

ANAS S.p.A.

anas Direzione Progettazione e Realizzazione Lavori

S.S. 38 - LOTTO 4: VARIANTE DI TIRANO DALLO SVINCOLO DI STAZZONA (COMPRESO) ALLO SVINCOLO DI LORETO (CON COLLEGAMENTO ALLA DOGANA DI POSCHIAVO)

S.S. 38 - LOTTO 4: NODO DI TIRANO -TRATTA "A" (SVINCOLO DI BIANZONE - SVINCOLO LA GANDA) E TRATTA "B" (SVINCOLO LA GANDA - CAMPONE IN TIRANO)

PROGETTO ESECUTIVO

FC01.2

CODICE PR	OGETTO LIV. PROG. N. PROG.	NOME FILE FC01.2-P00OI00IDRRE03_A.	.dwg	REVISIONE	SCALA:	
M I 3 2	4 E 1801	CODICE POOOOOOOOO	IDRRE0	3 A		
С						
В						
Α	EMISSIONE		GENNAIO 2019	ING. GIUSEPPE CRISÀ	ING. FABRIZIO BAJETTI	ING. VALERIO BAJETTI
REV.	DESCRIZIONE		DATA	REDATTO	VERIFICATO	APPROVATO

SOMMARIO

1	PREME	SSA	5
2	DESCR	IZIONE DELL'OPERA	5
3	NORMA	ATIVA DI RIFERIMENTO	8
4	UNITA'	DI MISURA	8
5	MATER	IALI	9
	5.1 Cal	cestruzzo	9
	5.1.1	Calcestruzzo per opere di sottofondazione	9
	5.1.2	Calcestruzzo per le opere strutturali	9
	5.2 Acc	siaio	. 10
	5.2.1	Acciaio per armatura lenta	. 10
	5.2.2	Acciaio per rete elettrosaldata	. 10
	5.3 Cal	colo dei copriferri minimi	.11
6	CARAT	TERIZZAZIONE GEOTECNICA DEI TERRENI	. 12
7	ZONIZZ	ZAZIONE E CARATTERIZZAZIONE SISMICA	. 13
	7.1 Ider	ntificazione della località e dei parametri sismici generali	. 13
	7.2 Def	inizione della strategia progettuale	. 14
	7.3 Par	ametri di calcolo	. 16
	7.3.1	Parametri numerici sismici	. 16
	7.3.2	Categoria dei terreni di fondazione e categoria topografica	. 16
	7.3.3	Categoria dei terreni di fondazione e categoria topografica	. 16
	7.3.4	Fattori di struttura	
	7.3.5	Definizione dello spettro di progetto	. 17
		inizione dei coefficienti sismici di calcolo	
8		ELLO DI CALCOLO	
	8.1 Des	scrizione del modello di calcolo	. 21
9		SI DEI CARICHI	
	9.1 Car	ichi permanenti strutturali	. 22
	9.1.1	Peso proprio delle strutture in cemento armato	. 22
	9.2 Car	ichi permanenti non strutturali	. 22
	9.2.1	Peso proprio ringrosso in calcestruzzo (g2)	. 22
	9.2.2	Peso proprio delle piastre superiori amovibili in c.a. (g3)	. 23
	9.2.3	Peso proprio dei chiusini in ghisa (g4)	
	9.2.4	Spinta orizzontale dei terreni a tergo delle pareti verticali	
	9.2.5	Spinta laterale dovuta ai sovraccarichi permanenti	. 29
		ichi accidentali	
	9.3.1	Carichi accidentali agenti sulla copertura della vasca	
	9.3.2	Spinta laterale dovuta ai sovraccarichi accidentali	
	9.3.3	Carichi accidentali agenti sulla zattera di fondazione	
	9.3.4	Azione della neve	
	9.3.5	Azione del vento	
		ormazioni impresse – effetti reologici	
	9.4.1	Ritiro della soletta di copertura	
	9.4.2	Azione termica uniforme	
	9.4.3	Azione termica differenziale	
		one sismica	
	9.5.1	Azione inerziale delle masse	. 37

	9.5.2	Sovraspinta dinamica dei terreni	39
	9.5.3	Sovraspinta dinamica dell'acqua	40
10	COME	BINAZIONI DI CARICO	42
1	0.1	Carichi elementari	42
1	0.2	Combinazioni di carico allo Stato Limite di Esercizio - Combinazioni quasi- perma	anenti
		44	
1	0.3	Combinazioni di carico allo Stato Limite di Esercizio – Combinazioni frequenti	
	0.4	Combinazioni di carico allo Stato Limite di Esercizio – Combinazioni caratteristiche	
	0.5	Combinazioni di carico allo Stato Limite Ultimo statiche	
	0.6	Combinazione di carico sismiche	
		TAZIONE DELLE AZIONI SOLLECITANTI	
	1.1	Combinazioni di carico allo Stato Limite di Esercizio – Inviluppo max	
	1.2	Combinazioni di carico allo Stato Limite di Esercizio – Inviluppo min	
	1.3	Combinazioni di carico allo Stato Limite Ultimo – Inviluppo max	
	1.4	Combinazioni di carico allo Stato Limite Ultimo – Inviluppo min	
	1.5	Combinazione di carico sismiche – Inviluppo max	
	1.6	Combinazione di carico sismiche – Inviluppo min	
		FICHE STRUTTURALI	
1		Verifiche dei setti perimetrali	
	12.1.1		
		2 Sezione ed armatura di verifica	
		B Verifica allo Stato Limite di limitazione delle tensioni - Combinazione danne la Armatura verticale	
		4 Verifica allo Stato Limite di limitazione delle tensioni - Combinazione freque	
		tura verticale	
		5 Verifica allo Stato Limite di limitazione delle tensioni - Combinazione Caratteris	
		tura verticale	
		S Verifica allo Stato Limite di fessurazione – Armatura verticale	
		Verifica allo Stato Limite Ultimo per pressoflessione – Armatura verticale	
		3 Verifica allo Stato Limite di limitazione delle tensioni - Combinazione	
		anente – Armatura longitudinale	
		9 Verifica allo Stato Limite di limitazione delle tensioni - Combinazione freque	
		tura longitudinale	
	12.1.1	· ·	
	– Arm	atura longitudinale	78
	12.1.1	11 Verifica allo Stato Limite di fessurazione – Armatura longitudinale	79
	12.1.1	•	
	12.1.1	Verifica allo Stato Limite Ultimo per taglio	81
1	2.2	Verifiche zattera di fondazione	83
	12.2.1	Definizione delle azioni sollecitanti di calcolo	83
	12.2.2	2 Sezione ed armatura di verifica	84
	12.2.3	B Verifica allo Stato Limite di limitazione delle tensioni - Combinazione	Quasi
	Perma	anente – Armatura trasversale	84
	12.2.4	1 Verifica allo Stato Limite di limitazione delle tensioni - Combinazione freque	nte -
		tura trasversale	
		Verifica allo Stato Limite di limitazione delle tensioni - Combinazione Caratteris	
		tura trasversale	
	12.2.6	S Verifica allo Stato Limite di fessurazione – Armatura trasversale	87

	12.2.7	Verifica allo Stato Limite Ultimo per pressoflessione – Armatura trasversale	88
	12.2.8	Verifica allo Stato Limite di limitazione delle tensioni - Combinazione C)uasi
	Perman	ente – Armatura longitudinale	89
		Verifica allo Stato Limite di limitazione delle tensioni - Combinazione frequer	
	Armatur	a longitudinale	
	12.2.10	Verifica allo Stato Limite di limitazione delle tensioni - Combinazione Caratteri	stica
	- Armat	ura longitudinale	91
	12.2.11	Verifica allo Stato Limite di fessurazione – Armatura longitudinale	92
	12.2.12	Verifica allo Stato Limite Ultimo per pressoflessione – Armatura longitudinale	93
	12.2.13	Verifica allo Stato Limite Ultimo per taglio	94
12	2.3 V	erifiche del setto centrale longitudinale	95
	12.3.1	Definizione delle azioni sollecitanti di calcolo	95
	12.3.2	Sezione ed armatura di verifica	97
	12.3.3	Verifica allo Stato Limite di limitazione delle tensioni - Combinazione C) uasi
	Perman	ente – Armatura verticale	97
	12.3.4	Verifica allo Stato Limite di limitazione delle tensioni - Combinazione frequer	nte –
	Armatur	a verticale	98
	12.3.5	Verifica allo Stato Limite di limitazione delle tensioni - Combinazione Caratterist	ica –
	Armatur	a verticale	99
	12.3.6	Verifica allo Stato Limite di fessurazione – Armatura verticale	. 100
	12.3.7	Verifica allo Stato Limite Ultimo per pressoflessione – Armatura verticale	. 101
	12.3.8	Verifica allo Stato Limite di limitazione delle tensioni - Combinazione C	⊋ uasi
	Perman	ente – Armatura longitudinale	. 102
	12.3.9	Verifica allo Stato Limite di limitazione delle tensioni - Combinazione frequer	nte –
	Armatur	a longitudinale	. 103
	12.3.10	Verifica allo Stato Limite di limitazione delle tensioni - Combinazione Caratteri	stica
	- Armat	ura longitudinale	
	12.3.11	Verifica allo Stato Limite di fessurazione – Armatura longitudinale	. 105
	12.3.12	1 1	
	12.3.13	Verifica allo Stato Limite Ultimo per taglio	. 107
12		erifiche dei setti centrali trasversali	
	12.4.1	Definizione delle azioni sollecitanti di calcolo	. 109
		Sezione ed armatura di verifica	
	12.4.3	Verifica allo Stato Limite di limitazione delle tensioni - Combinazione C	⊋uasi
		ente – Armatura verticale	
	12.4.4	Verifica allo Stato Limite di limitazione delle tensioni - Combinazione frequer	nte –
		a verticale	
	12.4.5	Verifica allo Stato Limite di limitazione delle tensioni - Combinazione Caratterist	ica –
	Armatur	a verticale	. 112
		Verifica allo Stato Limite di fessurazione – Armatura verticale	
	12.4.7	Verifica allo Stato Limite Ultimo per pressoflessione – Armatura verticale	. 114
		Verifica allo Stato Limite di limitazione delle tensioni - Combinazione C	
		ente – Armatura longitudinale	
		Verifica allo Stato Limite di limitazione delle tensioni - Combinazione frequer	
	Armatur	a longitudinale	
	12.4.10		
	- Armat	ura longitudinale	
	12.4.11	Verifica allo Stato Limite di fessurazione – Armatura longitudinale	. 118

12.4.12	Verifica allo Stato Limite Ultimo per pressoflessione – Armatura longitudinale	. 119
12.4.13	3 Verifica allo Stato Limite Ultimo per taglio	.120
12.5 \	/erifiche trave a "T rovescia"	. 121
12.5.1	Definizione delle azioni sollecitanti di calcolo	. 121
12.5.2	Sezione ed armatura di verifica	. 122
12.5.3	Verifica allo Stato Limite di limitazione delle tensioni - Combinazione C	Quasi
Permar	nente	. 122
12.5.4	Verifica allo Stato Limite di limitazione delle tensioni - Combinazione frequente	. 123
12.5.5	Verifica allo Stato Limite di limitazione delle tensioni - Combinazione Caratter	istica
	124	
12.5.6	Verifica allo Stato Limite di fessurazione	. 125
12.5.7	Verifica allo Stato Limite Ultimo per flessione	. 126
12.5.8	Verifica allo Stato Limite Ultimo per taglio	. 127
13 VERIFI	ICHE STRUTTURALI PIASTRA AMOVIBILE IN C.A	. 128
13.1	Descrizione	. 128
13.2 E	Descrizione del modello di calcolo	. 129
13.3 A	Analisi dei carichi	. 129
13.3.1	Peso proprio delle piastra in cemento armato	. 129
13.3.2	Carichi accidentali agenti sulla piastra in c.a	.129
13.4 ∖	/alutazione delle azioni sollecitanti	. 130
13.4.1	Combinazioni di carico allo Stato Limite di Esercizio	. 130
13.4.2	Combinazioni di carico allo Stato Limite Ultimo	. 132
13.5 \	/erifiche della piastra	. 134
13.5.1	Definizione delle azioni sollecitanti di calcolo	. 134
13.5.2	Sezione ed armatura di verifica	. 134
13.5.3	Verifica allo Stato Limite di limitazione delle tensioni Armatura trasversale	. 135
13.5.4	Verifica allo Stato Limite di limitazione delle tensioni Armatura ongitudinale	. 135
13.5.5	Verifica allo Stato Limite di fessurazione - Armatura longitudinale	. 136
13.5.6	Verifica allo Stato Limite di fessurazione - Armatura longitudinale	. 136
13.5.7	Verifica allo Stato Limite Ultimo per flessione – Armatura trasversale	. 137
13.5.8	Verifica allo Stato Limite Ultimo per flessione – Armatura longitudinale	. 138
13.5.9	Verifica allo Stato Limite Ultimo per taglio	. 139

PREMESSA

La presente relazione di calcolo riporta la descrizione, il dimensionamento e le verifiche strutturali e geotecniche della vasca di prima pioggia di tipo "B" realizzata in cemento armato gettata in opera nell'ambito del progetto esecutivo "S.S.38 – lotto 4: nodo di Tirano – Tratta A (svincolo di Bianzone svincolo La Ganda) - Tratta B (svincolo La Ganda – Campone di Tirano)".

2 **DESCRIZIONE DELL'OPERA**

La vasca di prima pioggia di tipo "B" viene completamente realizzata in cls armato gettato in opera. Lo platea di base presenta le seguenti caratteristiche geometriche:

- spessore di 132cm per la zona di ingresso e di uscita delle acque;
- spessore di 40 cm per il comparto di accumulo, di rilancio e sollevamento delle acque;
- superficie totale in pianta pari a circa 11,80 m x 5.40m = 63,72 m².

I setti perimetrali controterra hanno spessore pari a 40 cm, mentre il setto centrale che divide il comparto di accumulo ha uno spessore pari a 60cm.

La vasca presenta al livello del piano di copertura una serie di travi a "T rovescia" di dimensione 60x50cm sulle quali poggeranno le piastre amovibili di copertura realizzate in c.a., per la manutenzione straordinaria dell'opera, e i chiusini carrabili D400 in ghisa per l'accesso del personale addetto alla manutenzione ordinaria dell'opera.

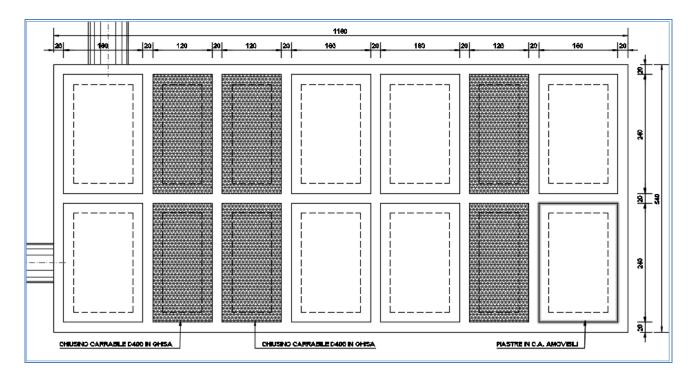


FIGURA 1: PIANTA COPERTURA

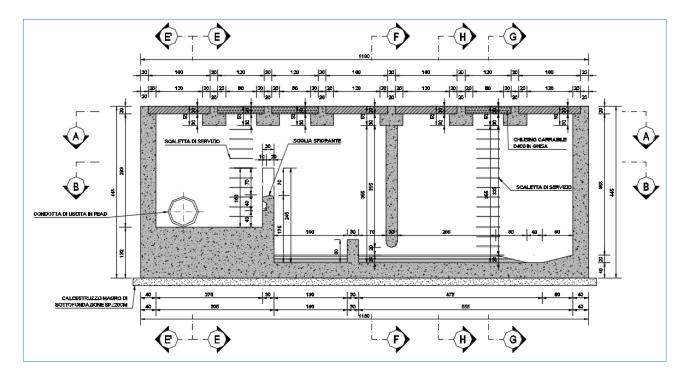


FIGURA 2: SEZIONE LONGITUDINALE

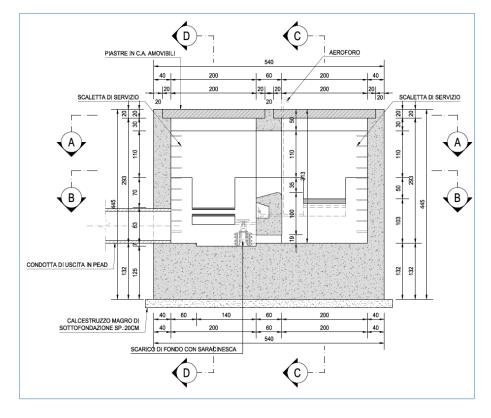


FIGURA 3: SEZIONE TRASVERSALE INGRESSO/USCITA

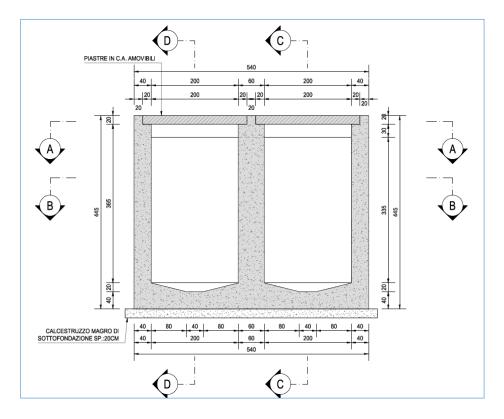


FIGURA 4: SEZIONE TRASVERSALE COMPARTO DI ACCUMULO

3 NORMATIVA DI RIFERIMENTO

La presente relazione è stata redatta in osservanza delle seguenti Normative Tecniche:

- Legge 05/01/1971 n.1086 → Norme per la disciplina delle opere in conglomerato cementizio armato, normale e precompresso ed a struttura metallica
- Legge 02/02/1974 n. 64 → Provvedimenti per le costruzioni con particolari prescrizioni per le zone sismiche
- **DM 17/01/2018** → Nuove Norme Tecniche per le Costruzioni
- UNI EN 1992-1 (Eurocodice 2 Parte 1) → Progettazione delle strutture in calcestruzzo -Regole generali
- UNI EN 1992-2 (Eurocodice 2 Parte 2) → Progettazione delle strutture in calcestruzzo Ponti
- UNI EN 1998-5 (Eurocodice 8) Gennaio 2015 → Progettazione delle strutture per la resistenza sismica Parte 5: Fondazioni, strutture di contenimento ed aspetti geotecnici
- UNI EN 206-1:2006 → Calcestruzzo Specificazione, prestazione e conformità
- **UNI 11104** → Calcestruzzo Specificazione, prestazione, produzione e conformità Istruzioni complementari per l'applicazione della EN 2016-1
- Servizio Tecnico Centrale della Presidenza del Consiglio Superiore dei LL.PP. Linee guida sul calcestruzzo strutturale.

4 UNITA' DI MISURA

Nei calcoli è stato fatto uso delle seguenti unità di misura:

per i carichi: kN/m², kN/m, kN

per i momenti: kNm
 per i tagli e sforzi normali: kN
 per le tensioni: N/mm²
 per le accelerazioni: m/sec²

5 MATERIALI

5.1 CALCESTRUZZO

5.1.1 CALCESTRUZZO PER OPERE DI SOTTOFONDAZIONE

Per le opere di sottofondazione è stato previsto un calcestruzzo con classe di resistenza C12/15 e classe di esposizione X0.

Tale calcestruzzo non ha valenza strutturale e quindi non se ne riportano le caratteristiche meccaniche.

5.1.2 CALCESTRUZZO PER LE OPERE STRUTTURALI

Per le opere interrate e contro terra è stato previsto un calcestruzzo con classe di resistenza **C35/45** con le seguenti caratteristiche meccaniche:

CARATTERISTICHE MECCANICHE DEI CALCESTRUZZI AI SENSI DEL D.M. 17.01.2018							
CLASSE DI RESISTENZA			C35/45		-		
DESCRIZIONE CARATTERISTICA	FORMULA DI CALCOLO	RIF. CAP. NORMA	VALOR	E DI APPLIC	AZIONE		
Resistenza caratteristica cubica a compressione			R _{ck}	45,00	[N/mm ²]		
Resistenza caratteristica cilindrica a compressione	[0,83*Rck]	11.2.10.1	f _{ck}	37,35	[N/mm ²]		
Resistenza cilindrica media a compressione a 28 gg	[fck+8]	11.2.10.1	f_{cm}	45,35	[N/mm ²]		
Resistenza di calcolo a compressione	[acc*fck/Yc]	4.1.2.1.1.1	f _{cd}	21,17	[N/mm ²]		
Resistenza media a trazione	[0,30*fck ^{2/3}]	11.2.10.2	f _{ctm}	3,35	[N/mm ²]		
Resistenza caratteristica a trazione	[0,70*fctm]	11.2.10.2	f _{ctk}	2,35	[N/mm ²]		
Resistenza di calcolo a trazione	[fctk/1,5]	4.1.2.1.1.2	f _{ctd}	1,56	[N/mm ²]		
Tensione massima di compressione del cls in esercizio (rara)	[0,60*fck]	4.1.2.2.5.1	бс тах	22,41	[N/mm ²]		
Tensione massima di compressione del cls in esercizio (quasi perm)	[0,45*fck]	4.1.2.2.5.1	бс тах	16,81	[N/mm ²]		
Modulo elastico istantaneo	[Ec=Ecm]	C4.1.2.2.5	Ec	34.625,49	[N/mm ²]		
Modulo elastico medio	[22.000*(fcm/10) ^{0,3}]	11.2.10.3	E _{cm}	34.625,49	[N/mm ²]		

A favore di sicurezza ai fini delle verifiche strutturali è stato considerato un calcestruzzo con classe di resistenza C25/30 con le seguenti caratteristiche meccaniche:

CARATTERISTICHE MECCANICHE DEI CALCESTRUZZI AI SENSI DEL D.M. 17.01.2018								
CLASSE DI RESISTENZA			C25/30		V			
DESCRIZIONE CARATTERISTICA	FORMULA DI CALCOLO	RIF. CAP. NORMA	VALOR	E DI APPLIC	AZIONE			
Resistenza caratteristica cubica a compressione			R _{ck}	30,00	[N/mm ²]			
Resistenza caratteristica cilindrica a compressione	[0,83*Rck]	11.2.10.1	f _{ck}	24,90	[N/mm ²]			
Resistenza cilindrica media a compressione a 28 gg	[fck+8]	11.2.10.1	f _{cm}	32,90	[N/mm ²]			
Resistenza di calcolo a compressione	[acc*fck/Yc]	4.1.2.1.1.1	f _{cd}	14,11	[N/mm ²]			
Resistenza media a trazione	[0,30*fck ^{2/3}]	11.2.10.2	f _{ctm}	2,56	[N/mm ²]			
Resistenza caratteristica a trazione	[0,70*fctm]	11.2.10.2	f _{ctk}	1,79	[N/mm ²]			
Resistenza di calcolo a trazione	[fctk/1,5]	4.1.2.1.1.2	f _{ctd}	1,19	[N/mm ²]			
Tensione massima di compressione del cls in esercizio (rara)	[0,60*fck]	4.1.2.2.5.1	бс тах	14,94	[N/mm ²]			
Tensione massima di compressione del cls in esercizio (quasi perm)	[0,45*fck]	4.1.2.2.5.1	бс тах	11,21	[N/mm ²]			
Modulo elastico istantaneo	[Ec=Ecm]	C4.1.2.2.5	Ec	31.447,16	[N/mm ²]			
Modulo elastico medio	[22.000*(fcm/10) ^{0,3}]	11.2.10.3	E _{cm}	31.447,16	[N/mm ²]			

5.2 ACCIAIO

5.2.1 **ACCIAIO PER ARMATURA LENTA**

Per le armature lente è stato previsto un acciaio del tipo B450C, con le seguenti caratteristiche meccaniche:

•	ft,k	=	540,00	N/mm ²	(resistenza caratteristica a rottura)
•	fy,k	=	450,00	N/mm ²	(tensione caratteristica di snervamento)
•	fy,d	=	391,30	N/mm ²	(tensione di snervamento di calcolo - γ _c =1,15)
•	Es	=	210.000,00	N/mm ²	(modulo elastico istantaneo)

ACCIAIO PER RETE ELETTROSALDATA

Per le reti elettrosaldate è stato previsto un acciaio del tipo B450A, con le seguenti caratteristiche meccaniche:

•	ft,k	=	540,00	N/mm ²	(resistenza caratteristica a rottura)
•	fy,k	=	450,00	N/mm ²	(tensione caratteristica di snervamento)
•	fy,d	=	391,30	N/mm ²	(tensione di snervamento di calcolo - γ_c =1,15)
•	Es	=	210.000,00	N/mm ²	(modulo elastico istantaneo)

5.3 **CALCOLO DEI COPRIFERRI MINIMI**

Ai sensi delle prescrizioni di cui alla normativa vigente e con riferimento alla procedura di calcolo prevista dalla Circolare Applicativa (riferita alla normativa del 2008 ma a tutt'oggi valida) si riporta di seguito il calcolo del copriferro minimo inteso come ricoprimento delle barre:

CODICE F	LE MAT-02				
Ingegneria del Territorio s.r.l. OGGETTO	CALCOLO COP	CALCOLO COPRIFERRO			
Definizione dell	a condiizoni ambientali (TABELLA	4.1.IV - Descrizione de	elle condizioni ambientali)		
	1		Classe di esposizione di		
Condizioni ambientali	Classe di esposizione		progetto		
Ordinarie	X0,XC1,XC2,XC3,XF1		XD3 ▼		
Aggressive	XC4, XD1, XS1, XA1, XA2, XF2,	XF3	Condizioni ambientali di progetto		
Molto Aggressive	XD2, XD3, XS2, XS3, XA3, XF4		Molto Aggressivo		
Classe minima Cmin	Classe di res	truzzo	Classe di resistenza del calcestruzzo		
C35/45	Barre da c.a. ele		C35/45		
Classe C0			Produzioni sottoposte a		
C45/55	· ·				
	•	•			
	Determinazione del coprife	erro minimo (Tab. C4.1	.IV)		
Copriferro minimo ai sen della Circolare Applicativ	si della tabella e delle precisazion a	i di cui al capitolo C4.1	1.6.1.3 40 mm		
Tolleranza costruttiva			5 mm		

CARATTERIZZAZIONE GEOTECNICA DEI TERRENI

Ai sensi della relazione geologica e della relazione geotecnica, nonché in conformità con i profili geotecnici allegati al presente progetto esecutivo, il terreno di fondazione è schematizzato dalle seguenti unità litotecniche caratterizzate dai seguenti parametri geotecnici:

UNITÀ UG1 Depositi alluvionali recenti e stabilizzati

UNITÀ UG2-1 Conoidi **UNITÀ UG2-2** Morene

UNITÀ UG3 Roccia cristallina intensamente fratturata

UNITÀ UG4 Roccia cristallina (poco o moderatamente fratturata)

Dai dati piezometrici disponibili si rinviene la presenza della falda a circa -5,00 m da p.c.(da inizio lotto alla progressiva 0+420) e a circa -12,00 m dal p.c. (dalla progressiva 0+880 alla progressiva 4+325) per cui non è interferente con le opere in oggetto.

Il terreno spingente è costituito da materiale idoneo per la costruzione del rilevato, caratterizzato dai seguenti parametri geotecnici:

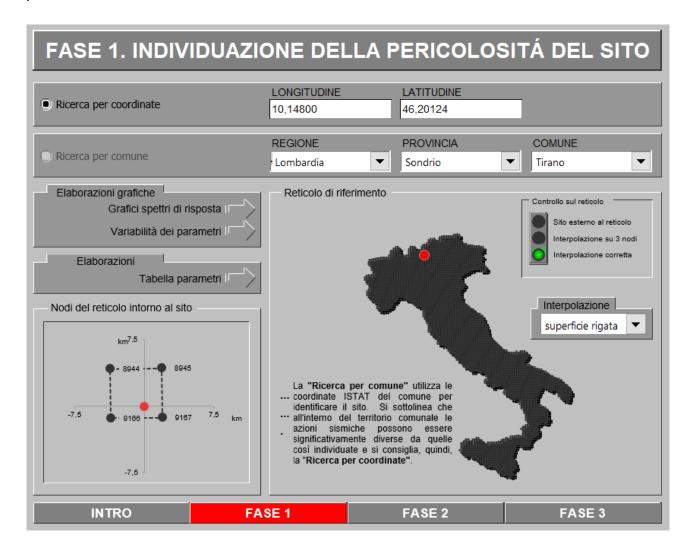
Peso per unità di volume: $y = 20,00 \text{ kN/m}^3$ Angolo di attrito interno: $\phi = 37,00^{\circ}$ Coesione efficace: $c' = 0.00 \text{ kN/m}^2$

A favore di sicurezza i calcoli e le verifiche sono stati effettuati considerando il terreno di fondazione

di tipo UG2-2:

Peso per unità di volume: $y = 20,00 \text{ kN/m}^3$ Angolo di attrito interno: $\phi = 33,00^{\circ}$

 Coesione efficace: $c' = 0.00 \text{ kN/m}^2$



ZONIZZAZIONE E CARATTERIZZAZIONE SISMICA

7.1 **IDENTIFICAZIONE DELLA LOCALITÀ E DEI PARAMETRI SISMICI GENERALI**

L'area oggetto del presente intervento ricade all'interno del territorio del Comune di Tirano sito nella provincia di Sondrio.

7.2 DEFINIZIONE DELLA STRATEGIA PROGETTUALE

In riferimento al D.M. 17.01.2018 "Nuove Norme Tecniche per le Costruzioni", le opere sono progettate (in funzione dell'importanza strategica dell'infrastruttura) secondo i seguenti parametri:

Vita Nominale dell'opera:

100 anni

Tab. 2.4.I – Valori minimi della Vita nominale $V_{
m N}$ di progetto per i diversi tipi di costruzioni

	TIPI DI COSTRUZIONI				
1	Costruzioni temporanee e provvisorie	10			
2	Costruzioni con livelli di prestazioni ordinari	50			
3	Costruzioni con livelli di prestazioni elevati	100			

Classe d'uso dell'opera:

2.4.2. CLASSI D'USO

Con riferimento alle conseguenze di una interruzione di operatività o di un eventuale collasso, le costruzioni sono suddivise in classi d'uso così definite:

Classe I: Costruzioni con presenza solo occasionale di persone, edifici agricoli.

Classe II: Costruzioni il cui uso preveda normali affollamenti, senza contenuti pericolosi per l'ambiente e senza funzioni pubbliche e sociali essenziali. Industrie con attività non pericolose per l'ambiente. Ponti, opere infrastrutturali, reti viarie non ricadenti in Classe d'uso III o in Classe d'uso IV, reti ferroviarie la cui interruzione non provochi situazioni di emergenza. Dighe il cui collasso non provochi conseguenze rilevanti.

Classe III: Costruzioni il cui uso preveda affollamenti significativi. Industrie con attività pericolose per l'ambiente. Reti viarie extraurbane non ricadenti in Classe d'uso IV. Ponti e reti ferroviarie la cui interruzione provochi situazioni di emergenza. Dighe rilevanti per le conseguenze di un loro eventuale collasso.

Classe IV: Costruzioni con funzioni pubbliche o strategiche importanti, anche con riferimento alla gestione della protezione civile in caso di calamità. Industrie con attività particolarmente pericolose per l'ambiente. Reti viarie di tipo A o B, di cui al DM 5/11/2001, n. 6792, "Norme funzionali e geometriche per la costruzione delle strade", e di tipo C quando appartenenti ad i-tinerari di collegamento tra capoluoghi di provincia non altresì serviti da strade di tipo A o B. Ponti e reti ferroviarie di importanza critica per il mantenimento delle vie di comunicazione, particolarmente dopo un evento sismico. Dighe connesse al funzionamento di acquedotti e a impianti di produzione di energia elettrica.

Coefficiente di utilizzo dell'opera: 1,5

Tab. 2.4.II – Valori del coefficiente d'uso C _U					
CLASSE D'USO	I	п	Ш	IV	
COEFFICIENTE C _U	0,7	1,0	1,5	2,0	

Vita di riferimento dell'opera: 150 anni

2.4.3. PERIODO DI RIFERIMENTO PER L'AZIONE SISMICA

Le azioni sismiche sulle costruzioni vengono valutate in relazione ad un periodo di riferimento V_R che si ricava, per ciascun tipo di costruzione, moltiplicandone la vita nominale di progetto V_N per il coefficiente d'uso C_U :

$$V_R = V_N \cdot C_U \qquad [2.4.1]$$

Qui di seguito si riporta la sintesi delle scelte progettuali adottati con i tempi di ritorno dell'azione sismica identificati in funzione del singolo stato limite.

7.3 PARAMETRI DI CALCOLO

7.3.1 PARAMETRI NUMERICI SISMICI

Nella tabella successiva sono riportati i parametri numerici sismici per i periodi di ritorno associati ai diversi Stati Limite:

SLATO	T _R	ag	F _o	T _c *
LIMITE	[anni]	[g]	[-]	[s]
SLO	181	0,056	2,557	0,251
SLD	302	0,068	2,565	0,264
SLV	2475	0,136	2,625	0,292
SLC	2475	0,136	2,625	0,292

7.3.2 CATEGORIA DEI TERRENI DI FONDAZIONE E CATEGORIA TOPOGRAFICA

Ai sensi di quanto riportato nella Relazione Geotecnica e nei Profili geotecnici allegati al presente progetto esecutivo il terreno di fondazione è classificato simicamente come di categoria B.

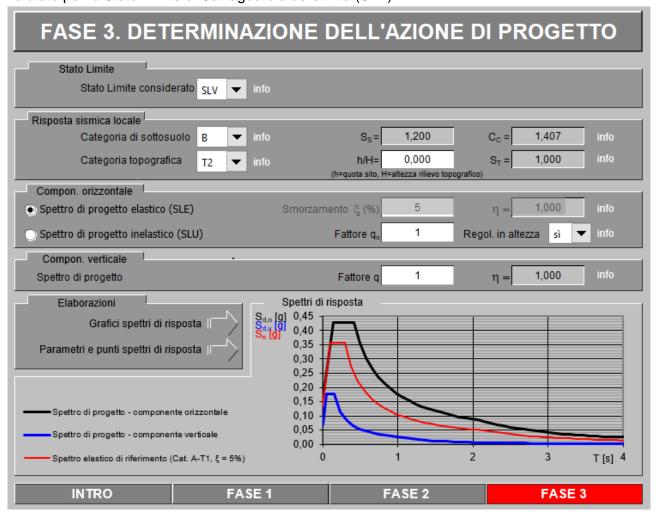
Tab. 3.2.II – Categorie di sottosuolo che permettono l'utilizzo dell'approccio semplificato.		
Categoria	Caratteristiche della superficie topografica	
A	Ammassi rocciosi affioranti o terreni molto rigidi caratterizzati da valori di velocità delle onde di taglio superiori a 800 m/s, eventualmente comprendenti in superficie terreni di caratteristiche meccaniche più scadenti con spessore massimo pari a 3 m.	
В	Rocce tenere e depositi di terreni a grana grossa molto addensati o terreni a grana fina molto consi- stenti, caratterizzati da un miglioramento delle proprietà meccaniche con la profondità e da valori di velocità equivalente compresi tra 360 m/s e 800 m/s.	
С	Depositi di terreni a grana grossa mediamente addensati o terreni a grana fina mediamente consi- stenti con profondità del substrato superiori a 30 m, caratterizzati da un miglioramento del- le proprietà meccaniche con la profondità e da valori di velocità equivalente compresi tra 180 m/s e 360 m/s.	
D	Depositi di terreni a grana grossa scarsamente addensati o di terreni a grana fina scarsamente consi- stenti, con profondità del substrato superiori a 30 m, caratterizzati da un miglioramento del- le proprietà meccaniche con la profondità e da valori di velocità equivalente compresi tra 100 e 180 m/s.	
Е	Terreni con caratteristiche e valori di velocità equivalente riconducibili a quelle definite per le catego- rie C o D, con profondità del substrato non superiore a 30 m.	

