COMMITTENTE:

DIREZIONE LAVORI:

APPAL	$_{TAT}$	ORE:
-------	----------	------

PROGETTAZIONE:	PROGETTISTA:	DIRETTORE DELLA PROGETTAZIONE
RAGGRUPPAMENTO TEMPORANEO PROGETTISTI	Ing. Gaetano Usai	Ing. Piergiorgio GRASSO
ENGINEERING INTEGRA RIA		Responsabile integrazione fra le varie prestazioni specialistiche Dott. Ing. Piergiorgio CRASSO SAGO
DDOCETTO ESECUTIVO		MONO * ONE

PROGETTO ESECUTIVO

ITINERARIO NAPOLI – BARI RADDOPPIO TRATTA CANCELLO-BENEVENTO II LOTTO FUNZIONALE FRASSO TELESINO – VITULANO 1° LOTTO FUNZIONALE FRASSO TELESINO – TELESE

TOMBINI E PONTICELLI IDRAULICI

IN02 - Tombino idraulico Ø1500 al km 18+277 - Relazione di calcolo

APPALTATORE IMPRESA PIZZAROTTI & C. S.p. A. Dott, Ling, Salving, Del Datzo Ina. Sglvino Del Batzo Ina. Sglvino Del Batzo			SCALA:
24/02/2020			
COMMESSA LOTTO FASE ENTE TI	PO DOC. OPERA/DISCIPLINA	PROGR. RE	V .
I F 2 6 1 2 E Z Z	C L I N 0 2 0 0	0 0 1 A	
Rev. Descrizione Redatto	Data Verificato Data	Approvato Data	Autorizzato Data

Rev.	Descrizione	Redatto	Data	Verificato	Data	Approvato	Data	Autorizzato Data	
Α	Emissione	L. Gasperoni	24/02/2020	M. Pietrantoni	24/02/2020	P. Grasso	24/02/2020	G. Usai	
		0 "(†		ne de		7		GAETANO	1
								1000 20	_
								The state of the s	
								24/02/2020	

File: IF26.1.2.E.ZZ.CL.IN.00.0.0.001.A.doc	n. Elab.:
-	 <u> </u>

Tombini e ponticelli idraulici - IN02 - Tombino idraulico Ø1500 al km 18+277 – Relazione di calcolo

 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 IF26
 12 E ZZ
 CL
 IN0200 0001
 A
 3 di 179

INDICE

1.	GENERALITA'	5
1.1	DESCRIZIONE DELL'OPERA	5
1.2	Unità di misura	8
2.	NORMATIVA DI RIFERIMENTO	9
2.1	Elaborati di riferimento	9
3.	MATERIALI	10
3.1	CLASSI DI ESPOSIZIONE E COPRIFERRI	10
3.2	CALCESTRUZZO (C 32/40)	12
3.3	CALCESTRUZZO MAGRO PER GETTI DI LIVELLAMENTO/SOTTOFONDAZIONI (C12/15)	13
3.4	ACCIAIO IN BARRE D'ARMATURA PER C.A. (B450C)	14
4.	CARATTERIZZAZIONE GEOTECNICA	15
4.1	INTERAZIONE TERRENO-FONDAZIONE	16
5.	CARATTERIZZAZIONE SISMICA DEL SITO	18
5.1	VITA NOMINALE E CLASSE D'USO DELL'OPERA	19
5.2	PARAMETRI DI PERICOLOSITÀ SISMICA	21
5.3	CATEGORIA DI SOTTOSUOLO E CATEGORIA TOPOGRAFICA	26
6.	CRITERI GENERALI PER LE VERIFICHE STRUTTURALI	28
6.1	VERIFICHE ALLO SLU	28
	6.1.1 Pressoflessione	28
	6.1.2 Taglio	29
6.2	VERIFICA SLE	31
	6.2.1 Verifiche alle tensioni	31
	6.2.2 Verifiche a fessurazione	32
7	CARICO I IMITE DI FONDAZIONI DIRETTE	33

Tombini e ponticelli idraulici - IN02 - Tombino idraulico Ø1500 al km 18+277 – Relazione di calcolo

 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 IF26
 12 E ZZ
 CL
 IN0200 0001
 A
 4 di 179

8.	ANALISI DEI CARICHI	35
8.1	PESO PROPRIO (COND. DI CARICO 1)	35
8.2	PERMANENTI (COND. DI CARICO 2)	36
8.3	SPINTA DEL TERRENO (COND. DI CARICO 3/4)	37
8.4	SPINTA IN PRESENZA DI FALDA (COND. DI CARICO 5)	37
8.5	VARIAZIONI TERMICHE DELLA STRUTTURA (COND. DI CARICO 9)	38
8.6	RITIRO E VISCOSITÀ (COND. DI CARICO 8)	38
8.7	AZIONI VARIABILI DA TRAFFICO (COND. DI CARICO 10/11)	39
8.8	AZIONI DI AVVIAMENTO/FRENATURA ASSOCIATI AL PASSAGGIO DEI TRENI SUL TRAVERSO (COND. 10/11)	43
8.9	AZIONI SISMICHE (COND. DI CARICO 6/7)	45
9.	COMBINAZIONI DI CARICO	47
10.	ORIGINE E CARATTERISTICHE DEI CODICI DI CALCOLO	58
11.	RISULTATI, ANALISI E VERIFICHE SEZ.A	60
11.1	MODELLO DI CALCOLO	60
11.2	SOLLECITAZIONI DI CALCOLO	62
11.3	ARMATURE DI PROGETTO	64
11.4	VERIFICHE DI RESISTENZA E FESSURAZIONE	64
11.5	VERIFICHE GEOTECNICHE	66
12.	RISULTATI, ANALISI E VERIFICHE SEZ.B	67
12.1	MODELLO DI CALCOLO	67
12.2	SOLLECITAZIONI DI CALCOLO	70
12.3	ARMATURE DI PROGETTO	72
12.4	VERIFICHE DI RESISTENZA E FESSURAZIONE	72
12.5	VERIFICHE GEOTECNICHE	74
13.	ALLEGATO 1:TABULATI DI CALCOLO SOTTOVIA SCATOLARE SEZ A	75
14.	ALLEGATO 2: TABULATI DI CALCOLO SOTTOVIA SCATOLARE SEZ B	125

Tombini e ponticelli idraulici - IN02 - Tombino idraulico Ø1500 al km 18+277 – Relazione di calcolo

 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 IF26
 12 E ZZ
 CL
 IN0200 0001
 A
 5 di 179

1. GENERALITA'

Il presente documento si inserisce nell'ambito della redazione degli elaborati tecnici di progetto esecutivo del Raddoppio dell'Itinerario Ferroviario Napoli-Bari nella Tratta Cancello-Benevento/ 2° Lotto Funzionale Frasso Telesino – Vitulano.

Le Analisi e Verifiche nel seguito esposte fanno riferimento al tombino idraulico circolare (ø1500mm) IN02, previsto sull'asse principale del tracciato di progetto alla progressiva km 18+277,43.

La presente relazione conferma le analisi e le verifiche eseguite in fase di Progetto Definitivo per l'opera in oggetto, in quanto nel passaggio da PD a PE non sono intervenute modifiche che possano pregiudicare la validità e correttezza della presente relazione.

1.1 Descrizione dell'opera

La tipologia di tombino idraulico oggetto di dimensionamento, è a sezione circolare ed è caratterizzato da una diametro netto interno di dimensione 1.5m, con piedritti, soletta di copertura e di fondazione di spessore pari a 40 cm.

	LOTTO	WBS	OPERA	PRG.	L (m)	DL (m)	B (m)	D o H (m)	S (m)	Hr (m)
ſ	1	IN02	Tombino idraulico f 1500	18+277.43	42.0	5.0	1.5	1.5	0.11	2.30 ÷ 4.80

L(m) lunghezza complessiva stimata dell'opera scatolare o circolare

DL(m) Sviluppo complessivo opere di imbocco/sbocco

B(m) larghezza netta interna dell'opera

D o H(m) Altezza netta interna dell'opera o diametro interno

S(m) Spessore

Hr(m) Altezza ricoprimento da P.F.

In funzione dei ricoprimenti sono state considerate due sezioni di calcolo:

- Sez. A: con altezza di ricoprimento minimo e pari a 1.05 m. In modo da massimizzare gli effetti dati dal carico accidentale.
- Sez. B : con altezza di ricoprimento massimo e pari a 4.80m. In modo da massimizzare gli effetti dati dal carico permante.

Per entrambi i modelli si andrà a considerare la zona sismica più sfavorevole presente lungo la linea (zona sismica S3 definita al paragrafo 5) e la condizione stratigrafica più sfavorevole tra le aree di ubicazione delle opere rappresentata in tal caso dal litotipo bc2.

Di seguitosi riporta la sezione trasversale dell'opera. Per ulteriori dettagli si rimanda agli elaborati grafici di riferimento:

SEZIONE C-C-Scala 1:50

Figura 1 – Sezione trasversale

Nel seguito della presente relazione è affrontato il dimensionamento strutturale e geotecnico delle opere in oggetto.

Tombini e ponticelli idraulici - IN02 - Tombino idraulico Ø1500 al km 18+277 – Relazione di calcolo

 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 IF26
 12 E ZZ
 CL
 IN0200 0001
 A
 7 di 179

Tombini e ponticelli idraulici - IN02 - Tombino idraulico Ø1500 al km 18+277 – Relazione di calcolo

 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 IF26
 12 E ZZ
 CL
 IN0200 0001
 A
 8 di 179

1.2 Unità di misura

Nel seguito si adotteranno le seguenti unità di misura:

• per le lunghezze ⇒ m, mm

per i carichi ⇒ kN, kN/m2, kN/m3

per le azioni di calcolo ⇒ kN, kNm

per le tensioni ⇒ MPa

Tombini e ponticelli idraulici - IN02 - Tombino idraulico Ø1500 al km 18+277 – Relazione di calcolo

COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
IF26	12 E ZZ	CL	IN0200 0001	Α	9 di 179

2. NORMATIVA DI RIFERIMENTO

Di seguito si riporta l'elenco generale delle Normative Nazionali ed internazionali vigenti alla data di redazione del presente documento, quale riferimento per la redazione degli elaborati tecnici e/o di calcolo dell'intero progetto nell'ambito della quale si inserisce l'opera oggetto della presente relazione:

- Rif. [1] Ministero delle Infrastrutture, DM 14 gennaio 2008, «Nuove Norme Tecniche per le Costruzioni»
- Rif. [2] Ministero delle Infrastrutture e Trasporti, circolare 2 febbraio 2009, n. 617 C.S.LL.PP., «Istruzioni per l'applicazione delle Nuove norme tecniche per le costruzioni di cui al decreto ministeriale 14 gennaio 2008»
- Rif. [3] Manuale di Progettazione delle Opere Civili: PARTE I / Aspetti Generali (RFI DTC SI MA IFS 001 A)
- Rif. [4] Manuale di Progettazione delle Opere Civili: PARTE II Sezione 1 / Ambiente e Geologia (RFI DTC SI AG MA IFS 001 A rev 30/12/2016)
- Rif. [5] Manuale di Progettazione delle Opere Civili: PARTE II Sezione 2 / Ponti e Strutture (RFI DTC SI PS MA IFS 001 A– rev 30/12/2016)
- Rif. [6] Manuale di Progettazione delle Opere Civili: PARTE II Sezione 3 / Corpo Stradale (RFI DTC SI CS MA IFS 001 A– rev 30/12/2016)
- Rif. [7] Manuale di Progettazione delle Opere Civili: PARTE II Sezione 4 / Gallerie (RFI DTC SI GA MA IFS 001 A– rev 30/12/2016)
- Rif. [8] Manuale di Progettazione delle Opere Civili: PARTE II Sezione 5 / Prescrizioni per i Marciapiedi e le Pensiline delle Stazioni Ferroviarie a servizio dei Viaggiatori (RFI DTC SI CS MA IFS 002 A– rev 30/12/2016)
- Rif. [9] Manuale di Progettazione delle Opere Civili: PARTE II Sezione 6 / Sagome e Profilo minimo degli ostacoli (RFI DTC SI CS MA IFS 003 A– rev 30/12/2016)
- Rif. [10] Regolamento (UE) N.1299/2014 della Commissione del 18 Novembre 2014 relativo alle specifiche tecniche di interoperabilità per il sottosistema "infrastruttura" del sistema ferroviario dell'Unione europea
- Rif. [11] Eurocodice 1 Azioni sulle strutture, Parte 1-4: Azioni in generale Azioni del vento (UNI EN 1991-1-4)
- Rif. [12] UNI 11104: Calcestruzzo: Specificazione, prestazione, produzione e conformità Istruzioni complementari per l'applicazione della EN 206-1

2.1 Elaborati di riferimento

Costituiscono parte integrante di quanto esposto nel presente documento, l'insieme degli elaborati di progetto specifici relativi all'opera in esame e riportati in elenco elaborati.

3. MATERIALI

Di seguito si riportano le caratteristiche dei materiali previsti per la realizzazione delle strutture oggetto di calcolo nell'ambito del presente documento:

3.1 CLASSI DI ESPOSIZIONE E COPRIFERRI

Con riferimento alle specifiche di cui alla norma UNI EN 206-1-2006, si definiscono di seguito le classi di esposizione del calcestruzzo delle diverse parti della struttura oggetto dei dimensionamenti di cui al presente documento:

Classe di esposizione: XC4;

Classe esposizione norma UNI 9858	Classe esposizione norma UNI 11104 UNI EN 206 –1	Descrizione dell'ambienne	Esemplo	Massimo rapporto a/c	Minima Classe di resistenza	Contenuto minimo in aria (%)
1 Assenza	a di rischio di	corrosione o attacco				
1	X0	Per calcestruzzo privo di armatura o inserti metallici: tutte le esposizioni eccetto dove o è gelo disgelo, o attacco chimico. Calcestruzzi con armatura o inserti metallici:in ambiente molto asciutto.	Interno di edifici con umidità relativa monito bassa. Calcestruzzo non armato all'interno di edifici. Calcestruzzo non armato immerso in suolo non aggressiva o in acqua non aggressiva . Calcestruzzo non armato soggetto a cidi di bagnato asciutto ma non soggetto adrassione, gelo o attasco chimico.	-	C 12/15	
		a carbonatazione				and the section
condizioni riflet	ttano quelle dell'amb		iferro o nel ricoprimento di inserti metallici, ma in lassificazione dell'ambiente circostante può esser			
2 a	XC1	Asciutto o permanentemente bagnato.	Interni di edifici con umidità relativa bassa. Calcestruzzo armato ordinario o precompresso con le superfici all'interno di strutture con eccezione delle parti esposte a condensa, o immerse i acqua.	0,60	C 25/30	
2 a	XC2	Bagnato, raramente asciutto.	Parti di strutture di contenimento liquidi, fondazioni. Calcestruzzo armato ordinario o precompresso prevalentemente immerso in acqua o terreno non aggressivo.	0,60	C 25/30	
5 a	XC3	Umidità moderata.	Calcestruzzo armato ordinario o precompresso in esterni con superfici esterne riparate dalla pioggia, o in interni con umidità da moderata ad alta.	0,55	C 28/35	
4 a 5 b	XC4	Ciclicamente asciutto e bagnato.	Calcestruzzo armato ordinario o precompresso in esterni con superfici soggette a alternanze di asciiutto ed umido. Calcestruzzi a vista in ambienti urbani. Superfici a contatto con l'acqua non comprese nella classe XC2.	0,50	C 32/40	
3 Corrosi	one indotta d	a cloruri esclusi quelli	provenenti dall'acqua di mare			
5 a	XD1	Umidità moderata.	Calcestruzzo armato ordinario o precompresso in superfici o parti di ponti e viadotti esposti a spruzzi d'acqua contenenti cloruri.	0,55	C 28/35	
4 a 5 b	XD2	Bagnato, raramente asciutto.	Calcestruzzo armato ordinario o precompresso in elementi strutturali totalmente immersi in acqua anche industriale contenete cloruri (Piscine).	0,50	C 32/40	
5 c	XD3	Ciclicamente bagnato e asciutto.	Calcestruzzo armato ordinario o precompresso, di elementi strutturali direttamente soggetti agli agenti dispelanti o agli spruzzi contenenti agenti disgelanti. Calcestruzzo armato ordinario o precompresso, elementi con una superficie immersa in acqua contenente chorui e l'altre esposta all'aria. Parti di ponti, pavimentazioni e parcheggi per auto.	0,45	C 35/45	

Classe esposizione norma UNI 11104 UNI EN 206 –1	Descrizione dell'ambiente	Esemplo	Massimo rapporto a/c	Minima Classe di resistenza	Contenut minimo ir aria (%)
one indotta	da cloruri presenti nell'a	acqua di mare			-
XS1	Esposto alla salsedine marina ma non direttamente in contatto con l'acqua di mare.	Calcestruzzo armato ordinario o precompresso con elementi strutturali sulle coste o in prossimità.	0,50	C 32/40	
XS2	Permanentemente sommerso.	precompresso di strutture marine completamente immersi in acqua.	0,45	C 35/45	
XS3	Zone esposte agli spruzzi o alle marea.	Calcestruzzo armato ordinario o precompresso con elementi strutturali esposti alla battigia o alle zone soggette agli spruzzi ed onde del mare.	0,45	C 35/45	
dei cicli di g	elo/disgelo con o senza				
XF1	Moderata saturazione d'acqua,in assenza di agente disgelante.	Superfici verticali di calcestruzzo come facciate e colonne esposte alla pioggia ed al gelo. Superfici non verticali e non soggette alla completa saturazione ma esposte all gelo, alla pioggia o all'acqua.	0,50	C 32/40	
XF2	Moderata saturazione d'acqua, in presenza di agente disgelante.	modo sarebbero classificati come XF1 ma che sono esposti direttamente o indirettamente agli agenti disgelanti.	0,50	C 25/30	3,0
XF3	Elevata saturazione d'acqua, in assenza di agente disgelante	Superfici orizzontali in edifici dove l'acqua può accumularsi e che possono essere soggetti ai fenomeni di gelo, elementi soggetti a frequenti bagnature ed esposti al gelo.	0,50	C 25/30	3,0
XF4	Elevata saturazione d'acqua, con presenza di agente antigelo oppure acqua di mare.	Superfici orizzontali quali strade o pavimentazioni esposte al gelo ed ai sali disgelanti in modo diretto o indiretto, elementi esposti al gelo e soggetti a frequenti bagnature in presenza di agenti disgelanti o di acqua di mare.	0,45	C 28/35	3,0
chimico**					
XA1	debolmente aggressivo secondo il prospetto 2 della UNI EN 206-1	Contenitori di fanghi e vasche di decantazione. Contenitori e vasche per acque reflue.	0,55	C 28/35	
XA2	Ambiente chimicamente moderatamente aggressivo secondo il prospetto 2 della UNI EN 206-1	Elementi strutturali o pareti a contatto di terreni aggressivi.	0,50	C 32/40	
XA3	Ambiente chimicamente fortemente aggressivo secondo il prospetto 2 della UNI EN 206-1	Elementi strutturali o pareti a contatto di acque industriali fortemente aggressive. Contentiori di foraggi, mangimi e liquame provenienti dall'allevamento animale. Torri di raffreddamento di fumi di gas di scarico industriali.	0,45	C 35/45	
	espatible espati	espisitione mormalium de la contra pre senti nell' sun Ex 196 - 1 one indotta da cloruri pre senti nell' Espota dis salsedina marina ma non direttamente in contatto con l'acqua di marina ma non direttamente in contatto con l'acqua di marina ma con direttamente in contatto con l'acqua di marina ma con direttamente in contatto con l'acqua di marina ma con direttamente in contatto con l'acqua di marina ma con direttamente di contatto con l'acqua di marina ma contatta di acqua di marina ma contatta di acqua in asserza di agente disgelante. XF2 Moderata saturazione di acqua, in asserza di agente disgelante. XF3 Elevata saturazione di acqua, in asserza di agente disgelante. XF4 Elevata saturazione di acqua, in asserza di agente disgelante di acqua, in asserza di agente disgelante di acqua di marina marina di acqua di acqua di marina di acqua di acqua di marina di acqua di	pespositione mome mome mome mome mome mome mome m	pespositione moma moma moma moma moma moma moma mom	pespositione moma manual momenta da cloruri pre senti nell'acqua di mare Esposto alla salsedine momenta in contratto con l'acqua, di mare Esposto alla salsedine momenta in contratto con l'acqua, di mare XS1 XS2 Permanentemente completamente in contratto con l'acqua, di mare. XS2 Zone esposta agli spruzzi con precompresso di struttura marine completamente informare in contratto completamente immensi in acqua. XS3 Zone esposta agli spruzzi con precompresso di strutture marine completamente immensi in acqua. XS4 XS4 XS5 Acque esposta agli spruzzi con delle della mone soggetta alle marea. XS5 Moderata saturazione d'acqua, in presenza di agente disgelante. XS5 Moderata saturazione d'acqua, in presenza di agente disgelante. XS5 Moderata saturazione d'acqua, in presenza di agente disgelante. XS5 Elevata saturazione d'acqua, in assenza di agente disgelante del mone soggetta e con londe saturazione d'acqua, in assenza di agente disgelante e colonne esposte alla poggia o di acqua, in assenza di agente disgelante e colonne esposte di elevata saturazione d'acqua, in assenza di agente disgelante e colonne esposte di elevata saturazione d'acqua, in assenza di agente disgelante e colonne esposte di elevata saturazione d'acqua, in assenza di agente disgelante e colonne esposte di elevata saturazione d'acqua, in assenza di agente disgelanti in contratto de colonne del acqua, con presenza di agente disgelanti in modo diretto i indiretto, elevata saturazione con del acqua, con presenza di agente disgelanti in contratto de colonne di acqua, in mare. XS4 Ambiente chimicamente del contratto di tanghi e vasche di decantazione. XAA2 Anticiere chimicamente concentratione del contratto di tanghi e vasche di decantazione. Contentito di tanghi e vasche di decantazione contratto di tanghi e vasche di decantazione. Elementi strutturali o pareti a contatto di terre il aggressivo concentratio del concentratio di acqua, in delle contratto di terre il aggressivo concentratione contratto di tanghi e vasche di decantazi

Classi di esposizione secondo norma UNI - EN 206-2006

La determinazione delle classi di resistenza dei conglomerati dei conglomerati, di cui ai successivi paragrafi, sono state inoltre determinate tenendo conto delle classi minime stabilite dalla stessa norma UNI-EN 11104, di cui alla successiva tabella:

Tombini e ponticelli idraulici - IN02 - Tombino idraulico Ø1500 al km 18+277 – Relazione di calcolo

 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 IF26
 12 E ZZ
 CL
 IN0200 0001
 A
 11 di 179

٤.

UNI 11104:2004

prospetto 4 Valori limiti per la composizione e le proprietà del calcestruzzo																		
		Classi di esposizione																
	Nessun rischio di corrosione dell'armatura			e delle arı a carbona		Corro	sione o	delle ai	rmature ir	ndotta da	cloruri	Attacco da cicli di gelo/disgelo		Ambiente aggressivo per attacco chimico				
						Acqu	a di ma	are		uri prover a altre for								
	X0	XC1	(C2	XC3	XC4	XS1	XS2	XS3	XD1	XD2	XD3	XF1	XF2	XF3	XF4	XA1	XA2	XA3
Massimo rapporto a/c	-	0,60)	0,55	0,50	0,50	0,	45	0,55	0,50	0,45	0,50	0,	50	0,45	0,55	0,50	0,45
Minima classe di resistenza*)	C12/15	C25/3	30	C28/35	C32/40	C32/40	C35	5/45	C28/35	C32/40	C35/45	32/40	25	/30	28/35	28,35	32/40	35/45
Minimo contenuto in cemento (kg/m³)	-	300		320	340	340	36	60	320	340	360	320	34	40	360	320	340	360
Contenuto minimo in aria (%)														3,0 ^{a)}				
Altri requisiti												Aggregati conformi alla UNI EN 12620 È richiesto l'impiego di di adeguata resistenza al gelo/disgelo cementi resistenti ai solfati						

Nel prospetto 7 della UNI EN 206-1 viene riportata la classe C8/10 che corrisponde a specifici calcestruzzi destinati a sottofondazioni e ricoprimenti. Per tale classe dovrebbero essere definite le prescrizioni di durabilità nei riguardi di acque o terreni aggressivi.

Classi di resistenza minima del calcestruzzo secondo UNI – 11104

I copriferri di progetto adottati per le barre di armatura, tengono infine conto inoltre delle prescrizioni di cui alla Tabella C4.1.IV della Circolare n617 del 02-02-09; si è in particolare previsto di adottare i seguenti Copriferri minimi espressi in mm

Copriferro minimo: 35 mm

Quando il calcestruzzo non contiene aria aggiunta, le sue prestazioni devono essere verificate rispetto ad un calcestruzzo aerato per il quale è provata la resistenza al gelo/disgelo, da determinarsi secondo UNI 7087, per la relativa classe di esposizione.

Qualora la presenza di solfati comporti le classi di esposizione XA2 e XA3 è essenziale utilizzare un cemento resistente ai solfati secondo UNI 9156.

Tombini e ponticelli idraulici - IN02 - Tombino idraulico Ø1500 al km 18+277 – Relazione di calcolo

Tensione di aderenza di calcolo acciaio-calcestruzzo

1.00

η=

 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 IF26
 12 E ZZ
 CL
 IN0200 0001
 A
 12 di 179

3.2 Calce	struzzo (C 32/	/40)	
Valore carat	teristico della r	esistenz	za a compressione cubica a 28 gg:
R _{ck} =	40	MPa	
Valore carat	teristico della r	esistenz	za a compressione cilindrica a 28 gg:
f _{ck} =	33.2	MPa	$(0.83*R_{ck})$
Resistenza a	a compression	e cilindri	ica media:
f _{cm} =	41.2	MPa	(fck+8)
Resistenza a	a trazione assia	1	
f _{ctm} =	3.10	MPa	Valore medio
f _{ctk,0,05} =	2.17 a trazione per	MPa	Valore caratteristico frattile 5%
flessione:		_	
f _{cfm} =	3.7	MPa	Valore medio
f _{cfk,0,05} =	2.6	MPa	Valore caratteristico frattile 5%
Coefficiente	parziale per le	verifich	e agli SLU:
γ _c = <u>Per situazioni di</u>	1.5 carico eccezionali, i	tale valore	va considerato pari ad 1,0
- Resistenza d	di calcolo a cor	npressio	one allo SLU:
f _{cd} =	18.8	MPa	(0,85*fck/γs)
Resistenza d	di calcolo a traz	zione dir	retta allo SLU:
f _{ctd} =	1.45	MPa	(f _{ctk 0,05} / γs)
Resistenza d	di calcolo a traz	zione pe	r flessione SLU:
f _{ctd f} =	1.74	MPa	1,2*fctd
Per spessori mir	nori di 50mm e calce	estruzzi ord	inari, tale valore va ridotto del 20%
Modulo di el	lasticità norma	le :	Modulo di elasticità tangenziale:
E _{cm} =	33643	MPa	G _{cm} = 14018 MPa
	0.2	lineare	
α=	0.00001	l C	

Tombini e ponticelli idraulici - IN02 - Tombino idraulico Ø1500 al km 18+277 – Relazione di calcolo

 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 IF26
 12 E ZZ
 CL
 IN0200 0001
 A
 13 di 179

 $f_{bd} =$ 3.25 MPa (2,25* $f_{ctk*}\eta/\gamma_S$)

Nel caso di armature molto addensate, o ancoraggi in zona tesa tale valore va diviso per 1,5

Tensioni massime per la verifica agli SLE (Prescrizioni Manuale RFI Parte 2-Sezione 2)

 $\sigma_{\text{cmax QP}} = (0.40 \text{ f}_{\text{cK}}) = 13.28 \text{ MPa}$ (Combinazione di Carico Quasi Permanente)

 $\sigma_{\text{cmax R}}$ = (0,55 f_{cK}) = 18.26 MPa (Combinazione di Carico Caratteristica - Rara)

Per spessori minori di 50mm e calcestruzzi ordinari, tale valori vanno ridotti del 20%

3.3 Calcestruzzo magro per Getti di livellamento/sottofondazioni (C12/15)

Valore caratteristico della resistenza a compressione cubica a 28 gg:

R_{ck}= 15 MPa

Valore caratteristico della resistenza a compressione cilindrica a 28 gg:

 $f_{ck} = \frac{12.5}{MPa} MPa \qquad (0.83*R_{ck})$

Resistenza a compressione cilindrica media:

 f_{cm} = 20.5 MPa (fck+8)

Si omettono resistenze e/o tensioni di calcolo, essendo tale conglomerato previsto per parti d'opera senza funzioni strutturali.

Tombini e ponticelli idraulici - IN02 - Tombino idraulico Ø1500 al km 18+277 – Relazione di calcolo

COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
IF26	12 E ZZ	CL	IN0200 0001	Α	14 di 179

3.4 Acciaio in barre d'armatura per c.a. (B450C)

Tensione caratteristica di rottura	1:
------------------------------------	----

 f_{tk} = 540 MPa (frattile al 5%)

Tensione caratteristica allo snervamento:

 f_{vk} = 450 MPa (frattile al 5%)

Fattore di sovraresistenza (nel caso di impiego di legame costitutivo tipo bilineare con incrudimento)

 $k=f_{tk}/f_{vk}=$ 1.20 MPa

Allungamento a rottura (nel caso di impiego di legame costitutivo tipo bilineare con incrudimento)

 $(A_{gt})_{k} = \varepsilon_{uk} = 7.5$ %

 $\varepsilon_{\rm ud} = 0.9 \ \varepsilon_{\rm uk} = 6.75 \%$

Coefficiente parziale per le verifiche agli SLU:

 $\gamma_{c} = 1.15$

Per situazioni di carico eccezionali, tale valore va considerato pari ad 1,0

Resistenza di calcolo allo SLU:

 f_{yd} = 391.3 MPa (f_{yk}/γ_s)

Modulo di elasticità :

E_f= **210000** MPa

Tensione massima per la verifica agli SLE (Prescrizioni Manuale RFI Parte 2-Sezione 2)

 $\sigma_{s max} = (0.75 \text{ fyK}) = 360 \text{ MPa}$ Combinazione di Carico Caratteristica(Rara)

Tombini e ponticelli idraulici - IN02 - Tombino idraulico Ø1500 al km 18+277 – Relazione di calcolo

 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 IF26
 12 E ZZ
 CL
 IN0200 0001
 A
 15 di 179

4. CARATTERIZZAZIONE GEOTECNICA

La definizione del modello geotecnico di sottosuolo di riferimento per il dimensionamento delle strutture di fondazione dell'opera, è trattata diffusamente nelle relazioni generali delle opere all'aperto dei sub-lotti 1,2 e 3.

Dall'esame di quanto riportato nella relazione geotecnica di riferimento e in relazione alle progressive in esame, emerge che il volume di terreno direttamente interagente con l'opera ha le seguenti proprietà:

Unità bc2 – Sabbia, sabbia limosa (Alluvioni antiche)

 γ = 19.5÷20.5 kN/m³ peso di volume naturale

φ' = 34÷38° angolo di resistenza al taglio

c' = 0 kPa coesione drenata

Nspt = 29 numero di colpi da prova SPT

Dr = 65% densità relativa

Vs = 180÷300 m/s velocità delle onde di taglio

Go = 65÷175 MPa modulo di deformazione a taglio iniziale (a piccole deformazioni)

Eo = 170:450 MPa modulo di deformazione elastico iniziale (a piccole deformazioni)

Il terreno di ricoprimento è invece costituito dal riporto stradale avente le seguenti proprietà:

Terreno di Rinfianco e di Ricoprimento: Terreno da rilevato Ferroviario

 $\gamma_{\text{nat}} = 20 \text{ kN/m}^3$ peso di volume naturale

c' = 0 kPa coesione drenata

 $\varphi' = 38^{\circ}$ angolo di resistenza al taglio

v = 0.20 coefficiente di Poisson

Eo = 300÷400 MPa modulo di deformazione elastico iniziale

Riguardo infine il livello di falda, dal profilo geotecnico locale si evince che la superficie piezometrica non influenza il regime di spinta sull'opera.

Tombini e ponticelli idraulici - IN02 - Tombino idraulico Ø1500 al km 18+277 – Relazione di calcolo

 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 IF26
 12 E ZZ
 CL
 IN0200 0001
 A
 16 di 179

4.1 interazione terreno-fondazione

Di seguito sono trattati gli aspetti di natura geotecnica riguardanti l'interazione terreno-struttura relativamente all'opera in esame.

Per la determinazione della costante di sottofondo si può fare riferimento alle seguenti formulazioni assimilando il comportamento del terreno a quello di un mezzo elastico omogeneo:

•
$$s = B \cdot c_t \cdot (q - \sigma_{v0}) \cdot (1 - v^2) / E$$

dove:

- s = cedimento elastico totale;
- B = lato minore della fondazione;
- ct = coefficiente adimensionale di forma ottenuto dalla interpolazione dei valori dei coefficienti proposti dal Bowles, 1960 (L = lato maggiore della fondazione):

ct =
$$0.853 + 0.534 \ln(L/B)$$
 rettangolare con L/B \leq 10

$$ct = 2 + 0.0089 (L/B)$$
 rettangolare con L/B>10

- q = pressione media agente sul terreno;
- $-\sigma_{v0}$ = tensione litostatica verticale alla quota di posa della fondazione;
- ν = coefficiente di Poisson del terreno;
- E = modulo elastico medio del terreno sottostante.

Il valore della costante di sottofondo k_w è valutato attraverso il rapporto tra il carico applicato ed il corrispondente cedimento pertanto, si ottiene:

•
$$k_w = E / [(1-v^2) \cdot B \cdot ct]$$

Di seguito si riportano, in forma tabellare, i risultati delle valutazioni effettuate per il caso in esame, sulla scorta del valore di progetto di **E** attribuito allo strato di Fondazione, avendo considerato una dimensione longitudinale della fondazione ritenuta potenzialmente collaboranti:

Tombini e ponticelli idraulici - IN02 - Tombino idraulico Ø1500 al km 18+277 – Relazione di calcolo

 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 IF26
 12 E ZZ
 CL
 IN0200 0001
 A
 17 di 179

E'(KN/m²) = $\begin{bmatrix} 50000.0 \\ v = & 0.25 \\ B (m) = & 1.5 \\ L (m) = & 10.0 \end{bmatrix}$

ct = 1.87

Kw = **19054** KN/m3

Tombini e ponticelli idraulici - IN02 - Tombino idraulico Ø1500 al km 18+277 – Relazione di calcolo ITINERARIO NAPOLI – BARI RADDOPPIO TRATTA CANCELLO-BENEVENTO II LOTTO FUNZIONALE FRASSO TELESINO – VITULANO 1° LOTTO FUNZIONALE FRASSO TELESINO – TELESE PROGETTO ESECUTIVO

COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
IF26	12 E ZZ	CL	IN0200 0001	Α	18 di 179

5. CARATTERIZZAZIONE SISMICA DEL SITO

Nel seguente paragrafo è riportata la valutazione dei parametri di pericolosità sismica utili alla determinazione delle azioni sismiche di progetto dell'opera cui si riferisce il presente documento, in accordo a quanto specificato a riguardo dal D.M. 14 gennaio 2008 e relativa circolare applicativa.

L'opera in questione rientra in particolare nell'ambito del Progetto di Raddoppio della tratta Ferroviaria Frasso Telesino – Vitulano, che si sviluppa per circa 30Km, da ovest verso est, attraversando il territorio di diverse località tra cui Dugenta/Frasso (BN), Amorosi (BN), Telese(BN), Solopaca(BN), San Lorenzo Maggiore(BN), Ponte(BN), Torrecuso(BN), Vitulano (BN), Benevento – Località Roseto (BN).

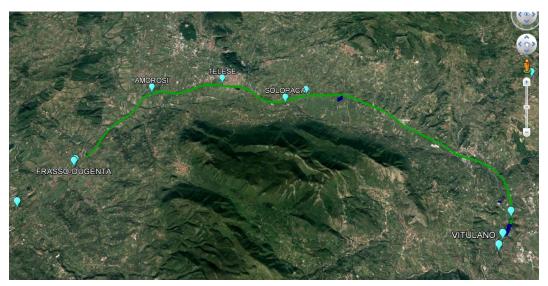


Figura 2 – Configurazione planimetrica tracciato

In considerazione della variabilità dei parametri di pericolosità sismica con la localizzazione geografica del sito, ed allo scopo di individuare dei tratti omogenei nell'ambito dei quali assumere costanti detti parametri, si è provveduto a suddividere il tracciato in tre sottozone simiche, a seguito di un esame generale del livello pericolosità sismica dell'area che evidenzia un graduale incremento dell'intensità sismica da ovest verso est; nella fattispecie le zone sismiche "omogenee" individuate, sono quelle di seguito elencate:

Zona S1: da pk 16+500 a pk 22+500 (Dugenta/Frasso – Amorosi)

Zona S2: da pk 22+500 a pk 30+000 (Amorosi - Solopaca)

Zona S3: da pk 30+000 a pk 46+577 (Solopaca-Ponte-Vitulano)

Tombini e ponticelli idraulici - IN02 - Tombino idraulico Ø1500 al km 18+277 – Relazione di calcolo

 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 IF26
 12 E ZZ
 CL
 IN0200 0001
 A
 19 di 179

Per ciascuna zona, sono stati dunque individuati, in funzione del periodo di riferimento dell'azione sismica (VR), i parametri di pericolosità sismica (ag/g, F0 e Tc*) rappresentativi delle più severe condizioni di pericolosità riscontrabili lungo il tratto di riferimento, assumendo in particolare come riferimento le seguenti Località

Zona S1: Amorosi (BN)

Zona S2: Solopaca (BN)

Zona S3: Ponte (BN)

Nei paragrafi seguenti è riportata la valutazione dei parametri di pericolosità sismica per ciascuna delle località di riferimento.

5.1 Vita Nominale e Classe d'uso dell'Opera

Per la valutazione dei parametri di pericolosità sismica è necessario definire, oltre alla localizzazione geografica del sito, la Vita nominale dell'opera strutturale (VN), intesa come il numero di anni nel quale la struttura, purchè soggetta alla manutenzione ordinaria, deve potere essere usata per lo scopo al quale è destinata, e la Classe d'Uso a cui è associato un coefficiente d'uso (CU)

La vita nominale delle infrastrutture ferroviarie può, di norma, assumersi come indicato nella seguente tabella.

	TIPI DI COSTRUZIONE	Vita Nominale V _N [anni]
1	Opere nuove su infrastrutture ferroviarie progettate con le norme vigenti prima del DM14/1/2008 a velocità convenzionale V<250 Km/h	50
2	Altre opere nuove a velocità V<250 Km/h	75
3	Altre opere nuove a velocità V>250 Km/h	100
4	Opere di grandi dimensioni: ponti e viadotti con campate di luce maggiore di 150 m	≥100

Per l'opera in oggetto si considera una vita nominale VN = 75 anni (categoria 2)

Riguardo invece la Classe d'Uso, il Decreto Ministeriale del 14 gennaio 2008, individua le seguenti quattro categorie

Tombini e ponticelli idraulici - IN02 - Tombino idraulico Ø1500 al km 18+277 – Relazione di calcolo

 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 IF26
 12 E ZZ
 CL
 IN0200 0001
 A
 20 di 179

- Classe I: costruzioni con presenza solo occasionale di persone, edifici agricoli.
- Classe II: costruzioni il cui uso preveda normali affollamenti, senza contenuti pericolosi per l'ambiente e senza funzioni pubbliche e sociali essenziali. Industrie con attività non pericolose per l'ambiente. Ponti, opere infrastrutturali, reti viarie non ricadenti in Classe III o in Classe IV, reti ferroviarie la cui interruzione non provochi situazioni di emergenza. Dighe il cui collasso non provochi conseguenze rilevanti.
- Classe III: costruzioni il cui uso preveda affollamenti significativi. Industrie con attività pericolose
 per l'ambiente. Reti viarie extraurbane non ricadenti in Classe IV. Ponti e reti ferroviarie la cui
 interruzione provochi situazioni di emergenza. Dighe rilevanti per le conseguenze di un loro
 eventuale collasso.
- Classe IV: costruzioni con funzioni pubbliche o strategiche importanti, anche con riferimento alla gestione della protezione civile in caso di calamità. Industrie particolarmente pericolose per l'ambiente. Reti viarie di tipo A o B, di cui al D.M. 5 novembre 2001, n. 6792, "Norme funzionali e geometriche per la costruzione di strade", e di tipo quando appartenenti ad itinerari di collegamento tra capoluoghi di provincia non altresì serviti da strade di tipo A o B. Ponti o reti ferroviarie di importanza critica per il mantenimento delle vie di comunicazione, particolarmente dopo un evento sismico Dighe connesse al funzionamento di acquedotti e a impianti di produzione di energia elettrica.

All' opera in oggetto corrisponde pertanto una Classe III a cui è associato un coefficiente d'uso pari a (NTC – Tabella 2.4.II):

$$C_u = 1.5$$

I parametri di pericolosità sismica vengono quindi valutate in relazione ad un periodo di riferimento V_R che si ricava per ciascun tipo di costruzione, moltiplicando la vita nominale V_R per il coefficiente d'uso V_R 0, ovvero:

$$V_R = V_N \cdot C_U$$

Pertanto, per l'opera in oggetto, il periodo di riferimento è pari a $V_R = 75x1.5 = 112.5$ anni

Tombini e ponticelli idraulici - IN02 - Tombino idraulico Ø1500 al km 18+277 – Relazione di calcolo

 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 IF26
 12 E ZZ
 CL
 IN0200 0001
 A
 21 di 179

5.2 Parametri di pericolosità sismica

La valutazione dei parametri di pericolosità sismica, che ai sensi del D.M. 14-01-2008, costituiscono il dato base per la determinazione delle azioni sismiche di progetto su una costruzione (forme spettrali e/o forze inerziali) dipendono, come già in parte anticipato in precedenza, dalla localizzazione geografica del sito, dalle caratteristiche della costruzione (Periodo di riferimento per valutazione azione sismica / VR) oltre che dallo Stato Limite di riferimento/Periodo di ritorno dell'azione sismica.

Il DM 14.01.08 definisce in particolare la pericolosità sismica di un sito attraverso i seguenti parametri::

- ag/g: accelerazione orizzontale relativa massima al suolo, su sito di riferimento rigido;
- Fo: valore massimo del fattore di amplificazione dello spettro in accelerazione orizzontale;
- T^{*}c: periodo di inizio del tratto a velocità costante dello spettro in accelerazione orizzontale.

Per quanto detto al precedente paragrafo, risulta un periodo di riferimento Azione sismica $V_R = 112.5$ anni,

Riguardo, infine gli stati limite di verifica/periodo di ritorno dell'azione sismica, la normativa individua in particolare 4 situazioni tipiche riferendosi alle prestazioni che la costruzione nel suo complesso deve poter espletare, riferendosi sia agli elementi strutturali, che a quelli non strutturali / impianti, come di seguito descritto:

- Stato Limite di Operatività (SLO): a seguito del terremoto la costruzione nel suo complesso, includendo gli elementi strutturali, quelli non strutturali, le apparecchiature rilevanti alla sua funzione, non deve subire danni ed interruzioni d'uso significativi;
- Stato Limite di Danno (SLD): a seguito del terremoto la costruzione nel suo complesso, includendo gli elementi strutturali, quelli non strutturali, le apparecchiature rilevanti alla sua funzione, subisce danni tali da non mettere a rischio gli utenti e da non compromettere la capacità di resistenza e di rigidezza nei confronti delle azioni verticali ed orizzontali, mantenendosi immediatamente utilizzabile all'interruzione d'uso di parte delle apparecchiature.
- Stato Limite di salvaguardia della Vita (SLV): a seguito del terremoto la costruzione subisce
 rotture o crolli dei componenti non strutturali ed impiantistici e significativi danni dei componenti
 strutturali cui si associa una perdita significativa di rigidezza nei confronti delle azioni orizzontali;

la costruzione invece conserva una parte della resistenza e della rigidezza per azioni verticali e un margine di sicurezza nei confronti del collasso per azioni sismiche

Stato Limite di prevenzione del Collasso (SLC): a seguito del terremoto la costruzione subisce gravi rotture e crolli dei componenti non strutturali ed impiantistici e danni molto gravi dei componenti strutturali; la costruzione conserva ancora un margine di sicurezza per azioni verticali ed un esiguo margine di sicurezza nei confronti del collasso per azioni orizzontali.

A ciascuno stato limite di verifica è quindi associata una probabilità di superamento P_{VR} nel periodo di riferimento ità di superamento nel periodo di riferimento V_R , secondo quanto indicato nel seguito:

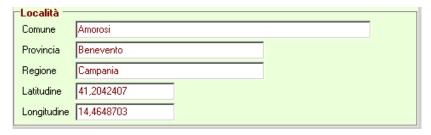
Stati Limite		P _{VR} : Probabilità di superamento nel periodo di riferimento VR
Stati limite	SLO	81%
di esercizio	SLD	63%
Stati limite	SLV	10%
ultimi	SLC	5%

Tab. 3.2.1 DM 14.01.08

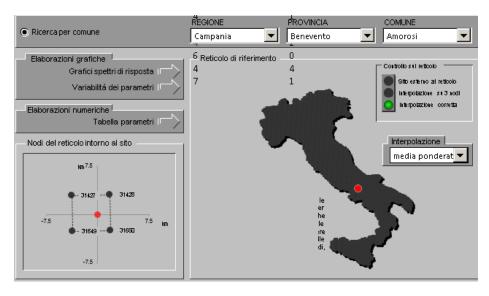
A ciascuna probabilità di superamento Pv_R è quindi associato un Periodo di Ritorno dell'azione sismica T_R , valutabile attraverso la seguente relazione:

 $T_R = -V_R / In(1-P_{VR})$ (periodo di ritorno dell'azione sismica)

Nel caso in esame risulta dunque, con riferimento ai diversi stati limite :


SLATO	T _R
LIMITE	[anni]
SLO	68
SLD	113
SLV	1068
SLC	2193

Zona S1 da pk 16+500 a pk 22+500 (Dugenta/Frasso – Amorosi)

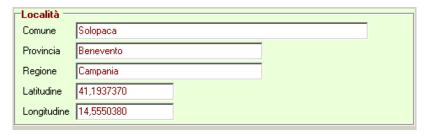

Di seguito si riportano i parametri di pericolosità sismica da assumere come riferimento per la determinazione delle Azioni sismiche di progetto per opere ricadenti nella parte di tracciato dell'infrastruttura individuata come zona S1:

Località : Amorosi (BN)

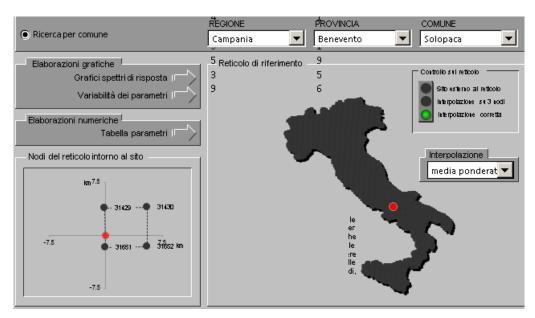
VR = 112.5 anni

Sulla scorta di quanto riportato in Allegato A delle Norme Tecniche per le costruzioni DM 14.01.08, si ottiene:

SLATO	T _R	ag	F _o	T _c *
LIMITE	[anni]	[g]	[-]	[s]
SLO	68	0.078	2.428	0.324
SLD	113	0.099	2.440	0.340
SLV	1068	0.273	2.352	0.419
SLC	2193	0.357	2.394	0.433


Tabella di riepilogo Parametri di pericolosità sismica zona S1

Zona S2 da pk 22+500 a pk 30+000 (Amorosi - Solopaca)

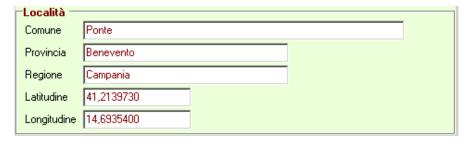

Di seguito si riportano i parametri di pericolosità sismica da assumere come riferimento per la determinazione delle Azioni sismiche di progetto per opere ricadenti nella parte di tracciato dell'infrastruttura individuata come zona S2:

Località : Solopaca (BN)

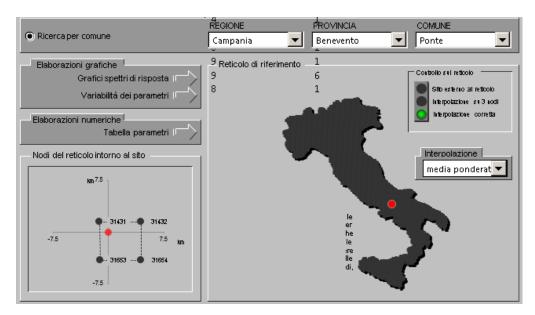
 $V_R = 112.5 \text{ anni}$

Sulla scorta di quanto riportato in Allegato A delle Norme Tecniche per le costruzioni DM 14.01.08, si ottiene:

SLATO	T _R	a_{g}	F _o	T _c *
LIMITE	[anni]	[g]	[-]	[s]
SLO	68	0.088	2.368	0.316
SLD	113	0.113	2.377	0.331
SLV	1068	0.322	2.346	0.401
SLC	2193	0.419	2.430	0.425


Tabella di riepilogo Parametri di pericolosità sismica zona S2

Zona S3 da pk 30+000 a pk 46+577 (Solopaca-Ponte-Vitulano)


Di seguito si riportano i parametri di pericolosità sismica da assumere come riferimento per la determinazione delle Azioni sismiche di progetto per opere ricadenti nella parte di tracciato dell'infrastruttura individuata come zona **S2**:

Località : Ponte (BN)

 $V_R = 112.5 \text{ anni}$

Sulla scorta di quanto riportato in Allegato A delle Norme Tecniche per le costruzioni DM 14.01.08, si ottiene:

SLATO	T _R	a _g	F _o	T _c *
LIMITE	[anni]	[g]	[-]	[s]
SLO	68	0.097	2.343	0.310
SLD	113	0.127	2.332	0.326
SLV	1068	0.367	2.346	0.395
SLC	2193	0.473	2.445	0.427

Tabella di riepilogo Parametri di pericolosità sismica zona S3

Tombini e ponticelli idraulici - IN02 - Tombino idraulico Ø1500 al km 18+277 – Relazione di calcolo

IF26	12 E ZZ	CL	IN0200 0001	Α	26 di 179
COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO

5.3 Categoria di sottosuolo e categoria topografica

Le Categoria di Sottosuolo e le Condizioni Topografiche sono valutate come descritte al punto 3.2.2 del DM 14.01.08, ovvero:

Tabella 3.2.II – Categorie di sottosuolo

Categoria	Descrizione
A	Ammassi rocciosi affioranti o terreni molto rigidi caratterizzati da valori di $V_{s,30}$ superiori a 800 m/s, eventualmente comprendenti in superficie uno strato di alterazione, con spessore massimo pari a 3 m.
В	Rocce tenere e depositi di terreni a grana grossa molto addensati o terreni a grana fina molto consistenti con spessori superiori a 30 m, caratterizzati da un graduale miglioramento delle proprietà meccaniche con la profondità e da valori di $V_{s,30}$ compresi tra 360 m/s e 800 m/s (ovvero $N_{SPT,30} > 50$ nei terreni a grana grossa e $c_{u,30} > 250$ kPa nei terreni a grana fina).
C	Depositi di terreni a grana grossa mediamente addensati o terreni a grana fina mediamente consistenti con spessori superiori a 30 m, caratterizzati da un graduale miglioramento delle proprietà meccaniche con la profondità e da valori di $V_{s,30}$ compresi tra 180 m/s e 360 m/s (ovvero $15 < N_{SPT,30} < 50$ nei terreni a grana grossa e $70 < c_{u,30} < 250$ kPa nei terreni a grana fina).
D	Depositi di terreni a grana grossa scarsamente addensati o di terreni a grana fina scarsamente consistenti, con spessori superiori a 30 m, caratterizzati da un graduale miglioramento delle proprietà meccaniche con la profondità e da valori di $V_{s,30}$ inferiori a 180 m/s (ovvero $N_{SPT,30} < 15$ nei terreni a grana grossa e $c_{u,30} < 70$ kPa nei terreni a grana fina).
E	Terreni dei sottosuoli di tipo C o D per spessore non superiore a 20 m, posti sul substrato di riferimento (con $V_s > 800$ m/s).

