COMMITTENTE:

DIREZIONE LAVORI:

APPALTATORE:

PROGETTAZIONE:	PROGETTISTA:	DIRETTORE DELLA PROGETTAZIONE
RAGGRUPPAMENTO TEMPORANEO PROGETTISTI	Prof. Ing. Marco PETRANGELI	Ing. Piergiorgio GRASSO
ENGINEERING INTEGRA RIA		Responsabile integrazione fra le varie prestazioni specialistiche pott. hg. pierrorgio prestazione fra le varie
DDOOCTTO FCCOUTIVO		Miono * Onle

PROGETTO ESECUTIVO

ITINERARIO NAPOLI - BARI RADDOPPIO TRATTA CANCELLO-BENEVENTO II LOTTO FUNZIONALE FRASSO TELESINO – VITULANO 1° LOTTO FUNZIONALE FRASSO TELESINO - TELESE

VI04 – VIADOTTO dal km 19+741,00 al km 19+775,55: Viadotto Maltempo

Pila P1: Relazione di calcolo

APPALTATORE IMPRESA PIZZAROTTI & C. S. p. A. Dott, lore Table Balzo To Spino DEL BALZO 24/02/2020		SCALA:
COMMESSA LOTTO FASE	ENTE TIPO DOC. OPERA/DISCIPLINA PROGR. REV	'.

Rev.	Descrizione	Redatto	Data	Verificato	Data	Approvato	Data	Autorizzato Data
Α	Emissione	F. Del Drago	24/02/2020	G. Usai	24/02/2020	P. Grasso	24/02/2020	M. Petrangeli
		47)		QW.		4		MARCO AC
				ļ				1,71
								ORDINE INGEGNERI ROMA N. O.
								8 18744 27
								mine the constant
								24/02/2020

File: IF26.1.2.E.ZZ.CL.VI.04.0.5.001.A.docx n. Elab.:

Indice

1 P	REMESSA	5
2 N	ORMATIVA E DOCUMENTI DI RIFERIMENTO	6
2.1	NORMATIVE	6
2.2	ELABORATI DI RIFERIMENTO	
3 M	IATERIALI	8
3.1	CALCESTRUZZO PER FUSTO PILA E PULVINO	8
3.2	CALCESTRUZZO PER PLINTO DI FONDAZIONE	9
3.3	CALCESTRUZZO PER PALI DI FONDAZIONE	10
3.4	ACCIAIO PER BARRE DI ARMATURA	11
4 C	ARATTERIZZAZIONE GEOTECNICA ED ASPETTI IDRAULICI	12
4.1	CARATTERIZZAZIONE GEOTECNICA	12
4.2	ASPETTI IDRAULICI	12
5 D	ESCRIZIONE DELLA STRUTTURA	13
	NALISI DEI CARICHI	
6.1		
	1.1 PESO PROPRIO IMPALCATI	
	1.2 PESO PROPRIO PILA	
	PERMANENTI NON STRUTTURALI (G2)	
	2.1 BALLAST (G21)	
	2.2 PERMANENTI NON STRUTTURALI GENERICI (G22)	
	2.3 RIEMPIMENTO PILA E TERRENO DI RICOPRIMENTO	
6.3	CARICHI DA TRAFFICO	
	3.1 CARICHI VERTICALI DA TRAFFICO (Q1)	
•	3.2 AZIONI DI AVVIAMENTO E FRENATURA (Q2)	
	3.3 FORZA CENTRIFUGA (Q3)	
	3.4 SERPEGGIO (Q4)	
6.4	CARICHI VARIABILI (Q5)	
6.	4.1 AZIONI DEL VENTO (Q51)	91
6.5	AZIONI INDIRETTE (Q6)	102

RI A

ITINERARIO NAPOLI – BARI RADDOPPIO TRATTA CANCELLO-BENEVENTO II LOTTO FUNZIONALE FRASSO TELESINO – VITULANO 1° LOTTO FUNZIONALE FRASSO TELESINO – TELESE

CL

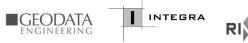
REV.

Α

VI0405 001

FOGLIO

3 di 149


PROGETTO ESECUTIVO

12 E ZZ

IF26

Pila P01: Relazione di calcolo

	6.5.	1 RESISTENZE PARASSITE NEI VINCOLI (Q61)	102
	6.6	EFFETTI D'INTERAZIONE (Q7)	104
	6.6.	1 VARIAZIONI TERMICHE DELL'IMPALCATO (Q71)	
		2 AZIONI DI FRENATURA E AVVIAMENTO	
	6.6.	3 INFLESSIONE DELL'IMPALCATO DOVUTA AI CARICHI VERTICALI DA TRAFFICO	105
	6.7	AZIONI SISMICHE (E)	106
	6.7.	1 SPETTRI DI PROGETTO ALLO SLV	107
7	co	MBINAZIONI DI CARICO	110
8	AN	ALISI DELLE SOLLECITAZIONI	114
	8.1	MODELLO DI CALCOLO	114
	8.2	MASSE E FORZE SISMICHE	115
	8.3	ANALISI MODALE	120
	8.4	CARICHI ELEMENTARI	121
	8.4.	1 RIEPILOGO DEGLI SCARICHI DALL'IMPALCATO	
	8.5	SOLLECITAZIONI DI CALCOLO	125
	8.5.		
	8.5.	2 SOLLECITAZIONI ALL'INTRADOSSO DEL PLINTO DI FONDAZIONE	128
	8.5.	1 SOLLECITAZIONI DISTRIBUITE IN TESTA AI PALI DI FONDAZIONE	128
9	VE	RIFICHE STRUTTURALI DEL FUSTO PILA	129
	9.1	GEOMETRIA DELLA SEZIONE DI VERIFICA E ARMATURA	129
	-	1 ARMATURA LONGITUDINALE	
		2 ARMATURA TRASVERSALE	
	9.1.	3 VERIFICA DELL'ARMATURA MINIMA	130
	9.2	VERIFICA SLU A FLESSIONE	133
	9.3	VERIFICA SLU A TAGLIO	134
	9.4	VERIFICA SLE TENSIONALE	135
	9.5	VERIFICA SLE A FESSURAZIONE	136
	9.6	VERIFICA DEGLI SPOSTAMENTI	136
1	0 VE	RIFICHE STRUTTURALI DEI PALI DI FONDAZIONE	137
	10.1	GEOMETRIA DELLA SEZIONE DI VERIFICA E ARMATURA	137
	10.2	VERIFICA SLU A PRESSOFLESSIONE	138
	10.3	VERIFICA SLU A TAGLIO	139

RI A

ITINERARIO NAPOLI – BARI RADDOPPIO TRATTA CANCELLO-BENEVENTO II LOTTO FUNZIONALE FRASSO TELESINO – VITULANO 1º LOTTO FUNZIONALE FRASSO TELESINO – TELESE

PROGETTO ESECUTIVO

FOGLIO COMMESSA LOTTO CODIFICA DOCUMENTO REV. Pila P01: Relazione di calcolo IF26 12 E ZZ VI0405 001 4 di 149 CL Α

10.4	VERIFICA SLE TENSIONALE	140
10.5	VERIFICA SLE A FESSURAZIONE	140
11 VE	RIFICHE STRUTTURALI DEL PLINTO DI FONDAZIONE	141
11.1	VERIFICHE SLU-SLE CON MECCANISMO TIRANTE-PUNTONE	141
11.	1.1 GEOMETRIA DEL TIRANTE-PUNTONE	143
11.	1.2 SEZIONE DEL TIRANTE DI ARMATURA E DELLA BIELLA COMPRESSA	144
11.	1.3 VERIFICHE SLU DELLE TENSIONI NORMALI	145
11.	1.4 VERIFICHE SLE DELLE TENSIONI NORMALI	146
11.2	VERIFICA SLU A PUNZONAMENTO	146
11.3	VERIFICA SLE A FESSURAZIONE	148
12 IN	CIDENZE	149

1 PREMESSA

Nell'ambito dell' *Itinerario Napoli-Bari* si inserisce il *Raddoppio della Tratta Cancello – Benevento -* 2° *Lotto Funzionale Frasso Telesino - Vitulano* oggetto della Progettazione Esecutiva in esame.

Oggetto della presente relazione è il dimensionamento degli elementi in elevazione e fondazione costituenti la Pila P1 del *Viadotto Maltempo_VI04*.

Nella presente relazione sono riportati in forma sintetica i risultati della analisi delle sollecitazioni e delle verifiche strutturali del fusto pila, del plinto di fondazione e dei pali di fondazione della pila P1.

Pila	H fusto [m]	H tot [m]
P1	6.8	6.9

Nell'allegato 2 alla presente relazione sono riportati in forma completa i risultati delle analisi delle sollecitazioni e delle verifiche strutturali della pila.

Nel seguito si procede al calcolo dello stato di sollecitazione ed alle verifiche dei vari elementi costituenti la pila, nei confronti degli Stati Limite Ultimi strutturali di presso-flessione e taglio e degli stati limite di esercizio di fessurazione e tensionale.

Si esegue inoltre la determinazione delle azioni massime sui pali di fondazione e la verifica del plinto di fondazione nei confronti degli stati limite ultimi e di esercizio strutturali.

Sono eseguite infine le verifiche strutturali dei pali di fondazione nei confronti degli stati limite ultimi e di esercizio strutturali.

2 NORMATIVA E DOCUMENTI DI RIFERIMENTO

2.1 NORMATIVE

Sono state prese a riferimento le seguenti Normative nazionali ed internazionali vigenti alla data di redazione del presente documento:

- [1] Ministero delle Infrastrutture, DM 14 gennaio 2008, «Approvazione delle nuove norme tecniche per le costruzioni»
- [2] Ministero delle Infrastrutture e Trasporti, circolare 2 febbraio 2009, n. 617 C.S.LL.PP., «Istruzioni per l'applicazione delle Nuove norme tecniche per le costruzioni di cui al decreto ministeriale 14 gennaio 2008»
- [3] Istruzione RFI DTC INC PO SP IFS 001 Specifica per la progettazione e l'esecuzione dei ponti ferroviari e di altre opere minori sotto binario
- [4] Istruzione RFI DTC INC CS SP IFS 001 Specifica per la progettazione geotecnica delle opere civili ferroviarie
- [5] Istruzione RFI DTC INC PO SP IFS 002 Specifica per la progettazione e l'esecuzione di cavalcavia e passerelle pedonali sulla sede ferroviaria
- [6] Istruzione RFI DTC INC PO SP IFS 003 Specifica per la verifica a fatica dei ponti ferroviari
- [7] Istruzione RFI DTC INC PO SP IFS 004 Specifica per la progettazione e l'esecuzione di impalcati ferroviari a travi in ferro a doppio T incorporate nel calcestruzzo
- [8] Istruzione RFI DTC INC PO SP IFS 005 Specifica per il progetto, la produzione, il controllo della produzione e la posa in opera dei dispositivi di vincolo e dei coprigiunti degli impalcati ferroviari e dei cavalcavia
- [9] Eurocodice 1 Azioni sulle strutture, Parte 1-4: Azioni in generale Azioni del vento (UNI EN 1991-1-4)
- [10] Regolamento (UE) N.1299/2014 della Commissione del 18 Novembre 2014 relativo alle specifiche tecniche di interoperabilità per il sottosistema "infrastruttura" del sistema ferroviario dell'Unione europea

2.2 ELABORATI DI RIFERIMENTO

Vengono presi a riferimento tutti gli elaborati grafici progettuali di pertinenza.

3 MATERIALI

3.1 CALCESTRUZZO PER FUSTO PILA E PULVINO

Classe C32/40			
R _{ck} =	40.00	MPa	Resistenza caratteristica cubica
$f_{ck} = 0.83 R_{ck} =$	33.20	MPa	Resistenza caratteristica cilindrica
$f_{cm} = f_{ck} + 8 =$	41.20	MPa	Valore medio resistenza cilindrica
$\alpha_{cc} =$	0.85		Coeff. rid. per carichi di lunga durata
γм =	1.50	-	Coefficiente parziale di sicurezza SLU
$f_{cd} = \alpha_{cc} \; f_{ck} / \gamma_M =$	18.81	MPa	Resistenza di progetto
$f_{ctm} = 0.3 f_{ck}^{(2/3)} =$	3.10	MPa	Resistenza media a trazione semplice
$f_{cfm} = 1,2 f_{ctm} =$	3.72	MPa	Resistenza media a trazione per flessione
$f_{ctk} = 0.7 f_{ctm} =$	2.17	MPa	Valore caratteristico resistenza a trazione (frattile 5%)
$\sigma_c = 0,55 \; f_{ck} =$	18.26	MPa	Tensione limite in esercizio in comb. Rara (rif. §1.8.3.2.1 [3])
$\sigma_c = 0,40 \; f_{ck} =$	13.28	MPa	Tensione limite in esercizio in comb. quasi perm. (rif. §1.8.3.2.1 [3])
$E_{cm} = 22000 (f_{cm}/10)^{(0,3)} =$	33643.00	MPa	Modulo elastico di progetto
v =	0.20		Coefficiente di Poisson
$G_c = E_{cm} / (2(1+v))=$	14018.00	MPa	Modulo elastico tangenziale di progetto
Condizioni ambientali =	Debolmer	nte aggre	ssive
Classe di esposizione =	XC4		
C =	4.00	cm	Copriferro minimo
w =	0.20	mm	Apertura massima fessure in esercizio in comb. Rara (rif. §1.8.3.2.4 [3])

GEODATA INTEGRA RIA	II LOTTO F	IO TRAT UNZION FUNZION	TA CANCEL ALE FRASS IALE FRASS	LO-BENEVENT O TELESINO – SO TELESINO –	VITULAN	
Pila P01: Relazione di calcolo	COMMESSA IF26	LOTTO 12 E ZZ	CODIFICA	DOCUMENTO VI0405 001	REV.	FOGLIO 9 di 149

3.2 CALCESTRUZZO PER PLINTO DI FONDAZIONE

Classe C28/35			
R _{ck} =	35.00	MPa	Resistenza caratteristica cubica
$f_{ck} = 0.83 R_{ck} =$	29.05	MPa	Resistenza caratteristica cilindrica
$f_{cm} = f_{ck} + 8 =$	37.05	MPa	Valore medio resistenza cilindrica
$\alpha_{cc} =$	0.85		Coeff. rid. per carichi di lunga durata
γ _M =	1.50	-	Coefficiente parziale di sicurezza SLU
$f_{cd} = \alpha_{cc} f_{ck}/\gamma_M =$	16.46	MPa	Resistenza di progetto
$f_{ctm} = 0.3 f_{ck}^{(2/3)} =$	2.83	MPa	Resistenza media a trazione semplice
$f_{cfm} = 1,2 f_{ctm} =$	3.40	MPa	Resistenza media a trazione per flessione
$f_{ctk} = 0.7 f_{ctm} =$	1.98	MPa	Valore caratteristico resistenza a trazione (frattile 5%)
$\sigma_c = 0,55 \; f_{ck} =$	15.98	MPa	Tensione limite in esercizio in comb. Rara (rif. §1.8.3.2.1 [3])
$\sigma_c = 0,40 \; f_{ck} =$	11.62	MPa	Tensione limite in esercizio in comb. quasi perm. (rif. §1.8.3.2.1 [3])
$E_{cm} = 22000 (f_{cm}/10)^{(0,3)} =$	32588.00	MPa	Modulo elastico di progetto
v =	0.20		Coefficiente di Poisson
$G_c = E_{cm} / (2(1+v)) =$	13578.00	MPa	Modulo elastico tangenziale di progetto
Condizioni ambientali =	Ordinarie		
Classe di esposizione =	XC2		
C =	4.00	cm	Copriferro minimo
w =	0.30	mm	Apertura massima fessure in esercizio in comb. Rara (rif. §1.8.3.2.4 [3])

GEODATA INTEGRA RIF	II LOTTO F	IO TRAT UNZION FUNZION	TA CANCEL ALE FRASS IALE FRASS	.LO-BENEVENT O TELESINO – SO TELESINO –	VITULA	-
Pila P01: Relazione di calcolo	COMMESSA IF26	LOTTO 12 E ZZ	CODIFICA	DOCUMENTO VI0405 001	REV.	FOGLIO 10 di 149

3.3 CALCESTRUZZO PER PALI DI FONDAZIONE

Classe C25/30			
R _{ck} =	30.00	MPa	Resistenza caratteristica cubica
$f_{ck} = 0.83 R_{ck} =$	24.90	MPa	Resistenza caratteristica cilindrica
$f_{cm} = f_{ck} + 8 =$	32.90	MPa	Valore medio resistenza cilindrica
$\alpha_{cc} =$	0.85		Coeff. rid. per carichi di lunga durata
γ _M =	1.50	-	Coefficiente parziale di sicurezza SLU
$f_{cd} = \alpha_{cc} \; f_{ck}/\gamma_M =$	14.11	MPa	Resistenza di progetto
$f_{ctm} = 0.3 f_{ck}^{(2/3)} =$	2.56	MPa	Resistenza media a trazione semplice
$f_{cfm} = 1,2 f_{ctm} =$	3.07	MPa	Resistenza media a trazione per flessione
$f_{ctk} = 0.7 f_{ctm} =$	1.79	MPa	Valore caratteristico resistenza a trazione (frattile 5%)
$\sigma_c = 0,55 \; f_{ck} =$	13.70	MPa	Tensione limite in esercizio in comb. Rara (rif. §1.8.3.2.1 [3])
$\sigma_c = 0,40 \; f_{ck} =$	9.96	MPa	Tensione limite in esercizio in comb. quasi perm. (rif. §1.8.3.2.1 [3])
$E_{cm} = 22000 (f_{cm}/10)^{(0,3)} =$	31447.00	MPa	Modulo elastico di progetto
v =	0.20		Coefficiente di Poisson
$G_c = E_{cm} / (2(1+v))=$	13103.00	MPa	Modulo elastico tangenziale di progetto
Condizioni ambientali =	Ordinarie		
Classe di esposizione =	XC2		
c =	6.00	cm	Copriferro minimo
w =	0.30	mm	Apertura massima fessure in esercizio in comb. Rara (rif. §1.8.3.2.4 [3])

3.4 ACCIAIO PER BARRE DI ARMATURA

B450C			
f _{yk} ≥	450.00	MPa	Tensione caratteristica di snervamento
f _{tk} ≥	540.00	MPa	Tensione caratteristica di rottura
$(f_t / f_y)_k \ge$	1.15		
$(f_t / f_y)_k <$	1.35		
γ _s =	1.15	-	Coefficiente parziale di sicurezza SLU
$f_{yd} = f_{yk}/\gamma_s =$	391.30	MPa	Tensione caratteristica di snervamento
E _s =	210000.00	MPa	Modulo elastico di progetto
$\epsilon_{yd} =$	0.20	%	Deformazione di progetto a snervamento
$\varepsilon_{uk} = (A_{gt})_k$	7.50	%	Deformazione caratteristica ultima
$\sigma_s = 0.75 \; f_{yk} =$	337.50	MPa	Tensione in esercizio in comb. Rara (rif. §1.8.3.2.1 [3])

4 CARATTERIZZAZIONE GEOTECNICA ED ASPETTI IDRAULICI

4.1 CARATTERIZZAZIONE GEOTECNICA

Per la definizione della categoria di suolo delle opere appartenenti alla tratta in oggetto si rimanda all'elaborato progettuale "IF26.0.1.E.ZZ.CL.VI.04.0.3.002.A - Relazione geotecnica di calcolo delle fondazioni".

4.2 ASPETTI IDRAULICI

Per gli aspetti idrologici e idraulici si fa riferimento agli elaborati specialistici di riferimento.

5 DESCRIZIONE DELLA STRUTTURA

Il viadotto in esame è costituito da due campate aventi luce pari a 22.00 m e 12.50 m per una lunghezza complessiva di 34.5m.

L'impalcato è costituito da travi metalliche incorporate da un getto di completamento in c.a. che realizza anche gli aggetti laterali. La larghezza complessiva dell'impalcato è pari a 13.70 m su cui gravano 2 binari posti ad interasse pari a 4.00 m, in maniera simmetrica rispetto alla mezzeria del viadotto. Per maggiori dettagli riguardanti l'impalcato si rinvia alla relazione specifica.

Le sottostrutture consistono in due spalle ed una pila con fondazioni di tipo profondo su pali. La spalla indicata con "S1" è la spalla fissa mentre quella indicata con "S2" è la spalla mobile.

L'opera in oggetto è progettato per una vita nominale VN pari a 75 anni. Gli si attribuisce inoltre una classe d'uso III ("Ponti e reti ferroviarie la cui interruzione provochi situazioni di emergenza.") ai sensi del D. Min. 14/01/2008, da cui scaturisce un coefficiente d'uso CU = 1.5.

Oggetto della presente relazione è il dimensionamento della Pila P01, sulla quale gravano due impalcati isostatici a singola campata, di luce pari rispettivamente a 22m e 12.5m. Il fusto presenta la sezione tipologica 2.10m x 11.45m e un'altezza pari a 6.80m.

Con riferimento alle sottostrutture prese in considerazione nella presente relazione, le tipologie di impalcato, la geometria del fusto e la geometria del plinto e dei pali sono sintetizzate nella seguente tabella:

Pila	Impalcato precedente	Impalcato successivo	Fusto	Dimensioni plinto	Pali
P1	18 HLM1100 (L=22m)	24 HLM600 (L=12.5m)	2.1m x 11.45m x 6.8m	6.4m x 15.45m x 1.8m	8 ø1200

A seguire si riportano delle immagini che illustrano la geometria della pila (prospetto frontale e sezione orizzontale del fusto) e del plinto di fondazione (vista in pianta).

GEODATA INTEGRA RIA	II LOTTO F	IO TRAT UNZION FUNZION	TA CANCEL ALE FRASS IALE FRASS	LO-BENEVENT O TELESINO – SO TELESINO –	VITULA	_
Pila P01: Relazione di calcolo	COMMESSA IF26	LOTTO 12 E ZZ	CODIFICA	DOCUMENTO VI0405 001	REV.	FOGLIO 14 di 149

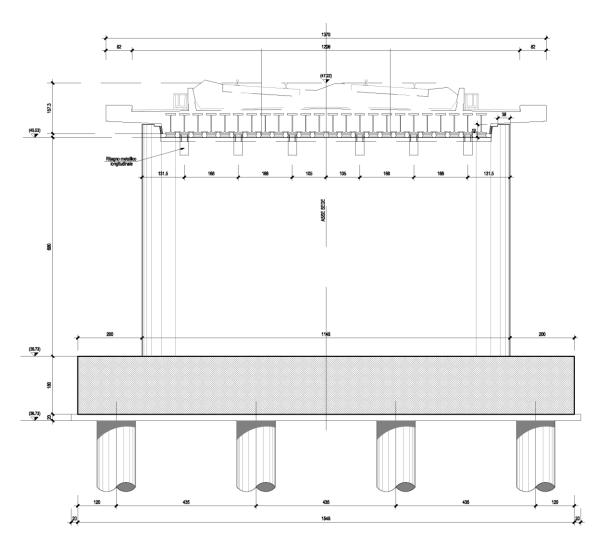


Figura 1 – Pila, prospetto frontale [m]

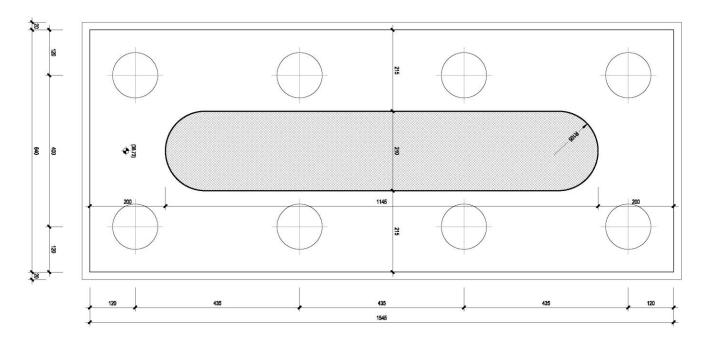


Figura 2 – Plinto di fondazione e pali, vista in pianta - Sezione del fusto pila [m]

ENGINEERING INTEGRA RIF	II LOTTO F	IO TRAT UNZION FUNZION	TA CANCEL ALE FRASS VALE FRASS	LO-BENEVENT O TELESINO – SO TELESINO –	VITULA	_
Pila P01: Relazione di calcolo	COMMESSA IF26	LOTTO 12 E ZZ	CODIFICA CL	DOCUMENTO VI0405 001	REV.	FOGLIO 16 di 149

Le seguenti figure illustrano la geometria del pulvino della pila in prospetto longitudinale.

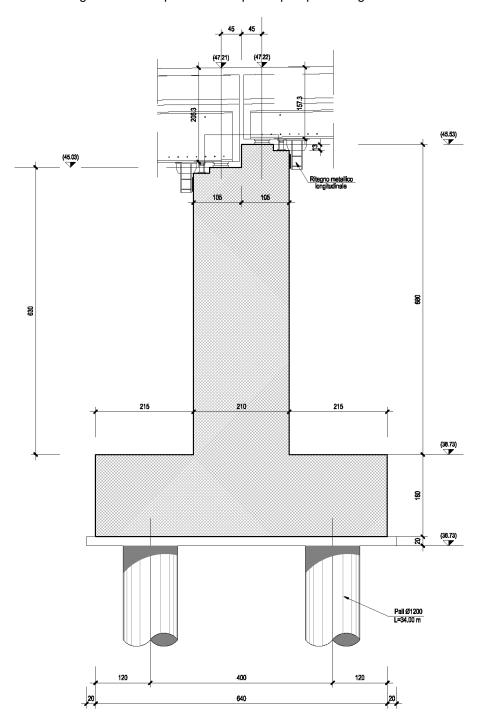


Figura 3 – Pila, prospetto longitudinale – Due impalcati a travi incorporate

<u>Impalcato "precedente" – Mobile longitudinale</u>

Impalcato "successivo" - Fisso longitudinale

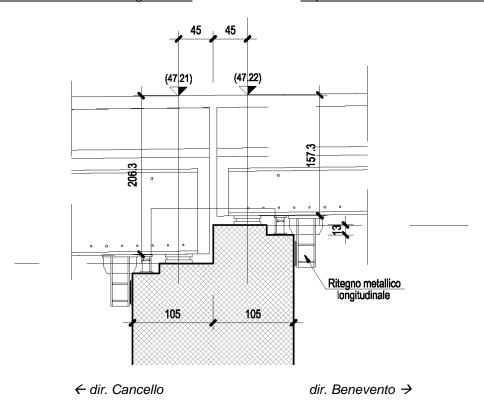


Figura 4 – Viadotto VI04 – Schema vincolare pila i-esima

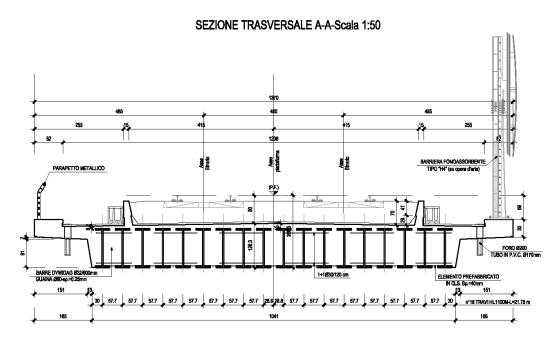
6 ANALISI DEI CARICHI

Di seguito si riporta l'analisi dei carichi agenti sulla pila e derivanti dagli impalcati afferenti.

Le azioni e le reazioni riportate sono riferite al seguente sistema di riferimento:

• asse 1 o asse X: asse longitudinale;

• asse 2 o asse Y: asse trasversale;


• asse 3 o asse Z: asse verticale.

6.1 PERMANENTI STRUTTURALI (G1)

6.1.1 PESO PROPRIO IMPALCATI

I carichi afferenti al peso proprio degli impalcati sono calcolati sulla base delle caratteristiche geometriche e del peso unitario di ciascun elemento, come riportato a seguire.



Figura 5 – Impalcati a travi incorporate: L=22m 18HLM1100 (sopra) e L=12.5m 24 HEM600 (sotto)

	IMPALCATO-SX		IMPALCATO-DX	
Peso proprio travi				
γca Aca ptr (peso trave) Atr (area trave) ntr (numero travi) Aca,netta peso unitario impalacato Lunghezza impalcato	14.3 4.33 0.0551 18 13.3	kN/m m2 m2 kN/m	9.31 2.85 0.0364 24 8.44	kN/m m2 m2 kN/m
Peso impalcato	9034	kN	3491	kN
Risultanti reazioni vincolari				
F1 = F2 = F3 = M1 = M2 = M3 =	0 0 4517 0 0	kN	0 0 1746 0 0	kN

6.1.2 PESO PROPRIO PILA

I carichi afferenti al peso proprio degli elementi costituenti la pila (fusto, pulvino e fondazioni) sono calcolati sulla base delle caratteristiche geometriche di ciascun elemento e considerando un peso unitario del calcestruzzo pari a 25,00 kN/m³.

6.2 PERMANENTI NON STRUTTURALI (G2)

I carichi permanenti non strutturali sono costituiti dal peso della massicciata, dal peso delle barriere antirumore e dal peso delle canalette portacavi. In aggiunta ai permanenti non strutturali portati dagli impalcati si hanno anche quelli costituiti dal riempimento della pila e dal sovraccarico del terreno di ricoprimento del plinto.

La normativa distingue tra ballast e permanenti non strutturali generici nell'assegnazione dei valori del coefficiente di combinazione (rif. §2.5.3.8.3.1 [3]), per questo motivo nei paragrafi a seguire i due casi di carico vengono trattati separatamente.

6.2.1 BALLAST (G21)

Secondo il §2.5.1.3.2 [3], ove non si eseguano valutazioni più dettagliate, la determinazione dei carichi permanenti portati relativi al peso della massicciata, armamento e dell'impermeabilizzazione potrà effettuarsi assumendo convenzionalmente, per linea in rettifilo, un peso di volume pari a 18,00 kN/m3, applicato su tutta la larghezza media compresa fra i muretti paraballast, per un'altezza media fra p.f. ed estradosso impalcato pari a 0,80 m. Per i ponti in curva si assume un peso convenzionale di 20 kN/m3.

	IMPALCATO	<u>- SX</u>	IMPALCATO	- DX
Peso ballast				
p,ballast rettifilo =	18	kN/m3	18	kN/m3
p,ballast curva =	20	kN/m3	20	kN/m3
tracciato in curva (S/N) =	N		N	
p,ballast =	18	kN/m3	18	kN/m3
s ballast =	0.8	m	0.8	m
L ballast =	8.3	m	8.3	m
L impalcato =	22		12.5	
P,tot ballast =	2629	kN	1494	kN
Risultanti reazioni vincolari				
F1 =	0		0	
F2 =	0		0	
F3 =	1315	kN	747	kN
M1 =	0		0	
M2 =	0		0	
M3 =	0		0	

ENGINEERING INTEGRA RIA	II LOTTO F	IO TRAT UNZION FUNZION	TA CANCEL ALE FRASSIALE FRASS	LO-BENEVENT O TELESINO – SO TELESINO –	VITULA	-
Pila P01: Relazione di calcolo	COMMESSA IF26	LOTTO 12 E ZZ	CODIFICA	DOCUMENTO VI0405 001	REV.	FOGLIO 22 di 149

6.2.2 PERMANENTI NON STRUTTURALI GENERICI (G22)

6.2.2.1 AFFERENTI ALL'IMPALCATO

Secondo il §2.5.1.3.2 [3], nella progettazione di nuovi ponti ferroviari dovranno essere sempre considerati i pesi le azioni e gli ingombri associati all'introduzione delle barriere antirumore, anche nei casi in cui non ne sia originariamente prevista la realizzazione, assumendo un peso pari a 4,00 kN/m2 ed un'altezza minima di 4,00 m misurata dall'estradosso della soletta. Cautelativamente si considerano presenti barriere H4 ad entrambe le estremità dell'impalcato.

	IMPALCATO - SX		IMPALCATO - DX	
Peso barriere antirumore				
P,barriere = B.A. lato sx = B.A. lato sdx =	4 H4 H4	kN/m2 H ² H ⁴	1	kN/m2
H,barriera sx (min. 4m) = H,barriera dx (min. 4m) = L impalcato =	5.4 5.4 22		5.4 5.4 12.5	m
P,tot barriere =	950	kN	540	kN
Impermeabilizzazione e massetto di protezione				
γmass B s L impalcato =	11.7 0.05		21 11.7 0.05 12.5	m
P, tot protezione	270	kN	154	kN
Peso velette				
A,veletta (2) =	0.19	m2	0.19	m2
P,tot arredi =	105	kN	59	kN
Peso canalette portacavi				
P,canalette (2) = P,tot canalette =	5 110	kN/m kN	5 62.5	kN/m kN
Permanenti non strutturali totali				
Permanenti tot =	1435	kN	815	kN

Risultanti reazioni vincolari

F1 =	0		0	
F2 =	0		0	
F3 =	718	kN	408	kN
M1 =	0		0	
M2 =	0		0	
M3 =	0		0	

6.2.3 RIEMPIMENTO PILA E TERRENO DI RICOPRIMENTO

Il riempimento della pila ed il terreno di ricoprimento del plinto costituiscono un carico permanente portato agente sul plinto di fondazione al livello dell'estradosso plinto.

Le forze risultanti così calcolate vengono considerate come forze concentrate agenti in corrispondenza dell'estradosso del plinto.

Peso terreno di ricoprimento

Area ingombro pila:

dlong	2.1	m
dtrasv	11.45	m
Α	24.05	m2

Peso terreno:

Wterr	4490	kN
gterr	20	kN/m3
hterr	3.0	m
dtrasv	15.45	m
dlong	6.4	m

Peso riempimento pila

La pila in oggetto non ha riempimento.

Permanenti non strutturali pila totali

	F3	
G2, pila	4490	kN

6.3 CARICHI DA TRAFFICO

Le azioni verticali associate ai convogli ferroviari si schematizzano mediante i modelli di carico teorici LM71 e SW/2.

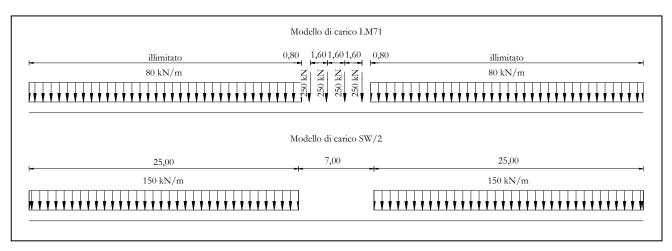


Figura 6 – Modelli di carico teorici LM71 e SW/2

Le differenti disposizioni degli assi e delle stese di carico considerate sono state definite in modo tale da massimizzare gli scarichi sulla pila:

- Disposizione 1: disposizione atta a massimizzare lo scarico assiale sulla pila. Prevede entrambi i binari di entrambe le campate caricati con i modelli LM71 e SW/2. Gli assi del LM71 e la stesa di carico di 25 m del SW/2 sono centrati sulla pila.
- Disposizione 2: disposizione atta a massimizzare il momento longitudinale (momento che "gira" intorno all'asse trasversale) sulla pila. Prevede entrambi i binari di un solo impalcato caricati con i modelli LM71 e SW/2. Gli assi del modello LM71 e la stesa di carico di 25 m del modello SW/2 sono posizionati a partire dall'estremità sinistra dell'impalcato di destra.
- Disposizione 3: disposizione atta a massimizzare il momento trasversale (momento che "gira" intorno all'asse longitudinale) sulla pila Prevede un solo binario di entrambi gli impalcati caricato il modello SW/2. La stesa di carico di 25 m del modello SW/2 è centrata sulla pila.
- Disposizione 4: disposizione atta a massimizzare il momento trasversale (momento che "gira" intorno all'asse longitudinale) sulla pila. Prevede un solo binario di entrambi gli impalcati caricato con il modello LM71. Gli assi del LM71 sono centrati sulla pila.
- Disposizione 5: disposizione atta a massimizzare lo scarico assiale sulla pila e contemporaneamente a
 creare un momento longitudinale (che "gira" intorno all'asse trasversale) sulla pila. Prevede entrambi i binari
 di entrambe le campate caricati con i modelli LM71 e SW/2. Gli assi del LM71 e la stesa di carico di 25 m
 del SW/2 sono posizionati a partire dall'estremità sinistra dell'impalcato di destra.
- Disposizione 6: disposizione atta a massimizzare lo scarico assiale sulla pila. Prevede entrambi i binari di entrambe le campate caricati con i modelli LM71 e SW/2. Gli assi del LM71 ed il tratto scarico di 7 m del SW/2 sono centrati sulla pila.

GEODATA INTEGRA RIF	II LOTTO F	IO TRAT UNZION FUNZION	TA CANCEL ALE FRASSIALE FRASS	LO-BENEVENT O TELESINO – SO TELESINO –	VITULA	-
Pila P01: Relazione di calcolo	COMMESSA IF26	LOTTO 12 E ZZ	CODIFICA	DOCUMENTO VI0405 001	REV.	FOGLIO 26 di 149

Disposizione 7: disposizione atta a minimizzare lo scarico assiale sulla pila e contemporaneamente a
massimizzare il momento longitudinale (momento che "gira" intorno all'asse trasversale. Prevede entrambi i
binari di un solo impalcato caricati con i modelli LM71 e SW/2. Gli assi del modello LM71 e la stesa di carico
di 25 m del modello SW/2 sono posizionati a partire dall'estremità sinistra dell'impalcato di destra.



Figura 7 – Disposizione di carico 1

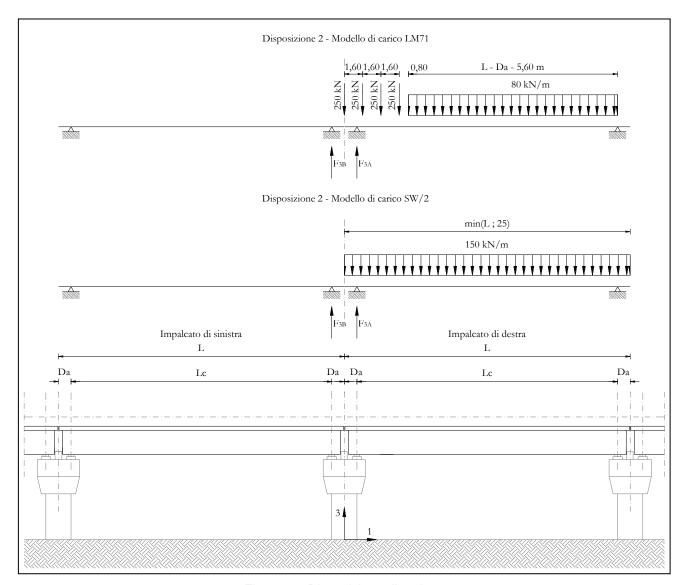


Figura 8 – Disposizione di carico 2

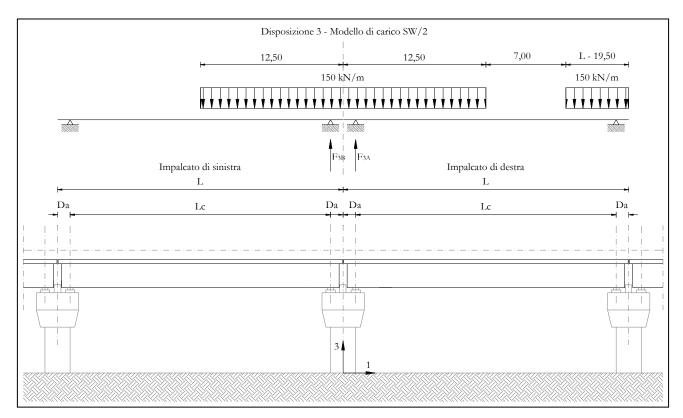


Figura 9 - Disposizione di carico 3

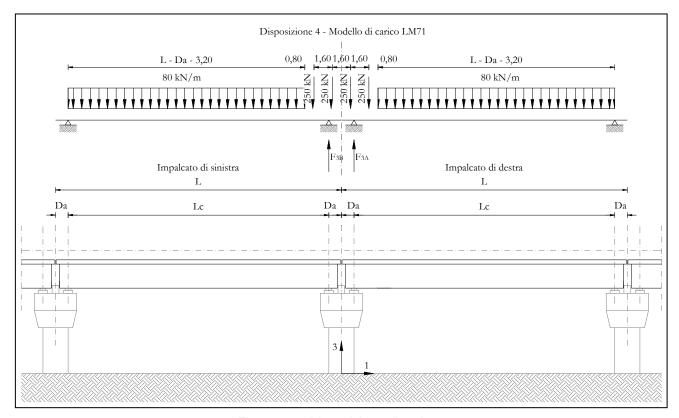


Figura 10 – Disposizione di carico 4

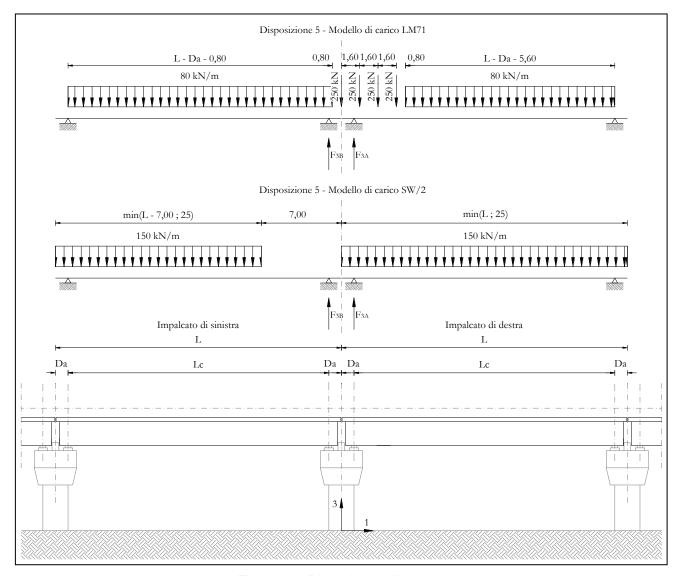


Figura 11 – Disposizione di carico 5

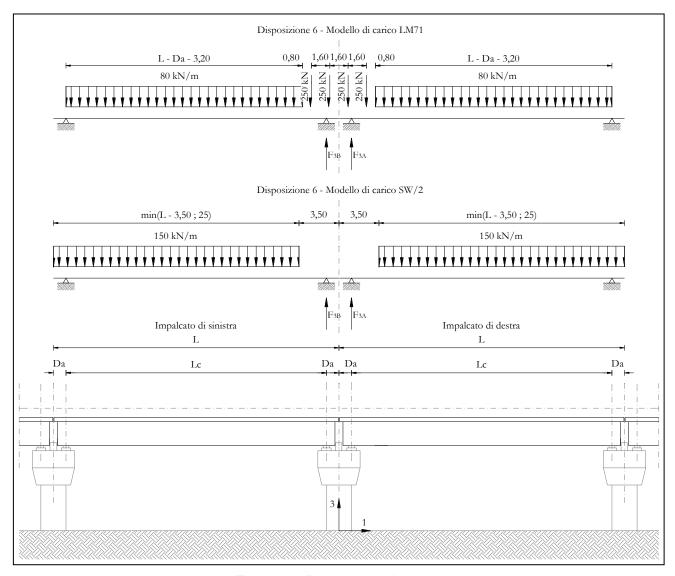


Figura 12 – Disposizione di carico 6

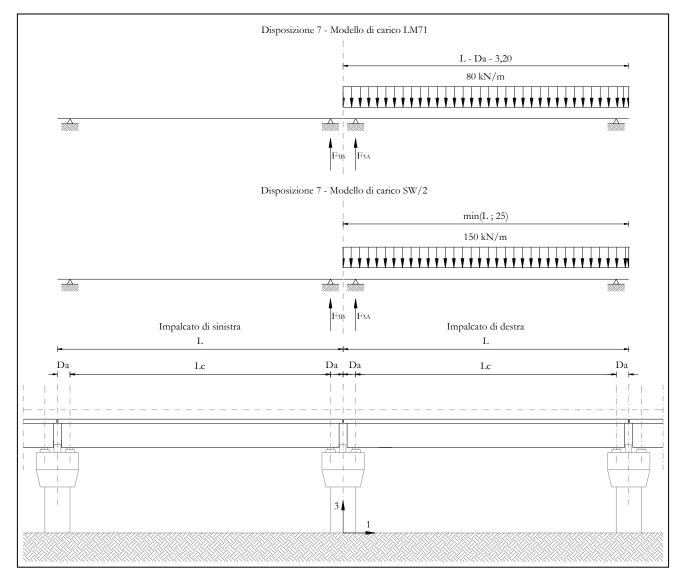


Figura 13 – Disposizione di carico 7

I valori caratteristici dei carichi attribuiti ai modelli di carico devono essere moltiplicati per il coefficiente α che deve assumersi come da tabella seguente:

Modello di carico	Coefficiente α
LM71	1,10
SW/2	1,00

GEODATA INTEGRA RIF	II LOTTO F	IO TRAT UNZION FUNZION	TA CANCEL ALE FRASSIALE FRASS	LO-BENEVENT O TELESINO – SO TELESINO –	VITULA	_
Pila P01: Relazione di calcolo	COMMESSA IF26	LOTTO 12 E ZZ	CODIFICA	DOCUMENTO VI0405 001	REV.	FOGLIO 34 di 149

I valori caratteristici dei carichi attribuiti ai modelli di carico devono essere moltiplicati per coefficienti che tengono conto dell'amplificazione dinamica. I coefficienti di amplificazione dinamica Φ si assumono pari a Φ_2 o Φ_3 in dipendenza dal livello di manutenzione della linea. In particolare si assumerà:

per linee con <u>elevato standard manutentivo</u>:

 $\Phi_2 = 1{,}44/(\sqrt{L_{\Phi}} - 0{,}2) + 0{,}82$

Φ fondazioni =

con limitazione $1,00 \le \Phi_2 \le 1,67$

per linee con <u>normale standard manutentivo</u>:

 $\Phi_3 = 2,16/(\sqrt{L_{\Phi} - 0.2}) + 0.73$ con limitazione $1,00 \le \Phi_2 \le 2,00$

1.00

Pile con snellezza $\lambda \le 30$, spalle, fondazioni, muri di sostegno e spinte del terreno possono essere calcolate assumendo coefficienti dinamici unitari.

1.00

I pila	8.2	m4	inerzia pila
A pila	23.1	m2	area sez. pila
r_pila	0.6	m	raggio inerzia
H pila	6.8	m	altezza max
λ pila	11.4	< 30	snellezza
	<u>IMPALCATO</u>	<u>SX</u>	IMPALCATO DX
Standard manutentivo =	IMPALCATO Normale	<u>SX</u>	IMPALCATO DX Normale
Standard manutentivo =		<u>SX</u>	
Standard manutentivo = Valori adottati:		<u>SX</u>	
		<u>SX</u>	

GEODATA INTEGRA RIF	II LOTTO F	IO TRAT UNZION FUNZION	TA CANCEL ALE FRASS IALE FRASS	LO-BENEVENT O TELESINO – SO TELESINO –	VITULA	
Pila P01: Relazione di calcolo	COMMESSA IF26	LOTTO 12 E ZZ	CODIFICA	DOCUMENTO VI0405 001	REV.	FOGLIO 35 di 149

6.3.1 CARICHI VERTICALI DA TRAFFICO (Q1)

Di seguito si riportano i risultati delle reazioni vincolari per le diverse disposizioni di carico considerate e descritte precedentemente nel §6.3.

6.3.1.1 DISPOSIZIONE DI CARICO 1 (Q11)

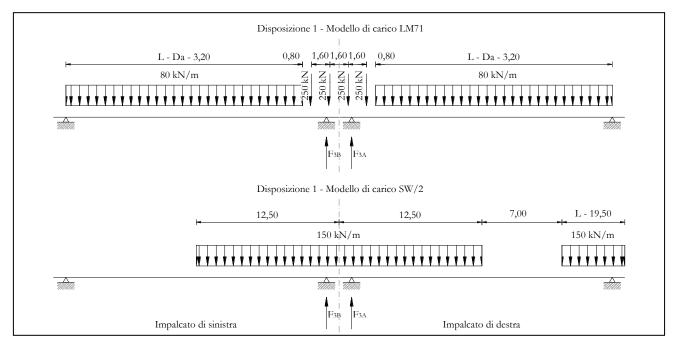


Figura 14 – Disposizione di carico 1*

^{*}La disposizione nella figura è specchiata rispetto alla disposizione più critica usata per il calcolo.

	IMPALCATO-SX		IMPALCATO-DX	
Modello di carico LM71				
F3 = α = eccentricità =	1111 1.1 2.08	kN m	721 1.1 2.08	kN m
Modello di carico SW/2				
F3 = α =	1659.60 1	kN	938	kN
eccentricità =	-2	m	-2	m

Coeff. di amplificazione dinamica				
φ =	1		1	
Reazioni vincolari carichi variabili verticali				
F3 =	2882	kN	1730	kN
Risultanti reazioni vincolari				
F1 = F2 = F3 = M1 = M2 = M3 =	0 0 2882 -777 0	kN kNm	0 0 1730 -226 0	kN kNm

6.3.1.2 DISPOSIZIONE DI CARICO 1 (Q12)

Reazioni vincolari carichi variabili verticali

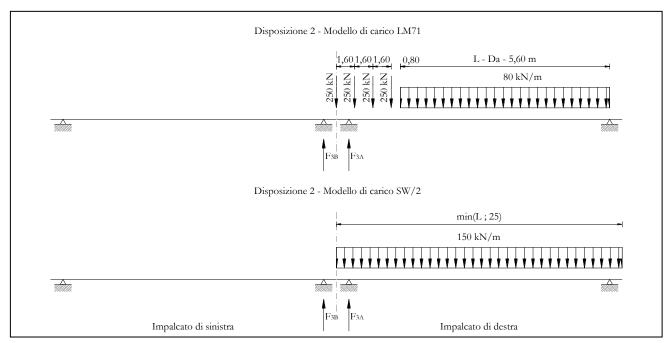


Figura 15 – Disposizione di carico 2*

^{*}La figura è specchiata rispetto alla disposizione effettiva dei carichi ferroviari.

	IMPALCATO-SX		IMPALCATO-DX	
Modello di carico LM71				
F3 =	1260	kN	0	kN
α =	1.1		1.1	
eccentricità =	2.08	m	2.08	m
Modello di carico SW/2 F3 =	1650.00	kN	0.00	kN
α =	1		1	
eccentricità =	-2	m	-2	m
Coeff. di amplificazione dinamica				
φ =	1		1	

F3 =	3035	kN	0	kN
Risultanti reazioni vincolari				
F1 = F2 = F3 = M1 = M2 = M3 =	0 0 3035 -418 0	kN kNm	0 0 0 0 0	kN kNm

6.3.1.3 DISPOSIZIONE DI CARICO 1 (Q13)

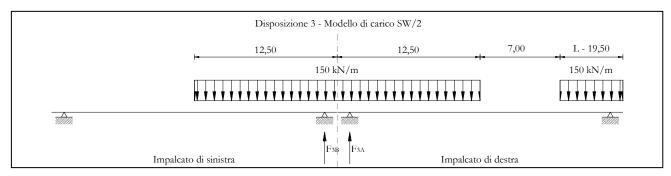


Figura 16 – Disposizione di carico 3*

*La figura è specchiata rispetto alla disposizione effettiva dei carichi ferroviari.

	IMPALCATO-SX	IMPALCATO-SX		IMPALCATO-DX	
Modello di carico LM71					
F3 =	0	kN	0	kN	
α =	1.1		1.1		
eccentricità =	2.08	m	2.08	m	
Modello di carico SW/2					
F3 =	1659.60	kN	937.50	kN	
α =	1		1		
eccentricità =	-2	m	-2	m	
Coeff. di amplificazione dinamica					
φ =	1		1		
Reazioni vincolari carichi variabili verticali					
F3 =	1660	kN	938	kN	
Risultanti reazioni vincolari					
F1 =	0		0		
F2 =	0		0		
F3 =	1660	kN	938	kN	
M1 =	-3319	kNm	-1875	kNm	
M2 =	0		0		
M3 =	0		0		

6.3.1.4 DISPOSIZIONE DI CARICO 1 (Q14)

F2 =

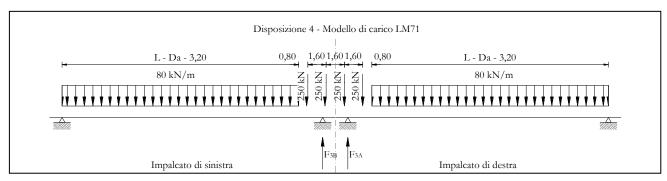


Figura 17 - Disposizione di carico 4

IMPALCATO-SX IMPALCATO-DX Modello di carico LM71 F3 = 1111 kΝ 721 kN α = 1.1 1.1 2.08 2.08 eccentricità = m m Modello di carico SW/2 F3 = 0.00 kΝ 0.00 kN α = 1 1 eccentricità = -2 -2 m m Coeff. di amplificazione dinamica φ= 1 1 Reazioni vincolari carichi variabili verticali F3 = 1222 kΝ 793 kΝ Risultanti reazioni vincolari F1 = 0 0

0

0

6.3.1.5 DISPOSIZIONE DI CARICO 1 (Q15)

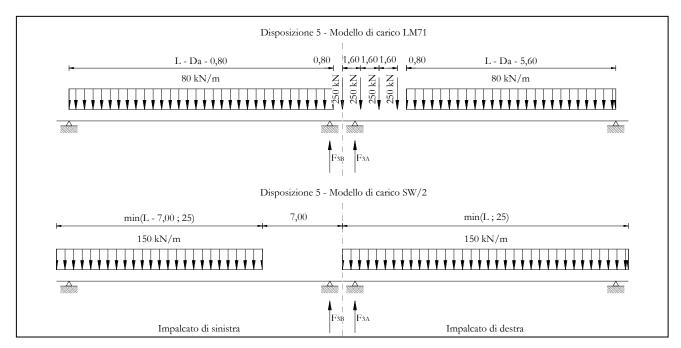


Figura 18 – Disposizione di carico 5*

^{*}La figura è specchiata rispetto alla disposizione effettiva dei carichi ferroviari.

	IMPALCATO-SX		IMPALCATO-DX	
Modello di carico LM71				
F3 =	1260	kN	561	kN
α =	1.1		1.1	
eccentricità =	2.08	m	2.08	m
Modello di carico SW/2				
F3 =	1650.00	kN	164	kN
α =	1		1	
eccentricità =	-2	m	-2	m
Coeff. di amplificazione dinamica				
φ =	1		1	

Reazioni vincolari carichi variabili verticali				
F3 =	3035	kN	781	kN
Risultanti reazioni vincolari				
F1 =	0		0	
F2 =	0		0	
F3 =	3035	kN	781	kN
M1 =	-418	kNm	957	kNm
M2 =	0		0	
M3 =	0		0	

6.3.1.6 DISPOSIZIONE DI CARICO 1 (Q16)

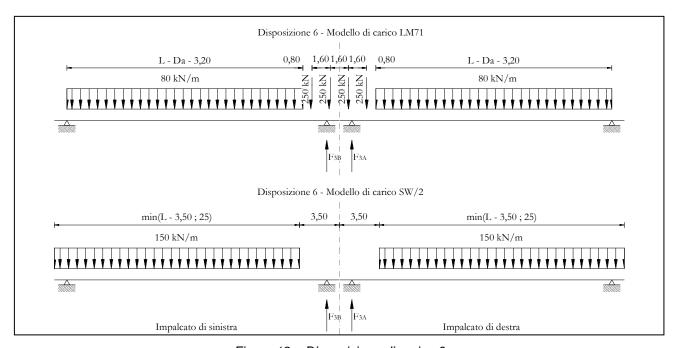


Figura 19 – Disposizione di carico 6

	IMPALCATO-SX		IMPALCATO-DX	
Modello di carico LM71				
F3 =	1111	kN	721	kN
α =	1.1		1.1	
eccentricità =	2.08	m	2.08	m
Modello di carico SW/2				
F3 =	1157.35	kN	471.34	kN
α =	1		1	
eccentricità =	-2	m	-2	m
Coeff. di amplificazione dinamica				

1

1

 $\varphi =$

Reazioni vincolari carichi variabili verticali					
F3 =	2380	kN	1264	kN	
Risultanti reazioni vincolari					
F1 =	0		0		
F2 =	0		0		

kΝ

kNm

1264

706

0

0

kΝ

kNm

2380

227

0

0

F3 =

M1 =

M2 =

M3 =

6.3.1.7 DISPOSIZIONE DI CARICO 1 (Q17)

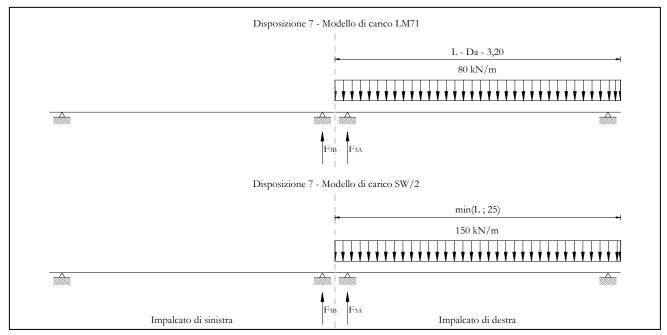


Figura 20 – Disposizione di carico 7*

^{*}La figura è specchiata rispetto alla disposizione effettiva dei carichi ferroviari.