7.3.3 CATEGORIA DEI TERRENI DI FONDAZIONE E CATEGORIA TOPOGRAFICA

Considerando che il territorio si presenta essenzialmente pianeggiante e privo di significati salti di quota la categoria topografica del sito è stata assunta pari a categoria T2.

Tab. 3.2.III – Categorie topografiche		
Categoria	Caratteristiche della superficie topografica	
T1	Superficie pianeggiante, pendii e rilievi isolati con inclinazione media i ≤ 15°	
T2	Pendii con inclinazione media i > 15°	
T3	Rilievi con larghezza in cresta molto minore che alla base e inclinazione media 15° ≤ i ≤ 30°	
T4	Rilievi con larghezza in cresta molto minore che alla base e inclinazione media i > 30°	

FATTORI DI STRUTTURA 7.3.4


A favore di sicurezza e visto il fatto che le opere in esame sono opere interrate, il calcolo e le verifiche sono state effettuate in campo elastico.

Il fattore di struttura è stato pertanto posto pari a q = 1,00.

Lo spettro di progetto adottato sarà pertanto identico allo spettro elastico.

7.3.5 **DEFINIZIONE DELLO SPETTRO DI PROGETTO**

Nell'immagine successiva è riportata la determinazione dei parametri dello spettro di risposta valutato per lo Stato Limite di Salvaguardia della Vita (SLV):

Nella tabella successiva sono riportati analiticamente i parametri sismici ed i valori delle accelerazioni normalizzate in funzione del periodo di vibrazione:

Parametri e punti dello spettro di risposta orizzontale per lo stato \$LV

Parametri indipendenti

STATO LIMITE	SLV
a _o	0,136_g
F _o	2,625
T _c *	0,292 s
Ss	1,200
C _C	1,407
S _T	1,000
q	1,000

Parametri dipendenti

S	1,200
η	1,000
T _B	0,137 s
T _C	0,411 s
T _D	2, 144 s

Espressioni dei parametri dipendenti

$$S = S_S \cdot S_T$$
 (NTC-08 Eq. 3.2.5)

$$\eta = \sqrt{10/(5+\xi)} \ge 0.55$$
; $\eta = 1/q$ (NTC-08 Eq. 3.2.6; §. 3.2.3.5)

$$T_n = T_c/3$$
 (NTC-07 Eq. 3.2.8)

$$T_{c} = C_{c} \cdot T_{c}^{*}$$
 (NTC-07 Eq. 3.2.7)

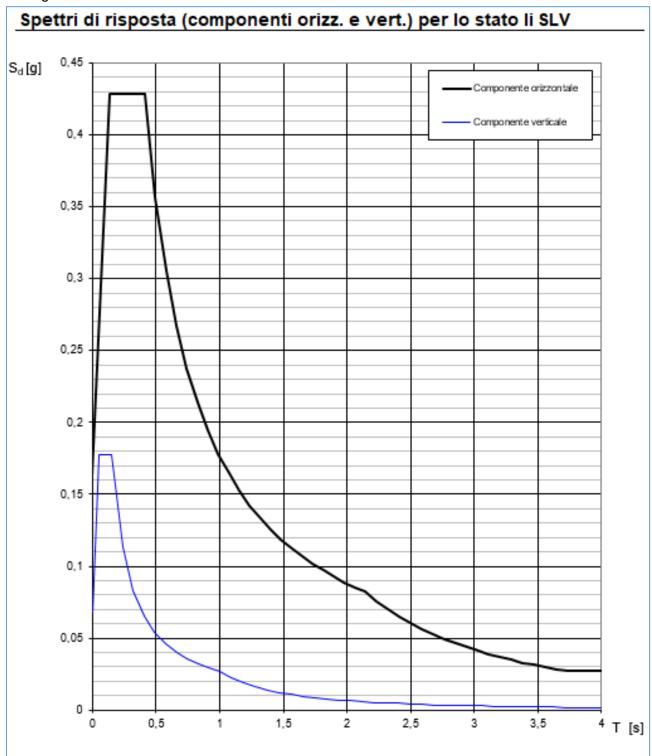
$$T_0 = 4.0 \cdot a_o / g + 1.6$$
 (NTC-07 Eq. 3.2.9)

Espressioni dello spettro di risposta (NTC-08 Eq. 3.2.4)

$$\begin{split} 0 \leq & T < T_B \quad S_c(T) = a_g \cdot S \cdot \eta \cdot F_o \cdot \left[\frac{T}{T_B} + \frac{1}{\eta \cdot F_o} \left(1 - \frac{T}{T_B} \right) \right] \\ & T_B \leq & T < T_C \quad S_c(T) = a_g \cdot S \cdot \eta \cdot F_o \\ & T_C \leq & T < T_D \quad S_c(T) = a_g \cdot S \cdot \eta \cdot F_o \cdot \left(\frac{T_C}{T} \right) \\ & T_D \leq & T \quad S_c(T) = a_g \cdot S \cdot \eta \cdot F_o \cdot \left(\frac{T_C T_D}{T^2} \right) \end{split}$$

Lo spettro di progetto S₄(T) per le verifiche agli Stati Limite Ultimi è ottenuto dalle espressioni dello spettro elastico S,(T) sostituendo n con 1/q, dove q è il fattore di struttura. (NTC-08 § 3.2.3.5)

Punti dello spettro di risposta


	T [s]	Se [g]
	0,000	0,163
Τ₀◀−	0,137	0,428
T₀ ∢	0,411	0,428
	0,494	0,357
	0,576	0,306
	0,659	0,267
	0,741	0,238
	0,824	0,214
	0,906	0,194
	0,989	0,178
	1,071	0,164
	1,154	0,153
	1,236	0,142
	1,319	0,134
	1,401	0,126
	1,484	0,119
	1,566	0,112
	1,649	0,107
	1,731	0,102
	1,814	0,097
	1,896	0,093
	1,979	0,089
	2,061	0,085
T₽◀─	2,144	0,082
	2,232	0,076
	2,321	0,070
	2,409	0,065
	2,497	0,061
	2,586	0,056
	2,674	0,053
	2,763	0,049
	2,851	0,046
	2,939	0,044
	3,028	0,041
	3,116	0,039
	3,205	0,037
	3,293	0,035
	3,381	0,033 0,031
	3,470 2,660	
	3,558	0,030
	3,646	0,028
	3,735	0,027
	3,823 3,912	0,027 0,027
	4,000	0,027
	7,000	0,021

La verifica dell'idoneità del programma, l'utilizzo dei risultati da esso ottenuti sono onere e responsabilità esclusiva dell'utente. Il Consiglio Superiore dei Lavori Pubblici non potrà essere ritenuto responsabile dei danni risultanti dall'utilizzo dell

Nell'immagine successiva è riportato il diagramma dello spettro di risposta per lo Stato Limite di Salvaguardia della Vita:

La verifica dell'idoneità del programma, l'utilizzo dei risultati da esso ottenuti sono onere e responsabilità esclusiva dell'utente. Il Consiglio Superiore dei Lavori Pubblici non potrà essere ritenuto responsabile dei danni risultanti dall'utilizzo dello stesso.

7.4 DEFINIZIONE DEI COEFFICIENTI SISMICI DI CALCOLO

Il coefficiente sismico orizzontale è determinato mediante la seguente relazione:

$$k_h = \beta_m \cdot \frac{a_{\text{max}}}{g}$$

dove:

 a_{max} → accelerazione orizzontale massima attesa al sito valutata mediante la seguente formulazione:

$$a_{max} = S \cdot a_g/g = S_S \cdot S_T \cdot a_g/g = 1,20 \cdot 1,00 \cdot 0,136 = 0,163$$

g → accelerazione di gravità

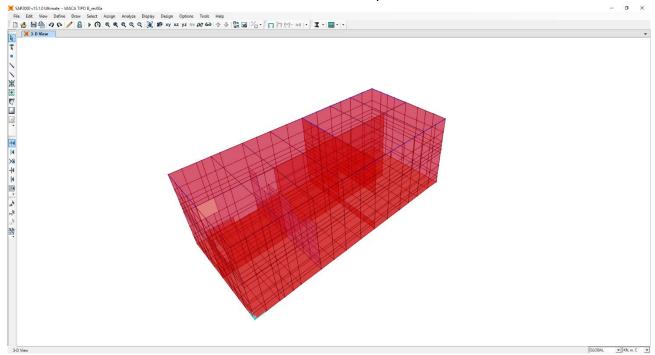
Il muro di sostegno può essere considerato come non libero di ruotare intorno al piede. Il coefficiente β_m viene pertanto determinato secondo quanto previsto dal D.M. 17.01.2018 "Nuove Norme Tecniche per le Costruzioni" – par. 7.11.6.2.1:

Il coefficiente β_m assume un valore pari all'unità per opere impediti di traslare e ruotare.

I coefficienti sismici in direzione orizzontale e verticale risultano dunque pari a:

$$K_h=0,163$$

 $K_v=0,0815$



8 IL MODELLO DI CALCOLO

8.1 DESCRIZIONE DEL MODELLO DI CALCOLO

Per la determinazione delle azioni sollecitanti sugli elementi strutturali è stato pertanto realizzato un apposito modello di calcolo tridimensionale agli elementi finiti mediante il software SAP2000 v.15.1 (Computers & Structures, Inc).

Gli elementi strutturali, quali platea di fondazione e setti verticali, sono stati modellati mediante elementi bidimensionali tipo "shell", mentre le travi a "T rovescia" poste a quota piano di copertura sono state modellate come elementi monodimensionali tipo "beam".

L'interazione terreno – struttura è schematizzata mediante apposite molle di opportuna rigidezza. In particolare, in funzione delle caratteristiche geotecniche del terreno, è stata considerata una schematizzazione alla Winkler considerando un coefficiente di sottofondo verticale $\mathbf{k}_{s,v}=3.850,00$ $\mathbf{kN/m^3}$. Il coefficiente di sottofondo orizzontale è stato assunto pari al 50% del coefficiente di sottofondo verticale $\mathbf{k}_{s,h}=1.925,00$ $\mathbf{kN/m^3}$.

9 ANALISI DEI CARICHI

9.1 CARICHI PERMANENTI STRUTTURALI

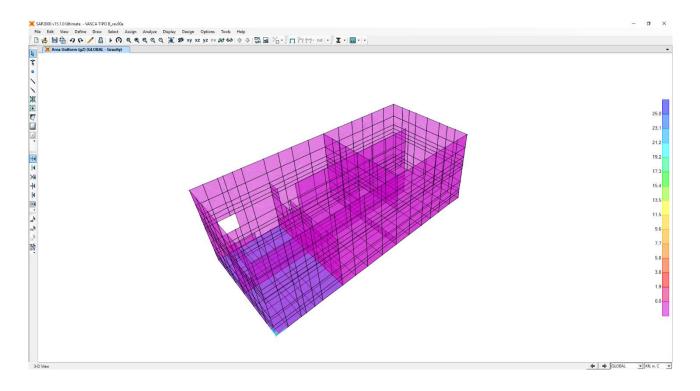
9.1.1 PESO PROPRIO DELLE STRUTTURE IN CEMENTO ARMATO

Il peso per unità di volume delle strutture in cemento armato è assunto pari a γ_{ca} = 25,00 kN/m³. Il peso proprio degli elementi strutturali è assegnato automaticamente dal software di calcolo agli elementi finiti sulla base delle caratteristiche geometriche e delle caratteristiche dei materiali assegnate ai singoli elementi (beam e/o shell).

Tale carico nel modello è definitivo come "g1"

9.2 CARICHI PERMANENTI NON STRUTTURALI

9.2.1 PESO PROPRIO RINGROSSO IN CALCESTRUZZO (G2)

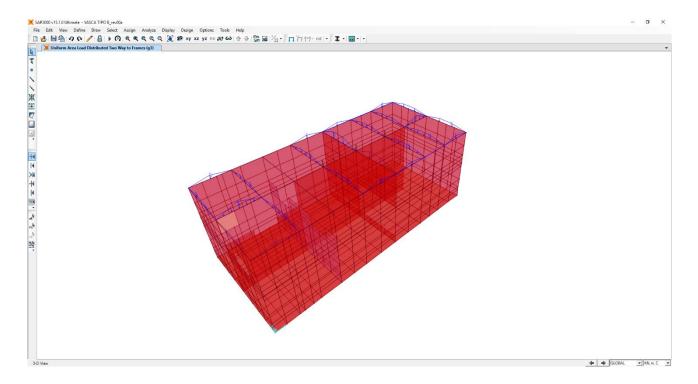

Il peso per unità di volume del ringrosso in calcestruzzo è assunto pari a γ_{csl} = 25,00 kN/m³.

Il ringrosso in calcestruzzo, nella vasca di prima pioggia, è presente nella zona di ingresso ed uscita delle acque.

Lo spessore medio complessivo di tale ringrosso è assunto pari a **92 cm**. In ogni caso il valore considerato nei calcoli è stato opportunamente, a favore di sicurezza, incrementato per tenere conto di possibili minime differenze tra il progettato e l'as-built.

Tale carico nel modello è definitivo come "g2".

$$g_2 = \gamma_{ycls} \cdot H_{ringrosso} = 25,00 \frac{kN}{m^3} \cdot 0,92m = 23,00 \frac{kN}{m^2}$$
 \Rightarrow $g_2 = 25,00 \frac{kN}{m^2}$



9.2.2 PESO PROPRIO DELLE PIASTRE SUPERIORI AMOVIBILI IN C.A. (G3)

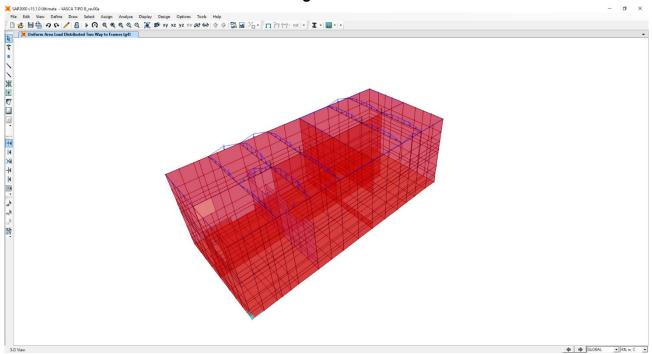
Il peso per unità di volume della piastra amovibile in calcestruzzo è assunto pari a γ_{csl} = 25,00 kN/m³. Lo spessore della piastra amovibile risulta pari a 20 cm.

Tale carico nel modello è definitivo come "g3".

$$g_3 = \gamma_{\gamma cls} \cdot H_{piastra} = 25,00 \frac{kN}{m^3} \cdot 0,20m = 5,00 \frac{kN}{m^2}$$

Nel modello il carico di superficie viene distribuito in maniera automatica sugli elementi monodimensionali mediante degli elementi "shell", posti in copertura, aventi caratteristiche meccaniche ed inerziali nulle.

Gli elementi "shell" cosi definiti non influiranno in alcun modo sui risultati delle analisi ed avranno come unico scopo quello di ripartire i carichi fra gli elementi di contorno.


9.2.3 PESO PROPRIO DEI CHIUSINI IN GHISA (G4)

Per il chiusino in ghisa è stato considerato un peso **P**_{chiusino} = **0,40 kN** come da valori di catalogo dei principali fornitori (il valore considerato nei calcoli è stato opportunamente incrementato a favore di sicurezza).

L'area d'impronta del chiusino è pari a **1,20 x 2,40 m** per cui l'entità di carico per unità si superficie risulta pari a:.

$$g_3 = P_{chiu \sin o} / A_{chiu \sin o} = 0.40 kN / 2.88 m = 0.139 \frac{kN}{m^2}$$
 \Rightarrow $g_3 = 0.15 \frac{kN}{m^2}$

Tale carico nel modello è definitivo come "g4".

Nel modello il carico di superficie viene distribuito in maniera automatica sugli elementi monodimensionali mediante degli elementi tipo "shell", posti in copertura, aventi caratteristiche meccaniche ed inerziali nulle.

Gli elementi "shell" cosi definiti non influiranno in alcun modo sui risultati delle analisi ed avranno come unico scopo quello di ripartire i carichi fra gli elementi di contorno.

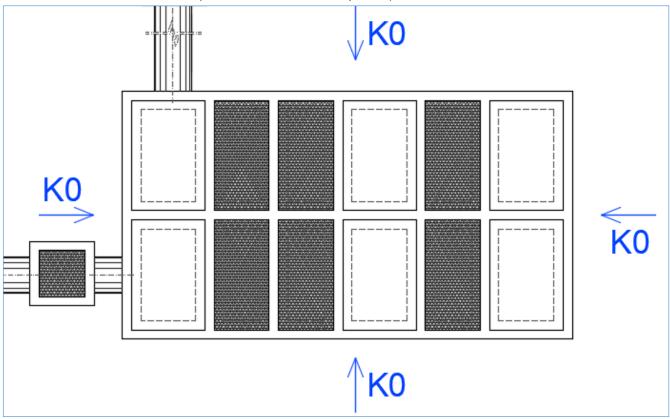
9.2.4 SPINTA ORIZZONTALE DEI TERRENI A TERGO DELLE PARETI VERTICALI

La spinta del terreno sulle pareti laterali dell'opera è stata calcolata mediante la seguente relazione:

$$S_t = \frac{1}{2} \cdot \gamma \cdot k \cdot H^2$$

dove:

- γ è il peso per unità di volume del terreno
- k è il coefficiente di spinta del terreno
- H è l'altezza complessiva dello strato di terreno

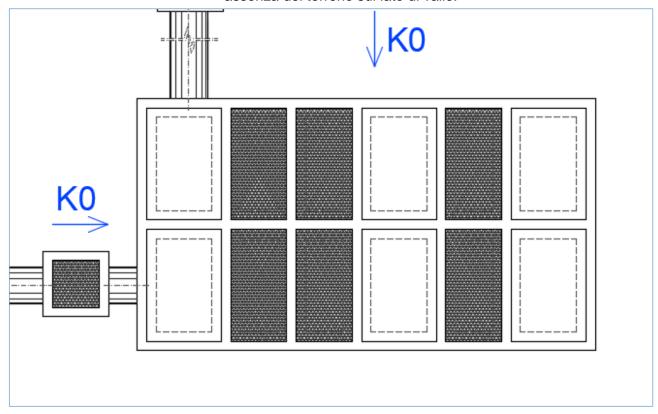

Per la valutazione della spinta dei terreni sulle pareti verticali è stata considerata la condizione di terreno a riposo.

In tale condizione viene assunto per la determinazione della spinta il coefficiente di spinta a riposo k_0 , calcolato mediante la seguente relazione:

$$k_0 = 1 - sen(\varphi)$$

Verranno considerate due differenti combinazioni di spinta:

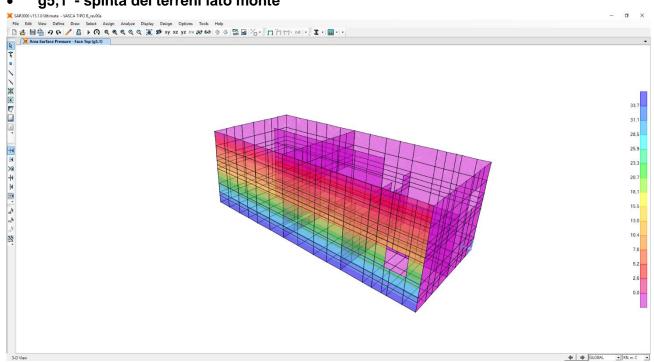
1. Condizione di riposo del terreno su tutti i lati della vasca (massimizzazione dei tagli sui setti e dell'azione normale di compressione sulle travi superiori).

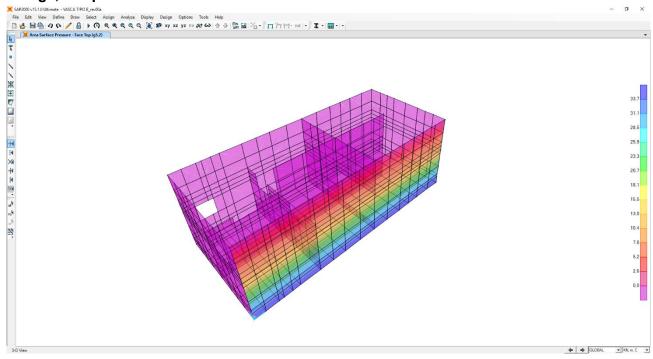


\$ anas

2. Condizione di riposo del terreno a sinistra e a monte della vasca a seguito di una possibile assenza del terreno sul lato di valle.

Tale carico è calcolato con riferimento alle dimensioni degli elementi del modello (elementi bidimensionali shell).

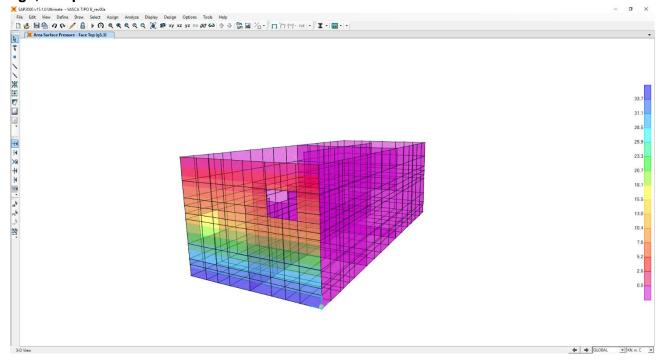


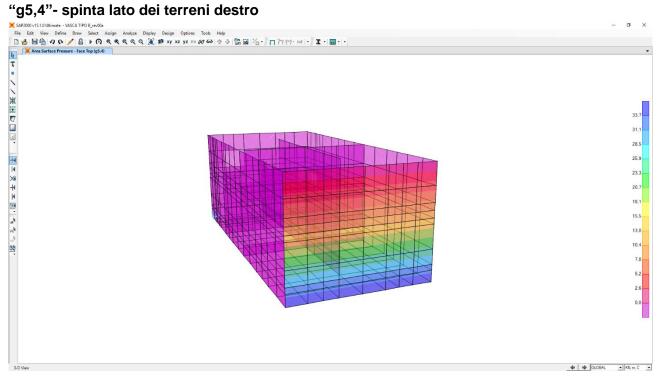


Tali carichi nel modello sono definiti come segue:

"g5,1"- spinta dei terreni lato monte

"g5,2"- spinta dei terreni lato valle





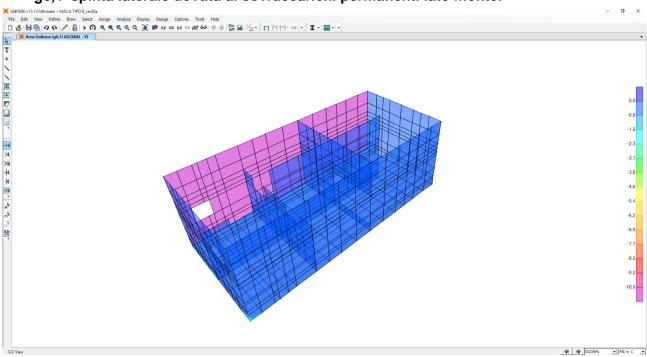
"g5,3"- spinta dei terreni lato sinistro

"g5,4"- spinta lato dei terreni destro

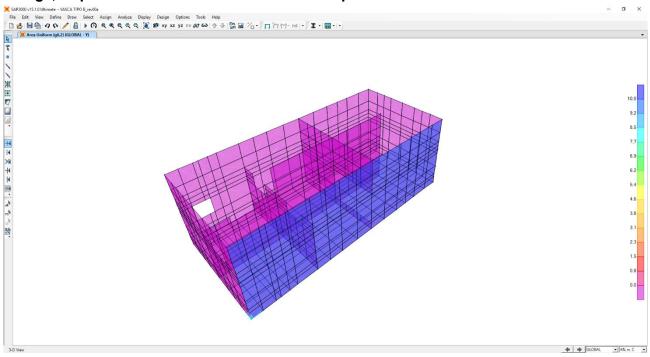
9.2.5 SPINTA LATERALE DOVUTA AI SOVRACCARICHI PERMANENTI

La spinta dovuta ai sovraccarichi permanenti viene valutata mediante la seguente relazione:

$$S_{cp} = p \cdot k \cdot H$$


dove:

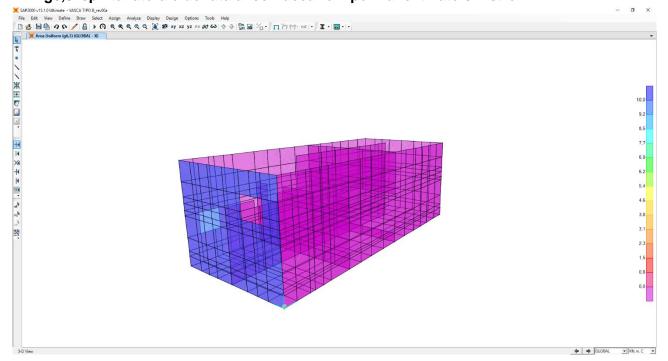
- p è l'entità del sovraccarico permanente agente (peso della pavimentazione e del rilevato);
- k è il coefficiente di spinta del terreno definito al paragrafo precedente.

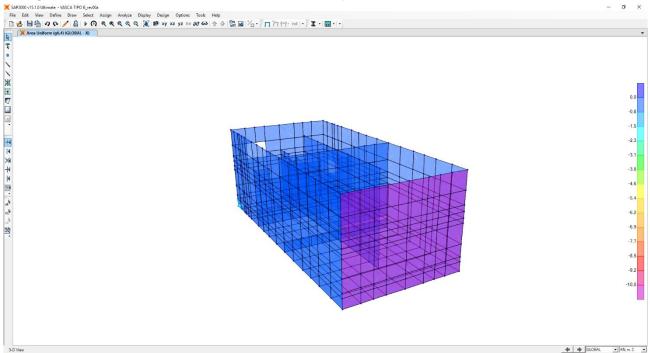

Il valore del sovraccarico in via generale assente, essendo la vasca posta con estradosso a piano strada, è stato fissato arbitrariamente a vantaggio di sicurezza pari a 10 kN/m²

Tali carichi nel modello sono definiti come segue:

"g6,1" spinta laterale dovuta ai sovraccarichi permanenti lato monte.

"g6,2"spinta laterale dovuta ai sovraccarichi permanenti lato valle.

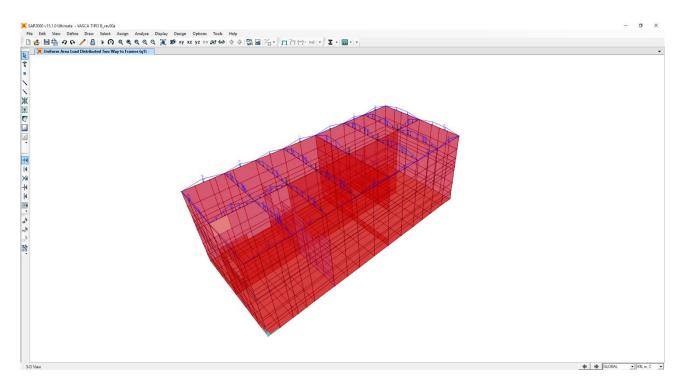




"g6,3"spinta laterale dovuta ai sovraccarichi permanenti lato sinistro.

"g6,4"spinta laterale dovuta ai sovraccarichi permanenti lato destro.

Nota Bene: l'azione della spinta è applicata nel modello alla stregua di quanto già fatto per le spinte del terreno. L'output del modello, in termini di sollecitazioni flettenti e taglianti, è quindi di tipo asimmetrico. L'armatura è stata dimensionata doppia e simmetrica per ciascuna sezione e in maniera uguale e costante per tutte le pareti verticali. Le verifiche sono state pertanto condotte esclusivamente in corrispondenza delle sezioni maggiormente sollecitate.



9.3 CARICHI ACCIDENTALI

9.3.1 CARICHI ACCIDENTALI AGENTI SULLA COPERTURA DELLA VASCA

E' stato assunto un carico accidentale agente sulla soletta di copertura della vasca pari a 30,00 kN/m² (soletta carrabile).

Tale carico nel modello è definit0 come "q1".

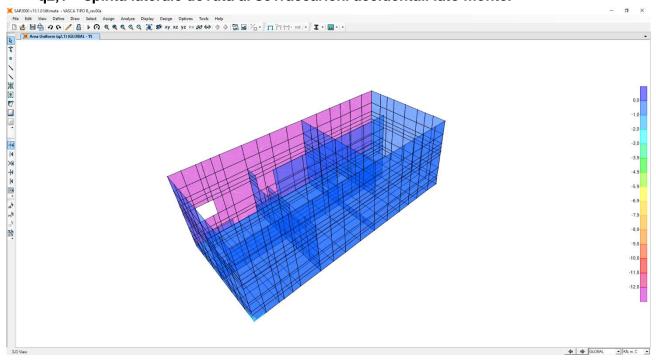
Nel modello il carico di superficie viene distribuito in maniera automatica sugli elementi monodimensionali mediante degli elementi tipo "shell", posti in copertura, aventi caratteristiche meccaniche ed inerziali nulle.

Gli elementi "shell" cosi definiti non influiranno in alcun modo sui risultati delle analisi ed avranno come unico scopo quello di ripartire i carichi fra gli elementi di contorno.

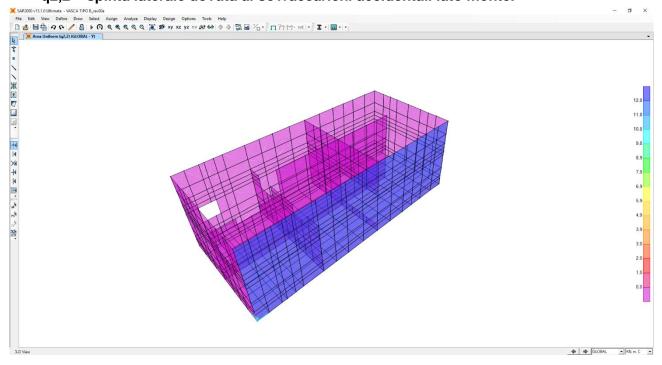
9.3.2 SPINTA LATERALE DOVUTA AI SOVRACCARICHI ACCIDENTALI

La spinta dovuta ai sovraccarichi accidentali viene valutata mediante la seguente relazione:

$$S_{cq} = q \cdot k$$

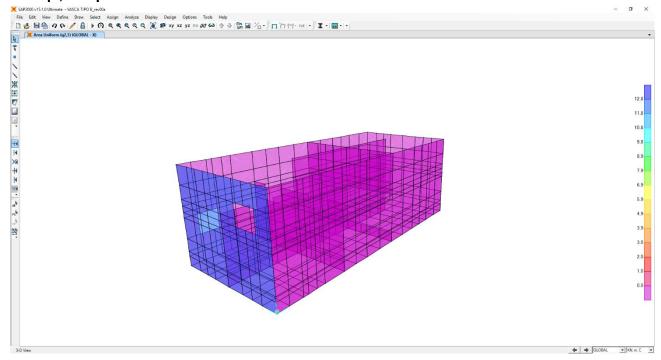

dove:

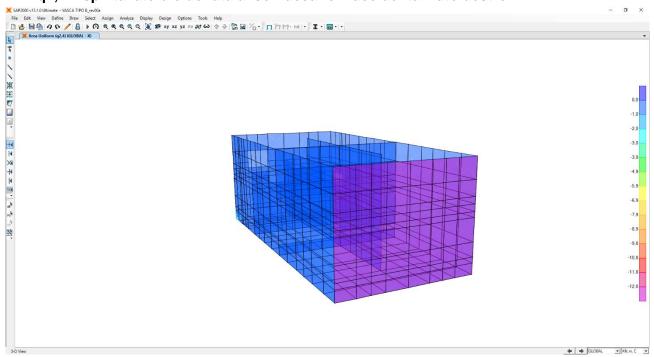
- q è l'entità del sovraccarico accidentale agente;
- k è il coefficiente di spinta del terreno.


Il coefficiente di spinta è assunto pari a quello delle condizioni a riposo (k0)

Tale carico nel modello è definit0 come segue:

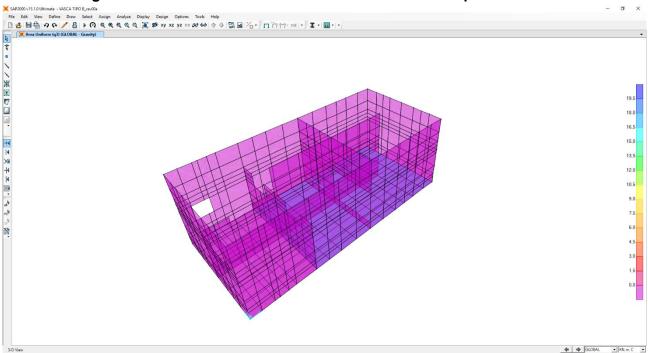
"q2,1"- spinta laterale dovuta ai sovraccarichi accidentali lato monte.


"q2,2"- spinta laterale dovuta ai sovraccarichi accidentali lato monte.

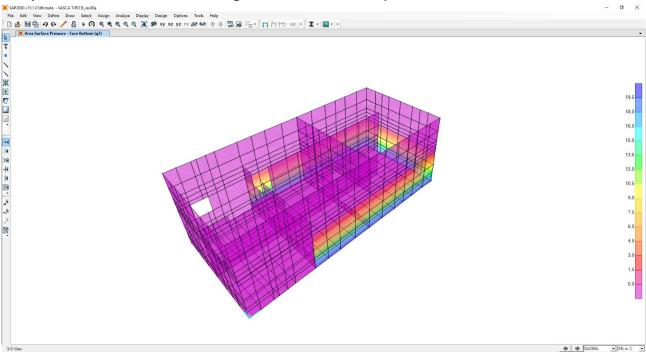


"q2,3"- spinta laterale dovuta ai sovraccarichi accidentali lato sinistro.

"q2,4"- spinta laterale dovuta ai sovraccarichi accidentali lato destro.


9.3.3 CARICHI ACCIDENTALI AGENTI SULLA ZATTERA DI FONDAZIONE

Per la vasca in esame il carico accidentale che può gravare sulla fondazione è rappresentato dal carico idraulico.


