COMMITTENTE:

DIREZIONE LAVORI:

AΡ	PA	LT/	λΤ <i>(</i>)R	F٠

n. Elab.:

PROGETTAZIONE:	PROGETTISTA:	DIRETTORE DELLA PROGETTAZIONE
RAGGRUPPAMENTO TEMPORANEO PROGETTISTI	Prof. Ing. Marco PETRANGELI	Ing. Piergiorgio GRASSO
ENGINEERING INTEGRA RIA		Responsabile integrazione fra le varie prestazioni specialistiche Dott. Ing. Pierriorgio GRASSO (S. ASSO (S. AS
DDOCETTO ESECUTIVO		MORO * ONIA

PROGETTO ESECUTIVO

ITINERARIO NAPOLI – BARI RADDOPPIO TRATTA CANCELLO-BENEVENTO II LOTTO FUNZIONALE FRASSO TELESINO – VITULANO 1° LOTTO FUNZIONALE FRASSO TELESINO – TELESE

VI05 - VIADOTTO dal km 20+474,00 al km 21+238,50: Viadotto Calore Torallo

Spalla fissa: Relazione di calcolo

File: IF26.1.2.E.ZZ.CL.VI.05.0.4.001.B.doc

APPAL IMPRESA PIZZAROTTI 8 DOIL INS. SUNTINO DE TO SPINO DEL DALZO ALLO SALVONO TO SPINO DEL DALZO	LTATORE 8.C.S.p.A. 11 Balzo 23/06/2020						SCALA:
COMMESSA	LOTTO FASE	ENTE	TIPO DOC.	OPERA/DISCIPLINA	PROGR.	RE\	<i>I</i> .
I F 2 6	1 2 E	Z Z	CL	V I 0 5 0 4	0 0 1	В	

Rev.	Descrizione	Redatto	Data	Verificato	Data	Approvato	Data	Autorizzato Data
Α	Emissione	F. Del Drago	24/02/2020	G. Usai	24/02/2020	P. Grasso	24/02/2020	M. Petrangeli
В	Revisione a seguito di istruttoria ITF	F. Del Drago	23/06/2020	G. Usai	23/06/2020	P. Grasso	23/06/2020	ORDINE BORNER BO
								23/06/2020

RI A

ITINERARIO NAPOLI – BARI RADDOPPIO TRATTA CANCELLO-BENEVENTO II LOTTO FUNZIONALE FRASSO TELESINO – VITULANO 1° LOTTO FUNZIONALE FRASSO TELESINO – TELESE

PROGETTO ESECUTIVO

Spalla fissa S1: Relazione di calcolo

 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 IF26
 12 E ZZ
 CL
 VI0504 001
 B
 2 di 104

INDICE

1	PR	REMESSA	5
2	NC	DRMATIVA E DOCUMENTI DI RIFERIMENTO	6
	2.1	Normative	6
	2.2	Elaborati di riferimento	7
3	MA	ATERIALI	
	3.1	Calcestruzzo per elevazione spalla	
	3.2	Calcestruzzo per platea di fondazione	
	3.3	Calcestruzzo per pali di fondazione	
	3.4	Acciaio per barre di armatura	10
4		ARATTERIZZAZIONE SISMICA DEL SITO	
	4.1	Vita Nominale e Classe d'uso dell'Opera	
	4.2	Parametri di pericolosità sismica	
	4.3	Categoria di sottosuolo e categoria topografica	19
5	DE	SCRIZIONE DELLA STRUTTURA	22
6	A١	IALISI DEI CARICHI	27
	6.1		
		1.1 Peso proprio impalcato (G1)	
		1.2 Peso proprio spalla (SP_Gk1)	
	6.2	Permanenti non strutturali	30
		2.1 Permanenti Impalcato (G2)	30
		2.2 Peso proprio del rilevato a tergo e del ricoprimento dell'aggetto anteriore	
	•	P_Gk2)	
		2.3 Spinta del terreno (SP_Gk2_h)	
		2.4 Permanenti spalla (Gk3-SP)	
	6.2	2.5 Spinta permanenti spalla (Gk3-SP_h)	
	6.3		
		3.1 Treni di carico	
		6.3.1.1 Traffico LM71 (Q1,1a)	
		6.3.1.2 Traffico 2 LM71 (Q1,2a)	
		6.3.1.3 Traffico SW/2 (Q1,1b)	
	6	6.3.1.4 Traffico LM71 + SW/2 (Q1,2b)	38

RI[†]A

ITINERARIO NAPOLI – BARI RADDOPPIO TRATTA CANCELLO-BENEVENTO II LOTTO FUNZIONALE FRASSO TELESINO – VITULANO 1° LOTTO FUNZIONALE FRASSO TELESINO – TELESE

PROGETTO ESECUTIVO

Spalla fissa S1: Relazione di calcolo

 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 IF26
 12 E ZZ
 CL
 VI0504 001
 B
 3 di 104

	6.3.1.5 Azioni sulla spalla (Sp_Qk, SP_Qk_h)	39
	6.3.2 Azioni di avviamento e frenatura	
	6.3.2.1 Avviamento (Qa)	40
	6.3.2.2 Frenatura LM71 (Qf1)	
	6.3.2.3 Frenatura SW2 (Qf2)	
	6.3.3 Forza centrifuga	
	6.3.3.1 Centrifuga LM71 (Qc1a) e Centrifuga SW/2 (Qc1b)	
	6.3.4 Serpeggio (QS)	
	6.4 Carichi variabili	45
	6.4.1 Azioni del vento (Qw)	45
	6.4.1.1 Pressione cinetica di riferimento	
	6.4.1.2 Coefficiente di esposizione	46
	6.4.1.3 Coefficiente di forma dell'impalcato	47
	6.4.1.4 Azione del vento sull'impalcato	
	6.4.2 Azioni variabili sul marciapiede (Qm)	50
	6.4.3 Azioni aerodinamiche indotte dal transito dei convogli	
	6.4.3.1 Carico su 1 marciapiede (Qae1)	52
	6.4.3.2 Carico su 2 marciapiede (Qae2)	52
	6.5 Azioni climatiche (Q7)	
	6.5.1 Azioni termiche uniforme (Q7_TL)	53
	6.5.1 Azioni termiche differenziali (Q7_TU)	5 3
	6.6 Ritiro (Q8_SH)	54
	6.7 Azioni sismiche (E)	57
	6.7.1 Azioni sismiche	58
	6.7.1.1 Sisma derivante da impalcato (Elong, Etrasv, Evert)	59
	6.7.1.2 Sisma su inerzia spalla (SP_Elong, SP_Etrasv, SP_Evert)	
	6.7.1.3 Sovraspinta sismica del terreno (SP_Gk2_Elong, SP_ Gk2_Etrasv, SP_	
	Gk2_Evert)	60
	6.8 Tabelle riepilogo Scarichi impalcato	62
7	COMBINAZIONI DI CARICO	63
8	MODELLO DI CALCOLO	67
•	8.1 Descrizione del modello di calcolo	
	8.2 Risultati del modello di calcolo	
	8.2.1 Reazioni globali	
	8.2.2 Sollecitazioni sugli elementi	
		, 0

ITINERARIO NAPOLI – BARI RADDOPPIO TRATTA CANCELLO-BENEVENTO II LOTTO FUNZIONALE FRASSO TELESINO – VITULANO 1° LOTTO FUNZIONALE FRASSO TELESINO – TELESE

PROGETTO ESECUTIVO

Spalla fissa S1: Relazione di calcolo

COMMESSA LOTTO CODIFICA DOCUMENTO REV. FOGLIO

IF26 12 E ZZ CL VI0504 001 B 4 di 104

9 CRITERI GENERALI PER LE VERIFICHE STRUTTURAL	I76
9.1 VERIFICHE ALLO SLU	76
9.1.1 Pressoflessione	76
9.1.2 Taglio	77
9.2 VERIFICA SLE	79
9.2.1 Verifiche alle tensioni	79
9.2.2 Verifiche a fessurazione	80
9.2.3 Muro frontale	81
Muro frontale –armatura verticale	81
Muro frontale –armatura orizzontale	82
9.2.4 Muro paraghiaia	
Muro paraghiaia –armatura verticale	83
Muro paraghiaia –armatura orizzontale	84
9.2.5 Muro andatore	85
Muro andatore-armatura verticale	85
Muro andatore-armatura orizzontale	85
9.2.6 Muro posteriore	86
Muro chiusura posteriore-armatura verticale	86
Muro chiusura posteriore-armatura orizzontale	
9.2.7 Fondazione	89
Fondazione-armatura longitudinale	89
Fondazione-armatura trasversale	90
9.2.8 Solettone	91
Solettone-armatura longitudinale	91
Solettone-armatura trasversale	92
Solettone-armatura longitudinale sezione attacco	92
9.2.1 Bandiere	
Bandiere – armatura orizzontale	94
Bandiere – armatura verticale	95
9.3 Palificata	96
9.3.1 Reazioni globali massime	96
9.4 Verifiche strutturali pali di fondazione	97
9.4.1 Verifiche allo SLU	
9.4.2 Verifiche allo SLE	101
10 INCIDENZE	104

1 PREMESSA

Nell'ambito dell'*Itinerario Napoli-Bari* si inserisce il *Raddoppio della Tratta Cancello - Benevento - II*° *Lotto Funzionale Frasso Telesino - Vitulano* oggetto di progettazione esecutiva.

La presente relazione ha per oggetto il dimensionamento degli elementi in elevazione della spalla A(allineamento fisso) del *Viadotto Calore Torallo - VI05*.

Nel seguito si procede al calcolo dello stato di sollecitazione ed alle verifiche dei vari elementi costituenti l'elevazione della spalla nei confronti degli Stati Limite Ultimi strutturali di presso-flessione, taglio. Si esegue inoltre la determinazione delle azioni massime sugli elementi costituenti la fondazione, quali plinto e pali di fondazione, e alla loro verifica nei confronti degli Stati Limite Ultimi strutturali di presso-flessione, taglio e Stati Limite Ultimi geotecnici.

2 NORMATIVA E DOCUMENTI DI RIFERIMENTO

2.1 Normative

Le principali Normative nazionali ed internazionali vigenti alla data di redazione del presente documento e prese a riferimento sono le seguenti:

- [1] Ministero delle Infrastrutture, DM 14 gennaio 2008, «Approvazione delle nuove norme tecniche per le costruzioni»
- [2] Ministero delle Infrastrutture e Trasporti, Circolare 2 febbraio 2009, n. 617 C.S.LL.PP., «Istruzioni per l'applicazione delle Nuove norme tecniche per le costruzioni di cui al decreto ministeriale 14 gennaio 2008»
- [3] Istruzione RFI DTC SI PS MA IFS 001 A Manuale di Progettazione delle Opere Civili Parte II Sezione 2 Ponti e Strutture
- [4] Istruzione RFI DTC SI CS MA IFS 001 A Manuale di Progettazione delle Opere Civili Parte II Sezione 3 Corpo Stradale
- [5] Regolamento (UE) N.1299/2014 della Commissione del 18 Novembre 2014 relativo alle specifiche tecniche di interoperabilità per il sottosistema "infrastruttura" del sistema ferroviario dell'Unione europea

GEODATA INTEGRA RIA	II LOTTO F	IO TRAT UNZION FUNZION	TA CANCEL ALE FRASSI IALE FRASS	LO-BENEVENT O TELESINO – SO TELESINO –	VITULAN	_
Spalla fissa S1: Relazione di calcolo	COMMESSA IF26	LOTTO 12 E ZZ	CODIFICA	DOCUMENTO VI0504 001	REV.	FOGLIO 7 di 104

2.2 Elaborati di riferimento

Vengono presi a riferimento tutti gli elaborati grafici progettuali di pertinenza.

3 MATERIALI

3.1 Calcestruzzo per elevazione spalla

Classe C32/40			
Rck =	40,00	MPa	Resistenza caratteristica cubica
fck = 0,83 Rck =	33,20	MPa	Resistenza caratteristica cilindrica
fcm = fck +8 =	41,20	MPa	Valore medio resistenza cilindrica
acc =	0,85		Coeff. rid. per carichi di lunga durata
γM =	1,50	-	Coefficiente parziale di sicurezza SLU
$fcd = acc fck/\gamma M =$	18,81	MPa	Resistenza di progetto
$fctm = 0,3 fck^{(2/3)} =$	3,10	MPa	Resistenza media a trazione semplice
fcfm = 1,2 fctm =	3,72	MPa	Resistenza media a trazione per flessione
fctk = 0,7 fctm =	2,17	MPa	Valore caratteristico resistenza a trazione (frattile 5%)
$\sigma c = 0,55 \text{ fck} =$	18,26	MPa	Tensione limite in esercizio in comb. rara (rif. §1.8.3.2.1 [3])
σc = 0,40 fck =	13,28	MPa	Tensione limite in esercizio in comb. quasi perm. (rif. §1.8.3.2.1 [3])
Ecm = 22000 (fcm/10) $^{(0,3)}$	33643,00	MPa	Modulo elastico di progetto
v =	0,20		Coefficiente di Poisson
Gc = Ecm $/(2(1+ v)=$	14018,00	MPa	Modulo elastico tangenziale di progetto
Condizioni ambientali =	Debolmente	aggres	ssive
Classe di esposizione =	XC4		
C =	4,00	cm	Copriferro minimo
w =	0,20	mm	Apertura massima fessure in esercizio in comb. rara (rif. §1.8.3.2.4 [3])

3.2 Calcestruzzo per platea di fondazione

Classe C28/35

Rck = 35,00 MPa Resistenza caratteristica cubica

fck = 0,83 Rck =	29,05 MF	Pa Resistenza caratteristica cilindrica
fcm = fck +8 =	37,05 MF	Pa Valore medio resistenza cilindrica
acc =	0,85	Coeff. rid. per carichi di lunga durata
γM =	1,50 -	Coefficiente parziale di sicurezza SLU
$fcd = acc fck/\gamma M =$	16,46 MF	Pa Resistenza di progetto
fctm = 0,3 fck $^{(2/3)}$ =	2,83 MF	Pa Resistenza media a trazione semplice
fcfm = 1,2 fctm =	3,40 MF	Pa Resistenza media a trazione per flessione
fctk = 0,7 fctm =	1,98 MF	Pa Valore caratteristico resistenza a trazione (frattile 5%)
$\sigma c = 0.55 \text{ fck} =$	15,98 MF	Pa Tensione limite in esercizio in comb. rara (rif. §1.8.3.2.1 [3])
$\sigma c = 0.40 \text{ fck} =$	11,62 MF	Pa Tensione limite in esercizio in comb. quasi perm. (rif. §1.8.3.2.1 [3])
Ecm = 22000 (fcm/10) $^{(0,3)}$ =	32588,00 MF	Pa Modulo elastico di progetto
v =	0,20	Coefficiente di Poisson
Gc = Ecm /(2(1+ v)=	13578,00 MF	Pa Modulo elastico tangenziale di progetto
Condizioni ambientali =	Ordinarie	
Classe di esposizione =	XC2	
C =	4,00 cm	Copriferro minimo
W =	0,30 mn	Apertura massima fessure in esercizio in comb. rara (rif. §1.8.3.2.4 [3])

3.3 Calcestruzzo per pali di fondazione

Classe C25/30

Rck =	30,00 MPa	Resistenza caratteristica cubica
fck = 0,83 Rck =	24,90 MPa	Resistenza caratteristica cilindrica
fcm = fck +8 =	32,90 MPa	Valore medio resistenza cilindrica
acc =	0,85	Coeff. rid. per carichi di lunga durata
γM =	1,50 -	Coefficiente parziale di sicurezza SLU
$fcd = acc fck/\gamma M =$	14,11 MPa	Resistenza di progetto
$form = 0.3 fck^{(2/3)} =$	2,56 MPa	Resistenza media a trazione semplice

fcfm = 1,2 fctm =	3,07 MPa	a Resistenza media a trazione per flessione
fctk = 0,7 fctm =	1,79 MPa	Valore caratteristico resistenza a trazione (frattile 5%)
$\sigma c = 0.55 \text{ fck} =$	13,70 MPa	Tensione limite in esercizio in comb. rara (rif. §1.8.3.2.1 [3])
σc = 0,40 fck =	9,96 MPa	Tensione limite in esercizio in comb. quasi perm. (rif. §1.8.3.2.1 [3])
Ecm = 22000 (fcm/10) $^{(0,3)}$ =	31447,00 MPa	a Modulo elastico di progetto
v =	0,20	Coefficiente di Poisson
Gc = Ecm /(2(1+ v)=	13103,00 MPa	Modulo elastico tangenziale di progetto
Condizioni ambientali =	Ordinarie	
Classe di esposizione =	XC2	
C =	6,00 cm	Copriferro minimo
w =	0,30 mm	Apertura massima fessure in esercizio in comb. rara (rif. §1.8.3.2.4 [3])

3.4 Acciaio per barre di armatura

B450C		
fyk≥	450,00 MPa	Tensione caratteristica di snervamento
ftk ≥	540,00 MPa	Tensione caratteristica di rottura
(ft/fy) _k ≥	1,15	
$(ft/fy)_k <$	1,35	
γs=	1,15 -	Coefficiente parziale di sicurezza SLU
fyd = fyk/γs=	391,30 MPa	Tensione caratteristica di snervamento
Es =	210000,00 MPa	Modulo elastico di progetto
εyd =	0,20 %	Deformazione di progetto a snervamento
ε uk =(Agt) _k	7,50 %	Deformazione caratteristica ultima
σs = 0,75 fyk =	337,50 MPa	Tensione in esercizio in comb. rara (rif. §1.8.3.2.1 [3])

4 CARATTERIZZAZIONE SISMICA DEL SITO

Nel seguente paragrafo è riportata la valutazione dei parametri di pericolosità sismica utili alla determinazione delle azioni sismiche di progetto dell'opera cui si riferisce il presente documento, in accordo a quanto specificato a riguardo dal D.M. 14 gennaio 2008 e relativa circolare applicativa.

L'opera in questione rientra in particolare nell'ambito del Progetto di Raddoppio della tratta Ferroviaria Frasso Telesino – Vitulano, che si sviluppa per circa 30Km, da ovest verso est, attraversando il territorio di diverse località tra cui Dugenta/Frasso (BN), Amorosi (BN), Telese(BN), Solopaca(BN), San Lorenzo Maggiore(BN), Ponte(BN), Torrecuso(BN), Vitulano (BN), Benevento – Località Roseto (BN).

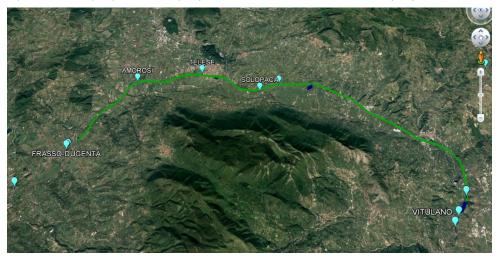


Figura 1 – Configurazione planimetrica tracciato

In considerazione della variabilità dei parametri di pericolosità sismica con la localizzazione geografica del sito, ed allo scopo di individuare dei tratti omogenei nell'ambito dei quali assumere costanti detti parametri, si è provveduto a suddividere il tracciato in tre sottozone simiche, a seguito di un esame generale del livello pericolosità sismica dell'area che evidenzia un graduale incremento dell'intensità sismica da ovest verso est; nella fattispecie le zone sismiche "omogenee" individuate, sono quelle di seguito elencate:

Zona S1: da pk 16+500 a pk 22+500 (Dugenta/Frasso – Amorosi)

Zona S2: da pk 22+500 a pk 30+000 (Amorosi - Solopaca)

Zona S3: da pk 30+000 a pk 46+577 (Solopaca-Ponte-Vitulano)

Per ciascuna zona, sono stati dunque individuati, in funzione del periodo di riferimento dell'azione sismica (VR), i parametri di pericolosità sismica (ag/g, F0 e Tc*) rappresentativi delle più severe condizioni di pericolosità riscontrabili lungo il tratto di riferimento, assumendo in particolare come riferimento le seguenti Località:

Zona S1 : Amorosi (BN) Zona S2 : Solopaca (BN)

Zona S3: Ponte (BN)

Nei paragrafi seguenti è riportata la valutazione dei parametri di pericolosità sismica per ciascuna delle località di riferimento.

L'opera in esame ricade nella zona sismica denominata Zona S1

4.1 Vita Nominale e Classe d'uso dell'Opera

Per la valutazione dei parametri di pericolosità sismica è necessario definire, oltre alla localizzazione geografica del sito, la Vita nominale dell'opera strutturale (VN), intesa come il numero di anni nel quale la struttura, purchè soggetta alla manutenzione ordinaria, deve potere essere usata per lo scopo al quale è destinata, e la Classe d'Uso a cui è associato un coefficiente d'uso (CU)

La vita nominale delle infrastrutture ferroviarie può, di norma, assumersi come indicato nella seguente tabella.

TIPI DI COSTRUZIONE	Vita Nominale V _N [anni]
Opere nuove su infrastrutture ferroviarie progettate con le norme vigenti prima del DM14/1/2008 a velocità convenzionale V<250 Km/h	50
Altre opere nuove a velocità V<250 Km/h	75
Altre opere nuove a velocità V>250 Km/h	100
Opere di grandi dimensioni: ponti e viadotti con campate di luce maggiore di 150 m	≥100

Per l'opera in oggetto si considera una vita nominale VN = 75 anni (categoria 2)

Riguardo invece la Classe d'Uso, il Decreto Ministeriale del 14 gennaio 2008, individua le seguenti quattro categorie

Classe I: costruzioni con presenza solo occasionale di persone, edifici agricoli.

Classe II: costruzioni il cui uso preveda normali affollamenti, senza contenuti pericolosi per l'ambiente e senza funzioni pubbliche e sociali essenziali. Industrie con attività non pericolose per l'ambiente. Ponti, opere infrastrutturali, reti viarie non ricadenti in Classe III o in Classe IV, reti ferroviarie la cui interruzione non provochi situazioni di emergenza. Dighe il cui collasso non provochi conseguenze rilevanti.

Classe III: costruzioni il cui uso preveda affollamenti significativi. Industrie con attività pericolose per l'ambiente. Reti viarie extraurbane non ricadenti in Classe IV. Ponti e reti ferroviarie la cui interruzione provochi situazioni di emergenza. Dighe rilevanti per le conseguenze di un loro eventuale collasso.

