COMMITTENTE:

ALTA SORVEGLIANZA:

GENERAL CONTRACTOR:

INFRASTRUTTURE FERROVIARIE STRATEGICHE DEFINITE DALLA LEGGE OBIETTIVO N. 443/01

LINEA AV/AC TORINO – VENEZIA Tratta VERONA – PADOVA Lotto funzionale Verona – Bivio Vicenza PROGETTO ESECUTIVO

PIANO DI MONITORAGGIO AMBIENTALE RELAZIONI

Progetto cofinanziato dalla Unione Europea

Relazione specialistica componente AMBIENTE IDRICO: ACQUE SOTTERRANEE

	•		•						
GENERAL CONTRACTOR					DIRETTORE LAVORI				
IL PROGETTISTA INTEGRATORE Consorzio					/alido per costruzione			SCALA	
Ingo C	di ordine degli	Iricav	Due /						-
inge	neri di Venezia n. 4289	ing. Gui	do Fratini	i					
Data	4289 Ottobre 2020	Data: C	ottobre 20)20 Da	ta:				
		ASE ENTE	TIPO D	OC. OPE	RA/DISCIPLINA	PRC	GR.	REV.	FOGLIO
IN	1 7 1 0	E 2	R	НМЕ	3 0 0 0 7	0	0 1	Α	D
							VISTO	CONSO	RZIO IRICAV DUE
Firma Data						Data			
Consorzio IricAV Due					Arch. F. BAI	occo #	3		Ottobre 2020
Prog	ettazione:								
Rev.	Descrizione	Redatto	Data	Verificato	Data	Approv	ato	Data	IL PROGETTISTA
Α	EMISSIONE	Dott. Matteo Narcetti	Ottobre 2020	Ing. Paolo Ardenti	Ottobre 2020	Ing. Mar		Ottobre 2020	Ing. M. Scarrone
		(M/h		\$		\$			Sersvs
					_				Sersys Ambiente Sul
									Via Acqui, 86 - 10098 RIVOLICION C.F. e/P. IVA 11716780017
									1
									Data: Ottobre 2020
CIG. 8	8377957CD1	Cl	JP: J41E	91000000	009		File: I	N1710	E12RHMB0007001A
	Cod. origine:								

Progetto IN17

Lotto 10 Codifica Documento EI2RHMB0007001 Rev.

Foglio 2 di 166

INDICE

1	PREMESSA	4
2	OBIETTIVI SPECIFICI	7
3	QUADRO NORMATIVO	9
3.1	NORMATIVA EUROPEA	9
3.2	NORMATIVA NAZIONALE	9
3.3	NORMATIVA REGIONALE	10
4	ANALISI DEI DOCUMENTI DI RIFERIMENTO	12
5	ANALISI DELLA COMPONENTE ACQUE SOTTERRANEE	13
5.1	STATO ATTUALE DELL'AMBIENTE IDRICO SOTTERRANEO	13
5.1.	SISTEMA IDROGEOLOGICO	14
5.1.	2BACINI IDROGEOLOGICI	16
5.1.	3MORFOLOGIA PIEZOMETRICA E DIREZIONE DEL FLUSSO IDRICO SOTTERRANEO	24
5.1.	4SORGENTI E POZZI	25
5.1.	5CARATTERISTICHE IDROGEOLOGICHE DI DETTAGLIO DEL TRACCIATO	30
5.1.	6STATO QUALITATIVO DELLA RISORSA IDRICA SOTTERRANEA	42
6	AZIONI DI PROGETTO E IMPATTI INDOTTI	53
7	ARTICOLAZIONE DEL LAVORO	62
7.1	DESCRIZIONE DELLE ATTIVITÀ DI MONITORAGGIO E TEMPISTICA DI ESECUZIONE	62
8	PARAMETRI DI MONITORAGGIO	67
8.1	ANALISI CHIMICO-FISICHE E DI LABORATORIO	67
8.2	CRITERI DI VALUTAZIONE DEI DATI - SOGLIE DI ATTENZIONE E DI INTERVENTO	69
9	INDIVIDUAZIONE DELLE AREE E PUNTI DI MONITORAGGIO	70
9.1	CRITERI ADOTTATI	70
9.2	IDENTIFICAZIONE DEI PUNTI	70
10	ATTIVITÀ PRELIMINARI	74
10.1	1ATTIVITÀ IN SEDE	74
10.2	2VERIFICA DI FATTIBILITÀ IN CAMPO	74
11	METODOLOGIA DI RILEVAMENTO E CAMPIONAMENTO	76
11.1	1MONITORAGGIO PIEZOMETRI	76
11.2	2MISURA DEL LIVELLO FREATIMETRICO	78
11.3	3SPURGO E SVILUPPO DI PIEZOMETRI	79
11.4	4RILIEVO DEI PARAMETRI IN SITU	79
11.5	5CAMPIONAMENTO E ANALISI DI LABORATORIO	80
11.6	SMISURA DELLE SORGENTI	85
12	ELABORAZIONI E RESTITUZIONI DEI DATI	87
12.1	1 IL SISTEMA INFORMATIVO TERRITORIALE	87
12.2	2GESTIONE DELLE ANOMALIE E DI "ALERT"	89

GENERAL CONTRACTOR

1^ LOTTO FUNZIONALE VERONA-BIVIO VICENZA PMA – COMPONENTE AMBIENTALE ACQUE SOTTERRANEE

Progetto	Lotto	Codifica Documento	Rev.	Foglio
IN17	10	EI2RHMB0007001	Α	3 di 166

ALLEGATO 1	92
Schede descrittive dei punti/areali di monitoraggio: SORGENTI	92
Schede descrittive dei punti/areali di monitoraggio: PIEZOMETRI	110

GENERAL CONTRACTOR

1^ LOTTO FUNZIONALE VERONA-BIVIO VICENZA PMA – COMPONENTE AMBIENTALE ACQUE SOTTERRANEE Progetto Lotto Codifica Documento IN17 10 EI2RHMB0007001

Rev. Foglio

1 PREMESSA

La relazione costituisce la sezione del Piano di Monitoraggio Ambientale dedicata alla componente ambientale "Acque Sotterranee".

Il precedente Progetto Definitivo era stato dapprima aggiornato in esito alle istruttorie e tavoli tecnici con il Committente, quindi a seguito delle specifiche richieste di integrazioni durante la fase istruttoria¹ e successivamente per il recepimento del quadro prescrittivo a seguito dell'approvazione del Progetto Definitivo da parte del CIPE con Delibera n. 84 del 22.12.2017, in particolare erano state recepite le Prescrizioni n. 102 (lett. c), 112, 118, e 125 e la Raccomandazione n. 15. Da ultimo era stato aggiornato in riscontro alle osservazioni di ARPAV, riportate nella nota 7dc00_20180903_prot-83005 del 3 settembre 2018, relativa alla validazione del progetto, come richiesto dal CIPE nella prescrizione n. 102 della Delibera CIPE n. 84/2017, e all'ottemperanza delle altre prescrizioni della componente in oggetto.

Il presente documento si riferisce all'intero 1[^] Lotto Funzionale Verona – Bivio Vicenza ricompreso tra le progressive pk. 0+000 e pk. 44+250.

La delibera CIPE 84/2017 di approvazione del Progetto Definitivo del Primo Lotto Funzionale Verona – Bivio Vicenza ha definito, oltre alle opere prescrittive e compensative, anche la suddivisione in due Lotti costruttivi del Primo Lotto Funzionale, identificando le principali opere ricadenti nei due Lotti, stabilendo e finanziando l'importo del 1° Lotto Costruttivo e definendo le tempistiche del 1° Lotto Costruttivo (38 mesi) nonché l'avvio del 2° Lotto costruttivo entro 12 mesi dall'avvio dei lavori, onde garantire la continuità nell'esecuzione dei lavori.

Per monitoraggio ambientale si intende l'insieme dei controlli, periodici o continui, di determinati parametri biologici, chimici e fisici che caratterizzano le componenti ambientali coinvolte nella realizzazione e nell'esercizio delle opere.

Ai sensi dell'art.28 del D.Lgs.152/2006 e s.m.i. il MA rappresenta, per tutte le opere soggette a VIA (incluse quelle strategiche ai sensi della L.443/2001), lo strumento che fornisce la reale misura dell'evoluzione dello stato dell'ambiente nelle varie fasi di attuazione dell'opera e che consente ai soggetti responsabili (proponente, autorità

¹ Nell'ambito della procedura di Valutazione dell'Impatto Ambientale, Piano di Utilizzo Terre e Verifica di Ottemperanza formalizzata dal Contraente Generale con le note prot. 20/2016 e 21/2016 del 02.02.2016, il Ministero dell'Ambiente aveva richiesto delle integrazioni con nota prot. 0001350 del 14.04.2016, all'interno della quale era richiamata - come parte integrante - anche la richiesta della Commissione Tecnica Regionale di Valutazione di Impatto (nota prot. 1054901 del 16.03.2016).

Progetto Lotto Codifica Documento IN17 10 EI2RHMB0007001

Rev. Foglio A 5 di 166

competenti) di individuare i segnali necessari per attivare preventivamente e tempestivamente eventuali azioni correttive.

Anche per questa componente il monitoraggio viene eseguito prima, durante e dopo la realizzazione dell'opera al fine di:

- misurare gli stati di ante operam, corso d'opera e post operam in modo da documentare l'evolversi delle caratteristiche ambientali;
- controllare le previsioni di impatto per le fasi di costruzione ed esercizio;
- fornire agli Enti preposti al controllo gli elementi di verifica della corretta esecuzione delle procedure di monitoraggio;
- verificare il rispetto delle normative di settore;
- consentire, in modo più specificatamente connesso alle procedure di valutazione dell'impatto ambientale, la misura degli impatti dell'opera sull'ambiente nelle diverse fasi;

comunicare gli esiti delle attività di cui ai punti precedenti (alle autorità preposte ad eventuali controlli, al pubblico etc.). A questo proposito si assumono come riferimento (o "stato zero") i valori registrati allo stato attuale (ante operam); si procede poi con misurazioni nel corso delle fasi di costruzione (a cadenza regolare oppure in relazione alla tipologia di lavorazioni previste) e infine si valuta lo stato di post operam al fine di definire la situazione ambientale a lavori conclusi e con l'opera in effettivo esercizio.

Il monitoraggio, nelle sue diverse fasi, deve essere programmato con lo scopo di tutelare il territorio e la popolazione residente dalle possibili modificazioni che la costruzione dell'opera ed il successivo esercizio possono comportare.

Più in generale, e in ottemperanza alla specifica prescrizione n. 102, il PMA è stato aggiornato secondo le varianti e le integrazioni introdotte al Progetto Definitivo per effetto delle prescrizioni CIPE ex Delibera n. 84/2017, ampliando e integrando la rete di rilevamento proposta per tutte le componenti ambientale considerate, nelle fasi ante operam, in itinere e post operam, revisionando i ricettori, le modalità di rilevamento e di restituzione dei dati, nonché la durata e la frequenza, in accordo e sotto la supervisione di ARPA Veneto, redigendo un unico documento, al fine di verificare l'efficacia delle misure di mitigazione previste dal progetto.

Inoltre, e in ottemperanza alla specifica prescrizione n. 118, il PMA si considera come un documento suscettibile di variazioni (anche significative ma fermo restando l'importo a disposizione) in funzione dell'evoluzione dell'opera e strettamente connesso con le criticità

GENERAL CONTRACTOR

1^ LOTTO FUNZIONALE VERONA-BIVIO VICENZA PMA – COMPONENTE AMBIENTALE ACQUE SOTTERRANEE Progetto Lotto Codifica Documento IN17 10 EI2RHMB0007001

Rev. Foglio A 6 di 166

che dovessero presentarsi nella realtà. Tutte le variazioni saranno preventivamente condivise con ARPA Veneto.

il PMA è stato pertanto strutturato in maniera sufficientemente flessibile per poter essere eventualmente rimodulato nel corso dei sopralluoghi preliminari previsti ed in seguito alle istruttoria tecniche dei vari soggetti coinvolti (ARPAV, Commissione CTVIA VIA-VAS, CIPE etc.) e/o nelle fasi progettuali e operative successive alla procedura di VIA: in tali fasi potrà infatti emergere la necessità di modificare il PMA, sia a seguito di specifiche richieste avanzate dalle diverse autorità ambientali competenti che a seguito di situazioni oggettive che possono condizionare la fattibilità tecnica delle attività programmate.

Progetto Lotto Codifica Documento IN17 10 EI2RHMB0007001

Rev. Foglio

2 OBIETTIVI SPECIFICI

Per componente "Acque sotterranee" si intendono, come da definizione di cui all'art 54 del D.Lgs. 152/2006 (e s.m.i.) "tutte le acque che si trovano al di sotto della superficie del suolo, nella zona di saturazione e in diretto contatto con il suolo e il sottosuolo".

Le manifestazioni sorgentizie, concentrate e/o diffuse, vengono inoltre generalmente considerate appartenenti a tale gruppo di acque in quanto affioramenti della circolazione idrica sotterranea e sono pertanto incluse nella presente sezione del piano di monitoraggio.

PRINCIPALI CAUSE DI ALTERAZIONE DELLE ACQUE SOTTERRANEE

Le acque sotterranee sono potenzialmente soggette a tre principali cause di degrado della qualità o di riduzione della disponibilità e rappresentate da:

- inquinamento da scarichi per introduzione dell'inquinante nel terreno, migrazione ed evoluzione dell'inquinante nella zona non satura, propagazione ed evoluzione dell'inquinante nell'acquifero;
- sovrasfruttamento;
- eventuali modifiche delle condizioni idrologiche e di circolazione idrica.

PRINCIPALI OBIETTIVI DEL MONITORAGGIO

Alla luce di quanto sopra esposto il presente documento si propone nello specifico della componente acque sotterranee di:

- verificare le condizioni idrogeologiche e di qualità delle acque di falda, allo scopo di segnalare eventuali modificazioni e criticità ascrivibili alle successive attività di costruzione, per le quali venga accertato o sospettato un rapporto di causa-effetto con le attività di costruzione e all'esercizio dell'opera; qualora accertate le cause, fornire indicazioni per approntare le necessarie misure correttive;
- verificare l'efficacia delle eventuali misure correttive attuate;
- gestire ogni eventuale monitoraggio integrativo a seguito del manifestarsi di situazioni di criticità ed emergenza. Tale procedura risulterà insita nel sistema di gestione ambientale del cantiere ma seguirà, di fatto, modalità e procedure di base di cui al presente documento.

PRINCIPALI AREE DI MONITORAGGIO

Progetto Lotto Codifica Documento IN17 10 EI2RHMB0007001

Rev. Foglio A 8 di 166

In via ordinaria saranno sottoposti al monitoraggio:

- le falde presenti nelle zone interessate dall'opera;
- le zone interessate da rilevanti opere in sotterraneo quali gallerie e/o grossi movimenti terra che possono determinare la variazione nel regime della circolazione delle acqua in falda;
- le aree di maggiore sensibilità e vulnerabilità della risorsa idrica alle azioni di progetto;
- le aree che eventualmente deriveranno dagli attuali studi di approfondimento di carattere idrogeologico.

Progetto Lotto Codifica Documento IN17 10 EI2RHMB0007001

Rev. Foglio A 9 di 166

3 QUADRO NORMATIVO

Di seguito si riportano i lineamenti normativi di riferimento per la componente ambientale analizzata.

3.1 NORMATIVA EUROPEA

- DIRETTIVA 2009/90/CE del 31/07/2009. Specifiche tecniche per l'analisi chimica e il monitoraggio delle acque.
- DIRETTIVA 2006/118/CE Parlamento Europeo e Consiglio del 12.12.2006: protezione delle acque sotterranee dall'inquinamento e dal deterioramento (GUUE L372 del 27.12.2006).
- DECISIONE 2001/2455/CE Parlamento Europeo e Consiglio del 20/11/2001.
 Istituzione di un elenco di sostanze prioritarie in materia di acque e che modifica la Direttiva 2000/60/CE. (GUCE L 15/12/2001, n. 331).
- DIRETTIVA 2000/60/CE del 23/10/2000. Regolamento che istituisce un quadro per l'azione comunitaria in materia di acque (Direttiva modificata dalla Decisione 2001/2455/CE).

3.2 NORMATIVA NAZIONALE

- D.Lgs. n. 172 del 13 Ottobre 2015. Attuazione della Direttiva 2013/39/UE, che modifica le direttive 2000/60/CE per quanto riguarda le sostanze prioritarie nel settore della politica delle acque.
- D.Lgs. n. 205 del 3 dicembre 2010 "Recepimento della direttiva 2008/98/Ce". Modifiche alla Parte IV del D.Lgs. 152/2006.
- D.Lgs. 10 dicembre 2010 n. 219 "Attuazione della Direttiva 2008/105/CE relativa a standard di qualità ambientale nel settore della politica delle acque, recante modifica e successiva abrogazione delle direttive 82/176/CEE, 83/513/CEE, 84/156/CEE, 84/491/CEE, 86/280/CEE, nonché modifica della direttiva 2000/60/CE e recepimento della direttiva 2009/90/CE che stabilisce, conformemente alla Direttiva 2000/60/CE, specifiche tecniche per l'analisi chimica e il monitoraggio dello stato delle acque".
- D.Lgs. 23 febbraio 2010, n. 49: Attuazione della Direttiva 2007/60/CE relativa alla valutazione e alla gestione dei rischi di alluvioni. (GU n. 77 del 2-4-2010).
- D.Lgs. 16.03.2009, n. 30 "Attuazione della Direttiva 2006/118/CE, relativa alla protezione delle acque sotterranee dall'inquinamento e dal deterioramento" definisce le

Progetto	Lotto	Codifica Documento
IN17	10	EI2RHMB0007001

Rev. Foglio A 10 di 166

misure specifiche per prevenire e controllare l'inquinamento ed il depauperamento delle acque sotterranee.

- D.Lgs. 16.01.2008, n. 4: Ulteriori disposizioni correttive ed integrative del D.Lgs. 03.04.2006, n. 152, recante norme in materia ambientale".
- D.Lgs. 08.11.2006, n. 284: Disposizioni correttive e integrative del decreto legislativo 3 aprile 2006, n. 152, recante norme in materia ambientale.
- D.Lgs. 03.04.2006, n. 152: "Norme in materia ambientale" così come modificato dal D.Lgs. 4 del 16.01.2008 "Ulteriori disposizioni correttive ed integrative del decreto legislativo 03.04.2006, n. 152, recante norme in materia ambientale".
- D.Lgs. 02.02.2001, n. 31: "Attuazione della Direttiva 98/83/CE relativa alla qualità delle acque destinate al consumo umano" come modificato dal D.Lgs. n. 27 del 02.02.2002.
- D.P.R. 18.02.1999, n. 238: Regolamento recante norme per l'attuazione di talune disposizioni della D.P.C.M. 04.03.1996: Disposizioni in materia di risorse idriche.
- L. 05.01.1994, n. 36, in materia di risorse idriche.
- D.Lgs. 12.07.1993, n. 275: Riordino in materia di concessione di acque pubbliche.

3.3 NORMATIVA REGIONALE

- D.G.R. n. 1625 del 19/11/2015. Approvazione della classificazione dello stato chimico dei corpi idrici sotterranei nel quinquennio 2010-2014. Direttive 2000/60/CE e 2006/118/CE; D.Lgs. 30/2009. Avvio della consultazione pubblica. Con la presente deliberazione si approva la classificazione dello stato chimico dei corpi idrici sotterranei nel quinquennio 2010-2014.
- D.G.R. n. 1626 del 19/11/2015. Approvazione della classificazione dello stato quantitativo dei corpi idrici sotterranei. Direttiva 2000/60/CE; D.Lgs. 30/2009. Avvio della consultazione pubblica.
- D.G.R. n. 842 del 15 maggio 2012. "Piano di Tutela delle Acque, D.C.R. n. 107 del 5/11/2009, modifica e approvazione del testo integrato delle Norme Tecniche di Attuazione del Piano di Tutela delle Acque (D.G.R. n. 141/CR del 13/12/2011)". Con il presente provvedimento si approvano alcune modifiche delle Norme Tecniche di Attuazione del Piano di tutela delle Acque e si approva il testo coordinato delle Norme Tecniche di Attuazione del Piano di Tutela delle Acque come risultante anche dalle altre modifiche apportate successivamente alla sua approvazione da parte del Consiglio regionale.

Progetto Lotto Codifica Documento IN17 10 E12RHMB0007001

- Rev. Foglio
- Deliberazione n. 20 del 24/10/2011 dell'Assemblea del Consorzio di Bonifica Alta Pianure Veneta. Adozione del nuovo "Piano Generale di Bonifica e di Tutela del Territorio", in pendenza dell'approvazione da parte della Giunta Regionale.
- Deliberazione dell'Assemblea d'Ambito Territoriale Ottimale "Veronese" n. 6 del 20 dicembre 2011. Esame ed approvazione della revisione del Piano d'Ambito dell'ATO Veronese.
- D.G.R. n. 80 del 27/01/2011. "Linee guida per l'applicazione di alcune norme tecniche di attuazione del Piano di Tutela delle Acque". Con il presente provvedimento sono approvate le linee guida e gli indirizzi per la corretta e uniforme applicazione sul territorio regionale del Piano di Tutela delle Acque e delle relative norme tecniche di attuazione.
- Deliberazione dell'Assemblea AATO Bacchiglione del 13/01/2010. Approvazione dell'Aggiornamento del Piano d'Ambito.
- D.C.R. n. 107 del 05/11/2009. Il Consiglio regionale ha approvato, ai sensi dell'art. 121 del D.Lgs. 152/2006, il Piano di Tutela delle Acque (PTA), e in particolare le relative -Norme Tecniche di Attuazione (NTA).
- L.R. n. 12 del 08/05/2009. Nuove norme per la bonifica e la tutela del territorio.
- D.G.R. n. 4453 del 29/12/2004. Adozione del Piano di Tutela delle Acque, di cui all'art.
 44 del D.Lgs. 11.05.1999 n. 152. Misure per il raggiungimento degli obiettivi di qualità dei corpi idrici significativi.
- D.G.R. n. 3003/98. Affidamento da parte della Regione Veneto ad ARPAV del compito di eseguire e coordinare le attività di monitoraggio delle acque sotterranee del Veneto, trasferendo inoltre i compiti d'elaborazione di proposte per l'aggiornamento e la revisione del "Piano per il rilevamento delle caratteristiche qualitative e quantitative dei corpi idrici della Regione del Veneto (PRQA)".
- L.R. 18 ottobre 1996, n. 32. "Norme per l'istituzione ed il funzionamento dell'agenzia regionale per la prevenzione e protezione ambientale del Veneto (ARPAV)".
- D.G.R. 17 ottobre 1986 n. 5571. Approvazione del "Piano per il rilevamento delle caratteristiche qualitative e quantitative dei corpi idrici della Regione del Veneto (PRQA)".

Progetto	Lotto	Codifica Documento	
IN17	10	EI2RHMB0007001	

Rev. Foglio A 12 di 166

4 ANALISI DEI DOCUMENTI DI RIFERIMENTO

- Progetto Definitivo di "LINEA AV/AC VERONA-PADOVA

 1º LOTTO FUNZIONALE
 VERONA-BIVIO VICENZA".
- Studio di Impatto Ambientale per il Progetto Preliminare della "LINEA AV/AC VERONA-PADOVA".
- Studio di Impatto Ambientale per il Progetto Definitivo della "LINEA AV/AC VERONA-PADOVA.
- Prescrizioni Delibera CIPE n. 94 del 29.03.2006.Linee Guida per il Progetto di Monitoraggio Ambientale (PMA) delle infrastrutture strategiche ed insediamenti produttivi di cui al Decreto Legislativo n. 163 del 12.04.2006 (Commissione speciale di Valutazione di Impatto Ambientale).
- Linee Guida per la predisposizione del Progetto di Monitoraggio Ambientale (PMA) delle opere soggette a Valutazione di Impatto Ambientale (D.Lgs. 152/2006 e s.m.i. D.Lgs. 163/2006 e s.m.i.) Ministero dell'Ambiente e della Tutela del Territorio e del Mare Direzione per le Valutazioni Ambientali con il contributo di ISPRA, Ministero dei Beni e delle Attività Culturali e del Turismo (18-12-2013).
- Linee Guida per la predisposizione del Progetto di Monitoraggio Ambientale (PMA) delle opere soggette a procedure di VIA (D.Lgs. 152/2006 e s.m.i.; D.Lgs. 163/2006 e s.m.i.) Indirizzi metodologici specifici: Ambiente idrico REV. 1 DEL 17/06/2015.
- Studi, indagini ed analisi effettuati in sede di progettazione e di analisi ambientale.
- Prescrizioni Delibera CIPE n. 84 del 22.12.2017.

Progetto Lotto Codifica Documento IN17 10 EI2RHMB0007001

Rev. Foglio A 13 di 166

5 ANALISI DELLA COMPONENTE ACQUE SOTTERRANEE

5.1 STATO ATTUALE DELL'AMBIENTE IDRICO SOTTERRANEO

Il deflusso idrico sotterraneo è alimentato dalle aliquote idriche meteoriche che, infiltrandosi nel sottosuolo, defluiscono con modalità e tempi di scorrimento che dipendono, in gran parte, dalla geologia, dall'assetto stratigrafico e tettonico dell'area.

Nell'area in esame lo schema di circolazione idrica sotterranea è principalmente condizionato dall'intensa storia morfo-tettonica, che ha condotto, nel corso dei millenni, all'attuale conformazione del territorio, determinando un assetto geologico-strutturale piuttosto complesso.

Il deflusso idrico sotterraneo risulta, quindi, particolarmente controllato dai principali lineamenti tettonici, nonché dal grado, talora spinto, di fatturazione e tettonizzazione dei termini più litoidi e dai rapporti tettonici che si sono instaurati nel corso della storia geologica dell'area.

Dal punto di vista idrogeologico si è volta particolare attenzione al settore di pianura, che risulta direttamente interessato dal tracciato ferroviario in progetto, le cui opere si svilupperanno esclusivamente al di sopra e all'interno dei depositi alluvionali e fluvioglaciali della pianura veneta.

L'origine della pianura veneta risale alla fine dell'era Terziaria quando l'orogenesi Alpina, esauriti i principali fenomeni intensi, ha continuato la fase di sollevamento dei rilievi montuosi e lo sprofondamento dell'avanpaese pedemontano.

Con l'inizio del Quaternario, quando la zona alpina e parte della fossa padana erano completamente emerse, iniziò il riempimento della vasta depressione mediante un progressivo accumulo di depositi fluvioglaciali e alluvionali appartenenti ai grandi sistemi fluviali, intervallati da sedimenti derivanti dalle varie fasi di trasgressione marina. Questa alternanza è stata principalmente guidata dall'avvicendarsi di fasi glaciali ed interglaciali, correlate ai cicli glacio-eustatici planetari che si sono succeduti nel corso del Pleistocene e dell'Olocene.

La pianura alluvionale così originatasi è stata costantemente modellata dalle continue variazioni di percorso dei corsi d'acqua, come testimoniano i numerosi paleoalvei presenti in superficie e in profondità. In particolare, a valle del loro sbocco montano i fiumi hanno ripetutamente cambiato percorso interessando aree molto ampie fino a coprire migliaia di km². Si sono così formati sistemi sedimentari che in pianta si presentano con una

Progetto Lotto Codifica Documento IN17 10 EI2RHMB0007001

Rev. Foglio A 14 di 166

morfologia a ventaglio, cioè ampi e piatti conoidi alluvionali (megaconoidi o megafan alluvionali).

I depositi quaternari della pianura veneta occidentale appartengono in gran parte alla conoide fluviale atesina originata dal fiume Adige e in minor misura dai suoi corsi d'acqua tributari, che hanno avuto una storia idrologica molto simile tra loro e che hanno conseguentemente prodotto simili processi di trasporto solido e sedimentazione dei materiali alluvionali che formano il materasso quaternario della pianura.

Il principale accrescimento delle grandi conoidi alluvionali è avvenuto in fasi successive soprattutto in conseguenza dello scioglimento dei ghiacciai, quando il trasporto solido dei fiumi era superiore a quello attuale. I corsi d'acqua depositavano, allo sbocco in pianura, il loro trasporto solido, proveniente soprattutto dalla distruzione degli apparati morenici, per riduzione della loro capacità di trasporto.

Ogni corso d'acqua ha originato, quindi, una serie di conoidi sovrapposti tra loro e lateralmente compenetrati con i conoidi degli altri fiumi.

Alla conoide principale atesina, si interdigitano le conoidi deposte dai corsi d'acqua minori che, nel tratto oggetto di studio, sono rappresentate dalle strutture depositate dai Torrenti Fibbio, Alpone, D'Illasi e Guà-Chiampo.

Le conoidi ghiaiose di ciascun corso d'acqua si sono spinte verso valle per distanze diverse, condizionate dalle differenti caratteristiche idrauliche e di regime dei rispettivi fiumi.

Le conoidi, interamente ghiaiose all'apice, procedendo verso valle, si sono arricchite sempre più di frazioni limoso argillose, dando origine a "megafan", fino ad interdigitarsi con i depositi marini della bassa pianura; questi ultimi sono il frutto di trasgressioni e regressioni marine succedutesi nel tempo.

5.1.1 SISTEMA IDROGEOLOGICO

Le caratteristiche strutturali del materasso alluvionale, descritte precedentemente, condizionano fortemente la situazione idrogeologica della pianura veronese e vicentina a ridosso delle Alpi meridionali.

È possibile suddividere il territorio di pianura, da monte a valle, in settori di alta, media e bassa pianura, in cui si riconoscono strutture idrogeologiche distinte tra loro, ma strettamente collegate.

L'alta pianura (parte più prossima ai rilievi prealpini) è formata da una serie di conoidi alluvionali ghiaiose, depositatesi in corrispondenza dello sbocco in valle dei grossi corsi

Progetto Lotto Codifica Documento IN17 10 EI2RHMB0007001

Rev. Foglio A 15 di 166

d'acqua, che sovrapponendosi ed intersecandosi tra loro, hanno creato un unico deposito in cui circola una falda di tipo freatico (**Acquifero Indifferenziato**) che inizia a monte, a ridosso dei rilievi. La potente falda freatica, che ospita l'acquifero ghiaioso indifferenziato, presenta la superficie d'acqua posta ad una profondità anche di un centinaio di metri, in particolare nella sua zona più settentrionale. Spostandosi verso sud la soggiacenza diminuisce e perciò diminuisce lo spessore della zona vadosa, finché si raggiunge una fascia, detta "fascia delle risorgive" dove la superficie piezometrica interseca la superficie topografica, creando delle caratteristiche sorgenti di pianura chiamate risorgive o fontanili, le quali drenano la falda freatica dell'alta pianura e originano molti corsi d'acqua comunemente definiti fiumi di risorgiva.

Nella media e bassa pianura i depositi alluvionali sono rappresentati da materiali progressivamente più fini, costituiti da ghiaie e sabbie con digitazioni limose e argillose le quali diventano sempre più frequenti da monte a valle; in questi depositi esiste una serie di falde sovrapposte, di cui la prima è generalmente libera e quelle sottostanti in pressione (**Acquifero Differenziato**), localizzate negli strati permeabili ghiaiosi e/o sabbiosi intercalati da sedimenti impermeabili (lenti argillose) che separano tali acquiferi confinati differenziati.

Il sistema delle falde in pressione è strettamente collegato, verso monte, all'unica grande falda freatica, dalla quale trae alimentazione e che ne condiziona la qualità di base. La zona di passaggio dal sistema indifferenziato a quello multifalde, è rappresentata dalla "fascia delle risorgive" (sopra citata), una porzione di territorio a sviluppo est-ovest, larga anche qualche chilometro e variabile nel tempo. La falda si avvicina progressivamente alla superficie del suolo fino ad emergere, anche a causa della presenza delle sottostanti lenti argillose, formando le tipiche sorgenti di pianura dette appunto risorgive (o fontanili). Esse costituiscono il "troppo pieno" della falda freatica dell'alta Pianura Veneta, e finché resteranno attive assicureranno la disponibilità idrica al Sistema Differenziato posto a valle (*Figura 5-1*).

Progetto Lotto Codifica Documento IN17 10 EI2RHMB0007001

Rev. Foglio A 16 di 166

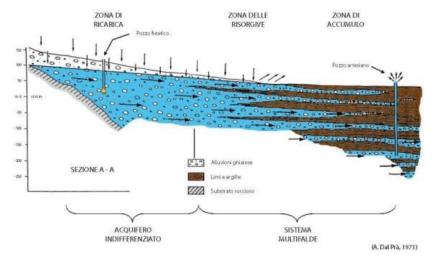


Figura 5-1 – Rappresentazione schematica del sistema idrogeologico dell'alta e media pianura veneta.

L'area di ricarica dell'intero sistema idrogeologico corrisponde alla fascia delle ghiaie, lungo la quale la falda freatica è facilmente in comunicazione (e per questo anche molto vulnerabile) con la superficie del suolo; è un'area di grandissima importanza in quanto è sede di una serie di fenomeni naturali (afflussi meteorici, dispersione dei corsi d'acqua ed infiltrazione delle acque irrigue) che consentono la conservazione ed il rinnovamento della risorsa idrica sotterranea.

5.1.2 BACINI IDROGEOLOGICI

Come previsto nell'allegato 3 alla Parte Terza del D.Lgs. 152/06, la Regione Veneto, sulla base delle informazioni raccolte, delle conoscenze a scala generale e degli studi precedenti, ha ricavato la geometria dei principali corpi acquiferi presenti nella pianura veneta (*Figura 5-2*). Sono stati, quindi, identificati **Bacini Idrogeologici** delimitati da limiti fisico-territoriale che abbiano un determinato significato idrogeologico. Tale ricostruzione idrogeologica preliminare ha quindi permesso la formulazione di un primo modello concettuale, intendendo con questo termine una schematizzazione idrogeologica semplificata del sottosuolo.

Di seguito si descrivono i bacini idrogeologici in cui ricade l'area di progetto:

- Alta Pianura Veronese (VRA)
- Alpone-Chiampo-Agno (ACA)
- Media Pianura Veronese (MPVR)
- Media Pianura tra Retrone e Tesina (MPRT)

Progetto Lotto Codifica Documento IN17 10 EI2RHMB0007001

Rev. Foglio A 17 di 166

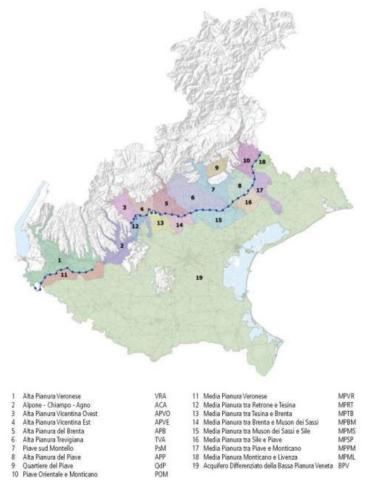


Figura 5-2 – Suddivisione del territorio regionale in Bacini Idrogeologici.

Alta Pianura Veronese (VRA)

Rappresenta una porzione dell'alta pianura che si estende dalle colline moreniche dell'anfiteatro del Garda ad ovest, fino al bacino del Torrente Alpone ad est, in corrispondenza dell'asse di drenaggio coincidente col corso del Torrente Tramigna, per un'estensione nord-sud che inizia dalle dorsali occidentali dei Monti Lessini fino al limite superiore della fascia delle risorgive. La porzione meridionale del limite occidentale coincide inoltre con un tratto del fiume Mincio, rappresentante anch'esso un asse di drenaggio della falda freatica (*Figura 5-3*).

L'alta pianura veronese appare solcata da tutta una fitta rete di paleoalvei disposti con andamento prevalentemente N-S o leggermente NO-SE e costituisce la parte più elevata della vasta conoide fluvioglaciale pleistocenica atesino-gardesana, entro la cui porzione settentrionale, a ridosso del rilievo prealpino lessineo, si apre l'ampia vallata tardiglaciale-olocenica percorsa dall'attuale corso dell'Adige, profondamente scavata e delimitata da netti orli di terrazzo.

GENERAL CONTRACTOR

1^ LOTTO FUNZIONALE VERONA-BIVIO VICENZA PMA – COMPONENTE AMBIENTALE ACQUE SOTTERRANEE Progetto Lotto Codifica Documento IN17 10 E12RHMB0007001

Rev. Foglio A 18 di 166

Il sottosuolo dell'Alta Pianura Veronese è costituito prevalentemente da materiali sciolti a granulometria grossa, ghiaioso-sabbiosi, di origine fluvioglaciale, depositati dal fiume Adige e dai corsi d'acqua provenienti dalle valli dei Monti Lessini (Torrente Tasso, Progno di Fumane, Progno di Negrar, Progno di Valpantena, Progno Squaranto-Torrente Fibbio, Progno di Mezzane, Progno d'Illasi, Torrente Tramigna), tali da costituire grosse conoidi sovrapposte con spessori che raggiungono i 200 metri. In questo materasso ghiaioso con permeabilità media molto elevata, è contenuta una potente falda freatica, con profondità che varia da circa 50 metri a Pescantina, a 1 metro nella porzione immediatamente a monte della fascia delle risorgive. Il sottosuolo non risulta però interamente costituito da matrice ghiaiosa, ma sono individuabili livelli limoso-argillosi che arrivano anche ad alcuni metri di spessore, intercalati in profondità alle alluvioni ghiaiose. Questi livelli a minor permeabilità, assumono notevole importanza nel settore delle risorgive, consentendo nel sottosuolo la differenziazione tipica del sistema multifalde in pressione e l'emergenza delle risorgive.

L'intero sistema idrogeologico è alimentato principalmente dalle dispersioni del tratto montano del fiume Adige (decine di m³/s), dalle precipitazioni (media annua di 3-4 m³/s), dalle dispersioni dei corsi d'acqua provenienti dalle valli dei Lessini ed infine dalle infiltrazioni provenienti dalle pratiche irrigue (circa 1 m³/s).

La direzione media del deflusso idrico sotterraneo è NNO-SSE, mentre il regime della falda è distinto da una sola fase di piena coincidente col periodo ricadente tra la fine dell'estate e l'inizio dell'autunno e da una sola fase di magra tra la fine dell'inverno e l'inizio della primavera. Questo comportamento è analogo a quello del fiume Adige. L'oscillazione della falda freatica nell'arco di un anno idrogeologico, raggiunge massimi di circa 5 metri nella porzione nord-orientale, e minimi di circa 1 metro in corrispondenza delle risorgive.

Progetto Lotto Codifica Documento IN17 10 EI2RHMB0007001

Rev. Foglio A 19 di 166

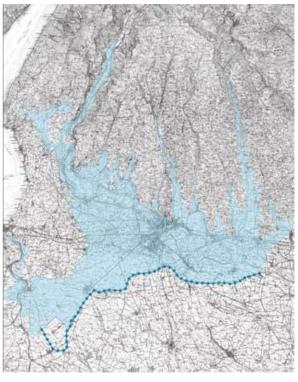


Figura 5-3 – Mappa del Bacino Idrogeologico dell'Alta Pianura Veronese (VRA).

Alpone-Chiampo-Agno (ACA)

L'area in questione è compresa tra i Monti Lessini Orientali a nord, il bacino del Torrente Alpone a ovest, il sistema idrico "Livergone-Giara-Orolo" a est ed il limite idrogeologico del passaggio dal complesso acquifero monostrato al sistema multifalde di media e bassa pianura a sud. Il limite orientale, rappresentato dal Torrente Tramigna, costituisce un asse di drenaggio idrico sotterraneo, che separa l'area dell'Alta Pianura Veronese dal sistema acquifero delle Valli dell'Alpone, del Chiampo e dell'Agno-Guà (*Figura 5-4*).

Inoltre, la delimitazione assume anche carattere puramente geologico, in quanto l'area orientale del massiccio dei Lessini si differenzia fortemente per quanto riguarda le caratteristiche geologiche dalle restanti zone dei Lessini. Si ha il passaggio da formazioni carbonatiche mesozoiche e terziarie (caratterizzate da fenomeni carsici ben sviluppati) ad un complesso vulcanico costituito principalmente da vulcaniti basaltiche Oligoceniche-Eoceniche (basalti di colata, filoni basaltici, brecce basaltiche). La permeabilità del sistema vulcanico è generalmente molto bassa, a differenza delle rocce carbonatiche del settore occidentale dei Lessini, tale da limitare notevolmente la circolazione idrica sotterranea, con conseguente rilevanza per il ruscellamento superficiale. Conseguenza di queste caratteristiche idrogeologiche è la scarsità di sorgenti significative, se si esclude quella di Montecchia di Crosara, al limite occidentale, con portate rilevanti (70 l/s).

Progetto Lotto Codifica Documento IN17 10 E12RHMB0007001

Rev. Foglio A 20 di 166

Il sottosuolo è costituito dalle alluvioni fluviali e fluvioglaciali che l'Adige trasportò dopo la glaciazione Riss; i materiali atesini arrivarono fino ai Lessini e si "anastomizzarono" con la porzione meridionale delle conoidi formate dal Torrente Chiampo e dal Torrente Agno.

Nei depositi alluvionali della porzione settentrionale ha sede un'importante falda freatica, utilizzata dagli acquedotti comunali ed importantissimo serbatoio di ricarica per le falde in pressione della media e bassa pianura (Almisano-Lonigo). Nella parte meridionale del comune di Montorso ed in quella settentrionale di Montebello Vicentino inizia la differenziazione del sistema monofalda in uno a falde sovrapposte.

L'alimentazione dell'acquifero indifferenziato è assicurata principalmente dalle dispersioni d'alveo che si verificano a nord, secondariamente dalle precipitazioni dirette, dall'irrigazione, dal ruscellamento di versante e dalle dispersioni dei corsi d'acqua minori afferenti alla valle principale. Nella falda freatica esiste un ricambio continuo d'acqua con oscillazioni annuali massime di circa 7-8 metri.

Il deflusso idrico sotterraneo generale scende verso valle con direzione media NO-SE, anche se verso est e sud le isofreatiche assumono un andamento E-O, con direzione della falda approssimativamente N-S, questo in quanto i bacini idrogeologici dell'Agno-Guà e del Chiampo tendono ad "anastomizzarsi". In questo bacino l'emergenza delle superficie freatica nel passaggio tra alta e media pianura è talmente frammentaria, che nell'area non sono presenti fontanili di particolare interesse e per tale motivo non è stato possibile individuare un corpo idrico di media pianura posto a valle del presente bacino.

Progetto Lotto Codifica Documento IN17 10 EI2RHMB0007001

Rev. Foglio A 21 di 166

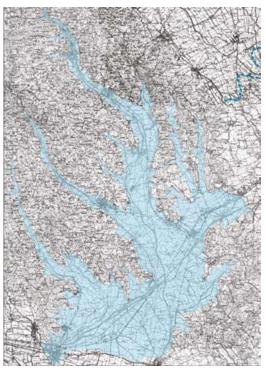


Figura 5-4 – Mappa del Bacino Idrogeologico dell'Alpone-Chiampo-Agno (ACA).

Media Pianura Veronese (MPVR)

La media pianura veronese è limitata ad ovest dal confine regionale con la Lombardia, mentre ad est dal limite orientale del bacino idrogeologico di alta pianura denominato "Alpone-Chiampo-Agno", coincidente col Torrente Tramigna, il quale costituisce un asse di drenaggio idrico sotterraneo, che separa l'area Veronese dal sistema acquifero delle Valli dell'Alpone, del Chiampo e dell'Agno-Guà (*Figura 5-5*).

Nell'area della media pianura veronese, sono presenti numerosissime sorgenti di pianura (circa 150), originatesi sia per sbarramento (la risalita dell'acqua è dovuta alle variazioni di permeabilità in senso orizzontale instauratesi tra l'alta e la media pianura) sia per affioramento (l'emergenza dell'acqua è determinata dall'intersecarsi tra la superficie freatica e quella topografica). Nella pianura veronese le risorgive si sviluppano all'interno di una fascia di territorio larga fino a 6-8 km ("fascia dei fontanili veronesi"), che si estende per circa 30 km dalle colline moreniche del Garda, fino a giungere il torrente Tramigna. Nella porzione occidentale il fenomeno delle risorgive avviene prevalentemente per sbarramento, verso est invece iniziano a svilupparsi le risorgive di affioramento alla base del terrazzo fluviale dell'Adige (San Giovanni Lupatoto). Dal fitto sistema di risorgive trovano origine importanti corsi d'acqua (Tione, Tartaro, Menago, Bussè), che caratterizzano in maniera decisa l'idrologia della bassa pianura veneta.

