COMMITTENTE:

DIREZIONE LAVORI:

APPAL	$_{TAT}$	ORE:
-------	----------	------

PROGETTAZIONE:	PROGETTISTA:	DIRETTORE DELLA PROGETTAZIONE
RAGGRUPPAMENTO TEMPORANEO PROGETTISTI	Ing. Fabio RIZZO	Ing. Piergiorgio GRASSO
ENGINEERING INTEGRA RIF		Responsable integrazione fra le varie prestazioni specialistiche

PROGETTO ESECUTIVO

ITINERARIO NAPOLI – BARI RADDOPPIO TRATTA CANCELLO-BENEVENTO II LOTTO FUNZIONALE FRASSO TELESINO – VITULANO 1° LOTTO FUNZIONALE FRASSO TELESINO- TELESE

NV09 - NUOVA VIABILITA DI ACCESSO AREA DI SOCCORSO KM 25+256 Relazione di calcolo Muri di Sostegno in c a

	APPALTATORE							SCALA:
IM Z	PRESA PIZZAROTTI & C. S.p. JH DISETT GREJECNISO Datz Ing. S. Del Balzo 23/06/2020	M.						-
СОМ	MESSA LOTTO FAS	E ENTE	TIPO DOC	. OPERA/	DISCIPLIN	A PROC	GR. RE	V .
I F	2 6 1 2 E	ZZ	CL	NV	9 0 0	0 0	1 A	
Rev.	Descrizione	Redatto	Data	Verificato	Data	Approvato	Data	Autorizzato Data

Rev.	Descrizione	Redatto	Data	Verificato	Data	Approvato	Data	Autorizzato Data
Α	Emissione	A. LopProto	23/06/2020	A. Fernandez	23/06/2020	P. Grasso	23/06/2020	Ing. Fabio Rizzo
		JA.		4		4		18-000
				hard-liberary				18 Dan 31
								NOF PARTY NOT
								1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
								Will be ago Unite
								23/06/2020

File: IF26.1.2.E.ZZ.CL.NV.09.0.0.001.A.doc n. Elab.:

SALCEF LEGSNEY-STRUME	ITINERARIO NAPOLI – BARI RADDOPPIO TRATTA CANCELLO-BENEVENTO II LOTTO FUNZIONALE FRASSO TELESINO – VITULANO 1° LOTTO FUNZIONALE FRASSO TELESINO – TELESE PROGETTO ESECUTIVO					_
Relazione di Calcolo Muri di Sostegno in c.a. NV09	COMMESSA IF26	LOTTO 12 E ZZ	CODIFICA	DOCUMENTO NV0900 001	REV.	FOGLIO 2 di 101

Indice

1 (GENERALITA'	5
1.1	DESCRIZIONE DELL'OPERA	5
1.2	UNITA' DI MISURA	7
2 N	NORMATIVA DI RIFERIMENTO	8
2.1	ELABORATI DI RIFERIMENTO	g
3 N	MATERIALI	10
3.1	CALCESTRUZZO PER PALI E CORDOLI	11
3.2		
3.3	CALCESTRUZZO PER FONDAZIONE	13
3.4	CALCESTRUZZO MAGRO	14
3.5	ACCIAIO IN BARRE A.M	14
3.6	CLASSI DI ESPOSIZIONE E COPRIFERRI	15
4 (CARATTERIZZAZIONE GEOTECNICA	18
4.1	MODELLO GEOTECNICO DI PROGETTO	18
4.2	CAPACITÀ PORTANTE	19
4.3	COEFFICIENTE A	19
5 C	CARATTERIZZAZIONE SISMICA	20
5.1	CATEGORIA DI SOTTOSUOLO E CATEGORIA TOPOGRAFICA	23
6 <i>A</i>	ANALISI DEI CARICHI	24
6.1	PESO PROPRIO (COND. DI CARICO 1)	24
6.2	AZIONE DEL SOVRACCARICO A TERGO DEL MURO (COND. DI CARICO 5)	24
6.3	SPINTA DEL TERRENO IN CONDIZIONI STATICHE (COND. DI CARICO 3)	24
6	3.3.1 SPINTA DEL TERRENO IN CONDIZIONI STATICHE (MURO SU FONDAZIONE DIRETTA)	24
6	S.3.2 SPINTA DEL TERRENO IN CONDIZIONI STATICHE (MURO SU PALI)	25
6.4	SPINTA IN PRESENZA DI FALDA (COND. DI CARICO 4)	26
6.5	SPINTA DEL TERRENO IN CONDIZIONI SISMICHE (COND. DI CARICO 5)	26
6	6.5.1 SPINTA DEL TERRENO IN CONDIZIONI SISMICHE (MURO SU FONDAZIONE DIRETTA)	26

Chelle ITINERA SALCEF MEGSNERATRITIEF	ITINERARIO NAPOLI – BARI RADDOPPIO TRATTA CANCELLO-BENEVENTO II LOTTO FUNZIONALE FRASSO TELESINO – VITULANO 1° LOTTO FUNZIONALE FRASSO TELESINO – TELESE PROGETTO ESECUTIVO					
Relazione di Calcolo Muri di Sostegno in c.a. NV09	COMMESSA IF26	LOTTO 12 E ZZ	CODIFICA CL	DOCUMENTO NV0900 001	REV.	FOGLIO 3 di 101

Relazion	ne di Calcolo Muri di Sostegno in c.a. NV09	COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
	-	IF26	12 E ZZ	CL	NV0900 001	Α	3 di 101
	2 SPINTA DEL TERRENO IN CONDIZIONI SISI	•	•				
6.6	FORZA DI INERZIA (COND. DI CARICO	•					
6.7	COEFFICIENTI DI ATTRITO STRUTTU	RA-TERRE	NO				28
7 CO	MBINAZIONI DI CARICO						20
7.1	COMBINAZIONI DI CARICO PER MUR						
7.2	COMBINAZIONI DI CARICO PER MUR	u 5U PALI		•••••			35
8 VE	RIFICHE STRUTTURALI						37
8.1	VERIFICHE SLU						37
8.2	VERIFICHE SLE						39
-							
9 CR	ITERI GENERALI DI VERIFICA						
9.1	VERIFICHE DI STABILITA' LOCALE						
9.1.							
9.1.							
9.1.	•						
9.2	CRITERI DI VERIFICA DELLE PALIFIC						
9.3.							
9.3.							
9.3	VERIFICHE DI STABILITA' GLOBALE						
9.3.	3 VERIFICHE IN FASE SISMICA						53
10 RIS	SULTATI ANALISI E VERIFICHE I	MURI					56
10.1	RISULTATI ANALISI E VERIFICHE MU						
	1.1 Modello di calcolo						
	1.2 VERIFICHE GEOTECNICHE						
_	1.3 VERIFICHE STRUTTURALI						_
10.2	RISULTATI ANALISI E VERIFICHE MU						
	2.1 MODELLO DI CALCOLO						
_	2.2 VERIFICHE GEOTECNICHE						_
	2.3 VERIFICHE STRUTTURALI						
10.3	RISULTATI ANALISI E VERIFICHE MU						
	3.1 MODELLO DI CALCOLO	_					_
	3.2 VERIFICHE GEOTECNICHE						
	3.3 VEDIEICHE STRUTTURALI						80

PIZZAROTTI (Ghella itinera salcsf iedsn Parth III III	ITINERARIO NAPOLI – BARI RADDOPPIO TRATTA CANCELLO-BENEVENTO II LOTTO FUNZIONALE FRASSO TELESINO – VITULANO 1° LOTTO FUNZIONALE FRASSO TELESINO – TELESE PROGETTO ESECUTIVO					
Relazione di Calcolo Muri di Sostegno in c.a. NV09	COMMESSA IF26	LOTTO 12 E ZZ	CODIFICA CL	DOCUMENTO NV0900 001	REV.	FOGLIO 4 di 101

10.3.4 VERIFICHE PALI DI FONDAZIONE	82
10.4 RISULTATI ANALISI E VERIFICHE MURI DI TIPO H=5.5	86
10.4.1 MODELLO DI CALCOLO	86
10.4.2 VERIFICHE GEOTECNICHE	87
10.4.3 VERIFICHE STRUTTURALI	88
10.4.4 VERIFICHE PALI DI FONDAZIONE	90
10.5 RISULTATI ANALISI E VERIFICHE MURI DI TIPO H=6.5	94
10.5.1 MODELLO DI CALCOLO	94
10.5.2 VERIFICHE GEOTECNICHE	
10.5.3 VERIFICHE STRUTTURALI	96
10.5.4 VERIFICHE PALI DI FONDAZIONE	98

Ghella innera SALCEF SECSNITATION F	II LOTTO F	IO TRAT UNZION FUNZION	TA CANCEL ALE FRASSO IALE FRASS	LO-BENEVENT O TELESINO – 1 O TELESINO –	VITULAN	
Relazione di Calcolo Muri di Sostegno in c.a. NV09	COMMESSA IF26	LOTTO 12 E ZZ	CODIFICA	DOCUMENTO NV0900 001	REV.	FOGLIO 5 di 101

1 GENERALITA'

Il presente documento si inserisce nell'ambito della redazione degli elaborati tecnici di progetto definitivo del Raddoppio dell'Itinerario Ferroviario Napoli-Bari nella Tratta Cancello-Benevento/ 2° Lotto Funzionale Frasso Telesino – Vitulano.

Le Analisi e Verifiche nel seguito esposte fanno in particolare riferimento ai muri di sostegno in c.a previsti nell'area di soccorso al km 25+150 (imbocco galleria artificiale telese lato Benevento).

1.1 DESCRIZIONE DELL'OPERA

Le opere in questione presentano le principali caratteristiche geometriche riassunte nella tabella seguente (per maggiori dettagli ed una descrizione più completa delle opere si rimanda agli elaborati grafici di progetto):

		FONDA	ZIONE		PALI					
Hparam [m]	Tipo	H [m]	Lf [m]	Disp. Pali	n°pali trasv.	i _{trasv} [m]	i _{long} [m]	D [m]	SEZ. TIPO	
3.00	a Gradoni	0.70	4.25		NON PREVISTI					
4.00	a Gradoni	0.70	5.00		NON PREVISTI				Tipo H=4	
4.50	a Gradoni	1.00	4.00	Allineati	2	2.40	2.40	0.80	Tipo H=4.5	
5.50	a Gradoni	1.10	5.80	Quinconce 2.10x2.40 2.10 2.40 0.80				Tipo H=5.5		
6.50	a Gradoni	1.20	5.80	Quinconce	3.00x3.75	3.00	3.75	0.80	Tipo H=6.5	

Tabella 1 – Caratteristiche geometriche muri di sostegno.

Di seguito si riportano alcune immagini rappresentative delle opere. Per ulteriori dettagli si rimanda agli elaborati grafici di riferimento:

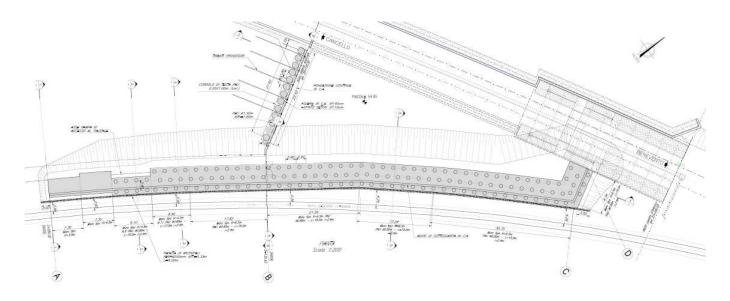


Figura 1 – Inquadramento planimetrico

SALCE SESSIFICATION OF THE SALCE SESSIFICATION OF	II LOTTO F	IO TRAT UNZION FUNZION	TA CANCEL ALE FRASSI IALE FRASS	LO-BENEVENT D TELESINO – SO TELESINO –	VITULAN	_
Relazione di Calcolo Muri di Sostegno in c.a. NV09	COMMESSA IF26	LOTTO 12 E ZZ	CODIFICA	DOCUMENTO NV0900 001	REV.	FOGLIO 6 di 101

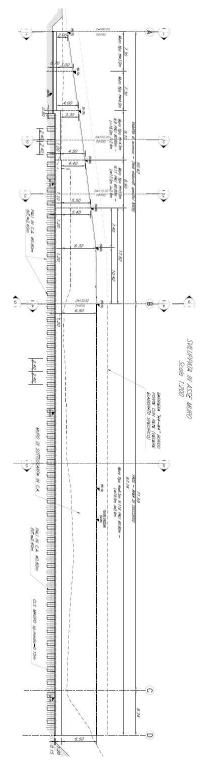


Figura 2 – Sviluppo longitudinale

Nel seguito della presente relazione è affrontato il dimensionamento strutturale e geotecnico dei muri.

Chella innera salcer leasurement	II LOTTO F	IO TRAT UNZIONA FUNZION	TA CANCEL ALE FRASS IALE FRASS	LO-BENEVENT D TELESINO – O TELESINO –	VITULAN	
Relazione di Calcolo Muri di Sostegno in c.a. NV09	COMMESSA IF26	LOTTO 12 E ZZ	CODIFICA CL	DOCUMENTO NV0900 001	REV.	FOGLIO 7 di 101

1.2 UNITA' DI MISURA

Nel seguito si adotteranno le seguenti unità di misura:

• lunghezze ⇒ m, mm

• carichi \Rightarrow kN, kN/m², kN/m³

azioni di calcolo ⇒ kN, kNm
 tensioni ⇒ N/mm²

SALCE SESSIFICATION OF THE SALCE SESSIFICATION OF	II LOTTO F	IO TRAT UNZION FUNZION	TA CANCEL ALE FRASSO IALE FRASS	LO-BENEVENT D TELESINO – SO TELESINO –	VITULAN	
Relazione di Calcolo Muri di Sostegno in c.a. NV09	COMMESSA IF26	LOTTO 12 E ZZ	CODIFICA CL	DOCUMENTO NV0900 001	REV.	FOGLIO 8 di 101

2 NORMATIVA DI RIFERIMENTO

Di seguito si riporta l'elenco generale delle Normative Nazionali ed internazionali vigenti alla data di redazione del presente documento, quale riferimento per la redazione degli elaborati tecnici e/o di calcolo dell'intero progetto nell'ambito della quale si inserisce l'opera oggetto della presente relazione:

- Rif. [1] Ministero delle Infrastrutture, DM 14 gennaio 2008, «Nuove Norme Tecniche per le Costruzioni»
- Rif. [2] Ministero delle Infrastrutture e Trasporti, circolare 2 febbraio 2009, n. 617 C.S.LL.PP., «Istruzioni per l'applicazione delle Nuove norme tecniche per le costruzioni di cui al decreto ministeriale 14 gennaio 2008»
- Rif. [3] Manuale di Progettazione delle Opere Civili: PARTE I / Aspetti Generali (RFI DTC SI MA IFS 001 A)
- Rif. [4] Manuale di Progettazione delle Opere Civili: PARTE II Sezione 1 / Ambiente e Geologia (RFI DTC SI AG MA IFS 001 A rev 30/12/2016)
- Rif. [5] Manuale di Progettazione delle Opere Civili: PARTE II Sezione 2 / Ponti e Strutture (RFI DTC SI PS MA IFS 001 A– rev 30/12/2016)
- Rif. [6] Manuale di Progettazione delle Opere Civili: PARTE II Sezione 3 / Corpo Stradale (RFI DTC SI CS MA IFS 001 A– rev 30/12/2016)
- Rif. [7] Manuale di Progettazione delle Opere Civili: PARTE II Sezione 4 / Gallerie (RFI DTC SI GA MA IFS 001 A– rev 30/12/2016)
- Rif. [8] Manuale di Progettazione delle Opere Civili: PARTE II Sezione 5 / Prescrizioni per i Marciapiedi e le Pensiline delle Stazioni Ferroviarie a servizio dei Viaggiatori (RFI DTC SI CS MA IFS 002 A– rev 30/12/2016)
- Rif. [9] Manuale di Progettazione delle Opere Civili: PARTE II Sezione 6 / Sagome e Profilo minimo degli ostacoli (RFI DTC SI CS MA IFS 003 A– rev 30/12/2016)
- Rif. [10] Regolamento (UE) N.1299/2014 della Commissione del 18 Novembre 2014 relativo alle specifiche tecniche di interoperabilità per il sottosistema "infrastruttura" del sistema ferroviario dell'Unione europea
- Rif. [11] Eurocodice 1 Azioni sulle strutture, Parte 1-4: Azioni in generale Azioni del vento (UNI EN 1991-1-4)
- Rif. [12] UNI 11104: Calcestruzzo : Specificazione, prestazione, produzione e conformità Istruzioni complementari per l'applicazione della EN 206-1

Chella Ininera SALCEF LEGS NEWSTRATELINE	II LOTTO F	IO TRATI UNZIONA FUNZION	TA CANCEL ALE FRASSI ALE FRASS	LO-BENEVENT D TELESINO – SO TELESINO –	VITULAN	
Relazione di Calcolo Muri di Sostegno in c.a. NV09	COMMESSA IF26	LOTTO 12 E ZZ	CODIFICA	DOCUMENTO NV0900 001	REV.	FOGLIO 9 di 101

2.1 ELABORATI DI RIFERIMENTO

Costituiscono parte integrante di quanto esposto nel presente documento, l'insieme degli elaborati di progetto specifici relativi all'opera in esame e riportati in elenco elaborati.

IF26 12EZZPA NV09 00001 Planimetria generale

IF26 12EZZBA NV09 00001 Pianta e sviluppata muro e paratia micropali

IF26 12EZZWA NV09 00001 Sezioni trasversali

IF26 12EZZBB NV09 00001 Muro di sostegno - Carpenteria

Ghella Immera SALCEF LEGSN THATTH IT	II LOTTO F	IO TRAT UNZION FUNZION	TA CANCEL ALE FRASSI IALE FRASS	LO-BENEVENT O TELESINO – GO TELESINO –	VITULAN	-
Relazione di Calcolo Muri di Sostegno in c.a. NV09	COMMESSA IF26	LOTTO 12 E ZZ	CODIFICA	DOCUMENTO NV0900 001	REV.	FOGLIO 10 di 101

3 MATERIALI

Nella Tabella che segue si riportano in sintesi le Classi dei materiali impiegati per l'analisi strutturale:

Tabella 2 – Lista Materiali

ELEMENTO	CALCESTRUZZO
Elevazioni	C32/40
Pali di Fondazione	C25/30
Fondazione	C25/30
Magroni di pulizia	C12/15
ELEMENTO	ACCIAIO IN BARRE A.M.
Tutti	B450C

Le specifiche tecniche dei materiali sopra descritti sono ricavate nei seguenti paragrafi, dove il riferimento principale per le verifiche SLE è stato assunto nelle Prescrizioni del Manuale RFI Parte 2 – Sezione 2 – 2.5.1.8.3.2.1.

SALCE SESSIFICATION OF THE SALCE SESSIFICATION OF	II LOTTO F	IO TRAT UNZIONA FUNZION	TA CANCEL ALE FRASSI IALE FRASS	LO-BENEVENT D TELESINO – SO TELESINO –	VITULAN	
Relazione di Calcolo Muri di Sostegno in c.a. NV09	COMMESSA IF26	LOTTO 12 E ZZ	CODIFICA CL	DOCUMENTO NV0900 001	REV.	FOGLIO 11 di 101

3.1 CALCESTRUZZO PER PALI E CORDOLI

Valore Caratteristico Resistenza Cubica a 28gg:	R _{ck} =	30	N/mm²
Valore Caratteristico Resistenza Cilindrica a 28gg:	f _{ck} =	25	N/mm²
Resistenza a compressione cilindrica media:	$f_{cm} = f_{ck} + 8 =$	33	N/mm²
Resistenza a trazione assiale:	$f_{ctm} = 0.30 * f_{ck}^{2/3} =$	2,56	N/mm²
	$f_{ctk,0,05} = 0,70 * f_{ctm} =$	1,79	N/mm²
Resistenza a trazione per flessione	f_{cfm} = 1.20 * f_{ctm} =	3,07	N/mm²
	$f_{cfk,0,05} = 0.70 * f_{cfm} =$	2,15	N/mm²
Verifiche agli SLU:	γc=	1,50	
Resistenza di calcolo a compressione	f_{cd} = 0,85 * f_{ck}/γ_c =	14,11	N/mm ²
Resistenza di calcolo a trazione diretta	$f_{\text{ctd}} = f_{\text{ctk,0,05}}/\gamma_{\text{c}} =$	1,19	N/mm²
Resistenza di calcolo a trazione per flessione	$f_{ctd,f}$ = 1,20 * f_{ctd} =	1,43	N/mm²
Modulo di Young secante:	$E_{cm} = 22 * [f_{cm}/10]^{0,3} =$	31447	N/mm ²
Modulo di elasticità tangenziale:	$G_{cm} = E / [2(1+v)] =$	13103	N/mm ²
Coefficiente di Poisson:	v=	0,20	
Coefficiente di dilatazione lineare:	α=	0,000010	°C-1
Tensione di aderenza acciaio-calcestruzzo:	η =	1,00	
	f_{bd} = 2,25 * f_{ctk} * η/γ_c =	2,69	N/mm²
Verifiche agli SLE:			
Combinazioni Quasi Permanenti	$\sigma_{\text{cmax,QP}}$ = 0,40 * f _{ck} =	9,96	N/mm ²
Combinazioni Caratteristiche	$\sigma_{\text{cmax,R}}$ = 0,55 * f _{ck} =	13,70	N/mm²
Verifiche a Fessurazione	$\sigma_{\rm t}$ = f _{ctm} / 1.2 =	2.13	N/mm²

Ghella Immera SALCEF LEGSN TASTRUTH	II LOTTO F	IO TRAT UNZIONA FUNZION	TA CANCEL ALE FRASSI IALE FRASS	LO-BENEVENT D TELESINO – O TELESINO –	VITULAN	
Relazione di Calcolo Muri di Sostegno in c.a. NV09	COMMESSA IF26	LOTTO 12 E ZZ	CODIFICA CL	DOCUMENTO NV0900 001	REV.	FOGLIO 12 di 101

3.2 CALCESTRUZZO PER ELEVAZIONE

Valore Caratteristico Resistenza Cubica a 28gg:	R _{ck} =	40	N/mm²
Valore Caratteristico Resistenza Cilindrica a 28gg:	f _{ck} =	32	N/mm ²
Resistenza a compressione cilindrica media:	$f_{cm} = f_{ck} + 8 =$	40	N/mm²
Resistenza a trazione assiale:	$f_{ctm} = 0.30 * f_{ck}^{2/3} =$	3,02	N/mm ²
	$f_{ctk,0,05} = 0,70 * f_{ctm} =$	2,12	N/mm²
Resistenza a trazione per flessione	f_{cfm} = 1.20 * f_{ctm} =	3,63	N/mm ²
	$f_{cfk,0,05} = 0.70 * f_{cfm} =$	2,54	N/mm ²
Verifiche agli SLU:	γ _e =	1,50	
Resistenza di calcolo a compressione	f_{cd} = 0,85 * f_{ck}/γ_c =	18,13	N/mm²
Resistenza di calcolo a trazione diretta	f_{ctd} = $f_{ctk,0,05}/\gamma_c$ =	1,41	N/mm²
Resistenza di calcolo a trazione per flessione	$f_{ctd,f}$ = 1,20 * f_{ctd} =	1,69	N/mm²
Modulo di Young secante:	$E_{cm} = 22 * [f_{cm}/10]^{0,3} =$	33346	N/mm²
Modulo di elasticità tangenziale:	$G_{cm} = E / [2(1+v)] =$	13894	N/mm²
Coefficiente di Poisson:	v=	0,20	
Coefficiente di dilatazione lineare:	α=	0,000010	°C-1
Tensione di aderenza acciaio-calcestruzzo:	η =	1,00	
	f_{bd} = 2,25 * f_{ctk} * η/γ_c =	3,18	N/mm²
Verifiche agli SLE:			
Combinazioni Quasi Permanenti	$\sigma_{\text{cmax,QP}} = 0.40 * f_{\text{ck}} =$	12,80	N/mm²
Combinazioni Caratteristiche	$\sigma_{\text{cmax,R}} = 0,55 * f_{\text{ck}} =$	17,60	N/mm ²
Verifiche a Fessurazione	σ_t = f _{ctm} / 1.2 =	2.52	N/mm ²

Ghella Imera SALCEF ALCENTATHINE	II LOTTO F	IO TRAT UNZIONA FUNZION	TA CANCEL ALE FRASS ALE FRASS	LO-BENEVENT O TELESINO – GO TELESINO –	VITULA	
Relazione di Calcolo Muri di Sostegno in c.a. NV09	COMMESSA IF26	LOTTO 12 E ZZ	CODIFICA CL	DOCUMENTO NV0900 001	REV.	FOGLIO 13 di 101

3.3 CALCESTRUZZO PER FONDAZIONE

Valore Caratteristico Resistenza Cubica a 28gg:	R _{ck} =	30	N/mm²
Valore Caratteristico Resistenza Cilindrica a 28gg:	f _{ck} =	25	N/mm ²
Resistenza a compressione cilindrica media:	$f_{cm} = f_{ck} + 8 =$	33	N/mm²
Resistenza a trazione assiale:	$f_{ctm} = 0.30 * f_{ck}^{2/3} =$	2,56	N/mm²
	$f_{ctk,0,05} = 0,70 * f_{ctm} =$	1,79	N/mm²
Resistenza a trazione per flessione	f _{cfm} = 1.20 * f _{ctm} =	3,07	N/mm²
·	$f_{cfk,0.05} = 0.70 * f_{cfm} =$	2,15	N/mm²
	7-7	,	
Verifiche agli SLU:	γc=	1,50	
Resistenza di calcolo a compressione	f_{cd} = 0,85 * f_{ck}/γ_c =	14,17	N/mm²
Resistenza di calcolo a trazione diretta	$f_{ctd} = f_{ctk,0,05}/\gamma_c =$	1,19	N/mm²
Resistenza di calcolo a trazione per flessione	$f_{ctd,f}$ = 1,20 * f_{ctd} =	1,43	N/mm²
Modulo di Young secante:	E _{cm} = 22 * [f _{cm} /10] ^{0,3} =	31447	N/mm ²
Modulo di elasticità tangenziale:	$G_{cm} = E / [2(1+v)] =$	13103	N/mm²
Coefficiente di Poisson:	v=	0,20	
Coefficiente di dilatazione lineare:	α=	0,000010	°C ⁻¹
Tensione di aderenza acciaio-calcestruzzo:	η =	1,00	
	f_{bd} = 2,25 * f_{ctk} * η/γ_c =	2,69	N/mm²
Verifiche agli SLE:			
Combinazioni Quasi Permanenti	$\sigma_{\text{cmax,QP}} = 0.40 * f_{\text{ck}} =$	10,00	N/mm ²
Combinazioni Caratteristiche	$\sigma_{\text{cmax,R}}$ = 0,55 * f _{ck} =	13,75	N/mm²
Verifiche a Fessurazione	$\sigma_{\rm t}$ = f _{ctm} / 1.2 =	2.13	N/mm²

Ghella imera salse seesn hathing	II LOTTO F	IO TRATI UNZIONA FUNZION	TA CANCEL ALE FRASSO ALE FRASS	LO-BENEVENT D TELESINO – O TELESINO –	VITULA	
Relazione di Calcolo Muri di Sostegno in c.a. NV09	COMMESSA IF26	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO

3.4 CALCESTRUZZO MAGRO

Valore Caratteristico Resistenza Cubica a 28gg: R_{ck} = 12 N/mm²

Valore Caratteristico Resistenza Cilindrica a 28gg: f_{ck} = 15 N/mm²

Resistenza a compressione cilindrica media: f_{cm} = f_{ck} + 8 = 23 N/mm²

3.5 ACCIAIO IN BARRE A.M.

Tensione caratteristica di rottura (frattile 5%) f_{tk} = 540 N/mm²

Tensione caratteristica di snervamento(frattile 5%) f_{yk} = 450 N/mm²

Fattore di sovraresistenza $K = f_{tk}/f_{yk}$ = 1,20 N/mm²

Verifiche agli SLU:

Allungamento a rottura $\epsilon_{uk} = 7,50 \quad \%$ $\epsilon_{ud} = 0,9 * \epsilon_{uk} = 6,75 \quad \%$ Coefficiente parziale per le verifiche agli SLU: $\gamma_{s} = 1,15$ Resistenza di calcolo allo SLU: $f_{yd} = f_{yk}/\gamma_{s} = 391,3 \quad N/mm^{2}$ Modulo di elasticità: $E_{f} = 210000 \quad N/mm^{2}$

Verifiche agli SLE:

Combinazioni Caratteristiche σ_{smax} = 0,75 * f_{yk} = 337,5 N/mm²

CHEZZAROTTI C Ghella TIMERA SALCEF SECSNEASTRUTHE	II LOTTO F	IO TRAT UNZIONA FUNZION	TA CANCEL ALE FRASSI ALE FRASS	LO-BENEVENT O TELESINO – SO TELESINO –	VITULA	
Relazione di Calcolo Muri di Sostegno in c.a. NV09	COMMESSA IF26	LOTTO 12 E ZZ	CODIFICA	DOCUMENTO NV0900 001	REV.	FOGLIO 15 di 101

3.6 CLASSI DI ESPOSIZIONE E COPRIFERRI

Con riferimento alle specifiche di cui alla norma UNI 11104, si definiscono di seguito le classe di esposizione del calcestruzzo delle diversi parti della struttura oggetto dei dimensionamenti di cui al presente documento:

Tabella 3 – Classi di esposizione per le diversi parti della struttura

Elemento	Classe CLS	Classe di Esp.ne	Ambiente	Diam.Max Aggregati	Max a/c	Min Cemento	Copriferro
				mm		[kg/mc]	[mm]
Elevazioni	C32/40	XC4	aggressivo	32	0.50	340	40
Fondazione	C25/30	XC2		32	0.60	300	40
Pali di Fondazione	C25/30			25	0.60	300	60

Classe esposizione norma UNI 9858	Classe esposizione norma UNI 11104 UNI EN 206 –1	Descrizione dell'ambiente	Esemplo	Massimo rapporto a/c	Minima Classe di resistenza	Contenuto minimo in aria (%)
1 Assenza	di rischio d	corrosione o attacco	STATE AND GRADE STREET, HOUSE A			
1	Per calcestruzzo privo di ammatura o inseri metallicit. tuttle le esposizioni escetto devo e è gelori disgelo, o attacco chimico. Calcestruzzo non arre sullo con aggressiva. Calcestruzzo con ammatura o inserti metallicità metho ascutto ammetime molto ascutto molto con con con con con con con con con co		Calcestruzzo non armato all'interno di edifici. Calcestruzzo non armato immerso in suolo non aggressivo o in acqua non	80	C 12/15	
Nota - Le cond condizioni riflet	izioni di umidità si n tano quelle dell'ami	iferiscono a quelle presenti nel cop	classificazione dell'ambiente circostante può esser	molti casi su e adeguata	può considen Questo può n	are che tali on essere il
2 a	XC1	Asciutto o permanentemente bagnato.	Interni di edifici con umidità relativa bassa. Calcestruzzo armato ordinario o precompresso con le superfici all'interno di strutture con eccezione delle parti esposte a condensa, o immerse i acqua.	0,60	C 25/30	
2 a	XC2	Bagnato, raramente asciutto.	Parti di strutture di contenimento liquidi, fondazioni. Calcestruzzo armato ordinario o precompresso prevalentemente immerso in acqua o terreno non aggressivo.	0,60	C 25/30	
5 a	XC3	Umidità moderata.	Calcestruzzo armato ordinario o precompresso in esterni con superfici esterne riparate dalla pioggia, o in interni con umidità da moderata ad alta.	0,55	C 28/35	
4 a 5 b	XC4	Ciclicamente asciutto e bagnato.	Calcestruzzo armato ordinario o precompresso in esterni con superfici soggette a alternanze di asciutto ed umido. Calcestruzzi a vista in ambienti urbani. Superfici a contatto con l'acqua non comprese nella classe XC2.	0,50	C 32/40	
3 Corrosi	one indotta d	a cloruri esclusi quelli	provenenti dall'acqua di mare			
5 a	XD1	Umidità moderata.	Calcestruzzo armato ordinario o precompresso in superfici o parti di ponti e viadotti esposti a spruzzi d'acqua contenenti cloruri. Calcestruzzo armato ordinario o	0,55	C 28/35	
4 a 5 b	XD2	Bagnato, raramente asciutto.	precompresso in elementi strutturali totalmente immersi in acqua anche industriale contenete cloruri (Piscine).	0,50	C 32/40	
5 c	XD3	Ciclicamente bagnato e asciutto.	Calcestruzzo armato ordinario o precompresso, di elementi strutturali direttamente soggetti agli agenti disgelanti o agli spruzzi contenenti agenti disgelanti. Calcestruzzo armato ordinario o precompresso, elementi con una auperticio elimente acqua contenente coloru el altare seposta all'ana. Parti di ponti, pavimentazioni e parcheggi per auto.	0,45	C 35/45	

Classe esposizione norma UNI 11104 UNI EN 206 -1	Descrizione dell'ambiense	Esemplo	Massimo rapporto a/c	Minima Classe di resistenza	Contenuto minimo in aria (%)
one indotta	da cloruri presenti nell'	acqua di mare	-		
XS1	Esposto alla salsedine marina ma non direttamente in contatto con l'acqua di mare.	Calcestruzzo armato ordinario o precompresso con elementi strutturali sulle coste o in prossimità.	0,50	C 32/40	7
XS2	Permanentemente sommerso.	Calcestruzzo armato ordinario o precompresso di strutture marine completamente immersi in acqua.	0,45	C 35/45	
XS3	Zone esposte agli spruzzi o alle marea.	Calcestruzzo armato ordinario o precompresso con elementi strutturali esposti alla battigia o alle zone soggette agli spruzzi ed onde del mare.	0,45	C 35/45	
dei cicli di g	elo/disgelo con o senza	disgelanti *	NO 50		Sir
XF1	Moderata saturazione d'acqua,in assenza di agente disgelante.	Superfici verticali di calcestruzzo come facciate e colonne esposte alla pioggia ed al gelo. Superfici non verticali e non soggette alla completa saturazione ma esposte al gelo, alla pioggia o all'acqua.	0,50	C 32/40	
XF2	Moderata saturazione d'acqua, in presenza di agente disgelante.	modo sarebbero classificati come XF1 ma che sono esposti direttamente o indirettamente agli agenti disgelanti.	0,50	C 25/30	3,0
XF3	Elevata saturazione d'acqua, in assenza di agente disgelante	Superfici ortzzontali in editici dove l'acqua può accumularsi e che possono essere soggetti ai fenomeni di gelo, elementi soggetti a frequenti bagnature ed esposti al gelo.	0,50	C 25/30	3,0
XF4	Elevata saturazione d'acqua, con presenza di agente antigelo oppure acqua di mare.	Superfici orizzontali quali strade o pavimentazioni esposte al gelo ed ai sali disgelanti in modo diretto o indiretto, elementi esposti al gelo e soggetti a frequenti bagnature in presenza di agenti dispelanti o di acqua di mare.	0,45	C 28/35	3,0
chimico**		7.			
XA1	Ambiente chimicamente debolmente aggressivo secondo il prospetto 2 della UNI EN 206-1	Contenitori di fanghi e vasche di decantazione. Contenitori e vasche per acque reflue.	0,55	C 28/35	
XA2	Ambiente chimicamente moderatamente aggressivo secondo il prospetto 2 della UNI EN 205-1	Elementi strutturali o pareti a contatto di terreni aggressivi.	0,50	C 32/40	
XA3	Ambiente chimicamente fortemente aggressivo secondo il prospetto 2 della UNI EN 206-1	Elementi strutturali o pareti a contatto di acque industriali fortemente aggressive. Contentiori di foraggi, mangimi e liguame provenienti dall'allevamento animale. Torri di raffreddamento di fumi di gas di scarico industriali.	0,45	C 35/45	
	espositione one common	espositione moma unit 1104 unit 104 unit 104 unit 104 unit 104 unit 105 uni	posorizione dell'ambiene unite 320 dei control pre senti nell'acqua di mare Esposto alla salsadine marine ma non direttamente in contatto on lacqua di mare XS1 Permanentemente compresso con elementi strutturali unostato con lacqua di mare. XS2 Permanentemente promonente con el control presenta di giammana. XS3 alce esposte agli spruzzi ci con elementi strutturali uni uni contato con lacqua di mare. XS3 alce esposte agli spruzzi ci con elementi strutturali uni uni contato con lacqua di mare. XS3 alce esposte agli spruzzi ci con elementi strutturali esposte di mare. XS4 alce esposte agli spruzzi ci con elementi strutturali esposte di processo di estruttura marine completamente immensi in acqua. XS4 alce locidi di ge lo disgelo con o senza disgelatti. XS5 alce esposte agli spruzzi ci con discontinato o precompresso con elementi strutturali esposte di agine di agente disgelante. XS5 alce esposte agli spruzzi ci con di processo di acqua, in reserva di agente disgelante. XS6 alcousi, ci preserva di agente disgelanti esposte di agine di	pescrizione dell'ambiene unit 1104 u	pesotitione moma until 1104 unit 104 unit 104 unit 105 un

Figura 3 – Classi di esposizione secondo UNI-EN 206-2006.

