

GN01- CARATTERIZZAZIONE GEOTECNICA RELAZIONE TECNICA

SOMMARIO

1	PRE	MESSA E QUADRO GEOLOGICO	2
	1.1 lr	nquadramento geografico	2
	1.2 L	itologia e assetto tettonico	. 2
	1.2.1	Caratteri litologici delle formazioni rocciose del Sistema Grosina Tonale (Australpi	ino
	Supe	eriore)	. 2
	1.3 G	eomorfologia e depositi quaternari	3
	1.3.1	Caratteri litologici delle coltri di copertura	. 3
	1.4 G	eologia di previsione	. 4
	1.4.1	Imbocco lato Sondrio (imbocco W) tra le pk 5+140 e 5+270	. 4
	1.4.2	Tratto della pk 5+270 alla pk 6+048.26	. 4
	1.4.3	Imbocco lato Bormio (imbocco E) tra le pk 6+048.26 e pk 6+118.26	. 4
	1.5 lo	Irogeologia	. 4
	1.5.1	Complessi idrogeologici	. 5
	1.5.2	Prove di permeabilità	. 5
	1.5.3	Rilievi piezometrici	. 5
	1.5.4	Censimento dei punti d'acqua	6
	1.5.5	Modello idrogeologico di riferimento	6
2	INDA	AGINI GEOGNOSTICHE E RISULTATI OTTENUTI	. 7
	2.1 Ir	ndagini in sito	. 8
	2.1.1	Sondaggi geognostici	8
	2.1.2	Prospezioni geofisiche	14
	2.2 P	rove in sito	14
	2.2.1	Prove penetrometriche SPT	14
	2.2.2	Prove di permeabilità	15
	2.2.3	Prove dilatometriche	16
	2.3 P	rove di laboratorio	17
	2.3.1	Prove di laboratorio su terreni	17
	2.3.2	Prove di laboratorio su rocce	19
3	QUA	DRO GEOTECNICO E GEOMECCANICO	31
	3.1 C	riteri di classificazione tecnica degli ammassi rocciosi	31
	3.2 C	riteri di caratterizzazione geomeccanica	31
	3.3 C	aratterizzazione dei terreni e degli ammassi rocciosi	33
	3.3.1	Galleria naturale: classificazione geomeccanica, parametri fisici, di resistenza	е
	defo	rmazione	33
	3.3.2	Imbocchi e tratto in materiale sciolto della galleria naturale	38
4	PAR	AMETRI DI PROGETTO	50
	4.1 Ir	nbocchi e tratto in materiale sciolto della galleria naturale	50
	4.2 A	mmasso roccioso	51
5	DOC	UMENTI DI RIFERIMENTO	53
	5.1 N	ormative, raccomandazioni, linee guida	53
	5.2 B	ibliografia	53

1 PREMESSA E QUADRO GEOLOGICO

La presente relazione è parte integrante del Progetto esecutivo della S.S. 38 Lotto 4 Nodo di Tirano Tratta A (Svincolo di Bianzone-Svincolo La Ganda) e Tratta B (Svincolo La Ganda-Campone in Tirano).

Nel presente documento vengono analizzate le caratteristiche geotecnico-geomeccanico dei terreni e degli ammassi rocciosi interessati dal tracciato lungo la tratta dove è prevista la realizzazione della galleria naturale "Il Dosso".

1.1 INQUADRAMENTO GEOGRAFICO

La Galleria naturale "Il Dosso" è ubicata a SE del Comune di Tirano al piede del versante orografico sinistro del Fiume Adda.

In corrispondenza degli imbocchi verranno realizzate due brevi tratte in artificiale. Lo scavo della galleria naturale interesserà dapprima i depositi morenici, nelle due tratte in corrispondenza degli imbocchi e quindi avverrà all'interno del substrato roccioso di natura metamorfica a tetto del quale si trova un esteso terrazzo morfologico ricoperto da depositi morenici. La copertura massima riferita in chiave di calotta è di 90.0 m circa.

1.2 LITOLOGIA E ASSETTO TETTONICO

La Galleria naturale "Il Dosso" è ubicata a nord della Linea del Tonale, di età ercinica e ripresa durante la strutturazione della catena alpina; pertanto lungo il suo sviluppo interesserà le formazioni rocciose del Sistema Grosina-Tonale, appartenente alle unità Austroalpine superiori.

Tale sistema è costituito da gneiss e micascisti, a grana media, a due miche con prevalenza della biotite (**Gneiss del Monte Tonale**) e da micascisti e filladi muscovitici (**Micascisti della Cima Rovaia**). Frequenti sono inoltre le intercalazioni di pegmatiti, apliti ed anfiboliti (**Anfiboliti gabbriche del Motto della Scala e Pegmatiti**) talora associate a calcari cristallini e calciferi.

Riconducibili al sistema del Tonale sono le due faglie ritenute presunte ed evidenziate nel profilo geomeccanico della galleria, la cui direzione è subortogonale all'opera.

1.2.1 CARATTERI LITOLOGICI DELLE FORMAZIONI ROCCIOSE DEL SISTEMA GROSINA TONALE (AUSTRALPINO SUPERIORE)

Gneiss del Monte Tonale

La formazione degli Gneiss del Monte Tonale presenta una scistosità ben riconoscibile e immerge, in maniera pressochè continua, verso SW ed è costituita da micascisti e gneiss, a grana media, a due miche con prevalenza della biotite.

In genere la formazione presenta un basso grado di alterazione e fratturazione, mentre se interessata da motivi tettonici è intensamente fratturata ed alterata.

Micascisti della Cima Rovaia

La formazione dei Micascisti è costituita da filladi e micascisti a due miche a grana medio fine con prevalenza della muscovite. La roccia è da mediamente a intensamente scistosa e in genere è moderatamente fratturata mentre in zona di faglia è fortemente fratturata e alterata.

Anfiboliti gabbriche del Motto della Scala

DANTI

ď

Questi termini sono intrusi e incassati all'interno degli Gneiss del Monte Tonale e sono caratterizzati da una grana minuta e presentano una colorazione grigio-verdastra. Il contatto con la roccia

incassante non è ben visibile a causa dell'intensa copertura vegetale presente in zona ma sembra essere marcato da un cambio giaciturale.

Pegmatiti

Questi termini intrusi nella formazione degli Gneiss del Monte Tonale. Sono costituiti da quarziti di colore biancastro ed in genere presentano un grado di fratturazione maggiore dei termini incassanti denotando, quindi, un comportamento mediamente più fragile.

1.3 GEOMORFOLOGIA E DEPOSITI QUATERNARI

La porzione di versante all'interno del quale si sviluppa l'opera sotterranea non è soggetta a dissesto idrogeologico e non presenta situazioni particolari di pericolosità in atto o potenzialmente attivabili nel corso degli scavi.

La dinamica morfologica è limitata a tre impluvi sede di corsi d'acqua instabili, in erosione laterale attiva e caratterizzati da intensi fenomeni erosivi di fondo, tuttavia tali corsi d'acqua, trovandosi a quote notevolmente superiori a quelle dell'opera, ossia non in corrispondenza delle tratte d'imbocco, non verranno interessati dalle lavorazioni.

Per quanto concerne la geomorfologia dell'area in studio si evidenzia che il terrazzo morfologico localizzato al piede del versante sul quale sorge il nucleo abitato denominato Dosso è di origine glaciale ed è coperto da depositi morenici che hanno inclinazioni $(20^\circ \div 30^\circ)$ inferiori a quelle medie del versante $(45^\circ \div 70^\circ)$.

Il loro spessore (lungo il tracciato della galleria) raggiunge il valore massimo in prossimità dei due imbocci, attestandosi sui 30-35 m, e va riducendosi man mano che le coperture sulla galleria aumentano, mentre nella parte centrale della galleria il contatto tra coltre morenica di copertura e substrato roccioso si trova sempre a quote superiori rispetto alla calotta della galleria stessa.

Nell'area prossima all'imbocco artificale lato Bormio il tracciato interesserà anche i depositi di conoide, che si sono originati dalla confluenza del torrente della Valchiosa con la valle principale.

1.3.1 CARATTERI LITOLOGICI DELLE COLTRI DI COPERTURA

l depositi quaternari di copertura affiorano diffusamente nell'area e sono costituiti da materiali clastici a granulometria prevalentemente grossolana; tali depositi si differenziano in base alla loro origine: glaciale (**Depositi morenici**) e gravitativa (**Depositi di conoide**).

Morene

I depositi morenici sono costituiti da depositi caotici e costituiscono i resti di antichi ghiacciai non più attivi nell'area. Da un punto di vista granulometrico sono caratterizzati da una forte eterometria e in prevalenza si rinvengono ghiaie sabbiose con ciottoli a spigoli vivi con livelli e lenti più limoso-sabbiose e trovanti litici di dimensioni variabili fino a metriche.

La potenza di questi depositi è variabile ed in genere compresa fra pochi metri fino ad un massimo di circa 30-35 m.

Il tracciato della galleria intercetterà i depositi morenici per un tratto di circa 130-170 m a partire dalla sezione di imbocco in naturale lato Sondrio (la galleria risulta completamente scavata in depositi morenici per circa 50 m e interseca per i restanti 80-120 m gli gneiss che lentamente dal piano di fondazione dell'arco rovescio si intestano sino in calotta) e per un tratto pari a circa 70 m a partire dalla sezione di imbocco in naturale lato Bormio.

Depositi di conoide

I depositi di conoide si formano in generale allo sbocco dei corsi d'acqua secondari nella valle principale quando il rio perde la sua energia e deposita il trasporto torbido. I depositi di conoide in

DANTI

questione rappresentano gli accumuli depositatisi alla confluenza del torrente della Valchiosa con la valle principale.

Questi depositi sono costituiti da materiali eterometrici prevalentemente ghiaie sabbiose in scarsa matrice fine con ciottoli da sub-spigolosi a sub-arrotondati, localmente si possono incontrare trovanti litici di dimensioni metriche.

La potenza di questi depositi è variabile e compresa fra pochi metri fino ad un massimo di circa 10-15 m.

I depositi di conoide verranno incontrati dal tracciato della galleria per un tratto di circa 30 m in corrispondenza della parte terminale dell'imbocco artificiale lato Bormio e non interesseranno gli scavi della galleria naturale.

1.4 GEOLOGIA DI PREVISIONE

In base alle risultanze delle varie campagne d'indagine geognostiche condotte si ritiene che l'opera sarà scavata in naturale all'interno dei depositi morenici appartenenti alla formazione delle Morene nei tratti a partire dai due imbocchi verso l'interno e delle litologie gneissiche appartenenti alla formazione degli Gneiss del Monte Tonale nel tratto centrale della galleria.

Lungo le due tratte di imbocco realizzate in artificiale verranno coinvolti i terreni di copertura appartenenti alla formazione delle Morene, con riferimento all'imbocco lato Sondrio, ed i depositi di copertura appartenenti alla formazione delle Morene e dei Depositi di conoide nella zona in corrispondenza dell'imbocco lato Bormio.

Nel seguito si descrive con maggiore dettaglio la geologia di previsione che verrà intercettata dal tracciato della galleria in oggetto.

1.4.1 IMBOCCO LATO SONDRIO (IMBOCCO W) TRA LE PK 5+140 E 5+270

La realizzazione delle opere di imbocco lato Sondrio e lo scavo della galleria naturale interesseranno i depositi morenici per un tratto di circa 130 m (pk 5+270) a partire della sezione di attacco in naturale. A partire dalla pk 5+270 circa si prevede che gli gneiss lentamente dal piano di fondazione dell'arco rovescio si intestano sino in calotta fino a considerare che lo scavo possa interessare interamente i termini del basamento cristallino appartenenti agli Gneiss del Monte Tonale.

1.4.2 TRATTO DELLA PK 5+270 ALLA PK 6+048.26

In questa tratta lo scavo interesserà i litotipi del basamento cristallino appartenenti agli Gneiss del Monte Tonale. Per un breve tratto compreso tra le pk 5+490 e 5+510 è previsto il superamento di una zona di faglia caratterizzata da un'intensa fratturazione ed alterazione della litologia gneissica.

1.4.3 IMBOCCO LATO BORMIO (IMBOCCO E) TRA LE PK 6+048.26 E PK 6+118.26

Dalla pk 6+048.26 si prevede che lo scavo possa interessare almeno per una parte della sezione i depositi morenici fino alla sezione di attacco in naturale lato Bormio, per un totale di circa 70 m di galleria in morena.

Le opere di imbocco lato Bormio interesseranno prevalentemente i depositi morenici e per un breve tratto finale anche i depositi di conoide.

1.5 IDROGEOLOGIA

Da un punto di vista idrogeologico la zona di interesse è caratterizzata dalla presenza di terreni abbastanza eterogenei per caratteristiche granulometriche e di permeabilità.

