COMMITTENTE:

PROGETTAZIONE: **TALFERR** GRUPPO FERROVIE DELLO STATO ITALIANE DIRETTRICE FERROVIARIA MESSINA - CATANIA - PALERMO NUOVO COLLEGAMENTO PALERMO-CATANIA **U.O. INFRASTRUTTURE CENTRO** PROGETTO DEFINITIVO TRATTA NUOVA ENNA - DITTAINO (LOTTO 4B) **GEOTECNICA** FV01 - MODELLO B - ANALISI TRIDIMENSIONALE DELL'ESECUZIONE DELLA STAZIONE NELL'IPOTESI DI CONDIZIONI DRENATE CON LEGAME COSTITUTIVO HARDENING SOIL / HARDENING SOIL SMALL STRAIN SCALA: COMMESSA LOTTO FASE ENTE TIPO DOC. OPERA/DISCIPLINA PROGR. REV. Α RS3V 0 1 7 2 9 R|H||G|E|0|0|0|5| 0 D

Rev.	Descrizione	Redatto	Data	Verificato	Data	Approvato	Data	Autorizzato Data
Α	Emissione esecutiva	L.Castellani	Febbraio	M. Arcangeli	Febbraio	F.Sparacino	Febbraio	F. Arduini
			2020	111	2020	D	2020	Eebbraio 2020
						4 8		
						ů		astru AFE
								Abril 1892
								Zentra Centra Ce
								A rovince
							0	di di

RS3V40D29RHGE0005017A.doc n. Eab.: 185_8

PROGETTO DEFINITIVO
TRATTA NUOVA ENNA-DITTAINO

FV01 - MODELLO B - ANALISI TRIDIMENSIONALE DELL'ESECUZIONE DELLA STAZIONE NELL'IPOTESI DI CONDIZIONI DRENATE CON LEGAME COSTITUTIVO HARDENING SOIL / HARDENING SOIL SMALL STRAIN

 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 RS3V
 40
 D 29 RH
 GE0005 017
 A
 2 di 59

INDICE

1.	PREMESSA	4
2.	NORMATIVA E DOCUMENTI DI RIFERIMENTO	5
2.1	NORMATIVA DI RIFERIMENTO	5
2.2	DOCUMENTI DI RIFERIMENTO	5
2.3	SOFTWARE	5
3.	CARATTERIZZAZIONE GEOTECNICA	6
3.1	Indagini eseguite	6
3.2	STRATIGRAFIA E PARAMETRI GEOTECNICI DI PROGETTO	6
3.3	FALDA	16
3.4	CATEGORIA SOTTOSUOLO SISMICA	16
4.	GEOMETRIA MODELLATA E STUDIO DELLA GRADONATURA	18
4.1	DIMENSIONE DEL MODELLO	18
4.2	GEOMETRIA DEL PIANO CAMPAGNA	19
4.3	GRADONATURA DI PROGETTO E PALI DI CONSOLIDAMENTO	20
5.	ANALISI INTERVENTO DI CONSOLIDAMENTO	23
5.1	Premessa	23
5.2	Modelli costitutivi del terreno	23
5.3	PARAMETRI GEOTECNICI E STRATIGRAFIA	25
5.4	STRUTTURE ED ELEMENTI DI CONSOLIDAZIONE	30
5.5	FASI DI CALCOLO	33
	5.5.1 Inizializzazione dello stato tensionale	33
	5.5.2 Scavo della gradonatura	34
	5.5.3 Realizzazione dei pali di consolidamento	36

PROGETTO DEFINITIVO
TRATTA NUOVA ENNA-DITTAINO

FV01 - MODELLO B - ANALISI TRIDIMENSIONALE DELL'ESECUZIONE DELLA STAZIONE NELL'IPOTESI DI CONDIZIONI DRENATE CON LEGAME COSTITUTIVO HARDENING SOIL / HARDENING SOIL SMALL STRAIN

COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
RS3V	40	D 29 RH	GE0005 017	Α	3 di 59

	5.5.4	Rilevato fino a quota 429 m s.l.m.	38
	5.5.5	Rilevato fino a quota 434 m s.l.m.	40
	5.5.6	Rilevato fino a quota 439 m s.l.m.	41
	5.5.7	Rilevato fino a quota 444 m s.l.m.	43
	5.5.8	Ultimazione dell'opera	44
	5.5.9	Fase di Esercizio e fase allo Stato Limite Ultimo	46
5.6	Ris	ULTATI IN TERMINI DI SPOSTAMENTI	47
5.7	Ris	ULTATI IN TERMINI DI SOLLECITAZIONI STRUTTURALI	55

PROGETTO DEFINITIVO
TRATTA NUOVA ENNA-DITTAINO

FV01 - MODELLO B - ANALISI TRIDIMENSIONALE DELL'ESECUZIONE DELLA STAZIONE NELL'IPOTESI DI CONDIZIONI DRENATE CON LEGAME COSTITUTIVO HARDENING SOIL / HARDENING SOIL SMALL STRAIN

 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 RS3V
 40
 D 29 RH
 GE0005 017
 A
 4 di 59

1. PREMESSA

Nella presente relazione si espone il modello geotecnico 3D alle differenze finite che include i 100 m finali della struttura di stazione, gli scatolari ferroviari di approccio all'edificio di stazione, lo scatolare stradale di monte ed i primi 50 m circa di rilevato ferroviario di linea (senza strutture portate, se non i binari). Il rilevato ha un'altezza media di circa 15 m misurati dal piede dell'edificio di stazione al piede del rilevato.

Nel seguito, dopo una sintesi delle indagini e della caratterizzazione geotecnica dell'area, si espongono le caratteristiche e i parametri del modello 3D, le fasi di calcolo modellate ed i principali risultati ottenuti in condizioni drenate.

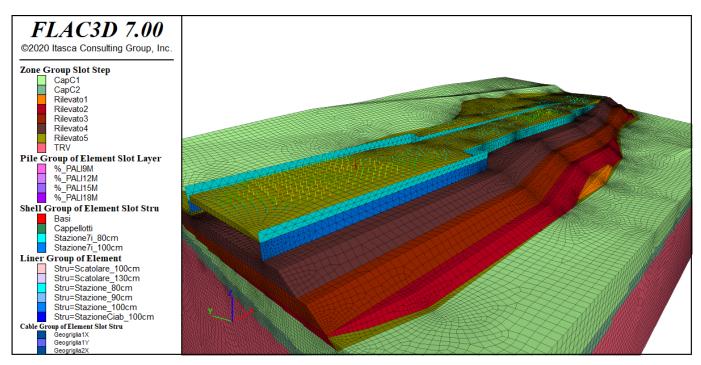


Figura 1. Modello geotecnico tridimensionale

PROGETTO DEFINITIVO
TRATTA NUOVA ENNA-DITTAINO

FV01 - MODELLO B - ANALISI TRIDIMENSIONALE DELL'ESECUZIONE DELLA STAZIONE NELL'IPOTESI DI CONDIZIONI DRENATE CON LEGAME COSTITUTIVO HARDENING SOIL / HARDENING SOIL SMALL STRAIN

 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 RS3V
 40
 D 29 RH
 GE0005 017
 A
 5 di 59

2. NORMATIVA E DOCUMENTI DI RIFERIMENTO

2.1 Normativa di riferimento

- [N.1]. Norme Tecniche per le Costruzioni, DM del 17/01/2018;
- [N.2]. C.M. 21/01/2019 n.7: Istruzioni per l'applicazione delle "Norme tecniche per le costruzioni.

2.2 Documenti di riferimento

- [DC1]. RS3V 40 D09 RH GE0001 001 Nuovo collegamento Palermo-Catania, tratta Nuova Enna Dittaino. Progetto Definitivo. Relazione Geotecnica tratti all'aperto Lotto 4b.
- [DC2]. RS3V 40 D09 F6 GE0001 001 ÷ RS3V 40 D09 F6 GE0001 010 Nuovo collegamento Palermo-Catania tratta Nuova Enna - Dittaino. Progetto Definitivo. Profilo geotecnico - Lotto 4B – 10 tavole.
- [DC3]. RS3V 40 D29 RB FV0100 001 A FV01-Stazione di Enna Relazione di calcolo e stabilità rilevato
- [DC4]. RS3V 40 D29 RB FV0100 002 A FV01-Stazione di Enna Relazione di calcolo e stabilità rilevato
- [DC5]. RS3V 40 D29 RB FV0100 003 A FV01-Stazione di Enna Relazione di calcolo e stabilità rilevato

2.3 Software

• Flac3D versione 7.00.117, licenza n. 242-039-0044-22565.

PROGETTO DEFINITIVO
TRATTA NUOVA ENNA-DITTAINO

FV01 - MODELLO B - ANALISI TRIDIMENSIONALE DELL'ESECUZIONE DELLA STAZIONE NELL'IPOTESI DI CONDIZIONI DRENATE CON LEGAME COSTITUTIVO HARDENING SOIL / HARDENING SOIL SMALL STRAIN

COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
RS3V	40	D 29 RH	GE0005 017	Α	6 di 59

3. CARATTERIZZAZIONE GEOTECNICA

Nel presente capitolo si riporta la caratterizzazione geotecnica per l'opera in esame, valutata sulla base dell'interpretazione delle indagini geotecniche svolte in prossimità dell'opera.

La stratigrafia di riferimento è individuata sulla base delle indagini eseguite in corrispondenza dell'opera, come rappresentate nel profilo stratigrafico longitudinale.

Per maggiori dettagli sulla caratterizzazione geotecnica si rimanda alla Relazione geotecnica generale [DC1].

3.1 Indagini eseguite

In corrispondenza dell'opera sono state eseguite le seguenti indagini in sito:

- sondaggi 4SD2, 4A_S30, 4S10;
- DPSH08:
- Masw6-HVSR90;
- Stese geofisiche LS11, LS21, LS22 con restituzione tomografica.

In corrispondenza dei sondaggi sono stati prelevati campioni indisturbati e rimaneggiati per prove di laboratorio. Nei sondaggi sono stati installati piezometri per il rilievo della falda.

3.2 Stratigrafia e parametri geotecnici di progetto

Sulla base dei risultati delle indagini (in sito ed in laboratorio) è stato intercettato a paritre da p.c. cappellaccio alterato della formazione di base (unità cap-c) limoso argilloso sabbioso con spessore massimo 14.5 m ed a seguire la formazione di base argilloso marnosa **Formazione di Terravecchia** unità TRV, fino alla massima profondità investigata. In corrispondenza del sondaggio 4S10, verso monte inizia ad affiorare la Formazione di Terravecchia in facies arenarie e sabbie alternate con peliti (Unità TRVa).

Dalle stese geofisiche a restituzione tomografica, gli spessori delle coperture non sembrano variare in maniera significativa nelle sezioni tracciate, quindi la stituazione stratigrafica appare sostanzialmente omogenea nell'area in esame.

Nei sondaggi sono stati installati piezometri che hanno rilevato livello massimo di falda a p.c..

Nel seguito si sintetizzano le caratteristiche geotecniche di progetto per le varie unità geotecniche, in accordo a quanto definito nella relazione geotecnica generale, a cui si rimanda per i dettagli.

PROGETTO DEFINITIVO
TRATTA NUOVA ENNA-DITTAINO

FV01 - MODELLO B - ANALISI TRIDIMENSIONALE DELL'ESECUZIONE DELLA STAZIONE NELL'IPOTESI DI CONDIZIONI DRENATE CON LEGAME COSTITUTIVO HARDENING SOIL / HARDENING SOIL SMALL STRAIN

 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 RS3V
 40
 D 29 RH
 GE0005 017
 A
 7 di 59

Cautelativamente, considerata l'importanza dell'opera, si prende a riferimento la situazione stratigrafica più cautelativa individuata dalle indagini fino ad ora eseguite.

PROGETTO DEFINITIVO
TRATTA NUOVA ENNA-DITTAINO

FV01 - MODELLO B - ANALISI TRIDIMENSIONALE DELL'ESECUZIONE DELLA STAZIONE NELL'IPOTESI DI CONDIZIONI DRENATE CON LEGAME COSTITUTIVO HARDENING SOIL / HARDENING SOIL SMALL STRAIN

COMMESSA LOTTO CODIFICA DOCUMENTO REV. FOGLIO
RS3V 40 D 29 RH GE0005 017 A 8 di 59

Da 0.0 a 14.5 m Unità cap – c: Cappellaccio limoso sabbioso costituente la parte alterata della formazione di base

 $\gamma = 19.5 \text{ kN/m3}$ peso di volume naturale

 $c' = 0 \div 5 \text{ kPa}$ coesione drenata

 $\varphi = 28^{\circ}$ angolo di resistenza al taglio

 $c_u = 50 \div 70 \text{ kPa z} < 9.5 \text{m}$ resistenza al taglio in condizioni non drenate

 $c_u = 120 \text{ kPa z} > 9.5 \text{m}$

Vs = 150÷350 m/s velocità delle onde di taglio

Eo = 100÷120 MPa z< 9.5m modulo di deformazione elastico iniziale

Eo = 250 MPa z > 9.5 m

Calfa = 0.0015

 $k = 6.0E^{-06} \div 7.0E^{-07} (1.0E^{-07}) \text{ m/s}$ permeabilità (valore medio)

da 14.5 m a 50.0 m: Unità TRV- Formazione di Terravecchia: argilla da debolmente marnosa a marnosa

 $\gamma = 21.0 \text{ kN/m}^3$ peso di volume naturale

c' = 15 kPa coesione drenata

 $\varphi' = 24^{\circ}$ angolo di resistenza al taglio

 $Vs = 400 \div 600 \text{ m/s}$ velocità delle onde di taglio

 $c_u = 200 \text{ kPa per z} < 25 \text{m}$ resistenza al taglio in condizioni non drenate

 $c_u = 300 \div 350 \text{ kPa z} > 25 \text{m}$

Eo = $250 \div 400$ MPa per z< 25m Modulo di deformazione elastico iniziale Eo = $800 \div 1200$ MPa per z>25m modulo di deformazione elastico iniziale

E'op = Eo/10 MPa modulo di deformazione elastico operativo per analisi cedimenti rilevati

Calfa = 0.0015

 $k = 2.0E^{-08} \div 2.0E^{-06} (4.0E^{-08}) \text{ m/s}$ permeabilità(valore medio)

La falda è stata rilevata circa a p.c..

