COMMITTENTE:

DIREZIONE LAVORI:

APPALTATORE:

PROGETTAZIONE:	PROGETTISTA:	DIRETTORE DELLA PROGETTAZIONE
RAGGRUPPAMENTO TEMPORANEO PROGETTISTI	Ing. Gaetano Usai	Ing. Piergiorgio GRASSO
ENGINEERING INTEGRA RIA		Responsabile integrazione fra le varie prestazioni specialistiche Dott. Jng. Piergiorgio GRASSO D. AGOLD D. AGO
DDOCETTO ESECUTIVO		Moso * osle

PROGETTO ESECUTIVO

ITINERARIO NAPOLI - BARI RADDOPPIO TRATTA CANCELLO-BENEVENTO II LOTTO FUNZIONALE FRASSO TELESINO – VITULANO 1° LOTTO FUNZIONALE FRASSO TELESINO – TELESE

FV01 - FERMATA AMOROSI KM 21+952,60

Pensilina - Relazione di calcolo

Dott, Jug-St	LTATORE LAROTTI & C. S. p. A. gleing, 25 l Dalzo Del BAIZO 6/2020							SCALA:
COMMESSA	LOTTO FASI	E ENTE	TIPO DOC	. OPERA/	DISCIPLIN	A PROG	GR. RE	V.
F 2 6	1 2 E	ZZ	CL	FV	1 0 0	0 0	3 B	
Rev. D	escrizione	Redatto	Data	Verificato	Data	Approvato	Data	Autorizzato Data

Rev.	Descrizione	Redatto	Data	Verificato	Data	Approvato	Data	Autorizzato Data
^	Emissione	D. Pierucci	24/02/2020	M. Pietrantoni	24/02/2020	P. Grasso	24/02/2020	C Usai
Α		DP	24/02/2020	Ke (6.4	24/02/2020	4		N N
В	Revisione per istruttoria ITF	D. Pierucci	23/06/2020	D. Pierucci	22/06/2020	P. Grasso	22/00/200	AS Areaux GO
Ь		A A	23/06/2020	a A	23/06/2020	4	23/06/2020	10500
								1
								23/06/2020

File: IF26.1.2.E.ZZ.CL.FV.01.0.0.003.B.doc	n. Elab.:
	·

FV01 Fermata Amorosi – Pensilina - Relazione di calcolo

COMMESSA LOTTO CODIFICA DOCUMENTO REV. FOGLIO

1F26 12 E ZZ CL FV010003 B 3 di 85

INDICE

1.	GENERALITA'	6
1.1	DESCRIZIONE DELL'OPERA	6
1.2	Unità di misura	8
2.	NORMATIVA DI RIFERIMENTO	9
2.1	Elaborati di riferimento	9
3.	CARATTERISTICHE MATERIALI	10
3.1	ACCIAIO DA CARPENTERIA METALLICA (S275 JR)	10
3.2	ACCIAIO BULLONI E DADI	10
3.3	Saldature	11
4.	CARATTERIZZAZIONE SISMICA DEL SITO	12
4.1	VITA NOMINALE E CLASSE D'USO	13
4.2	PARAMETRI DI PERICOLOSITÀ SISMICA	13
4.3	CATEGORIA DI SOTTOSUOLO E CATEGORIA TOPOGRAFICA	14
5.	MODELLAZIONE STRUTTURALE	15
5.1	CODICE DI CALCOLO	15
5.2	AFFIDABILITÀ DEI CODICI DI CALCOLO	15
5.3	INFORMAZIONI GENERALI SULL'ELABORAZIONE	15
5.4	GIUDIZIO MOTIVATO DI ACCETTABILITÀ DEI RISULTATI	16
5.5	TIPO DI ANALISI SVOLTA	16
6.	ANALISI DEI CARICHI	21
6.1	PESO PROPRIO DELLA STRUTTURA	22
6.2	CARICHI PERMANENTI NON STRUTTURALI	23
6.3	CARICHI VARIABILI	23
6.4	AZIONE TERMICA	24
6.5	CARICO DELLA NEVE SULLA COPERTURA	25

FV01 Fermata Amorosi – Pensilina - Relazione di calcolo

 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 IF26
 12 E ZZ
 CL
 FV010003
 B
 4 di 85

6.6	Az	ZIONE DEL VENTO E PRESSIONE AERODINAMICA DOVUTA AL PASSAGGIO DEI TRENI	27
	6.6.1	Azione del vento	27
	6.6.2	Pressione aerodinamica dovuta al passaggio dei treni	29
6.7	Az	ZIONE SISMICA	32
	6.7.1	Regolarità della struttura	32
	6.7.2	Spettri allo SLV	32
	6.7.3	Spettri allo SLD	36
	6.7.4	Spettri allo SLO	39
	6.7.5	Eccentricità accidentale – Momenti torcenti	41
7.	COMI	BINAZIONI DI CARICO	44
7.1	Cr	ITERI	44
7.2	DE	TTAGLIO DELLE COMBINAZIONI	47
8.	RISUI	LTATI ANALISI	49
8.1	Fo	RME MODALI	49
8.2	So	LLECITAZIONI AGLI SLU	53
9.	VERI	FICHE DELLE MEMBRATURE METALLICHE	57
9.1	TA	BELLA COMPLETA DELLE VERIFICHE (RAPPORTI DOMANDA/CAPACITÀ)	60
9.2	VE	ERIFICHE DELLA COLONNA HEA500 PIÙ SOLLECITATA	62
9.3	VE	ERIFICHE DELLA TRAVE IPE 600 PIÙ SOLLECITATA	63
9.4	VE	ERIFICHE DELLA TRAVE IPE 450 PIÙ SOLLECITATA	64
9.5	VE	ERIFICHE DELLA TRAVE HEA 200 PIÙ SOLLECITATA	65
9.6	VE	ERIFICA DELLE DIAGONALI IN COPERTURA	66
10.	VERI	FICA LAMIERA GRECATA DI COPERTURA	70
11.	VERI	FICA DELLE UNIONI PIU' SOLLECITATE	73
11.1	VE	ERIFICA DELLA PIASTRA DI BASE	73
	11.1.1	Verifica del Calcestruzzo	74

FV01 Fermata Amorosi – Pensilina - Relazione di calcolo

IF26	12 E ZZ	CL	FV010003	В	5 di 85
COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO

	11.1.2 Verifica dei tirafondi soggetti a trazione e taglio	75
	11.1.3 Calcolo della lunghezza di ancoraggio dei tirafondi	76
11.2	Unione Diagonali - Travi	77
11.3	UNIONE IPE600 – HEA500	80
11.4	Unione IPE600 – IPE450	82
12.	VERIFICHE ALLO SLD E ALLO SLO	84
13.	VERIFICHE DI DEFORMABILITA' SLE	85

FV01 Fermata Amorosi – Pensilina - Relazione di calcolo

COMMESSA LOTTO CODIFICA DOCUMENTO REV. FOGLIO

1F26 12 E ZZ CL FV010003 B 6 di 85

1. GENERALITA'

Il presente documento fa parte del progetto esecutivo del Raddoppio dell'Itinerario Ferroviario Napoli-Bari nella Tratta Cancello-Benevento, Il Lotto Funzionale Frasso Telesino – Vitulano, 1° Lotto Funzionale Frasso - Telese.

In particolare, la relazione fa riferimento alle pensiline costituite da telai a due montanti e sbalzo verso i binari, previste in corrispondenza della "fermata Amorosi". Il calcolo è effettuato per la configurazione più gravosa, relativa alla pensilina lato BD, opposta al fabbricato FV, in quanto l'altra pensilina sul BD e quella sul BP hanno dimensioni minori e tutte le loro colonne spiccano alla quota delle banchine, mentre quella qui calcolata ha le colonne lato esterno fondate a quota inferiore.

1.1 Descrizione dell'opera

Si sottolinea che la fermata è in rilevato e la pensilina in oggetto ha le colonne esterne fondate alla quota inferiore esterna, mentre quelle interne spiccano della parete delle scale che salgono alla banchina.

La struttura metallica risulta composta da 7 telai a una campata di luce 4.56m e sbalzo verso i binari varabile da 2.99 a 3.05m. L'interasse dei telai è 6m; le dimensioni complessive sono 36.30x7.60m circa.

I montanti esterni dei telai, costituiti da HEA500, spiccano dalla fondazione sotto il piano di calpestio esterno e sono alti 12.80m; i montanti interni, anche essi HEA500, spiccano dalla parete in c.a. delle scale e sono alti 4.30m.

Le travi trasversali dei telai sono IPE600 e sono incastrate ai montanti esterni e passanti sui montanti interni. I telai sono collegati da IPE450 longitudinali. Le travi secondarie in copertura sono HEA200. La copertura è in lamiera grecata ed è irrigidita da controventi opportunemente disposti.

Di seguito si riportano alcune immagini rappresentative della soluzione progettuale adottata. Per ulteriori dettagli si rimanda agli elaborati grafici di riferimento:

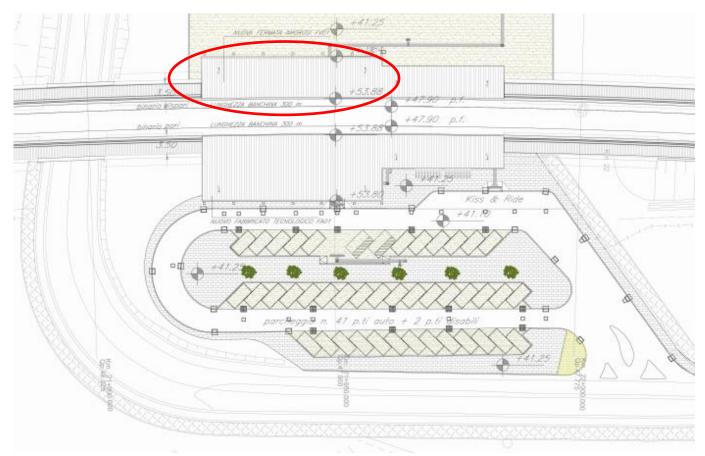


Figura 1 – Inquadramento planimetrico

FV01 Fermata Amorosi – Pensilina - Relazione di calcolo

COMMESSA LOTTO CODIFICA DOCUMENTO REV. FOGLIO

1F26 12 E ZZ CL FV010003 B 8 di 85

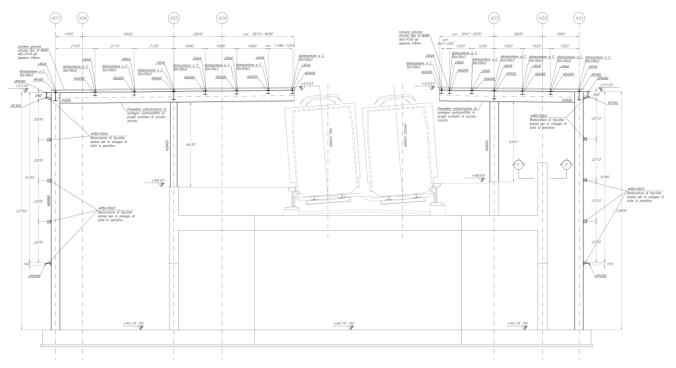


Figura 2 - Sezione trasversale

1.2 Unità di misura

Nel seguito si adotteranno le seguenti unità di misura:

• per le lunghezze ⇒ m, mm

• per i carichi \Rightarrow kN, kN/m², kN/m³

per le azioni di calcolo ⇒ kN, kNm

per le tensioni ⇒ MPa

FV01 Fermata Amorosi – Pensilina - Relazione di calcolo

 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 IF26
 12 E ZZ
 CL
 FV010003
 B
 9 di 85

2. NORMATIVA DI RIFERIMENTO

Di seguito si riporta l'elenco generale delle Normative Nazionali ed Internazionali assunte quale riferimento per la redazione degli elaborati tecnici e/o di calcolo dell'intero progetto nell'ambito della quale si inserisce l'opera oggetto della presente relazione.

- Rif. [1] Ministero delle Infrastrutture, DM 14 gennaio 2008, «Nuove Norme Tecniche per le Costruzioni»
- Rif. [2] Ministero delle Infrastrutture e Trasporti, circolare 2 febbraio 2009, n. 617 C.S.LL.PP., «Istruzioni per l'applicazione delle Nuove norme tecniche per le costruzioni di cui al decreto ministeriale 14 gennaio 2008»
- Rif. [3] Manuale di Progettazione delle Opere Civili: PARTE I / Aspetti Generali (RFI DTC SI MA IFS 001 A)
- Rif. [4] Manuale di Progettazione delle Opere Civili: PARTE II Sezione 1 / Ambiente e Geologia (RFI DTC SI AG MA IFS 001 A rev 30/12/2016)
- Rif. [5] Manuale di Progettazione delle Opere Civili: PARTE II Sezione 2 / Ponti e Strutture (RFI DTC SI PS MA IFS 001 A– rev 30/12/2016)
- Rif. [6] Manuale di Progettazione delle Opere Civili: PARTE II Sezione 3 / Corpo Stradale (RFI DTC SI CS MA IFS 001 A– rev 30/12/2016)
- Rif. [7] Manuale di Progettazione delle Opere Civili: PARTE II Sezione 4 / Gallerie (RFI DTC SI GA MA IFS 001 A– rev 30/12/2016)
- Rif. [8] Manuale di Progettazione delle Opere Civili: PARTE II Sezione 5 / Prescrizioni per i Marciapiedi e le Pensiline delle Stazioni Ferroviarie a servizio dei Viaggiatori (RFI DTC SI CS MA IFS 002 A– rev 30/12/2016)
- Rif. [9] Manuale di Progettazione delle Opere Civili: PARTE II Sezione 6 / Sagome e Profilo minimo degli ostacoli (RFI DTC SI CS MA IFS 003 A– rev 30/12/2016)
- Rif. [10] Regolamento (UE) N.1299/2014 della Commissione del 18 Novembre 2014 relativo alle specifiche tecniche di interoperabilità per il sottosistema "infrastruttura" del sistema ferroviario dell'Unione europea
- Rif. [11] Eurocodice 1 Azioni sulle strutture, Parte 1-4: Azioni in generale Azioni del vento (UNI EN 1991-1-4)
- Rif. [12] UNI 11104: Calcestruzzo: Specificazione, prestazione, produzione e conformità Istruzioni complementari per l'applicazione della EN 206-1

2.1 Elaborati di riferimento

Costituiscono parte integrante di quanto esposto nel presente documento, l'insieme degli elaborati di progetto specifici relativi all'opera in esame e riportati in elenco elaborati.

FV01 Fermata Amorosi – Pensilina - Relazione di calcolo

COMMESSA LOTTO CODIFICA DOCUMENTO REV. FOGLIO

IF26 12 E ZZ CL FV010003 B 10 di 85

3. CARATTERISTICHE MATERIALI

Di seguito si riportano le caratteristiche dei materiali previsti per la realizzazione delle strutture oggetto di calcolo nell'ambito del presente documento:

3.1 Acciaio da carpenteria metallica (S275 JR)

ACCIAIO DA CARPEI	ACCIAIO DA CARPENTERIA METALLICA - Rif. 4.1.4.1 e 11.3.4 NTC						
Classe Acciaio		s	275				
Modulo di elasticità		E _f =	210000 N/mm ²				
Modulo di Poisson:		v=	0.3				
Coefficiente di dilata	zione lineare	α=	0.00001 °C ⁻¹				
Modulo di elasticità t	rasversale	G=	80769 N/mm²				
Densità	γ =	7850 Kg/m ³ =	76.98 KN/m ³				
Spessore massimo e	<u>lementi</u>		<40 mm				
Tensione caratteristi	ca allo snervamento:	f _{yk} =	275 N/mm²				
Tensione caratteristi	ca di rottura:	f _{tk} =	430 N/mm ²				
	Coefficienti parziali per le verifiche agli SLU:						
[γ m0] Resistenza sezioni cl 1-4	<u>[γ m1]</u> Instabilità membrature	γ m1] Instabilità membrature ponti ferr. e strad.	[γ m2] Resistenza sezioni forate				
1.05	1.05	1.10	1.25				

3.2 Acciaio bulloni e dadi

Acciaio ad alta resistenza secondo

UNI 3740

Vite Classe 8.8

Dado Classe 8G

FV01 Fermata Amorosi – Pensilina - Relazione di calcolo

COMMESSA LOTTO CODIFICA DOCUMENTO REV. FOGLIO

IF26 12 E ZZ CL FV010003 B 11 di 85

3.3 Saldature

Procedimenti di saldatura omologati e qualificati (tipo automatico ad arco sommerso o altri che verranno concordati e accettati dall'ente appaltante) conformi alle NTC-08.

FV01 Fermata Amorosi – Pensilina - Relazione di calcolo

COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
IF26	12 E ZZ	CL	FV010003	В	12 di 85

4. CARATTERIZZAZIONE SISMICA DEL SITO

Nel seguente paragrafo è riportata la valutazione dei parametri di pericolosità sismica necessari alla determinazione delle azioni sismiche di progetto dell'opera cui si riferisce il presente documento, in accordo a quanto specificato a riguardo dal D.M. 14 gennaio 2008 e relativa circolare applicativa.

L'opera in questione rientra in particolare nell'ambito del Progetto di Raddoppio della tratta Ferroviaria Frasso Telesino – Vitulano, che si sviluppa per circa 30Km, da ovest verso est, attraversando il territorio di diverse località tra cui Dugenta/Frasso (BN), Amorosi (BN), Telese(BN), Solopaca(BN), San Lorenzo Maggiore(BN), Ponte(BN), Torrecuso(BN), Vitulano (BN), Benevento – Località Roseto (BN).

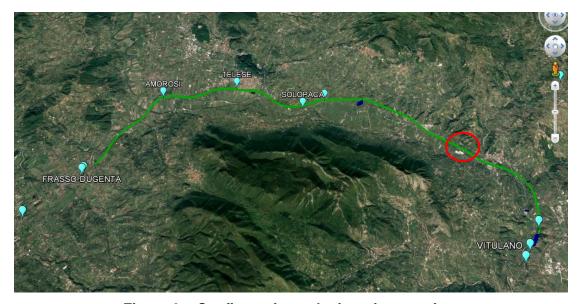


Figura 3 – Configurazione planimetrica tracciato

Nei riguardi della valutazione delle azioni sismiche di progetto, si è fatto riferimento ai parametri di pericolosità sismica del Comune di Amorosi (BN) come esposto nei paragrafi seguenti.

Le coordinate del sito sono:

41°11'37.56"N

14°28'45.80"E

FV01 Fermata Amorosi – Pensilina - Relazione di calcolo

COMMESSA LOTTO CODIFICA DOCUMENTO REV. FOGLIO

IF26 12 E ZZ CL FV010003 B 13 di 85

4.1 Vita nominale e classe d'uso

Per la valutazione dei parametri di pericolosità sismica è necessario definire, oltre alla localizzazione geografica del sito, la Vita nominale dell'opera strutturale (VN), intesa come il numero di anni nel quale la struttura, purché soggetta alla manutenzione ordinaria, deve potere essere usata per lo scopo al quale è destinata, e la Classe d'Uso a cui è associato un coefficiente d'uso (C_U).

Per l'opera in oggetto si considera una vita nominale: $V_N = 75$ anni (categoria 2 "Altre opere nuove a velocità V<250 Km/h"). Riguardo invece la Classe d'Uso, all' opera in oggetto corrisponde una Classe III a cui è associato un coefficiente d'uso pari a (NTC – Tabella 2.4.II) $C_U = 1.5$.

I parametri di pericolosità sismica vengono quindi valutati in relazione a un periodo di riferimento V_R che si ricava per ciascun tipo di costruzione, moltiplicando la vita nominale V_N per il coefficiente d'uso C_U , ovvero:

$$V_R = V_N \cdot C_U$$

Pertanto, per l'opera in oggetto, il periodo di riferimento è pari a $V_R = 75x1.5 = 112.5$ anni.

4.2 Parametri di pericolosità sismica

La valutazione dei parametri di pericolosità sismica, che, ai sensi del D.M. 14.01.2008, costituiscono il dato base per la determinazione delle azioni sismiche di progetto su una costruzione (forme spettrali e/o forze inerziali), dipendono, come già indicato in precedenza, dalla localizzazione geografica del sito, dalle caratteristiche della costruzione (Periodo di riferimento per la valutazione dell'azione sismica VR) oltre che dallo Stato Limite di riferimento/Periodo di ritorno dell'azione sismica.

In accordo a quanto riportato nell'Allegato A delle Norme Tecniche per le costruzioni DM 14.01.08, si ottiene per il sito in esame:

Tabella 1 - Riepilogo dei parametri di pericolosità sismica

SLATO	T _R	a _g	F.	T _c *
LIMITE	[anni]	[g]	[-]	[s]
SLO	68	0.078	2.425	0.323
SLD	113	0.099	2.437	0.340
SLV	1068	0.275	2.350	0.418
SLC	2193	0.360	2.395	0.433

4.3 Categoria di sottosuolo e categoria topografica

Le Categoria di Sottosuolo e le Condizioni Topografiche sono valutate come descritte al § 3.2.2 delle NTC-08. Per il caso in esame, come riportato all'interno della relazione geotecnica e di calcolo del lotto in esame, risulta una categoria di sottosuolo di tipo C e una classe Topografica T1.

FV01 Fermata Amorosi – Pensilina - Relazione di calcolo

 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 IF26
 12 E ZZ
 CL
 FV010003
 B
 15 di 85

5. MODELLAZIONE STRUTTURALE

5.1 Codice di calcolo

Per le analisi delle strutture è stato utilizzato il Sap 2000 v.15.2.1 prodotto, distribuito e assistito da Computers and Structures, Inc.1995 University Ave., Berkeley, CA 94704. Questa procedura è sviluppata in ambiente Windows, permette l'analisi elastica lineare e non di strutture tridimensionali con nodi a sei gradi di libertà, utilizzando un solutore a elementi finiti. Gli elementi considerati sono frame (trave), con eventuali svincoli interni. Le diagonali di copertura sono state considerate agenti solamente in trazione, pertanto, per avera una modellazione corretta della rigidezza, l'area della loro sezione è stata dimezzata per mezzo del relativo fattore corettivo. Le verifiche di dette diagonali sono state eseguite raddoppiando le sollecitazione derivanti dall'analisi.

I carichi sono applicati sia ai nodi, come forze o coppie concentrate, sia sulle travi, come forze distribuite, trapezie, concentrate, come coppie e come distorsioni termiche. A supporto del programma è fornito un ampio manuale d'uso contenente, fra l'altro, una vasta serie di test di validazione sia su esempi classici di Scienza delle Costruzioni, sia su strutture particolarmente impegnative e reperibili nella bibliografia specializzata.