Tabella 3.2.III - Categorie aggiuntive di sottosuolo.

Categoria	Descrizione
S1	Depositi di terreni caratterizzati da valori di $V_{s,30}$ inferiori a 100 m/s (ovvero $10 < c_{u,30} < 20$ kPa), che includono uno strato di almeno 8 m di terreni a grana fina di bassa consistenza, oppure che includono almeno 3 m di torba o di argille altamente organiche.
S2	Depositi di terreni suscettibili di liquefazione, di argille sensitive o qualsiasi altra categoria di sottosuolo non classificabile nei tipi precedenti.

Tabella 3.2.IV - Categorie topografiche

Categoria	Caratteristiche della superficie topografica
T1	Superficie pianeggiante, pendii e rilievi isolati con inclinazione media i ≤ 15°
T2	Pendii con inclinazione media i > 15°
Т3	Rilievi con larghezza in cresta molto minore che alla base e inclinazione media $15^\circ \le i \le 30^\circ$
T4	Rilievi con larghezza in cresta molto minore che alla base e inclinazione media i > 30°

Tabella di riepilogo Categoria di Sottosuolo e Topografiche DM 14.01.08

Note la Categoria di Sottosuolo e le Condizioni Topografiche, la costruzione degli spettri passa infine attraverso la definizione dei coefficienti di Amplificazione Stratigrafica (S_S e C_C) e Topografica (S_T),

Tombini e ponticelli idraulici - IN02 - Tombino idraulico Ø1500 al km 18+277 – Relazione di calcolo

COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
IF26	12 E ZZ	CL	IN0200 0001	Α	27 di 179

mediante le indicazioni di cui alle tab 3.2.V e 3.2.VI del DM 14.01.08, che si ripropongono nel seguito per chiarezza espositiva:

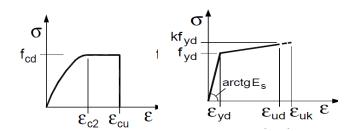
Tabella 3.2.V - Espressioni di S_S e di C_C

Categoria sottosuolo	\mathbf{S}_{S}	C _C
A	1,00	1,00
В	$1,00 \le 1,40 - 0,40 \cdot F_o \cdot \frac{a_g}{g} \le 1,20$	$1,10\cdot(T_{c}^{*})^{-0,20}$
C	$1,00 \le 1,70 - 0,60 \cdot F_o \cdot \frac{a_g}{g} \le 1,50$	$1,05 \cdot (T_C^*)^{-0,33}$
D	$0.90 \le 2.40 - 1.50 \cdot F_o \cdot \frac{a_g}{g} \le 1.80 \cdot$	$1,25 \cdot (T_{C}^{*})^{-0,50}$
E	$1,00 \le 2,00 - 1,10 \cdot F_o \cdot \frac{a_g}{g} \le 1,60$	$1,15 \cdot (T_{C}^{*})^{-0,40}$

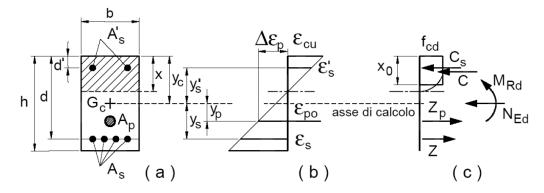
 $\textbf{Tabella 3.2.VI} - \textit{Valori massimi del coefficiente di amplificazione topografica } S_T$

Categoria topografica	Ubicazione dell'opera o dell'intervento	ST
	1	
T1	-	1,0
T2	In corrispondenza della sommità del pendio	1,2
T3	In corrispondenza della cresta del rilievo	1,2
T4	In corrispondenza della cresta del rilievo	1,4

Per le opere di linea si assume una categoria di sottosuolo di tipo C e una classe Topografica T1.


6. CRITERI GENERALI PER LE VERIFICHE STRUTTURALI

I criteri generali di verifica utilizzati per la valutazione delle capacità resistenti delle sezioni, per la condizione SLU, e per le massime tensioni nei materiali nonché per il controllo della fessurazione, relativamente agli SLE, sono quelli definiti al p.to 4.1.2 del DM 14.01.08.


6.1 VERIFICHE ALLO SLU

6.1.1 Pressoflessione

La determinazione della capacità resistente a flessione/pressoflessione della generica sezione, viene effettuata con i criteri di cui al punto 4.1.2.1.2.4 delle NTC08, secondo quanto riportato schematicamente nelle figure seguito, tenendo conto dei valori delle resistenze e deformazioni di calcolo riportate al paragrafo dedicato alle caratteristiche dei materiali:

Legami costitutivi Calcestruzzo ed Acciaio -

Schema di riferimento per la valutazione della capacità resistente a pressoflessione generica sezione -

La verifica consisterà nel controllare il soddisfacimento della seguente condizione:

Tombini e ponticelli idraulici - IN02 - Tombino idraulico Ø1500 al km 18+277 – Relazione di calcolo

COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
IF26	12 E ZZ	CL	IN0200 0001	Α	29 di 179

$$M_{Rd} = M_{Rd}(N_{Ed}) \ge M_{Ed}$$

dove

M_{Rd} è il valore di calcolo del momento resistente corrispondente a N_{Ed};

N_{Ed} è il valore di calcolo della componente assiale (sforzo normale) dell'azione;

M_{Ed} è il valore di calcolo della componente flettente dell'azione.

6.1.2 Taglio

La resistenza a taglio VRd della membratura priva di armatura specifica risulta pari a:

$$V_{Rd} = \left\{ 0.18 \cdot k \cdot \frac{\left(100 \cdot \rho_1 \cdot f_{ck}\right)^{1/3}}{\gamma_c + 0.15 \cdot \sigma_{cp}} \right\} \cdot b_w \cdot d \ge v_{min} + 0.15 \cdot \sigma_{cp} \cdot b_w d$$

Dove:

•
$$v_{\min} = 0.035 \cdot k^{3/2} \cdot f_{ck}^{1/2}$$
;

•
$$k = 1 + (200/d)^{1/2} \le 2$$
;

•
$$\rho_1 = A_{sw}/(b_w^*d)$$

- d = altezza utile per piedritti soletta superiore ed inferiore;
- b_w= 1000 mm larghezza utile della sezione ai fini del taglio.

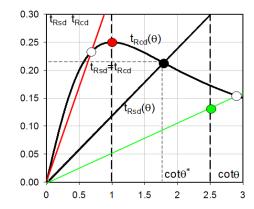
In presenza di armatura, invece, la resistenza a taglio V_{Rd} è il minimo tra la resistenza a taglio trazione V_{Rsd} e la resistenza a taglio compressione V_{Rcd}

$$V_{Rsd} = 0.9 \cdot d \cdot \frac{A_{sw}}{s} \cdot f_{yd} \cdot (ctg\alpha + ctg\theta) \cdot \sin \alpha$$

$$V_{Rcd} = 0.9 \cdot d \cdot b_{w} \cdot \alpha_{c} \cdot f_{cd}^{'} \cdot \frac{\left(ctg\alpha + ctg\theta\right)}{\left(1 + ctg^{2}\theta\right)}$$

Essendo:

$$1 \le \operatorname{ctg} \theta \le 2.5$$


Tombini e ponticelli idraulici - IN02 - Tombino idraulico Ø1500 al km 18+277 – Relazione di calcolo

COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
IF26	12 E ZZ	CL	IN0200 0001	Α	30 di 179

Per quanto riguarda in particolare le verifiche a taglio per elementi armati a taglio, si è fatto riferimento al metodo del traliccio ad inclinazione variabile, in accordo a quanto prescritto al punto 4.1.2.1.3 delle NTC08, considerando ai fini delle verifiche, un angolo θ di inclinazione delle bielle compresse del traliccio resistente tale da rispettare la condizione.

$$1 \le \operatorname{ctg} \theta \le 2.5$$

$$45^{\circ} \geq \theta \geq 21.8^{\circ}$$

- Se la $\cot\theta^*$ è compresa nell'intervallo (1,0-2,5) è possibile valutare il taglic resistente $V_{Rd}(=V_{Rcd}=V_{Rsd})$
- Se la $\cot\theta^*$ è maggiore di 2.5 la crisi è da attribuirsi all'armatura trasversale e il taglio resistente $V_{Rd}(=V_{Rsd})$ coincide con il massimo taglio sopportate dalle armature trasversali valutabile per una $\cot\theta=2,5$.
- Se la $\cot\theta^*$ è minore di 1.0 la crisi è da attribuirsi alle bielle compresse e taglio resistente $V_{Rd}(=V_{Rcd})$ coincide con il massimo taglio sopportato dalle bielle di calcestruzzo valutabile per una $\cot\theta=1,0$.

L'angolo effettivo di inclinazione delle bielle (θ) assunto nelle verifiche è stato in particolare valutato, nell'ambito di un problema di verifica, tenendo conto di quanto di seguito indicato :

$$\cot \theta^* = \sqrt{\frac{v \cdot \alpha_c}{\omega_{sw}} - 1}$$

(θ^* angolo di inclinazione delle bielle cui corrisponde la crisi contemporanea di bielle compresse ed armature)

dove

$$v = f'cd / fcd = 0.5$$

f 'cd = resistenza a compressione ridotta del calcestruzzo d'anima

f cd = resistenza a compressione di calcolo del calcestruzzo d'anima

 ω_{sw} : Percentuale meccanica di armatura trasversale.

Tombini e ponticelli idraulici - IN02 - Tombino idraulico Ø1500 al km 18+277 – Relazione di calcolo

COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
IF26	12 E ZZ	CL	IN0200 0001	Α	31 di 179

$$\omega_{sw} = \frac{A_{sw} f_{yd}}{b s f_{cd}}$$

6.2 VERIFICA SLE

La verifica nei confronti degli Stati limite di esercizio, consiste nel controllare, con riferimento alle sollecitazioni di calcolo corrispondenti alle Combinazioni di Esercizio il tasso di Lavoro nei Materiali e l'ampiezza delle fessure attesa, secondo quanto di seguito specificato

6.2.1 Verifiche alle tensioni

La verifica delle tensioni in esercizio consiste nel controllare il rispetto dei limiti tensionali previsti per il calcestruzzo e per l'acciaio per ciascuna delle combinazioni di carico caratteristiche "Rara" e "Quasi Permanente"; i valori tensionali nei materiali sono valutati secondo le note teorie di analisi delle sezioni in c.a. in campo elastico e con calcestruzzo "non reagente" adottando come limiti di riferimento, trattandosi nel caso in specie di opere Ferroviarie, quelli indicati nel documento " Specifica per la progettazione e l'esecuzione dei ponti ferroviari e di altre opere minori sotto binario RFI DTC INC PO SP IFS 001 A del 30-12-16 ", ovvero:

Strutture in c.a.

Tensioni di compressione del calcestruzzo

Devono essere rispettati i seguenti limiti per le tensioni di compressione nel calcestruzzo:

- per combinazione di carico caratteristica (rara): 0,55 f_{ob};
- per combinazioni di carico quasi permanente: 0,40 f_{ck};
- per spessori minori di 5 cm, le tensioni normali limite di esercizio sono ridotte del 30%.

Tensioni di trazione nell'acciaio

Per le armature ordinarie, la massima tensione di trazione sotto la combinazione di carico caratteristica (rara) non deve superare $0.75~f_{vk}$.

Tombini e ponticelli idraulici - IN02 - Tombino idraulico Ø1500 al km 18+277 – Relazione di calcolo

COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
IF26	12 E ZZ	CL	IN0200 0001	Α	32 di 179

6.2.2 Verifiche a fessurazione

La verifica a fessurazione consiste nel controllo dell'ampiezza massima delle fessure per le combinazioni di carico di esercizio i cui valori limite sono stabiliti, nell'ambito del progetto di opere ferroviarie, nel documento RFI DTC SICS MA IFS 001 A – 2.5.1.8.3.2.4 (*Manuale di progettazione delle opere civili del 30/12/2016*).

In particolare l'apertura convenzionale delle fessure δ_f dovrà rispettare i seguenti limiti:

- $\delta_f \leq w_1 = 0.2 \, mm$ per tutte le strutture in condizioni ambientali aggressive o molto aggressive (così come identificate nel par. 4.1.2.2.4.3 del DM 14.1.2008 Tab 4.1.III), per tutte le strutture a permanente contatto con il terreno e per le zone non ispezionabili di tutte le strutture;
- $\delta_f \leq w_2 = 0.3 \ mm$ per strutture in condizioni ambientali ordinarie.

Tabella 4.1.III – Descrizione delle condizioni ambientali

CONDIZIONI AMBIENTALI	CLASSE DI ESPOSIZIONE		
Ordinarie	X0, XC1, XC2, XC3, XF1		
Aggressive	XC4, XD1, XS1, XA1, XA2, XF2, XF3		
Molto aggressive	XD2, XD3, XS2, XS3, XA3, XF4		

Tabella 4.1.III - DM 14.01.2008

In definitiva, nel caso in esame, con riferimento alle indicazioni della tabella di cui in precedenza, si adotta il limite **w1=0,20 mm** sia per le parti in elevazione che per quelle in fondazione, in quanto in entrambi i casi trattasi di strutture a permanente contatto col terreno.

Tombini e ponticelli idraulici - IN02 - Tombino idraulico Ø1500 al km 18+277 – Relazione di calcolo

COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
IF26	12 E ZZ	CL	IN0200 0001	Α	33 di 179

7. CARICO LIMITE DI FONDAZIONI DIRETTE

Per la valutazione del carico limite delle fondazioni dirette si utilizza il criterio di **Meyerhof**, di cui nel seguito si riporta la relativa trattazione teorica:

Dette:

ca Adesione lungo la base della fondazione (ca ≤ c)

θ Angolo che la rettta d'azione del carico forma con la verticale

φ Angolo d'attrito

δ Angolo di attrito terreno fondazione

y Peso specifico del terreno

Kp Coefficiente di spinta passiva espresso da Kp = $tan2(45^{\circ} + \phi/2)$

B Larghezza della fondazione L Lunghezza della fondazione

D Profondità del piano di posa della fondazione

 η inclinazione piano posa della fondazione

P Pressione geostatica in corrispondenza del piano di posa della fondazione

qult Carico ultimo della fondazione

Meyerhof propone per la valutazione di quit, le seguenti espressioni generali:

Carico verticale

$$q_{ult} = c \cdot N_c \cdot s_c \cdot d_c + q \cdot N_q \cdot s_q \cdot d_q + 0.5 \cdot B \cdot \gamma \cdot N_\gamma \cdot s_\gamma \cdot d_\gamma$$

Carico inclinato

$$q_{ult} = c \cdot N_c \cdot i_c \cdot d_c + q \cdot N_q \cdot i_q \cdot d_q + 0.5 \cdot B \cdot \gamma \cdot N_\gamma \cdot i_\gamma \cdot d_\gamma$$

in cui dc, dq e $d\gamma$ sono i fattori di profondità, sc, sq e $s\gamma$ sono i fattori di forma, ic, iq e $i\gamma$ sono i fattori di inclinazione del carico,

In particolare risulta:

$$\begin{split} N_q &= e^{\pi \imath g} \stackrel{\phi}{\sim} K_p \\ N_c &= \left(N_q - 1\right) ctg\phi \\ N_\gamma &= \left(N_q - 1\right) tg\left(1.4\phi\right) \end{split}$$

Tombini e ponticelli idraulici - IN02 - Tombino idraulico Ø1500 al km 18+277 – Relazione di calcolo

 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 IF26
 12 E ZZ
 CL
 IN0200 0001
 A
 34 di 179

Fattori di profondità

$$d_c = 1 + 0.2\sqrt{K_p} \frac{D}{B}$$

per φ = 0	per φ > 0
$d_q = d_\gamma = 1$	$d_q = d_\gamma = 1 + 0.1 \sqrt{K_p} \frac{D}{B}$

Fattori di forma

$$s_c = 1 + 0.2K_p \frac{B}{L}$$

per φ = 0	per φ > 0
$s_q = s_y = 1$	$s_q = s_\gamma = 1 + 0.1 K_p \frac{B}{L}$

Fattori inclinazione del carico

$$i_c = i_q = \left(1 - \frac{9}{90}\right)^2$$

per φ = 0	per $\phi > 0$
$i_{\gamma}=0$	$i_{\gamma} = \left(1 - \frac{9}{\phi}\right)^2$

L'espressione di Meyerhof presuppone pertanto l'orizzontalità del piano di posa, condizione verificata per il caso in esame.

8. ANALISI DEI CARICHI

Si riportano di seguito si riporta la valutazione dei carichi elementari considerati nel dimensionamento della struttura in esame, riferiti generalmente ad una fascia di struttura di dimensione unitaria.

Le condizioni di carico considerate complessivamente, sono quelle riportate nell'elenco seguente:

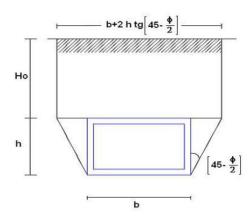
CONDZIONI DI CARICO ELEMENTARI		
1	Peso Proprio	
2	Permanenti	
3	Spinta terreno sinistra	
4	Spinta terreno destra	
5	Spinta Falda	
6	Sisma sinistra	
7	Sisma destra	
8	Ritiro e Viscosità	
9	Termica	
10	QCEN (+Azioni da avviamento/frenatura)	
11	QLAT (+Azioni da avviamento/frenatura)	

Per quanto riguarda tuttavia le condizioni 5 e 7, proposte di default dal software di calcolo utilizzato, nel caso in esame non assumono significato.

Nel seguito si andranno ad esporre in dettaglio, le valutazioni di calcolo effettuare per ciascuna delle condizioni citate.

8.1 Peso proprio (cond. di carico 1)

Il peso proprio delle strutture è determinato automaticamente dal programma di calcolo, avendo considerato un peso dell'unita di volume del c.a. $\gamma_{cls} = 25 \text{ KN/m}^3$.


Tombini e ponticelli idraulici - IN02 - Tombino idraulico Ø1500 al km 18+277 – Relazione di calcolo

 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 IF26
 12 E ZZ
 CL
 IN0200 0001
 A
 36 di 179

8.2 Permanenti (cond. di carico 2)

Per la valutazione del carico permanente in copertura, si è fatto riferimento al metodo di Terzaghi secondo il quale, il il carico sul traverso si manifesta come semplice peso di una massa parabolica o ellittica di distacco.

Più in dettaglio Terzaghi fornisce due espressioni differenti della pressione a seconda della maggiore o minore altezza del ricoprimento, H₀.

Facendo riferimento ai simboli della figura precedente, ed indicando con C la coesione, con φ l'angolo di attrito e con γ il peso di volume del terreno di ricoprimento, le due espressioni sono le seguenti:

$$p_{v} = \frac{\gamma B_{1} - C}{K tg\varphi} \left(1 - e^{-K \frac{H_{0}}{B_{1}} tg\varphi} \right)$$

nella quale K è un coefficiente sperimentale, che, secondo misure eseguite dallo stesso **Terzaghi** è circa uguale ad 1, mentre il coefficiente B1, si ricava attraverso la seguente espressione:

$$B_1 = \frac{b}{2} + h \ tg\left(45^\circ - \frac{\varphi}{2}\right)$$

nella quale φ è l'angolo di attrito dello strato di rinfianco.

Tombini e ponticelli idraulici - IN02 - Tombino idraulico Ø1500 al km 18+277 – Relazione di calcolo

OMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO	
IF26	12 E ZZ	CL	IN0200 0001	Α	37 di 179	

8.3 Spinta del terreno (cond. di carico 3/4)

Per la valutazione delle Spinte del terreno sui piedritti, in considerazione della ridotta capacità de formativa dell'opera, si è assunto che sui piedritti agisca la spinta calcolata in condizioni di riposo. L'espressione della spinta esercitata da un terrapieno, di peso di volume γ , su una parete di altezza H, risulta espressa secondo la teoria di Coulomb dalla seguente relazione (per terreno incoerente) :

$$S = \frac{1}{2} \cdot \gamma \cdot H^2 \cdot K_0$$

Il coefficiente di spinta a riposo è espresso dalla relazione:

$$K_0 = 1 - \sin \phi$$

Dove ϕ rappresenta l'angolo d'attrito interno del terreno di rinfianco.

Quindi la pressione laterale, ad una generica profondità z e la spinta totale sulla parete di altezza H valgono:

$$\sigma = \gamma \cdot z \cdot K_0 + p_v \cdot K_0$$
$$S = \frac{1}{2} \cdot \gamma \cdot H^2 \cdot K_0 + p_v \cdot K_0 \cdot H$$

dove py è la pressione verticale agente in corrispondenza della calotta.

8.4 Spinta in presenza di falda (cond. di carico 5)

Nel caso in cui a monte della parete sia presente la falda il diagramma delle pressioni sulla parete risulta modificato a causa della sottospinta che l'acqua esercita sul terreno. Il peso di volume del terreno al di sopra della linea di falda non subisce variazioni. Viceversa al di sotto del livello di falda va considerato il peso di volume di galleggiamento:

$$\gamma_a = \gamma_{sat} - \gamma_w$$

dove γ_{sat} è il peso di volume saturo del terreno (dipendente dall'indice dei pori) e γ w è il peso di volume dell'acqua.

Tombini e ponticelli idraulici - IN02 - Tombino idraulico Ø1500 al km 18+277 – Relazione di calcolo

 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 IF26
 12 E ZZ
 CL
 IN0200 0001
 A
 38 di 179

Quindi il diagramma delle pressioni al di sotto della linea di falda ha una pendenza minore. Al diagramma così ottenuto va sommato il diagramma triangolare legato alla pressione idrostatica esercitata dall'acqua.

Nel caso in esame, in relazione a quanto specificato al paragrafo 4, il regime di spinta non è influenzato dalla presenza della falda.

8.5 Variazioni termiche della struttura (cond. di carico 9)

Si è tenuto conto di eventuali effetti termici dovuti a variazioni di temperatura sull'opera, applicando sul traverso superiore una variazione termica variabile linearmente da - 2.5°C all'estradosso della soletta superiore, a + 2.5°C all'intradosso della soletta superiore;

8.6 Ritiro e viscosità (cond. di carico 8)

Gli effetti del ritiro del calcestruzzo e della viscosità sono assimilati ad una variazione termica uniforme della soletta superiore.

Nello specifico, si è assunto di modellare la deformazione da ritiro totale comprensiva anche degli effetti da deformazione viscosa, attraverso l'introduzione di un carico termico uniforme nella soletta superiore di -10°C.

8.7 Azioni variabili da traffico (cond. di carico 10/11)

Il carico accidentale più sfavorevole per l'opera in esame è quello rappresentato dal treno LM71.

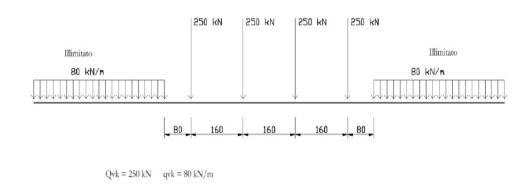
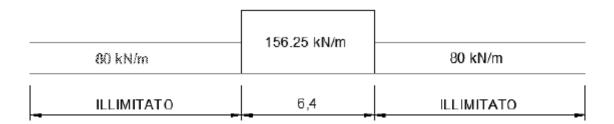


Figura 8 - Treno LM71

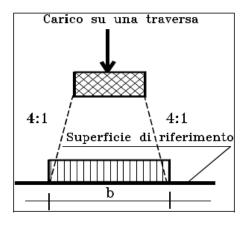
Il sovraccarico ferroviario (LM71) come evidente dallo schema di figura, è è costituito da un totale di 4 assi del peso di 250 KN ciascuno distribuiti su una lunghezza complessiva 6.40m, nonché da carichi uniformi di 80KN/m

TRENO DI CARICO LM71				
Assi di carico "Q _{1k} "	250	kN		
n° assi di carico	4			
Carico illimitato "q _{1k} "	80	kN/m		


Il carico equivalente si ricava dalla ripartizione trasversale e longitudinale dei carichi per effetto delle traverse e del ballast previsti dalla stessa norma EN 1991-2:2003/AC:2010.

Determinazione delle larghezze di diffusione dei carichi mobili:

Considerando i 4 carichi assiali da 250 kN e la relativa distribuzione longitudinale, il carico verticale equivalente a metro lineare agente alla quota della piattaforma ferroviaria (convenzionalmente a 70 cm dal piano del ferro) risulta pari a:



$$p = \frac{4 \times 250}{4 \times 1.60} = 156.25 \, kPa$$

Mentre la larghezza di diffusione in direzione trasversale avviene secondo la seguente procedura:

la diffusione dei carichi attraverso Ballast avviene con pendenza 1:4, attraverso il ricoprimento con angolo di attrito mentre, nella soletta in cls con pendenza 1:1.

Quindi il carico equivalente a livello dell'asse della soletta risulta pari a :

Sez. A: Altezza di ricoprimento Hr=1.05m

spessore Ballast+Armamento	1.05	m	
spessore soletta "hs"	0.11	m	
Larghezza traversina	2.4	m	
Larghezza diffusione trasv. "b"	3.035	m	$b = 2.40 + 2 \times [h/4 + hs/2]$
Qvk (a livello dell'asse della soletta)	51.5	kPa	$Qvk = p/b = 4 \times 250 / (6.40 \times b)$
qvk (a livello dell'asse della soletta)	26.4	kPa	qvk = q1k/b

Sez. B: Altezza di ricoprimento Hr=4.80m

spessore Ballast+Armamento	4.8	m	
spessore soletta "hs"	0.11	m	
Larghezza traversina	2.4	m	
Larghezza diffusione trasv. "b"	4.91	m	$b = 2.40 + 2 \times [h/4 + hs/2]$
Qvk (a livello dell'asse della soletta)	31.8	kPa	$Qvk = p/b = 4 \times 250 / (6.40 \times b)$
qvk (a livello dell'asse della soletta)	16.3	kPa	qvk = q1k/b

I carichi effettivi di progetto vanno tuttavia valutati portando in conto anche gli eventuali effetti dinamici; attraverso la determinazioni dei coefficienti $\Phi 2$ o $\Phi 3$ e del coefficiente di adattamento (α), secondo quanto specificato a riguardo nel documento di specifica tecnica di cui nel seguito si riportano gli estremi:

RETE FERROVIARIA ITALIANA GRUPPO FERROVIE DELLO STATO ITALIANA	SPECIFICA PER LA PROGETTAZIONE E L'ESECUZIONE DEI FONTI FERROVIARI E DI ALTRE OFERE MINORI SOTTO BINARIO				
SPECIFICA	Codifica: RFI DTC INC PO SP IFS 001 A				

Per la valutazione del coefficiente α si fa riferimento in particolare a quanto specificato in Tab 1.4.1.1-1 del suddetto documento, da cui risulta:

MODELLO DI CARICO	COEFFICIENTE "a"
LM71	1.1
SW/0	1.1
SW/2	1.0

Tab 1.4.1.1-1 Coefficiente "α"

Per il calcolo del coefficiente dinamico, si fa riferimento invece alle indicazioni di cui al par. 1.4.2.5, considerando il caso di Linee con "Normale Standar Manutentivo" ovvero al coefficiente Φ 3.

Per il caso delle solette di scatolare, dalla Tab 1.4.5.3-1, punto 5.4 (per sottovia di altezza libera minore o uguale di 5m) risulta: Φ 3 = 1.35.

In ottemperanza al punto 2.5.1.4.2.5.2 elle norme RFI tale coefficiente viene ridotto in quanto l'altezza di ricoprimento è superiore ad 1m:

Tombini e ponticelli idraulici - IN02 - Tombino idraulico Ø1500 al km 18+277 – Relazione di calcolo

COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
IF26	12 E ZZ	CL	IN0200 0001	Α	42 di 179

$$\phi_{(2,3),rid} = \phi_{(2,3)} - \frac{h - 1,00}{10} \ge 1,00$$

Dove h, in metri, è l'altezza della copertura, incluso il ballast, dall'estradosso della struttura alla faccia superiore delle traverse.

Pertanto i <u>carichi di progetto dinamizzati</u>, da considerare su una fascia longitudinale di calcolo di 1m risultano i seguenti:

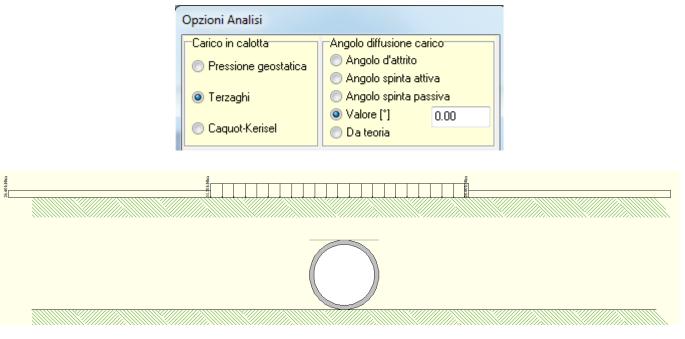
Sez. A: Altezza di ricoprimento Hr=1.05m

Carico Illimitato Dinamizzat	39.00	kPa	
Carico Assi Dinamizzato	76.2	kPa	
Coefficiente dinamico ridotto φ3,rid		1.345	
Coefficiente dinamico φ3		1.35	
Coefficiente di adattamento α		1.1	

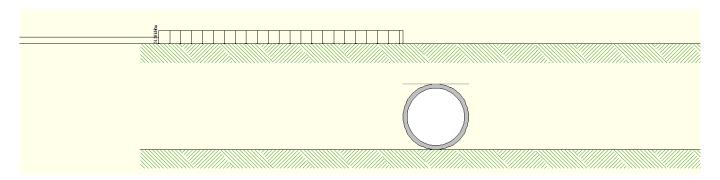
Sez. B: Altezza di ricoprimento Hr=4.80m

Coefficiente dinamico φ3 Coefficiente dinamico ridotto φ3,rid	1.35 1	
Carico Assi Dinamizzato Q _{vk,din}	35.0	kPa
		kPa

Si fa notare inoltre che per il carico sono state considerate due condizioni di carico:


- -una prima condizione di carico (Q_{CEN}) finalizzata alla massimizzazione degli effetti flessionali su traverso ed a testa piedritti;
- -una seconda condizione (Q_{LAT}) con finalità di massimizzare gli effetti flessionali in mezzeria piedritto.

In considerazione del fatto che per entrambi gli schemi di cui in seguito, il carico ferroviario ricade, per larga parte o interamente, al di fuori dell'ingombro della struttura, per il carico degli assi non si è considerato l'effetto dinamico.


Di seguito si riportano gli schemi grafici riferiti alle due condizioni di carico citate, specificando che per comodità di modellazione, i carichi precedentemente determinati sono stati applicati sul piano limite del modello (che li andrà a distribuire ortogonalmente sulla parte di terreno sottostante avendo specificato

all'interno del software di calcolo un angolo di diffusione rispetto alla verticale pari a 0°), allo scopo di cogliere in automatico col software anche gli effetti delle spinte orizzontali (qxko).

Condizione di Carico QCEN

Condizione di Carico Q LAT

8.8 Azioni di avviamento/frenatura associati al passaggio dei treni sul traverso (cond. 10/11)

I valori caratteristici da considerare, da moltiplicare per i coefficienti di adattamento a, sono:

Avviamento:

Q_{1a,k} = 33 [kN/m] x L [m]≤ 1000 KN per modelli di carico LM71, SW/0, SW/2

Frenatura:

 $Q_{1b,k}$ = 20 [kN/m] x L [m] \leq 6000 KN per modelli di carico LM71, SW/0

 $Q_{1b,k} = 35 [kN/m] \times L [m]$ per modelli di carico SW/2

Nel caso in esame:

Sez. A: Altezza di ricoprimento Hr=1.05m

Avviamento Treno LM71 su traverso

Avviamento a quota piattaforma	=	33.0	KN/m
Coefficiente di adattamento α	=	1.1	
Larghezza diffusione trasv. "b"	=	3.035	m
Avviamento su traverso superiore	=	12.0	KN/m

Frenatura Treno LM71 su traverso

Frenatura a quota piattaforma	=	35.0	KN/m
Coefficiente di adattamento α	=	1.1	
Larghezza diffusione trasv. "b"	=	3.0	m
Frenatura su traverso superiore	=	12.7	KN/m

Sez. B: Altezza di ricoprimento Hr=4.80m Avviamento Treno LM71 su traverso

Avviamento a quota piattaforma =		33.0	KN/m
Coefficiente di adattamento α =	: [1.1	
Larghezza diffusione trasv. "b" =		4.91	m
Avviamento su traverso superiore =	=	7.4	KN/m

Frenatura Treno LM71 su traverso

Frenatura su traverso superiore		7.8	KN/m
Larghezza diffusione trasv. "b"	=	4.9	m
Coefficiente di adattamento α	=	1.1	
Frenatura a quota piattaforma	=	35.0	KN/m

Queste azioni tangenziali al traverso sono incluse nelle condizioni di carico 10/11.

Tombini e ponticelli idraulici - IN02 - Tombino idraulico Ø1500 al km 18+277 – Relazione di calcolo

 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 IF26
 12 E ZZ
 CL
 IN0200 0001
 A
 45 di 179

8.9 Azioni Sismiche (cond. di carico 6/7)

Per il calcolo dell'azione sismica si è utilizzato il metodo dell'analisi pseudostatica in cui l'azione sismica è rappresentata da una forza statica equivalente pari al prodotto delle forze di gravità per un opportuno coefficiente sismico k.

Forze d'inerzia

Le forze sismiche sono pertanto le seguenti:

Forza sismica orizzontale

$$F_h = k_h^* W$$

Forza sismica verticale

$$F_{\vee} = k_{\vee}^* W$$

I valori dei coefficienti sismici orizzontale kh e verticale kv possono essere valutati mediante le espressioni:

$$k_h = a_{max}/g$$

$$k_v = \pm 0.5 \times k_h$$

In assenza di analisi specifiche della risposta sismica locale, l'accelerazione massima può essere valutata con la relazione:

$$a_{max} = S * a = Ss * St*a_q$$

Nel caso specifico, in accordo a quanto già riportato al paragrafo 5 risulta facendo riferimento alla zona sismica S3:

COMUNE DI PONTE (ZONA SISMICA S3)

ag/g =	0.367
βm =	1.00
Ss=	1.184
ST=	1.00

Kh=	0.434	coefficiente sismico orizzontale
Kv=	0.217	coefficiente sismico verticale

Tombini e ponticelli idraulici - IN02 - Tombino idraulico Ø1500 al km 18+277 – Relazione di calcolo

 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 IF26
 12 E ZZ
 CL
 IN0200 0001
 A
 46 di 179

Spinta sismica terreno

Le spinte del terreno in fase sismica, sono state determinate con la **teoria di Wood**, secondo la quale la risultante dell'incremento di spinta per effetto del sisma su una parete di altezza H viene determinata con la seguente espressione: $\Delta S_E = Kh \cdot \gamma \cdot H^2$

Tombini e ponticelli idraulici - IN02 - Tombino idraulico Ø1500 al km 18+277 – Relazione di calcolo

 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 IF26
 12 E ZZ
 CL
 IN0200 0001
 A
 47 di 179

9. COMBINAZIONI DI CARICO

Per la combinazione dei diversi carichi previsti sulla struttura di cui al precedente paragrafo 7, si è fatto riferimento a quanto specificato in merito al prg 2.5.3 del DM 14.01.08, secondo cui le combinazioni di carico da considerare nei riguardi dei diversi stati limite di verifica SLU, SLE e sisma sono le seguenti:

Combinazione fondamentale, generalmente impiegata per gli stati limite ultimi (SLU):

$$\gamma_{G1} \cdot G_1 + \gamma_{G2} \cdot G_2 + \gamma_{P} \cdot P + \gamma_{Q1} \cdot Q_{k1} + \gamma_{Q2} \cdot \psi_{02} \cdot Q_{k2} + \gamma_{Q3} \cdot \psi_{03} \cdot Q_{k3} + \dots$$

Combinazione caratteristica (rara), generalmente impiegata per gli stati limite di esercizio (SLE) irreversibili:

$$G_1 + G_2 + P + Q_{k1} + \psi_{02} \cdot Q_{k2} + \psi_{03} \cdot Q_{k3} + \dots$$

Combinazione frequente, generalmente impiegata per gli stati limite di esercizio (SLE) reversibili, utilizzata nella verifica a Fessurazione:

$$G_1 \, + \, G_2 \, + P + \, \psi_{11} \cdot Q_{k1} \, + \, \psi_{22} \cdot Q_{k2} \, + \, \psi_{23} \cdot Q_{k3} \, + \, \dots$$

Combinazione quasi permanente, generalmente impiegata per gli stati limite di esercizio (SLE) a lungo termine;

$$G_1 + G_2 + P + \psi_{21} \cdot Q_{k1} + \psi_{22} \cdot Q_{k2} + \psi_{23} \cdot Q_{k3} + \dots$$

Combinazione sismica, impiegata per gli stati limite ultimi e di esercizio connessi all'azione sismica E:

$$E + G_1 + G_2 + P + \psi_{21} \cdot Q_{k1} + \psi_{22} \cdot Q_{k2} + \dots$$

dove:

$$E = \pm 1.00 \times E_{Y} \pm 0.3 \times E_{Z}$$

avendo indicato con E_Y e E_Z rispettivamente le componenti orizzontale e verticale dell'azione sismica.

I coefficienti di amplificazione dei carichi γ e i coefficienti di combinazione ψ sono riportati nelle tabelle seguenti.

Tombini e ponticelli idraulici - IN02 - Tombino idraulico Ø1500 al km 18+277 - Relazione di calcolo

COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
IF26	12 E ZZ	CL	IN0200 0001	Α	48 di 179

Tabella 5.2.V - Coefficienti parziali di sicurezza per le combinazioni di carico agli SLU, eccezionali e sismica

		Coefficiente	EQU ⁽¹⁾	A1 STR	A2 GEO	Combinazione eccezionale	Combinazione Sismica
Carichi permanenti	favorevoli sfavorevoli	γ _{G1}	0,90 1,10	1,00 1,35	1,00 1,00	1,00 1,00	1,00 1,00
Carichi permanenti non strutturali ⁽²⁾	favorevoli sfavorevoli	γ _{G2}	0,00 1,50	0,00 1,50	0,00 1,30	1,00 1,00	1,00 1,00
Ballast ⁽³⁾	favorevoli sfavorevoli	γв	0,90 1,50	1,00 1,50	1,00 1,30	1,00 1,00	1,00 1,00
Carichi variabili da traffico ⁽⁴⁾	favorevoli sfavorevoli	γο	0,00 1,45	0,00 1,45	0,00 1,25	0,00 0,20 ⁽⁵⁾	0,00 0,20 ⁽⁵⁾
Carichi variabili	favorevoli sfavorevoli	γQi	0,00 1,50	0,00 1,50	0,00 1,30	0,00 1,00	0,00 0,00
Precompressione	favorevole sfavorevole	γP	0,90 1,00 ⁽⁶⁾	1,00 1,00 ⁽⁷⁾	1,00 1,00	1,00 1,00	1,00 1,00

⁽¹⁾ Equilibrio che non coinvolga i parametri di deformabilità e resistenza del terreno; altrimenti si applicano i valori

Tabella 5.2.VII - Ulteriori coefficienti di combinazione y delle azioni.

	Azioni	Ψο	Ψ1	Ψ2
	Treno di carico LM 71	0,80(3)	(1)	0,0
Azioni	Treno di carico SW /0	0,80 ⁽³⁾	0,80	0,0
singole	Treno di carico SW/2	0,0(3)	0,80	0,0
da	Treno scarico	1,00(3)	-	-
traffico	Centrifuga	(2 (3)	(2)	(2)
	Azione laterale (serpeggio)	1,00(3)	0,80	0,0

^{(1) 0,80} se è carico solo un binario, 0,60 se sono carichi due binari e 0,40 se sono carichi tre o più binari.

In definitiva, con riferimento ai carichi di tipo variabile previsti nel caso in esame, sono stati assunti i seguenti coefficienti di partecipazione Ψ:

Carichi stradali (Variabili da traffico)

 $\Psi_0 = 0.80 \ \Psi_1 = 0.80 \ \Psi_2 = 0.00 \ (\Psi_2 = 0.20 \ \text{in combinazioni sismiche})$

Azioni Termiche (Term)

 $\Psi o = 0.60 \ \Psi 1 = 0.60 \ \Psi 2 = 0.50$

⁽²⁾ Nel caso in cui i carichi permanenti non strutturali (ad es. carichi permanenti portati) siano compiutamente definiti si potranno adottare gli stessi coefficienti validi per le azioni permanenti.
(3) Quando si prevedano variazioni significative del carico dovuto al ballast, se ne dovrà tener conto esplicitamente nelle verifiche.

⁽⁴⁾ Le componenti delle azioni da traffico sono introdotte in combinazione considerando uno dei gruppi di carico gr della Tab. 5.2.IV.

⁽⁵⁾ Aliquota di carico da traffico da considerare.

^{(6) 1,30} per instabilità in strutture con precompressione esterna

^{(7) 1,20} per effetti locali

⁽²⁾ Si usano gli stessi coefficienti ψ adottati per i carichi che provocano dette azioni.

⁽³⁾ Quando come azione di base venga assunta quella del vento, i coefficienti ψ0 relativi ai gruppi di carico delle azioni da traffico vanno assunti pari a 0,0.

In definitiva, sono state analizzate un totale di 24 Combinazioni di calcolo di cui 11 riferite al Caso SLU statico (A1-M1 ed A2-M2), 8 sismiche (2 A1-M1 + 2 A2-M2) e 8 di SLE.

Di seguito si riporta in definitiva un riepilogo delle Combinazioni di Calcolo considerate nelle analisi

_	ombinazior	ni generate	nr. 24	
	Comb n*	Caso	Sisma orizzontale	Sisma verticale
Þ	1	A1-M1	Assente	
	2	A2-M2	Assente	
	3	A1-M1	Assente	
П	4	A2-M2	Assente	
	5	A1-M1	Assente	
	7	A2-M2	Assente	
	9	A1-M1	Assente	
	11	A2-M2	Assente	
	6	A1-M1	Da SINISTRA	NEGATIVO
	8	A2-M2	Da SINISTRA	NEGATIVO
	10	A1-M1	Da SINISTRA	NEGATIVO
П	12	A2-M2	Da SINISTRA	NEGATIVO
П	13	A1-M1	Da SINISTRA	POSITIVO
П	14	A2-M2	Da SINISTRA	POSITIVO
	15	A1-M1	DaSINISTRA	POSITIVO
	16	A2-M2	Da SINISTRA	POSITIVO
	17	SLEQ	Assente	
	18	SLEF	Assente	
	19	SLEF	Assente	
	20	SLEF	Assente	
	21	SLER	Assente	
	22	SLER	Assente	
	23	SLER	Assente	
	24	SLER	Assente	

Si precisa infine che la condizione di Carico **Q STR CEN**, è rappresentativa di una configurazione di carico stradale "simmetrica", (asse carico Q1k coincidente con l'asse del traverso) mentre la condizione di carico **Q STR LAT**, è una condizione emisimmetrica, ovvero con bordo del carico Q1k coincidente con filo esterno piedritto e carico q1k(9 KN/m²) assente in soletta.