Classe IV: costruzioni con funzioni pubbliche o strategiche importanti, anche con riferimento alla gestione della protezione civile in caso di calamità. Industrie particolarmente pericolose per l'ambiente. Reti viarie di tipo A o B, di cui al D.M. 5 novembre 2001, n. 6792, "Norme funzionali e geometriche per la costruzione di strade", e di tipo quando appartenenti ad itinerari di collegamento tra capoluoghi di provincia non altresì serviti da strade di tipo A o B. Ponti o reti ferroviarie di importanza critica per il mantenimento delle vie di comunicazione, particolarmente dopo un evento sismico Dighe connesse al funzionamento di acquedotti e a impianti di produzione di energia elettrica.

All' opera in oggetto corrisponde pertanto una Classe III a cui è associato un coefficiente d'uso pari a (NTC – Tabella 2.4.II):

$$C_u = 1.5$$

I parametri di pericolosità sismica vengono quindi valutate in relazione ad un periodo di riferimento V_R che si ricava per ciascun tipo di costruzione, moltiplicando la vita nominale V_R per il coefficiente d'uso C_U , ovvero:

$$V_R = V_N \cdot C_U$$

Pertanto, per l'opera in oggetto, il periodo di riferimento è pari a $V_R = 75x1.5 = 112.5$ anni

4.2 Parametri di pericolosità sismica

La valutazione dei parametri di pericolosità sismica, che ai sensi del D.M. 14-01-2008, costituiscono il dato base per la determinazione delle azioni sismiche di progetto su una costruzione (forme spettrali e/o forze inerziali) dipendono, come già in parte anticipato in precedenza, dalla localizzazione geografica del sito, dalle caratteristiche della costruzione (Periodo di riferimento per valutazione azione sismica / VR) oltre che dallo Stato Limite di riferimento/Periodo di ritorno dell'azione sismica.

II DM 14.01.08 definisce in particolare la pericolosità sismica di un sito attraverso i seguenti parametri::

ag/g: accelerazione orizzontale relativa massima al suolo, su sito di riferimento rigido;

Fo: valore massimo del fattore di amplificazione dello spettro in accelerazione orizzontale;

T°_C: periodo di inizio del tratto a velocità costante dello spettro in accelerazione orizzontale.

Per quanto detto al precedente paragrafo, risulta:

Localizzazione Geografica: Amorosi (BN), Solopaca (BN), Ponte (BN)

Periodo di riferimento Azione sismica V_R = 112.5 anni,

ENGINEERING INTEGRA RIF	II LOTTO F	IO TRAT UNZIONA FUNZION	TA CANCEL ALE FRASS IALE FRASS	LO-BENEVENT O TELESINO – SO TELESINO –	VITULAI	
Spalla fissa S1: Relazione di calcolo	COMMESSA IF26	LOTTO 12 E ZZ	CODIFICA	DOCUMENTO VI0504 001	REV.	FOGLIO 14 di 104

Riguardo, infine gli stati limite di verifica/periodo di ritorno dell'azione sismica, la normativa individua in particolare 4 situazioni tipiche riferendosi alle prestazioni che la costruzione nel suo complesso deve poter espletare, riferendosi sia agli elementi strutturali, che a quelli non strutturali / impianti, come di seguito descritto:

Stato Limite di Operatività (SLO): a seguito del terremoto la costruzione nel suo complesso, includendo gli elementi strutturali, quelli non strutturali, le apparecchiature rilevanti alla sua funzione, non deve subire danni ed interruzioni d'uso significativi;

Stato Limite di Danno (SLD): a seguito del terremoto la costruzione nel suo complesso, includendo gli elementi strutturali, quelli non strutturali, le apparecchiature rilevanti alla sua funzione, subisce danni tali da non mettere a rischio gli utenti e da non compromettere la capacità di resistenza e di rigidezza nei confronti delle azioni verticali ed orizzontali, mantenendosi immediatamente utilizzabile all'interruzione d'uso di parte delle apparecchiature.

Stato Limite di salvaguardia della Vita (SLV): a seguito del terremoto la costruzione subisce rotture o crolli dei componenti non strutturali ed impiantistici e significativi danni dei componenti strutturali cui si associa una perdita significativa di rigidezza nei confronti delle azioni orizzontali; la costruzione invece conserva una parte della resistenza e della rigidezza per azioni verticali e un margine di sicurezza nei confronti del collasso per azioni sismiche

Stato Limite di prevenzione del Collasso (SLC): a seguito del terremoto la costruzione subisce gravi rotture e crolli dei componenti non strutturali ed impiantistici e danni molto gravi dei componenti strutturali; la costruzione conserva ancora un margine di sicurezza per azioni verticali ed un esiguo margine di sicurezza nei confronti del collasso per azioni orizzontali.

A ciascuno stato limite di verifica è quindi associata una probabilità di superamento P_{VR} nel periodo di riferimento ità di superamento nel periodo di riferimento V_R , secondo quanto indicato nel seguito:

Stati Limite		P _{VR} : Probabilità di superamento nel periodo di riferimento VR
Stati limite	LO	81%
di esercizio	LD	63%
Stati limite	LV	10%
ultimi	LC	5%

Tab. 3.2.1 DM 14.01.08

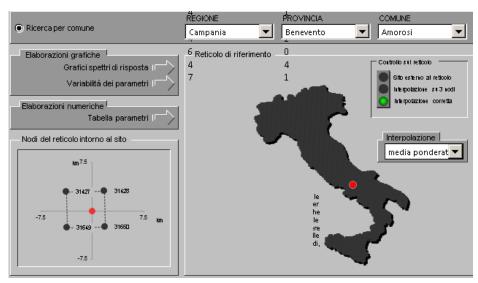
A ciascuna probabilità di superamento PvR è quindi associato un Periodo di Ritorno dell'azione sismica T_R , valutabile attraverso la seguente relazione:

 $T_R = -V_R / In(1-P_{VR})$ (periodo di ritorno dell'azione sismica)

Nel caso in esame risulta dunque, con riferimento ai diversi stati limite :

SLATO LIMITE	T _R [anni]
SLO	68
SLD	113
SLV	1068
SLC	2193

Zona S1 da pk 16+500 a pk 22+500 (Dugenta/Frasso - Amorosi)


Di seguito si riportano i parametri di pericolosità sismica da assumere come riferimento per la determinazione delle Azioni sismiche di progetto per opere ricadenti nella parte di tracciato dell'infrastruttura individuata come zona S1:

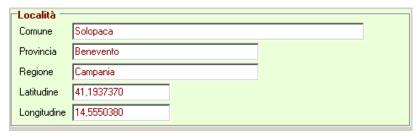
Località: Amorosi (BN)

-Località -		
Comune	Amorosi	
Provincia	Benevento	
Regione	Campania	
Latitudine	41,2042407	
Longitudine	14,4648703	

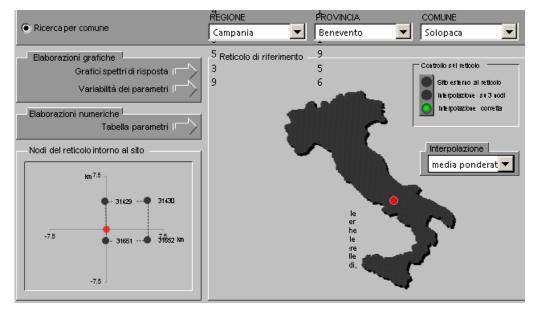
VR = 112.5 anni

Sulla scorta di quanto riportato in Allegato A delle Norme Tecniche per le costruzioni DM 14.01.08, si ottiene:

SLATO	T _R	a _g	F _o	T _c *
LIMITE	[anni]	[g]	[-]	[s]
SLO	68	0.078	2.428	0.324
SLD	113	0.099	2.440	0.340
SLV	1068	0.273	2.352	0.419
SLC	2193	0.357	2.394	0.433


Tabella di riepilogo Parametri di pericolosità sismica zona S1

Zona S2 da pk 22+500 a pk 30+000 (Amorosi - Solopaca)


Di seguito si riportano i parametri di pericolosità sismica da assumere come riferimento per la determinazione delle Azioni sismiche di progetto per opere ricadenti nella parte di tracciato dell'infrastruttura individuata come zona S2:

Località: Solopaca (BN)

VR = 112.5 anni

Sulla scorta di quanto riportato in Allegato A delle Norme Tecniche per le costruzioni DM 14.01.08, si ottiene:

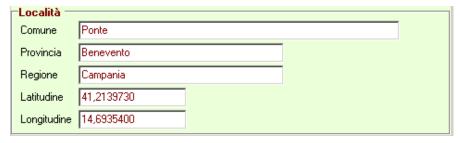
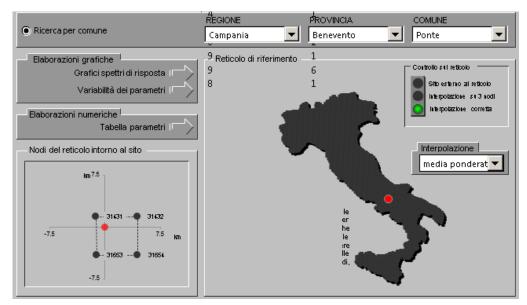

SLATO	T _R	ag	F _o	T _c *
LIMITE	[anni]	[g]	[-]	[s]
SLO	68	0.088	2.368	0.316
SLD	113	0.113	2.377	0.331
SLV	1068	0.322	2.346	0.401
SLC	2193	0.419	2.430	0.425

Tabella di riepilogo Parametri di pericolosità sismica zona S2

Zona S3 da pk 30+000 a pk 46+577 (Solopaca-Ponte-Vitulano)

Di seguito si riportano i parametri di pericolosità sismica da assumere come riferimento per la determinazione delle Azioni sismiche di progetto per opere ricadenti nella parte di tracciato dell'infrastruttura individuata come zona S2:


Località: Ponte (BN)

VR = 112.5 anni

Sulla scorta di quanto riportato in Allegato A delle Norme Tecniche per le costruzioni DM 14.01.08, si ottiene:

SLATO LIMITE	T _R [anni]	a _g [g]	F _o [-]	T _c * [s]
SLO	68	0.097	2.343	0.310
SLD	113	0.127	2.332	0.326
SLV	1068	0.367	2.346	0.395
SLC	2193	0.473	2.445	0.427

Tabella di riepilogo Parametri di pericolosità sismica zona S3

L'opera in esame ricade nella zona sismica denominata S1.

4.3 Categoria di sottosuolo e categoria topografica

Le Categoria di Sottosuolo e le Condizioni Topografiche sono valutate come descritte al punto 3.2.2 del DM 14.01.08, ovvero:

Tabella 3.2.II – Categorie di sottosuolo

Categoria	Descrizione
A	Ammassi rocciosi affioranti o terreni molto rigidi caratterizzati da valori di $V_{s,30}$ superiori a 800 m/s, eventualmente comprendenti in superficie uno strato di alterazione, con spessore massimo pari a 3 m.
В	Rocce tenere e depositi di terreni a grana grossa molto addensati o terreni a grana fina molto consistenti con spessori superiori a 30 m, caratterizzati da un graduale miglioramento delle proprietà meccaniche con la profondità e da valori di $V_{s,30}$ compresi tra 360 m/s e 800 m/s (ovvero $N_{SPT,30} > 50$ nei terreni a grana grossa e $c_{u,30} > 250$ kPa nei terreni a grana fina).
С	Depositi di terreni a grana grossa mediamente addensati o terreni a grana fina mediamente consistenti con spessori superiori a 30 m, caratterizzati da un graduale miglioramento delle proprietà meccaniche con la profondità e da valori di $V_{s,30}$ compresi tra 180 m/s e 360 m/s (ovvero $15 < N_{SPT,30} < 50$ nei terreni a grana grossa e $70 < c_{u,30} < 250$ kPa nei terreni a grana fina).
D	Depositi di terreni a grana grossa scarsamente addensati o di terreni a grana fina scarsamente consistenti, con spessori superiori a 30 m, caratterizzati da un graduale miglioramento delle proprietà meccaniche con la profondità e da valori di $V_{s,30}$ inferiori a 180 m/s (ovvero $N_{SPT,30} < 15$ nei terreni a grana grossa e $c_{u,30} < 70$ kPa nei terreni a grana fina).
E	Terreni dei sottosuoli di tipo C o D per spessore non superiore a 20 m, posti sul substrato di riferimento (con $V_s > 800$ m/s).

Tabella 3.2.III – Categorie aggiuntive di sottosuolo.

Categoria	Descrizione
S1	Depositi di terreni caratterizzati da valori di $V_{s,30}$ inferiori a 100 m/s (ovvero $10 < c_{u,30} < 20$ kPa), che includono uno strato di almeno 8 m di terreni a grana fina di bassa consistenza, oppure che includono almeno 3 m di torba o di argille altamente organiche.
S2	Depositi di terreni suscettibili di liquefazione, di argille sensitive o qualsiasi altra categoria di sottosuolo non classificabile nei tipi precedenti.

Tabella 3.2.IV - Categorie topografiche

Categoria	Caratteristiche della superficie topografica
T1	Superficie pianeggiante, pendii e rilievi isolati con inclinazione media i $\leq 15^\circ$
T2	Pendii con inclinazione media i > 15°
Т3	Rilievi con larghezza in cresta molto minore che alla base e inclinazione media $15^{\circ} \le i \le 30^{\circ}$
T4	Rilievi con larghezza in cresta molto minore che alla base e inclinazione media i > 30°

Tabella di riepilogo Categoria di Sottosuolo e Topografiche DM 14.01.08

Note la Categoria di Sottosuolo e le Condizioni Topografiche, la costruzione degli spettri passa infine attraverso la definizione dei coefficienti di Amplificazione Stratigrafica (S_S e C_C) e Topografica (S_T), mediante le indicazioni di cui alle tab 3.2.V e 3.2.VI del DM 14.01.08, che si ripropongono nel seguito per chiarezza espositiva:

Tabella 3.2.V – Espressioni di S_S e di C_C

211201111111111111111111111111111111111	237. 033.0 0.	
Categoria sottosuolo	\mathbf{S}_{S}	Cc
A	1,00	1,00
В	$1,00 \le 1,40 - 0,40 \cdot F_o \cdot \frac{a_g}{g} \le 1,20$	$1,10\cdot(T_{C}^{*})^{-0,20}$
C	$1,00 \le 1,70 - 0,60 \cdot F_o \cdot \frac{a_g}{g} \le 1,50$	$1,05 \cdot (T_C^*)^{-0,33}$
D	$0,90 \le 2,40-1,50 \cdot F_o \cdot \frac{a_g}{g} \le 1,80 \cdot$	$1,25 \cdot (T_{C}^{*})^{-0,50}$
E	$1,00 \le 2,00 - 1,10 \cdot F_o \cdot \frac{a_g}{g} \le 1,60$	$1,15 \cdot (T_{C}^{*})^{-0,40}$

 $\textbf{Tabella 3.2.VI} - \textit{Valori massimi del coefficiente di amplificazione topografica } S_T$

Categoria topografica	Ubicazione dell'opera o dell'intervento	S _T
T1	-	1,0
T2	In corrispondenza della sommità del pendio	1,2
Т3	In corrispondenza della cresta del rilievo	1,2
T4	In corrispondenza della cresta del rilievo	1,4

Per il caso in esame, come riportato all'interno della relazione geotecnica risulta una <u>categoria di sottosuolo di tipo C</u> e una <u>classe Topografica T1</u>.

5 DESCRIZIONE DELLA STRUTTURA

Il Viadotto Calore Torallo - VI05, a doppio binario, si estende dal km 20+474,00 al km 21+238,50 della Tratta Cancello-Benevento - II° Lotto Funzionale Frasso Telesino-Vitulano per uno sviluppo complessivo di 764,5 m in corrispondenza del Fiume Calore ed è costituito da 25 campate isostatiche di cui:

- √ n°22 campate di luce L=25,00m (asse pila-asse pila): ciascun impalcato è costituito da n°4
 travi a cassoncino in c.a.p. di luce di calcolo Lc=22,80m disposte ad un interasse di 2,48m e
 collegate trasversalmente da n°4 trasversi in c.a.p. con cavi post-tesi. Completa l'impalcato
 una soletta in c.a. gettata in opera di larghezza complessiva pari a 13,70m.
- √ 2 campate (tra le pile P5 e P6 e tra le pile P7 e P8) di luce in asse sottostrutture pari a 45.00 m, realizzate con implacati della tipologia misto acciaio-calcestruzzo. L'adozione di tali campate speciali si è resa necessaria per sovrappassare, con il minimo intervento possibile delle interferenze idrauliche presente nella zona.
- ✓ 1 campata(tra le pile P6 e P7) di luce in asse sottostrutture pari a 65.00 m, realizzata con implacato della tipologia misto acciaio-calcestruzzo.

L'adozione di "campate speciali" (45,00m-65,00m-45,00m di cui sopra) per lo scavalco del Fiume Calore è stata dettata da motivazioni di carattere idraulico, alla vicinanza del viadotto stradale esistente della S.S. Fondo Valle Isclero immediatamene più a valle, nonchè dall'esigenza di garantire il rispetto dei franchi idraulici minimi sul livello di piena di progetto.

Oggetto della presente relazione è il dimensionamento della Spalla A, fissa, sulla quale grava un impalcato isostatico in c.a.p. di lunghezza pari a 25 m.

Il muro frontale presenta un'altezza spiccato - p.f. pari a9.23 m ed uno spessore pari a 2.00 m mentre i muri di risvolto presentano uno spessore pari a 1.00 m. La fondazione è costituita da una platea su 18 pali disposti a quinconce.

GEODATA INTEGRA RIA	II LOTTO F	IO TRAT UNZIONA FUNZION	TA CANCEL ALE FRASS IALE FRASS	LO-BENEVENT O TELESINO – SO TELESINO –	VITULAI	_
Spalla fissa S1: Relazione di calcolo	COMMESSA IF26	LOTTO 12 E ZZ	CODIFICA	DOCUMENTO VI0504 001	REV.	FOGLIO 23 di 104

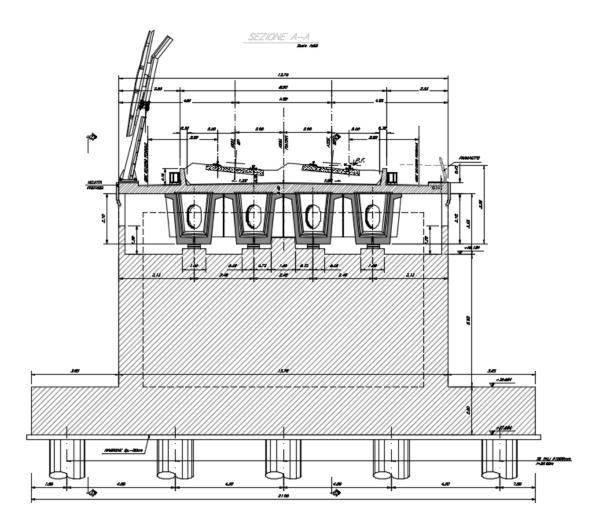


Figura 2 – Prospetto frontale della spalla A

GEODATA INTEGRA RIA	II LOTTO F	IO TRAT UNZIONA FUNZION	TA CANCEL ALE FRASS IALE FRASS	LO-BENEVENT O TELESINO – SO TELESINO –	VITULAI	
Spalla fissa S1: Relazione di calcolo	COMMESSA IF26	LOTTO 12 E ZZ	CODIFICA	DOCUMENTO VI0504 001	REV.	FOGLIO 24 di 104

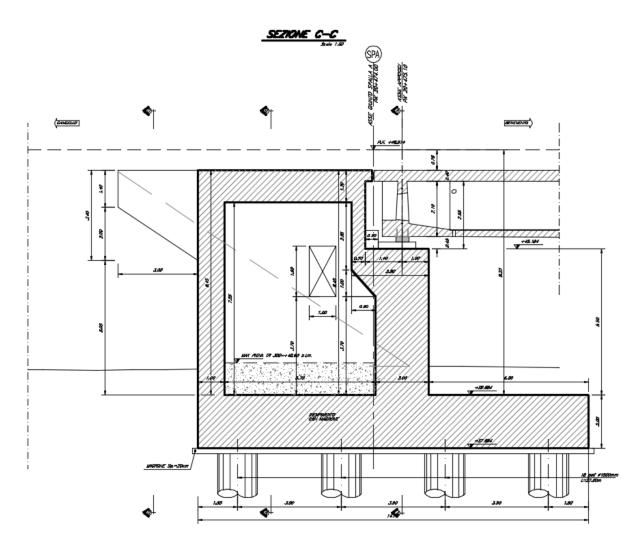


Figura 3 – Sezione longitudinale della spalla A

GEODATA INTEGRA RIA	II LOTTO F	IO TRAT UNZION FUNZION	TA CANCEL ALE FRASS IALE FRASS	LO-BENEVENT O TELESINO – SO TELESINO -	VITULA	_
Spalla fissa S1: Relazione di calcolo	COMMESSA IF26	LOTTO 12 E ZZ	CODIFICA	DOCUMENTO VI0504 001	REV.	FOGLIO 25 di 104

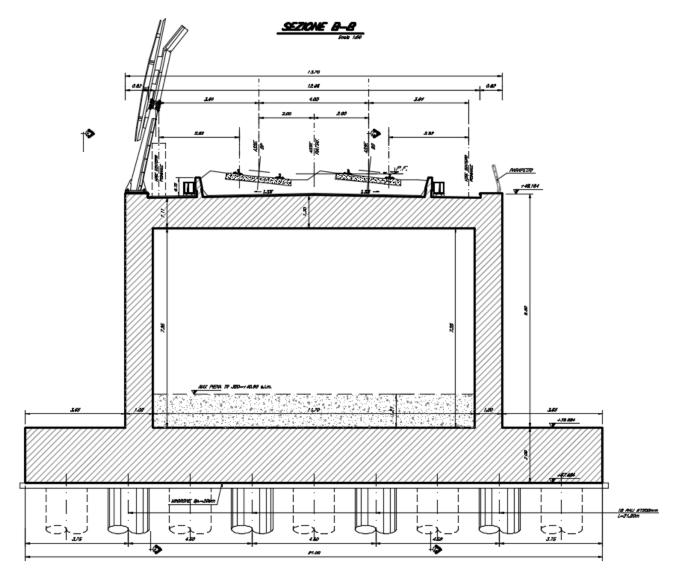


Figura 4 – Sezione trasversale della spalla A

GEODATA INTEGRA RIF	II LOTTO F	IO TRAT UNZIONA FUNZION	TA CANCEL ALE FRASS IALE FRASS	LO-BENEVENT O TELESINO – SO TELESINO –	VITULAI	_
Spalla fissa S1: Relazione di calcolo	COMMESSA IF26	LOTTO 12 E ZZ	CODIFICA	DOCUMENTO VI0504 001	REV.	FOGLIO 26 di 104

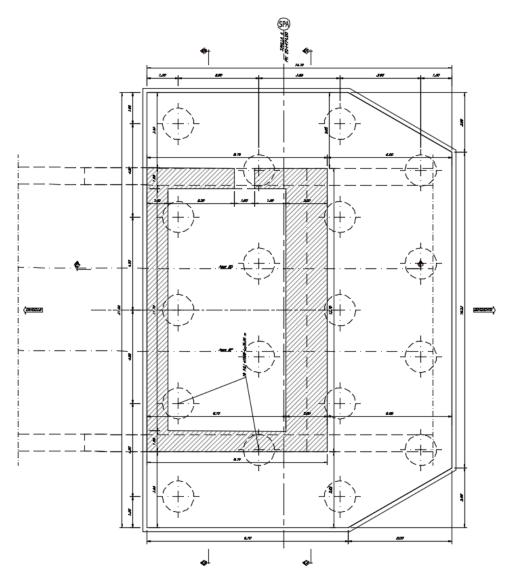


Figura 5 – Pianta allo spiccato fondazione della spalla A

GEODATA INTEGRA RIA	II LOTTO F	IO TRAT UNZIONA FUNZION	TA CANCEL ALE FRASSI IALE FRASS	LO-BENEVENT O TELESINO – SO TELESINO -	VITULAI	-
Spalla fissa S1: Relazione di calcolo	COMMESSA IF26	LOTTO 12 E ZZ	CODIFICA	DOCUMENTO VI0504 001	REV.	FOGLIO 27 di 104

6 ANALISI DEI CARICHI

Di seguito si riporta l'analisi dei carichi agenti sulla spalla derivantidall'impalcato afferente. Le azioni e le reazioni riportate sono riferite al seguente sistema di riferimento:

asse 1 o asse X: asse longitudinale;
asse 2 o asse Y: asse trasversale;
asse 3 o asse Z: asse verticale.