SALCEF DESIGNATION OF	ITINERARIO NAPOLI – BARI RADDOPPIO TRATTA CANCELLO-BENEVENTO II LOTTO FUNZIONALE FRASSO TELESINO – VITULANO 1° LOTTO FUNZIONALE FRASSO TELESINO – TELESE PROGETTO ESECUTIVO in c.a. NV09 COMMESSA LOTTO CODIFICA DOCUMENTO REV. FOGL					_
Relazione di Calcolo Muri di Sostegno in c.a. NV09			002111071			FOGLIO 16 di 101

La scelta delle classi di resistenza dei conglomerati riportate in precedenza viene di seguito verificata impiegando il Prospetto 4 della UNI-EN 11104 il quale prescrive, in funzione delle Classi di Esposizione, la resistenza minima delle miscele da adottare:

								Classi di	esposizio	ne								
	Nessun rischio di corrosione dell'armatura	-		e delle arı a carbona	Tiottai o	Corros	sione delle a	rmature ir	ndotta da	cloruri	Attac	co da cicli	di gelo/d	Ambiente aggressivo p attacco chimico				
						Acqui	a di mare	nare Cloruri provenienti da altre fonti				7						
	X0	XC1	XC2	XC3	XC4	XS1	XS2 XS3	XD1	XD2	XD3	XF1	XF2	XF3	XF4	XA1	XA2	XA3	
Massimo rapporto a/c	-	0,	60	0,55	0,50	0,50	0,45	0,55	0,50	0,45	0,50 0,50 0,45				0,55	0,50	0,45	
Minima classe di resistenza ^{*)}	C12/15	C25	5/30	C28/35	C32/40	C32/40	C35/45	C28/35	C32/40	C35/45	32/40	25	30	28/35	28,35	32/40	35/45	
Minimo contenuto in cement (kg/m³)	-	30	00	320	340	340	360	320	340	360	320	34	10	360	320	340	360	
Contenuto minimo in aria (%)												3,0 ^{a)}	ı				
Altri requisiti											Aggregati conformi alla UNI EN 12620 È richiesto l'impiego di di adeguata resistenza al gelo/disgelo cementi resistenti ai solfati							

Figura 4 - Classi di resistenza minima del calcestruzzo secondo UNI - 11104

I copriferri di progetto adottati per le barre di armatura, tengono infine conto inoltre delle prescrizioni di cui alla Tabella C4.1.IV della Circolare n.617 del 02-02-09 redatta dal legislatore per una Vita Nominale di 50 anni:

Tabella 4 – Definizioni del copriferro secondo le NTC08

Vita	Nominale	= 50 anni	barre c.a	. per Piastre	barre c.a. p	er altri Elem.				
							cavi c.a. _l	o. per Piastre		.p. per altri llem.
Cmin	Co	ambiente	C>=Co	Cmin<=C <co< td=""><td>C>=Co</td><td colspan="2">C>=Co Cmin<= C<co c<="" td=""><td colspan="2">C>=Co Cmin<= C<co< td=""><td>Cmin<=C<co< td=""></co<></td></co<></td></co></td></co<>	C>=Co	C>=Co Cmin<= C <co c<="" td=""><td colspan="2">C>=Co Cmin<= C<co< td=""><td>Cmin<=C<co< td=""></co<></td></co<></td></co>		C>=Co Cmin<= C <co< td=""><td>Cmin<=C<co< td=""></co<></td></co<>		Cmin<=C <co< td=""></co<>
25	35	ordinario	15	20	20	25	25	30	30	35
28	40	aggressivo	25	30	30	30 35		40	40	45
35	45	molto aggr.	35	40	40	45	45	50	50	50

Interpolando per la Vita Nominale di Progetto scelta dal Committente e pari a 75 anni, ed eseguendo il calcolo analitico del copriferro minimo, riportato nella tabella che segue, si evince che i copriferri adottati in PE confermano i copriferri già previsti in PD che già ottemperavano alle richieste normative, come di seguito mostrato.

TIMERA SALCEF LEGINTATION OF	II LOTTO F	IO TRAT UNZION FUNZION	TA CANCEL ALE FRASSI IALE FRASS	LO-BENEVENT D TELESINO – O TELESINO –	VITULAN	_
Relazione di Calcolo Muri di Sostegno in c.a. NV09	COMMESSA IF26	LOTTO 12 E ZZ	CODIFICA	DOCUMENTO NV0900 001	REV.	FOGLIO 17 di 101

Elevazioni

fck =	32	N/mm²
AMBIENTE =	2	Aggressivo
Classe di Esposizione =	XC4	
Cmin =	28	N/mm²
Co=	40	N/mm^2
VITA NOMINALE =	75	anni
Copriferro base =	30	mm
Incr. per Resistenza =	0	mm
Incr. per Vita Nominale =	5	mm
Incr. per Controllo Qualità =	0	mm
Copriferro di Calcolo =	35	mm
Copriferro di PE =	40	mm

La scelta di maggiorare il copriferro rispetto ai requisiti richiesti dai criteri di durabilità è stata dettata dal soddisfacimento delle verifiche al fuoco come mostrerà il paragrafo specifico.

Chella TIMERA SALCE SECSNEATHINE	II LOTTO F	IO TRAT UNZIONA FUNZION	TA CANCEL ALE FRASSO ALE FRASS	LO-BENEVENT D TELESINO – SO TELESINO –	VITULAN	
Relazione di Calcolo Muri di Sostegno in c.a. NV09	COMMESSA IF26	LOTTO 12 E ZZ	CODIFICA CL	DOCUMENTO NV0900 001	REV.	FOGLIO 18 di 101

4 CARATTERIZZAZIONE GEOTECNICA

I muri di sostegno sono ubicati lungo una viabilità esterna, tuttavia considerando una sua proiezione sull'asse principale del tracciato, essa ricade in corrispondenza delle chilometriche 25+050 - 25+190 circa del tracciato di progetto, nell'ambito del 1° Lotto Funzionale Frasso - Telese.

La definizione del modello geotecnico di sottosuolo di riferimento per il dimensionamento delle strutture di fondazione dell'opera, è trattato diffusamente nell'ambito del seguente documento di progetto:

Relazione geotecnica generale	F	2	6	1	2	Ε	z	z	R	В	G	Ε	0	0	0	5	0	0	1
Heraziene Beeteerinea Benerale	1 -		_	. –	_	_	_	_		_	_		-			-			I - I

4.1 MODELLO GEOTECNICO DI PROGETTO

Le caratteristiche geotecniche del volume di terreno che interagisce con l'opera sono state desunte tenendo conto di quanto risultante nel Profilo Geotecnico dell'opera e della Caratterizzazione dei Litotipi riportata nella Relazione e geotecnica Generale.

Dall'esame di quanto riportato nella relazione geotecnica di riferimento e in relazione alle progressive in esame, emerge la seguente stratigrafia:

Tabella 5 – Definizioni del copriferro secondo le NTC08

	Stratigrafia					
Unità geotecnica	Profondità [m] da p.c.	Descrizione				
MDL3	0.0÷25.0 Argille limose (Unità di Maddaloni)					
Falda: La quota di falda è situ	ata a circa 4m dal p.c. locale					

Il volume di terreno direttamente interagente con l'opera ha le seguenti proprietà:

Unità MDL3 – Argille limose (Unità di Maddaloni)

 γ = 20.0 kN/m³ peso di volume naturale ϕ ' = 24° angolo di resistenza al taglio

c' = 10 kPa coesione drenata

cu = 160÷220 kPa resistenza al taglio in condizioni non drenate

Nspt = 20÷R numero di colpi da prova SPT Vs = 240÷450 m/s velocità delle onde di taglio

Go = 80÷320 MPa modulo di deformazione a taglio iniziale (a piccole deformazioni)
Eo = 295÷1035 MPa modulo di deformazione elastico iniziale (a piccole deformazioni)

Il terreno di ricoprimento è invece costituito dal riporto stradale avente le seguenti proprietà:

Terreno di Rinfianco: Terreno da rilevato Stradale

SALCE SESSIFICATION OF THE SALCE SESSIFICATION OF	RADDOPPIO TRATTA CANCELLO-BENEVENTO II LOTTO FUNZIONALE FRASSO TELESINO – VITULANO 1° LOTTO FUNZIONALE FRASSO TELESINO – TELESE PROGETTO ESECUTIVO					
Relazione di Calcolo Muri di Sostegno in c.a. NV09	COMMESSA IF26	LOTTO 12 E ZZ	CODIFICA CL	DOCUMENTO NV0900 001	REV.	FOGLIO 19 di 101

 γ_{sat} = 19 kN/m³ peso di volume naturale

c' = 0 kPa coesione drenata

 $\varphi' = 35^{\circ}$ angolo di resistenza al taglio

v = 0.20 coefficiente di Poisson

Eo = 300÷400 MPa modulo di deformazione elastico iniziale

4.2 CAPACITÀ PORTANTE

La capacità portante per le fondazioni dei muri è stata valutata per pali di diametro D=800 mm considerando l'Approccio 2 (A1+M1+R3) di normativa e quindi con i seguenti coefficienti parziali sulle resistenze di base e laterale:

N. 5 verticali di indagine, da cui ξ 3 = 1.5,

FSL = fattore di sicurezza per la portata laterale a compressione (= $\xi_3 \cdot \gamma_s$ = 1.73).

FSL,t = fattore di sicurezza per la portata laterale a trazione (= ξ_3 · γ_{st} = 1.88).

FSB = fattore di sicurezza per la portata di base (= $\xi_3 \cdot \gamma_b$ = 2.03).

Quindi per la verifica di capacità portante del palo si dovranno verificare le seguenti due condizioni:

- N_{max,SLU} < Q_d, la massima sollecitazione assiale (sia statica, che sismica) allo SLU dovrà essere inferiore alla portata di progetto del palo (riportata nelle seguenti tabelle);
- N_{max,SLE} < Q_{II} / 1.25 la massima sollecitazione assiale allo SLE RARA dovrà essere inferiore alla portata laterale limite del palo (Q_{II}, riportata nelle seguenti tabelle) con un fattore di sicurezza di 1.25.

Inoltre si è considerato:

testa palo a 2 m di profondità da p.c.;

falda a 4 m di profondità da p.c..

4.3 COEFFICIENTE α

Nella Relazione Geotecnica Generale già citata in precedenza, è riportata la valutazione del parametro alfa (α) per le varie situazioni stratigrafiche caratteristiche del tracciato, tra cui l'area interessata dalla realizzazione dell'opera in esame; in funzione dei risultati ottenuti si è ritenuto di assumere, ai fini progettuali, un valore del coefficiente α pari a **1.8m.**

TIMERA SALCEF MESSATRATRITUS	II LOTTO F	IO TRAT UNZIONA FUNZION	TA CANCEL ALE FRASSI IALE FRASS	LO-BENEVENT D TELESINO – O TELESINO –	VITULAN	
Relazione di Calcolo Muri di Sostegno in c.a. NV09	COMMESSA IF26	LOTTO 12 E ZZ	CODIFICA	DOCUMENTO	REV.	FOGLIO 20 di 101

5 CARATTERIZZAZIONE SISMICA

Nel seguente paragrafo è riportata la valutazione dei parametri di pericolosità sismica necessari per la determinazione delle azioni sismiche di progetto dell'opera cui si riferisce il presente documento, in accordo a quanto specificato dal D.M. 14 Gennaio 2008 e relativa circolare applicativa.

Il tracciato della Linea Ferroviaria si sviluppa per circa 30km, da ovest verso est, attraversando il territorio di diverse località tra cui Dugenta/Frasso (BN), Amorosi (BN), Telese(BN), Solopaca(BN), San Lorenzo Maggiore(BN), Ponte(BN), Torrecuso(BN), Vitulano (BN), Benevento – Località Roseto (BN).

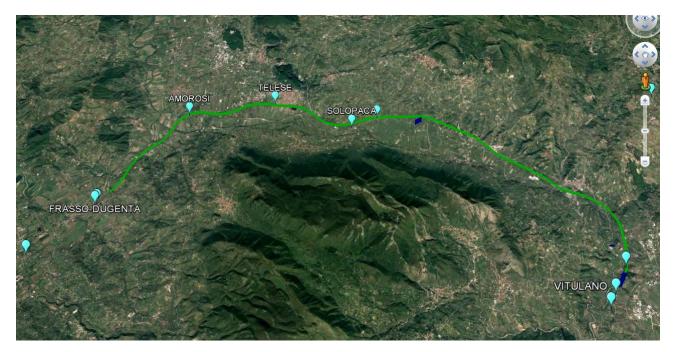


Figura 5 – Configurazione planimetrica tracciato

La Galleria Artificiale Telese, a codice GA02, si sviluppa per circa 3km nei soli territori dei Comuni di Telese e Solopaca (BN). Telese è stato assunto quale rappresentativo per la valutazione delle azioni sismiche di progetto.

Per l'opera in oggetto si considera una vita nominale VN = 75 anni propria della Categoria 2 "Altre opere nuove a velocità V<250 km/h".

Per la definizione della Classe d'Uso si assume l' opera appartenente alla Classe III a cui, per lo Stao Limite di Vita (SLV) è associato un coefficiente d'uso pari a C_u = 1,50.

Il prodotto dei due parametri precedenti danno luogo, come noto, al Periodo di Riferimento:

La Categoria di Sottosuolo è valutata in Relazione Geotecnica secondo le prescrizioni di cui e al punto 3.2.2 del DM 14.01.08.

Ghella Immera SALSEF ALSES NEATHING	II LOTTO F	IO TRAT UNZION FUNZION	TA CANCEL ALE FRASSI IALE FRASS	LO-BENEVENT O TELESINO – GO TELESINO –	VITULA	
Relazione di Calcolo Muri di Sostegno in c.a. NV09	COMMESSA IF26	LOTTO 12 E ZZ	CODIFICA CL	DOCUMENTO NV0900 001	REV.	FOGLIO 21 di 101

Dal documento si evince che l'opera in esame appartiene al

Sottosuolo Tipo C

Tabella 3.2.V – Espressioni di S_S e di C_C

Categoria sottosuolo	\mathbf{S}_{S}	c _c
A	1,00	1,00
В	$1,00 \le 1,40-0,40 \cdot F_o \cdot \frac{a_g}{g} \le 1,20$	$1{,}10\cdot(T_{\mathrm{C}}^{*})^{-0{,}20}$
C	$1,00 \le 1,70 - 0,60 \cdot F_o \cdot \frac{a_g}{g} \le 1,50$	$1,05 \cdot (T_{C}^{*})^{-0.33}$
D	$0.90 \le 2.40 - 1.50 \cdot F_o \cdot \frac{a_g}{g} \le 1.80 \cdot$	$1,25 \cdot (T_{\mathrm{C}}^{*})^{-0,50}$
E	$1,00 \le 2,00 - 1,10 \cdot F_o \cdot \frac{a_g}{g} \le 1,60$	1,15 · (T _C *) ^{-0,40}

Figura 6 – Espressioni di S_s e di C_c

Per la Topografia si assume:

Classe Topografica T1

Tabella 3.2.IV – Categorie topografiche

Categoria	Caratteristiche della superficie topografica
T1	Superficie pianeggiante, pendii e rilievi isolati con inclinazione media i ≤ 15°
T2	Pendii con inclinazione media i > 15°
T3	Rilievi con larghezza in cresta molto minore che alla base e inclinazione media $15^{\circ} \le i \le 30^{\circ}$
T4	Rilievi con larghezza in cresta molto minore che alla base e inclinazione media i > 30°

Figura 7 – Categorie Topografiche

 $\textbf{Tabella 3.2.VI} - \textit{Valori massimi del coefficiente di amplificazione topografica } S_T$

Categoria topografica	Ubicazione dell'opera o dell'intervento	S_T				
T1	-	1,0				
T2	In corrispondenza della sommità del pendio	1,2				
Т3	In corrispondenza della cresta del rilievo	1,2				
T4	In corrispondenza della cresta del rilievo	1,4				

Figura 8 – Valori massimi del coefficiente di amplificazione topografica S_T

I prospetti che seguono inseriscono le scelte su definite nel complesso normativo proprio della NTC08:

SALCE JESS TEST THE	II LOTTO F	IO TRAT UNZIONA FUNZION	TA CANCEL ALE FRASSI IALE FRASS	LO-BENEVENT O TELESINO – ' O TELESINO –	VITULA	
Relazione di Calcolo Muri di Sostegno in c.a. NV09	COMMESSA IF26	LOTTO 12 E ZZ	CODIFICA CL	DOCUMENTO NV0900 001	REV.	FOGLIO 22 di 101

Tabella 6 -

Stato Limite	Pvr	Classe d'Uso	Cu	Note NTC08
	%			
SLO	81	1	0,70	Presenza Occasionale di Persone
SLD	63	2	1,00	Normale affollamento
SLV	10	3	1,50	Affollamenti significativi
SLC	5	4	2,00	Reti Viarie di Tipo A e B DM 5.11.2001

Tabella 7 -

Opera	Vita Nom.	CLASSI D'USO					
	Vn	1	2	3	4		
Provvisoria	<=10	35	35	35	35		
Ordinaria	>=50	35	50	75	100		
Grande Opera	>=100	70	100	150	200		

e riepilogando si assume:

Tabella 8 -

Stato Limite	Pvr	Vn	Cl. d'uso	Cu	Vr = Vn * Cu
	%	anni			anni
SLV	10	75	3	1,50	112,50

La figura che segue mostra le accelerazioni spettrali ed i relativi parametri di governo della località:

SALCEF LEGSN TASTHUM H	ITINERARIO NAPOLI – BARI RADDOPPIO TRATTA CANCELLO-BENEVENTO II LOTTO FUNZIONALE FRASSO TELESINO – VITULANO 1° LOTTO FUNZIONALE FRASSO TELESINO – TELESE PROGETTO ESECUTIVO					
Relazione di Calcolo Muri di Sostegno in c.a. NV09	COMMESSA IF26	LOTTO 12 E ZZ	CODIFICA	DOCUMENTO NV0900 001	REV.	FOGLIO 23 di 101

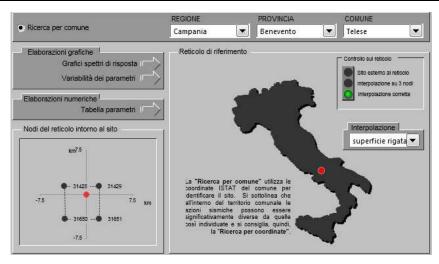


Figura 9 – Località di interesse

SLATO	T _R	a _g	F。	T _c *
LIMITE	[anni]	[g]	[-]	[s]
SLO	68	0.087	2.378	0.317
SLD	113	0.112	2.382	0.332
SLV	1068	0.319	2.344	0.402
SLC	2193	0.416	2.427	0.426

Figura 10 – Parametri Sismici per Telese (BN)

5.1 CATEGORIA DI SOTTOSUOLO E CATEGORIA TOPOGRAFICA

Le Categoria di Sottosuolo e le Condizioni Topografiche sono valutate come descritte al punto 3.2.2 del DM 14.01.08. Per il caso in esame, come riportato all'interno della relazione geotecnica e di calcolo del lotto in esame, risulta una <u>categoria di sottosuolo di tipo C</u> e una <u>classe Topografica T1</u>.

SALCE SESSION OF CHEER STREET SALCE SESSION OF STREET OF SALCE SESSION OF	ITINERARIO NAPOLI – BARI RADDOPPIO TRATTA CANCELLO-BENEVENTO II LOTTO FUNZIONALE FRASSO TELESINO – VITULANO 1° LOTTO FUNZIONALE FRASSO TELESINO – TELESE PROGETTO ESECUTIVO					
Relazione di Calcolo Muri di Sostegno in c.a. NV09	COMMESSA IF26	LOTTO 12 E ZZ	CODIFICA	DOCUMENTO NV0900 001	REV.	FOGLIO 24 di 101

6 ANALISI DEI CARICHI

Si riportano di seguito si riporta la valutazione dei carichi elementari considerati nel dimensionamento della struttura in esame, riferiti generalmente ad una fascia di struttura di dimensione unitaria.

Le condizioni di carico considerate complessivamente, sono quelle riportate nell'elenco seguente:

CONDZIONI DI CARICO ELEMENTARI						
1	Peso Proprio					
2	Spinta terreno					
3	Spinta Falda					
4	Azione sismica					
5	Sovraccarico Accidentale					

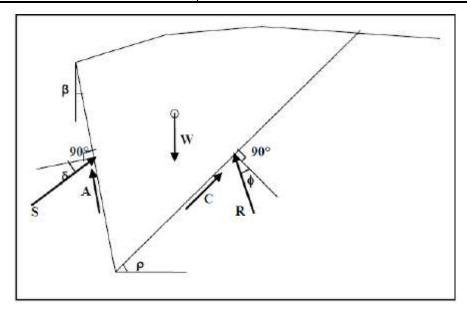
Nel seguito si andranno ad esporre in dettaglio, le valutazioni di calcolo effettuare per ciascuna delle condizioni citate.

6.1 PESO PROPRIO (COND. DI CARICO 1)

Il peso proprio delle strutture è determinato automaticamente dal programma di calcolo, avendo considerato un peso dell'unita di volume del c.a. γ_{cls} = 25 KN/m³.

6.2 AZIONE DEL SOVRACCARICO A TERGO DEL MURO (COND. DI CARICO 5)

Si assume cauelativamente un sovraccarico accidentale pari a 20 kPa uniformemente distribuito sul pendio a monte dell'opera.


6.3 SPINTA DEL TERRENO IN CONDIZIONI STATICHE (COND. DI CARICO 3)

Per la valutazione delle Spinte del terreno sul muro, si considerano delle condizioni di spinta differenti a seconda se le fondazioni dello stesso siano del tipo diretto o indiretto (su pali).

6.3.1 SPINTA DEL TERRENO IN CONDIZIONI STATICHE (MURO SU FONDAZIONE DIRETTA)

Nel caso di muro su fondazione diretta, la mobilitazione della spinta attiva si può considerare sempre verificata. In tal caso le spinte esercitate dal terrapieno e dagli eventuali carichi presenti su di esso sono state valutate con il metodo di Culmann. Il metodo di Culmann adotta le stesse ipotesi di base del metodo di Coulomb. La differenza sostanziale è che mentre Coulomb considera un terrapieno con superficie a pendenza costante e carico uniformemente distribuito (il che permette di ottenere una espressione in forma chiusa per il coefficiente di spinta) il metodo di Culmann consente di analizzare situazioni con profilo di forma generica e carichi sia concentrati che distribuiti comunque disposti. Inoltre, rispetto al metodo di Coulomb, risulta più immediato e lineare tener conto della coesione del masso spingente.

Chella Timera SALCEF MESSINTATION OF	II LOTTO F	IO TRAT UNZION FUNZION	TA CANCEL ALE FRASSO IALE FRASS	LO-BENEVENT D TELESINO – SO TELESINO –	VITULAN	
Relazione di Calcolo Muri di Sostegno in c.a. NV09	COMMESSA IF26	LOTTO 12 E ZZ	CODIFICA CL	DOCUMENTO NV0900 001	REV.	FOGLIO 25 di 101

Il metodo di Culmann, nato come metodo essenzialmente grafico, si è evoluto per essere trattato mediante analisi numerica (noto in questa forma come metodo del cuneo di tentativo). Come il metodo di Coulomb anche questo metodo considera una superficie di rottura rettilinea. I passi del procedimento risolutivo sono i seguenti:

- si impone una superficie di rottura (angolo di inclinazione r rispetto all'orizzontale) e si considera il cuneo di spinta delimitato dalla superficie di rottura stessa, dalla parete su cui si calcola la spinta e dal profilo del terreno;
- si valutano tutte le forze agenti sul cuneo di spinta e cioè peso proprio (W), carichi sul terrapieno, resistenza per attrito e per coesione lungo la superficie di rottura (R e C) e resistenza per coesione lungo la parete (A);
- dalle equazioni di equilibrio si ricava il valore della spinta S sulla parete.

Questo processo viene iterato fino a trovare l'angolo di rottura per cui la spinta risulta massima. La convergenza non si raggiunge se il terrapieno risulta inclinato di un angolo maggiore dell'angolo d'attrito del terreno. Nei casi in cui è applicabile il metodo di Coulomb (profilo a monte rettilineo e carico uniformemente distribuito) i risultati ottenuti col metodo di Culmann coincidono con quelli del metodo di Coulomb. Le pressioni sulla parete di spinta si ricavano derivando l'espressione della spinta S rispetto all'ordinata z. Noto il diagramma delle pressioni è possibile ricavare il punto di applicazione della spinta.

6.3.2 SPINTA DEL TERRENO IN CONDIZIONI STATICHE (MURO SU PALI)

Nel caso di muro su pali, in considerazione della ridotta capacità deformativa dell'opera, si è assunto che agisca la spinta calcolata in condizioni di riposo.

L'espressione della spinta esercitata da un terrapieno, di peso di volume γ , su una parete di altezza H, risulta espressa secondo la teoria di Coulomb dalla seguente relazione (per terreno incoerente):

$$S = \frac{1}{2} \cdot \gamma \cdot H^2 \cdot K_0$$

Il coefficiente di spinta a riposo è espresso dalla relazione:

$$K_0 = 1 - \sin \phi$$

Dove ϕ rappresenta l'angolo d'attrito interno del terreno di rinfianco.

Quindi la pressione laterale, ad una generica profondità z e la spinta totale sulla parete di altezza H valgono:

SALSE LESSNESSELLE	II LOTTO F	IO TRAT UNZIONA FUNZION	TA CANCEL ALE FRASS IALE FRASS	LO-BENEVENT O TELESINO – GO TELESINO –	VITULA	-
Relazione di Calcolo Muri di Sostegno in c.a. NV09	COMMESSA IF26	LOTTO 12 E ZZ	CODIFICA CL	DOCUMENTO NV0900 001	REV.	FOGLIO 26 di 101

$$\sigma = \gamma \cdot z \cdot K_0 + p_v \cdot K_0$$
$$S = \frac{1}{2} \cdot \gamma \cdot H^2 \cdot K_0 + p_v \cdot K_0 \cdot H$$

dove p_v è la pressione verticale agente in corrispondenza della testa del rilevato (intradosso ballast).

6.4 SPINTA IN PRESENZA DI FALDA (COND. DI CARICO 4)

Nel caso in cui a monte della parete sia presente la falda il diagramma delle pressioni sulla parete risulta modificato a causa della sottospinta che l'acqua esercita sul terreno. Il peso di volume del terreno al di sopra della linea di falda non subisce variazioni. Viceversa al di sotto del livello di falda va considerato il peso di volume di galleggiamento:

$$\gamma_a = \gamma_{sat} - \gamma_w$$

dove γ_{sat} è il peso di volume saturo del terreno (dipendente dall'indice dei pori) e γ_{w} è il peso di volume dell'acqua.

Quindi il diagramma delle pressioni al di sotto della linea di falda ha una pendenza minore. Al diagramma così ottenuto va sommato il diagramma triangolare legato alla pressione idrostatica esercitata dall'acqua.

Nel caso in esame, in relazione a quanto specificato al paragrafo 4, il regime di spinta non è influenzato dalla presenza della falda.

6.5 SPINTA DEL TERRENO IN CONDIZIONI SISMICHE (COND. DI CARICO 5)

Per la valutazione delle Spinte del terreno sul muro, si considerano delle condizioni di spinta differenti a seconda se le fondazioni dello stesso siano del tipo diretto o indiretto (su pali).

6.5.1 SPINTA DEL TERRENO IN CONDIZIONI SISMICHE (MURO SU FONDAZIONE DIRETTA)

In condizioni sismiche si sempre la formulazione di Culmann inserendo nell'equazione risolutiva la forza di inerzia del cuneo di spinta. La superficie di rottura nel caso di sisma risulta meno inclinata, rispetto all'orizzontale, della corrispondente superficie in assenza di sisma.

6.5.2 SPINTA DEL TERRENO IN CONDIZIONI SISMICHE (MURO SU PALI)

Analogamente a quanto previsto per il muro su fondazione diretta, in condizioni sismiche si adotta la formulazione di Culmann andando però a considerare la risultante applicata ad H/2 e, come mostrato al paragrafo seguente, un coefficiente sismico raddoppiato rispetto al caso di muro su fondazione diretta.

6.6 FORZA DI INERZIA (COND. DI CARICO 5)

Per la valutazione dell'azione sismica associata ai carichi fissi propri e permanenti /accidentali agenti si utilizza il metodo dell'analisi pseudostatica in cui il sisma è rappresentato da una forza statica equivalente pari al prodotto delle forze di gravità per un opportuno coefficiente sismico kh (coefficiente sismico orizzontale) o Kv (coefficiente sismico verticale) secondo quanto di seguito indicato:

Forza sismica orizzontale Fh = kh W Forza sismica verticale Fv = kv W

SALSE LESSNESSELLE	II LOTTO F	IO TRAT UNZIONA FUNZION	TA CANCEL ALE FRASS IALE FRASS	LO-BENEVENT O TELESINO – GO TELESINO –	VITULA	-
Relazione di Calcolo Muri di Sostegno in c.a. NV09	COMMESSA IF26	LOTTO 12 E ZZ	CODIFICA CL	DOCUMENTO NV0900 001	REV.	FOGLIO 27 di 101

I valori dei coefficienti sismici orizzontali kh e verticale kv, relativi allo stato limite considerato, sono posti pari all'ordinata dello spettro di progetto corrispondente al periodo T=0, per la componente orizzontale, ed a quella corrispondente al periodo proprio T =T0, per la componente verticale.

Nelle verifiche allo stato limite ultimo, i valori dei coefficienti sismici orizzontale k_h e verticale k_v possono essere valutati mediante le espressioni

$$k_h = \beta_m \cdot \frac{a_{max}}{g} \tag{7.11.6}$$

$$k_{\rm v} = \pm 0.5 \cdot k_{\rm h}$$
 (7.11.7)

dove

 a_{max} = accelerazione orizzontale massima attesa al sito;

g = accelerazione di gravità.

In assenza di analisi specifiche della risposta sismica locale, l'accelerazione massima può essere valutata con la relazione

$$a_{\text{max}} = S \cdot a_g = S_S \cdot S_T \cdot a_g \tag{7.11.8}$$

dove

S = coefficiente che comprende l'effetto dell'amplificazione stratigrafica (S_S) e dell'amplificazione topografica (S_T) , di cui al § 3.2.3.2;

 a_g = accelerazione orizzontale massima attesa su sito di riferimento rigido.

Nella precedente espressione, il coefficiente β_m assume i valori riportati nella Tab. 7.11-II.

Per muri che non siano in grado di subire spostamenti relativi rispetto al terreno, il coefficiente β_m assume valore unitario.

Nel caso di muri di sostegno liberi di traslare o di ruotare intorno al piede, si può assumere che l'incremento di spinta dovuta al sisma agisca nello stesso punto di quella statica. Negli altri casi, in assenza di specifici studi si deve assumere che tale incremento sia applicato a metà altezza del muro.

Con riferimento al valore da assegnare al coefficiente β_m , si è fatto riferimento alle indicazioni di cui alla Tabella 7.1.II riportata nella stessa sezione della norma.

Tabella 7.11.II - Coefficienti di riduzione dell'accelerazione massima attesa al sito.

	Categoria di sottosuolo				
	A	B, C, D, E			
	β_m	β_m			
$0.2 \le a_g(g) \le 0.4$	0,31	0,31			
$0.1 \le a_g(g) \le 0.2$	0,29	0,24			
$a_g(g) \le 0,1$	0,20	0,18			

Figura 11 - Coefficienti sismici (estratto D.M. 14/01/2008 p.to 7.11.6.2.1)

Nelle analisi eseguite con il metodo pseudostatico, i valori dei coefficienti sismici orizzontali e verticali, nelle verifiche allo stato limite ultimo, potranno essere assunti come definito al paragrafo 7.11.6.2.1 delle NTC 2008 anche per i muri su pali, con l'avvertenza di sostituire le relazioni 7.11.6 e 7.11.7 delle stesse norme tecniche con le espressioni di seguito riportate:

Ghella Immera SALCEF LEGSN THATTH IT	II LOTTO F	IO TRAT UNZION FUNZION	TA CANCEL ALE FRASSI IALE FRASS	LO-BENEVENT D TELESINO – SO TELESINO –	VITULA	-
Relazione di Calcolo Muri di Sostegno in c.a. NV09	COMMESSA IF26	LOTTO 12 E ZZ	CODIFICA	DOCUMENTO NV0900 001	REV.	FOGLIO 28 di 101

$$k_{h} = 2 \cdot \beta_{m} \cdot S_{T} \cdot S_{S} \cdot \frac{a_{g}}{g}$$

$$k_{v} = \frac{1}{2} \cdot k_{h}$$

Pertanto nei due casi sopra citati, ovvero muro su pali e muro su fondazione diretta, si ha:

Fondazione diretta

$$\begin{array}{lll} ag/g = & 0.319 \\ \beta m & = & 0.310 \\ Ss & = & 1.251 \\ ST & = & 1.00 \\ \end{array} \text{ (cat. C)}$$

$$Kh = \frac{0.124}{\text{KV}} = \frac{0.062}{\text{coefficiente sismico orizzontale}} \text{ coefficiente sismico verticale}$$

Fondazione su pali (RFI DTC SI CS MA IFS 001 A_3.10.3.1)

ag/g = βm = Ss = ST =	0.319 0.310 1.251 1.00	(cat. C)
Kh =	0.247	coefficiente sismico orizzontale
Kv =	0.124	coefficiente sismico verticale

6.7 COEFFICIENTI DI ATTRITO STRUTTURA-TERRENO

Per l'attrito paramento – terreno si utilizza il valore δ = 0.6 ϕ ' in fase statica e δ = 0 in fase sismica. Tuttavia, il software di calcolo utilizzato non consente di differenziare il valore del coefficiente di attrito nelle varie fasi di calcolo. Pertanto è stato utilizzato, per la valutazione dei coefficienti di spinta del terreno di rinterro, cautelativamente δ =0 sia in fase statica che in fase sismica. Tale assunzione, peraltro, non risulta essere particolarmente gravosa in quanto nella maggioranza dei casi esaminati la condizione di carico dimensionante è risultata essere quella sismica.

Per quanto riguarda l'attrito fondazione muro – terreno, in funzione dell'angolo d'attrito del terreno, si sono assunti i seguenti valori:

per
$$\phi < 30^\circ$$
 $\mu = tg \ \phi';$
per $\phi > 35^\circ$ $\mu = 0.85 \ tg \ \phi';$
per $30^\circ \le \phi \le 35^\circ$ μ si ricava per interpolazione lineare

Infine l'adesione tra terra-opera sarà considerata nulla.

Ghella innera salse seesn rathing	II LOTTO F	IO TRAT UNZIONA FUNZION	TA CANCEL ALE FRASS ALE FRASS	LO-BENEVENT O TELESINO – GO TELESINO –	VITULAN	-
Relazione di Calcolo Muri di Sostegno in c.a. NV09	COMMESSA IF26	LOTTO 12 E ZZ	CODIFICA CL	DOCUMENTO NV0900 001	REV.	FOGLIO 29 di 101

7 COMBINAZIONI DI CARICO

Ai fini della determinazione delle sollecitazioni di verifica, le azioni nominali descritte al precedente paragrafo, vanno combinate nei vari Stati Limite di verifica previsti (SLE, SLU, SIS) in accordo a quanto previsto al punto 2.5.3 delle NTC08:

- Combinazione fondamentale, generalmente impiegata per gli stati limite ultimi (SLU):

$$\gamma_{G1} \cdot G_1 + \gamma_{G2} \cdot G_2 + \gamma_{P} \cdot P + \gamma_{O1} \cdot Q_{k1} + \gamma_{O2} \cdot \psi_{O2} \cdot Q_{k2} + \gamma_{O3} \cdot \psi_{O3} \cdot Q_{k3} + \dots$$
 (2.5.1)

 Combinazione caratteristica (rara), generalmente impiegata per gli stati limite di esercizio (SLE) irreversibili, da utilizzarsi nelle verifiche alle tensioni ammissibili di cui al § 2.7:

$$G_1 + G_2 + P + Q_{k1} + \psi_{02} \cdot Q_{k2} + \psi_{03} \cdot Q_{k3} + \dots$$
 (2.5.2)

 Combinazione sismica, impiegata per gli stati limite ultimi e di esercizio connessi all'azione sismica E (v. § 3.2):

$$E + G_1 + G_2 + P + \psi_{21} \cdot Q_{k1} + \psi_{22} \cdot Q_{k2} + \dots$$
 (2.5.5)

dove:

$$E = \pm 1.00 \times E_{Y} \pm 0.3 \times E_{Z}$$

avendo indicato con Ey e Ez rispettivamente le componenti orizzontale e verticale dell'azione sismica.

Ai fini della scelta dei coefficienti parziali da applicare alle azioni (γ),la norma definisce inoltre, per il caso specifiche delle opere di sostegno, due possibili approcci progettuali ovvero:

Approccio 1:

Fase Statica: A1+M1+R1 (STR – Combinazione per le verifiche strutturali)

A2+M2+R1 (GEO – Combinazione per le verifiche geotecniche)

Fase Sismica: 1+M1+R1 (EQK-STR – Combinazione per le verifiche strutturali in fase sismica)

1+M2+R1 (EQK-GEO – Combinazione per le verifiche geotecniche in fase sismica)

Approccio 2:

Fase Statica: A1+M1+R3 (STR / GEO – Combinazione per le verifiche strutturali e geotecniche)

Fase Sismica: 1+M1+R3 (EQK- STR/GEO – Combinazione per le verifiche strutturali e geotecniche in fase sismica)

essendo:

A1/A2: coefficienti amplificativi delle azioni

M1/M2 : coefficienti parziali sulle resistenze dei materiali e del terreno

R1/R2/R3: Coefficienti di sicurezza minimo nei riguardi del generico Stato limite di Verifica.