Tombini e ponticelli idraulici - IN02 - Tombino idraulico Ø1500 al km 18+277 – Relazione di calcolo

IF26	12 E ZZ	Cl	IN0200 0001	۸	50 di 179
COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO

Combinazione n'	٥ 1	SLU	(Caso A1-M1)	
-----------------	-----	-----	--------------	--

	Effetto	γ	Ψ	C
Peso Proprio	Sfavorevole	1.35	1.00	1.35
Spinta terreno sinistra	Sfavorevole	1.35	1.00	1.35
Spinta terreno destra	Sfavorevole	1.35	1.00	1.35
Qcentrale	Sfavorevole	1.45	1.00	1.45
TERMICO	Sfavorevole	1.20	0.60	0.72
RITIRO	Sfavorevole	1.20	1.00	1.20

Combinazione nº 2 SLU (Caso A2-M2)

	Effetto	γ	Ψ	C
Peso Proprio	Sfavorevole	1.00	1.00	1.00
Spinta terreno sinistra	Sfavorevole	1.00	1.00	1.00
Spinta terreno destra	Sfavorevole	1.00	1.00	1.00
Qcentrale	Sfavorevole	1.25	1.00	1.25
TERMICO	Sfavorevole	1.00	0.60	0.60
RITIRO	Sfavorevole	1.00	1.00	1.00

Combinazione nº 3 SLU (Caso A1-M1)

	Effetto	γ	Ψ	C
Peso Proprio	Sfavorevole	1.35	1.00	1.35
Spinta terreno sinistra	Sfavorevole	1.35	1.00	1.35
Spinta terreno destra	Sfavorevole	1.35	1.00	1.35
Qcentrale	Sfavorevole	1.45	0.75	1.09
TERMICO	Sfavorevole	1.20	1.00	1.20
RITIRO	Sfavorevole	1.20	1.00	1.20

Tombini e ponticelli idraulici - IN02 - Tombino idraulico	COMMESSA	LOTTO	CODIFICA	
Ø1500 al km 18+277 – Relazione di calcolo				

Tombini e ponticelli idraulic Ø1500 al km 18+277 – Rel	si - IN02 - Tombino idraulico azione di calcolo	COMMESSA IF26	LOTTO 12 E ZZ	CODIFICA CL	DOCUMENTO IN0200 0001	REV.	FOGLIO 51 di 179
	Effetto		γ	Ψ	C		
Peso Proprio	Sfavorevole		1.00	1.00	1.00		
Spinta terreno sinistra	Sfavorevole		1.00	1.00	1.00		
Spinta terreno destra	Sfavorevole		1.00	1.00	1.00		
Qcentrale	Sfavorevole		1.25	0.75	0.94		
TERMICO	Sfavorevole		1.00	1.00	1.00		
RITIRO	Sfavorevole		1.00	1.00	1.00		
Combinazione nº 5 SLU (Caso Al	-M1) Effetto		γ	Ψ	C		
Peso Proprio	Sfavorevole		1.35	1.00	1.35		
Spinta terreno sinistra	Sfavorevole		1.35	1.00	1.35		
Spinta terreno destra	Sfavorevole		1.35	1.00	1.35		
Qlaterale	Sfavorevole		1.45	1.00	1.45		
TERMICO	Sfavorevole		1.20	0.60	0.72		
RITIRO	Sfavorevole		1.20	1.00	1.20		
Combinazione nº 6 SLU (Caso A1	-M1) - Sisma Vert. negativo						

Combinazione n° 6 SLU (Caso A1-M1) - Sisma Vert. negativo

	Effetto	γ	Ψ	C
Peso Proprio	Sfavorevole	1.00	1.00	1.00
Spinta terreno sinistra	Sfavorevole	1.00	1.00	1.00
Spinta terreno destra	Sfavorevole	1.00	1.00	1.00
Qcentrale	Sfavorevole	1.00	0.20	0.20
TERMICO	Sfavorevole	1.00	0.50	0.50
RITIRO	Sfavorevole	1.00	1.00	1.00
Sisma da sinistra	Sfavorevole	1.00	1.00	1.00

Tombini e ponticelli idraulici - IN02 - Tombino idraulico Ø1500 al km 18+277 – Relazione di calcolo

COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
IF26	12 E ZZ	CL	IN0200 0001	Α	52 di 179

Combinazione	nº 7 9	SI II (Caso	$\Delta 2-M2$

	Effetto	γ	Ψ	C
Peso Proprio	Sfavorevole	1.00	1.00	1.00
Spinta terreno sinistra	Sfavorevole	1.00	1.00	1.00
Spinta terreno destra	Sfavorevole	1.00	1.00	1.00
Qlaterale	Sfavorevole	1.25	1.00	1.25
TERMICO	Sfavorevole	1.00	0.60	0.60
RITIRO	Sfavorevole	1.00	1.00	1.00

Combinazione nº 8 SLU (Caso A2-M2) - Sisma Vert. negativo

	Effetto	γ	Ψ	C
Peso Proprio	Sfavorevole	1.00	1.00	1.00
Spinta terreno sinistra	Sfavorevole	1.00	1.00	1.00
Spinta terreno destra	Sfavorevole	1.00	1.00	1.00
Qcentrale	Sfavorevole	1.00	0.20	0.20
TERMICO	Sfavorevole	1.00	0.50	0.50
RITIRO	Sfavorevole	1.00	1.00	1.00
Sisma da sinistra	Sfavorevole	1.00	1.00	1.00

Combinazione nº 9 SLU (Caso A1-M1)

	Effetto	γ	Ψ	\mathbf{C}
Peso Proprio	Sfavorevole	1.35	1.00	1.35
Spinta terreno sinistra	Sfavorevole	1.35	1.00	1.35
Spinta terreno destra	Sfavorevole	1.35	1.00	1.35
Qlaterale	Sfavorevole	1.45	0.75	1.09
TERMICO	Sfavorevole	1.20	1.00	1.20
RITIRO	Sfavorevole	1.20	1.00	1.20

Tombini e ponticelli idraulici - IN02 - Tombino idraulico Ø1500 al km 18+277 – Relazione di calcolo	COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
	IF26	12 E ZZ	CL	IN0200 0001	Α	53 di 179

Ø1500 al km 18+277 – Relazione	di calcolo	IF26	12 E ZZ	CL	IN0200 0001	Α	53 di 179
	Effetto		γ	Ψ	C		
Peso Proprio	Sfavorevole		1.00	1.00	1.00		
Spinta terreno sinistra	Sfavorevole		1.00	1.00	1.00		
Spinta terreno destra	Sfavorevole		1.00	1.00	1.00		
Qlaterale	Sfavorevole		1.00	0.20	0.20		
TERMICO	Sfavorevole		1.00	0.50	0.50		
RITIRO	Sfavorevole		1.00	1.00	1.00		
Sisma da sinistra	Sfavorevole		1.00	1.00	1.00		
Combinazione nº 11 SLU (Caso A2-M2)							

	Effetto	γ	Ψ	\mathbf{C}
Peso Proprio	Sfavorevole	1.00	1.00	1.00
Spinta terreno sinistra	Sfavorevole	1.00	1.00	1.00
Spinta terreno destra	Sfavorevole	1.00	1.00	1.00
Qlaterale	Sfavorevole	1.25	0.75	0.94
TERMICO	Sfavorevole	1.00	1.00	1.00
RITIRO	Sfavorevole	1.00	1.00	1.00

Combinazione nº 12 SLU (Caso A2-M2) - Sisma Vert. negativo

	Effetto	γ	Ψ	C
Peso Proprio	Sfavorevole	1.00	1.00	1.00
Spinta terreno sinistra	Sfavorevole	1.00	1.00	1.00
Spinta terreno destra	Sfavorevole	1.00	1.00	1.00
Qlaterale	Sfavorevole	1.00	0.20	0.20
TERMICO	Sfavorevole	1.00	0.50	0.50
RITIRO	Sfavorevole	1.00	1.00	1.00
Sisma da sinistra	Sfavorevole	1.00	1.00	1.00

Tombini e ponticelli idraulici - IN02 - Tombino idraulico Ø1500 al km 18+277 – Relazione di calcolo	COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
2 1500 al km 18+277 – Relazione di Calcolo	IF26	12 E ZZ	CL	IN0200 0001	Α	54 di 179

Ø1500 al km 18+277 – Relazione	di calcolo	COMMESSA IF26	LOTTO 12 E ZZ	CODIFICA CL	DOCUMENTO IN0200 0001	REV.
	Effetto		γ	Ψ	C	
Peso Proprio	Sfavorevole		1.00	1.00	1.00	
Spinta terreno sinistra	Sfavorevole		1.00	1.00	1.00	
Spinta terreno destra	Sfavorevole		1.00	1.00	1.00	
Qcentrale	Sfavorevole		1.00	0.20	0.20	
TERMICO	Sfavorevole		1.00	0.50	0.50	
RITIRO	Sfavorevole		1.00	1.00	1.00	
Sisma da sinistra	Sfavorevole		1.00	1.00	1.00	
Combinazione n° 14 SLU (Caso A2-M2) -	Sisma Vert. positivo					
	Effetto		γ	Ψ	C	
Peso Proprio	Sfavorevole		1.00	1.00	1.00	
Spinta terreno sinistra	Sfavorevole		1.00	1.00	1.00	
Spinta terreno destra	Sfavorevole		1.00	1.00	1.00	
Qcentrale	Sfavorevole		1.00	0.20	0.20	
TERMICO	Sfavorevole		1.00	0.50	0.50	
RITIRO	Sfavorevole		1.00	1.00	1.00	
Sisma da sinistra	Sfavorevole		1.00	1.00	1.00	
Combinazione nº 15 SLU (Caso A1-M1) -	Sisma Vert. positivo					
	Effetto		γ	Ψ	C	
Peso Proprio	Sfavorevole		1.00	1.00	1.00	
Spinta terreno sinistra	Sfavorevole		1.00	1.00	1.00	
Spinta terreno destra	Sfavorevole		1.00	1.00	1.00	
Qlaterale	Sfavorevole		1.00	0.20	0.20	
TERMICO	Sfavorevole		1.00	0.50	0.50	
RITIRO	Sfavorevole		1.00	1.00	1.00	
Sisma da sinistra	Sfavorevole		1.00	1.00	1.00	

Combinazione nº 16 SLU (Caso A2-M2) - Sisma Vert. positivo

TERMICO

ITINERARIO NAPOLI – BARI RADDOPPIO TRATTA CANCELLO-BENEVENTO II LOTTO FUNZIONALE FRASSO TELESINO – VITULANO 1° LOTTO FUNZIONALE FRASSO TELESINO – TELESE PROGETTO ESECUTIVO

•	Tombini e ponticelli idraulici - IN02 - Tombino idraulico	COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
	Ø1500 al km 18+277 – Relazione di calcolo	IF26	12 E ZZ	CL	IN0200 0001	Α	55 di 179

Ø1500 al km 18+277 – Rel	IF26 12 E ZZ	CL	IN0200 0001	A	55 di 179	
		l				
	Effetto	γ	Ψ	C		
Peso Proprio	Sfavorevole	1.00	1.00	1.00		
Spinta terreno sinistra	Sfavorevole	1.00	1.00	1.00		
Spinta terreno destra	Sfavorevole	1.00	1.00	1.00		
Qlaterale	Sfavorevole	1.00	0.20	0.20		
TERMICO	Sfavorevole	1.00	0.50	0.50		
RITIRO	Sfavorevole	1.00	1.00	1.00		
Sisma da sinistra	Sfavorevole	1.00	1.00	1.00		
Combinazione n° 17 SLE (Quasi P	<u>'ermanente)</u>					
	Effetto	γ	Ψ	C		
Peso Proprio	Sfavorevole	1.00	1.00	1.00		
Spinta terreno sinistra	Sfavorevole	1.00	1.00	1.00		
Spinta terreno destra	Sfavorevole	1.00	1.00	1.00		
TERMICO	Sfavorevole	1.00	0.50	0.50		
RITIRO	Sfavorevole	1.00	1.00	1.00		
Combinazione n° 18 SLE (Frequer	nte)					
	Effetto	γ	Ψ	C		
Peso Proprio	Sfavorevole	1.00	1.00	1.00		
Spinta terreno sinistra	Sfavorevole	1.00	1.00	1.00		
Spinta terreno destra	Sfavorevole	1.00	1.00	1.00		
Qcentrale	Sfavorevole	1.00	0.80	0.80		
TERMICO	Sfavorevole	1.00	0.50	0.50		
RITIRO	Sfavorevole	1.00	1.00	1.00		
Combinazione n° 19 SLE (Frequer	<u>nte)</u>					
	Effetto	γ	Ψ	C		
Peso Proprio	Sfavorevole	1.00	1.00	1.00		
Spinta terreno sinistra	Sfavorevole	1.00	1.00	1.00		
Spinta terreno destra	Sfavorevole	1.00	1.00	1.00		
Qlaterale	Sfavorevole	1.00	0.80	0.80		
TERMICO	00 1	1.00	0.50	0.50		

1.00

0.50

0.50

Sfavorevole

Tombini e ponticelli idraulici - IN02 - Tombino idraulico Ø1500 al km 18+277 – Relazione di calcolo	COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
2 1300 al kili 10+277 – Relazione di Calcolo	IF26	12 E ZZ	CL	IN0200 0001	Α	56 di 179

Ø1500 al km 18+2/7 – Relazi	IF26	12 E ZZ	CL	IN0200 0001	Α	56 di 179	
RITIRO	Sfavorevole		1.00	1.00	1.00		
Combinazione n° 20 SLE (Frequente)							
	Effetto		γ	Ψ	C		
Peso Proprio	Sfavorevole		1.00	1.00	1.00		
Spinta terreno sinistra	Sfavorevole		1.00	1.00	1.00		
Spinta terreno destra	Sfavorevole		1.00	1.00	1.00		
TERMICO	Sfavorevole		1.00	0.60	0.60		
RITIRO	Sfavorevole		1.00	1.00	1.00		
Combinazione n° 21 SLE (Rara)							
	Effetto		γ	Ψ	C		
Peso Proprio	Sfavorevole		1.00	1.00	1.00		
Spinta terreno sinistra	Sfavorevole		1.00	1.00	1.00		
Spinta terreno destra	Sfavorevole		1.00	1.00	1.00		
Qcentrale	Sfavorevole		1.00	1.00	1.00		
TERMICO	Sfavorevole		1.00	0.60	0.60		
RITIRO	Sfavorevole		1.00	1.00	1.00		
Combinazione n° 22 SLE (Rara)							
	Effetto		γ	Ψ	C		
Peso Proprio	Sfavorevole		1.00	1.00	1.00		
Spinta terreno sinistra	Sfavorevole		1.00	1.00	1.00		
Spinta terreno destra	Sfavorevole		1.00	1.00	1.00		
Qlaterale	Sfavorevole		1.00	1.00	1.00		
TERMICO	Sfavorevole		1.00	0.60	0.60		
RITIRO	Sfavorevole		1.00	1.00	1.00		
Combinazione n° 23 SLE (Rara)							
	Effetto		γ	Ψ	C		
Peso Proprio	Sfavorevole		1.00	1.00	1.00		
Spinta terreno sinistra	Sfavorevole		1.00	1.00	1.00		
Spinta terreno destra	Sfavorevole		1.00	1.00	1.00		
TERMICO	Sfavorevole		1.00	1.00	1.00		
Qcentrale	Sfavorevole		1.00	0.80	0.80		

Tombini e ponticelli idraulici - IN02 - Tombino idraulico Ø1500 al km 18+277 – Relazione di calcolo

IF26	12 E ZZ	CL	IN0200 0001	Δ	57 di 179
COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO

		IF26	12 E ZZ	CL	IN0200 0001	Α	57 di 179	
RITIRO	Sfavorevole		1.00	1.00	1.00			
Combinazione n° 24 SLE (Rara)								
	Effetto		γ	Ψ	C			
Peso Proprio	Sfavorevole		1.00	1.00	1.00			
Spinta terreno sinistra	Sfavorevole		1.00	1.00	1.00			
Spinta terreno destra	Sfavorevole		1.00	1.00	1.00			
TERMICO	Sfavorevole		1.00	1.00	1.00			
Qlaterale	Sfavorevole		1.00	0.80	0.80			
RITIRO	Sfavorevole		1.00	1.00	1.00			

Tombini e ponticelli idraulici - IN02 - Tombino idraulico Ø1500 al km 18+277 – Relazione di calcolo

 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 IF26
 12 E ZZ
 CL
 IN0200 0001
 A
 58 di 179

10. ORIGINE E CARATTERISTICHE DEI CODICI DI CALCOLO

Nell'ambito del presente paragrafo si riporta una descrizione delle caratteristiche dei Software utilizzati per l'effettuazione delle Analisi e Verifiche strutturali e geotecniche esposte nel presente documento.

Denominazione ed Estremi di Licenza del Software

Titolo SCAT - Analisi Strutture Scatolari

Versione 11.0

Produttore Aztec Informatica srl, Casole Bruzio (CS)

Tipo di analisi svolta

L'analisi strutturale e le verifiche sono condotte con l'ausilio di un codice di calcolo automatico. La verifica della sicurezza degli elementi strutturali è stata valutata con i metodi della scienza delle costruzioni.

La struttura viene discretizzata in elementi tipo trave. Per simulare il comportamento del terreno di fondazione e di rinfianco vengono inserite delle molle alla Winkler non reagenti a trazione

L'analisi che viene effettuata è un'analisi al passo per tener conto delle molle che devono essere eliminate (molle in trazione). L'analisi fornisce i risultati in termini di spostamenti. Dagli spostamenti si risale alle sollecitazioni nodali ed alle pressioni sul terreno.

Il calcolo degli scatolari viene eseguito secondo le seguenti fasi:

- Calcolo delle pressioni in calotta (per gli scatolari ricoperti da terreno);
- Calcolo della spinta del terreno;
- Calcolo delle sollecitazioni sugli elementi strutturali (fondazione, piedritti e traverso);
- Progetto delle armature e relative verifiche dei materiali.

Tombini e ponticelli idraulici - IN02 - Tombino idraulico Ø1500 al km 18+277 – Relazione di calcolo

 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 IF26
 12 E ZZ
 CL
 IN0200 0001
 A
 59 di 179

L'analisi strutturale sotto le azioni sismiche è condotta con il metodo dell'analisi statica equivalente

La verifica delle sezioni degli elementi strutturali è eseguita con il metodo degli Stati Limite. Le combinazioni di carico adottate sono esaustive relativamente agli scenari di carico più gravosi cui l'opera sarà soggetta.

Affidabilità dei codici di calcolo

Un attento esame preliminare della documentazione a corredo dei software impiegati ha consentito di valutarne l'affidabilità. La documentazione fornita dal produttore dei software contiene un'esauriente descrizione delle basi teoriche, degli algoritmi impiegati e l'individuazione dei campi d'impiego. Le stesse società produttrici hanno verificato l'affidabilità e la robustezza dei codice di calcolo attraverso un numero significativo di casi prova in cui i risultati sono contenuti in apposita documentazione fornita a corredo dell'acquisto del prodotto, che per brevità espositiva si omette di allegare al presente documento.

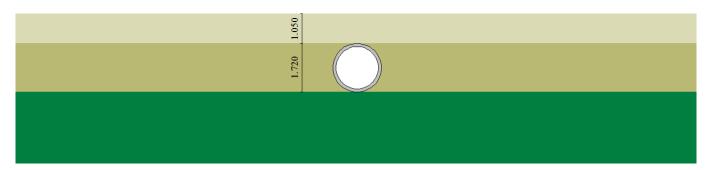
Giudizio motivato di accettabilità dei risultati

I risultati delle elaborazioni esposte nel documento sono state inoltre sottoposte a controlli dal sottoscritto utente del software.

Tale valutazione ha compreso il confronto con i risultati di semplici calcoli, eseguiti con metodi tradizionali, che per brevità espositiva si omette dall'allegare al presente documento.

Inoltre sulla base di considerazioni riguardanti gli stati tensionali e deformativi determinati, si è valutata la validità delle scelte operate in sede di schematizzazione e di modellazione della struttura e delle azioni.

In base a quanto sopra, Il Progettista dichiara pertanto che l'elaborazione è corretta ed idonea al caso specifico, validando conseguentemente i risultati dei calcoli esposti nella presente.



11. RISULTATI, ANALISI E VERIFICHE SEZ.A

Di seguito di riporta una descrizione della modellazione effettuata mediante ausilio del software di calcolo SCAT v.11 prodotto dalla AZTEC Informativa, con una descrizione del modello strutturale implementato, sollecitazioni di calcolo ottenute e risultati delle verifiche effettuate.

11.1 MODELLO DI CALCOLO

Di seguito di riporta una descrizione del modello geometrico/geotecnico considerato ai fini del dimensionamento:

Modello Geometrico Geotecnico di Riferimento – 1/2

Modello Geometrico Geotecnico di Riferimento – 2/2

Tombini e ponticelli idraulici - IN02 - Tombino idraulico Ø1500 al km 18+277 – Relazione di calcolo

 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 IF26
 12 E ZZ
 CL
 IN0200 0001
 A
 61 di 179

A partire dal tipo di terreno, dalla geometria e dai sovraccarichi agenti il programma è in grado di conoscere tutti i carichi agenti sulla struttura per ogni combinazione di carico.

La struttura scatolare viene schematizzata come un telaio piano e viene risolta mediante il metodo degli elementi finiti (FEM). Più dettagliatamente il telaio viene discretizzato in una serie di elementi connessi fra di loro nei nodi.

Il terreno di fondazione viene schematizzato con una serie di elementi molle non reagenti a trazione (modello di Winkler). L'area della singola molla è direttamente proporzionale alla costante di Winkler del terreno e all'area di influenza della molla stessa.

A partire dalla matrice di rigidezza del singolo elemento, Ke, si assembla la matrice di rigidezza di tutta la struttura K. Tutti i carichi agenti sulla struttura vengono trasformati in carichi nodali (reazioni di incastro perfetto) ed inseriti nel vettore dei carichi nodali p.

Indicando con u il vettore degli spostamenti nodali (incogniti), la relazione risolutiva può essere scritta nella forma

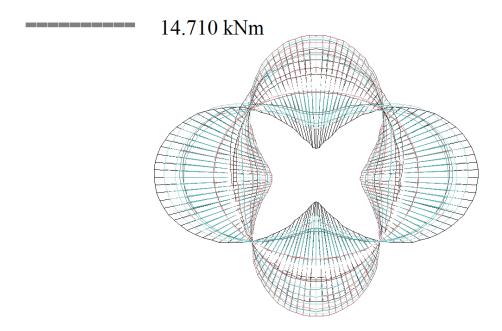
Ku = p

Da questa equazione matriciale si ricavano gli spostamenti incogniti u

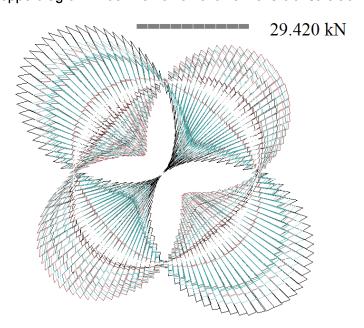
u = K-1 p

Noti gli spostamenti nodali è possibile risalire alle sollecitazioni nei vari elementi.

La soluzione del sistema viene fatta per ogni combinazione di carico agente sullo scatolare. Il successivo calcolo delle armature nei vari elementi viene condotto tenendo conto delle condizioni più gravose che si possono verificare nelle sezioni fra tutte le combinazioni di carico.



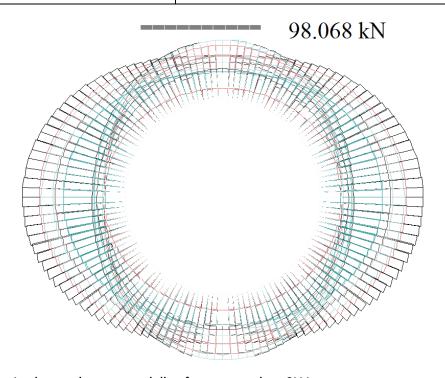
Tombini e ponticelli idraulici - IN02 - Tombino idraulico Ø1500 al km 18+277 – Relazione di calcolo

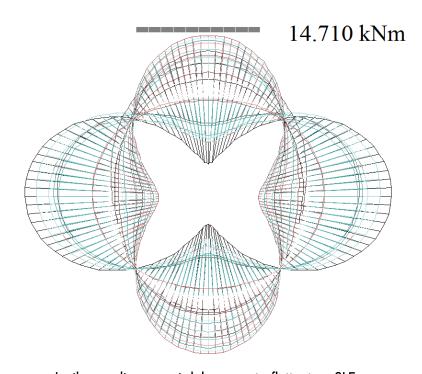

COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
IF26	12 E ZZ	CL	IN0200 0001	Α	62 di 179

11.2 SOLLECITAZIONI DI CALCOLO

Si riportano, di seguito, i diagrammi di inviluppo delle caratteristiche delle sollecitazioni di Flessione, Taglio e Sforzo Normale; le unità di misura dei grafici sono i KN e m:

Inviluppo diagrammi del momento flettente – SLU statico e sismico


Inviluppo diagrammi del taglio – SLU statico e sismico


Tombini e ponticelli idraulici - IN02 - Tombino idraulico Ø1500 al km 18+277 – Relazione di calcolo

 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 IF26
 12 E ZZ
 CL
 IN0200 0001
 A
 63 di 179

Inviluppo diagrammi dello sforzo normale – SLU statico e sismico

Inviluppo diagrammi del momento flettente – SLE

Tombini e ponticelli idraulici - IN02 - Tombino idraulico Ø1500 al km 18+277 – Relazione di calcolo

 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 IF26
 12 E ZZ
 CL
 IN0200 0001
 A
 64 di 179

11.3 ARMATURE DI PROGETTO

Nella tabella seguente si riportano le armature di progetto previste per la sezione di calcolo in questione, come desumibili dagli elaborati grafici di armatura delle opere relative:

	Armatura	Armatura a taglio	
Elemento	Af 1	Af 2	Af t
TRAVERSO	1φ14/20	1φ14/20	-
PIEDRITTI	1φ14/20	1φ14/20	-
FONDAZIONE	1φ14/20	1φ14/20	-

Af1: Armatura lato esterno (terreno)

Af2: Armatura lato interno

Ai fini delle verifiche si è fatto riferimento ad un copriferro di calcolo (asse armature) pari a 4 cm.

11.4 VERIFICHE DI RESISTENZA E FESSURAZIONE

Il software esegue in automatico tutte le verifiche strutturali sia allo stato limite ultimo che allo stato limite di esercizio. Per quanto riguarda il taglio il programma prevede sia la verifica per elementi non armati a taglio e sia quella per elementi dotati di apposita armatura a taglio, disponendo tuttavia ferri sagomati resistenti a taglio e non staffe o tiranti. Per questo motivo le verifiche a taglio vengono eseguite manualmente attraverso l'ausilio di fogli di calcolo strutturati ad hoc.

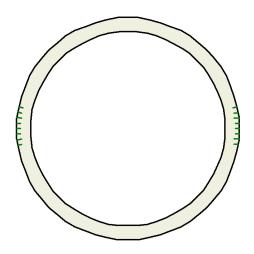
Per i risultati delle verifiche si rimanda ai tabulati di calcolo in allegato. I criteri generali di verifica adottati dal Software, sono quelli esposti al paragrafo 8.

Tombini e ponticelli idraulici - IN02 - Tombino idraulico Ø1500 al km 18+277 – Relazione di calcolo

 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 IF26
 12 E ZZ
 CL
 IN0200 0001
 A
 65 di 179

Verifiche a taglio


I risultati ottenuti dalle verifiche delle sezioni maggiormente sollecitate (a filo parete) per la struttura in esame sono riepilogati nella seguente tabella.

Verifica a taglio									
Sezione	b	h	V_{Rd}	Verificato	Armatura a taglio				
[-]	[kN]	[cm]	[cm]	[kN]	[-]	[-]			
-	21.3	100	11	55.7	SI	-			

Le sollecitazioni taglianti sono valutate in corrispondenza del filo esterno degli elementi.

Verifiche a fessurazione

L'ampiezza delle fessure è sempre al di sotto dei limiti sopra descritti, pertanto le verifiche si possono ritenere soddisfatte. Nella seguente figura vengono riportati lo schema con indicazione delle zone della struttura ove si innesca il processo di fessurazione. Per i relativi valori di ampiezza delle fessure ricavati riferirsi al tabulato in allegato:

Schema con indicazione delle zone fessurate

Tombini e ponticelli idraulici - IN02 - Tombino idraulico Ø1500 al km 18+277 – Relazione di calcolo

COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
IF26	12 E ZZ	CL	IN0200 0001	Α	66 di 179

11.5 VERIFICHE GEOTECNICHE

La verifica a carico limite è stata eseguita in automatico dal software di calcolo attraverso l'utilizzo di della formula di Meyerhof, come già specificato in precedenza; nel seguito si riportano i risultati ottenuti per il caso in esame:

Simbologia adottata

IC Indice della combinazione

Nc, Nq, N_g Fattori di capacità portante

Nc, Nq, N_q Fattori di capacità portante corretti per effetto forma, inclinazione del carico, affondamento, etc.

qu Portanza ultima del terreno, espressa in [MPa]

Q_U Portanza ultima del terreno, espressa in [kN]/m

Q_Y Carico verticale al piano di posa, espressa in [kN]/m

FS Fattore di sicurezza a carico limite

IC	Nc	Nq	Νγ	N'c	N'q	Ν'γ	qu	\mathbf{Q}_{U}	$\mathbf{Q}_{\mathbf{Y}}$	FS
1	50.59	37.75	40.05	71.13	47.21	40.05	3305	5683.95	174.84	32.51
2	30.54	18.75	15.48	42.94	24.23	15.48	1609	2766.66	145.65	19.00
3	50.59	37.75	40.05	71.13	47.21	40.05	3305	5683.95	144.79	39.26
4	30.54	18.75	15.48	42.94	24.23	15.48	1609	2766.66	119.74	23.11
5	50.59	37.75	40.05	2.74	3.02	0.45	27	46.34	54.62	1.85

Tombini e ponticelli idraulici - IN02 - Tombino idraulico Ø1500 al km 18+277 – Relazione di calcolo

 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

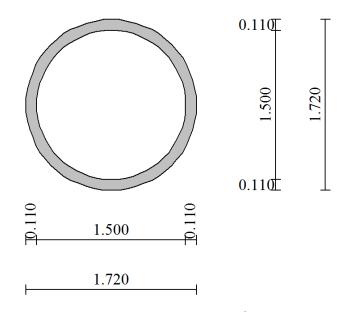
 IF26
 12 E ZZ
 CL
 IN0200 0001
 A
 67 di 179

12. RISULTATI, ANALISI E VERIFICHE SEZ.B

Di seguito di riporta una descrizione della modellazione effettuata mediante ausilio del software di calcolo SCAT v.11 prodotto dalla AZTEC Informativa, con una descrizione del modello strutturale implementato, sollecitazioni di calcolo ottenute e risultati delle verifiche effettuate.

12.1 MODELLO DI CALCOLO

Di seguito di riporta una descrizione del modello geometrico/geotecnico considerato ai fini del dimensionamento:


Modello Geometrico Geotecnico di Riferimento – 1/2

Tombini e ponticelli idraulici - IN02 - Tombino idraulico Ø1500 al km 18+277 – Relazione di calcolo

 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 IF26
 12 E ZZ
 CL
 IN0200 0001
 A
 68 di 179

Modello Geometrico Geotecnico di Riferimento – 2/2

A partire dal tipo di terreno, dalla geometria e dai sovraccarichi agenti il programma è in grado di conoscere tutti i carichi agenti sulla struttura per ogni combinazione di carico.

La struttura scatolare viene schematizzata come un telaio piano e viene risolta mediante il metodo degli elementi finiti (FEM). Più dettagliatamente il telaio viene discretizzato in una serie di elementi connessi fra di loro nei nodi.

Il terreno di fondazione viene schematizzato con una serie di elementi molle non reagenti a trazione (modello di Winkler). L'area della singola molla è direttamente proporzionale alla costante di Winkler del terreno e all'area di influenza della molla stessa.

A partire dalla matrice di rigidezza del singolo elemento, Ke, si assembla la matrice di rigidezza di tutta la struttura K. Tutti i carichi agenti sulla struttura vengono trasformati in carichi nodali (reazioni di incastro perfetto) ed inseriti nel vettore dei carichi nodali p.

Indicando con u il vettore degli spostamenti nodali (incogniti), la relazione risolutiva può essere scritta nella forma

Ku = p

Da questa equazione matriciale si ricavano gli spostamenti incogniti u

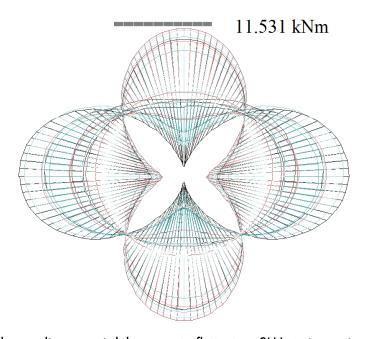
Tombini e ponticelli idraulici - IN02 - Tombino idraulico Ø1500 al km 18+277 – Relazione di calcolo

COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
IF26	12 E ZZ	CL	IN0200 0001	Α	69 di 179

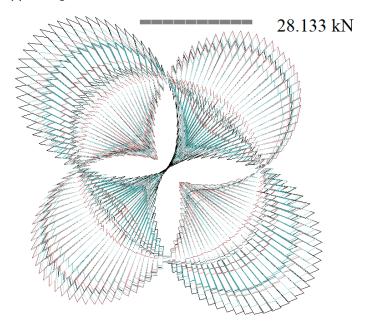
u = K-1 p

Noti gli spostamenti nodali è possibile risalire alle sollecitazioni nei vari elementi.

La soluzione del sistema viene fatta per ogni combinazione di carico agente sullo scatolare. Il successivo calcolo delle armature nei vari elementi viene condotto tenendo conto delle condizioni più gravose che si possono verificare nelle sezioni fra tutte le combinazioni di carico.



Tombini e ponticelli idraulici - IN02 - Tombino idraulico Ø1500 al km 18+277 – Relazione di calcolo

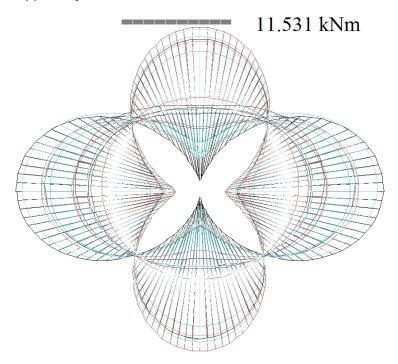

COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
IF26	12 E ZZ	CL	IN0200 0001	Α	70 di 179

12.2 SOLLECITAZIONI DI CALCOLO

Si riportano, di seguito, i diagrammi di inviluppo delle caratteristiche delle sollecitazioni di Flessione, Taglio e Sforzo Normale; le unità di misura dei grafici sono i KN e m:

Inviluppo diagrammi del momento flettente – SLU statico e sismico

Inviluppo diagrammi del taglio – SLU statico e sismico



Tombini e ponticelli idraulici - IN02 - Tombino idraulico Ø1500 al km 18+277 – Relazione di calcolo ITINERARIO NAPOLI – BARI
RADDOPPIO TRATTA CANCELLO-BENEVENTO
II LOTTO FUNZIONALE FRASSO TELESINO – VITULANO
1° LOTTO FUNZIONALE FRASSO TELESINO – TELESE
PROGETTO ESECUTIVO

COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
IF26	12 E ZZ	CL	IN0200 0001	Α	71 di 179

Inviluppo diagrammi dello sforzo normale – SLU statico e sismico

Inviluppo diagrammi del momento flettente – SLE

Tombini e ponticelli idraulici - IN02 - Tombino idraulico Ø1500 al km 18+277 – Relazione di calcolo

COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
IF26	12 E ZZ	CL	IN0200 0001	Α	72 di 179

12.3 ARMATURE DI PROGETTO

Nella tabella seguente si riportano le armature di progetto previste per la sezione di calcolo in questione, come desumibili dagli elaborati grafici di armatura delle opere relative:

	Armatura	Armatura a taglio	
Elemento	Af 1	Af 2	Af t
TRAVERSO	1φ14/20	1φ14/20	-
PIEDRITTI	1φ14/20	1φ14/20	-
FONDAZIONE	1φ14/20	1φ14/20	-

Af1: Armatura lato esterno (terreno)

Af2: Armatura lato interno

Ai fini delle verifiche si è fatto riferimento ad un copriferro di calcolo (asse armature) pari a 4 cm.

12.4 VERIFICHE DI RESISTENZA E FESSURAZIONE

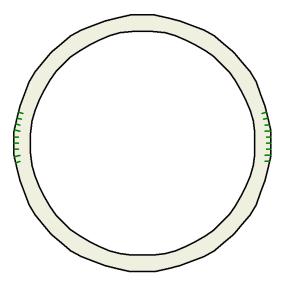
Il software esegue in automatico tutte le verifiche strutturali sia allo stato limite ultimo che allo stato limite di esercizio. Per quanto riguarda il taglio il programma prevede sia la verifica per elementi non armati a taglio e sia quella per elementi dotati di apposita armatura a taglio, disponendo tuttavia ferri sagomati resistenti a taglio e non staffe o tiranti. Per questo motivo le verifiche a taglio vengono eseguite manualmente attraverso l'ausilio di fogli di calcolo strutturati ad hoc.

Per i risultati delle verifiche si rimanda ai tabulati di calcolo in allegato. I criteri generali di verifica adottati dal Software, sono quelli esposti al paragrafo 8.

Tombini e ponticelli idraulici - IN02 - Tombino idraulico Ø1500 al km 18+277 – Relazione di calcolo

COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
IF26	12 E ZZ	CL	IN0200 0001	Α	73 di 179

Verifiche a taglio


I risultati ottenuti dalle verifiche delle sezioni maggiormente sollecitate (a filo parete) per la struttura in esame sono riepilogati nella seguente tabella.

Verifica a taglio									
Sezione	V_{Ed}	b	h	V_{Rd}	Verificato	Armatura a taglio			
[-]	[kN]	[cm]	[cm]	[kN]	[-]	[-]			
-	21.5	100	11	55.7	SI	-			

Le sollecitazioni taglianti sono valutate in corrispondenza del filo esterno degli elementi.

Verifiche a fessurazione

L'ampiezza delle fessure è sempre al di sotto dei limiti sopra descritti, pertanto le verifiche si possono ritenere soddisfatte. Nella seguente figura vengono riportati lo schema con indicazione delle zone della struttura ove si innesca il processo di fessurazione. Per i relativi valori di ampiezza delle fessure ricavati riferirsi al tabulato in allegato:

Schema con indicazione delle zone fessurate

Tombini e ponticelli idraulici - IN02 - Tombino idraulico Ø1500 al km 18+277 – Relazione di calcolo

COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO	
IF26	12 E ZZ	CL	IN0200 0001	Α	74 di 179	

12.5 VERIFICHE GEOTECNICHE

La verifica a carico limite è stata eseguita in automatico dal software di calcolo attraverso l'utilizzo di della formula di Meyerhof, come già specificato in precedenza; nel seguito si riportano i risultati ottenuti per il caso in esame:

Simbologia adottata

IC Indice della combinazione

Nc, Nq, N_g Fattori di capacità portante

Nc, Nq, N_g Fattori di capacità portante corretti per effetto forma, inclinazione del carico, affondamento, etc.

qu Portanza ultima del terreno, espressa in [MPa]

Q_U Portanza ultima del terreno, espressa in [kN]/m

Q_Y Carico verticale al piano di posa, espressa in [kN]/m

FS Fattore di sicurezza a carico limite

IC	Nc	Nq	Νγ	N'c	N'q	Ν'γ	qu	\mathbf{Q}_{U}	$\mathbf{Q}_{\mathbf{Y}}$	FS
1	50.59	37.75	40.05	77.15	49.99	40.05	7208	12397.17	176.78	70.13
2	30.54	18.75	15.48	46.58	25.84	15.48	3635	6252.53	153.19	40.81
3	50.59	37.75	40.05	77.15	49.99	40.05	7208	12397.17	158.22	78.35
4	30.54	18.75	15.48	46.58	25.84	15.48	3635	6252.53	137.19	45.57
5	50.59	37.75	40.05	35.37	23.64	13.56	2393	4115.84	102.54	40.14

Tombini e ponticelli idraulici - IN02 - Tombino idraulico Ø1500 al km 18+277 – Relazione di calcolo

COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
IF26	12 E ZZ	CL	IN0200 0001	Α	75 di 179

13. ALLEGATO 1:TABULATI DI CALCOLO SOTTOVIA SCATOLARE SEZ A

Geometria scatolare

Descrizione:	Scatolare circolare	
Diametro esterno verticale	1.72	[m]
Diametro esterno orizzontale	1.72	[m]
Spessore	0.11	[m]

Caratteristiche strati terreno

	Caratteristicne strati terreno		
Strato di ricoprimento			
Descrizione	Terreno di ricoprimento		
Spessore dello strato	1.05	[m]	
Peso di volume	20.0000	[kN/mc]	
Peso di volume saturo	20.0000	[kN/mc]	
Angolo di attrito	38.00	[°]	
Coesione	0	[kPa]	
Strato di rinfianco			
Descrizione	Terreno di rinfianco		
Peso di volume	20.0000	[kN/mc]	
Peso di volume saturo	20.0000	[kN/mc]	
Angolo di attrito	38.00	[°]	
Angolo di attrito terreno struttura	25.33	[°]	
Coesione	0	[kPa]	
Costante di Winkler	19000	[kPa/m]	
<u>Strato di base</u>			
Descrizione	Terreno di base bc2		
Peso di volume	20.0000	[kN/mc]	
Peso di volume saturo	20.0000	[kN/mc]	
Angolo di attrito	36.00	[°]	
Angolo di attrito terreno struttura	24.00	[°]	
Coesione	0	[kPa]	
Costante di Winkler	19000	[kPa/m]	
Tensione limite	1000	[kPa]	

Tombini e ponticelli idraulici - IN02 - Tombino idraulico Ø1500 al km 18+277 – Relazione di calcolo

COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
IF26	12 E ZZ	CL	IN0200 0001	Α	76 di 179

Caratteristiche materiali utilizzati

Materiale calcestruzzo

 R_{ck} calcestruzzo 40000 [kPa] Peso specifico calcestruzzo 24.5170 [kN/mc] Modulo elastico E 33149080 [kPa] Tensione di snervamento acciaio 450000 [kPa] Coeff. omogeneizzazione cls teso/compresso (n') 0.50 Coeff. omogeneizzazione acciaio/cls (n) 15.00 0.0000120 Coefficiente dilatazione termica

Condizioni di carico

Convenzioni adottate

Origine in corrispondenza dello spigolo inferiore sinistro della struttura

Carichi verticali positivi se diretti verso il basso

Carichi orizzontali positivi se diretti verso destra

Coppie concentrate positive se antiorarie

Ascisse X (espresse in m) positive verso destra

Ordinate Y (espresse in m) positive verso l'alto

Carichi concentrati espressi in kN

Coppie concentrate espressi in kNm

Carichi distribuiti espressi in kN/m

Simbologia adottata e unità di misura

$For ze\ concentrate$

X ascissa del punto di applicazione dei carichi verticali concentrati

Y ordinata del punto di applicazione dei carichi orizzontali concentrati F_y componente Y del carico concentrato

F_x componente X del carico concentrato

M momento

Forze distribuite

 X_{i} , X_{f} ascisse del punto iniziale e finale per carichi distribuiti verticali Y_{i} , Y_{f} ordinate del punto iniziale e finale per carichi distribuiti orizzontali V_{ni} componente normale del carico distribuito nel punto iniziale V_{nf} componente normale del carico distribuito nel punto finale V_{ti} componente tangenziale del carico distribuito nel punto iniziale V_{tf} componente tangenziale del carico distribuito nel punto finale V_{tf} variazione termica lembo esterno espressa in gradi centigradi

Tombini e ponticelli idraulici - IN02 - Tombino idraulico Ø1500 al km 18+277 – Relazione di calcolo

 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 IF26
 12 E ZZ
 CL
 IN0200 0001
 A
 77 di 179

 $V_{ti} = 12.70$

 $V_{tf} = 12.70$

 $D_{ti} \hspace{1cm} variazione \hspace{0.1cm} termica \hspace{0.1cm} lembo \hspace{0.1cm} interno \hspace{0.1cm} espressa \hspace{0.1cm} in \hspace{0.1cm} gradi \hspace{0.1cm} centigradi$

Condizione di carico n°1 (Peso Proprio)

Condizione di carico n°2 (Spinta terreno sinistra)

Condizione di carico n°3 (Spinta terreno destra)

Condizione di carico n°4 (Sisma da sinistra)

Condizione di carico n°5 (Sisma da destra)

Condizione di carico nº 7 (Qcentrale)

Distr	Terreno	$X_i = -2.45$	$X_{\rm f} = 3.95$	$V_{ni} = 51.50$	$V_{nf} = 51.50$
Distr	Terreno	$X_i = -7.45$	$X_f = -2.45$	$V_{ni}\!\!=26.40$	$V_{nf}\!\!=26.40$
Distr	Terreno	$X_i = 3.95$	$X_f\!\!=8.95$	$V_{ni}\!\!=26.40$	$V_{\text{nf}}\!\!=26.40$
Distr	Traverso	$X_i = 0.00$	$X_{f}\!\!=1.72$	$V_{ni} = 0.00$	$V_{nf}\!\!=0.00$

Condizione di carico n° 8 (Qlaterale)									
Distr	Terreno	$X_i = -10.40$	$X_f = -6.40$	$V_{ni}\!\!=26.40$	$V_{nf} = 26.40$				
Distr	Terreno	$X_i = -6.40$	$X_{\mathrm{f}}\!\!=0.00$	$V_{ni}\!\!=51.50$	$V_{nf} = 51.50$				
Distr	Traverso	$X_i = 0.00$	$X_f\!\!=1.72$	$V_{\text{ni}} \!\!= 0.00$	$V_{\text{nf}}\!\!=0.00$	$V_{ti}\!\!=12.70$	$V_{tf}\!\!=12.70$		

Condizione di carico nº 9 (TERMICO)

 $\label{eq:temperature} Term \qquad \qquad Traverso \qquad \qquad D_{te} \text{= -2.50} \qquad \qquad D_{ti} \text{= 2.50}$

Condizione di carico n° 10 (RITIRO)

 $\label{eq:temperature} Term \qquad \quad Traverso \qquad \quad D_{te} \text{= -10.00} \qquad \quad D_{ti} \text{= -10.00}$

Impostazioni di progetto

Verifica materiali:

Stato Limite Ultimo

Coefficiente di sicurezza calcestruzzo γ_c	1.50
Fattore riduzione da resistenza cubica a cilindrica	0.83
Fattore di riduzione per carichi di lungo periodo	0.85
Coefficiente di sicurezza acciaio	1.15
Coefficiente di sicurezza per la sezione	1.00

Verifica Taglio - Metodo dell'inclinazione variabile del traliccio

 $V_{Rd}\!\!=\!\![0.18^*k^*(100.0^*\rho_l^*fck)^{1/3}\!/\gamma_c\!\!+\!\!0.15^*\sigma_{cp}]^*bw^*d\!\!>\!\!(vmin+0.15^*\sigma_{cp})^*b_w^*d$

 $V_{Rsd}\!\!=\!\!0.9*d*A_{sw}\!/s*fyd*(ctg\alpha\!+\!ctg\theta)*sin\alpha$

 $V_{Rcd}\!\!=\!\!0.9*d*b_{w}*\alpha_{c}*fcd'*(ctg(\theta)\!\!+\!\!ctg(\alpha)\!/(1.0\!\!+\!\!ctg\theta^{2})$

con:

Tombini e ponticelli idraulici - IN02 - Tombino idraulico Ø1500 al km 18+277 – Relazione di calcolo

 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 IF26
 12 E ZZ
 CL
 IN0200 0001
 A
 78 di 179

d altezza utile sezione [mm]

 $b_w \qquad \qquad larghezza \ minima \ sezione \ [mm]$

 $\sigma_{cp} \hspace{1cm} tensione \ media \ di \ compressione \ [N/mmq]$

 ρ_1 rapporto geometrico di armatura

 $A_{sw} \hspace{1.5cm} area \hspace{.1cm} armatuta \hspace{.1cm} trasversale \hspace{.1cm} [mmq]$

s interasse tra due armature trasversali consecutive [mm]

 α_c coefficiente maggiorativo, funzione di fcd e σ_{cp}

fcd'=0.5*fcd

 $k=1+(200/d)^{1/2}$

vmin=0.035*k3/2*fck1/2

Stato Limite di Esercizio

Criteri di scelta per verifiche tensioni di esercizio:

Ambiente moderatamente aggressivo

 $Limite tensioni di compressione nel calcestruzzo (comb. quasi perm.) \\ 0.45 f_{ck}$

Limite tensioni di trazione nell'acciaio (comb. rare) $0.80 \, f_{vk}$

Criteri verifiche a fessurazione:

Armatura poco sensibile

Apertura limite fessure espresse in [m]

 $Apertura\ limite\ fessure \qquad \qquad w1 = 0.00010 \qquad \qquad w2 = 0.00015 \qquad \qquad w3 = 0.00020$

<u>Verifiche secondo</u>:

Norme Tecniche 2008 - Approccio 1

Copriferro sezioni 0.0400 [m]

Descrizione combinazioni di carico

Simbologia adottata

γ Coefficiente di partecipazione della condizione

 Ψ Coefficiente di combinazione della condizione

C Coefficiente totale di partecipazione della condizione

Norme Tecniche 2008

Simbologia adottata

Tombini e ponticelli idraulici - IN02 - Tombino idraulico Ø1500 al km 18+277 – Relazione di calcolo

IF26	12 E ZZ	CL	IN0200 0001	Α	79 di 179	
COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO	

$\gamma_{G1 fav}$	Coefficiente parziale favorevole sulle azioni permanenti
γ _{G2sfav}	Coefficiente parziale sfavorevole sulle azioni permanenti non strutturali
γ _{G2fav}	Coefficiente parziale favorevole sulle azioni permanenti non strutturali
γο	Coefficiente parziale sulle azioni variabili
$\gamma_{tan\phi'}$	Coefficiente parziale di riduzione dell'angolo di attrito drenato
γο	Coefficiente parziale di riduzione della coesione drenata
γcu	Coefficiente parziale di riduzione della coesione non drenata
γ_{au}	Coefficiente parziale di riduzione del carico ultimo

Coefficienti di partecipazione combinazioni statiche

Coefficienti parziali per le azioni o per l'effetto delle azioni:

ecemerenti parziani per ie azioni o per remetto	dene dzioni.			
Carichi	Effetto		A1	A2
Permanenti	Favorevole	$\gamma_{\rm Glfav}$	1.00	1.00
Permanenti	Sfavorevole	γ_{G1sfav}	1.35	1.00
Permanenti non strutturali	Favorevole	γ_{G2fav}	0.00	0.00
Permanenti non strutturali	Sfavorevole	γ_{G2sfav}	1.50	1.30
Variabili	Favorevole	$\gamma_{\rm Qifav}$	0.00	0.00
Variabili	Sfavorevole	γ_{Qisfav}	1.50	1.30
Variabili da traffico	Favorevole	γ_{Qfav}	0.00	0.00
Variabili da traffico	Sfavorevole	γ_{Qsfav}	1.45	1.25
Termici	Favorevole	γείαν	0.00	0.00
Termici	Sfavorevole	Yesfav	1.20	1.20
Coefficienti parziali per i parametri geotecnici c	lel terreno:			
Parametri			M1	M2
Tangente dell'angolo di attrito		$\gamma_{tan\varphi'}$	1.00	1.25
Coesione efficace		$\gamma_{c'}$	1.00	1.25
Resistenza non drenata		$\gamma_{\rm cu}$	1.00	1.40
Resistenza a compressione uniassiale		$\gamma_{\rm qu}$	1.00	1.60
Peso dell'unità di volume		γ_{γ}	1.00	1.00
Coefficienti di partecipazione combinazioni s	sismiche			
Coefficienti parziali per le azioni o per l'effetto	delle azioni:			
Carichi	Effetto		A1	A2
Permanenti	Favorevole	$\gamma_{\rm Glfav}$	1.00	1.00
Permanenti	Sfavorevole	γ_{G1sfav}	1.00	1.00

Combinazione n° 3 SLU (Caso A1-M1)

ITINERARIO NAPOLI – BARI RADDOPPIO TRATTA CANCELLO-BENEVENTO II LOTTO FUNZIONALE FRASSO TELESINO – VITULANO 1° LOTTO FUNZIONALE FRASSO TELESINO – TELESE PROGETTO ESECUTIVO

		INOGETTO					
Tombini e ponticelli idraulici - IN02 - Ø1500 al km 18+277 – Relazione di	Tombino idraulico calcolo	COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
		IF26	12 E ZZ	CL	IN0200 0001	A	80 di 179
Permanenti	Favorevole	γ_{G2fav}		0.00	0.00		
Permanenti	Sfavorevole	γ_{G2sfav}		1.00	1.00		
Variabili	Favorevole	γ_{Qifav}		0.00	0.00		
Variabili	Sfavorevole	γ_{Qisfav}		1.00	1.00		
Variabili da traffico	Favorevole	γ_{Qfav}		0.00	0.00		
Variabili da traffico	Sfavorevole	γ_{Qsfav}		1.00	1.00		
Termici	Favorevole	$\gamma_{\epsilon \rm fav}$		0.00	0.00		
Termici	Sfavorevole	$\gamma_{\epsilon s fav}$		1.00	1.00		
Coefficienti parziali per i parametri geotecnici	del terreno:						
Parametri				M1	M2		
Tangente dell'angolo di attrito		$\gamma_{tan\phi'}$		1.00	1.25		
Coesione efficace		$\gamma_{c'}$		1.00	1.25		
Resistenza non drenata		γси		1.00	1.40		
Resistenza a compressione uniassiale		$\gamma_{\rm qu}$		1.00	1.60		
Peso dell'unità di volume		γ_{γ}		1.00	1.00		
Combinazione nº 1 SLU (Caso A1-M1)							
	Effetto		γ	Ψ	C		
Peso Proprio	Sfavorevole		1.35	1.00	1.35		
Spinta terreno sinistra	Sfavorevole		1.35	1.00	1.35		
Spinta terreno destra	Sfavorevole		1.35	1.00	1.35		
Qcentrale	Sfavorevole		1.45	1.00	1.45		
TERMICO	Sfavorevole		1.20	0.60	0.72		
RITIRO	Sfavorevole		1.20	1.00	1.20		
Combinazione n° 2 SLU (Caso A2-M2)							
	Effetto		γ	Ψ	C		
Peso Proprio	Sfavorevole		1.00	1.00	1.00		
Spinta terreno sinistra	Sfavorevole		1.00	1.00	1.00		
Spinta terreno destra	Sfavorevole		1.00	1.00	1.00		
Qcentrale	Sfavorevole		1.25	1.00	1.25		
TERMICO	Sfavorevole		1.00	0.60	0.60		
RITIRO	Sfavorevole		1.00	1.00	1.00		

Tombini e ponticelli idraulici - IN02 - Tombino idraulico Ø1500 al km 18+277 – Relazione di calcolo	COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
2 1500 al km 18+277 – Relazione di calcolo	IF26	12 E ZZ	CL	IN0200 0001	Α	81 di 179

Ø1500 al km 18+277 – Rei	azione di calcolo	IF26 12 E ZZ	CL	IN0200 0001	Α	81 di 179
	Effetto	γ	Ψ	C		
Peso Proprio	Sfavorevole	1.35	1.00	1.35		
Spinta terreno sinistra	Sfavorevole	1.35	1.00	1.35		
Spinta terreno destra	Sfavorevole	1.35	1.00	1.35		
Qcentrale	Sfavorevole	1.45	0.75	1.09		
TERMICO	Sfavorevole	1.20	1.00	1.20		
RITIRO	Sfavorevole	1.20	1.00	1.20		
Combinazione n° 4 SLU (Caso A2	<u>-M2)</u>					
	Effetto	γ	Ψ	C		
Peso Proprio	Sfavorevole	1.00	1.00	1.00		
Spinta terreno sinistra	Sfavorevole	1.00	1.00	1.00		
Spinta terreno destra	Sfavorevole	1.00	1.00	1.00		
Qcentrale	Sfavorevole	1.25	0.75	0.94		
TERMICO	Sfavorevole	1.00	1.00	1.00		
RITIRO	Sfavorevole	1.00	1.00	1.00		
Combinazione nº 5 SLU (Caso A1	<u>-M1)</u>					
	Effetto	γ	Ψ	C		
Peso Proprio	Sfavorevole	1.35	1.00	1.35		
Spinta terreno sinistra	Sfavorevole	1.35	1.00	1.35		
Spinta terreno destra	Sfavorevole	1.35	1.00	1.35		
Qlaterale	Sfavorevole	1.45	1.00	1.45		
TERMICO	Sfavorevole	1.20	0.60	0.72		
RITIRO	Sfavorevole	1.20	1.00	1.20		
Combinazione nº 6 SLU (Caso A1	-M1) - Sisma Vert. negativo					
	Effetto	γ	Ψ	C		
Peso Proprio	Sfavorevole	1.00	1.00	1.00		
Spinta terreno sinistra	Sfavorevole	1.00	1.00	1.00		
Spinta terreno destra	Sfavorevole	1.00	1.00	1.00		
Qcentrale	Sfavorevole	1.00	0.20	0.20		
TERMICO	Sfavorevole	1.00	0.50	0.50		
RITIRO	Sfavorevole	1.00	1.00	1.00		
Sisma da sinistra	Sfavorevole	1.00	1.00	1.00		
Combinazione n° 7 SLU (Caso A2	-M2)					

Combinazione nº 7 SLU (Caso A2-M2)

Tombini e ponticelli idraulici - IN02 - Tombino idraulico	COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
Ø1500 al km 18+277 – Relazione di calcolo	IF26	12 E ZZ	CL	IN0200 0001	Α	82 di 179

