COMMITTENTE:

PROGETTAZIONE:

DIRETTRICE FERROVIARIA MESSINA - CATANIA - PALERMO NUOVO COLLEGAMENTO PALERMO - CATANIA

U.O. OPERE CIVILI E GESTIONE DELLE VARIANTI

PROGETTO DEFINITIVO

TRATTA NUOVA ENNA – DITTAINO

OPERE PRINCIPALI – PONTI E VIADOTTI VI05 - Viadotto ferroviario a Doppio Binario

				· · ·
-	lazione	~ ~ ~	\sim	\sim Duo
\neg	14/10110	(11)	AIC ()I	OPHA

SCALA:	
-	

COMMESSA LOTTO FASE ENTE TIPO DOC. OPERA/DISCIPLINA PROGR. REV.

Rev.	Descrizione	Redatto	Data	Verificato	Data	Approvato	Data	Autorizzato Data
A	EMISSIONE ESECUTIVA	P.Valente	Dicembre 2019	A.Ferri	Dicembre 2019	F. Sparacino	Dicembre 2019	A. littozzi Marzo 2020
В	EMISSIONE ESECUTIVA	P.Valente	Marzo 2020	A.Ferri	Marzo 2020	F. Sparaeino	Marzo 2020	delle va trozzi
								RR S.p.J.
								TTALFE Civili e C tt. Ing. A ngegneri N' A

File: RS3V40D09CLVI0505001B.docx n. Ela : 895

0.

VI05 - Viadotto ferroviario a Doppio Binario

40

RELAZIONE DI CALCOLO PILA

COMMESSA LOTTO RS3V

CODIFICA D 09 CL

DOCUMENTO VI 05 05 001

REV. В

FOGLIO 2 di 52

INDICE

1	PRE	MESSA	4
	1.1	DESCRIZIONE DELL'OPERA	4
	1.2	ASPETTI LEGATI ALLE OPERE DI FONDAZIONE	5
2	RIFI	ERIMENTI NORMATIVI	6
3	MAT	ΓΕRIALI	7
	3.1	Verifica S.L.E.	
	3.1.1	l Verifiche alle tensioni	8
	3.1.2	2 Verifiche a fessurazione	8
4	ANA	ALISI E VERIFICHE PILA	9
	4.1	GENERALITÀ	9
	4.2	MODELLI A MENSOLA PER LA VERIFICA DELLE PILE	10
	4.3	CONDIZIONI ELEMENTARI E COMBINAZIONI DI CARICO	10
	4.4	SISTEMI DI RIFERIMENTO ED UNITÀ DI MISURA	14
	4.5	GEOMETRIA DELLA PILA	15
	4.6	ANALISI DEI CARICHI	16
	4.6.1	Peso proprio elementi strutturali	16
	4.6.2	2 Carichi trasmessi dall'impalcato	16
	4.6.3	3 Azione del Vento	19
	4.6.4	4 Carichi da traffico verticali	21
	4.6.5	5 Effetti dinamici	22
	4.6.6	6 Carichi da traffico orizzontali	22
	4.6.7	7 Azione sismica	24
	4.6.8	8 Calcolo delle sollecitazioni in testa pali	28

VI05 - Viadotto ferroviario a Doppio Binario

RELAZIONE DI CALCOLO PILA

 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 RS3V
 40
 D 09 CL
 VI 05 05 001
 B
 3 di 52

	4.6.9	Riepilogo risultati	28
4	7 S	OLLECITAZIONI	30
	4.7.1	Plinto di fondazione	31
4	.8 P	ALI DI FONDAZIONE	32
	4.8.1	Scalzamento	33
4	.9 V	ERIFICHE DEGLI ELEMENTI STRUTTURALI	35
	4.9.1	Pila	38
	4.9.2	Pozzo	44
	4.9.3	Escursione Longitudinale, giunti e varchi	44
	4.9.4	Ritegni sismici, baggioli, pulvini	48
5	SINTE	SI DELLE VERIFICHE GEOTECNICHE	52

DIRETTRICE FERROVIARIA MESSINA - CATANIA - PALERMO
NUOVO COLLEGAMENTO PALERMO - CATANIA
PROGETTO DEFINITIVO

VI05 - Viadotto ferroviario a Doppio Binario

RELAZIONE DI CALCOLO PILA

COMMESSA LOTTO CODIFICA

RS3V 40 D 09 CL

DOCUMENTO VI 05 05 001 REV. FOGLIO

1 PREMESSA

La presente relazione ha per oggetto il dimensionamento e le verifiche di resistenza secondo il metodo semiprobabilistico agli Stati Limite (S.L.) di una delle Pile del viadotto ferroviario VI05 della tratta ferroviaria Nuova Enna – Dittaino, viadotto ferroviario previsto nell'ambito del progetto definitivo lungo la direttrice ferroviaria Messina-Catania-Palermo del nuovo collegamento Palermo-Catania. In particolare si tratterà la Pila che presenta l'altezza maggiore per tipologia di pila ed impalcati afferenti.

Verranno ipotizzati appoggi fissi sulla campata di luce maggiore, indipendentemente dal reale posizionamento degli stessi.

Le analisi strutturali e le verifiche di sicurezza sono state effettuate secondo il DM 17 gennaio 2018.

1.1 Descrizione dell'opera

Il viadotto VI05 attraversa il fiume Dittaino ed è costituito da due campate con pila centrale in alveo.

Il viadotto è previsto a doppio binario dal km 14+672 (asse giunto spalla A) al km 14+812 per uno sviluppo complessivo di 140.00 m ed è costituito da 2 campate a struttura reticolare in acciaio da 70 m, per poter rispettare il franco idraulico.

La campata da 70 m è realizzata con struttura in acciaio a via inferiore con armamento su ballast, è del tipo "a maglia triangolare" a via inferiore chiusa superiormente con altezza baricentrica pari a 12.00 m, interasse delle pareti di 9.94 m ed ampiezza della cassetta pari a 800mm. L'impalcato è costituito da una vasca portaballast metallica con nervature saldate a T e da traversi in composizione saldata, le nervature verranno vincolate all'estradosso dei traversi tramite bullonature. La quota relativa al P.F.-sottotrave è pari a 2789mm. I controventi inferiori e superiori sono previsti sia ricavati da profili laminati che in composizione saldata. Tutte le giunzioni in opera fra i vari elementi strutturali sono previste con bulloni A.R. di classe 8.8 a taglio. Gli apparecchi d'appoggio saranno del tipo ad acciaio-teflon.

La pila, in c.a., presenta un fusto a sezione circolare piena di 4.50 m.

Le spalle sono realizzate in c.a. gettato in opera.

La larghezza dell'impalcato fuori tutto è pari a 13.38 m

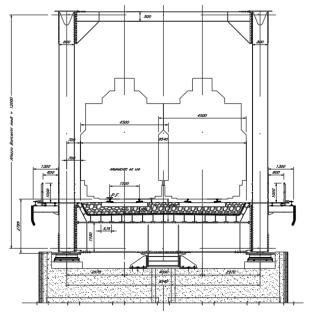


Figura 1 - Sezione trasversale campata di L=70 m

1.2 Aspetti legati alle opere di fondazione

Per la fondazione della pila del *Viadotto - VI05*, è prevista una fondazione a pozzo il cui dimensionamento è trattato nella specifica relazione di calcolo sulle fondazioni.

VI05 - Viadotto ferroviario a Doppio Binario

RELAZIONE DI CALCOLO PILA

 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 RS3V
 40
 D 09 CL
 VI 05 05 001
 B
 6 di 52

2 RIFERIMENTI NORMATIVI

Il progetto è redatto secondo i metodi classici della scienza delle costruzioni e nel rispetto della seguente normativa:

- [N1] D.M. del 17 gennaio 2018: Nuove norme tecniche per le costruzioni;
- [N2] C.M. 21/01/2019 n.7: Istruzioni per l'applicazione delle "Norme tecniche per le costruzioni";
- [N3] **RFI DTC SI PS MA IFS 001 C:** Manuale di progettazione delle Opere Civili. Emissione per applicazione del 21/12/2018;
- [N4] **RFI DTC SI PS SP IFS 001 C del 21/12/2018:** Capitolato generale tecnico di appalto delle opere civili Parte II Sezione 6 Opere in conglomerato cementizio e in acciaio;

Nella redazione dei progetti e nelle verifiche strutturali si è inoltre fatto riferimento alla normativa Europea di seguito specificata:

[N5] STI 2014 – REGOLAMENTO UE N.1299/2014 della commissione del 18 novembre 2014 relativo alle specifiche tecniche di interoperabilità per il sottosistema "infrastruttura" del sistema ferroviario dell'Unione Europea, modificato dal Regolamento di esecuzione (UE) N° 2019/776 della Commissione del 16 maggio 2019;

RS3V

40

D 09 CL

REV.

В

VI 05 05 001

FOGLIO

7 di 52

3 **MATERIALI**

Le caratteristiche dei materiali previsti le sottostrutture sono le seguenti:

- Calcestruzzo magro e getto di livellamento
- CLASSE DI RESISTENZA MINIMA C12/15
- TIPO CEMENTO CEM I+V
- CLASSE DI ESPOSIZIONE AMBIENTALE : XO
 - Calcestruzzo pali di fondazione, cordoli, opere provvisionali, calcestruzzo fondazioni
- CLASSE DI RESISTENZA MINIMA C25/30

- CLASSE DI RESISTENZA MINIMA C25/30

 TIPO CEMENTO CEM III+V

 RAPPORTO A/C : ≤ 0.60

 CLASSE MINIMA DI CONSISTENZA : S4

 CLASSE DI ESPOSIZIONE AMBIENTALE : XC2

 COPRIFERRO MINIMO = 60 mm

 DIAMETRO MASSIMO INERTI : 32 mm

- - Calcestruzzo fondazioni armate
- CLASSE DI RESISTENZA MINIMA C28/35
- CLASSE MINIMA DI CONSISTENZA : S4
- CLASSE DI ESPOSIZIONE AMBIENTALE : XC2 COPRIFERRO = 40 mm (**)
- DIAMETRO MASSIMO INERTI : 25 mm
- COPRIFERRO MINIMO = 40mm
- DIAMETRO INERTI: 25 mm
 - Calcestruzzo elevazione pile (compresi pulvini, baggioli e ritegni), spalle
- CLASSE DI RESISTENZA MINIMA C32/40
- TIPO CEMENTO CEM III÷V RAPPORTO A/C : ≤ 0.50 CLASSE MINIMA DI CONSISTENZA : S4
- CLASSE DI ESPOSIZIONE AMBIENTALE : XC4
- COPRIFERRO MINIMO = 50mm
- DIAMETRO INERTI: 25 mm
 - Acciaio ordinario per calcestruzzo armato

IN BARRE E RETI ELETTROSALDATE B450C saldabile che presenta le seguenti caratteristiche : fyk > 450 N/mm² ftk > 540 N/mm² 1.15≤ ftk/fyk < 1.35 Tensione di snervamento caratteristica Tensione caratteristica a rottura

(*): I VALORI DI COPRIFERRO RIPORTATI SI RIFERISCONO AD OPERE. CON VITA NOMINALE DI 75 ANNI. PER COSTRUZIONI CON VITA NOMINALE. DI 100 ANNI TALI VALORI DOVRANNO ESSERE AUMENTATI DI 5 mm.

3.1 Verifica S.L.E.

La verifica nei confronti degli Stati limite di esercizio, consiste nel controllare, con riferimento alle sollecitazioni di calcolo corrispondenti alle Combinazioni di Esercizio il tasso di Lavoro nei Materiali e l'ampiezza delle fessure attesa, secondo quanto di seguito specificato

3.1.1 Verifiche alle tensioni

La verifica delle tensioni in esercizio consiste nel controllare il rispetto dei limiti tensionali previsti per il calcestruzzo e per l'acciaio per ciascuna delle combinazioni di carico caratteristiche "Rara" e "Quasi Permanente"; i valori tensionali nei materiali sono valutati secondo le note teorie di analisi delle sezioni in c.a. in campo elastico e con calcestruzzo "non reagente a trazione" adottando come limiti di riferimento, trattandosi nel caso in specie di opere Ferroviarie, quelli indicati nel documento "Specifica per la progettazione e l'esecuzione dei ponti ferroviari e di altre opere minori sotto binario RFI DTC INC PO SP IFS 001 A del 2019 ", ovvero:

Strutture in c.a.

Tensioni di compressione del calcestruzzo

Devono essere rispettati i seguenti limiti per le tensioni di compressione nel calcestruzzo:

- per combinazione di carico caratteristica (rara): 0,55 f_{ek};
- per combinazioni di carico quasi permanente: 0,40 f_{ck};
- per spessori minori di 5 cm, le tensioni normali limite di esercizio sono ridotte del 30%.

Tensioni di trazione nell'acciaio

Per le armature ordinarie, la massima tensione di trazione sotto la combinazione di carico caratteristica (rara) non deve superare $0.75~f_{yk}$.

3.1.2 Verifiche a fessurazione

La verifica di fessurazione consiste nel controllare l'ampiezza dell'apertura delle fessure sotto combinazione di carico frequente e combinazione quasi permanente. Essendo la struttura a contatto col terreno si considerano condizioni ambientali aggressive; le armature di acciaio ordinario sono ritenute poco sensibili [NTC – Tabella 4.1.IV]

In relazione all'aggressività ambientale e alla sensibilità dell'acciaio, l'apertura limite delle fessure è riportato nel prospetto seguente:

Tabella 1 – Criteri di scelta dello stato limite di fessurazione e Condizioni Ambientali

Gruppi di			Armatura					
	Condizioni ambientali	Combinazione di azione	Sensibile		Poco sensibile			
esigenza			Stato limite	wd	Stato limite	wd		
a	Ordinarie	frequente	ap. fessure	\leq w ₂	ap. fessure	\leq w ₃		
a	Ordinarie	quasi permanente	ap. fessure	\leq w ₁	ap. fessure	\leq w ₂		

VI05 - Viadotto ferroviario a Doppio Binario

RELAZIONE DI CALCOLO PILA

COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
RS3V	40	D 09 CL	VI 05 05 001	В	9 di 52

b	Aggressive	frequente	ap. fessure	$\leq w_1$	ap. fessure	\leq w ₂
	Agglessive	quasi permanente	decompressione	-	ap. fessure	$\leq w_1$
С	Molto Aggressive	frequente	formazione fessure	-	ap. fessure	$\leq w_1$
	Wiolto Agglessive	quasi permanente	decompressione	ı	ap. fessure	$\leq w_1$

Tabella 4.1.III - Descrizione delle condizioni ambientali

CONDIZIONI AMBIENTALI	CLASSE DI ESPOSIZIONE		
Ordinarie	X0, XC1, XC2, XC3, XF1		
Aggressive	XC4, XD1, XS1, XA1, XA2, XF2, XF3		
Molto aggressive	XD2, XD3, XS2, XS3, XA3, XF4		

Risultando:

 $w_1 = 0.2 \text{ mm}$

 $w_2 = 0.3 \text{ mm}$

 $w_3 = 0.4 \text{ mm}$

Data la maggior restrittività, alle prescrizioni normative presenti in NTC si sostituiscono in tal caso quelle fornite dal "Manuale di Progettazione delle Opere Civili" secondo cui la verifica nei confronti dello stato limite di apertura delle fessure va effettuata utilizzando le sollecitazioni derivanti dalla combinazione caratteristica (rara).

Per strutture in condizioni ambientali aggressive o molto aggressive, qual è il caso delle strutture in esame così come identificate nel DM 17.1.2018, per tutte le strutture a permanente contatto con il terreno e per le zone non ispezionabili di tutte le strutture, l'apertura convenzionale delle fessure dovrà risultare:

$$\delta_f \leq w_1 = 0.2 \ mm$$

Riguardo infine il valore di calcolo delle fessure da confrontare con i valori limite fissati dalla norma, si è utilizzata la procedura riportata al C4.1.2.2.4.5 della Circolare n. 7/19.

4 ANALISI E VERIFICHE PILA

4.1 Generalità

La pila presenta una sezione circolare di diametro 4.50m, una altezza complessiva di 6.10m.

DIRETTRICE FERROVIARIA MESSINA - CATANIA - PALERMO
NUOVO COLLEGAMENTO PALERMO - CATANIA
PROGETTO DEFINITIVO

VI05 - Viadotto ferroviario a Doppio Binario

RELAZIONE DI CALCOLO PILA

COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
RS3V	40	D 09 CL	VI 05 05 001	В	10 di 52

Il pulvino è costituito da una sezione piena di dimensione 5.3x 12.80m ed altezza 2.20m.

Le fondazioni sono realizzate su pali di diametro 1.50 m collegate in testa da una platea di spessore 3.00m.

Per le verifiche dei singoli elementi della pila (pali, platea di fondazione ed elevazioni) è stata effettuata un'analisi dei carichi agenti sul piano appoggi e allo spiccato della fondazione; l'analisi viene riportata nelle pagine seguenti.