Ghella innera salse seesn rathing	II LOTTO F	IO TRAT UNZIONA FUNZION	TA CANCEL ALE FRASS ALE FRASS	LO-BENEVENT O TELESINO – GO TELESINO –	VITULAN	_
Relazione di Calcolo Muri di Sostegno in c.a. NV09	COMMESSA IF26	LOTTO 12 E ZZ	CODIFICA CL	DOCUMENTO NV0900 001	REV.	FOGLIO 30 di 101

Tali coefficienti sono definite nelle apposite tabelle definite in normativa e che nel seguito si riportano per completezza espositiva:

Tabella 6.5.I - Coefficienti parziali y per le verifiche agli stati limite ultimi STR e GEO di muri di sostegno

VERIFICA	COEFFICIENTE PARZIALE (R1)	COEFFICIENTE PARZIALE (R2)	COEFFICIENTE PARZIALE (R3)
Capacità portante della fondazione	$\gamma_{R} = 1.0$	$\gamma_{R} = 1.0$	$\gamma_{R} = 1.4$
Scorrimento	$\gamma_{\mathbb{R}} = 1.0$	$\gamma_{R} = 1.0$	$\gamma_{R} = 1.1$
Resistenza del terreno a valle	$y_R = 1.0$	$\gamma_{R} = 1.0$	$\gamma_{R} = 1.4$

Tabelle coefficienti parziali sulle azioni e sui parametri di resistenza del terreno (DM 14.01.08)

Tabella 5.1.V – Coefficienti parziali di sicurezza per le combinazioni di carico agli SLU

		Coefficiente	EQU ⁽¹⁾	A1 STR	A2 GEO
Carichi permanenti	favorevoli sfavorevoli	γ _{G1}	0,90 1,10	1,00 1,35	1,00 1,00
Carichi permanenti non strutturali ⁽²⁾	favorevoli sfavorevoli	γ _{G2}	0,00 1,50	0,00 1,50	0,00 1,30
Carichi variabili da traffico	favorevoli sfavorevoli	γο	0,00 1,35	0,00 1,35	0,00 1,15
Carichi variabili	favorevoli sfavorevoli	γQi	0,00 1,50	0,00 1,50	0,00 1,30
Distorsioni e presollecitazioni di progetto	favorevoli sfavorevoli	γ ε1	0,90 1,00 ⁽³⁾	1,00 1,00 ⁽⁴⁾	1,00 1,00
Ritiro e viscosità, Variazioni termiche, Cedimenti vincolari	favorevoli sfavorevoli	$\gamma_{\epsilon 2}, \gamma_{\epsilon 3}, \gamma_{\epsilon 4}$	0,00 1,20	0,00 1,20	0,00 1,00

⁽¹⁾ Equilibrio che non coinvolga i parametri di deformabilità e resistenza del terreno; altrimenti si applicano i valori di GEO.

⁽²⁾ Nel caso in cui i carichi permanenti non strutturali (ad es. carichi permanenti portati) siano compiutamente definiti si potranno adottare gli stessi coefficienti validi per le azioni permanenti.

^{(3) 1,30} per instabilità in strutture con precompressione esterna

^{(4) 1,20} per effetti locali

SALCEF DESIGNATION OF	II LOTTO F	IO TRAT UNZIONA FUNZION	TA CANCEL ALE FRASSO IALE FRASS	LO-BENEVENT O TELESINO – SO TELESINO –	VITULAN	
Relazione di Calcolo Muri di Sostegno in c.a. NV09	COMMESSA IF26	LOTTO 12 E ZZ	CODIFICA CL	DOCUMENTO NV0900 001	REV.	FOGLIO 31 di 101

Tabella 5.1.VI - Coefficienti ₩ per le azioni variabili per ponti stradali e pedonali

Azioni	Gruppo di azioni (Tabella 5.1.IV)	Coefficiente \mathbf{\psi}_0 di combinazione	Coefficiente Ψ 1 (valori frequenti)	Coefficiente ψ (valori quasi permanenti)
	Schema 1 (Carichi tandem)	0,75	0,75	0,0
	Schemi 1, 5 e 6 (Carichi distribuiti	0,40	0,40	0,0
	Schemi 3 e 4 (carichi concentrati)	0,40	0,40	0,0
Azioni da traffico	Schema 2	0,0	0,75	0,0
(Tabella 5.1.IV)	2	0,0	0,0	0,0
	3	0,0	0,0	0,0
	4 (folla)	(1446)	0,75	0,0
	5	0,0	0,0	0,0
Vento q₅	Vento a ponte scarico SLU e SLE Esecuzione	0,6 0,8	0,2	0,0 0,0
	Vento a ponte carico	0,6		
N	SLU e SLE	0,0	0,0	0,0
Neve q_5	esecuzione	0,8	0,6	0,5
Temperatura	Tk	0,6	0,6	0,5

Tabella 6.2.II - Coefficienti parziali per i parametri geotecnici del terreno

aue	на 6.2.11 – Соедистени ра	rzian per i paramenti geolecnici dei	terreno		
	PARAMETRO	GRANDEZZA ALLA QUALE	COEFFICIENTE	(M1)	(M2)
		APPLICARE IL	PARZIALE		
		COEFFICIENTE PARZIALE	γ_{M}		
	l'angente dell'angolo di esistenza al taglio	tan ϕ'_k	$\gamma_{\phi'}$	1,0	1,25
(Coesione efficace	c'k	γc′	1,0	1,25
K	Resistenza non drenata	Cuk	γ _{cu}	1,0	1,4
I	Peso dell'unità di volume	γ	γ_{γ}	1,0	1,0

Nel caso in esame si opererà utilizzando l'APPROCCIO 2.

Per quanto riguardo i coefficienti di combinazione Ψ delle azioni accidentali, nel caso in esame quelli legati al sovraccarico stradale, è stato posto :

Ψ o = Ψ_1 =0.40 e Ψ_2 = 0 (0.20 in condizioni sismiche)

In definitiva, sono state analizzate un totale di 15 Combinazioni di calcolo che diventano 11 nel caso di muri di sostegno su pali in quanto le combinazioni di tipo EQU perdono di significato.

Di seguito, si riporta un dettaglio dei coefficienti parziale e di combinazione considerati per le diverse azioni presenti in ciascuna delle combinazioni di Calcolo esaminate.

Chella Ininera SALCEF LEGS NEASTHITHE	II LOTTO F	IO TRAT UNZIONA FUNZION	TA CANCEL ALE FRASS IALE FRASS	LO-BENEVENT D TELESINO – O TELESINO –	VITULAN	
Relazione di Calcolo Muri di Sostegno in c.a. NV09	COMMESSA IF26	LOTTO 12 E ZZ	CODIFICA CL	DOCUMENTO NV0900 001	REV.	FOGLIO 32 di 101

7.1 COMBINAZIONI DI CARICO PER MURI SU FONDAZIONE DIRETTA

Elenco Combinazioni APPROCCIO 2

C	ombinazi	oni genera	te		
	Comb n*	Caso	Sisma orizzontale	Sisma verticale	Peso muro / terrapieno
N	1	A1-M1	Assente		FAV - FAV
	2	EQU	Assente		FAV - FAV
	3	STAB	Assente		SFAV - SFAV
	4	A1-M1	Assente		FAV - FAV
	5	EQU	Assente		FAV - FAV
	6	STAB	Assente		SFAV - SFAV
	7	A1-M1	Presente	Verticale positivo	SFAV - SFAV
	8	A1-M1	Presente	Verticale negativo	SFAV - SFAV
	9	EQU	Presente	Verticale positivo	FAV - FAV
	10	EQU	Presente	Verticale negativo	FAV - FAV
	11	STAB	Presente	Verticale positivo	SFAV - SFAV
	12	STAB	Presente	Verticale negativo	SFAV - SFAV
	13	SLEQ	Assente	- <u>-</u>	SFAV - SFAV
	14	SLEF	Assente		SFAV - SFAV
٦	15	SLER	Assente		SFAV - SFAV

F/S Effetto dell'azione (FAV: Favorevole, SFAV: Sfavorevole)

γ Coefficiente parziale del'azione

Ψ Coefficiente di combinazione della condizione

Combinazione n°	1	- Caso	$\Delta 1_N 1$	(STD)	
Combinazione n	- 1	- Caso	A I-IVI I	(DIK)	

	S/F	γ	Ψ	γ*Ψ
Peso proprio muro	FAV	1.00	1.00	1.00
Peso proprio terrapieno	FAV	1.00	1.00	1.00
Spinta terreno	SFAV	1.35	1.00	1.35
Combinazione n° 2 - Caso EQU (SLU)				
	S/F	γ	Ψ	γ*Ψ
Peso proprio muro	FAV	0.90	1.00	0.90
Peso proprio terrapieno	FAV	0.90	1.00	0.90
Spinta terreno	SFAV	1.35	1.00	1.35
Combinazione n° 3 - Caso A2-M2 (GEO	-STAB)			
	S/F	γ	Ψ	γ*Ψ
Peso proprio muro	SFAV	1.00	1.00	1.00
Peso proprio terrapieno	SFAV	1.00	1.00	1.00
Spinta terreno	SFAV	1.00	1.00	1.00

Фиzzarotti		II LOTTO I	PIO TRAT FUNZIONA FUNZION	TA CANCEL ALE FRASSI IALE FRASS	LO-BENEVENT O TELESINO – O TELESINO –	VITULAI		
Relazione di Calcolo Muri di	Sostegno in c.a. NV	/09	COMMESSA IF26	LOTTO 12 E ZZ	CODIFICA	DOCUMENTO NV0900 001	REV.	FOGLIO 33 di 101
Combinazione n° 4 - Caso A1-M1	(STR)							
	S/F	γ		Ψ	γ*Ψ			
Peso proprio muro	FAV	1.0		1.00	1.00			
Peso proprio terrapieno	FAV	1.0	0	1.00	1.00			
Spinta terreno	SFAV	1.3	5	1.00	1.35			
Sovraccarico	SFAV	1.3	5	1.00	1.35			
Combinazione n° 5 - Caso EQU (S	LU)							
	S/F	γ		Ψ	γ*Ψ			
Peso proprio muro	FAV	0.9	0	1.00	0.90			
Peso proprio terrapieno	FAV	0.9	0	1.00	0.90			
Spinta terreno	SFAV	1.1	0	1.00	1.10			
Sovraccarico	SFAV	1.3	5	1.00	1.35			
Combinazione n° 6 - Caso A2-M2	(GEO-STAB)							
	S/F	γ		Ψ	γ*Ψ			
Peso proprio muro	SFAV	1.0	0	1.00	1.00			
Peso proprio terrapieno	SFAV	1.0	0	1.00	1.00			
Spinta terreno	SFAV	1.0	0	1.00	1.00			
Sovraccarico	SFAV	1.1	5	1.00	1.15			
Combinazione n° 7 - Caso A1-M1	(STR) - Sisma Vert. posi	<u>itivo</u>						
	S/F	γ		Ψ	γ*Ψ			
Peso proprio muro	SFAV	1.0	0	1.00	1.00			
Peso proprio terrapieno	SFAV	1.0	0	1.00	1.00			
Spinta terreno	SFAV	1.0	0	1.00	1.00			
Sovraccarico	SFAV	1.0	0	0.20	0.20			
Combinazione n° 8 - Caso A1-M1	(STR) - Sisma Vert. neg	<u>ativo</u>						
	S/F	γ		Ψ	γ*Ψ			
Peso proprio muro	SFAV	1.0	0	1.00	1.00			
Peso proprio terrapieno	SFAV	1.0	0	1.00	1.00			
Spinta terreno	SFAV	1.0		1.00	1.00			
Sovraccarico	SFAV	1.0	0	0.20	0.20			
Combinazione n° 9 - Caso EQU (S		<u>/0</u>						
	S/F	γ		Ψ	γ*Ψ			
Peso proprio muro	FAV	1.0		1.00	1.00			
Peso proprio terrapieno	FAV	1.0		1.00	1.00			
Spinta terreno	SFAV	1.0		1.00	1.00			
Sovraccarico	SFAV	1.0	0	0.20	0.20			
Combinazione n° 10 - Caso EQU (· -	<u>ativo</u>						
	S/F	γ		Ψ	γ*Ψ			
Peso proprio muro	FAV	1.0		1.00	1.00			
Peso proprio terrapieno	FAV	1.0		1.00	1.00			
Spinta terreno	SFAV	1.0		1.00	1.00			
Sovraccarico	SFAV	1.0	in	0.20	0.20			

PIZZAROTII () Ghella iinera salcsf iedsatratrumi	II LOTTO F	IO TRAT UNZION FUNZION	TA CANCEL ALE FRASSO ALE FRASS	LO-BENEVENT O TELESINO – O TELESINO –	VITULA	
Relazione di Calcolo Muri di Sostegno in c.a. NV09	COMMESSA IF26	LOTTO 12 E ZZ	CODIFICA CL	DOCUMENTO NV0900 001	REV.	FOGLIO 34 di 101

	S/F	γ	Ψ	γ*
Peso proprio muro	SFAV	1.00	1.00	1.0
Peso proprio terrapieno	SFAV	1.00	1.00	1.0
Spinta terreno	SFAV	1.00	1.00	1.0
Sovraccarico	SFAV	1.00	0.20	0.2
Combinazione n° 12 - Caso A2-M2	2 (GEO-STAB) - Sisma	a Vert. negativo		
	S/F	γ	Ψ	γ*
Peso proprio muro	SFAV	1.00	1.00	1.0
Peso proprio terrapieno	SFAV	1.00	1.00	1.0
Spinta terreno	SFAV	1.00	1.00	1.0
Sovraccarico	SFAV	1.00	0.20	0.2
Combinazione n° 13 - Quasi Perma	anente (SLE)			
	S/F	γ	Ψ	γ*
Peso proprio muro		1.00	1.00	1.0
Peso proprio terrapieno		1.00	1.00	1.0
Spinta terreno		1.00	1.00	1.0
Combinazione n° 14 - Frequente (SLE)			
	S/F	γ	Ψ	γ*
Peso proprio muro		1.00	1.00	1.0
Peso proprio terrapieno		1.00	1.00	1.0
Spinta terreno		1.00	1.00	1.0
Sovraccarico	SFAV	1.00	0.40	0.4
Combinazione n° 15 - Rara (SLE)				
	S/F	γ	Ψ	γ*
Peso proprio muro		1.00	1.00	1.0
Peso proprio terrapieno		1.00	1.00	1.0
Spinta terreno		1.00	1.00	1.0

Chella ininera Salcer LedSNTASTRITIES	II LOTTO F	IO TRAT UNZIONA FUNZION	TA CANCEL ALE FRASSO ALE FRASS	LO-BENEVENT D TELESINO – O TELESINO –	VITULAI	_
Relazione di Calcolo Muri di Sostegno in c.a. NV09	COMMESSA IF26	LOTTO 12 E ZZ	CODIFICA	DOCUMENTO	REV.	FOGLIO 35 di 101

7.2 COMBINAZIONI DI CARICO PER MURI SU PALI

Combinazioni generate								
	Comb n*	Caso	Sisma orizzontale	Sisma verticale	Peso muro / terrapieno			
•	1	A1-M1	Assente		FAV - FAV			
	2	STAB	Assente		SFAV - SFAV			
	3	A1-M1	Assente		FAV - FAV			
	4	STAB	Assente		SFAV - SFAV			
	5	A1-M1	Presente	Verticale positivo	SFAV - SFAV			
	6	A1-M1	Presente	Verticale negativo	SFAV - SFAV			
	7	STAB	Presente	Verticale positivo	SFAV - SFAV			
	8	STAB	Presente	Verticale negativo	SFAV - SFAV			
	9	SLEQ	Assente		SFAV - SFAV			
	10	SLEF	Assente		SFAV - SFAV			
	11	SLER	Assente		SFAV - SFAV			

F/S Effetto dell'azione (FAV: Favorevole, SFAV: Sfavorevole)

γ Coefficiente parziale del'azione

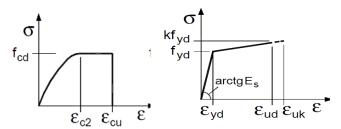
Ψ Coefficiente di combinazione della condizione

Combinazione n° 1 - Caso A1-M1 (STR)				
	S/F	γ	Ψ	γ*Ψ
Peso proprio muro	FAV	1.00	1.00	1.00
Peso proprio terrapieno	FAV	1.00	1.00	1.00
Spinta terreno	SFAV	1.35	1.00	1.35
Combinazione n° 2 - Caso A2-M2 (GEO-	STAB)			
	S/F	γ	Ψ	γ*Ψ
Peso proprio muro	SFAV	1.00	1.00	1.00
Peso proprio terrapieno	SFAV	1.00	1.00	1.00
Spinta terreno	SFAV	1.00	1.00	1.00
Combinazione n° 3 - Caso A1-M1 (STR)				
	S/F	γ	Ψ	γ*Ψ
Peso proprio muro	FAV	1.00	1.00	1.00
Peso proprio terrapieno	FAV	1.00	1.00	1.00
Spinta terreno	SFAV	1.35	1.00	1.35
Sovraccarico	SFAV	1.35	1.00	1.35
Combinazione n° 4 - Caso A2-M2 (GEO-	STAB)			
	S/F	γ	Ψ	γ*Ψ
Peso proprio muro	SFAV	1.00	1.00	1.00
Peso proprio terrapieno	SFAV	1.00	1.00	1.00
Spinta terreno	SFAV	1.00	1.00	1.00
•	SFAV	1.00	1.00	1.00

	RADDO II LOTT 1° LOT	ITINERARIO NAPOLI – BARI RADDOPPIO TRATTA CANCELLO-BENEVENTO II LOTTO FUNZIONALE FRASSO TELESINO – VITULANO 1° LOTTO FUNZIONALE FRASSO TELESINO – TELESE PROGETTO ESECUTIVO					
Relazione di Calcolo Muri d	i Sostegno in c.a. N\	/09 COMMES	SSA LOTTO 12 E ZZ	CODIFICA CL	DOCUMENTO NV0900 001	REV.	FOGLIO 36 di 101
Combinazione n° 5 - Caso A1-M1	(STR) - Sisma Vert. pos	itivo					
	S/F	γ	Ψ	γ*Ψ			
Peso proprio muro	SFAV	1.00	1.00	1.00			
Peso proprio terrapieno	SFAV	1.00	1.00	1.00			
Spinta terreno	SFAV	1.00	1.00	1.00			
Sovraccarico	SFAV	1.00	0.20	0.20			
Combinazione n° 6 - Caso A1-M1	(STR) - Sisma Vert. neg	<u>ativo</u>					
	S/F	γ	Ψ	γ*Ψ			
Peso proprio muro	SFAV	1.00	1.00	1.00			
Peso proprio terrapieno	SFAV	1.00	1.00	1.00			
Spinta terreno	SFAV	1.00	1.00	1.00			
Sovraccarico	SFAV	1.00	0.20	0.20			
Combinazione n° 7 - Caso A2-M2	(GEO-STAB) - Sisma Ve	ert. positivo					
	S/F	γ	Ψ	γ*Ψ			
Peso proprio muro	SFAV	1.00	1.00	1.00			
Peso proprio terrapieno	SFAV	1.00	1.00	1.00			
Spinta terreno	SFAV	1.00	1.00	1.00			
Sovraccarico	SFAV	1.00	0.20	0.20			
C							
Peso proprio muro	(GEO-STAB) - Sisma Vo S/F SFAV	ert. negativo γ 1.00	Ψ 1.00	γ*Ψ 1.00			
	S/F	γ		•			
Peso proprio muro	S/F SFAV	γ 1.00	1.00	1.00			
Peso proprio muro Peso proprio terrapieno Spinta terreno	S/F SFAV SFAV	γ 1.00 1.00	1.00 1.00	1.00 1.00			
Peso proprio muro Peso proprio terrapieno Spinta terreno Sovraccarico	S/F SFAV SFAV SFAV SFAV	γ 1.00 1.00 1.00	1.00 1.00 1.00	1.00 1.00 1.00			
Peso proprio muro Peso proprio terrapieno	S/F SFAV SFAV SFAV SFAV	γ 1.00 1.00 1.00	1.00 1.00 1.00	1.00 1.00 1.00			
Peso proprio muro Peso proprio terrapieno Spinta terreno Sovraccarico	S/F SFAV SFAV SFAV SFAV	γ 1.00 1.00 1.00 1.00	1.00 1.00 1.00 0.20	1.00 1.00 1.00 0.20			
Peso proprio muro Peso proprio terrapieno Spinta terreno Sovraccarico Combinazione n° 9 - Quasi Perma	S/F SFAV SFAV SFAV SFAV SFAV SFAV	γ 1.00 1.00 1.00 1.00	1.00 1.00 1.00 0.20	1.00 1.00 1.00 0.20			
Peso proprio muro Peso proprio terrapieno Spinta terreno Sovraccarico Combinazione n° 9 - Quasi Perma	S/F SFAV SFAV SFAV SFAV SFAV nente (SLE) S/F	γ 1.00 1.00 1.00 1.00	1.00 1.00 1.00 0.20 \textstyle 1.00	1.00 1.00 1.00 0.20 γ*Ψ 1.00			
Peso proprio muro Peso proprio terrapieno Spinta terreno Sovraccarico <u>Combinazione n° 9 - Quasi Perma</u> Peso proprio muro Peso proprio terrapieno	S/F SFAV SFAV SFAV SFAV nente (SLE) S/F	γ 1.00 1.00 1.00 1.00 1.00	1.00 1.00 1.00 0.20 \textstyle 1.00 1.00	1.00 1.00 1.00 0.20 γ*Ψ 1.00 1.00			
Peso proprio muro Peso proprio terrapieno Spinta terreno Sovraccarico Combinazione n° 9 - Quasi Perma Peso proprio muro Peso proprio terrapieno Spinta terreno	S/F SFAV SFAV SFAV SFAV nente (SLE) S/F	γ 1.00 1.00 1.00 1.00 1.00	1.00 1.00 1.00 0.20 \textstyle 1.00 1.00	1.00 1.00 1.00 0.20 γ*Ψ 1.00 1.00			
Peso proprio muro Peso proprio terrapieno Spinta terreno Sovraccarico Combinazione n° 9 - Quasi Perma Peso proprio muro Peso proprio terrapieno Spinta terreno	S/F	γ 1.00 1.00 1.00 1.00 1.00 1.00	1.00 1.00 1.00 0.20 \textstyle 1.00 1.00 1.00	1.00 1.00 1.00 0.20 γ*Ψ 1.00 1.00			
Peso proprio muro Peso proprio terrapieno Spinta terreno Sovraccarico Combinazione n° 9 - Quasi Perma Peso proprio muro Peso proprio terrapieno Spinta terreno Combinazione n° 10 - Frequente (s	S/F	γ 1.00 1.00 1.00 1.00 1.00 1.00	1.00 1.00 1.00 0.20 \textstyle 1.00 1.00 1.00	1.00 1.00 1.00 0.20 γ*Ψ 1.00 1.00 1.00			
Peso proprio muro Peso proprio terrapieno Spinta terreno Sovraccarico Combinazione n° 9 - Quasi Perma Peso proprio muro Peso proprio terrapieno Spinta terreno Combinazione n° 10 - Frequente (3)	S/F	γ 1.00 1.00 1.00 1.00 1.00 1.00 1.00	1.00 1.00 1.00 0.20 \textstyle 1.00 1.00 \textstyle 1.00	1.00 1.00 1.00 0.20			
Peso proprio muro Peso proprio terrapieno Spinta terreno Sovraccarico Combinazione n° 9 - Quasi Perma Peso proprio muro Peso proprio terrapieno Spinta terreno Combinazione n° 10 - Frequente (see proprio muro)	S/F	γ 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.0	1.00 1.00 1.00 0.20 \textstyle 1.00 1.00 \textstyle 1.00 1.00	1.00 1.00 1.00 0.20			
Peso proprio muro Peso proprio terrapieno Spinta terreno Sovraccarico Combinazione n° 9 - Quasi Perma Peso proprio muro Peso proprio terrapieno Spinta terreno Combinazione n° 10 - Frequente (see proprio muro) Peso proprio muro Peso proprio muro Peso proprio terrapieno Spinta terreno	S/F	γ 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.0	1.00 1.00 1.00 0.20 \textstyle 1.00 1.00 1.00 1.00 1.00 1.00	1.00 1.00 1.00 0.20 Y* \P 1.00 1.00 1.00 1.00 1.00			
Peso proprio muro Peso proprio terrapieno Spinta terreno Sovraccarico Combinazione n° 9 - Quasi Perma Peso proprio muro Peso proprio terrapieno Spinta terreno Combinazione n° 10 - Frequente (see proprio muro) Peso proprio terrapieno Spinta terreno Sovraccarico	S/F	γ 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.0	1.00 1.00 1.00 0.20 \textstyle 1.00 1.00 1.00 1.00 1.00 1.00	1.00 1.00 1.00 0.20 Y* \P 1.00 1.00 1.00 1.00 1.00			
Peso proprio muro Peso proprio terrapieno Spinta terreno Sovraccarico Combinazione n° 9 - Quasi Perma Peso proprio muro Peso proprio terrapieno Spinta terreno Combinazione n° 10 - Frequente (see proprio muro) Peso proprio terrapieno Spinta terreno Sovraccarico	S/F	γ 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.0	1.00 1.00 1.00 0.20 \textstyle 1.00 1.00 1.00 1.00 1.00 0.40	1.00 1.00 1.00 0.20 7* \Pmathcal{Y} 1.00 1.00 1.00 1.00 1.00 1.00 0.40			
Peso proprio muro Peso proprio terrapieno Spinta terreno Sovraccarico Combinazione n° 9 - Quasi Perma Peso proprio muro Peso proprio terrapieno Spinta terreno Combinazione n° 10 - Frequente (see proprio muro Peso proprio muro Peso proprio muro Peso proprio muro Peso proprio terrapieno Spinta terreno Sovraccarico Combinazione n° 11 - Rara (SLE)	S/F	γ 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.0	1.00 1.00 1.00 0.20 \textstyle 1.00 1.00 1.00 1.00 1.00 0.40	1.00 1.00 1.00 0.20 γ*Ψ 1.00 1.00 1.00 1.00 1.00 0.40			
Peso proprio muro Peso proprio terrapieno Spinta terreno Sovraccarico Combinazione n° 9 - Quasi Perma Peso proprio muro Peso proprio terrapieno Spinta terreno Combinazione n° 10 - Frequente (3) Peso proprio muro Peso proprio terrapieno Spinta terreno Sovraccarico Combinazione n° 11 - Rara (SLE) Peso proprio muro	S/F	γ 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.0	1.00 1.00 1.00 0.20 \textstyle 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.0	1.00 1.00 1.00 0.20			

Ghella Imera Sales Session of the Internation of th	ITINERARIO NAPOLI – BARI RADDOPPIO TRATTA CANCELLO-BENEVENTO II LOTTO FUNZIONALE FRASSO TELESINO – VITULANO 1° LOTTO FUNZIONALE FRASSO TELESINO – TELESE PROGETTO ESECUTIVO					
Relazione di Calcolo Muri di Sostegno in c.a. NV09	COMMESSA IF26	LOTTO 12 E ZZ	CODIFICA CL	DOCUMENTO NV0900 001	REV.	FOGLIO 37 di 101

8 VERIFICHE STRUTTURALI


I criteri generali di verifica utilizzati per la valutazione delle capacità resistenti delle sezioni, per la condizione SLU, e per le massime tensioni nei materiali nonché per il controllo della fessurazione, relativamente agli SLE, sono quelli definiti al p.to 4.1.2 del DM 14.01.08.

8.1 VERIFICHE SLU

La verifica agli Stai Limite Ultimi per presso-flessione viene condotta attraverso il calcolo dei domini di interazione N-M, ovvero il luogo dei punti rappresentativi di sollecitazioni che portano in crisi la sezione di verifica, secondo i criteri di resistenza da normativa.

Nel calcolo dei domini sono state mantenute le consuete ipotesi, tra cui:

- conservazione delle sezioni piane;
- legame costitutivo del calcestruzzo parabola-rettangolo non reagente a trazione, con plateaux ad una deformazione del $2^{\circ}/_{oo}$ e rottura al $3.5^{\circ}/_{oo}$, ($\sigma_{max} = 0.85 \times f_{ck}/1.5$);
- legame costitutivo dell'armatura d'acciaio elasto-perfettamente plastico con deformazione limite di rottura al 7.5°/o, (σ_{max}= f_{yk} / 1.15)

Legami costitutivi Calcestruzzo - Acciaio.

La verifica a taglio viene sempre eseguita secondo il seguente percorso.

Verifica della richiesta di armatura

$$\label{eq:vrd,c} \mbox{Vrd,c} = & [\ 0.18 \ ^* \ k \ ^* \ (100 \ \rho \ ^* \ fck)^{1/3} \ / \ \gamma \ + \ 0.15 \ \sigma \ _cp] \ ^* \ bw \ ^* \ d$$

$$\mbox{k} = & 1 \ + \ radq(200/d)$$

$$\mbox{v} \ _min = & 0.035 \ ^* \ k^{3/2} \ ^* \ fck^{1/2}$$

$$\mbox{Vrd,min} = & (\mbox{v} \ _min \ + \ 0.15 \ ^* \ \sigma \ _cp) \ ^* \ bw \ ^* \ d$$

Verifica Biella Compressa

$$Vrcd = \alpha_cw^* v1 * fcd * [ctg(alfa)+ctg(teta)] / [1+ ctg^2(teta)] * bw * 0.9*d$$

 $1.0 <= ctg(teta) <= 2.5$ alfa = 90°

Chella Ininera SALSEF LEGSNEATHING	II LOTTO F	IO TRATI UNZIONA FUNZION	TA CANCEL ALE FRASSO ALE FRASS	LO-BENEVENT D TELESINO – SO TELESINO –	VITULAN	
Relazione di Calcolo Muri di Sostegno in c.a. NV09	COMMESSA IF26	LOTTO 12 E ZZ	CODIFICA CL	DOCUMENTO NV0900 001	REV.	FOGLIO 38 di 101

$$\begin{array}{ccc} \alpha_{cw} & \sigma_{cp} \\ 1.000 & \sigma_{cp} <= 0.00 * f_{cd} \\ 1 + \sigma_{cp}/f_{cd} & 0.00*fcd < \sigma_{cp} <= 0.25 * f_{cd} \\ 1.25 & 0.25*fcd < \sigma_{cp} <= 0.50 * f_{cd} \\ 2.50 * (1 - \sigma_{cp}/f_{cd}) & 0.50*fcd < \sigma_{cp} <= 1.00 * f_{cd} \\ \end{array}$$

Verifica Armatura Trasversale

con la limitazione

$$1.00 \le \cot(teta) \le 2.50$$

Per le sezioni circolari le verifiche a taglio vengono svolte adottando:

bw =
$$\Phi / 2 * \sqrt{\pi}$$

d = $(\Phi - 2c) * (\frac{1}{2} + \frac{1}{\pi})$

Verifiche a Torsione

Trcd = 2 *
$$v1$$
 * fcd * A * t * cotg(teta) / [1+cotg²(teta)]
$$v1 = 0.500$$
 t= Ac/u per sezioni piene

Trld = $2*A * \Sigma Al/u * fyd / ctg(teta)$ per le arm. longitudinali

Ghella innera Salse Seasn Rastrum H	ITINERARIO NAPOLI – BARI RADDOPPIO TRATTA CANCELLO-BENEVENTO II LOTTO FUNZIONALE FRASSO TELESINO – VITULANO 1° LOTTO FUNZIONALE FRASSO TELESINO – TELESE PROGETTO ESECUTIVO					
Relazione di Calcolo Muri di Sostegno in c.a. NV09	COMMESSA IF26	LOTTO 12 E ZZ	CODIFICA	DOCUMENTO NV0900 001	REV.	FOGLIO 39 di 101

8.2 VERIFICHE SLE

I criteri di verifica agli Stati Limite di Esercizio sono i seguenti:

Combinazione		Pali	Fondazione	Elevazione	
	fck	25	25	32	N/mm²
	Classe di Esp.	XC2	XC2	XC4	N/mm²
CARATTERISTICHE	sigma_b =	0.55	0.55	0.55	* fck
	sigma_b =	-13.75	-13.75	-17.60	N/mm²
	$\mathbf{w} =$	0.200	0.200	0.200	mm
FREQUENTI	$_{ m W} =$	NA	NA	NA	mm
QUASI PERM.	sigma_b =	0.40	0.40	0.40	* fck
	sigma_b =	-10.00	-10.00	-12.80	N/mm²
	$_{ m W} =$	0.200	0.200	0.200	mm
FORM. FESS.	sigma_b =	NA	NA	NA	N/mm²

I valori riportati in Tabella sono stabiliti nel documento RFI DTC SICS MA IFS 001 A – 2.5.1.8.3.2.4 (*Manuale di progettazione delle opere civili del 30/12/2016*).

In particolare l'apertura convenzionale delle fessure δ_f dovrà rispettare i seguenti limiti:

- $\delta_f \leq w_1 = 0.2 \, mm$ per tutte le strutture in condizioni ambientali aggressive o molto aggressive (così come identificate nel par. 4.1.2.2.4.3 del DM 14.1.2008 Tab 4.1.III), per tutte le strutture a permanente contatto con il terreno e per le zone non ispezionabili di tutte le strutture;
- $\delta_f \leq w_2 = 0.3 \ mm$ per strutture in condizioni ambientali ordinarie

Tabella 4.1.III - Descrizione delle condizioni ambientali

CONDIZIONI AMBIENTALI	CLASSE DI ESPOSIZIONE
Ordinarie	X0, XC1, XC2, XC3, XF1
Aggressive	XC4, XD1, XS1, XA1, XA2, XF2, XF3
Molto aggressive	XD2, XD3, XS2, XS3, XA3, XF4

Figura 12: Tabella 4.1.III - DM 14.01.2008.

In definitiva, nel caso in esame, con riferimento alle indicazioni della tabella di cui in precedenza, si adotta il limite

Ghella innera salse seesn rathing	II LOTTO F	IO TRAT UNZIONA FUNZION	TA CANCEL ALE FRASSI IALE FRASS	LO-BENEVENT O TELESINO – GO TELESINO –	VITULAN	-
Relazione di Calcolo Muri di Sostegno in c.a. NV09	COMMESSA IF26	LOTTO 12 E ZZ	CODIFICA CL	DOCUMENTO NV0900 001	REV.	FOGLIO 40 di 101

sia per le parti in elevazione che per quelle in fondazione, in quanto in entrambi i casi trattasi di strutture a permanente contatto col terreno.

L'approccio adottato, in conclusione, riporta la verifica a fessurazione propria delle condizioni frequenti alla condizione caratteristica, facendo mancare, quindi, la necessità di analizzare le stesse condizioni frequenti.

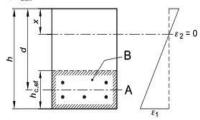
L'analisi delle condizioni permanenti rimane immutato, salvo maggior penalizzazione del limite di apertura.

Analogamente per le armature si impone:

Combinazione		B450C	
	f yk =	450	N/mm²
CARATTERISTICHE	$\sigma_{\rm sr} = 0.75 * \text{fyk} =$	XC2	N/mm²

Il calcolo dell'apertura della fessura è stato condotto con le relazioni:

$$W_k = S_{r,max} * (\varepsilon_{sm} - \varepsilon_{cm})$$


$$s_{r,max} = k_3 * c + k_1 * k_2 * k_4 * \phi_{eq} / \rho_{p,eff}$$

In cui:

$K_3 = 3.400$	
c = 40 mm	ricoprimento dell'armatura;
$k_1 = 0.800$	barre ad aderenza migliorata
$k_2 = 0.500$	distribuzione delle deformazioni per flessione
$K_4 = 0.425$	
$\phi_{eq} = \sum n_i * \phi_i^2 / \sum n_i * \phi_i$	diametro equivalente barre in zona tesa
$ ho_{p,eff} = A_s / A_{c,ef}$	Area efficace di calcestruzzo intorno all'armatura tesa

A Livello del baricentro dell'acciaio

B Area tesa efficace, A_{c.eff}

 $h_{c,ef} = min [2.5*(h-d); (h-x)/3; h/2]$

SALCE SESSIFICATION OF THE SALCE SESSIFICATION OF	II LOTTO F	IO TRAT UNZION FUNZION	TA CANCEL ALE FRASSI IALE FRASS	LO-BENEVENT D TELESINO – SO TELESINO –	VITULAN	
Relazione di Calcolo Muri di Sostegno in c.a. NV09	COMMESSA IF26	LOTTO 12 E ZZ	CODIFICA CL	DOCUMENTO NV0900 001	REV.	FOGLIO 41 di 101

$$(\epsilon_{\text{sm}} - \epsilon_{\text{cm}})$$
 * Es = $\sigma_{\text{s}} - K_{\text{t}}$ * $f_{\text{ct,eff}} / \rho_{p,eff}$ * $(1 + \alpha e * \rho_{p,eff}) >= 0.6 * \sigma_{\text{s}}$

K_t = 0.40 per carichi di lunga durata

 $K_t = 0.60$ per carichi di breve durata ma assunto pari a 0.40 visti i rapporti tra sollecitazioni

permanenti e dovuti a carico mobile

 $\alpha e = Es/Ecm$

 σ_s = tensione nell'armatura tesa in sezione fessurata

 $f_{ct,eff} = f_{ctm} / 1.2$

Ghella Immera SALCEF LEGSN TASTRUTH	II LOTTO F	IO TRAT UNZIONA FUNZION	TA CANCEL ALE FRASSI IALE FRASS	LO-BENEVENT D TELESINO – O TELESINO –	VITULA	
Relazione di Calcolo Muri di Sostegno in c.a. NV09	COMMESSA IF26	LOTTO 12 E ZZ	CODIFICA CL	DOCUMENTO NV0900 001	REV.	FOGLIO 42 di 101

9 CRITERI GENERALI DI VERIFICA

Si descrivono nel seguito i criteri generali seguiti per l'effettuazione delle verifiche di stabilità globale e locale dell'opera di sostegno.