Ø1500 al Kill 10+277 – Kela		IF26	12 E ZZ	CL	IN0200 0001	Α	82 di 179
	Effetto		γ	Ψ	C		
Peso Proprio	Sfavorevole		1.00	1.00	1.00		
Spinta terreno sinistra	Sfavorevole		1.00	1.00	1.00		
Spinta terreno destra	Sfavorevole		1.00	1.00	1.00		
Qlaterale	Sfavorevole		1.25	1.00	1.25		
TERMICO	Sfavorevole		1.00	0.60	0.60		
RITIRO	Sfavorevole		1.00	1.00	1.00		
Combinazione n° 8 SLU (Caso A2-	M2) - Sisma Vert. negativo						
	Effetto		γ	Ψ	C		
Peso Proprio	Sfavorevole		1.00	1.00	1.00		
Spinta terreno sinistra	Sfavorevole		1.00	1.00	1.00		
Spinta terreno destra	Sfavorevole		1.00	1.00	1.00		
Qcentrale	Sfavorevole		1.00	0.20	0.20		
TERMICO	Sfavorevole		1.00	0.50	0.50		
RITIRO	Sfavorevole		1.00	1.00	1.00		
Sisma da sinistra	Sfavorevole		1.00	1.00	1.00		
Combinazione n° 9 SLU (Caso A1-	<u>M1)</u>						
	Effetto		γ	Ψ	C		
Peso Proprio	Sfavorevole		1.35	1.00	1.35		
Spinta terreno sinistra	Sfavorevole		1.35	1.00	1.35		
Spinta terreno destra	Sfavorevole		1.35	1.00	1.35		
Qlaterale	Sfavorevole		1.45	0.75	1.09		
TERMICO	Sfavorevole		1.20	1.00	1.20		
RITIRO	Sfavorevole		1.20	1.00	1.20		
Combinazione nº 10 SLU (Caso A1	-M1) - Sisma Vert. negativo						
	Effetto		γ	Ψ	C		
Peso Proprio	Sfavorevole		1.00	1.00	1.00		
Spinta terreno sinistra	Sfavorevole		1.00	1.00	1.00		
Spinta terreno destra	Sfavorevole		1.00	1.00	1.00		
Qlaterale	Sfavorevole		1.00	0.20	0.20		
TERMICO	Sfavorevole		1.00	0.50	0.50		
RITIRO	Sfavorevole		1.00	1.00	1.00		
Sisma da sinistra	Sfavorevole		1.00	1.00	1.00		

Qcentrale

TERMICO

ITINERARIO NAPOLI – BARI RADDOPPIO TRATTA CANCELLO-BENEVENTO II LOTTO FUNZIONALE FRASSO TELESINO – VITULANO 1° LOTTO FUNZIONALE FRASSO TELESINO – TELESE PROGETTO ESECUTIVO

Tombini e ponticelli idraulici - IN02 - Tombino idraulico Ø1500 al km 18+277 – Relazione di calcolo

 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 IF26
 12 E ZZ
 CL
 IN0200 0001
 A
 83 di 179

Combinazione n° 11 SLU (Caso A	<u>2-M2)</u>						
	Effetto	γ	Ψ	C			
Peso Proprio	Sfavorevole	1.00	1.00	1.00			
Spinta terreno sinistra	Sfavorevole	1.00	1.00	1.00			
Spinta terreno destra	Sfavorevole	1.00	1.00	1.00			
Qlaterale	Sfavorevole	1.25	0.75	0.94			
TERMICO	Sfavorevole	1.00	1.00	1.00			
RITIRO	Sfavorevole	1.00	1.00	1.00			
Combinazione nº 12 SLU (Caso A2-M2) - Sisma Vert. negativo							
	Effetto	γ	Ψ	C			
Peso Proprio	Sfavorevole	1.00	1.00	1.00			
Spinta terreno sinistra	Sfavorevole	1.00	1.00	1.00			
Spinta terreno destra	Sfavorevole	1.00	1.00	1.00			
Qlaterale	Sfavorevole	1.00	0.20	0.20			
TERMICO	Sfavorevole	1.00	0.50	0.50			
RITIRO	Sfavorevole	1.00	1.00	1.00			
Sisma da sinistra	Sfavorevole	1.00	1.00	1.00			
Combinazione nº 13 SLU (Caso A	1-M1) - Sisma Vert. positivo						
	Effetto	γ	Ψ	C			
Peso Proprio	Sfavorevole	1.00	1.00	1.00			
Spinta terreno sinistra	Sfavorevole	1.00	1.00	1.00			
Spinta terreno destra	Sfavorevole	1.00	1.00	1.00			
Qcentrale	Sfavorevole	1.00	0.20	0.20			
TERMICO	Sfavorevole	1.00	0.50	0.50			
RITIRO	Sfavorevole	1.00	1.00	1.00			
Sisma da sinistra	Sfavorevole	1.00	1.00	1.00			
Combinazione nº 14 SLU (Caso A	2-M2) - Sisma Vert. positivo						
	Effetto	γ	Ψ	C			
Peso Proprio	Sfavorevole	1.00	1.00	1.00			
Spinta terreno sinistra	Sfavorevole	1.00	1.00	1.00			
Spinta terreno destra	Sfavorevole	1.00	1.00	1.00			

Sfavorevole

Sfavorevole

1.00

1.00

0.20

0.50

0.20

0.50

		I KOOLI IO	LOLOGII	••			
Tombini e ponticelli idraulici Ø1500 al km 18+277 – Rela	- IN02 - Tombino idraulico azione di calcolo	COMMESSA IF26	LOTTO 12 E ZZ	CODIFICA CL	DOCUMENTO IN0200 0001	REV.	FOGLIO 84 di 179
RITIRO	Sfavorevole		1.00	1.00	1.00		
Sisma da sinistra	Sfavorevole		1.00	1.00	1.00		
Combinazione nº 15 SLU (Caso A1	-M1) - Sisma Vert. positivo						
	Effetto		γ	Ψ	C		
Peso Proprio	Sfavorevole		1.00	1.00	1.00		
Spinta terreno sinistra	Sfavorevole		1.00	1.00	1.00		
Spinta terreno destra	Sfavorevole		1.00	1.00	1.00		
Qlaterale	Sfavorevole		1.00	0.20	0.20		
TERMICO	Sfavorevole		1.00	0.50	0.50		
RITIRO	Sfavorevole		1.00	1.00	1.00		
Sisma da sinistra	Sfavorevole		1.00	1.00	1.00		
Combinazione nº 16 SLU (Caso A2	2-M2) - Sisma Vert. positivo						
	Effetto		γ	Ψ	C		
Peso Proprio	Sfavorevole		1.00	1.00	1.00		
Spinta terreno sinistra	Sfavorevole		1.00	1.00	1.00		
Spinta terreno destra	Sfavorevole		1.00	1.00	1.00		
Qlaterale	Sfavorevole		1.00	0.20	0.20		
TERMICO	Sfavorevole		1.00	0.50	0.50		
RITIRO	Sfavorevole		1.00	1.00	1.00		
Sisma da sinistra	Sfavorevole		1.00	1.00	1.00		
Combinazione n° 17 SLE (Quasi Pe	ermanente)						
	Effetto		γ	Ψ	C		
Peso Proprio	Sfavorevole		1.00	1.00	1.00		
Spinta terreno sinistra	Sfavorevole		1.00	1.00	1.00		
Spinta terreno destra	Sfavorevole		1.00	1.00	1.00		
TERMICO	Sfavorevole		1.00	0.50	0.50		
RITIRO	Sfavorevole		1.00	1.00	1.00		
Combinazione n° 18 SLE (Frequent	te)						
	Effetto		γ	Ψ	C		
Peso Proprio	Sfavorevole		1.00	1.00	1.00		
Spinta terreno sinistra	Sfavorevole		1.00	1.00	1.00		
Spinta terreno destra	Sfavorevole		1.00	1.00	1.00		
Qcentrale	Sfavorevole		1.00	0.80	0.80		

	Iraulici - IN02 - Tombino idraulico – Relazione di calcolo	COMMESSA IF26	LOTTO 12 E ZZ	CODIFICA CL	DOCUMENTO IN0200 0001	REV.	FOGLIO 85 di 179
TERMICO	Sfavorevole		1.00	0.50	0.50		
RITIRO	Sfavorevole		1.00	1.00	1.00		
Combinazione n° 19 SLE (I	Frequente)						
	Effetto		γ	Ψ	C		
Peso Proprio	Sfavorevole		1.00	1.00	1.00		
Spinta terreno sinistra	Sfavorevole		1.00	1.00	1.00		
Spinta terreno destra	Sfavorevole		1.00	1.00	1.00		
Qlaterale	Sfavorevole		1.00	0.80	0.80		
TERMICO	Sfavorevole		1.00	0.50	0.50		
RITIRO	Sfavorevole		1.00	1.00	1.00		
Combinazione n° 20 SLE (I	Frequente)						
	Effetto		γ	Ψ	C		
Peso Proprio	Sfavorevole		1.00	1.00	1.00		
Spinta terreno sinistra	Sfavorevole		1.00	1.00	1.00		
Spinta terreno destra	Sfavorevole		1.00	1.00	1.00		
TERMICO	Sfavorevole		1.00	0.60	0.60		
RITIRO	Sfavorevole		1.00	1.00	1.00		
Combinazione n° 21 SLE (F	Rara)						
	Effetto		γ	Ψ	C		
Peso Proprio	Sfavorevole		1.00	1.00	1.00		
Spinta terreno sinistra	Sfavorevole		1.00	1.00	1.00		
Spinta terreno destra	Sfavorevole		1.00	1.00	1.00		
Qcentrale	Sfavorevole		1.00	1.00	1.00		
TERMICO	Sfavorevole		1.00	0.60	0.60		
RITIRO	Sfavorevole		1.00	1.00	1.00		
Combinazione n° 22 SLE (F	Rara)						
	Effetto		γ	Ψ	C		
Peso Proprio	Sfavorevole		1.00	1.00	1.00		
Spinta terreno sinistra	Sfavorevole		1.00	1.00	1.00		
Spinta terreno destra	Sfavorevole		1.00	1.00	1.00		
Qlaterale	Sfavorevole		1.00	1.00	1.00		
TERMICO	Sfavorevole		1.00	0.60	0.60		
RITIRO	Sfavorevole		1.00	1.00	1.00		

Tombini e ponticelli idraulici - IN02 - Tombino idraulico Ø1500 al km 18+277 – Relazione di calcolo

00		CODIFICA	DOCUMENTO	REV.	FOGLIO
IF26	12 E ZZ	CI	IN0200 0001	^	86 di 179

Combinazione nº 23 SLE (Rara)

	Effetto	γ	Ψ	C
Peso Proprio	Sfavorevole	1.00	1.00	1.00
Spinta terreno sinistra	Sfavorevole	1.00	1.00	1.00
Spinta terreno destra	Sfavorevole	1.00	1.00	1.00
TERMICO	Sfavorevole	1.00	1.00	1.00
Qcentrale	Sfavorevole	1.00	0.80	0.80
RITIRO	Sfavorevole	1.00	1.00	1.00
Combinazione n° 24 SLE (Rara)				
	Effetto	γ	Ψ	C
Peso Proprio	Sfavorevole	1.00	1.00	1.00
Spinta terreno sinistra	Sfavorevole	1.00	1.00	1.00
Spinta terreno destra	Sfavorevole	1.00	1.00	1.00
RITIRO	Sfavorevole	1.00	1.00	1.00
Qlaterale	Sfavorevole	1.00	0.80	0.80
TERMICO	Sfavorevole	1.00	0.60	0.60

Tombini e ponticelli idraulici - IN02 - Tombino idraulico Ø1500 al km 18+277 – Relazione di calcolo

 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 IF26
 12 E ZZ
 CL
 IN0200 0001
 A
 87 di 179

Analisi della spinta e verifiche

Simbologia adottata ed unità di misura

Origine in corrispondenza dello spigolo inferiore sinistro della struttura

Le forze orizzontali sono considerate positive se agenti verso destra

Le forze verticali sono considerate positive se agenti verso il basso

X ascisse (espresse in m) positive verso destra

Y ordinate (espresse in m) positive verso l'alto

M momento espresso in kNm

V taglio espresso in kN

SN sforzo normale espresso in kN

ux spostamento direzione X espresso in m

uy spostamento direzione Y espresso in m

σ_t pressione sul terreno espressa in kPa

Tipo di analisi

Pressione in calotta Teoria di Terzaghi

I carichi applicati sul terreno sono stati diffusi secondo valore 0.00

Metodo di calcolo della portanza

Spinta sui piedritti

Hansen

a Riposo [combinazione 1]

a Riposo [combinazione 2]

a Riposo [combinazione 3]

a Riposo [combinazione 4]

a Riposo [combinazione 5]

a Riposo [combinazione 6]

a Riposo [combinazione 7]a Riposo [combinazione 8]

a Riposo [combinazione 9]

a Riposo [combinazione 10]

a Riposo [combinazione 11]

a Riposo [combinazione 12]

a Riposo [combinazione 13]

a Riposo [combinazione 14]

a Riposo [combinazione 15]

a Riposo [combinazione 16]

Tombini e ponticelli idraulici - IN02 - Tombino idraulico Ø1500 al km 18+277 – Relazione di calcolo

 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 IF26
 12 E ZZ
 CL
 IN0200 0001
 A
 88 di 179

a Riposo [combinazione 17]
a Riposo [combinazione 18]
a Riposo [combinazione 19]
a Riposo [combinazione 20]
a Riposo [combinazione 21]
a Riposo [combinazione 22]

a Riposo [combinazione 23] a Riposo [combinazione 24]

Sisma

Identificazione del sito

Latitudine 41.213973

Longitudine 14.693540

Comune Ponte

Provincia Benevento

Regione Campania

Punti di interpolazione del reticolo 31431 - 31653 - 31654 - 31432

Tipo di opera

Tipo di costruzione Opera ordinaria

Vita nominale 75 anni

Classe d'uso III - Affollamenti significativi e industrie non pericolose

Vita di riferimento 113 anni

Combinazioni SLU

Accelerazione al suolo $a_g = 3.60 \ [m/s^2]$

Coefficiente di amplificazione per tipo di sottosuolo (S) 1.18Coefficiente di amplificazione topografica (St) 1.00Coefficiente riduzione (β_m) 1.00Rapporto intensità sismica verticale/orizzontale 0.50

 $\label{eq:coefficiente} Coefficiente di intensità sismica orizzontale (percento) \\ k_h = (a_g/g*\beta_m*St*Ss) = 43.42$

Coefficiente di intensità sismica verticale (percento) $k_v=0.50*k_h=21.71$

Combinazioni SLE

 $Accelerazione \ al \ suolo \ a_g = \\ 0.00 \ [m/s^2]$

Coefficiente di amplificazione per tipo di sottosuolo (S) 1.50

Coefficiente di amplificazione topografica (St) 1.00

Tombini e ponticelli idraulici - IN02 - Tombino idraulico Ø1500 al km 18+277 – Relazione di calcolo

 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 IF26
 12 E ZZ
 CL
 IN0200 0001
 A
 89 di 179

Coefficiente riduzione (β_m) 0.18

Rapporto intensità sismica verticale/orizzontale 0.50

 $\label{eq:coefficiente} Coefficiente di intensità sismica orizzontale (percento) \\ k_h = (a_g/g*\beta_m*St*Ss) = 0.00$

Coefficiente di intensità sismica verticale (percento) $k_v=0.50*k_h=0.00$

Forma diagramma incremento sismico Rettangolare

Spinta sismica Wood

Angolo diffusione sovraccarico 0.00 [°]

Coefficienti di spinta

N° combinazione	Statico	Sismico
1	0.384	0.000
2	0.470	0.000
3	0.384	0.000
4	0.470	0.000
5	0.384	0.000
6	0.384	1.106
7	0.470	0.000
8	0.470	1.176
9	0.384	0.000
10	0.384	1.106
11	0.470	0.000
12	0.470	1.176
13	0.384	1.106
14	0.470	1.176
15	0.384	1.106
16	0.470	1.176
17	0.384	0.000
18	0.384	0.000
19	0.384	0.000
20	0.384	0.000
21	0.384	0.000
22	0.384	0.000
23	0.384	0.000
24	0.384	0.000

Tombini e ponticelli idraulici - IN02 - Tombino idraulico Ø1500 al km 18+277 – Relazione di calcolo

COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
IF26	12 E ZZ	CL	IN0200 0001	Α	90 di 179

Discretizzazione strutturale

Numero elementi fondazione 64

Numero elementi traverso 64

Numero molle fondazione 65

Verifiche combinazioni SLU

Simbologia adottata ed unità di misura

N° Indice sezione

X Ascissa/Ordinata sezione, espresso in m

M Momento flettente, espresso in kNm

V Taglio, espresso in kN

N Sforzo normale, espresso in kN

N_u Sforzo normale ultimo, espressa in kN

Mu Momento ultimo, espressa in kNm

A_{fi} Area armatura inferiore, espresse in mq

A_{fs} Area armatura superiore, espresse in mq

CS Coeff. di sicurezza sezione

 V_{Rd} Aliquota taglio assorbita dal calcestruzzo in elementi senza armature trasversali, espressa in kN

 V_{Rcd} Aliquota taglio assorbita dal calcestruzzo in elementi con armature trasversali, espressa in kN

V_{Rsd} Aliquota taglio assorbita armature trasversali, espressa in kN

A_{sw} Area armature trasversali nella sezione, espressa in mq

$\underline{Verifica\ sezioni\ fondazione\ [Combinazione\ n^\circ\ 1\ -\ SLU\ (Caso\ A1-M1)]}$

Base sezione B = 100 cm

Altezza sezione H = 0.1100 m

\mathbf{N}°	X	M	N	N_u	$\mathbf{M}_{\mathbf{u}}$	$\mathbf{A_{fi}}$	$\mathbf{A}_{\mathbf{f}\mathbf{s}}$	CS
1	0.06	9.80 (9.80)	82.76	221.05	26.17	0.000770	0.000770	2.67
2	0.45	-4.01 (-5.20)	48.80	251.40	-26.77	0.000770	0.000770	5.15
3	0.86	-8.56 (-8.56)	39.43	110.45	-23.97	0.000770	0.000770	2.80
4	1.27	-4.01 (-5.24)	51.63	266.78	-27.08	0.000770	0.000770	5.17
5	1.67	9.80 (9.80)	82.76	221.05	26.17	0.000770	0.000770	2.67

Tombini e ponticelli idraulici - IN02 - Tombino idraulico Ø1500 al km 18+277 – Relazione di calcolo

IF26	12 E ZZ	CI	IN0200 0001	Δ	91 di 179
COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO

Verifiche taglio

\mathbf{A}_{sw}	$V_{ m Red}$	$\mathbf{V}_{\mathbf{R}\mathbf{s}\mathbf{d}}$	$\mathbf{V}_{\mathbf{Rd}}$	\mathbf{v}	X	\mathbf{N}°
0.000000	0.00	0.00	48.25	-3.25	0.06	1
0.000000	0.00	0.00	45.28	-18.78	0.45	2
0.000000	0.00	0.00	44.11	1.10	0.86	3
0.000000	0.00	0.00	45.01	19.46	1.27	4
0.000000	0.00	0.00	48.25	3.25	1.67	5

$\underline{Verifica\ sezioni\ traverso\ [Combinazione\ n^{\circ}\ 1\ -\ SLU\ (Caso\ A1\text{-}M1)]}$

Base sezione B = 100 cmAltezza sezione H = 0.1100 m

Verifiche presso-flessione

N°	X	M	N	N_{u}	$\mathbf{M_u}$	$\mathbf{A_{fi}}$	$\mathbf{A}_{\mathbf{f}\mathbf{s}}$	CS
1	0.06	-9.80 (-9.80)	82.82	221.14	-26.17	0.000770	0.000770	2.67
2	0.45	3.09 (4.43)	47.30	295.13	27.64	0.000770	0.000770	6.24
3	0.86	7.96 (7.96)	35.09	105.15	23.87	0.000770	0.000770	3.00
4	1.27	3.09 (4.28)	48.29	315.95	28.02	0.000770	0.000770	6.54
5	1.67	-9.80 (-9.80)	82.82	221.14	-26.17	0.000770	0.000770	2.67

Verifiche taglio

\mathbf{A}_{sw}	$\mathbf{V}_{\mathbf{Rcd}}$	$\mathbf{V}_{\mathbf{R}\mathbf{s}\mathbf{d}}$	$ m V_{Rd}$	V	X	N°
0.000000	0.00	0.00	48.25	0.81	0.06	1
0.000000	0.00	0.00	44.96	21.24	0.45	2
0.000000	0.00	0.00	43.70	0.86	0.86	3
0.000000	0.00	0.00	44.86	-18.89	1.27	4
0.000000	0.00	0.00	48.25	-0.81	1.67	5

$\underline{Verifica\ sezioni\ fondazione\ [Combinazione\ n^{\circ}\ 2\ -SLU\ (Caso\ A2-M2)]}$

Base sezione B = 100 cmAltezza sezione H = 0.1100 m

Tombini e ponticelli idraulici - IN02 - Tombino idraulico Ø1500 al km 18+277 – Relazione di calcolo

IF26	12 E ZZ	CL	IN0200 0001	Α	92 di 179	
COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO	

X 7 ' C" 1	cı ·
Verifiche	presso-flessione

\mathbf{N}°	X	M	N	$N_{\rm u}$	$\mathbf{M}_{\mathbf{u}}$	$\mathbf{A_{fi}}$	$\mathbf{A}_{\mathbf{f}\mathbf{s}}$	CS
1	0.06	6.95 (6.95)	69.37	270.90	27.16	0.000770	0.000770	3.91
2	0.45	-2.77 (-3.60)	45.75	367.97	-28.93	0.000770	0.000770	8.04
3	0.86	-5.92 (-5.92)	39.52	167.66	-25.11	0.000770	0.000770	4.24
4	1.27	-2.77 (-3.62)	47.97	388.47	-29.29	0.000770	0.000770	8.10
5	1.67	6.95 (6.95)	69.37	270.90	27.16	0.000770	0.000770	3.91

Verifiche taglio

\mathbf{A}_{sw}	$\mathbf{V}_{\mathbf{Rcd}}$	$\mathbf{V}_{\mathbf{Rsd}}$	$\mathbf{V}_{\mathbf{Rd}}$	V	X	N°
0.000000	0.00	0.00	46.97	-2.79	0.06	1
0.000000	0.00	0.00	44.93	-13.11	0.45	2
0.000000	0.00	0.00	44.12	0.76	0.86	3
0.000000	0.00	0.00	44.71	13.43	1.27	4
0.000000	0.00	0.00	46.97	2.79	1.67	5

$\underline{Verifica\ sezioni\ traverso\ [Combinazione\ n^{\circ}\ 2\ -\ SLU\ (Caso\ A2\text{-}M2)]}$

Base sezione B = 100 cmAltezza sezione H = 0.1100 m

Verifiche presso-flessione

\mathbf{N}°	X	M	N	N_{u}	$\mathbf{M}_{\mathbf{u}}$	$\mathbf{A_{fi}}$	$\mathbf{A}_{\mathbf{fs}}$	CS
1	0.06	-6.95 (-6.97)	69.42	270.58	-27.15	0.000770	0.000770	3.90
2	0.45	2.01 (2.97)	44.31	454.25	30.41	0.000770	0.000770	10.25
3	0.86	5.45 (5.45)	35.56	163.28	25.02	0.000770	0.000770	4.59
4	1.27	2.01 (2.83)	45.00	485.57	30.52	0.000770	0.000770	10.79
5	1.67	-6.95 (-6.97)	69.42	270.58	-27.15	0.000770	0.000770	3.90

\mathbf{A}_{sw}	$\mathbf{V}_{\mathbf{Rcd}}$	$\mathbf{V}_{\mathbf{R}\mathbf{s}\mathbf{d}}$	$\mathbf{V}_{\mathbf{Rd}}$	V	X	N°
0.000000	0.00	0.00	46.97	0.62	0.06	1
0.000000	0.00	0.00	44.64	15.25	0.45	2
0.000000	0.00	0.00	43.74	0.87	0.86	3

Tombini e ponticelli idraulici - IN02 - Tombino idraulico Ø1500 al km 18+277 – Relazione di calcolo

COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
IF26	12 E ZZ	CL	IN0200 0001	Α	93 di 179

4	1.27	-13.06	44.58	0.00	0.00	0.000000
5	1.67	-0.62	46.97	0.00	0.00	0.000000

$\underline{Verifica\ sezioni\ fondazione\ [Combinazione\ n^{\circ}\ 3\ -SLU\ (Caso\ A1-M1)]}$

Base sezione B = 100 cm

Altezza sezione H = 0.1100 m

Verifiche presso-flessione

\mathbf{N}°	X	M	N	N_u	$\mathbf{M}_{\mathbf{u}}$	$\mathbf{A_{fi}}$	$\mathbf{A}_{\mathbf{fs}}$	CS
1	0.06	8.44 (8.44)	67.72	207.97	25.91	0.000770	0.000770	3.07
2	0.45	-3.19 (-4.15)	40.33	262.20	-26.99	0.000770	0.000770	6.50
3	0.86	-6.88 (-6.88)	32.94	115.16	-24.06	0.000770	0.000770	3.50
4	1.27	-3.19 (-4.19)	42.66	278.20	-27.30	0.000770	0.000770	6.52
5	1.67	8.44 (8.44)	67.72	207.97	25.91	0.000770	0.000770	3.07

Verifiche taglio

\mathbf{N}°	X	V	$\mathbf{V}_{\mathbf{Rd}}$	$\mathbf{V}_{\mathbf{R}\mathbf{s}\mathbf{d}}$	$\mathbf{V}_{\mathbf{Rcd}}$	\mathbf{A}_{sw}
1	0.06	-3.59	46.81	0.00	0.00	0.000000
2	0.45	-15.32	44.42	0.00	0.00	0.000000
3	0.86	0.91	43.49	0.00	0.00	0.000000
4	1.27	15.89	44.20	0.00	0.00	0.000000
5	1.67	3.59	46.81	0.00	0.00	0.000000

<u>Verifica sezioni traverso [Combinazione nº 3 - SLU (Caso A1-M1)]</u>

Base sezione B = 100 cmAltezza sezione H = 0.1100 m

N°	X	M	N	N_{u}	$\mathbf{M_u}$	${f A_{fi}}$	$\mathbf{A}_{\mathbf{f}\mathbf{s}}$	CS
1	0.06	-8.44 (-8.45)	67.82	207.83	-25.91	0.000770	0.000770	3.06
2	0.45	1.22 (2.27)	39.80	538.73	30.69	0.000770	0.000770	13.54
3	0.86	5.03 (5.03)	30.03	147.58	24.71	0.000770	0.000770	4.92
4	1.27	1.22 (2.14)	40.57	583.80	30.84	0.000770	0.000770	14.39

Tombini e ponticelli idraulici - IN02 - Tombino idraulico Ø1500 al km 18+277 – Relazione di calcolo

COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
IF26	12 E ZZ	CL	IN0200 0001	Α	94 di 179

5	1.67	-8.44 (-8.45)	67.82	207.83	-25.91	0.000770	0.000770	3.06

Verifiche taglio

N°	X	\mathbf{v}	$\mathbf{V}_{\mathbf{Rd}}$	$\mathbf{V}_{\mathbf{Rsd}}$	$\mathbf{V}_{\mathbf{Rcd}}$	\mathbf{A}_{sw}
1	0.06	-0.27	46.82	0.00	0.00	0.000000
2	0.45	16.61	44.22	0.00	0.00	0.000000
3	0.86	0.74	43.21	0.00	0.00	0.000000
4	1.27	-14.63	44.15	0.00	0.00	0.000000
5	1.67	0.27	46.82	0.00	0.00	0.000000

<u>Verifica sezioni fondazione [Combinazione nº 4 - SLU (Caso A2-M2)]</u>

Base sezione B = 100 cmAltezza sezione H = 0.1100 m

Verifiche presso-flessione

N°	X	M	N	N_u	$\mathbf{M}_{\mathbf{u}}$	${f A_{fi}}$	$\mathbf{A}_{\mathbf{fs}}$	CS
1	0.06	5.99 (5.99)	56.40	252.35	26.79	0.000770	0.000770	4.47
2	0.45	-2.16 (-2.83)	37.62	390.33	-29.33	0.000770	0.000770	10.38
3	0.86	-4.69 (-4.69)	32.83	177.18	-25.30	0.000770	0.000770	5.40
4	1.27	-2.16 (-2.84)	39.43	412.09	-29.71	0.000770	0.000770	10.45
5	1.67	5.99 (5.99)	56.40	252.35	26.79	0.000770	0.000770	4.47

Verifiche taglio

$\mathbf{A}_{\mathbf{sw}}$	$\mathbf{V}_{\mathbf{Rcd}}$	$\mathbf{V}_{\mathbf{R}\mathbf{s}\mathbf{d}}$	$\mathbf{V}_{\mathbf{Rd}}$	\mathbf{v}	X	N°
0.000000	0.00	0.00	45.73	-3.07	0.06	1
0.000000	0.00	0.00	44.11	-10.56	0.45	2
0.000000	0.00	0.00	43.48	0.62	0.86	3
0.000000	0.00	0.00	43.94	10.83	1.27	4
0.000000	0.00	0.00	45.73	3.07	1.67	5

<u>Verifica sezioni traverso [Combinazione nº 4 - SLU (Caso A2-M2)]</u>

Base sezione B = 100 cmAltezza sezione H = 0.1100 m

Tombini e ponticelli idraulici - IN02 - Tombino idraulico Ø1500 al km 18+277 – Relazione di calcolo

IF26	12 E ZZ	CI	IN0200 0001	Δ	95 di 179	
COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO	

Verifiche presso-flessione

\mathbf{N}°	X	M	N	N_u	$\mathbf{M_u}$	$\mathbf{A_{fi}}$	$\mathbf{A}_{\mathbf{f}\mathbf{s}}$	CS
1	0.06	-5.99 (-6.01)	56.48	251.83	-26.78	0.000770	0.000770	4.46
2	0.45	0.53 (1.27)	37.00	922.67	31.55	0.000770	0.000770	24.94
3	0.86	3.17 (3.17)	30.07	254.52	26.83	0.000770	0.000770	8.46
4	1.27	0.53 (1.15)	37.53	1031.51	31.60	0.000770	0.000770	27.48
5	1.67	-5.99 (-6.01)	56.48	251.83	-26.78	0.000770	0.000770	4.46

Verifiche taglio

N°	X	\mathbf{v}	$\mathbf{V}_{\mathbf{Rd}}$	$\mathbf{V}_{\mathbf{R}\mathbf{s}\mathbf{d}}$	$\mathbf{V}_{\mathbf{Rcd}}$	$\mathbf{A}_{\mathbf{sw}}$
1	0.06	-0.30	45.74	0.00	0.00	0.000000
2	0.45	11.73	43.93	0.00	0.00	0.000000
3	0.86	0.74	43.22	0.00	0.00	0.000000
4	1.27	-9.90	43.88	0.00	0.00	0.000000
5	1.67	0.30	45.74	0.00	0.00	0.000000

$\underline{Verifica\ sezioni\ fondazione\ [Combinazione\ n^\circ\ 5\ -\ SLU\ (Caso\ A1-M1)]}$

Base sezione B = 100 cmAltezza sezione H = 0.1100 m

Verifiche presso-flessione

CS	$\mathbf{A}_{\mathbf{f}\mathbf{s}}$	$\mathbf{A_{fi}}$	$\mathbf{M}_{\mathbf{u}}$	N_u	N	M	X	\mathbf{N}°
12.84	0.000770	0.000770	-27.57	291.77	22.72	-2.13 (-2.15)	0.06	1
15.04	0.000770	0.000770	30.67	531.76	35.36	1.68 (2.04)	0.45	2
9.29	0.000770	0.000770	28.96	369.71	39.78	3.12 (3.12)	0.86	3
15.71	0.000770	0.000770	30.73	550.09	35.02	1.55 (1.96)	1.27	4
13.11	0.000770	0.000770	-27.67	296.80	22.64	-2.04 (-2.11)	1.67	5

\mathbf{A}_{sw}	${f V}_{ m Rcd}$	$\mathbf{V}_{\mathbf{R}\mathbf{s}\mathbf{d}}$	$\mathbf{V}_{\mathbf{Rd}}$	\mathbf{v}	X	\mathbf{N}°
0.000000	0.00	0.00	42.52	-1.39	0.06	1
0.000000	0.00	0.00	43.75	5.73	0.45	2
0.000000	0.00	0.00	44.15	-0.46	0.86	3

Tombini e ponticelli idraulici - IN02 - Tombino idraulico Ø1500 al km 18+277 – Relazione di calcolo

COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
IF26	12 E ZZ	CL	IN0200 0001	Α	96 di 179

4	1.27	-6.43	43.71	0.00	0.00	0.000000
5	1.67	1.05	42.51	0.00	0.00	0.000000

$\underline{Verifica\ sezioni\ traverso\ [Combinazione\ n^\circ\ 5\ -\ SLU\ (Caso\ A1\text{-}M1)]}$

Base sezione B = 100 cm

Altezza sezione H = 0.1100 m

Verifiche presso-flessione

\mathbf{N}°	X	M	N	$N_{\rm u}$	$M_{\rm u}$	$\mathbf{A_{fi}}$	$\mathbf{A_{fs}}$	CS
1	0.06	2.13 (2.13)	22.76	295.73	27.65	0.000770	0.000770	12.99
2	0.45	-2.50 (-2.84)	31.76	312.49	-27.96	0.000770	0.000770	9.84
3	0.86	-3.96 (-3.96)	34.70	231.06	-26.37	0.000770	0.000770	6.66
4	1.27	-2.48 (-2.90)	30.93	294.55	-27.63	0.000770	0.000770	9.52
5	1.67	2.04 (2.11)	22.69	298.08	27.70	0.000770	0.000770	13.14

Verifiche taglio

\mathbf{A}_{sw}	$V_{ m Rcd}$	$\mathbf{V}_{\mathbf{Rsd}}$	$\mathbf{V}_{\mathbf{Rd}}$	V	X	\mathbf{N}°
0.000000	0.00	0.00	42.52	-0.28	0.06	1
0.000000	0.00	0.00	43.35	-5.42	0.45	2
0.000000	0.00	0.00	43.66	0.90	0.86	3
0.000000	0.00	0.00	43.38	6.75	1.27	4
0.000000	0.00	0.00	42.51	1.01	1.67	5

$\underline{Verifica\ sezioni\ fondazione\ [Combinazione\ n^{\circ}\ 6\ -\ SLU\ (Caso\ A1-M1)\ -\ Sisma\ Vert.\ negativo]}$

Base sezione B = 100 cmAltezza sezione H = 0.1100 m

N°	X	M	N	N_{u}	$\mathbf{M}_{\mathbf{u}}$	$\mathbf{A_{fi}}$	$\mathbf{A}_{\mathbf{f}\mathbf{s}}$	CS
1	0.06	-3.71 (-3.71)	24.28	163.77	-25.03	0.000770	0.000770	6.74
2	0.45	2.27 (2.81)	41.63	449.86	30.37	0.000770	0.000770	10.81
3	0.86	4.47 (4.47)	47.98	297.47	27.69	0.000770	0.000770	6.20
4	1.27	2.20 (2.81)	41.59	449.97	30.37	0.000770	0.000770	10.82

Tombini e ponticelli idraulici - IN02 - Tombino idraulico Ø1500 al km 18+277 – Relazione di calcolo

COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
IF26	12 E ZZ	CL	IN0200 0001	Α	97 di 179

5	1.67	-3.67 (-3.70)	24.43	165.24	-25.06	0.000770	0.000770	6.76
_	1.07	3.07 (3.70)	21.10	100.21	23.00	0.000770	0.000770	0.70

Verifiche taglio

N°	X	v	$\mathbf{V}_{\mathbf{Rd}}$	${f V}_{ m Rsd}$	$\mathbf{V}_{\mathbf{Rcd}}$	\mathbf{A}_{sw}
1	0.06	-1.13	42.67	0.00	0.00	0.000000
2	0.45	8.62	44.33	0.00	0.00	0.000000
3	0.86	-0.52	44.93	0.00	0.00	0.000000
4	1.27	-9.61	44.38	0.00	0.00	0.000000
5	1.67	0.50	42.68	0.00	0.00	0.000000

<u>Verifica sezioni traverso [Combinazione nº 6 - SLU (Caso A1-M1) - Sisma Vert. negativo]</u>

Base sezione B = 100 cmAltezza sezione H = 0.1100 m

Verifiche presso-flessione

\mathbf{N}°	X	M	N	N_u	$\mathbf{M}_{\mathbf{u}}$	$\mathbf{A_{fi}}$	$\mathbf{A_{fs}}$	CS
1	0.06	3.71 (3.71)	24.31	163.99	25.03	0.000770	0.000770	6.75
2	0.45	-2.73 (-3.24)	38.87	341.08	-28.46	0.000770	0.000770	8.78
3	0.86	-4.94 (-4.94)	44.04	235.85	-26.46	0.000770	0.000770	5.36
4	1.27	-2.75 (-3.37)	38.32	319.43	-28.08	0.000770	0.000770	8.34
5	1.67	3.67 (3.71)	24.46	165.18	25.06	0.000770	0.000770	6.75

Verifiche taglio

\mathbf{A}_{sw}	$\mathbf{V}_{\mathbf{Rcd}}$	$\mathbf{V}_{\mathbf{R}\mathbf{s}\mathbf{d}}$	$\mathbf{V}_{\mathbf{Rd}}$	\mathbf{V}	X	\mathbf{N}°
0.000000	0.00	0.00	42.67	0.07	0.06	1
0.000000	0.00	0.00	44.01	-8.22	0.45	2
0.000000	0.00	0.00	44.55	1.02	0.86	3
0.000000	0.00	0.00	44.12	9.90	1.27	4
0.000000	0.00	0.00	42.68	0.88	1.67	5

<u>Verifica sezioni fondazione [Combinazione nº 7 - SLU (Caso A2-M2)]</u>

Base sezione B = 100 cmAltezza sezione H = 0.1100 m

Tombini e ponticelli idraulici - IN02 - Tombino idraulico Ø1500 al km 18+277 – Relazione di calcolo

IF26	12 E ZZ	CL	IN0200 0001	Α	98 di 179	
COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO	

X 7 ' C" 1	cı ·
Verifiche	presso-flessione

\mathbf{N}°	X	M	N	N_{u}	$\mathbf{M}_{\mathbf{u}}$	$\mathbf{A_{fi}}$	$\mathbf{A}_{\mathbf{fs}}$	CS
1	0.06	-3.31 (-3.32)	17.65	129.31	-24.35	0.000770	0.000770	7.33
2	0.45	2.13 (2.64)	34.17	377.12	29.09	0.000770	0.000770	11.04
3	0.86	4.13 (4.13)	39.81	259.81	26.94	0.000770	0.000770	6.53
4	1.27	2.00 (2.56)	33.50	382.57	29.19	0.000770	0.000770	11.42
5	1.67	-3.21 (-3.26)	17.50	130.91	-24.38	0.000770	0.000770	7.48

Verifiche taglio

\mathbf{A}_{sw}	${f V}_{ m Rcd}$	V_{Rsd}	$\mathbf{V}_{\mathbf{Rd}}$	v	X	N°
0.000000	0.00	0.00	42.03	-1.19	0.06	1
0.000000	0.00	0.00	43.61	7.99	0.45	2
0.000000	0.00	0.00	44.15	-0.61	0.86	3
0.000000	0.00	0.00	43.60	-8.84	1.27	4
0.000000	0.00	0.00	42.02	0.79	1.67	5

$\underline{Verifica\ sezioni\ traverso\ [Combinazione\ n^{\circ}\ 7\ -\ SLU\ (Caso\ A2\text{-}M2)]}$

Base sezione B = 100 cmAltezza sezione H = 0.1100 m

Verifiche presso-flessione

N°	X	M	N	N_{u}	$\mathbf{M}_{\mathbf{u}}$	${f A_{fi}}$	$\mathbf{A}_{\mathbf{f}\mathbf{s}}$	CS
1	0.06	3.31 (3.31)	17.69	130.08	24.36	0.000770	0.000770	7.35
2	0.45	-2.81 (-3.30)	30.93	250.83	-26.76	0.000770	0.000770	8.11
3	0.86	-4.81 (-4.81)	35.23	186.51	-25.48	0.000770	0.000770	5.29
4	1.27	-2.77 (-3.33)	29.88	237.64	-26.50	0.000770	0.000770	7.95
5	1.67	3.21 (3.27)	17.54	130.56	24.37	0.000770	0.000770	7.44

\mathbf{A}_{sw}	$\mathbf{V}_{\mathbf{Rcd}}$	${f V}_{f Rsd}$	${f V}_{ m Rd}$	V	X	N°
0.000000	0.00	0.00	42.04	-0.33	0.06	1
0.000000	0.00	0.00	43.26	-7.70	0.45	2
0.000000	0.00	0.00	43.71	0.95	0.86	3
0.000000	0.00	0.00	43.29	9.00	1.27	4

Tombini e ponticelli idraulici - IN02 - Tombino idraulico Ø1500 al km 18+277 – Relazione di calcolo

COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
IF26	12 E ZZ	CL	IN0200 0001	Α	99 di 179

5 1.67 1.05 42.02 0.00 0.00 0.000000

<u>Verifica sezioni fondazione [Combinazione nº 8 - SLU (Caso A2-M2) - Sisma Vert. negativo]</u>

Base sezione B = 100 cmAltezza sezione H = 0.1100 m

Verifiche presso-flessione

\mathbf{N}°	X	M	N	N_u	$\mathbf{M}_{\mathbf{u}}$	$\mathbf{A_{fi}}$	$\mathbf{A_{fs}}$	CS
1	0.06	-4.36 (-4.36)	25.07	141.27	-24.58	0.000770	0.000770	5.63
2	0.45	2.58 (3.21)	45.17	419.91	29.85	0.000770	0.000770	9.30
3	0.86	5.14 (5.14)	52.49	279.14	27.32	0.000770	0.000770	5.32
4	1.27	2.50 (3.20)	45.00	418.83	29.83	0.000770	0.000770	9.31
5	1.67	-4.31 (-4.35)	25.18	142.51	-24.61	0.000770	0.000770	5.66

Verifiche taglio

\mathbf{A}_{sw}	$\mathbf{V}_{\mathbf{Rcd}}$	${f V}_{f Rsd}$	${f V}_{ m Rd}$	V	X	N°
0.000000	0.00	0.00	42.74	-1.27	0.06	1
0.000000	0.00	0.00	44.67	10.07	0.45	2
0.000000	0.00	0.00	45.36	-0.62	0.86	3
0.000000	0.00	0.00	44.71	-11.20	1.27	4
0.000000	0.00	0.00	42.75	0.63	1.67	5

$\underline{Verifica\ sezioni\ traverso\ [Combinazione\ n^{\circ}\ 8\ -\ SLU\ (Caso\ A2-M2)\ -\ Sisma\ Vert.\ negativo]}$

Base sezione B = 100 cmAltezza sezione H = 0.1100 m

Verifiche presso-flessione

\mathbf{N}°	X	M	N	N_u	$\mathbf{M}_{\mathbf{u}}$	$\mathbf{A_{fi}}$	$\mathbf{A}_{\mathbf{fs}}$	CS
1	0.06	4.36 (4.36)	25.11	141.54	24.59	0.000770	0.000770	5.64
2	0.45	-3.04 (-3.63)	41.87	324.84	-28.18	0.000770	0.000770	7.76
3	0.86	-5.56 (-5.56)	47.69	225.35	-26.25	0.000770	0.000770	4.73
4	1.27	-3.04 (-3.75)	41.19	305.49	-27.84	0.000770	0.000770	7.42
5	1.67	4.31 (4.36)	25.22	142.28	24.60	0.000770	0.000770	5.64

\mathbf{A}_{sw}	$\mathbf{V}_{\mathbf{Rcd}}$	$\mathbf{V}_{\mathbf{R}\mathbf{s}\mathbf{d}}$	$\mathbf{V}_{\mathbf{Rd}}$	V	X	N°
0.000000	0.00	0.00	42.74	-0.04	0.06	1
0.000000	0.00	0.00	44.30	-9.44	0.45	2

Tombini e ponticelli idraulici - IN02 - Tombino idraulico
Ø1500 al km 18+277 – Relazione di calcolo

COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
IF26	12 E ZZ	CL	IN0200 0001	Α	100 di 179

3	0.86	1.12	44.90	0.00	0.00	0.000000
4	1.27	11.27	44.40	0.00	0.00	0.000000
5	1.67	0.99	42.76	0.00	0.00	0.000000

$\underline{Verifica\ sezioni\ fondazione\ [Combinazione\ n^{\circ}\ 9\ -SLU\ (Caso\ A1-M1)]}$

Base sezione B = 100 cm

Altezza sezione H = 0.1100 m

Verifiche presso-flessione

\mathbf{N}°	X	M	N	N_u	$\mathbf{M_u}$	$\mathbf{A_{fi}}$	$\mathbf{A}_{\mathbf{f}\mathbf{s}}$	CS
1	0.06	-0.51 (-0.63)	22.67	1131.32	-31.53	0.000770	0.000770	49.91
2	0.45	1.09 (1.29)	30.27	734.51	31.24	0.000770	0.000770	24.27
3	0.86	1.88 (1.88)	33.21	543.06	30.71	0.000770	0.000770	16.35
4	1.27	0.98 (1.21)	30.23	784.67	31.34	0.000770	0.000770	25.96
5	1.67	-0.45 (-0.58)	22.65	1228.57	-31.36	0.000770	0.000770	54.24

Verifiche taglio

\mathbf{N}°	X	v	$\mathbf{V}_{\mathbf{Rd}}$	$\mathbf{V}_{\mathbf{R}\mathbf{s}\mathbf{d}}$	$\mathbf{V}_{\mathbf{Rcd}}$	\mathbf{A}_{sw}
1	0.06	-2.18	42.51	0.00	0.00	0.000000
2	0.45	3.06	43.28	0.00	0.00	0.000000
3	0.86	-0.28	43.52	0.00	0.00	0.000000
4	1.27	-3.55	43.23	0.00	0.00	0.000000
5	1.67	2.00	42.51	0.00	0.00	0.000000

$\underline{Verifica\ sezioni\ traverso\ [Combinazione\ n^\circ\ 9\ -\ SLU\ (Caso\ A1-M1)]}$

Base sezione B = 100 cmAltezza sezione H = 0.1100 m

Verifiche presso-flessione

N°	X	M	N	N_u	$\mathbf{M_u}$	${f A_{fi}}$	$\mathbf{A}_{\mathbf{f}\mathbf{s}}$	CS
1	0.06	0.51 (0.51)	22.75	1370.79	30.86	0.000770	0.000770	60.26
2	0.45	-2.96 (-3.18)	28.12	233.66	-26.42	0.000770	0.000770	8.31
3	0.86	-3.92 (-3.92)	29.72	194.62	-25.64	0.000770	0.000770	6.55
4	1.27	-2.97 (-3.25)	27.56	221.69	-26.18	0.000770	0.000770	8.04
5	1.67	0.45 (0.51)	22.74	1370.50	30.86	0.000770	0.000770	60.26

$\mathbf{A}_{\mathbf{sw}}$	$ m V_{Rcd}$	V_{Rsd}	${f V}_{ m Rd}$	V	X	N°
0.000000	0.00	0.00	42.52	-1.07	0.06	1

Tombini e ponticelli idraulici - IN02 - Tombino idraulico Ø1500 al km 18+277 – Relazione di calcolo						LOTTO 12 E ZZ	CODIFICA CL	DOCUMENTO IN0200 0001	REV.	FOGLIO 101 di 179
2	0.45	-3.40	43.01	0.00		0.00	0.000000			
3	0.86	0.74	43.18	0.00		0.00	0.000000			
4	1.27	4.58	43.03	0.00		0.00	0.000000			
5	1.67	1.69	42.52	0.00		0.00	0.000000			

$\underline{Verifica\ sezioni\ fondazione\ [Combinazione\ n^{\circ}\ 10\ -\ SLU\ (Caso\ A1-M1)\ -\ Sisma\ Vert.\ negativo]}$

Base sezione B = 100 cmAltezza sezione H = 0.1100 m

Verifiche presso-flessione

\mathbf{N}°	X	M	N	N_u	$\mathbf{M}_{\mathbf{u}}$	${f A_{fi}}$	$\mathbf{A}_{\mathbf{f}\mathbf{s}}$	CS
1	0.06	-5.34 (-5.34)	16.04	69.50	-23.16	0.000770	0.000770	4.33
2	0.45	3.05 (3.80)	39.78	287.63	27.49	0.000770	0.000770	7.23
3	0.86	6.06 (6.06)	48.02	204.73	25.84	0.000770	0.000770	4.26
4	1.27	2.95 (3.78)	39.21	284.48	27.43	0.000770	0.000770	7.26
5	1.67	-5.27 (-5.28)	16.10	70.65	-23.18	0.000770	0.000770	4.39

Verifiche taglio

$\mathbf{A}_{\mathbf{sw}}$	$ m V_{Rcd}$	$\mathbf{V}_{\mathbf{R}\mathbf{s}\mathbf{d}}$	$\mathbf{V}_{\mathbf{Rd}}$	V	X	N°
0.000000	0.00	0.00	41.88	-0.88	0.06	1
0.000000	0.00	0.00	44.12	11.98	0.45	2
0.000000	0.00	0.00	44.93	-0.75	0.86	3
0.000000	0.00	0.00	44.19	-13.16	1.27	4
0.000000	0.00	0.00	41.88	0.19	1.67	5

<u>Verifica sezioni traverso [Combinazione nº 10 - SLU (Caso A1-M1) - Sisma Vert. negativo]</u>

Base sezione B = 100 cmAltezza sezione H = 0.1100 m

Verifiche presso-flessione

N°	X	\mathbf{M}	N	N_{u}	$M_{\rm u}$	$\mathbf{A_{fi}}$	\mathbf{A}_{fs}	CS
1	0.06	5.34 (5.34)	16.06	69.61	23.16	0.000770	0.000770	4.33
2	0.45	-3.50 (-4.25)	36.75	227.57	-26.30	0.000770	0.000770	6.19
3	0.86	-6.57 (-6.57)	43.99	168.10	-25.12	0.000770	0.000770	3.82
4	1.27	-3.49 (-4.33)	35.85	215.52	-26.06	0.000770	0.000770	6.01
5	1.67	5.27 (5.34)	16.13	69.99	23.17	0.000770	0.000770	4.34

\mathbf{N}°	\mathbf{X}	\mathbf{V}	$\mathbf{V}_{\mathbf{Rd}}$	$\mathbf{V}_{\mathbf{R}\mathbf{s}\mathbf{d}}$	$\mathbf{V}_{\mathbf{Rcd}}$	$\mathbf{A}_{\mathbf{sw}}$

			· IN02 - Tombino zione di calcolo	o idraulico	COMMESSA	LOTTO 12 E ZZ	CODIFICA CL	DOCUMENTO	REV.	FOGLIO 102 di 179
1	0.06	-0.09	41.88	0.00		0.00	0.000000			
2	0.45	-11.86	43.80	0.00		0.00	0.000000			
3	0.86	1.06	44.55	0.00		0.00	0.000000			
4	1.27	13.43	43.91	0.00		0.00	0.000000			
5	1.67	1.10	41.89	0.00		0.00	0.000000			

