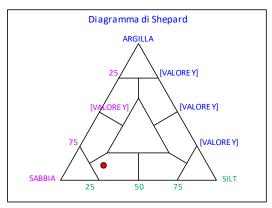


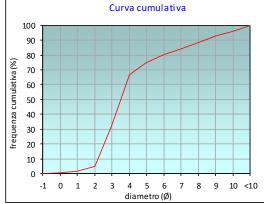
Stazione B4 (30 m NE)

PARAMETRI FISICI		
n.d.		
31,1		
n.d.		
n.d.		

	ø	μm	%	Freq. Comul. %
GHIAIA	-1	2000	0,0	0,0
	0	1000	0,7	0,7
	1	500	0,9	1,7
SABBIA	2	250	3,4	5,1
	3	125	27,3	32,4
	4	62,5	34,1	66,6
LIMO	5	31,2	8,5	75,1
	6	15,6	5,0	80,1
	7	7,8	3,8	83,8
	8	3,9	4,8	88,6
	9	2	4,3	92,8
ARGILLA	10	0,98	3,1	96,0
	<10	<0.98	4,0	100,0

CLASSIFICAZIONE			
Shepard	Sabbia siltosa		
Classazione	Molto mal classato		
Asimmetria	Molto positiva		
Appuntimento	Leptocurtica		

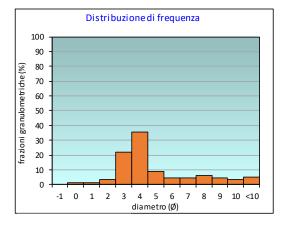



PARAMETRI STATISTICI		
Media	Mi	4,32
Mediana	Md	3,51
Classazione	σ	2,33
Asimmetria	S_{ki}	0,56
Appuntimento	K _G	1,40

PERCENTILE	Ø
5	1,98
16	2,40
25	2,73
50	3,51
75	4,99
84	7,04
95	9,69

CLASSE GRANULOMETRICA			
GHIAIA	SABBIA	LIMO	ARGILLA
0,0	66,6	22,0	11,4

NOTE
n.d.

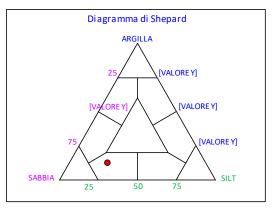


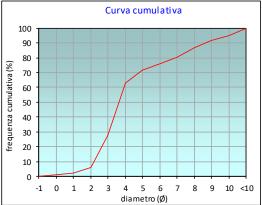
Stazione BO NE

PARAMETRI FISICI		
Peso specifico (g/cm³)	n.d.	
Umidità (%)	34,2	
Colore MUNSEL (codice)	n.d.	
Colore MUNSEL (nome)	n.d.	

	ø	μm	%	Freq. Comul. %
GHIAIA	-1	2000	0,0	0,0
	0	1000	1,1	1,1
	1	500	1,3	2,4
SABBIA	2	250	3,3	5,8
	3	125	21,6	27,4
	4	62,5	35,4	62,8
LIMO	5	31,2	8,9	71,7
	6	15,6	4,4	76,1
	7	7,8	4,4	80,5
	8	3,9	6,3	86,8
ARGILLA	9	2	4,7	91,5
	10	0,98	3,6	95,1
	<10	<0,98	4,9	100,0

CLASSIFICAZIONE			
Shepard Sabbia siltosa			
Classazione	Molto mal classato		
Asimmetria	Molto positiva		
Appuntimento	Leptocurtica		

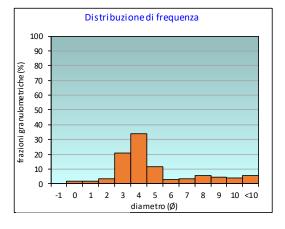



PARAMETRI STATISTICI		
Media	Mi	4,55
Mediana	Md	3,64
Classazione	σ	2,51
Asimmetria	S_{ki}	0,54
Appuntimento	K_G	1,18

PERCENTILE	Ø
5	1,78
16	2,47
25	2,89
50	3,64
75	5,74
84	7,55
95	9,98

	CLASSE GI	RANULOMETRICA	
GHIAIA	SABBIA	LIMO	ARGILLA
0,0	62,8	24,1	13,2

NOTE	
n.d.	