Progetto Lotto		Codifica Documento			
IN17	10	El2RHMB0007001			

Rev. Foglio A 22 di 166

Il sistema differenziato si origina al passaggio tra l'alta e la media pianura a causa delle intercalazioni limoso-argillose che, assumendo una disposizione maggiormente omogenea e continua, suddividono l'acquifero ghiaioso in una serie di acquiferi confinati. In questo sistema di acquiferi in pressione, la falda maggiormente superficiale risulta di tipo freatico, libera di oscillare tra il piano campagna e i livelli poco permeabili presenti nel sottosuolo. Nell'area, la superficie freatica oscilla tra i 4 ed i 6 metri dal piano campagna nella porzione settentrionale e tra 1 e 1,5 metri dal piano campagna nella porzione meridionale. Gli acquiferi confinati invece contengono una serie di falde sovrapposte in pressione, protette in senso verticale dagli orizzonti limoso-argillosi poco permeabili, ma maggiormente vulnerabili lungo la direzione di scorrimento idrico sotterraneo.

Nel sottosuolo della media pianura veronese, fino alla profondità di 150 metri dal piano campagna (p.c.) è possibile identificare 5 acquiferi, il cui contenuto in ghiaia diminuisce (con conseguente aumento della matrice sabbiosa) avvicinandosi alla bassa pianura, con un aumento del grado di artesianità (maggiore prevalenza) con l'aumento della profondità. In via generale e schematica, a partire dal piano campagna è possibile individuare:

- 1. Acquifero freatico superficiale, tra p.c. e -5 m;
- 2. Acquifero semiconfinato, tra -15 e -30 m;
- 3. I Acquifero confinato, tra -40 e -60 m;
- 4. Il Acquifero confinato, tra -80 e -100 m;
- 5. III Acquifero confinato, tra -120 e -140 m.

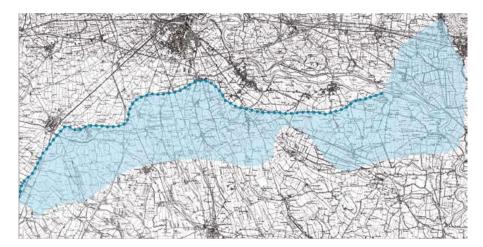


Figura 5-5 – Mappa del Bacino Idrogeologico della Media Pianura Veronese (MPVR).

Media Pianura tra Retrone e Tesina (MPRT)

Riveste un ruolo fondamentale il fiume Bacchiglione, il quale nasce poco a monte di Vicenza dall'unione di diversi rii di risorgiva della zona di Dueville.

GENERAL CONTRACTOR

1^ LOTTO FUNZIONALE VERONA-BIVIO VICENZA PMA – COMPONENTE AMBIENTALE ACQUE SOTTERRANEE Progetto Lotto Codifica Documento IN17 10 E12RHMB0007001

Rev. Foglio A 23 di 166

Il fiume Bacchiglione nasce dall'unione di due distinti sottosistemi idrografici: il primo è originato dalle risorgive del Bacchiglione propriamente detto, situate in comune di Dueville (VI) che danno origine ad un corso d'acqua denominato nel suo primo tratto Bacchiglioncello (con portate di circa 3 m3/s calcolate negli anni 70-80), mentre il secondo è costituito dal sottobacino Leogra-Timonchio che raccoglie le acque di una piccola parte della zona montana vicentina e di una buona parte della pianura intorno a Schio. La confluenza di questi due sottosistemi avviene poco a monte della città di Vicenza e da qui il fiume inizia il suo percorso assumendo il nome di Bacchiglione. L'affioramento della superficie freatica assume caratteri di continuità, da ovest ad est, tali da permettere l'esistenza di una fascia di risorgive (fontanili) ben sviluppata e di notevole interesse idrogeologico, idrologico ed ecologico. Le risorgive presenti nel territorio esaminato sono numerosissime, interessando principalmente i comuni di Costabissara, Caldogno, Villaverla, Dueville e Sandrigo. L'area delle risorgive maggiormente importante nel contesto della provincia di Vicenza, ma anche nel quadro regionale, è quella di Villaverla-Dueville, soprattutto la zona del cosiddetto "Bosco di Dueville", dove risulta elevata la presenza di polle di risorgenza che, drenate in una rete di canali assai fitta, convergono in un'unica asta, che dopo la confluenza con il Timonchio, come già citato, prende il nome di Bacchiglione. Inoltre quest'area è molto importante dal punto di vista quali-quantitativo, in quanto sono presenti numerose opere di presa acquedottistiche che prelevano acqua potabile da destinare alle utenze della provincia di Vicenza e di Padova. La falda freatica oscilla tra i 3,5 ed i 5,5 metri dal piano campagna nella porzione settentrionale, e tra i 3 ed i 4,5 metri dal piano campagna nella porzione meridionale (Figura 5-6).

Progetto Lotto Codifica Documento IN17 10 EI2RHMB0007001

/. Foglio 24 di 166

Figura 5-6 – Mappa del Bacino Idrogeologico della Media Pianura tra Retrone e Tesina (MPRT)

Studi effettuati a scala regionale riportano le prime indicazioni generali sulla morfologia

5.1.3 MORFOLOGIA PIEZOMETRICA E DIREZIONE DEL FLUSSO IDRICO SOTTERRANEO

piezometrica e le direzioni di deflusso idrico sotterraneo, così come si evince dalla "Carta delle isofreatiche del Veneto" (2003), riportata in *Figura 5-7*, che per la porzione di pianura di interesse evidenzia una direzione principale di flusso grosso modo orientata NW-SE. Di maggiore dettaglio, ma ancora a scala regionale, le elaborazioni piezometriche riportate nei PTCP delle Provincie di Verona e Vicenza, dalle quali si evince che il flusso idrico sotterraneo nella conoide atesina, sino al suo limite orientale fissato dall'asse di drenaggio del Tramigna, assume una direzione media NW-SE. Il gradiente idraulico della falda assume valori pari a circa lo 0.2% all'altezza di Verona Est e di S. Martino Buon Albergo, che aumentano sino allo 0.5% nel tratto immediatamente sottogradiente, per poi decrescere nuovamente a valori intorno allo 0.1% in prossimità del limite del bacino idrogeologico imposto dall'asse di drenaggio del T. Tramigna. Le quote piezometriche variano tra circa 45 m s.l.m. presso Verona Est, 38 m s.l.m. all'altezza di San Martino Buon Albergo, 25 m s.l.m. presso Zevio e 21 m s.l.m. a Belfiore.

Nel settore orientale occupato dall'unità idrogeologica Alpone-Chiampo-Agno la falda, seguendo l'andamento della morfologia valliva incassata tra i rilievi dei Lessini e quelli dei Berici, scende con direzione N-S in corrispondenza della conoide dell'Alpone e NE-SW, più verso Est presso Montebello Vicentino.

Progetto Lotto Codifica Documento IN17 10 EI2RHMB0007001

Rev. Foglio A 25 di 166

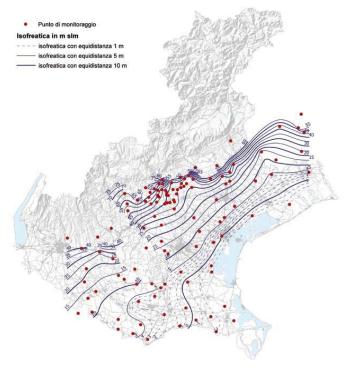


Figura 5-7 – Carta delle isofreatiche del Veneto (2003).

All'altezza di quest'ultimo abitato il gradiente idraulico assume valori medi dello 0.5% e si decrementa verso San Bonifacio (0.3-0.4%), mentre le quote piezometriche risultano variabili tra circa 40 m s.l.m., presso Montebello Vicentino e 22 m s.l.m. presso San Bonifacio.

In corrispondenza dell'asse di drenaggio del Tramigna il flusso idrico sotterraneo ha direzione N-S con gradiente che si riduce fortemente tra le aree poste in vicinanza del margine collinare (0.3%) e quelle più a valle dove risulta pari a circa 0.04%.

5.1.4 SORGENTI E POZZI

Come già esposto precedentemente la maggior parte delle sorgenti (circa 150) si rinvengono nella media pianura veronese e si sviluppano all'interno di una fascia di territorio larga fino a 6-8 km ("fascia dei fontanili veronesi"), che si estende per circa 30 km dalle colline moreniche del Garda fino a giungere al Torrente Tramigna. Essi si sono originati sia per sbarramento (la risalita dell'acqua è dovuta alle variazioni di permeabilità in senso orizzontale instauratesi tra l'alta e la media pianura) sia per affioramento (l'emergenza dell'acqua è determinata dall'intersecarsi tra la superficie freatica e quella topografica).

Da menzionare inoltre la presenza di sorgenti idrotermali nella zona di Caldiero le cui acque provengono dalla falda profonda e vengono riscaldate dal calore terrestre,

Progetto Lotto Codifica Documento IN17 10 E12RHMB0007001

Rev. Foglio A 26 di 166

formando una falda termica o meglio "un circuito geotermico che ha sede in un serbatoio carbonatico sepolto", che scorre in profondità e che risale quando incontra le fratture del substrato roccioso su cui sono ubicate le Terme omonime. La composizione chimica dell'acqua di Caldiero è molto simile a quella delle acque ipotermali dell'area Berica e dei colli Euganei e questo conferma che fanno parte di un grande circuito geotermale. Si tratta di un'acqua tiepida, poco radioattiva, praticamente neutra (pH = 7.3), che contiene una quantità media di sali minerali (residuo fisso a 180 °C 468 mg/l), soprattutto bicarbonati e solfati di calcio (Ca) e di magnesio (Mg), con la presenza di sodio (Na) e di potassio (K) (metalli alcalini). Proprio in queste caratteristiche chimico-fisiche e nell'azione combinata dei suoi componenti si devono quindi ricercare le qualità terapeutiche di quest'acqua.

In riferimento all'area di progetto si evidenzia la presenza di alcune sorgenti poste lungo il tracciato ferroviario.

In sinistra del Fiume Valpantena, a Sud della ferrovia, si estendono in area privata "Gli Orti della Chiesa Benedettina" ove sono presenti quattro sorgive, di cui 2 principali, dalla capacità complessiva stimata di oltre 150 l/s. Le acque delle sorgive confluiscono in un fosso privato, scolo Orti, che delimita la proprietà ecclesiastica e la proprietà Bighignoli. Di queste *Sorgive "Orti"* tre ricadono sotto il sedime della nuova linea AC/AV rispettivamente alle Km 1+324, 1+428, 1+502.

L'intervento di progetto prevede di mantenere inalterato il deflusso delle sorgive attraverso la realizzazione di un materasso di materiale grossolano (spessore minimo 1.0 m) confinato da geotessuto e drenato da tubazioni forate aventi come recapito lo scolo Orti. In corrispondenza dell'immissione si è previsto di rivestire in cls lo scolo per un tratto di 5.0 m a monte e a valle e di creare un allargamento per minimizzare l'interferenza tra la corrente di deflusso longitudinale e quella in arrivo dal dreno della sorgiva.

Sono inoltre da citare le diverse sorgenti di terrazzo, che rappresentano la venuta a giorno della falda libera dell'acquifero ghiaioso-sabbioso in corrispondenza delle basi delle scarpate di terrazzo fluviale. In particolare, in prossimità della galleria San Martino Buon Albergo è presente una sorgente di terrazzo in Località "La Sorgente" (a valle dell'imbocco nord) e sorgenti di terrazzo ubicate ai piedi della scarpata che limita la piana del Torrente Fibbio, presso le località Cà Dell'Aglio e Chievo che, nel complesso, alimentano il fitto reticolo irriguo presente lungo la piana del T. Fibbio.

Nell'area in esame sono inoltre presenti numerosissimi pozzi, più o meno profondi e di diversa tipologia costruttiva, che sono sfruttati non solo da Enti Pubblici o privati, che poi

rogetto	Lotto	Codifica Documento
IN17	10	EI2RHMB0007001

Rev. Foglio A 27 di 166

la distribuiscono mediante la rete acquedottistica ma, molto frequentemente, anche da singoli privati.

In particolare, per quanto riguarda le opere di captazione sulla base del database denominato Gestori Acquedotti (creato da: Osservatorio Regionale Acque - ORAC - anno 2000) si può constatare che la maggior parte dei punti di captazione è localizzata a nord della "fascia delle risorgive", dimostrando quanto sia importante, per l'intero territorio regionale, l'area di ricarica del sistema idrogeologico della Pianura Veneta, caratterizzata dall'acquifero ghiaioso-sabbioso indifferenziato. Lungo tale fascia la falda freatica è in comunicazione con la superficie del suolo e pertanto molto vulnerabile.

Le opere che attingono dalle acque sotterranee (acque di falda o di sorgente) sono nettamente più importanti, per numero e portata, di quelle che attingono da acqua superficiale. Le sorgenti sono il 55% del numero totale delle prese ed i pozzi il 43%, mentre le captazioni di acqua superficiale sommano il rimanente 2%.

Per un'analisi delle opere di captazione esistenti nei pressi del tracciato dell'opera in progetto sono stati presi in considerazioni i dati dell'Autorità di Bacino dell'Adige che si sono avvalsi delle seguenti fonti di censimento: Autorità di Bacino, CNR, Provincia di Verona, Provincia di Vicenza.

Inoltre, per una successiva analisi significativa delle interferenze fra le opere di captazione a uso acquedottistico e il tracciato ferroviario in Provincia di Verona si è scelto di utilizzare le banche dati del genio Civile e dell'AATO Veronese (*Figura 5-8*) in quanto provviste di maggiori informazioni.

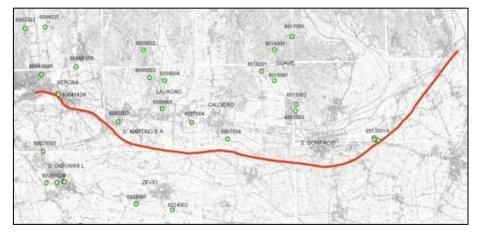


Figura 5-8 – Pozzi acquedottistici AATO VERONESE nei pressi del tracciato.

Sulle Carte Idrogeologiche di progetto (IN0D00DI2G5GE0002001B÷8B) sono ubicati i pozzi, suddivisi tra privati e acquedottistici, posti in un intorno significativo del tracciato

Progetto Lotto Codifica Documento IN17 10 EI2RHMB0007001

Rev. Foglio A 28 di 166

ferroviario, reperiti dai diversi Enti (AATO Veronese, CNR, Catasto Pozzi, Istituto per lo studio della dinamica delle grandi masse).

Per i pozzi acquedottistici è stata indicata anche la ZR (Zona di Rispetto - cerchi blu) tracciata con criterio geometrico (raggio 200 m dal pozzo) così come previsto dal D. Lgs. 152/06.

Per una visione generale della situazione acquedottistica nella Provincia di Verona e Vicenza, si riportano, nelle *Figure 5-9÷5-13*, degli stralci delle Carte Idrogeologiche di cui sopra con l'ubicazione dei pozzi acquedottistici più significativi per la loro vicinanza al tracciato.

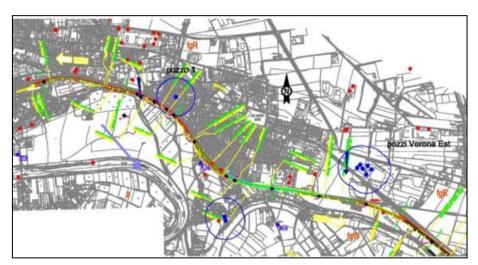


Figura 5-9 – Ubicazione dei pozzi pubblici Verona Est.

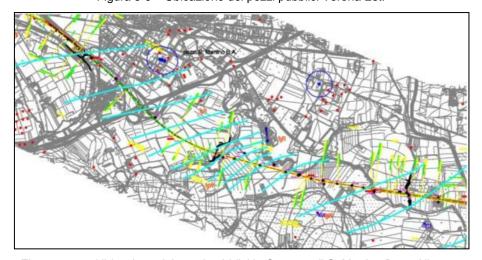


Figura 5-10 – Ubicazione dei pozzi pubblici in Comune di S. Martino Buon Albergo.

Progetto Lotto Codifica Documento IN17 10 EI2RHMB0007001

Rev. Foglio A 29 di 166

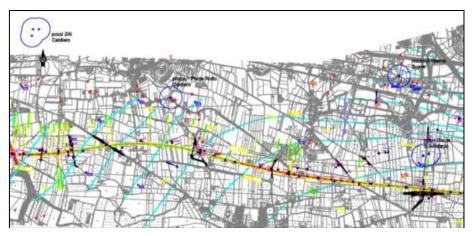


Figura 5-11 – Ubicazione dei pozzi pubblici in Comune di Caldiero e Soave.

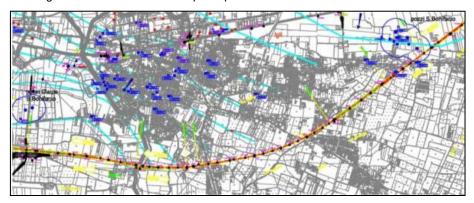


Figura 5-12 – Ubicazione dei pozzi pubblici in Comune di S. Bonifacio.

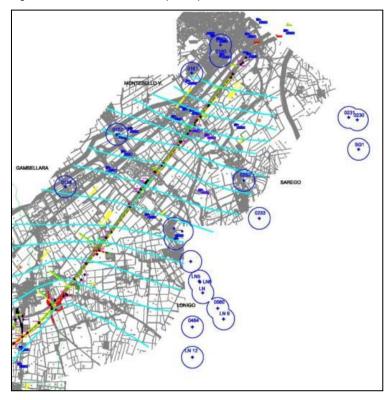


Figura 5-13 – Ubicazione dei pozzi pubblici in provincia di Vicenza (dati PTCP)

Progetto Lotto Codifica Documento IN17 10 E12RHMB0007001

Rev. Foglio A 30 di 166

L'ubicazione dei succitati pozzi, posti in un intorno significativo del tracciato ferroviario, è stata riportata anche sulle Carte Idrogeologiche

(IN0D01DI2N4IM0002009C, IN0D01DI2N4IM0002010D, IN0D01DI2N4IM0002012C, IN0D01DI2N4IM0002013C, IN0D01DI2N4IM0002014C, IN0D01DI2N4IM0002015C, IN0D00DI2N4IM0002016C, IN0D02DI2N4IM0002207D, IN0D02DI2N4IM0002208D, IN0D02DI2N4IM0002209D, IN0D02DIN4IM0002210D.

Per quanto riguarda le interferenze del tracciato ferroviario sui pozzi presenti nell'area sono state previste delle misure compensative. In particolare, per i pozzi privati collocati sul percorso o nelle sue immediate vicinanze (<50 m dall'asse del tracciato ovvero all'interno delle aree di cantiere), si prevede l'obliterazione in fase di costruzione dell'opera e la sostituzione del pozzo con un altro di analoga potenzialità. Per quanto riguarda i pozzi ubicati nei dintorni del tracciato, ad una distanza maggiore di 50 m dall'asse, verranno verificate eventuali variazioni del loro regime idraulico e, in caso sia necessario, si utilizzeranno opportune misure compensative che dovranno garantire l'approvvigionamento idrico.

5.1.5 CARATTERISTICHE IDROGEOLOGICHE DI DETTAGLIO DEL TRACCIATO

In base alle caratteristiche geolitologiche, stratigrafiche e idrogeologiche evidenziate nel corso dello studio svolto, nonché da quelle derivate dagli studi precedenti, è possibile distinguere i diversi corpi idrici sotterranei che vengono interessati dalle opere di progetto (INOD00DI2N4IM0002009÷16B e INOD02DI2N4IM0002007÷10D):

- Acquifero differenziato ghiaioso con prima falda in pressione al disopra dei 30 m;
- Acquifero differenziato ghiaioso con prima falda in pressione al di sotto dei 30 m;
- Acquifero indifferenziato ghiaioso-sabbioso;
- Acquifero indifferenziato sabbioso-ghiaioso.

Il tracciato ferroviario in oggetto si sviluppa in parte al di sopra di depositi alluvionali inseriti nell'ambito dei bacini idrogeologici dell'alta (VRA) e media pianura (MPVR), nella porzione occidentale e centrale della tratta, e nel bacino idrogeologico Alpone-Chiampo-Agno (ACA) nel settore orientale della tratta e in parte al di sopra di depositi alluvionali inseriti nell'ambito dei bacini idrogeologici dell'Alpone-Chiampo-Agno (ACA) e della Media Pianura tra Retrone e Tesina (MPRT).

Dividendo l'intero sviluppo ferroviario in tre Tratti si descrivono di seguito le caratteristiche geologiche ed idrogeologiche ivi presenti:

Progetto Lotto Codifica Documento IN17 10 EI2RHMB0007001

Rev. Foglio A 31 di 166

Tratto 1 - Tratta compresa tra Verona e la scarpata morfologica, su cui è impostata la piana alluvionale del Torrente Fibbio, per una lunghezza complessiva di circa 7,6 km. Il tracciato si sviluppa nel bacino idrogeologico dell'alta pianura (VRA) ed è impostato sull'unità formata dai sedimenti fluvioglaciali antichi, costituita principalmente da ciottoli, ghiaie e sabbie debolmente limose.

Nel tratto compreso tra la Km.ca 5+000 circa e la Km.ca 7+600 circa, al di sotto delle alluvioni, dapprima a prevalenza ghiaioso-sabbiosa (per uno spessore variabile tra 8 e 10 m da pc) poi a prevalenza sabbiosa (fino a circa 23,5 e 33 m da pc), si rinviene la presenza di un primo livello significativo meno permeabile e/o impermeabile. Tale livello limoso-argilloso, di spessore variabile tra circa 3 e 9 m, determina una parziale compartimentazione dell'acquifero freatico e, quanto meno localmente, consente di individuare una prima falda libera da una sottostante seconda falda semiconfinata.

In tale tratto la falda freatica presenta una soggiacenza, variabile a seconda delle quote del piano campagna, da un massimo di circa 10 m a un minimo di circa 6 m da p.c., che si riduce bruscamente in corrispondenza della scarpata morfologica (porzione terminale del tratto) che separa i due terrazzi.

Per quanto riguarda la morfologia della superficie piezometrica e la direzione del flusso idrico sotterraneo, che rappresenta un ulteriore importante elemento per definire la potenziale interferenza tra opera e falda idrica, si dispone della Carta idrogeologica dell'Alta Pianura Veronese riportata nei documenti redatti a corredo del PTCP della Provincia di Verona.

Gli studi effettuati per il PTCP (riportati sulla Carta Idrogeologica: IN0D00DI2N4IM0002009÷16B) individuano una direzione di falda che, per il tratto in oggetto, presenta andamento NNW-SSE, con gradiente idraulico del 0.2% e quote piezometriche variabili tra circa 44 m s.l.m. presso la stazione di Verona Porta Vescovo e circa 33 m s.l.m. presso la porzione terminale del tratto.

Progetto Lotto Codifica Documento IN17 10 EI2RHMB0007001

ento Rev. Foglio 01 A 32 di 166

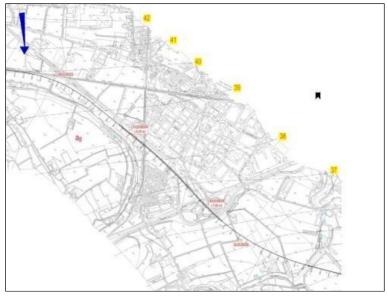


Figura 5-14 - Superficie piezometrica da PTCP Provincia di Verona.

Tali dati sono stati messi a confronto sulla medesima cartografia (Carta Idrogeologica - *Figura 5-15*) con quelli derivati dalle misure piezometriche rilevate nella rete di piezometri realizzati nel 2014-2015 nell'ambito del progetto definitivo.

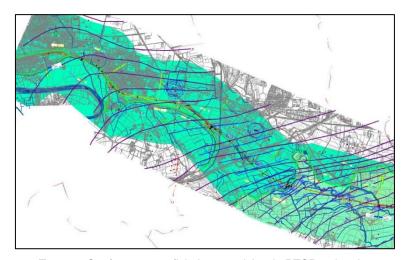


Figura 5-15 – Tratto 1_Confronto superfici piezometriche da PTCP e da misure 2014-2015.

L'andamento della superficie piezometrica (tratta da Carta Idrogeologica e Profilo Idrogeologico - IN0D00DI2G5GE0002001÷8B) concorda nel complesso con quello del PTCP, anche se le quote piezometriche, rilevate durante le più recenti campagne di misura, risultano di circa 1 m più alte di quelle ricostruite nell'elaborazione riportata nel PTCP.

Bisogna, comunque, tener conto che: la disposizione dei piezometri lungo il tracciato non consente di estendere la ricostruzione lateralmente al tracciato ferroviario (per definire con

Progetto Lotto Codifica Documento IN17 10 EI2RHMB0007001

Rev. Foglio A 33 di 166

precisione la direzione del flusso idrico sotterraneo), l'esecuzione dei piezometri per fasi di avanzamento e le diverse tipologie (tubo aperto e Casagrande) rendono talora non completamente correlabili le misure rilevate.

Per i valori di soggiacenza puntuali dei livelli idrici sotterranei si rimanda alla Carta Idrogeologica corredata di profilo idrogeologico (IN0D01DI2N4IM0002009C÷15C) ed ai risultati delle indagini geognostiche a corredo del Progetto Definitivo.

In questo tratto è prevista la realizzazione della galleria artificiale *San Martino Buon Albergo* ed i tratti in trincea in entrata ed uscita dalla galleria stessa.

La galleria si svilupperà (*Figura 5-16*) tra i km 4+941 e 6+541 della linea AV/AC, in corrispondenza della località Case Nuove del Comune di San Martino Buon Albergo, in un'area a morfologia sub-pianeggiante, leggermente degradante verso Sud, con pendenza media dello 0.25%, e quote altimetriche del terreno comprese tra circa 49 e 44 m s.l.m. La falda libera che interferirà con tale opera presenta una soggiacenza attuale del livello freatico di circa 6-8 m da p.c. (corrispondente a quote piezometriche variabili tra circa 40 m s.l.m. presso l'imbocco Nord e 37 m s.l.m. presso l'imbocco Sud).

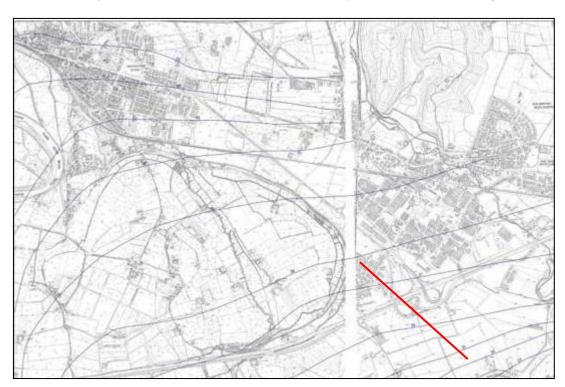


Figura 5-16 – Superficie piezometrica (tratta da PTCP della Provincia di Verona). In rosso è riportato il tratto di galleria in progetto).

Al fine di meglio interpretare il modello idrogeologico dell'area in esame si stanno misurando periodicamente i livelli di falda rilevati nei piezometri realizzati lungo il tracciato

Progetto Lotto Codifica Documento IN17 10 EI2RHMB0007001

Rev. Foglio A 34 di 166

della linea ferroviaria. Sulla base dei dati attuali e di quelli reperiti presso varie amministrazioni pubbliche, aziende ed enti operanti nel territorio, in sede di progettazione definitiva è stato implementato un modello numerico di flusso delle acque sotterranee, finalizzato alla valutazione delle potenziali interferenze tra opera e falda che potrebbero determinare effetti negativi sulle infrastrutture sotterranee circostanti o sulla medesima opera.

Per le caratteristiche idrogeologiche di dettaglio del settore che sarà interessato dalla galleria artificiale di S. Martino Buon Albergo e per i risultati derivati dalla modellazione sopracitata si rimanda ai contenuti della Relazione di Progetto (Relazione Idrogeologica: IN0D00DI2RHGE0002001B).

Sono, inoltre, previsti in questo tratto lo sviluppo del tracciato in rilevato, la realizzazione dell'elettrodotto aereo (tralicciato) e della sottostazione elettrica di trasformazione denominata San Martino Buon Albergo.

Tratto 2 - Tratta compresa tra la scarpata morfologica, che separa i due terrazzi, fino alla Km.ca 20+300 circa per una lunghezza complessiva di poco meno di 13 km. In quest'area il tracciato interessa un settore convenzionalmente compreso nel bacino idrogeologico della media pianura (MPVR) e si sviluppa al di sopra del terrazzo del Wurm tardivo, su cui è impostata la piana alluvionale del T. Fibbio, che risulta altimetricamente ribassato di circa 10 m rispetto al precedente.

Tale tratto è caratterizzato (rispetto al tratto 1) da minore presenza di sedimenti coesivi, intercalati nelle alluvioni grossolane, e dalla netta predominanza (nella maggior parte del tratto) di sedimenti alluvionali a prevalenza sabbiosa che si rinvengono nel sottosuolo fino alla massima profondità raggiunta dai sondaggi.

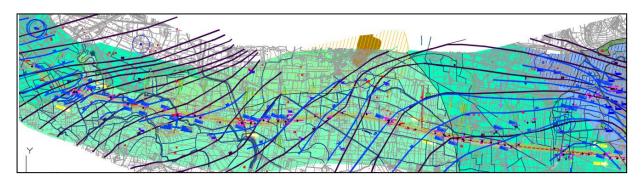
In particolare in tale tratto le caratteristiche litologiche del sottosuolo sono contraddistinte da una prima coltre superficiale, di spessore variabile (fino ad un massimo di 5-6 m), costituita da sedimenti limoso-argillosi (contenenti livelli di sabbie), che sovrastano un livello continuo di alluvioni grossolane a litologia ghiaioso-sabbiosa (spessore variabile tra 5 e 15) che passano in profondità a sedimenti a granulometria prevalentemente sabbiosa fino alla massima profondità indagata con i sondaggi.

Il complesso ghiaioso sabbioso e sabbioso è localmente intercalato da livelli limosoargillosi, che risultano suddivisi in più corpi lenticolari di spessore piuttosto esiguo e di minore estensione areale rispetto a quelli presenti nel tratto 1.

Progetto Lotto Codifica Documento IN17 10 EI2RHMB0007001

Rev. Foglio A 35 di 166

In prossimità della base della scarpata morfologica che separa i due terrazzi, l'intersezione tra la superficie topografica e quella piezometrica determina lo sfioro delle acque di falda che danno origine ad alcune sorgenti di terrazzo, che alimentano il fitto reticolo irriguo presente lungo la piana del T. Fibbio.


In tale tratto la falda freatica diviene, quindi, sub-affiorante, essendo praticamente posta a livello del piano campagna e talora presentando caratteristiche di vera e propria artesianità con livello saliente fino a un metro al di sopra del p.c..

Nel settore considerato, se si esclude il livello impermeabile superficiale che conferisce condizioni di parziale confinamento alla falda, determinando localmente anche fenomeni di artesianità s.s., a maggiore profondità non si rilevano livelli limoso-argillosi di spessore ed estensione tale da poter determinare una compartimentazione dell'acquifero superficiale in più falde sovrapposte.

L'unità sabbioso-ghiaiosa e ghiaiosa costituisce, quindi, un acquifero monostrato che è sede di una falda sub-affiorante in condizioni da libera a semi-confinata, avente una soggiacenza variabile da un minimo di circa 0.2 m fino a mediamente 2 m circa, come evidenziato dai dati acquisiti nel corso delle più recenti campagne freatimetriche condotte nel periodo novembre 2014 – marzo 2015.

Per quanto riguarda la morfologia della superficie piezometrica, gli studi effettuati (dati da PTCP) evidenziano un flusso idrico sotterraneo di direzione all'incirca NNW-SSE nella porzione iniziale del tratto e NW-SE nella porzione centrale, tendendo a ruotare progressivamente in senso orario, assumendo direzione circa N-S e NNE-SSW nella porzione terminale, in ragione della presenza del marcato asse di drenaggio idrico sotterraneo in corrispondenza del T. Tramigna.

Tali dati sono stati messi a confronto (IN0D01DI2N4IM0002009C÷15C) con quelli derivati dalle misure piezometriche rilevate nella rete di piezometri realizzati nel 2014-2015 nell'ambito del progetto definitivo (Carta Idrogeologica e Profilo Idrogeologico - IN0D00DI2G5GE0002001-8B - *Figura 5-17*).

Progetto Lotto Codifica Documento IN17 10 EI2RHMB0007001

Documento Rev. Foglio
MB0007001 A 36 di 166

Figura 5-17 - Tratto 2_Confronto superfici piezometriche da PTCP e da misure 2014-2015.

Anche in questo caso la ricostruzione piezometrica, eseguita in fase di progettazione definitiva, presenta alcune approssimazioni per le ragione già esposte nella descrizione del tratto 1.

Le quote piezometriche variano tra circa 33 m s.l.m. (porzione iniziale del tratto) sino a un minimo di circa 20 m s.l.m. (porzione finale).

Per i valori di soggiacenza puntuali dei livelli idrici sotterranei si rimanda alla Carta Idrogeologica corredata di profilo idrogeologico (IN0D01DI2N4IM0002009C÷15C) ed ai risultati delle indagini geognostiche a corredo del Progetto Definitivo.

Un'ulteriore peculiarità idrogeologica che interessa il tratto in esame è dato dalla presenza di acque sotterranee contraddistinte da anomalie termiche connesse alla presenza della Zona termale di Caldiero. L'estensione approssimativa dell'area interessata dalla presenza di anomalie termiche nelle acque di falda è mostrata nelle Tavole di progetto (IN0D00DI2G5GE0002003B e IN0D00DI2G5GE0002004B) e riportata nella Carta Idrogeologica (IN0D01DI2N4IM0002009C÷15C).

Le opere previste in tale tratto consistono in rilevati ferroviari, ponti, viadotti, tombinature, la realizzazione dell'elettrodotto aereo (tralicciato) e della sottostazione elettrica di trasformazione denominata Belfiore.

Tratto 3 - Procedendo verso Est, nell'ultimo tratto, di lunghezza pari a circa 12 km, compreso all'incirca tra il T. Alpone e Montebello Vicentino, il tracciato si sviluppa nel bacino idrogeologico ACA (Alpone, Chiampo e Agno-Guà), in corrispondenza del quale si manifesta una marcata variazione nei caratteri litologici del sottosuolo, poiché ai depositi fluvioglaciali si interdigitano depositi alluvionali più recenti a granulometria più variabile, legati ai cicli deposizionali dei corsi d'acqua Chiampo e Agno-Guà. In tali depositi si ha una sostanziale predominanza di terreni limoso-argillosi a cui si alternano sedimenti a granulometria grossolana costituiti da ghiaie sabbiose e sabbie limose.

Solo nella parte terminale della tratta, all'altezza dell'abitato di Montebello Vicentino, tornano a comparire livelli ghiaioso-sabbiosi di spessore significativo.

La modifica nelle condizioni litologiche del sottosuolo che contraddistingue il settore occupato dalle alluvioni dei corsi d'acqua minori, viene ricondotta sia alla minore portata dei corsi d'acqua che scendevano dai Monti Lessini, sia all'azione di ostacolo operata, allo sbocco nella pianura, dalla principale conoide atesina, con conseguente deposizione di

Progetto Lotto Codifica Documento
IN17 10 EI2RHMB0007001

Rev. Foglio A 37 di 166

sedimenti a granulometria perlopiù fine connessa alla formazione di aree di ristagno e di piccoli bacini lacustri.

La porzione iniziale del tratto rappresenta, quindi, la zona di interdigitazione dei sedimenti fluvioglaciali della conoide atesina con i sedimenti alluvionali del sistema Alpone, Chiampo e Agno-Guà. Da tale area e procedendo verso est i depositi limo-argillosi assumono una disposizione via via più omogenea e continua (soprattutto dalla Km.ca 26+500 circa) all'interno delle alluvioni grossolane, suddividendo, quindi, l'acquifero ghiaioso in una serie di acquiferi (sistema multifalda), dapprima semi-confinati, e con un aumento della compartimentazione procedendo verso est.

In tale tratto si ha quindi il passaggio graduale dall'acquifero monostrato al sistema multifalde, caratterizzato da falde sovrapposte in pressione (da semi-confinate a confinate), contenute all'interno dei livelli ghiaioso-sabbiosi e sabbioso-ghiaiosi e protette in senso verticale dagli orizzonti limoso-argillosi poco permeabili.

Nel tratto in esame, gli studi effettuati (dati da PTCP) evidenziano un flusso idrico sotterraneo che scende con direzione approssimativamente NE-SW all'altezza dell'abitato di Montebello Vicentino (porzione terminale del tratto) per poi subire, all'incirca nei pressi di S. Bonifacio, una rotazione in senso antiorario fino ad assumere una direzione NNE-SSW (porzione iniziale del tratto) legata alla presenza dell'asse di drenaggio idrico sotterraneo in corrispondenza del T. Tramigna.

Tali dati sono stati messi a confronto (IN0D01DI2N4IM0002009C÷15C - Figura 5-18) con quelli derivati dalle misure piezometriche rilevate nella rete di piezometri realizzati nel 2014-2015 nell'ambito del progetto definitivo (Carta Idrogeologica e Profilo Idrogeologico - IN0D00DI2G5GE0002001-8B).

Progetto Lotto Codifica Documento IN17 10 EI2RHMB0007001

Rev. Foglio A 38 di 166

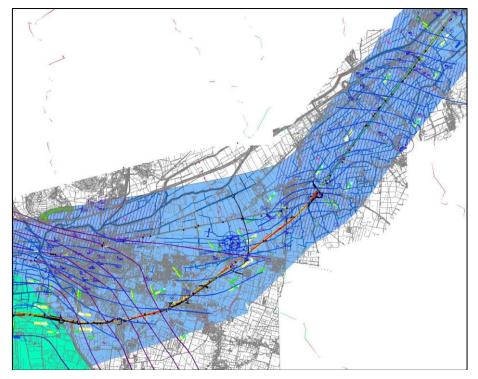


Figura 5-18 – Tratto 3_Confronto superfici piezometriche da PTCP e da misure 2014-2015.

Le quote piezometriche hanno valori prossimi a 42 m s.l.m. all'altezza di Montebello Vicentino, si decrementano a circa 30 m s.l.m. presso la stazione di Lonigo ed arrivano a circa 21 m s.l.m. nella porzione iniziale del tratto nel Comune di S. Bonifacio. In tale tratto la soggiacenza della falda assume valori medi compresi tra 6 e 2 m da p.c. raggiungendo valori minimi (falda sub-affiorante) tra le km 28+200 e 30+850.

Nella Valle del Chiampo, tra l'abitato di Montebello Vicentino e la stazione di Lonigo, il gradiente idraulico presenta valori dell'ordine di 0.4-0.5% che tendono a decrementarsi ad Ovest di San Bonifacio sino a valori medi dello 0.2%.

Per i valori di soggiacenza puntuali dei livelli idrici sotterranei si rimanda alla Carta Idrogeologica corredata di profilo idrogeologico ed ai risultati delle indagini geognostiche a corredo del Progetto Definitivo.

In questo tratto del tracciato verranno realizzati rilevati ferroviari, viadotti e tombinature. Ricade in tale porzione di territorio la realizzazione dell'elettrodotto aereo (tralicciato) e della sottostazione elettrica di trasformazione denominata Locara.

Tratto 4 - Tratta compresa tra Montebello Vicentino e gli attraversamenti degli abitati di Brendola (a sud) e Montecchio Maggiore (a nord), dalla km.ca 32.500 circa alla km.ca 38.500 circa, per una lunghezza complessiva di circa 6 km. Il tracciato si sviluppa nel

Progetto Lotto Codifica Documento IN17 10 EI2RHMB0007001

Rev. Foglio A 39 di 166

bacino idrogeologico dell'Alpone-Chiampo-Agno (ACA) e interessa per la maggior parte depositi alluvionali recenti a granulometria più variabile, legati ai cicli deposizionali dei corsi d'acqua Chiampo e Agno-Guà.

In questa tratto la linea ferroviaria si sviluppa al di sopra dell'unità idrogeologica ACA in un complesso idrogeologico indifferenziato ghiaioso (A_g), così definito per la presenza di depositi prevalentemente grossolani, ghiaioso-sabbiosi, entro i primi 50 m di profondità, che determinano la presenza di un acquifero monostrato nel quale le lenti limoso-argillose risultano di spessore ed estensione areale insufficiente per causare una sua compartimentazione.

Nella porzione iniziale di questo tratto (fino all'intersezione con il Rio Acquetta) la litologia del sottosuolo è prevalentemente grossolana con intercalati, a diverse profondità, sedimenti limoso-argillosi disposti in forme lenticolari perlopiù di scarso spessore ed estensione areale.

Procedendo verso nord-est (fino alla linea di spartiacque sotterraneo) aumenta lo spessore di copertura a granulometria fine (depositi limo-argillosi) che comporta un più o meno marcato (a seconda degli spessori presenti) condizionamento dell'acquifero e fungendo quindi da livello confinante rispetto ai più permeabili e saturi livelli ghiaiosi.

Per quanto attiene la morfologia della superficie piezometrica e la direzione del flusso idrico sotterraneo, che rappresenta un importante elemento per definire la potenziale interferenza tra opera e falda idrica, si sono considerati i dati relativi al progetto "Stato dell'inquinamento da sostanze perfluoroalchiliche in provincia di Vicenza" (2013), che sono stati utilizzati per la predisposizione delle carte idrogeologiche di progetto e riportate nella Carta Idrogeologica.

Nelle Tavole di progetto (stralcio in Figura 5-19) è stata eseguita anche una ricostruzione di massima utilizzando i valori recentemente rilevati (aprile 2015) nei piezometri di controllo perforati lungo il tracciato ferroviario.

L'insieme di tali dati sono stati riportati nella Carta Idrogeologica.

Progetto Lotto Codifica Documento IN17 10 EI2RHMB0007001

Rev. Foglio A 40 di 166

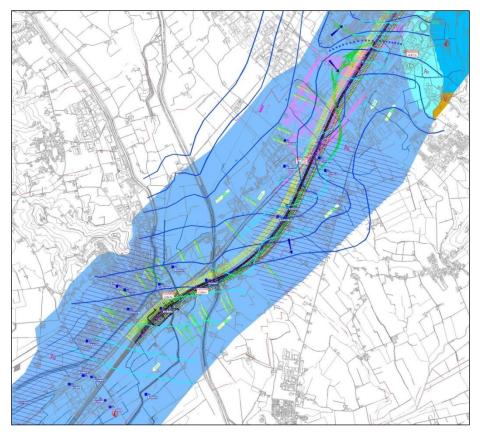


Figura 5-19 - Superficie piezometrica della falda nel tratto Montebello V.- Montecchio M.

Da tali elaborazioni si evince che nel tratto considerato la direzione del flusso idrico sotterraneo è diretta all'incirca NNO-SSE, e solo nell'ultima parte (in corrispondenza della linea di spartiacque) assume una direzione circa N-S.

Il gradiente idraulico si attesta su valori medi dello 0.25%, mentre le quote piezometriche risultano attualmente variabili tra 43 m s.l.m., presso la stazione di Montebello Vicentino e 48 m s.l.m., presso la stazione di Montecchio Maggiore, in corrispondenza della quale si ubica lo spartiacque piezometrico che suddivide il bacino idrogeologico ACA da quello del Retrone. Per i valori di soggiacenza puntuali dei livelli idrici sotterranei si rimanda alla Carta Idrogeologica corredata di profilo idrogeologico ed ai risultati delle indagini geognostiche a corredo del Progetto Definitivo.

Tratto 5 - Tratto compreso tra gli attraversamenti degli abitati di Brendola (a sud) e Montecchio Maggiore (a nord), dalla km.ca 38.500 circa fino a fine progetto, per una lunghezza complessiva di circa 6 km. Il tracciato si sviluppa nel bacino idrogeologico della Media Pianura tra Retrone e Tesina (MPRT). Tale tratto interessa per la maggior parte

Rev.

Foglio

41 di 166

1^ LOTTO FUNZIONALE VERONA-BIVIO VICENZA PMA – COMPONENTE AMBIENTALE ACQUE SOTTERRANEE Progetto Lotto Codifica Documento IN17 10 EI2RHMB0007001

depositi alluvionali recenti a granulometria più variabile, legati ai cicli deposizionali dei corsi d'acqua Retrone e Bacchiglione.

L'intero tratto in esame è caratterizzato dalla presenza di una copertura di materiali fini (limi e limi-argillosi) che tende ad inspessirsi procedendo verso est. Al di sotto dei terreni fini di copertura si rinvengono i depositi grossolani, sede di falda acquifera, confinate sia superiormente sia talvolta lateralmente dagli intercalari meno permeabili.

La copertura limoso-argillosa (di spessore variabili tra 5 e 10 m) determina, quindi, il confinamento dall'alto delle falde presenti nel sottosuolo che, lungo tutta la tratta, risultano subaffioranti e localmente in condizioni di artesianità.