4.2 Modelli a mensola per la verifica delle pile

Le sollecitazioni di verifica della pila sono state determinate a partire dai valori delle risultanti delle azioni trasmesse dagli impalcati alla quota degli apparecchi di appoggio alle quali vanno combinate le azioni determinate dalle azioni date dalle forze di inerzia e dal peso proprio delle sottostrutture.

Il modello della struttura è stato implementato in un foglio di calcolo appositamente realizzato per la valutazione delle azioni agenti sulle singole parti della struttura, quali fusto pila e plinto.

Per l'analisi e la verifica del plinto di fondazione, si è utilizzato un modello, a seconda della geometria, di tirantepuntone o trave inflessa.

Per quanto riguarda invece le sollecitazioni sui pali di fondazione a partire dalle azioni risultanti nel baricentro del plinto alla quota di intradosso, sono stati calcolati, per ciascuna combinazione di carico, gli sforzi assiali e di taglio in testa ai pali di fondazione utilizzando il classico modello a piastra rigida.

4.3 Condizioni elementari e combinazioni di carico

Le verifiche di sicurezza strutturali e geotecniche sono state condotte utilizzando combinazioni di carico definite in ottemperanza alle NTC18, secondo quanto riportato nei paragrafi 2.5.3, 5.1.3.12. Di seguito sono mostrati i coefficienti parziali di sicurezza utilizzati allo SLU ed i coefficienti di combinazione adoperati per i carichi variabili nella progettazione delle strutture da ponte.

VI05 - Viadotto ferroviario a Doppio Binario

RELAZIONE DI CALCOLO PILA

COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
RS3V	40	D 09 CL	VI 05 05 001	В	11 di 52

2.5.3 COMBINAZIONI DELLE AZIONI

Ai fini delle verifiche degli stati limite si definiscono le seguenti combinazioni delle azioni.

- Combinazione fondamentale, generalmente impiegata per gli stati limite ultimi (SLU):

$$\gamma_{G1} \cdot G_1 + \gamma_{G2} \cdot G_2 + \gamma_{P} \cdot P + \gamma_{Q1} \cdot Q_{k1} + \gamma_{Q2} \cdot \psi_{02} \cdot Q_{k2} + \gamma_{Q3} \cdot \psi_{03} \cdot Q_{k3} + \dots$$
 (2.5.1)

 Combinazione caratteristica (rara), generalmente impiegata per gli stati limite di esercizio (SLE) irreversibili, da utilizzarsi nelle verifiche alle tensioni ammissibili di cui al § 2.7:

$$G_1 + G_2 + P + Q_{k1} + \psi_{02} \cdot Q_{k2} + \psi_{03} \cdot Q_{k3} + \dots$$
 (2.5.2)

 Combinazione frequente, generalmente impiegata per gli stati limite di esercizio (SLE) reversibili:

$$G_1 + G_2 + P + \psi_{11} \cdot Q_{k1} + \psi_{22} \cdot Q_{k2} + \psi_{23} \cdot Q_{k3} + \dots$$
 (2.5.3)

 Combinazione quasi permanente (SLE), generalmente impiegata per gli effetti a lungo termine:

$$G_1 + G_2 + P + \psi_{21} \cdot Q_{k1} + \psi_{22} \cdot Q_{k2} + \psi_{23} \cdot Q_{k3} + \dots$$
 (2.5.4)

 Combinazione sismica, impiegata per gli stati limite ultimi e di esercizio connessi all'azione sismica E (v. § 3.2):

$$E + G_1 + G_2 + P + \psi_{21} \cdot Q_{k1} + \psi_{22} \cdot Q_{k2} + \dots$$
 (2.5.5)

 Combinazione eccezionale, impiegata per gli stati limite ultimi connessi alle azioni eccezionali di progetto A_d (v. § 3.6):

$$G_1 + G_2 + P + A_d + \psi_{21} \cdot Q_{k1} + \psi_{22} \cdot Q_{k2} + \dots$$
 (2.5.6)

Nelle combinazioni per SLE, si intende che vengono omessi i carichi Q_{kj} che danno un contributo favorevole ai fini delle verifiche e, se del caso, i carichi G_2 .

VI05 - Viadotto ferroviario a Doppio Binario

RELAZIONE DI CALCOLO PILA

LOTTO REV. COMMESSA CODIFICA DOCUMENTO **FOGLIO** 12 di 52 RS3V 40 D 09 CL VI 05 05 001 В

		Coefficiente	EQU ⁽¹⁾	A1 STR	A2 GEO	Combinazione eccezionale	Combinazione Sismica
Carichi permanenti	favorevoli sfavorevoli	γG1	0,90 1,10	1,00 1,35	1,00 1,00	1,00 1,00	1,00 1,00
Carichi permanenti non strutturali ⁽²⁾	favorevoli sfavorevoli	$\gamma_{\rm G2}$	0,00 1,50	0,00 1,50	0,00 1,30	1,00 1,00	1,00 1,00
Ballast ⁽³⁾	favorevoli sfavorevoli	γв	0,90 1,50	1,00 1,50	1,00 1,30	1,00 1,00	1,00 1,00
Carichi variabili da traffico ⁽⁴⁾	favorevoli sfavorevoli	γο	0,00 1,45	0,00 1,45	0,00 1,25	0,00 0,20 ⁽⁵⁾	0,00 0,20 ⁽⁵⁾
Carichi variabili	favorevoli sfavorevoli	γQi	0,00 1,50	0,00 1,50	0,00 1,30	0,00 1,00	0,00 0,00
Precompressione	favorevole sfavorevole	γр	0,90 1,00 ⁽⁶⁾	1,00 1,00 ⁽⁷⁾	1,00 1,00	1,00 1,00	1,00 1,00

Equilibrio che non coinvolga i parametri di deformabilità e resistenza del terreno; altrimenti si applicano i valori

Azioni		Ψο	V 1	Ψ2
Azioni singole	Carico sul rilevato a tergo delle spalle	0,80	0,50	0,0
da traffico	Azioni aerodinamiche generate dal transito dei convogli	0,80	0,50	0,0
	gr ₁	0,80(2)	0,80(1)	0,0
Gruppi di	gr ₂	0,80(2)	0,80(1)	-
carico	gr ₃	0,80(2)	0,80(1)	0,0
	gr4	1,00	1,00(1)	0,0
Azioni del vento	F_{Wk}	0,60	0,50	0,0
Azioni da	in fase di esecuzione	0,80	0,0	0,0
neve	SLU e SLE	0,0	0,0	0,0
Azioni termiche	T _k	0,60	0,60	0,50

^{(1) 0,80} se è carico solo un binario, 0,60 se sono carichi due binari e 0,40 se sono carichi tre o più binari.

⁽²⁾ Nel caso in cui i carichi permanenti non strutturali (ad es. carichi permanenti portati) siano compiutamente definiti si potranno adottare gli stessi coefficienti validi per le azioni permanenti.

Quando si prevedano variazioni significative del carico dovuto al ballast, se ne dovrà tener conto esplicitamente nelle verifiche.

⁽⁴⁾ Le componenti delle azioni da traffico sono introdotte in combinazione considerando uno dei gruppi di carico gr

⁽⁵⁾ Aliquota di carico da traffico da considerare.

^{(6) 1,30} per instabilità in strutture con precompressione esterna (7) 1,20 per effetti locali

⁽²⁾ Quando come azione di base venga assunta quella del vento, i coefficienti ψ₀ relativi ai gruppi di carico delle azioni da traffico vanno assunti pari a 0,0.

VI05 - Viadotto ferroviario a Doppio Binario

RELAZIONE DI CALCOLO PILA

COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
RS3V	40	D 09 CL	VI 05 05 001	В	13 di 52

	Azioni	Ψο	Ψ1	Ψ2
	Treno di carico LM 71	0,80(3)	(1)	0,0
Azioni	Treno di carico SW /0	0,80(3)	0,80	0,0
singole	Treno di carico SW/2	0,0(3)	0,80	0,0
da	Treno scarico	1,00(3)	-	-
traffico	Centrifuga	(2 (3)	(2)	(2)
	Azione laterale (serpeggio)	1,00(3)	0,80	0,0

- (1) 0,80 se è carico solo un binario, 0,60 se sono carichi due binari e 0,40 se sono carichi tre o più binari.
- (2) Si usano gli stessi coefficienti ψ adottati per i carichi che provocano dette azioni.
- (3) Quando come azione di base venga assunta quella del vento, i coefficienti ψ_0 relativi ai gruppi di carico delle azioni da traffico vanno assunti pari a 0,0.

Nel seguito si riportano le azioni considerate ai fini della valutazione delle sollecitazioni agenti sulle sottostrutture e, quindi , alle verifiche strutturali.

	A2 - SLU - N max gr.1	A2-SLU-MT max gr.1	A2-SLU-ML max gr.1	A2 - SLU - N max gr.3	A2 - SLU - MT max gr.3	A2 - SLU - ML max gr.3	A2 - SLU - Vento ponte scarico	A2 - SLU Gmin - N max gr.1	A2 - SLU Gmin - MT max gr.1	A2 - SLU Gmin - ML max gr.1	A2 - SLU Gmin - N max gr.3	A2 - SLU Gmin - MT max gr.3	A2 - SLU Gmin - ML max gr.3	A2 - SLU Gmin - Vento ponte scarico	A1-SLU - N max gr.1	A1-SLU-MT max gr.1	A1-SLU-MI max gr.1	A1-SLU - N max gr.3	A1-SLU-MT max gr.3	A1-SLU-ML max gr.3	A1 - SLU - Vento ponte scarico	A1-SLU Gmin-N max gr.1	A1-SLU Gmin-MT max gr.1	A1-SLU Gmin-ML max gr.1
Peso proprio gl	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.35	1.35	1.35	1.35	1.35	1.35		1.00	1.00	1.00
Permanenti G2	1.30	1.30	1.30	1.30	1.30	1.30	1.30	0.00	0.00	0.00	0.00	0.00	0.00	0.00	1.50	1.50	1.50	1.50	1.50	1.50		0.00	0.00	0.00
Ballast	1.30	1.30	1.30	1.30	1.30	1.30	1.30	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.50	1.50	1.50	1.50	1.50	1.50		1.00	1.00	1.00
Comb. Nmax Qv	1.25	0.00	0.00	1.25	0.00	0.00	0.00	1.25	0.00	0.00	1.25	0.00	0.00	0.00	1.45	0.00	0.00	1.45	0.00	0.00		1.45	0.00	0.00
Comb. Nmax Q frenatura	0.63	0.00	0.00	1.25	0.00	0.00	0.00	0.63	0.00	0.00	1.25	0.00	0.00	0.00	0.73	0.00	0.00	1.45	0.00	0.00		0.73	0.00	0.00
Comb. Nmax Q centrifuga	1.25	0.00	0.00	0.63	0.00	0.00	0.00	1.25	0.00	0.00	0.63	0.00	0.00	0.00	1.45	0.00	0.00	0.73	0.00	0.00		1.45	0.00	0.00
Comb. Nmax Q serpeggio	1.25	0.00	0.00	0.63	0.00	0.00	0.00	1.25	0.00	0.00	0.63	0.00	0.00	0.00	1.45	0.00	0.00	0.73	0.00	0.00		1.45	0.00	0.00
Comb. MTmax Qv	0.00	1.25	0.00	0.00	1.25	0.00	0.00	0.00	1.25	0.00	0.00	1.25	0.00	0.00	0.00	1.45	0.00	0.00	1.45	0.00		0.00	1.45	0.00
Comb. MTmax Q frenatura	0.00	0.63	0.00	0.00	1.25	0.00	0.00	0.00	0.63	0.00	0.00	1.25	0.00	0.00	0.00	0.73	0.00	0.00	1.45	0.00		0.00	0.73	0.00
Comb. MTmax Q centrifuga	0.00	1.25	0.00	0.00	0.63	0.00	0.00	0.00	1.25	0.00	0.00	0.63	0.00	0.00	0.00	1.45	0.00	0.00	0.73	0.00	0.00	0.00	1.45	0.00
Comb. MTmax Q serpeggio	0.00	1.25	0.00	0.00	0.63	0.00	0.00	0.00	1.25	0.00	0.00	0.63	0.00	0.00	0.00	1.45	0.00	0.00	0.73	0.00	0.00	0.00	1.45	0.00
Comb. MLmax Qv	0.00	0.00	1.25	0.00	0.00	1.25	0.00	0.00	0.00	1.25	0.00	0.00	1.25	0.00	0.00	0.00	1.45	0.00	0.00	1.45	0.00	0.00	0.00	1.45
Comb. MLmax Q frenatura	0.00	0.00	0.63	0.00	0.00	1.25	0.00	0.00	0.00	0.63	0.00	0.00	1.25	0.00	0.00	0.00	0.73	0.00	0.00	1.45	0.00	0.00	0.00	0.73
Comb. MLmax Q centrifuga	0.00	0.00	1.25	0.00	0.00	0.63	0.00	0.00	0.00	1.25	0.00	0.00	0.63	0.00	0.00	0.00	1.45	0.00	0.00	0.73	0.00	0.00	0.00	1.45
Comb. MLmax Q serpeggio	0.00	0.00	1.25	0.00	0.00	0.63	0.00	0.00	0.00	1.25	0.00	0.00	0.63	0.00	0.00	0.00	1.45	0.00	0.00	0.73	0.00	0.00	0.00	1.45
Vento Ponte Scarico	0.00	0.00	0.00	0.00	0.00	0.00	1.30	0.00	0.00	0.00	0.00	0.00	0.00	1.30	0.00	0.00	0.00	0.00	0.00	0.00	1.50	0.00	0.00	0.00
Vento Ponte Carico	0.78	0.78	0.00	0.78	0.78	0.00	0.00	0.78	0.78	0.00	0.78	0.78	0.00	0.00	0.90	0.90	0.00	0.90	0.90	0.00		0.90	0.90	0.00
Attrito permanente	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.35	1.35	1.35	1.35	1.35	1.35	1.35	1.35	1.35	1.35
Attrito carichi mobili	1.25	1.25	1.25	1.25	1.25	1.25	0.00	1.25	1.25	1.25	1.25	1.25	1.25	0.00	1.45	1.45	1.45	1.45	1.45	1.45	0.00	1.45	1.45	1.45
Sisma longitudinale	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Sisma trasversale	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Sisma verticale	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Vento x	0.00	0.00	0.78	0.00	0.00	0.78	0.00	0.00	0.00	0.78	0.00	0.00	0.78	0.00	0.00	0.00	0.90	0.00	0.00	0.90	0.00	0.00	0.00	0.90
Vento y	0.78	0.78	0.00	0.78	0.78	0.00	1.30	0.78	0.78	0.00	0.78	0.78	0.00	1.30	0.90	0.90	0.00	0.90	0.90	0.00	1.50	0.90	0.90	0.00

VI05 - Viadotto ferroviario a Doppio Binario

RELAZIONE DI CALCOLO PILA

 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 RS3V
 40
 D 09 CL
 VI 05 05 001
 B
 14 di 52

