

DIREZIONE CENTRALE PROGRAMMAZIONE PROGETTAZIONE

PA 12/09

CORRIDOIO PLURIMODALE TIRRENICO - NORD EUROPA
ITINERARIO AGRIGENTO - CALTANISSETTA - A19
S.S. N° 640 "DI PORTO EMPEDOCLE"
AMMODERNAMENTO E ADEGUAMENTO ALLA CAT. B DEL D.M. 5.11.2001
Dal km 44+000 allo svincolo con l'A19

PROGETTO ESECUTIVO

Contraente Generale:

GEOTECNICA INDAGINI GEOGNOSTICHE E GEOTECNICHE

Rapporto di prova generale delle indagini geognostiche in situ e prove di laboratorio - 3° Fase

Codice Unico Progetto (CUP): F91B0900070001																							
Codice Elaborato:																							
PA	12_09 -	- E	0	0	0	G	E	2	0	9	G	T	0	3	Z	П	G	0	1	7	E	3	Scala:
F																							
E																							
D																							
С																							
В	Luglio 2011				EM	ISSIC	DNE					•		-					N	1. LIT			P. PAGLINI
А	Maggio 2011				EM	ISSIC	DNE					•		-					٨	1. LIT			P. PAGLINI
REV.	DATA				DES	CRIZI	ONE					RE	DAT	то	VE	RIFI	CATO		APP	ROVA	ATO		AUTORIZZATO
Respon	sabile del procedi	mento:	I	ng. N	MAUF	RIZIO	ARA	MIN	11	·		·					·				·		

Il Consulente Specialista:

Il Coordinatore per la sicurezza in fase di progetto:

SANDRO

ORDINE

INGEGNERI

OMA

14853

Laboratorio: C.da Calderaro (Zona Ind.) C.P. 287 - 93100 Caltanissetta

Tel.: 0934565012
Fax.: 0934575422
e-mail: info@sidercem.it

Esecuzione di indagini geognostiche, geofisiche, geotecniche in situ e prove di laboratorio a sostegno della progettazione esecutiva relativa alle attività prodromiche connesse ai lavori di adeguamento a quattro corsie della S.S. 640 "di Porto Empedocle" 2° lotto, tratto dal km 44+000 allo svincolo con l'A19

Ente Appaltante	ANAS S.p.A. – Direzione Generale Roma
Contraente Generale	EMPEDOCLE 2 s.c.p.a
Committente	EMPEDOCLE 2 s.c.p.a

INDAGINI INTEGRATIVE 3º FASE

RAPPORTO DI LAVORO GENERALE

- Ubicazione sondaggi
- Prove di permeabilità
- Prove pressiometriche
- Prova di emungimento a portata costante
- Spurgo e monitoraggio risalita del livello piezometrico
- Analisi chimiche acque
 - Analisi chimica acqua di ruscellamento
 - Campionamenti acque Pz2
 - Analisi chimica acque Pz2
 - Analisi chimica acque Pz3
 - Composti organici volatili
- Analisi chimica terra e roccia da scavo

Allegati:

- A Colonne stratigrafiche
- B Sismica a riflessione
- C Prove di laboratorio geotecnico

C.1 - Analisi diffrattometrica a raggi x

D - Documentazione fotografica

Comm. n°	Rev.	Periodo Indagine	Data Emissione	Redazione (RC)	Verifica (VRSQ)	Approvazione (RSQ)
(*) Consultare all'interno elenco proteccili	Parti Sottolimiate: pagetto di revisionalituovo massimenso	Febbraio- Lugilo 2011	29/07/2011	Givseppe Scicolone	geom, Carlo La Russa	dott. ing Vincenzo Alena

Il presente documento è autenticato dalla Sidercem s.r.l. mediante l'apposizione del timbro a secco visibile in alto. In assenza, originali e copie sono da ritenersi contraffatte. E' vietata la riproduzione anche parziale, senza l'autorizzazione.

C.F. - Iscr.C.C.I.A.A. di Callanissella: 01754820874

P.I.V.A.: 01479620856

Capitale Sociale: € 102 774 92 kV

COMMESSA Nº 263

ELENCO PROTOCOLLI (3[^] Fase)

Indagini Geognostiche:

CBA 1587

CBA 1601

CBA 1603

CBA 1607

CBA 1664

CBA1684

Sismica a Riflessione:

CCA 3951

Analisi chimiche:

CCA 3909

CCA 3946

CCA 3981

CCA 4042

CCA 4047

Prove di laboratorio:

CBA 1571

CBA 1576

CBA 1579

CBA 1584

CBA 1592

CBA 1594

CBA 1595

CBA 1598

CBA 1602

CBA 1604

CBA 1617

Laboratorio: C.da Calderaro (Zona Ind.) C.P. 287 - 93100 Caltanissetta

> Tel.: 0934565012 Fax.: 0934575422 e-mail: info@sidercem.it

Esecuzione di indagini geognostiche, geofisiche, geotecniche in situ e prove di laboratorio a sostegno della progettazione esecutiva relativa alle attività prodromiche connesse ai lavori di adeguamento a quattro corsie della S.S. 640 "di Porto Empedocle" 2° lotto, tratto dal km 44+000 allo svincolo con l'A19

Ente Appaltante	ANAS S.p.A. – Direzione Generale Roma
Contraente Generale	EMPEDOCLE 2 s.c.p.a
Committente	EMPEDOCLE 2 s.c.p.a

INDAGINI INTEGRATIVE 3° FASE

<u>RAPPORTO DI LAVORO</u> <u>GENERALE</u>

Comm. n°	Rev.	Perlodo Indagine	Data Emissione	Redazione (RC)	Verifica (VRSQ)	Approvazione (RSQ)
263(*) (*) Consultare all'interno elenco proloco	O1 Parti Sottolineate; Ougetto di revisione/nuovo maenmento	Febbraio-Luglio 2011	29/07/2011	dott. gegi. Giuseppe Scicolone	geom. Carlo La Russa	dotting. Vincento Arena

C.F. - Iscr.C.C.I.A.A. di Calianissella: 01754820874

P.I.V.A.: 01479620856

Capitale Sociale: € 102,774 92 v

Premessa

La scrivente Sidercem s.rl., Istituto di Ricerca e Sperimentazione, nell'ambito dei lavori di "Esecuzione di indagini geognostiche, geofisiche e geotecniche in situ e prove di laboratorio a sostegno della progettazione esecutiva relativa alle attività prodromiche connesse ai lavori di adeguamento a quattro corsie della S.S. 640 "di Porto Empedocle" 2° lotto, tratto dal km 44+000 allo svincolo con l'A19", ha eseguito nel periodo Febbraio-Maggio 2011:

- n°5 sondaggi meccanici:
 - o nº 2 sondaggi (SI39 ed SI41) (a carotaggio continuo da 0,00 a 120,00 m);
 - o nº 1 sondaggio (SI40) (a distruzione di nucleo da 0,00 a 70,00 m e a carotaggio continuo da 70,00 a 130,00 m.);
 - o nº 1 sondaggio (SI42) (a distruzione di nucleo da 0,00 a 60,00 m e a carotaggio continuo da 60,00 a 117,00 m);
 - o nº 1 sondaggio (SI43) (a distruzione di nucleo da 0,00 a 50,00 m e a carotaggio continuo da 50,00 a 110,00 m).
- n° 3 pozzi PZ1, PZ2 e PZ3:
 - o PZ1 (a distruzione di nucleo da 0,00 a 140,00 m, attrezzato con tubi piezometrici ciechi da 0,00 a 60,00 m e microfessurati da 60,00 a 140,00 m);
 - o PZ2 (a distruzione di nucleo da 0,00 a 120,00 m, attrezzato con tubi piezometrici ciechi da 0,00 a 35,00 m e microfessurati da 35,00 a 120,00 m);
 - o PZ3 (a carotaggio continuo da 0,00 a 50,00 m e a distruzione di nucleo da 50,00 a 120,00 m, attrezzato con tubi piezometrici ciechi da 0,00 a 50,00 m e microfessurati da 50,00 a 120,00 m).

C.F. - Iscr.C.C.I.A.A. a Caltanissella: 01754820874

P.I.V.A.: 01479620856

Capitale Sociale: € 102 774,92 · v

Tutti i sondaggi sono stati attrezzati con piezometro tipo Casagrande

Nel corso dei sondaggi:

- o sono stati prelevati nº 19 campioni indisturbati in parte destinati alle prove di laboratorio;
- o sono state eseguite nº 9 prove di permeabilità tipo Lefranc;
- o sono state eseguite nº 6 prove pressiometriche tipo "Menard"

Inoltre sono state eseguite:

- n° 4 prove sismiche con tecnica a riflessione;
- nº 1 prova di emungimento nel pozzo PZ2.

Successivamente nel periodo Giugno-Luglio 2011, la scrivente ha eseguito:

- n°3 sondaggi meccanici (SI44, SI45 ed SI46) a distruzione di nucleo ed a carotaggio continuo come di seguito suddivisi:
 - o no 2 sondaggi (SI45 e SI46) (a distruzione di nucleo: da 0,00 a 27,00 m, da 30,00 a 57,00 m e da 60,00 a 70,00 m; a carotaggio continuo: da 27,00 a 30,00 m, da 57,00 a 60,00 m, da 70,00 a 130,00 m);
 - o nº 1 sondaggio (SI44) (a distruzione di nucleo: da 0,00 a 27,00 m, da 30,00 a 57,00 m e da 60,00 a 65,00 m; a carotaggio continuo: da 27,00 a 30,00 m, da 57,00 a 60,00 m, da 65,00 a 105,00 m).
- I sondaggi sono stati così attrezzati:
 - O SI44 con piezometro a tubo aperto cieco da 0,00 a 60,00 m e microfessurato da 60,00 a 105,00 m;
 - o SI45 con piezometro a tubo aperto cieco da 0,00 a 90,00 m e microfessurato da 90,00 a 130,00 m;
 - o SI46 con piezometro Casagrande con cella installata a 110,00 m.

Nel corso dei sondaggi SI44, SI45, SI46 sono state eseguite:

- o <u>nº 4 prove di permeabilità tipo Lefranc, nº2 nel sondaggio SI46, nº1 rispettivamente</u> nei sondaggi SI44 e SI45;
- n° 3 prove di portata nel pozzo PZ2;
- nº 8 spurghi con monitoraggio di risalita del livello piezometrico.

C.F. - Iscr.C.C.J.A.A. a. Callanissetta: 01754820874

P.I.V.A.: 01479620856

Capitale Sociale: € 102.774,92 i.v.

La documentazione del presente "Rapporto di lavoro" ed i relativi allegati, afferiscono alle attività svolte – nel periodo Febbraio-Luglio 2011 - da Sidercem s.r.l., sotto la supervisione del dott. ing. Mario Liti e del dott. geol. Fabrizio Carcione (EMPEDOCLE 2 scpa) e del dott. geol. Maurizio D'Angelo (consulente di EMPEDOCLE 2).

Nello specifico le attività svolte dalla scrivente sono state le seguenti:

- Indagini geognostiche;
- Indagini geofisiche "Sismica a Riflessione";
- Prove di laboratorio.

Il responsabile di cantiere per la Sidercem s.r.l. è stato il dott. geol. Giuseppe Scicolone. Il team di lavoro era composto da n. 1 geologo di cantiere, n. 1 geofisico e n. 6 tecnici sondatori.

A) Descrizione delle indagini Geognostiche

La campagna di indagine diretta, cui si riferisce il presente elaborato, ha comportato la seguente esecuzione:

Nel periodo Febbraio-Maggio, n°5 sondaggi meccanici e n°3 pozzi aventi una profondità variabile tra i 110 ed i 140 m dal p.c.;

Nel periodo Giugno-Luglio, nº 3 sondaggi meccanici aventi una profondità variabile tra 105 ed i 130 m dal p.c.;

Tali sondaggi sono stati eseguiti sia a distruzione di nucleo sia a carotaggio continuo per la ricostruzione del profilo stratigrafico mediante l'esame dei campioni di terreno estratti o carote.

Durante l'esecuzione sono stati eseguiti prelievi di campioni indisturbati da sottoporre a prove di laboratorio.

Per la perforazione sono state impiegate complessivamente tre sonde perforatrici (di proprietà della Sidercem s.r.l.):

Tecnotunnel TS80;

C.F. - Iscr.C.C.I.A.A. d. Caltanissella: 01754820874

P.I.V.A.: 01479620856

Capitale Sociale: € 102,774 92 .v

- C6 Casagrande;
- Mait T9

tale sonde sono state corredate della necessaria attrezzatura per la perforazione, la quale comprende:

- Carotiere "semplice" di lunghezza 1.50 m e 3.00 m entrambi di diametro Ø 101 mm;
- Tricono per la fase di carotaggio a distruzione di nucleo:
- Aste di perforazione di diametro Ø 76 mm e lunghezza variabile (da 1,00 m a 3,00 m) in funzione delle necessità di manovra:
- Campionatore Shelby e Mazier.

La documentazione esplicativa della presente attività si compone nei seguenti allegati:

RAPPORTO DI LAVORO GENERALE

- <u>Ubicazione sondaggi</u>
- Prove di permeabilità
- Prove pressiometriche
- Prova di emungimento a portata costante
- Spurgo e monitoraggio di risalita del livello piezometrico
- Analisi chimiche acque (cfr. rev.0)
- Analisi chimica acqua di ruscellamento (cfr. rev.0)
- Campionamenti acque Pz2 (cfr. rev.0)
- Analisi chimica acque Pz2 (cfr. rev.0)
- Composti organici volatili (cfr. rev.0)
- Analisi chimica terra e roccia da scavo (cfr. rev.0)

Allegati:

- A Colonne stratigrafiche
- B Sismica a riflessione (cfr. rev.0)
- C Prove di laboratorio geotecnico (cfr. rev.0)
- C.1 Analisi diffrattometrica a raggi x (cfr. rev.0)
- D <u>Documentazione fotografica</u>

C.F. - Iscr.C.C.I.A.A di Caltanissetta: 01754820874

P.I.V.A.: 01479620856

Capitale Sociale: € 102 774 92 ...

Degli allegati su elencati quelli sottolineati sono riportati nel seguito in quanto oggetto di revisione/nuovo inserimento, per la lettura degli altri (che non si allegano) si rimanda alla revisione di emissione originale.

A1) Modalità tecnico esecutive

L'attività di perforazione è stata eseguita mediante l'utilizzo di acqua chiara e pulita, le carote estratte sono state riposte in apposite cassette catalogatrici in p.v.c., sulle quali era riportato il nome del committente, la denominazione del progetto, il numero della cassetta e la relativa profondità.

Durante il carotaggio, al fine di evitare franamenti delle pareti del foro, la perforazione è stata eseguita impiegando tubazioni metalliche provvisorie con diametro esterno di Ø 152 mm e di Ø 127 mm e lunghezza di 1500 mm.

Durante la fase di indagine sono stati prelevati dei campioni indisturbati utilizzando il campionatore Mazier data la consistenza delle litologie argillose riscontrate.

In tale campagna di indagine si è provveduto ad attrezzare i fori di sondaggio con piezometro a tubo aperto e piezometri Casagrande per il monitoraggio delle oscillazioni temporali della falda.

I piezometri a tubo aperto sono stati realizzati mediante l'assemblaggio e posa in opera di tubi in pvc da 3" in spezzoni da 3 m.

I piezometri Casagrande sono stati realizzati mediante l'assemblaggio e posa in opera di tubi in pvc da 0,5" in spezzoni da 3 m di lunghezza, collegati nell'estremità inferiore ad una cella porosa "Casagrande".

A2) Studio geognostico

I sondaggi geognostici eseguiti hanno comportato uno sviluppo lineare complessivo, nei diversi periodi così suddiviso:

Febbraio-Maggio 2011: 977 metri di carotaggio;

Giugno-Luglio 2011: 365 metri di carotaggi;

C.F. - Iscr.C.C.I.A.A. a Collanssetta: 01754820874

P.I.V.A.: 01479620856

Capitale Sociale: € 102,774,92 v

Di seguito sinteticamente si riportano le tabelle con l'indicazione del sondaggio e della profondità raggiunta, per la descrizione dei litotipi attraversati si rimanda all'allegato A

Le seguenti tabelle riassumono l'indagine esplicativa di campagna.

Tabella 1: Resoconto indagini geognostiche 3^ Fase (Periodo Febbraio-Maggio 2011)

Sondaggi	Profondità [m]	Perforazione a distruzione di nucleo [m]	Perforazione a carotaggio continuo [m]	Plez. Casagrande	Campioni indisturbati	Prove di Permeabilità	Prove Pressiometriche	Rivestimento [m]
SI39	120,00		0,00-120,00	Х	6	3	5	120,00
SI40	130,00	0,00-70,00	70,00-120,00	X	6	2		130,00
SI41	120,00		0,00-120,00	Х	5	2		120,00
SI42	117,00	0,00-60,00	60,00-117,00	X	2	3	1	117,00
SI43	110,00	0,00-50,00	50,00-110,00	X				110,00
PZ1	140,00	0,00-140,00						140,00
PZ2	120,00	0,00-120,00						120,00
PZ3	120,00	50,00-120,00	0,00-50,00					120,00

Tabella 2: Resoconto indagini geognostiche 3^ Fase (Periodo Giugno-Luglio 2011)

Sondaggi	Profondità (m)	Perforazione a distruzione di nucleo [m]	Perforazione a carotaggio continuo [m]	Plezometro Casagrande [m]	Piezometro a tubo aperto [m]	Prove di Permeabilità	Rivestimento Metallico [m]
SI44	105,00	0,00 - 27,00 30,00 - 57,00 60,00 - 65,00	27,00 - 30,00 57,00 - 60,00 65,00 - 105,00		105,00	1 (60,00 m)	105,00
SI45	130,00	0,00 - 27,00 30,00 - 57,00 60,00 - 70,00	27,00 - 30,00 57,00 - 60,00 70,00 - 130,00		130,00	1 (60,00 m)	130,00
SI46	130,00	0,00 - 27,00 30,00 - 57,00 60,00 - 70,00	27,00 - 30,00 57,00 - 60,00 70,00 - 130,00	110,00		2 (60,00 m e 95,00 m)	130,00

C.F. - Iscr.C.C.I.A.A a Colfanisselfa: 01754820874

P.I.V.A.: 01479620856

Capitale Sociale: € 102 774 92 v.