DANTI

പ്

1.5.1 COMPLESSI IDROGEOLOGICI

Sulla base dei valori di permeabilità ottenuti dalle prove eseguite in sito nelle campagne geognostiche del 2002 e del 2009, del carattere granulometrico e sedimentologico delle singole litofacies, dello stato di fratturazione dei termini del basamento cristallino e sulla base di dati disponibili nella letteratura scientifica con riferimento alla zona di interesse, sono stati distinti due complessi idrogeologici:

II. Depositi quaternari (morene – conoidi – frane);

IV. Rocce di basamento cristallino.

Complesso idrogeologico II - Depositi quaternari (morene – conoidi – frane)

Questo complesso idrogeologico affiora diffusamente sui versanti della galleria ed è costituito in prevalenza da depositi ghiaioso-sabbiosi grossolani e sabbie limose. Tali depositi sono caotici e la loro messa in posto è legata a diversi agenti quali ghiacciai, movimenti in massa e depositi tipo debris flow.

La permeabilità del complesso è di tipo primario per porosità e varia da media ad alta in funzione della granulometria prevalente e del grado di addensamento.

Complesso idrogeologico IV – Rocce di basamento cristallino

Questo complesso è costituito da tutti i termini di basamento cristallino ascrivibili al sistema Grosina Tonale (gneiss, micascisti, filladi). Tali litotipi sono caratterizzati da una scistosità abbastanza pervasiva e da un grado di fratturazione variabile; tali caratteristiche influiscono sul grado di permeabilità di questo complesso che varia da basso a medio, in condizioni di fratturazione standard, ad alto nelle zone intensamente fratturate.

La permeabilità del complesso è di tipo secondario per fratturazione.

1.5.2 PROVE DI PERMEABILITÀ

Nella campagna di indagine del 2002, con riferimento alla zona interessata dalla galleria, è stata eseguita n. 1 prova di permeabilità. Nella Tabella che segue si riporta il sondaggio in cui è stata eseguita la prova unitamente al valore di pemeabilità misurata ed alla litologia di riferimento.

Anno	Piezometro	Profondità	Prova	K	Formazione	Litologia		
		[m]		[m/s]				
2002	SP12	10	Lefranc (CV)	1.32E-06	Morene	Ghiaia		
Tabella 1 - Prove di permabilità tipo Lefranc (Carico Variabile, Carico Costante)								
realizzate in sito nelle campagne geognostiche 2002 e 2009.								

Per i litotipi che non sono stati indagati con prove in sito, i valori di permeabilità sono stati desunti da dati di letteratura scientifica.

1.5.3 RILIEVI PIEZOMETRICI

DANTI

Lungo il tracciato interessato dalla galleria è stato messo in opera n. 1 piezometro a tubo aperto (campagna geognostica del 2002).

Nella Tabella che segue si riportano le quote relative alla soggiacenza della falda presente nel substrato roccioso e rilevata attraverso il piezometro SP12, finestrato nel tratto in corrispondenza della profondità dell'opera sotterranea.

Pagina 5 di 54

Piezometro	Quota	Soggiacenza [m]				
	[111 5.1.111.]	23/05/2002	28/11/2002			
SP12	540.77	50.45	30.70			
Tabella 2 - Risultati del monitoraggio piezometrico.						

Analizzando i risultati delle misurazioni nel sondaggio SP12 si nota come la superficie della piezometrica sia stata rilevata all'interno del substrato roccioso. Ciò porta a ritenere che lo schema generale di circolazione idrica sotterranea del versante in oggetto risulti fortemente condizionato dall'assetto strutturale del substrato roccioso, caratterizzato da superfici di scistosità ad elevata inclinazione e dalla presenza di zone ad elevata fratturazione che favoriscono l'infiltrazione in profondità delle acque di scorrimento sub-superficiale. A tale proposito si sottolinea che alcuni impluvi che solcano il versante a monte della località Dosso non mostrano segni di circolazione idrica superficiale, denotando l'infiltrazione in profondità delle acque.

1.5.4 CENSIMENTO DEI PUNTI D'ACQUA

La galleria in esame sottende alcune sorgenti, in parte rilevate nella campagna geognostica del 2002 ed alcune individuate durante i rilevamenti effettuati per la presente fase progettuale.

Nella Tabella che segue sono elencati i punti censiti con i valori di portata e con l'indicazione del tipo di utilizzo. Nella Carta idrogeologica sono indicate le ubicazioni di tali punti.

Anno	Descrizione	Comune	Quota	Portata	Note	
			[m s.i.m.]	[#S]		
2002	Sora 12	Tirano	740	4.8	Esclusa dal	
2002	Solg 12				rete idrica	
2002	Sora 13	Tirano	600	4.8	Esclusa dal	
2002	301g 13	Thano	090	4.0	rete idrica	
2002	Sorg 14	Tirano	670	4.8	Esclusa dal	
2002					rete idrica	
2000	Sorgenti valle	Tirono	576 < 1 Fonta abbe	<i>L</i> 1	Fontana	
2009	dei Bui	TITATIO		abbeveratoio		
Tabella 3 - Elenco delle sorgenti censite durante le campagne geognostiche del						
2002 e del 2009 sottese dalla galleria.						

Il punto d'acqua individuato in località il Dosso (valle dei Bui), lungo la via dei castagneti, sembra essere una derivazione del rio ed è utilizzata a scopo irriguo.

1.5.5 MODELLO IDROGEOLOGICO DI RIFERIMENTO

Sulla base della caratterizzazione dei terreni affioranti, della loro suddivisione in complessi idrogeologici, dei dati di piezometria e del censimento dei punti d'acqua, è possibile tracciare un modello idrogeologico di riferimento per lo scavo della galleria.

Il modello idrogeologico di riferimento individuato distingue diversi tipi di circolazione idrica:

- 1- una falda in roccia che si imposta lungo zone di intensa fratturazione connesse con zone di ricarica poste a monte. Queste fasce di fratturazione, essendo molto permeabili, costituiscono una via di deflusso preferenziale per le acque di ruscellamento che si infiltrano nel basamento; inoltre, le rocce di basamento sono caratterizzate da una scistosità a reggipoggio piuttosto pervasiva che favorisce l'infiltrazione in profondità delle acque di ruscellamento superficiale;
- 2- una falda non residente a carattere stagionale che si può impostare al contatto tra il poco permeabile basamento cristallino e le più permeabili coperture quaternarie, durante i periodi a più elevata piovosità o durante lo scioglimento delle nevi.

La realizzazione della galleria molto probabilmente interferirà sia con la falda stagionale che con la falda in roccia. In particolare:

- 1- nelle tratte in cui lo scavo avviene a basse coperture, a ridosso del contatto tra i depositi quaternari ed il basamento cristallino si potranno avere ridotte manifestazioni idriche in galleria (condizione di fronte secco-umido), soprattutto, nelle stagioni piovose o durante lo scioglimento delle nevi;
- 2- nel tratto centrale di galleria ove lo scavo è previsto nel basamento cristallino che, come affermato in precedenza, presenta un grado di permeabilità variabile da basso, nelle normali condizioni di fratturazione, ad alto, in zone intensamente fratturate. Questo comporta che nelle zone poco fratturate non si prevedono manifestazioni idriche importanti (condizione di fronte secco-umido), mentre nelle zone di faglia o ad intensa fratturazione, se collegate ad una zona di ricarica in superficie, sono possibili manifestazioni idriche al limite fra la condizione di fronte bagnato e gli stillicidi.

Al fine di quantificare con maggior precisione la portata delle acque drenate in fase costruttiva e di esercizio della galleria e di poterne ricostruire l'interferenza con le falde sotterranee e con le sorgenti superficiali sarà necessario determinare la permeabilità dell'ammasso roccioso sia in condizioni massive che di intensa fratturazione, attraverso prove di permeabilità in roccia lungo perforazioni di sondaggio. Si dovrà verificare inoltre l'eventuale esistenza di una circolazione profonda delle acque secondo linee di deflusso ad andamento regolare, oppure se il reticolo fessurativo (caratterizzato principalmente da piani di scistosità con giacitura a reggipoggio) che governa la permeabilità degli ammassi rocciosi non consente una continuità nel deflusso delle acque profonde evidenziando quindi l'esistenza di acquiferi indipendenti con piezometriche a andamento irregolare.

Il versante ai piedi del quale si sviluppa l'opera sotterranea è sede di sorgenti. Alcune di esse, in parte anche captate per approvvigionamento idropotabile, drenano le acque circolanti all'interno dei depositi glaciali di copertura di maggior spessore in corrispondenza del contatto con il substrato lapideo meno permeabile. Altre sorgenti risultano invece impostate in corrispondenza di zone più fratturate del substrato lapideo.

2 INDAGINI GEOGNOSTICHE E RISULTATI OTTENUTI

DANTI

ď

Al fine di desumere i parametri necessari per la caratterizzazione geotecnico-geomeccanica dei terreni e degli ammassi rocciosi interessati dalle opere in progetto, sono state effettuate le indagini in sito e in laboratorio descritte nei paragrafi successivi, di cui si riportano contestualmente i risultati.

2.1 INDAGINI IN SITO

2.1.1 SONDAGGI GEOGNOSTICI

Lungo il tracciato della galleria nelle campagne geognostiche del 2002 e del 2009 sono stati realizzati in totale n. 5 sondaggi geognostici a carotaggio continuo, di cui quattro ad inclinazione verticale (SP12, S5, S6, S7) ed uno suborizzontale (SO2). Oltre a questi, ai fini esclusivi della caratterizzazione dell'ammasso roccioso gneissico, si è considerato anche il sondaggio SP11, che pur essendo ubicato a monte della galleria, ha interessato il substrato roccioso stesso.

Campagna geognostica del 2002

- SP11 (q=480.81 m s.l.m. L=50.0 m);
- SP12 (q=540.77m s.l.m. L=80.0 m);
- SO2 (q=504.34m s.l.m. L=50.0 m).

Campagna geognostica del 2009

- S5 (q=507.61 m s.l.m. L=22.0 m);
- S6 (q=495.83 m s.l.m. L=30.0 m);
- S7 (q=573.27 m s.l.m. L=65.0 m).

Nel seguito si riportano le stratigrafie schematiche dei sondaggi in questione, le indicazioni relative alla piezometrica, i valori del RQD misurati per ogni metro di carota (con indicazione del valore medio e dello scarto quadratico medio "Sqm" di quest'ultimo parametro, per tutto lo sviluppo del sondaggio) e le note relative allo stato di fratturazione e al grado di alterazione dei materiali recuperati.

66

DANTI

പ്

SP 11					
Profondità	Litologia				
	Ghiaia media grossolana sabbiosa, la frazione limosa				
0 ÷ 13m	aumenta con la profondità; presenza di ciottoli				
	poligenici.				
	Micascisti filladici: roccia scistosa a grana fine in cui si				
13 ÷ 50m	riconoscono muscovite, livelli quarzoso feldspatici e				
	talvolta clorite.				
Profondità piezometrica	: 44.30m (maggio 2002).				
JRC: valore medio = 12	-14.				
Note: i piani di frattura, la	addove l'indice RQD è più elevato, risultano serrati, privi				
di riempimento, debolm	ente alterati (locali patine di ossidazione); dove il RQD				
è più basso le fratture sono presenti sia lungo la scistosità che lungo piani					
obliqui rispetto quest'ultima. Il grafico sottostante evidenzia che lungo la					
verticale di SP 11, alle quote della galleria (20m÷35m) l'ammasso è					
intensamente fratturato.					
Tabella 4 - Stratigrafia sondaggio SP11 (campagna geognostica del 2002).					

➢ Sqm: 26.45

SP 12				
Profondità	Litologia			
$0 \cdot 32 m$	Ghiaia media grossolana sabbiosa, debolmente limosa con ciottoli			
0 ÷ 33 m	poligenici.			
33 ÷ 36 m	Ciottoli e blocchi poligenici			
26 · 90 m	Micascisti filladici-cloritici con intercalazioni di quarziti micacee			
50 ÷ 60 m	grigie.			
Profondità p	iezometrica: 50.45m ()maggio 2002			
JRC: valore medio = 12-14.				
Note: i piani di frattura, laddove l'indice RQD è più elevato, risultano serrati, privi				
di riempimento, debolmente alterati (locali patine di ossidazione); dove il RQD				
è più basso le fratture sono presenti sia lungo la scistosità che lungo piani				
obliqui rispetto quest'ultima.				
Tabella 5 - Stratigrafia sondaggio SP12 (campagna geognostica del 2002).				

> RQDmedio: 67.21 %

➢ Sqm: 18.14

SO 2					
Profondità Litologia					
0 ÷ 7 m	Ghiaia sabbiosa debolmente limosa con clasti di roccia.				
7 ÷ 50 m Alternanza di micascisti a granati e gneiss.					
Note: le frat	Note: le fratture sono presenti sia lungo la scistosità che lungo piani obliqui				
rispetto quest'ultima; presenza di patine di ossidazione. Il sondaggio è					
suborizzontale e durante il suo approfondimento non c'è stata uscita d'acqua					
dal boccaforo.					
Tabella 6 - Stratigrafia sondaggio SO2 (campagna geognostica del 2002).					

> RQDmedio: 26.49 %

> Sqm: 19.65

S5						
Profondità Litologia						
0 ÷ 2.5 m	Sabbia fine con ghiaia metaforfica e radi ciottoli.					
2.5 ÷ 5.0	Ghiaia metamorfica grossolana in abbondante matrice limo-					
m	sabbiosa.					
5.0 ÷ 11.2	Sabbia da fine (fino a 6.3 m) a media a grossolana localmente					
m	debolmente limosa e ghiaia con numerosi ciottoli.					
11.2 ÷	Limo e sabbia di colore bruno-grigio scuro e ghiaia con radi ciottoli					
14.2 m	14.2 m metamorfici.					
14.2 ÷	Sabbia da fine a media, limosa, con ghiaia metamorfica.					
15.4 m	15.4 m					
15.4 ÷ Ghiaia metamorfica con radi ciottoli metamorfici in abbondant						
22.0 m matrice sabbio-limosa.						
Tabella 7 -	Tabella 7 - Stratigrafia sondaggio S5 (campagna geognostica del 2009).					