Da menzionare in questo tratto la presenza di diverse risorgive originatesi da condizioni di sub-affioramento della superficie piezometrica. In particolare si cita il gruppo di sorgenti presenti in destra idrografica del Fiume Retrone, poco più a monte del tracciato ferroviario e la sorgente (S33) situata in vicinanza allo Scolo Riello, poco più a valle del tracciato.

Per quanto attiene la morfologia della superficie piezometrica e la direzione del flusso idrico sotterraneo, si sono considerati i dati relativi al progetto "Stato dell'inquinamento da sostanze perfluoroalchiliche in provincia di Vicenza" (2013) e quelli del PAT del Comune di Vicenza, che sono stati utilizzati per la predisposizione delle carte idrogeologiche di progetto (IN0D02DI2G5GE0002009-11B) e riportate nella Carta Idrogeologica (IN0D02DI2N4IM0002207-9B).

Nelle Tavole di progetto (IN0D02DI2G5GE0002009-11B - stralcio in Figura 5-20) è stata eseguita anche una ricostruzione di massima utilizzando i valori recentemente rilevati (aprile 2015) nei piezometri di controllo perforati lungo il tracciato ferroviario.

L'insieme di tali dati sono stati riportati nella Carta Idrogeologica (IN0D02DI2N4IM0002207-10D).

Per quanto riguarda la morfologia della superficie piezometrica, gli studi effettuati evidenziano un flusso idrico sotterraneo diretto all'incirca SSW-NNE (prima porzione) e SW-NE (seconda porzione).

Progetto Lotto Codifica Documento IN17 10 EI2RHMB0007001

Rev. Foglio A 42 di 166

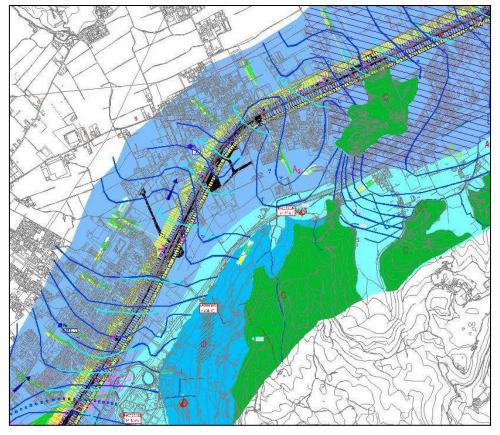


Figura 5-20 - Superficie piezometrica della falda nel tratto Montecchio M - Bivio Vicenza.

Per i valori di soggiacenza puntuali dei livelli idrici sotterranei si rimanda alla Carta Idrogeologica corredata di profilo idrogeologico (IN0D02DI2N4IM0002207-10D) ed ai risultati delle indagini geognostiche a corredo del Progetto Definitivo.

5.1.6 STATO QUALITATIVO DELLA RISORSA IDRICA SOTTERRANEA

La normativa italiana, così come quella comunitaria, definisce lo stato ambientale di un corpo idrico sotterraneo in base allo *stato quantitativo* ed allo *stato chimico*.

L'adeguamento della Normativa Nazionale alla Direttiva Quadro 2000/60/CE e alla Direttiva Figlia 2006/118/CE, attraverso l'emanazione del D.Lgs. 30/2009 e del DM 260/2010, ha richiesto una revisione e/o adeguamento dei piani di monitoraggio per la tutela delle acque. Il D.Lgs. 30/2009, modifica il D.Lgs. 152/2006 per quanto attiene la caratterizzazione e l'individuazione dei corpi idrici sotterranei, stabilisce i valori soglia e gli standard di qualità per definire il buono stato chimico delle acque sotterranee, definisce i criteri per il monitoraggio quantitativo e per la classificazione dei corpi idrici sotterranei o dei raggruppamenti degli stessi.

Progetto Lotto Codifica Documento IN17 10 EI2RHMB0007001

Rev. Foglio A 43 di 166

Seppur restano sostanzialmente invariati, rispetto alla preesistente normativa (D.Lgs. 152/99), i criteri di effettuazione del monitoraggio (qualitativo e quantitativo), tuttavia cambiano invece i criteri di classificazione dello stato delle acque sotterranee, che si riducono a due (buono o scadente) invece dei cinque (elevato, buono, sufficiente, scadente naturale particolare).

II D.Lgs. 30/2009 ed il DM 260/2010 per la tutela delle acque sotterranee prevedono:

- l'identificazione dei complessi idrogeologici e quindi degli acquiferi;
- l'identificazione e la caratterizzazione dei corpi idrici sotterranei;
- l'analisi delle pressioni e degli impatti;
- la valutazione della vulnerabilità dei corpi idrici sotterranei rispetto alle pressioni individuate:
- il monitoraggio dei corpi idrici sotterranei che comprende la valutazione dello stato chimico delle acque sotterranee; l'identificazione ed inversione di tendenze significative e durature all'aumento dell'inquinamento; la presentazione dello stato di qualità delle acque sotterranee.

La valutazione della vulnerabilità dei corpi idrici sotterranei consiste nel classificare questi come "a rischio" "non a rischio" e "probabilmente a rischio" sulla base delle attività antropiche presenti nel bacino idrografico e dai dati del monitoraggio ambientale.

La normativa richiede, come già anticipato in precedenza, due tipi di monitoraggi dei Corpi Idrici Sotterranei, uno per la valutazione dello *stato quantitativo* ed uno per quello dello *stato chimico*. A sua volta il monitoraggio dello stato chimico viene suddiviso in un monitoraggio di sorveglianza, da effettuarsi su tutti i corpi idrici, e un monitoraggio operativo da effettuarsi sui corpi idrici definiti a rischio.

Lo "Stato delle Acque Sotterranee" è l'espressione complessiva dello stato di un corpo idrico sotterraneo, determinato dal valore più basso del suo stato quantitativo e del suo stato chimico. Pertanto lo stato delle acque sotterranee è buono se il corpo idrico raggiunge uno stato buono sia sotto il profilo qualitativo che chimico.

Lo "Stato Quantitativo" può essere definito come l'espressione del grado in cui un corpo idrico sotterraneo è modificato da estrazioni dirette e indirette.

La rete di monitoraggio quantitativo è individuata al fine di integrare e confermare la validità della caratterizzazione e della procedura di valutazione di rischio, determinare lo stato quantitativo del corpo idrico sotterraneo, supportare la valutazione dello stato chimico, l'analisi delle tendenze e la progettazione e la valutazione di programmi e misure.

Progetto Lotto Codifica Documento IN17 10 EI2RHMB0007001

Rev. Foglio A 44 di 166

In generale un corpo idrico sotterraneo è in stato "buono" (D.Lgs. 30/09 - Tabella 4 dell'Allegato 3) quando sono soddisfatte le seguenti condizioni:

- il livello delle acque sotterranee è tale che la media annua dell'estrazione a lungo termine non esaurisce le risorse idriche sotterranee disponibili;
- non si ha un deterioramento significativo della qualità di tali acque;
- non si hanno danni significativi agli ecosistemi terrestri dipendenti dal corpo idrico sotterraneo.

È ammesso che possano verificarsi alterazioni della direzione di flusso risultanti da variazioni del livello, su base temporanea o permanente, purché: interessino un'area delimitata nello spazio, non causino l'intrusione di acqua salata o di altro tipo, non imprimano alla direzione di flusso alcuna tendenza antropica duratura e chiaramente identificabile che possa determinare intrusioni.

La definizione dello *Stato Chimico delle Acque* Sotterranee, secondo le direttive 2000/60/CE e 2006/118/CE, si basa sul rispetto di norme di qualità, espresse attraverso concentrazioni limite, che vengono definite a livello europeo per nitrati e pesticidi (standard di qualità), mentre per altri inquinanti, di cui è fornita una lista minima all'Allegato 2 parte B della direttiva 2006/118/CE, spetta agli Stati Membri la definizione dei valori soglia. I valori soglia adottati dall'Italia sono quelli definiti all'Allegato 3, tabella 3, D.Lgs. 30/2009.

Per quanto riguarda la conformità, la valutazione si basa sulla comparazione dei dati di monitoraggio (in termini di concentrazione media annua) con i valori standard numerici (D.Lgs. 30/2009 - Tabella 2 e Tabella 3 dell'Allegato 3).

In maniera schematica, un corpo idrico sotterraneo è considerato in buono stato chimico se:

- i valori standard (SQ o VS) delle acque sotterranee non sono superati in nessun punto di monitoraggio;
- 2. il valore per una norma di qualità (SQ o VS) delle acque sotterranee è superato in uno o più punti di monitoraggio, che comunque non devono rappresentare più del 20% dell'area totale o del volume del corpo idrico, ma un'appropriata indagine dimostra che la capacità del corpo idrico sotterraneo di sostenere gli usi umani non è stata danneggiata in maniera significativa dall'inquinamento.

Lo Stato chimico evidenzia, quindi, le zone sulle quali insistono criticità ambientali rappresentate dagli impatti di tipo chimico delle attività antropiche sui corpi idrici sotterranei. Diverse sono le sostanze indesiderate o inquinanti presenti nelle acque sotterranee che possono compromettere gli usi pregiati della risorsa idrica, come ad

Progetto Lotto Codifica Documento IN17 10 EI2RHMB0007001

Rev. Foglio A 45 di 166

esempio quello potabile, ma non per questo tutte le sostanze indesiderate sono sempre di origine antropica.

Esistono, infatti, molte sostanze ed elementi chimici che si trovano naturalmente negli acquiferi, la cui origine geologica non può essere considerata causa di impatti antropici sulla risorsa idrica sotterranea. Pertanto, lo stato chimico delle acque sotterranee è quello influenzato dalla sola componente antropica delle sostanze indesiderate trovate, una volta discriminata la componente naturale attraverso la quantificazione del suo valore di fondo naturale per ciascun corpo idrico sotterraneo.

STATO CHIMICO DEI CORPI IDRICI SOTTERRANEI NELLA REGIONE VENETO

Nel corso degli anni l'interpretazione dei dati chimici ottenuti dalla rete di monitoraggio qualitativo delle acque sotterranee della regione Veneto, supportata dalle numerosissime informazioni reperite nell'ambito del censimento degli episodi di contaminazione delle acque sotterranee nella pianura veneta, ha ampiamente dimostrato come sia altamente vulnerabile la falda freatica dell'alta e media pianura veneta e come sia, conseguentemente, possibile ritrovare contaminazione sia in prossimità delle risorgive che nella prima porzione delle falde artesiane della media pianura.

L'inquinamento delle acque di falda deriva principalmente dal rilascio di sostanze inquinanti direttamente sul suolo, attribuibile sia a fonti diffuse che fonti puntuali con il conseguente interessamento delle acque presenti nel sottosuolo a seguito della percolazione. Tra gli inquinanti di origine diffusa i nitrati si riscontrano in ampie zone della regione con concentrazioni più o meno elevate e in taluni casi superiori al valore limite (50 µg/l) previsto dal D.Lgs. n. 31/2001 sulle acque destinate al consumo umano. Analogamente si rilevano elevate concentrazioni di fitofarmaci nelle stesse aree in cui si riscontrano alte concentrazioni di nitrati. Tali inquinanti di prevalente origine agrozootecnica, sono riscontrabili nelle falde in concentrazioni variabili a seconda della vulnerabilità della falda.

Gli inquinanti di origine produttiva e civile (in particolare i composti organo alogenati e metalli pesanti) si trovano a volte in concentrazioni vicine o superiori ai limiti previsti dalla normativa per le acque destinate al consumo umano, prevalentemente nella falda freatica al di sotto di alcuni grandi centri urbani ed aree industriali. Tracce di queste sostanze sono state riscontrate anche nelle acque prelevate in alcune aree di media ed a volte bassa pianura, come conseguenza di ampi plume inquinanti riconducibili ad episodi di inquinamento avvenuti in passato o alla riattivazione di alcuni di essi. Per quanto riguarda,

Progetto Lotto Codifica Documento IN17 10 EI2RHMB0007001

Rev. Foglio A 46 di 166

invece, la qualità delle acque del sistema delle falde confinate della bassa pianura, la presenza di alcune sostanze indesiderabili, tra cui manganese, ferro, arsenico ed ione ammonio, sia nella porzione superficiale che in quella profonda, sembra avere un'origine esclusivamente naturale.

Per quanto riguarda lo stato chimico dei corpi idrici sotterranei della Regione Veneto, ARPAV ha eseguito monitoraggi, studi ed analisi secondo gli standard di qualità (definiti a livello europeo) e i valori soglia (definiti a livello nazionale) per le acque sotterranee, riportati nel DLgs 30/2009 (tabella 2 e tabella 3, Allegato 3) determinando l'indice di qualità chimica dei corpi idrici sotterranei regionali (Figura 5-21 e Figura 5-22). La valutazione dell'indicatore si è basata sul superamento, in termine di concentrazione media annua, di queste soglie di concentrazione per una o più sostanze.

In particolare, nel corso del 2014 la valutazione della qualità chimica ha interessato 282 punti di monitoraggio, 175 dei quali (pari al 62%) non presentano alcun superamento degli standard numerici individuati dal D.Lgs. 30/2009 e sono stati classificati con qualità buona, 107 (pari al 38%) mostrano almeno una non conformità e sono stati classificati con qualità scadente (Figura 5-19).

Il maggior numero di superamenti dei valori soglia è dovuto alla presenza di inquinanti inorganici (81 superamenti), principalmente ione ammonio (67/81), e all'arsenico (29), prevalentemente di origine naturale.

Per le sostanze di sicura origine antropica le contaminazioni riscontrate più frequentemente e diffusamente sono quelle dovute a: composti organo-alogenati (30 superamenti) e nitrati (9). Le altre categorie di sostanze che hanno portato ad una classificazione di stato non buono sono: pesticidi (2) e clorobenzeni (1).

La distribuzione dei superamenti nel territorio regionale evidenzia inoltre una netta distinzione tra le tipologie di inquinanti presenti a monte ed a valle della del limite superiore della fascia delle risorgive: nell'acquifero indifferenziato di alta pianura la scarsa qualità è dovuta soprattutto a nitrati, pesticidi e composti organo alogenati, negli acquiferi differenziati di media e bassa pianura a sostanze inorganiche e metalli.

Progetto Lotto Codifica Documento IN17 10 EI2RHMB0007001

Rev. Foglio A 47 di 166

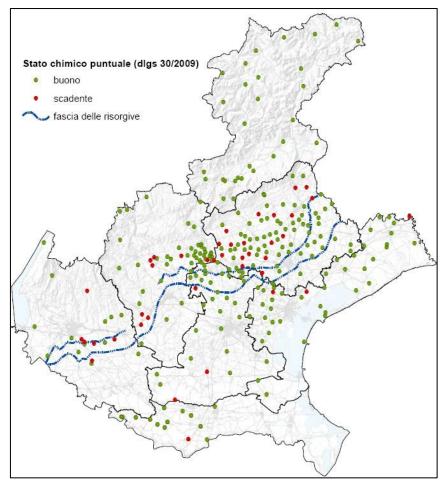


Figura 5-21 – Mappa regionale dei superamenti degli standard numerici del DLgs 30/2009: Anno 2013 (Fonte: ARPAV).

Progetto Lotto Codifica Documento IN17 10 EI2RHMB0007001

Rev. Foglio A 48 di 166

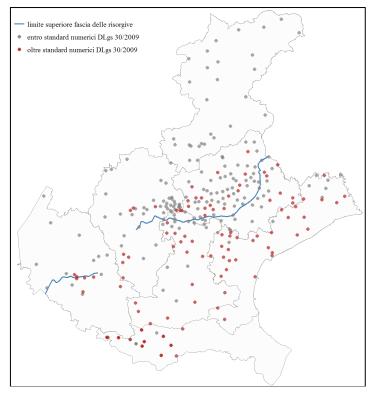


Figura 5-22- Mappa regionale dei superamenti degli standard numerici del DLgs 30/2009: Anno 2014 (Fonte: ARPAV)

Con il DGR n. 1625 del 19 novembre 2015 è stata approvata la classificazione (prodotta da ARPAV) dello stato chimico dei corpi idrici sotterranei relativa al quinquennio 2010-2014 (Figura 5-23). La relazione presentata da ARPAV comprende, quindi, il dettaglio di tale classificazione (Allegato A1 al DGR n. 1625/2015), la definizione dei valori di fondo e l'analisi dei trend, ed il dettaglio delle metodologie utilizzate (Allegato A al DGR n. 1625/2015).

Nella valutazione dello stato chimico è stata affrontata la questione dei valori di fondo naturale. Ciò in quanto in alcuni corpi idrici sotterranei è dimostrata scientificamente la presenza di metalli e altri parametri di origine naturale in concentrazioni di fondo naturale superiori ai limiti fissati a livello nazionale: in questi casi è opportuno che tali livelli di fondo costituiscano i valori soglia per la definizione del buono stato chimico.

Nella Regione Veneto è molto frequente nei corpi idrici di bassa pianura la presenza in concentrazioni elevate di ammoniaca, ferro, manganese ed arsenico che deriva, infatti, da litotipi caratteristici e/o da particolari condizioni redox.

Arsenico, ma soprattutto ione ammonio presentano frequenti superamenti dei valori soglia anche nei corpi idrici di media pianura e in quelli superficiali di bassa pianura.

Foglio

49 di 166

1^ LOTTO FUNZIONALE VERONA-BIVIO VICENZA PMA – COMPONENTE AMBIENTALE ACQUE SOTTERRANEE

rogetto	Lotto	Codifica Documento	Rev.
IN17	10	EI2RHMB0007001	Α

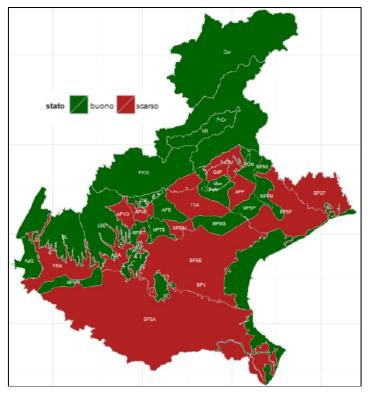


Figura 5-23– Mappa regionale Stato chimico dei corpi idrici sotterranei dati 2010-2014 (ALLEGATO A alla Dgr n. 1625 del 19 novembre 2015)

In riferimento ai corpi idrici sotterranei interessati dall'intervento progettuale si riporta di seguito la tabella riassuntiva (<u>Tabella</u> 5-1) dei risultati del monitoraggio ambientale per il quinquennio 2010-2015 tratta da (tav.3 - Allegato A del DGR n. 1625/2015):

GWB	punti stato buono	punti stato scarso	totale punti	% punti stato scarso	stato	livello fiducia	allo stato non buono delle	parametri con superamenti, ma non conteggiati come fallimento dello stato chimico buono (P.E.N.C.)**
IT05VRA	3	5	8	63	scarso	medio	triclorometano, tricloroetilene, tetracloroetilene, nitrati, arsenico, esaclorobenzene	
IT05ACA	3	3	6	50	scarso	medio	tetracloretilene, cromo VI	
IT05MPVR	4	0	4	0	buono	basso		

Tabella 5-1 – Stato chimico corpi idrici sotterranei dati 2010-2014. (tratta da Tab. 3 - ALLEGATO A alla Dgr. n. 1625 del 19 novembre 2015)

Per i risultati di dettaglio delle analisi eseguite sui corpi idrici sotterranei (quinquiennio 2010-2014) si rimanda al contenuto dell'Allegato A1 (dettagli della classificazione a livello di punto di monitoraggio) e Allegato A2 (dell'analisi dei trend alla scala di singolo punto di monitoraggio mediante il test Mann-Kendall) che costituiscono parte integrante e sostanziale della DGR n. 1625 del 19.11.2015.

^{*(}P.C.F.)= PollutantCausingFailure

^{**(}P.E.N.C.)= PollutantsExceedancesNotCounted

Progetto Lotto Codifica Documento IN17 10 EI2RHMB0007001

Rev. Foglio A 50 di 166

Di seguito saranno trattati, relativamente ai corpi idrici interessati dall'opera in progetto, alcuni dei fenomeni (a titolo esemplificativo) di contaminazioni rilevate dalla rete regionale delle acque sotterranee, censiti nell'ambito del progetto SAMPAS, con il supporto dei Dipartimenti ARPAV Provinciali, controllati e monitorati con reti specificamente progettate.

Acquifero differenziato della Media Pianura Veneta

Come già ampiamente trattato, nel sottosuolo della media pianura veneta esiste una serie di falde sovrapposte, di cui la prima è generalmente libera e quelle sottostanti in pressione, collegate, verso monte, all'unica grande falda freatica, dalla quale traggono alimentazione e che per contro condiziona il loro chimismo di base. Risulta quindi evidente che l'eventuale contaminazione della falda freatica dell'alta pianura, può interessare le falde confinate della porzione settentrionale della media pianura: tali situazioni sono riscontrabili nei pozzi di monitoraggio, pescanti la falda confinata (artesiana), ubicati in alcuni comuni posti all'interno della fascia delle risorgive.

La protezione di questi acquiferi è quindi strettamente connessa alla verifica di eventuali inquinamenti provenienti dall'area di ricarica posta immediatamente a monte. I materiali argillosi, che confinano gli acquiferi in pressione e li proteggono da eventuali fenomeni contaminanti provenienti dall'alta pianura, sono, per contro, la causa della presenza di alcuni metalli nelle falde artesiane, talora anche profonde, del sistema multifalda della media e bassa pianura veneta. Per quanto riguarda invece la porzione meridionale della media pianura, a valle della fascia delle risorgive ed in generale in tutta la bassa pianura, soprattutto il territorio veneziano, si nota un collegamento tra le elevate concentrazioni di ione ammonio, arsenico, ferro e manganese, nelle falde artesiane e la presenza nella serie quaternaria di livelli argilloso-torbosi.

Media Pianura Veronese (MPVR)

Per quel che riguarda la qualità delle acque sotterranee negli acquiferi dei primi 300 metri, alcune analisi effettuate su falde confinate della media pianura, hanno segnalato un tendenziale peggioramento delle caratteristiche qualitative con l'aumento della profondità, in particolare connesso a una diminuzione dell'ossigeno disciolto e del potenziale redox, accompagnata a un aumento del residuo fisso, del contenuto in ferro, manganese, arsenico ed ammoniaca.

Questa situazione è connessa anche alle ridotte velocità di flusso di queste falde confinate. È inoltre possibile evidenziare con l'aumento della profondità la comparsa di acque salmastre e salate.

Progetto Lotto Codifica Documento IN17 10 E12RHMB0007001

Rev. Foglio A 51 di 166

In particolare nella porzione orientale del Comune di San Bonifacio e nel limitrofo comune di Lonigo, la falda contenuta nel terzo acquifero confinato, ubicato approssimativamente tra i 93 ed i 110 metri di profondità dal piano campagna, presenta concentrazioni di tetracloroetilene (ed in misura minore di tricloroetilene) superiori al limite previsto dal D. Lgs. 31/2001 per quanto riguarda la somma dei parametri tetracloroetilene e tricloroetilene (10 µg/l). La contaminazione ha interessato i punti di prelievo acquedottistici. Nella porzione occidentale di Zevio, al confine con San Giovanni Lupatoto, la falda contenuta nel secondo acquifero confinato (tra 80 e 100 metri dal piano campagna) presenta concentrazioni di solventi organo-alogenati di poco al di sopra del limite fissato dal D. Lgs. 31/2001. Nello stesso comune di San Giovanni Lupatoto, al passaggio tra l'alta e la media pianura, la falda freatica presenta una contaminazione in atto da cromo esavalente; analoga contaminazione si ha nel comune di Oppeano, confinante a sud, in cui si ha già la differenziazione degli acquiferi nel sottosuolo. In alcune aree infine, le falde presentano concentrazioni di ferro e manganese al di sopra dei limiti di legge.

Acquifero indifferenziato freatico

L'acquifero indifferenziato dell'alta pianura rappresenta la porzione di territorio più importante dal punto di vista idrogeologico, in quanto sede dell'area di ricarica di tutti gli acquiferi alluvionali della restante parte di pianura veneta. All'interno di questo potente acquifero a prevalente componente ghiaiosa, è presente nel sottosuolo una falda freatica molto produttiva, generalmente vulnerabile, in quanto la sua superficie libera, localizzata a profondità molto variabili dal piano campagna, non è di fatto isolata rispetto al piano campagna. Questa risorsa idrica costituisce un'importante fonte di attingimento idropotabile della regione, mediante l'utilizzo dei numerosissimi punti di captazione pubblici e privati terebrati nel sottosuolo anche a modeste profondità.

Alta Pianura Veronese (VRA)

La falda freatica presenta buone caratteristiche chimiche di base, anche se compromessa dalla presenza diffusa, soprattutto nella zona centrale, di nitrati in concentrazioni mediamente comprese tra 25 e 50 mg/l e di solfati. Sul fronte degli inquinamenti puntuali si segnalano contaminazioni da tetracloroetilene e cloroformio nei comuni di Grezzana e Verona. Contaminazioni da ione ammonio e manganese si hanno nella falda freatica dei comuni di Pescantina, a ovest di Verona e San Martino Buon Albergo, ad est di Verona; in entrambi i casi si tratta di contaminazioni riscontrate a valle di impianti di discarica.

Alpone-Chiampo-Agno (ACA)

GENERAL CONTRACTOR

1^ LOTTO FUNZIONALE VERONA-BIVIO VICENZA PMA – COMPONENTE AMBIENTALE ACQUE SOTTERRANEE Progetto Lotto Codifica Documento IN17 10 El2RHMB0007001

Rev. Foglio A 52 di 166

Per quanto riguarda la porzione occidentale, la falda presenta basse concentrazioni di nitrati variabili da 15 a 20 mg/l, mentre nella porzione meridionale si riscontrano inquinanti antropici come i nitrati e composti organo-alogenati (soprattutto tetracloroetilene). Per quanto riguarda quest'ultimo contaminante, la sua presenza nella prima falda artesiana è riconducibile alla contaminazione di tipo puntuale e diffuso esistente a monte, nella falda freatica di Arzignano e Montorso, in associazione al tricloroetilene.

Progetto Lotto Codifica Documento IN17 10 EI2RHMB0007001

Rev. Foglio A 53 di 166

6 AZIONI DI PROGETTO E IMPATTI INDOTTI

Come previsto dalle "Linee Guida per la predisposizione del Piano di Monitoraggio Ambientale delle opere soggette a procedure di VIA", il PMA deve essere commisurato alla significatività degli impatti ambientali previsti nello SIA (estensione dell'area geografica interessata e caratteristiche di sensibilità/criticità delle aree potenzialmente soggette ad impatti significativi; ordine di grandezza qualitativo e quantitativo, probabilità, durata, frequenza, reversibilità, complessità degli impatti); conseguentemente, l'attività di MA da programmare dovrà essere adeguatamente proporzionata in termini di estensione delle aree di indagine, numero dei punti di monitoraggio, numero e tipologia dei parametri, frequenza e durata dei campionamenti, etc.

Nell'ambito dello S.I.A. per ciascuna componente ambientale è stato definito, sulla base della tipologia di interventi previsti, un elenco 'checklist' dettagliato ed esaustivo dei possibili fattori di pressione che possono conseguire dalle lavorazioni e/o dalle attività previste per l'opera in esame. Successivamente sono state definite le aree di impatto con le relative cartografie di sintesi degli impatti.

Di seguito si riporta la descrizione dei fattori di pressione presi in considerazione dal SIA per la componente 'Acque sotterranee'.

La realizzazione del 1° sub lotto Verona – Montebello Vicentino relativo alla linea ferroviaria AV/AC Verona – Padova, comporterà una serie di azioni di progetto che verranno applicate al territorio in esame.

Tali azioni, durante le due fasi di "cantiere" e di "esercizio", indurranno distinti impatti ambientali sulle componenti rappresentate dall'ambiente idrico sotterraneo. In base agli impatti prodotti sarà opportuno intervenire con adeguate opere di mitigazione.

Le attività, riconducibili alla attuazione del progetto nel suo insieme, consistono in:

- Realizzazione linea ferroviaria in rilevato.
- Realizzazione linea ferroviaria in galleria artificiale (e in parte trincea).
- Realizzazione linea ferroviaria in viadotto e ponti (talora per il superamento delle linee di deflusso maggiore).
- Tombinatura linee di deflusso minori (canali).
- Varianti viabilità stradale esistente: sottopassi, sovrappassi, rotonde, etc.
- Linea elettrica di alimentazione ferroviaria 3Kv.
- Opere elettriche accessorie n.3 cavidotti aerei 132Kv di connessione linea ferroviaria su entra ed esci linea 132Kv RFI esistente. Fatta eccezione per le opere fondali, che

1 ^ LOTTO FUNZIONALE VERONA-BIVIO VICENZA PMA - COMPONENTE AMBIENTALE ACQUE SOTTERRANEE

rogetto	Lotto	Codifica Documento	Rev.	Foglio
IN17	10	EI2RHMB0007001	Α	54 di 166

verranno realizzate in situ e per le quali servirà l'ausilio di mezzi di cantiere, i tralicci e le linee in cavo, ove non esiste idonea viabilità, verranno posizionati per mezzo di elicotteri specificatamente adoperati a tale scopo.

- Opere elettriche accessorie n.3 sottostazioni di trasformazione 132Kv/3Kv. Si tratta di opere in cemento armato all'interno delle quali verranno ubicati gli impianti tecnologici di trasformazione.
- Aree di cantiere (n. 4 Campo Base, n. 2 Cantiere Armamento, n. 2 Cantiere Tecnologico, n. 9 Cantiere Operativo, n. 4 Cantiere Industriale) all'interno delle quali sono previsti le seguenti attività: alloggi personale e servizi, servizi generali, servizi agli impianti, area stoccaggio e impianti. Si tratta di attività limitate alla sola fase di costruzione dell'opera.
- Viabilità di cantiere utile alla movimentazione dei mezzi di lavoro per il raggiungimento dei siti operativi. Si utilizzeranno piste di servizio sterrate e parti di viabilità asfaltata già esistente. Si tratta di attività limitate alla sola fase di costruzione dell'opera.

Da quanto esposto si possono riassumere le seguenti Azioni di progetto:

- Aree logistiche ed opere minori (cantiere base, uffici provvisori etc.);
- Viabilità di cantiere (strade già esistenti o di nuova realizzazione);
- Depositi di materiali (Cantieri operativi, industriali, armamento e tecnologico);
- Posa tralicci e linea 132 kv (posizionamento tralicci e stesa del cavo);
- Scavi: scotico superficiale, realizzazione trincee, scavo per posa in opera di fondazioni, per realizzazione del tracciato, etc;
- Galleria artificiale:
- Rilevati ferroviari;
- Viadotti e ponti;
- Opere in cls gettata in opera di cls per gallerie, viadotti, ponti, fondazioni, sottostazione elettrica, tombinature, muri di contenimento, palificate, diaframmi etc.;
- Azioni accidentali dovuti a sversamenti di sostanze inquinanti o qualsiasi altro evento imprevisto.

Gli impatti indotti sulla componente in esame e le necessarie opere di mitigazione sono riassumibili come di seguito.

Progetto Lotto Codifica Documento IN17 10 EI2RHMB0007001

Rev. Foglio A 55 di 166

ACQUE IN FASE DI CANTIERE

Lungo il tracciato, in corrispondenza delle opere di progetto, si verificheranno alcune *interferenze con il livello di falda*. La situazione più particolare è costituita dalla realizzazione della galleria artificiale San Martino Buon Albergo. A tal proposito è stato eseguito uno studio idrogeologico (in ottemperanza alle prescrizioni della Delibera CIPE n.94 del 29 marzo 2006) finalizzato alla valutazione delle potenziali interferenze tra opera e falda che potrebbero determinare effetti negativi sull'ambiente circostante.

In particolare si sono presi in esami i possibili impatti derivati dall'opera (galleria e relative opere connesse) sull'innalzamento del livello freatico, sul lato sopragradiente e dal contestuale abbassamento in quello sottogradiente, nonché alla modifica nella direzione del flusso idrico sotterraneo (Relazione Idrogeologica di Progetto: IN0D00DI2RHGE0002001B).

Dai risultati ottenuti è stato possibile individuare in maniera più specifica le interferenze con i deflussi sotterranei (IN0D00DI2RHGE0002001B) e quindi attuare adeguate soluzioni progettuali atte a minimizzare gli impatti indotti.

Durante la fase di realizzazione della galleria artificiale sarà necessario deprimere, con opportuni sistemi, il livello di falda al fine di consentire l'esecuzione in sicurezza dei lavori. Le succitate metodologie consentiranno anche di abbassare notevolmente il rischio di inquinamento del corpo idrico sotterraneo da sostanze utilizzate durante le lavorazioni. Ciò comporterà un abbassamento generalizzato della piezometrica in un'ampia area circostante la zona dei lavori, influenzando quindi, per il solo periodo di cantierizzazione, il regime idrico di pozzi e sorgenti circostanti. In particolare, per quanto riguarda l'interferenza con pozzi e sorgenti presenti lungo lo sviluppo del tracciato, si adotteranno le sequenti misure compensative. Per i pozzi privati collocati sul percorso o nelle sue immediate vicinanze (<50 m dall'asse del tracciato ovvero all'interno delle aree di cantiere), si prevede l'obliterazione in fase di costruzione dell'opera e la sostituzione del pozzo con un altro di analoga potenzialità. Per quanto riguarda i pozzi ubicati nei dintorni del tracciato, ad una distanza maggiore di 50 m dall'asse, verranno verificate eventuali variazioni del loro regime idraulico e, in caso sia necessario, si utilizzeranno opportune misure compensative analoghe a quelle previste per le sorgenti. In prossimità dei tratti in galleria e/o in trincea, vi saranno interferenze con i circuiti idrici di alimentazione delle vicine sorgenti. In tal caso dovrà essere prevista la realizzazione di nuove opere di captazione idrica, riposizionate al di fuori dell'area di influenza della galleria o dello scavo della trincea. Qualora, sulla base degli studi da eseguirsi, tali interventi non risultassero

GENERAL CONTRACTOR

1^ LOTTO FUNZIONALE VERONA-BIVIO VICENZA PMA – COMPONENTE AMBIENTALE ACQUE SOTTERRANEE Progetto Lotto Codifica Documento IN17 10 E12RHMB0007001

Rev. Foglio A 56 di 166

possibili, saranno valutate misure di tipo parzialmente compensativo, quali la restituzione a valle delle acque intercettate dalle opere (essenzialmente a scopi irrigui), o l'eventuale adduzione, mediante sistemi di pompaggio, alle quote originarie. Caso particolare è costituito dalle Sorgive "Orti" poste nel tratto iniziale in rilevato del tracciato ferroviario (Km. 1+324, 1+428, 1+502) all'uscita dalla stazione di Verona. Tali sorgenti ricadono sotto il sedime della nuova linea AC/AV, per cui l'intervento di progetto prevede di mantenere inalterato il deflusso delle sorgive attraverso la realizzazione di un materasso di materiale grossolano (spessore minimo 1.0 m) confinato da geotessuto e drenato da tubazioni forate aventi come recapito lo scolo Orti. In corrispondenza dell'immissione si è previsto di rivestire in cls lo scolo per un tratto di 5.0 m a monte e a valle e di creare un allargamento per minimizzare l'interferenza tra la corrente di deflusso longitudinale e quella in arrivo dal dreno della sorgiva. In corrispondenza delle aree di cantiere (cantiere base, operativo, industriale etc.) è previsto un approvvigionamento idrico ai fini di un utilizzo per scopi lavorativi (impianto di betonaggio, lavaggio piazzali e mezzi, etc.). Si evidenzia che tale approvvigionamento verrà effettuato mediante l'utilizzazione di impianti di captazione idrica sotterranea, esistenti (e resi disponibili) o appositamente realizzati, che utilizzino esclusivamente falde superficiali, escludendo pertanto le falde profonde, che costituiscono più pregiata. risorsa qualitativamente La realizzazione dei una l'approvvigionamento idrico sarà comunque subordinata ad apposito studio idrogeologico specifico, per ciascuna area di cantiere, in modo da evidenziare eventuali situazioni critiche, tali per cui lo sfruttamento della risorsa idrica locale potrebbe risultare impossibile. In tali casi, l'approvvigionamento idrico per le necessità "produttive" sarà garantito mediante costruzione di vasche di stoccaggio, periodicamente alimentate tramite trasporto in autobotte, o tramite la raccolta di acque piovane.

Per gli usi potabili ed igienici, nei cantieri-base (dove sono previsti installazione di baracche dormitorio, mense, infermeria, etc.), verranno predisposti appositi allacciamenti alle reti idropotabili pubbliche esistenti. L'utilizzo della risorsa idrica sotterranea per le lavorazioni di cantiere produrrà una minima variazione, puntuale e temporanea, del locale livello di falda. Nella rimanente parte del progetto, ove verranno realizzati rilevati ferroviari e viadotti fondati su pali, non si produrranno sensibili variazioni del livello di falda. In particolare per quanto riguarda la messa in opera di fondazioni profonde (pali per viadotti e cavalcaferrovia) si potrà intercettare, in taluni casi, la falda idrica sotterranea con interferenze estremamente localizzate e puntuali, sul livello di falda.

Progetto Lotto Codifica Documento IN17 10 EI2RHMB0007001

Rev. Foglio A 57 di 166

Alcune opere previste potranno determinare una *variazione dei deflussi idrici sotterranei*. La realizzazione della galleria artificiale San Martino Buon Albergo, produrrà una variazione dei deflussi idrici sotterranei che interesserà la falda idrica superficiale producendo conseguenti impatti su pozzi e sorgenti circostanti. A tal proposito è stato eseguito uno studio idrogeologico (in ottemperanza alle prescrizioni della Delibera CIPE n. 94 del 29 marzo 2006) finalizzato alla valutazione delle potenziali interferenze tra opera e falda che potrebbero determinare effetti negativi sulle infrastrutture circostanti o sulla medesima opera (Relazione Idrogeologica di Progetto: IN0D00DI2RHGE0002001B e IN0D02DI2RHGE0002002C). Dai risultati ottenuti è stato possibile individuare in maniera più specifica le interferenze con i deflussi sotterranei e quindi attuare adeguate soluzioni progettuali atte a minimizzare gli impatti indotti.

Durante la fase di realizzazione della galleria artificiale sarà necessario deprimere, con opportuni sistemi, il livello di falda al fine di consentire l'esecuzione in sicurezza dei lavori. Ciò comporterà una variazione generalizzata del deflusso dei filetti fluidi della falda in oggetto che influenzerà, in un'ampia area circostante la zona dei lavori, il regime idrico di pozzi e sorgenti. Al fine di mitigare tali impatti, in corrispondenza delle opere che intercetteranno le acque di deflusso idrico sotterraneo (galleria, trincee, etc.) si adotteranno misure parzialmente compensative, quali la restituzione a valle delle acque intercettate (essenzialmente a scopi irrigui), o l'eventuale adduzione, mediante sistemi di pompaggio, alle quote originarie.

Nella rimanente parte del progetto, ove verranno realizzati rilevati ferroviari e viadotti fondati su pali, non si produrranno sensibili variazioni del deflusso idrico sotterraneo. In particolare la disposizione geometrica dei pali di fondazione avrà sulla falda un effetto "pettine", cioè i filetti idrici sotterranei subiranno delle deviazioni in corrispondenza di tali opere. Viste le ridotte dimensioni dei pali (diametro) le variazioni sopra descritte avranno solo effetti locali senza andare a modificare in maniera sostanziale i deflussi idrici sotterranei.

Durante le fasi lavorative, che prevedono l'uso di: cemento, bentonite e sostanze che possono essere ritenute inquinanti (additivi del cemento, vernici, diluenti etc.) ovvero in caso di eventi accidentali (sversamenti) si potranno produrre effetti di *alterazione chimica* dei corpi idrici sotterranei e/o superficiali, a causa di diffusione di tali sostanze. Le aree colpite da tale tipo di impatto sono potenzialmente costituite dai siti direttamente interessati dall'uso di tali sostanze e dalle zone limitrofe, vulnerabili in base ai meccanismi di diffusione dell'inquinante stesso. In tali casi sarà opportuno attuare le dovute precauzioni

Progetto Lotto Codifica Documento IN17 10 EI2RHMB0007001

Rev. Foglio A 58 di 166

durante l'utilizzo di tali sostanze, ed in caso si verificasse un rilascio accidentale di effluenti liquidi inquinati, in primo intervento, si potrà far uso di panne o sostanze assorbenti. Inoltre se tali sostanze inquinanti dovessero infiltrarsi in falda andranno emunte (per quanto possibile). Tali acque dovranno essere soggette a trattamenti prima di un loro rilascio nella rete idrica. A tal fine bisognerà attuare una campagna di indagine per verificare l'estensione del fenomeno di inquinamento.

Nelle aree dove sono previsti gli stoccaggi di materiali (provenienti dagli scavi o da cave) e/o depositi tecnologici (olii, carburanti, traverse, rotaie, etc.) e/o lavorazioni industriali (betonaggio, officine, disoleatori, deposito o presenza di trasformatori, etc.) i terreni verranno opportunamente impermeabilizzati. Le aree di cantiere (campo base, cantiere industriale, cantiere operativo, etc.), saranno, quindi, dotate di pavimentazioni e sistemi atti a convogliare le acque di dilavamento e quelle meteoriche all'interno di vasche attrezzate con impianti di trattamento che dovranno restituire reflui con caratteristiche qualitative e quantitative previste per legge prima di essere immesse nei recettori finali. All'interno dei cantieri, per la produzione di reflui civili, si introdurranno sistemi di trattamento delle acque nere che dovranno garantire il raggiungimento dei parametri previsti per legge prima di essere rilasciate nel reticolo idrografico naturale.

All'interno della galleria artificiale verranno realizzati sistemi di canalizzazioni separati che serviranno uno per far defluire le eventuali acque di falda provenienti dal fronte di avanzamento e l'altro per raccogliere i reflui di lavorazione ed i fluidi dovuti a sversamenti accidentali dei mezzi o macchinari di lavorazione (olii, carburanti, etc.). Quest'ultimi verranno convogliati in appositi impianti di trattamento. Nei casi sopra esposti (smaltimento reflui) i livelli di impatto saranno da ritenersi sostanzialmente bassi ad eccezione di eventi accidentali che potrebbero alterare le previsioni prima esposte ma controllabili attraverso sistemi di allert. A tal fine bisognerà attuare una campagna di indagine per verificare l'estensione del fenomeno di inquinamento. In caso di sversamenti accidentali di sostanze inquinanti durante la fase di cantiere, la procedura di intervento e segnalazione è quella prevista dal del D.lgs 152/2006 e s.m.i. Per il controllo delle previsioni di progetto, all'interno dei punti di monitoraggio della rete idrica superficiale e dei corpi idrici sotterranei, sono state previste specifiche analisi chimico-fisiche e microbiologiche. Tenuto conto delle prescrizioni di cui alla delibera CIPE (n. 94 del 29 marzo 2006), onde evitare forme di inquinamento dei corpi idrici sotterranei dovute alle fasi lavorative, soprattutto quando eseguite in falda, si dovranno necessariamente adottare misure di mitigazione che mirino ad annullare tali azioni.

Progetto Lotto Codifica Documento IN17 10 E12RHMB0007001

Rev. Foglio A 59 di 166

Nella realizzazione dei pali di fondazione, l'immissione di malta cementizia all'interno delle perforazioni potrebbe causare delle locali modificazioni chimiche sostanzialmente coincidenti con variazioni di pH. Tali modificazioni saranno necessariamente di entità limitata, poiché le caratteristiche della malta dovranno essere tali da consolidare rapidamente evitando di disgregarsi e diluirsi in acqua. Per tali motivi verranno tenuti sotto controllo i quantitativi di malta immessa e verranno monitorati i valori di pH (insieme ad altre sostanze chimiche) attraverso i punti di monitoraggio ambientale (dei corpi idrici superficiali e sotterranei).

Durante la fase di esercizio dell'opera, l'effetto delle azioni di progetto si ridurrà notevolmente sia per la fine delle varie fasi di lavorazione sia per il ripristino delle aree di cantiere e della relativa viabilità. Pertanto gli **impatti** indotti sulle diverse componenti e le necessarie opere di mitigazione sono riassumibili come di seguito.

ACQUE IN FASE DI ESERCIZIO

Lungo il tracciato, in corrispondenza di alcune opere di progetto (galleria, trincee e palificate) si verificheranno alcune *interferenze con il livello di falda*. La situazione più particolare è costituita dalla realizzazione della galleria artificiale San Martino Buon Albergo. Lo studio idrogeologico (eseguito in ottemperanza alle prescrizioni della Delibera CIPE n.94 del 29 marzo 2006) ha evidenziato, in corrispondenza del tratto in galleria, un innalzamento del livello di falda sul lato sopragradiente ed un contestuale abbassamento in quello sottogradiente nonché una modifica locale nella direzione del flusso idrico sotterraneo (Relazione Idrogeologica di Progetto: IN0D00DI2RHGE0002001B).