L'altezza massima di riempimento dell'acqua è stata assunta pari alla quota di sfioro della soglia presente nel comparto di uscita dalla vasca. E' stato considerato un peso per unità di volume dell'acqua pari a $\gamma_{acqua}=10,00kN/m^3$.

Ovviamente l'eventuale presenza di acqua all'interno della vasca genera altresì una spinta laterale contro le pareti dovuta alla pressione idrostatica dell'acqua, la quale contrasta la spinta delle terre (discordanza di segno tra le due azioni).

Il carico che grava sulla fondazione nel modello è definito come "q3".

Le spinte laterali nel modello vengono definite come "q3".

Sono state considerate due configurazioni differenti:

- CONDIZIONE 1 → vasca vuota (massimizzazione delle azioni flettenti sulle pareti verticali)
- CONDIZIONE 2 → vasca piena fino alla quota di sfioro (massimizzazione delle azioni verticali sulla zattera di fondazione)

9.3.4 **AZIONE DELLA NEVE**

L'azione della neve non è stata presa in considerazione in quanto non influente sulla determinazione dei massimi valori di sollecitazione sulla struttura.

9.3.5 **AZIONE DEL VENTO**

Essendo la struttura interrata, l'azione del vento non è stata presa in considerazione.

9.4 DEFORMAZIONI IMPRESSE – EFFETTI REOLOGICI

9.4.1 RITIRO DELLA SOLETTA DI COPERTURA

Essendo la copertura costituita da una serie di piastre in c.a. semplicemente appoggiate al reticolo di travi superiore, l'azione di ritiro impedito sulle singole lastre non produce effetti sui restanti elementi strutturali (di copertura e sottostanti). L'azione di ritiro impedito sulla copertura non è stata pertanto presa in considerazione. Analogamente si ritiene trascurabile l'effetto del ritiro impedito sui setti in senso longitudinale, in ogni caso l'armatura di ripartizione è stata opportunamente sovradimensionata per tener conto di tale effetto.

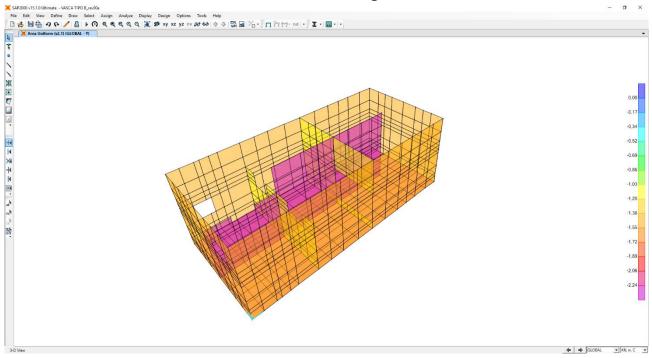
9.4.2 AZIONE TERMICA UNIFORME

Essendo la copertura costituita da una serie di piastre in c.a. semplicemente appoggiate al reticolo di travi superiore, l'azione termica uniforme agente sulle singole lastre non produce effetti sui restanti elementi strutturali (di copertura e sottostanti). L'azione termica uniforme sulla copertura non è stata pertanto presa in considerazione.

9.4.3 AZIONE TERMICA DIFFERENZIALE

Essendo la copertura costituita da una serie di piastre in c.a. semplicemente appoggiate al reticolo di travi superiore, l'azione termica differenziale agente sulle singole lastre non produce effetti sui restanti elementi strutturali (di copertura e sottostanti). L'azione termica differenziale sulla copertura non è stata pertanto presa in considerazione.

9.5 AZIONE SISMICA

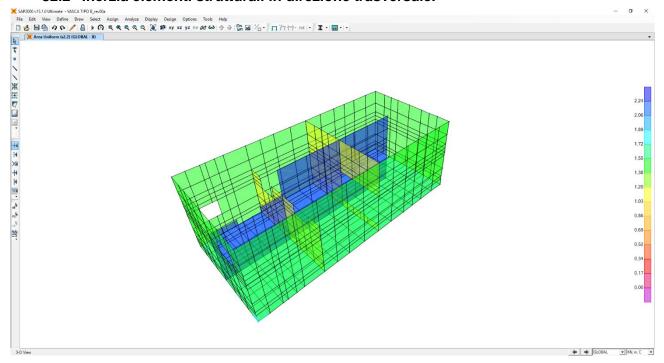

Le sollecitazioni agenti sulla struttura in fase sismica vengono determinate attraverso un'analisi pseudo-statica, secondo quanto riportato nel DM 17.01.2018 "Nuove norme tecniche per le costruzioni", paragrafo 7.11.6. e conformemente alle previsioni di cui al punto 5.1.3.6 della norma vigente. In particolare conformemente a questo ultimo paragrafo (5.1.3.6), trattandosi di un opera secondario ed essendo la stessa inserita in un contesto non urbano ad intenso traffico, all'interno delle masse sismiche non sono stati considerati i carichi da traffico.

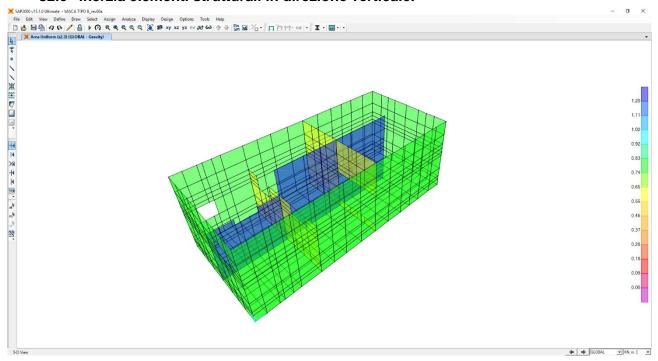
9.5.1 AZIONE INERZIALE DELLE MASSE

Le azioni inerziali, orizzontali e verticali, dovute alle accelerazioni subite in fase sismica dalle masse degli elementi strutturali sono state valutate moltiplicando il peso degli elementi strutturali per i coefficienti sismici orizzontale k_h (pari alla PGA) e verticale k_v .

Tali azioni nel modello sono definite come segue:

"s2.1" inerzia elementi strutturali in direzione longitudinale.





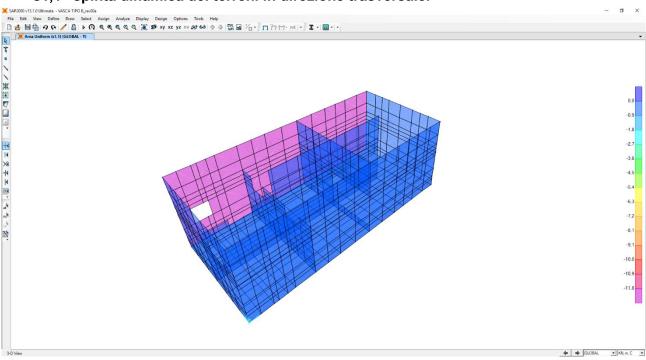
"s2.2" inerzia elementi strutturali in direzione trasversale.

"s2.3" inerzia elementi strutturali in direzione verticale.

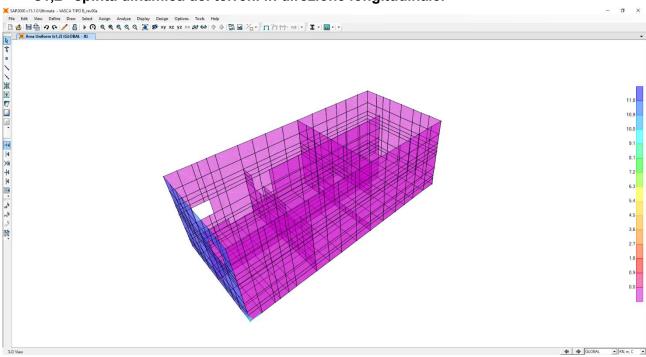
Nota Bene: l'azione sismica è applicata nel modello alla stregua di quanto già fatto per le spinte del terreno e delle spinte dovute ai carichi accidentali. L'output del modello, in termini di sollecitazioni flettenti e taglianti, è quindi di tipo asimmetrico. L'armatura è ovviamente stata progettata in maniera doppia e simmetrica e le verifiche sono state condotte in corrispondenza dei valori massimi (in valore assoluto).

9.5.2 **S**OVRASPINTA DINAMICA DEI TERRENI

L'azione di spinta attiva dei terreni in fase sismica (sovraspinta dinamica) viene valutata mediante la relazione di Wood:


$$\Delta P = \gamma \cdot a_g \cdot S \cdot H^2$$

dove:


- γ è il peso per unità di volume del terreno;
- H è l'altezza della struttura soggetta alla spinta del terreno.

Tale azione nel modello è definita come segue:

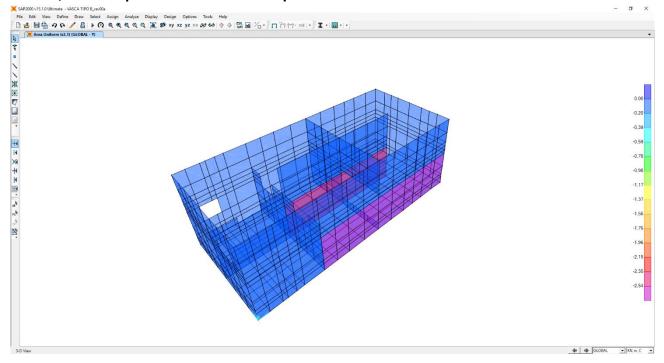
"s1,1" spinta dinamica dei terreni in direzione trasversale.

"s1,2" spinta dinamica dei terreni in direzione longitudinale.

Nota Bene: l'azione sismica è applicata nel modello alla stregua di quanto già fatto per le spinte del terreno e delle spinte dovute ai carichi accidentali. L'output del modello, in termini di sollecitazioni flettenti e taglianti, è quindi di tipo asimmetrico. L'armatura è ovviamente stata progettata in maniera doppia e simmetrica e le verifiche sono state condotte in corrispondenza dei valori massimi (in valore assoluto).

9.5.3 SOVRASPINTA DINAMICA DELL'ACQUA

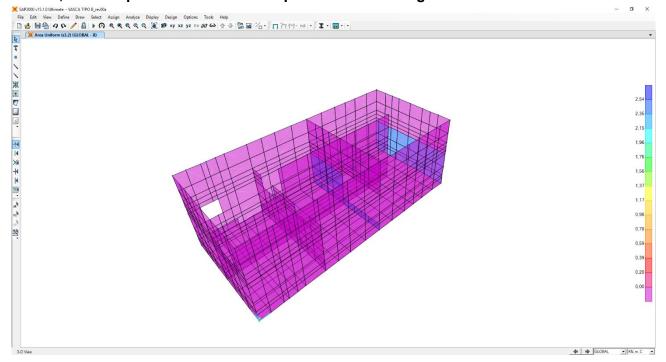
L'azione di spinta dinamica dell'acqua in fase sismica viene valutata mediante la relazione di Westergaard. L'incremento di pressione agente sul singolo elemento è dato dalla seguente relzione:

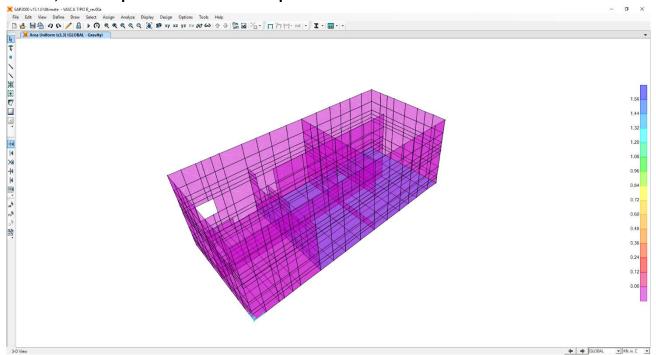

$$P = \frac{7}{8} \gamma \cdot a_g \cdot S \cdot H$$

dove:

- γ è il peso per unità di volume del terreno;
- H è l'altezza della struttura soggetta alla spinta dell'acqua;

Tale azione nel modello è definita come segue:


• "s3,1"sovraspinta dinamica dell'acqua in direzione trasversale.



"s3,2"sovraspinta dinamica dell'acqua in direzione longitudinale.

"s3,3"sovraspinta dinamica dell'acqua in direzione verticale.

Nota Bene: l'azione sismica è applicata nel modello alla stregua di quanto già fatto per le spinte del terreno e delle spinte dovute ai carichi accidentali.

COMBINAZIONI DI CARICO 10

10.1 CARICHI ELEMENTARI

L'approccio seguito per il calcolo e verifica dell'opera è l'Approccio 2 con la combinazione dei coefficienti parziali A1+M1+R3 (D.M. 17/01/2018 cap.6.4.3.1).

Nella tabella successiva sono riportati i carichi elementari introdotti nei modelli di calcolo ed i rispettivi coefficienti di amplificazione (γ) e partecipazione (ψ):

	CARICO ELEMENTARE	COEFF. DI SPINTA	DISPOSIZIONE	CASI DI ANALISI	Yslu (sfavo- revole)	YsLU (favo- revole)	ψο	Ψ1	Ψ2
g ₁	Peso proprio degli elementi strutturali	-	-	PP-01	1,35	1,00	1,00	1,00	1,00
g 2	Carico permanente dovuto al peso proprio ringrosso in calcestruzzo	-	-						
g 3	Carico permanente dovuto al peso della piastra in c.a.	-	-	CP-01	1,50	1,00	1,00	1,00	1,00
g ₄	Carico permanente dovuto al peso del chiusino in ghisa	-	-						
9 5,1	Spinta laterale del terreno sul setto a monte	k ₀							
g 5,2	Spinta laterale del terreno sul setto a valle	k ₀	1	SPT-01	1,35	1,00	1,00	1,00	1,00
g 5,3	Spinta laterale del terreno sul setto sinistro	k o	'	OI 1-01	1,55	1,00	1,00	1,00	1,00
g 5,4	Spinta laterale del terreno sul setto destro	k ₀							
g 5,1	Spinta laterale del terreno sul setto a monte	k ₀	2	SPT-02	1,35	1,00	1,00	1,00	1,00
g 5,3	Spinta laterale del terreno sul setto sinistro	k ₀	2	01 1 02	1,00	1,00	1,00	1,00	1,00
G 6,1	Spinta laterale dei sovraccarichi permanenti sul setto a monte	k o							
g 6,2	Spinta laterale dei sovraccarichi permanenti sul setto a valle	k ₀	1	SPCP-01	1,50	1,00	1,00	1,00	1,00
g 6,3	Spinta laterale dei sovraccarichi permanenti sul setto sinistro	k ₀	'	01 01 01	1,00	1,00	1,00	1,00	1,00
g 6,4	Spinta laterale dei sovraccarichi permanenti sul setto destro	k ₀							
g 6,1	Spinta laterale dei sovraccarichi permanenti sul setto a monte	k ₀	2	SPCP-02	1,50	1,00	1 00	1,00	1,00
g 6,3	Spinta laterale dei sovraccarichi permanenti sul setto sinistro	k ₀	2	31 G1 -02	1,50	1,00	1,00	1,00	1,00
Q1	Carico accidentale distribuito sulla copertura	-			1,35	0,00	0,75	0,75	0,00
Q 2,1	Spinta laterale del sovraccarico distribuito sul setto a monte	k 0	1	SPACC-01	1,35	0,00	0,75	0,75	0,00
q _{2,2}	Spinta laterale del sovraccarico distribuito sul setto a valle	k 0	1	31 AGG-01	1,35	0,00	0,75	0,75	0,00
q _{2,3}	Spinta laterale del sovraccarico distribuito sul setto a sinistra	k 0			1,35	0,00	0,75	0,75	0,00

	CARICO ELEMENTARE	COEFF. DI SPINTA	DISPOSIZIONE	CASI DI ANALISI	γ _{SLU} (sfavo- revole)	YSLU (favo- revole)	Ψο	Ψ1	Ψ2
q _{2,4}	Spinta laterale del sovraccarico distribuito sul setto a destra	k ₀			1,35	0,00	0,75	0,75	0,00
Q1	Carico accidentale distribuito sulla copertura	-			1,35	0,00	0,75	0,75	0,00
q _{2,1}	Spinta laterale del sovraccarico distribuito sul setto a monte	k_0	2	SPACC-02	1,35	0,00	0,75	0,75	0,00
q _{2,3}	Spinta laterale del sovraccarico distribuito sul setto a sinistra	k 0			1,35	0,00	0,75	0,75	0,00
q ₃	Carico accidentale distribuito sulla zattera di base	-	-	ACCZATT-01	1,35	0,00	0,75	0,75	0,00
S _{1,1}	Sovraspinta dinamica dei terreni in direzione trasversale	-			1,00	1,00	-	-	-
S2,1	Inerzia sismica orizzontale in direzione trasversale dovuta alla massa degli elementi strutturali ed ai carichi permanenti portati in copertura	-	-	SISMA(X)-01	1,00	1,00	-	-	-
S _{1,2}	Sovraspinta dinamica dei terreni in direzione longitudinale	-			1,00	1,00	-	-	-
S 2,2	Inerzia sismica orizzontale in direzione longitudinale dovuta alla massa degli elementi strutturali ed ai carichi permanenti portati in copertura	-	-	SISMA(Y)-01	1,00	1,00	-	-	-
S _{2,3}	Inerzia sismica verticale dovuta alla massa degli elementi strutturali ed ai carichi permanenti portati in copertura	-	-	SISMA(Z)-01	1,00	1,00	1	1	-
S _{3,1}	Sovraspinta dinamica dell'acqua in direzione trasversale	-	-	SISMA(X)-02	1,00	1,00	-	-	-
S 3,2	Sovraspinta dinamica dell'acqua in direzione longitudinale		-	SISMA(Y)-02	1,00	1,00	-	-	-
S 3,2	Sovraspinta dinamica dell'acqua in direzione verticale		-	SISMA(Z)-02	1,00	1,00	-	-	-

10.2 COMBINAZIONI DI CARICO ALLO STATO LIMITE DI ESERCIZIO – COMBINAZIONI QUASI- PERMANENTI

Per le combinazioni di carico statiche relative alla struttura in oggetto si è fatto riferimento a quanto riportato nel capitolo nel D.M. 17.01.2018 "Nuove norme tecniche per le costruzioni", par. 2.5.3. Sulla base di ciò sono state individuate le combinazioni di carico statiche quasi permanenti allo Stato Limite di Esercizio, ottenute tramite la relazione generale:

$$F_d = \sum G_{kj} + \sum (\psi_{2i} \cdot Q_{ki})$$

- G_{kj} rappresenta il valore caratteristico della j-esima azione permanente
- Qki rappresenta il valore caratteristico della i-esima azione variabile
- Ψ_{2i} rappresentano i coefficienti di combinazione per tener conto della ridotta probabilità di concomitanza delle azioni variabili con i loro valori quasi permanenti

	COMB. S.L	.E QUASI PE	RMANENTI	
CASO DI	Q.P.01	Q.P.02	Q.P.03	Q.P.04
ANALISI	Ψ	Ψ	Ψ	Ψ
PP-01	1,00	1,00	1,00	1,00
CP-01	1,00	1,00	1,00	1,00
SPT-01	1,00	0,00	1,00	0,00
SPT-02	0,00	1,00	0,00	1,00
SPCP-01	1,00	0,00	1,00	0,00
SPCP-02	0,00	1,00	0,00	1,00
SPACC-01	0,00	0,00	0,00	0,00
SPACC-02	0,00	0,00	0,00	0,00
SPACC-03	0,00	0,00	0,00	0,00
SPACC-04	0,00	0,00	0,00	0,00
ACCZATT-01	0,00	0,00	1,00	1,00

10.3 COMBINAZIONI DI CARICO ALLO STATO LIMITE DI ESERCIZIO – COMBINAZIONI FREQUENTI

Per le combinazioni di carico statiche relative alla struttura in oggetto si è fatto riferimento a quanto riportato nel capitolo nel D.M. 17.01.2018 "Nuove norme tecniche per le costruzioni", par. 2.5.3. Sulla base di ciò sono state individuate le combinazioni di carico statiche frequenti allo Stato Limite di Esercizio, ottenute tramite la relazione generale:

$$F_{d} = \sum G_{kj} + \psi_{11} \cdot Q_{k1} + \sum (\psi_{2i} \cdot Q_{ki})$$

- G_{kj} rappresenta il valore caratteristico della j-esima azione permanente
- Qk1 rappresenta il valore caratteristico dell'azione variabile di base in ogni combinazione
- Qki rappresenta il valore caratteristico della i-esima azione variabile
- Ψ_{1i} rappresentano i coefficienti di combinazione per tener conto della ridotta probabilità di concomitanza delle azioni variabili con i loro valori frequenti

	COMBINAZIONI S.L.E FREQUENTE											
CASO DI	FR.01	FR.02	FR.03	FR.04	FR.05	FR.06	FR.07	FR.08				
ANALISI	Ψ	Ψ	Ψ	Ψ	Ψ	Ψ	Ψ	Ψ				
PP-01	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00				
CP-01	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00				
SPT-01	1,00	0,00	1,00	0,00	1,00	0,00	1,00	0,00				
SPT-02	0,00	1,00	0,00	1,00	0,00	1,00	0,00	1,00				
SPCP-01	1,00	0,00	1,00	0,00	1,00	0,00	1,00	0,00				
SPCP-02	0,00	1,00	0,00	1,00	0,00	1,00	0,00	1,00				
SPACC-01	0,75	0,00	0,00	0,00	0,75	0,00	0,00	0,00				
SPACC-02	0,00	0,75	0,00	0,00	0,00	0,75	0,00	0,00				
SPACC-03	0,00	0,00	0,75	0,00	0,00	0,00	0,75	0,00				
SPACC-04	0,00	0,00	0,00	0,75	0,00	0,00	0,00	0,75				
ACCZATT-01	0,00	0,00	0,00	0,00	1,00	1,00	1,00	1,00				

10.4 COMBINAZIONI DI CARICO ALLO STATO LIMITE DI ESERCIZIO – COMBINAZIONI CARATTERISTICHE

Per le combinazioni di carico statiche relative alla struttura in oggetto si è fatto riferimento a quanto riportato nel capitolo nel D.M. 17.01.2018 "Nuove norme tecniche per le costruzioni", par. 2.5.3. Sulla base di ciò sono state individuate le combinazioni di carico statiche caratteristiche allo Stato Limite di Esercizio, ottenute tramite la relazione generale:

$$F_d = \sum G_{kj} + Q_{k1} + \sum (\psi_{0i} \cdot Q_{ki})$$

- Gki rappresenta il valore caratteristico della j-esima azione permanente
- Qk1 rappresenta il valore caratteristico dell'azione variabile di base in ogni combinazione
- Qki rappresenta il valore caratteristico della i-esima azione variabile
- Ψ_{0i} rappresentano i coefficienti di combinazione per tener conto della ridotta probabilità di concomitanza delle azioni variabili con i loro valori caratteristici

	COMBINAZIONI S.L.E CARATTERISTICA											
CASO DI	CAR.01	CAR.02	CAR.03	CAR.04	CAR.05	CAR.06	CAR.07	CAR.08				
ANALISI	Ψ	Ψ	Ψ	Ψ	Ψ	Ψ	Ψ	Ψ				
PP-01	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00				
CP-01	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00				
SPT-01	1,00	0,00	1,00	0,00	1,00	0,00	1,00	0,00				
SPT-02	0,00	1,00	0,00	1,00	0,00	1,00	0,00	1,00				
SPCP-01	1,00	0,00	1,00	0,00	1,00	0,00	1,00	0,00				
SPCP-02	0,00	1,00	0,00	1,00	0,00	1,00	0,00	1,00				
SPACC-01	1,00	0,00	0,00	0,00	1,00	0,00	0,00	0,00				
SPACC-02	0,00	1,00	0,00	0,00	0,00	1,00	0,00	0,00				
SPACC-03	0,00	0,00	1,00	0,00	0,00	0,00	1,00	0,00				
SPACC-04	0,00	0,00	0,00	1,00	0,00	0,00	0,00	1,00				
ACCZATT-01	0,00	0,00	0,00	0,00	0,75	0,75	0,75	0,75				

CASO DI	CAR.09	CAR.10	CAR.11	CAR.12
ANALISI	Ψ	Ψ	Ψ	Ψ
PP-01	1,00	1,00	1,00	1,00
CP-01	1,00	1,00	1,00	1,00
SPT-01	1,00	0,00	1,00	0,00
SPT-02	0,00	1,00	0,00	1,00
SPCP-01	1,00	0,00	1,00	0,00
SPCP-02	0,00	1,00	0,00	1,00
SPACC-01	0,75	0,00	0,00	0,00
SPACC-02	0,00	0,75	0,00	0,00
SPACC-03	0,00	0,00	0,75	0,00
SPACC-04	0,00	0,00	0,00	0,75
ACCZATT-01	1,00	1,00	1,00	1,00

10.5 COMBINAZIONI DI CARICO ALLO STATO LIMITE ULTIMO STATICHE

Per le combinazioni di carico statiche relative alla struttura in oggetto si è fatto riferimento a quanto riportato nel capitolo nel D.M. 17.01.2018 "Nuove norme tecniche per le costruzioni", par. 2.5.3. Sulla base di ciò sono state individuate le combinazioni di carico statiche allo Stato Limite Ultimo, ottenute tramite la relazione generale:

$$F_d = \sum_{i=1}^m \left(\gamma_{Gj} \cdot G_{kj} \right) + \gamma_{Q1} \cdot Q_{k1} + \sum_{i=2}^n \left(\psi_{0i} \cdot \gamma_{Qi} \cdot Q_{ki} \right)$$

dove:

- γ_G e γ_Q rappresentano i coefficienti parziali di amplificazione dei carichi
- G_{ki} rappresenta il valore caratteristico della j-esima azione permanente
- Q_{k1} rappresenta il valore caratteristico dell'azione variabile di base in ogni combinazione
- Qki rappresenta il valore caratteristico della i-esima azione variabile
- Ψ_{0i} rappresentano i coefficienti di combinazione per tener conto della ridotta probabilità di concomitanza delle azioni variabili con i loro valori caratteristici

I coefficienti di amplificazione dei carichi per le combinazioni di carico A1, secondo il D.M. 14.01.2008 "Nuove norme tecniche per le costruzioni", par. 2.6, tabella 2.6.1, sono riepilogati nelle seguenti tabelle:

Tabella 2.6.I – Coefficienti parziali per le azioni o per l'effetto delle azioni nelle verifiche SLU

		Coefficiente γ_F	EQU	A1 STR
Carichi permanenti	favorevoli sfavorevoli	γ G1	0,9 1,1	1,0 1,3
Carichi permanenti non strutturali ⁽¹⁾	favorevoli sfavorevoli	γ _{G2}	0,0 1,5	0,0 1,5
Carichi variabili	favorevoli sfavorevoli	γ _{Qi}	0,0 1,5	0,0 1,5

	COMBINAZIONI S.L.U STATICHE										
CASO DI	STR.01		STF	R.02	STR.03		STR.04				
ANALISI	γ	Ψ	γ	Ψ	γ	Ψ	γ	Ψ			
PP-01	1,35	1,00	1,35	1,00	1,35	1,00	1,35	1,00			
CP-01	1,50	1,00	1,50	1,00	1,50	1,00	1,50	1,00			
SPT-01	1,35	1,00	1,35	0,00	1,35	1,00	1,35	0,00			
SPT-02	1,35	0,00	1,35	1,00	1,35	0,00	1,35	1,00			
SPCP-01	1,50	1,00	1,50	0,00	1,50	1,00	1,50	0,00			
SPCP-02	1,50	0,00	1,50	1,00	1,50	0,00	1,50	1,00			
SPACC-01	1,35	1,00	1,35	0,00	1,35	0,00	1,35	0,00			
SPACC-02	1,35	0,00	1,35	1,00	1,35	0,00	1,35	0,00			
SPACC-03	1,35	0,00	1,35	0,00	1,35	1,00	1,35	0,00			
SPACC-04	1,35	0,00	1,35	0,00	1,35	0,00	1,35	1,00			
ACCZATT-01	1,50	0,00	1,50	0,00	1,50	0,00	1,50	0,00			
SISMA(X)-01	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00			
SISMA(Y)-01	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00			
SISMA(Z)-01	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00			
SISMA(X)-02	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00			
SISMA(Y)-02	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00			
SISMA(Z)-02	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00			

CASO DI	STF	R.05	STF	R.06	STF	2.07	STF	R.08
ANALISI	γ	Ψ	γ	Ψ	γ	Ψ	γ	Ψ
PP-01	1,35	1,00	1,35	1,00	1,35	1,00	1,35	1,00
CP-01	1,50	1,00	1,50	1,00	1,50	1,00	1,50	1,00
SPT-01	1,35	1,00	1,35	0,00	1,35	1,00	1,35	0,00
SPT-02	1,35	0,00	1,35	1,00	1,35	0,00	1,35	1,00
SPCP-01	1,50	1,00	1,50	0,00	1,50	1,00	1,50	0,00
SPCP-02	1,50	0,00	1,50	1,00	1,50	0,00	1,50	1,00
SPACC-01	1,35	1,00	1,35	0,00	1,35	0,00	1,35	0,00
SPACC-02	1,35	0,00	1,35	1,00	1,35	0,00	1,35	0,00
SPACC-03	1,35	0,00	1,35	0,00	1,35	1,00	1,35	0,00
SPACC-04	1,35	0,00	1,35	0,00	1,35	0,00	1,35	1,00
ACCZATT-01	1,50	0,75	1,50	0,75	1,50	0,75	1,50	0,75
SISMA(X)-01	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00
SISMA(Y)-01	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00
SISMA(Z)-01	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00
SISMA(X)-02	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00
SISMA(Y)-02	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00
SISMA(Z)-02	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00

CASO DI	STF	R.09	STF	R.10	STR	R.11	STF	R.12
ANALISI	γ	Ψ	γ	Ψ	γ	Ψ	γ	Ψ
PP-01	1,35	1,00	1,35	1,00	1,35	1,00	1,35	1,00
CP-01	1,50	1,00	1,50	1,00	1,50	1,00	1,50	1,00
SPT-01	1,35	1,00	1,35	0,00	1,35	1,00	1,35	0,00
SPT-02	1,35	0,00	1,35	1,00	1,35	0,00	1,35	1,00
SPCP-01	1,50	1,00	1,50	0,00	1,50	1,00	1,50	0,00
SPCP-02	1,50	0,00	1,50	1,00	1,50	0,00	1,50	1,00
SPACC-01	1,35	0,75	1,35	0,00	1,35	0,00	1,35	0,00
SPACC-02	1,35	0,00	1,35	0,75	1,35	0,00	1,35	0,00
SPACC-03	1,35	0,00	1,35	0,00	1,35	0,75	1,35	0,00
SPACC-04	1,35	0,00	1,35	0,00	1,35	0,00	1,35	0,75
ACCZATT-01	1,50	1,00	1,50	1,00	1,50	1,00	1,50	1,00
SISMA(X)-01	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00
SISMA(Y)-01	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00
SISMA(Z)-01	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00
SISMA(X)-02	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00
SISMA(Y)-02	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00
SISMA(Z)-02	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00

10.6 COMBINAZIONE DI CARICO SISMICHE

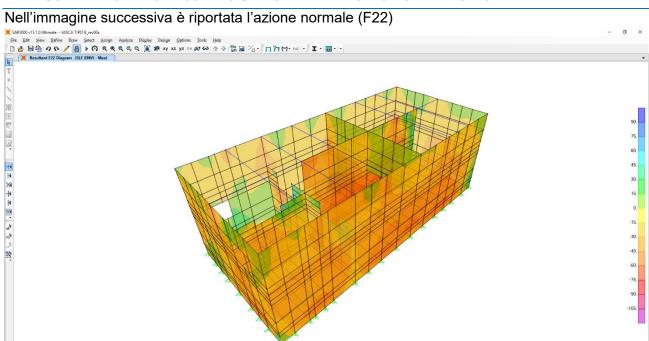
In fase sismica è state ipotizzate un'unica combinazione di carico allo Stato Limite di Salvaguardia ottenuta tramite la relazione generale:

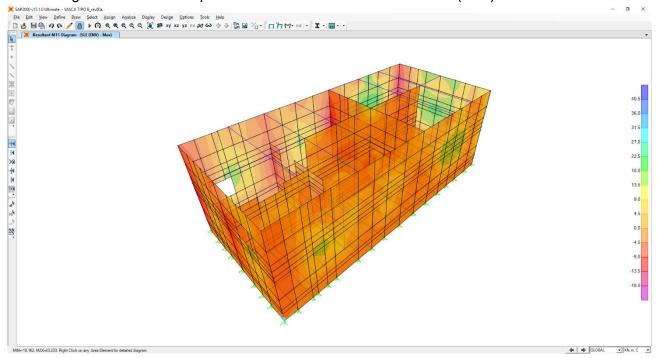
$$F_d = E + \sum G_{kj} + \sum (\psi_{2i} \cdot Q_{ki})$$

- E rappresenta il carico sismico
- G_{kj} rappresenta il valore caratteristico della j-esima azione permanente
- Qki rappresenta il valore caratteristico della i-esima azione variabile
- Ψ_{2i} rappresentano i coefficienti di combinazione per tener conto della ridotta probabilità di concomitanza delle azioni variabili con i loro valori quasi permanenti

			COMBINA	ZIONI S.L.U	SISMICHE			
CASO DI	SISMA.1	SISM A.2	SISM A.3	SISMA.4	SISM A.5	SISM A.6	SISM A.7	SISMA.8
ANALISI	Ψ	Ψ	Ψ	Ψ	Ψ	Ψ	Ψ	Ψ
PP-01	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00
CP-01	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00
SPT-01	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00
SPT-02	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00
SPCP-01	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00
SPCP-02	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00
SPACC-01	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00
SPACC-02	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00
SPACC-03	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00
SPACC-04	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00
ACCZATT-01	0,00	0,00	0,00	0,00	0,00	0,00	1,00	1,00
SISMA(X)-01	1,00	1,00	0,30	0,30	0,30	0,30	1,00	1,00
SISMA(Y)-01	0,30	0,30	1,00	1,00	0,30	0,30	0,30	0,30
SISMA(Z)-01	0,30	-0,30	0,30	-0,30	1,00	-1,00	0,30	-0,30
SISMA(X)-02	0,00	0,00	0,00	0,00	0,00	0,00	1,00	1,00
SISMA(Y)-02	0,00	0,00	0,00	0,00	0,00	0,00	0,30	0,30
SISMA(Z)-02	0,00	0,00	0,00	0,00	0,00	0,00	0,30	-0,30

CASO DI	SISM A.9	SISMA.10	SISMA.11	SISMA.12
ANALISI	Ψ	Ψ	Ψ	Ψ
PP-01	1,00	1,00	1,00	1,00
CP-01	1,00	1,00	1,00	1,00
SPT-01	1,00	1,00	1,00	1,00
SPT-02	0,00	0,00	0,00	0,00
SPCP-01	1,00	1,00	1,00	1,00
SPCP-02	0,00	0,00	0,00	0,00
SPACC-01	0,00	0,00	0,00	0,00
SPACC-02	0,00	0,00	0,00	0,00
SPACC-03	0,00	0,00	0,00	0,00
SPACC-04	0,00	0,00	0,00	0,00
ACCZATT-01	1,00	1,00	1,00	1,00
SISMA(X)-01	0,30	0,30	0,30	0,30
SISMA(Y)-01	1,00	1,00	0,30	0,30
SISMA(Z)-01	0,30	-0,30	1,00	-1,00
SISMA(X)-02	0,30	0,30	0,30	0,30
SISMA(Y)-02	1,00	1,00	0,30	0,30
SISMA(Z)-02	0,30	-0,30	1,00	-1,00

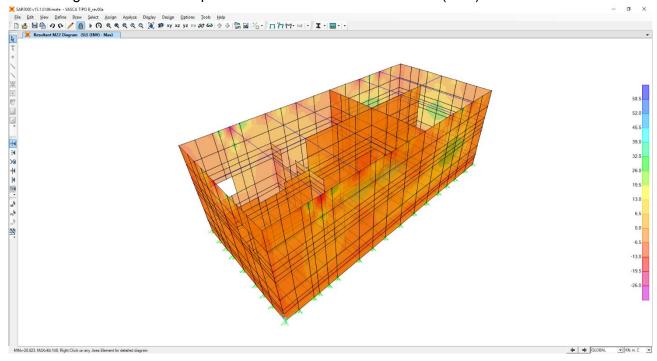


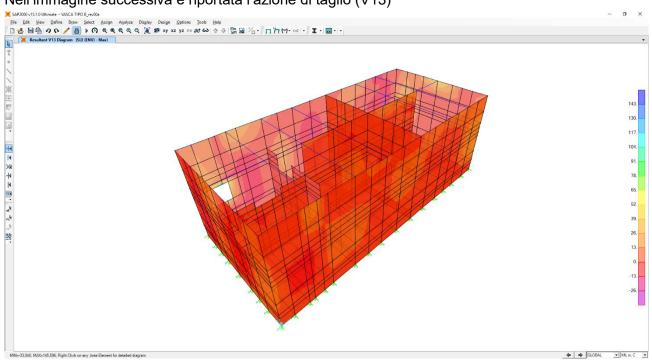

VALUTAZIONE DELLE AZIONI SOLLECITANTI 11

Nei paragrafi successivi sono riportati le azioni sollecitanti agenti sugli elementi strutturali per le diverse combinazioni di carico considerate.

