

DIREZIONE CENTRALE PROGRAMMAZIONE PROGETTAZIONE

PA 12/09

CORRIDOIO PLURIMODALE TIRRENICO - NORD EUROPA
ITINERARIO AGRIGENTO - CALTANISSETTA - A19
S.S. N° 640 "DI PORTO EMPEDOCLE"
AMMODERNAMENTO E ADEGUAMENTO ALLA CAT. B DEL D.M. 5.11.2001
Dal km 44+000 allo svincolo con l'A19

PROGETTO ESECUTIVO

Contraente Generale:

GEOLOGIA E IDROGEOLOGIA RELAZIONI GEOLOGICHE Relazione Sismica

Codice Unico Progetto (CUP): F91B0900070001																				
Codice Elaborato:																				
PA12_09 - E 0 0 0 G E 2 0 8 G I 1 3 Z R H 0 0 1								A	 Scala:											
F																				
E																				
D																				
С																				_
В																				_
Α	Aprile 2011				EMISS	ION				М. С)'ANG	SELO	1	A.TUR	so	М	. LITI		P. PAGLINI	
REV.	REV. DATA DESCRIZIONE REDATTO VERIFICATO APPROVATO AUTORIZZATO																			
Respons	Responsabile del procedimento: Ing. MAURIZIO ARAMINI																			

Il Consulente Specialista: 5

Il Coordinatore per la sicurezza in fase di progetto:

INGROINE
INGROINE
INGROINE
ROMA
14853

Cod. elab.: GE208-GI12ZRH-001 _A	Titolo:	STUDIO SISMICO	Data: Aprile 2011		
Nome file: GE208-GI12ZRH-001 _A.doc	Re	Relazione Sismica			

INDICE

PREME	SSA	3
1. MA	CROSISMICITA' DELL'AREA	4
1.1	GENERALITÀ	4
1.2	ANALISI DELLA SISMICITÀ STORICA DEL TERRITORIO	4
1.2	.1. Settore orientale siciliano	4
1.2	.2. Settore occidentale siciliano	5
1.2	.3. Sismicità dell'area Nissena	6
1.3	PERICOLOSITÀ SISMICA	10
1.4	ANALISI DELLA NORMATIVA DI RIFERIMENTO E CONFRONTO CON LE PRECEDENTI	10
2. EL	ABORAZIONE DATI GEOFISICI	13
2.1	Prove SISMICA DOWN-HOLE (DH).	14
3. CA	RATTERIZZAZIONE SISMICA DELL'AREA	17
3.1	AZIONE SISMICA: GENERALITÀ	
3.2	PERICOLOSITÀ SISMICA DI BASE	18
3.3	CATEGORIA DEL SOTTOSUOLO	24
3.4	MONOGRAFIE SISMICHE OPERE D'ARTE	26

APPENDICI

APPENDICE 1 MONOGRAFIE OPERA D'ARTE

APPENDICE 2 SISMOSTRATIGRAFIE

ELENCO ALLEGATI CARTOGRAFICI

GE208GI12ZP4001÷3A PLANIMETRIA CON CLASSIFICAZIONE SISMICA DEL TERRITORIO (MACROZONAZIONE) – SCALA 1:10.000 – TAV. 1÷3

GE208GI12ZP5005÷13A PLANIMETRIA CON ZONIZZAZIONE SISMICA DEL TRACCIATO STRADALE (MICROZONAZIONE) – SCALA 1:5.000 – TAV. 1÷9

Cod. elab.: GE208-GI12ZRH-001 _A	Titolo:	STUDIO SISMICO	Data: Aprile 2011
Nome file: GE208-GI12ZRH-001 _A.doc	Re	lazione Sismica	Pagina 2 di 28

PREMESSA

Scopo della relazione sismica è lo studio relativo alla caratterizzazione sismica dell'area interessata dal progetto esecutivo di ammodernamento ed adeguamento alla Cat. B D.M. 5/11/2001 della S.S. 640 Agrigento – Caltanisetta tratto dal Km 44+1000 allo svincolo con l'autostrada A19. A tal fine è stato seguito quanto prescritto dal D.M. 14.01.2008 riguardante la definizione dei parametri sismici di progetto, per calcolare i quali, è stata condotta un'analisi dei dati geofisici sperimentali finalizzata alla stima della velocità di propagazione delle onde sismiche di taglio ed alla valutazione degli altri elementi che possono contribuire alla modifica del moto sismico in superficie (accelerazione sismica, caratteristiche stratigrafiche, condizione topografia, ecc.). Questo studio ha riguardato l'infrastruttura nella sua interezza, sebbene sia stata prestata particolare attenzione alle principali opere d'arte previste nel progetto dell'infrastruttura stessa.

Lo studio realizzato è stato articolato secondo il seguente schema concettuale:

<u>Macrosismicità</u>

- Analisi della sismicità storica del territorio:
- Analisi della Normativa di riferimento e confronto con le precedenti;
- Macrozonazione sismica: Pericolosità e Vulnerabilità;

Sismicità applicata al tracciato

- Elaborazione dati geofisici;
- Caratterizzazione sismica dell'area (D.M. 14/01/2008);
- Calcolo del parametro VS30;
- Monografie opere d'arte

Cod. elab.: GE208-GI12ZRH-001 _A	Titolo:	STUDIO SISMICO	Data: Aprile 2011
Nome file: GE208-GI12ZRH-001 _A.doc	Re	lazione Sismica	Pagina 3 di 28

1. MACROSISMICITA' DELL'AREA

1.1 GENERALITÀ

Il presente capitolo definisce il quadro macrosismico generale del territorio attraversato dall'asse stradale in progetto, nell'ottica di una complessiva macrozonazione sismica che abbia come fine ultimo la valutazione della pericolosità sismica, tanto in termini generali quanto in termini di singola opera d'arte da realizzare.

La pericolosità sismica del territorio definisce la probabilità statistica che si verifichi un evento tellurico di una data magnitudo, parametrizzata dalle serie storiche e statistiche, che viene definito come *terremoto di progetto*, la cui intensità, soprattutto in termini di danni attesi (Rischo – Vulnerabilità Sismica), è condizionata da locali fattori geologici, geomorfologici ed antropici, anch'essi parametrizzati in coefficienti progettuali introdotti dalla Normativa vigente (D.M. 14/01/2008).

1.2 ANALISI DELLA SISMICITÀ STORICA DEL TERRITORIO

Il territorio interessato da tale studio, ricade nel settore centro-meridionale dell'isola siciliana, in un contesto geostrutturale di *catena* a Falde *sovrapposte* legate alla genesi dell'orogene appenninico; in particolare, il territorio di stretto interesse risulta compreso nel settore mediano della "Falda di Gela" considerata, dall'attuale bibliografia scientifica, il fronte meridionale della catena siciliana.

In generale, si può affermare che la zona Nissena, strutturalmente, è compresa tra il settore occidentale e quello orientale dell'isola, le cui caratteristiche macrosismiche e tettonico-strutturali differenti definisco due "regioni sismogenetiche".

1.2.1. Settore orientale siciliano

In particolare il settore orientale si caratterizza per la presenza di macrostrutture sismicamente attive e ben differenziate: l'Avampaese Ibleo a SE; la Catena costiera a N; ed il massiccio etneo, ad ovest, attraversato da tre sistemi di faglie a direzione prevalente NW - SE, NE - SW ed E - W, che continuano nella catena costiera e che sono stati attivi fino al Pleistocene sup.