A1-SLU Gmin-N max gr.3 A1-SLU Gmin-MT max gr.3	A1-SLU G min-ML max gr.3	A1 - SLU Gmin - Vento ponte scarico	SLE rara - N max gr.1	SLE rara - MT max gr.1	SLE rara - ML max gr.1	SLE rara - N max gr.3	SLE rara - MT max gr.3	SLE rara - ML max gr.3	SLE rara - Vento ponte scarico	SLE freq N max gr.1	SLE freq MT max gr.1	SLE freq ML max gr.1	SLE freq N max gr.3	SLE freq MT max gr.3	SLE freq ML max gr.3	SLE freq Vento ponte scarico	SLE quasi permanente	SLV - N max	SLV - MT max	SLV - ML max	SLV - MT max	SLV - ML max	SLV - N min	
1.00 1.00		1.00	1.00	1.00		1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00		Peso proprio gl
0.00 0.00	_	0.00	1.00	1.00		1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00		Permanenti G2
1.00 1.00		1.00	1.00	1.00		1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00		Ballast
1.45 0.00		0.00	1.00	0.00	0.00	1.00	0.00	0.00	0.00	0.80	0.00	0.00	0.80	0.00	0.00	0.00	0.00	0.20	0.00	0.00	0.00	0.00		Comb. Nmax Qv
1.45 0.00		0.00	0.50	0.00		1.00	0.00	0.00	0.00	0.40	0.00	0.00	0.80	0.00	0.00	0.00	0.00	0.20	0.00	0.00	0.00	0.00		Comb. Nmax Q frenatura
0.73 0.00	0.00	0.00	1.00	0.00		0.50	0.00	0.00	0.00	0.80	0.00	0.00	0.40	0.00	0.00	0.00	0.00	0.20	0.00	0.00	0.00	0.00		Comb. Nmax Q centrifuga
0.73 0.00		0.00	1.00	0.00		0.50	0.00	0.00	0.00	0.80	0.00	0.00	0.40	0.00	0.00	0.00	0.00	0.20	0.00	0.00	0.00	0.00		Comb. Nmax Q serpeggio
0.00 1.45		0.00	0.00	1.00		0.00	1.00	0.00	0.00	0.00	0.80	0.00	0.00	0.80	0.00	0.00	0.00	0.00	0.20	0.00	0.20	0.00		Comb. MTmax Qv
0.00 1.45		0.00	0.00	0.50		0.00	1.00	0.00	0.00	0.00	0.40	0.00	0.00	0.80	0.00	0.00	0.00	0.00	0.20	0.00	0.20	0.00		Comb. MTmax Q frenatura
0.00 0.73		0.00	0.00	1.00		0.00	0.50	0.00	0.00	0.00	0.80	0.00	0.00	0.40	0.00	0.00	0.00	0.00	0.20	0.00	0.20	0.00		Comb. MTmax Q centrifuga
0.00 0.73		0.00	0.00	1.00		0.00	0.50	0.00	0.00	0.00	0.80	0.00	0.00	0.40	0.00	0.00	0.00	0.00	0.20	0.00	0.20	0.00		Comb. MTmax Q serpeggio
0.00 0.00		0.00	0.00	0.00		0.00	0.00	1.00	0.00	0.00	0.00	0.80	0.00	0.00	0.80	0.00	0.00	0.00	0.00	0.20	0.00	0.20		Comb. MLmax Qv
0.00 0.00		0.00	0.00	0.00		0.00	0.00	1.00	0.00	0.00	0.00	0.40	0.00	0.00	0.80	0.00	0.00	0.00	0.00	0.20	0.00	0.20		Comb. MLmax Q frenatura
0.00 0.00		0.00	0.00	0.00		0.00	0.00	0.50	0.00	0.00	0.00	0.80	0.00	0.00	0.40	0.00	0.00	0.00	0.00	0.20	0.00	0.20		Comb. MLmax Q centrifuga
0.00 0.00		0.00	0.00	0.00	1.00	0.00	0.00	0.50	0.00	0.00	0.00	0.80	0.00	0.00	0.40	0.00	0.00	0.00	0.00	0.20	0.00	0.20	0.00	Comb. MLmax Q serpeggio
0.00 0.00		1.50	0.00	0.00		0.00	0.00	0.00	1.00	0.00	0.00	0.00	0.00	0.00	0.00	0.50	0.00	0.00	0.00	0.00	0.00	0.00		Vento Ponte Scarico
0.90 0.90		0.00	0.60	0.60		0.60	0.60	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00		Vento Ponte Carico
1.35 1.35	5 1.35	1.00	1.00	1.00		1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	0.50	0.50	0.50	0.50	0.50	0.50	Attrito permanente
1.45 1.45	5 1.45	0.00	1.00	1.00		1.00	1.00	1.00	0.00	0.80	0.80	0.80	0.80	0.80	0.80	0.00	0.00	0.20	0.20	0.20	0.20	0.20	0.20	Attrito carichi mobili
0.00 0.00	0.00	0.00	0.00	0.00		0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.30	0.30	1.00	0.30	1.00	0.30	Sisma longitudinale
0.00 0.00	0.00	0.00	0.00	0.00		0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.30	1.00	0.30	1.00	0.30		Sisma trasversale
0.00 0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	1.00	0.30	0.30	-0.30	-0.30	-1.00	Sisma verticale
0.00 0.00	0.90	0.00	0.00	0.00	0.60	0.00	0.00	0.60	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	Vento x
0.90 0.90	0.00	1.50	0.60	0.60	0.00	0.60	0.60	0.00	1.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	Vento y

Gli scarichi agli appoggi, riportati nei paragrafi seguenti, fanno riferimento alla seguente terna di assi:

- asse X coincidente con l'asse longitudinale del ponte;
- asse Y coincidente con l'asse trasversale del ponte;
- asse Z coincidente con l'asse verticale del ponte;

Per quanto riguarda la risposta alle diverse componenti dell'azione sismica, poiché si è adottata un'analisi in campo lineare, essa può essere calcolata separatamente per ciascuna delle componenti. Gli effetti sulla struttura (sollecitazioni, deformazioni, spostamenti, ecc) sono combinate successivamente applicando l'espressione

$$1.00 \cdot Ex + 0.30 \cdot Ey + 0.30 \cdot Ez$$

con rotazione dei coefficienti moltiplicativi e conseguente individuazione degli effetti più gravosi.

Occorre precisare che con il segno negativo verranno indicate le azioni aventi direzione positiva delle Z (ovvero dirette verso l'alto).

4.4 Sistemi di riferimento ed unità di misura

- Asse X parallelo all'asse longitudinale dell'impalcato
- Asse Y ortogonale all'asse longitudinale dell'impalcato
- Asse Z verticale
- Lunghezze = m
- Forze = kN

4.5 Geometria della Pila

Generali			
Peso cls	γ _{c1s}	25	kN/m ³
Peso terreno	γ_{t}	20	kN/m³
Sovraccarico accidentale sul rilevato	q _{acc}	53.0	kN/m ²
Altezza appoggio + baggiolo	h _{ap}	1.30	m
Distanza piano appoggi-intradosso plinto	H ₁	10.40	m
Pulvino			
Altezza	H_p	2.20	m
Lunghezza lungo asse X	b _p	5.3	m
Lunghezza lungo asse Y	L _p	12.80	m
Area Sezione	-	67.84	m ²
% Vuoti sezione		0%	
Coordinata X del baricentro rispetto fondazione	Xp	0.00	m
Pila			
Altezza	H_{m}	6.10	m
Lunghezza lungo asse X	b _m	4.5	m
Lunghezza lungo asse Y	L _m	4.50	m
Area Sezione		15.90	m ²
% Vuoti sezione		0%	
Coordinata X del baricentro rispetto fondazione	x _m	0.00	m
Distanza asse baggioli- asse pila (sx)	x _{m1}	-1.20	m
Distanza asse baggioli- asse asse pila (dx)	x _{m2}	1.20	m
Plinto			
Altezza	$H_{\rm f}$	3.00	m
Lunghezza lungo asse X	$\mathfrak{b}_{\mathrm{f}}$	12.00	m
Lunghezza lungo asse Y	L_{f}	16.50	m
Spessore ricoprimento medio	h _t	1.00	m
Distanza asse baggioli - baricentro plinto (sx)		-1.20	m
Distanza asse baggioli - baricentro plinto (dx)		1.20	m
Terreno			
Angolo d'attrito interno (φ)		35	ļ °
Coefficiente per il calcolo della spinta a riposo	~	Ko= 0.426	
Sisma			
Ss		1.490	-
ag		0.134	1
Coefficiente sismico orizzontale	$\mathbf{k}_{\mathtt{h}}$	0.199	

Tabella 2 – Dati di input

4.6 Analisi dei carichi

4.6.1 Peso proprio elementi strutturali

> Peso proprio strutture

I pesi degli elementi strutturali sono calcolati utilizzando un peso di volume del calcestruzzo pari a 25 kN/m³.

Impalcato	(sx)		
N° Binari		2	
Lunghezza	L	70	m
Peso Proprio	G_1	143	kN/m
Permanenti portati	G ₂	164	kN/m
Ballast	G ₂	0	kN/m
n° totale appoggi sulla pila	n	2	
Reazione appoggio i = (G ₁ *L/2)/n	R _i	2502.5	kN
Reazione appoggio i = (G ₂ *L/2)/n	R _i	2870.0	kN
Reazione appoggio $i = (G_2*L/2)/n$ (ballast)	R_{i}	0	kN

Impalcato	(dx)		
N° Binari		2	
Lunghezza	L	70	m
Peso Proprio	G1	143	kN/m
Permanenti portati	G2	164	kN/m
Ballast	G2	0	kN/m
n° totale appoggi sulla pila	n	2	
Reazione appoggio i = (G ₁ *L/2)/n	Ri	2502.5	kN
Reazione appoggio $i = (G_2*L/2)/n$	Ri	2870.0	kN
Reazione appoggio $i = (G_2*L/2)/n$ (ballast)	Ri	0	kN

4.6.2 Carichi trasmessi dall'impalcato

Si riportano di seguito gli scarichi agli appoggi dedotti dall'analisi dell'impalcato, per la campata sinistra e destra (la condizione di Momento Longitudinale massimo "MLmax" è riferita alla situazione in cui solo uno dei due impalcati venga caricato):

VI05 - Viadotto ferroviario a Doppio Binario

RELAZIONE DI CALCOLO PILA

 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 RS3V
 40
 D 09 CL
 VI 05 05 001
 B
 17 di 52

sx									
RETICOLARE 70 ML DOPPIO BINARIO									
APPOGGIO	REAZIONE	У	REAZ. LM71	REAZ. SW2	α LM71	α SW2	ø3	REAZ. LM71	REAZ. SW2
1	0.700	5	3045	2728	1.1	1	1.00	3350	2728
2	0.300	-5	3045	2728	1.1	1	1.00	3350	2728
dx									
RETICOLARE 70 ML DOPPIO BINARIO									
APPOGGIO	REAZIONE	у	REAZ. LM71	REAZ. SW2	α LM71	α SW2	ø3	REAZ. LM71	REAZ. SW2
1	0.700	5	3045	3115	1.1	1	1.00	3350	3115
2	0.300	-5	3045	3115	1.1	1	1.00	3350	3115
dx ML max									
RETICOLARE 70 ML DOPPIO BINARIO									
APPOGGIO	REAZIONE	у	REAZ. LM71	REAZ. SW2	α LM71	α SW2	ø3	REAZ. LM71	REAZ. SW2
1	0.700	5	3343	4465	1.1	1	1.00	3677	4465
2	0.300	-5	3343	4465	1.1	1	1.00	3677	4465

Che ripartiti con il metodo Courbon sul singolo appoggio forniscono i risultati in tabella seguente.

REAZIONI VINCOLARI [kN,m]

SX

Appoggio		A			В		
5	FZ	FX	FY	FZ	FX	FY	biz
Descrizione carico	[kN]	[kN]	[kN]	[kN]	[kN]	[kN]	[m]
Peso proprio g1	2503			2503			0.00
Permanenti G2	2870			2870			0.00
Ballast							0.00
Comb. Nmax Qv	2914			3163			0.00
Comb. Nmax Q frenatura		0			0		2.30
Comb. Nmax Q centrifuga			298			298	4.10
Comb. Nmax Q serpeggio			27			27	2.30
Comb. MTmax Qv	2345			1005			0.00
Comb. MTmax Q frenatura		0			0		2.30
Comb. MTmax Q centrifuga			185			185	4.10
Comb. MTmax Q serpeggio			13			13	2.30
Comb. MLmax Qv	0			0			0.00
Comb. MLmax Q frenatura		0			0		2.30
Comb. MLmax Q centrifuga							4.10
Comb. MLmax Q serpeggio						0	2.30
Vento Ponte Scarico			121			121	2.30
Vento Ponte Carico			307			307	4.30
Attrito permanente		161	161		161	161	0.00
Attrito carichi mobili		87	87		95	95	0.00
Sisma longitudinale							5.00
Sisma trasversale			2480			2480	5.00
Sisma verticale	710			710			0.00
Sisma longitudinale		0			0		5.00
Sisma longitudinale Sisma trasversale			2735			2735	5.00
Sisma verticale	710			710			0.00
Sisma longitudinale		0			0		5.00
Sisma trasversale			3720			3720	5.00
Sisma verticale	710			710			0.00

VI05 - Viadotto ferroviario a Doppio Binario

RELAZIONE DI CALCOLO PILA

 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 RS3V
 40
 D 09 CL
 VI 05 05 001
 B
 18 di 52

REAZIONI VINCOLARI [kN,m]

đх

Appoggio		A			В		
.	FZ	FX	FY	FZ	FX	FY	biz
Descrizione carico	[kN]	[kN]	[kN]	[kN]	[kN]	[kN]	[m]
Peso proprio g1	2503			2503			0.00
Permanenti G2	2870			2870			0.00
Ballast							0.00
Comb. Nmax Qv	3185			3279			0.00
Comb. Nmax Q frenatura		1375			1375		2.30
Comb. Nmax Q centrifuga			298			298	4.10
Comb. Nmax Q serpeggio			27			27	2.30
Comb. MTmax Qv	2345			1005			0.00
Comb. MTmax Q frenatura		875			875		2.30
Comb. MTmax Q centrifuga			185			185	4.10
Comb. MTmax Q serpeggio			13			13	2.30
Comb. MLmax Qv	4229			3914			0.00
Comb. MLmax Q frenatura		1375			1375		2.30
Comb. MLmax Q centrifuga			298			298	4.10
Comb. MLmax Q serpeggio			25			25	2.30
Vento Ponte Scarico			121			121	2.30
Vento Ponte Carico			307			307	4.30
Attrito permanente		161	161		161	161	0.00
Attrito carichi mobili		127	127		117	117	0.00
Sisma longitudinale		4974			4974		5.00
Sisma trasversale			2480			2480	5.00
Sisma verticale	710			710			0.00
Sisma longitudinale		5486			5486		5.00
Sisma trasversale			2735			2735	5.00
Sisma verticale	710			710			0.00
Sisma longitudinale		7461			7461		5.00
Sisma trasversale			3720			3720	5.00
Sisma verticale	710			710			0.00

VI05 - Viadotto ferroviario a Doppio Binario

 RELAZIONE DI CALCOLO PILA
 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 RS3V
 40
 D 09 CL
 VI 05 05 001
 B
 19 di 52

4.6.3 Azione del Vento

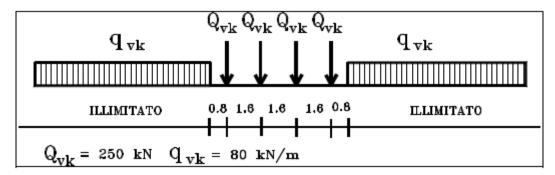
Condizione (ponte carico o scarico)		scarico	carico	
Altitudine sul livello del mare	as	250	250	m
Zona	Z	4	4	
Parametri	Vb.0	28	28	m/s
Parametri	a0	500	500	m
Parametri	ks	0.36	0.36	1/s
Velocità di riferimento (Tr=50anni)	vb=vb0 * (1+ks(as/ao-1)	28	28	m/s
Periodo di ritorno considerato	TR	112.5	112.5	anni
	αR	1.05	1.05	
Velocità di riferimento	Vb(TR)	29.28	29.28	m/s
Densità dell'aria	ρ	1.25	1.25	kg/mc
Pressione cinetica di riferimento	qb=0.5*ρ*vb²	0.54	0.54	kN/mq
Classe di rugostità del terreno	φυ σ.3 p νυ	D	D	KI WIIIQ
Distanza dalla costa		>10	>10	km
Altitudine sul livello del mare		<750	<750	m
Categoria di esposizione del sito	Cat	II	II	111
Categoria di esposizione dei sito	Cat	11	- 11	
Vento su impalcato				
Parametri	kr	0.19	0.19	
Parametri	z0	0.05	0.05	m
Parametri	zmin	4	4	m
Altezza di riferimento per l'impalcato (EC punto 8.3.1(6))	z	12	12	m
Coefficiente di topografia	ct	1	1	
Coefficiente di esposizione (z)	ce(z)	2.47	2.47	
Larghezza impalcato	b	13.4	13.4	m
Altezza impalcato	h1	2.2	2.9	m
Altezza treno o parapetto	h2	1.5	4	m
Altezza totale impalcato (comprese le barriere o treno)	dtot	3.7	6.9	m
Rapporto di forma	b/dtot	3.62	1.94	
Coefficiente di forza (figura 8.3 EC)	cfx	1.41	1.92	
Di				
Riepilogo Pressione cinetica di riferimento	qb	0.54	0.54	kN/mq
Coefficiente di esposizione	•	2.47	2.47	KIV/IIIq
Coefficiente di forza	ce cfx	1.41	1.92	
Altezza di riferimento (EC punto 8.3.1 (4) e (5))	d .	3.7	6.9	m
Forza statica equivalente a m/l	f=prodotto	6.9	17.5	kN/m
Pressione statica equivalente	p=f/d	1.87	2.54	kN/mq
Pressione statica equivalente (minima considerata)	pmin	1.5	1.5	kN/mq
Forza statica equivalente a m/l considerata	f	6.9	17.5	kN/m
Vento impalcato a ponte scarico		sx	dx	
Forza statica equivalente	f	6.9	6.9	kN/m
Luce impalcato	L	70	70	m
Forza trasversale al piano appoggi	FT=f*L/2	242	242	kN/m
.				
Vento impalcato a ponte carico		17.5	17.5	137/
Forza statica equivalente	f	17.5	17.5	kN/m
Luce impalcato	L	70	70	m
Forza trasversale al piano appoggi	FT=f*L/2	613	613	kN/m

VI05 - Viadotto ferroviario a Doppio Binario

 RELAZIONE DI CALCOLO PILA
 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 RS3V
 40
 D 09 CL
 VI 05 05 001
 B
 20 di 52

Vento su Pila e Pulvino				
Parametri	kr	0.19	0.19	
Parametri	z0	0.05	0.05	m
Parametri	zmin	4	4	m
Altezza di riferimento per pila e pulvino (EC punto 7.6(2))	Z	8.30	8.3	m
Coefficiente di topografia	ct	1	1	
Coefficiente di esposizione (z)	ce(z)	2.24	2.24	
•	1,	dir.x	dir.x	
Altezza (dir.z)	h	2.20	6.10	m
Larghezza in direz. Ortogonale al vento	ь	12.80	4.50	m
Larghezza in direz. Parallela al vento	đ	5.3	4.5	m
Rapporto di forma	d/b	0.41	1.00	
Coefficiente di forza (figura 7.23 EC)	cfx	2.23	2.15	
Raggio di arrotondamento (figura 7.24 EC)	r	0	2.25	m
Rapporto di forma II	r/b	0.00	0.50	
Fattore di riduzione (figura 7.24 EC)	Ψ	1.00	0.50	
Pressione di riferimento	q=Ψ*cfx*ce*qb	2.67	1.29	kN/mq
Area investita dal vento	A=b*h	28.16	27.45	mq
Forza statica equivalente	F=q*A	75	35	kN
•	•	dir.y	dir.y	
Altezza (dir.z)	h	2.20	6.10	m
Larghezza in direz. Ortogonale al vento	ь	5.3	4.5	m
Larghezza in direz. Parallela al vento	đ	12.8	4.5	m
Rapporto di forma	d/b	2.42	1.00	
Coefficiente di forza (figura 7.23 EC)	cfx	1.52	2.15	
Raggio di arrotondamento (figura 7.24 EC)	r	0	2.25	m
Rapporto di forma II	r/b	0.00	0.50	
Fattore di riduzione (figura 7.24 EC)	Ψ	1.00	0.50	
Pressione di riferimento	q=Ψ*cfx*ce*qb	1.82	1.29	kN/mq
Area investita dal vento	A=b*h	11.66	27.45	mq
Forza statica equivalente	F=q*A	21	35	kN
Riepilogo	<u> </u>			
Vento x				
Pulvino	F	75	kN	
Pila	F	35	kN	
Distanza tra spiccato fusto e testa pulvino	bz	8.30	m	
Forza totale	F Tot	111	kN	
Vento y				
Pulvino	F	21	kN	
Pila	F	35	kN	
Distanza tra spiccato fusto e testa pulvino	bz	8.30	m	
Forza totale	F Tot	57	kN	


4.6.4 Carichi da traffico verticali

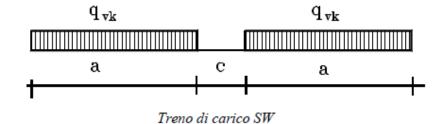
L'opera è stata progettata considerando le sollecitazioni dovute al carico da traffico ferroviario, considerando i modelli LM71 e/o SW/2.