PROGETTO DEFINITIVO
TRATTA NUOVA ENNA-DITTAINO

FV01 - MODELLO B - ANALISI TRIDIMENSIONALE DELL'ESECUZIONE DELLA STAZIONE NELL'IPOTESI DI CONDIZIONI DRENATE CON LEGAME COSTITUTIVO HARDENING SOIL / HARDENING SOIL SMALL STRAIN

35.0

40.0

■Unità TRV

 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 RS3V
 40
 D 29 RH
 GE0005 017
 A
 9 di 59

[colpi / 0.3 m] 10 40 100 20 30 50 60 70 80 90 0.0 **(** 5.0 \Diamond ➾ **\limits** 10.0 15.0 Profondità da p.c. [m] 20.0 25.0 Unità cap-c 30.0

 N_{SPT}

Figura 2 – Risultati prova SPT – Stazione Enna

PROGETTO DEFINITIVO
TRATTA NUOVA ENNA-DITTAINO

FV01 - MODELLO B - ANALISI TRIDIMENSIONALE DELL'ESECUZIONE DELLA STAZIONE NELL'IPOTESI DI CONDIZIONI DRENATE CON LEGAME COSTITUTIVO HARDENING SOIL / HARDENING SOIL SMALL STRAIN

COMMESSA LOTTO CODIFICA DOCUMENTO REV. FOGLIO
RS3V 40 D 29 RH GE0005 017 A 10 di 59

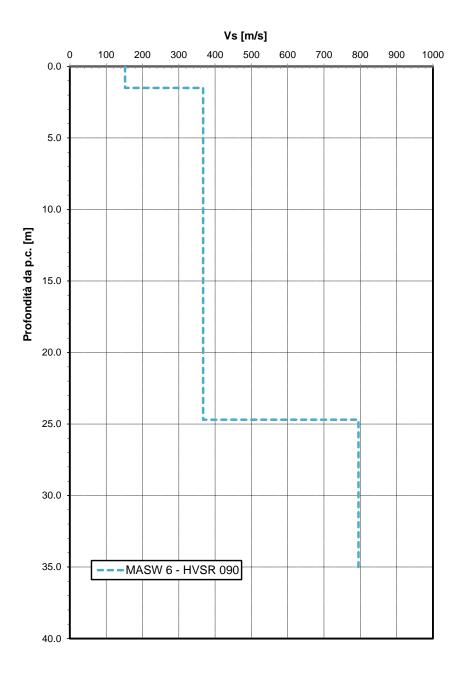


Figura 3 – Velocità delle onde di taglio Vs da prove Sismiche (MASW 6 – HVSR 090) – Stazione Enna

Modulo di deformazione elastico iniziale da prove SPT e sismiche

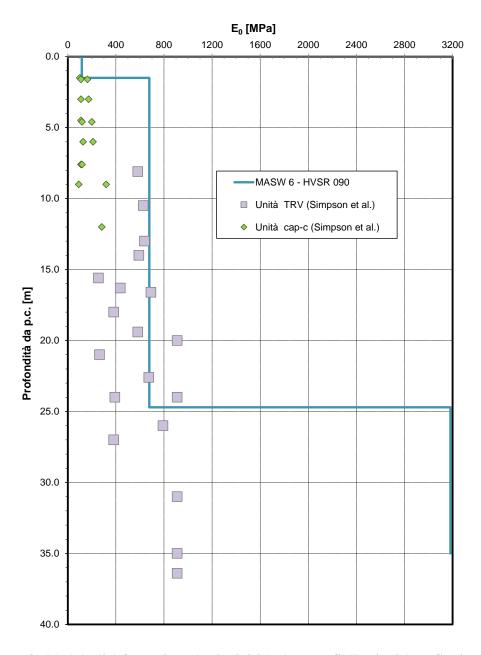


Figura 4 - Modulo di deformazione elastico iniziale da prove SPT e sismiche - Stazione Enna

PROGETTO DEFINITIVO
TRATTA NUOVA ENNA-DITTAINO

FV01 - MODELLO B - ANALISI TRIDIMENSIONALE DELL'ESECUZIONE DELLA STAZIONE NELL'IPOTESI DI CONDIZIONI DRENATE CON LEGAME COSTITUTIVO HARDENING SOIL / HARDENING SOIL SMALL STRAIN

COMMESSA LOTTO CODIFICA DOCUMENTO REV. FOGLIO
RS3V 40 D 29 RH GE0005 017 A 12 di 59

Peso di volume

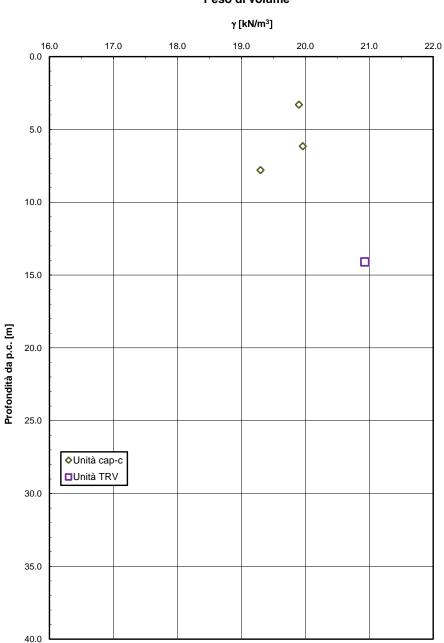


Figura 5 – Peso di volume – Stazione Enna

PROGETTO DEFINITIVO
TRATTA NUOVA ENNA-DITTAINO

FV01 - MODELLO B - ANALISI TRIDIMENSIONALE DELL'ESECUZIONE DELLA STAZIONE NELL'IPOTESI DI CONDIZIONI DRENATE CON LEGAME COSTITUTIVO HARDENING SOIL / HARDENING SOIL SMALL STRAIN

 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 RS3V
 40
 D 29 RH
 GE0005 017
 A
 13 di 59

Andamento della resistenza al taglio non drenata cu [kPa]

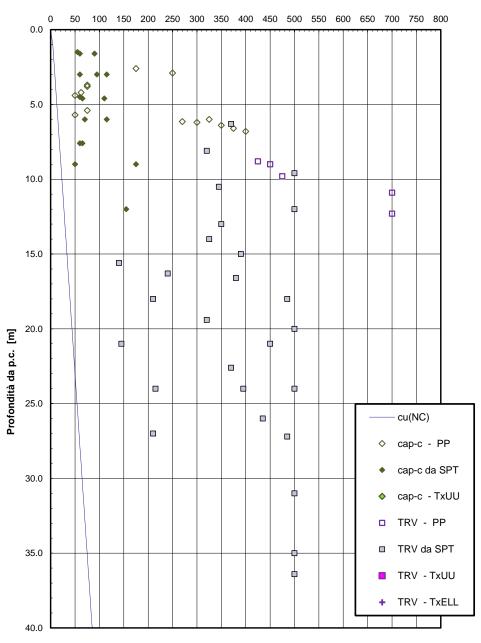


Figura 6 - Andamento della resistenza al taglio non drenata - Stazione Enna

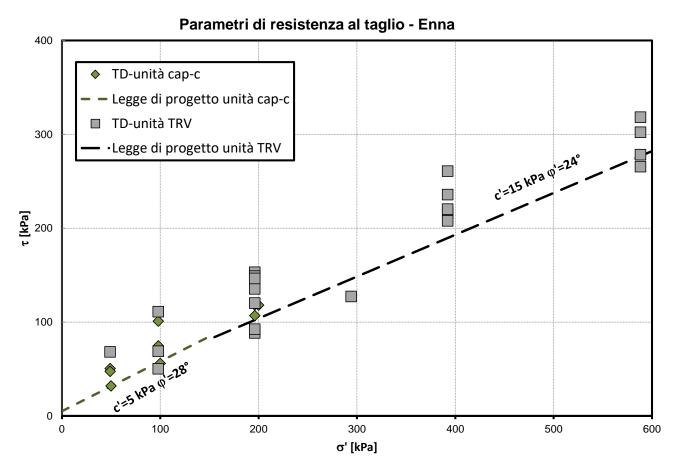


Figura 7 – Parametri di resistenza al taglio (laboratorio) – Stazione Enna

PROGETTO DEFINITIVO
TRATTA NUOVA ENNA-DITTAINO

FV01 - MODELLO B - ANALISI TRIDIMENSIONALE DELL'ESECUZIONE DELLA STAZIONE NELL'IPOTESI DI CONDIZIONI DRENATE CON LEGAME COSTITUTIVO HARDENING SOIL / HARDENING SOIL SMALL STRAIN

 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 RS3V
 40
 D 29 RH
 GE0005 017
 A
 15 di 59

Permeabilità da prove Lefranc e Lugeon

Permeabilità [m/s]

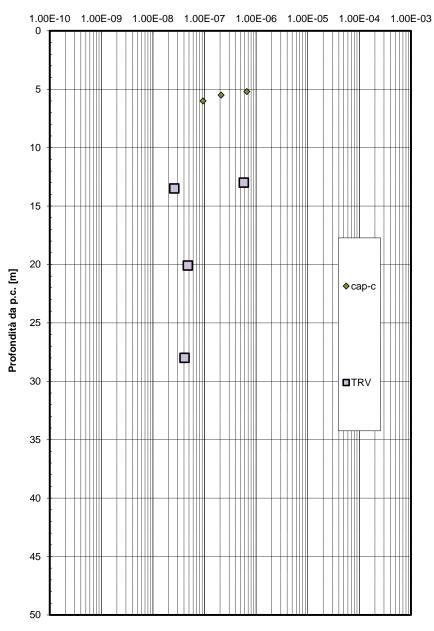


Figura 8 – Permeabilità da prove Lefranc e Lugeon – Stazione Enna

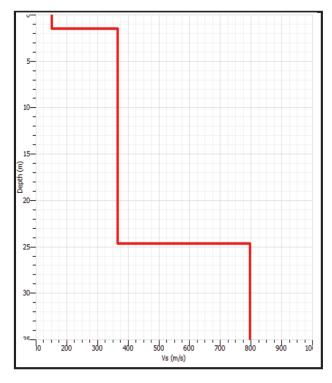
PROGETTO DEFINITIVO
TRATTA NUOVA ENNA-DITTAINO

FV01 - MODELLO B - ANALISI TRIDIMENSIONALE DELL'ESECUZIONE DELLA STAZIONE NELL'IPOTESI DI CONDIZIONI DRENATE CON LEGAME COSTITUTIVO HARDENING SOIL / HARDENING SOIL SMALL STRAIN

COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
RS3V	40	D 29 RH	GE0005 017	Α	16 di 59

3.3 Falda

Nei sondaggi sono stati installati piezometri che hanno rilevato livello massimo di falda circa a p.c..


3.4 Categoria sottosuolo sismica

Da prova geosismica MASW (MASW 6 – HVSR 090) si è ottenuto un valore di Vs,eq = 376 m/s, definendo una categoria di sottosuolo nell'intorno del valore limite tra B e C. Dalle tomografie sismiche (vedasi stesa tomografica LS11) si definisce categoria sottosuolo C.

Per le analisi che seguono si considera la categoria di sottosuolo C, confermata dalle analisi di Risposta Sismica Locale in termini di accelerazione di ancoraggio al suolo.

Nelle figure seguenti si riportano i risultati delle indagini sismiche.

PROFILO VELOCITA' ONDE DI TAGLIO

CALCOLO VS₃₀

SPESSORE	PROFONDITA'	Vs	SPESSORE/Vs
1.5	0	152	0.009868421
23.2	1.5	367	0.063215259
10.3	24.7	795	0.006666667
	35		
			0.079750347
	Vs_{eq}	=	376
Seismic	classification of soils	-	
	(It. D.M. 17/01/2018)		5

Figura 9 – Vs,eq da prova sismica Masw

PROGETTO DEFINITIVO

TRATTA NUOVA ENNA-DITTAINO

FV01 - MODELLO B - ANALISI TRIDIMENSIONALE DELL'ESECUZIONE DELLA STAZIONE NELL'IPOTESI DI CONDIZIONI DRENATE CON LEGAME COSTITUTIVO HARDENING SOIL / HARDENING SOIL SMALL STRAIN

COMMESSA LOTTO CODIFICA DOCUMENTO REV. FOGLIO
RS3V 40 D 29 RH GE0005 017 A 17 di 59

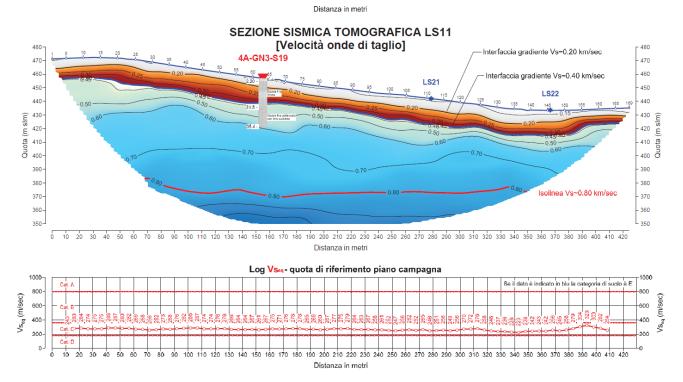


Figura 10 – Vs,eq da tomografia sismica

Per l'opera è stata comunque eseguita una analisi di risposta sismica locale, per i risultati si rimanda all'apposito elaborato.