La regione costiera settentrionale risulta molto attiva con terremoti di **M** ≥ **7** e periodo di ritorno di circa 70 anni; la regione Iblea, Avampaese, anch'essa molto attiva, con terremoti aventi magnitudo comparabili o maggiori con periodi di ritorno più lunghi (300 a). La sismicità etnea, caratterizzata da magnitudo medio – basse, anche se con ipocentri relativamente poco profondi, non sembra avere un influenza diretta sui territori analizzati.

Cod. elab.: GE208-GI12ZRH-001 _A	Titolo:	STUDIO SISMICO	Data: Aprile 2011		
Nome file: GE208-GI12ZRH-001 _A.doc	Re	Relazione Sismica			

Oltre a tali aree "continentali" vanno considerati i settori ricadenti all'interno del bacino meridionale del Tirreno.

In termini di episodi parossistici, il settore orientale, si caratterizza per la frequenza di accadimento dei terremoti più significativi di tutta la regione (intensità massima **I** = **XI** MCS), tra i quali si ricordano gli eventi sismici del 1169 e 1693, che hanno provocato distruzione nell'area iblea e nel catenese e l'evento storicamente più vicino Messina 1908 (Fig. 1.1), con magnitudo 7.2 Richter e XI-XII Mercalli.



Figura 1.1 – Epicentro terremoto 1908

1.2.2. Settore occidentale siciliano

La sismicità della Sicilia occidentale e i dati di tettonica recente permettono di individuare, all'interno di tale macrosettore, delle "subzone" o aree caratterizzate da un differente comportamento sismotettonico.

In particolare, tra Palermo e Termini Imerese (Area Tirrenica) la sismicità potrebbe essere associata sia alle faglie trascorrenti del Sistema Sud - Tirrenico che alle strutture distensive responsabili del sollevamento della catena costiera.

La zona sismogenetica di Corleone si manifesta con sequenze sismiche di bassa energia. I pochi eventi conosciuti hanno aree di *avvertibilità* limitate che indicano strutture sismogenetiche superficiali.

La zona simogenetica del Belice, in cui sono localizzati gli eventi sismici del 1968, può relazionarsi sia con il proseguimento in terra della zona di trascorrenza presente nel Canale di Sicilia sia con

Cod. elab.: GE208-GI12ZRH-001 _A	Titolo:	STUDIO SISMICO	Data: Aprile 2011
Nome file: GE208-GI12ZRH-001 _A.doc	Re	lazione Sismica	Pagina 5 di 28

strutture di rotture lungo una rampa di thrust cieco al di sotto della sinclinale del Belice. I meccanismi focali proposti da vari autori mostrano soluzioni variabili da trascorrenti pure a transpressive a inverse pure, non permettendo di individuare specifiche strutture sismogenetiche.

Lungo la zona meridionale, la sismicità si manifesta con sequenze sismiche di bassa energia ma di lunga durata che interessano quasi esclusivamente Sciacca, talvolta in concomitanza con l'attività vulcanica del Canale di Sicilia.

La zona costiera Egadi – Trapani - Mazara, si caratterizza per la presenza di una sorgente associabile all'attività del *thrust* delle Egadi o delle faglie che lo dislocano. (Tab. 1.1; Fig. 1.2).

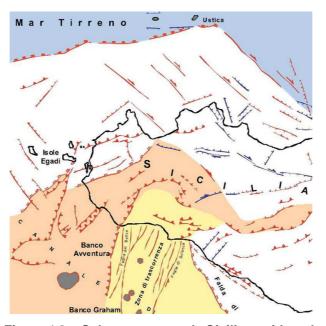


Figura 1.2 - Schema strutturale Sicilia occidentale

Nel Settore occidentale, sebbene gli eventi sismici siano caratterizzati da magnitudo minori rispetto a quello orientale, vanno ricordate le sequenze sismiche del 1968 che hanno prodotto ampie devastazioni (I= IX-X MCS) per il verificarsi di numerosi forti scosse nel giro di pochi giorni, riconoscendo pertanto l'area della Valle del Belice come sismica solo in seguito al verificarsi di tali eventi. Questo accade quando si hanno periodi sismici con forti terremoti, alternati a lunghi periodi di quiescenza (migliaia di anni).

1.2.3. Sismicità dell'area Nissena

Quanto sopra, definisce una macro area (Bacino di Caltanissetta) soggetta al "carico sismico" di diverse "regioni *sismogenetiche*" (Fig. 1.3) con terremoti diversi sia in termini focali che di sorgente, legati all'attiva tettonica regionale, e caratterizzati da elevate intensità e frequenze di accadimento variabili. Il territorio in esame quindi, non è da considerarsi come una regione *sismogenetica* (Tab.

Cod. elab.: GE208-GI12ZRH-001 _A	Titolo:	STUDIO SISMICO	Data: Aprile 2011	
Nome file: GE208-GI12ZRH-001 _A.doc	Re	Relazione Sismica		

1.1 - 1.2).

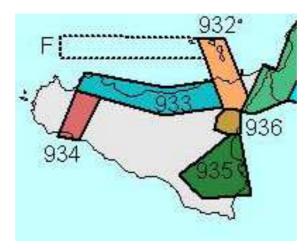


Figura 1.3 – Aree sismogenetiche siciliane (Zonizzazione Z69)

In particolare, nel Rapporto Conclusivo relativo alla redazione della mappa di Pericolosità sismica (**Ord. P.C.M. 3274** - 2003) è contenuta la zonizzazione sismogenetica del territorio italiano (Z69 – Fig. 8). Tale zonizzazione, condotta tramite analisi cinematica degli elementi geologici cenozoici e quaternari coinvolti nella dinamica delle strutture litosferiche profonde e della crosta superficiale ha definito, per l'area siciliana le seguenti aree sismogenetiche (Fig. 1.3 – Tab. 1.1):

- 936 Etna, sismicità associata a fagliazione superficiale e all'attenuazione del moto del suolo tipica di un ambiente vulcanico;
- **935 Iblei**, settore direttamente legato alla scarpata ibleo maltese ed alle maggiori linee di discontinuità come la Scicli Ragusa, responsabile dell'evento sismico del 1693.
- 934 Belice, i caratteri sismo genetici di tale zona riconducibili all'unica e grande sequenza sismica del gennaio 1968 nell'area del Belice;
- 933 Sicilia Settentrionale, tale zona è comunemente ritenuta avere carattere prevalentemente trascorrente (Linea M.te Kumeta Alcantara). In questa zona i principali eventi sismici sembrano essere localizzati sulla costa e pertanto la sismicità andrebbe attribuita alla ZS F, molto superiore al quella della costa siciliana settentrionale e del suo immediato offshore;
- 932 Eolie Patti, area definita sulla scorta esclusiva di esplorazioni geofisiche profonde e legata ad una zona di "svincolo" con arretramento del dell'arco calabro e delle strutture sintetiche che segmentano il golfo di Patti

Cod. elab.: GE208-GI12ZRH-001 _A	Titolo:	STUDIO SISMICO	Data: Aprile 2011
Nome file: GE208-GI12ZRH-001 _A.doc	Re	lazione Sismica	Pagina 7 di 28