Si riportano di seguito le caratteristiche dei modelli di traffico presi in esame.

➤ Modello di carico LM71

Sia le istruzioni RFI che le NTC 2018 (par. 5.2.2.2.1.1), definiscono questo modello di carico tramite carichi concentrati e carichi distribuiti, riferiti all'asse dei binari.

Treno di carico LM 71


Carichi concentrati: quattro assi da 250 kN disposti ad interasse di 1,60 m;

<u>Carico distribuito</u>: 80 kN/m in entrambe le direzioni, a partire da 0,8 m dagli assi d'estremità e per una lunghezza illimitata

Per questo modello di carico è prevista un'eccentricità del carico rispetto all'asse del binario.

➤ Modello di carico SW/2

Sia le istruzioni RFI che le NTC 2018 (par. 5.2.2.2.1.2), definiscono questo modello di carico tramite solo carichi distribuiti.

Tipo di Carico	q_{vk} [kN/m]	a [m]	c [m]
SW/0	133	15,0	5,3
SW/2	150	25,0	7,0

In questo modello di carico non è prevista alcuna eccentricità del carico ferroviario.

Le azioni di entrambi i modelli dovranno essere moltiplicate per un coefficiente di adattamento definito dalla seguente tabella (tab. 2.5.1.4.1.1 - RFI DTC SI PS MA IFS 001 A).

MODELLO DI CARICO	COEFFICIENTE "α"
LM71	1,10
SW/0	1,10
SW/2	1,00

4.6.5 Effetti dinamici

Per la definizione del coefficiente dinamico si segue quanto contenuto nel par.5.2.2.2.3 del DM 17.1.2018 che per l'opera in esame riporta:

$$\Phi_3 = \frac{2,16}{\sqrt{L_6} - 0,2} + 0,73$$
 con la limitazione $1,00 \le \Phi_3 \le 2,00$ [5.2.7]

4.6.6 Carichi da traffico orizzontali

Frenatura							
L	70	m					
Leale	70	per Treno LM 71					
	30	per Treno SW/0					
	50	per SW/2					
Qlb,k	1540	per Treno LM 71					
Qlb,k	660	per Treno SW/0					
Qlb,k	1750	per SW/2					
Qlb,k (filtrata)per Treno LM 71	1540	kN					
Qlb,k (filtrata)per Treno SW/0	660	kN					
Qlb,k(filtrata)per SW/2	1750	kN					

Avviamento							
L	70	m					
Leale	70	per Treno LM 71					
	30	per Treno SW/0					
	50	per SW/2					
Qla,k	2541	per Treno LM 71					
Qla,k	1089	per Treno SW/0					
Qla,k	1650	per SW/2					
Qla,k (filtrata)per Treno LM 71	1000	kN					
Qla,k (filtrata)per Treno SW/0	1000	kN					
Qla,k(filtrata)per SW/2	1000	kN					

VI05 - Viadotto ferroviario a Doppio Binario

RELAZIONE DI CALCOLO PILA

 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

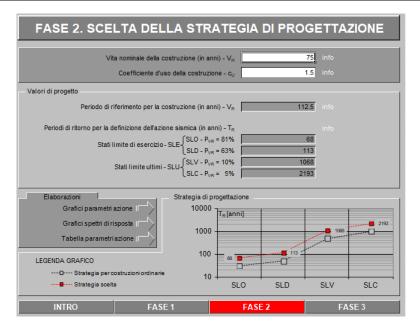
 RS3V
 40
 D 09 CL
 VI 05 05 001
 B
 23 di 52

<u>Serp</u>	eggio	
FT=100kN /2	50	kN*m
Treno LM 71		
α	1.1	
FT*α	55	kN
Treno SW/0		
α	1.1	
FT*α	55	kN
Treno SW/2		
α	1	
FT*α	50	kN

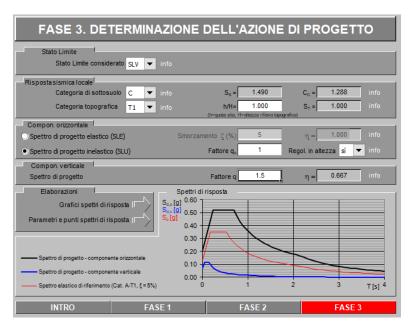
Forza centrifuga sx				60.05				
L	70 160	m km/h	Lø ø3 Coeff. Dinamico	68.25 1.000	m			
velocità di progetto raggio planimetrico	1300	m Km/n	Ø3 Coeff. Dinamico	1.000				
raggio pianimetrico	1300	III						
f	0.78	Per V>120 km/h						
f	1	Per V<120 km/h						
Treno LM 71			Treno SW/0	\neg		Treno SW/2		
Qvk	1000	kN		-				
qvk	80	kN/m	qvk	133	kN/m	qvk	150	kN/m
ά	1	Per V>120 km/h	a	1.1		ά	1	
α	1.1	Per V<120 km/h						
Qtk	121	Per V>120 km/h						
Que	96	Per V<120 km/h						
Qtk scelto	121	1 C1 V <120 RHi 11						
qtk	10	Per V>120 km/h						
qui	8	Per V<120 km/h	qtk	9	Per V=100 km/h	qtk	9	Per V=100 km/h
qtk scelto	10					1		
L calc= L-6.4m	63.6	m	L calc	30	m	L calc	50	m
qtk*Lcalc	617	kN	qtk*Lcalc	266	kN	qtk*Lcalc	454	kN
FT= (qtk*Lcalc + qtk)/2	369	kN	FT= qtk*Lcalc /2	133		FT= qtk*Lcalc /2	227	
			•			•		
Forza centrifuga dx					_			
L	70	m	Lø	68.25	m			
velocità di progetto	160	km/h	ø3 Coeff. Dinamico	1.000				
raggio planimetrico	1300	m						
f	0.78	Per V>120 km/h						
f	1	Per V<120 km/h						
Treno LM 71	_		Treno SW/0	_		Treno SW/2		
Ovk	1000	kN	Ireno SW/0			Ireno SW/2		
qvk	80	kN/m	qvk	133	kN/m	qvk	150	kN/m
α	1	Per V>120 km/h	α	1.1	KIN/III	a qvk	1	KIVIII
α	1.1	Per V<120 km/h	u u	1.1		u.	1	
Qtk	121	Per V>120 km/h						
	96	Per V<120 km/h						
Qtk scelto	121							
qtk	10	Per V>120 km/h						
	8	Per V<120 km/h	qtk	9	Per V=100 km/h	qtk	9	Per V=100 km/h
qtk scelto	10							
L calc= L-6.4m	63.6	m	L calc	30	m	L calc	50	m
qtk*Lcalc	617	kN	qtk*Lcalc	266	kN	qtk*Lcalc	454	kN
FT= (qtk*Lcalc + qtk)/2	369	kN	FT= qtk*Lcalc /2	133		FT= qtk*Lcalc /2	227	

4.6.7 Azione sismica

Nel seguente paragrafo è riportata la valutazione dei parametri di pericolosità sismica utili alla determinazione delle azioni sismiche di progetto dell'opera cui si riferisce il presente documento, in accordo a quanto specificato a riguardo dal D.M. 17 gennaio 2018 e relativa circolare applicativa.

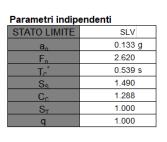

Valori di progetto

La pericolosità sismica di base è stata definita sulla base delle coordinate geografiche del sito di realizzazione dell'opera:

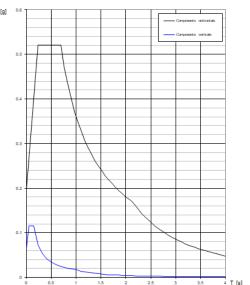

I parametri utilizzati per la definizione dell'azione sismica sono riportati di seguito.

L'azione sismica è stata calcolata per mezzo del foglio di calcolo Spettri-NTCver.1.0.3 messo a disposizione dal Consiglio Superiore dei Lavori Pubblici.

Di seguito si riportano gli spettri di risposta orizzontale e verticale allo Stato limite di salvaguardia della vita SLV utilizzati per il calcolo dell'azione sismica.



VI05 - Viadotto ferroviario a Doppio Binario


COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO	
RS3V	40	D 09 CL	VI 05 05 001	В	26 di 52	

Spettri di risposta (componenti orizz. e vert.) per lo stato lim SLV

Parametri dipendenti

S	1.490
η	1.000
T _B	0.231 s
T _C	0.694 s
T _D	2.133 s

Calcolo dell'azione Sismica

Per il calcolo delle azioni sismiche si utilizza una Analisi Statica Lineare, come riportata nel cap. 7.9.4.1 delle Normative. Qualora le ipotesi non siano soddisfate, si è fatto riferimento ad una Analisi Dinamica Modale, attraverso la costruzione di un modello tridimensionale agli Elementi Finiti semplificato.

I Fattori di struttura utilizzati sono:

- q= 1.5 per la verifica a presso flessione della pila
- q= 1.5/1.1 per la verifica a capacità portante verticale dei pali e verifica del plinto
- q= 1 per le verifiche a taglio degli elementi strutturali (vedi anche punto successivo), verifiche a capacità portante orizzontale dei pali.
- Solo per la verifica a taglio dello spiccato della pila, il criterio adottato è quello della gerarchia delle resistenze, così come indicato al punto 7.9.5 delle NTC
- Per l'azione sismica verticale si adotta q=1

VI05 - Viadotto ferroviario a Doppio Binario

RELAZIONE DI CALCOLO PILA

 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 RS3V
 40
 D 09 CL
 VI 05 05 001
 B
 27 di 52

Condizione Sismica								
Massa sismica impalcato dir x	mix	24076	kN					
Massa efficace pila dir x	mpx	4540	kN					
Massa complessiva dir x	mix + mpx	28615	kN					
1/5 Massa sismica impalcato dir x	mix/5	4815	kN					
Verifica requisito dir x		si						
Massa sismica impalcato dir. y	mi _y	23998	kN					
Massa efficate pila dir. Y	mpy	4540	kN					
Massa complessiva dir. Y	miy + mpy	28538	kN					
1/5 Massa sismica impalcato dir. Y	miy/5	4800	kN					
Verifica requisito dir. Y		si						
Massa sismica impalcato dir. z	miz	23998	kN					
Massa efficate pila dir. Z	mpz	4540	kN					
Massa complessiva dir. Z	miz + mpz	28538	kN					
1/5 Massa sismica impalcato dir. Z	miz/5	4800	kN					
Verifica requisito dir. Z		si						
Inerzia Pila asse y	т	20.13	m ⁴					
Inerzia Pila asse x	J _{yy}	20.13						
Area Pila	J _{xx}	15.90	m ⁴					
Rigidezza Pila asse y	A _p	847032795.1	M'm					
Rigidezza Pila asse y	K _y	847032795.1	N/m N/m					
rigidezza Pila asse z	K _x	63234014782						
	K _z		N/m					
Periodo x	T _x	0.37	S					
Periodo y	Ty	0.36	S					
Periodo z	T _z	0.04	S					
	1 1	0.55						
Accelerazione orizzontale Se(Tx) direzione x	a _g x	0.52						
Accelerazione orizzontale Se(Ty) direzione y	a _g y	0.52						
Accelerazione Verticale Se(Tz) direzione z	a _g z	0.10						
q=1.5	1 1							
Accelerazione orizzontale Sd(Tx) direzione x	a _g x	0.35						
Accelerazione orizzontale Sd(Ty) direzione y	a _g y	0.35						
Accelerazione Verticale Sd(Tz) direzione z	a _g z	0.10						
q=1.36	1 1							
Accelerazione orizzontale Sd(Tx) direzione x	a _g x	0.38						
Accelerazione orizzontale Sd(Ty) direzione y	a _g y	0.38						
Accelerazione Verticale Sd(Tz) direzione z	a _g z	0.10						
q=1								
Accelerazione orizzontale Sd(Tx) direzione x	a _g x	0.5						
Accelerazione orizzontale Sd(Ty) direzione y	a _g y	0.5						
Accelerazione Verticale Sd(Tz) direzione z	a _g z	0.099532						
Condizione Sismica - Ta	glianti Tota	ıli						
q=1.5		00.10	127					
Tagliante direzione x	Fx	9949	kN					
Tagliante direzione y Tagliante direzione z	F y	9923	kN 1-N					
q=1.36	F z	2840	kN					
Tagliante direzione x	F x	10974	kN					
Tagliante direzione y	Fy	10944	kN					
Tagliante direzione z	Fz	2840	kN					
q=1								
Tagliante direzione x	F x	14924	kN					
Tagliante direzione y	F y	14884	kN					
Tagliante direzione z	F z	2840	kN					

4.6.8 Calcolo delle sollecitazioni in testa pali

Le sollecitazioni agenti in testa palo vengono calcolate nell'ipotesi di platea di fondazione infinitamente rigida, attraverso la relazione

$$R(x,y) = \frac{N}{n} + \frac{M_l}{J_l} \cdot y + \frac{M_t}{J_t} \cdot x$$

dove

 N, M_1, M_t sono lo sforzo normale e i momenti flettenti longitudinale e trasversale agenti al baricentro della palificata, $n \in I$ numero di pali e II, II sono le inerzie longitudinale e trasversale della palificata

$$J_{t} = \sum y_{i}^{2} \qquad J_{t} = \sum x_{i}^{2}$$

Per quanto riguarda le sollecitazioni orizzontali in testa palo, si assume che le azioni di taglio di ripartiscano uniformemente tra i pali, risultando

$$T(x,y) = \frac{\sqrt{H_l^2 + H_t^2}}{n}$$

dove H₁, H_t sono le forze orizzontali longitudinale e trasversale agenti al baricentro della palificata.

4.6.9 Riepilogo risultati

Il foglio automatico, sulla base di calcoli sviluppati nei fogli successivi, restituisce, per ciascuna combinazione i risultati del controllo di verifica.

Per ciascuna combinazione vengono riassunti:

- Le sollecitazioni al livello del piano di fondazione in termini di sforzo normale N, forza orizzontale T e momento ribaltante M.
- Per i carichi sui pali in termini di N_{max}, N_{min}, T ed M.