$\underline{Verifica\ sezioni\ fondazione\ [Combinazione\ n^{\circ}\ 11\ -\ SLU\ (Caso\ A2-M2)]}$

Base sezione B = 100 cmAltezza sezione H = 0.1100 m

Verifiche presso-flessione

N°	X	M	N	N_u	$\mathbf{M}_{\mathbf{u}}$	${f A_{fi}}$	$\mathbf{A}_{\mathbf{fs}}$	CS
1	0.06	-1.71 (-1.77)	17.60	269.20	-27.13	0.000770	0.000770	15.30
2	0.45	1.53 (1.86)	28.96	475.13	30.48	0.000770	0.000770	16.41
3	0.86	2.85 (2.85)	33.06	327.28	28.22	0.000770	0.000770	9.90
4	1.27	1.41 (1.78)	28.59	489.94	30.53	0.000770	0.000770	17.14
5	1.67	-1.64 (-1.74)	17.51	274.40	-27.23	0.000770	0.000770	15.67

Verifiche taglio

\mathbf{N}°	X	V	$\mathbf{V}_{\mathbf{Rd}}$	$\mathbf{V}_{\mathbf{R}\mathbf{s}\mathbf{d}}$	$\mathbf{V}_{\mathbf{Rcd}}$	\mathbf{A}_{sw}
1	0.06	-1.86	42.03	0.00	0.00	0.000000
2	0.45	5.26	43.13	0.00	0.00	0.000000
3	0.86	-0.43	43.50	0.00	0.00	0.000000
4	1.27	-5.89	43.10	0.00	0.00	0.000000
5	1.67	1.62	42.02	0.00	0.00	0.000000

$\underline{Verifica\ sezioni\ traverso\ [Combinazione\ n^{\circ}\ 11\ -\ SLU\ (Caso\ A2\text{-}M2)]}$

Base sezione B = 100 cmAltezza sezione H = 0.1100 m

Verifiche presso-flessione

\mathbf{N}°	X	M	N	N_u	$\mathbf{M}_{\mathbf{u}}$	${f A_{fi}}$	$\mathbf{A}_{\mathbf{f}\mathbf{s}}$	CS
1	0.06	1.71 (1.71)	17.67	282.19	27.38	0.000770	0.000770	15.97
2	0.45	-3.08 (-3.43)	26.95	202.82	-25.81	0.000770	0.000770	7.53
3	0.86	-4.52 (-4.52)	29.81	165.05	-25.06	0.000770	0.000770	5.54
4	1.27	-3.06 (-3.48)	26.19	192.93	-25.61	0.000770	0.000770	7.37
5	1.67	1.64 (1.71)	17.59	280.68	27.35	0.000770	0.000770	15.95

Tombini e ponticelli idraulici - IN02 - Tombino idraulico Ø1500 al km 18+277 – Relazione di calcolo

IF26	12 E ZZ	CI	IN0200 0001	Δ	103 di 179
COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO

N°	X	\mathbf{v}	$\mathbf{V}_{\mathbf{Rd}}$	$\mathbf{V}_{\mathbf{R}\mathbf{s}\mathbf{d}}$	$\mathbf{V}_{\mathbf{Rcd}}$	\mathbf{A}_{sw}
1	0.06	-0.99	42.03	0.00	0.00	0.000000
2	0.45	-5.49	42.89	0.00	0.00	0.000000
3	0.86	0.78	43.19	0.00	0.00	0.000000
4	1.27	6.62	42.92	0.00	0.00	0.000000
5	1.67	1.59	42.03	0.00	0.00	0.000000

<u>Verifica sezioni fondazione [Combinazione nº 12 - SLU (Caso A2-M2) - Sisma Vert. negativo]</u>

Base sezione B = 100 cmAltezza sezione H = 0.1100 m

Verifiche presso-flessione

N°	X	M	N	N_u	$\mathbf{M}_{\mathbf{u}}$	$\mathbf{A_{fi}}$	$\mathbf{A}_{\mathbf{f}\mathbf{s}}$	CS
1	0.06	-5.99 (-5.99)	16.83	64.75	-23.06	0.000770	0.000770	3.85
2	0.45	3.36 (4.20)	43.31	282.32	27.39	0.000770	0.000770	6.52
3	0.86	6.73 (6.73)	52.53	201.03	25.77	0.000770	0.000770	3.83
4	1.27	3.25 (4.18)	42.61	278.60	27.31	0.000770	0.000770	6.54
5	1.67	-5.91 (-5.92)	16.85	65.65	-23.08	0.000770	0.000770	3.90

Verifiche taglio

\mathbf{A}_{sw}	$\mathbf{V}_{\mathbf{Rcd}}$	$\mathbf{V}_{\mathbf{R}\mathbf{s}\mathbf{d}}$	$\mathbf{V}_{\mathbf{Rd}}$	V	X	N°
0.000000	0.00	0.00	41.95	-1.02	0.06	1
0.000000	0.00	0.00	44.46	13.42	0.45	2
0.000000	0.00	0.00	45.36	-0.86	0.86	3
0.000000	0.00	0.00	44.53	-14.74	1.27	4
0.000000	0.00	0.00	41.96	0.30	1.67	5

$\underline{Verifica\ sezioni\ traverso\ [Combinazione\ n^{\circ}\ 12\ -\ SLU\ (Caso\ A2-M2)\ -\ Sisma\ Vert.\ negativo]}$

 $B = 100 \ cm$ $Altezza \ sezione \qquad \qquad H = 0.1100 \ m$

N°	X	M	N	N_{u}	$\mathbf{M}_{\mathbf{u}}$	$\mathbf{A_{fi}}$	$\mathbf{A}_{\mathbf{f}\mathbf{s}}$	CS
1	0.06	5.99 (5.99)	16.86	64.87	23.07	0.000770	0.000770	3.85
2	0.45	-3.81 (-4.63)	39.75	225.12	-26.25	0.000770	0.000770	5.66
3	0.86	-7.19 (-7.19)	47.64	166.23	-25.08	0.000770	0.000770	3.49
4	1.27	-3.79 (-4.72)	38.71	213.45	-26.02	0.000770	0.000770	5.51
5	1.67	5.91 (5.98)	16.89	65.13	23.07	0.000770	0.000770	3.86

Tombini e ponticelli idraulici - IN02 - Tombino idraulico Ø1500 al km 18+277 – Relazione di calcolo

COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
IF26	12 E ZZ	CL	IN0200 0001	Α	104 di 179

Verifiche taglio

\mathbf{A}_{sw}	$V_{ m Rcd}$	$\mathbf{V}_{\mathbf{R}\mathbf{s}\mathbf{d}}$	$\mathbf{V}_{\mathbf{Rd}}$	V	X	\mathbf{N}°
0.000000	0.00	0.00	41.96	-0.19	0.06	1
0.000000	0.00	0.00	44.08	-13.08	0.45	2
0.000000	0.00	0.00	44.90	1.17	0.86	3
0.000000	0.00	0.00	44.19	14.79	1.27	4
0.000000	0.00	0.00	41.96	1.23	1.67	5

$\underline{Verifica\ sezioni\ fondazione\ [Combinazione\ n^{\circ}\ 13\ -\ SLU\ (Caso\ A1-M1)\ -\ Sisma\ Vert.\ positivo\]}$

Base sezione B = 100 cm

Altezza sezione H = 0.1100 m

Verifiche presso-flessione

CS	$\mathbf{A}_{\mathbf{fs}}$	$\mathbf{A_{fi}}$	$M_{\rm u}$	$N_{\rm u}$	N	M	X	N°
7.49	0.000770	0.000770	-25.61	192.89	25.76	-3.42 (-3.42)	0.06	1
11.62	0.000770	0.000770	30.53	490.53	42.21	2.13 (2.63)	0.45	2
6.81	0.000770	0.000770	28.23	327.80	48.13	4.14 (4.14)	0.86	3
11.64	0.000770	0.000770	30.54	492.31	42.29	2.07 (2.62)	1.27	4
7.51	0.000770	0.000770	-25.65	194.79	25.92	-3.39 (-3.41)	1.67	5

Verifiche taglio

\mathbf{N}°	X	V	$\mathbf{V}_{\mathbf{Rd}}$	$\mathbf{V}_{\mathbf{R}\mathbf{s}\mathbf{d}}$	$\mathbf{V}_{\mathbf{Rcd}}$	\mathbf{A}_{sw}
1	0.06	-1.01	42.81	0.00	0.00	0.000000
2	0.45	7.91	44.40	0.00	0.00	0.000000
3	0.86	-0.45	44.94	0.00	0.00	0.000000
4	1.27	-8.82	44.44	0.00	0.00	0.000000
5	1.67	0.39	42.82	0.00	0.00	0.000000

$\underline{Verifica\ sezioni\ traverso\ [Combinazione\ n^\circ\ 13\ -\ SLU\ (Caso\ A1\text{-}M1)\ -\ Sisma\ Vert.\ positivo\]}$

Base sezione B = 100 cm

Altezza sezione H = 0.1100 m

N°	X	M	N	N_{u}	$\mathbf{M}_{\mathbf{u}}$	$\mathbf{A_{fi}}$	$\mathbf{A}_{\mathbf{fs}}$	CS
1	0.06	3.42 (3.42)	25.78	193.06	25.61	0.000770	0.000770	7.49
2	0.45	-2.59 (-3.07)	38.98	366.84	-28.91	0.000770	0.000770	9.41
3	0.86	-4.69 (-4.69)	43.89	250.57	-26.75	0.000770	0.000770	5.71
4	1.27	-2.61 (-3.20)	38.49	342.06	-28.48	0.000770	0.000770	8.89

Tombini e ponticelli idraulici - IN02 - Tombino idraulico Ø1500 al km 18+277 – Relazione di calcolo

IF26	12 E ZZ	CL	IN0200 0001	Α	105 di 179
COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO

5	1.67	3.39 (3	3.42) 25.95	194.57	25.64	0.000770	0.000770	7.50
Verifich	e taglio							
N°	X	\mathbf{v}	$\mathbf{V}_{\mathbf{Rd}}$	$\mathbf{V}_{\mathbf{R}\mathbf{s}\mathbf{d}}$	V_{Rcd}	\mathbf{A}_{sw}		
1	0.06	0.25	42.81	0.00	0.00	0.000000		
2	0.45	-7.71	44.03	0.00	0.00	0.000000		
3	0.86	1.00	44.54	0.00	0.00	0.000000		
4	1.27	9.39	44.14	0.00	0.00	0.000000		
5	1.67	0.70	42.82	0.00	0.00	0.000000		

$\underline{Verifica\ sezioni\ fondazione\ [Combinazione\ n^\circ\ 14\ -\ SLU\ (Caso\ A2-M2)\ -\ Sisma\ Vert.\ positivo\]}$

Base sezione B = 100 cmAltezza sezione H = 0.1100 m

Verifiche presso-flessione

N°	X	M	N	N_u	$\mathbf{M}_{\mathbf{u}}$	$\mathbf{A_{fi}}$	$\mathbf{A}_{\mathbf{f}\mathbf{s}}$	CS
1	0.06	-4.07 (-4.07)	26.55	163.20	-25.02	0.000770	0.000770	6.15
2	0.45	2.44 (3.03)	45.74	459.88	30.43	0.000770	0.000770	10.05
3	0.86	4.82 (4.82)	52.64	303.90	27.81	0.000770	0.000770	5.77
4	1.27	2.36 (3.02)	45.70	460.42	30.43	0.000770	0.000770	10.07
5	1.67	-4.02 (-4.06)	26.68	164.72	-25.05	0.000770	0.000770	6.17

Verifiche taglio

\mathbf{A}_{sw}	$\mathbf{V}_{\mathbf{Rcd}}$	${ m V}_{ m Rsd}$	$\mathbf{V}_{\mathbf{Rd}}$	V	X	N°
0.000000	0.00	0.00	42.88	-1.16	0.06	1
0.000000	0.00	0.00	44.73	9.35	0.45	2
0.000000	0.00	0.00	45.37	-0.55	0.86	3
0.000000	0.00	0.00	44.77	-10.41	1.27	4
0.000000	0.00	0.00	42.89	0.52	1.67	5

$\underline{Verifica\ sezioni\ traverso\ [Combinazione\ n^\circ\ 14-SLU\ (Caso\ A2-M2)-Sisma\ Vert.\ positivo\]}$

Base sezione B = 100 cmAltezza sezione H = 0.1100 m

N°	X	M	N	N_{u}	$\mathbf{M}_{\mathbf{u}}$	${f A_{fi}}$	$\mathbf{A}_{\mathbf{fs}}$	CS
1	0.06	4.07 (4.07)	26.57	163.37	25.02	0.000770	0.000770	6.15
2	0.45	-2.90 (-3.46)	41.99	346.40	-28.55	0.000770	0.000770	8.25
3	0.86	-5.30 (-5.30)	47.54	237.63	-26.50	0.000770	0.000770	5.00

					aulico				DOCUMENTO IN0200 0001	REV.	FOGLIO 106 di 179	
	4	1.27	-2.91 (-3.59)	41.36	324	67	-28.17	0.000770	0.000770	7.85		
	5	1.67	4.02 (4.07)	26.71	164	.32	25.04	0.000770	0.000770	6.15		
1	Verifiche	<u>taglio</u>										
	N°	X	V	$\mathbf{V}_{\mathbf{Rd}}$	\mathbf{V}_{Rsd}		V_{Rcd}	\mathbf{A}_{sw}				
	1	0.06	0.15	42.88	0.00		0.00	0.000000				
	2	0.45	-8.93	44.31	0.00		0.00	0.000000				
	3	0.86	1.11	44.89	0.00		0.00	0.000000				
	4	1.27	10.76	44.42	0.00		0.00	0.000000				
	5	1.67	0.81	42.90	0.00		0.00	0.000000				

$\underline{Verifica\ sezioni\ fondazione\ [Combinazione\ n^\circ\ 15\ -\ SLU\ (Caso\ A1-M1)\ -\ Sisma\ Vert.\ positivo\]}$

Base sezione B = 100 cmAltezza sezione H = 0.1100 m

Verifiche presso-flessione

\mathbf{N}°	X	M	N	N_u	$\mathbf{M}_{\mathbf{u}}$	${f A_{fi}}$	$\mathbf{A_{fs}}$	CS
1	0.06	-5.05 (-5.05)	17.52	81.06	-23.39	0.000770	0.000770	4.63
2	0.45	2.91 (3.62)	40.35	311.64	27.94	0.000770	0.000770	7.72
3	0.86	5.74 (5.74)	48.17	219.28	26.13	0.000770	0.000770	4.55
4	1.27	2.82 (3.60)	39.91	309.73	27.91	0.000770	0.000770	7.76
5	1.67	-4.99 (-4.99)	17.59	82.55	-23.42	0.000770	0.000770	4.69
Verifich	ne taglio							
\mathbf{N}°	X	v	$\mathbf{V}_{\mathbf{Rd}}$	$\mathbf{V}_{\mathbf{Rsd}}$	$\mathbf{V}_{\mathbf{Rcd}}$	\mathbf{A}_{sw}		
1	0.06	-0.77	42.02	0.00	0.00	0.000000		
2	0.45	11.27	44.19	0.00	0.00	0.000000		
3	0.86	-0.68	44.95	0.00	0.00	0.000000		

0.00

0.00

0.00

0.00

0.000000

0.000000

$\underline{Verifica\ sezioni\ traverso\ [Combinazione\ n^\circ\ 15\ -\ SLU\ (Caso\ A1\text{-}M1)\ -\ Sisma\ Vert.\ positivo\]}$

44.25

42.03

Base sezione B = 100 cmAltezza sezione H = 0.1100 m

Verifiche presso-flessione

1.27

1.67

-12.37

0.08

4

CS	$\mathbf{A}_{\mathbf{f}\mathbf{s}}$	$\mathbf{A_{fi}}$	\mathbf{M}_{u}	N_u	N	M	X	N°
4.63	0.000770	0.000770	23.39	81.15	17.53	5.05 (5.05)	0.06	1
6.51	0.000770	0.000770	-26.55	240.10	36.86	-3.36 (-4.08)	0.45	2

					PROGETTO	J ESECU	IIVO			
		elli idraulici - IN0 +277 – Relazione		draulico	COMMESSA IF26	LOTTO 12 E ZZ	CODIFICA CL	DOCUMENTO IN0200 0001	REV.	FOGLIO 107 di 179
3	0.86	-6.32 (-6.32)	43.85	175	.27	-25.26	0.000770	0.000770	4.00	
4	1.27	-3.36 (-4.17)	36.02	227	.04	-26.29	0.000770	0.000770	6.30	
5	1.67	4.99 (5.04)	17.62	81	.73	23.40	0.000770	0.000770	4.64	
Verifich	e taglio									
N°	X	v	$\mathbf{V}_{\mathbf{Rd}}$	$\mathbf{V}_{\mathbf{R}\mathbf{s}\mathbf{d}}$		$\mathbf{V}_{\mathbf{Rcd}}$	\mathbf{A}_{sw}			
1	0.06	0.09	42.02	0.00		0.00	0.000000			
2	0.45	-11.36	43.81	0.00		0.00	0.000000			
3	0.86	1.05	44.53	0.00		0.00	0.000000			
4	1.27	12.92	43.92	0.00		0.00	0.000000			
5	1.67	0.92	42.03	0.00		0.00	0.000000			
Verifica sezioni fondazione [Combinazione nº 16 - SLU (Caso A2-M2) - Sisma Vert. positivo]										

Base sezione B = 100 cm

Altezza sezione H = 0.1100 m

Verifiche presso-flessione

\mathbf{N}°	X	M	N	N_{u}	$\mathbf{M}_{\mathbf{u}}$	$\mathbf{A_{fi}}$	$\mathbf{A}_{\mathbf{f}\mathbf{s}}$	CS
1	0.06	-5.70 (-5.70)	18.31	74.66	-23.26	0.000770	0.000770	4.08
2	0.45	3.22 (4.02)	43.89	303.71	27.80	0.000770	0.000770	6.92
3	0.86	6.41 (6.41)	52.68	213.78	26.02	0.000770	0.000770	4.06
4	1.27	3.11 (3.99)	43.31	301.08	27.76	0.000770	0.000770	6.95
5	1.67	-5.62 (-5.63)	18.35	75.83	-23.28	0.000770	0.000770	4.13

Verifiche taglio

N°	X	\mathbf{v}	$\mathbf{V}_{\mathbf{Rd}}$	$\mathbf{V}_{\mathbf{R}\mathbf{s}\mathbf{d}}$	$\mathbf{V}_{\mathbf{Rcd}}$	\mathbf{A}_{sw}
1	0.06	-0.91	42.10	0.00	0.00	0.000000
2	0.45	12.71	44.52	0.00	0.00	0.000000
3	0.86	-0.78	45.38	0.00	0.00	0.000000
4	1.27	-13.95	44.58	0.00	0.00	0.000000
5	1.67	0.19	42.10	0.00	0.00	0.000000

$\underline{Verifica\ sezioni\ traverso\ [Combinazione\ n^{\circ}\ 16\ -\ SLU\ (Caso\ A2-M2)\ -\ Sisma\ Vert.\ positivo\]}$

Base sezione B = 100 cm

 $H = 0.1100 \ m$ Altezza sezione

N°	X	M	N	N_u	$\mathbf{M}_{\mathbf{u}}$	$\mathbf{A_{fi}}$	$\mathbf{A}_{\mathbf{f}\mathbf{s}}$	CS
1	0.06	5.70 (5.70)	18.33	74.75	23.26	0.000770	0.000770	4.08

		1 NOCETTO ESESSINO								
Tombini e ponticelli idraulici - IN02 - Tombino idraulico Ø1500 al km 18+277 – Relazione di calcolo					COMMESSA	LOTTO 12 E ZZ	CODIFICA	DOCUMENTO	REV.	FOGLIO 108 di 179
					-					
2	0.45	-3.67 (-4.46)	39.87	236	.41	-26.47	0.000770	0.000770	5.93	
3	0.86	-6.93 (-6.93)	47.49	172	.67	-25.21	0.000770	0.000770	3.64	
4	1.27	-3.65 (-4.55)	38.88	223	.88	-26.22	0.000770	0.000770	5.76	
5	1.67	5.62 (5.69)	18.38	75	.19	23.27	0.000770	0.000770	4.09	
Verifiche	e taglio									
\mathbf{N}°	X	V	$\mathbf{V}_{\mathbf{Rd}}$	$\mathbf{V}_{\mathbf{R}\mathbf{s}\mathbf{d}}$		$\mathbf{V}_{\mathbf{Rcd}}$	\mathbf{A}_{sw}			
1	0.06	-0.01	42.10	0.00		0.00	0.000000			
2	0.45	-12.58	44.09	0.00		0.00	0.000000			
3	0.86	1.16	44.88	0.00		0.00	0.000000			
4	1.27	14.29	44.21	0.00		0.00	0.000000			
5	1.67	1.05	42.10	0.00		0.00	0.000000			

Tombini e ponticelli idraulici - IN02 - Tombino idraulico Ø1500 al km 18+277 – Relazione di calcolo

 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 IF26
 12 E ZZ
 CL
 IN0200 0001
 A
 109 di 179

Verifiche combinazioni SLE

Simbologia adottata ed unità di misura

N° Indice sezione

X Ascissa/Ordinata sezione, espresso in m

M Momento flettente, espresso in kNm

V Taglio, espresso in kN

N Sforzo normale, espresso in kN

A_{fi} Area armatura inferiore, espressa in mq

A_{fs} Area armatura superiore, espressa in mq

 $\sigma_{\!\scriptscriptstyle fi}$ Tensione nell'armatura disposta in corrispondenza del lembo inferiore, espresse in kPa

 $\sigma_{\!\scriptscriptstyle fs}$ Tensione nell'armatura disposta in corrispondenza del lembo superiore, espresse in kPa

σ_c Tensione nel calcestruzzo, espresse in kPa

τ_c Tensione tangenziale nel calcestruzzo, espresse in kPa

A_{sw} Area armature trasversali nella sezione, espressa in mq

<u>Verifica sezioni fondazione [Combinazione nº 17 - SLE (Quasi Permanente)]</u>

Base sezione B = 100 cm

Altezza sezione H = 0.1100 m

Verifiche presso-flessione

N°	X	M	N	$\mathbf{A_{fi}}$	$\mathbf{A}_{\mathbf{fs}}$	σ_{fs}	σ_{fi}	$\sigma_{\rm c}$
1	0.06	1.77	16.80	0.000770	0.000770	1320	23413	1876
2	0.45	-0.35	13.13	0.000770	0.000770	341	2103	297
3	0.86	-0.95	12.33	0.000770	0.000770	10415	348	980
4	1.27	-0.35	13.69	0.000770	0.000770	486	2182	296
5	1.67	1.77	16.80	0.000770	0.000770	1320	23413	1876

Verifiche taglio

\mathbf{N}°	X	V	$ au_{ m c}$	\mathbf{A}_{sw}
1	0.06	-1.06	-18	0.000000
2	0.45	-2.54	-43	0.000000
3	0.86	0.19	3	0.000000
4	1.27	2.61	44	0.000000
5	1.67	1.06	18	0.000000

$\underline{Verifica\ sezioni\ traverso\ [Combinazione\ n^\circ\ 17\ -\ SLE\ (Quasi\ Permanente)]}$

Base sezione B = 100 cmAltezza sezione H = 0.1100 m

Tombini e ponticelli idraulici - IN02 - Tombino idraulico Ø1500 al km 18+277 – Relazione di calcolo

COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
IF26	12 E ZZ	CL	IN0200 0001	Α	110 di 179

X 7 ' C" 1	Ct ·
Verifiche	presso-flessione

\mathbf{N}°	X	M	N	$\mathbf{A_{fi}}$	$\mathbf{A}_{\mathbf{f}\mathbf{s}}$	σ_{fs}	σ_{fi}	$\sigma_{\rm c}$
1	0.06	-1.77	16.83	0.000770	0.000770	23391	1310	1875
2	0.45	-0.16	10.76	0.000770	0.000770	894	1532	159
3	0.86	0.56	8.63	0.000770	0.000770	649	5132	557
4	1.27	-0.16	10.90	0.000770	0.000770	910	1548	160
5	1.67	-1.77	16.83	0.000770	0.000770	23391	1310	1875

Verifiche taglio

				-	
sw	A	$ au_{ m c}$	\mathbf{v}	X	N°
00	0.00000	-4	-0.24	0.06	1
00	0.00000	53	3.17	0.45	2
00	0.00000	4	0.21	0.86	3
00	0.00000	-44	-2.64	1.27	4
00	0.00000	4	0.24	1.67	5

$\underline{Verifica\ sezioni\ fondazione\ [Combinazione\ n^{\circ}\ 18\ -\ SLE\ (Frequente)]}$

Base sezione B = 100 cmAltezza sezione H = 0.1100 m

Verifiche presso-flessione

N°	X	M	N	$\mathbf{A_{fi}}$	$\mathbf{A}_{\mathbf{fs}}$	σ_{fs}	σ_{fi}	$\sigma_{\rm c}$
1	0.06	5.83	49.95	0.000770	0.000770	6159	80904	6233
2	0.45	-2.28	30.34	0.000770	0.000770	24259	1120	2331
3	0.86	-4.93	24.98	0.000770	0.000770	80455	11106	5424
4	1.27	-2.28	32.04	0.000770	0.000770	23139	1651	2314
5	1.67	5.83	49.95	0.000770	0.000770	6159	80904	6233

Verifiche taglio

$\mathbf{A}_{\mathbf{sw}}$	$ au_{ m c}$	V	X	N°
0.000000	-33	-1.99	0.06	1
0.000000	-184	-10.98	0.45	2
0.000000	11	0.65	0.86	3
0.000000	191	11.37	1.27	4
0.000000	33	1.99	1.67	5

<u>Verifica sezioni traverso [Combinazione nº 18 - SLE (Frequente)]</u>

Base sezione B = 100 cm

Tombini e ponticelli idraulici - IN02 - Tombino idraulico Ø1500 al km 18+277 – Relazione di calcolo

COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
IF26	12 E ZZ	CL	IN0200 0001	Α	111 di 179

4.1.		**	0.1100
Altezza	sezione	H =	0.1100 m

Verifiche presso-flessione

N°	X	M	N	${f A_{fi}}$	$\mathbf{A}_{\mathbf{f}\mathbf{s}}$	σ_{fs}	$\sigma_{\rm fi}$	$\sigma_{\rm c}$
1	0.06	-5.83	49.99	0.000770	0.000770	80878	6147	6233
2	0.45	1.74	28.78	0.000770	0.000770	2562	14920	1725
3	0.86	4.62	21.48	0.000770	0.000770	11081	76774	5101
4	1.27	1.74	29.36	0.000770	0.000770	2734	14552	1719
5	1.67	-5.83	49.99	0.000770	0.000770	80878	6147	6233

Verifiche taglio

N°	X	\mathbf{v}	$ au_{ m c}$	\mathbf{A}_{sw}
1	0.06	0.47	8	0.000000
2	0.45	12.56	211	0.000000
3	0.86	0.53	9	0.000000
4	1.27	-11.14	-187	0.000000
5	1.67	-0.47	-8	0.000000

$\underline{Verifica\ sezioni\ fondazione\ [Combinazione\ n^{\circ}\ 19\ - SLE\ (Frequente)]}$

Base sezione B = 100 cmAltezza sezione H = 0.1100 m

Verifiche presso-flessione

N°	X	M	N	${f A_{fi}}$	$\mathbf{A}_{\mathbf{f}\mathbf{s}}$	σ_{fs}	$\sigma_{ m fi}$	$\sigma_{\rm c}$
1	0.06	-0.75	16.81	0.000770	0.000770	3787	2322	698
2	0.45	0.87	22.94	0.000770	0.000770	3509	2617	778
3	0.86	1.51	25.18	0.000770	0.000770	2277	12861	1497
4	1.27	0.79	22.90	0.000770	0.000770	3621	1387	686
5	1.67	-0.70	16.79	0.000770	0.000770	3020	2429	646

Verifiche taglio

\mathbf{A}_{sw}	$ au_{ m c}$	V	X	N°
0.000000	-16	-0.95	0.06	1
0.000000	43	2.54	0.45	2
0.000000	-4	-0.23	0.86	3
0.000000	-49	-2.93	1.27	4
0.000000	14	0.81	1.67	5

 $\underline{Verifica\ sezioni\ traverso\ [Combinazione\ n^{\circ}\ 19\ -\ SLE\ (Frequente)]}$

Tombini e ponticelli idraulici - IN02 - Tombino idraulico Ø1500 al km 18+277 – Relazione di calcolo

COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
IF26	12 E ZZ	CL	IN0200 0001	Α	112 di 179

Base sezione B = 100 cmAltezza sezione H = 0.1100 m

Verifiche presso-flessione

$\sigma_{\rm c}$	σ_{fi}	σ_{fs}	$\mathbf{A}_{\mathbf{f}\mathbf{s}}$	$\mathbf{A_{fi}}$	N	M	X	\mathbf{N}°
698	3772	2329	0.000770	0.000770	16.83	0.75	0.06	1
1345	1387	12709	0.000770	0.000770	20.18	-1.34	0.45	2
2049	577	24056	0.000770	0.000770	21.26	-1.96	0.86	3
1350	1263	12982	0.000770	0.000770	19.79	-1.34	1.27	4
646	3002	2438	0.000770	0.000770	16.83	0.70	1.67	5

Verifiche taglio

N°	X	V	$ au_{ m c}$	\mathbf{A}_{sw}
1	0.06	-0.12	-2	0.000000
2	0.45	-2.15	-36	0.000000
3	0.86	0.53	9	0.000000
4	1.27	2.99	50	0.000000
5	1.67	0.58	10	0.000000

$\underline{Verifica\ sezioni\ fondazione\ [Combinazione\ n^{\circ}\ 20\ - SLE\ (Frequente)]}$

Base sezione B = 100 cmAltezza sezione H = 0.1100 m

Verifiche presso-flessione

\mathbf{N}°	X	M	N	$\mathbf{A_{fi}}$	$\mathbf{A}_{\mathbf{f}\mathbf{s}}$	σ_{fs}	$\sigma_{\rm fi}$	$\sigma_{\rm c}$
1	0.06	1.87	16.79	0.000770	0.000770	1712	25392	1991
2	0.45	-0.36	12.99	0.000770	0.000770	216	2086	305
3	0.86	-0.98	12.17	0.000770	0.000770	11038	199	1012
4	1.27	-0.36	13.56	0.000770	0.000770	375	2170	304
5	1.67	1.87	16.79	0.000770	0.000770	1712	25392	1991

$\mathbf{A}_{\mathbf{sw}}$	$ au_{ m c}$	V	X	N°
0.000000	-21	-1.22	0.06	1
0.000000	-44	-2.62	0.45	2
0.000000	3	0.19	0.86	3
0.000000	45	2.70	1.27	4
0.000000	21	1.22	1.67	5

Tombini e ponticelli idraulici - IN02 - Tombino idraulico Ø1500 al km 18+277 – Relazione di calcolo

COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
IF26	12 E ZZ	CL	IN0200 0001	Α	113 di 179

<u>Verifica sezioni traverso [Combinazione nº 20 - SLE (Frequente)]</u>

Base sezione B = 100 cmAltezza sezione H = 0.1100 m

Verifiche presso-flessione

$\sigma_{\rm c}$	$\sigma_{\rm fi}$	σ_{fs}	$\mathbf{A}_{\mathbf{f}\mathbf{s}}$	$\mathbf{A_{fi}}$	N	M	X	\mathbf{N}°
1990	1699	25364	0.000770	0.000770	16.83	-1.87	0.06	1
327	1724	656	0.000770	0.000770	10.90	-0.37	0.45	2
293	925	1353	0.000770	0.000770	8.79	0.33	0.86	3
326	1751	598	0.000770	0.000770	11.04	-0.37	1.27	4
1990	1699	25364	0.000770	0.000770	16.83	-1 87	1.67	5

Verifiche taglio

N°	X	V	$ au_{ m c}$	\mathbf{A}_{sw}
1	0.06	-0.40	-7	0.000000
2	0.45	3.09	52	0.000000
3	0.86	0.22	4	0.000000
4	1.27	-2.56	-43	0.000000
5	1.67	0.40	7	0.000000

$\underline{Verifica\ sezioni\ fondazione\ [Combinazione\ n^{\circ}\ 21\ -\ SLE\ (Rara)]}$

Base sezione B = 100 cmAltezza sezione H = 0.1100 m

Verifiche presso-flessione

\mathbf{N}°	X	M	N	$\mathbf{A_{fi}}$	$\mathbf{A}_{\mathbf{fs}}$	σ_{fs}	$\sigma_{\rm fi}$	$\sigma_{\rm c}$
1	0.06	6.95	58.23	0.000770	0.000770	7765	97261	7438
2	0.45	-2.77	34.51	0.000770	0.000770	31044	614	2855
3	0.86	-5.95	27.98	0.000770	0.000770	98640	14160	6565
4	1.27	-2.77	36.50	0.000770	0.000770	29721	1244	2835
5	1.67	6.95	58.23	0.000770	0.000770	7765	97261	7438

$\mathbf{A}_{\mathbf{sw}}$	$ au_{ m c}$	V	X	\mathbf{N}°
0.000000	-40	-2.38	0.06	1
0.000000	-221	-13.16	0.45	2
0.000000	13	0.77	0.86	3
0.000000	229	13.64	1.27	4

Tombini e ponticelli idraulici - IN02 - Tombino idraulico Ø1500 al km 18+277 – Relazione di calcolo

IF26	12 E ZZ	CL	IN0200 0001	Α	114 di 179	
COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO	

5 1.67 2.38 40 0.000000

$\underline{Verifica\ sezioni\ traverso\ [Combinazione\ n^{\circ}\ 21\ -\ SLE\ (Rara)]}$

Base sezione B = 100 cmAltezza sezione H = 0.1100 m

Verifiche presso-flessione

\mathbf{N}°	X	M	N	$\mathbf{A_{fi}}$	$\mathbf{A}_{\mathbf{fs}}$	σ_{fs}	$\sigma_{ m fi}$	$\sigma_{\rm c}$
1	0.06	-6.95	58.28	0.000770	0.000770	97228	7749	7437
2	0.45	2.01	33.42	0.000770	0.000770	3024	17056	1987
3	0.86	5.41	24.86	0.000770	0.000770	13073	90075	5973
4	1.27	2.01	34.11	0.000770	0.000770	3227	16622	1979
5	1.67	-6.95	58.28	0.000770	0.000770	97228	7749	7437

Verifiche taglio

\mathbf{A}_{sw}	$ au_{ m c}$	V	X	N°
0.000000	8	0.48	0.06	1
0.000000	249	14.83	0.45	2
0.000000	10	0.61	0.86	3
0.000000	-221	-13.18	1.27	4
0.000000	-8	-0.48	1 67	5

$\underline{Verifica\ sezioni\ fondazione\ [Combinazione\ n^{\circ}\ 22\ - SLE\ (Rara)]}$

Base sezione B = 100 cmAltezza sezione H = 0.1100 m

Verifiche presso-flessione

N°	X	M	N	${f A_{fi}}$	${f A}_{ m fs}$	σ_{fs}	$\sigma_{ m fi}$	$\sigma_{\rm c}$
1	0.06	-1.28	16.82	0.000770	0.000770	13722	569	1308
2	0.45	1.16	25.25	0.000770	0.000770	3392	6325	1090
3	0.86	2.10	28.23	0.000770	0.000770	1110	22203	2146
4	1.27	1.07	25.05	0.000770	0.000770	3589	4751	981
5	1.67	-1.22	16.78	0.000770	0.000770	12605	772	1241

\mathbf{A}_{sw}	$ au_{ m c}$	\mathbf{V}	X	\mathbf{N}°
0.000000	-18	-1.09	0.06	1
0.000000	63	3.74	0.45	2
0.000000	-5	-0.31	0.86	3

Tombini e ponticelli idraulici - IN02 - Tombino idraulico Ø1500 al km 18+277 – Relazione di calcolo

COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
IF26	12 E ZZ	CL	IN0200 0001	Α	115 di 179

4	1.27	-4.23	-71	0.000000
5	1.67	0.88	15	0.000000

<u>Verifica sezioni traverso [Combinazione nº 22 - SLE (Rara)]</u>

Base sezione B = 100 cmAltezza sezione H = 0.1100 m

Verifiche presso-flessione

$\sigma_{\rm c}$	$\sigma_{\rm fi}$	σ_{fs}	$\mathbf{A}_{\mathbf{f}\mathbf{s}}$	$\mathbf{A_{fi}}$	N	M	X	\mathbf{N}°
1308	13700	579	0.000770	0.000770	16.85	1.28	0.06	1
1906	308	20909	0.000770	0.000770	22.69	-1.85	0.45	2
3001	2802	38662	0.000770	0.000770	24.58	-2.81	0.86	3
1900	168	21082	0.000770	0.000770	22.13	-1.84	1.27	4
1240	12577	785	0.000770	0.000770	16.82	1.22	1.67	5

Verifiche taglio

\mathbf{N}°	X	\mathbf{v}	$ au_{ m c}$	\mathbf{A}_{sw}
1	0.06	-0.26	-4	0.000000
2	0.45	-3.55	-60	0.000000
3	0.86	0.63	11	0.000000
4	1.27	4.50	76	0.000000
5	1.67	0.80	13	0.000000

$\underline{Verifica\ sezioni\ fondazione\ [Combinazione\ n^{\circ}\ 23\ -\ SLE\ (Rara)]}$

Base sezione B = 100 cmAltezza sezione H = 0.1100 m

Verifiche presso-flessione

\mathbf{N}°	X	M	N	$\mathbf{A_{fi}}$	$\mathbf{A_{fs}}$	σ_{fs}	σ_{fi}	$\sigma_{\rm c}$
1	0.06	6.33	49.93	0.000770	0.000770	8137	90821	6807
2	0.45	-2.32	29.64	0.000770	0.000770	25602	732	2390
3	0.86	-5.06	24.18	0.000770	0.000770	83649	11914	5582
4	1.27	-2.32	31.36	0.000770	0.000770	24462	1274	2373
5	1.67	6.33	49.93	0.000770	0.000770	8137	90821	6807

$\mathbf{A}_{\mathbf{sw}}$	$ au_{ m c}$	V	X	\mathbf{N}°
0.000000	-47	-2.78	0.06	1
0.000000	-191	-11.36	0.45	2

Tombini e ponticelli idraulici - IN02 - Tombino idraulico Ø1500 al km 18+277 – Relazione di calcolo

COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
IF26	12 E ZZ	CL	IN0200 0001	Α	116 di 179

3	0.86	0.67	11	0.000000
4	1.27	11.78	198	0.000000
5	1.67	2.78	47	0.000000

$\underline{Verifica\ sezioni\ traverso\ [Combinazione\ n^{\circ}\ 23\ -\ SLE\ (Rara)]}$

Base sezione B = 100 cm

Altezza sezione H = 0.1100 m

Verifiche presso-flessione

$\sigma_{\rm c}$	$\sigma_{ m fi}$	σ_{fs}	$\mathbf{A}_{\mathbf{f}\mathbf{s}}$	$\mathbf{A_{fi}}$	N	M	X	N°
6807	8111	90768	0.000770	0.000770	50.01	-6.33	0.06	1
580	1558	4616	0.000770	0.000770	29.47	0.69	0.45	2
3789	53539	6236	0.000770	0.000770	22.28	3.48	0.86	3
581	1667	4686	0.000770	0.000770	30.03	0.69	1.27	4
6807	8111	90768	0.000770	0.000770	50.01	-6.33	1.67	5

Verifiche taglio

\mathbf{N}°	X	V	$ au_{ m c}$	\mathbf{A}_{sw}
1	0.06	-0.33	-6	0.000000
2	0.45	12.17	205	0.000000
3	0.86	0.55	9	0.000000
4	1.27	-10.71	-180	0.000000
5	1.67	0.33	6	0.000000

$\underline{Verifica\ sezioni\ fondazione\ [Combinazione\ n^{\circ}\ 24\ -\ SLE\ (Rara)]}$

Base sezione B = 100 cmAltezza sezione H = 0.1100 m

Verifiche presso-flessione

\mathbf{N}°	X	M	N	$\mathbf{A_{fi}}$	$\mathbf{A}_{\mathbf{f}\mathbf{s}}$	$\sigma_{ m fs}$	$\sigma_{ m fi}$	$\sigma_{\rm c}$
1	0.06	-0.65	16.80	0.000770	0.000770	2109	2548	584
2	0.45	0.86	22.81	0.000770	0.000770	3493	2552	770
3	0.86	1.49	25.02	0.000770	0.000770	2320	12462	1469
4	1.27	0.78	22.76	0.000770	0.000770	3605	1309	677
5	1.67	-0.60	16.79	0.000770	0.000770	1416	2620	533

\mathbf{A}_{sw}	$ au_{ m c}$	\mathbf{V}	X	N°
0.000000	-19	-1.11	0.06	1

Tombini e ponticelli idraulici - IN02 - Tombino idraulico Ø1500 al km 18+277 – Relazione di calcolo

COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
IF26	12 E ZZ	CL	IN0200 0001	Α	117 di 179

2	0.45	2.47	41	0.000000
3	0.86	-0.22	-4	0.000000
4	1.27	-2.85	-48	0.000000
5	1.67	0.97	16	0.000000

$\underline{Verifica\ sezioni\ traverso\ [Combinazione\ n^{\circ}\ 24\ -\ SLE\ (Rara)]}$

Base sezione B = 100 cmAltezza sezione H = 0.1100 m

Verifiche presso-flessione

\mathbf{N}°	X	M	N	${f A_{fi}}$	$\mathbf{A}_{\mathbf{f}\mathbf{s}}$	σ_{fs}	$\sigma_{\rm fi}$	$\sigma_{\rm c}$
1	0.06	0.65	16.84	0.000770	0.000770	2555	2092	583
2	0.45	-1.55	20.32	0.000770	0.000770	16675	668	1586
3	0.86	-2.18	21.42	0.000770	0.000770	28436	1405	2309
4	1.27	-1.55	19.92	0.000770	0.000770	16973	535	1592
5	1.67	0.60	16.83	0.000770	0.000770	2629	1397	533

\mathbf{A}_{sw}	$ au_{ m c}$	V	X	N°
0.000000	-5	-0.28	0.06	1
0.000000	-37	-2.23	0.45	2
0.000000	9	0.53	0.86	3
0.000000	52	3.08	1.27	4
0.000000	12	0.74	1.67	5

Tombini e ponticelli idraulici - IN02 - Tombino idraulico Ø1500 al km 18+277 – Relazione di calcolo

COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
IF26	12 E ZZ	CL	IN0200 0001	Α	118 di 179

 $\epsilon_{\rm sm}$

0.000

0.000

0.000

0.000

 $\epsilon_{\rm sm}$

0.000

0.000

0.000

0.000

0.000

€sm

0.000

0.000

0.000

0.000

0.000

 $\epsilon_{\rm sm}$

0.000

0.00000

0.00000

0.00000

0.00000

0.00000

0.00000

0.00000

0.00000

0.00000

0.00000

0.00000

0.00000

0.00000

0.00000

0.00000

 $\mathbf{S}_{\mathbf{m}}$

Verifiche fessurazione

Simbole	ologia adottata ed unità di misura												
N°	Indice	Indice sezione											
X_i	Asciss	Ascissa/Ordinata sezione, espresso in m											
M_p	Mome	Momento, espresse in kNm											
M_n	Mome	Aomento, espresse in kNm											
w_k	Ampie	Ampiezza fessure, espresse in m											
Wlim	Apert	Apertura limite fessure, espresse in m											
S	Distar	Distanza media tra le fessure, espresse in m											
\mathcal{E}_{sm}	Defor	mazione nelle fess	ure, espresse in [%]										
<u>Verif</u>	ica fessur	azione fonda	zione [Combin	azione n° 17 -	SLE (Quasi Perm	anente)]							
N°	X	${f A_{fi}}$	${f A_{fs}}$	Mp	Mn	M	w	$\mathbf{W}_{\mathbf{lim}}$					
1	0.06	0.000770	0.000770	6.53	-6.53	1.77	0.00000	0.00010					
2	0.45	0.000770	0.000770	6.53	-6.53	-0.35	0.00000	0.00010					
3	0.86	0.000770	0.000770	6.53	-6.53	-0.95	0.00000	0.00010					
4	1.27	0.000770	0.000770	6.53	-6.53	-0.35	0.00000	0.00010					
5	1.67	0.000770	0.000770	6.53	-6.53	1.77	0.00000	0.00010					

Mn

-6.53

-6.53

-6.53

-6.53

-6.53

Mn

-6.53

-6.53

-6.53

-6.53

-6.53

Mn

-6.53

 \mathbf{M}

-1.77

-0.16

0.56

-0.16

-1.77

M

5.83

-2.28

-4.93

-2.28

5.83

M

-5.83

w

0.00000

0.00000

0.00000

0.00000

0.00000

0.00000

0.00000

0.00000

0.00000

0.00000

0.00000

 \mathbf{w}_{lim}

0.00010

0.00010

0.00010

0.00010

0.00010

 \mathbf{w}_{lim}

0.00015

0.00015

0.00015

0.00015

0.00015

 $\mathbf{w}_{\mathbf{lim}}$

0.00015

<u>Verifica fessurazione traverso [Combinazione nº 17 - SLE (Quasi Permanente)]</u>

 A_{fs}

0.000770

0.000770

0.000770

0.000770

0.000770

0.000770

0.000770

0.000770

0.000770

0.000770

0.000770

Verifica fessurazione traverso [Combinazione n° 18 - SLE (Frequente)]

<u>Verifica fessurazione fondazione [Combinazione nº 18 - SLE (Frequente)]</u>

 $\mathbf{A}_{\mathbf{f}\mathbf{s}}$

Mp

6.53

6.53

6.53

6.53

6.53

Mp

6.53

6.53

6.53

6.53

6.53

Mp

6.53

N°

1

2

3

4

5

N°

1

3

4

5

N°

 \mathbf{X}

0.06

0.45

0.86

1.27

1.67

 \mathbf{X}

0.06

0.45

0.86

1.27

1.67

 \mathbf{X}

0.06

 A_{fi}

0.000770

0.000770

0.000770

0.000770

0.000770

0.000770

0.000770

0.000770

0.000770

0.000770

0.000770

 $\mathbf{A}_{\mathbf{fi}}$

 $\underline{Verifica~fessurazione~fondazione~[Combinazione~n^{\circ}~21~-SLE~(Rara)]}$

ITINERARIO NAPOLI – BARI RADDOPPIO TRATTA CANCELLO-BENEVENTO II LOTTO FUNZIONALE FRASSO TELESINO – VITULANO 1° LOTTO FUNZIONALE FRASSO TELESINO – TELESE PROGETTO ESECUTIVO

Tor Ø1	nbini e p 500 al kr	onticelli idı n 18+277 -	raulici - IN02 - Relazione	2 - Tombino di calcolo	idraulico	COMMESSA IF26	LOTTO 12 E ZZ			DOCUMENTO IN0200 0001	REV.	FOGLIO 119 di 179
2	0.45	0.000770	0.000770	6.53	-6.53	1	1.74	0.00000	0.00015	0.00000	0.00	00
3	0.86	0.000770	0.000770	6.53	-6.53		4.62	0.00000	0.00015	0.00000	0.00	00
4	1.27	0.000770	0.000770	6.53	-6.53	1	1.74	0.00000	0.00015	0.00000	0.00	00
5	1.67	0.000770	0.000770	6.53	-6.53	-:	5.83	0.00000	0.00015	0.00000	0.00	00
<u>Verif</u>	ica fessur	azione fonda	nzione [Combi	inazione n° 19	- SLE (Frequ	<u>iente)]</u>						
N°	X	$\mathbf{A_{fi}}$	$\mathbf{A}_{\mathbf{fs}}$	Mp	Mn	ı	M	w	$\mathbf{w}_{\mathbf{lim}}$	$S_{\mathbf{m}}$	ε	sm
1	0.06	0.000770	0.000770	6.53	-6.53	-1	0.75	0.00000	0.00015	0.00000	0.00	00
2	0.45	0.000770	0.000770	6.53	-6.53		0.87	0.00000	0.00015	0.00000	0.00	00
3	0.86	0.000770	0.000770	6.53	-6.53	i .	1.51	0.00000	0.00015	0.00000	0.00	00
4	1.27	0.000770	0.000770	6.53	-6.53		0.79	0.00000	0.00015	0.00000	0.00	00
5	1.67	0.000770	0.000770	6.53	-6.53	-	0.70	0.00000	0.00015	0.00000	0.00	00
Verifica fessurazione traverso [Combinazione n° 19 - SLE (Frequente)]												
N°	X	${f A_{fi}}$	$\mathbf{A}_{\mathbf{f}\mathbf{s}}$	Mp	Mn	ı	M	w	$\mathbf{w}_{\mathrm{lim}}$	$\mathbf{S}_{\mathbf{m}}$	ε	sm
1	0.06	0.000770	0.000770	6.53	-6.53		0.75	0.00000	0.00015	0.00000	0.00	00
2	0.45	0.000770	0.000770	6.53	-6.53	-	1.34	0.00000	0.00015	0.00000	0.00	00
3	0.86	0.000770	0.000770	6.53	-6.53	-	1.96	0.00000	0.00015	0.00000	0.00	00
4	1.27	0.000770	0.000770	6.53	-6.53	-	1.34	0.00000	0.00015	0.00000	0.00	00
5	1.67	0.000770	0.000770	6.53	-6.53		0.70	0.00000	0.00015	0.00000	0.00	00
<u>Verif</u>	ïca fessur	azione fonda	azione [Combi	inazione n° 20	- SLE (Frequ	<u>iente)]</u>						
N°	X	$\mathbf{A_{fi}}$	$\mathbf{A}_{\mathbf{fs}}$	Mp	Mn	l	M	w	$\mathbf{w}_{\mathbf{lim}}$	$S_{\mathbf{m}}$	ε	sm
1	0.06	0.000770	0.000770	6.53	-6.53	i .	1.87	0.00000	0.00015	0.00000	0.00	00
2	0.45	0.000770	0.000770	6.53	-6.53	-	0.36	0.00000	0.00015	0.00000	0.00	00
3	0.86	0.000770	0.000770	6.53	-6.53	-	0.98	0.00000	0.00015	0.00000	0.00	00
4	1.27	0.000770	0.000770	6.53	-6.53	-	0.36	0.00000	0.00015	0.00000	0.00	00
5	1.67	0.000770	0.000770	6.53	-6.53	i .	1.87	0.00000	0.00015	0.00000	0.00	00
<u>Verif</u>	ica fessur	azione trave	rso [Combina	zione n° 20 - S	LE (Frequer	nte)]						
\mathbf{N}°	X	${f A_{fi}}$	$\mathbf{A}_{\mathbf{fs}}$	Mp	Mn	l	M	w	$\mathbf{w_{lim}}$	$S_{\mathbf{m}}$	ε	sm
1	0.06	0.000770	0.000770	6.53	-6.53	-	1.87	0.00000	0.00015	0.00000	0.00	00
2	0.45	0.000770	0.000770	6.53	-6.53	-	0.37	0.00000	0.00015	0.00000	0.00	00
3	0.86	0.000770	0.000770	6.53	-6.53		0.33	0.00000	0.00015	0.00000	0.00	00
4	1.27	0.000770	0.000770	6.53	-6.53	-1	0.37	0.00000	0.00015	0.00000	0.00	00
5	1.67	0.000770	0.000770	6.53	-6.53	-	1.87	0.00000	0.00015	0.00000	0.00	00

Tombini e ponticelli idraulici - IN02 - Tombino idraulico Ø1500 al km 18+277 - Relazione di calcolo IF26 12 E ZZ CL IN0200 0001 A 120 di 179

					ı	F26 12 E	ZZ CL	-	IN0200 0001	A 120 di 179
N°	X	${f A_{fi}}$	\mathbf{A}_{fs}	Mp	Mn	M	w	$\mathbf{w}_{\mathrm{lim}}$	S_{m}	$oldsymbol{arepsilon}_{ ext{sm}}$
1	0.06	0.000770	0.000770	6.53	-6.53	6.95	0.00004	0.10000	0.13406	0.019
2	0.45	0.000770	0.000770	6.53	-6.53	-2.77	0.00000	0.10000	0.00000	0.000
3	0.86	0.000770	0.000770	6.53	-6.53	-5.95	0.00000	0.10000	0.00000	0.000
4	1.27	0.000770	0.000770	6.53	-6.53	-2.77	0.00000	0.10000	0.00000	0.000
5	1.67	0.000770	0.000770	6.53	-6.53	6.95	0.00004	0.10000	0.13406	0.019
<u>Verif</u>	fica fessur	azione trave	rso [Combina	nzione n° 21 - SL	E (Rara)]					
N°	X	${f A_{fi}}$	\mathbf{A}_{fs}	Mp	Mn	M	w	$\mathbf{W}_{\mathbf{lim}}$	$\mathbf{s}_{\mathbf{m}}$	$oldsymbol{arepsilon}_{ ext{sm}}$
1	0.06	0.000770	0.000770	6.53	-6.53	-6.95	0.00005	0.10000	0.15907	0.019
2	0.45	0.000770	0.000770	6.53	-6.53	2.01	0.00000	0.10000	0.00000	0.000
3	0.86	0.000770	0.000770	6.53	-6.53	5.41	0.00000	0.10000	0.00000	0.000
4	1.27	0.000770	0.000770	6.53	-6.53	2.01	0.00000	0.10000	0.00000	0.000
5	1.67	0.000770	0.000770	6.53	-6.53	-6.95	0.00005	0.10000	0.15907	0.019
<u>Verif</u>	fica fessur	azione fonda	zione [Comb	inazione n° 22 -	SLE (Rara)]					
N°	X	${f A_{fi}}$	$\mathbf{A}_{\mathbf{fs}}$	Mp	Mn	M	w	$\mathbf{w}_{\mathrm{lim}}$	$\mathbf{S}_{\mathbf{m}}$	$oldsymbol{\epsilon}_{\mathrm{sm}}$
1	0.06	0.000770	0.000770	6.53	-6.53	-1.28	0.00000	0.10000	0.00000	0.000
2	0.45	0.000770	0.000770	6.53	-6.53	1.16	0.00000	0.10000	0.00000	0.000
3	0.86	0.000770	0.000770	6.53	-6.53	2.10	0.00000	0.10000	0.00000	0.000
4	1.27	0.000770	0.000770	6.53	-6.53	1.07	0.00000	0.10000	0.00000	0.000
5	1.67	0.000770	0.000770	6.53	-6.53	-1.22	0.00000	0.10000	0.00000	0.000
<u>Verif</u>	fica fessur	razione trave	rso [Combina	nzione n° 22 - SL	E (Rara)]					
\mathbf{N}°	X	$\mathbf{A_{fi}}$	$\mathbf{A}_{\mathbf{fs}}$	Mp	Mn	M	w	$\mathbf{W}_{\mathbf{lim}}$	$S_{\mathbf{m}}$	$oldsymbol{arepsilon}_{ ext{sm}}$
1	0.06	0.000770	0.000770	6.53	-6.53	1.28	0.00000	0.10000	0.00000	0.000
2	0.45	0.000770	0.000770	6.53	-6.53	-1.85	0.00000	0.10000	0.00000	0.000
3	0.86	0.000770	0.000770	6.53	-6.53	-2.81	0.00000	0.10000	0.00000	0.000
4	1.27	0.000770	0.000770	6.53	-6.53	-1.84	0.00000	0.10000	0.00000	0.000
5	1.67	0.000770	0.000770	6.53	-6.53	1.22	0.00000	0.10000	0.00000	0.000
<u>Verif</u>	fica fessur	azione fonda	zione [Comb	inazione n° 23 -	SLE (Rara)]					
\mathbf{N}°	X	$\mathbf{A_{fi}}$	$\mathbf{A}_{\mathbf{fs}}$	Mp	Mn	M	w	$\mathbf{w}_{\mathbf{lim}}$	$\mathbf{S}_{\mathbf{m}}$	$oldsymbol{arepsilon}_{ m sm}$
1	0.06	0.000770	0.000770	6.53	-6.53	6.33	0.00000	0.10000	0.00000	0.000
2	0.45	0.000770	0.000770	6.53	-6.53	-2.32	0.00000	0.10000	0.00000	0.000
3	0.86	0.000770	0.000770	6.53	-6.53	-5.06	0.00000	0.10000	0.00000	0.000
4	1.27	0.000770	0.000770	6.53	-6.53	-2.32	0.00000	0.10000	0.00000	0.000

5

1.67 0.000770 0.000770

ITINERARIO NAPOLI – BARI RADDOPPIO TRATTA CANCELLO-BENEVENTO II LOTTO FUNZIONALE FRASSO TELESINO – VITULANO 1° LOTTO FUNZIONALE FRASSO TELESINO – TELESE PROGETTO ESECUTIVO

CODIFICA

DOCUMENTO

REV.