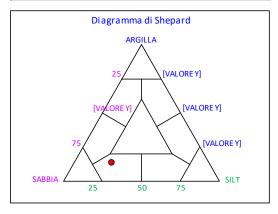


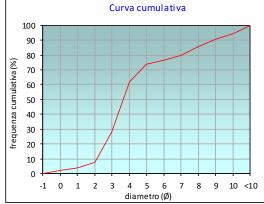
Stazione BO SW

PARAMETRI F	ISICI
Peso specifico (g/cm³)	n.d.
Umidità (%)	32,9
Colore MUNSEL (codice)	n.d.
Colore MUNSEL (nome)	n.d.

	1			
	Ø	μm	%	Freq. Comul. %
GHIAIA	-1	2000	0,0	0,0
	0	1000	2,0	2,0
	1	500	2,0	4,0
SABBIA	2	250	3,5	7,5
	3	125	20,7	28,2
	4	62,5	33,9	62,1
	5	31,2	11,4	73,5
LIMO	6	15,6	2,9	76,4
LIVIO	7	7,8	3,6	80,0
	8	3,9	5,8	85,8
·	9	2	4,7	90,5
ARGILLA	10	0,98	3,9	94,3
	<10	<0,98	5,7	100,0

CLASSIFICAZIONE		
Shepard	Sabbia siltosa	
Classazione	Molto mal classato	
Asimmetria	Molto positiva	
Appuntimento	Leptocurtica	

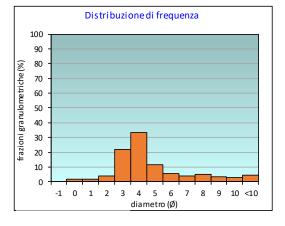



PARAMETRI	STATIST	TCI
Media	Mi	4,58
Mediana	Md	3,64
Classazione	σ	2,66
Asimmetria	S_{ki}	0,50
Appuntimento	K _G	1,36

PERCENTILE	Ø
5	1,29
16	2,41
25	2,85
50	3,64
75	5,51
84	7,70
95	10,12

	CLASSE GF	RANULOMETRICA	
GHIAIA	SABBIA	LIMO	ARGILLA
0,0	62,1	23,7	14,2

NOTE	
n.d.	

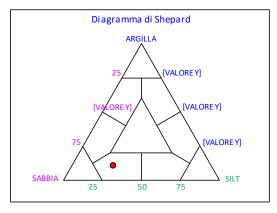


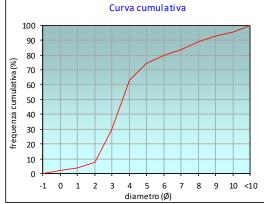
Stazione B5 (30 m SW)

PARAMETRI FISIO	CI
Peso specifico (g/cm³)	n.d.
Umidità (%)	28,0
Colore MUNSEL (codice)	n.d.
Colore MUNSEL (nome)	n.d.

	Ø	μm	%	Freq. Comul. %
GHIAIA	-1	2000	0,0	0,0
	0	1000	1,9	1,9
	1	500	1,9	3,8
SABBIA	2	250	3,8	7,7
	3	125	22,0	29,7
	4	62,5	33,4	63,1
	5	31,2	11,4	74,4
LIMO	6	15,6	5,4	79,8
LIIVIO	7	7,8	3,9	83,7
	8	3,9	5,3	89,0
	9	2	3,6	92,6
ARGILLA	10	0,98	2,9	95,5
	<10	<0,98	4,5	100,0

Sabbia siltosa Molto mal classato
Molto mal classato
Molto mal classato
Molto positiva
Molto Leptocurtica