11.1 COMBINAZIONI DI CARICO ALLO STATO LIMITE DI ESERCIZIO – INVILUPPO MAX

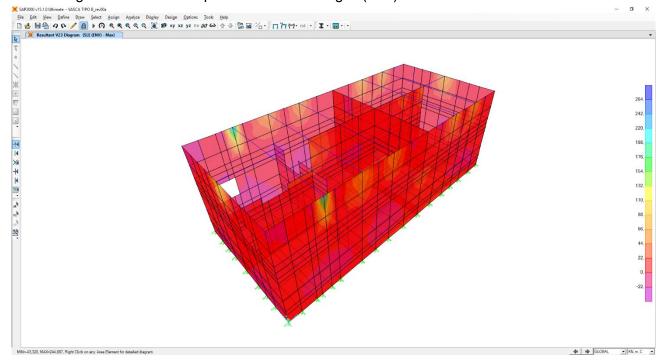
Nell'immagine successiva è riportata il momento flettente orizzontale (M11)



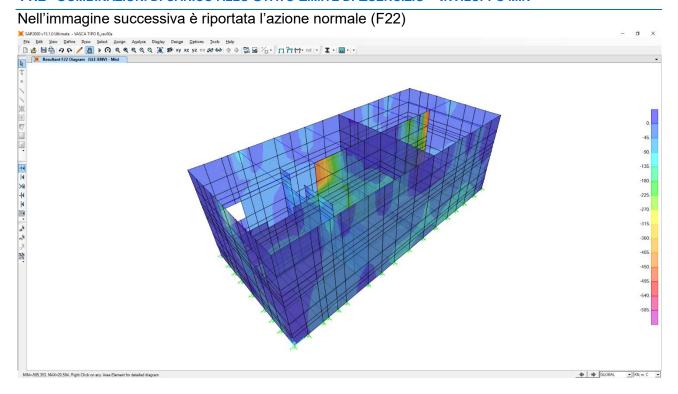

▼ KN, m, C •

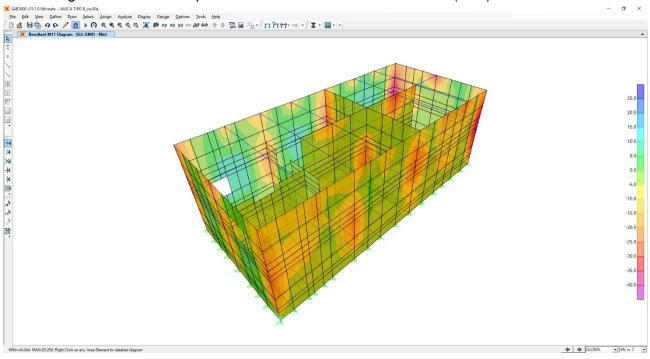
Nell'immagine successiva è riportata il momento flettente verticale (M22)

Nell'immagine successiva è riportata l'azione di taglio (V13)



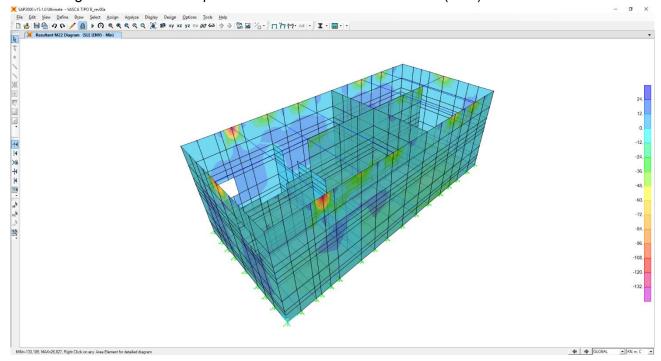
Nell'immagine successiva è riportata l'azione di taglio (V23)

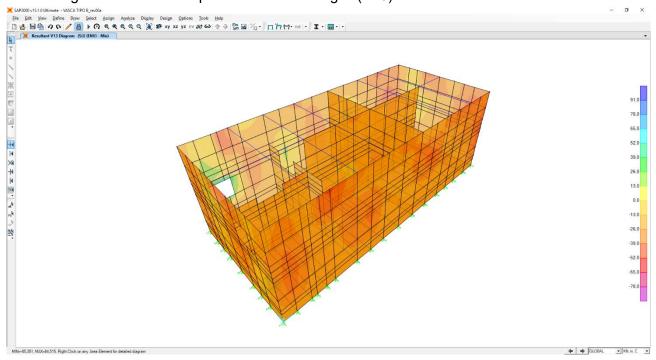




11.2 COMBINAZIONI DI CARICO ALLO STATO LIMITE DI ESERCIZIO - INVILUPPO MIN

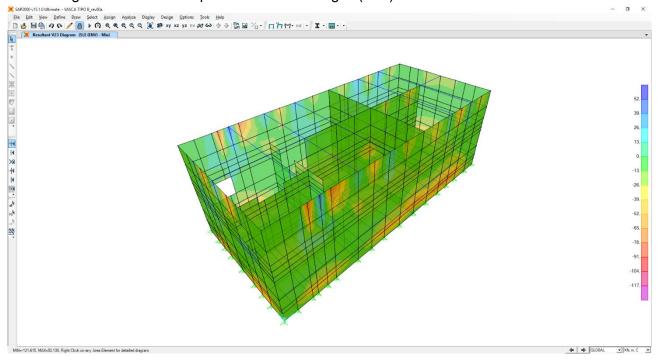
Nell'immagine successiva è riportata il momento flettente orizzontale (M11)



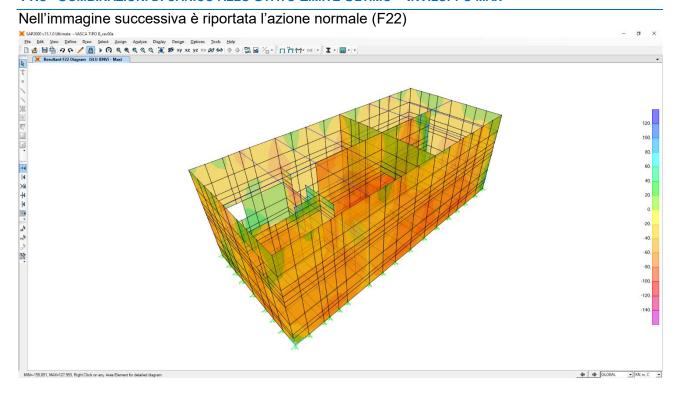


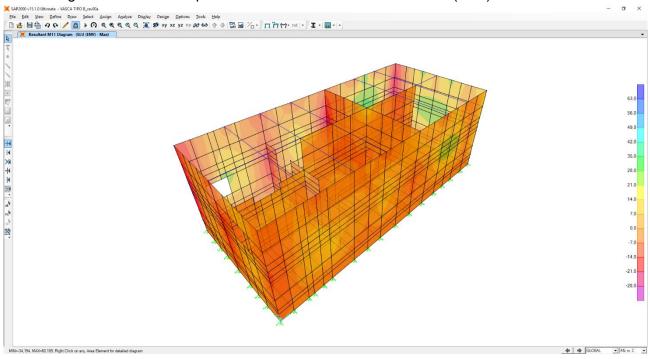
Nell'immagine successiva è riportata il momento flettente verticale (M22)

Nell'immagine successiva è riportata l'azione di taglio (V13)



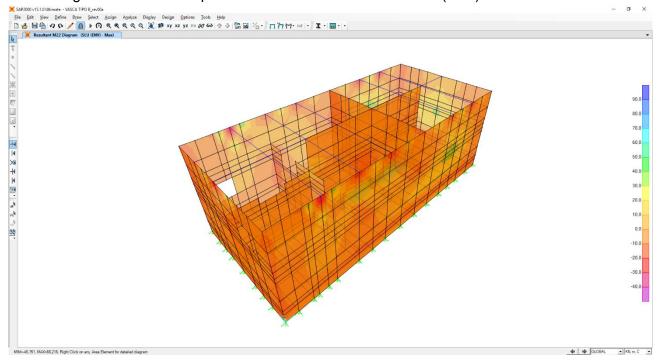
Nell'immagine successiva è riportata l'azione di taglio (V23)

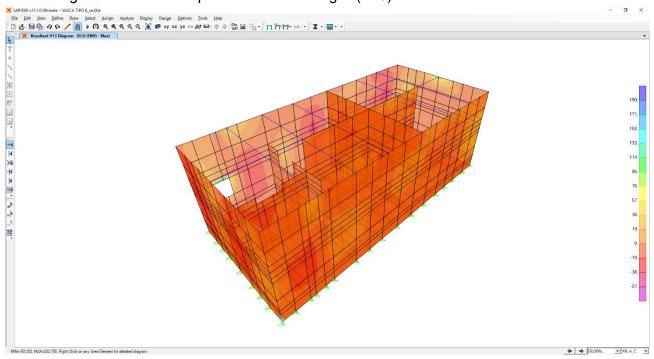




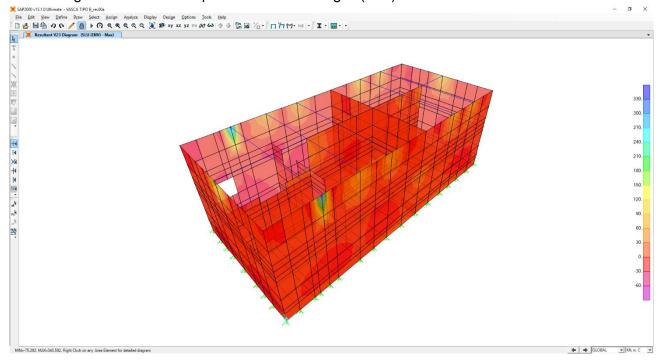
11.3 COMBINAZIONI DI CARICO ALLO STATO LIMITE ULTIMO – INVILUPPO MAX

Nell'immagine successiva è riportata il momento flettente orizzontale (M11)

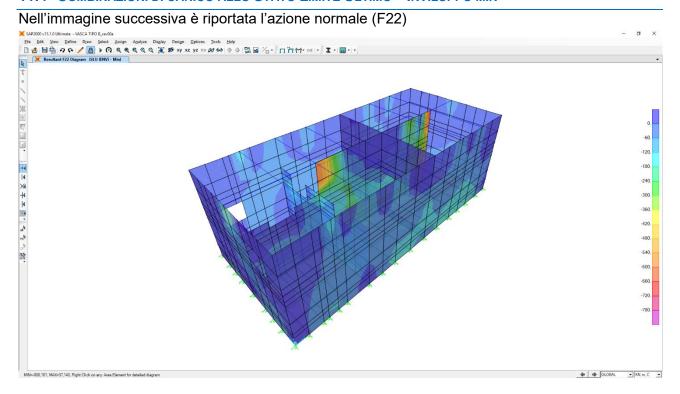


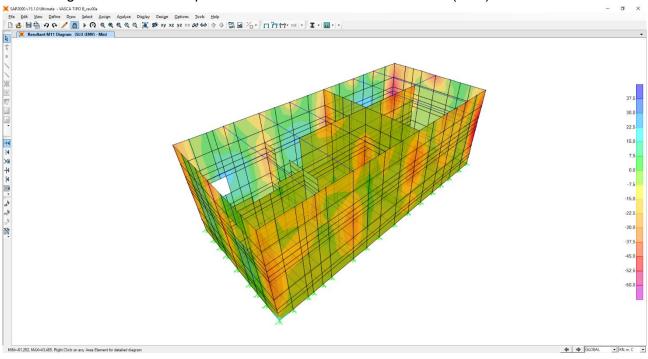


Nell'immagine successiva è riportata il momento flettente verticale (M22)


Nell'immagine successiva è riportata l'azione di taglio (V13)

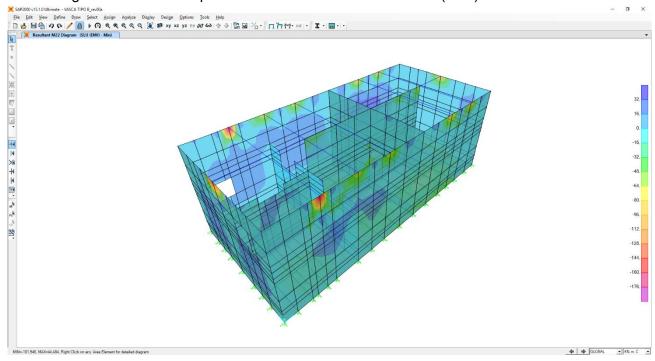
Nell'immagine successiva è riportata l'azione di taglio (V23)

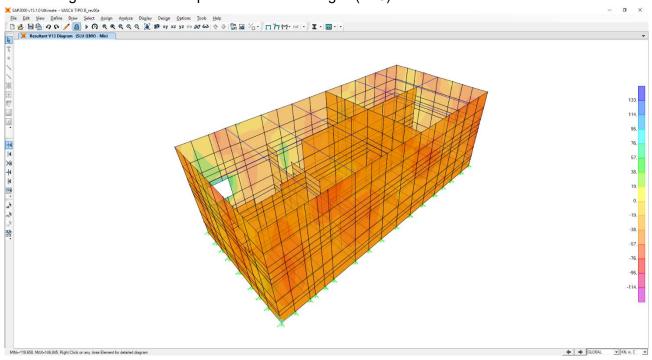




11.4 COMBINAZIONI DI CARICO ALLO STATO LIMITE ULTIMO – INVILUPPO MIN

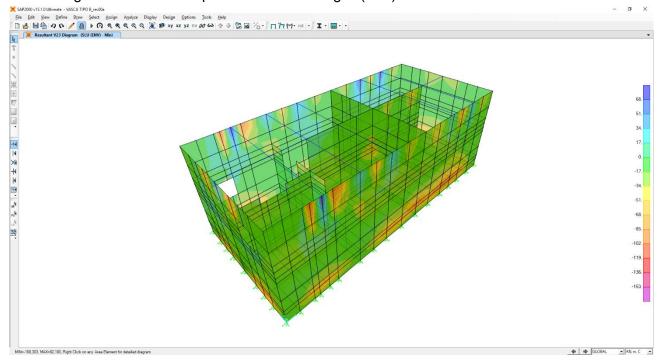
Nell'immagine successiva è riportata il momento flettente orizzontale (M11)



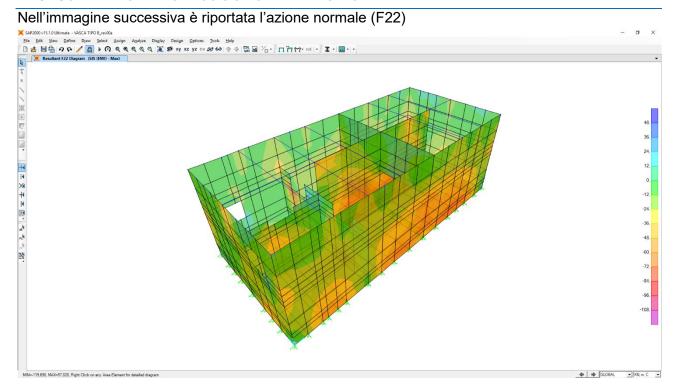


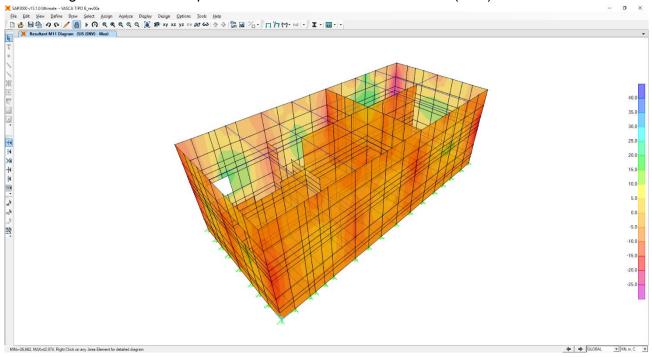
Nell'immagine successiva è riportata il momento flettente verticale (M22)

Nell'immagine successiva è riportata l'azione di taglio (V13)



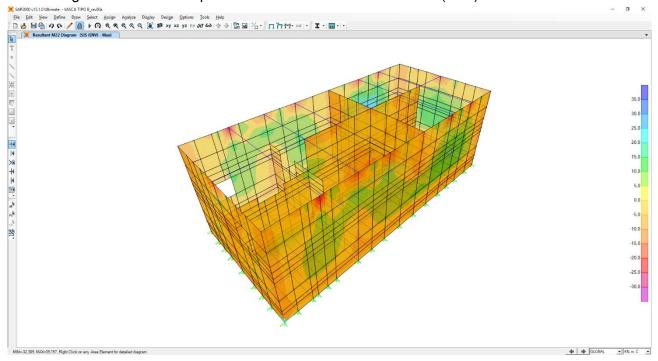
Nell'immagine successiva è riportata l'azione di taglio (V23)

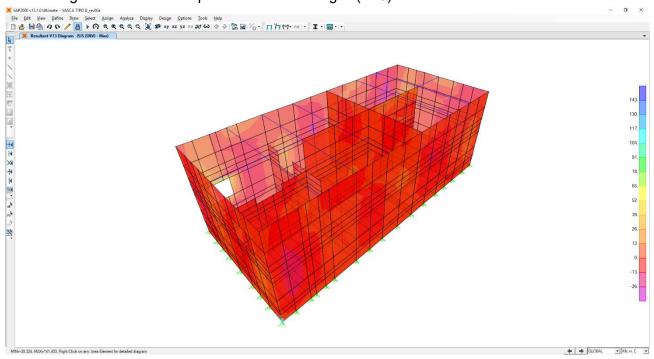




11.5 COMBINAZIONE DI CARICO SISMICHE – INVILUPPO MAX

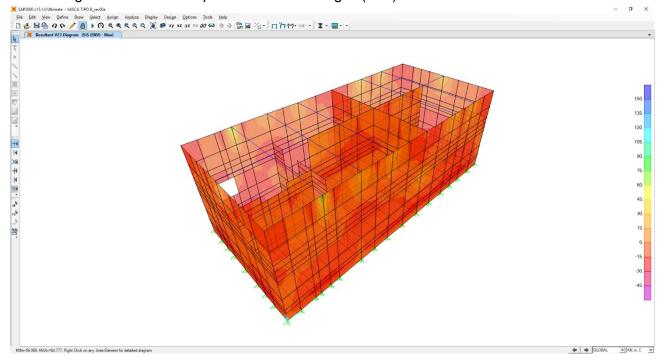
Nell'immagine successiva è riportata il momento flettente orizzontale (M11)



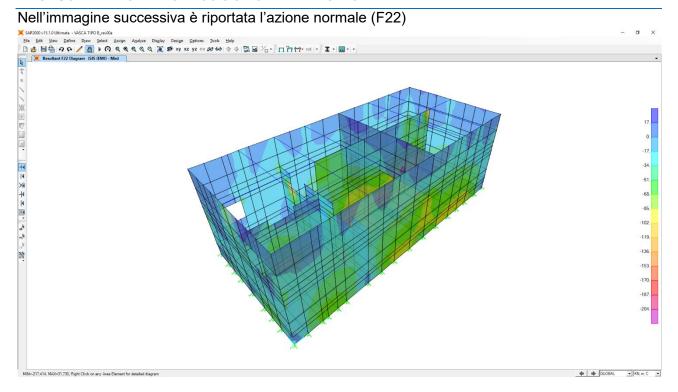


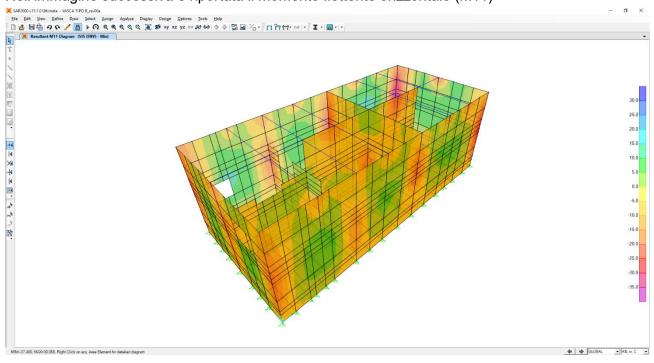
Nell'immagine successiva è riportata il momento flettente verticale (M22)

Nell'immagine successiva è riportata l'azione di taglio (V13)



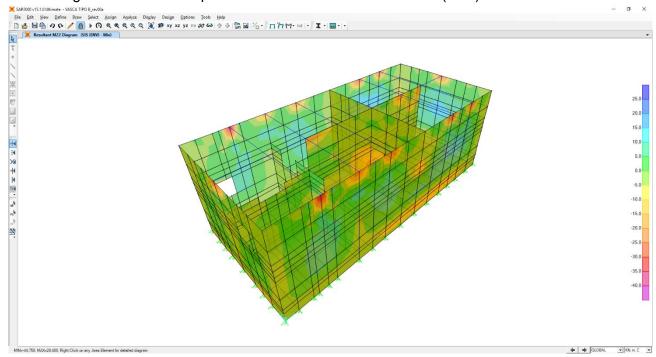
Nell'immagine successiva è riportata l'azione di taglio (V23)





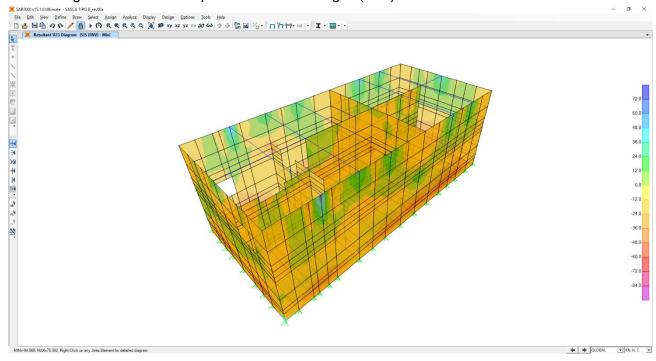
11.6 COMBINAZIONE DI CARICO SISMICHE – INVILUPPO MIN

Nell'immagine successiva è riportata il momento flettente orizzontale (M11)



Nell'immagine successiva è riportata il momento flettente verticale (M22)

Nell'immagine successiva è riportata l'azione di taglio (V13)



Nell'immagine successiva è riportata l'azione di taglio (V23)

12 **VERIFICHE STRUTTURALI**

12.1 VERIFICHE DEI SETTI PERIMETRALI

Poiché i ritti sono armati in maniera costante, doppia e simmetrica lungo tutto il loro sviluppo, le verifiche verranno eseguite in corrispondenza delle sezioni maggiormente sollecitate.

DEFINIZIONE DELLE AZIONI SOLLECITANTI DI CALCOLO

Nella tabella successiva sono riportati i valori delle azioni sollecitanti maggiormente gravose per le differenti combinazioni di carico considerate.

Sono state prese in esame le seguenti combinazioni delle azioni sollecitanti:

- N_{max}
- N_{min}
- M_{max}
- M_{min}
- V_{max}

GRUPPO DI	CONDIZIONE	AREA	COMBINAZIONE	N _{Sd}	M _{11Sd}	M _{22,Sd}	V _{13,Sd}	V _{23,Sd}
COMBINAZIO	CONDIZIONE	ANLA	OOMBINAZIONE	[kN]	[kNm]	[kNm]	[kN]	[kN]
SLE QUASI PERMANENTE	N _{max}	1979	QP.4	-85,11	-1,50	-10,62	0,39	0,03
	N_{min}	1018	QP.4	37,16	8,42	-0,80	15,88	-17,06
	M _{11,max}	1446	QP.2	-39,53	27,80	9,04	93,27	50,81
	M _{11,min}	670	QP.1	-35,35	-28,68	-5,76	-40,21	-3,89
	M _{22,max}	2004	QP.2	-17,58	13,18	17,00	2,85	1,82
	M _{22,min}	1266	QP.1	-29,40	-5,68	-34,27	35,80	63,27
	V_{max}	1446	QP.2	-10,93	8,82	-1,35	93,27	0,16
SLE FREQUENTE	N_{max}	423	FR.2	-131,28	-30,08	-80,48	-63,48	123,82
	N_{min}	516	FR.6	43,00	7,13	-3,40	20,09	4,29
	M _{11,max}	1446	FR.4	-30,48	39,38	12,51	132,51	70,88
	M _{11,min}	671	FR.3	-43,13	-40,19	-7,61	-55,23	-4,48
	M _{22,max}	1266	FR.1	-100,13	1,49	32,05	49,71	186,13
	M _{22,min}	1266	FR.1	-105,65	-11,75	-108,46	76,52	186,13
	V_{max}	1266	FR.1	-100,13	1,49	32,05	49,71	186,13
SLE CARATTERISTICA	N _{max}	423	CAR.2	-159,73	-34,12	-99,42	-73,89	151,33
	N _{min}	516	CAR.6	43,46	6,77	-3,66	20,01	4,69
	M _{11,max}	1446	CAR.4	-27,46	43,23	13,67	145,60	77,56
	M _{11,min}	671	CAR.3	-46,16	-44,04	-8,31	-60,49	-4,49
	M _{22,max}	1242	CAR.1	-122,58	0,69	38,52	-62,14	226,51
	M _{22,min}	1266	CAR.1	-125,73	-13,77	-133,19	90,09	227,08
	V_{max}	1266	CAR.1	-122,90	0,85	38,46	62,13	227,08
GRUPPO DI COMBINAZIO	CONDIZIONE	AREA	COMBINAZIONE	N_{Sd}	M _{11Sd}	M _{22,Sd}	V _{13,Sd}	V _{23,Sd}
				[kN]	[kNm]	[kNm]	[kN]	[kN]
SLU - STR	N_{max}	423	STR.2	-218,25	-47,63	-135,57	-102,62	207,00
	N _{min}	516	STR.6	59,98	9,45	-5,04	27,76	6,47
	M _{11,max}	1446	STR.4	-36,94	60,19	18,98	202,76	107,86
	M _{11,min}	671	STR.3	-63,64	-61,25	-11,56	-84,11	-6,26
	M _{22,max}	1242	STR.1	-166,92	1,27	52,96	-84,33	310,03
	M _{22,min}	1266	STR.1	-171,22	-19,41	-181,95	125,28	310,83
	V _{max}	1266	STR.1	-167,40	1,50	52,87	84,30	310,83
SLU - SISMA	N _{max}	1979	SISMA-7	-86,80	-3,57	-22,48	-1,99	-35,00
	N _{min}	764	SISMA-2	29,38	-0,62	-1,33	16,38	13,62
	M _{11,max}	1446	SISMA-2	-37,02	42,97	14,69	141,40	78,54
	M _{11,min}	684	SISMA-2	-46,57	-37,48	-7,11	45,27	3,95
	M _{22,max}	2004	SISMA-2	-14,67	20,07	24,18	3,55	1,96
	M _{22,min}	1242	SISMA-1	-36,06	-14,07	-44,76	-54,22	83,95
	· ·		1				i	

Con segno negativo sono indicate le azioni normali di compressione.

SISMA-2

-11,55

14,52

-2,28

141,40

-2,98

1446

12.1.2 SEZIONE ED ARMATURA DI VERIFICA

La sezione di verifica è rettangolare con base pari a 100 cm e altezza pari a 40.

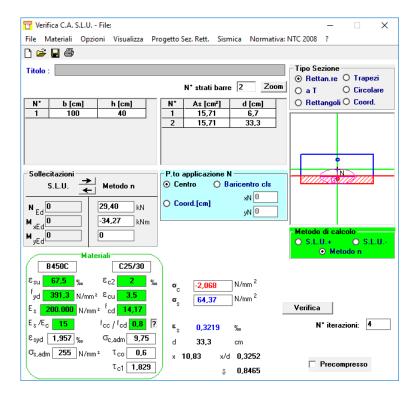
L'armatura verticale (armatura di forza) è prevista come segue:

- Ø20/20 esterni
- Ø20/20 interni

L'armatura longitudinale di ripartizione è prevista come segue:

- Ø16/20 esterni
- Ø16/20 interni

L'armatura a taglio prevista è formata da spille di legatura Ø12/40x40.


Il copriferro netto minimo è assunto pari a 45 mm.

12.1.3 VERIFICA ALLO STATO LIMITE DI LIMITAZIONE DELLE TENSIONI - COMBINAZIONE QUASI PERMANENTE – ARMATURA VERTICALE

La combinazione di carico maggiormente gravosa è risultata la combinazione SLE-QP.1.

L'azione normale di calcolo è assunta pari a N_{Sd} = 29,40 kN.

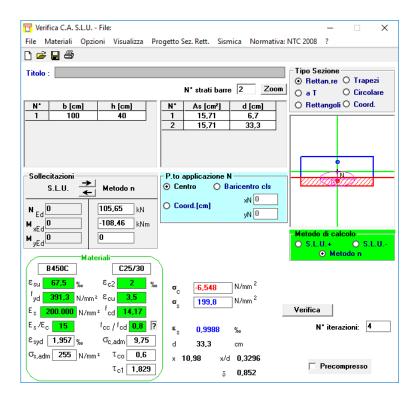
Il momento flettente di calcolo è assunto pari a M_{Sd} = -34,27 kN/m.

Le tensioni sui materiali risultano pari a:

 $\sigma_c = 2,07 \text{ N/mm}^2 < 0,45 \text{ f}_{ck} = 11,20 \text{ N/mm}^2$

 $\sigma_s = 64,37 \text{ N/mm}^2 < 0,80 \text{ f}_{yk} = 360,00 \text{ N/mm}^2$

La verifica risulta pertanto soddisfatta.



12.1.4 VERIFICA ALLO STATO LIMITE DI LIMITAZIONE DELLE TENSIONI - COMBINAZIONE FREQUENTE - ARMATURA VERTICALE

La combinazione di carico maggiormente gravosa è risultata la combinazione SLE-FR.1.

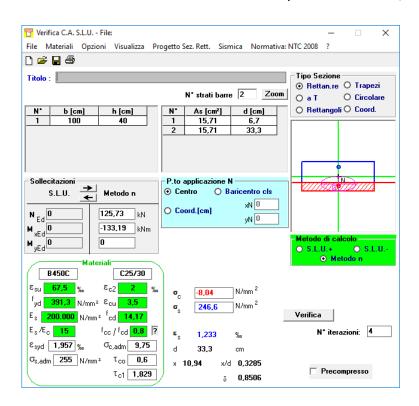
L'azione normale di calcolo è assunta pari a N_{Sd} = 105,65 kN.

Il momento flettente di calcolo è assunto pari a M_{sd} = -108,46 kN/m.

Le tensioni sui materiali risultano pari a:

 $\sigma_c = 6,55 \text{ N/mm}^2 < 0,45 \text{ f}_{ck} = 11,20 \text{ N/mm}^2$

 $\sigma_s = 199,80 \text{ N/mm}^2 < 0,80 \text{ f}_{yk} = 360,00 \text{ N/mm}^2$



12.1.5 VERIFICA ALLO STATO LIMITE DI LIMITAZIONE DELLE TENSIONI - COMBINAZIONE CARATTERISTICA - ARMATURA VERTICALE

La combinazione di carico maggiormente gravosa è risultata la combinazione SLE-CAR.1.

L'azione normale di calcolo è assunta pari a N_{Sd} = 125,73 kN.

Il momento flettente di calcolo è assunto pari a M_{sd} = -133,19 kN/m.

Le tensioni sui materiali risultano pari a:

 $\sigma_c = 8,04 \text{ N/mm}^2 < 0,60 \text{ f}_{ck} = 14,94 \text{ N/mm}^2$

 $\sigma_s = 246,60 \text{ N/mm}^2 < 0.80 \text{ f}_{yk} = 360,00 \text{ N/mm}^2$

12.1.6 VERIFICA ALLO STATO LIMITE DI FESSURAZIONE – ARMATURA VERTICALE

Per la verifica allo Stato Limite di fessurazione è stata utilizzata la procedura semplificata prevista dalla Circolare C.S.LL.PP. n.617 del 02.02.2009 – par. C4.1.2.2.4.6 – Tab. C4.1.II e C4.1.III. Le condizioni considerate sono riportate nella tabella seguente.

TABELLA C4.1.II - Diametri massimi delle barre per il controllo di fessurazione				
Tensione nell'acciaio	Diame	etro massimo Ø delle barre	[mm]	
$\sigma_{\rm s}$ [N/mm ²]	w ₃ = 0,40 mm	w ₂ = 0,30 mm	w ₁ = 0,20 mm	
160	40	32	25	
200	32	25	16	
240	20	16	12	
280	16	12	8	
320	12	10	6	
360	10	8	0	

TABELLA C4.1.III - Spaziatura massima delle barre per il controllo di fessurazione							
Tensione nell'acciaio	Spaziatura ı	massima s delle barre delle	e barre [mm]				
$\sigma_{\rm s}$ [N/mm ²]	w ₃ = 0,40 mm	w ₃ = 0,40 mm					
160	300	300	200				
200	300	250	150				
240	250	200	100				
280	200	150	50				
320	150	100	0				
360	100	50	0				

CRITERI DI SCELTA DELLO STATO LIMITE DI FESSURAZIONE

I criteri di scelta dello Stato Limite di fessurazione sono definiti secondo quanto riportato dal D.M. 14.01.2008, par. 4.1.2.2.4.5, tab. 4.1.IV.