B) Indagini Geofisiche "Sismica a Riflessione"

Le indagini Geofisiche esperite tra il periodo Febbraio-Marzo 2011, ha comportato l'esecuzione di :

- nº 4 prove sismiche con tecnica a riflessione, realizzati in 4 siti con la seguente lunghezza di stesa ed ubicazione:
 - 1) L = 252,00 m. ubicata sulla parte di terreno a monte del sondaggio SI27 (collina S. Elia);
 - 2) L = 114,00 m. ubicata sulla parte di terreno a valle del SI26 ed Si26 bis;
 - 3) L = 75,00 m. ubicata a monte dell'ospedale S. Elia di Caltanissetta;
 - 4) L = 72,00 m. ubicata a monte dell'ospedale S. Elia di Caltanissetta.

Per una completa descrizione delle indagini si rimanda alle risultanze dell'allegato B.

C) Prove di Permeabilità tipo Lefranc

Durante la perforazione dei sondaggi sono state eseguite prove di permeabilità Lefranc a carico costante a diverse profondità e così ubicate:

Periodo Febbraio-Maggio 2011:

- N° 2 prove nel sondaggio SI39 a 60,00, 81,00 ed a 88,00 m.;
- N° 2 prove nel sondaggio SI40 a 120,00 ed a 130,00 m.;
- N°2 prove nel sondaggio SI41 a 60,00 e a 100,00 m.;
- Nº 3 prove nel sondaggio SI42 a 60,50, 70,50 ed a 110,00 m;

Periodo Giugno-Luglio 2011:

- N° 1 prova nel sondaggio SI44 a 60,00 m;
- N° 1 prova nel sondaggio SI45 a 60,00 m.;
- N°2 prove nel sondaggio SI46 a 60,00 e a 95,00 m.

Per le risultanze e l'elaborazione completa delle prove si rimanda ai certificati di seguito allegati.

C.F. - Iscr.C.C.I.A.A. @ Caltanissetta: 01754820874

P.I.V.A.: 01479620856

Capitale Sociale: € 102 774 92 i.v.

D) Prove Pressiometriche "Menard"

Nel corso delle perforazione dei sondaggi SI39 ed SI42 sono state eseguite delle prove pressiometriche così distribuite:

- N° 5 prove nel sondaggio SI39
- N° 1 prove nel sondaggio SI42

Per una completa descrizione delle indagini si rimanda alle risultanze di seguito allegate.

E) Prove di laboratorio geotecnico

Durante la perforazione dei 4 sondaggi eseguiti a carotaggio continuo sono stati prelevati nº 19 campioni indisturbati, alcuni dei quali sono stati destinati alle prove di laboratorio.

Per le risultanze ed l'elaborazione completa delle prove di laboratorio si rimanda all'allegato C.

F) Prova di emungimento a portata costante

A conclusione della realizzazione della stazione di prova, mediante l'esecuzione del sondaggio PZ2, è stata eseguita una prova di emungimento a portata costante.

La prova consiste nell'applicare al pozzo realizzato un unico gradino di portata e registrando manualmente gli abbassamenti e le risalite determinati dalla fase di pompaggio e dalla successiva fase di stasi.

La prova in oggetto è stata eseguita con una portata costante di 1,8 l/s per una durata della fase di pompaggio di 48 h, a cui e seguita la fase di stasi, tale prova è stata eseguita posizionando la pompa elettrosommersa nel PZ2 a 115 m dal p.c.

Inoltre, mediante l'esecuzione del sondaggio PZ3, è stata eseguita una prova di emungimento a portata costante.

La prova in oggetto è stata eseguita con una portata costante di 0,08 l/s per una durata della fase di pompaggio di 48 h, a cui e seguita la fase di risalita di 72 h, tale prova è stata eseguita posizionando la pompa elettrosommersa nel PZ3 a 116 m dal p.c.

C.F. - Iscr.C.C.I.A.A. a. Callanissella: 01754820874

P.I.V.A.: 01479620856

Capitale Sociale: € 102,774 92 i.v

Di seguito, nel periodo di indagini tra Giugno-Luglio 2011 sul piezometro PZ2 è stata eseguita una ulteriore prova, che è consistita nell'applicare al pozzo realizzato dei gradini di portata man mano crescenti e registrando manualmente gli abbassamenti e le risalite determinati dalla fase di pompaggio e dalla successiva fase di stasi.

La prova in oggetto (eseguita posizionando la pompa elettrosommersa nel PZ2 a 115 m dal p.c) è stata eseguita con una portata iniziale di 1,8 l/s, poi di 2,5 l/s e per ultimo di 3,3 l/s per una durata della fase di pompaggio di 12 h, a cui e seguita la fase di stasi di circa 12 ore.

Per una completa descrizione delle indagini si rimanda alle risultanze di seguito allegate.

G) Spurgo e monitoraggio di risalita del livello piezometrico

La prova consiste nello spurgo dei piezometri esistenti che determina un abbassamento del livello piezometrico, di cui si esegue il monitoraggio nel tempo.

I piezometri sottoposti allo spurgo sono stati i seguenti: SI40, SI46, S8, S9, S10, SI41, SI43, SI45, quelli che hanno dato una risposta (con abbassamento del livello freatico e successiva risalita) sono i seguenti: SI46, SI41, SI45.

Per una completa descrizione delle indagini si rimanda alle risultanze di seguito allegate.

Laboratorio: C.da Calderaro (Zona Ind.) C.P. 287 - 93100 Caltanissetta

> Tel.: 0934565012 Fax.: 0934575422 e-mail: info@sidercem.it

Timbro a secco

Esecuzione di indagini geognostiche, geofisiche, geotecniche in situ e prove di laboratorio a sostegno della progettazione esecutiva relativa alle attività prodromiche connesse ai lavori di adeguamento a quattro corsie della S.S. 640 "di Porto Empedocle" 2° lotto, tratto dal km 44+000 allo svincolo con l'A19

Ente Appaltante	ANAS S.p.A. – Direzione Generale Roma
Contraente Generale	EMPEDOCLE 2 s.c.p.a
Committente	EMPEDOCLE 2 s.c.p.a

INDAGINI INTEGRATIVE 3° FASE

Ubicazione sondaggi

Comm. n°	Rev.	Periodo Indagine	Data Emissione	Redazione (RC)	Verifica (VRSQ)	Approvatione (RSQ)
263(*) (*) Consultare all'interno elenco prolocoli	01 Parti Sottoineste, osgetto di (existene/nuovo inserimento	Febbraio-Luglio 2011	29/07/2011	dott geol. Giuseppe Scicolone	geom. Canlo La Russa	dott. bg. Vincenzo Arena

C.F. ~ Iscr.C.C.I.A.A. di Caltanisselta: 01754820874

P.J.V.A.: 01479620856

Capitale Sociale: € 102.774 92 | v

Ubicazione Sondaggi SI39 - SI43 – PZ3

Ubicazione Sondaggi SI45 - SI40 – PZ1 – SI46

Ubicazione Sondaggi SI41 - SI42 – PZ2 – SI44

Laboratorio: C.da Calderaro (Zona Ind.) C.P. 287 - 93100 Caltanissetta

Tel.: 0934565012 Fax.: 0934575422 e-mail: info@sidercem.it

Timbro a secco

Esecuzione di indagini geognostiche, geofisiche, geotecniche in situ e prove di laboratorio a sostegno della progettazione esecutiva relativa alle attività prodromiche connesse ai lavori di adeguamento a quattro corsie della S.S. 640 "di Porto Empedocle" 2° lotto, tratto dal km 44+000 allo svincolo con l'A19

Ente Appaltante	ANAS S.p.A. – Direzione Generale Roma
Contraente Generale	EMPEDOCLE 2 s.c.p.a
Committente	EMPEDOCLE 2 s.c.p.a

INDAGINI INTEGRATIVE 3° FASE

Prove di permeabilità

Comm. n°	Rev.	Periodo Indagine	Data Emissione	Redazione (RC)	Verifica (VRSQ)	Approvazione (RSQ)	
263(*) (*) Consultare affinterno elenco protecco	01 Parts Systolineare: capetto di revisions/nuovo inserimento	Febbraio-Luglio 2011	29/07/2011	dolt. gool. Giviseppa Scicolone	geom. Carto La Russa	dott. irg) Vincenzo krena	

CF scrCC+AA di Callanissetta 01754820874 v A 01479620856 Cap fale Sccale € 102 774 92 (v

Laboratorio di Caltanissetta C.da Calderaro (Zona Ind.) C.P. 287 – 93100 Caltanissetta

Tel.. 0934565012 Fax: 0934575422 e-mail: info@sidercem.it

Certificato Nº		Prot. N.	CBA	001 607	Laboratorio in concessione di		
Certim	cato in	Data accettazione:	28/03/11		Caltanissetta D.M. 52507 del 11/10/2004		
CBC 014 533	del 31/03/11	Periodo indagine:	Inizio:	16/02/11	Divisione: Geotecnica - B - 349/STC		
020 01, 550		1 eriodo indugine.	Fine:	28/03/11	Settore: Prove in situ		

Foglio 1 di 4

Ente Appaltante:

ANAS S.p.A. - Direzione Generale Roma

Contraente Generale:

EMPEDOCLE 2 s.c.p.a.

Richiedente/Committente:

EMPEDOCLE 2 s.c.p.a.

Oggetto:

Esecuzione di indagini geognostiche, geofisiche, geotecniche e prove di laboratorio a sostegno della progettazione esecutiva relativa alle attività prodromiche connesse ai lavori di adeguamento a quattro corsie della S.S. 640 "di Porto Empedocle" 2° lotto, tratto dal km

44+000 allo svincolo con l'A19 (3^ Fase)

(1) Il presente certificato è composto da 4 fogli numerati da 1 a 4.

(2) Il presente certificato viene autenticato dalla Sidercem s.r.l. di Caltanissetta mediante l'apposizione su ciascun foglio del timbro a secco visibile in alto. In assenza del timbro a secco il certificato è da ritenersi contraffatto.

(3) Le copie vengono autenticate dalla Sidercem s.r.l. di Caltanissetta mediante l'apposizione su ciascun foglio del timbro a secco visibile in alto. In assenza del timbro a secco la copia è da ritenersi contraffatta.

PROVE DI PERMEABILITA'
LEFRANC

Il Responsabile di Cantiere dott. geol. Giuseppe Scicolone

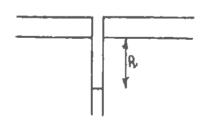
Il Vice Directore di Laboratorio dott geol Sabrina Chiavetta

CBC 014 533

Foglio 2 di 4

Premessa

Sono state condotte le perforazioni a carotaggio continuo e per l'esecuzione delle prove, si è rivestito il foro con tubi, fino alle profondità stabilite dal consulente geologo.


Dal carotaggio è stata ricostruita la litologia dei terreni attraversati, mentre i campioni indisturbati prelevati sono stati inviati al laboratorio geotecnico in conformità al programma prove stabilito dal consulente geologo.

A fondo foro (rivestito per tutta la profondità dal tubo di acciaio) è stato ricavato un tratto libero (dal rivestimento) lungo 50 cm (L).

1 - Esecuzione della prova

Si è riempito il tubo di rivestimento per tutta la colonna ed a cadenza temporale determinata, si sono misurati i vari livelli di acqua all'interno del foro.

Si sono rilevati quindi h1 ed h2 ai tempi t1 e t2, necessari per la determinazione della permeabilità K cercata al tempo finale (di 3600 sec per tutte le prove e di 7200 sec per la prova su SI39 ad 88 m).

<u>2 – Determinazione di K</u>

L'analisi per la determinazione della permeabilità è stata effettuata mediante l'equazione di continuità:

Il Responsabile di Cantiere dott. geol. Giuseppe Scicolone Il Vice Directore di Laboratorio dott. goo! Sabrina Chiavetta

CBC 014 533

Foglio 3 di 4

$$q\,dt = -\pi \frac{D^2}{4}dh$$

Supponendo che il livello di falda non sia alterato dalla esecuzione della prova e che le quantità di acqua emunte dal foro non siano rilevanti, di fatto assumendo che:

il livello della falda sia indisturbato;

siano trascurabili le perdite di carico all'interno del foro;

il foro abbia un rivestimento impermeabile.

si ricava:

$$\psi h k dt = -\pi \frac{D^2}{4} dh$$

$$\Rightarrow \qquad k dt = -\frac{\pi D^2}{4 \psi} \frac{dh}{h}$$

quest'ultima integrata tra i due istanti di tempo 11 e 12 ed i due gradienti idraulici h1 e h2, determina:

$$k(t_2 - t_1) = -\frac{\pi D^2}{4 \psi} \ln \frac{h_2}{h_1}$$

$$k = -\frac{\pi D^2}{4 \psi} \frac{\ln \frac{h_2}{h_1}}{(t_2 - t_1)}$$

Il coefficiente ψ dipende dalla geometria del problema (diametro del foro, forma della parte terminale...). Alcune tabelle forniscono il valore di ψ in funzione delle caratteristiche della presa piezometrica, di cui – nel seguito - si propongono dei valori.

Valori proposti		Caso in studio
in presenza di falda confinata	ψ=2D	$\psi = 0.254$
per foro di diametro D	$\psi = 2,75D$	$\psi = 0.34925$
per L >> D	ψ =L	$\psi = 0.5$
per L ≤ D	$\psi = 2\pi D + L$	$\psi = 1,298$

Nella tabella riepilogativa dei risultati di prova si è inserita la determinazione di K per ψ =1, intermedio fra 0,5 ed 1,298.

Il Responsabile di Cantiere dott. geol. Giuseppe Scicolone

Il Vice Directore di Laboratorio dott. geo! Sabrina Chiavetta

CBC 014 533

3 – Risultati di prova

Foglio 4 di 4

Sondaggio	Profondità	Litologia		k = -	$\frac{\pi D^2}{4 \psi} \frac{\ln \frac{h_2}{h_1}}{(t_2 - t_1)}$ [m/sec] per:)	
	[m]		$\psi = 2D$ $\psi = 0,254$	$\psi = 2,75D$ $\psi = 0,34925$	L>>D ψ = 0,5	ψ = 1	$\psi = (2\pi D) + L$ $\psi = 1,298$
	60		6,96*10 ⁻⁵	5,06*10 ⁻⁵	3,54*10 ⁻⁵	1,77*10 ⁻⁵	1,36*10 ⁻⁵
			t =3600 sec	t =3600 sec	t =3600 sec	t =3600 sec	t =3600 sec
S139	Sl39 81	Argilla marnosa e marna-argillosa	6,65*10 ⁻⁵	4,84*10 ⁻⁵	3,38*10 ⁻⁵	1,69*10 ⁻⁵	1,30*10 ⁻⁵
0.00		consistente, scagliosa e fratturata di colore grigio-biancastro	t =3600 sec	t =3600 sec	t =3600 sec	t =3600 sec	t =3600 sec
	88		4,47*10 ⁻⁵	3,25*10 ⁻⁵	2,27*10 ⁻⁵	1,14*10 ⁻⁵	8,75*10 ⁻⁶
	00		t =7200 sec	t =7200 sec	t =7200 sec	t =7200 sec	t =7200 sec
	120		5,98*10 ⁻⁵	4,35*10 ⁻⁵	3,04*10 ⁻⁵	1,52*10 ⁻⁵	1,17*10 ⁻⁵
SI40	12.0	Argilla marnosa e marna-argillosa scagliosa fortemente consistente - con	t =3600 sec	t =3600 sec	t =3600 sec	t =3600 sec	t =3600 sec
3140	130	inclusi litici millimetrici - di colore grigio- verdastro	9,10*10 ⁻⁵	6,62*10 ⁻⁵	4,62*10 ⁻⁵	2,31*10 ⁻⁵	1,78*10 ⁻⁵
	100		t =3600 sec	t =3600 sec	t =3600 sec	t =3600 sec	t =3600 sec
	60	Argilla marnosa a struttura brecciata, consistente, scagliosa e fratturata, di colore	6,32*10 ⁻⁵	4,59*10 ⁻⁵	3,21*10 ⁻⁵	1,60*10 ⁻⁵	1,23*10 ⁻⁵
SI41		grigio-biancastro	t =3600 sec	t =3600 sec	t =3600 sec	t =3600 sec	t =3600 sec
0141	100	Argilla marnosa mollo consistente, scagliosa e fratturata, di colore grigio-	6,22*10 ⁻⁵	4,52*10 ⁻⁵	3,16*10 ^{.5}	1,58*10 ⁻⁵	1,22*10 ⁻⁵
	100	biancastro con livelli marnosi sottilmente stratificati	t =3600 sec	t =3600 sec	t =3600 sec	t =3600 sec	t =3600 sec
	60,50	Argilla marnosa consistente, di colore grigio chiaro con livelli marnosi debolmente	8,18*10 ⁻⁷	5,95*10 ⁻⁷	4,15*10 ⁻⁷	2,08*10 ⁻⁷	1,60*10 ⁻⁷
		fratturati	t =3600 sec	t =3600 sec	t =3600 sec	t =3600 sec	t =3600 sec
SI42	70,50	Argilla marnosa e marna argillosa consistente, di colore grigio-biancastro con	4,18*10 ⁻⁵	3,04*10 ⁻⁵	2,12*10 ⁻⁵	1,06*10 ⁻⁵	8,17*10 ⁻⁶
0.72	. 0,00	livelli marnosi fratturati	t =3600 sec	t =3600 sec	t =3600 sec	t =3600 sec	t =3600 sec
	110,00	Breccia calcarea in matrice limosa di colore biancastro. Alternata a livelli di argilla	1,07*10-4	7,76*10-5	5,42*10-5	2,71*10-5	2,09*10-5
	110,00	limosa di colore grigio-biancastro	t =3600 sec	t =3600 sec	t =3600 sec	t =3600 sec	t =3600 sec

Il Responsabile di Cantiere dott. geol. Giuseppe Scicolone

Il Vice Directore di Laboratorio dott geom Sabrina Chiavetta

CF - Iscr C C LA A di Caltanissetta 01754820874 Pr v. A. 01479620856 Capitale Sociale € 102.774.92 i.v. Laboratorio di Caltanissetta C.da Calderaro (Zona Ind.) C.P. 287 – 93100 Caltanissetta

Tel.: 0934565012 Fax: 0934575422 e-mail: info@sidercem.it

Timbro a secco

Certific	cato Nº	Prot. N.	СВА	001 664	Laboratorio in concessione di
Certiin	LATO IN	Data accettazione:	12	/07/11	Caltanissetta D.M. 52507 del 11/10/2004
3C 015 207	del 01/08/11	Periodo indagine:	Inizio:	27/06/11	Divisione: Geotecnica - B - 349/STC
013 207		renouvinuagine:	Fine:	11/07/11	Settore: Prove in situ

Foglio 1 di 4

Ente Appaltante:

ANAS S.p.A. - Direzione Generale Roma

Contraente Generale:

EMPEDOCLE 2 s.c.p.a.