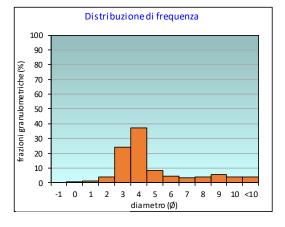



PARAMETRI STATISTICI		
Media	Mi	4,35
Mediana	Md	3,61
Classazione	σ	2,46
Asimmetria	S_{ki}	0,47
Appuntimento	K _G	1,51

PERCENTILE	Ø
5	1,30
16	2,38
25	2,79
50	3,61
75	5,11
84	7,06
95	9,82

CLASSE GRANULOMETRICA			
GHIAIA	SABBIA	LIMO	ARGILLA
0,0	63,1	25,9	11,0

NOTE
n.d.

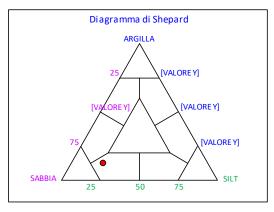


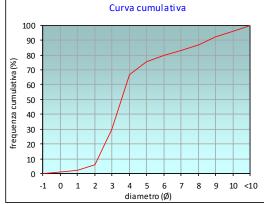
Stazione B6 (60 m SW)

PARAMETRI FISICI		
Peso specifico (g/cm³)	n.d.	
Umidità (%)	32,4	
Colore MUNSEL (codice)	n.d.	
Colore MUNSEL (nome)	n.d.	

	ø	μm	%	Freq. Comul. %
GHIAIA	-1	2000	0,0	0,0
	0	1000	0,8	0,8
	1	500	1,3	2,1
SABBIA	2	250	3,8	5,8
	3	125	23,9	29,7
	4	62,5	37,1	66,8
	5	31,2	8,4	75,3
LIMO	6	15,6	4,3	79,6
LIIVIO	7	7,8	3,4	83,0
	8	3,9	4,0	86,9
	9	2	5,4	92,3
ARGILLA	10	0,98	3,7	96,0
	<10	∠ ∩ ∩ 0	4.0	100.0

CLASSIFICAZIONE		
Shepard Sabbia siltosa		
Classazione	Molto mal classato	
Asimmetria	Molto positiva	
Appuntimento	Molto Leptocurtica	
	·	

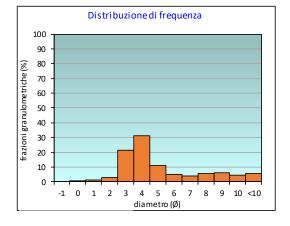



PARAMETRI STATISTICI		
Media	Mi	4,41
Mediana	Md	3,55
Classazione	σ	2,41
Asimmetria	S_{ki}	0,55
Appuntimento	K _G	1,50

PERCENTILE	Ø
5	1,77
16	2,42
25	2,80
50	3,55
75	4,97
84	7,26
95	9,73

CLASSE GRANULOMETRICA			
GHIAIA	SABBIA	LIMO	ARGILLA
0,0	66,8	20,1	13,1

NOTE
n.d.

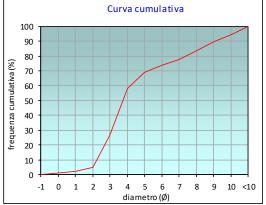


Stazione B7 (120 m SW)

PARAMETRI FISICI		
Peso specifico (g/cm³)	n.d.	
Umidità (%)	35,1	
Colore MUNSEL (codice)	n.d.	
Colore MUNSEL (nome)	n.d.	

