COMMITTENTE:

PROGETTAZIONE:

SCALA:

DIRETTRICE FERROVIARIA MESSINA – CATANIA – PALERMO NUOVO COLLEGAMENTO PALERMO–CATANIA

U.O. OPERE CIVILI E GESTIONE DELLE VARIANTI

PROGETTO DEFINITIVO

TRATTA NUOVA ENNA-DITTAINO

VI04 - Viadotto a Singolo Binario - Ltot=300.51 ml circa Relazione di calcolo opere provvisionali 2/2

								-
	MESSA LOTTO F		TIPO DC					1
R S	3 V 4 0	D 0 9	CL	V I 0	4 0 3	0 0	2 A	varianti ila di Rome
Rev.	Descrizione	Redatto	Data	Verificato	Data	Approvato	Data	Augorozzato Data
Α	Emissione definitiva	M. Tartaglia	Novembre 2019	M. E. D'Effremo	Novembre 2019	F. Sparacino	Novembe 2019	V Dzzi
						340		A P P P
				(ii)				E C E
								obe dead
								O.O Ordin
RS3V 4	40 D 09 CL VI0203 001	A.doc				1		n. Elab.: 875

PROGETTO DEFINITIVO TRATTA NUOVA ENNA-DITTAINO

VI04 - Viadotto a Singolo Binario - Ltot=360.09 ml circa Relazione di calcolo opere provvisionali

COMMESSA LOTTO

40

RS3V

CODIFICA D 09 CL VI 04 03 02

DOCUMENTO

REV. FOGLIO Α 2 di 41

INDICE

1	PRE	EMESSA	Δ
1			
	1.1	NORMATIVE E STANDARD DI RIFERIMENTO	
	1.2	DOCUMENTI DI RIFERIMENTO	5
2	CAF	RATTERISTICHE DEI MATERIALI	6
	2.1	ACCIAIO	ε
	2.1.	1 Profilati e piastre metalliche	<i>6</i>
	2.2	CALCESTRUZZO	6
	2.2.	1 Calcestruzzo magro per getti di livellamento	<i>6</i>
	2.2.2	2 Calcestruzzo pali, diaframmi di fondazione, cordoli opere provvisionali	<i>6</i>
3	DES	SCRIZIONE DELL'OPERA	7
4	CAI	RATTERIZZAZIONE GEOTECNICA	8
	4.1	Terreno	8
5	CRI	TERI GENERALI DI MODELLAZIONE ADOTTATI	9
	5.1	METODOLOGIA DI CALCOLO	9
6	CRI	TERI GENERALI DI PROGETTAZIONE E VERIFICA AI SENSI DEL D.M. 17-01-2018	12
	6.1	METODO AGLI STATI LIMITE ED APPROCCI DI PROGETTO	12
	6.2	CRITERI DI ANALISI E VERIFICA DI PARATIE	16
7	ANA	ALISI DELLE OPERE PROVVISIONALI	19
	7.1	DESCRIZIONE DELLE SEZIONI DI CALCOLO	19
	7.1.	1 Sezione P04	19
	7.2	SCHEMA E FASI DI CALCOLO	20
	7.2.	1 Sezione P04	20
8	RIS	ULTATI E VERIFICHE PARATIA	25
	8.1	SEZIONE P22	25

PROGETTO DEFINITIVO TRATTA NUOVA ENNA-DITTAINO

VI04 - Viadotto a Singolo Binario - Ltot=360.09 ml circa Relazione di calcolo opere provvisionali

 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 RS3V
 40
 D 09 CL
 VI 04 03 02
 A
 3 di 41

	8.1.1	RISULTATI (combinazione SLE):	25
	8.1.2	RISULTATI e VERIFICHE SLU STR PALANCOLE METALLICHE (combinazione A1+M1+R1):	26
	8.1.3	VERIFICA SLU GEO PALANCOLE METALLICHE (combinazione A2+M2+RI)	29
	8.1.4	VERIFICA SLU STRU PUNTONE (combinazione A1+M1+RI)	30
	8.1.5	VERIFICA SLU STRU TRAVE DI RIPARTIZIONE (combinazione A1+M1+RI)	32
	8.1.6	VERIFICA SLU UPL E HYD	34
	8.1.7	Verifica stabilità globale del complesso opera di sostegno – terreno	37
9	ANA	LISI DI STABILITA' SCARPATE PROVVISORIE	38
	9.1	METODOLOGIE DI CALCOLO	38
	9.2	CARICHI	39
	9.3	SEZIONI DI CALCOLO	39
	9 4	RISHI TATI	40

PROGETTO DEFINITIVO

TRATTA NUOVA ENNA- DITTAINO

VI04 - Viadotto a Singolo Binario - Ltot=360.09 ml circa Relazione di calcolo opere provvisionali

COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
RS3V	40	D 09 CL	VI 04 03 02	Α	4 di 41

1 PREMESSA

La presente relazione di calcolo delle opere provvisionali si riferisce alla progettazione definitiva del Lotto 4 della Linea Ferroviaria Messina-Catania-Palermo nella tratta Nuova Enna-Dittaino. La relazione è relativa al viadotto VI04, avente una lunghezza di circa 360.09m (VI04).

2 NORMATIVE E STANDARD DI RIFERIMENTO

- Rif. [1] Ministero delle Infrastrutture dei Trasporti, DM 17 gennaio 2018 Aggiornamento delle «Norme Tecniche per le Costruzioni» (GU n. 42 del 20 febbraio 2018)
- Rif. [2] Circolare Applicativa n 7 del 21 gennaio 2019 (GU n.35 del 11-2-2019 Suppl. Ordinario n. 5.)
- Rif. [3] UNI 11104: Calcestruzzo : Specificazione, prestazione, produzione e conformità Istruzioni complementari per l'applicazione della EN 206-1

Documenti Tecnici RFI e/o di ambito ferroviario

- Rif. [4] Manuale di Progettazione delle Opere Civili: PARTE I / Aspetti Generali (RFI DTC SI MA IFS 001 C- rev 21/12/2018)
- Rif. [5] Manuale di Progettazione delle Opere Civili: PARTE II Sezione 2 / Ponti e Strutture (RFI DTC SI PS MA IFS 001 C rev 21/12/2018)
- Rif. [6] Manuale di Progettazione delle Opere Civili: PARTE II Sezione 3 / Corpo Stradale (RFI DTC SI CS MA IFS 001 C rev 21/12/2018)
- Rif. [7] Manuale di Progettazione delle Opere Civili: PARTE II Sezione 4 / Gallerie (RFI DTC SI GA MA IFS 001 C rev 21/12/2018)
- Rif. [8] Manuale di Progettazione delle Opere Civili: PARTE II Sezione 5 / Prescrizioni per i Marciapiedi e le Pensiline delle Stazioni Ferroviarie a servizio dei Viaggiatori (RFI DTC SI CS MA IFS 002 B rev 21/12/2018)
- Rif. [9] Manuale di Progettazione delle Opere Civili: PARTE II Sezione 6 / Sagome e Profilo minimo degli ostacoli (RFI DTC SI CS MA IFS 003 C– rev 21/12/2018)
- Rif. [10] Manuale di Progettazione delle Opere Civili: PARTE II Sezione 7 / Geologia (RFI DTC SI CS GE IFS 001 A rev 22/12/2017)
- Rif. [11] Regolamento (UE) N.1299/2014 della Commissione del 18 Novembre 2014 relativo alle specifiche tecniche di interoperabilità per il sottosistema "infrastruttura" del sistema ferroviario dell'Unione europea
- Rif. [12] Capitolato Generale Tecnico di Appalto delle Opere Civili (RFI DTC SI CS SP IFS 005 B rev 22/12/2017)
- Rif. [13] Regolamento (UE) N. 1299/2014 della Commissione del 18 novembre 2014 relativo alle specifiche tecniche di interoperabilità per il sottosistema "infrastruttura" del sistema ferroviario dell'Unione europea, modificato dal Regolamento di esecuzione (UE) N° 2019/776 della Commissione del 16 maggio 2019.

PROGETTO DEFINITIVO

TRATTA NUOVA ENNA-DITTAINO

VI04 - Viadotto a Singolo Binario - Ltot=360.09 ml circa Relazione di calcolo opere provvisionali

COMMESSA LOTTO CODIFICA

RS3V 40 D 09 CL

DOCUMENTO
VI 04 03 02

FOGLIO 5 di 41

REV.

Α

2.1 **DOCUMENTI DI RIFERIMENTO**

Nella presente relazione si è fatto riferimento agli elaborati grafici di progetto:

FOGLIO

6 di 41

Α

PROGETTO DEFINITIVO

TRATTA NUOVA ENNA- DITTAINO

VI04 - Viadotto a Singolo Binario - Ltot=360.09 ml circa Relazione di calcolo opere provvisionali

COMMESSA LOTTO CODIFICA REV. DOCUMENTO RS3V 40 D 09 CL VI 04 03 02

3 CARATTERISTICHE DEI MATERIALI

Il progetto strutturale prevede l'uso dei materiali con le caratteristiche meccaniche minime riportate nei paragrafi seguenti.