VI05 - Viadotto ferroviario a Doppio Binario

RELAZIONE DI CALCOLO PILA

 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 RS3V
 40
 D 09 CL
 VI 05 05 001
 B
 29 di 52

	SP	ICCATO PILA	: condizione s	tatica							
Descrizione carico	Fz	FX	F _Y	b _{ix}	b _{iy}	b _{iz}	M _x	My			
Descrizione canco	[kN]	[kN]	[kN]	[m]	[m]	[m]	[kNm]	[kNm]			
Pila	6157			0.00	0.00	0	0	0			
Vento su pila dir. x		111		0.00	0.00	8.30	0	918			
Vento su pila dir.y			56.6	0.00	0.00	8.30	470	0			
INTRADOSSO FONDAZIONE: condizione statica											
	Fz	FX	F _Y	b _{ix}	b _{iy}	b _{iz}	M _x	My			
Descrizione carico	[kN]	[kN]	[kN]	[m]	[m]	[m]	[kNm]	[kNm]			
Pila	6157			0.00	0.00	0	0	0			
Plinto	14850			0.00	0.00	1.50	0.00	0			
Rinterro	3555			0.00	0.00	0.00	0.00	0			
Vento su pila dir. x		111		0.00	0.00	11.30	0	1249			
Vento su pila dir.y			56.6	0.00	0.00	11.30	639	0			
	INTRADO	SSO FONDA	ZIONE: condiz	ione sism	ica		•				
	FZ	FX	F _Y	b _{ix}	b _{iy}	b _{iz}	M _x	My			
Descrizione carico	[kN]	[kN]	[kN]	[m]	[m]	[m]	[kNm]	[kNm]			
Plinto sisma x		2956		0.00	0.00	1.50	0.00	4434			
Plinto sisma y			2956	0.00	0.00	1.50	4434	0			
Plinto sisma z	1478			0.00	0.00	1.50	0	0			
Rinterro sisma z	354			0.00	0.00	0.00	0	0			

4.7 Sollecitazioni

CARATTERISTICHE DELLA SOLLECITAZIONE INTERNA ALLA BASE DELLA PILA										
	Nz	Tx	Ty	Mx	Му					
A2 - SLU - N max gr.1	46767	2897	3805	44864	32342					
A2 - SLU - MT max gr.1	39466	2272	3167	55155	24324					
A2 - SLU - ML max gr.1	41269	2983	1985	24227	44692					
A2 - SLU - N max gr.3	46767	4615	2992	33855	52795					
A2 - SLU - MT max gr.3	39466	3365	2674	48447	37340					
A2 - SLU - ML max gr.3	41269	4702	1582	18752	65145					
A2 - SLU - Vento ponte scarico	31091	645	1347	14287	6189					
A2 - SLU Gmin - N max gr.1	31843	2897	3805	44864	32342					
A2 - SLU Gmin - MT max gr.1	24542	2272	3167	55155	24324					
A2 - SLU Gmin - ML max gr.1	26345	2983	1985	24227	44692					
A2 - SLU Gmin - N max gr.3	31843	4615	2992	33855	52795					
A2 - SLU Gmin - MT max gr.3	24542	3365	2674	48447	37340					
A2 - SLU Gmin - ML max gr.3	26345	4702	1582	18752	65145					
_	16167	645	1347	14287	6189					
A2 - SLU Gmin - Vento ponte scarico	_									
Al - SLU - N max gr.1	57229	3483	4530	53134	38693					
Al - SLU - MT max gr.1	48760	2758	3791	65071	29392					
Al SLU - ML max gr.1	50852	3582	2426	29280	53014					
Al - SLU - N max gr.3	57229	5479	3588	40363	62451					
Al - SLU - MT max gr.3	48760	4028	3218	57290	44511					
A1 - SLU - ML max gr.3	50852	5579	1957	22928	76772					
A1 - SLU - Vento ponte scarico	39045	870	1681	17699	8355					
A1 - SLU Gmin - N max gr.1	34351	3483	4530	53134	38693					
A1 - SLU Gmin - MT max gr.1	25882	2758	3791	65071	29392					
A1 - SLU Gmin - ML max gr.1	27974	3582	2426	29280	53014					
A1 - SLU Gmin - N max gr.3	34351	5479	3588	40363	62451					
A1 - SLU Gmin - MT max gr.3	25882	4028	3218	57290	44511					
A1 - SLU Gmin - ML max gr.3	27974	5579	1957	22928	76772					
A1 - SLU Gmin - Vento ponte scarico	16167	645	1456	15533	6189					
SLE rara - N max gr.1	40188	2446	3142	36708	27111					
SLE rara - MT max gr.1	34347	1946	2632	44941	20697					
SLE rara - ML max gr.1	35790	2513	1717	20620	36969					
SLE rara - N max gr.3	40188	3821	2492	27901	43474					
SLE rara - MT max gr.3	34347	2821	2237	39574	31109					
SLE rara - ML max gr.3	35790	3888	1394	16240	53332					
SLE rara - Vento ponte scarico	27647	645	1185	12418	6189					
SLE freq N max gr.1	35171	1726	1681	18187	18742					
SLE freq MT max gr.1	33007	1686	1618	28772	17795					
SLE freq ML max gr.1	32532	1726	1288	14847	24327					
SLE freq N max gr.3	35171	2551	1291	12902	28560					
SLE freq MT max gr.3	33007	2386	1302	24479	26125					
SLE freq ML max gr.3	32532	2551	1094	12219	34144					
SLE freq Vento ponte scarico	27647	645	887	9069	6189					
SLE quasi permanente	27647	645	645	6189	6189					
SLV - N max	32995	3942	3644	50543	54124					
SLV - MT max gr.1	29839	3742	10486	153572	51651					
SLV - ML max gr.1	30127	10906	3513	49430	15765					
SLV - MT max gr.3	28135	3742	10486	153572	51651					
SLV - ML max gr.3	28423	10906	3513	49430	15765					
SLV - N min	27315	3942	3644	50543	54124					
SLV - N max	32995	4249	3950	55265	58609					
SLV - MT max gr.1	29839			167141	56136					
SLV - ML max gr.1	30127	11930	3819	53903	17260					
SLV - MT max gr.3	28135	4049	11507	167141	56136					
SLV - ML max gr.3	28423	11930	3819	53903	17260					
SLV - N min	27315	4249	3950	55265	58609					
SLV - N max	32995	5434	5132	72268	75910					
SLV - MT max gr.1	29839	5234	15446	225988	73437					
SLV - ML max gr.1	30127	15880	5001	71155	23027					
SLV - MT max gr.3	28135	5234	15446	225988	73437					
SLV - ML max gr.3	28423	15880	5001	71155	23027					
	20,23	5434			75910					

Tabella 3 – Sollecitazioni della base della pila

4.7.1 Plinto di fondazione

Nella tabella che segue sono indicati la risultante e momento risultante rispetto al baricentro del plinto di fondazione.

	Nz	Tx	Ty	Mx	N
A2 - SLU - N max gr.1	66238	2897	3805	56279	410
A2 - SLU - MT max gr.1	58937	2272	3167	64657	31
A2 - SLU - ML max gr.1	60741	2983	1985	30184	530
A2 - SLU - N max gr.3	66238	4615	2992	42832	660
A2 - SLU - MT max gr.3	58937	3365	2674	56468	474
A2 - SLU - ML max gr.3	60741	4702	1582	23497	79
A2 - SLU - Vento ponte scarico	50562	645	1347	18330	81
A2 - SLU Gmin - N max gr.1	46693	2897	3805	56279	41
A2 - SLU Gmin - MT max gr.1	39392	2272	3167	64657	31
A2 - SLU Gmin - ML max gr.1	41195	2983	1985	30184	53
A2 - SLU Gmin - N max gr.3	46693	4615	2992	42832	66
A2 - SLU Gmin - MT max gr.3	39392	3365	2674	56468	47
A2 - SLU Gmin - ML max gr.3	41195	4702	1582	23497	79
A2 - SLU Gmin - Vento ponte scarico	31017	645	1347	18330	81
Al - SLU - N max gr.1	82609	3483	4530	66725	49
Al SLU MI max gr.1	74140	2758	3791	76443	37
Al SLU Navar on 2	76232 82609	3582	2426 3588	36556	63 78
Al - SLU - N max gr.3	02007	5479	2200	51126 66943	78 56
Al - SLU - MT max gr.3	74140	4028	3218	000.10	
A1 - SLU - ML max gr.3 A1 - SLU - Vento ponte scarico	76232 64425	5579 870	1957 1681	28800 22743	93 10
•	49201	3483	4530	66725	49
A1 - SLU Gmin - N max gr.1 A1 - SLU Gmin - MT max gr.1	40732	2758	3791	76443	37
A1 - SLU Gmin - MI max gr.1 A1 - SLU Gmin - ML max gr.1	42824	3582	2426	36556	63
A1 - SLU Gmin - Min max gr.1 A1 - SLU Gmin - N max gr.3	49201	5479	3588	51126	78
A1 - SLU Gmin - MT max gr.3	40732	4028	3218	66943	56
A1 - SLU Gmin - ML max gr.3	42824	5579	1957	28800	93
A1 - SLU Gmin - Vento ponte scarico	31017	645	1456	19900	8
SLE rara - N max gr.1	58593	2446	3142	46135	34
SLE rara - MT max gr.1	52752	1946	2632	52837	26
SLE rara - ML max gr.1	54195	2513	1717	25772	44
SLE rara - N max gr.3	58593	3821	2492	35377	54
SLE rara - MT max gr.3	52752	2821	2237	46285	39
SLE rara - ML max gr.3	54195	3888	1394	20422	64
SLE rara - Vento ponte scarico	46052	645	1185	15974	8
SLE freq N max gr.1	53576	1726	1681	23229	23
SLE freq MT max gr.1	51412	1686	1618	33626	22
SLE freq ML max gr.1	50937	1726	1288	18712	29
SLE freq N max gr.3	53576	2551	1291	16774	36
SLE freq MT max gr.3	51412	2386	1302	28385	33
SLE freq ML max gr.3	50937	2551	1094	15503	41
SLE freq Vento ponte scarico	46052	645	887	11729	8:
SLE quasi permanente	46052	645	645	8123	8
SLV - N max	53232	4829	4531	62805	67
SLV - MT max gr.1	48793	4629	13442	189463	64
SLV - ML max gr.1	49082	13862	4400	61299	194
SLV - MT max gr.3	45990	4629	13442	189463	64
SLV - ML max gr.3	46279	13862	4400	61299	194
SLV - N min	43888	4829	4531	62805	67
SLV - N max	53232	5136	4837	68445	72
SLV - MT max gr.1	48793	4936	14463	206096	69
SLV - ML max gr.1 SLV - MT max gr.3	49082 45990	14886 4936	4706 14463	66691 206096	212 69
_	46279	14886	4706	66691	21:
SLV - ML max gr.3 SLV - N min	40279	5136	4837	68445	72
			6019		
SLV - N max	53232 48793	6321 6121	18402	88993 276759	93 90
SLV - MT max gr.1	48/93	18836	18402 5888	276739 87488	28
SLV - ML max gr.1 SLV - MT max gr.3	49082 45990	6121	18402	276759	28. 90
SLV - MI max gr.3 SLV - ML max gr.3	45990 46279	18836	18402 5888	276759 87488	282
SLV - ML max gr.3 SLV - N min	43888	6321	6019	88993	93

Tabella 4 - Sollecitazioni ad intradosso del baricentro fondazione

4.8 Pali di fondazione

Le sollecitazioni risultanti sono riportati nelle seguenti tabelle:

SOLL. TOTALI NEL BARICENTRO DELLA PALIFICATA										
C.C.	N	T _x	T_y	M_x	$\mathbf{M}_{\mathbf{y}}$	$N_{\rm max/palo}$	N _{min/palo}	T _{/palo}		
n°	kN	kN	kN	kNm	kNm	kN	kN	kN		
Al - SLU - N max gr.1	82609	3483	4530	66725	49141	9732	4036	476		
Al - SLU - MT max gr.1	74140	2758	3791	76443	37665	8923	3433	391		
Al - SLU - ML max gr.1	76232	3582	2426	36556	63760	8936	3769	361		
A1 - SLU - N max gr.3	82609	5479	3588	51126	78888	10212	3557	546		
A1 - SLU - MT max gr.3	74140	4028	3218	66943	56595	9238	3119	430		
A1 - SLU - ML max gr.3	76232	5579	1957	28800	93508	9590	3115	493		
A1 - SLU - Vento ponte scarico	64425	870	1681	22743	10966	6179	4559	158		
Al - SLU Gmin - N max gr.1	49201	3483	4530	66725	49141	6948	1252	476		
Al - SLU Gmin - MT max gr.1	40732	2758	3791	76443	37665	6139	649	391		
Al - SLU Gmin - ML max gr.1	42824	3582	2426	36556	63760	6152	985	361		
A1 - SLU Gmin - N max gr.3	49201	5479	3588	51126	78888	7428	773	546		
A1 - SLU Gmin - MT max gr.3	40732	4028	3218	66943	56595	6454	335	430		
A1 - SLU Gmin - ML max gr.3	42824	5579	1957	28800	93508	6806	331	493		
A1 - SLU Gmin - Vento ponte scarico	31017	645	1456	19900	8123	3253	1917	133		
						10212	331	546		

Tabella 5 – Sollecitazioni massime sul singolo palo C.C. SLU

SOLL. TOTALI NEL BARICENTRO DELLA PALIFICATA										
C.C.	N	T _x	T _y	M_x	M_{y}	N _{max/palo}	N _{min/palo}	T _{/palo}		
n°	kN	kN	kN	kNm	kNm	kN	kN	kN		
SLV - N max	53232	5136	4837	68445	72687	7976	896	588		
SLV - MT max gr.1	48793	4936	14463	206096	69614	10580	-2448	1274		
SLV - ML max gr.1	49082	14886	4706	66691	212828	11484	-3304	1301		
SLV - MT max gr.3	45990	4936	14463	206096	69614	10346	-2681	1274		
SLV - ML max gr.3	46279	14886	4706	66691	212828	11250	-3537	1301		
SLV - N min	43888	5136	4837	68445	72687	7197	117	588		
	_					11484	-3537	1301		

Tabella 6 – Sollecitazioni massime sul singolo palo C.C. SLV q=1.36

SOLL. TOTALI NEL BARICENTRO DELLA PALIFICATA										
C.C.	N	T _x	T _y	M_x	M_{y}	N _{max/palo}	N _{min/palo}	T _{/palo}		
n°	kN	kN	kN	kNm	kNm	kN	kN	kN		
SLV - N max	53232	6321	6019	88993	93543	9012	-140	727		
SLV - MT max gr.1	48793	6121	18402	276759	90470	12729	-4597	1616		
SLV - ML max gr.1	49082	18836	5888	87488	282347	13877	-5697	1645		
SLV - MT max gr.3	45990	6121	18402	276759	90470	12496	-4831	1616		
SLV - ML max gr.3	46279	18836	5888	87488	282347	13644	-5931	1645		
SLV - N min	43888	6321	6019	88993	93543	8233	-919	727		
						13877	-5931	1645		

Tabella 7 – Sollecitazioni massime sul singolo palo C.C. SLV q=1

VI05 - Viadotto ferroviario a Doppio Binario

RELAZIONE DI CALCOLO PILA

COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
RS3V	40	D 09 CL	VI 05 05 001	В	33 di 52

SOLL. TOTALI NEL BARICENTRO DELLA PALIFICATA										
C.C.	N	T_x	T _y	$\mathbf{M}_{\mathbf{x}}$	M_{y}	N _{max/palo}	N _{min/palo}	T _{/palo}		
n°	kN	kN	kN	kNm	kNm	kN	kN	kN		
SLE rara - N max gr.1	58593	2446	3142	46135	34450	8023	2985	332		
SLE rara - MT max gr.1	52752	1946	2632	52837	26536	7514	2702	273		
SLE rara - ML max gr.1	54195	2513	1717	25772	44507	7206	2521	254		
SLE rara - N max gr.3	58593	3821	2492	35377	54938	8347	2372	380		
SLE rara - MT max gr.3	52752	2821	2237	46285	39573	7732	2307	300		
SLE rara - ML max gr.3	54195	3888	1394	20422	64994	7749	1834	344		
SLE rara - Vento ponte scarico	46052	645	1185	15974	8123	4784	3322	112		
<u> </u>						8347	1834	380		

Tabella 8 – Sollecitazioni massime sul singolo palo C.C. SLE

4.8.1 Scalzamento

La condizione di scalzamento viene valutata secondo cap. 5.1.2.3" Compatibilità idraulica":

Lo scalzamento e le azioni idrodinamiche associati all'evento di piena di progetto devono essere combinate esclusivamente con le altre azioni variabili da traffico, adottando per queste ultime i coefficienti di combinazione ψ_1 .

