COMMITTENTE:

DIREZIONE LAVORI:

APPAL	IAI	O	К	E:
-------	-----	---	---	----

PROGETTAZIONE:	PROGETTISTA:	DIRETTORE DELLA PROGETTAZIONE
RAGGRUPPAMENTO TEMPORANEO PROGETTISTI	Ing. Gaetano USAI	Ing. Piergiorgio GRASSO
ENGINEERING INTEGRA RIA		Responsabile integrazione fra le varie prestazioni specialistiche Dott. Ing. Pierrorgio CRASSO RASSO R
PROOFITO FORGUTIVO		WORD * ONITE

PROGETTO ESECUTIVO

ITINERARIO NAPOLI – BARI RADDOPPIO TRATTA CANCELLO-BENEVENTO II LOTTO FUNZIONALE FRASSO TELESINO – VITULANO 1° LOTTO FUNZIONALE FRASSO TELESINO – TELESE

Muro di sostegno in sx (B.D.) dal km 18+364 al km 18+636

Muro di sostegno: Relazione di calcolo

APPALTATORE						SCALA:
IMPRESA PIZZAROTTI & C. S.p. A. Dott, Ing. Sabino Del Balzo Ang. Sabino Del BALZO						
alden						-
24/02/2020						
COMMESSA LOTTO FASE	E ENTE TIP	O DOC. OPERA	/DISCIPLIN	A PROG	GR. RE	٧.
I F 2 6 1 2 E	ZZ	CL RI	0 5 0 5	0 0	3 A	
Rev. Descrizione	Redatto	Data Verificato	Data	Approvato	Data	Autorizzato Data

Rev.	Descrizione	Redatto	Data	Verificato	Data	Approvato	Data	Autorizzato Data	
Α	Emissione	G. Liporace	24/02/2020	A. Tagliaferri	24/02/2020	P. Grasso	24/02/2020	G. USAI	
				/ 1		4		GAETANON)
								50	/
								A 1097	
								24/02/2020	

File: IF26.1.2.E.ZZ.CL.RI.05.0.5.003.A.doc n. Elab.:

Indice

1.	GE	NERALITA'	5
1	.1	DESCRIZIONE DELL'OPERA	5
2.	DO	CUMENTI DI RIFERIMENTO	7
2	2.1	ELABORATI DI RIFERIMENTO	7
3.	MA	TERIALI	8
	3.1	CLASSI DI ESPOSIZIONE E COPRIFERRI	
3	3.2	CALCESTRUZZO PER ELEVAZIONI (C32/40)	10
3	3.3	CALCESTRUZZO PER FONDAZIONE (C28/35)	11
3	3.4	CALCESTRUZZO PER PALI DI FONDAZIONE (C25/30)	13
3	3.5	CALCESTRUZZO MAGRO PER GETTI DI LIVELLAMENTO/SOTTOFONDAZIONI (C12/15)	14
3	3.6	ACCIAIO IN BARRE D'ARMATURA PER C.A. (B450C)	15
4.	CA	RATTERIZZAZIONE GEOTECNICA	16
4	l.1	MODELLO GEOTECNICO DI PROGETTO	16
5.	CA	RATTERIZZAZIONE SISMICA DEL SITO	17
Ę	5.1	VITA NOMINALE E CLASSE D'USO	17
Ę	5.2	PARAMETRI DI PERICOLOSITÀ SISMICA	18
Ę	5.3	CATEGORIA DI SOTTOSUOLO E CATEGORIA TOPOGRAFICA	19
6.	CR	ITERI GENERALI PER LE VERIFICHE STRUTTURALI	19
6	6.1	VERIFICHE ALLO SLU	19
	6.1.	1 Pressoflessione	19
	6.1.	2 TAGLIO	20
6	6.2	VERIFICA SLE	22
	6.2.	1 VERIFICHE ALLE TENSIONI	22
	6.2.	2 VERIFICHE A FESSURAZIONE	22
7.	AN	ALISI DEI CARICHI	23
7	'.1	PESO PROPRIO	23

ITINERARIO NAPOLI – BARI RADDOPPIO TRATTA CANCELLO-BENEVENTO II LOTTO FUNZIONALE FRASSO TELESINO – VITULANO 1° LOTTO FUNZIONALE FRASSO TELESINO – TELESE PROGETTO ESECUTIVO

Muro di sostegno - Relazione di calcolo

 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 IF26
 12 E ZZ
 CL
 RI0505 003
 A
 3 di 87

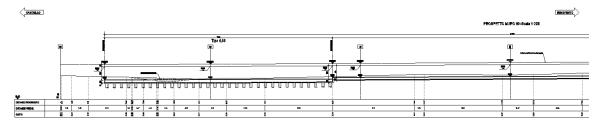
7.	.2	SOVRACCARICO ACCIDENTALE	23
7.		AZIONE DA VENTO ED EFFETTI AERODINAMICI ASSOCIATI AL TRANSITO DEI CONVOGLI DI CARICO 7)	24
, (,	
	7.3.1 7.3.2	EFFETTI AERODINAMICI ASSOCIATI AL PASSAGGIO DEI TRENI	
		AZIONE DEL VENTO COMBINATA AGLI EFFETTI AERODINAMICI	
8.	CON	IBINAZIONI DI CARICO	29
9.	CRIT	ERI GENERALI DI VERIFICA	31
9.	.1 \	/ERIFICHE DI STABILITA' LOCALE	31
	9.1.1	VERIFICHE ALLO SCORRIMENTO	31
	9.1.2	VERIFICHE A RIBALTAMENTO	31
	9.1.3	VERIFICA DI CAPACITÀ PORTANTE (CARICO LIMITE FONDAZIONI DIRETTE)	32
9.	2 (CRITERI DI VERIFICA DELLE PALIFICATE DI FONDAZIONE	35
	9.2.1	CAPACITÀ PORTANTE DEI PALI NEI CONFRONTI DEI CARICHI ASSIALI	36
	9.2.2	CAPACITÀ PORTANTE DEI PALI NEI CONFRONTI DEI CARICHI ORIZZONTALI	38
	9.2.3	VERIFICHE DI STABILITA' GLOBALE	
	9.2.4	VERIFICHE IN FASE SISMICA	44
10.	RISU	ILTATI ANALISI E VERIFICHE MURO	45
10	0.1 N	//URO H=4.0M	45
		VERIFICHE GEOTECNICHE	
	10.1.2	VERIFICHE DI STABILITA' GLOBALE	45
10	0.2 N	//URO H=4.5M	47
-		VERIFICHE GEOTECNICHE	
		VERIFICHE DI STABILITA' GLOBALE	
	10.2.3	VERIFICHE PALI DI FONDAZIONE	49
		ARMATURE	
	10.2.5	5 VERIFICHE STRUTTURALI PER PARAMENTO E FONDAZIONE	50
		S VERIFICHE STRUTTURALI PALI	
11.	INCI	DENZA ARMATURE	52
12.	ALL	EGATO A: VERIFICHE DEL MURO H = 4.5M	53
1:	2.1 \	/ERIFICHE GEOTECNICHE DEL MURO – SLU/SLV	55
		/ERIFICHE STRUTTURALI DEL MURO – SLU/SLV	
14	'		v I

	12.3	VERIFICHE DEL MURO A FESSURAZIO	ONE – COMBINAZION	NE RARA.	 64
	12.3	3.1 VERIFICHE GEOTECNICHE DEI PALI			 66
1	3. AL	LEGATO A: VERIFICHE DEL MUF	RO H = 4.0M		 71
	13.1	VERIFICHE GEOTECNICHE DEL MURO	0 – SLU/SLV		74
	13.2	VERIFICHE STRUTTURALI DEL MURO	- SLU/SLV		 82
	13.3	VERIFICHE DEL MURO A FESSURAZIO	ONE – COMBINAZION	NE RARA.	 85

1. GENERALITA'

Il presente documento si inserisce nell'ambito della redazione degli elaborati tecnici di progetto esecutivo del Raddoppio dell'Itinerario Ferroviario Napoli-Bari nella Tratta Cancello-Benevento/ 2° Lotto Funzionale Frasso Telesino – Vitulano.

Le Analisi e Verifiche nel seguito esposte fanno in particolare riferimento ai muri di sostegno in c.a previsti sull'asse principale del tracciato di progetto in corrispondenza delle pk. 18+364.55 – 18+636.55.


1.1 DESCRIZIONE DELL'OPERA

Le opere in questione presentano le principali caratteristiche geometriche riassunte nella tabella seguente (per maggiori dettagli ed una descrizione più completa delle opere si rimanda agli elaborati grafici di progetto):

Dk (m)	Hparam	Hparam Tine		AZIONE	PALI					BARRIERA ANTIRUMORE	SEZ TIPO				
PK (III)	Pk (m) [m] Tipo		h [m]	Lf [m]	Disp. Pali	n°pali trasv.	i _{trasv} [m]	i _{long} [m]	D [m]	(tipo)					
		Α								H4	TIPO				
18+364 -	4.00	4.00	1.00	.00 4.00	NON PREVISTI					ВА					
18+636 (BINARIO		gradoni									4.5				
DISPARI SX)	4.50	4.50	4.50	4.50		Α	0.80	4.50	Allinaati	0	2.40	2.40	0.00	H4	TIPO
57()		4.50 mensola		4.50	Allineati	2	2.40	2.40	0.80		BA 4				

Tabella 1 - Caratteristiche geometriche muri di sostegno.

Di seguitosi riportano alcune immagini rappresentative delle opere. Per ulteriori dettagli si rimanda agli elaborati grafici di riferimento:

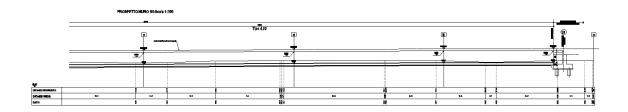


Figura 1 - Prospetto

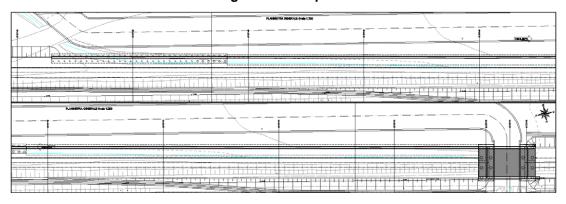


Figura 2 – Pianta Fondazioni

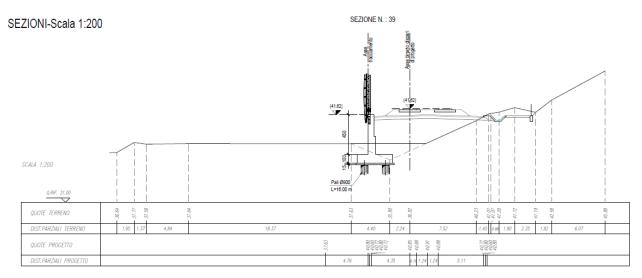


Figura 3 - Sezione trasversale tipo 1

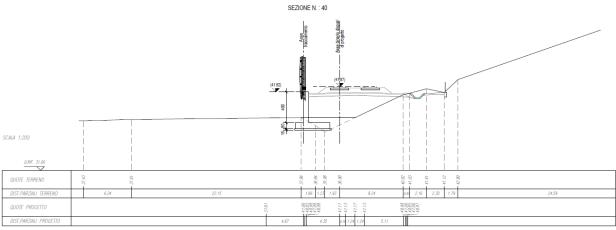


Figura 4 - Sezione trasversale tipo 2

Nel seguito della presente relazione è affrontato il dimensionamento strutturale e geotecnico delle opere definite in precedenza.

2. DOCUMENTI DI RIFERIMENTO

Di seguito si riporta l'elenco generale delle Normative Nazionali ed internazionali vigenti alla data di redazione del presente documento, quale riferimento per la redazione degli elaborati tecnici e/o di calcolo dell'intero progetto nell'ambito della quale si inserisce l'opera oggetto della presente relazione:

Ministero delle Infrastrutture, DM 14 gennaio 2008, «Nuove Norme Tecniche per le Costruzioni»

Ministero delle Infrastrutture e Trasporti, circolare 2 febbraio 2009, n. 617 C.S.LL.PP., «Istruzioni per l'applicazione delle Nuove norme tecniche per le costruzioni di cui al decreto ministeriale 14 gennaio 2008»

Manuale di Progettazione delle Opere Civili: PARTE I / Aspetti Generali (RFI DTC SI MA IFS 001 A)

Manuale di Progettazione delle Opere Civili: PARTE II – Sezione 1 / Ambiente e Geologia (RFI DTC SI AG MA IFS 001 A – rev 30/12/2016)

Manuale di Progettazione delle Opere Civili: PARTE II – Sezione 2 / Ponti e Strutture (RFI DTC SI PS MA IFS 001 A– rev 30/12/2016)

Manuale di Progettazione delle Opere Civili: PARTE II – Sezione 3 / Corpo Stradale (RFI DTC SI CS MA IFS 001 A– rev 30/12/2016)

Manuale di Progettazione delle Opere Civili: PARTE II – Sezione 4 / Gallerie (RFI DTC SI GA MA IFS 001 A– rev 30/12/2016)

Manuale di Progettazione delle Opere Civili: PARTE II – Sezione 5 / Prescrizioni per i Marciapiedi e le Pensiline delle Stazioni Ferroviarie a servizio dei Viaggiatori (RFI DTC SI CS MA IFS 002 A- rev 30/12/2016)

Manuale di Progettazione delle Opere Civili: PARTE II – Sezione 6 / Sagome e Profilo minimo degli ostacoli (RFI DTC SI CS MA IFS 003 A– rev 30/12/2016)

Regolamento (UE) N.1299/2014 della Commissione del 18 Novembre 2014 relativo alle specifiche tecniche di interoperabilità per il sottosistema "infrastruttura" del sistema ferroviario dell'Unione europea Eurocodice 1 – Azioni sulle strutture, Parte 1-4: Azioni in generale – Azioni del vento (UNI EN 1991-1-4)

UNI 11104: Calcestruzzo : Specificazione, prestazione, produzione e conformità - Istruzioni complementari per l'applicazione della EN 206-1

2.1 ELABORATI DI RIFERIMENTO

[DC1].	IF2612EZZP9RI0505003A - Muri di sostegno - Planimetria generale e sezioni
[- ·].	

[DC2]. IF2612EZZP9RI0505004A - Muri di sostegno - Pianta fondazioni e prospetto

[DC3]. IF2612EZZP9RI0505006A - Muri di sostegno - Pianta scavi

3. MATERIALI

Di seguito si riportano le caratteristiche dei materiali previsti per la realizzazione delle strutture oggetto di calcolo nell'ambito del presente documento:

3.1 CLASSI DI ESPOSIZIONE E COPRIFERRI

Con riferimento alle specifiche di cui alla norma UNI EN 206-1-2006, si definiscono di seguito le classe di esposizione del calcestruzzo delle diversi parti della struttura oggetto dei dimensionamenti di cui al presente documento:

Soletta di Fondazione: XC2;

- Elevazioni: XC4;

- Pali di fondazione: XC2.

Classe esposizione norma UNI 9858	Classe esposizione norma UNI 11104 UNI EN 206 –1	Descrizione dell'ambiente	Esempio	Massimo rapporto a/c	Minima Classe di resistenza	Contenuto minimo in aria (%)
1 Assenza	a di rischio di	corrosione o attacco	1			
1	Per calcestruzzo privo di amatura o inserti metallicit. tutte le seposizioni coette di colore ci degledi dispelo, o attacco chimico. X0 X0 X0 Interno di edifici con umidità relativa interno di calcestruzzo non armata all'interno di calcestruzzo non armata bi interno con controlo. Calcestruzzi con armatura o seguino na gioressiva ci ne acqua non aggressiva: ci neserti metalliciti ci calcestruzzo non armata soggetto a cidi di bagnato asciutto ma non soggetto a di di bagnato asciutto ma non soggetto a cidi di bagnato asciutto ma non soggetto a cidi di bagnato asciutto ma non soggetto a cidi di bagnato asciutto con immo.		-	C 12/15		
Nota - Le cond condizioni riflet	lizioni di umidità si ri ttano quelle dell'amb	a carbonatazione feriscono a quelle presenti nel cop ciente circostante. In questi casi la c estruzzo e il suo ambiente.	riferro o nel ricoprimento di inserti metallici, ma in r classificazione dell'ambiente circostante può esser	molti casi su re adeguata	può consider Questo può no	are che tali on essere il
2 a	XC1	Asciutto o permanentemente bagnato.	Interni di edifici con umidità relativa bassa. Calcestruzzo armato ordinario o precompresso con le superfici all'interno di strutture con eccezione delle parti esposte a condensa, o immerse i acqua.	0,60	C 25/30	
2 a	XC2	XC2 Bagnato, raramente asciutto. Parti di strutture di contenimento liquidi, fondazioni. Calcestruzzo armato ordinario o precompresso prevalentemente imm in aqua o terreno non aggressivo.		0,60	C 25/30	
5 a	XC3	Umidità moderata.	Calcestruzzo armato ordinario o precompresso in esterni con superfici esterne riparate dalla pioggia, o in interni con umidità da moderata ad alta.	0,55	C 28/35	
4 a 5 b	XC4	Ciclicamente asciutto e bagnato.	Calcestruzzo armato ordinario o precompresso in estemi con superfici soggette a alternanze di asciutto ed umido. Calcestruzzi a vista in ambienti urbani. Superfici a contatto con l'acqua non comprese nella classe XC2.	0,50	C 32/40	
3 Corrosi	one indotta d	a cloruri esclusi quelli	provenenti dall'acqua di mare			
5 a	XD1	Umidità moderata.	Calcestruzzo armato ordinario o precompresso in superfici o parti di ponti e viadotti esposti a spruzzi d'acqua contenenti cloruri.	0,55	C 28/35	
4 a 5 b	XD2	Bagnato, raramente asciutto.	Calcestruzzo armato ordinario o precompresso in elementi strutturali totalmente immersi in acqua anche industriale contenete cloruri (Piscine).	0,50	C 32/40	
5 c	XD3	Ciclicamente bagnato e asciutto.	Calcestruzzo armato ordinario o precompresso, di elementi strutturali direttamente soggetti agli agenti disgelanti o agli spruzzi contenenti agenti disgelanti. Calcestruzzo armato ordinario o precompresso, elementi con una superficie immersa in acqua contenente cionuri e l'altra esposta all'aria. Parti di ponti, pavimentazioni e parcheggi per auto.	0,45	C 35/45	

Classe esposizione norma UNI 9858	Classe esposizione norma UNI 11104 UNI EN 206 –1	Descrizione dell'ambiense	Esemplo	Massimo rapporto a/c	Minima Classe di resistenza	Contenuto minimo in aria (%)
4 Corrosi	one indotta	da cloruri presenti nell'	acqua di mare		•	•
4 a XS1		Esposto alla salsedine marina ma non direttamente in contatto con l'acqua di mare.	Calcestruzzo armato ordinario o precompresso con elementi strutturali sulle coste o in prossimità.	0,50	C 32/40	
	XS2	Permanentemente sommerso.	Calcestruzzo armato ordinario o precompresso di strutture marine completamente immersi in acqua.	0,45	C 35/45	
	XS3	Zone esposte agli spruzzi o alle marea.	Calcestruzzo armato ordinario o precompresso con elementi strutturali esposti alla battigia o alle zone soggette agli spruzzi ed onde del mare.	0,45	C 35/45	
5 Attacco	dei cicli di g	elo/disgelo con o senza				
2 b	XF1	Moderata saturazione d'acqua,in assenza di agente disgelante.	Superfici verticali di calcestruzzo come facciate e colonne esposte alla pioggia ed al gelo. Superfici non verticali e non soggette alla completa saturazione ma esposte al gelo, alla pioggia o all'acqua.	0,50	C 32/40	
3	XF2 Moderata saturazione d'acqua, in presenza di agente disgelante.				C 25/30	3,0
2 b	XF3	Elevata saturazione d'acqua, in assenza di agente disgelante	Superfici oriz zontali în edifici dove l'acqua può accumularsi e che possono essere soggetti ai fenomeni di gelo, elementi soggetti a frequenti bagnature ed esposti al gelo.	0,50	C 25/30	3,0
3	XF4	Elevata saturazione d'acqua, con presenza di agente antigelo oppure acqua di mare.	Superfici orizzontali quali strade o pavimentazioni esposte al gelo ed ai sali disgelanti in modo diretto o indiretto, elementi esposti al gelo e soggetti a frequenti bagnature in presenza di agenti disgelanti o di acqua di mare.	0,45	C 28/35	3,0
6 Attacco	chimico**					
5 a	XA1	Ambiente chimicamente debolmente aggressivo secondo il prospetto 2 della UNI EN 206-1	Contenitori di fanghi e vasche di decantazione. Contenitori e vasche per acque reflue.	0,55	C 28/35	
4 a 5 b	XA2	Ambiente chimicamente moderatamente aggressivo secondo il prospetto 2 della UNI EN 206-1	Elementi strutturali o pareti a contatto di terreni aggressivi.	0,50	C 32/40	
5 c	XA3	Ambiente chimicamente fortemente aggressivo secondo il prospetto 2 della UNI EN 206-1	Elementi strutturali o pareti a contatto di acque industriali fortemente aggressive. Contentori di foraggi, mangimi e liquame provenienti dall'allevamento animale. Torri di raffreddamento di fumi di gas di scarico industriali.	0,45	C 35/45	
*) Il grad - mo - ele	do di saturazione derato: occasiona vato: alta frequen	UNI EN 206-1	Torri di raffreddamento di fumi di gas di scarico industriali. a relativa frequenza con cui si verifica il ge saturazione;	-,		azione:

Classi di esposizione secondo norma UNI – EN 206-2006

GEODATA INTEGRA RIA	II LOTTO F	IO TRAT UNZION FUNZION	TA CANCEL ALE FRASSI IALE FRASS	LO-BENEVENT O TELESINO – SO TELESINO –	VITULAN	-
Muro di sostegno - Relazione di calcolo	COMMESSA IF26	LOTTO 12 E ZZ	CODIFICA CL	DOCUMENTO RI0505 003	REV.	FOGLIO 9 di 87

La determinazione delle classi di resistenza dei conglomerati, di cui ai successivi paragrafi, sono state inoltre determinate tenendo conto delle classi minime stabilite dalla stessa norma UNI-EN 11104, di cui alla successiva tabella:

		Classi di esposizione																
i	Nessun rischio di corrosione dell'armatura			e delle arı a carbona		Corro	sione o	delle ar	rmature ir	ndotta da	cloruri	Attac	co da cicli	di gelo/d	isgelo		nte aggres tacco chim	
						Acqu	a di ma	are	ı	uri prover a altre for								
	X0	XC1	XC2	XC3	XC4	XS1	XS2	XS3	XD1	XD2	XD3	XF1	XF2	XF3	XF4	XA1	XA2	XA3
Massimo rapporto a/c	-	0,	60	0,55	0,50	0,50	0,	45	0,55	0,50	0,45	0,50	0,	50	0,45	0,55	0,50	0,45
Minima classe di resistenza ^{*)}	C12/15	C25	5/30	C28/35	C32/40	C32/40	C35	5/45	C28/35	C32/40	C35/45	32/40	25	/30	28/35	28,35	32/40	35/4
Minimo contenuto in cemento (kg/m³)	-	30	00	320	340	340	36	60	320	340	360	320	34	40	360	320	340	360
Contenuto minimo in aria (%)														3,0 ^{a)}				
Altri requisiti																	to l'impieg resistenti a	

Classi di resistenza minima del calcestruzzo secondo UNI – 11104

I copriferri di progetto adottati per le barre di armatura, tengono infine conto inoltre delle prescrizioni di cui alla Tabella C4.1.IV della Circolare n.617 del 02-02-09; si è in particolare previsto di adottare i seguenti Copriferri minimi espressi in mm

- Fondazione ed elevazione: 40 mm

- Pali di fondazione: 60 mm.

3.2 CAL	CESTRUZZO	PER E	LEVAZIONI (C32/	/40)				
			compressione cubic	•				
R _{ck} =	40	МРа	, , , , , , , , , , , , , , , , , , , ,	33				
Valore caratt	eristico della res	istenza a	compressione cilindi	rica a 28 gg:				
f _{ck} =	33.2	MPa	(0,83*R _{ck})					
Resistenza a	compressione o	cilindrica	media:					
f _{cm} =	41.2	MPa	$(f_{ck}+8)$					
Resistenza a	trazione assiale):						
f _{ctm} =	3.10	MPa	Valore medio					
f _{ctk,0,05} =	2.17	MPa	Valore caratteristico	frattile 5%				
Resistenza a trazione per flessione:								
f _{cfm} =	3.7	MPa	Valore medio					
f _{cfk,0,05} =	2.6	MPa	Valore caratteristico	frattile 5%				
Coefficiente _l	Coefficiente parziale per le verifiche agli SLU:							
γ _c = 1.5								
	i di carico ecce	zionali, ta	ale valore va conside	erato pari				
ad 1,0								
Dociotopzo d	i calcala a camp	rocciono	alla CLLI:					
	i calcolo a comp	MPa						
f _{cd} =			(0,85*f _{ck} /γ _c)					
	i calcolo a trazio							
f _{ctd} =	1.45	MPa 	$(f_{\text{ctk }0,05}/\gamma_c)$					
	i calcolo a trazio	•						
f _{ctd f} =	1.74	MPa	1,2*f _{ctd}					
Per spessori 20%	minori di 50mr	n e calc	estruzzi ordinari, tale	valore va ridotto del				
Modulo di ela	asticità normale :		Modulo di elasticità t	angenziale:				
E _{cm} =	33643	MPa		018 MPa				
Modulo di Po	isson:							
v=	0.2							
Coefficiente	di dilatazione line	eare						
α=	0.00001	°C-1						

Tensione di aderenza di calcolo acciaio-calcestruzzo

h= 1.00

 $f_{bd} =$ 3.25 MPa (2,25* f_{ctk} * η/γ_c)

Nel caso di armature molto addensate, o ancoraggi in zona tesa tale valore va diviso per 1,5

Tensioni massime per la verifica agli SLE (Prescrizioni Manuale RFI Parte 2-Sezione 2)

 σ_{cmax} QP = (0,40 fck) = 13.28 MPa (Combinazione di Carico Quasi Permanente)

 σ_{cmax} R = $(0,55 f_{ck})$ = 18.26 MPa (Combinazione di Carico Caratteristica - Rara)

Per spessori minori di 50mm e calcestruzzi ordinari, tale valori vanno ridotti del 20%

3.3 CALCESTRUZZO PER FONDAZIONE (C28/35)

Valore caratteristico della resistenza a compressione cubica a 28 gg:

R_{ck}= 35 MPa

Valore caratteristico della resistenza a compressione cilindrica a 28 gg:

 $f_{ck} = \frac{29.1}{\text{MPa}} \quad (0.83 R_{ck})$

Resistenza a compressione cilindrica media:

 $f_{cm} = 37.1$ MPa $(f_{ck} + 8)$

Resistenza a trazione assiale:

f_{ctm}= 2.83 MPa Valore medio

f_{ctk,0,05}= 1.98 MPa Valore caratteristico frattile 5%

Resistenza a trazione per flessione:

f_{cfm}= 3.4 MPa Valore medio

f_{cfk,0,05}= 2.4 MPa Valore caratteristico frattile 5%

Coefficiente parziale per le verifiche agli SLU:

 $\gamma c = 1.5$

Per situazioni di carico eccezionali, tale valore va considerato pari ad 1,0

Resistenza di calcolo a compressione allo SLU:

 $f_{cd} = \frac{16.5}{MPa} MPa (0.85*f_{ck}/\gamma_c)$

Resistenza di calcolo a trazione diretta allo SLU:							
f_{ctd} =	1.32	MPa	(f _{ctk 0,05} / γ c)				
Resistenza d	li calcolo a trazio	ne per fle	essione SLU:				
$f_{\text{ctd }f}$ =	1.59	MPa	1,2*f _{ctd}				
Per spessori 20%	i minori di 50mr	n e calc	estruzzi ordinari,	tale valore va ridotto del			
Modulo di ela	asticità normale :		Modulo di elastic	ità tangenziale:			
E _{cm} =	32588	MPa	G _{cm} =	13578 MPa			
Modulo di Po		1					
ν=	0.2						
Coefficiente	di dilatazione line	eare					
α=	0.00001	°C-1					
Tensione di a	aderenza di calco	olo acciai	io-calcestruzzo				
η=	1.00						
		•					
fbd=	2.98	MPa	$(2,25*f_{ctk}*\eta/\gamma_c)$				
Nel caso di armature molto addensate, o ancoraggi in zona tesa tale valore va diviso per 1,5							
Tensioni mas	ssime per la veril	fica agli S	SLE (Prescrizioni I	Manuale RFI Parte 2-Sezione 2)			
σ _{cmax} QP =	(0,40 fck) =	11.62	MPa	(Combinazione di Carico Quasi Permanente)			
σ _{cmax} R =	$(0,55 f_{ck}) =$	15.98	MPa	(Combinazione di Carico Caratteristica - Rara)			

Per spessori minori di 50mm e calcestruzzi ordinari, tale valori vanno ridotti del 20%

3.4 CALC	CESTRUZZO	PER PA	ALI DI FONDA	ZIONE (C2	5/30)
Valore caratte	eristico della res	istenza a	compressione cu	ubica a 28 gg	:
R _{ck} =	30	МРа	·		
Į.	eristico della res	i istenza a	compressione ci	lindrica a 28 g	gg:
f _{ck} =	24.9	MPa	(0,83*R _{ck})		
Resistenza a	compressione o	ilindrica	media:		
f _{cm} =	32.9	MPa	(f _{ck} +8)		
Resistenza a	trazione assiale	:			
f _{ctm} =	2.56	MPa	Valore medio		
		ı			
f _{ctk,0,05} =	1.79	MPa	Valore caratteris	tico frattile 5%	
Resistenza a	trazione per fles	ssione:			
f _{cfm} =	3.1	MPa	Valore medio		
f _{cfk,0,05} =	2.1	MPa	Valore caratteris	tico frattile 5%	
,.,.		l			
Coefficiente p	parziale per le ve	erifiche a	gli SLU:		
γ _c =	1.5				
Per situazion ad 1,0	i di carico ecce	zionali, ta	ale valore va con	nsiderato pari	
Resistenza d	i calcolo a comp	ressione	allo SLU:		
f _{cd} =	14.1	МРа	$(0.85*f_{ck}/\gamma_c)$		
			(=,== 0.0 / 0)		
Resistenza d	i calcolo a trazio	ne diretta	a allo SLU:		
f _{ctd} =	1.19	MPa	$(f_{ctk\ 0,05}/\gamma_c)$		
]	(64. 6,56 . 7 6)		
Resistenza d	i calcolo a trazio	ne per fle	essione SLU:		
f _{ctd f} =	1.43	MPa	1,2*f _{ctd}		
, , , , , , , , , , , , , , , , , , ,	-		, 0.0		
Per spessori 20%	minori di 50mr	n e calc	estruzzi ordinari,	tale valore va	a ridotto del
Modulo di ela	sticità normale :		Modulo di elastic	cità tangenziale	e:
E _{cm} =	31447	МРа	G _{cm} =	13103	MPa
		1		<u> </u>	
Modulo di Po	isson:				
v=	0.2				
		J			

■GEODATA ENGINEERING	INTEGRA	RI A	II LOTTO F	O TRATI UNZIONA UNZION	TA CANCEL ALE FRASSO IALE FRASS	LO-BENEVENT O TELESINO – ' SO TELESINO –	VITULAN	
Muro di sostegno -	Relazione di calcol	0	COMMESSA IF26	LOTTO 12 E ZZ	CODIFICA CL	DOCUMENTO RI0505 003	REV.	FOGLIO

Coefficiente	di dilatazione lir	neare	
α=	0.00001	°C-1	
Tensione di	aderenza di cal	colo acciaio-calcestruzzo	
η=	1.00		
fbd=	2.69	MPa (2,25*f _{ctk} *η/γ _c)	
Nel caso di diviso per 1,		addensate, o ancoraggi ii	n zona tesa tale valore va
Tensioni ma	ssime per la ver	rifica agli SLE (Prescrizioni	Manuale RFI Parte 2-Sezione 2)
σ_{cmax} QP =	$(0,40 f_{ck}) =$	9.96 MPa	(Combinazione di Carico Quasi Permanente)
σ _{cmax} R =	$(0,55 f_{ck}) =$	13.70 MPa	(Combinazione di Carico Caratteristica - Rara)

3.5 CALCESTRUZZO MAGRO PER GETTI DI LIVELLAMENTO/SOTTOFONDAZIONI (C12/15)

Valore caratteristico della resistenza a compressione cubica a 28 gg:

Per spessori minori di 50mm e calcestruzzi ordinari, tale valori vanno ridotti del

R_{ck}= 15 MPa

20%

Valore caratteristico della resistenza a compressione cilindrica a 28 gg:

 $f_{ck} = 12.5$ MPa $(0.83*R_{ck})$

Resistenza a compressione cilindrica media:

 f_{cm} = 20.5 MPa (f_{ck} +8)

Si omettono resistenze e/o tensioni di calcolo, essendo tale conglomerato previsto per parti d'opera senza funzioni strutturali.

