COMMITTENTE:

DIREZIONE LAVORI:

APPALTATORE:

PROGETTAZI	ONE:	PROGETTISTA:	DIRETTORE DELLA PROGETTAZIONE		
RAGGRUPPAMENTO TEMPOR	ANEO PROGETTISTI	Prof. Ing. Marco PETRANGELI	Ing. Piergiorgio GRASSO		
GEODATA ENGINEERING	INTEGRA RIA		Responsabile integrazione fra le varie prestazioni specialistiche Dott. his-Piergiorgio GRASSO (S. p. 3632)		

PROGETTO ESECUTIVO

ITINERARIO NAPOLI - BARI RADDOPPIO TRATTA CANCELLO-BENEVENTO II LOTTO FUNZIONALE FRASSO TELESINO – VITULANO 1° LOTTO FUNZIONALE FRASSO TELESINO - TELESE

VI04 - Viadotto Maltempo - Viadotto a doppia campata dal km 19+741 al km 19+775

Impalcato a travi incorporate per doppio binario L=12,50m - Relazione di calcolo

								I
	APPALTATORE							SCALA:
Dott.	A PIZZAROTTI & C. S.p. A. ug. Şabino Del Balzo							
16.	SMETTORE TECHTOR PARTY STATE OF THE STATE OF	20						-
СОМ	COMMESSA LOTTO FASE ENTE TIPO DOC. OPERA/DISCIPLINA PROGR. REV.							
I F	I F 2 6 1 2 E Z Z C L V I 0 4 0 7 0 0 1 A							
Rev.	Descrizione	Redatto	Data	Verificato	Data	Approvato	Data	Autorizzato Data
Α	Emissione	I. Lardani	24/02/2020	G. Usai	24/02/2020	P. Grasso	24/02/2020	M. Petrangeli

Rev.	Descrizione	Redatto	Data	Verificato	Data	Approvato	Data	Autorizzato Data
Α	Emissione	I. Lardani	24/02/2020	G. Usai	24/02/2020	P. Grasso	24/02/2020	M. Petrangeli
		T)		OM		2		MARCO A
		02				-		1 1 1 1 1 1
								ORDINE INGEGNERI ROMA N. O. A.
								8 18744 [7]
								mas penjel
								24/02/2020

File: IF26.1.2.E.ZZ.CL.VI.04.0.7.001.A.docx n. Elab.:

Impalcato a travi incorporate per doppio binario L=12,50m - Relazione di calcolo

 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 IF26
 12 E ZZ
 CL
 VI0407 001
 A
 2 di 66

Indice

1	PR	EMESSA	4
2	NO	RMATIVA E DOCUMENTI DI RIFERIMENTO	5
	2.1	NORMATIVE	5
	2.2	ELABORATI DI RIFERIMENTO	
3	MA	.TERIALI	7
		CALCESTRUZZO PER IMPALCATO	
		ACCIAIO PER PROFILATI E LAMIERE	
	3.3	ACCIAIO PER BARRE DI ARMATURA	8
4	DE:	SCRIZIONE DELLA STRUTTURA	9
5	CR	ITERI DI CALCOLO	.11
_			4.0
6		ALISI DEI CARICHI	
		PERMANENTI STRUTTURALI (G1)	
	6.2	PERMANENTI NON STRUTTURALI (G2)	12
		1 BALLAST (G21)	
	6.2.		
	6.2.	1 TOTALE PERMANENTI NON STRUTTURALI	13
		CARICHI DA TRAFFICO	
	6.3.	1 CARICHI VERTICALI DA TRAFFICO (Q11)	14
	6.3.	2 CARICHI SUI MARCIAPIEDI	
	6.3.	3 AZIONI DI AVVIAMENTO E FRENATURA (Q2)	16
	6.3.	4 FORZA CENTRIFUGA (Q3)	
	6.3.	1 SERPEGGIO (Q4)	18
	6.3.	1 DERAGLIAMENTO	19
	6.3.	2 GRUPPI DI CARICO	20
	6.4	CARICHI VARIABILI (Q5)	21
	6.4.	1 AZIONI DEL VENTO (Q5.1)	21
	6.4.	2 AZIONI AERODINAMICHE INDOTTE DAL TRANSITO DEI CONVOGLI	25
	6.4.	3 AZIONI TERMICHE (Q5.2)	26
	6.4.	4 AZIONI DA NEVE (Q5.3)	26
	6.5	AZIONI INDIRETTE (Q6)	27

RI\A

ITINERARIO NAPOLI – BARI RADDOPPIO TRATTA CANCELLO-BENEVENTO II LOTTO FUNZIONALE FRASSO TELESINO – VITULANO 1° LOTTO FUNZIONALE FRASSO TELESINO – TELESE

PROGETTO ESECUTIVO

Impalcato a travi incorporate per doppio binario L=12,50m - Relazione di calcolo

 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 IF26
 12 E ZZ
 CL
 VI0407 001
 A
 3 di 66

6.5.1 RESISTENZE PARASSITE NEI VINCOLI (Q6.1)	27
6.6 AZIONI SISMICHE (E)	28
6.6.1 SPETTRI DI PROGETTO ALLO SLV	28
7 COMBINAZIONI DI CARICO	30
8 ANALISI E SOLLECITAZIONI	34
8.1 SOLLECITAZIONI SULLA FASCIA DI 4M	34
8.2 SOLLECITAZIONI SULLA TRAVE DI BORDO DELLA FASCIA DI 4M.	37
8.3 RIEPILOGO SOLLECITAZIONI TRAVE DI BORDO FASCIA	41
9 VERIFICHE DELLE TRAVI	43
9.1 VERIFICHE DI RESISTENZA	43
9.2 VERIFICHE DI DEFORMABILITA'	44
9.2.1 PRIMA FREQUENZA PROPRIA DELL'IMPALCATO	45
9.2.2 FRECCIA SOTTO I CARICHI ACCIDENTALI DINAMIZZATI LM71	46
9.2.3 COMFORT DEI PASSEGGERI	46
9.2.4 ROTAZIONE DEGLI APPOGGI	46
9.2.5 SGHEMBO	47
10 VERIFICA DELLO SBALZO TRASVERSALE	49
10.1 VERIFICA A FLESSIONE	51
10.2 VERIFICA A TAGLIO	52
10.3 VERIFICA A FESSURAZIONE	53
11 AZIONI SUGLI APPOGGI	54
11.1 RIEPILOGO SCARICHI APPOGGI	63
12 INCIDENZA	66

1 PREMESSA

Nell'ambito dell'*Itinerario Napoli-Bari* si inserisce il *Raddoppio della Tratta Cancello – Benevento - 2° Lotto Funzionale Frasso Telesino - Vitulano* oggetto della Progettazione Esecutiva in esame.

Oggetto della presente relazione sono le analisi e le verifiche dell'impalcato a travi doppio T incorporate di luce pari a 12.5m, previsto in corrispondenza della campata compresa tra spalla S2 e pila P1 del *Viadotto Maltempo VI04*.

Nella presente relazione sono riportati in forma sintetica i risultati delle sollecitazioni e delle verifiche strutturali della struttura in oggetto.

Nel seguito si procede al calcolo dello stato di sollecitazione ed alle verifiche dei vari elementi costituenti la struttura in elevazione, nei confronti degli Stati Limite Ultimi strutturali di presso-flessione e taglio e gli Stati limite di Esercizio di fessurazione e tensionale.

2 NORMATIVA E DOCUMENTI DI RIFERIMENTO

2.1 NORMATIVE

Sono state prese a riferimento le seguenti Normative nazionali ed internazionali vigenti alla data di redazione del presente documento:

- [1] Ministero delle Infrastrutture, DM 14 gennaio 2008, «Approvazione delle nuove norme tecniche per le costruzioni»
- [2] Ministero delle Infrastrutture e Trasporti, circolare 2 febbraio 2009, n. 617 C.S.LL.PP., «Istruzioni per l'applicazione delle Nuove norme tecniche per le costruzioni di cui al decreto ministeriale 14 gennaio 2008»
- [3] Istruzione RFI DTC INC PO SP IFS 001 Specifica per la progettazione e l'esecuzione dei ponti ferroviari e di altre opere minori sotto binario
- [4] Istruzione RFI DTC INC CS SP IFS 001 Specifica per la progettazione geotecnica delle opere civili ferroviarie
- [5] Istruzione RFI DTC INC PO SP IFS 002 Specifica per la progettazione e l'esecuzione di cavalcavia e passerelle pedonali sulla sede ferroviaria
- [6] Istruzione RFI DTC INC PO SP IFS 003 Specifica per la verifica a fatica dei ponti ferroviari
- [7] Istruzione RFI DTC INC PO SP IFS 004 Specifica per la progettazione e l'esecuzione di impalcati ferroviari a travi in ferro a doppio T incorporate nel calcestruzzo
- [8] Istruzione RFI DTC INC PO SP IFS 005 Specifica per il progetto, la produzione, il controllo della produzione e la posa in opera dei dispositivi di vincolo e dei coprigiunti degli impalcati ferroviari e dei cavalcavia
- [9] Eurocodice 1 Azioni sulle strutture, Parte 1-4: Azioni in generale Azioni del vento (UNI EN 1991-1-4)
- [10] Regolamento (UE) N.1299/2014 della Commissione del 18 Novembre 2014 relativo alle specifiche tecniche di interoperabilità per il sottosistema "infrastruttura" del sistema ferroviario dell'Unione europea

2.2 ELABORATI DI RIFERIMENTO

Vengono presi a riferimento tutti gli elaborati grafici progettuali di pertinenza.

3 MATERIALI

3.1 CALCESTRUZZO PER IMPALCATO

Classe C32/40			
R _{ck} =	40.00	MPa	Resistenza caratteristica cubica
$f_{ck} = 0.83 R_{ck} =$	33.20	MPa	Resistenza caratteristica cilindrica
$f_{cm} = f_{ck} + 8 =$	41.20	MPa	Valore medio resistenza cilindrica
α _{cc} =	0.85		Coeff. rid. per carichi di lunga durata
γ _M =	1.50	-	Coefficiente parziale di sicurezza SLU
$f_{cd} = \alpha_{cc} f_{ck}/\gamma_M =$	18.81	MPa	Resistenza di progetto
$f_{ctm} = 0.3 f_{ck}^{(2/3)} =$	3.10	MPa	Resistenza media a trazione semplice
f_{cfm} = 1,2 f_{ctm} =	3.72	MPa	Resistenza media a trazione per flessione
$f_{ctk} = 0.7 f_{ctm} =$	2.17	MPa	Valore caratteristico resistenza a trazione (frattile 5%)
σ_c = 0,55 f _{ck} =	18.26	MPa	Tensione limite in esercizio in comb. Rara (rif. §1.8.3.2.1 [3])
σ_c = 0,40 f_{ck} =	13.28	MPa	Tensione limite in esercizio in comb. quasi perm. (rif. §1.8.3.2.1 [3])
$E_{cm} = 22000 (f_{cm}/10)^{(0,3)} =$	33643.00	MPa	Modulo elastico di progetto
v =	0.20		Coefficiente di Poisson
$G_c = E_{cm} / (2(1+v)) =$	14018.00	MPa	Modulo elastico tangenziale di progetto
Condizioni ambientali =	Debolmer	nte aggre	ssive
Classe di esposizione =	XC4		
c =	4.00	cm	Copriferro minimo
w =	0.20	mm	Apertura massima fessure in esercizio in comb. Rara (rif. §1.8.3.2.4 [3])

GEODATA INTEGRA RIA	II LOTTO F	IO TRAT UNZIONA FUNZION	TA CANCEL ALE FRASSI IALE FRASS	LO-BENEVENT O TELESINO – SO TELESINO –	VITULAN	-
Impalcato a travi incorporate per doppio binario L=12,50m - Relazione di calcolo	COMMESSA	LOTTO 12 E ZZ	CODIFICA CL	DOCUMENTO VI0407 001	REV.	FOGLIO 8 di 66

3.2 ACCIAIO PER PROFILATI E LAMIERE

S355 J0			
f _{yk} ≥	355.00	MPa	Tensione caratteristica di snervamento
$f_{tk} \ge$	510.00	MPa	Tensione caratteristica di rottura
γm0	1.05	-	
Ym1	1.10	-	
γ _{m2} =	1.25	-	
$f_{yd} = f_{yk}/\gamma_s =$	338.1	MPa	Tensione caratteristica di snervamento
E _s =	210000.00	MPa	Modulo elastico di progetto

3.3 ACCIAIO PER BARRE DI ARMATURA

B450C			
$f_{yk} \ge$	450.00	MPa	Tensione caratteristica di snervamento
$f_{tk} \ge$	540.00	MPa	Tensione caratteristica di rottura
$(f_t / f_y)_k \ge$	1.15		
$(f_t / f_y)_k <$	1.35		
γ_s =	1.15	-	Coefficiente parziale di sicurezza SLU
$f_{yd} = f_{yk}/\gamma_s =$	391.30	MPa	Tensione caratteristica di snervamento
E _s =	210000.00	MPa	Modulo elastico di progetto
$\epsilon_{yd} =$	0.20	%	Deformazione di progetto a snervamento
$\varepsilon_{uk} = (A_{gt})_k$	7.50	%	Deformazione caratteristica ultima
$\sigma_s = 0.75 f_{yk} =$	337.50	MPa	Tensione in esercizio in comb. Rara (rif. §1.8.3.2.1 [3])

4 DESCRIZIONE DELLA STRUTTURA

Il viadotto in esame (VI04) è costituito da due campate aventi luce pari a 22.00 m e 12.50 m per una lunghezza complessiva di 34.5m.

L'impalcato oggetto della seguente relazione è costituito da 24 travi metalliche incorporate da un getto di completamento in c.a. che realizza anche gli aggetti laterali. La larghezza complessiva dell'impalcato è pari a 13.70 m su cui gravano 2 binari posti ad interasse pari a 4.00 m, in maniera simmetrica rispetto alla mezzeria del viadotto.

Le sottostrutture consistono in due spalle ed una pila con fondazioni di tipo profondo su pali. La spalla indicata con "S1" è la spalla fissa mentre quella indicata con "S2" è la spalla mobile.

L'armamento è di tipo convenzionale su ballast. Il manufatto si inserisce nell'ambito di una tratta a doppio binario ed è in grado di ospitare il nuovo tipologico di B.A. previsto per il viadotto. Nell'analisi dei carichi sarà pertanto previsto il posizionamento di tale tipologia di barriere.

L'opera in oggetto è progettata per una Vita Nominale di 75 anni e una Classe d'uso III (Cu = 1.5), pertanto il periodo di riferimento è pari a $V_R = 75x1.5 = 112.5$ anni.

Di seguito si riportano le caratteristiche geometriche del tracciato e dell'impalcato.

Raggio di curvatura R= 1600 m Velocità di progetto V₁= 180 km/h Sopraelevazione H= 150 mm

Ponte di categoria Cat A
Numero binari nb=2

Lunghezza dell'impalcato di progetto L_{imp} = 12.5 m Larghezza strutturale dell'impalcato: B_i = 10.16 m Larghezza del ballast B_b = 830 cm Spessore medio del ballast S_b = 80 cm Larghezza di ripartizione per verifiche B_{rs} = 4.0 m

Spessori dell'impalcato (min - max) S_{sn}=71.3 cm - S_{sm}=77.3 cm

Profilo delle travi in acciaio HE600M Interasse delle travi I_p = 42 cm Numero totale travi n_{pt} = 24

A seguire si riportano delle immagini che illustrano la geometria della struttura e della fondazione (vista in pianta).

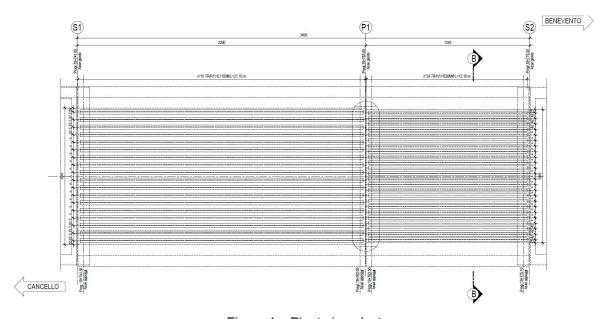


Figura 1 – Pianta impalcato

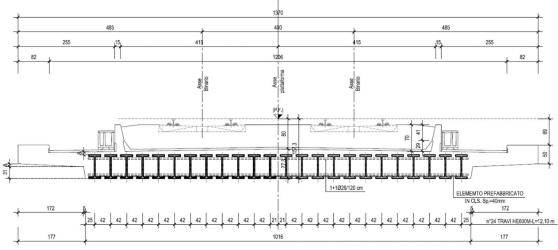


Figura 2 - Sezione trasversale corrente - impalcato L=12.5m

5 CRITERI DI CALCOLO

Secondo la specifica *RFI DTC SICS MA SP IFS 001 A,* per una luce di calcolo maggiore di 9 m, l'impalcato rientra nelle specifiche del Tipologico 2, pertanto ai fini delle verifiche di resistenza e deformabilità i carichi vengono ripartiti sulla larghezza:

Brs= 4.0 m.