	IMPALCATO-SX		IMPALCATO-DX	
Modello di carico LM71				
F3 =	880	kN	0	kN
α =	1.1		1.1	
eccentricità =	2.08	m	2.08	m
Modello di carico SW/2				
F3 =	1387.50	kN	0.00	kN
α =	1		1	
eccentricità =	-2	m	-2	m

Coeff. di amplificazione dinamica

φ =	1		1	
Reazioni vincolari carichi variabili verticali				
F3 =	2356	kN	0	kN
Risultanti reazioni vincolari				
F1 =	0		0	
F2 =	0		0	
F3 =	2356	kN	0	kN
M1 =	-762	kNm	0	kNm
M2 =	0		0	
M3 =	0		0	

6.3.2 AZIONI DI AVVIAMENTO E FRENATURA (Q2)

La azioni di frenatura e avviamento sono costituite da forze uniformemente distribuite su una lunghezza di binario L determinata per ottenere l'effetto più gravoso sull'elemento strutturale considerato. I valori da considerare sono i seguenti:

avviamento: Q_{la,k} = 33 kN/m · L ≤ 1000 kN per i modelli di carico LM71,SW/2

frenatura: Q_{Ib,k} = 20 kN/m · L ≤ 6000 kN per i modelli di carico LM71

 $Q_{lb,k} = 35 \text{ kN/m}$ per i modelli di carico SW/2

I valori caratteristici dell'azione di frenatura e di avviamento devono essere moltiplicati per α e non devono essere moltiplicati per Φ .

Nel caso di ponti a doppio binario si devono considerare due treni in transito in versi opposti, uno in fase di avviamento e l'altro in fase di frenatura.

Gli effetti di interazione relativamente alle azioni di frenatura e avviamento si tengono conto applicando ai valori della risultante un coefficiente α_h che tiene conto del rapporto di rigidezza tra le pile del viadotto. Per la determinazione dei coefficienti si rimanda al $\S6.6.2$ della presente relazione.

Nei sottoparagrafi che seguono si riportano i risultati delle reazioni vincolari per le diverse disposizioni di carico considerate e descritte precedentemente nel §6.3.

6.3.2.1 DISPOSIZIONE DI CARICO 1 (Q21)

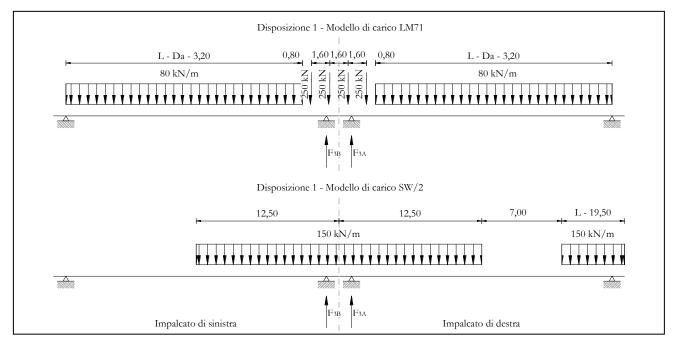


Figura 21 – Disposizione di carico 1*

^{*}La disposizione nella figura è specchiata rispetto alla disposizione più critica usata per il calcolo.

	IMPALCATO-SX		IMPALCAT	IMPALCATO-DX	
Avviamento LM71					
f avv =	33	kN/m	33	kN/m	
α =	1.1		1.1		
L caricata =	22	m	12.5	m	
F avv (max 1000 kN) =	726	kN	412.5	kN	
F1 =	799	kN	454	kN	
Avviamento SW/2					
f avv =	33	kN/m	33	kN/m	

	PROGETT	PROGETTO ESECUTIVO				
Pila P01: Relazione di calcolo	COMMESSA IF26	LOTTO 12 E ZZ	CODIFICA CL	DOCUMENTO VI0405 001	REV.	FOGLIO 50 di 149
α =	1			1		
L caricata =	15	m		12.5	m	
F avv (max 1000 kN) =	495	kN		413	kN	
F1 =	495	kN		413	kN	
Frenatura LM71						
f fren =	20	kN/m		20	kN/m	
α =	1.1			1.1		
L caricata =	22	m		12.5	m	
F fren (max 6000 kN) =	440	kN		250	kN	
F1 =	484	kN		275	kN	
Frenatura SW/2						
f fren =	35	kN/m		35	kN/m	
α =	1			1		
L caricata =	15	m		12.5	m	
F fren =	525	kN		437.5	kN	
F1 =	525	kN		438	kN	
αhp interazione semplificata						
αhp frenatura per LM71 =	1.12			1.12		
αhp frenatura per SW/2 =	1.6			1.6		
αhp avviam, per LM71 SW/2 =	1.3			1.3		
Forza totale di avviamento e frenatura						
F1 =	1329	kN		1077	kN	
h rispetto a intradosso imp, =	2.063	m		1.373	m	
tipologia vincolo =	UL			F		

Risultanti reazioni vincolari

0	kN	1077	kN
0		0	
130	kN	-127	kN
0		0	
0		0	
0		0	
	0 130 0 0	0 130 kN 0 0	0 0 130 kN -127 0 0 0

6.3.2.2 DISPOSIZIONE DI CARICO 2 (Q22)

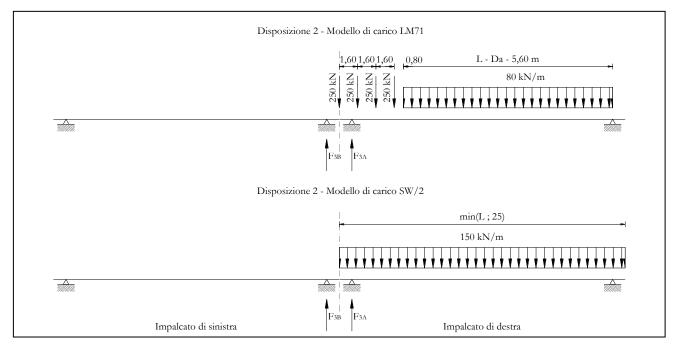


Figura 22 – Disposizione di carico 2*

^{*}La disposizione nella figura è specchiata rispetto alla disposizione più critica usata per il calcolo.

	IMPALCA	IMPALCATO-SX			
Avviamento LM71					
f avv =	33	kN/m	33	kN/m	
α =	1.1		1.1		
L caricata =	22	m	0	m	
F avv (max 1000 kN) =	726	kN	0	kN	
F1 =	799	kN	0	kN	
Avviamento SW/2					
f avv =	33	kN/m	33	kN/m	

		PROGETTO	O ESECUT	ΓΙνο			
Pila P01: Relazione di calcolo		COMMESSA IF26	LOTTO 12 E ZZ	CODIFICA CL	DOCUMENTO VI0405 001	REV.	FOGLIO 53 di 149
α =	1				1		
L caricata =	1		m		0	m	
F avv (max 1000 kN) =		95	kN		0	kN	
F1 =	4	95	kN		0	kN	
Frenatura LM71							
f fren =	2	0	kN/m		20	kN/m	
α =	1	.1			1.1		
L caricata =	2	2	m		0	m	
F fren (max 6000 kN) =	4	40	kN		0	kN	
F1 =	4	84	kN		0	kN	
Frenatura SW/2							
f fren =	3	5	kN/m		35	kN/m	
α =	1				1		
L caricata =	1	5	m		0	m	
F fren =	5	25	kN		0	kN	
F1 =	5	25	kN		0	kN	
αhp interazione semplificata							
αhp frenatura per LM71 =	1	.12			1.12		
αhp frenatura per SW/2 =	1	.6			1.6		
αhp avviam, per LM71 SW/2 =	1	.3			1.3		
Forza totale di avviamento e frenatura							
F1 =	1	577	kN		0	kN	
h rispetto a intradosso imp, =	2	.063	m		1.373	m	
tipologia vincolo =	U	IL			F		

Risultanti reazioni vincolari

F1 =	0	kN	0	kN
F2 =	0		0	
F3 =	154	kN	0	kN
M1 =	0		0	
M2 =	0		0	
M3 =	0		0	

6.3.2.3 DISPOSIZIONE DI CARICO 3 (Q23)

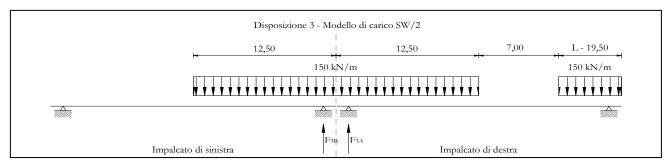


Figura 23 – Disposizione di carico 3*

*La disposizione nella figura è specchiata rispetto alla disposizione più critica usata per il calcolo.

	IMPALCATO-	IMPALCATO-DX		
Avviamento LM71				
f avv =	33	kN/m	33	kN/m
α =	1.1		1.1	
L caricata =	0	m	0	m
F avv (max 1000 kN) =	0	kN	0	kN
F1 =	0	kN	0	kN
Avviamento SW/2				
f avv =	33	kN/m	33	kN/m
α =	1		1	
L caricata =	15	m	12.5	m
F avv (max 1000 kN) =	495	kN	413	kN
F1 =	495	kN	413	kN
Frenatura LM71				
f fren =	20	kN/m	20	kN/m

	PROGETTO ESECUTIVO							
Pila P01: Relazione di calcolo	COMMESSA IF26	LOTTO 12 E ZZ	CODIFICA CL	DOCUMENTO VI0405 001	REV.	FOGLIO 56 di 149		
α =	1.1			1.1				
L caricata =	0	m		0	m			
F fren (max 6000 kN) =	0	kN		0	kN			
F1 =	0	kN		0	kN			
Frenatura SW/2								
f fren =	35	kN/m		35	kN/m			
α =	1			1				
L caricata =	15	m		12.5	m			
F fren =	525	kN		437.5	kN			
F1 =	525	kN		438	kN			
αhp interazione semplificata								
αhp frenatura per LM71 =	1.12			1.12				
αhp frenatura per SW/2 =	1.6			1.6				
αhp avviam, per LM71 SW/2 =	1.3			1.3				
Forza totale di avviamento e frenatura								
F1 =	554	kN		700	kN			
h rispetto a intradosso imp, =	2.063	m		1.373	m			
tipologia vincolo =	UL			F				
Risultanti reazioni vincolari								
F1 =	0	kN		700	kN			
F2 =	0			0				
F3 =	54	kN		-83	kN			
M1 =	0			0				
M2 =	0			0				
M3 =	0			0				

6.3.2.4 DISPOSIZIONE DI CARICO 4 (Q24)

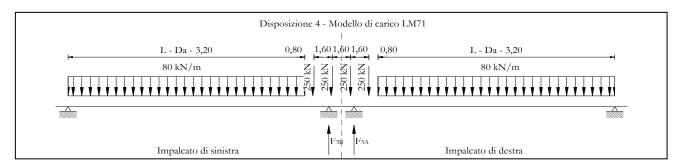


Figura 24 – Disposizione di carico 4

	IMPALCA	TO-SX	IMPALCATO-DX		
	Reazioni v	vincolari B	Reazioni vincolari A		
Avviamento LM71					
f avv =	33	kN/m	33	kN/m	
α =	1.1		1.1		
L caricata =	22	m	12.5	m	
F avv (max 1000 kN) =	726	kN	412.5	kN	
F1 =	799	kN	454	kN	
Avviamento SW/2					
f avv =	33	kN/m	33	kN/m	
α =	1		1		
L caricata =	0	m	0	m	
F avv (max 1000 kN) =	0	kN	0	kN	
F1 =	0	kN	0	kN	
Frenatura LM71					
f fren =	20	kN/m	20	kN/m	
α =	1.1		1.1		

		PROGETT	O ESECU	TIVO				
Pila P01: Relazione di calcolo		COMMESSA	LOTTO 12 E ZZ	CODIFICA	DOCUMENTO VI0405 001	REV.	FOGLIO 58 di 149	
L caricata =	2	2	m		12.5	m		
F fren (max 6000 kN) =		40	kN		250	kN		
F1 =	4	84	kN		275	kN		
Frenatura SW/2								
f fren =	3	5	kN/m	ı	35	kN/m		
α =	1				1			
L caricata =	0		m		0	m		
F fren =	0		kN		0	kN		
F1 =	0		kN		0	kN		
αhp interazione semplificata								
αhp frenatura per LM71 =	1	.12			1.12			
αhp frenatura per SW/2 =	1	.6			1.6			
αhp avviam, per LM71 SW/2 =	1	.3			1.3			
Forza totale di avviamento e frenatura								
F1 =	7	74	kN		590	kN		
h rispetto a intradosso imp, =	2	.063	m		1.373	m		
tipologia vincolo =	U	L			F			
Risultanti reazioni vincolari								
F1 =	0		kN		590	kN		
F2 =	0				0			
F3 =	7	6	kN		-70	kN		
M1 =	0				0			
M2 =	0				0			
M3 =	0				0			

6.3.2.5 DISPOSIZIONE DI CARICO 5 (Q25)

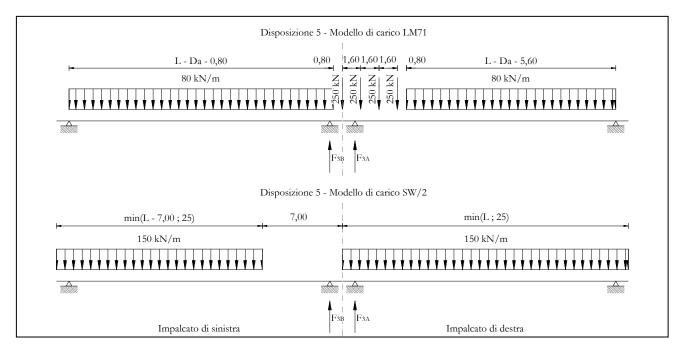


Figura 25 – Disposizione di carico 5*

^{*}La disposizione nella figura è specchiata rispetto alla disposizione più critica usata per il calcolo.

Reazioni vincolari B Reazioni vincolari A Avviamento LM71		IMPALCA	TO-SX	IMPALCATO-DX		
f avv = 33 kN/m 33 kN/m α = 1.1 1.1 L caricata = 22 m 12.5 m F avv (max 1000 kN) = 726 kN 412.5 kN F1 = 799 kN 454 kN Avviamento SW/2 f avv = 33 kN/m 33 kN/m		Reazioni v	vincolari B	Reazioni vincolari A		
α = 1.1 1.1 L caricata = 22 m 12.5 m F avv (max 1000 kN) = 726 kN 412.5 kN F1 = 799 kN 454 kN Avviamento SW/2 f avv = 33 kN/m 33 kN/m	Avviamento LM71					
L caricata = 22 m 12.5 m F avv (max 1000 kN) = 726 kN 412.5 kN F1 = 799 kN 454 kN Avviamento SW/2 33 kN/m 33 kN/m	f avv =	33	kN/m	33	kN/m	
F avv (max 1000 kN) = 726 kN 412.5 kN F1 = 799 kN 454 kN Avviamento SW/2 454 kN 454 kN f avv = 33 kN/m 33 kN/m	α =	1.1		1.1		
F1 = 799 kN 454 kN Avviamento SW/2 f avv = 33 kN/m 33 kN/m	L caricata =	22	m	12.5	m	
Avviamento SW/2 f avv = 33 kN/m 33 kN/m	F avv (max 1000 kN) =	726	kN	412.5	kN	
f avv = 33 kN/m 33 kN/m	F1 =	799	kN	454	kN	
	Avviamento SW/2					
$\alpha =$ 1 1	f avv =	33	kN/m	33	kN/m	
	α =	1		1		

PROGETTO ESECUTIVO

		PROGETTO	O ESECU	ΤΙνο				
Pila P01: Relazione di calcolo		COMMESSA IF26	LOTTO 12 E ZZ	CODIFICA CL	DOCUMENTO VI0405 001	REV.	FOGLIO 60 di 149	
L caricata =	2	2	m		5.5	m		
F avv (max 1000 kN) =	7	26	kN		182	kN		
F1 =	7	26	kN		182	kN		
Frenatura LM71								
f fren =	2	0	kN/m		20	kN/m		
α =	1	.1			1.1			
L caricata =	2	2	m		12.5	m		
F fren (max 6000 kN) =	4	40	kN		250	kN		
F1 =	4	84	kN		275	kN		
Frenatura SW/2								
f fren =	3	5	kN/m		35	kN/m		
α =	1				1			
L caricata =	2	2	m		5.5	m		
F fren =	7	70	kN		192.5	kN		
F1 =	7	70	kN		630	kN		
αhp interazione semplificata								
αhp frenatura per LM71 =	1	.12			1.12			
αhp frenatura per SW/2 =	1	.6			1.6			
αhp avviam, per LM71 SW/2 =	1	.3			1.3			
Forza totale di avviamento e frenatura								
F1 =	1	588	kN		1327	kN		
h rispetto a intradosso imp, =	2	.063	m		1.373	m		
tipologia vincolo =	ι	JL			F			

Risultanti reazioni vincolari

6.3.2.6 DISPOSIZIONE DI CARICO 6 (Q26)

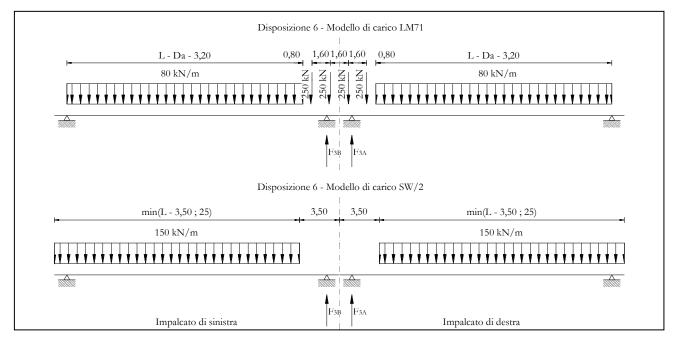


Figura 26 – Disposizione di carico 6

	IMPALCATO- Reazioni vinc		IMPALCATO-DX Reazioni vincolari A		
Avviamento LM71					
f avv =	33	kN/m	33	kN/m	
α =	1.1		1.1		
L caricata =	22	m	12.5	m	
F avv (max 1000 kN) =	726	kN	412.5	kN	
F1 =	799	kN	454	kN	
Avviamento SW/2					
f avv =	33	kN/m	33	kN/m	
α =	1		1		
L caricata =	18.5	m	9	m	

- CEODATA	
■GEODATA	
ENGINEERING	

PROGETTO ESECUTIVO

		PROGETTO	O ESECU	TIVO			
Pila P01: Relazione di calcolo		COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
		IF26	12 E ZZ	CL	VI0405 001	Α	63 di 149
F over (mov 4000 kN)	c	10 E	LNI		207	LANI	
F avv (max 1000 kN) =	Ö	10.5	kN		297	kN	
F1 =	6	511	kN		297	kN	
Frenatura LM71							
f fren =	2	0	kN/m	l	20	kN/m	
α =	1	.1			1.1		
L caricata =	2	2	m		12.5	m	
F fren (max 6000 kN) =	4	40	kN		250	kN	
F1 =	4	84	kN		275	kN	
Frenatura SW/2							
f fren =	3	5	kN/m	l	35	kN/m	
α =	1				1		
L caricata =	1	8.5	m		9	m	
F fren =	6	47.5	kN		315	kN	
F1 =	6	48	kN		630	kN	
αhp interazione semplificata							
αhp frenatura per LM71 =	1	.12			1.12		
αhp frenatura per SW/2 =	1	.6			1.6		
αhp avviam, per LM71 SW/2 =	1	.3			1.3		
Forza totale di avviamento e frenatura							
F1 =	1	458	kN		1327	kN	
h rispetto a intradosso imp, =	2	2.063	m		1.373	m	
tipologia vincolo =	L	JL			F		
Risultanti reazioni vincolari							
F1 =	0	1	kN		1327	kN	

F2 =	0		0	
F3 =	143	kN	-157	kN
M1 =	0		0	
M2 =	0		0	
M3 =	0		0	

6.3.2.7 DISPOSIZIONE DI CARICO 7 (Q27)

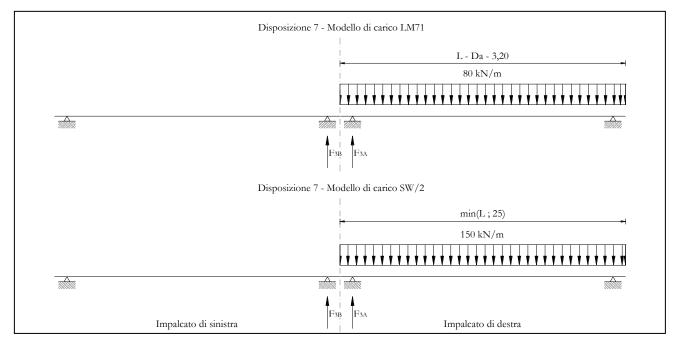


Figura 27 – Disposizione di carico 7*

^{*}La disposizione nella figura è specchiata rispetto alla disposizione più critica usata per il calcolo.

	IMPALCATO-SX		IMPALCATO-DX	
	Reazioni vincolari B		Reazioni	vincolari A
Avviamento LM71				
f avv =	33	kN/m	33	kN/m
α =	1.1		1.1	
L caricata =	22	m	0	m
F avv (max 1000 kN) =	726	kN	0	kN
F1 =	799	kN	0	kN
Avviamento SW/2				
f avv =	33	kN/m	33	kN/m
α =	1		1	

		PROGETTO	O ESECU	TIVO			
Pila P01: Relazione di calcolo		COMMESSA IF26	LOTTO 12 E ZZ	CODIFICA CL	DOCUMENTO VI0405 001	REV.	FOGLIO 66 di 149
L caricata =	22	2	m		0	m	
F avv (max 1000 kN) =	72	26	kN		0	kN	
F1 =	72	26	kN		0	kN	
Frenatura LM71							
f fren =	20)	kN/m		20	kN/m	
α =	1.	1			1.1		
L caricata =	22	2	m		0	m	
F fren (max 6000 kN) =	44	40	kN		0	kN	
F1 =	48	34	kN		0	kN	
Frenatura SW/2							
f fren =	35	5	kN/m		35	kN/m	
α =	1				1		
L caricata =	22	2	m		0	m	
F fren =	77	70	kN		0	kN	
F1 =	77	70	kN		0	kN	
αhp interazione semplificata							
αhp frenatura per LM71 =	1.	12			1.12		
αhp frenatura per SW/2 =	1.	6			1.6		
αhp avviam, per LM71 SW/2 =	1.	3			1.3		
Forza totale di avviamento e frenatura							
F1 =	18	395	kN		0	kN	
h rispetto a intradosso imp, =	2.	063	m		1.373	m	
tipologia vincolo =	U	L			F		

Risultanti reazioni vincolari

6.3.3 FORZA CENTRIFUGA (Q3)

L'azione centrifuga è schematizzata come una forza agente in direzione orizzontale perpendicolarmente al binario e verso l'esterno della curva, applicata ad 1,80 m al di sopra del p.f.. Il valore caratteristico della forza centrifuga si determina in accordo con la seguente espressione:

$$Q_{tk} = V^2 \cdot f \cdot (\alpha \cdot Q_{vk})/(127 \cdot R)$$

dove V velocità di progetto espressa in km/h

Q_{vk} valore caratteristico dei carichi verticali

R raggio di curvatura in m

f fattore di riduzione (rif, §1.4.3.1 [3])

Per il modello di carico LM71 e per velocità di progetto superiori a 120 km/h, si considerano i seguenti 2 casi:

- a) modello di carico LM71 e forza centrifuga per V = 120 km/h e f = 1;
- b) modello di carico LM71 e forza centrifuga calcolata per la massima velocità di progetto.

Per i modelli di carico SW si assume una velocità massima di 100 km/h.

La forza centrifuga non deve essere incrementata dei coefficienti dinamici.

Nei sottoparagrafi che seguono si riportano i risultati delle reazioni vincolari per le diverse disposizioni di carico considerate e descritte precedentemente nel §6.3.

6.3.3.1 DISPOSIZIONE DI CARICO 1 (Q31)

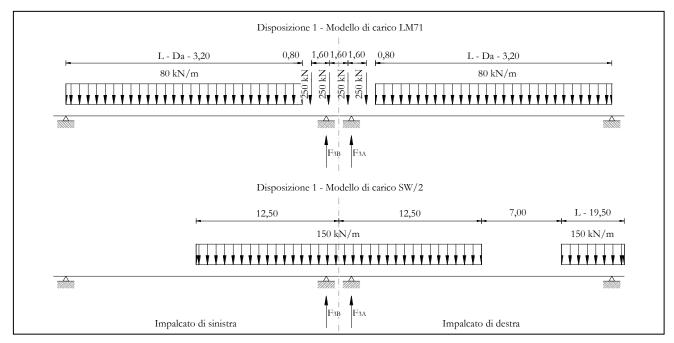


Figura 28 – Disposizione di carico 1*

*La disposizione nella figura è specchiata rispetto alla disposizione più critica usata per il calcolo.

	IMPALCATO-SX		IMPALCATO-DX		
	Reazioni v	incolari B	Reazioni v	incolari A	
Centrifuga LM71					
v = vmax					
Raggio minimo =	1600	m	1600	m	
Velocità massima =	200	km/h	200	km/h	
Lf =	22	m	12.5	m	
f =	0.70		0.76		
Qv =	1111	kN	721	kN	
Qh =	154	kN	107	kN	
v = 120 km/h					
Raggio minimo =	1600	m	1600	m	
Velocità (120 km/h) =	120	km/h	120	km/h	

■GEODATA ENGINEERING	INTEGR
Pila P01: Relazione di calco	lo
f (1) =	
Qv =	
Qh =	
Qh,max =	
Centrifuga SW/2	
v max = 100 km/h	
D 1 1 - 1	

		PROGETTO ESECUTIVO						
Pila P01: Relazione di calcolo	COMMESS/	12 E ZZ	CODIFICA CL	DOCUMENTO VI0405 001	REV.	FOGLIO 70 di 149		
f (1) =	1			1				
Qv =	1222	kN		793	kN			
Qh =	87	kN		56	kN			
Qh,max =	154	kN		107	kN			
Centrifuga SW/2								
v max = 100 km/h								
Raggio minimo =	1600	m		1600	m			
Velocità (100 km/h) =	100	km/h		100	km/h			
f (1) =	1			1				
Qv =	1660	kN		938	kN			
Qh,max =	82	kN		46	kN			
Forza centrifuga sull appoggio								
F2 =	235	kN		154	kN			
h rispetto a intradosso imp, =	3.86	m		3.373	m			
Risultanti reazioni vincolari								
F1 =	0			0				
F2 =	235	kN		154	kN			
F3 =	0			0				
M1 =	-909	kNm		-518	kNm			
M2 =	0			0				
M3 =	0			0				

6.3.3.2 DISPOSIZIONE DI CARICO 2 (Q32)

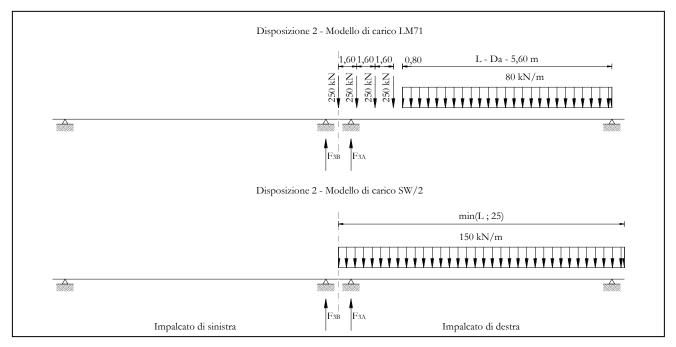


Figura 29 – Disposizione di carico 2*

*La disposizione nella figura è specchiata rispetto alla disposizione più critica usata per il calcolo.

	IMPALCATO-SX Reazioni vincolari B		IMPALCATO-DX		
			Reazioni vincolari A		
Centrifuga LM71					
v = vmax					
Raggio minimo =	1600	m	1600	m	
Velocità massima =	200	km/h	200	km/h	
Lf =	22	m	12.5	m	
f =	0.70		0.76		
Qv =	1260	kN	0	kN	
Qh =	174	kN	0	kN	
v = 120 km/h					
Raggio minimo =	1600	m	1600	m	
Velocità (120 km/h) =	120	km/h	120	km/h	

	1° LOTTO FUNZIONALE FRASSO TELESINO – TELESE PROGETTO ESECUTIVO						
Pila P01: Relazione di calcolo	COMMESSA IF26	LOTTO 12 E ZZ	CODIFICA CL	DOCUMENTO VI0405 001	REV.	FOGLIO 72 di 149	
f (1) =	1			1			
Qv =	1385	kN		0	kN		
Qh =	98	kN		0	kN		
Qh,max =	174	kN		0	kN		
Centrifuga SW/2							
v max = 100 km/h							
Raggio minimo =	1600	m		1600	m		
Velocità (100 km/h) =	100	km/h	ı	100	km/h		
f =	1			1			
Qv =	1650	kN		0	kN		
Qh,max =	81	kN		0	kN		
Forza centrifuga sull appoggio							
F2 =	255	kN		0	kN		
h rispetto a intradosso imp, =	3.86	m		3.373	m		
Risultanti reazioni vincolari							
F1 =	0			0			
F2 =	255	kN		0	kN		
F3 =	0			0			
M1 =	-987	kNm		0	kNm		
M2 =	0			0			
M3 =	0			0			

6.3.3.3 DISPOSIZIONE DI CARICO 3 (Q33)

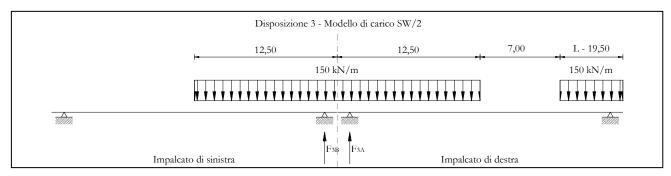


Figura 30 - Disposizione di carico 3*

*La disposizione nella figura è specchiata rispetto alla disposizione più critica usata per il calcolo.

	IMPALCATO-SX Reazioni vincolari B		IMPALCATO-DX Reazioni vincolari A	
Centrifuga LM71				
v = vmax				
Raggio minimo =	1600	m	1600	m
Velocità massima =	200	km/h	200	km/h
Lf =	22	m	12.5	m
f =	0.70		0.76	
Qv =	0	kN	0	kN
Qh =	0	kN	0	kN
v = 120 km/h				
Raggio minimo =	1600	m	1600	m
Velocità (120 km/h) =	120	km/h	120	km/h
f (1) =	1		1	
Qv =	0	kN	0	kN
Qh =	0	kN	0	kN
Qh,max =	0	kN	0	kN

Centrifuga SW/2

v max = 100 km/h				
Raggio minimo =	1600	m	1600	m
Velocità (100 km/h) =	100	km/h	100	km/h
f =	1		1	
Qv =	1660	kN	938	kN
Qh,max =	82	kN	46	kN
Forza centrifuga sull appoggio				
F2 =	82	kN	46	kN
h rispetto a intradosso imp, =	3.86	m	3.373	m
ii iispetto a iiitiadosso iiip, =	3.00	III	3.373	111
Risultanti reazioni vincolari				
·				
F1 =	0		0	
F2 =	82	kN	46	kN
F3 =	0		0	
M1 =	-316	kNm	-156	kNm
M2 =	0		0	
M3 =	0		0	

6.3.3.4 DISPOSIZIONE DI CARICO 4 (Q34)

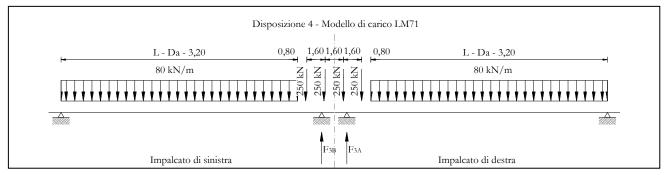


Figura 31 – Disposizione di carico 4

	<u>IMPALCATO-SX</u>		IMPALCATO-DX		
	Reazioni v	incolari B	Reazioni vincolari A		
Centrifuga LM71					
v = vmax					
Raggio minimo =	1300	m	1300	m	
Velocità massima =	200	km/h	200	km/h	
Lf =	1600	m	1600	m	
f =	200	km/h	200	km/h	
Qv =	22	m	12.5	m	
Qh =	0.70		0.76		
	1111	kN	721	kN	
v = 120 km/h	154	kN	107	kN	
Raggio minimo =					
Velocità (120 km/h) =					
f (1) =	1600	m	1600	m	
Qv =	120	km/h	120	km/h	
Qh =	1		1		
	1222	kN	793	kN	
Qh,max =	87	kN	56	kN	
Centrifuga SW/2	154	kN	107	kN	

v max = 100 km/h				
Raggio minimo =				
Velocità (100 km/h) =				
f =	1600	m	1600	m
Qv =	100	km/h	100	km/h
	1		1	
Qh,max =	0	kN	0	kN
Forza centrifuga sull appoggio	0	kN	0	kN
F2 =				
h rispetto a intradosso imp, =	154	kN	107	kN
Risultanti reazioni vincolari	3.86	m	3.373	m
F1 =				
F2 =				
F3 =	0		0	
M1 =	154	kN	107	kN
M2 =	0		0	
M3 =	-594	kNm	-363	kNm

6.3.3.5 DISPOSIZIONE DI CARICO 5 (Q35)

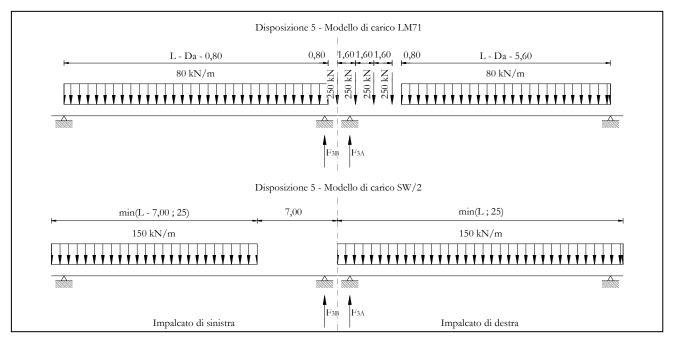


Figura 32 – Disposizione di carico 5*

*La disposizione nella figura è specchiata rispetto alla disposizione più critica usata per il calcolo.

	IMPALCATO-SX		IMPALCATO-DX	
	Reazioni vin	icolari B	Reazioni vincolari A	
Centrifuga LM71				
v = vmax				
Raggio minimo =	1600	m	1600	m
Velocità massima =	200	km/h	200	km/h
Lf =	22	m	12.5	m
f =	0.70		0.76	
Qv =	1260	kN	561	kN
Qh =	174	kN	84	kN
v = 120 km/h				
Raggio minimo =	1600	m	1600	m
Velocità (120 km/h) =	120	km/h	120	km/h

Pila P01:	: Relazio	one di ca	ılco
■G EN	EODA ngineer	TA ING	I

INTEGRA

ITINERARIO NAPOLI – BARI RADDOPPIO TRATTA CANCELLO-BENEVENTO II LOTTO FUNZIONALE FRASSO TELESINO – VITULANO

		1° LOTTO FUNZIONALE FRASSO TELESINO – TELESE PROGETTO ESECUTIVO				
Pila P01: Relazione di calcolo	COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
	IF26	12 E ZZ	CL	VI0405 001	Α	78 di 14
f (1) =	1			1		
Qv =	1385	kN		618	kN	
Qh =	98	kN		44	kN	
Qh,max =	174	kN		84	kN	
Centrifuga SW/2						
v max = 100 km/h						
Raggio minimo =	1600	m		1600	m	
Velocità (100 km/h) =	100	km/h		100	km/h	
f =	1			1		
Qv =	1650	kN		164	kN	
Qh,max =	81	kN		8	kN	
Forza centrifuga sull appoggio						
F2 =	255	kN		92	kN	
h rispetto a intradosso imp, =	3.86	m		3.373	m	
Risultanti reazioni vincolari						
F1 =	0			0		
F2 =	255	kN		92	kN	
F3 =	0			0		
M1 =	-987	kNm		-310	kNm	
M2 =	0			0		
M3 =	0			0		

6.3.3.6 DISPOSIZIONE DI CARICO 6 (Q36)

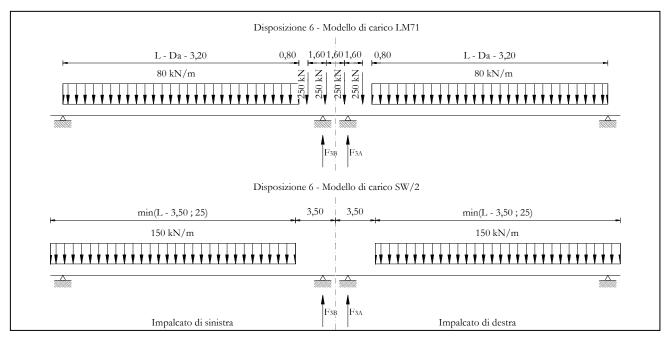


Figura 33 – Disposizione di carico 6

	IMPALCATO-SX Reazioni vincolari B		IMPALCATO-DX Reazioni vincolari A	
Centrifuga LM71				
v = vmax				
Raggio minimo =	1600	m	1600	m
Velocità massima =	200	km/h	200	km/h
Lf =	22	m	12.5	m
f =	0.70		0.76	
Qv =	1111	kN	721	kN
Qh =	154	kN	107	kN
v = 120 km/h				
Raggio minimo =	1600	m	1600	m
Velocità (120 km/h) =	120	km/h	120	km/h
f (1) =	1		1	

ITINERARIO NAPOLI – BARI RADDOPPIO TRATTA CANCELLO-BENEVENTO II LOTTO FUNZIONALE FRASSO TELESINO – VITULANO 1° LOTTO FUNZIONALE FRASSO TELESINO – TELESE

	PROGET	PROGETTO ESECUTIVO				
Pila P01: Relazione di calcolo	COMMESSA	A LOTTO 12 E ZZ	CODIFICA CL	DOCUMENTO VI0405 001	REV.	FOGLIO 80 di 149
	1720	12 4 44		1,0400,001		ui 143
Qv =	1222	kN		793	kN	
Qh =	87	kN		56	kN	
Qh,max =	154	kN		107	kN	
Centrifuga SW/2						
v max = 100 km/h						
Raggio minimo =	1600	m		1600	m	
Velocità (100 km/h) =	100	km/h	١	100	km/h	
f =	1			1		
Qv =	1157	kN		471	kN	
Qh,max =	57	kN		23	kN	
Forza centrifuga sull appoggio						
F2 =	211	kN		131	kN	
h rispetto a intradosso imp, =	3.86	m		3.373	m	
Risultanti reazioni vincolari						
F1 =	0			0		
F2 =	211	kN		131	kN	
F3 =	0			0		
M1 =	-814	kNm		-441	kNm	
M2 =	0			0		
M3 =	0			0		

6.3.3.7 DISPOSIZIONE DI CARICO 7 (Q37)

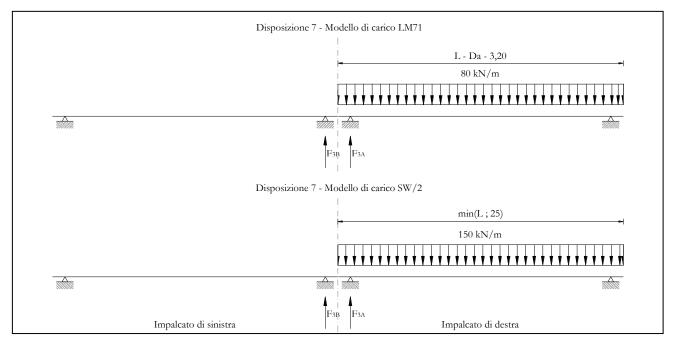


Figura 34 – Disposizione di carico 7*

*La disposizione nella figura è specchiata rispetto alla disposizione più critica usata per il calcolo.

	IMPALCATO-SX		IMPALCATO-DX	
	Reazioni vincolari B		Reazioni vincolari A	
Centrifuga LM71				
v = vmax				
Raggio minimo =	1600	m	1600	m
Velocità massima =	200	km/h	200	km/h
Lf =	22	m	12.5	m
f =	0.70		0.76	
Qv =	880	kN	0	kN
Qh =	122	kN	0	kN
v = 120 km/h				
Raggio minimo =	1600	m	1600	m
Velocità (120 km/h) =	120	km/h	120	km/h

ITINERARIO NAPOLI – BARI RADDOPPIO TRATTA CANCELLO-BENEVENTO II LOTTO FUNZIONALE FRASSO TELESINO – VITULANO 1° LOTTO FUNZIONALE FRASSO TELESINO – TELESE

	1° LOTTO FUNZIONALE FRASSO TELESINO – TELESE PROGETTO ESECUTIVO					
Pila P01: Relazione di calcolo	COMMESSA IF26	LOTTO 12 E ZZ	CODIFICA CL	DOCUMENTO VI0405 001	REV.	FOGLIO 82 di 149
f (1) =	1			1		
Qv =	968	kN		0	kN	
Qh =	69	kN		0	kN	
Qh,max =	122	kN		0	kN	
Centrifuga SW/2						
v max = 100 km/h						
Raggio minimo =	1600	m		1600	m	
Velocità (100 km/h) =	100	km/h	1	100	km/h	
f =	1			1		
Qv =	1388	kN		0	kN	
Qh,max =	68	kN		0	kN	
Forza centrifuga sull appoggio						
F2 =	190	kN		0	kN	
h rispetto a intradosso imp, =	3.86	m		3.373	m	
Risultanti reazioni vincolari						
F1 =	0			0		
F2 =	190	kN		0	kN	
F3 =	0			0		
M1 =	-734	kNm	ı	0	kNm	
M2 =	0			0		
M3 =	0			0		

6.3.4 SERPEGGIO (Q4)

La forza laterale indotta dal serpeggio si schematizza come una forza concentrata agente orizzontalmente perpendicolarmente all'asse del binario.

Il valore caratteristico di tale forza è assunto pari a 100 kN, Tale valore deve essere moltiplicato per α ma non per il coefficiente di amplificazione dinamica.

Nei sottoparagrafi che seguono si riportano i risultati delle reazioni vincolari per le diverse disposizioni di carico considerate e descritte precedentemente nel §6.3.

6.3.4.1 DISPOSIZIONE DI CARICO 1 (Q41)

	IMPALCATO-SX		IMPALCATO-DX	
	Reazioni vinco	lari B	Reazioni vincolari A	
Serpeggio LM71				
Forza serpeggio =	100	kN	100	kN
α =	1.1		1.1	
Serpeggio SW/2				
Forza serpeggio =	100	kN	100	kN
α =	1		1	
Forza totale serpeggio				
F2 =	210	kN	210	kN
h rispetto a intradosso imp, =	2.063	m	1.573	m
Risultanti reazioni vincolari				
F1 = F2 =	0 105	kN	0 105	kN
F3 =	0	KIN	0	KIN

M1 =	-217	kNm	-165	kNm
M2 =	0		0	
M3 =	0		0	

6.3.4.2 DISPOSIZIONE DI CARICO 2 (Q42)

	IMPALCATO-	<u>SX</u>	IMPALCATO-DX	
	Reazioni vinc	olari B	Reazioni vinco	olari A
Serpeggio LM71				
Forza serpeggio = α =	100 1.1	kN	100 1.1	kN
Serpeggio SW/2				
Forza serpeggio =	100	kN	100	kN
α =	1		1	
Forza totale serpeggio				
F2 =	210	kN	210	kN
h rispetto a intradosso imp, =	2.063	m	1.573	m
Risultanti reazioni vincolari				
F1 =	0		0	
F2 = F3 =	105 0	kN	105 0	kN
M1 =	-217	kNm	-165	kNm
M2 =	0		0	
M3 =	0		0	

6.3.4.3 DISPOSIZIONE DI CARICO 3 (Q43)

	IMPALCATO-	IMPALCATO-SX		<u>DX</u>
	Reazioni vinco	olari B	Reazioni vinco	olari A
Serpeggio LM71				
Forza serpeggio = α =	0 1.1	kN	0 1.1	kN
Serpeggio SW/2				
Forza serpeggio =	100	kN	100	kN
α =	1		1	
Forza totale serpeggio F2 =	100	kN	100	kN
rz =	100	KIN	100	KIN
h rispetto a intradosso imp, =	2.063	m	1.573	m
Risultanti reazioni vincolari				
F1 =	0		0	
F2 =	50	kN	50	kN
F3 =	0		0	
M1 =	-103	kNm	-79	kNm
M2 =	0		0	
M3 =	0		0	

6.3.4.4 DISPOSIZIONE DI CARICO 4 (Q44)

	IMPALCATO-	<u>SX</u>	IMPALCATO-DX	
	Reazioni vince	olari B	Reazioni vinco	olari A
Serpeggio LM71				
Forza serpeggio = α =	100 1.1	kN	100 1.1	kN
Serpeggio SW/2				
Forza serpeggio =	0	kN	0	kN
α =	1		1	
Forza totale serpeggio F2 =	110	kN	110	kN
12-	110	IXI V	110	MV
h rispetto a intradosso imp, =	2.063	m	1.573	m
Risultanti reazioni vincolari				
F1 =	0		0	
F2 =	55	kN	55	kN
F3 =	0		0	
M1 =	-113	kNm	-87	kNm
M2 =	0		0	
M3 =	0		0	

6.3.4.5 DISPOSIZIONE DI CARICO 5 (Q45)

	IMPALCATO-SX Reazioni vincolari B		IMPALCATO-E Reazioni vinco	
Serpeggio LM71				
Forza serpeggio = α =	100 1.1	kN	100 1.1	kN
Serpeggio SW/2				
Forza serpeggio = α =	100 1	kN	100 1	kN
Forza totale serpeggio				
F2 =	210	kN	210	kN
h rispetto a intradosso imp, =	2.063	m	1.573	m
Risultanti reazioni vincolari				
F1 =	0		0	
F2 =	105	kN	105	kN
F3 =	0		0	
M1 =	-217	kNm	-165	kNm
M2 =	0		0	
M3 =	0		0	

6.3.4.6 DISPOSIZIONE DI CARICO 6 (Q46)

	IMPALCATO-	IMPALCATO-SX		<u>DX</u>
	Reazioni vinco	olari B	Reazioni vincolari A	
Serpeggio LM71				
Forza serpeggio = α =	100 1.1	kN	100 1.1	kN
Serpeggio SW/2				
Forza serpeggio =	100	kN	100	kN
α =	1		1	
Forza totale serpeggio				
F2 =	210	kN	210	kN
h rispetto a intradosso imp, =	2.063	m	1.573	m
Risultanti reazioni vincolari				
F1 =	0		0	
F2 =	105	kN	105	kN
F3 =	0		0	
M1 =	-217	kNm	-165	kNm
M2 =	0		0	
M3 =	0		0	

6.3.4.7 DISPOSIZIONE DI CARICO 7 (Q47)

	IMPALCATO-	<u>SX</u>	IMPALCATO-DX	
	Reazioni vinco	olari B	Reazioni vinco	olari A
Serpeggio LM71				
Forza serpeggio = α =	100 1.1	kN	0 1.1	kN
Serpeggio SW/2				
Forza serpeggio =	100	kN	0	kN
α =	1		1	
Forza totale serpeggio F2 =	210	kN	0	kN
12-	210	IXIV	O	KI V
h rispetto a intradosso imp, =	2.063	m	1.573	m
Risultanti reazioni vincolari				
F1 =	0		0	
F2 =	105	kN	0	kN
F3 =	0		0	
M1 =	-217	kNm	0	kNm
M2 =	0		0	
M3 =	0		0	

6.4 CARICHI VARIABILI (Q5)

6.4.1 AZIONI DEL VENTO (Q51)

L'azione del vento viene ricondotta ad un'azione statica equivalente costituita da pressioni e depressioni agenti normalmente alle superfici.

La pressione del vento è data dalla seguente espressione:

$$p = q_b \cdot c_e \cdot c_p \cdot c_d$$

dove qb pressione cinetica di riferimento

ce coefficiente di esposizione

cp coefficiente di forma

cd coefficiente dinamico, posto generalmente pari a 1

Di seguito si riporta il dettaglio del calcolo di tali fattori per l'opera in oggetto.

6.4.1.1 PRESSIONE CINETICA DI RIFERIMENTO

La pressione cinetica di riferimento si determina mediante l'espressione:

$$q_b = \frac{1}{2} \cdot \rho \cdot v_b^2$$
 (in N/m²)

dove vb velocità di riferimento

ρ densità dell'aria, convenzionalmente posta pari a 1,25 kg/m³

Di seguito si determina la pressione di riferimento sulla base dei parametri caratteristici del sito e il tempo di ritorno dell'opera in oggetto:

Parametri dipendenti dal sito

Zona =	3	
vb,0 =	27	m/s
a0 =	500	m
ka =	0.02	1/s

Altitudine del sito

as =	200	m s,l,m,
vb =	27	m/s

Tempo di ritorno

TR =	75	anni
$\alpha R(TR) =$	1.02	
vb(TR) =	27.6	m/s

Pressione di riferimento

$$qb = 477,25$$
 N/m2

GEODATA INTEGRA RIF	II LOTTO F	IO TRAT UNZION FUNZION	TA CANCEL ALE FRASSO IALE FRASS	LO-BENEVENT O TELESINO – SO TELESINO –	VITULA	
Pila P01: Relazione di calcolo	COMMESSA IF26	LOTTO 12 E ZZ	CODIFICA	DOCUMENTO VI0405 001	REV.	FOGLIO 93 di 149

6.4.1.2 COEFFICIENTE DI ESPOSIZIONE

Il coefficiente di esposizione ce dipende dall'altezza z sul suolo del punto considerato, dalla topografia del terreno e dalla categoria di esposizione del sito e si determina mediante l'espressione:

$$c_e(z) = k_r^2 \cdot c_t \cdot ln(z/z_0) \left[7 + c_t \cdot ln(z/z_0) \right] \quad \text{per } z \geq z_{min}$$

 $C_e(z) = C_e(z_{min})$ per $z < z_{min}$

dove k_r , z_0 , z_{min}

sono parametri che dipendono dalla categoria di esposizione del sito;

Ct

è il coefficiente di topografia, posto generalmente pari a 1

Di seguito si determina il coefficiente di esposizione sulla base della classe d'esposizione e l'altezza z del punto considerato, posta pari alla massima quota del complesso impalcato, barriere antirumore, sagoma del treno, A tal proposito il §2.5.1.4.4.2 [3] impone di considerare il treno come una superficie piana continua convenzionalmente alta 4,00 m sul p.f.. Cautelativamente si considerano presenti barriere H4 ad entrambe le estremità dell'impalcato.

Categoria di esposizione

Classa	4:		
Classe	di rugosità =	U	,

Distanza dalla costa = > 30 km

Categoria di esposizione = II

kr = 0.19

z0 = 0.05 m

zmin = 4 m

Quota di riferimento z

H pila fino a intradosso imp. =	6.9	m
H imp. fino a p.f. =	1.37	m

H b.a. su p.f. = 4.67 m

H min b.a. su p.f. = 3.35 m

H treno su p.f. = 4 m

z di riferimento = 12.9 m

Coefficiente di esposizione

ce = 2.52

ENGINEERING INTEGRA RIF	RADDOPP II LOTTO F 1° LOTTO	ITINERARIO NAPOLI – BARI RADDOPPIO TRATTA CANCELLO-BENEVENTO II LOTTO FUNZIONALE FRASSO TELESINO – VITULANO 1° LOTTO FUNZIONALE FRASSO TELESINO – TELESE PROGETTO ESECUTIVO							
Pila P01: Relazione di calcolo	COMMESSA IF26	LOTTO 12 E ZZ	CODIFICA	DOCUMENTO VI0405 001	REV.	FOGLIO 94 di 149			

6.4.1.3 COEFFICIENTE DI FORMA DELL'IMPALCATO

Il coefficiente di forma dell'impalcato e l'area di riferimento per il calcolo della forza risultante si determinano in base ai criteri enunciati nel §8.3.1 [9].

A tal proposito si riconduce il coefficiente di forma c_p al coefficiente di forza $c_{fx,0}$, Il coefficiente di forza $c_{fx,0}$ si determina in base al rapporto tra larghezza b e altezza totale dell'impalcato d_{tot} .

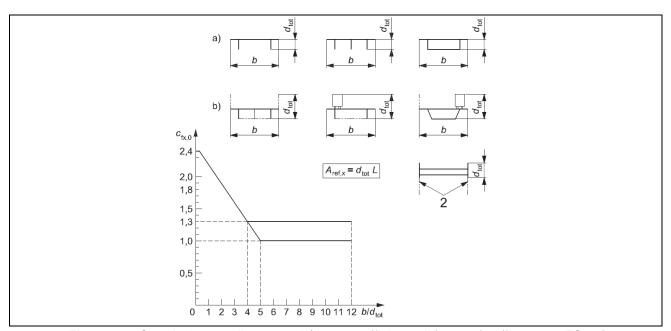


Figura 35 – Correlazione tra il rapporto b/dtot e coefficiente di forma cfx0 (figura 8,3 EC1-4)

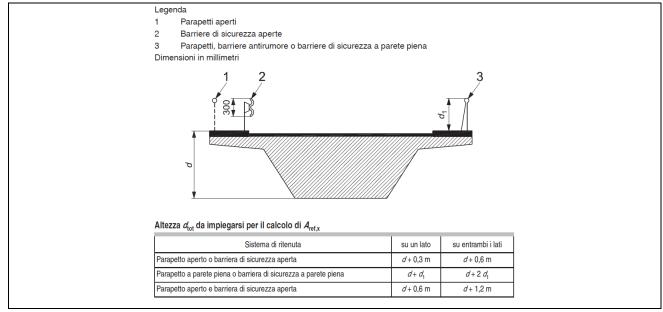


Figura 36 – Criteri per la determinazione dell'area di riferimento (figura 8,5 EC1-4)

GEODATA INTEGRA RIF	ITINERARIO NAPOLI – BARI RADDOPPIO TRATTA CANCELLO-BENEVENTO II LOTTO FUNZIONALE FRASSO TELESINO – VITULANO 1° LOTTO FUNZIONALE FRASSO TELESINO – TELESE PROGETTO ESECUTIVO						
Pila P01: Relazione di calcolo	COMMESSA IF26	LOTTO 12 E ZZ	CODIFICA	DOCUMENTO VI0405 001	REV.	FOGLIO 96 di 149	

L'area da considerare per il calcolo della risultante di forza si definisce come la somma di tutte le superfici proiettate dall'impalcato nel piano longitudinale, comprese le barriere e la sagoma dei veicoli.

Per il caso in esame si ha:

Caratteristiche geometriche dell'impalcato

	IMPALCATO-SX		IMPALCATO-DX	
b =	13.7	m	13.7	m
H b.a. su p.f. =	4.67	m	4.67	m
dtot =	6.73	m	6.04	m
b/dtot =	2.03		2.27	
cp =	1.9		1.8	
Coefficiente di forma				
cp,max =	1.9			
Area di riferimento				
H impalcato da intrad. a p.f. =	2.063	m	1.573	m
H barriera su p.f. sx =	4.67	m	4.67	m
H barriera su p.f. dx =	4.67	m	4.67	m
H b.a. min su p.f. =	3.35	m	3.35	m
H treno su p.f. =	4	m	4	m
dtot2 =	13.5	m	12.1	m
L impalcato =	22	m	12.5	m
Arif =	296	m2	151	m2

ENGINEERING INTEGRA RIA	RADDOPP II LOTTO F 1° LOTTO	ITINERARIO NAPOLI – BARI RADDOPPIO TRATTA CANCELLO-BENEVENTO II LOTTO FUNZIONALE FRASSO TELESINO – VITULANO 1° LOTTO FUNZIONALE FRASSO TELESINO – TELESE PROGETTO ESECUTIVO						
Pila P01: Relazione di calcolo	COMMESSA IF26	LOTTO 12 E ZZ	CODIFICA	DOCUMENTO VI0405 001	REV.	FOGLIO 97 di 149		

6.4.1.4 AZIONE DEL VENTO SULL'IMPALCATO

Di seguito si procede al calcolo dell'azione del vento sull'impalcato in relazione ai parametri determinati nei paragrafi precedenti.