	S6			
Profondità	Litologia			
0 · 7 5 m	Sabbia fine con ghiaia metamorfica e radi ciottoli, localmente			
0 ÷ 7.5 m	debolmente limosa.			
7.5 ÷ 12.0	Ghiaia metamorfica da angolare a subarrotondata con alcuni ciottoli,			
m	sabbia e limo.			
12.0 ÷	Sabbia da media a grossolana e limo con ghiaia ed alcuni ciottoli			
14.8 m	metamorfici.			
14.8 ÷	Ghiaia e ciottoli angolari metamorfici in matrice debolmente sabbio-			
15.5 m	limosa.			
15.5 ÷	Blocco metamorfico			
16.3 m				
16.3 ÷	Ghiaia e numerosi ciottoli metamorfici con sabbia media e limo			
20.0 m				
20.0 ÷	Sabbia da media a grossolana limosa con ghaia e radi ciottoli			
21.1 m	metamorfici.			
21.1 ÷	Blocco metamorfico.			
21.7 m				
21.7 ÷	Limo e sabbia da media a grossolana con ghiaia e radi ciottoli			
23.8 m	metamorfici.			
23.8 ÷	Ghiaia e radi ciottoli metamorfici con sabbia da fine a media.			
25.0 m				
25.0 ÷	Alternanza di ciottoli e blocchi metamorfici con ghaia metamorfica e			
26.5 m	sabbia grossolana debolmente limosa.			
26.5 ÷	Roccia: micascisto, paragneiss, scisto quarzifero con presenza di			
30.0 m	noduli di quarzo.			
Tabella 8 - Stratigrafia sondaggio S6 (campagna geognostica del 2009).				

MANDATARIA:

> RQDmedio: 70.00 %

> Sqm: 31.36

S7				
Profondità	Litologia			
0 ÷ 2.5 m	Sabbia fine e ghiaia metamorfica con rari ciottoli.			
2.5 ÷ 7.0	Chicic o ciottoli motomorfici in motrico di cobbio graccolono limoco			
m	Ghiala e ciolloli metamonici in matrice di sabbia grossolaria limosa.			
7.0 ÷ 65.0	Roccia: scisto quarzifero con intercalazioni di micascisto,			
m paragneiss e anfibolite.				
Tabella 9 - Stratigrafia sondaggio S7 (campagna geognostica del 2009).				

ee

GN01- CARATTERIZZAZIONE GEOTECNICA RELAZIONE TECNICA

- RQDmedio: 63.40 %
- > Sqm: 27.01

2.1.2 PROSPEZIONI GEOFISICHE

Al fine di individuare con continuità la profondità alla quale si trova il tetto del substrato roccioso di origine metamorfica lungo il tracciato dell'opera sotterranea sono state effettuate delle prospezioni sismiche a rifrazione. Nello specifico, nella campagna geognostica del 2002, sono state effettuate n°5 linee sismiche (denominate L.S. 08, 17, 18, 19, 20), di lunghezza pari a 110 m ciascuna, mentre nell'ambito della campagna geognostica del 2009 sono state eseguite n°4 linee sismiche (denominate L.S. 1, 2, 9, 10), di lunghezza pari a 120 m ciascuna.

Sono stati individuati tre intervalli di velocità delle onde elastiche longitudinali (onde P) ai quali, in relazione alle stratigrafie ottenute attraverso le perforazioni di sondaggio, corrispondono i seguenti tre materiali:

- 350 <VP < 450 m/s terreno di copertura sciolto;
 - 900 < VP < 1200 m/s terreno di copertura addensato;
- VP > 2500 m/s substrato roccioso.

2.2 PROVE IN SITO

2.2.1 PROVE PENETROMETRICHE SPT

ANDANT

ď

Nel corso delle perforazioni dei sondaggi SP12 (Anno 2002), S5 e S6 (Anno 2009) sono state eseguite prove penetrometriche dinamiche del tipo SPT (Standard Penetration Test).

- SP 12: n° 10 prove realizzate a profondità di 1.5 m, 8.5 m, 10.5 m, 13.5 m, 16.5 m, 19.5 m, 22.5 m, 25.5 m, 28.5 m, 31.5 m;
- S5: n° 2 prove realizzate a profondità di 3.0 m, 6.0 m;
- S6: n° 2 prove realizzate a profondità di 3.0 m, 6.0 m.

2.2.2 PROVE DI PERMEABILITÀ

Nei depositi di copertura indagati tramite il sondaggio SP12 è stata eseguita n. 1 prova di permeabilità Lefranc alle profondità di 10 m. La prova è stata eseguita a carico variabile. I risultati della prova in quesione sono riportati nella seguente tabella e nel successivo grafico.

SP 12 – profondità 10 m				
Tempi	Abbassamenti			
[sec]	[cm]			
30	116			
60	194			
90	245			
120	280			
150	303			
180	319			
240	336			
360	347			
480	349			
600	349			
720	349			
840	349			
Tabella 10 - Risultati prova di permeabilità Lefranc eseguita				
nel sondaggio SP12.				

Il valore medio di permeabilità ottenuto per i depositi morenici è K = 1.32*10-6 m/sec.

2.2.3 PROVE DILATOMETRICHE

Nel corso delle perforazioni sono state eseguite alcune prove dilatometriche in roccia, attraverso le quali sono stati ottenuti i valori di Modulo elastico (EE) e di Modulo di deformazione (ED) che vengono riportati nel seguito.

Nello specifico all'interno dei sondaggi SP11, SP12, SO2 sono state realizzate n. 3 prove dilatometriche (Anno 2002), mentre nei sondaggi S6 e S7 sono state eseguite n. 3 prove dilatometriche (Anno 2009). Di seguito si riportano le risultanze ottenute dalle prove menzionate.

Sondaggi	Profondità	Litologi	ED	EE	
0	[m]	а	[MPa]	[MPa]	
SP11	42.2	Scisti	4845	9502	
SP12	69.5	Scisti	5523	11282	
SO2	31	Scisti	4342	9890	
S6	30	Scisti	661	934	
S7	45	Scisti	832	897	
S7	55	Scisti	1848	2143	
Valore medio 3008.5 5774.7					
Sqm 2147.9 4931.0					
Tabella 11 - Risultati prove dilatometriche eseguite nei					
sondaggi SP11, SP12, SO2, S6 e S7					

2.3 PROVE DI LABORATORIO

2.3.1 PROVE DI LABORATORIO SU TERRENI

Dai sondaggi SO2, S5, S6 e S7 sono stati prelevati alcuni campioni dei depositi di copertura sui quali sono state eseguite alcune analisi di laboratorio. Con riferimento al sondaggio SO2 (Anno 2002) sono state eseguite le seguenti analisi:

- apertura del campione rimaneggiato;
- analisi granulometrica per setacciatura;
- analisi granulometrica per sedimentazione;
- determinazione dei limiti di liquidità e di plasticità.

Per i sondaggi S5, S6 e S7 (Anno 2009) sono state eseguite le seguenti analisi:

- descrizione del campione rimaneggiato e caratteristiche generali;
- analisi granulometrica per setacciatura;
- analisi granulometrica per sedimentazione.

Nelle Tabelle seguenti si riportano schematicamente i valori dei parametri ottenuti.

SONDAGGIO		SO2
		C1
Profondità [m]		2.00
Peso specifico dei grai	ni	
[kN/m3]		-
	ghiaia	37.72
Granulometria [%]	sabbia	44.18
Granulometria [/6]	limo	13.48
	argilla	4.63
Limite liquidità (WL) [%	[]	20.5
	UC	150.0
Indici di uniformità	d60	1.80
	d10	0.012
Tabella 12 - Risultati pro	ove di lab	ooratorio sui campioni di
terreno appartenenti al s	ondaggio	SO2.

€€

DANTI

ď

Pagina **17** di **54**

SONDAGGIO		S5	S5	S5	S5	S5
		CR1	CR2	CR3	CR4	CR5
		2520	8500	14.5-	16.5-	21.5-
Profondità [m]		2.5-5.0	0.5-9.0	15.0	17.0	22.0
	ghiaia	49	55	29	56	64
Granulometria	sabbia	32	36	51	30	27
[%]	limo	15	9	16	13	9
	argilla	5	0	4	0	0
	d60	4.6	4.6	1.2	5.9	6.2
	d50	1.7	2.7	0.65	3.2	4.0
Tabella 13 - Risultat	i prove di l	aboratori	o sui can	npioni di t	erreno ap	partenenti
al sondaggio S5.						

SONDAGGIO		S6	S6	S6
		CR1	CR2	CR3
		3.5-	9.5-	20.0-
Profondità [m]		4.0	10.0	20.5
	ghiaia	22	58	62
Granulamatria [9/]	sabbia	44	28	30
Granulometria [%]	limo	28	14	6
	argilla	5	0	0
	d60	0.36	7.9	10
	d50	0.18	3.9	5.2
Tabella 14 - Risultati pr	ove di lat	oratorio	o sui ca	mpioni di
terreno appartenenti al	sondagg	io S6.		

SONDAGGIO		S7	S7
		CR1	CR2
Profondità [m]		2.0-2.5	5.5-6.0
	ghiaia	44	58
Granulomotria [%]	sabbia	35	31
Granuloinetria [//]	limo	17	11
	argilla	4	0
	d60	3.0	6.4
	d50	1.2	3.3
Tabella 15 - Risultati pr	ove di lab	oratorio s	ui campioni
di terreno appartenenti	i al sonda	ggio S7.	

2.3.2 PROVE DI LABORATORIO SU ROCCE

Campagna geognostica 2002

Il substrato roccioso interessato dallo scavo della Galleria "Il Dosso" è stato analizzato tramite prove di resistenza a compressione monoassiale (r.c.m.) e triassiale (r.c.t.) con rilievo delle deformazioni per la determinazione dei parametri elastici (sondaggi SO2, SP11, SP12):

Sondaggio	Campione/ provino	Profondità[m]	Litologia	Inclinazione scistosità / asse provino	r.c.m. [MPa]	r.c.t.
	L1/ieb6	10	gneiss micaceo granatifero in facies milonitica (deformazioni duttili)- inalterato-non fratturato	35°÷45°	28.80 rottura lungo scistosità	
SO 2	L2/ieb15	31	gneiss micaceo-granatifero in facies milonitica (deformazioni duttili)- inalterato-non fratturato	45°÷55°		*
	L3/ieb1	37	gneiss biotitico-anfibolitico in facies milonitica (deformazioni duttili) 2 fratture verticali ossidate	60°÷70°	42.80 rottura lungo fratture	
	L4/ieb19	49	gneiss anfibolitico- inalterato-non fratturato	25°÷30°		*
Tabella 16	- Risultati p	rove di labo	ratorio sui campioni di roco	cia appartenent	i al sondag g io s	SO2.

Sondaggio	Campione/ provino	profondità [m]	litologia	inclinazione scistosità / asse provino	r.c.m. [MPa]	r.c.t.
SP 11	L1/ieb10	21	gneiss prasinitico a struttura milonitica (deformazioni duttili)- inalterato-una frattura principale parallela ai piani di scistosità e 2 discontinuità secondarie discordanti rispetto la scistosità	30°÷40°	15.60 rottura lungo frattura parallela ai piani di scistosità	
	L2/ieb11	34	scisto prasinitico a struttura milonitica (boudine)-inalterato- presenza di discontinuità random	25°÷30°	11.22 rottura lungo scistosità	
	L3/ieb24	39	gneiss prasinitico- inalterato-4 fratture serrate e discordanti	30°÷35°		*

			scisto dioritico-			
			anfibolitico-struttura			
			massiccia debolmente			
	L4/ieb22	44	scistosa-inalterato-2	1		*
			fratture inclinate 30° e			
			60° rispetto asse			
			verticale provino			
Tabella 17 -	Risultati prov	e di laboratorio	sui campioni di roccia a	appartenenti al s	sondaggio SP1	1.

Sondaggi o	Campio- ne/provino	Profondit à [m]	Litologia	linclinazione scistosità / asse provino	r.c.m. [MPa]	r.c.t.
	L2/ieb4	63	gneiss prasinitico a struttura milonitica (strutture di flusso)	10°÷15°	51.64 rottura subparallela alla scistosità	
SP 12	L1/ieb21	53	quarzo-micascisto a struttura milonitica (strutture di flusso)- inalterato-2 fratture	10°÷15°		*
	L3/ieb23	71	gneiss quarzoso-micaceo- inalterato-nonfraturato	30°÷35°		*
	L4/ieb8	77	quarzo-micascisto a struttura milonitica (strutture di flusso)- inalterato-2 fratture	25°÷30°	8.76 rottura lungo scistosità e fratture	
Tabella 18	3 - Risultati p	orove di lat	ooratorio sui campioni di ro	occia appartenenti a	l sondaggio SP	12.