GEODATA INTEGRA RIA	II LOTTO F	IO TRAT UNZION FUNZION	TA CANCEL ALE FRASSI IALE FRASS	LO-BENEVENT O TELESINO – GO TELESINO –	VITULAN	_
Muro di sostegno - Relazione di calcolo	COMMESSA IF26	LOTTO 12 E ZZ	CODIFICA	DOCUMENTO RI0505 003	REV.	FOGLIO 15 di 87

3.6 ACCIAIO IN BARRE D'ARMATURA PER C.A. (B450C)

lensione	carat	terist	ica c	li ro	ttura:

 f_{tk} = 540 MPa (frattile al 5%)

Tensione caratteristica allo snervamento:

 f_{yk} = 450 MPa (frattile al 5%)

Fattore di sovraresistenza (nel caso di impiego di legame costitutivo tipo bilineare con incrudimento)

 $k=f_{tk}/f_{yk} = \boxed{1.20}$ MPa

Allungamento a rottura (nel caso di impiego di legame costitutivo tipo bilineare con incrudimento)

 $(Agt)k = \varepsilon_{uk} = 7.5$ %

 $\epsilon_{ud} = 0.9 \; \epsilon_{uk} = 6.75$ %

Coefficiente parziale per le verifiche agli SLU:

 $\gamma_{s} = 1.15$

Per situazioni di carico eccezionali, tale valore va considerato pari ad 1,0

Resistenza di calcolo allo SLU:

 f_{yd} = 391.3 MPa $(fyk/\gamma s)$

Modulo di elasticità:

E_f= 210000 MPa

Tensione massima per la verifica agli SLE (Prescrizioni Manuale RFI Parte 2-Sezione 2)

 $\sigma_{s max} = (0,75 \text{ f}_{yk}) = 360$ Combinazione di Carico Caratteristica(Rara)

4. CARATTERIZZAZIONE GEOTECNICA

L'opera in esame ricade tra le chilometriche 18+364.55 – 18+636.55 del tracciato di progetto dell'Asse Principale, nell'ambito del 1° Lotto Funzionale Frasso-Telese.

4.1 MODELLO GEOTECNICO DI PROGETTO

Lo schema geotecnico di riferimento per l'opera in oggetto fa riferimento alla Relazione Geotecnica Generale di linea delle opere all'aperto (elaborato IF2612EZZRBGE0001001).

Di seguito si riassumono i parametri di resistenza e la stratigrafia di progetto per le formazioni interagenti con le opere.

Il livello di falda è stato assunto ad una profondità di 10.0 m dal p.c..

Tabella 1: Stratigrafia e parametri geotecnici di riferimento

Unità geotecnica	γ [kN/m³]	c [kPa]	cu [kPa]	φ'[°]	Profondità
Rilevato ferroviario	20.0	0		38	-
ba2	19	0		33	0-2
ba3	19	5		25	2-6
TGC2	18.5	0		34	6-11
MDL3	20	15	200	25	11-19

5. CARATTERIZZAZIONE SISMICA DEL SITO

Nel seguente paragrafo è riportata la valutazione dei parametri di pericolosità sismica utili alla determinazione delle azioni sismiche di progetto dell'opera cui si riferisce il presente documento, in accordo a quanto specificato a riguardo dal D.M. 14 gennaio 2008 e relativa circolare applicativa.

L'opera in questione rientra in particolare nell'ambito del Progetto di Raddoppio della tratta Ferroviaria Frasso Telesino – Telese.

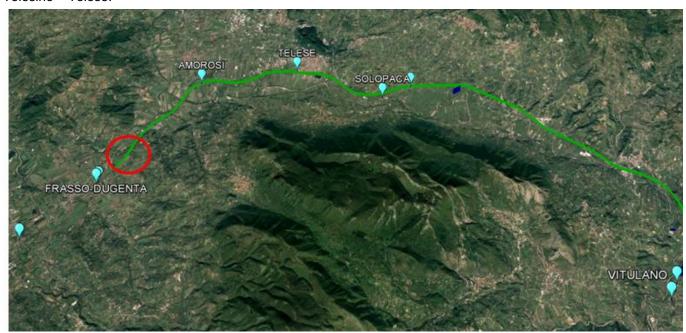


Figura 5 - Configurazione planimetrica tracciato

Nella fattispecie, l'opera ricade tra i comuni di Frasso Dugenta e Amorosi. Nei riguardi della valutazione delle azioni sismiche di progetto, si è fatto riferimento ai parametri di pericolosità relativi alle seguenti coordinate.

Latitudine: 41.167054°; Longitudine: 14.466455°.

5.1 VITA NOMINALE E CLASSE D'USO

Per la valutazione dei parametri di pericolosità sismica è necessario definire, oltre alla localizzazione geografica del sito, la Vita nominale dell'opera strutturale (V_N) , intesa come il numero di anni nel quale la struttura, purché soggetta alla manutenzione ordinaria, deve potere essere usata per lo scopo al quale è destinata, e la Classe d'Uso a cui è associato un coefficiente d'uso (C_U)

Per l'opera in oggetto si considera una vita nominale: $V_N = 75$ anni (categoria 2: "Altre opere nuove a velocità V < 250 Km/h"). Riguardo invece la Classe d'Uso, all' opera in oggetto corrisponde una Classe III a cui è associato un coefficiente d'uso pari a (NTC – Tabella 2.4.II): $C_u = 1.5$.

I parametri di pericolosità sismica vengono quindi valutate in relazione ad un periodo di riferimento V_R che si ricava per ciascun tipo di costruzione, moltiplicando la vita nominale V_N per il coefficiente d'uso C_u , ovvero:

$$V_R = V_N \cdot C_U$$

Pertanto, per l'opera in oggetto, il periodo di riferimento è pari a V_R = 75x1.5 = 112.5 anni

5.2 PARAMETRI DI PERICOLOSITÀ SISMICA

La valutazione dei parametri di pericolosità sismica, che ai sensi del D.M. 14-01-2008, costituiscono il dato base per la determinazione delle azioni sismiche di progetto su una costruzione (forme spettrali e/o forze inerziali) dipendono, come già in parte anticipato in precedenza, dalla localizzazione geografica del sito, dalle caratteristiche della costruzione (Periodo di riferimento per valutazione azione sismica / V_R) oltre che dallo Stato Limite di riferimento/Periodo di ritorno dell'azione sismica.

In accordo a quanto riportato in Allegato A delle Norme Tecniche per le costruzioni DM 14.01.08, si ottiene per il sito in esame:

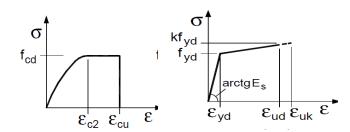
SLATO LIMITE	T _R [anni]	a _g [g]	F _o [-]	T _c * [s]
SLO	68	0.074	2.429	0.326
SLD	113	0.093	2.452	0.344
SLV	1068	0.243	2.401	0.427
SLC	2193	0.318	2.414	0.440

Tabella di riepilogo Parametri di pericolosità sismica

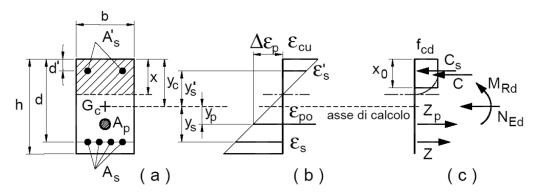
GEODATA INTEGRA RIA	II LOTTO F	IO TRAT UNZIONA FUNZION	TA CANCEL ALE FRASSI IALE FRASS	LO-BENEVENT O TELESINO – 60 TELESINO –	VITULAN	
Muro di sostegno - Relazione di calcolo	COMMESSA IF26	LOTTO 12 E ZZ	CODIFICA CL	DOCUMENTO RI0505 003	REV.	FOGLIO 19 di 87

5.3 CATEGORIA DI SOTTOSUOLO E CATEGORIA TOPOGRAFICA

Le Categoria di Sottosuolo e le Condizioni Topografiche sono valutate come descritte al punto 3.2.2 del DM 14.01.08. Per il caso in esame, come riportato all'interno della relazione geotecnica e di calcolo del lotto in esame (lotto1), risulta una categoria di sottosuolo di **tipo C** e una classe Topografica **T1**.


6. CRITERI GENERALI PER LE VERIFICHE STRUTTURALI

I criteri generali di verifica utilizzati per la valutazione delle capacità resistenti delle sezioni, per la condizione SLU, e per le massime tensioni nei materiali nonché per il controllo della fessurazione, relativamente agli SLE, sono quelli definiti al punto 4.1.2 del DM 14.01.08.


6.1 VERIFICHE ALLO SLU

6.1.1 PRESSOFLESSIONE

La determinazione della capacità resistente a flessione/pressoflessione della generica sezione, viene effettuata con i criteri di cui al punto 4.1.2.1.2.4 delle NTC08, secondo quanto riportato schematicamente nelle figure seguito, tenendo conto dei valori delle resistenze e deformazioni di calcolo riportate al paragrafo dedicato alle caratteristiche dei materiali:

Legami costitutivi Calcestruzzo ed Acciaio -

Schema di riferimento per la valutazione della capacità resistente a pressoflessione generica sezione

La verifica consisterà nel controllare il soddisfacimento della seguente condizione:

$$M_{Rd} = M_{Rd}(N_{Ed}) \ge M_{Ed}$$

dove

M_{Rd} è il valore di calcolo del momento resistente corrispondente a N_{Ed};

N_{Ed} è il valore di calcolo della componente assiale (sforzo normale) dell'azione;

 ${
m M}_{
m Ed}$ è il valore di calcolo della componente flettente dell'azione.

6.1.2 TAGLIO

La resistenza a taglio V_{Rd} della membratura priva di armatura specifica risulta pari a:

$$V_{Rd} = \left\{ 0.18 \cdot k \cdot \frac{\left(100 \cdot \rho_1 \cdot f_{ck}\right)^{1/3}}{\gamma_c + 0.15 \cdot \sigma_{cp}} \right\} \cdot b_w \cdot d \ge v_{min} + 0.15 \cdot \sigma_{cp} \cdot b_w d$$

Dove:

$$v_{\min} = 0.035 \cdot k^{3/2} \cdot f_{ck}^{1/2}$$
:

$$k = 1 + (200/d)^{1/2} \le 2$$

 $\rho_I = A_{sw}/(b_w * d)$

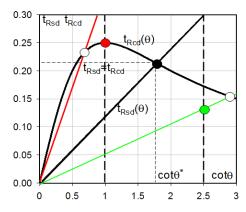
d = altezza utile per piedritti soletta superiore ed inferiore;

b_w= 1000 mm larghezza utile della sezione ai fini del taglio.

In presenza di armatura, invece, la resistenza a taglio V_{Rd} è il minimo tra la resistenza a taglio trazione V_{Rsd} e la resistenza a taglio compressione V_{Rcd}

$$V_{Rsd} = 0.9 \cdot d \cdot \frac{A_{sw}}{s} \cdot f_{yd} \cdot (ctg\alpha + ctg\theta) \cdot \sin \alpha$$

$$V_{Rcd} = 0.9 \cdot d \cdot b_{w} \cdot \alpha_{c} \cdot f_{cd}' \cdot \frac{(ctg\alpha + ctg\theta)}{(1 + ctg^{2}\theta)}$$


Essendo:

$$1 \le \text{ctg q} \le 2.5$$

Per quanto riguarda in particolare le verifiche a taglio per elementi armati a taglio, si è fatto riferimento al metodo del traliccio ad inclinazione variabile, in accordo a quanto prescritto al punto 4.1.2.1.3 delle NTC08, considerando ai fini delle verifiche, un angolo θ di inclinazione delle bielle compresse del traliccio resistente tale da rispettare la condizione.

$$1 \le \operatorname{ctg} \theta \le 2.5$$
 $45^{\circ} \ge \theta \ge 21.8^{\circ}$

- Se la $\cot\theta^*$ è maggiore di 2.5 la crisi è da attribuirsi all'armatura trasversale e il taglio resistente $V_{Rd}(=V_{Rsd})$ coincide con il massimo taglio sopportate dalle armature trasversali valutabile per una $\cot\theta=2,5$.
- Se la $\cot\theta^*$ è minore di 1.0 la crisi è da attribuirsi alle bielle compresse e taglio resistente $V_{Rd}(=V_{Rcd})$ coincide con il massimo taglio sopportato dalle bielle di calcestruzzo valutabile per una $\cot\theta=1,0$.
- Se la $\cot \theta^*$ è compresa nell'intervallo (1,0-2,5) è possibile valutare il taglic resistente $V_{Rcd} = V_{Rsd}$

L'angolo effettivo di inclinazione delle bielle (θ) assunto nelle verifiche è stato in particolare valutato, nell'ambito di un problema di verifica, tenendo conto di quanto di seguito indicato :

$$\cot \theta^* = \sqrt{\frac{v \cdot \alpha_c}{\omega_{sw}} - 1}$$

(θ^* angolo di inclinazione delle bielle cui corrisponde la crisi contemporanea di bielle compresse ed armature) dove

$$v = f'_{cd} / f_{cd} = 0.5$$

f 'cd = resistenza a compressione ridotta del calcestruzzo d'anima

f cd = resistenza a compressione di calcolo del calcestruzzo d'anima

ω_{sw} : Percentuale meccanica di armatura trasversale.

$$\omega_{sw} = \frac{A_{sw} f_{yd}}{b s f_{cd}}$$

6.2 VERIFICA SLE

La verifica nei confronti degli Stati limite di esercizio, consiste nel controllare, con riferimento alle sollecitazioni di calcolo corrispondenti alle Combinazioni di Esercizio il tasso di Lavoro nei Materiali e l'ampiezza delle fessure attesa, secondo quanto di seguito specificato

6.2.1 VERIFICHE ALLE TENSIONI

La verifica delle tensioni in esercizio consiste nel controllare il rispetto dei limiti tensionali previsti per il calcestruzzo e per l'acciaio per ciascuna delle combinazioni di carico caratteristiche "Rara" e "Quasi Permanente"; i valori tensionali nei materiali sono valutati secondo le note teorie di analisi delle sezioni in c.a. in campo elastico e con calcestruzzo "non reagente" adottando come limiti di riferimento, trattandosi nel caso in specie di opere Ferroviarie, quelli indicati nel documento " Specifica per la progettazione e l'esecuzione dei ponti ferroviari e di altre opere minori sotto binario RFI DTC INC PO SP IFS 001 A del 30-12-16 ", ovvero:

Strutture in c.a.

Tensioni di compressione del calcestruzzo

Devono essere rispettati i seguenti limiti per le tensioni di compressione nel calcestruzzo:

- per combinazione di carico caratteristica (rara): 0,55 fek;
- per combinazioni di carico quasi permanente: 0,40 f_{ek};
- per spessori minori di 5 cm, le tensioni normali limite di esercizio sono ridotte del 30%.

Tensioni di trazione nell'acciaio

Per le armature ordinarie, la massima tensione di trazione sotto la combinazione di carico caratteristica (rara) non deve superare $0.75 f_{sk}$.

6.2.2 VERIFICHE A FESSURAZIONE

La verifica a fessurazione consiste nel controllo dell'ampiezza massima delle fessure per le combinazioni di carico di esercizio i cui valori limite sono stabiliti, nell'ambito del progetto di opere ferroviarie, nel documento RFI DTC SICS MA IFS 001 A – 2.5.1.8.3.2.4 (Manuale di progettazione delle opere civili del 30/12/2016).

In particolare l'apertura convenzionale delle fessure $\delta_f \delta_f$ dovrà rispettare i seguenti limiti:

- $\delta_f \le w_1 = 0.2 \, mm$ per tutte le strutture in condizioni ambientali aggressive o molto aggressive (così come identificate nel par. 4.1.2.2.4.3 del DM 14.1.2008 Tab 4.1.III), per tutte le strutture a permanente contatto con il terreno e per le zone non ispezionabili di tutte le strutture;
- $\delta_f \leq w_2 = 0.3 \; mm$ per strutture in condizioni ambientali ordinarie.

CONDIZIONI AMBIENTALI	CLASSE DI ESPOSIZIONE
Ordinarie	X0, XC1, XC2, XC3, XF1
Aggressive	XC4, XD1, XS1, XA1, XA2, XF2, XF3
Molto aggressive	XD2, XD3, XS2, XS3, XA3, XF4

Tabella 4.1.III - DM 14.01.2008

In definitiva, nel caso in esame, con riferimento alle indicazioni della tabella di cui in precedenza, si adotta il limite $\mathbf{w_2}$ =0.30 mm sia per le parti in elevazione che per quelle in fondazione, in quanto in entrambi i casi trattasi di strutture a permanente contatto col terreno.

7. ANALISI DEI CARICHI

7.1 PESO PROPRIO

Il peso proprio delle strutture è determinato automaticamente dal programma di calcolo, avendo considerato un peso dell'unita di volume del c.a. γ_{cls} = 25 KN/m³.

Per quanto riguarda le verifiche di stabilità globale invece, si considera un sovraccarico permanente dovuto alla sovrastruttura ferroviaria (ballast+armamento) valutato come segue.

PESO SOVI	PESO SOVRASTRUTTURA FERROVIARIA				
$\gamma_b =$	18	kN/m³	(peso specifico ballast)		
H _m =	0.8	m	(altezza ballast)		
*Q _{eq} =	14.4	kN/m ²	(carico equivalente terreno a tergo paratia)		
*Applicato	ad intradoss	so ballast			

Infine per tener in conto della presenza della barriera antirumore di tipo H4 è stato aggiunto in corrispondenza della testa del muro una forza verticale concentrata valutata a partire da un peso della barriera a metro lineare di 4 kN/m:

BARRIERA	BARRIERA ANTIRUMORE TIPOLOGIA H4			
h _d =	4.44 m	Altezza acustica da P.F		
d =	-1.1 m	Distanza testa muro(fond.barriera) da P.F		
H _{eff,b} =	5.5 m	Altezza effettiva Elemento barriera		
G _b =	4 kN/m²	(peso barriera a metro quadro)		
*F _{w,v} =	22.5 kN/m ²	(peso barriera)		
*Applicato	a testa muro			

7.2 SOVRACCARICO ACCIDENTALE

Come indicato nel MdP RFI (documento RFI DTC SI CS MA IFS 001 C § 3.8.1.3.2.2), per le verifiche del corpo ferroviario si considera il carico dovuto al treno SW/2; tale carico và ripartito ipotizzando una larghezza di distribuzione dei carichi ferroviari al livello del piano di regolamento pari alla larghezza della traversa più la larghezza dovuta alla diffusione del carico all'interno del ballast. Quest'ultima può essere assunta pari a 45° su un'altezza di 40 cm, senza tenere conto della presenza o meno di curve.

CARICO VA	CARICO VARIABILE DA TRAFFICO FERROVIARIO "TRENO SW2"				
q _{sw2} =	150	kN/m		(RFI DTC SI CS MA IFS 001 C par. 3.8.1.3.2.2)	
α =	1			(coefficiente di adattamento)	
Ф2 =	1			(coefficiente di incremento dinamico)	
L _t =	2.4	m		(larghezza traversina)	
L _d =	3.20	m	(L _t +2*0.4)	(larghezza di diffusione del carico nel ballast+rilevato)	
				(RFI DTC SI CS MA IFS 001 C par. 3.8.1.3.2.1)	
*Q _{sw2} =	46.9	kN/m ²		(sovraccarico ferroviario)	
*Applicato	Applicato ad intradosso ballast				

In condizioni sismiche tale sovraccarico viene considerato con un coefficiente di combinazione w₂=0.2.

7.3 AZIONE DA VENTO ED EFFETTI AERODINAMICI ASSOCIATI AL TRANSITO DEI CONVOGLI (COND. DI CARICO 7)

7.3.1 AZIONE DEL VENTO

Il vento, la cui direzione si considera generalmente orizzontale, esercita sulle costruzioni azioni che variano nel tempo e nello spazio provocando, in generale, effetti dinamici.

Per le costruzioni usuali tali azioni sono convenzionalmente ricondotte ad azioni statiche equivalenti dirette secondo due assi principali della struttura, tali azioni esercitano normalmente all'elemento di parete o di copertura, pressioni e depressioni p (indicate rispettivamente con segno positivo e negativo) di intensità calcolate con la seguente espressione:

$$p = q_b c_e c_p c_d$$

- q_b Pressione cinetica di riferimento
- ce Coefficiente di esposizione
- cp Coefficiente di forma (o coefficiente aerodinamico)
- c_d Coefficiente dinamico

La pressione cinetica di riferimento q_b in (N/m²) è data dall'espressione:

$$q_b = \frac{1}{2} \rho v_b^2$$

dove ρ è la densità dell'aria assunta convenzionalmente costante e pari a 1.25 kg/m³.

Il coefficiente d'esposizione ce dipende dall'altezza z sul suolo del punto considerato, dalla topografia del terreno, e dalla categoria di esposizione del sito ove sorge la costruzione (k_r , z_0 , z_{min}).

Il valore di ce può essere ricavato mediante la relazione:

•
$$c_e(z) = k_r^2 c_t \ln\left(\frac{z}{z_0}\right) \left[7 + c_t \ln\left(\frac{z}{z_0}\right)\right]$$
 per $z > z_{min}$

•
$$c_e(z) = c_e(z_{\min})$$
 per z < z_{min}

Nel caso in esame abbiamo con riferimento ad una altezza z dal suolo valutata cautelativamente pari a 20m si ha:

3) Toscana, Marche, Umbria, Lazio, Abruzzo, Molise, Puglia, Campania, Basilicata, Calabria (esclusa la provincia di Reggio Calabria)

Zona	v _{b,0} [m/s]	a ₀ [m]	k _a [1/s]			
3	27	500	0.02			
a _s (altitudir	a _s (altitudine sul livello del mare [m])					
T _R	T _R (Tempo di ritorno)					
	$v_b = v_{b,0}$ per $a_s \le a_0$					
$V_b = V_{b,0}$	$v_b = v_{b,0} + k_a (a_s - a_0)$ per $a_0 < a_s \le 1500 \text{ m}$					
У	$_{b} (T_{R} = 50 \text{ [m/s]})$])	27.000			
	α_R (T _R)		1.02346			
v _b ($V_b(T_R) = V_b \times \alpha_R[m/s]$					

p (pressione del vento [N/mq]) = $q_b c_e c_p c_d$ q_b (pressione cinetica di riferimento [N/mq]) c_e (coefficiente di esposizione) c_p (coefficiente di forma) c_d (coefficiente dinamico)

ITINERARIO NAPOLI – BARI RADDOPPIO TRATTA CANCELLO-BENEVENTO II LOTTO FUNZIONALE FRASSO TELESINO – VITULANO 1° LOTTO FUNZIONALE FRASSO TELESINO – TELESE **PROGETTO ESECUTIVO**

Muro di sostegno - Relazione di calcolo

Pressione cinetica di riferimento

 $q_b = 1/2 \cdot \rho \cdot v_b^2$ ($\rho = 1,25 \text{ kg/mc}$)

q _b [N/mq]	477.25

Coefficiente di forma

E' il coefficiente di forma (o coefficiente aero dinamico), funzio ne della tipo lo gia e della geometria della costruzione e del suo orientamento rispetto alla direzione del vento. Il suo valore può essere ricavato da dati suffragati da opportuna do cumentazione o da prove sperimentali in galleria del vento.

Coefficiente dinamico

ZONA 9

mare

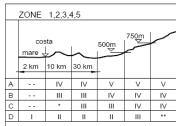
Esso può essere assunto autelativamente pari ad 1nelle costruzioni di tipologia ricorrente, quali gli edifici di forma regolare non eccedenti 80 m di altezza ed i capannoni industriali, oppure può essere determinato mediante analisi specifiche o facendo riferimento a dati di comprovata affidabilità.

REV.

Α

FOGLIO

25 di 87


Coefficiente di esposizione

Classe di rugosità del terreno

D) Aree prive di ostacoli (aperta campagna, aeroporti, aree agricole, pascoli, zone paludose o sabbiose, superfici innevate o ghiacciate, mare, laghi,....)

CO

Categoria di esposizione

*	Categoria II in zona 1,2,3,4 Categoria III in zona 5
**	Categoria III in zona 2,3,4,5 Categoria IV in zona 1

$C_{e}(z) = k_{r}^{2} \cdot c_{t} \cdot \ln(z/z_{0}) \left[7 + c_{t} \cdot \ln(z/z_{0})\right]$ $C_{e}(z) = C_{e}(z_{e} z_{0})$	$\text{per } z \geq z_{\text{min}}$
$C_{-}(Z) = C_{-}(Z_{-+})$	ner 7 < 7

C _e
1.708
2.606
2.606

ZONA 6							
	со	sta		500m			
	mare -			シ			
١.	2 km	10 km	30 km	_			
Α		III	IV	V	V		
В		II	III	IV	IV		
С		II	III	III	IV		
D	I	- 1	Ш	П	III		

m J			mare	cos	ata		
/			1.5 km	0.5 km			
		А			IV		
	V	В			IV		
		С			III		
_	IV	D	- 1	Ш	*		
	IV	* C	* Categoria II in zona 8				
	III	C	Categoria III in zona 7				

ZONE 7,8

Zona	Classe di rugosità	a _s [m]
3	D	70

Cat. Esposiz.	k _r	z ₀ [m]	z _{min} [m]	Ct
Ш	0.2	0.1	5	1

Cp	p [kN/mq]
0.80	0.995

Nel caso in esame si ha quindi:

PRESSIONE DEL VENTO						
q _b =	0.477	kN/m ²				
c _e =	2.606					
c _p =	0.8					
c _t =	1					
p =	1	kN/m ²				

p (pressione del vento [N/mq]) = qb.ce.cp.cd qb (pressione cinetica di riferimento [N/mq]) ce (coefficiente di esposizione) cp (coefficiente di forma) cd (coefficiente dinamico)

7.3.2 EFFETTI AERODINAMICI ASSOCIATI AL PASSAGGIO DEI TRENI

Gli effetti delle azioni aerodinamiche dovuta al traffico ferroviario sono state valutate in accordo a quanto riportato al punto 2.5.1.4.6. delle istruzioni RFI [RFI DTC SI PS MA IFS 001 A] e al paragrafo 5.2.2.7 delle NTC 2008. Queste ultime prevedono che il passaggio dei convogli ferroviari induca sulle superfici situate in prossimità della linea ferroviaria (per esempio, barriere antirumore) onde di pressione e depressione. Le azioni possono essere schematizzate mediante carichi statici equivalenti agente nelle zone prossime alla testa e alla coda del treno.

Per la linea in esame è possibile considerare, cautelativamente, convogli con forme aerodinamiche sfavorevoli e aventi velocità di linea pari a 160 km/h.

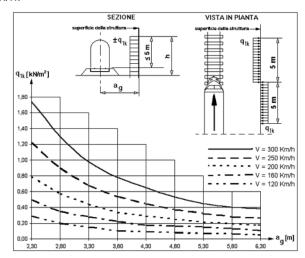


Figura 7-1 – Valori caratteristici delle azioni e defizioni della distanza minima e massima della barriera dal convoglio [NTC – Figg. 5.2.8 e 5.2.11]

Nel caso in esame si ha quindi:

PRESSIONE DEL VENTO				
q _{1k} =	0.477 kN/m ²	(sovrappressione aerodinamica)		
K1 =	2.606	(coeff. Di forma dei convogli)		
a _e =	0.8	(distanza barriera da asse binario più vicino)		

7.3.3 AZIONE DEL VENTO COMBINATA AGLI EFFETTI AERODINAMICI

Come riportato al punto 2.5.1.8.3.2 delle istruzioni RFI [RFI DTC SI PS MA IFS 001 A] e al paragrafo 5.2.3.3.2 delle NTC 2008 bisogna verificare che l'azione risultante (vento+azioni aerodinamiche) debba essere maggiore ad un valore minimo pari a 1.50 kN/m².