PROGETTO DEFINITIVO

TRATTA NUOVA ENNA-DITTAINO

FV01 - MODELLO B - ANALISI TRIDIMENSIONALE DELL'ESECUZIONE DELLA STAZIONE NELL'IPOTESI DI CONDIZIONI DRENATE CON LEGAME COSTITUTIVO HARDENING SOIL / HARDENING SOIL SMALL STRAIN

 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 RS3V
 40
 D 29 RH
 GE0005 017
 A
 18 di 59

4. GEOMETRIA MODELLATA E STUDIO DELLA GRADONATURA

4.1 Dimensione del modello

Il modello tridimensionale studiato implementa la geometria rappresentata in Figura 11, che include una porzione di lunghezza pari a circa 100 m dell'edificio della stazione, le due strutture scatolari di approccio che sostengono il rilevato ferroviario e lo scatolare stradale di alleggerimento della viabilità di monte, posta a quota (453 m s.l.m.) circa 9 m al di sopra del piano di imposta di fondazione della stazione (444 m s.l.m.).

Su tale area si sviluppa l'importante rilevato di progetto, che presenta 4 banche orizzontali con differenze di quota di 5 m, di cui la maggiore a quota 444 m s.l.m. ha larghezza pari a circa 7.0 m dal ciglio alla parete esterna dell'edificio di stazione, mentre le altre, rispettivamente a quote 439, 434 e 429 m s.l.m., sono di larghezza 4.0 m e sono raccordate da scarpate di pendenza 2/3 (verticale/orizzontale).

Dallo studio geometrico effettuato emerge la necessità di realizzare le 4 banche solamente per un tratto di sviluppo circa 50 m in corrispondenza della sezione 14, mentre per il restante sviluppo sono sufficienti le 3 banche più alte. Lo studio geometrico include, negli ultimi 50 m circa, il rilevato ferroviario di approccio privo di strutture portate (binari d linea).

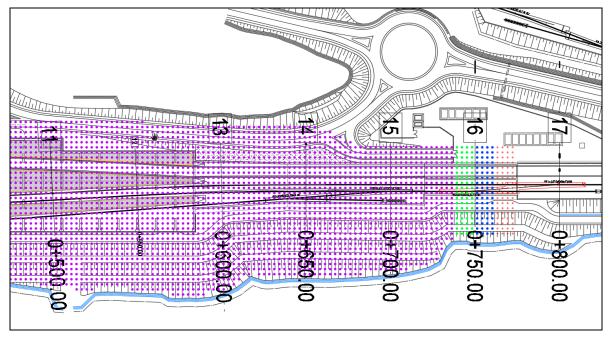


Figura 11. Porzione planimetrica implementata nel modello tridimensionale

PROGETTO DEFINITIVO

TRATTA NUOVA ENNA-DITTAINO

FV01 - MODELLO B - ANALISI TRIDIMENSIONALE DELL'ESECUZIONE DELLA STAZIONE NELL'IPOTESI DI CONDIZIONI DRENATE CON LEGAME COSTITUTIVO HARDENING SOIL / HARDENING SOIL SMALL STRAIN

COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
RS3V	40	D 29 RH	GE0005 017	Α	19 di 59

La definizione del modello è operata principalmente tramite le sezioni di progetto dalla 11 alla 17, come mostrato in Figura 12, che ne mostra anche le dimensioni.

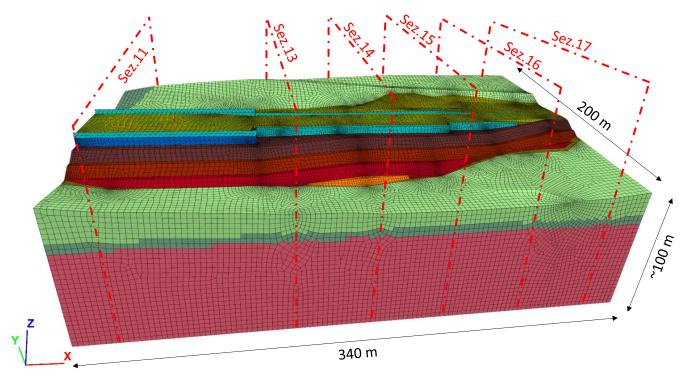


Figura 12. Dimensioni del modello e sezioni di progetto

4.2 Geometria del piano campagna

La modellazione del p.c. locale è resa possibile dal modello topografico digitale del terreno (DTM) disponibile in progetto. Al fine di ottenere una discretizzazione implementabile nel modello geotecnico alle differenze finite, la superficie del terreno è stata lievemente semplificata tramite un numero discreto di sezioni, opportunamente raffittite per cogliere le singolarità locali, interpolate linearmente fra loro.

PROGETTO DEFINITIVO

TRATTA NUOVA ENNA-DITTAINO

FV01 - MODELLO B - ANALISI TRIDIMENSIONALE DELL'ESECUZIONE DELLA STAZIONE NELL'IPOTESI DI CONDIZIONI DRENATE CON LEGAME COSTITUTIVO HARDENING SOIL / HARDENING SOIL SMALL STRAIN

COMMESSA LOTTO CODIFICA DOCUMENTO REV. FOGLIO
RS3V 40 D 29 RH GE0005 017 A 20 di 59

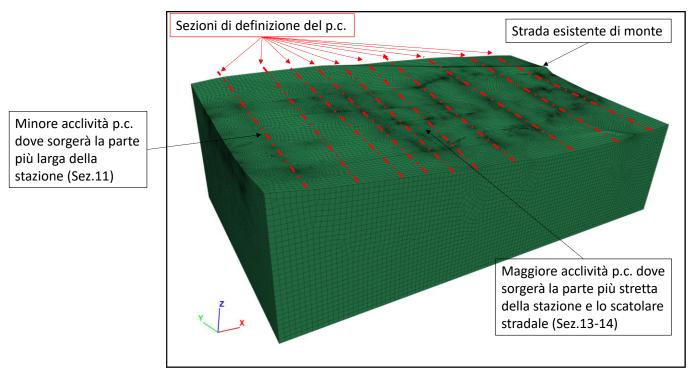


Figura 13. Definizione della superficie del p.c.

4.3 Gradonatura di progetto e pali di consolidamento

Lo scavo per la realizzazione della gradonatura ha richiesto un approfondimento geometrico delle sezioni di progetto, poiché il p.c. presenta una acclività inferiore nella parte iniziale (sezione 11) e finale (sezione 16), mentre vi è una pendenza maggiore nella "conca" centrale (sezioni 13 e 14). A partire dalla gradonatura di sezione 11 (cfr. Figura 14), rispettata fedelmente dal modello 3D, le gradonature delle altre sezioni sono state lievemente adattate, al fine di rispettare i criteri suddetti (cfr. Figura 15 e Figura 16). Le "piste" risultano omogenee, con pendenze longitudinali limitate, quasi interamente in scavo e di larghezza circa 9 m. La disposizione finale dei pali seguirà necessariamente la geometria dei gradoni, rispettando l'interasse longitudinale e trasversale di 3.0 m (cfr. § 5.5.3).

PROGETTO DEFINITIVO

TRATTA NUOVA ENNA-DITTAINO

FV01 - MODELLO B - ANALISI TRIDIMENSIONALE DELL'ESECUZIONE DELLA STAZIONE NELL'IPOTESI DI CONDIZIONI DRENATE CON LEGAME COSTITUTIVO HARDENING SOIL / HARDENING SOIL SMALL STRAIN

COMMESSA LOTTO CODIFICA DOCUMENTO REV. FOGLIO
RS3V 40 D 29 RH GE0005 017 A 21 di 59

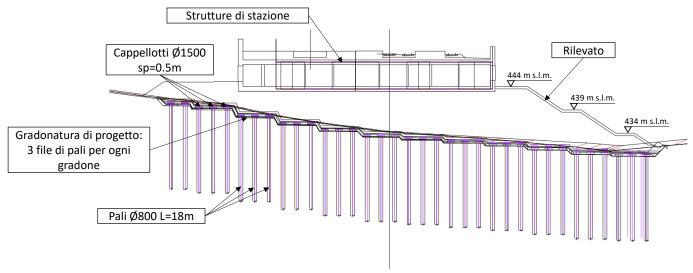


Figura 14. Sezione 11. Sovrapposizione tra sezione di progetto e porzione di geometria implementata nel modello

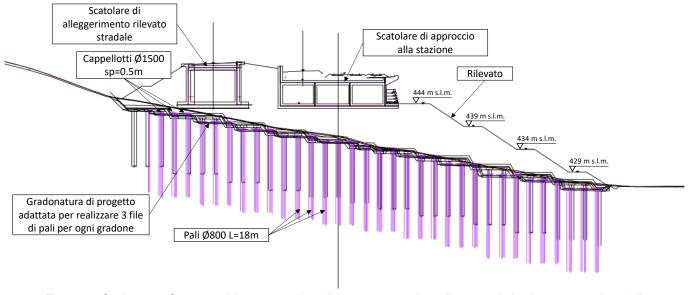


Figura 15. Sezione 14. Sovrapposizione tra sezione di progetto e porzione di geometria implementata nel modello

PROGETTO DEFINITIVO

TRATTA NUOVA ENNA-DITTAINO

FV01 - MODELLO B - ANALISI TRIDIMENSIONALE DELL'ESECUZIONE DELLA STAZIONE NELL'IPOTESI DI CONDIZIONI DRENATE CON LEGAME COSTITUTIVO HARDENING SOIL / HARDENING SOIL SMALL STRAIN

COMMESSA LOTTO CODIFICA DOCUMENTO REV. FOGLIO
RS3V 40 D 29 RH GE0005 017 A 22 di 59

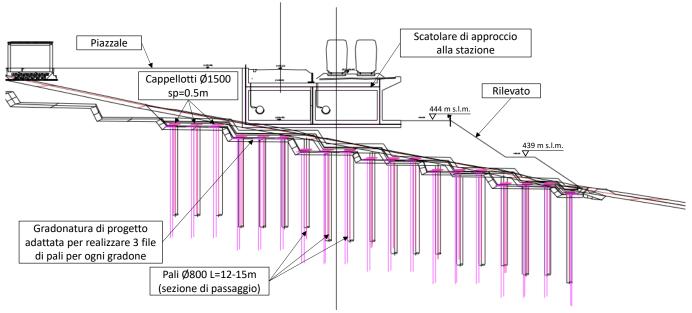


Figura 16. Sezione 16. Sovrapposizione tra sezione di progetto e porzione di geometria implementata nel modello

PROGETTO DEFINITIVO
TRATTA NUOVA ENNA-DITTAINO

FV01 - MODELLO B - ANALISI TRIDIMENSIONALE DELL'ESECUZIONE DELLA STAZIONE NELL'IPOTESI DI CONDIZIONI DRENATE CON LEGAME COSTITUTIVO HARDENING SOIL / HARDENING SOIL SMALL STRAIN

 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 RS3V
 40
 D 29 RH
 GE0005 017
 A
 23 di 59

5. ANALISI INTERVENTO DI CONSOLIDAMENTO

5.1 Premessa

Per l'opera si prevede un intervento di consolidamento costituito da:

- Colonne di consolidamento CFA in c.a. Ø800mm di lunghezza da 9.0 a 18.0 m, disposti a maglia quadrata
 3.0 m x 3.0 m, con armatura minima (8 Ø24, spirale Ø10 / 10 cm).
- Cappellotti di ripartizione in c.a. a testa palo, di diametro 1.50 m e spessore 0.50 m.
- Geogriglia di ripartizione con resistenza nominale R > 500 kN/m (direzione trasversale).

5.2 Modelli costitutivi del terreno

Per le analisi in oggetto si è utilizzato il codice 3D Fast Lagrangian Analysis of Continua (FLAC3D versione 7.00.117), che implementa il metodo delle Differenze Finite.

Il modello di calcolo è sviluppato con il legame costitutivo "Plastic Hardening – Small Strain", per i terreni naturali, che implementa l'incrudimento volumetrico del terreno e una legge di diminuzione della rigidezza in funzione dello stato deformativo, unitamente a differenti percorsi tenso-deformativi per i rami di scarico-ricarico e di compressione vergine, quindi ideale per modellare terreni sovraconsolidati in per stimare i cedimenti in condizioni drenate.

Il legame costitutivo denominato "Plastic Hardening", corrispondente al noto Hardening Soil, ampiamente validato in letteratura, simula il comportamento del terreno tramite incrudimento tangenziale e volumetrico: se sottoposto a sforzo deviatorico, il terreno solitamente è soggetto ad una riduzione di rigidezza, accompagnato da una deformazione plastica irreversibile.

Il modello costitutivo PH è formulato in base agli studi sull'incrudimento plastico (Schanz et al., 1999), caratterizzato dalle seguenti caratteristiche principali:

- Relazione iperbolica tensione-deformazione in compressione assiale non drenata (Duncan and Chang, 1970);
- sviluppo di deformazioni plastiche per stati tensionali deviatorici (incrudimento tangenziale);

PROGETTO DEFINITIVO
TRATTA NUOVA ENNA-DITTAINO

FV01 - MODELLO B - ANALISI TRIDIMENSIONALE DELL'ESECUZIONE DELLA STAZIONE NELL'IPOTESI DI CONDIZIONI DRENATE CON LEGAME COSTITUTIVO HARDENING SOIL / HARDENING SOIL SMALL STRAIN

 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 RS3V
 40
 D 29 RH
 GE0005 017
 A
 24 di 59

- sviluppo di deformazioni plastiche per sola compressione (incrudimento volumetrico);
- rigidezza dipendente dal livello tensionale tramite legge esponenziale;
- differente rigidezza per percorsi tensionali di primo carico e di scarico-ricarico;
- memoria degli stati di pre-consolidazione;
- criterio di rottura di tipo Mohr-Coulomb.

Il modello è facile da calibrare sia tramite indagini in sito o di laboratorio. È ampiamente utilizzato e consolidato a livello internazionale, soprattutto per interazione terreno-struttura in casi di scavi profondi, gallerie, fondazioni e problemi di subsidenze, oltre ad varie applicazioni geotecniche.