L'azione idrodinamica viene valutata secondo:

$$q_{idr} = \frac{1}{2} \rho v^2$$

Con:

ρ=1000 kg/m3 densità dell'acqua

v= m/s velocità della corrente

da cui, considerando una distribuzione di pressione triangolare ed un certo angolo di incidenza della corrente rispetto alle pile, la risultante della spinta è pari a:

$$F_{idr} = \int \left(q_{idr} / h\right) z \ Cr \ sin(\alpha) \ b \ dz$$

Con:

h = altezza investita dalla corrente = altezza corrente + altezza scalzamento

 α = angolo di incidenza

b = larghezza investita dalla corrente

Cr=1.44 coefficiente di forma per pila di forma rettangolare/ 0.7 per pila di forma circolare

Dati corrente

h corrente	4.5	m
h scalzamento	12.6	m
angolo corrente (rispetto asse x)	40.0	0
velocità corrente	4	m/s

densità acqua	1000	kg/m3
Dati plinto		
ricoprimento plinto	3	m
altezza plinto	3	m
Lunghezza lungo asse x	12	m
Lunghezza lungo asse y	16.5	m
D. (1. 1)		
Dati pila		
Tipo pila	c	
Lunghezza lungo asse x	4.5	m
Lunghezza lungo asse y	4.5	m
coefficiente di forma pila	0.7	
coefficiente di forma plinto	1.44	
qidr	8	kPa
h tot investita	17.1	m
h pila investita	7.5	m
h plinto investita	3	m
h pali investita	6.6	m
h fondazione investita	9.6	m
q max	8	kPa
q spiccato pila	4.49	kPa
Sollecitazioni		
F pila x	113.03	kN
-		kN
F pila y	94.85 388.97	kN*m
Mx pila		
My pila	463.56	kN*m
F fondazione x	505.41	kN
F fondazione y	334.30	kN LN*
Mx fondazione	2831.97	kN*m
My fondazione	4059.90	kN*m

Tali azioni vanno sommate alle azioni agenti sulla pila in condizione di carico Frequente.

4.9 Verifiche degli elementi strutturali

Per tutti gli elementi strutturali della pila vengono svolte le seguenti verifiche:

- verifiche a rottura (pressoflessione e taglio) per le combinazioni allo stato limite ultimo (SLU).
- verifiche tensionali per le combinazioni rare, frequenti e quasi permanenti (SLE)
- verifiche a fessurazione per le combinazioni rara (SLE)

VI05 - Viadotto ferroviario a Doppio Binario

RELAZIONE DI CALCOLO PILA

 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 RS3V
 40
 D 09 CL
 VI 05 05 001
 B
 36 di 52

CARATTERISTICHE DELLA SOLLECITAZIONE INTERNA ALLA BASE DELLA PILA									
\vdash		INTERNA ALLA BASE DELL		т .	т .	37	3.6		
			Nz,A [kN]	Tx,A [kN]	Ty,A [kN]	Mxx [kNm]	Myy [kNm]		
	Nz,A _{max}	A2 - SLU - N max gr.1	46767	2897	3805	44864	32342		
SLU GEO	Tx,A _{max}	A2 - SLU - ML max gr.3	41269	4702	1582	18752	65145		
n o	Ty,A _{max}	A2 - SLU - N max gr.1	46767	2897	3805	44864	32342		
$\mathbf{S}\mathbf{I}$	Mxx max	A2 - SLU - MT max gr.1	39466	2272	3167	55155	24324		
	Myy max	A2 - SLU Gmin - ML max gr.3	26345	4702	1582	18752	65145		
	Nz,A _{max}	A1 - SLU - N max gr.1	57229	3483	4530	53134	38693		
TR	Tx,A _{max}	A1 - SLU - ML max gr.3	50852	5579	1957	22928	76772		
SLU STR	Ty,A _{max}	Al - SLU - N max gr.1	57229	3483	4530	53134	38693		
$\mathbf{S}\mathbf{\Gamma}$	Mxx max	Al - SLU - MT max gr.1	48760	2758	3791	65071	29392		
	Myy max	A1 - SLU - ML max gr.3	50852	5579	1957	22928	76772		
	Nz,A _{max}	SLE rara - N max gr.1	40188	2446	3142	36708	27111		
SLE RARA	Tx,A _{max}	SLE rara - ML max gr.3	35790	3888	1394	16240	53332		
R.	Ty,A _{max}	SLE rara - N max gr.1	40188	2446	3142	36708	27111		
SLE	Mxx max	SLE rara - MT max gr.1	34347	1946	2632	44941	20697		
	Myy max	SLE rara - ML max gr.3	35790	3888	1394	16240	53332		
3	Nz,A _{max}	SLE freq N max gr.1	35171	1726	1681	18187	18742		
ZEN	Tx,A _{max}	SLE freq N max gr.3	35171	2551	1291	12902	28560		
SLE FREQENTE	Ty,A _{max}	SLE freq N max gr.1	35171	1726	1681	18187	18742		
SLE]	Mxx max	SLE freq MT max gr.1	33007	1686	1618	28772	17795		
	Myy_{max}	SLE freq ML max gr.3	32532	2551	1094	12219	34144		
SLE Q.P.		SLE quasi permanente	27647	645	645	6189	6189		
۱,	Nz,A _{max}	SLV - N max	32995	3942	3644	50543	54124		
q=1.5	Tx,A _{max}	SLV - ML max gr.1	30127	10906	3513	49430	157654		
SLV 9	Ty,A _{max}	SLV - MT max gr.1	29839	3742	10486	153572	51651		
SI	Mxx max	SLV - MT max gr.1	29839	3742	10486	153572	51651		
\vdash	Myy max	SLV - ML max gr.1	30127	10906	3513	49430	157654		
36	Nz,A _{max}	SLV - N max	32995	4249	3950	55265	58609		
SLV q=1.36	Tx,A _{max}	SLV - ML max gr.1 SLV - MT max gr.1	30127 29839	11930 4049	3819 11507	53903 167141	172605 56136		
Š	Ty,A _{max} Mxx _{max}	SLV - MT max gr.1 SLV - MT max gr.1	29839	4049	11507	167141	56136		
SI	Myy max	SLV - ML max gr.1	30127	11930	3819	53903	172605		
\vdash	Nz,A _{max}	SLV - N max	32995	5434	5132	72268	75910		
-	Tx,A _{max}	SLV - ML max gr.1	30127	15880	5001	71155	230274		
V q=1	Ty,A _{max}	SLV - MT max gr.1	29839	5234	15446	225988	73437		
SLV	Mxx max	SLV - MT max gr.1	29839	5234	15446	225988	73437		
	Myy max	SLV - ML max gr.1	30127	15880	5001	71155	230274		

VI05 - Viadotto ferroviario a Doppio Binario

RELAZIONE DI CALCOLO PILA

 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO

 RS3V
 40
 D 09 CL
 VI 05 05 001

ENTO REV. FOGLIO 001 B 37 di 52

CARATTERISTICHE DELLA SOLLECITAZIONE INTERNA INTRADOSSO FONDAZIONE							
			Nz,A [kN]	Tx,A [kN]	Ty,A [kN]	Mxx [kNm]	Myy [kNm]
	Nz,A _{max}	A2 - SLU - N max gr.1	66238	2897	3805	56279	41032
SLU GEO	Tx,A _{max}	A2 - SLU - ML max gr.3	60741	4702	1582	23497	79250
n	Ty,A _{max}	A2 - SLU - N max gr.1	66238	2897	3805	56279	41032
SI	Mxx max	A2 - SLU - MT max gr.1	58937	2272	3167	64657	31139
	Myy max	A2 - SLU - ML max gr.3	60741	4702	1582	23497	79250
	Nz,A_{max}	Al - SLU - N max gr.1	82609	3483	4530	66725	49141
SLU STR	Tx,A _{max}	A1 - SLU - ML max gr.3	76232	5579	1957	28800	93508
S O	$Ty,\!A_{\text{max}}$	Al - SLU - N max gr.1	82609	3483	4530	66725	49141
IS	Mxx max	Al - SLU - MT max gr.1	74140	2758	3791	76443	37665
	Myy_{max}	A1 - SLU - ML max gr.3	76232	5579	1957	28800	93508
	Nz, A_{max}	SLE rara - N max gr.1	58593	2446	3142	46135	34450
SLE RARA	Tx,A _{max}	SLE rara - ML max gr.3	54195	3888	1394	20422	64994
28	Ty,A _{max}	SLE rara - N max gr.1	58593	2446	3142	46135	34450
SLI	Mxx max	SLE rara - MT max gr.1	52752	1946	2632	52837	26536
	Myy max	SLE rara - ML max gr.3	54195	3888	1394	20422	64994
IE	Nz,A _{max}	SLE freq N max gr.1	53576	1726	1681	23229	23919
SLE FREQENTE	Tx,A _{max}	SLE freq N max gr.3	53576	2551	1291	16774	36212
FRE	Ty,A _{max}	SLE freq N max gr.1	53576	1726	1681	23229	23919
SLE	Mxx max	SLE freq MT max gr.1	51412	1686	1618	33626	22853
	Myy_{max}	SLE freq ML max gr.3	50937	2551	1094	15503	41796
SLE Q.P.		SLE quasi permanente	46052	645	645	8123	8123
	Nz,A _{max}	SLV - N max	53232	4829	4531	62805	67280
q=1.5	Tx,A _{max}	SLV - ML max gr.1	49082	13862	4400	61299	194805
SLVq	Ty,A _{max}	SLV - MT max gr.1	48793	4629	13442	189463	64207
IS	Mxx max	SLV - MT max gr.1	48793	4629	13442	189463	64207
<u> </u>	Myy max	SLV - ML max gr.1	49082	13862	4400	61299	194805
36	Nz,A _{max}	SLV - N max	53232	5136	4837	68445	72687
SLV q=1.36	Tx,A _{max}	SLV - ML max gr.1 SLV - MT max gr.1	49082 48793	14886 4936	4706 14463	66691 206096	212828 69614
Š	Ty,A _{max} Mxx _{max}	SLV - MT max gr.1	48793	4936	14463	206096	69614
S	Myy max	SLV - ML max gr.1	49082	14886	4706	66691	212828
	Nz,A _{max}	SLV - N max	53232	6321	6019	88993	93543
q=1	Tx,A _{max}	SLV - ML max gr.1	49082	18836	5888	87488	282347
Vq	Ty,A _{max}	SLV - MT max gr.1	48793	6121	18402	276759	90470
SLV	Mxx max	SLV - MT max gr.1	48793	6121	18402	276759	90470
	Myy max	SLV - ML max gr.1	49082	18836	5888	87488	282347

VI05 - Viadotto ferroviario a Doppio Binario

RELAZIONE DI CALCOLO PILA

COMMESSA LOTTO
RS3V 40

CODIFICA D 09 CL DOCUMENTO VI 05 05 001 REV.

FOGLIO 38 di 52

4.9.1 Pila

Taglio di progetto:

Direzione		Long.(Myy,Tx)	Trasv(Mxx,Ty)	
Altezza pila	H	14.6	14.6	m
Fattore di struttura		1.5	1.5	
Fattore di sovraresistenza (eq. 7.9.7)	γRđ	1	1	
Fattore di sovraresistenza filtrato (eq. 7.9.7)	γRđ	1	1	
Taglio agente (q=1)	V	15880	15446	kN
Momento agente (q=1)	M	230274	225988	kN*m
Taglio agente (con q)	VEd	10906	10486	kN
Momento agente (con q)	MEd	157654	153572	kN*m
Momento Resistente	MRd	159809	158449	kN*m
Rapporto di sovraresistenza	MRd/MEd	1.01	1.03	
Tipo sezione (EC8-2; eq. 6.11)		CRITICA	CRITICA	
Angolo inclinazione bielle compresse	Teta	45	45	
Limite superiore Vgr	Vgr.max= V	15880	15446	kN
Taglio di progetto per la gerarchia della resistenza (eq. 7.9.12)	Vgr	11055	10819	kN
Taglio di progetto per la gerarchia della resistenza filtrato (eq. 7.9.12)	Vgr	11055	10819	kN
fattore di sicurezza aggiuntivo per la resistenza a taglio (eq. 7.9.10)	γBd	1	0.80	
fattore di sicurezza aggiuntivo per la resistenza a taglio filtrato (eq. 7.9.10)	γBđ	1	1.00	
Riassumendo				
Taglio di calcolo	Vgr	11055	10819	kN
fattore di sicurezza aggiuntivo filtrato (eq. 7.9.10)	γBđ	1.00	1.00	
Angolo inclinazione bielle compresse	Teta	45	45	

La sezione è armata con:

 $A_s = \phi 30/10 + \phi 30/10$ staffe $\phi 18/10$

Nota: nella successiva fase progettuale si dovranno predisporre opportune armature trasversali all'interno delle zone dissipative atte a confinare adeguatamente il nucleo di calcestruzzo della sezione e contrastare l'instabilità delle barre verticali compresse al fine di garantire la necessaria duttilità strutturale come richiesto dal punto 7.9.6.1 della NTC 2018.

15.00

CARATTERISTICHE DI RESISTENZA DEI MATERIALI IMPIEGATI

CALCESTRUZZO -	Classe:	C32/40	
	Resis. compr. di progetto fcd:	18.800	MPa
	Resis. compr. ridotta fcd':	9.400	MPa
	Def.unit. max resistenza ec2:	0.0020	
	Def.unit. ultima ecu:	0.0035	
	Diagramma tensione-deformaz.:	Parabola-Rettangolo	
	Modulo Elastico Normale Ec:	33643.0	MPa
	Resis. media a trazione fctm:	3.100	MPa

Coeff. Omogen. S.L.E.:

VI05 - Viadotto ferroviario a Doppio Binario

 RELAZIONE DI CALCOLO PILA
 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 RS3V
 40
 D 09 CL
 VI 05 05 001
 B
 39 di 52

Coeff. Omogen. S.L.E.:15.00Sc limite S.L.E. comb. Frequenti:182.60daN/cm²Ap.Fessure limite S.L.E. comb. Frequenti:0.200mmSc limite S.L.E. comb. Q.Permanenti:0.00MpaAp.Fess.limite S.L.E. comb. Q.Perm.:0.200mm

ACCIAIO - Tipo: B450C

Resist. caratt. snervam. fyk:

Resist. caratt. rottura ftk:

Resist. snerv. di progetto fyd:

Resist. ultima di progetto ftd:

Deform. ultima di progetto Epu:

450.00 MPa
391.30 MPa
391.30 MPa
0.068

Modulo Elastico Ef 2000000 daN/cm²

Diagramma tensione-deformaz.: Bilineare finito
Coeff. Aderenza istantaneo 81*82 : 1.00
Coeff. Aderenza differito 81*82 : 0.50
Coeff. Aderenza differito 81*72 : 3.750

Sf limite S.L.E. Comb. Rare: 337.50 MPa

CARATTERISTICHE DOMINIO CONGLOMERATO

Forma del Dominio: Circolare Classe Conglomerato: C32/40

Raggio circ.: 225.0 cm X centro circ.: 0.0 cm Y centro circ.: 0.0 cm

DATI GENERAZIONI CIRCOLARI DI BARRE

N°Gen. Numero assegnato alla singola generazione circolare di barre

Xcentro Ascissa [cm] del centro della circonf. lungo cui sono disposte le barre generate Ycentro Ordinata [cm] del centro della circonf. lungo cui sono disposte le barre genrate Raggio Raggio [cm] della circonferenza lungo cui sono disposte le barre generate N°Barre Numero di barre generate equidist. disposte lungo la circonferenza

Ø Diametro [mm] della singola barra generata

N°Gen.	Xcentro	Ycentro	Raggio	N°Barre	Ø
1	0.0	0.0	215.0	130	30
2	0.0	0.0	205.0	130	30

ARMATURE A TAGLIO

Diametro staffe: 18 mm Passo staffe: 10.0 cm

Staffe: Una sola staffa chiusa perimetrale

CALCOLO DI RESISTENZA - SFORZI PER OGNI COMBINAZIONE ASSEGNATA

N Sforzo normale [kN] applicato nel Baric. (+ se di compressione)
Mx Momento flettente [kNm] intorno all'asse x princ. d'inerzia
con verso positivo se tale da comprimere il lembo sup. della sez.
My Momento flettente [kNm] intorno all'asse y princ. d'inerzia
con verso positivo se tale da comprimere il lembo destro della sez.
Vy Componente del Taglio [kN] parallela all'asse princ.d'inerzia y
Vx Componente del Taglio [kN] parallela all'asse princ.d'inerzia x

VI05 - Viadotto ferroviario a Doppio Binario

RELAZIONE DI CALCOLO PILA	COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
TREE ZEONE DI OMEGGEGITIEM	RS3V	40	D 09 CL	VI 05 05 001	В	40 di 52

N°Comb.	N	Mx	My	Vy	Vx
1	57229.00	38693.00	53134.00	0.00	0.00
2	50852.00	76772.00	22928.00	0.00	0.00
3	57229.00	38693.00	53134.00	0.00	0.00
4	48760.00	29392.00	65071.00	0.00	0.00
5	50852.00	76772.00	22928.00	0.00	0.00
6	32995.00	54124.00	50543.00	0.00	0.00
7	30127.00	157654.00	49430.00	11055.00	0.00
8	29839.00	51651.00	153572.00	0.00	10819.00
9	29839.00	51651.00	153572.00	0.00	0.00
10	30127.00	157654.00	49430.00	0.00	0.00

COMB. RARE (S.L.E.) - SFORZI PER OGNI COMBINAZIONE ASSEGNATA

N	Sforzo normale [kN] applicato nel Bai	ricentro (+ se di compressione)
IN	SIDIZO HOHHAIC IKINI ADDIICALO HCI DAI	