	<u>IMPALCATO</u>	-SX	IMPALCATO-DX	
Pressione del vento				
qb =	477	N/m2	477	N/m2
ce =	2.52		2.52	
cp =	1.9		1.9	
cd =	1		1	
$dp = dp \cdot ce \cdot cb \cdot cd =$	2.28	kN/m2	2.28	kN/m2
Area di riferimento				
Arif =	296	m2	151	m2
H rispetto a intrad. Imp. =	3.4	m	3.1	m
Risultante totale forza del vento				
Fvh =	677	kN	345	kN
Mvt =	2278	kNm	1077	kNm
Risultanti reazioni vincolari				
F1 =	0		0	
F2 =	338	kN	173	kN
F3 =	0		0	
M1 =	-1139	kNm	-538	kNm
M2 =	0		0	
M3 =	0		0	

6.4.1.5 COEFFICIENTE DI FORMA DELLA PILA

Nel caso di pila con sezione circolare, il coefficiente di forma della pila e l'area di riferimento per il calcolo della risultante si determinano in base alle indicazioni del §7.9.2 [9].

A tal proposito si riconduce il coefficiente di forma cp al coefficiente di forza cf.

Il coefficiente di esposizione c_f si determina mediante l'espressione:

 $c_f = c_{f,0} \cdot \psi_{\lambda}$

dove

è il coefficiente di forma in assenza di effetto di estremità; $C_{f,0}$

è il fattore di effetto di estremità, posto cautelativamente pari a 1,

Il valore di c_{f,0} si determina in funzione del numero di Reynolds e della rugosità equivalente mediante l'abaco riportato in Figura 34. Per il caso in questione, a favore di sicurezza, si pone cf.0 pari a 1,2 indipendentemente dai valori del numero di Reynolds e della rugosità equivalente.

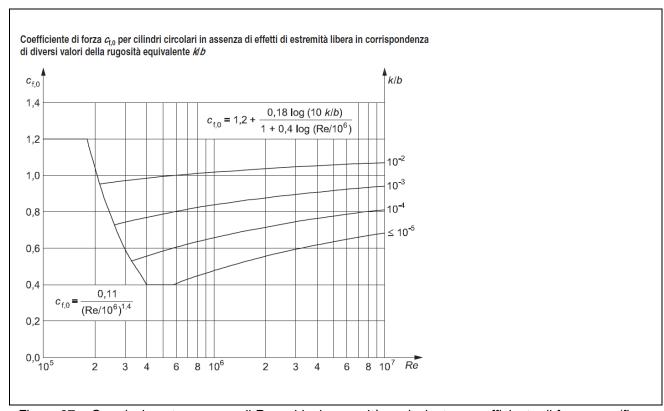


Figura 37 – Correlazione tra numero di Reynolds, la rugosità equivalente e coefficiente di forma c_{fx0} (figura 7,28 EC1-4)

Nel caso di pila con sezione rettangolare, il coefficiente di forma della pila e l'area di riferimento per il calcolo della risultante si determinano in base alle indicazioni del §7.6 [9]. A tal proposito si riconduce il coefficiente di forma c_p al coefficiente di forza c_{f.}.

GEODATA INTEGRA RIA	II LOTTO F	IO TRAT UNZION FUNZION	TA CANCEL ALE FRASSI IALE FRASS	LO-BENEVENT O TELESINO – SO TELESINO –	VITULA	_
Pila P01: Relazione di calcolo	COMMESSA IF26	LOTTO 12 E ZZ	CODIFICA CL	DOCUMENTO VI0405 001	REV.	FOGLIO 100 di 149

Il coefficiente di esposizione c_i si determina mediante l'espressione:

 $C_f = C_{f,0} \cdot \psi_r \cdot \psi_\lambda$

dove c_{f,0} è il coefficiente di forma in assenza di effetto di estremità;

ψ_r è il fattore riduttivo per sezioni con spigoli arrotondati;

 ψ_{λ} è il fattore di effetto di estremità, posto cautelativamente pari a 1,

I valori di $c_{f,0}$ e ψ_r si determinano in funzione del rapporto tra le dimensioni in sezione dell'elemento investito, secondo gli abachi riportati nella Figura 38.

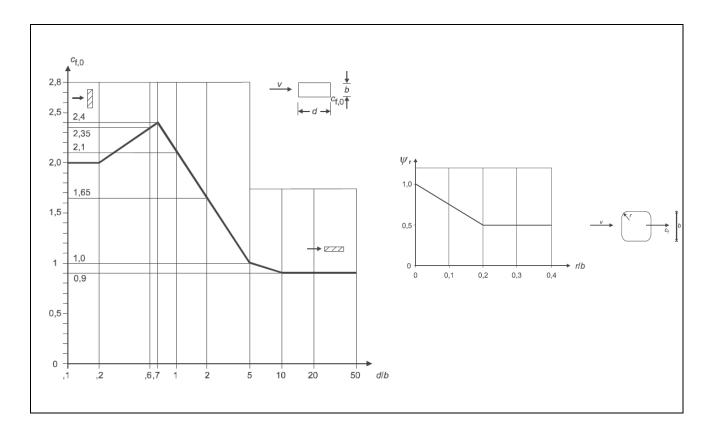


Figura 38 – Correlazione tra dimensioni in sezione dell'elemento e il coefficiente di forma c_{fx0} (figura 7,23 EC1-4) e correlazione tra il raggio di arrotondamento dello spigolo e il fattore riduttivo ψ_r (figura 7,24 EC1-4)

GEODATA INTEGRA RIF	II LOTTO F	IO TRAT UNZIONA FUNZION	TA CANCEL ALE FRASSI IALE FRASS	LO-BENEVENT O TELESINO – SO TELESINO –	VITULA	
Pila P01: Relazione di calcolo	COMMESSA IF26	LOTTO 12 E ZZ	CODIFICA	DOCUMENTO VI0405 001	REV.	FOGLIO 101 di 149

L'area da considerare per il calcolo della risultante di forza si definisce come la superficie proiettata dalla pila nel piano longitudinale, Per il caso in esame si ha:

Caratteristiche geometriche della pila

Forma della pila =	Rettangolar	e con spigoli arrotondati
Dimensione proiettata nel piano b =	2.1	m
d =	11.45	m
d/b =	5.45	
cf,0 =	1	
r =	1.05	m
r/b =	0.5	
ψr =	0.5	
ψλ =	1	
Coefficiente di forma		
$cp = cf = cf, 0 \cdot \psi r \cdot \psi \lambda =$	0.5	

Azione del vento sulla pila:

Pressione del vento

qb =	477	kN/m2
ce =	2.43	
cp =	0.5	
cd =	1	
$qb = qb \cdot ce \cdot cp \cdot cd =$	0.58	kN/m2
Risultante totale forza del vento		
b =	3.3	m

L'azione del vento così calcolata viene applicata come una forza uniformemente distribuita sugli elementi che compongono il fusto e il pulvino della pila.

kN/m

1.91

GEODATA INTEGRA RIF	II LOTTO F	IO TRAT UNZION FUNZION	TA CANCEL ALE FRASSO IALE FRASS	LO-BENEVENT O TELESINO – SO TELESINO –	VITULAI	
Pila P01: Relazione di calcolo	COMMESSA IF26	LOTTO 12 E ZZ	CODIFICA	DOCUMENTO VI0405 001	REV.	FOGLIO 102 di 149

6.5 AZIONI INDIRETTE (Q6)

6.5.1 RESISTENZE PARASSITE NEI VINCOLI (Q61)

Per la valutazione delle coazioni generate dallo scorrimento dei vincoli, è stato considerato un coefficiente d'attrito f pari a 0.04, applicato alle azioni verticali agenti sugli apparecchi d'appoggio.

Con riferimento a quanto riportato nel §1.6.3 [3] la forza agente sulle pile per impalcati a travate isostatiche, facendo riferimento all'apparecchio d'appoggio maggiormente caricato tra i due presenti sulla pila, si considera pari a:

$$F_a = f(0.2 \cdot V_G + V_Q)$$

dove V_G reazione verticale massima associata ai carichi permanenti

VQ reazione verticale massima associata ai carichi mobili dinamizzati

	IMPALCATO-	<u>SX</u>	IMPALCATO-DX					
Reazioni verticali massime								
VG = F3 (G1+G2) =	6549	kN	2900	kN				
VQ = F3 (Q1max) =	3035	kN	1730	kN				
Forza d'attrito risultante per il singolo impalcato								
f =	0.04		0.04					
F1 =	173.8	kN	92.4	kN				
Risultante azione parassita nei vincol	<u>i</u>							
F1max =	173.8	kN						
Risultanti reazioni vincolari								
F1 =	173.8	kN	0	kN				
F2 =	0		0					
F3 =	0		0					
M1 =	0		0					
M2 =	0		0					

GEODATA INTEGRA RIF	II LOTTO F	IO TRAT UNZION FUNZION	TA CANCEL ALE FRASSI IALE FRASS	LO-BENEVENT O TELESINO – SO TELESINO –	VITULA	_
Pila P01: Relazione di calcolo	COMMESSA	LOTTO 12 E ZZ	CODIFICA	DOCUMENTO VI0405 001	REV.	FOGLIO 103 di 149

M3 = 0

ENGINEERING INTEGRA RIA	II LOTTO F	IO TRAT UNZION FUNZION	TA CANCEL ALE FRASS IALE FRASS	LO-BENEVENT O TELESINO – SO TELESINO –	VITULAI	
Pila P01: Relazione di calcolo	COMMESSA IF26	LOTTO 12 E ZZ	CODIFICA	DOCUMENTO VI0405 001	REV.	FOGLIO 104 di 149

6.6 EFFETTI D'INTERAZIONE (Q7)

6.6.1 VARIAZIONI TERMICHE DELL'IMPALCATO (Q71)

La presente azione si considera applicata in corrispondenza del piano ferro.

Di seguito si considera come prima pila la pila accostata alla spalla munita di appoggi fissi, si considera pertanto come ultima pila la pila accostata alla spalla munita di appoggi scorrevoli.

Dal §3,1 dell'Allegato 3 delle Specifiche RFI [3] si desume:

Fts = $\beta \cdot \alpha ts1 \cdot \alpha ts2 \cdot \alpha ts3 \cdot L \cdot q \cdot n$ dove αts1 0,70 nel caso di $\Delta t = 30$ °C (valore massimo) ats2 1,00 (rigidezza massima della spalla) ats3 0,80 nel caso di viadotto con un numero di campate ≥ 3 L luce della campata resistenza allo scorrimento longitudinale del binario scarico, posto generalmente pari a 20,00 kN/m q numero di binari n β 0,40 nel caso dell'ultima pila 0,20 nel caso della penultima e della prima pila β β 0,00 nel caso delle pile intermedie Cautelativamente si pone β pari al suo valore massimo, ossia 0,4.

IMPALCATO-SX

IMPALCATO-DX

	IIVIFALGAT	<u>U-3X</u>	IIVIFALCA	10-DX
Reazione per variazioni termiche dell'i	mpalcato			
ΔT =	30	°C	30	°C
L impalcato =	22	kN	12.5	kN
q =	20	kN/m	20	kN/m
n binari =	2		2	
αtp1 =	0.7		0.7	
αtp2 =	1		1	
αtp3 =	1		1	
Ft,spalla =	246.4	kN	140	kN
Ft,pila =	246.4	kN	140	kN

ENGINEERING RIFE	II LOTTO F	IO TRAT UNZION FUNZION	TA CANCEL ALE FRASS IALE FRASS	LO-BENEVENT O TELESINO – SO TELESINO –	VITULAI	_
Pila P01: Relazione di calcolo	COMMESSA IF26	LOTTO 12 E ZZ	CODIFICA	DOCUMENTO VI0405 001	REV.	FOGLIO 105 di 149

Tipo di vincolo =	UL		F	
Moltiplicatore =	0		1	
Forza risultante				
F1 =	0	kN	140	kN
11-	Ü	KIN	140	KIN
Risultanti reazioni vincolari				
F1 =	0	kN	140	kN
F2 =	0		0	
F3 =	0		0	
M1 =	0		0	
M2 =	0		0	
M3 =	0		0	

6.6.2 AZIONI DI FRENATURA E AVVIAMENTO

Gli effetti di interazione relativi alle azioni di frenatura e avviamento si tengono conto applicando ai valori della risultante un coefficiente α_h che tiene conto del rapporto di rigidezza tra le pile del viadotto.

Cautelativamente si prendono in considerazione le condizioni più sfavorevoli, ossia:

- per le azioni di frenatura del modello di carico LM71 : $\alpha_{hp} = \alpha_{hp3} = 1,60$
- per le azioni di frenatura del modello di carico SW/2 : α_{hp} = α_{hp3} = 1,30
- per le azioni di avviamento di entrambi i modelli di carico : $\alpha_{hp} = \alpha_{hp3} \cdot \alpha_{hp4} = 1,60 \cdot 0,70 = 1,12$.

6.6.3 INFLESSIONE DELL'IMPALCATO DOVUTA AI CARICHI VERTICALI DA TRAFFICO

Le azioni longitudinali da inflessione impalcato esercitano delle spinte che si contrappongono alle flessioni generate dall'eccentricità dei carichi verticali, Per questo motivo a vantaggio di sicurezza tali azioni vengono trascurate nei calcoli successivi.

6.7 AZIONI SISMICHE (E)

L'azione sismica di progetto è rappresentata da spettri di risposta definiti in base alla pericolosità sismica di base del sito ove sorge l'opera in oggetto, la vita di riferimento e le caratteristiche del sottosuolo.

Di seguito si riportano i parametri di input utilizzati per la definizione degli spettri di progetto orizzontali e verticali e i grafici degli stessi, Gli spettri di progetto così definiti vengono utilizzati nel modello di calcolo per la definizione di casi di analisi di tipo "dinamica lineare con spettro di risposta".

I valori del fattore di struttura q, adottati per la definizione delle azioni sismiche e per il dimensionamento degli elementi secondo i criteri della gerarchia delle resistenze, sono stati definiti in base ai criteri di seguito esplicitati.

Il valore del fattore di struttura q assunto per il dimensionamento delle fondazioni è pari a 1,5, in accordo con quanto indicato nel §1,8,3,3 [3] per le fondazioni su pali.

Per le strutture in elevazione, in accordo con quanto indicato nel §7,9,2,1 [1] per pile verticali inflesse in c,a, e progettazione in CD"B", si assume un fattore di struttura q₀ paria 1,5 (vedi Tabella 1).

Per elementi duttili in c,a, i valori di q_0 riportati in Tabella 1, valgono se la sollecitazione di compressione normalizzata v_k non eccede il valore 0,3, Per valori di v_k compresi tra 0,3 e 0,6 (v_k non può eccedere 0,6) q_0 si ottiene dalla relazione seguente:

$$q_0(v_k) = q_0 - (v_k/0, 3 - 1) \cdot (q_0 - 1)$$

Infine il fattore di struttura q da adottare nelle analisi si ottiene moltiplicando il q_0 così ottenuto per il coefficiente riduttivo K_R che dipende dalle caratteristiche di regolarità della struttura.

In generale il requisito di regolarità e quindi il valore di K_R si determinano a posteriori secondo il procedimento indicato nel $\S7,9,2,1$ [1], Per il caso in esame si ipotizza un K_R pari a 1.

$$\begin{array}{ll} q_0(v_k) & = q_0 = 1,5 \\ q & = q_0(v_k) \cdot K_R = 1,5. \end{array}$$

	q	0
Tipi di elementi duttili	CD"B"	CD"A"
Pile in cemento armato		
Pile verticali inflesse	1,5	3,5 λ
Elementi di sostegno inclinati inflessi	1,2	2,1 λ
Pile in acciaio:		
Pile verticali inflesse	1,5	3,5
Elementi di sostegno inclinati inflessi	1,2	2,0
Pile con controventi concentrici	1,5	2,5
Pile con controventi eccentrici	-	3,5
Spalle rigidamente connesse con l'impalcato		
In generale	1,5	1,5
Strutture che si muovono col terreno ⁷	1,0	1,0
Archi	1,2	2,0

 $^{^{7}}$ Le strutture che si muovono con il terreno non subiscono amplificazione dell'accelerazione del suolo. Esse sono caratterizzate da periodi naturali di vibrazione in direzione orizzontale molto bassi (T ≤ 0,03 s). Appartengono a questa categoria le spalle connesse, mediante collegamenti flessibili, all'impalcato.

Tabella 1 – Valori del fattore struttura qo per differenti tipologie di pile e spalle - tabella 7.9.1 [1]

6.7.1 SPETTRI DI PROGETTO ALLO SLV

Coordinate geografiche della pila:

PILA	Latitudine	Longitudine
	[°]	[°]
P01	41.175	14.472

Strategia di progettazione

Vita nominale VN = 75 anni

Coefficiente d'uso cu = 1,50

Vita di riferimento VR = 112,50 anni

Categoria di sottosuolo = B
Categoria topografica = T1

Per la definizione della categoria di suolo si rimanda all'elaborato progettuale "IF26.0.1.E.ZZ.CL.VI.04.0.3.002.A - Relazione geotecnica di calcolo delle fondazioni".

 $q_0 = 1,50$

 $K_r = 1,00$

Il valore di vk è pari a :

0.02

Fattore di struttura q = 1,50

Smorzamento ξ = 5,00 %

ENGINEERING INTEGRA RIF	II LOTTO F	IO TRAT UNZION FUNZION	TA CANCEL ALE FRASS IALE FRASS	LO-BENEVENT O TELESINO – SO TELESINO –	VITULA	
Pila P01: Relazione di calcolo	COMMESSA IF26	LOTTO 12 E ZZ	CODIFICA	DOCUMENTO VI0405 001	REV.	FOGLIO 108 di 149

6.7.1.1 PARAMETRI PER LA DEFINIZIONE DELLO SPETTRO ORIZZONTALE

Tr	1068	anni
ag0	0.275	g
Fo	2.350	
S	1.142	
TB	0.182	sec
TC	0.547	sec
TD	2.699	sec

6.7.1.2 PARAMETRI PER LA DEFINIZIONE DELLO SPETTRO VERTICALE

Tr	1068
agv	0.195
Fv	2.350
S	1.000
ТВ	0.050
TC	0.150
TD	1.000

ENGINEERING RIFE	ITINERARIO NAPOLI – BARI RADDOPPIO TRATTA CANCELLO-BENEVENTO II LOTTO FUNZIONALE FRASSO TELESINO – VITULANO 1° LOTTO FUNZIONALE FRASSO TELESINO – TELESE PROGETTO ESECUTIVO							
Pila P01: Relazione di calcolo	COMMESSA IF26	LOTTO 12 E ZZ	CODIFICA	DOCUMENTO VI0405 001	REV.	FOGLIO 109 di 149		

Spettri di risposta (componenti orizz. e vert.) per lo stato limite: SLV

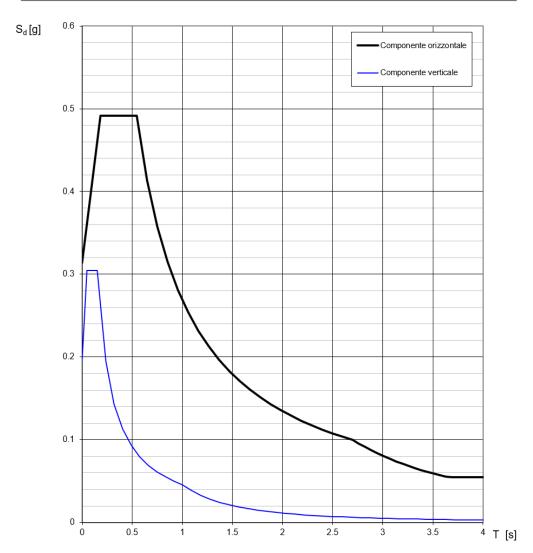


Figura 39 – Spettro di progetto allo SLV – Componente orizzontale e verticale

7 COMBINAZIONI DI CARICO

Di seguito vengono riportate le tabelle che riepilogano le condizioni di carico elementari (C.C.E.) considerate.

	C.C.E.	Descrizione
	G1	Pesi propri
G - Permanenti	G21	Ballast
	G22	Permanenti non strutturali
	Q11	Disposizione 1 (massimizza N)
	Q12	Disposizione 2 (massimizza M2)
	Q13	Disposizione 3 (massimizza M1)
Q1 - Variabili verticali	Q14	Disposizione 4 (massimizza M1)
	Q15	Disposizione 5 (massimizza N+M2)
	Q16	Disposizione 6 (massimizza N)
	Q17	Disposizione 7 (minimizza N)
	Q21	Disposizione 1 (massimizza N)
	Q22	Disposizione 2 (massimizza M2)
	Q23	Disposizione 3 (massimizza M1)
Q2 - Avviamento e frenatura	Q24	Disposizione 4 (massimizza M1)
	Q25	Disposizione 5 (massimizza N+M2)
	Q26	Disposizione 6 (massimizza N)
	Q27	Disposizione 7 (minimizza N)
	Q31	Disposizione 1 (massimizza N)
	Q32	Disposizione 2 (massimizza M2)
	Q33	Disposizione 3 (massimizza M1)
Q3 - Centrifuga	Q34	Disposizione 4 (massimizza M1)
	Q35	Disposizione 5 (massimizza N+M2)
	Q36	Disposizione 6 (massimizza N)
	Q37	Disposizione 7 (minimizza N)
	Q41	Disposizione 1 (massimizza N)
	Q42	Disposizione 2 (massimizza M2)
	Q43	Disposizione 3 (massimizza M1)
Q4 - Serpeggio	Q44	Disposizione 4 (massimizza M1)
	Q45	Disposizione 5 (massimizza N+M2)
	Q46	Disposizione 6 (massimizza N)
	Q47	Disposizione 7 (minimizza N)
Variabili	Q51	Vento
Azioni interne	Q61	Attrito su vincoli
Effetti d'interazione	Q71	Variazioni termiche
	E1	Sisma x
Γ Α ' ' - ' - ' - ' - ' - ' - ' - ' - '	E2	Sisma y
E - Azioni sismiche		

Le combinazioni di calcolo sono state definite sulla base dei criteri enunciati nei §2.5.1.8.2.3 [3], §2.5.1.8.3.1 [3] e §2.5.1.8.3.2 [3] di cui si riportano di seguito alcuni stralci.

TIPO DI CARICO	Azioni v	erticali	A	Azioni orizzontali			
Gruppo di carico	Carico verticale (1)	Treno scarico	Frenatura e avviamento	Centrifuga	Serpeggio	Commenti	
Gruppo 1 (2)	1,00	,	0,5 (0,0)	1,0 (0,0)	1,0 (0,0)	massima azione verticale e laterale	
Gruppo.2 (2)	•	1,00	0,00	1,0 (0,0)	1,0(0,0)	stabilità laterale	
Gruppo 3 (2)	1,0 (0,5)	-	1,00	0,5 (0,0)	0,5 (0,0)	massima azione longitudinale	
Gruppo 4	0,8 (0,6; 0,4)	-	0,8 (0,6; 0,4)	0,8 (0,6; 0,4)	0,8 (0,6; 0,4)	fessurazione	
A zione dominante			•	•	•		

Azione dominante

Tabella 2 – Definizione dei gruppi di carico

		Coefficiente	EQU ⁽¹⁾	Al STR	A2 GEO	Combinazione eccezionale	Combinazione Sismica
Carichi permanenti	favorevoli sfavorevoli	γ _{G1}	0,90 1,10	1,00 1,35	1,00 1,00	1,00 1,00	1,00 1,00
Carichi permanenti non strutturali ⁽²⁾	favorevoli sfavorevoli	γ _{G2}	0,00 1,50	0,00 1,50	0,00 1,30	1,00 1,00	1,00 1,00
Ballast ⁽³⁾	favorevoli sfavorevoli	γв	0,90 1,50	1,00 1,50	1,00 1,30	1,00 1,00	1,00 1,00
Carichi variabili da traffico ⁽⁴⁾	favorevoli sfavorevoli	γο	0,00 1,45	0,00 1,45	0,00 1,25	0,00 0,20 ⁽⁵⁾	0,00 0,20 ⁽⁵⁾
Carichi variabili	favorevoli sfavorevoli	γQi	0,00 1,50	0,00 1,50	0,00 1,30	0,00 1,00	0,00 0,00
Precompressione	favorevole sfavorevole	γp	0,90 1,00 ⁽⁶⁾	1,00 1,00 ⁽⁷⁾	1,00 1,00	1,00 1,00	1,00 1,00

⁽¹⁾ Equilibrio che non coinvolga i parametri di deformabilità e resistenza del terreno; altrimenti si applicano i valori di GEO.

Tabella 3 – Coefficienti parziali di sicurezza per le combinazioni agli SLU

Includendo tutti i fattori ad essi relativi (Φ,α, ecc..)

⁽²⁾ La simultaneità di due o tre valori caratteristici interi (assunzione di diversi coefficienti pari ad 1), sebbene improbabile, è stata considerata come semplificazione per i gruppi di carico 1, 2, 3 senza che ciò abbia significative conseguenze progettuali.

⁽²⁾ Nel caso in cui i carichi permanenti non strutturali (ad es. carichi permanenti portati) siano compiutamente definiti si potranno adottare gli stessi coefficienti validi per le azioni permanenti.

⁽³⁾ Quando si prevedano variazioni significative del carico dovuto al ballast, se ne dovrà tener conto esplicitamente nelle verifiche.

⁽⁴⁾ Le componenti delle azioni da traffico sono introdotte in combinazione considerando uno dei gruppi di carico gr della Tab. 5.2.IV.

⁽⁵⁾ Aliquota di carico da traffico da considerare.

^{(6) 1,30} per instabilità in strutture con precompressione esterna

^{(7) 1,20} per effetti locali

Azioni		Ψο	Ψ1	Ψ2
Azioni singole	Carico sul rilevato a tergo delle spalle	0,80	0,50	0,0
da traffico	Azioni aerodinamiche generate dal transito dei convogli	0,80	0,50	0,0
	grl	0,80(2)	0,80(1)	0,0
Gruppi di	gr ₂	0,80(2)	0,80(1)	-
carico g	gr ₃	0,80(2)	0,80(1)	0,0
	gr4	1,00	1,00(1)	0,0
Azioni del vento	F _{Wk}	0,60	0,50	0,0
Azioni da	in fase di esecuzione	0,80	0,0	0,0
neve SLU e SLE		0,0	0,0	0,0
Azioni termiche	T _k	0,60	0,60	0,50

^{(1) 0,80} se è carico solo un binario, 0,60 se sono carichi due binari e 0,40 se sono carichi tre o più binari.

⁽²⁾ Quando come azione di base venga assunta quella del vento, i coefficienti ψ₀ relativi ai gruppi di carico delle azioni da traffico vanno assunti pari a 0,0.

	Azioni	Ψo	V 1	Ψ2
	Treno di carico LM 71	0,80	(1)	0,0
Azioni	Treno di carico SW /0	0,80 ⁽³⁾	0,80	0,0
singole	Treno di carico SW/2	0,0(3)	0,80	0,0
da	Treno scarico	1,00(3)	150	
traffico	Centrifuga	(2 (3)	(2)	(2)
	Azione laterale (serpeggio)	1,00(3)	0,80	0,0

^{(1) 0,80} se è carico solo un binario, 0,60 se sono carichi due binari e 0,40 se sono carichi tre o più binari.

Tabella 4 – Coefficienti di combinazione ψ delle azioni

Le combinazioni di carico (C.C.C.) definite e considerate nei calcoli successivi sono riportate nell'allegato 1 alla presente relazione.

⁽²⁾ Si usano gli stessi coefficienti \(\psi\) adottati per i carichi che provocano dette azioni.

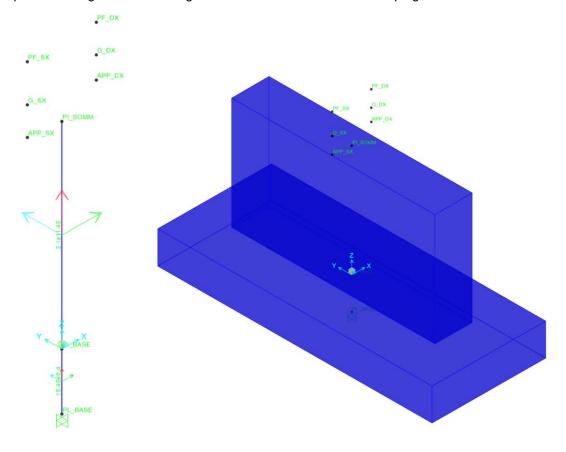
⁽³⁾ Quando come azione di base venga assunta quella del vento, i coefficienti ψ₀ relativi ai gruppi di carico delle azioni da traffico vanno assunti pari a 0,0.

GEODATA INTEGRA RIA	ITINERARIO NAPOLI – BARI RADDOPPIO TRATTA CANCELLO-BENEVENTO II LOTTO FUNZIONALE FRASSO TELESINO – VITULANO 1° LOTTO FUNZIONALE FRASSO TELESINO – TELESE PROGETTO ESECUTIVO							
Pila P01: Relazione di calcolo	COMMESSA IF26	LOTTO 12 E ZZ	CODIFICA	DOCUMENTO VI0405 001	REV.	FOGLIO 113 di 149		

Si riporta un quadro sintetico delle combinazioni prese in considerazione:

Gruppo	Num,
SLU-STR	70 combinazioni
SLU-GEO (appr. A2)	70 combinazioni
SIS-SLV	202 combinazioni
SLE-RAR/FRE	105 combinazioni
SLE-QP	2 combinazioni

8 ANALISI DELLE SOLLECITAZIONI


8.1 MODELLO DI CALCOLO

L'analisi in fase sismica delle sottostrutture prese in considerazione nella presente relazione è stata eseguita secondo il metodo della analisi modale con spettro di risposta di progetto SLV (q = 1.5), mediante l'ausilio del programma di calcolo agli elementi finiti SAP2000 (CSI, versione v15.1.0).

Il modello agli elementi finiti è costituito da elementi di tipo *frame* che modellano il plinto di base, il fusto e il pulvino, collocati in corrispondenza dell'asse baricentrico di ciascun elemento. Le caratteristiche geometriche e meccaniche assegnate a ciascun elemento sono state definite sulla base delle reali dimensioni e dei materiali che compongono l'elemento stesso.

Sono stati inoltre modellati i *nodi* in corrispondenza degli apparecchi d'appoggio dei due impalcati (il centro geometrico della posizione in pianta degli apparecchi d'appoggio di ciascun impalcato, posizionati alla quota di intradosso dell'impalcato stesso), in corrispondenza della quota baricentrica degli impalcati ed in corrispondenza della quota del p.f.. I nodi relativi a ciascun impalcato sono collegati tra loro e al nodo sommitale del *frame* che modella il pulvino mediante due distinti *constraints* di tipo *body*, uno per ciascun impalcato.

Si riportano a seguire delle immagini che illustrano il modello E.F. impiegato nelle analisi.

8.2 MASSE E FORZE SISMICHE

Secondo le indicazioni del §7.9.4.1 delle NTC2008 [1], nel caso di ponte a travate semplicemente appoggiate, i requisiti necessari per applicare l'analisi statica lineare possono ritenersi soddisfatti nel seguente caso:

 per entrambe le direzioni longitudinale e trasversale, purché la massa efficace di ciascuna pila non sia superiore ad 1/5 della massa di impalcato da essa portata (per pile a sezione costante, la massa efficace può essere assunta pari alla massa della metà superiore della pila).

Nel presente caso tale requisito non risulta soddisfatto. Per la determinazione delle sollecitazioni sui diversi elementi costituenti la pila si procede dunque con un'analisi dinamica lineare con spettro di risposta su modello agli elementi finiti.

Le masse sismiche della pila e del pulvino sono calcolate automaticamente dal programma sulla base delle caratteristiche geometriche e della massa unitaria dei materiali costituenti i vari elementi.

Le masse sismiche relative agli impalcati e i carichi variabili sono inserite manualmente nel modello. Il punto di applicazione delle stesse è definito in base ai gradi di vincolo offerti dagli apparecchi d'appoggio per ciascun impalcato.

Nel caso in esame si ha che:

- in direzione X la massa sismica è rappresentata dalle masse afferenti all'impalcato vincolato alla pila mediante gli apparecchi d'appoggio fissi e si considera agente alla quota degli apparecchi d'appoggio;
- in direzione Y la massa sismica è rappresentata dalla metà della massa afferente a ciascun impalcato e si considerano agenti alla quota baricentrica degli impalcati stessi;
- in direzione Z la massa sismica è rappresentata dalla metà della massa di ciascun impalcato ciascuna delle quali agisce nel centro geometrico degli apparecchi d'appoggio degli impalcati stessi.

	IMPALCATO-SX			IMPALCATO-DX		
Masse sismiche afferenti agli impalcati						
Massa impalcato =	13098		kN	5800	kN	
Carico max traffico LM71 =	2176		kN	1416	kN	
Carico max traffico SW/2 =	3300		kN	1875	kN	
Carico max traffico LM71+SW/2 =	5476		kN	3291	kN	
Massa traffico (psi=0.2) =	1095		kN	658	kN	
Massa impalcato (perm+treni) =	14193		kN	6458	kN	
tipologia vincolo =	UL			F		
Massa imp. longitudinale =	0		kN	6458	kN	
Massa imp. trasversale =	7097		kN	3229	kN	
Massa imp. totale longitudinale =	6458		kN			
Massa imp. totale trasversale =	10326		kN			
Massa sismisha affananti alla mila						
Masse sismiche afferenti alla pila						
Massa pulvino =	0	kN				
Massa fusto =	3783	kN				
Massa efficace pila (M*) =	1891	kN				
Requisito analisi statica lineare						
Massa efficace pila (M*) =	1891	kN				
1/5 M impalcato (min[trasv;long]) =	1292	kN				

Massa totale

M tot longitudinale = 8350 kN

 $M^* > 1/5$ Mimp. II requisito per l'analisi statica lineare non è soddisfatto.

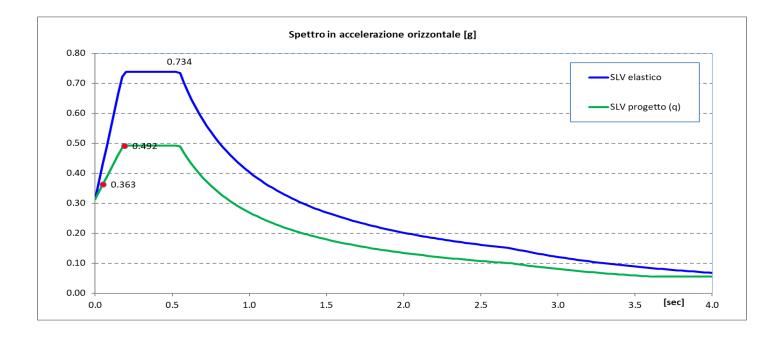
ENGINEERING INTEGRA RIA	ITINERARIO NAPOLI – BARI RADDOPPIO TRATTA CANCELLO-BENEVENTO II LOTTO FUNZIONALE FRASSO TELESINO – VITULANO 1° LOTTO FUNZIONALE FRASSO TELESINO – TELESE PROGETTO ESECUTIVO							
Pila P01: Relazione di calcolo	COMMESSA IF26	LOTTO 12 E ZZ	CODIFICA	DOCUMENTO VI0405 001	REV.	FOGLIO 117 di 149		

M tot trasversale = 12217 kN

M tot verticale = 12217 kN

Per il calcolo del periodo della struttura si considera la pila fessurata. Pertanto si usa un modulo elastico effettivo considerato pari a Ec,eff = Ecm/3.

Analisi statica lineare


Ac	23.100	m2
H1	6.55	m
H2	0.00	m
H3	0.10	m
Hpila	6.65	m
yg_imp	0.76	m

Ecm 33643 N*/mm2 Ec,eff 11214333 kN/m2

Dir. longitudin	ale				Dir. trasversale
llong	8.2	m4	Itrasv	234.0	mm4
Wlong	8350	kN/m	Wtrasv	12217	ton
Mlong	851	ton	Mtrasv	1245	ton
Lvlong	6.7	m	Lvtrasv	7.4	m
Klong	9.4E+05	kN/m	Ktrasv	1.9E+07	kN/m
Tlong	0.189	sec	Tlong	0.050	sec
Sdlong	0.492	g	Sdtrasv	0.363	g
Flong	4108	kN	Ftrasv	4439	kN

GEODATA INTEGRA RIA	II LOTTO F	IO TRAT UNZION FUNZION	TA CANCEL ALE FRASS IALE FRASS	LO-BENEVENT O TELESINO – SO TELESINO –	VITULAI	_
Pila P01: Relazione di calcolo	COMMESSA IF26	LOTTO 12 E ZZ	CODIFICA	DOCUMENTO VI0405 001	REV.	FOGLIO 118 di 149

Nel seguente diagramma sono evidenziate le coordinate spettrali SLV corrispondenti ai valori dei periodi T_{long} [sec] e T_{trasv} [sec] calcolati in precedenza.

Il requisito per l'analisi statica lineare non è soddisfatto, quindi le sollecitazioni agenti sulla pila in fase sismica saranno calcolate a seguire mediante un'analisi modale con spettro di risposta di progetto SLV, eseguita con l'ausilio del modello E.F. descritto al paragrafo relativo.

L'analisi sismica semplificata precedente è stata comunque riportata a titolo di confronto e convalida dei risultati ottenuti dalla analisi con il modello E.F.; si osserva infatti che i risultati ottenuti sono molto prossimi tra loro, sia in termini di periodi [sec] che di forze agenti [kN].

GEODATA INTEGRA RIF	II LOTTO F	IO TRAT UNZION FUNZION	TA CANCEL ALE FRASS IALE FRASS	LO-BENEVENT O TELESINO – SO TELESINO –	VITULAI	_
Pila P01: Relazione di calcolo	COMMESSA IF26	LOTTO 12 E ZZ	CODIFICA CL	DOCUMENTO VI0405 001	REV.	FOGLIO 119 di 149

Il §7.9.3 [1] raccomanda di assumere un'eccentricità accidentale nel posizionamento delle masse sismiche riferite all'impalcato, pari a 0,03 volte la dimensione dell'impalcato stesso misurata perpendicolarmente alla direzione dell'azione sismica.

Per la pila in oggetto si avrebbe:

§7.9.3 [1] - Eccentricità accidentale nel posizionamento delle masse sismiche

	IMP. SX	IMP. DX		
b =	13.7	m 13.7	m	
L =	22.0	m 12.5	m	
Sisma long (X): ey = $0.03 \cdot b =$	0.41	m 0.41	m	
Sisma trasv (Y): ex = 0,03 ⋅ L =	0.66	m 0.38	m	

8.3 ANALISI MODALE

Di seguito vengono riportati sinteticamente i risultati dell'analisi modale, in termini di periodi propri e percentuali di massa partecipante.

TABLE: Mod	TABLE: Modal Participating Mass Ratios										
OutputCase	StepType	StepNum	Period	UX	UY	UZ	SumUX	SumUY	SumUZ		
Text	Text	Unitless	Sec	Unitless	Unitless	Unitless	Unitless	Unitless	Unitless		
MODAL	Mode	1	0.207	63%	0%	1%	63%	0%	1%		
MODAL	Mode	2	0.076	0%	73%	0%	63%	73%	1%		
MODAL	Mode	3	0.043	0%	2%	0%	63%	76%	1%		
MODAL	Mode	4	0.037	2%	0%	66%	65%	76%	66%		
MODAL	Mode	5	0.025	3%	0%	10%	68%	76%	76%		
MODAL	Mode	6	0.005	32%	0%	0%	100%	76%	76%		
MODAL	Mode	7	0.005	0%	23%	0%	100%	99%	76%		
MODAL	Mode	8	0.004	0%	1%	0%	100%	100%	76%		
MODAL	Mode	9	0.003	0%	0%	24%	100%	100%	100%		

8.4 CARICHI ELEMENTARI

8.4.1 RIEPILOGO DEGLI SCARICHI DALL'IMPALCATO

8.4.1.1 SCARICHI IMPALCATO SX RISPETTO A BARICENTRO APPOGGI:

	IMPALCATO 18 HLM1100									
	SCARICHI IMPALCATO SX RISPETTO	A BAF	RICENTI	RO APPO	OGGI					
C.C.E.	Descrizione	F1	F2	F3	M1	M2	М3			
		kN	kN	kN	kNm	kNm	kNm			
G1	Pesi propri	0	0	4517	0	0	0			
G2	Ballast	0	0	1315	0	0	0			
G2	Permanenti non strutturali	0	0	718	0	0	0			
	Q1 - Variabili verticali									
Q11	Disposizione 1 (massimizza N)	0	0	2882	-777	0	0			
Q12	Disposizione 2 (massimizza M2)	0	0	3035	-418	0	0			
Q13	Disposizione 3 (massimizza M1)	0	0	1660	-3319	0	0			
Q14	Disposizione 4 (massimizza M1)	0	0	1222	2542	0	0			
Q15	Disposizione 5 (massimizza N+M2)	0	0	3035	-418	0	0			
Q16	Disposizione 6 (massimizza N)	0	0	2380	227	0	0			
Q17	Disposizione 7 (minimizza N)	0	0	2356	-762	0	0			
	Q2 - Avviamento e frenatura									
Q21	Disposizione 1 (massimizza N)	0	0	130	0	0	0			
Q22	Disposizione 2 (massimizza M2)	0	0	154	0	0	0			
Q23	Disposizione 3 (massimizza M1)	0	0	54	0	0	0			
Q24	Disposizione 4 (massimizza M1)	0	0	76	0	0	0			
Q25	Disposizione 5 (massimizza N+M2)	0	0	155	0	0	0			
Q26	Disposizione 6 (massimizza N)	0	0	143	0	0	0			
Q27	Disposizione 7 (minimizza N)	0	0	185	0	0	0			
	Q3 - Centrifuga									
Q31	Disposizione 1 (massimizza N)	0	235	0	-909	0	0			
Q32	Disposizione 2 (massimizza M2)	0	255	0	-987	0	0			
Q33	Disposizione 3 (massimizza M1)	0	82	0	-316	0	0			
Q34	Disposizione 4 (massimizza M1)	0	154	0	-594	0	0			
Q35	Disposizione 5 (massimizza N+M2)	0	255	0	-987	0	0			
Q36	Disposizione 6 (massimizza N)	0	211	0	-814	0	0			

ITINERARIO NAPOLI – BARI RADDOPPIO TRATTA CANCELLO-BENEVENTO II LOTTO FUNZIONALE FRASSO TELESINO – VITULANO 1° LOTTO FUNZIONALE FRASSO TELESINO – TELESE

PROGETTO ESECUTIVO

 Pila P01: Relazione di calcolo
 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 IF26
 12 E ZZ
 CL
 VI0405 001
 A
 122 di 149

Q37	Disposizione 7 (minimizza N)		190	0	-734	0	0
	Q4 - Serpeggio						
Q41	Disposizione 1 (massimizza N)	0	105	0	-217	0	0
Q42	Disposizione 2 (massimizza M2)	0	105	0	-217	0	0
Q43	Disposizione 3 (massimizza M1)	0	50	0	-103	0	0
Q44	Disposizione 4 (massimizza M1)	0	55	0	-113	0	0
Q45	Disposizione 5 (massimizza N+M2)	0	105	0	-217	0	0
Q46	Disposizione 6 (massimizza N)	0	105	0	-217	0	0
Q47	Disposizione 7 (minimizza N)	0	105	0	-217	0	0
	Q5 - Variabili						
Q51	Vento	0	338	0	-1139	0	0
	Q6 - Azioni indirette						
Q61	Attrito su vincoli	174	0	0	0	0	0
	Q7 - Effetti d'interazione						
Q71	Variazioni termiche	0	0	0	0	0	0

8.4.1.2 SCARICHI IMPALCATO DX RISPETTO A BARICENTRO APPOGGI:

IMPALC	CATO 24 HEM600						
SCARIC	CHI IMPALCATO DX RISPETTO A BARICEN	TRO APPOGO	i i				
C.C.E.	Descrizione	F1	F2	F3	M1	M2	М3
		kN	kN	kN	kNm	kNm	kNm
G - Pern	nanenti						
G1	Pesi propri	0	0	1746	0	0	0
G2	Ballast	0	0	747	0	0	0
G2	Permanenti non strutturali	0	0	408	0	0	0
Q1 - Vai	riabili verticali						
Q11	Disposizione 1 (massimizza N)	0	0	1730	-226	0	0
Q12	Disposizione 2 (massimizza M2)	0	0	0	0	0	0
Q13	Disposizione 3 (massimizza M1)	0	0	938	-1875	0	0
Q14	Disposizione 4 (massimizza M1)	0	0	793	1649	0	0
Q15	Disposizione 5 (massimizza N+M2)	0	0	781	957	0	0
Q16	Disposizione 6 (massimizza N)	0	0	1264	706	0	0
Q17	Disposizione 7 (minimizza N)	0	0	0	0	0	0
Q2 - Avv	viamento e frenatura						
Q21	Disposizione 1 (massimizza N)	1077	0	-127	0	0	0
Q22	Disposizione 2 (massimizza M2)	0	0	0	0	0	0
Q23	Disposizione 3 (massimizza M1)	700	0	-83	0	0	0
Q24	Disposizione 4 (massimizza M1)	590	0	-70	0	0	0
Q25	Disposizione 5 (massimizza N+M2)	1327	0	-157	0	0	0
Q26	Disposizione 6 (massimizza N)	1327	0	-157	0	0	0
Q27	Disposizione 7 (minimizza N)	0	0	0	0	0	0
Q3 - Ce	ntrifuga						
Q31	Disposizione 1 (massimizza N)	0	154	0	-518	0	0
Q32	Disposizione 2 (massimizza M2)	0	0	0	0	0	0
Q33	Disposizione 3 (massimizza M1)	0	46	0	-156	0	0
Q34	Disposizione 4 (massimizza M1)	0	107	0	-363	0	0
Q35	Disposizione 5 (massimizza N+M2)	0	92	0	-310	0	0
Q36	Disposizione 6 (massimizza N)	0	131	0	-441	0	0
Q37	Disposizione 7 (minimizza N)	0	0	0	0	0	0
Q4 - Sei	rpeggio						
Q41	Disposizione 1 (massimizza N)	0	105	0	-165	0	0
Q42	Disposizione 2 (massimizza M2)	0	105	0	-165	0	0
Q43	Disposizione 3 (massimizza M1)	0	50	0	-79	0	0

ITINERARIO NAPOLI – BARI RADDOPPIO TRATTA CANCELLO-BENEVENTO II LOTTO FUNZIONALE FRASSO TELESINO – VITULANO 1° LOTTO FUNZIONALE FRASSO TELESINO – TELESE

PROGETTO ESECUTIVO

 Pila P01: Relazione di calcolo
 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 IF26
 12 E ZZ
 CL
 VI0405 001
 A
 124 di 149

Q44	Disposizione 4 (massimizza M1)	0	55	0	-87	0	0
Q45	Disposizione 5 (massimizza N+M2)	0	105	0	-165	0	0
Q46	Disposizione 6 (massimizza N)	0	105	0	-165	0	0
Q47	Disposizione 7 (minimizza N)	0	0	0	0	0	0
Q5 - Variabili							
Q51	Vento	0	173	0	-538	0	0
Q6 - Azioi	ni indirette						
Q61	Attrito su vincoli	0	0	0	0	0	0
Q7 - Effet	ti d'interazione						
Q71	Variazioni termiche	140	0	0	0	0	0

8.5 SOLLECITAZIONI DI CALCOLO

8.5.1 SOLLECITAZIONI ALLA BASE DEL FUSTO PILA

Le sollecitazioni di calcolo riferite alla sezione di base del fusto della pila avente maggiore altezza tra quelle prese in considerazione nella presente relazione, sono riportate in forma completa nel secondo allegato alla presente relazione

Le sollecitazioni di calcolo ottenute in condizione sismica per le strutture in elevazione devono essere ulteriormente elaborate per tener conto delle indicazioni del §7.9 [1] e dei principi della gerarchia delle resistenze.

8.5.1.1 SOLLECITAZIONI FLETTENTI IN ZONA CRITICA

Secondo le indicazioni del §7.9.4 [1] nelle zone critiche, gli effetti delle non linearità geometriche possono essere tenute in conto mediante l'espressione semplificata:

$$\Delta M = d_{Ed} \cdot N_{Ed}$$

con d_{Ed} valutato secondo il §7,3,3,3, ossia pari a µ_d · d_{Ee} dove:

d_{Ee} è lo spostamento derivante dall'analisi lineare

$$\begin{split} \mu_d &= q \quad \text{per } T_1 \geq T_C \\ \mu_d &= 1 + (q-1) \cdot T_C / T_1 \quad \text{per } T_1 < T_C \quad &\text{in ogni caso } \mu_d \leq 5 \cdot q - 4 \end{split}$$

Per il caso in esame si ha:

dEd_long	10.7 mm	dEd_trasv	0.7 mm
μd_long	2.44	μd_trasv	3.50
dEe_long	4.4 mm	dEe_trasv	0.2 mm

8.5.1.2 SOLLECITAZIONI FLETTENTI FUORI DALLA ZONA CRITICA

II §7.9.5.1 [1] definisce il fattore di "sovraresistenza" γ_{Rd} che viene calcolato mediante l'espressione:

$$\gamma_{Rd} = 0.7 + 0.2 \text{ q} \ge 1$$

nella quale q è il fattore di struttura utilizzato nei calcoli.

GEODATA INTEGRA RIF	II LOTTO F	IO TRAT UNZION FUNZION	TA CANCEL ALE FRASSIALE FRASS	LO-BENEVENT O TELESINO – SO TELESINO –	VITULAI	-
Pila P01: Relazione di calcolo	COMMESSA IF26	LOTTO 12 E ZZ	CODIFICA	DOCUMENTO VI0405 001	REV.	FOGLIO 126 di 149

Nel caso in cui la compressione normalizzata $v_k = N_{Ed} / (A_c \cdot f_{ck})$ (rif, §7.9.2.1 delle NTC2008 [1]), ecceda il valore 0,1 tale fattore deve essere moltiplicato per f = 1 + 2 · $(v_k - 0,1)^2$.

Nel caso in esame il fattore γ_{Rd} assume il valore:

Dir, Longitudinale:			Dir, Trasversale:	-	
qlong	1.50		qtrasv	1.50	
NEd	14985	kN	NEd	14985	kN
fck	32	Мра	fck	32	Мра
nk	0.02		nk	0.02	
f	1.013		f	1.013	
gRd	1.00		gRd	1.00	

Definite "zone di cerniera plastica" o "zone critiche" le zone dove si progetta di localizzare le plasticizzazioni che conferiranno la duttilità richiesta alla struttura soggetta all'evento sismico, nel caso delle pile tali zone si identificano come la zona compresa tra la sezione di incastro alla base e la sezione posta ad una distanza L_h dall'incastro, dove L_h assume il massimo tra i seguenti valori (rif §7,9,6,2):

- la profondità della sezione in direzione ortogonale all'asse di rotazione delle cerniere;
- la distanza tra la sezione di momento massimo e la sezione in cui il momento si riduce del 20%.

Nelle sezioni comprese nella zona critica deve risultare:

$$M_{Ed} \leq M_{Rd}$$

Nelle sezioni al di fuori della zona critica tenendo conto del criterio della gerarchia delle resistenze deve risultare:

$$M_{gr} \leq M_{Rd}$$

I valori di M_{gr} lungo lo sviluppo dell'elemento si ottengono scalando il diagramma delle sollecitazioni flettenti ponendo nella sezione critica un momento agente pari a $\gamma_{Rd} \cdot M_{Rd}$.

Nel caso in esame si ha una lunghezza della zona critica pari a:

$$L_h$$
 zona critica = 2.1 m

8.5.1.3 SOLLECITAZIONI DI TAGLIO

Le sollecitazioni di taglio si ottengono con il criterio della gerarchia delle resistenze, il quale conduce ad adottare come sollecitazione di calcolo:

$$V_{qr} = V_{Ed} \cdot \gamma_{Rd} \cdot M_{Rd}/M_{Ed} \le q \cdot V_{Ed}$$

I valori di resistenza a taglio degli elementi in c,a, devono inoltre essere divisi per un coefficiente di sicurezza aggiuntivo nei confronti della rottura fragile γ_{Bd} valutato mediante la seguente espressione:

$$1 \le \gamma_{Bd} = 1,25 + 1 - q \cdot V_{Ed}/V_{gr} \le 1,25$$

La valutazione delle sollecitazioni di taglio da GR viene condotto nei paragrafi successivi relativi alle verifiche a taglio, a fronte dei valori resistenti ottenuti dalle successive verifiche a pressoflessione.

8.5.2 SOLLECITAZIONI ALL'INTRADOSSO DEL PLINTO DI FONDAZIONE

Le sollecitazioni di calcolo relative alle combinazioni sismiche devono essere elaborate per tener conto delle indicazioni del §7.2.5[1]. Per gli elementi di fondazione il criterio della gerarchia delle resistenze si applica incrementando le azioni derivanti dagli elementi soprastanti di un fattore γ_{Rd} pari a 1,1.

(In accordo con quanto prescritto nel §7.2.5 [1], per le strutture progettate in CD"B", il dimensionamento delle strutture di fondazione deve essere eseguito per valori di taglio e momento flettente pari ai valori resistenti degli elementi soprastanti. Tali valori hanno come limite superiore le sollecitazioni derivanti dalle analisi amplificate con un γ_{Rd} pari a 1,1 in CD"B" e comunque non maggiori di quelle derivanti da un'analisi elastica della struttura eseguita con q pari a 1. A tal proposito per semplificazione e favore di sicurezza si assumono come valori di calcolo le sollecitazioni derivanti dall'analisi incrementate del coefficiente γ_{Rd} pari a 1,1).

Rispetto alle sollecitazioni calcolate alla sezione di base del fusto pila, le sollecitazioni riportate all'intradosso del plinto di fondazione sono incrementate dei seguenti contributi:

- P_{pl} peso proprio del plinto di fondazione [kN]
- Pterr peso proprio del terreno di ricoprimento presente all'estradosso del plinto [kN]
- I_{pl_hor} forza di inerzia associata alla massa del plinto sul piano orizzontale (I_{pl,hor} = P_{pl} * PGA) [kN]
- I_{pl_vert} forza di inerzia associata alla massa del plinto in direzione verticale (I_{pl,vert} = P_{pl} * a_{gv}) [kN]

Nel secondo allegato alla presente relazione si riportano (in forma di tabelle) le sollecitazioni di calcolo riferite all'intradosso del plinto di fondazione.

8.5.1 SOLLECITAZIONI DISTRIBUITE IN TESTA AI PALI DI FONDAZIONE

Le caratteristiche di sollecitazione sul singolo palo sono state determinate a partire dalle sollecitazioni riportate all'intradosso del plinto di fondazione, secondo le seguenti relazioni (distribuzione rigida delle sollecitazioni):

$$\begin{split} N_{max} &= F_3 \, / \, n_{pali} + ass(M_1) \, / \, W_1 palificata + ass(M_2) \, / \, W_2 palificata \\ N_{min} &= F_3 \, / \, n_{pali} - ass(M_1) \, / \, W_1 palificata - ass(M_2) \, / \, W_2 palificata \\ H &= \sqrt{((F_1 \, / \, n_{pali})^2 + (F_2 \, / \, n_{pali})^2)} \end{split}$$

Nel secondo allegato alla presente relazione si riportano (in forma di tabelle) le sollecitazioni di calcolo distribuite in testa ai pali di fondazione.