9.1 VERIFICHE DI STABILITA' LOCALE

9.1.1 VERIFICHE ALLO SCORRIMENTO

La verifica allo scorrimento sul piano di posa della Fondazione è condotta rispetto alle combinazioni di SLU del gruppo A2-M2-R2 in condizione statica e 1-M2-R2 in condizione sismica; in particolare è stato verificato il rispetto della seguente condizione:

Fs =
$$(c'xB + Nx tan \mu)/H > 1.0$$

Dove:

N = Risultante delle azioni ortogonali al piano di scorrimento

H = Risultante delle azioni parallele al piano di scorrimento

c' = coesione efficace, posta generalmente pari a zero, salvo particolari condizioni che ne consentano di tenerne conto.

B = Dimensione della Fondazione sul piano di scorrimento.

 μ = Coefficiente di attrito fondazione - terreno , vedere par. 6.7

Tale verifica perde di significato nel caso di muro su pali.

9.1.2 **VERIFICHE A RIBALTAMENTO**

La verifica al ribaltamento rispetto al vertice esterno della fondazione è viene trattata secondo la normativa come uno stato limite di equilibrio come corpo rigido (EQU), utilizzando i relativi coefficienti sulle azioni di cui alla tabella 2.6.1 delle NTC, adoperando i coefficienti parziali del gruppo (M2) per il calcolo delle spinte.

Nella fattispecie, per ciascuna delle combinazioni di Verifica allo SLU statico e sismico rispetto alle quali è prescritta la verifica al ribaltamento, è stata verificata il rispetto della seguente condizione:

$$Fs = M_{STA}/M_{RIB} > 1.0$$

essendo

M_{RIB} = Risultante momenti ribaltanti

M_{STA} = Risultante momenti stabilizzanti

Tale verifica perde di significato nel caso di muro su pali.

Chella Ininera SALSEF LEGSNEATHING	II LOTTO F	IO TRAT UNZIONA FUNZION	TA CANCEL ALE FRASS IALE FRASS	LO-BENEVENT D TELESINO – O TELESINO –	VITULA	
Relazione di Calcolo Muri di Sostegno in c.a. NV09	COMMESSA IF26	LOTTO 12 E ZZ	CODIFICA CL	DOCUMENTO NV0900 001	REV.	FOGLIO 43 di 101

9.1.3 VERIFICA DI CAPACITÀ PORTANTE (CARICO LIMITE FONDAZIONI DIRETTE)

Per la valutazione del carico limite delle fondazioni dirette si utilizza il criterio di Brinch-Hansen di cui nel seguito si riporta la relativa trattazione teorica:

Dette:

c Coesione

ca Adesione lungo la base della fondazione (ca \leq c)

V Azione tagliante

φ Angolo d'attrito

δ Angolo di attrito terreno fondazione

γ Peso specifico del terreno

Kp Coefficiente di spinta passiva espresso da Kp = $tan2(45^{\circ} + \phi/2)$

B Larghezza della fondazione

L Lunghezza della fondazione

D Profondità del piano di posa della fondazione

η inclinazione piano posa della fondazione

P Pressione geostatica in corrispondenza del piano di posa della fondazione

qult Carico ultimo della fondazione

Risulta:

Caso generale

$$q_{ult} = \mathbf{c} \cdot N_{c} \cdot s_{c} \cdot d_{c} \cdot i_{c} \cdot g_{c} \cdot b_{c} + q \cdot N_{q} \cdot s_{q} \cdot d_{q} \cdot i_{q} \cdot g_{q} \cdot b_{q} + 0.5 \cdot B \cdot \gamma \cdot N_{\gamma} \cdot s_{\gamma} \cdot d_{\gamma} \cdot i_{\gamma} \cdot g_{\gamma} \cdot b_{\gamma}$$

Caso di terreno puramente coesivo $\varphi = 0$

$$q_{ult} = 5.14 \cdot c \cdot (1 + s_c + d_c - i_c - g_c - b_c) + q$$

in cui dc, dq e $d\gamma$ sono i fattori di profondità, sc, sq e $s\gamma$ sono i fattori di forma, ic, iq e $i\gamma$ sono i fattori di inclinazione del carico, bc, bq e $b\gamma$, sono i fattori di inclinazione del piano di posa e gc, gq e $g\gamma$ sono fattori che tengono conto del fatto che la fondazione poggi su un terreno in pendenza.

I fattori Nc , Nq , $N\gamma$ sono espressi come:

$$N_q = Kp e^{\pi t g \varphi}$$

$$N_c = (N_q - 1)ctg\varphi$$

$$N_{\gamma} = 1.5(N_q - 1)tg\varphi$$

Ghella innera salcer legsnerathing	ITINERARIO NAPOLI – BARI RADDOPPIO TRATTA CANCELLO-BENEVENTO II LOTTO FUNZIONALE FRASSO TELESINO – VITULANO 1° LOTTO FUNZIONALE FRASSO TELESINO – TELESE PROGETTO ESECUTIVO					
Relazione di Calcolo Muri di Sostegno in c.a. NV09	COMMESSA IF26	LOTTO 12 E ZZ	CODIFICA	DOCUMENTO NV0900 001	REV.	FOGLIO 44 di 101

Fattori di forma

per φ = 0	per ∮ > 0
	$s_c = 1 + \frac{N_q}{N_c} \frac{B}{L}$
$s_c = 0.2 \frac{B}{L}$	$s_q = 1 + \frac{B}{L} t g \phi$
	$s_{\gamma} = 1 - 0.4 \frac{B}{L}$

Fattori di profondità

$$k = \frac{D}{B}$$
 se $\frac{D}{B} \le 1$
 $k = arctg \frac{D}{B}$ se $\frac{D}{B} > 1$

Fattori inclinazione del carico

Indicando con V e H le componenti del carico rispettivamente perpendicolare e parallela alla base e con Af l'area efficace della fondazione ottenuta come Af = B'xL' (B' e L' sono legate alle dimensioni effettive della fondazione B, L e all'eccentricità del carico eB, eL dalle relazioni B' = B-2e_B L' = L- 2e_L) con \Box l'angolo di inclinazione della fondazione espresso in gradi (η =0 per fondazione orizzontale).

I fattori di inclinazione del carico si esprimono come:

per φ = 0		per φ > 0				
$i_c = \frac{1}{2} \left(1 - \sqrt{1 - \frac{H}{A_f c_a}} \right)$	$i_c = i_q - \frac{1 - i_q}{N_q - 1}$					
	i_{q}	$I = \left(1 - \frac{0.5H}{V + A_f c_a \cot \phi}\right)^5$				
	Per η =0	$i_{\gamma} = \left(1 - \frac{0.7H}{V + A_f c_a \cot \phi}\right)^5$				
	Per η >0	$i_{\gamma} = \left(1 - \frac{(0.7 - \eta^{\circ}/450^{\circ})H}{V + A_{f}c_{a}\cot\phi}\right)^{5}$				

Fattori inclinazione del piano di posa della fondazione

per φ = 0	per φ > 0
$b_c = \frac{\eta^o}{147^o}$	$b_c = 1 - \frac{\eta^{\circ}}{147^{\circ}}$ $b_q = e^{-2\eta \eta g \ \phi}$ $b_{\gamma} = e^{-2.7\eta \eta g \ \phi}$

SALCEF DEGENERATION OF THE PROPERTY OF THE PRO	RADDOPPIO TRATTA CANCELLO-BENEVENTO II LOTTO FUNZIONALE FRASSO TELESINO – VITULANO 1° LOTTO FUNZIONALE FRASSO TELESINO – TELESE PROGETTO ESECUTIVO							
Relazione di Calcolo Muri di Sostegno in c.a. NV09	COMMESSA IF26	LOTTO 12 E ZZ	CODIFICA CL	DOCUMENTO NV0900 001	REV.	FOGLIO 45 di 101		

Fattori di inclinazione del terreno

per $\phi = 0$	per φ > 0
$g_c = \frac{\beta^{\circ}}{147^{\circ}}$	$g_c = 1 - \frac{\beta^o}{147^o}$ $g_q = g_\gamma = (1 - 0.5tg\beta)^5$

Per poter applicare la formula di Hansen devono risultare verificate le seguenti condizioni:

$$H < V tg(\delta) + A_f ca$$

 $\beta \le \Phi$
 $i_q, i_\gamma > 0$
 $\beta + \eta \le 90^\circ$

9.2 CRITERI DI VERIFICA DELLE PALIFICATE DI FONDAZIONE

Le verifiche geotecniche delle fondazioni dell'opera constano del dimensionamento geotecnico della palificata di fondazione, in termini di diametro, lunghezza, numero e disposizione dei pali di fondazione.

In particolare si esegue la seguente procedura di calcolo:

- calcolo della quintupla di azioni (F_x, F_y, F_z, M_x ed M_y) ad intradosso zattera di fondazione, risultanti dalle combinazioni di carico su descritte;
- · calcolo dei carichi assiali su ciascun palo;
- dimensionamento dei pali di fondazione ai fini del soddisfacimento delle verifiche di capacità portante degli stessi.

Le opere in oggetto presentano una fondazione indiretta costituita da una platea di fondazione su pali trivellati, il cui valore di progetto R_d della resistenza a carichi assiali dei singoli pali si ottiene a partire dal valore caratteristico R_k applicando i coefficienti parziali γ_R riportati nella tabella successiva:

	Coefficiente Parziale	F	Pali trivellati		
	(γR)	R1 R2 R3			
Base	γь	1.0	1.7	1.35	
Laterale in compressione	γs	1.0	1.45	1.15	
Laterale in trazione	γst	1.0	1.6	1.25	

Tabella 9 - Coefficienti parziali di sicurezza per le resistenze

I coefficienti parziali di sicurezza utilizzati sono: R1 per le combinazioni di carico STR; R2 per le combinazioni di carico GEO; R3 per le combinazioni sismiche.

La resistenza caratteristica R_k del singolo palo è determinata mediante metodi di calcolo analitici, dove R_k è calcolata a partire a da valori caratteristici dei parametri geotecnici e/o mediante l'impiego di relazioni empiriche

Chella Ininera SALCEF LEGS NEASTHINE	RADDOPPIO TRATTA CANCELLO-BENEVENTO II LOTTO FUNZIONALE FRASSO TELESINO – VITULANO 1° LOTTO FUNZIONALE FRASSO TELESINO – TELESE PROGETTO ESECUTIVO							
Relazione di Calcolo Muri di Sostegno in c.a. NV09	COMMESSA IF26	LOTTO 12 E ZZ	CODIFICA CL	DOCUMENTO NV0900 001	REV.	FOGLIO 46 di 101		

che utilizzano direttamente i risultati di prove in situ. La normativa vigente definisce per tali procedure, il valore caratteristico della resistenza $R_{c,k}$ (o $R_{t,k}$) come il valore minore tra quelli ottenuti applicando alle resistenze calcolate $R_{c,calc}$ ($R_{t,calc}$) i fattori di correlazione ξ riportati nella tabella seguente, in funzione del numero n di verticali di indagini:

$$R_{c,k} = Min \left\{ \frac{(R_{c,cal})_{media}}{\xi_3}; \frac{(R_{c,cal})_{min}}{\xi_4} \right\}$$

$$R_{t,k} = Min \left\{ \frac{(R_{t,cal})_{media}}{\xi_3}; \frac{(R_{t,cal})_{min}}{\xi_4} \right\}$$

$$\frac{1}{\xi_3} = \frac{1.70}{1.65} = \frac{1.60}{1.60} = \frac{1.55}{1.50} = \frac{1.45}{1.40} = \frac{1.40}{1.70}$$

$$\frac{1}{\xi_4} = \frac{1.70}{1.55} = \frac{1.48}{1.48} = \frac{1.42}{1.34} = \frac{1.28}{1.21} = \frac{1.21}{1.21}$$

Tabella 10 - Fattori di correlazione ξ

La campagna di indagine condotta in fase di progettazione definitiva permette di assumere in sede di calcolo un fattore di correlazione pari a ξ_3 = 1.5 e ξ_4 =1.34.

9.3.1 CAPACITÀ PORTANTE DEI PALI NEI CONFRONTI DEI CARICHI ASSIALI

Il calcolo della capacità portante dei pali di fondazione è condotto con i coefficienti parziali da applicare alla resistenza laterale e alla punta che tengono conto del fattore di correlazione ξ.

In ciascuna combinazione prevista deve risultare:

$$Q_{Rd} \geq Q_{Sd}$$

dove:

$$Q_{Rd} = \frac{1}{\xi} \left(\frac{Q_s}{R_i^s} + \frac{Q_b}{R_i^b} \right) - W_{palo}$$

Nelle espressioni precedenti, i simboli hanno i seguenti significati:

$$Q_{b} = \frac{\pi \cdot D^{2}}{4} \cdot q_{b}$$

$$Q_s = \pi \cdot D \cdot L \cdot \tau_s$$

D = diametro del palo;

L = lunghezza del palo;

q_b = pressione limite alla base del palo;

 τ_s = pressione laterale lungo il palo;

 R_i e ξ = coefficienti di abbattimento delle resistenze;

Chella Ininera SALSEF LEGSNEATHING	RADDOPPIO TRATTA CANCELLO-BENEVENTO II LOTTO FUNZIONALE FRASSO TELESINO – VITULANO 1° LOTTO FUNZIONALE FRASSO TELESINO – TELESE PROGETTO ESECUTIVO							
Relazione di Calcolo Muri di Sostegno in c.a. NV09	COMMESSA IF26	LOTTO 12 E ZZ	CODIFICA CL	DOCUMENTO NV0900 001	REV.	FOGLIO 47 di 101		

W_{palo} = peso caratteristico del palo al netto del peso del terreno asportato;

- In particolare, per terreni coesivi:

$$\bullet \quad q_b = 9 \cdot c_{ub} + \sigma_{v0}$$

$$_{\bullet} \quad \tau_{s} = \alpha \cdot c_{u}$$

per terreni incoerenti:

$$\bullet \quad q_b = N_q \cdot \sigma_{v0}$$

•
$$q_s = ki \cdot \tan \phi' \cdot \sigma_{v0}$$

dove:

c_u = coesione non drenata;

cub = coesione non drenata alla base del palo;

 σ_{v0} = tensione litostatica totale;

 α = coefficiente empirico;

 $k_i = 0.5;$

 N_{q} = fattore di capacità portante, valutato secondo le indicazioni di Berezantzev, di seguito riportate:

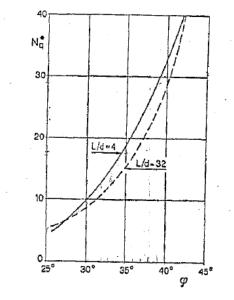


Fig. S - COEFFICIENTI $n_{\rm q}^{\rm z}$ (Berezantzev, 1965), Corrispondenti all'insorgere delle deporma 210NI Plastiche alla "unta

Ghella Immera SALCEF LEGSN TASTRUTH	RADDOPPIO TRATTA CANCELLO-BENEVENTO II LOTTO FUNZIONALE FRASSO TELESINO – VITULANO 1° LOTTO FUNZIONALE FRASSO TELESINO – TELESE PROGETTO ESECUTIVO							
Relazione di Calcolo Muri di Sostegno in c.a. NV09	COMMESSA IF26	LOTTO 12 E ZZ	CODIFICA CL	DOCUMENTO NV0900 001	REV.	FOGLIO 48 di 101		

Figura 13 - Valori del fattore Nq proposti da Berezantzev

Per quanto riguarda il coefficiente empirico α , possono considerarsi i valori della tabella seguente:

c _u (kPa)	α
<=25	0.9
Da 25 a 50	0.8
Da 50 a 75	0.6
>=75	0.4

9.3.2 CAPACITÀ PORTANTE DEI PALI NEI CONFRONTI DEI CARICHI ORIZZONTALI

9.3.2.1 CARICO ORIZZONTALE LIMITE

Il carico orizzontale limite Hlim è stato calcolato in accordo alla teoria proposta da Broms (1984).

Le ipotesi assunte da Broms sono le seguenti:

- Terreno omogeneo;
- Comportamento dell'interfaccia palo-terreno di tipo rigido-perfettamente plastico;
- la forma del palo è ininfluente e l'interazione palo-terreno è determinata solo dalla dimensione
- caratteristica D della sezione del palo (il diametro per sezioni circolari, il lato per sezioni
- quadrate, etc.) misurata normalmente alla direzione del movimento;
- il palo ha comportamento rigido-perfettamente plastico, cioè si considerano trascurabili le
- deformazioni elastiche del palo.

Questa ultima ipotesi comporta che il palo abbia solo moti rigidi finché non si raggiunge il momento di plasticizzazione M_y del palo. A questo punto si ha la formazione di una cerniera plastica in cui la rotazione continua indefinitamente con momento costante.

In accordo alla condizione di vincolo dei pali nei plinti di fondazione, il palo è considerato impedito di ruotare in testa.

9.3.2.2 UNITÀ A COMPORTAMENTO COESIVO

Il diagramma di distribuzione della resistenza p offerta dal terreno lungo il fusto del palo è quello riportato in Figura 14 – (a). Broms adotta al fine delle analisi una distribuzione semplificata (b) con reazione nulla fino a 1.5 ø e costante con valore 9·cu·ø per profondità maggiori.

Chella Ininera SALSEF LEGSNEATHING	RADDOPPIO TRATTA CANCELLO-BENEVENTO II LOTTO FUNZIONALE FRASSO TELESINO – VITULANO 1° LOTTO FUNZIONALE FRASSO TELESINO – TELESE PROGETTO ESECUTIVO							
Relazione di Calcolo Muri di Sostegno in c.a. NV09	COMMESSA IF26	LOTTO 12 E ZZ	CODIFICA CL	DOCUMENTO NV0900 001	REV.	FOGLIO 49 di 101		

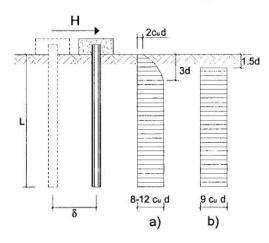


Figura 14 - distribuzione della resistenza offerta dal terreno a carichi orizzontali per pali impediti di ruotare alla testa (Broms, 1984).

I meccanismi di rottura del complesso palo-terreno sono condizionati dalla lunghezza del palo, dal momento di plasticizzazione della sezione e dalla resistenza esercitata dal terreno. I possibili meccanismi di rottura sono riportati nella figura seguente e sono solitamente indicati come "palo corto", "intermedio" e "lungo".

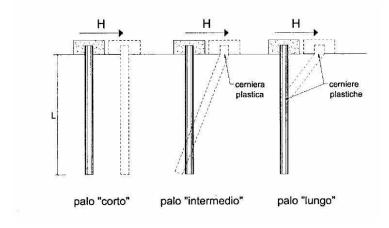


Figura 15 - meccanismi di rottura del complesso palo-terreno per pali impediti di ruotare alla testa soggetti a carichi orizzontali (Broms, 1984).

Facendo ricorso a semplici equazioni di equilibrio ed imponendo la formazione di una cerniera plastica nelle sezioni che raggiungono un momento pari a M_y , è possibile calcolare il carico limite orizzontale corrispondente ai tre meccanismi di rottura:

Chella Timera SALCEF MESSINTATION OF	II LOTTO F	IO TRAT UNZION FUNZION	TA CANCEL ALE FRASSI IALE FRASS	LO-BENEVENT O TELESINO – GO TELESINO –	VITULAN	
Relazione di Calcolo Muri di Sostegno in c.a. NV09	COMMESSA IF26	LOTTO 12 E ZZ	CODIFICA CL	DOCUMENTO NV0900 001	REV.	FOGLIO 50 di 101

$$H \lim = 9c_u D^2 \left(\frac{L}{D} - 1.5\right)$$
 palo corto

$$H \lim = -9c_u D^2 \left(\frac{L}{D} - 1.5\right) + 9c_u D^2 \sqrt{2\left(\frac{L}{D}\right)^2 + \frac{4}{9} \frac{My}{c_u D^3} + 4.5}$$
 palo intermedio

$$H \lim = -13.5c_u D^2 + c_u D^2 \sqrt{182.25 + 36 \frac{My}{c_u D^3}}$$
 palo lungo

Con riferimento ai casi in oggetto, il meccanismo di rottura è sempre quello di palo lungo.

Nel caso di palo scalzato e per il caso di palo lungo, il valore di H_{lim} si ottiene risolvendo le seguenti equazioni:

$$H \lim_{z \to 0} = 9c_u D \times (f - 1.5D)$$

$$H \lim_{z \to 0} (d_z + f) - 4.5c_u D(f - 1.5D)^2 - 2M_y = 0$$

Essendo:

- f la profondità della cerniera plastica dal piano di campagna;
- d_s l'altezza della testa del palo rispetto al piano di campagna.

9.3.2.3 UNITÀ A COMPORTAMENTO INCOERENTE

Per un terreno incoerente si assume che la resistenza opposta dal terreno alla traslazione del palo vari linearmente con la profondità con legge:

$$p = 3 k_p \gamma z D$$

essendo:

- k_p il coefficiente di spinta passiva;
- z la profondità da piano campagna;
- γ il peso di volume del terreno, nel caso in cui il terreno sia sotto falda si assume γ'.

I valori del carico limite corrispondenti ai diversi meccanismi di rottura sono di seguito riportati:

SALCIF LEGSN TASTRITING	ITINERARIO NAPOLI – BARI RADDOPPIO TRATTA CANCELLO-BENEVENTO II LOTTO FUNZIONALE FRASSO TELESINO – VITULANO 1° LOTTO FUNZIONALE FRASSO TELESINO – TELESE PROGETTO ESECUTIVO					
Relazione di Calcolo Muri di Sostegno in c.a. NV09	COMMESSA IF26	LOTTO 12 E ZZ	CODIFICA	DOCUMENTO NV0900 001	REV.	FOGLIO 51 di 101

$$H \lim = 1.5 k_p \gamma D^3 \left(\frac{L}{D}\right)^2$$
 palo corto

$$H \lim_{n \to \infty} = \frac{1}{2} k_p \gamma D^3 \left(\frac{L}{D}\right)^2 + \frac{My}{L}$$
 palo intermedio

$$H \lim = k_p \gamma D^3 \sqrt[3]{\left(3.676 \frac{My}{k_p \gamma D^4}\right)^2}$$
 palo lungo

Con riferimento ai casi in oggetto, il meccanismo di rottura è sempre quello di palo lungo.

Nel caso di palo scalzato e per il caso di palo lungo, il valore di $H_{\it lim}$ si ottiene risolvendo le seguenti equazioni:

$$H \lim_{y \to 0} = 1.5k_{p} \gamma D f^{2}$$

$$f^{3} + 1.5D f^{2} - \left(\frac{2M_{y}}{\gamma k_{p} D}\right) = 0$$

Essendo:

- f la profondità della cerniera plastica dal piano di campagna;
- d_s l'altezza della testa del palo rispetto al piano di campagna.

9.3.2.4 CARICO ORIZZONTALE RESISTENTE

Il valore di progetto R_d della resistenza a carichi assiali dei singoli pali si ottiene a partire dal valore caratteristico R_k applicando i coefficienti parziali γ_R riportati nella tabella successiva:

	Coefficiente Parzial	e
R1	R2	R3
1.0	1.6	1.3

Tabella 17: Coefficienti parziali di sicurezza per le resistenze

I coefficienti parziali di sicurezza utilizzati sono: R1 per le combinazioni di carico STR; R2 per le combinazioni di carico GEO; R3 per le combinazioni sismiche.

La resistenza caratteristica Rk del singolo palo è determinata mediante metodi di calcolo analitici, dove Rk è calcolata a partire da valori caratteristici dei parametri geotecnici e/o mediante l'impiego di relazioni empiriche che utilizzano direttamente i risultati di prove in situ. La normativa vigente definisce per tali procedure, il valore caratteristico della resistenza $R_{c,k}$ (o $R_{t,k}$) come il valore minore tra quelli ottenuti applicando alle resistenze calcolate $R_{c,calc}$ ($R_{t,calc}$) i fattori di correlazione ξ riportati nella tabella seguente, in funzione del numero n di verticali di indagini:

	II LOTTO F	IO TRATI UNZIONA FUNZION	TA CANCEL ALE FRASS IALE FRASS	LO-BENEVENT D TELESINO – SO TELESINO –	VITULAN	
Relazione di Calcolo Muri di Sostegno in c.a. NV09	COMMESSA IF26	LOTTO 12 E ZZ	CODIFICA CL	DOCUMENTO NV0900 001	REV.	FOGLIO 52 di 101

$$R_{c,k} = Min \left\{ \frac{(R_{c,cal})_{media}}{\xi_3}; \frac{(R_{c,cal})_{min}}{\xi_4} \right\}$$

$$R_{t,k} = Min \left\{ \frac{(R_{t,cal})_{media}}{\xi_3}; \frac{(R_{t,cal})_{min}}{\xi_4} \right\}$$

$$\frac{n}{\xi_3} = \frac{1.70}{1.65} = \frac{1.60}{1.60} = \frac{1.55}{1.50} = \frac{1.45}{1.40} = \frac{1.21}{1.20}$$

Tab. 1 - Fattori di correlazione ξ

La campagna di indagine condotta in fase di progettazione definitiva permette di assumere in sede di calcolo un fattore di correlazione pari a ξ_3 = 1.5 e ξ_4 =1.34.

Chella Ininera SALSEF LEGSNEATHING	II LOTTO F	IO TRAT UNZIONA FUNZION	TA CANCEL ALE FRASS IALE FRASS	LO-BENEVENT D TELESINO – O TELESINO –	VITULAN	
Relazione di Calcolo Muri di Sostegno in c.a. NV09	COMMESSA IF26	LOTTO 12 E ZZ	CODIFICA CL	DOCUMENTO NV0900 001	REV.	FOGLIO 53 di 101

9.3 VERIFICHE DI STABILITA' GLOBALE

Il punto 6.8 delle NTC e relativa circolare applicativa, tratta l'argomento della verifica di Stabilità di Materiali Sciolti e fronti di scavo, nella fattispecie, al punto 6.8.2 "Verifiche di Sicurezza (SLU)" viene prescritto quanto di seguito:

Le verifiche devono essere effettuate secondo l'Approccio 1-Combinazione 2 (A2+M2+R2) tenendo conto dei valori dei coefficienti parziali riportati nelle Tabelle 6.2.I, 6.2.II e 6.8.I.

Tabella 6.2.I – Coefficienti parziali per le azioni o per l'effetto delle azioni.

Tubella 61212 Coefficient par 21ant per 10 azioni o per 1 officiro acrio azioni.					
CARICHI	EFFETTO	Coefficiente Parziale YF (0 YE)	EQU	(A1) STR	(A2) GEO
Permanenti	Favorevole	~	0,9	1,0	1,0
Permanenti	Sfavorevole	γ _{G1}	1,1	1,3	1,0
Permanenti non strutturali (1)	Favorevole	2/	0,0	0,0	0,0
remanenti non strutturan	Sfavorevole	γ _{G2}	1,5	1,5	1,3
Variabili	Favorevole	24	0,0	0,0	0,0
v ariabili	Sfavorevole	$\gamma_{ m Qi}$	1,5	1,5	1,3

⁽¹⁾ Nel caso in cui i carichi permanenti non strutturali (ad es. i carichi permanenti portati) siano compiutamente definiti, si potranno adottare gli stessi coefficienti validi per le azioni permanenti.

Tabella 6.2.II – Coefficienti parziali per i parametri geotecnici del terreno

а вена 6.2.11 – Соедистепп ра	rziaii per i parametri geotecnici aei	terreno		
PARAMETRO	GRANDEZZA ALLA QUALE	COEFFICIENTE	(M1)	(M2)
	APPLICARE IL	PARZIALE		
	COEFFICIENTE PARZIALE	γм		
Tangente dell'angolo di resistenza al taglio	tan ${\phi'}_k$	$\gamma_{\phi'}$	1,0	1,25
Coesione efficace	c' _k	γ _{c′}	1,0	1,25
Resistenza non drenata	c_{uk}	γ _{cu}	1,0	1,4
Peso dell'unità di volume	γ	γ_{γ}	1,0	1,0

Tabella 6.8.I – Coefficienti parziali per le verifiche di sicurezza di opere di materiali sciolti e di fronti di scavo.

Coefficiente	R2
γR	1.1

Secondo la normativa quindi i parametri di resistenza del terreno devono essere abbattuti a mezzo dei coefficienti parziali M2, risultando pertanto:

$$c'_d = c' / 1.25;$$

 $\varphi'_d = \arctan (1 / 1.25 \cdot \tan \varphi').$

Il coefficiente di sicurezza Fs minimo da garantire in questo caso è pari ad 1.1 (γ_R).

9.3.3 VERIFICHE IN FASE SISMICA

Per ciò che concerne le verifiche in condizioni sismiche, la normativa fornisce al punto 7.11.3.5 indicazioni circa le azioni aggiuntive da considerare nell'ambito delle verifiche di Stabilità di Pendii in occasione di eventi sismici; nella fattispecie, si specifica che L'analisi delle condizioni di stabilità dei pendii in condizioni sismiche può essere eseguita mediante metodi pseudostatici, metodi degli spostamenti e metodi di analisi dinamica.

Nei metodi pseudostatici, di riferimento per le analisi esposte nel seguito del documento, l'azione sismica è rappresentata da un'azione statica equivalente, costante nello spazio

Ghella innera salse seesn rathing	ITINERARIO NAPOLI – BARI RADDOPPIO TRATTA CANCELLO-BENEVENTO II LOTTO FUNZIONALE FRASSO TELESINO – VITULANO 1° LOTTO FUNZIONALE FRASSO TELESINO – TELESE PROGETTO ESECUTIVO					-
Relazione di Calcolo Muri di Sostegno in c.a. NV09	COMMESSA IF26	LOTTO 12 E ZZ	CODIFICA CL	DOCUMENTO NV0900 001	REV.	FOGLIO 54 di 101

e nel tempo, proporzionale al peso W del volume di terreno potenzialmente instabile. Tale forza dipende dalle caratteristiche del moto sismico atteso nel volume di terreno potenzialmente instabile e dalla capacità di tale volume di subire spostamenti senza significative riduzioni di resistenza.

Nelle verifiche allo stato limite ultimo, in mancanza di studi specifici, le componenti orizzontale e verticale di tali forze possono esprimersi come:

 $F_h = k_h \times W$ (azione sismica orizzontale)

 $F_v = k_v \times W$ (azione sismica verticale)

risultando:

$$k_{\rm h} = \beta_s \cdot \frac{a_{\rm max}}{g} \tag{7.11.3}$$

$$k_{\rm v} = \pm 0.5 \cdot k_{\rm h} \,.$$
 (7.11.4)

con:

βs = coefficiente di riduzione dell'accelerazione massima attesa al sito, come da indicazioni Tab 7.11.1;

Tabella 7.11.I – Coefficienti di riduzione dell'accelerazione massima attesa al sito.

	Categoria di sottosuolo		
	A	B, C, D, E	
	β_s	β_s	
$0.2 < a_{\rm g}(g) \le 0.4$	0,30	0,28	
$0,1 \le a_{g}(g) \le 0,2$	0,27	0,24	
$a_{g}(g) \leq 0.1$	0,20	0,20	

 $a_{max} = S \cdot a_g = S_S \cdot S_T \cdot a_g$ (accelerazione massima attesa al sito)

S_S: coefficiente di amplificazione stratigrafica S_T: coefficiente di amplificazione topografica

Relativamente alla combinazione degli effetti sismici con le altre azioni e relative verifiche di sicurezza. ancora la circolare 617 , per il caso dei **Pendii Naturali**, specificano al punto C 7.11.3.5 "Stabilità dei Pendii" viene specificato che <u>le verifiche di sicurezza devono essere effettuate utilizzando i valori caratteristici delle proprietà meccaniche dei terreni</u>; nei metodi pseudostatici la condizione di stato limite ultimo viene riferita al cinematismo di collasso critico, caratterizzato dal più basso valore del coefficiente di sicurezza, FS, definito come rapporto tra resistenza al taglio disponibile e sforzo di taglio mobilitato lungo la superficie di scorrimento (effettiva o potenziale)

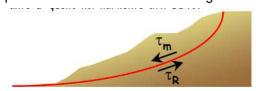
In definitiva, per le verifiche sismiche si è ritenuto accettabile un coefficiente di sicurezza unitario

Per quanto riguarda invece il caso dei **Fronti di Scavo e Rilevati**, al punto 7.11.4 "Fronti di Scavo e Rilevati", si specifica che <u>Il comportamento in condizioni sismiche dei fronti di scavo e dei rilevati può essere analizzato con gli stessi metodi impiegati per i pendii naturali. Nelle verifiche di sicurezza si deve controllare che la resistenza del sistema sia maggiore delle azioni impiegando i coefficienti parziali di cui al § 7..11.1</u>

7.11.1 REQUISITI NEI CONFRONTI DEGLI STATI LIMITE

Sotto l'effetto dell'azione sismica di progetto, definita al Cap. 3, le opere e i sistemi geotecnici devono rispettare gli stati limite ultimi e di esercizio definiti al § 3.2.1, con i requisiti di sicurezza indicati nel § 7.1.

Le verifiche agli stati limite ultimi devono essere effettuate ponendo pari all'unità i coefficienti parziali sulle azioni e impiegando i parametri geotecnici e le resistenze di progetto, con i valori dei coefficienti parziali indicati nel Cap. 6.


Chella Ininera SALSEF LEGSNEATHING	II LOTTO F	IO TRAT UNZIONA FUNZION	TA CANCEL ALE FRASSO ALE FRASS	LO-BENEVENT D TELESINO – O TELESINO –	VITULAN	
Relazione di Calcolo Muri di Sostegno in c.a. NV09	COMMESSA IF26	LOTTO 12 E ZZ	CODIFICA CL	DOCUMENTO NV0900 001	REV.	FOGLIO 55 di 101

La circolare applicativa n617 specifica ulteriormente al C7.11.4 che, Le verifiche pseudostatiche di sicurezza dei fronti di scavo e dei rilevati si eseguono con la combinazione di coefficienti parziali di cui al § 6.8.2: (A2+M2+R2), utilizzando valori unitari per i coefficienti parziali A2 come specificato al § 7.11.1.

In definitiva, per il caso dei Fronti di Scavo e Rilevati, anche in fase sismica, il coefficiente di sicurezza minimo prescritto dalla Normativa è pari ad R2=1.1 (yR).

Per la analisi di stabilità globale presentate nel seguito del presente documento, si è fatto riferimento ai metodi dell'equilibrio limite, messi a punto da diversi autori tra cui, Fellenius, Bishop, Janbu, Morgestern-Price, ecc.

In generale, ciascuno metodo va alla ricerca del potenziali superfici di scivolamento, generalmente di forma circolare, in qualche caso anche di forma diversa, rispetto a cui effettuare un equilibrio alla rotazione (o rototraslazione) della potenziale massa di terreno coinvolta nel possibile movimento e quindi alla determinazione di un coefficiente di sicurezza coefficiente di sicurezza disponibile, espresso in via generale tra la resistenza al taglio disponibile lungo la superficie S e quella effettivamente mobilitata lungo la stessa superficie, ovvero:

Si procede generalmente suddividendo la massa di terreno coinvolta nella verifica in una serie di conci di dimensione b, interessati da azioni taglianti e normali sulle superfici di delimitazione dello stesso come di seguito rappresentato.

Nel caso in esame, è stata utilizzato in particolare il metodo di **Bishop**, di cui nel seguito si riporta la relativa trattazione teorica:

Il coefficiente di sicurezza si esprime mediante la relazione:

$$\eta = \frac{\sum_{i=1}^{n} \left(\frac{b_i c_i + W_i tg\phi_i}{m} \right)}{\sum_{i=1}^{n} W_i \sin\alpha_i}$$

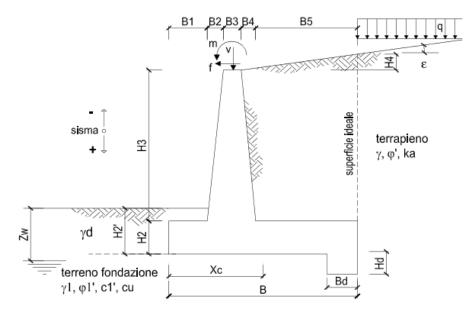
con

$$m = \left(1 + \frac{tg\alpha_i \ tg\phi_i}{\eta}\right) \cos\alpha_i$$

dove n è il numero della strisca considerate, bi ed α i sono la larghezza e l'inclinazione della base della striscia i-esima rispetto all'orizzontale, Wi è il peso della striscia i-esima e ci e ϕ i sono le caratteristiche del terreno (coesione ed angolo di attrito) lungo la base della striscia. L'espressione del coefficiente di sicurezza di Bishop contiene al secondo membro il termine m che è funzione di η .