Nel modello PH il modulo di Young è dipendente dal livello tensionale. In particolare il modulo per percorsi di scarico-ricarico $E_{ur}\,$ è dato dalla seguente:

$$E_{ur} = E_{ur}^{ref} \left(\frac{c \cdot \cot \varphi - \sigma_3}{c \cdot \cot \varphi + p^{ref}} \right)^m$$

dove E_{ur}^{ref} è il valore del modulo di scarico-ricarico riferita alla pressione di riferimento p^{ref} . Il reale valore di E_{ur} dipende dalla tensione principale massima σ_3 , dalla coesione c, e dall'angolo di resistenza al taglio φ , oltre che dall'esponente m. Il modello PH inoltre adotta un'altra misura della rigidezza, E_{50} , che identifica l'andamento dei percorsi di carico primari, ed è data dalla seguente espressione:

$$E_{50} = E_{50}^{ref} \left(\frac{c \cdot \cot \varphi - \sigma_3}{c \cdot \cot \varphi + p^{ref}} \right)^m$$

dove E_{50}^{ref} è un parametro del materiale, riferito alla pressione p^{ref} .

PROGETTO DEFINITIVO

TRATTA NUOVA ENNA-DITTAINO

FV01 - MODELLO B - ANALISI TRIDIMENSIONALE DELL'ESECUZIONE DELLA STAZIONE NELL'IPOTESI DI CONDIZIONI DRENATE CON LEGAME COSTITUTIVO HARDENING SOIL / HARDENING SOIL SMALL STRAIN

COMMESSA LOTTO CODIFICA DOCUMENTO REV. FOGLIO
RS3V 40 D 29 RH GE0005 017 A 25 di 59

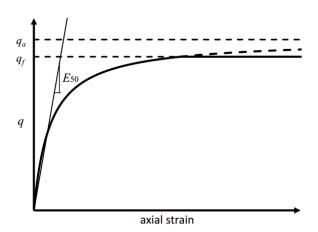


Figura 17. Relazione iperbolica tensione-deformazione per percorsi di carico primari

5.3 Parametri geotecnici e stratigrafia

In base alle relazioni sopra esposte, l'andamento dei parametri geotecnici con la profondità implementati nel modello è stato opportunamente calibrato dai risultati delle indagini disponibili per l'area in esame. In particolare, la legge di deformabilità del terreno con la profondità, è tarata sulla base delle velocità delle onde di taglio Vs derivanti dalle correlazioni indirette dalle prove SPT e dalle misure dirette dalla prova MASW. Il profilo di progetto delle V_S è definito coerentemente a quanto già assunto nelle analisi 2D (cfr. [DC3], [DC4], [DC5]), come rappresentato in Figura 18, in cui sono sovrapposti i risultati delle indagini. Anche la stratigrafia di calcolo è stata definita in coerenza con le analisi 2D, attribuendo passaggi stratigrafici a pendenza circa costante su tutto il volume modellato alle profondità di progetto (9.5 e 14.5 m da p.c.).

Per quanto riguarda il legame costitutivo Plastic-Hardening, il profilo delle onde di taglio V_S di progetto è implementato direttamente nel modello 3D (cfr. Figura 20). Esso consente di definire la legge costitutiva, puntualmente per le singole zone del modello 3D: ipotizzando la densità del terreno, si ricava direttamente il modulo a taglio per piccole deformazioni G_0 , ed assumendo il coefficiente di Poisson v=0.27, il modulo di Young per piccole deformazioni E_0 . Nella seguente tabella sono esposti i parametri di progetto implementati nella analisi. Il modulo "operativo" secante E_{50} per i percorsi di primo carico, utile alla definizione della curva del legame costitutivo di Figura 17, è assunto cautelativamente pari ad 1/14 del modulo iniziale E_0 , al fine di ottenere

PROGETTO DEFINITIVO
TRATTA NUOVA ENNA-DITTAINO

FV01 - MODELLO B - ANALISI TRIDIMENSIONALE DELL'ESECUZIONE DELLA STAZIONE NELL'IPOTESI DI CONDIZIONI DRENATE CON LEGAME COSTITUTIVO HARDENING SOIL / HARDENING SOIL SMALL STRAIN

COMMESSA LOTTO CODIFICA DOCUMENTO REV. FOGLIO
RS3V 40 D 29 RH GE0005 017 A 26 di 59

parametri analoghi a quelli già implementati nelle analisi 2D (cfr. [DC3], [DC4], [DC5]), mentre il modulo per i percorsi tensionali di scarico e ricarico E_{ur} è assunto pari a 3.0 volte E_{50} .

Tabella 1. Parametri geotecnici di calcolo

Unità	z	γdry	indice vuoti e	porosità n	γsat	k _{0,NC}	OCR	\mathbf{k}_0	c'	φ'	Vref	$\mathbf{p}_{\mathrm{ref}}$
[]	[m da p.c.]	$[kN/m^3]$	[-]	[-]	$[kN/m^3]$	[]	[]	[]	[kPa]	[deg]	[]	[kPa]
CapC1	0.0	15.6	0.65	0.39	19.5	0.53	3.0	0.889	5	28°	0.27	101.3
CapCi	-9.5	15.6	0.65	0.39	19.5	0.55	5.0	0.009	3	20	0.27	101.5
ConC2	-9.5	15.6	0.65	0.39	19.5	0.53	3.0	0.889	5	28°	0.27	101.3
CapC2	-14.5	15.6	0.65	0.39	19.3	0.55	3.0	0.889	3	20	0.27	101.3
TRV	-14.5	17.1	0.65	0.39	21.0	0.59	3.0	0.927	15	24°	0.27	101.2
1 K V	-40.0	17.1	0.65	0.39	21.0	0.39	3.0	0.927	15	24"	0.27	101.3
TRVinf	-40.0	17.1	0.65	0.39	21.0	0.59	20 00	0.927	15	24°	0.27	101.2
I K V IIII	-120.0	17.1	0.65	0.39	21.0	0.39	3.0	0.927	13	24	0.27	101.3
Rilevato	20.0				19.0	0.38	1	0.384	0	38°	0.27	101.3
Kilevato	0.0				19.0	0.38	1	0.364	U	36	0.27	101.5

					Eo			Eur ref	Eoed ref		
Unità	Vs	G_0	\mathbf{E}_{0}	\mathbf{K}_0	E50	m	E _{50,ref}	E _{50 ref}	E _{50 ref}	γ07	
[]	[m/s]	[kPa]	[kPa]	[kPa]	[]		[kPa]	[]	[]	[]	
ConC1	80	12480	31699	22970	14	14 0.99	0.00	22127	3.0	0.80	5.0E-04
CapC1	240	112320	285293	206734		0.99	24886	3.0	0.80	3.0E-04	
ConC2	243	115146	292470	211935	1.4	0.99	25512	3.0	0.80	5.0E-04	
CapC2	300	175500	445770	323022	14	0.99	26618	3.0	0.80	3.0E-04	
TRV	300	189000	480060	347870	14	0.99	25437	2.0	0.80	5.0E-04	
IKV	493	510403	1296423	939437	14	0.99	28578	3.0	0.80	3.0E-04	
TDV:f	493	510403	1296423	939437	1.4	0.00	28578	2.0	0.90	5 OF 04	
TRVinf	900	1701000	4320540	3130826	14	0.99	33845	3.0	0.80	5.0E-04	
D:1	190	68590	174219	126245	2.5		50000				
Rilevato	190	68590	174219	126245	3.5		50000				

PROGETTO DEFINITIVO

TRATTA NUOVA ENNA-DITTAINO

FV01 - MODELLO B - ANALISI TRIDIMENSIONALE DELL'ESECUZIONE DELLA STAZIONE NELL'IPOTESI DI CONDIZIONI DRENATE CON LEGAME COSTITUTIVO HARDENING SOIL / HARDENING SOIL SMALL STRAIN

COMMESSA LOTTO CODIFICA DOCUMENTO REV. FOGLIO
RS3V 40 D 29 RH GE0005 017 A 27 di 59

Velocità delle onde di taglio da prove SPT e sismiche

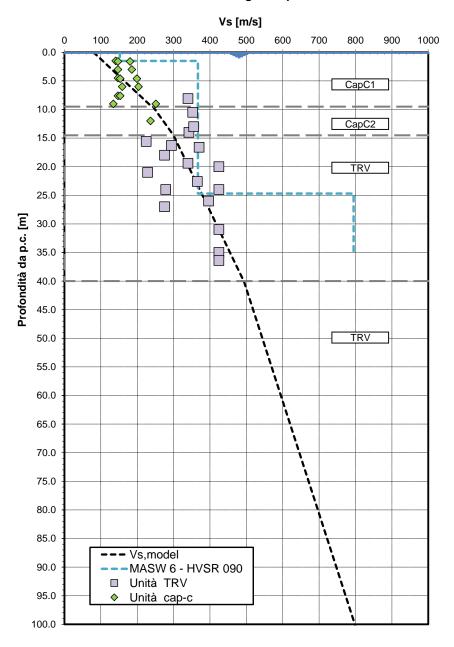


Figura 18 – Andamento delle velocità delle onde di taglio con la profondità

FV01 - MODELLO B - ANALISI TRIDIMENSIONALE DELL'ESECUZIONE DELLA STAZIONE NELL'IPOTESI DI CONDIZIONI DRENATE CON LEGAME COSTITUTIVO HARDENING SOIL / HARDENING SOIL SMALL STRAIN

DIRETTRICE FERROVIARIA MESSINA-CATANIA-PALERMO NUOVO COLLEGAMENTO PALERMO-CATANIA

PROGETTO DEFINITIVO
TRATTA NUOVA ENNA-DITTAINO

COMMESSA LOTTO CODIFICA DOCUMENTO REV. FOGLIO
RS3V 40 D 29 RH GE0005 017 A 28 di 59

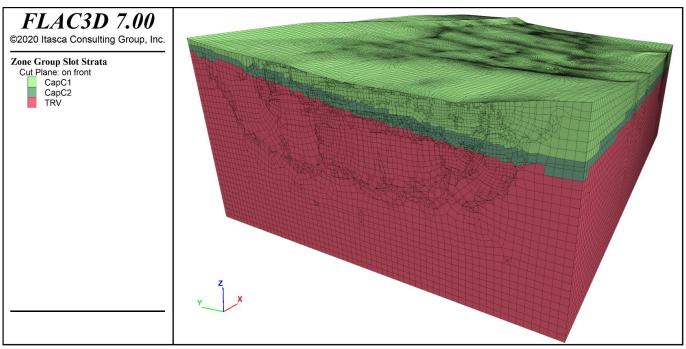


Figura 19. Stratigrafia implementata nel modello tridimensionale

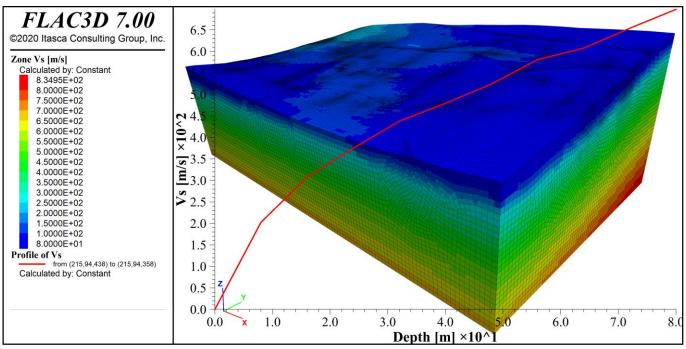


Figura 20. Implementazione delle Vs nel modello tridimensionale

PROGETTO DEFINITIVO

TRATTA NUOVA ENNA-DITTAINO

FV01 - MODELLO B - ANALISI TRIDIMENSIONALE DELL'ESECUZIONE DELLA STAZIONE NELL'IPOTESI DI CONDIZIONI DRENATE CON LEGAME COSTITUTIVO HARDENING SOIL / HARDENING SOIL SMALL STRAIN

COMMESSA LOTTO CODIFICA DOCUMENTO REV. FOGLIO
RS3V 40 D 29 RH GE0005 017 A 29 di 59

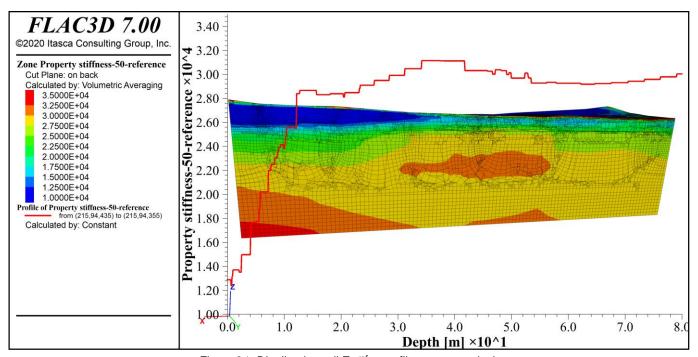
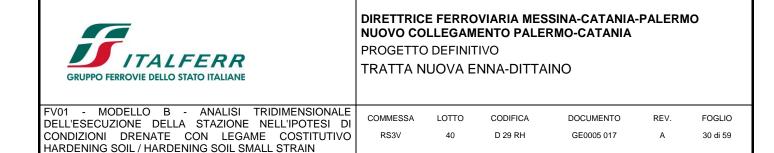



Figura 21. Distribuzione di E₅₀ref e profilo su una verticale

5.4 Strutture ed elementi di consolidazione

Il modello tridimensionale è completo di tutti gli elementi strutturali e di consolidamento previsti in progetto.