Condizioni ambientali: Armatura: • • Aggressive Poco sensibile

COMBINAZIONE ALLO S.L.E. QUASI PERMANENTE Stato limite: apertura fessure Ampiezza massima delle fessure: $w_d \le$ w1 $[N/mm^2]$ Tensione massima nell'acciaio calcolata: $\sigma_{\text{s,max}}$ 64,37 Diametro massimo delle barre di armature poste in opera: 20 [mm] $Ø_{max}$ Spaziatura massima delle barre di armatura poste in opera: 20,00 [mm] s_{max} Diametro massimo delle barre di armatura consentito: 25,00 [mm] $Ø_{max}$

VERIFICA POSITIVA

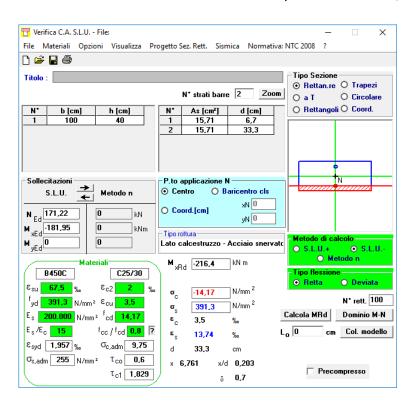
COMBINAZIONE ALLO S.L.E. FREQUENTE					
Stato limite:		а	pertura fessi	ıre	
Ampiezza massima delle fessure:	w _d ≤		w2		
Tensione massima nell'acciaio calcolata:	$\sigma_{\text{s,max}}$	119,80	[N/m m ²]		
Diametro massimo delle barre di armature poste in	opera:	$arphi_{max}$	20	[mm]	
Spaziatura massima delle barre di armatura poste	s _{max}	20,00	[mm]		
Diametro massimo delle barre di armatura consen	\emptyset_{max}	32,00	[mm]		
Spaziatura massima delle barre di armatura conse	ntita:	S _{max}	300,00	[mm]	
VERIFICA POSITIVA					

Spaziatura massima delle barre di armatura consentita:

200,00

Smax

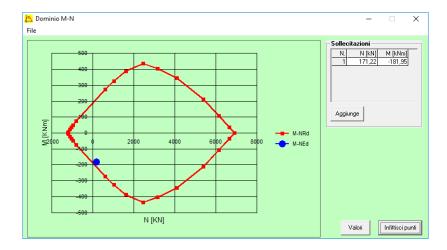
[mm]



12.1.7 VERIFICA ALLO STATO LIMITE ULTIMO PER PRESSOFLESSIONE – ARMATURA VERTICALE

La combinazione di carico maggiormente gravosa è risultata la combinazione STR.1.

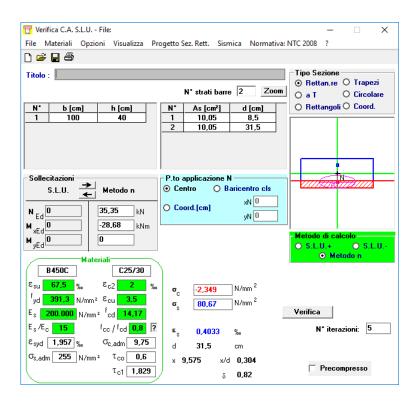
L'azione normale di calcolo è assunta pari a N_{Sd} = 171,22kN.


Il momento flettente di calcolo è assunto pari a Msd = -181,95 kN/m.

Il momento resistente risulta pari a:

 $M_{Rd} = -216,40 \text{ kN/m} > M_{Sd} = -181,95 \text{ kN/m}.$

Nell'immagine successiva è riportato il dominio di resistenza della sezione:



VERIFICA ALLO STATO LIMITE DI LIMITAZIONE DELLE TENSIONI - COMBINAZIONE QUASI PERMANENTE - ARMATURA LONGITUDINALE

La combinazione di carico maggiormente gravosa è risultata la combinazione SLE-QP.1.

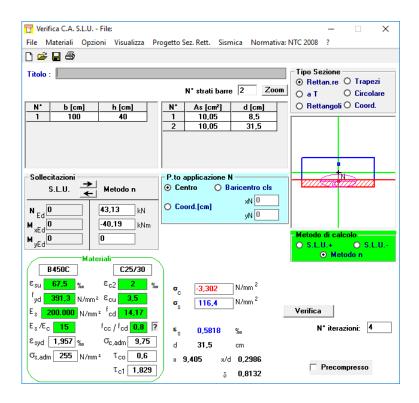
L'azione normale di calcolo è assunta pari a N_{Sd} = 35,35 kN.

Il momento flettente di calcolo è assunto pari a $M_{sd} = -28,68 \text{ kN/m}$.

Le tensioni sui materiali risultano pari a:

 $\sigma_c = 2,.4 \text{ N/mm}^2 < 0,45 \text{ f}_{ck} = 11,20 \text{ N/mm}^2$

 $\sigma_s = 80,67 \text{ N/mm}^2 < 0,80 \text{ f}_{yk} = 360,00 \text{ N/mm}^2$



12.1.9 VERIFICA ALLO STATO LIMITE DI LIMITAZIONE DELLE TENSIONI - COMBINAZIONE FREQUENTE ARMATURA LONGITUDINALE

La combinazione di carico maggiormente gravosa è risultata la combinazione SLE-FR.3.

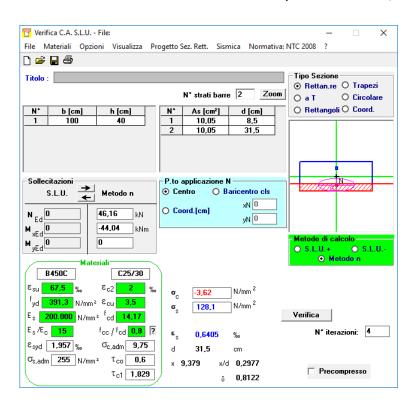
L'azione normale di calcolo è assunta pari a N_{Sd} = 43,13 kN.

Il momento flettente di calcolo è assunto pari a M_{Sd} = -40,19 kN/m.

Le tensioni sui materiali risultano pari a:

 $\sigma_c = 3,30 \text{ N/mm}^2 < 0,45 \text{ f}_{ck} = 11,20 \text{ N/mm}^2$

 $\sigma_s = 116,40 \text{ N/mm}^2 < 0,80 \text{ f}_{yk} = 360,00 \text{ N/mm}^2$



12.1.10 VERIFICA ALLO STATO LIMITE DI LIMITAZIONE DELLE TENSIONI - COMBINAZIONE CARATTERISTICA – ARMATURA LONGITUDINALE

La combinazione di carico maggiormente gravosa è risultata la combinazione SLE-CAR.3.

L'azione normale di calcolo è assunta pari a N_{Sd} = 46,16 kN.

Il momento flettente di calcolo è assunto pari a $M_{sd} = -44,04$ kN/m.

Le tensioni sui materiali risultano pari a:

 $\sigma_c = 3,62 \text{ N/mm}^2 < 0,60 \text{ f}_{ck} = 14,94 \text{ N/mm}^2$

 $\sigma_s = 128,10 \text{ N/mm}^2 < 0,80 \text{ f}_{yk} = 360,00 \text{ N/mm}^2$

12.1.11 VERIFICA ALLO STATO LIMITE DI FESSURAZIONE – ARMATURA LONGITUDINALE

Per la verifica allo Stato Limite di fessurazione è stata utilizzata la procedura semplificata prevista dalla Circolare C.S.LL.PP. n.617 del 02.02.2009 – par. C4.1.2.2.4.6 – Tab. C4.1.II e C4.1.III. Le condizioni considerate sono riportate nella tabella seguente.

TABELLA C4.1.II - Diametri massimi delle barre per il controllo di fessurazione				
Tensione nell'acciaio	Diame	etro massimo Ø delle barre	[mm]	
$\sigma_{\rm s}$ [N/mm ²]	w ₃ = 0,40 mm	w ₂ = 0,30 mm	w ₁ = 0,20 mm	
160	40	32	25	
200	32	25	16	
240	20	16	12	
280	16	12	8	
320	12	10	6	
360	10	8	0	

TABELLA C4.1.III - Spaziatura massima delle barre per il controllo di fessurazione							
Tensione nell'acciaio	Spaziatura ı	nassima s delle barre delle	barre [mm]				
$\sigma_{\rm s}$ [N/mm ²]	w ₃ = 0,40 mm	w ₃ = 0,40 mm					
160	300	300	200				
200	300	250	150				
240	250	200	100				
280	200	150	50				
320	150	100	0				
360	100	50	0				

CRITERI DI SCELTA DELLO STATO LIMITE DI FESSURAZIONE

I criteri di scelta dello Stato Limite di fessurazione sono definiti secondo quanto riportato dal D.M. 14.01.2008, par. 4.1.2.2.4.5, tab. 4.1.IV.

Condizioni ambientali:

Aggressive

Armatura:

Poco sensibile

COMBINAZIONE ALLO S.L.E. QUASI PERMANENTE Stato limite: apertura fessure Ampiezza massima delle fessure: $w_d \le$ w1 $[N/mm^2]$ Tensione massima nell'acciaio calcolata: $\sigma_{\text{s,max}}$ 80,67 Diametro massimo delle barre di armature poste in opera: 16 [mm] $Ø_{max}$ Spaziatura massima delle barre di armatura poste in opera: 20,00 [mm] s_{max} Diametro massimo delle barre di armatura consentito: 25,00 [mm] $Ø_{max}$

VERIFICA POSITIVA

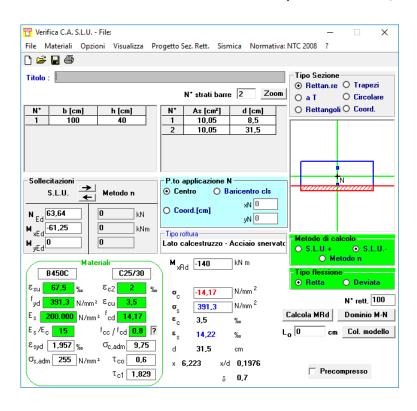
Smax

COMBINAZIONE ALLO S.L.E. FREQUENTE					
Stato limite: apertura fessure					
Ampiezza massima delle fessure:	w _d ≤		w2		
Tensione massima nell'acciaio calcolata:		$\sigma_{\text{s,max}}$	116,40	[N/mm ²]	
Diametro massimo delle barre di armature poste i	n opera:	\emptyset_{max}	16	[mm]	
Spaziatura massima delle barre di armatura poste	s _{max}	20,00	[mm]		
Diametro massimo delle barre di armatura conse	\emptyset_{max}	32,00	[mm]		
Spaziatura massima delle barre di armatura conse	entita:	S _{max}	300,00	[mm]	
VFRII	ACA POSITIVA				

Spaziatura massima delle barre di armatura consentita:

200,00

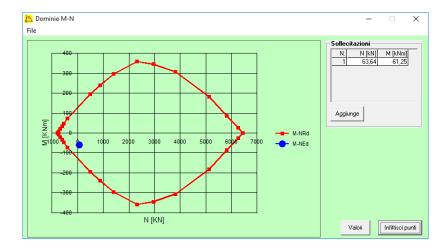
[mm]



12.1.12 VERIFICA ALLO STATO LIMITE ULTIMO PER PRESSOFLESSIONE – ARMATURA LONGITUDINALE

La combinazione di carico maggiormente gravosa è risultata la combinazione STR.3.

L'azione normale di calcolo è assunta pari a N_{Sd} = 63,64 kN.

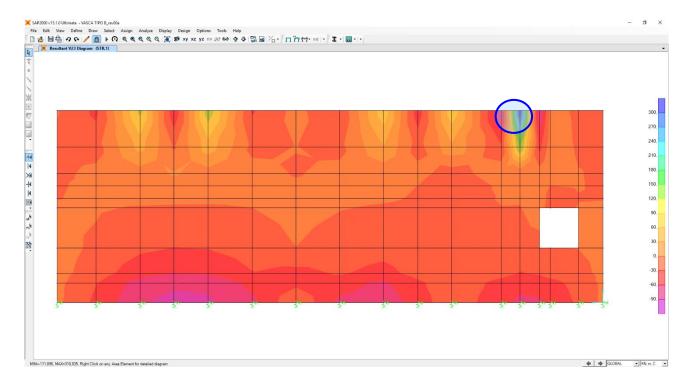

Il momento flettente di calcolo è assunto pari a M_{Sd} = -61,25 kN/m.

Il momento resistente risulta pari a:

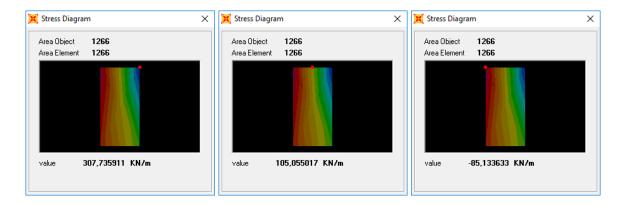
 $M_{Rd} = -140,00 \text{ kN/m} > M_{Sd} = -61,25 \text{ kN/m}.$

Nell'immagine successiva è riportato il dominio di resistenza della sezione:

12.1.13 VERIFICA ALLO STATO LIMITE ULTIMO PER TAGLIO


La combinazione di carico maggiormente gravosa è risultata la combinazione STR.1.

L'azione tagliante di calcolo è assunta pari a V_{Sd} = 310,83 kN.


A favore di sicurezza non viene considerato il contributo dell'azione normale.

Il valore azione tagliante è influenzati dalla presenza di punte di tensione legati alla interazione tra l'elemento "shell" e l'elemento "beam" presenti nel modello.

Per una maggiore comprensione della problematica di seguito viene riportata la distribuzione della sollecitazione lungo il setto perimetrale per la combinazione STR.1, dove si riscontra la punta di tensioni sopra citata.

Nelle immagini successive, si può notare la variazione rapida di tensione all'interno dell'elemento "shell", per cui tali valori non si considerano rappresentativi del reale comportamento dell'elemento.

Per cui per la successiva verifica si andrà a considerare un valore medio.

L'azione tagliante di calcolo è assunta pari a V_{Sd} = 105,05 kN.

CARATTERISTICHE GEOMETRICHE DEL	LLA SEZIONE	
Base della zezione trasversale:	b	100,00 [cm]
Altezza della sezione trasversale:	h	40,00 [cm]
Copriferro netto:	С	4,50 [cm]
Altezza utile della sezione:	d	35,50 [cm]
CARATTERISTICHE DEI MATER	RIALI	
Classe di resistenza del calcestruzzo:		C25/30 🔻
Resistenza caratteristica cubica a compressione:	R_{ck}	30,00 [N/mm ²]
Resistenza caratteristica cilindrica a compressione:	f _{ck}	24,90 [N/mm ²]
Resistenza di calcolo a compressione:	f_{cd}	14,11 [N/m m ²]
Tipologia dell'acciaio da armatura:		B450C ▼
Tensione caratteristica di rottura:	f_{tk}	540,00 [N/mm ²]
Tensione caratteristica di snervamento:	f_{yk}	450,00 [N/mm ²]
Resistenza di calcolo:	f_{yd}	391,30 [N/mm ²]
AZIONI SOLLECITANTI DI CALC	COLO	
Azione tagliante di calcolo:	$V_{S,d}$	105,05 [kN]
Azione normale di calcolo:	$N_{S,d}$	0,00 [kN]
ARMATURA TRASVERSAL	E	
Inclinazione dei puntoni di calcestruzzo:	θ	45,00 [°]
Cotangente dell'angolo θ:	cot(θ)	1,00
Inclinazione dell'armatura tras versale rispetto all'asse della trave:	α΄	90,00 [°]
Numero di bracci dell'armatura trasversale:	n	5,00
Passo longitudinale delle armature trasversali:	s	40,00 [cm]
Diametro dell'armatura trasversale:	\mathcal{O}_{trasv}	12,00 [mm]
Area della singola barra:	A_{barra}	1,13 [cm ²]
Area totale dell'armatura trasversale:	A_{tot}	14,13 [cm ² /m]

VERIFICA ALLO S.L.U. PER TAGLIO

La verifica allo S.L.U. per taglio viene condotta secondo quanto previsto dal D.M. 14.01.2008, par.4.1.2.1.3.2 La resistenza di calcolo a "taglio trazione" viene valutata mediante la seguente relazione:

$$V_{Rsd} = 0.9 \cdot d \cdot \frac{A_{sw}}{s} \cdot f_{yd} \cdot [\cot (\alpha) + \cot (\theta)] \cdot sen (\alpha)$$

La resistenza di calcolo a "taglio compressione" viene valutata mediante la seguente relazione:

$$V_{Rcd} = 0.9 \cdot d \cdot b_{w} \cdot \alpha_{c} \cdot f_{cd} \cdot \frac{\left[\cot \left(\alpha\right) + \cot \left(\theta\right)\right]}{\left[1 + \cot^{2}\left(\theta\right)\right]}$$

Larghezza minima della sezione: b_w 100,00 [cm] $[N/mm^2]$ Resistenza a compressione ridotta del calcestruzzo: f'_{yd} 7,06 [N/m m²]Tensione media di compressione nella sezione: 0,000 σ_{cp} Coefficiente maggiorativo ac: 1,0000 α_c

RESISTENZA DI CALCOLO A "TAGLIO TRAZIONE" 176,59 [kN] V_{Rsd} RESISTENZA DI CALCOLO A "TAGLIO COMPRESSIONE" 1.127,04 [kN] V_{Rcd}

AZIONE TAGLIANTE RESISTENTE DELLA SEZIONE: $V_{R,d}$ 176,59 [kN] COEFFICIENTE DI SICUREZZA: $F_S=V_{R,d}/V_{S,d}$ 1,68

LA VERIFICA RISULTA POSITIVA

12.2 VERIFICHE ZATTERA DI FONDAZIONE

Poiché i ritti sono armati in maniera costante, doppia e simmetrica lungo tutto il loro sviluppo, le verifiche verranno eseguite in corrispondenza delle sezioni maggiormente sollecitate.

DEFINIZIONE DELLE AZIONI SOLLECITANTI DI CALCOLO

Nella tabella successiva sono riportati i valori delle azioni sollecitanti maggiormente gravose per le differenti combinazioni di carico considerate.

Sono state prese in esame le seguenti combinazioni delle azioni sollecitanti:

- N_{max}
- N_{min}
- M_{max}
- $M_{\text{min}} \\$
- V_{max}

GRUPPO DI	CONDIZIONE	AREA	COMBINAZIONE	N _{Sd}	M _{11Sd}	M _{22,Sd}	V _{13,Sd}	V _{23,Sd}
COMBINAZIO	CONDIZIONE	AREA	COMBINAZIONE	[kN]	[kNm]	[kNm]	[kN]	[kN]
щ	N_{max}	2037	QP.2	-88,30	4,70	-4,01	-11,38	-28,73
E E	N_{min}	1553	QP.2	26,68	-3,35	1,18	8,67	-2,41
IAN	M _{11,max}	1547	QP.1	-34,31	30,03	5,66	-39,93	1,54
SLE Quasi Permanente	M _{11,min}	1544	QP.4	-9,35	-16,80	-4,50	25,02	-4,27
- N	$M_{22,max}$	90	QP.2	-35,62	13,66	39,07	-44,17	-68,54
iU A	M _{22,min}	1964	QP.4	-3,26	-8,20	-26,20	2,29	6,89
b	V_{max}	2038	QP.2	-36,70	-6,64	-14,73	-3,37	-68,94
	N _{max}	2037	FR.2	-114,03	6,62	-3,46	-15,22	-43,19
ш	N_{min}	1553	FR.4	39,24	-7,61	1,27	17,07	-4,30
E	M _{11,max}	1547	FR.3	-46,01	35,74	6,70	-43,54	2,07
SLE FREQUENTE	M _{11,min}	1544	FR.6	-17,06	-24,26	-3,76	49,45	-8,19
-RE	M _{22,max}	1969	FR.6	-33,30	16,59	57,60	10,99	-99,65
_	M _{22,min}	1964	FR.6	-5,97	-9,66	-36,06	2,07	5,74
	V_{max}	1969	FR.6	-37,80	-3,37	-19,28	13,69	-99,65
_	N_{max}	2037	CAR.2	-122,61	7,26	-3,28	-16,50	-48,02
ic _A	N_{min}	1553	CAR.4	43,43	-9,03	1,30	19,87	-4,93
RIST	M _{11,max}	1547	CAR.3	-49,91	37,65	7,05	-44,74	2,25
SLE TER	M _{11,min}	1544	CAR.6	-21,52	-25,93	-3,48	56,02	-9,28
SLE CARATTERISTICA	M _{22,max}	1969	CAR.6	-40,09	18,59	64,15	10,00	-109,46
CA	M _{22,min}	1964	CAR.6	-10,66	-10,10	-38,98	1,87	5,74
	V_{max}	1969	CAR.6	-45,42	-3,11	-20,24	14,22	-109,46
GRUPPO DI	CONDIZIONE	AREA	COMBINAZIONE	N _{Sd}	M _{11Sd} [kNm]	M _{22,Sd} [kNm]	V _{13,Sd} [kN1	V _{23,Sd}

GRUPPO DI COMBINAZIO	CONDIZIONE	AREA	COMBINAZIONE	N _{Sd} [kN]	M _{11Sd} [kNm]	M _{22,Sd} [kNm]	V _{13,Sd} [kN]	V _{23,Sd} [kN]
	N_{max}	2037	STR.2	-169,21	10,04	-4,35	-22,80	-66,40
	N_{min}	1553	STR.4	60,78	-12,87	1,79	28,28	-6,88
- STR	$M_{11,max}$	1547	STR.3	-68,48	51,73	9,69	-60,73	3,15
	$M_{11,min}$	1544	STR.6	-28,50	-35,44	-4,82	76,96	-12,73
SLU	$M_{22,max}$	1969	STR.6	-54,06	25,54	88,22	13,55	-150,29
	$M_{22, min}$	1964	STR.6	-13,23	-13,86	-53,54	2,54	7,40
	V_{max}	1969	STR.6	-61,43	-4,21	-27,65	19,51	-150,29
	N_{max}	2106	SISMA-1	-116,52	3,28	-13,68	10,24	-21,89
	N_{min}	1553	SISMA-2	27,35	1,59	2,71	7,34	1,43
- SISMA	M _{11,max}	1545	SISMA-5	-37,52	29,89	6,12	-43,56	-1,98
	$M_{11,min}$	90	SISMA-5	-46,27	-12,51	2,83	-37,10	-9,01
SLU	$M_{22,max}$	1976	SISMA-1	-88,27	7,80	38,22	-1,52	-39,54
"	$M_{22,min}$	1964	SISMA-7	-48,22	-6,39	-20,49	1,79	13,54
	V_{max}	2038	SISMA-1	-60,71	-6,55	-13,62	-3,60	-63,13

Con segno negativo sono indicate le azioni normali di compressione.

12.2.2 SEZIONE ED ARMATURA DI VERIFICA

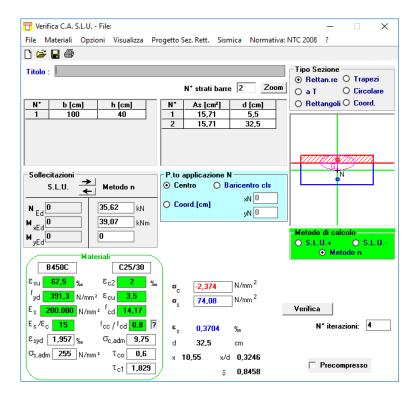
La sezione di verifica è rettangolare con base pari a 100 cm e altezza pari a 40.

L'armatura verticale (armatura di forza) è prevista come segue:

- Ø20/20 esterni
- Ø20/20 interni

L'armatura longitudinale di ripartizione è prevista come segue:

- Ø20/20 esterni
- Ø20/20 interni


Non è prevista alcuna specifica armatura a taglio. Verranno tuttavia disposti dei cavallotti Ø16/80x50. Il copriferro netto minimo è assunto pari a 45 mm.

12.2.3 VERIFICA ALLO STATO LIMITE DI LIMITAZIONE DELLE TENSIONI - COMBINAZIONE QUASI PERMANENTE – ARMATURA TRASVERSALE

La combinazione di carico maggiormente gravosa è risultata la combinazione SLE-QP.2.

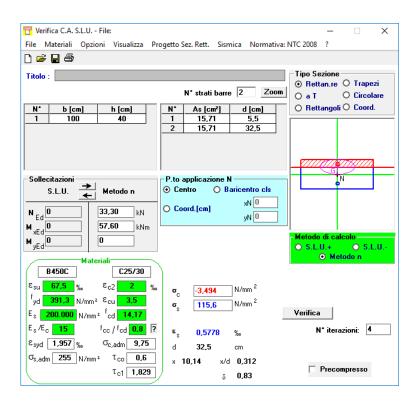
L'azione normale di calcolo è assunta pari a N_{Sd} = 35,62 kN.

Il momento flettente di calcolo è assunto pari a M_{Sd} = 39,07 kN/m.

Le tensioni sui materiali risultano pari a:

 $\sigma_c = 2,37 \text{ N/mm}^2 < 0,45 \text{ f}_{ck} = 11,20 \text{ N/mm}^2$

 $\sigma_s = 74,08 \text{ N/mm}^2 < 0,80 \text{ f}_{vk} = 360,00 \text{ N/mm}^2$



12.2.4 VERIFICA ALLO STATO LIMITE DI LIMITAZIONE DELLE TENSIONI - COMBINAZIONE FREQUENTE - ARMATURA TRASVERSALE

La combinazione di carico maggiormente gravosa è risultata la combinazione SLE-FR.6.

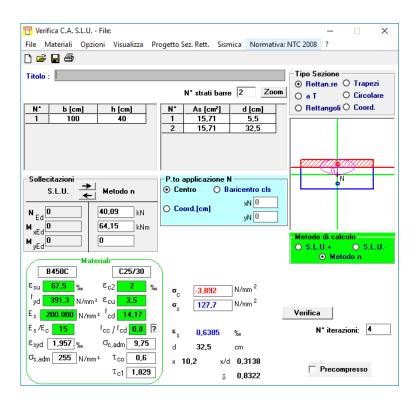
L'azione normale di calcolo è assunta pari a N_{Sd} = 33,30 kN.

Il momento flettente di calcolo è assunto pari a M_{Sd} = 57,60 kN/m.

Le tensioni sui materiali risultano pari a:

 $\sigma_c = 3,50 \text{ N/mm}^2 < 0,45 \text{ f}_{ck} = 11,20 \text{ N/mm}^2$

 $\sigma_s = 115,60 \text{ N/mm}^2 < 0,80 \text{ f}_{yk} = 360,00 \text{ N/mm}^2$



12.2.5 VERIFICA ALLO STATO LIMITE DI LIMITAZIONE DELLE TENSIONI - COMBINAZIONE CARATTERISTICA – ARMATURA TRASVERSALE

La combinazione di carico maggiormente gravosa è risultata la combinazione SLE-CAR.6.

L'azione normale di calcolo è assunta pari a N_{Sd} = 40,09 kN.

Il momento flettente di calcolo è assunto pari a $M_{sd} = 64,15 \text{ kN/m}$.

Le tensioni sui materiali risultano pari a:

 $\sigma_c = 3.89 \text{ N/mm}^2 < 0.60 \text{ f}_{ck} = 14.94 \text{ N/mm}^2$

 $\sigma_s = 127,70 \text{ N/mm}^2 < 0,80 \text{ f}_{yk} = 360,00 \text{ N/mm}^2$

12.2.6 VERIFICA ALLO STATO LIMITE DI FESSURAZIONE – ARMATURA TRASVERSALE

Per la verifica allo Stato Limite di fessurazione è stata utilizzata la procedura semplificata prevista dalla Circolare C.S.LL.PP. n.617 del 02.02.2009 – par. C4.1.2.2.4.6 – Tab. C4.1.II e C4.1.III. Le condizioni considerate sono riportate nella tabella seguente.

TABELLA C4.1.II - Diametri massimi delle barre per il controllo di fessurazione				
Tensione nell'acciaio	Diame	etro massimo Ø delle barre	[mm]	
$\sigma_{\rm s}$ [N/mm ²]	w ₃ = 0,40 mm	w ₂ = 0,30 mm	w ₁ = 0,20 mm	
160	40	32	25	
200	32	25	16	
240	20	16	12	
280	16	12	8	
320	12	10	6	
360	10	8	0	

TABELLA C4.1.III - Spaziatura massima delle barre per il controllo di fessurazione							
Tensione nell'acciaio	Spaziatura ı	massima s delle barre delle	e barre [mm]				
$\sigma_{\rm s}$ [N/mm ²]	w ₃ = 0,40 mm	w ₃ = 0,40 mm					
160	300	300	200				
200	300	250	150				
240	250	200	100				
280	200	150	50				
320	150	100	0				
360	100	50	0				

CRITERI DI SCELTA DELLO STATO LIMITE DI FESSURAZIONE

I criteri di scelta dello Stato Limite di fessurazione sono definiti secondo quanto riportato dal D.M. 14.01.2008, par. 4.1.2.2.4.5, tab. 4.1.IV.

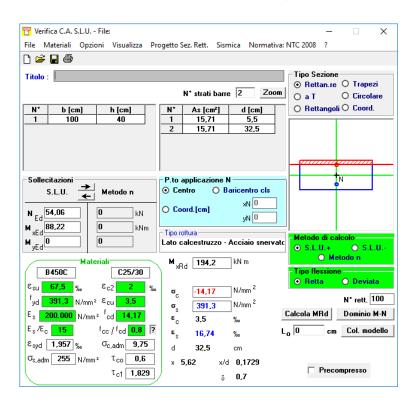
Condizioni ambientali: Armatura: • Aggressive Poco sensibile

COMBINAZIONE ALLO S.L.E. QUASI PERMANENTE Stato limite: apertura fessure Ampiezza massima delle fessure: w_d≤ [N/mm²]74,08 Tensione massima nell'acciaio calcolata: $\sigma_{\text{s,max}}$ Diametro massimo delle barre di armature poste in opera: 20 [mm] $Ø_{max}$ Spaziatura massima delle barre di armatura poste in opera: 20,00 [mm] s_{max}

 $\textit{Ø}_{\text{max}}$ Diametro massimo delle barre di armatura consentito: 25,00 [mm] Spaziatura massima delle barre di armatura consentita: 200,00 [mm] Smax **VERIFICA POSITIVA**

COMBINAZIONE ALLO S.L.E. FREQUENTE apertura fessure Stato limite: Ampiezza massima delle fessure: w_d≤ w2 [N/mm²]Tensione massima nell'acciaio calcolata: 115,60 $\sigma_{\text{s,max}}$ Diametro massimo delle barre di armature poste in opera: 20 [mm] $Ø_{max}$ Spaziatura massima delle barre di armatura poste in opera: s_{max} 20,00 [mm] Diametro massimo delle barre di armatura consentito: 32,00 [mm] $Ø_{\text{max}}$ Spaziatura massima delle barre di armatura consentita: 300,00 [mm] Smax

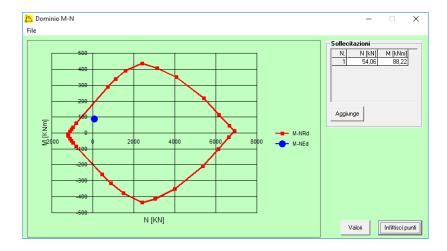
VERIFICA POSITIVA



12.2.7 VERIFICA ALLO STATO LIMITE ULTIMO PER PRESSOFLESSIONE – ARMATURA TRASVERSALE

La combinazione di carico maggiormente gravosa è risultata la combinazione STR.6.

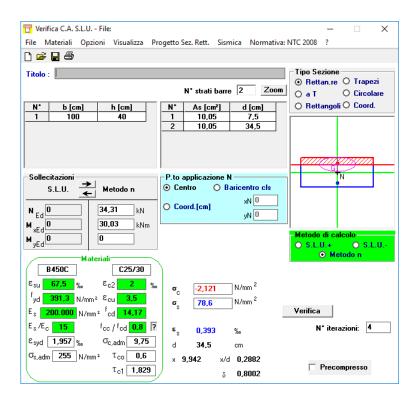
L'azione normale di calcolo è assunta pari a N_{Sd} = 54,06 kN.


Il momento flettente di calcolo è assunto pari a M_{Sd} = 88,22 kN/m.

Il momento resistente risulta pari a:

 $M_{Rd} = 194,20 \text{ kN/m} > M_{Sd} = 88,22 \text{ kN/m}.$

Nell'immagine successiva è riportato il dominio di resistenza della sezione:



12.2.8 VERIFICA ALLO STATO LIMITE DI LIMITAZIONE DELLE TENSIONI - COMBINAZIONE QUASI PERMANENTE - ARMATURA LONGITUDINALE

La combinazione di carico maggiormente gravosa è risultata la combinazione SLE-QP.1.

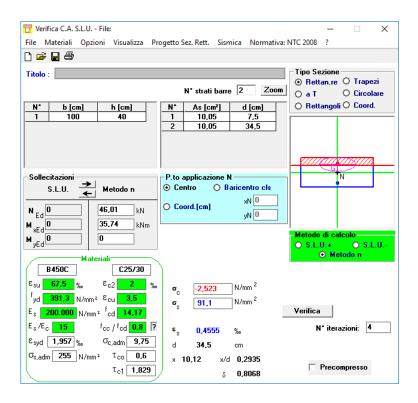
L'azione normale di calcolo è assunta pari a N_{Sd} = 34,31 kN.

Il momento flettente di calcolo è assunto pari a M_{Sd} = 30,03 kN/m.

Le tensioni sui materiali risultano pari a:

 $\sigma_c = 2,12 \text{ N/mm}^2 < 0,45 \text{ f}_{ck} = 11,20 \text{ N/mm}^2$

 $\sigma_s = 78,60 \text{ N/mm}^2 < 0,80 \text{ f}_{yk} = 360,00 \text{ N/mm}^2$



12.2.9 VERIFICA ALLO STATO LIMITE DI LIMITAZIONE DELLE TENSIONI - COMBINAZIONE FREQUENTE -**ARMATURA LONGITUDINALE**

La combinazione di carico maggiormente gravosa è risultata la combinazione SLE-FR.3.

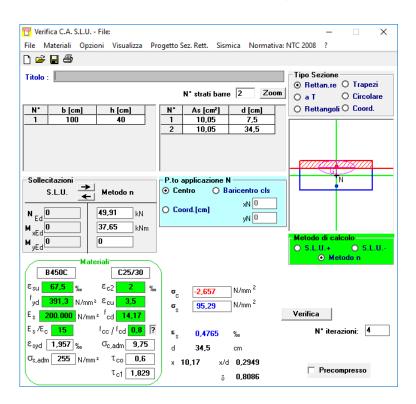
L'azione normale di calcolo è assunta pari a N_{Sd} = 46,01 kN.