GEODATA INTEGRA RIA	II LOTTO F	IO TRAT UNZION FUNZION	TA CANCEL ALE FRASS VALE FRASS	LO-BENEVENT O TELESINO – SO TELESINO –	VITULAI	_
Pila P01: Relazione di calcolo	COMMESSA IF26	LOTTO 12 E ZZ	CODIFICA CL	DOCUMENTO VI0405 001	REV.	FOGLIO 129 di 149

9 VERIFICHE STRUTTURALI DEL FUSTO PILA

9.1 GEOMETRIA DELLA SEZIONE DI VERIFICA E ARMATURA

Si riporta a seguire una figura che illustra la geometria della sezione di verifica, nella quale è rappresentata un'armatura tipologica.

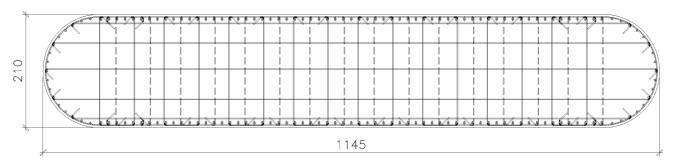


Figura 40 – Geometria della sezione trasversale della pila [cm]

9.1.1 ARMATURA LONGITUDINALE

A seguire è indicata l'armatura flessionale prevista nella sezione di base del fusto pila, in termini di numero di barre presenti nello strato esterno (1° str.) e nello strato interno (2° str.) e loro diametro fi [mm].

n barre (1° str.)	152
fi barre (1° str.)	26
n barre (2° str.)	62
fi barre (2° str.)	26

9.1.2 ARMATURA TRASVERSALE

A seguire è indicata l'armatura a taglio prevista nella sezione di base del fusto pila, all'interno della zona critica.

Direzione lo	ngitudinale	<u> </u>						
Staffe:			Spille:			Spille:		
øw	14	mm	øw	14	mm	øw	14	mm
A1b	153.86	mm2	A1b	153.86	mm2	A1b	153.86	mm2
passo	100	mm	passo	100	mm	passo	100	mm
bracci	16		bracci	2		bracci	0	
Direzione tr	asversale							
Staffe:			Spille:			Spille:		
øw	14	mm	øw	14	mm	øw	14	mm
A1b	153.86	mm2	A1b	153.86	mm2	A1b	153.86	mm2
passo	100	mm	passo	100	mm	passo	100	mm
bracci	0		bracci	7		bracci	0	

9.1.3 VERIFICA DELL'ARMATURA MINIMA

Le armature del fusto pila devono soddisfare le quantità minime indicate dalla normativa e che vengono riepilogate di seguito.

Armatura minima longitudinale:

• $\rho_{min} = 0.60 \%$ (rif, §2.2.6 [3])

Armatura minima trasversale nelle zone critiche:

Secondo le indicazioni del §7.9.6.2 [1], nelle sezioni piene, le armature di confinamento per la duttilità nelle zone critiche <u>non devono</u> rispettare i limiti di normativa nei seguenti casi:

- se la sollecitazione ridotta risulta v_k ≤ 0,08;
- nel caso di sezioni a pareti sottili purché risulti $v_k \le 0,2$, se è possibile raggiungere una duttilità in curvatura non inferiore a $\mu_c = 12$ senza che la deformazione nel conglomerato superi il valore 0,0035;
- se il fattore di struttura non supera il valore 1,5.

In caso contrario è necessario disporre le seguenti quantità minime di armatura a confinamento:

• $\omega_{wd,r} = 0.33 \cdot A_c/A_{cc} v_k - 0.07 \ge 0.12$ per sezioni rettangolari

• $\omega_{\text{wd,c}} = 1.4 \cdot \omega_{\text{wd,r}}$ per sezioni circolari

La percentuale meccanica è definita dalle espressioni:

• $\omega_{wd,r} = A_{sw}/(s \cdot b) \cdot f_{yd}/f_{cd}$ per sezioni rettangolari • $\omega_{wd,c} = 4 A_{sp}/(D_{sp} \cdot s) \cdot f_{yd}/f_{cd}$ per sezioni circolari

Secondo le indicazioni del §2,2,6 [3] invece deve verificarsi:

• $A_{sw}/(s \cdot b) \cdot f_{yd}/f_{cd} \ge \zeta$ per sezioni rettangolari

• $\rho_w \cdot f_{yd}/f_{cd} \ge 1,40 \cdot \zeta$ per sezioni circolari

con:

 $\rho_w = V_{sc}/V_{cc}$ rapporto tra il volume complessivo delle armature di confinamento V_{sc} e volume di calcestruzzo confinato V_{cc} ;

 $\zeta = 0.07 \text{per a}_g \ge 0.35 \text{ g};$

 $\zeta = 0.05 \text{per a}_g \ge 0.25 \text{ g};$

 $\zeta = 0.04 per a_g \ge 0.15 g;$

 $\zeta = 0.03$ per $a_g < 0.15$ g.

Verifica armatura minima longitudinale secondo §2.2.6 [3]

pmin = 0.60%

Ac = 23100000 mm2 As,min = 138600 mm2

n barre (1° str.) 152 fi barre (1° str.) 26 n barre (2° str.) 62 fi barre (2° str.) 26

As 113619 mm2

ρ **0.60**% requisito soddisfatto

Verifica armatura minima trasversale secondo §2.2.6 [3]

ag = 0.275 g

 ζ = 0.05 ω wd,r min = 0.05

Armatura in dir. longitudinale

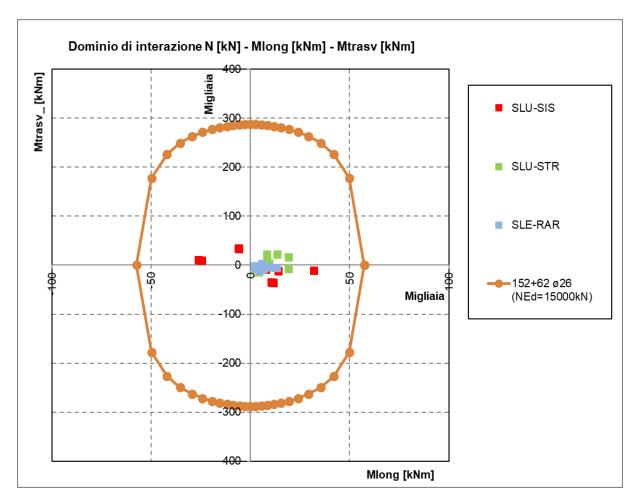
Asw/s staffe = 0.0246 m2/m
Asw/s spille = 0.0031 m2/m
b = 11.45 m
fyd = 391 MPa
fcd = 18.13 MPa

wwd,r = **0.052** requisito soddisfatto

Armatura in dir. trasversale

Asw/s staffe = 0.0000 m2/m
Asw/s spille = 0.0108 m2/m
b = 2.10 m
fyd = 391 MPa
fcd = 18.13 MPa

ωwd,r = **0.111** requisito soddisfatto


L'armatura longitudinale di calcolo e l'armatura trasversale di calcolo rispettano le quantità minime indicate dalla normativa.

^{*}Il calcolo è riferito all'area di calcestruzzo tesa subito prima la formazione della prima fessura Ac,eff=18.9 m2.

GEODATA INTEGRA RI	RADDOPPIO TIL LOTTO FUN	NAPOLI – BARI TRATTA CANCE IZIONALE FRASS NZIONALE FRAS	SO TELESINO -	VITULA	_
Pila P01: Relazione di calcolo		OTTO CODIFICA	DOCUMENTO VI0405 001	REV.	FOGLIO 133 di 149

9.2 VERIFICA SLU A FLESSIONE

Sono riportate a seguire le verifiche SLU della sezione di base della pila, espresse in forma sintetica mediante il diagramma di interazione M_{long} - M_{trasv} , valutato per una forza assiale corrispondente alla condizione di verifica più severa.

La verifica SLU di tipo flessionale nelle sezioni critiche si effettua verificando che:

ITINERARIO NAPOLI - BARI INTEGRA ■GEODATA RADDOPPIO TRATTA CANCELLO-BENEVENTO RI A II LOTTO FUNZIONALE FRASSO TELESINO - VITULANO 1° LOTTO FUNZIONALE FRASSO TELESINO – TELESE PROGETTO ESECUTIVO REV. COMMESSA LOTTO CODIFICA DOCUMENTO FOGLIO Pila P01: Relazione di calcolo IF26 12 E ZZ CL VI0405 001 134 di 149 Α

$$FS = (M_{Rd,long}^2 + M_{Rd,trasv}^2)^{0.5} / (M_{Ed,long}^2 + M_{Ed,trasv}^2)^{0.5} \ge 1$$

Il valore minimo del fattore di sicurezza FS è pari a

La verifica è soddisfatta, in quanto FS > 1.

Nel secondo allegato alla presente relazione sono riportate le verifiche in forma completa relative alla pila.

9.3 VERIFICA SLU A TAGLIO

Nel caso di sezioni rettangolari la verifica viene effettuata distintamente per le due direzioni longitudinale e trasversale,

Nel caso si sezione circolare si esegue la verifica per un valore del taglio pari a:

$$V = \sqrt{(F1^2 + F2^2)}$$

Per quanto riguarda le combinazioni sismiche, con riferimento ai criteri della GR e a quanto precedentemente dichiarato nel §8,3,2, si procede al calcolo del taglio agente di calcolo sulla base dei risultati delle verifiche flessionali,

$$V_{gr} = V_{Ed} \cdot \gamma_{Rd} \cdot M_{Rd}/M_{Ed} \le q \cdot V_{Ed}$$

Il valore resistente a taglio della sezione si determina secondo le indicazioni del §4,1,2,1,3,2 [1]:

 $V_{Rd} = min (V_{Rcd}; V_{Rsd})$

 $V_{Rcd} = 0.9 \cdot d \cdot b_w \cdot \alpha_c \cdot f_{cd}' \cdot (ctg \alpha + ctg \theta)/(1 + ctg^2 \theta)$

 $V_{Rsd} = 0.9 \cdot d \cdot A_{sw}/s \cdot f_{yd} \cdot (ctg \alpha + ctg \theta) \cdot sen \alpha$ in cui

d altezza utile della sezione

bw larghezza minima della sezione

Asw area dell'armatura trasversale

s interasse tra due armature trasversali consecutive

θ inclinazione delle bielle di calcestruzzo

α angolo di inclinazione dell'armatura trasversale rispetto all'asse dell'elemento

f_{cd}' resistenza a compressione ridotta (pari a 0,5 f_{cd})

αc coefficiente maggiorativo che tiene conto della compressione

Nel caso di sezione circolare, le dimensioni della sezione rettangolare equivalente da utilizzare per il calcolo della resistenza a taglio della sezione si determinano secondo le indicazioni del §7,9,5,2,2 [1]:

$$d = r + 2 \cdot r_s / \pi$$
$$b = 0.9 \cdot 2 \cdot r$$

I valori di resistenza a taglio degli elementi in c,a, devono inoltre essere divisi per un coefficiente di sicurezza aggiuntivo nei confronti della rottura fragile γ_{Bd} valutato mediante la seguente espressione:

$$1 \le \gamma_{Bd} = 1,25 + 1 - q \cdot V_{Ed} / V_{gr} \le 1,25$$

Si riporta a seguire in forma sintetica la verifica più severa della sezione di base del fusto della pila II minimo valore del fattore di sicurezza $FS = V_{Rd} / V_{Ed}$ è pari a

La verifica è soddisfatta in quanto FS > 1.

Nel secondo allegato alla presente relazione sono riportate le verifiche in forma completa relative alla pila.

9.4 VERIFICA SLE TENSIONALE

La verifica SLE di tipo tensionale si effettua verificando che le massime tensioni agenti nella sezione risultino inferiori ai seguenti valori limite:

per le combinazioni SLE-RAR:

• tensione limite nel calcestruzzo: $\sigma_c = 0,55 \; f_{ck} = 18,3 \; MPa$ • tensione limite nelle barre: $\sigma_s = 0,75 \; f_{yk} = 337,5 \; MPa$

per le combinazioni SLE-QPE:

• tensione limite nel calcestruzzo: $\sigma_c = 0.40 \, f_{ck} = 13.3 \, MPa$

Si riporta a seguire in forma sintetica la verifica più severa (in combinazione SLE-RAR) della sezione di base del fusto della pila avente maggiore altezza tra quelle comprese nel gruppo considerato nella presente relazione.

σc -2.7 MPaσs 27.0 MPa

La verifica è soddisfatta.

Nel secondo allegato alla presente relazione sono riportate le verifiche in forma completa.

9.5 VERIFICA SLE A FESSURAZIONE

La verifica SLE a fessurazione si effettua verificando che il massimo valore di apertura delle fessure risulti inferiore ai seguenti valori limite:

per le combinazioni SLE-RAR:

• apertura fessure limite: $w_{lim} = w_1 = 0,20 \text{ mm}$

Si riporta a seguire in forma sintetica la verifica più severa (in combinazione SLE-RAR) della sezione di base del fusto della pila.

L'ampiezza massima delle fessure calcolata è pari a

wk **0.051** mm

Nel secondo allegato alla presente relazione sono riportate le verifiche in forma completa.

9.6 VERIFICA DEGLI SPOSTAMENTI

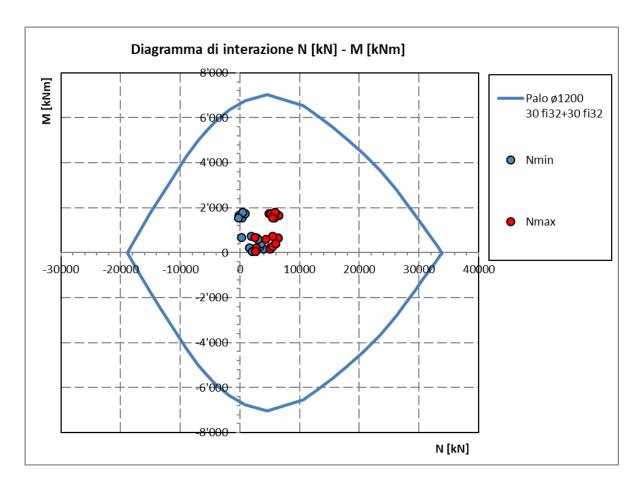
Nel secondo allegato alla presente relazione sono riportate le verifiche in forma completa relative alla pila.

10 VERIFICHE STRUTTURALI DEI PALI DI FONDAZIONE 10.1 GEOMETRIA DELLA SEZIONE DI VERIFICA E ARMATURA

Nelle tabelle seguenti sono descritte le caratteristiche geometriche della sezione di verifica dei pali di fondazione, nonché le caratteristiche di resistenza dei materiali.

GEOMETRIA DELLA SEZIONE		
Diametro del palo =	1200	mm
Copriferro netto c =	60	mm
Classe di resistenza calcestruzzo =	C25/30	Мра
Classe di resistenza delle barre =	B450C	MPa

Nella seguente tabella sono descritte le caratteristiche geometriche dell'armatura flessionale e a taglio dei pali, con riferimento ad un tratto di lunghezza pari a 10 ø dalla sezione di testa, Sono inoltre verificati i requisiti minimi in termini di armatura flessionale a taglio.


ARMATURA PER I PRIMI 10 Ø		
1° strato di armatura longitudinale		
Numero barre long.	30	-
Diametro barre long.	32	mm
Copriferro baricentrico arm. long. c' =	90	mm
2° strato di armatura longitudinale		
Numero barre long.	30	-
Diametro barre long.	32	mm
Copriferro baricentrico arm. long. c' =	147	mm
Armatura trasversale		
Diametro barre trasv.	14	mm
Passo arm. trasv.	200	mm
Diametro corona esterna =	1066	mm
VERIFICA ARMATURA MINIMA LONG.		
ρμιν =	1.00%	
Ac =	1130973	mm2
As _{,min} =	11310	mm2

ENGINEERING INTEGRA RIF	II LOTTO F	IO TRAT UNZION FUNZION	TA CANCEL ALE FRASS IALE FRASS	LO-BENEVENT O TELESINO – SO TELESINO –	VITULAI	_
Pila P01: Relazione di calcolo	COMMESSA IF26	LOTTO 12 E ZZ	CODIFICA CL	DOCUMENTO VI0405 001	REV.	FOGLIO 138 di 149

Armatura long. tot Asd,tot =	31856	mm2
$\rho\lambda =$	2.82%	
	ok	

10.2 VERIFICA SLU A PRESSOFLESSIONE

Sono riportate a seguire le verifiche SLU della sezione di sommità del palo maggiormente sollecitato, espresse in forma sintetica mediante il diagramma di interazione N [kN] – M [kNm].

La verifica è soddisfatta in quanto le coppie N-M delle sollecitazioni agenti nella sezione di verifica sono interne al dominio di resistenza per ogni condizione di carico indagata.

Nel secondo allegato alla presente relazione sono riportate le verifiche in forma completa relative alla pila.

10.3 VERIFICA SLU A TAGLIO

Nel caso si sezione circolare si esegue la verifica per un valore del taglio pari a:

$$V = \sqrt{(F1^2 + F2^2)}$$

Per quanto riguarda le combinazioni sismiche, con riferimento ai criteri della GR e a quanto precedentemente dichiarato nel §8,3,2, si procede al calcolo del taglio agente di calcolo sulla base dei risultati delle verifiche flessionali,

$$V_{gr} = V_{Ed} \cdot \gamma_{Rd} \cdot M_{Rd}/M_{Ed} \le q \cdot V_{Ed}$$

Il valore resistente a taglio della sezione si determina secondo le indicazioni del §4,1,2,1,3,2 [1]:

 $V_{Rd} = min(V_{Rcd}; V_{Rsd})$

 $V_{Rcd} = 0.9 \cdot d \cdot b_w \cdot \alpha_c \cdot f_{cd}' \cdot (ctg \alpha + ctg \theta)/(1 + ctg^2 \theta)$

 $V_{Rsd} = 0.9 \cdot d \cdot A_{sw}/s \cdot f_{yd} \cdot (ctg \alpha + ctg \theta) \cdot sen \alpha$

in cui

d altezza utile della sezione

b_w larghezza minima della sezione

Asw area dell'armatura trasversale

s interasse tra due armature trasversali consecutive

θ inclinazione delle bielle di calcestruzzo

angolo di inclinazione dell'armatura trasversale rispetto all'asse dell'elemento

f_{cd}' resistenza a compressione ridotta (pari a 0,5 f_{cd})

αc coefficiente maggiorativo che tiene conto della compressione

Nel caso di sezione circolare, le dimensioni della sezione rettangolare equivalente da utilizzare per il calcolo della resistenza a taglio della sezione si determinano secondo le indicazioni del §7.9.5.2.2 [1]:

d =
$$r + 2 \cdot r_s / \pi$$

$$b = 0.9 \cdot 2 \cdot r$$

Si riporta a seguire in forma sintetica la verifica più severa (in combinazione SLV-SIS) relativa alla pila. Il minimo valore del fattore di sicurezza $FS = V_{Rd} / V_{Ed}$ è pari a

La verifica è soddisfatta, in quanto FS > 1.

Negli allegati alla presente relazione sono riportate le verifiche in forma completa relative alla pila.

10.4 VERIFICA SLE TENSIONALE

La verifica SLE di tipo tensionale si effettua verificando che le massime tensioni agenti nella sezione risultino inferiori ai seguenti valori limite:

per le combinazioni SLE-RAR:

• tensione limite nel calcestruzzo: $\sigma_c = 0,55 \; f_{ck} = 13,7 \; \text{MPa}$ • tensione limite nelle barre: $\sigma_s = 0,75 \; f_{yk} = 337,5 \; \text{MPa}$

per le combinazioni SLE-QP:

• tensione limite nel calcestruzzo: $\sigma_c = 0.40 f_{ck} = 10.0 MPa$

Si riporta a seguire in forma sintetica la verifica più severa (in combinazione SLE-RAR) relativa alla pila.

σc -2.55 MPaσs 2.43 MPa

La verifica è soddisfatta.

Negli allegati alla presente relazione sono riportate le verifiche in forma completa.

10.5 VERIFICA SLE A FESSURAZIONE

La verifica SLE a fessurazione si effettua verificando che il massimo valore di apertura delle fessure risulti inferiore ai seguenti valori limite:

per le combinazioni SLE-RAR:

• apertura fessure limite: $w_{lim} = w_1 = 0.30 \text{ mm}$

Si riporta a seguire in forma sintetica la verifica più severa (in combinazione SLE-RAR) relativa alla pila.

L'ampiezza massima delle fessure calcolata è pari a

wk **0.003** mm

Negli allegati alla presente relazione sono riportate le verifiche in forma completa.

11 VERIFICHE STRUTTURALI DEL PLINTO DI FONDAZIONE

11.1 VERIFICHE SLU-SLE CON MECCANISMO TIRANTE-PUNTONE

La verifica strutturale del plinto viene condotta a seguire impiegando un modello tirante-puntone, come quello rappresentato nella figura seguente, tratta da §C4.1.2.1.5 [2].

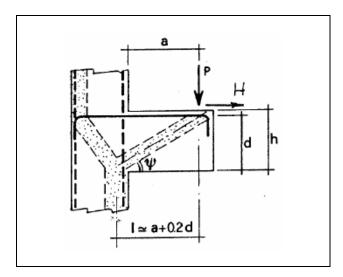


Figura 41 – Meccanismo tirante puntone della mensola tozza

Si distinguono due meccanismi di tipo tirante-puntone principali nel plinto di fondazione, illustrati nelle figure seguenti e descritti a seguire:

- un primo meccanismo è innescato dalle azioni trasmesse al plinto dai pali centrali e coinvolge un tirantepuntone parallelo alla direzione longitudinale (evidenziato in verde). Tale meccanismo coinvolge la sola armatura longitudinale inferiore del plinto.
- un secondo meccanismo coinvolge i pali di spigolo ed innesca un tirante-puntone con direzione diagonale (evidenziato in rosso), individuata da un angolo α misurato rispetto alla direzione trasversale. Tale meccanismo coinvolge sia l'armatura longitudinale inferiore del plinto che l'armatura trasversale, pertanto, ai fini delle verifiche del tirante di armatura e della biella di calcestruzzo, si considera composto dalla somma vettoriale di due meccanismi ortogonali disaccoppiati.

GEODATA INTEGRA RI	II LOTTO F	IO TRAT UNZION FUNZION	TA CANCEL ALE FRASSIALE FRASS	LO-BENEVENT O TELESINO – SO TELESINO –	VITULA	_
Pila P01: Relazione di calcolo	COMMESSA IF26	LOTTO 12 E ZZ	CODIFICA	DOCUMENTO VI0405 001	REV.	FOGLIO 142 di 149

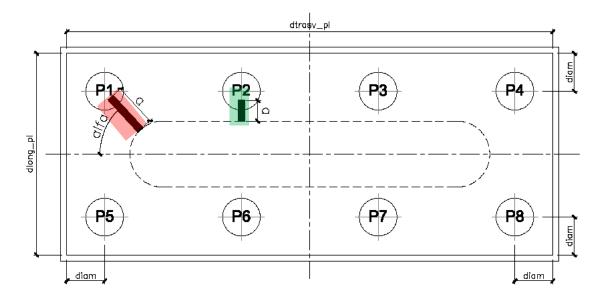


Figura 42 – Vista in pianta - Tirante-puntone longitudinale (verde) e diagonale (rosso) – α = 47°

A seguire si riporta una immagine che illustra, in una vista in sezione, la geometria di un generico meccanismo tirante puntone che si innesca nel plinto per azione dei carichi concentrati trasmessi dai pali di fondazione.

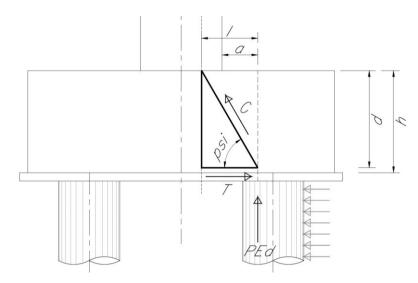


Figura 43 – Tirante puntone - Biella compressa di calcestruzzo C e tirante di armatura T

La forza di taglio di calcolo H_{Ed} agente alla testa del palo si trascura in via conservativa, in quanto il suo effetto ridurrebbe la trazione nel tirante inferiore d'armatura, essendo tale azione di taglio indotta dalla reazione del terreno.

Ai fini delle successive verifiche, le azioni concentrate P_{Ed} [kN] trasmesse dai pali al plinto sono assunte pari alle forze assiali agenti in testa al palo N_{max} [kN], ridotte della quota parte spettante ad ogni palo del peso del plinto P_{pl} [kN] e del peso del rinterro P_{terr} [kN] presente all'estradosso del plinto:

$$P_{Ed} = N_{max} - (P_{pl} + P_{terr}) / n_{pali}$$

La larghezza della sezione resistente del tirante di armatura e della biella compressa (Beff = larghezza efficace) viene assunta pari a:

- per i pali centrali all'interasse pali i (B_{eff} = i = 3 diam);
- per i pali di bordo a metà interasse pali i più la distanza dal bordo d_b ($B_{eff} = i/2 + d_b = 2,5$ diam).

L'altezza della sezione della biella compressa viene assunta pari a

 $h_c = 0.4$ c d sen ψ (si assume c = 1 per elementi privi di staffatura)

in conformità a quanto riportato in §C4.1.2.1.5 [2].

11.1.1 GEOMETRIA DEL TIRANTE-PUNTONE

11.1.1.1 TIRANTE - PUNTONE IN DIREZIONE DIAGONALE

а	1.39	m
h	1.80	m
d	1.72	m
1	1.73	m
tan psi	0.99	
psi	44.8	0

11.1.1.2 TIRANTE - PUNTONE IN DIREZIONE LONGITUDINALE

а	0.65	m
h	1.80	m
d	1.72	m
1	0.99	m
tan psi	1.73	
psi	60.0	0

11.1.2 SEZIONE DEL TIRANTE DI ARMATURA E DELLA BIELLA COMPRESSA

Con riferimento alla figura seguente, l'armatura prevista nel plinto di fondazione è descritta a seguire:

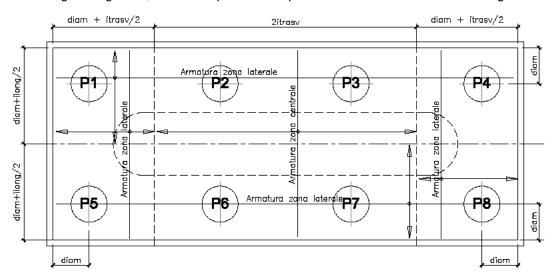


Figura 44 – Plinto di fondazione – Armatura longitudinale inferiore e superiore Il tirante d'armatura impiegato nelle verifiche è descritto nella tabella seguente.

	Armatura inferiore di verifica			Armatu			
	Zona laterale		Zona centrale	Zona laterale		Zona centrale	
	dir. Long.	dir. Trasv.	dir. Long.	dir. Long.	dir. Trasv.	dir. Long.	
Beff	3.375	3.2	4.35	3.375	3.2	4.35	[m]
øbarre	2.40	2.40	2.40	2.40	2.40	2.40	[cm]
ibarre	0.15	0.15	0.15	0.30	0.30	0.30	[m]
nstrati	2.00	2.00	1.00	1.00	1.00	1.00	
nbarre	45	42	29	11	10	14	
A1b	4.52	4.52	4.52	4.52	4.52	4.52	[cm2]
Atot	203	190	131	50	45	63	[cm2]

La sezione della biella compressa di calcestruzzo impiegata nelle verifiche è descritta nella tabella seguente.

	Biella inferio	ore di verifica	Biella superi	ore di verifica	
	Zona laterale	Zona centrale	Zona laterale	Zona centrale	
	dir. Long.	dir. Long.	dir. Long.	dir. Long.	
Вс	3.38	4.35	3.38	4.35	[m]
hc	0.49	0.60	0.49	0.60	[m]
Ac	1.64	2.60	1.64	2.60	[m2]

11.1.3 VERIFICHE SLU DELLE TENSIONI NORMALI

La verifica SLE di tipo tensionale si effettua verificando che le massime tensioni agenti nella sezione risultino inferiori ai seguenti valori limite:

per le combinazioni SLU e SLV:

• tensione limite nel calcestruzzo: $\sigma_c = f_{cd}' = 0,5 f_{cd} = 8,2 \text{ MPa}$ • tensione limite nelle barre: $\sigma_s = f_{yd} = 391 \text{ MPa}$

Si riportano a seguire in forma sintetica le verifiche più severe dei meccanismi tirante-puntone che si innescano nel plinto della pila.

	Nmax	PEd	T	σs_long	σs_trasv	<	fyd	С	σc	٧	fcd'
SIS-SLV	6414	5296	5329	192	191		VERO	7513	4.6		VERO
	kN	kN	kN	Мра	Мра			kN	Мра		

Negli allegati alla presente relazione sono riportate le verifiche in forma completa relative al plinto della pila.

11.1.4 VERIFICHE SLE DELLE TENSIONI NORMALI

La verifica SLE di tipo tensionale si effettua verificando che le massime tensioni agenti nella sezione risultino inferiori ai seguenti valori limite:

per le combinazioni SLE-RAR:

tensione limite nel calcestruzzo: $= 0,55 f_{ck} = 16,0 MPa$ σ_{c} tensione limite nelle barre: $= 0.75 f_{yk} = 337.5 MPa$

 σ_{s}

per le combinazioni SLE-QPE:

tensione limite nel calcestruzzo: = 0.40 fck = 11.6 MPa σ_{c}

Si riportano a seguire in forma sintetica le verifiche più severe dei meccanismi tirante-puntone che si innescano nel plinto della pila.

	Nmax	PEd	T	σs_long	σs_trasv	<	0.75 fyk	С	σς	<	fck'
SLE-RAR	4477	3359	3380	121	121		VERO	4765	2.9		VERO
	kN	kN	kN	Мра	Мра			kN	Мра		

Negli allegati alla presente relazione sono riportate le verifiche in forma completa relative al plinto della pila.

11.2 VERIFICA SLU A PUNZONAMENTO

Il valore resistente a taglio-punzonamento della sezione si determina secondo le indicazioni del §4,1,2,1,3,1 e 4 [1]:

 $= V_{Rd,c} / u$ in cui $V_{Rd,c}$

= $(0.18 \text{ k} (100 \text{ p}_1 \text{ f}_{ck})^{1/3} / \gamma_c + 0.15 \sigma_{cp}) \text{ b}_w \text{ d} \ge (v_{min} + 0.15 \sigma_{cp}) \text{ b}_w \text{ d}$ $V_{Rd,c}$

= perimetro efficace per la verifica a taglio-punzomento u

d altezza utile della sezione

larghezza minima della sezione b_w

k $= 1 + (200/d)^{1/2} \le 2$

 $= 0.035 k^{3/2} f_{ck}^{1/2}$ ν_{min}

 $= A_{sl} / (b_w d)$ ρι

 $= N_{Ed} / A_{c}$ σcp

Conservativamente, la verifica è stata sempre riferita al palo di bordo maggiormente sollecitato e lo sviluppo del perimetro efficace u è stato definito considerando una distanza dall'impronta caricata (coincidente con la sezione di testa del palo) pari a d = a * 0,9 * H_{pl} (H_{pl} = altezza plinto, a < 2), come illustrato nella seguente figura.

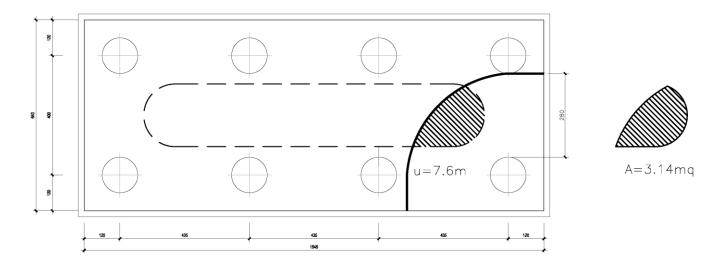


Figura 45 – Perimetro efficace per la verifica a taglio punzonamento

A seguire si riportano il valore della forza concentrata V_{Ed} [kN] agente alla testa del palo maggiormente sollecitato nella condizione di verifica più severa, il valore del coefficiente **a** che individua la geometria del perimetro efficace e lo sviluppo u [m] di quest'ultimo.

La forza concentrata V_{Ed} = 5296 kN è stata depurata della quota parte di forza assiale agente nella sezione di base del fusto della pila, pari a N_{Ed} * = N_{Ed} * A / A_c = 15000 kN * 3.14 m² / 23.1 m² = 2041 kN.

Si riporta a seguire in forma sintetica la verifica più severa (in combinazione SLV-SIS) a taglio-punzonamento della fondazione della pila.

Ved	3255	kN
u (a=1.5d)	7.6	m
vEd	0.247	MPa
$vRd_{.c}$	0.371	MPa

Negli allegati alla presente relazione sono riportate le verifiche in forma completa.

11.3 VERIFICA SLE A FESSURAZIONE

La verifica SLE a fessurazione si effettua verificando che il massimo valore di apertura delle fessure risulti inferiore ai seguenti valori limite:

per le combinazioni SLE-RAR:

• apertura fessure limite: $w_{lim} = w_1 = 0,30 \text{ mm}$

Si riporta a seguire in forma sintetica la verifica più severa (in combinazione SLE-RAR) della pila.

L'ampiezza massima delle fessure calcolata è pari a

wk **0.269** mm

Negli allegati alla presente relazione sono riportate le verifiche in forma completa.

12 INCIDENZE

Incidenza fusto: 120 kg/m³ Incidenza platea: 100 kg/m³ Incidenza pali: 180 kg/m³

ALLEGATO 1

NOME COMB.	G -	Perman	enti			Q1 - Va	ariabili v	verticali				Q2	! - Avvia	imento e	e frenat	ura				Q3	- Centri	fuga					Q4	- Serpe	ggio			Q6 - A	5 - Varia Azioni ir 17 - Effe nterazio	nterne etti	E - Az	rioni sisr	miche	De	escrizione
	G1	G21	G22	Q11	Q12	Q13	Q14	Q15	Q16	Q17	Q21	Q22	Q23	Q24	Q25	Q26	Q27	Q31	Q32	Q33	Q34	Q35	Q36	Q37	Q41	Q42	Q43	Q44	Q45	Q46	Q47	Q51	Q61	Q71	E1	E2	E3		
SLU-STR-001	1,35	1,5	1,5	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	G1+G2	solo perm
SLU-STR-002	1,35	1,5	1,5	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1,5	0,9	0,9	0	0	0	Q51	vento
SLU-STR-003	1,35	1,5	1,5	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0,9	1,45	1,5	0	0	0	Q71	termica
SLU-STR-004	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1,5	0,9	0,9	0	0	0	Q51	vento
SLU-STR-005	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0,9	1,45	1,5	0	0	0	Q71	termica
SLU-STR-006	1,35	1,5	1,5	1,45	0	0	0	0	0	0	0,73	0	0	0	0	0	0	1,45	0	0	0	0	0	0	1,45	0	0	0	0	0	0	0	0	0	0	0	0	Q11	gruppo 1
SLU-STR-007	1,35	1,5	1,5	0	1,45	0	0	0	0	0	0	0,73	0	0	0	0	0	0	1,45	0	0	0	0	0	0	1,45	0	0	0	0	0	0	0	0	0	0	0	Q12	gruppo 1
SLU-STR-008	1,35	1,5	1,5	0	0	1,45	0	0	0	0	0	0	0,73	0	0	0	0	0	0	1,45	0	0	0	0	0	0	1,45	0	0	0	0	0	0	0	0	0	0	Q13	gruppo 1
SLU-STR-009	1,35	1,5	1,5	0	0	0	1,45	0	0	0	0	0	0	0,73	0	0	0	0	0	0	1,45	0	0	0	0	0	0	1,45	0	0	0	0	0	0	0	0	0	Q14	gruppo 1
SLU-STR-010	1,35	1,5	1,5	0	0	0	0	1,45	0	0	0	0	0	0	0,73	0	0	0	0	0	0	1,45	0	0	0	0	0	0	1,45	0	0	0	0	0	0	0	0	Q15	gruppo 1
SLU-STR-011	1,35	1,5	1,5	0	0	0	0	0	1,45	0	0	0	0	0	0	0,73	0	0	0	0	0	0	1,45	0	0	0	0	0	0	1,45	0	0	0	0	0	0	0	Q16	gruppo 1
SLU-STR-012	1,35	1,5	1,5	1,45	0	0	0	0	0	0	1,45	0	0	0	0	0	0	0,73	0	0	0	0	0	0	0,73	0	0	0	0	0	0	0	0	0	0	0	0	Q11	gruppo 3
SLU-STR-013	1,35	1,5	1,5	0	1,45	0	0	0	0	0	0	1,45	0	0	0	0	0	0	0,73	0	0	0	0	0	0	0,73	0	0	0	0	0	0	0	0	0	0	0	Q12	gruppo 3
SLU-STR-014	1,35	1,5	1,5	0	0	1,45	0	0	0	0	0	0	1,45	0	0	0	0	0	0	0,73	0	0	0	0	0	0	0,73	0	0	0	0	0	0	0	0	0	0	Q13	gruppo 3
SLU-STR-015	1,35	1,5	1,5	0	0	0	1,45	0	0	0	0	0	0	1,45	0	0	0	0	0	0	0,73	0	0	0	0	0	0	0,73	0	0	0	0	0	0	0	0	0	Q14	gruppo 3
SLU-STR-016	1,35	1,5	1,5	0	0	0	0	1,45	0	0	0	0	0	0	1,45	0	0	0	0	0	0	0,73	0	0	0	0	0	0	0,73	0	0	0	0	0	0	0	0	Q15	gruppo 3
SLU-STR-017	1,35	1,5	1,5	0	0	0	0	0	1,45	0	0	0	0	0	0	1,45	0	0	0	0	0	0	0,73	0	0	0	0	0	0	0,73	0	0	0	0	0	0	0	Q16	gruppo 3
SLU-STR-018	1	1	0	0	0	0	0	0	0	0,73	0	0	0	0	0	0	1,45	0	0	0	0	0	0	0,73	0	0	0	0	0	0	0,73	0	0	0	0	0	0	Q27	gruppo 3-2
SLU-STR-019	1,35	1,5	1,5	1,45	0	0	0	0	0	0	0,73	0	0	0	0	0	0	1,45	0	0	0	0	0	0	1,45	0	0	0	0	0	0	0,9	0	0	0	0	0	Q11	gruppo 1
SLU-STR-020	1,35	1,5	1,5	0	1,45	0	0	0	0	0	0	0,73	0	0	0	0	0	0	1,45	0	0	0	0	0	0	1,45	0	0	0	0	0	0,9	0	0	0	0	0	Q12	gruppo 1
SLU-STR-021	1,35	1,5	1,5	0	0	1,45	0	0	0	0	0	0	0,73	0	0	0	0	0	0	1,45	0	0	0	0	0	0	1,45	0	0	0	0	0,9	0	0	0	0	0	Q13	gruppo 1
SLU-STR-022	1,35	1,5	1,5	0	0	0	1,45	0	0	0	0	0	0	0,73	0	0	0	0	0	0	1,45	0	0	0	0	0	0	1,45	0	0	0	0,9	0	0	0	0	0	Q14	gruppo 1
SLU-STR-023	1,35	1,5	1,5	0	0	0	0	1,45	0	0	0	0	0	0	0,73	0	0	0	0	0	0	1,45	0	0	0	0	0	0	1,45	0	0	0,9	0	0	0	0	0	Q15	gruppo 1
SLU-STR-024	1,35	1,5	1,5	0	0	0	0	0	1,45	0	0	0	0	0	0	0,73	0	0	0	0	0	0	1,45	0	0	0	0	0	0	1,45	0	0,9	0	0	0	0	0	Q16	gruppo 1
SLU-STR-025	1,35	1,5	1,5	1,45	0	0	0	0	0	0	1,45	0	0	0	0	0	0	0,73	0	0	0	0	0	0	0,73	0	0	0	0	0	0	0,9	0	0	0	0	0	Q11	gruppo 3
SLU-STR-026	1,35	1,5	1,5	0	1,45	0	0	0	0	0	0	1,45	0	0	0	0	0	0	0,73	0	0	0	0	0	0	0,73	0	0	0	0	0	0,9	0	0	0	0	0	Q12	gruppo 3
SLU-STR-027	1,35	1,5	1,5	0	0	1,45	0	0	0	0	0	0	1,45	0	0	0	0	0	0	0,73	0	0	0	0	0	0	0,73	0	0	0	0	0,9	0	0	0	0	0	Q13	gruppo 3
SLU-STR-028	1,35	1,5	1,5	0	0	0	1,45	0	0	0	0	0	0	1,45	0	0	0	0	0	0	0,73	0	0	0	0	0	0	0,73	0	0	0	0,9	0	0	0	0	0	Q14	gruppo 3
SLU-STR-029	1,35	1,5	1,5	0	0	0	0	1,45	0	0	0	0	0	0	1,45	0	0	0	0	0	0	0,73	0	0	0	0	0	0	0,73	0	0	0,9	0	0	0	0	0	Q15	gruppo 3
SLU-STR-030	1,35	1,5	1,5	0	0	0	0	0	1,45	0	0	0	0	0	0	1,45	0	0	0	0	0	0	0,73	0	0	0	0	0	0	0,73	0	0,9	0	0	0	0	0	Q16	gruppo 3
SLU-STR-031	1	1	0	0	0	0	0	0	0	0,73	0	0	0	0	0	0	1,45	0	0	0	0	0	0	0,73	0	0	0	0	0	0	0,73	0,9	0	0	0	0	0	Q27	gruppo 3-2
SLU-STR-032	1,35	1,5	1,5	1,45	0	0	0	0	0	0	0,73	0	0	0	0	0	0	1,45	0	0	0	0	0	0	1,45	0	0	0	0	0	0	0	1,45	0	0	0	0	Q11	gruppo 1
SLU-STR-033	1,35	1,5	1,5	0	1,45	0	0	0	0	0	0	0,73	0	0	0	0	0	0	1,45	0	0	0	0	0	0	1,45	0	0	0	0	0	0	1,45	0	0	0	0	Q12	gruppo 1
SLU-STR-034	1,35	1,5	1,5	0	0	1,45	0	0	0	0	0	0	0,73	0	0	0	0	0	0	1,45	0	0	0	0	0	0	1,45	0	0	0	0	0	1,45	0	0	0	0	Q13	gruppo 1
SLU-STR-035	1,35	1,5	1,5	0	0	0	1,45	0	0	0	0	0	0	0,73	0	0	0	0	0	0	1,45	0	0	0	0	0	0	1,45	0	0	0	0	1,45	0	0	0	0	Q14	gruppo 1
SLU-STR-036	1,35	1,5	1,5	0	0	0	0	1,45	0	0	0	0	0	0	0,73	0	0	0	0	0	0	1,45	0	0	0	0	0	0	1,45	0	0	0	1,45	0	0	0	0	Q15	gruppo 1
SLU-STR-037	1,35	1,5	1,5	0	0	0	0	0	1,45	0	0	0	0	0	0	0,73	0	0	0	0	0	0	1,45	0	0	0	0	0	0	1,45	0	0	1,45	0	0	0	0	Q16	gruppo 1

NOME COMB.	G -	Permar	nenti			Q1 - V	ariabili v	rerticali				Q2	2 - Avvia	mento e	e frenat	ura				Q3	- Centri	fuga					Q4	- Serpe	ggio			Q6 -	5 - Varia Azioni ii Q7 - Effe interazio	nterne etti	E - Az	rioni sisr	miche	De	scrizione
	G1	G21	G22	Q11	Q12	Q13	Q14	Q15	Q16	Q17	Q21	Q22	Q23	Q24	Q25	Q26	Q27	Q31	Q32	Q33	Q34	Q35	Q36	Q37	Q41	Q42	Q43	Q44	Q45	Q46	Q47	Q51	Q61	Q71	E1	E2	E3		
SLU-STR-038	1,35	1,5	1,5	1,45	0	0	0	0	0	0	1,45	0	0	0	0	0	0	0,73	0	0	0	0	0	0	0,73	0	0	0	0	0	0	0	1,45	0	0	0	0	Q11	gruppo 3
SLU-STR-039	1,35	1,5	1,5	0	1,45	0	0	0	0	0	0	1,45	0	0	0	0	0	0	0,73	0	0	0	0	0	0	0,73	0	0	0	0	0	0	1,45	0	0	0	0	Q12	gruppo 3
SLU-STR-040	1,35	1,5	1,5	0	0	1,45	0	0	0	0	0	0	1,45	0	0	0	0	0	0	0,73	0	0	0	0	0	0	0,73	0	0	0	0	0	1,45	0	0	0	0	Q13	gruppo 3
SLU-STR-041	1,35	1,5	1,5	0	0	0	1,45	0	0	0	0	0	0	1,45	0	0	0	0	0	0	0,73	0	0	0	0	0	0	0,73	0	0	0	0	1,45	0	0	0	0	Q14	gruppo 3
SLU-STR-042	1,35	1,5	1,5	0	0	0	0	1,45	0	0	0	0	0	0	1,45	0	0	0	0	0	0	0,73	0	0	0	0	0	0	0,73	0	0	0	1,45	0	0	0	0	Q15	gruppo 3
SLU-STR-043	1,35	1,5	1,5	0	0	0	0	0	1,45	0	0	0	0	0	0	1,45	0	0	0	0	0	0	0,73	0	0	0	0	0	0	0,73	0	0	1,45	0	0	0	0	Q16	gruppo 3
SLU-STR-044	1	1	0	0	0	0	0	0	0	0,73	0	0	0	0	0	0	1,45	0	0	0	0	0	0	0,73	0	0	0	0	0	0	0,73	0	1,45	0	0	0	0	Q27	gruppo 3-2
SLU-STR-045	1,35	1,5	1,5	1,45	0	0	0	0	0	0	0,73	0	0	0	0	0	0	1,45	0	0	0	0	0	0	1,45	0	0	0	0	0	0	0	0	0,9	0	0	0	Q11	gruppo 1
SLU-STR-046	1,35	1,5	1,5	0	1,45	0	0	0	0	0	0	0,73	0	0	0	0	0	0	1,45	0	0	0	0	0	0	1,45	0	0	0	0	0	0	0	0,9	0	0	0	Q12	gruppo 1
SLU-STR-047	1,35	1,5	1,5	0	0	1,45	0	0	0	0	0	0	0,73	0	0	0	0	0	0	1,45	0	0	0	0	0	0	1,45	0	0	0	0	0	0	0,9	0	0	0	Q13	gruppo 1
SLU-STR-048	1,35	1,5	1,5	0	0	0	1,45	0	0	0	0	0	0	0,73	0	0	0	0	0	0	1,45	0	0	0	0	0	0	1,45	0	0	0	0	0	0,9	0	0	0	Q14	gruppo 1
SLU-STR-049	1,35	1,5	1,5	0	0	0	0	1,45	0	0	0	0	0	0	0,73	0	0	0	0	0	0	1,45	0	0	0	0	0	0	1,45	0	0	0	0	0,9	0	0	0	Q15	gruppo 1
SLU-STR-050	1,35	1,5	1,5	0	0	0	0	0	1,45	0	0	0	0	0	0	0,73	0	0	0	0	0	0	1,45	0	0	0	0	0	0	1,45	0	0	0	0,9	0	0	0	Q16	gruppo 1
SLU-STR-051	1,35	1,5	1,5	1,45	0	0	0	0	0	0	1,45	0	0	0	0	0	0	0,73	0	0	0	0	0	0	0,73	0	0	0	0	0	0	0	0	0,9	0	0	0	Q11	gruppo 3
SLU-STR-052	1,35	1,5	1,5	0	1,45	0	0	0	0	0	0	1,45	0	0	0	0	0	0	0,73	0	0	0	0	0	0	0,73	0	0	0	0	0	0	0	0,9	0	0	0	Q12	gruppo 3
SLU-STR-053	1,35	1,5	1,5	0	0	1,45	0	0	0	0	0	0	1,45	0	0	0	0	0	0	0,73	0	0	0	0	0	0	0,73	0	0	0	0	0	0	0,9	0	0	0	Q13	gruppo 3
SLU-STR-054	1,35	1,5	1,5	0	0	0	1,45	0	0	0	0	0	0	1,45	0	0	0	0	0	0	0,73	0	0	0	0	0	0	0,73	0	0	0	0	0	0,9	0	0	0	Q14	gruppo 3
SLU-STR-055	1,35	1,5	1,5	0	0	0	0	1,45	0	0	0	0	0	0	1,45	0	0	0	0	0	0	0,73	0	0	0	0	0	0	0,73	0	0	0	0	0,9	0	0	0	Q15	gruppo 3
SLU-STR-056	1,35	1,5	1,5	0	0	0	0	0	1,45	0	0	0	0	0	0	1,45	0	0	0	0	0	0	0,73	0	0	0	0	0	0	0,73	0	0	0	0,9	0	0	0	Q16	gruppo 3
SLU-STR-057	1	1	0	0	0	0	0	0	0	0,73	0	0	0	0	0	0	1,45	0	0	0	0	0	0	0,73	0	0	0	0	0	0	0,73	0	0	0,9	0	0	0	Q27	gruppo 3-2
SLU-STR-058	1,35	1,5	1,5	1,45	0	0	0	0	0	0	0,73	0	0	0	0	0	0	1,45	0	0	0	0	0	0	1,45	0	0	0	0	0	0	0,9	1,45	0,9	0	0	0	Q11	gruppo 1
SLU-STR-059	1,35	1,5	1,5	0	1,45	0	0	0	0	0	0	0,73	0	0	0	0	0	0	1,45	0	0	0	0	0	0	1,45	0	0	0	0	0	0,9	1,45	0,9	0	0	0	Q12	gruppo 1
SLU-STR-060	1,35	1,5	1,5	0	0	1,45	0	0	0	0	0	0	0,73	0	0	0	0	0	0	1,45	0	0	0	0	0	0	1,45	0	0	0	0	0,9	1,45	0,9	0	0	0	Q13	gruppo 1
SLU-STR-061	1,35	1,5	1,5	0	0	0	1,45	0	0	0	0	0	0	0,73	0	0	0	0	0	0	1,45	0	0	0	0	0	0	1,45	0	0	0	0,9	1,45	0,9	0	0	0	Q14	gruppo 1
SLU-STR-062	1,35	1,5	1,5	0	0	0	0	1,45	0	0	0	0	0	0	0,73	0	0	0	0	0	0	1,45	0	0	0	0	0	0	1,45	0	0	0,9	1,45	0,9	0	0	0	Q15	gruppo 1
SLU-STR-063	1,35	1,5	1,5	0	0	0	0	0	1,45	0	0	0	0	0	0	0,73	0	0	0	0	0	0	1,45	0	0	0	0	0	0	1,45	0	0,9	1,45	0,9	0	0	0	Q16	gruppo 1
SLU-STR-064	1,35	1,5	1,5	1,45	0	0	0	0	0	0	1,45	0	0	0	0	0	0	0,73	0	0	0	0	0	0	0,73	0	0	0	0	0	0	0,9	1,45	0,9	0	0	0	Q11	gruppo 3
SLU-STR-065	1,35	1,5	1,5	0	1,45	0	0	0	0	0	0	1,45	0	0	0	0	0	0	0,73	0	0	0	0	0	0	0,73	0	0	0	0	0	0,9	1,45	0,9	0	0	0	Q12	gruppo 3
SLU-STR-066	1,35	1,5	1,5	0	0	1,45	0	0	0	0	0	0	1,45	0	0	0	0	0	0	0,73	0	0	0	0	0	0	0,73	0	0	0	0	0,9	1,45	0,9	0	0	0	Q13	gruppo 3
SLU-STR-067	1,35	1,5	1,5	0	0	0	1,45	0	0	0	0	0	0	1,45	0	0	0	0	0	0	0,73	0	0	0	0	0	0	0,73	0	0	0	0,9	1,45	0,9	0	0	0	Q14	gruppo 3
SLU-STR-068	1,35	1,5	1,5	0	0	0	0	1,45	0	0	0	0	0	0	1,45	0	0	0	0	0	0	0,73	0	0	0	0	0	0	0,73	0	0	0,9	1,45	0,9	0	0	0	Q15	gruppo 3
SLU-STR-069	1,35	1,5	1,5	0	0	0	0	0	1,45	0	0	0	0	0	0	1,45	0	0	0	0	0	0	0,73	0	0	0	0	0	0	0,73	0	0,9	1,45	0,9	0	0	0	Q16	gruppo 3
SLU-STR-070	1	1	0	0	0	0	0	0	0	0,73	0	0	0	0	0	0	1,45	0	0	0	0	0	0	0,73	0	0	0	0	0	0	0,73	0,9	1,45	0,9	0	0	0	Q27	gruppo 3-2
SLU-GEO-001	1	1,3	1,3	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	G1+G2	solo perm
SLU-GEO-002	1	1,3	1,3	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1,3	0,78	0,78	0	0	0	Q51	vento
SLU-GEO-003	1	1,3	1,3	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0,78	1,25	1,3	0	0	0	Q71	termica