Nella fase di esercizio inoltre le eventuali influenze sul regime idrico di pozzi e sorgenti posti nelle vicinanze della galleria saranno minori rispetto alla fase di cantiere e comunque se necessario dovranno essere minimizzate, se non annullate completamente, dalle eventuali misure compensative adottate, quali: la restituzione a valle delle acque intercettate dalle opere o l'eventuale adduzione, mediante sistemi di pompaggio, alle quote originarie.

Le interferenze con le acque sotterranee nelle aree di cantiere saranno completamente annullate in seguito alla fine dei lavori ed al ripristino di tali aree.

Nella rimanente parte del progetto, ove verranno realizzati rilevati ferroviari e viadotti fondati su pali, non si avranno impatti rilevanti sul livello idrico sotterraneo. In particolare per quanto riguarda la presenza di opere di fondazioni profonde (pali di viadotti e

Rev.

Foglio

60 di 166

1^ LOTTO FUNZIONALE VERONA-BIVIO VICENZA PMA – COMPONENTE AMBIENTALE ACQUE SOTTERRANEE Progetto Lotto Codifica Documento IN17 10 EI2RHMB0007001

cavalcaferrovia) questi costituiranno interferenze estremamente localizzate, che non determineranno impatti significativi sul livello di falda.

La realizzazione della galleria artificiale San Martino Buon Albergo, produrrà una variazione dei deflussi sotterranei che interesserà la falda idrica superficiale producendo conseguenti impatti su pozzi e sorgenti circostanti. Le opportune opere di mitigazione che saranno adottate nella realizzazione della galleria nonché le eventuali (se necessarie) misure compensative adoperate nei riguardi di pozzi e sorgenti nelle vicinanze ridurranno gli impatti derivanti da tale opera. Nella rimanente parte del progetto, ove verranno realizzati rilevati ferroviari e viadotti fondati su pali, non si avranno impatti rilevanti sul deflusso idrico sotterraneo.

In particolare per quanto riguarda la presenza di fondazioni profonde (pali per viadotti e cavalcaferrovia) questi determineranno interferenze estremamente localizzate sulla variazione di deflusso idrico sotterraneo (deviazioni dei filetti idrici), senza andare a modificare in maniera sostanziale i deflussi idrici sotterranei.

Durante la fase di esercizio si potrebbero verificare degli sversamenti accidentali di sostanze contaminanti (carburanti, olii, soluzioni elettrolitiche, etc.) che potrebbero interessare i corpi idrici sotterranei e/o superficiali producendo effetti di *alterazione chimica*. Bisogna pertanto prevedere che le sostanze inquinanti potrebbero giungere esternamente all'area ferroviaria, per esempio per deragliamento di un convoglio. Le aree critiche sono situate in prossimità dell'intero tracciato, e la loro vulnerabilità dipenderà dai meccanismi di diffusione dell'inquinante stesso. In tali casi sarà opportuno emungere le acque inquinate che andranno gestite come un rifiuto, le aree interessate dalla contaminazione dovranno essere bonificate. A tal fine bisognerà attuare una campagna di indagine per verificare l'estensione del fenomeno di inquinamento.

Durante la fase di esercizio, tutte le sostanze e/o materiali che giungono sulla piattaforma ferroviaria (frammenti di metalli, polveri, perdite di liquidi, etc.) verranno dilavate dalle acque di prima pioggia; lungo il tracciato si realizzeranno opere di drenaggio della piattaforma ferroviaria necessarie allo smaltimento delle acque meteoriche. Esse consistono nella realizzazione dei seguenti elementi principali:

- canalette di drenaggio della piattaforma;
- fossi di guardia e di invaso ai lati della linea;
- bacini di laminazione;
- manufatti di regolazione della portata scaricata nei recettori finali.

GENERAL CONTRACTOR

1^ LOTTO FUNZIONALE VERONA-BIVIO VICENZA PMA – COMPONENTE AMBIENTALE ACQUE SOTTERRANEE Progetto Lotto Codifica Documento IN17 10 E12RHMB0007001

Rev. Foglio A 61 di 166

Per quanto riguarda la galleria di San Martino Buon Albergo ed i tratti in trincea ad essa collegata è stato previsto lo smaltimento delle acque meteoriche tramite la realizzazione di opportuni impianti di sollevamento, ubicati in maniera tale da ottimizzare la tipologie di pompe e la funzionalità del sistema di raccolta.

Nel complesso le acque di dilavamento della piattaforma ferroviaria dovranno essere immesse nei corpi idrici recettori secondo gli standard di qualità e quantità previste per legge, per cui gli impatti prevedibili sui corpi idrici rimangono sostanzialmente bassi ad eccezione di eventi accidentali che potrebbero alterare le previsioni prima esposte ma controllabili attraverso sistemi di allert. Ai fini del controllo delle succitate previsioni di progetto sono stati inseriti, nel piano di monitoraggio della rete idrica superficiale e dei corpi idrici sotterranei, punti di controllo in corrispondenza dei quali si eseguiranno specifiche analisi chimico-fisiche e microbiologiche.

Progetto Lotto Codifica Documento IN17 10 EI2RHMB0007001

Rev. Foglio A 62 di 166

7 ARTICOLAZIONE DEL LAVORO

Al fine di monitorare l'evoluzione delle interazioni opera-ambiente sono state individuate una serie di indagini ed analisi che dovranno essere svolte in tre distinte fasi temporali:

Ante Operam

- Definire lo stato dei luoghi e le caratteristiche dell'ambiente naturale;
- Determinare la situazione di partenza dei parametri che verranno monitorati in modo da avere un termine di paragone per le successive fasi.

Corso d'Opera

- Monitorare l'evoluzione dei parametri ambientali messi sotto osservazione, confrontando i risultati ottenuti con quelli già acquisiti nella precedente fase e con i valori soglia indicati dalla normativa in vigore e/o con i riferimenti tecnici esistenti;
- Approfondire situazioni specifiche eventualmente affioranti in corso d'opera;
- Attuare necessari studi ed analisi capaci di individuare eventuali fattori di stress ambientale precedentemente non considerati;
- Individuare specifiche azioni di mitigazione che dovessero risultare necessarie per contrastare nuovi fattori di stress.

Post operam

- Monitorare l'evoluzione dei parametri ambientali messi sotto osservazione, confrontando i risultati ottenuti con quelli già acquisiti nelle precedenti fasi e con i valori soglia indicati dalla normativa in vigore e/o con i riferimenti tecnici esistenti;
- Verificare l'efficacia degli interventi di mitigazione e compensazione;
- Individuare, sulla base di approfondimenti di studio (tramite specifiche indagini ed analisi da pianificarsi in tale fase) le necessarie azioni utili a mitigare e contrastare eventuali fattori di stress emersi in tale fase e non considerati durante lo Studio di Impatto Ambientale.

7.1 DESCRIZIONE DELLE ATTIVITÀ DI MONITORAGGIO E TEMPISTICA DI ESECUZIONE

Monitoraggio piezometri – nelle stazioni di misura, meglio specificate nel paragrafo relativo all'ubicazione dei punti di monitoraggio, verranno installati dei piezometri a tubo aperto che serviranno al controllo della falda idrica sotterranea. Durante tale attività si procederà: al rilievo del livello di falda, all'esecuzione di misure con sonda multiparametrica ed alla raccolta di campioni di acqua (secondo le modalità indicate dalla

Progetto Lotto Codifica Documento IN17 10 E12RHMB0007001

Rev. Foglio A 63 di 166

normativa di riferimento) che verranno successivamente analizzati in laboratorio. I rilievi verranno effettuati secondo la seguente tempistica:

<u>Ante operam</u> – il rilevamento del livello di falda, le misure con sonda multiparametrica, la raccolta dei campioni e le relative analisi di laboratorio verranno eseguite due volte, , prima dell'inizio dei lavori.

Il <u>Corso d'opera</u> è stato distinto in due fasi consecutive: la 1 fase corrispondente alla realizzazione delle opere civili della durata di 4 anni; mentre la 2 fase corrispondente alla realizzazione dell'armamento e delle tecnologie ha la durata di 1,5 anni. Pertanto le attività di monitoraggio del CO sono suddivise in CO -1 e CO - 2.

I livelli di falda verranno acquisiti lungo tutto il tracciato con cadenza trimestrale per la fase CO -1 e semestrale per la fase CO-2 (per le aree "in effettiva lavorazione" le misure del livello di falda saranno acquisite con frequenza mensile); le misure con sonda multiparametrica verranno acquisite lungo tutto il tracciato con cadenza mensile per la fase CO -1 e semestrale per la fase CO-2, tenendo conto che l'avanzamento dei lavori avverrà per lotti funzionali (senza interessare contemporaneamente l'intero sviluppo del tracciato). La raccolta dei campioni per analisi di laboratorio verrà eseguita con frequenza mensile dall'inizio dei lavori per la fase CO-1 e semestrale per la fase CO-2. Post operam – la durata complessiva del monitoraggio sarà di un anno. I livelli di falda, le misure con sonda multiparametrica e la raccolta di campioni avrà cadenza semestrale.

Nelle aree a maggior impatto, come meglio specificato nel paragrafo relativo all'ubicazione dei punti di monitoraggio, i piezometri a tubo aperto saranno affiancati da **piezometri automatizzati** che serviranno, in maniera esclusiva (non verranno eseguite altre tipologie di analisi), al controllo in continuo della falda idrica sotterranea nelle fasi di: ante operam, corso d'opera e post operam.

Monitoraggio sorgenti – all'interno di specifiche aree poste nei pressi del tracciato ferroviario e/o delle aree di cantiere (nelle stazioni di misura meglio specificate nel paragrafo relativo all'ubicazione dei punti di monitoraggio) verranno prese in considerazione alcune sorgenti che serviranno al controllo della falda idrica sotterranea. Durante tale attività si procederà: alla misura delle portate istantanee, all'esecuzione di misure con sonda multiparametrica ed alla raccolta di campioni di acqua (secondo le modalità indicate dalla normativa di riferimento) che verranno di seguito analizzati in laboratorio. I rilievi verranno effettuati secondo la seguente tempistica:

GENERAL CONTRACTOR

1^ LOTTO FUNZIONALE VERONA-BIVIO VICENZA PMA – COMPONENTE AMBIENTALE ACQUE SOTTERRANEE Progetto Lotto Codifica Documento IN17 10 E12RHMB0007001

Rev. Foglio A 64 di 166

<u>Ante operam</u> – le misure di portata, le misure con sonda multiparametrica, la raccolta dei campioni e le relative analisi di laboratorio verranno eseguite due volte, nell'arco di un anno, prima dell'inizio dei lavori.

Il <u>Corso d'opera</u> è stato distinto in due fasi consecutive: la 1 fase corrispondente alla realizzazione delle opere civili della durata di 4 anni; mentre la 2 fase corrispondente alla realizzazione dell'armamento e tecnologie ha la durata di 1,5 anni. Pertanto le attività di monitoraggio del CO sono suddivise in CO -1 fase e CO - 2 fase.

Le misure di portata verranno acquisite lungo tutto il tracciato con cadenza trimestrale per la fase CO-1 e semestrale per la fase CO-2 (per le aree "in effettiva lavorazione" le misure di portata saranno acquisite con frequenza mensile); le misure con sonda multiparametrica verranno acquisiti lungo tutto il tracciato con cadenza mensile per la fase CO-1 e semestrale per la fase CO-2, tenendo conto che l'avanzamento dei lavori avverrà per lotti funzionali. In prossimità di tali aree la raccolta dei campioni per analisi di laboratorio verrà eseguita con cadenza mensile per la fase CO-1 e semestrale per la fase CO-2.

<u>Post operam</u> – la durata complessiva del monitoraggio sarà di un anno. I rilievi di portata, le misure con sonda multiparametrica e la raccolta di campioni avrà cadenza semestrale. I risultati ottenuti andranno confrontati con i limiti previsti per legge, per cui, in caso di superamento dei valori di soglia, bisognerà procedere alla programmazione di una specifica ed immediata attività di studio e di bonifica del sito. Il monitoraggio delle attività verrà effettuato secondo l'articolazione temporale riportata nelle tabelle seguenti.

				AO
Matrice/Parametro/Attività	Cod. misure	Periodo	Frequenza	Punti di campionamento
Sopralluoghi con osservazioni in campo	ASO-VA-XX- XXX		1 rilievo	Tutti i piezometri a tubo aperto ed i piezometri automatizzati (n° 56 punti)
Livellazione topografica dei piezometri	ASO-VA-XX- XXX	Prima	1 rilievo	Tutti i piezometri a tubo aperto ed i piezometri automatizzati (n° 56 punti)
Rilievo dei parametri chimico-fisici mediante sonda multiparametrica. Si esegue un'unica misura sempre alla stessa profondità.	ASO-VA-XX- XXX	dell'inizi o dei lavori	2 rilievi	Tutti i Piezometri a tubo aperto (n° 56 punti)
Campionamento ed analisi chimiche su n° 1 campione prelevato in ciascun piezometro di monitoraggio²	ASO-VA-XX- XXX		2 rilievi	Tutti i Piezometri a tubo aperto (n° 56 punti)
Misura di portata ed analisi in situ delle sorgenti	ASO-SO-XX- XXX		2 rilievi	n° 17 sorgenti

² Si ritiene sufficiente l'analisi di un solo campione per piezometro, valutando caso per caso l'eventuale necessità di un campionamento stratificato sulla profondità.

Progetto	Lotto	Codifica Documento
IN17	10	El2RHMB0007001

Rev. Foglio A 65 di 166

				AO
Matrice/Parametro/Attività	Cod. misure	Periodo	Frequenza	Punti di campionamento
Campionamento ed analisi chimiche su campioni prelevati dalle sorgenti	ASO-SO-XX- XXX		2 rilievi	n° 17 sorgenti

Tab. 7-1: Riepilogo delle attività di monitoraggio da eseguire in fase ante operam

			C	D-1
Matrice/Parametro/Attività	Cod. misure	Periodo	Frequenza	Punti di campionamento
Sopralluoghi con osservazioni in campo	ASO-VA-XX- XXX	4 anno	Annuale	Tutti i piezometri a tubo aperto ed i piezometri automatizzati (n° 56 punti)
Livellazione topografica dei piezometri	ASO-VA-XX- XXX	4 anni	Annuale	Tutti i piezometri a tubo aperto ed i piezometri automatizzati (n° 56 punti)
Misura piezometrica (quota falda) sui piezometri	ASO-VA-XX- XXX	4 anni	Trimestrale (mensile se area "in effettiva lavorazione")	Tutti i Piezometri a tubo aperto (n° 56 punti)
Rilievo dei parametri chimico-fisici mediante sonda multiparametrica. Si esegue un'unica misura sempre alla stessa profondità.	ASO-VA-XX- XXX	4 anni	Trimestrale (mensile se area "in effettiva lavorazione")	Tutti i Piezometri a tubo aperto (n° 56 punti)
Campionamento ed analisi chimiche su nº 1 campione prelevato in ciascun piezometro di monitoraggio ²	ASO-VA-XX- XXX	4 anni	Trimestrale (mensile se area "in effettiva lavorazione")	Tutti i Piezometri a tubo aperto (n° 56 punti)
Misura di portata ed analisi in situ delle sorgenti	ASO-SO-XX- XXX	4 anni	Trimestrale (mensile se area "in effettiva lavorazione")	n° 17 sorgenti
Campionamento ed analisi chimiche su campioni prelevati dalle sorgenti	ASO-SO-XX- XXX	4 anni	Trimestrale (mensile se area "in effettiva lavorazione")	n° 17 sorgenti

Tab. 7-2: Riepilogo delle attività di monitoraggio da eseguire in fase di corso d'opera 1 fase

			С	0-2
Matrice/Parametro/Attività	Cod. misure	Periodo	Frequenza	Punti di campionamento
Sopralluoghi con osservazioni in campo	ASO-VA-XX- XXX	1,5 anni	Annuale	Tutti i piezometri a tubo aperto ed i piezometri automatizzati (n° 56 punti)
Livellazione topografica dei piezometri	ASO-VA-XX- XXX	1,5 anni	Annuale	Tutti i piezometri a tubo aperto ed i piezometri automatizzati (n° 56 punti)

GENERAL CONTRACTOR

1^ LOTTO FUNZIONALE VERONA-BIVIO VICENZA PMA – COMPONENTE AMBIENTALE ACQUE SOTTERRANEE Progetto Lotto Codifica Documento IN17 10 EI2RHMB0007001

Rev. Foglio A 66 di 166

			С	0-2
Matrice/Parametro/Attività	Cod. misure	Periodo	Frequenza	Punti di campionamento
Rilievo dei parametri chimico-fisici mediante sonda multiparametrica. Si esegue un'unica misura sempre alla stessa profondità	ASO-VA-XX- XXX	1,5 anni	Semestrale	Tutti i Piezometri a tubo aperto (n° 56 punti)
Campionamento ed analisi chimiche su n° 1 campione prelevato in ciascun piezometro di monitoraggio ³	ASO-VA-XX- XXX	1,5 anni	Semestrale	Tutti i Piezometri a tubo aperto (n° 56 punti)
Misura di portata ed analisi in situ delle sorgenti	ASO-SO-XX- XXX	1,5 anni	Semestrale	n° 17 sorgenti
Campionamento ed analisi chimiche su campioni prelevati dalle sorgenti	ASO-SO-XX- XXX	1,5 anni	Semestrale	n° 17 sorgenti

Tab. 7-3: Riepilogo delle attività di monitoraggio da eseguire in fase di corso d'opera 2 fase

			ı	20
Matrice/Parametro/Attività	Cod. misure	Periodo	Frequenza	Punti di campionamento
Sopralluoghi con osservazioni in campo	ASO-VA-XX- XXX	1 anno	Annuale	Tutti i piezometri a tubo aperto ed i piezometri automatizzati (n° 56 punti)
Livellazione topografica dei piezometri	ASO-VA-XX- XXX	1 anno	Annuale	Tutti i piezometri a tubo aperto ed i piezometri automatizzati (n° 56 punti)
Rilievo dei parametri chimico-fisici mediante sonda multiparametrica. Si esegue un'unica misura sempre alla stessa profondità.	ASO-VA-XX- XXX	1 anno	Semestrale	Tutti i Piezometri a tubo aperto (n° 56 punti)
Campionamento ed analisi chimiche su n° 1 campione prelevato in ciascun piezometro di monitoraggio ³	ASO-VA-XX- XXX	1 anno	Semestrale	Tutti i Piezometri a tubo aperto (n° 56 punti)
Misura di portata ed analisi in situ delle sorgenti	ASO-SO-XX- XXX	1 anno	Semestrale	n° 17 sorgenti
Campionamento ed analisi chimiche su campioni prelevati dalle sorgenti	ASO-SO-XX- XXX	1 anno	Semestrale	n° 17 sorgenti

Tab. 7-4: Riepilogo delle attività di monitoraggio da eseguire in fase post operam

³ Si ritiene sufficiente l'analisi di un solo campione per piezometro, valutando caso per caso l'eventuale necessità di un campionamento stratificato sulla profondità.

Progetto Lotto Codifica Documento IN17 10 EI2RHMB0007001

Rev. Foglio A 67 di 166

8 PARAMETRI DI MONITORAGGIO

8.1 ANALISI CHIMICO-FISICHE E DI LABORATORIO

La scelta dei parametri chimici è derivata dall'esigenza di effettuare il calcolo di indici di qualità utili per verificare eventuali variazioni ambientali imputabili alla costruzione dell'Opera. I parametri sono stati scelti, sulla base delle normative di riferimento, in funzione della tipologia di lavorazioni e/o scarichi di cantiere previsti.

Al fine di effettuare la selezione del set di parametri analitici si è tenuto conto del processo di implementazione della Direttiva 2000/60/CE, recepita in Italia con il D.Lgs. 152/2006 e con le successive modifiche ed integrazioni (D.Lgs. 30/2009).

Per il Progetto in esame, oltre ai parametri di base, gli analiti sono stati selezionati, ai sensi della normativa vigente (Allegato 3, tabella 2 e tabella 3 del D.Lgs. 30/2009), tra quelli potenzialmente riscontrabili nelle diverse lavorazioni (metalli, idrocarburi, etc.) e/o dovute alla presenza delle aree di cantiere e del rilascio di reflui (p.es. microbiologici).

DESCRIZIONE PARAMETRO	METODOLOGIA ANALITICA
Portata (per le sorgenti)	
Livello piezometrico (nei piezometri)	
Taria	
T acqua	DADAMETOLINI CITU
Ossigeno disciolto	PARAMETRI IN SITU
Conducibilità	
pH	
Potenziale Redox	
pH	APAT CNR IRSA 2060 Man 29
Calcio	EPA 6010D/2018
Sodio	EPA 6010D/2018
Potassio	EPA 6010D/2018
Magnesio	EPA 6010D/2018
Ione ammonio	M.U. 941:95
Nitriti (ione nitrito)	M.U. 939:94
Nitrati	UNI EN ISO 10304-1:2009
Tensioattivi anionici	APAT CNR IRSA 5170 Man 29 2003
Tensioattivi non ionici	CI-TM-005 rev 0 2020
Solfati (ione solfato)	UNI EN ISO 10304-1:2009
Cloruri	UNI EN ISO 10304-1:2009
Bicarbonati (HCO3)	APAT IRSA CNR 4140 man 29 2003
METALLI	
Alluminio	EPA 6020B 2014
Arsenico	EPA 6020B 2014
Cadmio	EPA 6020B 2014
Cromo totale	EPA 6020B 2014
Cromo esavalente	EPA 7199 1996
Ferro	EPA 6020B 2014
Mercurio	EPA 6020B 2014
Nichel	EPA 6020B 2014
Piombo	EPA 6020B 2014
Rame	EPA 6020B 2014

GENERAL CONTRACTOR

1^ LOTTO FUNZIONALE VERONA-BIVIO VICENZA PMA – COMPONENTE AMBIENTALE ACQUE SOTTERRANEE Progetto Lotto Codifica Documento IN17 10 EI2RHMB0007001

Rev. Foglio A 68 di 166

DESCRIZIONE PARAMETRO	METODOLOGIA ANALITICA
Manganese	EPA 6020B 2014
Zinco	EPA 6020B 2014
COMPOSTI ORGANICI AROMATICI	
Benzene	EPA 5030C 2003 + EPA 8260D 2018
Etilbenzene	EPA 5030C 2003 + EPA 8260D 2018
Toluene	EPA 5030C 2003 + EPA 8260D 2018
p-Xilene	EPA 5030C 2003 + EPA 8260D 2018
IDROCARBURI POLICICLICI AROMATICI	2177 00000 2000 V 2177 02000 2010
Benzo(a)antracene	EPA 3510C 1996 + EPA 8270E 2018
Benzo(a)pirene	EPA 3510C 1996 + EPA 8270E 2018
Benzo(b)fluorantene (A)	EPA 3510C 1996 + EPA 8270E 2018
Benzo(k)fluorantene (B)	EPA 3510C 1996 + EPA 8270E 2018
Benzo(ghi)perilene (C)	EPA 3510C 1996 + EPA 8270E 2018
Crisene	EPA 3510C 1996 + EPA 8270E 2018
Dibenzo(a,h)antracene	EPA 3510C 1996 + EPA 8270E 2018
Indeno(1,2,3-cd)pirene (D)	EPA 3510C 1996 + EPA 8270E 2018
Pirene	EPA 3510C 1996 + EPA 8270E 2018
Somm. policiclici aromatici (A,B,C,D)	EPA 3510C 1996 + EPA 8270E 2018
ALIFATICI CLORURATI	E1 X 00 100 1000 1 E1 X 02 10E 2010
1,2-Dicloroetano	EPA 5030C 2003 + EPA 8260D 2018
Triclorometano	EPA 5030C 2003 + EPA 8260D 2018
Tricloroetilene	EPA 5030C 2003 + EPA 8260D 2018
Tetracloroetilene	EPA 5030C 2003 + EPA 8260D 2018
1,2-Dicloroetilene	EPA 5030C 2003 + EPA 8260D 2018
Cloruro di vinile	EPA 5030C 2003 + EPA 8260D 2018
NITROBENZENI	E1 A 30300 2003 + E1 A 0200D 2010
Nitrobenzene	EPA 3510C 1996 + EPA 8270E 2018
CLOROBENZENI	E1 A 33 100 1330 + E1 A 0270E 2010
1,2-Diclorobenzene	EPA 5030C 2003 + EPA 8260D 2018
1,2,4-Triclorobenzene	EPA 5030C 2003 + EPA 8260D 2018
FENOLI E CLOROFENOLI	E1 A 30300 2000 1 E1 A 32000 2010
Pentaclorofenolo	EPA 3510C 1996 + EPA 8270E 2018
Idrocarburi totali (n-esano)	ISPRA Man 123 2015
Idrocarburi leggeri C<12	EPA 5021A 2014 + EPA 8015D 2003
Idrocarburi pesanti c>12	UNI EN ISO 9377-2:2002
MTBE	EPA 5030C 2003 + EPA 8260D 2018
PARAMETRI MICROBIOLOGICI	E1 // 00000 2000 1 E1 // 02000 2010
Escherichia coli	APAT CNR IRSA 7030 C Man 29 2003
PFAS	7.1 7.1 STAIL ING/L 7000 O MIGHT 23 2000
Acido perfluorobutansolfonico (PFBS)	Direttiva 2013/39/UE
Acido perfluoroesansolfonico (PFHxS)	Direttiva 2013/39/UE
Acido perfluoroetansolfonico (PFOS)	Direttiva 2013/39/UE
Acido perfluorobitansolionico (PFOS) Acido perfluorobitanoico (PFBA)	Direttiva 2013/39/UE
Acido perfluoropentanoico (PFPeA)	Direttiva 2013/39/UE
Acido perfluoroesanoico (PFHxA)	Direttiva 2013/39/UE
Acido perfluoroesanoico (PFHxA) Acido perfluoroeptanoico (PFHpA)	Direttiva 2013/39/UE
Acido perfluoroeptanoico (PFDA) Acido perfluoroottanoico (PFOA)	Direttiva 2013/39/UE
Acido perfluoronanoico (PFOA)	Direttiva 2013/39/UE
Acido perfluorodecanoico (PFDeA)	Direttiva 2013/39/UE
Acido perfluorodecanoico (PFUnA)	Direttiva 2013/39/UE
'	
Acido perfluorododecanoico (PFDoA)	Direttiva 2013/39/UE

Tab. 8-1: Parametri da monitorare

Progetto Lotto Codifica Documento IN17 10 EI2RHMB0007001

Rev. Foglio A 69 di 166

Non è previsto l'utilizzo di erbicidi, verrà a tal proposito prodotta specifica dichiarazione da parte del GC.

Le metodiche di analisi, le tecniche analitiche ed i limiti di rilevabilità sono suscettibili di modifiche con riferimento all'evoluzione della normativa di settore vigente. I limiti di rilevabilità dei metodi di prova dovranno essere tali da garantire il confronto dei risultati ottenuti con i valori guida previsti dalla normativa vigente.

8.2 CRITERI DI VALUTAZIONE DEI DATI - SOGLIE DI ATTENZIONE E DI INTERVENTO

Prima dell'inizio dei lavori di realizzazione dell'opera sarà definito un metodo di analisi dei risultati del monitoraggio che consentirà di valutare la variazione della qualità ambientale connessa alla variazione dei valori dei parametri misurati, sia in fase ante opera che nella stessa fase di corso d'opera, e di descrivere così l'andamento nel tempo dello stato di ciascuna componente ambientale monitorata. In tal modo, la valutazione dei dati derivanti dal monitoraggio in corso d'opera si baserà sul confronto con i valori corrispondenti misurati nella fase ante opera e, contemporaneamente, con delle soglie di attenzione e di intervento opportunamente definite desunte dalla normativa vigente o dalla letteratura scientifica. Quindi, sarà possibile segnalare precocemente casi di deterioramento della qualità ambientale dovuti all'attività di cantiere mettendo in atto tempestivi rimedi a difesa dell'ambiente e della salute pubblica.

Per ulteriori approfondimenti si veda il capitolo 12 "Elaborazione e restituzione dei dati".

Progetto Lotto Codifica Documento IN17 10 EI2RHMB0007001

Rev. Foglio A 70 di 166

9 INDIVIDUAZIONE DELLE AREE E PUNTI DI MONITORAGGIO

La scelta, circa la necessaria raccolta di dati, è stata effettuata in base alle criticità del territorio, in funzione della componente ambientale indagata. Le aree vulnerabili sono state quindi il principale bersaglio del monitoraggio ambientale.

9.1 CRITERI ADOTTATI

All'interno dell'area di indagine la localizzazione e il numero delle stazioni/punti di monitoraggio è stata effettuata sulla base dei seguenti criteri:

- significatività/entità degli impatti attesi, identificati all'interno del SIA;
- estensione territoriale delle aree di indagine;
- sensibilità del contesto ambientale e territoriale (tipologie di acquiferi attraversati);
- vulnerabilità dei terreni e degli acquiferi e distanza dalle fonti di impatto;
- durata temporale delle fonti di impatto;
- criticità del contesto ambientale e territoriale (presenza di condizioni di degrado ambientale pregresso, in atto o potenziale);
- presenza di pressioni ambientali non imputabili all'attuazione dell'opera (cantiere, esercizio) che possono interferire con i risultati dei monitoraggi ambientali e che sono state, ove possibile, evitate;
- geometria dei corpi idrici sotterranei (superficie piezometrica, andamento dello spessore degli acquiferi e della falda idrica);
- dinamica delle falde idriche (conoscenza dell'andamento dei deflussi idrici);
- stato di qualità dei corpi idrici sotterranei (presenza di eventuali sostanze inquinanti dovute all'attività di cui al presente progetto di costruzione ferroviaria).

•

9.2 IDENTIFICAZIONE DEI PUNTI

I punti di monitoraggio, salvo casi particolari, sono stati ubicati rispettando il criterio del monte e del valle rispetto alla direzione di deflusso della falda.

Tale criterio consente infatti di valutare, non soltanto il valore assoluto degli indicatori in ciascun sito, quanto invece la variazione dello stesso parametro tra i due punti di misura e di riconoscere eventuali impatti determinati dalla presenza di lavorazioni/cantieri e dell'opera stessa.

Quindi, sono stati previsti, generalmente:

Progetto	Lotto	Codifica Documento
IN17	10	EI2RHMB0007001

Rev. Foglio A 71 di 166

- punti di monitoraggio per ciascun cantiere (a monte e a valle rispetto alla direzione del flusso principale delle acque sotterranee);
- punti di monitoraggio nelle aree a maggiore impatto.
- Pertanto, le analisi saranno effettuate sia a monte che a valle dei cantieri e del tracciato allo scopo di valutare meglio eventuali anomalie e/o non conformità.

Complessivamente, per l'intero territorio di indagine, la rete di monitoraggio sarà articolata come di seguito:

- n° 56 piezometri a tubo aperto, al fine di monitorare le caratteristiche chimico-fisiche
 delle acque sotterranee; sono compresi 6 piezometri automatizzati al fine di
 monitorare, in maniera esclusiva, in continuo il livello idrico della falda nelle aree a
 maggior impatto;
- n° 17 sorgenti al fine di monitorare le variazioni di portata.

L'ubicazione dei punti di monitoraggio è riportata nelle planimetrie allegate alla presente relazione "PLANIMETRIA UBICAZIONE PUNTI DI MISURA - Componente Ambiente idrico, Suolo e Sottosuolo". In ottemperanza alla prescrizione n. 126 della Del. CIPE n. 84/2017, il numero dei suddetti piezometri è stato incrementato di ulteriori 4 coppie (n. 3 a monte + n. 3 a valle) più 1 piezometro di monte. Successivamente per dar seguito alla nota ARPAV prot-83005 del 3 settembre 2018, al fine di rilevare le variazioni della superficie piezometrica laddove le opere interferiscono significativamente con la falda, il numero di piezometri è stato ulteriormente aumentato di un numero pari a 4, per un totale di n. 56 piezometri. Le stazioni di monitoraggio saranno codificate secondo il seguente schema:

- 3 caratteri per l'acronimo della componente;
- 2 caratteri per l'acronimo della subcomponente;
- 2 caratteri per l'acronimo del Comune in cui ricadono;
- 3 numeri per il progressivo della stazione. Il progressivo è relativo al Comune di riferimento.

Il codice è composto da una stringa di 13 caratteri (10 caratteri separati da 3 trattini) così organizzati:

Cod. stazione	CAMPI			
Cou. Stazione	Componente	Sub-Componente	Cod. Comune	Prog. Stazione
ASO-VA-XX-001	ASO	VA = Piezometri	XX	001
ASO-SO-XX-001	ASO	SO= Sorgenti	XX	001

Progetto	Lotto	Codifica Documento
IN17	10	EI2RHMB0007001

Rev. Foglio A 72 di 166

Di seguito è riportato l'elenco dettagliato delle stazioni di monitoraggio relative alle diverse sub componenti.

0.1.41	CAMPI				
Cod. stazione	Componente	Sub-Componente	Cod. Comune	Prog. Stazione	
ASO-VA-VR-XXX	ASO	VA=Piezometri	VR=VERONA	001÷005	
ASO-VA-SM-XXX	ASO	VA=Piezometri (Piezometri a tubo aperto e Piez. automatizzati)	SM=SAN MARTINO BUON ALBERGO	001÷010	
ASO-VA-ZE-XXX	ASO	VA=Piezometri	ZE=ZEVIO	001-002	
ASO-VA-BE-XXX	ASO	VA=Piezometri	BE=BELFIORE	001÷006	
ASO-VA-SB-XXX	ASO	VA=Piezometri	SB=SAN BONIFACIO	001÷007	
ASO-VA-LO-XXX	ASO	VA=Piezometri	LO=LONIGO	001÷004	
ASO-VA-MB-XXX	ASO	VA=Piezometri	MB=MONTEBELLO VICENTINO	001÷010	
ASO-VA-BR-XXX	ASO	VA=Piezometri	BR=BRENDOLA	001÷002	
ASO-VA-MM-XXX	ASO	VA=Piezometri	MM=MONTECCHIO MAGGIORE	001÷004	
ASO-VA-AV-XXX	ASO	VA=Piezometri	AV=ALTAVILLA VICENTINA	001÷006	
ASO-SO-VR-XXX	ASO	SO=Sorgenti	VR=VERONA	001÷006	
ASO-SO-SM-XXX	ASO	SO=Sorgenti	SM=SAN MARTINO BUON ALBERGO	001÷005	
ASO-SO-AV-XXX	ASO	SO=Sorgenti	AV=ALTAVILLA VICENTINA	001÷003	
ASO-SO-CR-XXX	ASO	SO=Sorgenti	CR=CREAZZO	001÷003	

Tab. 9-2: Elenco stazioni di monitoraggio per Comune

Nella tabella di seguito riportata sono specificate le posizioni dei piezometri, procedendo da Verona verso est, secondo il criterio "monte-valle" rispetto all'andamento della superficie piezometrica, in relazione alle diverse opere in progetto (tracciato ferroviario, cantieri, etc.).

	POSIZIONE		POSIZIONE	
ASO-VA-VR-001	Monte	ASO-VA-VR-002	Valle	
ASO-VA-VR-003	Monte	ASO-VA-VR-004	Valle	
ASO-VA-VR-005				
ASO-VA-SM-001	Monte	ASO-VA-SM-002	Valle	
ASO-VA-SM-003	Monte	ASO-VA-SM-004	Valle	
ASO-VA-SM-005	Monte	ASO-VA-SM-006	Valle	
ASO-VA-SM-007	Monte	ASO-VA-SM-008	Valle	
ASO-VA-SM-009	Monte	ASO-VA-SM-010	Valle	
ASO-VA-ZE-001	Monte	ASO-VA-ZE-002	Valle	
ASO-VA-BE-001	Monte	ASO-VA-BE-002	Valle	
ASO-VA-BE-003	Monte	ASO-VA-BE-004	Valle	
ASO-VA-BE-005	Monte	ASO-VA-BE-006	Valle	

Foglio 73 di 166

Rev.

1^ LOTTO FUNZIONALE VERONA-BIVIO VICENZA PMA – COMPONENTE AMBIENTALE ACQUE SOTTERRANEE

rogetto	Lotto	Codifica Documento
IN17	10	El2RHMB0007001

	POSIZIONE		POSIZIONE
ASO-VA-SB-001	Monte	ASO-VA-SB-002	Valle
ASO-VA-SB-003	Monte	ASO-VA-SB-004	Valle
ASO-VA-SB-005	Monte	ASO-VA-SB-006	Valle
	ASO-VA	A-SB-007	
ASO-VA-LO-001	Monte	ASO-VA-LO-002	Valle
ASO-VA-LO-003	Monte	ASO-VA-LO-004	Valle
ASO-VA-MB-001	Monte	ASO-VA-MB-002	Valle
ASO-VA-MB-003	Monte	ASO-VA-MB-004	Valle
ASO-VA-MB-005	Monte	ASO-VA-MB-006	Valle
ASO-VA-MB-007	Monte	ASO-VA-MB-008	Valle
ASO-VA-MB-009			
	ASO-VA	∆-MB-010	
ASO-VA-BR-001	Monte	ASO-VA-BR-002	Valle
ASO-VA-MM-001	Monte	ASO-VA-MM-002	Valle
ASO-VA-MM-003	Monte	ASO-VA-MM-004	Valle
ASO-VA-AV-001	Monte	ASO-VA-AV-002	Valle
ASO-VA-AV-003	Monte	ASO-VA-AV-004	Valle
ASO-VA-AV-005	Monte	ASO-VA-AV-006	Valle

Tab. 9-3: Elenco stazioni di monitoraggio - Piezometri

Nella tabella di seguito riportata sono specificate le posizioni delle sorgenti.

SORGENTI
ASO-SO-VR-001
ASO-SO-VR-002
ASO-SO-VR-003
ASO-SO-VR-004
ASO-SO-VR-005
ASO-SO-VR-006
ASO-SO-SM-001
ASO-SO-SM-002
ASO-SO-SM-003
ASO-SO-SM-004
ASO-SO-SM-005
ASO-SO-AV-001
ASO-SO-AV-002
ASO-SO-AV-003
ASO-SO-CR-001
ASO-SO-CR-002
ASO-SO-CR-003

Tab. 9-4: Elenco stazioni di monitoraggio - Sorgenti

Progetto Lotto Codifica Documento IN17 10 EI2RHMB0007001

Rev. Foglio A 74 di 166

10 ATTIVITÀ PRELIMINARI

Il lavoro di monitoraggio sarà preceduto da una serie di attività che serviranno a pianificare la tempistica degli interventi e la loro rapida esecuzione. La gestione di un elevato numero di dati da acquisire dovrà essere fatta in modo da creare un flusso regolare di informazioni tra i vari stakeholder..

10.1 ATTIVITÀ IN SEDE

In sede verranno predisposte le necessarie planimetrie di campagna con il posizionamento dei siti di misura anche al fine di creare una serie di percorsi utili ad un pratico e rapido raggiungimento dei siti stessi. Nel contempo verranno preparate le schede di monitoraggio sulle quali si inseriranno tutti i dati identificativi dei siti di monitoraggio. Le planimetrie di campagna dovranno riportare il reticolato UTM con datum WGS84 utile ad una pratica individuazione dei siti attraverso l'uso di sistemi GPS.

10.2 VERIFICA DI FATTIBILITÀ IN CAMPO

Come sopra anticipato per ciascuna punto di misura previsto nel presente piano sarà effettuata:

- la verifica dell'accessibilità ai punti di misura, valutando l'eventuale necessità di realizzare apposite piste di accesso, per garantire la manovra sia di automezzi pesanti, gommati o cingolati finalizzati alla perforazione ed alla manutenzione, sia di automezzi con le attrezzature dedicate alle misure;
- la verifica di realizzazione del piezometro in funzione delle caratteristiche geologiche dell'ammasso roccioso interessato dalla perforazione;
- la verifica della possibilità di ubicare il punto di monitoraggio all'interno di aree private, in modo da evitare al massimo rischi di manomissione;
- la verifica finalizzata all'individuazione di potenziali sorgenti inquinanti nell'ambito dell'area di interesse che potrebbero influenzare i risultati e rendere difficoltosa una valutazione causa-effetto fra le lavorazioni in corso e l'andamento degli indicatori. La verifica avverrà con particolare riferimento alla loro posizione e distanza rispetto ai punti di controllo prescelti e rispetto alle modalità di deflusso idrico sotterraneo;
- la verifica dell'assenza di zone coltivate, anche saltuariamente, nell'intorno del punto di monitoraggio al fine di evitare problemi sia di accesso nonché di contaminazione del punto per aspersione di prodotti chimici o fertilizzanti;

Progetto Lotto Codifica Documento IN17 10 EI2RHMB0007001

Rev. Foglio A 75 di 166

 la verifica della possibilità di messa in opera di una segnalazione chiara e visibile, non asportabile, che indichi la presenza del punto di misura; nonché di operare in condizioni conformi alle norme di sicurezza negli ambienti di lavoro.

Nel caso in cui un punto di monitoraggio previsto dal PMA non soddisfi in modo sostanziale uno dei criteri sopra citati, sarà scelta una postazione alternativa, ma pur sempre rappresentativa delle caratteristiche idrogeologiche dell'area oggetto di studio, rispettando i criteri sopra indicati.

Progetto Lotto Codifica Documento IN17 10 EI2RHMB0007001

Rev. Foglio A 76 di 166

11 METODOLOGIA DI RILEVAMENTO E CAMPIONAMENTO

11.1 MONITORAGGIO PIEZOMETRI

La realizzazione dei piezometri (nei siti indicati nelle schede monografiche) dovrà essere effettuata in modo da permetterne l'inserimento all'interno: del campionatore per le acque (bailer), del trasduttore di pressione sommergibile (per i piezometri automatizzati) e del tubo della pompa da utilizzarsi per lo spurgo.

Lo schema di realizzazione sarà del tipo seguente:

- Diametro minimo di perforazione 101 mm;
- Piezometro da 3' o da 4"';
- Piezometro tappato al fondo;
- Piezometro fessurato (la dimensione dei fori andrà scelta in base alla geologia del sito di perforazione) fino a 2 mt di profondità dal piano campagna;
- Piezometro cieco da 2 mt di profondità sino al piano campagna;
- Dreno, interposto tra foro e piezometro fessurato, da realizzarsi per mezzo di posa in opera di ghiaietto calibrato o sabbia grossolana (a seconda della geologia del sito di perforazione)
- Tampone permeabile, dello spessore di circa 0,5 metri, da porsi in opera al fondo del foro prima della posa del piezometro, costituito da ghiaietto calibrato o sabbia grossolana (a seconda della geologia del sito di perforazione);
- Riempimento impermeabile (interposto tra il foro ed il tratto di piezometro cieco), da 2
 mt di profondità sino a piano campagna, costituito da malta cementizia;
- · Chiusura con tappo a vite;
- Chiusino metallico dotato di lucchetto inossidabile.

I piezometri automatizzati saranno dotati di misuratori in continuo del livello di falda. Il dispositivo utilizzato è un trasduttore elettrico di pressione per il rilievo della pressione idraulica, costituito da:

- a) Un corpo cilindrico in acciaio inossidabile contenente la camera idraulica, il sistema elettrico di trasduzione (membrana + estensimetri "strain-gages", corda vibrante, etc.)
 e la terminazione del cavo.
- b) Cavo contenente due conduttori elettrici ed un tubetto in nylon che mette in comunicazione il sistema di trasduzione con la pressione atmosferica dell'ambiente esterno.

Progetto Lotto Codifica Documento IN17 10 EI2RHMB0007001

Rev. Foglio A 77 di 166

Il trasduttore viene calato con il suo cavo nel tubo alla quota prestabilita sotto il pelo libero dell'acqua. La pressione del battente induce una variazione sull'apparato di trasduzione dello strumento; tale misura viene convertita in un segnale elettrico restituito sui conduttori del cavo. Il tubetto in nylon nel cavo del trasduttore ha il compito di portare al sistema di trasduzione la pressione atmosferica; in tal modo le misure di pressione sono esclusivamente dovute al battente tra le quote del livello piezometrico nel tubo e di posa dello strumento, ossia non vengono rilevate la pressione atmosferica e le sue variazioni (sistema "relativo").

Ultimata la posa del tubo piezometrico la messa in opera dei trasduttori va eseguita calando entro il tubo in PVC il trasduttore al di sotto del livello medio della falda, reggendolo per il cavo. Raggiunta la quota, si sospende lo strumento per mezzo di una apposita testa di fissaggio da applicare in superficie all'estremo sporgente del tubo medesimo.

Sulle schede descrittive, riportate in allegato, sono indicati i punti di monitoraggio in cui verrà eseguito doppio foro necessario all'installazione del piezometro a tubo aperto (per l'esecuzione delle analisi chimico-fisiche) e per l'installazione del piezometro automatizzato (per la misura in continuo del livello di falda) nonché le profondità di ciascun piezometro da installare.

A seguito dell'installazione dei piezometri verranno rilevate le coordinate geografiche (nel sistema WGS84) e si eseguirà una prima misura del livello di falda alla fine della perforazione.