Il numero di travi comprese in tale fascia è:

Nps= Brs/lp= $4.0/0.42 \approx 9$

Le azioni vengono combinate in modo da determinare le massime sollecitazioni negli elementi strutturali.

È stata tuttavia condotta, parallelamente, una analisi globale dell'intero impalcato per la determinazione degli scarichi sugli apparecchi di appoggio.

ENGINEERING RIA	II LOTTO F	IO TRAT UNZIONA FUNZION	TA CANCEL ALE FRASSO IALE FRASS	LO-BENEVENT O TELESINO – SO TELESINO –	VITULA	-
Impalcato a travi incorporate per doppio binario L=12,50m - Relazione di calcolo	COMMESSA IF26	LOTTO 12 E ZZ	CODIFICA	DOCUMENTO VI0407 001	REV.	FOGLIO 12 di 66

6 ANALISI DEI CARICHI

Di seguito si riporta l'analisi dei carichi agenti sull'impalcato.

6.1 PERMANENTI STRUTTURALI (G1)

Impalcato			
γ cls	25	kN/m3	peso specifico calcestruzzo armato
A cls	9.31	m2	
p trave acc	2.85	kN/m	peso al metro lineare di una trave (HEM 600)
A 1 trave	0.04	m2	
n travi	24	-	
interasse travi	0.42	m	
n travi 4 m	9	-	
A cls, netta	8.35	m2	
P tot travi	68.4	kN/m	
P soletta cls	208.75	kN/m	
g1 tot	277.2	kN/m	

6.2 PERMANENTI NON STRUTTURALI (G2)

I carichi permanenti non strutturali sono costituiti dal peso della massicciata, dal peso delle barriere antirumore e dal peso delle canalette portacavi.

Secondo il §2.5.1.3.2 [3], ove non si eseguano valutazioni più dettagliate, la determinazione dei carichi permanenti portati relativi al peso della massicciata, armamento e dell'impermeabilizzazione potrà effettuarsi assumendo convenzionalmente, per linea in rettifilo, un peso di volume pari a 18,00 kN/m3, applicato su tutta la larghezza media compresa fra i muretti paraballast, per un'altezza media fra p.f. ed estradosso impalcato pari a 0,80 m.

6.2.1 BALLAST (G21)

Ballast/Armamento

g2.1	119.5	kN/m
sp. max	0.8	m
L trasv	8.3	m
γ armam.	18	kN/m3

6.2.2 PERMANENTI NON STRUTTURALI GENERICI (G22)

Impermeabilizzazione e massetto

γ mass. 21 kN/m3 L trasv 12.1 m sp. max 0.05 m g2.2a 12.7 kN/m

Canalette portacavi

peso canaletta

num canalette

g2.2b

kN/m

2
g2.2b

5.0

kN/m

Velette

peso veletta 1.5 kN/m num velette 2 - g2.2c 3.0 kN/m

Secondo il §2.5.1.3.2 [3], nella progettazione di nuovi ponti ferroviari dovranno essere sempre considerati i pesi le azioni e gli ingombri associati all'introduzione delle barriere antirumore, anche nei casi in cui non ne sia originariamente prevista la realizzazione, assumendo un peso pari a 4.00 kN/m2 ed un'altezza minima di 4.00 m misurata dall'estradosso della soletta. Cautelativamente si considerano presenti barriere di altezza 5.05m ad entrambe le estremità dell'impalcato.

Barriere antirumore

p barriera 4 kN/m2 h barriera 5.05 m num barriere 2 - g2.5 40.4 kN/m

6.2.1 TOTALE PERMANENTI NON STRUTTURALI

g2.1 ballast 119.5 kN/m g2.2 61.1 kN/m

6.3 CARICHI DA TRAFFICO

Per i sovraccarichi mobili si considerano gli effetti prodotti dai modelli di carico rappresentativi del traffico normale (LM71) e pesante (SW/2). Tali effetti sono amplificati per il coefficiente di adattamento α e per il coefficiente dinamico ϕ 3. Per il solo modello di carico LM71 si considera, inoltre, un'eccentricità e di carico rispetto l'asse del binario pari a e= 143.5/18 = 8 cm.

Sono inoltre portate in conto le azioni di frenatura ed avviamento, di serpeggio, di vento sul treno e l'effetto della sopraelevazione delle rotaie.

6.3.1 CARICHI VERTICALI DA TRAFFICO (Q11)

Le azioni verticali associate ai convogli ferroviari si schematizzano mediante i modelli di carico teorici LM71 e SW/2.

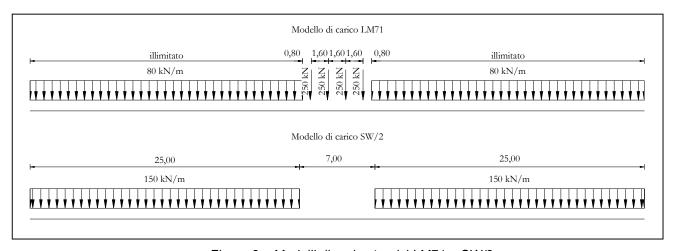


Figura 3 – Modelli di carico teorici LM71 e SW/2

Le differenti disposizioni degli assi e delle stese di carico considerate sono state definite in modo tale da massimizzare le sollecitazioni sulla struttura.

I valori caratteristici dei carichi attribuiti ai modelli di carico devono essere moltiplicati per il coefficiente α che deve assumersi come da tabella seguente:

Modello di carico	Coefficiente α		
LM71	1,10		
SW/2	1,00		

I valori caratteristici dei carichi attribuiti ai modelli di carico devono essere moltiplicati per coefficienti che tengono conto dell'amplificazione dinamica. I coefficienti di amplificazione dinamica Φ si assumono pari a Φ_2 o Φ_3 in dipendenza dal livello di manutenzione della linea. In particolare si assumerà:

per linee con <u>elevato standard manutentivo</u>:

 $\Phi_2 = 1,44/(\sqrt{L_{\Phi}} - 0.2) + 0.82$ con limitazione $1,00 \le \Phi_2 \le 1.67$

• per linee con <u>normale standard manutentivo</u>:

 $\Phi_3 = 2,16/(\sqrt{L_{\Phi} - 0,2}) + 0,73$ con limitazione $1,00 \le \Phi_2 \le 2,00$

Per il caso in oggetto si ha:

L φ 11.6 m Lc = luce travi φ 3 1.40 -

Alcuni scenari di carico prevedono l'impiego del treno scarico, convenzionalmente costituito da un carico uniformemente distribuito pari a 10.00 kN/m. Tale carico non è dimensionante per il manufatto in oggetto.

Si sono considerati i <u>carichi</u> <u>equivalenti</u> (taglianti e flettenti) previsti dalle norme ferroviarie *RFI DTC SI PS MA IFS* 001 *A* in funzione della luce di impalcato netta. Tali carichi sono comprensivi del coefficiente di adattamento α.

LM71			
α	1.1	-	
Lc	11.6	m	
L_q	5.2	m	
L_Q	6.4	m	
q(LM71)	80	kN/m	
Q(LM71)	250	kN	
LM71 equiv. flettente	140.9	kN/m	
LM71 equiv. tagliante	156.9	kN/m	
LM71 equiv. flettente	155.0	kN/m	considerando il coeff. $\boldsymbol{\alpha}$
LM71 equiv. tagliante	172.6	kN/m	considerando il coeff. $\boldsymbol{\alpha}$
SW/2			
SW/2 α	1	-	
-	1 11.6	- m	
α		- m m	
α Lc	11.6	•••	
α Lc L_q	11.6 4.6	m	
α Lc L_q L_senza carico	11.6 4.6 7	m m	
α Lc L_q L_senza carico q(LM71)	11.6 4.6 7 150	m m kN/m	
α Lc L_q L_senza carico q(LM71) Q(LM71)	11.6 4.6 7 150 0	m m kN/m kN	
α Lc L_q L_senza carico q(LM71) Q(LM71) LM71 equiv. flettente	11.6 4.6 7 150 0 150.0	m m kN/m kN kN/m	considerando il coeff. α

GEODATA INTEGRA RIF	II LOTTO F	IO TRAT UNZIONA FUNZION	TA CANCEL ALE FRASSI IALE FRASS	LO-BENEVENT O TELESINO – SO TELESINO –	VITULAN	
Impalcato a travi incorporate per doppio binario L=12,50m - Relazione di calcolo	COMMESSA IF26	LOTTO 12 E ZZ	CODIFICA	DOCUMENTO VI0407 001	REV.	FOGLIO 16 di 66

I carichi considerati nelle analisi e nelle verifiche successive sono i seguenti (i carichi sono già moltiplicati per α e ϕ 3):

Q1.1	242.3	kN/m	1 solo binario LM71
Q1.2	150.0	kN/m	1 solo binario SW/2
Q1.3	392.3	kN/m	2 binari: LM71+SW/2
Q1.4	484.5	kN/m	2 binari LM71

6.3.2 CARICHI SUI MARCIAPIEDI

La normativa prevede uno schema di carico "folla" sui marciapiedi, qualora questi (non aperti al pubblico) siano utilizzati dal personale autorizzato per attività di manutenzione e controllo.

Tali carichi accidentali sono schematizzati da un carico uniformemente ripartito del valore di 10 kN/mq.

Questo carico non deve considerarsi contemporaneo al transito dei convogli ferroviari e deve essere applicato sopra i marciapiedi in modo da dare luogo agli effetti locali più sfavorevoli. Per questo tipo di carico distribuito non deve applicarsi l'incremento dinamico.

6.3.3 AZIONI DI AVVIAMENTO E FRENATURA (Q2)

La azioni di frenatura e avviamento sono costituite da forze uniformemente distribuite su una lunghezza di binario L determinata per ottenere l'effetto più gravoso sull'elemento strutturale considerato. I valori da considerare sono i seguenti:

•	avviamento:	$Q_{la,k}$	= 33 kN/m · L ≤ 1000 kN	per i modelli di carico LM71,SW/2

• frenatura:
$$Q_{lb,k} = 20 \text{ kN/m} \cdot \text{L} \le 6000 \text{ kN}$$
 per i modelli di carico LM71 $Q_{lb,k} = 35 \text{ kN/m}$ per i modelli di carico SW/2

I valori caratteristici dell'azione di frenatura e di avviamento devono essere moltiplicati per α e **non** devono essere moltiplicati per Φ . Nel caso di ponti a doppio binario si devono considerare due treni in transito in versi opposti, uno in fase di avviamento e l'altro in fase di frenatura.

Si ottiene, pertanto:

12.5	m	
412.5	kN	avviamento
250.0	kN	frenatura LM71
437.5	kN	frenatura SW/2
687.5	kN	avv+frenat LM71 (valori moltiplicati per α)
891.3	kN	avv+frenat SW/2 (valori moltiplicati per α)
	412.5 250.0 437.5 687.5	412.5 kN 250.0 kN 437.5 kN 687.5 kN

6.3.4 FORZA CENTRIFUGA (Q3)

L'azione centrifuga è schematizzata come una forza agente in direzione orizzontale perpendicolarmente al binario e verso l'esterno della curva, applicata ad 1,80 m al di sopra del p.f.. Il valore caratteristico della forza centrifuga si determina in accordo con la seguente espressione:

$$Q_{tk} = \frac{v^2}{g \cdot r} (f \cdot Q_{vk}) = \frac{V^2}{127 \cdot r} (f \cdot Q_{vk})$$

$$q_{\text{tk}} = \frac{v^2}{g \cdot r} (f \cdot q_{\text{vk}}) = \frac{V^2}{127 \cdot r} (f \cdot q_{\text{vk}})$$

dove V velocità di progetto espressa in km/h

Q_{vk} q_{vk} valore caratteristico dei carichi verticali

R raggio di curvatura in m

f fattore di riduzione

$$f = \left[1 - \frac{V - 120}{1000} \left(\frac{814}{V} + 1,75\right) \cdot \left(1 - \sqrt{\frac{2,88}{L_f}}\right)\right]$$

Lf lunghezza di influenza, in metri, della parte curva di binario carico sul ponte (la più sfavorevole per il progetto del generico elemento strutturale)

Per il modello di carico LM71 e per velocità di progetto superiori a 120 km/h, si considerano i seguenti 2 casi:

- a) modello di carico LM71 e forza centrifuga per V = 120 km/h e f = 1;
- b) modello di carico LM71 e forza centrifuga calcolata per la massima velocità di progetto.

Per i modelli di carico SW si assume una velocità massima di 100 km/h, La forza centrifuga non deve essere incrementata dei coefficienti dinamici.

Nel caso in esame si ha:

V	180	km/h
Lf	12.5	m
R	1600	m

LM71		
Qvk	250	kN
qvk	80	kN/m

1° caso		
f	1	-
V	120	km/h
α	1.1	-
Qtk	19.5	kN
qtk	6.2	kN/m
2° caso		
f	0.80	-
V	180	km/h
α	1	-
Qtk	32.1	kN
qtk	10.3	kN/m
SW/2		
Qvk	0	kN
qvk	150	kN/m
f	1	
V	100	km/h
α	1	-
Qtk	0	kN
qtk	7.4	kN/m

Si ottengono i seguenti carichi equivalenti:

	LM71	SW/2	
q equiv_flettente	18.1	7.4	kN/m
q equiv_tagliante	21.6	7.4	kN/m

6.3.1 SERPEGGIO (Q4)

La forza laterale indotta dal serpeggio si considera come una forza concentrata agente orizzontalmente, applicata alla rotaia più alta, perpendicolarmente all'asse del binario.

Il valore caratteristico di tale forza è assunto pari a 100 kN. Tale valore deve essere moltiplicato per α ma non per il coefficiente di amplificazione dinamica.

6.3.1 DERAGLIAMENTO

In alternativa ai modelli di carico verticale da traffico ferroviario, ai fini della verifica della struttura si dovrà tenere conto della possibilità che un locomotore o un carro pesante deragli. La normativa propone due diverse situazioni di progetto:

Caso 1

Si considerano due carichi verticali lineari qA1d= 60 kN/m (comprensivo dell'effetto dinamico) ciascuno. Trasversalmente i carichi distano fra loro di S (scartamento del binario) e possono assumere tutte le posizioni comprese entro i limiti indicati in Fig. 5.2.12.

Per questa condizione sono tollerati danni locali, purché possano essere facilmente riparati, mentre sono da evitare danneggiamenti delle strutture portanti principali.

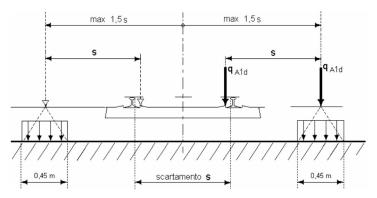


Figura 11 - posizione azioni da deragliamento - caso 1

Caso 2

Si considera un unico carico lineare qA2d=80 x1.4 kN/m esteso per 20 m e disposto con una eccentricità massima, lato esterno, di 1.5 s rispetto all'asse del binario. Tale caso deve essere applicato solo per effetti globali.