	ø	μm	%	Freq. Comul. %
GHIAIA	-1	2000	0,0	0,0
	0	1000	0,9	0,9
	1	500	1,1	2,0
SABBIA	2	250	3,0	5,0
	3	125	21,5	26,5
	4	62,5	31,4	57,9
LIMO	5	31,2	11,0	68,9
	6	15,6	4,9	73,8
LIMO	7	7,8	4,0	77,8
	8	3,9	5,7	83,6
	9	2	6,0	89,6
ARGILLA	10	0,98	4,6	94,2
	<10	<0.98	5.8	100.0

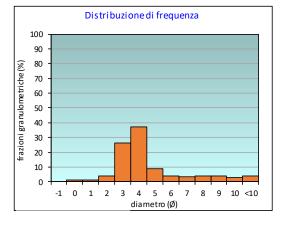
CLASSIFICAZIONE			
Shepard	Sabbia siltosa		
Classazione	Molto mal classato		
Asimmetria	Molto positiva		
Appuntimento	Mesocurtica		


PARAMETRI STATISTICI				
Media	Mi	4,78		
Mediana	Md	3,75		
Classazione	σ	2,62		
Asimmetria	S_{ki}	0,56		
Appuntimento	K _G	0,99		

_	PERCENTILE	Ø
	5	2,00
	16	2,51
	25	2,93
	50	3,75
	75	6,31
	84	8,07
	95	10,14

CLASSE GRANULOMETRICA				
GHIAIA	SABBIA	LIMO	ARGILLA	
0,0	57,9	25,6	16,4	

NOTE
n.d.

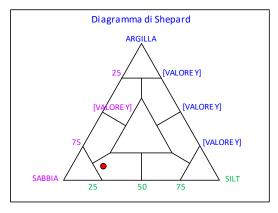


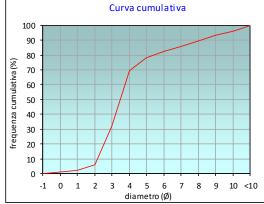
Stazione B8 (250 m SW)

PARAMETRI FISICI			
Peso specifico (g/cm³)	n.d.		
Umidità (%)	30,3		
Colore MUNSEL (codice)	n.d.		
Colore MUNSEL (nome)	n.d.		

	ø	μm	%	Freq. Comul. %
GHIAIA	-1	2000	0,0	0,0
	0	1000	1,0	1,0
	1	500	1,2	2,1
SABBIA	2	250	3,7	5,8
	3	125	26,3	32,2
	4	62,5	37,1	69,2
LIMO	5	31,2	9,0	78,3
	6	15,6	4,1	82,3
	7	7,8	3,3	85,6
	8	3,9	3,8	89,4
	9	2	3,9	93,2
ARGILLA	10	0,98	3,0	96,2
	<10	<0.98	3.8	100.0

Sabbia siltosa Molto mal classato
Molto mal classato
Molto mal classato
Molto positiva
Molto Leptocurtica

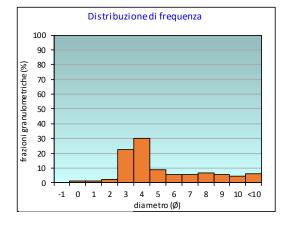



PARAMETRI STATISTICI			
Media	Mi	4,13	
Mediana	Md	3,48	
Classazione	σ	2,22	
Asimmetria	S_{ki}	0,52	
Appuntimento	K _G	1,68	

PERCENTILE	Ø
5	1,78
16	2,39
25	2,73
50	3,48
75	4,64
84	6,51
95	9,60

CLASSE GRANULOMETRICA				
GHIAIA	SABBIA	LIMO	ARGILLA	
0,0	69,2	20,1	10,6	

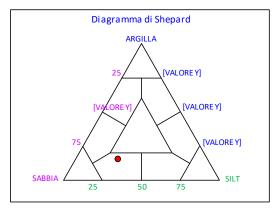
NOTE
n.d.

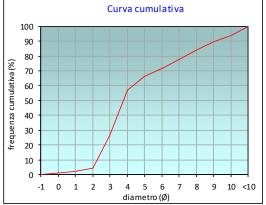


PARAMETRI FISICI			
Peso specifico (g/cm³)	n.d.		
Umidità (%)	36,3		
Colore MUNSEL (codice)	n.d.		
Colore MUNSEL (nome)	n.d.		