Nel caso in esame si ha:

AZIONE DEL VENTO COMBINATA AGLI EFFETTI AERODINAMICI					
q _{w,tot} =	1.18	kN/m²	<1.50	Pressione normale vento + effetti aerodinamici	
q _w =	1.5	kN/m		Prescrizione par.2.5.1.8.3.2 RFI DTC SI PS MA IFS 001 A	

Pertanto

BARRIERA ANTIRUMORE TIPOLOGIA H4					
h _d =	4.44	m	Altezza acustica da P.F		
*F _{w,v} =	7	kN/m	Azione tagliante		
*F _{w,v} =	19	kN/m ²	Momento flettente testa muro		
*Applicato a testa muro					

o le azioni risultanti applicate nei modelli sono pari a:

7.4 SPINTA DEL TERRENO IN CONDIZIONI STATICHE

Le spinte esercitate dal terrapieno e dagli eventuali carichi presenti su di esso sono state valutate mediante la formulazione di Coulomb.

Tale teoria propone una distribuzione della pressione del terreno di tipo lineare, proporzionale alla profondità dal piano campagna, pertanto l'azione statica essercitata dal terreno è stata considerata applicata ad 1/3 dell'altezza del muro. La spinta dovuta al sovraccarico uniformemente distribuito si assume invece applicata a metà altezza del muro.

7.5 SPINTA DEL TERRENO IN CONDIZIONI SISMICHE

Per l'analisi della spinta delle terre sotto l'azione sismica i criteri più comunemente utilizzati sono quelli classificabili come metodi pseudo-statici chiamati sia dalle NTC 2008 sia dall'EC8.

Il metodo proposto è quello di Mononobe-Okabe (1929) questo può essere considerato come un'estensione in campo dinamico del criterio di Coulomb, assumendone sostanzialmente le ipotesi, considerando in più che il cuneo di terreno compreso tra la superficie di rottura e la parete del muro si comporti come un corpo rigido soggetto ad un'accelerazione orizzontale e verticale, rappresentata dai coefficienti sismici orizzontale k_{ν} .

7.6 FORZA D'INERZIA

Per la valutazione dell'azione sismica associata ai carichi fissi propri e permanenti /accidentali agenti sul muro si utilizza il metodo dell'analisi pseudostatica in cui il sisma è rappresentato da una forza statica equivalente pari al prodotto delle forze di gravità per un opportuno coefficiente sismico kh (coefficiente sismico orizzontale) o Kv (coefficiente sismico verticale) secondo quanto di seguito indicato:

Forza sismica orizzontale $F_h = k_h W$

Forza sismica verticale $F_v = k_v W$

I valori dei coefficienti sismici orizzontali k_h e verticale k_v , relativi allo stato limite considerato, sono posti pari all'ordinata dello spettro di progetto corrispondente al periodo T=0, per la componente orizzontale, ed a quella corrispondente al periodo proprio $T=T_0$, per la componente verticale.

Nelle verifiche allo stato limite ultimo, i valori dei coefficienti sismici orizzontale k_h e verticale k_v possono essere valutati mediante le espressioni

$$k_h = \beta_m \cdot \frac{a_{max}}{g} \tag{7.11.6}$$

$$k_{\rm v} = \pm 0.5 \cdot k_{\rm h}$$
 (7.11.7)

dove

 a_{max} = accelerazione orizzontale massima attesa al sito;

g = accelerazione di gravità.

GEODATA INTEGRA RIF	ITINERARIO NAPOLI – BARI RADDOPPIO TRATTA CANCELLO-BENEVENTO II LOTTO FUNZIONALE FRASSO TELESINO – VITULANO 1° LOTTO FUNZIONALE FRASSO TELESINO – TELESE PROGETTO ESECUTIVO					_
Muro di sostegno - Relazione di calcolo	COMMESSA IF26	LOTTO 12 E ZZ	CODIFICA	DOCUMENTO RI0505 003	REV.	FOGLIO 28 di 87

In assenza di analisi specifiche della risposta sismica locale, l'accelerazione massima può essere valutata con la relazione

$$a_{\text{max}} = S \cdot a_g = S_S \cdot S_T \cdot a_g \tag{7.11.8}$$

dove

S = coefficiente che comprende l'effetto dell'amplificazione stratigrafica (S_S) e dell'amplificazione topografica (S_T) , di cui al § 3.2.3.2;

 a_{σ} = accelerazione orizzontale massima attesa su sito di riferimento rigido.

Nella precedente espressione, il coefficiente β_m assume i valori riportati nella Tab. 7.11-II.

Per muri che non siano in grado di subire spostamenti relativi rispetto al terreno, il coefficiente β_m assume valore unitario.

Nel caso di muri di sostegno liberi di traslare o di ruotare intorno al piede, si può assumere che l'incremento di spinta dovuta al sisma agisca nello stesso punto di quella statica. Negli altri casi, in assenza di specifici studi si deve assumere che tale incremento sia applicato a metà altezza del muro.

Con riferimento al valore da assegnare al coefficiente β_m , si è fatto riferimento alle indicazioni di cui alla Tabella 7.1.II riportata nella stessa sezione della norma.

Tabella 7.11.II - Coefficienti di riduzione dell'accelerazione massima attesa al sito.

	Categoria di sottosuolo		
	A	B, C, D, E	
	$\beta_{\rm m}$	β_{m}	
$0.2 \le a_g(g) \le 0.4$	0,31	0,31	
$0,1 \le a_g(g) \le 0,2$	0,29	0,24	
$a_g(g) \le 0,1$	0,20	0,18	

Figura 2 - Coefficienti sismici (estratto D.M. 14/01/2008 p.to 7.11.6.2.1)

Pertanto si ha:

a _g /g =	0.243
β _m =	0.31
S _S =	1.35
S _T =	1
k _h =	0.102
k _v =	0.051

7.7 COEFFICIENTI DI ATTRITO STRUTTURA TERRENO

Per l'attrito paramento – terreno generalmente si utilizza il valore δ =2/3 ϕ ' in fase statica e δ =0 in fase sismica. Tuttavia, il software di calcolo utilizzato non consente di differenziare il valore del coefficiente di attrito nelle varie fasi di calcolo. Pertanto è stato utilizzato, per la valutazione dei coefficienti di spinta del terreno di rinterro, cautelativamente δ =0 sia in fase statica che in fase sismica.

Tale assunzione, peraltro, non risulta essere particolarmente gravosa in quanto nella maggioranza dei casi esaminati la condizione di carico dimensionante è risultata essere quella sismica.

8. COMBINAZIONI DI CARICO

Per la combinazione dei diversi carichi previsti sulla struttura di cui al precedente paragrafo 7, si è fatto riferimento a quanto specificato in merito al prg 2.5.3 del DM 14.01.08, secondo cui le combinazioni di carico da considerare nei riguardi dei diversi stati limite di verifica SLU, SLE e sisma sono le seguenti:

Combinazione fondamentale, generalmente impiegata per gli stati limite ultimi (SLU):

$$\gamma_{G1} \cdot G_1 + \gamma_{G2} \cdot G_2 + \gamma_{P} \cdot P + \gamma_{Q1} \cdot Q_{k1} + \gamma_{Q2} \cdot \psi_{02} \cdot Q_{k2} + \gamma_{Q3} \cdot \psi_{03} \cdot Q_{k3} + \dots$$

Combinazione caratteristica (rara), generalmente impiegata per gli stati limite di esercizio (SLE) irreversibili:

$$G_1 + G_2 + P + Q_{k1} + \psi_{02} \cdot Q_{k2} + \psi_{03} \cdot Q_{k3} + \dots$$

Combinazione frequente, generalmente impiegata per gli stati limite di esercizio (SLE) reversibili, utilizzata nella verifica a Fessurazione:

$$G_1 + G_2 + P + \psi_{11} \cdot Q_{k1} + \psi_{22} \cdot Q_{k2} + \psi_{23} \cdot Q_{k3} + \dots$$

Combinazione quasi permanente, generalmente impiegata per gli stati limite di esercizio (SLE) a lungo termine;

$$G_1 + G_2 + P + \psi_{21} \cdot Q_{k1} + \psi_{22} \cdot Q_{k2} + \psi_{23} \cdot Q_{k3} + \dots$$

Combinazione sismica, impiegata per gli stati limite ultimi e di esercizio connessi all'azione sismica E:

$$E + G_1 + G_2 + P + \psi_{21} \cdot Q_{k1} + \psi_{22} \cdot Q_{k2} + \dots$$

$$E = \pm 1.00 \times E_{Y} \pm 0.3 \times E_{Z}$$

avendo indicato con E_Y e E_Z rispettivamente le componenti orizzontale e verticale dell'azione sismica.

Ai fini della scelta dei coefficienti parziali da applicare alle azioni (γ),la norma definisce inoltre, per il caso specifiche delle opere di sostegno, due possibili approcci progettuali ovvero:

Approccio 1:

Fase Statica: A1+M1+R1 (STR - Combinazione per le verifiche strutturali)

A2+M2+R1 (GEO – Combinazione per le verifiche geotecniche)

Fase Sismica: M1+R1 (EQK-STR - Combinazione per le verifiche strutturali in fase sismica)

M2+R1 (EQK-GEO – Combinazione per le verifiche geotecniche in fase sismica)

Approccio 2:

Fase Statica: A1+M1+R3 (STR / GEO – Combinazione per le verifiche strutturali e geotecniche)

Fase Sismica: M1+R3 (EQK- STR/GEO – Combinazione per le verifiche strutturali e geotecniche in fase sismica)

essendo:

A1/A2: coefficienti amplificativi delle azioni

M1/M2: coefficienti parziali sulle resistenze dei materiali e del terreno

R1/R2/R3: Coefficienti di sicurezza minimo nei riguardi del generico Stato limite di Verifica.

Tali coefficienti sono definite nelle apposite tabelle definite in normativa e che nel seguito si riportano per completezza espositiva:

Tabella 6.5.I - Coefficienti parziali y per le verifiche agli stati limite ultimi STR e GEO di muri di sostegno.

VERIFICA	COEFFICIENTE PARZIALE (R1)	COEFFICIENTE PARZIALE (R2)	COEFFICIENTE PARZIALE (R3)	
Capacità portante della fondazione	$y_{R} = 1.0$	$\gamma_{R.} = 1.0$	$\gamma_{R} = 1.4$	
Scorrimento	$\gamma_{\mathbb{R}} = 1.0$	$\gamma_{R} = 1.0$	$\gamma_{R} = 1.1$	
Resistenza del terreno a valle	$y_{\rm P} = 1.0$	$y_{\rm P} = 1.0$	$\gamma_{\rm p} = 1.4$	

Tabelle coefficienti parziali sulle azioni e sui parametri di resistenza del terreno (DM 14.01.08)

Tabella 5.2.V - Coefficienti parziali di sicurezza per le combinazioni di carico agli SLU, eccezionali e sismica

		Coefficiente	EQU ⁽¹⁾	A1 STR	A2 GEO	Combinazione eccezionale	Combinazione Sismica
Carichi permanenti	favorevoli sfavorevoli	γ _{G1}	0,90 1,10	1,00 1,35	1,00 1,00	1,00 1,00	1,00 1,00
Carichi permanenti non strutturali ⁽²⁾	favorevoli sfavorevoli	γ _{G2}	0,00 1,50	0,00 1,50	0,00 1,30	1,00 1,00	1,00 1,00
Ballast ⁽³⁾	favorevoli sfavorevoli	γв	0,90 1,50	1,00 1,50	1,00 1,30	1,00 1,00	1,00 1,00
Carichi variabili da traffico ⁽⁴⁾	favorevoli sfavorevoli	γο	0,00 1,45	0,00 1,45	0,00 1,25	0,00 0,20 ⁽⁵⁾	0,00 0,20 ⁽⁵⁾
Carichi variabili	favorevoli sfavorevoli	γQi	0,00 1,50	0,00 1,50	0,00 1,30	0,00 1,00	0,00 0,00
Precompressione	favorevole sfavorevole	γP	0,90 1,00 ⁽⁶⁾	1,00 1,00 ⁽⁷⁾	1,00 1,00	1,00 1,00	1,00 1,00

⁽¹⁾ Equilibrio che non coinvolga i parametri di deformabilità e resistenza del terreno; altrimenti si applicano i valori

(7) 1,20 per effetti locali

Tabella 5.2.VII - Ulteriori coefficienti di combinazione ψ delle azioni.

	Azioni	Ψο	Ψ1	Ψ2
	Treno di carico LM 71	0,80(3)	(1)	0,0
Azioni	Treno di carico SW /0	0,80 ⁽³⁾	0,80	0,0
singole	Treno di carico SW/2	0,0(3)	0,80	0,0
da	Treno scarico	1,00(3)	-	-
traffico	Centrifuga	(2 (3)	(2)	(2)
	Azione laterale (serpeggio)	1,00(3)	0,80	0,0

^{(1) 0,80} se è carico solo un binario, 0,60 se sono carichi due binari e 0,40 se sono carichi tre o più binari.

Tabella 6.2 II - Coefficienti parziali per i parametri geotecnici del terreno

iena 6.2.11 - Coefficienti parziati per i parametri geotecnici dei terreno				
PARAMETRO	GRANDEZZA ALLA QUALE COEFFICIENTE		(M1)	(M2)
	APPLICARE IL	PARZIALE		
	COEFFICIENTE PARZIALE	γ_{M}		
Tangente dell'angolo di	tan φ′ _k	$\gamma_{\varphi'}$	1,0	1,25
resistenza al taglio				
Coesione efficace	c' _k	γc	1,0	1,25
Resistenza non drenata	Cuk	γ _{cu}	1,0	1,4
Peso dell'unità di volume	γ	γ_{γ}	1,0	1,0

Guilbrio che non coinvolga i parametri di deformabilità e resistenza del terreno; altrimenti si applicano i valori di GEO.
 Nel caso in cui i carichi permanenti non strutturali (ad es. carichi permanenti portati) siano compiutamente definiti si potranno adottare gli stessi coefficienti validi per le azioni permanenti.
 Quando si prevedano variazioni significative del carico dovuto al ballast, se ne dovrà tener conto esplicitamente nelle verifiche.
 Le componenti delle azioni da traffico sono introdotte in combinazione considerando uno dei gruppi di carico gradella Tab. 5.2.IV.
 Aliquota di carico da traffico da considerare.
 Aliquota di carico da traffico da considerare.

^{1,30} per instabilità in strutture con precompressione esterna

⁽²⁾ Si usano gli stessi coefficienti ψ adottati per i carichi che provocano dette azioni.

⁽³⁾ Quando come azione di base venga assunta quella del vento, i coefficienti ψ_0 relativi ai gruppi di carico delle azioni da traffico vanno assunti pari a 0,0.

9. CRITERI GENERALI DI VERIFICA

Si descrivono nel seguito i criteri generali seguiti per l'effettuazione delle verifiche di stabilità globale e locale dell'opera di sostegno.

9.1 VERIFICHE DI STABILITA' LOCALE

9.1.1 VERIFICHE ALLO SCORRIMENTO

La verifica allo scorrimento sul piano di posa della Fondazione è condotta secondo l'APPROCCIO 2, in particolare è stato verificato il rispetto della seguente condizione:

Fs =
$$(c' \times B + N \times \tan \mu)/H > 1.0$$

dove:

N = Risultante delle azioni ortogonali al piano di scorrimento

H = Risultante delle azioni parallele al piano di scorrimento

c' = coesione efficace, posta generalmente pari a zero, salvo particolari condizioni che ne consentano di tenerne conto.

B = Dimensione della Fondazione sul piano di scorrimento.

 μ = Coefficiente di attrito fondazione - terreno , posto pari a φ' .

9.1.2 VERIFICHE A RIBALTAMENTO

La verifica al ribaltamento rispetto al vertice esterno della fondazione è viene trattata secondo la normativa come uno stato limite di equilibrio come corpo rigido (EQU), utilizzando i relativi coefficienti sulle azioni di cui alla tabella 2.6.I delle NTC, adoperando i coefficienti parziali del gruppo (M2) per il calcolo delle spinte.

Nella fattispecie, per ciascuna delle combinazioni di Verifica allo SLU statico e sismico rispetto alle quali è prescritta la verifica al ribaltamento, è stata verificata il rispetto della seguente condizione:

M_{DEST} / M_{RIB}>1

essendo

M_{RIB} = Risultante momenti ribaltanti

M_{DEST} = Risultante momenti destabilizzanti

9.1.3 VERIFICA DI CAPACITÀ PORTANTE (CARICO LIMITE FONDAZIONI DIRETTE)

Per la valutazione del carico limite delle fondazioni dirette si utilizza il criterio di Brinch-Hansen di cui nel seguito si riporta la relativa trattazione teorica:

Dette:

^	Coesione
C	COESIONE

 c_a Adesione lungo la base della fondazione ($c_a \le c$)

V Azione tagliante

φ' Angolo d'attrito

δ Angolo di attrito terreno fondazione

γ Peso specifico del terreno

Kp Coefficiente di spinta passiva espresso da Kp = $tan2(45^{\circ} + \phi/2)$

B Larghezza della fondazione

L Lunghezza della fondazione

D Profondità del piano di posa della fondazione

η inclinazione piano posa della fondazione

P Pressione geostatica in corrispondenza del piano di posa della fondazione

qult Carico ultimo della fondazione

Risulta:

Caso generale

$$q_{ult} = \mathbf{c} \cdot N_{c} \cdot \mathbf{s}_{c} \cdot d_{c} \cdot i_{c} \cdot g_{c} \cdot b_{c} + q \cdot N_{q} \cdot \mathbf{s}_{q} \cdot d_{q} \cdot i_{q} \cdot g_{q} \cdot b_{q} + 0.5 \cdot B \cdot \gamma \cdot N_{\gamma} \cdot \mathbf{s}_{\gamma} \cdot d_{\gamma} \cdot i_{\gamma} \cdot g_{\gamma} \cdot b_{\gamma}$$

Caso di terreno puramente coesivo $\varphi = 0$

$$q_{ult} = 5.14 \cdot c \cdot (1 + s_c + d_c - i_c - g_c - b_c) + q$$

in cui dc, dq e $d\gamma$ sono i fattori di profondità, sc, sq e $s\gamma$ sono i fattori di forma, ic, iq e $i\gamma$ sono i fattori di inclinazione del carico, bc, bq e $b\gamma$, sono i fattori di inclinazione del piano di posa e gc, gq e $g\gamma$ sono fattori che tengono conto del fatto che la fondazione poggi su un terreno in pendenza.

I fattori Nc, Nq, $N\gamma$ sono espressi come:

$$N_q = Kp e^{\pi tg\varphi}$$

$$N_c = (N_q - 1)ctg\varphi$$

$$N_{\gamma} = 1.5(N_q - 1)tg\varphi$$

Fattori di forma

per $\phi = 0$	per φ > 0
	$s_c = 1 + \frac{N_q}{N_c} \frac{B}{L}$
$s_c = 0.2 \frac{B}{L}$	$s_q = 1 + \frac{B}{L} t g \phi$
	$s_{\gamma} = 1 - 0.4 \frac{B}{L}$

Fattori di profondità

$$k = \frac{D}{B}$$
 se $\frac{D}{B} \le 1$
 $k = arctg \frac{D}{B}$ se $\frac{D}{B} > 1$

Fattori inclinazione del carico

I fattori di inclinazione del carico si esprimono come:

per φ = 0	per φ > 0		
$i_c = \frac{1}{2} \left(1 - \sqrt{1 - \frac{H}{A_f c_a}} \right)$	$i_c = i_q - \frac{1 - i_q}{N_q - 1}$		
	$i_q = \left(1 - \frac{0.5H}{V + A_f c_a \cot \phi}\right)^5$		
	Per η =0	$i_{\gamma} = \left(1 - \frac{0.7H}{V + A_f c_a \cot \phi}\right)^5$	
	Per η >0	$i_{\gamma} = \left(1 - \frac{(0.7 - \eta^{\circ}/450^{\circ})H}{V + A_f c_a \cot \phi}\right)^5$	

Fattori inclinazione del piano di posa della fondazione

per φ = 0	per φ > 0
$b_c = \frac{\eta^o}{147^o}$	$b_c = 1 - \frac{\eta^{\circ}}{147^{\circ}}$ $b_q = e^{-2\eta \eta g \phi}$ $b_{\gamma} = e^{-2.7\eta \eta g \phi}$

Fattori di inclinazione del terreno

per $\phi = 0$	per φ > 0
$g_c = \frac{\beta^{\circ}}{147^{\circ}}$	$g_c = 1 - \frac{\beta^o}{147^o}$ $g_q = g_\gamma = (1 - 0.5tg\beta)^5$

Per poter applicare la formula di Hansen devono risultare verificate le seguenti condizioni:

$$H < V tg(\delta) + A_f ca$$

 $\beta \leq \phi$

 i_q , $i_\gamma > 0$

 $\beta + \eta \le 90^{\circ}$

9.2 CRITERI DI VERIFICA DELLE PALIFICATE DI FONDAZIONE

Le verifiche geotecniche delle spalle dell'opera constano del dimensionamento geotecnico della palificata di fondazione, in termini di diametro, lunghezza, numero e disposizione dei pali di fondazione.

In particolare si esegue la seguente procedura di calcolo:

- calcolo della quintupla di azioni (F_x, F_y, F_z, M_x ed M_y) ad intradosso zattera di fondazione, risultanti dalle combinazioni di carico su descritte;
- calcolo dei carichi assiali su ciascun palo;
- dimensionamento dei pali di fondazione ai fini del soddisfacimento delle verifiche di capacità portante degli stessi.

Le opere in oggetto presentano una fondazione indiretta costituita da una platea di fondazione su pali trivellati, il cui valore di progetto R_d della resistenza a carichi assiali dei singoli pali si ottiene a partire dal valore caratteristico R_k applicando i coefficienti parziali γ_R riportati nella tabella successiva:

	Coefficiente Parziale	Pali trivellati		
	(γR)	R1	R2	R3
Base	γb	1.0	1.7	1.35
Laterale in compressione	γs	1.0	1.45	1.15
Laterale in trazione	γst	1.0	1.6	1.25

Tab. 1 - Coefficienti parziali di sicurezza per le resistenze

I coefficienti parziali di sicurezza utilizzati sono: R1 per le combinazioni di carico STR; R2 per le combinazioni di carico GEO; R3 per le combinazioni sismiche.

La resistenza caratteristica R_k del singolo palo è determinata mediante metodi di calcolo analitici, dove R_k è calcolata a partire a da valori caratteristici dei parametri geotecnici e/o mediante l'impiego di relazioni empiriche che utilizzano direttamente i risultati di prove in situ. La normativa vigente definisce per tali procedure, il valore caratteristico della resistenza $R_{c,k}$ (o $R_{t,k}$) come il valore minore tra quelli ottenuti applicando alle resistenze calcolate $R_{c,calc}$ ($R_{t,calc}$) i fattori di correlazione ξ riportati nella tabella seguente, in funzione del numero n di verticali di indagini:

$$\begin{split} R_{c,k} &= Min \bigg\{ \frac{(R_{c,cal})_{media}}{\xi_3} \, ; \frac{(R_{c,cal})_{min}}{\xi_4} \bigg\} \\ R_{t,k} &= Min \bigg\{ \frac{(R_{t,cal})_{media}}{\xi_3} \, ; \frac{(R_{t,cal})_{min}}{\xi_4} \bigg\} \\ \hline \\ n & 1 & 2 & 3 & 4 & 5 & 7 & \geq 10 \\ \hline \xi_3 & 1.70 & 1.65 & 1.60 & 1.55 & 1.50 & 1.45 & 1.40 \\ \hline \xi_4 & 1.70 & 1.55 & 1.48 & 1.42 & 1.34 & 1.28 & 1.21 \\ \end{split}$$

Tab. 2 - Fattori di correlazione ξ

La campagna di indagine condotta in fase di progettazione esecutiva permette di assumere in sede di calcolo un fattore di correlazione pari a ξ_3 = ξ_4 =1.70.

9.2.1 CAPACITÀ PORTANTE DEI PALI NEI CONFRONTI DEI CARICHI ASSIALI

Il calcolo della capacità portante dei pali di fondazione è condotto con i coefficienti parziali da applicare alla resistenza laterale e alla punta che tengono conto del fattore di correlazione ξ.

In ciascuna combinazione prevista deve risultare:

$$Q_{Rd} \ge Q_{Sd}$$

dove:

$$Q_{Rd} = \frac{1}{\xi} \left(\frac{Q_s}{R^s}_i + \frac{Q_b}{R^b}_i \right) - W_{palo}$$

Nelle espressioni precedenti, i simboli hanno i seguenti significati:

$$Q_{b} = \frac{\pi \cdot D^{2}}{4} \cdot q_{b}$$

$$\boldsymbol{Q}_s = \boldsymbol{\pi} \cdot \boldsymbol{D} \cdot \boldsymbol{L} \cdot \boldsymbol{\tau}_s$$
 .

D = diametro del palo;

L = lunghezza del palo;

q_b = pressione limite alla base del palo;

 τ_s = pressione laterale lungo il palo;

 R_i e ξ = coefficienti di abbattimento delle resistenze;

W_{palo} = peso caratteristico del palo al netto del peso del terreno asportato;

In particolare, per terreni coesivi:

$$\bullet \quad q_b = 9 \cdot c_{ub} + \sigma_{v0}$$

$$\tau_s = \alpha \cdot C_u$$

– per terreni incoerenti:

$$\bullet \quad q_b = N_q \cdot \sigma_{v0}$$

•
$$q_s = ki \cdot \tan \phi' \cdot \sigma_{v0}$$

dove:

c_u = coesione non drenata;

cub = coesione non drenata alla base del palo;

 σ_{v0} = tensione litostatica totale;

 α = coefficiente empirico;

 $k_i = 0.5$;

ENGINEERING RIF	II LOTTO F	IO TRAT UNZIONA FUNZION	TA CANCEL ALE FRASSI IALE FRASS	LO-BENEVENT D TELESINO – SO TELESINO –	VITULAN	
Muro di sostegno - Relazione di calcolo	COMMESSA IF26	LOTTO 12 E ZZ	CODIFICA CL	DOCUMENTO RI0505 003	REV.	FOGLIO 37 di 87

 N_q = fattore di capacità portante, valutato secondo le indicazioni di Berezantzev, di seguito riportate:

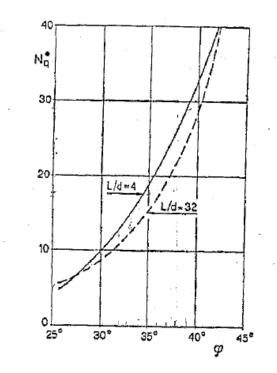


Fig. 5 - COEFFICIENTI Nq (BEREZANTZEV, 1965).

CORRISPONDENTI ALL'INSORGERE DELLE DEFORMA

ZIONI PLASTICHE ALLA PUNTA

Figura 4: Valori del fattore Nq proposti da Berezantzev

Per quanto riguarda il coefficiente empirico α , possono considerarsi i valori della tabella seguente:

c _u (kPa)	α
<=25	0.9
Da 25 a 50	0.8
Da 50 a 75	0.6
>=75	0.4

ENGINEERING INTEGRA RIF	II LOTTO F	IO TRAT UNZIONA FUNZION	TA CANCEL ALE FRASSI IALE FRASS	LO-BENEVENT O TELESINO – GO TELESINO –	VITULAN	
Muro di sostegno - Relazione di calcolo	COMMESSA IF26	LOTTO 12 E ZZ	CODIFICA	DOCUMENTO RI0505 003	REV.	FOGLIO 38 di 87

9.2.2 CAPACITÀ PORTANTE DEI PALI NEI CONFRONTI DEI CARICHI ORIZZONTALI

9.2.2.1 CARICO ORIZZONTALE LIMITE

Il carico orizzontale limite Hlim è stato calcolato in accordo alla teoria proposta da Broms (1984).

Le ipotesi assunte da Broms sono le seguenti:

- Terreno omogeneo;
- Comportamento dell'interfaccia palo-terreno di tipo rigido-perfettamente plastico;
- la forma del palo è ininfluente e l'interazione palo-terreno è determinata solo dalla dimensione
- caratteristica D della sezione del palo (il diametro per sezioni circolari, il lato per sezioni
- quadrate, etc.) misurata normalmente alla direzione del movimento;
- il palo ha comportamento rigido-perfettamente plastico, cioè si considerano trascurabili le
- deformazioni elastiche del palo.

Questa ultima ipotesi comporta che il palo abbia solo moti rigidi finché non si raggiunge il momento di plasticizzazione M_y del palo. A questo punto si ha la formazione di una cerniera plastica in cui la rotazione continua indefinitamente con momento costante.

In accordo alla condizione di vincolo dei pali nei plinti di fondazione, il palo è considerato impedito di ruotare in testa.

9.2.2.2 Unità a comportamento coesivo

Il diagramma di distribuzione della resistenza p offerta dal terreno lungo il fusto del palo è quello riportato in Fig. 1 – (a). Broms adotta al fine delle analisi una distribuzione semplificata (b) con reazione nulla fino a 1.5 \emptyset e costante con valore $9 \cdot c_u \cdot \emptyset$ per profondità maggiori.

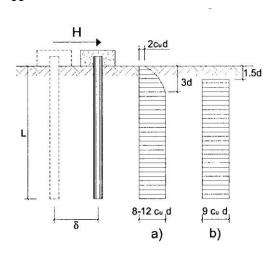


Fig. 1 – distribuzione della resistenza offerta dal terreno a carichi orizzontali per pali impediti di ruotare alla testa (Broms, 1984).

I meccanismi di rottura del complesso palo-terreno sono condizionati dalla lunghezza del palo, dal momento di plasticizzazione della sezione e dalla resistenza esercitata dal terreno. I possibili meccanismi di rottura sono riportati nella figura seguente e sono solitamente indicati come "palo corto", "intermedio" e "lungo".

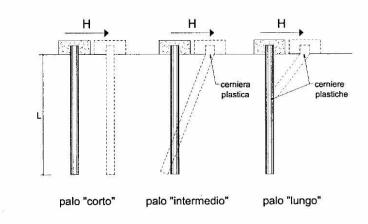


Fig. 2 – meccanismi di rottura del complesso palo-terreno per pali impediti di ruotare alla testa soggetti a carichi orizzontali (Broms, 1984).

Facendo ricorso a semplici equazioni di equilibrio ed imponendo la formazione di una cerniera plastica nelle sezioni che raggiungono un momento pari a M_y , è possibile calcolare il carico limite orizzontale corrispondente ai tre meccanismi di rottura:

$$H \lim = 9c_u D^2 \left(\frac{L}{D} - 1.5\right)$$
 palo corto
$$H \lim = -9c_u D^2 \left(\frac{L}{D} - 1.5\right) + 9c_u D^2 \sqrt{2\left(\frac{L}{D}\right)^2 + \frac{4}{9}\frac{My}{c_u D^3} + 4.5}$$
 palo intermedio
$$H \lim = -13.5c_u D^2 + c_u D^2 \sqrt{182.25 + 36\frac{My}{c_u D^3}}$$
 palo lungo

Con riferimento ai casi in oggetto, il meccanismo di rottura è sempre quello di palo lungo.