6.1 Permanenti strutturali

6.1.1 Peso proprio impalcato (G1)

L'impalcato a singola campata isostatica, di campata pari a 25 m in asse ai giunti (22,80 m asse appoggi), è costituito da 4 cassoncini in c.a.p. solidarizzati da trasversi gettati in opera. La soletta è di spessore variabile tra 30 cm e 40 cm ed è anch'essa gettata in opera su predalles prefabbricate.

I carichi dovuti al peso proprio degli impalcati sono calcolati sulla base delle caratteristiche geometriche e del peso unitario di ciascun elemento.

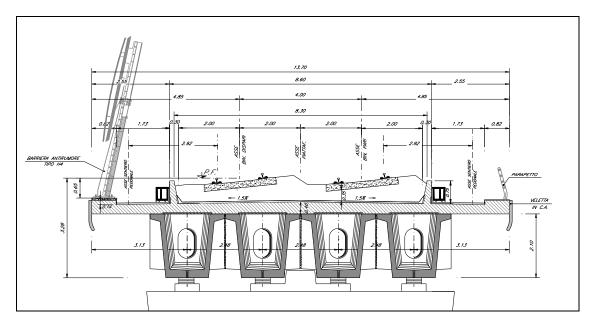


Figura 6 – Sezione trasversale impalcato L=25 m

	<u>IMPAL</u>	.CATO
Peso proprio travi		
A,1 sezione testata =	2,01	m2
A,1 sezione media transizione =	1,60	m2
A,1 sezione corrente =	1,13	m2
L,testata =	1,50	m
L,zona transizione =	3,60	m
L,corrente =	19,20	m
L,tot =	24,30	m
V,1 trave =	30,47	m3
peso unitario travi =	25,00	kN/m3
P,1 trave =	761,78	kN
Peso proprio trasversi		
A,1 sez trasverso testata =	2,76	m2
A,1 sez trasverso corrente =	3,64	m2
s,trasverso testata =	0,40	m
s,trasverso corrente =	0,25	m
V,1 trave trasversi =	4,03	m3
peso unitario trasversi =	25,00	kN/m3
P,1 trave trasv =	100,70	kN
Peso proprio totale travi e trasversi		
P,1 trave+trasv =	862,48	kN
N,travi =	4,00	

P,tot travi+trasv =	3449,90	kN
Peso proprio soletta		
A soletta =	5,05	m2
L impalcato =	25,00	m
peso unitario soletta =	25,00	kN/m3
P soletta =	3156,25	kN
Peso proprio totale impalcato		
Peso impalcato =	6606,15	kN
Risultanti reazioni vincolari		
F _{Long} =	0	
F _{Trasv} =	0	
$N_{Vert} =$	3303	kN
$M_{Long} =$	0	
M _{Trasv} =	0	

6.1.2 Peso proprio spalla (SP_Gk1)

I carichi afferenti al peso proprio degli elementi costituenti la spalla (elevazione e platea di fondazione) sono calcolati sulla base delle caratteristiche geometriche di ciascun elemento e considerando un peso unitario del calcestruzzo pari a 25,00 kN/m³.

6.2 Permanenti non strutturali

I carichi permanenti non strutturali sono costituiti dal peso della massicciata, dal peso delle barriere antirumore, dal peso delle canalette portacavi, dal peso delle velette prefabbricate e peso dei marciapiedi.

6.2.1 Permanenti Impalcato (G2)

Secondo il §1.3.2 [3], ove non si eseguano valutazioni più dettagliate, la determinazione dei carichi permanenti portati relativi al peso della massicciata, armamento e dell'impermeabilizzazione potrà effettuarsi assumendo convenzionalmente, per linea in rettifilo, un peso di volume pari a 18,00 kN/m³, applicato su tutta la larghezza media compresa fra i muretti para-ballast, per un'altezza media fra p.f. ed estradosso impalcato pari a 0,80 m. Per i ponti in curva si assume un peso convenzionale di 20 kN/m³.

Secondo il §2.5.1.3.2 [3], nella progettazione di nuovi ponti ferroviari dovranno essere sempre considerati i pesi le azioni e gli ingombri associati all'introduzione delle barriere antirumore, anche nei casi in cui non ne sia originariamente prevista la realizzazione, assumendo un peso pari a 4,00 kN/m2 ed un'altezza minima di 4,00 m misurata dall'estradosso della soletta.

|--|

Peso ballast

p,ballast rettifilo =	18,00	kN/m3
p,ballast curva =	20,00	kN/m3
tracciato in curva (S/N) =	S	
p,ballast =	20,00	kN/m3
s ballast =	0,80	m
L ballast =	8,30	m
L impalcato =	25,00	
P,tot ballast =	3320,00	kN

Peso barriere antirumore

P,barriere =	4,00	kN/m2
B.A. lato sx =	H4	
B.A. lato sdx =	H4	
H,barriera sx (min. 4m) =	5,40	m
H,barriera dx (min. 4m) =	5,40	m
L impalcato =	25,00	m
P,tot barriere =	1080,00	kN
Peso cordoli, muretti paraballast, velette		
A,cordoli (2) =	0,36	m2
A,muretti paraballast (2) =	0,287	m2
A,veletta (2) =	0,19	m2
P,tot arredi =	521,13	kN
Peso canalette portacavi		
P,canalette (2) =	5,00	kN/m
P,tot canalette =	125,00	kN
Peso impermeabilizzazione		
Densità =	21,00	kN/m3
s spessore =	0,05	m
L ballast =	11,70	m
L impalcato =	25,00	M

Risultanti reazioni vincolari Totali permanenti impalcato.

P,tot impermeabilizzazione =

307,00 kN

 $F_{Trasv} = 0$ $N_{Vert} = 2677 \text{ kN}$ $M_{Long} = 0$ $M_{Trasv} = 0$

6.2.2 Peso proprio del rilevato a tergo e del ricoprimento dell'aggetto anteriore (SP_Gk2)

La spalla oggetto di questa relazione è una spalla cava interno la quale è prevista un ricoprimento di 1,20 metri. Il peso di questo ricoprimento è pari a 28,8 kN/mq e viene asseganto alle shell della fondazione interne i muri della spalla.

Per la parte dello sbalzo della platea di fondazione viene considerato un ricoprimento di 50 cm minimo, la presenza del quale viene considerato nel modello come un peso pari a 10 kN/mq. Questo ricoprimento agisce in fase sismica anche come inerzia.

6.2.3 Spinta del terreno (SP Gk2 h)

Di seguito si riportano i parametri geotecnici del terrapieno.

 $\gamma t =$ 20 kN/mc peso di volume rinterro $\varphi' =$ 38 ° angolo di attrito del rinterro c' = 0 kPa coesione efficace

Nell'ipotesi di spostamenti molto piccoli della struttura rispetto al terreno, la spinta del terrapieno viene valutata sulla base dello stato di riposo:

$$S(z) = k_0 \cdot \gamma_T \cdot z = 7.68 \cdot z$$

in cui $k_0 = 1 - sen \varphi = 0.384$ è il coefficiente di spinta a riposo

Si deve notare che essendo presente una fondazione su pali si ipotizza che la spalla sia impedita di traslare rispetto al terreno. La spinta sia in condizioni di esercizio che in condizioni sismiche viene calcolata con il coefficiente di spinta a riposo k0.

6.2.4 Permanenti spalla (Gk3-SP)

ENGINEERING INTEGRA RIF	ITINERARIO NAPOLI – BARI RADDOPPIO TRATTA CANCELLO-BENEVENTO II LOTTO FUNZIONALE FRASSO TELESINO – VITULANO 1° LOTTO FUNZIONALE FRASSO TELESINO – TELESE PROGETTO ESECUTIVO					
Spalla fissa S1: Relazione di calcolo	COMMESSA IF26	LOTTO 12 E ZZ	CODIFICA CL	DOCUMENTO VI0504 001	REV.	FOGLIO 33 di 104

Secondo il §1.3.2 [3], ove non si eseguano valutazioni più dettagliate, la determinazione dei carichi permanenti portati relativi al peso della massicciata, armamento e dell'impermeabilizzazione potrà effettuarsi assumendo convenzionalmente, per linea in rettifilo, un peso di volume pari a 18,00 kN/m³, applicato su tutta la larghezza media compresa fra i muretti para-ballast, per un'altezza media fra p.f. ed estradosso impalcato pari a 0,80 m. Per i ponti in curva si assume un peso convenzionale di 20 kN/m³.

Nel modello di calcolo il peso del ballast viene applicato con un valore pari a 16 kN/mg sulla soletta superiore.

6.2.5 Spinta permanenti spalla (Gk3-SP_h)

Inoltre il peso del ballast è considerato come un sovraccarico sul rilevato dietro il muro posteriore che determina un'ulteriore spinta sul muro della spalla. Il valore della spinta ballast è definita come pressione sul modello.

6.3 Carichi da traffico

Le azioni variabili verticali sono state definite in accordo con il manuale di progettazione RFI 2016.

6.3.1 Treni di carico

Treno LM71

Distribuzione longitudinale dei carichi assiali Q_{vk}

 $q_{vk} = 80 \text{ kN/m}$

 $Q_{vk} = 250 \text{ kN}$

 α = 1.1 (coefficiente di adattamento)

Treno SW/ 2

Distribuzione longitudinale dei carichi

 $q_{vk} = 150 \text{ kN/m}$

 α = 1.0 (coefficiente di adattamento)

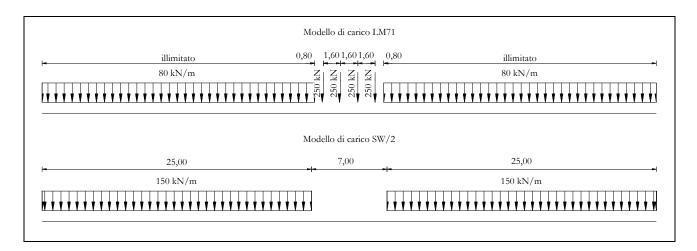


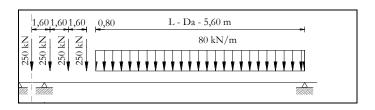
Figura 7 – Modelli di carico teorici

I valori caratteristici dei carichi attribuiti ai modelli di carico devono essere moltiplicati per il coefficiente α che deve assumersi come da tabella seguente:

Modello di carico	Coefficiente α
LM71	1,10
SW/2	1,00

I valori caratteristici dei carichi attribuiti ai modelli di carico devono essere moltiplicati per il coefficiente Φ che tiene conto dell'amplificazione dinamica.

$$\phi_3 = \frac{2.16}{\sqrt{L_{\phi}} - 0.2} + 0.73 = \frac{2.16}{\sqrt{22.8} - 0.2} + 0.73 = 1.202$$


Per la descrizione dei carichi da traffico, in relazione alle disposizioni trasversali e longitudinali dei carichi lungo l'impalcato si veda l'elaborato di calcolo dell'impalcato c.a.p L= 25m.

In aggiunta ai carichi provenienti dall'impalcato, si considera la presenza di un sovraccarico accidentale gravante sulla spalla e sul cuneo di spinta a tergo di essa, mediante l'applicazione di un carico uniformemente distribuito pari a q= 40kN/mq.

6.3.1.1 Traffico LM71 (Q1,1a)

Disposizione 2 - Modello di carico LM71

Coeff. di amplificazione dinamica

 $\varphi = 1,20$

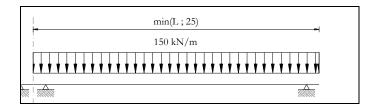
Risultanti reazioni vincolari

$$\begin{split} F_{Long} &= & 0 \\ F_{Trasv} &= & 0 \\ N_{Vert} &= & 2024.6 \text{ kN} \\ M_{Long} &= & 0 \text{ kNm} \\ M_{Trasv} &= & -3886 \text{ kNm} \end{split}$$

GEODATA INTEGRA RIF	ITINERARIO NAPOLI – BARI RADDOPPIO TRATTA CANCELLO-BENEVENTO II LOTTO FUNZIONALE FRASSO TELESINO – VITULANO 1° LOTTO FUNZIONALE FRASSO TELESINO – TELESE PROGETTO ESECUTIVO					_
Spalla fissa S1: Relazione di calcolo	COMMESSA IF26	LOTTO 12 E ZZ	CODIFICA	DOCUMENTO VI0504 001	REV.	FOGLIO 36 di 104

6.3.1.2 Traffico 2 LM71 (Q1,2a)

I valori di N ottenuti in precedenza vanno raddoppiati.L'eccentricità si assume pari a 0.08m.


Risultanti reazioni vincolari

F _{Long} =	0	
F _{Trasv} =	0	
N _{Vert} =	4047	kN
$M_{Long}=$	0	kNm
$M_{Trasv} =$	324	kNm

6.3.1.3 Traffico SW/2 (Q1,1b)

Disposizione 2 - Modello di carico SW/2

Modello di carico SW/2

F3 =	1875,00	kΝ
α =	1,00	
eccentricità =	2,00	m

Coeff. di amplificazione dinamica

$$\varphi = 1,20$$

F _{Long} =	0	
F _{Trasv} =	0	
$N_{Vert} =$	2254	kN
M _{Long} =	0	
M _{Trasv} =	4508	kNm

6.3.1.4 Traffico LM71 + SW/2 (Q1,2b)

Si sommano i valori ottenuti in precedenza

F _{Long} =	0	
F _{Trasv} =	0	
N _{Vert} =	4277	kN
M _{Long} =	0	
$M_{Trasv} =$	622	kNm

GEODATA INTEGRA RIA	II LOTTO F	IO TRAT UNZIONA FUNZION	TA CANCEL ALE FRASSI IALE FRASS	LO-BENEVENT O TELESINO – SO TELESINO –	VITULAI	_
Spalla fissa S1: Relazione di calcolo	COMMESSA IF26	LOTTO 12 E ZZ	CODIFICA	DOCUMENTO VI0504 001	REV.	FOGLIO 39 di 104

6.3.1.5 Azioni sulla spalla (Sp_Qk, SP_Qk_h)

Si considera la presenza di un sovraccarico accidentale gravante sulla spalla e sul cuneo di spinta a tergo di essa, mediante l'applicazione di un carico uniformemente distribuito pari a q= 40kN/mq.

Analogamente sul cuneo di spinta si considera una spinta pari a Q= 0.384x40kN/mq. Tale spinta è applicata sulla larghezza di 8.5m.

6.3.2 Azioni di avviamento e frenatura

La azioni di frenatura e avviamento sono costituite da forze uniformemente distribuite su una lunghezza di binario L determinata per ottenere l'effetto più gravoso sull'elemento strutturale considerato. I valori da considerare sono i seguenti:

✓ avviamento: Qla,k = 33 kN/m · L ≤ 1000 kN per i modelli di carico LM71,SW/2

✓ frenatura: Qlb,k = 20 kN/m · L ≤ 6000 kN per i modelli di carico LM71

Qlb,k = 35 kN/m per i modelli di carico SW/2

I valori caratteristici dell'azione di frenatura e di avviamento devono essere moltiplicati per α e non devono essere moltiplicati per Φ .

Nel caso di ponti a doppio binario si devono considerare due treni in transito in versi opposti, uno in fase di avviamento e l'altro in fase di frenatura.

6.3.2.1 Avviamento (Qa)

Qla,k = α 33 kN/m · 25 = 907.5 kN per i modelli di carico LM71,SW/2 H = altezza piano ferro – appoggi = 3.28m La=distanza appoggi =22.8m N_{Vert} = Qla,k · h/La = 131kN

Risultanti reazioni vincolari

907.5	kN
0	
131	kN
0	
0	
	131

6.3.2.2 Frenatura LM71 (Qf1)

Qlb,k = α 20 kN/m · 25 = 550 kN per i modelli di carico LM71

H = altezza piano ferro - appoggi = 3.28m La=distanza appoggi =22.8m

 $N_{Vert} = Qlb_{,k} \cdot h/La = 79kN$

Risultanti reazioni vincolari

F _{Long} =	550	kN
F _{Trasv} =	0	
N _{Vert} =	79	kN
M _{Long} =	0	
M _{Trasv} =	0	

6.3.2.3 Frenatura SW2 (Qf2)

Qlb,k = α 35 kN/m · 25 = 875 kN per i modelli di carico SW/2 H = altezza piano ferro – appoggi = 3.28m La=distanza appoggi =22.8m

 $N_{Vert} = Qlb, k \cdot h/La = 126kN$

F _{Long} =	875	kΝ
$F_{Trasv} =$	0	
N _{∨ert} =	126	kN
M _{Long} =	0	
M _{Trasy} =	0	

6.3.3 Forza centrifuga

L'azione centrifuga è schematizzata come una forza agente in direzione orizzontale perpendicolarmente al binario e verso l'esterno della curva, applicata ad 1,80 m al di sopra del p.f.. Il valore caratteristico della forza centrifuga si determina in accordo con la seguente espressione:

 $Q_{tk} = V^2 \cdot f \cdot (\alpha \cdot Q_{vk})/(127 \cdot R)$

dove V velocità di progetto espressa in km/h

Q_{vk} valore caratteristico dei carichi verticali

R raggio di curvatura in m

f fattore di riduzione (rif. §1.4.3.1 [3])

Per il modello di carico LM71 si considera:

a) modello di carico LM71 e forza centrifuga calcolata per la massima velocità di progetto.

6.3.3.1 Centrifuga LM71 (Qc1a) e Centrifuga SW/2 (Qc1b)

LM71

 V = vmax

 Raggio minimo =
 1300,00 m

 Velocità massima =
 200,00 km/h

 Lf =
 25,00 m

 f =
 0,69

 Qv =
 1530,51 kN

 Qh =
 281,35 kN

h rispetto a intradosso imp. = 5,08 m

0 kNm

317 kNm

F _{Long} =	0	
F _{Trasv} =	141	kN
N _{Vert} =	0	
M _{Long} =	0	
M _{Trasv} =	715	kNm
<u>SW/2</u>		
v max = 100 km/h		
Raggio minimo =	1300,00	m
Velocità (100 km/h) =	100,00	km/h
f (1) =	1,00	
Qv =	1875,00	kN
Qh,max =	124,92	kN
h rispetto a intradosso imp. =	5,08	m
Risultanti reazioni vincolari		
F _{Long} =	0	
F _{Trasv} =	62	kN
N _{Vert} =	0	

 $M_{Long} =$

 $M_{Trasv} =$

6.3.4 Serpeggio (QS)

La forza laterale indotta dal serpeggio si schematizza come una forza concentrata agente orizzontalmente perpendicolarmente all'asse del binario.

Il valore caratteristico di tale forza è assunto pari a 100 kN. Tale valore deve essere moltiplicato per α ma non per il coefficiente di amplificazione dinamica.

IMPALCATO

Serpeggio LM71		
Forza serpeggio =	100	kN
α =	1,10	
h rispetto a intradosso imp. =	3,28	m
Risultanti reazioni vincolari		
F _{Long} =	0	
$F_{Trasv} =$	110	kN
N _{Vert} =	0	
M _{Long} =	0	kNm
M _{Trasv} =	361	kNm

6.4 Carichi variabili

6.4.1 Azioni del vento (Qw)

L'azione del vento viene ricondotta ad un'azione statica equivalente costituita da pressioni e depressioni agenti normalmente alle superfici.

La pressione del vento è data dalla seguente espressione:

 $p = q_b \cdot c_e \cdot c_p \cdot c_d$

dove q_b pressione cinetica di riferimento

ce coefficiente di esposizione

cp coefficiente di forma

cd coefficiente dinamico, posto generalmente pari a 1

Di seguito si riporta il dettaglio del calcolo di tali fattori per l'opera in oggetto.