0 1		
3.1	Acciaio	
J.1	Acciaio	

3.1.1 Profilati e piastre metalliche

_	Acciaio tipo:	EN 10025-S275 JR
_	Tensione di rottura a trazione:	$f_{tk}\!\geq\!430\;MPa$
_	Tensione di snervamento:	$f_{yk} \! \geq \! 275 \; MPa$

3.2 Calcestruzzo

3.2.1 Calcestruzzo magro per getti di livellamento

_	Classe di resistenza:	C12/15
_	classe di esposizione:	X0

3.2.2 Calcestruzzo pali, diaframmi di fondazione, cordoli opere provvisionali

-	Classe di resistenza:	C25/30
_	classe di esposizione:	XC2
_	classe di consistenza:	S4
_	dimensione massima dell'inerte:	$D_{max}=32\ mm$
_	copriferro minimo:	$c_{f,min} \! \geq \! 50 \ mm$

PROGETTO DEFINITIVO

TRATTA NUOVA ENNA-DITTAINO

VI04 - Viadotto a Singolo Binario - Ltot=360.09 ml circa Relazione di calcolo opere provvisionali

COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
RS3V	40	D 09 CL	VI 04 03 02	Α	7 di 41

4 DESCRIZIONE DELL'OPERA

La presente relazione di calcolo tratta delle analisi delle sollecitazioni e delle verifiche di resistenza delle opere provvisionali previste per i lavori di realizzazione del viadotto VI04. In Figura 1, è rappresentato il viadotto ove sono presenti le sezioni P01, e P04, provviste di opere provvisionali constituite da palancole metalliche. Tra queste, la sezione P02 è stata considerata le più gravosa per la sua tipologia e per questo motivo è stata oggetto di studio, in termini di verifiche geotecniche e strutturali. Nella relazione corrente sono presentate le verifiche relative alle opere provvisionali della pila P02. Per maggiori informazioni si rimanda agli elaborati grafici di progetto:

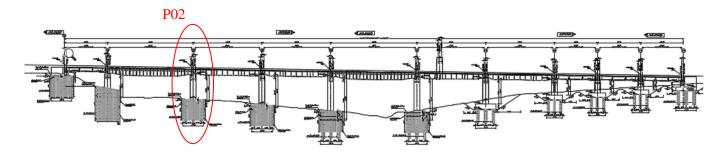


Figura 1

In Figura 2 è rappresentata la sezione dell'opera provvisionale prevista per la pila P22, costituita da palancole metalliche di lunghezza L=12 m, sostenuta da un livello di puntoni. Per ulteriori informazioni si rimanda all'elaborato grafico di progetto:

PROGETTO DEFINITIVO

TRATTA NUOVA ENNA-DITTAINO

VI04 - Viadotto a Singolo Binario - Ltot=360.09 ml circa Relazione di calcolo opere provvisionali
 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 RS3V
 40
 D 09 CL
 VI 04 03 02
 A
 8 di 41

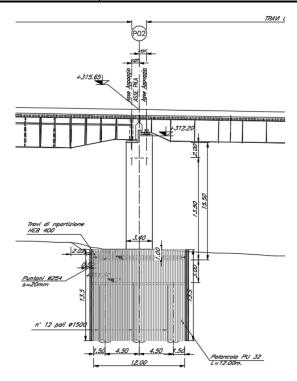


Figura 2

5 CARATTERIZZAZIONE GEOTECNICA

5.1 Terreno

Per l'inquadramento Geotecnico dell'area interessata dalla realizzazione delle opere della Stazione di Catenanuova ci si è riferiti a quanto indicato nella documentazione Geotecnica Generale di Progetto.

Dall'esame della suddetta documentazione, è stato possibile riscontrare che lungo tutto il tratto interessato dalla realizzazione delle opere in oggetto si riscontrano nella parte più superficiale un cappellaccio alterato della formazione di base argilla limosa (**Unità cap-c**). A profondità maggiori e fino alle massime profondità di interesse, si riscontra la formazione di Terravecchia (**TRV**), la quale è costituita da una argilla limosa, marnosa con frequanti livelletti limo sabbiosi, a strattura scagliettata.. Per maggiori dettagli ed approfondimenti a quanto riportato in merito nella Relazione Geotecnica Generale. Si riportano le caratteristiche fisico-meccaniche di tali terreni:

PROGETTO DEFINITIVO

TRATTA NUOVA ENNA-DITTAINO

VI04 - Viadotto a Singolo Binario - Ltot=360.09 ml circa Relazione di calcolo opere provvisionali

 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 RS3V
 40
 D 09 CL
 VI 04 03 02
 A
 9 di 41

Unità cap-c – Capellaccio coesivo costituente la parte alterata argilloso limosa della formazione di base

 $\gamma = 20.0 \text{ kN/m3}$ peso dell'unità di volume

c' = 0-10 kPa coesione drenata

 $\varphi' = 23-25$ ° angolo di resistenza al taglio

 $c_u = 50 \div 350 \text{ kPa}$ resistenza al taglio in condizioni non drenate

Eo = 120÷400 MPa modulo di deformazione elastico iniziale

Unità TRV- Formazione di Terravecchia: argilla da debolmente marnosa a marnosa

 $\gamma = 21.0 \text{ kN/m}^3$ peso dell'unità di volume

 $c' = 5 \text{ kPa per } \sigma' v < 150 \text{ kPa}$ coesione drenata

 $\varphi' = 26$ ° per $\sigma' v < 150$ kPa angolo di resistenza al taglio

 $c' = 20 \text{ kPa per } \sigma' v > 150 \text{ kPa}$ coesione drenata

 $\varphi' = 21$ ° per $\sigma' v > 150$ kPa angolo di resistenza al taglio

Eo = 400÷850 MPa Modulo di deformazione elastico iniziale

Nei dimensionamenti delle opere si è considerata la seguente stratigrafia:

Litatina	POTENZA	γ	c'	φ	E₀	Evc	Eur
Litotipo	m	kN/m³	kPa	0	MPa	MPa	MPa
Cappellaccio coesivo cap-c	6	20	0	24	150	50	80
Formazione di Terravecchia TRV		21	5	27	450	150	240

Il livello di falda è posto ad una quota di 289 m s.l.m.m, mentre il p.c. è posto a 297 m s.l.m.m.

Per i dimensionamenti delle opere provvisionali della pila P02, il livello idrico è stato dunque posto a 8 m dal p.c.

Essendo queste opere di tipo provvisorio non è necessaria la verifica sismica.

6 CRITERI GENERALI DI MODELLAZIONE ADOTTATI

6.1 Metodologia di calcolo

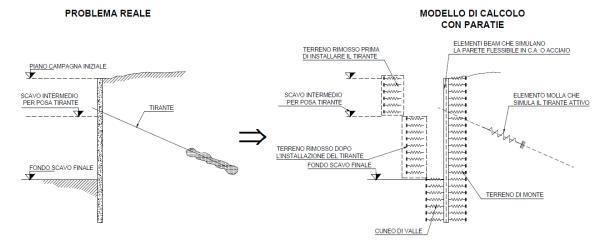
Al fine di rappresentare il comportamento delle paratie durante le varie fasi di lavoro (scavi e/o eventuale inserimento degli elementi di contrasto), è necessario l'impiego di un metodo di calcolo iterativo atto a simulare l'interazione in fase elastoplastica terreno-paratia.

PROGETTO DEFINITIVO

TRATTA NUOVA ENNA-DITTAINO

VI04 - Viadotto a Singolo Binario - Ltot=360.09 ml circa Relazione di calcolo opere provvisionali

COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
RS3V	40	D 09 CL	VI 04 03 02	Α	10 di 41


Le analisi finalizzate al dimensionamento delle paratie trattate nell'ambito del presente documento, sono state condotte con il programma di calcolo "Paratie Plus" della HarpaCeas s.r.l. di Milano Version 18.1.0

Lo studio del comportamento di un elemento di paratia inserito nel terreno viene effettuato tenendo conto della deformabilità dell'elemento stesso, considerato in regime elastico, e soggetto alle azioni derivanti dalla spinta dei terreni, dalle eventuali differenze di pressione idrostatiche, dalle spinte dovute ai sovraccarichi esterni e dalla presenza degli elementi di contrasto.

La paratia viene discretizzata con elementi finiti monodimensionali a due gradi di libertà per nodo (spostamento orizzontale e rotazione).

Il terreno viene schematizzato con delle molle secondo un modello elasto-plastico; esso reagisce elasticamente sino a valori limite dello spostamento, raggiunti i quali la reazione corrisponde, a seconda del segno dello stesso spostamento, ai valori limite della pressione attiva o passiva.

Gli spostamenti vengono computati a partire dalla situazione di spinta "a riposo".

Al fine di ottenere informazioni attendibili sull'entità delle sollecitazioni e delle deformazioni nelle paratie è necessario poterne seguire il comportamento durante le principali fasi esecutive.

A tal riguardo, l'interazione fra la paratia e il terreno, è simulata modellando la prima con elementi finiti caratterizzati da una rigidezza flessionale ed il secondo con molle elasto—plastiche connesse ai nodi della paratia di rigidezza proporzionale al modulo di rigidezza del terreno. Inoltre, è possibile modellare eventuali elementi di sostegno della paratia (tiranti, puntoni) con molle dotate di opportuna rigidezza.

In particolare, la paratia è schematizzata attraverso un diaframma di spessore equivalente ricavato attraverso la seguente espressione:

$$s_{eq} = \sqrt[3]{12E_m J_p}$$

dove:

PROGETTO DEFINITIVO

TRATTA NUOVA ENNA-DITTAINO

VI04 - Viadotto a Singolo Binario - Ltot=360.09 ml circa Relazione di calcolo opere provvisionali

COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
RS3V	40	D 09 CL	VI 04 03 02	Α	11 di 41

E_m modulo elastico del materiale costituente la paratia

 J_p inerzia della sezione della paratia

Il terreno si comporta come un mezzo elastico sino a che il rapporto tra la tensione orizzontale efficace (σ 'h) e la tensione verticale efficace (σ 'v) risulta compreso tra il coefficiente di spinta attivo (ka) e passivo (kp), mentre quando il rapporto è pari a ka o a kp il terreno si comporta come un mezzo elasto-plastico.

Questo modello, nella sua semplicità concettuale, derivato direttamente dal modello di Winkler, consente una simulazione del comportamento del terreno adeguata agli scopi progettuali. In particolare, vengono superate le limitazioni dei più tradizionali metodi dell'equilibrio limite, non idonei a seguire il comportamento della struttura al variare delle fasi esecutive.

I parametri di deformabilità del terreno compaiono nella definizione della rigidezza delle molle. Per un letto di molle distribuite la rigidezza di ciascuna di esse, k, è data da:

$$k = E / L$$

ove E è un modulo di rigidezza del terreno mentre L è una grandezza geometrica caratteristica. Poiché nel programma PARATIE le molle sono posizionate a distanze finite Δ, la rigidezza di ogni molla è:

$$K = \frac{E\Delta}{L}$$

Il valore di Δ è fornito dalla schematizzazione ad elementi finiti.

Il valore di L è fissato automaticamente dal programma. Esso rappresenta una grandezza caratteristica che è diversa a valle e a monte della paratia perché diversa è la zona di terreno coinvolta dal movimento in zona attiva e passiva.

Si è scelto, in zona attiva (uphill):

$$L_A = \frac{2}{3} \ell_A \tan(45^\circ - \phi'/2)$$

e in zona passiva (downhill):

$$L_P = \frac{2}{3} \ell_P \tan(45^\circ + \phi'/2)$$

dove la ed lp e sono rispettivamente:

$$\ell_A = \min\{l, 2H\};$$

$$\ell_P = \min\{l - H, H\}$$

con

l = altezza totale della paratia

H = altezza corrente dello scavo.