Richiedente/Committente:

EMPEDOCLE 2 s.c.p.a.

Oggetto:

CBC 0

Esecuzione di indagini geognostiche, geofisiche, geotecniche e prove di laboratorio a sostegno della progettazione esecutiva relativa alle attività prodromiche connesse ai lavori di adeguamento a quattro corsie della S.S. 640 "di Porto Empedocle" 2° lotto, tratto dal km

44+000 allo svincolo con l'A19 (3^ Fase)

(1) Il presente certificato è composto da 4 fogli numerati da 1 a 4.

(2) Il presente certificato viene autenticato dalla Sidercem s.r.l. di Caltanissetta mediante l'apposizione su ciascun foglio del timbro a secco visibile in alto. In assenza del timbro a secco il certificato è da ritenersi contraffatto.

(3) Le copie vengono autenticate dalla Sidercem s.r.l. di Caltanissetta mediante l'apposizione su ciascun foglio del timbro a secco visibile in alto. In assenza del timbro a secco la copia è da ritenersi contraffatta.

PROVE DI PERMEABILITA'
LEFRANC

Il Responsabile di Cantiere dott. geol. Giuse ape Scicolone Il Vice Direttore di Laboratorio dott. geol. Sabrina Chiavetta

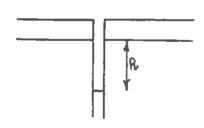
CBC 015 207

Foglio 2 di 4

Premessa

Sono state condotte le perforazioni a carotaggio continuo e per l'esecuzione delle prove, si è rivestito il foro con tubi, fino alle profondità stabilite dal consulente geologo.

Timbro a secco


Dal carotaggio è stata ricostruita la litologia dei terreni attraversati.

A fondo foro (rivestito per tutta la profondità dal tubo di acciaio) è stato ricavato un tratto libero (dal rivestimento) lungo 1,00 m (L).

1 - Esecuzione della prova

Si è riempito il tubo di rivestimento per tutta la colonna ed a cadenza temporale determinata, si sono misurati i vari livelli di acqua all'interno del foro.

Si sono rilevati quindi h1 ed h2 ai tempi t1 e t2, necessari per la determinazione della permeabilità K cercata al tempo finale (di 3600 sec per tutte le prove e di 600 sec per la prova su SI45 ad 60 m).

<u>2 – Determinazione di K</u>

L'analisi per la determinazione della permeabilità è stata effettuata mediante l'equazione di continuità:

> Il Responsabile di Cantiere dott. geol. Giuseppe & Cicolone

 $q\,dt = -\pi \frac{D^2}{4}\,dh$

Il Vice Diret di Laboratorio na Chiavetta

CBC 015 207

Foglio 3 di 4

Supponendo che il livello di falda non sia alterato dalla esecuzione della prova e che le quantità di acqua emunte dal foro non siano rilevanti, di fatto assumendo che:

il livello della falda sia indisturbato:

siano trascurabili le perdite di carico all'interno del foro;

il foro abbia un rivestimento impermeabile.

si ricava:

$$\psi h k dt = -\pi \frac{D^2}{4} dh$$

$$\Rightarrow \qquad k dt = -\frac{\pi D^2}{4 \psi} \frac{dh}{h}$$

quest'ultima integrata tra i due istanti di tempo 11 e 12 ed i due gradienti idraulici h1 e h2, determina:

$$k(t_2 - t_1) = -\frac{\pi D^2}{4\psi} \ln \frac{h_2}{h_1}$$

$$k = -\frac{\pi D^2}{4\psi} \frac{\ln \frac{h_2}{h_1}}{(t_2 - t_1)}$$

Il coefficiente ψ dipende dalla geometria del problema (diametro del foro, forma della parte terminale...). Alcune tabelle forniscono il valore di ψ in funzione delle caratteristiche della presa piezometrica, di cui – nel seguito - si propongono dei valori.

Valori proposti		Caso in studio
in presenza di falda confinata	ψ=2D	$\psi = 0.254$
per foro di diametro D	$\psi = 2.75D$	$\psi = 0.34925$
per L >> D		$\psi = 0.5$
perL≤D	$\psi = 2\pi D + L$	$\psi = 1,298$

Nella tabella riepilogativa dei risultati di prova si è inserita la determinazione di K per ψ =1, intermedio fra 0,5 ed 1,298.

Il Responsabile di Cantiere dott. geol. Giuseppe Scicolone Il Vice Direttore di Laboratorio dott. geol. Sabrina Chiavetta

CBC 015 207

Foglio 4 di 4

3 – Risultati di prova

Sondaggio	Profondità	Litologia		k=-	$\frac{\pi D^2}{4 \psi} \frac{\ln \frac{h_2}{h_1}}{(t_2 - t_1)}$ [m/sec] per:)	
	[m]		ψ = 2D ψ = 0,254	$\psi = 2,75D$ $\psi = 0,34925$	L>>D ψ = 0,5	ψ= 1	$\psi = (2\pi D) + L$ $\psi = 1,298$
SI44	60	Mama argillosa consistente di colore grigio- biancastro, con inclusi livelli di mama	2,29*10 ⁻⁶	1,67*10 ⁻⁶	1,66*10 ⁻⁶	5,82*10 ⁻⁷	14,49*10 ⁻⁷
		calcarea (Trubi)	t =3600 sec	t =3600 sec	t =3600 sec	t =3600 sec	t =3600 sec
SI45	60	Argilla mamosa e marna argillosa di colore	1,8*10 ⁻⁷	1,31*10 ⁻⁷	9,16*10 ⁻⁸	4,58*10 ⁻⁸	3,53*10 ⁻⁸
		grigio chiaro (Trubi)	t =600 sec	t =600 sec	t =600 sec	t =600 sec	t =600 sec
	60	Marna argillosa di colore grigio chiaro-	2,62*10 ⁻⁶	1,90*10-6	1,33*10 ⁻⁶	6,65*10 ⁻⁷	5,12*10 ⁻⁷
SI46		biancastra (Trubi)	t =3600 sec	t =3600 sec	t =3600 sec	t =3600 sec	t =3600 sec
0,10	95	Argilla limosa e argilla mamosa a struttura	1,57*10 ⁻⁶	1,14*10 ⁻⁶	7,95*10 ⁻⁷	3,98*10 ⁻⁷	3,06*10 ⁻⁷
		brecciata, di colore grigio-verdastro	t =3600 sec	t =3600 sec	t =3600 sec	t =3600 sec	t =3600 sec

Il Responsabile di Cantiere dott. geol. Giuseppe Scicolone

Il Vice Diretture di Laboratorio dott. geol Sabrina Chiavetta

Laboratorio: C.da Calderaro (Zona Ind.) C.P. 287 - 93100 Caltanissetta

> Tel.: 0934565012 Fax.: 0934575422 e-mail: info@sidercem.it

Esecuzione di indagini geognostiche, geofisiche, geotecniche in situ e prove di laboratorio a sostegno della progettazione esecutiva relativa alle attività prodromiche connesse ai lavori di adeguamento a quattro corsie della S.S. 640 "di Porto Empedocle" 2° lotto, tratto dal km 44+000 allo svincolo con l'A19

Ente Appaltante	ANAS S.p.A. – Direzione Generale Roma
Contraente Generale	EMPEDOCLE 2 s.c.p.a
Committente	EMPEDOCLE 2 s.c.p.a

INDAGINI INTEGRATIVE 3 FASE

Prove pressiometriche

Comm. n°	Rev.	Periodo Indagine	Data Emissione	Redazione (RC)	Verifica (VRSQ)	Approvazione (RSQ)
263(*) (*) Consultare all'interno elenco protocoli	0	Febbraio-Maggio 2011	11/05/2011	dott, geol. Giuseppe Scicolone	geom Carlo La Rússa	dott. Ing) Vincenza Arena

Laboratorio di Caltanissetta C.da Calderaro (Zona Ind.) C.P. 287 – 93100 Caltanissetta

Tel.: 0934565012 Fax.: 0934575422

e-mail: info@sidercem.it

Certific	eato Nº	Prot. N.	CBA	001 607	Laboratorio in concessione di
Certim	Latu IN	Data accettazione:	28	/03/11	Caltanissetta D.M. 52507 del 11/10/2004
CBC 014 477	del 28/03/11	Periodo indagine:	Inizio:	03/03/11	Divisione: Geotecnica - B - 349/STC
020 011 477		Terrous inuugine.	Fine:	28/03/11	Settore: Prove in situ

Foglio 1 di 12

Ente Appaltante:

ANAS S.p.A. - Direzione Generale Roma

Contraente Generale:

EMPEDOCLE 2 s.c.p.a.

Richiedente/Committente:

EMPEDOCLE 2 s.c.p.a.

Oggetto:

Esecuzione di indagini geognostiche, geofisiche, geotecniche e prove di laboratorio a sostegno della progettazione esecutiva relativa alle attività prodromiche connesse ai lavori di adeguamento a quattro corsie della S.S. 640 "di Porto Empedocle" 2º lotto, tratto dal km

44+000 allo svincolo con l'A19 (3^ Fase)

(1) Il presente certificato è composto da 12 fogli numerati da 1 a 12.

(2) Il presente certificato viene autenticato dalla Sidercem s.r.l. di Caltanissetta mediante l'apposizione su ciascun foglio del timbro a secco visibile in alto. In assenza del timbro a secco il certificato è da ritenersi contraffatto.

(3) Le copie vengono autenticate dalla Sidercem s.r.l. di Caltanissetta mediante l'apposizione su ciascun foglio del timbro a secco visibile in alto. In assenza del timbro a secco la copia è da ritenersi contraffatta.

PROVE PRESSIOMETRICHE MENARD

Il Responsabile di Cantiere dott. geol. Giuseppe Scicolone Il Vice Directore di Laboratorio dott geori Salvina Chiavetta

CBC 014 477

Foglio 2 di 12

PREMESSA

I recenti sviluppi della geognostica e la continua ricerca di metodi per la caratterizzazione delle terre e delle rocce, pongono la prova pressiometrica 'Menard' fra i più versatili strumenti di indagine in sito.

Il metodo pressiometrico viene efficacemente applicato in alternativa alle indagini convenzionali, garantendo una maggiore celerità nell'esecuzione e nell'interpretazione rispetto alle tecniche comunemente in uso.

La prova in sito mediante pressiometro Menard ha un campo di applicazione estremamente vasto; adattando opportunamente la tecnica di prova é possibile investigare:

- Argille, limi argillosi, limi sabbiosi, da teneri a consolidati
- Sabbie da fini a grosse, sciolte, addensate, o cementate
- Terreni misti con ghiaia, da sciolti ad addensati o cementati
- rocce tenere o alterate (marne, argilliti, calcari teneri, flysh, tufi ecc.)
- Terreni di riporto o non naturali, con caratteristiche simili ai tipi precedenti (ceneri, fanghi più o meno consolidati, materiali di risulta, R.S.U. ecc.).

La posa in opera riveste una particolare importanza in quanto garantisce la buona riuscita della prova. Il preforo per la posa in opera in genere viene eseguito a rotazione con carotiere semplice (60-66 mm) e circolazione di fluido come acqua e miscele di polimeri chimici e bentonite secondo il dosaggio più conveniente.

La prova consiste nel dilatare nel terreno una sonda di forma cilindrica e nel rilevare la corrispondente curva pressione - volume.

Il sistema di prova é costituito da una centralina di misura, alimentata da gas azoto, dotata di manometri di precisione a bagno di glicerina (fondo scala 25 - 100 bar, risoluzione 0.25 bar) e di un volumometro a tubo graduato dotato di sistema di misura ad altissima precisione con risoluzione di 0.01 cmc; la centralina consente il rilievo, in funzione del tempo, delle pressioni di prova e del volume iniettato, mantenendo costante la pressione nelle celle durante i singoli incrementi.

Il Responsabile di Cantiere dott. geol. Giuseppe Scicolone II Vice Directore di Laboratorio dott. geol. Salvina Chiavetta

Foglio 3 di 12

CBC 014 477

La sonda ha una cella di prova espandibile idraulicamente, contenuta dalle celle di guardia alimentate a gas; il collegamento della cella con la centralina avviene tramite doppio tubo in pvc ad alta tenuta.

La membrana della sonda é generalmente scelta in funzione dei materiali da investigare, si può utilizzare una membrana in gomma, con inerzia da 0.5 a 3 bar, con o senza rivestimento in sottili lamelle elastiche in metallo.

La sonda pressiometrica viene sottoposta ad una serie di incrementi di pressione, che ne provocano l'espandersi nel terreno; il volumometro, collegato alla cella centrale di misura fornisce direttamente le variazioni di volume che vengono registrate generalmente ai 15, 30 e 60 secondi dal raggiungimento del gradino di pressione.

Per una buona riuscita della prova é necessario stimare a priori una resistenza a rottura dei terreni in esame, ed investigare tale intervallo con almeno 10 punti di misura; la prova viene interrotta una volta completata l'espansione della sonda (800 cmc) o al raggiungimento del fondo scala dei manometri della pressione (60 - 100 bar); é sempre buona norma eseguire loop di carico, preferibilmente a pressioni pari a circa il 30% della pressione limite.

Le prove sono state eseguite secondo gli standard ASTM – D 4719 – 87 utilizzando però incrementi di carico variabili per migliorare il dettaglio di prova nelle fasi di transizione tra i diversi rami della curva pressiometrica (fase pseudo-elastica, fase plastica).

Le prove sono state eseguite sui sondaggi SI39 ed SI42 in numero totale di 6 così distribuiti:

Profondità	SONDAGGI		
(m)	SI39	SI42	
P1	45,00	62,50	
P2	61,00		
P3	83,00		
P4	104,00		
P5	121,00		

Il Responsabile di Cantiere dott. geol. Guseppe Scicolone

Il Vice Directore di Laboratorio dott geoli Sabrina Chiavetta

Foglio 4 di 12

CBC 014 477

La profondità è riferita al piano campagna ed al centro della sonda pressiometrica che è di tipo BX (diametro 60 mm).

L'elaborazione delle prove è stata eseguita tramite Software Xpressio direttamente fornito dalla Apageo-Segelm che è anche produttrice dello strumento utilizzato.

Il resoconto si compone di una tabella riassuntiva dove sono riportati i riferimenti ed i dati generali della campagna riferiti ad ogni singola prova per la quale viene presento un certificato contenente:

- Identificativi della prova
- Caratteristiche della sonda
- Caratteristiche delle tubazioni e dei fluidi utilizzati
- Riferimenti alle tarature (estesamente riportate in apposita sezione)
- Caratteristiche della tasca di prova e delle modalità di perforazione
- Tabella dati di campagna
- Tabella dati corretti
- Gafico P-V
- Grafico Creep

Il Responsabile di Cantiere dott. geol. Giuseppe Scicolone

Il Vice Direttore di Laboratorio dott. geol Sabrina Chiavetta

CBC 014 477

Foglio 5 di 12

RESOCONTO DI CANTIERE

Tutte le prove eseguite sono accettabili e sono state eseguite su materiali di origine argillosa con consistenza variabile da media ad elevata.

I sondaggi sono stati realizzati a carotaggio continuo, eseguito con carotiere semplice. Il recupero delle carote si può considerare buono e consente quindi di fare un'analisi predittiva del comportamento alla prova pressiometrica che viene così calibrata in maniera adeguata in termini di guaina e di gradini pressori.

Il foro di prova è stato eseguito con carotiere semplice da 66 mm dotato di corona con inserti in Widia.

La tasca di sondaggio, di almeno un metro di lunghezza, è stata sempre eseguita con battuta singola operata a secco su foro pulito dalla manovra precedente.