6.4.1.1 Pressione cinetica di riferimento

La pressione cinetica di riferimento si determina mediante l'espressione:

$$q_b = \frac{1}{2} \cdot \rho \cdot v_b^2$$
 (in N/m²)

dove vb velocità di riferimento

ρ densità dell'aria, convenzionalmente posta pari a 1,25 kg/m³

Di seguito si determina la pressione di riferimento sulla base dei parametri caratteristici del sito e il tempo di ritorno dell'opera in oggetto:

Parametri dipendenti dal sito

Zona =	3	
vb,0 =	27,00	m/s
a0 =	500,00	m
ka =	0,02	1/s

Altitudine del sito

as = 40 m s.l.m.

vb = 27,00 m/s

Tempo di ritorno

TR = 75 anni

 $\alpha R(TR) = 1,02$

vb(TR) = 27,63 m/s

Pressione di riferimento

qb = 477,25 N/m2

6.4.1.2 Coefficiente di esposizione

Il coefficiente di esposizione c_e dipende dall'altezza z sul suolo del punto considerato, dalla topografia del terreno e dalla categoria di esposizione del sito e si determina mediante l'espressione:

 $c_e(z) = k_r \cdot c_t \cdot ln(z/z_0) \ [7 + c_t \cdot ln(z/z_0)] \quad \text{per } z \geq z_{min}$

 $c_e(z) = c_e(z_{min})$ per $z < z_{min}$

dove k_r, z₀, z_{min} sono parametri che dipendono dalla categoria di esposizione del sito;

ct è il coefficiente di topografia, posto generalmente pari a 1

Di seguito si determina il coefficiente di esposizione sulla base della classe d'esposizione e l'altezza z del punto considerato, posta pari alla massima quota del complesso impalcato, barriere antirumore, sagoma del treno. A tal proposito il §1.4.4.2 [3] impone di considerare il treno come una superficie piana continua convenzionalmente alta 4,00 m sul p.f.. L'azione del vento dovrà comunque considerarsi agente sulle b.a. presenti considerando la loro altezza effettiva se disponibile oppure un'altezza convenzionale di 4,00 m misurati dall'estradosso della soletta qualora le b.a. non siano previste al momento della redazione del progetto.

Categoria di esposizione

Classe di rugosità =	D
Distanza dalla costa =	< 30 km
Categoria di esposizione =	II
kr =	0,19
z0 =	0,05 m
zmin =	4,00 m
Quota di riferimento z	
H spalla fino a intradosso imp. =	9,23 m
H imp. fino a p.f. =	3,28 m
H b.a. su p.f. =	4,67 m
H min b.a. su p.f. =	3,35 m
H treno su p.f. =	4,00 m
z di riferimento=	24,53 m
Coefficiente di esposizione	
ce =	3,11

6.4.1.3 Coefficiente di forma dell'impalcato

Il coefficiente di forma dell'impalcato e l'area di riferimento per il calcolo della forza risultante si determinano in base ai criteri enunciati nel §8.3.1 [9].

A tal proposito si riconduce il coefficiente di forma c_p al coefficiente di forza $c_{fx,0}$. Il coefficiente di forza $c_{fx,0}$ si determina in base al rapporto tra larghezza b e altezza totale dell'impalcato d_{tot} .

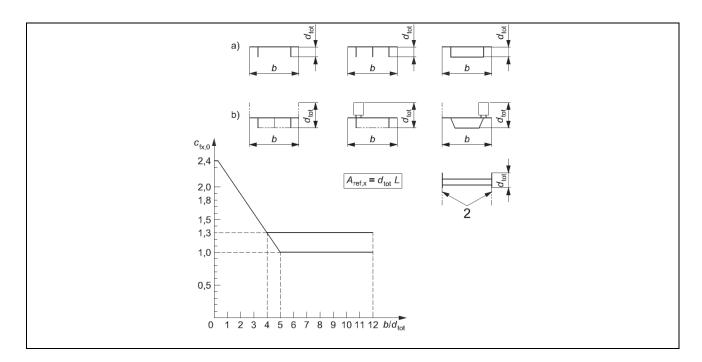


Figura 8 – Correlazione tra il rapporto b/dtot e coefficiente di forma cfx0 (figura 8.3 EC1-4)

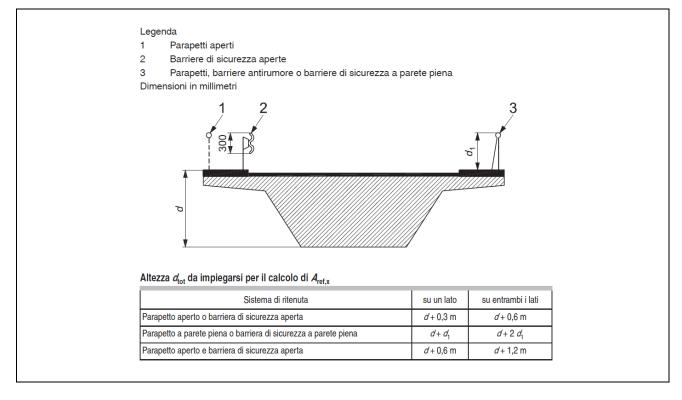


Figura 9 – Criteri per la determinazione dell'area di riferimento (figura 8.5 EC1-4)

L'area da considerare per il calcolo della risultante di forza si definisce come la somma di tutte le superfici proiettate dall'impalcato nel piano longitudinale, comprese le barriere e la sagoma dei veicoli.

Per il caso in esame si ha:

 $c_p = 1.90$

6.4.1.4 Azione del vento sull'impalcato

Di seguito si procede al calcolo dell'azione del vento sull'impalcato in relazione ai parametri determinati nei paragrafi precedenti.

Come scarico dall'impalcato per il vento abbiamo Fy= 325,71 kN e momento M=1237,7 kNm.

F _{Long} =	0	
F _{Trasv} =	325.7	kN
N _{Vert} =	0	
M_{Long} =	0	kNm
M _{Trasv} =	1237.7	kNm

6.4.2 Azioni variabili sul marciapiede (Qm)

Lm = 1,75 m (larghezza trasversale singolo marciapiede) q13= 10,00 KN/m2 (carico variabile per unità di superfice zona marciapiedi)

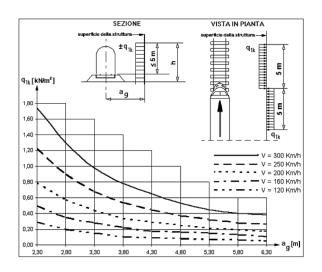
tot.Qm 1= 17,5 KN/m (carico variabile sui marciapiedi per metro lineare longitudinale 1 marciapiede carico)
et(m) = 5,20 m eccentricità trasversale di calcolo

Risultanti reazioni vincolari

 $F_{Long} = \qquad \qquad 0$ $F_{Trasv} = \qquad \qquad 0 \text{ kN}$ $N_{Vert} = \qquad \qquad 218.8 \text{ kN}$ $M_{Long} = \qquad \qquad 0 \text{ kNm}$ $M_{Trasv} = \qquad \qquad 1137 \text{ kNm}$

tot.Qm 2 = 35,0 KN/m (carico variabile sui marciapiedi per metro lineare longitudinale 2 marciapiedi carichi) et(m) = 0,10 m eccentricità trasversale di calcolo

Qm2 (2 Marciapiedi carichi)


N	ML	MT	TL	TT	
[kN]	[kNm]	[kNm]	[kN]	[kN]	
385,00	0,0	38,5	0,0	0,0	Scarichi su spalla mobile
385,00	0,0	38,5	0,0	0,0	Scarichi su spalla fissa

F _{Long} =	0	
F _{Trasv} =	0	kN
N _{Vert} =	437.5	kN
M _{Long} =	0	kNm
M _{Trasv} =	43.75	kNm

6.4.3 Azioni aerodinamiche indotte dal transito dei convogli

Per la valutazione delle azioni aerodinamiche indotte dal transito dei convogli si è fatto riferimento a quanto riportato al punto 2.5.1.4.6 delle istruzioni RFI [RFI DTC SICS MA IFS 001 con riferimento al caso di "Superfici verticali parallele al binario".

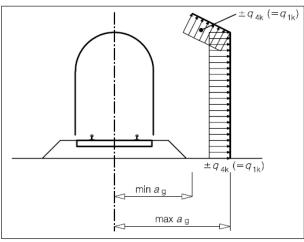


Figura 10 – Valori caratteristici delle azioni e definizione della distanza minima e massima della barriera dal convoglio [NTC – Fig. 5.2.8 e 5.2.11]

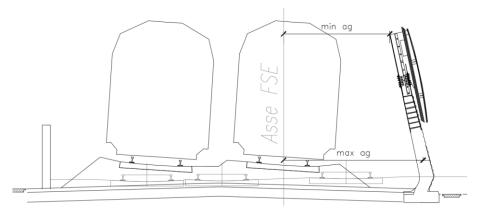


Figura 11 – Criterio di valutazione della distanza minima e massima del convoglio dalla barriera per i casi in esame

Per la linea in esame è possibile considerare, cautelativamente, convogli con forme aerodinamiche sfavorevoli e aventi velocità di linea pari a 200 km/h. Pertanto si ha:

• Impalcato L=25m

 $d_{med} = 4.00m$

 $q_{ak} = 0.35kN/mq$

h_{barriera}=5.05m

6.4.3.1 Carico su 1 marciapiede (Qae1)

Risultanti reazioni vincolari

F _{Long} =	0	kN
F _{Trasv} =	22	kN
N _{Vert} =	0	kN
M _{Long} =	0	kNm
M _{Trasv} =	128	kNm

6.4.3.2 Carico su 2 marciapiede (Qae2)

F _{Long} =	0	kN
F _{Trasv} =	44	kN
N _{Vert} =	0	kN
M _{Long} =	0	kNm
$M_{Trasv} =$	0	kNm

GEODATA INTEGRA RIA	II LOTTO F	IO TRAT UNZIONA FUNZION	TA CANCEL ALE FRASS IALE FRASS	LO-BENEVENT O TELESINO – SO TELESINO –	VITULA	-
Spalla fissa S1: Relazione di calcolo	COMMESSA IF26	LOTTO 12 E ZZ	CODIFICA	DOCUMENTO VI0504 001	REV.	FOGLIO 53 di 104

6.5 Azioni climatiche (Q7)

6.5.1 Azioni termiche uniforme (Q7_TL)

Si considera una variazione termica uniforme $\Delta T = 15.0$ °C sugli elementi della struttura in elevazione, adottando per il coefficiente di dilatazione termica un valore $\alpha = 10x10-6$.

6.5.1 Azioni termiche differenziali (Q7_TU)

Si considera una variazione termica differenziale $\Delta T = 5.0$ °C su tutti gli elementi della struttura in elevazione, adottando per il coefficiente di dilatazione termica un valore $\alpha = 10x10-6$.

6.6 Ritiro (Q8_SH)

Si considera una variazione termica uniforme equivalente $\Delta T = -10.41$ °C sulla soletta superiore. Il calcolo viene condotto secondo le indicazioni nell'EUROCODICE 2-UNI EN1992-1-1 Novembre 2005 e D.M.14-01-2008.

 $\begin{array}{lll} \text{CIs a t=0} \\ f_{ck} = & 32 \text{ Mpa} \\ f_{cm} = & 40 \text{ MPa} \\ \alpha = & 0,00001 \\ \text{Ecm} = & 33345764 \text{ kN/m}^2 \end{array}$

cls tipo = 33345764 kN/m²

k = 1 coef. di correzione di Ecm

Ecm = 33345764 kN/m²

Tempo e ambiente

età del calcestruzzo in giorni, all'inizio del ritiro per essiccamento ts = 2 gg to = 2 gg età del calcestruzzo in giorni al momento del carico t = 25550 gg età del calcestruzzo in giorni ho = 2Ac/u =2400 mm dimensione fittizia dell'elemento di cls Ac = 1200000 mmq sezione dell'elemento u = 1000 mm perimetro a contatto con l'atmosfera RH = 75 % umidità relativa percentuale

Coefficiente di viscosità φ (t,to) e modulo elastico ECt a tempo "t"

 ϕ (t,to)= ϕ o β c(t,to) = 1,979

φο=φRH βχ(fcm) βχ (to)= 2,011 coefficiente nominale di viscosità

 $\varphi_{\rm RH} = 1 + \left[\frac{1 - RH / 100}{0.1 \cdot \sqrt[3]{h_0}} \alpha_1 \right] \alpha_2 = 1$ 1,166 coefficiente che tiene conto dell'umidità

 $\alpha_1 = \begin{cases} \left(35 / f_{cm}\right)^{0.7} per \ f_{cm} > 35MPa \\ 1 \ per \ f_{cm} \le 35MPa \end{cases} = 0,911 \text{ coeff. per la resistenza del cls}$

 $\alpha_2 = \begin{cases} \left(35/f_{cm}\right)^{0.2} per \ f_{cm} > 35MPa \\ 1 \ per \ f_{cm} \le 35MPa \end{cases} = 0,974 \text{ coeff. per la resistenza del cls}$

 $\beta_c(f_{cm}) = \frac{16.8}{\sqrt{f_{cm}}} = 2,656313$ coefficiente che tiene conto della resistenza del cls

 $\rho_c(r_{\rm o}) = \frac{1}{\left(0.1 + t_0^{0.20}\right)} = 0$ 0,649 coefficiente per l'evoluzione della viscosità nel tempo

ITINERARIO NAPOLI - BARI RADDOPPIO TRATTA CANCELLO-BENEVENTO II LOTTO FUNZIONALE FRASSO TELESINO – VITULANO 1° LOTTO FUNZIONALE FRASSO TELESINO – TELESE

PROGETTO ESECUTIVO

Spalla fissa S1: Relazione di calcolo

COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
IF26	12 E ZZ	CL	VI0504 001	В	55 di 104

α =

coefficiente per il tipo di cemento (-1 per Classe S, 0 per Classe N, 1 per Classe R)

S	-1
N	0
R	1

$$\beta_c(t,t_0) = \left[\frac{(t-t_0)}{(\beta_H + t - t_0)}\right]^{0.3} = 0.984$$

coeff. per la variabilità della viscosità nel tempo

$$\beta_H = 1.5[1 + (0.012 \cdot RH)^{15}]h_0 + 250 \cdot \alpha_3 \le 1500 \cdot \alpha_3 = 1403,1$$

coefficiente che tiene conto dell'umidità relativa

$$\alpha_3 = \begin{cases} \left(35 / f_{cm}\right)^{0.5} per \ f_{cm} > 35MPa \\ 1 \ per \ f_{cm} \le 35MPa \end{cases} = 0,935$$
 coeff. per la resistenza del calcestruzzo

Il modulo elastico al tempo "t" è pari a:

$$E_{cm}(t,t_0) = \frac{E_{cm}}{1+\varphi(t,t_0)} = :$$
 11194799 kN/m²

Deformazione di Ritiro

$$\varepsilon_s(t,t_o) = \varepsilon_{cd}(t) + \varepsilon_{ca}(t) =$$

0,000310 deformazione di ritiro ε(t,to)

$$\varepsilon_{cd}(t) = \beta_{ds}(t,t_s) K_b \varepsilon_{cd,0} =$$

0,000255 deformazione dovuta al ritiro per essiccamento

$$\beta_{dz}(t,t_z) = \left[\frac{(t-t_z)}{(t-t_z) + 0.04\sqrt{h_0^3}} \right] = 0.844533$$

Kh =

0,7

parametro che dipende da ho secondo il prospetto seguente

Valori di k.

A ₀	4
100	1,0
200	0,85
900	0,75
≥500	0,70

Valori di Kh intermedi a quelli del prospetto vengono calcolati tramite interpolazione lineare.

$$\varepsilon_{ad,0} = 0.85 \left[(220 + 110\alpha_{da1}) \cdot \exp(-\alpha_{da2} \frac{J_{cm}}{f_{cm0}}) \right] 10^{-6} \beta_{RH} = 0,000432 \text{ deformazione di base}$$

$$\beta_{RH} = 1.55 \left[1 - \left(\frac{RH}{RH0} \right)^3 \right] = 0,896094$$

$$f_{com0} = 100 \text{ MPa}$$

$$RH0 = 100 \text{ %}$$

$$\alpha_{db1} = 6 \text{ coefficiente per il tipo di cemento (3 per Classe S per Classe N, 6 per Classe R)}$$

$$\alpha_{db2} = 0,11 \text{ coefficiente per il tipo di cemento (0.13 per Classe S, 0.12 per Classe N, 0.11 per Classe R)}$$

$$\varepsilon_{ca}(t) = \beta_{as}(t) \varepsilon_{caso} = 0,000055 \text{ deformazione dovuta al ritiro autogeno}$$

$$\beta_{az}(t) = 1 - \exp(-0.2t^{0.5}) =$$

$$\epsilon_{eaoo}$$
=2.5 (f_{ek}-10) 10-6=: 0,000055

Variazione termica uniforme equivalente agli effetti del ritiro:

$$\Delta {\rm T_{critico}} = -\frac{\varepsilon_{\rm s}\left(t,t_0\right) \cdot E_{\rm crit}}{\left(1 + \varphi(t,t_0)\right) \cdot E_{\rm crit} \cdot \alpha} = -\text{10,41 °C}$$

I fenomeni di ritiro vengono considerati agenti solo sulla soletta di copertura.

Sia il ritiro dei muri in elevazione sia la riduzione del modulo elastico E per effetto della fessurazione riduce gli effetti sopra descritti, in questa sede operando a favore della stabilità si applica 50% della variazione termica calcolata considerando il modulo elasrico pieno e nullo il ritiro dei muri.

6.7 Azioni sismiche (E)

L'azione sismica di progetto è rappresentata da spettri di risposta definiti in base alla pericolosità sismica di base del sito ove sorge l'opera in oggetto, la vita di riferimento e le caratteristiche del sottosuolo.

Di seguito si riportano i parametri di input utilizzati per la definizione degli spettri di progetto orizzontali e verticali e i grafici degli stessi.

I valori del fattore di struttura q, adottati per la definizione delle azioni sismiche e per il dimensionamento degli elementi secondo i criteri della gerarchia delle resistenze, sono stati definiti in base ai criteri di seguito esplicitati.

Il valore del fattore di struttura q assuntoper il dimensionamento delle spalle è pari a 1,0, in accordo con quanto indicato nel §7.9.2.1 [1] per le "strutture che si muovono con il terreno" (vedi Tabella 1).

T!-! 1! .1	q	0
Tipi di elementi duttili	CD"B"	CD"A"
Pile in cemento armato		
Pile verticali inflesse	1,5	3,5 λ
Elementi di sostegno inclinati inflessi	1,2	2,1 λ
Pile in acciaio:		
Pile verticali inflesse	1,5	3,5
Elementi di sostegno inclinati inflessi	1,2	2,0
Pile con controventi concentrici	1,5	2,5
Pile con controventi eccentrici	-	3,5
Spalle rigidamente connesse con l'impalcato		
In generale	1,5	1,5
Strutture che si muovono col terreno ⁷	1,0	1,0
Archi	1,2	2,0

⁷ Le strutture che si muovono con il terreno non subiscono amplificazione dell'accelerazione del suolo. Esse sono caratterizzate da periodi naturali di vibrazione in direzione orizzontale molto bassi (T ≤ 0,03 s). Appartengono a questa categoria le spalle connesse, mediante collegamenti flessibili, all'impalcato.

Tabella 1 − Valori del fattore struttura q₀ per differenti tipologie di pile e spalle - tabella 7.9.1 [1]

6.7.1 Azioni sismiche

Per la valutazione dell'azione sismica associata ai carichi fissi propri e permanenti /accidentali agenti sulle <u>spalle</u> si utilizza il metodo dell'analisi pseudostatica in cui il sisma è rappresentato da una forza statica equivalente pari al prodotto delle forze di gravità per un opportuno coefficiente sismico kh (coefficiente sismico orizzontale) o Kv (coefficiente sismico verticale) secondo quanto di seguito indicato:

Forza sismica orizzontale Fh = kh WForza sismica verticale Fv = kv W

I valori dei coefficienti sismici orizzontali kh e verticale kv, relativi allo stato limite considerato, sono posti pari all'ordinata dello spettro di progetto corrispondente al periodo T=0, per la componente orizzontale, ed a quella corrispondente al periodo proprio T =T0, per la componente verticale.

Nelle verifiche allo stato limite ultimo, i valori dei coefficienti sismici orizzontale k_h e verticale k_v possono essere valutati mediante le espressioni

$$k_h = \beta_m \cdot \frac{a_{max}}{g} \tag{7.11.6}$$

$$k_{\rm v} = \pm 0.5 \cdot k_{\rm h}$$
 (7.11.7)

dove

 a_{max} = accelerazione orizzontale massima attesa al sito;

g = accelerazione di gravità.

In assenza di analisi specifiche della risposta sismica locale, l'accelerazione massima può essere valutata con la relazione

$$a_{\text{max}} = S \cdot a_g = S_S \cdot S_T \cdot a_g \tag{7.11.8}$$

dove

S = coefficiente che comprende l'effetto dell'amplificazione stratigrafica (S_S) e dell'amplificazione topografica (S_T) , di cui al § 3.2.3.2;

 a_g = accelerazione orizzontale massima attesa su sito di riferimento rigido.

Nella precedente espressione, il coefficiente β_m assume i valori riportati nella Tab. 7.11-II.

Per muri che non siano in grado di subire spostamenti relativi rispetto al terreno, il coefficiente β_m assume valore unitario.

Nel caso di muri di sostegno liberi di traslare o di ruotare intorno al piede, si può assumere che l'incremento di spinta dovuta al sisma agisca nello stesso punto di quella statica. Negli altri casi, in assenza di specifici studi si deve assumere che tale incremento sia applicato a metà altezza del muro.

Tabella 7.11.II - Coefficienti di riduzione dell'accelerazione massima attesa al sito.

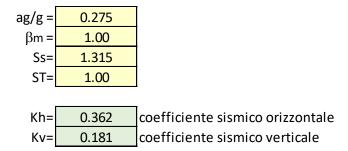

	Categoria di sottosuolo			
	A B, C, D, E			
	$\beta_{\rm m}$	β_m		
$0.2 \le a_g(g) \le 0.4$	0,31	0,31		
$0,1 \le a_g(g) \le 0,2$	0,29	0,24		
$a_g(g) \le 0,1$	0,20	0,18		

Figura 12 – Coefficienti sismici (estratto D.M. 14/01/2008 p.to 7.11.6.2.1)

Con riferimento al valore da assegnare al coefficiente β m, si è fatto riferimento alle indicazioni di cui alla Tabella 7.11.II riportata nella stessa sezione della norma, tenendo tuttavia conto della specifica che prescrive, nel caso di muri che non siano in grado di subire spostamenti (quale è il caso delle spalle del viadotto in questione che in virtù della elevata rigidezza sia del sistema di fondazione che della parte in elevazione, è interessata da spostamenti trascurabili durante l'evento sismico) un valore del coefficiente β m pari ad 1.0.