Per tutti i campioni esaminati, unitamente ai valori di resistenza, è stato misurato anche il valore del peso di volume naturale (γ n).

Nelle prove di compressione sono stati misurati i valori dei Moduli elastico EE (o tangente) e di deformazione (ED) (o secante), nonché i corrispettivi valori del rapporto di Poisson vt (tangente) e vs (secante). Di seguito si riportano i grafici relativi ai risultati delle diverse prove e l'indicazione sia dei valori medi che degli scarti quadratici medi (Sqm) dei diversi parametri misurati.

GN01- CARATTERIZZAZIONE GEOTECNICA RELAZIONE TECNICA

➢ Sqm : 17.71 MPa

A fronte dell'elevata dispersione dei risultati si evidenzia che i valori inferiori di resistenza (σ ci < 25 MPa) sono influenzati dalla presenza di piani di discontinuità preesistenti; tali risultanze pertanto non possono essere considerate rappresentative della resistenza di matrice, ma possono piuttosto essere riferite a una resistenza intermedia tra quella del materiale roccia e quella d'ammasso. A fronte di ciò si riporta di seguito il valore medio di oci (ed il relativo Sqm) determinato considerando

unicamente i valori di resistenza superiori a 25 MPa.

- σci media : 41.08 MPa
- ➢ Sqm : 11.51 MPa

GN01- CARATTERIZZAZIONE GEOTECNICA RELAZIONE TECNICA

> Sqm : 1.31 kN/m3

GN01- CARATTERIZZAZIONE GEOTECNICA RELAZIONE TECNICA

➢ Sqm : 17.71 GPa

Campagna geognostica 2009

Sui campioni di roccia prelevati all'interno dei sondaggi S6 e S7 sono state eseguite prove di Point Load, oltre alla determinazione del peso di volume apparente.

Nel seguito si riportano le risultanze ottenute.

Dai valori dell'indice Is₅₀ di Point Load si sono estrapolati i corrispondenti valori di resistenza a compressione monoassiale.

Si è utilizzata la seguente correlazione, valida per ammassi metamorfici in analogia alla formazione in oggetto (Bruschi 2004):

- σci = 17.307*ls₅₀

GN01- CARATTERIZZAZIONE GEOTECNICA RELAZIONE TECNICA

ING RENATO ECOPLAN CE SETAC 4 ARKE

Si riporta di seguito il valore medio di σ ci (ed il relativo Sqm) determinato considerando unicamente i valori di resistenza superiori a 25 MPa.

- σci media : 78.88 MPa
- ➢ Sqm : 41.83 MPa

Per la determinazione della resistenza a compressione semplice si dispone quindi delle seguenti prove:

- anno 2002 N° 24 prove, di cui:
 - N° 12 di resistenza monoassiale a compressione
 - N° 12 prove triassiali
- anno 2009 N°15 prove Poin Load

					Aune	ç			Compress	ione				Traziono			Taglio diretti			Velocita' o	ndo scricho	note
Sondaggio	Campione	Provine	Profonultà	Litolipo	di vo	18	Uniates	Triand	isle	Module	elastici	Fisce d	Poisson	Nev.						L		
			(171)		Peso	Cong	Co	σ,	σ,	E,	E,	vt	۰,	Bras	a.,	t _a	τ,	c		1 %	٧5	
				100.10	(kNim ³)		(MPa)	(KP+)	(MP+)	(GPa)	(GPa)			(140 8)	(MP+)	(NPa)	(MP6)	(MPa)	(7)	(m/s)	(mia)	
S01	L2	IEB2	7.0-7.30	micaceo	27.60	A	28.75			37.30	32.10	0.44	0.25							I		
SO1	L6	IEB5	26.3-26.6	enelaskop_	27.37	A	27.76			40.79	43.05	0.23	0.23									
S02	L1	IEB6	10.0-10.3	micaceo	27.71	A	28.80			11.10	10.06	0.11	0.04		L				-		L	
S02	L3	IEB1	37.3-37.7	gneros biot- antibol	27.51	A	42.80			25.46	21.46	0.12	0.10		L							
SP5	L1	IEB12	19.8-20.0	qz-rikascisto	26.56	A	21.31			52.17	47.48	0.25	0.26									
SP10	L1	IEB3	22.7-23.0	mica sciato antibolico	27.66	A	49.52			30.39	24.80	0.25	0.13									
SP10	L2	1E89	29.5-29.65	ca micaseisto	25.05	A	19.39			8.34	7.53	0.20	0.13									
SP11	LI	IEB10	21.7-21.9	gneisa praxinico	28.56	A	15.60			10.78	11.13	0.11	0.10									
SP11	L2	IEB11	33.8-34.0	Acialio presinilipo	27.94	A	11.22			51.21	57.71	0.27	0.27)		
SP12	L2	IEB4	63.0-63.3	gneiss	27.05	A	51.64			74.70	60.67	0.43	0.31							1		
SP12	L4	IEBS	77.7-78.0	ez-micasciste	25.76	A	8.76			3.09	3.98	0.49	0.31									
S4	L2	IEB7	11.7-12.0	Sp ettalses	26.56	A	22.87			10.18	11.67	0.15	0.10									
S01	L1	IEB13	4.0-4.40	phess micaceo	27.28	A		65.63	1.50	37.53	38,60	0.65	0.35		1							
S01	L5	IEB17	22.40	gnolas	27.33	A		94.94	2.50	32.23	30.21	0.21	0.10						1			
\$01	L3	IEB14	12.3-12.5	gneiss micacao	27.52	A		77.76	3.50	30.43	30.84	0.44	0.19				1					
SO1	L4	IEB18	19.10	9:0:88	27.69	A		88.68	4.50	32.63	29.58	0.21	0.07									
S01	L7	IEB16	33.2-33.6	micascisto anelisaico	27.22	A		133.21	5.50	48.51	44.52	0.20	0.08									
S01	1 L8	IEB20	39.6-40.0	gneiss	27.58	A		102.72	6.50	49.74	44.17	0.32	0.17									
SP11	L3	IEB24	39.0-39.3	greios manufactor	27.39	A		21.46	1.30	17.80	15.38	0.16	0.06						1			
SP11	L4	IEB22	44.0-44.3	ADISTO CIOTA-	28.78	A		61,03	2.30	43.84	32.84	0.15	0.05									
SP12	LI	IEB21	53.0-53.2	qz-micascieto	26.55	A		119.41	3.30	46.32	45.19	0.15	0.11						<u> </u>	<u> </u>		
S02	L4	IEB19	49.2-49.5	ghéás	30.72	A		287.11	4.30	76.15	67.57	0.31	0.16	1							-	
SP12	L3	IEB23	71.7-72.0	-sp eleng	26.23	A		184.08	5.30	48.64	35.22	0.16	0.12	-						-		
502	L2	IEB15	31.0-31.3	gnelas mio-	27.80	A		79.02	6.30	34.44	19.75	0.33	0.13			-	-		1			

Tabella 19 – Prove su roccia (2002)

Sondaggio	Campione	Provino	Profe	ondità	Peso di volume	Resistenza a Compressione Monoassiale	Litologia
N°	N°	N°	da m	a m	g (kN/m³)	МРа	
SO.1	L2	IEB2	7,00	7,30	27,60	28,76	Gneiss
SO.1	L6	IEB5	26,30	26,60	27,37	27,76	Micascisto
SO.2	L1	IEB6	10,00	10,30	27,71	28,80	Gneiss
SO.2	L3	IEB1	37,30	37,70	27,51	42,80	Gneiss
SP.5	L1	IEB12	19,80	20,00	26,56	21,31	Micascisto
SP.10	L1	IEB3	22,70	23,00	27,66	49,52	Micascisto
SP.10	L2	IEB9	29,50	29,65	25,05	19,39	Micascisto
SP.11	L1	IEB10	21,70	21,90	28,56	15,60	Gneiss
SP.11	L2	IEB11	33,80	34,00	27,94	11,22	Micascisto
SP.12	L2	IEB4	63,00	63,30	27,05	51,64	Gneiss
SP.12	L4	IEB8	77,70	78,00	25,76	8,76	MIcascisto
S.4	L2	IEB7	11,70	12,00	26,56	22,87	MIcascisto
				Valore m	edio Gneiss	33,52	
				Valore m	edio Micascisto	22,98	
Tabella 20 -	– Prove di d	compressi	one unia	assiale (2	2002)		

66

sondaggio - campione	profondità (m)	prova eseguita	diametro medio D (mm)	attezza media H (mm)	peso di volume apparente Y (kN/m [®]	velocità onde p V (m/s)	resistenza di picco σ (MPa)	pressione di contenimento (MPa)	modulo tangenta al 50% σ E ₁ /MPa)	Indice Point Load (MPa) I _{s (} so)	N. certificato di prova
\$3/C3	11.17 - 22.25	PL1	78.92	84.43	25.87					4.8	
\$3/03	11.25 - 11.33	PL1	78.93	80.61	25.95			1 0		5.6	
S3/C3	11.33 - 11.41	PL1	78.92	79.41	26.02					1.9	
53/C3	11.49 - 11.57	PL1	78.92	84.30	25.98					4.4	
\$3/C3	11.41 - 11.49	PL1	79.02	81.29	26.06					5.3	
\$6/C5	29.03 - 29.11	PL1	78.75	89.83	27.18					2.4	20
S6/C5	29.22 - 29.30	PL1	78.61	83.58	27.18					1.6	
\$6/C5	29.30 - 29.38	PL1	78.71	84.51	27.13					1.9	
\$7/C4	51.10 - 51.18	PL1	79.02	79.80	26.41					7.0	
S7/C4	51.18 - 51.26	PL1	79.01	78.68	26.45					9.9	
\$7/C4	51.26 - 51.34	PL1	79.04	81.40	26.38					4.8	
\$7/C5	57.42 - 57.50	PL1	79.16	80.76	26.40					5.5	
S7/C5	57.50 - 57.58	PL1	79.15	79.18	26.41					7.2	ŝ
S7/C5	57.58 - 57.66	PL1	79.18	77.36	26.32				0	4.5	
\$7/C5	57.66 - 57.74	PL1	79.14	75.18	26.37					4.5	
21 – Prove Po	pint Load (2009)									

BRUSCHI A. (2004) espone una elaborazione della correlazione tra resistenza a compressione monoassiale e indice di resistenza anche in relazione alla litologia, proponendo i diagrammi per vari tipi di rocce, tra cui nella Figura 15 si riporta quella per rocce metamorfiche, da cui si ricava la relazione:

Da quanto sopra riportato si può effettuare la correlazione per le prove Point Load, tenendo conto della litologia, con i dati riportati in Tabella 22.

Sondaggio	Campione	Profon	dità	ls	σc	Litologia		
N°	N°	da m	a m	Мра	Мра	Litologia		
S.3	C.3	11,17	22,25	4,80	83,07			
S.3	C.3	11,25	11,33	5,60	96,92			
S.3	C.3	11,33	11,41	1,90	32,88	Gneiss		
S.3	C.3	11,49	11,57	4,40	76,15			
S.3	C.3	11,41	11,49	5,30	91,73			
S.6	C.5	29,03	29,11	2,40	41,54			
S.6	C.5	29,22	29,30	1,60	27,69	Micascisto		
S.6	C.5	29,30	29,38	1,90	32,88			
S.7	C.4	51,10	51,18	7,00	121,15			
S.7	C.4	51,18	51,26	9,90	171,34			
S.7	C.4	51,26	51,34	4,80	83,07			
S.7	C.5	57,42	57,50	5,50	95,19	Gneiss		
S.7	C.5	57,50	57,58	7,20	124,61			
S.7	C.5	57,58	57,66	4,50	77,88			
S.7	C.5	57,66	57,74	4,50	77,88			
a 22 – Correlazione t	ra sc ed Is							

Infine unificando i litotipi similari ed ordinando tutti i dati disponibili della resistenza a compressione monoassiale e delle prove Poin Load Test, si hanno i valori di cui alla Tabella 23.

		1	
Anno	Anno Litologia -		σ _c
74110	Litologia	MPa	Media (MPa)
		28,76	
		28,80	
2002		42,80	
		15,60	
		51,64	
		83,07	
		96,92	
		32,88	
	Gneiss	76,15	76,44
		91,73	
2000		121,15	
2009		171,34	
		83,07	
		95,19	
		124,61	
		77,88	
		77,88	
		27,76	
		21,31	1
		49,52	1
2002	Micascisto	19,39	1
		11,22	
		8,76	26,29
		22,87	1
		41,54	1
2009	Micascisto	27,69	1
		32,88	1
L		• *	
i di resistenza a	compressione		
	0000000		

Per lo studio della caratterizzazione della roccia lungo lo sviluppo dell galleria, risultano significativi i seguenti valori di resistenza a compressione monoassiale con riferimento alle prove dirette del 2002 ed alle prove Prove Point Load Test del 2009.

SO.1	7.0M	28.76 MPa
SO.2	10M	28.80 MPa
SO.2 IMB. BORMIO	37M	42.80 MPa
SP11	21M	15.60 MPa
SP12 IMB. SONDRIO	63M	51.64 MPa
Tabella 24 – Valori significativi per P	rove Dirette del 2002.	