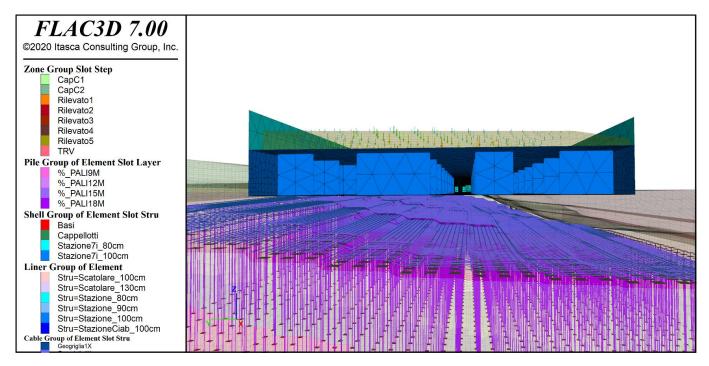


Figura 22. Strutture implementate

Ciascun palo di consolidamento è implementato tramite 3 elementi strutturali:

- Il fusto del palo è implementato con elementi monodimensionali tipo *embedded pile*, caratterizzati da inerzia e area date dalla sezione circolare Ø800, lunghezza caratteristica dell'elemento (9, 12, 15, 18 m), caratteristiche elastiche del c.a. (E = 30 GPa, v = 0.18), ed appositi elementi di interfaccia che ne modellano l'interazione con gli elementi di volume; in particolare la resistenza laterale assiale è caratterizzata da τ = 0.7·tan φ
- La testa del palo è modellata con elementi bidimensionali tipo *shell* di superficie quadrata equivalente al cappellotto in c.a., di diametro 1.50 m, con spessore 0.50 m e caratteristiche elastiche del c.a.; tali elementi, connessi rigidamente agli elementi di volume, consentono al palo di assorbire la giusta aliquota di tensione verticale trasmessa dal rilevato;
- La base del palo è modellata con elementi *shell*, analogamente ai capellotti in c.a., ma con area equivalente alla sezione del palo, di diametro Ø800, al fine di trasmettere correttamente la tensione verticale agli elementi di volume

PROGETTO DEFINITIVO

TRATTA NUOVA ENNA-DITTAINO

FV01 - MODELLO B - ANALISI TRIDIMENSIONALE DELL'ESECUZIONE DELLA STAZIONE NELL'IPOTESI DI CONDIZIONI DRENATE CON LEGAME COSTITUTIVO HARDENING SOIL / HARDENING SOIL SMALL STRAIN

 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 RS3V
 40
 D 29 RH
 GE0005 017
 A
 31 di 59

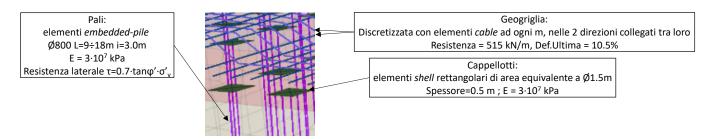


Figura 23. Ingrandimento degli elementi di consolidamento alla base del rilevato.

La geogriglia è discretizzata con elementi monodimensionali tipo *cable*, posti ad ogni metro sia in direzione trasversale che longitudinale, a quota pari a 0.50 m al di sopra dei cappellotti in c.a.. Tali elementi, rigidamente connessi agli elementi di volume, sono in grado di assorbire solamente le azioni assiali. Ad essi è attribuita una resistenza pari a 515 kN/m a trazione, resistenza nulla a compressione, ed una rigidezza tale per cui la deformazione ultima risulti pari a 10.5%.

Gli elementi strutturali che caratterizzano la stazione, gli scatolari di approccio ferroviari e lo scatolare stradale, sono modellati con elementi bidimensionali tipo *liner* (in grado di distaccarsi dagli elementi di volume ed interagire con legami attritivi, per gli elementi a contatto col terreno) e tipo *shell* (disconnessi dagli elementi di volume e connessi rigidamente ai *liner*, per i setti interni o non a contatto con il terreno); ad essi sono attribuite proprietà elastiche del c.a. (E = 30 GPa, v = 0.18), e proprietà inerziali date dai seguenti spessori:

- Per la struttura di stazione: fondazione copertura e setti interni di spessore 1.0 m
- Per gli scatolari di approccio alla stazione: fondazione di spessore 1.0 m, copertura 0.9 m, pareti laterali e setti interni 0.8 m
- Per lo scatolare stradale di alleggerimento: fondazione di spessore 1.3 m, copertura e pareti 1.0 m

PROGETTO DEFINITIVO
TRATTA NUOVA ENNA-DITTAINO

FV01 - MODELLO B - ANALISI TRIDIMENSIONALE DELL'ESECUZIONE DELLA STAZIONE NELL'IPOTESI DI CONDIZIONI DRENATE CON LEGAME COSTITUTIVO HARDENING SOIL / HARDENING SOIL SMALL STRAIN

COMMESSA LOTTO CODIFICA DOCUMENTO REV. FOGLIO
RS3V 40 D 29 RH GE0005 017 A 32 di 59

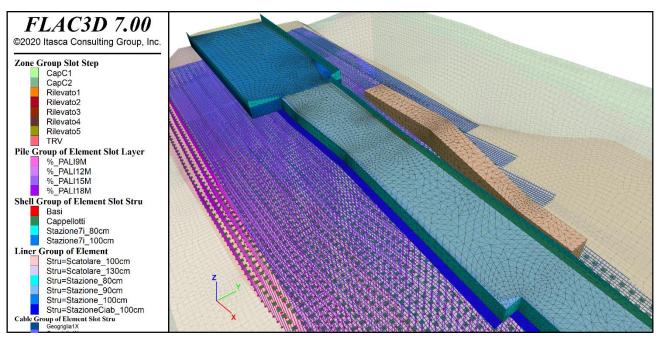


Figura 24. Strutture di stazione, scatolari di approccio ferroviario e scatolare di alleggerimento stradale

PROGETTO DEFINITIVO
TRATTA NUOVA ENNA-DITTAINO

FV01 - MODELLO B - ANALISI TRIDIMENSIONALE DELL'ESECUZIONE DELLA STAZIONE NELL'IPOTESI DI CONDIZIONI DRENATE CON LEGAME COSTITUTIVO HARDENING SOIL / HARDENING SOIL SMALL STRAIN

COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
RS3V	40	D 29 RH	GE0005 017	Α	33 di 59

5.5 Fasi di calcolo

L'analisi implementa le principali fasi esecutive previste per la realizzazione dell'opera, a partire dall'inizializzazione dello stato attuale, riproducendo il probabile percorso tensionale dell'area studiata.

5.5.1 Inizializzazione dello stato tensionale

La prima fase implementata consiste nell'inizializzazione del legame costitutivo negli elementi di volume e dello stato tensionale e delle pressioni neutre, come evidenziato dalle seguenti immagini.

Figura 25. Tensioni verticali efficaci allo stato iniziale

PROGETTO DEFINITIVO

TRATTA NUOVA ENNA-DITTAINO

FV01 - MODELLO B - ANALISI TRIDIMENSIONALE DELL'ESECUZIONE DELLA STAZIONE NELL'IPOTESI DI CONDIZIONI DRENATE CON LEGAME COSTITUTIVO HARDENING SOIL / HARDENING SOIL SMALL STRAIN

COMMESSA LOTTO CODIFICA DOCUMENTO REV. FOGLIO
RS3V 40 D 29 RH GE0005 017 A 34 di 59

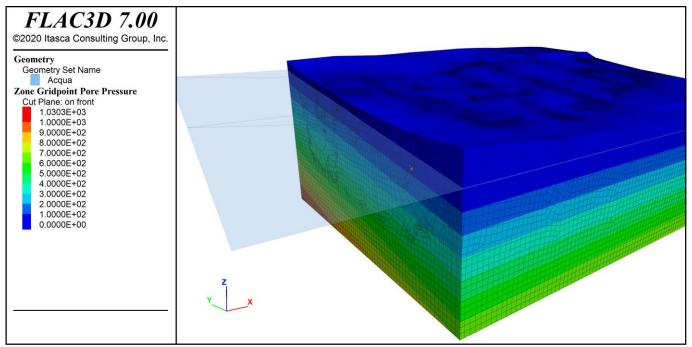


Figura 26. Piano di falda e pressioni neutre

5.5.2 Scavo della gradonatura

Lo scavo della gradonatura, descritto al paragrafo 4.3, opera un marginale detensionamento al p.c. e consente di creare la superficie necessaria per la corretta generazione degli elementi di consolidamento e per la posa delle fasi di rilevato.

FV01 - MODELLO B - ANALISI TRIDIMENSIONALE DELL'ESECUZIONE DELLA STAZIONE NELL'IPOTESI DI CONDIZIONI DRENATE CON LEGAME COSTITUTIVO HARDENING SOIL / HARDENING SOIL SMALL STRAIN

DIRETTRICE FERROVIARIA MESSINA-CATANIA-PALERMO NUOVO COLLEGAMENTO PALERMO-CATANIA

PROGETTO DEFINITIVO
TRATTA NUOVA ENNA-DITTAINO

 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 RS3V
 40
 D 29 RH
 GE0005 017
 A
 35 di 59

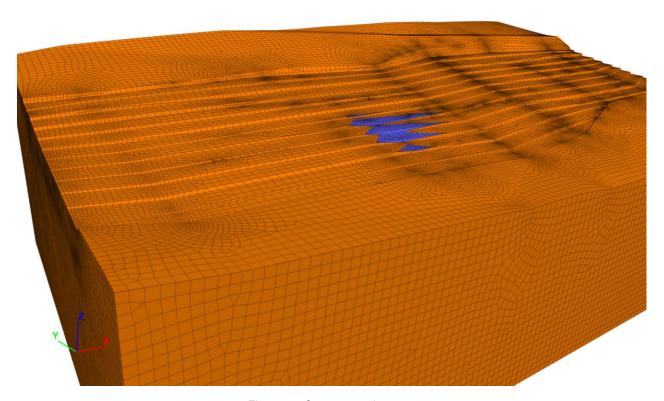
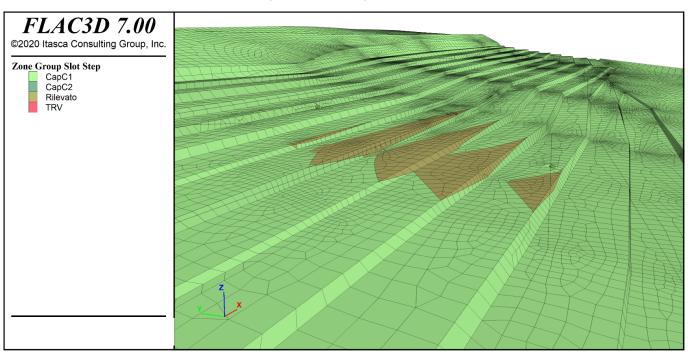



Figura 27. Scavo e gradonatura.

PROGETTO DEFINITIVO
TRATTA NUOVA ENNA-DITTAINO

FV01 - MODELLO B - ANALISI TRIDIMENSIONALE DELL'ESECUZIONE DELLA STAZIONE NELL'IPOTESI DI CONDIZIONI DRENATE CON LEGAME COSTITUTIVO HARDENING SOIL / HARDENING SOIL SMALL STRAIN

 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 RS3V
 40
 D 29 RH
 GE0005 017
 A
 36 di 59

Figura 28. Scavo e gradonatura – ingrandimento sulla porzione in rilevato

5.5.3 Realizzazione dei pali di consolidamento

I pali di consolidamento, implementati tramite elementi *embedded pile* per il fusto, elementi *shell* per la base e per il cappellotto in c.a., sono generati nel modello in un'unica fase, rispettando la geometria e le quote imposte dai gradoni di ammorsamento del rilevato. Essi hanno interasse longitudinale e trasversale di 3.0 m. Nel modello sono implementati complessivamente 3028 pali, così distribuiti in base alla loro lunghezza:

- 72 pali Ø800 di lunghezza 9.0 m
- 73 pali Ø800 di lunghezza 12.0 m
- 78 pali Ø800 di lunghezza 15.0 m
- 2805 pali Ø800 di lunghezza 18.0 m

DIRETTRICE FERROVIARIA MESSINA-CATANIA-PALERMO NUOVO COLLEGAMENTO PALERMO-CATANIA

PROGETTO DEFINITIVO
TRATTA NUOVA ENNA-DITTAINO

COMMESSA LOTTO CODIFICA DOCUMENTO REV. FOGLIO
RS3V 40 D 29 RH GE0005 017 A 37 di 59

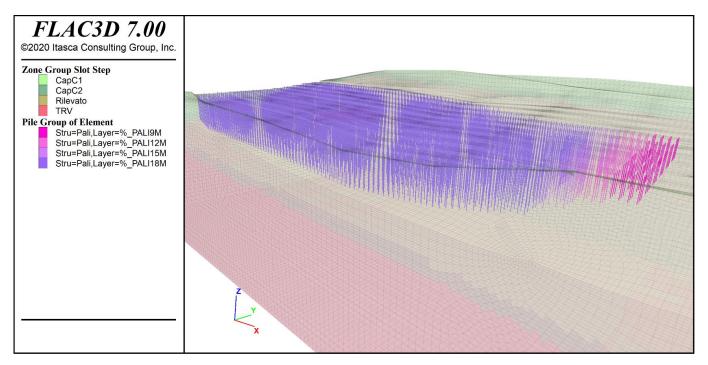


Figura 29. Pali di consolidamento

PROGETTO DEFINITIVO

TRATTA NUOVA ENNA-DITTAINO

FV01 - MODELLO B - ANALISI TRIDIMENSIONALE DELL'ESECUZIONE DELLA STAZIONE NELL'IPOTESI DI CONDIZIONI DRENATE CON LEGAME COSTITUTIVO HARDENING SOIL / HARDENING SOIL SMALL STRAIN

 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 RS3V
 40
 D 29 RH
 GE0005 017
 A
 38 di 59

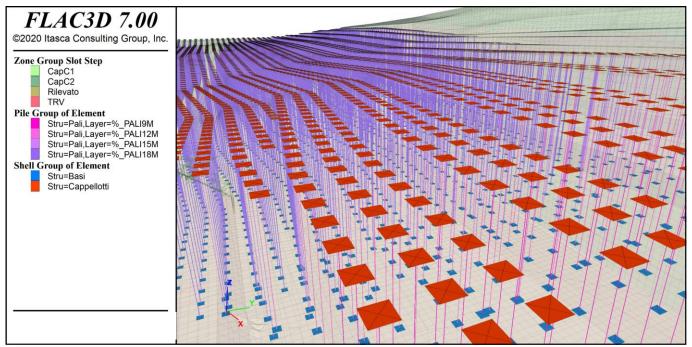


Figura 30. Pali di consolidamento (embedded pile) cappellotti in c.a. (shell rossi) e base dei pali (shell blu)

5.5.4 Rilevato fino a quota 429 m s.l.m.

In questa fase è simulata la realizzazione del rilevato fino alla prima banca orizzontale, posta a quota 429 m s.l.m.. Tale lavorazione riguarda solo la zona di sviluppo circa 50 m nell'intorno della sezione 14. Contestualmente è simulata la posa della geogriglia al di sotto di tale rilevato, tramite attivazione degli opportuni elementi *cable*.