PROGETTO DEFINITIVO

TRATTA NUOVA ENNA-DITTAINO

VI04 - Viadotto a Singolo Binario - Ltot=360.09 ml circa Relazione di calcolo opere provvisionali

 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO

 RS3V
 40
 D 09 CL
 VI 04 03 02

REV. FOGLIO

A 12 di 41

La logica di questa scelta è illustrata nella pubblicazione di Becci e Nova (1987). Si assume in ogni caso un valore di H non minore di 1/10 dell'altezza totale della parete.

Il programma consente di seguire le fasi evolutive degli scavi a valle dell'opera, determinando, per ciascuna fase di scavo prevista, la deformata dell'opera e le sollecitazioni e gli stati tensionali nel terreno con essa interagente.

Il software consente di tener conto anche della presenza di vincoli lungo la paratia, sia di tipo elastico (molle /tiranti) che di tipo rigido.

La presenza dei tiranti viene infine schematizzata dal software come dei vincoli elastici, la cui deformabilità dipende dalle caratteristiche della sezione resistente in acciaio dei tiranti e dalla lunghezza libera degli stessi, eventualmente incrementata di una quantità funzione dell'efficienza(<=1) associata al bulbo di ancoraggio.

7 CRITERI GENERALI DI PROGETTAZIONE E VERIFICA AI SENSI DEL D.M. 17-01-2018

Nel presente paragrafo sono riportate alcune indicazioni salienti della Normativa riguardanti criteri generali di progettazione e verifica delle opere strutturali e geotecniche, oltre a specifiche da adottare per il caso delle Paratie di Sostegno.

7.1 Metodo agli Stati Limite ed Approcci di Progetto

Il progetto di opere strutturali e geotecniche va effettuato, come prescritto dal DM 17/01/18, con i criteri del **metodo** semiprobabilistico agli stati limite basati sull'impiego dei coefficienti parziali di sicurezza.

Nel metodo semiprobabilistico agli stati limite, la sicurezza strutturale è verificata tramite il confronto tra la resistenza e l'effetto delle azioni.

Per la sicurezza strutturale, la *resistenza* dei materiali e le *azioni* sono rappresentate dai valori caratteristici, *Rki* e *Fkj* definiti, rispettivamente, come il frattile inferiore delle resistenze e il frattile (superiore o inferiore) delle azioni che minimizzano la sicurezza. I frattili sono stati assunti pari al 5%.

La normativa distingue inoltre tra Stati Limite Ultimi e Stati Limite di Esercizio.

La verifica della sicurezza nei riguardi degli **stati limite ultimi** di resistenza è stata effettuata con il "metodo dei coefficienti parziali" di sicurezza espresso dalla equazione formale:

 $Rd \ge Ed$

dove:

<u>Rd</u> è la resistenza di progetto, valutata in base ai valori di progetto della resistenza dei materiali e ai valori nominali delle grandezze geometriche interessate:

PROGETTO DEFINITIVO

TRATTA NUOVA ENNA-DITTAINO

VI04 - Viadotto a Singolo Binario - Ltot=360.09 ml circa Relazione di calcolo opere provvisionali

COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
RS3V	40	D 09 CL	VI 04 03 02	Α	13 di 41

$$R_{d} = \frac{1}{\gamma_{R}} R \left[\gamma_{F} F_{k}; \frac{X_{k}}{\gamma_{M}}; a_{d} \right].$$

Il coefficiente Υ_R opera direttamente sulla resistenza del sistema.

I coefficienti parziali di sicurezza, Υ_{Mi} e Υ_{Fj} , associati rispettivamente al materiale i-esimo e all'azione j-esima, tengono in conto la variabilità delle rispettive grandezze e le incertezze relative alle tolleranze geometriche e all'affidabilità del modello di calcolo.

<u>Ed è il valore di progetto dell'effetto delle azioni</u>, valutato in base ai valori di progetto Fdj = Fkj γ Fj delle azioni, dei parametri di progetto Xk/ γ M e della geometria di progetto ad:

$$E_{d} = E \left[\gamma_{F} F_{k}; \frac{X_{k}}{\gamma_{M}}; a_{d} \right]$$

L'effetto delle azioni può anche essere valutato direttamente come Ed=Ek γ E con γ E = γ F:

$$\mathbf{E}_{d} = \gamma_{E} \cdot \mathbf{E} \left[\mathbf{F}_{k}; \frac{\mathbf{X}_{k}}{\gamma_{M}}; \mathbf{a}_{d} \right]$$

In accordo a quanto stabilito al $\S 2.6.1$ del DM 17.01.18, le verifica della condizione $Rd \ge Ed$ deve essere effettuata impiegando diverse combinazioni di gruppi di coefficienti parziali, rispettivamente definiti per le azioni (Al e A2), per i parametri geotecnici (Ml e M2) e per le resistenze (Rl, R2 e R3).

I diversi gruppi di coefficienti di sicurezza parziali sono scelti nell'ambito di due approcci progettuali distinti e alternativi.

Nel primo Approccio progettuale (**Approccio l**) le verifiche si eseguono con due diverse combinazioni di gruppi di coefficienti ognuna delle quali può essere critica per differenti aspetti dello stesso progetto, convenzionalmente indicate come di seguito:

A1+M1+R1

A2+M2+R2

Nel secondo approccio progettuale (Approccio 2) le verifiche si eseguono con un'unica combinazione di gruppi di coefficienti

Gli stati limite di verifica si distinguono in genere in:

EQU perdita di equilibrio della struttura fuori terra, considerata come corpo rigido;

STR raggiungimento della resistenza degli elementi strutturali, compresi gli elementi di fondazione

PROGETTO DEFINITIVO

TRATTA NUOVA ENNA-DITTAINO

VI04 - Viadotto a Singolo Binario - Ltot=360.09 ml circa Relazione di calcolo opere provvisionali

COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
RS3V	40	D 09 CL	VI 04 03 02	Α	14 di 41

e tutti gli altri elementi strutturali che eventualmente interagiscono con il terreno;

GEO raggiungimento della resistenza del terreno interagente con la struttura con sviluppo di meccanismi di collasso dell'insieme terreno-struttura;

UPL perdita di equilibrio della struttura o del terreno, dovuta alla spinta dell'acqua (sollevamento per galleggiamento)

HYD erosione e sifonamento del terreno dovuta ai gradienti idraulici.

I coefficienti parziali da applicare alle azioni sono quelli definiti alla Tab 2.6.I del DM 17.01.18 di seguito riportata per chiarezza espositiva:

Tab. 2.6.I - Coefficienti parziali per le azioni o per l'effetto delle azioni nelle verifiche SLU

	,,,	,			
		Coefficiente	EQU	A1	A2
		$\gamma_{\rm F}$			
Contract Con	Favorevoli	2/	0,9	1,0	1,0
Carichi permanenti G1	Sfavorevoli	YG1	1,1	1,3	1,0
6.11	Favorevoli	Y _{G2}	0,8	0,8	0,8
Carichi permanenti non strutturali G ₂ (1)			1,5	1,5	1,3
A minute resolution	Favorevoli		0,0	0,0	0,0
Azioni variabili Q	Sfavorevoli	Yα	1,5	1,5	1,3

[&]quot;Nel caso in cui l'intensità dei carichi permanenti non strutturali o di una parte di essi (ad es. carichi permanenti portati) sia ben definita in fase di progetto, per detti carichi o per la parte di essi nota si potranno adottare gli stessi coefficienti parziali validi per le azioni permanenti.

Nella Tab. 2.6.I il significato dei simboli è il seguente:

γ_{G1} coefficiente parziale dei carichi permanenti G₁;

γ_{G2} coefficiente parziale dei carichi permanenti non strutturali G₂;

γ_{Oi} coefficiente parziale delle azioni variabili Q.

Nel caso in cui l'azione sia costituita dalla spinta del terreno, per la scelta dei coefficienti parziali di sicurezza valgono le indicazioni riportate nel Capitolo 6.

Il coefficiente parziale della precompressione si assume pari a $\gamma_p = 1,0$.

Altri valori di coefficienti parziali sono riportati nei capitoli successivi con riferimento a particolari azioni specifiche.

I valori dei coefficienti parziali da applicare ai materiali e/o alle caratteristiche dei terreni (M) sono definiti nelle specifiche sezioni della norma, ed in particolare al Cap. 4 per ciò che concerne i coefficienti parziali da applicare ai materiali strutturali, mentre al Cap.6 sono indicati quelli da applicare alle caratteristiche meccaniche dei terreni.

I coefficienti parziali da applicare alle resistenze (R) sono infine unitari sulle capacità resistenti degli elementi strutturali, mentre assumono in genere valore diverso da 1 per ciò che concerne verifiche che attengono il controllo di meccanismi di stabilità locale o globale; i valori da adottare per ciascun meccanismo di verifica, sono definiti nelle specifiche sezioni di normativa dedicate al calcolo delle diverse opere geotecniche.

PROGETTO DEFINITIVO

TRATTA NUOVA ENNA-DITTAINO

VI04 - Viadotto a Singolo Binario - Ltot=360.09 ml circa Relazione di calcolo opere provvisionali

 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 RS3V
 40
 D 09 CL
 VI 04 03 02
 A
 15 di 41

La verifica della sicurezza nei riguardi degli **stati limite di esercizio** viene effettuata invece controllando gli aspetti di funzionalità e lo stato tensionale e/o deformativo delle opere, con riferimento ad una combinazione di verifica caratterizzata da coefficienti parziali sulle azioni e sui materiali tutti unitari.

Al § 2.5.3 del DM 17.01.18, sono infine definiti i criteri con cui le diverse azioni presenti vanno combinate per ciascuno stato limite di verifica previsto dalla Normativa, di seguito riportati per completezza:

2.5.3. COMBINAZIONI DELLE AZIONI

Ai fini delle verifiche degli stati limite, si definiscono le seguenti combinazioni delle azioni.