NOME COMB.	G-	Permar	nenti			Q1 - Va	ariabili v	erticali				Q2	? - Avvia	amento e	e frenati	ıra				Q3	- Centrii	uga					Q4	- Serpe	ggio			Q6	5 - Varia Azioni ir 17 - Effe nterazio	nterne etti	E - Az	zioni sisi	miche	D	escrizione
	G1	G21	G22	Q11	Q12	Q13	Q14	Q15	Q16	Q17	Q21	Q22	Q23	Q24	Q25	Q26	Q27	Q31	Q32	Q33	Q34	Q35	Q36	Q37	Q41	Q42	Q43	Q44	Q45	Q46	Q47	Q51	Q61	Q71	E1	E2	E3		
SLU-GEO-004	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1,3	0,78	0,78	0	0	0	Q51	vento
SLU-GEO-005	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0,78	1,25	1,3	0	0	0	Q71	termica
SLU-GEO-006	1	1,3	1,3	1,25	0	0	0	0	0	0	0,63	0	0	0	0	0	0	1,25	0	0	0	0	0	0	1,25	0	0	0	0	0	0	0	0	0	0	0	0	Q11	gruppo 1
SLU-GEO-007	1	1,3	1,3	0	1,25	0	0	0	0	0	0	0,63	0	0	0	0	0	0	1,25	0	0	0	0	0	0	1,25	0	0	0	0	0	0	0	0	0	0	0	Q12	gruppo 1
SLU-GEO-008	1	1,3	1,3	0	0	1,25	0	0	0	0	0	0	0,63	0	0	0	0	0	0	1,25	0	0	0	0	0	0	1,25	0	0	0	0	0	0	0	0	0	0	Q13	gruppo 1
SLU-GEO-009	1	1,3	1,3	0	0	0	1,25	0	0	0	0	0	0	0,63	0	0	0	0	0	0	1,25	0	0	0	0	0	0	1,25	0	0	0	0	0	0	0	0	0	Q14	gruppo 1
SLU-GEO-010	1	1,3	1,3	0	0	0	0	1,25	0	0	0	0	0	0	0,63	0	0	0	0	0	0	1,25	0	0	0	0	0	0	1,25	0	0	0	0	0	0	0	0	Q15	gruppo 1
SLU-GEO-011	1	1,3	1,3	0	0	0	0	0	1,25	0	0	0	0	0	0	0,63	0	0	0	0	0	0	1,25	0	0	0	0	0	0	1,25	0	0	0	0	0	0	0	Q16	gruppo 1
SLU-GEO-012	1	1,3	1,3	1,25	0	0	0	0	0	0	1,25	0	0	0	0	0	0	0,63	0	0	0	0	0	0	0,63	0	0	0	0	0	0	0	0	0	0	0	0	Q11	gruppo 3
SLU-GEO-013	1	1,3	1,3	0	1,25	0	0	0	0	0	0	1,25	0	0	0	0	0	0	0,63	0	0	0	0	0	0	0,63	0	0	0	0	0	0	0	0	0	0	0	Q12	gruppo 3
SLU-GEO-014	1	1,3	1,3	0	0	1,25	0	0	0	0	0	0	1,25	0	0	0	0	0	0	0,63	0	0	0	0	0	0	0,63	0	0	0	0	0	0	0	0	0	0	Q13	gruppo 3
SLU-GEO-015	1	1,3	1,3	0	0	0	1,25	0	0	0	0	0	0	1,25	0	0	0	0	0	0	0,63	0	0	0	0	0	0	0,63	0	0	0	0	0	0	0	0	0	Q14	gruppo 3
SLU-GEO-016	1	1,3	1,3	0	0	0	0	1,25	0	0	0	0	0	0	1,25	0	0	0	0	0	0	0,63	0	0	0	0	0	0	0,63	0	0	0	0	0	0	0	0	Q15	gruppo 3
SLU-GEO-017	1	1,3	1,3	0	0	0	0	0	1,25	0	0	0	0	0	0	1,25	0	0	0	0	0	0	0,63	0	0	0	0	0	0	0,63	0	0	0	0	0	0	0	Q16	gruppo 3
SLU-GEO-018	1	1	0	0	0	0	0	0	0	0,63	0	0	0	0	0	0	1,25	0	0	0	0	0	0	0,63	0	0	0	0	0	0	0,63	0	0	0	0	0	0	Q27	gruppo 3-2
SLU-GEO-019	1	1,3	1,3	1,25	0	0	0	0	0	0	0,63	0	0	0	0	0	0	1,25	0	0	0	0	0	0	1,25	0	0	0	0	0	0	0,78	0	0	0	0	0	Q11	gruppo 1
SLU-GEO-020	1	1,3	1,3	0	1,25	0	0	0	0	0	0	0,63	0	0	0	0	0	0	1,25	0	0	0	0	0	0	1,25	0	0	0	0	0	0,78	0	0	0	0	0	Q12	gruppo 1
SLU-GEO-021	1	1,3	1,3	0	0	1,25	0	0	0	0	0	0	0,63	0	0	0	0	0	0	1,25	0	0	0	0	0	0	1,25	0	0	0	0	0,78	0	0	0	0	0	Q13	gruppo 1
SLU-GEO-022	1	1,3	1,3	0	0	0	1,25	0	0	0	0	0	0	0,63	0	0	0	0	0	0	1,25	0	0	0	0	0	0	1,25	0	0	0	0,78	0	0	0	0	0	Q14	gruppo 1
SLU-GEO-023	1	1,3	1,3	0	0	0	0	1,25	0	0	0	0	0	0	0,63	0	0	0	0	0	0	1,25	0	0	0	0	0	0	1,25	0	0	0,78	0	0	0	0	0	Q15	gruppo 1
SLU-GEO-024	1	1,3	1,3	0	0	0	0	0	1,25	0	0	0	0	0	0	0,63	0	0	0	0	0	0	1,25	0	0	0	0	0	0	1,25	0	0,78	0	0	0	0	0	Q16	gruppo 1
SLU-GEO-025	1	1,3	1,3	1,25	0	0	0	0	0	0	1,25	0	0	0	0	0	0	0,63	0	0	0	0	0	0	0,63	0	0	0	0	0	0	0,78	0	0	0	0	0	Q11	gruppo 3
SLU-GEO-026	1	1,3	1,3	0	1,25	0	0	0	0	0	0	1,25	0	0	0	0	0	0	0,63	0	0	0	0	0	0	0,63	0	0	0	0	0	0,78	0	0	0	0	0	Q12	gruppo 3
SLU-GEO-027	1	1,3	1,3	0	0	1,25	0	0	0	0	0	0	1,25	0	0	0	0	0	0	0,63	0	0	0	0	0	0	0,63	0	0	0	0	0,78	0	0	0	0	0	Q13	gruppo 3
SLU-GEO-028	1	1,3	1,3	0	0	0	1,25	0	0	0	0	0	0	1,25	0	0	0	0	0	0	0,63	0	0	0	0	0	0	0,63	0	0	0	0,78	0	0	0	0	0	Q14	gruppo 3
SLU-GEO-029	1	1,3	1,3	0	0	0	0	1,25	0	0	0	0	0	0	1,25	0	0	0	0	0	0	0,63	0	0	0	0	0	0	0,63	0	0	0,78	0	0	0	0	0	Q15	gruppo 3
SLU-GEO-030	1	1,3	1,3	0	0	0	0	0	1,25	0	0	0	0	0	0	1,25	0	0	0	0	0	0	0,63	0	0	0	0	0	0	0,63	0	0,78	0	0	0	0	0	Q16	gruppo 3
SLU-GEO-031	1	1	0	0	0	0	0	0	0	0,63	0	0	0	0	0	0	1,25	0	0	0	0	0	0	0,63	0	0	0	0	0	0	0,63	0,78	0	0	0	0	0	Q27	gruppo 3-2
SLU-GEO-032	1	1,3	1,3	1,25	0	0	0	0	0	0	0,63	0	0	0	0	0	0	1,25	0	0	0	0	0	0	1,25	0	0	0	0	0	0	0	1,25	0	0	0	0	Q11	gruppo 1
SLU-GEO-033	1	1,3	1,3	0	1,25	0	0	0	0	0	0	0,63	0	0	0	0	0	0	1,25	0	0	0	0	0	0	1,25	0	0	0	0	0	0	1,25	0	0	0	0	Q12	gruppo 1
SLU-GEO-034	1	1,3	1,3	0	0	1,25	0	0	0	0	0	0	0,63	0	0	0	0	0	0	1,25	0	0	0	0	0	0	1,25	0	0	0	0	0	1,25	0	0	0	0	Q13	gruppo 1
SLU-GEO-035	1	1,3	1,3	0	0	0	1,25	0	0	0	0	0	0	0,63	0	0	0	0	0	0	1,25	0	0	0	0	0	0	1,25	0	0	0	0	1,25	0	0	0	0	Q14	gruppo 1
SLU-GEO-036	1	1,3	1,3	0	0	0	0	1,25	0	0	0	0	0	0	0,63	0	0	0	0	0	0	1,25	0	0	0	0	0	0	1,25	0	0	0	1,25	0	0	0	0	Q15	gruppo 1
SLU-GEO-037	1	1,3	1,3	0	0	0	0	0	1,25	0	0	0	0	0	0	0,63	0	0	0	0	0	0	1,25	0	0	0	0	0	0	1,25	0	0	1,25	0	0	0	0	Q16	gruppo 1
SLU-GEO-038	1	1,3	1,3	1,25	0	0	0	0	0	0	1,25	0	0	0	0	0	0	0,63	0	0	0	0	0	0	0,63	0	0	0	0	0	0	0	1,25	0	0	0	0	Q11	gruppo 3
SLU-GEO-039	1	1,3	1,3	0	1,25	0	0	0	0	0	0	1,25	0	0	0	0	0	0	0,63	0	0	0	0	0	0	0,63	0	0	0	0	0	0	1,25	0	0	0	0	Q12	gruppo 3
SLU-GEO-040	1	1,3	1,3	0	0	1,25	0	0	0	0	0	0	1,25	0	0	0	0	0	0	0,63	0	0	0	0	0	0	0,63	0	0	0	0	0	1,25	0	0	0	0	Q13	gruppo 3

NOME COMB.	G -	Permar	nenti			Q1 - V	ariabili v	verticali				Q2	2 - Avvia	mento e	e frenati	ıra				Q3 -	- Centrif	fuga					Q4	- Serpe	ggio			Q6	5 - Varia Azioni ir 17 - Effe nterazio	nterne etti	E - Az	zioni sisn	miche	Dr	escrizione
	G1	G21	G22	Q11	Q12	Q13	Q14	Q15	Q16	Q17	Q21	Q22	Q23	Q24	Q25	Q26	Q27	Q31	Q32	Q33	Q34	Q35	Q36	Q37	Q41	Q42	Q43	Q44	Q45	Q46	Q47	Q51	Q61	Q71	E1	E2	E3		
SLU-GEO-041	1	1,3	1,3	0	0	0	1,25	0	0	0	0	0	0	1,25	0	0	0	0	0	0	0,63	0	0	0	0	0	0	0,63	0	0	0	0	1,25	0	0	0	0	Q14	gruppo 3
SLU-GEO-042	1	1,3	1,3	0	0	0	0	1,25	0	0	0	0	0	0	1,25	0	0	0	0	0	0	0,63	0	0	0	0	0	0	0,63	0	0	0	1,25	0	0	0	0	Q15	gruppo 3
SLU-GEO-043	1	1,3	1,3	0	0	0	0	0	1,25	0	0	0	0	0	0	1,25	0	0	0	0	0	0	0,63	0	0	0	0	0	0	0,63	0	0	1,25	0	0	0	0	Q16	gruppo 3
SLU-GEO-044	1	1	0	0	0	0	0	0	0	0,63	0	0	0	0	0	0	1,25	0	0	0	0	0	0	0,63	0	0	0	0	0	0	0,63	0	1,25	0	0	0	0	Q27	gruppo 3-2
SLU-GEO-045	1	1,3	1,3	1,25	0	0	0	0	0	0	0,63	0	0	0	0	0	0	1,25	0	0	0	0	0	0	1,25	0	0	0	0	0	0	0	0	0,78	0	0	0	Q11	gruppo 1
SLU-GEO-046	1	1,3	1,3	0	1,25	0	0	0	0	0	0	0,63	0	0	0	0	0	0	1,25	0	0	0	0	0	0	1,25	0	0	0	0	0	0	0	0,78	0	0	0	Q12	gruppo 1
SLU-GEO-047	1	1,3	1,3	0	0	1,25	0	0	0	0	0	0	0,63	0	0	0	0	0	0	1,25	0	0	0	0	0	0	1,25	0	0	0	0	0	0	0,78	0	0	0	Q13	gruppo 1
SLU-GEO-048	1	1,3	1,3	0	0	0	1,25	0	0	0	0	0	0	0,63	0	0	0	0	0	0	1,25	0	0	0	0	0	0	1,25	0	0	0	0	0	0,78	0	0	0	Q14	gruppo 1
SLU-GEO-049	1	1,3	1,3	0	0	0	0	1,25	0	0	0	0	0	0	0,63	0	0	0	0	0	0	1,25	0	0	0	0	0	0	1,25	0	0	0	0	0,78	0	0	0	Q15	gruppo 1
SLU-GEO-050	1	1,3	1,3	0	0	0	0	0	1,25	0	0	0	0	0	0	0,63	0	0	0	0	0	0	1,25	0	0	0	0	0	0	1,25	0	0	0	0,78	0	0	0	Q16	gruppo 1
SLU-GEO-051	1	1,3	1,3	1,25	0	0	0	0	0	0	1,25	0	0	0	0	0	0	0,63	0	0	0	0	0	0	0,63	0	0	0	0	0	0	0	0	0,78	0	0	0	Q11	gruppo 3
SLU-GEO-052	1	1,3	1,3	0	1,25	0	0	0	0	0	0	1,25	0	0	0	0	0	0	0,63	0	0	0	0	0	0	0,63	0	0	0	0	0	0	0	0,78	0	0	0	Q12	gruppo 3
SLU-GEO-053	1	1,3	1,3	0	0	1,25	0	0	0	0	0	0	1,25	0	0	0	0	0	0	0,63	0	0	0	0	0	0	0,63	0	0	0	0	0	0	0,78	0	0	0	Q13	gruppo 3
SLU-GEO-054	1	1,3	1,3	0	0	0	1,25	0	0	0	0	0	0	1,25	0	0	0	0	0	0	0,63	0	0	0	0	0	0	0,63	0	0	0	0	0	0,78	0	0	0	Q14	gruppo 3
SLU-GEO-055	1	1,3	1,3	0	0	0	0	1,25	0	0	0	0	0	0	1,25	0	0	0	0	0	0	0,63	0	0	0	0	0	0	0,63	0	0	0	0	0,78	0	0	0	Q15	gruppo 3
SLU-GEO-056	1	1,3	1,3	0	0	0	0	0	1,25	0	0	0	0	0	0	1,25	0	0	0	0	0	0	0,63	0	0	0	0	0	0	0,63	0	0	0	0,78	0	0	0	Q16	gruppo 3
SLU-GEO-057	1	1	0	0	0	0	0	0	0	0,63	0	0	0	0	0	0	1,25	0	0	0	0	0	0	0,63	0	0	0	0	0	0	0,63	0	0	0,78	0	0	0	Q27	gruppo 3-2
SLU-GEO-058	1	1,3	1,3	1,25	0	0	0	0	0	0	0,63	0	0	0	0	0	0	1,25	0	0	0	0	0	0	1,25	0	0	0	0	0	0	0,78	1,25	0,78	0	0	0	Q11	gruppo 1
SLU-GEO-059	1	1,3	1,3	0	1,25	0	0	0	0	0	0	0,63	0	0	0	0	0	0	1,25	0	0	0	0	0	0	1,25	0	0	0	0	0	0,78	1,25	0,78	0	0	0	Q12	gruppo 1
SLU-GEO-060	1	1,3	1,3	0	0	1,25	0	0	0	0	0	0	0,63	0	0	0	0	0	0	1,25	0	0	0	0	0	0	1,25	0	0	0	0	0,78	1,25	0,78	0	0	0	Q13	gruppo 1
SLU-GEO-061	1	1,3	1,3	0	0	0	1,25	0	0	0	0	0	0	0,63	0	0	0	0	0	0	1,25	0	0	0	0	0	0	1,25	0	0	0	0,78	1,25	0,78	0	0	0	Q14	gruppo 1
SLU-GEO-062	1	1,3	1,3	0	0	0	0	1,25	0	0	0	0	0	0	0,63	0	0	0	0	0	0	1,25	0	0	0	0	0	0	1,25	0	0	0,78	1,25	0,78	0	0	0	Q15	gruppo 1
SLU-GEO-063	1	1,3	1,3	0	0	0	0	0	1,25	0	0	0	0	0	0	0,63	0	0	0	0	0	0	1,25	0	0	0	0	0	0	1,25	0	0,78	1,25	0,78	0	0	0	Q16	gruppo 1
SLU-GEO-064	1	1,3	1,3	1,25	0	0	0	0	0	0	1,25	0	0	0	0	0	0	0,63	0	0	0	0	0	0	0,63	0	0	0	0	0	0	0,78	1,25	0,78	0	0	0	Q11	gruppo 3
SLU-GEO-065	1	1,3	1,3	0	1,25	0	0	0	0	0	0	1,25	0	0	0	0	0	0	0,63	0	0	0	0	0	0	0,63	0	0	0	0	0	0,78	1,25	0,78	0	0	0	Q12	gruppo 3
SLU-GEO-066	1	1,3	1,3	0	0	1,25	0	0	0	0	0	0	1,25	0	0	0	0	0	0	0,63	0	0	0	0	0	0	0,63	0	0	0	0	0,78	1,25	0,78	0	0	0	Q13	gruppo 3
SLU-GEO-067	1	1,3	1,3	0	0	0	1,25	0	0	0	0	0	0	1,25	0	0	0	0	0	0	0,63	0	0	0	0	0	0	0,63	0	0	0	0,78	1,25	0,78	0	0	0	Q14	gruppo 3
SLU-GEO-068	1	1,3	1,3	0	0	0	0	1,25	0	0	0	0	0	0	1,25	0	0	0	0	0	0	0,63	0	0	0	0	0	0	0,63	0	0	0,78	1,25	0,78	0	0	0	Q15	gruppo 3
SLU-GEO-069	1	1,3	1,3	0	0	0	0	0	1,25	0	0	0	0	0	0	1,25	0	0	0	0	0	0	0,63	0	0	0	0	0	0	0,63	0	0,78	1,25	0,78	0	0	0	Q16	gruppo 3
SLU-GEO-070	1	1	0	0	0	0	0	0	0	0,63	0	0	0	0	0	0	1,25	0	0	0	0	0	0	0,63	0	0	0	0	0	0	0,63	0,78	1,25	0,78	0	0	0	Q27	gruppo 3-2
SLU-SIS-001	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0,3	0,3	E1	solo perm
SLU-SIS-002	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0,2	0,5	1	0,3	0,3	E1	termica
SLU-SIS-003	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0,2	0,5	1	0,3	0,3	E1	termica
SLU-SIS-004	1	1	1	0,2	0	0	0	0	0	0	0,1	0	0	0	0	0	0	0,2	0	0	0	0	0	0	0,2	0	0	0	0	0	0	0	0,2	0,5	1	0,3	0,3	E1	gruppo 1
SLU-SIS-005	1	1	1	0	0,2	0	0	0	0	0	0	0,1	0	0	0	0	0	0	0,2	0	0	0	0	0	0	0,2	0	0	0	0	0	0	0,2	0,5	1	0,3	0,3	E1	gruppo 1
SLU-SIS-006	1	1	1	0	0	0,2	0	0	0	0	0	0	0,1	0	0	0	0	0	0	0,2	0	0	0	0	0	0	0,2	0	0	0	0	0	0,2	0,5	1	0,3	0,3	E1	gruppo 1

NOME COMB.	G-	Permar	nenti			Q1 - V	ariabili v	verticali				Q2	2 - Avvia	amento	e frenat	ura				Q3	- Centri	fuga					Q4	- Serpe	ggio			Q6 - /	5 - Varia Azioni ii 17 - Effe nterazio	nterne etti	E - Az	zioni sis	miche	D	Descrizione
	G1	G21	G22	Q11	Q12	Q13	Q14	Q15	Q16	Q17	Q21	Q22	Q23	Q24	Q25	Q26	Q27	Q31	Q32	Q33	Q34	Q35	Q36	Q37	Q41	Q42	Q43	Q44	Q45	Q46	Q47	Q51	Q61	Q71	E1	E2	E3		
SLU-SIS-007	1	1	1	0	0	0	0,2	0	0	0	0	0	0	0,1	0	0	0	0	0	0	0,2	0	0	0	0	0	0	0,2	0	0	0	0	0,2	0,5	1	0,3	0,3	E1	gruppo 1
SLU-SIS-008	1	1	1	0	0	0	0	0,2	0	0	0	0	0	0	0,1	0	0	0	0	0	0	0,2	0	0	0	0	0	0	0,2	0	0	0	0,2	0,5	1	0,3	0,3	E1	gruppo 1
SLU-SIS-009	1	1	1	0	0	0	0	0	0,2	0	0	0	0	0	0	0,1	0	0	0	0	0	0	0,2	0	0	0	0	0	0	0,2	0	0	0,2	0,5	1	0,3	0,3	E1	gruppo 1
SLU-SIS-010	1	1	1	0,2	0	0	0	0	0	0	0,2	0	0	0	0	0	0	0,1	0	0	0	0	0	0	0,1	0	0	0	0	0	0	0	0,2	0,5	1	0,3	0,3	E1	gruppo 3
SLU-SIS-011	1	1	1	0	0,2	0	0	0	0	0	0	0,2	0	0	0	0	0	0	0,1	0	0	0	0	0	0	0,1	0	0	0	0	0	0	0,2	0,5	1	0,3	0,3	E1	gruppo 3
SLU-SIS-012	1	1	1	0	0	0,2	0	0	0	0	0	0	0,2	0	0	0	0	0	0	0,1	0	0	0	0	0	0	0,1	0	0	0	0	0	0,2	0,5	1	0,3	0,3	E1	gruppo 3
SLU-SIS-013	1	1	1	0	0	0	0,2	0	0	0	0	0	0	0,2	0	0	0	0	0	0	0,1	0	0	0	0	0	0	0,1	0	0	0	0	0,2	0,5	1	0,3	0,3	E1	gruppo 3
SLU-SIS-014	1	1	1	0	0	0	0	0,2	0	0	0	0	0	0	0,2	0	0	0	0	0	0	0,1	0	0	0	0	0	0	0,1	0	0	0	0,2	0,5	1	0,3	0,3	E1	gruppo 3
SLU-SIS-015	1	1	1	0	0	0	0	0	0,2	0	0	0	0	0	0	0,2	0	0	0	0	0	0	0,1	0	0	0	0	0	0	0,1	0	0	0,2	0,5	1	0,3	0,3	E1	gruppo 3
SLU-SIS-016	1	1	0	0	0	0	0	0	0	0,1	0	0	0	0	0	0	0,2	0	0	0	0	0	0	0,1	0	0	0	0	0	0	0,1	0	0,2	0,5	1	0,3	0,3	E1	gruppo 3-2
SLU-SIS-017	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0,3	-0,3	E1	solo perm
SLU-SIS-018	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0,2	0,5	1	0,3	-0,3	E1	termica
SLU-SIS-019	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0,2	0,5	1	0,3	-0,3	E1	termica
SLU-SIS-020	1	1	1	0,2	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0,3	-0,3	E1	solo vert
SLU-SIS-021	1	1	1	0,2	0	0	0	0	0	0	0,1	0	0	0	0	0	0	0,2	0	0	0	0	0	0	0,2	0	0	0	0	0	0	0	0,2	0,2	1	0,3	-0,3	E1	gruppo 1
SLU-SIS-022	1	1	1	0	0,2	0	0	0	0	0	0	0,1	0	0	0	0	0	0	0,2	0	0	0	0	0	0	0,2	0	0	0	0	0	0	0,2	0,2	1	0,3	-0,3	E1	gruppo 1
SLU-SIS-023	1	1	1	0	0	0,2	0	0	0	0	0	0	0,1	0	0	0	0	0	0	0,2	0	0	0	0	0	0	0,2	0	0	0	0	0	0,2	0,2	1	0,3	-0,3	E1	gruppo 1
SLU-SIS-024	1	1	1	0	0	0	0,2	0	0	0	0	0	0	0,1	0	0	0	0	0	0	0,2	0	0	0	0	0	0	0,2	0	0	0	0	0,2	0,2	1	0,3	-0,3	E1	gruppo 1
SLU-SIS-025	1	1	1	0	0	0	0	0,2	0	0	0	0	0	0	0,1	0	0	0	0	0	0	0,2	0	0	0	0	0	0	0,2	0	0	0	0,2	0,2	1	0,3	-0,3	E1	gruppo 1
SLU-SIS-026	1	1	1	0	0	0	0	0	0,2	0	0	0	0	0	0	0,1	0	0	0	0	0	0	0,2	0	0	0	0	0	0	0,2	0	0	0,2	0,2	1	0,3	-0,3	E1	gruppo 1
SLU-SIS-027	1	1	1	0,2	0	0	0	0	0	0	0,2	0	0	0	0	0	0	0,1	0	0	0	0	0	0	0,1	0	0	0	0	0	0	0	0,2	0,2	1	0,3	-0,3	E1	gruppo 3
SLU-SIS-028	1	1	1	0	0,2	0	0	0	0	0	0	0,2	0	0	0	0	0	0	0,1	0	0	0	0	0	0	0,1	0	0	0	0	0	0	0,2	0,2	1	0,3	-0,3	E1	gruppo 3
SLU-SIS-029	1	1	1	0	0	0,2	0	0	0	0	0	0	0,2	0	0	0	0	0	0	0,1	0	0	0	0	0	0	0,1	0	0	0	0	0	0,2	0,2	1	0,3	-0,3	E1	gruppo 3
SLU-SIS-030	1	1	1	0	0	0	0,2	0	0	0	0	0	0	0,2	0	0	0	0	0	0	0,1	0	0	0	0	0	0	0,1	0	0	0	0	0,2	0,2	1	0,3	-0,3	E1	gruppo 3
SLU-SIS-031	1	1	1	0	0	0	0	0,2	0	0	0	0	0	0	0,2	0	0	0	0	0	0	0,1	0	0	0	0	0	0	0,1	0	0	0	0,2	0,2	1	0,3	-0,3	E1	gruppo 3
SLU-SIS-032	1	1	1	0	0	0	0	0	0,2	0	0	0	0	0	0	0,2	0	0	0	0	0	0	0,1	0	0	0	0	0	0	0,1	0	0	0,2	0,2	1	0,3	-0,3	E1	gruppo 3
SLU-SIS-033	1	1	0	0	0	0	0	0	0	0,1	0	0	0	0	0	0	0,2	0	0	0	0	0	0	0,1	0	0	0	0	0	0	0,1	0	0,2	0,2	1	0,3	-0,3	E1	gruppo 3-2
SLU-SIS-034	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0,3	1	0,3	E2	solo perm
SLU-SIS-035	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0,2	0,5	0,3	1	0,3	E2	termica
SLU-SIS-036	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0,2	0,5	0,3	1	0,3	E2	termica
SLU-SIS-037	1	1	1	0,2	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0,3	1	0,3	E2	solo vert
SLU-SIS-038	1	1	1	0,2	0	0	0	0	0	0	0,1	0	0	0	0	0	0	0,2	0	0	0	0	0	0	0,2	0	0	0	0	0	0	0	0,2	0,2	0,3	1	0,3	E2	gruppo 1
SLU-SIS-039	1	1	1	0	0,2	0	0	0	0	0	0	0,1	0	0	0	0	0	0	0,2	0	0	0	0	0	0	0,2	0	0	0	0	0	0	0,2	0,2	0,3	1	0,3	E2	gruppo 1
SLU-SIS-040	1	1	1	0	0	0,2	0	0	0	0	0	0	0,1	0	0	0	0	0	0	0,2	0	0	0	0	0	0	0,2	0	0	0	0	0	0,2	0,2	0,3	1	0,3	E2	gruppo 1
SLU-SIS-041	1	1	1	0	0	0	0,2	0	0	0	0	0	0	0,1	0	0	0	0	0	0	0,2	0	0	0	0	0	0	0,2	0	0	0	0	0,2	0,2	0,3	1	0,3	E2	gruppo 1
SLU-SIS-042	1	1	1	0	0	0	0	0,2	0	0	0	0	0	0	0,1	0	0	0	0	0	0	0,2	0	0	0	0	0	0	0,2	0	0	0	0,2	0,2	0,3	1	0,3	E2	gruppo 1
SLU-SIS-043	1	1	1	0	0	0	0	0	0,2	0	0	0	0	0	0	0,1	0	0	0	0	0	0	0,2	0	0	0	0	0	0	0,2	0	0	0,2	0,2	0,3	1	0,3	E2	gruppo 1

NOME COMB.	G-	Permar	nenti			Q1 - V	ariabili v	rerticali				Q2	! - Avvia	amento e	e frenat	ura				Q3	- Centri	fuga					Q4	- Serpe	ggio			Q6	5 - Varia Azioni ii 17 - Effe nterazio	nterne etti	E - Az	zioni sis	miche	D	Descrizione
	G1	G21	G22	Q11	Q12	Q13	Q14	Q15	Q16	Q17	Q21	Q22	Q23	Q24	Q25	Q26	Q27	Q31	Q32	Q33	Q34	Q35	Q36	Q37	Q41	Q42	Q43	Q44	Q45	Q46	Q47	Q51	Q61	Q71	E1	E2	E3		
SLU-SIS-044	1	1	1	0,2	0	0	0	0	0	0	0,2	0	0	0	0	0	0	0,1	0	0	0	0	0	0	0,1	0	0	0	0	0	0	0	0,2	0,2	0,3	1	0,3	E2	gruppo 3
SLU-SIS-045	1	1	1	0	0,2	0	0	0	0	0	0	0,2	0	0	0	0	0	0	0,1	0	0	0	0	0	0	0,1	0	0	0	0	0	0	0,2	0,2	0,3	1	0,3	E2	gruppo 3
SLU-SIS-046	1	1	1	0	0	0,2	0	0	0	0	0	0	0,2	0	0	0	0	0	0	0,1	0	0	0	0	0	0	0,1	0	0	0	0	0	0,2	0,2	0,3	1	0,3	E2	gruppo 3
SLU-SIS-047	1	1	1	0	0	0	0,2	0	0	0	0	0	0	0,2	0	0	0	0	0	0	0,1	0	0	0	0	0	0	0,1	0	0	0	0	0,2	0,2	0,3	1	0,3	E2	gruppo 3
SLU-SIS-048	1	1	1	0	0	0	0	0,2	0	0	0	0	0	0	0,2	0	0	0	0	0	0	0,1	0	0	0	0	0	0	0,1	0	0	0	0,2	0,2	0,3	1	0,3	E2	gruppo 3
SLU-SIS-049	1	1	1	0	0	0	0	0	0,2	0	0	0	0	0	0	0,2	0	0	0	0	0	0	0,1	0	0	0	0	0	0	0,1	0	0	0,2	0,2	0,3	1	0,3	E2	gruppo 3
SLU-SIS-050	1	1	0	0	0	0	0	0	0	0,1	0	0	0	0	0	0	0,2	0	0	0	0	0	0	0,1	0	0	0	0	0	0	0,1	0	0,2	0,2	0,3	1	0,3	E2	gruppo 3-2
SLU-SIS-051	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0,3	1	-0,3	E2	solo perm
SLU-SIS-052	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0,2	0,5	0,3	1	-0,3	E2	termica
SLU-SIS-053	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0,2	0,5	0,3	1	-0,3	E2	termica
SLU-SIS-054	1	1	1	0,2	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0,3	1	-0,3	E2	solo vert
SLU-SIS-055	1	1	1	0,2	0	0	0	0	0	0	0,1	0	0	0	0	0	0	0,2	0	0	0	0	0	0	0,2	0	0	0	0	0	0	0	0,2	0,2	0,3	1	-0,3	E2	gruppo 1
SLU-SIS-056	1	1	1	0	0,2	0	0	0	0	0	0	0,1	0	0	0	0	0	0	0,2	0	0	0	0	0	0	0,2	0	0	0	0	0	0	0,2	0,2	0,3	1	-0,3	E2	gruppo 1
SLU-SIS-057	1	1	1	0	0	0,2	0	0	0	0	0	0	0,1	0	0	0	0	0	0	0,2	0	0	0	0	0	0	0,2	0	0	0	0	0	0,2	0,2	0,3	1	-0,3	E2	gruppo 1
SLU-SIS-058	1	1	1	0	0	0	0,2	0	0	0	0	0	0	0,1	0	0	0	0	0	0	0,2	0	0	0	0	0	0	0,2	0	0	0	0	0,2	0,2	0,3	1	-0,3	E2	gruppo 1
SLU-SIS-059	1	1	1	0	0	0	0	0,2	0	0	0	0	0	0	0,1	0	0	0	0	0	0	0,2	0	0	0	0	0	0	0,2	0	0	0	0,2	0,2	0,3	1	-0,3	E2	gruppo 1
SLU-SIS-060	1	1	1	0	0	0	0	0	0,2	0	0	0	0	0	0	0,1	0	0	0	0	0	0	0,2	0	0	0	0	0	0	0,2	0	0	0,2	0,2	0,3	1	-0,3	E2	gruppo 1
SLU-SIS-061	1	1	1	0,2	0	0	0	0	0	0	0,2	0	0	0	0	0	0	0,1	0	0	0	0	0	0	0,1	0	0	0	0	0	0	0	0,2	0,2	0,3	1	-0,3	E2	gruppo 3
SLU-SIS-062	1	1	1	0	0,2	0	0	0	0	0	0	0,2	0	0	0	0	0	0	0,1	0	0	0	0	0	0	0,1	0	0	0	0	0	0	0,2	0,2	0,3	1	-0,3	E2	gruppo 3
SLU-SIS-063	1	1	1	0	0	0,2	0	0	0	0	0	0	0,2	0	0	0	0	0	0	0,1	0	0	0	0	0	0	0,1	0	0	0	0	0	0,2	0,2	0,3	1	-0,3	E2	gruppo 3
SLU-SIS-064	1	1	1	0	0	0	0,2	0	0	0	0	0	0	0,2	0	0	0	0	0	0	0,1	0	0	0	0	0	0	0,1	0	0	0	0	0,2	0,2	0,3	1	-0,3	E2	gruppo 3
SLU-SIS-065	1	1	1	0	0	0	0	0,2	0	0	0	0	0	0	0,2	0	0	0	0	0	0	0,1	0	0	0	0	0	0	0,1	0	0	0	0,2	0,2	0,3	1	-0,3	E2	gruppo 3
SLU-SIS-066	1	1	1	0	0	0	0	0	0,2	0	0	0	0	0	0	0,2	0	0	0	0	0	0	0,1	0	0	0	0	0	0	0,1	0	0	0,2	0,2	0,3	1	-0,3	E2	gruppo 3
SLU-SIS-067	1	1	0	0	0	0	0	0	0	0,1	0	0	0	0	0	0	0,2	0	0	0	0	0	0	0,1	0	0	0	0	0	0	0,1	0	0,2	0,2	0,3	1	-0,3	E2	gruppo 3-2
SLU-SIS-068	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0,3	0,3	1	E3	solo perm
SLU-SIS-069	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0,2	0,5	0,3	0,3	1	E3	termica
SLU-SIS-070	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0,2	0,5	0,3	0,3	1	E3	termica
SLU-SIS-071	1	1	1	0,2	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0,3	0,3	1	E3	solo vert
SLU-SIS-072	1	1	1	0,2	0	0	0	0	0	0	0,1	0	0	0	0	0	0	0,2	0	0	0	0	0	0	0,2	0	0	0	0	0	0	0	0,2	0,2	0,3	0,3	1	E3	gruppo 1
SLU-SIS-073	1	1	1	0	0,2	0	0	0	0	0	0	0,1	0	0	0	0	0	0	0,2	0	0	0	0	0	0	0,2	0	0	0	0	0	0	0,2	0,2	0,3	0,3	1	E3	gruppo 1
SLU-SIS-074	1	1	1	0	0	0,2	0	0	0	0	0	0	0,1	0	0	0	0	0	0	0,2	0	0	0	0	0	0	0,2	0	0	0	0	0	0,2	0,2	0,3	0,3	1	E3	gruppo 1
SLU-SIS-075	1	1	1	0	0	0	0,2	0	0	0	0	0	0	0,1	0	0	0	0	0	0	0,2	0	0	0	0	0	0	0,2	0	0	0	0	0,2	0,2	0,3	0,3	1	E3	gruppo 1
SLU-SIS-076	1	1	1	0	0	0	0	0,2	0	0	0	0	0	0	0,1	0	0	0	0	0	0	0,2	0	0	0	0	0	0	0,2	0	0	0	0,2	0,2	0,3	0,3	1	E3	gruppo 1
SLU-SIS-077	1	1	1	0	0	0	0	0	0,2	0	0	0	0	0	0	0,1	0	0	0	0	0	0	0,2	0	0	0	0	0	0	0,2	0	0	0,2	0,2	0,3	0,3	1	E3	gruppo 1
SLU-SIS-078	1	1	1	0,2	0	0	0	0	0	0	0,2	0	0	0	0	0	0	0,1	0	0	0	0	0	0	0,1	0	0	0	0	0	0	0	0,2	0,2	0,3	0,3	1	E3	gruppo 3
SLU-SIS-079	1	1	1	0	0,2	0	0	0	0	0	0	0,2	0	0	0	0	0	0	0,1	0	0	0	0	0	0	0,1	0	0	0	0	0	0	0,2	0,2	0,3	0,3	1	E3	gruppo 3
SLU-SIS-080	1	1	1	0	0	0,2	0	0	0	0	0	0	0,2	0	0	0	0	0	0	0,1	0	0	0	0	0	0	0,1	0	0	0	0	0	0,2	0,2	0,3	0,3	1	E3	gruppo 3

NOME COMB.	G-	Permar	nenti			Q1 - V	ariabili v	erticali				Q2	- Avvia	imento e	e frenat	ura				Q3	- Centri	fuga					Q4	- Serpe	ggio			Q6	5 - Varia Azioni ii 17 - Effe nterazio	nterne etti	E - Az	zioni sisi	miche	D	escrizione
	G1	G21	G22	Q11	Q12	Q13	Q14	Q15	Q16	Q17	Q21	Q22	Q23	Q24	Q25	Q26	Q27	Q31	Q32	Q33	Q34	Q35	Q36	Q37	Q41	Q42	Q43	Q44	Q45	Q46	Q47	Q51	Q61	Q71	E1	E2	E3		
SLU-SIS-081	1	1	1	0	0	0	0,2	0	0	0	0	0	0	0,2	0	0	0	0	0	0	0,1	0	0	0	0	0	0	0,1	0	0	0	0	0,2	0,2	0,3	0,3	1	E3	gruppo 3
SLU-SIS-082	1	1	1	0	0	0	0	0,2	0	0	0	0	0	0	0,2	0	0	0	0	0	0	0,1	0	0	0	0	0	0	0,1	0	0	0	0,2	0,2	0,3	0,3	1	E3	gruppo 3
SLU-SIS-083	1	1	1	0	0	0	0	0	0,2	0	0	0	0	0	0	0,2	0	0	0	0	0	0	0,1	0	0	0	0	0	0	0,1	0	0	0,2	0,2	0,3	0,3	1	E3	gruppo 3
SLU-SIS-084	1	1	0	0	0	0	0	0	0	0,1	0	0	0	0	0	0	0,2	0	0	0	0	0	0	0,1	0	0	0	0	0	0	0,1	0	0,2	0,2	0,3	0,3	1	E3	gruppo 3-2
SLU-SIS-085	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0,3	0,3	-1	E3	solo perm
SLU-SIS-086	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0,2	0,5	0,3	0,3	-1	E3	termica
SLU-SIS-087	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0,2	0,5	0,3	0,3	-1	E3	termica
SLU-SIS-088	1	1	1	0,2	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0,3	0,3	-1	E3	solo vert
SLU-SIS-089	1	1	1	0,2	0	0	0	0	0	0	0,1	0	0	0	0	0	0	0,2	0	0	0	0	0	0	0,2	0	0	0	0	0	0	0	0,2	0,2	0,3	0,3	-1	E3	gruppo 1
SLU-SIS-090	1	1	1	0	0,2	0	0	0	0	0	0	0,1	0	0	0	0	0	0	0,2	0	0	0	0	0	0	0,2	0	0	0	0	0	0	0,2	0,2	0,3	0,3	-1	E3	gruppo 1
SLU-SIS-091	1	1	1	0	0	0,2	0	0	0	0	0	0	0,1	0	0	0	0	0	0	0,2	0	0	0	0	0	0	0,2	0	0	0	0	0	0,2	0,2	0,3	0,3	-1	E3	gruppo 1
SLU-SIS-092	1	1	1	0	0	0	0,2	0	0	0	0	0	0	0,1	0	0	0	0	0	0	0,2	0	0	0	0	0	0	0,2	0	0	0	0	0,2	0,2	0,3	0,3	-1	E3	gruppo 1
SLU-SIS-093	1	1	1	0	0	0	0	0,2	0	0	0	0	0	0	0,1	0	0	0	0	0	0	0,2	0	0	0	0	0	0	0,2	0	0	0	0,2	0,2	0,3	0,3	-1	E3	gruppo 1
SLU-SIS-094	1	1	1	0	0	0	0	0	0,2	0	0	0	0	0	0	0,1	0	0	0	0	0	0	0,2	0	0	0	0	0	0	0,2	0	0	0,2	0,2	0,3	0,3	-1	E3	gruppo 1
SLU-SIS-095	1	1	1	0,2	0	0	0	0	0	0	0,2	0	0	0	0	0	0	0,1	0	0	0	0	0	0	0,1	0	0	0	0	0	0	0	0,2	0,2	0,3	0,3	-1	E3	gruppo 3
SLU-SIS-096	1	1	1	0	0,2	0	0	0	0	0	0	0,2	0	0	0	0	0	0	0,1	0	0	0	0	0	0	0,1	0	0	0	0	0	0	0,2	0,2	0,3	0,3	-1	E3	gruppo 3
SLU-SIS-097	1	1	1	0	0	0,2	0	0	0	0	0	0	0,2	0	0	0	0	0	0	0,1	0	0	0	0	0	0	0,1	0	0	0	0	0	0,2	0,2	0,3	0,3	-1	E3	gruppo 3
SLU-SIS-098	1	1	1	0	0	0	0,2	0	0	0	0	0	0	0,2	0	0	0	0	0	0	0,1	0	0	0	0	0	0	0,1	0	0	0	0	0,2	0,2	0,3	0,3	-1	E3	gruppo 3
SLU-SIS-099	1	1	1	0	0	0	0	0,2	0	0	0	0	0	0	0,2	0	0	0	0	0	0	0,1	0	0	0	0	0	0	0,1	0	0	0	0,2	0,2	0,3	0,3	-1	E3	gruppo 3
SLU-SIS-100	1	1	1	0	0	0	0	0	0,2	0	0	0	0	0	0	0,2	0	0	0	0	0	0	0,1	0	0	0	0	0	0	0,1	0	0	0,2	0,2	0,3	0,3	-1	E3	gruppo 3
SLU-SIS-101	1	1	0	0	0	0	0	0	0	0,1	0	0	0	0	0	0	0,2	0	0	0	0	0	0	0,1	0	0	0	0	0	0	0,1	0	0,2	0,2	0,3	0,3	-1	E3	gruppo 3-2
SLU-SIS-102	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	-1	-0,3	0,3	E1	solo perm
SLU-SIS-103	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0,2	0,5	-1	-0,3	0,3	E1	termica
SLU-SIS-104	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0,2	0,5	-1	-0,3	0,3	E1	termica
SLU-SIS-105	1	1	1	0,2	0	0	0	0	0	0	0,1	0	0	0	0	0	0	0,2	0	0	0	0	0	0	0,2	0	0	0	0	0	0	0	0,2	0,5	-1	-0,3	0,3	E1	gruppo 1
SLU-SIS-106	1	1	1	0	0,2	0	0	0	0	0	0	0,1	0	0	0	0	0	0	0,2	0	0	0	0	0	0	0,2	0	0	0	0	0	0	0,2	0,5	-1	-0,3	0,3	E1	gruppo 1
SLU-SIS-107	1	1	1	0	0	0,2	0	0	0	0	0	0	0,1	0	0	0	0	0	0	0,2	0	0	0	0	0	0	0,2	0	0	0	0	0	0,2	0,5	-1	-0,3	0,3	E1	gruppo 1
SLU-SIS-108	1	1	1	0	0	0	0,2	0	0	0	0	0	0	0,1	0	0	0	0	0	0	0,2	0	0	0	0	0	0	0,2	0	0	0	0	0,2	0,5	-1	-0,3	0,3	E1	gruppo 1
SLU-SIS-109	1	1	1	0	0	0	0	0,2	0	0	0	0	0	0	0,1	0	0	0	0	0	0	0,2	0	0	0	0	0	0	0,2	0	0	0	0,2	0,5	-1	-0,3	0,3	E1	gruppo 1
SLU-SIS-110	1	1	1	0	0	0	0	0	0,2	0	0	0	0	0	0	0,1	0	0	0	0	0	0	0,2	0	0	0	0	0	0	0,2	0	0	0,2	0,5	-1	-0,3	0,3	E1	gruppo 1
SLU-SIS-111	1	1	1	0,2	0	0	0	0	0	0	0,2	0	0	0	0	0	0	0,1	0	0	0	0	0	0	0,1	0	0	0	0	0	0	0	0,2	0,5	-1	-0,3	0,3	E1	gruppo 3
SLU-SIS-112	1	1	1	0	0,2	0	0	0	0	0	0	0,2	0	0	0	0	0	0	0,1	0	0	0	0	0	0	0,1	0	0	0	0	0	0	0,2	0,5	-1	-0,3	0,3	E1	gruppo 3
SLU-SIS-113	1	1	1	0	0	0,2	0	0	0	0	0	0	0,2	0	0	0	0	0	0	0,1	0	0	0	0	0	0	0,1	0	0	0	0	0	0,2	0,5	-1	-0,3	0,3	E1	gruppo 3
SLU-SIS-114	1	1	1	0	0	0	0,2	0	0	0	0	0	0	0,2	0	0	0	0	0	0	0,1	0	0	0	0	0	0	0,1	0	0	0	0	0,2	0,5	-1	-0,3	0,3	E1	gruppo 3
SLU-SIS-115	1	1	1	0	0	0	0	0,2	0	0	0	0	0	0	0,2	0	0	0	0	0	0	0,1	0	0	0	0	0	0	0,1	0	0	0	0,2	0,5	-1	-0,3	0,3	E1	gruppo 3
SLU-SIS-116	1	1	1	0	0	0	0	0	0,2	0	0	0	0	0	0	0,2	0	0	0	0	0	0	0,1	0	0	0	0	0	0	0,1	0	0	0,2	0,5	-1	-0,3	0,3	E1	gruppo 3
SLU-SIS-117	1	1	0	0	0	0	0	0	0	0,1	0	0	0	0	0	0	0,2	0	0	0	0	0	0	0,1	0	0	0	0	0	0	0,1	0	0,2	0,5	-1	-0,3	0,3	E1	gruppo 3-2

NOME COMB.	G-	Permar	nenti			Q1 - V	ariabili v	verticali				Q2	2 - Avvia	amento	e frenat	ura				Q3	- Centri	fuga					Q4	- Serpe	ggio			Q6	5 - Varia Azioni ii 17 - Effe nterazio	nterne etti	E - Az	zioni sis	miche	De	scrizione
	G1	G21	G22	Q11	Q12	Q13	Q14	Q15	Q16	Q17	Q21	Q22	Q23	Q24	Q25	Q26	Q27	Q31	Q32	Q33	Q34	Q35	Q36	Q37	Q41	Q42	Q43	Q44	Q45	Q46	Q47	Q51	Q61	Q71	E1	E2	E3		
SLU-SIS-118	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	-1	-0,3	-0,3	E1	solo perm
SLU-SIS-119	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0,2	0,5	-1	-0,3	-0,3	E1	termica
SLU-SIS-120	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0,2	0,5	-1	-0,3	-0,3	E1	termica
SLU-SIS-121	1	1	1	0,2	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	-1	-0,3	-0,3	E1	solo vert
SLU-SIS-122	1	1	1	0,2	0	0	0	0	0	0	0,1	0	0	0	0	0	0	0,2	0	0	0	0	0	0	0,2	0	0	0	0	0	0	0	0,2	0,2	-1	-0,3	-0,3	E1	gruppo 1
SLU-SIS-123	1	1	1	0	0,2	0	0	0	0	0	0	0,1	0	0	0	0	0	0	0,2	0	0	0	0	0	0	0,2	0	0	0	0	0	0	0,2	0,2	-1	-0,3	-0,3	E1	gruppo 1
SLU-SIS-124	1	1	1	0	0	0,2	0	0	0	0	0	0	0,1	0	0	0	0	0	0	0,2	0	0	0	0	0	0	0,2	0	0	0	0	0	0,2	0,2	-1	-0,3	-0,3	E1	gruppo 1
SLU-SIS-125	1	1	1	0	0	0	0,2	0	0	0	0	0	0	0,1	0	0	0	0	0	0	0,2	0	0	0	0	0	0	0,2	0	0	0	0	0,2	0,2	-1	-0,3	-0,3	E1	gruppo 1
SLU-SIS-126	1	1	1	0	0	0	0	0,2	0	0	0	0	0	0	0,1	0	0	0	0	0	0	0,2	0	0	0	0	0	0	0,2	0	0	0	0,2	0,2	-1	-0,3	-0,3	E1	gruppo 1
SLU-SIS-127	1	1	1	0	0	0	0	0	0,2	0	0	0	0	0	0	0,1	0	0	0	0	0	0	0,2	0	0	0	0	0	0	0,2	0	0	0,2	0,2	-1	-0,3	-0,3	E1	gruppo 1
SLU-SIS-128	1	1	1	0,2	0	0	0	0	0	0	0,2	0	0	0	0	0	0	0,1	0	0	0	0	0	0	0,1	0	0	0	0	0	0	0	0,2	0,2	-1	-0,3	-0,3	E1	gruppo 3
SLU-SIS-129	1	1	1	0	0,2	0	0	0	0	0	0	0,2	0	0	0	0	0	0	0,1	0	0	0	0	0	0	0,1	0	0	0	0	0	0	0,2	0,2	-1	-0,3	-0,3	E1	gruppo 3
SLU-SIS-130	1	1	1	0	0	0,2	0	0	0	0	0	0	0,2	0	0	0	0	0	0	0,1	0	0	0	0	0	0	0,1	0	0	0	0	0	0,2	0,2	-1	-0,3	-0,3	E1	gruppo 3
SLU-SIS-131	1	1	1	0	0	0	0,2	0	0	0	0	0	0	0,2	0	0	0	0	0	0	0,1	0	0	0	0	0	0	0,1	0	0	0	0	0,2	0,2	-1	-0,3	-0,3	E1	gruppo 3
SLU-SIS-132	1	1	1	0	0	0	0	0,2	0	0	0	0	0	0	0,2	0	0	0	0	0	0	0,1	0	0	0	0	0	0	0,1	0	0	0	0,2	0,2	-1	-0,3	-0,3	E1	gruppo 3
SLU-SIS-133	1	1	1	0	0	0	0	0	0,2	0	0	0	0	0	0	0,2	0	0	0	0	0	0	0,1	0	0	0	0	0	0	0,1	0	0	0,2	0,2	-1	-0,3	-0,3	E1	gruppo 3
SLU-SIS-134	1	1	0	0	0	0	0	0	0	0,1	0	0	0	0	0	0	0,2	0	0	0	0	0	0	0,1	0	0	0	0	0	0	0,1	0	0,2	0,2	-1	-0,3	-0,3	E1	gruppo 3-2
SLU-SIS-135	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	-0,3	-1	0,3	E2	solo perm
SLU-SIS-136	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0,2	0,5	-0,3	-1	0,3	E2	termica
SLU-SIS-137	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0,2	0,5	-0,3	-1	0,3	E2	termica
SLU-SIS-138	1	1	1	0,2	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	-0,3	-1	0,3	E2	solo vert
SLU-SIS-139	1	1	1	0,2	0	0	0	0	0	0	0,1	0	0	0	0	0	0	0,2	0	0	0	0	0	0	0,2	0	0	0	0	0	0	0	0,2	0,2	-0,3	-1	0,3	E2	gruppo 1
SLU-SIS-140	1	1	1	0	0,2	0	0	0	0	0	0	0,1	0	0	0	0	0	0	0,2	0	0	0	0	0	0	0,2	0	0	0	0	0	0	0,2	0,2	-0,3	-1	0,3	E2	gruppo 1
SLU-SIS-141	1	1	1	0	0	0,2	0	0	0	0	0	0	0,1	0	0	0	0	0	0	0,2	0	0	0	0	0	0	0,2	0	0	0	0	0	0,2	0,2	-0,3	-1	0,3	E2	gruppo 1
SLU-SIS-142	1	1	1	0	0	0	0,2	0	0	0	0	0	0	0,1	0	0	0	0	0	0	0,2	0	0	0	0	0	0	0,2	0	0	0	0	0,2	0,2	-0,3	-1	0,3	E2	gruppo 1
SLU-SIS-143	1	1	1	0	0	0	0	0,2	0	0	0	0	0	0	0,1	0	0	0	0	0	0	0,2	0	0	0	0	0	0	0,2	0	0	0	0,2	0,2	-0,3	-1	0,3	E2	gruppo 1
SLU-SIS-144	1	1	1	0	0	0	0	0	0,2	0	0	0	0	0	0	0,1	0	0	0	0	0	0	0,2	0	0	0	0	0	0	0,2	0	0	0,2	0,2	-0,3	-1	0,3	E2	gruppo 1
SLU-SIS-145	1	1	1	0,2	0	0	0	0	0	0	0,2	0	0	0	0	0	0	0,1	0	0	0	0	0	0	0,1	0	0	0	0	0	0	0	0,2	0,2	-0,3	-1	0,3	G1+G2	gruppo 3
SLU-SIS-146	1	1	1	0	0,2	0	0	0	0	0	0	0,2	0	0	0	0	0	0	0,1	0	0	0	0	0	0	0,1	0	0	0	0	0	0	0,2	0,2	-0,3	-1	0,3	G1+G2	gruppo 3
SLU-SIS-147	1	1	1	0	0	0,2	0	0	0	0	0	0	0,2	0	0	0	0	0	0	0,1	0	0	0	0	0	0	0,1	0	0	0	0	0	0,2	0,2	-0,3	-1	0,3	G1+G2	gruppo 3
SLU-SIS-148	1	1	1	0	0	0	0,2	0	0	0	0	0	0	0,2	0	0	0	0	0	0	0,1	0	0	0	0	0	0	0,1	0	0	0	0	0,2	0,2	-0,3	-1	0,3	G1+G2	gruppo 3
SLU-SIS-149	1	1	1	0	0	0	0	0,2	0	0	0	0	0	0	0,2	0	0	0	0	0	0	0,1	0	0	0	0	0	0	0,1	0	0	0	0,2	0,2	-0,3	-1	0,3	G1+G2	gruppo 3
SLU-SIS-150	1	1	1	0	0	0	0	0	0,2	0	0	0	0	0	0	0,2	0	0	0	0	0	0	0,1	0	0	0	0	0	0	0,1	0	0	0,2	0,2	-0,3	-1	0,3	G1+G2	gruppo 3
SLU-SIS-151	1	1	0	0	0	0	0	0	0	0,1	0	0	0	0	0	0	0,2	0	0	0	0	0	0	0,1	0	0	0	0	0	0	0,1	0	0,2	0,2	-0,3	-1	0,3	E2	gruppo 3-2
SLU-SIS-152	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	-0,3	-1	-0,3	E2	solo perm
SLU-SIS-153	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0,2	0,5	-0,3	-1	-0,3	E2	termica
SLU-SIS-154	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0,2	0,5	-0,3	-1	-0,3	E2	termica