I dati numerici raccolti con l'indagine sono stati elaborati e inseriti in comuni fogli elettronici a grafica integrata (Excel).

Le prove sono state graficate secondo i due schemi convenzionali :

- curva netta pressione volume (P V)
- curva di "Fluage" o di "Creep" (P (V60"-V30"))

a tali curve é spesso abbinata che ha il pregio di evidenziare chiaramente il valore della pressione limite dato dall'intercetta della curva con l'asse delle pressioni.

L'esame di tali curve é di fondamentale importanza per la valutazione delle grandezze caratteristiche delle prove pressiometriche, in quanto permette di evidenziare l'adattamento della membrana al foro, il tratto a comportamento pseudo elastico ed il tratto a comportamento plastico, da cui è possibile estrapolare la pressione di "Fluage" Pf, (termine del tratto a comportamento pseudo elastico ed inizio del rifluimento), e la pressione limite Pl, di rottura del terreno, alla quale la deformazione diventa teoricamente infinita.

L'esame delle curve di espansione permette la valutazione del modulo pressiometrico (Gp), calcolato sul tratto pseudo elastico della curva, secondo l'espressione:

Gp = (Vo + Vm) dP/dV

Vm = volume medio del tratto pseudo elastico

Vo = 0.25*3.14*Ls*(di)2 - Vc = volume iniziale della cella centrale

Il Responsabile di Cantiere dott. geol. Giusoppe Scicolone

Il Vice Directore di Laboratorio dott. geof Sabrina Chiavetta

CBC 014 477

Ls = lunghezza cella centrale (210 mm)

di = diametro interno tubo di calibrazione

Vc = volume iniettato nella sonda per metterla in contatto con il tubo di calibrazione, estrapolato dalla curva di inerzia del sistema.

CONCLUSIONI

Il numero e la profondità delle prove eseguite sono rispondenti al piano delle indagini.

Le operazioni preliminari alla realizzazione del test pressiometrico sono state condotte coerentemente con quanto raccomandato dagli standard in materia.

Non tutte le prove, benché spinte fino alle massime pressioni possibili, hanno raggiunto la pressione di scorrimento, per i materiali più tenaci si è soltanto ottenuta una curva predittiva della pressione limite. In ogni caso è stato possibile determinare il modulo pressiometrico.

Tutte le prove eseguite, in conclusione, possono considerarsi accettabili e concorrere alla costruzione del modello geotecnico dell'area indagata.

> Il Responsabile di Cantiere dott. geol. Gius

Il Vice Direttore di Laboratorio brina Chiavetta

Foglio 6 di 12

Gaine

Storeure minforcée

Type Structure métallique X

E Lamelles métaliques

Caputchouc

Type

Longueur lolale (m)

150.00

Rélérence fournisseur Etalonnage p_m (MPa)

CAR ACIERISTIQUES SONDE

Référence 60-gcm

Longueur

210 mm X

370 mm

GX

Timbro a secco

TUBULURES ET FLUIDES

Jumelée X Liquide Denste 7/14

Gaz

Netura

Nature

CARACTERISTIQUES MEMBRANE

Compressibilité λ_p (m⁻¹)

CBC 014 477 Foglio 7 di i2 ETALONNAGE

CALIBRAGE

E1-G02

CA-A02A

NIVEAUX

0,129

66,0

4,546

Référence

Référence

Pression d'étalonnage p_a (MPa)

Diamètre etérieur du tube d, (mm)

Coefficient de calibrage a (cm²/MPa)

	Dossier	SS640 II lotto integraz
ш	Pays	12
E	Nom du chantier	SS640 II lotto integraz
S	Localisation / réf. Plan	
	Forage	Sf39
		

	Référence de l'essa	ES-SI39P1
	Date et heure	09/03/11 10.30
_	Unité de contrôle (CPV)	
₹ S	Enregistreur	
Ø	Opéraleur(s)	
ш	Pression differentielle	0,000
11	Observations (temps, etc)	

	Référence de l'essa	ES-\$139P-	
	Date et heure	09/03/11 1	0.30
_	Unité de contrôle (CPV)	_	
× 2	Enregistreur		
n	Opéraleur(s)		
ш	Pression differentielle	0,000	
h	Observations (temps, etc)		

+ 1,00 (tête de (orage) 20,00

	DONNEES BRUTES DONNEES CORRIGEES on P & V											
		PRESSION	45 pr (MPa)			VOLUME	5 V(1) (cm²)		PRESSION		PENTE	FLUAGE
Paller	1 s	15 s	30 s	60 s	1 s	15 s	30 в	60 s	p (MPa)	V ⁴⁴ (cm ²)	ΔV ^{hym} lΔp (cm fhiPn)	(cm²)
D]								
1	0.000	0,020	0.020	0,030	0,0	20,0	65.0	67,0	0,460	66.9	0	2,0
2	0,120	0,000	0,120	0.120	68,0	0,0	70,0	71,0	0,549	70,5	40	1,0
3	0,300	0,300	0,300	0,300	0,0	0,0	76,0	77.0	0,727	75,6	29	1.0
4	0,500	0,500	0.500	0,500	0,0	0.0	63,0	84,0	0,926	81,7	30	1,0
5	0.800	0,800	0,800	0.800	0,0	0.0	96,0	98,0	1,222	94.4	42	2,0
6	1,200	1,200	1,200	1,200	0,0	0,0	124,0	126,0	1,615	120.5	66	2,0
7	1,600	1,600	1,600	1,600	0,0	0,0	148,0	151,0	2,008	143,7	59	3,0
8	2,100	2,100	2,100	2,100	0,0	0,0	177,0	181,0	2,501	171,5	56	4,0
В	2,700	2,700	2,700	2,700	0,0	0,0	218,0	221,0	3,092	208.7	63	3,0
10				_					1	100,		
11											-	
12												
13										-		
14									1			
15												
16												
17												
18												
19									1			
20									1			
21									1			
22												
23												

	9	Z5		- 45,00
	Système de local	sation	X =	
ļ			Υ=	
1	Atelier de forage	ė		
ļ l	Méthode de fora	ege .		
111	(abrāvietions du table)	U C)		
ORAG	Outil de forage	type		
	Outil de lorage	diamé	tre (mm)	4
밑	Niveau pied de	tubage	(m)	
-	Fluide d'injection	n		
1		đe (r	n)	
9	Passe de forage	à (m)	
	101000	Temin	ée à	

s	Hauteurs	mêtre	m	
	Temps	seconde	16	
Ξ	Volumes	centimetre cube	cm ³	
اكا	Pressions	Mégapasca!	MPE	

PROVA PRESSIOMETRICA MENARD

Dossier	S\$640 Il lotto in				
Référence de l'essa	ES-SI39P1				
Nom du chantier	SS640 It lotto int				
Forage	SI39				
Profondeur de l'essai	44,00				

	(APAGED - XPRESSIO)		
10.dV (cm³)		-	
10.6			
		~	
000 (cm ₃)		1	
		}	i ì
500		1	
400		 	
		i	
300			
200			
200	EM = 35 MPa		
100 -	D ₁	Ė	
Pr		pl > Pn	
	0,5 1 1,5 2 2,5	3	3,5
<u></u>			P (MPa)

RESULTATS CALC	ULES NORMATIFS
σ _{h∗}	0,516
Pt	0,55
p_2	2,01
P ₁	0,00
Pı	3,09
p.*	2,58
E _M	34,9
E _M /p _i	11,3
E _M / p₁*	13,5

PARAMETR	ES DES CO	URBES AJUSTEES
volumes	Α	-2,00E-03
inverses	В	1,10E-02
hyperbola	С	3,76E+00
"yporous	D	9,79E+03

Il Responsabile di Cantiere dott. geol. Giuseppe Scicolone

II V ce Direttore di Laboratorio dott. acol Sabrina Chiavetta

CBC 014 477

ш	Pays				
느	Nom du chantier	SS640 Il iotto integraz			
w	Localisation / réf. Pian				
	Forage	Sr39			
	Référence de l'essai	ES-Si39P2			
	Date et heure	10/03/11 11.00			
-	Unité de contrôle (CPV)	· -			
SAI	Enregistreur				
מט	Opérateur(s)				
ш					

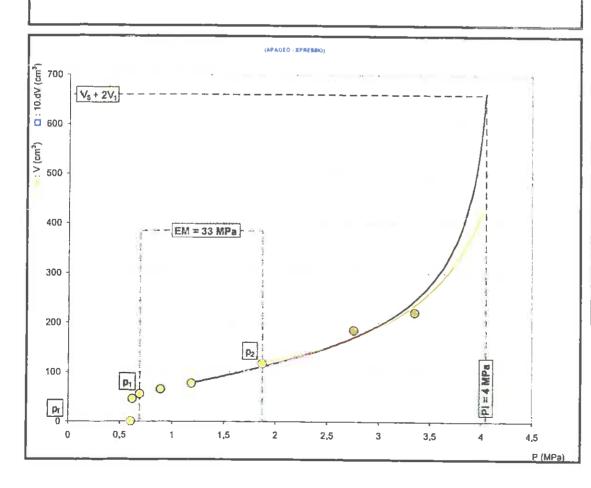
Dossier

SS640 II lotto integrazi

+ 1,00 (têta de forege) - 30,00

NO E	CARACTE	RISTIQUES SONDE		TUE	BULURE	ES ET FLUIDES	ETALONNAGE	ETALONNAGE	
	Référence	60-gcm	_11,	уре Совина Х	Liquide	Nature	Référence	ET-G02	
	Toud Tien.	Gaine		Jumeide	Liquide	Densité y√y.	Pression d'étalonnage p _{er (} MPa)	0,129	
	210 mm X	Capulchouc		Longueur lotale (m)	Gaz	Nature	CALIBRAGE		
ŀ	370 mm	70 mm Structure renforcés	150,00		Compressibilité λ_{ϕ} (m ⁻¹)	Référence	CA-A02A		
	Type e Structure métalique (X		X	CARACTERIST Référence fournisseur		QUES MEMBRANE	Diamètre intérieur du tube d, (mm)		
	E	E Lemelles métaliques					Coefficient de calibrage a (cm³/MPa)		
		Tube fendu	E	alonnage p _m (MPa)		0,040	Volume de la sonde V _a (cm ³)	550.8	

	Reference de ressar	ES-8139F	
	Date et heure	10/03/11	11.00
_	Unité de contrôle (CPV)	_	
Z.	Enregistreur		
rs i	Opérateur(s)		
ш	Pression différentielle	0,000	
	Observations (temps, etc)		


			0	ONNEES BE	UTES				DON	IEES COR	RIGEES en	P&V
		PRESSIO	dS pr (MPa)			VOLUMES V(I) (cm²)			PRESSION V	VOLUME	PENTE	FLUAG
Palier	1, 1	15 s	30 s	60 s	1 s	15 s	30 s	60 s	p (MPa)	V ^{III} (cm²)	9	(cm.)
0											(mo ma aj	(4.1.1)
1	0,040	0,000	0,000	0,000	0.0	0,0	0.0	0.0	0,609	0,0	0	0,0
2	0,025	0,000	0,025	0,025	0,0	0.0	40.0	45.0	0,621	44.9	3714	5,0
3	0,100	0,000	0,100	0,100	0,0	0.0	53,0	55.0	0,693	54,5	133	2,0
4	0,300	0,000	0.300	0,300	0,0	0,0	65.0	66,0	0,890	64,6	51	1.0
5	0,600	0,000	0,600	0,600	0,0	0.0	78.0	79.0	1,187	76.3	39	1.0
6	1,300	0,000	1,300	1,300	0.0	0,0	121,0	122.0	1,878	116,1	57	1.0
7	2,200	0.000	2,200	2,200	0,0	0.0	193,0	194,0	2.758	184.0	77	1,0
8	2,800	0.000	2,800	2,800	0.0	0,0	232.0	233.0	3.349	220.3	61	1,0
9								,-	4,510	220,0		1,0
10								_	1			
11			1						-			
12								_	-	-		
13									1			
14												
15			i									
16							 		+			
17							1	 				
18												
19							† 					
20												
21								 	 			
22							<u> </u>	 	t			
23												
24							·					

		<u> </u>	· †zs		61,00
		Système de lacel	seton	X =	
ĺ		Atelier de forag	е.	Y =	
	ш	Méthode de for: (alcávasors du laba-	age		
	ORAG	Outil de lorage	type diamè	tre (mm)	
	2	Niveau pied de			
	_ {	Fluide d'injectio	n		
Ì		Passe de	de . (1	n)	
		forage	à (m	,	
Ĭ			Termin	ée à	

S	Hauteurs	mètre	m
Ë	Temps	seconde	8
Ξ	Volumes	centimètre cube	cm ³
	Pressions	Mégapascal	MPa

PROVA PRESSIOMETRICA MENARD

Dossier	SS640 II lotto in	
Référence de l'essai	ES-S139P2	
Nom du chantier	SS640 II lotto int	
Forage	SI3B	
Profondeur de l'essar	60,00	

RESULTATS CALCULES NORMATIFS		
Oh.	0,690	
P ₁	0,69	
P ₂	1,88	
p _f	0.00	
p _i	4,05	
p,*	3,36	
E _{ta}	32,5	
E _M /p,	8,0	
E _w / p _i *	9,7	

PARAMET	RESIDES COUR	BES AJUSTEES
volumes	A	-2.85E-03
Inverses	8	1,38E-02
hyperbole	C	4.19E+00
Trypel DOIS	D	1,47E+04
	50	
- 1		
		L
: L		
[
	1//	7

Il Responsabile di Cantiere dott. geol Giuseppe Scicolone

Il Vice Directore di Laboratorio dott geof fabrina Chiavetta

Gaine

Structure rentarces

Structure métalique

Lamelles métaliques

PRESSIONS or (MPa)

15 s

0,000

0,000

0.000

0.000

0.000

0,000

0,000

0,000

0.000

0,000

Caoulchouc

Tube fendu

30 a

0,000

0,025

0.075

0.200

0.400

0,500

0,750

1,000

1,500

1,650

CARACTERISTIQUES SONDE

Référence 60-gcm

Longueur

370 mm

Туре

E

1 s

0,000

0.025

0.075

0.200

0.400

0,500

0,750

1,000

1,500

1,650

0

6

Я

9

10

GX

TUBULURES ET FLUIDES

Nature

Nature

CARACTERISTIQUES MEMBRANE

0.040

VOLUMES V(t) (cm²)

30 s

0.0

220,0

315,0

393,0

480.0

518.0

535.0

557,0

603,0

625,0

60 s

0.0

225,0

350,0

401,0

505,0

520.0

537.0

559_.0

608,0

635,0

0.809

0.776

0,801

0,918

1,102

1.200

1,448

1.695

2,190

2,337

15 s

0.0

0,0

0,0

0,0

0.0

0.0

0,0

0,0

0,0

0,0

Densilé 7/1×

Compressibilité λ_q (m 1)

Constale

Longueur totale (m)

150.00

Référence fournisseur

Etalonnage p., (MPa)

DONNEES BRUTES

60 s

0,000

0,025

0,075

0.200

0.400

0,500

0,750

1,000

1,500

1,650

Jumehe X

1 s

0,0

0,0

0,0

0,0

0.0

0.0

0,0

0,0

0,0

0,0

Туре

CBC 014 477

Pression d'étalonnage p. (MPa)

Diemètre intérieur du tube d, (mm)

Volume de la sonde V. (cm3)

DONNEES CORRIGEES on P & V

V^{er} (cm²)

0.0

224.9

349,7

400,1

503,2

517,7

533.6

554.5

601.2

627,5

Coefficient de calibrece e (cm3/MPa) 4.546

PENTE

۵√ السلام

n

-6821

4958

433

558

64

84

94

179

Reference

ETALONNAGE

CALIBRAGE

Foglio 9 di 12

ET-G02

CA-A02A

0.129

66,0

	Dossier	SS640 II lotto integrazi
ш	Pays	
Ė	Nom du chanlier	SS640 II lotto integrazi
S	Localisation / réf Plan	
	Forage	S139

	Reference de Lessai	ES-S(39P3
	Date et heure	12/03/11 9.00
_	Unité de controle (cev)	
SSA	Enregistreur	
	Operateur(s)	
ш	Pression différentielle	0,000
	Observations (lemps, etc)	

	Transfer de reason	E-9-9199F3	
ESSAI	Date et heure	12/03/11 9.00	
	Unité de controle (cev)		
	Enregistreur		_
	Opérateur(s)		
	Pression différentielle	0,000	_
	Observations (temps, etc)		

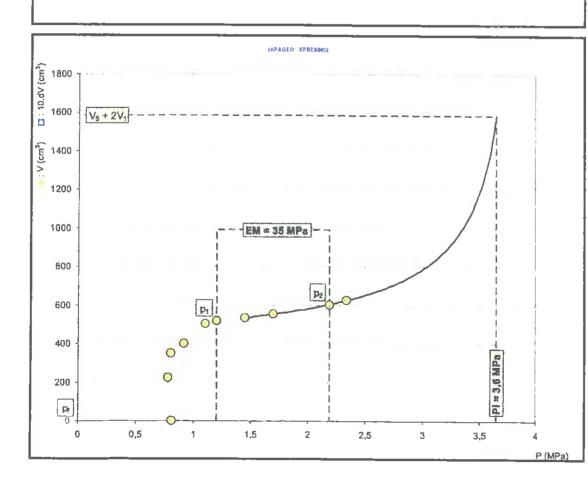
NGF

NIVEAUX

+ 1,00

(tête de forage)