Zona	N. eventi Md≥2.0	N. eventi Md≥2.5	N. eventi Md≥3.0	Magnitudo Md Max	Classe di Profondità	Profondità efficace (Km)
932	277	194	55	6.14	12 - 20	13
933	413	162	44	6.14	8 - 12	10
934	8	6	3	6.14	8 - 12	10
935	43	34	6	7.29	12 - 20	13
936	374	283	67	5.45	1 - 5	3

Tabella 1.1 - Sintesi aree sismogenetiche

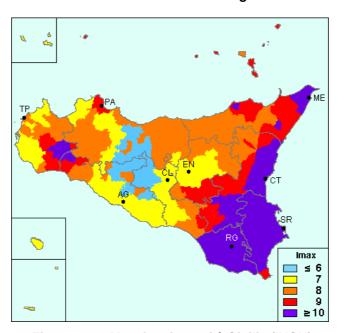


Figura 1.4 – Massima intensità Sicilia (INGV)

Per l'area nissena le seguenti tabelle (Tab. 1.2 - 1.3) sintetizzano gli eventi sismici di maggiore entità.

Comune	Lat	Lon	I max
ACQUAVIVA PLATANI	37.57153	13.70284	≤ 6
BOMPENSIERE	37.47221	13.78185	≤ 6
BUTERA	37.18796	14.18390	7
CALTANISSETTA	37.51104	13.71363	≤ 6
CAMPOFRANCO	37.51104	13.71363	≤ 6
DELIA	37.35699	13.92736	≤ 6

Cod. elab.: GE208-GI12ZRH-001 _A	Titolo:	STUDIO SISMICO	Data: Aprile 2011		
Nome file: GE208-GI12ZRH-001_A.doc	Re	lazione Sismica	Pagina 8 di 28		

GELA	37.07099 14.24023 8
MARIANOPOLI	37.59787 13.91538 ≤ 6
MAZZARINO	37.30464 14.21694 8
MILENA	37.47063 13.73563 ≤ 6
MONTEDORO	37.45418 13.81548 ≤ 6
MUSSOMELI	37.57784 13.75336 ≤ 6
NISCEMI	37.14689 14.38920 9
RESUTTANO	37.67917 14.02999 8
RIESI	37.28233 14.08321 7
SAN CATALDO	37.48483 13.98916 ≤ 6
SANTA CATERINA VILLARMOSA	37.58988 14.03174 7
SERRADIFALCO	37.45610 13.88141 ≤ 6
SOMMATINO	37.33304 13.99246 7
SUTERA	37.52377 13.73314 ≤ 6
VALLELUNGA PRATAMENO	37.68243 13.83084 ≤ 6
VILLALBA	37.65352 13.84343 ≤ 6

Tabella 1.2 - Massime intensità macrosismiche osservate nella provincia di Caltanissetta (http://emidius.mi.ingv.it)

Data Anno	Effetti Is (MCS)	Epicentro	lx	Ms
1908	60	CALABRO MESSINESE	110	73
1823	50	SICILIA N. OCC.LE	85	59
1959	50	PIANA DI CATANIA	65	47
1968	50	VALLE DEL BELICE	100	59
1967	45	SPERLINGA	80	51
1848	30	AUGUSTA	85	55
1978	30	GOLFO DI PATTI	80	61
1934	20	MADONIE	65	46
1818	NF	MADONIE	75	52
1819	NF	CASTELBUONO	75	52
1977	NF	MISTRETTA	65	40
1980	NF	MODICA	55	40

Tabella 1.3 - Osservazioni sismiche disponibili per Caltanissetta (http://emidius.mi.ingv.it)

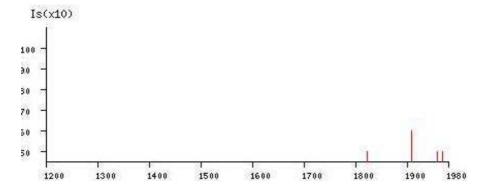


Figura 1.5 – Storia sismica di Caltanissetta (http://emidius.mi.ingv.it)

Cod. elab.: GE208-GI12ZRH-001 _A	Titolo:	STUDIO SISMICO	Data: Aprile 2011
Nome file: GE208-GI12ZRH-001 _A.doc	Re	lazione Sismica	Pagina 9 di 28

1.3 PERICOLOSITÀ SISMICA

La pericolosità sismica di un territorio, come anticipato sopra, è rappresentata dalla **frequenza** e dalla **forza** dei **terremoti** che lo interessano, ovvero dalla sua **sismicità**, **diretta o indiretta**.

In particolare, il parametro di cui si è tenuto conto, anche nella successiva Normativa Sismica (D.M. 14/01/08 e s.m.i. vedi succesivi paragrafi), tiene conto dell'accelerazione massima (\mathbf{a}_{max}) con probabilità di superamento del 10% in 50 anni.

Il tracciato in oggetto ricade del tutto tra le classi $3 \div 5$, cui corrispondono valori di accelerazione massima (a_{max}) $0.050 \div 0.125$ calcolati su un suolo di riferimento di tipo **A**.

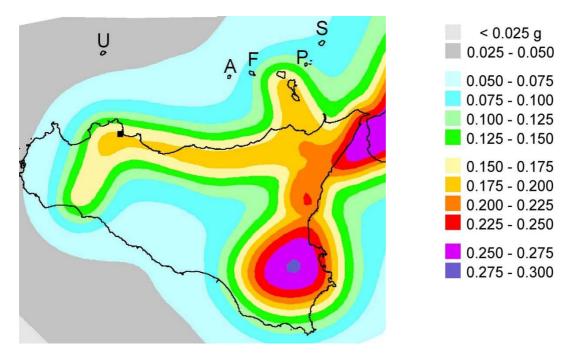


Figura 1.6 – Pericolosità sismica, 50° percentile a _{max} con probabilità di superamento del 10% in 50 anni

1.4 ANALISI DELLA NORMATIVA DI RIFERIMENTO E CONFRONTO CON LE PRECEDENTI

Sulla scorta di tali informazioni ed alla luce di quanto previsto dal **D.M. LL.PP. 23/09/82** il territorio Nisseno era inserito, ad eccezione di tre comuni, tra le zone non classificate sismiche (**N.C.**); la successiva **Ord. P.C.M. 3274** (2003) recepita, in Sicilia, attraverso il **Decreto Regione Siciliana del 15/01/04** recante la "*Nuova Classificazione Sismica della Regione Siciliana*", pubblicato nella G.U.R.S. del 13/02/04, n. 7 Parte I, classificava il territorio in prevalente **Zona 4**, ad eccezione di alcuni comuni, cui sono stati successivamente associati i valori di accelerazione (**a**_{max}) per suoli di tipo **A**, alla luce dell'**Ord. P.C.M. 3519** "*Criteri generali per l'individuazione delle zone sismiche* e

Cod. elab.: GE208-GI12ZRH-001 _A	Titolo:	STUDIO SISMICO	Data: Aprile 2011
Nome file: GE208-GI12ZRH-001 _A.doc	Relazione Sismica		Pagina 10 di 28

per la formazione e l'aggiornamento degli elenchi delle medesime zone" (Fig. 1.7, Tabb. 1.4 – 1.5 – 1.6).