Quindi essa va risolta per successive approssimazioni assumendo un valore iniziale per η da inserire nell'espressione di m ed iterare fino a quando il valore calcolato coincide con il valore assunto.

CHEZZAROTTI C Ghella TIMERA SALCEF SECSNEASTRUTHE	ITINERARIO NAPOLI – BARI RADDOPPIO TRATTA CANCELLO-BENEVENTO II LOTTO FUNZIONALE FRASSO TELESINO – VITULANO 1° LOTTO FUNZIONALE FRASSO TELESINO – TELESE PROGETTO ESECUTIVO					
Relazione di Calcolo Muri di Sostegno in c.a. NV09	COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO


10 RISULTATI ANALISI E VERIFICHE MURI

Si riepilogano di seguito le armature disposte nelle sezioni notevoli dell'Opera le cui verifiche sono più estesamente riportate nei paragrafi successivi e, per esteso, negli allegati.

10.1 RISULTATI ANALISI E VERIFICHE MURI DI TIPO H=3

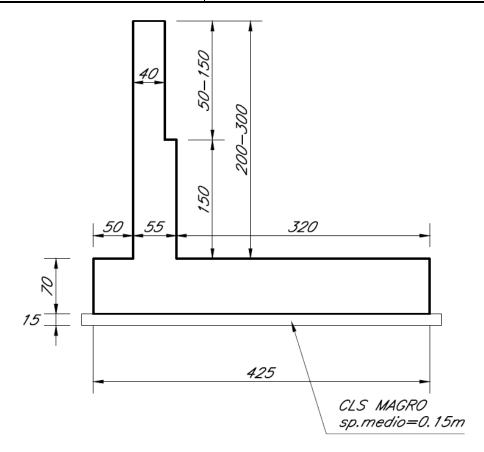
10.1.1 MODELLO DI CALCOLO

Si riportano di seguito in forma tabellare i valori delle spinte di natura statica e sismica per le combinazioni analizzate, gli inviluppi delle sollecitazioni nel muro e sulla fondazione:

<u>OPERA</u>	Esempio
--------------	---------

Peso Specifico del Calcestruzzo

DATI DI PROGETTO:


Geometria del Muro			
Elevazione	H3 =	3.00	(m)
Aggetto Valle	B2 =	0.00	(m)
Spessore del Muro in Testa	B3 =	0.55	(m)
Aggetto monte	B4 =	0.00	(m)
Larghezza Fondazione Spessore Fondazione	В = H2 =	4.25 0.70	(m) (m)
Geometria della Fondazione Larghezza Fondazione	B =	4.25	(m)
Suola Lato Valle	B1 =	0.50	(m)
Suola Lato Monte	B5 =	3.20	(m)
Altezza dente	Hd =	0.00	(m)
Larghezza dente	Bd =	0.00	(m)
Mezzeria Sezione	Xc =	2.13	(m)

25.00

γcls =

(kN/m³)

PEZAROTTI O Ghella — TIMERA SALCIF MESSARATHITUS	II LOTTO F	IO TRAT UNZIONA FUNZION	TA CANCEL ALE FRASSI IALE FRASS	LO-BENEVENT O TELESINO – ' O TELESINO –	VITULAN	
Relazione di Calcolo Muri di Sostegno in c.a. NV09	COMMESSA IF26	LOTTO 12 E ZZ	CODIFICA CL	DOCUMENTO NV0900 001	REV.	FOGLIO 57 di 101

Geometria muro

10.1.2 VERIFICHE GEOTECNICHE

FORZE VERTICALI

- Peso del Muro	(Pm)		SLE	STR/GEO	EQU
Pm1 =	/(H17) (B2*H3*γcls)/2	(kN/m)	0.00	0.00	0.00
Pm2 =	(B3*H3*γcls)	(kN/m)	41.25	41.25	37.13
	(/	V			
Pm3 =	(B4*H3*γcls)/2	(kN/m)	0.00	0.00	0.00
Pm4 =	(B*H2*γcls)	(kN/m)	74.38	74.38	66.94
Pm5 =	(Bd*Hd*ycls)	(kN/m)	0.00	0.00	0.00
Pm =	Pm1 + Pm2 + Pm3 + Pm4 + Pm5	(kN/m)	115.63	115.63	104.06
- Peso del terre	no e sovr. perm. sulla scarpa di monte del muro (Pt)				
Pt1 =	(B5*H3*y')	(kN/m)	182.40	182.40	164.16
Pt2 =	(0,5*(B4+B5)*H4* ₂ ')	(kN/m)	0.00	0.00	0.00
Pt3 =	(B4*H3*γ')/2	(kN/m)	0.00	0.00	0.00
Sovr =	qp * (B4+B5)	(kN/m)	0.00	0.00	0.00
Pt =	Pt1 + Pt2 + Pt3 + Sovr	(kN/m)	182.40	182.40	164.16

SALCE SECTION OF Ghella TIMERA SALCE SECTION OF SALCE SEC	II LOTTO F	IO TRAT UNZION FUNZION	TA CANCEL ALE FRASSI IALE FRASS	LO-BENEVENT O TELESINO – O TELESINO –	VITULAN	
Relazione di Calcolo Muri di Sostegno in c.a. NV09	COMMESSA IF26	LOTTO 12 E ZZ	CODIFICA CL	DOCUMENTO NV0900 001	REV.	FOGLIO 58 di 101

 Sovraccarico 	accidentale	sulla	scarpa	di	monte	del	muro	

Sovr acc. Stat q * (B4+B5) (kN/m) 64 96 Sovr acc. Sism qs * (B4+B5) (kN/m) 12.8

MOMENTI DELLE FORZE VERT.	DISDETTO AL	DIEDE DI VALLE DEL	MILIDO
MUMENTI DELLE FURZE VERT.	RISPETTO AL	L PIEUE DI VALLE DEL	MURU

- Muro (Mm)			SLE	STR/GEO	EQU
Mm1 =	Pm1*(B1+2/3 B2)	(kNm/m)	0.00	0.00	0.00
Mm2 =	Pm2*(B1+B2+0,5*B3)	(kNm/m)	31.97	31.97	28.77
Mm3 =	Pm3*(B1+B2+B3+1/3 B4)	(kNm/m)	0.00	0.00	0.00
Mm4 =	Pm4*(B/2)	(kNm/m)	158.05	158.05	142.24
Mm5 =	Pm5*(B - Bd/2)	(kNm/m)	0.00	0.00	0.00
Mm =	Mm1 + Mm2 + Mm3 + Mm4 + Mm5	(kNm/m)	190.02	190.02	171.01
- Terrapieno e s	ovr. perm. sulla scarpa di monte del muro				
Mt1 =	Pt1*(B1+B2+B3+B4+0,5*B5)	(kNm/m)	483.36	483.36	435.02
Mt2 =	Pt2*(B1+B2+B3+2/3*(B4+B5))	(kNm/m)	0.00	0.00	0.00
Mt3 =	Pt3*(B1+B2+B3+2/3*B4)	(kNm/m)	0.00	0.00	0.00
Msovr =	Sovr*(B1+B2+B3+1/2*(B4+B5)) Mt1 + Mt2 + Mt3 + Msovr	(kNm/m)	0.00	0.00	0.00
Mt =	Mt1 + Mt2 + Mt3 + Msovr	(kNm/m)	483.36	483.36	435.02
- Sovraccarico a	accidentale sulla scarpa di monte del muro				
	(B1+B2+B3+1/2(B4+B5))	(kNm/m)	169.6	254.4	
	(B1+B2+B3+1/2(B4+B5))	(kNm/m)	33.92		
	, , , , , , , , , , , , , , , , , , , ,	. ,			
INERZIA DEL	MURO E DEL TERRAPIENO				
	itale e verticale del muro (Ps)				
Ps h=	Pm*kh	(kN/m)		14.30	
Ps v=	Pm*kv	(kN/m)		7.15	
		,,			
	tale e verticale del terrapieno a tergo del muro (Pts)				
Ptsh =	Pt*kh	(kN/m)		22.56	
Ptsv =	Pt*kv	(kN/m)		11.28	
	annutale di manuanta dave la all'inerria del mura (MDs h)				
- Incremento or MPs1 h=	izzontale di momento dovuto all'inerzia del muro (MPs h) kh*Pm1*(H2+H3/3)	/lchlm/m/		0.00	
MPs2 h=	kh*Pm2*(H2 + H3/2)	(kNm/m) (kNm/m)		0.00 11.23	
MPs3 h=	kh*Pm3*(H2+H3/3)	,		0.00	
MPs4 h=	kh*Pm4*(H2/2)	(kNm/m)		3.22	
MPs5 h=	-kh*Pm5*(Hd/2)	(kNm/m) (kNm/m)		0.00	
MPs h=	MPs1+MPs2+MPs3+MPs4+MPs5	(kNm/m)		14.45	
MFS II=	MFS1+WFS2+MFS3+WFS4+MFS3	(KINIII/III)		14.45	
- Incremento ve	rticale di momento dovuto all'inerzia del muro (MPs v)				
MPs1 v=	kv*Pm1*(B1+2/3*B2)	(kNm/m)		0.00	
MPs2 v=	kv*Pm2*(B1+B2+B3/2)	(kNm/m)		1.98	
MPs3 v=	kv*Pm3*(B1+B2+B3+B4/3)	(kNm/m)		0.00	
MPs4 v=	kv*Pm4*(B/2)	(kNm/m)		9.78	
MPs5 v=	kv*Pm5*(B-Bd/2)	(kNm/m)		0.00	
MPs v=	MPs1+MPs2+MPs3+MPs4+MPs5	(kNm/m)		11.75	
- Incremente er	zzontale di momento dovuto all'inerzia del terrapieno (MF	te h)			
MPts1 h=	kh*Pt1*(H2 + H3/2)	(kNm/m)		49.64	
MPts2 h=	kh*Pt2*(H2 + H3 + H4/3)				
MPts3 h=		(kNm/m)		0.00	
MPts h=	kh*Pt3*(H2+H3*2/3) MPts1 + MPts2 + MPts3	(kNm/m) (kNm/m)		49.64	
MEIS II=	MILIST 4 MILISS 4 MILISS	(KINITVIII)		45.04	
- Incremento ve	rticale di momento dovuto all'inerzia del terrapieno (MPts	v)			
MPts1 v=	kv*Pt1*((H2 + H3/2) - (B - B5/2)*0.5)	(kNm/m)		29.90	
MPts2 v=	kv*Pt2*((H2 + H3 + H4/3) - (B - B5/3)*0.5)	(kNm/m)		0.00	
MPts3 v=	kv*Pt3*((H2+H3*2/3)-(B1+B2+B3+2/3*B4)*0.5)	(kNm/m)		0.00	
MPts v=	MPts1 + MPts2 + MPts3	(kNm/m)		29.90	
		,			

Ghella Imera Sales Session of the Internation of th	II LOTTO F	IO TRAT UNZION FUNZION	TA CANCEL ALE FRASSI IALE FRASS	LO-BENEVENT O TELESINO – GO TELESINO –	VITULA	_
Relazione di Calcolo Muri di Sostegno in c.a. NV09	COMMESSA IF26	LOTTO 12 E ZZ	CODIFICA CL	DOCUMENTO NV0900 001	REV.	FOGLIO 59 di 101

CONDIZIONE STATICA

	SLE	STR/GEO	EQU
(kN/m)	35.24	45.82	49.13
,	0.00	0.00	0.00
(kN/m)	20.05	30.08	38.12
(kN/m)	35.24	45.82	49.13
(kN/m)	0.00	0.00	0.00
(kN/m)	20.05	30.08	38.12
(kN/m)	0.00	0.00	0.00
(kN/m)	0.00	0.00	0.00
(kN/m)	0.00	0.00	0.00
(kN/m)	0.00	0.00	0.00
Ç W.1.1y	0.50	0.00	0.0
	(kN/m) (kN/m) (kN/m) (kN/m) (kN/m) (kN/m)	(kN/m) 0.00 (kN/m) 20.05 (kN/m) 35.24 (kN/m) 0.00 (kN/m) 20.05 (kN/m) 0.00 (kN/m) 0.00 (kN/m) 0.00 (kN/m) 0.00	(kN/m) 0.00 0.00 (kN/m) 20.05 30.08 (kN/m) 35.24 45.82 (kN/m) 0.00 0.00 (kN/m) 20.05 30.08 (kN/m) 0.00 0.00 (kN/m) 0.00 0.00 (kN/m) 0.00 0.00 (kN/m) 0.00 0.00

MOMENTI DEI	LLA SPINTA DEL TERRENO E DEL SOVRACCARICO		SLE	STR/GEO	EQU
MSt1 =	Sth*((H2+H3+H4+Hd)/3-Hd)	(kNm/m)	43.47	56.51	60.60
MSt2 =	Stv*B	(kNm/m)	0.00	0.00	0.00
MSq1 perm=	Sqh perm*((H2+H3+H4+Hd)/2-Hd)	(kNm/m)	0.00	0.00	0.00
MSq1 acc =	Sqh acc*((H2+H3+H4+Hd)/2-Hd)	(kNm/m)	37.10	55.65	70.53
MSq2 perm=	Sqv perm*B	(kNm/m)	0.00	0.00	0.00
MSq2 acc =	Sqv acc*B	(kNm/m)	0.00	0.00	0.00
MSp = γ1"H	d ³ *kp/3+(2*c1**kp ^{0.5} + _Y 1**kp*H2')*Hd²/2	(kNm/m)	0.00	0.00	0.00
MOMENTI DO	VUTI ALLE FORZE ESTERNE				
Mfext1 =	mp + m	(kNm/m)	0.00	0.00	0.00
Mfext2 =	(fp + f)*(H3 + H2)	(kNm/m)	0.00	0.00	0.00
Mfext3 =	(vp+v)*(B1 +B2 + B3/2)	(kNm/m)	0.00	0.00	0.00

VERIFICA ALLO SCORRIMENTO (STR/GEO)

Risu N	ltante forze	e verticali (N) Pm + Pt + v + Stv + Sqv perm + Sqv acc	298.03	(kN/m)	
_	ltante forze	e orizzontali (T) Sth + Sqh + f	75.90	(kN/m)	
Coel	fficiente di =	attrito alla base (f) tgφ1'	0.45	(-)	
Fs	scorr.	(N*f + Sp) / T	1.75	>	1.1

VERIFICA AL RIBALTAMENTO (EQU)

Fs ribaltamento	Ms / Mr	4.62	>	1
Momento ribaltante (Mr) Mr = MSt + MSq + M	Mfext1+ Mfext2 + MSp	131.12	(kNm/m)	
Momento stabilizzante (Ms) Ms = Mm + Mt + Mf	ext3	606.04	(kNm/m)	

SALCE SESSION OF CHEER STREET SALCE SESSION OF STREET OF SALCE SESSION OF	II LOTTO F	IO TRAT UNZIONA FUNZION	TA CANCEL ALE FRASSI IALE FRASS	LO-BENEVENT O TELESINO – GO TELESINO –	VITULA	
Relazione di Calcolo Muri di Sostegno in c.a. NV09	COMMESSA IF26	LOTTO 12 E ZZ	CODIFICA CL	DOCUMENTO NV0900 001	REV.	FOGLIO 60 di 101

VERIFICA CARICO LIMITE DELLA FONDAZIONE (STR/GEO)

VERIFICA CA	ARICO LIMITE DELLA FONDAZIONE (STR/GE	0)			
Risultante forze	verticali (N) Pm + Pt + v + Stv + Sqv (+ Sovr acc)		Nmin 298.03	Nmax 394.03	(kN/m)
Risultante forze T =	orizzontali (T) Sth + Sqh + f - Sp		75.90	75.90	(kN/m)
Risultante dei n MM =	nomenti rispetto al piede di valle (MM) ΣM		561.22	815.62	(kNm/m)
Momento rispet M =	tto al baricentro della fondazione (M) Xc*N - MM		72.08	21.68	(kNm/m)
Formula Gene	rale per il Calcolo del Carico Limite Unitrario (Brin	ch-Hansen, 1970)		
Fondazione Na	striforme				
qlim = c'Nc*ic	+ q₀*Nq*iq + 0,5*γ1*B*Nγ*iγ				
c1' φ1' γι	coesione terreno di fondaz. angolo di attrito terreno di fondaz. peso unità di volume terreno fondaz.		10.00 24.00 14.71		(kPa) (°) (kN/m³)
$q_0 = \gamma d^*H2'$	sovraccarico stabilizzante		20.00		(kN/m^2)
e = M / N B*= B - 2e	eccentricità larghezza equivalente		0.24 3.77	0.06 4.14	(m) (m)
I valori di Nc, N	q e Ng sono stati valutati con le espressioni suggerite	da Vesic (1975)			
$\begin{aligned} Nq &= tg^2(45 + \phi) \\ Nc &= (Nq - 1)/tg \\ N\gamma &= 2^*(Nq + 1) \end{aligned}$	(φ') (2+π in cond. nd)		9.60 19.32 9.44		(-) (-)
I valori di ic, iq	e iγ sono stati valutati con le espressioni suggerite da	Vesic (1975)			
iq = (1 - T/(N + ic) = iq - (1 - iq)/(iq) $i\gamma = (1 - T/(N + ic))$	(Nq - 1)		0.64 0.60 0.52	0.71 0.60 0.52	(-) (-) (-)
(fondazione na	striforme m = 2)				
qlim	(carico limite unitario)		374.28	389.88	(kN/m²)
ES agrica !!:	nito E - alimetPt/N	Nmin	4.73	>	
FS carico lin	nite F = qlim*B*/ N	Nmay	4.10	_	1.4

Nmax

4.10 >

Ghella Immera SALSEF SESSINTASTRUME	II LOTTO F	IO TRAT UNZIONA FUNZION	TA CANCEL ALE FRASSI ALE FRASS	LO-BENEVENT O TELESINO – SO TELESINO –	VITULA	
Relazione di Calcolo Muri di Sostegno in c.a. NV09	COMMESSA IF26	LOTTO 12 E ZZ	CODIFICA CL	DOCUMENTO NV0900 001	REV.	FOGLIO 61 di 101

CONDIZIONE SISMICA

CONDIZION	E SISMICA +				
SPINTE DEL T	ERRENO E DEL SOVRACCARICO	Γ	SLE	STR/GEO	EQU
Sst1 stat =	0,5*y*(H2+H3+H4+Hd)2*ka	(kN/m)	35.24	35.24	44.67
Sst1 sism =	0,5*/*(1+kv)*(H2+H3+H4+Hd)2*kas*-Sst1 stat	(kN/m)	11.45	11.45	13.27
Ssq1 perm=	qp*(H2+H3+H4+Hd)*kas*	(kN/m)	0.00	0.00	0.00
Ssq1 acc =	qs*(H2+H3+H4+Hd)*kas+	(kN/m)	5.00	5.00	6.21
	describe and delegan describe				
Sst1h stat =	orizzontale condizione sismica + Sst1 stat*cosŏ	(kN/m)	35.24	35.24	44.67
Sst1h sism =	Sst1 sism*cosô	(kN/m)	11.45	11.45	13,27
Ssq1h perm=	Ssq1 perm*cosδ	(kN/m)	0.00	0.00	0.00
Ssq1h acc=	Ssq1 acc*cos8	(kN/m)	5.00	5.00	6.21
Componente	verticale condizione sismica +				
Sst1v stat =	Sst1 stat*senő	(kN/m)	0.00	0.00	0.00
Sst1v sism =		(kN/m)	0.00	0.00	0.00
Ssq1v perm=	Ssq1 perm*senδ	(kN/m)	0.00	0.00	0.00
Ssq1v acc=	Ssq1 acc*senő	(kN/m)	0.00	0.00	0.00
Spinta pagaiya	sul depte				
- Spinta passiva	t sui dente Hd ² *kps*+(2*c ₁ '"kps* ^{0.5} +y1' (1+kv) kps**H2')*Hd	(kN/m)	0.00	0.00	0.00
Sp=72 11 (1+KV)	110 Aps +(2 01 Aps +)1 (1+AV) Aps 112) 110	(KIVIII)	0.00	0.00	0.00
MOMENTI DEL	LA SPINTA DEL TERRENO E DEL SOVRACCARICO	Г	SLE	STR/GEO	EQU
- Condizione sis	mica +	L	SLE	STRIGEO	EQU
MSst1 stat =	Sst1h stat * ((H2+H3+H4+hd)/3-hd)	(kNm/m)	43.47	43.47	55.09
MSst1 sism=	Sst1h sism* ((H2+H3+H4+Hd)/3-Hd)	(kNm/m)	14.12	14.12	16.36
MSst2 stat =	Sst1v stat* B	(kNm/m)	0.00	0.00	0.00
MSst2 sism =	Sst1v sism* B	(kNm/m)	0.00	0.00	0.00
MSsq1 =	Ssq1h * ((H2+H3+H4+Hd)/2-Hd)	(kNm/m)	9.26	9.26	11.49
MSsq2 = MSp =	Ssq1v * B '/ ₁ ''*Hd ³ *kps ⁺ /3+(2*c1'*kps ^{+0.5} +/1'*kps ^{+*} H2')*Hd ² /2	(kNm/m) (kNm/m)	0.00	0.00	0.00
MSP =	110 kps/34(2 01 kps +/1 kps 112)110/2	(KNIIIIII)	0.00	0.00	0.00
MOMENTI DO	VUTI ALLE FORZE ESTERNE				
Mfext1 =	mp+ms	(kNm/m)		0.00	
Mfext2 =	(fp+fs)*(H3 + H2)	(kNm/m)		0.00	
Mfext3 =	(vp+vs)*(B1 +B2 + B3/2)	(kNm/m)		0.00	
VERIFICA ALI	LO SCORRIMENTO				
Risultante forze N =	verticali (N) Pm+ Pt + vp + vs + Sst1v + Ssq1v + Ps v + Ptsv		316.46	(kN/m)	
Risultante forze T =	orizzontali (T) Sst1h + Ssq1h + fp + fs +Ps h + Ptsh		88.57	(kN/m)	
Coefficiente di a	attrito alla base (f) tgφ1'		0.45	(-)	
Fs =	(N*f + Sp) / T		1.59	>	1.1
VERIFICA AL	RIBALTAMENTO				
Momento stabili Ms =	zzante (Ms) Mm + Mt + Mfext3		673.38	(kNm/m)	
Momento ribalta Mr =	unte (Mr) MSst+MSsq+Mfext1+Mfext2+MSp+MPs+Mpts		105.37	(kNm/m)	
_	, , , , , , , , , , , , , , , , , , , ,				_
Fr =	Ms / Mr		6.39	>	1

Ghella Imhera SALCEF DESS PATHOLE	II LOTTO F	IO TRAT UNZION FUNZION	TA CANCEL ALE FRASS IALE FRASS	LO-BENEVENT O TELESINO – GO TELESINO –	VITULA	
Relazione di Calcolo Muri di Sostegno in c.a. NV09	COMMESSA IF26	LOTTO 12 E ZZ	CODIFICA CL	DOCUMENTO NV0900 001	REV.	FOGLIO 62 di 101

VERIFICA A CARICO LIMITE DELLA FONDAZIONE

VEHIII IOAA O	ANICO LIMITE DELLA I ONDALIONE				
Risultante forze N =	verticali (N) Pm+ Pt + vp + vs + Sst1v + Ssq1v + Ps v + Ptsv + (Sc	ovr acc)	Nmin 316.46	Nmax 329.26	(kN/m)
Risultante forze T =	orizzontali (T) Sst1h + Ssq1h + fp + fs +Ps h + Ptsh - Sp		88.57		(kN/m)
Risultante dei m MM =	omenti rispetto al piede di valle (MM) ΣΜ		584.09	618.01	(kNm/m)
Momento rispetto M =	o al baricentro della fondazione (M) Xc*N - MM		88.38	81.66	(kNm/m)
Formula Genera	ale per il Calcolo del Carico Limite Unitrario (Brinch	n-Hansen, 1970)			
Fondazione Nas	triforme				
qlim = c'Nc*ic +	d ⁰ .иd.id + n'2.λι.π.иλ.ιλ				
c1' φ1' γι	coesione terreno di fondaz. angolo di attrito terreno di fondaz. peso unità di volume terreno fondaz.		10.00 24.00 14.71		(kN/mq) (°) (kN/m³)
$q_0 = \gamma d^*H2'$	sovraccarico stabilizzante		20.00		(kN/m²)
e = M / N B*= B - 2e	eccentricità larghezza equivalente		0.28 3.69	0.25 3.75	(m) (m)
I valori di Nc, Nq	e Ng sono stati valutati con le espressioni suggerite d	a Vesic (1975)			
$Nq = tg^{2}(45 + \phi')$ Nc = (Nq - 1)/tg(-1) $N\gamma = 2^{*}(Nq + 1)^{*}$	φ') (2+π in cond. nd)		9.60 19.32 9.44		(-) (-) (-)
I valori di ic, iq e	iγ sono stati valutati con le espressioni suggerite da Ve	esic (1975)			
iq = (1 - T/(N + B)) ic = iq - (1 - iq)/(N + B) $i\gamma = (1 - T/(N + B))$	Nq - 1)		0.61 0.56 0.47	0.62 0.57 0.47	(-) (-) (-)
(fondazione nas	triforme m = 2)				
qlim	(carico limite unitario)		345.30	352.57	(kN/m²)
FS carico lim	F = qlim*B*/ N	Nmin Nmax	4.03 4.02	>	1.4

PIZZAROTTI () Ghella finera salgsf legantathung	II LOTTO F	IO TRAT UNZION FUNZION	TA CANCEL ALE FRASSI IALE FRASS	LO-BENEVENT O TELESINO – O TELESINO –	VITULA	
Relazione di Calcolo Muri di Sostegno in c.a. NV09	COMMESSA IF26	LOTTO 12 E ZZ	CODIFICA CL	DOCUMENTO NV0900 001	REV.	FOGLIO 63 di 101

CONDIZIONE SISMICA -

CONDIZION	E SISMICA -				
SPINTE DEL 1	TERRENO E DEL SOVRACCARICO	Γ	SLE	STR/GEO	EQU
Sst1 stat =	0,5*y*(H2+H3+H4+Hd)2*ka	(kN/m)	35.24	35.24	44.67
Sst1 sism =	0,5*y*(1-kv)*(H2+H3+H4+Hd)2*kas*-Sst1 stat	(kN/m)	7.22	7.22	7.90
Ssq1 perm=	gp*(H2+H3+H4+Hd)*kas	(kN/m)	0.00	0.00	0.00
Ssq1 acc =	gs*(H2+H3+H4+Hd)*kas	(kN/m)	5.15	5.15	6.38
	4- ((,			
	orizzontale condizione sismica -				
Sst1h stat =	Sst1 stat*cosô	(kN/m)	35.24	35.24	44.67
Sst1h sism = Ssg1h perm=	Sst1 sism*cosô Ssq1 perm*cosô	(kN/m) (kN/m)	7.22 0.00	7.22 0.00	7.90 0.00
Ssq1h acc=	Ssq1 acc*cosô	(kN/m)	5.15	5.15	6.38
004 000	334. 333 3333	(0.10	0.10	0.00
	verticale condizione sismica -				
Sst1v stat =	Sst1 stat*senδ	(kN/m)	0.00	0.00	0.00
	Sst1 sism*senő	(kN/m)	0.00	0.00	0.00
Ssq1v perm= Ssq1v acc=	Ssq1 perm*senô Ssq1 acc*senô	(kN/m) (kN/m)	0.00	0.00	0.00
Ssq1v acc=	SSQ1 acc Sello	(KIWIII)	0.00	0.00	0.00
- Spinta passiva					
Sp=½*γ ₁ '(1-kv)	Hd ² *kps ⁻ +(2*c ₁ **kps ^{-0.5} +γ1* (1-kv) kps ⁻ *H2')*Hd	(kN/m)	0.00	0.00	0.00
MOMENTI DE	LLA SPINTA DEL TERRENO E DEL SOVRACCARICO	г			
- Condizione si			SLE	STR/GEO	EQU
		_			<u> </u>
MSst1 stat =	Sst1h stat * ((H2+H3+H4+hd)/3-hd)	(kNm/m)	43.47	43.47	55.09
MSst1 sism=	Sst1h sism* ((H2+H3+H4+Hd)/3-Hd)	(kNm/m)	8.90	8.90	9.75
MSst2 stat = MSst2 sism =	Sst1v stat* B Sst1v sism* B	(kNm/m) (kNm/m)	0.00	0.00	0.00
MSsq1 =	Ssq1h * ((H2+H3+H4+Hd)/2-Hd)	(kNm/m)	9.53	9.53	11.80
MSsq2 =	Ssq1v * B	(kNm/m)	0.00	0.00	0.00
MSp =	γ ₁ "*Hd ³ *kps ⁺ /3+(2*c1"*kps ^{+0.5} +γ1"*kps ^{+*} H2')*Hd ² /2	(kNm/m)	0.00	0.00	0.00
	11 110 140 101/201 140 111 140 112/11012	(1)	0.00	0.00	0.00
MOMENTI DO	VUTI ALLE FORZE ESTERNE				
Mfext1 =	mp+ms	(kNm/m)		0.00	
Mfext2 =	(fp+fs)*(H3 + H2)	(kNm/m)		0.00	
Mfext3 =	(vp+vs)*(B1 +B2 + B3/2)	(kNm/m)		0.00	
VERIEICA AI	LO SCORRIMENTO				
VERIFICA AL	LO SCORRIMENTO				
Risultante forze	1 7				
N =	Pm+ Pt + vp + vs + Sst1v + Ssq1v + Ps v + Ptsv		279.59	(kN/m)	
Risultante forze	orizzontali (T)				
T =	Sst1h + Ssq1h + fp + fs +Ps h + Ptsh		84.48	(kN/m)	
Coefficiente di	attrite alle base (f)				
f =	attrito alla base (f) tgol'		0.45	(-)	
				.,	
Fs =	(N*f + Sp) / T		1.47	>	1.1
VERIFICA AL	RIBALTAMENTO				
Momento stabil	izzante (Ms)				
Ms =	Mm + Mt + Mfext3		673.38	(kNm/m)	
Manager 11 11 11	and a OAA				
Momento ribalta Mr =	ante (Mr) MSst+MSsq+Mfext1+Mfext2+MSp+MPs+Mpts		182 27	(kNm/m)	
	INCOST HICOGETINION LI THINONIE TINIOPEME SENIPIS		102.37	(MAIII/III)	
Fr =	Ms / Mr		3.69	>	1

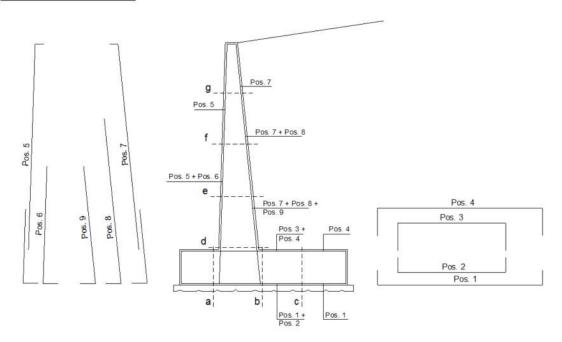
SALCIF LEGSNESTHING	II LOTTO F	IO TRAT UNZION FUNZION	TA CANCEL ALE FRASSI IALE FRASS	LO-BENEVENT D TELESINO – SO TELESINO –	VITULA	
Relazione di Calcolo Muri di Sostegno in c.a. NV09	COMMESSA IF26	LOTTO 12 E ZZ	CODIFICA CL	DOCUMENTO NV0900 001	REV.	FOGLIO 64 di 101

VERIFICA A	CARICO LI	IMITE DELLA	FONDAZIONE

Risultante forze	verticali (N) Pm+ Pt + vp + vs + Sst1v + Ssq1v + Ps v + Ptsv		Nmin 279.59	Nmax 292.39	(kN/m)
Risultante forze	orizzontali (T) Sst1h + Ssq1h + fp + fs +Ps h + Ptsh - Sp		84.48		(kN/m)
Risultante dei n	nomenti rispetto al piede di valle (MM) Σ M		505.73	539.65	(kNm/m)
Momento rispet M =	to al baricentro della fondazione (M) Xc*N - MM		88.40	81.68	(kNm/m)
Formula Gene	rale per il Calcolo del Carico Limite Unitrario (Brinc	h-Hansen, 1970)			
Fondazione Na	striforme				
qiim = c'Nc*ic	+ q₀⁻nq⁻ıq + υ,5⁻γၢ⁻ʁ⁻nγ⁻ıγ				
c1' φΙ΄ γι	coesione terreno di fondaz. angolo di attrito terreno di fondaz. peso unità di volume terreno fondaz.		10.00 24.00 14.71		(kN/mq) (°) (kN/m³)
$q_0 = \gamma d^*H2^*$	sovraccarico stabilizzante		20.00		(kN/m^2)
e = M / N B*= B - 2e	eccentricità larghezza equivalente		0.32 3.62	0.28 3.69	(m) (m)
I valori di Nc, N	q e Ng sono stati valutati con le espressioni suggerite d	da Vesic (1975)			
$Nq = tg^{2}(45 + \phi)$ Nc = (Nq - 1)/tg $N\gamma = 2*(Nq + 1)$	(φ') (2+π in cond. nd)		9.60 19.32 9.44		(-) (-) (-)
I valori di ic, iq e	e iγ sono stati valutati con le espressioni suggerite da V	/esic (1975)			
iq = (1 - T/(N + 1)) ic = iq - (1 - iq)/(1 + 1) $i\gamma = (1 - T/(N + 1))$	Nq - 1)		0.59 0.54 0.45	0.60 0.55 0.45	(-) (-) (-)
(fondazione nas	striforme m = 2)				
qlim	(carico limite unitario)		329.55	337.99	(kN/m²)
FS carico lin	nite F = qlim*B*/ N	Nmin Nmax	4.26 4.27	>	1.4

VERIFICA STABILITÀ GLOBALE

FS_{STAB} (STATICO) = 2.537


FS_{STAB} (SISMICO) = 1.721

Ghella imera salse seesn hathing	II LOTTO F	IO TRATI UNZIONA FUNZION	TA CANCEL ALE FRASSO ALE FRASS	LO-BENEVENT D TELESINO – O TELESINO –	VITULA	
Relazione di Calcolo Muri di Sostegno in c.a. NV09	COMMESSA IF26	LOTTO 12 E ZZ	CODIFICA	DOCUMENTO	REV.	FOGLIO

10.1.3 VERIFICHE STRUTTURALI

VERIFICA SLU

SCHEMA DELLE ARMATURE

ARMATURE

pos	n°/ml	ф	II strat	to	pos	n°/ml	ф	II strato	
1	4.0	18			5	4.0	16		
2	0.0	24			6	0.0	16		
3	0.0	16			7	4.0	16		Calcola
4	4.0	18			8	0.0	20		Jaiooia
					9	0.0	12		
Sez.	M	N	h	Af	A'f	Mu			
(-)	(kNm)	(kN)	(m)	(cm ²)	(cm ²)	(kNm)	-		
a - a	10.62	0.00	0.70	10.18	10.18	254.30			
b-b	-99.29	0.00	0.70	10.18	10.18	254.30			
c-c	-34.10	0.00	0.70	10.18	10.18	254.30			
d-d	66.70	41.25	0.55	8.04	8.04	165.87			
е -е	33.29	30.94	0.55	8.04	8.04	163.49			
f-f	12.91	20.63	0.55	8.04	8.04	161.11			
g-g	2.76	10.31	0.55	8.04	8.04	158.73			

(n.b.: M+ tende le fibre di intradosso, M- tende le fibre di estradosso)

Sez.	V _{Ed}	h	$V_{\rm rd}$	ø staffe	i orizz.	i vert.	θ	V_{Rsd}	
(-)	(kN)	(m)	(kN)	(mm)	(cm)	(cm)	(°)	(kN)	-
a-a	43.01	0.70	233.36	14	20	20	21.8	2202.40	Armatura a taglio non necessaria
b-b	43.42	0.70	233.36	14	20	20	21.8	2202.40	Armatura a taglio non necessaria
c-c	36.73	0.70	233.36	14	20	20	21.8	2202.40	Armatura a taglio non necessaria
d-d	54.51	0.55	198.77	14	20	20	21.8	1694.16	Armatura a taglio non necessaria
e -e	35.23	0.55	197.36	14	20	20	21.8	1694.16	Armatura a taglio non necessaria
f-f	19.72	0.55	195.96	14	20	20	21.8	1694.16	Armatura a taglio non necessaria
g-g	7.98	0.55	194.55	14	20	20	21.8	1694.16	Armatura a taglio non necessaria