- Combinazione fondamentale, generalmente impiegata per gli stati limite ultimi (SLU):

 $\gamma_{G1} \cdot G_1 + \gamma_{G2} \cdot G_2 + \gamma_P \cdot P + \gamma_{Q1} \cdot Q_{k1} + \gamma_{Q2} \cdot \psi_{02} \cdot Q_{k2} + \gamma_{Q3} \cdot \psi_{03} \cdot Q_{k3} + \dots$ [2.5.1]

- Combinazione caratteristica, cosiddetta rara, generalmente impiegata per gli stati limite di esercizio (SLE) irreversibili:

 $G_1 + G_2 + P + Q_{k1} + \psi_{02} \cdot Q_{k2} + \psi_{03} \cdot Q_{k3} + \dots$ [2.5.2]

- Combinazione frequente, generalmente impiegata per gli stati limite di esercizio (SLE) reversibili:

 $G_1 + G_2 + P + \psi_{11} \cdot Q_{k1} + \psi_{22} \cdot Q_{k2} + \psi_{23} \cdot Q_{k3} + \dots$ [2.5.3]

- Combinazione quasi permanente (SLE), generalmente impiegata per gli effetti a lungo termine:

 $G_1 + G_2 + P + \psi_{21} \cdot Q_{k1} + \psi_{22} \cdot Q_{k2} + \psi_{23} \cdot Q_{k3} + \dots$ [2.5.4]

- Combinazione sismica, impiegata per gli stati limite ultimi e di esercizio connessi all'azione sismica E:

 $E + G_1 + G_2 + P + \psi_{21} \cdot Q_{k1} + \psi_{22} \cdot Q_{k2} + \dots$ [2.5.5]

- Combinazione eccezionale, impiegata per gli stati limite ultimi connessi alle azioni eccezionali A:

 $G_1 + G_2 + P + A_d + \psi_{21} \cdot Q_{k1} + \psi_{22} \cdot Q_{k2} + \dots$ [2.5.6]

Gli effetti dell'azione sismica saranno valutati tenendo conto delle masse associate ai seguenti carichi gravitazionali:

$$G_1 + G_2 + \sum_i \psi_{2i} Q_{kj}$$
. [2.5.7]

Nelle combinazioni si intende che vengano omessi i carichi Q_{kj} che danno un contributo favorevole ai fini delle verifiche e, se del caso, i carichi G_2 .

I valori dei coefficienti ψ_{0j} , ψ_{1j} e ψ_{2j} sono dati nella Tab. 2.5.I oppure nella Tab. 5.1.VI per i ponti stradali e nella Tab. 5.2.VII per i ponti ferroviari. I valori dei coefficienti parziali di sicurezza γ_{Gi} e γ_{Oj} sono dati nel § 2.6.1.

Nell'ambito della progettazione geotecnica, la normativa definisce inoltre nella Tab 6.2.II, i valori dei coefficienti parziali M1/M2 da applicare ai parametri caratteristici dei terreni nell'ambito delle diverse combinazioni contemplate dai due approcci di progetto come già illustrati al paragrafo precedente:

PROGETTO DEFINITIVO

TRATTA NUOVA ENNA-DITTAINO

VI04 - Viadotto a Singolo Binario - Ltot=360.09 ml circa Relazione di calcolo opere provvisionali

COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.
RS3V	40	D 09 CL	VI 04 03 02	Α

FOGLIO

16 di 41

Tab. 6.2.II - Coefficienti parziali per i parametri geotecnici del terreno

Parametro	Grandezza alla quale applicare il coefficiente parziale	Coefficiente parziale γ_{M}	(M1)	(M2)
Tangente dell'angolo di resi- stenza al taglio	$ an {\phi'}_k$	$\gamma_{\phi'}$	1,0	1,25
Coesione efficace	c' _k	γe	1,0	1,25
Resistenza non drenata	c _{uk}	γαι	1,0	1,4
Peso dell'unità di volume	γγ	γ_{γ}	1,0	1,0

Tali valori agiscono sulle proprietà dei terreni, condizionando sia le azioni (spinte ed incrementi di spinta), sia le resistenze nei riguardi delle verifiche di stabilità dell'insieme opere-terreno con esse interagenti da effettuare caso per caso in funzione del tipo di opera.(Paratie, Muri, Pali di Fondazione ecc..)

Inoltre, ribadisce i valori dei coefficienti da applicare alle azioni nella Tab 6.2.II di seguito riportata:

Tab. 6.2.I - Coefficienti parziali per le azioni o per l'effetto delle azioni

	Effetto	Coefficiente Parziale $\gamma_F \ (o \ \gamma_E)$	EQU	(A1)	(A2)
Carichi permanenti G1	Favorevole	γ _{G1}	0,9	1,0	1,0
	Sfavorevole		1,1	1,3	1,0
Carichi permanenti G2(1)	Favorevole	γ _{G2}	0,8	0,8	0,8
	Sfavorevole		1,5	1,5	1,3
Azioni variabili Q	Favorevole	Υ _Q	0,0	0,0	0,0
	Sfavorevole		1,5	1,5	1,3

[🗇] Per i carichi permanenti G2 si applica quanto indicato alla Tabella 2.6.I. Per la spinta delle terre si fa riferimento ai coefficienti γG

7.2 Criteri di Analisi e Verifica di Paratie

Per le paratie, al § 6.5.3.1.2 del DM 17.01.18 viene specificato che si devono considerare almeno i seguenti **Stati Limite Ultimi**, accertando che la condizione $Rd \ge Ed$ sia soddisfatta per ogni stato limite considerato:

SLU di tipo geotecnica (GEO) e di tipo idraulico (UPL e HYD)

- collasso per rotazione intorno a un punto dell'opera (atto di moto rigido);
- collasso per carico limite verticale;
- sfilamento di uno o più ancoraggi;

PROGETTO DEFINITIVO

TRATTA NUOVA ENNA-DITTAINO

VI04 - Viadotto a Singolo Binario - Ltot=360.09 ml circa Relazione di calcolo opere provvisionali

COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
RS3V	40	D 09 CL	VI 04 03 02	Α	17 di 41

- instabilità del fondo scavo in terreni a grana fine in condizioni non drenate;
- instabilità del fondo scavo per sollevamento;
- sifonamento del fondo scavo;
- instabilità globale del complesso opera di sostegno-terreno;

SLU di tipo strutturale (STR)

- raggiungimento della resistenza in uno o più ancoraggi;
- raggiungimento della resistenza in uno o più puntoni o di sistemi di contrasto;
- raggiungimento della resistenza strutturale della paratia.

La verifica di stabilità globale del complesso opera di sostegno-terreno deve essere effettuata secondo la Combinazione 2 (A2+M2+R2) dell'Approccio 1, tenendo conto dei coefficienti parziali riportati nelle Tabelle 6.2.I, 6.2.II e 6.8.I del DM 17.01.18; in aggiunta a quanto già mostrato in precedenza nel documento, si riporta anche la Tab 6.8.I appena menzionata:

Tab. 6.8.I - Coefficienti parziali per le verifiche di sicurezza di opere di materiali sciolti e di fronti di scavo

COEFFICIENTE	R2
γ_{R}	1,1

Le verifiche nei riguardi degli stati limite idraulici (UPL e HYD) devono essere eseguite come descritto nel § 6.2.4.2 dello stesso DM.

Le rimanenti verifiche devono essere effettuate secondo l'Approccio l considerando le due combinazioni di coefficienti:

-Combinazione 1: (Al+ M1+Rl)

-Combinazione 2: (A2+M2+R1)

tenendo conto dei valori dei coefficienti parziali riportati nelle Tabelle 6.2.I e 6.2.II, con i coefficienti γ_R del gruppo **R1** pari all'unità.

Per le paratie, i calcoli di progetto devono comprendere la verifica degli eventuali ancoraggi, puntoni o strutture di controventamento.

Con riferimento infine agli **Stati Limite di Esercizio**, bisogna controllare che gli spostamenti dell'opera di sostegno e del terreno circostante siano compatibili con la funzionalità dell'opera e con la sicurezza e funzionalità di eventuali manufatti adiacenti, oltre che verificare, nei riguardi degli aspetti strutturali, la compatibilità degli stati tensionali dei materiali costituenti l'opera..

PROGETTO DEFINITIVO
TRATTA NUOVA ENNA-DITTAINO

VI04 - Viadotto a Singolo Binario - Ltot=360.09 ml circa Relazione di calcolo opere provvisionali
 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 RS3V
 40
 D 09 CL
 VI 04 03 02
 A
 18 di 41

In aggiunta a quanto sopra, al § C6.5.3.1.2 della Circolare Applicativa n 7 del 21 gennaio 2019 viene inoltre specificato quanto segue:

Nelle verifiche nei confronti di stati limite ultimi geotecnici delle paratie, si considera lo sviluppo di meccanismi di collasso determinati dalla mobilitazione della resistenza del terreno ed eventualmente della struttura e, specificamente, dal raggiungimento delle condizioni di equilibrio limite nel terreno interagente con la paratia o con parte di essa. <u>Le analisi</u> devono essere condotte con la Combinazione 2 (A2+M2+R1).

Nelle verifiche nei confronti di stati limite per raggiungimento della resistenza negli elementi strutturali <u>l'analisi deve</u> essere svolta utilizzando la Combinazione l (Al+Ml+Rl), nella quale i coefficienti sui parametri di resistenza del terreno (Ml) e sulla resistenza globale del sistema (Rl) sono unitari, mentre le azioni permanenti e variabili sono amplificate mediante i coefficienti parziali del gruppo Al.

In relazione a tali specifiche integrative contenute nella Circolare Applicativa, ciascuno degli Stati Limite di verifica previsti per le Paratie, è stato esaminato riferendosi alla Combinazioni 1 per il caso deli Stati Limite STR ed alla Combinazione 2 per gli Stati Limite (GEO) e di tipo idraulico (UPL e HYD)

PROGETTO DEFINITIVO

TRATTA NUOVA ENNA- DITTAINO

VI04 - Viadotto a Singolo Binario - Ltot=360.09 ml circa Relazione di calcolo opere provvisionali

COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO	
RS3V	40	D 09 CL	VI 04 03 02	Α	19 di 41	

8 ANALISI DELLE OPERE PROVVISIONALI

8.1 Descrizione delle sezioni di calcolo

8.1.1 Sezione P02

Palancole metalliche:

PU 32 profilo

L = 12 m lunghezza palancola

S275 acciaio

Sistema di puntoni:

La Figura 3 mostra la pianta dello scavo della sezione P02

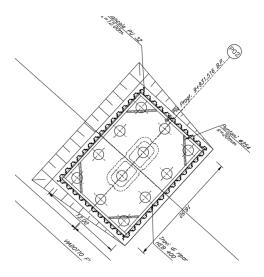
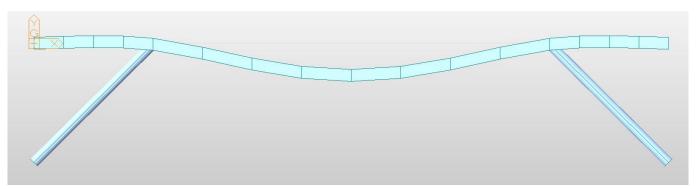


Figura 3

I puntoni sono sezioni circolari cave in acciaio (S275) aventi Φ254 mm inclinati di circa 45°.