S3	22 m	83.07 MPa
S3	11 m	96.92 MPa
S3	11 m	32.88 MPa
S3	11 m	76.15 MPa
S3	11 m	91.73 MPa
S7	51 m	121.15 MPa
S7	51 m	171.34 MPa
S7	51 m	83.07MPa
S7	57 m	95.19 MPa
S7	57 m	124.61 MPa
S7	57 m	77.88 MPa
S7	57 m	77.88 MPa
Tabella 25 – Valori significativi per p	rove Point Load del 2009.	

Nella tabella 25, la media dei valori dell'S7 è 107.3 MPa, che può essere considerato rappresentativo per le classi III di scavo con alto ricoprimento.

Escludendo i micascisti, che non vengono interessati direttamente dagli scavi della galleria, i valori rappresentativi delle compressioni monoassiali validi per gli Gneiss da utilizzare per la catterizzazione dell'ammasso roccioso sono quelli seguenti.

-	in classe IV lato SONDRIO (SP12)	σc = 51.64 MPa;
-	in classe III lato SONDRIO (S3)	σc = 83.07 MPa;
-	in classe IV faglia (no sondaggi)	σc = 70.00 MPa (stimato);
-	in classe V faglia (no sondaggi)	σc = 30.00 MPa (stimato);
-	in classe III (S7)	σc = 110.0 MPa;

- in classe IV lato BORMIO (SO.2) σc = 42.80 MPa.

DANTI

ď

ARKE'

GN01- CARATTERIZZAZIONE GEOTECNICA RELAZIONE TECNICA

Sqm : 0.37 kN/m3

3 QUADRO GEOTECNICO E GEOMECCANICO

3.1 CRITERI DI CLASSIFICAZIONE TECNICA DEGLI AMMASSI ROCCIOSI

Gli ammassi rocciosi sono stati classificati facendo riferimento al Rock Mass Rating (RMR; 1972-1989) di Z.T.Bieniawski.

I parametri geomeccanici considerati, necessari per la determinazione del valore del RMR e della conseguente classe qualitativa dell'ammasso roccioso sono:

- R1: resistenza a compressione monoassiale della roccia intatta;
- R2: percentuale di recupero modificata (Rock Quality Designation: RQD);
- R3: spaziatura tra i piani di discontinuità principali;
- R4: condizioni delle superfici di discontinuità;
- R5: condizioni idriche in sotterraneo;
- R6: orientazione dei piani di discontinuità principali rispetto al tracciato di scavo.

Dalla somma del valore assunto per ciascuno dei sei parametri si ottiene il valore numerico del RMR, in funzione del quale all'ammasso roccioso viene assegnata una delle cinque classi geomeccaniche di Bieniawski.

3.2 CRITERI DI CARATTERIZZAZIONE GEOMECCANICA

Il comportamento degli ammassi rocciosi fratturati è stato caratterizzato mediante l'utilizzo del modello costitutivo proposto da Hoek-Brown:

$$\sigma_1 = \sigma_3 + \sigma_{ci} \cdot \left[\left(m_b \cdot \frac{\sigma_3}{\sigma_{ci}} \right) + s \right]^a$$

ove:

- σ1: sforzo principale massimo applicato a rottura;
- σ 3: sforzo principale minimo applicato a rottura;
- σci: resistenza a compressione monoassiale della roccia intatta;
- mb; s; a: coefficienti dipendenti dalle caratteristiche dell'ammasso roccioso.

L'utilizzo del criterio di Hoek-Brown per la modellazione del comportamento degli ammassi rocciosi fratturati si basa su tre proprietà intrinseche degli stessi:

- σci: resistenza a compressione monoassiale della roccia intatta;
- mi: costante di Hoek-Brown relativa alla roccia intatta;
- GSI: valore del Geological Strength Index relativo all'ammasso roccioso.

La resistenza di un ammasso roccioso fratturato dipende, quindi, dalle proprietà del materiale roccia intatto di cui è costituito e, attraverso il GSI, dalle differenti condizioni di fratturazione ed alterazione. Il valore del Geological Strength Index (GSI) deriva da quello del Rock Mass Rating (RMR), attraverso la relazione:

- GSI = BMR-5

DANTI

ď

ove:

- BMR = RMR calcolato considerando R5 = 15 e R6 = 0.

Questa relazione è applicabile per valori di GSI > 25, come per gli ammassi rocciosi in oggetto.

Coefficienti mb – s – a caratteristici dell'ammasso roccioso.

I parametri che descrivono la resistenza dell'ammasso roccioso sono calcolati come segue:

$$m_{b} = m_{i} \exp\left[\frac{GSI - 100}{28 - 14D}\right]$$
$$s = \exp\left[\frac{GSI - 100}{9 - 3D}\right]$$
$$a = \frac{1}{2} + \frac{1}{6} (e^{-GSI/15} - e^{-20/3})$$

Ove D è un fattore dipendente dal grado di disturbo cui è soggetto l'ammasso roccioso in relazione alla metodologia di scavo e agli sforzi tensionali presenti (0 ≤D ≤1; valore nullo per ammasso indisturbato).

Resistenza a compressione dell'ammasso roccioso.

La resistenza d'ammasso è ottenibile dalle relazioni:

$$\sigma_{c} = \sigma_{ci} * s^{a}$$

$$\sigma_{cm} = \sigma_{ci} \cdot \frac{(m_{b} + 4s - a(m_{b} - 8s))(m_{b} / 4 + s)^{a-1}}{2(1 + a)(2 + a)}$$

ove:

- σc = resistenza a compressione monoassiale dell'ammasso roccioso ottenuta dal criterio di rottura di Hoek-Brown (σ 1 per σ 3 = 0);
- σ cm = resistenza a compressione globale dell'ammasso roccioso.

La ocm esprime il comportamento globale di un ammasso roccioso in condizioni di scarso confinamento; le dimensioni della zona soggetta a tali condizioni risultano nella realtà pratica superiori a quelle della zona localizzata in cui si ha effettivamente σ 3 = 0, per cui nell'insieme la resistenza (σ cm) risulta maggiore a quella limite (σ c).

Coesione, angolo di resistenza al taglio e dilatanza dell'ammasso roccioso.

l valori dell'angolo di resistenza al taglio "o" e della coesione "c" che esprimono la resistenza del materiale secondo il criterio di rottura lineare di Mohr-Coulomb sono espressi attraverso le seguenti relazioni suggerite dall'Autore:

$$\varphi = sen^{-1} \left[\frac{6am_b (s + m_b \sigma_{3n})^{a-1}}{2(1+a)(2+a) + 6am_b (s + m_b \sigma_{3n})^{a-1}} \right]$$
$$c = \frac{\sigma_{ci} \left[(1+2a)s + (1-a)m_b \sigma_{3n} \right] (s + m_b \sigma_{3n})^{a-1}}{(1+a)(2+a)\sqrt{1 + \frac{6am_b (s + m_b \sigma_{3n})^{a-1}}{((1+a)(2+a))}}}$$

ove:

 σ 3n = σ 3max/ σ ci

$$\sigma_{3\max} = \sigma_{cm} \cdot 0.47 \left(\frac{\sigma_{cm}}{\gamma H}\right)^{-0.94}$$

(H = profondità)

La linearizzazione viene effettuata in accordo al criterio per gallerie suggerito dall'Autore. La dilatanza " α " è ricavabile dalla correlazione empirica:

DANTI

 $\alpha = \phi / K$

Per ammassi rocciosi quali quello in oggetto il coefficiente K può essere assunto pari a 8.

Modulo di Deformazione

Il valore del Modulo di deformazione dell'ammasso roccioso è ottenibile tramite le relazioni:

$$E_D = \left(1 - \frac{D}{2}\right) \cdot \sqrt{\frac{\sigma_{ci}}{100}} \cdot 10^{\left(\frac{GSI - 10}{40}\right)}$$

[GPa]

applicabile per i casi in cui σ ci \leq 100 MPa.

$$E_D = \left(1 - \frac{D}{2}\right) \cdot 10^{\left(\frac{GSI - 10}{40}\right)}$$

[GPa]

applicabile per i casi in cui σci > 100 MPa.

3.3 CARATTERIZZAZIONE DEI TERRENI E DEGLI AMMASSI ROCCIOSI

3.3.1 GALLERIA NATURALE: CLASSIFICAZIONE GEOMECCANICA, PARAMETRI FISICI, DI RESISTENZA E DEFORMAZIONE

- Rock Mass Rating e Geological Strenght Index

Nella Tabella seguente si riportano i valori del RMR e le relative classi geomeccaniche che si ritengono rappresentative della maggior parte dello sviluppo della galleria. Essi sono stati ricavati partendo dal valore medio dei rating parziali (ad esclusione di R4, R5 e R6) e sottraendo o sommando lo scarto quadratico medio ottenuto per i medesimi parametri. Ciò non esclude che in tratte localizzate di ridotta estensione e perciò non influenti sul comportamento globale del cavo e di ridotta lunghezza rispetto allo sviluppo longitudinale del tracciato, si possano avere condizioni geomeccaniche differenti da quelle di seguito riportate. Si riportano anche i corrispondenti valori di BMR e di GSI.

		minin	ni	med	di	massi	mi
Para	metro	Valore	Rating	Valore	Rating	Valore	Rating
R1	[Mpa]	30	4	70	7	110	12
R2	[%]	32.4	8	52.5	13	72.6	13
R3	[mm]	70	8	120 ÷ 150	8	300	10
F	२४	/	10	/	20	/	25
F	२५	venute	0	stillicidi	4	stillicidi	4
F	R6	molto sfavorevole	-12	molto sfavorevole	-12	molto sfavorevole	-12
RI	MR	18		40		52	
Cla	isse	V		IV		III	
BI	MR	45		63		75	
G	SI	40		58		70	
Tabella	a 26 - Ri	assunto risultat	i per la det	erminazione di	RMR, BMR e	e di GSI	

La qualità geomeccanica degli ammassi rocciosi presenti nell'area interessata dallo scavo in sotterraneo è variabile da una classe III ad una classe V; in particolare la classe V (stimabile dai

valori inferiori di RMR) si riferisce ad ammassi intensamente fratturati presenti verosimilmente in corrispondenza dell'attraversamento della zona in faglia.

Il parametro R6 è stato valutato considerando l'orientazione della scistosità (ritenuta essere la principale famiglia di discontinuità) rispetto al tracciato dell'opera.

Per il parametro R5 nelle classi III e IV è stata considerata, prudenzialmente, la condizione di "stillicidio".

Caratteristiche fisiche e meccaniche

Nei grafici seguenti si riportano gli inviluppi di rottura di Hoek-Brown ed i relativi valori dei parametri mb, s, a e del modulo elastico per l'ammasso roccioso in questione, svolti utilizzando il programma di calcolo RocLab.

PK	Clas	Н	Y	GSI	σ	mi	D	MR
	se	(m)	(Kn/mc)		(MPa)			
5270 - 5420	IV	37.50	27	58	51.64	28	0.5	525
5420 - 5480	111	41.50	27	70	83.07	28	0.5	525
5480-5490	IV	42.50	27	58	70	28	0.5	525
5490 - 5510	V	42.50	27	40	30	28	0.8	525
5510 - 5520	IV	42.50	27	58	70	28	0.5	525
5520 - 6010	III	91.50	27	70	110	28	0.5	525
6010 - 6048.26	IV	30.50	27	58	42.80	28	0.5	525
Tabella 27 – Dati u	utilizzati	per il cal	colo degli in	viluppi di rott	ura di HOE	K-BROWN.		

Si riportano i dati utilizzati:

Per il parametro m_i relativo alla roccia intatta si è considerato un valore pari a 28, secondo le indicazioni di letteratura (28+-5 valido per gli Gneiss).

Per la valutazione del Modulo Elastico di roccia Intatta E_i, si considera una correlazione con la compressione monoassiale della roccia secondo la seguente formulazione legata a MR:

- $E_i = MR \sigma c$ con MR = 525+-225 valido per gli Gneiss.

Si assume nei calcoli MR=525.

ď

Per il parametro D si considera una condizione di disturbo media indotta dallo scavo nell'ammasso legata ai metodi di scavo previsto con esplosivo pari a 0.5, mentre in classe V in faglia si considera un fattore di disturbo D pari a 0.8.

GN01- CARATTERIZZAZIONE GEOTECNICA RELAZIONE TECNICA

GN01- CARATTERIZZAZIONE GEOTECNICA RELAZIONE TECNICA

GN01- CARATTERIZZAZIONE GEOTECNICA RELAZIONE TECNICA

ING RENATO ECOPLAN CE

SETAC SE ARKE MOREONERA STA

3.3.2 IMBOCCHI E TRATTO IN MATERIALE SCIOLTO DELLA GALLERIA NATURALE

La definizione dei parametri geotecnici per i terreni incoerenti è stata effettuata sulla scorta di tutti i dati ricavabili dalle prove SPT, dalle prove pressiometriche e dalle analisi geotecniche di laboratorio.

PARAMETRI DI TAGLIO

Poiché i parametri di taglio dei terreni incoerenti dipendono, oltre che dal grado di addensamento, anche dalla forma dei granuli e dalle caratteristiche granulometriche, vengono riportati i valori dell'angolo di attrito φ ' con riferimento alle singole zone di indagine.

Il valore riportato per sondaggio rappresenta la media dei valori ricavabili da tutte le prove SPT effettuate nel suddetto sondaggio.