Nel caso di palo scalzato e per il caso di palo lungo, il valore di H_{lim} si ottiene risolvendo le seguenti equazioni:

$$H \lim_{z \to 0} = 9c_u D \times (f - 1.5D)$$

$$H \lim_{z \to 0} (d_z + f) - 4.5c_u D(f - 1.5D)^2 - 2M_y = 0$$

Essendo:

- f la profondità della cerniera plastica dal piano di campagna;
- ds l'altezza della testa del palo rispetto al piano di campagna.

9.2.2.3 UNITÀ A COMPORTAMENTO INCOERENTE

Per un terreno incoerente si assume che la resistenza opposta dal terreno alla traslazione del palo vari linearmente con la profondità con legge:

$$p = 3 k_p \gamma z D$$

essendo:

k_p il coefficiente di spinta passiva;

z la profondità da piano campagna;

γ il peso di volume del terreno, nel caso in cui il terreno sia sotto falda si assume γ'.

I valori del carico limite corrispondenti ai diversi meccanismi di rottura sono di seguito riportati:

$$H \lim_{p \to \infty} 1.5 k_p \gamma D^3 \left(\frac{L}{D}\right)^2$$
 palo corto

$$H \lim = \frac{1}{2} k_p \gamma D^3 \left(\frac{L}{D}\right)^2 + \frac{My}{L}$$
 palo intermedio

$$H \lim = k_p \gamma D^3 \sqrt[3]{\left(3.676 \frac{My}{k_p \gamma D^4}\right)^2}$$
 palo lungo

Con riferimento ai casi in oggetto, il meccanismo di rottura è sempre quello di palo lungo.

Nel caso di palo scalzato e per il caso di palo lungo, il valore di H_{lim} si ottiene risolvendo le seguenti equazioni:

$$H \lim = 1.5k_p \gamma D f^2$$

$$f^3 + 1.5D f^2 - \left(\frac{2M_y}{\gamma k_p D}\right) = 0$$

Essendo:

f la profondità della cerniera plastica dal piano di campagna;

ds l'altezza della testa del palo rispetto al piano di campagna.

9.2.2.4 CARICO ORIZZONTALE RESISTENTE

Il valore di progetto R_d della resistenza a carichi assiali dei singoli pali si ottiene a partire dal valore caratteristico R_k applicando i coefficienti parziali γ_R riportati nella tabella successiva:

	Coefficiente Parzial	е
R1	R2	R3
1.0	1.6	1.3

Tabella 17: Coefficienti parziali di sicurezza per le resistenze

I coefficienti parziali di sicurezza utilizzati sono: R1 per le combinazioni di carico STR; R2 per le combinazioni di carico GEO; R3 per le combinazioni sismiche.

La resistenza caratteristica Rk del singolo palo è determinata mediante metodi di calcolo analitici, dove Rk è calcolata a partire da valori caratteristici dei parametri geotecnici e/o mediante l'impiego di relazioni empiriche che utilizzano direttamente i risultati di prove in situ. La normativa vigente definisce per tali procedure, il valore caratteristico della resistenza $R_{c,k}$ (o $R_{t,k}$) come il valore minore tra quelli ottenuti applicando alle resistenze calcolate $R_{c,calc}$ ($R_{t,calc}$) i fattori di correlazione ξ riportati nella tabella seguente, in funzione del numero n di verticali di indagini:

$$R_{c,k} = Min \left\{ \frac{(R_{c,cal})_{media}}{\xi_3}; \frac{(R_{c,cal})_{min}}{\xi_4} \right\}$$

$$R_{t,k} = Min \left\{ \frac{(R_{t,cal})_{media}}{\xi_3}; \frac{(R_{t,cal})_{min}}{\xi_4} \right\}$$

$$\frac{n}{\xi_3} = 1.70 - 1.65 - 1.60 - 1.55 - 1.50 - 1.45 - 1.40$$

$$\xi_4 = 1.70 - 1.55 - 1.48 - 1.42 - 1.34 - 1.28 - 1.21$$

Tab. 3 - Fattori di correlazione ξ

La campagna di indagine condotta in fase di progettazione esecutiva permette di assumere in sede di calcolo un fattore di correlazione pari a $\xi_3 = \xi_4 = 1.70$.

9.2.3 VERIFICHE DI STABILITA' GLOBALE

Il punto 6.8 delle NTC e relativa circolare applicativa, tratta l'argomento della verifica di Stabilità di Materiali Sciolti e fronti di scavo, nella fattispecie, al punto 6.8.2 "Verifiche di Sicurezza (SLU)" viene prescritto quanto di seguito:

Le verifiche devono essere effettuate secondo l'Approccio 1-Combinazione 2 (A2+M2+R2) tenendo conto dei valori dei coefficienti parziali riportati nelle Tabelle 6.2.I, 6.2.II e 6.8.I.

Tabella 6.2.I – Coefficienti parziali per le azioni o per l'effetto delle azioni.

VV	P P re	1 00			
CARICHI	EFFETTO	Coefficiente Parziale _{YF} (o _{YE})	EQU	(A1) STR	(A2) GEO
Permanenti	Favorevole	$\gamma_{\rm G1}$	0,9	1,0	1,0
Permanenti	Sfavorevole		1,1	1,3	1,0
Permanenti non strutturali (1)	Favorevole	~	0,0	0,0	0,0
Permanenti non strutturan	Sfavorevole	γ _{G2}	1,5	1,5	1,3
Variabili	Favorevole	24	0,0	0,0	0,0
v arraum	Sfavorevole	γ_{Qi}	1,5	1,5	1,3

Nel caso in cui i carichi permanenti non strutturali (ad es. i carichi permanenti portati) siano compiutamente definiti, si potranno adottare gli stessi coefficienti validi per le azioni permanenti.

Tabella 6.2.II - Coefficienti parziali per i parametri geotecnici del terreno

coefficient pu	rzian per i paramenti georecinci aei	10110110		
PARAMETRO	GRANDEZZA ALLA QUALE	COEFFICIENTE	(M1)	(M2)
	APPLICARE IL	PARZIALE		
	COEFFICIENTE PARZIALE	$\gamma_{ m M}$		
Tangente dell'angolo di resistenza al taglio	tan φ' _k	$\gamma_{\phi'}$	1,0	1,25
Coesione efficace	c' _k	$\gamma_{c'}$	1,0	1,25
Resistenza non drenata	c_{uk}	γ _{cu}	1,0	1,4
Peso dell'unità di volume	γ	γ_{γ}	1,0	1.0

Tabella 6.8.I – Coefficienti parziali per le verifiche di sicurezza di opere di materiali sciolti e di fronti di scavo.

Il coefficiente di sicurezza Fs minimo da garantire in questo caso è pari ad 1.1 (γ_R).

Le analisi di stabilità globale sono state condotte utilizzando il codice di calcolo SLIDE v.2018 della RocScience Inc., applicando i metodi di analisi all'equilibrio limite di Bishop.

Metodologia di calcolo

La verifica si conduce esaminando un certo numero di possibili superfici di scivolamento per ricercare quella che rappresenta il rapporto minimo tra la resistenza a rottura disponibile e quella effettivamente mobilitata; il valore di questo rapporto costituisce il coefficiente di sicurezza del pendio. Scelta quindi una superficie di rottura, la si suddivide in conci la parte instabile, studiando dapprima l'equilibrio della singola striscia e poi la stabilità globale. Le ipotesi del metodo in questione sono:

il coefficiente di sicurezza è definito come il rapporto tra la resistenza al taglio lungo un'ipotetica superficie di scorrimento e lo sforzo di taglio mobilitato lungo la stessa superficie;

la rottura avviene, per il raggiungimento della resistenza limite, contemporaneamente in tutti i punti della superficie di scorrimento;

il coefficiente di sicurezza è costante in tutti i punti della superficie di scorrimento:

la resistenza al taglio è espressa dal criterio di Coulomb.

GEODATA INTEGRA RIA	II LOTTO F	IO TRAT UNZION FUNZION	TA CANCEL ALE FRASS IALE FRASS	LO-BENEVENT O TELESINO – SO TELESINO –	VITULAN	_
Muro di sostegno - Relazione di calcolo	COMMESSA IF26	LOTTO 12 E ZZ	CODIFICA CL	DOCUMENTO RI0505 003	REV.	FOGLIO 43 di 87

Nell'utilizzare tale metodo di calcolo si fa sempre riferimento ad un problema piano nel quale, quindi, la superficie di scorrimento è rappresentata da una curva, trascurando ogni effetto dovuto alle sezioni adiacenti. Tali schematizzazioni sono giustificabili se le proprietà meccaniche dei terreni sono omogenee in direzione trasversale e quando l'estensione del pendio è predominante sulla dimensione trasversale.

In generale la massa di terreno compresa tra la superficie di scorrimento e la superficie del suolo viene suddivisa in conci e le forze che agiscono su ciascuna striscia possono essere calcolate imponendo le condizioni di equilibrio. L'equilibrio dell'intera massa è dato poi dalla composizione delle forze che agiscono su ciascuna striscia ("Metodo delle strisce").

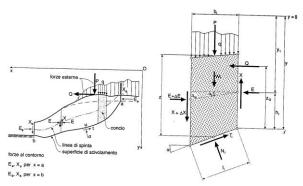


Figura 3 – Schematizzazione di calcolo del metodo delle strisce

Le forze agenti su ciascun concio sono, con riferimento alla figura precedente: Il peso W, l'azione tangenziale alla base T, l'azione normale efficace alla base N, la spinta dell'acqua sulla base U, gli sforzi tangenziali X e quelli normali E sulle superfici laterali (forze d'interfaccia).

Le condizioni di equilibrio di ciascun concio sono date dalle tre equazioni della statica, pertanto, ammettendo di suddividere il volume di terreno in esame in n conci, si hanno a disposizione 3n equazioni, mentre le incognite del problema risultano essere (5n-2) così composte:

n valori per l'azione delle forze normali efficaci alla base.

n-1 valori per ciascuna delle forze d'interfaccia (X ed E)

n-1 valori per il punto di applicazione delle forze d'interfaccia in direzione orizzontale.

n valori per il punto di applicazione degli sforzi normali efficaci alla base.

1 valore del coefficiente di sicurezza.

Come già accennato, dal bilancio fra le equazioni disponibili e il numero delle incognite risulta che si hanno (2n-2) incognite sovrabbondanti e quindi il problema risulta staticamente indeterminato; per riportarlo a staticamente determinato e rendere possibile la soluzione del sistema di equazioni che descrivono l'equilibrio della massa di terreno potenzialmente instabile, è necessario introdurre alcune ipotesi semplificative che consentono di ridurre il numero delle incognite del problema. La prima tra tutte, che risulta, tra le altre cose, comune a tutti i metodi, è quella di considerare centrata la forza agente alla base della striscia, il che è accettabile nel caso in cui i conci siano di larghezza limitata. Le altre ipotesi necessarie per risolvere il sistema di equazioni sono diverse a seconda del metodo che si considera.

Nel presente caso sono state adottate quelle proposte da Bishop.

9.2.4 VERIFICHE IN FASE SISMICA

Per ciò che concerne le verifiche in condizioni sismiche, la normativa fornisce al punto 7.11.3.5 indicazioni circa le azioni aggiuntive da considerare nell'ambito delle verifiche di Stabilità di Pendii in occasione di eventi sismici; nella fattispecie, si specifica che L'analisi delle condizioni di stabilità dei pendii in condizioni sismiche può essere eseguita mediante metodi pseudostatici, metodi degli spostamenti e metodi di analisi dinamica.

Nei metodi pseudostatici, di riferimento per le analisi esposte nel seguito del documento, l'azione sismica è rappresentata da un'azione statica equivalente, costante nello spazio e nel tempo, proporzionale al peso W del volume di terreno potenzialmente instabile. Tale forza dipende dalle caratteristiche del moto sismico atteso nel volume di terreno potenzialmente instabile e dalla capacità di tale volume di subire spostamenti senza significative riduzioni di resistenza.

Nelle verifiche allo stato limite ultimo, in mancanza di studi specifici, le componenti orizzontale e verticale di tali forze possono esprimersi come:

 $F_h = k_h \times W$ (azione sismica orizzontale)

 $F_v = k_v \times W$ (azione sismica verticale)

risultando:

$$k_{\rm h} = \beta_s \cdot \frac{a_{\rm max}}{g} \tag{7.11.3}$$

$$k_{\rm v} = \pm 0.5 \cdot k_{\rm h}$$
 (7.11.4)

con:

βs = 0.28 = coefficiente di riduzione dell'accelerazione massima attesa al sito, come da indicazioni Tab 7.11.1;

Tabella 7.11.I – Coefficienti di riduzione dell'accelerazione massima attesa al sito.

	Categoria di sottosuolo				
	A	B, C, D, E			
	β_{s}	β_s			
$0.2 < a_{\rm g}(g) \le 0.4$	0,30	0,28			
$0,1 \le a_{g}(g) \le 0,2$	0,27	0,24			
$a_{g}(g) \leq 0,1$	0,20	0,20			

 $a_{max} = S \cdot a_g = S_S \cdot S_T \cdot a_g$ (accelerazione massima attesa al sito)

 S_S : coefficiente di amplificazione stratigrafica S_T : coefficiente di amplificazione topografica

Nel caso dei **Fronti di Scavo e Rilevati**, al punto 7.11.4 "Fronti di Scavo e Rilevati", si specifica che <u>Il comportamento in condizioni sismiche dei fronti di scavo e dei rilevati può essere analizzato con gli stessi metodi impiegati per i pendii naturali. Nelle verifiche di sicurezza si deve controllare che la resistenza del sistema sia maggiore delle azioni impiegando i coefficienti parziali di cui al § 7.11.1</u>

La circolare applicativa n617 specifica ulteriormente al C7.11.4 che, le verifiche pseudostatiche di sicurezza dei fronti di scavo e dei rilevati si eseguono con la combinazione di coefficienti parziali di cui al § 6.8.2: (A2+M2+R2), utilizzando valori unitari per i coefficienti parziali A2 come specificato al § 7.11.1.

In definitiva, per il caso dei Fronti di Scavo e Rilevati, anche in fase sismica, il coefficiente di sicurezza minimo prescritto dalla Normativa è pari ad 1.1 (γ_R).

10. RISULTATI ANALISI E VERIFICHE MURO

Di seguito si riportano i risultati delle analisi dei muri in oggetto.

10.1 MURO H=4.0M

10.1.1 VERIFICHE GEOTECNICHE

Si riportano a seguire in forma tabellare i fattori di sicurezza (F.S) delle verifiche geotecniche riportate nei paragrafi precedenti.

	SLU	SLV +	SLV -
Capacità portante	4.11	7.93	8.25
Scorrimento (STR)	1.69	2.33	2.19
Ribaltamento (EQU)	2.24	5.26	3.8

10.1.2 VERIFICHE DI STABILITA' GLOBALE

Di seguito di riportano i risultati delle verifiche di stabilità relativamente a due condizioni:

- nel primo caso le analisi saranno condotte esclusivamente in campo statico (SLU).
- Nel secondo caso le analisi saranno condotte in campo sismico (SLV).

Come previsto dalla normativa vigente (NTC 2008), il coefficiente parziale sulle resistenze γ_R risulta pari a 1.1.

L'analisi di stabilità globale è stata finalizzata all'individuazione delle superfici di rottura critiche, a cui corrisponde il fattore di sicurezza FS minimo.

Nelle figure che seguono sono mostrate le superfici di rottura critica per la combinazione considerata; il fattore di sicurezza FS relativo a tali meccanismi è risultato sempre superiore ad 1.1

Verifica stabilità globale	FS
SLU	1.384

N.B. il segno positivo nella combinazione allo SLV indica l'applicazione del sisma verticale verso il basso, mentre il segno negativo verso l'alto.

ENGINEERING INTEGRA RIF	II LOTTO F	IO TRAT UNZION FUNZION	TA CANCEL ALE FRASS IALE FRASS	LO-BENEVENT O TELESINO – GO TELESINO –	VITULAN	_
Muro di sostegno - Relazione di calcolo	COMMESSA IF26	LOTTO 12 E ZZ	CODIFICA	DOCUMENTO RI0505 003	REV.	FOGLIO 46 di 87

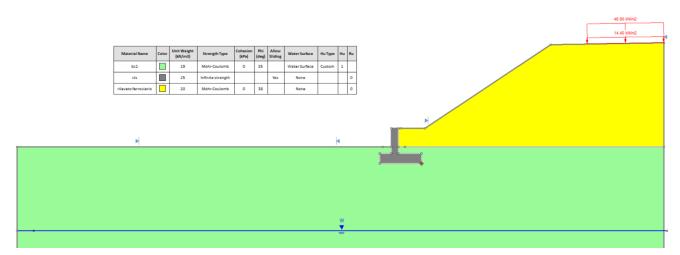


Figura 4 – Dominio di calcolo

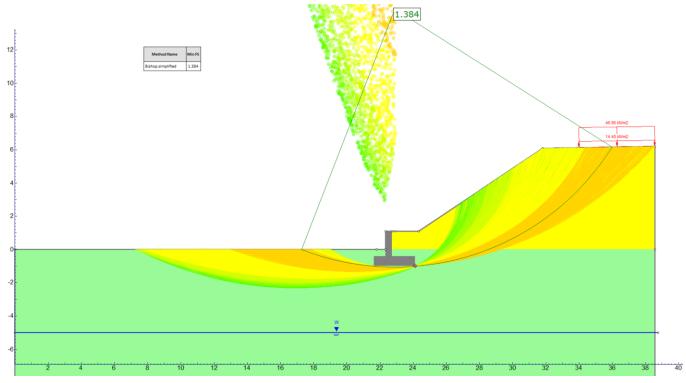


Figura 5 – Superfici di scorrimento-SLU

10.2 MURO H=4.5M

10.2.1 VERIFICHE GEOTECNICHE

Si riportano a seguire in forma tabellare i fattori di sicurezza (F.S) delle verifiche geotecniche riportate nei paragrafi precedenti.

	SLU	SLV	SLE
Capacità portante azioni orizzontali	1.18	1.50	-
Capacità portante azioni verticali	1.71	2.05	2.98

Per i risultati completi delle verifiche geotecniche si rimanda a quanto riportato nell'Allegato A.

10.2.2 VERIFICHE DI STABILITA' GLOBALE

Di seguito di riportano i risultati delle verifiche di stabilità relativamente a due condizioni:

- nel primo caso le analisi saranno condotte esclusivamente in campo statico (SLU).
- Nel secondo caso le analisi saranno condotte in campo sismico (SLV).

Come previsto dalla normativa vigente (NTC 2008), il coefficiente parziale sulle resistenze γR risulta pari a 1.1.

L'analisi di stabilità globale è stata finalizzata all'individuazione delle superfici di rottura critiche, a cui corrisponde il fattore di sicurezza FS minimo.

Nelle figure che seguono sono mostrate le superfici di rottura critica per la combinazione considerata; il fattore di sicurezza FS relativo a tali meccanismi è risultato sempre superiore ad 1.1

Verifica stabilità globale	FS
SLU	1.645

N.B. il segno positivo nella combinazione allo SLV indica l'applicazione del sisma verticale verso il basso, mentre il segno negativo verso l'alto.

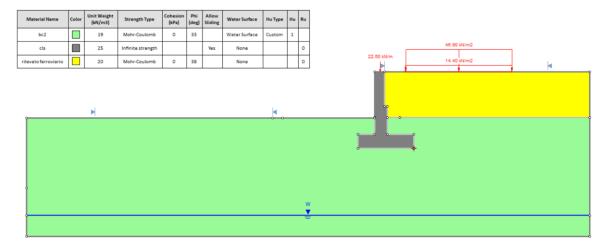


Figura 6 - Dominio di calcolo

GEODATA INTEGRA RIA	II LOTTO F	IO TRAT UNZION FUNZION	TA CANCEL ALE FRASS IALE FRASS	LO-BENEVENT O TELESINO – SO TELESINO –	VITULAN	_
Muro di sostegno - Relazione di calcolo	COMMESSA IF26	LOTTO 12 E ZZ	CODIFICA CL	DOCUMENTO RI0505 003	REV.	FOGLIO 48 di 87

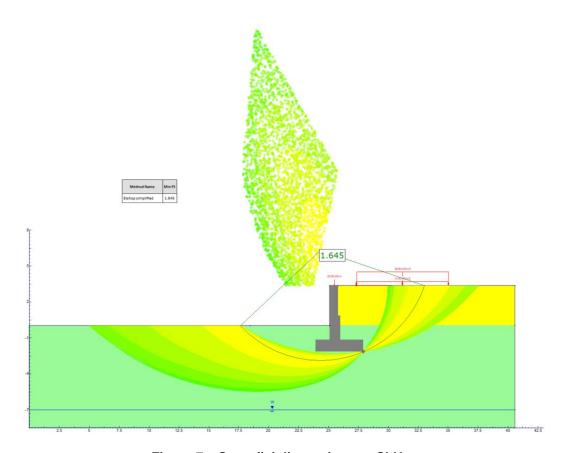


Figura 7 – Superfici di scorrimento-SLU

10.2.3 VERIFICHE PALI DI FONDAZIONE

Nel seguito si riportano i risultati in termini di fattori di sicurezza riguardo la capacità portante ad azioni orizzontali e verticali per i pali di fondazione del muro H 4.5 m (D = 0.80m L =16.0 m)

10.2.4 ARMATURE

Nella tabella seguente si riportano le armature di progetto previste per la sezione di calcolo in questione:

	ARMATURA A FLESSIONE muri H4.5 m				
	<u>Lato monte</u> <u>Lato valle</u>				
PARAMENTO	<u>1¢20/20</u>	<u>1ф18 20</u>			
	<u>Lato Inferiore</u>	Lato superiore			
FONDAZIONE	<u>1ф20/20</u>	<u>1¢20/20</u>			

	ARMATURA A FLESSIONE muri H4.0 m				
	<u>Lato monte</u> <u>Lato valle</u>				
PARAMENTO	<u>1ф16/10</u>	<u>1ф16/20</u>			
	<u>Lato Inferiore</u>	Lato superiore			
FONDAZIONE	<u>1ф18/20</u>	<u>1φ18/20</u>			

<u>Dalle verifiche riportate nell'Allegato A, risulta che non è necessario armare a taglio il muro H4.0 m (paramento e fondazione) pertanto non è presente armatura a taglio.</u>

Per quanto riguarda il muro H 4.5m risulta necessaria la presenza di armatura a taglio

	ARMATURA A TAGLIO		
MURO H4.0 m	Non necessaria		
MURO H4.5 m	Spille \$ 12/40x40		

Si riportano nella tabella a seguire le armature dei pali di fondazione del muro H 4.5 m

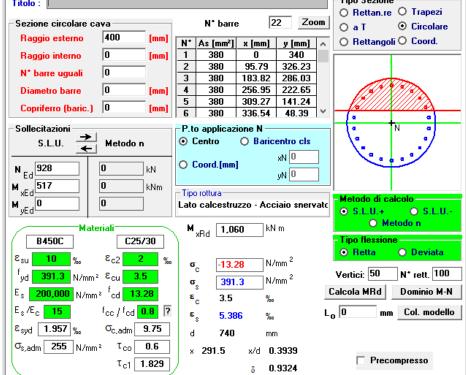
	ARMATURA A TAGLIO
MURO H4.5 m	Gabbia φ 22 22 Staffe φ12/20

Ai fini delle verifiche si è fatto riferimento per la parte in elevazione (paramento e fondazione muro) ad un copriferro di calcolo (asse armature) pari a 4 cm, mentre per i pali si è assunto un copriferro di calcolo pari a 8 cm.

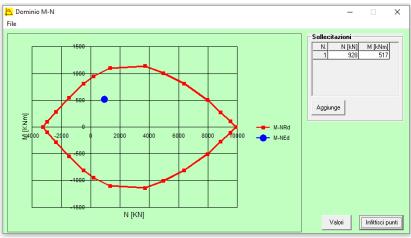
Si segnala che il programma di calcolo utilizzato non consente di differenziare le classi di resistenza del calcestruzzo tra fondazione e paramento. Pertanto a vantaggio di sicurezza è stata considerata la classe di resistenza di calcestruzzo inferiore, ovvero la classe 28/35 delle fondazioni anche per il paramento in luogo della classe C32/40.

Per i risultati delle verifiche strutturali si rimanda a quanto riportato nell'Allegato A.

10.2.5 VERIFICHE STRUTTURALI PER PARAMENTO E FONDAZIONE

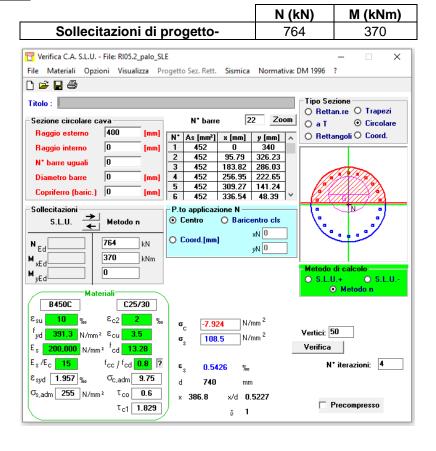

Si segnala che il programma di calcolo utilizzato non consente di differenziare le classi di resistenza del calcestruzzo tra fondazione e paramento. Pertanto a vantaggio di sicurezza è stata considerata la classe di resistenza di calcestruzzo inferiore, ovvero la classe 28/35 delle fondazioni anche per il paramento in luogo della classe C32/40.

Per i risultati completi delle verifiche strutturali si rimanda a quanto riportato nell'Allegato A.


10.2.6 VERIFICHE STRUTTURALI PALI

Verifica a pressoflessione

				N (k	(N)	M (F	(Nm)	
Sollecitazioni di	pro	getto-		92	8	5	17	
12223								
Yerifica C.A. S.L.U File: RI05.2_palo_SL	U					_)
File Materiali Opzioni Visualizza Pro	ogetto	Sez. Rett.	Sismica	Normat	iva: DM	1996 ?		
🗅 😅 🖫 🚭								
Titolo :					_ Ti	po Sezion	e ———	
						Rettan.re	O Traj	pezi
Sezione circolare cava		N* barre	. 2	Zoc	om o	a T	⊙ Circ	olare
Raggio esterno 400 [mm]	N*	As [mm²]	x [mm]	y [mm]	<u> 0</u>	Rettango	li O Coo	rd.
Raggio interno 0 [mm]	1	380	0	340				
	2	380	95.79	326.23				
N* barre uguali 0	3	380	183.82	286.03	1	-	7700	
					1		1////	

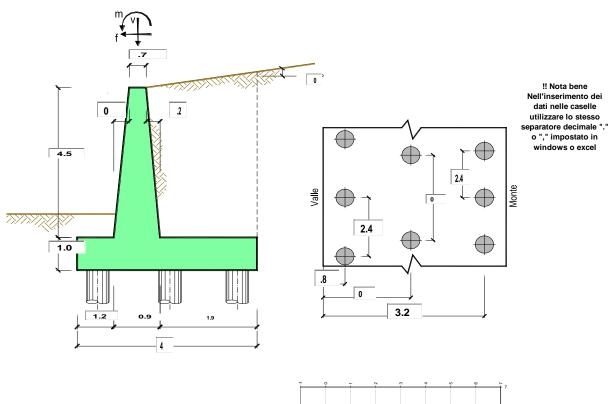


La verifica è soddisfatta

Verifiche a fessurazione

		INPUT	
	Rck	30	Мра
diametro palo	D	800	mm
copriferro 1° strato	C ₁	60	mm
diametro barre 1° strato	ϕ_1	22	mm
numero barre 1° strato	n_1	22	
copriferro 2° strato (baricentro barre)	c ₂		mm
diametro barre 2° strato	ø ₂		mm
numero barre 2° strato	n ₂		
distanza lembo compresso-lembo teso della sezione	d	740	mm
	b _{eff}	97.1	mm
posizione asse neutro da lembo comrpesso	x	386.8	mm
Tensione massima barre 1° strato	σ_{s_max1}	108.5	Мра
Tensione massima barre 2° strato	$\sigma_{\text{s_max2}}$		Мра
altezza efficace	h _{c,eff}	137.7	mm
area efficace relativamente ad una singola barre	A _{c,eff}	13374	mm ²
percentuale di armatura relativa a A _{c,eff}	ρ p,eff	0.028	
(0.6 carichi brevi; 0.4 lunga durata)	kt	0.6	
(0.8 barre ad. migliorata; 1.6 liscie)	k1	0.8	
(0.5 per flessione; 1 trazione)	k2	0.5	
	k3	3.4	
	k4	0.425	

	OUTPUT					
diff. def. arı	diff. def. armature-cls					
ε sm -ε cm	3.16E-04					
distanza ma	ax fessure					
s r, max	2.98E+02	mm				
ampiezza fessure:						
ampiezza fe	essure:					
ampiezza fe wk	essure: 0.094	mm				
-		mm mm				


La verifica è soddisfatta

11. INCIDENZA ARMATURE

Elevazione e fondazione	100 kg/mc
Pali	130 kg/mc

12. ALLEGATO A: VERIFICHE DEL MURO H = 4.5M

Combinazioni coefficienti parziali di verifica

SLU	A1+M1	•
310	A2+M2	0
SLE (DM88)		0
altro		0

Peso Specifico del Calcestruzzo $\gamma cls = 25.00 (kN/m^2)$)
---	---

 	2		4	40	9	
						- 1
						- 1
						- 1
	_	_	_	_	_	- 1
						- 1
						- 1
						- 1
						- 1
						- 1
						- 1
						- 1
						- 1
						- 1
						- 1
						- 1
						- 1
						- 1
 		_				
						- 1
						- 1
						- 1
 _	_	_	_			
						- 1
						- 1
						- 1

Carichi	Effetto	Coeff. Parziale	A1 (STR)	A2 (GEO)	SLE	altro
Permanenti	favorevole		1.00	1.00	1.00	1.30
remanenti	sfavorevole	γ _G	1.30	1.00	1.00	1.30
Voriobili	favorevole		0.00	0.00	0.00	0.00
Variabili	sfavorevole	γο	1.50	1.30	1.00	1.50

Parametro		Coeff. Parziale	M1	M2	SLE	altro
angolo d'attrito	tan φ' _k	$\gamma_{\phi'}$	1.00	1.25	1.00	1.00
neso unità di volume		~	1.00	1.00	1.00	1.00