La rigidezza del puntone è stata valutata tramite una modellazione agli elementi finiti in ambiente Midas Civil. Alla trave di ripartizione è stato applicato un carico uniformemente distribuito di 1 KN/m e si è mediato lo spostamento in corrispondenza della mezzeria della trave di ripartizione e del punto medio (sempre sulla trave di ripartizione) tra appoggio e collegamento

PROGETTO DEFINITIVO


TRATTA NUOVA ENNA-DITTAINO

VI04 - Viadotto a Singolo Binario - Ltot=360.09 ml circa Relazione di calcolo opere provvisionali

COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
RS3V	40	D 09 CL	VI 04 03 02	Α	20 di 41

trave/puntone = $0.131*10^{-3}$ m. Tramite la formula $k = \frac{1}{u}$ si valuta la rigidezza $k \approx 7619.048$ kN/m da applicare alle molle nel modello in Paratie Plus. La Figura 4 mostra lo schema statico utilizzato in Midas Civil:

Figura 4

8.2 Schema e fasi di calcolo

8.2.1 Sezione P02

GEOMETRIA SEZIONE P02

Tipo paratia: palancole metalliche destra e sinistra

Con riferimento al paragrafo 6.5.2.2 delle nuove norme, il modello geometrico di riferimento è stato ricavato come riportato dalla NTC 18:

6.5.2.2 MODELLO GEOMETRICO DI RIFERIMENTO

Il modello geometrico deve tenere conto delle possibili variazioni del profilo del terreno a monte e a valle del paramento rispetto ai valori nominali.

Nel caso in cui la funzione di sostegno è affidata alla resistenza del volume di terreno a valle dell'opera, la quota di valle dove essere diminuita di una quantità pari al minore dei seguenti valori:

- 10% dell'altezza di terreno da sostenere nel caso di opere a sbalzo;
- 10 % della differenza di quota fra il livello inferiore di vincolo e il fondo scavo nel caso di opere vincolate;
- 0.5 m

Pertanto la massima altezza di scavo di progetto è di 4.7m, incrementata di 0.3m (10% distanza puntone-fondo scavo) rispetto al valore nominale

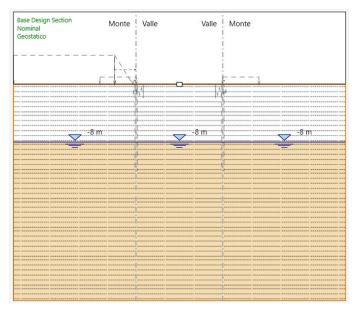
PROGETTO DEFINITIVO

TRATTA NUOVA ENNA-DITTAINO

VI04 - Viadotto a Singolo Binario - Ltot=360.09 ml circa Relazione di calcolo opere provvisionali

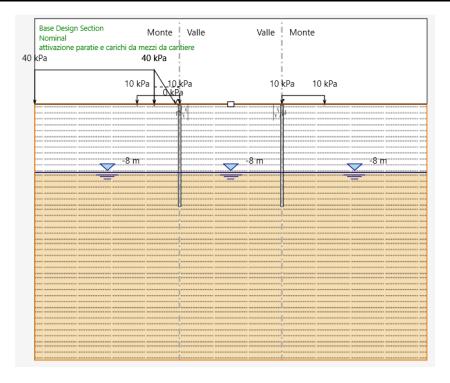
COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
RS3V	40	D 09 CL	VI 04 03 02	Α	21 di 41

Nel calcolo si è tenuto conto del carico accidentale dovuto ai mezzi di cantiere $q_{acc} = 10.0 \text{ kN/m}^2$ uniformemente distribuito su un'area di impronta di 5.0 m posto in prossimità dell'estradosso della parartia e del carico trapezoidale che simula il profilo del terreno non incluso nella stratigrafia


Tipo paratia: Palancole metalliche

Altezza fuori terra	4.7	[m]
Profondità di infissione	7.30	[m]
Altezza totale della paratia	12.0	[m]
Profilo palancole	PU32	

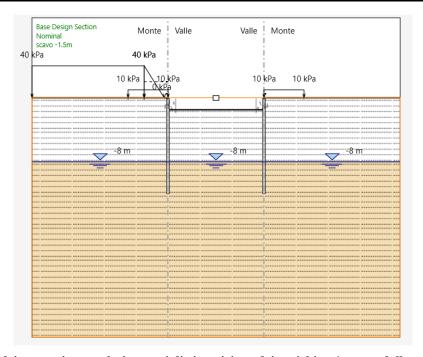
Di seguito si riportano le fasi di calcolo che sono state analizzate in successione.


Fasi di calcolo

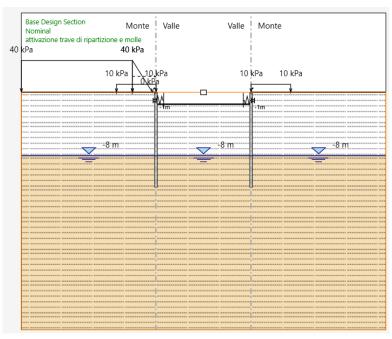
FASE 0: Generazione stato tensionale iniziale

FASE 1: Installazione delle palancole metalliche + attivazione carico di cantiere qacc=10.0 kPa+attivazione carico trapezoidale che simula il prfilo del terreno a p.c.

FASE 2: Scavo fino a arrivare a 1.5 m dal p.c.


PROGETTO DEFINITIVO

TRATTA NUOVA ENNA-DITTAINO

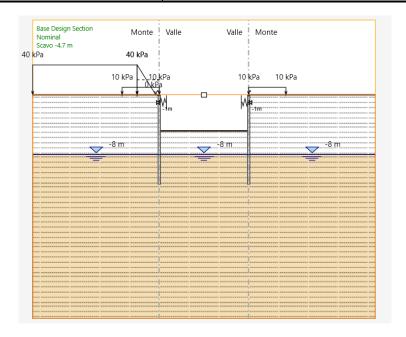

VI04 - Viadotto a Singolo Binario - Ltot=360.09 ml circa Relazione di calcolo opere provvisionali

 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 RS3V
 40
 D 09 CL
 VI 04 03 02
 A
 23 di 41

FASE 3: Installazione dei puntoni, con relative travi di ripartizione dei carichi, a 1 metro dalla testa della paratia

FASE 5: Scavo fino ad arrivare a 5.4 m da p.c.



PROGETTO DEFINITIVO
TRATTA NUOVA ENNA-DITTAINO

VI04 - Viadotto a Singolo Binario - Ltot=360.09 ml circa Relazione di calcolo opere provvisionali

 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

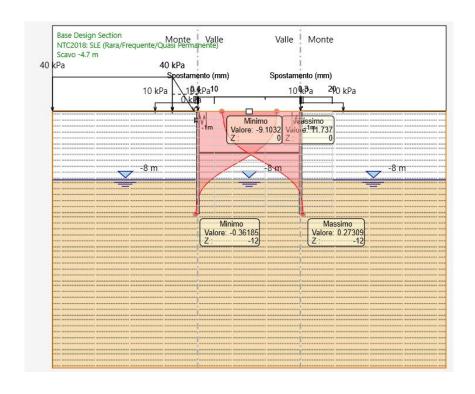
 RS3V
 40
 D 09 CL
 VI 04 03 02
 A
 24 di 41

PROGETTO DEFINITIVO

TRATTA NUOVA ENNA-DITTAINO

VI04 - Viadotto a Singolo Binario - Ltot=360.09 ml circa Relazione di calcolo opere provvisionali

COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
RS3V	40	D 09 CL	VI 04 03 02	Α	25 di 41


9 RISULTATI E VERIFICHE PARATIA

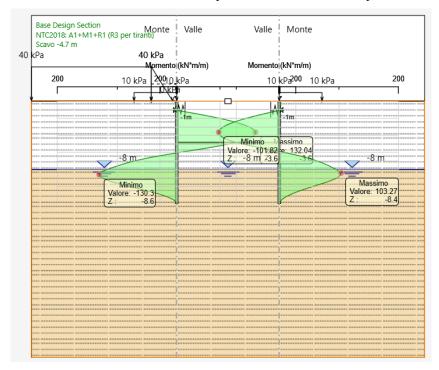
Nel seguito si espongono, in sintesi, i principali risultati di interesse progettuale.

9.1 **SEZIONE P02**

9.1.1 RISULTATI (combinazione SLE):

Dall'inviluppo degli spostamenti in combinazione SLE si osserva che lo spostamento massimo orizzontale della e di destra vale 1.17cm.

PROGETTO DEFINITIVO


TRATTA NUOVA ENNA- DITTAINO

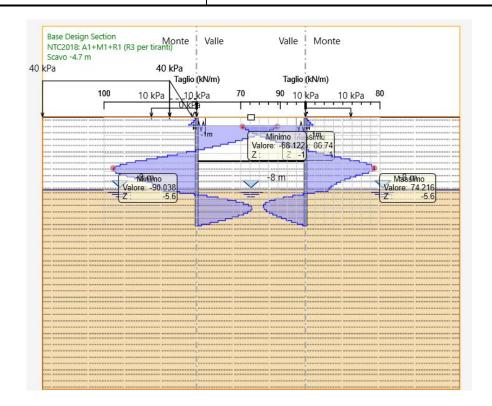
VI04 - Viadotto a Singolo Binario - Ltot=360.09 ml circa Relazione di calcolo opere provvisionali

COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO	
RS3V	40	D 09 CL	VI 04 03 02	Α	26 di 41	

9.1.2 RISULTATI e VERIFICHE SLU STR PALANCOLE METALLICHE (combinazione A1+M1+R1):

Dall'inviluppo del momento flettente in combinazione A1+M1+R1 si osserva che il massimo valore sulla paratia di sinistra e di destra si attinge il valore massimo di 132.04 kNm/m ad una profondità di 3.6 m da testa paratia.

Dall'inviluppo del taglio in combinazione A1+M1+R1 si osserva che il massimo valore sulla paratia di sinistra e di destra si attinge il valore massimo di 90 kN/m ad una profondità di 5.6 m da testa paratia.