Tale programma fornisce in output, oltre a tutte le caratteristiche geometriche e di carico delle strutture, i risultati relativi alle sollecitazioni indotte nelle sezioni degli elementi presenti.

Per le verifiche degli elementi, eccetto le diagonali della copertura, è stato utilizzato il post-processore del programma, che implementa gli eurocodici e la normativa nazionale.

5.2 Affidabilità dei codici di calcolo

Un attento esame preliminare della documentazione a corredo del software ha consentito di valutarne l'affidabilità. La documentazione fornita dal produttore del software contiene un'esauriente descrizione delle basi teoriche, degli algoritmi impiegati e l'individuazione dei campi d'impiego.

5.3 Informazioni generali sull'elaborazione

Il software prevede una serie di controlli automatici che consentono l'individuazione di errori di modellazione, di non rispetto di limitazioni geometriche e di presenza di elementi non verificati. Il codice di calcolo consente di visualizzare e controllare, sia in forma grafica che tabellare, i dati del modello

FV01 Fermata Amorosi – Pensilina - Relazione di calcolo

 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 IF26
 12 E ZZ
 CL
 FV010003
 B
 16 di 85

strutturale, in modo da avere una visione consapevole del comportamento corretto del modello strutturale.

5.4 Giudizio motivato di accettabilità dei risultati

I risultati delle elaborazioni sono stati sottoposti a controlli dagli scriventi. Tale valutazione ha compreso il confronto con i risultati di semplici calcoli eseguiti con metodi tradizionali. Inoltre sulla base di considerazioni riguardanti gli stati tensionali e deformativi determinati, si è valutata la validità delle scelte operate in sede di schematizzazione e di modellazione della struttura e delle azioni.

5.5 Tipo di analisi svolta

La struttura è stata modellata tridimensionalmente con elementi tipo trave.

L'analisi strutturale sotto le azioni sismiche è stata condotta con il metodo dell'analisi dinamica lineare con spettro di risposta, secondo le disposizioni del capitolo 7 del DM 14/01/2008.

La verifica delle sezioni degli elementi strutturali è stata eseguita con il metodo degli Stati Limite. Le combinazioni di carico adottate sono esaustive relativamente agli scenari di carico più gravosi cui l'opera sarà soggetta.

Nelle figure seguenti si riportano alcune immagini rappresentative del modello geometrico della struttura, delle sezioni degli elementi e dei loro svincoli.

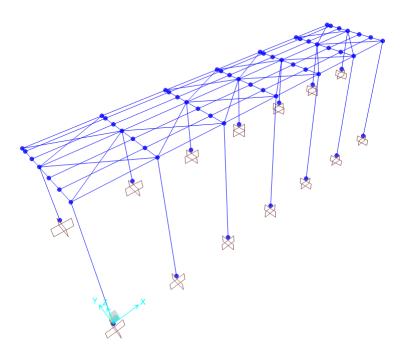


Figura 4 – Vista tridimensionale del modello

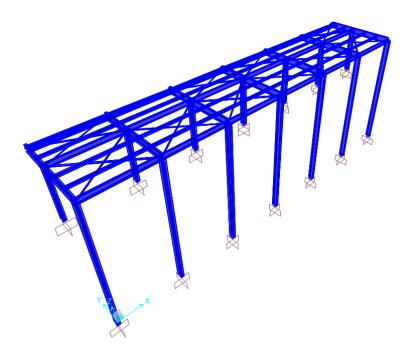


Figura 5 – Vista assonometrica con elementi estrusi

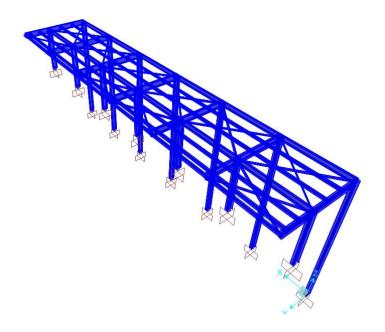


Figura 6 – Vista assonometrica con elementi estrusi

HE200A	HE200A	HE200A	HE200A	HE200A	HE200A
HE200A	HE200A	HE200A	HE200A	HE200A	HE200A
170000 14000000	HE200A	170000 140000	170000 1402000	HE200A	110200A0
IPE450	IPE450	IPE450	IPE450	IPE450	IPE450
HE200A	HE200A	E6	/ 0	HE200A 69	HE200A
750 HE200A	7000 1000 HE200A	77,0 100 4,70 HE200A	700 HE200A	700 1000 HE200A	HE200A
IPE450	IPE450	IPE450	IPE450	IPE450	IPE450

Figura 7 – Vista della copertura con indicazione delle sezioni delle travi

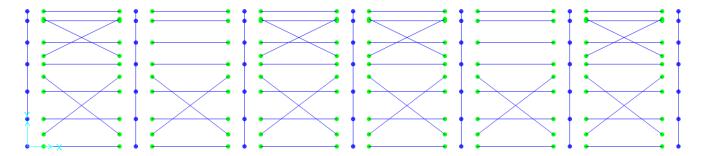


Figura 8 – Vista della copertura con gli svincoli delle aste

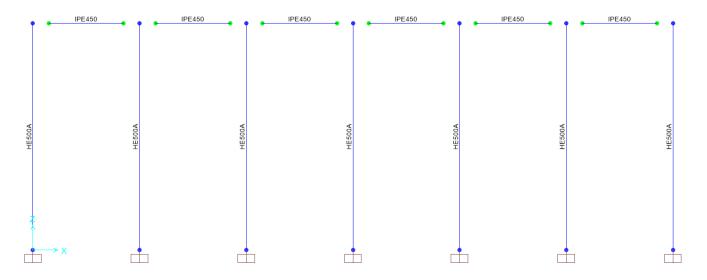


Figura 9 - Telaio longitudinale lato esterno

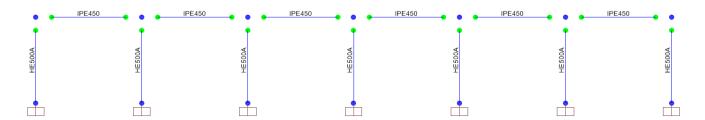


Figura 10 – Telaio longitudinale interno

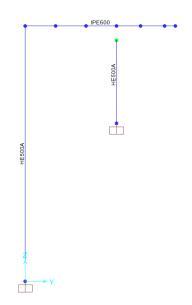


Figura 11 - Telaio trasversale

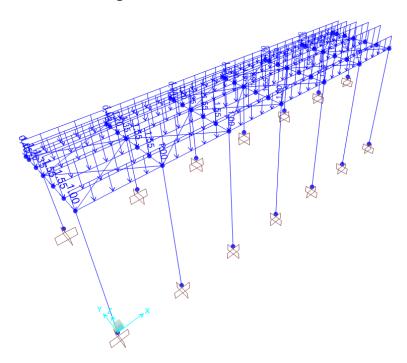


Figura 12 – Carichi in copertura "Zone-infl": carichi unitari per unità di superficie utilizzati nella definizione dei "Load cases"

FV01 Fermata Amorosi – Pensilina - Relazione di calcolo

COMMESSA LOTTO CODIFICA DOCUMENTO REV. FOGLIO

IF26 12 E ZZ CL FV010003 B 21 di 85

6. ANALISI DEI CARICHI

Sono riportati nel seguito i carichi e le azioni considerate nell'analisi della struttura.

Nel modello i carichi statici sulle travi, per comodità di compilazione, sono stati considerati definendo una "Load pattern" (Zone-infl), nella quale sono stati inseriti i carichi per unità di lunghezza sulle travi relativi a un carico unitario per unità di superficie, coincidenti numericamente con le zone d'influenza delle travi. Nelle "Load conditions", tale "Load patterns" è stata fattorizzata per i carichi superficiali effettivi (LoadSF) riportati nel seguito. A illustrazione di quanto descritto, nelle due tabelle successive sono riportate le "Load patterns" e le "Load conditions".

LoadPat	DesignType	SelfWtMult	GUID	Notes
Text	Text	Unitless	Text	Text
Peso proprio	DEAD	1		Peso proprio calcolato automaticamente dal programma
Zone-infl	OTHER	0		Zone d'inluenza delle travi per la determinazione delle varie condizioni di carico per mezzo del carico unitario per unità di superficie
VentoX	WIND	0		Vento in direzione X
VentoY	WIND	0		Vento in direzione Y
ME_SLVX	QUAKE	0		Momenti torcenti per tener conto dell'eccentricità accidentale allo SLV per il Sisma in direzione X
ME_SLVY	QUAKE	0		Momenti torcenti per tener conto dell'eccentricità accidentale allo SLV per il Sisma in direzione Y
ME_SLDX	QUAKE	0		Momenti torcenti per tener conto dell'eccentricità accidentale allo SLD per il Sisma in direzione X
ME_SLDY	QUAKE	0		Momenti torcenti per tener conto dell'eccentricità accidentale allo SD per il Sisma in direzione Y
ME_SLOX	QUAKE	0		Momenti torcenti per tener conto dell'eccentricità accidentale allo SLO per il Sisma in direzione X
ME_SLOY	QUAKE	0		Momenti torcenti per tener conto dell'eccentricità accidentale allo SLO per il Sisma in direzione Y
Termica	TEMPERATURE	0		Variazione termica
Ad	WIND	0		Pressione aerodinamica dovuta al passaggio dei treni

FV01 Fermata Amorosi – Pensilina - Relazione di calcolo

COMMESSA LOTTO CODIFICA DOCUMENTO REV. FOGLIO

1F26 12 E ZZ CL FV010003 B 22 di 85

TABLE: Case - Static 1 - Load Assignments				
Case	LoadType	LoadName	LoadSF	
Text	Text	Text	Unitless	
Permanenti-strutt	Load pattern	Peso proprio	1,00	
Perm-non-strutt	Load pattern	Zone-infl	1,50	
Neve	Load pattern	Zone-infl	0,50	
Variabili	Load pattern	Zone-infl	0,50	
ME_SLVX	Load pattern	ME_SLVX	1,00	
ME_SLVY	Load pattern	ME_SLVY	1,00	
ME_SLDX	Load pattern	ME_SLDX	1,00	
ME_SLDY	Load pattern	ME_SLDY	1,00	
ME_SLOX	Load pattern	ME_SLOX	1,00	
ME_SLOY	Load pattern	ME_SLOY	1,00	
Termica	Load pattern	Termica	1,00	
VentoX	Load pattern	VentoX	1,00	
VentoY	Load pattern	Zone-infl	1,35	
Ad	Load pattern	Ad	1,00	

6.1 Peso proprio della struttura

Le sollecitazioni indotte dal peso della struttura sono state valutate automaticamente dal programma a partire dal peso specifico dell'acciaio, assunto pari a 8082 kg/m³, con un incremento del 3% rispetto al

FV01 Fermata Amorosi – Pensilina - Relazione di calcolo

COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
IF26	12 E ZZ	CL	FV010003	В	23 di 85

peso specifico medio di 7850 kg/m³, per tener conto del peso dei collegamenti (piatti, flange, saldature, bulloni, ecc.).

6.2 Carichi permanenti non strutturali

Il peso della copertura della pensilina (copertura a sandwich composta da lamiera grecata inferiore in acciaio zincato, materassino di lana minerale spess. 4cm; lamiera zincata esterna spess. 8/10mm) è stato valutato come sovraccarico permanente e assunto pari a: $p = 1.5 \text{ KN/m}^2$.

Pertanto le azioni sui singoli elementi della copertura sono pari a:

Elementi	L	g ₂
Elemenu	m	KN/m
IPE 450 - Bordo	1,00	1,50
HEA200 - 1°	1,55	2,33
HEA200 - 2°	1,55	2,33
IPE 450 - Interna	1,35	2,03
HEA200 - 3°	1,20	1,80
HEA200 - 4°	1,05	1,58
HEA200 - 5° - Bordo	0,40	0,60

Dove L è la lunghezza di influenza di ogni singola trave del solaio di copertura.

Nel modello questi carichi sono stati inseriti come specificato all'inizio del capitolo.

6.3 Carichi variabili

Il carico della manutenzione sulla copertura della pensilina si pone pari a q=0.5 KN/m² (categoria H1).

Pertanto le azioni sui singoli elementi della copertura sono pari a:

Elementi	L	g ₂
Elemenu	m	KN/m
IPE 450 - Bordo	1,00	0,50
HEA200 - 1°	1,55	0,78
HEA200 - 2°	1,55	0,78

FOGLIO

24 di 85

FV01 Fermata Amorosi – Pensilina - Relazione di calcolo

COMMESSA LOTTO CODIFICA DOCUMENTO REV.

1F26 12 E ZZ CL FV010003 B

IPE 450 - Interna	1,35	0,68
HEA200 - 3°	1,20	0,60
HEA200 - 4°	1,05	0,53
HEA200 - 5° - Bordo	0,40	0,20

Nel modello questi carichi sono stati inseriti come specificato all'inizio del capitolo.

6.4 Azione termica

Si applica la variazione uniforme della temperatura di ±25° alle membrature in acciaio.

Il coefficiente di dilatazione termica vale $\alpha = 1.2 \cdot 10^{-5}$.

6.5 Carico della neve sulla copertura

0	Zona I - Alpina Aosta, Belluno, Bergamo, Biella, Bolzano, Brescia, Como, Cuneo, Lecco, Pordenone, Sondrio, Torino, Trento, Udine, Verbania, Vercelli, Vicenza.	q _{rk} = 1,50 kN/mq a,≤200 m q _{rk} = 1,39 [1+(a,/728)²] kN/mq a,>200 m
o	Zona I - Mediterranea Alessandria, Ancona, Asti, Bologna, Cremona, Forlî-Cesena, Lodi, Milano, Modena, Novara, Parma, Pavia, Pesaro e Urbino, Piacenza, Ravenna, Reggio Emilia, Rimini, Treviso, Varese.	q, k = 1,50 kN/mq a,≤200 m q, k = 1,35 [1+(a,/602)²] kN/mq a, > 200 m
o	Zona II Arezzo, Ascoli Piceno, Bari, Campobasso, Chieti, Ferrara, Firenze, Foggia, Genova, Gorizia, Imperia, Isernia, La Spezia, Lucca, Macerata, Mantova, Massa Carrara, Padova, Perugia, Pescara, Pistoia, Prato, Rovigo, Savona, Teramo, Trieste, Venezia, Verona.	q, k = 1,00 kN/mq a,≤200 m q, k = 0,85 [1+(a,/481)²] kN/mq a,>200 m
•	Zona III Agrigento, Avellino, Benevento, Brindisi, Cagliari, Caltanisetta, Carbonia-Iglesias, Caserta, Catania, Catanzaro, Cosenza, Crotone, Enna, Frosinone, Grosseto, L'Aquila, Latina, Lecce, Livorno, Matera, Medio Campidano, Messina, Napoli, Nuoro, Ogliastra, Olbia Tempio, Oristano, Palermo, Pisa, Potenza, Ragusa, Reggio Calabria, Rieti, Roma, Salerno, Sassari, Siena, Siracusa, Taranto, Terni, Trapani, Vibo Valentia, Viterbo.	q, _k = 0,60 kN/mq a,≤200 m q, _k = 0,51[1+(a,/481²]kN/mq a,>200 m

$$\begin{split} q_{\textbf{s}} \text{ (carico neve sulla copertura [N/mq])} &= \mu_{t} q_{\textbf{s}k} \cdot C_{\textbf{E}} \cdot C_{t} \\ &\quad \mu_{t} \text{ (coefficiente di forma)} \\ q_{\textbf{s}k} \text{ (valore caratteristico della neve al suolo [kN/mq])} \\ &\quad C_{\textbf{E}} \text{ (coefficiente di esposizione)} \\ &\quad C_{t} \text{ (coefficiente termico)} \end{split}$$

Valore carratteristicio della neve al suolo

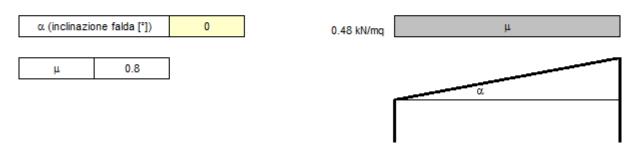
a _s (altitudine sul livello del mare [m])	180
q _{sk} (val. caratt. della neve al suolo [kN/mq])	0.60

Coefficiente termico

Il coefficiente termico può essere utilizzato per tener conto della riduzione del carico neve a causa dello scioglimento della stessa, causata dalla perdita di calore della costruzione. Tale coefficiente tiene conto delle proprietà di isolamento termico del materiale utilizzato in copertura. In assenza di uno specifico e documentato studio, deve essere utilizzato Ct=1.

Coefficiente di esposizione

Topografia	Descrizione	CE
Normale	Aree in cui non è presente una significativa rimozione di neve sulla costruzione prodotta dal vento, a causa del terreno, altre costruzioni o alberi.	1


Valore del carico della neve al suolo

q _s (carico della neve al suolo [kN/mq])	0.60
---	------

Valore del carico della neve al suolo

q, (carico della neve al suolo [kN/mq])	0.60
45 (52.1.55 55.12.1.515 21.525.15 [1.1.1.1.4])	

Coefficiente di forma (copertura ad una falda)

Pertanto le azioni sui singoli elementi della copertura sono pari a:

CE	1				
Ct	1				
μ	0.8				
q sk	0.6				
q _s (carico neve sulla copertura) = μ _i ·q _{sk} ·C _E ·C _t =		0.48	≈ 0.50	kN/m ²	

I carichi sulle trati sono uguali a quelle del sovraccarico variabile di manutenzione

FV01 Fermata Amorosi – Pensilina - Relazione di calcolo

COMMESSA LOTTO CODIFICA DOCUMENTO REV. FOGLIO

1F26 12 E ZZ CL FV010003 B 27 di 85

6.6 Azione del vento e Pressione aerodinamica dovuta al passaggio dei treni

6.6.1 Azione del vento

3) Toscana, Marche, Umbria, Lazio, Abruzzo, Molise, Puglia, Campania, Basilicata, Calabria (esclusa la provincia di Reggio Calabria)

Zona	V _{b,0} [m/s]	a _o [m]	k _e [1/s]	
3	27	500	0.02	
a _s (altitudi	a _s (altitudine sul livello del mare [m])			
T _R	(Tempo di ritorr	10)	50	
	v _b = v _{b,0} per a _s ≤ a ₀			
V _b = V _b	$v_b = v_{b,0} + k_a (a_s - a_0)$ per $a_0 < a_s \le 1500 \text{ m}$			
<u>v</u> _b (T _R = 50 [m/s])			27.000	
$\alpha_R(T_R)$			1.00073	
$V_b(T_R) = V_b \times \alpha_R[m/s]$			27.020	

p (pressione del vento [N/mq]) = q_b.c_e.c_p.c_d

q_b (pressione cinetica di riferimento [N/mq])

c_e (coefficiente di esposizione)

c_o (coefficiente di forma)

c_d (coefficiente dinamico)

Pressione cinetica di riferimento

 $q_b = 1/2 \cdot \rho \cdot v_b^2$ ($\rho = 1,25 \text{ kg/mc}$)

q₀ [N/mq]	456.29
-----------	--------

Coefficiente di forma

E' il coefficiente di forma (o coefficiente aerodinamico), funzione della tipologia e della geometria della costruzione e del suo orientamento rispetto alla direzione del vento. Il suo valore può essere ricavato da dati suffragati da opportuna documentazione o da prove sperimentali in galleria del vento.

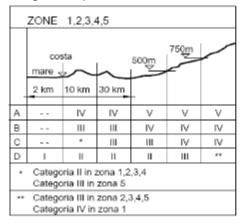
Coefficiente dinamico

Esso può essere assunto autelativamente pari ad 1 nelle costruzioni di tipologia ricorrente, quali gli edifici di forma regolare non eccedenti 80 m di altezza ed i capannoni industriali, oppure può essere determinato mediante analisi specifiche o facendo riferimento a dati di

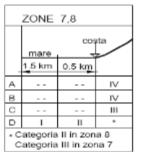
Coefficiente di esposizione

Classe di rugosità del terreno

 D) Aree prive di ostacoli (aperta campagna, aeroporti, aree agricole, pascoli, zone paludose o sabbiose, superfici innevate o ghiacciate, mare, laghi,....)



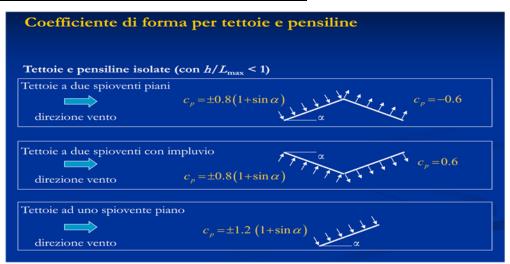
FV01 Fermata Amorosi – Pensilina - Relazione di calcolo


COMMESSA LOTTO CODIFICA DOCUMENTO REV. FOGLIO

1F26 12 E ZZ CL FV010003 B 28 di 85

Categoria di esposizione

ZONA 6					
	co mare "	sta		500 <u>m</u>	
_	2 km	10 km	30 km		
Α		III	IV	V	V
В		II	III	IV	IV
С		II	III	III	IV
D	I	ı	П	II	III


	ZONA	9
	mare v	costa
Α		- 1
В		I
С		I
D	I	I

$C_e(z) = k_r^2 \cdot c_t \cdot ln(z/z_0) [7 + c_0]$	c _t ·In(z/z _o)] per z≥z _{min}
$C_e(z) = C_e(z_{min})$	perz <z<sub>min</z<sub>

Zona	Classe di rugosità	a _s [m]
3	D	180

Cat. Esposiz.	k,	z _o [m]	z _{min} [m]	Ct
II	0.19	0.05	4	1

Cd	1
Ce	2.469
q₀ [N/mq]	456.29

C _P 1.2 Tet	ttoie ad uno spiovente piano
------------------------	------------------------------

 $p = q_b \cdot c_e \cdot c_p \cdot c_d =$ 1.13 pressione e depressione del vento sulle pareti

1.35 pressione e depressione del vento sulla copertura

FV01 Fermata Amorosi – Pensilina - Relazione di calcolo

COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
IF26	12 E ZZ	CL	FV010003	В	29 di 85

I carichi applicati verso l'alto sulle travi della copertura sono i seguenti:

Florenti	L	g ₂
Elementi	m	KN/m
IPE 450 - Bordo	1,00	1,35
HEA200 - 1°	1,55	2,09
HEA200 - 2°	1,55	2,09
IPE 450 - Interna	1,35	1,82
HEA200 - 3°	1,20	1,62
HEA200 - 4°	1,05	1,42
HEA200 - 5° - Bordo	0,40	0,54

Nel modello questi carichi sono stati inseriti come specificato all'inizio del capitolo.