	Ø	μm	%	Freq. Comul. %
GHIAIA	-1	2000	0,0	0,0
	0	1000	1,0	1,0
	1	500	1,1	2,1
SABBIA	2	250	2,4	4,4
	3	125	22,4	26,8
	4	62,5	30,3	57,1
	5	31,2	9,0	66,1
LIMO	6	15,6	5,7	71,8
LIIVIO	7	7,8	5,6	77,4
	8	3,9	6,7	84,0
ARGILLA	9	2	5,7	89,7
	10	0,98	4,4	94,1
	<10	<0,98	5,9	100,0

CLASSIFICAZIONE		
Shepard	Sabbia siltosa	
Classazione	Molto mal classato	
Asimmetria	Molto positiva	
Appuntimento	Mesocurtica	

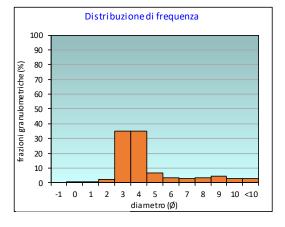



PARAMETRI STATISTICI			
Media	Mi	4,76	
Mediana	Md	3,77	
Classazione	σ	2,60	
Asimmetria	S_{ki}	0,56	
Appuntimento	K _G	0,91	

PERCENTILE	Ø
5	2,03
16	2,52
25	2,92
50	3,77
75	6,58
84	7,99
95	10,16

CLASSE GRANULOMETRICA			
GHIAIA	SABBIA	LIMO	ARGILLA
0,0	57,1	26,9	16,0

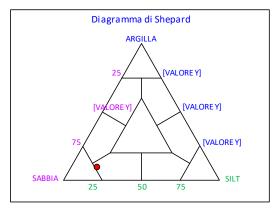
NOTE
n.d.

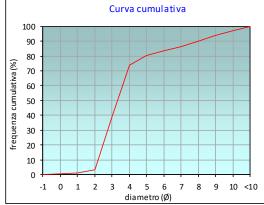


PARAMETRI FISICI			
Peso specifico (g/cm³)	n.d.		
Umidità (%)	28,1		
Colore MUNSEL (codice)	n.d.		
Colore MUNSEL (nome)	n.d.		

	ø	μm	%	Freq. Comul. %
GHIAIA	-1	2000	0,0	0,0
	0	1000	0,6	0,6
	1	500	0,7	1,3
SABBIA	2	250	2,1	3,4
	3	125	35,0	38,5
	4	62,5	35,1	73,6
	5	31,2	6,8	80,4
LIMO	6	15,6	3,2	83,6
LIIVIO	7	7,8	2,8	86,4
	8	3,9	3,4	89,8
ARGILLA	9	2	4,2	94,0
	10	0,98	2,9	96,9
	<10	<0,98	3,1	100,0

CLASSIFICAZIONE		
Shepard	Sabbia siltosa	
Classazione	Molto mal classato	
Asimmetria	Molto positiva	
Appuntimento	Molto Leptocurtica	
	·	

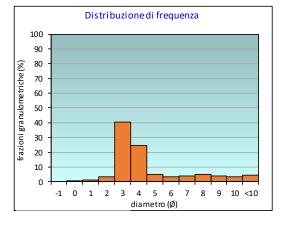



PARAMETRI STATISTICI				
Media	Mi	3,94		
Mediana	Md	3,33		
Classazione	σ	2,05		
Asimmetria	S_{ki}	0,57		
Appuntimento	K _G	1,88		

PERCENTILE	Ø
5	2,05
16	2,36
25	2,62
50	3,33
75	4,21
84	6,14
95	9,35

CLASSE GRANULOMETRICA					
GHIAIA SABBIA LIMO ARGILLA					
0,0 73,6 16,2 10,2					

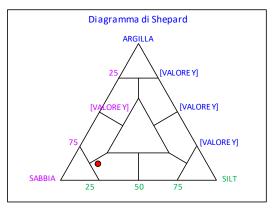
NOTE
n.d.