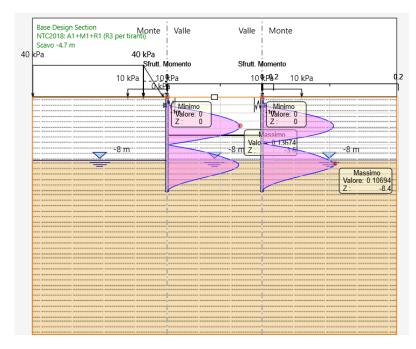


PROGETTO DEFINITIVO
TRATTA NUOVA ENNA-DITTAINO

VI04 - Viadotto a Singolo Binario - Ltot=360.09 ml circa Relazione di calcolo opere provvisionali

 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 RS3V
 40
 D 09 CL
 VI 04 03 02
 A
 27 di 41


PROGETTO DEFINITIVO
TRATTA NUOVA ENNA-DITTAINO

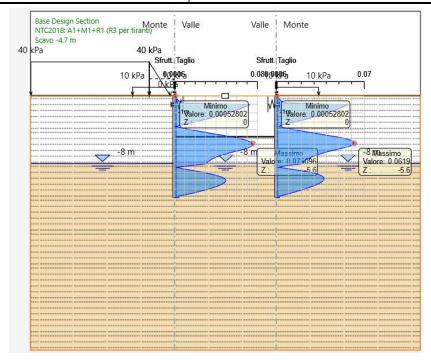
VI04 - Viadotto a Singolo Binario - Ltot=360.09 ml circa Relazione di calcolo opere provvisionali

COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
RS3V	40	D 09 CL	VI 04 03 02	Α	28 di 41

Nel seguito si riportano i risultati delle verifiche strutturali delle palancole metalliche a flessione e a taglio condotte mediante l'ausilio di Paratie plus. In Particolare si riportano i diagrammi dei tassi di sfruttamento sul palo, ottenuti come rapporto tra sollecitazione presente e resistenza disponibile in ogni sezione del palo.

Tasso di sfruttamento a momento nelle palancole metalliche in comb. A1-M1-R3 (.T.S.F. $_{max} = 0.10 < 1 - VERIFICA SODDISFATTA)$

Tasso di sfruttamento a taglio nelle palancole metalliche in comb. A1-M1-R3 (.T.S.F. $_{max} = 0.13<1 - VERIFICA SODDISFATTA)$

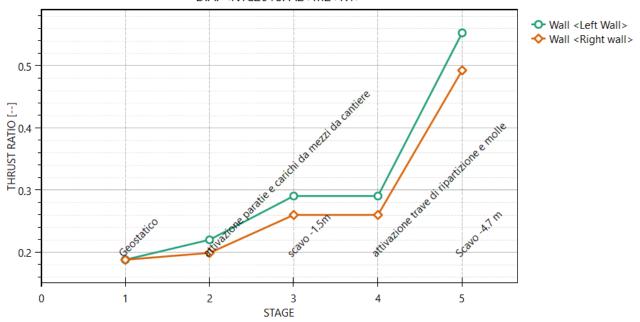

PROGETTO DEFINITIVO

TRATTA NUOVA ENNA-DITTAINO

VI04 - Viadotto a Singolo Binario - Ltot=360.09 ml circa Relazione di calcolo opere provvisionali

 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 RS3V
 40
 D 09 CL
 VI 04 03 02
 A
 29 di 41



9.1.3 VERIFICA SLU GEO PALANCOLE METALLICHE (combinazione A2+M2+RI)

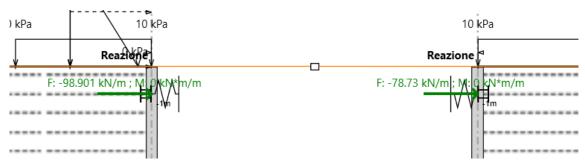
Il massimo rapporto di mobilitazione della spinta passiva è circa il 55% sulla paratia di destra e di sinistra.

Massimi rapporti di mobilizzazione spinta passiva

D.A. <NTC2018: A2+M2+R1>

PROGETTO DEFINITIVO

TRATTA NUOVA ENNA- DITTAINO


VI04 - Viadotto a Singolo Binario - Ltot=360.09 ml circa Relazione di calcolo opere provvisionali

COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
RS3V	40	D 09 CL	VI 04 03 02	Α	30 di 41

9.1.4 VERIFICA SLU STRU PUNTONE (combinazione A1+M1+RI)

I puntoni sono caratterizzati da un profilo circolare cavo \$\phi\$ 254 s=20mm.

Tramite il programma di calcolo Paratie Plus è stata valutata la reazione nella molla in combinazione A1+M1+R1 che risulta essere pari a 136.53 kN/m sul lato destrao e sul lato sinisto del muro.

Tale reazione è stata utilizzata come moltiplicatore del carico unitario nel modello in Midas Civil.

In tal modo è stato valutato lo sforzo normale agente sul singolo puntone.

Tale sforzo è $N_{Ed} = 1239 \, kN$. Si è proceduto dunque alla verifica di instabilità del puntone compresso.

 $N_{b,Rd}$ è la resistenza all'instabilità nell'asta compressa, data da

$$N_{b,Rd} = \frac{\chi * A * f_{yk}}{\gamma_{M1}}$$

essendo la sezione di classe 1.

Infatti:

$$\frac{d}{t} = 12.7 \le 50\varepsilon^2 = 42.5$$

e come riportato nella tabella sottostante la sezione è di classe 1.

PROGETTO DEFINITIVO

TRATTA NUOVA ENNA-DITTAINO

VI04 - Viadotto a Singolo Binario - Ltot=360.09 ml circa Relazione di calcolo opere provvisionali

COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
RS3V	40	D 09 CL	VI 04 03 02	Α	31 di 41

				Sezioni tubolar	i		
			<u>t</u> _		þ		
Classe			Sezione soggetta a flessione e/o compressione				
1					$d/t \le 50 \varepsilon^2$		
2					d/t≤70 ε ²		
3		Nota	$d t \le 90 \ \varepsilon^2$ Nota Per $d t>90 \ \varepsilon^2$ vedere EN 1993-1-6.				
	f _y		235	275	355	420	460
$\varepsilon = \sqrt{235/f_y}$	ε		1,00	0,92	0,81	0,75	0,71
	ε^2		1,00	0,85	0,66	0,56	0,51

Figura 2.3 Tabella 5.2- parte 3 di EN 1993-1-1: rapporti lato/spessore per parti compresse.

I coefficienti χ dipendono dal tipo di sezione e dal tipo di acciaio impiegato; essi si desumono, in funzione di appropriati valori della snellezza adimensionale $\bar{\lambda}$, dalla seguente formula

$$\chi = \frac{1}{\phi + \sqrt{\phi^2 - \bar{\lambda}^2}} = 1$$

dove $\phi = 0.5[1 + \alpha(\bar{\lambda} - 0.2) + \bar{\lambda}^2]$, α è il fattore di imperfezione, ricavato dalla Tab 4.2.VI, e la snellezza adimensionale $\bar{\lambda}$ è pari a

$$\bar{\lambda} = \sqrt{\frac{A*f_{yk}}{N_{cr}}} = 0.0248$$

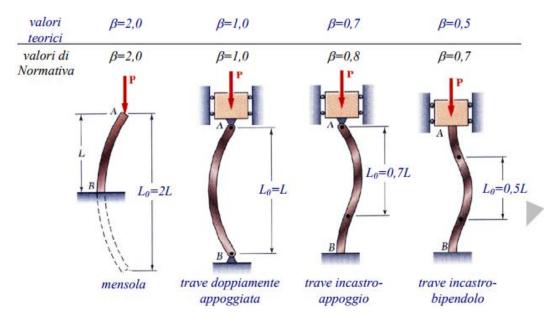
dove $N_{cr} = \frac{\pi^2 * EJ}{L_0^2} = 1.17*10^7 \text{ kN e } \alpha = 0.21 \text{ essendo il tubolare una sezione formata a caldo.}$

Nella formulazione precedente

$$E = 210 * 10^9 \frac{N}{m^2}$$

$$I = 1.01 * 10^{-4} m^4$$

$$L_o = \beta L = 1 * 4.24 = 4.24 m$$


PROGETTO DEFINITIVO

TRATTA NUOVA ENNA-DITTAINO

VI04 - Viadotto a Singolo Binario - Ltot=360.09 ml circa Relazione di calcolo opere provvisionali

 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 RS3V
 40
 D 09 CL
 VI 04 03 02
 A
 32 di 41

Risulta:

$$N_{b,Rd} = \frac{\chi * A * f_{yk}}{\gamma_{M1}} = 3515.9 \ kN$$

Dunque essendo $N_{Ed} = 1239 \text{ kN}$ la verifica risulta essere soddisfatta.

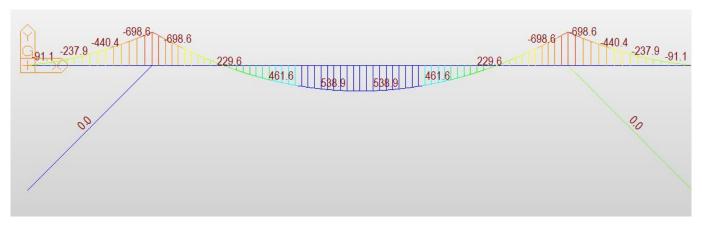
9.1.5 VERIFICA SLU STRU TRAVE DI RIPARTIZIONE (combinazione A1+M1+RI)

VERIFICA A MOMENTO

Il momento flettente di calcolo M_{Ed} deve rispettare la seguente condizione:

$$\frac{M_{Ed}}{M_{c,Rd}} \le 1$$

Per ricavare la sollecitazione massima a flessione nella trave di ripartizione si è ricavato il carico uniformemente distribuito sulla trave di ripartizione su ParatiePlus 18 nella combinazione A1+M1+R1. Tale carico è stato applicato allo schema trave/puntone su Midas Civil. Il momento massimo risulta essere 698.6. kNm.