20,00


0

3}_	550,8
P&V	
FLUAGE	
VA _{MEN}	1
(cm²)	
0,0	
5,0	!
35,0	
8,0	
25,0	i
2,0	Ì
2,0	
2,0 2,0 2,0	
5,0	
10,0	

	<u></u>	-+ _{Zs}		83,00
	Système de local	setion	Χ=	
	Atelier de forage		7 =	
FORAGE	Méthode de forage (abrévisions du libieau C)			
	Outil de forage	type diamė:	tre (mm)	
0	Niveau pied de tubage (m)			
-	Fluide d'injection			
	Passe de forage	de. (m)		
		à (m)		
		Terman	ée à	

LO.	Hauteurs	mètre	m
Œ	Temps	seconde	6
Z	Volumes	centimètre cube	cm ³
2	Pressions	Mégapascal	MPa

PROVA PRESSIOMETRICA MENARD

Référence de l'essai	ES-SI39P3
Nom du chantier	SS640 II lotto int
Forage	SI39
Profondeur de l'essai	80,00
RESULTATS CALCU	LES NORMATIFS

SS640 II lotto in

σ_{h_0}	1,020
P ₁	1,20
P ₂	2,19
P _I	0,00
Þi	3,65
p.*	2,63
Eu	35,0
E _M / p _i	9,6
E _M /p _i *	13,3

PARAMETRES DES COURBES AJUSTEES		
volumes inverses	A	-4.74E-04
	В	2.70E-03
hyperbole	C	3,82E+00
	D	-1,07E+05
i [
L		3.0

Il Responsabile de Cantiere dott. geol/Giuseppe Scicolone

Il Vice Direttore di Laboratorio dott. geol Sabrina Chiavetta

Gaine

Structure renforcén

Lamelles métaliques

Structure métaffique X

Caoulchouc

Tube fendu

CAR ACTERISTIQUES SONDE

Référience 60-gcm

Longeler

210 mm X

370 mm

Туре

E

GX

SONDE

Pr 0

0,5

TUBULURES ET FLUIDES

CARACTERISTIQUES MEMBRANE

0,040

Gaz

Nature

Densité y/s

Compressibilité λ_ς (m⁻¹)

Coaxals

Longueur lotale (m)

150,00

Référence fournisseur

Etalonnage p_m (MPa)

Jumalée X

Туре

CBC 014 477

Pression d'étalonnage per (MPa)

Dismètre inténeur du tube d, (mm)

Volume de la sonde V, (cm³)

Coefficient de calibrage a (cm³/MPa)

Référence

Référence

ETALONNAGE

CALIBRAGE

Foglio 10 di 12

ET-G02

CA-A02A

0,129

66.0

4,546

	Dossier	SS640 II lotto integrazi
ш	Pays	
SITI	Nom du chantier	SS640 Il lotto integrazi
	Locatisation / réf. Plan	
	Forage	\$139

	Référence de l'essai	ES-SI39P4
	Date et heure	16/03/2011 08.30
_	Unité de contrôle (CPV)	
K S	Enregistreur	
E 5.5	Operateur(s)	
	Fression différentielle	0,000
	Observations (temps, etc)	

	Date et heure	16/03/2011 08.30
_	Unité de contrôle (CPV)	
SA	Enregistreur	
w	Operateu(s)	
ш	Fression différentielle	0,000
	Observations (temps, etc)	
	Système de nivellement	Coles Coles

absolues

retatives + 1,00

20,00 104,00

NGF

		DONNEES BRUTES							DONE	IEE8 COR	RIGEES on	P&V
Paller		PRESSIO	NS pr (MPa)		VOLUMES V(I) (cm²)			PRESSION	VOLUME	PENTE	FLUAGE	
	71.1	15 s	30 s	60 s	1 s	15 s	30 s	60 s	p (MPn)	V ^{ee} (cm³)	ΔV /Δμ (cm //4Ps)	AV****
0_												
1	0,0 00	0,000	0,000	0,000	0,0	0,0	0,0	0,0	1.009	0.0	0	0,0
2	0,0 50	0,000	0,050	0,050	0,0	0,0	77,0	78.0	1,037	77,6	2775	1,0
3	0,1 30	0,000	0,130	0,130	0,0	0,0	83,0	84.0	1,118	83,4	71	1,0
4	0,200	0,000	0,200	0,200	0,0	0,0	85.0	86.0	1,185	85.1	24	1,0
5	0,500	0,000	0,500	0,500	0,0	0,0	91,0	92,0	1,483	89.7	15	1,0
6	1,000	0,000	1,000	1,000	0,0	0,0	105.0	105,0	1,980	100,5	21	0,0
7	1,500	0,000	1,500	1,500	0,0	0,0	123,0	124,0	2,475	117,2	34	1,0
-	2,400	0,000	2,400	2,400	0.0	0,0	155,0	156.0	3,367	145.1	31	1,0
9	2.800	0,000	2.800	2,800	0,0	0,0	175.0	176,0	3,762	163.3	48	1.0
10			1							100,0		
11												
12												
13												
14									+			
15												
16			i —									
17												
18												
19		-										
20									1			
21									1		-	
22									 			
23							 		 		-	
24							 	-	1			

	Système de localisation X		X÷	:
			Υ =	
i i	Atelier de forage			
	Méthode de for-	age		
3.6	(abrêdations ou liable:	(C)		
ORAG	Outil de forage type			
2	Coul de lorage	diamè	tre (mm)	T
E	Niveau pied de lubage (m)			
-	Fluide d'injection			
	de (n		n)	1
	Passe de forage	à (m)	
	10.030	Terminée à		

S	Hauteurs	mêtre	ITIL
	Temps	seconde	
Įξ	Volumes	centimètre cuba	cm³
L	Pressions	Mégapascai	MPs

PROVA PRESSIOMETRICA MENARD

1	IAPAGEO - XPREASIO)
10.dV (cm³)	
9 2 70	V ₈ + 2V ₁
. V (cm³)	
50	
40	
30	
20	P ₂
10	P1 FM = 70 MP2
Į į	O CEMP 7 10 MP a

2

2,5

3

3,5

P (MPa)

1,5

SS640 If lotto In
ES-S139P4
SS640 II lotto ini
Si39
100,00

RESULTATS CALC	ULES NORMATIFS
₫ _{hs}	1,300
Đ ₁	1,19
P ₂	2,48
pr	0,00
p _i	3,76
p ₁ *	2,46
Eu	69,7
E _¥ /p _i	18,5
E _k ε / ρ,*	28,3

PARAMETRES DES COURBES AJUSTEES					
volumes	Α	-1,88E-03			
inverses	В	1.32E-02			
hyperbole	C	5,05E+00			
Пурстьоне	D	3,39E+03			
		<u> </u>			
-					
		4-9			

Il Responsabile di Cantiere dott. geol. Giusepse Scicolone

Il Vice Directore di Laboratorio dott. ecol Sabrina Chiavetta

Gaine

Structure renforcée

Lamelles métalliques

Structure métellique X

Cagutchous

Tube fendu

CARACTERISTIQUES SONDE

Référence 60-gcm

Longueur

370 mm

Туре

E

G X

210 mm X

Timbro a secco

TUBULURES ET FLUIDES

Nature Liquide Densile 1/1...

Nature

CARACTERISTIQUES MEMBRANE

0,040

Camprescibillé à (m)

GB2

Coardale

Longueur lotale (m)

150,00

Référence fournisseur

Etalonnage p_m (MPa)

Jumaiée X

Туре

CBC 014 477

Pression d'étalonnage p_{et} (MPa)

Diamètre intérieur du tube d, (mm)

Coefficient de cationage a (cm³/MPa)

Volume de la sonde V, (cm³)

Référence

Référence

ETALONNAGE

CALIBRAGE

Fogie 11 du 12

ET-G02

CA-A02A

0,129

66,0

4,546

550,8

SITE	Dossier	SS640 Il lotto integrazi
	Pays	
	Nom du chantier	SS640 Il lotto integrazi
	Localisation / réf. Pian	
ì.	Forage	5139

	Référence de l'essai	ES-SI39P5
	Date et heure	17/03/2011 13.30
μ.	Unité de contrôle (CPV)	
Y S	Enregistreur	
w	Opérateur(s)	
ш	Pression différentielle	0,000
	Observations (lemps, etc)	

H.	Date et heure	17/03/2011 1	3.30
L.	Unité de contrôle (CPV)		-
ر ا	Enregistreur		
w	Opérateur(s)		
ш	Pression différentielle	0,000	
I	Observations (lemps, etc)		
	Système de nivellement NGF	Cotes absolues	Cotes relatives

+ 1,00

0 (lête de lorage) 20,00

S\$640 II lotto in

SS640 Il lotto in

ES-SI39P5

S139

120.00

0

NIVEAUX

				ONNEES BE	IUTES				DON	EES COR	RiGEES en	PAV
. I	PRESSIONS pr (MPs)				VOLUMES V(t) (cm²)			PRESSION	VOLUME		FLUAG	
Palier	1 s	15 s	30 s	60 s	1 s	15 s	30 s	60 s	p (MPn)	V ^{ee} (cm ²)	ΔV ^{man} Δp (cm MiPa)	AV**
0			<u> </u>								(en vental)	(cm)
1	0,000	0.000	0,000	0.000	0.0	0.0	0.0	0,0	1,209	0,0	0	0.0
2	0,100	0.000	0,100	0,100	0,0	0,0	54.0	63.0	1,201	62,5	761	9,0
3	0,200	0.000	0.200	0.200	0,0	0,0	91.0	92,0	1,383	91,1	309	1,0
4	0,400	0.000	0,400	0.400	0,0	0.0	112.0	113.0	1,578	111,2	103	
5	0,600	0,000	0,600	0,600	0,0	0,0	129,0	131,0	1,773	128,3	87	1,0
6	0,900	0,000	0,900	0.900	0,0	0,0	155,0	156,0	2,067	151.9	BO .	1,0
7	1,600	0,000	1,600	1,600	0.0	0,0	185.0	186,0	2,760	178,7	38	1.0
8	2,200	0,000	2,200	2,200	0.0	0,0	230,0	232,0	3,350	222,0	73	2,0
9	2,700	0,000	2,700	2,700	0,0	0,0	268,0	269,0	3,842	256.7	70	1,0
10						-1,5		200,0	0,012	230,1		1,0
11							-	-	1			
12			 				_					
13								_				
14			_									
15									1			
16												
17						-						
18									 - 			
19								-				v -
20									 			
21	_											_
22								\vdash				
23									-			
24												

<u></u>	<u> </u>	Z]	- 121,00	
	Système de Incel	isation	X	_		
E			Y :	-		
	Atelier de forage			_		
	Méthode de forage (abravations du tablessu C)					
ORAG	Outil de forage type		tre (mm)	_		
FOI	Niveau pied de tubage (_ `	╁		-
-	Fluide d'injectio		┿		\neg	
		de (r	n)	+		\neg
	Passe de forage	à (m)	†		\neg
	inahe	Temin	ée à	†		⊣

L/D	Hauteurs	mètre	m
岸	Temps	seconde	15
호	Volumes	centimètre cube	cm ³
	Pressions	Mégapascal	MPii

Dossier

Forage

Référence de l'essai

Profondeur de l'essai

Nom du chantier

PROVA PRESSIOMETRICA MENARD

RESU	TATS CALCULE	SNORMATIES		
	σ _{h₃}	1,580		
	Pt	1,77		
	ρ ₂	2,76		
	P _f	0,00		
	p ₁	4,90		
	p.*	3,32		
	E _M	36,6		
	E _M /p _i	7,5		
<u> </u>	E _M / p.*	11,0		
PARAME	TRES DES COUR	RBES AJUSTEES		
volumes	A	-1,59E-03		
Inverses	В	9,94E-03		

				TAPAGEO - XPREI	16(0)			
1600		~ =						
1400							1	
1200								0
1000 -							-	
800 -	V _s + 2V ₁	سه سه در در ورو خود	EM = 3	7 MPa	त्रामा केश्वय स्थाप का विकास का स्थाप का स्थाप स्थाप का स्थाप का स	라 네마 (RD EE SH) <u>대</u>		
600			the same and] _} !				
400 -				\$ } ! !				
200 -		Pı	0	P2			Pl=4,9 MPa	
Pr 0			,				id.	
0		1	2	3		4	5	6

PARAMETR	ES DES CO	URBES AJUSTEES
volumes	A	-1,59 E-03
Inverses	В	9,94E-03
hyperbole	С	4,94E+00
пурстионе	D	5.86E+03
1		
["		

Il Responsabile di Cantiere dott. geoi. Giuseppe Scicolone

Il Vice Directore di Laboratorio dott good Sabrina Chiavetta

Timbro a secca

CBC 014 477

Foglio 12 di 12

	Dossier	SS640 Il lotto integraz
ш	Pays	
느	Nom du chantier	SS640 Il lotto integrazi
S	Localisation / ref. Plan	
	Forage	SI42

	Référence de l'essar	ES-SI42P1#
	Date et heure	17/03/2010 15.30
	Unité de contrôle (CFV)	
V S	Enregistreur	
S	Opérateur(s)	
щ	Pression différentielle	0,000
	Observations (lemps, etc)	

Sys	ilème de niveller NGF	absolues	Cotes relatives
AUX			+ 1,00
NIVE A	2	*	0 (léte de forege)
Z	## Z	w	30,00
Í	<u> </u>	5	62,50

- I	Système de local sation		X=	
			Y =	
Г	Atelier de forage			
ı	Méthode de forage			
Щ.	(abréviations du lableau C)			
ORAG	Outil de forage	type		
۳ ا	Outpi de lorage	diamètre (mm)		
2 [Niveau pied de tubage (m)			
	Fluide d'injection			
		de (m)	
	Pasae de forage	à (m)		
	lorage	Terminée	à	-

S	Hauteurs	mèlre	m
쁘	Temps	seconde	
Ξ	Volumes	centimètre cube	cm ³
	Pressions	Mégapascai	MPa

1		-	RISTIQUES SOND	Ξ.			TUE	BULURE	SETFLUIDES	ETALONNAGE	
L	Référe na	e	60-gcm		Туре	Coaxale			Natura	Référence	ET-G02
u L	Longu-eur Gaine	_	Type	Jumalée	х	Fidrige	Denalié y/y-	Pression d'étalonnage p _{er} (MPa)	0.129		
2	210 m m	X	Caoutchouc		Longi	ieur lotaie (m	1)		Nature	CALIBRAGE	-1-
ô	370 m 🕋	Ĺ.	Structure renforcée			150,00		Gaz	Compressibilité \ /m 1	Référence	CA-A02A
0	Туре		Structure métalique	Х		CAR	AC I	ERISTI	QUES MEMBRANE	Diamètre intérieur du tube d, (mm)	66.0
	E	E Lamelles métalliques Ré		Référer	Référence fournisseur				Coefficient de calibrage a (cm3/MPa)	4,546	
	G	X	Tube fendu		Etalons	age p. (MPa	3)		0,040	Volume de la sonde V _a (cm ³)	550.8

				ONNEES B	RUTES				DONE	IEES COR	RIGEES en	DRV
		PRESSIO	MS pr (MPa)			VOLUMES V(I) (cm²)				VOLUME	PENTE	FLUAGE
Paller	15	15 s	30 s	60 a	1 s	15 s	30 s	60 s	p (MPa)	V ^M (cm²)	ΔV ^{MENC} (Δp (cm (RAPa)	AV (cm²)
0											fem imt.el	(cm)
1	0,000	0,000	0,000	0,000	10,0	0,0	30.0	30,0	0.625	30.0	0	0,0
2	0,000	0,000	0,150	0,150	0,0	0,0	62,0	63.0	0,766	62.3	229	1,0
3	0.000	0,000	0,225	0,225	0,0	0.0	90,0	91.0	0,834	90.0	410	1.0
4	0,000	0,000	0,355	0,355	0,0	0.0	104.0	106.0	0,960	104,4	114	2.0
5	0.000	0,000	0,520	0.520	0.0	0.0	120.0	125.0	1,120	122.6	114	_
6	0,000	0,000	0.810	0,610	0.0	0.0	144.0	144,0	1,405	140.3	62	5,0
7	0,000	0,000	1,400	1,400	0.0	0,0	162,0	163,0	1,990	156.6		0,0
8	0,000	0,000	1,800	1,800	0,0	0,0	180.0	183.0	2,386		28	1.0
9	0,000	0.000	2,100	2,100	0,0	0.0	199,0	203,0	2,681	174,8	46	3,0
10	0,000	0,000	2,300	2,300	0.0	0.0	214,0	219,0	2,878	193,5	63	4,0
11	0,000	0.000	2.620	2,620	0.0	0.0	242.0	248.0		208.5	77	5,0
12			_			0,0	242,0	240,0	3,191	236,1	88	6.0
13			 	\vdash						-		
14				·								
15												
16												
17									├			
18			_						├ ──┼			
19			-		-							
20												
21									L			
22												
23						_			I			
24			 									