DIRETTRICE FERROVIARIA MESSINA-CATANIA-PALERMO NUOVO COLLEGAMENTO PALERMO-CATANIA

PROGETTO DEFINITIVO
TRATTA NUOVA ENNA-DITTAINO

 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 RS3V
 40
 D 29 RH
 GE0005 017
 A
 39 di 59

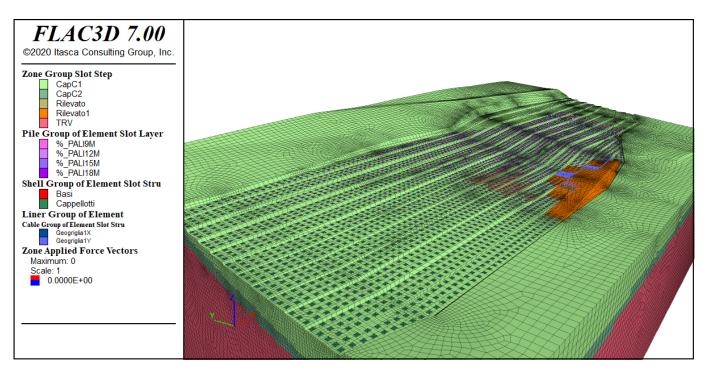


Figura 31. Rilevato fino a quota 429 m s.l.m.

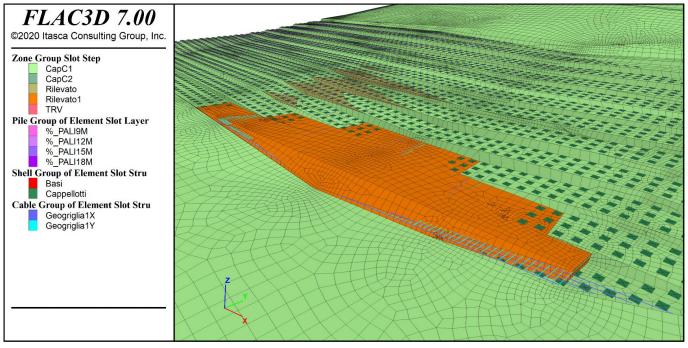
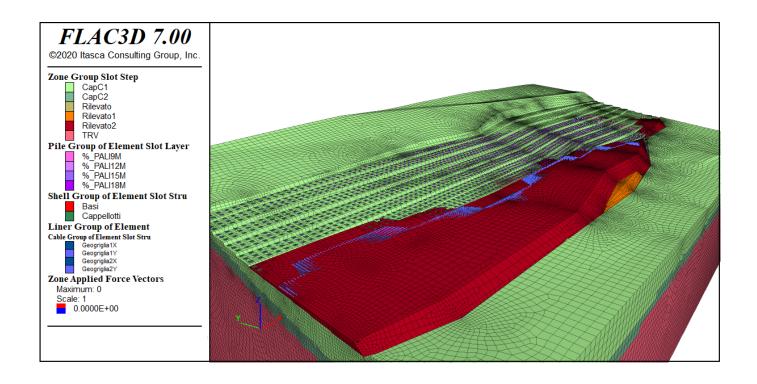


Figura 32. Rilevato fino a quota 429 m s.l.m.

PROGETTO DEFINITIVO

TRATTA NUOVA ENNA-DITTAINO


FV01 - MODELLO B - ANALISI TRIDIMENSIONALE DELL'ESECUZIONE DELLA STAZIONE NELL'IPOTESI DI CONDIZIONI DRENATE CON LEGAME COSTITUTIVO HARDENING SOIL / HARDENING SOIL SMALL STRAIN

 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 RS3V
 40
 D 29 RH
 GE0005 017
 A
 40 di 59

5.5.5 Rilevato fino a quota 434 m s.l.m.

In questa fase è simulata la realizzazione del rilevato fino alla prima banca orizzontale, posta a quota 434 m s.l.m.. Tale lavorazione riguarda solo la quasi totalità dell'area studiata. Contestualmente è simulata la posa della geogriglia al di sotto di tale rilevato, tramite attivazione degli opportuni elementi *cable*.

PROGETTO DEFINITIVO

TRATTA NUOVA ENNA-DITTAINO

FV01 - MODELLO B - ANALISI TRIDIMENSIONALE DELL'ESECUZIONE DELLA STAZIONE NELL'IPOTESI DI CONDIZIONI DRENATE CON LEGAME COSTITUTIVO HARDENING SOIL / HARDENING SOIL SMALL STRAIN

 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 RS3V
 40
 D 29 RH
 GE0005 017
 A
 41 di 59

Figura 33. Rilevato fino a quota 434 m s.l.m.

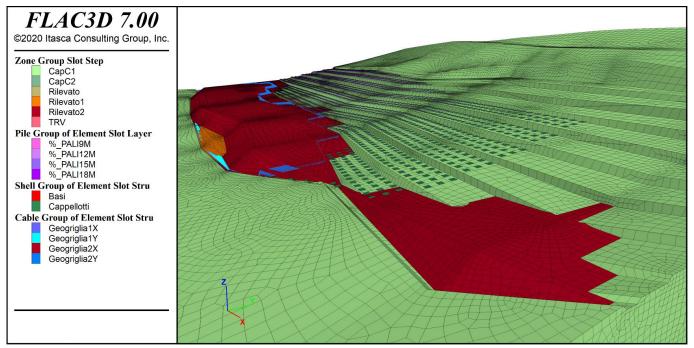


Figura 34. Rilevato fino a quota 434 m s.l.m.

5.5.6 Rilevato fino a quota 439 m s.l.m.

In questa fase è simulata la realizzazione del rilevato fino alla prima banca orizzontale, posta a quota 439 m s.l.m.. Contestualmente è simulata la posa della geogriglia al di sotto di tale rilevato, tramite attivazione degli opportuni elementi *cable*.

DIRETTRICE FERROVIARIA MESSINA-CATANIA-PALERMO NUOVO COLLEGAMENTO PALERMO-CATANIA

PROGETTO DEFINITIVO
TRATTA NUOVA ENNA-DITTAINO

 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 RS3V
 40
 D 29 RH
 GE0005 017
 A
 42 di 59

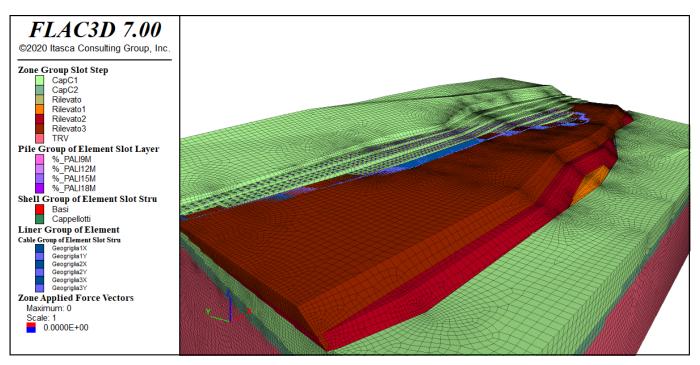


Figura 35. Rilevato fino a quota 439 m s.l.m.

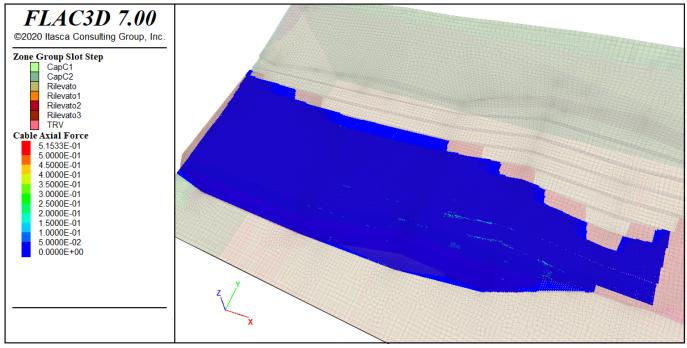


Figura 36. Rilevato fino a quota 439 m s.l.m. - geogriglia

PROGETTO DEFINITIVO

TRATTA NUOVA ENNA-DITTAINO

FV01 - MODELLO B - ANALISI TRIDIMENSIONALE DELL'ESECUZIONE DELLA STAZIONE NELL'IPOTESI DI CONDIZIONI DRENATE CON LEGAME COSTITUTIVO HARDENING SOIL / HARDENING SOIL SMALL STRAIN

 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 RS3V
 40
 D 29 RH
 GE0005 017
 A
 43 di 59

5.5.7 Rilevato fino a quota 444 m s.l.m.

In questa fase è simulata la realizzazione del rilevato fino alla prima banca orizzontale, posta a quota 444 m s.l.m., corrispondente alla quota di imposta fondazione delle strutture in elevazione. Contestualmente è simulata la posa della geogriglia al di sotto di tale rilevato, tramite attivazione degli opportuni elementi *cable*.

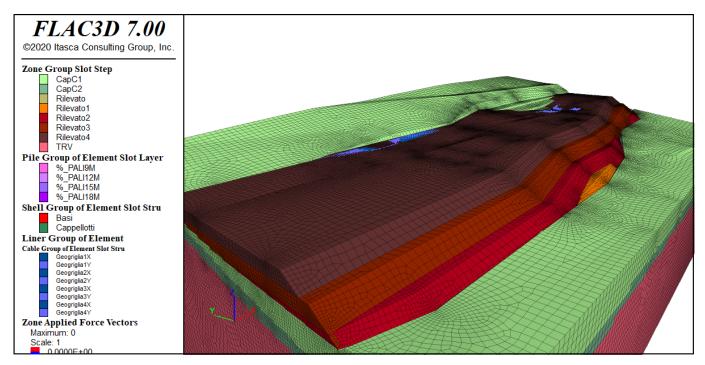


Figura 37. Rilevato fino a quota 444 m s.l.m.

PROGETTO DEFINITIVO

TRATTA NUOVA ENNA-DITTAINO

FV01 - MODELLO B - ANALISI TRIDIMENSIONALE DELL'ESECUZIONE DELLA STAZIONE NELL'IPOTESI DI CONDIZIONI DRENATE CON LEGAME COSTITUTIVO HARDENING SOIL / HARDENING SOIL SMALL STRAIN

COMMESSA LOTTO CODIFICA DOCUMENTO REV. FOGLIO
RS3V 40 D 29 RH GE0005 017 A 44 di 59

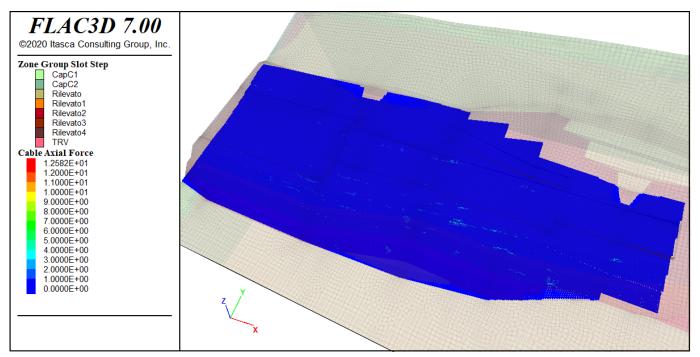


Figura 38. Rilevato fino a quota 444 m s.l.m. – geogriglia

5.5.8 Ultimazione dell'opera

In questa fase è simulata la realizzazione delle strutture in elevazione ed il completamento del rilevato. Gli elementi strutturali sono implementati con il loro peso di volume. Al rilevato presente sopra il piano ferroviario è applicato un sovraccarico aggiuntivo permanente, tale per cui la pressione complessiva scaricata dall'edificio di stazione corrisponda circa a 100 kPa.

Nella porzione tra la fine dello scatolare stradale e la sezione 16, per uno sviluppo longitudinale di circa 30 m, è stato inserito un volume di rilevato alleggerito, caratterizzato da un peso di volume di 13 kN/m³. Tale volume costituisce una zona di transizione tra il tratto precedente alleggerito mediante scatolare in c.a., ed il tratto successivo di rilevato corrente con altezze massime di circa 5 m, decrescenti allontanandosi dalla stazione.