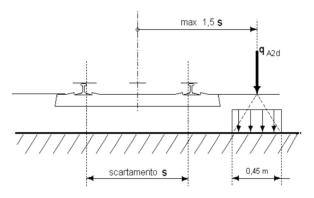


Figura 12 – posizione azioni da deragliamento – caso 2

La posizione dei carichi non determina scenari che vedono coinvolti elementi sensibili a rotture localizzate (mensole, muretti, elementi puntuali, ecc.). Inoltre, sia la posizione che l'entità dei carichi (molto inferiori rispetto ai carichi da traffico considerati in progetto), unitamente al fatto che i relativi effetti devono essere considerati nell'ambito delle

ENGINEERING RIA	II LOTTO F	IO TRAT UNZIONA FUNZION	TA CANCEL ALE FRASSI IALE FRASS	LO-BENEVENT O TELESINO – SO TELESINO –	VITULAN	-
Impalcato a travi incorporate per doppio binario L=12,50m - Relazione di calcolo	COMMESSA IF26	LOTTO 12 E ZZ	CODIFICA	DOCUMENTO VI0407 001	REV.	FOGLIO 20 di 66

combinazioni eccezionali (con valori dei coefficienti parziali sensibilmente meno gravosi di quelli considerate nelle combinazioni caratteristiche) portano a concludere che le azioni da deragliamento non sono significative per le verifiche degli elementi strutturali del manufatto e non determinano scenari più gravosi di quelli effettivamente considerati nei confronti della stabilità globale del manufatto.

6.3.2 GRUPPI DI CARICO

I carichi da traffico ferroviario verranno assemblati tra di loro secondo 3 gruppi di carico: il gruppo 1, 3 e 4.

Tabella 5.2.IV - Valutazione dei carichi da traffico

TIPO DI CARICO	Azioni v	erticali	A	Azioni orizzontali			
Gruppo di carico	li carico Verticale (1)		Frenatura e avviamento	Centrifuga	Serpeggio	Commenti	
Gruppo 1 (2)	1,00	1	0,5 (0,0)	1,0 (0,0)	1,0 (0,0)	massima azione verticale e laterale	
Gruppo.2 (2)	2	1,00	0,00	1,0 (0,0)	1,0(0,0)	stabilità laterale	
Gruppo 3 (2)	1,0 (0,5)	-	1,00	0,5 (0,0)	0,5 (0,0)	massima azione longitudinale	
Gruppo 4	0,8 (0,6; 0,4)	×e.	0,8 (0,6; 0,4)	0,8 (0,6; 0,4)	0,8 (0,6; 0,4)	fessurazione	

Azione dominante

Includendo tutti i fattori ad essi relativi (Φ,α, ecc..)

⁽²⁾ La simultaneità di due o tre valori caratteristici interi (assunzione di diversi coefficienti pari ad 1), sebbene improbabile, è stata considerata come semplificazione per i gruppi di carico 1, 2, 3 senza che ciò abbia significative conseguenze progettuali.

ENGINEERING INTEGRA RIF	II LOTTO F	IO TRAT UNZIONA FUNZION	TA CANCEL ALE FRASSI IALE FRASS	LO-BENEVENT O TELESINO – SO TELESINO –	VITULA	_
Impalcato a travi incorporate per doppio binario L=12,50m - Relazione di calcolo	COMMESSA	LOTTO 12 E ZZ	CODIFICA CL	DOCUMENTO VI0407 001	REV.	FOGLIO 21 di 66

6.4 CARICHI VARIABILI (Q5)

6.4.1 AZIONI DEL VENTO (Q5.1)

L'azione del vento viene ricondotta ad un'azione statica equivalente costituita da pressioni e depressioni agenti normalmente alle superfici.

La pressione del vento è data dalla seguente espressione:

$$p = q_b \cdot c_e \cdot c_p \cdot c_d$$

dove q_b pressione cinetica di riferimento

ce coefficiente di esposizione

cp coefficiente di forma

cd coefficiente dinamico, posto generalmente pari a 1

Di seguito si riporta il dettaglio del calcolo di tali fattori per l'opera in oggetto.

6.4.1.1 PRESSIONE CINETICA DI RIFERIMENTO

La pressione cinetica di riferimento si determina mediante l'espressione:

$$q_b = \frac{1}{2} \cdot \rho \cdot v_b^2$$
 (in N/m²)

dove vb velocità di riferimento

ρ densità dell'aria, convenzionalmente posta pari a 1,25 kg/m³

Di seguito si determina la pressione di riferimento sulla base dei parametri caratteristici del sito e il tempo di ritorno dell'opera in oggetto:

Parametri dipendenti dal sito		
Zona =	3	
vb,0 =	27.00	m/s
a0 =	500.00	m
ka =	0.02	1/s
Altitudine del sito		
as =	40.00	m s,l,m,
vb =	27.00	m/s

EGEODATA INTEGRA RIA	II LOTTO F	IO TRAT UNZIONA FUNZION	TA CANCEL ALE FRASS IALE FRASS	LO-BENEVENT O TELESINO – SO TELESINO –	VITULA	
Impalcato a travi incorporate per doppio binario L=12,50m - Relazione di calcolo	COMMESSA IF26	LOTTO 12 E ZZ	CODIFICA CL	DOCUMENTO VI0407 001	REV.	FOGLIO 22 di 66

	l em	po	dι	ritorno	
_		_			

TR = 75 anni $\alpha R(TR) = 1.023$ vb(TR) = 27.63 m/s

Pressione di riferimento

qb = 477.3 N/m2

Dove:

dove

 α_R = 0,75· [1 - 0,2 · In (-In (1-1/ T_R)]^{0,5} v_b (T_R) = $\alpha_R x$ v_b

6.4.1.2 COEFFICIENTE DI ESPOSIZIONE

Il coefficiente di esposizione c_e dipende dall'altezza z sul suolo del punto considerato, dalla topografia del terreno e dalla categoria di esposizione del sito e si determina mediante l'espressione:

$$\begin{split} c_e(z) &= k_r^2 \cdot c_t \cdot \text{ln}(z/z_0) \left[7 + c_t \cdot \text{ln}(z/z_0)\right] \quad \text{per } z \geq z_{\text{min}} \\ c_e(z) &= c_e(z_{\text{min}}) \quad \text{per } z < z_{\text{min}} \\ k_r, \ z_0, \ z_{\text{min}} \quad \text{sono parametri che dipendono dalla categoria di esposizione del sito;} \\ c_t \qquad & \text{è il coefficiente di topografia, posto generalmente pari a 1} \end{split}$$

Di seguito si determina il coefficiente di esposizione sulla base della classe d'esposizione e l'altezza z del punto considerato, posta pari alla massima quota del complesso impalcato, barriere antirumore, sagoma del treno. A tal proposito il §2.5.1.4.4.2 [3] impone di considerare il treno come una superficie piana continua convenzionalmente alta 4.00 m sul p.f.. Cautelativamente si considerano presenti barriere H4 ad entrambe le estremità dell'impalcato.

Categoria di esposizione

Classe di rugosità = D

Distanza dalla costa = > 30 km

Categoria di esposizione =

kr = 0.19

 $z_0 = 0.05$ m

zmin = 4.00 m

GEODATA INTEGRA RIA	II LOTTO F	IO TRAT UNZION FUNZION	TA CANCEL ALE FRASSI IALE FRASS	LO-BENEVENT O TELESINO – SO TELESINO –	VITULA	
Impalcato a travi incorporate per doppio binario L=12,50m - Relazione di calcolo	COMMESSA IF26	LOTTO 12 E ZZ	CODIFICA CL	DOCUMENTO VI0407 001	REV.	FOGLIO 23 di 66

m m m

Quota di riferimento z	
H struttura fino a p.f. =	7.50
H b.a. su p.f. =	5.05
·	
H treno su p.f. =	4.00
z di riferimento =	14.12
Coefficiente di esposizione	
ce =	2.58

6.4.1.3 COEFFICIENTE DI FORMA DELL'IMPALCATO

Il coefficiente di forma dell'impalcato e l'area di riferimento per il calcolo della forza risultante si determinano in base ai criteri enunciati nel §8.3.1 [9].

A tal proposito si riconduce il coefficiente di forma c_p al coefficiente di forza $c_{fx,0}$, Il coefficiente di forza $c_{fx,0}$ si determina in base al rapporto tra larghezza b e altezza totale dell'impalcato d_{tot} .

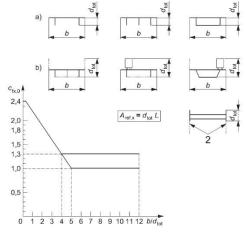


Figura 4 – Correlazione tra il rapporto b/dtot e coefficiente di forma cfx0 (figura 8,3 EC1-4)

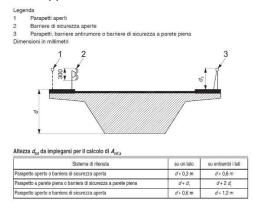


Figura 5 – Criteri per la determinazione dell'area di riferimento (figura 8,5 EC1-4)

GEODATA INTEGRA RIA	II LOTTO F	IO TRAT UNZIONA FUNZION	TA CANCEL ALE FRASSI IALE FRASS	LO-BENEVENT O TELESINO – SO TELESINO –	VITULAN	_
Impalcato a travi incorporate per doppio binario L=12,50m - Relazione di calcolo	COMMESSA IF26	LOTTO 12 E ZZ	CODIFICA	DOCUMENTO VI0407 001	REV.	FOGLIO 24 di 66

L'area da considerare per il calcolo della risultante di forza si definisce come la somma di tutte le superfici proiettate dall'impalcato nel piano longitudinale, comprese le barriere e la sagoma dei veicoli.

Per il caso in esame si ha:

• • • • • • • • • • • • • • • • • • • •		
Caratteristiche geometriche dell'impalcato		
b =	13.70	m
H b.a. su p.f. =	5.05	m
H imp. fino a p.f.	1.57	m
dtot max =	10.62	m
b/dtot =	1.29	
cp, max =	2.1	

6.4.1.4 AZIONE DEL VENTO

Di seguito si procede al calcolo dell'azione del vento agente sull'impalcato in relazione ai parametri determinati nei paragrafi precedenti.

Pressione del vento		
qb =	477.3	N/m2
ce =	2.58	
cp =	2.1	
cd =	1.00	
p = qb · ce ·cp ·cd =	2.58	kN/m2

6.4.2 AZIONI AERODINAMICHE INDOTTE DAL TRANSITO DEI CONVOGLI

Per la valutazione delle azioni aerodinamiche indotte dal transito dei convogli si è fatto riferimento a quanto riportato al punto 2.5.1.4.6 delle istruzioni RFI [RFI DTC SICS MA IFS 001 con riferimento al caso di "Superfici verticali parallele al binario".

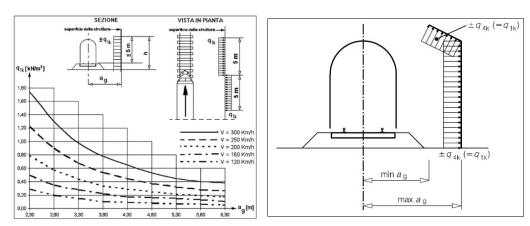


Figura 6 – Valori caratteristici delle azioni e definizione della distanza minima e massima della barriera dal convoglio [NTC – Fig. 5.2.8 e 5.2.11]

Per la linea in esame è possibile considerare, cautelativamente, convogli con forme aerodinamiche sfavorevoli e aventi velocità di linea pari a 180 km/h. Pertanto si ha:

a g	4.45	m	distanza barriera asse binario
V	180	km/h	
qak	0.25	kN/m2	dal grafico
Lb	12.5	m	lunghezza barriera
hb	5.05	m	altezza barriera
yb	0.88	m	distanza attacco barriera da intradosso trave
yGb	3.405	m	baricentro barriera da intradosso impalcato

6.4.3 AZIONI TERMICHE (Q5.2)

6.4.3.1 VARIAZIONE TERMICA UNIFORME

È stata considerata una variazione termica uniforme della struttura pari a ±25°C.

6.4.3.2 VARIAZIONE TERMICA DIFFERENZIALE

È stata considerata una differenza di temperatura tra estradosso e intradosso della soletta superiore pari a ±5°C.

6.4.4 AZIONI DA NEVE (Q5.3)

Il carico da neve sulla piattaforma ferroviaria non può essere contemporaneo al traffico ferroviario.

6.5 AZIONI INDIRETTE (Q6)

6.5.1 RESISTENZE PARASSITE NEI VINCOLI (Q6.1)

Per la valutazione delle coazioni generate dallo scorrimento dei vincoli, è stato considerato un coefficiente d'attrito f pari a 0,06, applicato alle azioni verticali agenti sugli apparecchi d'appoggio.

La forza agente sulle pile per impalcati a travate isostatiche si considera pari a:

$$F_a = f(0.2 * V_G + V_Q)$$

dove V_G reazione verticale massima associata ai carichi permanenti

Vo reazione verticale massima associata ai carichi mobili dinamizzati

Reazioni verticali massime

V(G1+G2) =	2836	kN
V(Q1max) =	3028	kN

Forza d'attrito risultante per il singolo impalcato

f = 0.06

F_long_pila = 216 kN

La forza agente sulla spalla mobile per impalcati a travate isostatiche si considera pari a:

$$F_a = f(V_G + V_Q)$$

dove V_G reazione verticale massima associata ai carichi permanenti

V_Q reazione verticale massima associata ai carichi mobili dinamizzati

Reazioni verticali massime

V(G1+G2) =	2836	kN
V(Q1max) =	3028	kN

Forza d'attrito risultante per il singolo impalcato

f = 0.06

F long spalla = 352 kN

Nel caso in esame la fila di appoggi fissi è posizionata sulla pila 1, mentre la spalla 2 è mobile.

6.6 AZIONI SISMICHE (E)

L'azione sismica di progetto è rappresentata da spettri di risposta definiti in base alla pericolosità sismica di base del sito ove sorge l'opera in oggetto, la vita di riferimento e le caratteristiche del sottosuolo.

Di seguito si riportano i parametri di input utilizzati per la definizione degli spettri di progetto orizzontali e verticali e i grafici degli stessi.

6.6.1 SPETTRI DI PROGETTO ALLO SLV

Coordinate geografiche del sito:

Latitudine	Longitudine		
[°]	[°]		
41,175	14,472		

Strategia di progettazione

Vita nominale VN =	75	anni
Coefficiente d'uso cu =	1.5	
Vita di riferimento VR =	112.5	anni
Categoria di sottosuolo =	В	
Categoria topografica =	T1	

Per la definizione della categoria di suolo si rimanda all'elaborato progettuale "Viadotto Maltempo - Relazione geotecnica di calcolo delle fondazioni" IF2612EZZCLVI0403002A.

6.6.1.1 PARAMETRI PER LA DEFINIZIONE DELLO SPETTRO ORIZZONTALE

Tr	1068	anni
ag	0.275	g
Fo	2.350	-
S	1.142	-
ТВ	0.182	sec
TC	0.418	sec
TD	2.699	sec

6.6.1.2 PARAMETRI PER LA DEFINIZIONE DELLO SPETTRO VERTICALE

Tr	1068	anni
agv	0.195	g
Fv	1.663	-
S	1.000	-
TB	0.050	sec
TC	0.150	sec
TD	1.000	sec

Spettri di risposta (componenti orizz. e vert.) per lo stato limite: SLV

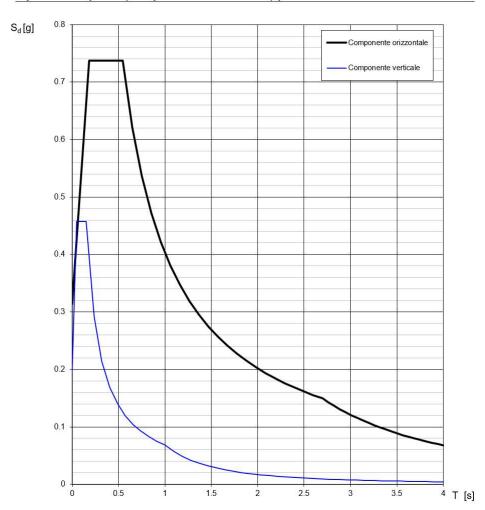


Figura 7 – Spettro elastico allo SLV – Componente orizzontale e verticale

ENGINEERING RIA	II LOTTO F	IO TRAT UNZIONA FUNZION	TA CANCEL ALE FRASSI IALE FRASS	LO-BENEVENT O TELESINO – SO TELESINO –	VITULA	
Impalcato a travi incorporate per doppio binario L=12,50m - Relazione di calcolo	COMMESSA	LOTTO 12 E ZZ	CODIFICA CL	DOCUMENTO VI0407 001	REV.	FOGLIO

7 COMBINAZIONI DI CARICO

La determinazione delle Sollecitazioni di Progetto utili al dimensionamento strutturale e geotecnico delle opere oggetto del presente documento, è stata condotta utilizzando il metodo agli stati limite, secondo quanto specificato a riguardo al paragrafo 2.6 del DM 14.01.08, con riferimento all'Approccio 2.