FOGLIO

0.000

Tombini e ponticelli idraulici - IN02 - Tombino idraulico Ø1500 al km 18+277 – Relazione di calcolo

(31)		n 10 1 277	 Relazione 	di calcala							
Ø I.	ooo ai ki	11 10+277 -	- Nelazione	ui caicolo		IF26 12	E ZZ	CL	IN0200 0001	Α	121 di 179
5	1.67	0.000770	0.000770	6.53	-6.53	6.33	0.00000	0.10000	0.00000		0.000
Verif	fica fessur	azione trave	rso [Combina	nzione n° 23 - SLI	E (Rara)]						
N°	X	$\mathbf{A_{fi}}$	$\mathbf{A}_{\mathbf{fs}}$	Mp	Mn	M	w	$\mathbf{w}_{\mathrm{lim}}$	$S_{\mathbf{m}}$		$\mathbf{\epsilon}_{\mathrm{sm}}$
1	0.06	0.000770	0.000770	6.53	-6.53	-6.33	0.00000	0.10000	0.00000		0.000
2	0.45	0.000770	0.000770	6.53	-6.53	0.69	0.00000	0.10000	0.00000		0.000
3	0.86	0.000770	0.000770	6.53	-6.53	3.48	0.00000	0.10000	0.00000		0.000
4	1.27	0.000770	0.000770	6.53	-6.53	0.69	0.00000	0.10000	0.00000		0.000
5	1.67	0.000770	0.000770	6.53	-6.53	-6.33	0.00000	0.10000	0.00000		0.000
Verif	fica fessur	azione fonda	zione [Combi	inazione n° 24 - S	LE (Rara)]						
N°	X	${f A_{fi}}$	$\mathbf{A}_{\mathbf{f}\mathbf{s}}$	Mp	Mn	M	w	W_{lim}	$\mathbf{s}_{\mathbf{m}}$		$\boldsymbol{\mathcal{E}}_{\mathrm{sm}}$
1	0.06	0.000770	0.000770	6.53	-6.53	-0.65	0.00000	0.10000	0.00000		0.000
2	0.45	0.000770	0.000770	6.53	-6.53	0.86	0.00000	0.10000	0.00000		0.000
3	0.86	0.000770	0.000770	6.53	-6.53	1.49	0.00000	0.10000	0.00000		0.000
4	1.27	0.000770	0.000770	6.53	-6.53	0.78	0.00000	0.10000	0.00000		0.000
5	1.67	0.000770	0.000770	6.53	-6.53	-0.60	0.00000	0.10000	0.00000		0.000
Verif	fica fessur	azione trave	rso [Combina	nzione n° 24 - SLI	E (Rara)]						
N°	X	$\mathbf{A_{fi}}$	$\mathbf{A}_{\mathbf{fs}}$	Mp	Mn	M	w	$\mathbf{w}_{\mathrm{lim}}$	s_{m}		$\mathbf{\epsilon}_{\mathrm{sm}}$
1	0.06	0.000770	0.000770	6.53	-6.53	0.65	0.00000	0.10000	0.00000		0.000
2	0.45	0.000770	0.000770	6.53	-6.53	-1.55	0.00000	0.10000	0.00000		0.000
3	0.86	0.000770	0.000770	6.53	-6.53	-2.18	0.00000	0.10000	0.00000		0.000
4	1.27	0.000770	0.000770	6.53	-6.53	-1.55	0.00000	0.10000	0.00000		0.000

6.53

-6.53

0.60

0.00000

0.10000

0.00000

COMMESSA

LOTTO

Tombini e ponticelli idraulici - IN02 - Tombino idraulico Ø1500 al km 18+277 – Relazione di calcolo

COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
IF26	12 E ZZ	CL	IN0200 0001	Α	122 di 179

Inviluppo sollecitazioni nodali

Inviluppo so	ollecitazioni	fondazione
--------------	---------------	------------

X [m]	M_{min} [kNm]	M_{max} [kNm]	$V_{min}\left[kN\right]$	V_{max} [kN]	$N_{min}\left[kN\right]$	$N_{max}\left[kN\right]$
0.06	-9.80	5.99	-3.59	-0.77	16.04	82.76
0.45	-3.36	4.01	-18.78	13.42	12.99	48.80
0.86	-6.73	8.56	-0.86	1.10	12.17	52.68
1.27	-3.25	4.01	-14.74	19.46	13.56	51.63
1.67	-9.80	5.91	0.08	3.59	16.10	82.76

Inviluppo sollecitazioni traverso

X [m]	M_{min} [kNm]	M_{max} [kNm]	V_{min} [kN]	$V_{max}[kN]$	N_{min} [kN]	N_{max} [kN]
0.06	-9.80	5.99	-1.07	0.81	16.06	82.82
0.45	-3.81	3.09	-13.08	21.24	10.76	47.30
0.86	-7.19	7.96	0.21	1.17	8.63	47.69
1.27	-3.79	3.09	-18.89	14.79	10.90	48.29
1.67	-9.80	5.91	-0.81	1.69	16.13	82.82

Inviluppo pressioni terreno

Inviluppo pressioni sul terreno di fondazione

σ_{tmax} [kPa]	σ_{tmin} [kPa]	X [m]
114	19	0.06
108	23	0.45
105	25	0.86
108	24	1.27
114	20	1.67

Inviluppo verifiche stato limite ultimo (SLU)

Verifica sezioni fondazione (Inviluppo)

Base sezione B = 100 cmAltezza sezione H = 0.1100 m

CS	$\mathbf{A}_{\mathbf{fs}}$	$\mathbf{A_{fi}}$	X
2.67	0.000770	0.000770	0.06
5.15	0.000770	0.000770	0.45
2.80	0.000770	0.000770	0.86

Tombini e ponticelli idraulici - IN02 - Tombino idraulico Ø1500 al km 18+277 – Relazione di calcolo	COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
2 1500 al km 16+277 – Relazione di Calcolo	IF26	12 E ZZ	CL	IN0200 0001	Α	123 di 179

				IF20	12 E ZZ	CL	INU200 0001
1 27	0.000770	0.000770	5 17				
1.27	0.000770	0.000770	5.17				
1.67	0.000770	0.000770	2.67				
X	$\mathbf{V}_{\mathbf{Rd}}$		$\mathbf{V}_{\mathbf{R}\mathbf{s}\mathbf{d}}$			$\mathbf{V}_{\mathbf{Rcd}}$	\mathbf{A}_{sw}
0.06	48.25		0.00			0.00	0.000000
0.45	45.28		0.00			0.00	0.000000
0.86	44.11		0.00			0.00	0.000000
1.27	45.01		0.00			0.00	0.000000
1.67	48.25		0.00			0.00	0.000000
Verifica sezioni ti	raverso (Invilupp	<u>o)</u>					
Base sezione	B = 100 cm						
Altezza sezione	H = 0.1100 m						
X	$\mathbf{A_{fi}}$	${f A_{fs}}$	CS				
0.06	0.000770	0.000770	2.67				

X	$\mathbf{A_{fi}}$	$\mathbf{A}_{\mathbf{f}\mathbf{s}}$	CS
0.06	0.000770	0.000770	2.67
0.45	0.000770	0.000770	5.66
0.86	0.000770	0.000770	3.00
1.27	0.000770	0.000770	5.51
1.67	0.000770	0.000770	2.67
X	$ m V_{Rd}$		$\mathbf{V}_{\mathbf{R}\mathbf{s}\mathbf{d}}$

X	${ m V_{Rd}}$	$\mathbf{V}_{\mathbf{R}\mathbf{s}\mathbf{d}}$	${ m V}_{ m Rcd}$	\mathbf{A}_{sw}
0.06	48.25	0.00	0.00	0.000000
0.45	44.96	0.00	0.00	0.000000
0.86	43.70	0.00	0.00	0.000000
1.27	44.86	0.00	0.00	0.000000
1.67	48.25	0.00	0.00	0.000000

Tombini e ponticelli idraulici - IN02 - Tombino idraulico Ø1500 al km 18+277 – Relazione di calcolo

 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 IF26
 12 E ZZ
 CL
 IN0200 0001
 A
 124 di 179

Verifiche geotecniche

$Simbologia\ adottata$

IC Indice della combinazione

Nc, Nq, N_g Fattori di capacità portante

Nc, Nq, N_g Fattori di capacità portante corretti per effetto forma, inclinazione del carico, affondamento, etc.

qu Portanza ultima del terreno, espressa in [kPa]

 Q_U Portanza ultima del terreno, espressa in [kN]/m

Q_Y Carico verticale al piano di posa, espressa in [kN]/m

FS Fattore di sicurezza a carico limite

IC	Nc	Nq	Νγ	N'c	N'q	Ν'γ	qu	\mathbf{Q}_{U}	\mathbf{Q}_{Y}	FS
1	50.59	37.75	40.05	71.13	47.21	40.05	3305	5683.95	174.84	32.51
2	30.54	18.75	15.48	42.94	24.23	15.48	1609	2766.66	145.65	19.00
3	50.59	37.75	40.05	71.13	47.21	40.05	3305	5683.95	144.79	39.26
4	30.54	18.75	15.48	42.94	24.23	15.48	1609	2766.66	119.74	23.11
5	50.59	37.75	40.05	2.74	3.02	0.45	27	46.34	54.62	1.85

Tombini e ponticelli idraulici - IN02 - Tombino idraulico Ø1500 al km 18+277 – Relazione di calcolo

 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 IF26
 12 E ZZ
 CL
 IN0200 0001
 A
 125 di 179

14. ALLEGATO 2: TABULATI DI CALCOLO SOTTOVIA SCATOLARE SEZ B

Geometria scatolare

Descrizione:	Scatolare circolare	
Diametro esterno verticale	1.72	[m]
Diametro esterno orizzontale	1.72	[m]
Spessore	0.11	[m]

Caratteristiche strati terreno

Strato di ricoprimento		
Descrizione	Terreno di ricoprimento	
Spessore dello strato	4.80	[m]
Peso di volume	20.0000	[kN/mc]
Peso di volume saturo	20.0000	[kN/mc]
Angolo di attrito	38.00	[°]
Coesione	0	[kPa]
Strato di rinfianco		
Descrizione	Terreno di rinfianco	
Peso di volume	20.0000	[kN/mc]
Peso di volume saturo	20.0000	[kN/mc]
Angolo di attrito	38.00	[°]
Angolo di attrito terreno struttura	25.33	[°]
Coesione	0	[kPa]
Costante di Winkler	19000	[kPa/m]
Strato di base		
Descrizione	Terreno di base bc2	
Peso di volume	20.0000	[kN/mc]
Peso di volume saturo	20.0000	[kN/mc]
Angolo di attrito	36.00	[°]
Angolo di attrito terreno struttura	24.00	[°]

Tombini e ponticelli idraulici - IN02 - Tombino idraulico Ø1500 al km 18+277 – Relazione di calcolo

COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
IF26	12 E ZZ	CL	IN0200 0001	Α	126 di 179

Coesione	0	[kPa]
Costante di Winkler	19000	[kPa/m]
Tensione limite	1000	[kPa]

Caratteristiche materiali utilizzati

Materiale calcestruzzo

R _{ck} calcestruzzo	40000	[kPa]
Peso specifico calcestruzzo	24.5170	[kN/mc]
Modulo elastico E	33149080	[kPa]
Tensione di snervamento acciaio	450000	[kPa]
Coeff. omogeneizzazione cls teso/compresso (n')	0.50	
Coeff. omogeneizzazione acciaio/cls (n)	15.00	
Coefficiente dilatazione termica	0.0000120	

Condizioni di carico

Convenzioni adottate

Origine in corrispondenza dello spigolo inferiore sinistro della struttura

Carichi verticali positivi se diretti verso il basso

Carichi orizzontali positivi se diretti verso destra

Coppie concentrate positive se antiorarie

Ascisse X (espresse in m) positive verso destra

Ordinate Y (espresse in m) positive verso l'alto

Carichi concentrati espressi in kN

Coppie concentrate espressi in kNm

Carichi distribuiti espressi in kN/m

Simbologia adottata e unità di misura

Forze concentrate

X ascissa del punto di applicazione dei carichi verticali concentrati

Y ordinata del punto di applicazione dei carichi orizzontali concentrati

Fy componente Y del carico concentrato

F_x componente X del carico concentrato

M momento

Forze distribuite

Tombini e ponticelli idraulici - IN02 - Tombino idraulico Ø1500 al km 18+277 – Relazione di calcolo

 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 IF26
 12 E ZZ
 CL
 IN0200 0001
 A
 127 di 179

X_i, X_f	ascisse del punto iniziale e finale per carichi distribuiti verticali
Yi, Yf	ordinate del punto iniziale e finale per carichi distribuiti orizzontali
V_{ni}	componente normale del carico distribuito nel punto iniziale
$V_{\rm nf}$	componente normale del carico distribuito nel punto finale
V_{ti}	componente tangenziale del carico distribuito nel punto iniziale
$V_{\rm tf}$	componente tangenziale del carico distribuito nel punto finale
D _{te}	variazione termica lembo esterno espressa in gradi centigradi
Dri	variazione termica lembo interno espressa in gradi centigradi

Condizione di carico n°1 (Peso Proprio)

Condizione di carico n°2 (Spinta terreno sinistra)

Condizione di carico n°3 (Spinta terreno destra)

Condizione di carico n°4 (Sisma da sinistra)

Condizione di carico n°5 (Sisma da destra)

Condizione di carico nº 7 (Qcentrale)

Distr	Terreno	$X_i = -2.45$	$X_f = 3.95$	$V_{ni} = 31.80$	$V_{nf} = 31.80$	
Distr	Terreno	$X_i = -7.45$	$X_{f} = -2.45$	$V_{ni}\!\!=16.30$	$V_{nf}\!\!=16.30$	
Distr	Terreno	$X_i = 3.95$	$X_f = 8.95$	$V_{ni}\!\!=16.30$	$V_{nf}\!\!=16.30$	
Distr	Traverso	$X_i = 0.00$	$X_f = 1.72$	$V_{\text{ni}} \!\!= 0.00$	$V_{\text{nf}}\!\!=0.00$	$V_{ti}\!\!=7.80\ V_{tf}\!\!=7.80$
Condizion	e di carico nº 8 (Qla	terale)				
Distr	Terreno	$X_i = -10.40$	$X_f = -6.40$	$V_{ni}\!\!=16.30$	$V_{\text{nf}}\!\!=16.30$	
Distr	Terreno	$X_i = -6.40$	$X_f\!\!=0.00$	$V_{ni}\!\!=31.80$	$V_{\text{nf}}\!\!=31.80$	
Distr	Traverso	$X_i = 0.00$	$X_f = 1.72$	$V_{ni}\!\!=0.00$	$V_{nf}\!\!=0.00$	$V_{ti} = 7.80 \ V_{tf} = 7.80$
Condizion	e di carico nº 9 (TEI	RMICO)				
Term	Traverso	$D_{te} = -2.50$	$D_{ti} = 2.50$			
Condizion	e di carico nº 10 (RI	TIRO)				
Term	Traverso	$D_{te} = -10.00$	$D_{ti} = -10.00$			

Impostazioni di progetto

Verifica materiali:

Stato Limite Ultimo

Coefficiente di sicurezza calcestruzzo γ_c

1.50

Fattore riduzione da resistenza cubica a cilindrica

0.83

Tombini e ponticelli idraulici - IN02 - Tombino idraulico Ø1500 al km 18+277 – Relazione di calcolo

COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
IF26	12 E ZZ	CL	IN0200 0001	Α	128 di 179

Fattore di riduzione per carichi di lungo periodo 0.85

Coefficiente di sicurezza acciaio 1.15

Coefficiente di sicurezza per la sezione 1.00

Verifica Taglio - Metodo dell'inclinazione variabile del traliccio

 $V_{Rd}\!\!=\!\![0.18^*k^*(100.0^*\rho_l^*fck)^{1/3}\!/\!\gamma_c\!\!+\!\!0.15^*\sigma_{cp}]^*bw^*d\!\!>\!\!(vmin+0.15^*\sigma_{cp})^*b_w^*d$

 $V_{Rsd}=0.9*d*A_{sw}/s*fyd*(ctg\alpha+ctg\theta)*sin\alpha$

 $V_{Rcd}\!\!=\!\!0.9*d*b_w*\alpha_c*fcd'*(ctg(\theta)\!\!+\!\!ctg(\alpha)\!/(1.0\!\!+\!\!ctg\theta^2)$

con:

d altezza utile sezione [mm]

 $b_w \hspace{1.5cm} larghezza \hspace{1mm} minima \hspace{1mm} sezione \hspace{1mm} [mm]$

 $\sigma_{cp} \hspace{1cm} tensione \ media \ di \ compressione \ [N/mmq]$

 ρ_1 rapporto geometrico di armatura

 $A_{sw} \hspace{1.5cm} area \hspace{0.1cm} armatuta \hspace{0.1cm} trasversale \hspace{0.1cm} [mmq]$

interasse tra due armature trasversali consecutive [mm]

 α_c coefficiente maggiorativo, funzione di fcd e σ_{cp}

fcd'=0.5*fcd

 $k=1+(200/d)^{1/2}$

 $vmin=0.035*k^{3/2}*fck^{1/2}$

Stato Limite di Esercizio

Criteri di scelta per verifiche tensioni di esercizio:

Ambiente moderatamente aggressivo

Limite tensioni di compressione nel calcestruzzo (comb. rare) $0.60 \, f_{ck}$

Limite tensioni di compressione nel calcestruzzo (comb. quasi perm.) $0.45 f_{ck}$

Limite tensioni di trazione nell'acciaio (comb. rare) $0.80 \, f_{yk}$

Criteri verifiche a fessurazione:

Armatura poco sensibile

Apertura limite fessure espresse in [m]

Apertura limite fessure w1=0.00010 w2=0.00015 w3=0.00020

<u>Verifiche secondo</u>:

Norme Tecniche 2008 - Approccio 1

Tombini e ponticelli idraulici - IN02 - Tombino idraulico Ø1500 al km 18+277 – Relazione di calcolo

 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 IF26
 12 E ZZ
 CL
 IN0200 0001
 A
 129 di 179

Copriferro sezioni 0.0400 [m]

Tombini e ponticelli idraulici - IN02 - Tombino idraulico Ø1500 al km 18+277 – Relazione di calcolo

 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 IF26
 12 E ZZ
 CL
 IN0200 0001
 A
 130 di 179

Descrizione combinazioni di carico

Simbologia adottata

 γ Coefficiente di partecipazione della condizione

 Ψ Coefficiente di combinazione della condizione

C Coefficiente totale di partecipazione della condizione

Norme Tecniche 2008

Simbologia adottata

 $\gamma_{G2sfav} \qquad \quad Coefficiente \ parziale \ sfavorevole \ sulle \ azioni \ permanenti \ non \ strutturali$

γ_{tanφ'} Coefficiente parziale di riduzione dell'angolo di attrito drenato

γc Coefficiente parziale di riduzione della coesione drenata

Coefficienti di partecipazione combinazioni statiche

Coefficienti parziali per le azioni o per l'effetto delle azioni:

Carichi	Effetto		A1	A2
Permanenti	Favorevole	γGlfav	1.00	1.00
Permanenti	Sfavorevole	γG1sfav	1.35	1.00
Permanenti non strutturali	Favorevole	γ_{G2fav}	0.00	0.00
Permanenti non strutturali	Sfavorevole	γ_{G2sfav}	1.50	1.30
Variabili	Favorevole	γ_{Qifav}	0.00	0.00
Variabili	Sfavorevole	γQisfav	1.50	1.30
Variabili da traffico	Favorevole	γ_{Qfav}	0.00	0.00
Variabili da traffico	Sfavorevole	γQsfav	1.45	1.25
Termici	Favorevole	$\gamma_{\epsilon fav}$	0.00	0.00
Termici	Sfavorevole	$\gamma_{\epsilon s fav}$	1.20	1.20

Coefficienti parziali per i parametri geotecnici del terreno:

Parametri M1 M2

GRUPPO FERROVIE DELLO STATO ITALIANE		PROGETTO ESECUTIVO					
Tombini e ponticelli idraulici - IN02 Ø1500 al km 18+277 – Relazione c		COMMESSA IF26	LOTTO 12 E ZZ	CODIFICA CL	DOCUMENTO IN0200 0001	REV.	FOGLIO 131 di 179
Tangente dell'angolo di attrito		$\gamma_{tan\varphi'}$		1.00	1.25		
Coesione efficace		γ _{c'}		1.00	1.25		
Resistenza non drenata		$\gamma_{\rm cu}$		1.00	1.40		
Resistenza a compressione uniassiale		$\gamma_{\rm qu}$		1.00	1.60		
Peso dell'unità di volume		γ_{γ}		1.00	1.00		
Coefficienti di partecipazione combinazion	ni sismiche						
Coefficienti parziali per le azioni o per l'effet	tto delle azioni:						
Carichi	Effetto			A1	A2		
Permanenti	Favorevole	γ_{G1fav}		1.00	1.00		
Permanenti	Sfavorevole	γ_{G1sfav}		1.00	1.00		
Permanenti	Favorevole	γ_{G2fav}		0.00	0.00		
Permanenti	Sfavorevole	γG2sfav		1.00	1.00		
Variabili	Favorevole	γ_{Qifav}		0.00	0.00		
Variabili	Sfavorevole	γ_{Qisfav}		1.00	1.00		
Variabili da traffico	Favorevole	γ_{Qfav}		0.00	0.00		
Variabili da traffico	Sfavorevole	γ_{Qsfav}		1.00	1.00		
Termici	Favorevole	$\gamma_{\epsilon \rm fav}$		0.00	0.00		
Termici	Sfavorevole	γεsfav		1.00	1.00		
Coefficienti parziali per i parametri geotecnio	ci del terreno:						
Parametri				M1	M2		
Tangente dell'angolo di attrito		$\gamma_{tan\phi'}$		1.00	1.25		
Coesione efficace		γ _{c'}		1.00	1.25		
Resistenza non drenata		γси		1.00	1.40		
Resistenza a compressione uniassiale		$\gamma_{\rm qu}$		1.00	1.60		
Peso dell'unità di volume		γ_{γ}		1.00	1.00		
Combinazione nº 1 SLU (Caso A1-M1)							
	Effetto		γ	Ψ	C		

1.35

1.35

1.00

1.00

1.35

1.35

Sfavorevole

Sfavorevole

Peso Proprio

Spinta terreno sinistra

Tombini e ponticelli idraulici - IN Ø1500 al km 18+277 – Relazion		COMMESSA IF26	LOTTO 12 E ZZ	CODIFICA CL	DOCUMENTO IN0200 0001	REV.	FOGLIO 132 di 179
Spinta terreno destra	Sfavorevole		1.35	1.00	1.35		
Qcentrale	Sfavorevole		1.45	1.00	1.45		
TERMICO	Sfavorevole		1.20	0.60	0.72		
RITIRO	Sfavorevole		1.20	1.00	1.20		
Combinazione n° 2 SLU (Caso A2-M2)							
	Effetto		γ	Ψ	C		
Peso Proprio	Sfavorevole		1.00	1.00	1.00		
Spinta terreno sinistra	Sfavorevole		1.00	1.00	1.00		
Spinta terreno destra	Sfavorevole		1.00	1.00	1.00		
Qcentrale	Sfavorevole		1.25	1.00	1.25		
TERMICO	Sfavorevole		1.00	0.60	0.60		
RITIRO	Sfavorevole		1.00	1.00	1.00		
Combinazione n° 3 SLU (Caso A1-M1)							
	Effetto		γ	Ψ	C		
Peso Proprio	Sfavorevole		1.35	1.00	1.35		
Spinta terreno sinistra	Sfavorevole		1.35	1.00	1.35		
Spinta terreno destra	Sfavorevole		1.35	1.00	1.35		
Qcentrale	Sfavorevole		1.45	0.75	1.09		
TERMICO	Sfavorevole		1.20	1.00	1.20		
RITIRO	Sfavorevole		1.20	1.00	1.20		
Combinazione n° 4 SLU (Caso A2-M2)							
	Effetto		γ	Ψ	C		
Peso Proprio	Sfavorevole		1.00	1.00	1.00		
Spinta terreno sinistra	Sfavorevole		1.00	1.00	1.00		
Spinta terreno destra	Sfavorevole		1.00	1.00	1.00		
Qcentrale	Sfavorevole		1.25	0.75	0.94		
TERMICO	Sfavorevole		1.00	1.00	1.00		
RITIRO	Sfavorevole		1.00	1.00	1.00		

Spinta terreno destra

Qcentrale

Sfavorevole

Sfavorevole

ITINERARIO NAPOLI – BARI
RADDOPPIO TRATTA CANCELLO-BENEVENTO
II LOTTO FUNZIONALE FRASSO TELESINO – VITULANO
1° LOTTO FUNZIONALE FRASSO TELESINO – TELESE
PROGETTO ESECUTIVO

Tombini e ponticelli idraulici - IN02 - Tombino idraulico Ø1500 al km 18+277 – Relazione di calcolo		PROGETTO ESECUTIVO						
		COMMESSA IF26	LOTTO 12 E ZZ	CODIFICA	DOCUMENTO IN0200 0001	REV.	FOGLIO 133 di 179	
	Effetto		γ	Ψ	С			
Peso Proprio	Sfavorevole		1.35	1.00	1.35			
Spinta terreno sinistra	Sfavorevole		1.35	1.00	1.35			
Spinta terreno destra	Sfavorevole		1.35	1.00	1.35			
Qlaterale	Sfavorevole		1.45	1.00	1.45			
TERMICO	Sfavorevole		1.20	0.60	0.72			
RITIRO	Sfavorevole		1.20	1.00	1.20			
Combinazione n° 6 SLU (Caso A1-	-M1) - Sisma Vert. negativo							
	Effetto		γ	Ψ	C			
Peso Proprio	Sfavorevole		1.00	1.00	1.00			
Spinta terreno sinistra	Sfavorevole		1.00	1.00	1.00			
Spinta terreno destra	Sfavorevole		1.00	1.00	1.00			
Qcentrale	Sfavorevole		1.00	0.20	0.20			
TERMICO	Sfavorevole		1.00	0.50	0.50			
RITIRO	Sfavorevole		1.00	1.00	1.00			
Sisma da sinistra	Sfavorevole		1.00	1.00	1.00			
Combinazione n° 7 SLU (Caso A2-	<u>-M2)</u>							
	Effetto		γ	Ψ	C			
Peso Proprio	Sfavorevole		1.00	1.00	1.00			
Spinta terreno sinistra	Sfavorevole		1.00	1.00	1.00			
Spinta terreno destra	Sfavorevole		1.00	1.00	1.00			
Qlaterale	Sfavorevole		1.25	1.00	1.25			
TERMICO	Sfavorevole		1.00	0.60	0.60			
RITIRO	Sfavorevole		1.00	1.00	1.00			
Combinazione n° 8 SLU (Caso A2-	-M2) - Sisma Vert. negativo							
	Effetto		γ	Ψ	C			
Peso Proprio	Sfavorevole		1.00	1.00	1.00			
Spinta terreno sinistra	Sfavorevole		1.00	1.00	1.00			
	0.0		4.00	1.00	4.00			

1.00

1.00

1.00

0.20

1.00

0.20

Tombini e ponticelli idraulici - IN02 - Tombino idraulico Ø1500 al km 18+277 – Relazione di calcolo		COMMESSA IF26	LOTTO 12 E ZZ	CODIFICA CL	DOCUMENTO IN0200 0001	REV.	FOGLIO 134 di 179
TERMICO	Sfavorevole		1.00	0.50	0.50		
RITIRO	Sfavorevole		1.00	1.00	1.00		
Sisma da sinistra	Sfavorevole		1.00	1.00	1.00		
Combinazione nº 9 SLU (Ca	so A1-M1)						
	Effetto		γ	Ψ	C		
Peso Proprio	Sfavorevole		1.35	1.00	1.35		
Spinta terreno sinistra	Sfavorevole		1.35	1.00	1.35		
Spinta terreno destra	Sfavorevole		1.35	1.00	1.35		
Qlaterale	Sfavorevole		1.45	0.75	1.09		
TERMICO	Sfavorevole		1.20	1.00	1.20		
RITIRO	Sfavorevole		1.20	1.00	1.20		
Combinazione n° 10 SLU (C	'aso A1-M1) - Sisma Vert. negativo						
	Effetto		γ	Ψ	C		
Peso Proprio	Sfavorevole		1.00	1.00	1.00		
Spinta terreno sinistra	Sfavorevole		1.00	1.00	1.00		
Spinta terreno destra	Sfavorevole		1.00	1.00	1.00		
Qlaterale	Sfavorevole		1.00	0.20	0.20		
TERMICO	Sfavorevole		1.00	0.50	0.50		
RITIRO	Sfavorevole		1.00	1.00	1.00		
Sisma da sinistra	Sfavorevole		1.00	1.00	1.00		
Combinazione n° 11 SLU (C	aso A2-M2)						
	Effetto		γ	Ψ	C		
Peso Proprio	Sfavorevole		1.00	1.00	1.00		
Spinta terreno sinistra	Sfavorevole		1.00	1.00	1.00		
Spinta terreno destra	Sfavorevole		1.00	1.00	1.00		
Qlaterale	Sfavorevole		1.25	0.75	0.94		
TERMICO	Sfavorevole		1.00	1.00	1.00		
RITIRO	Sfavorevole		1.00	1.00	1.00		

Spinta terreno sinistra

Sfavorevole

ITINERARIO NAPOLI – BARI
RADDOPPIO TRATTA CANCELLO-BENEVENTO
II LOTTO FUNZIONALE FRASSO TELESINO – VITULANO
1° LOTTO FUNZIONALE FRASSO TELESINO – TELESE
PROGETTO ESECUTIVO

GRUPPO FERROVIE DELLO STATO ITALIA	PROGETTO ESECUTIVO						
Tombini e ponticelli idraulici - IN0 Ø1500 al km 18+277 – Relazione	2 - Tombino idraulico e di calcolo	COMMESSA IF26	LOTTO 12 E ZZ	CODIFICA CL	DOCUMENTO IN0200 0001	REV.	FOGLIO 135 di 179
	Effetto		γ	Ψ	C		
Peso Proprio	Sfavorevole		1.00	1.00	1.00		
Spinta terreno sinistra	Sfavorevole		1.00	1.00	1.00		
Spinta terreno destra	Sfavorevole		1.00	1.00	1.00		
Qlaterale	Sfavorevole		1.00	0.20	0.20		
TERMICO	Sfavorevole		1.00	0.50	0.50		
RITIRO	Sfavorevole		1.00	1.00	1.00		
Sisma da sinistra	Sfavorevole		1.00	1.00	1.00		
Combinazione n° 13 SLU (Caso A1-M1)	Sisma Vert. positivo						
	Effetto		γ	Ψ	C		
Peso Proprio	Sfavorevole		1.00	1.00	1.00		
Spinta terreno sinistra	Sfavorevole		1.00	1.00	1.00		
Spinta terreno destra	Sfavorevole		1.00	1.00	1.00		
Qcentrale	Sfavorevole		1.00	0.20	0.20		
TERMICO	Sfavorevole		1.00	0.50	0.50		
RITIRO	Sfavorevole		1.00	1.00	1.00		
Sisma da sinistra	Sfavorevole		1.00	1.00	1.00		
Combinazione n° 14 SLU (Caso A2-M2)	Sisma Vert. positivo						
	Effetto		γ	Ψ	C		
Peso Proprio	Sfavorevole		1.00	1.00	1.00		
Spinta terreno sinistra	Sfavorevole		1.00	1.00	1.00		
Spinta terreno destra	Sfavorevole		1.00	1.00	1.00		
Qcentrale	Sfavorevole		1.00	0.20	0.20		
TERMICO	Sfavorevole		1.00	0.50	0.50		
RITIRO	Sfavorevole		1.00	1.00	1.00		
Sisma da sinistra	Sfavorevole		1.00	1.00	1.00		
Combinazione n° 15 SLU (Caso A1-M1)	Sisma Vert. positivo						
	Effetto		γ	Ψ	C		
Peso Proprio	Sfavorevole		1.00	1.00	1.00		

1.00

1.00

1.00

-	' INIOC T 1 ' ' '						
Tombini e ponticelli idraulici - IN02 - Tombino idraulico Ø1500 al km 18+277 – Relazione di calcolo		COMMESSA IF26	LOTTO 12 E ZZ	CODIFICA CL	DOCUMENTO IN0200 0001	REV.	FOGLIO 136 di 179
Coint town 1	GC 1		1.00	1.00	1.00		
Spinta terreno destra	Sfavorevole		1.00	1.00	1.00		
Qlaterale	Sfavorevole		1.00	0.20	0.20		
TERMICO	Sfavorevole		1.00	0.50	0.50		
RITIRO	Sfavorevole		1.00	1.00	1.00		
Sisma da sinistra	Sfavorevole		1.00	1.00	1.00		
Combinazione nº 16 SLU (Caso A2	2-M2) - Sisma Vert. positivo						
	Effetto		γ	Ψ	c		
Peso Proprio	Sfavorevole		1.00	1.00	1.00		
Spinta terreno sinistra	Sfavorevole		1.00	1.00	1.00		
Spinta terreno destra	Sfavorevole		1.00	1.00	1.00		
Qlaterale	Sfavorevole		1.00	0.20	0.20		
TERMICO	Sfavorevole		1.00	0.50	0.50		
RITIRO	Sfavorevole		1.00	1.00	1.00		
Sisma da sinistra	Sfavorevole		1.00	1.00	1.00		
Combinazione n° 17 SLE (Quasi Pe	ermanente)						
Comonazione ii 17 SEE (Quasi 14	Effetto			Ψ	C		
Dogo Dromaio	Sfavorevole		γ 1.00	1.00	1.00		
Peso Proprio							
Spinta terreno sinistra	Sfavorevole		1.00	1.00	1.00		
Spinta terreno destra	Sfavorevole		1.00	1.00	1.00		
TERMICO	Sfavorevole		1.00	0.50	0.50		
RITIRO	Sfavorevole		1.00	1.00	1.00		
Combinazione n° 18 SLE (Frequen	te)						
	Effetto		γ	Ψ	C		
Peso Proprio	Sfavorevole		1.00	1.00	1.00		
Spinta terreno sinistra	Sfavorevole		1.00	1.00	1.00		
Spinta terreno destra	Sfavorevole		1.00	1.00	1.00		
Qcentrale	Sfavorevole		1.00	0.80	0.80		
TERMICO	Sfavorevole		1.00	0.50	0.50		
RITIRO	Sfavorevole		1.00	1.00	1.00		

TERMICO

ITINERARIO NAPOLI – BARI RADDOPPIO TRATTA CANCELLO-BENEVENTO II LOTTO FUNZIONALE FRASSO TELESINO – VITULANO 1° LOTTO FUNZIONALE FRASSO TELESINO – TELESE PROGETTO ESECUTIVO

Tombini e ponticelli idraulici - IN02 - Tombino idraulico Ø1500 al km 18+277 – Relazione di calcolo

COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
IF26	12 E ZZ	CI	IN0200 0001	Δ	137 di 179

Ø1500 al km 18+277 – Re	lazione di calcolo	IF26 12 I	E ZZ CL	IN0200 0001
Combinazione n° 19 SLE (Freque	ente)			
	Effetto	γ	Ψ	C
Peso Proprio	Sfavorevole	1.00	1.00	1.00
Spinta terreno sinistra	Sfavorevole	1.00	1.00	1.00
Spinta terreno destra	Sfavorevole	1.00	1.00	1.00
Qlaterale	Sfavorevole	1.00	0.80	0.80
TERMICO	Sfavorevole	1.00	0.50	0.50
RITIRO	Sfavorevole	1.00	1.00	1.00
Combinazione n° 20 SLE (Freque	ente)			
	Effetto	γ	Ψ	C
Peso Proprio	Sfavorevole	1.00	1.00	1.00
Spinta terreno sinistra	Sfavorevole	1.00	1.00	1.00
Spinta terreno destra	Sfavorevole	1.00	1.00	1.00
TERMICO	Sfavorevole	1.00	0.60	0.60
RITIRO	Sfavorevole	1.00	1.00	1.00
Combinazione n° 21 SLE (Rara)				
	Effetto	γ	Ψ	C
Peso Proprio	Sfavorevole	1.00	1.00	1.00
Spinta terreno sinistra	Sfavorevole	1.00	1.00	1.00
Spinta terreno destra	Sfavorevole	1.00	1.00	1.00
Qcentrale	Sfavorevole	1.00	1.00	1.00
TERMICO	Sfavorevole	1.00	0.60	0.60
RITIRO	Sfavorevole	1.00	1.00	1.00
Combinazione n° 22 SLE (Rara)				
	Effetto	γ	Ψ	C
Peso Proprio	Sfavorevole	1.00	1.00	1.00
Spinta terreno sinistra	Sfavorevole	1.00	1.00	1.00
Spinta terreno destra	Sfavorevole	1.00	1.00	1.00
Qlaterale	Sfavorevole	1.00	1.00	1.00
			_	

Sfavorevole

1.00

0.60

0.60

Tombini e ponticelli idraulici - IN02 - Tombino idraulico	
Ø1500 al km 18+277 – Relazione di calcolo	

COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
IF26	12 E ZZ	CL	IN0200 0001	Α	138 di 179

RITIRO	Sfavorevole	1.00	1.00	1.00	
Combinazione n° 23 SLE (Rara)					
	Effetto	γ	Ψ	C	
Peso Proprio	Sfavorevole	1.00	1.00	1.00	
Spinta terreno sinistra	Sfavorevole	1.00	1.00	1.00	
Spinta terreno destra	Sfavorevole	1.00	1.00	1.00	
TERMICO	Sfavorevole	1.00	1.00	1.00	
Qcentrale	Sfavorevole	1.00	0.80	0.80	
RITIRO	Sfavorevole	1.00	1.00	1.00	
Combinazione n° 24 SLE (Rara)					
	Effetto	γ	Ψ	C	
Peso Proprio	Sfavorevole	1.00	1.00	1.00	
Spinta terreno sinistra	Sfavorevole	1.00	1.00	1.00	
Spinta terreno destra	Sfavorevole	1.00	1.00	1.00	
RITIRO	Sfavorevole	1.00	1.00	1.00	
Qlaterale	Sfavorevole	1.00	0.80	0.80	
TERMICO	Sfavorevole	1.00	0.60	0.60	

Tombini e ponticelli idraulici - IN02 - Tombino idraulico Ø1500 al km 18+277 - Relazione di calcolo

CODIFICA FOGLIO COMMESSA LOTTO DOCUMENTO REV. IF26 12 E ZZ CL IN0200 0001 139 di 179

Analisi della spinta e verifiche

Simbologia adottata ed unità di misura

Origine in corrispondenza dello spigolo inferiore sinistro della struttura

Le forze orizzontali sono considerate positive se agenti verso destra

Le forze verticali sono considerate positive se agenti verso il basso

X ascisse (espresse in m) positive verso destra

ordinate (espresse in m) positive verso l'alto

M momento espresso in kNm

taglio espresso in kN

sforzo normale espresso in kN

их spostamento direzione X espresso in m

spostamento direzione Y espresso in m

pressione sul terreno espressa in kPa

Tipo di analisi

Teoria di Terzaghi Pressione in calotta

I carichi applicati sul terreno sono stati diffusi secondo ${\bf valore}~{\bf 0.00}$

Metodo di calcolo della portanza Hansen

Spinta sui piedritti a Riposo [combinazione 1]

a Riposo [combinazione 2]

a Riposo [combinazione 3]

a Riposo [combinazione 4]

a Riposo [combinazione 5]

a Riposo [combinazione 6]

a Riposo [combinazione 7]

a Riposo [combinazione 8]

a Riposo [combinazione 9]

a Riposo [combinazione 10]

a Riposo [combinazione 11]

a Riposo [combinazione 12] a Riposo [combinazione 13]

a Riposo [combinazione 14]

a Riposo [combinazione 15]

Tombini e ponticelli idraulici - IN02 - Tombino idraulico Ø1500 al km 18+277 – Relazione di calcolo

IF26	12 E ZZ	CL	IN0200 0001	Α	140 di 179	
COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO	

a Riposo [combinazione 16]
a Riposo [combinazione 17]
a Riposo [combinazione 18]
a Riposo [combinazione 19]
a Riposo [combinazione 20]
a Riposo [combinazione 21]
a Riposo [combinazione 22]
a Riposo [combinazione 23]
a Riposo [combinazione 24]

Sisma

Identificazione del sito

Latitudine 41.213973

Longitudine 14.693540

Comune Provincia Benevento

Regione Campania

Punti di interpolazione del reticolo 31431 - 31653 - 31654 - 31432

Tipo di opera

Tipo di costruzione Opera ordinaria

Vita nominale 75 anni

Classe d'uso III - Affollamenti significativi e industrie non pericolose

Vita di riferimento 113 anni

Combinazioni SLU

Accelerazione al suolo $a_g = 3.60 \text{ [m/s^2]}$

 $\begin{array}{c} \text{Coefficiente di amplificazione per tipo di sottosuolo (S)} & 1.18 \\ \\ \text{Coefficiente di amplificazione topografica (St)} & 1.00 \\ \\ \text{Coefficiente riduzione } (\beta_m) & 1.00 \\ \\ \text{Rapporto intensità sismica verticale/orizzontale} & 0.50 \\ \\ \end{array}$

Coefficiente di intensità sismica orizzontale (percento) $k_h = (a_g/g * \beta_m * St * Ss) = 43.42$

Coefficiente di intensità sismica verticale (percento) $k_v=0.50 * k_h=21.71$

Combinazioni SLE

 $Accelerazione \ al \ suolo \ a_g = \\ 0.00 \ [m/s^2]$

Tombini e ponticelli idraulici - IN02 - Tombino idraulico Ø1500 al km 18+277 – Relazione di calcolo

COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
IF26	12 E ZZ	CL	IN0200 0001	Α	141 di 179

Coefficiente di amplificazione per tipo di sottosuolo (S)	1.50
Coefficiente di amplificazione topografica (St)	1.00
Coefficiente riduzione (β_m)	0.18
Rapporto intensità sismica verticale/orizzontale	0.50
Coefficiente di intensità sismica orizzontale (percento)	$k_h\!\!=\!\!(a_g/g\!\!*\!\beta_m\!\!*\!St\!\!*\!Ss)=0.00$
Coefficiente di intensità sismica verticale (percento)	$k_v = 0.50 * k_h = 0.00$
Forma diagramma incremento sismico	Rettangolare
Spinta sismica	Wood

Angolo diffusione sovraccarico

0.00 [°]

Coefficienti di spinta

N° combinazione	Statico	Sismico
1	0.384	0.000
2	0.470	0.000
3	0.384	0.000
4	0.470	0.000
5	0.384	0.000
6	0.384	1.106
7	0.470	0.000
8	0.470	1.176
9	0.384	0.000
10	0.384	1.106
11	0.470	0.000
12	0.470	1.176
13	0.384	1.106
14	0.470	1.176
15	0.384	1.106
16	0.470	1.176
17	0.384	0.000
18	0.384	0.000
19	0.384	0.000
20	0.384	0.000
21	0.384	0.000

Tombini e ponticelli idraulici - IN02 - Tombino idraulico Ø1500 al km 18+277 – Relazione di calcolo

IF26	12 E ZZ	CODII IOA	IN0200 0001	IXE V.	142 di 179
COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO

22	0.384	0.000
23	0.384	0.000
24	0.384	0.000

<u>Discretizzazione strutturale</u>

Numero elementi fondazione 64

Numero elementi traverso 64

Numero molle fondazione 65

Tombini e ponticelli idraulici - IN02 - Tombino idraulico Ø1500 al km 18+277 – Relazione di calcolo

 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 IF26
 12 E ZZ
 CL
 IN0200 0001
 A
 143 di 179

Verifiche combinazioni SLU

Simbologia adottata ed unità di misura

 N° Indice sezione

X Ascissa/Ordinata sezione, espresso in m

M Momento flettente, espresso in kNm

V Taglio, espresso in kN

N Sforzo normale, espresso in kN

N_u Sforzo normale ultimo, espressa in kN

Mu Momento ultimo, espressa in kNm

A_{fi} Area armatura inferiore, espresse in mq

A_{fs} Area armatura superiore, espresse in mq

CS Coeff. di sicurezza sezione

 V_{Rd} Aliquota taglio assorbita dal calcestruzzo in elementi senza armature trasversali, espressa in kN

 V_{Rcd} Aliquota taglio assorbita dal calcestruzzo in elementi con armature trasversali, espressa in kN

 $V_{\it Rsd}$ Aliquota taglio assorbita armature trasversali, espressa in kN

Asw Area armature trasversali nella sezione, espressa in mq

$\underline{Verifica\ sezioni\ fondazione\ [Combinazione\ n^\circ\ 1\ -\ SLU\ (Caso\ A1-M1)]}$

Base sezione B = 100 cm

Altezza sezione H = 0.1100 m

Verifiche presso-flessione

N°	X	M	N	N_u	$\mathbf{M}_{\mathbf{u}}$	${f A_{fi}}$	$\mathbf{A}_{\mathbf{f}\mathbf{s}}$	CS
1	0.06	9.92 (9.92)	83.73	220.94	26.17	0.000770	0.000770	2.64
2	0.45	-4.07 (-5.27)	49.30	250.33	-26.75	0.000770	0.000770	5.08
3	0.86	-8.67 (-8.67)	39.80	109.95	-23.96	0.000770	0.000770	2.76
4	1.27	-4.07 (-5.31)	52.16	265.67	-27.05	0.000770	0.000770	5.09
5	1.67	9.92 (9.92)	83.73	220.94	26.17	0.000770	0.000770	2.64