Assumendo tale valore si considera che, cautelativamente, il terreno di riempimento è rigidamente connesso alla spalla e non subisce deformazioni o movimenti relativi rispetto ad essa.

In definitiva risulta:

6.7.1.1 Sisma derivante da impalcato (Elong, Etrasv, Evert)

Sulla scorta dei coefficienti sismici appena valutati, si è proceduto pertanto alla valutazione delle azioni trasmesse dall'impalcato alle sottostrutture, avendo considerato, come mostrato successivamente nella tabella di riepilogo delle combinazioni di carico, il caso più gravoso in termini di massa sismica associata ai carichi variabili, corrispondente in particolare alla Condizioni di doppio binario carico con treno tipo LM71.

Di seguito il riepilogo delle Azioni inerziali:

Impalcato L=25m

RIEPILOGO SCARICHI A TESTA SPALLA FISSA - CONDIZIONI SISMICHE								
(Sollecitazioni riferite alla sezione del muro in asse Appoggi impalcato)								
Candiniana	Conditions		ML	MT	TL	TT		
Condizione	[kN]	[kNm]	[kNm]	[kN]	[kN]			
Sisma Long con 2 LM71	Elong	548	0	0	4888	0		
Sisma Trasv con 2 LM71 Etrasv		0	0	6246	0	2444		
Sisma Vert con 2 LM71	Evert	1222	0	0	0	0		

6.7.1.2 Sisma su inerzia spalla (SP_Elong, SP_Etrasv, SP_Evert)

Le masse della spalla e del rinterro sono moltiplicate per kh e kv.

6.7.1.3 Sovraspinta sismica del terreno (SP_Gk2_Elong, SP_ Gk2_Etrasv, SP_ Gk2_Evert)

In assenza di uno studio più dettagliato che prenda in considerazione la rigidezza relativa, il tipo di movimento e la massa dell'opera di sostegno, si assume che la forza dovuta alla spinta dinamica del terreno sia valutata con la teoria di Wood ed agisca con un'inclinazione rispetto alla normale al muro uguale a zero:

$$\Delta S_S = (a_{max}/g) \cdot \gamma \cdot H^2$$

Tale risultante è applicata ad un'altezza pari ad H/2.

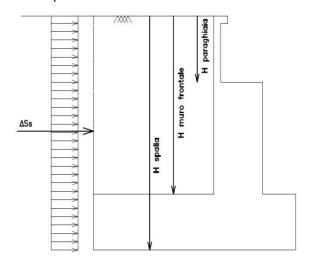


Figura 13: Incremento di spinta sismica

ENGINEERING INTEGRA RIF	II LOTTO F	IO TRAT UNZIONA FUNZION	TA CANCEL ALE FRASS IALE FRASS	LO-BENEVENT O TELESINO – SO TELESINO –	VITULA	_
Spalla fissa S1: Relazione di calcolo	COMMESSA IF26	LOTTO 12 E ZZ	CODIFICA	DOCUMENTO VI0504 001	REV.	FOGLIO 61 di 104

La spinta totale di progetto Ed esercitata dal terrapieno ed agente sull'opera di sostegno in condizioni sismiche è dunque data dalla somma della spinta a riposo, della spinta sismica e della spinta statica data dal sovraccarico accidentale combinata al 20% così come riportato nella Tabella 5.2.V delle NTC2008.

 $Ed{=}S_{stat} + 0.2{\cdot}S_q + \Delta S_s$

Infine, nel caso specifico non essendo presente la falda a tergo dell'opera, la spinta idrostatica è nulla

6.8 Tabelle riepilogo Scarichi impalcato

Di seguito si riporta un riepilogo degli scarichi trasmessi dall'impalcato alle sottostrutture per ciascuna delle condizioni di carico elementari prese in esame:

RIEPILOGO SCARICHI A	TESTA SPALLA FI	SSA - CONDIZI	ONI DI CARIC	O ELEMENTAR	I	
(Sollecitazioni rif	erite alla sezione	del muro in as	se Appoggi in	npalcato)		
Candiniana		N	ML	MT	TL	TT
Condizione		[kN]	[kNm]	[kNm]	[kN]	[kN]
Permanenti strutturali	G1	3303	0	0	0	0
Permanenti NON strutturali	G2	2677	0	0	0	0
Traffico - 1LM71	Q1,1a	2024	0	3885	0	0
Traffico - 1SW2	Q1,1b	2254	0	4508	0	0
Traffico - 2 LM71	Q1,2a	4047	0	324	0	0
Traffico - 1 LM72 + 1 SW2	Q1,2b	4277	0	622	0	0
Carico variabile 1 Marciapiede	Qm1	222.5	0	1143.65	0	0
Carico variabile 2 Marciapiedi	Qm2	445.0	0	44.5	0	0
Carico Avviamento	Qa	131	0	0	907.5	0
Frenatura LM71	Qf1	79	0	0	550	0
Frenatura SW2	Qf2	126	0	0	875	0
Centrifuga 1 LM71	Qc1a	0	0	715	0	141
Centrifuga 2 LM71	Qc1b	0	0	1429	0	281
Centrifuga SW2	Qc2	0	0	317	0	62.46
Serpeggio 1 treno	QS1	0	0	360.8	0	110
Serpeggio 2 treni	QS2	0	0	721.6	0	220
Vento	Qw	0	0	1237.7	0	325.71
Azioni aerodinamiche 1 treno	Qae1	0	0	128	0	22
Azioni aerodinamiche 2 treni	Qae2	0	0	0	0	44
Sisma Long con 2 LM71	Ex	548	0	0	4888	0
Sisma Trasv con 2 LM71	Еу	0	0	6246	0	2444
Sisma Vert con 2 LM71	Ez	1230	0	0	0	0

Tabella 2 – Sollecitazioni trasmesse dall'impalcato alle sottostrutture

GEODATA INTEGRA RIF	II LOTTO F	IO TRAT UNZIONA FUNZION	TA CANCEL ALE FRASSI IALE FRASS	LO-BENEVENT O TELESINO – SO TELESINO –	VITULA	-
Spalla fissa S1: Relazione di calcolo	COMMESSA IF26	LOTTO 12 E ZZ	CODIFICA	DOCUMENTO VI0504 001	REV.	FOGLIO 63 di 104

7 COMBINAZIONI DI CARICO

La determinazione delle Sollecitazioni di Progetto utili al dimensionamento strutturale e geotecnico delle opere oggetto del presente documento, è stata condotta utilizzando il metodo agli stati limite, secondo quanto specificato a riguardo al paragrafo 2.6 del DM 14.01.08, con riferimento all'Approccio 2.

Per la definizione dei criteri di combinazione degli effetti prodotti dalle singole condizioni elementari di carico previste sull'opera, si è fatto inoltre riferimento a quanto prescritto al prg 2.5.3 dello stesso DM , di seguito riproposto per completezza :

2.5.3 COMBINAZIONI DELLE AZIONI

Ai fini delle verifiche degli stati limite si definiscono le seguenti combinazioni delle azioni.

- Combinazione fondamentale, generalmente impiegata per gli stati limite ultimi (SLU):

$$\gamma_{G1} \cdot G_1 + \gamma_{G2} \cdot G_2 + \gamma_{P} \cdot P + \gamma_{O1} \cdot Q_{k1} + \gamma_{O2} \cdot \psi_{O2} \cdot Q_{k2} + \gamma_{O3} \cdot \psi_{O3} \cdot Q_{k3} + \dots$$
 (2.5.1)

 Combinazione caratteristica (rara), generalmente impiegata per gli stati limite di esercizio (SLE) irreversibili, da utilizzarsi nelle verifiche alle tensioni ammissibili di cui al § 2.7:

$$G_1 + G_2 + P + Q_{k1} + \psi_{02} \cdot Q_{k2} + \psi_{03} \cdot Q_{k3} + \dots$$
 (2.5.2)

 Combinazione frequente, generalmente impiegata per gli stati limite di esercizio (SLE) reversibili:

$$G_1 + G_2 + P + \psi_{11} \cdot Q_{k1} + \psi_{22} \cdot Q_{k2} + \psi_{23} \cdot Q_{k3} + \dots$$
 (2.5.3)

 Combinazione quasi permanente (SLE), generalmente impiegata per gli effetti a lungo termine:

$$G_1 + G_2 + P + \psi_{21} \cdot Q_{k1} + \psi_{22} \cdot Q_{k2} + \psi_{23} \cdot Q_{k3} + \dots$$
 (2.5.4)

 Combinazione sismica, impiegata per gli stati limite ultimi e di esercizio connessi all'azione sismica E (v. § 3.2):

$$E + G_1 + G_2 + P + \psi_{21} \cdot Q_{k1} + \psi_{22} \cdot Q_{k2} + \dots$$
 (2.5.5)

 Combinazione eccezionale, impiegata per gli stati limite ultimi connessi alle azioni eccezionali di progetto A_d(v. § 3.6):

$$G_1 + G_2 + P + A_d + \psi_{21} \cdot Q_{k1} + \psi_{22} \cdot Q_{k2} + \dots$$
 (2.5.6)

Nelle combinazioni per SLE, si intende che vengono omessi i carichi Q_{kj} che danno un contributo favorevole ai fini delle verifiche e, se del caso, i carichi G_2 .

Trattandosi nel caso in esame di opere ferroviarie, la definizione dei coefficienti parziali di combinazione (γ) e di partecipazione (ψ) è stata effettuata seguendo a riguardo le specifiche di cui al paragrafo 5.2.3 del DM 14.01.08 nonché quanto indicato nel relativo manuale di progettazione RFI già citato al paragrafo dei documenti di riferimento; nel seguito un estratto significativo sul tema dei documenti citati:

ITINERARIO NAPOLI - BARI RADDOPPIO TRATTA CANCELLO-BENEVENTO II LOTTO FUNZIONALE FRASSO TELESINO – VITULANO 1° LOTTO FUNZIONALE FRASSO TELESINO – TELESE

PROGETTO ESECUTIVO

Spalla fissa S1: Relazione di calcolo

COMMESSA DOCUMENTO FOGLIO 12 E ZZ VI0504 001 64 di 104

		Coefficiente	EQU ⁽¹⁾	A1 STR	A2 GEO	Combinazione eccezionale	Combinazione Sismica
Carichi permanenti	favorevoli sfavorevoli	γ _{G1}	0,90 1,10	1,00 1,35	1,00 1,00	1,00 1,00	1,00 1,00
Carichi permanenti non strutturali ⁽²⁾	favorevoli sfavorevoli	γ_{G2}	0,00 1,50	0,00 1,50	0,00 1,30	1,00 1,00	1,00 1,00
Ballast ⁽³⁾	favorevoli sfavorevoli	γв	0,90 1,50	1,00 1,50	1,00 1,30	1,00 1,00	1,00 1,00
Carichi variabili da traffico ⁽⁴⁾	favorevoli sfavorevoli	γQ	0,00 1,45	0,00 1,45	0,00 1,25	0,00 0,20 ⁽⁵⁾	0,00 0,20 ⁽⁵⁾
Carichi variabili	favorevoli sfavorevoli	γQi	0,00 1,50	0,00 1,50	0,00 1,30	0,00 1,00	0,00 0,00
Precompressione	favorevole sfavorevole	$\gamma_{\rm P}$	0,90 1,00 ⁽⁶⁾	1,00 1,00 ⁽⁷⁾	1,00 1,00	1,00 1,00	1,00 1,00

Equilibrio che non coinvolga i parametri di deformabilità e resistenza del terreno; altrimenti si applicano i valori

(7) 1,20 per effetti locali

Azioni		Ψο	Ψ1	Ψ2
Azioni singole	Carico sul rilevato a tergo delle spalle	0,80	0,50	0,0
da traffico	Azioni aerodinamiche generate dal transito dei convogli	0,80	0,50	0,0
	gr ₁	0,80(2)	0,80(1)	0,0
Gruppi di	gr ₂	0,80(2)	0,80(1)	-
carico	gr ₃	0,80(2)	0,80(1)	0,0
	gr4	1,00	1,00(1)	0,0
Azioni del vento	F_{Wk}	0,60	0,50	0,0
Azioni da	in fase di esecuzione	0,80	0,0	0,0
neve	SLU e SLE	0,0	0,0	0,0
Azioni termiche	T_k	0,60	0,60	0,50

^{(1) 0,80} se è carico solo un binario, 0,60 se sono carichi due binari e 0,40 se sono carichi tre o più binari.

⁽²⁾ Nel caso in cui i carichi permanenti non strutturali (ad es. carichi permanenti portati) siano compiutamente

definiti si potranno adottare gli stessi coefficienti validi per le azioni permanenti.

(3) Quando si prevedano variazioni significative del carico dovuto al ballast, se ne dovrà tener conto esplicitamente nelle verifiche.

⁽⁴⁾ Le componenti delle azioni da traffico sono introdotte in combinazione considerando uno dei gruppi di carico gr della Tab. 5.2.IV.

⁽⁵⁾ Aliquota di carico da traffico da considerare.
(6) 1,30 per instabilità in strutture con precompressione esterna

⁽²⁾ Quando come azione di base venga assunta quella del vento, i coefficienti ψ₀ relativi ai gruppi di carico delle azioni da traffico vanno assunti pari a 0,0.

Tabella 5.2.III - Carichi mobili in funzione del numero di binari presenti sul ponte

Numero	Binari	Traffico	normale	Traffico
di binari	Carichi	caso a(1)	caso b ⁽¹⁾	pesante ⁽²⁾
1	Primo	1,0 (LM 71"+"SW/0")	-	1,0 SW/2
	Primo	1,0 (LM 71"+"SW/0")	-	1,0 SW/2
2	secondo	1,0 (LM 71"+"SW/0")	-	1,0 (LM 71"+"SW/0")
	Primo	1,0 (LM 71"+"SW/0")	0,75 (LM 71"+"SW/0")	1,0 SW/2
≥3	secondo	1,0 (LM 71"+"SW/0")	0,75 (LM 71"+"SW/0")	1,0 (LM 71"+"SW/0")
	Altri	-	0,75 (LM 71"+"SW/0")	-

⁽¹⁾ LM71 "+" SW/0 significa considerare il più sfavorevole fra i treni LM 71, SW/0

Tabella 5.2.IV - Valutazione dei carichi da traffico

TIPO DI CARICO	Azioni v	erticali	A	Azioni orizzontali					
Gruppo di carico	Carico verticale (1)	Treno scarico	Frenatura e avviamento	Centrifuga	Serpeggio	Commenti			
Gruppo 1 (2)	1,00		0,5 (0,0)	1,0 (0,0)	1,0 (0,0)	massima azione verticale e laterale			
Gruppo.2 (2)	•	1,00	0,00	1,0 (0,0)	1,0(0,0)	stabilità laterale			
Gruppo 3 (2)	1,0 (0,5)	-	1,00	0,5 (0,0)	0,5 (0,0)	massima azione longitudinale			
Gruppo 4	0,8 (0,6; 0,4)	-	0,8 (0,6; 0,4)	0,8 (0,6; 0,4)	0,8 (0,6; 0,4)	fessurazione			

Per la ricerca delle condizioni maggiormente gravose in termini di sollecitazioni di progetto sugli elementi, sono state esaminate, per ciascuno dei tre stati limite di verifica previsti dalla normativa (SLE, SLU e Sisma) 4 differenti configurazioni dei carichi variabili, corrispondenti in particolare ai gruppi di carico Gr1 e GR3, significativi per l'opera in esame, ovvero:

Configurazione 1 : 2 binari carichi con treno LM71 (Gruppo 1)

Configurazione 2 : 1 binario carico con treno LM71 + 1 binario carico con treno SW2 (Gruppo 3)

Configurazione 3 : 1 binario carico con treno LM71 (Gruppo 1)

Configurazione 4 : 1 binario carico con treno SW2 (Gruppo 1)

n concomitanza ai treni di carico sono state considerate tutte le azioni variabili a questi direttamente associate (frenatura, avviamento, ecc...) oltre agli altri carichi variabili di altra natura (vento, carichi variabili marciapiedi, azioni parassite vincoli, sisma) per un totale complessivio di 20 combinazioni di carico.

⁽²⁾ Salvo i casi in cui sia esplicitamente escluso

Includendo tutti i fattori ad essi relativi (Φ,α, ecc..)

La simultaneità di due o tre valori caratteristici interi (assunzione di diversi coefficienti pari ad 1), sebbene improbabile, è stata considerata come semplificazione per i gruppi di carico 1, 2, 3 senza che ciò abbia significative conseguenze progettuali

ITINERARIO NAPOLI – BARI RADDOPPIO TRATTA CANCELLO-BENEVENTO II LOTTO FUNZIONALE FRASSO TELESINO – VITULANO 1° LOTTO FUNZIONALE FRASSO TELESINO – TELESE

PROGETTO ESECUTIVO

			SLE	-rara			SLE-fre	quente			SI	LU			s	LV			GI	EO	
Condizione		Gr.1	Gr.3	Gr.1	Gr.1	Gr.1	Gr.3	Gr.1	Gr.1	Gr.1	Gr.3	Gr.1	Gr.1	Gr.1	Gr.3	Gr.1	Gr.1	Gr.1	Gr.3	Gr.1	Gr.1
		1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20
Permanenti strutturali	G1	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.35	1.35	1.35	1.35	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0
Permanenti NON strutturali	G2	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.5	1.5	1.5	1.5	1.0	1.0	1.0	1.0	1.3	1.3	1.3	1.3
Traffico - 1LM71	Q1,1a			1.0				0.8				1.45								1.25	
Traffico - 1SW2	Q1,1b	ĺ			1.0				0.8				1.45								1.25
Traffico - 2 LM71	Q1,2a	1.0				0.6				1.45				0.2	0.2	0.2	0.2	1.25			
Traffico - 1 LM72 + 1 SW2	Q1,2b	İ	1.0				0.6				1.45								1.25		
Carico variabile 1 Marciapiede	Qm1			0.8	0.8			0.64	0.64			1.2	1.2							1.04	1.04
Carico variabile 2 Marciapiedi	Qm2	0.8	0.8			0.48	0.48			1.2	1.2							1.04	1.04		
Carico Avviamento	Qa	0.5	1.0	0.5	0.5	0.3	0.6	0.4	0.4	0.725	1.45	0.725	0.725					0.63	1.25	0.63	0.63
Frenatura LM71	Qf1	0.5				0.3				0.725								0.63			
Frenatura SW2	Qf2	1	1.0				0.6				1.45								1.25		
Centrifuga 1 LM71	Qc1a	1	0.5	1.0			0.3	0.8			0.725	1.45							0.63	1.25	
Centrifuga 2 LM71	Qc1b	1.0				0.6				1.45								1.25			
Centrifuga SW2	Qc2	İ	0.5		1.0		0.3		0.8		0.725		1.45						0.63		1.25
Serpeggio 1 treno	QS1	İ		1.0	1.0			0.8	0.8			1.45	1.45							1.25	1.25
Serpeggio 2 treni	QS2	1.0	0.5			0.6	0.3			1.45	0.725							1.25	0.63		
Vento	Qw	0.6	0.6	0.6	0.6																
Azioni aerodinamiche 1 treno	Qae1	İ		1.0	1.0			0.8	0.8			1.45	1.45							1.25	1.25
Azioni aerodinamiche 2 treni	Qae2	1.0	0.5			0.6	0.3			1.45	0.725							1.25	0.63		
Azioni termiche	Q7	±0.6	±0.6	±0.6	±0.6	±0.5	±0.5	±0.5	±0.5	±0.9	±0.9	±0.9	±0.9					±0.78	±0.78	±0.78	±0.78
Ritiro	Q8	[0;1]	[0;1]	[0;1]	[0;1]	[0;1]	[0;1]	[0;1]	[0;1]	[0;1.2]	[0; 1.2]	[0; 1.2]	[0; 1.2]	[0;1]	[0;1]	[0;1]	[0;1]	[0;1]	[0;1]	[0;1]	[0;1]
Sisma Long con 2 LM71	Elong													1.0	0.3	1.0	0.3				
Sisma Trasv con 2 LM71	Etrasv													0.3	1.0	0.3	1.0				
Sisma Vert con 2 LM71	Evert													0.3	0.3	-0.3	-0.3				
p.p. spalla	SP_Gk1	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.35	1.35	1.35	1.35	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0
spalla sisma long	SP_Elong													1.0	1.0	1.0	1.0				
spalla sisma trasv	SP_Etrasv													0.2	0.2	0.0	0.0				
spalla sisma vert	SP_Evert													0.2	0.2	0.2	0.2				
p.p. rinterro	SP_Gk2	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.45	1.45	1.45	1.45	1.0	1.0	1.0	1.0	1.25	1.25	1.25	1.25
rinterro spinta esercizio	SP_Gk2_h	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.45	1.45	1.45	1.45	1.0	1.0	1.0	1.0	1.25	1.25	1.25	1.25
rinterro sisma long	SP_Gk2_Elong													1.0	1.0	1.0	1.0				
rinterro sisma trasv	SP_Gk2_Etrasv													0.2	0.2	0.0	0.0				
rinterro sisma vert	SP_Gk2_Evert													0.2	0.2	0.2	0.2				
permanente	SP_Gk3	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.45	1.45	1.45	1.45	1.0	1.0	1.0	1.0	1.25	1.25	1.25	1.25
permanente spinta esercizio	SP_Gk3_h	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.45	1.45	1.45	1.45	1.0	1.0	1.0	1.0	1.25	1.25	1.25	1.25
accidentale	SP_Qk	1.0	1.0	1.0	1.0	0.6	0.6	0.8	0.8	1.45	1.45	1.45	1.45	0.2	0.2	0.0	0.0	1.25	1.25	1.25	1.25
accidentale spinta esercizio	SP_Qk_h	1.0	1.0	1.0	1.0	0.6	0.6	0.8	0.8	1.45	1.45	1.45	1.45	0.2	0.2	0.2	0.2	1.25	1.25	1.25	1.25

ENGINEERING INTEGRA RIF	II LOTTO F	IO TRAT UNZIONA FUNZION	TA CANCEL ALE FRASS IALE FRASS	LO-BENEVENT O TELESINO – SO TELESINO –	VITULA	
Spalla fissa S1: Relazione di calcolo	COMMESSA IF26	LOTTO 12 E ZZ	CODIFICA	DOCUMENTO VI0504 001	REV.	FOGLIO 67 di 104

8 MODELLO DI CALCOLO

8.1 Descrizione del modello di calcolo

Entrambe le spalle sono state analizzate mediante l'uso di modelli agli elementi finiti (FEM) tridimensionali, rispettosi della reale geometria dell'opera e dei carichi applicati. Tali modelli fanno uso quasi esclusivo di elementi finiti piani di tipo lastra-piastra (shell).