Per la definizione dei criteri di combinazione degli effetti prodotti dalle singole condizioni elementari di carico previste sull'opera, si è fatto inoltre riferimento a quanto prescritto al prg 2.5.3 dello stesso DM, di seguito riproposto per completezza:

2.5.3 COMBINAZIONI DELLE AZIONI

Ai fini delle verifiche degli stati limite si definiscono le seguenti combinazioni delle azioni.

- Combinazione fondamentale, generalmente impiegata per gli stati limite ultimi (SLU):

$$\gamma_{G1} \cdot G_1 + \gamma_{G2} \cdot G_2 + \gamma_{P} \cdot P + \gamma_{Q1} \cdot Q_{k1} + \gamma_{Q2} \cdot \psi_{02} \cdot Q_{k2} + \gamma_{Q3} \cdot \psi_{03} \cdot Q_{k3} + \dots$$
 (2.5.1)

 Combinazione caratteristica (rara), generalmente impiegata per gli stati limite di esercizio (SLE) irreversibili, da utilizzarsi nelle verifiche alle tensioni ammissibili di cui al § 2.7:

$$G_1 + G_2 + P + Q_{k1} + \psi_{02} \cdot Q_{k2} + \psi_{03} \cdot Q_{k3} + \dots$$
 (2.5.2)

 Combinazione frequente, generalmente impiegata per gli stati limite di esercizio (SLE) reversibili:

$$G_1 + G_2 + P + \psi_{11} \cdot Q_{k1} + \psi_{22} \cdot Q_{k2} + \psi_{23} \cdot Q_{k3} + \dots$$
 (2.5.3)

 Combinazione quasi permanente (SLE), generalmente impiegata per gli effetti a lungo termine:

$$G_1 + G_2 + P + \psi_{21} \cdot Q_{k1} + \psi_{22} \cdot Q_{k2} + \psi_{23} \cdot Q_{k3} + \dots$$
 (2.5.4)

 Combinazione sismica, impiegata per gli stati limite ultimi e di esercizio connessi all'azione sismica E (v. § 3.2):

$$E + G_1 + G_2 + P + \psi_{21} \cdot Q_{k1} + \psi_{22} \cdot Q_{k2} + \dots$$
 (2.5.5)

 Combinazione eccezionale, impiegata per gli stati limite ultimi connessi alle azioni eccezionali di progetto A_d (v. § 3.6):

$$G_1 + G_2 + P + A_d + \psi_{21} \cdot Q_{k1} + \psi_{22} \cdot Q_{k2} + \dots$$
 (2.5.6)

Nelle combinazioni per SLE, si intende che vengono omessi i carichi Q_{kj} che danno un contributo favorevole ai fini delle verifiche e, se del caso, i carichi G_2 .

Trattandosi nel caso in esame di opere ferroviarie, la definizione dei coefficienti parziali di combinazione (γ) e di partecipazione (ψ) è stata effettuata seguendo a riguardo le specifiche di cui al paragrafo 5.2.3 del DM 14.01.08 nonché quanto indicato nel relativo manuale di progettazione RFI già citato al paragrafo dei documenti di riferimento; nel seguito un estratto significativo sul tema dei documenti citati.

		Coefficiente	EQU ⁽¹⁾	Al STR	A2 GEO	Combinazione eccezionale	Combinazione Sismica
Carichi permanenti	favorevoli sfavorevoli	γ G1	0,90 1,10	1,00 1,35	1,00 1,00	1,00 1,00	1,00 1,00
Carichi permanenti non strutturali ⁽²⁾	favorevoli sfavorevoli	γ _{G2}	0,00 1,50	0,00 1,50	0,00 1,30	1,00 1,00	1,00 1,00
Ballast ⁽³⁾	favorevoli sfavorevoli	γв	0,90 1,50	1,00 1,50	1,00 1,30	1,00 1,00	1,00 1,00
Carichi variabili da traffico ⁽⁴⁾	favorevoli sfavorevoli	YQ	0,00 1,45	0,00 1,45	0,00 1,25	0,00 0,20 ⁽⁵⁾	0,00 0,20 ⁽⁵⁾
Carichi variabili	favorevoli sfavorevoli	γQi	0,00 1,50	0,00 1,50	0,00 1,30	0,00 1,00	0,00
Precompressione	favorevole sfavorevole	γp	0,90 1,00 ⁽⁶⁾	1,00 1,00 ⁽⁷⁾	1,00 1,00	1,00 1,00	1,00 1,00

⁽¹⁾ Equilibrio che non coinvolga i parametri di deformabilità e resistenza del terreno; altrimenti si applicano i valori di GEO.

Tabella 1 – Coefficienti parziali di sicurezza per le combinazioni agli SLU

Azioni		Ψo	V 1	Ψ2
Azioni	Carico sul rilevato a tergo delle spalle	0,80	0,50	0,0
da traffico	Azioni aerodinamiche generate dal transito dei convogli	0,80	0,50	0,0
	grl	0,80(2)	0,80(1)	0,0
Gruppi di	gr ₂	0,80(2)	0,80(1)	-
carico	gr ₃	0,80(2)	0,80(1)	0,0
	gr4	1,00	1,00(1)	0,0
Azioni del vento	F _{Wk}	0,60	0,50	0,0
Azioni da	in fase di esecuzione	0,80	0,0	0,0
neve	SLU e SLE	0,0	0,0	0,0
Azioni termiche	T _k	0,60	0,60	0,50

^{(1) 0,80} se è carico solo un binario, 0,60 se sono carichi due binari e 0,40 se sono carichi tre o più binari.

⁽²⁾ Nel caso in cui i carichi permanenti non strutturali (ad es. carichi permanenti portati) siano compiutamente definiti si potranno adottare gli stessi coefficienti validi per le azioni permanenti.

⁽³⁾ Quando si prevedano variazioni significative del carico dovuto al ballast, se ne dovrà tener conto esplicitamente nelle verifiche.

⁽⁴⁾ Le componenti delle azioni da traffico sono introdotte in combinazione considerando uno dei gruppi di carico gr della Tab. 5.2 IV.

⁽⁵⁾ Aliquota di carico da traffico da considerare.

^{(6) 1,30} per instabilità in strutture con precompressione esterna

^{(7) 1,20} per effetti locali

⁽²⁾ Quando come azione di base venga assunta quella del vento, i coefficienti ψ₀ relativi ai gruppi di carico delle azioni da traffico vanno assunti pari a 0,0.

	Azioni	Ψo	V 1	Ψ2
	Treno di carico LM 71	0,80(3)	(1)	0,0
Azioni	Treno di carico SW /0	0,80 ⁽³⁾	0,80	0,0
singole	Treno di carico SW/2	0,0(3)	0,80	0,0
da	Treno scarico	1,00(3)		
traffico	Centrifuga	(2 (3)	(2)	(2)
	Azione laterale (serpeggio)	1,00(3)	0,80	0,0

- (1) 0,80 se è carico solo un binario, 0,60 se sono carichi due binari e 0,40 se sono carichi tre o più binari.
- (2) Si usano gli stessi coefficienti \(\psi\) adottati per i carichi che provocano dette azioni.

progettuali.

(3) Quando come azione di base venga assunta quella del vento, i coefficienti ψ₀ relativi ai gruppi di carico delle azioni da traffico vanno assunti pari a 0,0.

Tabella 2 – Coefficienti di combinazione ψ delle azioni

TIPO DI CARICO	Azioni v	erticali	A:	zioni orizzont:	ali		
Gruppo di carico	Carico verticale (1)	Treno scarico	Frenatura e avviamento	Centrifuga	Serpeggio	Commenti	
Gruppo 1 (2)	1,00	-	0,5 (0,0)	1,0 (0,0)	1,0 (0,0)	massima azione verticale e laterale	
Gruppo.2 (2)	-	1,00	0,00	1,0 (0,0)	1,0(0,0)	stabilità laterale	
Gruppo 3 (2)	1,0 (0,5)	-	1,00	0,5 (0,0)	0,5 (0,0)	massima azione longitudinale	
Gruppo 4	0,8 (0,6; 0,4)	-	0,8 (0,6; 0,4)	0,8 (0,6; 0,4)	0,8 (0,6; 0,4)	fessurazione	
Azione dominante (1) Includendo nutti i fattori ad essi relativi (Φ,α, ecc) (2) La simultaneità di due o tre valori caratteristici interi (assunzione di diversi coefficienti pari ad 1), sebbene improbabile, è stata considerata come semplificazione per i gruppi di carico 1, 2, 3 senza che ciò abbia significative consequenze							

Tabella 3 – Definizione dei gruppi di carico

Di seguito vengono riportate le tabelle che riepilogano le condizioni di carico elementari (C.C.E.) considerate.

	C.C.E.	Descrizione
	G1	Pesi propri
G - Permanenti	G21	Ballast
	G22, G23, G24	Permanenti non strutturali
Q1 - Variabili verticali	Q1	Carichi verticali da traffico
Q2 - Avviamento e frenatura	Q2	Avviamento e frenatura
Q3 - Centrifuga	Q3	Centrifuga
Q4 - Serpeggio	Q4	Serpeggio

Q5 - Variabili	Q51	Vento
Q0 Variabili	Q52	Termiche
Q6 - Azioni interne	Q61	Resistenza parassite nei vincoli
	E1	Sisma x
E - Azioni sismiche	E2	Sisma y
	E3	Sisma z

Di seguito si riporta una tabella riassuntiva dei coefficienti di combinazione utilizzati per le verifiche delle travi.

	Coefficienti combinazione				
	γ	γ gr1	ψ 01	coeff	
Azione					
Peso proprio	1.35	-	-	1.35	
Sovraccarichi permanenti	1.5	-	-	1.5	
LM71 dinamizzato	1.45	1	-	1.45	
Eccentricità del carico LM71	1.45	1	-	1.45	
Effetto della sopraelevazione	1.45	1	-	1.45	
Frenatura/Avviamento	1.45	0.5	-	0.725	
Centrifuga	1.45	1	-	1.45	
Serpeggio	1.45	1	-	1.45	
Vento	1.5	-	0.6	0.9	

8 ANALISI E SOLLECITAZIONI

8.1 SOLLECITAZIONI SULLA FASCIA DI 4M

Nei seguenti paragrafi si valutano le azioni flettenti, taglianti e torcenti agenti sulla fascia resistente di larghezza pari a 4.0 m in cui sono presenti 9 travi.

Le azioni verticali prodotte da permanenti e accidentali e quelle prodotte dalla frenatura/avviamento sono ugualmente ripartite sulle diverse travi contenute all'interno della fascia resistente di 4,0 m. Le azioni orizzontali, invece, riportate al baricentro delle travi, producono delle coppie torcenti lungo l'asse dell'impalcato che hanno come effetto quello di caricare maggiormente le travi più esterne della fascia considerata. Analogo effetto hanno l'eccentricità di carico del treno LM e l'effetto della sopraelevazione.

MOMENTO FLETTENTE E TAGLIO

Peso proprio							
		q [kN/m]	l [m]	n_tr	n_tr_4m		
M1,1		277.2	11.60	24	9	1748	kNm
V1,1		277.2	11.60	24	9	603	kN
R1,1		277.2	11.60	24	9	603	kN
Sovraccarichi permano	enti						
		q [kN/m]	l [m]	num travi tot	n_tr_4m		
M1,2		180.6	11.60	24	9	1139	kNm
V1,2		180.6	11.60	24	9	393	kN
R1,2		180.6	11.60	24	9	393	kN
Variabili ferroviari							
<u>LM71</u>	ψ	α q [kN/m]	l [m]	num travi tot	n_tr_4m		
M2 (conf. 1)	1.404	155.0	11.60	24	9	3660	kNm
V2 (conf. 2)	1.404	172.6	11.60	24	9	1405	kN
R2 (conf. 2)	1.404	172.6	11.60	24	9	1405	kN
<u>SW/2</u>	ψ	α q [kN/m]	l [m]	num travi tot	n_tr_4m		
M2	1.404	150.0	11.60	24	9	3542	kNm
V2	1.404	150.0	11.60	24	9	1221	kN
R2	1.404	150.0	11.60	24	9	1221	kN
Frenatura							
<u>LM71</u>	α Q [kN]	z [m]	l [m]				
R4,max	275.0	1.57	11.60	37	kN		
M4,app	275.0	1.26		347	kNm		
M4,mezz				173	kNm		

<u>SW/2</u>	α Q [kN]	z [m]	l [m]		
R4,max	437.5	1.57	11.60	59	kN
M4,app	437.5	1.26		551	kNm
M4,mezz				276	kNm
Avviamento					
<u>LM71</u>	α Q [kN]	z [m]	l [m]		
R4,max	453.8	1.57	11.60	61	kN
M4,app	453.8	1.26		572	kNm
M4,mezz				286	kNm
<u>SW/2</u>	α Q [kN]	z [m]	l [m]		
R4,max	412.5	1.57	11.60	56	kN
M4,app	412.5	1.26		520	kNm
M4,mezz				260	kNm
COPPIE TORCENTI A	METRO LINEAR	E DI IMPALO	CATO		
Centrifuga					
<u>LM71</u>	α q [kN/m]	z [m]			
mt5,flettenti	18.1	1.26		22.8	kNm/m
mt5,taglianti	21.6	1.57		33.8	kNm/m
21112	51.2.7.2				
<u>SW/2</u>	α q [kN/m]	z [m]	I		
mt5,flettenti	7.4	1.26		9.3	kNm/m
mt5,taglianti	7.4	1.57		11.6	kNm/m
Eccentricità del cari		f 1			
	q [kN/m]	z [m]	ı	40.4	
mt6,flettenti	155.0	0.08		12.4	kNm/m
mt6,taglianti	172.6	0.08		13.8	kNm/m
-cc					
Effetto della soprae	levazione	- []			
400:/4.43 F	100	s [m]	442.5	0.400	
es=180xs/143.5=	180	0.15	143.5	0.188	m
18471	a [[/N] /m]	ا سا ءه			
LM71	q [kN/m]	es [m]		20.2	NI ma / ma
mt7,flettenti	155.0 173.6	0.188		29.2	kNm/m
mt7,taglianti	172.6	0.188		32.5	kNm/m

ITINERARIO NAPOLI – BARI RADDOPPIO TRATTA CANCELLO-BENEVENTO II LOTTO FUNZIONALE FRASSO TELESINO – VITULANO 1° LOTTO FUNZIONALE FRASSO TELESINO – TELESE

PROGETTO ESECUTIVO

Impalcato a travi incorporate per doppio binario L=12,50m - Relazione di calcolo COMMESSA LOTTO CODIFICA DOCUMENTO REV. FOGLIO IF26 12 E ZZ CL VI0407 001 A 36 di 66

SW/2 mt7,flettenti mt7,taglianti	q [kN/m] 150.0 150.0	es [m] 0.188 0.188		28.2 28.2	kNm/m kNm/m			
Vento								
vento su barriera a.r. (senza traffico)								
	Fw [kN]	Li [m]	zFw [m]					
mt8=Fw/Li x zFw	214	11.60	3.00	55.2	kNm/m			
vento su treno								
	Fw [kN]	Li [m]	zFw [m]					
mt8=Fw/Li x zFw	214	11.60	2.48	45.6	kNm/m			
Serpeggio (azione laterale)								
<u>LM71</u>	qs [kN/m]	zs [m]						
mt9=qsxzs	110	1.26		138.6	kNm/m			
<u>SW/2</u>	qs [kN/m]	zs [m]						
mt9=qsxzs	100	1.26		126.0	kNm/m			

GEODATA INTEGRA RIA	II LOTTO F	IO TRAT UNZIONA FUNZION	TA CANCEL ALE FRASSI IALE FRASS	LO-BENEVENT O TELESINO – SO TELESINO –	VITULAN	
Impalcato a travi incorporate per doppio binario L=12,50m - Relazione di calcolo	COMMESSA	LOTTO 12 E ZZ	CODIFICA CL	DOCUMENTO VI0407 001	REV.	FOGLIO 37 di 66

8.2 SOLLECITAZIONI SULLA TRAVE DI BORDO DELLA FASCIA DI 4M

Di seguito si riportano le azioni flettenti, taglianti e torcenti agenti sulla trave di bordo della fascia resistente. In particolare gli effetti delle coppie torcenti "mt" si traducono un incremento di carico verticale Δq sulla trave di bordo. Le sollecitazioni flettenti e taglianti sono invece equamente suddivise tra le travi appartenenti alla fascia resistente.