PROGETTO DEFINITIVO

TRATTA NUOVA ENNA-DITTAINO

VI04 - Viadotto a Singolo Binario - Ltot=360.09 ml circa Relazione di calcolo opere provvisionali

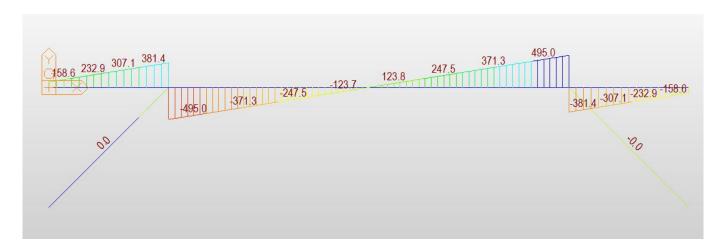
 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 RS3V
 40
 D 09 CL
 VI 04 03 02
 A
 33 di 41

La resistenza di calcolo a flessione retta della sezione $M_{c,Rd}$ vale per le sezioni di classe 1 e 2

$$M_{c,Rd} = M_{pl,Rd} = \frac{W_{pl} * f_{yk}}{\gamma_{M0}} = 846.47 \ kNm$$

Ove W_{pl} della sezione composta è la somma di W_{pl} dei due profilati HE400B (W_{pl}=3232cm³)


Dunque la verifica risulta essere soddisfatta.

VERIFICA A TAGLIO

Il taglio di calcolo T_{Ed} deve rispettare la seguente condizione:

$$\frac{T_{Ed}}{T_{c,Rd}} \le 1$$

Per ricavare la sollecitazione massima a taglio nella trave di ripartizione si è ricavato il carico uniformemente distribuito sulla trave di ripartizione su ParatiePlus 18 nella combinazione A1+M1+R1. Tale carico è stato applicato allo schema trave/puntone su Midas Civil. Il taglio massimo risulta essere 495 kN.

PROGETTO DEFINITIVO

TRATTA NUOVA ENNA-DITTAINO

VI04 - Viadotto a Singolo Binario - Ltot=360.09 ml circa Relazione di calcolo opere provvisionali

COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
RS3V	40	D 09 CL	VI 04 03 02	Α	34 di 41

La resistenza di calcolo taglio della sezione $T_{c,Rd}$ vale:

$$T_{c,Rd} = \frac{A_v * f_{yd}}{\sqrt{3}} = 1058.17 \ kN$$

Ove A_v della sezione composta è la somma di A_v dei due profilati HE400B (A_v=69.98 cm²)

Dunque la verifica risulta essere soddisfatta.

9.1.6 VERIFICA SLU UPL E HYD

Il § 6.2.4.2. del DM 17.01.2018 specifica che le opere geotecniche devono essere verificate, ove ricorrano le condizioni, anche che nei riguardi di possibili stati limite di sollevamento o di sifonamento.

A tal fine, nella valutazione delle pressioni interstiziali e delle quote piezometriche caratteristiche, si devono assumere le condizioni più sfavorevoli, considerando i possibili effetti delle condizioni stratigrafiche.

Per la **stabilità al sollevamento** deve risultare che il valore di progetto dell'azione instabilizzante ($V_{inst,d}$) ovverosia della risultante delle pressioni idrauliche ottenuta considerando separatamente la parte permanente ($G_{inst,d}$) e quella variabile ($Q_{inst,d}$), sia non maggiore della combinazione dei valori di progetto delle azioni stabilizzanti ($G_{stb,d}$) e delle resistenze (R_d), ovvero:

$$V_{inst.d} \le G_{stb.d} + R_d$$
 [6.2.4]

$$V_{inst,d} = G_{inst,d} + Q_{inst,d}$$
 [6.2.5]

Per le verifiche di stabilità al sollevamento, i relativi coefficienti parziali sulle azioni sono indicati nella Tab. 6.2.Ill.

Tab. 6.2.III – Coefficienti parziali sulle azioni per le verifiche nei confronti di stati limite di sollevamento

	Effetto	Coefficiente Parziale γ _F (ο γ _E)	Sollevamento (UPL)
C	Favorevole		0,9
Carichi permanenti G ₁	Sfavorevole	γ _{G1}	1,1
Carichi permanenti	Favorevole		0,8
$G_{2^{(1)}}$	Sfavorevole	γ _{G2}	1,5
Animi minhili O	Favorevole	2/	0,0
Azioni variabili Q	Sfavorevole	ΥQi	1,5

[🕦] Per i carichi permanenti G2 si applica quanto indicato alla Tabella 2.6.I. Per la spinta delle terre si fa riferimento ai coefficienti γG1

Al fine del calcolo della resistenza di progetto Rd, tali coefficienti devono essere combinati in modo opportuno con quelli relativi ai parametri geotecnici (M2).

PROGETTO DEFINITIVO

TRATTA NUOVA ENNA-DITTAINO

VI04 - Viadotto a Singolo Binario - Ltot=360.09 ml circa Relazione di calcolo opere provvisionali

COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
RS3V	40	D 09 CL	VI 04 03 02	Α	35 di 41

Ove necessario, il calcolo della resistenza va eseguito in accordo a quanto indicato negli specifici paragrafi della normativa dedicata alle fondazioni su pali e per gli ancoraggi.

I fenomeni sono legati essenzialmente ai processi di filtrazione che si innescano verso la zona di fondo scavo a completamento degli scavi, che avvengono "a breve termine" per terreni a grana grossa, ovvero a "lungo termine" per terreni a grana fine, o comunque, in quest'ultimo caso, alla sovrapressione di tipo idrostatico che agisce a piede del cuneo di terreno potenzialmente instabile immediatamente a ridosso dell'opera.

Nel caso in esame i terreni interessati dal moto di filtrazione sono caratterizzati da differeni valori della conducibilità idraulica pertanto, al fine di determinare la sovrappressione idrodinamica agente ai piedi della paratia, si sono determinate le perdite di carico che si hanno in ciascun strato e pari a:

$$\Delta H_i = \Delta H \frac{\frac{l_i}{k_i}}{\sum_j \frac{l_j}{k_i}}$$

con

 ΔH_i perdite di carico nell'iesimo strato;

 ΔH carico idraulico

 l_i spessore dell'iesimo stratto

k_i conducibilità idraulica dell'iesimo stratto

Determinate le perdite di carico e assumendo come piano z=0 quello passante per il piede della paratia, si può deteminare la pressione idrodinamica agente in corrispondenza del piede della paratia:

$$u = \left(H_w - \sum_{j} \Delta H_i - z\right) \cdot \gamma_w$$

dove

H_w altezza piezometrica di monte

 $\sum_{i} \Delta H_{i}$ perdite di carico nella sezione in esame, somma delle perdite di carico negli strati di monte

z quota geotedica (assunta pari z=0 se si valutano le pressioni al piede della paratia).

Nota la pressione idrodinamica agente, si può determinare la forza instabilizzante agente sul volume di terreno oggetto della verifica in esame:

$$V_{inst.d} = \gamma_{G1} \cdot u_{idrodin} \cdot B \cdot L$$

Con B e L larghezza e profondità dello scavo pari rispettivamente a 12 e 16.5 m.

Mentre le forze stablizzanti sono sate dal peso del volume di terreno soggetto a verifica:

PROGETTO DEFINITIVO

TRATTA NUOVA ENNA-DITTAINO

VI04 - Viadotto a Singolo Binario - Ltot=360.09 ml circa Relazione di calcolo opere provvisionali

COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
RS3V	40	D 09 CL	VI 04 03 02	Α	36 di 41

$$G_{st.d} = \gamma_{G1} \cdot \gamma_{sat} \cdot h \cdot B \cdot L$$

Con h spessore del volume soggetto a verifica

Nel caso in esame poiché il livello di falda coincide con il fondo scavo, il moto fi filtrazionenon si innesca e pertanto non occorre effetture la verifica a sollevamento.

al sifonamento, si disringuono due codizioni di effluso:

In condizioni di flusso prevalentemente verticale:

- a) nel caso di frontiera di efflusso libera, la verifica a sifonamento si esegue controllando che il gradiente idraulico i risulti non superiore al gradiente idraulico critico i_c diviso per un coefficiente parziale $\gamma_R = 3$, se si assume come effetto delle azioni il gradiente idraulico medio, e per un coefficiente parziale $\gamma_R = 2$ nel caso in cui si consideri il gradiente idraulico di efflusso;
- b) in presenza di un carico imposto sulla frontiera di efflusso, la verifica si esegue controllando che la pressione interstiziale in eccesso rispetto alla condizione idrostatica risulti non superiore alla tensione verticale efficace calcolata in assenza di filtrazione, divisa per un coefficiente parziale $\gamma_R = 2$. In tutti gli altri casi il progettista deve valutare gli effetti delle forze di filtrazione e garantire adeguati livelli di sicurezza, da prefissare e giustificare esplicitamente. Si fa salvo, comunque, quanto previsto nel Decreto del Ministro delle Infrastrutture e dei Trasporti del 26 giugno 2014 recante "Norme tecniche per la progettazione e la costruzione degli sbarramenti di ritenuta (dighe e traverse)", ove applicabile.

Nel caso in esame, facendo riferimento ad una condizione di efflusso libera (caso a), si è verificato che il gradiente idraulico medio i_m fosse minore del gradiente idraulico critico i_c diviso per il coefficiente parziale γ_R =3.

In particolare il gradiente idraulico medio i_m è stato determinato come:

$$i_m = \frac{\Delta H}{L \cdot \gamma_w}$$

Dove

ΔH è il carico idraulico

Lè il percorso dei filetti fluidi:

 γ_w è il peso specifico dell'acqua.

Il gradiente critico i_c è pari a:

$$i_c = \frac{\gamma'}{\gamma_w}$$

Dove

 γ' è il peso alleggerito del terreno oggetto della verifica ovvero la sua media ponderata qualora fossero presenti più unità stratigrafiche

h spessore del terreno coinvolto nella verifica.

PROGETTO DEFINITIVO

TRATTA NUOVA ENNA-DITTAINO

VI04 - Viadotto a Singolo Binario - Ltot=360.09 ml circa Relazione di calcolo opere provvisionali

COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
RS3V	40	D 09 CL	VI 04 03 02	Α	37 di 41

Nel caso in esame poiché il livello di falda coincide con il fondo scavo, il moto di filtrazione non si innesca e pertanto non occorre effetture la verifica a sifonamento.

Essendo il gradiente critico di progetto maggiore del gradiente medio, la verifica risulta essere soddisfatta.

9.1.7 Verifica stabilità globale del complesso opera di sostegno – terreno

Il DM 17.01.18 affronta il tema della Stabilità Globale distinguendo tra il caso dei Pendii Naturali (§ 6.3) e quello delle opere in terra in Materiali sciolti e Fronti di scavo (§ 6.8) fornendo prescrizioni differenti circa i criteri di verifica da adottare nei due casi.