	Classificazione sismica (decreti fino al 1984)	Ord. P.C.M. n°3274 del 20/03/03	Classificazione sismica Regione Sicilia (G.U.R.S. del 13/02/04, n. 7 - I)
Acquaviva Platani	N.C.	4	4
Bompensiere	N.C.	4	4
Butera	N.C.	3	3
Caltanissetta	N.C.	4	4
Campofranco	N.C.	4	4
Delia	N.C.	4	4
Gela	II	2	2
Marianopoli	N.C.	4	4
Mazzarino	N.C.	3	3
Milena	N.C.	4	4
Montedoro	N.C.	4	4
Mussomeli	N.C.	4	4
Niscemi	II	2	2
Resuttano	II	3	2
Riesi	N.C.	3	3
San Cataldo	N.C.	4	4
S. C. Villarmosa	N.C.	3	2
Serradifalco	N.C.	4	4
Sommatino	N.C.	4	4
Sutera	N.C.	4	4
Vallelunga Pratameno	N.C.	4	4
Villalba	N.C.	4	4

Tabella 1.4 - Classificazione sismica Provincia di Caltanissetta (Legislazione a partire dal '84)

Sismicità alta S = 12 0.10 a	/ 100 g
5.25 d	- 2 a/
Sismicità media S = 9 0.07 a	S II
Sismicità bassa S = 6 0.04 a	II
N.C.	O

Tabella 1.5 - Grado di Sismicità e relativo Coefficiente

Cod. elab.: GE208-GI12ZRH-001 _A	Titolo:	STUDIO SISMICO	Data: Aprile 2011
Nome file: GE208-GI12ZRH-001_A.doc	Re	elazione Sismica	Pagina 11 di 28

ZONA	Accelerazione con probabilità di	Accelerazione orizzontale max convenzionale
	superamento pari al 10% in 50 anni	di ancoraggio dello spettro di risposta elastico
	(\mathbf{a}_{g})	(a_g)
1	$0.25 < \mathbf{a_g} \le 0.35 \ \mathbf{g}$	0.35 g
2	$0.15 < \mathbf{a_g} \le 0.25 \mathbf{g}$	0.25 g
3	$0.05 < \mathbf{a_g} \le 0.15 \ \mathbf{g}$	0.15 g
4	≤ 0.05 g	0.05 g

Tabella 1.6 – Accelerazione al suolo (Ord. P.C.M. 3519 - G.U. 11/05/2006 n. 108)

Figura 1.7 – Classificazione sismica regione Sicilia

Comune	Classificazione sismica Regione Sicilia (G.U.R.S. del 13/02/04. n.
Caltanissetta	4
Serradifalco (CI)	4
Corfidato - Enna	2
S. C. Villarmosa (CI)	2
Villarosa (En)	3

Tabella 1.7 - Classificazione sismica dell'intero tracciato del Lotto 2 della SS 640

Cod. elab.: GE208-GI12ZRH-001 _A	Titolo:	STUDIO SISMICO	Data: Aprile 2011
Nome file: GE208-GI12ZRH-001 _A.doc	Relazione Sismica		Pagina 12 di 28

2. ELABORAZIONE DATI GEOFISICI

Nell'ambito dei lavori di indagini geognostiche a supporto della caratterizzazione stratigrafica e della parametrizzazione geotecnica è stata eseguita una campagna di prospezioni geofisiche mirata alla conoscenza della velocità di propagazione delle onde sismiche di compressione e di taglio dei terreni interessati dall'opera in progetto. Tali prove sono state eseguite principalmente nei siti interessati dalle opere d'arte e lungo la tratta in progetto.

Le prove geofisiche effettuate sono state tutte del tipo attivo e sono state eseguite sia nella precedente campagna di indagini del 2006 (Indagini eseguite dalla Geoservice s.r.l.) e sia nella campagna sismica e geognostica del 2010 (Indagini eseguite dalla Geolab nella I fase e da Sidercem nella II fase)). Le indagini utilizzate per redigere il presente studio sono state le seguenti:

- prove sismiche in foro metodo down_hole (DH Campagna 2010);
- prospezioni sismiche basate sulla propagazione di onde superficiali di Rayleigh (surface wave method – SWM) di tipo passivo (MAM).

I valori delle velocità delle onde sismiche sono stati elaborati con l'obiettivo di definire il parametro VS30 allo scopo di individuare la categoria del sottosuolo, secondo quanto previsto dal D.M. 14.01.08. Detto decreto, infatti, raccomanda di eseguire la misura diretta della velocità di propagazione delle onde sismiche di taglio fino a trenta metri di profondità a partire dal piano di posa delle fondazioni superficiali (fondazioni dirette) o dalla profondità della testa del palo (fondazioni profonde).

Nel caso oggetto di studio la misura diretta delle onde di taglio ha riguardato solo le principali opere d'arte (prove Down_hole), mentre nel resto del tracciato sono state eseguite numerose prove sismiche a rifrazione con determinazione della velocità delle onde P.

Al fine di poter avere una stima più estesa possibile del parametro VS30, anche per le aree prive di prove geofisiche, sono state elaborate le prove DH per definire una sismostratigrafia in cui ciascuno dei sismostrati è caratterizzato da valori medi di Vp, Vs, Vp/Vs, dal Coefficiente di Poisson e dai moduli elasto-dinamici. Ciò ha infatti consentito di assegnare il valore della velocità di propagazione delle onde di taglio alle sequenze stratigrafiche ricavate dai sondaggi geognostici, non altrimenti interpretabili in chiave VS30.

Cod. elab.: GE208-GI12ZRH-001 _A	Titolo:	STUDIO SISMICO	Data: Aprile 2011
Nome file: GE208-GI12ZRH-001 _A.doc	Relazione Sismica		Pagina 13 di 28

2.1 Prove sismica Down-Hole (DH).

Le prove sono state realizzate principalmente nei siti interessati dalle opere d'arte Nella tabella che segue si riporta la denominazione e la profondità raggiunta.

Denominazione Prova	Profondità raggiunta	Passo lettura
DH-S1	30	1
DH-S3	30	1
DH-S7	30	1
DH-S11	30	1
DH-S14	30	1
DH-S16	30	1
DH-S17	30	1
DH-S19	30	1
DH-S22	30	1

Tabella 2.1 - Prove sismiche DH

Sulla base dei dati forniti, si può affermare che complessivamente la prove sismica ha interessato terreni di natura prevalentemente limo-argillosa (LA) ed argille marnose (AM) con diverso grado di consistenza. La porzione superficiale è generalmente costituita da terreno agrario (TLA). L'analisi sismostratigrafica è stata condotta confrontando gli intervalli omogenei di velocità e la stratigrafia riscontrata nel medesimo intervallo. In seguito a tale confronto è stato possibile definire le verticali di misura DH in sismostrati ciascuno caratterizzato dai valori sismici riportati nella tabella che segue:

Sismostrato	Kg/m³	Vp (m/s)	Vs (m/s)	Vp/Vs	Coeff. di Poisson	Modulo di taglio (N/m²)	Modulo di Young (N/m²)	Modulo di incompress ibilità (N/m²)
	DH_S1							
TLA	1700	1591	227	7.00	0.49	8.80E+07	2.62E+08	4.19E+09
LA	1800	1343	404	3.33	0.44	2.98E+08	8.58E+08	2.92E+09
AM	1900	1473	488	3.02	0.44	4.52E+08	1.30E+09	3.52E+09
	DH_S3							
TLA	1700	961	251	3.83	0.46	1.07E+08	3.13E+08	1.43E+09
LA	1800	2538	335	7.58	0.49	1.97E+08	5.86E+08	1.08E+10
AM	1900	2923	355	8.22	0.49	2.40E+08	7.17E+08	1.59E+10

Cod. elab.: GE208-GI12ZRH-001 _A	Titolo:	STUDIO SISMICO	Data: Aprile 2011
Nome file: GE208-GI12ZRH-001 _A.doc	Relazione Sismica		Pagina 14 di 28

Sismostrato	Kg/m³	Vp (m/s)	Vs (m/s)	Vp/Vs	Coeff. di Poisson	Modulo di taglio (N/m²)	Modulo di Young (N/m²)	Modulo di incompress ibilità (N/m²)
				DH_	_S7			
TLA	1700	996	214	4.66	0.48	7.77E+07	2.29E+08	1.58E+09
LA	1800	1190	231	5.15	0.48	9.38E+07	2.78E+08	2.36E+09
AM	1900	2125	421	5.05	0.48	3.35E+08	9.90E+08	8.10E+09
				DH_	S11			
TLA	1700	785	165	4.74	0.48	4.65E+07	1.37E+08	9.86E+08
LA	1800	1754	204	8.60	0.49	7.66E+07	2.28E+08	5.43E+09
AM	1900	2339	355	6.60	0.49	2.36E+08	7.01E+08	1.00E+10
				DH_	S14			
LA	1700	793	182	4.35	0.47	5.65E+07	1.66E+08	9.96E+08
AM	1900	2613	393	6.65	0.49	2.84E+08	8.46E+08	1.23E+10
				DH_	S16			
TLA	1700	450	203	2.21	0.37	7.03E+07	1.93E+08	2.50E+08
LA	1800	1128	320	3.52	0.45	1.78E+08	5.18E+08	2.09E+09
AM	1900	1911	352	5.42	0.48	2.34E+08	6.93E+08	6.50E+09
				DH_	S17			
TLA	1700	766	159	4.80	0.48	4.32E+07	1.28E+08	9.42E+08
LA	1800	1755	408	4.30	0.47	3.02E+08	8.88E+08	5.18E+09
AM	1900	1941	421	4.62	0.48	3.36E+08	9.92E+08	6.71E+09
	DH_S19							
TLA	1700	981	147	6.69	0.49	3.66E+07	1.09E+08	1.59E+09
AM	1900	1653	435	3.80	0.46	3.54E+08	1.03E+09	4.57E+09
				DH_	S22			
LA	1700	1237	269	4.59	0.47	1.27E+08	3.75E+08	2.53E+09
AM	1900	1878	439	4.28	0.47	3.67E+08	1.08E+09	6.13E+09

Tabella 3.2- Prove sismiche DH

Da tale analisi scaturisce la tabella di seguito riporta nella quale sono indicati i valori medi di velocità (onde P e S) del Coefficiente di Poisson e del rapporto Vp/Vs.

I suddetti valori sono stati poi utilizzati per la interpretazione sismostratigrafia dei sondaggi geognostici.

Cod. elab.: GE208-GI12ZRH-001 _A	Titolo:	STUDIO SISMICO	Data: Aprile 2011
Nome file: GE208-GI12ZRH-001 _A.doc	R	elazione Sismica	Pagina 15 di 28

	Valori medi				
Sismostratigrafia	Vp (m/sec)	Vs (m/sec)	Vp/Vs	σ	
Terreno vegetale ed argille alterate di superficie (TLA)	951.1	201.9	4.8	0.466	
Limi argillosi (LA)	1703.6	334.2	5.5	0.468	
Argilla marnosa (AM)	2095.1	406.6	5.3	0.476	

Tabella 2.3- Sismostratigrafia complessiva

Cod. elab.: GE208-GI12ZRH-001 _A	Titolo:	STUDIO SISMICO	Data: Aprile 2011
Nome file: GE208-GI12ZRH-001 _A.doc	Relazione Sismica		Pagina 16 di 28

3. CARATTERIZZAZIONE SISMICA DELL'AREA

Nel presente paragrafo viene affrontata la caratterizzazione sismica del territorio interessato dall'opera in progetto, così come previsto dal D.M.14.01.2008.

Dati gli *Stati Limiti di Esercizio*, la *Vita nominale dell'opera* (Vn), la *Classe d'Uso dell'opera, il Coefficiente d'Uso dell'opera ed il Periodo di Ritorno* (Tr) di un dato evento sismico, lo studio è stato rivolto a definire i valori di accelerazione sismica attesa a_g , i coefficienti F_0 e T^*c ed il parametro VS30 relativo all'attribuzione della *categoria di sottosuolo*.

3.1 AZIONE SISMICA: GENERALITÀ

L'azione sismica sulle strutture è generata dal moto non uniforme del terreno di sedime per effetto del passaggio delle onde sismiche. Il moto sismico eccita la struttura provocandone la risposta dinamica, che va verificata e controllata tanto negli aspetti di sicurezza quanto nelle prestazioni attese. In particolare, riprendendo quanto previsto dalla Norma Tecnica, le **azioni sismiche di progetto** si definiscono a partire dalla "**pericolosità sismica di base**" del sito di costruzione. La **pericolosità sismica** è definita in termini di **accelerazione orizzontale massima attesa a**_g (Tab. 10) in condizioni di campo libero su sito di riferimento rigido con superficie orizzontale (Cat. **A**) nonché di **ordinate dello spettro di risposta elastico in accelerazione** ad essa corrispondente **S**_e (**T**), con riferimento a prefissate **probabilità di eccedenza P**_{VR}, come definite nel § 3.2.1, nel **periodo di riferimento V**_R, come definito nel § 2.4.

Di seguito si definisce l'azione sismica per il sito, mediante l'uso di spettri di risposta elastici, che rappresentano il modello di riferimento per la descrizione del moto sismico in un punto specifico della superficie del suolo. La normativa in vigore fa riferimento a diversi stati limite, esercizio e ultimi, che sono individuati riferendosi alle prestazioni della costruzione nel suo complesso, includendo gli elementi strutturali, quelli non strutturali e gli impianti.

Gli **Stati Limite di esercizio** sono:

- <u>Stato Limite di Operatività</u> (SLO): a seguito del terremoto la costruzione nel suo complesso, includendo gli elementi strutturali, quelli non strutturali, le apparecchiature rilevanti alla sua funzione, non deve subire danni e interruzioni d'uso significative;
- <u>Stato Limite di Danno</u> (**SLD**): a seguito del terremoto la costruzione nel suo complesso, includendo gli elementi strutturali, quelli non strutturali, le apparecchiature rilevanti alla sua funzione, subisce danni tali da non mettere a rischio gli utenti e da non compromettere

Cod. elab.: GE208-GI12ZRH-001 _A	Titolo:	STUDIO SISMICO	Data: Aprile 2011
Nome file: GE208-GI12ZRH-001 _A.doc	Relazione Sismica		Pagina 17 di 28

significativamente la capacità di resistenza e di rigidezza nei confronti delle azioni verticali ed orizzontali, mantenendosi immediatamente utilizzabile pur nell'interruzione d'uso di parte delle apparecchiature.