PROVA PRESSIOMETRICA MENARD

1500 - EM = 45 MPa - 1000 - V _S + 2V ₄ - 1,5 2 2,5 3 3,5 4 4,5 P (MPa)									
2000 - EM = 45 MPa -	2000			TAPAGEO.	XPRESSIO)				
2000 - EM = 45 MPa -	E 3000			*					
2000 - EM = 45 MPa -	10.d								
1500 - EM = 45 MPa - 1000 - EM	2500 -							4	
1500 - EM = 45 MPa - 1000 - EM	сш ₃)								
1500 - EM = 45 MPa EM = 45 MPa -									
1000 - V _S + 2V ₁ - V _S + 2V ₁ - Q ₁ Q ₂ Q ₃ Q ₄ Q ₅ Q ₅ Q ₇ Q ₇ Q ₈	2000 -								
1000 - V _S + 2V ₁ - V _S + 2V ₁ - Q ₁ Q ₂ Q ₃ Q ₄ Q ₅ Q ₅ Q ₇ Q ₇ Q ₈			_						
1000 - V _S + 2V ₁ - V _S + 2V ₁ - Q ₁ Q ₂ Q ₃ Q ₄ Q ₅ Q ₅ Q ₇	1500 -		E	M = 45 MPa	<u>l</u>				
500 - V _S + 2V ₁ - P ₂ - P ₃ - P ₄ - P ₅ - P			E I		1				
500 - V _S + 2V ₁ - P ₂ - P ₃ - P ₄ - P ₅ - P			l l		1				ĺ
500 - P - P - P - P - P - P - P - P - P -	1000 -				!				
0 0,5 1 1,5 2 2,5 3 3,5 4 4,5	- Vs	+ 2V ₁						-41	4
0 0,5 1 1,5 2 2,5 3 3,5 4 4,5	500 -		i i		į			/_	
0 0,5 1 1,5 2 2,5 3 3,5 4 4,5		_	_i					MPa	
0 0,5 1 1,5 2 2,5 3 3,5 4 4,5			PHI	<u></u>		-00-		14	
	1		- 7					<u>a</u>	
	U	0,5	1 1,5	2	2,5	3	3,5		

Dossier	SS640 II lotto In			
Référence de l'essai	ES-SI42P1a			
Nom du chantier	SS640 () lotto in			
Forage	SI42			
Profondeur de l'essai	62,50			

RESULTATS CALC	RESULTATS CALCULES NORMATIFS					
$\sigma_{t,s}$	0,725					
P ₃	1,12					
P ₂	2,39					
pt	2,68					
ρı	4,03					
p _i *	3,30					
Eu	45,1					
E _M /p _i	11,2					
E _u /p _i *	13,7					

PARAMET	RES DES CO	URBES AJUSTEES
volumes	A	-1.86 E-03
inverses	В	1,02E -02
hyperbole	С	4,02E4 00
.,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	D	2,07 E+03
Ĺ		

Il Responsabile di Cantiere dott. geol. Siuseppe Scicolone

Il Vice Directore di Laboratorio dott per Sabrina Chiavetta

Timbro a secco

Laboratorio: C.da Calderaro (Zona Ind.) C.P. 287 - 93100 Caltanissetta

Tel.: 0934565012

Fax.: 0934575422

e-mail: info@sidercem.it

Esecuzione di indagini geognostiche, geofisiche, geotecniche in situ e prove di laboratorio a sostegno della progettazione esecutiva relativa alle attività prodromiche connesse ai lavori di adeguamento a quattro corsie della S.S. 640 "di Porto Empedocle" 2° lotto, tratto dal km 44+000 allo svincolo con l'A19

Ente Appaltante	ANAS S.p.A. – Direzione Generale Roma
Contraente Generale	EMPEDOCLE 2 s.c.p.a
Committente	EMPEDOCLE 2 s.c.p.a

INDAGINI INTEGRATIVE 3° FASE

Prove di emungimento a portata costante

Comm. n°	Rev.	Periodo Indagine	Data Emissione	Redazione (RC)	Verifica (VRSQ)	Approvazione (RSQ)
(*) Consultare all'interno elenco	O 1 Parti Sottonneale, osgetto di tevisione/nuovo ersenmento	Febbraio- Luglio 2011	29/07/2011	dott. geg/ Giuseppe Scicolone	geom. Carlo La Russa	dolt. ing. Vinee zo Arena

Laboratorio di Caltanissetta C.da Calderaro (Zona Ind.) C.P. 287 – 93100 Caltanissetta Tel.: 0934565012

Tel.: Fax: e-mail:

0934575422 info@sidercem.it

Timbro a secco

Certific	cato No	Prot. N.	CBA	001 617	Laboratorio di Caltanissetta
Certime	Certificato N		20	/04/11	D.M. 52507 del 11/10/2004
CBC 014 699	22/04/11	Periodo indagine:	Inizio:	14/04/11	Divisione: Geotecnica - B - 349/STC
		1 crious mangine.	Fine:	20/04/11	Settore: Prove in situ

Ente Appaltante:

ANAS S.p.A. - Direzione Generale Roma

Contraente Generale:

EMPEDOCLE 2 s.c.p.a.

Richiedente/Committente:

EMPEDOCLE 2 s.c.p.a.

Oggetto:

Esecuzione di indagini geognostiche, geofisiche, geotecniche e prove di laboratorio a sostegno della progettazione esecutiva relativa alle attività prodromiche connesse ai lavori di adeguamento a quattro corsie della S.S. 640 "di Porto Empedocle" 2º lotto, tratto dal km

44+000 allo svincolo con l'A19 (3^ Fase)

(1) Il presente certificato è composto da 8 fogli numerati da 1 a 8.

(2) Il presente certificato viene autenticato dalla Sidercem s.r.l. di Caltanissetta mediante l'apposizione su ciascun foglio del timbro a secco visibile in alto. In assenza del timbro a secco il certificato è da ritenersi contraffatto.

(3) Le copie vengono autenticate dalla Sidercem s.r.l. di Caltanissetta mediante l'apposizione su ciascun foglio del timbro a secco visibile in alto. In assenza del timbro a secco la copia è da ritenersi contraffatta.

CERTIFICATO DI PROVA
Prova di emungimento a portata costante

Il Responsabile di Cantiere dott. geol. Giuseppe Scicolone

Il Vice Birettore di Laboratorio dott geol Sabrina Chiavetta

Laboratorio di Caltanissetta C.da Calderaro (Zona Ind.) C.P. 287 – 93100 Caltanissetta

Tel.: 0934565012

Fax: 0934575422 e-mail: info@sidercem.it

Timbro a secco

Certific	cato No	Prot. N.	СВА	001 617	Laboratorio di Caltanissetta	
CCI tilli		Data accettazione:	20/04/11		D.M. 52507 del 11/10/2004	
CBC 014 699	22/04/11	Periodo indagine:	Inizio:	14/04/11	Divisione: Geotecnica - B - 349/STC	
		1 or roto magne.	Fine:	20/04/11	Settore: Prove in situ	

Ente Appaltante:

ANAS S.p.A. - Direzione Generale Roma

Contraente Generale:

EMPEDOCLE 2 s.c.p.a.

Richi edente/Committente:

EMPEDOCLE 2 s.c.p.a.

Oggetto:

Esecuzione di indagini geognostiche, geofisiche, geotecniche e prove di laboratorio a sostegno della progettazione esecutiva relativa alle attività prodromiche connesse ai lavori di adeguamento a quattro corsie della S.S. 640 "di Porto Empedocle" 2º lotto, tratto dal km

44+000 allo svincolo con l'A19 (3^ Fase)

(1) Il presente certificato è composto da 8 fogli numerati da 1 a 8.

(2) Il presente certificato viene autenticato dalla Sidercem s.r.l. di Caltanissetta mediante l'apposizione su ciascun foglio del timbro a secco visibile in alto. In assenza del timbro a secco il certificato è da ritenersi contraffatto.

(3) Le copie vengono autenticate dalla Sidercem s.r.l. di Caltanissetta mediante l'apposizione su ciascun foglio del timbro a secco visibile in alto. In assenza del timbro a secco la copia è da ritenersi contraffatta.

CERTIFICATO DI PROVA
Prova di emungimento a portata costante

Il Responsabile di Cantiere dott. geol. Giuseppe Scicolone

Il Vice Direttore di Laboratorio dott. geol. Sabrina Chiavetta

Prova di portata

A conclusione della realizzazione della stazione di prova, mediante l'esecuzione del sondaggio Pz2, è stata eseguita una prova di emungimento a portata costante.

La prova consiste nell'applicare al pozzo realizzato un unico gradino di portata e registrando manualmente gli abbassamenti e le risalite determinati dalla fase di pompaggio e dalla successiva fase di stasi.

La prova in oggetto è stata eseguita con una portata costante di 1,8 l/s per una durata della fase di pompaggio di 48 h, a cui e seguita la fase di stasi, tale prova è stata eseguita posizionando la pompa elttrosommersa nel Pz2 a 115 m dal p.c.

Il valore della portata di emungimento da adottare è stata preliminarmente determinata attraverso prove propedeutiche atte a determinare la curva caratteristica $Q/\Delta h$.

Gli intervalli di acquisizione delle misure sono stati indicate dalla Committenza secondo il seguente schema:

Tempo dopo inizio prova	Intervallo di misura
Da 0 a15 minuti	Ogni minuto
Da 15 a 60 minuti	Ogni 5 minuti
Da 60 a 120 minuti	Ogni 10 minuti
Da 120 a 540 minuti	Ogni 30 minuti
Da 540 a 1200 minuti	Ogni ora
Da 1200 a 4320 minuti	Ogni 4 ore

Il pompaggio dal pozzo è stato eseguito per mezzo di una pompa di emungimento di tipo elettrosommerso, che ha garantito una portata costante determinata agendo su una saracinesca installata sulla tubazione di mandata della pompa preliminarmente regolata e monitorata attraverso un contalitri tarato.

La procedura eseguita per l'esecuzione della prova è la seguente:

- 1. Prima di attivare il pompaggio alla portata corrispondente, si è rilevato il livello statico nel pozzo e nel piezometro SI42, mediante un sondina elettrica "freatimetro" con segnale sia luminoso che acustico.
- 2. Si è attivata la pompa alla portata indicata e verificando ad intervalli regolari il mantenimento della portata.
- 3. La portata emunta si è mantenuta costante fino alla stabilizzazione del livello all'interno del piezometro stesso.

Il Responsabile di Cantiere dott. geol. Giuseppe Scicolone

Il Vice Direttire di Laboratorio dott. geol. Sabrina Chiavetta

- 4. Al termine delle 48 h si è provveduto a disattivare la pompa e registrare le variazioni del livello piezometrico ad intervalli di tempo preliminarmente indicati dalla Committenza, mediante freatimetro, sia nel pozzo Pz2 sia nel piezometro SI42.
- 5. Le prove sono state eseguite in condizione di falda indisturbata. Nel seguito si riportano i dati della prova eseguita:

Dati acquisiti

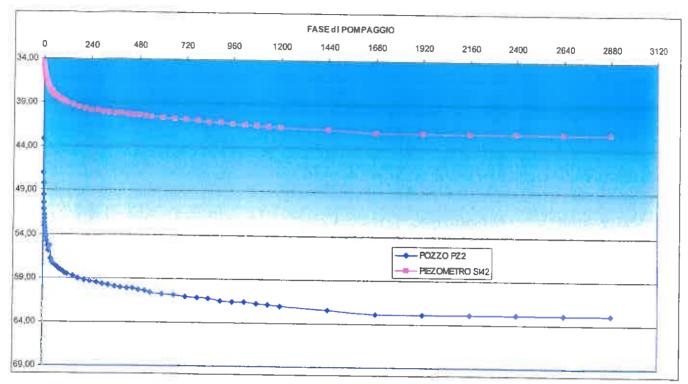
Tabella 1: Dati rilevati in fase di pompaggio

PROVA A PORTATA COSTANTE					
Portata di rif.: 1,8 (l/s)	Intervallo di prova:48 h				
Livello statico: 33,62 p.c.	Stazione di monitoraggio: Pz2 - SI42				

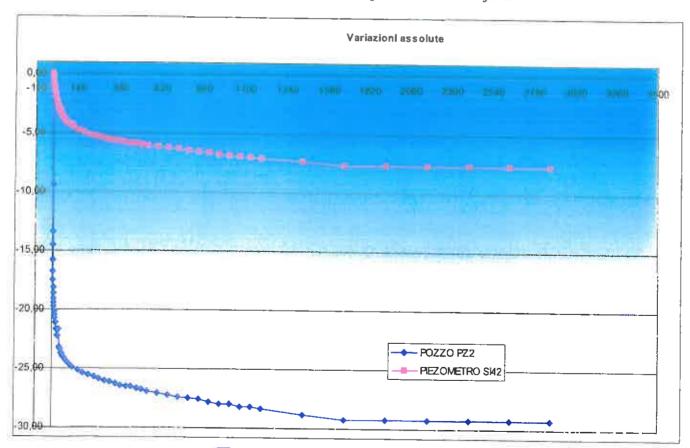
	DATI RILEVATI (fase di pompaggio)							
ORA	Data	Lettura	PZ2 [m], da p.c.	\$142 [m], da p.c.				
9.45	14/04/2011	Lo	33,62	34,48				
9.45		0	33,62	34,48				
9.46		1'	43,10	34,50				
9.47		2'	47,01	34,70				
9.48		3'	48,20	34,89				
9.49		4'	49,48	35,06				
9.50		5'	50,40	35,22				
9.51		6'	51,15	35,38				
9.52		7'	51,80	35,53				
9.53		8'	52,27	35,66				
9.54		9'	52,75	35,78				
9.55		10'	53,10	35,90				
9.56		11'	53,40	36,01				
9.57		12'	53,76	36,14				
9.58		13'	54,08	36,23				
9.59		14'	54,14	36,31				
10.00		15'	54,34	36,40				
10.05		20'	54,75	36,77				
10.10		25'	55,30	36,95				
10.15		30'	55,90	37 ,25				
10.20		35'	55,35	37,48				
10.25		40'	56,85	37 ,67				

Il Responsabile di Cantiere dott. geol Giuseppe Scicolone Il Vice Directore di Laboratorio dott. geol. Arbtina Chiavetta




y	•••••			
10.30		45'	57,04	37,83
10.35	*********	50'	57,30	38,06
10.40		55'	57,43	38,14
10.45		60'	57,58	38,24
10.55		70'	57,74	38,38
11.05		80'	57,98	38,61
11.15		90'	58,13	38,72
11.25		100'	58,28	38,83
11.35		110'	58,45	38,91
11.45		120'	58,52	39,04
12.15		150'	58,78	39,29
12.45		180'	59,03	39,47
13.15		210'	59,20	39,64
13.45		240'	59,33	39, 78
14.15		270'	59,50	39,86
14.45		300'	59,64	39,98
15.15		330'	59,74	40,08
15.45		360'	59,95	40,17
16.15		390'	60,08	40,23
16.45	*****************	420'	60,14	40,31
17.15		450'	60,18	40,39
17.45		480'	60,35	40,41
18.15		510'	60,43	40,48
18.45		540'	60,58	40,58
19.45		600'	60, 76	40,66
20.45		660'	60,86	40,72
21.45		720'	61,07	40,83
22.45	***********	780'	61,14	40,96
23.45		840'	61,23	41,08
0.45	15/04/2011	900'	61,48	41,15
1.45		960'	61,61	41,27
2.45		1020'	61,63	41,35
3.45	_	1080'	61,82	41,46
4.45		1140'	61,87	41,57
5.45		1200'	62,03	41,64
9.45		1440'	62,48	41,88
13.45		1680'	62,91	42,19
17.45		1920'	63,35	42,43
21.45		2160'	63,64	42,58
1.45	16/04/2011	2400'	63,90	42,87
5.45	*****************	2640'	64,22	43,10
9.45		2880'	64,55	43,32
			/	

Il Responsabile di Cantiere dott. geol. Giuseppe Scicolone Il Vice Directore di Laboratorio dott geol. Patrina Chiavetta



CBC 014 699

Diagramma delle variazioni temporali assolute della falda

Il Responsabile di Cantiere dott. geol. Giuseppe Scicolone

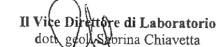
Il Vice Director di Laboratorio dott. geol. Sabrina Chiavetta

5

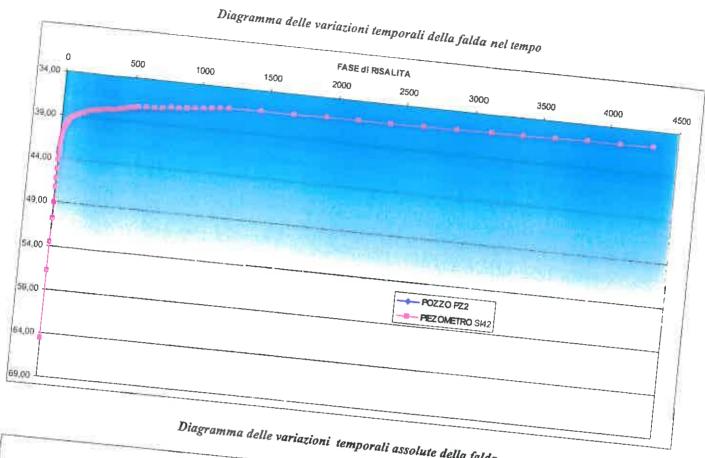
Il presente certificato è autenticato dalla Sidercem s.r l. mediante l'apposizione del timbro a secco visibile in alto. In assenza, originali e copie sono da ritenersi contraffatte. E' vietata la riproduzione anche parziale, senza l'autorizzazione.