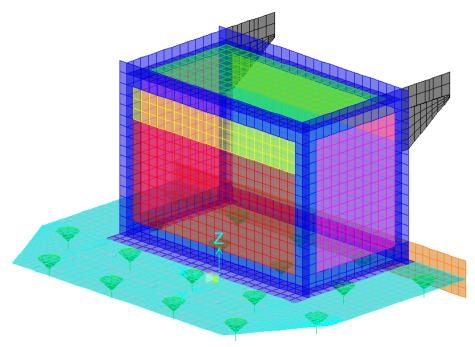


Figura 14 – Vista del modello 3D con discretizzazione degli elementi finiti

Le porzioni di intersezione tra i muri (frontale/laterale) e tra essi e la fondazione, sono state esplicitamente considerate al fine di considerare il loro peso una volta sola ed agevolare le successive verifiche, evitando di sovrastimare le sollecitazioni agenti, mediante la lettura delle sollecitazioni al filo delle carpenterie. Similmente si sono adoperati elementi fittizi verticali di elevata flessibilità posti a tergo della spalla al fine di poter applicare le spinte agenti sull'intera porzione di carpenteria pertinente e non sottostimare il taglio sui pali.

La risultanti dei carichi derivanti dall'impalcato (N, MT, VT, VL) sono state applicate al modello mediante l'ausilio di un elemento asta (frame) dotato di carichi distribuiti la cui risultante è unitaria. L'elemento asta è collgato al muro frontale mediante elementi lastra-piastra di dimensioni opportune, tali da applicare la corretta eccentricità verticale rispetto al baricentro del muro.

GEODATA INTEGRA RIA	II LOTTO F	IO TRAT UNZIONA FUNZION	TA CANCEL ALE FRASSI IALE FRASS	LO-BENEVENT O TELESINO – SO TELESINO –	VITULA	
Spalla fissa S1: Relazione di calcolo	COMMESSA IF26	LOTTO 12 E ZZ	CODIFICA CL	DOCUMENTO VI0504 001	REV.	FOGLIO 68 di 104

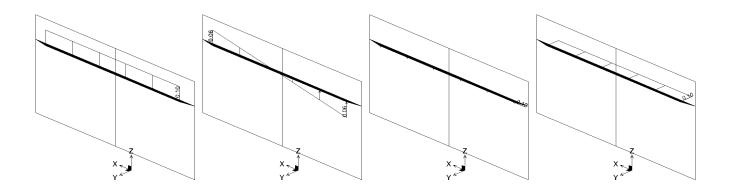


Figura 15 – Modello di calcolo: elementi fittizi per applicazione dei carichi derivanti dall'impalcato: N, MT, VT,

Il sistema di riferimento adottato è una terna destrorsa con l'asse delle Z positivo verso l'alto e l'asse X parallelo alla direzione trasversale dell'opera; l'origine è posta all'intradosso della fondazione nel baricentro della palificata.

Nel modello è stata modellata in via approssimata la presenza dei pali, al fine di cogliere meglio gli effetti sul plinto di fondazione. In particolare è stato modellato l'ingombro di ciascun palo così da evitare concentrazioni di tensioni spurie sugli elementi del plinto. La congruenza tra plinto e pali è realizzata in automatico dal programma di calcolo medianti speciali vincoli cinematici tra gli elementi lastra-piastra e i nodi che sopra essi ricadono (edge constraint). La parte terminale del palo, corrispondente all'intradosso del plinto, ha degli svincoli flessionali e torsionali, così che il palo possa tramettere solo sforzo normale e tagli. Il vincolo relativo al palo è di tipo flessibile, assimilabile a quanto si otterrebbe mediante ripartizione rigida delle sollecitazioni sui pali.

GEODATA INTEGRA RIA	II LOTTO F	IO TRAT UNZIONA FUNZION	TA CANCEL ALE FRASS IALE FRASS	LO-BENEVENT O TELESINO – SO TELESINO –	VITULA	-
Spalla fissa S1: Relazione di calcolo	COMMESSA IF26	LOTTO 12 E ZZ	CODIFICA	DOCUMENTO VI0504 001	REV.	FOGLIO 69 di 104

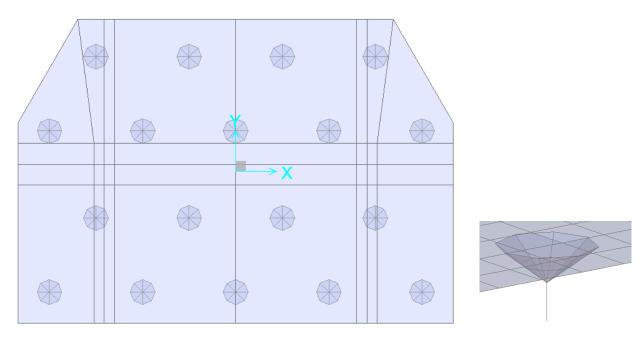


Figura 16 - Modello di calcolo: pali e vincoli

8.2 Risultati del modello di calcolo

8.2.1 Reazioni globali

Le reazioni globali agenti ad intradosso fondazione nel riferimento baricentrico dei pali sono:

	RIEPILOGO SCARICHI INTRADOSSO FO						
	Condizione		N	ML	MT	TL	TT
	Condizione		[kN]	[kNm]	[kNm]	[kN]	[kN]
	Permanenti strutturali	G1	3303.0	1156.1	0.0	0.0	0.0
	Permanenti NON strutturali	G2	2677.0	937.0	0.0	0.0	0.0
	Traffico - 1LM71	Q1,1a	2023.7	708.3	-3885.4	0.0	0.0
	Traffico - 1SW2	Q1,1b	2253.8	788.8	-4507.5	0.0	0.0
	Traffico - 2 LM71	Q1,2a	4047.3	1416.6	-323.8	0.0	0.0
	Traffico - 1 LM72 + 1 SW2	Q1,2b	4277.4	1497.1	-622.1	0.0	0.0
	Carico variabile 1 Marciapiede	Qm1	222.5	77.9	-1143.6	0.0	0.0
	Carico variabile 2 Marciapiedi	Qm2	445.0	155.8	-44.5	0.0	0.0
	Carico Avviamento	Qa	130.6	6852.0	0.0	-907.6	0.0
0	Frenatura LM71	Qf1	79.1	4152.7	0.0	-550.0	0.0
ΑĬ	Frenatura SW2	Qf2	125.9	6606.6	0.0	-875.1	0.0
\mathcal{L}	Centrifuga 1 LM71	Qc1a	0.0	0.0	-1769.7	0.0	-140.7
ΡA	Centrifuga 2 LM71	Qc1b	0.0	0.0	-3539.3	0.0	-281.3
Σ	Centrifuga SW2	Qc2	0.0	0.0	-785.7	0.0	-62.5
R	Serpeggio 1 treno	QS1	0.0	0.0	-1185.8	0.0	-110.0
Ì	Serpeggio 2 treni	QS2	0.0	0.0	-2371.6	0.0	-220.0
EMENTARI IMPALCATO	Vento	Qw	0.0	0.0	-3680.5	0.0	-325.7
Ξ	Azioni aerodinamiche 1 treno	Qae1	0.0	0.0	-294.0	0.0	-22.1
급	Azioni aerodinamiche 2 treni	Qae2	0.0	0.0	-331.4	0.0	-44.2
ᆽ	Sisma Long con 2 LM71	Elong	548.0	36852.2	0.0	-4888.4	0.0
CARICHI	Sisma Trasv con 2 LM71	Etrasv	0.0	0.0	-24575.7	0.0	-2443.7
S	Sisma Vert con 2 LM71	Evert	1220.0	427.0	0.0	0.0	0.0

ITINERARIO NAPOLI – BARI RADDOPPIO TRATTA CANCELLO-BENEVENTO II LOTTO FUNZIONALE FRASSO TELESINO – VITULANO 1° LOTTO FUNZIONALE FRASSO TELESINO – TELESE

PROGETTO ESECUTIVO

Spalla fissa S1: Relazione di calcolo

 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 IF26
 12 E ZZ
 CL
 VI0504 001
 B
 71 di 104

			N	ML	MT	TL	Т
	Condizione		[kN]	[kNm]	[kNm]	[kN]	[kN
	p.p. spalla	SP_Gk1	27051.4	-41679.4	0.1	0.0	0.
	spalla sisma long	SP_Elong	0.0	34960.0	0.0	-9739.2	0
ì	spalla sisma trasv	SP_Etrasv	0.0	0.0	-34958.0	0.0	-9737
	spalla sisma vert	SP_Evert	4869.3	-7502.3	0.0	0.0	0
5	p.p. rinterro	SP_Gk2	4008.8	-6273.2	0.0	0.0	0
	rinterro spinta esercizio	SP_Gk2_h	0.0	21157.6	0.0	-6818.7	0
	rinterro sisma long	SP_Gk2_Elong	0.0	78645.9	-0.1	-15524.5	0
	rinterro sisma trasv	SP_Gk2_Etrasv	0.0	0.0	-7078.6	0.0	-718
į	rinterro sisma vert	SP_Gk2_Evert	864.2	-3277.7	0.0	0.0	0
ı	permanente	SP_Gk3	1067.0	-3734.6	0.0	0.0	0
	permanente spinta esercizio	SP_Gk3_h	0.0	4596.0	0.0	-879.7	0
	accidentale	SP_Qk	2667.6	-9336.6	0.0	0.0	0
	accidentale spinta esercizio	SP_Qk_h	0.0	7128.9	0.0	-1364.5	0

ITINERARIO NAPOLI – BARI RADDOPPIO TRATTA CANCELLO-BENEVENTO II LOTTO FUNZIONALE FRASSO TELESINO – VITULANO 1° LOTTO FUNZIONALE FRASSO TELESINO – TELESE

PROGETTO ESECUTIVO

Spalla fissa S1: Relazione di calcolo

 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 IF26
 12 E ZZ
 CL
 VI0504 001
 B
 72 di 104

RIEPILOGO SCARICHI INTRADOSSO FONDAZIONE BARICENTRO PALI							
Condizione			N	ML	MT	TL	П
			[kN]	[kNm]	[kNm]	[kN]	[kN]
		01_SLE1	45283.0	-19004.7	-8809.9	-9791.6	-740.9
SLE-rara		02_SLE2	45664.7	-10967.9	-5495.1	-10845.4	-429.0
		03_SLE3	43041.8	-21851.6	-10257.9	-9516.6	-468.2
		04_SLE4	43271.9	-21771.1	-9896.1	-9516.6	-389.9
SLE-frequent	roquento	05_SLS1	42412.7	-20939.0	-3960.9	-8954.3	-327.3
		06_SLS2	42641.7	-16117.0	-1972.0	-9586.6	-140.2
	quente	07_SLS3	42054.9	-22249.4	-6439.7	-9152.9	-218.2
		08_SLS4	42239.0	-22185.0	-6150.2	-9152.9	-155.6
		09_SLU1	63030.4	-22664.1	-9574.1	-14582.7	-790.9
		10_SLU2	63583.9	-11010.7	-4767.7	-16110.8	-338.8
_		11_SLU3	59771.7	-26795.3	-11717.7	-14183.9	-395.5
		12_SLU4	60105.4	-26678.5	-11193.1	-14183.9	-282.2
(13_SLV1	42617.9	120060.4	-20048.5	-37850.5	-3869.9
SLV		14_SLV2	42234.2	14739.7	-66677.0	-16744.0	-12899.6
		15_SLV3	37378.7	130006.8	-20048.5	-37850.5	-3869.9
בַּ		16_SLV4	36995.1	24686.1	-66677.1	-16744.0	-12899.
{		17_GEO1	52755.1	-33366.5	-8253.8	-10918.8	-681.8
GEO		18_GEO2	53232.3	-23320.5	-4110.3	-12236.1	-292.0
		19_GEO3	49944.7	-36928.4	-10107.8	-10575.0	-340.9
3		20_GEO4	50232.3	-36827.7	-9655.5	-10575.0	-243.2

ENGINEERING INTEGRA RIA	II LOTTO F	IO TRAT UNZION/ FUNZION	TA CANCEL ALE FRASSO IALE FRASS	LO-BENEVENT O TELESINO – SO TELESINO –	VITULA	
Spalla fissa S1: Relazione di calcolo	COMMESSA IF26	LOTTO 12 E ZZ	CODIFICA	DOCUMENTO VI0504 001	REV.	FOGLIO 73 di 104

8.2.2 Sollecitazioni sugli elementi.

Di seguito si riportano i grafici dei diagrammi di sollecitazione e le tabelle delle massime sollecitazioni ottenute dalle analisi per le sezioni oggetto di verifica.

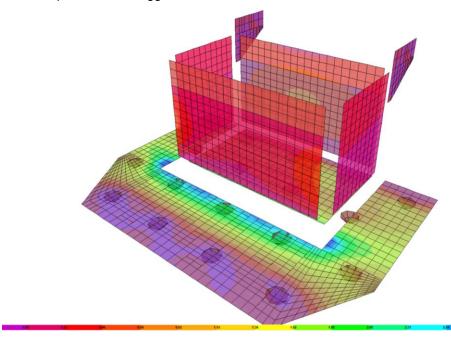


Figura 17 – Inviluppo delle sollecitazione positive M22 – Range da 0 a -3000 kNm/m.

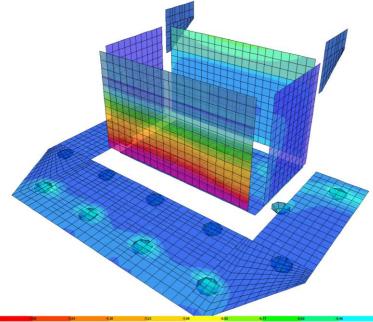


Figura 18 – Inviluppo delle sollecitazione negative M22 – Range da 0 -1500 kNm/m.

ENGINEERING INTEGRA RIF	II LOTTO F	IO TRAT UNZIONA FUNZION	TA CANCEL ALE FRASS IALE FRASS	LO-BENEVENT O TELESINO – SO TELESINO –	VITULAI	
Spalla fissa S1: Relazione di calcolo	COMMESSA IF26	LOTTO 12 E ZZ	CODIFICA CL	DOCUMENTO VI0504 001	REV.	FOGLIO 74 di 104

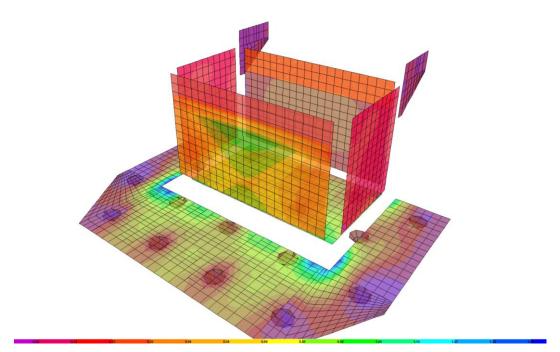


Figura 19 – Inviluppo delle sollecitazione massime positive M11 – Range da 0 a 1500kNm/m.

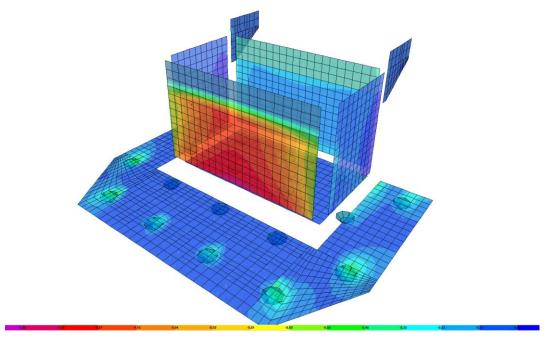


Figura 20 – Inviluppo delle sollecitazione massime negative M11 – Range da 0 -1500 kNm/m.

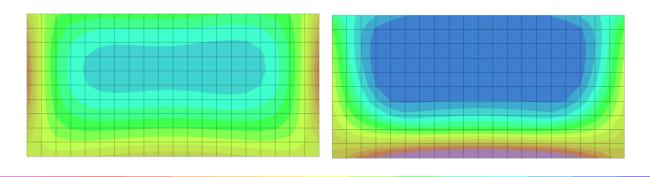


Figura 21 – Inviluppo delle sollecitazione massime negative del solettone M11(lato sx) ed M22 (lato dx) – Range da 0 a -400kNm/m.

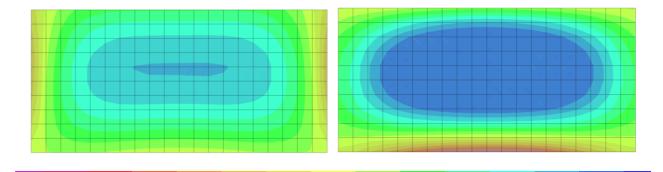
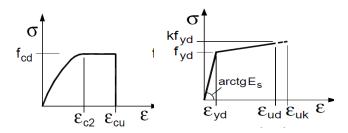
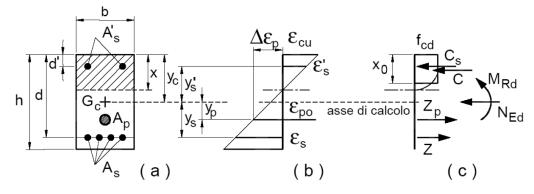


Figura 22 – Inviluppo delle sollecitazione massime positive del solettone M11(lato sx) ed M22 (lato dx) – Range da 0 a 500kNm/m.


9 CRITERI GENERALI PER LE VERIFICHE STRUTTURALI

I criteri generali di verifica utilizzati per la valutazione delle capacità resistenti delle sezioni, per la condizione SLU, e per le massime tensioni nei materiali nonché per il controllo della fessurazione, relativamente agli SLE, sono quelli definiti al p.to 4.1.2 del DM 14.01.08.


9.1 VERIFICHE ALLO SLU

9.1.1 Pressoflessione

La determinazione della capacità resistente a flessione/pressoflessione della generica sezione, viene effettuata con i criteri di cui al punto 4.1.2.1.2.4 delle NTC08, secondo quanto riportato schematicamente nelle figure seguito, tenendo conto dei valori delle resistenze e deformazioni di calcolo riportate al paragrafo dedicato alle caratteristiche dei materiali:

Legami costitutivi Calcestruzzo ed Acciaio -

Schema di riferimento per la valutazione della capacità resistente a pressoflessione generica sezione -

La verifica consisterà nel controllare il soddisfacimento della seguente condizione:

$$M_{Rd} = M_{Rd}(N_{Ed}) \ge M_{Ed}$$

dove

M_{Rd} è il valore di calcolo del momento resistente corrispondente a N_{Ed};

N_{Ed} è il valore di calcolo della componente assiale (sforzo normale) dell'azione;

M_{Ed} è il valore di calcolo della componente flettente dell'azione.

9.1.2 Taglio

La resistenza a taglio VRd della membratura priva di armatura specifica risulta pari a:

$$V_{Rd} = \left\{ 0.18 \cdot k \cdot \frac{\left(100 \cdot \rho_1 \cdot f_{ck}\right)^{1/3}}{\gamma_c + 0.15 \cdot \sigma_{cp}} \right\} \cdot b_w \cdot d \ge v_{min} + 0.15 \cdot \sigma_{cp} \cdot b_w d$$

Dove:

$$v_{\min} = 0.035 \cdot k^{3/2} \cdot f_{ck}^{-1/2}$$
;

$$k = 1 + (200/d)^{1/2} \le 2$$
;

$$\rho_1 = A_{sw}/(b_w * d)$$

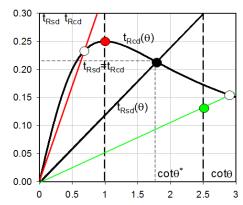
d = altezza utile per piedritti soletta superiore ed inferiore;

b_w= 1000 mm larghezza utile della sezione ai fini del taglio.

In presenza di armatura, invece, la resistenza a taglio V_{Rd} è il minimo tra la resistenza a taglio trazione V_{Rsd} e la resistenza a taglio compressione V_{Rcd}

$$V_{Rsd} = 0.9 \cdot d \cdot \frac{A_{sw}}{s} \cdot f_{yd} \cdot (ctg\alpha + ctg\theta) \cdot \sin \alpha$$

$$V_{Rcd} = 0.9 \cdot d \cdot b_{w} \cdot \alpha_{c} \cdot f_{cd} \cdot \frac{\left(ctg\alpha + ctg\theta\right)}{\left(1 + ctg^{2}\theta\right)}$$


Essendo:

$$1 \le ctg \theta \le 2,5$$

Per quanto riguarda in particolare le verifiche a taglio per elementi armati a taglio, si è fatto riferimento al metodo del traliccio ad inclinazione variabile, in accordo a quanto prescritto al punto 4.1.2.1.3 delle NTC08, considerando ai fini delle verifiche, un angolo θ di inclinazione delle bielle compresse del traliccio resistente tale da rispettare la condizione.

$$1 \leq ctg \; \theta \leq 2.5 \qquad \qquad 45 \; ^{\circ} \; \geq \theta \quad \geq 21.8^{\circ}$$

- Se la $\cot\theta^*$ è compresa nell'intervallo (1,0-2,5) è possibile valutare il taglic resistente $V_{Rd}(=V_{Rcd}=V_{Rsd})$
- Se la $\cot\theta^*$ è maggiore di 2.5 la crisi è da attribuirsi all'armatura trasversale e il taglio resistente $V_{Rd}(=V_{Rsd})$ coincide con il massimo taglio sopportate dalle armature trasversali valutabile per una $\cot\theta=2,5$.
- Se la $\cot\theta^*$ è minore di 1.0 la crisi è da attribuirsi alle bielle compresse e taglio resistente $V_{Rd}(=V_{Rcd})$ coincide con il massimo taglio sopportato dalle bielle di calcestruzzo valutabile per una $\cot\theta=1,0$.