Il monitoraggio per acquisire i dati relativi al tempo (T₀) potrà essere effettuato dopo una settimana dalla data di installazione del piezometro.

Una volta installato il piezometro, sarà prodotta apposita documentazione (una scheda per ciascun piezometro con associazione alla banca dati del sistema informativo di monitoraggio ambientale) che comprenderà informazioni generali:

- identificazione punto comprendente l'indicazione della: regione, provincia, comune, località, tavoletta I.G.M., denominazione pozzo, georeferenziazione nel sistema Gauss-Boaga con la precisione di un metro per le coordinate x e y e di un centimetro per la quota; la quota assoluta di bocca pozzo sarà verificata con un caposaldo quotato;
- fotografia del bocca pozzo con n. di codice assegnato ed inquadratura dell'area circostante;
- caratteristiche del foro di sondaggio;
- diametro e profondità del piezometro e/o pozzo;

Progetto Lotto Codifica Documento IN17 10 EI2RHMB0007001

Rev. Foglio A 78 di 166

- caratteristiche del rivestimento definitivo (profondità dei tratti filtranti e di quelli ciechi);
- stratigrafia del terreno attraversato;
- bacino idrografico di appartenenza;
- livello statico;
- portata emunta (l/s);
- altre informazioni (accessibilità, protezione del bocca pozzo ecc.);
- data del rilievo e nome del tecnico rilevatore;
- tabella con le letture eseguite per la determinazione della prima lettura significativa.

11.2 MISURA DEL LIVELLO FREATIMETRICO

La misura manuale del livello statico di falda (sui piezometri a tubo aperto) sarà effettuata prima di procedere allo spurgo del piezometro, attività propedeutica al campionamento.

Tale misura sarà eseguita tramite una sonda elettrica o freatimetro interfaccia (acqua/olio).

Prima di procedere con la misura vera e propria sarà misurato il fondo del piezometro al fine di verificare che non siano presenti accumuli tali da alterare il livello di fondo.

La misura sarà inoltre realizzata dalla bocca del piezometro o da altro punto fisso e ben individuabile; misurerà quindi l'altezza della bocca del piezometro o del punto di riferimento rispetto al suolo.

L'indicazione del punto di riferimento sarà riportata sulla scheda di misura e il livello statico sarà indicato almeno con l'approssimazione del centimetro.

Estrema attenzione sarà posta al momento della valutazione dei trend piezometrici, tenendo conto del periodo in cui il dato è stato rilevato.

Si utilizza un freatimetro (o misuratore di livello) che abbia una lunghezza minima pari alla profondità del piezometro.

Lo strumento presenterà le seguenti caratteristiche:

- cavo a quattro conduttori, con anima in kevlar e guaina esterna di protezione;
- graduazione almeno ogni centimetro e stampata a caldo (non devono essere utilizzati adesivi);
- segnalatore acustico e visivo di raggiungimento livello;
- tasto di prova;
- · alimentazione con batteria.

Progetto Lotto Codifica Documento IN17 10 EI2RHMB0007001

Rev. Foglio A 79 di 166

11.3 SPURGO E SVILUPPO DI PIEZOMETRI

I piezometri realizzati per la rete di monitoraggio dovranno essere soggetti a spurgo mediante pompa sommersa di adeguata potenza o mediante metodologia air-lifting. Gli spurghi consisteranno in energici emungimenti di acqua con frequenti interruzioni e posizionando il sistema di aspirazione a varie profondità.

Le acque estratte durante le attività di spurgo, verranno stoccate temporaneamente in appositi contenitori al fine di verificarne le caratteristiche chimico-fisiche mediante analisi di laboratorio.

Successivamente nel caso in cui non vengano rispettati i limiti di legge per la reimmissione delle acque in falda o in condotte fognarie tali acque verranno smaltite come rifiuti secondo la normativa vigente.

11.4 RILIEVO DEI PARAMETRI IN SITU

Rilievo dei parametri in situ (Temperatura, pH, RedOx, Conducibilità e Ossigeno disciolto). Il rilievo dei parametri in sito sarà eseguito direttamente all'interno del foro introducendo la sonda multiparametrica nel piezometro e le misure verranno eseguite dopo un adeguato spurgo (3-5 volte il volume di acqua contenuto nel piezometro) e dopo il ristabilimento delle condizioni idrochimiche all'interno del piezometro.

Le misurazioni effettuate saranno registrate sulle stesse schede su cui si riporterà la misura del livello piezometrico ed eventuali anomalie saranno prontamente segnalate.

Per la verifica dei parametri in situ saranno utilizzati un termometro per acqua tarabile (con funzionamento da almeno 0 a 35 °C) e una sonda multiparametrica che consente, tramite elettrodi intercambiabili, di misurare direttamente in campo più parametri.

Si riportano di seguito i requisiti minimi dei sensori utilizzati sulla sonda multiparametrica:

- sensore di pH da almeno 2 a 12 unità pH;
- sensore di conducibilità da almeno 0 a 10000 µS/cm;
- sensore di Ossigeno disciolto da almeno 0 a 20 mg/l e da almeno 0 a 200% di saturazione;
- sensore di potenziale RedOx almeno da -999 a 999 mV;
- sistema interno di memorizzazione dati;
- alimentazione a batteria.

Prima di procedere alle misurazioni sarà necessario verificare sempre la taratura dello strumento (i risultati dovranno essere annotati).

Progetto Lotto Codifica Documento IN17 10 EI2RHMB0007001

Rev. Foglio A 80 di 166

Il Test dello spazio di Testa (TST) verrà eseguito riempiendo una bottiglia di vetro, o altro contenitore, per metà della sua capacità con una aliquota del campione di acqua prelevato. Sigillata l'apertura della bottiglia con una pellicola di plastica, si agita il contenitore lasciando evaporare per qualche minuto la contaminazione, quindi si buca la pellicola e si effettua la misura della concentrazione di vapori organici sviluppatosi nello spazio di testa con un foto ionizzatore portatile.

11.5 CAMPIONAMENTO E ANALISI DI LABORATORIO

Il campionamento consiste nel prelevamento di acque sotterranee in quantità tali che le proprietà misurate nel campione prelevato siano rappresentative della massa di origine (ovvero del corpo idrico in un intorno del piezometro).

Il fine ultimo del campionamento ambientale è quindi quello di consentire la raccolta di porzioni rappresentative della matrice che si vuole sottoporre ad analisi. Esso costituisce infatti la prima fase di un processo analitico che porterà a risultati la cui qualità è strettamente correlata a quella del campione prelevato.

Per quanto sopra si può concordare che il campionamento è una fase estremamente importante ma, al tempo stesso, complessa e delicata; essa può infatti condizionare i risultati di tutte le successive operazioni e quindi incide in misura non trascurabile sull'incertezza totale del risultato dell'analisi.

Le attività di misura e di campionamento saranno evitate nei periodi di forte siccità o di intense piogge o in periodi ad essi successivi in quanto, per ristagni d'acqua nel piezometro, i campioni potranno essere significativi o rappresentativi dell'acquifero.

MODALITÀ DI CAMPIONAMENTO PER LE ANALISI DI LABORATORIO

Le modalità di campionamento e conservazione dei campioni, finalizzati ad analisi di laboratorio con determinazione dei parametri chimico-fisici, faranno riferimento alle norme ISO ed UNI EN pubblicate.

Il prelievo dei campioni di acqua da sottoporre ad analisi chimica di laboratorio avverrà secondo le scadenze programmate per ciascun piezometro.

I risultati ottenuti dall'attività di campo saranno immediatamente registrati su una tabella appositamente predisposta, ove compaiono:

- la progressiva dell'ubicazione del piezometro;
- il tipo di punto monitorato;
- la codifica del punto monitorato;
- la profondità del piezometro monitorato dal piano campagna (quota testa pozzo);

Progetto Lotto Codifica Documento IN17 10 EI2RHMB0007001

Rev. Foglio A 81 di 166

- la profondità di prelievo del campione;
- la data della misurazione;
- i parametri chimico-fisici misurati;
- il tipo di strumentazione utilizzata;
- l'unità di misura utilizzata;
- la grandezza misurata;
- il nominativo dell'operatore.

Al fine delle analisi di laboratorio le acque presenti nel piezometro, in condizioni statiche, non sono rappresentative di quelle presenti nell'acquifero: sarà necessario pertanto eliminare l'acqua di ristagno, gli eventuali depositi accumulatisi tra un prelievo e l'altro e le varie impurità introdotte dall'esterno.

Preliminarmente alle operazioni di spurgo sarà comunque effettuata la verifica della presenza di liquidi in galleggiamento o sul fondo all'interno del piezometro, la misurazione del livello statico e dei parametri in situ.

Un'accurata procedura di spurgo è funzione anche delle caratteristiche idrauliche del piezometro e della produttività dell'acquifero.

Il pompaggio dell'acqua non deve in ogni caso provocare un richiamo improvviso, con brusche cadute di acqua all'interno della colonna, altrimenti si possono verificare perdite di sostanze volatili e fenomeni di intorbidamento e agitazione.

Pertanto, sarà utilizzata una pompa sommergibile da 2" che, utilizzando portate non elevate, eviterà il trascinamento di materiale fine e quindi eliminerà il rischio di intorbidamento dell'acqua. La pompa che si utilizzerà è realizzata con materiali inerti che non alterano il liquido pompato e, di conseguenza, i risultati delle analisi.

Per appurare l'efficienza dello spurgo e per un controllo della stabilità e della qualità dei campioni sarà necessario effettuare, in tempi diversi, delle determinazioni analitiche dei parametri in situ (pH, temperatura, conducibilità elettrica specifica, potenziale RedOx e Ossigeno disciolto).

Le apparecchiature utilizzate nella procedura di spurgo e nella fase di campionamento saranno sempre accuratamente controllate e decontaminate passando da un sito all'altro. Le operazioni di spurgo verranno effettuate secondo i criteri di seguito esposti:

 numero di volumi dell'acqua del piezometro: con questo termine si intende il volume di acqua che è presente al di sopra dei filtri, essendo quella sottostante in grado di interagire con l'acquifero. La norma ISO 5667-11 prevede uno spurgo di un volume

Progetto Lotto Codifica Documento IN17 10 E12RHMB0007001

Rev. Foglio A 82 di 166

minimo pari a 4 e 6 volte il volume dell'acqua del piezometro; si ritiene comunque sufficiente effettuare uno spurgo di un volume pari a 3/5 volte;

- stabilizzazione di indicatori idrochimici: con questo termine si intendono parametri quali
 la temperatura, il pH, la conducibilità elettrica e il potenziale di ossidoriduzione che
 devono essere determinati prima dell'inizio e durante le operazioni di spurgo. E'
 possibile effettuare il prelievo di acqua solo quando questi parametri sono stabilizzati
 su valori pressoché costanti;
- analisi di serie idrochimiche temporali, adottate su monitoraggi di lungo periodo: questo metodo prevede il prelievo di acque durante il pompaggio secondo una cadenza temporale ben precisa in corrispondenza di 1, 2, 4 e 6 volte il volume del piezometro.

Successivamente verranno eseguite analisi sui parametri idrochimici precedentemente indicati e su altri composti ed elementi di interesse più immediato per l'area di studio.

Sarà buona norma inoltre, ad integrazione dai criteri sopra citati, protrarre lo spurgo fino alla "chiarificazione", ovvero fintanto che l'acqua non si presenta priva di particelle in sospensione.

Il campione prelevato, per essere rappresentativo delle caratteristiche delle acque sotterranee, non sarà alterato da reazioni chimico-fisiche conseguenti all'azione stessa di campionamento.

Di conseguenza, come previsto dalla National Water Well Association (1986), saranno utilizzati dispositivi di campionamento che non altereranno le caratteristiche chimiche delle acque; tali dispositivi saranno puliti ogni qualvolta vengono nuovamente riutilizzati, e i campioni saranno collocati in contenitori specifici, al fine di mantenere l'originaria composizione.

Al fine di evitare alterazioni delle caratteristiche qualitative originarie, tutta la strumentazione e le procedure utilizzate non provocheranno l'agitazione del campione e la sua esposizione all'aria sarà ridotta al minimo.

L'affidabilità della strumentazione verrà garantita anche dal rispetto di una serie di indicazioni operative, tra le quali meritano particolare attenzione le seguenti:

- le pompe devono funzionare continuamente, in modo da non produrre campioni contenenti aria;
- i dispositivi utilizzati non devono mai essere lasciati cadere all'interno del piezometro, per evitare fenomeni di degassazione dell'acqua conseguentemente all'impatto;

Progetto Lotto Codifica Documento
IN17 10 EI2RHMB0007001

- Rev. Foglio A 83 di 166
- il liquido campionato deve essere trasferito con attenzione e celerità nell'apposito contenitore riducendo il suo tempo di esposizione all'aria;
- la pulizia dell'equipaggiamento di campionamento deve essere eseguita possibilmente in apposito luogo prima della sua introduzione nel piezometro.

Il prelievo del campione deve avvenire, dopo idoneo spurgo, tramite pompa sommersa.

È necessario evitare una contaminazione incrociata durante successivi campionamenti, provvedendo alla pulizia delle attrezzature con sostanze specifiche.

CONSERVAZIONE DEL CAMPIONE

Per ogni singolo campione sarà garantita la stabilità e l'inalterabilità di tutti i costituenti nell'intervallo di tempo che intercorre tra il prelievo e l'analisi.

Un campione ambientale, nel momento stesso in cui viene separato e confinato in un recipiente non rappresenta più, a stretto rigore, il sistema di origine. Da quel momento il campione inizia a modificarsi fisicamente (evaporazione, sedimentazione, adsorbimento alle pareti del contenitore ecc.), chimicamente (reazioni di neutralizzazione, trasformazioni ossidative ecc.) e biologicamente (attacco batterico, fotosintesi ecc.).

Per quanto attiene ai tempi massimi intercorrenti tra il prelievo e l'analisi è raccomandabile eseguire sempre le analisi sui campioni, il più presto possibile dopo la raccolta. Pertanto, la consegna al laboratorio avverrà entro le 24 ore successive al prelievo. Il campione sarà conservato tramite refrigerazione a 4°C per impedirne il deterioramento.

I contenitori utilizzati per la raccolta e il trasporto dei campioni non devono alterare il valore dei parametri per cui deve essere effettuata la determinazione, in particolare:

- non devono cedere o adsorbire sostanze, alterando la composizione del campione;
- devono essere resistenti ai vari costituenti eventualmente presenti nel campione;
- devono garantire la perfetta tenuta, anche per i gas disciolti e per i composti volatili, ove questi siano oggetto di determinazioni analitiche.

I materiali più usati per i contenitori sono generalmente il vetro e la plastica.

Riguardo al vetro, che rimane il materiale da preferire, esistono in commercio diverse qualità che si differenziano per la composizione e per la resistenza agli agenti fisici e chimici.

Si riporta di seguito l'elenco dei recipienti che si utilizzeranno:

- contenitore in polietilene da 2 l per le analisi dei metalli e delle specie metalliche, con aggiunta di HNO3 fino a pH<2;
- contenitore in vetro da 1 l per l'analisi del TOC;

Progetto Lotto Codifica Documento IN17 10 EI2RHMB0007001

Rev. Foglio A 84 di 166

- contenitore in vetro da 1 l per le analisi degli idrocarburi;
- contenitore in vetro da 1 l per le analisi dei tensioattivi anionici e non ionici;
- contenitore in polietilene da 500 ml per i nitrati.

ETICHETTATURA DEI CONTENITORI

I contenitori utilizzati saranno contrassegnati da apposite etichette di tipo autoadesivo con sopra riportate le seguenti informazioni:

- Sigla identificativa del piezometro;
- Data e ora del campionamento;
- Conservazione e spedizione.

Per impedire il deterioramento dei campioni, questi andranno stabilizzati termicamente tramite refrigerazione a 4°C e recapitati al laboratorio di analisi al più presto possibile, non oltre le ventiquattro ore dal prelievo prevedendone il trasporto in casse refrigerate.

ATTIVITÀ IN LABORATORIO

Non appena il campione arriva in laboratorio, prima di procedere con le analisi previste (Tabella 8-1), si verificherà:

- l'assoluta integrità dei campioni (in caso di recipienti danneggiati il campionamento sarà nuovamente effettuato);
- che ciascun contenitore riporti in modo leggibile tutte le indicazioni che permettano un'identificazione chiara e precisa del punto di monitoraggio;
- la taratura degli strumenti che saranno utilizzati per le determinazioni analitiche.

Le analisi chimiche saranno eseguite presso laboratori accreditati e certificati SINAL secondo la norma UNI CEI EN ISO/IEC 17025.

Le metodiche analitiche saranno effettuate in accordo con la normativa vigente e condotte adottando metodologie ufficialmente riconosciute, tenendo conto di eventuali implementazioni, modifiche o abrogazioni.

Il riferimento per la caratterizzazione chimica delle acque è comunque il manuale "Metodi Analitici per le Acque" (IRSA-APAT Rapporto 29/2003).

Preventivamente saranno concordate con il Committente e gli Enti di controllo la modalità di pretrattamento del campione da sottoporre ad analisi. In particolare, si concorderà se la procedura riportata di seguito sarà svolta direttamente in campo o all'arrivo del campione in laboratorio.

Preparazione del campione per l'analisi dei metalli:

Si procede alla filtrazione con filtro da 0,45 μ;

Progetto Lotto Codifica Documento IN17 10 EI2RHMB0007001

Rev. Foglio A 85 di 166

- Acidificazione (in laboratorio) di un'aliquota del surnatante con HNO3 conc. pari allo 0,5%, verificando che sia a pH<2;
- Tempo di contatto di 24 h alla Temperatura di 20°C.

Per parametri "organici non volatili" l'analisi va eseguita sul t.q. dopo decantazione di 24 ore.

Le analisi chimico-fisiche e microbiologiche sono riportate nella Tabella 8-1 sopra esposta.

11.6 MISURA DELLE SORGENTI

Le sorgenti sono, in generale, considerate zone particolarmente sensibili soprattutto per quanto riguarda la riduzione di portata. La realizzazione di alcune opere potrebbe, infatti, determinare variazioni nell'assetto idrogeologico causando diminuzioni nell'alimentazione delle sorgenti o addirittura un'interruzione nell'apporto idrico alle stesse.

Per quanto riguarda le sorgenti si potranno verificare due casi:

- la sorgente è captata: si provvede a verificare quali parametri sono già monitorati ed eventualmente si procede ad un'integrazione degli stessi;
- la sorgente non è captata: si deve provvedere al rilevamento dei parametri in situ riportati di seguito: Portata (I/s), Temperatura dell'aria (°C), Temperatura dell'acqua (°C), Ossigeno (pVA mg/l) Ossigeno % (%), Conducibilità (µS/cm), pH, Potenziale RedOx (mV).

La misura della portata, nel caso in cui la sorgente non sia captata, sarà eseguita utilizzando il metodo volumetrico. Ovvero mediante l'utilizzo di un recipiente graduato e si misura con un cronometro il tempo di riempimento del recipiente stesso, si ricava poi la portata, in litri al minuto.

Per una più precisa determinazione della portata si effettueranno tre misurazioni consecutive in modo da ottenere un valore medio significativo.

Gli altri parametri in situ (temperatura, pH, RedOx, conducibilità e Ossigeno disciolto) verranno misurati mediante l'immersione di una sonda multiparametrica in un campione precedentemente prelevato.

Nei casi in cui si renda necessario campionare ad opportuni intervalli di tempo è possibile utilizzare campionatori portatili refrigerati automatici programmabili dotati di pompa, linea di aspirazione e bottiglie. Per l'uso dei contenitori per i campioni e le modalità di conservazione vale quanto già indicato precedentemente.

Le misurazioni effettuate saranno registrate sulle stesse schede su cui si riporta la misura della portata ed eventuali anomalie saranno prontamente segnalate.

Progetto Lotto Codifica Documento IN17 10 El2RHMB0007001

Rev. Foglio A 86 di 166

Le analisi chimico-fisiche e microbiologiche da eseguire in laboratorio sono riportate nella Tabella 8-1 sopra esposta.

Progetto	Lotto	Codifica Documento
IN17	10	EI2RHMB0007001

Rev. Foglio A 87 di 166

12 ELABORAZIONI E RESTITUZIONI DEI DATI

I dati relativi alle varie componenti ambientali, rilevati nelle diverse fasi di monitoraggio, sono caricati sull'apposito **Sistema Informativo Territoriale** di Italferr. L'impiego di un SIT permette quindi di garantire acquisizione, validazione, archiviazione, gestione, rappresentazione, consultazione ed elaborazione delle informazioni acquisite nello sviluppo del Monitoraggio Ambientale.

Il GC (General Contractor) si serve della piattaforma "SIGMAP" (Sistema Informativo Geografico Monitoraggio Ambiente e Progetti) disponibile sul sito web all'indirizzo sigmap.italferr.it ad accesso controllato.

Utilizzando metodologie standard di restituzione dei dati sarà possibile:

- condividere i dati con i vari stakeholder;
- riutilizzare le informazioni ambientali per accrescere le conoscenze sullo stato dell'ambiente e sulla sua evoluzione;
- riutilizzare i dati per la predisposizione degli studi ambientali.

12.1 IL SISTEMA INFORMATIVO TERRITORIALE

I dati ottenuti durante le campagne di misura sono trattati elettronicamente e immessi nella banca dati strutturata e georeferenziata. Questa procedura permette l'organizzazione, la consultazione e la gestione dei dati in modo rapido e coerente al contesto territoriale, rendendo semplice le esportazioni e le elaborazioni necessarie per la corretta esecuzione delle attività di monitoraggio.

I dati elaborati vengono presentati sia in forma testuale che grafica, in modo da rendere più agevole la consultazione e l'interpretazione da parte degli Enti competenti e dei soggetti coinvolti nelle diverse fasi del monitoraggio ambientale.

Il SIT è finalizzato al supporto delle funzioni operative per le attività di monitoraggio ambientale come strumento in grado di regolare il processo di programmazione delle attività, acquisizione dei dati di campo, servizio di allert di superamento delle soglie e dei valori limite e pubblicazione dei dati archiviati.

Le informazioni di progetto, territoriali e del monitoraggio ambientale sono archiviate in banca dati e facilmente accessibili dal personale operativo a vario titolo coinvolto nelle fasi di progettazione, costruzione e gestione dell'infrastruttura.

Il SIT consente agli Enti Pubblici di consultare e comprendere i dati del monitoraggio ambientale.

Progetto Lotto Codifica Documento IN17 10 EI2RHMB0007001

Rev. Foglio A 88 di 166

Il SIT è costituito da due diverse applicativi interconnessi tra loro:

- l'applicativo di gestione dati;
- il viewer tecnico.

Entrambi gli applicativi sono accessibili da internet attraverso diversi profili di utenza autorizzati.

L'applicativo di gestione dati è la banca dati relazionale nella quali vengono inseriti i dati di campo del monitoraggio ambientale. All'interno della banca dati sono contenuti tutti i dati che caratterizzano le stazioni di misura del monitoraggio ambientale. Il personale addetto ai lavori può quindi accedere all'applicativo ed utilizzarlo come archivio delle stazioni di monitoraggio e delle attività del monitoraggio ambientale con l'ausilio di appositi filtri (per componente, per stazione di monitoraggio, per periodo temporale, etc.). L'applicativo viene inoltre utilizzato come strumento di pianificazione e gestione delle programmazioni delle attività del monitoraggio ambientale. Una volta svolta l'attività di misura l'esecutore delle attività completa la banca dati inserendo i dati ottenuti dal monitoraggio nei campi specifici predisposti.

Il **viewer tecnico** è l'espressione grafica dell'applicativo di gestione, dati nel quale sono consultabili i dati del monitoraggio ambientale in formato vettoriale inseriti nel contesto geografico di riferimento e di progetto. E' l'applicativo utilizzato come strumento di lavoro per i soggetti direttamente coinvolti alla realizzazione dell'opera.

All'interno del viewer sono attivabili diversi tematismi di base e layer informativi di progetto. Tramite il viewer tecnico vengono interrogati i punti del monitoraggio ambientale e quindi richiamati i record relativi alla stazione interrogata contenuti nell'applicativo di gestione dati. All'interno del viewer è possibile inoltre prendere visione e scaricare la scheda di restituzione dell'attività di monitoraggio in formato PDF generata dall'applicativo di gestione dati.

- Si segnala che: le schede informative redatte durante il monitoraggio dovranno essere raccolte e catalogate attraverso il data base del SIT, ciò verrà fatto entro 15 giorni dal rilevamento (fatta eccezione per eventuali anomalie che verranno immediatamente comunicate). In ottemperanza alla prescrizione n. 125, per la descrizione delle osservazioni si utilizzerà la scheda ARPAV, come precedentemente descritto;
- le analisi di laboratorio verranno inserite all'interno del *data base* del SIT, entro 15 giorni dalla data di campionamento;
- sulla base dei dati precedenti verranno redatti, in fase di Corso d'Opera, dei Report

Progetto Lotto Codifica Documento IN17 10 EI2RHMB0007001

Rev. Foglio A 89 di 166

Trimestrali, Semestrali e dei **Report Annuali**, che discuteranno i dati acquisiti ed illustreranno l'evoluzione della componente ambientale trattata, tali report verranno redatti entro 45 giorni dalla fine del mese di riferimento;

 alla fine delle fasi di monitoraggio ante operam e post operam (entro 60 giorni dalla conclusione della fase) verrà redatto un Report finale che riassumerà tutti i dati acquisiti durante il monitoraggio e concluderà sullo stato della componente ambientale analizzata in funzione della realizzazione dell'opera.

12.2 GESTIONE DELLE ANOMALIE E DI "ALERT"

Le situazioni ambientali anomale rispetto alle soglie di attenzione ed allarme relative ai parametri indicatori, emergeranno essenzialmente:

- dai rilievi strumentali di campo, indagini ed osservazioni da parte di tecnici;
- dai referti di laboratorio per singoli indicatori;
- dalle elaborazioni ed analisi di sede per indici complessi.

In particolare nel caso in cui dai rilievi strumentali di campo e/o dalle osservazioni da parte dei tecnici preposti al monitoraggio venga evidenziata una situazione anomala rispetto ai valori attesi sarà attivata tempestivamente la procedura di seguito descritta.

La procedura prevista in questo caso è l'eventuale ripetizione della misura per la conferma del dato anomalo. Successivamente sarà compilata immediatamente da parte del tecnico di campo unitamente al responsabile della componente in esame una apposita "SCHEDA RILIEVI ANOMALIE" in cui si specificheranno i seguenti dati:

- data del rilievo;
- parametri indicatori risultati superiori alle soglie di attenzione/allarme e/o osservazioni di situazioni ritenute non conformi alle attese;
- tipo di interferenza sul punto di monitoraggio (insistenza di cantieri industriali, scavo di trincee ...);
- valutazione del potenziale rapporto causa-effetto con l'opera;
- azioni da intraprendere (approfondimenti, ripetizione misure o, nel caso di anomalia accertata, azioni da intraprendere).

Tale scheda sarà inviata al responsabile ambiente del GC al fine di porre in atto tutte le misure necessarie atte rimuovere la fonte di contaminazione e/o impedire il propagarsi dell'inquinamento stesso. Successivamente saranno attuate tutte le misure necessarie al ripristino dei luoghi ed alla verifica delle azioni correttive intraprese per evitare il ripetersi dell'azione che ha generato l'anomalia.

Progetto Lotto Codifica Documento IN17 10 EI2RHMB0007001

Rev. Foglio A 90 di 166

Le azioni susseguenti a tale fase (verifiche di efficacia) dipenderanno ovviamente dalla gravità o meno della situazione e saranno oggetto di eventuali piani di approfondimento e/o di intervento. Anche la gestione dell'anomalia sarà effettuata mediante il supporto del sistema informativo di monitoraggio ambientale.

Per quanto concerne l'analisi chimico-fisica dei campioni prelevati si propone di utilizzare come soglie di superamento le CSC del **D. Lgs. 152/06** parte IV; ove non presenti si consiglia di utilizzare i parametri previsti dal **D. Lgs 30/2009** e dal **D. Lgs. 31/01**. Per l'analisi dei metalli, ai sensi del D.Lgs. 30/2009, il valore standard di qualità si riferisce, sempre, alla concentrazione disciolta di campione d'acqua ottenuta per filtrazione con filtro da 0,45 mm.

Eventuali confronti e approfondimenti potranno essere fatti considerando l'inuinamento pregresso degli acquiferi indagati, fermo restando che l'individuazione e la definizione delle soglie per la componente in esame saranno condivise con l'ente di controllo prima dell'esecuzione delle analisi.

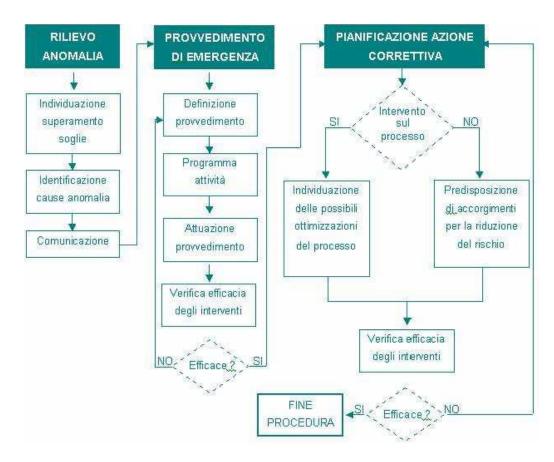


Fig. 12-1 – Esempio di processo di gestione delle anomalie

GENERAL CONTRACTOR

1^ LOTTO FUNZIONALE VERONA-BIVIO VICENZA PMA – COMPONENTE AMBIENTALE ACQUE SOTTERRANEE Progetto Lotto Codifica Documento IN17 10 El2RHMB0007001

Rev. Foglio A 91 di 166

Progetto Lotto Codifica Documento IN17 10 E12RHMB0007001

Rev. Fo

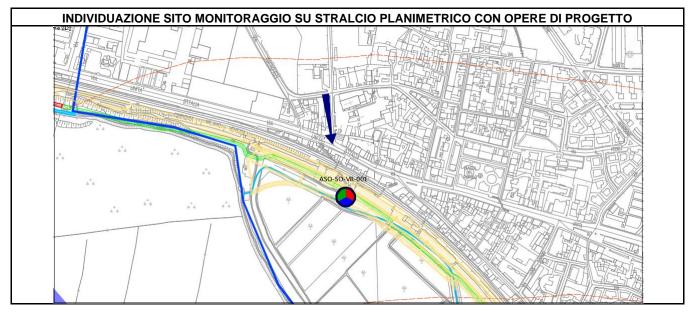
Foglio 92 di 166

ALLEGATO 1

Schede descrittive dei punti/areali di monitoraggio: SORGENTI

Progetto Lotto Cod

Codifica Documento EI2RHMB0007001 Rev. Foglio A 93 di 166


CODICE STAZIONE

ASO-SO-VR-001

COMPONENTE	ACQUE SOTTERRANEE
SUBCOMPONENTE	Sorgenti
TIPO STAZIONE	Puntuale
FASI D'INTERVENTO	AO-CO-PO

Regione	Veneto
Comune	Verona
Progressiva AV	1+325 ca
Destinazione d'uso	Terreno incolto
	0659952 m E
Coordinate UTM (WGS84)	5033182 m N

Caratteristiche sito

Sorgente privata "Orti". Punto di monitoraggio situato a valle del tracciato ferroviario.

Rappresentatività e motivi della scelta del punto di monitoraggio

Caratterizzazione quantitativa e qualitativa della risorgiva e verifica degli effetti indetti dalla realizzazione dell'opera **Attività:**

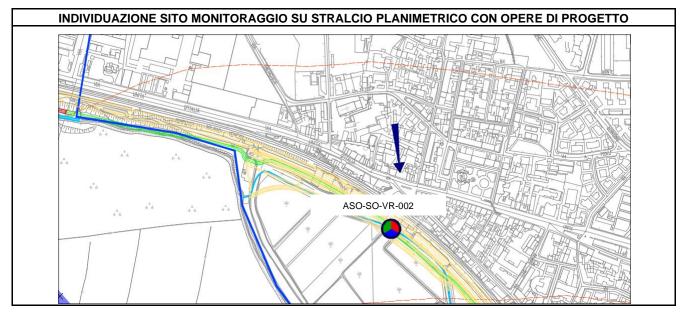
Misura della portata; Rilievo dei parametri chimico-fisici mediante sonda multiparametrica; Campionamento ed analisi chimiche.

NOTE

Nello stralcio planimetrico le linee rosse tratteggiate rappresentano le curve isopiezometriche, la freccia blu indica la direzione di deflusso della falda.

Progetto Lotto Codifica IN17 10 EI2RHM

Codifica Documento EI2RHMB0007001 Rev. Foglio A 94 di 166


CODICE STAZIONE

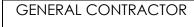
ASO-SO-VR-002

COMPONENTE	ACQUE SOTTERRANEE
SUBCOMPONENTE	Sorgenti
TIPO STAZIONE	Puntuale
FASI D'INTERVENTO	AO-CO-PO

Regione	Veneto
Comune	Verona
Progressiva AV	1+438 ca
Destinazione d'uso	Terreno incolto
Coordinate UTM (WGS84)	0659687 m E
	5033127 m N

Caratteristiche sito

Sorgente privata "Orti". Punto di monitoraggio situato a valle del tracciato ferroviario.


Rappresentatività e motivi della scelta del punto di monitoraggio

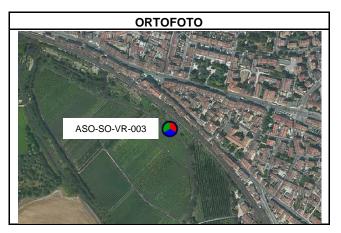
Caratterizzazione quantitativa e qualitativa della risorgiva e verifica degli effetti indetti dalla realizzazione dell'opera

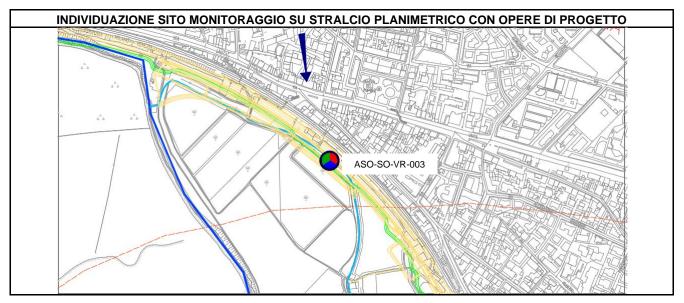
Misura della portata; Rilievo dei parametri chimico-fisici mediante sonda multiparametrica; Campionamento ed analisi chimiche.

NOTE

Nello stralcio planimetrico le linee rosse tratteggiate rappresentano le curve isopiezometriche, la freccia blu indica la direzione di deflusso della falda.

Progetto Lotto Codif IN17 10 El2I


ASO-SO-VR-003


Codifica Documento EI2RHMB0007001 Rev. Foglio A 95 di 166

CODICE STAZIONE

COMPONENTE	ACQUE SOTTERRANEE
SUBCOMPONENTE	Sorgenti
TIPO STAZIONE	Puntuale
FASI D'INTERVENTO	AO-CO-PO

Regione	Veneto
Comune	Verona
Progressiva AV	1+520 ca
Destinazione d'uso	Terreno agricolo
Coordinate UTM (WGS84)	0659749 m E
	5033081 m N

Caratteristiche sito

Sorgente privata "Orti". Punto di monitoraggio situato a valle del tracciato ferroviario.

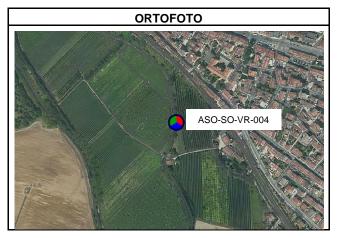
Rappresentatività e motivi della scelta del punto di monitoraggio

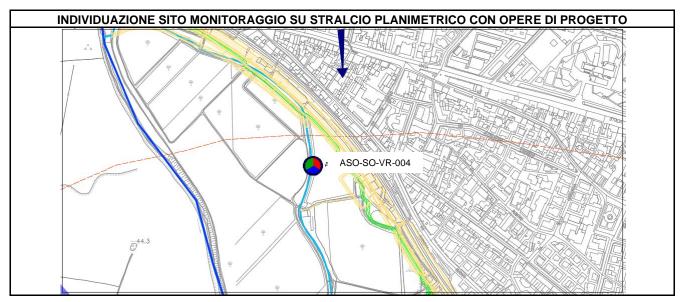
Caratterizzazione quantitativa e qualitativa della risorgiva e verifica degli effetti indetti dalla realizzazione dell'opera

Misura della portata; Rilievo dei parametri chimico-fisici mediante sonda multiparametrica; Campionamento ed analisi chimiche.

NOTE

Nello stralcio planimetrico le linee rosse tratteggiate rappresentano le curve isopiezometriche, la freccia blu indica la direzione di deflusso della falda.


Progetto Lotto IN17 10 Codifica Documento EI2RHMB0007001 Rev. Foglio A 96 di 166


CODICE STAZIONE

ASO-SO-VR-004

COMPONENTE	ACQUE SOTTERRANEE
SUBCOMPONENTE	Sorgenti
TIPO STAZIONE	Puntuale
FASI D'INTERVENTO	AO-CO-PO

Regione	Veneto
Comune	Verona
Progressiva AV	1+675 ca
Destinazione d'uso	Terreno agricolo
Coordinate UTM (WGS84)	0659812 m E
	5032931 m N

Caratteristiche sito

Sorgente privata "Orti". Punto di monitoraggio situato a valle del tracciato ferroviario.

Rappresentatività e motivi della scelta del punto di monitoraggio

Caratterizzazione quantitativa e qualitativa della risorgiva e verifica degli effetti indetti dalla realizzazione dell'opera. **Attività**

Misura della portata; Rilievo dei parametri chimico-fisici mediante sonda multiparametrica; Campionamento ed analisi chimiche.

NOTE

Nello stralcio planimetrico le linee rosse tratteggiate rappresentano le curve isopiezometriche, la freccia blu indica la direzione di deflusso della falda.

Progetto Lotto Co

Codifica Documento EI2RHMB0007001 Rev. Foglio A 97 di 166

CODICE STAZIONE ASO-SO-VR-005

COMPONENTE	ACQUE SOTTERRANEE
SUBCOMPONENTE	Sorgenti
TIPO STAZIONE	Puntuale
FASI D'INTERVENTO	AO-CO-PO

Regione	Veneto
Comune	Verona
Destinazione d'uso	Terreno agricolo
Coordinate UTM (WGS84)	0660573 m E
	5032106 m N

Caratteristiche sito

Sorgente. Punto di monitoraggio situato a valle del tracciato ferroviario.

Rappresentatività e motivi della scelta del punto di monitoraggio

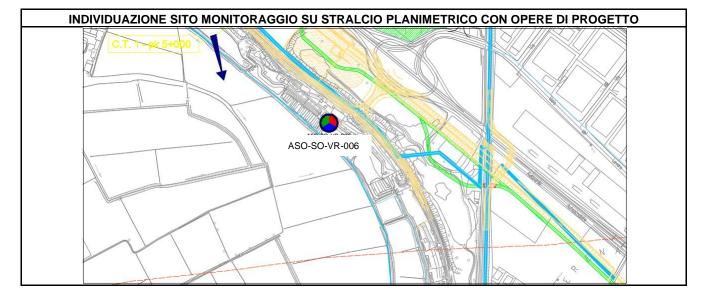
Caratterizzazione quantitativa e qualitativa della risorgiva e verifica degli effetti indetti dalla realizzazione dell'opera **Attività:**

Misura della portata; Rilievo dei parametri chimico-fisici mediante sonda multiparametrica; Campionamento ed analisi chimiche.

NOTE

Nello stralcio planimetrico le linee rosse tratteggiate rappresentano le curve isopiezometriche, la freccia blu indica la direzione di deflusso della falda.

Progetto Lotto IN17 10 Codifica Documento EI2RHMB0007001 Rev.


Foglio 98 di 166

CODICE STAZIONE ASO-SO-VR-006

COMPONENTE	ACQUE SOTTERRANEE
SUBCOMPONENTE	Sorgenti
TIPO STAZIONE	Puntuale
FASI D'INTERVENTO	AO-CO-PO

Regione	Veneto
Comune	Verona
Progressiva AV	5+015
Destinazione d'uso	Terreno agricolo
Coordinate UTM (WGS84)	0662636 m E
	5031438 m N

Caratteristiche sito

Sorgente. Punto di monitoraggio situato a valle del tracciato ferroviario.

Rappresentatività e motivi della scelta del punto di monitoraggio

Caratterizzazione quantitativa e qualitativa della risorgiva e verifica degli effetti indetti dalla realizzazione dell'opera

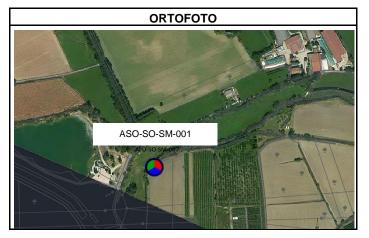
Attività

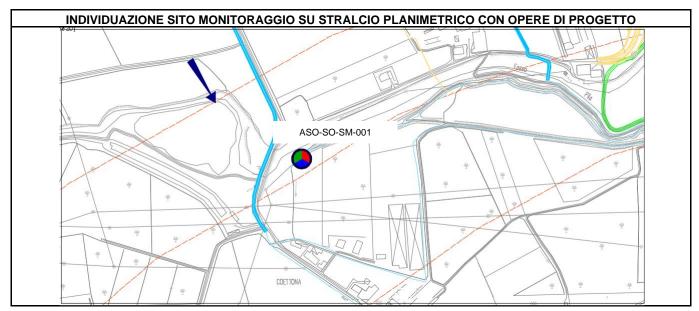
Misura della portata; Rilievo dei parametri chimico-fisici mediante sonda multiparametrica; Campionamento ed analisi chimiche.

NOTE

Nello stralcio planimetrico le linee rosse tratteggiate rappresentano le curve isopiezometriche, la freccia blu indica la direzione di deflusso della falda.

Progetto Lotto Codifica Documento IN17 10 EI2RHMB0007001


Rev.


Foglio 99 di 166

CODICE STAZIONE ASO-SO-SM-001

FASI D'INTERVENTO	AO-CO-PO
TIPO STAZIONE	Puntuale
SUBCOMPONENT E	Sorgenti
COMPONENTE	ACQUE SOTTERRANEE

Regione	Veneto
Comune	San Martino Buon Albergo
Progressiva AV	
Destinazione d'uso	Terreno agricolo
Coordinate UTM	0664064 m E
(WGS84)	5029714 m N

Caratteristiche sito

Sorgente. Punto di monitoraggio situato a valle del tracciato ferroviario.

Rappresentatività e motivi della scelta del punto di monitoraggio

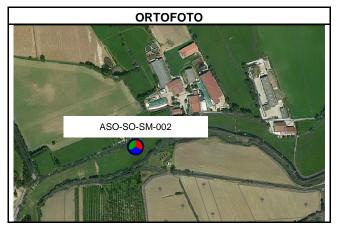
Caratterizzazione quantitativa e qualitativa della risorgiva e verifica degli effetti indetti dalla realizzazione dell'opera **Attività**

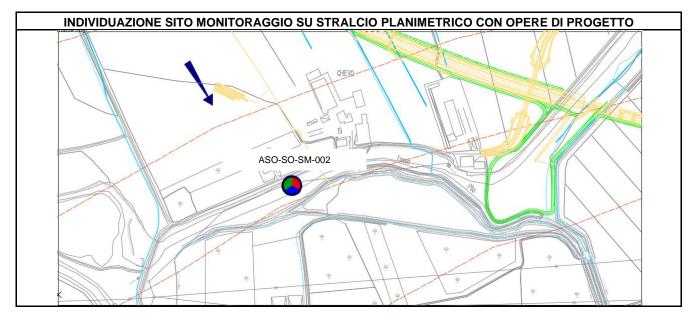
Misura della portata; Rilievo dei parametri chimico-fisici mediante sonda multiparametrica; Campionamento ed analisi chimiche.

NOTE

Nello stralcio planimetrico le linee rosse tratteggiate rappresentano le curve isopiezometriche, la freccia blu indica la direzione di deflusso della falda.

Progetto Lotto Codifica Documento IN17 10 E12RHMB0007001


o Rev.


Foglio 100 di 166

CODICE STAZIONE ASO-SO-SM-002

COMPONENTE	ACQUE SOTTERRANEE
SUBCOMPONENTE	Sorgenti
TIPO STAZIONE	Puntuale
FASI D'INTERVENTO	AO-CO-PO

Regione	Veneto
Comune	San Martino Buon Albergo
Destinazione d'uso	Terreno agricolo
Coordinate UTM (WGS84)	0664269 m E
	5029837 m N

Caratteristiche sito

Sorgente. Punto di monitoraggio situato a valle del tracciato ferroviario.