La caratterizzazione geotecnica può essere rivista in dettaglio in relazione alla ubicazione delle opere e delle prove disponibili nelle indagini più vicine alle zone interessate.

- Depositi alluvionali (UG1)

Nella Tabella 28 seguente sono riportati i valori dell'angolo di attrito ϕ ' ricavati per tutte le prove SPT, con Nspt normalizzato.

	DEPOSITI ALLUVIONALI		
	JAP	ANESE NATION	ALRAILWAY
	Anno	Sondaggio	Angolo di attrito (media)
		N°	φ' (°)
		SP.1	34,41
		S.2	38,28
		SP.3	36,20
		S.4	45,40
	2002	SP.5	33,54
		S.6	33,42
		SP.7	32,84
		S.8	34,21
		SP.9	35,69
		SP.14	31,39
		S.1	39,22
	2009	S.8	35,13
		S.9	34,84
		S.2DH	35,42
		S.03	34,66
		S.04PZ	34,72
	2019	S.05	34,21
		S.06DH	34,37
		S.07PZ	33,55
		S.08PZ	33,29
Tabella 28 – Valori di φ' secondo l	lo Japa	anese Nati	onal Railway

Per le prove in cui il valore Nspt rilevato nel corso dei sondaggi è maggiore di 50 è stata apportata la correzione per la granulometria da cui si ricavano i valori riportati in Tabella 29, in cui vengono riportati i valori dell'angolo di attrito a volume costante (φ cv), di picco (φ p) ed intermedio (φ) (quest'ultimo è prossimo al valore che caratterizza la fase di rottura del terreno).

Difatti durante la fase di rottura di un terreno incoerente, come avviene nella scatola del taglio diretto, i singoli granuli si spostano dalla loro configurazione iniziale e tendono ad assumere un assetto più denso; lo sforzo di taglio massimo o di picco (ϕ p) è dovuto al mutuo incastro iniziale tra le particelle ed il superamento di tali condizioni avviene con una sensibile variazione di volume

ANDANTI

(dilatazione). Superato il valore di picco si ha gradualmente un decremento di resistenza al taglio sino al raggiungimento di un valore ultimo che si mantiene costante senza variazioni di volume, noto come "angolo di attrito a volume costante" (φ cv).

Lungo una superficie di rottura, come nel caso della rottura globale del terreno, il grado di resistenza al taglio non è uguale lungo tutta la superficie stessa, ma sussistono dei punti in cui si ha la massima concentrazione dello sforzo di taglio; se il materiale, quale ad esempio una sabbia ben addensata, presenta valori di resistenza al taglio per piccole deformazioni (valori di picco) marcatamente superiori a quelli corrispondenti a grandi deformazioni senza variazioni di volume (valori a volume costante), all'istante della rottura la resistenza media disponibile lungo tutta la superficie deve necessariamente avere un valore intermedio.

A tal proposito studi di YAMAGUCHI et Al. (1977) hanno dimostrato che l'angolo di attrito disponibile a rottura per la valutazione della Qlim risulta prossimo a quello a volume costante (φ cv) anziché a quello di picco (φ p).

NEGUSSEY et Al. (1986) hanno sottolineato che φ cv è un parametro legato in primo luogo alle caratteristiche mineralogiche del materiale ed è indipendente dalle dimensioni delle particelle.

Riassumendo, quindi, apportando la correzione ai valori Nspt che tiene conto delle caratteristiche granulometriche solo nelle prove con Nspt > 50 [AMANTIA SCUDERI F. (1995)], i conseguenti

MANDANTI

valori dell'angolo di attrito sono da riferire ai parametri di taglio della fase di rottura a volume costante (φ cv), che può considerarsi legata ai valori di φ p dalla seguente relazione:

- $\varphi cv = \arctan(\tan \varphi p/1,250)$

LAMBE & WHITMAN (1969) forniscono alcuni valori indicativi di $\varphi p e \varphi cv$, riassunti nella Tabella 30, che confermano il rapporto tra i due valori.

		DEPOSITI AL	LUVIONALI					
	CORREZIONE PER GRANULOMETRIA							
Anno	Sondaggio	Angolo di attrito a volume costante (media)	Angolo di attrito di picco (media)	Angolo di attrito - Valore intermedio				
	N°	φ _{cv} (°)	φ _p (°)	φ _i (°)				
	SP.1	36,31	42,57	39,44				
	S.2	35,80	42,03	38,91				
	SP.3	36,77	43,04	39,90				
2002	S.4	34,23	40,38	37,31				
	S.8	32,95	39,01	35,98				
	SP.9	33,20	39,28	36,24				
	SP.14	33,50	39,60	36,55				
	S.1	35,37	41,58	38,48				
2009	S.8	35,04	41,23	38,13				
	S.9	34,99	41,18	38,09				

Tabella 29 – Valori di ϕ ' corretti per la granulometria

	φp		φ сν	
	Densità media	Densa		
Sabbia uniforme da l	fine			
a media	30° - 34°	32° - 36°	26° - 30°	
Sabbia mista	34° - 40°	38° - 46°	30° - 34°	
Sabbia e ghiaia	36° - 42°	40° - 48°	32° - 36°	
Tabella 30 – LAMBE 8	WHITMAN (1969) Valo	ri indicativi di φp e φcv		

Pertanto ai depositi alluvionali si possono affidare i seguenti parametri di caratteristici e di calcolo, sempre per zone rappresentate dai sondaggi (Tabella 31).

Anno	Sondaggi	Angolo di	Correzione per	Valore carattaristico	Valore di calcolo
	0	attrito	granulometria		
	N°.	φ'(°)	φ (°)	φ ['] c(°)	φ'cal (°)
	SP.1	34,41	39,44	36,93	32,47
	S.2	38,28	38,91	38,60	34,26
	SP.3	36,20	39,90	38,05	33,67
	S.4	45,40	37,31	41,35	37,33
2002	SP.5	33,54		33,54	28,98
2002	S.6	33,42		33,42	28,87
	SP.7	32,84		32,84	28,28
	S.8	34,21	35,98	35,10	30,57
	SP.9	35,69	36,24	35,96	31,46
	SP.14	31,39	36,55	33,97	29,42
	S.1	39,22	38,48	38,85	34,53
2009	S.8	35,13	38,13	36,63	32,16
	S.9	34,84	38,09	36,46	31,98
	S.2DH	35,42	38,75	37,08	32,64
	S.03	34,66	39,36	37,01	32,56
	S.04PZ	34,72	36,47	35,60	31,08
2019	S.05	34,21		34,21	29,66
	S.06DH	34,37	36,80	35,59	31,07
	S.07PZ	33,55	36,66	35,11	30,57
	S.08PZ	33,29	35,88	34,59	30,04
			Media valori	36,04	31,58
bella 31 – Depositi alluvionali	- Valo	ori car	atteristici	e di calcolo d	dell'angolo

MANDANTI

մ

- Conoidi (UG2-1)

Per i depositi di conoide nella Tabella 32 sono riportati i valori dell'angolo di attrito ϕ ' ricavati per tutte le prove SPT, con Nspt normalizzato.

	CONOIDI			
	JAPA	ANESE NATION	AL RAILWAY	
	Anno	Sondaggio	Angolo di attrito (media)	
		N°	φ'(°)	
		SP.11	34,22	
	2002	SP.13	34,22	
	2002	SP.15	33,52	
		SP.16	34,73	
	2009	S.2	42,28	
		S.10	44,15	
			35,19	
		S.01	38,91	
			41,18	
	2019		41,27	
	2015	S.06DH	39,47	
			42,31	
		S 11DH	35,89	
		5.11011	36,64	
Tabella 32 – Valori di ω' secondo	lo Jap	anese Natio	onal Railwav	

Anche in questo caso, così come per i depositi alluvionali, per le prove in cui il valore Nspt rilevato nel corso dei sondaggi è maggiore di 50 è stata apportata la correzione per la granulometria da cui si ricavano i valori riportati in Tabella 33., in cui vengono riportati i valori dell'angolo di attrito a volume costante (φ cv), di picco (φ p) ed intermedio.

		CONC	DIDI							
	CORREZIONE PER GRANULOMETRIA									
Anno	Sondaggio	Angolo di attrito a volume costante (media)	Angolo di attrito di picco (media)	Angolo di attrito - Valore intermedio						
	N°	φ _{cv} (°)	φ _p (°)	φ _i (°)						
	SP.13	33,82	39,95	36,88						
	SP.15	33,65	39,76	36,71						
2002	SP.15	34,59	40,76	37,68						
2002	SP.15	35,10	41,30	38,20						
	SP.15	33,56	39,66	36,61						
	SP.15	32,81	38,86	35,83						

E', quindi, possibile affidare ai depositi di conoide i seguenti parametri di caratteristici e di calcolo, sempre per zone rappresentate dai sondaggi.

DANTI

					1		
	Anno	Sondaggio	Angolo di attrito	correzione per	Valore carattaristico	Valore di calcolo	
				granulometria			
		N° N	φ'(°)	φ'(°)	φ'c (°)	φ' _{cal} (°)	
		SP.11	34,22		34,22	29,67	
		SP.13	34,22		34,22	29,67	
				36,88	36,88		
		SP.15	33,52		33,52	28,96	
	2002			36,71	36,71		
	2002			37,68			
				38,20			
				36,61			
				35,83			
		SP.16	34,73		34,73	30,19	
	2000	S.2	42,28		42,28	38,39	
	2009	S.10	44,15		44,15	40,60	
			35,19		35,19	30,66	
		S.01	38,91		38,91	34,60	
			41,18		41,18	37,12	
	2010		41,27		41,27	37,24	
	2019	S.06DH	39,47		39,47	35,22	
			42,31		42,31	38,42	
		C 11DU	35,89		35,89	31,38	
		S.IIDH	36,64		36,64	32,17	
·			-	Valori medi	37,75	33,60	
Tabella 3/ (onoidi	- Valori o	aratteristici e	di calcolo dell	'angolo di attr	ito	

- Morene (UG2-2)

Per morene nella Tabella 35 sono riportati i valori dell'angolo di attrito ϕ ' ricavati per tutte le prove SPT, con Nspt normalizzato.

	MORE	NE
J	APANESE NATIO	VAL RAILWAY
Anno	Sondaggio	Angolo di attrito (media)
	N°	φ'(°)
	SP.12	
2002	2 SP.12	32,77
	SP.12	
	SP.12	_
	SP.12	
	SP.12	
	<u>S.4</u>	32,10
	5.4	-
2009	, 5.5	34,08
	5.5	
	5.6	
	5.0 S 11DH	
2019) <u>5.11DH</u>	32,72
Fabella 35 – Valori di ${f \phi}$ ' secondo lo Japa	anese Nat	ional Railwa

E', quindi, possibile affidare alle morene i seguenti parametri di caratteristici e di calcolo, sempre per zone rappresentate dai sondaggi.

		Sondaggio	Angolo di attrito	Valore carattaristico	Valore di calcolo
	Anno	N°	φ' (°)	φ' _c (°)	φ' _{cal} (°)
	2002	SP.12	32,77	32,77	28,21
		S.4	32,10	32,10	27,55
	2009	S.5	34,08	34,08	29,53
		S.6	33,98	33,98	29,43
	2019	S.11DH	32,72	32,72	28,16
			Valori medi	33,13	28,58
Tabella 36	Morene - V	/alori carat	teristici e di calc	olo dell'angolo di :	attrito

l abella 36 - Morene - Valori caratterístici e di calcolo dell'angolo di attrito

Per quanto attiene al comportamento meccanico dei depositi morenici durante lo scavo in galleria è opportuno sottolineare come la presenza di una matrice di sabbia fina, localmente limosa, al di sopra della falda induca, per fenomeni di capillarità, delle tensioni interstiziali negative, fenomeno, questo, designato come "suzione", che da luogo ad una coesione apparente.

Tale coesione è presente sin tanto che sussistono le condizioni di capillarità.

La resistenza al taglio disponibile in un terreno a grana fine, parzialmente saturo, viene convenzionalmente espressa da una relazione che è una variazione del criterio di rottura di Mohr: – **Coulomb per i terreni incoerenti:**

$$\tau' = C' + \sigma_n \cdot tan\phi' + (U_a - U_w) \cdot tan\phi_b$$

In cui:

τ resistenza al taglio:

C' coesione apparente:

σn tensione normale:

 ϕ' angolo di attrito efficace:

 φ b è una proprietà del materiale che rappresenta l'incremento di resistenza dovuto alla pressione interstiziale negativa:

Ua pressione dell'aria:

Uw pressione dell'acqua nei pori.

In pratica al contributo di resistenza frizionale rappresentato dal termine σ n.tan ϕ ' e di resistenza non drenata c' si aggiunge una componente di resistenza di suzione dipendente dalla differenza di pressione aria-acqua e dal parametro ϕ b.

Quest'ultimo varia con il grado di saturazione oltre che con la tipologia di terreno, di fluido e con la porosità. Nella fascia capillare dove il terreno è saturo ma le pressioni sono negative si ha $\varphi b = \varphi'$.

Per una pressione di suzione pari a 0,3 Kg/cm2, ponendo $\varphi b = \varphi'$, si ottiene una coesione apparente di circa 0,48 Kg/cm2.