Mx Momento flettente [kNm] intorno all'asse x princ. d'inerzia (tra parentesi Mom. Fessurazione)

con verso positivo se tale da comprimere il lembo superiore della sezione

My Momento flettente [kNm] intorno all'asse y princ. d'inerzia (tra parentesi Mom.Fessurazione)

con verso positivo se tale da comprimere il lembo destro della sezione

N°Comb.	N	Mx	Му
1	40188.00	36708.00	27111.00
2	35790.00	16240.00	53332.00
3	40188.00	36708.00	27111.00
4	34347.00	44941.00	20697.00
5	35790.00	16240.00	53332.00

COMB. FREQUENTI (S.L.E.) - SFORZI PER OGNI COMBINAZIONE ASSEGNATA

N Sforzo normale [kN] applicato nel Ba	aricentro (+ se di compressione)
--	----------------------------------

Mx Momento flettente [kNm] intorno all'asse x princ. d'inerzia (tra parentesi Mom.Fessurazione)

con verso positivo se tale da comprimere il lembo superiore della sezione

My Momento flettente [kNm] intorno all'asse y princ. d'inerzia (tra parentesi Mom. Fessurazione)

con verso positivo se tale da comprimere il lembo destro della sezione

N°Comb.	N	Mx	Му
1	35171.00	18187.00 (157884.48)	18742.00 (162702.53)
2	35171.00	12902.00 (49655.34)	28560.00 (109917.58)
3	35171.00	18187.00 (157884.48)	18742.00 (162702.53)
4	33007.00	30000.00 (75889.78)	17795.00 (45015.29)
5	32532.00	12219.00 (26323.28)	35000.00 (75400.18)

COMB. QUASI PERMANENTI (S.L.E.) - SFORZI PER OGNI COMBINAZIONE ASSEGNATA

N Sforzo normale [kN] applicato nel Baricentro (+ se di compressione)

Mx Momento flettente [kNm] intorno all'asse x princ. d'inerzia (tra parentesi Mom.Fessurazione)

con verso positivo se tale da comprimere il lembo superiore della sezione

My Momento flettente [kNm] intorno all'asse y princ. d'inerzia (tra parentesi Mom. Fessurazione)

con verso positivo se tale da comprimere il lembo destro della sezione

N°Comb. N Mx My 1 27368.00 5738.00 (0.00) 5738.00 (0.00)

VI05 - Viadotto ferroviario a Doppio Binario

RELAZIONE DI CALCOLO PILA

COMMESSA LOTTO
RS3V 40

CODIFICA D 09 CL DOCUMENTO VI 05 05 001 REV. FOGLIO

B 41 di 52

RISULTATI DEL CALCOLO

Sezione verificata per tutte le combinazioni assegnate

Copriferro netto minimo barre longitudinali: 8.5 cm Interferro netto minimo barre longitudinali: 6.9 cm Copriferro netto minimo staffe: 6.7 cm

VERIFICHE DI RESISTENZA IN PRESSO-TENSO FLESSIONE ALLO STATO LIMITE ULTIMO

Ver S = combinazione verificata / N = combin. non verificata

N Sforzo normale assegnato [kN] nel baricentro B sezione cls.(positivo se di compressione)

Mx Componente del momento assegnato [kNm] riferito all'asse x princ. d'inerzia
My Componente del momento assegnato [kNm] riferito all'asse y princ. d'inerzia
N Res Sforzo normale resistente [kN] nel baricentro B sezione cls.(positivo se di compress.)

Mx Res Momento flettente resistente [kNm] riferito all'asse x princ. d'inerzia
My Res Momento flettente resistente [kNm] riferito all'asse y princ. d'inerzia
Mis.Sic. Misura sicurezza = rapporto vettoriale tra (N r,Mx Res,My Res) e (N,Mx,My)

Verifica positiva se tale rapporto risulta >=1.000

As Totale Area totale barre longitudinali [cm²]. [Tra parentesi il valore minimo di normativa]

N°Comb	Ver	N	Mx	Му	N Res	Mx Res	My Res	Mis.Sic. As Totale
1	C	57229.00	38693.00	53134.00	57229.01	113598.23	155995.76	2.041027.0/477.1\
ı	3							2.941837.8(477.1)
2	S	50852.00	76772.00	22928.00	50852.01	179831.18	53706.17	2.341837.8(477.1)
3	S	57229.00	38693.00	53134.00	57229.01	113598.23	155995.76	2.941837.8(477.1)
4	S	48760.00	29392.00	65071.00	48760.27	76499.59	169371.43	2.601837.8(477.1)
5	S	50852.00	76772.00	22928.00	50852.01	179831.18	53706.17	2.341837.8(477.1)
6	S	32995.00	54124.00	50543.00	32994.77	124649.66	116410.01	2.301837.8(477.1)
7	S	30127.00	157654.00	49430.00	30127.28	159809.97	50112.76	1.011837.8(477.1)
8	S	29839.00	51651.00	153572.00	29839.06	53294.80	158449.11	1.031837.8(477.1)
9	S	29839.00	51651.00	153572.00	29839.06	53294.80	158449.11	1.031837.8(477.1)
10	S	30127.00	157654.00	49430.00	30127.28	159809.97	50112.76	1.011837.8(477.1)

METODO AGLI STATI LIMITE ULTIMI - DEFORMAZIONI UNITARIE ALLO STATO ULTIMO

ec max	Deform. unit. massima del conglomerato a compressione
	Deform. unit. massima del conglomerato a compressione
Xc max	Ascissa in cm della fibra corrisp. a ec max (sistema rif. X,Y,O sez.)
Yc max	Ordinata in cm della fibra corrisp. a ec max (sistema rif. X,Y,O sez.)
es min	Deform. unit. minima nell'acciaio (negativa se di trazione)
Xs min	Ascissa in cm della barra corrisp. a es min (sistema rif. X,Y,O sez.)
Ys min	Ordinata in cm della barra corrisp. a es min (sistema rif. X,Y,O sez.)
es max	Deform. unit. massima nell'acciaio (positiva se di compress.)
Xs max	Ascissa in cm della barra corrisp. a es max (sistema rif. X,Y,O sez.)
Ys max	Ordinata in cm della barra corrisp. a es max (sistema rif. X,Y,O sez.)

$N^{\circ}Comb$	ec max	Xc max	Yc max	es min	Xs min	Ys min	es max	Xs max	Ys max
1	0.00350	181.9	159.1	0.00328	170.8	130.5	-0.00609	-170.8	-130.5
2	0.00350	64.4	92.6	0.00327	61.5	206.0	-0.00655	-61.5	-206.0
3	0.00350	181.9	156.7	0.00328	170.8	130.5	-0.00609	-170.8	-130.5
4	0.00350	205.1	193.5	0.00327	197.1	85.9	-0.00672	-197.1	-85.9
5	0.00350	64.4	74.2	0.00327	61.5	206.0	-0.00655	-61.5	-206.0
6	0.00350	153.6	164.4	0.00323	150.2	153.9	-0.00817	-150.2	-153.9
7	0.00350	67.3	214.7	0.00323	61.5	206.0	-0.00849	-61.5	-206.0
8	0.00350	213.3	71.7	0.00323	204.5	66.4	-0.00852	-204.5	-66.4
9	0.00350	213.3	71.7	0.00323	204.5	66.4	-0.00852	-204.5	-66.4
10	0.00350	67.3	214.7	0.00323	61.5	206.0	-0.00849	-61.5	-206.0

VI05 - Viadotto ferroviario a Doppio Binario

RELAZIONE DI CALCOLO PILA

COMMESSA LOTTO CODIFICA RS3V 40 D 09 CL

DOCUMENTO VI 05 05 001

REV. В

FOGLIO 42 di 52

POSIZIONE ASSE NEUTRO PER OGNI COMB. DI RESISTENZA

Coeff. a, b, c nell'eq. dell'asse neutro aX+bY+c=0 nel rif. X,Y,O qen. a, b, c Rapp. di duttilità (travi e solette)[§ 4.1.2.1.2.1 NTC]: deve essere < 0.45 h/x C.Rid.

Coeff. di riduz. momenti per sola flessione in travi continue

N°Comb	a	b	С	x/d	C.Rid.
1	0.000017613	0.000012826	-0.001402255		
2	0.000006539	0.000021895	-0.001641447		
3	0.000017613	0.000012826	-0.001402255		
4	0.000021167	0.000009561	-0.001725860		
5	0.000006539	0.000021895	-0.001641447		
6	0.000018109	0.000019392	-0.002469847		
7	0.000008152	0.000026001	-0.002631116		
8	0.000025898	0.000008710	-0.002647761		
9	0.000025898	0.000008710	-0.002647761		
10	0.000008152	0.000026001	-0.002631116		

VERIFICHE A TAGLIO

Diam. Staffe: 18 mm

10.0 cm [Passo massimo di normativa = 25.0 cm] Passo staffe:

S = comb. verificata a taglio / N = comb. non verificata Ver

Ved Taglio di progetto [kN] = proiez. di Vx e Vy sulla normale all'asse neutro Taglio compressione resistente [kN] lato conglomerato [formula (4.1.28)NTC] Vcd

Taglio resistente [kN] assorbito dalle staffe [(4.1.18) NTC] Vwd

Altezza utile media pesata sezione ortogonale all'asse neutro | Braccio coppia interna [cm] d | z

Vengono prese nella media le strisce con almeno un estremo compresso. I pesi della media sono costituiti dalle stesse lunghezze delle strisce.

Larghezza media resistente a taglio [cm] misurate parallel. all'asse neutro bw E' data dal rapporto tra l'area delle sopradette strisce resistenti e Dmed. Cotangente dell'angolo di inclinazione dei puntoni di conglomerato Ctg Coefficiente maggiorativo della resistenza a taglio per compressione Acw Area staffe+legature strettam. necessarie a taglio per metro di pil.[cm²/m] Ast A.Eff Area staffe+legature efficaci nella direzione del taglio di combinaz.[cm²/m]

Tra parentesi è indicata la guota dell'area relativa alle sole legature. L'area della legatura è ridotta col fattore L/d_max con L=lungh.legat.proietta-

ta sulla direz. del taglio e d_max= massima altezza utile nella direz.del taglio.

$N^{\circ}Comb$	Ver	Ved	Vcd	Vwd	$d \mid z$	bw	Ctg	Acw	Ast	A.Eff
1	S	0.00	74374 66	12557.88374.7	1 322 7	411.6	1.000	1.191	0.0	99.4(0.0)
2	S	0.00		12709.27376.0		408.2	1.000	1.170	0.0	99.4(0.0)
3	S	0.00	74374.66	12557.88374.7	322.7	411.6	1.000	1.191	0.0	99.4(0.0)
4	S	0.00	72974.30	12762.51376.5	328.0	407.0	1.000	1.163	0.0	99.4(0.0)
5	S	0.00	73333.27	12709.27376.0	326.7	408.2	1.000	1.170	0.0	99.4(0.0)
6	S	0.00	70142.69	13158.34379.8	338.1	397.5	1.000	1.110	0.0	99.4(0.0)
7	S ´	10548.66	69457.67	13241.95380.8	340.3	394.5	1.000	1.101	79.2	99.4(0.0)
8	S ´	10254.55	69426.08	13246.64380.8	340.5	394.5	1.000	1.100	77.0	99.4(0.0)
9	S	0.00	69426.08	13246.64380.8	340.5	394.5	1.000	1.100	0.0	99.4(0.0)
10	S	0.00	69457.67	13241.95380.8	340.3	394.5	1.000	1.101	0.0	99.4(0.0)

COMBINAZIONI RARE IN ESERCIZIO - MASSIME TENSIONI NORMALI ED APERTURA FESSURE (NTC/EC2)

Ver S = comb. verificata/ N = comb. non verificata

Massima tensione (positiva se di compressione) nel conglomerato [Mpa] Sc max Xc max, Yc max Ascissa, Ordinata [cm] del punto corrisp. a Sc max (sistema rif. X,Y,O)

VI05 - Viadotto ferroviario a Doppio Binario

RELAZIONE DI CALCOLO PILA

LOTTO COMMESSA CODIFICA DOCUMENTO REV. **FOGLIO** RS3V 40 D 09 CL VI 05 05 001 В 43 di 52

Sf min Xs min Ac eff. As eff.	n, Ys mi	n	Minima tensione (negativa se di trazione) nell'acciaio [Mpa] Ascissa, Ordinata [cm] della barra corrisp. a Sf min (sistema rif. X,Y,O) Area di calcestruzzo [cm²] in zona tesa considerata aderente alle barre Area barre [cm²] in zona tesa considerate efficaci per l'apertura delle fessure							
N°Comb	Ver	Sc max	Xc max	Yc max	Sf min	Xs min	Ys min	Ac eff.	As eff.	
1	S	6.43	133.7	152.0	-35.1	-126.4	-173.9	7547	296.9	
2	S	7.72	215.2	165.0	-76.0	-204.5	-66.4	10701	402.9	
3	S	6.43	133.7	152.0	-35.1	-126.4	-173.9	7547	296.9	
4	S	6.86	94.1	152.0	-59.7	-90.6	-195.0	10088	374.6	
5	S	7.72	215.2	165.0	-76.0	-204.5	-66.4	10701	402.9	

COMBINAZIONI RARE IN ESERCIZIO - APERTURA FESSURE [§ 7.3.4 EC2]

La sezione viene assunta			

	Za dezione viene accanta compre recoarata anone nei cace in canta trazione ini
Ver.	Esito della verifica
e1	Massima deformazione unitaria di trazione nel calcestruzzo (trazione -) valutata

ta in sezione fessurata Minima deformazione unitaria di trazione nel calcestruzzo (trazione -) valutata in sezione fessurata e2

k1

= 0.8 per barre ad aderenza migliorata [eq.(7.11)EC2] = 0.4 per comb. quasi permanenti / = 0.6 per comb.frequenti [cfr. eq.(7.9)EC2] kt k2 = 0.5 per flessione; =(e1 + e2)/(2*e1) per trazione eccentrica [eq.(7.13)EC2]

= 3.400 Coeff. in eq.(7.11) come da annessi nazionali k3 k4

= 0.425 Coeff. in eq.(7.11) come da annessi nazionali Diametro [mm] equivalente delle barre tese comprese nell'area efficace Ac eff [eq.(7.11)EC2] Ø

Cf Copriferro [mm] netto calcolato con riferimento alla barra più tesa

Differenza tra le deformazioni medie di acciaio e calcestruzzo [(7.8)EC2 e (C4.1.7)NTC] e sm - e cm

Tra parentesi: valore minimo = 0.6 Smax / Es [(7.9)EC2 e (C4.1.8)NTC]

sr max Massima distanza tra le fessure [mm]

Apertura fessure in mm calcolata = sr max*(e_sm - e_cm) [(7.8)EC2 e (C4.1.7)NTC]. Valore limite tra parentesi Componente momento di prima fessurazione intorno all'asse X [kNm] wk

Mx fess. Componente momento di prima fessurazione intorno all'asse Y [kNm] My fess.

Comb.	Ver	e1	e2	k2	Ø	Cf	e sm - e cm s	sr max	wk	Mx fess	My fess
1	S	-0.00019	0	0.500	30.0	85	0.00011 (0.00011)	419	0.044 (0.20)	64518.48	47650.66
2	S	-0.00040	0	0.500	30.0	85	0.00023 (0.00023)	424	0.097 (0.20)	17555.09	57650.75
3	S	-0.00019	0	0.500	30.0	85	0.00011 (0.00011)	419	0.044 (0.20)	64518.48	47650.66
4	S	-0.00032	0	0.500	30.0	85	0.00018 (0.00018)	426	0.076 (0.20)	57887.08	26659.15
5	S	-0.00040	0	0.500	30.0	85	0.00023 (0.00023)	424	0.097 (0.20)	17555.09	57650.75

COMBINAZIONI FREQUENTI IN ESERCIZIO - MASSIME TENSIONI NORMALI ED APERTURA FESSURE (NTC/EC2)

N°Comb	Ver	Sc max	Xc max	Yc max	Sf min	Xs min	Ys min	Ac eff.	As eff.
1	S	4.14	161.5	152.0	-4.2	-157.4	-146.4	1024	42.4
2	S	4.65	205.0	165.0	-12.5	-197.1	-85.9	3583	183.8
3	S	4.14	161.5	152.0	-4.2	-157.4	-146.4	1024	42.4
4	S	4.97	114.8	152.0	-22.8	-109.0	-185.3	6355	268.6
5	S	5 22	212 4	165.0	-28.8	-204 5	-66.4	7609	311.0

COMBINAZIONI FREQUENTI IN ESERCIZIO - APERTURA FESSURE [§ 7.3.4 EC2]

Comb.	Ver	e1	e2	k2	Ø	Cf	esm-ecms	r max	wk	Mx fess	My fess
1	S	-0.00003	0	0.500	30.0	85	0.00001 (0.00001)	412	0.005 (0.20)	157884.48	162702.53
2	S	-0.00007	0	0.500	30.0	85	0.00004 (0.00004)	388	0.015 (0.20)	49655.34	109917.58
3	S	-0.00003	0	0.500	30.0	85	0.00001 (0.00001)	412	0.005 (0.20)	157884.48	162702.53
4	S	-0.00012	0	0.500	30.0	85	0.00007 (0.00007)	410	0.028 (0.20)	75889.78	45015.29
5	S	-0.00016	0	0.500	30.0	85	0.00009 (0.00009)	414	0.036 (0.20)	26323.28	75400.18

VI05 - Viadotto ferroviario a Doppio Binario

RELAZIONE DI CALCOLO PILA

COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
RS3V	40	D 09 CL	VI 05 05 001	В	44 di 52

COMBINAZIONI QUASI PERMANENTI IN ESERCIZIO - MASSIME TENSIONI NORMALI ED APERTURA FESSURE (NTC/EC2)

N°Comb Ver Sc max Xc max Yc max Sf min Xs min Ys min Ac eff. As eff.