L'angolo effettivo di inclinazione delle bielle (θ) assunto nelle verifiche è stato in particolare valutato, nell'ambito di un problema di verifica, tenendo conto di quanto di seguito indicato :

$$\cot \theta^* = \sqrt{\frac{v \cdot \alpha_c}{\omega_{sw}} - 1}$$

(θ^* angolo di inclinazione delle bielle cui corrisponde la crisi contemporanea di bielle compresse ed armature)

dove

$$v = f'cd / fcd = 0.5$$

f 'cd = resistenza a compressione ridotta del calcestruzzo d'anima

f cd = resistenza a compressione di calcolo del calcestruzzo d'anima

ω_{sw}: Percentuale meccanica di armatura trasversale.

$$\omega_{sw} = \frac{A_{sw} f_{yd}}{b s f_{cd}}$$

9.2 VERIFICA SLE

La verifica nei confronti degli Stati limite di esercizio, consiste nel controllare, con riferimento alle sollecitazioni di calcolo corrispondenti alle Combinazioni di Esercizio il tasso di Lavoro nei Materiali e l'ampiezza delle fessure attesa, secondo quanto di seguito specificato

9.2.1 Verifiche alle tensioni

La verifica delle tensioni in esercizio consiste nel controllare il rispetto dei limiti tensionali previsti per il calcestruzzo e per l'acciaio per ciascuna delle combinazioni di carico caratteristiche "Rara" e "Quasi Permanente"; i valori tensionali nei materiali sono valutati secondo le note teorie di analisi delle sezioni in c.a. in campo elastico e con calcestruzzo "non reagente" adottando come limiti di riferimento, trattandosi nel caso in specie di opere Ferroviarie, quelli indicati nel documento "Specifica per la progettazione e l'esecuzione dei ponti ferroviari e di altre opere minori sotto binario RFI DTC INC PO SP IFS 001 A del 30-12-16 ", ovvero:

Strutture in c.a.

Tensioni di compressione del calcestruzzo

Devono essere rispettati i seguenti limiti per le tensioni di compressione nel calcestruzzo:

- per combinazione di carico caratteristica (rara): 0,55 f_{ok};
- per combinazioni di carico quasi permanente: 0,40 f_{ck};
- per spessori minori di 5 cm, le tensioni normali limite di esercizio sono ridotte del 30%.

Tensioni di trazione nell'acciaio

Per le armature ordinarie, la massima tensione di trazione sotto la combinazione di carico caratteristica (rara) non deve superare $0.75~f_{vk}$.

9.2.2 Verifiche a fessurazione

La verifica a fessurazione consiste nel controllo dell'ampiezza massima delle fessure per le combinazioni di carico di esercizio i cui valori limite sono stabiliti, nell'ambito del progetto di opere ferroviarie, nel documento RFI DTC SICS MA IFS 001 A – 2.5.1.8.3.2.4 (*Manuale di progettazione delle opere civili del 30/12/2016*).

In particolare l'apertura convenzionale delle fessure δ_f dovrà rispettare i seguenti limiti:

 $\delta_f \leq w_1 = 0.2 \, mm$ per tutte le strutture in condizioni ambientali aggressive o molto aggressive (così come identificate nel par. 4.1.2.2.4.3 del DM 14.1.2008 – Tab 4.1.III), per tutte le strutture a permanente contatto con il terreno e per le zone non ispezionabili di tutte le strutture;

 $\delta_f \le w_2 = 0.3 \ mm$ per strutture in condizioni ambientali ordinarie.

Tabella 4.1.III – Descrizione delle condizioni ambientali

CONDIZIONI AMBIENTALI	CLASSE DI ESPOSIZIONE
Ordinarie	X0, XC1, XC2, XC3, XF1
Aggressive	XC4, XD1, XS1, XA1, XA2, XF2, XF3
Molto aggressive	XD2, XD3, XS2, XS3, XA3, XF4

Tabella 4.1.III - DM 14.01.2008

In definitiva, nel caso in esame, con riferimento alle indicazioni della tabella di cui in precedenza, si adotta il limite **w1=0,20 mm** sia per le parti in elevazione che per quelle in fondazione, in quanto in entrambi i casi trattasi di strutture a permanente contatto col terreno.

9.2.3 Muro frontale

Muro frontale -armatura verticale

Le verifiche sono condotte con riferimento all'elemento più sollecitato M10-91. Di seguito le caratteristiche della sezione e le verifiche. La tensione di trazione del calcestruzzo con la sezione interamente reagente è inferiore al limite di fessurazione -2.52Mpa, pertanto non si ha apertura di fessure.

Caratteristiche geometriche : H=2000mm (altezza) B=1000mm (base)

Armatura verticale tesa : I stato ϕ 22/100 + II stato : ϕ 22/100

Armatura verticale compressa: I stato : φ22/100

Armatura a taglio (spille): \$\phi16/400x400\$

Verifica tensioni in esercizio

Combo	N [kN]	M [kNm]	V [kN]	σ _{cls}	σ _{acc}	
SLE N min	1447	-1280	-494	2.70	-28.6	
SLE Nmax	1956	-1280	-494	2.77	-15.9	σ _{traz,el}
SLS Nmin	1351	-1039	-420	2.21	-18.2	-0.67
SLS Nmax	1648	-1039	-420	2.26	-11.7	-0.54
			[MPa]	2.77	-28.6	-0.67

Resistenza a flessione

	N [kN]	M [kNm]	V [kN]	CS _M
SLU N min	2015	-1884	-717	3.80
SLU Nmax	2754	-1884	-717	4.13
SLU Nmin	2080	-2314	-1242	3.12
SLU Nmax	2692	-2314	-1242	3.34
				3.12

	9					
		ctg θ	2.50	1.0 ≤ ··· ≤		
ф [mm]	16	V _{Rcd} [kN]	5415	$0.9 \ b_w \ d \ \alpha_c \ f'_{cd} \ ctg/(1+ctg^2)$		
S ₁ [mm]	400	V _{Rsd} [kN]	2129	A _s /s f _{yd} 0.	9 d ctg	
S ₂ [mm]	400	V _R [kN]	2129	min (V _{Rcd} , V _{Rsd})		
		V _E [kN]	1242	CS _V 1.71		

Muro frontale -armatura orizzontale

Le verifiche sono condotte con riferimento all'elemento più sollecitato M10-61. Di seguito le caratteristiche della sezione e le verifiche. La tensione di trazione del calcestruzzo con la sezione interamente reagente è inferiore al limite di fessurazione -2.52Mpa, pertanto non si ha apertura di fessure.

Caratteristiche geometriche : H=2000mm (altezza) B=1000mm (base)

Armatura verticale tesa : I stato φ22/100

Armatura verticale compressa: I stato: \$\phi22/100\$

Armatura a taglio (spille): \$\phi16/400x400\$

Verifica tensioni in esercizio

Combo	N [kN]	M [kNm]	V [kN]	σ_{cls}	σ _{acc}	
SLE N min	103	-832	104	2.01	-108.5	
SLE Nmax	253	-832	104	2.05	-91.3	σ _{traz,el}
SLS Nmin	100	-696	91	1.69	-89.1	-0.86
SLS Nmax	212	-696	91	1.72	-76.3	-0.81
			[MPa]	2.05	-108.5	-0.86

Resistenza a flessione

	N [kN]	M [kNm]	V [kN]	CS _M
SLU N min	137	-1238	154	2.34
SLU Nmax	356	-1238	154	2.50
SLU Nmin	292	-626	40	4.85
SLU Nmax	354	-626	40	4.94
				2.34

		ctg θ	2.50	1.0 ≤ ··· ≤ 2.5		
φ [mm]	16	V _{Rcd} [kN]	5428	$0.9 \text{ bw d } \alpha_c \text{ f'}_{cd} \text{ ctg/}(1+\text{ctg}^2)$		
S ₁ [mm]	400	V _{Rsd} [kN]	2134	A _s /s f _{yd} 0.9 d ctg		
S ₂ [mm]	400	V _R [kN]	2134	min (V _{Rcd} , V _{Rsd})		
		V E [kN]	154	CS _V	13.89	

9.2.4 Muro paraghiaia

Muro paraghiaia -armatura verticale

Le verifiche sono condotte con riferimento all'elemento più sollecitato P4-1. Di seguito le caratteristiche della sezione e le verifiche. La tensione di trazione del calcestruzzo con la sezione interamente reagente è inferiore al limite di fessurazione -2.52Mpa, pertanto non si ha apertura di fessure.

Caratteristiche geometriche : H=500mm (altezza) B=1000mm (base)

Armatura verticale tesa : I stato ∮22/200

Armatura verticale compressa: I stato : φ22/200

Armatura a taglio (spille): $\phi 12/400x400$

Verifica tensioni in esercizio

Combo	N [kN]	M [kNm]	V [kN]	σ _{cls}	σ _{acc}	
SLE N min	148	-74	-59	2.72	-64.2	
SLE Nmax	293	-74	-59	2.64	-33.9	σ _{traz,el}
SLS Nmin	127	-66	-55	2.45	-59.7	-1.13
SLS Nmax	276	-66	-55	2.38	-28.6	-0.87
			[MPa]	2.72	-64.2	-1.13

Resistenza a flessione

	N [kN]	M [kNm]	V [kN]	CS _M
SLU N min	205	-110	-86	3.12
SLU Nmax	391	-110	-86	3.44
SLU Nmin	82	57	-32	5.59
SLU Nmax	242	57	-32	6.14
				3.12

	ctg θ	2.50	$1.0 \le \cdots \le 2.5$			
φ [mm]	12	V _{Rcd} [kN]	1207	$0.9 \text{ b}_{\text{w}} \text{ d} \ \alpha_{\text{c}} \ \text{f'}_{\text{cd}} \ \text{ctg/(1+ctg^2)}$		
S ₁ [mm]	400	V _{Rsd} [kN]	267	A _s /s f _{yd} 0.9 d ctg		
S ₂ [mm]	400	V _R [kN]	267	min (V _{Rcd} , V _{Rsd})		
		V _E [kN]	86	CSv	3.10	

Muro paraghiaia -armatura orizzontale

Le verifiche sono condotte con riferimento all'elemento più sollecitato P4-1. Di seguito le caratteristiche della sezione e le verifiche. La tensione di trazione del calcestruzzo con la sezione interamente reagente è inferiore al limite di fessurazione -2.52Mpa, pertanto non si ha apertura di fessure.

Caratteristiche geometriche : H=500mm (altezza) B=1000mm (base)

Armatura verticale tesa : I stato ∮22/200

Armatura verticale compressa: I stato : \$\phi22/200\$

Armatura a taglio (spille): \$\phi12/400x400\$

Verifica tensioni in esercizio

Combo	N [kN]	M [kNm]	V [kN]	σ_{cls}	σ _{acc}	
SLE N min	59	-26	-1	0.98	-21.7	
SLE Nmax	326	-26	-1	1.13	3.0	σ _{traz,el}
SLS Nmin	58	-23	-1	0.86	-17.8	-0.37
SLS Nmax	309	-23	-1	1.03	3.2	0.08
			[MPa]	1.13	-21.7	-0.37

Resistenza a flessione

	N [kN]	M [kNm]	V [kN]	CS _M
SLU N min	77	-40	-2	8.01
SLU Nmax	420	-40	-2	9.67
SLU Nmin	-152	13	1	20.62
SLU Nmax	216	13	1	26.19
				8.01

		ctg θ	2.50	1.0 ≤ ··· ≤	2.5	
φ [mm]	12	V _{Rcd} [kN]	1207	0.9 b _w d α_c f' _{cd} ctg/(1+ctg ²)		
S ₁ [mm]	400	V _{Rsd} [kN]	267	A _s /s f _{yd} 0.9 d ctg		
S ₂ [mm]	400	V _R [kN]	267	min (V _{Rcd} , V _{Rsd})		
		V _E [kN]	2	CSv	162.23	

9.2.5 Muro andatore

Muro andatore-armatura verticale

Le verifiche sono condotte con riferimento all'elemento più sollecitato A20-1. Di seguito le caratteristiche della sezione e le verifiche. La tensione di trazione del calcestruzzo con la sezione interamente reagente è inferiore al limite di fessurazione -2.52Mpa, pertanto non si ha apertura di fessure.

Caratteristiche geometriche : H=1000mm (altezza) B=1000mm (base)

Armatura verticale tesa : I stato \$\phi 20/100\$

Armatura verticale compressa: I stato : φ20/100

Armatura a taglio (spille): \$\phi12/400x400\$

Verifica tensioni in esercizio

	• • • • • • • • • • • • • • • • • • • •					
Combo	N [kN]	M [kNm]	V [kN]	σ_{cls}	$\sigma_{ m acc}$	
SLE N min	488	-195	-395	1.64	-15.4	
SLE Nmax	839	-195	-395	1.76	-1.7	σ _{traz,el}
SLS Nmin	448	-166	-343	1.40	-11.1	-0.42
SLS Nmax	765	-166	-343	1.53	-0.4	-0.13
			[MPa]	1.76	-15.4	-0.42

Resistenza a flessione

	N [kN]	M [kNm]	V [kN]	CS _M
SLU N min	644	-282	-576	4.84
SLU Nmax	1159	-282	-576	5.59
SLU Nmin	29	-106	-205	10.39
SLU Nmax	1010	-106	-205	14.34
				4.84

Resistenza a taglio

	ctg θ	2.50	1.0 ≤ ··· ≤	2.5		
ф [mm]	16	V _{Rcd} [kN]	2617	0.9 b _w d α_c f' _{cd} ctg/(1+ctg ²)		
S ₁ [mm]	400	V _{Rsd} [kN]	1029	A _s /s f _{yd} 0.9 d ctg		
S ₂ [mm]	400	V _R [kN]	1029	min (V _{Rcd} , V _{Rsd})		
		V _E [kN]	576	CSv	1.79	

Muro andatore-armatura orizzontale

Le verifiche sono condotte con riferimento all'elemento più sollecitato A20-1. Di seguito le caratteristiche della sezione e le verifiche. La tensione di trazione del calcestruzzo con la sezione interamente reagente è inferiore al limite di fessurazione -2.52Mpa, pertanto non si ha apertura di fessure.

ITINERARIO NAPOLI – BARI RADDOPPIO TRATTA CANCELLO-BENEVENTO II LOTTO FUNZIONALE FRASSO TELESINO – VITULANO 1° LOTTO FUNZIONALE FRASSO TELESINO – TELESE

PROGETTO ESECUTIVO

Spalla fissa S1: Relazione di calcolo

 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 IF26
 12 E ZZ
 CL
 VI0504 001
 B
 86 di 104

Caratteristiche geometriche : H=1000mm (altezza) B=1000mm (base)

Armatura verticale tesa : I stato \$20/100

Armatura verticale compressa: I stato : \$20/100

Armatura a taglio (spille): \$\phi12/400x400\$

Verifica tensioni in esercizio

Combo	N [kN]	M [kNm]	V [kN]	σ _{cls}	σ _{acc}	
SLE N min	415	-150	-328	1.26	-9.3	
SLE Nmax	993	-150	-328	1.65	4.0	σ _{traz,el}
SLS Nmin	406	-130	-286	1.10	-5.8	-0.28
SLS Nmax	842	-130	-286	1.42	3.2	0.12
			[MPa]	1.65	-9.3	-0.28

Resistenza a flessione

	N [kN]	M [kNm]	V [kN]	CS _M
SLU N min	643	-216	-463	6.32
SLU Nmax	1493	-216	-463	7.95
SLU Nmin	1383	-120	-331	13.89
SLU Nmax	3605	-120	-331	20.69
				6.32

Resistenza a taglio

		ctg θ	2.50	1.0 ≤ ··· ≤	1.0 ≤ ··· ≤ 2.5		
ф [mm]	16	V _{Rcd} [kN]	2617	0.9 b _w d α_c f' _{cd} ctg/(1+ctg ²)			
S ₁ [mm]	400	V _{Rsd} [kN]	1029	As/s fyd 0.9 d ctg			
S ₂ [mm]	400	V _R [kN]	1029	min (V _{Rcd} , V _{Rsd})			
		V E [kN]	463	CS _V	2.22		

9.2.6 Muro posteriore

Muro chiusura posteriore-armatura verticale

Le verifiche sono condotte con riferimento all'elemento più sollecitato N9-97. Di seguito le caratteristiche della sezione e le verifiche. La tensione di trazione del calcestruzzo con la sezione interamente reagente è inferiore al limite di fessurazione -2.52Mpa, pertanto non si ha apertura di fessure.

Caratteristiche geometriche : H=1000mm (altezza) B=1000mm (base)

Armatura verticale tesa : I stato φ20/100

Armatura verticale compressa: I stato : ∮20/100

Armatura a taglio (spille): $\phi 12/400x400$

Verifica tensioni in esercizio

Combo	N [kN]	M [kNm]	V [kN]	σ_{cls}	σ _{acc}	
SLE N min	280	256	38	2.20	-56.6	
SLE Nmax	426	256	38	2.19	-39.3	σ traz,el
SLS Nmin	247	234	34	2.01	-52.9	-0.94
SLS Nmax	407	234	34	2.00	-34.2	-0.79
			[MPa]	2.20	-56.6	-0.94

Resistenza a flessione

	N [kN]	M [kNm]	V [kN]	CS _M
SLU N min	390	385	55	3.26
SLU Nmax	569	385	55	3.46
SLU Nmin	167	486	-18	2.39
SLU Nmax	368	486	-18	2.57
				2.39

	ctg θ	2.50	1.0 ≤ ··· ≤ 2.5			
ф [mm]	12	V _{Rcd} [kN]	2617	0.9 b _w d α_c f' _{cd} ctg/(1+ctg ²)		
S ₁ [mm]	400	V _{Rsd} [kN]	579	As/s fyd 0.9 d ctg		
S ₂ [mm]	400	V _R [kN]	579	min (V _{Rcd} , V _{Rsd})		
		V _E [kN]	55	CS _v	10.46	

Muro chiusura posteriore-armatura orizzontale

Le verifiche sono condotte con riferimento all'elemento più sollecitato N9-97. Di seguito le caratteristiche della sezione e le verifiche. La tensione di trazione del calcestruzzo con la sezione interamente reagente è inferiore al limite di fessurazione -2.52Mpa, pertanto non si ha apertura di fessure.

Caratteristiche geometriche : H=1000mm (altezza) B=1000mm (base)

Armatura verticale tesa : I stato \$\phi 20/100\$

Armatura verticale compressa: I stato : \$\phi 20/100\$

Armatura a taglio (spille): \$\phi12/400x400\$

Verifica tensioni in esercizio

Combo	N [kN]	M [kNm]	V [kN]	$\sigma_{\sf cls}$	$\sigma_{ m acc}$	
SLE N min	45	187	-4	1.53	-63.0	
SLE Nmax	231	187	-4	1.60	-37.9	σ _{traz,el}
SLS Nmin	49	166	-4	1.37	-54.8	-0.78
SLS Nmax	229	166	-4	1.43	-30.9	-0.62
			[MPa]	1.60	-63.0	-0.78

Resistenza a flessione

	N [kN]	M [kNm]	V [kN]	CS _M
SLU N min	60	279	-6	3.99
SLU Nmax	292	279	-6	4.35
SLU Nmin	45	263	-13	4.20
SLU Nmax	222	263	-13	4.50
				3.99

		ctg θ	2.50	1.0 ≤ ··· ≤ 2.5		
φ [mm]	12	V _{Rcd} [kN]	2617	$0.9 \text{ bw d } \alpha_c \text{ f'}_{cd} \text{ ctg/}(1+\text{ctg}^2)$		
S ₁ [mm]	400	V _{Rsd} [kN]	579	As/s fyd 0.9 d ctg		
S ₂ [mm]	400	V _R [kN]	579	min (V _{Rcd} , V _{Rsd})		
		V _E [kN] 13 CS _V 44.01				

9.2.7 Fondazione

Fondazione-armatura longitudinale

Le verifiche sono condotte con riferimento all'elemento più sollecitato F24-1. Di seguito le caratteristiche della sezione e le verifiche. La tensione di trazione del calcestruzzo con la sezione interamente reagente è inferiore al limite di fessurazione -2.31Mpa, pertanto non si ha apertura di fessure.

Caratteristiche geometriche : H=2000mm (altezza) B=1000mm (base)

Armatura verticale tesa : I stato φ26/100 + II stato φ26/100

Armatura verticale compressa: I stato : φ26/100

Armatura a taglio (spille): ϕ 18/400x400

Verifica tensioni in esercizio

TOTHIOG TOTIO	<u> </u>					
Combo	N [kN]	M [kNm]	V [kN]	σ _{cls}	σ _{acc}	
SLE N min	-117	2134	1302	3.30	-119.8	
SLE Nmax	458	2134	1302	3.59	-97.0	σ _{traz,el}
SLS Nmin	-71	1792	1099	2.79	-99.4	-2.03
SLS Nmax	403	1792	1099	3.02	-80.8	-1.84
			[MPa]	3.59	-119.8	-2.03

Resistenza a flessione

	N [kN]	M [kNm]	V [kN]	CS _M
SLU N min	-163	3031	1829	2.46
SLU Nmax	699	3031	1829	2.70
SLU Nmin	297	3524	2016	2.22
SLU Nmax	817	3524	2016	2.35
				2.22

	9					
		ctg θ	2.50	1.0 ≤ ··· ≤ 2.5		
ф [mm]	18	V _{Rcd} [kN]	4731	$0.9 \text{ b}_{\text{w}} \text{ d} \alpha_{\text{c}} \text{ f}'_{\text{cd}} \text{ ctg/(1+ctg}^2)$		
S ₁ [mm]	400	V _{Rsd} [kN]	2691	A _s /s f _{yd} 0.9 d ctg		
S ₂ [mm]	400	V _R [kN]	2691	min (V _{Rcd} , V _{Rsd})		
		V _E [kN]	2016	CSv	1.33	

Fondazione-armatura trasversale

Le verifiche sono condotte con riferimento all'elemento più sollecitato F30-141. Di seguito le caratteristiche della sezione e le verifiche. La tensione di trazione del calcestruzzo con la sezione interamente reagente è inferiore al limite di fessurazione -2.31Mpa, pertanto non si ha apertura di fessure.