DIRETTRICE FERROVIARIA MESSINA-CATANIA-PALERMO NUOVO COLLEGAMENTO PALERMO-CATANIA

PROGETTO DEFINITIVO
TRATTA NUOVA ENNA-DITTAINO

 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 RS3V
 40
 D 29 RH
 GE0005 017
 A
 45 di 59

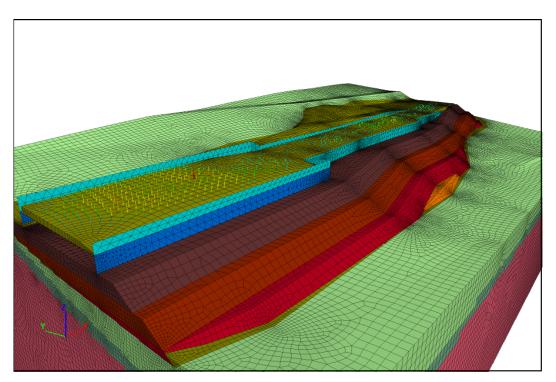


Figura 39. Strutture e completamento del rilevato

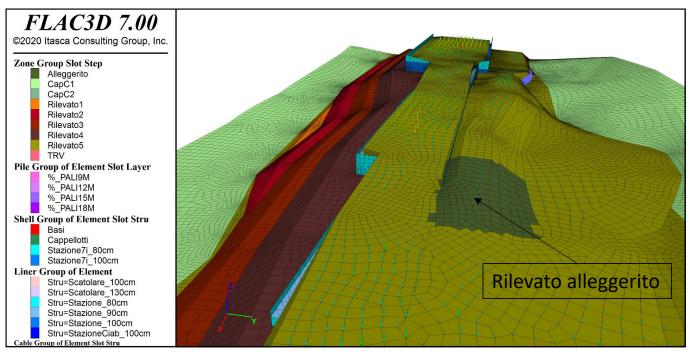


Figura 40. Strutture e completamento del rilevato - rilevato alleggerito

PROGETTO DEFINITIVO

TRATTA NUOVA ENNA-DITTAINO

FV01 - MODELLO B - ANALISI TRIDIMENSIONALE DELL'ESECUZIONE DELLA STAZIONE NELL'IPOTESI DI CONDIZIONI DRENATE CON LEGAME COSTITUTIVO HARDENING SOIL / HARDENING SOIL SMALL STRAIN

 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 RS3V
 40
 D 29 RH
 GE0005 017
 A
 46 di 59

5.5.9 Fase di Esercizio e fase allo Stato Limite Ultimo

In fase di Esercizio si applica alle superfici del piano ferroviario un carico accidentale aggiuntivo di 20 kPa, su tutta l'area della copertura. Anche alla sede stradale della viabilità di monte si applica il carico accidentale di 20 kPa, mentre al piazzale dalla progressiva 0+720 in poi, si applica il carico accidentale di 20 kPa.

Allo SLU si applicano i coefficienti parziali $\gamma_Q = 1.5$ per i carichi acidentali, e $\gamma_G = 1.3$ per carichi permanenti e pesi propri degli elementi strutturali e di volume. Per quanto riguarda questi ultimi, occorre distinguere tra il corpo del rilevato, in cui la densità del modello è pari a $\rho_{dry,SLU} = \rho_{sat,SLU} = 1.94 \cdot 1.3 = 2.522$ t/m³, e il terreno naturale, cui nel modello è applicata saturazione s = 1 ovunque, pertanto la densità satura è pari a $\rho_{sat} = \rho_{dry} + n \cdot s \cdot \rho_w$. Allo SLU si amplifica quindi anche la densità dell'acqua ρ_w .

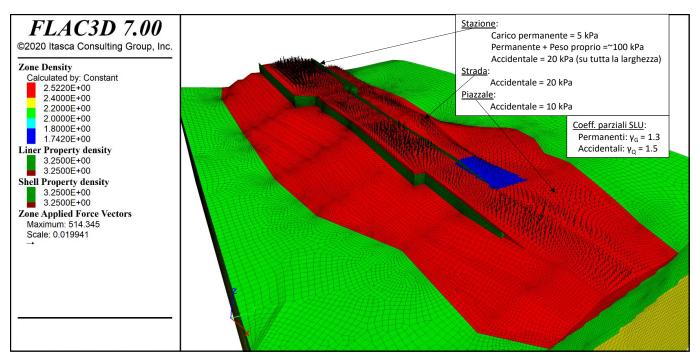


Figura 41. Applicazione carichi permanenti e accidentali fattorizzati, e amplificazione pesi propri allo SLU

PROGETTO DEFINITIVO

TRATTA NUOVA ENNA-DITTAINO

FV01 - MODELLO B - ANALISI TRIDIMENSIONALE DELL'ESECUZIONE DELLA STAZIONE NELL'IPOTESI DI CONDIZIONI DRENATE CON LEGAME COSTITUTIVO HARDENING SOIL / HARDENING SOIL SMALL STRAIN

 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 RS3V
 40
 D 29 RH
 GE0005 017
 A
 47 di 59

5.6 Risultati in termini di spostamenti

Nelle seguenti immagini si riportano gli spostamenti totali dovuti all'ultimazione dell'opera ed all'applicazione dei carichi di esercizio.

Gli spostamenti complessivi al di sotto dell'edificio di Stazione e degli scatolari di approccio è inferiore a 5 cm, sia per la fase esecutiva che per la fase di esercizio, inclusiva degli spostamenti del corpo del rilevato, non rilevabili all'atto pratico (perché avvengono durante le fasi costruttive e sono compensati in corso d'opera). Gli spostamenti alla base del rilevato, originati sul terreno naturale dall'opera, sono al massimo di 26 mm. L'effetto dei pali di consolidamento è evidente nella parte terminale del modello, dove, senza pali di consolidamento, si raggiungono 84 mm di cedimento alla base del rilevato.

Gli spostamenti ottenuti, seppur derivano da un'analisi drenata e non tengono conto degli effetti della consolidazione, sono sicuramente accettabili per l'opera in oggetto.

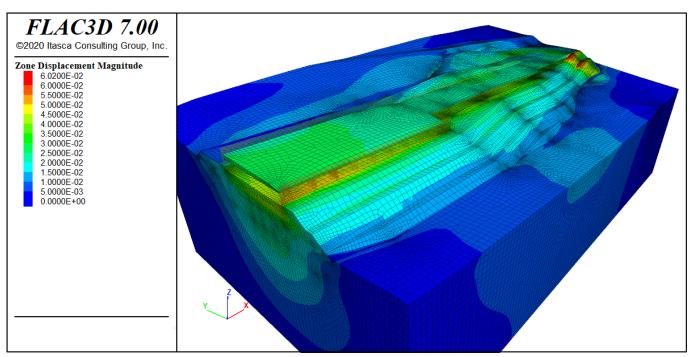


Figura 42. Spostamenti totali ad ultimazione opera

DIRETTRICE FERROVIARIA MESSINA-CATANIA-PALERMO NUOVO COLLEGAMENTO PALERMO-CATANIA PROGETTO DEFINITIVO

TRATTA NUOVA ENNA-DITTAINO

FV01 - MODELLO B - ANALISI TRIDIMENSIONALE DELL'ESECUZIONE DELLA STAZIONE NELL'IPOTESI DI CONDIZIONI DRENATE CON LEGAME COSTITUTIVO HARDENING SOIL / HARDENING SOIL SMALL STRAIN

 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 RS3V
 40
 D 29 RH
 GE0005 017
 A
 48 di 59

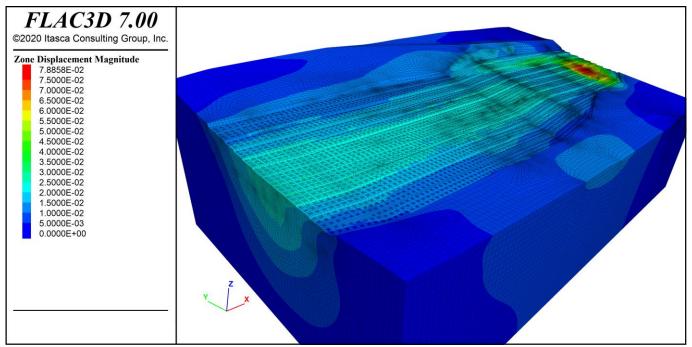
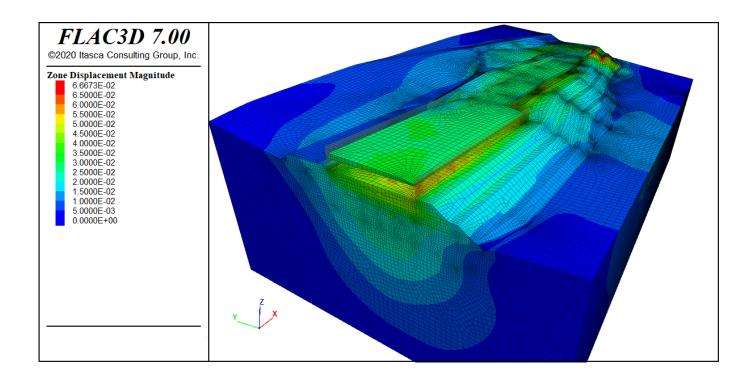



Figura 43. Spostamenti alla base del rilevato ad ultimazione opera

DIRETTRICE FERROVIARIA MESSINA-CATANIA-PALERMO NUOVO COLLEGAMENTO PALERMO-CATANIA

PROGETTO DEFINITIVO
TRATTA NUOVA ENNA-DITTAINO

 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 RS3V
 40
 D 29 RH
 GE0005 017
 A
 49 di 59

Figura 44. Spostamenti totali in fase di esercizio

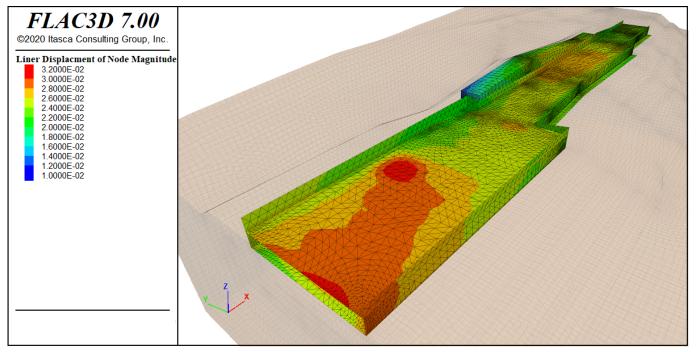


Figura 45. Spostamenti della struttura in esercizio

PROGETTO DEFINITIVO
TRATTA NUOVA ENNA-DITTAINO

FV01 - MODELLO B - ANALISI TRIDIMENSIONALE DELL'ESECUZIONE DELLA STAZIONE NELL'IPOTESI DI CONDIZIONI DRENATE CON LEGAME COSTITUTIVO HARDENING SOIL / HARDENING SOIL SMALL STRAIN

 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 RS3V
 40
 D 29 RH
 GE0005 017
 A
 50 di 59

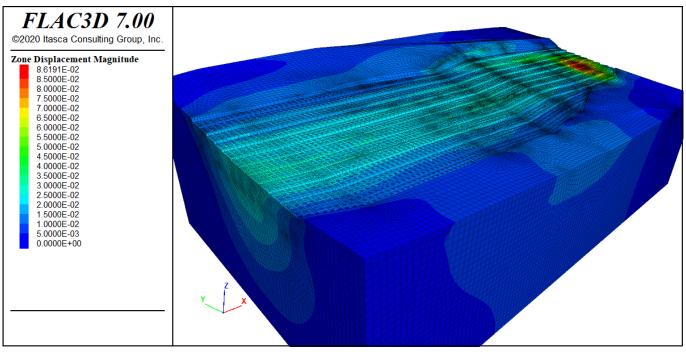


Figura 46. Spostamenti alla base del rilevato in esercizio

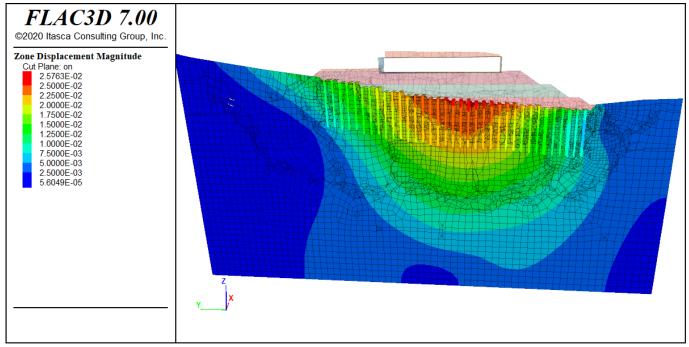


Figura 47. Spostamenti totali sezione 11 in esercizio

DIRETTRICE FERROVIARIA MESSINA-CATANIA-PALERMO NUOVO COLLEGAMENTO PALERMO-CATANIA

PROGETTO DEFINITIVO
TRATTA NUOVA ENNA-DITTAINO

COMMESSA LOTTO CODIFICA DOCUMENTO REV. FOGLIO
RS3V 40 D 29 RH GE0005 017 A 51 di 59

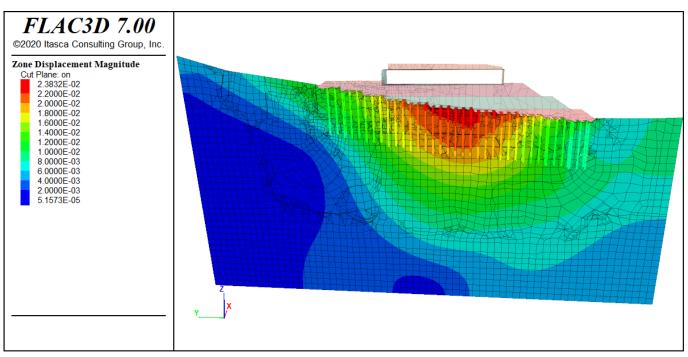


Figura 48. Spostamenti totali sezione 12 in esercizio

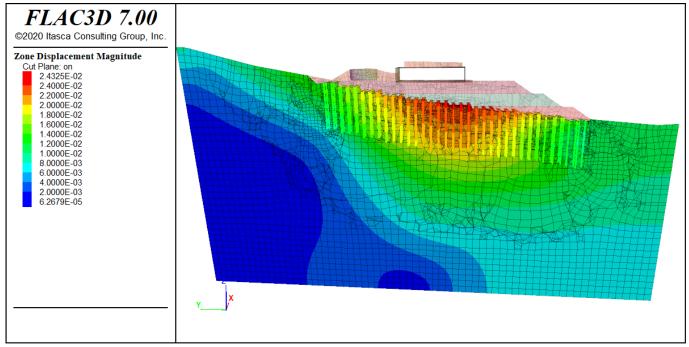


Figura 49. Spostamenti totali sezione 13 in esercizio

DIRETTRICE FERROVIARIA MESSINA-CATANIA-PALERMO NUOVO COLLEGAMENTO PALERMO-CATANIA

PROGETTO DEFINITIVO
TRATTA NUOVA ENNA-DITTAINO

 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 RS3V
 40
 D 29 RH
 GE0005 017
 A
 52 di 59