L'incremento di carico verticale prodotto sulla trave di bordo dalle coppie torcenti si valuta, in prima approssimazione, considerando la flessione su una striscia unitaria trasversale di impalcato avente sezione Brs*h:

$$\Delta p = \alpha * mt$$

Dove:

i =	0.42	m	interasse travi
d	1.89	m	braccio trave di bordo
$B_{\mathrm{rip.}} =$	4	m	larghezza di ripartizione
h	0.62	m	altezza travi
$J = h \times B_{rip.}^{3} / 12 =$	5.33	m^4	inerzia striscia unitaria trasversale di impalcato di altezza=Brs
$\alpha = dxi/J =$	0.149	1/ma	

1/mq

0.149

AZIONI VERTICALI

Peso proprio

		n_tr_4m		
M'1,1 = M1,1/n	1748	9	194 kNr	n Momento mezzeria
V'1,1 = V1,1/n	603	9	67 kN	Taglio all'appoggio
R'1,1= R1,1/n	603	9	67 kN	Reazione vincolare
Sovraccarichi permanenti				
		n_tr_4m		
M'1,2 = M1/n	1139	9	127 kNr	n Momento mezzeria
V'1,2 = V1/n	393	9	44 kN	Taglio all'appoggio
R'1,2= R1/n	393	9	44 kN	Reazione vincolare
Variabili ferroviari				
<u>LM71</u>		n_tr_4m		
M'2 = M2/n	3660	9	407 kNr	n Momento mezzeria (conf. 1)
V'2 = V2/n	1405	9	156 kN	Taglio all'appoggio (conf. 2)
R'2= R2/n	1405	9	156 kN	Reazione vincolare (conf. 2)

RADDOPPIO TRATTA CANCELLO-BENEVENTO
II LOTTO FUNZIONALE FRASSO TELESINO – VITULANO
1° LOTTO FUNZIONALE FRASSO TELESINO – TELESE

Impalcato a travi incorporate per doppio binario	COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
L=12,50m - Relazione di calcolo	IF26	12 E ZZ	CL	VI0407 001	Α	38 di 66

CIM/O		n tr Am			
<u>SW/2</u>	2542	n_tr_4m 9	204	LaNies	NA
M'2 = M2/n	3542			kNm	Momento mezzeria
V'2 = V2/n	1221	9	136	kN	Taglio all'appoggio
R'2= R2/n	1221	9	136	kN	Reazione vincolare
Frenatura					
LM71		n_tr_4m			
M'4 = M4,mezz/n	173	9	19	kN	Momento mezzeria
V'4 = R4/n	37	9	4	kNm	Taglio all'appoggio
N'4= QI/n	275	9		kN	Sforzo normale
27		-			
<u>SW/2</u>		n_tr_4m			
M'4 = M4,mezz/n	276	9	31	kN	Momento mezzeria
V'4 = R4/n	59	9	7	kNm	Taglio all'appoggio
N'4= QI/n	438	9	49	kN	Sforzo normale
Avviamento					
<u>LM71</u>		n_tr_4m			
M'4 = M4,mezz/n	286	9	32	kN	Momento mezzeria
V'4 = R4/n	61	9	7	kNm	Taglio all'appoggio
N'4= QI/n	454	9	50	kN	Sforzo normale
<u>SW/2</u>		n_tr_4m			
M'4 = M4,mezz/n	260	9	29	kN	Momento mezzeria
V'4 = R4/n	56	9	6	kNm	Taglio all'appoggio
N'4= QI/n	413	9	46	kN	Sforzo normale
AZIONI ORIZZONALI					
Centrifuga	_				
LM71	α	mt5 [kNm/m]	2.20	Lablace from	
$\Delta p5$, flettenti = $\alpha \times mt5$	0.149	22.8		kNm/m	
Δ p5,taglianti = α x mt5	0.149	33.8	5.04	kNm/m	
	Δp5 [kNm/m]	Lc [m]			
M5 = Δp5 x Lc^2 / 8	3.39	11.60	57	kNm	momento in mezzeria
$V5 = \Delta p5 \times Lc / 2$	5.04	11.60		kNm	taglio all'appoggio
V3 - Ap3 A LC / Z	5.04	11.00	23	WINIII	ταξιίο απ αρρυξέιο
<u>SW/2</u>	α	mt5 [kNm/m]			
Δ p5,flettenti = α x mt5	0.149	9.3	1.38	kNm/m	
$\Delta p5$,taglianti = $\alpha \times mt5$	0.149	11.6		kNm/m	
_po,tagnanti	3.143	11.0	1.75		

ENGINEERING RIA	II LOTTO F	IO TRATI UNZIONA FUNZION	TA CANCEL ALE FRASS ALE FRASS	LO-BENEVENT O TELESINO – SO TELESINO –	VITULAN	_
Impalcato a travi incorporate per doppio binario L=12,50m - Relazione di calcolo	COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO

	•				
	Δp5 [kNm/m]	Lc [m]			
$M5 = \Delta p5 \times Lc^2 / 8$	1.38	11.60	23	kNm	momento in mezzeria
$V5 = \Delta p5 \times Lc / 2$	1.73	11.60	10	kNm	taglio all'appoggio
Eccentricità del carico LM71					
	α	mt6 [kNm/m]			
Δ p6,flettenti = α x mt6	0.149	12.4	1.84	kNm/m	
Δp6,taglianti = α x mt6	0.149	13.8		kNm/m	
1.3/3.0				,	
	Δp6 [kNm/m]	Lc [m]			
M6 = Δp6 x Lc^2 / 8	1.84	11.60	31	kNm	momento in mezzeria
$V6 = \Delta p6 \times Lc / 2$	2.05	11.60		kNm	taglio all'appoggio
VO - 200 X 20 / 2	2.03	11.00	12	KIVIII	tablio all appobblo
Effetto della sopraelevazione					
Lifetto della sopraelevazione					
<u>LM71</u>	α	mt7 [kNm/m]			
$\Delta p7$, flettenti = $\alpha \times mt7$	-0.149	29.2	-/1 2/1	kNm/m	
•		_		kNm/m	
Δ p7,taglianti = α x mt7	-0.149	32.5	-4.83	KINITI/III	
	An7 [kNm/m]	le [m]			
NA7	Δp7 [kNm/m] -4.34	Lc [m] 11.60	-73	l. Nima	
$M7 = \Delta p7 \times Lc^2 / 8$			_		momento in mezzeria
$V7 = \Delta p7 \times Lc / 2$	-4.83	11.60	-28	kNm	taglio all'appoggio
CW/2					
SW/2	α	mt7 [kNm/m]	4.20	LaNies /es	
Δ p7,flettenti = α x mt7	-0.149	28.2		kNm/m	
Δ p7,taglianti = α x mt7	-0.149	28.2	-4.20	kNm/m	
	A 7 (I A) / 1				
	Δp7 [kNm/m]		74	1.51	
$M7 = \Delta p7 \times Lc^2 / 8$	-4.20	11.60		kNm	momento in mezzeria
$V7 = \Delta p7 \times Lc / 2$	-4.20	11.60	-24	kNm	taglio all'appoggio
Vento					
vento su barriera a.r. (senza traffico)					
	α	mt8 [kNm/m]			
$\Delta p8 = \alpha \times mt8$	0.149	55.2	8.22	kNm/m	
	Δp8 [kNm/m]	Lc [m]			
$M8 = \Delta p8 \times Lc^2 / 8$	8.22	11.60	138	kNm	momento in mezzeria
V8 = Δp8 x Lc / 2	8.22	11.60	48	kNm	taglio all'appoggio

vento su treno					
	α	mt8 [kNm/m]			
$\Delta p8 = \alpha x mt8$	0.149	45.6	6.78	kNm/m	
	Δp8 [kNm/m]	Lc [m]			
$M8 = \Delta p8 \times Lc^2 / 8$	6.78	11.60	114	kNm	momento in mezzeria
V8 = Δp8 x Lc / 2	6.78	11.60	39	kNm	taglio all'appoggio
Serpeggio (azione laterale)					
<u>LM71</u>	α	mt9 [kNm/m]			
$\Delta p9 = \alpha \times mt9$	0.149	138.6	20.63	kNm/m	
	Δp9 [kNm/m]	Lc [m]			
$M9 = \Delta p9 \times Lc / 4$	20.63	11.60	60	kNm	momento in mezzeria
V9 = Δp9	20.63		21	kNm	taglio all'appoggio
<u>SW/2</u>	α	mt9 [kNm/m]			
$\Delta p9 = \alpha \times mt9$	0.149	126.0	18.75	kNm/m	
	Δp9 [kNm/m]	Lc [m]			
$M9 = \Delta p9 \times Lc / 4$	18.75	11.60	54	kNm	momento in mezzeria
V9 = Δp9	18.75		19	kNm	taglio all'appoggio

8.3 RIEPILOGO SOLLECITAZIONI TRAVE DI BORDO FASCIA

Le sollecitazioni di pressoflessione e taglio agenti nella trave maggiormente sollecitata sono riportate nella sottostante tabelle suddivise per condizioni elementari di carico e relative ai modelli di carico ferroviario LM/71 e SW/2. Sono inoltre riportate le sollecitazioni di calcolo, ottenute considerando i coefficienti di combinazione previsti dalla normativa, inclusi quelli per la definizione dei gruppi di carico da traffico:

Caso di carico 1 - LM71

	Sollecitazioni caratteristiche				
	M mezzeria	V appoggio	N		
Azione	[kNm]	[kN]	[kN]		
Peso proprio	194	67	0		
Sovraccarichi permanenti	127	44	0		
LM71 dinamizzato	407	156	0		
Eccentricità del carico LM71	31	12	0		
Effetto della sopraelevazione	-73	-28	0		
Frenatura/Avviamento	19	4	31		
Centrifuga	57	29	0		
Serpeggio	60	21	0		
Vento	138	48	0		

Coefficienti combinazione					
γ	γ gr1 ψ 01		coeff		
1.35	-	-	1.35		
1.5	-	-	1.5		
1.45	1	1	1.45		
1.45	1	1	1.45		
1.45	1	1	1.45		
1.45	0.5	1	0.725		
1.45	1	-	1.45		
1.45	1	-	1.45		
1.5	-	0.6	0.9		

Sollecitazioni SLU					
M mezzeria	V appoggio	N			
[kNm]	[kN]	[kN]			
262	90	0			
190	65	0			
590	226	0			
45	17	0			
-106	-41	0			
14	3	22			
83	42	0			
87	30	0			
124	43	0			

	4000	4	
Σ	1289	477	22

Caso di carico 2 - SW/2

	Sollecitazioni caratteristiche			
	M mezzeria	V appoggio	N	
Azione	[kNm]	[kN]	[kN]	
Peso proprio	194	67	0	
Sovraccarichi permanenti	127	44	0	
SW/2 dinamizzato	394	136	0	
Eccentricità del carico SW/2	0	0	0	
Effetto della sopraelevazione	-71	-24	0	
Frenatura/Avviamento	31	7	49	
Centrifuga	23	10	0	
Serpeggio	54	19	0	
Vento	138 48 0			

Coefficienti combinazione					
γ	γgr1	γ gr1 ψ 01			
1.35	ı	-	1.35		
1.5	ı	ı	1.5		
1.45	1	-	1.45		
1.45	1	-	1.45		
1.45	1	-	1.45		
1.45	0.5	-	0.725		
1.45	1	-	1.45		
1.45	1	-	1.45		
1.5	-	0.6	0.9		

Sollecitazioni SLU				
M mezzeria	N			
[kNm]	[kN]	[kN]		
262	90	0		
190	65	0		
571	197	0		
0	0	0		
-102	-35	0		
22	5	35		
34	15	0		
79	27	0		
124	43	0		

Σ	1180	407	35

ITINERARIO NAPOLI – BARI RADDOPPIO TRATTA CANCELLO-BENEVENTO II LOTTO FUNZIONALE FRASSO TELESINO – VITULANO 1° LOTTO FUNZIONALE FRASSO TELESINO – TELESE

PROGETTO ESECUTIVO

Impalcato a travi incorporate per doppio binario L=12,50m - Relazione di calcolo

 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 IF26
 12 E ZZ
 CL
 VI0407 001
 A
 42 di 66

Caso di carico 3 - scarico

	Sollecitazioni caratteristiche			
	M mezzeria	V appoggio	N	
Azione	[kNm]	[kN]	[kN]	
Peso proprio	194	67	0	
Sovraccarichi permanenti	127	44	0	
Treno dinamizzato	0	0	0	
Eccentricità del carico	0	0	0	
Effetto della sopraelevazione	0	0	0	
Frenatura/Avviamento	0	0	0	
Centrifuga	0	0	0	
Serpeggio	0	0	0	
Vento	138	48	0	

Coeff	Coefficienti combinazione					
γ	γ gr1	ψ 01	coeff			
1.35	-	1	1.35			
1.5	-	ı	1.5			
1.45	1	-	1.45			
1.45	1	-	1.45			
1.45	1	-	1.45			
1.45	0.5	-	0.725			
1.45	1	-	1.45			
1.45	1	-	1.45			
1.5	-	0.6	0.9			

Sollecitazioni SLU				
M mezzeria	V appoggio	N		
[kNm]	[kN]	[kN]		
262	90	0		
190	65	0		
0	0	0		
0	0	0		
0	0	0		
0	0	0		
0	0	0		
0	0	0		
124	43	0		

Σ	577	199	0

M mezzeria	1289	kNm
N mezzeria	35	kN
V appoggio	477	kN

GEODATA INTEGRA RIA	II LOTTO F	IO TRAT UNZIONA FUNZION	TA CANCEL ALE FRASSO IALE FRASS	LO-BENEVENT O TELESINO – SO TELESINO –	VITULA	_
Impalcato a travi incorporate per doppio binario L=12,50m - Relazione di calcolo	COMMESSA IF26	LOTTO 12 E ZZ	CODIFICA	DOCUMENTO VI0407 001	REV.	FOGLIO 43 di 66

9 VERIFICHE DELLE TRAVI

9.1 VERIFICHE DI RESISTENZA

Le verifiche di resistenza allo SLU vengono eseguite per la trave di bordo in funzione delle sollecitazioni massime tra i modelli di carico considerati.

Il calcestruzzo è considerato non collaborante e pertanto la resistenza è affidata alle sole n travi in acciaio comprese all'interno della zona di ripartizione del carico pari a 4.0m.

PROFILO		
A	36400	mm^2
W	7.74E+06	mm^3
S	5.64E+06	mm^3
J	2.40E+09	mm^4
tw	21	mm
yg*	310	mm
MATERIALE		
fyk	355	MPa
γΜ0	1.05	-
fyd	338.1	MPa
SOLLECITAZIONI		
M	1289	kNm
N	35	kN
V	477	kN
<u>TENSIONI</u>		
$\sigma = N/A + M/W =$	167	MPa
$\tau = V \times S/(J \times tw) =$	53	MPa
<u>FS</u>		
σ / fyd =	0.50	ОК
τ / (fyd * $\sqrt{3}$) =	0.27	OK

La verifica è soddisfatta.

9.2 VERIFICHE DI DEFORMABILITA'

Le verifiche di deformabilità sono condotte agli stati limite di servizio considerando la combinazione rara delle azioni e prendendo in esame le seguenti grandezze:

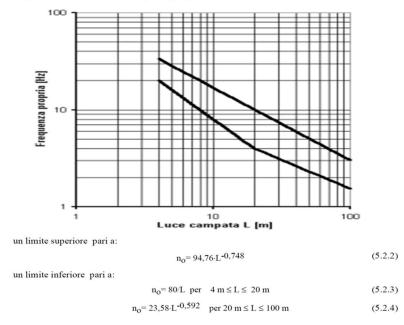
inflessione nel piano verticale dell'impalcato (rotazione agli appoggi)
 deformazioni torsionali dell'impalcato (fenomeno dello sghembo)

- stato limite per il comfort passeggeri (freccia sotto il treno di carico LM71 dinamizzato)

Le verifiche sono condotte con il treno di carico LM71 incrementato con il corrispondente coefficiente dinamico φ3. Per l'inflessione si tiene in conto anche una variazione lineare di temperatura di 10° lungo l'altezza dell'impalcato.