NOME COMB.	G-	Permar	nenti			Q1 - Va	ariabili v	erticali				Q2	! - Avvia	amento e	e frenat	ura				Q3	- Centri	fuga					Q4	- Serpeç	ggio			Q6 - A	i - Varia Azioni ii 7 - Effe nterazio	nterne etti	E - A	zioni sis	miche	D	Descrizione
	G1	G21	G22	Q11	Q12	Q13	Q14	Q15	Q16	Q17	Q21	Q22	Q23	Q24	Q25	Q26	Q27	Q31	Q32	Q33	Q34	Q35	Q36	Q37	Q41	Q42	Q43	Q44	Q45	Q46	Q47	Q51	Q61	Q71	E1	E2	E3		
SLU-SIS-155	1	1	1	0,2	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	-0,3	-1	-0,3	E2	solo vert
SLU-SIS-156	1	1	1	0,2	0	0	0	0	0	0	0,1	0	0	0	0	0	0	0,2	0	0	0	0	0	0	0,2	0	0	0	0	0	0	0	0,2	0,2	-0,3	-1	-0,3	E2	gruppo 1
SLU-SIS-157	1	1	1	0	0,2	0	0	0	0	0	0	0,1	0	0	0	0	0	0	0,2	0	0	0	0	0	0	0,2	0	0	0	0	0	0	0,2	0,2	-0,3	-1	-0,3	E2	gruppo 1
SLU-SIS-158	1	1	1	0	0	0,2	0	0	0	0	0	0	0,1	0	0	0	0	0	0	0,2	0	0	0	0	0	0	0,2	0	0	0	0	0	0,2	0,2	-0,3	-1	-0,3	E2	gruppo 1
SLU-SIS-159	1	1	1	0	0	0	0,2	0	0	0	0	0	0	0,1	0	0	0	0	0	0	0,2	0	0	0	0	0	0	0,2	0	0	0	0	0,2	0,2	-0,3	-1	-0,3	E2	gruppo 1
SLU-SIS-160	1	1	1	0	0	0	0	0,2	0	0	0	0	0	0	0,1	0	0	0	0	0	0	0,2	0	0	0	0	0	0	0,2	0	0	0	0,2	0,2	-0,3	-1	-0,3	E2	gruppo 1
SLU-SIS-161	1	1	1	0	0	0	0	0	0,2	0	0	0	0	0	0	0,1	0	0	0	0	0	0	0,2	0	0	0	0	0	0	0,2	0	0	0,2	0,2	-0,3	-1	-0,3	E2	gruppo 1
SLU-SIS-162	1	1	1	0,2	0	0	0	0	0	0	0,2	0	0	0	0	0	0	0,1	0	0	0	0	0	0	0,1	0	0	0	0	0	0	0	0,2	0,2	-0,3	-1	-0,3	E2	gruppo 3
SLU-SIS-163	1	1	1	0	0,2	0	0	0	0	0	0	0,2	0	0	0	0	0	0	0,1	0	0	0	0	0	0	0,1	0	0	0	0	0	0	0,2	0,2	-0,3	-1	-0,3	E2	gruppo 3
SLU-SIS-164	1	1	1	0	0	0,2	0	0	0	0	0	0	0,2	0	0	0	0	0	0	0,1	0	0	0	0	0	0	0,1	0	0	0	0	0	0,2	0,2	-0,3	-1	-0,3	E2	gruppo 3
SLU-SIS-165	1	1	1	0	0	0	0,2	0	0	0	0	0	0	0,2	0	0	0	0	0	0	0,1	0	0	0	0	0	0	0,1	0	0	0	0	0,2	0,2	-0,3	-1	-0,3	E2	gruppo 3
SLU-SIS-166	1	1	1	0	0	0	0	0,2	0	0	0	0	0	0	0,2	0	0	0	0	0	0	0,1	0	0	0	0	0	0	0,1	0	0	0	0,2	0,2	-0,3	-1	-0,3	E2	gruppo 3
SLU-SIS-167	1	1	1	0	0	0	0	0	0,2	0	0	0	0	0	0	0,2	0	0	0	0	0	0	0,1	0	0	0	0	0	0	0,1	0	0	0,2	0,2	-0,3	-1	-0,3	E2	gruppo 3
SLU-SIS-168	1	1	0	0	0	0	0	0	0	0,1	0	0	0	0	0	0	0,2	0	0	0	0	0	0	0,1	0	0	0	0	0	0	0,1	0	0,2	0,2	-0,3	-1	-0,3	E2	gruppo 3-2
SLU-SIS-169	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	-0,3	-0,3	1	E3	solo perm
SLU-SIS-170	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0,2	0,5	-0,3	-0,3	1	E3	termica
SLU-SIS-171	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0,2	0,5	-0,3	-0,3	1	E3	termica
SLU-SIS-172	1	1	1	0,2	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	-0,3	-0,3	1	E3	solo vert
SLU-SIS-173	1	1	1	0,2	0	0	0	0	0	0	0,1	0	0	0	0	0	0	0,2	0	0	0	0	0	0	0,2	0	0	0	0	0	0	0	0,2	0,2	-0,3	-0,3	1	E3	gruppo 1
SLU-SIS-174	1	1	1	0	0,2	0	0	0	0	0	0	0,1	0	0	0	0	0	0	0,2	0	0	0	0	0	0	0,2	0	0	0	0	0	0	0,2	0,2	-0,3	-0,3	1	E3	gruppo 1
SLU-SIS-175	1	1	1	0	0	0,2	0	0	0	0	0	0	0,1	0	0	0	0	0	0	0,2	0	0	0	0	0	0	0,2	0	0	0	0	0	0,2	0,2	-0,3	-0,3	1	E3	gruppo 1
SLU-SIS-176	1	1	1	0	0	0	0,2	0	0	0	0	0	0	0,1	0	0	0	0	0	0	0,2	0	0	0	0	0	0	0,2	0	0	0	0	0,2	0,2	-0,3	-0,3	1	E3	gruppo 1
SLU-SIS-177	1	1	1	0	0	0	0	0,2	0	0	0	0	0	0	0,1	0	0	0	0	0	0	0,2	0	0	0	0	0	0	0,2	0	0	0	0,2	0,2	-0,3	-0,3	1	E3	gruppo 1
SLU-SIS-178	1	1	1	0	0	0	0	0	0,2	0	0	0	0	0	0	0,1	0	0	0	0	0	0	0,2	0	0	0	0	0	0	0,2	0	0	0,2	0,2	-0,3	-0,3	1	E3	gruppo 1
SLU-SIS-179	1	1	1	0,2	0	0	0	0	0	0	0,2	0	0	0	0	0	0	0,1	0	0	0	0	0	0	0,1	0	0	0	0	0	0	0	0,2	0,2	-0,3	-0,3	1	E3	gruppo 3
SLU-SIS-180	1	1	1	0	0,2	0	0	0	0	0	0	0,2	0	0	0	0	0	0	0,1	0	0	0	0	0	0	0,1	0	0	0	0	0	0	0,2	0,2	-0,3	-0,3	1	E3	gruppo 3
SLU-SIS-181	1	1	1	0	0	0,2	0	0	0	0	0	0	0,2	0	0	0	0	0	0	0,1	0	0	0	0	0	0	0,1	0	0	0	0	0	0,2	0,2	-0,3	-0,3	1	E3	gruppo 3
SLU-SIS-182	1	1	1	0	0	0	0,2	0	0	0	0	0	0	0,2	0	0	0	0	0	0	0,1	0	0	0	0	0	0	0,1	0	0	0	0	0,2	0,2	-0,3	-0,3	1	E3	gruppo 3
SLU-SIS-183	1	1	1	0	0	0	0	0,2	0	0	0	0	0	0	0,2	0	0	0	0	0	0	0,1	0	0	0	0	0	0	0,1	0	0	0	0,2	0,2	-0,3	-0,3	1	E3	gruppo 3
SLU-SIS-184	1	1	1	0	0	0	0	0	0,2	0	0	0	0	0	0	0,2	0	0	0	0	0	0	0,1	0	0	0	0	0	0	0,1	0	0	0,2	0,2	-0,3	-0,3	1	E3	gruppo 3
SLU-SIS-185	1	1	0	0	0	0	0	0	0	0,1	0	0	0	0	0	0	0,2	0	0	0	0	0	0	0,1	0	0	0	0	0	0	0,1	0	0,2	0,2	-0,3	-0,3	1	E3	gruppo 3-2
SLU-SIS-186	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	-0,3	-0,3	-1	E3	solo perm
SLU-SIS-187	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0,2	0,5	-0,3	-0,3	-1	E3	termica
SLU-SIS-188	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0,2	0,5	-0,3	-0,3	-1	E3	termica
SLU-SIS-189	1	1	1	0,2	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	-0,3	-0,3	-1	E3	solo vert
SLU-SIS-190	1	1	1	0,2	0	0	0	0	0	0	0,1	0	0	0	0	0	0	0,2	0	0	0	0	0	0	0,2	0	0	0	0	0	0	0	0,2	0,2	-0,3	-0,3	-1	E3	gruppo 1
SLU-SIS-191	1	1	1	0	0,2	0	0	0	0	0	0	0,1	0	0	0	0	0	0	0,2	0	0	0	0	0	0	0,2	0	0	0	0	0	0	0,2	0,2	-0,3	-0,3	-1	E3	gruppo 1

NOME COMB.	G -	Permar	nenti			Q1 - V	ariabili v	rerticali				Q2	2 - Avvia	amento e	e frenat	ura				Q3	- Centri	fuga					Q4	- Serpe	ggio			Q6	5 - Varia Azioni ir 17 - Effe nterazio	nterne etti	E - Az	zioni sisn	niche	De	escrizione
	G1	G21	G22	Q11	Q12	Q13	Q14	Q15	Q16	Q17	Q21	Q22	Q23	Q24	Q25	Q26	Q27	Q31	Q32	Q33	Q34	Q35	Q36	Q37	Q41	Q42	Q43	Q44	Q45	Q46	Q47	Q51	Q61	Q71	E1	E2	E3		
SLU-SIS-192	1	1	1	0	0	0,2	0	0	0	0	0	0	0,1	0	0	0	0	0	0	0,2	0	0	0	0	0	0	0,2	0	0	0	0	0	0,2	0,2	-0,3	-0,3	-1	E3	gruppo 1
SLU-SIS-193	1	1	1	0	0	0	0,2	0	0	0	0	0	0	0,1	0	0	0	0	0	0	0,2	0	0	0	0	0	0	0,2	0	0	0	0	0,2	0,2	-0,3	-0,3	-1	E3	gruppo 1
SLU-SIS-194	1	1	1	0	0	0	0	0,2	0	0	0	0	0	0	0,1	0	0	0	0	0	0	0,2	0	0	0	0	0	0	0,2	0	0	0	0,2	0,2	-0,3	-0,3	-1	E3	gruppo 1
SLU-SIS-195	1	1	1	0	0	0	0	0	0,2	0	0	0	0	0	0	0,1	0	0	0	0	0	0	0,2	0	0	0	0	0	0	0,2	0	0	0,2	0,2	-0,3	-0,3	-1	E3	gruppo 1
SLU-SIS-196	1	1	1	0,2	0	0	0	0	0	0	0,2	0	0	0	0	0	0	0,1	0	0	0	0	0	0	0,1	0	0	0	0	0	0	0	0,2	0,2	-0,3	-0,3	-1	E3	gruppo 3
SLU-SIS-197	1	1	1	0	0,2	0	0	0	0	0	0	0,2	0	0	0	0	0	0	0,1	0	0	0	0	0	0	0,1	0	0	0	0	0	0	0,2	0,2	-0,3	-0,3	-1	E3	gruppo 3
SLU-SIS-198	1	1	1	0	0	0,2	0	0	0	0	0	0	0,2	0	0	0	0	0	0	0,1	0	0	0	0	0	0	0,1	0	0	0	0	0	0,2	0,2	-0,3	-0,3	-1	E3	gruppo 3
SLU-SIS-199	1	1	1	0	0	0	0,2	0	0	0	0	0	0	0,2	0	0	0	0	0	0	0,1	0	0	0	0	0	0	0,1	0	0	0	0	0,2	0,2	-0,3	-0,3	-1	E3	gruppo 3
SLU-SIS-200	1	1	1	0	0	0	0	0,2	0	0	0	0	0	0	0,2	0	0	0	0	0	0	0,1	0	0	0	0	0	0	0,1	0	0	0	0,2	0,2	-0,3	-0,3	-1	E3	gruppo 3
SLU-SIS-201	1	1	1	0	0	0	0	0	0,2	0	0	0	0	0	0	0,2	0	0	0	0	0	0	0,1	0	0	0	0	0	0	0,1	0	0	0,2	0,2	-0,3	-0,3	-1	E3	gruppo 3
SLU-SIS-202	1	1	0	0	0	0	0	0	0	0,1	0	0	0	0	0	0	0,2	0	0	0	0	0	0	0,1	0	0	0	0	0	0	0,1	0	0,2	0,2	-0,3	-0,3	-1	E3	gruppo 3-2
SLE-RAR-001	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	G1+G2	solo perm
SLE-RAR-002	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0,6	0,6	0	0	0	Q51	vento
SLE-RAR-003	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0,6	1	1	0	0	0	Q61	termica
SLE-RAR-004	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0,6	0,6	0	0	0	Q51	vento
SLE-RAR-005	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0,6	1	1	0	0	0	Q61	termica
SLE-RAR-006	1	1	1	1	0	0	0	0	0	0	0,5	0	0	0	0	0	0	1	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	Q11	gruppo 1
SLE-RAR-007	1	1	1	0	1	0	0	0	0	0	0	0,5	0	0	0	0	0	0	1	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	Q12	gruppo 1
SLE-RAR-008	1	1	1	0	0	1	0	0	0	0	0	0	0,5	0	0	0	0	0	0	1	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	Q13	gruppo 1
SLE-RAR-009	1	1	1	0	0	0	1	0	0	0	0	0	0	0,5	0	0	0	0	0	0	1	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	Q14	gruppo 1
SLE-RAR-010	1	1	1	0	0	0	0	1	0	0	0	0	0	0	0,5	0	0	0	0	0	0	1	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	Q15	gruppo 1
SLE-RAR-011	1	1	1	0	0	0	0	0	1	0	0	0	0	0	0	0,5	0	0	0	0	0	0	1	0	0	0	0	0	0	1	0	0	0	0	0	0	0	Q16	gruppo 1
SLE-RAR-012	1	1	1	1	0	0	0	0	0	0	1	0	0	0	0	0	0	0,5	0	0	0	0	0	0	0,5	0	0	0	0	0	0	0	0	0	0	0	0	Q11	gruppo 3
SLE-RAR-013	1	1	1	0	1	0	0	0	0	0	0	1	0	0	0	0	0	0	0,5	0	0	0	0	0	0	0,5	0	0	0	0	0	0	0	0	0	0	0	Q12	gruppo 3
SLE-RAR-014	1	1	1	0	0	1	0	0	0	0	0	0	1	0	0	0	0	0	0	0,5	0	0	0	0	0	0	0,5	0	0	0	0	0	0	0	0	0	0	Q13	gruppo 3
SLE-RAR-015	1	1	1	0	0	0	1	0	0	0	0	0	0	1	0	0	0	0	0	0	0,5	0	0	0	0	0	0	0,5	0	0	0	0	0	0	0	0	0	Q14	gruppo 3
SLE-RAR-016	1	1	1	0	0	0	0	1	0	0	0	0	0	0	1	0	0	0	0	0	0	0,5	0	0	0	0	0	0	0,5	0	0	0	0	0	0	0	0	Q15	gruppo 3
SLE-RAR-017	1	1	1	0	0	0	0	0	1	0	0	0	0	0	0	1	0	0	0	0	0	0	0,5	0	0	0	0	0	0	0,5	0	0	0	0	0	0	0	Q16	gruppo 3
SLE-RAR-018	1	1	0	0	0	0	0	0	0	0,5	0	0	0	0	0	0	1	0	0	0	0	0	0	0,5	0	0	0	0	0	0	0,5	0	0	0	0	0	0	Q27	gruppo 3-2
SLE-RAR-019	1	1	1	1	0	0	0	0	0	0	0,5	0	0	0	0	0	0	1	0	0	0	0	0	0	1	0	0	0	0	0	0	0,6	0	0	0	0	0	Q11	gruppo 1
SLE-RAR-020	1	1	1	0	1	0	0	0	0	0	0	0,5	0	0	0	0	0	0	1	0	0	0	0	0	0	1	0	0	0	0	0	0,6	0	0	0	0	0	Q12	gruppo 1
SLE-RAR-021	1	1	1	0	0	1	0	0	0	0	0	0	0,5	0	0	0	0	0	0	1	0	0	0	0	0	0	1	0	0	0	0	0,6	0	0	0	0	0	Q13	gruppo 1
SLE-RAR-022	1	1	1	0	0	0	1	0	0	0	0	0	0	0,5	0	0	0	0	0	0	1	0	0	0	0	0	0	1	0	0	0	0,6	0	0	0	0	0	Q14	gruppo 1
SLE-RAR-023	1	1	1	0	0	0	0	1	0	0	0	0	0	0	0,5	0	0	0	0	0	0	1	0	0	0	0	0	0	1	0	0	0,6	0	0	0	0	0	Q15	gruppo 1
SLE-RAR-024	1	1	1	0	0	0	0	0	1	0	0	0	0	0	0	0,5	0	0	0	0	0	0	1	0	0	0	0	0	0	1	0	0,6	0	0	0	0	0	Q16	gruppo 1
SLE-RAR-025	1	1	1	1	0	0	0	0	0	0	1	0	0	0	0	0	0	0,5	0	0	0	0	0	0	0,5	0	0	0	0	0	0	0,6	0	0	0	0	0	Q11	gruppo 3

NOME COMB.	G-	Permar	nenti			Q1 - V	ariabili v	erticali				Q2	! - Avvia	amento e	e frenat	ura				Q3	- Centri	fuga					Q4	- Serpe	ggio			Q6 - A	- Varia Azioni i 7 - Effe nterazio	nterne etti	E - Az	zioni sisn	niche	De	escrizione
	G1	G21	G22	Q11	Q12	Q13	Q14	Q15	Q16	Q17	Q21	Q22	Q23	Q24	Q25	Q26	Q27	Q31	Q32	Q33	Q34	Q35	Q36	Q37	Q41	Q42	Q43	Q44	Q45	Q46	Q47	Q51	Q61	Q71	E1	E2	E3		
SLE-RAR-026	1	1	1	0	1	0	0	0	0	0	0	1	0	0	0	0	0	0	0,5	0	0	0	0	0	0	0,5	0	0	0	0	0	0,6	0	0	0	0	0	Q12	gruppo 3
SLE-RAR-027	1	1	1	0	0	1	0	0	0	0	0	0	1	0	0	0	0	0	0	0,5	0	0	0	0	0	0	0,5	0	0	0	0	0,6	0	0	0	0	0	Q13	gruppo 3
SLE-RAR-028	1	1	1	0	0	0	1	0	0	0	0	0	0	1	0	0	0	0	0	0	0,5	0	0	0	0	0	0	0,5	0	0	0	0,6	0	0	0	0	0	Q14	gruppo 3
SLE-RAR-029	1	1	1	0	0	0	0	1	0	0	0	0	0	0	1	0	0	0	0	0	0	0,5	0	0	0	0	0	0	0,5	0	0	0,6	0	0	0	0	0	Q15	gruppo 3
SLE-RAR-030	1	1	1	0	0	0	0	0	1	0	0	0	0	0	0	1	0	0	0	0	0	0	0,5	0	0	0	0	0	0	0,5	0	0,6	0	0	0	0	0	Q16	gruppo 3
SLE-RAR-031	1	1	0	0	0	0	0	0	0	0,5	0	0	0	0	0	0	1	0	0	0	0	0	0	0,5	0	0	0	0	0	0	0,5	0,6	0	0	0	0	0	Q27	gruppo 3-2
SLE-RAR-032	1	1	1	1	0	0	0	0	0	0	0,5	0	0	0	0	0	0	1	0	0	0	0	0	0	1	0	0	0	0	0	0	0	1	0	0	0	0	Q11	gruppo 1
SLE-RAR-033	1	1	1	0	1	0	0	0	0	0	0	0,5	0	0	0	0	0	0	1	0	0	0	0	0	0	1	0	0	0	0	0	0	1	0	0	0	0	Q12	gruppo 1
SLE-RAR-034	1	1	1	0	0	1	0	0	0	0	0	0	0,5	0	0	0	0	0	0	1	0	0	0	0	0	0	1	0	0	0	0	0	1	0	0	0	0	Q13	gruppo 1
SLE-RAR-035	1	1	1	0	0	0	1	0	0	0	0	0	0	0,5	0	0	0	0	0	0	1	0	0	0	0	0	0	1	0	0	0	0	1	0	0	0	0	Q14	gruppo 1
SLE-RAR-036	1	1	1	0	0	0	0	1	0	0	0	0	0	0	0,5	0	0	0	0	0	0	1	0	0	0	0	0	0	1	0	0	0	1	0	0	0	0	Q15	gruppo 1
SLE-RAR-037	1	1	1	0	0	0	0	0	1	0	0	0	0	0	0	0,5	0	0	0	0	0	0	1	0	0	0	0	0	0	1	0	0	1	0	0	0	0	Q16	gruppo 1
SLE-RAR-038	1	1	1	1	0	0	0	0	0	0	1	0	0	0	0	0	0	0,5	0	0	0	0	0	0	0,5	0	0	0	0	0	0	0	1	0	0	0	0	Q11	gruppo 3
SLE-RAR-039	1	1	1	0	1	0	0	0	0	0	0	1	0	0	0	0	0	0	0,5	0	0	0	0	0	0	0,5	0	0	0	0	0	0	1	0	0	0	0	Q12	gruppo 3
SLE-RAR-040	1	1	1	0	0	1	0	0	0	0	0	0	1	0	0	0	0	0	0	0,5	0	0	0	0	0	0	0,5	0	0	0	0	0	1	0	0	0	0	Q13	gruppo 3
SLE-RAR-041	1	1	1	0	0	0	1	0	0	0	0	0	0	1	0	0	0	0	0	0	0,5	0	0	0	0	0	0	0,5	0	0	0	0	1	0	0	0	0	Q14	gruppo 3
SLE-RAR-042	1	1	1	0	0	0	0	1	0	0	0	0	0	0	1	0	0	0	0	0	0	0,5	0	0	0	0	0	0	0,5	0	0	0	1	0	0	0	0	Q15	gruppo 3
SLE-RAR-043	1	1	1	0	0	0	0	0	1	0	0	0	0	0	0	1	0	0	0	0	0	0	0,5	0	0	0	0	0	0	0,5	0	0	1	0	0	0	0	Q16	gruppo 3
SLE-RAR-044	1	1	0	0	0	0	0	0	0	0,5	0	0	0	0	0	0	1	0	0	0	0	0	0	0,5	0	0	0	0	0	0	0,5	0	1	0	0	0	0	Q27	gruppo 3-2
SLE-RAR-045	1	1	1	1	0	0	0	0	0	0	0,5	0	0	0	0	0	0	1	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0,6	0	0	0	Q11	gruppo 1
SLE-RAR-046	1	1	1	0	1	0	0	0	0	0	0	0,5	0	0	0	0	0	0	1	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0,6	0	0	0	Q12	gruppo 1
SLE-RAR-047	1	1	1	0	0	1	0	0	0	0	0	0	0,5	0	0	0	0	0	0	1	0	0	0	0	0	0	1	0	0	0	0	0	0	0,6	0	0	0	Q13	gruppo 1
SLE-RAR-048	1	1	1	0	0	0	1	0	0	0	0	0	0	0,5	0	0	0	0	0	0	1	0	0	0	0	0	0	1	0	0	0	0	0	0,6	0	0	0	Q14	gruppo 1
SLE-RAR-049	1	1	1	0	0	0	0	1	0	0	0	0	0	0	0,5	0	0	0	0	0	0	1	0	0	0	0	0	0	1	0	0	0	0	0,6	0	0	0	Q15	gruppo 1
SLE-RAR-050	1	1	1	0	0	0	0	0	1	0	0	0	0	0	0	0,5	0	0	0	0	0	0	1	0	0	0	0	0	0	1	0	0	0	0,6	0	0	0	Q16	gruppo 1
SLE-RAR-051	1	1	1	1	0	0	0	0	0	0	1	0	0	0	0	0	0	0,5	0	0	0	0	0	0	0,5	0	0	0	0	0	0	0	0	0,6	0	0	0	Q11	gruppo 3
SLE-RAR-052	1	1	1	0	1	0	0	0	0	0	0	1	0	0	0	0	0	0	0,5	0	0	0	0	0	0	0,5	0	0	0	0	0	0	0	0,6	0	0	0	Q12	gruppo 3
SLE-RAR-053	1	1	1	0	0	1	0	0	0	0	0	0	1	0	0	0	0	0	0	0,5	0	0	0	0	0	0	0,5	0	0	0	0	0	0	0,6	0	0	0	Q13	gruppo 3
SLE-RAR-054	1	1	1	0	0	0	1	0	0	0	0	0	0	1	0	0	0	0	0	0	0,5	0	0	0	0	0	0	0,5	0	0	0	0	0	0,6	0	0	0	Q14	gruppo 3
SLE-RAR-055	1	1	1	0	0	0	0	1	0	0	0	0	0	0	1	0	0	0	0	0	0	0,5	0	0	0	0	0	0	0,5	0	0	0	0	0,6	0	0	0	Q15	gruppo 3
SLE-RAR-056	1	1	1	0	0	0	0	0	1	0	0	0	0	0	0	1	0	0	0	0	0	0	0,5	0	0	0	0	0	0	0,5	0	0	0	0,6	0	0	0	Q16	gruppo 3
SLE-RAR-057	1	1	0	0	0	0	0	0	0	0,5	0	0	0	0	0	0	1	0	0	0	0	0	0	0,5	0	0	0	0	0	0	0,5	0	0	0,6	0	0	0	Q27	gruppo 3-2
SLE-RAR-058	1	1	1	1	0	0	0	0	0	0	0,5	0	0	0	0	0	0	1	0	0	0	0	0	0	1	0	0	0	0	0	0	0,6	1	0,6	0	0	0	Q11	gruppo 1
SLE-RAR-059	1	1	1	0	1	0	0	0	0	0	0	0,5	0	0	0	0	0	0	1	0	0	0	0	0	0	1	0	0	0	0	0	0,6	1	0,6	0	0	0	Q12	gruppo 1
SLE-RAR-060	1	1	1	0	0	1	0	0	0	0	0	0	0,5	0	0	0	0	0	0	1	0	0	0	0	0	0	1	0	0	0	0	0,6	1	0,6	0	0	0	Q13	gruppo 1
SLE-RAR-061	1	1	1	0	0	0	1	0	0	0	0	0	0	0,5	0	0	0	0	0	0	1	0	0	0	0	0	0	1	0	0	0	0,6	1	0,6	0	0	0	Q14	gruppo 1
SLE-RAR-062	1	1	1	0	0	0	0	1	0	0	0	0	0	0	0,5	0	0	0	0	0	0	1	0	0	0	0	0	0	1	0	0	0,6	1	0,6	0	0	0	Q15	gruppo 1

NOME COMB.	G-	Permar	nenti			Q1 - Va	ariabili v	erticali				Q2	- Avvia	amento e	e frenat	ura				Q3 ·	- Centrif	fuga					Q4	- Serpeç	ggio			Q6 - A	- Varia Azioni ir 7 - Effe nterazio	nterne tti	E - Az	rioni sisr	miche	D	escrizione
	G1	G21	G22	Q11	Q12	Q13	Q14	Q15	Q16	Q17	Q21	Q22	Q23	Q24	Q25	Q26	Q27	Q31	Q32	Q33	Q34	Q35	Q36	Q37	Q41	Q42	Q43	Q44	Q45	Q46	Q47	Q51	Q61	Q71	E1	E2	E3		
SLE-RAR-063	1	1	1	0	0	0	0	0	1	0	0	0	0	0	0	0,5	0	0	0	0	0	0	1	0	0	0	0	0	0	1	0	0,6	1	0,6	0	0	0	Q16	gruppo 1
SLE-RAR-064	1	1	1	1	0	0	0	0	0	0	1	0	0	0	0	0	0	0,5	0	0	0	0	0	0	0,5	0	0	0	0	0	0	0,6	1	0,6	0	0	0	Q11	gruppo 3
SLE-RAR-065	1	1	1	0	1	0	0	0	0	0	0	1	0	0	0	0	0	0	0,5	0	0	0	0	0	0	0,5	0	0	0	0	0	0,6	1	0,6	0	0	0	Q12	gruppo 3
SLE-RAR-066	1	1	1	0	0	1	0	0	0	0	0	0	1	0	0	0	0	0	0	0,5	0	0	0	0	0	0	0,5	0	0	0	0	0,6	1	0,6	0	0	0	Q13	gruppo 3
SLE-RAR-067	1	1	1	0	0	0	1	0	0	0	0	0	0	1	0	0	0	0	0	0	0,5	0	0	0	0	0	0	0,5	0	0	0	0,6	1	0,6	0	0	0	Q14	gruppo 3
SLE-RAR-068	1	1	1	0	0	0	0	1	0	0	0	0	0	0	1	0	0	0	0	0	0	0,5	0	0	0	0	0	0	0,5	0	0	0,6	1	0,6	0	0	0	Q15	gruppo 3
SLE-RAR-069	1	1	1	0	0	0	0	0	1	0	0	0	0	0	0	1	0	0	0	0	0	0	0,5	0	0	0	0	0	0	0,5	0	0,6	1	0,6	0	0	0	Q16	gruppo 3
SLE-RAR-070	1	1	0	0	0	0	0	0	0	0,5	0	0	0	0	0	0	1	0	0	0	0	0	0	0,5	0	0	0	0	0	0	0,5	0,6	1	0,6	0	0	0	Q27	gruppo 3-2
SLE-RAR-071	1	1	1	0,6	0	0	0	0	0	0	0,6	0	0	0	0	0	0	0,6	0	0	0	0	0	0	0,6	0	0	0	0	0	0	0	0	0	0	0	0	Q11	gruppo 4
SLE-RAR-072	1	1	1	0	0,6	0	0	0	0	0	0	0,6	0	0	0	0	0	0	0,6	0	0	0	0	0	0	0,6	0	0	0	0	0	0	0	0	0	0	0	Q12	gruppo 4
SLE-RAR-073	1	1	1	0	0	0,8	0	0	0	0	0	0	0,8	0	0	0	0	0	0	0,8	0	0	0	0	0	0	0,8	0	0	0	0	0	0	0	0	0	0	Q13	gruppo 4
SLE-RAR-074	1	1	1	0	0	0	0,8	0	0	0	0	0	0	0,8	0	0	0	0	0	0	0,8	0	0	0	0	0	0	0,8	0	0	0	0	0	0	0	0	0	Q14	gruppo 4
SLE-RAR-075	1	1	1	0	0	0	0	0,6	0	0	0	0	0	0	0,6	0	0	0	0	0	0	0,6	0	0	0	0	0	0	0,6	0	0	0	0	0	0	0	0	Q15	gruppo 4
SLE-RAR-076	1	1	1	0	0	0	0	0	0,6	0	0	0	0	0	0	0,6	0	0	0	0	0	0	0,6	0	0	0	0	0	0	0,6	0	0	0	0	0	0	0	Q16	gruppo 4
SLE-RAR-077	1	1	0	0	0	0	0	0	0	0,6	0	0	0	0	0	0	0,6	0	0	0	0	0	0	0,6	0	0	0	0	0	0	0,6	0	0	0	0	0	0	Q17	gruppo 4
SLE-RAR-078	1	1	1	0,6	0	0	0	0	0	0	0,6	0	0	0	0	0	0	0,6	0	0	0	0	0	0	0,6	0	0	0	0	0	0	0,6	0	0	0	0	0	Q11	gruppo 4
SLE-RAR-079	1	1	1	0	0,6	0	0	0	0	0	0	0,6	0	0	0	0	0	0	0,6	0	0	0	0	0	0	0,6	0	0	0	0	0	0,6	0	0	0	0	0	Q12	gruppo 4
SLE-RAR-080	1	1	1	0	0	0,8	0	0	0	0	0	0	0,8	0	0	0	0	0	0	8,0	0	0	0	0	0	0	0,8	0	0	0	0	0,6	0	0	0	0	0	Q13	gruppo 4
SLE-RAR-081	1	1	1	0	0	0	0,8	0	0	0	0	0	0	0,8	0	0	0	0	0	0	0,8	0	0	0	0	0	0	0,8	0	0	0	0,6	0	0	0	0	0	Q14	gruppo 4
SLE-RAR-082	1	1	1	0	0	0	0	0,6	0	0	0	0	0	0	0,6	0	0	0	0	0	0	0,6	0	0	0	0	0	0	0,6	0	0	0,6	0	0	0	0	0	Q15	gruppo 4
SLE-RAR-083	1	1	1	0	0	0	0	0	0,6	0	0	0	0	0	0	0,6	0	0	0	0	0	0	0,6	0	0	0	0	0	0	0,6	0	0,6	0	0	0	0	0	Q16	gruppo 4
SLE-RAR-084	1	1	0	0	0	0	0	0	0	0,6	0	0	0	0	0	0	0,6	0	0	0	0	0	0	0,6	0	0	0	0	0	0	0,6	0,6	0	0	0	0	0	Q17	gruppo 4
SLE-RAR-085	1	1	1	0,6	0	0	0	0	0	0	0,6	0	0	0	0	0	0	0,6	0	0	0	0	0	0	0,6	0	0	0	0	0	0	0	1	0	0	0	0	Q61	gruppo 4
SLE-RAR-086	1	1	1	0	0,6	0	0	0	0	0	0	0,6	0	0	0	0	0	0	0,6	0	0	0	0	0	0	0,6	0	0	0	0	0	0	1	0	0	0	0	Q61	gruppo 4
SLE-RAR-087	1	1	1	0	0	0,8	0	0	0	0	0	0	0,8	0	0	0	0	0	0	0,8	0	0	0	0	0	0	0,8	0	0	0	0	0	1	0	0	0	0	Q61	gruppo 4
SLE-RAR-088	1	1	1	0	0	0	0,8	0	0	0	0	0	0	0,8	0	0	0	0	0	0	0,8	0	0	0	0	0	0	0,8	0	0	0	0	1	0	0	0	0	Q61	gruppo 4
SLE-RAR-089	1	1	1	0	0	0	0	0,6	0	0	0	0	0	0	0,6	0	0	0	0	0	0	0,6	0	0	0	0	0	0	0,6	0	0	0	1	0	0	0	0	Q61	gruppo 4
SLE-RAR-090	1	1	1	0	0	0	0	0	0,6	0	0	0	0	0	0	0,6	0	0	0	0	0	0	0,6	0	0	0	0	0	0	0,6	0	0	1	0	0	0	0	Q61	gruppo 4
SLE-RAR-091	1	1	0	0	0	0	0	0	0	0,6	0	0	0	0	0	0	0,6	0	0	0	0	0	0	0,6	0	0	0	0	0	0	0,6	0	1	0	0	0	0	Q61	gruppo 4
SLE-RAR-092	1	1	1	0,6	0	0	0	0	0	0	0,6	0	0	0	0	0	0	0,6	0	0	0	0	0	0	0,6	0	0	0	0	0	0	0	0	0,6	0	0	0	Q11	gruppo 4
SLE-RAR-093	1	1	1	0	0,6	0	0	0	0	0	0	0,6	0	0	0	0	0	0	0,6	0	0	0	0	0	0	0,6	0	0	0	0	0	0	0	0,6	0	0	0	Q12	gruppo 4
SLE-RAR-094	1	1	1	0	0	0,8	0	0	0	0	0	0	0,8	0	0	0	0	0	0	0,8	0	0	0	0	0	0	0,8	0	0	0	0	0	0	0,6	0	0	0	Q13	gruppo 4
SLE-RAR-095	1	1	1	0	0	0	0,8	0	0	0	0	0	0	0,8	0	0	0	0	0	0	0,8	0	0	0	0	0	0	0,8	0	0	0	0	0	0,6	0	0	0	Q14	gruppo 4
SLE-RAR-096	1	1	1	0	0	0	0	0,6	0	0	0	0	0	0	0,6	0	0	0	0	0	0	0,6	0	0	0	0	0	0	0,6	0	0	0	0	0,6	0	0	0	Q15	gruppo 4
SLE-RAR-097	1	1	1	0	0	0	0	0	0,6	0	0	0	0	0	0	0,6	0	0	0	0	0	0	0,6	0	0	0	0	0	0	0,6	0	0	0	0,6	0	0	0	Q16	gruppo 4
SLE-RAR-098	1	1	0	0	0	0	0	0	0	0,6	0	0	0	0	0	0	0,6	0	0	0	0	0	0	0,6	0	0	0	0	0	0	0,6	0	0	0,6	0	0	0	Q17	gruppo 4
SLE-RAR-099	1	1	1	0,6	0	0	0	0	0	0	0,6	0	0	0	0	0	0	0,6	0	0	0	0	0	0	0,6	0	0	0	0	0	0	0,6	1	0,6	0	0	0	Q61	gruppo 4

NOME COMB.	G -	Perma	nenti			Q1 - V	/ariabili	verticali				Qź	2 - Avvia	amento	e frenat	ura				Q3	- Centri	fuga					Q4	- Serpe	ggio			Q6 - A	- Varia Azioni ir 7 - Effe nterazio	nterne tti	E - Az	ioni sis	miche		escrizione
	G1	G21	G22	Q11	Q12	Q13	Q14	Q15	Q16	Q17	Q21	Q22	Q23	Q24	Q25	Q26	Q27	Q31	Q32	Q33	Q34	Q35	Q36	Q37	Q41	Q42	Q43	Q44	Q45	Q46	Q47	Q51	Q61	Q71	E1	E2	E3		
SLE-RAR-100	1	1	1	0	0,6	0	0	0	0	0	0	0,6	0	0	0	0	0	0	0,6	0	0	0	0	0	0	0,6	0	0	0	0	0	0,6	1	0,6	0	0	0	Q61	gruppo 4
SLE-RAR-101	1	1	1	0	0	0,8	0	0	0	0	0	0	0,8	0	0	0	0	0	0	0,8	0	0	0	0	0	0	0,8	0	0	0	0	0,6	1	0,6	0	0	0	Q61	gruppo 4
SLE-RAR-102	1	1	1	0	0	0	0,8	0	0	0	0	0	0	0,8	0	0	0	0	0	0	0,8	0	0	0	0	0	0	0,8	0	0	0	0,6	1	0,6	0	0	0	Q61	gruppo 4
SLE-RAR-103	1	1	1	0	0	0	0	0,6	0	0	0	0	0	0	0,6	0	0	0	0	0	0	0,6	0	0	0	0	0	0	0,6	0	0	0,6	1	0,6	0	0	0	Q61	gruppo 4
SLE-RAR-104	1	1	1	0	0	0	0	0	0,6	0	0	0	0	0	0	0,6	0	0	0	0	0	0	0,6	0	0	0	0	0	0	0,6	0	0,6	1	0,6	0	0	0	Q61	gruppo 4
SLE-RAR-105	1	1	0	0	0	0	0	0	0	0,6	0	0	0	0	0	0	0,6	0	0	0	0	0	0	0,6	0	0	0	0	0	0	0,6	0,6	1	0,6	0	0	0	Q61	gruppo 4
SLE-QPE-001	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	G1+G2	solo perm
SLE-QPE-002	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	0	0	0	Q61	termica

ALLEGATO 2 VI04 – PILA 01

1 SOLLECITAZIONI ELEMENTARI A BASE PILA

C.C.E.	Descrizione	F1	F2	F3	M1	M2	М3
		kN	kN	kN	kNm	kNm	kNm
G1	Pesi propri	0	0	10045	0	1247	0
G2	Ballast	0	0	2062	0	255	0
G2	Permanenti non strutturali	0	0	1125	0	139	0
Q11	Disposizione 1 (massimizza N)	0	0	4612	-1004	518	0
Q12	Disposizione 2 (massimizza M2)	0	0	3035	-418	1366	0
Q13	Disposizione 3 (massimizza M1)	0	0	2597	-5194	325	0
Q14	Disposizione 4 (massimizza M1)	0	0	2015	4191	193	0
Q15	Disposizione 5 (massimizza N+M2)	0	0	3817	539	1014	0
Q16	Disposizione 6 (massimizza N)	0	0	3643	933	502	0
Q17	Disposizione 7 (minimizza N)	0	0	2356	-762	1060	0
Q21	Disposizione 1 (massimizza N)	1077	0	2	0	7278	0
Q22	Disposizione 2 (massimizza M2)	0	0	154	0	69	0
Q23	Disposizione 3 (massimizza M1)	700	0	-29	0	4717	0
Q24	Disposizione 4 (massimizza M1)	590	0	6	0	3988	0
Q25	Disposizione 5 (massimizza N+M2)	1327	0	-2	0	8966	0
Q26	Disposizione 6 (massimizza N)	1327	0	-15	0	8961	0
Q27	Disposizione 7 (minimizza N)	0	0	185	0	83	0
Q31	Disposizione 1 (massimizza N)	0	389	0	-4015	0	0
Q32	Disposizione 2 (massimizza M2)	0	255	0	-2686	0	0
Q33	Disposizione 3 (massimizza M1)	0	128	0	-1321	0	0
Q34	Disposizione 4 (massimizza M1)	0	261	0	-2694	0	0
Q35	Disposizione 5 (massimizza N+M2)	0	347	0	-3606	0	0
Q36	Disposizione 6 (massimizza N)	0	341	0	-3525	0	0
Q37	Disposizione 7 (minimizza N)	0	190	0	-1998	0	0
Q41	Disposizione 1 (massimizza N)	0	210	0	-1778	0	0
Q42	Disposizione 2 (massimizza M2)	0	210	0	-1778	0	0
Q43	Disposizione 3 (massimizza M1)	0	100	0	-847	0	0
Q44	Disposizione 4 (massimizza M1)	0	110	0	-931	0	0
Q45	Disposizione 5 (massimizza N+M2)	0	210	0	-1778	0	0
Q46	Disposizione 6 (massimizza N)	0	210	0	-1778	0	0
Q47	Disposizione 7 (minimizza N)	0	105	0	-915	0	0
Q51	Vento	0	524	0	-5118	0	0
Q61	Attrito su vincoli	174	0	0	0	1156	0
Q71	Variazioni termiche	140	0	0	0	931	0
E1	Sisma x	3805	0	0	0	27013	-1688
E2	Sisma y	0	4609	0	-33749	0	2297
E3	Sisma z	0	0	5083	-1377	2477	0

2 SPOSTAMENTI ELEMENTARI IN TESTA PILA

C.C.E.	Descrizione	d1,1	d2,1	d3,1	φ1,1	φ2,1	φ3,1
		mm	mm	mm	1/mm	1/mm	1/mm
G1	Pesi propri	0.00	0.00	0.26	0.00	0.00	0.00
G2	Ballast	0.00	0.00	0.05	0.00	0.00	0.00
G2	Permanenti non strutturali	0.00	0.00	0.03	0.00	0.00	0.00
Q11	Disposizione 1 (massimizza N)	0.00	0.00	0.12	0.00	0.00	0.00
Q12	Disposizione 2 (massimizza M2)	0.00	0.00	0.08	0.00	0.00	0.00
Q13	Disposizione 3 (massimizza M1)	0.00	0.00	0.07	0.00	0.00	0.00
Q14	Disposizione 4 (massimizza M1)	0.00	0.00	0.05	0.00	0.00	0.00
Q15	Disposizione 5 (massimizza N+M2)	0.00	0.00	0.10	0.00	0.00	0.00
Q16	Disposizione 6 (massimizza N)	0.00	0.00	0.09	0.00	0.00	0.00
Q17	Disposizione 7 (minimizza N)	0.00	0.00	0.06	0.00	0.00	0.00
Q21	Disposizione 1 (massimizza N)	0.38	0.00	0.00	0.00	0.06	0.00
Q22	Disposizione 2 (massimizza M2)	0.00	0.00	0.00	0.00	0.00	0.00
Q23	Disposizione 3 (massimizza M1)	0.25	0.00	0.00	0.00	0.04	0.00
Q24	Disposizione 4 (massimizza M1)	0.21	0.00	0.00	0.00	0.03	0.00
Q25	Disposizione 5 (massimizza N+M2)	0.47	0.00	0.00	0.00	0.07	0.00
Q26	Disposizione 6 (massimizza N)	0.47	0.00	0.00	0.00	0.07	0.00
Q27	Disposizione 7 (minimizza N)	0.00	0.00	0.00	0.00	0.00	0.00
Q31	Disposizione 1 (massimizza N)	0.00	0.01	0.00	0.00	0.00	0.00
Q32	Disposizione 2 (massimizza M2)	0.00	0.00	0.00	0.00	0.00	0.00
Q33	Disposizione 3 (massimizza M1)	0.00	0.00	0.00	0.00	0.00	0.00
Q34	Disposizione 4 (massimizza M1)	0.00	0.00	0.00	0.00	0.00	0.00
Q35	Disposizione 5 (massimizza N+M2)	0.00	0.01	0.00	0.00	0.00	0.00
Q36	Disposizione 6 (massimizza N)	0.00	0.01	0.00	0.00	0.00	0.00
Q37	Disposizione 7 (minimizza N)	0.00	0.00	0.00	0.00	0.00	0.00
Q41	Disposizione 1 (massimizza N)	0.00	0.00	0.00	0.00	0.00	0.00
Q42	Disposizione 2 (massimizza M2)	0.00	0.00	0.00	0.00	0.00	0.00
Q43	Disposizione 3 (massimizza M1)	0.00	0.00	0.00	0.00	0.00	0.00
Q44	Disposizione 4 (massimizza M1)	0.00	0.00	0.00	0.00	0.00	0.00
Q45	Disposizione 5 (massimizza N+M2)	0.00	0.00	0.00	0.00	0.00	0.00
Q46	Disposizione 6 (massimizza N)	0.00	0.00	0.00	0.00	0.00	0.00
Q47	Disposizione 7 (minimizza N)	0.00	0.00	0.00	0.00	0.00	0.00
Q51	Vento	0.00	0.01	0.00	0.00	0.00	0.00
Q61	Attrito su vincoli	0.06	0.00	0.00	0.00	0.01	0.00
Q71	Variazioni termiche	0.05	0.00	0.00	0.00	0.01	0.00
E1	Sisma x	10.74	0.00	0.00	0.00	1.61	0.00
E2	Sisma y	0.00	0.70	0.00	0.11	0.00	0.00
E3	Sisma z	0.00	0.00	0.13	0.00	0.00	0.00

3 SOLLECITAZIONI COMBINATE A BASE PILA

Si riportano a seguire i valori delle sollecitazioni di calcolo combinate secondo i coefficienti di combinazione riportati nell'allegato 1 della presente relazione. I valori seguenti tengono conto degli effetti del secondo ordine indotti dagli spostamenti elementari.

Per ogni gruppo di combinazioni di carico considerato (SLU-STR SLU-GEO, SLV-SIS, SLE-RAR e SLE-QP), sono riportati a seguire i valori delle sollecitazioni corrispondenti alle combinazioni che massimizzano ognuna delle componenti di sollecitazione (F1, F2, F3, M1, M2 e M3).

- F1 Forza di taglio in direzione longitudinale [kN]
- F2 Forza di taglio i direzione trasversale [kN
- F3 Forza assiale verticale [kN
- M1 Momento flettente attorno all'asse 1 (trasversale)
- M2 Momento flettente attorno all'asse 2 (longitudinale)
- M3 Momento flettente attorno all'asse 3 (toocente)

SLU-STR	max	Combo.	F1	F2	F3	M1	M2	М3
			kN	kN	kN	kNm	kNm	kNm
max	F1	SLU-STR-068	2302	878	23873	-7755	19243	0
max	F2	SLU-STR-019	786	1340	25031	-14461	8333	0
max	F3	SLU-STR-012	1562	437	25033	-5684	13566	0
max	M1	SLU-STR-015	855	271	21272	3430	8333	0
max	M2	SLU-STR-068	2302	878	23873	-7755	19243	0
max	М3	SLU-STR-002	282	786	18342	-7677	4152	0

SLU-STR	min	Combo.	F1	F2	F3	M1	M2	М3
			kN	kN	kN	kNm	kNm	kNm
min	F1	SLU-STR-007	0	675	22856	-7079	4307	0
min	F2	SLU-STR-014	1015	166	22066	-9114	9578	0
min	F3	SLU-STR-004	282	786	12107	-7677	3380	0
min	M1	SLU-STR-021	511	802	22087	-15281	6186	0
min	M2	SLU-STR-018	0	215	14095	-2682	2397	0
min	М3	SLU-STR-002	282	786	18342	-7677	4152	0

SLU-GEO	max	Combo.	F1	F2	F3	M1	M2	М3
			kN	kN	kN	kNm	kNm	kNm
max	F1	SLU-GEO-068	1985	760	18957	-6710	16394	0
max	F2	SLU-GEO-019	678	1158	19955	-12487	6988	0
max	F3	SLU-GEO-012	1346	377	19956	-4904	11496	0
max	M1	SLU-GEO-015	737	234	16714	2955	6983	0
max	M2	SLU-GEO-068	1985	760	18957	-6710	16394	0
max	М3	SLU-GEO-002	245	681	14189	-6654	3387	0

SLU-GEO	min	Combo.	F1	F2	F3	M1	M2	М3
			kN	kN	kN	kNm	kNm	kNm
min	F1	SLU-GEO-007	0	582	18080	-6103	3512	0
min	F2	SLU-GEO-014	875	144	17399	-7858	8057	0
min	F3	SLU-GEO-004	245	681	12107	-6654	3129	0
min	M1	SLU-GEO-021	441	694	17417	-13195	5135	0
min	M2	SLU-GEO-018	0	186	13823	-2315	2275	0
min	М3	SLU-GEO-002	245	681	14189	-6654	3387	0

SLU-SIS	max	Combo.	F1	F2	F3	M1	M2	М3
			kN	kN	kN	kNm	kNm	kNm
max	F1	SLU-SIS-014	4175	1438	15520	-10964	31930	-999
max	F2	SLU-SIS-038	1312	4729	15680	-35508	11688	1791
max	F3	SLU-SIS-078	1420	1443	19239	-12276	14136	183
max	M1	SLU-SIS-165	-961	-4572	12112	34627	-5917	-1791
max	M2	SLU-SIS-014	4175	1438	15520	-10964	31930	-999
max	М3	SLU-SIS-034	1142	4609	14757	-34149	10445	1791

SLU-SIS	min	Combo.	F1	F2	F3	M1	M2	М3
			kN	kN	kN	kNm	kNm	kNm
min	F1	SLU-SIS-102	-3805	-1383	14757	9708	-24481	999
min	F2	SLU-SIS-135	-1142	-4609	14757	33323	-5675	-1791
min	F3	SLU-SIS-087	1246	1383	7024	-8746	7804	183
min	M1	SLU-SIS-040	1274	4654	15274	-35621	11395	1791
min	M2	SLU-SIS-118	-3805	-1383	11707	10535	-25997	999
min	М3	SLU-SIS-135	-1142	-4609	14757	33323	-5675	-1791

SLE-RAR	max	Combo.	F1	F2	F3	M1	M2	М3
			kN	kN	kN	kNm	kNm	kNm
max	F1	SLE-RAR-068	1585	593	17047	-5224	13328	0
max	F2	SLE-RAR-019	538	913	17846	-9867	5796	0
max	F3	SLE-RAR-012	1077	300	17847	-3900	9431	0
max	M1	SLE-RAR-015	590	186	15253	2378	5820	0
max	M2	SLE-RAR-068	1585	593	17047	-5224	13328	0
max	М3	SLE-RAR-002	188	524	13232	-5118	2893	0

SLE-RAR	min	Combo.	F1	F2	F3	M1	M2	М3
			kN	kN	kN	kNm	kNm	kNm
min	F1	SLE-RAR-007	0	465	16345	-4882	3043	0
min	F2	SLE-RAR-014	700	114	15801	-6278	6680	0
min	F3	SLE-RAR-004	188	524	12107	-5118	2754	0
min	M1	SLE-RAR-021	350	542	15815	-10433	4323	0
min	M2	SLE-RAR-018	0	148	13470	-1837	2116	0
min	М3	SLE-RAR-002	188	524	13232	-5118	2893	0

4 SOLLECITAZIONI COMBINATE A BASE PLINTO

Le sollecitazioni combinate alla base della pila sono state riportate ad intradosso plinto (in posizione baricentrica) e sono state incrementate per tenere conto del peso del plinto e del terreno di ricoprimento presente al suo estradosso, nonché della forza inerziale (orizzontale e verticale) associata alla massa del plinto stesso e considerata solidale con il terreno (T = 0 sec).