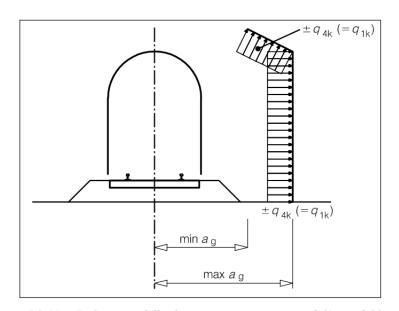
L'azione del vento sulla facciata è applicata come carico ripartito alle colonne:

Elementi	L	g_2
Elemenu	m	KN/m
Colonne laterali	3,00	4,05
Colonne centrali	6,00	8,10

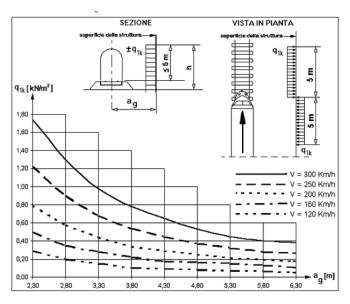
6.6.2 Pressione aerodinamica dovuta al passaggio dei treni

Il passaggio dei convogli ferroviari induce sulle superfici situate in prossimità della linea ferroviaria onde di pressione e depressione secondo gli schemi riportati nelle NTC-08.

L'ampiezza delle azioni dipende principalmente dai seguenti fattori:


- (a) dal quadrato della velocità del treno;
- (b) dalla forma aerodinamica del convoglio;
- (c) dalla forma della struttura;
- (d) dalla posizione della struttura e dalla distanza della stessa dal binario.

Le azioni possono essere schematizzate mediante carichi equivalenti agenti nelle zone prossime alla testa e alla coda del treno. Tali carichi equivalenti sono considerati valori caratteristici delle azioni.


In ogni caso, i valori delle azioni aerodinamiche devono essere cumulati con l'azione del vento, secondo le regole riportate nel cap. 5 delle NTC-08.

Nello specifico, si fa riferimento al caso riportato nel § 5.2.2.7.4 delle NTC-08 "Strutture con superfici multiple a fianco del binario sia verticali che orizzontali o inclinate", per il quale si riportano appresso le immagini della norma.

Figura 5.2.11 - Definizione della distanza max a_g e min a_g dal'asse del binario

 $\textbf{Figura 5.2.8 -} \textit{Valori caratteristici delle azioni } q_{1k} \textit{per superfici verticali parallele al binario}$

Con riferimento alle figure soprastanti, risulta:

Velocità di linea: v =	160 Km/h			
Distanza asse binario - estremo pensilina: a _{g,min} =	1.81 m			
Distanza asse dei binari - paerete dell'edificio: a _{g,max} =	6.00 m			
Distanza $a_{0}' = 0.6 a_{0,min} + 0.4 a_{0,max} =$	3.49 M =>	$q_{1k} =$	0.30	KN/m ²

Cautelativamente si è assunto pari ad 1 il fattore K1 relativo alla forma aerodinamica del treno.

Sulle travi longitudinali della tettoia di due campi consecutivi sono stati applicati i seguenti carichi ripartiti, con segni opposti nei due campi:

Elementi	L	g ₂
Fiementi	m	KN/m
IPE 450 - Bordo	1,00	0,25
HEA200 - 1°	1,55	0,39
HEA200 - 2°	1,55	0,39
IPE 450 - Interna	1,35	0,34
HEA200 - 3°	1,20	0,30
HEA200 - 4°	1,05	0,26
HEA200 - 5° - Bordo	0,40	0,10

L'azione sulle parete è stata applicata alle colonne: $0.25 \cdot 3 = 0.75 \text{ KN/m}$.

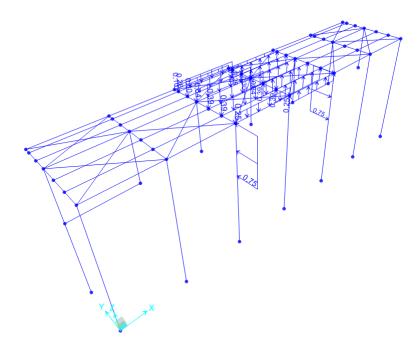


Figura 13 – Carichi dovuti all'azione aerodinamica del passaggio dei treni

FV01 Fermata Amorosi – Pensilina - Relazione di calcolo

COMMESSA LOTTO CODIFICA DOCUMENTO REV. FOGLIO

1F26 12 E ZZ CL FV010003 B 32 di 85

6.7 Azione sismica

Sulla base di quanto riportato al capitolo 4, si riportano nel seguito gli spettri elastici e di progetto per i vari stati limite considerati nell'analisi dinamica lineare della struttura.

6.7.1 Regolarità della struttura

La struttura non è regolare in pianta essendo il rapporto delle sue dimensioni 30.30x7.60m superiore a 4; inoltre, non è regolare in altezza perché le colonne degli allineamenti esterno e interno sono fondate a quote diverse.

6.7.2 Spettri allo SLV

Secondo le indicazioni del § 7.5.2.2 delle NTC-08, riassunte nella tabella riportata nel seguito, in condizioni di progetto è stato assunto, nei confronti delle componenti orizzontali dell'azione sismica, il fattore di struttura relativo alla classe di duttilità bassa e alla tipologia strutturale "strutture a pendolo inverso" $q_0 = 2$ ed è stato applicato il coeffiente $K_R = 0.8$ per l'irregolarità in altezza della costruzione.

Tabella 7.5.II – Limiti superiori dei valori di qo per le diverse tipologie strutturali e le diverse classi di duttilità.

	q	\mathbf{q}_{0}		
TIPOLOGIA STRUTTURALE	CD "B"	CD "A"		
a) Strutture intelaiate		5 av. /av		
c) Strutture con controventi eccentrici	4	$5\alpha_u/\alpha_1$		
b1) Controventi concentrici a diagonale tesa attiva	4	4		
b2) Controventi concentrici a V	2	2,5		
d) Strutture a mensola o a pendolo inverso	2	$2\alpha_{v}/\alpha_{1}$		
e) Strutture intelaiate con controventi concentrici	4	$4\alpha_u/\alpha_1$		
f) Strutture intelaiate con tamponature in muratura	2	2		

Pertanto è stato adottato il fattore $q = 0.8 \cdot 2 = 1.6$.

Secondo il § 7.2.1 delle NTC-08, "la componente verticale deve essere considerata solo in presenza di elementi pressoché orizzontali con luce superiore a 20 m, elementi precompressi (con l'esclusione dei solai di luce inferiore a 8 m), elementi a mensola di luce superiore a 4 m, strutture di tipo spingente, pilastri in falso, edifici con piani sospesi, ponti, costruzioni con isolamento....".

Il caso in oggetto non rientra pertanto fra quelli elencati.

FV01 Fermata Amorosi – Pensilina - Relazione di calcolo

COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
IF26	12 E ZZ	CL	FV010003	В	33 di 85

Si riportano nel seguito i parametri e i grafici degli spettri di progetto per lo SLV.

Parametri e punti dello spettro di risposta orizzontale per lo stato limite: SLV

Parametri indipendenti

· ararrour marp	
STATO LIMITE	SLV
a _g	0,275 g
F。	2,350
T _C	0,418 s
S _S	1,312
C _C	1,401
S _T	1,000
q	1,600

Parametri dipendenti

S	1,312
η	0,625
T _B	0,195 s
Tc	0,585 s
T _D	2,699 s

Espressioni dei parametri dipendenti

$$S = S_S \cdot S_T \tag{NTC-08 Eq. 3.2.5}$$

$$\eta = \sqrt{10/(5+\xi)} \ge 0.55$$
; $\eta = 1/q$ (NTC-08 Eq. 3.2.6; §. 3.2.3.5)

$$T_{\rm B} = T_{\rm C} \, / \, 3 \tag{NTC-07 Eq. 3.2.8} \label{eq:tb}$$

$$T_C = C_C \cdot T_C^*$$
 (NTC-07 Eq. 3.2.7)

$$T_D = 4.0 \cdot a_\sigma / g + 1.6$$
 (NTC-07 Eq. 3.2.9)

Espressioni dello spettro di risposta (NTC-08 Eq. 3.2.4)

$$\begin{split} 0 &\leq T < T_B \\ S_e(T) &= a_g \cdot S \cdot \eta \cdot F_o \cdot \left[\frac{T}{T_B} + \frac{1}{\eta \cdot F_o} \left(1 - \frac{T}{T_B} \right) \right] \\ T_B &\leq T < T_C \\ S_e(T) &= a_g \cdot S \cdot \eta \cdot F_o \\ T_C &\leq T < T_D \\ S_e(T) &= a_g \cdot S \cdot \eta \cdot F_o \cdot \left(\frac{T_C}{T} \right) \\ T_D &\leq T \\ S_e(T) &= a_g \cdot S \cdot \eta \cdot F_o \cdot \left(\frac{T_C T_D}{T^2} \right) \end{split}$$

Lo spettro di progetto $S_d(T)$ per le verifiche agli Stati Limite Ultimi è ottenuto dalle espressioni dello spettro elastico $S_e(T)$ sostituendo η con 1/q, dove q è il fattore di struttura. (NTC-08 § 3.2.3.5)

Punti dello spettro di risposta

	T [s]	Se [g]
	0,000	0,361
в ◀	0,195	0,530
° ←	0,585	0,530
	0,686	0,452
	0,786	0,394
	0,887	0,349
	0,988	0,314
	1,088	0,285
	1,189	0,261
	1,290	0,240
	1,390	0,223
	1,491	0,208
	1,592	0,195
	1,693	0,183
	1,793	0,173
	1,894	0,164
	1,995	0,155
	2,095	0,148
	2,196	0,141
	2,297	0,135
	2,397	0,129
	2,498	0,124
	2,599	0,119
b ←	2,699	0,115
	2,761	0,110
	2,823	0,105
	2,885	0,101
	2,947	0,096
	3,009	0,092
	3,071	0,089
	3,133	0,085
	3,195	0,082
	3,257	0,079
	3,319	0,076
	3,381	0,073
	3,443	0,071
	3,505	0,068
	3,566	0,066
	3,628	0,064
	3,690	0,061
	3,752	0,059
	3,814	0,058
	3,876	0,056
	3,938	0,055
	4,000	0,055

FV01 Fermata Amorosi – Pensilina - Relazione di calcolo

OMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO	
IF26	12 E ZZ	CL	FV010003	В	34 di 85	

Parametri e punti dello spettro di risposta verticale per lo stato limite: SLV

Parametri indipendenti

STATO LIMITE	SLV
a _{gv}	0,195 g
S _S	1,000
S _T	1,000
q	1,500
T _B	0,050 s
T _C	0,150 s
T _D	1,000 s

Parametri dipendenti

F _v	1,663
S	1,000
n	0.667

Espressioni dei parametri dipendenti

$$S = S_S \cdot S_T \tag{NTC-08 Eq. 3.2.5}$$

$$\eta = 1/q$$
 (NTC-08 §. 3.2.3.5)

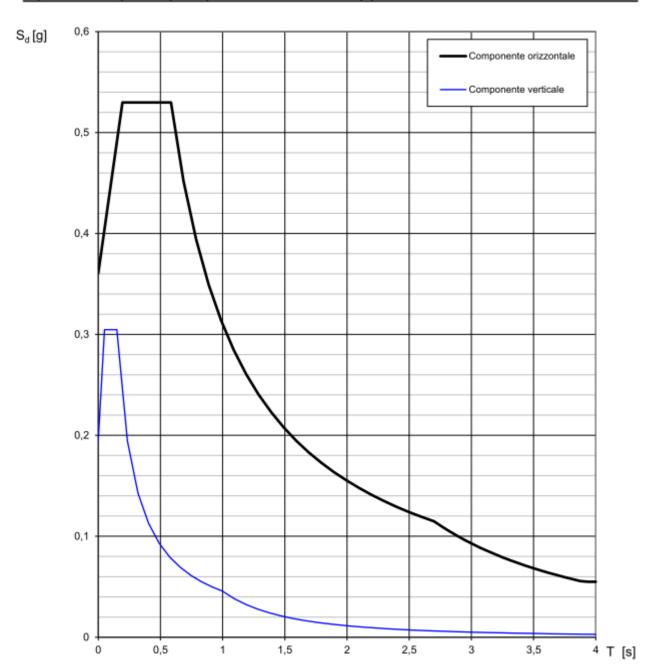
$$F_{\rm v} = 1,35 \cdot F_o \cdot \left(\frac{a_g}{g}\right)^{0.5} \tag{NTC-08 Eq. 3.2.11}$$

Espressioni dello spettro di risposta (NTC-08 Eq. 3.2.10)

$$\begin{split} 0 &\leq T < T_B \\ & S_e(T) = a_g \cdot S \cdot \eta \cdot F_v \cdot \left[\frac{T}{T_B} + \frac{1}{\eta \cdot F_o} \left(1 - \frac{T}{T_B} \right) \right] \\ & T_B \leq T < T_C \\ & S_e(T) = a_g \cdot S \cdot \eta \cdot F_v \\ & T_C \leq T < T_D \\ & S_e(T) = a_g \cdot S \cdot \eta \cdot F_v \cdot \left(\frac{T_C}{T} \right) \\ & T_D \leq T \\ & S_e(T) = a_g \cdot S \cdot \eta \cdot F_v \cdot \left(\frac{T_C T_D}{T^2} \right) \end{split}$$

Punti dello spettro di risposta

T [s]	Se [g]
0,000	0,195
0,050	0,305
0,150	0,305
0,235	0,195
0,320	0,143
0,405	0,113
0,490	0,093
0,575	0,079
0,660	0,069
0,745	0,061
0,830	0,055
0,915	0,050
1,000	0,046
1,094	0,038
1,188	0,032
1,281	0,028
1,375	0,024
1,469	0,021
1,563	0,019
1,656	0,017
1,750	0,015
1,844	0,013
1,938	0,012
2,031	0,011
2,125	0,010
2,219	0,009
2,313	0,009
2,406	0,008
2,500	0,007
2,594	0,007
2,688	0,006
2,781	0,006
2,875	0,006
2,969	0,005
3,063	0,005
3,156	0,005
3,250	0,004
3,344	0,004
3,438	0,004
3,531	0,004
3,625	0,003
3,719	0,003
3,813	0,003
3,906	0,003
4,000	0,003



FV01 Fermata Amorosi – Pensilina - Relazione di calcolo

COMMESSA LOTTO CODIFICA DOCUMENTO REV. FOGLIO

1F26 12 E ZZ CL FV010003 B 35 di 85

Spettri di risposta (componenti orizz. e vert.) per lo stato limite: SLV

FV01 Fermata Amorosi – Pensilina - Relazione di calcolo

COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
IF26	12 E ZZ	CL	FV010003	В	36 di 85

6.7.3 Spettri allo SLD

Parametri e punti dello spettro di risposta orizzontale per lo stato limite: SLD

Parametri indipendenti

STATO LIMITE	SLD
a _q	0,099 g
Fo	2,437
T _C	0,340 s
S _S	1,500
C _C	1,499
S _T	1,000
q	1,000

Parametri dipendenti

S	1,500
η	1,000
T _B	0,170 s
T _C	0,509 s
T _D	1,997 s

Espressioni dei parametri dipendenti

$$S = S_S \cdot S_T \tag{NTC-08 Eq. 3.2.5}$$

$$\eta = \sqrt{10/(5+\xi)} \ge 0.55$$
; $\eta = 1/q$ (NTC-08 Eq. 3.2.6; §. 3.2.3.5)

$$T_B = T_C / 3$$
 (NTC-07 Eq. 3.2.8)

$$T_{C} = C_{C} \cdot T_{C}^{*} \qquad \qquad \text{(NTC-07 Eq. 3.2.7)}$$

$$T_D = 4.0 \cdot a_g / g + 1.6$$
 (NTC-07 Eq. 3.2.9)

Espressioni dello spettro di risposta (NTC-08 Eq. 3.2.4)

$$\begin{split} 0 &\leq T < T_B \\ S_e(T) &= a_g \cdot S \cdot \eta \cdot F_o \cdot \left[\frac{T}{T_B} + \frac{1}{\eta \cdot F_o} \left(1 - \frac{T}{T_B} \right) \right] \\ T_B &\leq T < T_C \\ S_e(T) &= a_g \cdot S \cdot \eta \cdot F_o \\ T_C &\leq T < T_D \\ S_e(T) &= a_g \cdot S \cdot \eta \cdot F_o \cdot \left(\frac{T_C}{T} \right) \\ T_D &\leq T \\ S_e(T) &= a_g \cdot S \cdot \eta \cdot F_o \cdot \left(\frac{T_C T_D}{T^2} \right) \end{split}$$

Lo spettro di progetto $S_d(T)$ per le verifiche agli Stati Limite Ultimi è ottenuto dalle espressioni dello spettro elastico $S_e(T)$ sostituendo η con 1/q, dove q è il fattore di struttura. (NTC-08 § 3.2.3.5)

Punti dello spettro di risposta

	T [s]	Se [g]
	0,000	0,149
T _B ◀	0,170	0,363
T _C ◀	0,509	0,363
	0,580	0,319
	0,651	0,284
	0,722	0,256
	0,793	0,233
	0,864	0,214
	0,934	0,198
	1,005	0,184
	1,076	0,172
	1,147	0,161
	1,218	0,152
	1,289	0,143
	1,359	0,136
	1,430	0,129
	1,501	0,123
	1,572	0,118
	1,643	0,113
	1,714	0,108
	1,785	0,104
	1,855	0,100
	1,926	0,096
T _D ◀	1,997	0,093
	2,092	0,084
	2,188	0,077
	2,283	0,071
	2,379	0,065
	2,474	0,060
	2,569	0,056
	2,665	0,052
	2,760	0,048
	2,855	0,045
	2,951	0,042
	3,046	0,040
	3,142	0,037
	3,237	0,035
	3,332	0,033
	3,428	0,031
	3,523	0,030
	3,618	0,028
	3,714	0,027
	3,809	0,025
	3,905	0,024
	4,000	0,023

FV01 Fermata Amorosi – Pensilina - Relazione di calcolo

COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO	
IF26	12 E ZZ	CL	FV010003	В	37 di 85	

Parametri e punti dello spettro di risposta verticale per lo stato limite: SLD

Parametri indipendenti

STATO LIMITE	SLD
a _{gv}	0,042 g
S _S	1,000
S _T	1,000
q	1,500
T _B	0,050 s
T _C	0,150 s
T _D	1,000 s

Parametri dipendenti

· arametri arpentaenti			
F_{v}	1,037		
S	1,000		
n	0.667		

Espressioni dei parametri dipendenti

$$S = S_S \cdot S_T \tag{NTC-08 Eq. 3.2.5}$$

$$\eta = 1/q$$
 (NTC-08 §. 3.2.3.5)

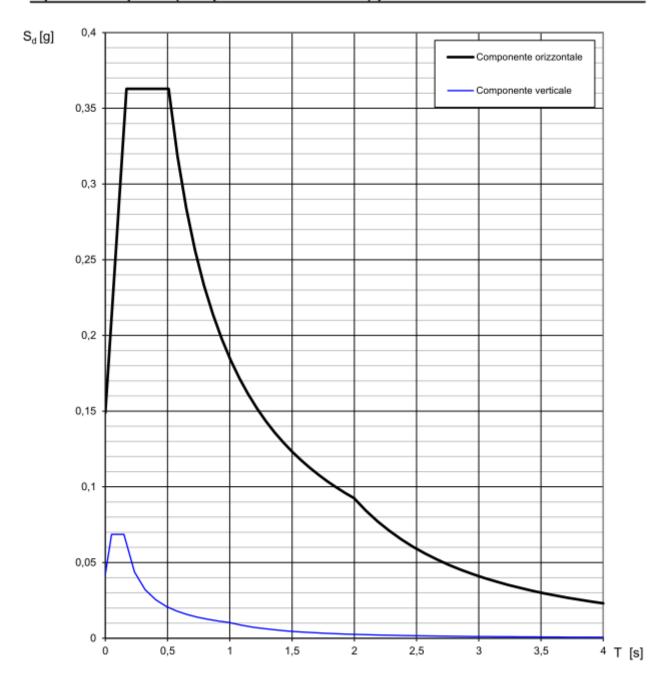
$$F_{\rm v} = 1,35 \cdot F_o \cdot \left(\frac{a_g}{g}\right)^{0,5} \tag{NTC-08 Eq. 3.2.11} \label{eq:special}$$

Espressioni dello spettro di risposta (NTC-08 Eq. 3.2.10)

$$\begin{split} 0 &\leq T < T_B \\ & S_e(T) = a_g \cdot S \cdot \eta \cdot F_v \cdot \left[\frac{T}{T_B} + \frac{1}{\eta \cdot F_o} \left(1 - \frac{T}{T_B} \right) \right] \\ & T_B \leq T < T_C \\ & S_e(T) = a_g \cdot S \cdot \eta \cdot F_v \\ & T_C \leq T < T_D \\ & S_e(T) = a_g \cdot S \cdot \eta \cdot F_v \cdot \left(\frac{T_C}{T} \right) \\ & T_D \leq T \\ & S_e(T) = a_g \cdot S \cdot \eta \cdot F_v \cdot \left(\frac{T_C T_D}{T^2} \right) \end{split}$$

Punti dello spettro di risposta

ı	T [s]	Se [g]
	0,000	0,042
Н	0,050	0,069
Н	0,150	0,069
L	0,235	0,044
L	0,320	0,032
L	0,405	0,025
L	0,490	0,021
L	0,575	0,018
L	0,660	0,016
Į.	0,745	0,014
L	0,830	0,012
L	0,915	0,011
-[1,000	0,010
Ĺ	1,094	0,009
Ĺ	1,188	0,007
L	1,281	0,006
Ĺ	1,375	0,005
L	1,469	0,005
L	1,563	0,004
L	1,656	0,004
L	1,750	0,003
L	1,844	0,003
L	1,938	0,003
L	2,031	0,002
L	2,125	0,002
L	2,219	0,002
L	2,313	0,002
L	2,406	0,002
L	2,500	0,002
L	2,594	0,002
	2,688	0,001
	2,781	0,001
	2,875	0,001
	2,969	0,001
	3,063	0,001
	3,156	0,001
	3,250	0,001
	3,344	0,001
	3,438	0,001
	3,531	0,001
	3,625	0,001
	3,719	0,001
	3,813	0,001
	3,906	0,001
	4,000	0,001