Muro di sostegno - Relazione di calcolo

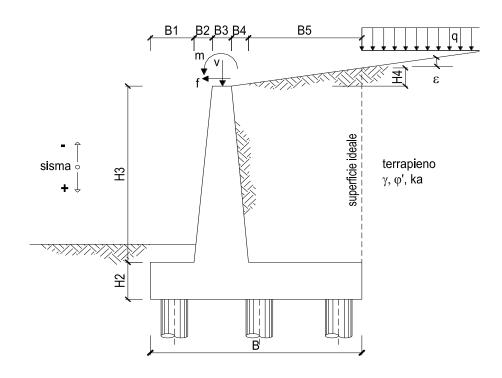
 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 IF26
 12 E ZZ
 CL
 RI0505 003
 A
 54 di 87

				valori caratteristici	valori di progetto
Dati (<u>Geotecnici</u>			SLE	STR/GEO
ti ieno	Angolo di attrito del terrapieno	(°)	φ'	38.00	38.00
Dati	Peso Unità di Volume del terrapieno	(kN/m³)	γ'	20.00	20.00
<u>a</u>	Angolo di attrito terreno-superficie ideale	(°)	δ	0.00	0.00

	Accelerazione sismica	a _g /g	0.243	(-)
-5	Coefficiente Amplificazione Stratigrafico	Ss	1.35	(-)
Sismici	Coefficiente Amplificazione Topografico	S_T	1	(-)
	Coefficiente di riduzione dell'accelerazione massima	β_s	0.31	(-)
Dati	Coefficiente sismico orizzontale	kh	0.203391	(-)
	Coefficiente sismico verticale	kv	0.1017	(-)
	Muro libero di traslare o ruotare		● si	O no

			SL	.E	STR/0	3EO
cie di ta	Coeff. di Spinta Attiva Statico	ka	0.238		0.238	
	Coeff. Di Spinta Attiva Sismica sisma +	kas+	0.344		0.344	
Sco	Coeff. Di Spinta Attiva Sismica sisma -	kas-	0.373		0.373	


				valori caratteristici	valori di progetto
Carichi	<u>i Agenti</u>			SLE - sisma	STR/GEO
Carichi	Sovraccarico permanente Sovraccarico su zattera di monte	(kN/m²)	qp	14.40	18.72
Carichi	Forza Orizzontale in Testa permanente	(kN/m)	fp	0.00	0.00
Series	Forza Verticale in Testa permanente	(kN/m)	vp	22.50	22.50
	Momento in Testa permanente	(kNm/m)	mp	0.00	0.00
	Sovraccarico Accidentale in condizioni statiche	(kN/m^2)	q	46.90	70.35
Condizioni Statiche	Forza Orizzontale in Testa accidentale in condizioni statiche	(kN/m)	f	7.00	10.50
Sondizion	Forza Verticale in Testa accidentale in condizioni statiche	(kN/m)	v	0.00	0.00
လို က	Momento in Testa accidentale in condizioni statiche	(kNm/m)	m	19.00	28.50
	Coefficienti di combinazione condizione frequente	Ψ1	0.75	condizione quasi perman	ente Ψ2 0.00
ē <u>ā</u>	Sovraccarico Accidentale in condizioni sismiche	(kN/m^2)	qs	0.00	
Condizioni Sismiche	Forza Orizzontale in Testa accidentale in condizioni sismiche	(kN/m)	fs	0.00	4, 4
Sisn	Forza Verticale in Testa accidentale in condizioni sismiche	(kN/m)	VS	0.00	• •
0 %	Momento in Testa accidentale in condizioni sismiche	(kNm/m)	ms	0.00	

CARATTERISTICHE DEI MATERIALI STRUTTURALI

Calcestruzzo				<u>Acciaio</u>
classe cls	C28/35 ▼			tipo di acciaio
Rck		35	(MPa)	
fck		28	(MPa)	fyk = 450 (MPa)
fcm		36	(445.)	- 445
Ec		32308	(MPa)	γs 1.15
α_{cc}		0.85		
γс		1.50		$fyd = fyk / \gamma s 391.30 (MPa)$
$f_{cd} = \alpha_{cc} * f_{ck} / \gamma c$		15.87	(MPa)	
$f_{ctm} = 0.30*f_{ck}^{2/3}$		2.77	(MPa)	
Tensioni limite	(tensioni amr	nissibili)		Es = 210000 (MPa)
condizioni statich	<u>e</u>			$\varepsilon_{vs} = 0.19\%$
σ_c	9.75	Мра		
σ_{f}	260	Мра		
				coefficiente omogeneizzazione acciaio n = 15
condizioni sismich				
σ_c	8.5	Мра		
σ_{f}	260	Мра		<u>Copriferro</u> (distanza asse armatura-bordo)
				c = 4.00 (cm)
Valore limite di				
Frequente		w2 ~	0.3 mm	Copriferro minimo di normativa (ricoprimento armatura)
Quasi Permanen	te	w1 •	0.2 mm	$c_{min} = 1.00$ (cm)
				Interferro tra I e II strato
				i_{I-II} (cm)

12.1 VERIFICHE GEOTECNICHE DEL MURO - SLU/SLV

OPERA Esempio h terreno

DATI DI PROGETTO:

Geometria del Muro	
--------------------	--

Elevazione	H3 =	4.50	(m)
Aggetto Valle	B2 =	0.00	(m)
Spessore del Muro in Testa	B3 =	0.70	(m)
Aggetto monte	B4 =	0.20	(m)

Geometria della Fondazione

Larghezza Fondazione	B =	4.00	(m)
Spessore Fondazione	H2 =	1.00	(m)
Suola Lato Valle	B1 =	1.20	(m)
Suola Lato Monte	B5 =	1.90	(m)
			_

Peso Specifico del Calcestruzzo	γcls =	25.00	(kN/m³)

Muro di sostegno - Relazione di calcolo

 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 IF26
 12 E ZZ
 CL
 RI0505 003
 A
 56 di 87

FORZE VERT	ICALI	Г		
- Peso del Mur	o (Pm)		SLE	STR/GEO
Pm1 =	(B2*H3*ycls)/2	(kN/m)	0.00	0.00
Pm2 = Pm3 =	(B3*H3*γcls) (B4*H3*γcls)/2	(kN/m) (kN/m)	78.75 11.25	78.75 11.25
Pm4 =	(B*H2*γcls)	(kN/m)	100.00	100.00
Pm =	Pm1 + Pm2 + Pm3 + Pm4	(kN/m)	190.00	190.00
- Paso del terre	eno e sovr. perm. sulla scarpa di monte del muro (Pt)			
Pt1 =	(B5*H3*γ')	(kN/m)	152.00	152.00
Pt2 =	(0,5*(B4+B5)*H4*γ')	(kN/m)	0.00	0.00
Pt3 =	(B4*H3*γ')/2	(kN/m)	8.00	8.00
Sovr = Pt =	qp * (B4+B5) Pt1 + Pt2 + Pt3 + Sovr	(kN/m) (kN/m)	0.00 160.00	0.00 160.00
- T	111 + 112 + 113 + 30W	(KIVIII)	100.00	100.00
- Sovraccarico	accidentale sulla scarpa di monte del muro			
Sovr acc. Stat		(kN/m)	98.49	147.735
Sovr acc. Sism	qs * (B4+B5)	(kN/m)	0	
MOMENTI DE	LLE FORZE VERT. RISPETTO AL PIEDE DI VALLE DE	L MURO		
- Muro (Mm)				
Mm1 =	Pm1*(B1+2/3 B2)	(kN/m)	0.00	0.00
Mm2 =	Pm2*(B1+B2+0,5*B3)	(kN/m)	122.06	122.06
Mm3 = Mm4 =	Pm3*(B1+B2+B3+1/3 B4) Pm4*(B/2)	(kN/m) (kN/m)	22.13 200.00	22.13 200.00
Mm =	Mm1 + Mm2 + Mm3 + Mm4	(kN/m)	344.19	344.19
		, ,		
- Terrapieno e	sovr. perm. sulla scarpa di monte del muro	(IcNI/m)	462.60	462.60
Mt2 =	Pt1*(B1+B2+B3+B4+0,5*B5) Pt2*(B1+B2+B3+2/3*(B4+B5))	(kN/m) (kN/m)	463.60 0.00	463.60 0.00
Mt3 =	Pt3*(B1+B2+B3+2/3*B4)	(kN/m)	16.27	16.27
Msovr =	Sovr*(B1+B2+B3+1/2*(B4+B5))	(kN/m)	0.00	0.00
Mt =	Mt1 + Mt2 + Mt3 + Msovr	(kN/m)	479.87	479.87
- Sovraccarico	accidentale sulla scarpa di monte del muro			
Sovr acc. Stat	*(B1+B2+B3+1/2*(B4+B5))	(kNm/m)	290.55	435.82
Sovr acc. Sism	*(B1+B2+B3+1/2*(B4+B5))	(kNm/m)	0.00	
INFRZIA DEL	MURO E DEL TERRAPIENO			
- Inerzia del mu				
Ps h=	Pm*kh	(kN/m)		38.64
Ps v=	Pm*kv	(kN/m)		19.32
- Inerzia orizzor	ntale e verticale del terrapieno a tergo del muro (Pts)			
Ptsh =	Pt*kh	(kN/m)		32.54
Ptsv =	Pt*kv	(kN/m)		16.27
- Incremento or	rizzontale di momento dovuto all'inerzia del muro (MPs h)			
MPs1 h=	kh*Pm1*(H2+H3/3)	(kN/m)		0.00
MPs2 h=	kh*Pm2*(H2 + H3/2)	(kN/m)		52.06
MPs3 h= MPs4 h=	kh*Pm3*(H2+H3/3) kh*Pm4*(H2/2)	(kN/m) (kN/m)		5.72 10.17
MPs h=	MPs1+MPs2+MPs3+MPs4	(kN/m)		67.95
		(,		
- Incremento ve	erticale di momento dovuto all'inerzia del muro (MPs v)			
MPs1 v=	kv*Pm1*(B1+2/3*B2)	(kN/m)		0.00
MPs2 v=	kv*Pm2*(B1+B2+B3/2)	(kN/m)		12.41
MPs3 v=	kv*Pm3*(B1+B2+B3+B4/3)	(kN/m)		2.25
MPs4 v= MPs v=	kv*Pm4*(B/2) MPs1+MPs2+MPs3+MPs4	(kN/m)		20.34
MPS V=	MPS1+MPS2+MPS3+MPS4	(kN/m)		35.00
1				
	rizzontale di momento dovuto all'inerzia del terrapieno (MP	,		02.75
MPts1 h= MPts2 h=	kh*Pt1*(H2 + H3/2) kh*Pt2*(H2 + H3 + H4/3)	(kNm/m) (kNm/m)		92.75 0.00
MPts3 h=	kh*Pt3*(H2+H3*2/3)	(kNm/m)		6.51
MPts h=	MPts1 + MPts2 + MPts3	(kNm/m)		99.25
- Incremento ve	erticale di momento dovuto all'inerzia del terrapieno (MPts	v)		
MPts1 v=	kv*Pt1*((H2 + H3/2) - (B - B5/2)*0.5)	(kNm/m)		47.15
MPts2 v=	kv*Pt2*((H2 + H3 + H4/3) - (B - B5/3)*0.5)	(kNm/m)		0.00
MPts3 v=	kv*Pt3*((H2+H3*2/3)-(B1+B2+B3+2/3*B4)*0.5)	(kNm/m)		1.79
MPts v=	MPts1 + MPts2 + MPts3	(kNm/m)		48.94

Muro di sostegno - Relazione di calcolo

Risultante dei momenti rispetto al piede di valle (MM)

 $\Sigma \mathsf{M}$

 $\Sigma \mathsf{M}$

 $\Sigma \mathsf{M}$

MM perm

MM acc (Nmin) =

MM acc (Nmax) =

 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 IF26
 12 E ZZ
 CL
 RI0505 003
 A
 57 di 87

CONDIZIONE STATICA

_	TERRENO E DEL SOVRACCARICO condizione statica		SLE	STR/GEO
St =	0,5*y'*(H2+H3+H4) ^{2*} ka	(kN/m)	59.47	77.31
Sq perm =	q*(H2+H3+H4)*ka	(kN/m)	17.13	22.27
Sq acc =	q*(H2+H3+H4)*ka	(kN/m)	55.78	83.68
- Componente	orizzontale condizione statica			
Sth =	St*cosδ	(kN/m)	59.47	77.31
Sqh perm =	Sq perm*cosδ	(kN/m)	17.13	22.27
Sqh acc =	Sq acc*cosδ	(kN/m)	55.78	83.68
- Componente	verticale condizione statica			
Stv =	St*senδ	(kN/m)	0.00	0.00
Sqv perm=	Sq perm*senδ	(kN/m)	0.00	0.00
Sqv acc =	Sq acc*senδ	(kN/m)	0.00	0.00

		F		1
MOMENTI DE	LLA SPINTA DEL TERRENO E DEL SOVRACCARICO		SLE	STR/GEO
MSt1 =	Sth*((H2+H3+H4)/3)	(kN/m)	99.12	128.85
MSt2 =	Stv*B	(kN/m)	0.00	0.00
MSq1 perm=	Sqh perm*((H2+H3+H4)/2)	(kN/m)	42.82	55.66
MSq2 perm=	Sqv perm*B	(kN/m)	0.00	0.00
MSq1 acc =	Sqh acc*((H2+H3+H4)/2)	(kN/m)	139.46	209.19
MSq2 acc =	Sqv acc*B	(kN/m)	0.00	0.00
	VUTI ALLE FORZE ESTERNE			
Mfext perm=		(kNm/m)	42.75	42.75
Mfext acc =	$m + f^*(H3 + H2) + v^*(B1 + B2 + B3/2)$	(kNm/m)	57.50	86.25
AZIONI COME	PLESSIVE SULLA FONDAZIONE			
Risultante forze	verticali (N)			
N perm =	Pm + Pt + vp + Stv + Sqv perm + Sqv acc	(kN/m)	372.50	372.50
N acc min =	v + Sqv acc	(kN/m)	0.00	0.00
N acc max =	v + Sqv acc + q acc	(kN/m)	98.49	147.74
Risultante forze	e orizzontali (T)			
T perm =	Sth + Sqh perm + fp	(kN/m)	76.60	99.58
T acc =	Sqh acc+ f	(kN/m)	62.78	94.18
		•		

(kNm/m)

(kNm/m)

(kNm/m)

639.37

-196.96

93.59

596.79

-295.44

140.38

Muro di sostegno - Relazione di calcolo

COMMESSA LOTTO CODIFICA DOCUMENTO REV. FOGLIO

IF26 12 E ZZ CL RI0505 003 A 58 di 87

CONDIZIONE SISMICA +

SPINTE DEL 1 - Spinta condizi	_	EL SOVRACCARICO		SLE	STR/GEO
Sst1 stat = Sst1 sism =	0,5*γ'*(H2+H3	+H4) ^{2*} ka (H2+H3+H4) ^{2*} kas ⁺ -Sst1 stat	(kN/m) (kN/m)	59.47 35.19	59.47 35.19
Ssq1 perm=	qp*(H2+H3+H	` ,	(kN/m)	24.75	24.75
	qp (nz+ns+n qs*(H2+H3+H	•	(kN/m)	0.00	0.00
Ssq1 acc =	qs (nz+ns+n	4) Kas	(KIWIII)	0.00	0.00
- Componente	orizzontale cond	lizione sismica +			
Sst1h stat =	Sst1 stat*cos	5	(kN/m)	59.47	59.47
Sst1h sism =	Sst1 sism*cos		(kN/m)	35.19	35.19
Ssq1h perm=	Ssq1 perm*co		(kN/m)	24.75	24.75
Ssq1h acc=	Ssq1 acc*cos	δ	(kN/m)	0.00	0.00
- Componente v	verticale condizi	one sismica +			
Sst1v stat =	Sst1 stat*sen	5	(kN/m)	0.00	0.00
Sst1v sism =	Sst1 sism*ser	ιδ	(kN/m)	0.00	0.00
Ssq1v perm=	Ssq1 perm*se	nδ	(kN/m)	0.00	0.00
Ssq1v acc=	Ssq1 acc*sen	δ	(kN/m)	0.00	0.00
MOMENTI DE	LLA SPINTA D	EL TERRENO E DEL SOVRACCARIO	o	SLE	STR/GEO
- Condizione sis				OLL	STRIGEO
MSst1 stat =		H2+H3+H4)/3)	(kN/m)	109.03	109.03
MSst1 sism=		H2+H3+H4)/3)	(kN/m)	64.52	64.52
MSst2 stat =	Sst1v stat* B		(kN/m)	0.00	0.00
MSst2 sism =	Sst1v sism* B	110 - 114/0)	(kN/m)	0.00	0.00
MSsq1 =	Ssq1h * ((H2+	H3+H4/2)	(kN/m)	68.05	68.05
MSsq2 =	Ssq1v * B		(kN/m)	0.00	0.00
MOMENTI DO		DZE ESTEDNE			
Mfext1 =		RZE ESTERNE	(kNm/m)		0.00
Mfext2 =	mp+ms (fp+fs)*(H3 +	H2)	(kNm/m)		0.00
Mfext3 =	(vp+vs)*(B1 +	•	(kNm/m)		34.88
WICKIO =	(VP1V3) (D1 1	D2 (D3/2)	(KINIIII)		04.00
AZIONI COME	PLESSIVE SU	LLA FONDAZIONE			
Risultante forze	verticali (NI)				
Nmin =	` '	- vs + Sst1v + Ssq1v + Ps v + Ptsv	(kN/m)	408.09	408.09
Nmax =	•	+Sst1v+Ssq1v+Ps v+Ptsv+q acc	(kN/m)	408.09	408.09
		Total Conference of the Confer	()	.00.00	.00.00
Risultante forze		aufaufauDahu Dtah	/I/NI/ps\	100 50	100 50
T =	ostin + osqil	n + fp + fs +Ps h + Ptsh	(kN/m)	190.59	190.59
Risultante dei m	nomenti rispetto	al piede di valle (MM)			
MM (Nmin)	=	ΣM	(kNm/m)	534.07	534.07
MM (Nmax)	=	Σ M	(kNm/m)	534.07	534.07
, ,			, ,		

CONDIZIONE SISMICA -

Mfext1 =

Mfext2 =

Mfext3 =

mp+ms

(fp+fs)*(H3 + H2)

(vp+vs)*(B1 +B2 + B3/2)

- Spinta condiz	TERRENO E DEL SOVRACCARICO		SLE	STR/GEO
Sst1 stat =		(kN/m)	59.47	71.96
Sst1 sism =	0.5^{+} y'*(1-kv)*(H2+H3+H4) ² *kas ⁻ -Sst1 stat	(kN/m)	24.26	29.35
Ssq1 perm=	qp*(H2+H3+H4)*kas ⁻	(kN/m)	26.84	29.53
Ssq1 acc =	qs*(H2+H3+H4)*kas ⁻	(kN/m)	0.00	0.00
- Componente	orizzontale condizione sismica -			
Sst1h stat =	Sst1 stat*cosδ	(kN/m)	59.47	71.96
Sst1h sism =	Sst1 sism*cosδ	(kN/m)	24.26	29.35
Ssq1h perm=	Ssq1 perm*cosδ	(kN/m)	26.84	29.53
Ssq1h acc=	Ssq1 acc*cosδ	(kN/m)	0.00	0.00
- Componente	verticale condizione sismica -			
Sst1v stat =	Sst1 stat*senδ	(kN/m)	0.00	0.00
Sst1v sism =	Sst1 sism*senδ	(kN/m)	0.00	0.00
Ssq1v perm=	Ssq1 perm*senδ	(kN/m)	0.00	0.00
Ssq1v acc=	Ssq1 acc*senδ	(kN/m)	0.00	0.00
MOMENTI DE	LLA SPINTA DEL TERRENO E DEL SOVRACCARICO	Г		1
- Condizione si			SLE	STR/GEO
MSst1 stat =	Sst1h stat * ((H2+H3+H4)/3)	(kN/m)	109.03	131.93
MSst1 sism=	Sst1h sism* ((H2+H3+H4)/3)	(kN/m)	44.48	53.81
MSst2 stat =	Sst1v stat* B	(kN/m)	0.00	0.00
MSst2 sism =	Sst1v sism* B	(kN/m)	0.00	0.00
100312 313111 -	Ssq1h * ((H2+H3+H4)/2)	(kN/m)	73.82	81.20
MSsq1 =	384111 ((112+113+114)/2)	(13. 4 11.)	70.02	00

(kNm/m)

(kNm/m)

(kNm/m)

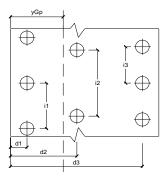
0.00

0.00

34.88

Muro di sostegno - Relazione di calcolo

COMMESSA LOTTO CODIFICA DOCUMENTO REV. **FOGLIO** IF26 12 E ZZ CL RI0505 003 Α 60 di 87


* #

4 4

AZIONI COMPLESSIVE SULLA FONDAZIONE

336.91 336.91 Risultante forze orizzontali (T) T = Sst1h + Ssq1h + fp + fs + Ps h + Ptsh(kN/m) 181.76 202.03 Risultante dei momenti rispetto al piede di valle (MM) MM (Nmin) = Σ M MM (Nmax) = Σ M (kNm/m) 548.34 508.72

Caratteristiche della Palificata

Fila n° 1 Fila n° 2 Fila n° 3 0.80 0.00 3.20 (m) (m) (m) interasse pali (i1) = interasse pali (i2) = interasse pali (i3) = distanza asse bordo valle (d1) distanza asse bordo valle (d2) distanza asse bordo valle (d3)

Asse Baricentrico della Palificata (yGp) 2.000

Risultante forze verticali (Np = N)

Risultante forze orizzontali (Tp = T)

Momento rispetto al baricentro della palificata (Mp)

Mp = yGp*Np - MM

Sollecitazioni rispetto al baricentro della palificata SLU

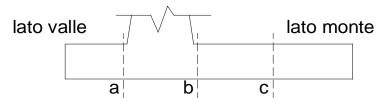
caso		N)	M	p		p
		[kN/m]	[kN/m]	[kNm/m]	[kNm/m]	[kN/m]	[kN/m]
		Permanenti	Accidentali	Permanenti	Accidentali	Permanenti	Accidentali
statico	Nmin	372.50	0.00	148.21	295.44	99.58	94.18
	Nmax	372.50	147.74	148.21	155.09	99.30	54.10
sisma+	Nmin	408.	.09	282	.12	190	50
ыынат	Nmax	408.	.09	282	.12	190	.55
sisma-	Nmin	336.	91	165	.09	202.03	
alsilia-	Nmax	336.	91	165	.09	202	.03

Sollecitazioni sui pali SLU

Concondition	our puir oco				
caso		N pali all.1	N pali all.2	N pali all.3	T pali
`	2030	[kN]	[kN]	[kN]	[kN] [kN]
statico	Nmin	890.65		3.35	232.50
Statico	Nmax	927.59		320.98	232.30
sisma+	Nmin	771.83		207.60	228.71
ыынат	Nmax	771.83		207.60	220.71
sisma-	Nmin	569.38		239.20	242.43
SiSIIId-	Nmax	569.38		239.20	242.43

Sollecitazioni rispetto al baricentro della palificata SLE / caratteristiche

	ondonazioni riapata di bariconi e della palinata GEL / darateriotiane								
caso			Np			Mp		Т	р
		[kN/m]	[kN/m]	[kN/m]	[kNm/m]	[kNm/m]	[kNm/m]	[kN/m]	[kN/m]
		Permanenti	Acc. Nmin	Acc. Nmax	Permanenti	Acc. Nmin	Acc. Nmax	Permanenti	Accidentali
statico	rara		0.00	98.49		196.96	93.59		62.78
Statico	freq.	372.50	0.00	73.8675	105.63	147.72	70.19	76.60	47.09
	quasi perm		0.00	0.00		0.00	0.00		0.00
sisma+	Nmin		408.09			282.12		190	
SISITIA+	Nmax		408.09			282.12		190	.59
sisma-	Nmin		336.91			125.47		181	76
sistlid-	Name	I	226.04		ı	40E 47		101	.70


Sollecitazioni	sui pali SLE/ car	atteristiche								
	aso	N pali	N pali all.1		N pali all.2		N pali all.3		T pali	
Caso		[kN]	[kN]	[kN]	[kN]	[kN]	[kN]	[kN]	[kN]	
		Permanenti	Accidentali	Permanenti	Accidentali	Permanenti	Accidentali	Permanenti	Accidental	
statico	rara		196.96				-196.96		75.34	
Nmin	freq.	552.63	147.72			341.37	-147.72	91.92	56.51	
NITHIT	quasi perm		0.00				0.00		0.00	
statico	rara		211.77				24.60		75.34	
Nmax	freq.	552.63	158.83			341.37	18.45	91.92	56.51	
INITIAL	quasi perm		0.00				0.00		0.00	
sisma+	Nmin	771	.83			207	7.60 228.71		74	
sisilia+	Nmax	771	.83			207	.60	220	.71	
sisma-	Nmin	529	.76			278	3.82	218	44	
sisma-	Nmay	520	76	l		279	82	218	LI I	

12.2 VERIFICHE STRUTTURALI DEL MURO - SLU/SLV

Verifica allo Stato Limite Ultimo

CALCOLO SOLLECITAZIONI SOLETTA DI FONDAZIONE

Mensola Lato Valle

 $Ma = \sum N_i^*(B1 - d_i) / i_i - PP^*(1\pm kv)^*B1^2/2$

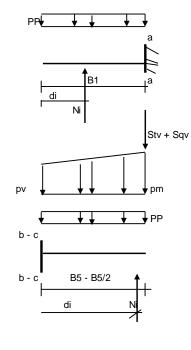
 $Ta = \sum N_i / i_i - PP^*(1\pm kv)$

 Σ estesa a tutti i pali presenti sulla mensola

Mensola Lato Monte

 $Mb = \sum_{i} N_i^* (B5 - (B - d_i)) / i_i - [PP^*B5^2 / 2 + pvb^*B5^2 / 2 + (pm - pvb)^*B5^2 / 3]^* (1 \pm kv) - (Stv + Sqv) * B5 + (pm - pvb)^*B5^2 / 3]^* (1 \pm kv) - (Stv + Sqv) * B5 + (pm - pvb)^*B5^2 / 3]^* (1 \pm kv) - (Stv + Sqv) * B5 + (pm - pvb)^*B5^2 / 3]^* (1 \pm kv) - (Stv + Sqv) * B5 + (pm - pvb)^*B5^2 / 3]^* (1 \pm kv) - (Stv + Sqv) * B5 + (pm - pvb)^*B5^2 / 3]^* (1 \pm kv) - (Stv + Sqv) * B5 + (pm - pvb)^*B5^2 / 3]^* (1 \pm kv) - (Stv + Sqv) * B5 + (pm - pvb)^*B5^2 / 3]^* (1 \pm kv) - (Stv + Sqv) * B5 + (pm - pvb)^*B5^2 / 3]^* (1 \pm kv) - (Stv + Sqv) * B5 + (pm - pvb)^*B5^2 / 3]^* (1 \pm kv) - (Stv + Sqv) * B5 + (pm - pvb)^*B5^2 / 3]^* (1 \pm kv) - (Stv + Sqv) * B5 + (pm - pvb)^*B5^2 / 3]^* (1 \pm kv) - (Stv + Sqv) * B5 + (pm - pvb)^*B5^2 / 3]^* (1 \pm kv) - (Stv + Sqv) * B5 + (pm - pvb)^*B5^2 / 3]^* (1 \pm kv) - (Stv + Sqv) * B5 + (pm - pvb)^*B5^2 / 3]^* (1 \pm kv) - (Stv + Sqv) * B5 + (pm - pvb)^*B5^2 / 3]^* (1 \pm kv) - (Stv + Sqv) * B5 + (pm - pvb)^*B5^2 / 3]^* (1 \pm kv) + (pm - pvb)^*B5^2 / 3$

 $Mc = \sum N_i^*(B5/2 - (B-d_i))/i_i - [PP^*(B5/2)^2/2 + pvc^*(B5/2)^2/2 + (pm - pvc)^*(B5/2)^2/3]^*(1 \pm kv) - (Stv + Sqv) * B5/2 + (pm - pvc)^*(B5/2)^2/3 + (pm - pvc)^2/3 + (pm$


 $Vb = \sum N_i/i_i - [PP^*B5 + pvb^*B5 + (pm - pvb)^*B5/]^*(1\pm kv) - (Stv+Sqv)$

 $Vc = \sum N_i/i_i - [PP^*(B5/2) + pvc^*(B5/2) + (pm - pvc)^*(B5/2)/2]^*(1\pm kv) - (Stv + Sqv)$

 Σ estesa a tutti i pali presenti sulla mensola

Peso Proprio	PP	=	25.00	(kN/m ²)
	pm pvb	= =	90.00 90.00	(kN/m^2) (kN/m^2)
	pvc	=	90.00	(kN/m^2)

caso	Ma	Va	Mb	Vb	Мс	Vc
caso	[kNm/m]	[kN/m]	[kNm/m]	[kN/m]	[kNm/m]	[kN/m]
statico	136.60	341.11	-206.04	-217.11	-51.68	-107.86
sisma+	108.81	288.54	-133.54	-154.22	-33.86	-33.86
sisma-	78.73	210.29	-76.83	-96.61	1.53	1.53

h terreno h muro

diff

8

RIA

ITINERARIO NAPOLI – BARI RADDOPPIO TRATTA CANCELLO-BENEVENTO II LOTTO FUNZIONALE FRASSO TELESINO – VITULANO 1° LOTTO FUNZIONALE FRASSO TELESINO – TELESE PROGETTO ESECUTIVO

Muro di sostegno - Relazione di calcolo

 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 IF26
 12 E ZZ
 CL
 RI0505 003
 A
 62 di 87

CALCOLO SOLLECITAZIONI PARAMENTO VERTICALE DEL MURO

Azioni sulla parete e Sezioni di Calcolo

Mt _{stat} = $\frac{1}{2}$ Ka_{orizz.}* $\gamma^*(1\pm kv)^*h^{2*}h/3$

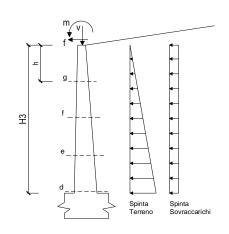
 $Mt_{sism} = \ \ \, 1\!\!/_{2} \ ^{\star} \gamma \ ^{\star} (Kas_{orizz.} ^{\star} (1\pm kv) - Ka_{orizz.})^{\star} h^{2\star} h/2 \quad o \ ^{\star} h/3$