Il momento flettente di calcolo è assunto pari a M_{Sd} = 35,74 kN/m.

Le tensioni sui materiali risultano pari a:

 $\sigma_c = 2,52 \text{ N/mm}^2 < 0,45 \text{ f}_{ck} = 11,20 \text{ N/mm}^2$

 $\sigma_s = 91,10 \text{ N/mm}^2 < 0,80 \text{ f}_{yk} = 360,00 \text{ N/mm}^2$



12.2.10 VERIFICA ALLO STATO LIMITE DI LIMITAZIONE DELLE TENSIONI - COMBINAZIONE CARATTERISTICA – ARMATURA LONGITUDINALE

La combinazione di carico maggiormente gravosa è risultata la combinazione SLE-CAR.3.

L'azione normale di calcolo è assunta pari a N_{Sd} = 49,91 kN.

Il momento flettente di calcolo è assunto pari a M_{Sd} = 37,65 kN/m.

Le tensioni sui materiali risultano pari a:

 $\sigma_c = 2,66 \text{ N/mm}^2 < 0,60 \text{ f}_{ck} = 14,94 \text{ N/mm}^2$

 $\sigma_s = 95,29 \text{ N/mm}^2 < 0,80 \text{ f}_{yk} = 360,00 \text{ N/mm}^2$

12.2.11 VERIFICA ALLO STATO LIMITE DI FESSURAZIONE – ARMATURA LONGITUDINALE

Per la verifica allo Stato Limite di fessurazione è stata utilizzata la procedura semplificata prevista dalla Circolare C.S.LL.PP. n.617 del 02.02.2009 – par. C4.1.2.2.4.6 – Tab. C4.1.II e C4.1.III. Le condizioni considerate sono riportate nella tabella seguente.

TABELLA C4.1.II - Diametri massimi delle barre per il controllo di fessurazione				
Tensione nell'acciaio	Diame	etro massimo Ø delle barre	[mm]	
$\sigma_{\rm s}$ [N/mm ²]	w ₃ = 0,40 mm	w ₂ = 0,30 mm	w ₁ = 0,20 mm	
160	40	32	25	
200	32	25	16	
240	20	16	12	
280	16	12	8	
320	12	10	6	
360	10	8	0	

TABELLA C4.1.III - Spaziatura massima delle barre per il controllo di fessurazione						
Tensione nell'acciaio	Spaziatura ı	Spaziatura massima s delle barre delle barre [mm]				
$\sigma_{\rm s}$ [N/mm ²]	w ₃ = 0,40 mm	$w_3 = 0,40 \text{ mm}$ $w_2 = 0,30 \text{ mm}$ $w_1 = 0,20 \text{ mm}$				
160	300	300	200			
200	300	250	150			
240	250	200	100			
280	200	150	50			
320	150	100	0			
360	100	50	0			

CRITERI DI SCELTA DELLO STATO LIMITE DI FESSURAZIONE

I criteri di scelta dello Stato Limite di fessurazione sono definiti secondo quanto riportato dal D.M. 14.01.2008, par. 4.1.2.2.4.5, tab. 4.1.IV.

Condizioni ambientali: Armatura: • • Aggressive Poco sensibile

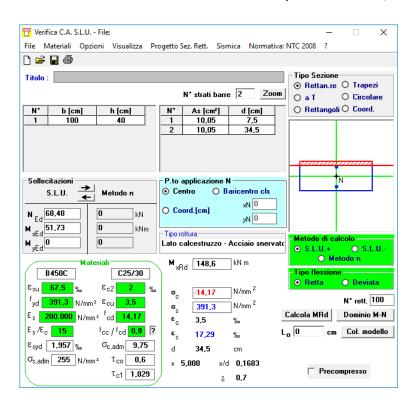
COMBINAZIONE ALLO S.L.E. QUASI PERMANENTE apertura fessure Ampiezza massima delle fessure: $w_d \le$ $[N/mm^2]$ Tensione massima nell'acciaio calcolata: $\sigma_{\text{s,max}}$ 78,60

Diametro massimo delle barre di armature poste in opera: 16 [mm] $Ø_{max}$ Spaziatura massima delle barre di armatura poste in opera: 20,00 [mm] s_{max} Diametro massimo delle barre di armatura consentito: 25,00 [mm] $Ø_{max}$ Spaziatura massima delle barre di armatura consentita: 200,00 [mm] Smax

VERIFICA POSITIVA

COMBINAZIONE ALLO S.L.E. FREQUENTE					
Stato limite:		а	pertura fessu	ıre	
Ampiezza massima delle fessure:	w _d ≤		w2		
Tensione massima nell'acciaio calcolata:	$\sigma_{\text{s,max}}$	91,10	[N/mm ²]		
Diametro massimo delle barre di armature poste in	opera:	\emptyset_{max}	16	[mm]	
Spaziatura massima delle barre di armatura poste in	S _{max}	20,00	[mm]		
Diametro massimo delle barre di armatura consenti	\emptyset_{max}	32,00	[mm]		
Spaziatura massima delle barre di armatura consen	S _{max}	300,00	[mm]		
VEDIC	A POSITIVA				

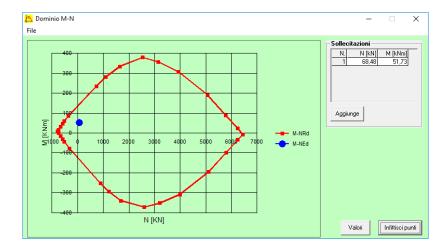
Stato limite:



12.2.12 VERIFICA ALLO STATO LIMITE ULTIMO PER PRESSOFLESSIONE – ARMATURA LONGITUDINALE

La combinazione di carico maggiormente gravosa è risultata la combinazione STR.3.

L'azione normale di calcolo è assunta pari a N_{Sd} = 68,48 kN.


Il momento flettente di calcolo è assunto pari a M_{Sd} = 51,73 kN/m.

Il momento resistente risulta pari a:

 $M_{Rd} = 148,60 \text{ kN/m} > M_{Sd} = 51,73 \text{ kN/m}.$

Nell'immagine successiva è riportato il dominio di resistenza della sezione:

12.2.13 VERIFICA ALLO STATO LIMITE ULTIMO PER TAGLIO

La combinazione di carico maggiormente gravosa è risultata la combinazione STR.6. L'azione tagliante di calcolo è assunta pari a V_{Sd} = 150,29 kN.

A favore di sicurezza non viene considerato il contributo dell'azione normale.

CARATTERISTICHE GEOMETRICHE DELLA SEZIONE				
Base della sezione trasversale:	b	100,00 [cm]		
Altezza della sezione trasversale:	h	40,00 [cm]		
Copriferro netto:	С	4,50 [cm]		
Altezza utile della sezione:	d	35,50 [cm]		

CARATTERISTICHE DEI MATERIALI Classe di resistenza del calcestruzzo: C25/30 [N/mm²]30,00 Resistenza caratteristica cubica a compressione: R_{ck} [N/mm²]Resistenza caratteristica cilindrica a compressione: 24,90 f_{ck} [N/mm²]Resistenza di calcolo a compressione: 14,11 f_{cd} Tipologia dell'acciaio da armatura: B450C ▾ [N/mm²]Tensione caratteristica di rottura: f_{tk} 540,00 [N/mm²]Tensione caratteristica di snervamento: 450,00 f_{vk} Resistenza di calcolo: 391,30 $[N/mm^2]$ AZIONI SOLI ECITANTI DI CALCOLO

AZIONI SOLLECTIA	AZIONI SOLLEGITANTI DI CALCOLO		
Azione tagliante di calcolo:	$V_{S,d}$	150,29	[kN]
Azione normale di calcolo:	$N_{S,d}$	0,00	[kN]

ARMATURA LONGITUDINALE

Primo strato di armatura tesa: Infittimento primo strato di armatura tesa: Secondo strato di armatura tesa: Infittimento secondo strato di armatura tesa: AREA TOTALE DELLE BARRE DI ARMATURA TESA

n _{barre}	Ø _{barre} [mm]	A _{barra} [cm²]	A _{s,tot} [cm ²]
5	20	3,14	15,70
		0,00	0,00
		0,00	0,00
		0,00	0,00
			15,70

VERIFICA ALLO S.L.U. PER TAGLIO

La verifica allo S.L.U. per taglio viene condotta secondo quanto previsto dal D.M. 14.01.2008, par.4.1.2.1.3.1

$$V_{Rd} = \left\{ \frac{0.18 \cdot k \cdot \left(100 \cdot \rho_1 \cdot f_{ck}\right)^{1/3}}{\gamma_c} + 0.15 \cdot \sigma_{cp} \right\} \cdot b_w \cdot d \ge \left(v_{\min} + 0.15 \cdot \sigma_{cp}\right) \cdot b_w \cdot d$$

Coefficiente k:	k	1,75	
Coefficiente v _{min} :	V _{min}	0,405	
Rapporto geometrico di armatura longitudinale:	$ ho_1$	0,0044	
Tensione media di compressione nella sezione:	σ_{cp}	0,000	[N/mm ²]
Larghezza minima della sezione:	b_w	100,00	[cm]

 $V_{\mathsf{R},\mathsf{d}}$ AZIONE TAGLIANTE RESISTENTE DELLA SEZIONE: [kN] 165.91 $F_S=V_{R,d}/V_{S,d}$ **COEFFICIENTE DI SICUREZZA:**

LA VERIFICA RISULTA POSITIVA

RELAZIONE TECNICA E DI CALCOLO STRUTTURALE DELLE VASCHE DI PRIMA PIOGGIA TIPO B

12.3 VERIFICHE DEL SETTO CENTRALE LONGITUDINALE

Poiché il setto è armato in maniera costante, doppia e simmetrica lungo tutto il suo sviluppo, le verifiche verranno eseguite in corrispondenza delle sezioni maggiormente sollecitate.

DEFINIZIONE DELLE AZIONI SOLLECITANTI DI CALCOLO

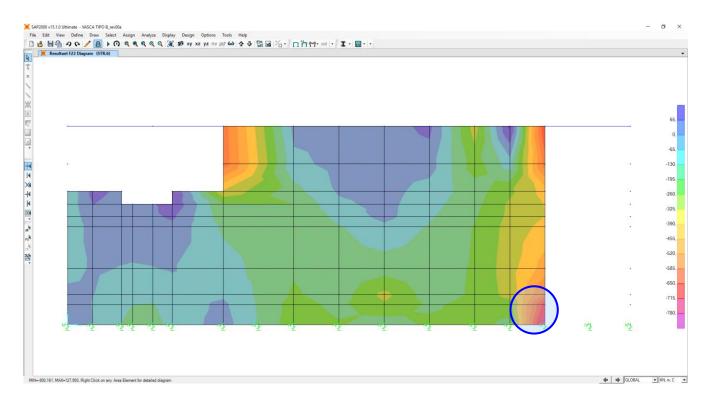
Nella tabella successiva sono riportati i valori delle azioni sollecitanti maggiormente gravose per le differenti combinazioni di carico considerate.

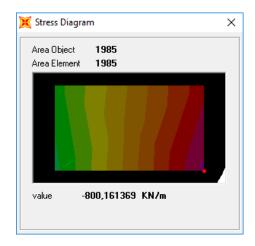
Sono state prese in esame le seguenti combinazioni delle azioni sollecitanti:

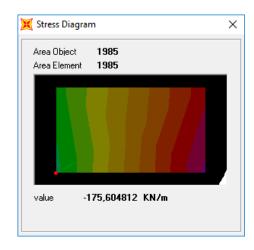
- N_{max}
- N_{min}
- M_{max}
- $M_{\text{min}} \\$
- V_{max}

GRUPPO DI	CONDIZIONE	AREA	COMBINAZIONE	N _{Sd}	M _{11Sd}	M _{22,Sd}	V _{13,Sd}	V _{23,Sd}
COMBINAZIO	CONDIZIONE	AILLA	COMBINAZIONE	[kN]	[kNm]	[kNm]	[kN]	[kN]
ш	N_{max}	1985	QP.4	-262,99	5,83	33,82	-5,57	25,68
E E	N_{min}	1989	QP.4	36,85	-3,91	8,79	26,29	-15,73
W	$M_{11,max}$	2128	QP.2	-8,86	18,62	-0,81	22,96	0,33
SLE ERM	$M_{11,min}$	2129	QP.2	-47,36	-24,97	-16,80	29,78	28,72
SLE QUASI PERMANENTE	$M_{22,max}$	1985	QP.2	-204,12	5,85	34,02	-5,62	26,05
MA W	$M_{22,min}$	1989	QP.4	-143,93	-16,62	-26,47	26,29	40,68
	V_{max}	2095	QP.2	-177,31	-1,28	30,86	2,46	159,19
	N_{max}	1985	FR.6	-515,80	8,43	50,45	-7,88	38,76
ш	N_{min}	1305	FR.6	72,13	4,03	-1,69	-15,91	39,24
🖫	$M_{11,max}$	2128	FR.4	-2,99	28,45	-1,41	35,62	0,55
SLE FREQUENTE	$M_{11,min}$	2129	FR.4	-42,58	-37,22	-25,80	43,93	43,37
l R	$M_{22,max}$	1985	FR.2	-456,93	8,46	50,65	-7,93	39,13
_	$M_{22,min}$	1989	FR.6	-404,14	-23,33	-40,93	36,90	61,81
	V_{max}	2095	FR.4	-190,47	-0,57	46,34	1,23	223,46
	N_{max}	1985	CAR.6	-585,35	9,30	56,04	-8,66	43,22
SLE CARATTERISTICA	N_{min}	1305	CAR.6	91,13	4,63	-1,89	-18,12	44,49
R	$M_{11,max}$	2128	CAR.4	-1,03	31,73	-1,60	39,84	0,62
SLE	$M_{11,min}$	2129	CAR.4	-40,98	-41,31	-28,80	48,64	48,25
RA	$M_{22,max}$	1985	CAR.2	-541,20	9,32	56,19	-8,69	43,49
გ ა	$M_{22,min}$	1989	CAR.6	-490,00	-25,51	-45,72	40,31	68,76
	V_{max}	2095	CAR.4	-194,86	-0,33	51,50	0,82	244,89
GRUPPO DI	CONDIZIONE	ADEA	COMBINAZIONE	N _{Sd}	M _{11Sd}	M _{22,Sd}	V _{13,Sd}	V _{23,Sd}
COMBINAZIO	CONDIZIONE	AREA	COMBINAZIONE	[kN]	[kNm]	[kNm]	[kN]	[kN]
	N_{max}	1985	STR.6	-800,16	12,96	78,15	-12,06	60,31
	N_{min}	1305	STR.6	122,64	6,48	-2,63	-25,39	62,39
I R	$M_{11,max}$	2128	STR.4	-1,32	44,37	-2,26	55,73	0,87
SLU - STR	$M_{11, min}$	2129	STR.4	-57,27	-57,68	-40,28	67,90	67,44
S⊓	$M_{22,max}$	1985	STR.2	-733,64	12,99	78,38	-12,12	60,72
	M _{22,min}	1989	STR.6	-665,89	-35,66	-63,88	56,34	96,08
	V_{max}	2095	STR.4	-268,77	-0,35	71,89	0,95	340,59
	N_{max}	1985	SISMA-9	-217,41	2,95	19,52	-4,05	20,52
	N_{min}	1389	SISMA-4	37,28	-1,09	0,71	-1,74	-4,86
SLU - SISMA	$M_{11,max}$	2128	SISMA-7	-0,21	22,58	-1,11	27,10	3,04
<u> </u>	$M_{11, min}$	2129	SISMA-7	-37,32	-28,45	-17,22	34,30	28,03
SLU	$M_{22,max}$	1985	SISMA-8	-191,79	5,90	39,20	-6,89	40,97
"	$M_{22, min}$	1989	SISMA-2	-49,60	-16,54	-23,39	23,37	33,58
	V_{max}	2164	SISMA-7	-154,35	-1,35	28,10	-2,75	164,78

Con segno negativo sono indicate le azioni normali di compressione.




RELAZIONE TECNICA E DI CALCOLO STRUTTURALE DELLE VASCHE DI PRIMA PIOGGIA TIPO B


Nota Bene: i valori delle sollecitazioni per le condizioni di N_{max} , N_{min} e V_{max} sono influenzati dalla presenza di punte di tensione legati alla interazione tra gli elementi "shell" ed elementi "beam" presenti nel modello.

Per una maggiore comprensione della problematica di seguito viene riportata la distribuzione della sollecitazione lungo il setto centrale longitudinale per la combinazione STR.6, dove si riscontrano le punte di tensioni sopra citate.

Nelle immagini successive, si può notare la variazione rapida di tensione all'interno dell'elemento "shell", per cui tali valori non si considerano rappresentativi del reale comportamento dell'elemento.

12.3.2 SEZIONE ED ARMATURA DI VERIFICA

La sezione di verifica è rettangolare con base pari a 100 cm e altezza pari a 60.

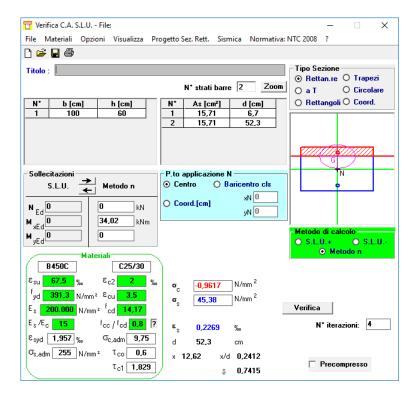
L'armatura verticale (armatura di forza) è prevista come segue:

- Ø20/20 esterni
- Ø20/20 interni

L'armatura longitudinale di ripartizione è prevista come segue:

- Ø16/20 esterni
- Ø16/20 interni

L'armatura a taglio prevista è formata da spille di legatura Ø12/40x40.


Il copriferro netto minimo è assunto pari a 45 mm.

12.3.3 VERIFICA ALLO STATO LIMITE DI LIMITAZIONE DELLE TENSIONI - COMBINAZIONE QUASI PERMANENTE – ARMATURA VERTICALE

La combinazione di carico maggiormente gravosa è risultata la combinazione SLE-QP.2.

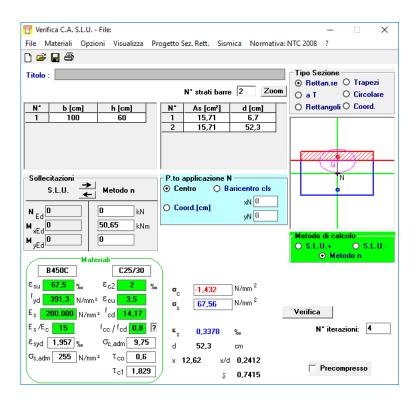
A favore di sicurezza non viene considerato il contributo dell'azione normale.

Il momento flettente di calcolo è assunto pari a M_{Sd} = 34,02 kN/m.

Le tensioni sui materiali risultano pari a:

 $\sigma_c = 0.96 \text{ N/mm}^2 < 0.45 \text{ f}_{ck} = 11.20 \text{ N/mm}^2$

 $\sigma_s = 45,38 \text{ N/mm}^2 < 0,80 \text{ f}_{vk} = 360,00 \text{ N/mm}^2$



12.3.4 VERIFICA ALLO STATO LIMITE DI LIMITAZIONE DELLE TENSIONI - COMBINAZIONE FREQUENTE - ARMATURA VERTICALE

La combinazione di carico maggiormente gravosa è risultata la combinazione SLE-FR.2.

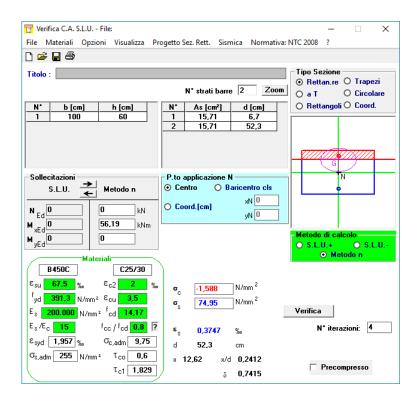
A favore di sicurezza non viene considerato il contributo dell'azione normale.

Il momento flettente di calcolo è assunto pari a M_{Sd} = 50,65 kN/m.

Le tensioni sui materiali risultano pari a:

 $\sigma_c = 1,49 \text{ N/mm}^2 < 0,45 \text{ f}_{ck} = 11,20 \text{ N/mm}^2$

 $\sigma_s = 67,56 \text{ N/mm}^2 < 0,80 \text{ f}_{yk} = 360,00 \text{ N/mm}^2$



12.3.5 VERIFICA ALLO STATO LIMITE DI LIMITAZIONE DELLE TENSIONI - COMBINAZIONE **CARATTERISTICA – ARMATURA VERTICALE**

La combinazione di carico maggiormente gravosa è risultata la combinazione SLE-CAR.2.

A favore di sicurezza non viene considerato il contributo dell'azione normale.

Il momento flettente di calcolo è assunto pari a M_{Sd} = 56,19 kN/m.

Le tensioni sui materiali risultano pari a:

 $\sigma_c = 1,59 \text{ N/mm}^2 < 0,60 \text{ f}_{ck} = 14,94 \text{ N/mm}^2$

 $\sigma_s = 74,95 \text{ N/mm}^2 < 0.80 \text{ f}_{yk} = 360,00 \text{ N/mm}^2$

12.3.6 VERIFICA ALLO STATO LIMITE DI FESSURAZIONE – ARMATURA VERTICALE

Per la verifica allo Stato Limite di fessurazione è stata utilizzata la procedura semplificata prevista dalla Circolare C.S.LL.PP. n.617 del 02.02.2009 – par. C4.1.2.2.4.6 – Tab. C4.1.II e C4.1.III. Le condizioni considerate sono riportate nella tabella seguente.

TABELLA C4.1.II - Diametri massimi delle barre per il controllo di fessurazione						
Tensione nell'acciaio	Diame	Diametro massimo Ø delle barre [mm]				
$\sigma_{\rm s}$ [N/mm ²]	w ₃ = 0,40 mm	$w_3 = 0.40 \text{ mm}$ $w_2 = 0.30 \text{ mm}$ $w_1 = 0.20 \text{ mm}$				
160	40	32	25			
200	32	25	16			
240	20	16	12			
280	16	12	8			
320	12	10	6			
360	10	8	0			

TABELLA C4.1.III - Spaziatura massima delle barre per il controllo di fessurazione						
Tensione nell'acciaio	Spaziatura ı	Spaziatura massima s delle barre delle barre [mm]				
$\sigma_{\rm s}$ [N/mm ²]	w ₃ = 0,40 mm	w ₃ = 0,40 mm				
160	300	300	200			
200	300	250	150			
240	250	200	100			
280	200	150	50			
320	150	100	0			
360	100	50	0			

CRITERI DI SCELTA DELLO STATO LIMITE DI FESSURAZIONE

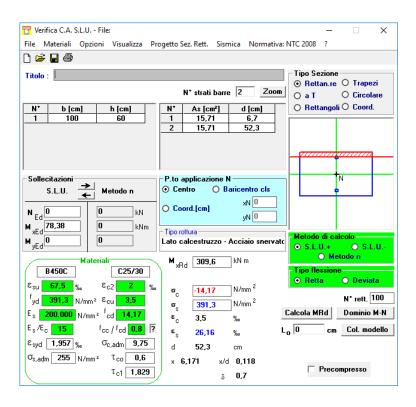
I criteri di scelta dello Stato Limite di fessurazione sono definiti secondo quanto riportato dal D.M. 14.01.2008, par. 4.1.2.2.4.5, tab. 4.1.IV.

Condizioni ambientali: Armatura: • • Aggressive Poco sensibile

COMBINAZIONE ALLO S.L.E. QUASI PERMANENTE Stato limite: apertura fessure Ampiezza massima delle fessure: $w_d \le$ w1 $[N/mm^2]$ 45,38 Tensione massima nell'acciaio calcolata: $\sigma_{\text{s,max}}$ Diametro massimo delle barre di armature poste in opera: 20 [mm] $Ø_{max}$ Spaziatura massima delle barre di armatura poste in opera: 20,00 [mm] s_{max} Diametro massimo delle barre di armatura consentito: 25,00 [mm] $Ø_{max}$ Spaziatura massima delle barre di armatura consentita: 200,00 [mm]

VERIFICA POSITIVA

COMBINAZIONE ALLO S.L.E. FREQUENTE						
Stato limite:		а	pertura fessu	ıre		
Ampiezza massima delle fessure:	$w_d \le$		w2			
Tensione massima nell'acciaio calcolata:	$\sigma_{s,\text{max}}$	67,56	[N/mm ²]			
Diametro massimo delle barre di armature poste in	\emptyset_{max}	20	[mm]			
Spaziatura massima delle barre di armatura poste	S _{max}	20,00	[mm]			
Diametro massimo delle barre di armatura consen	\emptyset_{max}	32,00	[mm]			
Spaziatura massima delle barre di armatura conse	S _{max}	300,00	[mm]			
VFRIFI	VERIFICA POSITIVA					


Smax

12.3.7 VERIFICA ALLO STATO LIMITE ULTIMO PER PRESSOFLESSIONE – ARMATURA VERTICALE

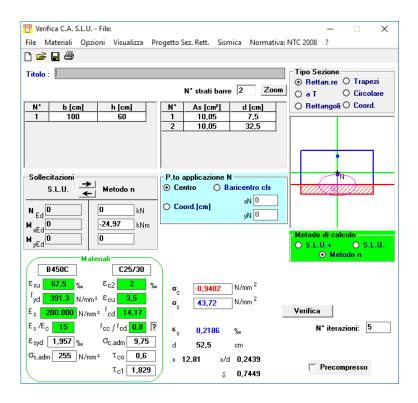
La combinazione di carico maggiormente gravosa è risultata la combinazione **STR.2**. A favore di sicurezza non viene considerato il contributo dell'azione normale.

Il momento flettente di calcolo è assunto pari a M_{Sd} = 78,38 kN/m.

Il momento resistente risulta pari a:

 $M_{Rd} = 309,60 \text{ kN/m} > M_{Sd} = 78,38 \text{ kN/m}.$

Nell'immagine successiva è riportato il dominio di resistenza della sezione:



12.3.8 VERIFICA ALLO STATO LIMITE DI LIMITAZIONE DELLE TENSIONI - COMBINAZIONE QUASI PERMANENTE - ARMATURA LONGITUDINALE

La combinazione di carico maggiormente gravosa è risultata la combinazione SLE-QP.2.

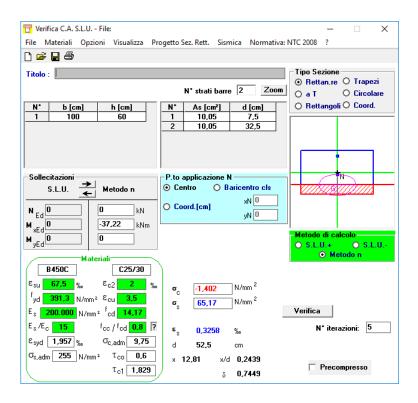
A favore di sicurezza non viene considerato il contributo dell'azione normale.

Il momento flettente di calcolo è assunto pari a M_{Sd} = -24,97 kN/m.

Le tensioni sui materiali risultano pari a:

 $\sigma_c = 0.94 \text{ N/mm}^2 < 0.45 \text{ f}_{ck} = 11.20 \text{ N/mm}^2$

 $\sigma_s = 43,72 \text{ N/mm}^2 < 0,80 \text{ f}_{yk} = 360,00 \text{ N/mm}^2$



12.3.9 VERIFICA ALLO STATO LIMITE DI LIMITAZIONE DELLE TENSIONI - COMBINAZIONE FREQUENTE -**ARMATURA LONGITUDINALE**

La combinazione di carico maggiormente gravosa è risultata la combinazione SLE-FR.4.

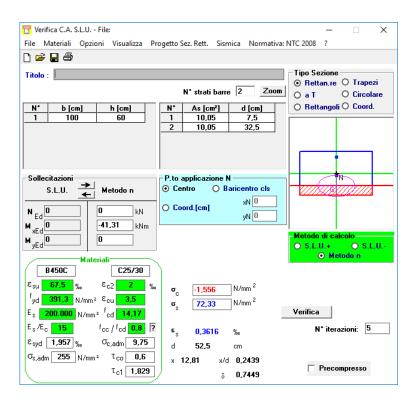
A favore di sicurezza non viene considerato il contributo dell'azione normale.

Il momento flettente di calcolo è assunto pari a $M_{Sd} = -37,22 \text{ kN/m}$.

Le tensioni sui materiali risultano pari a:

 $\sigma_c = 1,40 \text{ N/mm}^2 < 0,45 \text{ f}_{ck} = 11,20 \text{ N/mm}^2$

 $\sigma_s = 65,17 \text{ N/mm}^2 < 0,80 \text{ f}_{yk} = 360,00 \text{ N/mm}^2$



12.3.10 VERIFICA ALLO STATO LIMITE DI LIMITAZIONE DELLE TENSIONI - COMBINAZIONE **CARATTERISTICA – ARMATURA LONGITUDINALE**

La combinazione di carico maggiormente gravosa è risultata la combinazione SLE-CAR.4.

A favore di sicurezza non viene considerato il contributo dell'azione normale.

Il momento flettente di calcolo è assunto pari a $M_{Sd} = -41,31 \text{ kN/m}$.

Le tensioni sui materiali risultano pari a:

 $\sigma_c = 1,56 \text{ N/mm}^2 < 0,60 \text{ f}_{ck} = 14,94 \text{ N/mm}^2$

 $\sigma_s = 72,33 \text{ N/mm}^2 < 0.80 \text{ f}_{yk} = 360,00 \text{ N/mm}^2$

12.3.11 VERIFICA ALLO STATO LIMITE DI FESSURAZIONE – ARMATURA LONGITUDINALE

Per la verifica allo Stato Limite di fessurazione è stata utilizzata la procedura semplificata prevista dalla Circolare C.S.LL.PP. n.617 del 02.02.2009 – par. C4.1.2.2.4.6 – Tab. C4.1.II e C4.1.III. Le condizioni considerate sono riportate nella tabella seguente.

TABELLA C4.1.II - Diametri massimi delle barre per il controllo di fessurazione						
Tensione nell'acciaio	Diame	Diametro massimo Ø delle barre [mm]				
$\sigma_{\rm s}$ [N/mm ²]	w ₃ = 0,40 mm	$w_3 = 0.40 \text{ mm}$ $w_2 = 0.30 \text{ mm}$ $w_1 = 0.20 \text{ mm}$				
160	40	32	25			
200	32	25	16			
240	20	16	12			
280	16	12	8			
320	12	10	6			
360	10	8	0			

TABELLA C4.1.III - Spaziatura massima delle barre per il controllo di fessurazione						
Tensione nell'acciaio	Spaziatura ı	Spaziatura massima s delle barre delle barre [mm]				
$\sigma_{\rm s}$ [N/mm ²]	w ₃ = 0,40 mm	w ₃ = 0,40 mm				
160	300	300	200			
200	300	250	150			
240	250	200	100			
280	200	150	50			
320	150	100	0			
360	100	50	0			

CRITERI DI SCELTA DELLO STATO LIMITE DI FESSURAZIONE

I criteri di scelta dello Stato Limite di fessurazione sono definiti secondo quanto riportato dal D.M. 14.01.2008, par. 4.1.2.2.4.5, tab. 4.1.IV.

Condizioni ambientali:

Aggressive

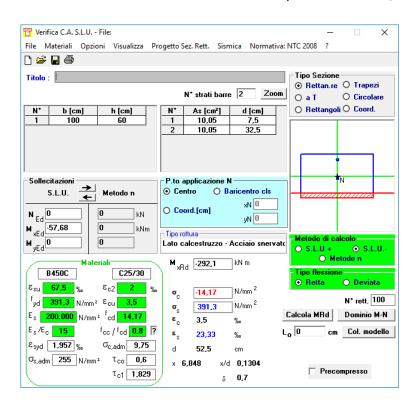
Armatura:

Poco sensibile

COMBINAZIONE ALLO S.L.E. QUASI PERMANENTE Stato limite: apertura fessure Ampiezza massima delle fessure: $w_d \le$ w1 $[N/mm^2]$ 43,72 Tensione massima nell'acciaio calcolata: $\sigma_{\text{s,max}}$ Diametro massimo delle barre di armature poste in opera: 16 [mm] $Ø_{max}$ Spaziatura massima delle barre di armatura poste in opera: 20,00 [mm] s_{max} Diametro massimo delle barre di armatura consentito: 25,00 [mm] $Ø_{max}$

Spaziatura massima delle barre di armatura consentita: s_{max} 200,00 [mm] VERIFICA POSITIVA

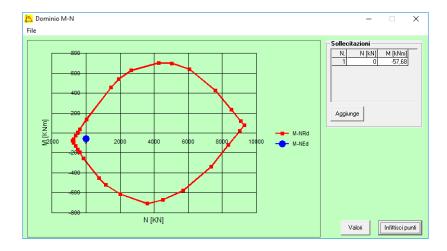
COMBINAZIONE ALLO S.L.E. FREQUENTE					
Stato limite:		apertura fessure			
Ampiezza massima delle fessure:	re: w _d ≤		w2		
Tensione massima nell'acciaio calcolata:		$\sigma_{\text{s,max}}$	65,17	[N/mm ²]	
Diametro massimo delle barre di armature poste in opera:		\mathcal{O}_{max}	16	[mm]	
Spaziatura massima delle barre di armatura poste in opera:		s _{max}	20,00	[mm]	
Diametro massimo delle barre di armatura consentito:		\emptyset_{max}	32,00	[mm]	
Spaziatura massima delle barre di armatura consentita:		S _{max}	300,00	[mm]	
VERIFICA POSITIVA					



12.3.12 VERIFICA ALLO STATO LIMITE ULTIMO PER PRESSOFLESSIONE – ARMATURA LONGITUDINALE

La combinazione di carico maggiormente gravosa è risultata la combinazione STR.4.

A favore di sicurezza non viene considerato il contributo dell'azione normale.


Il momento flettente di calcolo è assunto pari a $M_{Sd} = -57,68$ kN/m.

Il momento resistente risulta pari a:

 $M_{Rd} = -292,10 \text{ kN/m} > M_{Sd} = -57,68 \text{ kN/m}.$

Nell'immagine successiva è riportato il dominio di resistenza della sezione:

RELAZIONE TECNICA E DI CALCOLO STRUTTURALE DELLE VASCHE DI PRIMA PIOGGIA TIPO B


12.3.13 VERIFICA ALLO STATO LIMITE ULTIMO PER TAGLIO

La combinazione di carico maggiormente gravosa è risultata la combinazione STR.4.

L'azione tagliante di calcolo è assunta pari a V_{Sd} = 340,59 kN.

A favore di sicurezza non viene considerato il contributo dell'azione normale.

Come già descritto ed illustrato nel cap.12.3.1, il valore dell'azione tagliante è inficiato dalla presenza di punte di tensione. Di seguito viene riportato la sollecitazione minima per l'elemento considerato.