FV01 Fermata Amorosi – Pensilina - Relazione di calcolo

COMMESSA LOTTO CODIFICA DOCUMENTO REV. FOGLIO

1F26 12 E ZZ CL FV010003 B 38 di 85

Spettri di risposta (componenti orizz. e vert.) per lo stato limite: SLD

T_B

 T_D

FV01 Fermata Amorosi – Pensilina - Relazione di calcolo

COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
IF26	12 E ZZ	CL	FV010003	В	39 di 85

6.7.4 Spettri allo SLO

Parametri e punti dello spettro di risposta orizzontale per lo stato limite: SLO

Parametri indipendenti

STATO LIMITE	SLO
a _q	0,078 g
Fo	2,425
T _C	0,323 s
S _S	1,500
C _C	1,524
S _T	1,000
a	1,000

Parametri dipendenti

S	1,500
η	1,000
T _B	0,164 s
T _c	0,493 s
T _D	1,913 s

Espressioni dei parametri dipendenti

$$S = S_S \cdot S_T \tag{NTC-08 Eq. 3.2.5} \label{eq:ntc-08}$$

$$\eta = \sqrt{10/(5+\xi)} \ge 0,55; \ \eta = 1/q \qquad \text{(NTC-08 Eq. 3.2.6; §. 3.2.3.5)}$$

$$T_{\rm B} = T_{\rm C}/3$$
 (NTC-07 Eq. 3.2.8)

$$T_{\rm C} = C_{\rm C} \cdot T_{\rm C}^* \tag{NTC-07 Eq. 3.2.7}$$

$$T_D = 4.0 \cdot a_g / g + 1.6$$
 (NTC-07 Eq. 3.2.9)

Espressioni dello spettro di risposta (NTC-08 Eq. 3.2.4)

$$\begin{split} 0 &\leq T < T_B & S_e(T) = a_g \cdot S \cdot \eta \cdot F_o \cdot \left[\frac{T}{T_B} + \frac{1}{\eta \cdot F_o} \left(1 - \frac{T}{T_B} \right) \right] \\ T_B &\leq T < T_C & S_e(T) = a_g \cdot S \cdot \eta \cdot F_o \\ T_C &\leq T < T_D & S_e(T) = a_g \cdot S \cdot \eta \cdot F_o \cdot \left(\frac{T_C}{T} \right) \\ T_D &\leq T & S_e(T) = a_g \cdot S \cdot \eta \cdot F_o \cdot \left(\frac{T_C T_D}{T^2} \right) \end{split}$$

Lo spettro di progetto $S_d(T)$ per le verifiche agli Stati Limite Ultimi è ottenuto dalle espressioni dello spettro elastico $S_e(T)$ sostituendo η con 1/q, dove q è il fattore di struttura. (NTC-08 § 3.2.3.5)

Punti dello spettro di risposta

	T [s]	Se [g]
	0,000	0,117
•	0,164	0,284
•	0,493	0,284
	0,561	0,250
	0,628	0,223
	0,696	0,201
	0,763	0,184
	0,831	0,169
	0,899	0,156
	0,966	0,145
	1,034	0,136
	1,101	0,127
	1,169	0,120
	1,237	0,113
	1,304	0,107
	1,372	0,102
	1,439	0,097
	1,507	0,093
	1,575	0,089
	1,642	0,085
	1,710	0,082
	1,777	0,079
	1,845	0,076
•	1,913	0,073
	2,012	0,066
	2,111	0,060
	2,211	0,055
	2,310	0,050
	2,410	0,046
	2,509	0,043
	2,608	0,039
	2,708	0,037
	2,807	0,034
	2,907	0,032
	3,006	0,030
	3,105	0,028
	3,205	0,026
	3,304	0,025
	3,404	0,023
	3,503	0,022
	3,602	0,021
	3,702	0,020
	3,801	0,019
	3,901	0,018
	4,000	0,017

FV01 Fermata Amorosi – Pensilina - Relazione di calcolo

COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
IF26	12 E ZZ	CL	FV010003	В	40 di 85

Parametri e punti dello spettro di risposta verticale per lo stato limite: SLO

Parametri indipendenti

STATO LIMITE	SLO
a _{gv}	0,029 g
S _S	1,000
S _T	1,000
q	1,500
T _B	0,050 s
T _C	0,150 s
T _D	1,000 s

Parametri dipendenti

F _v	0,915
S	1,000
η	0,667

Espressioni dei parametri dipendenti

$$S = S_S \cdot S_T \tag{NTC-08 Eq. 3.2.5}$$

$$\eta = 1/q$$
 (NTC-08 §. 3.2.3.5)

$$F_{\rm v} = 1,35 \cdot F_o \cdot \left(\frac{a_g}{g}\right)^{0.5} \tag{NTC-08 Eq. 3.2.11}$$

Espressioni dello spettro di risposta (NTC-08 Eq. 3.2.10)

$$\begin{split} 0 &\leq T < T_B \\ & S_e(T) = a_g \cdot S \cdot \eta \cdot F_v \cdot \left[\frac{T}{T_B} + \frac{1}{\eta \cdot F_o} \left(1 - \frac{T}{T_B} \right) \right] \\ & T_B \leq T < T_C \\ & S_e(T) = a_g \cdot S \cdot \eta \cdot F_v \\ & T_C \leq T < T_D \\ & S_e(T) = a_g \cdot S \cdot \eta \cdot F_v \cdot \left(\frac{T_C}{T} \right) \\ & T_D \leq T \\ & S_e(T) = a_g \cdot S \cdot \eta \cdot F_v \cdot \left(\frac{T_C T_D}{T^2} \right) \end{split}$$

Punti dello spettro di risposta

	T [s]	Se [g]
	0,000	0,029
T _B ◀	0,050	0,048
T _C ◀	0,150	0,048
	0,235	0,030
	0,320	0,022
	0,405	0,018
	0,490	0,015
	0,575	0,012
	0,660	0,011
	0,745	0,010
	0,830	0,009
	0,915	0,008
T _D ◀	1,000	0,007
	1,094	0,006
	1,188	0,005
	1,281	0,004
	1,375	0,004
	1,469	0,003
	1,563	0,003
	1,656	0,003
	1,750	0,002
	1,844	0,002
	1,938	0,002
	2,031	0,002
	2,125	0,002
	2,219	0,001
	2,313	0,001
	2,406	0,001
	2,500	0,001
	2,594	0,001
	2,688	0,001
	2,781	0,001
	2,875	0,001
	2,969	0,001
	3,063	0,001
	3,156	0,001
	3,250	0,001
	3,344	0,001
	3,438	0,001
	3,531	0,001
	3,625	0,001
	3,719	0,001
	3,813	0,000
	3,906	0,000
	4,000	0,000

FV01 Fermata Amorosi – Pensilina - Relazione di calcolo

COMMESSA LOTTO CODIFICA DOCUMENTO REV. FOGLIO

1F26 12 E ZZ CL FV010003 B 41 di 85

Spettri di risposta (componenti orizz. e vert.) per lo stato limite: SLO

6.7.5 Eccentricità accidentale – Momenti torcenti

Secondo il §7.2.6 delle NTC-08, "per tenere conto della variabilità spaziale del moto sismico, nonché di eventuali incertezze nella localizzazione delle masse, al centro di massa deve essere attribuita una

FV01 Fermata Amorosi – Pensilina - Relazione di calcolo

COMMESSA LOTTO CODIFICA DOCUMENTO REV. FOGLIO IF26 12 E ZZ CL FV010003 B 42 di 85

eccentricità accidentale rispetto alla sua posizione quale deriva dal calcolo. Per i soli edifici e in assenza di più accurate determinazioni l'eccentricità accidentale in ogni direzione non può essere considerata inferiore a 0,05 volte la dimensione dell'edificio misurata perpendicolarmente alla direzione di applicazione dell'azione sismica. Detta eccentricità è assunta costante, per entità e direzione, su tutti gli orizzontamenti."

Nel § 7.3.3.1 è indicato inoltre: "Per gli edifici, gli effetti della eccentricità accidentale del centro di massa possono essere determinati mediante l'applicazione di carichi statici costituiti da momenti torcenti di valore pari alla risultante orizzontale della forza agente al piano, determinata come in § 7.3.3.2, moltiplicata per l'eccentricità accidentale del baricentro delle masse rispetto alla sua posizione di calcolo, determinata come in § 7.2.6."

La valutazione dei momenti torcenti è riportata nella tabella seguente. In assenza di piano rigido di copertura, i momenti sono stati applicati ripartendoli sui nodi della copertura, come visibile nelle figure successive.

Tabella 2 - Calcolo dei momenti torcenti dovuti all'eccentricità accidentale

Massa totale =	74,65	KNs2/m				
Lx =	30,30	m	Ey =	1,52	m	
Ly =	7,50	m	Ex =	0,38	m	
T1 =	0,57	sec				
Numero nodi copertura =	49					
S _{d,SLV} (T1) =	0,424	g				
F =	310,50	KN				
$M_{z,SLVX} =$	117,99	KNm	=>	M _{Z,1} =	2,41	KNm
M _{z,SLVY} =	471,96	KNm	=>	M _{Z,1} =	9,63	KNm
S _{SLD} (T1) =	0,32	g				
F =	234,34	KN				
$M_{z,SLDX} =$	89,05	KNm	=>	M _{Z,1} =	1,82	KNm
M _{Z,SLDY} =	356,20	KNm	=>	M _{Z,1} =	7,27	KNm
S _{SLO} (T1) =	0,25	g				
F =	183,08	KN				
M _{Z,SLOX} =	69,57	KNm	=>	M _{Z,1} =	1,42	KNm
M _{Z,SLOY} =	278,28	KNm	=>	M _{Z,1} =	5,68	KNm

SITALFERR GRUPPO FERROVIE DELLO STATO ITALIANE	II LOTTO FU	O TRATTA JNZIONAL UNZIONA	CANCELLO E FRASSO T LE FRASSO -	- BENEVENTO ELESINO - VITUL - TELESE	.ANO	
FV01 Fermata Amorosi – Pensilina - Relazione di calcolo	COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
	IF26	12 F 77	CI	FV010003	В	43 di 85

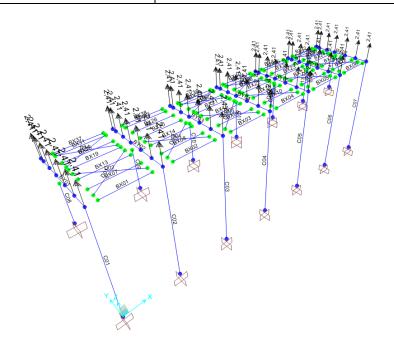


Figura 14 - Momenti torcenti applicati per l'eccentricità accidentale del Sisma SLVX

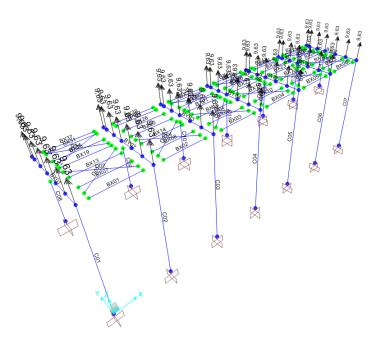


Figura 15- Momenti torcenti applicati per l'eccentricità accidentale del Sisma SLVY

FV01 Fermata Amorosi – Pensilina - Relazione di calcolo

COMMESSA LOTTO CODIFICA DOCUMENTO REV. FOGLIO

1F26 12 E ZZ CL FV010003 B 44 di 85

7. COMBINAZIONI DI CARICO

7.1 Criteri

Ai fini della determinazione delle sollecitazioni di verifica, le azioni elementari descritte al precedente paragrafo, vanno combinate nei vari stati limite di verifica previsti (SLE, SLU statico e SLV, SLD, SLO) in accordo a quanto previsto al punto 2.5.3 delle NTC-08; a tal fine, si riportano, per maggiore chiarezza, le espressioni generali dei criteri di combinazione delle azioni definiti al § 2.5.3 delle NTC-08:

- Combinazione fondamentale. generalmente impiegata per gli stati limite ultimi (SLU):

$$VG1 \cdot G1 + VG2 \cdot G2 + VP \cdot P + VQ1 \cdot Qk1 + VQ2 \cdot \Psi02 \cdot Qk2 + VQ3 \cdot \Psi03 \cdot Qk3 + ...$$

- Combinazione caratteristica (rara). generalmente impiegata per gli stati limite di esercizio (SLE) irreversibili:

$$G_1 + G_2 + P + Q_{k1} + \psi_{02} \cdot Q_{k2} + \psi_{03} \cdot Q_{k3} + \dots$$

- Combinazione frequente, generalmente impiegata per gli stati limite di esercizio (SLE) reversibili:

$$G_1 + G_2 + P + \psi_{11} \cdot Q_{k1} + \psi_{22} \cdot Q_{k2} + \psi_{23} \cdot Q_{k3} + \dots$$

- Combinazione quasi permanente. generalmente impiegata per gli stati limite di esercizio (SLE) a lungo termine:

$$G_1 + G_2 + P + \psi_{21} \cdot Q_{k1} + \psi_{22} \cdot Q_{k2} + \psi_{23} \cdot Q_{k3} + \dots$$

- Combinazione sismica. impiegata per gli stati limite ultimi e di esercizio connessi all'azione sismica E:

$$E + G_1 + G_2 + P + \psi_{21} \cdot Q_{k1} + \psi_{22} \cdot Q_{k2} + \dots$$

dove:

 $E = 1.00 \cdot E_X + 0.30 \cdot E_Y + 0.30 \cdot E_Z$, con rotazione dei coefficienti moltiplicativi, avendo indicato con E_X , E_Y e E_Z rispettivamente le componenti orizzontali e verticale dell'azione sismica. La componente verticale è tenuta in conto quando necessario.

I valori dei coefficienti di combinazione sono riportati nella seguente tabella 2.5.I, integrata dalla successiva tabella 5.2.VI, entrambe estratte dalle NTC-08.

FV01 Fermata Amorosi – Pensilina - Relazione di calcolo

COMMESSA LOTTO CODIFICA DOCUMENTO REV. FOGLIO

1F26 12 E ZZ CL FV010003 B 45 di 85

Tabella 2.5.I – Valori dei coefficienti di combinazione

Categoria/Azione variabile	Ψ0j	ψ 1j	Ψ2j
Categoria A Ambienti ad uso residenziale	0,7	0,5	0,3
Categoria B Uffici	0,7	0,5	0,3
Categoria C Ambienti suscettibili di affollamento	0,7	0,7	0,6
Categoria D Ambienti ad uso commerciale	0,7	0,7	0,6
Categoria E Biblioteche, archivi, magazzini e ambienti ad uso industriale	1,0	0,9	0,8
Categoria F Rimesse e parcheggi (per autoveicoli di peso ≤ 30 kN)	0,7	0,7	0,6
Categoria G Rimesse e parcheggi (per autoveicoli di peso > 30 kN)	0,7	0,5	0,3
Categoria H Coperture	0,0	0,0	0,0
Vento	0,6	0,2	0,0
Neve (a quota ≤ 1000 m s.l.m.)	0,5	0,2	0,0
Neve (a quota > 1000 m s.l.m.)	0,7	0,5	0,2
Variazioni termiche	0,6	0,5	0,0

Tabella 5.2.VI - Coefficienti di combinazione ψ delle azioni.

Azioni		Ψο	Ψ1	Ψ2
Azioni singole	Carico sul rilevato a tergo delle spalle	0,80	0,50	0,0
da traffico	Azioni aerodinamiche generate dal transito dei convogli	0,80	0,50	0,0
	gr_1	0,80(2)	0,80 ⁽¹⁾	0,0
Gruppi di	gr ₂	0,80(2)	0,80 ⁽¹⁾	-
carico	gr ₃	0,80(2)	0,80 ⁽¹⁾	0,0
	gr ₄	1,00	1,00(1)	0,0
Azioni del vento	F_{Wk}	0,60	0,50	0,0
Azioni da	in fase di esecuzione	0,80	0,0	0,0
neve	SLU e SLE	0,0	0,0	0,0
Azioni termiche	T_k	0,60	0,60	0,50

I coefficienti parziali per gli SLU sono riportati nella seguente tabella 2.6.1 delle NTC-08.

FV01 Fermata Amorosi – Pensilina - Relazione di calcolo

COMMESSA LOTTO CODIFICA DOCUMENTO REV. FOGLIO

1F26 12 E ZZ CL FV010003 B 46 di 85

Tabella 2.6.I – Coefficienti parziali per le azioni o per l'effetto delle azioni nelle verifiche SLU

		Coefficiente γ_F	EQU	A1 STR	A2 GEO
Carichi permanenti	favorevoli sfavorevoli	γ _{G1}	0,9 1,1	1,0 1,3	1,0 1,0
Carichi permanenti non strutturali ⁽¹⁾	favorevoli sfavorevoli	γ _{G2}	0,0 1,5	0,0 1,5	0,0 1,3
Carichi variabili	favorevoli sfavorevoli	γ _{Qi}	0,0 1,5	0,0 1,5	0,0 1,3

⁽¹⁾Nel caso in cui i carichi permanenti non strutturali (ad es. carichi permanenti portati) siano compiutamente definiti si potranno adottare per essi gli stessi coefficienti validi per le azioni permanenti.

Nel caso in oggetto, i coefficienti da applicare sono riportati nella tabella seguente.

Tabella 3 – Coefficienti parziali e di combinazione applicati

Categoria / Azione	Tipo	γ	Ψο	Ψ1	Ψ2
Perm. strutt.	Permanente	1.0 - 1.30			
Perm. non strutt.	Permanente	0.0 - 1.50			
Carico variabile copertura (Cat. H)	Variabile	0.0 - 1.50	0.00	0.00	0.00
Neve (a quota ≤ 1000 m s.l.m.)	Variabile	0.0 - 1.50	0.50	0.20	0.00
Vento	Variabile	0.0 - 1.50	0.60	0.50	0.00
Effetti Aerodin.	Variabile	0.0 - 1.50	0.80	0.50	0.00
Variazione termiche	Variabile	0.0 - 1.50	0.60	0.50	0.00
Azioni sismiche	Sismico	1.00			

FV01 Fermata Amorosi – Pensilina - Relazione di calcolo

COMMESSA LOTTO CODIFICA DOCUMENTO REV. FOGLIO

IF26 12 E ZZ CL FV010003 B 47 di 85

7.2 Dettaglio delle combinazioni

Le combinazioni considerate per i vari stati limite sono le più gravose nel caso in oggetto e sono riportate nelle tabelle seguenti.

Tabella 4 - Combinazioni di carico SLU statici

Comb.	Perm. strutt.	Perm. non strutt.	Carico Variabile Copertura	Neve	Vento Y	Effetti Aerodin.	ΔΤ
SLU01	1,30	1,50	1,50	0,75	0,90	1,20	0,00
SLU02	1,30	1,50	1,50	1,50	0,90	1,20	-0,90
SLU03	1,30	1,50	0,00	1,50	0,90	1,20	0,00
SLU04	1,30	1,50	0,00	1,50	0,90	1,20	-0,90
SLU05	1,30	1,50	0,00	0,75	1,50	1,50	0,00
SLU06	1,30	1,50	0,00	0,75	1,50	1,50	-0,90
SLU07	1,00	0,00	0,00	0,00	-1,50	1,50	0,00
SLU08	1,00	1,50	0,00	0,00	-1,50	1,50	0,90
SLU09	1,30	1,50	0,00	0,00	-1,50	-1,50	-0,90

Tabella 5 - Combinazioni di carico SLE rari

Comb.	Perm. strutt.	Perm. non strutt.	Carico Variabile	Neve	Vento Y	Effetti Aerodin.	ΔΤ
SLE01	1,00	1,00	1,00	0,50	0,60	0,80	0,00
SLE02	1,00	1,00	1,00	0,50	0,60	0,80	-0,60
SLE03	1,00	1,00	0,00	1,00	0,60	0,80	0,00
SLE04	1,00	1,00	0,00	1,00	0,60	0,80	-0,60
SLE05	1,00	1,00	0,00	0,50	1,00	1,00	0,00
SLE06	1,00	1,00	0,00	0,50	1,00	1,00	-0,60
SLE07	1,00	1,00	0,00	0,00	-1,00	1,00	0,00
SLE08	1,00	1,00	0,00	0,00	-1,00	1,00	0,60
SLE09	1,00	1,00	0,00	0,00	-1,00	1,00	-0,60

FV01 Fermata Amorosi – Pensilina - Relazione di calcolo

 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 IF26
 12 E ZZ
 CL
 FV010003
 B
 48 di 85

Tabella 6 - Combinazioni di carico sismiche

Comb.	Perm. strutt.	Perm. non strutt.	Sovracc. Cop.	Neve	Vento	Effetti Aerodin.	ΔΤ	SismaX	SismaY	M. Torc. Sx	M. Torc. Sy
SLV1	1,00	1,00	0,00	0,00	0,00	0,00	0,00	1,00	0,30	1,00	0,30
SLV2	1,00	1,00	0,00	0,00	0,00	0,00	0,00	1,00	0,30	-1,00	-0,30
SLV3	1,00	1,00	0,00	0,00	0,00	0,00	0,00	0,30	1,00	0,30	1,00
SLV4	1,00	1,00	0,00	0,00	0,00	0,00	0,00	0,30	1,00	-0,30	-1,00

N.B.: Gli effetti delle condizioni SismaX e SismaY, derivanti da analisi dinamiche lineari allo spettro di risposta e quindi privi di segno, sono stati considerati combinandoli con entrambi i segni con le altre azioni. I momenti torcenti sono stati considerati come forze statiche.

FV01 Fermata Amorosi – Pensilina - Relazione di calcolo

COMMESSA LOTTO CODIFICA DOCUMENTO REV. FOGLIO IF26 12 E ZZ CL FV010003 B 49 di 85

8. RISULTATI ANALISI

8.1 Forme modali

I periodi propri e le masse partecipanti dei modi propri di vibrazione individuati con l'analisi modale sono riportati nella tabella e nelle immagini seguenti.