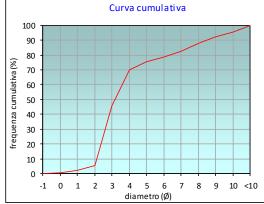


PARAMETRI FISICI			
Peso specifico (g/cm³)	n.d.		
Umidità (%)	33,9		
Colore MUNSEL (codice)	n.d.		
Colore MUNSEL (nome)	n.d.		

	ø	μm	%	Freq. Comul. %
GHIAIA	-1	2000	0,0	0,0
	0	1000	0,8	0,8
	1	500	1,2	2,0
SABBIA	2	250	3,2	5,2
	3	125	40,5	45,6
	4	62,5	24,6	70,2
LIMO	5	31,2	5,2	75,4
	6	15,6	3,5	78,9
LIIVIO	7	7,8	3,8	82,7
	8	3,9	5,2	87,9
ARGILLA	9	2	4,2	92,0
	10	0,98	3,3	95,4
	<10	<0,98	4,6	100,0

CLASSIFICAZIONE			
Sabbia siltosa			
Molto mal classato			
Molto positiva			
Leptocurtica			

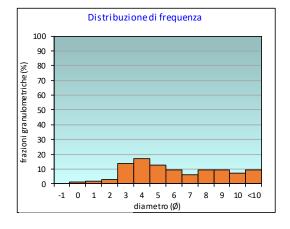



PARAMETRI STATISTICI				
Media	Mi	4,23		
Mediana	Md	3,18		
Classazione	σ	2,45		
Asimmetria	S_{ki}	0,66		
Appuntimento	K _G	1,34		

PERCENTILE	Ø
5	1,95
16	2,27
25	2,49
50	3,18
75	4,92
84	7,25
95	9,89

CLASSE GRANULOMETRICA				
GHIAIA SABBIA LIMO ARGILLA				
0,0 70,2 17,6 12,1				

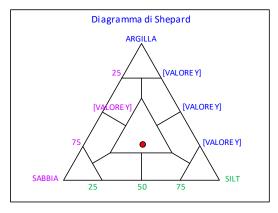
NOTE
n.d.

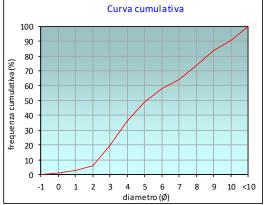


PARAMETRI FISICI			
Peso specifico (g/cm³)	n.d.		
Umidità (%)	43,1		
Colore MUNSEL (codice)	n.d.		
Colore MUNSEL (nome)	n.d.		

	ø	μm	%	Freq. Comul. %
GHIAIA	-1	2000	0,0	0,0
	0	1000	1,0	1,0
	1	500	1,6	2,6
SABBIA	2	250	3,1	5,7
	3	125	13,6	19,3
	4	62,5	16,9	36,2
LIMO	5	31,2	12,6	48,7
	6	15,6	9,3	58,0
LIIVIO	7	7,8	6,2	64,2
	8	3,9	9,5	73,7
ARGILLA	9	2	9,6	83,3
	10	0,98	7,3	90,6
	<10	<0,98	9,4	100,0

CLASSIFICAZIONE		
Shepard	Loam	
Classazione	Molto mal classato	
Asimmetria	Asimmetrica positiva	
Appuntimento	Platicurtica	
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~		
	_	





PARAMETRI STATISTICI					
Media	Mi	5,66			
Mediana	Md	5,14			
Classazione	σ	2,90			
Asimmetria	$S_{ki}$	0,24			
Appuntimento	K _G	0,74			

 PERCENTILE	Ø
5	1,77
16	2,76
25	3,34
50	5,14
75	8,13
84	9,09
95	10,47

CLASSE GRANULOMETRICA				
GHIAIA	SABBIA	LIMO	ARGILLA	
0,0	36,2	37,6	26,3	

NOTE
n.d.