Terreno	rico	orime	nto
		J	

dlong	6.4	m
dtrasv	15.45	m
hterr	3.0	m
gterr	20	kN/m3
Wterr	4490	kN

Plinto								
dlong	6.4	m	Orizzonta	ale		_	Verticale	
dtrasv	15.5	m	ag0	0.275	g	ag0	0.195	g
hpl	1.8	m	s	1.142		S	1.000	
gcls	25	kN/m3	PGA	0.314	g	PGA	0.195	g
Wplinto	4449.6	kN	lplinto_h	1397	kN	Iplinto_v	868	kN

	F1	F2	F3	M1	M2	М3	Ftot
	kN	kN	kN	kNm	kNm	kNm	kN
SLU-STR-001			31084				
SLU-STR-002	282	786	31084	-9092	4657	0	835
SLU-STR-003	462	472	31084	-5455	6171	0	660
SLU-STR-004	282	786	16557	-9092	3886	0	835
SLU-STR-005	462	472	16557	-5455	5401	0	660
SLU-STR-006	786	869	37773	-11417	9734	0	1172
SLU-STR-007	0	675	35598	-8293	4307	0	675
SLU-STR-008	511	330	34829	-11269	7098	0	608
SLU-STR-009	431	538	34010	-149	6233	0	689
SLU-STR-010	969	808	36617	-8479	12012	0	1262
SLU-STR-011	969	799	36356	-7774	11265	0	1256
SLU-STR-012	1562	437	37775	-6470	16349	0	1622
SLU-STR-013	0	340	35709	-4476	4357	0	340
SLU-STR-014	1015	166	34808	-9413	11389	0	1029
SLU-STR-015	855	271	34014	2942	9859	0	897
SLU-STR-016	1924	407	36615	-3880	20163	0	1967
SLU-STR-017	1924	403	36346	-3242	19412	0	1966
SLU-STR-018	0	215	18545	-3070	2397	0	215
SLU-STR-019	786	1340	37773	-16872	9734	0	1554
SLU-STR-020	0	1147	35598	-13748	4307	0	1147
SLU-STR-021	511	802	34829	-16724	7098	0	951

SLU-STR-022	431	1010	34010	-5603	6233	0	1098
SLU-STR-023	969	1280	36617	-13934	12012	0	1605
SLU-STR-024	969	1271	36356	-13229	11265	0	1598
SLU-STR-025	1562	909	37775	-11925	16349	0	1807
SLU-STR-026	0	811	35709	-9931	4357	0	811
SLU-STR-027	1015	638	34808	-14868	11389	0	1199
SLU-STR-028	855	743	34014	-2512	9859	0	1133
SLU-STR-029	1924	878	36615	-9335	20163	0	2115
SLU-STR-030	1924	874	36346	-8697	19412	0	2114
SLU-STR-031	0	687	18545	-8525	2397	0	687
SLU-STR-032	1038	869	37773	-11417	11857	0	1354
SLU-STR-033	252	675	35598	-8293	6431	0	720
SLU-STR-034	763	330	34829	-11269	9222	0	831
SLU-STR-035	683	538	34010	-149	8357	0	869
SLU-STR-036	1221	808	36617	-8479	14135	0	1464
SLU-STR-037	1221	799	36356	-7774	13388	0	1459
SLU-STR-038	1814	437	37775	-6470	18472	0	1866
SLU-STR-039	252	340	35709	-4476	6481	0	423
SLU-STR-040	1267	166	34808	-9413	13513	0	1278
SLU-STR-041	1107	271	34014	2942	11983	0	1140
SLU-STR-042	2176	407	36615	-3880	22286	0	2214
SLU-STR-043	2176	403	36346	-3242	21536	0	2213
SLU-STR-044	252	215	18545	-3070	4523	0	332
SLU-STR-045	912	869	37773	-11417	10796	0	1260
SLU-STR-046	126	675	35598	-8293	5369	0	687
SLU-STR-047	637	330	34829	-11269	8160	0	718
SLU-STR-048	557	538	34010	-149	7295	0	774
SLU-STR-049	1095	808	36617	-8479	13073	0	1361
SLU-STR-050	1095	799	36356	-7774	12326	0	1356
SLU-STR-051	1688	437	37775	-6470	17410	0	1743
SLU-STR-052	126	340	35709	-4476	5419	0	362
SLU-STR-053	1141	166	34808	-9413	12451	0	1153
SLU-STR-054	981	271	34014	2942	10921	0	1018
SLU-STR-055	2050	407	36615	-3880	21225	0	2090
SLU-STR-056	2050	403	36346	-3242	20474	0	2090
SLU-STR-057	126	215	18545	-3070	3460	0	250
SLU-STR-058	1164 378	1340 1147	37773	-16872	12918	0	1775
SLU-STR-059 SLU-STR-060	889	802	35598 34829	-13748 -16724	7492 10284	0	1207 1197
SLU-STR-061	809	1010	34010	-5603	9419	0	1294
SLU-STR-062	1347	1280	36617	-13934	15196	0	1858
SLU-STR-063	1347	1271	36356	-13229	14450	0	1852
SLU-STR-064	1940	909	37775	-11925	19533	0	2142
SLU-STR-065	378	811	35709	-9931	7542	0	895
SLU-STR-066	1393	638	34808	-14868	14575	0	1532
SLU-STR-067	1233	743	34014	-2512	13045	0	1440

SLU-STR-068	2302	878	36615	-9335	23348	0	2464
SLU-STR-069	2302	874	36346	-8697	22597	0	2463
SLU-STR-070	378	687	18545	-8525	5586	0	784
SLU-GEO-001			24475				
SLU-GEO-002	245	681	24475	-7880	3825	0	724
SLU-GEO-002	399	409	24475	-4728	5128	0	571
SLU-GEO-004	245	681	16557	-7880	3568	0	724
SLU-GEO-005	399	409	16557	-4728	4871	0	571
SLU-GEO-005	678	749	30242	-9843	8200	0	1010
	0	582				0	582
SLU-GEO-007			28367	-7150	3512		
SLU-GEO-008	441	285	27704	-9715	5924	0	525
SLU-GEO-009	372	464	26997	-129	5177	0	594
SLU-GEO-010	836	697	29245	-7309	10166	0	1088
SLU-GEO-011	836	689	29020	-6702	9522	0	1084
SLU-GEO-012	1346	377	30243	-5583	13900	0	1398
SLU-GEO-013	0	293	28462	-3863	3555	0	293
SLU-GEO-014	875	144	27686	-8117	9621	0	887
SLU-GEO-015	737	234	27001	2533	8301	0	774
SLU-GEO-016	1659	351	29244	-3350	17189	0	1696
SLU-GEO-017	1659	347	29011	-2799	16542	0	1695
SLU-GEO-018	0	186	18272	-2649	2275	0	186
SLU-GEO-019	678	1158	30242	-14570	8200	0	1342
SLU-GEO-020	0	991	28367	-11877	3512	0	991
SLU-GEO-021	441	694	27704	-14443	5924	0	822
SLU-GEO-022	372	873	26997	-4856	5177	0	949
SLU-GEO-023	836	1105	29245	-12037	10166	0	1386
SLU-GEO-024	836	1098	29020	-11430	9522	0	1380
SLU-GEO-025	1346	786	30243	-10311	13900	0	1559
SLU-GEO-026	0	702	28462	-8590	3555	0	702
SLU-GEO-027	875	552	27686	-12844	9621	0	1035
SLU-GEO-028	737	643	27001	-2194	8301	0	978
SLU-GEO-029	1659	760	29244	-8077	17189	0	1825
SLU-GEO-030	1659	756	29011	-7527	16542	0	1823
SLU-GEO-031	0	595	18272	-7377	2275	0	595
SLU-GEO-032	896	749	30242	-9843	10031	0	1167
SLU-GEO-033	217	582	28367	-7150	5343	0	621
SLU-GEO-034	658	285	27704	-9715	7756	0	717
SLU-GEO-035	589	464	26997	-129	7009	0	750
SLU-GEO-036	1053	697	29245	-7309	11997	0	1263
SLU-GEO-037	1053	689	29020	-6702	11353	0	1259
SLU-GEO-038	1563	377	30243	-5583	15731	0	1608
SLU-GEO-039	217	293	28462	-3863	5386	0	365
SLU-GEO-040	1092	144	27686	-8117	11453	0	1102
SLU-GEO-041	955	234	27001	2533	10133	0	983
SLU-GEO-042	1876	351	29244	-3350	19021	0	1909
SLU-GEO-043	1876	347	29011	-2799	18374	0	1908

SLU-GEO-044	217	186	18272	-2649	4107	0	286
SLU-GEO-045	788	749	30242	-9843	9120	0	1087
SLU-GEO-046	109	582	28367	-7150	4432	0	592
SLU-GEO-047	550	285	27704	-9715	6845	0	620
SLU-GEO-048	481	464	26997	-129	6098	0	668
SLU-GEO-049	945	697	29245	-7309	11086	0	1174
SLU-GEO-050	945	689	29020	-6702	10442	0	1170
SLU-GEO-051	1455	377	30243	-5583	14820	0	1504
SLU-GEO-052	109	293	28462	-3863	4475	0	313
SLU-GEO-053	984	144	27686	-8117	10542	0	995
SLU-GEO-054	847	234	27001	2533	9222	0	878
SLU-GEO-055	1768	351	29244	-3350	18110	0	1803
SLU-GEO-056	1768	347	29011	-2799	17463	0	1802
SLU-GEO-057	109	186	18272	-2649	3196	0	216
SLU-GEO-058	1005	1158	30242	-14570	10952	0	1533
SLU-GEO-059	326	991	28367	-11877	6264	0	1043
SLU-GEO-060	767	694	27704	-14443	8676	0	1034
SLU-GEO-061	698	873	26997	-4856	7930	0	1118
SLU-GEO-062	1163	1105	29245	-12037	12918	0	1604
SLU-GEO-063	1163	1098	29020	-11430	12274	0	1599
SLU-GEO-064	1673	786	30243	-10311	16651	0	1848
SLU-GEO-065	326	702	28462	-8590	6307	0	774
SLU-GEO-066	1201	552	27686	-12844	12374	0	1322
SLU-GEO-067	1064	643	27001	-2194	11054	0	1243
SLU-GEO-068	1985	760	29244	-8077	19941	0	2126
SLU-GEO-069	1985	756	29011	-7527	19294	0	2125
SLU-GEO-070	326	595	18272	-7377	5028	0	678
SLU-SIS-001	5583	1940	23957	-14702	40968	-999	5911
SLU-SIS-002	5698	1940	23957	-14702	41940	-999	6020
SLU-SIS-003	5698	1940	18342	-14703	41799	-999	6020
SLU-SIS-004	5817	2072	24880	-16434	43056	-999	6175
SLU-SIS-005	5698	2043	24580	-15960	42241	-999	6053
SLU-SIS-006	5775	1990	24474	-16412	42662	-999	6109
SLU-SIS-007	5763	2022	24361	-14725	42533	-999	6108
SLU-SIS-008	5844	2063	24721	-15989	43401	-999	6198
SLU-SIS-009	5844	2061	24685	-15882	43289	-999	6197
SLU-SIS-010	5935	2006	24880	-15679	44067	-999	6265
SLU-SIS-011	5698	1991	24595	-15377	42249	-999	6036
SLU-SIS-012	5852	1965	24471	-16128	43318	-999	6173
SLU-SIS-013	5828	1981	24362	-14252	43087	-999	6156
SLU-SIS-014	5990	2001	24720	-15286	44648	-999	6316
SLU-SIS-015	5990	2001	24683	-15189	44535	-999	6316
SLU-SIS-016	5698	1973	18615	-15165	41931	-999	6030
SLU-SIS-017	5583	1940	20387	-13794	39367	-999	5911
SLU-SIS-018	5698	1940	20387	-13794	40339	-999	6020
SLU-SIS-019	5698	1940	14771	-13795	40198	-999	6020

SLU-SIS-020	5583	1940	21309	-14015	39471	-999	5911
SLU-SIS-021	5771	2072	21309	-15527	41065	-999	6131
SLU-SIS-022	5652	2043	21009	-15053	40250	-999	6010
SLU-SIS-023	5729	1990	20903	-15504	40671	-999	6065
SLU-SIS-024	5717	2022	20790	-13817	40542	-999	6064
SLU-SIS-025	5798	2063	21150	-15081	41411	-999	6154
SLU-SIS-026	5798	2061	21114	-14974	41298	-999	6154
SLU-SIS-027	5889	2006	21310	-14771	42077	-999	6221
SLU-SIS-028	5652	1991	21025	-14469	40258	-999	5993
SLU-SIS-029	5806	1965	20901	-15221	41328	-999	6130
SLU-SIS-030	5782	1981	20791	-13345	41097	-999	6112
SLU-SIS-031	5944	2001	21150	-14378	42658	-999	6272
SLU-SIS-032	5944	2001	21113	-14281	42545	-999	6272
SLU-SIS-033	5652	1973	15044	-14257	39940	-999	5986
SLU-SIS-034	1675	6467	23957	-47947	14127	1791	6681
SLU-SIS-035	1790	6467	23957	-47947	15099	1791	6710
SLU-SIS-036	1790	6467	18342	-47948	14949	1791	6710
SLU-SIS-037	1675	6467	24880	-48167	14238	1791	6681
SLU-SIS-038	1862	6599	24880	-49679 40205	15832	1791	6857
SLU-SIS-039 SLU-SIS-040	1744 1821	6570 6517	24580 24474	-49205 -49657	15015 15435	1791 1791	6797 6767
SLU-SIS-040	1809	6549	24361	-49037 -47970	15305	1791	6794
SLU-SIS-041	1890	6590	24721	-49233	16177	1791	6855
SLU-SIS-043	1890	6588	24685	-49126	16063	1791	6854
SLU-SIS-044	1981	6533	24880	-48923	16844	1791	6827
SLU-SIS-045	1744	6518	24595	-48622	15023	1791	6748
SLU-SIS-046	1898	6492	24471	-49373	16091	1791	6764
SLU-SIS-047	1874	6508	24362	-47497	15859	1791	6772
SLU-SIS-048	2036	6528	24720	-48531	17423	1791	6839
SLU-SIS-049	2036	6528	24683	-48434	17309	1791	6838
SLU-SIS-050	1744	6500	18615	-48411	14694	1791	6729
SLU-SIS-051	1675	6467	20387	-47042	12502	1791	6681
SLU-SIS-052	1790	6467	20387	-47042	13475	1791	6710
SLU-SIS-053	1790	6467	14771	-47043	13325	1791	6710
SLU-SIS-054	1675	6467	21309	-47261	12613	1791	6681
SLU-SIS-055	1862	6599	21309	-48773	14208	1791	6857
SLU-SIS-056	1744	6570	21009	-48299	13391	1791	6797
SLU-SIS-057	1821	6517	20903	-48751	13811	1791	6767
SLU-SIS-058	1809	6549	20790	-47064	13681	1791	6794
SLU-SIS-059	1890	6590	21150	-48327	14552	1791	6855
SLU-SIS-060 SLU-SIS-061	1890	6588	21114	-48220 48017	14439	1791	6854
SLU-SIS-061 SLU-SIS-062	1981 1744	6533 6518	21310 21025	-48017 -47716	15220 13398	1791 1791	6827 6748
SLU-SIS-062 SLU-SIS-063	1898	6492	20901	-47716	14467	1791	6746
SLU-SIS-064	1874	6508	20791	-46591	14235	1791	6772
SLU-SIS-065	2036	6528	21150	-47625	15800	1791	6839
SLU-SIS-066	2036	6528	21113	-47528	15686	1791	6838
320 010 000		0020					5555

SLU-SIS-067	1744	6500	15044	-47505	13069	1791	6729
SLU-SIS-068	1675	1940	28123	-15761	16023	183	2563
SLU-SIS-069	1790	1940	28123	-15761	16994	183	2640
SLU-SIS-070	1790	1940	22508	-15762	16845	183	2640
SLU-SIS-071	1675	1940	29045	-15982	16134	183	2563
SLU-SIS-072	1862	2072	29046	-17493	17727	183	2786
SLU-SIS-073	1744	2043	28746	-17020	16911	183	2686
SLU-SIS-074	1821	1990	28640	-17471	17330	183	2698
SLU-SIS-075	1809	2022	28527	-15784	17200	183	2713
SLU-SIS-076	1890	2063	28886	-17048	18071	183	2798
SLU-SIS-077	1890	2061	28850	-16941	17958	183	2797
SLU-SIS-078	1981	2006	29046	-16738	18738	183	2819
SLU-SIS-079	1744	1991	28761	-16436	16918	183	2647
SLU-SIS-080	1898	1965	28637	-17188	17986	183	2732
SLU-SIS-081	1874	1981	28527	-15312	17754	183	2727
SLU-SIS-082	2036	2001	28886	-16345	19317	183	2855
SLU-SIS-083	2036	2001	28849	-16248	19204	183	2855
SLU-SIS-084	1744	1973	22780	-16224	16589	183	2633
SLU-SIS-085	1675	1940	16221	-12735	10607	183	2563
SLU-SIS-086	1790	1940	16221	-12735	11579	183	2640
SLU-SIS-087	1790	1940	10606	-12736	11430	183	2640
SLU-SIS-088	1675	1940	17144	-12956	10718	183	2563
SLU-SIS-089	1862	2072	17144	-14467	12313	183	2786
SLU-SIS-090	1744	2043	16844	-13993	11495	183	2686
SLU-SIS-091	1821	1990	16738	-14445	11916	183	2698
SLU-SIS-092	1809	2022	16625	-12758	11785	183	2713
SLU-SIS-093	1890	2063	16984	-14022	12658	183	2798
SLU-SIS-094	1890	2061	16948	-13915	12545	183	2797
SLU-SIS-095	1981	2006	17144	-13712	13326	183	2819
SLU-SIS-096	1744	1991	16859	-13410	11503	183	2647
SLU-SIS-097	1898	1965	16735	-14161	12573	183	2732
SLU-SIS-098	1874	1981	16625	-12285	12340	183	2727
SLU-SIS-099	2036	2001	16984	-13319	13905	183	2855
SLU-SIS-100	2036	2001	16947	-13222	13792	183	2855
SLU-SIS-101	1744	1973	10878	-13198	11174	183	2633
SLU-SIS-102	-5583	-1940	23957	13794	-35721	999	5911
SLU-SIS-103	-5468	-1940	23957	13794	-34749	999	5802
SLU-SIS-104	-5468	-1940	18342	13794	-34914	999	5802
SLU-SIS-105	-5349	-1808	24880	12061	-33613	999	5647
SLU-SIS-106	-5468	-1838	24580	12535	-34434	999	5768
SLU-SIS-107	-5391	-1890	24474	12084	-34016	999	5713
SLU-SIS-108	-5403	-1858	24361	13771	-34148	999	5714
SLU-SIS-109	-5322	-1818	24721	12507	-33271	999	5624
SLU-SIS-110	-5322	-1819	24685	12614	-33385	999	5624
SLU-SIS-111	-5231	-1874	24880	12817	-32601	999	5557
SLU-SIS-112	-5468	-1889	24595	13118	-34426	999	5785
SLU-SIS-113	-5314	-1915	24471	12367	-33359	999	5648

SLU-SIS-114	-5338	-1899	24362	14243	-33593	999	5666
SLU-SIS-115	-5176	-1879	24720	13209	-32024	999	5506
SLU-SIS-116	-5176	-1879	24683	13306	-32138	999	5507
SLU-SIS-117	-5468	-1908	18615	13331	-34777	999	5791
SLU-SIS-118	-5583	-1940	20387	14703	-37389	999	5911
SLU-SIS-119	-5468	-1940	20387	14703	-36417	999	5802
SLU-SIS-120	-5468	-1940	14771	14703	-36582	999	5802
SLU-SIS-121	-5583	-1940	21309	14482	-37265	999	5911
SLU-SIS-122	-5396	-1808	21309	12971	-35670	999	5691
SLU-SIS-123	-5514	-1838	21009	13445	-36492	999	5812
SLU-SIS-124	-5437	-1890	20903	12993	-36073	999	5756
SLU-SIS-125	-5449	-1858	20790	14680	-36205	999	5757
SLU-SIS-126	-5368	-1818	21150	13416	-35328	999	5667
SLU-SIS-127	-5368	-1819	21114	13523	-35442	999	5668
SLU-SIS-128	-5277	-1874	21310	13726	-34658	999	5600
SLU-SIS-129	-5514	-1889	21025	14028	-36484	999	5829
SLU-SIS-130	-5360	-1915	20901	13277	-35417	999	5692
SLU-SIS-131	-5384	-1899	20791	15153	-35650	999	5709
SLU-SIS-132	-5222	-1879	21150	14119	-34081	999	5550
SLU-SIS-133	-5222	-1879	21113	14216	-34195	999	5550
SLU-SIS-134	-5514	-1908	15044	14241	-36834	999	5835
SLU-SIS-135	-1675	-6467	23957	47039	-8880	-1791	6681
SLU-SIS-136	-1560	-6467	23957	47039	-7908	-1791	6653
SLU-SIS-137	-1560	-6467	18342	47040	-8065	-1791	6653
SLU-SIS-138	-1675	-6467	24880	46817	-8763	-1791	6681
SLU-SIS-139	-1487	-6335	24880	45306	-7169	-1791	6508
SLU-SIS-140	-1606	-6365	24580	45780	-7987	-1791	6564
SLU-SIS-141	-1529	-6417	24474	45328	-7568	-1791	6597
SLU-SIS-142	-1541	-6385	24361	47016	-7699	-1791	6569
SLU-SIS-143	-1460	-6345	24721	45752	-6825	-1791	6510
SLU-SIS-144	-1460	-6346	24685	45858	-6939	-1791	6512
SLU-SIS-145	-1369	-6401	24880	46061	-6157	-1791	6546
SLU-SIS-146	-1606	-6416	24595	46363	-7980	-1791	6614
SLU-SIS-147	-1452	-6442	24471	45612	-6912	-1791	6604
SLU-SIS-148	-1476	-6426	24362	47488	-7145	-1791	6594
SLU-SIS-149	-1314	-6406	24720	46454	-5578	-1791	6539
SLU-SIS-150	-1314	-6406	24683	46551	-5693	-1791	6540
SLU-SIS-151	-1606	-6435	18615	46577	-8319	-1791	6632
SLU-SIS-152	-1675	-6467	20387	47950	-10524	-1791	6681
SLU-SIS-153	-1560	-6467	20387	47950	-9552	-1791	6653
SLU-SIS-154	-1560	-6467	14771	47951	-9709 10407	-1791 1701	6653
SLU-SIS-155	-1675	-6467	21309	47729	-10407	-1791 1701	6681
SLU-SIS-156	-1487	-6335	21309	46217	-8813	-1791 1701	6508
SLU-SIS-157	-1606 1520	-6365	21009	46691	-9632	-1791 1701	6564
SLU-SIS-158	-1529	-6417	20903	46240	-9212	-1791 1701	6597
SLU-SIS-159	-1541 1460	-6385 6345	20790	47927	-9343	-1791 1701	6569 6510
SLU-SIS-160	-1460	-6345	21150	46663	-8469	-1791	6510

SLU-SIS-161	-1460	-6346	21114	46770	-8583	-1791	6512
SLU-SIS-162	-1369	-6401	21310	46973	-7801	-1791	6546
SLU-SIS-163	-1606	-6416	21025	47274	-9624	-1791	6614
SLU-SIS-164	-1452	-6442	20901	46523	-8556	-1791	6604
SLU-SIS-165	-1476	-6426	20791	48400	-8789	-1791	6594
SLU-SIS-166	-1314	-6406	21150	47366	-7222	-1791	6539
SLU-SIS-167	-1314	-6406	21113	47462	-7336	-1791	6540
SLU-SIS-168	-1606	-6435	15044	47488	-9963	-1791	6632
SLU-SIS-169	-1675	-1940	28123	12732	-6961	-183	2563
SLU-SIS-170	-1560	-1940	28123	12732	-5989	-183	2489
SLU-SIS-171	-1560	-1940	22508	12733	-6146	-183	2489
SLU-SIS-172	-1675	-1940	29045	12511	-6844	-183	2563
SLU-SIS-173	-1487	-1808	29046	11000	-5250	-183	2341
SLU-SIS-174	-1606	-1838	28746	11474	-6069	-183	2441
SLU-SIS-175	-1529	-1890	28640	11023	-5650	-183	2431
SLU-SIS-176	-1541	-1858	28527	12710	-5781	-183	2414
SLU-SIS-177	-1460	-1818	28886	11446	-4907	-183	2331
SLU-SIS-178	-1460	-1819	28850	11553	-5020	-183	2332
SLU-SIS-179	-1369	-1874	29046	11756	-4239	-183	2321
SLU-SIS-180	-1606	-1889	28761	12057	-6061	-183	2479
SLU-SIS-181	-1452	-1915	28637	11306	-4994	-183	2403
SLU-SIS-182	-1476	-1899	28527	13182	-5227	-183	2405
SLU-SIS-183	-1314	-1879	28886	12148	-3661	-183	2293
SLU-SIS-184	-1314	-1879	28849	12245	-3775	-183	2293
SLU-SIS-185	-1606	-1908	22780	12270	-6400	-183	2494
SLU-SIS-186	-1675	-1940	16221	15764	-12443	-183	2563
SLU-SIS-187	-1560	-1940	16221	15764	-11471	-183	2489
SLU-SIS-188	-1560	-1940	10606	15765	-11628	-183	2489
SLU-SIS-189	-1675	-1940	17144	15543	-12326	-183	2563
SLU-SIS-190	-1487	-1808	17144	14032	-10731	-183	2341
SLU-SIS-191	-1606	-1838	16844	14506	-11550	-183	2441
SLU-SIS-192	-1529	-1890	16738	14054	-11131	-183	2431
SLU-SIS-193	-1541	-1858	16625	15742	-11262	-183	2414
SLU-SIS-194	-1460	-1818	16984	14477	-10387	-183	2331
SLU-SIS-195	-1460	-1819	16948	14584	-10501	-183	2332
SLU-SIS-196	-1369	-1874	17144	14787	-9718	-183	2321
SLU-SIS-197	-1606	-1889	16859	15089	-11543	-183	2479
SLU-SIS-198	-1452	-1915	16735	14338	-10474	-183	2403
SLU-SIS-199	-1476	-1899	16625	16214	-10707	-183	2405
SLU-SIS-200	-1314	-1879	16984	15180	-9140	-183	2293
SLU-SIS-201	-1314	-1879	16947	15277	-9254	-183	2293
SLU-SIS-202	-1606	-1908	10878	15302	-11882	-183	2494
SLE-RAR-001			22172				
SLE-RAR-002	188	524	22172	-6061	3230	0	557
SLE-RAR-003	314	314	22172	-3637	4289	0	444
SLE-RAR-004	188	524	16557	-6061	3091	0	557

SLE-RAR-006 538 599 26785 -7874 6758 0 805 SLE-RAR-007 0 465 25285 -5720 3043 0 465 SLE-RAR-008 350 228 24755 -7772 4949 0 418	SLE-RAR-005	314	314	16557	-3637	4150	0	444
SLE-RAR-008 350 228 24755 -7772 4949 0		_						
SLE-RAR-009 295 371 24190 -103 4356 0 474 SLE-RAR-010 664 557 25988 -5848 8322 0 867 SLE-RAR-011 664 551 25908 -5362 7807 0 863 SLE-RAR-012 1077 300 26786 -4439 11356 0 11118 SLE-RAR-013 0 233 25362 -3069 3077 0 233 SLE-RAR-015 590 186 24193 2044 6876 0 618 SLE-RAR-016 1327 279 25987 -2654 13988 0 1356 SLE-RAR-016 0 148 17920 -2103 2116 0 148 SLE-RAR-019 538 913 26785 -11511 6758 0 1060 SLE-RAR-021 350 542 24755 -11409 4949 0 645 SLE-RAR-023 664	SLE-RAR-007			25285		3043	0	
SLE-RAR-010 664 557 25988 -5848 8322 0 867 SLE-RAR-011 664 551 25808 -5362 7807 0 863 SLE-RAR-012 1077 300 26786 -4439 11356 0 1118 SLE-RAR-013 0 233 25362 -3069 3077 0 233 SLE-RAR-014 700 114 24741 -6483 7932 0 709 SLE-RAR-015 590 186 24193 2044 6876 0 618 SLE-RAR-016 1327 279 25987 -2654 13988 0 1356 SLE-RAR-017 1327 276 25801 -2214 13470 0 148 SLE-RAR-017 1327 276 25801 -2114 13470 0 1356 SLE-RAR-017 1327 276 25801 -2114 13470 0 148 SLE-RAR-017 1327	SLE-RAR-008	350	228	24755	-7772	4949	0	418
SLE-RAR-011 664 551 25808 -5362 7807 0 863 SLE-RAR-012 1077 300 26786 -4439 11356 0 1118 SLE-RAR-014 700 114 24741 -6483 7932 0 709 SLE-RAR-015 590 186 24193 2044 6876 0 618 SLE-RAR-016 1327 279 25987 -2654 13988 0 1356 SLE-RAR-017 1327 276 25801 -2214 13470 0 1356 SLE-RAR-018 0 148 17920 -2103 2116 0 148 SLE-RAR-019 538 913 26785 -11511 6758 0 1060 SLE-RAR-020 780 25285 -9356 3043 0 780 SLE-RAR-021 350 542 24755 -11409 4949 0 645 SLE-RAR-022 295 686 </td <td>SLE-RAR-009</td> <td>295</td> <td>371</td> <td>24190</td> <td>-103</td> <td>4356</td> <td>0</td> <td>474</td>	SLE-RAR-009	295	371	24190	-103	4356	0	474
SLE-RAR-012 1077 300 26786 -4439 11356 0 1118 SLE-RAR-013 0 233 25362 -3069 3077 0 233 SLE-RAR-014 700 114 24741 -6483 7932 0 709 SLE-RAR-015 590 186 24193 2044 6876 0 618 SLE-RAR-016 1327 279 25987 -2654 13988 0 1356 SLE-RAR-017 1327 276 25801 -2214 13470 0 1356 SLE-RAR-018 0 148 17920 -2103 2116 0 148 SLE-RAR-019 538 913 26785 -11511 6758 0 1060 SLE-RAR-020 0 780 25285 -9356 3043 0 780 SLE-RAR-021 350 542 24755 -11409 4949 0 645 SLE-RAR-022 295 686 24190 -3739 4356 0 746 SLE-RAR-023 664 872 25988 -9484 8322 0 1096 SLE-RAR-024 664 866 25808 -8999 7807 0 1091 SLE-RAR-025 1077 614 26786 -8076 11356 0 1240 SLE-RAR-026 0 547 25362 6706 3077 0 547 SLE-RAR-029 1327 593 25987 6291 13988 0 1454 SLE-RAR-030 1327 593 25987 6291 13988 0 1454 SLE-RAR-030 1327 590 25801 -5851 13470 0 1452 SLE-RAR-034 524 228 24755 -7772 6415 0 571 SLE-RAR-034 524 228 24755 -7777 6415 0 593 SLE-RAR-034 524 228 24755 -7777 6415 0 598 SLE-RAR-034 524 228 24755 -7777 6415 0 598 SLE-RAR-036 837 557 25988 -5848 9788 0 1006 SLE-RAR-036 837 557 25988 -5848 9788 0 1006 SLE-RAR-039 174 233 25362 -3069 4543 0 290 SLE-RAR-030 174 233 25362 -3069 4543 0 290 SLE-RAR-034 524 228 24755 -7772 6415 0 598 SLE-RAR-036 837 557 25988 -5848 9788 0 1006 SLE-RAR-034 174 148 17920 -2103 3582 0 290 SLE-RAR-034 524 228 24755 -7772 6415 0 598 SLE-RAR-034 174 233 25362 -3069 4543 0 290 SLE-RAR-034 174 148 17920 -2103 3582 0 228 SLE-RAR-034 1501 276 25801 -2214 14935 0 1526 SLE-RAR-044 174 148 17920 -2103 3582 0 228 SLE-RAR-044 174	SLE-RAR-010	664	557	25988	-5848	8322	0	867
SLE-RAR-013 0 233 25362 -3069 3077 0 233 SLE-RAR-014 700 114 24741 -6483 7932 0 709 SLE-RAR-015 590 186 24193 2044 6876 0 618 SLE-RAR-016 1327 279 25987 -2654 13988 0 1356 SLE-RAR-017 1327 276 25801 -2214 13470 0 1356 SLE-RAR-018 0 148 17920 -2103 2116 0 148 SLE-RAR-019 538 913 26785 -11511 6758 0 1060 SLE-RAR-020 0 780 25285 -9356 3043 0 780 SLE-RAR-021 350 542 24755 -11409 4949 0 645 SLE-RAR-022 295 686 24190 -3739 4356 0 776 SLE-RAR-022 295	SLE-RAR-011	664	551	25808	-5362	7807	0	863
SLE-RAR-014 700 114 24741 -6483 7932 0 709 SLE-RAR-015 590 186 24193 2044 6876 0 618 SLE-RAR-016 1327 279 25987 -2654 13988 0 1356 SLE-RAR-017 1327 276 25801 -2214 13470 0 1356 SLE-RAR-018 0 148 17920 -2103 2116 0 148 SLE-RAR-019 38 913 26785 -11511 6758 0 1060 SLE-RAR-020 0 780 25285 -9356 3043 0 780 SLE-RAR-021 350 542 24755 -11409 4949 0 645 SLE-RAR-022 295 686 24190 -3739 4356 0 746 SLE-RAR-023 664 872 25988 -9484 8322 0 1096 SLE-RAR-024 664	SLE-RAR-012	1077	300	26786	-4439	11356	0	1118
SLE-RAR-015 590 186 24193 2044 6876 0 618 SLE-RAR-016 1327 279 25987 -2654 13988 0 1356 SLE-RAR-017 1327 276 25801 -2214 13470 0 1356 SLE-RAR-018 0 148 17920 -2103 2116 0 148 SLE-RAR-020 0 780 25285 -11511 6758 0 1060 SLE-RAR-021 350 542 24755 -11409 4949 0 645 SLE-RAR-022 295 686 24190 -3739 4356 0 746 SLE-RAR-023 664 872 25988 -9484 8322 0 1096 SLE-RAR-024 664 866 25808 -8999 7807 0 1091 SLE-RAR-025 1077 614 26786 -8076 11356 0 1240 SLE-RAR-025 1077<	SLE-RAR-013	0	233	25362	-3069	3077	0	233
SLE-RAR-016 1327 279 25987 -2654 13988 0 1356 SLE-RAR-017 1327 276 25801 -2214 13470 0 1356 SLE-RAR-018 0 148 17920 -2103 2116 0 148 SLE-RAR-019 538 913 26785 -11511 6758 0 1060 SLE-RAR-020 0 780 25285 -9356 3043 0 780 SLE-RAR-021 350 542 24755 -11409 4949 0 645 SLE-RAR-021 350 542 24755 -11409 4949 0 645 SLE-RAR-021 350 542 24755 -11409 4949 0 645 SLE-RAR-022 686 2490 -3739 4356 0 746 SLE-RAR-023 664 872 25988 -9484 8322 0 1096 SLE-RAR-025 1077 614 <td>SLE-RAR-014</td> <td>700</td> <td>114</td> <td>24741</td> <td>-6483</td> <td>7932</td> <td>0</td> <td>709</td>	SLE-RAR-014	700	114	24741	-6483	7932	0	709
SLE-RAR-017 1327 276 25801 -2214 13470 0 1356 SLE-RAR-018 0 148 17920 -2103 2116 0 148 SLE-RAR-019 538 913 26785 -11511 6758 0 1060 SLE-RAR-020 0 780 25285 -9356 3043 0 780 SLE-RAR-021 350 542 24755 -11409 4949 0 645 SLE-RAR-022 295 686 24190 -3739 4356 0 746 SLE-RAR-023 664 872 25988 -9484 8322 0 1096 SLE-RAR-024 664 866 25808 -8999 7807 0 1091 SLE-RAR-025 1077 614 26786 -8076 11356 0 1240 SLE-RAR-027 700 428 24741 -10120 7932 0 821 SLE-RAR-028 590 <td>SLE-RAR-015</td> <td>590</td> <td>186</td> <td>24193</td> <td>2044</td> <td>6876</td> <td></td> <td>618</td>	SLE-RAR-015	590	186	24193	2044	6876		618
SLE-RAR-018 0 148 17920 -2103 2116 0 148 SLE-RAR-019 538 913 26785 -11511 6758 0 1060 SLE-RAR-020 0 780 25285 -9356 3043 0 780 SLE-RAR-021 350 542 24755 -11409 4949 0 645 SLE-RAR-022 295 686 24190 -3739 4356 0 746 SLE-RAR-023 664 872 25988 -9484 8322 0 1096 SLE-RAR-024 664 866 25808 -8999 7807 0 1091 SLE-RAR-025 1077 614 26786 -8076 11356 0 1240 SLE-RAR-026 0 547 25362 -6706 3077 0 542 SLE-RAR-027 700 428 24741 -10120 7932 0 821 SLE-RAR-028 590		_	_					
SLE-RAR-019 538 913 26785 -11511 6758 0 1060 SLE-RAR-020 0 780 25285 -9356 3043 0 780 SLE-RAR-021 350 542 24755 -11409 4949 0 645 SLE-RAR-022 295 686 24190 -3739 4356 0 746 SLE-RAR-023 664 872 25988 -9484 8322 0 1096 SLE-RAR-024 664 866 25808 -8999 7807 0 1091 SLE-RAR-025 1077 614 26786 -8076 11356 0 1240 SLE-RAR-026 0 547 25362 -6706 3077 0 524 SLE-RAR-027 700 428 24741 -10120 7932 0 821 SLE-RAR-028 590 500 24193 -1593 6876 0 773 SLE-RAR-030 1327		1327	276	25801	-2214	13470		1356
SLE-RAR-020 0 780 25285 -9356 3043 0 780 SLE-RAR-021 350 542 24755 -11409 4949 0 645 SLE-RAR-022 295 686 24190 -3739 4356 0 746 SLE-RAR-023 664 872 25988 -9484 8322 0 1096 SLE-RAR-024 664 866 25808 -8999 7807 0 1091 SLE-RAR-025 1077 614 26786 -8076 11356 0 1240 SLE-RAR-026 0 547 25362 -6706 3077 0 547 SLE-RAR-027 700 428 24741 -10120 7932 0 821 SLE-RAR-028 590 500 24193 -1593 6876 0 773 SLE-RAR-030 1327 590 25801 -5851 13988 0 1454 SLE-RAR-031 0		·				2116		
SLE-RAR-021 350 542 24755 -11409 4949 0 645 SLE-RAR-022 295 686 24190 -3739 4356 0 746 SLE-RAR-023 664 872 25988 -9484 8322 0 1096 SLE-RAR-024 664 866 25808 -8999 7807 0 1091 SLE-RAR-025 1077 614 26786 -8076 11356 0 1240 SLE-RAR-026 0 547 25362 -6706 3077 0 547 SLE-RAR-027 700 428 24741 -10120 7932 0 821 SLE-RAR-028 590 500 24193 -1593 6876 0 773 SLE-RAR-029 1327 593 25987 -6291 13988 0 1454 SLE-RAR-030 1327 590 25801 -5851 13470 0 1452 SLE-RAR-031 0 </td <td></td> <td>_</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>		_						
SLE-RAR-022 295 686 24190 -3739 4356 0 746 SLE-RAR-023 664 872 25988 -9484 8322 0 1096 SLE-RAR-024 664 866 25808 -8999 7807 0 1091 SLE-RAR-025 1077 614 26786 -8076 11356 0 1240 SLE-RAR-026 0 547 25362 -6706 3077 0 547 SLE-RAR-027 700 428 24741 -10120 7932 0 821 SLE-RAR-028 590 500 24193 -1593 6876 0 773 SLE-RAR-029 1327 593 25987 -6291 13988 0 1454 SLE-RAR-030 1327 590 25801 -5851 13470 0 1452 SLE-RAR-031 0 462 17920 -5739 2116 0 462 SLE-RAR-032 712 <td></td> <td>•</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>		•						
SLE-RAR-023 664 872 25988 -9484 8322 0 1096 SLE-RAR-024 664 866 25808 -8999 7807 0 1091 SLE-RAR-025 1077 614 26786 -8076 11356 0 1240 SLE-RAR-026 0 547 25362 -6706 3077 0 547 SLE-RAR-027 700 428 24741 -10120 7932 0 821 SLE-RAR-028 590 500 24193 -1593 6876 0 773 SLE-RAR-029 1327 593 25987 -6291 13988 0 1454 SLE-RAR-030 1327 590 25801 -5851 13470 0 1452 SLE-RAR-031 0 462 17920 -5739 2116 0 462 SLE-RAR-032 712 599 26785 -7874 8224 0 931 SLE-RAR-033 174 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>•</td> <td></td>							•	
SLE-RAR-024 664 866 25808 -8999 7807 0 1091 SLE-RAR-025 1077 614 26786 -8076 11356 0 1240 SLE-RAR-026 0 547 25362 -6706 3077 0 547 SLE-RAR-027 700 428 24741 -10120 7932 0 821 SLE-RAR-028 590 500 24193 -1593 6876 0 773 SLE-RAR-029 1327 593 25987 -6291 13988 0 1454 SLE-RAR-030 1327 590 25801 -5851 13470 0 1452 SLE-RAR-031 0 462 17920 -5739 2116 0 462 SLE-RAR-032 712 599 26785 -7874 8224 0 931 SLE-RAR-033 174 465 25285 -5720 4508 0 497 SLE-RAR-034 524 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>_</td>								_
SLE-RAR-025 1077 614 26786 -8076 11356 0 1240 SLE-RAR-026 0 547 25362 -6706 3077 0 547 SLE-RAR-027 700 428 24741 -10120 7932 0 821 SLE-RAR-028 590 500 24193 -1593 6876 0 773 SLE-RAR-029 1327 593 25987 -6291 13988 0 1454 SLE-RAR-030 1327 590 25801 -5851 13470 0 1452 SLE-RAR-031 0 462 17920 -5739 2116 0 462 SLE-RAR-032 712 599 26785 -7874 8224 0 931 SLE-RAR-033 174 465 25285 -5720 4508 0 497 SLE-RAR-034 524 228 24755 -7772 6415 0 571 SLE-RAR-034 524							•	
SLE-RAR-026 0 547 25362 -6706 3077 0 547 SLE-RAR-027 700 428 24741 -10120 7932 0 821 SLE-RAR-028 590 500 24193 -1593 6876 0 773 SLE-RAR-029 1327 593 25987 -6291 13988 0 1454 SLE-RAR-030 1327 590 25801 -5851 13470 0 1452 SLE-RAR-031 0 462 17920 -5739 2116 0 462 SLE-RAR-032 712 599 26785 -7874 8224 0 931 SLE-RAR-033 174 465 25285 -5720 4508 0 497 SLE-RAR-034 524 228 24755 -7772 6415 0 571 SLE-RAR-035 469 371 24190 -103 5821 0 598 SLE-RAR-036 837								
SLE-RAR-027 700 428 24741 -10120 7932 0 821 SLE-RAR-028 590 500 24193 -1593 6876 0 773 SLE-RAR-029 1327 593 25987 -6291 13988 0 1454 SLE-RAR-030 1327 590 25801 -5851 13470 0 1452 SLE-RAR-031 0 462 17920 -5739 2116 0 462 SLE-RAR-032 712 599 26785 -7874 8224 0 931 SLE-RAR-033 174 465 25285 -5720 4508 0 497 SLE-RAR-034 524 228 24755 -7772 6415 0 571 SLE-RAR-035 469 371 24190 -103 5821 0 598 SLE-RAR-036 837 557 25988 -5848 9788 0 1006 SLE-RAR-038 1251		_						_
SLE-RAR-028 590 500 24193 -1593 6876 0 773 SLE-RAR-029 1327 593 25987 -6291 13988 0 1454 SLE-RAR-030 1327 590 25801 -5851 13470 0 1452 SLE-RAR-031 0 462 17920 -5739 2116 0 462 SLE-RAR-032 712 599 26785 -7874 8224 0 931 SLE-RAR-033 174 465 25285 -5720 4508 0 497 SLE-RAR-034 524 228 24755 -7772 6415 0 591 SLE-RAR-035 469 371 24190 -103 5821 0 598 SLE-RAR-036 837 557 25988 -5848 9788 0 1006 SLE-RAR-037 837 551 25808 -5362 9273 0 1003 SLE-RAR-0408 1251 <td></td> <td>•</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>_</td>		•						_
SLE-RAR-029 1327 593 25987 -6291 13988 0 1454 SLE-RAR-030 1327 590 25801 -5851 13470 0 1452 SLE-RAR-031 0 462 17920 -5739 2116 0 462 SLE-RAR-032 712 599 26785 -7874 8224 0 931 SLE-RAR-033 174 465 25285 -5720 4508 0 497 SLE-RAR-034 524 228 24755 -7772 6415 0 571 SLE-RAR-035 469 371 24190 -103 5821 0 598 SLE-RAR-036 837 557 25988 -5848 9788 0 1006 SLE-RAR-037 837 551 25808 -5362 9273 0 1003 SLE-RAR-038 1251 300 26786 -4439 12821 0 1286 SLE-RAR-040 874 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>_</td>								_
SLE-RAR-030 1327 590 25801 -5851 13470 0 1452 SLE-RAR-031 0 462 17920 -5739 2116 0 462 SLE-RAR-032 712 599 26785 -7874 8224 0 931 SLE-RAR-033 174 465 25285 -5720 4508 0 497 SLE-RAR-034 524 228 24755 -7772 6415 0 571 SLE-RAR-035 469 371 24190 -103 5821 0 598 SLE-RAR-036 837 557 25988 -5848 9788 0 1006 SLE-RAR-037 837 551 25808 -5362 9273 0 1003 SLE-RAR-038 1251 300 26786 -4439 12821 0 1286 SLE-RAR-0409 174 233 25362 -3069 4543 0 290 SLE-RAR-040 874								
SLE-RAR-031 0 462 17920 -5739 2116 0 462 SLE-RAR-032 712 599 26785 -7874 8224 0 931 SLE-RAR-033 174 465 25285 -5720 4508 0 497 SLE-RAR-034 524 228 24755 -7772 6415 0 571 SLE-RAR-035 469 371 24190 -103 5821 0 598 SLE-RAR-036 837 557 25988 -5848 9788 0 1006 SLE-RAR-037 837 551 25808 -5362 9273 0 1003 SLE-RAR-038 1251 300 26786 -4439 12821 0 1286 SLE-RAR-039 174 233 25362 -3069 4543 0 290 SLE-RAR-040 874 114 24741 -6483 9398 0 881 SLE-RAR-041 764								_
SLE-RAR-033 174 465 25285 -5720 4508 0 497 SLE-RAR-034 524 228 24755 -7772 6415 0 571 SLE-RAR-035 469 371 24190 -103 5821 0 598 SLE-RAR-036 837 557 25988 -5848 9788 0 1006 SLE-RAR-037 837 551 25808 -5362 9273 0 1003 SLE-RAR-038 1251 300 26786 -4439 12821 0 1286 SLE-RAR-039 174 233 25362 -3069 4543 0 290 SLE-RAR-040 874 114 24741 -6483 9398 0 881 SLE-RAR-041 764 186 24193 2044 8342 0 786 SLE-RAR-042 1501 279 25987 -2654 15453 0 1527 SLE-RAR-043 1501 <td>SLE-RAR-031</td> <td>0</td> <td></td> <td></td> <td></td> <td></td> <td>0</td> <td>462</td>	SLE-RAR-031	0					0	462
SLE-RAR-034 524 228 24755 -7772 6415 0 571 SLE-RAR-035 469 371 24190 -103 5821 0 598 SLE-RAR-036 837 557 25988 -5848 9788 0 1006 SLE-RAR-037 837 551 25808 -5362 9273 0 1003 SLE-RAR-038 1251 300 26786 -4439 12821 0 1286 SLE-RAR-039 174 233 25362 -3069 4543 0 290 SLE-RAR-040 874 114 24741 -6483 9398 0 881 SLE-RAR-041 764 186 24193 2044 8342 0 786 SLE-RAR-042 1501 279 25987 -2654 15453 0 1527 SLE-RAR-043 1501 276 25801 -2214 14935 0 1526 SLE-RAR-044 174 </td <td>SLE-RAR-032</td> <td>712</td> <td>599</td> <td>26785</td> <td>-7874</td> <td>8224</td> <td>0</td> <td>931</td>	SLE-RAR-032	712	599	26785	-7874	8224	0	931
SLE-RAR-035 469 371 24190 -103 5821 0 598 SLE-RAR-036 837 557 25988 -5848 9788 0 1006 SLE-RAR-037 837 551 25808 -5362 9273 0 1003 SLE-RAR-038 1251 300 26786 -4439 12821 0 1286 SLE-RAR-039 174 233 25362 -3069 4543 0 290 SLE-RAR-040 874 114 24741 -6483 9398 0 881 SLE-RAR-041 764 186 24193 2044 8342 0 786 SLE-RAR-042 1501 279 25987 -2654 15453 0 1527 SLE-RAR-043 1501 276 25801 -2214 14935 0 1526 SLE-RAR-044 174 148 17920 -2103 3582 0 228 SLE-RAR-046 84 <td>SLE-RAR-033</td> <td>174</td> <td>465</td> <td>25285</td> <td>-5720</td> <td>4508</td> <td>0</td> <td>497</td>	SLE-RAR-033	174	465	25285	-5720	4508	0	497
SLE-RAR-036 837 557 25988 -5848 9788 0 1006 SLE-RAR-037 837 551 25808 -5362 9273 0 1003 SLE-RAR-038 1251 300 26786 -4439 12821 0 1286 SLE-RAR-039 174 233 25362 -3069 4543 0 290 SLE-RAR-040 874 114 24741 -6483 9398 0 881 SLE-RAR-041 764 186 24193 2044 8342 0 786 SLE-RAR-042 1501 279 25987 -2654 15453 0 1527 SLE-RAR-043 1501 276 25801 -2214 14935 0 1526 SLE-RAR-044 174 148 17920 -2103 3582 0 228 SLE-RAR-045 622 599 26785 -7874 7466 0 864 SLE-RAR-046 84 </td <td>SLE-RAR-034</td> <td>524</td> <td>228</td> <td>24755</td> <td>-7772</td> <td>6415</td> <td>0</td> <td>571</td>	SLE-RAR-034	524	228	24755	-7772	6415	0	571
SLE-RAR-037 837 551 25808 -5362 9273 0 1003 SLE-RAR-038 1251 300 26786 -4439 12821 0 1286 SLE-RAR-039 174 233 25362 -3069 4543 0 290 SLE-RAR-040 874 114 24741 -6483 9398 0 881 SLE-RAR-041 764 186 24193 2044 8342 0 786 SLE-RAR-041 764 186 24193 2044 8342 0 786 SLE-RAR-042 1501 279 25987 -2654 15453 0 1527 SLE-RAR-043 1501 276 25801 -2214 14935 0 1526 SLE-RAR-044 174 148 17920 -2103 3582 0 228 SLE-RAR-045 622 599 26785 -7874 7466 0 864 SLE-RAR-046 84 <td>SLE-RAR-035</td> <td>469</td> <td>371</td> <td>24190</td> <td>-103</td> <td>5821</td> <td>0</td> <td>598</td>	SLE-RAR-035	469	371	24190	-103	5821	0	598
SLE-RAR-038 1251 300 26786 -4439 12821 0 1286 SLE-RAR-039 174 233 25362 -3069 4543 0 290 SLE-RAR-040 874 114 24741 -6483 9398 0 881 SLE-RAR-041 764 186 24193 2044 8342 0 786 SLE-RAR-042 1501 279 25987 -2654 15453 0 1527 SLE-RAR-043 1501 276 25801 -2214 14935 0 1526 SLE-RAR-044 174 148 17920 -2103 3582 0 228 SLE-RAR-045 622 599 26785 -7874 7466 0 864 SLE-RAR-046 84 465 25285 -5720 3751 0 473 SLE-RAR-048 379 371 24190 -103 5064 0 530 SLE-RAR-049 748	SLE-RAR-036	837	557	25988	-5848	9788	0	1006
SLE-RAR-039 174 233 25362 -3069 4543 0 290 SLE-RAR-040 874 114 24741 -6483 9398 0 881 SLE-RAR-041 764 186 24193 2044 8342 0 786 SLE-RAR-042 1501 279 25987 -2654 15453 0 1527 SLE-RAR-043 1501 276 25801 -2214 14935 0 1526 SLE-RAR-044 174 148 17920 -2103 3582 0 228 SLE-RAR-045 622 599 26785 -7874 7466 0 864 SLE-RAR-046 84 465 25285 -5720 3751 0 473 SLE-RAR-047 434 228 24755 -7772 5658 0 490 SLE-RAR-048 379 371 24190 -103 5064 0 530 SLE-RAR-049 748	SLE-RAR-037	837	551	25808	-5362	9273	0	1003
SLE-RAR-040 874 114 24741 -6483 9398 0 881 SLE-RAR-041 764 186 24193 2044 8342 0 786 SLE-RAR-042 1501 279 25987 -2654 15453 0 1527 SLE-RAR-043 1501 276 25801 -2214 14935 0 1526 SLE-RAR-044 174 148 17920 -2103 3582 0 228 SLE-RAR-045 622 599 26785 -7874 7466 0 864 SLE-RAR-046 84 465 25285 -5720 3751 0 473 SLE-RAR-047 434 228 24755 -7772 5658 0 490 SLE-RAR-048 379 371 24190 -103 5064 0 530 SLE-RAR-049 748 557 25988 -5848 9030 0 932	SLE-RAR-038	1251	300	26786	-4439	12821	0	1286
SLE-RAR-041 764 186 24193 2044 8342 0 786 SLE-RAR-042 1501 279 25987 -2654 15453 0 1527 SLE-RAR-043 1501 276 25801 -2214 14935 0 1526 SLE-RAR-044 174 148 17920 -2103 3582 0 228 SLE-RAR-045 622 599 26785 -7874 7466 0 864 SLE-RAR-046 84 465 25285 -5720 3751 0 473 SLE-RAR-047 434 228 24755 -7772 5658 0 490 SLE-RAR-048 379 371 24190 -103 5064 0 530 SLE-RAR-049 748 557 25988 -5848 9030 0 932	SLE-RAR-039	174	233	25362	-3069		0	290
SLE-RAR-042 1501 279 25987 -2654 15453 0 1527 SLE-RAR-043 1501 276 25801 -2214 14935 0 1526 SLE-RAR-044 174 148 17920 -2103 3582 0 228 SLE-RAR-045 622 599 26785 -7874 7466 0 864 SLE-RAR-046 84 465 25285 -5720 3751 0 473 SLE-RAR-047 434 228 24755 -7772 5658 0 490 SLE-RAR-048 379 371 24190 -103 5064 0 530 SLE-RAR-049 748 557 25988 -5848 9030 0 932								
SLE-RAR-043 1501 276 25801 -2214 14935 0 1526 SLE-RAR-044 174 148 17920 -2103 3582 0 228 SLE-RAR-045 622 599 26785 -7874 7466 0 864 SLE-RAR-046 84 465 25285 -5720 3751 0 473 SLE-RAR-047 434 228 24755 -7772 5658 0 490 SLE-RAR-048 379 371 24190 -103 5064 0 530 SLE-RAR-049 748 557 25988 -5848 9030 0 932								
SLE-RAR-044 174 148 17920 -2103 3582 0 228 SLE-RAR-045 622 599 26785 -7874 7466 0 864 SLE-RAR-046 84 465 25285 -5720 3751 0 473 SLE-RAR-047 434 228 24755 -7772 5658 0 490 SLE-RAR-048 379 371 24190 -103 5064 0 530 SLE-RAR-049 748 557 25988 -5848 9030 0 932								
SLE-RAR-045 622 599 26785 -7874 7466 0 864 SLE-RAR-046 84 465 25285 -5720 3751 0 473 SLE-RAR-047 434 228 24755 -7772 5658 0 490 SLE-RAR-048 379 371 24190 -103 5064 0 530 SLE-RAR-049 748 557 25988 -5848 9030 0 932								
SLE-RAR-046 84 465 25285 -5720 3751 0 473 SLE-RAR-047 434 228 24755 -7772 5658 0 490 SLE-RAR-048 379 371 24190 -103 5064 0 530 SLE-RAR-049 748 557 25988 -5848 9030 0 932								
SLE-RAR-047 434 228 24755 -7772 5658 0 490 SLE-RAR-048 379 371 24190 -103 5064 0 530 SLE-RAR-049 748 557 25988 -5848 9030 0 932								
SLE-RAR-048 379 371 24190 -103 5064 0 530 SLE-RAR-049 748 557 25988 -5848 9030 0 932								
SLE-RAR-049 748 557 25988 -5848 9030 0 932								
SLE-RAR-051 1161 300 26786 -4439 12064 0 1199								

SLE-RAR-052	84	233	25362	-3069	3786	О	247
SLE-RAR-053	784	114	24741	-6483	8640	0	792
SLE-RAR-054	674	186	24193	2044	7584	0	699
SLE-RAR-055	1411	279	25987	-2654	14696	0	1438
SLE-RAR-056	1411	276	25801	-2214	14178	0	1438
SLE-RAR-057	84	148	17920	-2103	2825	0	170
SLE-RAR-058	796	913	26785	-11511	8932	0	1212
SLE-RAR-059	258	780	25285	-9356	5217	0	821
SLE-RAR-060	608	542	24755	-11409	7124	0	815
SLE-RAR-061	553	686	24190	-3739	6530	0	881
SLE-RAR-062	921	872	25988	-9484	10496	0	1268
SLE-RAR-063	921	866	25808	-8999	9981	0	1264
SLE-RAR-064	1335	614	26786	-8076	13529	0	1469
SLE-RAR-065	258	547	25362	-6706	5251	0	605
SLE-RAR-066	958	428	24741	-10120	10106	0	1049
SLE-RAR-067	848	500	24193	-1593	9050	0	984
SLE-RAR-068	1585	593	25987	-6291	16162	0	1692
SLE-RAR-069	1585	590	25801	-5851	15644	0	1691
SLE-RAR-070	258	462	17920	-5739	4291	0	529
SLE-RAR-071	646	359	24941	-4724	7472	0	739
SLE-RAR-072	0	279	24086	-3432	2503	0	279
SLE-RAR-073	560	182	24227	-6218	6674	0	589
SLE-RAR-074	472	297	23789	-82	5829	0	558
SLE-RAR-075	796	334	24461	-3509	9051	0	864
SLE-RAR-076	796	331	24349	-3217	8740	0	862
SLE-RAR-077	0	177	18081	-2523	2189	0	177
SLE-RAR-078	646	674	24941	-8361	7472	0	934
SLE-RAR-079	0	594	24086	-7069	2503	0	594
SLE-RAR-080	560	497	24227	-9854	6674	0	749
SLE-RAR-081	472	611	23789	-3719	5829	0	772
SLE-RAR-082	796	649	24461	-7145	9051	0	1027
SLE-RAR-083	796	645	24349	-6854	8740	0	1025
SLE-RAR-084	0	491	18081	-6160	2189	0	491
SLE-RAR-085	820	359	24941	-4724	8937	0	895
SLE-RAR-086	174	279	24086	-3432	3969	0	329
SLE-RAR-087	734	182	24227	-6218	8140	0	756
SLE-RAR-088	646	297	23789	-82	7295	0	711
SLE-RAR-089	970	334	24461	-3509	10517	0	1026
SLE-RAR-090	970	331	24349	-3217	10206	0	1025
SLE-RAR-091	174	177	18081	-2523	3655	0	248
SLE-RAR-092	730	359	24941	-4724	8180	0	814
SLE-RAR-093	84	279	24086	-3432	3212	0	292
SLE-RAR-094	644	182	24227	-6218	7383	0	669
SLE-RAR-095	556	297	23789	-82	6538	0	630
SLE-RAR-096	880	334	24461	-3509	9759	0	942
SLE-RAR-097	880	331	24349	-3217	9448	0	940
SLE-RAR-098	84	177	18081	-2523	2897	0	196

SLE-RAR-099	904	674	24941	-8361	9646	0	1128
SLE-RAR-100	258	594	24086	-7069	4678	0	647
SLE-RAR-101	818	497	24227	-9854	8849	0	957
SLE-RAR-102	730	611	23789	-3719	8004	0	952
SLE-RAR-103	1054	649	24461	-7145	11225	0	1238
SLE-RAR-104	1054	645	24349	-6854	10914	0	1236
SLE-RAR-105	258	491	18081	-6160	4363	0	555
SLE-QPE-001	0	0	22172	0	1642	0	0
SLE-QPE-002	314	0	22172	0	4289	0	314

5 DISTRIBUZIONE DELLE SOLLECITAZIONI IN TESTA PALI

5.1 GEOMETRIA DELLA PALIFICATA DI FONDAZIONE

Diametro dei pali di fondazione e loro numero:

diam 1.2 m

Num tot 8 Numero totale di pali

Geometria del plinto:

 dtrasv
 15.5
 m

 dlong
 6.4
 m

 hpl
 1.8
 m

Le caratteristiche di sollecitazione sul singolo palo sono state determinate a partire dalle sollecitazioni riportate all'intradosso del plinto di fondazione, secondo le seguenti relazioni (*distribuzione rigida delle sollecitazioni*):

 $N_{max} = F_3 / n_{pali} + ass(M_1) / W_1palificata + ass(M_2) / W_2palificata$

 $N_{min} = F_3 / n_{pali}$ - ass(M₁) / W₁palificata - ass(M₂) / W₂palificata

 $H = \sqrt{((F_1 / n_{pali})^2 + (F_2 / n_{pali})^2)}$

NB: coordinate riferite al baricentro della palificata

num.	X (trasv)	Y (long)	X2	Y2	WI	Wt
	m	m	m2	m2		
P1	-6.53	2.00	42.6	4.0	1.6E+01	-2.9E+01
P2	-2.18	2.00	4.7	4.0	1.6E+01	-8.7E+01
P3	2.18	2.00	4.7	4.0	1.6E+01	8.7E+01
P4	6.53	2.00	42.6	4.0	1.6E+01	2.9E+01
P5	-6.53	-2.00	42.6	4.0	-1.6E+01	-2.9E+01
P6	-2.18	-2.00	4.7	4.0	-1.6E+01	-8.7E+01
P7	2.18	-2.00	4.7	4.0	-1.6E+01	8.7E+01
P8	6.53	-2.00	42.6	4.0	-1.6E+01	2.9E+01
P9						
P10						
P11						
P12						
P13						
P14						
P15						
P16						
P17						
P18						
P19						
P20						

Σ X2	Σ Y2
189.23	32.00
m4	m4

5.2 DISTRIBUZIONE DELLE SOLLECITAZIONI IN TESTA AI PALI

Per ogni palo della fondazione e per ogni combinazione di carico considerata, si riportano a seguire i valori delle forze assiali agenti in testa N_{max} [kN] e N_{min} [kN], il valore del taglio medio nonché il valore del momento flettente agente alla testa del palo (valore massimo). Per il calcolo di tale valore in funzione del taglio agente alla testa del palo, si rimanda all'elaborato progettuale IF26.0.1.E.ZZ.CL.VI.04.0.3.002.A - Relazione geotecnica di calcolo delle fondazioni.