Gli Stati Limite ultimi sono:

- <u>Stato Limite di salvaguardia della Vita</u> (SLV): a seguito del terremoto la costruzione subisce
 rotture e crolli dei componenti non strutturali ed impiantistici e significativi danni dei
 componenti strutturali, cui si associa una perdita significativa di rigidezza nei confronti delle
 azioni orizzontali; la costruzione conserva invece una parte della resistenza e rigidezza per
 azioni verticali e un margine di sicurezza nei confronti del collasso per azioni sismiche
 orizzontali;
- <u>Stato Limite di prevenzione del Collasso</u> (SLC): a seguito del terremoto la costruzione subisce gravi rotture e crolli dei componenti non strutturali ed impiantistici e danni molto gravi dei componenti strutturali; la costruzione conserva ancora un margine di sicurezza per azioni verticali ed un esiguo margine di sicurezza nei confronti del collasso per azioni orizzontali.

Le probabilità di superamento nel periodo di riferimento P_{VR} , in relazione all'sismica in ciascuno stato limite considerato, è riportata nella tabella seguente:

Stati Limite		P_{VR} : Probabilità di superamento nel periodo di riferimento V_R
Stati limite d'esercizio	SLO	81 %
Otati iiiiiite d 636161210	SLD	63 %
Stati limite ultimi	SLV	10 %
Otali iiiiilio aitiiiii	SLC	5 %

Tabella 3.1 - Probabilità di superamento nel periodo di riferimento P_{VR}

3.2 PERICOLOSITÀ SISMICA DI BASE

Relativamente a quanto previsto dalle Norme Tecniche per le Costruzioni (NTC) contenute nel D.M. 14.01.2008, la pericolosità sismica di base viene determinata attraverso sia valori di accelerazione sismica attesi al sito e riferiti in condizioni ideali di sito rigido con superficie topografica orizzontale (T=1), sia attraverso il periodo di ritorno di un dato evento sismico.

Cod. elab.: GE208-GI12ZRH-001 _A	Titolo:	STUDIO SISMICO	Data: Aprile 2011
Nome file: GE208-GI12ZRH-001 _A.doc	I	Relazione Sismica	Pagina 18 di 28

Le norme NTC introducono il concetto di nodo di riferimento di un reticolo composto da 10751 punti in cui è stato suddiviso il territorio nazionale. Le stesse NTC forniscono, per ciascun punto del reticolo e per ciascuno dei periodi di ritorno (Tr) considerati dalla pericolosità sismica, tre parametri:

ag= accelerazione massima al sito (g/10):

F0 = valore massimo del fattore di amplificazione dello spettro in accelerazione orizzontale;

T*c= periodo di inizio del tratto a velocità costante dello spettro in accelerazione.

Nella tabella 3 vengono riportati i parametri sismici (ag, Fo e T*c) prescritti dalla norma relativi ai nodi del reticolo, tenuto conto della Vita nominale dell'opera (Vn), della Classe d'Uso dell'opera, del Coefficiente d'uso, del Tempo di ritorno (Tr) ed degli stati limiti di esercizio. I suddetti parametri si riferiscono ai limiti estremi del tracciato che si sviluppa dalla progressiva Km 0+000 alla progressiva Km 27+861. Di seguito si riportano i grafici relativi ai parametri sismici applicabili lungo il tracciato per i diversi stati limite.

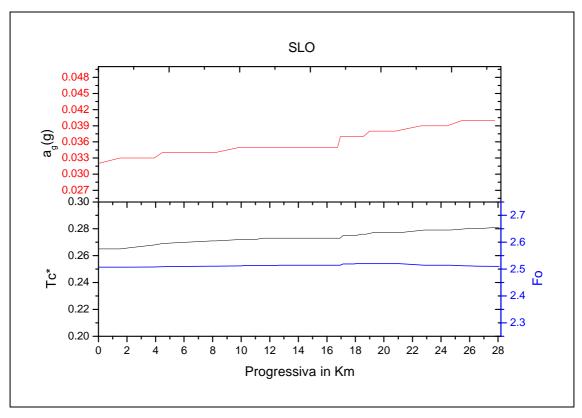


Figura 3.1 – Grafico variazione dei parametri sismici lungo il tracciato SLO

Cod. elab.: GE208-GI12ZRH-001 _A	Titolo:	STUDIO SISMICO	Data: Aprile 2011
Nome file: GE208-GI12ZRH-001 _A.doc	Relazione Sismica		Pagina 19 di 28

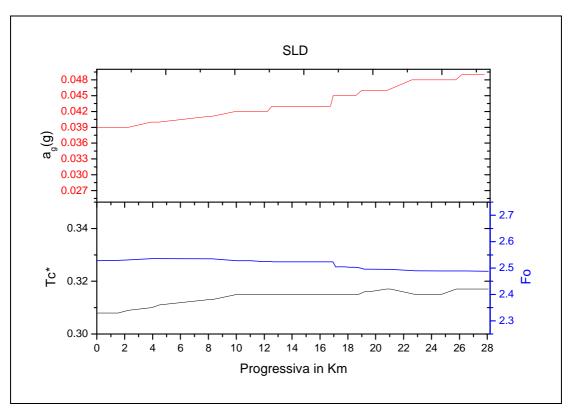


Figura 3.2 – Grafico variazione dei parametri sismici lungo il tracciato SLD

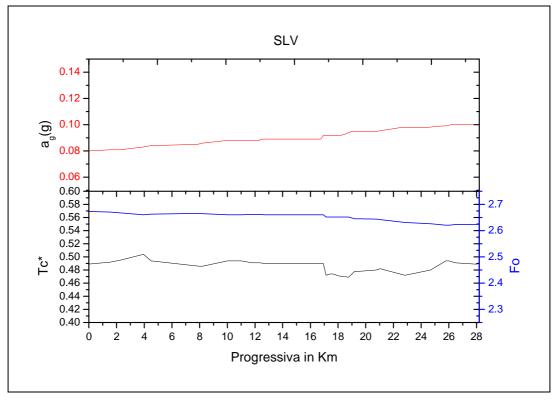


Figura 3.3 – Grafico variazione dei parametri sismici lungo il tracciato SLV

Cod. elab.: GE208-GI12ZRH-001 _A	Titolo:	STUDIO SISMICO	Data: Aprile 2011
Nome file: GE208-GI12ZRH-001 _A.doc	Relazione Sismica		Pagina 20 di 28

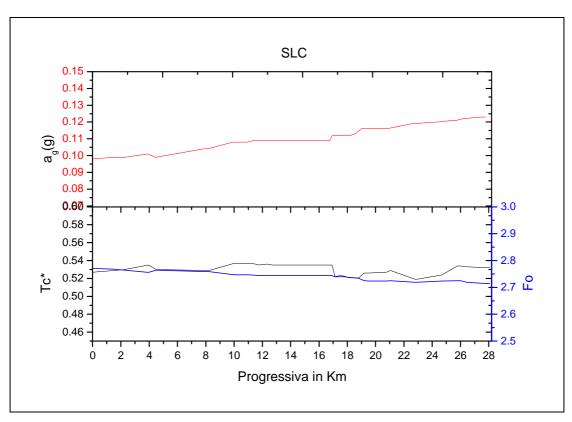


Figura 3.4 – Grafico variazione dei parametri sismici lungo il tracciato SLC

Cod. elab.: GE208-GI12ZRH-001 _A	Titolo:	STUDIO SISMICO	Data: Aprile 2011
Nome file: GE208-GI12ZRH-001 _A.doc	Relazione Sismica		Pagina 21 di 28