Mq = $\frac{1}{2}$ Ka_{orizz}*q*h² M_{ext} = m+f*h

 $M_{inerzia} = \Sigma Pm_i^*b_i^*kh$ (solo con sisma)

 $N_{ext} = v$

 $N_{pp+inerzia} = \Sigma Pm_i^*(1\pm kv)$


Vt _{stat} = $\frac{1}{2}$ Ka_{orizz.}* γ *(1±kv)*h²

 $Vt_{sism} = \frac{1}{2} * \gamma * (Kas_{orizz.} * (1\pm kv) - Ka_{orizz.}) * h^{2}$

 $Vq = Ka_{orizz}*q*h$

 $V_{ext} = f$

 $V_{inerzia} = \Sigma Pm_i^*kh$

condizione statica

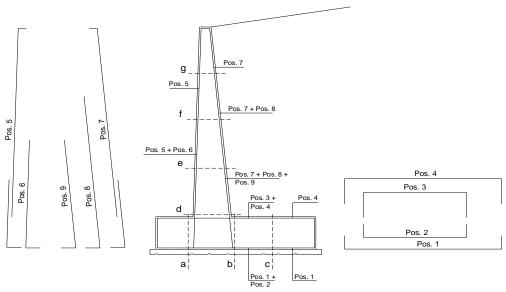
sezione	h	Mt	Mq	$M_{\rm ext}$	M _{tot}	N _{ext}	N_{pp}	N _{tot}
	[m]	[kNm/m]	[kNm/m]	[kNm/m]	[kNm/m]	[kN/m]	[kN/m]	[kN/m]
d-d	8.00	65.97	169.51	112.50	347.98	22.50	175.56	198.06
e-e	3.38	-0.25	4.14	63.94	67.82	22.50	65.39	87.89
f-f	2.25	-5.52	53.63	52.13	100.23	22.50	42.19	64.69
g-g	2.50	16.11	66.21	54.75	137.07	22.50	47.22	69.72

sezione	h	Vt	Vq	$V_{\rm ext}$	V_{tot}
	[m]	[kN/m]	[kN/m]	[kN/m]	[kN/m]
d-d	8.00	49.48	84.75	10.50	144.73
e-e	3.38	1.21	-13.24	10.50	-1.53
f-f	2.25	15.66	47.67	10.50	73.83
g-g	2.50	19.33	52.97	10.50	82.80

condizione sismica +

				000	0.0					
sezione	h	Mt _{stat}	Mt _{sism}	Mq	M _{ext}	M _{inerzia}	M _{tot}	N _{ext}	N _{pp+inerzia}	N _{tot}
	[m]	[kNm/m]	[kNm/m]	[kNm/m]	[kNm/m]	[kNm/m]	[kNm/m]	[kN/m]	[kN/m]	[kN/m]
d-d	8.00	50.75	120.12	39.59	0.00	133.18	343.64	22.50	193.41	215.91
e-e	3.38	-0.19	-3.34	0.97	0.00	21.72	19.15	22.50	72.04	94.54
f-f	2.25	9.03	5.34	12.53	0.00	9.44	36.34	22.50	46.48	68.98
g-g	1.13	1.13	0.67	3.13	0.00	2.31	7.23	22.50	22.46	44.96

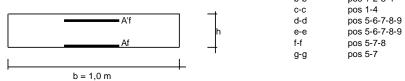
sezione	h	Vt stat	Vt sism	Vq	V _{ext}	V _{inerzia}	V _{tot}
552.51.6	[m]	[kN/m]	[kN/m]	[kN/m]	[kN/m]	[kN/m]	[kN/m]
d-d	8.00	38.06	22.52	19.80	0.00	35.71	116.09
е-е	3.38	0.93	0.55	-3.09	0.00	13.30	11.69
f-f	2.25	12.04	7.13	11.14	0.00	8.58	38.89
g-g	1.13	3.01	1.78	5.57	0.00	4.15	14.51


condizione sismica -

sezione	h	Mt stat	Mt sism	Mq	M _{ext}	M _{inerzia}	M _{tot}	N _{ext}	N _{pp+inerzia}	N _{tot}
	[m]	[kNm/m]	[kNm/m]	[kNm/m]	[kNm/m]	[kNm/m]	[kNm/m]	[kN/m]	[kN/m]	[kN/m]
d-d	8.00	50.75	82.80	42.95	0.00	133.18	309.69	22.50	157.70	180.20
e-e	3.38	-0.19	-2.30	1.05	0.00	21.72	20.27	22.50	58.74	81.24
f-f	2.25	9.03	3.68	13.59	0.00	9.44	35.74	22.50	37.90	60.40
g-g	1.13	1.13	0.46	3.40	0.00	2.31	7.29	22.50	18.32	40.82

sezione	h	Vt _{stat}	Vt sism	Vq	V _{ext}	V _{inerzia}	V _{tot}
30210110	[m]	[kN/m]	[kN/m]	[kN/m]	[kN/m]	[kN/m]	[kN/m]
d-d	8.00	38.06	15.53	21.48	0.00	35.71	110.77
e-e	3.38	0.93	0.38	-3.36	0.00	13.30	11.25
f-f	2.25	12.04	4.91	12.08	0.00	8.58	37.62
g-g	1.13	3.01	1.23	6.04	0.00	4.15	14.43

SCHEMA DELLE ARMATURE



					50. 2		
ARMATUR	<u>RE</u>						
pos	n°/ml	ф	II strato	pos	n°/ml	ф	II strato
1	5.0	20		5	5.0	20	
2				6			
3				7	5.0	18	_
4	10.0	20	_	8			
ļi				9			Π
	10.0	20			5.0	18	

 VERIFICHE
 a-a
 pos 1-2-3-4

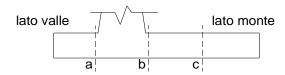
 b-b
 pos 1-2-3-4

 c-c
 pos 1-4

Calcola

Sez.	M	N	h	Af	A'f	Mu	Mu/M
(-)	(kNm)	(kN)	(m)	(cm ²)	(cm ²)	(kNm)	(-)
a - a	136.60	0.00	1.00	15.71	31.42	575.86	4.22
b - b	-206.04	0.00	1.00	31.42	15.71	1139.57	5.53
c - c	-51.68	0.00	1.00	31.42	15.71	1139.57	22.05
d - d	347.98	198.06	0.90	12.72	15.71	499.96	1.44
е -е	67.82	87.89	0.85	12.72	15.71	427.62	6.30
f - f	100.23	64.69	0.80	12.72	15.71	392.15	3.91
g - g	137.07	69.72	0.75	12.72	15.71	367.34	2.68

(n.b.: M+ tende le fibre di intradosso, M- tende le fibre di estradosso)


Sez.	V_{Ed}	h	V_{rd}	ø staffe	i orizz.	i vert.	θ	V_{Rsd}	
(-)	(kN)	(m)	(kN)	(mm)	(cm)	(cm)	(°)	(kN)	- =
a - a	341.11	1.00	312.50	14	40	40	21.8	813.19	Sezione verificata
b - b	217.11	1.00	351.09	14	40	40	21.8	813.19	Armatura a taglio non necessaria
c - c	107.86	1.00	351.09	14	40	40	21.8	813.19	Armatura a taglio non necessaria
d - d	144.73	0.90	315.81	14	40	40	21.8	728.49	Armatura a taglio non necessaria
e -e	11.69	0.85	287.30	14	40	40	21.8	686.13	Armatura a taglio non necessaria
f - f	73.83	0.80	271.17	14	40	40	21.8	643.78	Armatura a taglio non necessaria
g - g	82.80	0.75	258.94	14	40	40	21.8	601.43	Armatura a taglio non necessaria

12.3 VERIFICHE DEL MURO A FESSURAZIONE - COMBINAZIONE RARA

VERIFICA A FESSURAZIONE

CALCOLO SOLLECITAZIONI SOLETTA DI FONDAZIONE

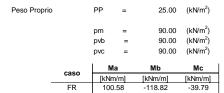
PP V

B5 - B5/2

Stv + Sqv

Mensola Lato Valle

 $Ma = \sum N_i^*(B1 - d_i) / i_i - PP^*(1\pm kv)^*B1^2/2$

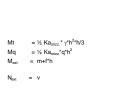

 Σ estesa a tutti i pali presenti sulla mensola

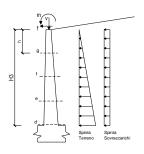
Mensola Lato Monte

 $Mb = \sum_i N_i^* (B5 - (B - d_i)) / i_i - [PP^*B5^2 / 2 + pvb^*B5^2 / 2 + (pm - pvb)^*B5^2 / 3]^* (1 \pm kv) - (Stv + Sqv)^* B5^* / 3]^* (1 \pm kv) - (Stv + Sqv)^* B5^* / 3]^* (1 \pm kv)^* (Stv + Sqv)^* B5^* / 3]^* (1 \pm kv)^* (Stv + Sqv)^* B5^* / 3]^* (1 \pm kv)^* (Stv + Sqv)^* (Stv + Sqv)$

 $Mc = \sum N_i^{\star} (B5/2 - (B-d_i))/i_i - [PP^{\star}(B5/2)^2/2 + pvc^{\star}(B5/2)^2/2 + (pm - pvc)^{\star}(B5/2)^2/3]^{\star} (1 \pm kv) - (Stv + Sqv) + B5/2 + (pm - pvc)^{\star}(B5/2)^2/3]^{\star} (1 \pm kv) - (Stv + Sqv) + B5/2 + (pm - pvc)^{\star}(B5/2)^2/3 + (pm -$

 Σ estesa a tutti i pali presenti sulla mensola

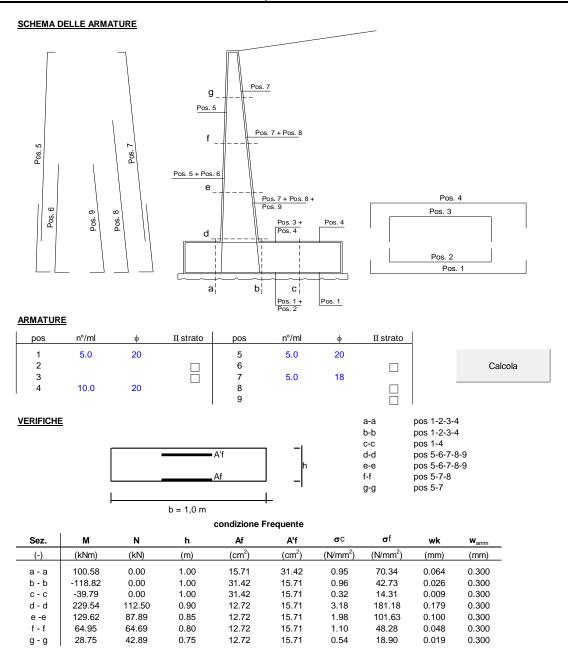

74 11


-51 12

CALCOLO SOLLECITAZIONI PARAMENTO VERTICALE DEL MURO

ΩP

Azioni sulla parete e Sezioni di Calcolo

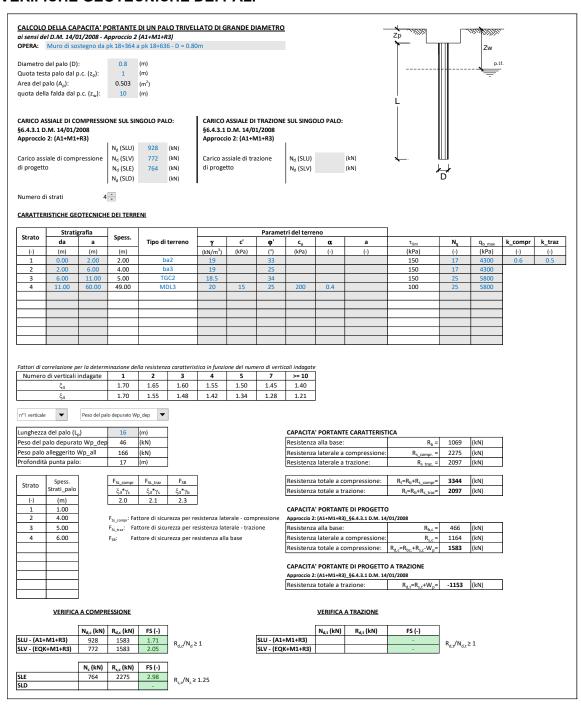


-30.56

			cond	lizione Freque	ente			
sezione	h	Mt	Mq	M _{ext}	M _{tot}	N _{ext}	N_{pp}	N _{tot}
36210116	[m]	[kNm/m]	[kNm/m]	[kNm/m]	[kNm/m]	[kN/m]	[kN/m]	[kN/m]
d-d	4.50	72.26	119.40	37.88	229.54	22.50	90.00	112.50
e-e	3.38	30.48	67.17	31.97	129.62	22.50	65.39	87.89
f-f	2.25	9.03	29.85	26.06	64.95	22.50	42.19	64.69
g-g	1.13	1.13	7.46	20.16	28.75	22.50	20.39	42.89

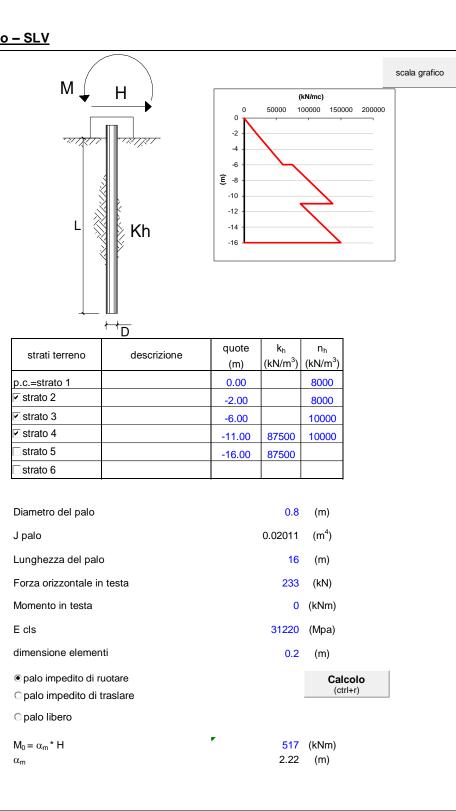
	condizione Quasi Permanente										
sezione	h	Mt	Mq	Mext	M _{tot}	N _{ext}	N _{pp}	N _{tot}			
36210116	[m]	[kNm/m]	[kNm/m]	[kNm/m]	[kNm/m]	[kN/m]	[kN/m]	[kN/m]			
d-d	4.50	72.26	34.68	0.00	106.94	22.50	90.00	112.50			
e-e	3.38	30.48	19.51	0.00	49.99	22.50	65.39	87.89			
f-f	2.25	9.03	8.67	0.00	17.70	22.50	42.19	64.69			
a-a	1.13	1.13	2.17	0.00	3.30	22.50	20.39	42.89			

(n.b.: M+ tende le fibre di intradosso, M- tende le fibre di estradosso)

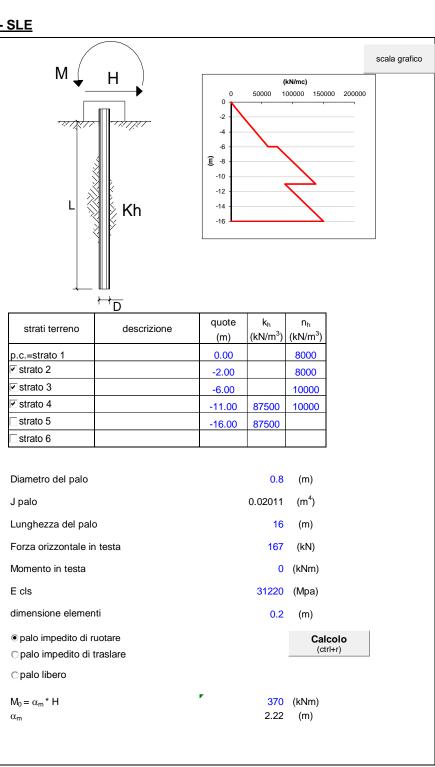

condizione Quasi Permanente

Sez.	M	N	h	Af	A'f	σο	σf	wk	\mathbf{w}_{amm}	
(-)	(kNm)	(kN)	(m)	(cm ²)	(cm ²)	(N/mm ²)	(N/mm ²)	(mm)	(mm)	
a - a	74.11	0.00	1.00	15.71	31.42	0.70	51.82	0.047	0.200	
b - b	-51.12	0.00	1.00	31.42	15.71	0.41	18.38	0.011	0.200	
c - c	-30.56	0.00	1.00	31.42	15.71	0.25	10.99	0.007	0.200	
d - d	106.94	112.50	0.90	12.72	15.71	1.48	63.69	0.063	0.200	
е -е	49.99	87.89	0.85	12.72	15.71	0.74	21.74	0.021	0.200	
f - f	17.70	64.69	0.80	12.72	15.71	0.25	2.15	0.002	0.200	
g - g	3.30	42.89	0.75	12.72	15.71	0.00	-	-	0.200	sez. compres

(n.b.: M+ tende le fibre di intradosso, M- tende le fibre di estradosso)



12.3.1 VERIFICHE GEOTECNICHE DEI PALI



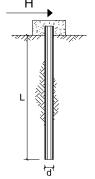
Momento di progetto - SLV

Momento di progetto - SLE

Muro di sostegno - Relazione di calcolo

COMMESSA LOTTO CODIFICA DOCUMENTO REV. **FOGLIO** 12 E ZZ RI0505 003 69 di 87 IF26 CL Α

Verifica a capacità portante per azioni orizzontali


CARICO LIMITE ORIZZONTALE DI UN PALO IN TERRENI INCOERENTI PALI CON ROTAZIONE IN TESTA IMPEDITA

OPERA: Muro di sostegno da pk 21+982 a pk 22+082 - SLV

TEORIA DI BASE:

(Broms, 1964)

C	oefficienti parz	iali	A		M	R
N	letodo di calco	olo	permanenti γ _G	variabili γ _α	$\gamma_{\phi^{\prime}}$	γт
	A1+M1+R1	0	1.30	1.50	1.00	1.00
SLU	A2+M1+R2	0	1.00	1.30	1.00	1.60
S	A1+M1+R3	0	1.30	1.50	1.00	1.30
	SISMA	0	1.00	1.00	1.00	1.30
DM88		0	1.00	1.00	1.00	1.00
definiti dal progettista		•	1.00	1.00	1.00	1.30

30.00 (°)

	n	O ¹	O ²	\circ^3	O ⁴	○ ⁵	07	€10	Q.v.	Gog.
Ī	ξ3	1.70	1.65	1.60	1.55	1.50	1.45	1.40	1.00	1.00
Γ	ξ_4	1.70	1.55	1.48	1.42	1.34	1.28	1.21	1.00	1.00

 $H = 1.5k_p \gamma d^3 \left(\frac{L}{d}\right)^2$ Palo corto:

Palo intermedio:

$$\begin{split} H &= \frac{1}{2} k_p \gamma d^3 \bigg(\frac{L}{d}\bigg)^2 + \frac{M_y}{L} \\ H &= k_p \gamma d^3 \sqrt[3]{\left(3.676 \frac{M_y}{k_p \gamma d^4}\right)^2} \end{split}$$
Palo lungo:

DATI DI INPUT:

Lunghezza del palo L= 16.00 (m) d = 0.80 Diametro del palo (m)

Momento di plasticizzazione della sezione 894.19 (kN m) My = Angolo di attrito del terreno 30.00 (°) φ' _{med}=

Angolo di attrito di calcolo del terreno 30.00 (°) 30.00 (°) φ' med.d= $\phi'_{\text{ min,d}}\!\!=\!$ Coeff. di spinta passiva (kp = $(1+\sin\varphi')/(1-\sin\varphi')$) kp _{med} = 3.00 (-) 3.00 (-)

Peso di unità di volume (con falda $\gamma = \gamma'$) 10.00 (kN/m³) $\gamma =$ Carico Assiale Permanente (G): G = 233 (kN)

Carico Assiale variabile (Q): (kN)

Palo corto:

H1 _{med}= 9216.00 (kN) H1 _{min}= 9216.00 (kN)

Palo intermedio:

H2 _{med}= 3127.89 H2 _{min}= (kN) 3127.89 (kN)

Palo lungo:

H3_{med}= 637.69 637.69 H3 _{min}= (kN)

H _{med} = 637.69 palo lungo $H_{min} =$ 637.69 palo lungo

 $H_k = Min(H_{med}/\xi_3; R_{min}/\xi_4) =$ 455.49 (kN)

> $H_d = H_k/\gamma_T =$ 350.38 (kN)

 $F_{d} = G \cdot \gamma_{G} + Q \cdot \gamma_{Q} =$ 233.00 (kN)

FS = Hd / Fd =

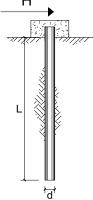
RIA

ITINERARIO NAPOLI – BARI RADDOPPIO TRATTA CANCELLO-BENEVENTO II LOTTO FUNZIONALE FRASSO TELESINO – VITULANO 1° LOTTO FUNZIONALE FRASSO TELESINO – TELESE **PROGETTO ESECUTIVO**

Muro di sostegno - Relazione di calcolo

COMMESSA LOTTO CODIFICA DOCUMENTO REV. 12 E ZZ RI0505 003 IF26 CL

CARICO LIMITE ORIZZONTALE DI UN PALO IN TERRENI INCOERENTI


PALI CON ROTAZIONE IN TESTA IMPEDITA

Muro di sostegno da pk 21+982 a pk 22+082 - SLU OPERA:

TEORIA DI BASE:

(Broms, 1964)

С	oefficienti parz	iali	А		M	R
	/letodo di calco	olo	permanenti	variabili	$\gamma_{\phi'}$	γ_{T}
-				γο	1φ	71
1	A1+M1+R1	0	1.30	1.50	1.00	1.00
SLU	A2+M1+R2	0	1.00	1.30	1.00	1.60
S	A1+M1+R3	•	1.30	1.50	1.00	1.30
	SISMA	0	1.00	1.00	1.00	1.30
DM88		00	1.00	1.00	1.00	1.00
definiti dal progettista		U	1.00	1.00	1.00	1.30

FOGLIO

70 di 87

Α

n	01	O ²	\circ^3	O ⁴	○ ⁵	07	≧ 10	Q.a.	GLog.
ξ3	1.70	1.65	1.60	1.55	1.50	1.45	1.40	1.00	1.00
ξ_4	1.70	1.55	1.48	1.42	1.34	1.28	1.21	1.00	1.00

 $H = 1.5k_p \gamma d^3 \left(\frac{L}{d}\right)^2$ Palo corto:

Palo intermedio:

$$\begin{split} H &= \frac{1}{2} k_p \gamma d^3 \bigg(\frac{L}{d}\bigg)^2 + \frac{M_y}{L} \\ H &= k_p \gamma d^3 \sqrt[3]{\left(3.676 \, \frac{M_y}{k_p \gamma d^4}\right)} \end{split}$$
Palo lungo:

DATI DI INPUT:

Lunghezza del palo 16.00 L= (m) Diametro del palo d =0.80

Momento di plasticizzazione della sezione My = 894.19 (kN m)

Angolo di attrito del terreno $\phi'_{med} =$ 30.00 30.00 (°) Angolo di attrito di calcolo del terreno 30.00 (°) $\phi'_{min,d} \!\! = \!\!$ 30.00 (°) $\varphi'_{\text{med.d}} =$ Coeff. di spinta passiva (kp = $(1+\sin\varphi')/(1-\sin\varphi')$) $kp_{med} =$ 3.00 (-) $kp_{min} =$ 3.00 (-)

Peso di unità di volume (con falda $\gamma = \gamma'$) (kN/m^3) 10.00 $\gamma =$ Carico Assiale Permanente (G): G = 229 (kN) Carico Assiale variabile (Q): (kN)

Palo corto:

H1 _{med}= 9216.00 (kN) H1 _{min}= 9216.00 (kN)

Palo intermedio:

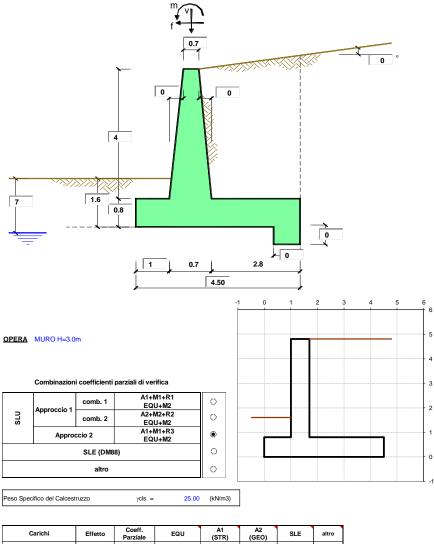
H2 _{min}= H2 $_{\rm med}$ = 3127.89 (kN) 3127.89 (kN)

Palo lungo:

H3 _{med}= 637.69 (kN) H3 _{min}= 637.69 (kN)

637.69 (kN) 637.69 (kN) palo lungo H = palo lungo

 $H_k = Min(H_{med}/\xi_3; R_{min}/\xi_4) =$ 455.49 (kN)


> $H_d = H_k/\gamma_T =$ 350.38 (kN)

297.70 $F_d = G \cdot \gamma_G + Q \cdot \gamma_Q =$ (kN)

FS = Hd / Fd =

13. ALLEGATO A: VERIFICHE DEL MURO H = 4.0M

Carichi	Effetto	Coeff. Parziale	EQU	A1 (STR)	A2 (GEO)	SLE	altro
Permanenti	favorevole	24	0.90	1.00	1.00	1.00	1.00
T CITICINE	sfavorevole	γ _G	1.10	1.30	1.00	1.00	1.00
Variabili	favorevole		0.00	0.00	0.00	0.00	1.00
variabili	sfavorevole	γο	1.50	1.50	1.30	1.00	1.00

Parametro		Coeff. Parziale	M1	M2	SLE	altro
angolo d'attrito	tan φ' _k	$\gamma_{\phi'}$	1.00	1.25	1.00	1.00
coesione	c' _k	γ _{e'}	1.00	1.25	1.00	1.00
resistenza non drenata	Cuk	γ _{cu}	1.00	1.40	1.00	1.00
peso unità di volume	γ	γγ	1.00	1.00	1.00	1.00

Verifica	Coeff. Parziale	R1	R2	R3	SLE	altro
Capacità portante fondazione		1.00	1.00	1.40	2.00	1.00
Scorrimento	γ_R	1.00	1.00	1.10	1.30	1.00
Ribaltamento		1.00	1.00	1.00	1.50	1.00

Muro di sostegno - Relazione di calcolo

 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

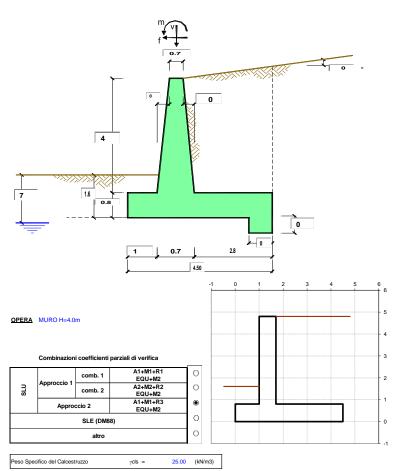
 IF26
 12 E ZZ
 CL
 RI0505 003
 A
 72 di 87

				valori caratteristici	valori di _l	orogetto
Dati (Geotecnic <u>i</u>			SLE	STR/GEO	EQU
Dati Ferrapieno	Angolo di attrito del terrapieno	(°)	φ'	38.00	38.00	32.01
Dati rapie	Peso Unità di Volume del terrapieno	(kN/m^3)	γ'	20.00	20.00	20.00
Ter	Angolo di attrito terreno-superficie ideale	(°)	δ	0.00	0.00	0.00
	Condizioni		drenate	○ Non Drenate		
၁ ခု	Coesione Terreno di Fondazione	(kPa)	c1'	0.00	0.00	0.00
Jati Terreno Fondazione	Angolo di attrito del Terreno di Fondazione	(°)	φ1'	33.00	33.00	27.45
	Peso Unità di Volume del Terreno di Fondazione	(kN/m³)	γ1	19	18.50	18.50
Dati Fon	Peso Unità di Volume del Rinterro della Fondazione	(kN/m^3)	γd	19	18.50	18.50
	Profondità "Significativa" (n.b.: consigliata H = 2*B)	(m)	Hs	5.00		
	Modulo di deformazione	(kN/m ²)	E	20000		

	Accelerazione sismica	a _g /g	0.243	(-)
	Coefficiente Amplificazione Stratigrafico	S_{S}	1.35	(-)
Sismici	Coefficiente Amplificazione Topografico	S_T	1	(-)
Sisi	Coefficiente di riduzione dell'accelerazione massima	β_{m}	0.31	(-)
Dati	Coefficiente sismico orizzontale	kh	0.1016955	(-)
	Coefficiente sismico verticale	kv	0.0508	(-)
	Muro libero di traslare o ruotare	•) si	no

			SLE	STR/GEO	EQU	
	Coeff. di Spinta Attiva Statico	ka	0.238	0.238	0.307	
. <u>=</u> _	Coeff. Di Spinta Attiva Sismica sisma +	kas+	0.289	0.289	0.366	
Coefficienti e Spinta	Coeff. Di Spinta Attiva Sismica sisma -	kas-	0.295	0.295	0.372	
Sp	Coeff. Di Spinta Passiva	kp	3.392	3.392	2.711	
ပိ	Coeff. Di Spinta Passiva Sismica sisma +	kps+	3.209	3.209	2.546	
	Coeff. Di Spinta Passiva Sismica sisma -	kps-	3.189	3.189	2.527	

				valori caratteristici	valori di j	orogetto
Carichi	<u>Agenti</u>			SLE - sisma	STR/GEO	EQU
Carichi permanenti	Sovraccarico permanente Sovraccarico su zattera di monte si	(kN/m²)	qp	14.40	18.72	15.84
arichi maner	Forza Orizzontale in Testa permanente	(kN/m)	fp	0.00	0.00	0.00
Co	Forza Verticale in Testa permanente	(kN/m)	vp	22.50	22.50	20.25
	Momento in Testa permanente	(kNm/m)	mp	0.00	0.00	0.00
	Sovraccarico Accidentale in condizioni statiche	(kN/m^2)	q	46.90	70.35	70.35
Sondizioni Statiche	Forza Orizzontale in Testa accidentale in condizioni statiche	(kN/m)	f	7.00	10.50	10.50
ndi; tatic	Forza Verticale in Testa accidentale in condizioni statiche	(kN/m)	V	0.00	0.00	0.00
လို က	Momento in Testa accidentale in condizioni statiche	(kNm/m)	m	19.00	28.50	28.50
	Coefficienti di combinazione condizione frequer	nte Ψ1	1.00	condizione quasi permai	nente Ψ2	0.00
ie ju	Sovraccarico Accidentale in condizioni sismiche	(kN/m^2)	qs	0.00		
Sondizioni Sismiche	Forza Orizzontale in Testa accidentale in condizioni sismiche	(kN/m)	fs	0.00	4, 4	
Sisn	Forza Verticale in Testa accidentale in condizioni sismiche	◄ (kN/m)	VS	0.00	• •	
0 0,	Momento in Testa accidentale in condizioni sismiche	(kNm/m)	ms	0.00		