Per cui per la successiva verifica si andrà a considerare un valore medio V_{Sd} = 189,54 kN.

RELAZIONE TECNICA E DI CALCOLO STRUTTURALE DELLE VASCHE DI PRIMA PIOGGIA TIPO B

CARATTERISTICHE GEOMETRICHE DELLA SEZIONE Base della zezione trasversale: 100,00 [cm] Altezza della sezione trasversale: 60,00 [cm] h Copriferro netto: [cm] С 4,50 Altezza utile della sezione: d 55,50 [cm] CARATTERISTICHE DEI MATERIALI Classe di resistenza del calcestruzzo: C25/30 • $[N/mm^2]$ Resistenza caratteristica cubica a compressione: 30,00 R_{ck} [N/mm²]Resistenza caratteristica cilindrica a compressione: 24,90 f_{ck} $[N/m m^2]$ Resistenza di calcolo a compressione: 14,11 f_{cd} B450C Tipologia dell'acciaio da armatura: Tensione caratteristica di rottura: 540,00 [N/m m²] \mathbf{f}_{tk} $[N/m m^2]$ Tensione caratteristica di snervamento: f_{yk} 450,00 $[N/m m^2]$ Resistenza di calcolo: 391,30 f_{vd} **AZIONI SOLLECITANTI DI CALCOLO** Azione tagliante di calcolo: 189,54 [kN] $V_{S,d}$ [kN] Azione normale di calcolo: 0,00 $N_{\text{S,d}}$ ARMATURA TRASVERSALE Inclinazione dei puntoni di calcestruzzo: 45,00 [°] Cotangente dell'angolo θ: $cot(\theta)$ 1.00 Inclinazione dell'armatura trasversale rispetto all'asse della trave: 90,00 [°] α Numero di bracci dell'armatura trasversale: 5,00 n Passo longitudinale delle armature trasversali: 40,00 [cm] Diametro dell'armatura trasversale: 12,00 [mm] $Ø_{trasv}$ [cm²] Area della singola barra: A_{barra} 1,13 [cm²/m] Area totale dell'armatura trasversale: 14,13 A_{tot} **VERIFICA ALLO S.L.U. PER TAGLIO** La verifica allo S.L.U. per taglio viene condotta secondo quanto previsto dal D.M. 14.01.2008, par.4.1.2.1.3.2 La resistenza di calcolo a "taglio trazione" viene valutata mediante la seguente relazione: $V_{Rsd} = 0.9 \cdot d \cdot \frac{A_{sw}}{c} \cdot f_{yd} \cdot [\cot (\alpha) + \cot (\theta)] \cdot sen (\alpha)$ La resistenza di calcolo a "taglio compressione" viene valutata mediante la seguente relazione:

 $V_{Rcd} = 0.9 \cdot d \cdot b_w \cdot \alpha_c \cdot f_{cd} \cdot \frac{\text{cot}}{\text{l.}}$

100,00 [cm] Larghezza minima della sezione: b_w 7,06 f'_{yd}

[N/m m²]Resistenza a compressione ridotta del calcestruzzo: [N/m m²]Tensione media di compressione nella sezione: 0,000 σ_{cp} 1,0000 Coefficiente maggiorativo α_c : α_c

 V_{Rsd} RESISTENZA DI CALCOLO A "TAGLIO TRAZIONE" 276,08 [kN] RESISTENZA DI CALCOLO A "TAGLIO COMPRESSIONE" V_{Rcd} 1.761,99 [kN]

AZIONE TAGLIANTE RESISTENTE DELLA SEZIONE: 276,08 [kN] $V_{R,d} \\$ **COEFFICIENTE DI SICUREZZA:** $F_S=V_{R,d}/V_{S,d}$ 1,46

LA VERIFICA RISULTA POSITIVA

RELAZIONE TECNICA E DI CALCOLO STRUTTURALE DELLE VASCHE DI PRIMA PIOGGIA TIPO B

12.4 VERIFICHE DEI SETTI CENTRALI TRASVERSALI

Poiché il setto è armato in maniera costante, doppia e simmetrica lungo tutto il suo sviluppo, le verifiche verranno eseguite in corrispondenza delle sezioni maggiormente sollecitate.

12.4.1 DEFINIZIONE DELLE AZIONI SOLLECITANTI DI CALCOLO

Nella tabella successiva sono riportati i valori delle azioni sollecitanti maggiormente gravose per le differenti combinazioni di carico considerate.

Sono state prese in esame le seguenti combinazioni delle azioni sollecitanti:

- N_{max}
- N_{min}
- M_{max}
- $M_{\text{min}} \\$
- V_{max}

GRUPPO DI	CONDIZIONE	AREA	COMBINAZIONE	N _{Sd}	M _{11Sd}	M _{22,Sd}	$V_{13,Sd}$	V _{23,Sd}
COMBINAZIO	CONDIZIONE	ARLA	OOMBINAZIONE	[kN]	[kNm]	[kNm]	[kN]	[kN]
— ш	N_{max}	842	QP.4	-117,24	0,40	-0,78	1,24	-5,27
SLE QUASI PERMANENTE	N_{min}	1057	QP.2	52,94	-0,81	0,03	1,45	0,66
W	M _{11,max}	909	QP.4	-15,20	2,92	1,12	-2,67	-1,52
SLE ERM.	M _{11,min}	1035	QP.4	-6,94	-4,34	-1,72	-8,03	3,68
S	$M_{22,max}$	808	QP.2	-5,88	0,32	4,27	0,73	10,87
MA N	M _{22,min}	852	QP.4	-0,06	-2,59	-5,22	-5,84	11,99
<u> </u>	V_{max}	852	QP.2	-8,04	-1,18	-1,69	-3,71	14,45
	N _{max}	842	FR.8	-164,19	0,84	-1,13	0,80	-7,19
ш	N_{min}	830	FR.6	77,08	-0,92	-0,06	-4,55	-1,29
🖫	M _{11,max}	917	FR.2	-12,56	3,88	5,29	-6,13	-6,18
SLE FREQUENTE	M _{11,min}	852	FR.6	-48,38	-5,28	-17,16	-15,02	39,47
l ä	M _{22,max}	852	FR.2	37,19	0,19	8,42	-14,47	-29,38
_	M _{22,min}	852	FR.6	-48,38	-5,28	-17,16	-15,02	39,47
	V_{max}	852	FR.2	-57,11	-3,71	-6,79	-13,10	41,93
	N _{max}	842	CAR.8	-179,82	0,96	-1,31	0,07	-8,50
SLE CARATTERISTICA	N_{min}	830	CAR.6	91,61	-0,82	-0,05	-3,97	-1,65
l	M _{11,max}	917	CAR.2	-14,13	4,66	6,29	-7,30	-7,22
SLE	M _{11,min}	852	CAR.6	-63,71	-6,06	-21,14	-17,94	49,25
RA1	M _{22,max}	852	CAR.2	45,53	0,17	10,37	-17,53	-36,02
CA	M _{22,min}	852	CAR.6	-63,71	-6,06	-21,14	-17,94	49,25
	V_{max}	852	CAR.2	-73,46	-4,55	-8,48	-16,23	51,09
GRUPPO DI	CONDIZIONE	AREA	COMBINAZIONE	N _{Sd}	M _{11Sd}	M _{22,Sd}	V _{13,Sd}	V _{23,Sd}
COMBINAZIO	CONDIZIONE	AREA	COMBINAZIONE	[kN]	[kNm]	[kNm]	[kN]	[kN]
	N _{max}	842	STR.8	-250,27	1,35	-1,85	0,26	-11,85
	N _{min}	830	STR.6	127,99	-1,18	-0,08	-5,76	-2,27
TR.	M _{11,max}	917	STR.2	-19,06	6,48	8,59	-10,06	-9,85
SLU - STR	M _{11,min}	852	STR.6	-84,48	-8,45	-28,83	-24,69	67,19
IS	M _{22,max}	852	STR.2	61,99	0,26	14,14	-24,07	-49,24
	M _{22,min}	852	STR.6	-84,48	-8,45	-28,83	-24,69	67,19
	V_{max}	852	STR.2	-98,41	-6,25	-11,50	-22,13	69,96
	N _{max}	842	SISMA-7	-149,26	0,87	-0,86	0,83	-5,03
4	N_{min}	1057	SISMA-1	57,03	-1,27	-0,04	1,54	0,66
SLU - SISMA	M _{11,max}	917	SISMA-8	-8,16	2,54	2,21	-3,09	-2,98
<u>.</u>	M _{11,min}	1043	SISMA-8	-24,84	-3,72	-1,45	-6,54	3,16
) SLU	M _{22,max}	808	SISMA-3	-5,33	-0,17	5,04	2,07	14,73
"	M _{22,min}	852	SISMA-11	-4,99	-1,59	-5,92	-4,80	13,29
	V_{max}	1042	SISMA-4	-12,19	-1,44	0,99	-3,85	17,73

Con segno negativo sono indicate le azioni normali di compressione.

12.4.2 SEZIONE ED ARMATURA DI VERIFICA

La sezione di verifica è rettangolare con base pari a 100 cm e altezza pari a 30.

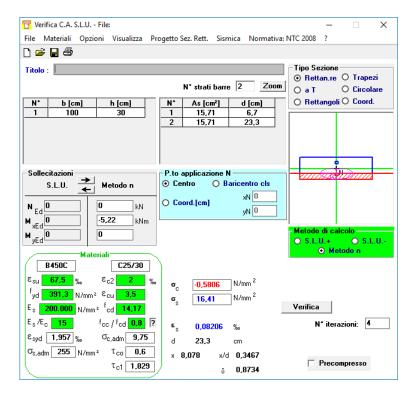
L'armatura verticale (armatura di forza) è prevista come segue:

- Ø20/20 esterni
- Ø20/20 interni

L'armatura longitudinale di ripartizione è prevista come segue:

- Ø16/20 esterni
- Ø16/20 interni

Non è prevista alcuna specifica armatura a taglio. Verranno tuttavia disposti spille di legatura Ø12/40x40.


Il copriferro netto minimo è assunto pari a 45 mm.

12.4.3 VERIFICA ALLO STATO LIMITE DI LIMITAZIONE DELLE TENSIONI - COMBINAZIONE QUASI PERMANENTE - ARMATURA VERTICALE

La combinazione di carico maggiormente gravosa è risultata la combinazione SLE-QP.4.

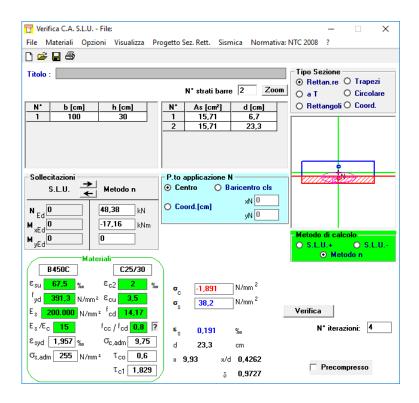
L'azione normale di calcolo è assunta pari a N_{Sd} = 0,06 kN.

Il momento flettente di calcolo è assunto pari a $M_{sd} = -5,22 \text{ kN/m}$.

Le tensioni sui materiali risultano pari a:

 $\sigma_c = 0.58 \text{ N/mm}^2 < 0.45 \text{ f}_{ck} = 11.20 \text{ N/mm}^2$

 $\sigma_s = 16,41 \text{ N/mm}^2 < 0,80 \text{ f}_{yk} = 360,00 \text{ N/mm}^2$



12.4.4 VERIFICA ALLO STATO LIMITE DI LIMITAZIONE DELLE TENSIONI - COMBINAZIONE FREQUENTE - ARMATURA VERTICALE

La combinazione di carico maggiormente gravosa è risultata la combinazione SLE-FR.6.

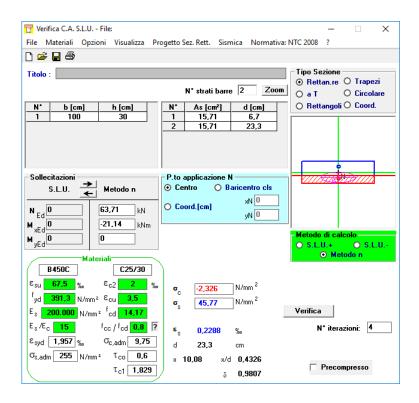
L'azione normale di calcolo è assunta pari a N_{Sd} = 48,38 kN.

Il momento flettente di calcolo è assunto pari a M_{Sd} = -17,16 kN/m.

Le tensioni sui materiali risultano pari a:

 $\sigma_c = 1,89 \text{ N/mm}^2 < 0,45 \text{ f}_{ck} = 11,20 \text{ N/mm}^2$

 $\sigma_s = 38,20 \text{ N/mm}^2 < 0,80 \text{ f}_{yk} = 360,00 \text{ N/mm}^2$



12.4.5 VERIFICA ALLO STATO LIMITE DI LIMITAZIONE DELLE TENSIONI - COMBINAZIONE **CARATTERISTICA – ARMATURA VERTICALE**

La combinazione di carico maggiormente gravosa è risultata la combinazione SLE-CAR.6.

L'azione normale di calcolo è assunta pari a N_{Sd} = 63,71 kN.

Il momento flettente di calcolo è assunto pari a $M_{sd} = -21,14 \text{ kN/m}$.

Le tensioni sui materiali risultano pari a:

 $\sigma_c = 2,32 \text{ N/mm}^2 < 0,60 \text{ f}_{ck} = 14,94 \text{ N/mm}^2$

 $\sigma_s = 45,77 \text{ N/mm}^2 < 0.80 \text{ f}_{yk} = 360,00 \text{ N/mm}^2$

12.4.6 VERIFICA ALLO STATO LIMITE DI FESSURAZIONE – ARMATURA VERTICALE

Per la verifica allo Stato Limite di fessurazione è stata utilizzata la procedura semplificata prevista dalla Circolare C.S.LL.PP. n.617 del 02.02.2009 – par. C4.1.2.2.4.6 – Tab. C4.1.II e C4.1.III. Le condizioni considerate sono riportate nella tabella seguente.

TABELLA C4.1.II - Diametri massimi delle barre per il controllo di fessurazione							
Tensione nell'acciaio	Diame	Diametro massimo Ø delle barre [mm] $w_3 = 0,40 \text{ mm} \qquad \qquad w_2 = 0,30 \text{ mm} \qquad \qquad w_1 = 0,20 \text{ mm}$					
$\sigma_{\rm s}$ [N/mm ²]	w ₃ = 0,40 mm						
160	40	32	25				
200	32	25	16				
240	20	16	12				
280	16	12	8				
320	12	10	6				
360	10	8	0				

TABELLA C4.1.III - Spaziatura massima delle barre per il controllo di fessurazione							
Tensione nell'acciaio	Spaziatura ı	Spaziatura massima s delle barre delle barre [mm] $w_3 = 0,40 \text{ mm}$ $w_2 = 0,30 \text{ mm}$ $w_1 = 0,20 \text{ mm}$					
$\sigma_{\rm s}$ [N/mm ²]	w ₃ = 0,40 mm						
160	300	300	200				
200	300	250	150				
240	250	200	100				
280	200	150	50				
320	150	100	0				
360	100	50	0				

CRITERI DI SCELTA DELLO STATO LIMITE DI FESSURAZIONE

I criteri di scelta dello Stato Limite di fessurazione sono definiti secondo quanto riportato dal D.M. 14.01.2008, par. 4.1.2.2.4.5, tab. 4.1.IV.

Condizioni ambientali: Armatura: • • Aggressive Poco sensibile

COMBINAZIONE ALLO S.L.E. QUASI PERMANENTE Stato limite: apertura fessure Ampiezza massima delle fessure: $w_d \le$ w1 $[N/mm^2]$ Tensione massima nell'acciaio calcolata: $\sigma_{\text{s,max}}$ 16,41 Diametro massimo delle barre di armature poste in opera: 20 [mm] $Ø_{max}$ Spaziatura massima delle barre di armatura poste in opera: 20,00 [mm] s_{max} Diametro massimo delle barre di armatura consentito: 25,00 [mm] $Ø_{max}$

VERIFICA POSITIVA

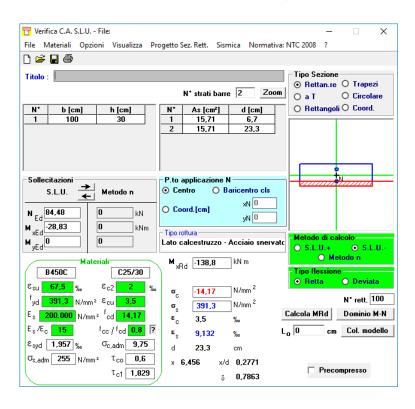
COMBINAZIONE ALLO S.L.E. FREQUENTE					
Stato limite: apertura fessure					
Ampiezza massima delle fessure:	mpiezza massima delle fessure: w _d ≤ w2				
Tensione massima nell'acciaio calcolata:	$\sigma_{\text{s,max}}$	38,20	[N/mm ²]		
Diametro massimo delle barre di armature poste i	\mathcal{O}_{max}	20	[mm]		
Spaziatura massima delle barre di armatura poste in opera:		s _{max}	20,00	[mm]	
Diametro massimo delle barre di armatura conser	\emptyset_{max}	32,00	[mm]		
Spaziatura massima delle barre di armatura consentita:		S _{max}	300,00	[mm]	
VERIFICA POSITIVA					

200,00

Smax

[mm]

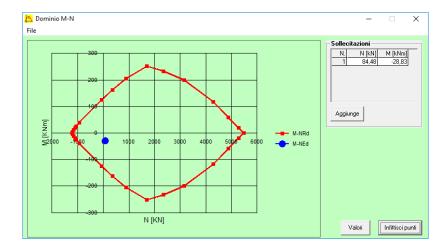
Spaziatura massima delle barre di armatura consentita:



12.4.7 VERIFICA ALLO STATO LIMITE ULTIMO PER PRESSOFLESSIONE – ARMATURA VERTICALE

La combinazione di carico maggiormente gravosa è risultata la combinazione STR.6.

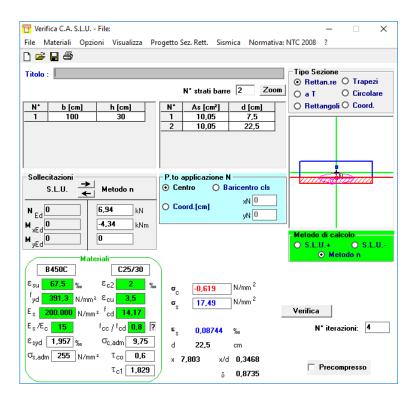
L'azione normale di calcolo è assunta pari a N_{Sd} = 84,48 kN.


Il momento flettente di calcolo è assunto pari a M_{Sd} = -28,83 kN/m.

Il momento resistente risulta pari a:

 $M_{Rd} = -138,80 \text{ kN/m} > M_{Sd} = -28,83 \text{ kN/m}.$

Nell'immagine successiva è riportato il dominio di resistenza della sezione:



VERIFICA ALLO STATO LIMITE DI LIMITAZIONE DELLE TENSIONI - COMBINAZIONE QUASI PERMANENTE - ARMATURA LONGITUDINALE

La combinazione di carico maggiormente gravosa è risultata la combinazione SLE-QP.4.

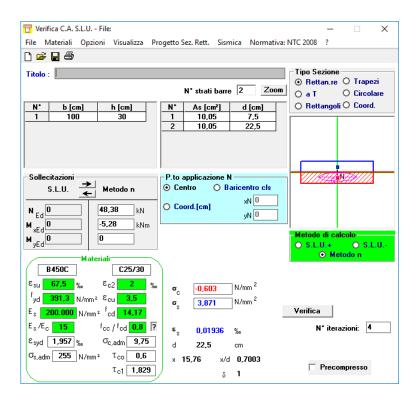
L'azione normale di calcolo è assunta pari a N_{Sd} = 6,94 kN.

Il momento flettente di calcolo è assunto pari a $M_{Sd} = -4,34 \text{ kN/m}$.

Le tensioni sui materiali risultano pari a:

 $\sigma_c = 0.62 \text{ N/mm}^2 < 0.45 \text{ f}_{ck} = 11.20 \text{ N/mm}^2$

 $\sigma_s = 17,49 \text{ N/mm}^2 < 0,80 \text{ f}_{yk} = 360,00 \text{ N/mm}^2$



12.4.9 VERIFICA ALLO STATO LIMITE DI LIMITAZIONE DELLE TENSIONI - COMBINAZIONE FREQUENTE ARMATURA LONGITUDINALE

La combinazione di carico maggiormente gravosa è risultata la combinazione SLE-FR.6.

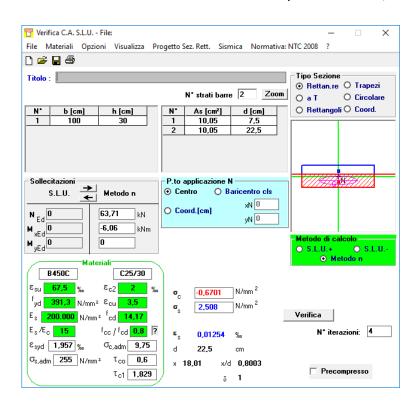
L'azione normale di calcolo è assunta pari a N_{Sd} = 48,38 kN.

Il momento flettente di calcolo è assunto pari a M_{Sd} = -5,28 kN/m.

Le tensioni sui materiali risultano pari a:

 $\sigma_c = 0.61 \text{ N/mm}^2 < 0.45 \text{ f}_{ck} = 11.20 \text{ N/mm}^2$

 $\sigma_s = 3.87 \text{ N/mm}^2 < 0.80 \text{ f}_{yk} = 360,00 \text{ N/mm}^2$



12.4.10 VERIFICA ALLO STATO LIMITE DI LIMITAZIONE DELLE TENSIONI - COMBINAZIONE **CARATTERISTICA – ARMATURA LONGITUDINALE**

La combinazione di carico maggiormente gravosa è risultata la combinazione SLE-CAR.6.

L'azione normale di calcolo è assunta pari a N_{Sd} = 63,71 kN.

Il momento flettente di calcolo è assunto pari a $M_{sd} = -6,06 \text{ kN/m}$.

Le tensioni sui materiali risultano pari a:

 $\sigma_c = 0.67 \text{ N/mm}^2 < 0.60 \text{ f}_{ck} = 14.94 \text{ N/mm}^2$

 σ_s = 2,51 N/mm² < 0,80 f_{yk} = 360,00 N/mm²

12.4.11 VERIFICA ALLO STATO LIMITE DI FESSURAZIONE – ARMATURA LONGITUDINALE

Per la verifica allo Stato Limite di fessurazione è stata utilizzata la procedura semplificata prevista dalla Circolare C.S.LL.PP. n.617 del 02.02.2009 – par. C4.1.2.2.4.6 – Tab. C4.1.II e C4.1.III. Le condizioni considerate sono riportate nella tabella seguente.

TABELLA C4.1.II - Diametri massimi delle barre per il controllo di fessurazione							
Tensione nell'acciaio	Diame	Diametro massimo Ø delle barre [mm] $w_3 = 0,40 \text{ mm} \qquad \qquad w_2 = 0,30 \text{ mm} \qquad \qquad w_1 = 0,20 \text{ mm}$					
$\sigma_{\rm s}$ [N/mm ²]	w ₃ = 0,40 mm						
160	40	32	25				
200	32	25	16				
240	20	16	12				
280	16	12	8				
320	12	10	6				
360	10	8	0				

TABELLA C4.1.III - Spaziatura massima delle barre per il controllo di fessurazione							
Tensione nell'acciaio	Spaziatura ı	Spaziatura massima s delle barre delle barre [mm] $w_3 = 0,40 \text{ mm}$ $w_2 = 0,30 \text{ mm}$ $w_1 = 0,20 \text{ mm}$					
$\sigma_{\rm s}$ [N/mm ²]	w ₃ = 0,40 mm						
160	300	300	200				
200	300	250	150				
240	250	200	100				
280	200	150	50				
320	150	100	0				
360	100	50	0				

CRITERI DI SCELTA DELLO STATO LIMITE DI FESSURAZIONE

I criteri di scelta dello Stato Limite di fessurazione sono definiti secondo quanto riportato dal D.M. 14.01.2008, par. 4.1.2.2.4.5, tab. 4.1.IV.

Condizioni ambientali:

Aggressive

Armatura:

Poco sensibile

COMBINAZIONE ALLO S.L.E. QUASI PERMANENTE					
Stato limite:		а	pertura fessu	ire	
Ampiezza massima delle fessure:	w _d ≤		w1		
Tensione massima nell'acciaio calcolata:		$\sigma_{s,\text{max}}$	17,49	[N/mm ²]	
Diametro massimo delle barre di armature poste in	\emptyset_{max}	16	[mm]		
Spaziatura massima delle barre di armatura poste in opera:		S _{max}	20,00	[mm]	
Diametro massimo delle barre di armatura consentito:		\emptyset_{max}	25,00	[mm]	

VERIFICA POSITIVA

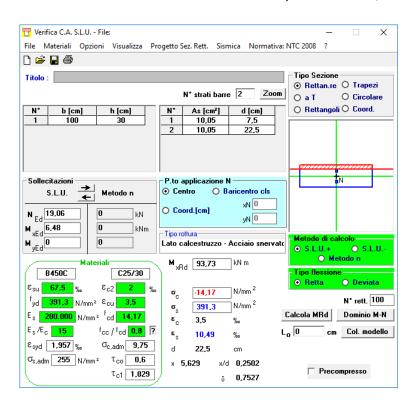
COMBINAZIONE ALLO S.L.E. FREQUENTE					
Stato limite:		а	pertura fessu	ıre	
Ampiezza massima delle fessure:	w _d ≤		w2		
Tensione massima nell'acciaio calcolata:	$\sigma_{s,\text{max}}$	3,87	[N/mm ²]		
Diametro massimo delle barre di armature poste in	\emptyset_{max}	16	[mm]		
Spaziatura massima delle barre di armatura poste in opera:		S _{max}	20,00	[mm]	
Diametro massimo delle barre di armatura consenti	\emptyset_{max}	32,00	[mm]		
Spaziatura massima delle barre di armatura consentita:		S _{max}	300,00	[mm]	
VERIFICA POSITIVA					

Spaziatura massima delle barre di armatura consentita:

200,00

 s_{max}

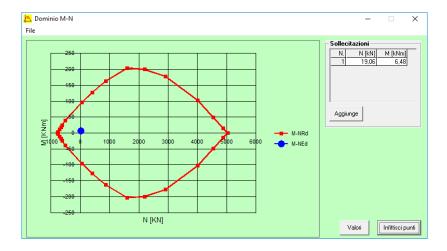
[mm]



12.4.12 VERIFICA ALLO STATO LIMITE ULTIMO PER PRESSOFLESSIONE – ARMATURA LONGITUDINALE

La combinazione di carico maggiormente gravosa è risultata la combinazione STR.6.

L'azione normale di calcolo è assunta pari a N_{Sd} = 19,06 kN.


Il momento flettente di calcolo è assunto pari a M_{Sd} = 6,48 kN/m.

Il momento resistente risulta pari a:

 $M_{Rd} = 93,73 \text{ kN/m} > M_{Sd} = 6,48 \text{ kN/m}.$

Nell'immagine successiva è riportato il dominio di resistenza della sezione:

12.4.13 VERIFICA ALLO STATO LIMITE ULTIMO PER TAGLIO

La combinazione di carico maggiormente gravosa è risultata la combinazione STR.2. L'azione tagliante di calcolo è assunta pari a V_{Sd} = 69,96 kN.

CARATTERISTICHE GEOMETRICHE DELLA SEZIONE				
Base della sezione trasversale:	b	100,00	[cm]	
Altezza della sezione trasversale:	h	30,00	[cm]	
Copriferro netto:	С	4,50	[cm]	
Altezza utile della sezione:	d	25,50	[cm]	

Altezza utile della sezione:		d	25,50	[cm]
CARATTER	ISTICHE DEI MATERIALI			
Classe di resistenza del calcestruzzo: C25/30	~			
Resistenza caratteristica cubica a compressione Resistenza caratteristica cilindrica a compressione Resistenza di calcolo a compressione: Tipologia dell'acciaio da armatura: B450C		R _{ck} f _{ck} f _{cd}	30,00 24,90 14,11	[N/mm²] [N/mm²] [N/mm²]
Tensione caratteristica di rottura: Tensione caratteristica di snervamento: Resistenza di calcolo:		f_{tk} f_{yk} f_{yd}	540,00 450,00 391,30	[N/mm²] [N/mm²] [N/mm²]

AZIONI SOLLECITANTI DI CALCOLO			
Azione tagliante di calcolo: V _{S,d}		69,96	[kN]
Azione normale di calcolo: N _{S,d}		0,00	[kN]

ARMATURA LONGITUDINALE

Primo strato di armatura tesa:

Infittimento primo strato di armatura tesa:

Secondo strato di armatura tesa:

Infittimento secondo strato di armatura tesa:

AREA TOTALE DELLE BARRE DI ARMATURA TESA

n _{barre}	Ø _{barre} [mm]	A _{barra} [cm²]	A _{s,tot} [cm ²]
5	20	3,14	15,70
		0,00	0,00
		0,00	0,00
		0,00	0,00
			15,70

VERIFICA ALLO S.L.U. PER TAGLIO

La verifica allo S.L.U. per taglio viene condotta secondo quanto previsto dal D.M. 14.01.2008, par.4.1.2.1.3.1

$$\boxed{V_{Rd} = \left\{\frac{0.18 \cdot k \cdot \left(100 \cdot \rho_1 \cdot f_{ck}\right)^{1/3}}{\gamma_c} + 0.15 \cdot \sigma_{cp}\right\} \cdot b_w \cdot d \geq \left(v_{\min} + 0.15 \cdot \sigma_{cp}\right) \cdot b_w \cdot d}$$

Coefficiente k:	k	1,89	
Coefficiente v _{min} :	V_{min}	0,452	
Rapporto geometrico di armatura longitudinale:	ρ_1	0,0062	
Tensione media di compressione nella sezione:	$\sigma_{\sf cp}$	0,000	[N/mm ²]
Larghezza minima della sezione:	b_w	100,00	[cm]

AZIONE TAGLIANTE RESISTENTE DELLA SEZIONE: [kN] $V_{R,d}$ 143,34 **COEFFICIENTE DI SICUREZZA:** $F_S=V_{R,d}/V_{S,d}$

LA VERIFICA RISULTA POSITIVA

RELAZIONE TECNICA E DI CALCOLO STRUTTURALE DELLE VASCHE DI PRIMA PIOGGIA TIPO B

12.5 VERIFICHE TRAVE A "T ROVESCIA"

Poiché i ritti sono armati in maniera costante, doppia e simmetrica lungo tutto il loro sviluppo, le verifiche verranno eseguite in corrispondenza delle sezioni maggiormente sollecitate.

12.5.1 DEFINIZIONE DELLE AZIONI SOLLECITANTI DI CALCOLO

Nella tabella successiva sono riportati i valori delle azioni sollecitanti maggiormente gravose per le differenti combinazioni di carico considerate.

Sono state prese in esame le seguenti combinazioni delle azioni sollecitanti:

- N_{max}
- N_{min}
- M_{max}
- M_{min}
- V_{max}
- \bullet V_{min}

SLE QUASI PERMANENTE	N _{max} N _{min} M _{max} M _{min}	3 3 64	QP.1 QP.4	[kN] -50,30	[kN] 5,41	[kNm] 2,52
SLE QUASI RMANENTE	N_{min} M_{max}	3			5,41	2.52
SLE QUASI RMANENT	M_{max}	_	QP.4			2,62
SLE QUA(64		14,99	11,78	2,26
		-	QP.4	-28,76	-20,94	10,68
и ш		62	QP.2	-26,91	10,30	-11,15
۵	V_{max}	64	QP.4	-28,76	-20,94	10,68
	N_{max}	3	FR.1	-91,05	12,34	0,06
	N_{min}	3	FR.8	16,50	11,03	1,64
SLE QUE	M_{max}	64	FR.6	-64,55	-71,28	37,60
SLE FREQUENTE	M_{min}	62	FR.2	-60,45	37,92	-42,46
	V_{max}	64	FR.6	-64,55	-71,28	37,60
)i	N_{max}	3	CAR.1	-104,63	14,65	-0,76
SLE CARATTERISTIC A	N_{min}	3	CAR.8	16,58	10,71	1,45
SLE TTEF	M_{max}	64	CAR.6	-76,19	-88,01	46,50
RA	M_{min}	62	CAR.2	-71,62	47,13	-52,89
ပ်	V_{max}	64	CAR.6	-76,19	-88,01	46,50
GRUPPO DI	MDIZIONE	ELEMENTO	COMBINAZIONE	N _{Sd}	V_{Sd}	M _{Sd}
COMBINAZIO	NDIZIONE	ELEMENIO	COMBINAZIONE	[kN]	[kN]	[kNm]
	N_{max}	3	STR.1	-145,98	19,87	-0,99
SLU - STR	N_{min}	3	STR.8	22,81	14,91	1,93
"	M_{max}	64	STR.6	-105,54	-119,99	63,37
SLI	M_{min}	62	STR.2	-98,98	64,27	-71,90
	V_{max}	64	STR.6	-105,54	-119,99	63,37
	N_{max}	19	SISMA-1	-61,47	8,75	5,27
SLU - SISMA	N_{min}	35	SISMA-3	-18,89	-3,71	-1,21
<u>s</u> .	M_{max}	37	SISMA-1	-43,28	17,33	13,80
	M_{min}	62	SISMA-5	-37,17	11,75	-12,59
	V_{max}	64	SISMA-11	-34,36	-24,56	12,35

Con:

- N_{max} sono indicate le azioni normali di compressione massime.
- N_{min} sono indicate le azioni normali di compressione minime o di trazione.

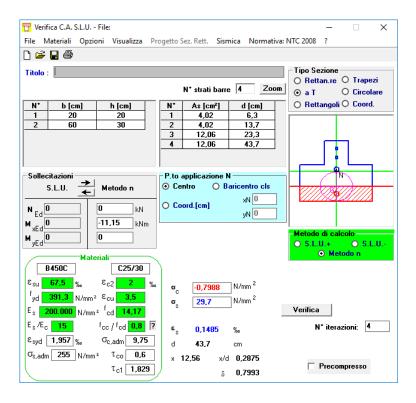
12.5.2 SEZIONE ED ARMATURA DI VERIFICA

La sezione di verifica è a "T rovescia" con base dell'ala pari a 60 cm, base dell'anima pari a 20 cm, altezza dell'ala pari a 30 e altezza dell'ala pari a 20.

L'armatura longitudinale dell'anima è prevista come segue:

- 2Ø16 superiori
- 2Ø16 inferiori

L'armatura longitudinale dell'ala è prevista come segue:


- 6Ø16 superiori
- 6Ø16 inferiori

Per l'armatura a tagli sono previste delle staffe a due bracci Ø10/20.