\mathbf{A}_{sw}	$ m V_{Rcd}$	$\mathbf{V}_{\mathbf{R}\mathbf{s}\mathbf{d}}$	$\mathbf{V}_{\mathbf{Rd}}$	V	X	N°
0.000000	0.00	0.00	48.34	-3.28	0.06	1
0.000000	0.00	0.00	45.33	-19.03	0.45	2
0.000000	0.00	0.00	44.15	1.11	0.86	3
0.000000	0.00	0.00	45.05	19.72	1.27	4

Tombini e ponticelli idraulici - IN02 - Tombino idraulico Ø1500 al km 18+277 – Relazione di calcolo

COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
IF26	12 E ZZ	CL	IN0200 0001	Α	144 di 179

5 1.67 3.28 48.34 0.00 0.00 0.000000

<u>Verifica sezioni traverso [Combinazione nº 1 - SLU (Caso A1-M1)]</u>

Base sezione B = 100 cmAltezza sezione H = 0.1100 m

Verifiche presso-flessione

N°	X	M	N	N_{u}	$\mathbf{M}_{\mathbf{u}}$	$\mathbf{A_{fi}}$	$\mathbf{A}_{\mathbf{fs}}$	CS
1	0.06	-9.92 (-9.92)	83.79	221.04	-26.17	0.000770	0.000770	2.64
2	0.45	3.15 (4.50)	47.83	293.16	27.60	0.000770	0.000770	6.13
3	0.86	8.08 (8.08)	35.46	104.68	23.86	0.000770	0.000770	2.95
4	1.27	3.15 (4.35)	48.82	313.83	27.98	0.000770	0.000770	6.43
5	1.67	-9.92 (-9.92)	83.79	221.04	-26.17	0.000770	0.000770	2.64

Verifiche taglio

\mathbf{A}_{sw}	$\mathbf{V}_{\mathbf{Rcd}}$	$\mathbf{V}_{\mathbf{R}\mathbf{s}\mathbf{d}}$	$\mathbf{V}_{\mathbf{Rd}}$	V	X	\mathbf{N}°
0.000000	0.00	0.00	48.35	0.84	0.06	1
0.000000	0.00	0.00	45.01	21.51	0.45	2
0.000000	0.00	0.00	43.73	0.87	0.86	3
0.000000	0.00	0.00	44.91	-19.14	1.27	4
0.000000	0.00	0.00	48.35	-0.84	1.67	5

<u>Verifica sezioni fondazione [Combinazione nº 2 - SLU (Caso A2-M2)]</u>

Base sezione B = 100 cmAltezza sezione H = 0.1100 m

Verifiche presso-flessione

\mathbf{N}°	X	M	N	$N_{\rm u}$	$\mathbf{M}_{\mathbf{u}}$	$\mathbf{A_{fi}}$	$\mathbf{A}_{\mathbf{fs}}$	CS
1	0.06	7.35 (7.35)	73.14	269.99	27.14	0.000770	0.000770	3.69
2	0.45	-2.96 (-3.84)	47.95	359.72	-28.79	0.000770	0.000770	7.50
3	0.86	-6.31 (-6.31)	41.28	163.83	-25.03	0.000770	0.000770	3.97
4	1.27	-2.96 (-3.86)	50.30	379.78	-29.14	0.000770	0.000770	7.55
5	1.67	7.35 (7.35)	73.14	269.99	27.14	0.000770	0.000770	3.69

Tombini e ponticelli idraulici - IN02 - Tombino idraulico	
Ø1500 al km 18+277 – Relazione di calcolo	

COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
IF26	12 E ZZ	CL	IN0200 0001	Α	145 di 179

\mathbf{N}°	X	${f v}$	$\mathbf{V}_{\mathbf{Rd}}$	$\mathbf{V}_{\mathbf{Rsd}}$	$\mathbf{V}_{\mathbf{Rcd}}$	\mathbf{A}_{sw}
1	0.06	-2.89	47.33	0.00	0.00	0.000000
2	0.45	-13.93	45.15	0.00	0.00	0.000000
3	0.86	0.81	44.29	0.00	0.00	0.000000
4	1.27	14.28	44.92	0.00	0.00	0.000000
5	1.67	2.89	47.33	0.00	0.00	0.000000

$\underline{Verifica\ sezioni\ traverso\ [Combinazione\ n^{\circ}\ 2\ -\ SLU\ (Caso\ A2\text{-}M2)]}$

Base sezione B = 100 cm

Altezza sezione H = 0.1100 m

Verifiche presso-flessione

N°	X	M	N	N_{u}	$\mathbf{M}_{\mathbf{u}}$	$\mathbf{A_{fi}}$	$\mathbf{A_{fs}}$	CS
1	0.06	-7.35 (-7.36)	73.19	269.76	-27.14	0.000770	0.000770	3.69
2	0.45	2.19 (3.21)	46.59	437.52	30.16	0.000770	0.000770	9.39
3	0.86	5.85 (5.85)	37.34	159.29	24.94	0.000770	0.000770	4.27
4	1.27	2.19 (3.07)	47.33	470.28	30.47	0.000770	0.000770	9.94
5	1.67	-7.35 (-7.36)	73.19	269.76	-27.14	0.000770	0.000770	3.69

Verifiche taglio

\mathbf{A}_{sw}	$ m V_{Rcd}$	$\mathbf{V}_{\mathbf{R}\mathbf{s}\mathbf{d}}$	$ m V_{Rd}$	\mathbf{V}	X	N°
0.000000	0.00	0.00	47.33	0.70	0.06	1
0.000000	0.00	0.00	44.87	16.18	0.45	2
0.000000	0.00	0.00	43.91	0.92	0.86	3
0.000000	0.00	0.00	44.80	-13.87	1.27	4
0.000000	0.00	0.00	47.33	-0.70	1.67	5

$\underline{Verifica\ sezioni\ fondazione\ [Combinazione\ n^\circ\ 3\ -\ SLU\ (Caso\ A1-M1)]}$

Base sezione B = 100 cmAltezza sezione H = 0.1100 m

\mathbf{N}°	X	M	N	N_u	$\mathbf{M}_{\mathbf{u}}$	$\mathbf{A_{fi}}$	$\mathbf{A}_{\mathbf{fs}}$	CS
1	0.06	9.26 (9.26)	74.44	208.34	25.92	0.000770	0.000770	2.80
2	0.45	-3.58 (-4.65)	43.82	252.60	-26.80	0.000770	0.000770	5.77

					PROGETTO ESECUTIVO					
		icelli idraulici - IN0 8+277 – Relazione		idraulico	COMMESSA IF26	LOTTO 12 E ZZ	CODIFICA CL	DOCUMENTO IN0200 0001	REV.	FOGLIO 146 di 179
3	0.86	-7.69 (-7.69)	35.50	110).71	-23.98	0.000770	0.000770	3.12	
4	1.27	-3.58 (-4.69)	46.37	268	.12	-27.10	0.000770	0.000770	5.78	
5	1.67	9.26 (9.26)	74.44	208	.34	25.92	0.000770	0.000770	2.80	
Verifich	e taglio									
\mathbf{N}°	X	V	$\mathbf{V}_{\mathbf{Rd}}$	$\mathbf{V}_{\mathbf{R}\mathbf{s}\mathbf{d}}$		$\mathbf{V}_{\mathbf{Rcd}}$	\mathbf{A}_{sw}			
1	0.06	-3.78	47.45	0.00		0.00	0.000000			
2	0.45	-17.03	44.77	0.00		0.00	0.000000			
3	0.86	1.00	43.74	0.00		0.00	0.000000			
4	1.27	17.66	44.53	0.00		0.00	0.000000			
5	1.67	3.78	47.45	0.00		0.00	0.000000			

<u>Verifica sezioni traverso [Combinazione nº 3 - SLU (Caso A1-M1)]</u>

Base sezione B = 100 cmAltezza sezione H = 0.1100 m

Verifiche presso-flessione

\mathbf{N}°	X	M	N	N_u	$\mathbf{M_u}$	$\mathbf{A_{fi}}$	$\mathbf{A}_{\mathbf{f}\mathbf{s}}$	CS
1	0.06	-9.26 (-9.27)	74.53	208.45	-25.92	0.000770	0.000770	2.80
2	0.45	1.61 (2.77)	43.45	477.67	30.49	0.000770	0.000770	10.99
3	0.86	5.85 (5.85)	32.63	136.59	24.49	0.000770	0.000770	4.19
4	1.27	1.61 (2.64)	44.31	514.18	30.61	0.000770	0.000770	11.61
5	1.67	-9.26 (-9.27)	74.53	208.45	-25.92	0.000770	0.000770	2.80

Verifiche taglio

\mathbf{A}_{sw}	V_{Rcd}	V_{Rsd}	V_{Rd}	V	X	N°
0.000000	0.00	0.00	47.46	-0.12	0.06	1
0.000000	0.00	0.00	44.58	18.51	0.45	2
0.000000	0.00	0.00	43.46	0.80	0.86	3
0.000000	0.00	0.00	44.50	-16.35	1.27	4
0.000000	0.00	0.00	47.46	0.12	1.67	5

<u>Verifica sezioni fondazione [Combinazione n° 4 - SLU (Caso A2-M2)]</u>

Base sezione B = 100 cm

Tombini e ponticelli idraulici - IN02 - Tombino idraulico Ø1500 al km 18+277 – Relazione di calcolo

IF26	12 E ZZ	CL	IN0200 0001	Α	147 di 179	
COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO	

Altezza sezione	H = 0.1100 m

Verifiche presso-flessione

N°	X	M	N	N_{u}	$\mathbf{M}_{\mathbf{u}}$	$\mathbf{A_{fi}}$	$\mathbf{A}_{\mathbf{f}\mathbf{s}}$	CS
1	0.06	6.91 (6.91)	65.13	252.60	26.80	0.000770	0.000770	3.88
2	0.45	-2.60 (-3.38)	42.72	364.64	-28.88	0.000770	0.000770	8.54
3	0.86	-5.59 (-5.59)	36.91	165.56	-25.07	0.000770	0.000770	4.49
4	1.27	-2.60 (-3.40)	44.82	385.01	-29.23	0.000770	0.000770	8.59
5	1.67	6.91 (6.91)	65.13	252.60	26.80	0.000770	0.000770	3.88

Verifiche taglio

\mathbf{A}_{sw}	$V_{ m Rcd}$	$\mathbf{V}_{\mathbf{R}\mathbf{s}\mathbf{d}}$	$\mathbf{V}_{\mathbf{Rd}}$	V	X	N°
0.000000	0.00	0.00	46.56	-3.31	0.06	1
0.000000	0.00	0.00	44.63	-12.48	0.45	2
0.000000	0.00	0.00	43.87	0.73	0.86	3
0.000000	0.00	0.00	44.43	12.80	1.27	4
0.000000	0.00	0.00	46.56	3.31	1.67	5

<u>Verifica sezioni traverso [Combinazione nº 4 - SLU (Caso A2-M2)]</u>

Base sezione B = 100 cmAltezza sezione H = 0.1100 m

Verifiche presso-flessione

N°	X	M	N	N_{u}	$\mathbf{M}_{\mathbf{u}}$	$\mathbf{A_{fi}}$	$\mathbf{A}_{\mathbf{f}\mathbf{s}}$	CS
1	0.06	-6.91 (-6.92)	65.21	252.69	-26.80	0.000770	0.000770	3.87
2	0.45	0.96 (1.83)	42.29	720.15	31.20	0.000770	0.000770	17.03
3	0.86	4.09 (4.09)	34.19	218.28	26.11	0.000770	0.000770	6.38
4	1.27	0.96 (1.70)	42.93	791.23	31.35	0.000770	0.000770	18.43
5	1.67	-6.91 (-6.92)	65.21	252.69	-26.80	0.000770	0.000770	3.87

\mathbf{A}_{sw}	$\mathbf{V}_{\mathbf{Rcd}}$	$\mathbf{V}_{\mathbf{R}\mathbf{s}\mathbf{d}}$	$\mathbf{V}_{\mathbf{Rd}}$	V	X	N°
0.000000	0.00	0.00	46.57	-0.11	0.06	1
0.000000	0.00	0.00	44.45	13.89	0.45	2
0.000000	0.00	0.00	43.61	0.84	0.86	3

Tombini e ponticelli idraulici - IN02 - Tombino idraulico Ø1500 al km 18+277 – Relazione di calcolo

COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
IF26	12 E ZZ	CL	IN0200 0001	Α	148 di 179

4	1.27	-11.80	44.38	0.00	0.00	0.000000
5	1.67	0.11	46.57	0.00	0.00	0.000000

$\underline{Verifica\ sezioni\ fondazione\ [Combinazione\ n^{\circ}\ 5\ -SLU\ (Caso\ A1-M1)]}$

Base sezione B = 100 cm

Altezza sezione H = 0.1100 m

Verifiche presso-flessione

N°	X	M	N	$N_{\rm u}$	$\mathbf{M_u}$	$\mathbf{A_{fi}}$	$\mathbf{A}_{\mathbf{fs}}$	CS
1	0.06	2.52 (2.52)	46.55	569.16	30.80	0.000770	0.000770	12.23
2	0.45	-0.54 (-0.78)	40.99	1553.67	-29.63	0.000770	0.000770	37.90
3	0.86	-1.42 (-1.42)	40.04	885.39	-31.51	0.000770	0.000770	22.11
4	1.27	-0.58 (-0.81)	42.16	1543.16	-29.72	0.000770	0.000770	36.60
5	1.67	2.50 (2.52)	46.71	571.30	30.80	0.000770	0.000770	12.23

Verifiche taglio

$\mathbf{A}_{\mathbf{sw}}$	$\mathbf{V}_{\mathbf{Rcd}}$	${f V}_{f Rsd}$	$\mathbf{V}_{\mathbf{Rd}}$	\mathbf{V}	X	N°
0.000000	0.00	0.00	44.79	-2.11	0.06	1
0.000000	0.00	0.00	44.38	-3.83	0.45	2
0.000000	0.00	0.00	44.17	0.21	0.86	3
0.000000	0.00	0.00	44.28	3.66	1.27	4
0.000000	0.00	0.00	44.81	1.94	1.67	5

$\underline{Verifica\ sezioni\ traverso\ [Combinazione\ n^\circ\ 5\ -\ SLU\ (Caso\ A1\text{-}M1)]}$

Base sezione B = 100 cmAltezza sezione H = 0.1100 m

N°	X	M	N	N_u	$\mathbf{M}_{\mathbf{u}}$	$\mathbf{A_{fi}}$	$\mathbf{A}_{\mathbf{fs}}$	CS
1	0.06	-2.52 (-2.53)	46.60	567.04	-30.79	0.000770	0.000770	12.17
2	0.45	-0.30 (-0.61)	38.16	1726.57	-27.68	0.000770	0.000770	45.25
3	0.86	0.68 (0.68)	35.21	1535.23	29.80	0.000770	0.000770	43.61
4	1.27	-0.36 (-0.57)	38.34	1797.31	-26.66	0.000770	0.000770	46.88
5	1.67	-2.50 (-2.52)	46.77	571.28	-30.80	0.000770	0.000770	12.21

Tombini e ponticelli idraulici - IN02 - Tombino idraulico Ø1500 al km 18+277 – Relazione di calcolo

IF26	12 E ZZ	CL	IN0200 0001	Α	149 di 179
COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO

Verifiche taglio

\mathbf{A}_{sw}	$\mathbf{V}_{\mathbf{Rcd}}$	$\mathbf{V}_{\mathbf{R}\mathbf{s}\mathbf{d}}$	$\mathbf{V}_{\mathbf{Rd}}$	V	X	N°
0.000000	0.00	0.00	44.80	0.18	0.06	1
0.000000	0.00	0.00	44.01	4.97	0.45	2
0.000000	0.00	0.00	43.71	0.78	0.86	3
0.000000	0.00	0.00	44.02	-3.28	1.27	4
0.000000	0.00	0.00	44.81	0.37	1.67	5

$\underline{Verifica\ sezioni\ fondazione\ [Combinazione\ n^{\circ}\ 6\ -\ SLU\ (Caso\ A1-M1)\ -\ Sisma\ Vert.\ negativo]}$

Base sezione B = 100 cmAltezza sezione H = 0.1100 m

Verifiche presso-flessione

N°	X	M	N	$N_{\rm u}$	$\mathbf{M}_{\mathbf{u}}$	$\mathbf{A_{fi}}$	$\mathbf{A}_{\mathbf{f}\mathbf{s}}$	CS
1	0.06	-4.43 (-4.43)	38.88	231.22	-26.37	0.000770	0.000770	5.95
2	0.45	2.61 (3.25)	58.87	558.02	30.76	0.000770	0.000770	9.48
3	0.86	5.18 (5.18)	66.26	371.19	28.99	0.000770	0.000770	5.60
4	1.27	2.53 (3.24)	58.87	558.42	30.76	0.000770	0.000770	9.49
5	1.67	-4.38 (-4.41)	38.99	233.27	-26.41	0.000770	0.000770	5.98

Verifiche taglio

\mathbf{N}°	X	V	$\mathbf{V}_{\mathbf{Rd}}$	$\mathbf{V}_{\mathbf{R}\mathbf{s}\mathbf{d}}$	$\mathbf{V}_{\mathbf{Rcd}}$	\mathbf{A}_{sw}
1	0.06	-1.47	44.06	0.00	0.00	0.000000
2	0.45	10.00	46.00	0.00	0.00	0.000000
3	0.86	-0.62	46.67	0.00	0.00	0.000000
4	1.27	-11.24	46.03	0.00	0.00	0.000000
5	1.67	0.54	44.07	0.00	0.00	0.000000

$\underline{Verifica\ sezioni\ traverso\ [Combinazione\ n^{\circ}\ 6\ -\ SLU\ (Caso\ A1\text{-}M1)\ -\ Sisma\ Vert.\ negativo]}$

Base sezione B = 100 cmAltezza sezione H = 0.1100 m

\mathbf{N}°	X	M	N	N_u	$\mathbf{M}_{\mathbf{u}}$	$\mathbf{A_{fi}}$	$\mathbf{A}_{\mathbf{f}\mathbf{s}}$	CS
1	0.06	4.43 (4.43)	38.90	231.41	26.37	0.000770	0.000770	5.95

GRUFF	O FERROVI	E DELLO SIAIO IIALIA	MINE		PROGETTO ESECUTIVO					
		icelli idraulici - IN0 8+277 – Relazione		draulico	COMMESSA IF26	LOTTO 12 E ZZ	CODIFICA CL	DOCUMENTO IN0200 0001	REV.	FOGLIO 150 di 179
2	0.45	-3.07 (-3.66)	56.18	467	.00	-30.45	0.000770	0.000770	8.31	
3	0.86	-5.67 (-5.67)	62.28	305	.84	-27.84	0.000770	0.000770	4.91	
4	1.27	-3.08 (-3.82)	55.36	436	.32	-30.13	0.000770	0.000770	7.88	
5	1.67	4.38 (4.43)	39.02	232	.42	26.39	0.000770	0.000770	5.96	
Verifich	e taglio									
\mathbf{N}°	X	V	$\mathbf{V}_{\mathbf{Rd}}$	$\mathbf{V}_{\mathbf{R}\mathbf{s}\mathbf{d}}$		$\mathbf{V}_{\mathbf{Rcd}}$	\mathbf{A}_{sw}			
1	0.06	0.44	44.06	0.00		0.00	0.000000			
2	0.45	-9.39	45.66	0.00		0.00	0.000000			
3	0.86	1.48	46.29	0.00		0.00	0.000000			
4	1.27	11.84	45.78	0.00		0.00	0.000000			
5	1.67	0.81	44.07	0.00		0.00	0.000000			
Verifica Base sea		ndazione [Combinaziona B = 100 cm	one n° 7 - SLU (Caso A2-M	<u>2)]</u>					

Base sezione B = 100 cmAltezza sezione H = 0.1100 m

Verifiche presso-flessione

N°	X	M	N	N_u	$M_{\rm u}$	${f A_{fi}}$	$\mathbf{A}_{\mathbf{f}\mathbf{s}}$	CS
1	0.06	0.99 (0.99)	41.12	1288.45	31.17	0.000770	0.000770	31.33
2	0.45	0.08 (0.13)	40.80	2201.04	7.26	0.000770	0.000770	53.95
3	0.86	-0.07 (-0.07)	41.48	2227.45	-3.89	0.000770	0.000770	53.69
4	1.27	0.03 (0.06)	41.56	2234.19	3.03	0.000770	0.000770	53.76
5	1.67	0.99 (0.99)	41.19	1290.54	31.16	0.000770	0.000770	31.33

$\mathbf{A}_{\mathbf{sw}}$	$ m V_{Rcd}$	$\mathbf{V}_{\mathbf{R}\mathbf{s}\mathbf{d}}$	${f V}_{ m Rd}$	V	X	N°
0.000000	0.00	0.00	44.27	-1.89	0.06	1
0.000000	0.00	0.00	44.34	-0.86	0.45	2
0.000000	0.00	0.00	44.31	0.00	0.86	3
0.000000	0.00	0.00	44.25	0.48	1.27	4
0.000000	0.00	0.00	44.28	1.68	1.67	5

Tombini e ponticelli idraulici - IN02 - Tombino idraulico Ø1500 al km 18+277 – Relazione di calcolo

 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 IF26
 12 E ZZ
 CL
 IN0200 0001
 A
 151 di 179

Base sezione B = 100 cm

Altezza sezione H = 0.1100 m

Verifiche presso-flessione

N°	X	M	N	N_{u}	$\mathbf{M}_{\mathbf{u}}$	$\mathbf{A_{fi}}$	$\mathbf{A}_{\mathbf{fs}}$	CS
1	0.06	-0.99 (-0.99)	41.16	1289.60	-31.17	0.000770	0.000770	31.33
2	0.45	-0.78 (-0.90)	38.28	1318.87	-31.07	0.000770	0.000770	34.46
3	0.86	-0.52 (-0.57)	37.12	1760.67	-27.19	0.000770	0.000770	47.43
4	1.27	-0.81 (-0.83)	38.18	1415.84	-30.59	0.000770	0.000770	37.08
5	1.67	-0.99 (-1.02)	41.25	1264.24	-31.25	0.000770	0.000770	30.65

Verifiche taglio

\mathbf{A}_{sw}	$\mathbf{V}_{\mathbf{Rcd}}$	$\mathbf{V}_{\mathbf{Rsd}}$	$\mathbf{V}_{\mathbf{Rd}}$	v	X	N°
0.000000	0.00	0.00	44.28	0.13	0.06	1
0.000000	0.00	0.00	44.01	1.94	0.45	2
0.000000	0.00	0.00	43.89	0.88	0.86	3
0.000000	0.00	0.00	44.02	-0.24	1.27	4
0.000000	0.00	0.00	44.28	0.39	1.67	5

$\underline{Verifica\ sezioni\ fondazione\ [Combinazione\ n^{\circ}\ 8\ -\ SLU\ (Caso\ A2-M2)\ -\ Sisma\ Vert.\ negativo]}$

Base sezione B = 100 cmAltezza sezione H = 0.1100 m

Verifiche presso-flessione

N°	X	\mathbf{M}	N	N_u	$\mathbf{M}_{\mathbf{u}}$	$\mathbf{A_{fi}}$	$\mathbf{A}_{\mathbf{f}\mathbf{s}}$	CS
1	0.06	-5.72 (-5.72)	45.53	205.97	-25.87	0.000770	0.000770	4.52
2	0.45	3.23 (4.03)	70.66	538.50	30.69	0.000770	0.000770	7.62
3	0.86	6.47 (6.47)	79.87	354.23	28.69	0.000770	0.000770	4.44
4	1.27	3.12 (4.02)	70.48	537.97	30.69	0.000770	0.000770	7.63
5	1.67	-5.64 (-5.68)	45.57	207.91	-25.91	0.000770	0.000770	4.56

\mathbf{A}_{sw}	V_{Rcd}	V_{Rsd}	V_{Rd}	V	X	N°
0.000000	0.00	0.00	44.69	-1.73	0.06	1
0.000000	0.00	0.00	47.13	12.70	0.45	2

Tombini e ponticelli idraulici - IN02 - Tombino idraulico
Ø1500 al km 18+277 – Relazione di calcolo

COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
IF26	12 E ZZ	CL	IN0200 0001	Α	152 di 179

3	0.86	-0.82	47.97	0.00	0.00	0.000000
4	1.27	-14.24	47.15	0.00	0.00	0.000000
5	1.67	0.67	44.70	0.00	0.00	0.000000

$\underline{Verifica\ sezioni\ traverso\ [Combinazione\ n^\circ\ 8\ -\ SLU\ (Caso\ A2\text{-}M2)\ -\ Sisma\ Vert.\ negativo]}$

Base sezione B = 100 cmAltezza sezione H = 0.1100 m

Verifiche presso-flessione

N°	X	M	N	N_u	$\mathbf{M_u}$	$\mathbf{A_{fi}}$	$\mathbf{A}_{\mathbf{fs}}$	CS
1	0.06	5.72 (5.72)	45.56	206.13	25.87	0.000770	0.000770	4.52
2	0.45	-3.69 (-4.43)	67.43	463.34	-30.44	0.000770	0.000770	6.87
3	0.86	-6.92 (-6.92)	74.98	300.65	-27.75	0.000770	0.000770	4.01
4	1.27	-3.67 (-4.60)	66.29	433.96	-30.09	0.000770	0.000770	6.55
5	1.67	5.64 (5.69)	45.61	207.55	25.90	0.000770	0.000770	4.55

Verifiche taglio

\mathbf{N}°	X	V	$\mathbf{V}_{\mathbf{Rd}}$	$\mathbf{V}_{\mathbf{R}\mathbf{s}\mathbf{d}}$	$\mathbf{V}_{\mathbf{Rcd}}$	\mathbf{A}_{sw}
1	0.06	0.50	44.70	0.00	0.00	0.000000
2	0.45	-11.81	46.72	0.00	0.00	0.000000
3	0.86	1.83	47.50	0.00	0.00	0.000000
4	1.27	14.78	46.85	0.00	0.00	0.000000
5	1.67	0.88	44.70	0.00	0.00	0.000000

<u>Verifica sezioni fondazione [Combinazione nº 9 - SLU (Caso A1-M1)]</u>

Base sezione B = 100 cmAltezza sezione H = 0.1100 m

CS	$\mathbf{A}_{\mathbf{f}\mathbf{s}}$	$\mathbf{A_{fi}}$	$\mathbf{M}_{\mathbf{u}}$	N_{u}	N	M	X	\mathbf{N}°
7.79	0.000770	0.000770	28.84	362.42	46.51	3.70 (3.70)	0.06	1
24.84	0.000770	0.000770	-31.55	933.84	37.59	-0.92 (-1.27)	0.45	2
13.64	0.000770	0.000770	-30.52	486.89	35.69	-2.24 (-2.24)	0.86	3
24.25	0.000770	0.000770	-31.56	944.50	38.96	-0.95 (-1.30)	1.27	4
7.80	0.000770	0.000770	28.87	364.52	46.72	3.67 (3.70)	1.67	5

Tombini e ponticelli idraulici - IN02 - Tombino idraulico Ø1500 al km 18+277 – Relazione di calcolo

 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 IF26
 12 E ZZ
 CL
 IN0200 0001
 A
 153 di 179

V_{et}	.: c: .	.1	4 1	: -

\mathbf{N}°	X	\mathbf{v}	$\mathbf{V}_{\mathbf{Rd}}$	$\mathbf{V}_{\mathbf{R}\mathbf{s}\mathbf{d}}$	$\mathbf{V}_{\mathbf{Rcd}}$	$\mathbf{A}_{\mathbf{sw}}$
1	0.06	-2.88	44.79	0.00	0.00	0.000000
2	0.45	-5.62	44.07	0.00	0.00	0.000000
3	0.86	0.32	43.76	0.00	0.00	0.000000
4	1.27	5.59	43.95	0.00	0.00	0.000000
5	1.67	2.83	44.81	0.00	0.00	0.000000

<u>Verifica sezioni traverso [Combinazione nº 9 - SLU (Caso A1-M1)]</u>

Base sezione B = 100 cmAltezza sezione H = 0.1100 m

Verifiche presso-flessione

CS	$\mathbf{A}_{\mathbf{fs}}$	$\mathbf{A_{fi}}$	$\mathbf{M}_{\mathbf{u}}$	N_u	N	M	X	N°
7.70	0.000770	0.000770	-28.77	358.60	46.59	-3.70 (-3.74)	0.06	1
23.24	0.000770	0.000770	-31.43	840.16	36.16	-0.97 (-1.35)	0.45	2
65.05	0.000770	0.000770	19.02	2108.80	32.42	0.29 (0.29)	0.86	3
23.62	0.000770	0.000770	-31.47	862.07	36.51	-1.05 (-1.33)	1.27	4
7.72	0.000770	0.000770	-28.82	361.23	46.81	-3.67 (-3.73)	1.67	5

Verifiche taglio

\mathbf{N}°	X	V	$\mathbf{V}_{\mathbf{Rd}}$	$\mathbf{V}_{\mathbf{R}\mathbf{s}\mathbf{d}}$	$\mathbf{V}_{\mathbf{Rcd}}$	\mathbf{A}_{sw}
1	0.06	-0.60	44.80	0.00	0.00	0.000000
2	0.45	6.07	43.82	0.00	0.00	0.000000
3	0.86	0.69	43.44	0.00	0.00	0.000000
4	1.27	-4.48	43.83	0.00	0.00	0.000000
5	1.67	1.09	44.82	0.00	0.00	0.000000

$\underline{Verifica\ sezioni\ fondazione\ [Combinazione\ n^\circ\ 10\ -\ SLU\ (Caso\ A1-M1)\ -\ Sisma\ Vert.\ negativo]}$

Base sezione B = 100 cmAltezza sezione H = 0.1100 m

Verifiche presso-flessione

 N° X M N N_{u} M_{u} A_{fi} A_{fs} CS

					PROGETTO	O ESECO	1100			
		icelli idraulici - IN0 8+277 – Relazione		idraulico	COMMESSA		CODIFICA		REV.	FOGLIO
					IF26	12 E ZZ	CL	IN0200 0001	Α	154 di 179
1	0.06	-5.44 (-5.44)	33.79	154	.22	-24.84	0.000770	0.000770	4.56	
2	0.45	3.10 (3.86)	57.73	455	.20	30.41	0.000770	0.000770	7.88	
3	0.86	6.16 (6.16)	66.29	298	.02	27.70	0.000770	0.000770	4.50	
4	1.27	3.00 (3.84)	57.40	454	.16	30.41	0.000770	0.000770	7.91	
5	1.67	-5.37 (-5.39)	33.85	156	.29	-24.88	0.000770	0.000770	4.62	
Verifiche	e taglio									
N°	X	v	$\mathbf{V}_{\mathbf{Rd}}$	$\mathbf{V}_{\mathbf{Rsd}}$		$\mathbf{V}_{\mathbf{Rcd}}$	\mathbf{A}_{sw}			
1	0.06	-1.31	43.57	0.00		0.00	0.000000			
2	0.45	12.08	45.87	0.00		0.00	0.000000			
3	0.86	-0.77	46.68	0.00		0.00	0.000000			
4	1.27	-13.43	45.92	0.00		0.00	0.000000			
5	1.67	0.34	43.58	0.00		0.00	0.000000			

$\underline{Verifica\ sezioni\ traverso\ [Combinazione\ n^\circ\ 10\ -\ SLU\ (Caso\ A1-M1)\ -\ Sisma\ Vert.\ negativo]}$

Base sezione B = 100 cmAltezza sezione H = 0.1100 m

Verifiche presso-flessione

\mathbf{N}°	X	M	N	N_u	$\mathbf{M}_{\mathbf{u}}$	$\mathbf{A_{fi}}$	$\mathbf{A}_{\mathbf{f}\mathbf{s}}$	CS
1	0.06	5.44 (5.44)	33.81	154.34	24.84	0.000770	0.000770	4.56
2	0.45	-3.55 (-4.28)	54.88	371.46	-28.99	0.000770	0.000770	6.77
3	0.86	-6.68 (-6.68)	62.25	249.17	-26.73	0.000770	0.000770	4.00
4	1.27	-3.54 (-4.42)	53.83	348.18	-28.59	0.000770	0.000770	6.47
5	1.67	5.37 (5.43)	33.88	155.21	24.86	0.000770	0.000770	4.58

\mathbf{A}_{sw}	$ m V_{Rcd}$	$ m V_{Rsd}$	$ m V_{Rd}$	V	X	N°
0.000000	0.00	0.00	43.58	0.35	0.06	1
0.000000	0.00	0.00	45.52	-11.64	0.45	2
0.000000	0.00	0.00	46.29	1.51	0.86	3
0.000000	0.00	0.00	45.65	14.02	1.27	4
0.000000	0.00	0.00	43.58	0.94	1.67	5

Tombini e ponticelli idraulici - IN02 - Tombino idraulico Ø1500 al km 18+277 – Relazione di calcolo

COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO	
IF26	12 E ZZ	CL	IN0200 0001	Α	155 di 179	

<u>Verifica sezioni fondazione [Combinazione nº 11 - SLU (Caso A2-M2)]</u>

Base sezione B = 100 cmAltezza sezione H = 0.1100 m

Verifiche presso-flessione

N°	X	M	N	N_u	$\mathbf{M}_{\mathbf{u}}$	$\mathbf{A}_{\mathbf{fi}}$	$\mathbf{A}_{\mathbf{f}\mathbf{s}}$	CS
1	0.06	2.13 (2.13)	41.08	596.77	30.89	0.000770	0.000770	14.53
2	0.45	-0.31 (-0.47)	37.36	1910.79	-24.27	0.000770	0.000770	51.14
3	0.86	-0.90 (-0.90)	37.07	1282.85	-31.19	0.000770	0.000770	34.60
4	1.27	-0.35 (-0.50)	38.32	1885.45	-24.82	0.000770	0.000770	49.20
5	1.67	2.12 (2.13)	41.20	598.66	30.89	0.000770	0.000770	14.53

Verifiche taglio

N°	X	V	$\mathbf{V}_{\mathbf{Rd}}$	$\mathbf{V}_{\mathbf{R}\mathbf{s}\mathbf{d}}$	$\mathbf{V}_{\mathbf{Rcd}}$	\mathbf{A}_{sw}
1	0.06	-2.54	44.27	0.00	0.00	0.000000
2	0.45	-2.66	44.02	0.00	0.00	0.000000
3	0.86	0.11	43.89	0.00	0.00	0.000000
4	1.27	2.42	43.92	0.00	0.00	0.000000
5	1.67	2.44	44.28	0.00	0.00	0.000000

$\underline{Verifica\ sezioni\ traverso\ [Combinazione\ n^{\circ}\ 11\ -\ SLU\ (Caso\ A2\text{-}M2)]}$

Base sezione B = 100 cmAltezza sezione H = 0.1100 m

Verifiche presso-flessione

N°	X	M	N	N_{u}	$\mathbf{M}_{\mathbf{u}}$	$\mathbf{A_{fi}}$	$\mathbf{A}_{\mathbf{f}\mathbf{s}}$	CS
1	0.06	-2.13 (-2.16)	41.15	588.24	-30.86	0.000770	0.000770	14.29
2	0.45	-1.27 (-1.47)	36.03	769.35	-31.31	0.000770	0.000770	21.36
3	0.86	-0.69 (-0.74)	34.02	1412.02	-30.62	0.000770	0.000770	41.51
4	1.27	-1.31 (-1.41)	36.10	801.40	-31.37	0.000770	0.000770	22.20
5	1.67	-2.12 (-2.18)	41.28	584.00	-30.85	0.000770	0.000770	14.15

$\mathbf{A}_{\mathbf{sw}}$	$\mathbf{V}_{\mathbf{Rcd}}$	V_{Rsd}	$\mathbf{V}_{\mathbf{Rd}}$	\mathbf{V}	X	N°
0.000000	0.00	0.00	44.28	-0.52	0.06	1

Tombini e ponticelli idraulici - IN02 - Tombino idraulico
Ø1500 al km 18+277 – Relazione di calcolo

COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
IF26	12 E ZZ	CL	IN0200 0001	Α	156 di 179

2	0.45	3.19	43.80	0.00	0.00	0.000000
3	0.86	0.78	43.59	0.00	0.00	0.000000
4	1.27	-1.58	43.81	0.00	0.00	0.000000
5	1.67	0.98	44.29	0.00	0.00	0.000000

$\underline{Verifica\ sezioni\ fondazione\ [Combinazione\ n^\circ\ 12\ -\ SLU\ (Caso\ A2-M2)\ -\ Sisma\ Vert.\ negativo]}$

Base sezione B = 100 cmAltezza sezione H = 0.1100 m

Verifiche presso-flessione

\mathbf{N}°	X	M	N	N_u	$\mathbf{M}_{\mathbf{u}}$	$\mathbf{A_{fi}}$	$\mathbf{A}_{\mathbf{f}\mathbf{s}}$	CS
1	0.06	-6.73 (-6.73)	40.44	148.67	-24.73	0.000770	0.000770	3.68
2	0.45	3.71 (4.64)	69.52	455.75	30.42	0.000770	0.000770	6.56
3	0.86	7.45 (7.45)	79.89	296.51	27.67	0.000770	0.000770	3.71
4	1.27	3.59 (4.62)	69.01	454.08	30.41	0.000770	0.000770	6.58
5	1 67	-6.62 (-6.65)	40.43	150 53	-24.77	0.000770	0.000770	3.72

Verifiche taglio

\mathbf{A}_{sw}	$\mathbf{V}_{\mathbf{Rcd}}$	$\mathbf{V}_{\mathbf{R}\mathbf{s}\mathbf{d}}$	$\mathbf{V}_{\mathbf{Rd}}$	V	X	N°
0.000000	0.00	0.00	44.21	-1.58	0.06	1
0.000000	0.00	0.00	47.00	14.77	0.45	2
0.000000	0.00	0.00	47.97	-0.96	0.86	3
0.000000	0.00	0.00	47.04	-16.43	1.27	4
0.000000	0.00	0.00	44.21	0.47	1.67	5

$\underline{Verifica\ sezioni\ traverso\ [Combinazione\ n^\circ\ 12\ -\ SLU\ (Caso\ A2-M2)\ -\ Sisma\ Vert.\ negativo]}$

Base sezione B = 100 cmAltezza sezione H = 0.1100 m

N°	X	M	N	N_u	$\mathbf{M}_{\mathbf{u}}$	${f A_{fi}}$	$\mathbf{A}_{\mathbf{f}\mathbf{s}}$	CS
1	0.06	6.73 (6.73)	40.47	148.79	24.73	0.000770	0.000770	3.68
2	0.45	-4.16 (-5.05)	66.12	382.11	-29.18	0.000770	0.000770	5.78
3	0.86	-7.93 (-7.93)	74.95	253.47	-26.81	0.000770	0.000770	3.38
4	1.27	-4.12 (-5.19)	64.76	358.81	-28.77	0.000770	0.000770	5.54

Tombini e ponticelli idraulici - IN02 - Tombino idraulico Ø1500 al km 18+277 – Relazione di calcolo

COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
IF26	12 E ZZ	CL	IN0200 0001	Α	157 di 179

5 1.67 6.62 (6.69) 40.47 149.78 24.75 0.000770 0.000770 3.70

Verifiche taglio

N°	X	\mathbf{v}	$\mathbf{V}_{\mathbf{Rd}}$	$\mathbf{V}_{\mathbf{Rsd}}$	$\mathbf{V}_{\mathbf{Rcd}}$	\mathbf{A}_{sw}
1	0.06	0.40	44.21	0.00	0.00	0.000000
2	0.45	-14.06	46.59	0.00	0.00	0.000000
3	0.86	1.86	47.50	0.00	0.00	0.000000
4	1.27	16.96	46.72	0.00	0.00	0.000000
5	1.67	1.02	44.21	0.00	0.00	0.000000

<u>Verifica sezioni fondazione [Combinazione nº 13 - SLU (Caso A1-M1) - Sisma Vert. positivo]</u>

Base sezione B = 100 cm

Altezza sezione H = 0.1100 m

Verifiche presso-flessione

CS	$\mathbf{A}_{\mathbf{f}\mathbf{s}}$	$\mathbf{A_{fi}}$	$\mathbf{M}_{\mathbf{u}}$	N_{u}	N	M	X	\mathbf{N}°
6.52	0.000770	0.000770	-27.00	263.03	40.35	-4.14 (-4.14)	0.06	1
10.09	0.000770	0.000770	30.90	599.98	59.45	2.48 (3.06)	0.45	2
6.09	0.000770	0.000770	29.58	404.69	66.41	4.85 (4.85)	0.86	3
10.10	0.000770	0.000770	30.91	601.90	59.57	2.40 (3.06)	1.27	4
6.56	0.000770	0.000770	-27.05	265.66	40.48	-4.10 (-4.12)	1.67	5

Verifiche taglio

\mathbf{A}_{sw}	${f V}_{ m Rcd}$	$\mathbf{V}_{\mathbf{Rsd}}$	$\mathbf{V}_{\mathbf{Rd}}$	v	X	N°
0.000000	0.00	0.00	44.20	-1.35	0.06	1
0.000000	0.00	0.00	46.07	9.29	0.45	2
0.000000	0.00	0.00	46.69	-0.55	0.86	3
0.000000	0.00	0.00	46.09	-10.45	1.27	4
0.000000	0.00	0.00	44.21	0.42	1.67	5

$\underline{Verifica\ sezioni\ traverso\ [Combinazione\ n^{\circ}\ 13\ -\ SLU\ (Caso\ A1-M1)\ -\ Sisma\ Vert.\ positivo\]}$

Base sezione B = 100 cm

 $H = 0.1100 \ m$

Verifiche presso-flessione

Altezza sezione

Tombini e ponticelli idraulici - IN02 - Tombino idraulico
Ø1500 al km 18+277 – Relazione di calcolo

COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
IF26	12 E ZZ	CL	IN0200 0001	Α	158 di 179

N°	X	M	N	N_u	$\mathbf{M_u}$	$\mathbf{A_{fi}}$	$\mathbf{A}_{\mathbf{f}\mathbf{s}}$	CS
1	0.06	4.14 (4.14)	40.37	263.17	27.01	0.000770	0.000770	6.52
2	0.45	-2.93 (-3.49)	56.30	492.18	-30.54	0.000770	0.000770	8.74
3	0.86	-5.41 (-5.41)	62.13	322.90	-28.14	0.000770	0.000770	5.20
4	1.27	-2.94 (-3.66)	55.53	461.89	-30.44	0.000770	0.000770	8.32
5	1.67	4.10 (4.14)	40.51	264.85	27.04	0.000770	0.000770	6.54

Verifiche taglio

\mathbf{N}°	X	\mathbf{v}	$\mathbf{V}_{\mathbf{Rd}}$	$\mathbf{V}_{\mathbf{R}\mathbf{s}\mathbf{d}}$	$\mathbf{V}_{\mathbf{Rcd}}$	$\mathbf{A}_{\mathbf{sw}}$
1	0.06	0.63	44.20	0.00	0.00	0.000000
2	0.45	-8.88	45.67	0.00	0.00	0.000000
3	0.86	1.47	46.28	0.00	0.00	0.000000
4	1.27	11.33	45.80	0.00	0.00	0.000000
5	1.67	0.63	44.21	0.00	0.00	0.000000

$\underline{Verifica\ sezioni\ fondazione\ [Combinazione\ n^\circ\ 14-SLU\ (Caso\ A2-M2)-Sisma\ Vert.\ positivo\]}$

Base sezione B = 100 cmAltezza sezione H = 0.1100 m

Verifiche presso-flessione

N°	X	M	N	$N_{\rm u}$	$\mathbf{M}_{\mathbf{u}}$	$\mathbf{A_{fi}}$	${f A_{fs}}$	CS
1	0.06	-5.43 (-5.43)	47.01	227.82	-26.30	0.000770	0.000770	4.85
2	0.45	3.09 (3.84)	71.24	570.82	30.80	0.000770	0.000770	8.01
3	0.86	6.15 (6.15)	80.02	379.12	29.13	0.000770	0.000770	4.74
4	1.27	2.99 (3.84)	71.18	571.46	30.80	0.000770	0.000770	8.03
5	1.67	-5.35 (-5.39)	47.07	230.22	-26.35	0.000770	0.000770	4.89

$\mathbf{A}_{\mathbf{sw}}$	V_{Rcd}	${f V}_{ m Rsd}$	V_{Rd}	\mathbf{V}	X	N°
0.000000	0.00	0.00	44.83	-1.62	0.06	1
0.000000	0.00	0.00	47.19	11.99	0.45	2
0.000000	0.00	0.00	47.99	-0.75	0.86	3
0.000000	0.00	0.00	47.21	-13.46	1.27	4
0.000000	0.00	0.00	44.84	0.56	1.67	5

Tombini e ponticelli idraulici - IN02 - Tombino idraulico Ø1500 al km 18+277 – Relazione di calcolo

H = 0.1100 m

COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO	
IF26	12 E ZZ	CL	IN0200 0001	Α	159 di 179	

$\underline{Verifica\ sezioni\ traverso\ [Combinazione\ n^\circ\ 14\ -\ SLU\ (Caso\ A2-M2)\ -\ Sisma\ Vert.\ positivo\]}$

Base sezione B = 100 cm

Verifiche presso-flessione

Altezza sezione

N°	X	M	N	N_{u}	$\mathbf{M_u}$	${f A_{fi}}$	$\mathbf{A}_{\mathbf{f}\mathbf{s}}$	CS
1	0.06	5.43 (5.43)	47.03	227.95	26.31	0.000770	0.000770	4.85
2	0.45	-3.55 (-4.26)	67.55	483.82	-30.51	0.000770	0.000770	7.16
3	0.86	-6.67 (-6.67)	74.83	314.20	-27.99	0.000770	0.000770	4.20
4	1.27	-3.53 (-4.43)	66.46	456.06	-30.42	0.000770	0.000770	6.86
5	1.67	5.35 (5.40)	47.10	229.96	26.35	0.000770	0.000770	4.88

Verifiche taglio

\mathbf{A}_{sw}	$\mathbf{V}_{\mathbf{Rcd}}$	$\mathbf{V}_{\mathbf{R}\mathbf{s}\mathbf{d}}$	$\mathbf{V}_{\mathbf{Rd}}$	V	X	N°
0.000000	0.00	0.00	44.84	0.69	0.06	1
0.000000	0.00	0.00	46.73	-11.30	0.45	2
0.000000	0.00	0.00	47.49	1.82	0.86	3
0.000000	0.00	0.00	46.87	14.27	1.27	4
0.000000	0.00	0.00	44.84	0.70	1.67	5

$\underline{Verifica\ sezioni\ fondazione\ [Combinazione\ n^\circ\ 15\ -\ SLU\ (Caso\ A1-M1)\ -\ Sisma\ Vert.\ positivo\]}$

Base sezione B = 100 cmAltezza sezione H = 0.1100 m

Verifiche presso-flessione

\mathbf{N}°	X	M	N	N_u	$\mathbf{M}_{\mathbf{u}}$	$\mathbf{A_{fi}}$	$\mathbf{A_{fs}}$	CS
1	0.06	-5.15 (-5.15)	35.26	172.54	-25.20	0.000770	0.000770	4.89
2	0.45	2.96 (3.67)	58.31	484.25	30.51	0.000770	0.000770	8.31
3	0.86	5.84 (5.84)	66.44	319.49	28.08	0.000770	0.000770	4.81
4	1.27	2.86 (3.66)	58.10	484.44	30.51	0.000770	0.000770	8.34
5	1.67	-5.08 (-5.10)	35.34	175.12	-25.26	0.000770	0.000770	4.96

N°	\mathbf{X}	\mathbf{V}	$\mathbf{V}_{\mathbf{Rd}}$	V_{Rsd}	V_{Rcd}	A_{sw}

REV.