Il calcestruzzo è considerato interamente reagente ai fini della determinazione dell'inerzia flessionale dell'impalcato e della ripartizione trasversale dei carichi mobili con coefficiente di omogeneizzazione pari a n = 6. Nelle verifiche la fascia di impalcato reagente ha una larghezza b = 4.0m.

Le caratteristiche della sezione reagente omogeneizzata in cls sono di seguito riportate:


Brip. =	4	m	larghezza di ripartizione
Htravi =	0.62	m	altezza travi acciaio
sp. soletta superiore	0.11	m	spessore medio soletta sopra le ali superiori delle travi
Htot =	0.73	m	altezza totale impalcato
Htot,cls =	0.73	m	altezza totale cls
ntravi,B,rip. =	9	-	numero travi zona ripartizione
yG,travi =	0.31	m	quota baricentro travi
yG,cls =	0.365	m	quota baricentro cls
n	6	-	coeff. di omogeneizzazione
Atrave =	36400	mm2	Area trave
Atravi =	327600	mm2	Area travi nella zona di ripartizione
Acls,lorda =	2.92	m2	Area lorda cls
Acls,netta =	2.592	m2	Area netta cls
Jtrave =	2.40E+09	mm4	momento d'inerzia trave
Jtravi =	2.16E+10	mm4	momento d'inerzia travi (rispetto a yG,travi)
Jcls =	0.130	m4	momento d'inerzia cls (rispetto a yG,cls)
A_om_cls =	4.56	m2	area soletta + travi omogeneizzate a cls
yG_om_cls =	0.341	m	quota baricentro soletta + travi omogeneizzate
J'soletta =	0.263	m4	inerzia soletta + travi omogeneizzate a cls
Ecm =	33643	MPa	Modulo elastico di progetto

9.2.1 PRIMA FREQUENZA PROPRIA DELL'IMPALCATO

Per controllare l'affidabilità del coefficiente di incremento dinamico $\phi 3$ assunto nei calcoli si vuole accertare che la frequenza propria n0 dell'impalcato sia contenuta all'interno del fuso in fig. 5.2.7 della NTC2008 e che si riporta di seguito per chiarezza espositiva:

Figura 5.2.7 - Limiti delle frequenze proprie no in Hz in funzione della luce della campata

p1,g1	277.2	kN/m	peso proprio (intero impalcato)
p1,g2	180.6	kN/m	carichi permanenti (intero impalcato)
p1	457.8	kN/m	totale pp+perm. (intero impalcato)
ntravi,B,rip. =	9	-	numero travi nella zona di ripartizione
ntravi =	24	-	numero totale travi
p'1	171.7	kN/m	totale pp+perm. (su Brip.)
Lc =	11.60	m	luce impalcato (asse appoggi)
$\delta 0 = 5/384 \times p'1 \times L^4 / EJ =$	4.58	mm	freccia massima per p'1,perm
n0 = 17.75 / √δ0 =	8.29	Hz	stima prima frequenza flessionale
n0, inf = 23.58 x Lc ^(-0.592) =	5.53	Hz	frequenza limite inferiore per L=Lc
n0, sup = 94.76 x Lc^(-0.748) =	15.15	Hz	frequenza limite superiore per L=Lc
test	OK		n0, inf <n0 <="" n0,="" sup<="" th=""></n0>

9.2.2 FRECCIA SOTTO I CARICHI ACCIDENTALI DINAMIZZATI LM71

Di seguito si riporta la valutazione della freccia massima per effetto del carico LM71 dinamizzato.

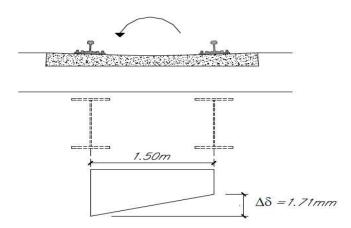
p2,eq.flett =	305.0	kN/m	eq. Flettente LM71+SW/2 (2 binari)
ф3 =	1.404	-	coeff. dinamico
p'2,eq.flett =	428.1	kN/m	ф3 x p2,eq.flett
δ LM71+SW/2 (2 binari) =	8.14	mm	freccia in mezzeria
δLIM =	19.3	mm	freccia limite (L/600)
δ < δLIM	OK	-	verifica soddisfatta
$\delta / \delta LIM =$	0.42	-	

9.2.3 COMFORT DEI PASSEGGERI

Si esegue la verifica al comfort dei passeggeri:

p2,eq.flett =	155.0	kN/m	eq. Flettente LM71 (1 binario)
ф3 =	1.404	-	coeff. dinamico
p'2,eq.flett =	217.6	kN/m	ф3 x p2,eq.flett
δ LM71 (1 binario) =	4.14	mm	freccia in mezzeria
δLIM comfort =	11.6	mm	freccia limite (L/1000)
δ < δ LIM comfort	OK	-	verifica soddisfatta
$\delta / \delta LIM comfort =$	0.36	_	

9.2.4 ROTAZIONE DEGLI APPOGGI


Di seguito si riporta la valutazione della rotazione massima degli appoggi.

θ LM71 = 1/24 x p x L^3 / EJ	0.0016	rad	rotazione per LM71 dinamizzato
ΔΤ	10	°C	variazione termica lineare nello spessore
α	1.20E-05	1/°C	coeff. di dilatazione termica dell'acciaio
SSn	1.203	m	altezza impalcato minima
$\theta_{\Delta T} = (\alpha \times \Delta T/S_{sn}) \times L/2$	0.0006	rad	rotazione per variazione termica
θtot =	0.0022	rad	rotazione totale
			altezza del piano di regolamento del ballast rispetto al centro di rotazione
H =	730	mm	degli apparecchi di appoggio
θLIM =	0.0110	rad	rotazione limite (8/H rad, con H in [mm])
θ < θLIM	OK	-	verifica soddisfatta
θ / θLIM =	0.20	-	

GEODATA INTEGRA RIF	II LOTTO F	IO TRAT UNZION FUNZION	TA CANCEL ALE FRASS IALE FRASS	LO-BENEVENT O TELESINO – SO TELESINO –	VITULA	_
Impalcato a travi incorporate per doppio binario L=12,50m - Relazione di calcolo	COMMESSA IF26	LOTTO 12 E ZZ	CODIFICA CL	DOCUMENTO VI0407 001	REV.	FOGLIO 47 di 66

9.2.5 SGHEMBO

La verifica si effettua ipotizzando la presenza di un profilo metallico in corrispondenza di ciascuna rotaia e calcolando la differenza di abbassamento tre i due profili in corrispondenza della sezione posta a 3.00m dall'appoggio considerando una distribuzione trasversale degli abbassamenti di tipo lineare.

L'incremento e decremento Δp del carico prodotti sulle due travi considerate da tali effetti si valuta ipotizzando la flessione su una striscia unitaria trasversale di impalcato avente sezione bxh e momento d'inerzia J'.

i =	0.42	m	interasse travi		
d = 1.5/2 =	0.75	m	braccio trave di bordo		
Brip. =	4	m	larghezza di ripartizione		
h	0.62	m	altezza travi		
J = h x Brip.^3 /12 =	3.31	m4	inerzia		
$\alpha = d \times i / J =$	0.095	1/mq			
$\Delta p = \alpha \times mt$					
Centrifuga					
Δ p5 = α x mt5 =	0.095	22.8	2.2	kN/m	effetto flettente
Eccentricità del carico LM71					
Δ p6 = α x ϕ 3 x mt6 =	0.134	12.4	1.7	kN/m	effetto flettente
Effetto della sopraelevazione					
Δ p7 = α x mt7 =	-0.095	29.2	-2.8	kN/m	effetto flettente
Vento su treno					
Δ p8 = α x mt8 =	0.095	45.6	4.3	kN/m	eff. flett. e tagl.

Serpeggio

 $\Delta p9 = \alpha/L \times mt9 = 0.008$ 138.6 1.1 kN/m eff. flett. e tagl.

 $\Delta ptot = 6.5 \text{ kN/m}$

 $\beta = a \times b / L^2 (1 + a \times b/L^2) =$ 0.228 coeff. per la valutazione dell'abbassamento della trave di bordo 3.00 m distanza punto di controllo dall'appoggio a = b = 8.60 m distanza punto di controllo dall'appoggio opposto L= 11.60 m luce impalcato (asse appoggi) inerzia della trave di bordo (incluso cls) J = J'soletta / ntravi,B,rip. = 0.029 m4 $\delta 0 = 1/24 \times \Delta p \times L^4 / EJ \times \beta =$ 1.15 mm freccia massima per Δptot $t = 2 \times \delta 0 =$ 2.29 mm sghembo massimo tlim = 3.0 mm valore limite secondo 1.8.3.2.2.2 t / tlim = verifica soddisfatta 0.76

OK

10 VERIFICA DELLO SBALZO TRASVERSALE

Di seguito è riportata la valutazione delle sollecitazioni e le verifiche relative allo sbalzo laterale dell'impalcato, effettuate sulla base dell'analisi dei carichi precedentemente effettuata e relativamente alle combinazioni di carico di seguito specificate.

Geometria

L=	1.75	m	luce dello sbalzo
s =	0.36	m	spessore soletta (sezione di incastro)
b marciap =	0.92	m	larghezza marciapiedi
b cordolo =	0.81	m	larghezza cordolo di estremità
h cordolo =	0.14	m	altezza cordolo di estremità

Analisi dei carichi

Peso proprio e permanenti	Volume	peso spec	QV	е	М	γ	ψ0	ψ1	ψ2
	[m^3]	[kN/m3]	[kN/ml]	[m]	[kNm/ml]	-	-	1	-
Peso proprio sbalzo	0.630	25	15.75	0.875	13.8	1.35	1	i	-
Peso proprio cordolo	0.113	25	2.835	1.345	3.8	1.35	-	-	-
Canaletta	-	-	-	-	-	1.5	-	-	-
Veletta	-	-	1.5	1.75	2.6	1.5	-	-	-
Barriera a.r.	-	-	20.2	1.325	26.8	1.5	-	-	-

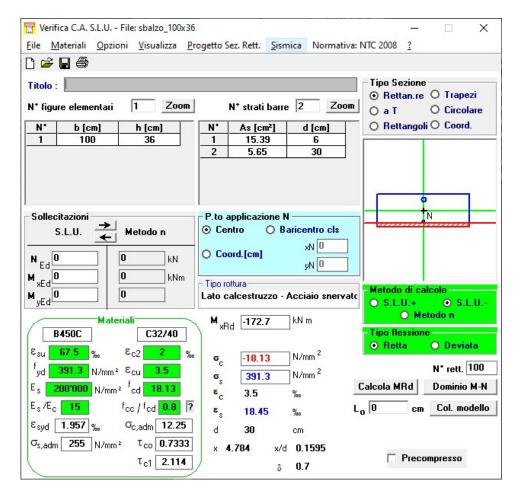
<u>Variabili</u>	q	L	QV	е	М	γ	ψ0	ψ1	ψ2
	[kN/m2]	[m]	[kN/ml]	[m]	[kNm/ml]	-	-	-	-
Carico marciapiedi	10.0	0.92	9.2	0.46	4.2	1.5	0.8	0.8	0

	q	h	QH	е	М	γ	ψ0	ψ1	ψ2
	[kN/m2]	[m]	[kN/ml]	[m]	[kNm/ml]	-	-	-	-
Vento	2.70	5.05	13.66	2.705	35.3	1.5	0.6	0.5	0
Sovrappressione	0.25	5.05	1.26	2.705	3.4	1.5	0.8	0.5	0

Combinazioni	SI	SLU		RA	FREQ	JENTE	Q. PERMANENTE	
	comb 1	comb 2	comb 3	comb 4	comb 5	comb 6	comb 7	comb 8
Peso proprio	1.35	1.35	1	1	1	1	1	1
Cordolo	1.35	1.35	1	1	1	1	1	1
Canaletta	1.5	1.5	1	1	1	1	1	1
Veletta	1.5	1.5	1	1	1	1	1	1
Barriera a.r.	1.5	1.5	1	1	1	1	1	1
Carico marciapiedi	1.5	1.2	1	0.8	0.8	0	0	0
Vento	0.9	1.5	0.6	1	0	0.5	0	0
Sovrappressione	1.2	1.5	0.8	1	0	0.5	0	0

Sollecitazioni combinate	SLU		RA	RA	FREQU	JENTE	Q. PERMANENTE		
	comb 1 comb 2		comb 3	comb 4	comb 5	comb 6	comb 7	comb 8	
QH [kN/ml]	13	21	9	14	0	7	0	0	
M [kNm/ml]	-110	-131	-75	-89	-50	-66	-47	-47	
QV [kN/ml]	71	69	49	48	48	40	40	40	

10.1 VERIFICA A FLESSIONE


La sezione è armata con \$14/10 superiori e \$12/20 inferiori.

A sup = 15.39 cmq

A inf = 5.65 cmq

Si ottiene:

Med	-131	kNm
MRd	-172.7	kNm
FS	1.32	-

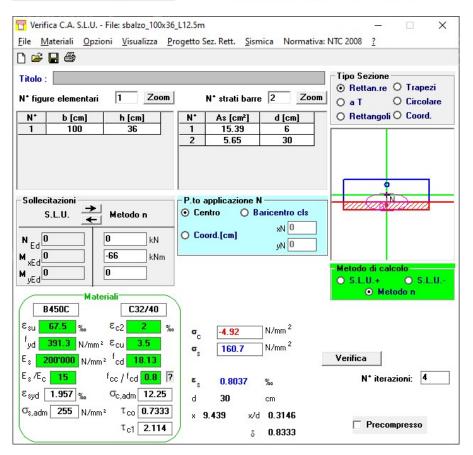
Verifica soddisfatta.

10.2 VERIFICA A TAGLIO

Non è necessaria armatura resistente a taglio.

classe cls	Rck	40	N/mm2
resist. Caratteristica cilindrica	fck	33	N/mm2
	fcd	19	_
coeff. parziale	ус	1.5	
larghezza membratura resistente a V	bw	1000	mm
altezza membratura resistente a V	Н	360	mm
altezza utile	d	324	mm
area della sezione	Asez	324000	mm2
diametro ferro longitudinale teso	фІ	14	mm
area armatura	Asl	153.9	mm^2
	strato	1	
	passo	100	mm
	nf/strato	10	
area armatura totale	Af tot	1539.4	mm²
percentuale di armatura	ρΙ	0.0043	-
sforzo assiale dovuto ai carichi o precompressione	N	0	N
	scp	0.00	N/mm ²
	k	1.75	
	vmin	0.47	
taglio resistente	Vrd1	164	kN
	Vrd2	151	kN

taglio sollecitante	Ved	71	kN
fattore di sicurezza per GR (par. 7.9.5.2.2)	g _{Rd}	1	
	Vrd	172	kN
	Ved	<	Vrd
		verifica	


10.3 VERIFICA A FESSURAZIONE

Si controlla che in combinazione SLE la verifica di apertura delle fessure per il calcestruzzo sia soddisfatta.

M SLE = -66 kNm

	INPUT	
B sez	1000	mm
h sez	360	mm
y ferro	44	mm
Φ (barre)	14	mm
n.barre	10	-
cls C	40	MPa
x AN	94.4	mm
σs	160.7	MPa
kt	0.6	-
k1	0.8	-
k2	0.5	-
k3	3.4	-
k4	0.425	-

OUTPUT							
diff. def. armature-cls							
ε sm -ε cm	4.68E-04 -						
distanza max	fessure						
s r, max	2.63E+02 mm						
ampiezza fess	ure:						
_	0.4000						
wk	0.1230 mm						
wk Limite	0.1230 mm 0.20 mm						

11 AZIONI SUGLI APPOGGI

Sotto le travi della fascia centrale dell'impalcato si dispongono appoggi fissi da un lato e unidirezionali longitudinali dal lato opposto. Sulle rimanenti travi sono previsti appoggi di tipo multidirezionale.