Tabella 7 – Forme modali – Periodi e masse partecipanti

TABLE: Modal Par	TABLE: Modal Participating Mass Ratios											
OutputCase	StepType	StepNum	Period	ux	UY	SumUX	SumUY					
Text	Text	Unitless	Sec	Unitless	Unitless	Unitless	Unitless					
MODAL	Mode	1	0,860	100,0%	0,0%	100,0%	0,0%					
MODAL	Mode	2	0,288	0,0%	99,8%	100,0%	99,8%					
MODAL	Mode	3	0,270	0,0%	0,0%	100,0%	99,8%					

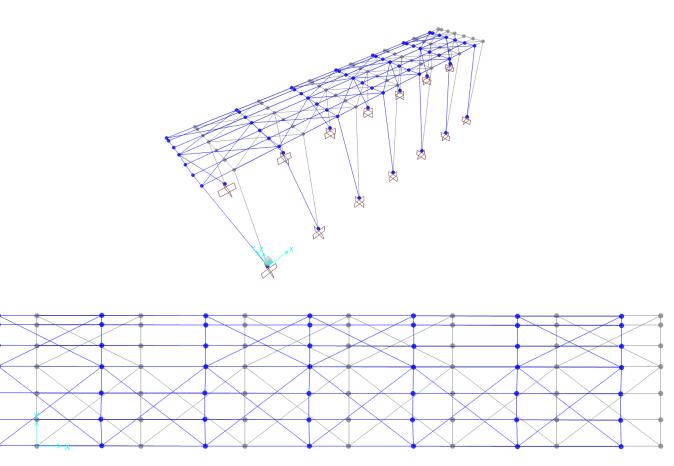


Figura 16 – Prima forma modale

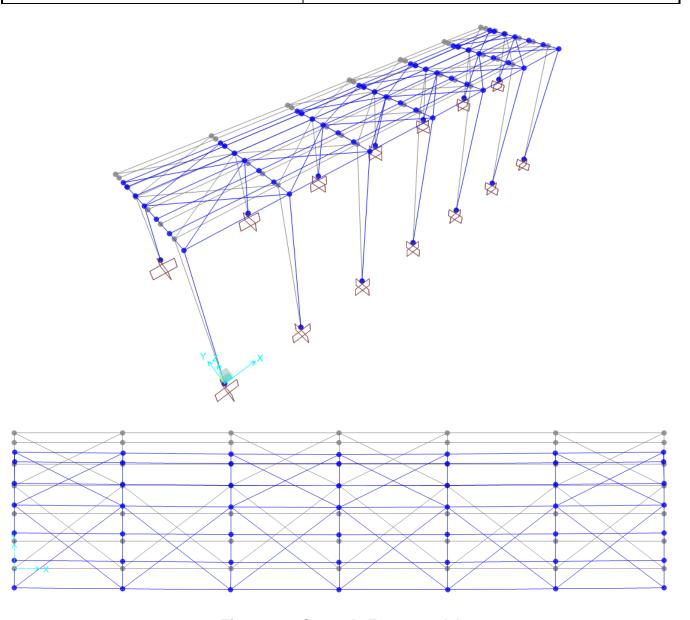


Figura 17 – Seconda Forma modale

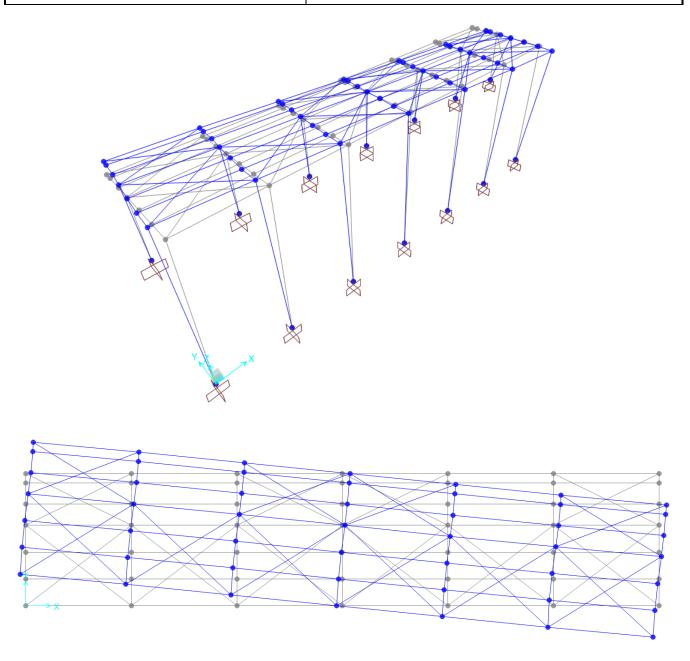


Figura 18 – Terza forma modale

8.2 Sollecitazioni agli SLU

Si riportano alcuni grafici indicativi dello stato di sollecitazione per alcune combinazioni di carico agli SLU.

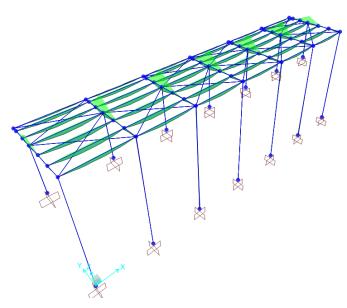


Figura 19 – Momento flettente 3-3 nella combinazione inviluppo degli SLU statici

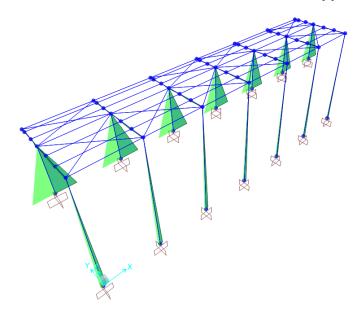


Figura 20 – Inviluppo del momento flettente 2-2 nella combinazione SLV1

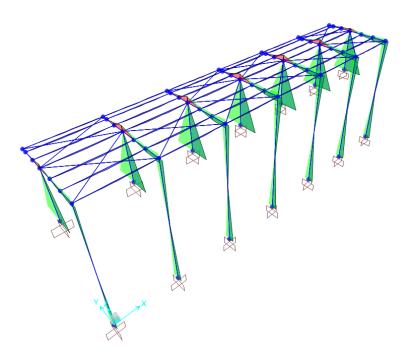


Figura 21 – Inviluppo del momento flettente 3-3 nella combinazione SLV3

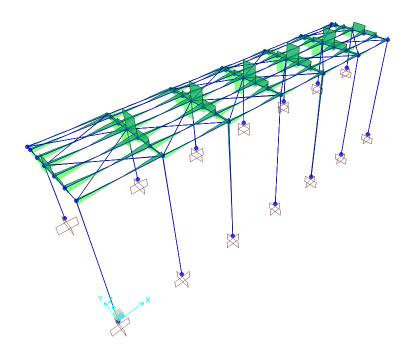


Figura 22 - Tagli nella combinazione inviluppo degli SLU statici

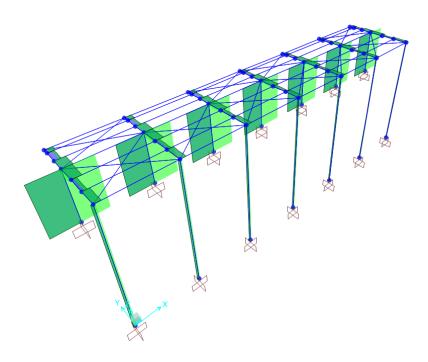


Figura 23 – Inviluppo del tagli 3-3 nella combinazione SLV1

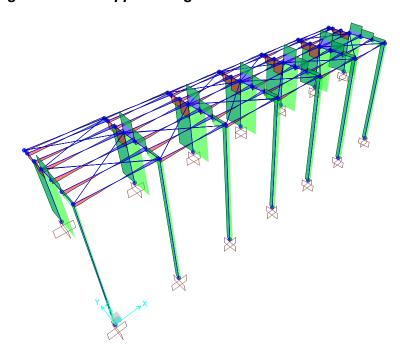


Figura 24 – Inviluppo dei tagli 2-2 nella condizione SLV3

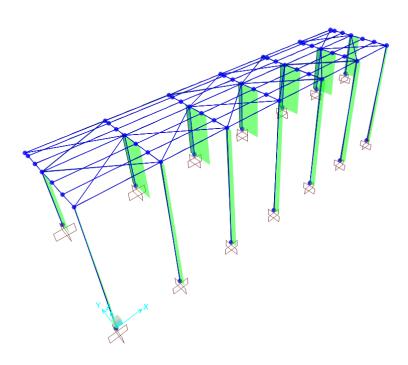


Figura 25 – Sforzi assiali nella combinazione inviluppo degli SLU statici

9. VERIFICHE DELLE MEMBRATURE METALLICHE

In questo capitolo si riportano i risultati delle verifiche di resistenza e stabilità agli SLU e SLV delle membrature metalliche. Nelle immagini che seguono sono indicati numericamente e cromaticamente i rapporti fra le più gravose sollecitazioni agenti e le resistenze degli elementi strutturali (domanda/capacità). Le diagonali della copertura, come già detto, sono state considerate efficaci solamente a trazione, pertanto le verifiche non sono state eseguite con il post-processore del programma, ma separatamente, raddoppiando le sollecitazione risultanti dall'analisi. Nelle immagini tratte dal post-ptocessore sono state pertanto eliminati tali elementi.

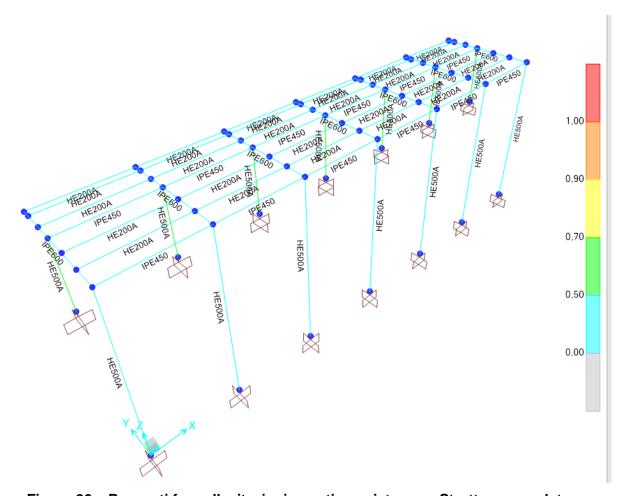


Figura 26 – Rapporti fra sollecitazioni agenti e resistenze – Struttura completa

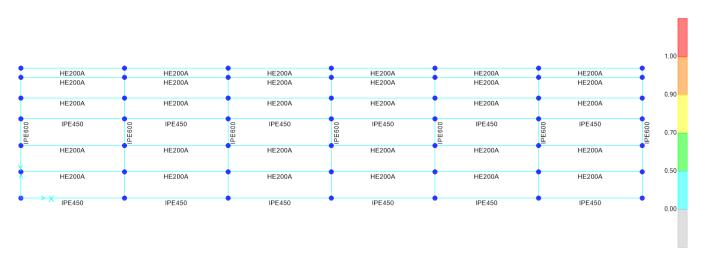


Figura 27 - Rapporti fra sollecitazioni agenti e resistenze - Travi copertura



Figura 28 - Rapporti fra sollecitazioni agenti e resistenze - Telaio lato esterno

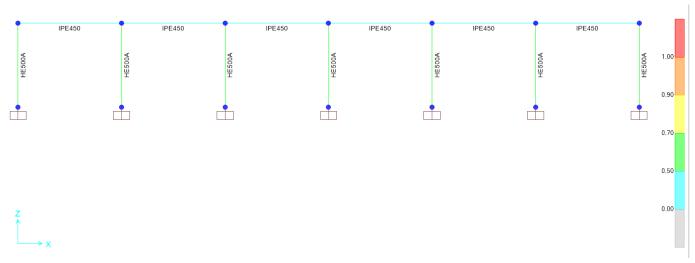


Figura 29 - Rapporti fra sollecitazioni agenti e resistenze - Telaio lato interno

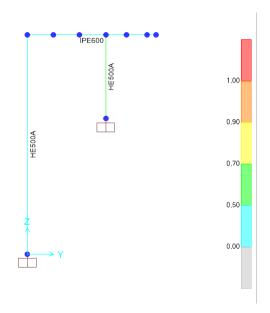


Figura 30 – Rapporti fra sollecitazioni agenti e resistenze – Telaio trasversale

FV01 Fermata Amorosi – Pensilina - Relazione di calcolo

COMMESSA LOTTO CODIFICA DOCUMENTO REV. FOGLIO

1F26 12 E ZZ CL FV010003 B 60 di 85

9.1 Tabella completa delle verifiche (rapporti domanda/capacità)

Frame	DesignSect	DesignType	Status	Ratio	RatioType	Combo	Location			
Text	Text	Text	Text	Unitless	Text	Text	m			
Travi - Pro	filato HEA20)								
BX07	HE200A	Beam	No Messages	0,417	PMM	SLU-Env	0,00			
BX08	HE200A	Beam	No Messages	0,417	PMM	SLU-Env	0,00			
BX09	HE200A	Beam	No Messages	0,449	PMM	SLU-Env	0,00			
BX10	HE200A	Beam	No Messages	0,387	PMM	SLU-Env	0,00			
BX11	HE200A	Beam	No Messages	0,417	PMM	SLU-Env	0,00			
BX12	HE200A	Beam	No Messages	0,417	PMM	SLU-Env	0,00			
BX13	HE200A	Beam	No Messages	0,417	PMM	SLU-Env	0,00			
BX14	HE200A	Beam	No Messages	0,417	PMM	SLU-Env	0,00			
BX15	HE200A	Beam	No Messages	0,449	PMM	SLU-Env	0,00			
BX16	HE200A	Beam	No Messages	0,387	PMM	SLU-Env	0,00			
BX17	HE200A	Beam	No Messages	0,417	PMM	SLU-Env	0,00			
BX18	HE200A	Beam	No Messages	0,417	PMM	SLU-Env	0,00			
BX25	HE200A	Beam	No Messages	0,330	PMM	SLU-Env	0,00			
BX26	HE200A	Beam	No Messages	0,330	PMM	SLU-Env	0,00			
BX27	HE200A	Beam	No Messages	0,354	PMM	SLU-Env	0,00			
BX28	HE200A	Beam	No Messages	0,307	PMM	SLU-Env	0,00			
BX29	HE200A	Beam	No Messages	0,330	PMM	SLU-Env	0,00			
BX30	HE200A	Beam	No Messages	0,330	PMM	SLU-Env	0,00			
BX31	HE200A	Beam	No Messages	0,293	PMM	SLU-Env	0,00			
BX32	HE200A	Beam	No Messages	0,293	PMM	SLU-Env	0,00			
BX33	HE200A	Beam	No Messages	0,314	PMM	SLU-Env	0,00			
BX34	HE200A	Beam	No Messages	0,273	PMM	SLU-Env	0,00			
BX35	HE200A	Beam	No Messages	0,293	PMM	SLU-Env	0,00			
BX36	HE200A	Beam	No Messages	0,293	PMM	SLU-Env	0,00			
BX37	HE200A	Beam	No Messages	0,131	PMM	SLU-Env	0,00			
BX38	HE200A	Beam	No Messages	0,132	PMM	SLU-Env	0,00			
BX39	HE200A	Beam	No Messages	0,139	PMM	SLU-Env	0,00			
BX40	HE200A	Beam	No Messages	0,123	PMM	SLU-Env	0,00			
BX41	HE200A	Beam	No Messages	0,132	PMM	SLU-Env	0,00			
BX42	HE200A	Beam	No Messages	0,131	PMM	SLU-Env	0,00			
Travi - Pro	Travi - Profilato IPE450									
BX01	IPE450	Beam	No Messages	0,114	PMM	SLU-Env	0,00			