CARATTERISTICHE DEI MATERIALI STRUTTURALI

Calcestruzzo			<u>Acciaio</u>		
classe cls	v		tipo di acciaio	Fe B 44 k ▼	
Rck	35	(MPa)			
fck	28	(MPa)	fyk =	430	(MPa)
fcm	36	(MPa)			
Ec	32308	(MPa)	γs =	1.15	
$lpha_{ t cc}$	0.85				
γс	1.50		$fyd = fyk / \gamma s / \gamma E =$	373.91	(MPa)
$f_{cd} = \alpha_{cc} * f_{ck} / \gamma c$	15.87	(MPa)	Es = 21000	(MPa)	
$f_{cd} = \alpha_{cc} * f_{ck} / \gamma c$ $f_{ctm} = 0.30 * f_{ck}^{2/3}$	2.77	(MPa)	$\varepsilon_{ys} = 0.189$	%	

13.1 VERIFICHE GEOTECNICHE DEL MURO - SLU/SLV

Carichi	Effetto	Coeff. Parziale	EQU	A1 (STR)	A2 (GEO)	SLE	altro
December	favorevole		0.90	1.00	1.00	1.00	1.00
Permanenti	sfavorevole	Ϋ́G	1.10	1.30	1.00	1.00	1.00
Variabili	favorevole		0.00	0.00	0.00	0.00	1.00
	sfavorevole	γο	1.50	1.50	1.30	1.00	1.00

Parametro		Coeff. Parziale	M1	M2	SLE	altro
angolo d'attrito	tan φ' _k	γ_{ϕ}	1.00	1.25	1.00	1.00
coesione	C'k	γ _{c'}	1.00	1.25	1.00	1.00
resistenza non drenata	Cuk	γ _{cu}	1.00	1.40	1.00	1.00
neso unità di volume		~	1.00	1.00	1.00	1.00

Verifica	Coeff. Parziale	R1	R2	R3	SLE	altro
Capacità portante fondazione		1.00	1.00	1.40	2.00	1.00
Scorrimento	Ϋ́R	1.00	1.00	1.10	1.30	1.00
Ribaltamento		1.00	1.00	1.00	1.50	1.00

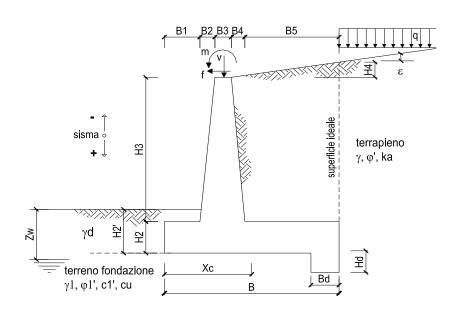
Muro di sostegno - Relazione di calcolo

COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
IF26	12 E ZZ	CL	RI0505 003	Α	75 di 87

				valori caratteristici	valori di p	orogetto
Dati (Geotecnici	SLE	STR/GEO	EQU		
Dati rrapieno	Angolo di attrito del terrapieno	(°)	φ'	38.00	38.00	32.01
Dati rapie	Peso Unità di Volume del terrapieno	(kN/m ³)	γ'	20.00	20.00	20.00
<u> </u>	Angolo di attrito terreno-superficie ideale	(°)	δ	0.00	0.00	0.00
	Condizioni		drenate	Non Drenate		
၉ ခု	Coesione Terreno di Fondazione	(kPa)	c1'	0.00	0.00	0.00
Terreno dazione	Angolo di attrito del Terreno di Fondazione	(°)	φ1'	33.00	33.00	27.45
i Te nda	Peso Unità di Volume del Terreno di Fondazione	(kN/m^3)	γ1	19	18.50	18.50
Dati Terreno Fondazione	Peso Unità di Volume del Rinterro della Fondazione	(kN/m^3)	γd	19	18.50	18.50
	Profondità "Significativa" (n.b.: consigliata H = 2*B)	(m)	Hs	5.00		
	Modulo di deformazione	(kN/m^2)	Е	20000		

	Accelerazione sismica	a _g /g	0.243	(-)
	Coefficiente Amplificazione Stratigrafico	Ss	1.35	(-)
Sismici	Coefficiente Amplificazione Topografico	S_T	1	(-)
Sisi	Coefficiente di riduzione dell'accelerazione massima	β_{m}	0.31	(-)
Dati	Coefficiente sismico orizzontale	kh	0.203391	(-)
	Coefficiente sismico verticale	kv	0.1017	(-)
	Muro libero di traslare o ruotare	si	O no	

			SLE		STR/G	EO	EG	ภบ
	Coeff. di Spinta Attiva Statico	ka	0.238		0.238		0.307	
e di	Coeff. Di Spinta Attiva Sismica sisma +	kas+	0.344		0.344		0.429	
inta	Coeff. Di Spinta Attiva Sismica sisma -	kas-	0.373		0.373		0.463	
effici	Coeff. Di Spinta Passiva	kp	3.392		3.392		2.711	
ပိ	Coeff. Di Spinta Passiva Sismica sisma +	kps+	3.034		3.034		2.384	
	Coeff. Di Spinta Passiva Sismica sisma -	kps-	2.946		2.946		2.302	


		valori caratteristici	valori di	progetto		
Carichi	<u>Agenti</u>			SLE - sisma	STR/GEO	EQU
Carichi	Sovraccarico permanente Sovraccarico su zattera di monte	(kN/m²)	qp	14.40	18.72	15.84
Carichi	Forza Orizzontale in Testa permanente	(kN/m)	fp	0.00	0.00	0.00
Ö	Forza Verticale in Testa permanente	(kN/m)	vp	22.50	22.50	20.25
	Momento in Testa permanente	(kNm/m)	mp	0.00	0.00	0.00
-=	Sovraccarico Accidentale in condizioni statiche	(kN/m^2)	q	46.90	70.35	70.35
Condizioni Statiche	Forza Orizzontale in Testa accidentale in condizioni statiche	(kN/m)	f	7.00	10.50	10.50
ondizior Statiche	Forza Verticale in Testa accidentale in condizioni statiche	(kN/m)	٧	0.00	0.00	0.00
ვ დ	Momento in Testa accidentale in condizioni statiche	(kNm/m)	m	19.00	28.50	28.50
	Coefficienti di combinazione condizione freque	nte Ψ1	1.00	condizione quasi perma	nente Ψ2	0.00
ie e	Sovraccarico Accidentale in condizioni sismiche	(kN/m ²)	qs	0.00		
džić Pic	Forza Orizzontale in Testa accidentale in condizioni sismiche	(kN/m)	fs	0.00	4, 4	,
Condizioni Sismiche	Forza Verticale in Testa accidentale in condizioni sismiche	(kN/m)	VS	0.00	• •	1
0 %	Momento in Testa accidentale in condizioni sismiche	(kNm/m)	ms	0.00		

CARATTERISTICHE DEI MATERIALI STRUTTURALI

Calcestruzzo					<u>Acciaio</u>
classe cls	35 ▼				tipo di acciaio
Rck		35	(MPa	1)	
fck		28	(MPa	1)	fyk = 430 (MPa)
fcm		36	(MPa	1)	
Ec		32308	(MPa	ı)	γ s = 1.15
$lpha_{ t cc}$		0.85			
γc		1.50			fyd = fyk / γ s / γ E = 373.91 (MPa)
$f_{cd} = \alpha_{cc} * f_{ck} / \gamma c$		15.87	(MPa)	Es = 210000 (MPa)
$f_{ctm} = 0.30^* f_{ck}^{2/3}$		2.77	(MPa)	ε_{ys} = 0.18%
	16.8 360	Mpa Mpa			coefficiente omogeneizzazione acciaio n = 15
condizioni sismiche					<u>Copriferro</u> (distanza asse armatura-bordo)
σ_{c}	16.8	Мра			c = 4.00 (cm)
σ_{f}	360	Мра			
					<u>Copriferro minimo di normativa</u> (ricoprimento armatura)
					$c_{min} = 3.00$ (cm)
Valore limite di ape					<u>Interferro tra I e II strato</u>
Frequente	w2	▼	0.3	mm	i _{I-II} 5.00 (cm)
Quasi Permanente	w2	•	0.3	mm	

OPERA Esempio

DATI DI PROGETTO:

0	-1-1	
Geometria	aeı	wuro

<u> </u>			
Elevazione	H3 =	4.00	(m)
Aggetto Valle	B2 =	0.00	(m)
Spessore del Muro in Testa	B3 =	0.70	(m)
Aggetto monte	B4 =	0.00	(m)

Geometria della Fondazione

Peso Specifico del Calcestruzzo

Larghezza Fondazione	В	= 4.50	(m)
Spessore Fondazione	H2	= 0.80	(m)
Suola Lato Valle	B1 :	= 1.00	(m)
Suola Lato Monte	B5 :	= 3.00	(m)
Altezza dente	Hd	= 0.00	(m)
Larghezza dente	Bd	= 0.00	(m)
Mezzeria Sezione	Xc	= 2.25	(m)

25.00

γcls =

(kN/m³)

Muro di sostegno - Relazione di calcolo

COMMESSA LOTTO CODIFICA REV. FOGLIO DOCUMENTO IF26 12 E ZZ CL RI0505 003 Α 78 di 87

FORZE VERTICALI

- Peso del Mur	o (Pm)		SLE	STR/GEO	EQU
Pm1 =	(B2*H3*γcls)/2	(kN/m)	0.00	0.00	0.00
Pm2 =	(B3*H3*γcls)	(kN/m)	70.00	70.00	63.00
Pm3 =	(B4*H3*γcls)/2	(kN/m)	0.00	0.00	0.00
Pm4 =	(B*H2*γcls)	(kN/m)	90.00	90.00	81.00
Pm5 =	(Bd*Hd*γcls)	(kN/m)	0.00	0.00	0.00
Pm =	Pm1 + Pm2 + Pm3 + Pm4 + Pm5	(kN/m)	160.00	160.00	144.00
Pt1 = Pt2 = Pt3 =	eno e sovr. perm. sulla scarpa di monte del muro (Pt) (B5*H3*γ') (0,5*(B4+B5)*H4*γ') (B4*H3*γ')/2	(kN/m) (kN/m) (kN/m)	240.00 0.00 0.00	240.00 0.00 0.00	216.00 0.00 0.00
Sovr = Pt =	qp * (B4+B5) Pt1 + Pt2 + Pt3 + Sovr	(kN/m) (kN/m)	43.20 283.20	56.16 296.16	47.52 263.52
	accidentale sulla scarpa di monte del muro q * (B4+B5)	(kN/m) (kN/m)	140.7 0	211.05	203.32

MOMENTI DE	ELLE FORZE VERT. RISPETTO AL PIEDE DI VALLE DI	EL MURO _			
- Muro (Mm)			SLE	STR/GEO	EQU
Mm1 =	Pm1*(B1+2/3 B2)	(kNm/m)	0.00	0.00	0.00
Mm2 =	Pm2*(B1+B2+0,5*B3)	(kNm/m)	94.50	94.50	85.05
Mm3 =	Pm3*(B1+B2+B3+1/3 B4)	(kNm/m)	0.00	0.00	0.00
Mm4 =	Pm4*(B/2)	(kNm/m)	202.50	202.50	182.25
Mm5 =	Pm5*(B - Bd/2)	(kNm/m)	0.00	0.00	0.00
Mm =	Mm1 + Mm2 + Mm3 + Mm4 +Mm5	(kNm/m)	297.00	297.00	267.30
–	WITH T WITH T WITH T WITH	(10.411/111)	207.00	207.00	201.00
	sovr. perm. sulla scarpa di monte del muro				
Mt1 =	Pt1*(B1+B2+B3+B4+0,5*B5)	(kNm/m)	768.00	768.00	691.20
Mt2 =	Pt2*(B1+B2+B3+2/3*(B4+B5))	(kNm/m)	0.00	0.00	0.00
Mt3 =	Pt3*(B1+B2+B3+2/3*B4)	(kNm/m)	0.00	0.00	0.00
Msovr =	Sovr*(B1+B2+B3+1/2*(B4+B5))	(kNm/m)	138.24	179.71	152.06
Mt =	Mt1 + Mt2 + Mt3 + Msovr	(kNm/m)	906.24	947.71	843.26
	accidentale sulla scarpa di monte del muro				
Sovr acc. Stat	, ,,,	(kNm/m)	450.24	675.36	
Sovr acc. Sism	*(B1+B2+B3+1/2*(B4+B5))	(kNm/m)	0		
INEDZIA DEI	MURO E DEL TERRAPIENO				
	ntale e verticale del muro (Ps)				
Ps h=	Pm*kh	(kN/m)		32.54	
Ps v=	Pm*kv	(kN/m)		16.27	
F5 V=	FIII KV	(KIWIII)		10.27	
- Inerzia orizzo	ntale e verticale del terrapieno a tergo del muro (Pts)				
Ptsh =	Pt*kh	(kN/m)		60.24	
Ptsv =	Pt*kv	(kN/m)		30.12	
1137 -	T L KV	(100111)		30.12	
- Incremento o	rizzontale di momento dovuto all'inerzia del muro (MPs h)				
MPs1 h=	kh*Pm1*(H2+H3/3)	(kNm/m)		0.00	
MPs2 h=	kh*Pm2*(H2 + H3/2)	(kNm/m)		39.86	
MPs3 h=	kh*Pm3*(H2+H3/3)	(kNm/m)		0.00	
MPs4 h=	kh*Pm4*(H2/2)	(kNm/m)		7.32	
MPs5 h=	-kh*Pm5*(Hd/2)	(kNm/m)		0.00	
MPs h=	MPs1+MPs2+MPs3+MPs4+MPs5	(kNm/m)		47.19	
IVIFS II—	INIT STEME SETIME SETIME SHEWE SE	(KINIII/III)		47.13	
- Incremento v	erticale di momento dovuto all'inerzia del muro (MPs v)				
MPs1 v=	kv*Pm1*(B1+2/3*B2)	(kNm/m)		0.00	
MPs2 v=	kv*Pm2*(B1+B2+B3/2)	(kNm/m)		9.61	
MPs3 v=	kv*Pm3*(B1+B2+B3+B4/3)	(kNm/m)		0.00	
MPs4 v=	kv*Pm4*(B/2)	(kNm/m)		20.59	
MPs5 v=	kv*Pm5*(B-Bd/2)	(kNm/m)		0.00	
MPs v=	MPs1+MPs2+MPs3+MPs4+MPs5	(kNm/m)		30.20	
WII 0 V-	111 37 1111 32 1111 33 1111 34 1111 33	(10.4117111)		00.20	
- Incremente e	rizzontale di momento dovuto all'inerzia del terrapieno (MI	Dtc h)			
MPts1 h=	hizzontale di momento dovuto all'inerzia dei terrapieno (ivii kh*Pt1*(H2 + H3/2)	(kNm/m)		136.68	
MPts2 h=		(kNm/m)		0.00	
MPts3 h=	kh*Pt2*(H2 + H3 + H4/3) kh*Pt3*(H2+H3*2/3)	(kNm/m)		0.00	
MPts h=	MPts1 + MPts2 + MPts3				
IVIPIS II=	IVIFIS I + IVIFISZ + IVIFISS	(kNm/m)		136.68	
- Incremento v	erticale di momento dovuto all'inerzia del terrapieno (MPts	s v)			
MPts1 v=	kv*Pt1*(B - B5/2)	(kNm/m)		73.22	
MPts2 v=	kv*Pt2*(B - B5/3)	(kNm/m)		0.00	
MPts3 v=	kv*Pt3*(B1+B2+B3+2/3*B4)	(kNm/m)		0.00	
MPts v=	MPts1 + MPts2 + MPts3	(kNm/m)		73.22	
		, /			

Muro di sostegno - Relazione di calcolo

COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
IF26	12 E ZZ	CL	RI0505 003	Α	79 di 87

CONDIZIONE STATICA

		_			
	TERRENO E DEL SOVRACCARICO condizione statica		SLE	STR/GEO	EQU
St =	0,5*y/*(H2+H3+H4+Hd)2*ka	(kN/m)	54.81	71.25	77.85
Sq perm =	q*(H2+H3+H4+Hd)*ka	(kN/m)	16.44	21.38	23.36
Sq acc =	q*(H2+H3+H4+Hd)*ka	(kN/m)	53.55	80.33	103.73
- Componente	orizzontale condizione statica				
Sth =	St*cos8	(kN/m)	54.81	71.25	77.85
Sqh perm =	Sq perm*cosô	(kN/m)	16.44	21.38	23.36
Sqh acc =	Sq acc*cos8	(kN/m)	53.55	80.33	103.73
- Componente	e verticale condizione statica				
Stv =	St*sen8	(kN/m)	0.00	0.00	0.00
Sqv perm=	Sq perm*sen8	(kN/m)	0.00	0.00	0.00
Sqv acc =	Sq acc*sen8	(kN/m)	0.00	0.00	0.00
- Spinta passi	va sul dente				
Sp=1/2*g1**Hd	2*1½*y ₁ '*Hd ² *kp+(2*c ₁ '*kp ^{0.5} +y1'*kp*H2')*Hd	(kN/m)	0.00	0.00	0.00

MOMENTI DELLA SPINTA DEL TERRENO E DEL SOVRACCA	RICO	SLE	STR/GEO	EQU
MSt1 = Sth*((H2+H3+H4+Hd)/3-Hd)	(kNm/m)	87.69	114.00	124.56
MSt2 = Stv*B	(kNm/m)	0.00	0.00	0.00
MSq1 perm= Sqh perm*((H2+H3+H4+Hd)/2-Hd)	(kNm/m)	39.46	51.30	56.05
MSq1 acc = Sqh acc*((H2+H3+H4+Hd)/2-Hd)	(kNm/m)	128.53	192.79	248.94
MSq2 perm= Sqv perm*B	(kNm/m)	0.00	0.00	0.00
MSq2 acc = Sqv acc*B	(kNm/m)	0.00	0.00	0.00
$MSp = \gamma 1'' + Hd^{3} + kp/3 + (2*c1'*kp^{0.5} + \gamma 1'*kp*H2') + Hd^{2}/2$	(kNm/m)	0.00	0.00	0.00
MOMENTI DOVUTI ALLE FORZE ESTERNE				
Mfext1 = mp + m	(kNm/m)	19.00	28.50	28.50

VERIFICA ALLO SCORRIMENTO (STR/GEO)

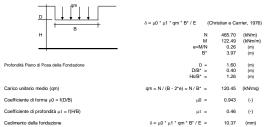
Risultante forze verticali (N)

Fs	scorr.	(N*f + Sp) / T	1.69	>	1.
Coef f	ficiente di =	attrito alla base (f) tgφ1'	0.65	(-)	
Risul T	tante forze	orizzontali (T) Sth + Sqh + f	183.45	(kN/m)	
N	=	Pm + Pt + v + Stv + Sqv perm + Sqv acc	478.66	(kN/m)	

VERIFICA AL RIBALTAMENTO (EQU)

F۹	rihaltan	nento	Me / Mr	2 24	_	1
Mom Mr	ento ribalta =		Mfext1+ Mfext2 + MSp	508.46	(kNm/m)	
	=	Mm + Mt + N	Mext3	1137.90	(kNm/m)	

VERIFICA CARICO LIMITE DELLA FONDAZIONE (STR/GEO)


N = Pm + Pt + v + Stv + Sqv (+ Sovr acc)	478.66	689.71	(kN/m)
Risultante forze orizzontali (T)			
T = Sth + Sqh + f - Sp	183.45	183.45	(kN/m)
Risultante dei momenti rispetto al piede di valle (MM)			
$MM = \Sigma M$	838.10	1513.46	(kNm/m)
Momento rispetto al baricentro della fondazione (M)			
M = Xc*N - MM	238 89	38 39	(kNm/m)

Formula Generale per il Calcolo del Carico Limite Unitrario (Brinch-Hansen, 1970)

Fondazione Nastriforme

qlim = c'Nc*ic	+ q ₀ *Nq*iq + 0,5*y1*B*N y *i y				
c1' φ1' γ1	coesione terreno di fondaz. angolo di attrito terreno di fondaz. peso unità di volume terreno fondaz.		0.00 33.00 18.50		(kPa) (°) (kN/m³)
$q_0=\!\!\gamma d^*H2'$	sovraccarico stabilizzante		29.60		(kN/m ²)
e = M / N B*= B - 2e	eccentricità larghezza equivalente		0.50 3.50	0.06 4.39	(m) (m)
I valori di Nc, N	q e Ng sono stati valutati con le espressioni suggerite	da Vesic (1975)			
$Nq = tg^{2}(45 + \phi)$ Nc = (Nq - 1)/tg $N\gamma = 2*(Nq + 1)$	(φ') (2+π in cond. nd)		26.09 38.64 35.19		(-) (-)
I valori di ic, iq e	e iγ sono stati valutati con le espressioni suggerite da	Vesic (1975)			
iq = (1 - T/(N + ic = iq - (1 - iq)/iq) + iq = (1 - T/(N + iq)/iq) + iq =	(Nq - 1)		0.38 0.36 0.23	0.54 0.36 0.23	(-) (-)
(fondazione nas	triforme m = 2)				
qlim	(carico limite unitario)		561.14	683.48	(kN/m ²)
FS carico lir	mite F = qlim*B*/ N	Nmin	4.11	>	1.4
rs carico III	nite F = qiim 67 N	Nmay	4 35		1.4

CEDIMENTO DELLA FONDAZIONE

Muro di sostegno - Relazione di calcolo

 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 IF26
 12 E ZZ
 CL
 RI0505 003
 A
 80 di 87

CONDIZIONE SISMICA +

		DEL SOVRACCARICO	Γ	SLE	STR/GEO	EQU			
	0,5*γ*(H2+H	H3+H4+Hd) ² *ka	(kN/m)	54.81	54.81	70.77			
Sst1 sism = Ssq1 perm=		r)*(H2+H3+H4+Hd)2*kas*-Sst1 stat rH4+Hd)*kas*	(kN/m) (kN/m)	32.43 23.76	32.43 23.76	37.99 29.62			
Ssq1 acc =		+H4+Hd)*kas*	(kN/m)	0.00	0.00	0.00			
		ndizione sismica +							
Sst1h stat = Sst1h sism =	Sst1 stat*co Sst1 sism*c		(kN/m) (kN/m)	54.81 32.43	54.81 32.43	70.77 37.99			
Ssq1h perm= Ssq1h acc=	Ssq1 perm*	cosδ	(kN/m) (kN/m)	23.76 0.00	23.76 0.00	29.62 0.00			
			(KIVIII)	0.00	0.00	0.00			
Sst1v stat =	Sst1 stat*se		(kN/m)	0.00	0.00	0.00			
Sst1v sism = Ssq1v perm=	Sst1 sism*s Ssq1 perm*		(kN/m) (kN/m)	0.00	0.00	0.00			
Ssq1v acc=	Ssq1 acc*s		(kN/m)	0.00	0.00	0.00			
- Spinta passiva Sp=½*γ₁′(1+kv)	a sul dente) Hd ² *kps*+(2	'*c ₁ '*kps ^{+0.5} +γ1' (1+kv) kps ^{+*} H2')*Hd	(kN/m)	0.00	0.00	0.00			
MOMENTI DE		DEL TERRENO E DEL SOVRACCAR	RICO	SLE	STR/GEO	EQU			
MSst1 stat =	Set1h etat *	((H2+H3+H4+hd)/3-hd)	(kNm/m)	87.69	87.69	113.24			
MSst1 sism=	Sst1h sism*	((H2+H3+H4+Hd)/3-Hd)	(kNm/m)	51.89	51.89	60.79			
MSst2 stat = MSst2 sism =	Sst1v stat* Sst1v sism*		(kNm/m) (kNm/m)	0.00	0.00	0.00			
MSsq1 = MSsq2 =		2+H3+H4+Hd)/2-Hd)	(kNm/m) (kNm/m)	57.01 0.00	57.01 0.00	71.08 0.00			
MSp =		'/3+(2*c1'*kps* ^{0.5} +γ1'*kps**H2')*Hd ² /2	(kNm/m)	0.00	0.00	0.00			
MOMENTI DO	VIITI ALLE I	FORZE ESTERNE							
Mfext1 =	mp+ms		(kNm/m)		0.00				
Mfext2 = Mfext3 =	(fp+fs)*(H3 (vp+vs)*(B1	+ H2) +B2 + B3/2)	(kNm/m) (kNm/m)		0.00 30.38				
VERIFICA AL Risultante forze		<u>IMENTO</u>							
N =	Pm+ Pt + vp	p + vs + Sst1v + Ssq1v + Ps v + Ptsv		512.09	(kN/m)				
Risultante forze T =	Sst1h + Ssc	q1h + fp + fs +Ps h + Ptsh		203.77	(kN/m)				
Coefficiente di a	attrito alla bas tgφ1'	se (f)		0.65	(-)				
Fs =	(N*f + Sp)/T		1.63	>	1.1			
VERIFICA AL	RIBALTAM	IENTO							
Momento stabil	lizzante (Ms) Mm + Mt +	Mfeyt3		1275.09	(kNm/m)				
Momento ribalta	ante (Mr)	q+Mfext1+Mfext2+MSp+MPs+Mpts			(kNm/m)				
Fr =	Ms / Mr	q-ivilox(1-ivilox(2-iviop+ivil 3-ivipts		3.92	>	1			
VERIFICA A CARICO LIMITE DELLA FONDAZIONE									
Risultante forze verticali (N) Nmin Nmax									
N =	Pm+ Pt + vp	o + vs + Sst1v + Ssq1v + Ps v + Ptsv +	(Sovr acc)	512.09	512.09	(kN/m)			
Risultante forze orizzontali (T) $T = Sst1h + Ssq1h + fp + fs + Ps h + Ptsh - Sp $ 203.77 (k						(kN/m)			
Risultante dei n MM =	nomenti rispet ΣM	tto al piede di valle (MM)		956.58	956.58	(kNm/m)			
Momento risper	tto al baricent Xc*N - MM	tro della fondazione (M)		195.62	195.62	(kNm/m)			
Formula Gene	rale ner il Ca	ucolo dal Carico I imita Unitrario (Br	inch-Hanson 107	·n)					
Formula Generale per il Calcolo del Carico Limite Unitrario (Brinch-Hansen, 1970) Fondazione Nastriforme									
		0 5+ 4+D+N +:							
qlim = c'Nc*ic	+ q _o *Nq*iq +	0,5*γ1*Β*Νγ*ιγ							
c1' φ1'		rreno di fondaz. trito terreno di fondaz.		0.0 33.		(kN/mq) (°)			
γ1		i volume terreno fondaz.		18.		(kN/m³)			
$q_0 = \gamma d^*H2'$	sovraccario	co stabilizzante		29.	60	(kN/m²)			
e = M / N B*= B - 2e	eccentricità larghezza e			0.38 3.74	0.38 3.74	(m) (m)			
	-	stati valutati con le espressioni suggerit	e da Vesic (1975)			•			
$Nq = tg^2(45 + q$	o'/2)*e ^{(n*tg(φ'))}	(1 in cond. nd)		26.	09	(-)			
Nc = (Nq - 1)/tg	$N_c = (N_0 + 1)^t tg(e^t)$ (2+ π in cond. nd) 38.64 (-) $N_Y = 2^t (N_0 + 1)^t tg(e^t)$ (0 in cond. nd) 35.19 (-)								
I valori di ic, iq e i _Y sono stati valutati con le espressioni suggerite da Vesic (1975)									
I valori di ic, iq		i valutati con le espressioni suggerite d	a Vesic (1975)						
iq = (1 - T/(N +	e iγ sono stati B*c'cotgφ'))"		a Vesic (1975)	0.36	0.36	(-)			
iq = (1 - T/(N + ic = iq - (1 - iq)/	e iγ sono stati B*c'cotgφ')) ^{rr} /(Nq - 1)	1 (1 in cond. nd)	a Vesic (1975)	0.36 0.34 0.22	0.36 0.34 0.22	(-)			
iq = (1 - T/(N + ic = iq - (1 - iq)) $i\gamma = (1 - T/(N + ic = iq - iq))$	e iγ sono stati B*c'cotgφ')) ^{rr} /(Nq - 1) B*c'cotgφ')) ^{rr}	1 (1 in cond. nd)	a Vesic (1975)	0.34	0.34				
iq = (1 - T/(N + ic = iq - (1 - iq)/	e iγ sono stati B*c'cotgφ')) ^{rr} /(Nq - 1) B*c'cotgφ')) ^{rr}	(1 in cond. nd)	a Vesic (1975)	0.34	0.34	(-)			
iq = (1 - T/(N + ic = iq - (1 - iq)) $i\gamma = (1 - T/(N + iq))$ (fondazione nas	e iγ sono stati B*c'cotgφ')) ^π (/(Nq - 1) B*c'cotgφ')) ^m striforme m = (carico limite	(1 in cond. nd)	a Vesic (1975) Nmin	0.34 0.22	0.34 0.22	(-) (-)			