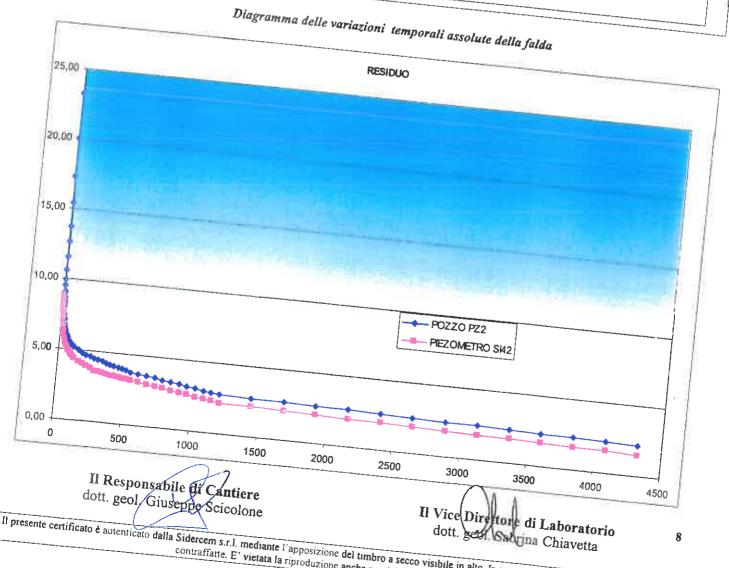
Tabella 2: Dati rilevati in fase di stasi

	DATI RILEVATI (fase di stasi)							
ORA	Lettura	PZ2 [m], da p.c.	\$142 [m], da p.c.					
9.45	16/04/11 Lo	33,62	34,48					
9.45	Lf	64,55	43,32					
9.46	1'	56,84	43,31					
9.47	2'	53,62	43,29					
9.48	3'	50,90	43,22					
9.49	4'	49,02	43,09					
9.50	5'	47 ,34	42,97					
9.51	6'	46,25	42,84					
9.52	7'	45,15	42,79					
9.53	8'	44,20	42,56					
9.54	9'	43,52	42,43					
9.55	10'	43,12	42,26					
9.56	11'	42,70	42,16					
9.57	12'	42,27	42,02					
9.58	13'	42,02	41,91					
9.59	14'	41,83	41,76					
10.00	15'	41,67	41,64					
10.05	20'	41,07	41,16					
10.10	25'	40,69	40,79					
10.15	30'	40,38						
10.20	35'	40,18	40,51					
10.25	40'	39,99	40,29					
10.30	45'	39 ,87	40,12					
10.35	50'		39,97					
10.40	55'	39,72	39,84					
10.45	60'	39,65	39,72					
10.45		39 ,52	39,62					
11.05	70'	39,30	39,42					
	80'	39,19	39 ,27					
11.15	90'	39 ,05	39,15					
11.25	100'	38,98	39 ,07					
11.35	110'	38,86	38,96					
11.45	120'	38,81	38,87					
12.15	150'	38,64	38,69					
12.45	180'	38,43	38,53					
13.15	210'	38,28	38,40					
13.45	240'	38,19	38,28					
14.15	270'	38,09	38,06					
14.45	300'	38,00	38,04					
15.15	330'	37,92	37,99					
15.45	360'	37,84	37,94					


Il Responsabile di Captiere dott. geol. Giuseppe Scicolone

Il Vice Direttore di Laboratorio dott, geoil Saorina Chiavetta




7 077				
16.15		390'	37,76	37,89
16.45		420'	37,69	37,85
17.15	*	450'	37,62	37,79
17.45		480'	37,52	37,73
18.15		510'	37,44	37,69
18.45	*	540'	37,37	37,66
19.45		600'	37,27	37,58
20.45	****	660'	37,19	37,48
21.45		720'	37,11	37,40
22.45		780'	37,00	37,32
23.45		840'	36,92	37,21
0.45	17/04/11	900'	36,83	37,11
1.45		960'	36,73	37,03
2.45		1020'	36,65	36,94
3.45		1080'	36,54	36,84
4.45	*************************	1140'	36,45	36,76
5.45		1200'	36,38	36,67
9.45		1440'	36,33	36,62
13.45	*******************************	1680'	36,29	36,57
17.45		1920'	36,25	36,51
21.45		2160'	36,23	36,46
0.45	18/04/2011	2400'	36,18	36,41
4.45		2640'	36,13	36,36
8.45		2880'	36,08	36,32
12.45	*************	3120'	36,04	36,27
16.45		3360'	36,00	36,23
20.45		3600'	35, 95	36,18
0.45	19/04/2011	3840'	35,89	36,12
4.45		4080'	35,84	36,07
8.45		4320'	35,78	35,94
Lo = Letturc			***********************	
Lf = Lettura	finale a 48 h c	<mark>dall</mark> 'emur	ngimento	

Il Responsabile di Cantiere dott. geol. Giuseppe Scicolone

Il presente certificato è autenticato dalla Sidercem s.r.l. mediante l'apposizione del timbro a secco visibile in alto. In assenza, originali e copie sono da ritenersi contraffarte. El vietata la riproduzione anche parziale, senza l'autorizzazione.

C.F. - Iscr.C.C.I.A.A. dl Callanissetta 01754820874

Laboratorio di Caltanissetta C.da Calderaro (Zona Ind.) C.P. 287 - 93100 Caltanissetta

Tel.: 0934565012

Fax: 0934575422 info@sidercem.it e-mail:

Timbro a secco

Certificato N°		Prot. N.	CBA 001 636		Laboratorio in concessione di	
Cerum		Data accettazione:	23/05/11		Caltanissetta D.M. 52507 del 11/10/2004	
CBC 014 792	23/05/11	Periodo indagine:	Inizio:	16/05/11	Divisione: Geotecnica - B – 349/STC	
		2 of tout intagine.	Fine:	22/05/11	Settore: Prove in situ	

Foglio 1 di 8

Ente Appaltante:

ANAS S.p.A. - Direzione Generale Roma

Contraente Generale:

EMPEDOCLE 2 s.c.p.a.

Richiedente/Committente:

EMPEDOCLE 2 s.c.p.a.

Oggetto:

Esecuzione di indagini geognostiche, geofisiche, geotecniche e prove di laboratorio a sostegno della progettazione esecutiva relativa alle attività prodromiche connesse ai lavori di adeguamento a quattro corsie della S.S. 640 "di Porto Empedocle" 2º lotto, tratto dal km

44+000 allo svincolo con l'A19 (3^ Fase)

(1) Il presente certificato è composto da 8 fogli numerati da 1 a 8.

(2) Il presente certificato viene autenticato dalla Sidercem s.r.l. di Caltanissetta mediante l'apposizione su ciascun foglio del timbro a secco visibile in alto. In assenza del timbro a secco il certificato è da ritenersi contraffatto.

(3) Le copie vengono autenticate dalla Sidercem s.r.l. di Caltanissetta mediante l'apposizione su ciascun foglio del timbro a secco visibile in alto. In assenza del timbro a secco la copia è da ritenersi contraffatta.

> CERTIFICATO DI PROVA Prova di emungimento a portata costante

Il Responsabile di Cantiere dott. geøl. Gidseppe Scicolone

ice Direttore di Laboratorio dott. geol. Sabrina Chiavetta

Foglio 2 di 8

Prova di portata

A conclusione della realizzazione della stazione di prova, mediante l'esecuzione del sondaggio PZ3, è stata eseguita una prova di emungimento a portata costante.

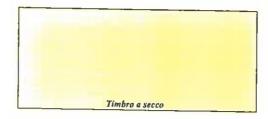
La prova consiste nell'applicare al pozzo realizzato un unico gradino di portata e registrando manualmente gli abbassamenti e le risalite determinati dalla fase di pompaggio e dalla successiva fase di stasi.

La prova in oggetto è stata eseguita con una portata costante di 0,08 l/s per una durata della fase di pompaggio di 48 h, a cui e seguita la fase di risalita di 72 h, tale prova è stata eseguita posizionando la pompa elttrosommersa nel PZ3 a 116 m dal p.c.

Il valore della portata di emungimento da adottare è stata preliminarmente determinata attraverso prove propedeutiche atte a determinare la curva caratteristica Q/Δh.

Gli intervalli di acquisizione delle misure sono stati indicate dalla Committenza secondo il seguente schema:

Tempo dopo inizio prova	Intervallo di misura
Da 0 a15 minuti	Ogni minuto
Da 15 a 60 minuti	Ogni 5 minuti
Da 60 a 120 minuti	Ogni 10 minuti
Da 120 a 540 minuti	Ogni 30 minuti
Da 540 a 1200 minuti	Ogni ora
Da 1200 a 4320 minuti	Ogni 4 ore


Il pompaggio dal pozzo è stato eseguito per mezzo di una pompa di emungimento di tipo elettrosommerso, che ha garantito una portata costante determinata agendo su una saracinesca installata sulla tubazione di mandata della pompa preliminarmente regolata e monitorata attraverso un contalitri tarato.

La procedura eseguita per l'esecuzione della prova è la seguente:

- 1. Prima di attivare il pompaggio alla portata corrispondente, si è rilevato il livello statico nel pozzo e nel piezometro SI43, mediante una sondina elettrica "freatimetro" con segnale sia luminoso che acustico.
- 2. Si è attivata la pompa alla portata indicata e verificando ad intervalli regolari il mantenimento della portata.

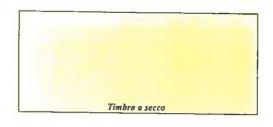
Il Responsabile di Cantiere dott. geol/Girseppe Scicolone Il Vice Direttore di Laboratorio dott geol Sabrina Chiavetta

Foglio 3 di 8

- 3. La portata emunta si è mantenuta costante fino alla stabilizzazione del livello all'interno del piezometro stesso
- 4. Al termine delle 48 h si è provveduto a disattivare la pompa e registrare le variazioni del livello piezometrico ad intervalli di tempo preliminarmente indicati dalla Committenza, mediante freatimetro, sia nel pozzo PZ3 sia nel piezometro SI43.
- 5. Le prove sono state eseguite in condizione di falda indisturbata. Nel seguito si riportano i dati della prova eseguita:

Dati acquisiti

Tabella 1: Dati rilevati in fase di pompaggio


PROVA A PORTATA COSTANTE					
Portata di rif.: 0,08 (1/s)	Intervallo di prova: 48 h				
Livello statico: 19,02 m p.c.	Stazione di monitoraggio: PZ3 – SI43				

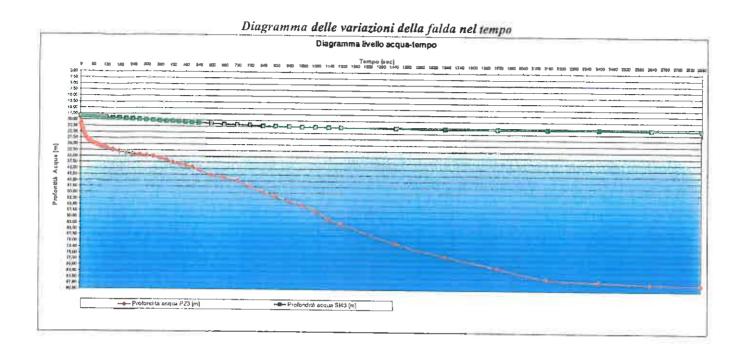
Data	Ora	Pozzo PZ3	Intervallo misure livelli [min]	Livello dinamico [mt]	SI43	Livello dinamico [mt]
	7.30	19,02			18,55	
17/05/11	7.30	19,02	0		18,55	
	7.31	21,54	1	2,52	18,55	0,00
	7.32	21,62	2	2,60	18,55	0,00
	7.33	21,27	3	2,25	18,55	0,00
	7.34	22,00	4	2,98	18,55	0,00
	7.35	22,54	5	3,52	18,55	0,00
	7.36	22,85	6	3,83	18,55	0,00
	7.37	22,99	7	3,97	18,55	0,00
	7.38	23,14	8	4,12	18,55	0,00
	7.39	23,46	9	4,44	18,55	0,00
	7.40	23,84	10	4,82	18,55	0,00
	7.41	24,07	11	5,05	18,56	0,01
	7.42	24,21	12	5,19	18,56	0,01
	7.43	24,24	13 -	5,22	18,56	0,01
	7.44	24,71	14	5,69	18,56	0,01
	7.45	25,04	15	6,02	18,57	0,02
	7.50	25,93	20	6,91	18,57	0,02
	7.55	26,88	25	7,86	48.57	0,02

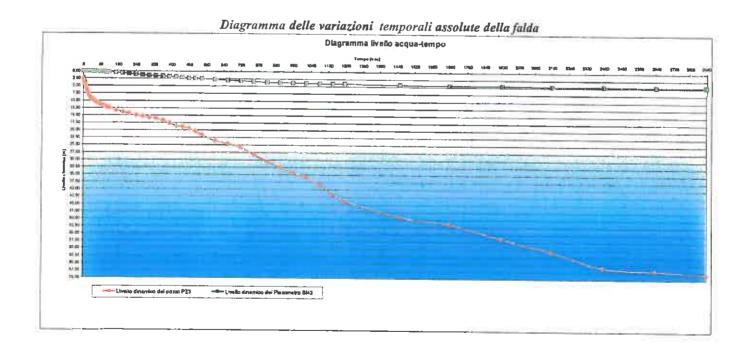
Il Responsabile di Cantiere dott. geol. Giuseppe Scicolone

Il Vice Direttire di Laboratorio dott. geol. Sprina Chiavetta

Foglio 4 di 8

		T				Foglio
	8.00	27,55	30	8,53	18,57	0,02
	8.05	28,30	35	9,28	18,58	0,03
	8.10	28,62	40	9,60	18,59	0,04
	8.15	28,74	45	9,72	18,61	0,06
	8.20	28,93	50	9,91	18,63	0,08
	8.25	29,18	55	10,16	18,54	-0,01
	8.30	29,45	60	10,43	18,68	0,13
	8.40	29,91	70	10,89	18,73	0,18
	8.50	30,20	80	11,18	18,77	0,22
<u></u>	9.00	30,52	90	11,50	18,82	0,27
	9.10	30,85	100	11,83	18,87	0,32
	9.20	31,16	110	12,14	18,93	0,38
	9.30	31,47	120	12,45	18,98	0,43
	10.00	32,23	150	13,21	19,13	0,58
	10.30	32,88	180	13,86	19,25	0,70
	11.00	33,36	210	14,34	19,47	0,92
	11.30	33,89	240	14,87	19,64	1,09
	12.00	34,36	270	15,34	19,84	1,29
	12.30	34,71	300	15,69	19,99	1,44
	13.00	34,93	330	15,91	20,15	1,60
	13.30	35,68	360	16,66	20,30	1,75
	14.00	36,53	390	17,51	20,43	1,88
	14.30	37,51	420	18,49	20,55	2,00
	15.00	37,87	450	18,85	20,69	2,14
	15.30	38,54	480	19,52	20,84	2,29
	16.00	39,39	510	20,37	20,94	2,39
	16.30	40,55	540	21,53	21,09	2,54
	17.30	42,57	600	23,55	21,33	2,78
	18.30	43,63	660	24,61	21,55	3,00
	19.30	44,78	720	25,76	21,71	3,16
	20.30	47,09	780	28,07	21,90	3,35
	21.30	49,45	840	30,43	22,19	3,64
18/0 <u>5/</u> 11	22.30	51,45	900	32,43	22,30	3,75
	23.30	53,45	960	34,43	22,40	3,85
	0.30	54,9	1020	35,88	22,50	3,95
	1.30	57,26	1080	38,24	22,59	4,04
	2.30	60,74	1140	41,72	22,64	4,09
	3.30	62,80	1197	44,00	22,64	4,09
	7.30	70,80	1452	49,40	22,80	4,25
	11.30	76,00	1680	51,78	23,01	4,46
	15.30	80,70	1920	56,60	23,05	4,50
	19.30	85,24	2160	60,70	23,08	4,53
19/05/11	23.30	86,30	2400	66,22	23,08	4,53
	3.30	87,23	2640	67,28	23,20	4,65
	7.30	87,46	2880	68,21	23,26	4,71


Il Responsabile di Cantiere dott. geol/Giuseppe Scicolone


Il Vice Directore di Laboratorio dotti geol. Sabrina Chiavetta

Foglio 5 di 8

Il Responsabile di Cantiere dott. geol. Giuseppe Scicolone

Il Vice Pirettore di Laboratorio dott. geol. Storma Chiavetta

Foglio 6 di 8

Tabella 2: Dati rilevati in fase di risalita

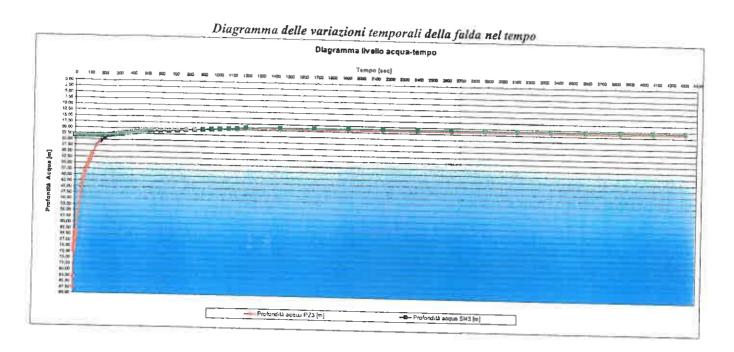
Fase di risalita				
Interva	llo di prova: 72 h			
Livello statico: 19,02 m p.c. Stazione di monitoraggio: PZ3 – SI4				