α	2.11
D (m)	1.2

	Nmax	Nmin	Tmedia	Mmax
	[kN]	[kN]	[kN]	[kNm]
SLU-STR-001	4490	3281	104	0
SLU-STR-002	4460	3311	83	220
SLU-STR-003	2626	1513	104	174
SLU-STR-004	2596	1544	83	220
SLU-STR-005	5725	3719	146	174
SLU-STR-006	5005	3895	84	309
SLU-STR-007	5186	3521	76	178
SLU-STR-008	4646	3856	86	160
SLU-STR-009	5621	3533	158	182
SLU-STR-010	5518	3571	157	333
SLU-STR-011	5969	3475	203	331
SLU-STR-012	4890	4037	42	427
SLU-STR-013	5388	3314	129	90
SLU-STR-014	4970	3533	112	271
SLU-STR-015	5973	3181	246	236
SLU-STR-016	5870	3216	246	518
SLU-STR-017	2574	2062	27	518
SLU-STR-018	5913	3531	194	57
SLU-STR-019	5193	3706	143	410
SLU-STR-020	5374	3333	119	302
SLU-STR-021	4834	3668	137	251
SLU-STR-022	5809	3345	201	289
SLU-STR-023	5706	3383	200	423
SLU-STR-024	6157	3287	226	421
SLU-STR-025	5078	3849	101	476
SLU-STR-026	5577	3125	150	214
SLU-STR-027	4955	3548	142	316
SLU-STR-028	6161	2993	264	299
SLU-STR-029	6058	3028	264	558
SLU-STR-030	2762	1874	86	557

SLU-STR-031	5858	3586	169	181
SLU-STR-032	5138	3762	90	357
SLU-STR-033	5319	3388	104	190
SLU-STR-034	4779	3723	109	219
SLU-STR-035	5754	3400	183	229
SLU-STR-036	5651	3438	182	386
SLU-STR-037	6101	3342	233	385
SLU-STR-038	5023	3904	53	492
SLU-STR-039	5521	3181	160	112
SLU-STR-040	5103	3400	143	337
SLU-STR-041	6106	3048	277	300
SLU-STR-042	6003	3083	277	584
SLU-STR-043	2707	1929	41	583
SLU-STR-044	5791	3652	157	87
SLU-STR-045	5071	3828	86	332
SLU-STR-046	5253	3454	90	181
SLU-STR-047	4713	3790	97	189
SLU-STR-048	5688	3466	170	204
SLU-STR-049	5584	3505	169	359
SLU-STR-050	6035	3409	218	357
SLU-STR-051	4957	3970	45	459
SLU-STR-052	5455	3247	144	96
SLU-STR-053	5037	3467	127	304
SLU-STR-054	6039	3114	261	268
SLU-STR-055	5937	3150	261	551
SLU-STR-056	2640	1996	31	551
SLU-STR-057	6112	3331	222	66
SLU-STR-058	5393	3507	151	468
SLU-STR-059	5574	3133	150	318
SLU-STR-060	5034	3469	162	316
SLU-STR-061	6009	3145	232	341
SLU-STR-062	5905	3184	232	490
SLU-STR-063	6356	3088	268	488
SLU-STR-064	5278	3649	112	565
SLU-STR-065	5776	2926	192	236
SLU-STR-066	5155	3349	180	404
SLU-STR-067	6361	2793	308	379
SLU-STR-068	6258	2829	308	650
SLU-STR-069	2961	1675	98	649
SLU-STR-070	4490	3281	104	207

	Nmax	Nmin		Tmedia	Mmax
	[kN]	[kN]		[kN]	[kNm]
SLU-GEO-001	3059	3059		0	0
SLU-GEO-002	3570	2548		90	191
SLU-GEO-003	3543	2576		71	151
SLU-GEO-004	2564	1575		90	191
SLU-GEO-005	2537	1602		71	151
SLU-GEO-006	4633	2928		126	266
SLU-GEO-007	4012	3080		73	153
SLU-GEO-008	4169	2757		66	138
SLU-GEO-009	3703	3046		74	157
SLU-GEO-010	4544	2767		136	287
SLU-GEO-011	4454	2801		135	286
SLU-GEO-012	4843	2718		175	368
SLU-GEO-013	3913	3202		37	77
SLU-GEO-014	4343	2579		111	234
SLU-GEO-015	3982	2768	•	97	204
SLU-GEO-016	4847	2464		212	447
SLU-GEO-017	4758	2495		212	447
SLU-GEO-018	2518	2051		23	49
SLU-GEO-019	4796	2765		168	354
SLU-GEO-020	4175	2917		124	261
SLU-GEO-021	4332	2594		103	217
SLU-GEO-022	3866	2883		119	250
SLU-GEO-023	4707	2604		173	365
SLU-GEO-024	4618	2638		173	364
SLU-GEO-025	5006	2555		195	411
SLU-GEO-026	4076	3039		88	185
SLU-GEO-027	4506	2416		129	273
SLU-GEO-028	3970	2780		122	258
SLU-GEO-029	5010	2301		228	481
SLU-GEO-030	4921	2332		228	481
SLU-GEO-031	2681	1887		74	157
SLU-GEO-032	4747	2813		146	308
SLU-GEO-033	4127	2965		78	164
SLU-GEO-034	4283	2643		90	189
SLU-GEO-035	3818	2932		94	198
SLU-GEO-036	4658	2653		158	333
SLU-GEO-037	4569	2686		157	332
SLU-GEO-038	4957	2603		201	424
SLU-GEO-039	4028	3088		46	96
SLU-GEO-040	4457	2464		138	290
SLU-GEO-041	4097	2654		123	259

SLU-GEO-042	4961	2350	239	503
SLU-GEO-043	4873	2380	239	503
SLU-GEO-044	2632	1936	36	75
SLU-GEO-045	4690	2870	136	286
SLU-GEO-046	4069	3022	74	156
SLU-GEO-047	4226	2700	77	163
SLU-GEO-048	3761	2989	84	176
SLU-GEO-049	4601	2710	147	309
SLU-GEO-050	4512	2743	146	308
SLU-GEO-051	4900	2660	188	396
SLU-GEO-052	3971	3145	39	82
SLU-GEO-053	4400	2521	124	262
SLU-GEO-054	4040	2711	110	231
SLU-GEO-055	4904	2407	225	475
SLU-GEO-056	4816	2437	225	475
SLU-GEO-057	2575	1993	27	57
SLU-GEO-058	4968	2592	192	404
SLU-GEO-059	4347	2744	130	275
SLU-GEO-060	4504	2422	129	273
SLU-GEO-061	4038	2711	140	295
SLU-GEO-062	4879	2432	201	423
SLU-GEO-063	4790	2465	200	421
SLU-GEO-064	5178	2383	231	487
SLU-GEO-065	4248	2867	97	204
SLU-GEO-066	4678	2244	165	349
SLU-GEO-067	4142	2608	155	328
SLU-GEO-068	5182	2129	266	560
SLU-GEO-069	5094	2159	266	560
SLU-GEO-070	2853	1715	85	179

	N _{max}	N_{min}	T _{media}	M _{max}
	[kN]	[kN]	[kN]	[kNm]
SLU-SIS-001	6068	-78	739	1558
SLU-SIS-002	6128	-139	752	1587
SLU-SIS-003	5417	-832	752	1587
SLU-SIS-004	6374	-154	772	1627
SLU-SIS-005	6269	-124	757	1595
SLU-SIS-006	6297	-179	764	1610
SLU-SIS-007	6217	-127	763	1610
SLU-SIS-008	6360	-180	775	1633
SLU-SIS-009	6345	-173	775	1633

SLU-SIS-010	6411	-191	783	1651
SLU-SIS-011	6251	-102	755	1591
SLU-SIS-012	6328	-210	772	1627
SLU-SIS-013	6235	-145	769	1622
SLU-SIS-014	6414	-233	789	1665
SLU-SIS-015	6398	-228	789	1665
SLU-SIS-016	5476	-822	754	1589
SLU-SIS-017	5489	-392	739	1558
SLU-SIS-018	5550	-453	752	1587
SLU-SIS-019	4838	-1146	752	1587
SLU-SIS-020	5618	-291	739	1558
SLU-SIS-021	5770	-443	766	1616
SLU-SIS-022	5665	-413	751	1584
SLU-SIS-023	5694	-468	758	1599
SLU-SIS-024	5614	-416	758	1598
SLU-SIS-025	5757	-469	769	1622
SLU-SIS-026	5741	-463	769	1622
SLU-SIS-027	5808	-480	778	1640
SLU-SIS-028	5648	-391	749	1579
SLU-SIS-029	5725	-500	766	1616
SLU-SIS-030	5632	-434	764	1611
SLU-SIS-031	5810	-523	784	1653
SLU-SIS-032	5795	-517	784	1653
SLU-SIS-033	4872	-1111	748	1578
SLU-SIS-034	5533	456	835	1761
SLU-SIS-035	5594	396	839	1769
SLU-SIS-036	4882	-297	839	1769
SLU-SIS-037	5663	557	835	1761
SLU-SIS-038	5815	405	857	1807
SLU-SIS-039	5710	435	850	1791
SLU-SIS-040	5738	380	846	1784
SLU-SIS-041	5658	432	849	1791
SLU-SIS-042	5801	379	857	1807
SLU-SIS-043	5786	385	857	1807
SLU-SIS-044	5852	368	853	1799
SLU-SIS-045	5692	457	843	1778
SLU-SIS-046	5769	349	845	1783
SLU-SIS-047	5676	414	847	1785
SLU-SIS-048	5855	325	855	1802
SLU-SIS-049	5840	331	855	1802
SLU-SIS-050	4916	-263	841	1774
SLU-SIS-051	4953	143	835	1761
SLU-SIS-052	5014	83	839	1769

SLU-SIS-053	4303	-610	839	1769
SLU-SIS-054	5083	244	835	1761
SLU-SIS-055	5235	92	857	1807
SLU-SIS-056	5130	122	850	1791
SLU-SIS-057	5159	67	846	1784
SLU-SIS-058	5078	119	849	1791
SLU-SIS-059	5221	66	857	1807
SLU-SIS-060	5206	72	857	1807
SLU-SIS-061	5273	55	853	1799
SLU-SIS-062	5113	144	843	1778
SLU-SIS-063	5190	35	845	1783
SLU-SIS-064	5097	101	847	1785
SLU-SIS-065	5275	12	855	1802
SLU-SIS-066	5260	18	855	1802
SLU-SIS-067	4337	-576	841	1774
SLU-SIS-068	5062	1968	320	676
SLU-SIS-069	5123	1908	330	696
SLU-SIS-070	4412	1215	330	696
SLU-SIS-071	5192	2069	320	676
SLU-SIS-072	5344	1917	348	734
SLU-SIS-073	5239	1947	336	708
SLU-SIS-074	5268	1892	337	711
SLU-SIS-075	5187	1944	339	715
SLU-SIS-076	5330	1891	350	737
SLU-SIS-077	5315	1897	350	737
SLU-SIS-078	5381	1880	352	743
SLU-SIS-079	5221	1969	331	698
SLU-SIS-080	5299	1860	342	720
SLU-SIS-081	5206	1926	341	719
SLU-SIS-082	5384	1837	357	752
SLU-SIS-083	5369	1843	357	752
SLU-SIS-084	4446	1249	329	694
SLU-SIS-085	3131	925	320	676
SLU-SIS-086	3191	864	330	696
SLU-SIS-087	2480	171	330	696
SLU-SIS-088	3261	1025	320	676
SLU-SIS-089	3413	873	348	734
SLU-SIS-090	3307	903	336	708
SLU-SIS-091	3336	848	337	711
SLU-SIS-092	3256	901	339	715
SLU-SIS-093	3399	847	350	737
SLU-SIS-094	3384	854	350	737
SLU-SIS-095	3450	836	352	743

SLU-SIS-096	3290	925	331	698
SLU-SIS-097	3367	817	342	720
SLU-SIS-098	3274	882	341	719
SLU-SIS-099	3453	794	357	752
SLU-SIS-100	3437	799	357	752
SLU-SIS-101	2514	205	329	694
SLU-SIS-102	5708	281	739	1558
SLU-SIS-103	5647	342	725	1529
SLU-SIS-104	4955	-370	725	1529
SLU-SIS-105	5632	588	706	1488
SLU-SIS-106	5662	483	721	1520
SLU-SIS-107	5607	511	714	1506
SLU-SIS-108	5660	431	714	1506
SLU-SIS-109	5606	574	703	1482
SLU-SIS-110	5613	559	703	1482
SLU-SIS-111	5595	625	695	1465
SLU-SIS-112	5684	465	723	1525
SLU-SIS-113	5576	542	706	1489
SLU-SIS-114	5641	449	708	1493
SLU-SIS-115	5552	628	688	1451
SLU-SIS-116	5558	613	688	1451
SLU-SIS-117	4965	-311	724	1526
SLU-SIS-118	5396	-300	739	1558
SLU-SIS-119	5336	-239	725	1529
SLU-SIS-120	4644	-951	725	1529
SLU-SIS-121	5497	-169	739	1558
SLU-SIS-122	5345	-17	711	1500
SLU-SIS-123	5375	-123	727	1532
SLU-SIS-124	5320	-94	720	1517
SLU-SIS-125	5372	-175	720	1517
SLU-SIS-126	5319	-31	708	1494
SLU-SIS-127	5325	-47	708	1494
SLU-SIS-128	5308	20	700	1476
SLU-SIS-129	5396	-140	729	1536
SLU-SIS-130	5288	-63	711	1500
SLU-SIS-131	5354	-156	714	1505
SLU-SIS-132	5265	22	694	1463
SLU-SIS-133	5271	7	694	1463
SLU-SIS-134	4678	-917	729	1538
SLU-SIS-135	5174	816	835	1761
SLU-SIS-136	5113	877	832	1753
SLU-SIS-137	4421	165	832	1753
SLU-SIS-138	5274	946	835	1761

SLU-SIS-139	5122	1098	813	1715
SLU-SIS-140	5152	993	821	1730
SLU-SIS-141	5097	1021	825	1739
SLU-SIS-142	5149	941	821	1731
SLU-SIS-143	5096	1084	814	1716
SLU-SIS-144	5102	1069	814	1716
SLU-SIS-145	5085	1135	818	1725
SLU-SIS-146	5174	975	827	1743
SLU-SIS-147	5066	1052	825	1741
SLU-SIS-148	5131	959	824	1738
SLU-SIS-149	5042	1138	817	1724
SLU-SIS-150	5048	1123	817	1724
SLU-SIS-151	4455	199	829	1748
SLU-SIS-152	4861	236	835	1761
SLU-SIS-153	4800	296	832	1753
SLU-SIS-154	4108	-415	832	1753
SLU-SIS-155	4962	366	835	1761
SLU-SIS-156	4810	518	813	1715
SLU-SIS-157	4840	413	821	1730
SLU-SIS-158	4785	441	825	1739
SLU-SIS-159	4837	361	821	1731
SLU-SIS-160	4784	504	814	1716
SLU-SIS-161	4790	489	814	1716
SLU-SIS-162	4772	555	818	1725
SLU-SIS-163	4861	395	827	1743
SLU-SIS-164	4753	472	825	1741
SLU-SIS-165	4819	379	824	1738
SLU-SIS-166	4730	558	817	1724
SLU-SIS-167	4736	543	817	1724
SLU-SIS-168	4142	-381	829	1748
SLU-SIS-169	4392	2639	320	676
SLU-SIS-170	4331	2700	311	656
SLU-SIS-171	3639	1988	311	656
SLU-SIS-172	4492	2769	320	676
SLU-SIS-173	4340	2921	293	617
SLU-SIS-174	4370	2816	305	643
SLU-SIS-175	4315	2845	304	641
SLU-SIS-176	4367	2764	302	636
SLU-SIS-177	4314	2907	291	614
SLU-SIS-178	4320	2892	292	615
SLU-SIS-179	4303	2959	290	612
SLU-SIS-180	4392	2798	310	653
SLU-SIS-181	4284	2876	300	633

SLU-SIS-182	4349	2783	301	634
SLU-SIS-183	4260	2961	287	604
SLU-SIS-184	4266	2946	287	604
SLU-SIS-185	3673	2022	312	657
SLU-SIS-186	3350	705	320	676
SLU-SIS-187	3289	766	311	656
SLU-SIS-188	2597	55	311	656
SLU-SIS-189	3450	836	320	676
SLU-SIS-190	3298	987	293	617
SLU-SIS-191	3329	882	305	643
SLU-SIS-192	3273	911	304	641
SLU-SIS-193	3326	831	302	636
SLU-SIS-194	3272	974	291	614
SLU-SIS-195	3279	958	292	615
SLU-SIS-196	3261	1025	290	612
SLU-SIS-197	3350	865	310	653
SLU-SIS-198	3242	942	300	633
SLU-SIS-199	3307	849	301	634
SLU-SIS-200	3219	1027	287	604
SLU-SIS-201	3224	1012	287	604
SLU-SIS-202	2631	89	312	657

	Nmax	Nmin	Tmedia	Mmax
	[kN]	[kN]	[kN]	[kNm]
SLE-RAR-001	2772	2772	0	0
SLE-RAR-002	3183	2360	70	147
SLE-RAR-003	3165	2378	56	117
SLE-RAR-004	2472	1667	70	147
SLE-RAR-005	2455	1685	56	117
SLE-RAR-006	4042	2654	101	212
SLE-RAR-007	3548	2773	58	123
SLE-RAR-008	3672	2517	52	110
SLE-RAR-009	3300	2748	59	125
SLE-RAR-010	3971	2526	108	228
SLE-RAR-011	3899	2553	108	227
SLE-RAR-012	4212	2485	140	295
SLE-RAR-013	3468	2872	29	61
SLE-RAR-014	3812	2373	89	187
SLE-RAR-015	3525	2523	77	163
SLE-RAR-016	4215	2282	170	357

SLE-RAR-017	4144	2306	169	357
SLE-RAR-018	2445	2035	18	39
SLE-RAR-019	4168	2528	133	279
SLE-RAR-020	3673	2648	97	206
SLE-RAR-021	3797	2391	81	170
SLE-RAR-022	3425	2622	93	197
SLE-RAR-023	4096	2401	137	289
SLE-RAR-024	4025	2427	136	288
SLE-RAR-025	4337	2359	155	327
SLE-RAR-026	3594	2747	68	144
SLE-RAR-027	3938	2247	103	216
SLE-RAR-028	3509	2539	97	204
SLE-RAR-029	4341	2156	182	383
SLE-RAR-030	4270	2180	182	383
SLE-RAR-031	2570	1910	58	122
SLE-RAR-032	4134	2562	116	245
SLE-RAR-033	3640	2681	62	131
SLE-RAR-034	3764	2425	71	151
SLE-RAR-035	3391	2656	75	158
SLE-RAR-036	4062	2434	126	265
SLE-RAR-037	3991	2461	125	264
SLE-RAR-038	4304	2393	161	339
SLE-RAR-039	3560	2780	36	77
SLE-RAR-040	3904	2281	110	232
SLE-RAR-041	3616	2432	98	207
SLE-RAR-042	4307	2190	191	402
SLE-RAR-043	4236	2214	191	402
SLE-RAR-044	2536	1943	28	60
SLE-RAR-045	4087	2609	108	228
SLE-RAR-046	3592	2729	59	125
SLE-RAR-047	3716	2472	61	129
SLE-RAR-048	3344	2703	66	140
SLE-RAR-049	4015	2482	117	246
SLE-RAR-050	3944	2508	116	245
SLE-RAR-051	4256	2440	150	316
SLE-RAR-052	3513	2828	31	65
SLE-RAR-053	3857	2328	99	209
SLE-RAR-054	3569	2479	87	184
SLE-RAR-055	4259	2237	180	379
SLE-RAR-056	4189	2262	180	379
SLE-RAR-057	2489	1991	21	45
SLE-RAR-058	4304	2392	151	319
SLE-RAR-059	3809	2512	103	217

SLE-RAR-060	3933	2255	102	215
SLE-RAR-061	3561	2486	110	232
SLE-RAR-062	4232	2265	159	334
SLE-RAR-063	4161	2291	158	333
SLE-RAR-064	4473	2223	184	387
SLE-RAR-065	3730	2611	76	159
SLE-RAR-066	4074	2111	131	277
SLE-RAR-067	3645	2403	123	259
SLE-RAR-068	4477	2020	212	446
SLE-RAR-069	4406	2044	211	446
SLE-RAR-070	2706	1774	66	139
SLE-RAR-071	3748	2487	92	195
SLE-RAR-072	3286	2736	35	74
SLE-RAR-073	3660	2396	74	155
SLE-RAR-074	3341	2606	70	147
SLE-RAR-075	3745	2370	108	228
SLE-RAR-076	3701	2386	108	227
SLE-RAR-077	2484	2036	22	47
SLE-RAR-078	3873	2362	117	246
SLE-RAR-079	3411	2611	74	156
SLE-RAR-080	3786	2271	94	197
SLE-RAR-081	3466	2481	97	204
SLE-RAR-082	3870	2245	128	271
SLE-RAR-083	3827	2261	128	270
SLE-RAR-084	2609	1911	61	130
SLE-RAR-085	3840	2395	112	236
SLE-RAR-086	3377	2644	41	87
SLE-RAR-087	3752	2305	95	199
SLE-RAR-088	3433	2514	89	187
SLE-RAR-089	3837	2279	128	270
SLE-RAR-090	3793	2294	128	270
SLE-RAR-091	2576	1945	31	65
SLE-RAR-092	3792	2443	102	214
SLE-RAR-093	3330	2692	36	77
SLE-RAR-094	3705	2352	84	176
SLE-RAR-095	3385	2562	79	166
SLE-RAR-096	3789	2326	118	248
SLE-RAR-097	3746	2342	118	248
SLE-RAR-098	2528	1992	24	52
SLE-RAR-099	4009	2226	141	297
SLE-RAR-100	3547	2474	81	171
SLE-RAR-101	3922	2135	120	252
SLE-RAR-102	3603	2345	119	251

SLE-RAR-103	4006	2109	155	326
SLE-RAR-104	3963	2124	154	326
SLE-RAR-105	2745	1775	69	146

	Nmax	Nmin	Tmedia	Mmax
	[kN]	[kN]	[kN]	[kNm]
SLE-QPE-001	2874	2669	0	0
SLE-QPE-002	3040	2503	39	83

6 VERIFICHE STRUTTURALI DEL FUSTO PILA

6.1 GEOMETRIA DELLA SEZIONE ED ARMATURA

Si riporta a seguire una figura che illustra la geometria della sezione di verifica, nella quale è rappresentata una armatura tipologica.

Figura 1 – Geometria della sezione trasversale della pila [cm]

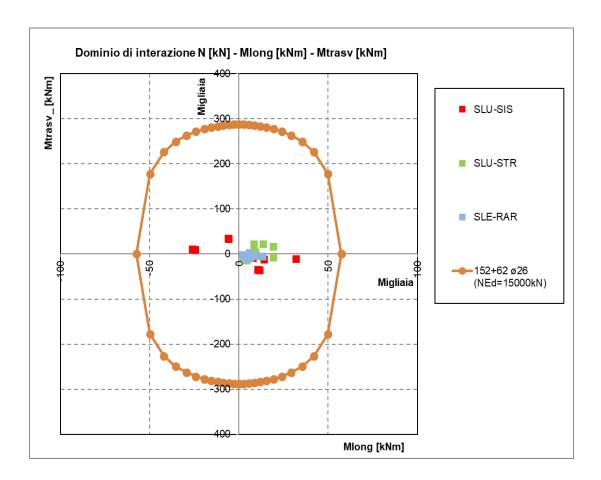
6.1.1 ARMATURA LONGITUDINALE

A seguire è indicata l'armatura flessionale prevista nella sezione di base del fusto pila, in termini di numero di barre presenti nello strato esterno (1° str.), nello strato interno (2° str.), nonché loro diametro fi [mm].

n barre (1° str.) 152 fi barre (1° str.) 26 n barre (2° str.) 62 fi barre (2° str.) 26

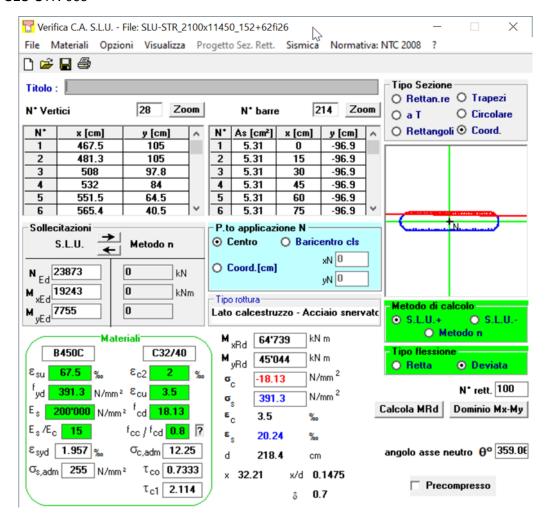
6.1.2 ARMATURA TRASVERSALE

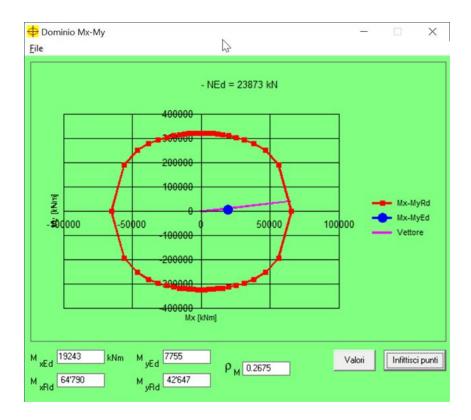
A seguire è indicata l'armatura a taglio prevista nella sezione di base del fusto pila, all'interno della zona critica.


<u>Direzione</u>	longitudinal	<u>e</u>						
Staffe:			Spille:			Spille:		
øw	14	mm	øw	14	mm	øw	14	mm
A1b	153.86	mm2	A1b	153.86	mm2	A1b	153.86	mm2
passo	100	mm	passo	100	mm	passo	100	mm
bracci	16		bracci	2		bracci	0	
Direzione	trasversale							
Staffe:			Spille:			Spille:		
øw	14	mm	øw	14	mm	øw	14	mm
A1b	153.86	mm2	A1b	153.86	mm2	A1b	153.86	mm2
passo	100	mm	passo	100	mm	passo	100	mm
bracci	0		bracci	7		bracci	0	

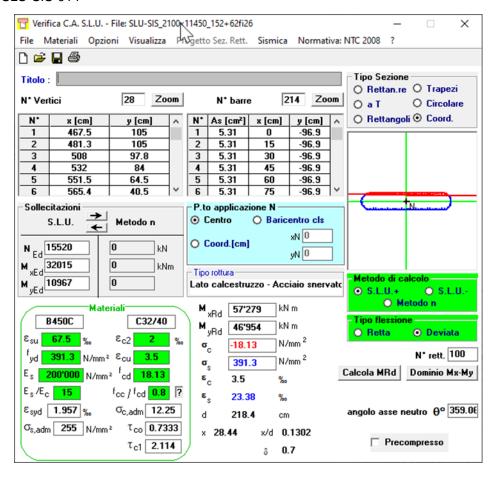
6.2 VERIFICHE SLU A PRESSOFLESSIONE

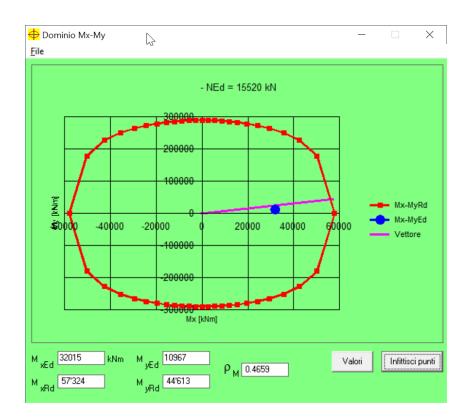
La verifica SLU a presso-flessione nelle sezioni critiche si effettua verificando che:


$$FS = (M_{Rd,long}^2 + M_{Rd,trasv}^2)^{0.5} / (M_{Ed,long}^2 + M_{Ed,trasv}^2)^{0.5} \ge 1$$


Sono riportate a seguire le verifiche SLU della sezione di base della pila, espresse in forma sintetica mediante il diagramma di interazione M_{long} - M_{trasv} valutato per una forza assiale corrispondente alla condizione di verifica più severa (SLV-SIS).

Si riportano a seguire le verifiche in forma esplicita nelle due combinazioni di carico più severe, di cui la prima ricadente in condizione statica SLU e la seconda ricadente in condizione sismica SLV.


SLU-STR-068



roM 0.27 FS 3.74

SLU-SIS-014

roM 0.47 FS **2.15**

6.4 VERIFICHE SLU A TAGLIO

Seguono le sollecitazioni di verifica alla base del fusto pile, calcolate secondo il criterio della gerarchia delle resistenze:

Sollecitazioni - Condizione statica STR

SLU-STR	max	Combo.	F1	F2	F3	M1	M2
			kN	kN	kN	kNm	kNm
max	F1	SLU-STR-068	2302	878	23873	-7754	19203
max	F2	SLU-STR-019	786	1340	25031	-14460	8319
min	F1	SLU-STR-007	0	675	22856	-7078	4307
min	F2	SLU-STR-014	1015	166	22066	-9114	9562

Sollecitazioni - Condizione sismica SIS (da calcolo diretto con q=1.5)

SLU-SIS	max	Combo.	F1	F2	F3	M1	M2
			kN	kN	kN	kNm	kNm
max	F1	SLU-SIS-014	4175	1438	15520	-10964	31930
max	F2	SLU-SIS-038	1312	4729	15680	-35508	11688
min	F1	SLU-SIS-102	-3805	-1383	14757	9708	-24481
min	F2	SLU-SIS-135	-1142	-4609	14757	33323	-5675

Sollecitazioni - Condizione sismica SIS (da G.R.)

SLV	max	Combo.	F1	F2	F3	M1	M2
			kN	kN	kN	kNm	kNm
max	F1	SLU-SIS-014	4175	1438	15520	-10964	31930
max	F2	SLU-SIS-038	1312	4729	15680	-35508	11688
min	F1	SLU-SIS-102	-3805	-1383	14757	9708	-24481
min	F2	SLU-SIS-135	-1142	-4609	14757	33323	-5675

MRd,1	MRd,2	Vgr,1	Vgr,2
kNm	kNm	kN	kN
46900	57400	6263	2158
161000	52000	1968	7093
47100	56600	5708	2074
245000	36600	1712	6913

Verifica - Direzione Longitudinale Verifica a taglio per sezioni rettangolari armate a taglio (D.M. 14/01/2008)

classe cls	Rck	40	N/mm2
resist. Caratteristica cilindrica	f _{ck}	33	N/mm2
rootoli Garallonolioa Giinianoa	f _{cd}	19	14/111112
coeff. parziale	Ϋ́c	1.5	
larghezza membratura resistene a V	bw	11000	mm
altezza membratura resistene a V	н	2100	mm
altezza utille	d	1890	mm
area della sezione	A_s	2.31E+07	mm2
sforzo assiale dovuto ai carichi o precompressione	N	1.55E+07	N
	σср	0.67	N/mm²
	α_{c}	1.04	
Acciaio	f _{yk}	450	N/mm²
Feb44k	f_{yd}	391	N/mm²
diametro staffe	Øw	14	mm
Area staffa	$A_{\text{øw}}$	154	mm²
0.9 d	Z	1701	mm
passo delle staffe (spille)	S_{W}	100	mm
	n° bracci	16	
angolo di inclinazione	θ	45.0	0
deve essere compreso tra 1 e 2.5	cot(θ)	1.00	
angolo di inclinazione armatura rispetto asse palo	α	90	۰
	cot(a)	0.00	
	A_{sw} / s_w	24.63	mm²/mm
Taglio resistente per "taglio trazione"	V_{Rsd}	16394	kN
Taglio resistente per "taglio compressione"	V_{Rcd}	91147	kN
taglio sollecitante	V_{Ed}	6263	kN
fattore di sicurezza per GR (par. 7.9.5.2.2)	Y Bd	1.25	
taglio resistente	V_{Rd}	13115	kN
	V_{Ed}	< La verifica è soddisfatta.	V_{Rd}

FS

2.09

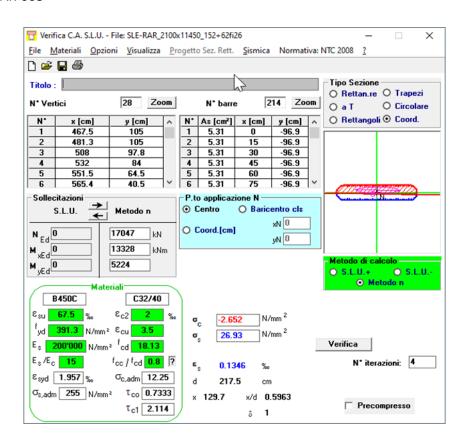
Verifica - Direzione Trasversale Verifica a taglio per sezioni rettangolari armate a taglio (D.M. 14/01/2008)

classe cls	Rck	40	N/mm2
resist. Caratteristica cilindrica	f _{ck}	33	N/mm2
Toolot. Garattoriotica diiniarioa	f _{cd}	19	14/111112
coeff. parziale	Ϋ́c	1.5	
larghezza membratura resistene a V	b _w	2100	mm
altezza membratura resistene a V	H	11450	mm
altezza utille	d	10305	mm
area della sezione	A _s	2.31E+07	mm2
sforzo assiale dovuto ai carichi o precompressione	N	1.57E+07	N
310120 assiale dovato ai canoni o precompressione	σср	0.65	N/mm²
	α _c	1.03	13/111111
Acciaio	f _{yk}	450	N/mm²
Feb44k	f _{yd}	391	N/mm ²
diametro staffe	ø _w	14	mm
Area staffa	A _{øw}	154	mm ²
0.9 d	∧øw Z	9275	mm
passo delle staffe (spille)	Sw	100	mm
passo delle stalle (spille)	n° bracci	7	
angolo di inclinazione	θ	45	o
deve essere compreso tra 1 e 2.5	cot(θ)	1.00	
angolo di inclinazione armatura rispetto asse palo	α	45	0
angolo di momazione armatara rispetto asse palo	cot(a)	1.00	
	A _{sw} / s _w	10.78	mm²/mm
	7 (SW 7 SW	10.70	111111 7111111
Taglio resistente per "taglio trazione"	V _{Rsd}	55305	kN
Taglio resistente per "taglio compressione"	V _{Rcd}	189559	kN
. 33.10 . 33.101.1.10 poi tagilo 30.111.100010110	• 1100		
taglio sollecitante	V _{Ed}	7093	kN
fattore di sicurezza per GR (par. 7.9.5.2.2)	γ Bd	1.25	1
taglio resistente	V _{Rd}	44244	kN
	V _{Ed}	<	V _{Rd}
	- 20	La verifica è soddisfatta.	- 114

FS 6.24

6.5 VERIFICHE SLE DELLE TENSIONI

La verifica SLE di tipo tensionale si effettua controllando che le massime tensioni normali agenti nella sezione risultino inferiori ai seguenti valori limite:


per le combinazioni SLE-RAR:

• tensione limite nel calcestruzzo: $\sigma_c = 0.55 f_{ck}$ • tensione limite nelle barre: $\sigma_s = 0.75 f_{vk}$

per le combinazioni SLE-QPE:

• tensione limite nel calcestruzzo: $\sigma_c = 0.40 f_{ck}$

SLE-RAR-068

6.6 VERIFICHE SLE A FESSURAZIONE

La verifica SLE a fessurazione si effettua controllando che il massimo valore di apertura delle fessure risulti inferiore ai seguenti valori limite:

per le combinazioni SLE-RAR:

• apertura fessure limite: $w_{lim} = w_1 = 0.30 \text{ mm}$

pos. baric. strato i-esimo [mm]
 diametro barre strato i-esimo [mm]
 numero barre strato i-esimo []

 $\sigma_{s_{max}}$ Tensione massima barre strato i-esimo [MPa]

b_{eff} larghezza efficace [mm]h_{c,eff} altezza efficace [mm]

Ac,eff area efficace relativamente ad una singola barre [mm2]

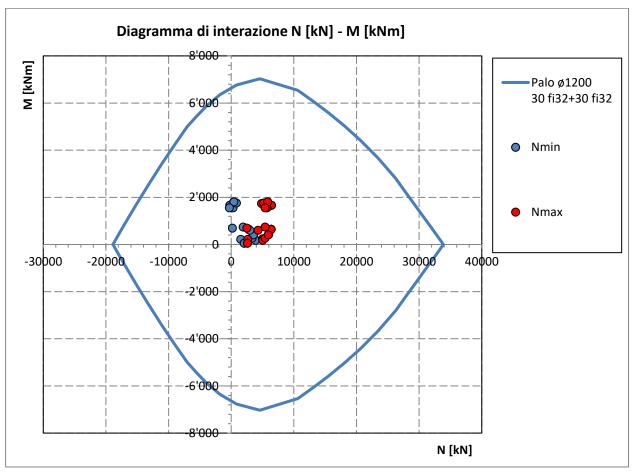
 $\begin{array}{ll} \rho_{p,\text{eff}} & \text{percentuale di armatura relativa a $A_{c,\text{eff}}$} \\ k_t & (0.6 \text{ carichi brevi; 0.4 lunga durata}) \\ k_1 & (0.8 \text{ barre ad. migliorata; 1.6 liscie}) \\ k_2 & (0.5 \text{ per flessione; 1 trazione}) \end{array}$

Prima condizione di carico SLE-RAR

INPUT			
R _{ck}	40	Мра	
h	2100	mm	
C ₁	67	mm	
Ф1	26	mm	
n ₁	6.7	1/m	
C ₂	123	mm	
Ф2	26	mm	
n ₂	3.3	1/m	
d		mm	
b _{eff}	225	mm	
x		mm	
σ _{s_max1}	27	Мра	
σ _{s_max2}	27	Мра	
h _{c,eff}	214.2	mm	
$A_{c,eff}$	48188	mm²	
$ ho_{ m p,eff}$	0.011		
k _t	0.6		
k ₁	8.0		
k ₂	0.5		
k ₃	3.4		
k 4	0.425		

OUTPUT		
diff. def. arma	ture-cls	
ε _{sm} - ε _{cm}	7.86E-05	-
distanza max fessure		
s _{r,max} 648 mm		
ampiezza fessure:		
$\mathbf{W}_{\mathbf{k}}$	0.051	mm
W _{lim}	0.200	mm
La verifica è soddisfatta.		

7 VERIFICHE STRUTTURALI DEI PALI DI FONDAZIONE


7.1 GEOMETRIA DELLA SEZIONE ED ARMATURA

GEOMETRIA DELLA SEZIONE		
Diametro del palo =	1200	mm
Copriferro netto c =	60	mm
Classe di resistenza calcestruzzo =	C25/30	Мра
Classe di resistenza delle barre =	B450C	MPa

ARMATURA PER I PRIMI 10 ø			
1° strato di armatura longitudinale			
Numero barre long.	30	-	
Diametro barre long.	32	mm	
Copriferro baricentrico arm. long. c' =	90	mm	
2° strato di armatura longitudinale			
Numero barre long.	30	-	
Diametro barre long.	32	mm	
Copriferro baricentrico arm. long. c' =	147	mm	
Armatura trasversale			
Diametro barre trasv. 14 m			
Passo arm. trasv. 200		mm	
Diametro corona esterna = 1066 mm			

7.2 VERIFICHE SLU A PRESSOFLESSIONE

Sono riportate a seguire le verifiche SLU della sezione di sommità del palo maggiormente sollecitato, espresse in forma sintetica mediante il diagramma di interazione N – M.

La verifica è soddisfatta in quanto le coppie N-M delle sollecitazioni agenti nella sezione di verifica sono interne al dominio di resistenza per ogni condizione di carico indagata.

Verifiche SLU a taglio

Verifica a taglio per sezioni circolari armate a taglio

(D.M. 14/01/2008)

classe cls	R _{ck}	30	N/mm²
resist. Caratteristica cilindrica	f _{ck}	25	N/mm ²
	f_{cd}	14	N/mm ²
diametro	Φ	1200	mm
Area sezione	Α	1130973	mm²
copriferro	С	80	mm
Area sezione rettangolare equivalente	A_{eq}	941544	mm²
altezza utile equivalente	d	931	mm
larghezza equivalente	b_{w}	1011	mm
altezza equivalente	h _{eq}	1118	mm
sforzo assiale dovuto ai carichi o precompressione	N	0	N
	$\sigma_{\sf cp}$	0.000	N/mm²
	α_{c}	1.00	

Acciaio	f_{yk}	450	N/mm ²
B450C	\mathbf{f}_{yd}	391	N/mm²
diametro staffe (spille)	Øw	14	mm
Area staffa (spilla)	$Aø_w$	154	mm²
0.9 d	Z	838	mm
passo spirale	Sw	200	mm
	n° bracci	2	
angolo di inclinazione biella compressa	θ	21.8	0
deve essere compreso tra 1 e 2.5	$\cot(\theta)$	2.50	
angolo di inclinazione armatura rispetto asse palo	α	90	o
	cot(a)	0.00	
	Asw/sw	1.54	mm²/mm

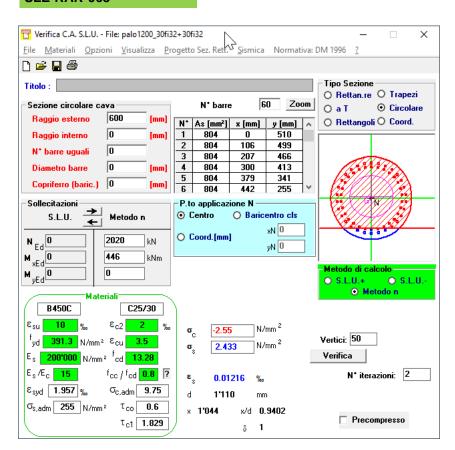
Taglio resistente per "taglio trazione"	V_{Rsd}	1262	kN
Taglio resistente per "taglio compressione"	V_{Rcd}	2061	kN

taglio sollecitante	V _{Ed}	857	kN
fattore di sicurezza per GR (par. 7.9.5.2.2)	γRd	1	
taglio resistente	V_{Rd}	1262	kN
	V _{Ed}		V_{Rd}

verifica

7.3 VERIFICHE SLE DELLE TENSIONI

La verifica SLE di tipo tensionale si effettua controllando che le massime tensioni normali agenti nella sezione risultino inferiori ai seguenti valori limite:


per le combinazioni SLE-RAR:

 $\begin{array}{lll} \bullet & \text{tensione limite nel calcestruzzo:} & \sigma_c & = 0.55 \ f_{ck} \\ \bullet & \text{tensione limite nelle barre:} & \sigma_s & = 0.75 \ f_{yk} \\ \end{array}$

per le combinazioni SLE-QPE:

• tensione limite nel calcestruzzo: $\sigma_c = 0.40 f_{ck}$

SLE-RAR-068

La verifica è soddisfatta.

7.4 VERIFICHE SLE A FESSURAZIONE

La verifica SLE a fessurazione si effettua controllando che il massimo valore di apertura delle fessure risulti inferiore ai seguenti valori limite:

Mpa mm mm mm

mm mm

mm mm

mm Mpa Mpa mm

 mm^2

0.425

 k_4

per le combinazioni SLE-RAR:

• apertura fessure limite: $w_{lim} = w_1 = 0.30 \text{ mm}$

Prima condizione di carico SLE-RAR

	INPUT	
	R _{ck}	30
dimensione	h	1200
pos. baric. 1° strato	C ₁	90
diametro barre 1° strato	Ø ₁	32
numero barre 1° strato	n_1	7.937
pos. baric. 2° strato	C ₂	147
diametro barre 2° strato	Ø ₂	32
numero barre 2° strato	n_2	7.937
distanza lembo compresso-lembo teso della sezione	d	1082
	\mathbf{b}_{eff}	126
posizione asse neutro da lembo compresso	x	1044
Tensione massima barre 1° strato	σ _{s_max1}	2
Tensione massima barre 2° strato	σ_{s_max2}	2
altezza efficace	$\mathbf{h}_{c,eff}$	52
area efficace relativamente ad una singola barre	$A_{c,eff}$	6552
percentuale di armatura relativa a Ac,eff	$ ho_{ m p,eff}$	0.246
(0.6 carichi brevi; 0.4 lunga durata)	\mathbf{k}_{t}	0.6
(0.8 barre ad. migliorata; 1.6 liscie)	k ₁	8.0
(0.5 per flessione; 1 trazione)	k_2	0.5
	k ₃	3.4

OUTPUT			
diff. def. arma	ture-cls		
ε _{sm} - ε _{cm}	7.09E-06	-	
distanza max	distanza max fessure		
S _{r,max}	357	mm	
ampiezza fess	ampiezza fessure:		
Wk	0.003	mm	
W _{lim}	0.300	mm	
La verifica è soddisfatta.			

8 VERIFICHE DEL PLINTO DI FONDAZIONE

8.1 VERIFICHE SLU E SLE A TIRANTE-PUNTONE

Le verifiche SLU e SLE si effettuano controllando che le massime tensioni normali agenti nel tirante di armatura e nella biella compressa di calcestruzzo risultino inferiori ai seguenti valori limite:

per le combinazioni SLU e SLV:

• tensione limite nel calcestruzzo: $\sigma_c = f_{cd}' = 0.5 f_{cd}$

• tensione limite nelle barre: $\sigma_s = f_{yd}$

per le combinazioni SLE-RAR:

 $\begin{array}{lll} \bullet & \text{tensione limite nel calcestruzzo:} & \sigma_c & = 0.55 \; f_{ck} \\ \bullet & \text{tensione limite nelle barre:} & \sigma_s & = 0.75 \; f_{yk} \\ \end{array}$

per le combinazioni SLE-QPE:

• tensione limite nel calcestruzzo: $\sigma_c = 0.40 f_{ck}$

Si distinguono due meccanismi di tipo tirante-puntone principali nel plinto di fondazione, illustrati nelle figure seguenti e descritti a seguire:

- un primo meccanismo è innescato dalle azioni trasmesse al plinto dai pali centrali e coinvolge un tirante-puntone parallelo alla direzione longitudinale (evidenziato in verde). Tale meccanismo coinvolge la sola armatura longitudinale inferiore del plinto.
- un secondo meccanismo coinvolge i pali di spigolo ed innesca un tirante-puntone con direzione diagonale (evidenziato in rosso), individuata da un angolo α misurato rispetto alla direzione trasversale. Tale meccanismo coinvolge sia l'armatura longitudinale inferiore del plinto che l'armatura trasversale, pertanto, ai fini delle verifiche del tirante di armatura e della biella di calcestruzzo, si considera composto dalla somma vettoriale di due meccanismi ortogonali disaccoppiati.

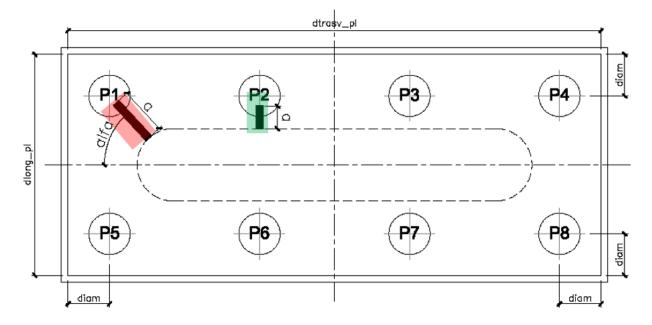


Figura 2 – Vista in pianta - Tirante-puntone longitudinale (verde) e diagonale (rosso)

8.1.1 VERIFICHE RELATIVE AI PALI DI SPIGOLO

Seguono le forze assiali agenti alla testa dei pali nelle condizioni di carico più severe per ogni combinazione di carico:

	Nmax	Nmin
SLU-STR	6361	1513
SLU-GEO	5182	1575
SIS-SLV	6414	-1146
	kN	kN

	Nmax	Nmin
SLE-QP	3040	2503
SLE-RAR	4477	1667
	kN	kN

Seguono le verifiche delle armature superiori ed inferiori del plinto di fondazione:

Armatura inferiore

	Nmax	PEd	Т	σs_long	σs_trasv	< fyd	С	σς	< fcd'
SLU-STR	6361	5243	5276	190	189	VERO	7438	4.5	VERO
SLU-GEO	5182	4065	4090	147	147	VERO	5766	3.5	VERO
SIS-SLV	6414	5296	5329	192	191	VERO	7513	4.6	VERO
	kN	kN	kN	Мра	Мра		kN	Мра	

Armatura superiore

	Nmin	PEd	Т	σs_long	σs_trasv	< fyd	С	σς	< fcd'
SLU-STR	1513	-							
SLU-GEO	1575	-							
SIS-SLV	-1146	2263	2277	335	343	VERO	3210	2.0	VERO
	kN	kN	kN	Мра	Мра		kN	Мра	

Armatura inferiore

	Nmax	PEd	Т	σs_long	σs_trasv	< 0.75 fyk	С	σς	< fck'
SLE-QP	3040	1922	1934	70	69	VERO	2727	1.7	VERO
SLE-RAR	4477	3359	3380	121	121	VERO	4765	2.9	VERO
	kN	kN	kN	Мра	Мра		kN	Мра	

Armatura superiore

	Nmax	PEd	T	σs_long	σs_trasv	< 0.75 fyk	С	σς	< fck	<'
SLE-QP	2503	-								
SLE-RAR	1667	-								
	kN	kN	kN	Мра	Мра		kN	Мра		

Le verifiche sono soddisfatte.

8.1.2 VERIFICHE RELATIVE AI PALI DI INTERMEDI

Forze assiali agenti alla testa dei pali nelle condizioni di carico più severe per ogni combinazione di carico.

	Nmax	Nmin
SLU-STR	6146	1669
SLU-GEO	4996	1711
SIS-SLV	6062	-828
	kN	kN

	Nmax	Nmin
SLE-QP	3040	2503
SLE-RAR	4332	1768
	kN	kN

Seguono le verifiche delle armature superiori ed inferiori del plinto di fondazione:

Armatura inferiore

	Nmax	PEd	T	σs_long	σs_trasv	< fyd	С	σς	< fcd'
SLU-STR	6146	5028	2902	221	-	VERO	5806	2.2	VERO
SLU-GEO	4996	3879	2238	171	-	VERO	4478	1.7	VERO
SIS-SLV	6062	4945	2853	218	-	VERO	5709	2.2	VERO
	kN	kN	kN	Мра	Мра		kN	Мра	

Armatura superiore

	Nmin	PEd	Т	σs_long	σs_trasv	< fyd	С	σς	< fcd'
SLU-STR	1669	-							
SLU-GEO	1711	-							
SIS-SLV	-828	1946	1123	177	-	VERO	2247	0.9	VERO
	kN	kN	kN	Мра	Мра		kN	Мра	

Armatura inferiore

	Nmax	PEd	Т	σs_long	σs_trasv	< 0.75 fyk	С	σc	< fck'
SLE-QP	3040	1922	1109	85	-	VERO	2219	0.9	VERO
SLE-RAR	4332	3215	1855	141	1	VERO	3711	1.4	VERO
	kN	kN	kN	Мра	Мра		kN	Мра	

Armatura superiore

	Nmin	PEd	Т	σs_long	σs_trasv	< 0.75 fyk	С	σc	< fck'
SLE-QP	2503	-							
SLE-RAR	1768	-							
	kN	kN	kN	Мра	Мра		kN	Мра	

Le verifiche sono soddisfatte.

8.2 VERIFICHE SLU A PUNZONAMENTO

Conservativamente, la verifica è stata riferita al palo di bordo maggiormente sollecitato e lo sviluppo del perimetro efficace u è stato definito considerando una distanza dall'impronta caricata (coincidente con la sezione di testa del palo) pari a $d = a 0.9 H_{pl}$ ($H_{pl} = altezza plinto, a < 2$), come illustrato nella seguente figura.

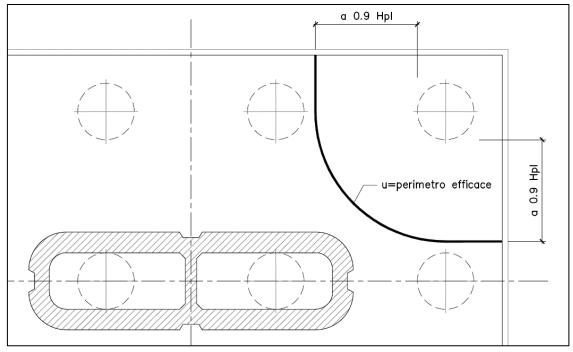


Figura 3 – Perimetro efficace per la verifica a taglio-punzonamento

A seguire si riportano il valore della forza concentrata V_{Ed} [kN] agente alla testa del palo maggiormente sollecitato nella condizione di verifica più severa, il valore del coefficiente $\bf a$ che individua la geometria del perimetro efficace e lo sviluppo u [m] di quest'ultimo.

La forza concentrata $V_{Ed} = 5296 \text{ kN}$ è stata depurata della quota parte di forza assiale agente nella sezione di base del fusto della pila, pari a N_{Ed} * A / $A_c = 15000 \text{ kN}$ * 3.14 m² / 23.1 m² = 2041 kN.

Si riporta a seguire in forma sintetica la verifica più severa (in combinazione SLV-SIS) a taglio-punzonamento della fondazione della pila.

Ved	3255	kN
u (a=1.5d)	7.6	m
vEd	0.247	MPa

Verifica a punzonamento per sezioni rettangolari SENZA armatura a taglio (NTC08 - EC2-rev05)			
classe cls	С	35	Мра
coeff. parziale	γс	1.5	
perimetro di verifica	u1	7645	mm
altezza soletta	Н	1800	mm
altezza utille	d	1724	mm
diametro ferro longitudinale teso	φ lon	24	mm
	strati	2	
	passo	150	mm
percentuale di armatura trasversale teso	ριχ	0.35%	'
diametro ferro trasversale	φ tra	24	mm
	strati	2	
	passo	150	mm
percentuale di armatura trasv	ρ_{tx}	0.35%	
percentuale di armatura totale	ρι	0.35%	
Eventuale compressione long	σc_lon	0	Мра
Eventuale compressione trasv	σc_tra	0	Мра
	σα	0.00	N/mm²
	k1	0.15	
	\mathbf{C} r,dc	0.12	
	k	1.34	
	v min	0.32	Мра
	V _{rd_c}	0.371	Мра
	Vmin+k1⊙cp	0.321	Мра
Tensione resistente taglio-punzonamento	V _{rd_c}	0.371	N/mm2
taglio sollecitante	V_{Ed}	3255	kN
	V _{ed}	0.247	Мра
La verifica è soddisfatta	$\mathbf{V}_{rd_{C}}$	>	\mathbf{v}_{ed}

8.3 VERIFICHE SLE A FESSURAZIONE

La verifica SLE a fessurazione si effettua controllando che il massimo valore di apertura delle fessure risulti inferiore ai seguenti valori limite:

per le combinazioni SLE-RAR:

• apertura fessure limite:

 $W_{lim} = W_1 = 0.30 \text{ mm}$

Le verifiche riportate a seguire sono riferite al meccanismo tirante-puntone che coinvolge i pali di spigolo (meccanismo diagonale), ossia il più severo tra i due presi in considerazione.

1. Armatura longitudinale inferiore

INPUT			
Rck	35	Мра	
h	1800	mm	
c1	52	mm	
ø1	24	mm	
n1	6.667		
c2	100	mm	
ø2	24	mm	
n2	6.667	1/m	
с3	136		
ø3			
n3	6.667		
d	1724	mm	
beff	150	mm	
х		mm	
σσ _{_max1}	141	Мра	
σσ_ _{max2}	141	Мра	
hc _{,eff}	190.0	mm	
Ac _{,eff}	28500	mm2	
ρp _{,eff}	0.032		
kt	0.6		
k1	8.0		
k2	1		
k3	3.4		
k4	0.425		

	OUTPUT		
diff. def. ar	mature-cls		
εsm - εcm	4.12E-04	-	
distanza m	ax fessure		
sr, _{max}	564	mm	
ampiezza f	fessure:		
wk	0.232	mm	
wlim	0.300	mm	
La verifica	è soddisfat	ta.	

1. Armatura trasversale inferiore

INPUT			
R _{ck}	35	Мра	
h	1800	mm	
C ₁	76	mm	
Ø ₁	24	mm	
n_1	6.667		
C ₂	124	mm	
Ø ₂	24	mm	
n_2	6.667	1/m	
с3	136	mm	
ø3	0.000	mm	
n3	6.667	1/m	
d	1700	mm	
\mathbf{b}_{eff}	150	mm	
x		mm	
σ _{s_max1}	121	Мра	
σ _{s_max2}	121	Мра	
$\mathbf{h}_{c,eff}$	250.0	mm	
$A_{c,eff}$	37500	mm²	
$ ho_{ m p,eff}$	0.024		
\mathbf{k}_{t}	0.6		
\mathbf{k}_1	8.0		
\mathbf{k}_2	1		
k ₃	3.4		
k 4	0.425		

OUTPUT			
diff. def. armature-cls			
ε _{sm} - ε _{cm}	3.54E-04	-	
distanza max fessure			
S _{r,max}	761	mm	
ampiezza fessure:			
Wk	0.269	mm	
W _{lim}	0.300	mm	
La verifica è soddisfatta.			