Trattandosi nel caso in esame di valutare la Stabilità Globale di Opere a sostegno di scavi, si ricade nel caso dei "Fronti di Scavo e rilevati"; nel seguito si riportano dunque, per maggiore chiarezza espositiva, le specifiche normative a riguardo.

Il punto 6.8 del DM 17.01.18 e relativa circolare applicativa, tratta l'argomento della verifica di Stabilità di Materiali Sciolti e fronti di scavo, nella fattispecie, al punto 6.8.2 "Verifiche di Sicurezza (SLU)" viene prescritto quanto di seguito:

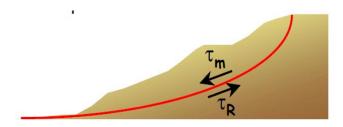
Le verifiche devono essere effettuate secondo l'Approccio 1 - Combinazione 2 (A2+M2+R2) tenendo conto dei valori dei coefficienti parziali riportati nelle Tabelle 6.2.I, 6.2.II e 6.8.I.

In aggiunta a quanto già riportato nei precedenti paragrafi, si riporta di seguito la Tab. 6.8.I, in cui è definito il valore del coefficiente parziale "R2" da applicare al valore della resistenza caratteristica calcolata per la generica superfice di potenziale scivolamento analizzata:

Tabella 6.8.1 – Coefficienti parziali per le verifiche di sicurezza di opere di materiali sciolti e di fronti di scavo.

Coefficiente	R2	
γr	1.1	

Per il caso in esame, le verifiche sono state effettuate mediante i metodi dell'equilibrio limite rispetto a superfici di forma circolare, utilizzando il metodo di **Bishop**, per i cui dettagli si rimanda a quanto esposto a riguarda nella letteratura tecnica.


PROGETTO DEFINITIVO
TRATTA NUOVA ENNA-DITTAINO

VI04 - Viadotto a Singolo Binario - Ltot=360.09 ml circa Relazione di calcolo opere provvisionali

COMMESSA LOTTO
RS3V 40

CODIFICA DOCUMENTO
D 09 CL VI 04 03 02

REV. FOGLIO

$$FS = \frac{\int_{S} \tau_{\text{rott}}}{\int_{S} \tau_{\text{mob}}}$$

Le verifiche sono state effettuare rispetto a famiglie di superfici potenziali di rottura disegnate in maniera tale da non intersecare le opere, escludendo quindi ai fini della stabilità la resistenza al taglio locale offerta dalle opere, fermo restando tutte le prescrizioni definite dalla normativa per questo tipo di verifica

Nel caso in esame la verifica non risulta significativa in quanto non esistono superfici di scorrimento circolari ammissibili che hanno tratto finale ricadente nella parte di scavo tra le paratie.

10 ANALISI DI STABILITA' SCARPATE PROVVISORIE

Nel presente capitolo si riportano le verifiche di stabilità globali delle trincee ferroviarie in progetto. Lungo il tracciato ferroviario sono presenti tratti con con altezze generlamente inferiori ai 6 m. In generale si prevedono:

• scarpate di scavo provvisorie, per la realizzazione delle opere d'arte, con pendenza 2 (verticale) / 3 (orizzontale), con banca intermedia di larghezza 2 m ogni 6 m di dislivello.

10.1 Metodologie di calcolo

Le verifiche di stabilità per le scarpate di scavo provvisionali sono state svolte nelle sole condizioni statiche. L'esame delle condizioni di stabilità è stato condotto utilizzando gli usuali metodi dell'equilibrio limite. Per la valutazione dei fattori di sicurezza alla stabilità globale si è impiegato il codice di calcolo denomiato Slide 7.0, in cui la ricerca delle superfici critiche viene svolta attraverso la generazione automatica di un elevato numero di superfici di potenziale scivolamento. Sono state cautelativamente considerate ipotesi di deformazione piana. In particolare, in questa sede si fa riferimento al metodo di Bishop che prevede superfici di scorrimento circolari nei terreni. Nelle analisi sono state ovviamente tralasciate le superfici più corticali in quanto poco significative e per le quali non risulta idonea una analisi convenzionale all'equilibrio limite.

Il coefficiente di sicurezza FS a rottura lungo la superficie di scorrimento viene definito come rapporto tra la resistenza al taglio disponibile lungo la superficie S e quella effettivamente mobilitata lungo la stessa superficie:

PROGETTO DEFINITIVO

TRATTA NUOVA ENNA-DITTAINO

VI04 - Viadotto a Singolo Binario - Ltot=360.09 ml circa Relazione di calcolo opere provvisionali COMMESSA LOTTO CODIFICA

RS3V 40 D 09 CL

DOCUMENTO VI 04 03 02 REV. FOGLIO A 39 di 41

$$FS = \frac{\int_{S} \tau_{\text{disp}}}{\int_{S} \tau_{\text{mob}}}$$

In accordo alla normativa vigente per rilevati in materiali sciolti e fronti di scavo, le analisi di stabilità vengono condotte secondo la combinazione (A2+M2+R2).

Secondo quanto previsto da normativa, per le analisi di stabilità in condizioni statiche SLU, i parametri di resistenza del terreno devono essere abbattuti a mezzo dei coefficienti parziali di seguito riportati.

 $\gamma_{\phi'} = 1.25$ coefficiente parziale per l'angolo di resistenza al taglio

 $\gamma_{c'} = 1.25$ coefficiente parziale per la coesione drenata

L'analisi viene quindi condotta con i seguenti parametri geotecnici di calcolo:

 $tan(\phi'_k) = tan(\phi'_k) / \gamma_{\phi'}$ angolo di resistenza al taglio

 $c'_k = c'_k / \gamma_{c'}$ coesione drenata

Il coefficiente di sicurezza minimo per le verifiche di sicurezza di opere di materiali sciolti e fronti di scavo è pari ad $1.1~(\gamma_R)$ in condizioni SLU statiche, quindi il fattore di sicurezza alla stabilità da verificare è FS ≥ 1.1 .

10.2 Carichi

Il sovraccarico accidentale stradale, considerato agente sulle viabilità, è stato assunto pari a 20 kPa già fattorizzato ($\gamma_F = 1.3$, Tabella 5.2.V NTC 2018).

Inoltre, sia per le trincee definitive che per quelle provvisorie, è stato cautelativamente utilizzato un sovraccarico accidentale a monte di 10 kPa.

In condizioni sismiche, ai carichi accidentali è stato applicato un coefficiente di combinazione pari a 0.2, come da § 2.3.3 delle Specifiche RFI.

10.3 Sezioni di calcolo

L'analisi di stabilità per le trincee provvisorie è stata condotta cautelativamente per le seguenti sezioni:

D 09 CL

PROGETTO DEFINITIVO

TRATTA NUOVA ENNA-DITTAINO

VI04 - Viadotto a Singolo Binario - Ltot=360.09 ml circa Relazione di calcolo opere provvisionali

COMMESSA LOTTO CODIFICA

DOCUMENTO VI 04 03 02 REV. FOGLIO A 40 di 41

- sezione di altezza 6 m con scarpate 2 (vert) /3 (orizz) in terreni coesivi, cautelativamente si considera uno spessore superficiale di 2 m circa di eluvio-colluvio (unità b2), poi alluvioni coesive (unità bbc) con falda a fondo scavo:

RS3V

- sezione di altezza 6 m con scarpate 2 (vert) /3 (orizz) in terreni incoerenti (unità bni) con falda a fondo scavo.

Sono stati considerati i seguenti parametri geotecnici. I parametri di resistenza assunti nei calcoli sono sono quelli che mediamente si individuano dall'inviluppo di tutti i risultati delle prove di laboratorio nell'ambito delle tensioni che interessano le superfici di scorrimento.

Unità cap-c - Capellaccio coesivo costituente la parte alterata argilloso limosa della formazione di base

 $\gamma = 20.0 \text{ kN/m3}$ peso dell'unità di volume

c' = 0-10 kPa coesione drenata

 $\varphi = 23-25$ ° angolo di resistenza al taglio

 $c_u = 50 \div 350 \text{ kPa}$ resistenza al taglio in condizioni non drenate

Unità TRV- Formazione di Terravecchia: argilla da debolmente marnosa a marnosa

 $\gamma = 21.0 \text{ kN/m}^3$ peso dell'unità di volume

 $c' = 5 \text{ kPa per } \sigma' v < 150 \text{ kPa}$ coesione drenata

 $\varphi' = 26$ ° per $\sigma' v < 150$ kPa angolo di resistenza al taglio

c' = 20 kPa per σ 'v > 150 kPa coesione drenata

 $\varphi' = 21$ ° per $\sigma' v > 150$ kPa angolo di resistenza al taglio

10.4 Risultati

Nelle seguenti figure sono mostrati i risultati delle verifiche di stabilità delle scarpate.

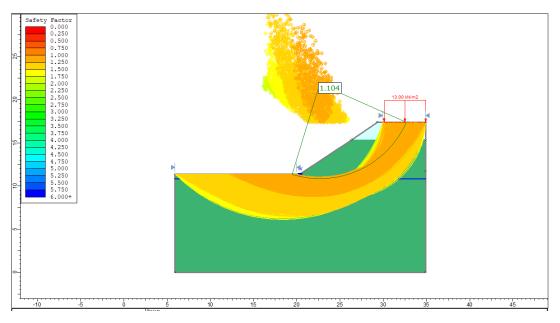


Figura 5. Analisi statica – Scarpate provvisorie –trincea H=6m – terreni coesivi

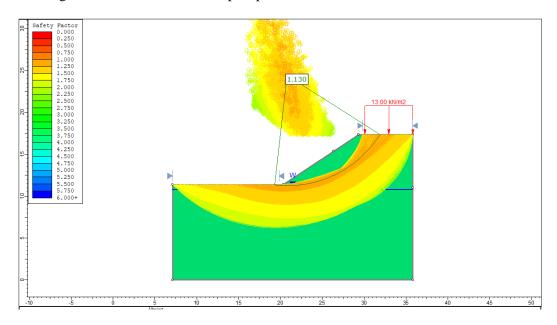


Figura 6. Analisi statica – Scarpate provvisorie –trincea H=6m – terreni incoerenti

I fattori di sicurezza minimi ottenuti dalle verifiche sono sempre maggiori di quanto prescritto da normativa ($\gamma_R \ge$ 1.1 per le analisi statiche SLU) quindi le verifiche di stabilità sono sempre soddisfatte.