Corridoio Plurimodale Tirrenico - Nord Europa / Itinerario Agrigento – Caltanissetta - A19 / S.S. n° 640 "di Porto Empedocle" Ammodernamento e adeguamento alla Cat. B del D.M. 5.11.2001 dal km 44+000 allo svincolo con l'A19 PROGETTO ESECUTIVO

Vita nominale V _N (anni)	Classe d'uso	Coefficiente d'uso	Periodo di riferimento per l'azione sismica V_R (anni)		
50	IV	2	100		
SLO	0	SL	D	SLV	

	30		1 V				10	-				
Progressive		SLO			SLD			SLV			SLC	
Km	ag(g)	F0	Tc*									
0	0,032	2,507	0,265	0,039	2,528	0,308	0,08	2,673	0,489	0,098	2,771	0,527
1+52	0,033	2,507	0,265	0,039	2,529	0,308	0,081	2,671	0,492	0,099	2,768	0,529
2+25	0,033	2,507	0,266	0,039	2,531	0,309	0,081	2,668	0,495	0,099	2,756	0,53
3+94	0,033	2,508	0,268	0,04	2,531	0,31	0,083	2,661	0,504	0,101	2,764	0,535
4+5	0,034	2,509	0,269	0,04	2,536	0,311	0,084	2,663	0,494	0,099	2,764	0,53
7+94	0,034	2,511	0,271	0,041	2,535	0,313	0,085	2,666	0,486	0,104	2,759	0,529
8+22	0,034	2511	0,271	0,041	2535	0,313	0,086	2665	0,486	0,104	2759	0,529
10+02	0,035	2,512	0,272	0,042	2,528	0,315	0,088	2,661	0,494	0,108	2,747	0,537
10+2	0,035	2513	0,272	0,042	2528	0,315	0,088	2661	0,494	0,108	2747	0,537
11+02	0,035	2513	0,272	0,042	2528	0,315	0,088	2661	0,494	0,108	2747	0,537
11+52	0,035	2513	0,273	0,042	2526	0,315	0,088	2662	0,492	0,109	2745	0,536
11+76	0,035	2,513	0,273	0,042	2,525	0,315	0,088	2,662	0,491	0,109	2,744	0,535
12+355	0,035	2,513	0,273	0,042	2,525	0,315	0,088	2,662	0,491	0,109	2,744	0,536
12+68	0,035	2514	0,273	0,043	2524	0,315	0,089	2661	0,49	0,109	2744	0,535
16+93	0,035	2514	0,273	0,043	2524	0,315	0,089	2661	0,49	0,109	2744	0,535
17+135	0,037	2,519	0,275	0,045	2,504	0,315	0,092	2,652	0,472	0,112	2,739	0,522
17+405	0,037	2,519	0,275	0,045	2,505	0,315	0,092	2,652	0,474	0,112	2,74	0,523
17+64	0,037	2,519	0,275	0,045	2,505	0,315	0,092	2,652	0,474	0,112	2,74	0,523
17+92	0,037	2,519	0,275	0,045	2,504	0,315	0,092	2,652	0,472	0,112	2,739	0,522
18+05	0,037	2,52	0,275	0,045	2,503	0,315	0,092	2,652	0,471	0,112	2,737	0,521
18+415	0,037	2,52	0,276	0,045	2,503	0,315	0,092	2,652	0,47	0,112	2,736	0,521
18+755	0,037	2,52	0,276	0,045	2,502	0,315	0,093	2,652	0,469	0,113	2,735	0,52
19+195	0,038	2,52	0,277	0,046	2,496	0,316	0,095	2,645	0,478	0,116	2,725	0,526
19+54	0,038	2,52	0,277	0,046	2496	0,316	0,095	2645	0,478	0,116	2724	0,526

Cod. elab.: GE208-GI12ZRH-001 _A	Titolo:	STUDIO SISMICO	Data: Aprile 2011
Nome file: GE208-GI12ZRH-001 _A.doc	Relazione Sismica		Pagina 22 di 28

Corridoio Plurimodale Tirrenico - Nord Europa / Itinerario Agrigento – Caltanissetta - A19 / S.S. n° 640 "di Porto Empedocle" Ammodernamento e adeguamento alla Cat. B del D.M. 5.11.2001 dal km 44+000 allo svincolo con l'A19 PROGETTO ESECUTIVO

20+765	0,038	2,52	0,277	0,046	2,495	0,317	0,095	2,644	0,48	0,116	2,724	0,527
21+04	0,038	2,52	0,277	0,046	2,495	0,317	0,095	2,642	0,482	0,116	2,725	0,529
Progressive		SLO			SLD			SLV			SLC	
22+83	0,039	2,514	0,279	0,048	2,49	0,315	0,098	2,631	0,472	0,119	2,719	0,519
24+68	0,039	2,514	0,279	0,048	2,489	0,315	0,098	2,626	0,48	0,12	2,724	0,524
25+775	0,04	2,512	0,28	0,048	2,489	0,317	0,099	2,621	0,494	0,121	2,725	0,534
26+01	0,04	2,512	0,28	0,048	2,489	0,317	0,099	2,621	0,494	0,121	2,725	0,534
26+46	0,04	2511	0,28	0,049	2489	0,317	0,1	2623	0,491	0,122	2719	0,533
27+87	0,04	2,51	0,281	0,049	2,488	0,317	0,1	2,624	0,489	0,123	2,714	0,532
28+08	0,04	2,51	0,281	0,049	2,488	0,317	0,1	2,624	0,489	0,123	2,714	0,532

Tabella 3.2 - Parametri sismici limiti area di progetto

Cod. elab.: GE208-GI12ZRH-001 _A	Titolo:	STUDIO SISMICO	Data: Aprile 2011
Nome file: GE208-GI12ZRH-001 _A.doc	Relazione Sismica		Pagina 23 di 28

3.3 CATEGORIA DEL SOTTOSUOLO

La nuova normativa sismica italiana OPCM, così come il nuovo DM 14/01/2008 definiscono l'azione sismica di progetto, in assenza di analisi specifiche, sulla base della zona sismica di appartenenza del sito e la categoria sismica di suolo su cui sarà realizzata l'opera. La norma suddivide il territorio nazionale fino in 4 zone sismiche, contraddistinte dal valore a_g dell'accelerazione di picco al suolo, normalizzata rispetto all'accelerazione di gravità. I valori convenzionali di ag assegnati nelle 4 zone sismiche fanno riferimento all'accelerazione di picco in superficie per suolo di tipo A, cioè roccia affiorante o suolo omogeneo molto rigido (vedi tabella 3.3), per il quale il moto sismico al bedrock non subisce variazioni sostanziali.