Nelle verifiche in galleria per i suddetti terreni si può assumere come giustamente cautelativo il valore di:

- Coesione apparente Ca = 10 kPa

DANTI

CARATTERISTICHE FISICHE E GRANULOMETRICHE

Le caratteristiche granulometriche vengono determinate sulla scorta delle analisi geotecniche di laboratorio effettuate nelle campagne di indagini del 2002, del 2009 e del 2019. Sono state effettuate le seguenti analisi geotecniche di laboratorio.

	Anno	Tipo di analisi	N° analisi	
		Granulometria	83	
		Grandionicana	00	
	2002	Limiti di Atterberg	71	
		Peso specifico dei grani	39	
	2009	Granulometria	40	
		Peso specifico dei grani	1	
	2019	Granulometria	1	
		Prova di taglio diretto	1	
Tabella 37 –	Analisi geotecr	niche di laboratorio		

Nella Tabella 38 sono riportate le analisi granulometriche effettuate nel 2002 ed i relativi litotipi, da cui risulta che su un totale di N° 83 analisi granulometriche:

- N° 64 ricadono nei depositi alluvionali;
- N° 29 ricadono nei depositi di conoide.

€€

MANDANTI

Nella Tabella 39 sono riportate le analisi granulometriche effettuate nel 2009 ed i relativi litotipi, da cui risulta che su un totale di N° 40 analisi granulometriche:

- N° 20 ricadono nei depositi alluvionali;
- N° 8 ricadono nei depositi di conoide;
- N° 12 ricadono nelle morene.

Sondag gio N°	S.1	S.2	S.3	S.4	S.5	S.6	S.7	S.8	S.9	S.10	PZ 1 ÷ 11	
Alluvioni	3		1					3	2		11	
Conoidi		3	1							4		
Morene				2	5	3	2					
	Analis	i granul	ometric	he ann	o 2009							

La determinazione dei Limiti di Atterberg è stata effettuata solo nelle analisi geotecniche del 2002, come da Tabella 40.

Sondaggio	Cam	pione	Limite Liquido WL	Limite Plastico WL	Litotipo	Sondaggio	Cam	pione	Limite Liquido WL	Limite Plastico WL	Litotipo
N°	da m	a m	%	%		N°	da m	a m	%	%	
	1,80	2,00	18,50	N.P.			3,80	4,00	19,00	N.P.	
	7,30	7,50	17,00	N.P.			6,20	6,40	16,15	N.P.	
CD 1	11,20	11,40	15,00	N.P.	Alluniani	SP.13	13,30	13,50	19,50	N.P.	Conoide
5P.1	18,80	19,00	18,00	N.P.	Alluvioni		18,00	18,20	19,00	N.P.	1
	24,80	25,00	12,50	N.P.	1		24,30	24,50	20,00	N.P.	
	29,80	30,00	17,00	N.P.			2,80	3,00	21,50	N.P.	
6.2	2,00	2,20	14,30	N.P.	Alluniani	1	6,80	7,00	19,00	N.P.	
3.2	8,80	9,00	15,00	N.P.	Anuvioni		11,80	12,00	13,00	N.P.	
SP.3	2,80	3,00	18,10	N.P.	Alluvioni		24,00	24,20	15,00	N.P.	
6.4	2,50	2,70	19,50	N.P.	Alluniani	1	29,00	29,20	18,00	N.P.	
5.4	5,30	5,50	18,00	N.P.	Anuvioni		31,80	32,00	19,50	N.P.	
	2,00	2,20	20,00	N.P.		SP.14	38,70	39,00	19,00	N.P.	Alluvioni
SP.5	8,50	8,70	19,50	N.P.	Alluvioni		48,80	49,00	19,00	N.P.	
	13,30	13,50	20,00	N.P.			54,80	55,00	15,00	N.P.	
	1,80	2,00	17,00	N.P.		1	59,30	59,50	19,00	N.P.	
	9,80	10,00	16,00	N.P.			64,70	64,90	17,50	N.P.	
S.6	14,80	15,00	15,00	N.P.	Alluvioni		66,80	67,00	18,00	N.P.	
	19,80	20,00	21,50	N.P.			68,90	69,00	19,50	N.P.	
	24,80	25,00	11,00	N.P.			3,00	3,20	20,00	N.P.	
	1,80	2,00	28,00	N.P.	Conoido	1	7,80	8,00	18,00	N.P.	1
CD 7	16,00	16,30	16,00	N.P.	Conoide		10,00	10,20	19,50	N.P.	
5P.7	22,00	22,20	17,00	N.P.	Alluniani	SP.15	18,00	18,20	19,50	N.P.	Conoide
	29,50	29,70	16,00	N.P.	Alluvioni		21,80	22,00	18,00	N.P.	
	2,00	2,20	15,50	N.P.		1	28,90	30,00	19,00	N.P.	1
	8,80	9,00	17,50	N.P.			33,80	34,00	17,50	N.P.	
S.8	12,00	12,20	15,00	N.P.	Alluvioni		1,00	1,20	25,00	N.P.	
	14,80	15,00	15,00	N.P.		SD 16	3,50	3,70	19,00	N.P.	Conoido
	24,80	25,00	17,00	N.P.		3P.10	9,50	9,70	20,50	N.P.	Conolue
	4,80	5,00	16,00	N.P.			14,50	14,70	16,50	N.P.	
	9,50	9,70	21,00	N.P.		SO.2	2,00	2,20	20,50	N.P.	Alluvioni
60.0	13,00	13,20	17,50	N.P.	Allendard	P.2	0	,50	26,00	N.P.	
SP.9	17,30	17,50	18,00	N.P.	Alluvioni	P.3	0	,50	17,50	N.P.	
	24,70	24,90	20,00	N.P.		P.4	0	,50	29,00	N.P.	Alluvioni
	29,60	29,80	17,00	N.P.		P.5	0	,50	32,00	N.P.	
SP 10	2,80	3,00	20,50	N.P.	Allunioni	P.6	0	,50	24,00	N.P.	
58.10	12,00	12,20	20,50	N.P.	Alluvioni						
Tabella	40 – L	imiti o	li Atterber	g – Anno	2002						

Su N° 71 determinazioni dei Limiti di Atterberg:

- N° 53 ricadono in depositi alluvionali;

NG RENATO

- N° 18 ricadono nelle conoidi.

Depositi alluvionali (UG1)

DANTI

ď

Come peso di volume di dei depositi alluvionali si possono adottare i seguenti valori:

- peso di volume saturo

```
γs = 21 kN/m3
```

- peso di volume in assenza di falda γ = 19 kN/m3

Il valore della coesione efficace C' si assume:

C' = 0 kPa

Sono stati analizzati i seguenti dati di consistenza e granulometrici:

- nei 53 campioni analizzati le caratteristiche di consistenza (Limiti di Atterberg) risultano abbastanza confrontabili, essendo tutti terreni non plastici, con valori del limite liquido WL compreso nel seguente range:

con un valore medio

WLmed = 18.27 %

- in tutte le 84 analisi granulometriche effettuate (N° 64 nel 2002 e N° 20 nel 2009) si ha la netta predominanza delle frazioni ghiaiose e sabbiose, come da Tabella 32.

		ALL	UVIONI	
	٨٩٩٩	Analisi granulometriche	Prevalenza sabbia	Prevalenza ghiaia su
	AIIIO	N°	su campioni N°	campioni N°
	2002	64	18	46
	2009	20	6	14
	2019	1	1	0
Tabella 41 – F	razioni gra	nulometriche prevalen	ti	

In quasi il 72% dei campioni analizzati prevale la frazione grossolana costituita da ghiaia, mentre nel rimanente 28% prevale la frazione sabbiosa.

La Densità Relativa (Dr) viene anch'essa determinata dai valori Nspt normalizzati (N1(60) come in Tabella 42.

	DEPOSITI	ALLUVIONALI
	BAZAF	RAA (1962)
		Densità relativa - Valore
Anno	Sondaggio	medio per sondaggio
		Dr (%)
	SP.1	55,76
	S.2	68,05
	SP.3	59,35
	S.4	78,25
2002	SP.5	51,28
2002	S.6	50,61
	SP.7	51,02
	S.8	55,80
	SP.9	58,01
	SP.14	41,94
	S.1	74,49
2009	S.8	60,12
	S.9	58,90
	S.2DH	61,07
	S.03	56,88
	S.04PZ	58,22
2019	S.05	55,98
	S.06DH	56,60
	S.07PZ	53,31
	S.08PZ	52,96
Valo	ore medio	57,93
ella 42 – Alluvioni – Densità relativa	Dr	

Depositi di conoide (UG2-1)

ANDANTI

ď

Anche in questo caso si possono assumere valori del peso di volume uguali a quelli dei depositi alluvionali:

EE

- peso di volume saturo

 $\gamma s = 21 \text{ kN/m3}$

- peso di volume in assenza di falda γ = 19 kN/m3

Il valore della coesione efficace C' si pone:

C' = 0 kPa

Sono stati analizzati i seguenti dati di consistenza e granulometrici:

- nei 18 campioni analizzati dalle caratteristiche di consistenza (Limiti di Atterberg) risultano tutti terreni non plastici, con valori del limite liquido WL compreso nel seguente range:

WLmed = 19,45 %

con un valore medio

- in tutte le 37 analisi granulometriche effettuate (N° 29 nel 2002 e N° 8 nel 2009) si ha la netta predominanza delle frazioni ghiaiose e sabbiose, come da Tabella 43.

		CC	NOIDI	
	4000	Apolici gropulomotricho Nº	Prevalenza sabbia su	Prevalenza ghiaia su
	Anno	And isi granulometriche N	campioni N°	campioni N°
	2002	29	2	27
	2009	8	6	2
Tabella 43 – F	razioni dra	nulometriche prevalen	ti	

In quasi il 78% dei campioni analizzati prevale la frazione grossolana costituita da ghiaia, mentre nel rimanente 22% prevale la frazione sabbiosa.

La Densità Relativa (Dr) viene anch'essa determinata dai valori Nspt normalizzati (N1(60) come in Tabella 44.

		CONOID	DI
		BAZARAA (1	962)
			Densità relativa -
	1000	Sondaggio	Valore medio
	AIIIO	Solidaggio	per sondaggio
			Dr (%)
		SP.11	53,47
	2002	SP.13	55,69
	2002	SP.15	53,02
		SP.16	57,13
	2000	S.2	82,25
	2009	S.10	78,75
		S.01	60,73
	2019	S.06DH	72,22
		S.11DH	56,99
	Valo	ore medio	63,36
Tabella 44 – Conoidi – Densità relat	iva Dr		

Morene (UG2-2)

Come valori del peso di volume si possono assumere i seguenti:

- peso di volume saturo $\gamma s = 22 \text{ kN/m3}$

- peso di volume in assenza di falda γ = 20-21 kN/m3

Il valore della coesione efficace C' si pone:

C' = 0-10 kPa.

Non sono state effettuate determinazioni delle caratteristiche di consistenza sui depositi morenici. In tutte le 12 analisi granulometriche effettuate (tutte nel 2009) si ha la netta predominanza delle frazioni ghiaiose e sabbiose, come da Tabella 36.

		M	ORENE	
	Anno	Analisi granulometriche N°	Prevalenza sabbia su campioni N°	Prevalenza ghiaia su campioni N°
	2009	12	1	11
Tabella	45 – Frazion	i granulometriche prevalenti		

In quasi il 92% dei campioni analizzati prevale la frazione grossolana costituita da ghiaia, mentre nel rimanente 8% prevale la frazione sabbiosa.

La Densità Relativa (Dr) viene anch'essa determinata dai valori Nspt normalizzati (N1(60) come in Tabella 46.

		MOREN	E
		BAZARAA (1	962)
			Densità relativa -
	A m m m	Condonaio	Valore medio
	Anno	Sondaggio	per sondaggio
			Dr (%)
	2002	SP.12	49,09
		S.4	43,92
	2009	S.5	51,98
		S.6	49,72
	2019	S.11DH	50,17
	Valo	ore medio	48,98
Tabella 46 – Morene – Densità rela	tiva Dr		

CARATTERISTICHE ELASTICHE

I moduli di elasticità dei terreni incoerenti vengono ricavati dalle prove SPT e da quelle pressiometriche.

Depositi alluvionali (UG1)

ANDANTI

մ

Dai valori normalizzati N1(60) si ricavano, per ciascun sondaggio, i valori medi del Modulo di Elasticità (Modulo di Young) E ed edometrico Ed, riportati nella seguente Tabella 47.