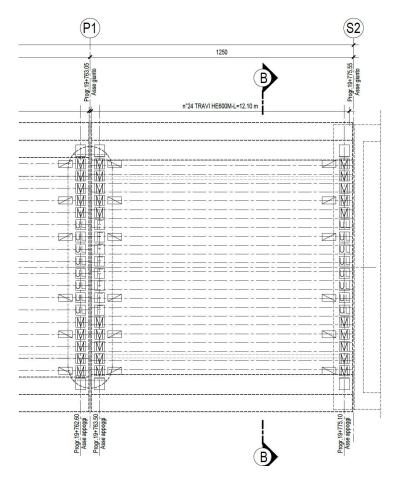


Figura 8 - Pianta impalcato

Schema appoggi	Dx (Pila 1)	Sx (Spalla 2)	tot
	Fissa	Mobile	
fissi (F)	8	0	8
unid long (U)	0	8	8
multid (M)	16	16	32
TOT 1 fila	24	24	48

Di seguito si riportano le azioni elementari sulle diverse tipologie di appoggi secondo le combinazioni di carico.

Per ulteriori dettagli si rimanda alla relazione di calcolo delle sottostrutture dell'opera in esame.

Azioni statiche e sismiche

Massa sismica longitudinale totale		6934	kN
Massa sismica verticale e trasversale	totale	3467	kN
Accelerazione sismica orizzontale		0.737	g
Accelerazione sismica verticale		0.457	g
Rz_sism		1584	kN
R long_sism		4826	5110
R trasv_sism		2413	2555
masse tot impalcato	G1	3464	kN
	G2	2258	kN
	LM71+SW/2	6057	kN
	tot.	11779	kN

	Rz	R long	R trasv	е	M trasv
	[kN]	[kN]	[kN]	[m]	[kNm]
peso proprio	1732	0	0	0.0	0
perman portati (incluso ballast)	1129	0	0	0.0	0
vento	0	0	107	3.31	354
resistenza parassita vincoli	0	707	0	0.0	0
sismica long (Ex+0.3*Ey+0.3*Ez)	475	5110	767	0.3	238
sismica trasv (0.3*Ex+Ey+0.3*Ez)	475	1533	2555	0.3	792
sismica vert (0.3*Ex+0.3*Ey+Ez)	1584	1533	767	0.3	238

Coeff. Attrito appoggi = 0.06

RI[†]H

ITINERARIO NAPOLI – BARI RADDOPPIO TRATTA CANCELLO-BENEVENTO II LOTTO FUNZIONALE FRASSO TELESINO – VITULANO 1° LOTTO FUNZIONALE FRASSO TELESINO – TELESE

PROGETTO ESECUTIVO

Impalcato a travi incorporate per doppio binario L=12,50m - Relazione di calcolo

 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 IF26
 12 E ZZ
 CL
 VI0407 001
 A
 56 di 66

									gruppo 1	Ĺ				gruppo 3	3	
Solo LM71	Rz	R long	R trasv	e vert	e orizz LM71	e orizz SW/2	coeff	Rz	R long	R trasv	M trasv	coeff	Rz	R long	R trasv	M trasv
	kN	kN	kN	m	m	m	-	kN	kN	kN	kNm	-	kN	kN	kN	kNm
LM71 dinam.	1405	0	0	0	2		1	1405	0	0	2810	1	1405	0	0	2810
Frenatura+avv	61	454	0	1.57	2		0.5	31	227	0	61	1	61	454	0	123
Centrifuga	0	0	135	1.57			1	0	0	135	211	0.5	0	0	67	106
Serpeggio	0	0	55	1.57			1	0	0	55	86	0.5	0	0	28	43
										po 1		1		<u> </u>	ро 3	1
								Rz	R long	R trasv	M trasv		Rz	R long	R trasv	
								kN	kN	kN	kNm		kN	kN	kN	kNm
							gr1, LM71	1436	227	190	3170	r3, LM71	1467	454	95	3082
						(M-)g	gr1, LM71	1436	227	190	-2747	r3, LM71	1467	454	95	-2871
							MAX	1436					1467			
									gruppo 1	<u> </u>				gruppo 3		
Solo SW/2	Rz	R long	R trasv	e vert	e orizz LM71	e orizz SW/2	coeff	Rz	Riong	R trasv	M trasv	coeff	Rz	Riong	R trasv	M trasv
3010 344/ 2	kN	kN	kN	m	m	m	-	kN	kN	kN	kNm	-	kN	kN	kN	kNm
SW/2 dinam.	1221	0	0	0		2	1	1221	0	0	2443	1	1221	0	0	2443
Frenatura+avv	59	438	0	1.57		2	0.5	30	219	0	59	1	59	438	0	118
Centrifuga	0	0	46	1.57			1	0	0	46	73	0.5	0	0	23	36
Serpeggio	0	0	50	1.57			1	0	0	50	79	0.5	0	0	25	39
Sei peggio			30	1.57			1		0	30	73	0.5		0	23	33
									grup	ро 1			gruppo 3			
								Rz	R long	R trasv	M trasv		Rz	R long	R trasv	M trasv
								kN	kN	kN	kNm		kN	kN	kN	kNm
							gr1,SW/2	1251	219	96	2653	gr3,SW/2	1280	438	48	2637
						(M-)g	r1, SW/2	1251	219	96	-2508	r3, SW/2	1280	438	48	-2564
							MAX	1251					1280			
									gruppo 1]				gruppo 3	}	
LM71+SW/2	Rz	R long	R trasv	e vert	e orizz LM71	e orizz SW/2	coeff	Rz	R long	R trasv	M trasv	coeff	Rz	R long	R trasv	M trasv
	kN	kN	kN	m	m	m	-	kN	kN	kN	kNm	-	kN	kN	kN	kNm
LM71	1405	0	0	0	-2		1	1405	0	0	-2810	1	1405	0	0	-2810
SW/2	1221					2	1	1221	0	0	2443	1	1221	0	0	2443
Frenatura+avv	121	891	0	1.57	-2	2	0.5	60	446	0	241	1	121	891	0	483
Centrifuga	0	0	269	1.57			1	0	0	269	423	0.5	0	0	135	211
Serpeggio	0	0	110	1.57			1	0	0	110	173	0.5	0	0	55	86
										1						
										po 1		1	_		ро 3	
								Rz kN	R long kN	R trasv kN	M trasv kNm		Rz kN	R long kN	R trasv kN	M trasv kNm
						ar1 184	71.5\4/2		446	379	469	71 + 5\A//2	2747	891	190	413
							71+SW/2	2687		379		71+SW/2			190	
						(M-)gr1, LM	/1+SW/2 MAX	2687 2687	446	3/9	1205	71+SW/2	2747 2747	891	190	1148

Combinazioni di carico considerate:

	SLU													
COEFFICIENTI COMBINAZIONI	comb 1	comb 2	comb 3	comb 4	comb 5	comb 6	comb 7	comb 8	comb 9	comb 10	comb 11	comb 12	comb 13	comb 14
peso proprio	1.35	1.35	1.35	1.35	1.35	1.35	1.35	1.35	1.35	1.35	1.35	1.35	1.35	1.35
perman non strutturali (incluso ballast)	1.5	1.5	1.5	1.5	1.5	1.5	1.5	1.5	1.5	1.5	1.5	1.5	1.5	1.5
vento	0.9	0.9	0.9	0.9	0.9	0.9	0.9	0.9	0.9	0.9	0.9	0.9	1.5	1.5
resistenza parassita vincoli	1.5	1.5	1.5	1.5	1.5	1.5	1.5	1.5	1.5	1.5	1.5	1.5	1.5	1.5
sismica long (Ex+0.3*Ey+0.3*Ez)	0	0	0	0	0	0	0	0	0	0	0	0	0	0
sismica trasv (0.3*Ex+Ey+0.3*Ez)	0	0	0	0	0	0	0	0	0	0	0	0	0	0
sismica vert (0.3*Ex+0.3*Ey+Ez)	0	0	0	0	0	0	0	0	0	0	0	0	0	0
gr1, LM71	1.45	0	0	0	0	0	0	0	0	0	0	0	0	1.16
(M-)gr1, LM71	0	1.45	0	0	0	0	0	0	0	0	0	0	0	0
gr3, LM71	0	0	1.45	0	0	0	0	0	0	0	0	0	0	0
(M-)gr3, LM71	0	0	0	1.45	0	0	0	0	0	0	0	0	0	0
gr1,SW/2	0	0	0	0	1.45	0	0	0	0	0	0	0	0	0
(M-)gr1, SW/2	0	0	0	0	0	1.45	0	0	0	0	0	0	0	0
gr3,SW/2	0	0	0	0	0	0	1.45	0	0	0	0	0	0	0
(M-)gr3, SW/2	0	0	0	0	0	0	0	1.45	0	0	0	0	0	0
gr1, LM71+SW/2	0	0	0	0	0	0	0	0	1.45	0	0	0	1.16	0
(M-)gr1, LM71+SW/2	0	0	0	0	0	0	0	0	0	1.45	0	0	0	0
gr3, LM71+SW/2	0	0	0	0	0	0	0	0	0	0	1.45	0	0	0
(M-)gr3, LM71+SW/2	0	0	0	0	0	0	0	0	0	0	0	1.45	0	0

	SLV								
COEFFICIENTI COMBINAZIONI	comb 15	comb 16	comb 17	comb 18	comb 19	comb 20			
peso proprio	1	1	1	1	1	1			
perman non strutturali (incluso ballast)	1	1	1	1	1	1			
vento	0	0	0	0	0	0			
resistenza parassita vincoli	1	1	1	1	1	1			
sismica long (Ex+0.3*Ey+0.3*Ez)	1	1	0	0	0	0			
sismica trasv (0.3*Ex+Ey+0.3*Ez)	0	0	1	1	0	0			
sismica vert (0.3*Ex+0.3*Ey+Ez)	0	0	0	0	1	1			
gr1, LM71	0	0	0	0.2	0	0.2			
(M-)gr1, LM71	0	0	0	0	0	0			
gr3, LM71	0	0.2	0	0	0	0			
(M-)gr3, LM71	0	0	0	0	0	0			
gr1,SW/2	0	0	0	0	0	0			
(M-)gr1, SW/2	0	0	0	0	0	0			
gr3,SW/2	0	0	0	0	0	0			
(M-)gr3, SW/2	0	0	0	0	0	0			
gr1, LM71+SW/2	0	0	0.2	0	0	0			
(M-)gr1, LM71+SW/2	0	0	0	0	0	0			
gr3, LM71+SW/2	0.2	0	0	0	0.2	0			
(M-)gr3, LM71+SW/2	0	0	0	0	0	0			

							SLE -	rara						
COEFFICIENTI COMBINAZIONI	rara 1	rara 2	rara 3	rara 4	rara 5	rara 6	rara 7	rara 8	rara 9	rara 10	rara 11	rara 12	rara 13	rara 14
peso proprio	1	1	1	1	1	1	1	1	1	1	1	1	1	1
perman non strutturali (incluso ballast)	1	1	1	1	1	1	1	1	1	1	1	1	1	1
vento	0.6	0.6	0.6	0.6	0.6	0.6	0.6	0.6	0.6	0.6	0.6	0.6	1	1
resistenza parassita vincoli	1	1	1	1	1	1	1	1	1	1	1	1	1	1
sismica long (Ex+0.3*Ey+0.3*Ez)	0	0	0	0	0	0	0	0	0	0	0	0	0	0
sismica trasv (0.3*Ex+Ey+0.3*Ez)	0	0	0	0	0	0	0	0	0	0	0	0	0	0
sismica vert (0.3*Ex+0.3*Ey+Ez)	0	0	0	0	0	0	0	0	0	0	0	0	0	0
gr1, LM71	1	0	0	0	0	0	0	0	0	0	0	0	0	0.8
(M-)gr1, LM71	0	1	0	0	0	0	0	0	0	0	0	0	0	0
gr3, LM71	0	0	1	0	0	0	0	0	0	0	0	0	0	0
(M-)gr3, LM71	0	0	0	1	0	0	0	0	0	0	0	0	0	0
gr1,SW/2	0	0	0	0	1	0	0	0	0	0	0	0	0	0
(M-)gr1, SW/2	0	0	0	0	0	1	0	0	0	0	0	0	0	0
gr3,SW/2	0	0	0	0	0	0	1	0	0	0	0	0	0	0
(M-)gr3, SW/2	0	0	0	0	0	0	0	1	0	0	0	0	0	0
gr1, LM71+SW/2	0	0	0	0	0	0	0	0	1	0	0	0	0.8	0
(M-)gr1, LM71+SW/2	0	0	0	0	0	0	0	0	0	1	0	0	0	0
gr3, LM71+SW/2	0	0	0	0	0	0	0	0	0	0	1	0	0	0
(M-)gr3, LM71+SW/2	0	0	0	0	0	0	0	0	0	0	0	1	0	0

	SLE qp							SEL - freq						
COEFFICIENTI COMBINAZIONI	qp	freq 1	freq 2	freq 3	freq 4	freq 5	freq 6	freq 7	freq 8	freq 9	freq 10	freq 11	freq 12	freq 13
peso proprio	1	1	1	1	1	1	1	1	1	1	1	1	1	1
perman non strutturali (incluso ballast)	1	1	1	1	1	1	1	1	1	1	1	1	1	1
vento	0	0	0	0	0	0	0	0	0	0	0	0	0	0.5
resistenza parassita vincoli	1	1	1	1	1	1	1	1	1	1	1	1	1	1
sismica long (Ex+0.3*Ey+0.3*Ez)	0	0	0	0	0	0	0	0	0	0	0	0	0	0
sismica trasv (0.3*Ex+Ey+0.3*Ez)	0	0	0	0	0	0	0	0	0	0	0	0	0	0
sismica vert (0.3*Ex+0.3*Ey+Ez)	0	0	0	0	0	0	0	0	0	0	0	0	0	0
gr1, LM71	0	0.8	0	0	0	0	0	0	0	0	0	0	0	0
(M-)gr1, LM71	0	0	0.8	0	0	0	0	0	0	0	0	0	0	0
gr3, LM71	0	0	0	0.8	0	0	0	0	0	0	0	0	0	0
(M-)gr3, LM71	0	0	0	0	0.8	0	0	0	0	0	0	0	0	0
gr1,SW/2	0	0	0	0	0	0.8	0	0	0	0	0	0	0	0
(M-)gr1, SW/2	0	0	0	0	0	0	0.8	0	0	0	0	0	0	0
gr3,SW/2	0	0	0	0	0	0	0	0.8	0	0	0	0	0	0
(M-)gr3, SW/2	0	0	0	0	0	0	0	0	0.8	0	0	0	0	0
gr1, LM71+SW/2	0	0	0	0	0	0	0	0	0	0.8	0	0	0	0
(M-)gr1, LM71+SW/2	0	0	0	0	0	0	0	0	0	0	0.8	0	0	0
gr3, LM71+SW/2	0	0	0	0	0	0	0	0	0	0	0	0.8	0	0
(M-)gr3, LM71+SW/2	0	0	0	0	0	0	0	0	0	0	0	0	0.8	0

Per le varie combinazioni di carico si ottengono le seguenti reazioni complessive.

							SL	U						
	comb 1	comb 2	comb 3	comb 4	comb 5	comb 6	comb 7	comb 8	comb 9	comb 10	comb 11	comb 12	comb 13	comb 14
Rz [kN]	6114	6114	6158	6158	5846	5846	5889	5889	7928	7928	8015	8015	7148	5697
Rz min [kN]	4032	4032	4032	4032	4032	4032	4032	4032	4032	4032	4032	4032	4032	4032
R long [kN]	1389	1389	1718	1718	1377	1377	1694	1694	1706	1706	2352	2352	1577	1323
R trasv [kN]	371	371	234	234	236	236	166	166	646	646	371	371	600	380
M trasv [kNm]	4914	-3664	4787	-3844	4165	-3318	4141	-3399	998	2065	916	1983	1074	4207

			SI	_V			
	comb 15	comb 16	comb 17	comb 18	comb 19	comb 20	
Rz [kN]	N] 3886 3630 3874 3624 4995 47						
Rz min [kN]	(N) 2386 2386 2386 2386 1277						
R long [kN]						2285	
R trasv [kN]	v [kN] 804 785 2631 2593 804					804	
M trasv [kNm]	320	854	886	1426	320	872	

							SLE -	rara						
	rara 1	rara 2	rara 3	rara 4	rara 5	rara 6	rara 7	rara 8	rara 9	rara 10	rara 11	rara 12	rara 13	rara 14
Rz [kN]	4297	4297	4328	4328	4112	4112	4142	4142	5548	5548	5608	5608	5010	4010
Rz min [kN]	2861	2861	2861	2861	2861	2861	2861	2861	2861	2861	2861	2861	2861	2861
R long [kN]	934	934	1160	1160	925	925	1144	1144	1152	1152	1598	1598	1063	888
R trasv [kN]	254	254	159	159	160	160	112	112	443	443	254	254	410	259
M trasv [kNm]	3382	-2534	3294	-2658	2865	-2295	2849	-2352	681	1417	625	1360	729	2889

	SLE qp							SEL - freq						
	qp	freq 1	freq 2	freq 3	freq 4	freq 5	freq 6	freq 7	freq 8	freq 9	freq 10	freq 11	freq 12	freq 13
Rz [kN]	2861	4010	4010	4034	4034	3862	3862	3885	3885	5010	5010	5059	5059	2861
Rz min [kN]	2861	2861	2861	2861	2861	2861	2861	2861	2861	2861	2861	2861	2861	2861
R long [kN]	707	888	888	1070	1070	882	882	1057	1057	1063	1063	1420	1420	707
R trasv [kN]	0	152	152	76	76	77	77	39	39	304	304	152	152	53
M trasv [kNm]	0	2536	-2197	2466	-2296	2122	-2006	2109	-2051	375	964	330	918	177

Il momento trasversale comporta la nascita di reazioni verticali di "tira e spingi", valutate in base alle eccentricità dei dispositivi di appoggio rispetto all'asse dell'impalcato.