Rappresentatività e motivi della scelta del punto di monitoraggio

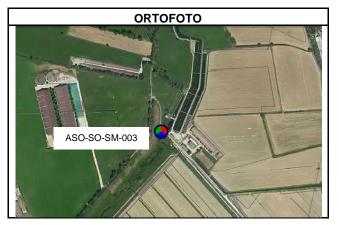
Caratterizzazione quantitativa e qualitativa della risorgiva e verifica degli effetti indetti dalla realizzazione dell'opera **Attività**

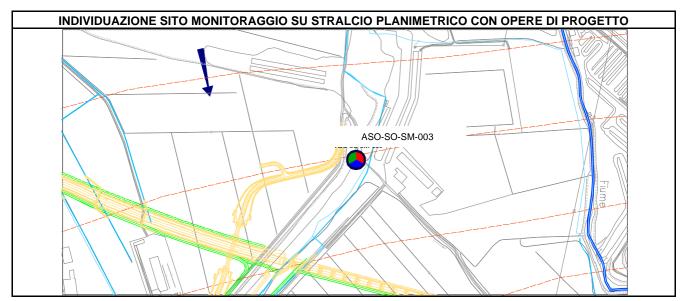
Misura della portata; Rilievo dei parametri chimico-fisici mediante sonda multiparametrica; Campionamento ed analisi chimiche.

NOTE

Nello stralcio planimetrico le linee rosse tratteggiate rappresentano le curve isopiezometriche, la freccia blu indica la direzione di deflusso della falda.

Progetto Lotto Codi IN17 10 EI2


Codifica Documento EI2RHMB0007001 Rev. Fo


Foglio 101 di 166

CODICE STAZIONE ASO-SO-SM-003

COMPONENTE	ACQUE SOTTERRANEE
SUBCOMPONENTE	Sorgenti
TIPO STAZIONE	Puntuale
FASI D'INTERVENTO	AO-CO-PO

Regione	Veneto
Comune	San Martino Buon Albergo
Destinazione d'uso	Terreno agricolo
Coordinate UTM (WGS84)	0664969 m E
	5030194 m N

Caratteristiche sito

Sorgente. Punto di monitoraggio situato a monte del tracciato ferroviario.

Rappresentatività e motivi della scelta del punto di monitoraggio

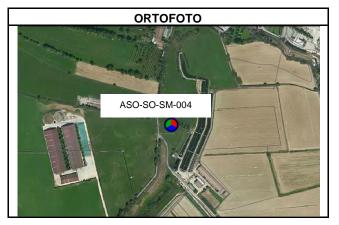
Caratterizzazione quantitativa e qualitativa della risorgiva e verifica degli effetti indetti dalla realizzazione dell'opera **Attività**

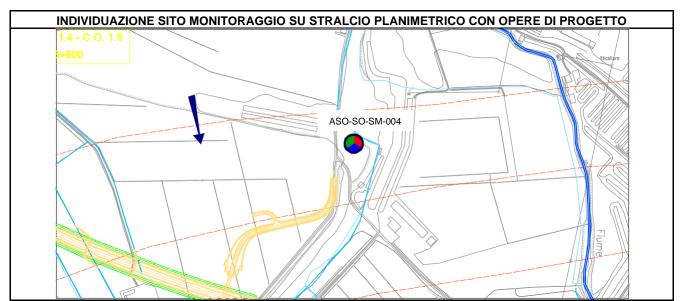
Misura della portata; Rilievo dei parametri chimico-fisici mediante sonda multiparametrica; Campionamento ed analisi chimiche.

NOTE

Nello stralcio planimetrico le linee rosse tratteggiate rappresentano le curve isopiezometriche, la freccia blu indica la direzione di deflusso della falda.

Progetto Lotto Codifica Documento IN17 10 E12RHMB0007001


Rev.


Foglio 102 di 166

CODICE STAZIONE ASO-SO-SM-004

COMPONENTE	ACQUE SOTTERRANEE
SUBCOMPONENTE	Sorgenti
TIPO STAZIONE	Puntuale
FASI D'INTERVENTO	AO-CO-PO

Regione	Veneto
Comune	San Martino Buon Albergo
Destinazione d'uso	Terreno agricolo
Coordinate UTM (WGS84)	0664979 m E
	5030319 m N

Caratteristiche sito

Sorgente. Punto di monitoraggio situato a monte del tracciato ferroviario.

Rappresentatività e motivi della scelta del punto di monitoraggio

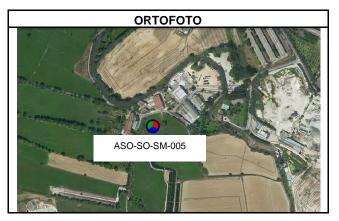
Caratterizzazione quantitativa e qualitativa della risorgiva e verifica degli effetti indetti dalla realizzazione dell'opera **Attività**

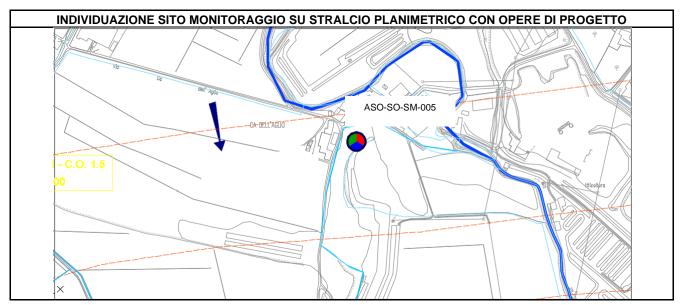
Misura della portata; Rilievo dei parametri chimico-fisici mediante sonda multiparametrica; Campionamento ed analisi chimiche.

NOTE

Nello stralcio planimetrico le linee rosse tratteggiate rappresentano le curve isopiezometriche, la freccia blu indica la direzione di deflusso della falda.

Progetto Lotto Coc IN17 10 El


Codifica Documento EI2RHMB0007001 Rev. Foglio A 103 di 166


CODICE STAZIONE

ASO-SO-SM-005

COMPONENTE	ACQUE SOTTERRANEE
SUBCOMPONENTE	Sorgenti
TIPO STAZIONE	Puntuale
FASI D'INTERVENTO	AO-CO-PO

Regione	Veneto
Comune	San Martino Buon Albergo
Destinazione d'uso	Terreno agricolo
Coordinate UTM (WGS84)	0665014 m E
	5030571 m N

Caratteristiche sito

Sorgente. Punto di monitoraggio situato a monte del tracciato ferroviario.

Rappresentatività e motivi della scelta del punto di monitoraggio

Caratterizzazione quantitativa e qualitativa della risorgiva e verifica degli effetti indetti dalla realizzazione dell'opera **Attività**

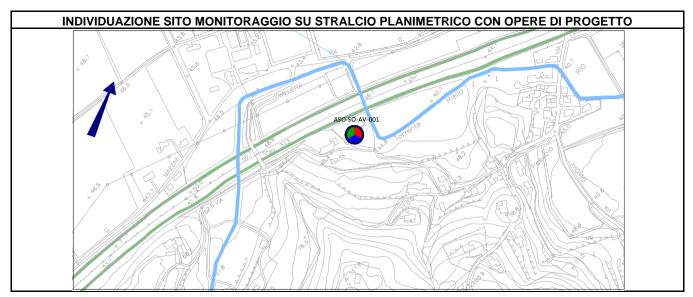
Misura della portata; Rilievo dei parametri chimico-fisici mediante sonda multiparametrica; Campionamento ed analisi chimiche.

NOTE

Nello stralcio planimetrico le linee rosse tratteggiate rappresentano le curve isopiezometriche, la freccia blu indica la direzione di deflusso della falda.

Progetto Lotto Codifica Documento IN17 10 E12RHMB0007001

Rev. Foglio A 104 di 166


CODICE STAZIONE

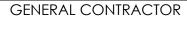
ASO-SO-AV-001

COMPONENTE	ACQUE SOTTERRANEE
SUBCOMPONENTE	Sorgenti
TIPO STAZIONE	Puntuale
FASI D'INTERVENTO	AO-CO-PO

Regione	Veneto
Comune	Altavilla Vicentina
Destinazione d'uso	Area agricola/incolta
Coordinate UTM (WGS84)	0692426 m E
	5041966 m N

Caratteristiche sito

Punto di monitoraggio situato a valle del tracciato ferroviario.


Rappresentatività e motivi della scelta del punto di monitoraggio

Caratterizzazione quantitativa e qualitativa della risorgiva e verifica degli effetti indetti dalla realizzazione dell'opera **Attività**

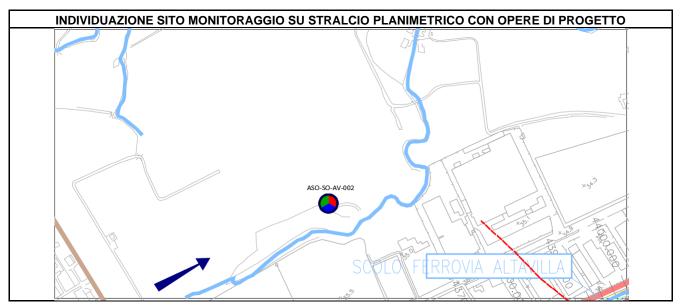
Misura della portata; Rilievo dei parametri chimico-fisici mediante sonda multiparametrica; Campionamento ed analisi chimiche.

NOTE

Nello stralcio planimetrico la freccia blu indica la direzione di deflusso della falda. L'accessibilità al punto verrà verificata durante i primi sopralluoghi.

Progetto Lotto Codific IN17 10 EI2R


Codifica Documento EI2RHMB0007001 Rev. Foglio A 105 di 166


CODICE STAZIONE

ASO-SO-AV-002

COMPONENTE	ACQUE SOTTERRANEE
SUBCOMPONENTE	Sorgenti
TIPO STAZIONE	Puntuale
FASI D'INTERVENTO	AO-CO-PO

Regione	Veneto
Comune	Altavilla Vicentina
Destinazione d'uso	Area agricola/incolta
Coordinate UTM	0693271 m E
(WGS84)	5043912 m N

Caratteristiche sito

Punto di monitoraggio situato a monte del tracciato ferroviario.

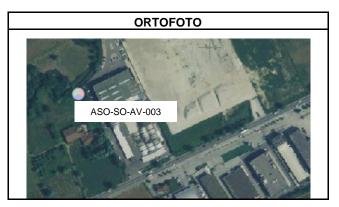
Rappresentatività e motivi della scelta del punto di monitoraggio

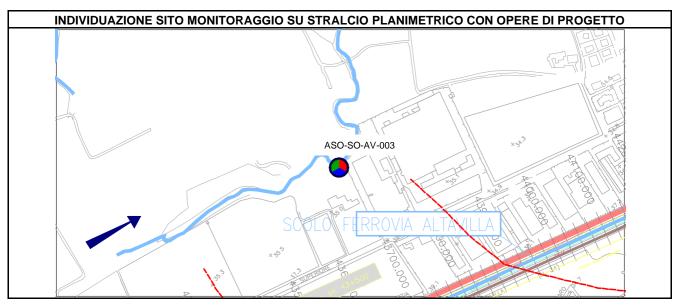
Caratterizzazione quantitativa e qualitativa della risorgiva e verifica degli effetti indetti dalla realizzazione dell'opera **Attività**

Misura della portata; Rilievo dei parametri chimico-fisici mediante sonda multiparametrica; Campionamento ed analisi chimiche.

NOTE

Nello stralcio planimetrico le linee rosse tratteggiate rappresentano le curve isopiezometriche, la freccia blu indica la direzione di deflusso della falda.


Progetto Lotto IN17 10 Codifica Documento EI2RHMB0007001 Rev. Fo


Foglio 106 di 166

CODICE STAZIONE ASO-SO-AV-003

COMPONENTE	ACQUE SOTTERRANEE
SUBCOMPONENTE	Sorgenti
TIPO STAZIONE	Puntuale
FASI D'INTERVENTO	AO-CO-PO

Regione	Veneto
Comune	Altavilla Vicentina
Destinazione d'uso	Area agricola/incolta
Coordinate UTM	0693429 m E
(WGS84)	5043901 m N

Caratteristiche sito

Punto di monitoraggio situato a monte del tracciato ferroviario.

Rappresentatività e motivi della scelta del punto di monitoraggio

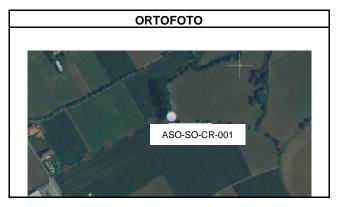
Caratterizzazione quantitativa e qualitativa della risorgiva e verifica degli effetti indetti dalla caratterizzazione dell'opera. **Attività**

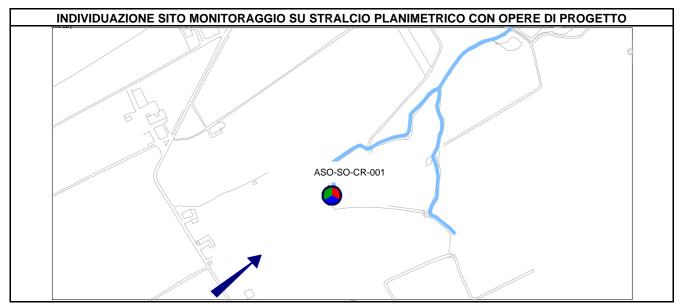
Misura della portata; Rilievo dei parametri chimico-fisici mediante sonda multiparametrica; Campionamento ed analisi chimiche.

NOTE

Nello stralcio planimetrico le linee rosse tratteggiate rappresentano le curve isopiezometriche, la freccia blu indica la direzione di deflusso della falda.

Progetto Lotto IN17 10


Codifica Documento EI2RHMB0007001 Rev. Foglio A 107 di 166


CODICE STAZIONE

ASO-SO-CR-001

COMPONENTE	ACQUE SOTTERRANEE
SUBCOMPONENTE	Sorgenti
TIPO STAZIONE	Puntuale
FASI D'INTERVENTO	AO-CO-PO

Regione	Veneto
Comune	Creazzo
Destinazione d'uso	Area agricola/incolta
Coordinate UTM	0692671 m E
(WGS84)	5044119 m N

Caratteristiche sito

Punto di monitoraggio situato a monte del tracciato ferroviario.

Rappresentatività e motivi della scelta del punto di monitoraggio

Caratterizzazione quantitativa e qualitativa della risorgiva e verifica degli effetti indetti dalla caratterizzazione dell'opera

Misura della portata; Rilievo dei parametri chimico-fisici mediante sonda multiparametrica; Campionamento ed analisi chimiche.

NOTE

Nello stralcio planimetrico la freccia blu indica la direzione di deflusso della falda. L'accessibilità al punto verrà verificata durante i primi sopralluoghi.

Progetto Lotto IN17 10 Codifica Documento EI2RHMB0007001 Rev. I

Foglio 108 di 166

CODICE STAZIONE ASO-SO-CR-002

COMPONENTE	ACQUE SOTTERRANEE
SUBCOMPONENTE	Sorgenti
TIPO STAZIONE	Puntuale
FASI D'INTERVENTO	AO-CO-PO

Regione	Veneto
Comune	Creazzo
Destinazione d'uso	Area agricola/incolta
Coordinate UTM	0693445 m E
(WGS84)	5044218 m N

Caratteristiche sito

Punto di monitoraggio situato a monte del tracciato ferroviario.

Rappresentatività e motivi della scelta del punto di monitoraggio

Caratterizzazione quantitativa e qualitativa della risorgiva e verifica degli effetti indetti dalla realizzazione dell'opera **Attività**

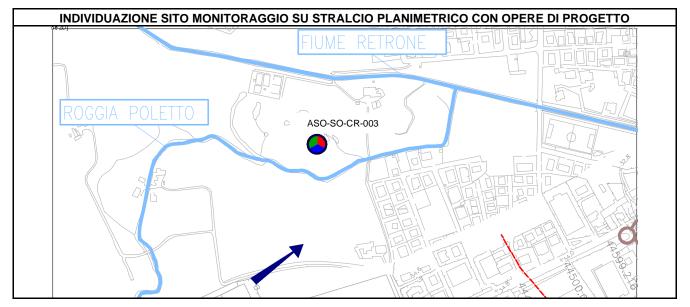
Misura della portata; Rilievo dei parametri chimico-fisici mediante sonda multiparametrica; Campionamento ed analisi chimiche.

NOTE

Nello stralcio planimetrico la freccia blu indica la direzione di deflusso della falda.

Progetto Lotto Codifica Documento IN17 10 E12RHMB0007001

Rev.


Foglio 109 di 166

CODICE STAZIONE ASO-SO-CR-003

COMPONENTE	ACQUE SOTTERRANEE
SUBCOMPONENTE	Sorgenti
TIPO STAZIONE	Puntuale
FASI D'INTERVENTO	AO-CO-PO

Regione	Veneto
Comune	Creazzo
Destinazione d'uso	Area agricola/incolta
Coordinate UTM	0693766 m E
(WGS84)	5044316 m N

Caratteristiche sito

Punto di monitoraggio situato a monte del tracciato ferroviario.

Rappresentatività e motivi della scelta del punto di monitoraggio

Caratterizzazione quantitativa e qualitativa della risorgiva e verifica degli effetti indetti dalla realizzazione dell'opera

Misura della portata; Rilievo dei parametri chimico-fisici mediante sonda multiparametrica; Campionamento ed analisi chimiche.

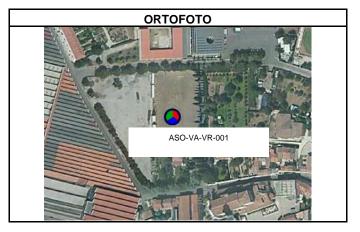
NOTE

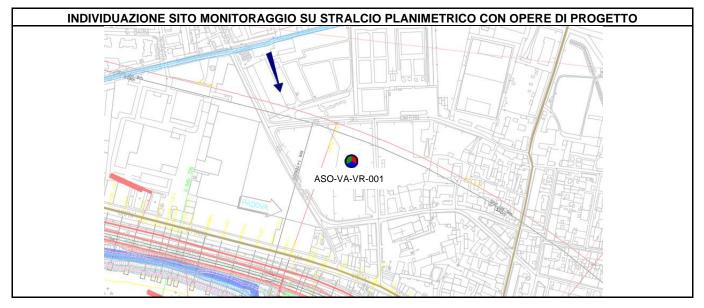
Nello stralcio planimetrico le linee rosse tratteggiate rappresentano le curve isopiezometriche, la freccia blu indica la direzione di deflusso della falda.

Progetto Lotto Codifica Documento IN17 10 E12RHMB0007001

Rev. Foglio A 110 di 166

Schede descrittive dei punti/areali di monitoraggio: PIEZOMETRI


Progetto Lotto IN17 10 Codifica Documento EI2RHMB0007001 Rev. Foglio


CODICE STAZIONE

ASO-VA-VR-001

COMPONENTE	ACQUE SOTTERRANEE
SUBCOMPONENTE	Piezometri
TIPO STAZIONE	Puntuale
FASI D'INTERVENTO	AO-CO-PO

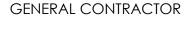
Regione	Veneto
Comune	Verona
Destinazione d'uso	Area agricola
Coordinate UTM (WGS84)	0659526 m E
	5033464 m N

Caratteristiche sito

Terreno incolto. Punto di monitoraggio situato a monte del tracciato ferroviario.

Rappresentatività e motivi della scelta del punto di monitoraggio

Caratterizzazione quali-quantitativa del corpo idrico sotterraneo e verifica degli effetti indotti dalla realizzazione dell'Opera in area sensibile (area urbana)


Attività

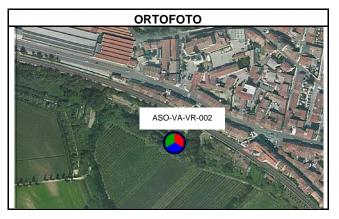
AO – Posa in opera di piezometro a tubo aperto, di profondità fino a 22 mt, mediante perforazione a distruzione di nucleo. Piezometro cieco per i primi 5 metri e finestrato per la rimanente parte, tappo al fondo.

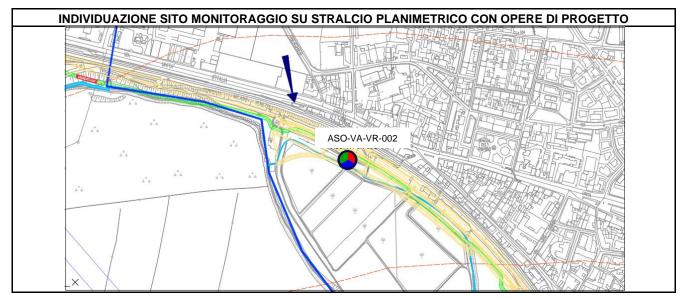
AO-CO-PO – Livellazione topografica dei piezometri; Rilievo del livello di falda; Rilievo dei parametri chimico-fisici mediante sonda multiparametrica; Campionamento ed analisi chimiche.

NOTE

Nello stralcio planimetrico la freccia blu indica la direzione di deflusso della falda.

Progetto Lotto Codifica Documento IN17 10 E12RHMB0007001


ASO-VA-VR-002


Rev. Foglio A 112 di 166

CODICE STAZIONE

COMPONENTE	ACQUE SOTTERRANEE
SUBCOMPONENTE	Piezometri
TIPO STAZIONE	Puntuale
FASI D'INTERVENTO	AO-CO-PO

Regione	Veneto
Comune	Verona
Destinazione d'uso	Area incolta
On and in at a LITM	0659554 m E
Coordinate UTM (WGS84)	5033197 m N

Caratteristiche sito

Terreno incolto. Punto di monitoraggio situato a valle del tracciato ferroviario.

Rappresentatività e motivi della scelta del punto di monitoraggio

Caratterizzazione quali-quantitativa del corpo idrico sotterraneo e verifica degli effetti indotti dalla realizzazione dell'Opera in area sensibile (area urbana)

Attività

AO – Posa in opera di piezometro a tubo aperto, di profondità fino a 22 mt, mediante perforazione a distruzione di nucleo. Piezometro cieco per i primi 5 metri e finestrato per la rimante parte, tappo al fondo.

AO-CO-PO – Livellazione topografica dei piezometri; Rilievo del livello di falda; Rilievo dei parametri chimico-fisici mediante sonda multiparametrica; Campionamento ed analisi chimiche.

NOTE

Nello stralcio planimetrico le linee rosse tratteggiate rappresentano le curve isopiezometriche, la freccia blu indica la direzione di deflusso della falda.

Progetto Lotto Codifi IN17 10 EI2R

Codifica Documento EI2RHMB0007001 Rev. Foglio

CODICE STAZIONE

ASO-VA-VR-003

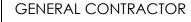
COMPONENTE	ACQUE SOTTERRANEE
SUBCOMPONENTE	Piezometri
TIPO STAZIONE	Puntuale
FASI D'INTERVENTO	AO-CO-PO

Regione	Veneto
Comune	Verona
Destinazione d'uso	Area agricola
	0661289 m E
Coordinate UTM (WGS84)	5033548 m N

Caratteristiche sito

Terreno agricolo. Punto di monitoraggio situato a monte dell'area di cantiere C.B. 1.1.

Rappresentatività e motivi della scelta del punto di monitoraggio


Caratterizzazione quali-quantitativa del corpo idrico sotterraneo e verifica degli effetti indotti dal cantiere C.B.1.1. sui limitrofi preesistenti pozzi pubblici.

Attività

AO – Posa in opera di piezometro a tubo aperto, di profondità fino a 22 mt, mediante perforazione a distruzione di nucleo. Piezometro cieco per i primi 2 metri e finestrato per la rimanente parte, tappo al fondo.

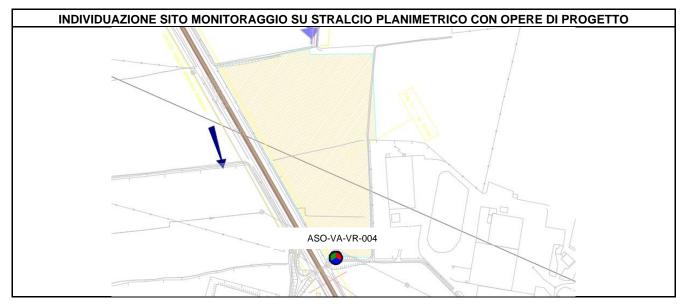
AO-CO-PO – Livellazione topografica dei piezometri; Rilievo del livello di falda; Rilievo dei parametri chimico-fisici mediante sonda multiparametrica; Campionamento ed analisi chimiche.

NOTE

Progetto Lotto IN17 10

Codifica Documento EI2RHMB0007001

Rev.


Foglio 114 di 166

CODICE STAZIONE ASO-VA-VR-004

COMPONENTE	ACQUE SOTTERRANEE
SUBCOMPONENTE	Piezometri
TIPO STAZIONE	Puntuale
FASI D'INTERVENTO	AO-CO-PO

Regione	Veneto
Comune	Verona
Destinazione d'uso	Area agricola
Coordinate UTM (WGS84)	0661270 m E
	5033267 m N

Caratteristiche sito

Terreno agricolo. Punto di monitoraggio situato a valle dell'area di cantiere C.B. 1.1.

Rappresentatività e motivi della scelta del punto di monitoraggio

Caratterizzazione quali-quantitativa del corpo idrico sotterraneo e verifica degli effetti indotti dalla realizzazione dell'Opera in area sensibile (area urbana)

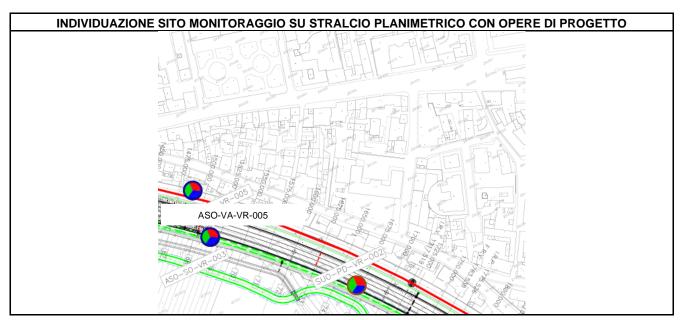
Attività

AO - Posa in opera di piezometro a tubo aperto, di profondità fino a 22 mt, mediante perforazione a distruzione di nucleo. Piezometro cieco per i primi 2 metri e finestrato per la rimanente parte, tappo al fondo.

AO-CO-PO - Livellazione topografica dei piezometri; Rilievo del livello di falda; Rilievo dei parametri chimico-fisici mediante sonda multiparametrica; Campionamento ed analisi chimiche.

NOTE

Progetto Lotto (


Codifica Documento EI2RHMB0007001 Rev. Foglio A 115 di 166

CODICE STAZIONE ASO-VA-VR-005

COMPONENTE	ACQUE SOTTERRANEE
SUBCOMPONENTE	Piezometri
TIPO STAZIONE	Puntuale
FASI D'INTERVENTO	AO-CO-PO

Regione	Veneto
Comune	Verona
Destinazione d'uso	
Coordinate UTM (WGS84)	0659753 m E
	5033130 m N

Caratteristiche sito

Terreno incolto. Punto di monitoraggio situato a monte del tracciato.

Rappresentatività e motivi della scelta del punto di monitoraggio

Punto di monitoraggio ubicato a monte del tracciato per rilevare l'escursione del livello di falda a monte dell'opera, al fine di verificare l'efficienza del sistema drenante di progetto.

Attività

AO – Posa in opera di piezometro a tubo aperto, di profondità fino a 22 mt, mediante perforazione a distruzione di nucleo. Piezometro cieco per i primi 2 metri e finestrato per la rimanente parte, tappo al fondo.

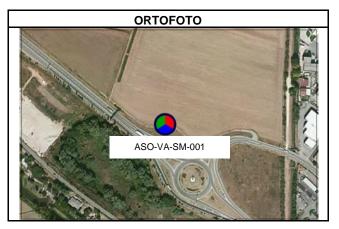
AO-CO-PO – Livellazione topografica dei piezometri; Rilievo del livello di falda; Rilievo dei parametri chimico-fisici mediante sonda multiparametrica; Campionamento ed analisi chimiche.

NOTE

Piezometro richiesto da ARPAV per la rilevazione della superficie piezometrica.

Lotto Progetto IN17 10 EI2RHMB0007001

Codifica Documento Rev.


Foglio 116 di 166

CODICE STAZIONE

ASO-VA-SM-001

COMPONENTE	ACQUE SOTTERRANEE
SUBCOMPONENTE	Piezometri
TIPO STAZIONE	Puntuale
FASI D'INTERVENTO	AO-CO-PO

Regione	Veneto
Comune	San Martino Buon Albergo
Destinazione d'uso	Area agricola
Coordinate UTM	0662746 m E
(WGS84)	5031648 m N

Caratteristiche sito

Terreno agricolo. Punto di monitoraggio situato a monte del tracciato ferroviario (tratto di galleria artificiale), nell'area del cantiere C.T. 1.

Rappresentatività e motivi della scelta del punto di monitoraggio

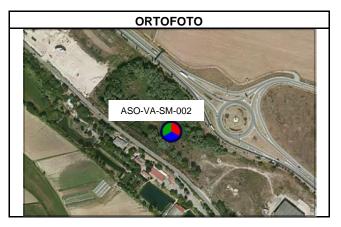
Caratterizzazione quali-quantitativa del corpo idrico sotterraneo e verifica degli effetti indotti dalla realizzazione della G.A.01

AO - Posa in opera di: n.1 piezometro a tubo aperto - piezometro automatizzato, di profondità 40 mt, mediante perforazione a distruzione di nucleo. Piezometri ciechi per i primi 5 metri e finestrati per la rimanente parte, tappo al fondo. AO-CO-PO - Piezometro a tubo aperto: Livellazione topografica del piezometro; Rilievo del livello di falda; Rilievo dei parametri chimico-fisici mediante sonda multiparametrica; Campionamento ed analisi chimiche.

AO-CO-PO - Piezometro automatizzato: Livellazione topografica del piezometro; Acquisizione dati monitorati in continuo.

Nello stralcio planimetrico la freccia blu indica la direzione di deflusso della falda.

Progetto Lotto


Codifica Documento EI2RHMB0007001 Rev. Foglio

CODICE STAZIONE

ASO-VA-SM-002

COMPONENTE	ACQUE SOTTERRANEE
SUBCOMPONENTE	Piezometri
TIPO STAZIONE	Puntuale
FASI D'INTERVENTO	AO-CO-PO

Regione	Veneto
Comune	San Martino Buon Albergo
Destinazione d'uso	Area incolta
Coordinate UTM	0662679 m E
(WGS84)	5031530 m N

Caratteristiche sito

Terreno incolto. Punto di monitoraggio situato a **valle** del tracciato ferroviario (tratto di galleria artificiale) e dei cantieri C.T. 1 e C.A. 1.2.

Rappresentatività e motivi della scelta del punto di monitoraggio

Caratterizzazione quali-quantitativa del corpo idrico sotterraneo e verifica degli effetti indotti dalla realizzazione della G.A.01

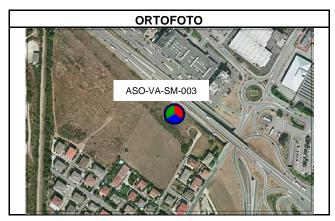
Attività

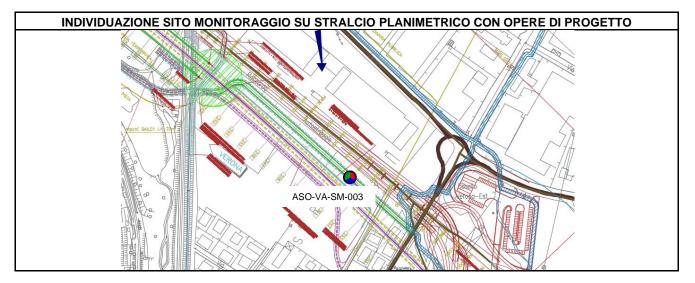
AO – Posa in opera di: **n.1 piezometro a tubo aperto - piezometro automatizzato**, di profondità 40 mt, mediante perforazione a distruzione di nucleo. Piezometri ciechi per i primi 5 metri e finestrati per la rimante parte, tappo al fondo.

AO-CO-PO – Piezometro a tubo aperto: Livellazione topografica del piezometro; Rilievo del livello di falda; Rilievo dei parametri chimico-fisici mediante sonda multiparametrica; Campionamento ed analisi chimiche.

AO-CO-PO – Piezometro automatizzato: Livellazione topografica del piezometro; Acquisizione dati monitorati in continuo.

NOTE




Progetto Lotto IN17 10 Codifica Documento EI2RHMB0007001 Rev. Foglio A 118 di 166

CODICE STAZIONE ASO-VA-SM-003

COMPONENTE	ACQUE SOTTERRANEE
SUBCOMPONENTE	Piezometri
TIPO STAZIONE	Puntuale
FASI D'INTERVENTO	AO-CO-PO

Regione	Veneto
Comune	San Martino Buon Albergo
Destinazione d'uso	Area incolta
Coordinate UTM	0663193 m E
(WGS84)	5031186 m N

Caratteristiche sito

Terreno incolto. Punto di monitoraggio situato a monte del tracciato ferroviario (tratto di galleria artificiale).

Rappresentatività e motivi della scelta del punto di monitoraggio

Caratterizzazione quali-quantitativa del corpo idrico sotterraneo e verifica degli effetti indotti dalla realizzazione della G.A.01) e per la presenza di manufatti della A4

Attività

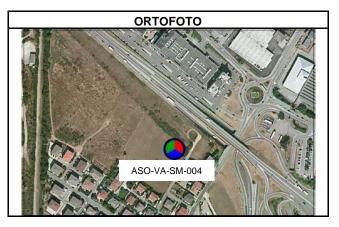
AO – Posa in opera di: **n.1 piezometro a tubo aperto** - **piezometro automatizzato**, di profondità 40 mt, mediante perforazione a distruzione di nucleo. Piezometri ciechi per i primi 5 metri e finestrati per la rimanente parte, tappo al fondo. **AO-CO-PO** – **Piezometro a tubo aperto:** Livellazione topografica del piezometro; Rilievo del livello di falda; Rilievo dei parametri chimico-fisici mediante sonda multiparametrica; Campionamento ed analisi chimiche.

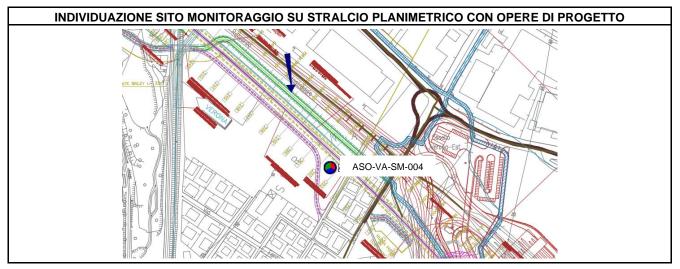
AO-CO-PO - Piezometro automatizzato: Livellazione topografica del piezometro; Acquisizione dati monitorati in continuo.

NOTE

Nello stralcio planimetrico la freccia blu indica la direzione di deflusso della falda.

Progetto Lotto IN17 10


Codifica Documento EI2RHMB0007001 Rev. Foglio


CODICE STAZIONE

ASO-VA-SM-004

COMPONENTE	ACQUE SOTTERRANEE
SUBCOMPONENTE	Piezometri
TIPO STAZIONE	Puntuale
FASI D'INTERVENTO	AO-CO-PO

Regione	Veneto
Comune	San Martino Buon Albergo
Destinazione d'uso	Area incolta
Coordinate UTM	0663195 m E
(WGS84)	5031127 m N

Caratteristiche sito

Terreno incolto. Punto di monitoraggio situato a valle del tracciato ferroviario (tratto di galleria artificiale).

Rappresentatività e motivi della scelta del punto di monitoraggio

Caratterizzazione quali-quantitativa del corpo idrico sotterraneo e verifica degli effetti indotti dalla realizzazione della G.A.01) e per la presenza di manufatti della A4

Attività

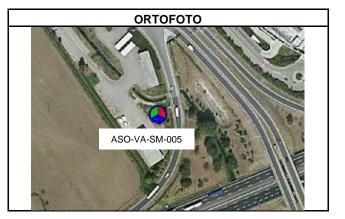
AO – Posa in opera di: **n.1 piezometro a tubo aperto - piezometro automatizzato**, di profondità 40 mt, mediante perforazione a distruzione di nucleo. Piezometri ciechi per i primi 5 metri e finestrati per la rimanente parte, tappo al fondo. **AO-CO-PO – Piezometro a tubo aperto:** Livellazione topografica del piezometro; Rilievo del livello di falda; Rilievo dei parametri chimico-fisici mediante sonda multiparametrica; Campionamento ed analisi chimiche.

AO-CO-PO - Piezometro automatizzato: Livellazione topografica del piezometro; Acquisizione dati monitorati in continuo.

NOTE

Nello stralcio planimetrico le linee rosse tratteggiate rappresentano le curve isopiezometriche, la freccia blu indica la direzione di deflusso della falda.

Progetto Lotto Codifica Documento IN17 10 E12RHMB0007001


Rev. Fo

Foglio 120 di 166

CODICE STAZIONE	ASO-VA-SM-005

COMPONENTE	ACQUE SOTTERRANEE
SUBCOMPONENTE	Piezometri
TIPO STAZIONE	Puntuale
FASI D'INTERVENTO	AO-CO-PO

Regione	Veneto
Comune	San Martino Buon Albergo
Destinazione d'uso	Area incolta
Coordinate LITM	0663557 m E
Coordinate UTM (WGS84)	5030766 m N

Caratteristiche sito

Terreno incolto. Punto di monitoraggio situato a monte del tracciato ferroviario (tratto di galleria artificiale)

Rappresentatività e motivi della scelta del punto di monitoraggio

Caratterizzazione quali-quantitativa del corpo idrico sotterraneo e verifica degli effetti indotti dalla realizzazione della G.A.01) e per la presenza di manufatti della A4

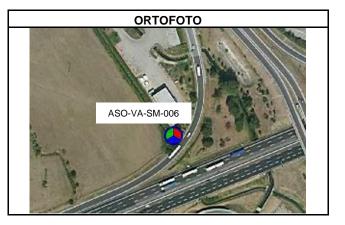
Attività

AO – Posa in opera di: **n.1 piezometro a tubo aperto**, di profondità 40 mt, mediante perforazione a distruzione di nucleo. Piezometri ciechi per i primi 5 metri e finestrati per la rimanente parte, tappo al fondo.

AO-CO-PO – Piezometro a tubo aperto: Livellazione topografica del piezometro; Rilievo del livello di falda; Rilievo dei parametri chimico-fisici mediante sonda multiparametrica; Campionamento ed analisi chimiche.

NOTE

Progetto Lotto Codifica Documento IN17 10 EI2RHMB0007001


Rev.

Foglio 121 di 166

-VA-SM-006

COMPONENTE	ACQUE SOTTERRANEE
SUBCOMPONENTE	Piezometri
TIPO STAZIONE	Puntuale
FASI D'INTERVENTO	AO-CO-PO

Regione	Veneto
Comune	San Martino Buon Albergo
Destinazione d'uso	Area incolta
Coordinate UTM (WGS84)	0663530 m E
	5030757 m N

Caratteristiche sito

Terreno incolto. Punto di monitoraggio situato a valle del tracciato ferroviario (tratto di galleria artificiale)

Rappresentatività e motivi della scelta del punto di monitoraggio

Caratterizzazione quali-quantitativa del corpo idrico sotterraneo e verifica degli effetti indotti dalla realizzazione della G.A.01) e per la presenza di manufatti della A4

Attività

AO – Posa in opera di: **n.1 piezometro a tubo aperto**, di profondità 40 mt, mediante perforazione a distruzione di nucleo. Piezometri ciechi per i primi 5 metri e finestrati per la rimanente parte, tappo al fondo.

AO-CO-PO – Piezometro a tubo aperto: Livellazione topografica del piezometro; Rilievo del livello di falda; Rilievo dei parametri chimico-fisici mediante sonda multiparametrica; Campionamento ed analisi chimiche.

NOTE

Nello stralcio planimetrico la freccia blu indica la direzione di deflusso della falda.

Progetto Lotto IN17 10 EI2RHMB0007001

Codifica Documento Rev.

Foglio 122 di 166

CODICE STAZIONE AS	SO-VA-SM-007
--------------------	--------------

COMPONENTE	ACQUE SOTTERRANEE
SUBCOMPONENTE	Piezometri
TIPO STAZIONE	Puntuale
FASI D'INTERVENTO	AO-CO-PO

Regione	Veneto
Comune	San Martino Buon Albergo
Destinazione d'uso	Area agricola
	0663819 m E
Coordinate UTM (WGS84)	5030551 m N

Caratteristiche sito

Terreno agricolo. Punto di monitoraggio situato a monte del tracciato ferroviario (tratto di galleria artificiale) e delle aree di cantiere C.I. 1.4 - C.O. 1.5 - C.O. 1.3.

Rappresentatività e motivi della scelta del punto di monitoraggio

Caratterizzazione quali-quantitativa del corpo idrico sotterraneo e verifica degli effetti indotti dalla realizzazione della G.A.01 e per i cantieri C.I. 1.4 - C.O. 1.5 - C.O. 1.3.

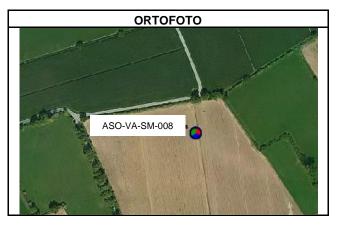
Attività

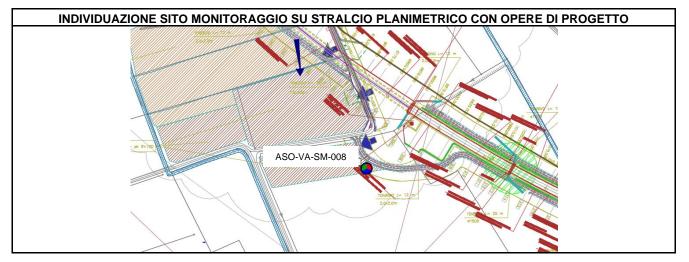
AO - Posa in opera di: n.1 piezometro a tubo aperto - piezometro automatizzato, di profondità 40 mt, mediante perforazione a distruzione di nucleo. Piezometri ciechi per i primi 5 metri e finestrati per la rimanente parte, tappo al fondo. AO-CO-PO - Piezometro a tubo aperto: Livellazione topografica del piezometro; Rilievo del livello di falda; Rilievo dei parametri chimico-fisici mediante sonda multiparametrica; Campionamento ed analisi chimiche.

AO-CO-PO - Piezometro automatizzato: Livellazione topografica del piezometro; Acquisizione dati monitorati in continuo.

NOTE

Progetto Lotto


Codifica Documento EI2RHMB0007001 Rev. F


Foglio 123 di 166

CODICE STAZIONE ASO-VA-SM-008

COMPONENTE	ACQUE SOTTERRANEE
SUBCOMPONENTE	Piezometri
TIPO STAZIONE	Puntuale
FASI D'INTERVENTO	AO-CO-PO

Regione	Veneto
Comune	San Martino Buon Albergo
Destinazione d'uso	Area agricola
Coordinate UTM (WGS84)	0664011 m E
	5030221 m N

Caratteristiche sito

Terreno agricolo. Punto di monitoraggio situato a **valle** del tracciato ferroviario (tratto di galleria artificiale), e delle aree di cantiere C.I. 1.4 - C.O. 1.5 - C.O. 1.3.

Rappresentatività e motivi della scelta del punto di monitoraggio

Caratterizzazione quali-quantitativa del corpo idrico sotterraneo e verifica degli effetti indotti dalla realizzazione della G.A.01 e per i cantieri C.I. 1.4 - C.O. 1.5 - C.O. 1.3.

Attività:

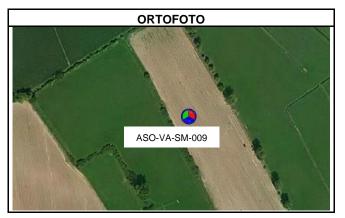
AO – Posa in opera di: **n.1 piezometro a tubo aperto - piezometro automatizzato**, di profondità 40 mt, mediante perforazione a distruzione di nucleo. Piezometri ciechi per i primi 5 metri e finestrati per la rimanente parte, tappo al fondo. **AO-CO-PO – Piezometro a tubo aperto:** Livellazione topografica del piezometro; Rilievo del livello di falda; Rilievo dei parametri chimico-fisici mediante sonda multiparametrica; Campionamento ed analisi chimiche.

AO-CO-PO - Piezometro automatizzato: Livellazione topografica del piezometro; Acquisizione dati monitorati in continuo.

NOTE

Nello stralcio planimetrico la freccia blu indica la direzione di deflusso della falda.

Progetto Lotto Codifica Documento IN17 10 EI2RHMB0007001


Rev.