1 S 2.16 159.1 165.0 12.0 -150.2 -153.9 ----

COMBINAZIONI QUASI PERMANENTI IN ESERCIZIO - APERTURA FESSURE [§ 7.3.4 EC2]

Comb.	Ver	e1	e2	k2	Ø	Cf	e sm - e cm sr max	wk	Mx fess	My fess
1	S	0 00000	0.00000					0 000 (0 20)	0.00	0.00

4.9.2 Pozzo

Il calcolo della fondazione a pozzo della pila del VI05 è trattato nella specifica relazione di calcolo sulle fondazioni.

4.9.3 Escursione Longitudinale, giunti e varchi

Le escursioni longitudinali che i vincoli mobili devono consentire, sono state determinate in accordo con quanto indicato nel §2.1.5 della specifica RFI per i ponti [3].

Per i ponti e viadotti costituiti da una serie di travi semplicemente appoggiate l'entità dell'escursione totale dei giunti e degli apparecchi d'appoggio viene valutato mediante la seguente relazione:

$$EL = k1 \cdot (E1 + E2 + E3) = k1 \cdot (2 \cdot Dt + 4 \cdot dEd \cdot k2 + 2 \cdot deg)$$

dove:

E1 = spostamento dovuto alla variazione termica uniforme;

E2 = spostamento dovuto alla risposta della struttura all'azione sismica;

E3 = spostamento dovuto all'azione sismica fra le fondazioni di strutture non collegate;

k1 = 0,45 coefficiente che tiene conto della non contemporaneità dei valori massimi corrispondenti a ciascun evento singolo;

k2 = 0.55 coefficiente legato alla probabilità di moto in controfase di due pile adiacenti;

dEd = è lo spostamento relativo totale tra le parti, pari allo spostamento dE prodotto dall'azione sismica di progetto, calcolato come indicato nel §7.3.3.3 delle NTC [1];

deg = è lo spostamento relativo tra le parti dovuto agli spostamenti relativi del terreno, da valutare secondo il §3.2.3.3 e §3.2.4.2 delle NTC [1];

VI05 - Viadotto ferroviario a Doppio Binario

RELAZIONE DI CALCOLO PILA

COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
RS3V	40	D 09 CL	VI 05 05 001	В	45 di 52

In favore di sicurezza deg = dij max =

$$d_{ij\,max} = 1.25 \sqrt{d_{gi}^2 + d_{gj}^2}$$

Dove dgi e dgi sono gli spostamenti massimi del suolo nei punti i e j, calcolati con riferimento alle caratteristiche locali del sottosuolo:

$$d_g = 0.025 \cdot a_g \cdot S \cdot T_C \cdot T_D$$

In ogni caso, dovrà risultare:

$$EL \ge E0$$
 e $EL \ge Ei$ con $i = 1, 2,3$

dove:

E0 = escursione valutata secondo i criteri validi nelle zone non sismiche;

Ei = il maggiore dei due termini indicati nella espressione precedente.

Nei casi in cui anche una sola delle due precedenti disuguaglianze non risultasse verificata, dovrà assumersi

$$EL = max(E0; Ei).$$

Per garantire un valore minimo di escursione, in funzione della sismicità del sito, il valore EL dovrà essere assunto non minore di:

$$EL \ge 3.3 \cdot L/1000 + 0.1 \text{ m}$$
 e $EL \ge 0.15 \text{ m}$ per $ag(SLV) \ge 0.25 \text{ g}$
 $EL \ge 2.3 \cdot L/1000 + 0.073 \text{ m}$ e $EL \ge 0.10 \text{ m}$ per $ag(SLV) < 0.25 \text{ g}$

dove:

L = la lunghezza del ponte (m).

a) La corsa degli apparecchi d'appoggio mobili deve essere non inferiore a

$$ECmin = \pm (EL/2 + EL/8)$$
 con un minimo di $\pm (EL/2 + 15 \text{ mm})$.

b) Il giunto fra le testate di due travi adiacenti dovrà consentire una escursione totale pari a:

$$EGmin = \pm (EL/2 + 10 mm)$$

 Il varco da prevedere fra le testate degli impalcati adiacenti, a temperatura media ambiente, dovrà essere non inferiore a:

EVmin = EL/2 + 20 mm

 d) Il ritegno sismico dovrà essere disposto ad una distanza, dal bordo della trave supportata dal vincolo mobile, pari a:

ERmin = V - 10 mm

Di seguito vengono valutati preliminarmente i diversi contributi relativi alle diverse azioni (termica, sismica e moto delle fondazioni) e successivamente vengono riportati i calcoli delle diverse grandezze.

ag		0.133	g
F ₀		2.62	
S_s		1.49	
S_{t}		1	
T_C		0.694	S
T_D		2.133	S
Accel. massima al suolo	S*a _{gmax}	0.20	g
Accel. massima spettro (plateau)	Fo*S*a _{gmax}	0.52	g
Inerzia Pila asse y	J_{yy}	20.1	m^4
Altezza pila	h1	8.3	m
Altezza baricentro impalcato	h2	2.7	m
Altezza totale	h=h1+h2	11.0	
Rigidezza Pila asse y	K	748636364	N/m
Forza agente in fase sismica in dir.x	F	14924	kN
Fattore di struttura	q	1	
Spostamento testa pila	dEe = F/K	0.020	m
μ _d (par.7.3.3.3 NTC)		1	
Spostamento testa pila (par.7.3.3.3 NTC)	$dE = dEe^*\mu d$	0.020	m
k1		0.45	
k2		0.55	
d _g (par.3.2.3.2.1 NTC)		0.07	m
d _{ij} max (par.3.2.4.2)		0.13	
Lunghezza impalcato		70	m
Dilatazione termica impalcato	D_{t}	0.0224	m

VI05 - Viadotto ferroviario a Doppio Binario

RELAZIONE DI CALCOLO PILA	COMMESSA LOTTO RS3V 40	CODIFICA D 09 CL	DOCUMEN VI 05 05 0	
	1,037 40	D 09 CL	VI 05 05 0	01 B 47 0132
E1	2*D _t	0.045	m	
E2	4* de *k2	0.044	m	
E3	2*d _{ij} max	0.254	m	
EL	L1*/F1 - F2 - F2\	0.135		
	k1*(E1+E2+E3)		m	Spalla - Spalla
EL	k1*(E1+E2+E3)	0.154	m	Spalla - Pila
EL	k1*(E1+E2+E3)	0.174	m	Pila - Pila
EL min 1		0.234	m	
EL min 2		0.100	m	
EL min	max(ELmin1;Elmin2)	0.234	m	
EL progetto	max(EL;Elmin;Ei)	0.254	m	Spalla - Spalla
EL progetto	max(EL;Elmin;Ei)	0.254	m	Spalla - Pila
EL progetto	max(EL;Elmin;Ei)	0.254	m	Pila - Pila
LL progetto	11101(LL,L1111111,L1)	0.234	•••	riia - riia
Corsa apparecchi di appoggio mobili	par 2.5.2.1.5.2	0.159	+/- m	Spalla - Spalla
Corsa apparecchi di appoggio mobili	par 2.5.2.1.5.5	0.159	+/- m	Spalla - Pila
Corsa apparecchi di appoggio mobili	par 2.5.2.1.5.5	0.159	+/- m	Pila - Pila
Escursione dei giunti	par 2.5.2.1.5.3	0.137	+/- m	Spalla - Spalla
Escursione dei giunti	par 2.5.2.1.5.3	0.137	+/- m	Spalla - Pila
Escursione dei giunti	par 2.5.2.1.5.3	0.137	+/- m	Pila - Pila
Ampiezza dei varchi 'V'	par 2.5.2.1.5.4	0.147	m	Pila - Pila
Ritegni sismici	par 2.5.2.1.5.5	0.137	m	Pila - Pila

VI05 - Viadotto ferroviario a Doppio Binario

RELAZIONE DI CALCOLO PILA

COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	
RS3V	40	D 09 CL	VI 05 05 001	В	

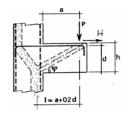
FOGLIO

48 di 52

4.9.4 Ritegni sismici, baggioli, pulvini

Le massime forze sismiche afferenti alla pila in direzione longitudinale sono le seguenti:

$$Pmax = [(G1+G2)*L+0.2*Q)]*amax = 15168 kN$$


Il ritegno longitudinale è dunque soggetto ad una forza orizzontale pari a:

Le sollecitazioni vengono applicate ad una sezione avente le seguenti caratteristiche:

$$B = 1,70 \text{ m}$$

$$H = 1,70 \text{ m}$$

VERIFICA - MECCANISMO TIRANTE PUNTONE.

P,H: Carichi Esterni di Progetto (P_{FD},H_{FD})

Pr : Portanza mensola in termini di resistenza dell'armatura metallica

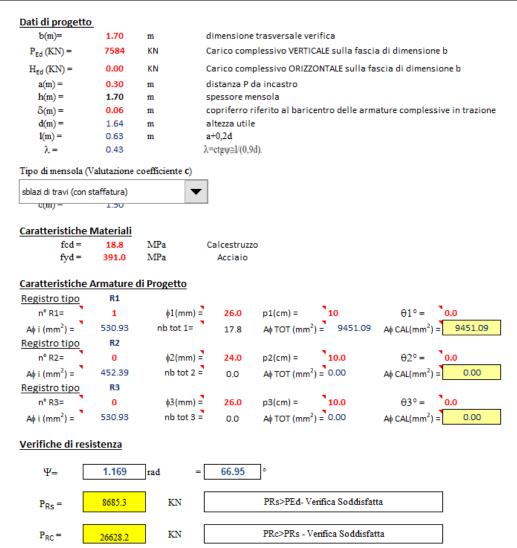
$$P_{R} = P_{Rs} = \left(A_{s}f_{yd} - H_{Ed}\right)\frac{1}{\lambda} \qquad \lambda = ctg\psi \ge 1/(0.9d).$$

Pr : Portanza mensola in termini di resistenza della Biella compressa

$$P_{\text{Re}} = 0,4bdf_{\text{ed}} \frac{c}{1+\lambda^2} \ge P_{\text{Rs}}$$

CONDIZIONI DI VERIFICA

- $1 \qquad P_R \ge P_{Ed}$
- $\geq P_{Rs}$



VI05 - Viadotto ferroviario a Doppio Binario

RELAZIONE DI CALCOLO PILA

 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 RS3V
 40
 D 09 CL
 VI 05 05 001
 B
 49 di 52

Il ritegno trasversale è costituito da un dispositivo in acciaio.

Il baggiolo è soggetto ad una forza orizzontale pari a:

Pmax = 7584 kN

Le sollecitazioni vengono applicate ad una sezione avente le seguenti caratteristiche:

B = 1,70 m

H = 1,70 m

VI05 - Viadotto ferroviario a Doppio Binario

RELAZIONE DI CALCOLO PILA

COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
RS3V	40	D 09 CL	VI 05 05 001	В	50 di 52

Dati di progetto b(m)= dimensione trasversale verifica 1.70 P_{Ed} (KN) = 7584 KN Carico complessivo VERTICALE sulla fascia di dimensione b Carico complessivo ORIZZONTALE sulla fascia di dimensione b $H_{Ed}(KN) =$ ΚN 0.00 a(m)= 0.30 distanza P da incastro h(m) = 1.70 s pessore mensola copriferro riferito al baricentro delle armature complessive in trazione $\delta(m) =$ 0.10 m **d(m)** = 1.60 altezza utile **l(m)** = a+0,2d 0.62 0.43 $\lambda = ctg\psi \cong 1/(0,9d)$. Tipo di mensola (Valutazione coefficiente c) sblazi di travi (con staffatura) C(III) 150

Caratteristiche Materiali

fcd = 18.8 MPa Calcestruzzo fyd = 391.0 MPa Acciaio

Caratteristiche Armature di Progetto

Registro tipo	R1				
n° R1=	1	ф1 (mm) =	26.0	p1(cm) = 10	0.0
Ao∳i (mm²) =	530.93	nb tot 1=	17.0	$A\phi TOT (mm^2) = 9025.79$	A \$\text{CAL(mm²)} = \frac{9025.79}{}
Registro tipo	R2				
n° R2=	0	∮ 2(mm) =	22.0	p2(cm) = 10.0	θ2° = 0.0
Aфi (mm²) =	380.13	nb tot 2 =	0.0	A \$\phiTOT (mm^2) = 0.00	A
Registro tipo	R3				
n° R3=	0	ф3(mm) = ¯	26.0	p3(cm) = 10.0	θ3° = *0.0
Ao∳i (mm²) = ¯	530.93	nb tot 3 =	0.0	$A\phi TOT (mm^2) = 0.00$	Αφ CAL(mm²) = 0.00

Verifiche di resistenza

Il pulvino è soggetto ad una forza verticale pari a:

Pmax =24212 kN (scarico massimo SLU appoggi)

Le sollecitazioni vengono applicate ad una sezione avente le seguenti caratteristiche:

B = 5.30 m

H = 2,20 m

VI05 - Viadotto ferroviario a Doppio Binario

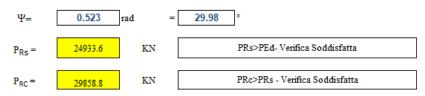
RELAZIONE DI CALCOLO PILA

COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
RS3V	40	D 09 CL	VI 05 05 001	В	51 di 52

Dati di progetto

b(m)=	5.30	m	dimensione trasversale verifica
P_{Ed} (KN) =	24212	KN	Carico complessivo VERTICALE sulla fascia di dimensione b
H_{Ed} (KN) =	726.35	KN	Carico complessivo ORIZZONTALE sulla fascia di dimensione b
a(m) =	2.72	m	distanza P da incastro
h(m) =	2.20	m	spessore mensola
$\delta(m) =$	0.20	m	copriferro riferito al baricentro delle armature complessive in trazione
d(m) =	2.00	m	altezza utile
1(m) =	3.12	m	a+0,2d
λ =	1.73		λ=ctgψ≘l/(0,9d).

Tipo di mensola (Valutazione coefficiente c)


Caratteristiche Materiali

fcd=	18.8	MPa	Calcestruzzo
fvd =	391.0	MPa	Acciaio

Caratteristiche Armature di Progetto

Registro tipo	R1				
n° R1=	1	φ1(mm) =	30.0	p1(cm) = 10.0	θ1°= 0.0
Αφ i (mm²) =	706.86	nb tot 1=	53.0	Aþ TOT (mm²) = 37463.46	$A\phi CAL(mm^2) = 37463.46$
Registro tipo	R2				
n° R2=	1	φ2(mm) =	30.0	p2(cm) = 10.0	$\theta 2^{\circ} = 0.0$
Αφ i (mm²) =	706.86	nb tot 2 =	53.0	$A\phi$ TOT (mm ²) = 37463.46	$A\phi CAL(mm^2) = 37463.46$
Registro tipo	R3				
n° R3=	1	φ3(mm) =	30.0	p3(cm) = 10.0	θ3° = 0.0
Αφ i (mm²) =	706.86	nb tot 3 =	53.0	$A\phi$ TOT (mm ²) = 37463.46	$A\phi CAL(mm^2) = 37463.46$

Verifiche di resistenza

5 SINTESI DELLE VERIFICHE GEOTECNICHE

Nel presente paragrafo si riporta una sintesi in forma tabellare delle sollecitazioni massime sui pali e delle verifiche geotecniche per il viadotto in oggetto, con relativi coefficienti di sicurezza.

Per maggiori dettagli si rimanda alle specifiche relazioni delle fondazioni.

PALI			SFORZO NORMALE SLU/SLV		SFORZO NORMALE SLE				
viadotto	spalla/pila	D[mm]	npali[-]	Lpalo [m]	Nmax,c [kN]	Nmin[kN]	Nmax, SLE,rara [kN]	Nmax, SLE,FREQ [kN]	
VI05	spalla	1500	12	41.0	10383	-201	8256	6957	
VI05	pila 1	POZZO		per i dettagli del calcolo della fondazione si rimanda alla specifica relazione di calcolo					

TAGLI	E MOMENT	1	CAPACITA' PORTANTE PALI							
senza	scalzament	0		CARICO LIMITE COMPRESSIONE TRAZIONE			ESERCIZIO			
Tmax [kN]	alfa [m]	Mmax	Hd[kN]	FS	Qd [kN]	FS	Qdt [kN]	FS	QII/1.25[kN]	FS
1542	3.4	5243	1766.9	1.15	10901.0	1.05	8880.0	44.18	13248.0	1.60
	per i dettagli del calcolo della fondazione si rimanda alla specifica relazione di calcolo									