Caratteristiche geometriche : H=2000mm (altezza) B=1000mm (base)

Armatura verticale tesa : I stato \$\phi26/100\$

Armatura verticale compressa: I stato: \$\phi 26/100\$

Armatura a taglio (spille): \$\phi18/400x400\$

Verifica tensioni in esercizio

Combo	N [kN]	M [kNm]	V [kN]	σ _{cls}	σ _{acc}	
SLE N min	-18	935	-244	1.85	-99.4	
SLE Nmax	40	935	-244	1.89	-94.4	σ _{traz,el}
SLS Nmin	-13	793	-234	1.57	-84.1	-0.99
SLS Nmax	34	793	-234	1.60	-80.1	-0.97
			[MPa]	1.89	-99.4	-0.99

Resistenza a flessione

	N [kN]	M [kNm]	V [kN]	CS _M
SLU N min	-25	1311	-347	2.92
SLU Nmax	59	1311	-347	2.98
SLU Nmin	15	1371	-266	2.82
SLU Nmax	159	1371	-266	2.91
				2.82

		ctg θ	2.50	1.0 ≤ ··· ≤ 2.5		
φ [mm]	18	V _{Rcd} [kN]	4744	$0.9 \text{ b}_{\text{w}} \text{ d} \alpha_{\text{c}} \text{ f'}_{\text{cd}} \text{ ctg/}(1+\text{ctg}^2)$		
S ₁ [mm]	400	V _{Rsd} [kN]	2698	As/s fyd 0.9 d ctg		
S ₂ [mm]	400	V _R [kN]	2698	min (V _{Rcd} , V _{Rsd})		
		V _E [kN]	347	CSv	7.79	

9.2.8 Solettone

Solettone-armatura longitudinale

Le verifiche sono condotte con riferimento all'elemento più sollecitato S7-50. Di seguito le caratteristiche della sezione e le verifiche. La tensione di trazione del calcestruzzo con la sezione interamente reagente è inferiore al limite di fessurazione -2.52Mpa, pertanto non si ha apertura di fessure.

Caratteristiche geometriche : H=1200mm (altezza) B=1000mm (base)

Armatura verticale tesa : I stato ∮26/100

Armatura verticale compressa: I stato : φ26/100 Armatura a taglio (spille): φ12/400x400

Verifica tensioni in esercizio

Combo	N [kN]	M [kNm]	V [kN]	σcls	σ _{acc}	
SLE N min	3	413	-45	1.88	-75.1	
SLE Nmax	165	413	-45	1.99	-61.7	σ _{traz,el}
SLS Nmin	-6	361	-39	1.63	-66.4	-1.16
SLS Nmax	154	361	-39	1.74	-53.1	-1.04
			[MPa]	1.99	-75.1	-1.16

Resistenza a flessione

	N [kN]	M [kNm]	V [kN]	CS _M
SLU N min	41	586	-66	3.83
SLU Nmax	242	586	-66	4.01
SLU Nmin	45	211	-37	10.62
SLU Nmax	337	211	-37	11.35
				3.83

		ctg θ	2.50	1.0 ≤ ··· ≤ 2.5		
φ [mm]	12	V _{Rcd} [kN]	3171	0.9 b _w d α_c f' _{cd} ctg/(1+ctg ²)		
S ₁ [mm]	400	V _{Rsd} [kN]	701	A _s /s f _{yd} 0.9 d ctg		
S ₂ [mm]	400	V _R [kN]	701	min (V _{Rcd} , V _{Rsd})		
		V _E [kN]	66	CSv	10.58	

Solettone-armatura trasversale

Le verifiche sono condotte con riferimento all'elemento più sollecitato S8-31. Di seguito le caratteristiche della sezione e le verifiche. La tensione di trazione del calcestruzzo con la sezione interamente reagente è inferiore al limite di fessurazione -2.52Mpa, pertanto non si ha apertura di fessure.

Caratteristiche geometriche : H=1200mm (altezza) B=1000mm (base)

Armatura verticale tesa : I stato φ26/100

Armatura verticale compressa: I stato: \$\phi 26/100\$

Armatura a taglio (spille): \$\phi12/400x400\$

Verifica tensioni in esercizio

Combo	N [kN]	M [kNm]	V [kN]	σ_{cls}	σ _{acc}	
SLE N min	-926	306	-6	0.00	-141.9	
SLE Nmax	86	306	-6	1.45	-48.6	σ _{traz,el}
SLS Nmin	-928	260	-5	0.00	-133.9	-1.51
SLS Nmax	68	260	-5	1.23	-41.7	-0.78
			[MPa]	1.45	-141.9	-1.51

Resistenza a flessione

	N [kN]	M [kNm]	V [kN]	CS _M
SLU N min	-1108	441	-8	3.70
SLU Nmax	122	441	-8	5.18
SLU Nmin	-1016	105	1	15.95
SLU Nmax	21	105	1	21.19
				3.70

Resistenza a taglio

52 ()			V _E [kN]	8	CS _V	88.03	
Ī	S ₂ [mm]	400	V _R [kN]	701	min (V _{Rcd} , V _{Rsd})		
	S ₁ [mm]	400	V _{Rsd} [kN]	701	A _s /s f _{yd} 0.9 d ctg		
	φ [mm]	12	V _{Rcd} [kN]	3171	0.9 b _w d α_c f' _{cd} ctg/(1+ctg ²)		
			ctg θ	2.50	1.0 ≤ ··· ≤ 2.5		

Solettone-armatura longitudinale sezione attacco

Le verifiche sono condotte con riferimento all'elemento più sollecitato S7-100. Di seguito le caratteristiche della sezione e le verifiche. La tensione di trazione del calcestruzzo con la sezione interamente reagente è inferiore al limite di fessurazione -2.52Mpa, pertanto non si ha apertura di fessure.

ITINERARIO NAPOLI – BARI RADDOPPIO TRATTA CANCELLO-BENEVENTO II LOTTO FUNZIONALE FRASSO TELESINO – VITULANO 1° LOTTO FUNZIONALE FRASSO TELESINO – TELESE

PROGETTO ESECUTIVO

Spalla fissa S1: Relazione di calcolo

 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 IF26
 12 E ZZ
 CL
 VI0504 001
 B
 93 di 104

Caratteristiche geometriche : H=1200mm (altezza) B=1000mm (base)

Armatura verticale tesa : I stato φ26/100

Armatura verticale compressa: I stato : \$\phi26/100\$

Armatura a taglio (spille): \$\phi12/400x400\$

Verifica tensioni in esercizio

Combo	N [kN]	M [kNm]	V [kN]	$\sigma_{\sf cls}$	$\sigma_{ m acc}$	
SLE N min	150	-270	-310	1.32	-36.9	
SLE Nmax	220	-270	-310	1.35	-31.6	σ _{traz,el}
SLS Nmin	130	-241	-278	1.18	-33.2	-0.67
SLS Nmax	205	-241	-278	1.21	-27.5	-0.62
			[MPa]	1.35	-36.9	-0.67

Resistenza a flessione

	N [kN]	M [kNm]	V [kN]	CS _M
SLU N min	234	-405	-444	5.79
SLU Nmax	325	-405	-444	5.91
SLU Nmin	237	-302	-231	7.75
SLU Nmax	597	-302	-231	8.36
				5.79

			V _E [kN]	444	CS _V	1.58	
	S ₂ [mm]	400	V _R [kN]	701	min (V _{Rcd} , V _{Rsd})		
	S ₁ [mm]	400	V _{Rsd} [kN]	701	A _s /s f _{yd} 0.9 d ctg		
	φ [mm]	12	V _{Rcd} [kN]	3171	0.9 b _w d α_c f' _{cd} ctg/(1+ctg ²)		
			ctg θ	2.50	1.0 ≤ ··· ≤ 2.5		

9.2.1 Bandiere

Bandiere - armatura orizzontale

Le verifiche sono condotte con riferimento all'elemento più sollecitato O11. Di seguito le caratteristiche della sezione e le verifiche. La tensione di trazione del calcestruzzo con la sezione interamente reagente è inferiore al limite di fessurazione -2.52Mpa, pertanto non si ha apertura di fessure.

Caratteristiche geometriche : H=820mm (altezza) B=1000mm (base)

Armatura verticale tesa : I stato $\phi 20/100$ Armatura verticale compressa: I stato $\phi 20/100$ Armatura a taglio (spille): $\phi 12/400x400$

Verifica tensioni in esercizio

Combo	N [kN]	M [kNm]	V [kN]	σ _{cls}	σ _{acc}	
SLE N min	-568	-133	146	0.00	-152.9	
SLE Nmax	-348	-133	146	0.75	-117.3	σ _{traz,el}
SLS Nmin	-562	-121	135	0.00	-146.3	-1.49
SLS Nmax	-355	-121	135	0.51	-113.0	-1.27
			[MPa]	0.75	-152.9	-1.49

Resistenza a flessione

	N [kN]	M [kNm]	V [kN]	CS _M
SLU N min	-763	-196	214	3.05
SLU Nmax	-474	-196	214	3.57
SLU Nmin	-595	-76	145	8.63
SLU Nmax	-348	-76	145	9.78
				3.05

	ctg θ	2.50	1.0 ≤ ··· ≤	2.5		
φ [mm]	12	V _{Rcd} [kN]	2110	0.9 b _w d α_c f' _{cd} ctg/(1+ctg ²)		
S ₁ [mm]	400	V _{Rsd} [kN]	467	A _s /s f _{yd} 0.9 d ctg		
S ₂ [mm]	400	V _R [kN]	467	min (V _{Rcd} , V _{Rsd})		
		V _E [kN]	214	CSv	2.18	

Bandiere - armatura verticale

Le verifiche sono condotte con riferimento all'elemento più sollecitato O11. Di seguito le caratteristiche della sezione e le verifiche. La tensione di trazione del calcestruzzo con la sezione interamente reagente è inferiore al limite di fessurazione -2.52Mpa, pertanto non si ha apertura di fessure.

Caratteristiche geometriche : H=820mm (altezza) B=1000mm (base)

Armatura verticale tesa : I stato ϕ 20/100 Armatura verticale compressa: I stato ϕ 20/100 Armatura a taglio (spille): ϕ 12/400x400

Verifica tensioni in esercizio

Combo	N [kN]	M [kNm]	V [kN]	σ_{cls}	σ _{acc}	
SLE N min	-36	-21	-125	0.18	-15.7	
SLE Nmax	14	-21	-125	0.25	-8.0	σ _{traz,el}
SLS Nmin	-34	-20	-115	0.17	-14.8	-0.18
SLS Nmax	13	-20	-115	0.24	-7.6	-0.13
			[MPa]	0.25	-15.7	-0.18

Resistenza a flessione

	N [kN]	M [kNm]	V [kN]	CS _M
SLU N min	-49	-29	-176	29.74
SLU Nmax	17	-29	-176	30.57
SLU Nmin	-24	-20	-80	42.70
SLU Nmax	29	-20	-80	43.62
				29.74

	ctg θ	2.50	1.0 ≤ ··· ≤	2.5		
φ [mm]	12	V _{Rcd} [kN]	2110	$0.9 \text{ bw d } \alpha_c \text{ f'}_{cd} \text{ ctg/(1+ctg^2)}$		
S ₁ [mm]	400	V _{Rsd} [kN]	467	A _s /s f _{yd} 0.9 d ctg		
S ₂ [mm]	400	V _R [kN]	467	min (V _{Rcd} , V _{Rsd})		
		V _E [kN]	176	CS _V	2.65	

9.3 Palificata

Le sollecitazioni agenti nei pali di fondazione, sono state dedotte dal modello di calcolo e corrispondono, con ragionevole approssimazione, a quanto si otterrebbe mediante una ripartizione rigida delle azioni globali.

9.3.1 Reazioni globali massime

Le massime azioni agenti in testa ai pali sono:

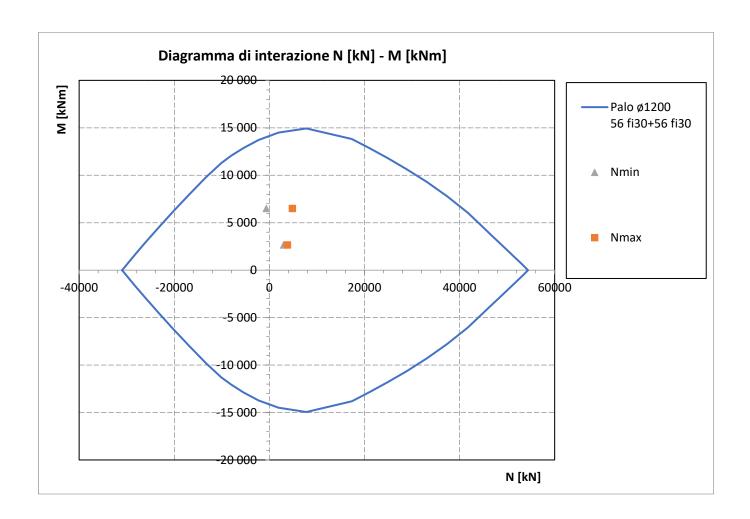
	Max N(kn)	Min N (kN)	V (kN)
SLE	2705	2088	625
SLS	3238	2064	769
SLU	3778	2986	925
SLV	4837	-678	2271
GEO	3250	2238	705

9.4 Verifiche strutturali pali di fondazione

Geometria dell'armatura

GEOMETRIA DELLA SEZIONE		
Diametro del palo =	1500	mm
Copriferro netto c =	60	mm
Classe di resistenza calcestruzzo =	C25/30	Мра
Classe di resistenza delle barre =	B450C	MPa
ARMATURA PER I PRIMI 10 Ø		
1° strato di armatura longitudinale		
Numero barre long.	56	-
Diametro eq. barre long.	30	mm
Copriferro baricentrico arm. long. c' =	89	mm
2° strato di armatura longitudinale		
Numero barre long.	28	-
Diametro barre long.	30	mm
Copriferro baricentrico arm. long. c' =	145	mm
Armatura trasversale		
Diametro barre trasv.	14	mm
Passo arm. trasv.	125	mm
Diametro corona esterna =	1366	mm
VERIFICA ARMATURA MINIMA LONG.		
r _{min} =	1.00%	
A _c =	1767146	mm ²
A _{s,min} =	17671	mm ²
Armatura long. tot A _{sd,tot} =	59376	mm ²
$r_{l} =$	3.36%	ok

<u>ARMATURA PER LA LUNGHEZZA RESTANTE</u>		
1° strato di armatura longitudinale		
Numero barre long.	28	-
Diametro barre long.	18	mm
Copriferro baricentrico arm. long. c' =	81	mm
Armatura trasversale		
Diametro barre trasv.	12	mm
Passo arm. trasv.	200	mm
Diametro corona esterna =	1368	mm
VERIFICA ARMATURA MINIMA LONG.		
$r_{min} =$	0.40%	
$A_c =$	1767146	mm ²
As,min =	7069	mm ²
Armatura long. tot A _{sd,tot} =	7125	mm ²
$r_t =$	0.40%	ok


	Armatura longitudinale							
	Gabbia 1		Gabbia 2		Gabbia 3		Gabbia 4	
	n.	Ø (mm)	n.	Ø (mm)	n.	Ø (mm)	n.	Ø (mm)
Spalla S1	56+56	30	28	30	-	-	-	-

9.4.1 Verifiche allo SLU

Presso-flessione

Sono riportate a seguire le verifiche SLU della sezione di sommità del palo maggiormente sollecitato, espresse in forma sintetica mediante il diagramma di interazione N – M.

La verifica è soddisfatta in quanto le coppie N-M delle sollecitazioni agenti nella sezione di verifica sono interne al dominio di resistenza per ogni condizione di carico indagata.

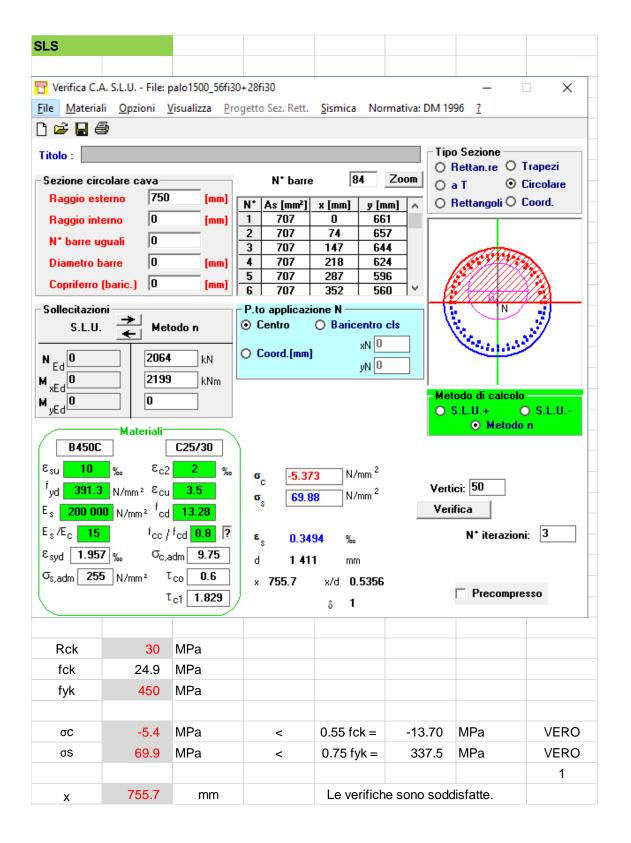
Taglio

/erifca a taglio per sezioni circolari armate a taglio (D.M. 14/01/2008)						
classe cls	R_{ck}	30	N/mm ²			
resist. Caratteristica cilindrica	f _{ck}	25	N/mm ²			
	f _{cd}	14	N/mm ²			
diametro	Ф	1500	mm			
Area sezione	Α	1767146	mm^2			
copriferro	С	80	mm			
Area sezione rettangolare equivalente	A_{eq}	1486983	mm^2			
altezza utile equivalente	d	1177	mm			
larghezza equivalente	b _w	1264	mm			
altezza equivalente	h _{eq}	1398	mm			
sforzo assiale dovuto ai carichi o precompressione	N	0	N			
	$\sigma_{\rm cp}$	0.000	N/mm ²			
	α _c	1.00				
Acciaio	f _{yk}	450	N/mm ²			
B450C	f _{yd}	391	N/mm ²			
diametro staffe (spille)	Ø _w	14	mm			
Area staffa (spilla)	Aø _w	154	mm ²			
0.9 d	Z	1059	mm			
passo spirale	S _w	125	mm			
раззо зрнию	n° bracci	2	111111			
angele di inglinazione bielle compresse	θ	21.8	0			
angolo di inclinazione biella compressa	-					
deve essere compreso tra 1 e 2.5	cot(θ)	2.50	0			
angolo di inclinazione armatura rispetto asse palo	α 4()	90	-			
	cot(α)	0.00	2.			
	As _w / s _w	2.46	mm²/mm			
Taglio resistente per "taglio trazione"	V_{Rsd}	2551	kN			
Taglio resistente per "taglio compressione"	V_{Rcd}	3256	kN			
taglio sollecitante	V _{Ed}	2271	kN			
fattore di sicurezza per GR (par. 7.9.5.2.2)			rsi vi			
taglio resistente	$\gamma_{ m Rd}$ V $_{ m Rd}$	1 2551	kN			
tagilo resistente	V _{Ed}	<	V _{Rd}			
	FS	1.12	verifica			

9.4.2 Verifiche allo SLE

Tensioni

La verifica SLE di tipo tensionale si effettua controllando che le massime tensioni normali agenti nella sezione risultino inferiori ai seguenti valori limite:


per le combinazioni SLE-RAR:

tensione limite nel calcestruzzo: σ_c = 0.55 f_{ck}
 tensione limite nelle barre: σ_s = 0.75 f_{yk}

per le combinazioni SLE-QPE:

• tensione limite nel calcestruzzo: $\sigma_c = 0.40 f_{ck}$

GEODATA INTEGRA RIA	RADDOPP II LOTTO F 1° LOTTO	ITINERARIO NAPOLI – BARI RADDOPPIO TRATTA CANCELLO-BENEVENTO II LOTTO FUNZIONALE FRASSO TELESINO – VITULANO 1° LOTTO FUNZIONALE FRASSO TELESINO – TELESE PROGETTO ESECUTIVO							
Spalla fissa S1: Relazione di calcolo	COMMESSA IF26	LOTTO 12 E ZZ	CODIFICA	DOCUMENTO VI0504 001	REV.	FOGLIO 103 di 104			

Fessurazione

La verifica SLE a fessurazione si effettua controllando che il massimo valore di apertura delle fessure risulti inferiore ai seguenti valori limite:

per le combinazioni SLE-RAR:

• apertura fessure limite: $w_{lim} = w_1 = 0.20 \text{ mm}$

INPUT			OUTPUT			
R _{ck}	30	Мра		diff. def. a		
h	1500	mm		ε _{sm} - ε _{cm}	2.20E-04	-
C ₁	89	mm		distanza n	nax fessure	
Ø ₁	30	mm		S _{r,max}	394	mm
n ₁	18.462			ampiezza	fessure:	
C ₂	145	mm		$\mathbf{w}_{\mathbf{k}}$	0.087	mm
Ø ₂	30	mm		W _{lim}	0.200	mm
n ₂	18.462			La verifica	a è soddisfat	ta.
d	1383	mm				
b _{eff}	54	mm				
x	755.7	mm				
σ _{s_max1}	70	Мра				
σ _{s_max2}	70	Мра				
$h_{c,eff}$	248	mm				
$A_{c,eff}$	13438	mm ²				
$ ho_{ m p,eff}$	0.105					
k _t	0.6					
k ₁	0.8					
k ₂	0.5					
k ₃	3.4					
k ₄	0.425					

10 INCIDENZE

Muri andatori 105 kg/mc Muro frontale 150 kg/mc Paraghiaia 200 kg/mc **Plinto** 150 kg/mc Pali 280 kg/mc 110 kg/mc Muro posteriore Bandiere 130 kg/mc 160 kg/mc Soletta superiore