Foglio 124 di 166

CODICE STAZIONE	ASO-VA-SM-009
-----------------	---------------

COMPONENTE	ACQUE SOTTERRANEE
SUBCOMPONENTE	Piezometri
TIPO STAZIONE	Puntuale
FASI D'INTERVENTO	AO-CO-PO

Regione	Veneto
Comune	San Martino Buon Albergo
Destinazione d'uso	Area agricola
Coordinate UTM (WGS84)	0664255 m E
	5030257 m N

Caratteristiche sito

Terreno agricolo. Punto di monitoraggio situato a monte del tracciato ferroviario (tratto di galleria artificiale)

Rappresentatività e motivi della scelta del punto di monitoraggio

Caratterizzazione quali-quantitativa del corpo idrico sotterraneo e verifica degli effetti indotti dalla realizzazione del tratto della trincea di approccio alla G.A.01

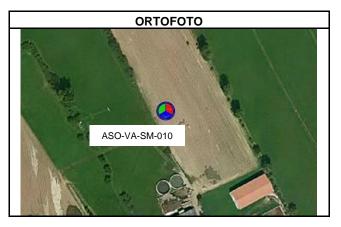
Attività

AO – Posa in opera di: **n.1 piezometro a tubo aperto**, di profondità 40 mt, mediante perforazione a distruzione di nucleo. Piezometri ciechi per i primi 5 metri e finestrati per la rimanente parte, tappo al fondo.

AO-CO-PO – Piezometro a tubo aperto: Livellazione topografica del piezometro; Rilievo del livello di falda; Rilievo dei parametri chimico-fisici mediante sonda multiparametrica; Campionamento ed analisi chimiche.

NOTE

Progetto Lotto


Codifica Documento EI2RHMB0007001 Rev. Foglio A 125 di 166

CODICE STAZIONE

ASO-VA-SM-010

COMPONENTE	ACQUE SOTTERRANEE
SUBCOMPONENTE	Piezometri
TIPO STAZIONE	Puntuale
FASI D'INTERVENTO	AO-CO-PO

Regione	Veneto
Comune	San Martino Buon Albergo
Destinazione d'uso	Area agricola
Coordinate UTM (WGS84)	0664302 m E
	5030149 m N

INDIVIDUAZIONE SITO MONITORAGGIO SU STRALCIO PLANIMETRICO CON OPERE DI PROGETTO

Caratteristiche sito

Terreno agricolo. Punto di monitoraggio situato a valle del tracciato ferroviario (tratto di galleria artificiale)

Rappresentatività e motivi della scelta del punto di monitoraggio

Caratterizzazione quali-quantitativa del corpo idrico sotterraneo e verifica degli effetti indotti dalla realizzazione del tratto della trincea di approccio alla G.A.01

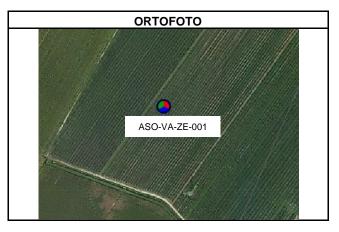
Attività

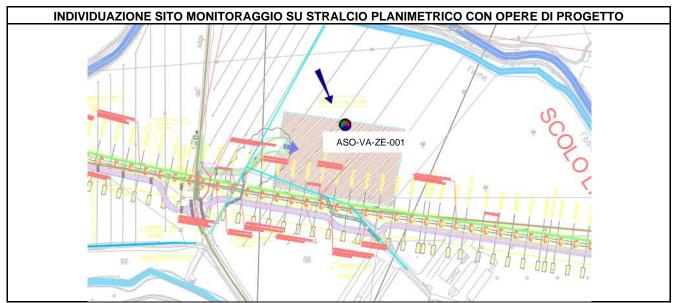
AO – Posa in opera di: **n.1 piezometro a tubo aperto**, di profondità 40 mt, mediante perforazione a distruzione di nucleo. Piezometri ciechi per i primi 5 metri e finestrati per la rimanente parte, tappo al fondo.

AO-CO-PO – Piezometro a tubo aperto: Livellazione topografica del piezometro; Rilievo del livello di falda; Rilievo dei parametri chimico-fisici mediante sonda multiparametrica; Campionamento ed analisi chimiche.

NOTE

Nello stralcio planimetrico la freccia blu indica la direzione di deflusso della falda.


Progetto Lotto Coo


Codifica Documento EI2RHMB0007001 Rev. Foglio A 126 di 166

CODICE STAZIONE ASO-VA-ZE-001

COMPONENTE	ACQUE SOTTERRANEE
SUBCOMPONENTE	Piezometri
TIPO STAZIONE	Puntuale
FASI D'INTERVENTO	AO-CO-PO

Regione	Veneto
Comune	Zevio
Destinazione d'uso	Area agricola
	0666584 m E
Coordinate UTM (WGS84)	5029702 m N

Caratteristiche sito

Terreno agricolo. Punto di monitoraggio situato a monte del tracciato ferroviario, nell'area di cantiere C.O. 1.6.

Rappresentatività e motivi della scelta del punto di monitoraggio

Caratterizzazione quali-quantitativa del corpo idrico sotterraneo e verifica degli effetti indotti - dalla realizzazione delle fondazioni su pali del Viadotto Fibbio-dal cantiere C.O. 1.6.

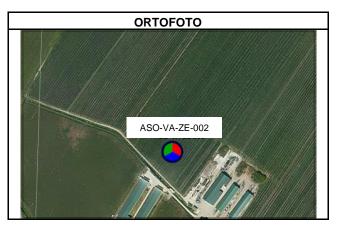
Attività

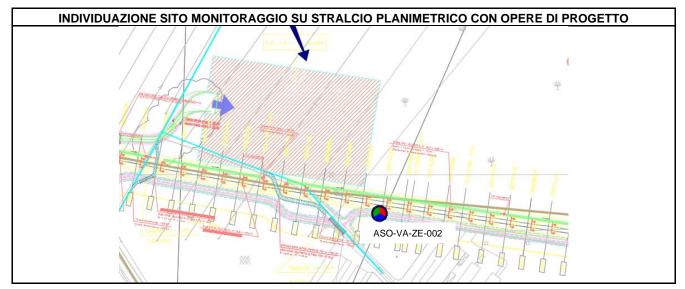
AO – Posa in opera di piezometro a tubo aperto, di profondità 40 mt, mediante perforazione a distruzione di nucleo. Piezometro cieco per i primi 2 metri e finestrato per la rimanente parte, tappo al fondo.

AO-CO-PO – Livellazione topografica dei piezometri; Rilievo del livello di falda; Rilievo dei parametri chimico-fisici mediante sonda multiparametrica; Campionamento ed analisi chimiche.

NOTE

Nello stralcio planimetrico la freccia blu indica la direzione di deflusso della falda.


Progetto Lotto Codifica Documento IN17 10 EI2RHMB0007001


Rev. Foglio A 127 di 166

CODICE STAZIONE ASO-VA-ZE-002

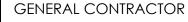
COMPONENTE	ACQUE SOTTERRANEE
SUBCOMPONENTE	Piezometri
TIPO STAZIONE	Puntuale
FASI D'INTERVENTO	AO-CO-PO

Regione	Veneto
Comune	Zevio
Destinazione d'uso	Area agricola
	0666682 m E
Coordinate UTM (WGS84)	5029536 m N

Caratteristiche sito

Terreno agricolo. Punto di monitoraggio situato a valle del tracciato ferroviario e dell'area di cantiere C.O. 1.6.

Rappresentatività e motivi della scelta del punto di monitoraggio


Caratterizzazione quali-quantitativa del corpo idrico sotterraneo e verifica degli effetti indotti - dalla realizzazione delle fondazioni su pali del Viadotto Fibbio - dal cantiere C.O. 1.6.

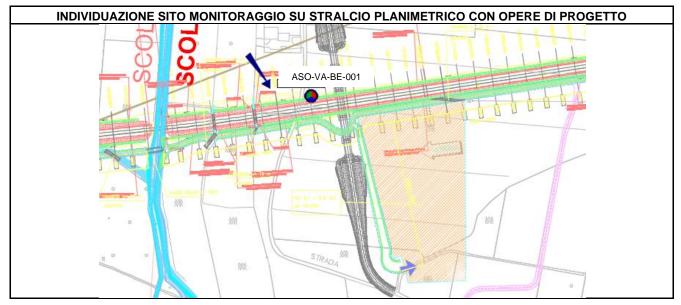
Attività

AO – Posa in opera di piezometro a tubo aperto, di profondità 40 mt, mediante perforazione a distruzione di nucleo. Piezometro cieco per i primi 2 metri e finestrato per la rimanente parte, tappo al fondo.

AO-CO-PO – Livellazione topografica dei piezometri; Rilievo del livello di falda; Rilievo dei parametri chimico-fisici mediante sonda multiparametrica; Campionamento ed analisi chimiche.

NOTE

Progetto Lotto IN17 10 Codifica Documento EI2RHMB0007001 Rev. Foglio A 128 di 166


CODICE STAZIONE

ASO-VA-BE-001

COMPONENTE	ACQUE SOTTERRANEE
SUBCOMPONENTE	Piezometri
TIPO STAZIONE	Puntuale
FASI D'INTERVENTO	AO-CO-PO

Regione	Veneto
Comune	Belfiore
Destinazione d'uso	Area agricola
	0669637 m E
Coordinate UTM (WGS84)	5029326 m N

Caratteristiche sito

Terreno agricolo. Punto di monitoraggio situato a monte del tracciato ferroviario e dell'area di cantiere C.I. 2.1 e C.O. 2.2.

Rappresentatività e motivi della scelta del punto di monitoraggio

Caratterizzazione quali-quantitativa del corpo idrico sotterraneo e verifica degli effetti indotti - dalla realizzazione dal cavalcaferrovia IV03 - dai cantieri C.I. 2.1 e C.O. 2.2.

Attività

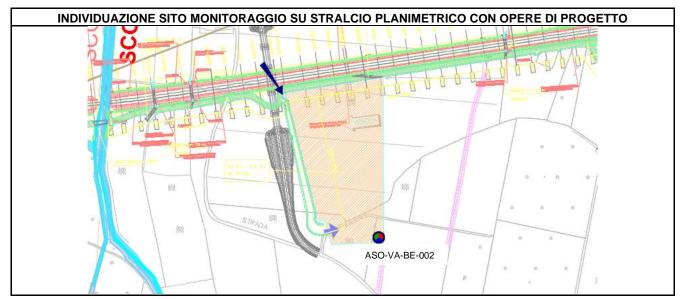
AO – Posa in opera di piezometro a tubo aperto, di profondità fino a 22 mt, mediante perforazione a distruzione di nucleo. Piezometro cieco per i primi 2 metri e finestrato per la rimanente parte, tappo al fondo.

AO-CO-PO – Livellazione topografica dei piezometri; Rilievo del livello di falda; Rilievo dei parametri chimico-fisici mediante sonda multiparametrica; Campionamento ed analisi chimiche.

NOTE

Progetto Lotto Cod


Codifica Documento EI2RHMB0007001 Rev. Foglio A 129 di 166


CODICE STAZIONE

ASO-VA-BE-002

COMPONENTE	ACQUE SOTTERRANEE
SUBCOMPONENTE	Piezometri
TIPO STAZIONE	Puntuale
FASI	
D'INTERVENTO	AO-CO-PO

Regione	Veneto
Comune	Belfiore
Destinazione d'uso	Area agricola
	0669860 m E
Coordinate UTM (WGS84)	
	5029057 m N

Caratteristiche sito

Terreno agricolo. Punto di monitoraggio situato a valle del tracciato ferroviario, nell'area del cantiere C.I. 2.1 e C.O. 2.2.

Rappresentatività e motivi della scelta del punto di monitoraggio

Caratterizzazione quali-quantitativa del corpo idrico sotterraneo e verifica degli effetti indotti - dalla realizzazione dal cavalcaferrovia IV03 - dai cantieri C.I. 2.1 e C.O. 2.2.

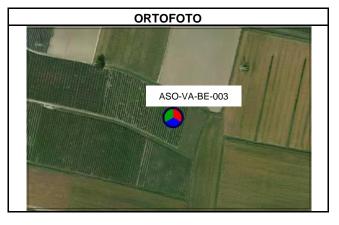
Attività

AO – Posa in opera di piezometro a tubo aperto, di profondità fino a 22 mt, mediante perforazione a distruzione di nucleo. Piezometro cieco per i primi 2 metri e finestrato per la rimanente parte, tappo al fondo.

AO-CO-PO – Livellazione topografica dei piezometri; Rilievo del livello di falda; Rilievo dei parametri chimico-fisici mediante sonda multiparametrica; Campionamento ed analisi chimiche.

NOTE

Progetto Lotto


Codifica Documento EI2RHMB0007001 Rev. Fo

Foglio 130 di 166

CODICE STAZIONE ASO-VA-BE-003

COMPONENTE	ACQUE SOTTERRANEE
SUBCOMPONENTE	Piezometri
TIPO STAZIONE	Puntuale
FASI	
D'INTERVENTO	AO-CO-PO

Regione	Veneto
Comune	Belfiore
Destinazione d'uso	Area agricola
	0672539 m E
Coordinate UTM	
(WGS84)	5029144 m N

Caratteristiche sito

Terreno agricolo. Punto di monitoraggio situato a monte del tracciato ferroviario e dell'area di cantiere C.O. 2.4.

Rappresentatività e motivi della scelta del punto di monitoraggio

Caratterizzazione quali-quantitativa del corpo idrico sotterraneo e verifica degli effetti indotti dal cantiere C.O. 2.4.

Attività

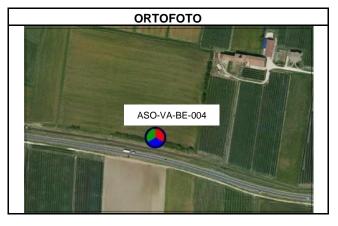
AO – Posa in opera di piezometro a tubo aperto, di profondità fino a 22 mt, mediante perforazione a distruzione di nucleo. Piezometro cieco per i primi 2 metri e finestrato per la rimanente parte, tappo al fondo.

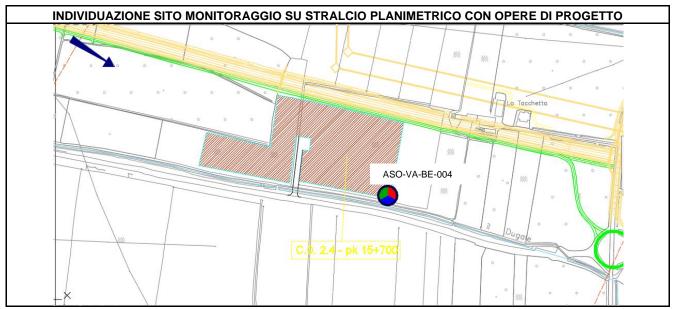
AO-CO-PO – Livellazione topografica dei piezometri; Rilievo del livello di falda; Rilievo dei parametri chimico-fisici mediante sonda multiparametrica; Campionamento ed analisi chimiche.

NOTE

Nello stralcio planimetrico le linee rosse tratteggiate rappresentano le curve isopiezometriche, la freccia blu indica la direzione di deflusso della falda.

Progetto Lotto Codifica Documento IN17 10 E12RHMB0007001


Rev. For


Foglio 131 di 166

CODICE STAZIONE ASO-VA-BE-004

COMPONENTE	ACQUE SOTTERRANEE
SUBCOMPONENTE	Piezometri
TIPO STAZIONE	Puntuale
FASI D'INTERVENTO	AO-CO-PO

Regione	Veneto
Comune	Belfiore
Destinazione d'uso	Area agricola
	0672788 m E
Coordinate UTM (WGS84)	5028898 m N

Caratteristiche sito

Terreno agricolo. Punto di monitoraggio situato a valle del tracciato ferroviario, nell'area del cantiere C.O. 2.4.

Rappresentatività e motivi della scelta del punto di monitoraggio

Caratterizzazione quali-quantitativa del corpo idrico sotterraneo e verifica degli effetti indotti dal cantiere C.O. 2.4. Attività

AO – Posa in opera di piezometro a tubo aperto, di profondità fino a 22 mt, mediante perforazione a distruzione di nucleo. Piezometro cieco per i primi 2 metri e finestrato per la rimanente parte, tappo al fondo.

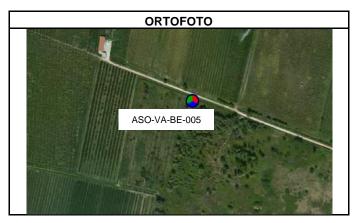
AO-CO-PO – Livellazione topografica dei piezometri; Rilievo del livello di falda; Rilievo dei parametri chimico-fisici mediante sonda multiparametrica; Campionamento ed analisi chimiche.

NOTE

Nello stralcio planimetrico la freccia blu indica la direzione di deflusso della falda.

Progetto Lotto Codifica Documento IN17 10 E12RHMB0007001

Rev.


Foglio 132 di 166

CODICE STAZIONE

ASO-VA-BE-005

COMPONENTE	ACQUE SOTTERRANEE
SUBCOMPONENTE	Piezometri
TIPO STAZIONE	Puntuale
FASI D'INTERVENTO	AO-CO-PO

Regione	Veneto
Comune	Belfiore
Destinazione d'uso	Area agricola
	0673307 m E
Coordinate UTM (WGS84)	5029681 m N

Caratteristiche sito

Terreno agricolo. Punto di monitoraggio situato a monte dell'area di cantiere C.B. 2.3.

Rappresentatività e motivi della scelta del punto di monitoraggio

Caratterizzazione quali-quantitativa del corpo idrico sotterraneo e verifica degli effetti indotti dal cantiere C.B.2.3.

Λŧtività

AO – Posa in opera di piezometro a tubo aperto, di profondità fino a 22 mt, mediante perforazione a distruzione di nucleo. Piezometro cieco per i primi 2 metri e finestrato per la rimanente parte, tappo al fondo.

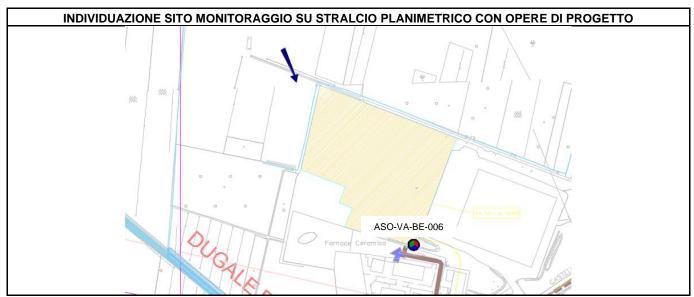
AO-CO-PO – Livellazione topografica dei piezometri; Rilievo dei livello di falda; Rilievo dei parametri chimico-fisici mediante sonda multiparametrica; Campionamento ed analisi chimiche.

NOTE

Nello stralcio planimetrico la freccia blu indica la direzione di deflusso della falda.

Progetto Lotto Codifica Documento IN17 10 EI2RHMB0007001

Rev. Foglio A 133 di 166


CODICE STAZIONE

ASO-VA-BE-006

COMPONENTE	ACQUE SOTTERRANEE
SUBCOMPONENTE	Piezometri
TIPO STAZIONE	Puntuale
FASI D'INTERVENTO	AO-CO-PO

Regione	Veneto
Comune	Belfiore
Destinazione d'uso	Terreno incolto
	0673458 m E
Coordinate UTM (WGS84)	5029423 m N

Caratteristiche sito

Terreno agricolo. Punto di monitoraggio situato a valle dell'area di cantiere C.B. 2.3.

Rappresentatività e motivi della scelta del punto di monitoraggio

Caratterizzazione quali-quantitativa del corpo idrico sotterraneo e verifica degli effetti indotti dal cantiere C.B.2.3.

Λŧŧiviŧà

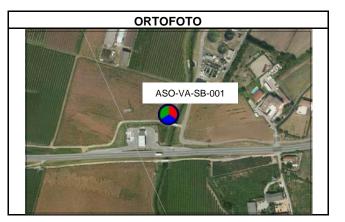
AO – Posa in opera di piezometro a tubo aperto, di profondità fino a 22 mt, mediante perforazione a distruzione di nucleo. Piezometro cieco per i primi 2 metri e finestrato per la rimanente parte, tappo al fondo.

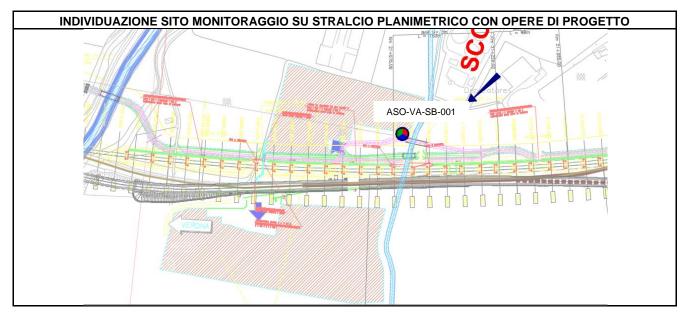
AO-CO-PO – Livellazione topografica dei piezometri; Rilievo dei livello di falda; Rilievo dei parametri chimico-fisici mediante sonda multiparametrica; Campionamento ed analisi chimiche.

NOTE

Nello stralcio planimetrico la freccia blu indica la direzione di deflusso della falda.

Progetto Lotto Codifica Documento IN17 10 E12RHMB0007001


Rev.


Foglio 134 di 166

CODICE STAZIONE ASO-VA-SB-001

COMPONENTE	ACQUE SOTTERRANEE
SUBCOMPONENTE	Piezometri
TIPO STAZIONE	Puntuale
FASI D'INTERVENTO	AO-CO-PO

Regione	Veneto
Comune	San Bonifacio
Destinazione d'uso	Area agricola
	0678070 m E
Coordinate UTM (WGS84)	5028421 m N

Caratteristiche sito

Terreno agricolo. Punto di monitoraggio situato a monte del tracciato ferroviario, nell'area del cantiere C.O. 3.1.

Rappresentatività e motivi della scelta del punto di monitoraggio

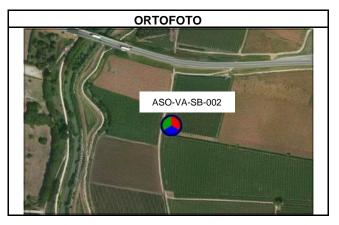
Caratterizzazione quali-quantitativa del corpo idrico sotterraneo e verifica degli effetti indotti - dalla realizzazione delle fondazioni del Viadotto Alpone-dal cantiere C.O. 3.1.

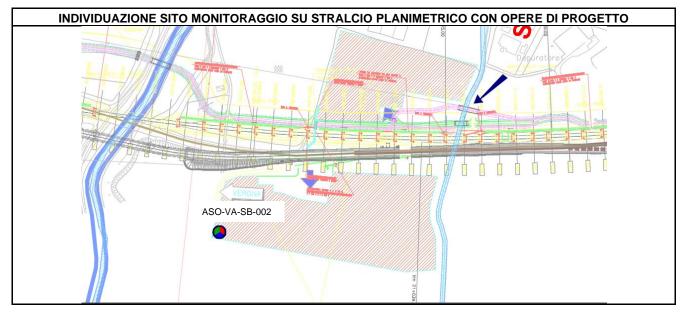
Attività

AO – Posa in opera di piezometro a tubo aperto, di profondità 45 mt, mediante perforazione a distruzione di nucleo. Piezometro cieco per i primi 2 metri e finestrato per la rimanente parte, tappo al fondo.

AO-CO-PO – Livellazione topografica dei piezometri; Rilievo del livello di falda; Rilievo dei parametri chimico-fisici mediante sonda multiparametrica; Campionamento ed analisi chimiche.

NOTE


Progetto Lotto IN17 10 Codifica Documento EI2RHMB0007001 Rev. Foglio A 135 di 166


CODICE STAZIONE

ASO-VA-SB-002

COMPONENTE	ACQUE SOTTERRANEE
SUBCOMPONENTE	Piezometri
TIPO STAZIONE	Puntuale
FASI D'INTERVENTO	AO-CO-PO

Regione	Veneto
Comune	San Bonifacio
Destinazione d'uso	Area agricola
	0677733 m E
Coordinate UTM (WGS84)	5028234 m N

Caratteristiche sito

Terreno agricolo. Punto di monitoraggio situato a valle del tracciato ferroviario, nell'area del cantiere C.O. 3.1.

Rappresentatività e motivi della scelta del punto di monitoraggio

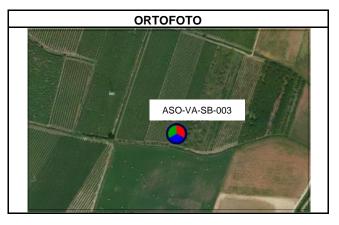
Caratterizzazione quali-quantitativa del corpo idrico sotterraneo e verifica degli effetti indotti - dalla realizzazione delle fondazioni su pali del Viadotto Fibbio - dal cantiere C.O. 1.6.

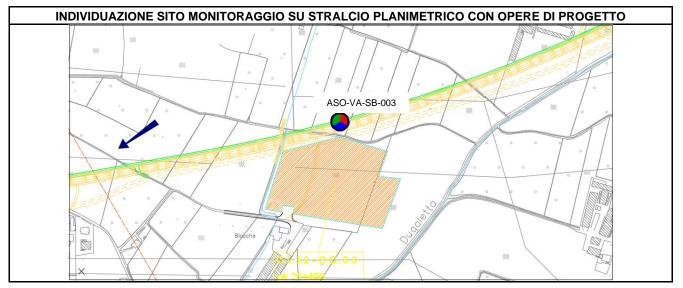
Attività

AO – Posa in opera di piezometro a tubo aperto, di profondità 45 mt, mediante perforazione a distruzione di nucleo. Piezometro cieco per i primi 2 metri e finestrato per la rimanente parte, tappo al fondo.

AO-CO-PO – Livellazione topografica dei piezometri; Rilievo del livello di falda; Rilievo dei parametri chimico-fisici mediante sonda multiparametrica; Campionamento ed analisi chimiche.

NOTE


Progetto Lotto IN17 10 Codifica Documento EI2RHMB0007001 Rev. Foglio A 136 di 166


CODICE STAZIONE

ASO-VA-SB-003

COMPONENTE	ACQUE SOTTERRANEE
SUBCOMPONENTE	Piezometri
TIPO STAZIONE	Puntuale
FASI D'INTERVENTO	AO-CO-PO

Regione	Veneto
Comune	San Bonifacio
Destinazione d'uso	Area agricola
	0679443 m E
Coordinate UTM (WGS84)	5028586 m N

Caratteristiche sito

Terreno agricolo. Punto di monitoraggio situato a monte del tracciato ferroviario e dell'area di cantiere C.I. 3.2 e C.O. 3.3.

Rappresentatività e motivi della scelta del punto di monitoraggio

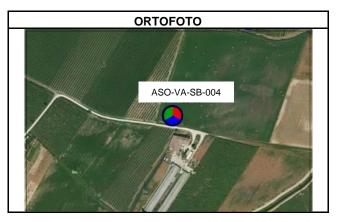
Caratterizzazione quali-quantitativa del corpo idrico sotterraneo e verifica degli effetti indotti dai cantieri C.I. 3.2 e C.O. 3.3 Attività

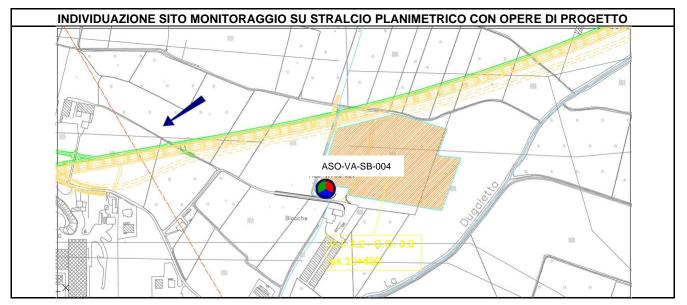
AO – Posa in opera di piezometro a tubo aperto, di profondità fino a 22 mt, mediante perforazione a distruzione di nucleo. Piezometro cieco per i primi 2 metri e finestrato per la rimante parte, tappo al fondo.

AO-CO-PO – Livellazione topografica dei piezometri; Rilievo del livello di falda; Rilievo dei parametri chimico-fisici mediante sonda multiparametrica; Campionamento ed analisi chimiche.

NOTE

Nello stralcio planimetrico le linee rosse tratteggiate rappresentano le curve isopiezometriche, la freccia blu indica la direzione di deflusso della falda.


Progetto Lotto IN17 10 Codifica Documento EI2RHMB0007001 Rev. Fo


Foglio 137 di 166

CODICE STAZIONE ASO-VA-SB-004

COMPONENTE	ACQUE SOTTERRANEE
SUBCOMPONENTE	Piezometri
TIPO STAZIONE	Puntuale
FASI D'INTERVENTO	AO-CO-PO

Regione	Veneto
Comune	San Bonifacio
Destinazione d'uso	Area agricola
0 "	0679305 m E
Coordinate UTM (WGS84)	5028408 m N

Caratteristiche sito

Terreno agricolo. Punto di monitoraggio situato a valle del tracciato ferroviario, nell'area del cantiere C.I. 3.2 e C.O. 3.3.

Rappresentatività e motivi della scelta del punto di monitoraggio

Caratterizzazione quali-quantitativa del corpo idrico sotterraneo e verifica degli effetti indotti dai cantieri C.I. 3.2 e C.O. 3.3

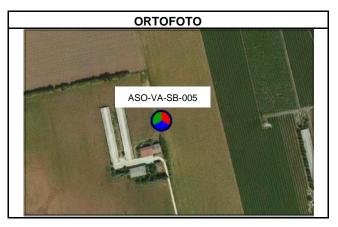
Attività

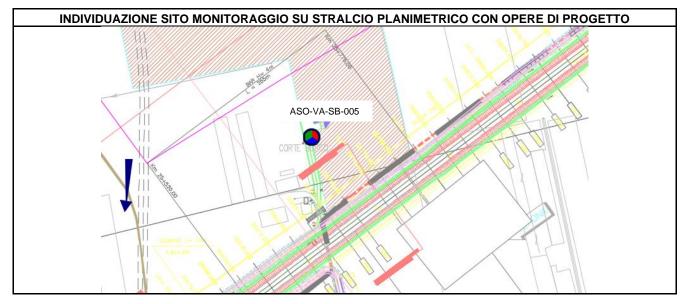
AO – Posa in opera di piezometro a tubo aperto, di profondità fino a 22 mt, mediante perforazione a distruzione di nucleo. Piezometro cieco per i primi 2 metri e finestrato per la rimanente parte, tappo al fondo.

AO-CO-PO – Livellazione topografica dei piezometri; Rilievo del livello di falda; Rilievo dei parametri chimico-fisici mediante sonda multiparametrica; Campionamento ed analisi chimiche.

NOTE

Nello stralcio planimetrico le linee rosse tratteggiate rappresentano le curve isopiezometriche, la freccia blu indica la direzione di deflusso della falda.


Progetto Lotto IN17 10 Codifica Documento EI2RHMB0007001 Rev. Foglio A 138 di 166


CODICE STAZIONE

ASO-VA-SB-005

COMPONENTE	ACQUE SOTTERRANEE
SUBCOMPONENTE	Piezometri
TIPO STAZIONE	Puntuale
FASI D'INTERVENTO	AO-CO-PO

Regione	Veneto
Comune	San Bonifacio
Destinazione d'uso	Area agricola
	0682069 m E
Coordinate UTM (WGS84)	5030369 m N

Caratteristiche sito

Terreno agricolo. Punto di monitoraggio situato a monte del tracciato ferroviario, nell'area del cantiere C.O. 3.4.

Rappresentatività e motivi della scelta del punto di monitoraggio

Caratterizzazione quali-quantitativa del corpo idrico sotterraneo e verifica degli effetti indotti dal cantiere C.B.2.3. sui limitrofi preesistenti pozzi pubblici

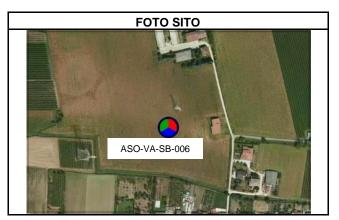
Attività

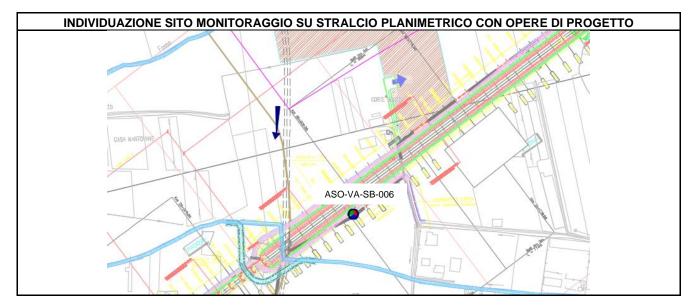
AO – Posa in opera di piezometro a tubo aperto, di profondità fino a 22 mt, mediante perforazione a distruzione di nucleo. Piezometro cieco per i primi 2 metri e finestrato per la rimanente parte, tappo al fondo.

AO-CO-PO – Livellazione topografica dei piezometri; Rilievo del livello di falda; Rilievo dei parametri chimico-fisici mediante sonda multiparametrica; Campionamento ed analisi chimiche.

NOTE

Nello stralcio planimetrico la freccia blu indica la direzione di deflusso della falda.


Progetto Lotto IN17 10 Codifica Documento EI2RHMB0007001 Rev. I


Foglio 139 di 166

CODICE STAZIONE ASO-VA-SB-006

COMPONENTE	ACQUE SOTTERRANEE
SUBCOMPONENTE	Piezometri
TIPO STAZIONE	Puntuale
FASI D'INTERVENTO	AO-CO-PO

Regione	Veneto
Comune	San Bonifacio
Destinazione d'uso	Area agricola
	0681998 m E
Coordinate UTM (WGS84)	5030146 m N

Caratteristiche sito

Terreno agricolo. Punto di monitoraggio situato a valle del tracciato ferroviario.

Rappresentatività e motivi della scelta del punto di monitoraggio

Caratterizzazione quali-quantitativa del corpo idrico sotterraneo e verifica degli effetti indotti dal cantiere C.B.2.3. sui limitrofi preesistenti pozzi pubblici

Attività

AO – Posa in opera di piezometro a tubo aperto, di profondità fino a 22 mt, mediante perforazione a distruzione di nucleo. Piezometro cieco per i primi 2 metri e finestrato per la rimanente parte, tappo al fondo.

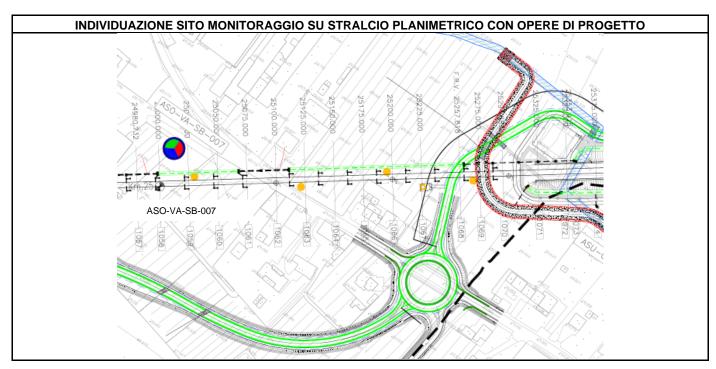
AO-CO-PO – Livellazione topografica dei piezometri; Rilievo del livello di falda; Rilievo dei parametri chimico-fisici mediante sonda multiparametrica; Campionamento ed analisi chimiche.

NOTE

Nello stralcio planimetrico la freccia blu indica la direzione di deflusso della falda.

Progetto Lotto Codifica Documento IN17 10 EI2RHMB0007001

Rev. Fo


Foglio 140 di 166

CODICE STAZIONE ASO-VA-SB-007

COMPONENTE	ACQUE SOTTERRANEE
SUBCOMPONENTE	Piezometri
TIPO STAZIONE	Puntuale
FASI D'INTERVENTO	AO-CO-PO

Regione	Veneto
Comune	San Bonifacio
Destinazione d'uso	
Coordinate UTM (WGS84)	0681575 m E
	5029904 m N

Caratteristiche sito

Terreno agricolo. Punto di monitoraggio situato a monte del tracciato.

Rappresentatività e motivi della scelta del punto di monitoraggio

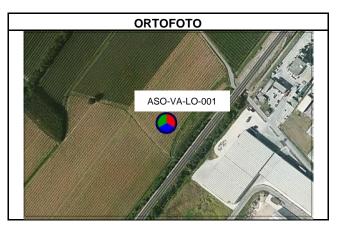
Punto di monitoraggio ubicato a monte del tracciato per rilevare l'escursione del livello di falda a monte dell'opera al fine di verificare l'efficienza del sistema drenante di progetto.

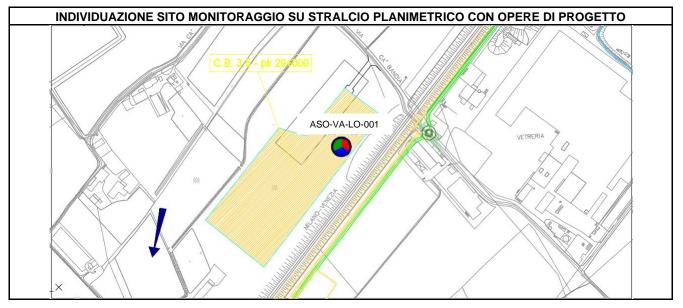
Attività AO – Posa in opera di piezometro a tubo aperto, di profondità fino a 22 mt, mediante perforazione a distruzione di nucleo. Piezometro cieco per i primi 2 metri e finestrato per la rimanente parte, tappo al fondo.

AO-CO-PO – Livellazione topografica dei piezometri; Rilievo del livello di falda; Rilievo dei parametri chimico-fisici mediante sonda multiparametrica; Campionamento ed analisi chimiche.

NOTE

Piezometro richiesto da ARPAV per la rilevazione della superficie piezometrica L'accessibilità al punto verrà verificata durante i primi sopralluoghi.


Progetto Lotto IN17 10 Codifica Documento EI2RHMB0007001 Rev. I


Foglio 141 di 166

CODICE STAZIONE ASO-VA-LO-001

COMPONENTE	ACQUE SOTTERRANEE
SUBCOMPONENTE	Piezometri
TIPO STAZIONE	Puntuale
FASI D'INTERVENTO	AO-CO-PO

Regione	Veneto
Comune	Lonigo
Destinazione d'uso	Area agricola
	0684661 m E
Coordinate UTM (WGS84)	5033150 m N

Caratteristiche sito

Terreno agricolo. Punto di monitoraggio situato a monte del tracciato ferroviario, nell'area del cantiere C.B. 3.5.

Rappresentatività e motivi della scelta del punto di monitoraggio

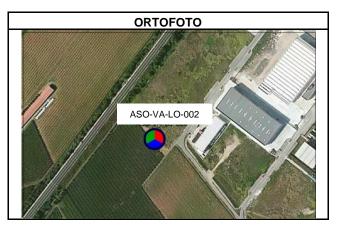
Caratterizzazione quali-quantitativa del corpo idrico sotterraneo e verifica degli effetti indotti dal cantiere C.B.3.5.. sui limitrofi preesistenti pozzi pubblici

Attività

AO – Posa in opera di piezometro a tubo aperto, di profondità fino a 22 mt, mediante perforazione a distruzione di nucleo. Piezometro cieco per i primi 2 metri e finestrato per la rimanente parte, tappo al fondo.

AO-CO-PO – Livellazione topografica dei piezometri; Rilievo del livello di falda; Rilievo dei parametri chimico-fisici mediante sonda multiparametrica; Campionamento ed analisi chimiche.

NOTE


Progetto Lotto IN17 10 Codifica Documento EI2RHMB0007001 Rev. Fo

Foglio 142 di 166

CODICE STAZIONE ASO-VA-LO-002

COMPONENTE	ACQUE SOTTERRANEE
SUBCOMPONENTE	Piezometri
TIPO STAZIONE	Puntuale
FASI D'INTERVENTO	AO-CO-PO

Regione	Veneto
Comune	Lonigo
Destinazione d'uso	Area agricola
	0684604 m E
(WGS84)	5032808 m N

Caratteristiche sito

Terreno agricolo. Punto di monitoraggio situato a valle del tracciato ferroviario.

Rappresentatività e motivi della scelta del punto di monitoraggio

Caratterizzazione quali-quantitativa del corpo idrico sotterraneo e verifica degli effetti indotti dal cantiere C.B.3.5.. sui limitrofi preesistenti pozzi pubblici

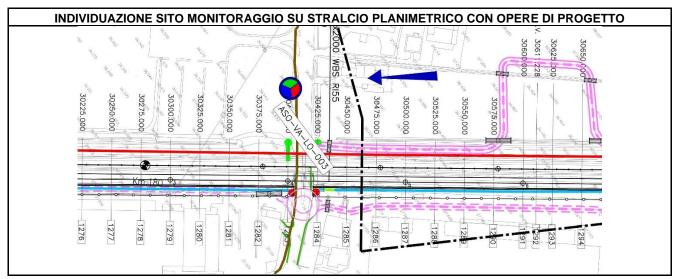
Attività

AO – Posa in opera di piezometro a tubo aperto, di profondità fino a 22 mt, mediante perforazione a distruzione di nucleo. Piezometro cieco per i primi 2 metri e finestrato per la rimanente parte, tappo al fondo.

AO-CO-PO – Livellazione topografica dei piezometri; Rilievo del livello di falda; Rilievo dei parametri chimico-fisici mediante sonda multiparametrica; Campionamento ed analisi chimiche.

NOTE

Progetto Lotto IN17 10 Codifica Documento EI2RHMB0007001 Rev. Foglio A 143 di 166


CODICE STAZIONE

ASO-VA-LO-003

COMPONENTE	ACQUE SOTTERRANEE
SUBCOMPONENTE	Piezometri
TIPO STAZIONE	Puntuale
FASI D'INTERVENTO	AO-CO-PO

Regione	Veneto
Comune	Lonigo
Destinazione d'uso	Area incolta
	0685189
Coordinate UTM (WGS84)	5033827

Caratteristiche sito

Terreno incolto. Punto di monitoraggio situato a monte del tracciato ferroviario

Rappresentatività e motivi della scelta del punto di monitoraggio


Caratterizzazione quali-quantitativa del corpo idrico sotterraneo e verifica degli effetti indotti dall'Opera sui limitrofi preesistenti pozzi pubblici

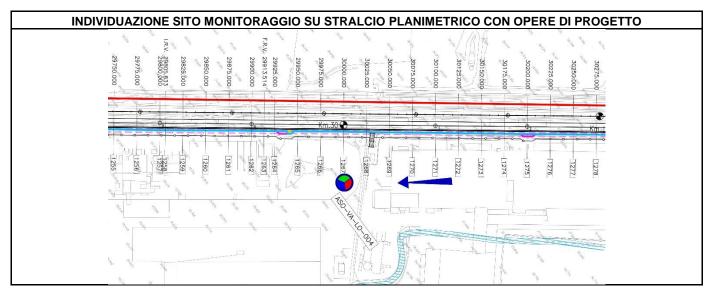
Attività

AO – Posa in opera di piezometro a tubo aperto, di profondità fino a 22 mt, mediante perforazione a distruzione di nucleo. Piezometro cieco per i primi 2 metri e finestrato per la rimanente parte, tappo al fondo.

AO-CO-PO – Livellazione topografica dei piezometri; Rilievo del livello di falda; Rilievo dei parametri chimico-fisici mediante sonda multiparametrica; Campionamento ed analisi chimiche.

NOTE

Progetto Lotto IN17 10 Codifica Documento EI2RHMB0007001 ev. Foglio A 144 di 166


CODICE STAZIONE

ASO-VA-LO-004

COMPONENTE	ACQUE SOTTERRANEE
SUBCOMPONENTE	Piezometri
TIPO STAZIONE	Puntuale
FASI D'INTERVENTO	AO-CO-PO

Regione	Veneto
Comune	Lonigo
Destinazione d'uso	Area industriale
	0685057 m E
Coordinate UTM (WGS84)	5033424 m N

Caratteristiche sito

Area industriale. Punto di monitoraggio situato a valle del tracciato ferroviario

Rappresentatività e motivi della scelta del punto di monitoraggio

Caratterizzazione quali-quantitativa del corpo idrico sotterraneo e verifica degli effetti indotti dall'Opera sui limitrofi preesistenti pozzi pubblici

Attività

AO – Posa in opera di piezometro a tubo aperto, di profondità fino a 22 mt, mediante perforazione a distruzione di nucleo. Piezometro cieco per i primi 2 metri e finestrato per la rimanente parte, tappo al fondo.

AO-CO-PO – Livellazione topografica dei piezometri; Rilievo del livello di falda; Rilievo dei parametri chimico-fisici mediante sonda multiparametrica; Campionamento ed analisi chimiche.

NOTE

Nello stralcio planimetrico la freccia blu indica la direzione di deflusso della falda.