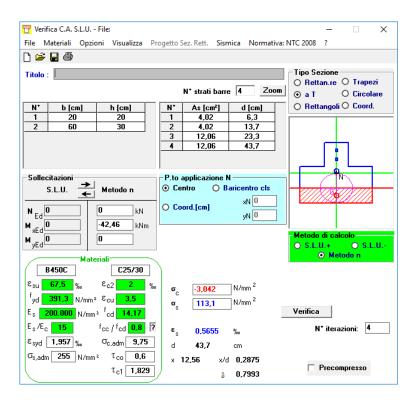
Il copriferro netto minimo è assunto pari a 45 mm.

12.5.3 VERIFICA ALLO STATO LIMITE DI LIMITAZIONE DELLE TENSIONI - COMBINAZIONE QUASI PERMANENTE

La combinazione di carico maggiormente gravosa è risultata la combinazione **SLE-QP.2**. Il momento flettente di calcolo è assunto pari a $M_{Sd} = -11,15$ kN/m.

Le tensioni sui materiali risultano pari a:

 σ_c = 0,80 N/mm² < 0,45 f_{ck} = 11,20 N/mm² σ_s = 29,70 N/mm² < 0,80 f_{yk} = 360,00 N/mm² La verifica risulta pertanto <u>soddisfatta</u>.

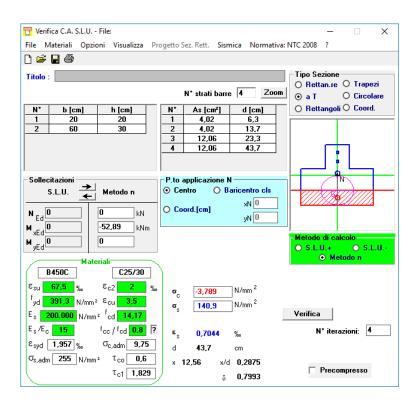


12.5.4 VERIFICA ALLO STATO LIMITE DI LIMITAZIONE DELLE TENSIONI - COMBINAZIONE FREQUENTE

La combinazione di carico maggiormente gravosa è risultata la combinazione **SLE-FR.2**. Il momento flettente di calcolo è assunto pari a $M_{Sd} = -42,46$ kN/m.

Le tensioni sui materiali risultano pari a:

 σ_c = 3,05 N/mm² < 0,45 f_{ck} = 11,20 N/mm² σ_s = 113,10 N/mm² < 0,80 f_{vk} = 360,00 N/mm²



12.5.5 VERIFICA ALLO STATO LIMITE DI LIMITAZIONE DELLE TENSIONI - COMBINAZIONE CARATTERISTICA

La combinazione di carico maggiormente gravosa è risultata la combinazione **SLE-CAR.2**. Il momento flettente di calcolo è assunto pari a M_{Sd} = -52,89 kN/m.

Le tensioni sui materiali risultano pari a:

$$\begin{split} &\sigma_c = 3,79 \text{ N/mm}^2 < 0,60 \text{ f}_{ck} = 14,94 \text{ N/mm}^2 \\ &\sigma_s = 140,90 \text{ N/mm}^2 < 0,80 \text{ f}_{yk} = 360,00 \text{ N/mm}^2 \end{split}$$

12.5.6 VERIFICA ALLO STATO LIMITE DI FESSURAZIONE

Le condizioni considerate sono riportate nella tabella seguente.

TABELLA C4.1.II - Diametri massimi delle barre per il controllo di fessurazione						
Tensione nell'acciaio	Diametro massimo Ø delle barre [mm]					
$\sigma_{\rm s}$ [N/mm ²]	w ₃ = 0,40 mm					
160	40	32	25			
200	32	25	16			
240	20	16	12			
280	16	12	8			
320	12	10	6			
360	10	8	0			

TABELLA C4.1.III - Spaziatura massima delle barre per il controllo di fessurazione						
Tensione nell'acciaio	Spaziatura	Spaziatura massima s delle barre delle barre [mm]				
$\sigma_{\rm s}$ [N/mm ²]	$w_3 = 0.40 \text{ mm}$ $w_2 = 0.30 \text{ mm}$ $w_1 = 0.20 \text{ mm}$					
160	300	300	200			
200	300	250	150			
240	250	200	100			
280	200	150	50			
320	150	100	0			
360	100	50	0			

CRITERI DI SCELTA DELLO STATO LIMITE DI FESSURAZIONE

I criteri di scelta dello Stato Limite di fessurazione sono definiti secondo quanto riportato dal D.M. 14.01.2008, par. 4.1.2.2.4.5, tab. 4.1.IV.

Condizioni ambientali: Aggressive

Armatura: Poco sensibile

COMBINAZIONE	ALLO S.L.E.	QUASI PE	ERMANENTE

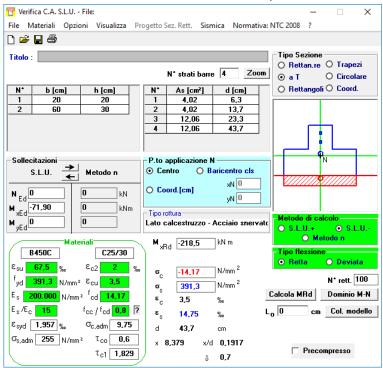
Stato limite: apertura fessure Ampiezza massima delle fessure: $W_d \le$ w1 $[N/mm^2]$ Tensione massima nell'acciaio calcolata: 29,70 $\sigma_{s,max}$ Diametro massimo delle barre di armature poste in opera: 16 [mm] $Ø_{max}$ Spaziatura massima delle barre di armatura poste in opera: 20,00 [mm] s_{max} 25,00 [mm] Diametro massimo delle barre di armatura consentito: $Ø_{max}$ Spaziatura massima delle barre di armatura consentita: 200,00 [mm] s_{max}

VERIFICA POSITIVA

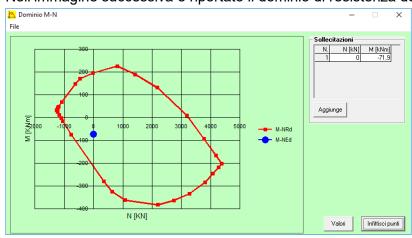
COMBINAZIONE ALLO S.L.E. FREQUENTE

Stato limite: apertura fessure Ampiezza massima delle fessure: $w_d \le$ w2 [N/mm²]Tensione massima nell'acciaio calcolata: 113,10 $\sigma_{\text{s,max}}$ 16 [mm] Diametro massimo delle barre di armature poste in opera: $Ø_{\text{max}}$ Spaziatura massima delle barre di armatura poste in opera: 20,00 [mm] s_{max} Diametro massimo delle barre di armatura consentito: 32,00 [mm] $Ø_{max}$ 300,00 Spaziatura massima delle barre di armatura consentita: [mm]

VERIFICA POSITIVA



12.5.7 VERIFICA ALLO STATO LIMITE ULTIMO PER FLESSIONE


La combinazione di carico maggiormente gravosa è risultata la combinazione STR.2. Il momento flettente di calcolo è assunto pari a M_{Sd} = -71,90 kN/m.

Il momento resistente risulta pari a:

 $M_{Rd} = -218,50 \text{ kN/m} > M_{Sd} = -71,90 \text{ kN/m}.$

Nell'immagine successiva è riportato il dominio di resistenza della sezione:

12.5.8 VERIFICA ALLO STATO LIMITE ULTIMO PER TAGLIO

La combinazione di carico maggiormente gravosa è risultata la combinazione STR.6. L'azione tagliante di calcolo è assunta pari a V_{Sd} = 63,37 kN.

A favore di sicurezza non viene considerato il contributo dell'azione normale.

CARATTERISTICHE GEOMETRICHE DELI	LA SEZIONE	
Base della zezione trasversale:	b	20,00 [cm]
Altezza della sezione trasversale:	h	50,00 [cm]
Copriferro netto:	С	4,50 [cm]
Altezza utile della sezione:	d	45,50 [cm]
CARATTERISTICHE DEI MATERI	ALI	
Classe di resistenza del calcestruzzo:		C25/30 🔻
Resistenza caratteristica cubica a compressione:	R_ck	30,00 [N/mm ²]
Resistenza caratteristica cilindrica a compressione:	f_{ck}	24,90 [N/mm²]
Resistenza di calcolo a compressione:	f_{cd}	14,11 [N/mm ²]
Tipologia dell'acciaio da armatura:		B450C ▼
Tensione caratteristica di rottura:	f _{tk}	540,00 [N/mm ²]
Tensione caratteristica di snervamento:	f _{vk}	450,00 [N/mm ²]
Resistenza di calcolo:	f _{yd}	391,30 [N/mm ²]
AZIONI SOLLECITANTI DI CALCO	DLO	
Azione tagliante di calcolo:	$V_{S,d}$	63,37 [kN]
Azione normale di calcolo:	$N_{\text{S,d}}$	0,00 [kN]
ARMATURA TRASVERSALE		
Inclinazione dei puntoni di calcestruzzo:	θ	45,00 [°]
Cotangente dell'angolo θ:	cot(θ)	1,00
Inclinazione dell'armatura trasversale rispetto all'asse della trave:	α	90,00 [°]
Numero di bracci dell'armatura trasversale:	n	4,00
Passo longitudinale delle armature trasversali:	S	20,00 [cm]
Diametro dell'armatura trasversale:	Ø _{trasv}	10,00 [mm]
Area della singola barra:	A _{barra}	0,79 [cm ²]
Area totale dell'armatura trasversale:	A _{tot}	15,80 [cm ² /m]
VERIFICA ALLO S.L.U. PER TAG	LIO	

La verifica allo S.L.U. per taglio viene condotta secondo quanto previsto dal D.M. 14.01.2008, par.4.1.2.1.3.2 La resistenza di calcolo a "taglio trazione" viene valutata mediante la seguente relazione:

$$V_{Rsd} = 0.9 \cdot d \cdot \frac{A_{sw}}{s} \cdot f_{yd} \cdot [\cot (\alpha) + \cot (\theta)] \cdot sen (\alpha)$$

La resistenza di calcolo a "taglio compressione" viene valutata mediante la seguente relazione:

$$V_{Rcd} = 0.9 \cdot d \cdot b_{w} \cdot \alpha_{c} \cdot f_{cd} \cdot \frac{\left[\cot \left(\alpha\right) + \cot \left(\theta\right)\right]}{\left[1 + \cot^{2}\left(\theta\right)\right]}$$

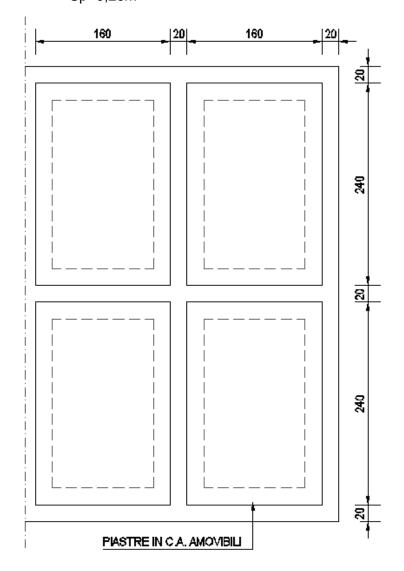
20,00 Larghezza minima della sezione: b_w [cm] [N/mm²]Resistenza a compressione ridotta del calcestruzzo: f'_{yd} 7,06 [N/mm²]Tensione media di compressione nella sezione: σ_{cp} 0,000 Coefficiente maggiorativo α_c : 1,0000 α_{c}

RESISTENZA DI CALCOLO A "TAGLIO TRAZIONE" 253,18 [kN] V_{Rsd} RESISTENZA DI CALCOLO A "TAGLIO COMPRESSIONE" 288,90 [kN] V_{Rcd}

AZIONE TAGLIANTE RESISTENTE DELLA SEZIONE: 253,18 [kN] $V_{R,d}$ **COEFFICIENTE DI SICUREZZA:** 4,00 $F_S=V_{R,d}/V_{S,d}$

LA VERIFICA RISULTA POSITIVA

STUDIO CORONA

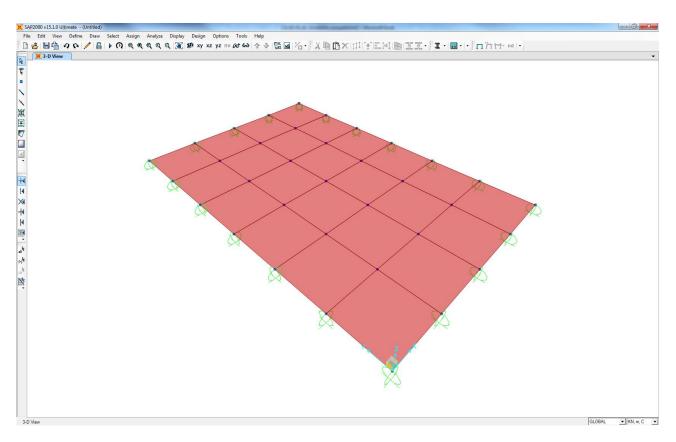


VERIFICHE STRUTTURALI PIASTRA AMOVIBILE IN C.A. 13

13.1 DESCRIZIONE

Le piastre amovibili in c.a. sono appoggiate sulle travi presenti a quota copertura della vasca di prima pioggia. Le stesse presentano le seguenti caratteristiche geometriche:

B=1,60larghezza lunghezza L=2,40m spessore Sp=0,20m



13.2 DESCRIZIONE DEL MODELLO DI CALCOLO

Per la determinazione delle azioni sollecitanti sulla piastra è stato pertanto realizzato un apposito modello di calcolo tridimensionale agli elementi finiti mediante il software SAP2000 v.15.1 (Computers & Structures, Inc).

La piastra è stata modellata mediante elementi bidimensionali tipo "shell".

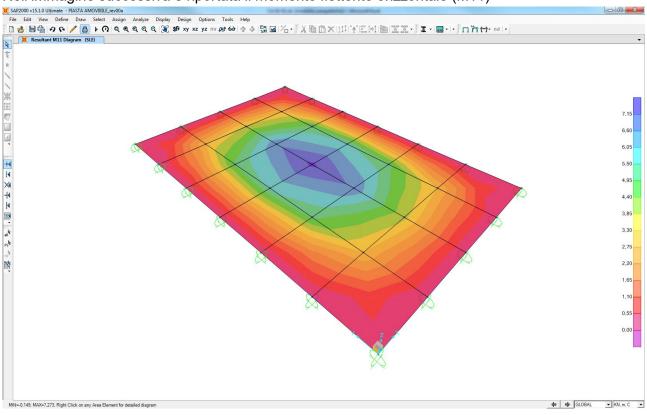
13.3 ANALISI DEI CARICHI

13.3.1 PESO PROPRIO DELLE PIASTRA IN CEMENTO ARMATO

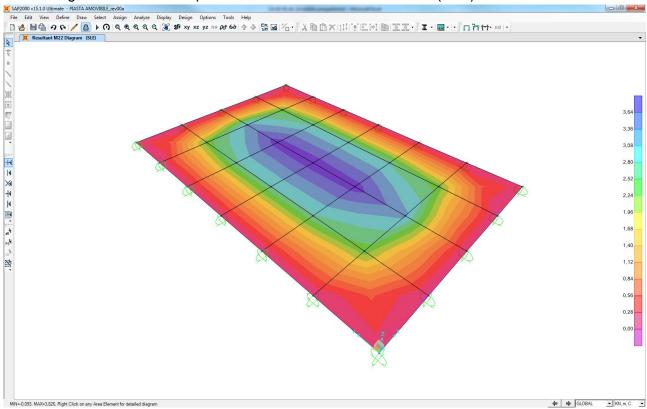
Il peso per unità di volume della piastra in cemento armato è assunto pari a γ_{ca} = 25,00 kN/m³. Il peso proprio è assegnato automaticamente dal software di calcolo agli elementi finiti sulla base delle caratteristiche geometriche e delle caratteristiche dei materiali assegnate ai singoli elementi (shell).

13.3.2 CARICHI ACCIDENTALI AGENTI SULLA PIASTRA IN C.A.

E' stato assunto un carico accidentale agente sulla piastra pari a 30,00 kN/m² (piastra carrabile).



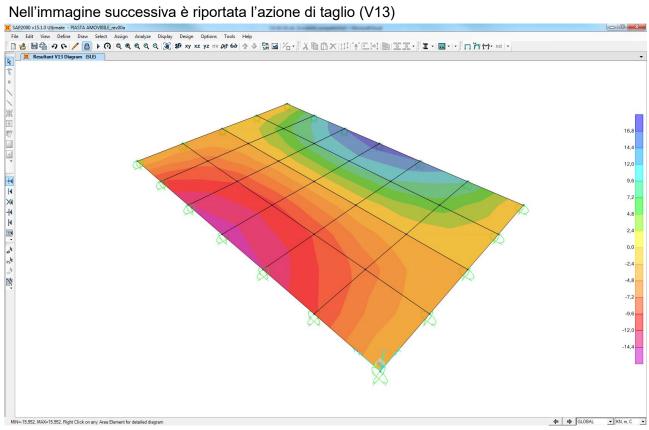
13.4 VALUTAZIONE DELLE AZIONI SOLLECITANTI

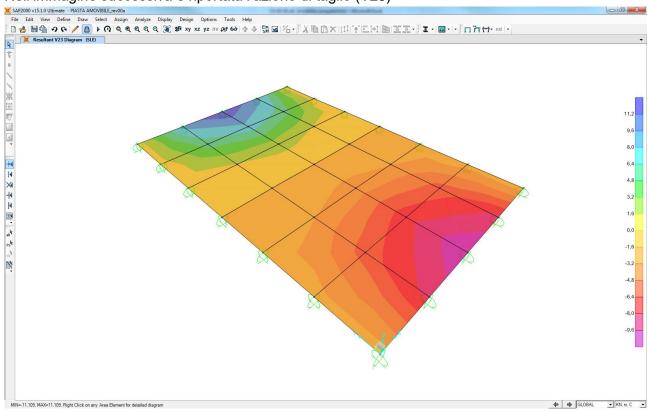

Nei paragrafi successivi sono riportati le azioni sollecitanti agenti sugli elementi strutturali per le diverse combinazioni di carico considerate.

COMBINAZIONI DI CARICO ALLO STATO LIMITE DI ESERCIZIO

Nell'immagine successiva è riportata il momento flettente orizzontale (M11)

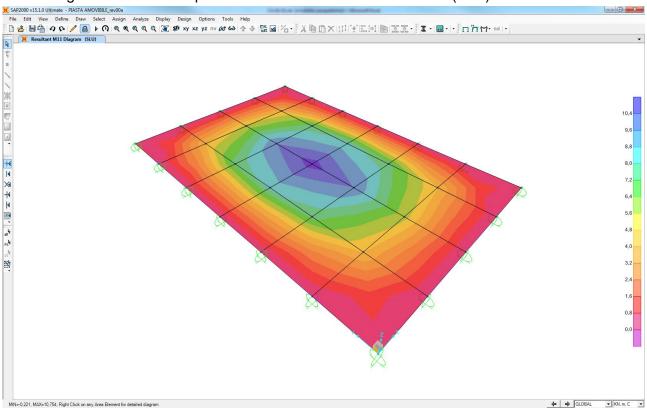
Nell'immagine successiva è riportata il momento flettente verticale (M22)

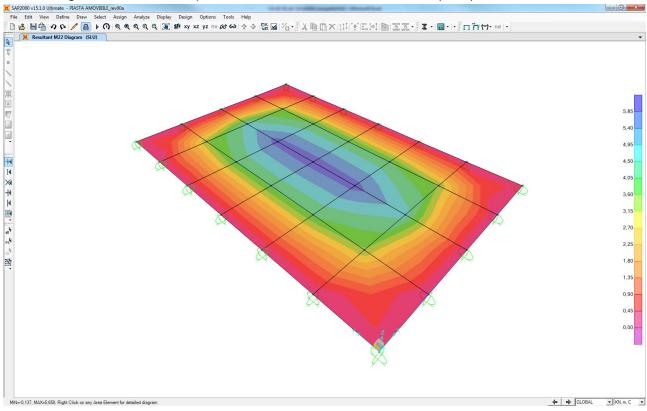




RELAZIONE TECNICA E DI CALCOLO STRUTTURALE DELLE VASCHE DI PRIMA PIOGGIA TIPO B

Nell'immagine successiva è riportata l'azione di taglio (V23)

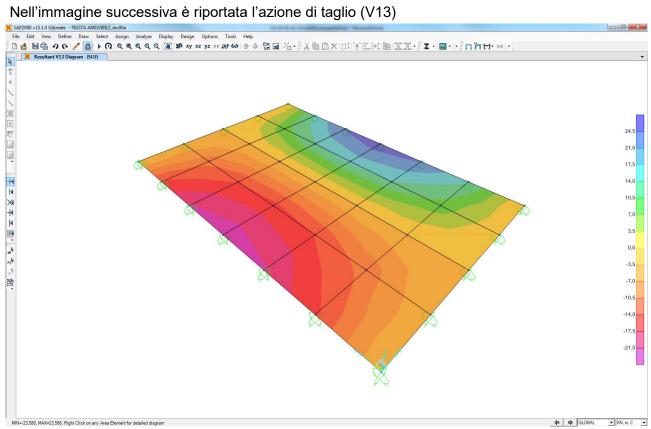


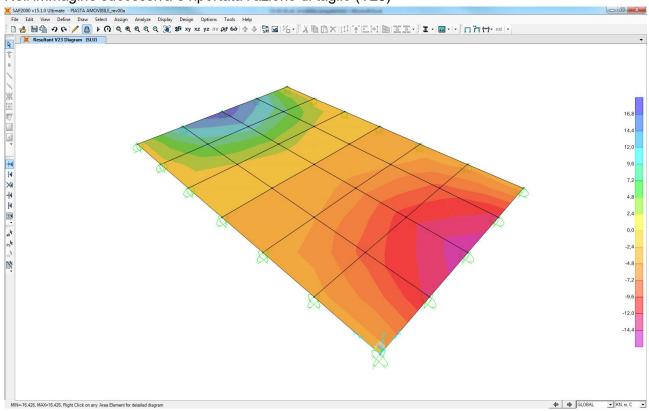


13.4.2 COMBINAZIONI DI CARICO ALLO STATO LIMITE ULTIMO

Nell'immagine successiva è riportata il momento flettente orizzontale (M11)

Nell'immagine successiva è riportata il momento flettente verticale (M22)





Nell'immagine successiva è riportata l'azione di taglio (V23)

RELAZIONE TECNICA E DI CALCOLO STRUTTURALE DELLE VASCHE DI PRIMA PIOGGIA TIPO B

13.5 VERIFICHE DELLA PIASTRA

Poiché i ritti sono armati in maniera costante, doppia e simmetrica lungo tutto il loro sviluppo, le verifiche verranno eseguite in corrispondenza delle sezioni maggiormente sollecitate.

DEFINIZIONE DELLE AZIONI SOLLECITANTI DI CALCOLO

Nella tabella successiva sono riportati i valori delle azioni sollecitanti maggiormente gravose per le differenti combinazioni di carico considerate.

Sono state prese in esame le seguenti combinazioni delle azioni sollecitanti:

- N_{max}
- N_{min}
- M_{max}
- M_{min}
- V_{max}

GRUPPO DI COMBINAZIO	CONDIZIONE	AREA	M _{11Sd} [kNm]	M _{22,Sd} [kNm]	V _{13,Sd} [kN]	V _{23,Sd} [kN]
	$M_{11,max}$	10	7,27	3,83	-4,91	-0,80
SLE	$M_{22,max}$	10	7,27	3,83	-4,91	-0,80
	V_{max}	22	-0,02	0,00	15,95	-0,32
GRUPPO DI COMBINAZIO	CONDIZIONE	AREA	M _{11Sd} [kNm]	M _{22,Sd} [kNm]	V _{13,Sd} [kN]	V _{23,Sd} [kN]
COMBINAZIO	CONDIZIONE M _{11,max}	AREA 10				
			[kNm]	[kNm]	[kN]	[kN]

Con segno negativo sono indicate le azioni normali di compressione.

13.5.2 SEZIONE ED ARMATURA DI VERIFICA

La sezione di verifica è rettangolare con base pari a 100 cm e altezza pari a 40.

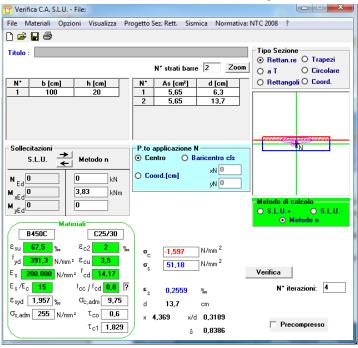
L'armatura trasversale è prevista come segue:

- Ø12/20 esterni
- Ø12/20 interni

L'armatura longitudinale è prevista come segue:

- Ø12/20 esterni
- Ø12/20 interni

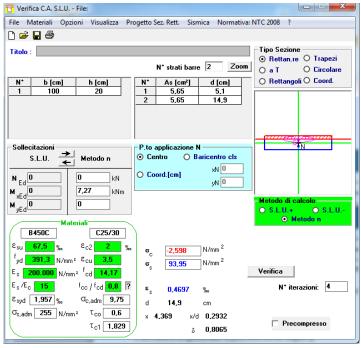
Il copriferro netto minimo è assunto pari a 45 mm.



13.5.3 VERIFICA ALLO STATO LIMITE DI LIMITAZIONE DELLE TENSIONI -- ARMATURA TRASVERSALE

Il momento flettente di calcolo è assunto pari a M_{Sd} = 3,83 kN/m.

Le tensioni sui materiali risultano pari a:


 $\sigma_c = 1,60 \text{ N/mm}^2 < 0,60 \text{ f}_{ck} = 14,94 \text{ N/mm}^2$

 $\sigma_s = 51,18 \text{ N/mm}^2 < 0,80 \text{ f}_{yk} = 360,00 \text{ N/mm}^2$

La verifica risulta pertanto soddisfatta.

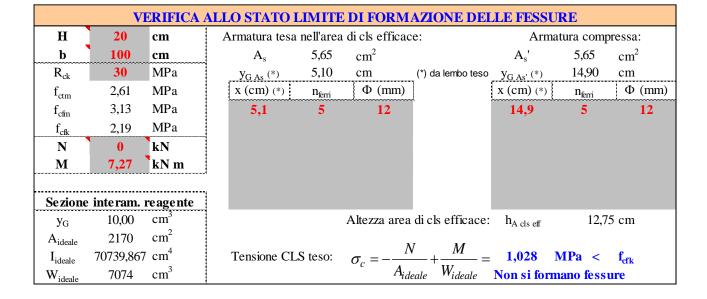
13.5.4 VERIFICA ALLO STATO LIMITE DI LIMITAZIONE DELLE TENSIONI -- ARMATURA ONGITUDINALE

Il momento flettente di calcolo è assunto pari a $M_{Sd} = 7,27 \text{ kN/m}$.

Le tensioni sui materiali risultano pari a:

 $\sigma_c = 2,60 \text{ N/mm}^2 < 0,60 \text{ f}_{ck} = 14,94 \text{ N/mm}^2$

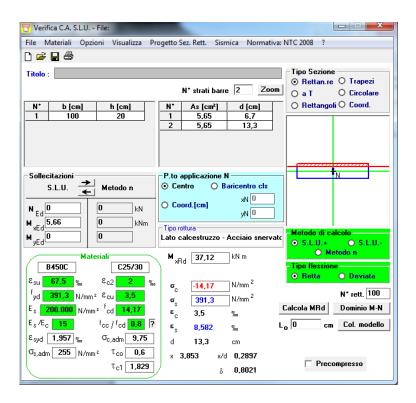
 $\sigma_s = 93,95 \text{ N/mm}^2 < 0,80 \text{ f}_{yk} = 360,00 \text{ N/mm}^2$



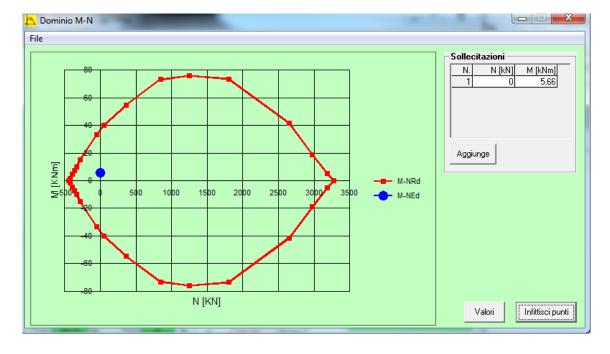
13.5.5 VERIFICA ALLO STATO LIMITE DI FESSURAZIONE - ARMATURA LONGITUDINALE

VERIFICA ALLO STATO LIMITE DI FORMAZIONE DELLE FESSURE									
H	20	cm	Armatura tesa nell'area di cls efficace:			Armat	ura comp	oressa:	
b	100	cm	$A_{\rm s}$	5,65	cm^2		A_s'	5,65	cm ²
R_{ck}	30	MPa	У _{G As} (*)	6,70	cm	(*) da lembo teso	y _{G As'} (*)	13,30	cm
f_{ctm}	2,61	MPa	x (cm) (*)	n _{ferri}	Φ (mm)]	x (cm) (*)	n _{ferri}	Φ (mm)
f_{cfin}	3,13	MPa	6,7	5	12		13,3	5	12
f_{cfk}	2,19	MPa							
N	0	kN							
M	3,83	kN m							
Sezione	inte ram.	reagente							
y_G	10,00	cm ³			Altezza area	di cls efficace:	h _{A cls eff}	16,7	5 cm
A_{ideale}	2170	cm^2			λ	7 14			
I_{ideale}	68514,112	2 cm ⁴	Tensione CL	S teso:	$\sigma_c = -\frac{\Lambda}{\Lambda}$	—+ =	0,559 N	IPa <	$\mathbf{f}_{\mathrm{cfk}}$
W_{ideale}	6851	cm ³			A_{ide}	_{eale} W _{ideale}	Non si form	ano fess	ure

13.5.6 VERIFICA ALLO STATO LIMITE DI FESSURAZIONE - ARMATURA LONGITUDINALE



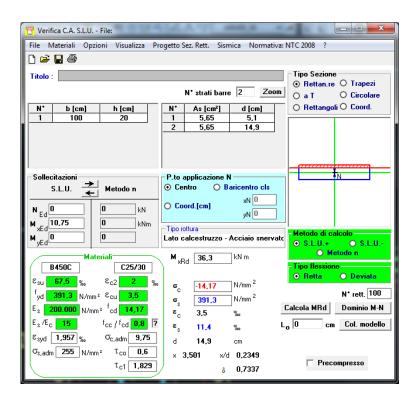
13.5.7 VERIFICA ALLO STATO LIMITE ULTIMO PER FLESSIONE – ARMATURA TRASVERSALE


Il momento flettente di calcolo è assunto pari a M_{Sd} = 5,66 kN/m.

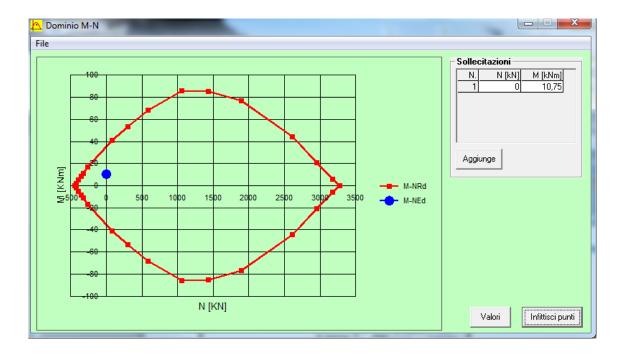
Il momento resistente risulta pari a:

 $M_{Rd} = 37,12 \text{ kN/m} > M_{Sd} = 5,66 \text{ kN/m}.$

Nell'immagine successiva è riportato il dominio di resistenza della sezione:



13.5.8 VERIFICA ALLO STATO LIMITE ULTIMO PER FLESSIONE – ARMATURA LONGITUDINALE


Il momento flettente di calcolo è assunto pari a M_{Sd} = 10,75 kN/m.

Il momento resistente risulta pari a:

 $M_{Rd} = 36,3 \text{ kN/m} > M_{Sd} = 10,75 \text{ kN/m}.$

Nell'immagine successiva è riportato il dominio di resistenza della sezione:

13.5.9 VERIFICA ALLO STATO LIMITE ULTIMO PER TAGLIO

L'azione tagliante di calcolo è assunta pari a V_{Sd} = 23,59 kN.

CARATTERISTICHE GEOMETRICHE DELLA SEZIONE

Base della sezione trasversale: 100,00 Altezza della sezione trasversale: h 20,00 Copriferro netto: С 4,50 Altezza utile della sezione: d 15,50

CARATTERISTICHE DEI MATERIALI

Classe di resistenza del calcestruzzo:

C28/35 ▼

[N/mm²]Resistenza caratteristica cubica a compressione: 35,00 R_{ck} $[N/mm^2]$ Resistenza caratteristica cilindrica a compressione: 29,05 f_{ck} [N/mm²]Resistenza di calcolo a compressione: 16,46 f_{cd}

Tipologia dell'acciaio da armatura: B450C ▼

[N/mm²]Tensione caratteristica di rottura: 540,00 f_{tk} [N/mm²]Tensione caratteristica di snervamento: 450,00 f_{vk} [N/mm²]Resistenza di calcolo: 391,30 f_{yd}

AZIONI SOLLECITANTI DI CALCOLO

Azione tagliante di calcolo: 23,59 [kN] $V_{S,d}$ $N_{\text{S},\text{d}}$ Azione normale di calcolo: 0,00 [kN]

ARMATURA LONGITUDINALE

Primo strato di armatura tesa:

Infittimento primo strato di armatura tesa:

Secondo strato di armatura tesa:

Infittimento secondo strato di armatura tesa:

AREA TOTALE DELLE BARRE DI ARMATURA TESA

n _{barre}	$Ø_{barre}$ [mm]	A _{barra} [cm ²]	$A_{s,tot}$ [cm ²]
5	12	1,13	5,65
		0,00	0,00
		0,00	0,00
		0,00	0,00
•		•	5,65

[cm]

[cm]

[cm]

[cm]

VERIFICA ALLO S.L.U. PER TAGLIO

La verifica allo S.L.U. per taglio viene condotta secondo quanto previsto dal D.M. 14.01.2008, par.4.1.2.1.3.1

$$V_{Rd} = \left\{ \frac{0.18 \cdot k \cdot \left(100 \cdot \rho_1 \cdot f_{ck}\right)^{1/3}}{\gamma_c} + 0.15 \cdot \sigma_{cp} \right\} \cdot b_w \cdot d \ge \left(v_{\min} + 0.15 \cdot \sigma_{cp}\right) \cdot b_w \cdot d$$

Coefficiente k: 2,00 k Coefficiente v_{min}: 0,534 V_{min} Rapporto geometrico di armatura longitudinale: 0,0036 ρ_1 [N/mm²]Tensione media di compressione nella sezione: 0,000 σ_{cp} Larghezza minima della sezione: b_{w} 100,00 [cm]

AZIONE TAGLIANTE RESISTENTE DELLA SEZIONE: 82,70 [kN] $V_{R,d}$ **COEFFICIENTE DI SICUREZZA:** 3,51 $F_S=V_{R,d}/V_{S,d}$

LA VERIFICA RISULTA POSITIVA