			Modulo Elastico E (Kg/cm²) Valore medio per sondaggio	Modulo edometrico Ed (Kg/cm²) Valore medio per sondazgio	
			Jamiolkowski et Al. (1988)	Begemann (1974) (sabbie e ghiaie)	
		SP.1	355,65	126,80	
		S.2	445,91	139,68	
		SP.3	342,28	132,77	
		S.4	376,76	163,43	
	02	SP.5	236,51	. 123,88	
	50	S.6	274,58	123,51	
		SP.7	364,20	121,57	
		S.8	331,80	126,14	
		SP.9	357,57	131,06	
		SP.14	296,88	116,74	
	6	S.1	507,18	142,82	
	200	S.8	385,06	129,21	
		S.9	303,03	128,22	
		S.2DH	476,66	159,12	
		S.03	549,37	166,99	
	6	S.04PZ	394,10	148,62	
	201	S.05	290,97	136,23	
		S.06DH	507,35	161,64	
		S.07PZ	465,08	155,97	
		S.08PZ	397,80	148,09	
		Valori medi	382,94	139,12	
Tabella 47 – Alluvioni – Moduli elastici da N1(60)					

DEPOSITI ALLUVIONALI							
Sondaggio	Profondità di prova Modulo Pressiometrico Modulo Edometrico Modulo Elastico						
N°	m	Em (MPa)	Ed (MPa)	E' (MPa)			
	60,00	127,9	387,6	323,0			
SP.14	63,00	163,2	494,5	412,1			
	66,00	221,3	670,6	558,8			
Media valori 170,8 517,58 431,31							

Dalle prove pressiometriche si ricavano i valori della Tabella 48.

La scelta del valore da adottare nei calcoli sarà effettuata in relazione al sito dell'opera.

Conoidi (UG2-1)

Dai valori normalizzati N1(60) si ricavano, per ciascun sondaggio, i valori medi del Modulo di Elasticità (Modulo di Young) E ed edometrico Ed, riportati nella seguente Tabella 49.

		Modulo Elastico E (Kg/cm ²)	Modulo edometrico Ed (Kg/cm ²)
	Sopndaggio N°	Valore medio per sondaggio	Valore medio per sondaggio
		Jamiolkowski et Al. (1988)	Begemann (1974) (sabbie e ghiaie)
	SP.11	197,98	126,16
	SP.13	299,68	126,17
	SP.15	327,68	123,83
	S.16	273,33	127,86
	S.2	533,67	153,04
	S.10	367,73	159,27
	S.01	320,43	128,93
	S.06DH	385,61	133,70
	S.11DH	295,05	145,32
	Valori medi	333,46	136,03
abella 49 – Cono	idi – Moduli elast	ici da N1(60)	

Dalle prove pressiometriche si ricavano i valori della Tabella 50.

		CONOIDI		
Sondaggio	Profondità di prova	Modulo Pressiometrico	Modulo Edometrico	Modulo Elastico
N°	m	Em (MPa)	Ed (MPa)	E' (MPa)
	8,50	176,9	536,1	446,7
SP.13	11,50	105,6	320,0	266,7
	14,50	275,6	835,2	696,0
	27,00	82,9	251,2	209,3
SP.15	30,00	108,6	329,1	274,2
	33,00	106,9	323,9	269,9
S.2	5,50	78,8	238,8	199,0
N	ledia valori	133,6	404,9	337,4
abella 50 –	Conoidi – Moduli e	lastici da prove pressi	ometriche	

La scelta del valore da adottare nei calcoli sarà effettuata in relazione al sito dell'opera.

Morene (UG2-2)

DANTI

Dai valori normalizzati N1(60) si ricavano, per ciascun sondaggio, i valori medi del Modulo di Elasticità (Modulo di Young) E ed edometrico Ed, riportati nella seguente Tabella 51.

	Modulo Elastico E (Kg/cm ²)	Modulo edometrico Ed (Kg/cm ²)	
Sopndaggio N°	Valore medio per sondaggio	Valore medio per sondaggio	
	Jamiolkowski et Al. (1988)	Begemann (1974) (sabbie e ghiaie)	
SP.12	297,58	121,34	
S.4	146,33	119,08	
S.5	205,74	125,71	
S.6	207,94	125,37	
S.11DH	388,30	121,16	
Valori medi	249,18	122,53	
Fabella 51 – Mor	ene – Moduli elastici da N	1(60)	

Anche in questo caso la scelta del valore da adottare nei calcoli sarà effettuata in relazione al sito dell'opera.

4 PARAMETRI DI PROGETTO

Nel presente Capitolo si riportano sia i valori dei parametri geotecnici utilizzati per la progettazione degli scavi e delle opere previste in corrispondenza degli imbocchi che i parametri geomeccanici utilizzati per la definizione delle sezioni tipo di scavo e rivestimento della galleria naturale.

4.1 IMBOCCHI E TRATTO IN MATERIALE SCIOLTO DELLA GALLERIA NATURALE

Per i terreni morenici si assumono i seguenti parametri geotecnici:

Peso di volume:	20 - 21 kN/mc
Angolo di attrito caratteristico:	32° - 34°
Coesione efficace:	0 - 10 kPa
Modulo Elastico (Young):	14.63 - 29.75 MPa
Modulo Edometrico:	11.90 – 12.57 MPa.
Coefficiente di Poisson:	0.3.

66

DANTI

4.2 AMMASSO ROCCIOSO

Per la determinazione dei parametri di resistenza c e φ dell'inviluppo di Mohr-Coulomb è stata effettuata la linearizzazione dal criterio curvilineo di Hoek-Brown, considerando carichi litostatici assumendo un peso di volume pari a 27 kN/m3.

PK	Clas	Н	GSI	С	Φ	σc	σcm	Ed
	se	(m)		(MPa)	(°)	(MPa)	(MPa)	(MPa)
5270 - 5420	IV	37.50	58	0.453	61.22	3.045	13.283	6491.20
5420 - 5480		41.50	70	1.129	65.51	11.182	29.685	19077.14
5480-5490	IV	42.50	58	0.571	62.28	4.179	18.232	8909.49
5490 - 5510	V	42.50	40	0.191	45.32	0.287	3.371	803.62
5510 - 5520	IV	42.50	58	0.571	62.28	4.179	18.232	8909.49
5520 - 6010	III	91.50	70	1.700	63.32	14.806	39.308	25261.65
6010 - 6048.26	IV	30.50	58	0.371	61.29	2.508	10.939	5345.69
Tabella 52 – Parametri dell'ammasso ricavati da inviluppi di rottura di HOEK-BROWN.								

Si riportano di seguito i parametri d'ammasso riferiti alle Classe di scavo:

Per quanto riguarda l'attribuzione dei moduli elastici alle singole classi di scavo in ui è stato classificato l'ammasso si è operato nel seguente modo:

 Classe III e Classe IV: il modulo elastico viene assunto come il minore fra quello scaturito dalle correlazioni di Hoek-Brown e il valore medio ottenuto dalle prove di laboratorio. Il valore proveniente dal laboratorio viene poi abbattuto in funzione dell'RQD per ottenere quello riferito all'ammasso roccioso. Ovvero:

Em = Ei q considerando q un fattore di riduzione funzione dell'RQD. Nel caso specifico per la classe III (RQD=72.6%) si ottiene q = 0.6 mentre per la classe IV RQD=52,5%) si ottiene q=0.4.

- Classe V il modulo elastico viene assunto come il minore fra quello scaturito dalle correlazioni di Hoek-Brown e il valor medio ottenuto dalle prove dilatometriche. Si ritiene infatti che le prove dilatometriche, date le ridotte dimensioni della sonda, interessino un volume ridotto di ammasso roccioso e la risposta della prova sia quindi molto influenzata dalla presenza di fratturazioni locali. I valori ottenuti da queste prove si ritengono pertanto rappresentativi della classe di ammasso roccioso più fratturata ed alterata.

Il modulo ricavato dalle prove di laboratorio è riferito alla roccia intatta, i valori dalle prove dilatometriche si riferiscono invece all'ammasso roccioso.

Modulo elastico (EE) da prove di laboratorio
Valore medio [MPa]
36960
Modulo elastico (EE) da prove dilatometriche
Valore medio [MPa]
5775

GG

DANTI

Coefficiente di Poisson da	prove di laboratorio

Valore medio

0.23

Tabella 53 - Riassunto moduli elastici e coefficiente di Poisson

da prove di laboratorio e da prove dilatometriche.

I moduli elastici provenienti da prove di laboratorio risultano:

- Classe III E = 36960x0.6=**22176 MPa**;
- Classe IV E = 36960x0.4=**14784 MPa**

Il modulo elastico proveniente da prove dilatometriche risulta:

- Classe V E = **5575 MPa**

Confrontando con i valori dei moduli elastici ottenuti tramite la caratterizzazione dell'ammasso eseguite con Hoek-Brown si considera il valore di 22176 MPa valido in classe ill per il tratto centrale. I valori di progetto in definitiva risultano:

PK	Clas	Н	GSI	С	Φ	σc	σcm	Ed	
	se	(m)		(MPa)	(°)	(MPa)	(MPa)	(MPa)	
5270 - 5420	IV	37.50	58	0.453	61	3.045	13.283	6491	
5420 - 5480		41.50	70	1.129	65	11.182	29.685	19077	
5480-5490	IV	42.50	58	0.571	62	4.179	18.232	8909	
5490 - 5510	V	42.50	40	0.191	45	0.287	3.371	803	
5510 - 5520	IV	42.50	58	0.571	62	4.179	18.232	8909	
5520 - 6010	III	91.50	70	1.700	63	14.806	39.308	22176	
6010 - 6048.26	IV	30.50	58	0.371	61	2.508	10.939	5343	
Tabella 54 – Parai	Tabella 54 – Parametri di progetto dell'ammasso ricavati da inviluppi di rottura di HOEK-BROWN.								

Per le differenti classi di scavo si considera:

DANTI

പ്

PK	Clas	GSI	С	Φ	Ed	v	α		
	se		(MPa)	(°)	(MPa)		(°)		
5270 - 5420	IV	58	0.453	61	6491	0.25	7		
5420 - 5480		70	1.129	65	19077	0.25	8		
5480-5490	IV	58	0.571	62	8909	0.25	7		
5490 - 5510	V	40	0.191	45	803	0.25	6		
5510 - 5520	IV	58	0.571	62	8909	0.25	7		
5520 - 6010		70	1.700	63	22176	0.25	8		
6010 - 6048.26	IV	58	0.371	61	5343	0.25	7		
Tabella 55 – Para	Tabella 55 – Parametri di progetto - Coefficiente di Poisson e Dilatanza.								

5 DOCUMENTI DI RIFERIMENTO

- 5.1 NORMATIVE, RACCOMANDAZIONI, LINEE GUIDA
 - 1. DM 17/01/2018 Aggiornamento delle Norme Tecniche per le Costruzioni.
 - 2. Circolare 21/01/2019 n. 7 C.S.LL.PP. Istruzioni per l'applicazione dell'"Aggiornament delle Norme Tecniche per le Costruzioni" di cui al DM 17/01/2018.
 - Decreto Ministeriale LL.PP. 11/03/1988 Norme tecniche riguardanti le indagini si terreni e sulle rocce, la stabilità dei pendii naturali e delle scarpate, i criteri generali e l prescrizioni per la progettazione, l'esecuzione e il collaudo delle opere di sostegno dell terre e delle opere di fondazione.
 - 4. Circolare LL.PP. 24/09/1988 n.30483 L.2.2.1974, n.64 art.1 Istruzioni p∉ l'applicazione del D.M. 11/03/1988.

5.2 **BIBLIOGRAFIA**

- 5. BIENIAWSKI Z.T.: "Engineering classification of jointed rock masses" Transaction: South Africa Institution of Civil Engineers. (1993).
- 6. BIENIAWSKI Z.T.: "Geomechanics classification of rock masses and its application t tunnelig". Proc. 3rd Int. Congr. Rock Mechanics, ISRM, Denve. (1974).
- BIENIAWSKI Z.T.: "Determining rock mass deformability experience from histories". In J. Rock Mechanics, Minig Sciences & Geomechanics Abstracts, (1978).
- 8. BIENIAWSKI Z.T.: "Rock mechanics design in minig and tunnelling". Balkema Rotterdam, (1984).
- 9. BIENIAWSKI Z.T.: "Engineering rock mass classifications". J. Wiley& Sons, (1989).
- 10. HOEK E. BROWN E.T.: "Underground excavation in rock". Institution of Minig an Metallurgy, London (1982)
- 11. HOEK E.– BROWN E.T.: "Pratical estimates of rock mass strength" Internationa Journal of Rock Mechanics and Minig Sciences.
- 12. HOEK E.: "Rock tunnelling case histories and the application of modern rock engineerin tecniques", Sao Paulo Brazil (1998).
- 13. HOEK E. MARINOS P.: "Predicting squeeze" Tunnels & Tunnelling Internationa November December 2000.
- 14. HOEK E., CARRANZA-TORRES C., CORKUM B. Hoek-Brown failure criterion 200 Edition.
- 15. MOSTYN G., DOUGLAS K. Strength of Intact Rock and Rock Masses.
- 16. CANCELLI A.: "Appunti di Geotecnica", Cooperativa Universitaria Studio e Lavoro Milano 1980.
- 17. POZZI R. CLERICI A.: "Geologia Applicata", Ghedini Libraio, Milano 1995.
- 18. CESTARI F. "Prove Geotecniche in sito", ed. Geo-Graph s.n.c. Segrate, 1990.

ANDANTI

- 19. BHASIN R. "Criteri rapidi ed economici per la previsione dei problemi di stabilità nelle gallerie costruite in argilla, roccia tenera e roccia dura" Gallerie e grandi opere in sotterraneo marzo 1994, n°42.
- 20. HOEK E. MARINOS P. "Predicting squeeze" Tunnels & Tunnelling International november-dicember 2000.
- 21. FUOCO S., MAUGLIANI V., TANZINI M. "Deformability of a schistose rock mass from the interpretation of field and laboratory measurement data" 1995.