FV01 Fermata Amorosi – Pensilina - Relazione di calcolo

COMMESSA LOTTO CODIFICA DOCUMENTO REV. FOGLIO IF26 12 E ZZ CL FV010003 B 61 di 85

BX02 IPE450 Beam No Messages 0,116 PMM SLU-Env 0,00 BX03 IPE450 Beam No Messages 0,123 PMM SLU-Env 0,00 BX04 IPE450 Beam No Messages 0,116 PMM SLU-Env 0,00 BX05 IPE450 Beam No Messages 0,116 PMM SLU-Env 0,00 BX06 IPE450 Beam No Messages 0,147 PMM SLU-Env 0,00 BX21 IPE450 Beam No Messages 0,147 PMM SLU-Env 0,00 BX21 IPE450 Beam No Messages 0,157 PMM SLU-Env 0,00 BX21 IPE450 Beam No Messages 0,160 PMM SLU-Env 0,00 BX22 IPE450 Beam No Messages 0,160 PMM SLU-Env 0,00 BX23 IPE450 Beam No Messages 0,160 PMM SLV-Env								
BX04 IPE450 Beam No Messages 0,108 PMM SLU-Env 0,00 BX05 IPE450 Beam No Messages 0,116 PMM SLU-Env 0,00 BX06 IPE450 Beam No Messages 0,147 PMM SLU-Env 0,00 BX19 IPE450 Beam No Messages 0,147 PMM SLU-Env 0,00 BX20 IPE450 Beam No Messages 0,147 PMM SLU-Env 0,00 BX21 IPE450 Beam No Messages 0,157 PMM SLU-Env 0,00 BX22 IPE450 Beam No Messages 0,160 PMM SLU-Env 0,00 BX23 IPE450 Beam No Messages 0,160 PMM SLU-Env 0,00 BX23 IPE450 Beam No Messages 0,124 PMM SLU-Env 0,00 Travi - Profilato IPE600 Beam No Messages 0,124 PMM SLV-Env <t< td=""><td>BX02</td><td>IPE450</td><td>Beam</td><td>No Messages</td><td>0,116</td><td>PMM</td><td>SLU-Env</td><td>0,00</td></t<>	BX02	IPE450	Beam	No Messages	0,116	PMM	SLU-Env	0,00
BX05 IPE450 Beam No Messages 0,116 PMM SLU-Env 0,00 BX06 IPE450 Beam No Messages 0,114 PMM SLU-Env 0,00 BX19 IPE450 Beam No Messages 0,147 PMM SLU-Env 0,00 BX20 IPE450 Beam No Messages 0,157 PMM SLU-Env 0,00 BX21 IPE450 Beam No Messages 0,157 PMM SLU-Env 0,00 BX22 IPE450 Beam No Messages 0,160 PMM SLU-Env 0,00 BX23 IPE450 Beam No Messages 0,160 PMM SLU-Env 0,00 BX24 IPE450 Beam No Messages 0,160 PMM SLU-Env 0,00 BX21 IPE450 Beam No Messages 0,124 PMM SLU-Env 0,00 BX24 IPE450 Beam No Messages 0,124 PMM SLU-Env	BX03	IPE450	Beam	No Messages	0,123	PMM	SLU-Env	0,00
BX06 IPE450 Beam No Messages 0,114 PMM SLU-Env 0,00 BX19 IPE450 Beam No Messages 0,147 PMM SLU-Env 0,00 BX20 IPE450 Beam No Messages 0,147 PMM SLU-Env 0,00 BX21 IPE450 Beam No Messages 0,157 PMM SLU-Env 0,00 BX22 IPE450 Beam No Messages 0,160 PMM SLU-Env 0,00 BX23 IPE450 Beam No Messages 0,160 PMM SLU-Env 0,00 BX24 IPE450 Beam No Messages 0,160 PMM SLU-Env 0,00 Travi - Profilato IPE600 BY01 IPE600 Beam No Messages 0,124 PMM SLU-Env 0,38 BY02 IPE600 Beam No Messages 0,201 PMM SLU-Env 0,38 BY03 IPE600 Beam No Messages	BX04	IPE450	Beam	No Messages	0,108	PMM	SLU-Env	0,00
BX19 IPE450 Beam No Messages 0,147 PMM SLU-Env 0,00 BX20 IPE450 Beam No Messages 0,147 PMM SLU-Env 0,00 BX21 IPE450 Beam No Messages 0,157 PMM SLU-Env 0,00 BX22 IPE450 Beam No Messages 0,160 PMM SLU-Env 0,00 BX23 IPE450 Beam No Messages 0,160 PMM SLU-Env 0,00 BX24 IPE450 Beam No Messages 0,160 PMM SLU-Env 0,00 Travi - Profilato IPE600 BY01 IPE600 Beam No Messages 0,124 PMM SLU-Env 0,38 BY02 IPE600 Beam No Messages 0,201 PMM SLU-Env 0,38 BY03 IPE600 Beam No Messages 0,196 PMM SLU-Env 0,38 BY05 IPE600 Beam No Messages	BX05	IPE450	Beam	No Messages	0,116	PMM	SLU-Env	0,00
BX20 IPE450 Beam No Messages 0,147 PMM SLU-Env 0,00 BX21 IPE450 Beam No Messages 0,157 PMM SLU-Env 0,00 BX22 IPE450 Beam No Messages 0,160 PMM SLU-Env 0,00 BX23 IPE450 Beam No Messages 0,160 PMM SLU-Env 0,00 BX24 IPE450 Beam No Messages 0,160 PMM SLU-Env 0,00 Travi - Profilato IPE600 Beam No Messages 0,124 PMM SLU-Env 0,38 BY01 IPE600 Beam No Messages 0,194 PMM SLU-Env 0,38 BY03 IPE600 Beam No Messages 0,201 PMM SLU-Env 0,38 BY04 IPE600 Beam No Messages 0,196 PMM SLU-Env 0,38 BY05 IPE600 Beam No Messages 0,194 PMM SLU-Env <td>BX06</td> <td>IPE450</td> <td>Beam</td> <td>No Messages</td> <td>0,114</td> <td>PMM</td> <td>SLU-Env</td> <td>0,00</td>	BX06	IPE450	Beam	No Messages	0,114	PMM	SLU-Env	0,00
BX21 IPE450 Beam No Messages 0,157 PMM SLU-Env 0,00 BX22 IPE450 Beam No Messages 0,137 PMM SLU-Env 0,00 BX23 IPE450 Beam No Messages 0,160 PMM SLU-Env 0,00 BX24 IPE450 Beam No Messages 0,160 PMM SLU-Env 0,00 Travi - Profilato IPE600 Beam No Messages 0,124 PMM SLV-Env 0,00 BY01 IPE600 Beam No Messages 0,124 PMM SLU-Env 0,38 BY02 IPE600 Beam No Messages 0,201 PMM SLU-Env 0,38 BY03 IPE600 Beam No Messages 0,196 PMM SLU-Env 0,38 BY05 IPE600 Beam No Messages 0,194 PMM SLU-Env 0,38 BY06 IPE600 Beam No Messages 0,194 PMM SLV3	BX19	IPE450	Beam	No Messages	0,147	PMM	SLU-Env	0,00
BX22 IPE450 Beam No Messages 0,137 PMM SLU-Env 0,00 BX23 IPE450 Beam No Messages 0,160 PMM SLU-Env 0,00 BX24 IPE450 Beam No Messages 0,160 PMM SLU-Env 0,00 Travi - Profilato IPE600 Beam No Messages 0,124 PMM SLV4 6,96 BY02 IPE600 Beam No Messages 0,194 PMM SLU-Env 0,38 BY03 IPE600 Beam No Messages 0,201 PMM SLU-Env 0,38 BY04 IPE600 Beam No Messages 0,194 PMM SLU-Env 0,38 BY05 IPE600 Beam No Messages 0,188 PMM SLU-Env 0,38 BY06 IPE600 Beam No Messages 0,149 PMM SLU-Env 0,38 BY07 IPE600 Beam No Messages 0,149 PMM SLU-Env	BX20	IPE450	Beam	No Messages	0,147	PMM	SLU-Env	0,00
BX23	BX21	IPE450	Beam	No Messages	0,157	PMM	SLU-Env	0,00
BX24 IPE450 Beam No Messages 0,160 PMM SLU-Env 0,00 Travi - Profilato IPE600 Beam No Messages 0,124 PMM SLV4 6,96 BY02 IPE600 Beam No Messages 0,194 PMM SLU-Env 0,38 BY03 IPE600 Beam No Messages 0,201 PMM SLU-Env 0,38 BY04 IPE600 Beam No Messages 0,196 PMM SLU-Env 0,38 BY05 IPE600 Beam No Messages 0,198 PMM SLU-Env 0,38 BY06 IPE600 Beam No Messages 0,194 PMM SLU-Env 0,38 BY07 IPE600 Beam No Messages 0,194 PMM SLV3 6,96 Colomne - Profilato HEA500 C01 HE500A Column No Messages 0,175 PMM SLV3 0,00 C02 HE500A Column No Messages <td< td=""><td>BX22</td><td>IPE450</td><td>Beam</td><td>No Messages</td><td>0,137</td><td>PMM</td><td>SLU-Env</td><td>0,00</td></td<>	BX22	IPE450	Beam	No Messages	0,137	PMM	SLU-Env	0,00
Travi - Profilato IPE600 BY01 IPE600 Beam No Messages 0,124 PMM SLV4 6,96 BY02 IPE600 Beam No Messages 0,194 PMM SLU-Env 0,38 BY03 IPE600 Beam No Messages 0,201 PMM SLU-Env 0,38 BY04 IPE600 Beam No Messages 0,196 PMM SLU-Env 0,38 BY05 IPE600 Beam No Messages 0,188 PMM SLU-Env 0,38 BY06 IPE600 Beam No Messages 0,194 PMM SLU-Env 0,38 BY07 IPE600 Beam No Messages 0,194 PMM SLV3 6,96 Colonne - Profilato HEA500 C01 HE500A Column No Messages 0,175 PMM SLV3 0,00 C02 HE500A Column No Messages 0,186 PMM SLV3 0,00 C03 H	BX23	IPE450	Beam	No Messages	0,160	PMM	SLU-Env	0,00
BY01 IPE600 Beam No Messages 0,124 PMM SLV4 6,96 BY02 IPE600 Beam No Messages 0,194 PMM SLU-Env 0,38 BY03 IPE600 Beam No Messages 0,201 PMM SLU-Env 0,38 BY04 IPE600 Beam No Messages 0,196 PMM SLU-Env 0,38 BY05 IPE600 Beam No Messages 0,188 PMM SLU-Env 0,38 BY06 IPE600 Beam No Messages 0,194 PMM SLU-Env 0,38 BY07 IPE600 Beam No Messages 0,124 PMM SLV3 6,96 Colonne - Profilato HEA500 C01 HE500A Column No Messages 0,175 PMM SLV3 0,00 C02 HE500A Column No Messages 0,184 PMM SLV3 0,00 C03 HE500A Column No Messages <	BX24	IPE450	Beam	No Messages	0,160	PMM	SLU-Env	0,00
BY02 IPE600 Beam No Messages 0,194 PMM SLU-Env 0,38 BY03 IPE600 Beam No Messages 0,201 PMM SLU-Env 0,38 BY04 IPE600 Beam No Messages 0,196 PMM SLU-Env 0,38 BY05 IPE600 Beam No Messages 0,194 PMM SLU-Env 0,38 BY06 IPE600 Beam No Messages 0,194 PMM SLU-Env 0,38 BY07 IPE600 Beam No Messages 0,124 PMM SLU-Env 0,38 BY07 IPE600 Beam No Messages 0,124 PMM SLU-Env 0,38 BY07 IPE600 Beam No Messages 0,124 PMM SLU-Env 0,38 BY07 IPE600 Beam No Messages 0,124 PMM SLV3 0,00 C01 HE500A Column No Messages 0,175 PMM SLV3 <td< td=""><td>Travi - F</td><td>Profilato IPE60</td><td>00</td><td></td><td></td><td></td><td></td><td></td></td<>	Travi - F	Profilato IPE60	00					
BY03 IPE600 Beam No Messages 0,201 PMM SLU-Env 0,38 BY04 IPE600 Beam No Messages 0,196 PMM SLU-Env 0,38 BY05 IPE600 Beam No Messages 0,188 PMM SLU-Env 0,38 BY06 IPE600 Beam No Messages 0,194 PMM SLU-Env 0,38 BY07 IPE600 Beam No Messages 0,194 PMM SLU3 0,98 COlomne - Profilato HEA500 O. DMM SLV3 0,90 C01 HE500A Column No Messages 0,175 PMM SLV3 0,00 C02 HE500A Column No Messages 0,186 PMM SLV3 0,00 C03 HE500A Column No Messages 0,186 PMM SLV3 0,00 C05 HE500A Column No Messages 0,186 PMM SLV4 0,00 C06 HE	BY01	IPE600	Beam	No Messages	0,124	PMM	SLV4	6,96
BY04 IPE600 Beam No Messages 0,196 PMM SLU-Env 0,38 BY05 IPE600 Beam No Messages 0,188 PMM SLU-Env 0,38 BY06 IPE600 Beam No Messages 0,194 PMM SLU-Env 0,38 BY07 IPE600 Beam No Messages 0,124 PMM SLV3 6,96 Colonne - Profilato HEA500 CO1 HE500A Column No Messages 0,175 PMM SLV3 0,00 C02 HE500A Column No Messages 0,186 PMM SLV3 0,00 C03 HE500A Column No Messages 0,186 PMM SLV3 0,00 C04 HE500A Column No Messages 0,186 PMM SLV4 0,00 C05 HE500A Column No Messages 0,186 PMM SLV4 0,00 C06 HE500A Column No Messages 0,175	BY02	IPE600	Beam	No Messages	0,194	PMM	SLU-Env	0,38
BY05 IPE600 Beam No Messages 0,188 PMM SLU-Env 0,38 BY06 IPE600 Beam No Messages 0,194 PMM SLU-Env 0,38 BY07 IPE600 Beam No Messages 0,124 PMM SLV3 6,96 Colonne - Profilato HEA500 C01 HE500A Column No Messages 0,175 PMM SLV3 0,00 C02 HE500A Column No Messages 0,184 PMM SLV3 0,00 C03 HE500A Column No Messages 0,186 PMM SLV3 0,00 C04 HE500A Column No Messages 0,186 PMM SLV3 0,00 C05 HE500A Column No Messages 0,186 PMM SLV4 0,00 C06 HE500A Column No Messages 0,184 PMM SLV4 0,00 C07 HE500A Column No Messages 0,	BY03	IPE600	Beam	No Messages	0,201	PMM	SLU-Env	0,38
BY06 IPE600 Beam No Messages 0,194 PMM SLU-Env 0,38 BY07 IPE600 Beam No Messages 0,124 PMM SLV3 6,96 Colonne - Profilato HEA500 C01 HE500A Column No Messages 0,175 PMM SLV3 0,00 C02 HE500A Column No Messages 0,184 PMM SLV3 0,00 C03 HE500A Column No Messages 0,186 PMM SLV3 0,00 C04 HE500A Column No Messages 0,186 PMM SLV3 0,00 C05 HE500A Column No Messages 0,186 PMM SLV4 0,00 C06 HE500A Column No Messages 0,186 PMM SLV4 0,00 C07 HE500A Column No Messages 0,175 PMM SLV1 0,00 C08 HE500A Column No Messages 0,66	BY04	IPE600	Beam	No Messages	0,196	PMM	SLU-Env	0,38
BY07 IPE600 Beam No Messages 0,124 PMM SLV3 6,96 Colonne - Profilato HEA500 CO1 HE500A Column No Messages 0,175 PMM SLV3 0,00 C02 HE500A Column No Messages 0,184 PMM SLV3 0,00 C03 HE500A Column No Messages 0,186 PMM SLV3 0,00 C04 HE500A Column No Messages 0,186 PMM SLV3 0,00 C05 HE500A Column No Messages 0,186 PMM SLV4 0,00 C06 HE500A Column No Messages 0,184 PMM SLV4 0,00 C07 HE500A Column No Messages 0,175 PMM SLV4 0,00 C08 HE500A Column No Messages 0,663 PMM SLV1 0,00 C10 HE500A Column No Messages 0,657 PM	BY05	IPE600	Beam	No Messages	0,188	PMM	SLU-Env	0,38
Colomne - Profilato HEA500 C01 HE500A Column No Messages 0,175 PMM SLV3 0,00 C02 HE500A Column No Messages 0,184 PMM SLV3 0,00 C03 HE500A Column No Messages 0,186 PMM SLV3 0,00 C04 HE500A Column No Messages 0,183 PMM SLV3 0,00 C05 HE500A Column No Messages 0,186 PMM SLV4 0,00 C06 HE500A Column No Messages 0,184 PMM SLV4 0,00 C07 HE500A Column No Messages 0,175 PMM SLV4 0,00 C08 HE500A Column No Messages 0,663 PMM SLV1 0,00 C10 HE500A Column No Messages 0,657 PMM SLV1 0,00 C11 HE500A Column No Messages 0,657	BY06	IPE600	Beam	No Messages	0,194	PMM	SLU-Env	0,38
C01 HE500A Column No Messages 0,175 PMM SLV3 0,00 C02 HE500A Column No Messages 0,184 PMM SLV3 0,00 C03 HE500A Column No Messages 0,186 PMM SLV3 0,00 C04 HE500A Column No Messages 0,183 PMM SLV3 0,00 C05 HE500A Column No Messages 0,186 PMM SLV4 0,00 C06 HE500A Column No Messages 0,184 PMM SLV4 0,00 C07 HE500A Column No Messages 0,175 PMM SLV4 0,00 C08 HE500A Column No Messages 0,663 PMM SLV1 0,00 C10 HE500A Column No Messages 0,661 PMM SLV1 0,00 C11 HE500A Column No Messages 0,659 PMM SLV2 0,00	BY07	IPE600	Beam	No Messages	0,124	PMM	SLV3	6,96
CO2 HE500A Column No Messages 0,184 PMM SLV3 0,00 CO3 HE500A Column No Messages 0,186 PMM SLV3 0,00 CO4 HE500A Column No Messages 0,183 PMM SLV3 0,00 CO5 HE500A Column No Messages 0,186 PMM SLV4 0,00 C06 HE500A Column No Messages 0,184 PMM SLV4 0,00 C07 HE500A Column No Messages 0,175 PMM SLV4 0,00 C08 HE500A Column No Messages 0,663 PMM SLV1 0,00 C09 HE500A Column No Messages 0,661 PMM SLV1 0,00 C10 HE500A Column No Messages 0,659 PMM SLV2 0,00 C12 HE500A Column No Messages 0,659 PMM SLV2 0,00	Colonne	e - Profilato H	EA500					
C03 HE500A Column No Messages 0,186 PMM SLV3 0,00 C04 HE500A Column No Messages 0,183 PMM SLV3 0,00 C05 HE500A Column No Messages 0,186 PMM SLV4 0,00 C06 HE500A Column No Messages 0,184 PMM SLV4 0,00 C07 HE500A Column No Messages 0,175 PMM SLV4 0,00 C08 HE500A Column No Messages 0,663 PMM SLV1 0,00 C09 HE500A Column No Messages 0,661 PMM SLV1 0,00 C10 HE500A Column No Messages 0,659 PMM SLV2 0,00 C12 HE500A Column No Messages 0,659 PMM SLV2 0,00 C13 HE500A Column No Messages 0,661 PMM SLV2 0,00	C01	HE500A	Column	No Messages	0,175	PMM	SLV3	0,00
C04 HE500A Column No Messages 0,183 PMM SLV3 0,00 C05 HE500A Column No Messages 0,186 PMM SLV4 0,00 C06 HE500A Column No Messages 0,184 PMM SLV4 0,00 C07 HE500A Column No Messages 0,175 PMM SLV4 0,00 C08 HE500A Column No Messages 0,663 PMM SLV1 0,00 C09 HE500A Column No Messages 0,661 PMM SLV1 0,00 C10 HE500A Column No Messages 0,659 PMM SLV1 0,00 C11 HE500A Column No Messages 0,659 PMM SLV2 0,00 C13 HE500A Column No Messages 0,661 PMM SLV2 0,00	C02	HE500A	Column	No Messages	0,184	PMM	SLV3	0,00
C05 HE500A Column No Messages 0,186 PMM SLV4 0,00 C06 HE500A Column No Messages 0,184 PMM SLV4 0,00 C07 HE500A Column No Messages 0,175 PMM SLV4 0,00 C08 HE500A Column No Messages 0,663 PMM SLV1 0,00 C09 HE500A Column No Messages 0,661 PMM SLV1 0,00 C10 HE500A Column No Messages 0,659 PMM SLV2 0,00 C12 HE500A Column No Messages 0,659 PMM SLV2 0,00 C13 HE500A Column No Messages 0,661 PMM SLV2 0,00	C03	HE500A	Column	No Messages	0,186	PMM	SLV3	0,00
C06 HE500A Column No Messages 0,184 PMM SLV4 0,00 C07 HE500A Column No Messages 0,175 PMM SLV4 0,00 C08 HE500A Column No Messages 0,663 PMM SLV1 0,00 C09 HE500A Column No Messages 0,661 PMM SLV1 0,00 C10 HE500A Column No Messages 0,659 PMM SLV1 0,00 C11 HE500A Column No Messages 0,657 PMM SLV2 0,00 C12 HE500A Column No Messages 0,661 PMM SLV2 0,00 C13 HE500A Column No Messages 0,661 PMM SLV2 0,00	C04	HE500A	Column	No Messages	0,183	PMM	SLV3	0,00
C07 HE500A Column No Messages 0,175 PMM SLV4 0,00 C08 HE500A Column No Messages 0,663 PMM SLV1 0,00 C09 HE500A Column No Messages 0,661 PMM SLV1 0,00 C10 HE500A Column No Messages 0,659 PMM SLV2 0,00 C12 HE500A Column No Messages 0,659 PMM SLV2 0,00 C13 HE500A Column No Messages 0,661 PMM SLV2 0,00	C05	HE500A	Column	No Messages	0,186	PMM	SLV4	0,00
C08 HE500A Column No Messages 0,663 PMM SLV1 0,00 C09 HE500A Column No Messages 0,661 PMM SLV1 0,00 C10 HE500A Column No Messages 0,659 PMM SLV1 0,00 C11 HE500A Column No Messages 0,657 PMM SLV2 0,00 C12 HE500A Column No Messages 0,659 PMM SLV2 0,00 C13 HE500A Column No Messages 0,661 PMM SLV2 0,00	C06	HE500A	Column	No Messages	0,184	PMM	SLV4	0,00
C09 HE500A Column No Messages 0,661 PMM SLV1 0,00 C10 HE500A Column No Messages 0,659 PMM SLV1 0,00 C11 HE500A Column No Messages 0,657 PMM SLV2 0,00 C12 HE500A Column No Messages 0,659 PMM SLV2 0,00 C13 HE500A Column No Messages 0,661 PMM SLV2 0,00	C07	HE500A	Column	No Messages	0,175	PMM	SLV4	0,00
C10 HE500A Column No Messages 0,659 PMM SLV1 0,00 C11 HE500A Column No Messages 0,657 PMM SLV2 0,00 C12 HE500A Column No Messages 0,659 PMM SLV2 0,00 C13 HE500A Column No Messages 0,661 PMM SLV2 0,00	C08	HE500A	Column	No Messages	0,663	PMM	SLV1	0,00
C11 HE500A Column No Messages 0,657 PMM SLV2 0,00 C12 HE500A Column No Messages 0,659 PMM SLV2 0,00 C13 HE500A Column No Messages 0,661 PMM SLV2 0,00	C09	HE500A	Column	No Messages	0,661	PMM	SLV1	0,00
C12 HE500A Column No Messages 0,659 PMM SLV2 0,00 C13 HE500A Column No Messages 0,661 PMM SLV2 0,00	C10	HE500A	Column	No Messages	0,659	PMM	SLV1	0,00
C13 HE500A Column No Messages 0,661 PMM SLV2 0,00	C11	HE500A	Column	No Messages	0,657	PMM	SLV2	0,00
	C12	HE500A	Column	No Messages	0,659	PMM	SLV2	0,00
C14 HE500A Column No Messages 0,663 PMM SLV2 0,00	C13	HE500A	Column	No Messages	0,661	PMM	SLV2	0,00
	C14	HE500A	Column	No Messages	0,663	PMM	SLV2	0,00

FV01 Fermata Amorosi – Pensilina - Relazione di calcolo

COMMESSA LOTTO CODIFICA DOCUMENTO REV. FOGLIO

1F26 12 E ZZ CL FV010003 B 62 di 85

9.2 Verifiche della colonna HEA500 più sollecitata

Eurocode 3-2005 Units : KN, m,		ON CHECK (Sur	nmary for Com	abo and Statio	on)	
Frame : C08 Length: 4,870 Loc : 0,000		560 Shape	o: SLV1 e: HE500A s: Class l		n Type: Colum Type: InvPen i : Yes	
Country=CEN Def Interaction=Met Ignore Seismic	hod 2 (Annex	B) Mult:	ination=Eq. 6 Response=Env ce Special EQ	.10 relopes Load? Yes	P-De	ability=Class 2 lta Done? No Plug Welded? No
GammaM0=1,05 q=1,60 An/Ag=1,00	GammaM1=1 Omega=1,0 RLLF=1,00	0 Gamma	aM2=1,25 aOV=1,10 =1,000	D/C Lim=1,00	00	
Aeff=0,020 A=0,020 It=3,180E-06 Iw=5,654E-06 E=210000000,0	eNy=0,000 Iyy=8,697 Izz=1,037 Iyz=0,000 fy=275000	E-04 iyy=0 E-04 izz=0 h=0,4	0,210 0,072 190	Wel, yy=0,004 Wel, zz=6,913 Wpl, yy=0,004 Wpl, zz=0,001	BE-04 Weff Av,z	yy=0,004 ,z=6,913E-04 =0,014 =0,008
STRESS CHECK FO	RCES & MOMEN		Med,zz	Ved, z	Mod u	Ted
0,000	-60,01				Ved,y -37,107	
PMM DEMAND/CAPA D/C Ratio:	0.663 = 10	.105) ^2 .000 +	(0.652) 1.00	0 < 1.	000 Beta (E	OK CC3 6.2.9.1(6))
AXIAL FORCE DES		d Nc,Rd	Nt,Rd			
Axial	Ford -60,01	e Capacity 4 5185,714	Capacity 5185,714			
	Npl,F 5185,71	d Nu,Rd 4 6130,080			An/Ag 1,000	
	Curve Alph				Chi	Nb,Rd
MaiorB(v-v)	a 0.21	0 76002,971 0 76002,971	0,268		0,985	5107,632 5107,632
Minor (z-z) MinorB(z-z)	b 0,34 b 0,34	0 9062,330 0 9062,330	0,775 0,775		0,740 0,740	3835,679 3835,679
Torsional T	F b 0,34	0 15275,023	0,597	0,746	0,839	4348,422
MOMENT DESIGN						
Major (y-y) Minor (z-z)		t Moment 7 -108,867	Capacity 1034,262	Capacity 1034,262	Mn,Rd Capacity 1034,262 277,357	Mb,Rd Capacity 965,141
LTB		T LambdaBarLT 0 0,471			C1 1,880	Mcr 4904,354
Factors	ky 0,60					
SHEAR DESIGN						
	Ve Ford				Ted Torsion	
Major (z) Minor (y)	22,35 37,12	5 1136,802	0,020	OK	0,000	
Reduction	Vpl,F 1136,80		LambdabarW 0,463			

ITINERARIO NAPOLI-BARI. RADDOPPIO TRATTA CANCELLO - BENEVENTO II LOTTO FUNZIONALE FRASSO TELESINO - VITULANO 1° LOTTO FUNZIONALE FRASSO – TELESE PROGETTO ESECUTIVO

FV01 Fermata Amorosi – Pensilina - Relazione di calcolo

COMMESSA LOTTO CODIFICA DOCUMENTO REV. FOGLIO IF26 12 E ZZ CL FV010003 В 63 di 85

Verifiche della trave IPE 600 più sollecitata 9.3

Eurocode 3-2005 STEEL SECTION CHECK (Summary for Combo and Station) Units : KN, m, C							
Frame : BY03 Length: 7,490 Loc : 7,225	X Mid: 12,0 Y Mid: 3,74 Z Mid: 12,7	15 Shape	: SLU-Env : IPE600 : Class 1	Frame	n Type: Beam Type: InvPer i : Yes		
Country=CEN Defau Interaction=Metho Ignore Seismic Co	od 2 (Annex E	B) Multi	nation=Eq. 6 Response=Env e Special EQ		P-De	iability=Class 2 elta Done? No Plug Welded? No	
GammaM0=1,05 q=1,60 An/Ag=1,00	GammaM1=1,0 Omega=1,00 RLLF=1,000	Gamma	M2=1,25 OV=1,10 1,000	D/C Lim=1,00	00		
Aeff=0,016 A=0,016 It=1,650E-06 Iw=2,858E-06 E=210000000,0	eNy=0,000 Iyy=9,208E- Izz=3,387E- Iyz=0,000 fy=275000,0	-05 izz=0 h=0,6	,243	Wel, yy=0,003 Wel, zz=3,079 Wpl, yy=0,004 Wpl, zz=4,860	E-04 Wef:	f,yy=0,003 f,zz=3,079E-04 z=0,009 y=0,008	
STRESS CHECK FORCE Location 7,225	CES & MOMENTS Ned 0,336	Med, yy			Ved,y -0,091	Ted 0,238	
PMM DEMAND/CAPACE D/C Ratio:	0,201 = 0,00 = NEd/	00 + 0,201 + (Chi_y NRk/G	0,000 < ammaM1) + ky	1,000	OK eNy)/(Chi_L'	T My,Rk/GammaMl)	
AVIAL BODGE DEGI	***						
AXIAL FORCE DESIG		M- D-	N4 D-1				
Axial	Ned Force 0,336	Nc,Rd Capacity 4085,714					
	Npl,Rd 4085,714	Nu,Rd 4829,760	Ncr,T 44077,391	Ncr,TF 44077,391	An/Ag 1,000		
Cu Major (y-y) MajorB(y-y) Minor (z-z) MinorB(z-z) Torsional TF		Ncr 91781,397 91781,397 30384,148 30384,148 44077,391	LambdaBar 0,216 0,216 0,376 0,376 0,312	0,600	Chi 0,996 0,996 0,936 0,936 0,960	Nb,Rd 4071,189 4071,189 3822,526 3822,526 3921,053	
MOMENTE DESCRIPTION							
Major (y-y) Minor (z-z)	Med Moment -4,078 -0,024	Med, span Moment -179,947 -0,009	Mc,Rd Capacity 919,810 127,286	Mv,Rd Capacity 919,810 127,286	Mn,Rd Capacity 919,810 127,286	Mb,Rd Capacity 896,568	
LTB	b 0,340	LambdaBarLT 0,271	PhiLT 0,549	ChiLT 0,975	C1 1,455	Mcr 13170,751	
Factors	kyy 1,000	kyz 0,600	kzy 0,976	kzz 1,000			
SHEAR DESIGN							
	Ved	Vc,Rd	Stress	Status	Ted		
	Force	Capacity	Ratio	Check	Torsion		
Major (z) Minor (y)	16,108 0,095	1267,146 1339,122	0,013 7,077E-05	OK	0,238 0,238		
Reduction	Vpl,Rd 1267,146	Eta 1,200	LambdabarW 0,586				
CONNECTION SHEAR	FORCES FOR E	BEAMS					
	VMajor	VMajor					
Major (V2)	Left 13,635	Right 15,673					