Ghella innera salce seesnestenig	RADDOPPIO TRATTA CANCELLO-BENEVENTO II LOTTO FUNZIONALE FRASSO TELESINO – VITULANO 1° LOTTO FUNZIONALE FRASSO TELESINO – TELESE PROGETTO ESECUTIVO					
Relazione di Calcolo Muri di Sostegno in c.a. NV09	COMMESSA IF26	LOTTO 12 E ZZ	CODIFICA CL	DOCUMENTO NV0900 001	REV.	FOGLIO 66 di 101

VERIFICA SLE – FESSURAZIONE

condizione Frequente

Sez.	M	N	h	Af	A'f	σc	σf	wk	\mathbf{W}_{amm}
(-)	(kNm)	(kN)	(m)	(cm ²)	(cm ²)	(N/mm ²)	(N/mm ²)	(mm)	(mm)
a - a	7.51	0.00	0.70	10.18	10.18	0.18	12.12	0.018	0.200
b - b	-37.85	0.00	0.70	10.18	10.18	0.91	61.06	0.090	0.200
C - C	-11.41	0.00	0.70	10.18	10.18	0.27	18.40	0.027	0.200
d - d	32.93	41.25	0.55	8.04	8.04	1.35	63.18	0.102	0.200
e -e	15.26	30.94	0.55	8.04	8.04	0.61	22.71	0.037	0.200
f-f	5.34	20.63	0.55	8.04	8.04	0.19	3.45	0.005	0.200
g - g	0.97	10.31	0.55	8.04	8.04	0.04	-0.05	0.000	0.200

(n.b.: M+ tende le fibre di intradosso, M- tende le fibre di estradosso)

condizione Quasi Permanente

Sez.	М	N	h	Af	A'f	σc	σf	wk	\mathbf{W}_{amm}	_
(-)	(kNm)	(kN)	(m)	(cm ²)	(cm ²)	(N/mm ²)	(N/mm ²)	(mm)	(mm)	_
a - a	6.71	0.00	0.70	10.18	10.18	0.16	10.82	0.016	0.200	
b - b	-25.28	0.00	0.70	10.18	10.18	0.61	40.78	0.060	0.200	
C - C	-6.68	0.00	0.70	10.18	10.18	0.16	10.78	0.016	0.200	
d - d	23.17	41.25	0.55	8.04	8.04	0.94	37.58	0.061	0.200	
е -е	9.77	30.94	0.55	8.04	8.04	0.37	9.05	0.014	0.200	
f - f	2.90	20.63	0.55	8.04	8.04	0.09	0.24	0.000	0.200	
g - g	0.36	10.31	0.55	8.04	8.04	0.00	-	-	0.200	sez. compre

(n.b.: M+ tende le fibre di intradosso, M- tende le fibre di estradosso)

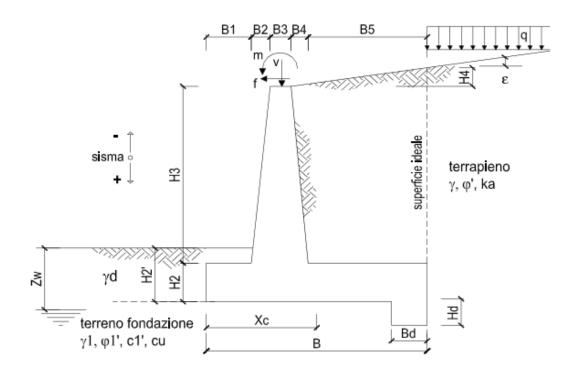
VERIFICA SLE – TENSIONE

Condizione Statica

	in assessmen						
Sez.	M	N	h	Af	A'f	σc	of
(-)	(kNm)	(kN)	(m)	(cm ²)	(cm ²)	(N/mm ²)	(N/mm ²)
a-a	8.72	0.00	0.70	10.18	10.18	0.21	14.07
b-b	-56.71	0.00	0.70	10.18	10.18	1.36	91.47
C - C	-18.50	0.00	0.70	10.18	10.18	0.44	29.84
d-d	47.56	41.25	0.55	8.04	8.04	1.96	101.91
e-e	23.49	30.94	0.55	8.04	8.04	0.97	44.22
f-f	8.99	20.63	0.55	8.04	8.04	0.36	12.12
g-g	1.89	10.31	0.55	8.04	8.04	0.06	0.47

Condizione Sismica

Sez.	M	N	h	Af	A'f	OC.	of
(-)	(kNm)	(kN)	(m)	(cm ²)	(cm ²)	(N/mm ²)	(N/mm ²)
a-a	10.49	0.00	0.70	10.18	10.18	0.25	16.92
b-b	-99 29	0.00	0.70	10.18	10.18	2.39	160.17
c - c	-34.10	0.00	0.70	10.18	10.18	0.82	55.00
d-d	44.44	38.70	0.55	8.04	8.04	1.83	95.13
e-e	20.68	29.02	0.55	8.04	8.04	0.85	37.90
1-1	7.27	19.35	0.55	8.04	8.04	0.28	8.45
g-g	1.34	9.67	0.55	8.04	8.04	0.04	0.10


(n.b.: M+ tende le fibre di intradosso, M- tende le fibre di estradosso)

Chella Ininera SALSEF LEGSNEATHING	II LOTTO F	IO TRAT UNZIONA FUNZION	TA CANCEL ALE FRASS(IALE FRASS	LO-BENEVENT D TELESINO – O TELESINO –	VITULAN	
Relazione di Calcolo Muri di Sostegno in c.a. NV09	COMMESSA IF26	LOTTO 12 E ZZ	CODIFICA CL	DOCUMENTO NV0900 001	REV.	FOGLIO 67 di 101

10.2 RISULTATI ANALISI E VERIFICHE MURI DI TIPO H=4

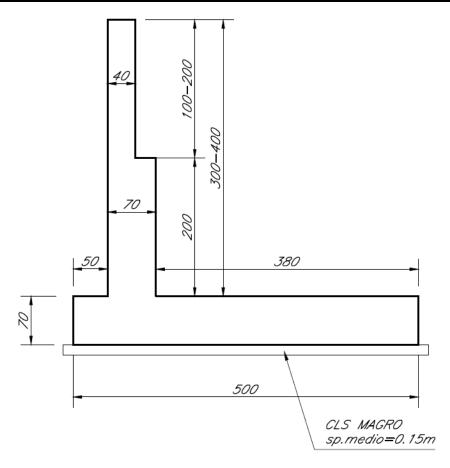
10.2.1 MODELLO DI CALCOLO

Si riportano di seguito in forma tabellare i valori delle spinte di natura statica e sismica per le combinazioni analizzate, gli inviluppi delle sollecitazioni nel muro e sulla fondazione:

OPERA Esempio

DATI DI PROGETTO:

Geometria	del	Muro
-----------	-----	------


Elevazione	H3 =	4.00	(m)
Aggetto Valle	B2 =	0.00	(m)
Spessore del Muro in Testa	B3 =	0.70	(m)
Aggetto monte	B4 =	0.00	(m)

Geometria della Fondazione

deometria della i oridazione			
Larghezza Fondazione	B =	5.00	(m)
Spessore Fondazione	H2 =	0.70	(m)
Suola Lato Valle	B1 =	0.50	(m)
Suola Lato Monte	B5 =	3.80	(m)
Altezza dente	Hd =	0.00	(m)
Larghezza dente	Bd =	0.00	(m)
Mezzeria Sezione	Xc =	2.50	(m)

Peso Specifico del Calcestruzzo	γcls =	25.00	(kN/m³)

SALCEF DEGENERATION OF THE PROPERTY OF THE PRO	II LOTTO F	IO TRAT UNZIONA FUNZION	TA CANCEL ALE FRASSI IALE FRASS	LO-BENEVENT O TELESINO – 60 TELESINO –	VITULAN	
Relazione di Calcolo Muri di Sostegno in c.a. NV09	COMMESSA IF26	LOTTO 12 E ZZ	CODIFICA CL	DOCUMENTO NV0900 001	REV.	FOGLIO 68 di 101

Geometria muro

10.2.2 VERIFICHE GEOTECNICHE

FORZE VERTICALI

- Peso del Mu	ro (Pm)		SLE	STR/GEO	EQU
Pm1 =	(B2*H3*γcls)/2	(kN/m)	0.00	0.00	0.00
Pm2 =	(B3*H3*γcls)	(kN/m)	70.00	70.00	63.00
Pm3 =	(B4*H3*γcls)/2	(kN/m)	0.00	0.00	0.00
Pm4 =	(B*H2*γcls)	(kN/m)	87.50	87.50	78.75
Pm5 =	(Bd*Hd*γcls)	(kN/m)	0.00	0.00	0.00
Pm =	Pm1 + Pm2 + Pm3 + Pm4 + Pm5	(kN/m)	157.50	157.50	141.75
- Peso del ter	reno e sovr. perm. sulla scarpa di monte del muro (Pt)				
Pt1 =	(B5*H3*γ')	(kN/m)	288.80	288.80	259.92
Pt2 =	$(0,5*(B4+B5)*H4*\gamma')$	(kN/m)	0.00	0.00	0.00
Pt3 =	(B4*H3*γ')/2	(kN/m)	0.00	0.00	0.00
Sovr =	qp * (B4+B5)	(kN/m)	0.00	0.00	0.00
Pt =	Pt1 + Pt2 + Pt3 + Sovr	(kN/m)	288.80	288.80	259.92

SALCEF DESIGNATION OF	II LOTTO F	IO TRAT UNZION FUNZION	TA CANCEL ALE FRASS IALE FRASS	LO-BENEVENT O TELESINO – GO TELESINO –	VITULAI	
Relazione di Calcolo Muri di Sostegno in c.a. NV09	COMMESSA IF26	LOTTO 12 E ZZ	CODIFICA CL	DOCUMENTO NV0900 001	REV.	FOGLIO 69 di 101

- Sovraccarico	accidentale	sulla	scarpa	di	monte	del	muro
----------------	-------------	-------	--------	----	-------	-----	------

- Sovraccarico : Sovr acc. Stat Sovr acc. Sism		(kN/m) (kN/m)	76 15.2	114			
MOMENTI DELLE FORZE VERT. RISPETTO AL PIEDE DI VALLE DEL MURO							
- Muro (Mm)			SLE	STR/GEO	EQU		
Mm1 = `	Pm1*(B1+2/3 B2)	(kNm/m)	0.00	0.00	0.00		
Mm2 =	Pm2*(B1+B2+0,5*B3)	(kNm/m)	59.50	59.50	53.55		
Mm3 = Mm4 =	Pm3*(B1+B2+B3+1/3 B4) Pm4*(B/2)	(kNm/m) (kNm/m)	0.00	0.00	0.00		
Mm5 =	Pm5*(B - Bd/2)	(kNm/m)	218.75 0.00	218.75 0.00	196.88 0.00		
Mm =	Mm1 + Mm2 + Mm3 + Mm4 + Mm5	(kNm/m)	278.25	278.25	250.43		
- Terrapieno e s	sovr. perm. sulla scarpa di monte del muro						
Mt1 =	Pt1*(B1+B2+B3+B4+0,5*B5)	(kNm/m)	895.28	895.28	805.75		
Mt2 =	Pt2*(B1+B2+B3+2/3*(B4+B5))	(kNm/m)	0.00	0.00	0.00		
Mt3 =	Pt3*(B1+B2+B3+2/3*B4)	(kNm/m)	0.00	0.00	0.00		
Msovr =	Sovr*(B1+B2+B3+1/2*(B4+B5))	(kNm/m)	0.00	0.00	0.00		
Mt =	Mt1 + Mt2 + Mt3 + Msovr	(kNm/m)	895.28	895.28	805.75		
- Sovraccarico :	accidentale sulla scarpa di monte del muro						
	(B1+B2+B3+1/2(B4+B5))	(kNm/m)	235.6	353.4			
	(B1+B2+B3+1/2(B4+B5))	(kNm/m)	47.12	000.1			
	(======================================	(,					
INERZIA DEL	MURO E DEL TERRAPIENO						
- Inerzia orizzor	ntale e verticale del muro (Ps)						
Ps h=	Pm*kh	(kN/m)		19.48			
Ps v =	Pm*kv	(kN/m)		9.74			
- Inerzia orizzor Ptsh =	ntale e verticale del terrapieno a tergo del muro (Pts) Pt*kh	(kN/m)		35.73			
Ptsv =	Pt*kv	(kN/m)		17.86			
risv =	FLKV	(KIWIII)		17.00			
- Incremento or	izzontale di momento dovuto all'inerzia del muro (MPs h)						
MPs1 h=	kh*Pm1*(H2+H3/3)	(kNm/m)		0.00			
MPs2 h=	kh*Pm2*(H2 + H3/2)	(kNm/m)		23.38			
MPs3 h=	kh*Pm3*(H2+H3/3)	(kNm/m)		0.00			
MPs4 h=	kh*Pm4*(H2/2)	(kNm/m)		3.79			
MPs5 h=	-kh*Pm5*(Hd/2)	(kNm/m)		0.00			
MPs h=	MPs1+MPs2+MPs3+MPs4+MPs5	(kNm/m)		27.17			
- Incremento ve	rticale di momento dovuto all'inerzia del muro (MPs v)						
MPs1 v=	kv*Pm1*(B1+2/3*B2)	(kNm/m)		0.00			
MPs2 v=	kv*Pm2*(B1+B2+B3/2)	(kNm/m)		3.68			
MPs3 v=	kv*Pm3*(B1+B2+B3+B4/3)	(kNm/m)		0.00			
MPs4 v=	kv*Pm4*(B/2)	(kNm/m)		13.53			
MPs5 v=	kv*Pm5*(B-Bd/2)	(kNm/m)		0.00			
MPs v=	MPs1+MPs2+MPs3+MPs4+MPs5	(kNm/m)		17.21			
Incomments and	importate di manuante deserte all'inserie del terreniene (ME	u. h)					
- Incremento or MPts1 h=	izzontale di momento dovuto all'inerzia del terrapieno (MP kh*Pt1*(H2 + H3/2)			06.47			
MPts1 n= MPts2 h=	kh*Pt2*(H2 + H3 + H4/3)	(kNm/m) (kNm/m)		96.47 0.00			
	kh*Pt3*(H2+H3*2/3)	, ,					
MPts3 h=	MPts1 + MPts2 + MPts3	(kNm/m)		0.00			
MPts h=	ML191 + ML197 + ML199	(kNm/m)		96.47			
- Incremento ve	rticale di momento dovuto all'inerzia del terrapieno (MPts	v)					
MPts1 v=	kv*Pt1*((H2 + H3/2) - (B - B5/2)*0.5)	(kNm/m)		55.38			
MPts2 v=	kv*Pt2*((H2 + H3 + H4/3) - (B - B5/3)*0.5)	(kNm/m)		0.00			
MPts3 v=	kv*Pt3*((H2+H3*2/3)-(B1+B2+B3+2/3*B4)*0.5)	(kNm/m)		0.00			
MPts v=	MPts1 + MPts2 + MPts3	(kNm/m)		55.38			

Ghella Imhera SALCEF DESS PATHOLE	II LOTTO F	IO TRAT UNZION FUNZION	TA CANCEL ALE FRASS IALE FRASS	LO-BENEVENT O TELESINO – GO TELESINO –	VITULA	
Relazione di Calcolo Muri di Sostegno in c.a. NV09	COMMESSA IF26	LOTTO 12 E ZZ	CODIFICA CL	DOCUMENTO NV0900 001	REV.	FOGLIO 70 di 101

CONDIZIONE STATICA

	ERRENO E DEL SOVRACCARICO ondizione statica		SLE	STR/GEO	EQU
St =	0,5*7/*(H2+H3+H4+Hd)2*ka	(kN/m)	56.87	73.93	79.28
Sq perm =	q*(H2+H3+H4+Hd)*ka	(kN/m)	0.00	0.00	0.00
Sq acc =	q*(H2+H3+H4+Hd)*ka	(kN/m)	25.47	38.21	48.43
- Componente o	prizzontale condizione statica				
Sth =	St*cosδ	(kN/m)	56.87	73.93	79.28
Sqh perm =	Sq perm*cosδ	(kN/m)	0.00	0.00	0.00
Sqh acc =	Sq acc*cos8	(kN/m)	25.47	38.21	48.43
- Componente	verticale condizione statica				
Stv =	St*senδ	(kN/m)	0.00	0.00	0.00
Sqv perm=	Sq perm*senδ	(kN/m)	0.00	0.00	0.00
Sqv acc =	Sq acc*senδ	(kN/m)	0.00	0.00	0.00
- Spinta passiva	a sul dente				
Sp=½*g1"*Hd2	(kN/m)	0.00	0.00	0.00	

MOMENTI DE	LLA SPINTA DEL TERRENO E DEL SOVRACCARICO		SLE	STR/GEO	EQU
MSt1 =	Sth*((H2+H3+H4+Hd)/3-Hd)	(kNm/m)	89.09	115.82	124.21
MSt2 =	Stv*B	(kNm/m)	0.00	0.00	0.00
MSq1 perm=	Sqh perm*((H2+H3+H4+Hd)/2-Hd)	(kNm/m)	0.00	0.00	0.00
MSq1 acc =	Sqh acc*((H2+H3+H4+Hd)/2-Hd)	(kNm/m)	59.86	89.79	113.80
MSq2 perm=	Sqv perm*B	(kNm/m)	0.00	0.00	0.00
MSq2 acc =	Sqv acc*B	(kNm/m)	0.00	0.00	0.00
$MSp = \gamma 1^{**}H$	d ³ *kp/3+(2*c1'*kp ^{0.5} +γ1'*kp*H2')*Hd²/2	(kNm/m)	0.00	0.00	0.00
MOMENTI DO	VUTI ALLE FORZE ESTERNE				
Mfext1 =	mp + m	(kNm/m)	0.00	0.00	0.00
Mfext2 =	(fp + f)*(H3 + H2)	(kNm/m)	0.00	0.00	0.00
Mfext3 =	(vp+v)*(B1 +B2 + B3/2)	(kNm/m)	0.00	0.00	0.00

VERIFICA ALLO SCORRIMENTO (STR/GEO)

Risu N	ltante forze	e verticali (N) Pm + Pt + v + Stv + Sqv perm + Sqv acc	446.30	(kN/m)	
_	ltante forze =	e orizzontali (T) Sth + Sqh + f	112.14	(kN/m)	
Coef	fficiente di :	attrito alla base (f) tgφ1'	0.45	(-)	
Fs	scorr.	(N*f + Sp) / T	1.77	>	1.1

VERIFICA AL RIBALTAMENTO (EQU)

Fs ribaltam		4.44	,,	1
Momento ribalta	ante (Mr) MSt + MSq + Mfext1+ Mfext2 + MSp	238.01	(kNm/m)	
Momento stabil Ms =	izzante (Ms) Mm + Mt + Mfext3	1056.18	(kNm/m)	

Ghella Immera SALSEF ALSES NEATHING	II LOTTO F	IO TRAT UNZION FUNZION	TA CANCEL ALE FRASS IALE FRASS	LO-BENEVENT O TELESINO – GO TELESINO –	VITULA	_
Relazione di Calcolo Muri di Sostegno in c.a. NV09	COMMESSA IF26	LOTTO 12 E ZZ	CODIFICA CL	DOCUMENTO NV0900 001	REV.	FOGLIO 71 di 101

VERIFICA CARICO LIMITE DELLA FONDAZIONE (STR/GEO)

Risultante forze N =	verticali (N) Pm + Pt + v + Stv + Sqv (+ Sovr acc)		Nmin 446.30	Nmax 560.30	(kN/m)
Risultante forze T =	orizzontali (T) Sth + Sqh + f - Sp		112.14	112.14	(kN/m)
Risultante dei m MM =	omenti rispetto al piede di valle (MM) ΣΜ		967.92	1321.32	(kNm/m)
Momento rispett M =	to al baricentro della fondazione (M) Xc*N - MM		147.83	79.43	(kNm/m)
Formula Gener	ale per il Calcolo del Carico Limite Unitrario (Brinc	h-Hansen, 1970))		
Fondazione Nas	striforme				
qlim = c'Nc*ic +	+ q ₀ *Nq*iq + 0,5*γ1*Β*Νγ*iγ				
c1' φ1' γ1	coesione terreno di fondaz. angolo di attrito terreno di fondaz. peso unità di volume terreno fondaz.		10.00 24.00 10.40		(kPa) (°) (kN/m³)
$q_0 = \gamma d^*H2'$	sovraccarico stabilizzante		26.00		(kN/m^2)
e = M / N B*= B - 2e	eccentricità larghezza equivalente		0.33 4.34	0.14 4.72	(m) (m)
I valori di Nc, No	q e Ng sono stati valutati con le espressioni suggerite e	da Vesic (1975)			
$Nq = tg^{2}(45 + \phi)$ Nc = (Nq - 1)/tg($N\gamma = 2*(Nq + 1)*$	(φ') (2+π in cond. nd) (tg(φ') (0 in cond. nd)		9.60 19.32 9.44		(-) (-) (-)
I valori di ic, iq e	iγ sono stati valutati con le espressioni suggerite da \	/esic (1975)			
iq = (1 - T/(N + E)) ic = iq - (1 - iq)/(1) $i\gamma = (1 - T/(N + E))$	Nq - 1)		0.63 0.59 0.50	0.69 0.59 0.51	(-) (-) (-)
(fondazione nas	triforme m = 2)				
qlim	(carico limite unitario)		377.26	393.94	(kN/m ²)
FS carico lim	rite F = qlim*B*/ N	Nmin Nmax	3.67 3.32	>	1.4

Ghella innera Salse Seasn Rastrum H	ITINERARIO NAPOLI – BARI RADDOPPIO TRATTA CANCELLO-BENEVENTO II LOTTO FUNZIONALE FRASSO TELESINO – VITULANO 1° LOTTO FUNZIONALE FRASSO TELESINO – TELESE PROGETTO ESECUTIVO					
Relazione di Calcolo Muri di Sostegno in c.a. NV09	COMMESSA IF26	LOTTO 12 E ZZ	CODIFICA	DOCUMENTO NV0900 001	REV.	FOGLIO 72 di 101

CONDIZIONE SISMICA +

- Spinta condizi	ERRENO E DEL SOVRACCARICO		SLE	STR/GEO	EQU
Sst1 stat =	0,5*/**(H2+H3+H4+Hd)2*ka	(kN/m)	56.87	56.87	72.07
Sst1 sism =	0,5*γ*(1+kv)*(H2+H3+H4+Hd)2*kas*-Sst1 stat	(kN/m)	18.47	18.47	21.41
Ssq1 perm=	qp*(H2+H3+H4+Hd)*kas+	(kN/m)	0.00	0.00	0.00
Ssq1 acc =	qs*(H2+H3+H4+Hd)*kas+	(kN/m)	6.36	6.36	7.89
	orizzontale condizione sismica +	(1.81/)	50.07	50.07	70.07
Sst1h stat = Sst1h sism =	Sst1 stat*cosδ Sst1 sism*cosδ	(kN/m) (kN/m)	56.87 18.47	56.87 18.47	72.07 21.41
Ssq1h perm=	Ssq1 perm*cosô	(kN/m)	0.00	0.00	0.00
Ssq1h acc=	Ssq1 acc*cos8	(kN/m)	6.36	6.36	7.89
	verticale condizione sismica +	(lab l/ma)	0.00	0.00	0.00
Sst1v stat = Sst1v sism =	Sst1 stat*senő Sst1 sism*senő	(kN/m) (kN/m)	0.00	0.00	0.00
Ssq1v perm=	Ssq1 perm*senő	(kN/m)	0.00	0.00	0.00
Ssq1v acc=	Ssq1 acc*senő	(kN/m)	0.00	0.00	0.00
		. ,			
 Spinta passiva 	a sul dente				
Sp=½*γ ₁ ′(1+kv)	Hd ² *kps ⁺ +(2*c ₁ '*kps ^{+0.5} +γ1' (1+kv) kps ⁺ *H2')*Hd	(kN/m)	0.00	0.00	0.00
MOMENTI DE	LLA SPINTA DEL TERRENO E DEL SOVRACCARICO		21.5	275,252	5011
- Condizione sis	smica +		SLE	STR/GEO	EQU
MSst1 stat =	Sst1h stat * ((H2+H3+H4+hd)/3-hd)	(kNm/m)	89.09	89.09	112.91
MSst1 sism= MSst2 stat =	Sst1h sism* ((H2+H3+H4+Hd)/3-Hd) Sst1v stat* B	(kNm/m) (kNm/m)	28.94 0.00	28.94 0.00	33.53 0.00
MSst2 sism =	Sst1v sism* B	(kNm/m)	0.00	0.00	0.00
MSsq1 =	Ssq1h * ((H2+H3+H4+Hd)/2-Hd)	(kNm/m)	14.94	14.94	18.53
MSsq2 =	Ssq1v * B	(kNm/m)	0.00	0.00	0.00
MSp =	γ,"*Hd ³ *kps*/3+(2*c1**kps* ^{0.5} +γ1**kps**H2')*Hd ² /2	(kNm/m)	0.00	0.00	0.00
		, ,			
MOMENTI DO Mfext1 =	VUTI ALLE FORZE ESTERNE	(kNm/m)		0.00	
Mfext2 =	mp+ms (fp+fs)*(H3 + H2)	(kNm/m)		0.00	
Mfext3 =	(vp+vs)*(B1 +B2 + B3/2)	(kNm/m)		0.00	
	(.,, , , ,	, ,			
VERIFICA AL	LO SCORRIMENTO				
TEITH IOA AL	EO SOSTITUIMENTO				
Risultante forze	verticali (N)				
N =	Pm+ Pt + vp + vs + Sst1v + Ssq1v + Ps v + Ptsv		473.91	(kN/m)	
Risultante forze	orizzontali (T)				
T =	Sst1h + Ssq1h + fp + fs +Ps h + Ptsh		136.91	(kN/m)	
Coofficients di	attella alla haca (f)			. ,	
f =	attrito alla base (f) tgo1'		0.45	(-)	
	gų.		0.43	(-)	
Fs =	(N*f + Sp) / T		1.54	>	1.1
VERIFICA AL	RIBALTAMENTO				
Momento stabil	izzante (Me)				
Ms =	Mm + Mt + Mfext3		1173.53	(kNm/m)	
				(/	
Momento ribalta			040.00	(I-NI)	
Mr =	MSst+MSsq+Mfext1+Mfext2+MSp+MPs+Mpts		216.03	(kNm/m)	
Fr =	Ms / Mr		5.43	>	1

PIZZAROTTI () Ghella — IIMERA — SALGEF LEGANTATIUTH	ITINERARIO NAPOLI – BARI RADDOPPIO TRATTA CANCELLO-BENEVENTO II LOTTO FUNZIONALE FRASSO TELESINO – VITUL 1° LOTTO FUNZIONALE FRASSO TELESINO – TELE PROGETTO ESECUTIVO				VITULA	
Relazione di Calcolo Muri di Sostegno in c.a. NV09	COMMESSA IF26	LOTTO 12 E ZZ	CODIFICA CL	DOCUMENTO NV0900 001	REV.	FOGLIO 73 di 101

VERIFICA A CARICO	LIMITE DELLA	FONDAZIONE
--------------------------	--------------	------------

VERIFICA A C	ARICO LIMITE DELLA FONDAZIONE				
Risultante forze	verticali (N) Pm+ Pt + vp + vs + Sst1v + Ssq1v + Ps v + Ptsv + (Se	Nmin 473.91	Nmax 489.11	(kN/m)	
Risultante forze T =	orizzontali (T) Sst1h + Ssq1h + fp + fs +Ps h + Ptsh - Sp		136.91		(kN/m)
Risultante dei m MM =	omenti rispetto al piede di valle (MM) ΣM		989.51	1036.63	(kNm/m)
Momento rispet M =	to al baricentro della fondazione (M) Xc*N - MM		195.25	186.13	(kNm/m)
Formula Gener	ale per il Calcolo del Carico Limite Unitrario (Brincl	h-Hansen, 1970)			
Fondazione Na	striforme				
qlim = c'Nc*ic	+ q ₀ -Nq-1q + 0,5-γ1-Β-Νγ-1γ				
c1' φ1' γι	coesione terreno di fondaz. angolo di attrito terreno di fondaz. peso unità di volume terreno fondaz.		10.00 24.00 10.40		(kN/mq) (°) (kN/m³)
$q_0 = \gamma d^*H2'$	sovraccarico stabilizzante		26.00		(kN/m^2)
e = M / N B*= B - 2e	eccentricità larghezza equivalente		0.41 4.18	0.38 4.24	(m) (m)
I valori di Nc, No	q e Ng sono stati valutati con le espressioni suggerite d	da Vesic (1975)			
$Nq = tg^{2}(45 + \phi)^{2}$ $Nc = (Nq - 1)/tg^{2}$ $N\gamma = 2*(Nq + 1)^{2}$	φ') (2+π in cond. nd)		9.60 19.32 9.44		(-) (-) (-)
I valori di ic, iq e	iγ sono stati valutati con le espressioni suggerite da V	esic (1975)			
iq = (1 - T/(N + i)) ic = iq - (1 - iq)/(i) $i\gamma = (1 - T/(N + i))$	Nq - 1)		0.58 0.53 0.44	0.59 0.54 0.44	(-) (-) (-)
(fondazione nas	triforme m = 2)				
qlim	(carico limite unitario)		335.11	341.54	(kN/m^2)
FS carico lin	nite F = qlim*B*/ N		2.95 2.96	>	1.4

SALCEF MESSATEMENT OF	II LOTTO F	IO TRAT UNZIONA FUNZION	TA CANCEL ALE FRASSI IALE FRASS	LO-BENEVENT O TELESINO – ' O TELESINO –	VITULA	
Relazione di Calcolo Muri di Sostegno in c.a. NV09	COMMESSA IF26	LOTTO 12 E ZZ	CODIFICA CL	DOCUMENTO NV0900 001	REV.	FOGLIO 74 di 101

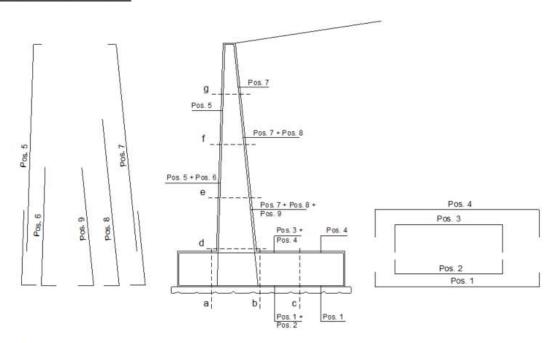
CONDIZIONE SISMICA -

SPINTE DEL 1 - Spinta condizi	TERRENO E DEL SOVRACCARICO ione sismica -		SLE	STR/GEO	EQU
Sst1 stat =	0,5*√*(H2+H3+H4+Hd)²*ka	(kN/m)	56.87	56.87	72.07
Sst1 sism =	0,5*'y'*(1-kv)*(H2+H3+H4+Hd)≥*kas`-Sst1 stat	(kN/m)	11.65	11.65	12.75
Ssq1 perm=	qp*(H2+H3+H4+Hd)*kas*	(kN/m)	0.00	0.00	0.00
Ssq1 acc =	qs*(H2+H3+H4+Hd)*kas	(kN/m)	6.54	6.54	8.10
	orizzontale condizione sismica -				
Sst1h stat =	Sst1 stat*cos8	(kN/m)	56.87	56.87	72.07
Sst1h sism = Ssq1h perm=	Sst1 sism*cosô Ssq1 perm*cosô	(kN/m) (kN/m)	11.65 0.00	11.65	12.75 0.00
Ssq1h acc=	Ssq1 acc*cosô	(kN/m)	6.54	6.54	8.10
- Componente	verticale condizione sismica -				
Sst1v stat =	Sst1 stat*senő	(kN/m)	0.00	0.00	0.00
Sst1v sism =	Sst1 sism*senδ	(kN/m)	0.00	0.00	0.00
Ssq1v perm=	Ssq1 perm*senδ	(kN/m)	0.00	0.00	0.00
Ssq1v acc=	Ssq1 acc*senő	(kN/m)	0.00	0.00	0.00
- Spinta passiva					
Sp=½*γ ₁ '(1-kv)	Hd ² *kps ⁻ +(2*c ₁ '*kps ^{-0.5} +γ1' (1-kv) kps ⁻ *H2')*Hd	(kN/m)	0.00	0.00	0.00
MOMENTI DE	LLA SPINTA DEL TERRENO E DEL SOVRACCARICO	[SLE	STR/GEO	EQU
- Condizione si	smica -	l	SLE	SINGEO	EQU
MSst1 stat =	Sst1h stat * ((H2+H3+H4+hd)/3-hd)	(kNm/m)	89.09	89.09	112.91
MSst1 sism=	Sst1h sism* ((H2+H3+H4+Hd)/3-Hd)	(kNm/m)	18.25	18.25	19.98
MSst2 stat =	Sst1v stat* B	(kNm/m)	0.00	0.00	0.00
MSst2 sism =	Sst1v sism* B	(kNm/m)	0.00	0.00	0.00
MSsq1 =	Ssq1h * ((H2+H3+H4+Hd)/2-Hd)	(kNm/m)	15.38	15.38	19.03
MSsq2 =	Ssq1v * B	(kNm/m)	0.00	0.00	0.00
MSp =	γ ₁ **Hd ³ *kps*/3+(2*c1**kps* ^{0.5} +γ1**kps**H2')*Hd ² /2	(kNm/m)	0.00	0.00	0.00
MOMENTI DO	VUTI ALLE FORZE ESTERNE				
Mfext1 =	mp+ms	(kNm/m)		0.00	
Mfext2 =	(fp+fs)*(H3 + H2)	(kNm/m)		0.00	
Mfext3 =	(vp+vs)*(B1 +B2 + B3/2)	(kNm/m)		0.00	
VERIFICA AL	LO SCORRIMENTO				
Risultante forze					
N =	Pm+ Pt + vp + vs + Sst1v + Ssq1v + Ps v + Ptsv		418.69	(kN/m)	
Risultante forze	e orizzontali (T) Sst1h + Ssq1h + fp + fs +Ps h + Ptsh		130.27	(kN/m)	
	attrito alla base (f)		100.27	(ca e i i i j	
f =	tgo1'		0.45	(-)	
Fs =	(N*f + Sp) / T		1.43	>	1.1
VERIFICA AL	RIBALTAMENTO				
Momento stabil	lizzante (Ms)				
Ms =	Mm + Mt + Mfext3		1173.53	(kNm/m)	
Momento ribalt Mr =	ante (Mr) MSst+MSsq+Mfext1+Mfext2+MSp+MPs+Mpts		348.15	(kNm/m)	
Fr =	Ms / Mr		3.37	>	1
			3.07		

Chella Ininera SALSEF LEGSNEATHING	II LOTTO F	IO TRAT UNZION FUNZION	TA CANCEL ALE FRASSI IALE FRASS	LO-BENEVENT O TELESINO – GO TELESINO –	VITULA	
Relazione di Calcolo Muri di Sostegno in c.a. NV09	COMMESSA IF26	LOTTO 12 E ZZ	CODIFICA CL	DOCUMENTO NV0900 001	REV.	FOGLIO 75 di 101

Risultante forze N =	verticali (N) Pm+ Pt + vp + vs + Sst1v + Ssq1v + Ps v + Ptsv	Nmin 418.69	Nmax 433.89	(kN/m)						
Risultante forze T =	orizzontali (T) Sst1h + Ssq1h + fp + fs +Ps h + Ptsh - Sp	130.27		(kN/m)						
Risultante dei m MM =	omenti rispetto al piede di valle (MM) Σ M		854.59	901.71	(kNm/m)					
Momento rispet M =	to al baricentro della fondazione (M) Xc*N - MM		192.15	183.03	(kNm/m)					
Formula Generale per il Calcolo del Carico Limite Unitrario (Brinch-Hansen, 1970)										
Fondazione Nas	striforme									
qiim = c'Nc'ic +	+ q ₀ -Nq-1q + U,5-11-18-NY-14									
c1' φ1' ''1	coesione terreno di fondaz. angolo di attrito terreno di fondaz. peso unità di volume terreno fondaz.	10.00 24.00 10.40		(kN/mq) (°) (kN/m³)						
$q_0 = \gamma d^*H2'$	sovraccarico stabilizzante		26.00		(kN/m²)					
e = M / N B*= B - 2e	eccentricità larghezza equivalente		0.46 4.08	0.42 4.16	(m) (m)					
I valori di Nc, No	q e Ng sono stati valutati con le espressioni suggerite	da Vesic (1975)								
$Nq = tg^{2}(45 + \phi)^{2}$ $Nc = (Nq - 1)/tg(N\gamma = 2*(Nq + 1))^{2}$	(φ') (2+π in cond. nd)		9.60 19.32 9.44		(-) (-) (-)					
I valori di ic, iq e	$i\gamma$ sono stati valutati con le espressioni suggerite da \	/esic (1975)								
iq = (1 - T/(N + E)) ic = iq - (1 - iq)/(E) $i\gamma = (1 - T/(N + E))$	Nq - 1)		0.55 0.50 0.41	0.57 0.52 0.41	(-) (-) (-)					
(fondazione nas	triforme m = 2)									
qlim	(carico limite unitario)		318.46	325.94	(kN/m²)					
FS carico lin	nite F = qlim*B*/ N	Nmin Nmax	3.10 3.12	> >	1.4					