CATEGORIA SUOLO	DESCRIZIONE
A	Ammassi rocciosi affioranti o terreni molto rigidi caratterizzati da valori di Vs,30 superiori a 800 m/s, eventualmente comprendenti in superficie uno strato di alterazione, con spessore massimo pari a 3 m.
В	Rocce tenere e depositi di terreni a grana grossa molto addensati o terreni a grana fina molto consistenti con spessori superiori a 30 m, caratterizzati da un graduale miglioramento delle proprietà meccaniche con la profondità e da valori di Vs,30 compresi tra 360 m/s e 800 m/s (ovvero NSPT,30 > 50 nei terreni a grana grossa e cu,30 > 250 kPa nei terreni a grana fina).
С	Depositi di terreni a grana grossa mediamente addensati o terreni a grana fina mediamente consistenti con spessori superiori a 30 m, caratterizzati da un graduale miglioramento delle proprietà meccaniche con la profondità e da valori di Vs,30 compresi tra 180 m/s e 360 m/s (ovvero 15 < NSPT,30 < 50 nei terreni a grana grossa e 70 < cu,30 < 250 kPa nei terreni a grana fina).
D	Depositi di terreni a grana grossa scarsamente addensati o di terreni a grana fina scarsamente consistenti, con spessori superiori a 30 m, caratterizzati da un graduale miglioramento delle proprietà meccaniche con la profondità e da valori di Vs,30 inferiori a 180 m/s (ovvero NSPT,30 < 15 nei terreni a grana grossa e cu,30 < 70 kPa nei terreni a grana fina).
E	Terreni dei sottosuoli di tipo C o D per spessore non superiore a 20 m, posti sul substrato di riferimento(con Vs > 800 m/s).
S1	Depositi di terreni caratterizzati da valori di Vs,30 inferiori a 100 m/s (ovvero 10 < cu,30 < 20 kPa), che includono uno strato di almeno 8 m di terreni a grana fina di bassa consistenza, oppure che includono almeno 3 m di torba o di argille altamente organiche.
S2	Depositi di terreni suscettibili di liquefazione, di argille sensitive o qualsiasi altra categoria di sottosuolo non classificabile nei tipi precedenti.

Tabella 3.3 - "Range" V_{s30} da normativa DM 14/01/2008.

In presenza di suoli di tipo B, C, D E, S1, S2 il moto sismico in superficie in genere risulta modificato rispetto al moto sismico al bedrock, in funzione dell'intensità e del contenuto in frequenza dell'input sismico e delle caratteristiche geotecniche sismiche e dello spessore del suolo attraversato dalle onde sismiche per giungere in superficie.

Cod. elab.: GE208-GI12ZRH-001 _A	Titolo:	STUDIO SISMICO	Data: 24/01/11
Nome file: GE208-GI12ZRH-001 _A.doc	Relazione Sismica		Pagina 24 di 28

In assenza di una specifica analisi di amplificazione sismica locale per il suolo in esame, per valutare l'accelerazione sismica spettrale in presenza di suoli di tipo B, C, D E la normativa introduce un fattore di amplificazione S e i periodi T che definiscono lo spettro di risposta di un oscillatore semplice con smorzamento pari al 5%. In presenza di suoli speciali di tipo S1 e S2 la normativa impone uno studio specifico per determinare gli effetti di amplificazione sismica locale. La classificazione del suolo è convenzionalmente eseguita sulla base della velocità media equivalente di propagazione delle onde di taglio entro 30 m di profondità:

$$V_{S30} = \frac{30}{\sum_{i=1}^{\infty} \frac{h}{V_i}}$$

dove

V_i e h_i sono la velocità delle onde di taglio verticali e lo spessore dello strato i-esimo.

Da quanto calcolato è emerso che la gran parte dei sottosuoli risultano appartenere alla categoria C e solo una parte di essi ricadono in categoria B.

Nella tabella che segue è riepilogato lo sviluppo chilometrico delle variazioni delle Categorie di Sottosuolo, mentre in allegato è riportata la rappresentazione planimetrica della variazione della categoria di sottosuolo lungo il tracciato. Nella tabella 11 sono indicate la progressiva di progetto e la categoria di sottosuolo, mentre in nota vengono riportate eventuali variazioni all'interno della categoria di sottosuolo prevalente. Nelle progressive di progetto sprovviste di indagini geognostiche e geofisiche l'attribuzione della categoria di sottosuolo è stata effettuata sulla base di correlazioni sismostratigrafiche con il profilo geotecnico e geologico di progetto.

Cod. elab.: GE208-GI12ZRH-001 _A	Titolo:	STUDIO SISMICO	Data: 24/01/11
Nome file: GE208-GI12ZRH-001 _A.doc	Re	elazione Sismica	Pagina 25 di 28

PROGRESSIVA DI PROGETTO	CATEGORIA SOTTOSUOLO	NOTE
Dal Km 0+000 al Km 11+660	С	Dal Km 2+722 al Km 2+901 Categoria sottosuolo B (caratterizzazione da DH_S1). Al Km 3+836 Categoria sottosuolo B per prova sismica passiva RR4- Dal Km 3+836 al Km 7+702 Categoria Sottosuolo C per correlazione sismostratigrafia- Dal Km 8+192 al Km 8+222 Categoria sottosuolo B per prova sismica passiva RR6.
Dal Km 11+660 al Km 12+141(fine tratto 1)	В	
Dal Km 12+141 al Km 12+341	В	
Dal Km 12+341 al km 17+639 (fine tratto 2)	С	Da Km 17+216 al Km 17+416 Categoria sottosuolo B per prova sismica passiva RR12.
Dal Km 17+639 al Km 18+801	С	
Dal Km 18+801 al Km 21+041	В	
Dal Km 21+041 al Km 27+861 (fine tratto 3)	С	Dal Km 25+819 al Km 26+439 Categoria sottosuolo B (caratterizzazione da DH_S19)

Tabella 3.4 - Categoria di sottosuolo lungo il tracciato

3.4 MONOGRAFIE SISMICHE OPERE D'ARTE

Per l'opera d'arte prevista nel tratto stradale studiato è stata definita una scheda sismica nella quale sono riportati: le coordinate geografiche che identificano l'opera in progetto, la *Vita nominale dell'opera (Vn)*, la *Classe d'Uso dell'opera*, il *Coefficiente d'uso*, il *Tempo di ritorno* (Tr), i parametri sismici (a_g, F_o e T^{*}c), il coefficiente topografico, il parametro VS30 e la relativa categoria di sottosuolo (Monografie sismiche opere d'arte Appendice 1).

Nella monografia sono indicate le tipologie di indagine eseguite in corrispondenza dell'opera o, in mancanza di prove, la distanza dall'opera in progetto.

Cod. elab.: GE208-GI12ZRH-001 _A	Titolo:	STUDIO SISMICO	Data: 24/01/11
Nome file: GE208-GI12ZRH-001 _A.doc	Relazione Sismica		Pagina 26 di 28

APPENDICE 1 Monografie sismiche delle opere d'arte

Cod. elab.: GE208-GI12ZRH-001 _A	Titolo:	STUDIO SISMICO	Data: 24/01/11
Nome file: GE208-GI12ZRH-001 _A.doc	Re	lazione Sismica	Pagina 27 di 28

APPENDICE 2 SISMOSTRATIGRAFIE

Cod. elab.: GE208-GI12ZRH-001 _A	Titolo:	STUDIO SISMICO	Data: 24/01/11
Nome file: GE208-GI12ZRH-001 _A.doc	Relazione Sismica		Pagina 28 di 28