Progetto Lotto C

Codifica Documento EI2RHMB0007001 Rev. Foglio A 145 di 166

CODICE STAZIONE

ASO-VA-MB-001

COMPONENTE	ACQUE SOTTERRANEE
SUBCOMPONENTE	Piezometri
TIPO STAZIONE	Puntuale
FASI D'INTERVENTO	AO-CO-PO

Regione	Veneto
Comune	Montebello Vicentino
Destinazione d'uso	Area agricola
On and in a to LITA	0686341 m E
(WGS84)	5035566 m N

ASO-VA-MB-001

Caratteristiche sito

Terreno agricolo. Punto di monitoraggio situato a monte del tracciato ferroviario.

Rappresentatività e motivi della scelta del punto di monitoraggio

Caratterizzazione quali-quantitativa del corpo idrico sotterraneo e verifica degli effetti indotti dall'Opera sui limitrofi preesistenti pozzi pubblici

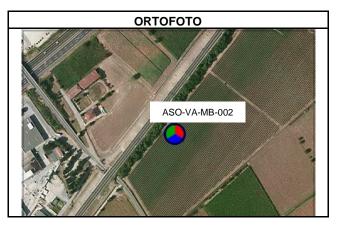
Attività

AO – Posa in opera di piezometro a tubo aperto, di profondità fino a 22 mt, mediante perforazione a distruzione di nucleo. Piezometro cieco per i primi 2 metri e finestrato per la rimanente parte, tappo al fondo.

AO-CO-PO – Livellazione topografica dei piezometri; Rilievo del livello di falda; Rilievo dei parametri chimico-fisici mediante sonda multiparametrica; Campionamento ed analisi chimiche.

NOTE

Nello stralcio planimetrico la freccia blu indica la direzione di deflusso della falda.


Progetto Lotto IN17 10 Codifica Documento EI2RHMB0007001 Rev. I

Foglio 146 di 166

CODICE STAZIONE ASO-VA-MB-002

COMPONENTE	ACQUE SOTTERRANEE
SUBCOMPONENTE	Piezometri
TIPO STAZIONE	Puntuale
FASI D'INTERVENTO	AO-CO-PO

Regione	Veneto
Comune	Montebello Vicentino
Destinazione d'uso	Area agricola
	0686164 m E
Coordinate UTM (WGS84)	5034912 m N

Caratteristiche sito

Terreno agricolo. Punto di monitoraggio situato a valle del tracciato ferroviario.

Rappresentatività e motivi della scelta del punto di monitoraggio

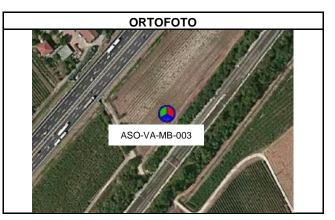
Caratterizzazione quali-quantitativa del corpo idrico sotterraneo e verifica degli effetti indotti dall'Opera sui limitrofi preesistenti pozzi pubblici

Attività

AO – Posa in opera di piezometro a tubo aperto, di profondità fino a 22 mt, mediante perforazione a distruzione di nucleo. Piezometro cieco per i primi 2 metri e finestrato per la rimanente parte, tappo al fondo.

AO-CO-PO – Livellazione topografica dei piezometri; Rilievo del livello di falda; Rilievo dei parametri chimico-fisici mediante sonda multiparametrica; Campionamento ed analisi chimiche.

NOTE


Progetto Lotto IN17 10 Codifica Documento EI2RHMB0007001 Rev. Fo

Foglio 147 di 166

CODICE STAZIONE	ASO-VA-MB-003
-----------------	---------------

COMPONENTE	ACQUE SOTTERRANEE
SUBCOMPONENTE	Piezometri
TIPO STAZIONE	Puntuale
FASI D'INTERVENTO	AO-CO-PO

Regione	Veneto
Comune	Montebello Vicentino
Destinazione d'uso	Area agricola
On and in a to LITM	0686664
Coordinate UTM (WGS84)	5035709

INDIVIDUAZIONE SITO MONITORAGGIO SU STRALCIO PLANIMETRICO CON OPERE DI PROGETTO

Caratteristiche sito

Terreno agricolo. Punto di monitoraggio situato a monte del tracciato ferroviario (Piezometro di monte).

Rappresentatività e motivi della scelta del punto di monitoraggio

Caratterizzazione quali-quantitativa del corpo idrico sotterraneo e verifica degli effetti indotti dalla realizzazione del sottopasso SL11

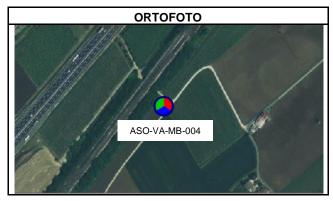
Attività

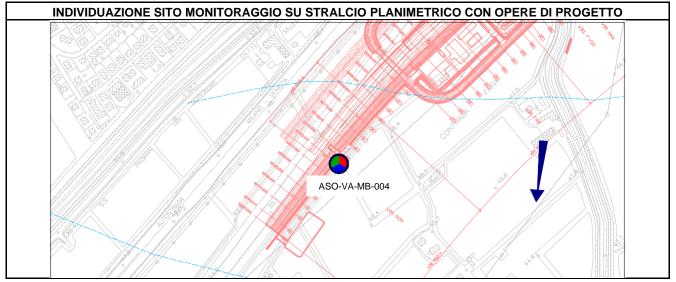
AO – Posa in opera di piezometro a tubo aperto, di profondità fino a 32 mt, mediante perforazione a distruzione di nucleo. Piezometro cieco per i primi 2 metri e finestrato per la rimante parte, tappo al fondo. Livellazione topografica.

AO-CO-PO – Rilievo del livello di falda; Rilievo dei parametri chimico-fisici mediante sonda multiparametrica; Campionamento ed analisi chimiche.

NOTE

Progetto Lotto IN17 10


ASO-VA-MB-004


Codifica Documento EI2RHMB0007001 Rev. Foglio A 148 di 166

CODICE STAZIONE

COMPONENTE	ACQUE SOTTERRANEE
SUBCOMPONENTE	Piezometri
TIPO STAZIONE	Puntuale
FASI D'INTERVENTO	AO-CO-PO

Regione	Veneto
Comune	Montebello Vicentino
Destinazione d'uso	Area agricola
Coordinate UTM	0686682 m E
(WGS84)	5035583 m N

Caratteristiche sito

Terreno agricolo. Punto di monitoraggio situato a valle del tracciato ferroviario (Piezometro di valle).

Rappresentatività e motivi della scelta del punto di monitoraggio

Caratterizzazione quali-quantitativa del corpo idrico sotterraneo e verifica degli effetti indotti dalla realizzazione del sottopasso SL11

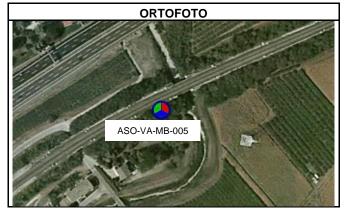
Attività

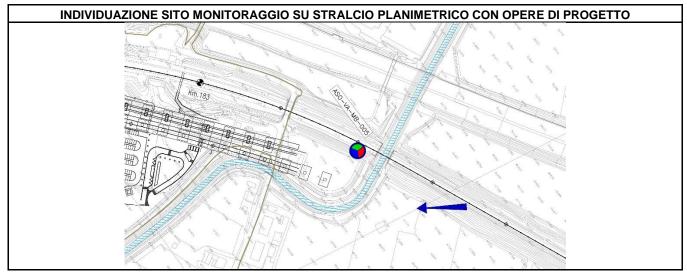
AO – Posa in opera di piezometro a tubo aperto, di profondità fino 32 mt, mediante perforazione a distruzione di nucleo. Piezometro cieco per i primi 2 metri e finestrato per la rimante parte, tappo al fondo. Livellazione topografica.

AO-CO-PO – Rilievo del livello di falda; Rilievo dei parametri chimico-fisici mediante sonda multiparametrica; Campionamento ed analisi chimiche.

NOTE

Nello stralcio planimetrico le linee celesti tratteggiate rappresentano le curve isopiezometriche, la freccia blu indica la direzione di deflusso della falda.


Progetto Lotto IN17 10 Codifica Documento EI2RHMB0007001 Rev.


Foglio 149 di 166

CODICE STAZIONE ASO-VA-MB-005

COMPONENTE	ACQUE SOTTERRANEE
SUBCOMPONENTE	Piezometri
TIPO STAZIONE	Puntuale
FASI D'INTERVENTO	AO-CO-PO

Regione	Veneto
Comune	Montebello Vicentino
Destinazione d'uso	Area incolta
	0687193 m E
Coordinate UTM (WGS84)	5036148 m N

Caratteristiche sito

Terreno incolto. Punto di monitoraggio situato a monte del tracciato ferroviario (piezometro di monte).

Rappresentatività e motivi della scelta del punto di monitoraggio

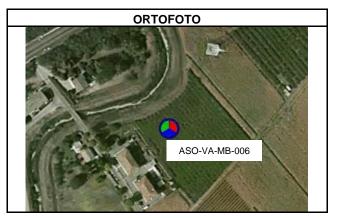
Caratterizzazione quali-quantitativa del corpo idrico sotterraneo e verifica degli effetti indotti dalla realizzazione Viadotto Montebello

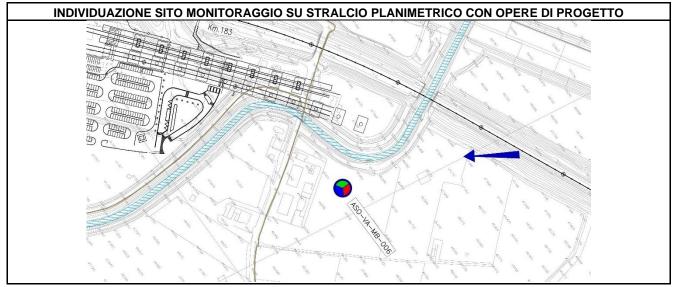
Attività

AO – Posa in opera di piezometro a tubo aperto, di profondità fino a 52 mt, mediante perforazione a distruzione di nucleo. Piezometro cieco per i primi 2 metri e finestrato per la rimante parte, tappo al fondo. Livellazione topografica.

AO-CO-PO – Rilievo del livello di falda; Rilievo dei parametri chimico-fisici mediante sonda multiparametrica; Campionamento ed analisi chimiche.

NOTE


Progetto Lotto IN17 10 Codifica Documento EI2RHMB0007001 Rev.


Foglio 150 di 166

CODICE STAZIONE ASO-VA-MB-006

COMPONENTE	ACQUE SOTTERRANEE
SUBCOMPONENTE	Piezometri
TIPO STAZIONE	Puntuale
FASI D'INTERVENTO	AO-CO-PO

Regione	Veneto
Comune	Montebello Vicentino
Destinazione d'uso	Area agricola
	0687239 m E
Coordinate UTM (WGS84)	5036041 m N

Caratteristiche sito

Terreno agricolo. Punto di monitoraggio situato a valle del tracciato ferroviario (piezometro di valle).

Rappresentatività e motivi della scelta del punto di monitoraggio

Caratterizzazione quali-quantitativa del corpo idrico sotterraneo e verifica degli effetti indotti dalla realizzazione Viadotto Montebello

Attività

AO – Posa in opera di piezometro a tubo aperto, di profondità fino a 52 mt, mediante perforazione a distruzione di nucleo. Piezometro cieco per i primi 2 metri e finestrato per la rimante parte, tappo al fondo. Livellazione topografica.

AO-CO-PO – Rilievo del livello di falda; Rilievo dei parametri chimico-fisici mediante sonda multiparametrica; Campionamento ed analisi chimiche.

NOTE

Progetto Lotto IN17 10 Codifica Documento EI2RHMB0007001 ev. Foglio A 151 di 166

CODICE STAZIONE

ASO-VA-MB-007

COMPONENTE	ACQUE SOTTERRANEE
SUBCOMPONENTE	Piezometri
TIPO STAZIONE	Puntuale
FASI D'INTERVENTO	AO-CO-PO

Regione	Veneto
Comune	Montebello Vicentino
Destinazione d'uso	Area agricola
Coordinate UTM	0688367 m E
(WGS84)	5037360 m N

Caratteristiche sito

Terreno agricolo. Punto di monitoraggio situato a **monte** dei cantieri C.B. 4.1, C.I. 4.2, C.O. 4.3, C.T. 2, e C.A. 4.4 (piezometro di **monte** rispetto a ASO-VA-MB-002).

Rappresentatività e motivi della scelta del punto di monitoraggio

Caratterizzazione quali-quantitativa del corpo idrico sotterraneo e verifica degli effetti indotti - dalla realizzazione del Viadotto Guà - dai cantieri C.B. 4.1, C.I. 4.2, C.O. 4.3, C.T. 2, e C.A. 4.4

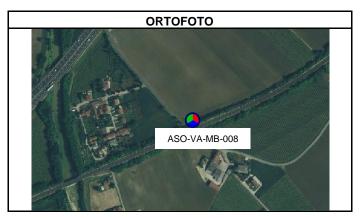
Attività

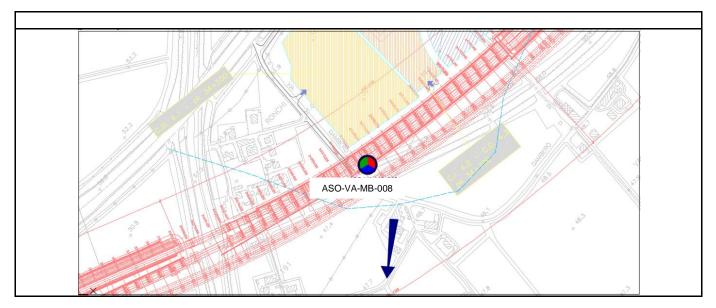
AO – Posa in opera di piezometro a tubo aperto, di profondità 45 mt, mediante perforazione a distruzione di nucleo. Piezometro cieco per i primi 2 metri e finestrato per la rimante parte, tappo al fondo. Livellazione topografica.

AO-CO-PO – Rilievo del livello di falda; Rilievo dei parametri chimico-fisici mediante sonda multiparametrica; Campionamento ed analisi chimiche e microbiologiche.

NOTE

Nello stralcio planimetrico la freccia blu indica la direzione di deflusso della falda.


Progetto Lotto IN17 10 Codifica Documento EI2RHMB0007001 Rev.


Foglio 152 di 166

CODICE STAZIONE ASO-VA-MB-008

COMPONENTE	ACQUE SOTTERRANEE
SUBCOMPONENTE	Piezometri
TIPO STAZIONE	Puntuale
FASI D'INTERVENTO	AO-CO-PO

Regione	Veneto
Comune	Montebello Vicentino
Destinazione d'uso	Area agricola
On a malificación LITM	0688079 m E
Coordinate UTM (WGS84)	5036567 m N

Caratteristiche sito

Terreno agricolo. Punto di monitoraggio di monte rispetto a ASO-VA-MB-001 e di valle rispetto a ASO-VA-MB-003.

Rappresentatività e motivi della scelta del punto di monitoraggio

Caratterizzazione quali-quantitativa del corpo idrico sotterraneo e verifica degli effetti indotti dai cantieri C.B. 4.1, C.I. 4.2, C.O. 4.3, C.T. 2, e C.A. 4.4

Attività

AO – Posa in opera di piezometro a tubo aperto, di profondità 45 mt, mediante perforazione a distruzione di nucleo. Piezometro cieco per i primi 2 metri e finestrato per la rimante parte, tappo al fondo. Livellazione topografica.

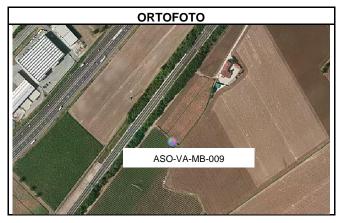
AO-CO-PO – Rilievo del livello di falda; Rilievo dei parametri chimico-fisici mediante sonda multiparametrica; Campionamento ed analisi chimiche e microbiologiche.

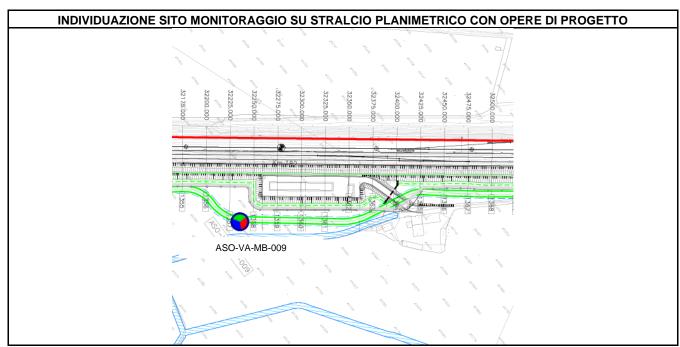
NOTE

Nello stralcio planimetrico la freccia blu indica la direzione di deflusso della falda.

Progetto Lotto Codifica IN17 10 EI2RHM

Codifica Documento Rev. E12RHMB0007001 A


Foglio 153 di 166


CODICE STAZIONE

ASO-VA-MB-009

COMPONENTE	ACQUE SOTTERRANEE
SUBCOMPONENTE	Piezometri
TIPO STAZIONE	Puntuale
FASI	
D'INTERVENTO	AO-CO-PO

Regione	Veneto
Comune	Montebello Vicentino
Destinazione d'uso	
Coordinate UTM (WGS84)	0686421 m E
	5035194 m N

Caratteristiche sito

Terreno incolto. Punto di monitoraggio situato a valle del tracciato.

Rappresentatività e motivi della scelta del punto di monitoraggio

Punto di monitoraggio ubicato a **valle** del tracciato per la simulazione bidimensionale della morfologia piezometrica.

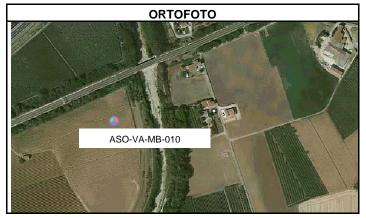
Attività

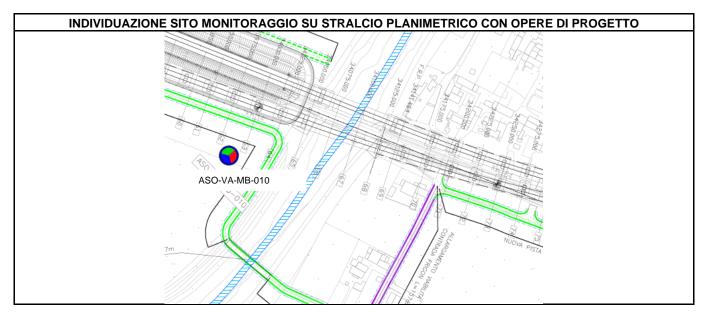
AO – Posa in opera di piezometro a tubo aperto, di profondità fino a 22 mt, mediante perforazione a distruzione di nucleo. Piezometro cieco per i primi 2 metri e finestrato per la rimanente parte, tappo al fondo.

AO-CO-PO – Livellazione topografica dei piezometri; Rilievo del livello di falda; Rilievo dei parametri chimico-fisici mediante sonda multiparametrica; Campionamento ed analisi chimiche.

NOTE

Piezometro richiesto da ARPAV per la rilevazione della superficie piezometrica.


Progetto Lotto IN17 10 Codifica Documento EI2RHMB0007001 Rev. F


Foglio 154 di 166

CODICE STAZIONE ASO-VA-MB-010

COMPONENTE	ACQUE SOTTERRANEE
SUBCOMPONENT E	Piezometri
TIPO STAZIONE	Puntuale
FASI D'INTERVENTO	AO-CO-PO

Regione	Veneto
Comune	Montebello Vicentino
Destinazione d'uso	
Coordinate UTM (WGS84)	0687706 m E
	5036304 m N

Caratteristiche sito

Terreno incolto. Punto di monitoraggio situato a valle del tracciato.

Rappresentatività e motivi della scelta del punto di monitoraggio

Punto di monitoraggio ubicato a valle del tracciato per la simulazione bidimensionale della morfologia piezometrica.

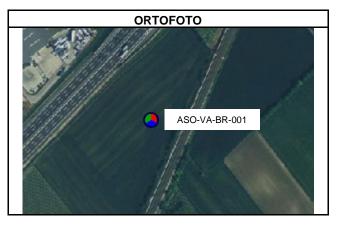
Attività

AO – Posa in opera di piezometro a tubo aperto, di profondità fino a 22 mt, mediante perforazione a distruzione di nucleo. Piezometro cieco per i primi 2 metri e finestrato per la rimanente parte, tappo al fondo.

AO-CO-PO – Livellazione topografica dei piezometri; Rilievo del livello di falda; Rilievo dei parametri chimico-fisici mediante sonda multiparametrica; Campionamento ed analisi chimiche.

NOTE

Piezometro richiesto da ARPAV per la rilevazione della superficie piezometrica.


Progetto Lotto IN17 10 Codifica Documento EI2RHMB0007001 Rev. I

Foglio 155 di 166

CODICE STAZIONE ASO-VA-BR-001

COMPONENTE	ACQUE SOTTERRANEE
SUBCOMPONENTE	Piezometri
TIPO STAZIONE	Puntuale
FASI	
D'INTERVENTO	AO-CO-PO

Regione	Veneto
Comune	Brendola
Destinazione d'uso	Area agricola
	0689102 m E
Coordinate UTM (WGS84)	
(₩6364)	5038071 m N

Caratteristiche sito

Terreno agricolo. Punto di monitoraggio di monte rispetto a ASO-VA-BR-004.

Rappresentatività e motivi della scelta del punto di monitoraggio

Caratterizzazione quali-quantitativa del corpo idrico sotterraneo e verifica degli effetti indotti dall'Opera sui limitrofi preesistenti pozzi pubblici.

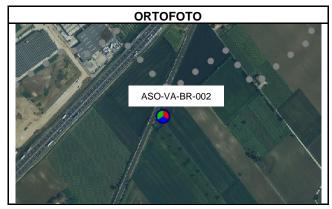
Attività

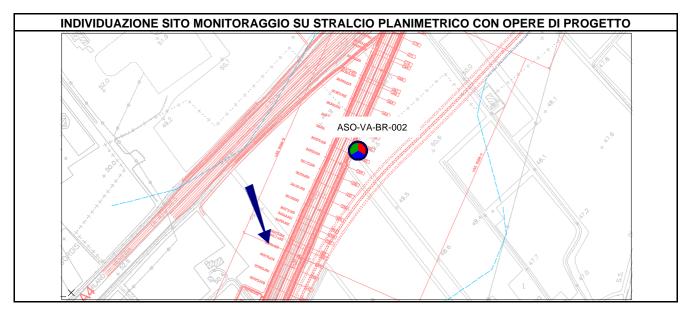
AO – Posa in opera di piezometro a tubo aperto, di profondità fino a 22 mt, mediante perforazione a distruzione di nucleo. Piezometro cieco per i primi 2 metri e finestrato per la rimante parte, tappo al fondo. Livellazione topografica.

AO-CO-PO – Rilievo del livello di falda; Rilievo dei parametri chimico-fisici mediante sonda multiparametrica; Campionamento ed analisi chimiche.

NOTE

Progetto Lotto Codifica Documento IN17 10 EI2RHMB0007001


Rev.


Foglio 156 di 166

CODICE STAZIONE ASO-VA-BR-002

COMPONENTE	ACQUE SOTTERRANEE
SUBCOMPONENTE	Piezometri
TIPO STAZIONE	Puntuale
FASI	
D'INTERVENTO	AO-CO-PO

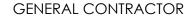
Regione	Veneto
Comune	Brendola
Destinazione d'uso	Area agricola
Coordinate UTM	0689142 m E
(WGS84)	5037987 m N

Caratteristiche sito

Terreno agricolo. Punto di monitoraggio di valle rispetto a ASO-VA-BR-005.

Rappresentatività e motivi della scelta del punto di monitoraggio

Caratterizzazione quali-quantitativa del corpo idrico sotterraneo e verifica degli effetti indotti dall'Opera sui limitrofi preesistenti pozzi pubblici.

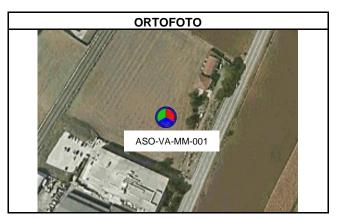

Attività

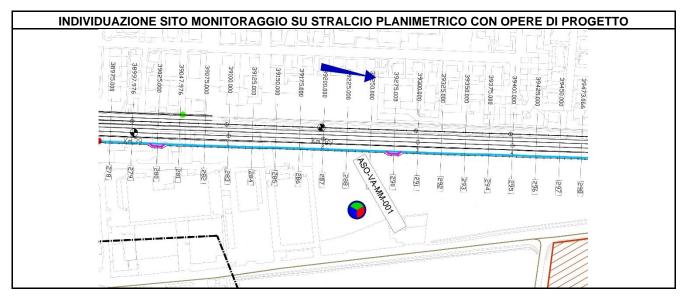
AO – Posa in opera di piezometro a tubo aperto, di profondità fino a 22 mt, mediante perforazione a distruzione di nucleo. Piezometro cieco per i primi 2 metri e finestrato per la rimante parte, tappo al fondo. Livellazione topografica.

AO-CO-PO – Rilievo del livello di falda; Rilievo dei parametri chimico-fisici mediante sonda multiparametrica; Campionamento ed analisi chimiche.

NOTE

Nello stralcio planimetrico le linee celesti tratteggiate rappresentano le curve isopiezometriche, la freccia blu indica la direzione di deflusso della falda.


Progetto Lotto Codifica IN17 10 EI2RHM


Codifica Documento EI2RHMB0007001 Rev. Foglio A 157 di 166

CODICE STAZIONE ASO-VA-MM-001

COMPONENTE	ACQUE SOTTERRANEE
SUBCOMPONENTE	Piezometri
TIPO STAZIONE	Puntuale
FASI	
D'INTERVENTO	

Regione	Veneto
Comune	Montecchio Maggiore
Destinazione d'uso	Area agricola
Coordinate LITM	0690637 m E
Coordinate UTM (WGS84)	
(110004)	5040576 m N

Caratteristiche sito

Terreno agricolo. Punto di monitoraggio situato a monte rispetto il tracciato ferroviario

Rappresentatività e motivi della scelta del punto di monitoraggio

Caratterizzazione quali-quantitativa del corpo idrico sotterraneo e verifica degli effetti indotti dalla realizzazione dell'Opera in area sensibile (area densamente urbanizzata)

Attività

AO – Posa in opera di piezometro a tubo aperto, di profondità fino a 22 mt, mediante perforazione a distruzione di nucleo. Piezometro cieco per i primi 2 metri e finestrato per la rimante parte, tappo al fondo. Livellazione topografica.

AO-CO-PO – Rilievo del livello di falda; Rilievo dei parametri chimico-fisici mediante sonda multiparametrica; Campionamento ed analisi chimiche e microbiologiche.

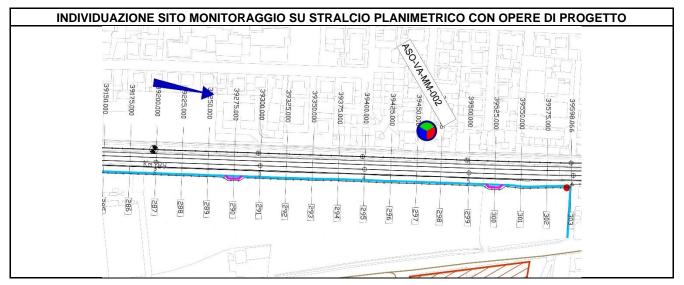
NOTE

Nello stralcio planimetrico la freccia blu indica la direzione di deflusso della falda.

Lotto Progetto IN17 10

Codifica Documento EI2RHMB0007001

Rev. 158 di 166


Foglio

CODICE STAZIONE ASO-VA-MM-002

COMPONENTE	ACQUE SOTTERRANEE
SUBCOMPONENTE	Piezometri
TIPO STAZIONE	Puntuale
FASI	
D'INTERVENTO	

Regione	Veneto
Comune	Montecchio Maggiore
Destinazione d'uso	Area urbanizzata
Coordinate UTM	0690658 m E
(WGS84)	5040822 m N

Caratteristiche sito

Terreno edificato. Punto di monitoraggio situato a valle rispetto il tracciato ferroviario.

Rappresentatività e motivi della scelta del punto di monitoraggio

Caratterizzazione quali-quantitativa del corpo idrico sotterraneo e verifica degli effetti indotti dalla realizzazione dell'Opera in area sensibile (area densamente urbanizzata).

Attività

AO - Posa in opera di piezometro a tubo aperto, di profondità fino a 22 mt, mediante perforazione a distruzione di nucleo. Piezometro cieco per i primi 2 metri e finestrato per la rimante parte, tappo al fondo. Livellazione topografica.

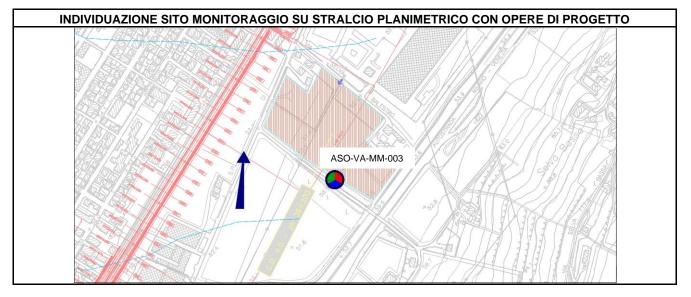
AO-CO-PO - Rilievo del livello di falda; Rilievo dei parametri chimico-fisici mediante sonda multiparametrica; Campionamento ed analisi chimiche e microbiologiche.

NOTE

Nello stralcio planimetrico la freccia blu indica la direzione di deflusso della falda.

Progetto Lotto

Codifica Documento EI2RHMB0007001 Rev. Foglio A 159 di 166


CODICE STAZIONE

ASO-VA-MM-003

COMPONENTE	ACQUE SOTTERRANEE
SUBCOMPONENTE	Piezometri
TIPO STAZIONE	Puntuale
FASI	
D'INTERVENTO	AO-CO-PO

Regione	Veneto
Comune	Montecchio Maggiore
Destinazione d'uso	Area agricola
Coordinate UTM	0690917 m E
(WGS84)	5040630 m N

Caratteristiche sito

Terreno agricolo. Punto di monitoraggio situato nell'area del cantiere C.O. 4.5 (piezometro di **monte** rispetto a ASO-VA-MM-007).

Rappresentatività e motivi della scelta del punto di monitoraggio

Caratterizzazione quali-quantitativa del corpo idrico sotterraneo e verifica degli effetti indotti dal cantiere C.O.4.5.

Attività

AO – Posa in opera di piezometro a tubo aperto, di profondità fino a 22 mt, mediante perforazione a distruzione di nucleo. Piezometro cieco per i primi 2 metri e finestrato per la rimante parte, tappo al fondo. Livellazione topografica.

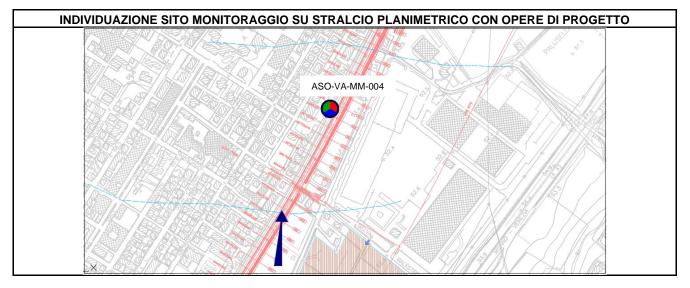
AO-CO-PO – Rilievo del livello di falda; Rilievo dei parametri chimico-fisici mediante sonda multiparametrica; Campionamento ed analisi chimiche e microbiologiche.

NOTE

Nello stralcio planimetrico le linee celesti tratteggiate rappresentano le curve isopiezometriche, la freccia blu indica la direzione di deflusso della falda.

Progetto Lotto Codifica Documento IN17 10 E12RHMB0007001

Rev.


Foglio 160 di 166

CODICE STAZIONE ASO-VA-MM-004

COMPONENTE	ACQUE SOTTERRANEE
SUBCOMPONENTE	Piezometri
TIPO STAZIONE	Puntuale
FASI	
D'INTERVENTO	AO-CO-PO

Regione	Veneto
Comune	Montecchio Maggiore
Destinazione d'uso	Area urbana/area agricola
Coordinate UTM	0690848 m E
(WGS84)	5041117 m N

Caratteristiche sito

Terreno agricolo. Punto di monitoraggio situato a **valle** del tracciato ferroviario e dell'area di cantiere C.O. 4.5 (piezometro di **valle** rispetto a ASO-VA-MM-006 e di **monte** rispetto a ASO-VA-MM-008).

Rappresentatività e motivi della scelta del punto di monitoraggio

Caratterizzazione quali-quantitativa del corpo idrico sotterraneo e verifica degli effetti indotti dal cantiere C.O.4.5.

Attività

AO – Posa in opera di piezometro a tubo aperto, di profondità fino a 22 mt, mediante perforazione a distruzione di nucleo. Piezometro cieco per i primi 2 metri e finestrato per la rimante parte, tappo al fondo. Livellazione topografica.

AO-CO-PO – Rilievo del livello di falda; Rilievo dei parametri chimico-fisici mediante sonda multiparametrica; Campionamento ed analisi chimiche e microbiologiche.

NOTE

Nello stralcio planimetrico le linee celesti tratteggiate rappresentano le curve isopiezometriche, la freccia blu indica la direzione di deflusso della falda.

Progetto Lotto IN17 10 Codifica Documento EI2RHMB0007001

Rev.

Foglio 161 di 166

CODICE STAZIONE ASO-VA-AV-001

COMPONENTE	ACQUE SOTTERRANEE
SUBCOMPONENTE	Piezometri
TIPO STAZIONE	Puntuale
FASI	
D'INTERVENTO	AO-CO-PO

Regione	Veneto
Comune	Altavilla Vicentina
Destinazione d'uso	Area incolta
	0692035 m E
Coordinate UTM (WGS84)	
(446304)	5042873 m N

Caratteristiche sito

Terreno edificato. Punto di monitoraggio situato a monte del tracciato ferroviario.

Rappresentatività e motivi della scelta del punto di monitoraggio

Caratterizzazione quali-quantitativa del corpo idrico sotterraneo e verifica degli effetti indotti dalla realizzazione dell'Opera in area sensibile (area densamente urbanizzata)

Attività

AO – Posa in opera di piezometro a tubo aperto, di profondità fino a 22 mt, mediante perforazione a distruzione di nucleo. Piezometro cieco per i primi 2 metri e finestrato per la rimante parte, tappo al fondo. Livellazione topografica.

AO-CO-PO – Rilievo del livello di falda; Rilievo dei parametri chimico-fisici mediante sonda multiparametrica; Campionamento ed analisi chimiche.

NOTE

Progetto Lotto C

Codifica Documento EI2RHMB0007001 Rev. Foglio A 162 di 166

CODICE STAZIONE | ASO-VA-AV-002

COMPONENTE	ACQUE SOTTERRANEE
SUBCOMPONENTE	Piezometri
TIPO STAZIONE	Puntuale
FASI	
D'INTERVENTO	AO-CO-PO

Regione	Veneto
Comune	Altavilla Vicentina
Destinazione d'uso	Area urbana
Coordinate UTM	0692078 m E
(WGS84)	
(1.13004)	5042960 m N

INDIVIDUAZIONE SITO MONITORAGGIO SU STRALCIO PLANIMETRICO CON OPERE DI PROGETTO ASO-VA-AV-002

Caratteristiche sito

Terreno edificato. Punto di monitoraggio situato a valle del tracciato ferroviario (piezometro di valle rispetto a ASO-VA-MM-009).

Rappresentatività e motivi della scelta del punto di monitoraggio

Caratterizzazione quali-quantitativa del corpo idrico sotterraneo e verifica degli effetti indotti dalla realizzazione dell'Opera in area sensibile (area densamente urbanizzata)

Attività

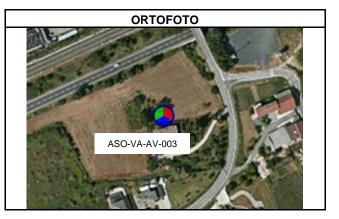
AO – Posa in opera di piezometro a tubo aperto, di profondità fino a 22 mt, mediante perforazione a distruzione di nucleo. Piezometro cieco per i primi 2 metri e finestrato per la rimante parte, tappo al fondo. Livellazione topografica.

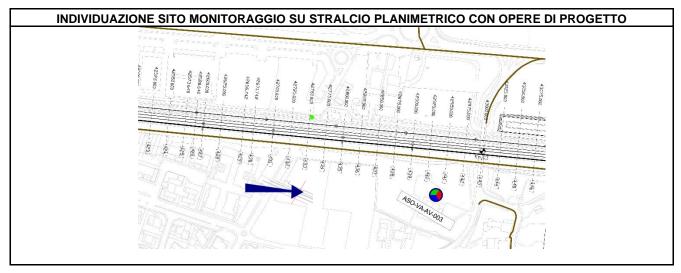
AO-CO-PO – Rilievo del livello di falda; Rilievo dei parametri chimico-fisici mediante sonda multiparametrica; Campionamento ed analisi chimiche.

NOTE

Nello stralcio planimetrico le linee celesti tratteggiate rappresentano le curve isopiezometriche, la freccia blu indica la direzione di deflusso della falda.

Progetto Lotto Codifica Documento IN17 10 E12RHMB0007001


Rev. A


Foglio 163 di 166

CODICE STAZIONE | ASO-VA-AV-003

COMPONENTE	ACQUE SOTTERRANEE
SUBCOMPONENTE	Piezometri
TIPO STAZIONE	Puntuale
FASI D'INTERVENTO	AO-CO-PO

Regione	Veneto
Comune	Altavilla Vicentina
Destinazione d'uso	Area agricola
Coordinate UTM	0693424 m E
(WGS84)	5043901 m N

Caratteristiche sito

Terreno edificato. Punto di monitoraggio situato a monte del tracciato ferroviario.

Rappresentatività e motivi della scelta del punto di monitoraggio

Caratterizzazione quali-quantitativa del corpo idrico sotterraneo e verifica degli effetti indotti dalla realizzazione dell'Opera in area sensibile (area densamente urbanizzata)

Attività

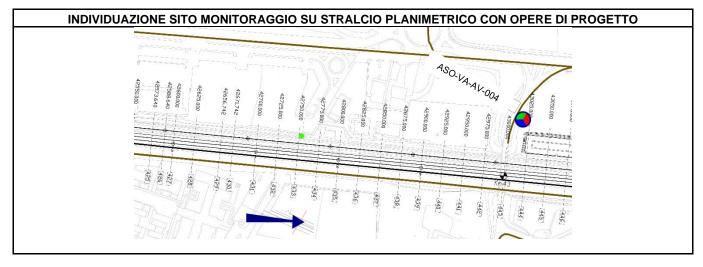
AO – Posa in opera di piezometro a tubo aperto, di profondità fino a 22 mt, mediante perforazione a distruzione di nucleo. Piezometro cieco per i primi 2 metri e finestrato per la rimante parte, tappo al fondo. Livellazione topografica.

AO-CO-PO – Rilievo del livello di falda; Rilievo dei parametri chimico-fisici mediante sonda multiparametrica; Campionamento ed analisi chimiche.

NOTE

Lotto Codifica Documento Progetto **IN17** 10 EI2RHMB0007001

Rev.


Foglio 164 di 166

CODICE STAZIONE | ASO-VA-AV-004

COMPONENTE	ACQUE SOTTERRANEE
SUBCOMPONENT	
E	Piezometri
TIPO STAZIONE	Puntuale
FASI	
D'INTERVENTO	AO-CO-PO

Regione	Veneto
Comune	Altavilla Vicentina
Destinazione d'uso	Area incolta
Coordinate UTM	0692933 m E
(WGS84)	5043397 m N

Caratteristiche sito

Terreno incolto. Punto di monitoraggio situato a valle del tracciato ferroviario.

Rappresentatività e motivi della scelta del punto di monitoraggio

Caratterizzazione quali-quantitativa del corpo idrico sotterraneo e verifica degli effetti indotti dalla realizzazione dell'Opera in area sensibile (area densamente urbanizzata)

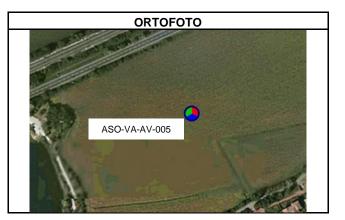
Attività

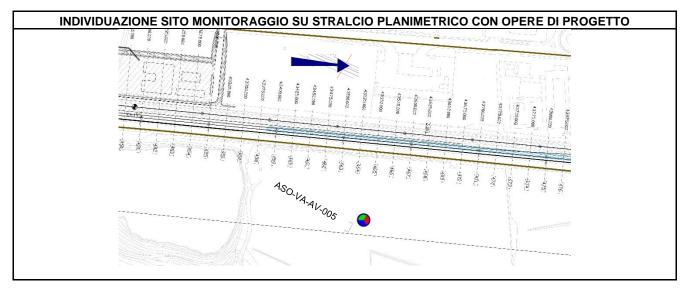
AO - Posa in opera di piezometro a tubo aperto, di profondità fino a 22 mt, mediante perforazione a distruzione di nucleo. Piezometro cieco per i primi 2 metri e finestrato per la rimante parte, tappo al fondo. Livellazione topografica.

AO-CO-PO - Rilievo del livello di falda; Rilievo dei parametri chimico-fisici mediante sonda multiparametrica; Campionamento ed analisi chimiche.

NOTE

Nello stralcio planimetrico la freccia blu indica la direzione di deflusso della falda.


Progetto Lotto C


Codifica Documento EI2RHMB0007001 Rev. Foglio A 165 di 166

CODICE STAZIONE | ASO-VA-AV-005

COMPONENTE	ACQUE SOTTERRANEE
SUBCOMPONENTE	Piezometri
TIPO STAZIONE	Puntuale
FASI	
D'INTERVENTO	AO-CO-PO

Regione	Veneto
Comune	Altavilla Vicentina
Destinazione d'uso	Area agricola
Coordinate LITM	0693488 m E
Coordinate UTM (WGS84)	
(113004)	5043442 m N

Caratteristiche sito

Terreno agricolo. Punto di monitoraggio situato a monte del tracciato ferroviario

Rappresentatività e motivi della scelta del punto di monitoraggio

Caratterizzazione quali-quantitativa del corpo idrico sotterraneo e verifica degli effetti indotti dalla realizzazione dell'Opera in area sensibile (area densamente urbanizzata)

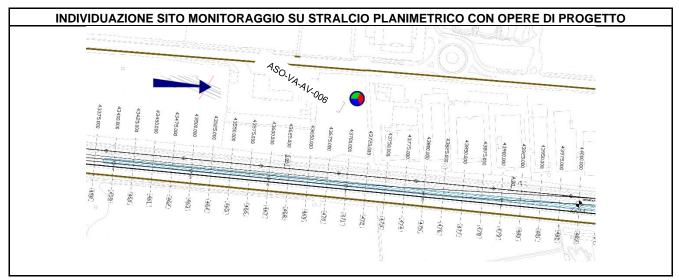
Attività

AO – Posa in opera di piezometro a tubo aperto, di profondità finoa 22 mt, mediante perforazione a distruzione di nucleo. Piezometro cieco per i primi 2 metri e finestrato per la rimante parte, tappo al fondo. Livellazione topografica.

AO-CO-PO – Rilievo del livello di falda; Rilievo dei parametri chimico-fisici mediante sonda multiparametrica; Campionamento ed analisi chimiche.

NOTE

Progetto Lotto Codifica IN17 10 EI2RHA


Codifica Documento EI2RHMB0007001 Rev. Foglio A 166 di 166

CODICE STAZIONE | ASO-VA-AV-006

COMPONENTE	ACQUE SOTTERRANEE
SUBCOMPONENTE	Piezometri
TIPO STAZIONE	Puntuale
FASI D'INTERVENTO	AO-CO-PO

Regione	Veneto
Comune	Altavilla Vicentina
Destinazione d'uso	Area incolta
Coordinate LITM	0693540 m E
Coordinate UTM (WGS84)	
(11000.)	5043720 m N

Caratteristiche sito

Terreno incolto. Punto di monitoraggio situato a valle del tracciato ferroviario

Rappresentatività e motivi della scelta del punto di monitoraggio

Caratterizzazione quali-quantitativa del corpo idrico sotterraneo e verifica degli effetti indotti dalla realizzazione dell'Opera in area sensibile (area densamente urbanizzata)

Attività

AO – Posa in opera di piezometro a tubo aperto, di profondità fino a 22 mt, mediante perforazione a distruzione di nucleo. Piezometro cieco per i primi 2 metri e finestrato per la rimante parte, tappo al fondo. Livellazione topografica.

AO-CO-PO – Rilievo del livello di falda; Rilievo dei parametri chimico-fisici mediante sonda multiparametrica; Campionamento ed analisi chimiche.

NOTE