VERIFICA STABILITÀ GLOBALE


 FS_{STAB} (STATICO) = 2.537 FS_{STAB} (SISMICO) = 1.721

SALCEF JEGSNEWSTRUMEN	RADDOPP II LOTTO F	IO TRAT UNZION FUNZION	TA CANCEL ALE FRASSI IALE FRASS	LO-BENEVENT O TELESINO – SO TELESINO –	VITULA	
Relazione di Calcolo Muri di Sostegno in c.a. NV09	COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
	IF26	12 E ZZ	CL	NV0900 001	Α	76 di 101

10.2.3 VERIFICHE STRUTTURALI

VERIFICA SLU

SCHEMA DELLE ARMATURE

ARMATURE

pos	n°/ml	ф	II strato	pos	n°/ml	ф	II strato	
1	4.0	18	_	5	4.0	18		
2	0.0	24		6	0.0	16		
3	0.0	20		7	4.0	18		Calcola
4	4.0	18		8	0.0	20		REALES
				9	0.0	12		

Sez. M		N	h	Af	A'f	Mu
(-)	(kNm)	(kN)	(m)	(cm ²)	(cm ²)	(kNm)
a-a	15.25	0.00	0.70	10.18	10.18	254.30
b-b	-200.34	0.00	0.70	10.18	10.18	254.30
C-C	-71.28	0.00	0.70	10.18	10.18	254.30
d-d	136.43	70.00	0.70	10.18	10.18	275.62
е -е	66.70	52.50	0.70	10.18	10.18	270.29
f-f	25.18	35.00	0.70	10.18	10.18	264.96
g-g	5.18	17.50	0.70	10.18	10.18	259.63

Sez.	V _{Ed}	h	Vrd	ø staffe	i orizz.	i vert.	θ	V _{Rad}	
(-)	(kN)	(m)	(kN)	(mm)	(cm)	(cm)	(°)	(kN)	- -
a-a	61.96	0.70	233.36	14	25	50	21.8	704.77	Armatura a taglio non necessaria
b-b	62.44	0.70	233.36	14	25	50	21.8	704.77	Armatura a taglio non necessaria
c - c	63.76	0.70	233.36	14	25	50	21.8	704.77	Armatura a taglio non necessaria
d - d	86.07	0.70	243.11	14	25	50	21.8	704.77	Armatura a taglio non necessaria
е-е	54.51	0.70	240.67	14	25	50	21.8	704.77	Armatura a taglio non necessaria
f-f	29.65	0.70	238.24	14	25	50	21.8	704.77	Armatura a taglio non necessaria
g-g	11.48	0.70	235.80	14	25	50	21.8	704.77	Armatura a taglio non necessaria

Ghella innera Salse Seasn Rastrum H	II LOTTO F	IO TRAT UNZIONA FUNZION	TA CANCEL ALE FRASSI ALE FRASS	LO-BENEVENT O TELESINO – SO TELESINO –	VITULA	
Relazione di Calcolo Muri di Sostegno in c.a. NV09	COMMESSA IF26	LOTTO 12 E ZZ	CODIFICA	DOCUMENTO NV0900 001	REV.	FOGLIO 77 di 101

VERIFICA SLE – FESSURAZIONE

condizione Frequente

Sez.	М	N	h	Af	AT	σε	of	wk	\mathbf{W}_{amm}	
(-)	(kNm)	(kN)	(m)	(cm ²)	(cm ²)	(N/mm ²)	(N/mm²)	(mm)	(mm)	_
a-a	10.77	0.00	0.70	10.18	10.18	0.26	17.37	0.026	0.200	
b-b	-77.85	0.00	0.70	10.18	10.18	1.87	125.58	0.185	0.200	
c - c	-25.53	0.00	0.70	10.18	10.18	0.61	41.18	0.061	0.200	
d-d	72.26	70.00	0.70	10.18	10.18	1.77	84.35	0.124	0.200	
e-e	32.93	52.50	0.70	10.18	10.18	0.79	29.58	0.044	0.200	
f-f	11.20	35.00	0.70	10.18	10.18	0.24	4.15	0.006	0.200	
g-g	1.94	17.50	0.70	10.18	10.18	0.00	-	(+0)	0.200	sez, compres

(n.b.: M+ tende le fibre di intradosso, M- tende le fibre di estradosso)

condizione Quasi Permanente

Sez.	M	N	h	Af	A'f	σc	of	wk	Wamm	
(-)	(kNm)	(kN)	(m)	(cm ²)	(cm ²)	(N/mm ²)	(N/mm ²)	(mm)	(mm)	-
a-a	9.85	0.00	0.70	10.18	10.18	0.24	15.88	0.023	0.200	
b-b	-57.38	0.00	0.70	10.18	10.18	1.38	92.56	0.136	0.200	
C-C	-17.78	0.00	0.70	10.18	10.18	0.43	28.68	0.042	0.200	
d-d	54.92	70.00	0.70	10.18	10.18	1.34	56.76	0.084	0.200	
е-е	23.17	52.50	0.70	10.18	10.18	0.53	14.78	0.022	0.200	
f-f	6.87	35.00	0.70	10.18	10.18	0.13	0.58	0.001	0.200	
g-g	0.86	17.50	0.70	10.18	10.18	0.00	*	-	0.200	sez. compressa

(n.b.: M+ tende le fibre di intradosso, M- tende le fibre di estradosso)

VERIFICA SLE – TENSIONE

Condizione Statica

Sez.	M	N	h	Af	A'f	σc	σf
(-)	(kNm)	(kN)	(m)	(cm ²)	(cm ²)	(N/mm ²)	(N/mm ²)
a-a	12.15	0.00	0.70	10.18	10.18	0.29	19.59
b-b	-108.55	0.00	0.70	10.18	10.18	2.61	175.11
c-c	-37.14	0.00	0.70	10.18	10.18	0.89	59.92
d-d	98.28	70.00	0.70	10.18	10.18	2.41	126.04
e-e	47.56	52.50	0.70	10.18	10.18	1.16	52.68
f-f	17.70	35.00	0.70	10.18	10.18	0.42	13.20
g-g	3.57	17.50	0.70	10.18	10.18	0.07	0.35

Condizione Sismica

Sez.	M	N	h	Af	A'f	σc	of
(-)	(kNm)	(kN)	(m)	(cm ²)	(cm ²)	(N/mm ²)	(N/mm ²)
a-a	15.12	0.00	0.70	10.18	10.18	0.36	24.38
b-b	-200.34	0.00	0.70	10.18	10.18	4.82	323.16
c - c	-71.28	0.00	0.70	10.18	10.18	1.71	114.98
d-d	100.90	65.67	0.70	10.18	10.18	2.47	132.22
е-е	46.52	49.25	0.70	10.18	10.18	1.14	52.46
1-1	16.13	32.84	0.70	10.18	10.18	0.38	11.66
g-g	2.90	16.42	0.70	10.18	10.18	0.06	0.15

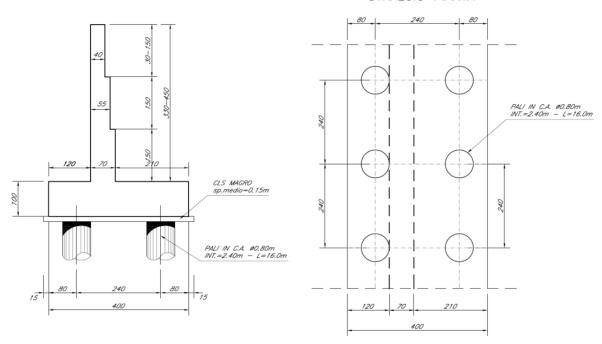
Ghella Innera SALCEF JEGSN TASTHITH	II LOTTO F	IO TRAT UNZION FUNZION	TA CANCEL ALE FRASS IALE FRASS	LO-BENEVENT O TELESINO – GO TELESINO –	VITULAN	
Relazione di Calcolo Muri di Sostegno in c.a. NV09	COMMESSA IF26	LOTTO 12 E ZZ	CODIFICA CL	DOCUMENTO NV0900 001	REV.	FOGLIO 78 di 101

10.3 RISULTATI ANALISI E VERIFICHE MURI DI TIPO H=4.5

10.3.1 MODELLO DI CALCOLO

Le sollecitazioni proventienti dal muro vengono ripartite sui pali restituendo le sollecitazioni nei pali in termini di Taglio, Momento e sforzo normale. Gli scarichi sui pali vengono determinati mediante il metodo delle rigidezze. La piastra di fondazione viene considerata infinitamente rigida (3 gradi di libertà) ed i pali vengono considerati incastrati o incernierati a tale piastra.

Viene effettuata una prima analisi di ogni palo di ciascuna fila (i pali di ogni fila hanno le stesse caratteristiche) per costruire una curva carichi-spostamenti del palo. Questa curva viene costruita considerando il palo elastico. Si tratta, in definitiva, della matrice di rigidezza del palo Ke, costruita imponendo traslazioni e rotazioni unitarie per determinare le corrispondenti sollecitazioni in testa al palo. Nota la matrice di rigidezza di ogni palo si assembla la matrice globale (di dimensioni 3x3) della palificata, K. A questo punto, note le forze agenti in fondazione (N, T, M) si possono ricavare gli spostamenti della piastra (abbassamento, traslazione e rotazione) e le forze che si scaricano su ciascun palo. Infatti indicando con p il vettore dei carichi e con u il vettore degli spostamenti della piastra abbiamo:


$$u = K-1p$$

Noti gli spostamenti della piastra, e quindi della testa dei pali, abbiamo gli scarichi su ciascun palo. Allora per ciascun palo viene effettuata un'analisi elastoplastica incrementale (tramite il metodo degli elementi finiti) che, tenendo conto della plasticizzazione del terreno, calcola le sollecitazioni in tutte le sezioni del palo., le caratteristiche del terreno (rappresentate da Kh) sono tali che se non è possibile raggiungere l'equilibrio si ha collasso per rottura del terreno. In tale analisi i pali sono considerati incastrati alla fondazione di base. Di seguito si riportano i principali risultati delle analisi svolte sul muro su pali. Per ulteriori dettagli si rimanda ai tabulati di calcolo.

Si riportano di seguito in forma tabellare i valori delle spinte di natura statica e sismica per le combinazioni analizzate, gli inviluppi delle sollecitazioni nel muro, sulla fondazione e nei pali.

PIZZAROTTI () Ghella — IIIMERA SALGEF LEGSATIATION OF	II LOTTO F	IO TRAT UNZION FUNZION	TA CANCEL ALE FRASSO IALE FRASS	LO-BENEVENT O TELESINO – O TELESINO –	VITULAN	
Relazione di Calcolo Muri di Sostegno in c.a. NV09	COMMESSA IF26	LOTTO 12 E ZZ	CODIFICA CL	DOCUMENTO NV0900 001	REV.	FOGLIO 79 di 101

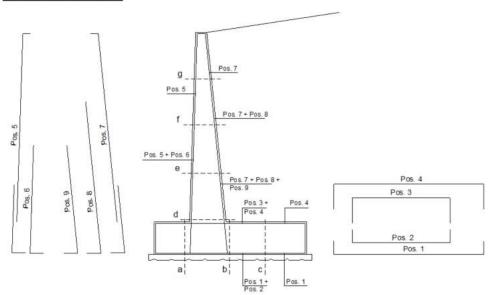
STRALCIO PIANTA

Geometria muro

10.3.2 VERIFICHE GEOTECNICHE

VERIFICA STABILITÀ GLOBALE

FS_{STAB} (STATICO) = 4.106


FS_{STAB} (SISMICO) = 1.342

Ghella innera Salse Seasn Rastrum H	II LOTTO F	IO TRAT UNZIONA FUNZION	TA CANCEL ALE FRASSO ALE FRASS	LO-BENEVENT O TELESINO – GO TELESINO –	VITULA	
Relazione di Calcolo Muri di Sostegno in c.a. NV09	COMMESSA IF26	LOTTO 12 E ZZ	CODIFICA CL	DOCUMENTO NV0900 001	REV.	FOGLIO 80 di 101

10.3.3 VERIFICHE STRUTTURALI

VERIFICA SLU

SCHEMA DELLE ARMATURE

pos	n°/ml	di	II strato	pos	n°/ml	4	II strato
pus	11 71111	Ψ	II Strato	pus	11 /1111	Ψ	II Strate
1	4.0	24		5	4.0	22	
2	0.0			6	0.0	12	
3	0.0	16		7	4.0	22	
4	4.0	24		8	0.0	26	
				9	0.0	26	

							5.1
Sez.	M	N	h	Af	A'f	Mu	Mu/M
(-)	(kNm)	(kN)	(m)	(cm ²)	(cm ²)	(kNm)	(-)
a-a	160.17	0.00	1.20	18.10	18.10	760.49	4.75
b-b	-337.97	0.00	1.20	18.10	18.10	760.49	2.25
C-C	-176.50	0.00	1.20	18.10	18.10	760.49	4.31
d-d	301.99	88.49	0.70	15.21	15.21	383.88	1.27
e -e	138.80	59.06	0.70	15.21	15.21	374.99	2.70
f-f	51.80	39.38	0.70	15.21	15.21	369.04	7.12
g-g	10.48	19.69	0.70	15.21	15.21	363.09	34.65

(n.b.: M+ tende le fibre di intradosso, M- tende le fibre di estradosso)

Sez.	V _{Ed}	h	Vrd	ø staffe	i orizz.	i vert.	θ	V_{Rsd}	
(-)	(kN)	(m)	(kN)	(mm)	(cm)	(cm)	(°)	(kN)	- -
a-a	419.83	1.20	359.26	14	25	50	21.8	1191.48	Sezione verificata
b-b	307.74	1.20	359.26	14	25	50	21.8	1191.48	Armatura a taglio non necessaria
c - c	176.50	1.20	359.26	14	25	50	21.8	1191.48	Armatura a taglio non necessaria
d - d	162.40	0.70	245.69	14	25	50	21.8	673.45	Armatura a taglio non necessaria
e -e	102.03	0.70	241.59	14	25	50	21.8	673.45	Armatura a taglio non necessaria
f-f	54.83	0.70	238.85	14	25	50	21.8	673.45	Armatura a taglio non necessaria
g - g	20.83	0.70	236.10	14	25	50	21.8	673.45	Armatura a taglio non necessaria

Calcola

Ghella innera SALSEF SEESN TASTHUT H	II LOTTO F	IO TRATI UNZIONA FUNZION	TA CANCEL ALE FRASSO ALE FRASS	LO-BENEVENT D TELESINO – O TELESINO –	VITULA	
Relazione di Calcolo Muri di Sostegno in c.a. NV09	COMMESSA	LOTTO 12 E ZZ	CODIFICA	DOCUMENTO	REV.	FOGLIO

VERIFICA SLE – FESSURAZIONE

condizione Frequente

Sez.	M	N	h	Af	A'f	QC.	σf	wk	Wamm
(-)	(kNm)	(kN)	(m)	(cm ²)	(cm ²)	(N/mm ²)	(N/mm ²)	(mm)	(mm)
a-a	81.00	0.00	1.20	18.10	18.10	0.60	41.28	0.048	0.200
b-b	-101.70	0.00	1.20	18.10	18.10	0.76	51.84	0.061	0.200
C-C	-34.34	0.00	1.20	18.10	18.10	0.26	17.50	0.021	0.200
d-d	155.86	78.75	0.70	15.21	15.21	3.15	145.79	0.183	0.200
е-е	70.56	59.06	0.70	15.21	15.21	1.44	59.02	0.074	0.200
f-f	23.75	39.38	0.70	15.21	15.21	0.48	14.40	0.018	0.200
g-g	4.04	19.69	0.70	15.21	15.21	0.07	0.34	0.000	0.200

(n.b.: M+ tende le fibre di intradosso, M- tende le fibre di estradosso)

condizione Quasi Permanente

Sez.	M	N	h	Af	A'f	σc	σf	wk	Wamm	
(-)	(kNm)	(kN)	(m)	(cm ²)	(cm ²)	(N/mm ²)	(N/mm ²)	(mm)	(mm)	=0 =0
a-a	71.86	0.00	1.20	18.10	18.10	0.53	36.63	0.043	0.200	
b-b	-72.02	0.00	1.20	18.10	18.10	0.54	36.71	0.043	0.200	
C - C	-28.63	0.00	1.20	18.10	18.10	0.21	14.59	0.017	0.200	
d-d	121.70	78.75	0.70	15.21	15.21	2.47	108.65	0.137	0.200	
е-е	51.34	59.06	0.70	15.21	15.21	1.05	38.29	0.048	0.200	
f-f	15.21	39.38	0.70	15.21	15.21	0.30	5.81	0.007	0.200	
g-g	1.90	19.69	0.70	15.21	15.21	0.00	-	-	0.200	sez. compressa

(n.b.: M+ tende le fibre di intradosso, M- tende le fibre di estradosso)

VERIFICA SLE – TENSIONE

Condizione Statica Rara

Sez.	M	N	h	Af	A'f	σc	of
(-)	(kNm)	(kN)	(m)	(cm ²)	(cm ²)	(N/mm ²)	(N/mm ²)
a-a	94.70	0.00	1.20	18.10	18.10	0.70	48.27
b-b	-146.24	0.00	1.20	18.10	18.10	1.09	74.53
C-C	-42.90	0.00	1.20	18.10	18.10	0.32	21.87
d - d	207.10	78.75	0.70	15.21	15.21	4.17	201.60
е -е	99.38	59.06	0.70	15.21	15.21	2.02	90.30
f-f	36.56	39.38	0.70	15.21	15.21	0.75	28.04
g-g	7.24	19.69	0.70	15.21	15.21	0.14	2.57

Condizione Sismica

Sez.	M	N	h	Af	A'f	σc	of
(-)	(kNm)	(kN)	(m)	(cm ²)	(cm ²)	(N/mm ²)	(N/mm ²)
a-a	159.84	0.00	1.20	18.10	18.10	1.19	81.47
b-b	-337.97	0.00	1.20	18.10	18.10	2.52	172.25
C - C	-81.60	0.00	1.20	18.10	18.10	0.61	41.59
d - d	301.99	69.01	0.70	15.21	15.21	6.04	307.97
е-е	137.02	51.76	0.70	15.21	15.21	2.76	133.48
f-f	46.29	34.50	0.70	15.21	15.21	0.94	39.98
g-g	7.92	17.25	0.70	15.21	15.21	0.16	3.76

SALCIF LEGSN TASTRITING	II LOTTO F	IO TRAT UNZIONA FUNZION	TA CANCEL ALE FRASSI IALE FRASS	LO-BENEVENT D TELESINO – O TELESINO –	VITULAN	
Relazione di Calcolo Muri di Sostegno in c.a. NV09	COMMESSA IF26	LOTTO 12 E ZZ	CODIFICA CL	DOCUMENTO NV0900 001	REV.	FOGLIO 82 di 101

10.3.4 VERIFICHE PALI DI FONDAZIONE

Per i pali di fondazione si prevedono le seguenti armature:

- Gabbia superiore 24φ24 e staffa a spirale φ12/10

Nota: Ai fini del dimensionamento delle armature è risultata significativa la verifica a carico limite orizzontale riportata nel seguito. Per le verifiche strutturali sarebbe stata sufficiente una armatura inferiore.

VERIFICHE STRUTTURALI PALI

Si riportano i risultati in termini di sollecitazione e verifiche a flessione e taglio. Sotto si riportano le sollecitazioni sui pali.

Sollecitazioni sui pali SLU

	aso	N pali all.1	N pali all.2	T pali
	.430	[kN]	[kN]	[kN] [kN]
statico	Nmin	820.52	86.96	272.63
Statico	Nmax	834.14	204.32	2/2.63
-:	Nmin	1196.33	-176.58	400.40
sisma+	Nmax	1198.43	-158.53	426.18
o i o mo o	Nmin	827.05	-31.83	206.70
sisma-	Nmax	829.14	-13.78	396.79

Sollecitazioni massime testa palo - SLU

SOLLI	ECITAZION	II MAX F	PALI SLU	ARM	IATURA STR	RESIS	TENZE
N	V	č	M	Longitudinala		Vrd	Mrd
[kN]	[kN]	α	[kNm]	Longitudinale	Trasversale (spirale)	[kNm]	[kNm]
1198	426	1.8	739	24φ24	ф 12/10	841.5	1278

Ghella Tinera SALCEF DESS NEATHINE	II LOTTO F	IO TRAT UNZION FUNZION	TA CANCEL ALE FRASSI IALE FRASS	LO-BENEVENT O TELESINO – SO TELESINO –	VITULAN	_
Relazione di Calcolo Muri di Sostegno in c.a. NV09	COMMESSA IF26	LOTTO 12 E ZZ	CODIFICA CL	DOCUMENTO NV0900 001	REV.	FOGLIO 83 di 101

VERIFICHE GEOTECNICHE PALI DI FONDAZIONE Verifiche a capacità portante

CALCOLO DELLA CAPACITA' PORTANTE DI UN PALO TRIVELLATO DI MEDIO DIAMETRO

CANT	TERE:								OPERA:					
DATI	DI INPUT	<u>:</u>												
Diame	etro del Pa	alo (D):			0.80	(m)		Area del Pa	alo (Ap):			0.503	(m ²)	
Quota	testa Pale	o dal p.c.	(Z _p):		2.00	(m)		Quota falda	dal p.c. (z _w):		4.00	(m)	
Carico	o Assiale	Permaner	nte (G):		1198	(kN)		Carico Ass	siale varia	bile (Q):		0	(kN)	
Nume	ero di str	ati		1	•			Lpalo =	1	6.00	(m)			
	coeffici	ienti parzi	ali	T	az	ioni		resistenza	laterale e	di base	۲ ا			17/13/47/17/11
	Metod	o di calco	lo		nanenti Yo		abili 'o	γь	γs	γs traz	Z	p	Ш	Zw
	A1+M1+	+R1	0	1	.30	1.	50	1.00	1.00	1.00]			
SLU	A2+M1+	+R2	0	1	.00	1.	30	1.70	1.45	1.60				p.l.f
S	A1+M1+	+R3	0	1	.30	1.	50	1.35	1.15	1.25				-
	SISMA		•	1	.00	1.	00	1.35	1.15	1.25				
DM88			0	1	.00	1.	00	1.00	1.00	1.00	L			
definit	ti dal prog	ettista	0	1	.00	1.	00	1.00	1.00	1.00				
											<u>.</u>			
	n	0	2	3	0	5	7	≥10 ○	T.A.	prog.				
	ξ3	1.70	1.65	1.60	1.55	1.50	1.45	1.40	1,00	1.00		_		
	Š 4	1.70	1.55	1.48	1.42	1.34	1.28	1.21	1.00	1.00	100		4	

PARAMETRI MEDI

044-			F	Parametri	del terrene	0
Strato	Spess	Tipo di terreno	γ	C' med	Φ' med	C _{u med}
(-)	(m)		(kN/m ³)	(kPa)	(°)	(kPa)
1	16.00	argille limose	20.00	10.0	24.0	

(Coefficienti	di Calcol	0
k	μ	a	α
(-)	(-)	(-)	(-)
0.59	0.45	1100	0.00

(n.b.: lo spessore degli strati è computato dalla quota di intradosso del plinto)

PARAMETRI MINIMI (solo per SLU)

			LANAMIE	1141 1411141	1111 (3010)	JCI OLO
044-	0		F	Parametri	del terren	0
Strato	spess	Tipo di terreno	γ	C' min	Φ' min	C _{u min}
(-)	(m)		(kN/m ³)	(kPa)	(°)	(kPa)
1	16.00	argille limose	20.00	10.0	24.0	

(Coefficienti	di Calcol	0
k	μ	a	α
(-)	(-)	(-)	(-)
0.59	0.45		0.00

	RADDOPPIO TRATTA CANCELLO-BENEVENTO II LOTTO FUNZIONALE FRASSO TELESINO – VITULANO 1° LOTTO FUNZIONALE FRASSO TELESINO – TELESE PROGETTO ESECUTIVO					
Relazione di Calcolo Muri di Sostegno in c.a. NV09	COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO

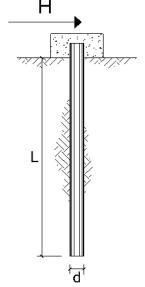
RISULTATI

Ctuata	C				media			minima (solo SLU)				
strato	Spess	Tipo di terreno	Qsi	Nq	Nc	qb	Qbm	Qsi	Nq	Nc	qb	Qbm
(-)	(m)		(kN)	(-)	(-)	(kPa)	(kN)	(kN)	(-)	(-)	(kPa)	(kN)
1	16.00	argille limose	1473.7	6.83	13.10	1634.5	821.6	1473.7	6.83	13.10	1634.5	821.6
												-
	_											
-	_		_									
-			_									

CARICO ASSIALE AGENTE	CAPACIT	A' PORTANTE MEDI	<u>A</u>	CAPACIT	A' PORTANTE MINIMA	
$Nd = N_G \cdot \gamma_G + N_Q \cdot \gamma_Q$	base	R _{b;cal med} =	821.6 (kN)	base	R _{b;cal min} =	821.6 (kN)
Nd = 1198.0 (kN)	laterale	R _{s;cal med} =	1473.7 (kN)	laterale	R _{s;cal min} =	1473.7 (kN)
	totale	R _{c;cal med} =	2295.3 (kN)	totale	R _{c;cal min} =	2295.3 (kN)

CAPACITA' PORTANTE CARATTERISTICA			CAPACITA' PORTANTE DI PROGETTO						
$R_{b,k} = Min(R_{b,cal med}/\xi_3;$	R _{b,cal min} /ξ ₄)=	547.7 (kN)	$R_{c,d} = R_{bk}/\gamma b + R_{sk}/\gamma s$	Fs = R	Rc,d / Nd				
$R_{s,k} = Min(R_{s,cal med}/\xi_3; F$	R _{s,cal min} /ξ ₄)=	982.5 (kN)	R _{c,d} = 1260.1 (kN)	Fs =	1.05				
$R_{c,k} = R_{b,k} + R_{s,k}$	-	1530.2 (kN)							

Verifiche a carico limite orizzontale


CARICO LIMITE ORIZZONTALE DI UN PALO IN TERRENI INCOERENTI PALI CON ROTAZIONE IN TESTA IMPEDITA

OPERA:

TEORIA DI BASE:

(Broms, 1964)

C	oefficienti parz	iali	Α		М	R
Metodo di calcolo		permanenti γ _G	variabili γο	$\gamma_{\phi'}$	γт	
	A1+M1+R1	0	1.30	1.50	1.00	1.00
SLU	A2+M1+R2	0	1.00	1.30	1.00	1.60
เร	A1+M1+R3	0	1.30	1.50	1.00	1.30
	SISMA	•	1.00	1.00	1.00	1.30
DM88		0	1.00	1.00	1.00	1.00
definiti dal progettista		0	1.30	1.50	1.25	1.00

n	10	2	3	4	5 •	7	≥10 ○	T.A.	prog.
ξ ₃	1.70	1.65	1.60	1.55	1.50	1.45	1.40	1.00	1.00
ξ ₄	1.70	1.55	1.48	1.42	1.34	1.28	1.21	1.00	1.00

SALCE SESSIFICATION OF THE SALCE SESSIFICATION OF	RADDOPPIO TRATTA CANCELLO-BENEVENTO II LOTTO FUNZIONALE FRASSO TELESINO – VITULANO 1° LOTTO FUNZIONALE FRASSO TELESINO – TELESE PROGETTO ESECUTIVO					
Relazione di Calcolo Muri di Sostegno in c.a. NV09	COMMESSA IF26	LOTTO 12 E ZZ	CODIFICA CL	DOCUMENTO NV0900 001	REV.	FOGLIO 85 di 101

Palo corto:	$H = 1.5k_p \gamma d^3 \left(\frac{L}{d}\right)^2$
Palo intermedio:	$H = \frac{1}{2}k_{p}\gamma d^{3}\left(\frac{L}{d}\right)^{2} + \frac{M_{y}}{L}$
Palo lungo:	$H = k_p \gamma d^3 \sqrt[3]{\left(3.676 \frac{M_y}{k_p \gamma d^4}\right)^2}$

DATI DI INPUT:

Lunghezza del palo	L=	16.00	(m)			
Diametro del palo	1277.86	0.80	(m)			
Momento di plasticizzazione della sezione	My =	1278.00	(kN m)			
Angolo di attrito del terreno	φ' med=	24.00	(°)	φ' _{min} =	24.00	(°)
Angolo di attrito di calcolo del terreno	φ' med,d=	24.00	(°)	φ' min,d=	24.00	(°)
Coeff. di spinta passiva (kp = $(1+\sin\phi')/(1-\sin\phi')$)	kp med =	2.37	(-)	kp min =	2.37	(-)
Peso di unità di volume (con falda $\gamma = \gamma'$)	γ =	20.00	(kN/m^3)			
Carico Orizzontale di progetto (V):	V =	426	(kN)			

Palo corto:

Palo intermedio:

Palo lungo:

$$H_{med}$$
 = 942.54 (kN) palo lungo H_{min} = 942.54 (kN) palo lungo

$$H_k = Min(H_{med}/\xi_3; R_{min}/\xi_4) = 628.36$$
 (kN)

$$H_d = H_k / \gamma_T = 483.35$$
 (kN)

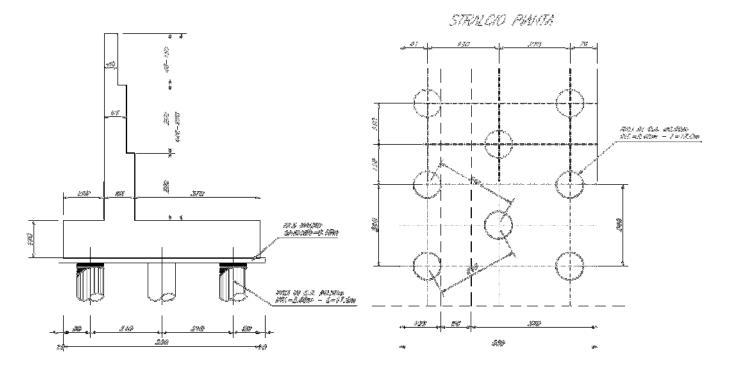
$$F_{\rm d} = 426.00$$
 (kN)

Ghella minera SALCEF DECENTACTION	II LOTTO F	IO TRAT UNZION FUNZION	TA CANCEL ALE FRASSI IALE FRASS	LO-BENEVENT O TELESINO – GO TELESINO –	VITULAN	
Relazione di Calcolo Muri di Sostegno in c.a. NV09	COMMESSA IF26	LOTTO 12 E ZZ	CODIFICA CL	DOCUMENTO NV0900 001	REV.	FOGLIO 86 di 101

10.4 RISULTATI ANALISI E VERIFICHE MURI DI TIPO H=5.5

10.4.1 MODELLO DI CALCOLO

Le sollecitazioni proventienti dal muro vengono ripartite sui pali restituendo le sollecitazioni nei pali in termini di Taglio, Momento e sforzo normale. Gli scarichi sui pali vengono determinati mediante il metodo delle rigidezze. La piastra di fondazione viene considerata infinitamente rigida (3 gradi di libertà) ed i pali vengono considerati incastrati o incernierati a tale piastra.


Viene effettuata una prima analisi di ogni palo di ciascuna fila (i pali di ogni fila hanno le stesse caratteristiche) per costruire una curva carichi-spostamenti del palo. Questa curva viene costruita considerando il palo elastico. Si tratta, in definitiva, della matrice di rigidezza del palo Ke, costruita imponendo traslazioni e rotazioni unitarie per determinare le corrispondenti sollecitazioni in testa al palo. Nota la matrice di rigidezza di ogni palo si assembla la matrice globale (di dimensioni 3x3) della palificata, K. A questo punto, note le forze agenti in fondazione (N, T, M) si possono ricavare gli spostamenti della piastra (abbassamento, traslazione e rotazione) e le forze che si scaricano su ciascun palo. Infatti indicando con p il vettore dei carichi e con u il vettore degli spostamenti della piastra abbiamo:

$$u = K-1p$$

Noti gli spostamenti della piastra, e quindi della testa dei pali, abbiamo gli scarichi su ciascun palo. Allora per ciascun palo viene effettuata un'analisi elastoplastica incrementale (tramite il metodo degli elementi finiti) che, tenendo conto della plasticizzazione del terreno, calcola le sollecitazioni in tutte le sezioni del palo., le caratteristiche del terreno (rappresentate da Kh) sono tali che se non è possibile raggiungere l'equilibrio si ha collasso per rottura del terreno. In tale analisi i pali sono considerati incastrati alla fondazione di base. Di seguito si riportano i principali risultati delle analisi svolte sul muro su pali. Per ulteriori dettagli si rimanda ai tabulati di calcolo.

Si riportano di seguito in forma tabellare i valori delle spinte di natura statica e sismica per le combinazioni analizzate, gli inviluppi delle sollecitazioni nel muro, sulla fondazione e nei pali.

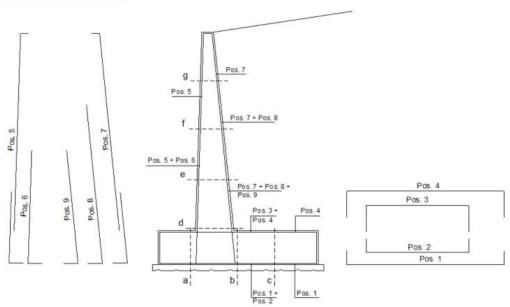
SALCEF LEGISTRATION OF	RADDOPPIO TRATTA CANCELLO-BENEVENTO II LOTTO FUNZIONALE FRASSO TELESINO – VITULANO 1° LOTTO FUNZIONALE FRASSO TELESINO – TELESE PROGETTO ESECUTIVO					-
Relazione di Calcolo Muri di Sostegno in c.a. NV09	COMMESSA IF26	LOTTO 12 E ZZ	CODIFICA CL	DOCUMENTO NV0900 001	REV.	FOGLIO 87 di 101

Geometria muro

10.4.2 VERIFICHE GEOTECNICHE

VERIFICA STABILITÀ GLOBALE

FS_{STAB} (STATICO) = 3.926


FS_{STAB} (SISMICO) = 1.337

CHZZAROTTI (Ghella TIMERA SALCEF SECSNEASTRUTHE	II LOTTO F	IO TRATI UNZIONA FUNZION	TA CANCEL ALE FRASSO ALE FRASS	LO-BENEVENT D TELESINO – O TELESINO –	VITULA	
Relazione di Calcolo Muri di Sostegno in c.a. NV09	COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO

10.4.3 VERIFICHE STRUTTURALI

VERIFICA SLU

SCHEMA DELLE ARMATURE

RMATUR	RE .						
pos	n°/ml	ф	II strato	pos	n°/ml	φ	II strato
1	4.0	20	5. An/P.C	5	4.0	20	
2	4.0	20		6	0.0	12	
3	4.0	20		7	4.0	26	
4	4.0	20		8	0.0	26	
				Q	0.0	26	

2 7 7		
Calcola		

Sez.	M	N	h	Af	A'f	Mu	Mu/M
(-)	(kNm)	(kN)	(m)	(cm ²)	(cm ²)	(kNm)	(-)
a-a	180.45	0.00	1.20	25.13	25.13	1050.12	5.82
b-b	-823.28	0.00	1.20	25.13	25.13	1050.12	1.28
C - C	-277.48	0.00	1.20	12.57	12.57	532.54	1.92
d - d	547.39	139.06	0.90	21.24	12.57	707.17	1.29
е-е	247.92	104.29	0.90	21.24	12.57	693.33	2.80
f - f	83.95	61.88	0.90	21.24	12.57	676.41	8.06
g-g	16.47	30.94	0.90	21.24	12.57	664.05	40.31

Sez.	V _{Ed}	h	Vrd	ø staffe	i orizz.	i vert.	θ	V _{Rsd}	
(-)	(kN)	(m)	(kN)	(mm)	(cm)	(cm)	(°)	(kN)	-
a-a	470.13	1.20	359.26	14	25	50	21.8	1191.48	Sezione verificata
b-b	300.73	1.20	359.26	14	25	50	21.8	1191.48	Armatura a taglio non necessaria
c - c	277.48	1.20	359.26	14	25	50	21.8	1191.48	Armatura a taglio non necessaria
d - d	239.45	0.90	309.41	14	25	50	21.8	880.66	Armatura a taglio non necessaria
е-е	142.93	0.90	304.48	14	25	50	21.8	880.66	Armatura a taglio non necessaria
f-f	74.18	0.90	298.47	14	25	50	21.8	880.66	Armatura a taglio non necessaria
g-g	27.24	0.90	294.09	14	25	50	21.8	880.66	Armatura a taglio non necessaria

Ghella Imera SALCEF ALCENTATHINE	II LOTTO F	IO TRAT UNZIONA FUNZION	TA CANCEL ALE FRASS ALE FRASS	LO-BENEVENT O TELESINO – GO TELESINO –	VITULA	
Relazione di Calcolo Muri di Sostegno in c.a. NV09	COMMESSA IF26	LOTTO 12 E ZZ	CODIFICA	DOCUMENTO NV0900 001	REV.	FOGLIO 89 di 101

VERIFICA SLE – FESSURAZIONE

Sez.	M	N	h	Af	A'f	σc	σf	wk	Warner
(-)	(kNm)	(kN)	(m)	(cm ²)	(cm²)	(N/mm ²)	(N/mm ²)	(mm)	(mm)
a-a	91.84	0.00	1.20	25.13	25.13	0.58	33.92	0.030	0.200
b-b	-232.67	0.00	1.20	25.13	25.13	1.47	85.92	0.075	0.200
C-C	-47.15	0.00	1.20	12.57	12.57	0.42	34.36	0.047	0.200
d-d	273.22	123.75	0.90	21.24	12.57	3.27	137.02	0.151	0.200
e-e	122.44	92.81	0.90	21.24	12.57	1.48	53.80	0.059	0.200
f-f	40.53	61.88	0.90	21.24	12.57	0.49	12.00	0.013	0.200
g-g	6.66	30.94	0.90	21.24	12.57	0.08	0.16	0.000	0.200

(n.b.: M+ tende le fibre di intradosso, M- tende le fibre di estradosso)

condizione Quasi Permanente

Sez.	M	N	h	Af	A'f	αc	of	wk	Wamm	
(-)	(kNm)	(kN)	(m)	(cm ²)	(cm ²)	(N/mm ²)	(N/mm ²)	(mm)	(mm)	_
a-a	83.97	0.00	1.20	25.13	25.13	0.53	31.01	0.027	0.200	
b-b	-180.38	0.00	1.20	25.13	25.13	1.14	66.61	0.058	0.200	
C-C	-28.22	0.00	1.20	12.57	12.57	0.25	20.56	0.028	0.200	
d-d	222.19	123.75	0.90	21.24	12.57	2.67	106.66	0.118	0.200	
e-e	93.74	92.81	0.90	21.24	12.57	1.14	36.92	0.041	0.200	
1-1	27.77	61.88	0.90	21.24	12.57	0.33	5.25	0.006	0.200	
g-g	3.47	30.94	0.90	21.24	12.57	0.00	-3		0.200	sez. compressa

(n.b.: M+ tende le fibre di intradosso, M- tende le fibre di estradosso)

VERIFICA SLE – TENSIONE

Condizione Statica Rara

Sez.	M	N	h	Af	A'f	G C	σf
(-)	(kNm)	(kN)	(m)	(cm ²)	(cm ²)	(N/mm ²)	(N/mm ²)
a-a	103.65	0.00	1.20	25.13	25.13	0.65	38.28
b-b	-311.10	0.00	1.20	25.13	25.13	1.96	114.88
c - c	-75.54	0.00	1.20	12.57	12.57	0.67	55.06
d-d	349.76	123.75	0.90	21.24	12.57	4.17	182.63
е-е	165.50	92.81	0.90	21.24	12.57	1.99	79.32
f-f	59.67	61.88	0.90	21.24	12.57	0.73	22.96
g-g	11.45	30.94	0.90	21.24	12.57	0.13	1.53

Condizione Sismica

Sez.	M	N	h	Af	A'f	αc	σf
(-)	(kNm)	(kN)	(m)	(cm ²)	(cm ²)	(N/mm ²)	(N/mm ²)
a-a	179.96	0.00	1.20	25.13	25.13	1.14	66.46
b-b	-823.28	0.00	1.20	25.13	25.13	5.20	304.02
c - c	-256.40	0.00	1.20	12.57	12.57	2.29	186.88
d-d	547.39	108.44	0.90	21.24	12.57	6.45	303.79
е-е	247.92	81.33	0.90	21.24	12.57	2.95	130.80
1-1	83.53	54.22	0.90	21.24	12.57	1.01	38.53
g - g	14.22	27.11	0.90	21.24	12.57	0.17	3.33

Chella Timera SALCEF MESSIFIATION	II LOTTO F	IO TRAT UNZION FUNZION	TA CANCEL ALE FRASSI IALE FRASS	LO-BENEVENT D TELESINO – SO TELESINO –	VITULAN	_
Relazione di Calcolo Muri di Sostegno in c.a. NV09	COMMESSA IF26	LOTTO 12 E ZZ	CODIFICA	DOCUMENTO NV0900 001	REV.	FOGLIO 90 di 101

10.4.4 VERIFICHE PALI DI FONDAZIONE

Per i pali di fondazione si prevedono le seguenti armature:

- Gabbia superiore 24φ24 e staffa a spirale φ12/10

Nota: Ai fini del dimensionamento delle armature è risultata significativa la verifica a carico limite orizzontale riportata nel seguito. Per le verifiche strutturali sarebbe stata sufficiente una armatura inferiore.