FV01 Fermata Amorosi – Pensilina - Relazione di calcolo

COMMESSA LOTTO CODIFICA DOCUMENTO REV. FOGLIO IF26 12 E ZZ CL FV010003 B 64 di 85

9.4 Verifiche della trave IPE 450 più sollecitata

orr vormon	o dona navo	= 100	p.u 00.100.	lata		
Eurocode 3-2005 Units : KN, m,		CHECK (Sum	mary for Com	bo and Statio	on)	
Frame: BX23 Length: 6,000 Loc: 6,000	X Mid: 27,00 Y Mid: 4,560 Z Mid: 12,75	Shape	: SLU-Env : IPE450 : Class 1	Frame	n Type: Beam Type: InvPer d : Yes	nd
Country=CEN Defa Interaction=Meth Ignore Seismic C	od 2 (Annex B)	Multi	nation=Eq. 6 Response=Env e Special EQ		P-De	ability=Class 2 lta Done? No Plug Welded? No
GammaM0=1,05 q=1,60 An/Ag=1,00	GammaM1=1,05 Omega=1,00 RLLF=1,000	Gamma	M2=1,25 OV=1,10 1,000	D/C Lim=1,00	00	
Aeff=0,010 A=0,010 It=0,000 Iw=0,000 E=210000000,0	eNy=0,000 Iyy=3,374E-0 Izz=1,676E-0 Iyz=0,000 fy=275000,00	05 izz=0 h=0,4	,185 ,041	Wel, yy=0,001 Wel, zz=1,766 Wpl, yy=0,002 Wpl, zz=2,766	ME-04 Weff Av,z	E, yy=0,001 E, zz=1,764E-04 E-0,005
STRESS CHECK FOR Location 6,000	CES 6 MOMENTS Ned -0,363	Med,yy 0,000	Med,zz 0,000	Ved,z -5,806	Ved,y 0,000	Ted 0,000
PMM DEMAND/CAPAC D/C Ratio:	0,147 = 0,000 = NEd/() + 0,146 + Chi_z NRk/G	0,000 < ammaMl) + kz	1,000	OK eNy)/(Chi_L7	My,Rk/GammaM1)
AXIAL FORCE DESI	GN					
Axial	Ned Force -0,363	Capacity	Capacity			
	Npl,Rd 2587,619	Nu,Rd 3058,848	Ncr,T 2778,645	Ncr,TF 2778,645	An/Ag 1,000	
Major (y-y) MajorB(y-y)	b 0,340 b 0,340	Ncr 19425,026 19425,026 964,918 964,918 2778,645	LambdaBar 0,374 0,374 1,678 1,678 0,989	2,159	Chi 0,960 0,960 0,284 0,284 0,604	Nb,Rd 2482,837 2482,837 735,559 735,559 1563,226
MOMENT DESIGN						
Major (y-y) Minor (z-z)	Med Moment 0,000 0,000	Med, span Moment 32,920 0,000	Mc,Rd Capacity 445,762 72,286	445,762	Mn,Rd Capacity 445,762 72,286	Mb,Rd Capacity 224,877
LTB	urve AlphaLT I b 0,340	ambdaBarLT 1,153	PhiLT 1,326	ChilT 0,504	C1 1,136	Mcr 352,290
Factors	kyy 0,950	kyz 0,600	kzy 1,000	kzz 1,001		
SHEAR DESIGN						
Major (z) Minor (y)	Ved Force 21,947 0,000	Vc,Rd Capacity 768,519 895,845	Stress Ratio 0,029 0,000	Status Check OK OK	Ted Torsion 0,000 0,000	
Reduction	Vpl,Rd 768,519	Eta 1,200	LambdabarW 0,560			
CONNECTION SHEAR	FORCES FOR BE	AMS VMajor				

VMajor Right 21,947

VMajor Left 21,947

Major (V2)

ITINERARIO NAPOLI-BARI. RADDOPPIO TRATTA CANCELLO - BENEVENTO II LOTTO FUNZIONALE FRASSO TELESINO - VITULANO 1° LOTTO FUNZIONALE FRASSO – TELESE PROGETTO ESECUTIVO

FV01 Fermata Amorosi – Pensilina - Relazione di calcolo

COMMESSA LOTTO CODIFICA DOCUMENTO REV. FOGLIO IF26 12 E ZZ CL FV010003 В 65 di 85

Verifiche della trave HEA 200 più sollecitata 9.5

Eurocode 3-2005 : Units : KN, m,		CHECK (Sum	umary for Com	bo and Statio	on)	
Frame : BX15 Length: 6,000 Loc : 6,000	X Mid: 15,00 Y Mid: 3,040 Z Mid: 12,75	Shape	: SLU-Env : HE200A :: Class 1	Frame	n Type: Beam Type: InvPer i : Yes	nd
Country=CEN Defa Interaction=Methor Ignore Seismic Co	od 2 (Annex B)	Multi	nation=Eq. 6 Response=Env e Special EQ		P-De	ability=Class 2 lta Done? No Plug Welded? No
GammaM0=1,05 q=1,60 An/Ag=1,00	GammaM1=1,05 Omega=1,00 RLLF=1,000	Gamma	M2=1,25 OV=1,10 :1,000	D/C Lim=1,00	00	
Aeff=0,005 A=0,005 It-0,000 Iw=0,000 E=210000000,0	eNy=0,000 Iyy=3,692E-0 I22=1,336E-0 Iyz=0,000 fy=275000,00	5 izz=0 h=0,1	,083 ,050	Wel, yy=3,886 Wel, zz=1,336 Wpl, yy=4,290 Wpl, zz=2,040	SE-04 Weff SE-04 Av, 2	yy=3,886E-04 ,zz=1,336E-04 =0,004 =0,002
STRESS CHECK FOR Location 6,000	CES & MOMENTS Ned -0,034	Med,yy 0,000	Med,zz 0,000	Ved,z -9,867	Ved,y 0,000	Ted 0,000
PMM DEMAND/CAPAC D/C Ratio:	0,449 = 0,000 = NEd/	+ 0,449 + Chi_z NRk/G	0,000 < GammaM1) + kz	1,000	OK eNy)/(Chi_L7	' My,Rk/GammaMl) 3.3(4)-6.62)
AXIAL FORCE DESI						
Axial	Ned Force -0,034	Nc,Rd Capacity 1409,048				
	Npl,Rd 1409,048	Nu,Rd 1665,648	Ncr,T 2481,544	Ncr,TF 2481,544	An/Ag 1,000	
Major (y-y) MajorB(y-y) Minor (z-z) MinorB(z-z) Torsional TF	b 0,340 c 0,490 c 0,490	Ncr 2125,584 2125,584 769,171 769,171 2481,544	LambdaBar 0,834 0,834 1,387 1,387 0,772	Phi 0,956 0,956 1,753 1,753 0,938	Chi 0,703 0,703 0,354 0,354 0,680	Nb,Rd 990,657 990,657 498,965 498,965 957,662
MOMENT DESIGN						
Major (y-y) Minor (z-z)	Med Moment 0,000 0,000	Med, span Moment 37,610 0,000	Mc,Rd Capacity 112,357 53,429	Mv,Rd Capacity 112,357 53,429	Mn,Rd Capacity 112,357 53,429	Mb,Rd Capacity 83,807
LTB	urve AlphaLT I a 0,210	ambdaBarLT 0,882	PhiLT 0,960	ChiLT 0,746	C1 1,136	Mcr 151,774
Factors	kyy 0,950	kyz 0,600	kzy 1,000	kzz 1,000		
SHEAR DESIGN	Ved	Vc, Rd	Ctrace	Chahne	Ted	
Major (z) Minor (y)	Force 25,073 0,000	Capacity 272,935 646,426	Stress Ratio 0,092 0,000	Status Check OK OK	Torsion 0,000 0,000	
Reduction	Vpl,Rd 272,935	Eta 1,200	LambdabarW 0,327			
CONNECTION SHEAR	FORCES FOR BE	AMS VMajor				
Major (V2)	Left 25,073	Right 25,073				

9.6 Verifica delle diagonali in copertura

Si riportano nel seguito le verifiche delle diagonali di copertura, considerate agenti solamente a trazione. Dal momento che il post-processore del programma esegue le verifiche nelle condizioni più sfavorevoli e quindi a compressione, tali verifiche sono state effettuate separatamente, sull'elemento più sollecitato, considerando una trazione doppia di quella derivante dall'analisi (si veda tabella successiva):

IF26

12 E ZZ

CL

FV010003

66 di 85

$$N_{de} = 24.5 \cdot 2 = 49 \text{ KN}$$

Le diagonali sono costituite da profilati a L 100*100, con un'area della sezione lorda pari a:

A=19.2 cm².

Come già illustrato in precedenza, per una corretta modellazione della rigidezza della struttura, nel modello l'area della sezione è stata dimezzata applicando il fattore correttivo 0.50.

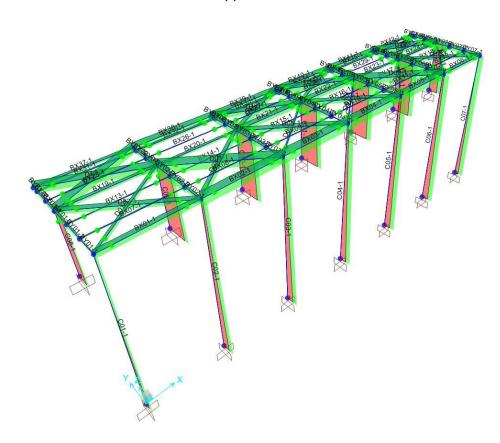


Figura 31 -Inviluppo delle sollecitazioni

FV01 Fermata Amorosi – Pensilina - Relazione di calcolo

COMMESSA LOTTO CODIFICA DOCUMENTO REV. FOGLIO

1F26 12 E ZZ CL FV010003 B 67 di 85

Nella tabella seguente sono riportati i valori massimo e minimo dell'inviluppo delle forze assiali in ogni diagonale della copertura.

Frame	OutputCase	StepType	Р
Text	Text	Text	KN
D01	SLV-Env	Max	10,4
D01	SLV-Env	Min	-10,5
D02	SLV-Env	Max	12,4
D02	SLV-Env	Min	-12,3
D03	SLV-Env	Max	22,1
D03	SLV-Env	Min	-22,2
D04	SLV-Env	Max	24,5
D04	SLV-Env	Min	-24,4
D05	SLV-Env	Max	13,0
D05	SLV-Env	Min	-13,0
D06	SLV-Env	Max	12,3
D06	SLV-Env	Min	-12,3
D07	SLV-Env	Max	13,0
D07	SLV-Env	Min	-13,0
D08	SLV-Env	Max	12,3
D08	SLV-Env	Min	-12,3
D09	SLV-Env	Max	22,1
D09	SLV-Env	Min	-22,2
D10	SLV-Env	Max	24,5
D10	SLV-Env	Min	-24,4
D11	SLV-Env	Max	12,4
D11	SLV-Env	Min	-12,3
D12	SLV-Env	Max	10,4
D12	SLV-Env	Min	-10,5
D13	SLV-Env	Max	21,5
D13	SLV-Env	Min	-21,5
D14	SLV-Env	Max	20,8
D14	SLV-Env	Min	-20,8
D15	SLV-Env	Max	19,2
D15	SLV-Env	Min	-19,2
D16	SLV-Env	Max	15,2
D16	SLV-Env	Min	-15,2
D17	SLV-Env	Max	15,2
D17	SLV-Env	Min	-15,2
D18	SLV-Env	Max	19,2

FV01 Fermata Amorosi – Pensilina - Relazione di calcolo

COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
IF26	12 E ZZ	CL	FV010003	В	68 di 85

Frame	OutputCase	StepType	Р
Text	Text	Text	KN
D18	SLV-Env	Min	-19,2
D19	SLV-Env	Max	20,8
D19	SLV-Env	Min	-20,8
D20	SLV-Env	Max	21,5
D20	SLV-Env	Min	-21,5

Per la verifica dell'asta tesa si è fatto affidamento a quanto riportato nel capitolo 4.2.4.1.2 della NTC 08.

Trazione

L'azione assiale di calcolo N_{Ed} deve rispettare la seguente condizione:

$$\frac{N_{Ed}}{N_{t,Rd}} \le 1 \tag{4.2.6}$$

dove la resistenza di calcolo a trazione $N_{t,Rd}$ di membrature con sezioni indebolite da fori per collegamenti bullonati o chiodati deve essere assunta pari al minore dei valori seguenti:

a) la resistenza plastica della sezione lorda, A,

$$N_{pl,Rd} = \frac{Af_{yk}}{\gamma_{M0}}$$
 (4.2.7)

b) la resistenza a rottura della sezione netta, Anet, in corrispondenza dei fori per i collegamenti

$$N_{u,Rd} = \frac{0.9 \cdot A_{net} \cdot f_{dk}}{\gamma_{M2}}.$$
(4.2.8)

Per le due tipologie di formulazione,è stata utilizzata, un'area effettiva per profilati a L calcolata secondo quanto riportato al capitolo 6.2.1 della CNR_UNI-10011.

$$A_{eff} = A_1 + \frac{3A_1}{3A_1 + A_2}A_2;$$

A₁ è l'area dell'ala collegata;

 A_2 è l'area dell'ala non collegata.

Per la verifica plastica della sezione è stata considerata l'area lorda della sezione che, secondo quanto riportato dalla CNR, risulta essere pari a :

$$A_{eff} = 9.6 + \frac{3*9.6}{3*9.6 + 9.6} 9.6 = 16.8 \text{ cm}^2;$$

FV01 Fermata Amorosi – Pensilina - Relazione di calcolo

COMMESSA LOTTO CODIFICA DOCUMENTO REV. FOGLIO

1F26 12 E ZZ CL FV010003 B 69 di 85

Si ottiene pertanto una resistenza plastica del profilato pari a:

$$N_{pl,Rd} = 1680*275/1.05 = 440 > 49 \text{ kN}$$

Mentre, per quanto riguarda la valutazione della resistenza a rottura del profilato, è stata considerata un'area A₁ depurata dell'area occupata da un foro di 22 mm, pertanto l'area efficace risulta essere pari a:

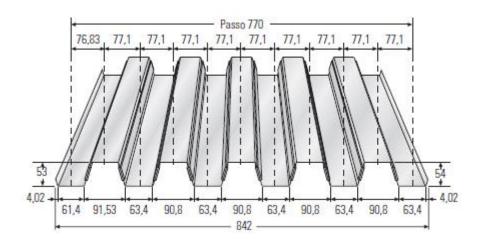
$$A_{eff} = 7.6 + 9.6 * \frac{3 * 7.6}{3 * 7.6 + 9.6} = 14.35 \, cm^2;$$

Si ottiene pertanto una resistenza ultima pari a:

$$N_{pl,Rd} = 0.9*1435*430/1.25 = 444 > 49 \text{ kN}$$

FV01 Fermata Amorosi – Pensilina - Relazione di calcolo

 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO


 IF26
 12 E ZZ
 CL
 FV010003
 B
 70 di 85

10. VERIFICA LAMIERA GRECATA DI COPERTURA

La lamiera portante è fissata tramite profili in alluminio alla struttura portante in acciaio della pensilina, al di sopra della lamiera verrà posto in opera un Sistema di rivestimento coibentato in alluminio tipo Riverclack, costituito da lastre fissate mediante apposite staffe in materiale plastico e viti auto-perforanti in acciaio zincato, con ancoraggio senza foratura degli elementi. Sistema completo di: guaina con supporto in poliestere sp. 4mm. + 4mm.; freno vapore in polietilene spess. 0.3 mm; strato isolante in tessuto non tessuto; isolamento termico costituito da pannelli semirigidi in lana di roccia, sp. 80 mm, con reazione al fuoco Euroclasse A1.

In fase progettuale si è fatto riferimento alla lamiera tipo HI BOND A55-P770-G6. Sulla base dell'analisi dei carichi agenti e sulla base delle sue caratteristiche statiche dedotte dalla normativa UNI EN1993 1-3, la lamiera grecata scelta si è rivelata soddisfare tutte le verifiche previste dalla normativa sia agli stati limite ultimi che agli stati limite di esercizio.

La geometria della lamiera grecata scelta è riportata di seguito.

- Peso proprio lamiera tipo A55-P770-G6 HI-BOND sp. 0.8mm = 10.0 daN/m^2

- Pannello coibentato $= 30.0 \text{ daN/m}^2$

- Neve = 48.0 daN/m^2

- Accidentale coperture accessibili per sola manutenzione cat. H1 = 50.0 daN/m^2

Le caratteristiche statiche della lamiera scelta sono le seguenti:

 $I_v = 52.45 \text{ cm}^4/\text{m}$

FV01 Fermata Amorosi – Pensilina - Relazione di calcolo

COMMESSA LOTTO CODIFICA DOCUMENTO REV. FOGLIO

IF26 12 E ZZ CL FV010003 B 71 di 85

$$W_e = 19.43 \text{ cm}^3/\text{m}$$

La verifica della lamiera grecata è stata svolta in accordo con le indicazioni della normativa UNI EN1993-1-3 in materia di profilati sottili di acciaio formati a freddo.

Le verifiche saranno condotte nelle ipotesi restrittive che la lamiera grecata sia appoggiata su una sola campata con luce pari a L = 2.15 m.

Il carico agente sarà (per metro di larghezza) pari a:

$$q_d = 1.3 * 40.0 + 1.5 * 50.0 + 0.75 * 48.0 = 163 \ daN/m$$

Nello schema di semplice appoggio su una luce di L = 2.15m, i valori massimi delle sollecitazioni agenti in termini di momento flettente e taglio saranno:

$$M_{max} = M_{Sd} = q_d * L^2/8 = 94.2 daNm$$

$$T_{max} = q_d * L/2 = 175.2 daN$$

La sezione in esame è di classe 4, infatti il coefficiente di riferimento ϵ è dato da:

$$\varepsilon = \sqrt{\frac{235}{f_{yk}}} = \sqrt{\frac{235}{355}} = 0.81$$

ed essendo c/t = $55/0.8 = 68.75 > 42 * \epsilon$

Trattandosi di sezione di classe 4, le verifiche allo stato limite ultimo saranno condotte con riferimento alla sezione efficace (punto 4.2.4.1.1 del D.M. 14/01/2008).

Per quanto concerne la flangia compressa, si ha:

 Ψ = +1 è il rapporto tra le tensioni di estremità della sezione

 K_{σ} = 4.0 è il fattore di imbozzamento

$$\sigma_{\rm cr} = K_{\sigma} \frac{189800}{(b/t)^2} = 4.0 \frac{189800}{(60/0.8)^2} = 135 \text{ N/mm}^2$$
 è la tensione di instabilità critica

$$\bar{\lambda}_p = \sqrt{\frac{f_y}{g_{cr}}} = \sqrt{\frac{320}{135}} = 2.37$$
 è la snellezza adimensionale critica

FV01 Fermata Amorosi – Pensilina - Relazione di calcolo

COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
IF26	12 E ZZ	CL	FV010003	В	72 di 85

$$\rho = \frac{\overline{\lambda}_p - 0.22}{\overline{\lambda}_p^2} = 0.383$$

è il fattore di riduzione della sezione efficace

$$b_{eff} = \rho * \bar{b} = 0.383 * 60 = 22.96 \text{ mm}$$

è la larghezza efficace della sezione

Verifica a flessione

Il momento resistente assumerà pertanto il seguente valore:

$$M_{Rd} = W_e * f_y / \gamma_{M0} = 19430 * 320 / 1.05 = 5.92 \text{ kNm/m}$$

Essendo $M_{Rd} > M_{Sd}$

I risultati possono essere estesi a tutte le pensiline della presente Stazione.