Muro di sostegno - Relazione di calcolo

COMMESSA LOTTO CODIFICA DOCUMENTO REV. FOGLIO

IF26 12 E ZZ CL RI0505 003 A 81 di 87

CONDIZIONE SISMICA -

Sst1 stat = Sst1 sism = Ssq1 perm= Ssq1 acc =	qp*(H2+H3+H qs*(H2+H3+H orizzontale cond	H2+H3+H4+Hd)²*kas"-Sst1 stat 4+Hd)*kas"	(kN/m) (kN/m) (kN/m)	54.81 22.36 25.77	54.81 22.36 25.77	70.77 24.96
Ssq1 perm= Ssq1 acc = Componente Sst1h stat = Sst1h sism = Ssq1h perm=	qp*(H2+H3+H qs*(H2+H3+H orizzontale cond	4+Hd)*kas*	(kN/m)			
Ssq1 acc = Componente Sst1h stat = Sst1h sism = Ssq1h perm=	qs*(H2+H3+H- orizzontale cond					31.97
Sst1h stat = Sst1h sism = Ssq1h perm=			(kN/m)	0.00	0.00	0.00
st1h sism = sq1h perm=	Set1 etat*coe					
Ssq1h perm=			(kN/m) (kN/m)	54.81 22.36	54.81 22.36	70.77 24.96
isq iii acc=	Ssq1 perm*co	sδ	(kN/m)	25.77	25.77 0.00	31.97
	Ssq1 acc*cos		(kN/m)	0.00	0.00	0.00
Componente st1v stat =	verticale condizi Sst1 stat*sena	one sismica -	(kN/m)	0.00	0.00	0.00
st1v sism =	Sst1 sism*sen	δ	(kN/m)	0.00	0.00	0.00
sq1v perm= sq1v acc=	Ssq1 perm*se Ssq1 acc*sen		(kN/m) (kN/m)	0.00	0.00	0.00
Spinta passiv		*kps ^{-0.5} +γ1' (1-kv) kps ⁻ *H2')*Hd	(kN/m)	0.00	0.00	0.00
μ=/2 γ ₁ (1-κν) nu kps+(2 c ₁	κρο +γι (1-κν) κρο riz) riu	(KIVIII)	0.00	0.00	0.00
IOMENTI DE Condizione si		EL TERRENO E DEL SOVRACCAR	ICO	SLE	STR/GEO	EQU
Sst1 stat =	Sst1h stat * ((H2+H3+H4+hd)/3-hd)	(kNm/m)	87.69	87.69	113.24
ISst1 sism= ISst2 stat =	Sst1h sism* ((Sst1v stat* B	H2+H3+H4+Hd)/3-Hd)	(kNm/m) (kNm/m)	35.77 0.00	35.77 0.00	39.94 0.00
ISst2 sism =	Sst1v sism* B		(kNm/m)	0.00	0.00	0.00
Ssq1 = Ssq2 =	Ssq1h * ((H2+ Ssq1v * B	H3+H4+Hd)/2-Hd)	(kNm/m) (kNm/m)	61.85 0.00	61.85 0.00	76.73 0.00
Sp =		+(2*c1'*kps*0.5+γ1'*kps**H2')*Hd²/2	(kNm/m)	0.00	0.00	0.00
	OVUTI ALLE FO	RZE ESTERNE				
fext1 = fext2 =	mp+ms (fp+fs)*(H3 +	H2)	(kNm/m) (kNm/m)		0.00	
fext3 =	(vp+vs)*(B1 +		(kNm/m)		30.38	
RIFICA AI	LLO SCORRIM	<u>ENTO</u>				
ultante forz	e verticali (N) Pm+ Pt + vp +	vs + Sst1v + Ssq1v + Ps v + Ptsv		419.31	(kN/m)	
ultante forz	e orizzontali (T) Sst1h + Ssq1l	n + fp + fs +Ps h + Ptsh		195.71	(kN/m)	
efficiente di =	attrito alla base tgq1'			0.65	(-)	
s =	(N*f + Sp) /	т		1.39	>	1.1
DIFIC	,					
	L RIBALTAME	NI U				
mento stab =	ilizzante (Ms) Mm + Mt + Mi	fext3		1275.09	(kNm/m)	
omento ribal	tante (Mr) MSst+MSsq+	Mfext1+Mfext2+MSp+MPs+Mpts		517.20	(kNm/m)	
· =	Ms/Mr	•		2.47	>	1
RIFICA A	CARICO I IMIT	E DELLA FONDAZIONE				
ultante forz	e verticali (N)			Nmin	Nmax	
=		vs + Sst1v + Ssq1v + Ps v + Ptsv		419.31	419.31	(kN/m)
=	Sst1h + Ssq1i	n + fp + fs +Ps h + Ptsh - Sp		195.	71	(kN/m)
sultante dei	momenti rispetto ΣΜ	al piede di valle (MM)		761.01	761.01	(kNm/m)
omento rispe =	etto al baricentro Xc*N - MM	della fondazione (M)		182.44	182.44	(kNm/m)
ormula Gen	erale per il Calc	olo del Carico Limite Unitrario (Bri	nch-Hansen, 19	70)		
ndazione Na	striforme					
im = c'Nc*ic	+ q ₀ *Nq*iq + 0,	5*γ1*B*Nγ*iγ				
1'	coesione terre			0.0		(kN/mq)
1'		o terreno di fondaz. volume terreno fondaz.		33.0 18.5		(°) (kN/m³)
_=γd*H2'	sovraccarico			29.0		(kN/m ²)
		otaum22d1RE				
= M / N = B - 2e	eccentricità larghezza equ	ivalente		0.44 3.63	0.44 3.63	(m) (m)
	Nq e Ng sono sta	iti valutati con le espressioni suggerite	e da Vesic (1975	i)		
1 = tg ² (45 +	φ'/2)*e ^{(π*tg(φ'))} (1 in cond. nd)		26.0	09	(-)
	g(φ')	(2+π in cond. nd) (0 in cond. nd)		38.0 35.1	64	(-) (-)
		alutati con le espressioni suggerite da	a Vesic (1975)			
y = 2*(Nq + 1	e iγ sono stati v					
= 2*(Nq + 1 alori di ic, iq = (1 - T/(N +	+ B*c'cotgφ')) ^m	(1 in cond. nd)		0.28	0.28	(-)
= 2*(Nq + 1 alori di ic, iq = (1 - T/(N + = iq - (1 - iq)	+ B*c'cotgφ')) ^m //(Nq - 1)	(1 in cond. nd)		0.26	0.26	(-)
= (1 - T/(N + = iq - (1 - iq) = (1 - T/(N +	+ B*c'cotgφ')) ^m)/(Nq - 1) · B*c'cotgφ')) ^{m+1}	(1 in cond. nd)				
= 2*(Nq + 1 alori di ic, iq = (1 - T/(N + = iq - (1 - iq) : (1 - T/(N + ndazione na	+ B*c'cotgφ')) ^m //(Nq - 1) · B*c'cotgφ')) ^{m+1} striforme m = 2)			0.26 0.15	0.26 0.15	(-) (-)
= 2*(Nq + 1 alori di ic, iq = (1 - T/(N + = iq - (1 - iq) = (1 - T/(N +	+ B*c'cotgφ')) ^m)/(Nq - 1) · B*c'cotgφ')) ^{m+1}		Nmin	0.26	0.26	(-)

Muro di sostegno - Relazione di calcolo

COMMESSA LOTTO CODIFICA DOCUMENTO IF26 12 E ZZ RI0505 003 CL

FOGLIO 82 di 87

RFV

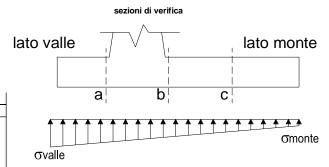
Α

13.2 VERIFICHE STRUTTURALI DEL MURO - SLU/SLV

Verifica allo Stato Limite Ultimo

CALCOLO SOLLECITAZIONI SOLETTA DI FONDAZIONE

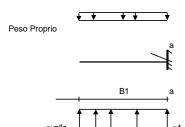
Reazione del terreno


 σ valle = N/A+M/Wgg

 σ monte = N/A-M/Wgg

A = 1.0*B4.50 (m²)

 $Wgg = 1.0*B^2/6$ 3.38 (m^3)


	N	М	σvalle	σmonte
caso	[kN]	[kNm]	[kN/m ²]	[kN/m ²]
statico	478.66	238.89	177.15	35.59
	689.71	38.39	164.64	141.89
sisma+	512.09	195.62	171.76	55.83
sisina+	512.09	195.62	171.76	55.83
sisma-	419.31	182.44	147.24	39.12
	419.31	182.44	147.24	39.12

Mensola Lato Valle

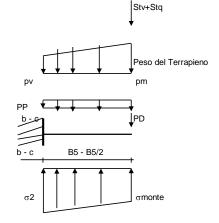
Peso Proprio. 20.00 (kN/m) $Ma = \sigma 1*B1^2/2 + (\sigma valle - \sigma 1)*B1^2/3 - PP*B1^2/2*(1\pm kv)$ $Va = \sigma 1*B1 + (\sigma valle - \sigma 1)*B1/2 - PP*B1*(1±kv)$

	σvalle	σ1	Ma	Va
caso	[kN/m ²]	[kN/m ²]	[kNm]	[kN]
atation	177.15	145.69	73.33	141.42
statico	164.64	159.59	71.48	142.12
sisma+	171.76	146.00	70.57	136.85
	171.76	146.00	71.59	136.85
sisma-	147.24	123.21	60.63	113.19
sisma-	147.24	123.21	59.61	113.19

Mensola Lato Monte

PP	=	20.00	(kN/m^2)	peso proprio soletta fondazione
PD	=	0.00	(kN/m)	peso proprio dente

			•	•	
		Nmin	N max stat	N max sism	
pm	=	98.72	169.07	98.72	(kN/m^2)
pvb	=	98.72	169.07	98.72	(kN/m^2)
pvc	=	98.72	169.07	98.72	(kN/m^2)


 $Mb = (\sigma_{monte} - (pvb + PP)^*(1 \pm kv))^*B5^2/2 + (\sigma 2b - \sigma_{monte})^*B5^2/6 - (pm - pvb))^*(1 \pm kv)^*B5^2/3 + (\sigma 2b - \sigma_{monte})^*B5^2/6 - (pm - pvb))^*(1 \pm kv)^*B5^2/3 + (\sigma 2b - \sigma_{monte})^*B5^2/6 - (pm - pvb))^*(1 \pm kv)^*B5^2/3 + (\sigma 2b - \sigma_{monte})^*B5^2/6 - (pm - pvb))^*(1 \pm kv)^*B5^2/3 + (\sigma 2b - \sigma_{monte})^*B5^2/6 - (pm - pvb))^*(1 \pm kv)^*B5^2/3 + (\sigma 2b - \sigma_{monte})^*B5^2/6 - (pm - pvb))^*(1 \pm kv)^*B5^2/3 + (\sigma 2b - \sigma_{monte})^*B5^2/6 - (pm - pvb))^*(1 \pm kv)^*B5^2/3 + (\sigma 2b - \sigma_{monte})^*B5^2/6 - (pm - pvb))^*(1 \pm kv)^*B5^2/3 + (\sigma 2b - \sigma_{monte})^*B5^2/6 - (pm - pvb))^*(1 \pm kv)^*B5^2/3 + (\sigma 2b - \sigma_{monte})^*B5^2/6 - (pm - pvb)^*(1 \pm kv)^*B5^2/3 + (\sigma 2b - \sigma_{monte})^*B5^2/6 - (pm - pvb)^*(1 \pm kv)^*B5^2/3 + (\sigma 2b - \sigma_{monte})^*B5^2/6 - (pm - pvb)^*(1 \pm kv)^*B5^2/3 + (\sigma 2b - \sigma_{monte})^*B5^2/6 - (pm - pvb)^*(1 \pm kv)^*B5^2/3 + (\sigma 2b - \sigma_{monte})^*B5^2/6 - (pm - pvb)^*(1 \pm kv)^*B5^2/3 + (\sigma 2b - \sigma_{monte})^*B5^2/6 - (pm - pvb)^*(1 \pm kv)^*B5^2/3 + (\sigma 2b - \sigma_{monte})^*B5^2/6 - (pm - pvb)^*(1 \pm kv)^*B5^2/6 + (pm - pvb)^*(1 \pm kv)^*B5^2/6 - (pm - pvb)^*(1 \pm kv)^*B5^2/6 + (p$ $-(Stv+Sqv)^*B5-PD^*(1\pm kv)^*(B5-Bd/2)-PD^*kh^*(Hd+H2/2)+Msp+Sp^*H2/2$

 $Mc = (\sigma_{monte} - (pvc + PP)^*(1 \pm kv))^*(B5/2)^2/2 + (\sigma 2c - \sigma_{monte})^*(B5/2)^2/6 - (pm - pvc)^*(1 \pm kv)^*(B5/2)^2/3 + (\sigma 2c - \sigma_{monte})^*(B5/2)^2/6 - (pm - pvc)^*(B5/2)^2/3 + (\sigma 2c - \sigma_{monte})^*(B5/2)^2/6 - (pm - pvc)^*(B5/2)^2/3 + (\sigma 2c - \sigma_{monte})^*(B5/2)^2/6 - (pm - pvc)^*(B5/2)^2/3 + (\sigma 2c - \sigma_{monte})^*(B5/2)^2/6 - (pm - pvc)^*(B5/2)^2/3 + (\sigma 2c - \sigma_{monte})^*(B5/2)^2/6 - (pm - pvc)^*(B5/2)^2/3 + (\sigma 2c - \sigma_{monte})^*(B5/2)^2/6 - (pm - pvc)^*(B5/2)^2/3 + (\sigma 2c - \sigma_{monte})^*(B5/2)^2/3 + (\sigma 2c - \sigma_{monte})^2/3 + (\sigma 2c - \sigma_$ $-(Stv+Sqv)^{\star}(B5/2)-PD^{\star}(1\pm kv)^{\star}(B5/2-Bd/2)-PD^{\star}kh^{\star}(Hd+H2/2)+Msp+Sp^{\star}H2/2$

 $Vb = (\sigma_{monte} - (pvb + PP)^*(1 \pm kv))^*B5 + (\sigma 2b - \sigma_{monte})^*B5/2 - (pm - pvb))^*(1 \pm kv)^*B5/2 - (Stv + Sqv) - PD^*(1 \pm kv)$

 $Vc = (\sigma_{monte} - (pvc + PP)^*(1 \pm kv))^*(B5/2) + (\sigma 2c - \sigma_{monte})^*(B5/2)/2 - (pm-pvc)^*(1 \pm kv)^*(B5/2)/2 - (Stv + Sqv) - PD^*(1 \pm kv)$

	σmonte	σ2b	Mb	Vb	σ2c	Мс	Vc
caso	[kN/m ²]	[kN/m ²]	[kNm]	[kN]	[kN/m ²]	[kNm]	[kN]
statico	35.59	129.96	-232.53	-107.83	82.78	-75.83	-89.31
statico	141.89	157.06	-189.54	-118.78	149.48	-50.23	-65.08
oiomo .	55.83	133.12	-221.39	-108.95	94.48	-69.84	-83.46
sisma+	55.83	133.12	-221.39	-108.95	94.48	-69.84	-83.46
aiama	39.12	111.20	-195.74	-94.46	75.16	-62.45	-74.26
sisma-	39.12	111.20	-195.74	-94.46	75.16	-62.45	-74.26

RI A

ITINERARIO NAPOLI – BARI RADDOPPIO TRATTA CANCELLO-BENEVENTO II LOTTO FUNZIONALE FRASSO TELESINO – VITULANO 1° LOTTO FUNZIONALE FRASSO TELESINO – TELESE PROGETTO ESECUTIVO

Muro di sostegno - Relazione di calcolo

 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 IF26
 12 E ZZ
 CL
 RI0505 003
 A
 83 di 87

CALCOLO SOLLECITAZIONI PARAMENTO VERTICALE DEL MURO

Azioni sulla parete e Sezioni di Calcolo

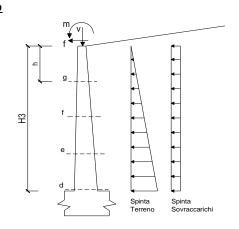
Mt stat = $\frac{1}{2} \text{Ka}_{\text{orizz.}}^* \gamma^* (1 \pm kv)^* h^2 + h/3$

 $Mt \ sism = \ \ {^{1\!\!\!/}_{2}} \ \ {^{*}} \ \gamma \ \ {^{*}} (Kas_{orizz.} \ \ {^{*}} (1\pm kv) - Ka_{orizz.}) {^{*}} h^{2*} h/2 \quad \ o \ \ {^{*}} h/3$

 $\begin{array}{lll} Mq & = \frac{1}{2} \ Ka_{\text{orizz}} *q * h^2 \\ M_{\text{ext}} & = \ m + f * h \\ M_{\text{inerzia}} & = \ \Sigma Pm_i * b_i * kh \end{array}$

ilieizia i i

 N_{ext} = v $N_{pp+inerzia}$ = $\Sigma Pm_i^*(1\pm kv)$


Vt stat = $\frac{1}{2} \text{Ka}_{\text{orizz.}}^{*} \gamma^* (1 \pm kv)^* h^2$

 $Vt \ sism = \ \ \frac{1}{2} * \gamma * (Kas_{orizz} * (1\pm kv) - Ka_{orizz}) * h^2$

 $Vq = Ka_{orizz}^{}*q*h$

 $V_{ext} = f$

 $V_{inerzia} = \Sigma Pm_i^*kh$

condizione statica

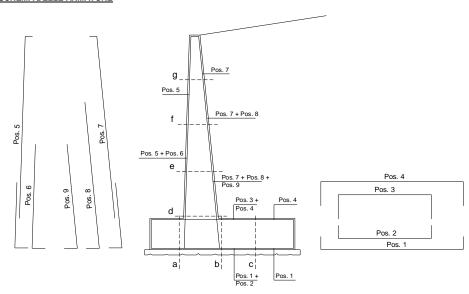
sezione	h	Mt	Mq	M _{ext}	M _{tot}	N _{ext}	N _{pp}	N _{tot}
30210110	[m]	m] [kNm/m]	[kNm/m]	[kNm/m]	[kNm/m]	[kN/m]	[kN/m]	[kN/m]
d-d	4.00	65.97	169.51	70.50	305.98	22.50	70.00	92.50
e-e	3.00	27.83	95.35	60.00	183.18	22.50	52.50	75.00
f-f	2.00	8.25	42.38	49.50	100.12	22.50	35.00	57.50
g-g	1.00	1.03	10.59	39.00	50.62	22.50	17.50	40.00

sezione	h	Vt	Vq	V _{ext}	V_{tot}
36210116	[m]	[kN/m]	[kN/m]	[kN/m]	[kN/m]
d-d	4.00	49.48	84.75	10.50	144.73
e-e	3.00	27.83	63.56	10.50	101.90
f-f	2.00	12.37	42.38	10.50	65.25
g-g	1.00	3.09	21.19	10.50	34.78

condizione sismica +

sezione	h	Mt stat	Mt sism	Mq	M _{ext}	M _{inerzia}	M _{tot}	N _{ext}	N _{pp+inerzia}	N _{tot}
	[m]	[kNm/m]	[kNm/m]	[kNm/m]	[kNm/m]	[kNm/m]	[kNm/m]	[kN/m]	[kN/m]	[kN/m]
d-d	4.00	50.75	30.03	39.59	0.00	28.47	148.85	22.50	77.12	99.62
e-e	3.00	21.41	12.67	22.27	0.00	16.02	72.37	22.50	57.84	80.34
f-f	2.00	6.34	3.75	9.90	0.00	7.12	27.11	22.50	38.56	61.06
g-g	1.00	0.79	0.47	2.47	0.00	1.78	5.52	22.50	19.28	41.78

sezione	h	Vt stat	Vt sism	Vq	V _{ext}	V _{inerzia}	V _{tot}
	[m]	[kN/m]	[kN/m]	[kN/m]	[kN/m]	[kN/m]	[kN/m]
d-d	4.00	38.06	22.52	19.80	0.00	14.24	94.62
e-e	3.00	21.41	12.67	14.85	0.00	10.68	59.60
f-f	2.00	9.52	5.63	9.90	0.00	7.12	32.16
g-g	1.00	2.38	1.41	4.95	0.00	3.56	12.29


condizione sismica -

sezione	h	Mt stat	Mt sism	Mq	M _{ext}	M _{inerzia}	M _{tot}	N _{ext}	N _{pp+inerzia}	N_{tot}
	[m]	[kNm/m]	[kNm/m]	[kNm/m]	[kNm/m]	[kNm/m]	[kNm/m]	[kN/m]	[kN/m]	[kN/m]
d-d	4.00	50.75	20.70	42.95	0.00	28.47	142.87	22.50	62.88	85.38
e-e	3.00	21.41	8.73	24.16	0.00	16.02	70.32	22.50	47.16	69.66
f-f	2.00	6.34	2.59	10.74	0.00	7.12	26.79	22.50	31.44	53.94
g-g	1.00	0.79	0.32	2.68	0.00	1.78	5.58	22.50	15.72	38.22

sezione	h	Vt stat	Vt sism	Vq	V _{ext}	V _{inerzia}	V _{tot}
	[m]	[kN/m]	[kN/m]	[kN/m]	[kN/m]	[kN/m]	[kN/m]
d-d	4.00	38.06	15.53	21.48	0.00	14.24	89.30
e-e	3.00	21.41	8.73	16.11	0.00	10.68	56.93
f-f	2.00	9.52	3.88	10.74	0.00	7.12	31.25
g-g	1.00	2.38	0.97	5.37	0.00	3.56	12.28

SCHEMA DELLE ARMATURE

ARMATURE

Sez.	М	N	h	Af	A'f	Mu
(-)	(kNm)	(kN)	(m)	(cm ²)	(cm ²)	(kNm)
a - a	73.33	0.00	0.80	12.72	12.72	352.82
b - b	-232.53	0.00	0.80	12.72	12.72	352.82
C - C	-75.83	0.00	0.80	12.72	12.72	352.82
d - d	305.98	92.50	0.70	20.11	10.05	504.92
e -e	183.18	75.00	0.70	20.11	10.05	499.56
f - f	100.12	57.50	0.70	20.11	10.05	494.20
g - g	50.62	40.00	0.70	20.11	10.05	488.83

(n.b.: M+ tende le fibre di intradosso, M- tende le fibre di estradosso)

Sez.	V_{Ed}	h	V_{rd}	ø staffe	i orizz.	i vert.	θ	V_{Rsd}	
(-)	(kN)	(m)	(kN)	(mm)	(cm)	(cm)	(°)	(kN)	- -
a - a	142.12	0.80	261.95	10	40	40	21.8	313.86	Armatura a taglio non necessaria
b - b	118.78	0.80	261.95	10	40	40	21.8	313.86	Armatura a taglio non necessaria
c - c	89.31	0.80	261.95	10	40	40	21.8	313.86	Armatura a taglio non necessaria
d - d	144.73	0.70	263.99	10	40	40	21.8	272.56	Armatura a taglio non necessaria
e -e	101.90	0.70	261.51	10	40	40	21.8	272.56	Armatura a taglio non necessaria
f - f	65.25	0.70	259.04	10	40	40	21.8	272.56	Armatura a taglio non necessaria
g - g	34.78	0.70	256.56	10	40	40	21.8	272.56	Armatura a taglio non necessaria

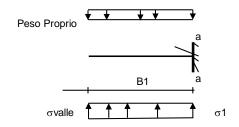
13.3 VERIFICHE DEL MURO A FESSURAZIONE - COMBINAZIONE RARA

VERIFICA A FESSURAZIONE

CALCOLO SOLLECITAZIONI SOLETTA DI FONDAZIONE

Reazione del terreno

 $\sigma valle = N / A + M / Wgg$ $\sigma monte = N / A - M / Wgg$ A = 1.0*B = 4.50 (m²) Wgg = 1.0*B²/6 = 3.38 (m³)

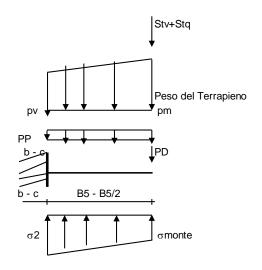

	N	M	σvalle	σmonte
caso	[kN]	[kNm]	[kN/m²]	[kN/m²]
Eroa	465.70	122.49	139.78	67.20
Freq.	606.40	-11.17	131.44	138.07
Q.P.	465.70	-6.03	101.70	105.28
Q.F.	465.70	-6.03	101.70	105.28

lato valle lato monte a b c Omonte

Mensola Lato Valle

Peso Proprio. PP = 20.00 (kN/m) Ma = σ 1*B1²/2 + (σ valle - σ 1)*B1²/3 - PP*B1²/2*(1±kv)

	σvalle	σ1	Ма
caso	[kN/m ²]	[kN/m²]	[kNm]
_	139.78	123.65	57.20
Freq.	131.44	132.92	55.97
0.0	101.70	102.50	40.98
Q.P.	101.70	102.50	40.98

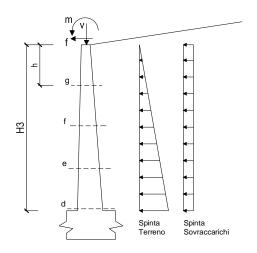

Mensola Lato Monte

PP	=	20.00	(kN/m²)	p	eso proprio soletta fondazione
PD	=	0.00	(kN/m)	р	eso proprio dente
			•	•	
		Nmin	N max Freq	N max QP	
pm	=	94.40	141.30	94.40	(kN/m²)
pvb	=	94.40	141.30	94.40	(kN/m²)
pvc	=	94.40	141.30	94.40	(kN/m^2)

$$\label{eq:monte-pvb+PP)} \begin{split} \text{Mb=}(\sigma_{\text{monte}}(\text{pvb+PP}))^*\text{B5}^2/2 + (\sigma 2\text{b} - \sigma_{\text{monte}})^*\text{B5}^2/6 - (\text{pm-pvb}))^*\text{B5}^2/3 + \\ -(\text{Stv+Sqv})^*\text{B5-PD}^*(\text{B5-Bd/2}) + \text{Msp+Sp*H2/2} \end{split}$$

 $\begin{aligned} &\text{Mc} = &(\sigma_{monte} \cdot (pvc + PP))^*(B5/2)^2/2 + (\sigma_2 c - \sigma_{monte})^*(B5/2)^2/6 - (pm-pvc)^*(B5/2)^2/3 + \\ &- (Stv + Sqv)^*(B5/2) - PD^*(B5/2 - Bd/2) + Msp + Sp^*H2/2 \end{aligned}$

	σmonte	σ2b	Mb	σ2c	Мс
caso	[kN/m ²]	[kN/m ²]	[kNm]	[kN/m²]	[kNm]
F===	67.20	115.59	-139.83	91.39	-44.03
Freq.	138.07	133.65	-111.17	135.86	-26.97
Q.P.	105.28	102.89	-44.63	104.08	-10.71
Q.P.	105.28	102.89	-44.63	104.08	-10.71


Muro di sostegno - Relazione di calcolo

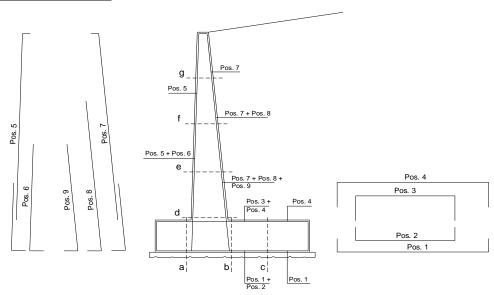
COMMESSA LOTTO CODIFICA DOCUMENTO REV. FOGLIO

1F26 12 E ZZ CL RI0505 003 A 86 di 87

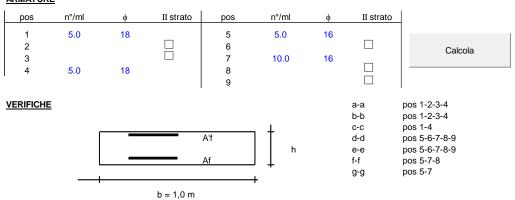
CALCOLO SOLLECITAZIONI PARAMENTO VERTICALE DEL MURO

Azioni sulla parete e Sezioni di Calcolo

condizione Frequente


			00					
sezione	h	Mt	Mq	M_{ext}	M_{tot}	N _{ext}	N_{pp}	N _{tot}
30210110	[m]	[kNm/m]	[kNm/m]	[kNm/m]	[kNm/m]	[kN/m]	[kN/m]	[kN/m]
d-d	4.00	50.75	116.66	47.00	214.41	22.50	70.00	92.50
e-e	3.00	21.41	65.62	40.00	127.03	22.50	52.50	75.00
f-f	2.00	6.34	29.16	33.00	68.51	22.50	35.00	57.50
g-g	1.00	0.79	7.29	26.00	34.08	22.50	17.50	40.00

condizione Quasi Permanente


	Condizione Quasi i ermanente										
sezione	h	Mt	Mq	$M_{\rm ext}$	M _{tot}	N _{ext}	N_{pp}	N _{tot}			
SCZIONE	[m]	[kNm/m]	[kNm/m]	[kNm/m]	[kNm/m]	[kN/m]	[kN/m]	[kN/m]			
d-d	4.00	50.75	27.40	0.00	78.15	22.50	70.00	92.50			
e-e	3.00	21.41	15.41	0.00	36.82	22.50	52.50	75.00			
f-f	2.00	6.34	6.85	0.00	13.19	22.50	35.00	57.50			
g-g	1.00	0.79	1.71	0.00	2.51	22.50	17.50	40.00			

SCHEMA DELLE ARMATURE

ARMATURE

condizione Frequente

Sez.	М	N	h	Af	A'f	σο	σf	wk	$\mathbf{W}_{\mathrm{amm}}$
(-)	(kNm)	(kN)	(m)	(cm ²)	(cm ²)	(N/mm ²)	(N/mm²)	(mm)	(mm)
a - a	57.20	0.00	0.80	12.72	12.72	0.95	62.95	0.062	0.300
b - b	-139.83	0.00	0.80	12.72	12.72	2.33	153.88	0.152	0.300
c - c	-44.03	0.00	0.80	12.72	12.72	0.73	48.45	0.048	0.300
d - d	214.41	92.50	0.70	20.11	10.05	3.93	154.92	0.108	0.300
е -е	127.03	75.00	0.70	20.11	10.05	2.35	87.40	0.061	0.300
f - f	68.51	57.50	0.70	20.11	10.05	1.28	43.50	0.030	0.300
g - g	34.08	40.00	0.70	20.11	10.05	0.64	19.29	0.013	0.300

(n.b.: M+ tende le fibre di intradosso, M- tende le fibre di estradosso)

condizione Quasi Permanente

Sez.	М	N	h	Af	A'f	σο	σf	wk	$\mathbf{w}_{\mathrm{amm}}$	_
(-)	(kNm)	(kN)	(m)	(cm ²)	(cm ²)	(N/mm ²)	(N/mm ²)	(mm)	(mm)	_
a - a	40.98	0.00	0.80	12.72	12.72	0.68	45.10	0.045	0.300	
b - b	-44.63	0.00	0.80	12.72	12.72	0.74	49.11	0.049	0.300	
c - c	-10.71	0.00	0.80	12.72	12.72	0.18	11.79	0.012	0.300	
d - d	78.15	92.50	0.70	20.11	10.05	1.48	44.08	0.031	0.300	
е -е	36.82	75.00	0.70	20.11	10.05	0.70	14.83	0.010	0.300	
f - f	13.19	57.50	0.70	20.11	10.05	0.25	1.56	0.001	0.300	
g - g	2.51	40.00	0.70	20.11	10.05	0.00	-	-	0.300	sez. compre