FOGLIO **160 di 179**

Tombini e ponticelli idraulici - IN02 - Tombino idraulico	COMMESSA	LOTTO	CODIFICA	DOCUMENTO
Ø1500 al km 18+277 – Relazione di calcolo	IESE	12 F 77	CI.	IN0200 0001

1	0.06	-1.20	43.71	0.00	0.00	0.000000
2	0.45	11.37	45.94	0.00	0.00	0.000000
3	0.86	-0.70	46.69	0.00	0.00	0.000000
4	1.27	-12.64	45.97	0.00	0.00	0.000000
5	1.67	0.23	43.72	0.00	0.00	0.000000

$\underline{Verifica\ sezioni\ traverso\ [Combinazione\ n^{\circ}\ 15\ -\ SLU\ (Caso\ A1-M1)\ -\ Sisma\ Vert.\ positivo\]}$

Base sezione B = 100 cmAltezza sezione H = 0.1100 m

Verifiche presso-flessione

\mathbf{N}°	X	M	N	$N_{\rm u}$	$\mathbf{M}_{\mathbf{u}}$	$\mathbf{A_{fi}}$	$\mathbf{A}_{\mathbf{fs}}$	CS
1	0.06	5.15 (5.15)	35.28	172.64	25.21	0.000770	0.000770	4.89
2	0.45	-3.41 (-4.11)	54.99	392.67	-29.37	0.000770	0.000770	7.14
3	0.86	-6.42 (-6.42)	62.10	260.64	-26.95	0.000770	0.000770	4.20
4	1.27	-3.40 (-4.26)	54.00	366.94	-28.92	0.000770	0.000770	6.80
5	1.67	5.08 (5.13)	35.36	173.93	25.23	0.000770	0.000770	4.92

Verifiche taglio

\mathbf{A}_{sw}	$ m V_{Rcd}$	V_{Rsd}	$ m V_{Rd}$	V	X	N°
0.000000	0.00	0.00	43.72	0.53	0.06	1
0.000000	0.00	0.00	45.54	-11.13	0.45	2
0.000000	0.00	0.00	46.28	1.50	0.86	3
0.000000	0.00	0.00	45.67	13.51	1.27	4
0.000000	0.00	0.00	43.72	0.77	1.67	5

$\underline{Verifica\ sezioni\ fondazione\ [Combinazione\ n^\circ\ 16\ -\ SLU\ (Caso\ A2-M2)\ -\ Sisma\ Vert.\ positivo\]}$

Base sezione B = 100 cmAltezza sezione H = 0.1100 m

N°	X	M	N	N_{u}	$\mathbf{M}_{\mathbf{u}}$	$\mathbf{A_{fi}}$	$\mathbf{A}_{\mathbf{f}\mathbf{s}}$	CS
1	0.06	-6.44 (-6.44)	41.92	162.91	-25.01	0.000770	0.000770	3.89
2	0.45	3.57 (4.46)	70.09	479.71	30.50	0.000770	0.000770	6.84
3	0.86	7.13 (7.13)	80.04	314.01	27.99	0.000770	0.000770	3.92

Tombini e ponticelli idraulici - IN02 - Tombino idraulico
Ø1500 al km 18+277 – Relazione di calcolo

COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
IF26	12 E ZZ	CL	IN0200 0001	Α	161 di 179

4	1.27	3.45 (4.44)	69.71	479.03	30.49	0.000770	0.000770	6.87
5	1.67	-6.34 (-6.36)	41.92	165 16	-25.06	0.000770	0.000770	3 9/1

Verifiche taglio

N°	X	\mathbf{v}	$\mathbf{V}_{\mathbf{Rd}}$	$\mathbf{V}_{\mathbf{R}\mathbf{s}\mathbf{d}}$	${ m V}_{ m Rcd}$	$\mathbf{A}_{\mathbf{sw}}$
1	0.06	-1.47	44.35	0.00	0.00	0.000000
2	0.45	14.06	47.06	0.00	0.00	0.000000
3	0.86	-0.89	47.99	0.00	0.00	0.000000
4	1.27	-15.64	47.10	0.00	0.00	0.000000
5	1.67	0.35	44.35	0.00	0.00	0.000000

$\underline{Verifica\ sezioni\ traverso\ [Combinazione\ n^\circ\ 16\ -\ SLU\ (Caso\ A2-M2)\ -\ Sisma\ Vert.\ positivo\]}$

Base sezione B = 100 cm

Altezza sezione H = 0.1100 m

Verifiche presso-flessione

\mathbf{N}°	X	M	N	N_u	$\mathbf{M}_{\mathbf{u}}$	$\mathbf{A_{fi}}$	${f A_{fs}}$	CS
1	0.06	6.44 (6.44)	41.94	163.01	25.02	0.000770	0.000770	3.89
2	0.45	-4.03 (-4.88)	66.24	400.58	-29.51	0.000770	0.000770	6.05
3	0.86	-7.67 (-7.67)	74.80	263.26	-27.01	0.000770	0.000770	3.52
4	1.27	-3.99 (-5.03)	64.93	375.22	-29.06	0.000770	0.000770	5.78
5	1.67	6.34 (6.39)	41.95	164.38	25.04	0.000770	0.000770	3.92

$\mathbf{A}_{\mathbf{sw}}$	$\mathbf{V}_{\mathbf{Rcd}}$	V_{Rsd}	$\mathbf{V}_{\mathbf{Rd}}$	V	X	N°
0.000000	0.00	0.00	44.35	0.59	0.06	1
0.000000	0.00	0.00	46.60	-13.55	0.45	2
0.000000	0.00	0.00	47.49	1.85	0.86	3
0.000000	0.00	0.00	46.74	16.45	1.27	4
0.000000	0.00	0.00	44.35	0.85	1.67	5

Tombini e ponticelli idraulici - IN02 - Tombino idraulico Ø1500 al km 18+277 – Relazione di calcolo

 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 IF26
 12 E ZZ
 CL
 IN0200 0001
 A
 162 di 179

Verifiche combinazioni SLE

Simbologia adottata ed unità di misura

N° Indice sezione

X Ascissa/Ordinata sezione, espresso in m

M Momento flettente, espresso in kNm

V Taglio, espresso in kN

N Sforzo normale, espresso in kN

A_{fi} Area armatura inferiore, espressa in mq

A_{fs} Area armatura superiore, espressa in mq

σ_{ji} Tensione nell'armatura disposta in corrispondenza del lembo inferiore, espresse in kPa

σ_{fs} Tensione nell'armatura disposta in corrispondenza del lembo superiore, espresse in kPa

 σ_c Tensione nel calcestruzzo, espresse in kPa

τ_c Tensione tangenziale nel calcestruzzo, espresse in kPa

A_{sw} Area armature trasversali nella sezione, espressa in mq

$\underline{Verifica\ sezioni\ fondazione\ [Combinazione\ n^{\circ}\ 17\ - SLE\ (Quasi\ Permanente)]}$

Base sezione B = 100 cm

Altezza sezione H = 0.1100 m

Verifiche presso-flessione

N°	X	M	N	$\mathbf{A_{fi}}$	$\mathbf{A}_{\mathbf{f}\mathbf{s}}$	σ_{fs}	$\sigma_{ m fi}$	$\sigma_{\rm c}$
1	0.06	3.94	34.54	0.000770	0.000770	3909	54181	4208
2	0.45	-1.38	22.34	0.000770	0.000770	12202	1878	1377
3	0.86	-3.08	19.10	0.000770	0.000770	47843	5737	3360
4	1.27	-1.38	23.51	0.000770	0.000770	11460	2225	1365
5	1.67	3.94	34.54	0.000770	0.000770	3909	54181	4208

\mathbf{A}_{sw}	$ au_{ m c}$	\mathbf{v}	X	\mathbf{N}°
0.000000	-26	-1.56	0.06	1
0.000000	-119	-7.06	0.45	2
0.000000	7	0.44	0.86	3
0.000000	123	7.30	1.27	4
0.000000	26	1.56	1.67	5

Tombini e ponticelli idraulici - IN02 - Tombino idraulico Ø1500 al km 18+277 – Relazione di calcolo

COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO	
IF26	12 E ZZ	CL	IN0200 0001	Α	163 di 179	

<u>Verifica sezioni traverso [Combinazione nº 17 - SLE (Quasi Permanente)]</u>

Base sezione B = 100 cmAltezza sezione H = 0.1100 m

Verifiche presso-flessione

$\sigma_{\rm c}$	$\sigma_{\rm fi}$	σ_{fs}	$\mathbf{A}_{\mathbf{fs}}$	$\mathbf{A_{fi}}$	N	M	X	N°
4208	3897	54157	0.000770	0.000770	34.58	-3.94	0.06	1
784	3654	2953	0.000770	0.000770	20.40	0.86	0.45	2
2991	43403	5575	0.000770	0.000770	15.51	2.73	0.86	3
781	3456	3044	0.000770	0.000770	20.78	0.86	1.27	4
4208	3897	54157	0.000770	0.000770	34.58	-3.94	1.67	5

Verifiche taglio

\mathbf{A}_{sw}	$ au_{ m c}$	v	X	\mathbf{N}°
0.000000	2	0.14	0.06	1
0.000000	138	8.20	0.45	2
0.000000	6	0.38	0.86	3
0.000000	-121	-7.19	1.27	4
0.000000	-2	-0.14	1.67	5

$\underline{Verifica\ sezioni\ fondazione\ [Combinazione\ n^{\circ}\ 18\ -\ SLE\ (Frequente)]}$

Base sezione B = 100 cmAltezza sezione H = 0.1100 m

Verifiche presso-flessione

$\sigma_{\rm c}$	$\sigma_{\rm fi}$	σ_{fs}	$\mathbf{A_{fs}}$	$\mathbf{A_{fi}}$	N	M	X	\mathbf{N}°
6899	89683	6899	0.000770	0.000770	55.01	6.45	0.06	1
2644	859	28237	0.000770	0.000770	32.97	-2.57	0.45	2
6102	12872	91170	0.000770	0.000770	26.91	-5.54	0.86	3
2625	1450	26995	0.000770	0.000770	34.85	-2.57	1.27	4
6899	89683	6899	0.000770	0.000770	55.01	6.45	1.67	5

\mathbf{A}_{sw}	$ au_{ m c}$	${f v}$	X	N°
0.000000	-36	-2.13	0.06	1

Tombini e ponticelli idraulici - IN02 - Tombino idraulico Ø1500 al km 18+277 – Relazione di calcolo

COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
IF26	12 E ZZ	CL	IN0200 0001	Α	164 di 179

2	0.45	-12.27	-206	0.000000
3	0.86	0.72	12	0.000000
4	1.27	12.70	214	0.000000
5	1.67	2.13	36	0.000000

$\underline{Verifica\ sezioni\ traverso\ [Combinazione\ n^{\circ}\ 18\ -\ SLE\ (Frequente)]}$

Base sezione B = 100 cmAltezza sezione H = 0.1100 m

Verifiche presso-flessione

\mathbf{N}°	X	M	N	${f A_{fi}}$	$\mathbf{A}_{\mathbf{fs}}$	$\sigma_{ m fs}$	$\sigma_{ m fi}$	$\sigma_{\rm c}$
1	0.06	-6.45	55.05	0.000770	0.000770	89656	6886	6898
2	0.45	2.03	31.53	0.000770	0.000770	2375	18726	2034
3	0.86	5.24	23.45	0.000770	0.000770	12892	87738	5793
4	1.27	2.03	32.18	0.000770	0.000770	2570	18310	2027
5	1.67	-6.45	55.05	0.000770	0.000770	89656	6886	6898

Verifiche taglio

N°	X	\mathbf{V}	$ au_{ m c}$	\mathbf{A}_{sw}
1	0.06	0.57	10	0.000000
2	0.45	14.00	235	0.000000
3	0.86	0.58	10	0.000000
4	1.27	-12.43	-209	0.000000
5	1.67	-0.57	-10	0.000000

$\underline{Verifica\ sezioni\ fondazione\ [Combinazione\ n^{\circ}\ 19\ -\ SLE\ (Frequente)]}$

Base sezione B = 100 cmAltezza sezione H = 0.1100 m

\mathbf{N}°	X	M	N	${f A_{fi}}$	$\mathbf{A}_{\mathbf{fs}}$	σ_{fs}	$\sigma_{\rm fi}$	$\sigma_{\rm c}$
1	0.06	2.36	34.47	0.000770	0.000770	2089	23216	2389
2	0.45	-0.62	28.40	0.000770	0.000770	1785	4374	522
3	0.86	-1.53	27.05	0.000770	0.000770	11982	2772	1496
4	1.27	-0.64	29.38	0.000770	0.000770	1824	4533	543

Tombini e ponticelli idraulici - IN02 - Tombino idraulico Ø1500 al km 18+277 – Relazione di calcolo

COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
IF26	12 E ZZ	CL	IN0200 0001	Α	165 di 179

5 1.67 2.34 34.62 0.000770 0.000770 2225 22638 2358

Verifiche taglio

\mathbf{N}°	X	\mathbf{v}	$ au_{ m c}$	\mathbf{A}_{sw}
1	0.06	-1.47	-25	0.000000
2	0.45	-3.87	-65	0.000000
3	0.86	0.22	4	0.000000
4	1.27	3.82	64	0.000000
5	1.67	1.42	24	0.000000

$\underline{Verifica\ sezioni\ traverso\ [Combinazione\ n^{\circ}\ 19\ -\ SLE\ (Frequente)]}$

Base sezione B = 100 cmAltezza sezione H = 0.1100 m

Verifiche presso-flessione

$\sigma_{\rm c}$	$\sigma_{\rm fi}$	σ_{fs}	$\mathbf{A}_{\mathbf{fs}}$	$\mathbf{A_{fi}}$	N	M	X	\mathbf{N}°
2388	2098	23197	0.000770	0.000770	34.50	-2.36	0.06	1
261	2685	3212	0.000770	0.000770	26.16	0.14	0.45	2
1100	7305	2897	0.000770	0.000770	23.29	1.15	0.86	3
235	2831	3128	0.000770	0.000770	26.44	0.08	1.27	4
2358	2236	22613	0.000770	0.000770	34.66	-2.34	1.67	5

Verifiche taglio

\mathbf{A}_{sw}	$ au_{ m c}$	V	X	\mathbf{N}°
0.000000	4	0.23	0.06	1
0.000000	81	4.85	0.45	2
0.000000	8	0.50	0.86	3
0.000000	-62	-3.70	1.27	4
0.000000	2	0.13	1.67	5

$\underline{Verifica\ sezioni\ fondazione\ [Combinazione\ n^{\circ}\ 20\ - SLE\ (Frequente)]}$

Base sezione B = 100 cmAltezza sezione H = 0.1100 m

Tombini e ponticelli idraulici - IN02 - Tombino idraulico Ø1500 al km 18+277 – Relazione di calcolo

COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
IF26	12 E ZZ	CL	IN0200 0001	Α	166 di 179

N°	X	M	N	${f A_{fi}}$	$\mathbf{A_{fs}}$	$\sigma_{ m fs}$	$\sigma_{\rm fi}$	$\sigma_{\rm c}$
1	0.06	4.04	34.54	0.000770	0.000770	4303	56163	4323
2	0.45	-1.39	22.20	0.000770	0.000770	12464	1805	1389
3	0.86	-3.11	18.94	0.000770	0.000770	48481	5898	3392
4	1.27	-1.39	23.38	0.000770	0.000770	11717	2154	1377
5	1.67	4.04	34.54	0.000770	0.000770	4303	56163	4323

Verifiche taglio

\mathbf{A}_{sw}	$ au_{ m c}$	V	X	N°
0.000000	-29	-1.72	0.06	1
0.000000	-120	-7.13	0.45	2
0.000000	7	0.44	0.86	3
0.000000	124	7.38	1.27	4
0.000000	29	1.72	1.67	5

$\underline{Verifica\ sezioni\ traverso\ [Combinazione\ n^{\circ}\ 20\ -\ SLE\ (Frequente)]}$

Base sezione B = 100 cmAltezza sezione H = 0.1100 m

Verifiche presso-flessione

N°	X	M	N	$\mathbf{A_{fi}}$	$\mathbf{A_{fs}}$	σ_{fs}	$\sigma_{ m fi}$	$\sigma_{\rm c}$
1	0.06	-4.04	34.58	0.000770	0.000770	56133	4289	4322
2	0.45	0.65	20.54	0.000770	0.000770	3297	439	552
3	0.86	2.50	15.67	0.000770	0.000770	4608	38759	2728
4	1.27	0.65	20.92	0.000770	0.000770	3361	304	550
5	1.67	-4.04	34.58	0.000770	0.000770	56133	4289	4322

\mathbf{A}_{sw}	$ au_{ m c}$	V	X	N°
0.000000	0	-0.02	0.06	1
0.000000	136	8.12	0.45	2
0.000000	6	0.38	0.86	3
0.000000	-119	-7.10	1.27	4
0.000000	0	0.02	1.67	5

Tombini e ponticelli idraulici - IN02 - Tombino idraulico Ø1500 al km 18+277 – Relazione di calcolo

 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 IF26
 12 E ZZ
 CL
 IN0200 0001
 A
 167 di 179

$\underline{Verifica\ sezioni\ fondazione\ [Combinazione\ n^{\circ}\ 21\ -\ SLE\ (Rara)]}$

Base sezione B = 100 cmAltezza sezione H = 0.1100 m

Verifiche presso-flessione

$\sigma_{\rm c}$	σ_{fi}	σ_{fs}	$\mathbf{A}_{\mathbf{f}\mathbf{s}}$	$\mathbf{A_{fi}}$	N	M	X	N°
7686	100541	8041	0.000770	0.000770	60.13	7.18	0.06	1
2972	515	32533	0.000770	0.000770	35.49	-2.88	0.45	2
6819	14820	102644	0.000770	0.000770	28.70	-6.18	0.86	3
2952	1167	31165	0.000770	0.000770	37.54	-2.88	1.27	4
7686	100541	8041	0.000770	0.000770	60.13	7.18	1.67	5

Verifiche taglio

\mathbf{A}_{sw}	$ au_{ m c}$	\mathbf{V}	X	N°
0.000000	-41	-2.43	0.06	1
0.000000	-229	-13.64	0.45	2
0.000000	13	0.80	0.86	3
0.000000	238	14.14	1.27	4
0.000000	41	2.43	1.67	5

$\underline{Verifica\ sezioni\ traverso\ [Combinazione\ n^{\circ}\ 21\ -\ SLE\ (Rara)]}$

Base sezione B = 100 cmAltezza sezione H = 0.1100 m

Verifiche presso-flessione

\mathbf{N}°	X	M	N	$\mathbf{A_{fi}}$	$\mathbf{A}_{\mathbf{f}\mathbf{s}}$	σ_{fs}	σ_{fi}	$\sigma_{\rm c}$
1	0.06	-7.18	60.17	0.000770	0.000770	100508	8025	7686
2	0.45	2.12	34.45	0.000770	0.000770	2956	18475	2102
3	0.86	5.64	25.59	0.000770	0.000770	13750	94171	6232
4	1.27	2.12	35.16	0.000770	0.000770	3168	18023	2095
5	1.67	-7.18	60.17	0.000770	0.000770	100508	8025	7686

Verifiche taglio

 N° X V au_{c} A_{sw}

Tombini e ponticelli idraulici - IN02 - Tombino idraulico Ø1500 al km 18+277 – Relazione di calcolo

COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
IF26	12 E ZZ	CL	IN0200 0001	Α	168 di 179

0.000000	9	0.52	0.06	1
0.000000	258	15.37	0.45	2
0.000000	11	0.63	0.86	3
0.000000	-230	-13.66	1.27	4
0.000000	-9	-0.52	1.67	5

<u>Verifica sezioni fondazione [Combinazione nº 22 - SLE (Rara)]</u>

Base sezione B = 100 cmAltezza sezione H = 0.1100 m

Verifiche presso-flessione

$\sigma_{\rm c}$	$\sigma_{\rm fi}$	σ_{fs}	$\mathbf{A}_{\mathbf{fs}}$	$\mathbf{A_{fi}}$	N	M	X	N°
2056	17700	3101	0.000770	0.000770	34.47	2.08	0.06	1
432	4206	2504	0.000770	0.000770	29.77	-0.44	0.45	2
1071	4256	4599	0.000770	0.000770	28.87	-1.18	0.86	3
455	4373	2538	0.000770	0.000770	30.66	-0.47	1.27	4
2036	17310	3195	0.000770	0.000770	34.61	2.06	1.67	5

Verifiche taglio

\mathbf{N}°	X	V	$ au_{ m c}$	\mathbf{A}_{sw}
1	0.06	-1.61	-27	0.000000
2	0.45	-3.16	-53	0.000000
3	0.86	0.17	3	0.000000
4	1.27	3.06	51	0.000000
5	1.67	1.53	26	0.000000

$\underline{Verifica\ sezioni\ traverso\ [Combinazione\ n^{\circ}\ 22\ -\ SLE\ (Rara)]}$

Base sezione B = 100 cmAltezza sezione H = 0.1100 m

$\sigma_{\rm c}$	$\sigma_{ m fi}$	σ_{fs}	$\mathbf{A}_{\mathbf{fs}}$	$\mathbf{A_{fi}}$	N	M	X	N°
2055	3112	17677	0.000770	0.000770	34.51	-2.08	0.06	1
331	3628	2630	0.000770	0.000770	27.76	-0.26	0.45	2
458	1657	3893	0.000770	0.000770	25.41	0.54	0.86	3

Tombini e ponticelli idraulici - IN02 - Tombino idraulico Ø1500 al km 18+277 – Relazione di calcolo

COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
IF26	12 E ZZ	CL	IN0200 0001	Α	169 di 179

4	1.27	-0.31	27.94	0.000770	0.000770	2548	3749	357
5	1.67	-2.06	34.65	0.000770	0.000770	17281	3209	2035

Verifiche taglio

\mathbf{A}_{sw}	$ au_{ m c}$	V	X	N°
0.000000	1	0.08	0.06	1
0.000000	66	3.95	0.45	2
0.000000	9	0.56	0.86	3
0.000000	-46	-2.74	1.27	4
0.000000	6	0.33	1.67	5

$\underline{Verifica\ sezioni\ fondazione\ [Combinazione\ n^{\circ}\ 23\ -\ SLE\ (Rara)]}$

Base sezione B = 100 cmAltezza sezione H = 0.1100 m

Verifiche presso-flessione

N°	X	M	N	${f A_{fi}}$	$\mathbf{A_{fs}}$	$\sigma_{ m fs}$	$\sigma_{ m fi}$	$\sigma_{\rm c}$
1	0.06	6.95	54.99	0.000770	0.000770	8876	99600	7473
2	0.45	-2.62	32.27	0.000770	0.000770	29585	468	2703
3	0.86	-5.67	26.11	0.000770	0.000770	94366	13681	6260
4	1.27	-2.62	34.17	0.000770	0.000770	28323	1069	2684
5	1.67	6.95	54.99	0.000770	0.000770	8876	99600	7473

Verifiche taglio

\mathbf{N}°	X	V	$ au_{ m c}$	\mathbf{A}_{sw}
1	0.06	-2.92	-49	0.000000
2	0.45	-12.64	-213	0.000000
3	0.86	0.74	12	0.000000
4	1.27	13.12	220	0.000000
5	1.67	2.92	49	0.000000

$\underline{Verifica\ sezioni\ traverso\ [Combinazione\ n^{\circ}\ 23\ -\ SLE\ (Rara)]}$

Base sezione B = 100 cmAltezza sezione H = 0.1100 m

Tombini e ponticelli idraulici - IN02 - Tombino idraulico Ø1500 al km 18+277 – Relazione di calcolo

COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
IF26	12 E ZZ	CL	IN0200 0001	Α	170 di 179

Verifiche presso-flessione

$\sigma_{\rm c}$	$\sigma_{\rm fi}$	σ_{fs}	$\mathbf{A}_{\mathbf{f}\mathbf{s}}$	$\mathbf{A_{fi}}$	N	M	X	\mathbf{N}°
7472	8850	99546	0.000770	0.000770	55.07	-6.95	0.06	1
836	334	5181	0.000770	0.000770	32.22	0.98	0.45	2
4482	64495	8040	0.000770	0.000770	24.24	4.10	0.86	3
833	119	5285	0.000770	0.000770	32.85	0.98	1.27	4
7472	8850	99546	0.000770	0.000770	55.07	-6.95	1.67	5

Verifiche taglio

\mathbf{N}°	X	V	$ au_{ m c}$	\mathbf{A}_{sw}
1	0.06	-0.22	-4	0.000000
2	0.45	13.61	229	0.000000
3	0.86	0.60	10	0.000000
4	1.27	-12.01	-202	0.000000
5	1.67	0.22	4	0.000000

$\underline{Verifica\ sezioni\ fondazione\ [Combinazione\ n^{\circ}\ 24\ -\ SLE\ (Rara)]}$

Base sezione B = 100 cmAltezza sezione H = 0.1100 m

Verifiche presso-flessione

N°	X	M	N	${f A_{fi}}$	$\mathbf{A_{fs}}$	σ_{fs}	$\sigma_{\rm fi}$	$\sigma_{\rm c}$
1	0.06	2.46	34.46	0.000770	0.000770	1725	25153	2504
2	0.45	-0.62	28.26	0.000770	0.000770	1719	4370	527
3	0.86	-1.56	26.90	0.000770	0.000770	12575	2639	1528
4	1.27	-0.65	29.25	0.000770	0.000770	1751	4531	549
5	1.67	2.44	34.62	0.000770	0.000770	1863	24575	2474

\mathbf{A}_{sw}	$ au_{ m c}$	v	X	\mathbf{N}°
0.000000	-27	-1.63	0.06	1
0.000000	-66	-3.95	0.45	2
0.000000	4	0.22	0.86	3
0.000000	66	3.90	1.27	4

Tombini e ponticelli idraulici - IN02 - Tombino idraulico Ø1500 al km 18+277 – Relazione di calcolo

 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 IF26
 12 E ZZ
 CL
 IN0200 0001
 A
 171 di 179

5 1.67 1.59 27 0.000000

$\underline{Verifica\ sezioni\ traverso\ [Combinazione\ n^{\circ}\ 24\ -\ SLE\ (Rara)]}$

 $H = 0.1100 \ m$

Base sezione B = 100 cm

Verifiche presso-flessione

Altezza sezione

\mathbf{N}°	X	M	N	${f A_{fi}}$	$\mathbf{A}_{\mathbf{fs}}$	σ_{fs}	σ_{fi}	$\sigma_{\rm c}$
1	0.06	-2.46	34.50	0.000770	0.000770	25128	1737	2504
2	0.45	-0.07	26.30	0.000770	0.000770	2822	3107	232
3	0.86	0.93	23.45	0.000770	0.000770	3518	3254	836
4	1.27	-0.13	26.57	0.000770	0.000770	2736	3253	263
5	1.67	-2.44	34.66	0.000770	0.000770	24544	1877	2474

\mathbf{A}_{sw}	$ au_{ m c}$	V	X	\mathbf{N}°
0.000000	1	0.07	0.06	1
0.000000	80	4.77	0.45	2
0.000000	8	0.50	0.86	3
0.000000	-61	-3.61	1.27	4
0.000000	5	0.30	1.67	5

Tombini e ponticelli idraulici - IN02 - Tombino idraulico Ø1500 al km 18+277 – Relazione di calcolo

 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 IF26
 12 E ZZ
 CL
 IN0200 0001
 A
 172 di 179

Verifiche fessurazione

Simbologia	adottata e	ed unità	di misura

 N° Indice sezione

X_i Ascissa/Ordinata sezione, espresso in m

M_p Momento, espresse in kNm

M_n Momento, espresse in kNm

wk Ampiezza fessure, espresse in m

w_{lim} Apertura limite fessure, espresse in m

ε_{sm} Deformazione nelle fessure, espresse in [%]

Distanza media tra le fessure, espresse in m

$\underline{Verifica\ fessurazione\ [Combinazione\ n^\circ\ 17\ -SLE\ (Quasi\ Permanente)]}$

\mathbf{N}°	X	$\mathbf{A_{fi}}$	$\mathbf{A}_{\mathbf{f}\mathbf{s}}$	Mp	Mn	M	w	$\mathbf{w}_{\mathbf{lim}}$	$S_{\mathbf{m}}$	$\boldsymbol{\epsilon}_{\mathrm{sm}}$
1	0.06	0.000770	0.000770	6.53	-6.53	3.94	0.00000	0.00010	0.00000	0.000
2	0.45	0.000770	0.000770	6.53	-6.53	-1.38	0.00000	0.00010	0.00000	0.000
3	0.86	0.000770	0.000770	6.53	-6.53	-3.08	0.00000	0.00010	0.00000	0.000
4	1.27	0.000770	0.000770	6.53	-6.53	-1.38	0.00000	0.00010	0.00000	0.000
5	1.67	0.000770	0.000770	6.53	-6.53	3.94	0.00000	0.00010	0.00000	0.000

$\underline{Verifica\ fessurazione\ traverso\ [Combinazione\ n^{\circ}\ 17\ -\ SLE\ (Quasi\ Permanente)]}$

N°	X	$\mathbf{A_{fi}}$	$\mathbf{A_{fs}}$	Mp	Mn	M	w	$\mathbf{W_{lim}}$	$S_{\mathbf{m}}$	$\epsilon_{ m sm}$
1	0.06	0.000770	0.000770	6.53	-6.53	-3.94	0.00000	0.00010	0.00000	0.000
2	0.45	0.000770	0.000770	6.53	-6.53	0.86	0.00000	0.00010	0.00000	0.000
3	0.86	0.000770	0.000770	6.53	-6.53	2.73	0.00000	0.00010	0.00000	0.000
4	1.27	0.000770	0.000770	6.53	-6.53	0.86	0.00000	0.00010	0.00000	0.000
5	1.67	0.000770	0.000770	6.53	-6.53	-3.94	0.00000	0.00010	0.00000	0.000

$\underline{Verifica\ fessurazione\ fondazione\ [Combinazione\ n^{\circ}\ 18\ -\ SLE\ (Frequente)]}$

\mathbf{N}°	X	$\mathbf{A_{fi}}$	$\mathbf{A}_{\mathbf{f}\mathbf{s}}$	Mp	Mn	M	w	$\mathbf{W_{lim}}$	$\mathbf{S}_{\mathbf{m}}$	$\epsilon_{\rm sm}$
1	0.06	0.000770	0.000770	6.53	-6.53	6.45	0.00000	0.00015	0.00000	0.000
2	0.45	0.000770	0.000770	6.53	-6.53	-2.57	0.00000	0.00015	0.00000	0.000
3	0.86	0.000770	0.000770	6.53	-6.53	-5.54	0.00000	0.00015	0.00000	0.000
4	1.27	0.000770	0.000770	6.53	-6.53	-2.57	0.00000	0.00015	0.00000	0.000

Tombini e ponticelli idraulici - IN02 - Tombino idraulico Ø1500 al km 18+277 – Relazione di calcolo

IF26	12 E ZZ	CI	IN0200 0001	Δ	173 di 179
COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO

Ø1	000 ai ki	11 10+277 -	- Neiazione	ui caicolo	IF	26 12 E	ZZ CL	-	IN0200 0001	A 173 di 1
5	1.67	0.000770	0.000770	6.53	-6.53	6.45	0.00000	0.00015	0.00000	0.000
<u>Veri</u>	fica fessuı	razione trave	rso [Combina	zione n° 18 - SLl	E (Frequente)]					
N°	X	${f A_{fi}}$	$\mathbf{A}_{\mathbf{f}\mathbf{s}}$	Mp	Mn	M	w	$\mathbf{w}_{\mathrm{lim}}$	$\mathbf{S}_{\mathbf{m}}$	$\boldsymbol{\epsilon}_{\mathrm{sm}}$
1	0.06	0.000770	0.000770	6.53	-6.53	-6.45	0.00000	0.00015	0.00000	0.000
2	0.45	0.000770	0.000770	6.53	-6.53	2.03	0.00000	0.00015	0.00000	0.000
3	0.86	0.000770	0.000770	6.53	-6.53	5.24	0.00000	0.00015	0.00000	0.000
4	1.27	0.000770	0.000770	6.53	-6.53	2.03	0.00000	0.00015	0.00000	0.000
5	1.67	0.000770	0.000770	6.53	-6.53	-6.45	0.00000	0.00015	0.00000	0.000
<u>Veri</u>	fica fessur	razione fonda	nzione [Combi	nazione n° 19 - S	SLE (Frequente)]	l				
N°	X	${f A_{fi}}$	$\mathbf{A}_{\mathbf{f}\mathbf{s}}$	Mp	Mn	M	w	$\mathbf{W}_{\mathbf{lim}}$	$\mathbf{S}_{\mathbf{m}}$	$\boldsymbol{\epsilon}_{sm}$
1	0.06	0.000770	0.000770	6.53	-6.53	2.36	0.00000	0.00015	0.00000	0.000
2	0.45	0.000770	0.000770	6.53	-6.53	-0.62	0.00000	0.00015	0.00000	0.000
3	0.86	0.000770	0.000770	6.53	-6.53	-1.53	0.00000	0.00015	0.00000	0.000
4	1.27	0.000770	0.000770	6.53	-6.53	-0.64	0.00000	0.00015	0.00000	0.000
5	1.67	0.000770	0.000770	6.53	-6.53	2.34	0.00000	0.00015	0.00000	0.000
<u>Veri</u>	fica fessur	razione trave	rso [Combina	zione n° 19 - SLl	E (Frequente)]					
N°	X	${f A_{fi}}$	$\mathbf{A}_{\mathbf{f}\mathbf{s}}$	Mp	Mn	M	w	$\mathbf{w}_{\mathrm{lim}}$	$\mathbf{s}_{\mathbf{m}}$	$oldsymbol{\epsilon}_{\mathrm{sm}}$
1	0.06	0.000770	0.000770	6.53	-6.53	-2.36	0.00000	0.00015	0.00000	0.000
2	0.45	0.000770	0.000770	6.53	-6.53	0.14	0.00000	0.00015	0.00000	0.000
3	0.86	0.000770	0.000770	6.53	-6.53	1.15	0.00000	0.00015	0.00000	0.000
4	1.27	0.000770	0.000770	6.53	-6.53	0.08	0.00000	0.00015	0.00000	0.000
5	1.67	0.000770	0.000770	6.53	-6.53	-2.34	0.00000	0.00015	0.00000	0.000
<u>Veri</u>	fica fessur	razione fonda	azione [Combi	nazione n° 20 - S	SLE (Frequente)	l				
N°	X	${f A_{fi}}$	$\mathbf{A}_{\mathbf{fs}}$	Mp	Mn	M	w	$\mathbf{w}_{\mathrm{lim}}$	$S_{\mathbf{m}}$	$\epsilon_{ m sm}$
1	0.06	0.000770	0.000770	6.53	-6.53	4.04	0.00000	0.00015	0.00000	0.000
2	0.45	0.000770	0.000770	6.53	-6.53	-1.39	0.00000	0.00015	0.00000	0.000
3	0.86	0.000770	0.000770	6.53	-6.53	-3.11	0.00000	0.00015	0.00000	0.000
4	1.27	0.000770	0.000770	6.53	-6.53	-1.39	0.00000	0.00015	0.00000	0.000
5	1.67	0.000770	0.000770	6.53	-6.53	4.04	0.00000	0.00015	0.00000	0.000

Tombini e ponticelli idraulici - IN02 - Tombino idraulico Ø1500 al km 18+277 – Relazione di calcolo

 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 IF26
 12 E ZZ
 CL
 IN0200 0001
 A
 174 di 179

<u>Verifi</u>	ca fessur	azione trave	rso [Combina	zione n° 20 - SI	LE (Frequente)]					
N°	X	${f A_{fi}}$	$\mathbf{A}_{\mathbf{fs}}$	Mp	Mn	M	w	$\mathbf{w_{lim}}$	$\mathbf{S}_{\mathbf{m}}$	$\epsilon_{ m sm}$
1	0.06	0.000770	0.000770	6.53	-6.53	-4.04	0.00000	0.00015	0.00000	0.000
2	0.45	0.000770	0.000770	6.53	-6.53	0.65	0.00000	0.00015	0.00000	0.000
3	0.86	0.000770	0.000770	6.53	-6.53	2.50	0.00000	0.00015	0.00000	0.000
4	1.27	0.000770	0.000770	6.53	-6.53	0.65	0.00000	0.00015	0.00000	0.000
5	1.67	0.000770	0.000770	6.53	-6.53	-4.04	0.00000	0.00015	0.00000	0.000
<u>Verifi</u>	ca fessur	azione fonda	zione [Combi	inazione n° 21 -	SLE (Rara)]					
\mathbf{N}°	X	${f A_{fi}}$	$\mathbf{A}_{\mathbf{fs}}$	Mp	Mn	M	w	$\mathbf{w}_{\mathrm{lim}}$	$\mathbf{s}_{\mathbf{m}}$	$\boldsymbol{\epsilon}_{\mathrm{sm}}$
1	0.06	0.000770	0.000770	6.53	-6.53	7.18	0.00004	0.10000	0.13406	0.019
2	0.45	0.000770	0.000770	6.53	-6.53	-2.88	0.00000	0.10000	0.00000	0.000
3	0.86	0.000770	0.000770	6.53	-6.53	-6.18	0.00000	0.10000	0.00000	0.000
4	1.27	0.000770	0.000770	6.53	-6.53	-2.88	0.00000	0.10000	0.00000	0.000
5	1.67	0.000770	0.000770	6.53	-6.53	7.18	0.00004	0.10000	0.13406	0.019
Verifi	ca fessur	azione trave	rso [Combina	zione n° 21 - SI	LE (Rara)]					
N°	X	${f A_{fi}}$	$\mathbf{A}_{\mathbf{fs}}$	Mp	Mn	M	w	$\mathbf{w}_{\mathrm{lim}}$	$\mathbf{S}_{\mathbf{m}}$	$oldsymbol{arepsilon}_{ m sm}$
1	0.06	0.000770	0.000770	6.53	-6.53	-7.18	0.00005	0.10000	0.15907	0.019
2	0.45	0.000770	0.000770	6.53	-6.53	2.12	0.00000	0.10000	0.00000	0.000
3	0.86	0.000770	0.000770	6.53	-6.53	5.64	0.00000	0.10000	0.00000	0.000
4	1.27	0.000770	0.000770	6.53	-6.53	2.12	0.00000	0.10000	0.00000	0.000
5	1.67	0.000770	0.000770	6.53	-6.53	-7.18	0.00005	0.10000	0.15907	0.019
Verifi	ca fessur	azione fonda	zione [Combi	inazione n° 22 -	SLE (Rara)]					
N°	X	$\mathbf{A_{fi}}$	$\mathbf{A}_{\mathbf{fs}}$	Mp	Mn	M	w	$\mathbf{w_{lim}}$	$\mathbf{S}_{\mathbf{m}}$	$oldsymbol{arepsilon}_{ m sm}$
1	0.06	0.000770	0.000770	6.53	-6.53	2.08	0.00000	0.10000	0.00000	0.000
2	0.45	0.000770	0.000770	6.53	-6.53	-0.44	0.00000	0.10000	0.00000	0.000
3	0.86	0.000770	0.000770	6.53	-6.53	-1.18	0.00000	0.10000	0.00000	0.000
						-1.10				
4	1.27	0.000770	0.000770	6.53	-6.53	-0.47	0.00000	0.10000	0.00000	0.000

Tombini e ponticelli idraulici - IN02 - Tombino idraulico Ø1500 al km 18+277 – Relazione di calcolo

 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 IF26
 12 E ZZ
 CL
 IN0200 0001
 A
 175 di 179

<u>Verifi</u>	ca fessur	azione trave	rso [Combina	zione n° 22 - SL	E (Rara)]					
N°	X	$\mathbf{A_{fi}}$	$\mathbf{A}_{\mathbf{f}\mathbf{s}}$	Mp	Mn	M	w	$\mathbf{W_{lim}}$	$S_{\mathbf{m}}$	€sm
1	0.06	0.000770	0.000770	6.53	-6.53	-2.08	0.00000	0.10000	0.00000	0.000
2	0.45	0.000770	0.000770	6.53	-6.53	-0.26	0.00000	0.10000	0.00000	0.000
3	0.86	0.000770	0.000770	6.53	-6.53	0.54	0.00000	0.10000	0.00000	0.000
4	1.27	0.000770	0.000770	6.53	-6.53	-0.31	0.00000	0.10000	0.00000	0.000
5	1.67	0.000770	0.000770	6.53	-6.53	-2.06	0.00000	0.10000	0.00000	0.000
<u>Verifi</u>	ca fessur	azione fonda	zione [Combi	inazione n° 23 -	SLE (Rara)]					
N°	X	$\mathbf{A_{fi}}$	$\mathbf{A}_{\mathbf{f}\mathbf{s}}$	Mp	Mn	M	w	$\mathbf{W}_{\mathbf{lim}}$	$S_{\mathbf{m}}$	$oldsymbol{\epsilon}_{\mathrm{sm}}$
1	0.06	0.000770	0.000770	6.53	-6.53	6.95	0.00004	0.10000	0.13406	0.019
2	0.45	0.000770	0.000770	6.53	-6.53	-2.62	0.00000	0.10000	0.00000	0.000
3	0.86	0.000770	0.000770	6.53	-6.53	-5.67	0.00000	0.10000	0.00000	0.000
4	1.27	0.000770	0.000770	6.53	-6.53	-2.62	0.00000	0.10000	0.00000	0.000
5	1.67	0.000770	0.000770	6.53	-6.53	6.95	0.00004	0.10000	0.13406	0.019
		azione trave	rso [Combina	zione n° 23 - SL	E (Rara)]					
<u>Verifi</u> N°	ca fessur X	razione trave	rso [Combina A _{fs}	zione n° 23 - SL Mp	E (Rara)] Mn	M	w	W _{lim}	$S_{ m m}$	€ _{sm}
						M -6.95	w 0.00005	W lim 0.10000	s _m 0.15907	& _{sm} 0.019
N°	X	$\mathbf{A_{fi}}$	$\mathbf{A}_{\mathbf{f}\mathbf{s}}$	Mp	Mn					
N ° 1	X 0.06	A _{fi} 0.000770	A _{fs} 0.000770	Mp 6.53	Mn -6.53	-6.95	0.00005	0.10000	0.15907	0.019
N° 1 2	X 0.06 0.45	A _{fi} 0.000770 0.000770	A _{fs} 0.000770 0.000770	Mp 6.53 6.53	Mn -6.53 -6.53	-6.95 0.98	0.00005 0.00000	0.10000 0.10000	0.15907 0.00000	0.019 0.000
N° 1 2 3	X 0.06 0.45 0.86	A _{fi} 0.000770 0.000770 0.000770	A _{fs} 0.000770 0.000770 0.000770	Mp 6.53 6.53 6.53	Mn -6.53 -6.53	-6.95 0.98 4.10	0.00005 0.00000 0.00000	0.10000 0.10000 0.10000	0.15907 0.00000 0.00000	0.019 0.000 0.000
N° 1 2 3 4 5	X 0.06 0.45 0.86 1.27 1.67	An 0.000770 0.000770 0.000770 0.000770 0.000770	A _{fs} 0.000770 0.000770 0.000770 0.000770 0.000770	Mp 6.53 6.53 6.53 6.53 6.53	Mn -6.53 -6.53 -6.53 -6.53	-6.95 0.98 4.10 0.98	0.00005 0.00000 0.00000 0.00000	0.10000 0.10000 0.10000 0.10000	0.15907 0.00000 0.00000 0.00000	0.019 0.000 0.000 0.000
N° 1 2 3 4 5	X 0.06 0.45 0.86 1.27 1.67	A _{fi} 0.000770 0.000770 0.000770 0.000770 0.000770	A _{fs} 0.000770 0.000770 0.000770 0.000770 0.000770	Mp 6.53 6.53 6.53 6.53 6.53 6.53	Mn -6.53 -6.53 -6.53 -6.53 -6.53	-6.95 0.98 4.10 0.98 -6.95	0.00005 0.00000 0.00000 0.00000	0.10000 0.10000 0.10000 0.10000	0.15907 0.00000 0.00000 0.00000	0.019 0.000 0.000 0.000
N° 1 2 3 4 5	X 0.06 0.45 0.86 1.27 1.67	A _{fi} 0.000770 0.000770 0.000770 0.000770 0.000770	A _{fs} 0.000770 0.000770 0.000770 0.000770 0.000770	Mp 6.53 6.53 6.53 6.53 6.53	Mn -6.53 -6.53 -6.53 -6.53 -6.53 Mn	-6.95 0.98 4.10 0.98 -6.95	0.00005 0.00000 0.00000 0.00000 0.00005	0.10000 0.10000 0.10000 0.10000 0.10000	0.15907 0.00000 0.00000 0.00000 0.15907	0.019 0.000 0.000 0.000 0.019
N° 1 2 3 4 5	X 0.06 0.45 0.86 1.27 1.67	A _{fi} 0.000770 0.000770 0.000770 0.000770 0.000770 cazione fonda A _{fi} 0.000770	A _{fs} 0.000770 0.000770 0.000770 0.000770 0.000770	Mp 6.53 6.53 6.53 6.53 6.53 6.53	Mn -6.53 -6.53 -6.53 -6.53 -6.53	-6.95 0.98 4.10 0.98 -6.95	0.00005 0.00000 0.00000 0.00000 0.00005 w	0.10000 0.10000 0.10000 0.10000 0.10000 W lim	0.15907 0.00000 0.00000 0.00000 0.15907	0.019 0.000 0.000 0.000 0.019 8 _{sm} 0.000
N° 1 2 3 4 5 Verifi N°	X 0.06 0.45 0.86 1.27 1.67	A _{fi} 0.000770 0.000770 0.000770 0.000770 0.000770	A _{fs} 0.000770 0.000770 0.000770 0.000770 0.000770	Mp 6.53 6.53 6.53 6.53 6.53 6.53 Mp	Mn -6.53 -6.53 -6.53 -6.53 -6.53 Mn	-6.95 0.98 4.10 0.98 -6.95	0.00005 0.00000 0.00000 0.00000 0.00005	0.10000 0.10000 0.10000 0.10000 0.10000	0.15907 0.00000 0.00000 0.00000 0.15907	0.019 0.000 0.000 0.000 0.019
N° 1 2 3 4 5 Verifi N° 1	X 0.06 0.45 0.86 1.27 1.67 ca fessur X 0.06	A _{fi} 0.000770 0.000770 0.000770 0.000770 0.000770 cazione fonda A _{fi} 0.000770	A _{fs} 0.000770 0.000770 0.000770 0.000770 0.000770 Azione [Combi	Mp 6.53 6.53 6.53 6.53 6.53 Mp 6.53	Mn -6.53 -6.53 -6.53 -6.53 -6.53 SLE (Rara)] Mn -6.53	-6.95 0.98 4.10 0.98 -6.95	0.00005 0.00000 0.00000 0.00000 0.00005 w	0.10000 0.10000 0.10000 0.10000 0.10000 W lim	0.15907 0.00000 0.00000 0.00000 0.15907 s _m 0.00000	0.019 0.000 0.000 0.000 0.019 8 _{sm} 0.000
N° 1 2 3 4 5 Verifi N° 1 2	X 0.06 0.45 0.86 1.27 1.67 ca fessur X 0.06 0.45	A _{fi} 0.000770 0.000770 0.000770 0.000770 0.000770 razione fonda A _{fi} 0.000770 0.000770	A _{fs} 0.000770 0.000770 0.000770 0.000770 0.000770 azione [Combi	Mp 6.53 6.53 6.53 6.53 6.53 Mp 6.53 6.53	Mn -6.53 -6.53 -6.53 -6.53 SLE (Rara)] Mn -6.53 -6.53	-6.95 0.98 4.10 0.98 -6.95 M 2.46 -0.62	0.00005 0.00000 0.00000 0.00005 w 0.00000 0.00000	0.10000 0.10000 0.10000 0.10000 Wlim 0.10000 0.10000	0.15907 0.00000 0.00000 0.00000 0.15907 s _m 0.00000 0.00000	0.019 0.000 0.000 0.000 0.019 \$\begin{align*} \begin{align*} \beg

Tombini e ponticelli idraulici - IN02 - Tombino idraulico Ø1500 al km 18+277 – Relazione di calcolo

COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
IF26	12 E ZZ	CL	IN0200 0001	Α	176 di 179

N°	X	$\mathbf{A_{fi}}$	$\mathbf{A}_{\mathbf{fs}}$	Mp	Mn	M	w	$\mathbf{w}_{\mathrm{lim}}$	$\mathbf{s}_{\mathbf{m}}$	$oldsymbol{arepsilon}_{ m sm}$
1	0.06	0.000770	0.000770	6.53	-6.53	-2.46	0.00000	0.10000	0.00000	0.000
2	0.45	0.000770	0.000770	6.53	-6.53	-0.07	0.00000	0.10000	0.00000	0.000
3	0.86	0.000770	0.000770	6.53	-6.53	0.93	0.00000	0.10000	0.00000	0.000
4	1.27	0.000770	0.000770	6.53	-6.53	-0.13	0.00000	0.10000	0.00000	0.000
5	1.67	0.000770	0.000770	6.53	-6.53	-2.44	0.00000	0.10000	0.00000	0.000

Tombini e ponticelli idraulici - IN02 - Tombino idraulico Ø1500 al km 18+277 - Relazione di calcolo

COMMESSA LOTTO CODIFICA DOCUMENTO REV. FOGLIO IF26 12 E ZZ CL IN0200 0001 177 di 179

Inviluppo sollecitazioni nodali

Inviluppo sollecitazioni fondazione	Inviluppo	sollecitazioni	fondazione
-------------------------------------	-----------	----------------	------------

X [m]	M_{min} [kNm]	M_{max} [kNm]	$V_{min}\left[kN\right]$	$V_{max}\left[kN\right]$	N_{min} [kN]	$N_{max}\left[kN\right]$			
0.06	-9.92	6.73	-3.78	-1.20	33.79	83.73			
0.45	-3.71	4.07	-19.03	14.77	22.20	71.24			
0.86	-7.45	8.67	-0.96	1.11	18.94	80.04			
1.27	-3.59	4.07	-16.43	19.72	23.38	71.18			
1.67	-9.92	6.62	0.23	3.78	33.85	83.73			
Inviluppo sollecitazioni traverso									
X [m]	M_{min} [kNm]	M_{max} [kNm]	$V_{min}\left[kN\right]$	$V_{max}\left[kN\right]$	N_{min} [kN]	$N_{max}\left[kN\right]$			

	X [m]	M_{min} [kNm]	M_{max} [kNm]	V_{min} [kN]	V_{max} [kN]	N_{min} [kN]	N_{max} [kN]
(0.06	-9.92	6.73	-0.60	0.84	33.81	83.79
(0.45	-4.16	3.15	-14.06	21.51	20.40	67.55
	0.86	-7.93	8.08	0.38	1.86	15.51	74.98
	1.27	-4.12	3.15	-19.14	16.96	20.78	66.46
	1.67	-9.92	6.62	-0.84	1.09	33.88	83.79

Inviluppo pressioni terreno

Inviluppo pressioni sul terreno di fondazione

$\sigma_{tmax}\left[kPa\right]$	$\sigma_{tmin}\left[kPa\right]$	X [m]
116	41	0.06
109	46	0.45
106	46	0.86
109	46	1.27
116	42	1.67

Inviluppo verifiche stato limite ultimo (SLU)

Verifica sezioni fondazione (Inviluppo)

Base sezione B = 100 cm

Tombini e ponticelli idraulici - IN02 - Tombino idraulico Ø1500 al km 18+277 – Relazione di calcolo

COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
IF26	12 E ZZ	CL	IN0200 0001	Α	178 di 179

Altezza sezione	H = 0.1100 m		
X	$\mathbf{A_{fi}}$	${f A_{fs}}$	CS
0.06	0.000770	0.000770	2.64
0.45	0.000770	0.000770	5.08
0.86	0.000770	0.000770	2.76
1.27	0.000770	0.000770	5.09
1.67	0.000770	0.000770	2.64
X	$\mathbf{V}_{\mathbf{Rd}}$		$\mathbf{V}_{\mathbf{R}\mathbf{s}\mathbf{d}}$
0.06	48.34		0.00
0.45	45.33	45.33	
0.86	44.15	44.15	
1.27	45.05		0.00
1.67	48.34		0.00

Verifica sezioni traverso (Inviluppo)								
Base sezione	B = 100 cm							
Altezza sezione	H = 0.1100 m	ı						
X	$\mathbf{A_{fi}}$	${f A}_{ m fs}$	CS					
0.06	0.000770	0.000770	2.64					
0.45	0.000770	0.000770	5.78					
0.86	0.000770	0.000770	2.95					
1.27	0.000770	0.000770	5.54					
1.67	0.000770	0.000770	2.64					
X	${f V}_{ m Rd}$	ı	$\mathbf{V}_{\mathbf{R}\mathbf{s}\mathbf{d}}$					
0.06	48.35	i	0.00					
0.45	45.01		0.00					
0.86	43.73	1	0.00					
1.27	44.91		0.00					
1.67	48.35	i	0.00					

Tombini e ponticelli idraulici - IN02 - Tombino idraulico Ø1500 al km 18+277 – Relazione di calcolo

 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 IF26
 12 E ZZ
 CL
 IN0200 0001
 A
 179 di 179

Verifiche geotecniche

Simbologia adottata

IC Indice della combinazione

Nc, Nq, N_g Fattori di capacità portante

 Nc, Nq, N_g Fattori di capacità portante corretti per effetto forma, inclinazione del carico, affondamento, etc.

qu Portanza ultima del terreno, espressa in [kPa]

 Q_U Portanza ultima del terreno, espressa in [kN]/m

 Q_Y Carico verticale al piano di posa, espressa in [kN]/m

FS Fattore di sicurezza a carico limite

IC	Nc	Nq	Νγ	N'c	N'q	Ν'γ	qu	\mathbf{Q}_{U}	$\mathbf{Q}_{\mathbf{Y}}$	FS
1	50.59	37.75	40.05	77.15	49.99	40.05	7208	12397.17	176.78	70.13
2	30.54	18.75	15.48	46.58	25.84	15.48	3635	6252.53	153.19	40.81
3	50.59	37.75	40.05	77.15	49.99	40.05	7208	12397.17	158.22	78.35
4	30.54	18.75	15.48	46.58	25.84	15.48	3635	6252.53	137.19	45.57
5	50.59	37.75	40.05	35.37	23.64	13.56	2393	4115.84	102.54	40.14