Verifica allo stato limite di esercizio

Per il calcolo della freccia si considera la trave soggetta al peso dei carichi. Si utilizza a questo scopo il momento di inerzia lordo della lamiera grecata pari a $I = 524500 \text{ } mm^4$. In queste condizioni la freccia massima vale:

$$\delta = \frac{5}{384} \frac{q L^4}{E I} = \frac{5}{384} \frac{1.38 * 2150^4}{210000 * 524500} = 3.48 \text{ mm} \approx = L/617 < L/180$$

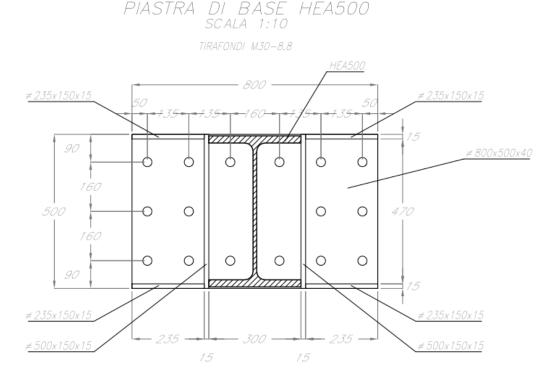
11. VERIFICA DELLE UNIONI PIU' SOLLECITATE

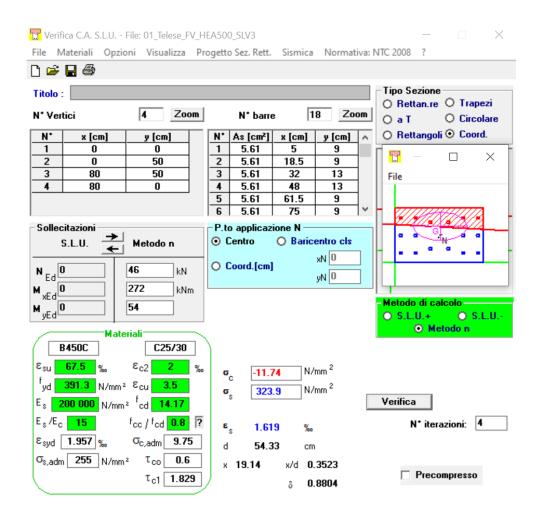
In questo capitolo si riportano le verifiche di resistenza delle unioni più sollecitate:

- Piastra di base della colonna HEA500
- Nodo Diagonale Trave: L100x10 IPE450;
- Nodo Trave Colonna: IPE600 HEA500;
- Nodo Trave principale Trave secondaria: IPE600-IPE450;

11.1 Verifica della piastra di base

L'unione tra colonna e sottostruttura in c.a. è costituita da una piastra in acciaio, di dimensioni 800x500 mm e dello spessore di 40 mm, collegata alla platea di fondazione o alla parete delle scale tramite n°16 tirafondi M30 di classe 8.8, disposti come riportato nell'immagine seguente.




Figura 32 - Dettaglio della piastra di base delle colonne

11.1.1 Verifica del Calcestruzzo

Per la verifica a schiacciamento del CLS è stata utilizzata la combinazione di carico agli SLV più sfavorevole.

Utilizzando il software VCASLU e riportando la geometria della piastra di base, è stata ottenuta la tensione di compressione agente sul calcestruzzo.

La verifica risulta essere soddisfatta in quanto:

 $f_{ed} / f_{cd} = 11.74 / 14.17 \approx 0.83$

FV01 Fermata Amorosi – Pensilina - Relazione di calcolo

 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 IF26
 12 E ZZ
 CL
 FV010003
 B
 75 di 85

11.1.2 Verifica dei tirafondi soggetti a trazione e taglio

Si riportano a seguire le verifiche condotte secondo quanto previsto dalla NTC-08, § 4.2.8.1.1. Sono state estrapolate le sollecitazioni alla base delle colonne in funzione della combinazione di carico più gravosa e dell'elemento maggiormente sollecitato.

Verifica Tirafondi Pilastro HEA 500 - Amorosi Pensilina

Bullone	x	у	$F_{t,x}$	$\mathbf{F}_{\mathrm{t,y}}$	F _{b,E}	Dir. II	Dir. ⊥ carico	Bulloni d (mm)	Classe bulloni	Sezione intera o filettata? (i/f)	Numero sezioni resistenti	Acciaid	o piatti e profi	lati
N.	mm	mm	N	N	N		Carico	30	8.8 f		1	S275 N/NL/M/ML		
1	50	90	699	3 489	3 558	bordo	interno	Verifica a Taglio - Comb	J11	1 - SLV 3	Traz. 1 - Comb	J11-SLV3	Distanze	dai bordi
2	185	90	699	3 489	3 558	bordo	interno	V _x (N)	V _y (N)	M (Nmm)	σ bullone (Mpa)	N bullone (N)	e1 (mm)	e2 (mm)
3	320	130	699	3 489	3 558	bordo	interno	11 176	55 816		324	181764	50	50
4	480	130	699	3 489	3 558	bordo	interno	Numero viti	Sez. (mm²	Fori Φ (mm)	Testa (mm)	f _{t,b} (MPa)	Interass	si bulloni
5	615	90	699	3 489	3 558	bordo	interno	16	561	31.5	46	800	p1 (mm)	p2 (mm)
6	750	90	699	3 489	3 558	bordo	interno	Ö	aratteristic	he geometriche			135	160
7	50	410	699	3 489	3 558	bordo	interno	x _G (mm)	y _G (mm)	J _x (mm²)	J _y (mm²)	J _p (mm²)	f _{tk} (MPa)	Spessore lamiera t (mm)
8	185	410	699	3 489	3 558	bordo	interno	400.0	250.0	1 037 950.00	262 400.00	1 300 350.00	370	40
9	320	370	699	3 489	3 558	bordo	interno	Verifica a taglio:			F _{v,Rd} (N) =	215 424	>	3 558
10	480	370	699	3 489	3 558	bordo	interno	Verifiche a rifollamento			$\mathbf{k} \cdot \alpha$	F _{b,Rd} (N)		F _{b,E} (N)
11	615	410	699	3 489	3 558	bordo	interno	Bull. di bordo in dir. del carico e in dir. perp.:			1.323	469 841.3	>	0.0
12	750	410	699	3 489	3 558	bordo	interno							
13 14	50 750	250 250	699 699	3 489 3 489	3 558	interno	interno	Bull. di bordo in dir. del carico e int. in dir. perp.: Bull. Int. in dir. del carico e in dir. perp.:			1.323 2.500	469 841.3	>	3 557.7
15	185	250	699	3 489	3 558 3 558	interno	interno	Buil. Int. in dir. dei carico e in dir. perp			2.500	888 000.0	>	3 557.7
16	615	250	699	3 489	3 558	interno		Verifica a trazione del bullone			F _{t,Rd} (N) =	323 136.0	>	181 764
	0.0			0 100	0 330	""	IIICIIIC	Verifica piastra a punzonamento			B _{p,Rd} (N) =	669 197	>	181 764
								Verifica a Taglio - Trazione			Cond. 2	1	>	0.42
								Asse giunto	•					
			11 176	55 816	3 558 0	Massimi bordo	bordo	+	•		+			
					0 3 558 3 558	interno bordo interno	bordo interno interno	1						

FV01 Fermata Amorosi – Pensilina - Relazione di calcolo

COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
IF26	12 E ZZ	CL	FV010003	В	76 di 85

11.1.3 Calcolo della lunghezza di ancoraggio dei tirafondi

Ai sensi del capitolo 4.1.2.1.1.4 del D.M. 14-01-2008, essendo:

fbd = fbk / γ c con γ c=1.5;

fbk =2.25 η fctk;

 $\eta = 132 - \phi / 100$.

e conoscendo, inoltre, lo sforzo di trazione agente su ogni tirafondo $F_{t,ed}$ = 181 KN, si ha che:

 $L_{ancoraggio} = F_{t,ed} / (p f_{bd}) = 70 < 75 cm$

La lunghezza di ancoraggio ipotizzata risulta essere sufficiente.

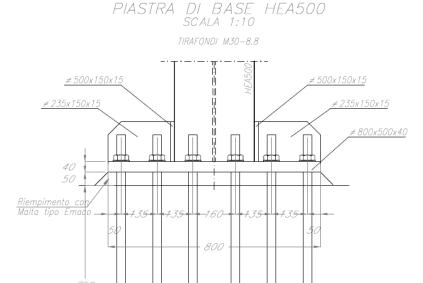


Figura 33 - Nodo di base - Dettaglio dell'ancoraggio

11.2 Unione Diagonali - Travi

Si riportano a seguire le verifiche condotte secondo quanto previsto dalle NTC-08, § 4.2.8.1.1. Sono state estrapolate le sollecitazioni sui nodi in funzione della combinazione di carico più gravosa e dell'elemento maggiormente sollecitato.

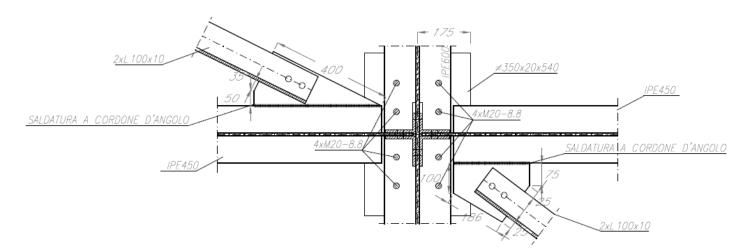
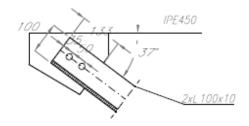


Figura 34 - Unione Diagonali - Travi



FV01 Fermata Amorosi – Pensilina - Relazione di calcolo

COMMESSA LOTTO CODIFICA DOCUMENTO REV. FOGLIO IF26 12 E ZZ CL FV010003 B 78 di 85

PARTIC OLARE DIAGONALI INTERNA SCALA 1:10

BULLONI M20-8.8

PARTICOLARE DIAGONALI ESTERNA SCALA 1:10

BULLONI M20-8.8

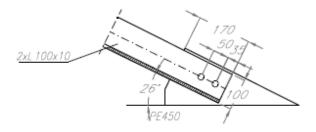


Figura 35 - Particolare unione

FV01 Fermata Amorosi – Pensilina - Relazione di calcolo

COMMESSA LOTTO CODIFICA DOCUMENTO REV. FOGLIO

1F26 12 E ZZ CL FV010003 B 79 di 85

Verifica bullonatura - Diagonali Telese Pensilina

Bullone	х	у	d _x	d _y	d	F _M	F _{M,x}	F _{M,y}	F _{t,x}		F _{t,y}	$\mathbf{F}_{\mathrm{b,E}}$	Dir. II	Dir.⊥	Bulloni d (mm)	Classe bulloni	Sezione intera o filettata? (i/f)	Numero sezioni resistenti	Acciaio	o piatti e p	
N.	mm	mm	mm	mm	mm	N	N	N	N		N	Ν	carico	carico	20	8.8	f	2		75 N/NL/M/	
1	37.5	30	0.0	-20.0	20.0	0	0	0		0	14 489	14 489	bordo	bordo		Carichi		Distanze	dai bordi	Inter	assi bulloni
2	37.5	70	0.0	20.0	20.0	0	0	0		0	14 489	14 489	bordo	bordo	V _x (N)	V _y (N)	M (N mm)	e1 (mm)	e2 (mm)	p1 (mm)	p2 (mm)
																28 977		37.5	37.5	30	0
															Numero viti	Sez. (mm²)	Fori Φ (mm)	f _{t,b} (MPa)	f _{tk} (MPa)	Spessor e lamiera t (mm)	
															2	245	21.5	800	370	18	
																	teristiche geome				
															x _G (mm)	y _G (mm)	J _x (mm²)	J _v (mm²)	J _p (mm²)		
															37.5		0.00		800.00		
															Verifica a taglio:			F _{v,Rd} (N) =	94 080.0	>	7 244.3
															Verifiche a rifolla			k·α	F _{b,Rd} (N)		F _{b,E} (N)
															Bull. di bordo in d	lir. del carico e in d	lir. perp.:	1.453	154 883.7	>	14 488.5
																Asse glunto					
							Tot	ali		0	28 977	0	bordo interno bordo interno	bordo bordo interno							

		Simboli	
x, y:	Coordinate degli assi dei bulloni	V_x , V_y :	Tagli nelle direzioni degli assi
e ₁ :	Distanza delle viti dal bordo nella direzione della forza	M:	Momento rispetto al baricentro della bullonatura
e ₂ :	Distanza delle viti al bordo nella direzione ortogonale alla forza	F _M , F _{M,x} , F _{M,y} :	Forza su ogni vite dovuta al momento e sue proiezioni sugli assi di riferimento
t:	Spessore nella verifica a rifollamento	$F_{t,x}, F_{t,y}$:	Componenti della forza totale su ogni vite dovuta al momento ed ai tagli
d, d _x , d _y :	Distanza delle viti dal baricentro e sue proiezioni sugli assi di riferimento	F _t :	Forza totale su ogni vite
x _G , y _G :	Baricentro della bullonatura	τ_{b} :	Tensione tangenziale nella vite
J_x , J_y , J_p :	Momenti d'inerzia assiali e polare	f _{d,N} :	Resistenza di progetto a trazione delle viti
α:	Coefficiente maggiorativo della resistenza nella verifica a rifollamento	f _{d,V} :	Resistenza di progetto a taglio delle viti
		f _{d.prof.} :	Resistenza di progetto dei piatti e dei profilati

11.3 Unione IPE600 - HEA500

Si riportano a seguire le verifiche condotte secondo quanto previsto dalle NTC-08, § 4.2.8.1.1. Sono state estrapolate le sollecitazioni sui nodi in funzione della combinazione di carico più gravosa e dell'elemento maggiormente sollecitato.

PARTICOLARE PIASTRA ANCORAGGIO HEA500-IPE600 SCALA 1:10

BULLONI M20-8.8

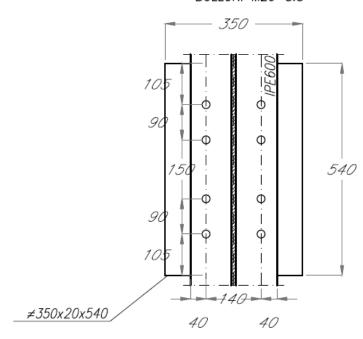
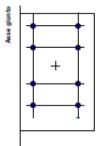


Figura 36 - Unione HEA500 - IPE600

FV01 Fermata Amorosi – Pensilina - Relazione di calcolo

COMMESSA LOTTO CODIFICA DOCUMENTO REV. FOGLIO


1F26 12 E ZZ CL FV010003 B 81 di 85

Verifica Unione Pilastro HEA 500 - IPE600- Amorosi Pensilina

Bullone	x	у	F _{tx}	F _{t,y}	F _{b,E}	Dir. II	Dir. ⊥	Bulloni di (mm) bul		Sezione Intera o filettata? (I/f)	Numero sezioni resistenti	Applato	o platti e profilati	
N.	mm	mm	N	N	N		canoc			f	1	827	'S N/NL/M/ML	
1	40	105	2.794	4.625	6.403	bordo	bordo	Verifica a Taglio - Comb	J11 - 8LV 3		Traz.		Distanze dal bordi	
2	180	105	2.794	4.625	6.403	bordo	bordo	V _x (N)	V _y (N)	M(Nmm)	σ bullone (Mpa)	N bullone (N)	e1 (mm)	e2 (mm)
3	40	195	2.794	4.625	6.403	Interno	bordo	22.352	37.000			0	50	50
4	180	195	2.794	4.625	6.403	Interno	bordo	Numero viti	Sez. (mm²)	Forl ⊕ (mm)	Tecta (mm)	f _{tb} (MPa)	Interac	si bulloni
5	40	345	2.794	4.625	6.403	Interno	bordo	8	245	21,5	30	800	p1 (mm)	p2 (mm)
6	180	345	2.794	4.625	6.403	Interno	bordo	C	aratteristici	he geometriche			135	160
7	40	435	2.794	4.625	6.403	bordo	bordo	x _o (mm)	y _e (mm)	J _x (mm²)	J _y (mm²)	J _p (mm²)	f _{sk} (MPa)	Specsore lamiera t (mm)
8	180	435	2.794	4.625	6.403	bordo	bordo	110,0	270,0	39.200,00	131.400,00	170.600,00	370	20
								Verifica a taglio:			F _{v,Nd} (N) =	94.080	>	5.403
								Verifiche a rifoliamento			k - α,	F _{b,Rd} (N)		F _{b,E} (N)
								Bull. di bordo in dir. del carico e in dir. perp.:			1,938	229.457,4	>	5.403,4
								Bull. Int. In dir. car. e di bordo in dir. perp.:			2,500	298.000,0	>	5.403,4
								Verifica a trazione del bullone			F _{t,Rd} (N) =	141.120,0	>	0
1 1								Verifica plactra a punzonamento			B _{p,Rd} (N) =	223.066	>	0
								Verifica a Taglio - Trazione			Cond. 2	1	>	90,0
								ou be						

22.362 37.000 Mascimi

6.403 bordo bordo
6.403 interno bordo
0 bordo interno

11.4 Unione IPE600 - IPE450

Si riportano a seguire le verifiche condotte secondo quanto previsto dalle NTC-08, § 4.2.8.1.1. Sono state estrapolate le sollecitazioni sui nodi in funzione della combinazione di carico più gravosa e dell'elemento maggiormente sollecitato.

PARTICOLARE UNIONE IPE600—IPE450 SCALA 1:10

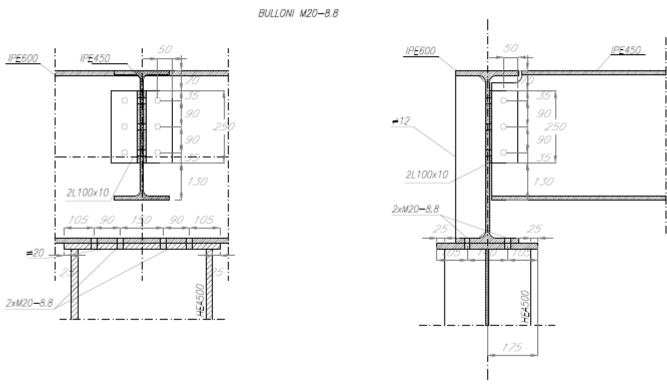


Figura 37 - Unione IPE400-HEA400

FV01 Fermata Amorosi – Pensilina - Relazione di calcolo

 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 IF26
 12 E ZZ
 CL
 FV010003
 B
 83 di 85

Verifica bullonatura IPE450-IPE600 - Amorosi Pensilina

Bullone	x	у	d _x	d,	d	F _M	F _{M,x}	F _{My}	F _{tx}	F _{ty}	F _{b,E}	Dir. II oarloo	Dir. ⊥	Bulloni d (mm) 20	Classe bulloni 8.8	Sezione Intera o filettata? (I/f)	Numero sezioni resistenti 2		olalo platti e profi 8275 N/NL/M/ML	ati
N. 1	mm 50	mm 35	mm	mm -90,0	mm 90,0	6.369	-6.369	N O	-6.217	7.643		bordo	bordo		ariohi - D10 - SL\			dal bordi	Interace	Lhulloni
2	50	125	0,0	0,0	0,0	0.303	-0.363	0	152	7.643	7,844	Interno	bordo	V _x (N)	V _v (N)	M (Nmm)	e1 (mm)	e2 (mm)	p1 (mm)	p2 (mm)
3	50	215	0,0	90,0	90,0	6.369	6.369	0	6.521	7.643		bordo	bordo	455	22.928	1.146.400	50	50 50	90	90 90
1 1	50	215	0,0	30,0	50,0	0.303	0.303	ď	0.521	7.043	10.040	DOIGO	20100						Spessore	20
1 1					- 1									Numero viti	Sez. (mm²)	Forl ⊕ (mm)	f _{tb} (MPa)	ftk (MPa)	lamiera	
1 1					- 1									3	245	21,5	800	370	9,4	
1 1					- 1											tteristiche geome				
1 1					- 1									x _o (mm)	y _o (mm)	J _x (mm ³)	J _y (mm²)	J _p (mm²)		
														50,0	125,0	0,00		16.200,00		
														Verifica a taglio:			F _{v,Rd} (N) =	94.080,0	>	6.023,1
														Verifiche a rifolia			k · α.	F _{b,Rd} (N)	,	F _{b,ii} (N)
1 1					- 1									Bull, di bordo in dir. Bull, int. in dir. car.			1,938 2,500	107.846,0 139.120,0	,	10.048,3 7.844,2
1 1					- 1									Buil. Hit in ur. car.	. e a barao n ar. p	erp	2,500	100.120,0		7.044,2
1 1					- 1															
1 1					- 1															
															Asse glunto	+				
							Tota		456	22.928		Massimi								
						_					10.048 10.048 7.844 0	bordo Interno bordo Interno	bordo bordo Interno Interno							

	Simboli		
x, y:	Coordinate degil assi dei buloni	V _x , V _y :	Tagli nelle direzioni degli assi
e ₁ :	Distanza delle viti dai bordo nella direzione della forza	M :	Momento rispetto ai baricentro della bullonatura
Θ ₂ :	Distanza delle viti al bordo nella direzione ortogonale alla forza	$F_M, F_{M,x}, F_{M,y}$:	Forza su ogni vite dovuta al momento e sue prolezioni sugli assi di riferimento
t:	Spessore nella verifica a rifoliamento	Ftx, Fty:	Componenti della forza totale su ogni vite dovuta al momento ed al tagli
d, d _x , d _y :	Distanza delle viti dai baricentro e sue prolezioni sugli assi di riferimento	F _t :	Forza totale su ogni vite
x _a , y _a :	Baricentro della bullonatura	τ _b :	Tensione tangenziale nella vite
Jz, Jy, Jp :	Momenti d'inerzia assiail e polare	f _{d,N} :	Resistenza di progetto a trazione delle viti
os :	Coefficiente maggiorativo della resistenza nella verifica a rifoliamento	f _{d,V} :	Resistenza di progetto a taglio delle viti
		f _{d,prof.} :	Resistenza di progetto dei piatti e dei profilati

FV01 Fermata Amorosi – Pensilina - Relazione di calcolo

COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
IF26	12 E ZZ	CL	FV010003	В	84 di 85

12. VERIFICHE ALLO SLD E ALLO SLO

I massimi spostamenti orizzontali di piano per i due stati limite di esercizio in condizioni sismiche, considerando cautelativamente l'altezza dalla banchina e non quella esterna, sono:

- SLD Banchina pensilina (h = 4.90m): 41 mm = 0.008h
- SLO Banchina pensilina (h = 4.90m): 32 mm = 0.003h

Tali spostamenti sono accettabili, non essendo presenti tamponature o tramezzature.

13. VERIFICHE DI DEFORMABILITA' SLE

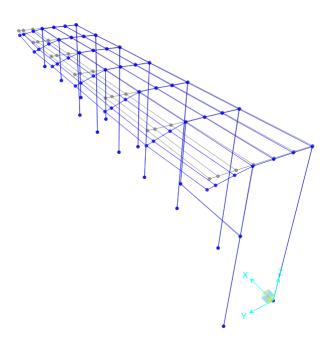


Figura 38 - Deformazioni allo SLE rara

Non c'è la necessità di prevedere monte per le travi della copertura, in quanto le verifiche secondo il § 4.2.4.2.2 delle NTC-08 forniscono i risultati riportati appresso.

Le inflessioni delle travi trasversali a mensola IPE600, di sbalzo L=3.05, nella condizione SLE rara sono:

- Inflessione massima per i carichi variabili (vento e effetti aerodinamici): 2 mm = 2L/3050 < 2L/250
- Inflessione totale: 4 mm = 2L/1525 < L/200

Le inflessioni delle travi longitudinali IPE450 nella condizione SLE rara sono trascurabili.