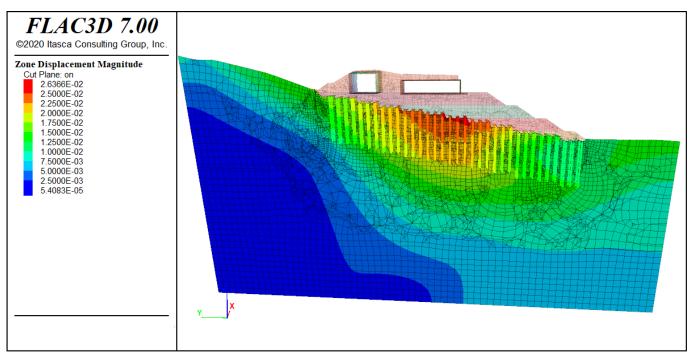


Figura 50. Spostamenti totali sezione 14 in esercizio

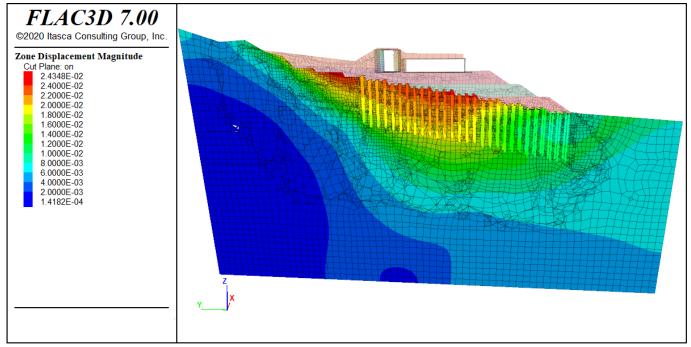


Figura 51. Spostamenti totali sezione 15 in esercizio

DIRETTRICE FERROVIARIA MESSINA-CATANIA-PALERMO NUOVO COLLEGAMENTO PALERMO-CATANIA

PROGETTO DEFINITIVO
TRATTA NUOVA ENNA-DITTAINO

COMMESSA LOTTO CODIFICA DOCUMENTO REV. FOGLIO
RS3V 40 D 29 RH GE0005 017 A 53 di 59

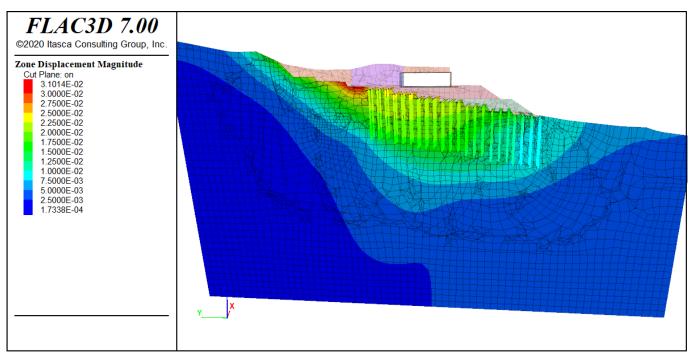


Figura 52. Spostamenti totali sezione alla pk 0+725 in esercizio

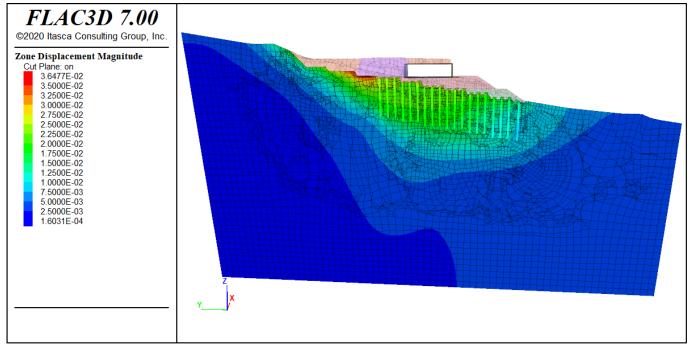


Figura 53. Spostamenti totali sezione 16 in esercizio

PROGETTO DEFINITIVO

TRATTA NUOVA ENNA-DITTAINO

FV01 - MODELLO B - ANALISI TRIDIMENSIONALE DELL'ESECUZIONE DELLA STAZIONE NELL'IPOTESI DI CONDIZIONI DRENATE CON LEGAME COSTITUTIVO HARDENING SOIL / HARDENING SOIL SMALL STRAIN

COMMESSA LOTTO CODIFICA DOCUMENTO REV. FOGLIO
RS3V 40 D 29 RH GE0005 017 A 54 di 59

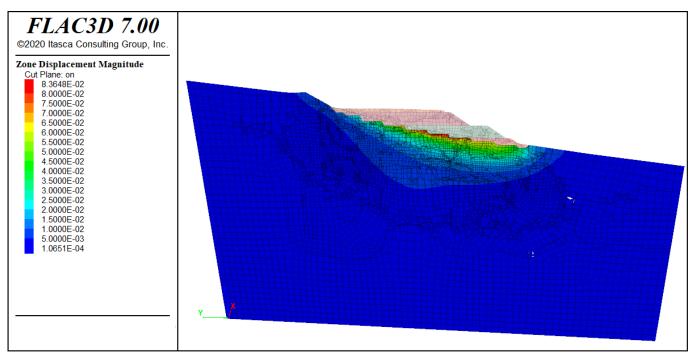


Figura 54. Spostamenti totali sezione 17 in esercizio

PROGETTO DEFINITIVO
TRATTA NUOVA ENNA-DITTAINO

FV01 - MODELLO B - ANALISI TRIDIMENSIONALE DELL'ESECUZIONE DELLA STAZIONE NELL'IPOTESI DI CONDIZIONI DRENATE CON LEGAME COSTITUTIVO HARDENING SOIL / HARDENING SOIL SMALL STRAIN

 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 RS3V
 40
 D 29 RH
 GE0005 017
 A
 55 di 59

5.7 Risultati in termini di sollecitazioni strutturali

Nelle seguenti immagini si riportano le azioni interne sugli elementi di consolidamento allo SLU.

Trattandosi di pali riduttori di cedimento, la normativa vigente ne richiede la verifica dell'integrità strutturale.

Dalle immagini riportate nel seguito si nota come i pali più sollecitati siano quelli di valle, nella parte alta del palo, confermando il risultato già ottenuto con le analisi 2D (cfr. [DC3], [DC4], [DC5]).

La Figura 59 riporta la verifica allo SLU per tutte le sezioni di palo, confrontate con il dominio di resistenza per l'armatura di progetto (8 Ø24): la maggior parte dei punti sono ampiamente all'interno del dominio, ed i pochi punti più vicini al dominio conservano comunque un buon margine di sicurezza. La verifica è soddisfatta.

La geogriglia è poco sollecitata, sviluppando allo SLU circa il 10% della sua resistenza.

DIRETTRICE FERROVIARIA MESSINA-CATANIA-PALERMO NUOVO COLLEGAMENTO PALERMO-CATANIA

PROGETTO DEFINITIVO
TRATTA NUOVA ENNA-DITTAINO

 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 RS3V
 40
 D 29 RH
 GE0005 017
 A
 56 di 59

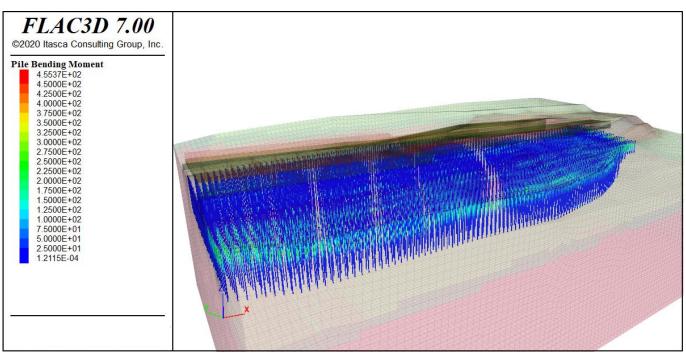


Figura 55. Momento flettente pali in esercizio

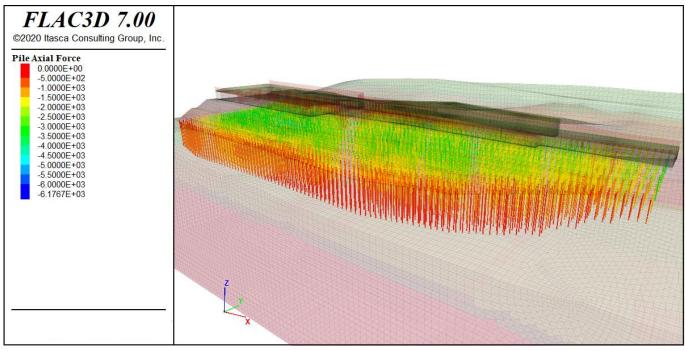


Figura 56. Azione assiale pali in esercizio

DIRETTRICE FERROVIARIA MESSINA-CATANIA-PALERMO NUOVO COLLEGAMENTO PALERMO-CATANIA

PROGETTO DEFINITIVO
TRATTA NUOVA ENNA-DITTAINO

 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 RS3V
 40
 D 29 RH
 GE0005 017
 A
 57 di 59

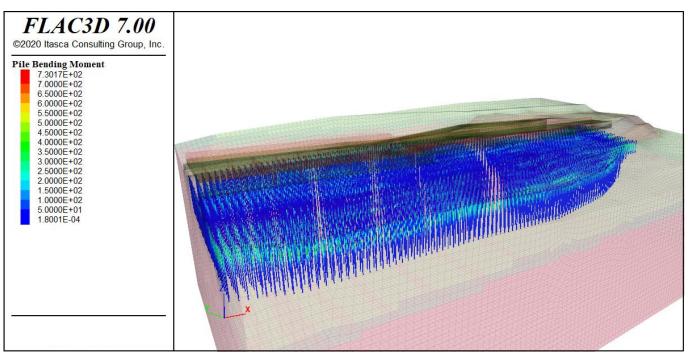


Figura 57. Momento flettente pali allo SLU

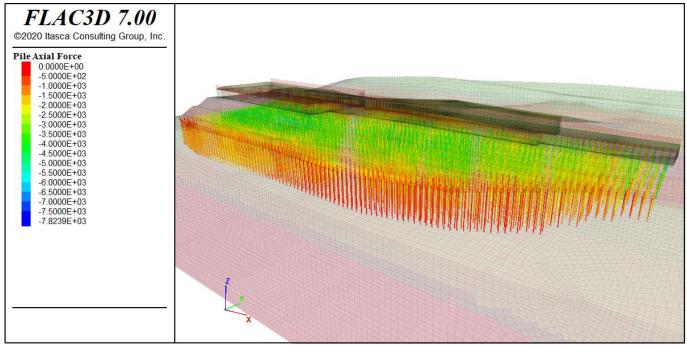


Figura 58. Azione assiale pali allo SLU

PROGETTO DEFINITIVO
TRATTA NUOVA ENNA-DITTAINO

FV01 - MODELLO B - ANALISI TRIDIMENSIONALE DELL'ESECUZIONE DELLA STAZIONE NELL'IPOTESI DI CONDIZIONI DRENATE CON LEGAME COSTITUTIVO HARDENING SOIL / HARDENING SOIL SMALL STRAIN

 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 RS3V
 40
 D 29 RH
 GE0005 017
 A
 58 di 59

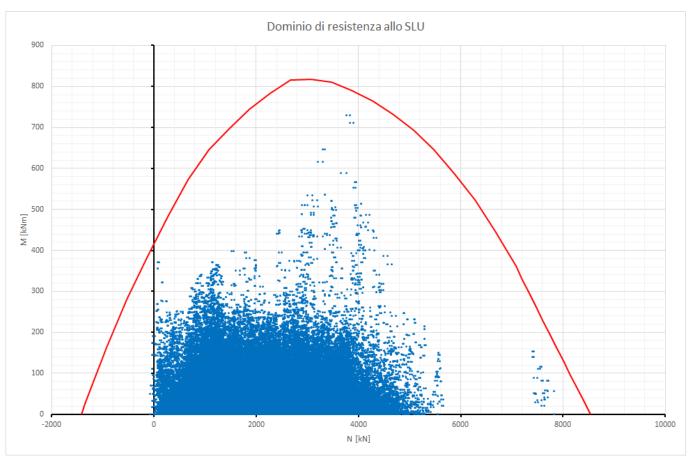


Figura 59. Verifica di integrità strutturale pali di consolidamento – Dominio N-M di tutte le sezioni

DIRETTRICE FERROVIARIA MESSINA-CATANIA-PALERMO NUOVO COLLEGAMENTO PALERMO-CATANIA

PROGETTO DEFINITIVO
TRATTA NUOVA ENNA-DITTAINO

 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 RS3V
 40
 D 29 RH
 GE0005 017
 A
 59 di 59

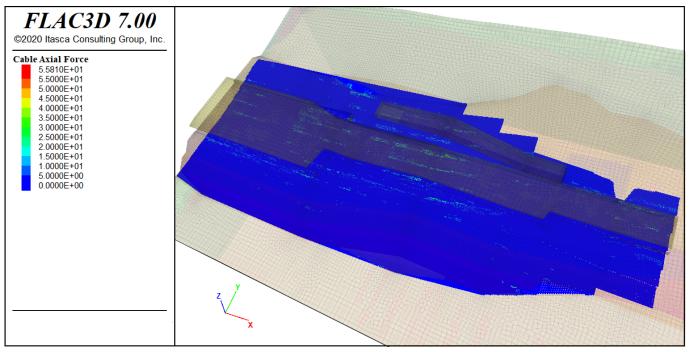


Figura 60. Azione massima sulla geogriglia allo SLU