VERIFICHE STRUTTURALI PALI

Si riportano i risultati in termini di sollecitazione e verifiche a flessione e taglio. Sotto si riportano le sollecitazioni sui pali.

Sollecitazioni sui pali SLU

•	aso	N pali all.1	N pali all.2	N pali all.3	Тр	ali
·	450	[kN]	[kN]	[kN]	[kN]	[kN]
-1-6	Nmin	840.61	547.52	254.43	239	0.7
statico Nmax		859.85	624.48	389.11	238	1.07
	Nmin	1304.15	615.25	-73.64	400	.00
sisma+	Nmax	1307.11	627.09	-52.92	422	09
-	Nmin	822.37	479.79	137.21	20.4	00
sisma-	Nmax	825.33	491.63	157.93	394	.63

Sollecitazioni massime testa palo - SLU

SOLL	ECITAZION	II MAX F	PALI SLU	ARM	RESIS	TENZE	
N	V	~	M	Longitudinala		Vrd	Mrd
[kN]	[kN]	α	[kNm]	Longitudinale	Trasversale (spirale)	[kNm]	[kNm]
1307	422	1.8	732	24φ24	ф 12/10	841.5	1288

Ghella Tinera SALCEF DESS NEATHINE	II LOTTO F	IO TRAT UNZION FUNZION	TA CANCEL ALE FRASSI IALE FRASS	LO-BENEVENT O TELESINO – SO TELESINO –	VITULAN	_
Relazione di Calcolo Muri di Sostegno in c.a. NV09	COMMESSA IF26	LOTTO 12 E ZZ	CODIFICA CL	DOCUMENTO NV0900 001	REV.	FOGLIO 91 di 101

VERIFICHE GEOTECNICHE PALI DI FONDAZIONE <u>Verifiche a capacità portante</u>

CALCOLO DELLA CAPACITA' PORTANTE DI UN PALO TRIVELLATO DI MEDIO DIAMETRO

CANT	TERE:								OPERA	:				
DATI	DI INPUT	:								_				
27	etro del Pa	50 31 9 80			0.80	(m)		Area del Pa	alo (Ap):			0.503	(m ²)	
Quota	testa Pal	o dal p.c. ((Z _p):		2.00	(m)		Quota falda	dal p.c.	(Z _w):		4.00	(m)	
Caric	o Assiale	Permaner	nte (G):		1307	(kN)		Carico As	siale var	abile (Q):		0	(kN)	
Nume	ero di str	ati		1	•			Lpalo =		17.00	(m)			
	coeffici	enti parzi	ali		az	ioni		resistenza	laterale	e di base	7 —	D JANE		1818
	A CONTRACTOR OF THE PROPERTY O		- S	nanenti Yo	variabili γο		γь	γ _b γ _s γ _{s traz}		Z	p ~~		Zw	
	A1+M1-	+R1	0		.30		50	1.00	1.00	1.00	1			Zw
\Box	A2+M1-	+R2	0	1	.00	1.	30	1.70	1.45	1.60				p.l.:
SLU	A1+M1-	+R3	0	1	.30	1.	50	1.35	1.15	1.25				=
	SISMA		•	1	.00	1.	00	1.35	1.15	1.25				
DM88			0	1	.00	1.	00	1.00	1.00	1.00	Ĺ			
definit	ti dal prog	ettista	0	1	.00	1.	00	1.00	1.00	1.00				
											_			
	n	0	2	3	0	5	7	≥10 ○	T.A.	prog.				
	ξ3	1.70	1.65	1.60	1.55	1.50	1.45	1.40	1.00	1.00		_	Ш	
	ξ4	1.70	1.55	1.48	1.42	1.34	1.28	1.21	1.00	1.00]	********	4	

PARAMETRI MEDI

4- 0			F	Parametri	del terren	0
to Spe	ess	Tipo di terreno	γ	C' med	φ' med	C _{u med}
) (m	1)		(kN/m³)	(kPa)	(°)	(kPa)
17.	00	argille limose	20.00	10.0	24.0	
	-					
-						
-						
-						

Coefficienti di Calcolo											
k μ a α											
(-)	(-)	(-)	(-)								
0.59	0.45		0.00								

(n.b.: lo spessore degli strati è computato dalla quota di intradosso del plinto)

PARAMETRI MINIMI (solo per SLU)

Strato	C		Parametri del terreno						
Strato	Spess	Tipo di terreno	γ	c' min	φ' min	C _{u min}			
(-)	(m)		(kN/m ³)	(kPa)	(°)	(kPa)			
1	1 17.00 a	argille limose	20.00	10.0	24.0				
			-						
			_						
	_								

Coefficienti di Calcolo									
k	щ	a	α						
(-)	(-)	(-)	(-)						
0.59	0.45		0.00						

SALSE LESSNERSTHATE	II LOTTO F	IO TRATI UNZIONA FUNZION	TA CANCEL ALE FRASSI ALE FRASS	LO-BENEVENT D TELESINO – SO TELESINO –	VITULA	
Relazione di Calcolo Muri di Sostegno in c.a. NV09	COMMESSA IF26	LOTTO 12 E ZZ	CODIFICA CL	DOCUMENTO NV0900 001	REV.	FOGLIO 92 di 101

RISULTATI

Ctrata	Conne		media minima (solo SLU)						media minima (solo SLU)		SLU)	
Strato	Spess	Tipo di terreno	Qsi	Nq	Nc	qb	Qbm	Qsi	Nq	Nc	db	Qbm
(-)	(m)		(kN)	(-)	(-)	(kPa)	(kN)	(kN)	(-)	(-)	(kPa)	(kN)
1	17.00	argille limose	1623.1	6.74	12.89	1679.1	844.0	1623.1	6.74	12.89	1679.1	844.0

CARICO ASSIALE AGENTE	CAPACIT	A' PORTANTE M	EDIA	CAPACIT	A' PORTANTE MIN	AMII
$Nd = N_G \cdot \gamma_G + N_Q \cdot \gamma_Q$	base	R _{b;cal med} =	844.0 (kN)	base	R _{b;cal min} =	844.0 (kN)
Nd = 1307.0 (kN)	laterale	R _{s;cal med} =	1623.1 (kN)	laterale	R _{s;cal min} =	1623.1 (kN)
	totale	R _{c;cal med} =	2467.1 (kN)	totale	R _{c;cal min} =	2467.1 (kN)

CAPACITA' PORTANTE CARATTERISTICA

CAPACITA' PORTANTE DI PROGETTO

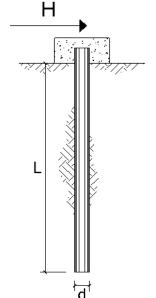
 $R_{b,k} = Min(R_{b,cal\ med}/\xi_3 \; ; \; R_{b,cal\ min}/\xi_4) = \; 562.7 \; (kN)$ $R_{c,d} = R_{bk}/\gamma b + R_{sk}/\gamma s$ Fs = Rc,d / Nd

 $R_{s,k} = Min(R_{s,cal\ med}/\xi_3; R_{s,cal\ min}/\xi_4) = 1082.1 (kN)$ $R_{c,d} = 1357.7 (kN)$ Fs = 1.04

 $R_{c,k} = R_{b,k} + R_{s,k}$ = 1644.7 (kN)

Verifiche a carico limite orizzontale

CARICO LIMITE ORIZZONTALE DI UN PALO IN TERRENI INCOERENTI


PALI CON ROTAZIONE IN TESTA IMPEDITA

OPERA:

TEORIA DI BASE:

(Broms, 1964)

CO	efficienti parz	iali	Α		М	R
М	Metodo di calcolo			variabili	γ _ο .	γт
			γg	γQ	• +	• •
	A1+M1+R1	0	1.30	1.50	1.00	1.00
SLU	A2+M1+R2	0	1.00	1.30	1.00	1.60
ડિ	A1+M1+R3	0	1.30	1.50	1.00	1.30
	SISMA	•	1.00	1.00	1.00	1.30
DM88		\circ	1.00	1.00	1.00	1.00
definiti dal	progettista	0	1.30	1.50	1.25	1.00

n	0	2 0	3 ()	4	5 •	7	≥10 ○	T.A.	prog.
ξ3	1.70	1.65	1.60	1.55	1.50	1.45	1.40	1.00	1.00
ξ4	1.70	1.55	1.48	1.42	1.34	1.28	1.21	1.00	1.00

SALSE LESSNESSELLE	II LOTTO F	IO TRAT UNZIONA FUNZION	TA CANCEL ALE FRASS IALE FRASS	LO-BENEVENT O TELESINO – GO TELESINO –	VITULAN	-
Relazione di Calcolo Muri di Sostegno in c.a. NV09	COMMESSA IF26	LOTTO 12 E ZZ	CODIFICA CL	DOCUMENTO NV0900 001	REV.	FOGLIO 93 di 101

Palo corto:
$$H = 1.5k_{p}\gamma d^{3}\left(\frac{L}{d}\right)^{2}$$

Palo intermedio:
$$H = \frac{1}{2} k_p \gamma d^3 \left(\frac{L}{d} \right) + \frac{My}{L}$$

$$\begin{aligned} & \underline{\textit{Palo intermedio:}} & & H = \frac{1}{2} k_p \gamma d^3 \left(\frac{L}{d}\right)^2 + \frac{M_y}{L} \\ & \\ & \underline{\textit{Palo lungo:}} & & H = k_p \gamma d^3 \sqrt[3]{\left(3.676 \, \frac{M_y}{k_p \gamma d^4}\right)^2} \end{aligned}$$

DATI DI INPUT:

Lunghezza del palo	L=	17.00	(m)			
Diametro del palo	1288.45	0.80	(m)			
Momento di plasticizzazione della sezione	My =	1288.00	(kN m)			
Angolo di attrito del terreno	φ' _{med} =	24.00	(°)	φ' min=	24.00	(°)
Angolo di attrito di calcolo del terreno	φ' _{med,d} =	24.00	(°)	φ' min,d=	24.00	(°)
Coeff. di spinta passiva (kp = $(1+\sin\varphi')/(1-\sin\varphi')$)	kp med =	2.37	(-)	kp _{min} =	2.37	(-)
Peso di unità di volume (con falda γ = γ ')	γ =	20.00	(kN/m ³)			
Carico Orizzontale di progetto (V):	V =	422	(kN)			

Palo corto:

Palo intermedio:

Palo lungo:

$$H_{med}$$
 = 947.45 (kN) palo lungo H_{min} = 947.45 (kN) palo lungo

$$H_k = Min(H_{med}/\xi_3; R_{min}/\xi_4) = 631.63$$
 (kN)

$$H_d = H_k/\gamma_T = 485.87$$
 (kN)

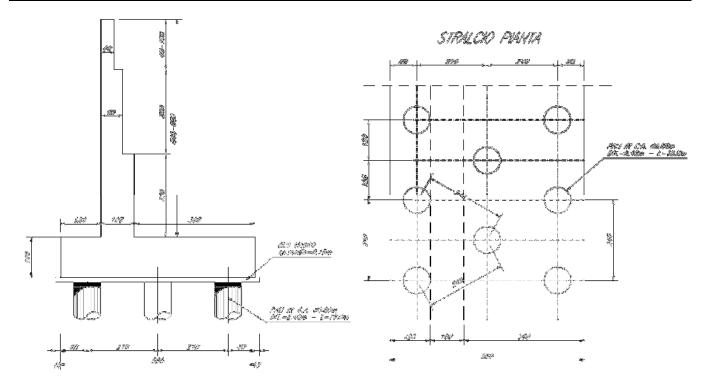
$$F_d = 422.00$$
 (kN)

Ghella Innera SALCEF LEGSN TASTHUTH	II LOTTO F	IO TRAT UNZIONA FUNZION	TA CANCEL ALE FRASS IALE FRASS	LO-BENEVENT O TELESINO – GO TELESINO –	VITULAN	
Relazione di Calcolo Muri di Sostegno in c.a. NV09	COMMESSA IF26	LOTTO 12 E ZZ	CODIFICA CL	DOCUMENTO NV0900 001	REV.	FOGLIO 94 di 101

10.5 RISULTATI ANALISI E VERIFICHE MURI DI TIPO H=6.5

10.5.1 MODELLO DI CALCOLO

Le sollecitazioni proventienti dal muro vengono ripartite sui pali restituendo le sollecitazioni nei pali in termini di Taglio, Momento e sforzo normale. Gli scarichi sui pali vengono determinati mediante il metodo delle rigidezze. La piastra di fondazione viene considerata infinitamente rigida (3 gradi di libertà) ed i pali vengono considerati incastrati o incernierati a tale piastra.


Viene effettuata una prima analisi di ogni palo di ciascuna fila (i pali di ogni fila hanno le stesse caratteristiche) per costruire una curva carichi-spostamenti del palo. Questa curva viene costruita considerando il palo elastico. Si tratta, in definitiva, della matrice di rigidezza del palo Ke, costruita imponendo traslazioni e rotazioni unitarie per determinare le corrispondenti sollecitazioni in testa al palo. Nota la matrice di rigidezza di ogni palo si assembla la matrice globale (di dimensioni 3x3) della palificata, K. A questo punto, note le forze agenti in fondazione (N, T, M) si possono ricavare gli spostamenti della piastra (abbassamento, traslazione e rotazione) e le forze che si scaricano su ciascun palo. Infatti indicando con p il vettore dei carichi e con u il vettore degli spostamenti della piastra abbiamo:

$$u = K-1p$$

Noti gli spostamenti della piastra, e quindi della testa dei pali, abbiamo gli scarichi su ciascun palo. Allora per ciascun palo viene effettuata un'analisi elastoplastica incrementale (tramite il metodo degli elementi finiti) che, tenendo conto della plasticizzazione del terreno, calcola le sollecitazioni in tutte le sezioni del palo., le caratteristiche del terreno (rappresentate da Kh) sono tali che se non è possibile raggiungere l'equilibrio si ha collasso per rottura del terreno. In tale analisi i pali sono considerati incastrati alla fondazione di base. Di seguito si riportano i principali risultati delle analisi svolte sul muro su pali. Per ulteriori dettagli si rimanda ai tabulati di calcolo.

Si riportano di seguito in forma tabellare i valori delle spinte di natura statica e sismica per le combinazioni analizzate, gli inviluppi delle sollecitazioni nel muro, sulla fondazione e nei pali.

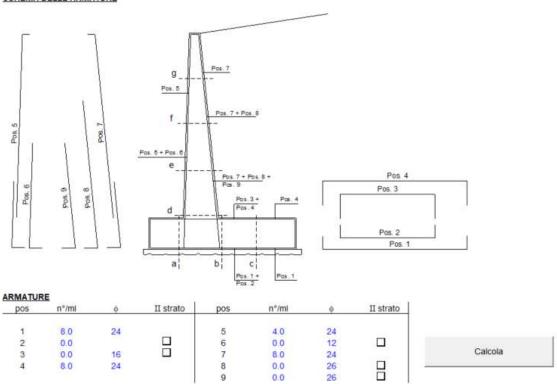
PIZZAROTTI () Ghella — ITINERA SALCSE ALCSE ALCS	II LOTTO F	IO TRAT UNZION FUNZION	TA CANCEL ALE FRASSO IALE FRASS	LO-BENEVENT O TELESINO – O TELESINO –	VITULAN	
Relazione di Calcolo Muri di Sostegno in c.a. NV09	COMMESSA IF26	LOTTO 12 E ZZ	CODIFICA CL	DOCUMENTO NV0900 001	REV.	FOGLIO 95 di 101

Geometria muro

10.5.2 VERIFICHE GEOTECNICHE

VERIFICA STABILITÀ GLOBALE

FS_{STAB} (STATICO) = 3.377


FS_{STAB} (SISMICO) = 1.262

Chella TIMERA SALCE SECSNESTRATIFITIES	II LOTTO F	IO TRAT UNZIONA FUNZION	TA CANCEL ALE FRASSI IALE FRASS	LO-BENEVENT D TELESINO – SO TELESINO –	VITULA	
Relazione di Calcolo Muri di Sostegno in c.a. NV09	COMMESSA IF26	LOTTO 12 E ZZ	CODIFICA CL	DOCUMENTO NV0900 001	REV.	FOGLIO 96 di 101

10.5.3 VERIFICHE STRUTTURALI

VERIFICA SLU

SCHEMA DELLE ARMATURE

Sez.	M	N	h	Af	A'f	Mu	Mu/M
(-)	(kNm)	(kN)	(m)	(cm ²)	(cm ²)	(kNm)	(-)
a-a	246.13	0.00	1.20	36.19	36.19	1504.82	6.11
b-b	-1164.45	0.00	1.20	36.19	36.19	1504.82	1.29
C - C	-400.31	0.00	1.20	36.19	36.19	1504.82	3.76
d-d	885.93	182.60	1.00	36.19	18.10	1312.94	1.48
e-e	399.32	136.95	1.00	36.19	18.10	1292.96	3.24
f-f	133.47	91.30	1.00	36.19	18.10	1272.92	9.54
g-g	24.15	40.63	1.00	36.19	18.10	1250.61	51.78

Sez.	V _{Ed}	h	V _{rd}	ø staffe	i orizz.	i vert.	θ	V _{Rsd}	
(-)	(kN)	(m)	(kN)	(mm)	(cm)	(cm)	(°)	(kN)	
a-a	634.53	1.20	403.90	14	25	50	21.8	1191.48	Sezione verificata
b-b	418.22	1.20	403.90	14	25	50	21.8	1191.48	Sezione verificata
c - c	400.31	1.20	403.90	14	25	50	21.8	1191.48	Armatura a taglio non necessaria
d - d	329.02	1.00	392.11	14	25	50	21.8	984.27	Armatura a taglio non necessaria
e-e	195.56	1.00	385.61	14	25	50	21.8	984.27	Armatura a taglio non necessaria
f-f	96.24	1.00	379.10	14	25	50	21.8	984.27	Armatura a taglio non necessaria
g-g	34.31	1.00	371.88	14	25	50	21.8	984.27	Armatura a taglio non necessaria

Chelle innera Sales Sales Session of Sales Session of Sales	II LOTTO F	IO TRATI UNZIONA FUNZION	TA CANCEL ALE FRASSO ALE FRASS	LO-BENEVENT D TELESINO – O TELESINO –	VITULA	
Relazione di Calcolo Muri di Sostegno in c.a. NV09	COMMESSA	LOTTO 12 E ZZ	CODIFICA	DOCUMENTO	REV.	FOGLIO 97 di 101

VERIFICA SLE – FESSURAZIONE

condizione Frequente

Sez.	M	N	h	Af	A'f	σc	of	wk	\mathbf{W}_{amm}
(-)	(kNm)	(kN)	(m)	(cm ²)	(cm ²)	(N/mm ²)	(N/mm ²)	(mm)	(mm)
a-a	122.13	0.00	1.20	36.19	36.19	0.64	31.53	0.024	0.200
b-b	-360.50	0.00	1.20	36.19	36.19	1.89	93.06	0.072	0.200
c - c	-87.27	0.00	1.20	36.19	36.19	0.46	22.53	0.017	0.200
d-d	438.03	162.50	1.00	36.19	18.10	3.53	119.51	0.095	0.200
e-e	194.82	121.88	1.00	36.19	18.10	1.61	47.44	0.037	0.200
f-f	63.66	81.25	1.00	36.19	18.10	0.54	11.11	0.009	0.200
g-g	10.19	40.63	1.00	36.19	18.10	0.09	0.21	0.000	0.200

(n.b.: M+ tende le fibre di intradosso, M- tende le fibre di estradosso)

condizione Quasi Permanente

Sez.	M	N	h	Af	A'f	σc	σf	wk	\mathbf{W}_{amm}	
(-)	(kNm)	(kN)	(m)	(cm ²)	(cm ²)	(N/mm ²)	(N/mm ²)	(mm)	(mm)	_
a-a	112.61	0.00	1.20	36.19	36.19	0.59	29.07	0.022	0.200	
b-b	-293.82	0.00	1.20	36.19	36.19	1.54	75.85	0.059	0.200	
C-C	-63.45	0.00	1.20	36.19	36.19	0.33	16.38	0.013	0.200	
d-d	366.76	162.50	1.00	36.19	18.10	2.98	96.98	0.075	0.200	
е-е	154.73	121.88	1.00	36.19	18.10	1.29	34.88	0.027	0.200	
f-f	45.84	81.25	1.00	36.19	18.10	0.39	5.94	0.005	0.200	
g-g	5.73	40.63	1.00	36.19	18.10	0.00	-	17.7	0.200	sez, compressa

(n.b.: M+ tende le fibre di intradosso, M- tende le fibre di estradosso)

VERIFICA SLE – TENSIONE

Condizione Statica Rara

Sez.	M	N	h	Af	A'f	σc	σf
(-)	(kNm)	(kN)	(m)	(cm ²)	(cm ²)	(N/mm ²)	(N/mm ²)
a-a	136.42	0.00	1.20	36.19	36.19	0.71	35.22
b-b	-460.51	0.00	1.20	36.19	36.19	2.41	118.88
C-C	-122 99	0.00	1.20	36.19	36.19	0.64	31.75
d-d	544.94	162.50	1.00	36.19	18.10	4.36	153.37
e -e	254.95	121.88	1.00	36.19	18.10	2.08	66.38
1-1	90.39	81.25	1.00	36.19	18.10	0.76	19.29
g-g	16.87	40.63	1.00	36.19	18.10	0.15	1.41

Condizione Sismica

Sez.	M	N	h	Af	A'f	σc	σf
(-)	(kNm)	(kN)	(m)	(cm ²)	(cm ²)	(N/mm ²)	(N/mm ²)
a-a	245.72	0.00	1.20	36.19	36.19	1.29	63.43
b-b	-1164.45	0.00	1.20	36.19	36.19	6.10	300.61
C-C	-369.26	0.00	1.20	36.19	36.19	1.93	95.33
d-d	885.93	142.40	1.00	36.19	18.10	6.99	263.90
е-е	399.32	106.80	1.00	36.19	18.10	3.19	113.84
1-1	133.47	71.20	1.00	36.19	18.10	1.09	33.90
g-g	22.37	35.60	1.00	36.19	18.10	0.19	3.24

Ghella Immera SALSEF ALSES NEATHING	II LOTTO F	IO TRAT UNZION FUNZION	TA CANCEL ALE FRASS IALE FRASS	LO-BENEVENT O TELESINO – GO TELESINO –	VITULA	
Relazione di Calcolo Muri di Sostegno in c.a. NV09	COMMESSA IF26	LOTTO 12 E ZZ	CODIFICA CL	DOCUMENTO NV0900 001	REV.	FOGLIO 98 di 101

10.5.4 VERIFICHE PALI DI FONDAZIONE

Per i pali di fondazione si prevedono le seguenti armature:

- Gabbia superiore 2x20φ22 e staffa a spirale φ14/10

Nota: Ai fini del dimensionamento delle armature è risultata significativa la verifica a carico limite orizzontale riportata nel seguito. Per le verifiche strutturali sarebbe stata sufficiente una armatura inferiore.

VERIFICHE STRUTTURALI PALI

Si riportano i risultati in termini di sollecitazione e verifiche a flessione e taglio. Sotto si riportano le sollecitazioni sui pali.

Sollecitazioni sui pali SLU

	aso	N pali all.1	N pali all.2	N pali all.3	T pali
	.430	[kN]	[kN]	[kN]	[kN] [kN]
ototico	Nmin	891.83	624.88	357.93	202.07
statico	Nmax	907.88	699.76	491.64	303.87
-:	Nmin	1503.92	702.18	-99.55	F20 F7
sisma+	Nmax	1506.38	713.70	-78.97	530.57
-:	Nmin	945.24	547.58	149.91	493.93
sisma-	Nmax	947.71	559.10	170.48	493.93

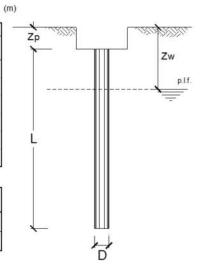
Sollecitazioni massime testa palo - SLU

SOLL	ECITAZION	NI MAX F	PALI SLU	ARMATURA STR		RESIS	TENZE
N	V		M	Longitudinala		Vrd	Mrd
[kN]	[kN]	α	[kNm]	Longitudinale	Trasversale (spirale)	[kNm]	[kNm]
1506	531	1.8	921	2x20\psi22	φ14/10	925.1	1645

	II LOTTO F	O TRAT	TA CANCEL ALE FRASSO IALE FRASS	LO-BENEVENT D TELESINO – O TELESINO –	VITULAN	_
Relazione di Calcolo Muri di Sostegno in c.a. NV09	COMMESSA	LOTTO	CODIFICA CL	DOCUMENTO NV0900 001	REV.	FOGLIO

VERIFICHE GEOTECNICHE PALI DI FONDAZIONE Verifiche a capacità portante

CALCOLO DELLA CAPACITA' PORTANTE DI UN PALO TRIVELLATO DI MEDIO DIAMETRO


CANTIERE: OPERA:

DATI DI INPUT:

Diametro del Palo (D):	0.80	(m)	Area del Palo (Ap):	0.	503 (m ²)
Quota testa Palo dal p.c. (z _p):	2.00	(m)	Quota falda dal p.c. (z _w):	4.	.00 (m)
Carico Assiale Permanente (G):	1506	(kN)	Carico Assiale variabile (Q):		0 (kN)
Numero di strati	1 💼		Lpalo = 19.00	(m)	

	coefficienti parz	iali	azio	oni	resistenza	laterale e	di base
	Metodo di calcolo		permanenti γσ	variabili γο	γь	γs	7s traz
	A1+M1+R1	0	1.30	1.50	1.00	1.00	1.00
SLU	A2+M1+R2	0	1.00	1.30	1.70	1.45	1.60
S	A1+M1+R3	0	1.30	1.50	1.35	1.15	1.25
	SISMA	•	1.00	1.00	1.35	1.15	1.25
DM88	1	0	1.00	1.00	1.00	1.00	1.00
defini	ti dal progettista	0	1.00	1.00	1.00	1.00	1.00

n	10	2	3	0	5	7	≥10 ○	T.A.	prog.
ξ3	1.70	1.65	1.60	1.55	1.50	1.45	1.40	1.00	1.00
ξ4	1.70	1.55	1.48	1.42	1.34	1.28	1.21	1.00	1.00

PARAMETRI MEDI

	0		F	arametri	del terrene	0
Strato	Spess	Tipo di terreno	γ	C' med	φ' med	C _{u med}
(-)	(m)		(kN/m ³)	(kPa)	(°)	(kPa)
1	19.00	Argille limose	20.00	10.0	24.0	
		trati è computato dalla quota di inf			, y	

rados	so del plinto)			
	PARAMETR	MINIMI	(solo r	ner.

5	del terreno	arametri	P		Cnoos	Ctrata
C _{u min}	Φ' min	c' min	γ	Tipo di terreno	Spess	Strato
(kPa)	(°)	(kPa)	(kN/m ³)	***	(m)	(-)
	24.0	10.0	20.00	Argille limose	19.00	1

k	μ	a	α
(-)	(-)	(-)	(-)
0.59	0.45		0.00

Coefficienti di Calcolo						
k	μ	а	α			
(-)	(-)	(-)	(-)			
0.59	0.45		0.00			

Chella Innera SALCEF JESSATATIONE	ITINERARIO NAPOLI – BARI RADDOPPIO TRATTA CANCELLO-BENEVENTO II LOTTO FUNZIONALE FRASSO TELESINO – VITULANO 1° LOTTO FUNZIONALE FRASSO TELESINO – TELESE PROGETTO ESECUTIVO							
Relazione di Calcolo Muri di Sostegno in c.a. NV09	COMMESSA IF26	LOTTO 12 E ZZ	CODIFICA CL	DOCUMENTO NV0900 001	REV.	FOGLIO 100 di 101		

RISULTATI

Ctunta	0			media					min	minima (solo SLU)				
Strato	Spess	Tipo di terreno	Qsi	Nq	Nc	qb	Qbm	Qsi	Nq	Nc	qb	Qbm		
(-)	(m)		(kN)	(-)	(-)	(kPa)	(kN)	(kN)	(-)	(-)	(kPa)	(kN)		
1	19.00	Argille limose	1941.8	6.55	12.47	1762.5	885.9	1941.8	6.55	12.47	1762.5	885.9		
			_											
	_													

CARICO ASSIALE AGENTE	CAPACIT	CAPACITA' PORTANTE MEDIA			CAPACITA' PORTANTE MINIMA		
$Nd = N_G \cdot \gamma_G + N_Q \cdot \gamma_Q$	base	R _{b;cal med} =	885.9 (kN)	base	R _{b;cal min} =	885.9 (kN)	
Nd = 1506.0 (kN)	laterale	R _{s;cal med} =	1941.8 (kN)	laterale	R _{s;cal min} =	1941.8 (kN)	
	totale	R _{c;cal med} =	2827.7 (kN)	totale	R _{c;cal min} =	2827.7 (kN)	

CAPACITA' PORTANTE CARATTERISTICA

CAPACITA' PORTANTE DI PROGETTO

 $R_{b,k} = Min(R_{b,cal med}/\xi_3; R_{b,cal min}/\xi_4) = 590.6 (kN)$

 $R_{c,d} = R_{bk}/\gamma b + R_{sk}/\gamma s$ Fs = Rc,d / Nd

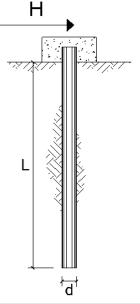
 $R_{s,k} = Min(R_{s,cal med}/\xi_3; R_{s,cal min}/\xi_4) = 1294.5 (kN)$

 $R_{c,d} = 1563.2 \text{ (kN)}$ Fs = 1.04

 $R_{c,k} = R_{b,k} + R_{s,k}$ = 1885.1 (kN)

Verifiche a carico limite orizzontale

CARICO LIMITE ORIZZONTALE DI UN PALO IN TERRENI INCOERENTI


PALI CON ROTAZIONE IN TESTA IMPEDITA

OPERA:

TEORIA DI BASE:

(Broms, 1964)

coefficienti parziali			Α		M	R
Metodo di calcolo		permanenti γ _G	variabili γο	$\gamma_{\phi'}$	γт	
	A1+M1+R1	0	1.30	1.50	1.00	1.00
SLU	A2+M1+R2	0	1.00	1.30	1.00	1.60
S	A1+M1+R3	0	1.30	1.50	1.00	1.30
	SISMA	•	1.00	1.00	1.00	1.30
DM88		0	1.00	1.00	1.00	1.00
definiti dal progettista		1.30	1.50	1.25	1.00	

n	10	2	3	4	5 •	7	≥10 ○	T.A.	prog.
ξ3	1.70	1.65	1.60	1.55	1.50	1.45	1.40	1.00	1.00
ξ4	1.70	1.55	1.48	1.42	1.34	1.28	1.21	1.00	1.00

Ghella innera salse seesn rathing	RADDOPPIO TRATTA CANCELLO-BENEVENTO II LOTTO FUNZIONALE FRASSO TELESINO – VITULANO 1° LOTTO FUNZIONALE FRASSO TELESINO – TELESE PROGETTO ESECUTIVO								
Relazione di Calcolo Muri di Sostegno in c.a. NV09	COMMESSA IF26	LOTTO 12 E ZZ	CODIFICA CL	DOCUMENTO NV0900 001	REV.	FOGLIO 101 di 101			

Palo corto:
$$H = 1.5k_p \gamma d^3 \left(\frac{L}{d}\right)^2$$

Palo intermedio:
$$H = \frac{1}{2}k_p \gamma d^3 \left(\frac{L}{d}\right)^2 + \frac{M_y}{L}$$

$$\begin{array}{ll} \underline{\textit{Palo intermedio:}} & \qquad & H = \frac{1}{2} k_p \gamma d^3 {\left(\frac{L}{d}\right)}^2 + \frac{M_y}{L} \\ \\ \underline{\textit{Palo lungo:}} & \qquad & H = k_p \gamma d^3 \sqrt[3]{\left(3.676 \, \frac{M_y}{k_p \gamma d^4}\right)^2} \end{array}$$

DATI DI INPUT:

Lunghezza del palo	L =	19.00	(m)			
Diametro del palo	1453.58	0.80	(m)			
Momento di plasticizzazione della sezione	My =	1645.00	(kN m)			
Angolo di attrito del terreno	φ' med=	24.00	(°)	φ' min=	24.00	(°)
Angolo di attrito di calcolo del terreno	φ' _{med,d} =	24.00	(°)	φ' min,d=	24.00	(°)
Coeff. di spinta passiva (kp = $(1+\sin\varphi')/(1-\sin\varphi')$)	kp _{med} =	2.37	(-)	kp _{min} =	2.37	(-)
Peso di unità di volume (con falda γ = γ ')	γ =	20.00	(kN/m^3)			
Carico Orizzontale di progetto (V):	V =	531	(kN)			

Palo corto:

Palo intermedio:

Palo lungo:

$$H_{med}$$
 = 1115.29 (kN) palo lungo H_{min} = 1115.29 (kN) palo lungo

$$H_k = Min(H_{med}/\xi_3; R_{min}/\xi_4) = 743.53$$
 (kN)

$$H_d = H_k/\gamma_T = 571.95$$
 (kN)

$$F_d = 531.00$$
 (kN)