FILA FISSA

numero appoggi fissi8numero appoggi unidirezionali0numero appoggi multidirezionali16

num totale appoggi fila 24

numero appoggi fissi trasv 8

appoggio	e trasv	tipo	e^2	e app F
1	-4.83	M	23.33	0
2	-4.41	M	19.45	0
3	-3.99	M	15.92	0
4	-3.57	M	12.74	0
5	-3.15	M	9.92	0
6	-2.73	M	7.45	0
7	-2.31	M	5.34	0
8	-1.89	M	3.57	0
9	-1.47	F	2.16	-1.47
10	-1.05	F	1.10	-1.05
11	-0.63	F	0.40	-0.63
12	-0.21	F	0.04	-0.21
13	0.21	F	0.04	0.21
14	0.63	F	0.40	0.63
15	1.05	F	1.10	1.05
16	1.47	F	2.16	1.47
17	1.89	M	3.57	0
18	2.31	M	5.34	0
19	2.73	M	7.45	0
20	3.15	M	9.92	0
21	3.57	M	12.74	0
22	3.99	M	15.92	0
23	4.41	M	19.45	0
24	4.83	M	23.33	0
INTERASSE APPOGGI	4.83		202.86	1.47

interasse travi 0.42 m

FILA MOBILE

numero appoggi fissi0numero appoggi unidirezionali8numero appoggi multidirezionali16

num totale appoggi fila 24

numero appoggi fissi trasv 8

appoggio	e trasv	tipo	e^2	e app U	e app M
1	-4.83	M	23.33	0	-4.83
2	-4.41	M	19.45	0	-4.41
3	-3.99	M	15.92	0	-3.99
4	-3.57	M	12.74	0	-3.57
5	-3.15	M	9.92	0	-3.15
6	-2.73	M	7.45	0	-2.73
7	-2.31	M	5.34	0	-2.31
8	-1.89	M	3.57	0	-1.89
9	-1.47	U	2.16	-1.47	0
10	-1.05	U	1.10	-1.05	0
11	-0.63	U	0.40	-0.63	0
12	-0.21	U	0.04	-0.21	0
13	0.21	U	0.04	0.21	0
14	0.63	U	0.40	0.63	0
15	1.05	U	1.10	1.05	0
16	1.47	U	2.16	1.47	0
17	1.89	M	3.57	0	1.89
18	2.31	M	5.34	0	2.31
19	2.73	M	7.45	0	2.73
20	3.15	M	9.92	0	3.15
21	3.57	M	12.74	0	3.57
22	3.99	M	15.92	0	3.99
23	4.41	M	19.45	0	4.41
24	4.83	M	23.33	0	4.83
	1.47		202.86	1.47	4.83

interasse travi 0.42 m

Si ottengono, di conseguenza, i seguenti scarichi per il singolo dispositivo di appoggio:

APPOGGI FISSI							S	LU						
Comb.	1	2	3	4	5	6	7	8	9	10	11	12	13	14
Rz max [kN]	290	228	291	229	274	220	275	221	338	345	341	348	306	26
Rz min [kN]	132	195	133	196	138	192	138	193	161	153	161	154	160	13
R long [kN]	174	174	215	215	172	172	212	212	213	213	294	294	197	16
R trasv [kN]	46	46	29	29	29	29	21	21	81	81	46	46	75	4
			S	LV										
Comb.	15	16	17	18	19	20								
Rz max [kN]	164	157	168	161	210	204								
Rz min [kN]	97	93	93	89	51	47								
R long [kN]	749	738	291	286	302	286								
R trasv [kN]	101	98	329	324	101	101								
Comb.	1	2	3	4	5	6	SLE -	rara 8	9	10	11	12	13	1
Rz max [kN]	204	161	204	161	192	155	193	156	236	241	238	244	214	18
Rz min [kN]	84	146	85 85	147	89	143	89	144	112	104	113	105	111	8
R long [kN]	117	117	145	147	116	116	143	144	144	104	200	200	133	1:
R trasv [kN]	32	32	20	20	20	20	143	143	55	55	32	32	51	3
n trasv [KN]	JZ	JL		20	20	20	14	14	33	33	32	32	JI	3
	SLE qp							SEL - freq						
Comb.	qp	1	2	3	4	5	6	7 7	8	9	10	11	12	1
Rz max [kN]	119	185	151	186	151	176	146	177	147	211	216	213	217	1
Rz min [kN]	117	113	113	109	117	113	95	138	95	138	98	136	99	1
R long [kN]	88	111	111	134	134	110	110	132	132	133	133	177	177	8
R trasv [kN]	0	19	19	9	9	10	10	5	5	38	38	19	19	
							-							
GGI UNIDIREZ Comb.	1	2	3	4	5	6	7	LU 8	9	10	11	12	13	1
Rz max [kN]	290	228	291	229	274	220	275	221	338	345	341	348	306	2
Rz min [kN]	132	195	133	196	138	192	138	193	161	153	161	154	160	1
R long [kN]	0	0	0	0	0	0	0	0	0	0	0	0	0	1.
R trasv [kN]	46	46	29	29	29	29	21	21	81	81	46	46	75	4
K trasv [KIV]	40	40	23	23	23	23	21	21	01	01	40	40	/3	_
				ĹV		1								
Comb.	15	16	17	18	19	20								
Rz max [kN]	164	157	168	161	210	204								
Rz min [kN]	97	93	93	89	51	47								
R long [kN]	0	0	0	0	0	0	-							
R trasv [kN]	101	98	329	324	101	101								
							c:-							
Comb.		2	3	4	5	6	7 SLE -	rara 8	9	10	11	13	12	4
Rz max [kN]	204	161	204	161	192	155	193	156	236	10 241	238	12 244	13 214	1
	84	146	85 85	147	89	143	89	144	112	104	113	105	111	18
Rz min [kN]		0	0	0	0	0	0		0	0	0	0		
R long [kN] R trasv [kN]	0 32	32	20	20	20	20	14	0 14	55	55	32	32	0 51	3
n u a SV [KN]	32	32	∠∪	20	20	20	14	14	33	33	32	32	31	3
	CIE							SEL - freq						
	SLE qp	1	2	3	4	5	6	7	8	9	10	11	12	-
Comb	~~				. 4	1 5	1 0	. /	ıŏ	. 9	1 10	1.1		1
Comb.	qp					176				211				
Rz max [kN]	119	185	151	186	151	176	146	177	147	211	216	213	217	12
Rz max [kN] Rz min [kN]	119 117	185 113	151 113	186 109	151 117	113	146 95	177 138	147 95	138	216 98	213 136	217 99	
Rz max [kN]	119	185	151	186	151		146	177	147		216	213	217	1

RI[†]A

ITINERARIO NAPOLI – BARI RADDOPPIO TRATTA CANCELLO-BENEVENTO II LOTTO FUNZIONALE FRASSO TELESINO – VITULANO 1° LOTTO FUNZIONALE FRASSO TELESINO – TELESE

PROGETTO ESECUTIVO

Impalcato a travi incorporate per doppio binario L=12,50m - Relazione di calcolo

 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 IF26
 12 E ZZ
 CL
 VI0407 001
 A
 62 di 66

APPOGGI MOBILI							SI	_U						
Comb.	1	2	3	4	5	6	7	8	9	10	11	12	13	14
Rz max [kN]	372	167	371	165	343	165	344	164	354	379	356	381	323	338
Rz min [kN]	51	255	54	260	69	247	69	249	144	119	146	121	142	68
R long [kN]	0	0	0	0	0	0	0	0	0	0	0	0	0	0
R trasv [kN]	0	0	0	0	0	0	0	0	0	0	0	0	0	0
			SI			1								
Comb.	15	16	17	18	19	20								
Rz max [kN]	170	172	182	185	216	218								
Rz min [kN]	92	79	78	65	46	32								
R long [kN]	0	0	0	0	0	0								
R trasv [kN]	0	0	0	0	0	0								
		1		1		1		rara	1	T	1	1		
Comb.	1	2	3	4	5	6	7	8	9	10	11	12	13	14
Rz max [kN]	260	119	259	117	240	117	240	117	247	265	249	266	226	236
Rz min [kN]	2	206	5	211	20	198	21	200	95	70	97	72	94	19
R long [kN]	0	0	0	0	0	0	0	0	0	0	0	0	0	0
R trasv [kN]	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	SLE qp			ı		ı	ı	SEL - freq		I	1	1		
Comb.	qp	1	2	3	4	5	6	7	8	9	10	11	12	13
Rz max [kN]	119	227	115	227	113	211	113	212	113	218	232	219	233	123
Rz min [kN]	112	99	98	85	112	98	39	180	41	183	51	174	51	175
R long [kN]	0	0	0	0	0	0	0	0	0	0	0	0	0	0
R trasv [kN]	0	0	0	0	0	0	0	0	0	0	0	0	0	0

11.1 RIEPILOGO SCARICHI APPOGGI

	N Φθ			APPOGG	IO FISSO		
longitudingle			Reazion	i degli appa	arecchi di	appoggio	
	trosversole	max N	min N	max Tlong	min Tlong	max Ttrasv	min Ttrasv
		[kN]	[kN]	[kN]	[kN]	[kN]	[kN]
Azioni (valo	ori caratteristici)						
permanenti G	peso proprio	72	72	0	0	0	0
<u>'</u>	perman non str (incluso ballast		47	0	0	0	0
	vento	3	0	0	0	27	0
	resistenza parassita vincoli	0	0	0	0	0	0
	gr1, LM71	83	0	28	0	47	0
	(M-)gr1, LM71	40	0	28	0	47	0
	gr3, LM71	83	0	57	0	24	0
	(M-)gr3, LM71	40	0	57	0	24	0
	gr1,SW/2	71	0	27	0	24	0
	(M-)gr1, SW/2	34	0	27	0	24	0
	gr3,SW/2	72	0	55	0	12	0
variabili Q	(M-)gr3, SW/2	35	0	55	0	12	0
	gr1, LM71+SW/2	115	0	56	0	95	0
	(M-)gr1, LM71+SW/2	121	0	56	0	95	0
	gr3, LM71+SW/2	117	0	111	0	47	0
	(M-)gr3, LM71+SW/2	123	0	111	0	47	0
	(101)613, [1017 11300/2	123		111		77	
	N max	450	_	_	_	_	_
	N min	-	100	_	_	_	_
SLU	TI max		-	300	_	_	_
	Tt max		_	300	_	100	_
	N max	250				-	-
		250	50	-	-	-	-
SLE	N min	-	-	200	-	-	-
	TI max			200			
	Tt max	050	-	-	-	100	-
	N max	250	-	-	-	-	-
011/	N min	-	50	-	-	-	-
SLV	N min (*)		90				
	TI max		-	750	-	-	-
	Tt max		-		-	350	-

(*) Nmin per Fh max

			APPOG	GIO UNIDIF	REZIONAL	E LONG.	
longitudingle	θ		Reazion	i degli appa	arecchi di	appoggio	
	trasversale	max N	min N	max Tlong	min Tlong	max Ttrasv	min Ttrasv
	<u>'</u>	[kN]	[kN]	[kN]	[kN]	[kN]	[kN]
Azioni (\	alori caratteristici)				. ,		
permanenti G	peso proprio	72	72	-	-	-	-
	perman non str (incluso ballast)	47	47	-	-	-	-
	vento	3	0	-	-	27	0
	resistenza parassita vincoli	0	0	-	-	0	0
	gr1, LM71	83	0	-	-	47	0
	(M-)gr1, LM71	40	0	-	-	47	0
	gr3, LM71	83	0	-	-	24	0
	(M-)gr3, LM71	40	0	-	-	24	0
	gr1,SW/2	71	0	-	-	24	0
	(M-)gr1, SW/2	34	0	-	-	24	0
: 1:".0	gr3,SW/2	72	0	-	-	12	0
variabili Q	(M-)gr3, SW/2	35	0	_	-	12	0
	gr1, LM71+SW/2	115	0	_	_	95	0
	(M-)gr1, LM71+SW/2	121	0	_	_	95	0
	gr3, LM71+SW/2	117	0	-	-	47	0
	(M-)gr3, LM71+SW/2	123	0	_	_	47	0
	(101)g13, 210171130072	123				77	
	N max	450	-	-	-	-	-
01.11	N min	-	100	-	-	-	-
SLU	TI max		-	0	-	-	-
	Tt max		-		-	100	-
	N max	250	-	-	-	-	-
a. =	N min	-	50	-	-	-	-
SLE	TI max		-	0	-	-	-
	Tt max		-		-	100	-
	N max	250	-	1 -	-	-	-
	N min	-	50	-	-	-	-
SLV	N min (*)		90				
32,	TI max		-	0	_	_	_
	Tt max		_		_	350	_
	(*) Nmin per Fh max				l	550	L

(*) Nmin per Fh max

		APPOGGIO MULTIDIREZIONALE Reazioni degli apparecchi di appoggio					
longitudingle	<u> </u>						
	trasversale	max N	min N	max Tlong	min Tlong	max Ttrasv	min Ttrasv
Azioni (valo	ri caratteristici)	[kN]	[kN]	[kN]	[kN]	[kN]	[kN]
permanenti G	peso proprio	72	72	_	_	_	_
	perman non str (incluso ballast)	47	47	_	_	_	_
	vento	8	0	_	_	_	_
variabili Q	resistenza parassita vincoli	0	0	_	_	_	-
	gr1, LM71	135	0	-	-	-	-
	(M-)gr1, LM71	-6	0	_	_	_	-
	gr3, LM71	134	0	<u> </u>	_	_	_
	(M-)gr3, LM71	-7	0	_	_	_	_
	gr1,SW/2	115	0	_	_	_	_
	(M-)gr1, SW/2	-8	0	_	_	_	_
	gr3,SW/2	116	0	-	_	_	-
	(M-)gr3, SW/2	-8	0	-	-	-	-
	gr1, LM71+SW/2	123	0	-	-	-	-
	(M-)gr1, LM71+SW/2	141	0	-	-	-	-
	gr3, LM71+SW/2	124	0	-	-	-	-
	(M-)gr3, LM71+SW/2	142	0	-	-	-	-
	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,						
SLU	N max	450	-	-	-	-	-
	N min	-	50	-	-	-	-
	TI max		-	0	-	-	-
	Tt max		-		-	0	-
SLE	N max	300	-	-	-	-	-
	N min	-	0	-	-	-	-
	TI max		-	0	-	-	-
	Tt max		-		-	0	-
SLV	N max	250	-	-	-	-	-
	N min	-	0	-	-	-	-
	N min (*)		90				
	TI max		-	0	-	-	-
	Tt max		-		-	0	-

(*) Nmin per Fh max

	N max (SLU)	N min(SLV)	N min* (Fh_max) (SLV)	Fh max (SLV)	
	kN	kN	kN	kN	
Fisso	450	50	90	750	
Uni	450	50	90	350	
Multi	450	50	90	0	

12 INCIDENZA

Incidenza soletta: 140 kg/m³