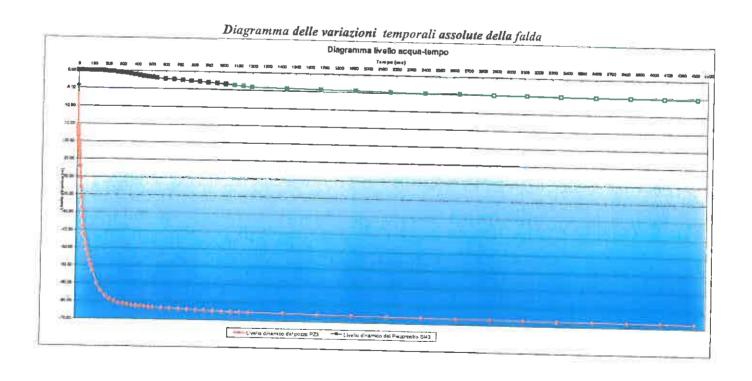
Giorno	Ora	Pozzo PZ3	Intervallo misure livelli [min]	Livello dinamico [mt]	SI43	Livello dinamico [mt]
17/05/11	7.30	19,02			18,55	
19/05/11	7.30	87,46	0		23,25	
	7.31	3,20	1	-4,26	23,25	0,00
	7.32	72,03	2	-15,43	23,25	0,00
	7.33	71,10	3	-16,36	23,25	0,00
	7.34	70,56	4	-16,90	23,25	0,00
	7.35	69,81	5	-17,65	23,25	0,00
	7.36	69,10	6	-18,36	23,25	0,00
	7.37	69,49	7	-17,97	23,25	0,00
	7.38	67,70	8	-19,76	23,25	0,00
	7.39	67,01	9	-20,45	23,25	0,00
	7.40	66,36	10	-21,10	23,25	0,00
	7.41	65,87	11	-21,59	23,25	0,00
	7.42	65,14	12	-22,32	23,25	0,00
	7.43	64,18	13	-23,28	23,25	0,00
	7.44	63,95	14	-23,51	23,25	0,00
	7.45	63,28	15	-24,18	23,25	0,00
	7.50	60,42	20	-27,04	23,25	0,00
	7.55	57,31	25	-30,15	23,25	0,00
	8.00	54,53	30	-32,93	23,25	0,00
	8.05	51,63	35	-35,83	23,25	0,00
	8.10	48,68	40	-38,78	23,25	0,00
	8.15	45,93	45	-41,53	23,25	0,00
	8.20	43,44	50	-44,02	23,25	0,00
	8.25	41,38	55	-46,08	23,25	0,00
	8.30	40,68	60	-46,78	23,25	0,00
	8.40	38,54	70	-48,92	23,25	0,00
	8.50	36,90	80	-50,56	23,25	0,00
	9.00	35,25	90	-52,21	23,25	0,00
	9.10	33,81	100	-53,65	23,25	0,00
	9.20	32,43	110	-55,03	23,25	0,00
	9.30	30,96	120	-56,50	23,25	0,00
	10.00	27,32	150	-60,14	23,22	-0,03
	10.30	25,30	180	-62,16	23,18	-0,07

Il Responsabile di Cantiere dott. geol. Giuseppe Scicolone

II Vice Direttore di Laboratorio dott. geoli Sabrina Chiavetta

Foglio 7 di 8


	11.00	23,85	210	-63,61	23,08	-0,17
	11.30	22,96	240	-64,50	23,01	-0,24
	12.00	22,33	270	-65,13	22,83	-0,42
	12.30	21,94	300	-65,52	22,68	-0,57
	13.00	21,66	330	-65,80	22,55	-0,70
	13.30	21,45	360	-66,01	22,36	-0,89
	14.00	21,26	390	-66,20	22,20	-1,05
	14.30	21,15	420	-66,31	21,95	-1,30
	15.00	21,02	450	-66,44	21,77	-1,48
	15.30	20,90	480	-66,56	21,62	-1,63
	16.00	20,80	510	-66,66	21,47	-1,78
	16.30	20,71	540	-66,75	21,32	-1,93
	17.30	20,61	600	-66,85	21,14	-2,11
	18.30	20,49	660	-66,97	20,96	-2,29
	19.30	20,37	720	-67,09	20,78	-2,47
	20.30	20,25	780	-67,21	20,60	-2,65
	21.30	20,14	840	-67,32	20,43	-2,82
	22.30	20,05	900	-67,41	20,25	-3,00
	23.30	19,93	960	-67,53	20,09	-3,16
20/05/11	0.30	19,83	1020	-67,63	19,91	-3,34
	1.30	19,74	1080	-67,72	19,71	-3,54
	2.30	19,68	1140	-67,78	19,50	-3,75
	3.30	19,57	1200	-67,89	19,25	-4,00
	7.30	19,46	1440	-68,00	19,01	-4,24
	11.30	19,35	1680	-68,11	18,97	-4,28
	15.30	19,23	1920	-68,23	18,80	-4,45
	19.30	19,13	2160	-68,33	18,65	4,60
	23.30	19,05	2400	-68,41	18,53	-4,72
21/05/11	3.30	18,98	2640	-68,48	18,47	-4,78
	7.30	18,92	2880	-68,54	18,41	-4,84
	11.30	18,86	3120	-68,60	18,34	-4,91
	15.30	18,80	3360	-68,66	18,27	-4,98
	19.30	18,75	3600	-68,71	18,21	-5,04
	23.30	18,68	3840	-68,78	18,14	-5,11
22/05/11	3.30	18,60	4080	-68,86	18,09	-5,16
	7.30	18,56	4320	-68,90	18,05	-5,20


Il Responsabile di Cantiere dott. geol. Giuseppe Scicolone Il Vice Direttore di Laboratorio dott. geol. Saprina Chiavetta

Foglio 8 di 8

Il Responsabile di Cantiere dott. geol. Giuseppe Scicolone Il Vice Direttore di Laboratorio dott. geol. Salvina Chiavetta

C.F. - Iscr.C.C.(A.A. di Caltanissetta 01754820874 P. I.V.A. 01479620856 Capitale Sociale € 102.774.92 Liv. Laboratorio di Caltanissetta C.da Calderaro (Zona Ind.) C.P. 287 – 93100 Caltanissetta

Tel.: 0934565012 Fax: 0934575422 e-mail: info@sidercem.it

Timbro a secco

Certificato N°		Prot. N.	CBA 001 664		Laboratorio in concessione di	
		Data accettazione:	12/07/11		Caltanissetta D.M. 52507 del 11/10/2004	
CBC 015 094 del 12/07/11		Periodo indagine:	Inizio:	05/07/11	Divisione: Geotecnica - B - 349/STC	
CBC 015 074	del 12/07/11	1 Feriouo inaugine:		08/07/11	Settore: Prove in situ	

Foglio 1 di 27

Ente Appaltante:

ANAS S.p.A. - Direzione Generale Roma

Contraente Generale:

EMPEDOCLE 2 s.c.p.a.

Richiedente/Committente:

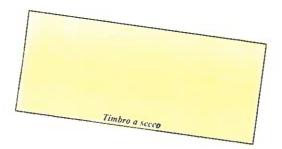
EMPEDOCLE 2 s.c.p.a.

Oggetto:

Esecuzione di indagini geognostiche, geofisiche, geotecniche e prove di laboratorio a sostegno della progettazione esecutiva relativa alle attività prodromiche connesse ai lavori di adeguamento a quattro corsie della S.S. 640 "di Porto Empedocle" 2° lotto, tratto dal km

44+000 allo svincolo con l'A19 (3^ Fase)

(1) Il presente certificato è composto da 8 fogli numerati da 1 a 27.


(2) Il presente certificato viene autenticato dalla Sidercem s.r.l. di Caltanissetta mediante l'apposizione su ciascun foglio del timbro a secco visibile in alto. In assenza del timbro a secco il certificato è da ritenersi contraffatto.

(3) Le copie vengono autenticate dalla Sidercem s.r.l. di Caltanissetta mediante l'apposizione su ciascun foglio del timbro a secco visibile in alto. In assenza del timbro a secco la copia è da ritenersi contraffatta.

CERTIFICATO DI PROVA Prova di emungimento PZ2

Il Responsabile di Cantiere dott, geol. Giuseppe Scicolone Il Vice Direttore di Laboratorio dott. geol Sabrina Chiavetta

Foglio 2 di 27

Prova di emungimento

La prova consiste nell'applicare al pozzo realizzato (PZ2) tre diversi gradini di portata e registrando manualmente gli abbassamenti e le risalite determinati dalla fase di pompaggio e dalla successiva fase di stasi.

La prova in oggetto è stata eseguita con una portata iniziale di 1,8 l/s per una durata della fase di pompaggio di 6 h, a cui e seguita la fase di stasi, e successivamente altre due prove con portate rispettivamente di 2,5 e 3,3 l/s per una durata di ciascuna fase di 12 h, a cui è seguita una fase di stasi. Tale prova è stata eseguite posizionando la pompa elttrosommersa nel PZ2 a 115 m dal p.c.

Gli intervalli di acquisizione delle misure sono stati indicate dalla Committenza secondo il seguente schema:

Tempo dopo inizio prova	·
Da 0 a15 minuti	Intervallo di misura
Da 15 a 60 minuti	Ogni minuto
Da 60 a 120 min	Ogni 5 minuti
Da 120 a 720 mi	Ogni 10 minuti
The state of the s	Ogni 30 minuti

Il pompaggio dal pozzo è stato eseguito per mezzo di una pompa di emungimento di tipo elettrosommerso, che ha garantito una portata costante determinata agendo su una saracinesca installata sulla tubazione di mandata della pompa preliminarmente regolata e monitorata attraverso un contalitri tarato. La procedura eseguita per l'esecuzione della prova è la seguente:

- 1. Prima di attivare il pompaggio alla portata corrispondente, si è rilevato il livello statico nel pozzo e nel piezometro SI42, mediante una sondina elettrica "freatimetro" con segnale sia luminoso che acustico.
- 2. Si è attivata la pompa alla portata indicata e verificando ad intervalli regolari il mantenimento della portata.
- 3. Al termine delle 6 h per la portata di 1,8 l/s e 12 h per le portate di 2,5 e 3,3 l/s, si è provveduto a disattivare la pompa e registrare le variazioni del livello piezometrico ad intervalli di tempo preliminarmente indicati dalla Committenza, mediante freatimetro, sia nel pozzo PZ2 sia nel piezometro

dott. geol. Giusepp

Foglio 3 di 27

4. Le prove sono state eseguite in condizione di falda indisturbata. Nel seguito si riportano i dati della prova eseguita:

Dati acquisiti in fase di pompaggio (1,8 l/s)

Portata di rif.: 1,8 (l/s)

Intervallo di prova: 6 h

	DATI RILEVATI					
ORA	Data	Lettura	PZ2 [m], da p.c.	SI42 [m], da p.c.		
9.40	05/07/11	Lo	34,42	33,84		
9.40		0	34,42	33,84		
9.41		1'	39,97	33,84		
9.42		2'	42,56	33,85		
9.43		3,	44,45	33,86		
9.44		4'	45,87	33,89		
9.45		5'	47,05	33,95		
9.46		6'	47,98	34,03		
9.47		7'	48,60	34,12		
9.48		8,	49,22	34,21		
9.49		91	49,69	34,28		
9.50		10'	50,10	34,38		
9.51		11'	50,48	34,50		
9.52		_ 12'	50,69	34,60		
9.53		_ 13'	50,96	34,75		
9.54		14'	51,17	34,82		
9.55		15'	51,38	34,92		
10.00		20'	52,00	35,31		
10.05		25'	52,39	35,64		
10.10		30'	52,72	35,97		
10.15		351	52,95	36,21		

Il Responsable di Cantiere dott. geol. Giuseppe Scicolone Il Vice Directore di Laboratorio dott. geol Sabrina Chiavetta

Timbro a secco

CBC 015 094

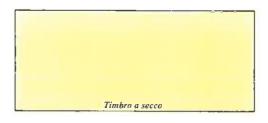
Foglio 4 di 27

10.20	40'	53,15	36,38
10.25	45'	53,30	36,53
10.30	50'	53,44	36,63
10.35	55'	53,57	36,71
10.40	60'	53,67	36,80
10.50	70'	53,85	36,96
11.00	80'	54,03	37,10
11.10	90'	54,15	37,27
11.20	100'	54,27	37,38
11.30	110'	54,39	37,43
11.40	120'	54,53	37,54
12.10	150'	54,81	37,78
12.40	180'	55,04	37,89
13.10	210'	55,17	38,07
13.40	240'	55,36	38,18
14.10	270'	55,54	38,22
14.40	300'	55,66	38,26
15.10	330'	55,85	38,36
15.40	360'	55,96	38,40

Il Responsabile di Cantiere dott. geol. Giuseppe Ssicolone Il Vice Direttore di Laboratorio dott. gepl. Sabrina Chiavetta

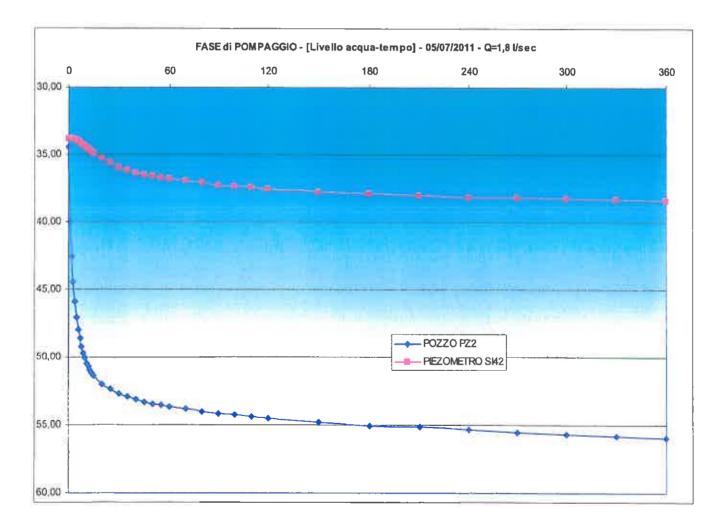
Timbro a secco

CBC 015 094

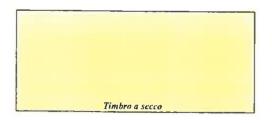

Foglio 5 di 27

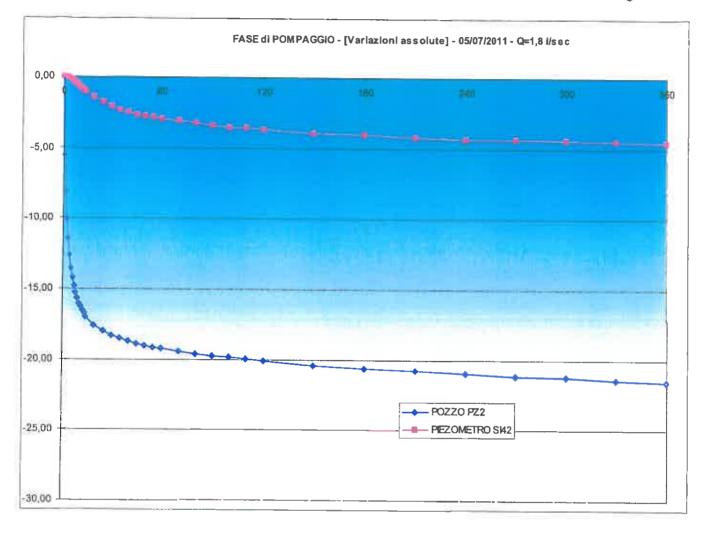
	PZ2 [m]		SI42 [m]
0,00	abbassamento assoluto a 6 h	0,00	abbassamento assoluto a 6 h
-5,55	abbassamento dopo 1'	0,00	abbassamento dopo 1'
-8,14	abbassamento dopo 2'	-0,01	abbassamento dopo 2'
-10,03	abbassamento dopo 3'	-0,02	abbassamento dopo 3'
-11,45	abbassamento dopo 4'	-0,05	abbassamento dopo 4'
-12,63	abbassamento dopo 5'	-0,11	abbassamento dopo 5'
-13,56	abbassamento dopo 6'	-0,19	abbassamento dopo 6'
-14,18	abbassamento dopo 7'	-0,28	abbassamento dopo 7'
-14,80	abbassamento dopo 8'	-0,37	abbassamento dopo 8'
-15,27	abbassamento dopo 9'	-0,44	abbassamento dopo 9'
-15,68	abbassamento dopo 10'	-0,54	abbassamento dopo 10'
-16,06	abbassamento dopo 11'	-0,66	abbassamento dopo 11'
-16,27	abbassamento dopo 12'	-0,76	abbassamento dopo 12'
-16,54	abbassamento dopo 13'	-0,91	abbassamento dopo 13'
-16,750	abbassamento dopo 14'	-0,98	abbassamento dopo 14'
-16,96	abbassamento dopo 15'	-1,08	abbassamento dopo 15'
-17,58	abbassamento dopo 20'	-1,47	abbassamento dopo 20'
-17,97	abbassamento dopo 25'	-1,80	abbassamento dopo 25'
-18,30	abbassamento dopo 30'	-2,13	abbassamento dopo 30'
-18,53	abbassamento dopo 35'	-2,37	abbassamento dopo 35'
-18,73	abbassamento dopo 40'	-2,54	abbassamento dopo 40'
-18,88	abbassamento dopo 45'	-2,69	abbassamento dopo 45'
-19,02	abbassamento dopo 50'	-2,79	abbassamento dopo 50'
-19,15	abbassamento dopo 55'	-2,87	abbassamento dopo 55'
-19,25	abbassamento dopo 1 h	-2,96	abbassamento dopo 1 h
-19,43	abbassamento dopo 1h 10'	-3,12	abbassamento dopo 1h 10'
-19,61	abbassamento dopo 1h 20'	-3,26	abbassamento dopo 1h 20'
-19,73	abbassamento dopo 1h 30'	-3,43	abbassamento dopo 1h 30'
-19,85	abbassamento dopo 1h 40'	-3,54	abbassamento dopo 1h 40'

Il Responsabile di Cantiere dott. geol. Giuseppe Scicolone


Il Vice Directore di Laboratorio dott. geol Sabrina Chiavetta

Foglio 6 di 27


-19,97	abbassamento dopo 1h 50'	-3,59	abbassamento dopo 1h 50'
-20,11	abbassamento dopo 2h	-3,70	abbassamento dopo 2h
-20,39	abbassamento dopo 2h 30'	-3,94	abbassamento dopo 2h 30'
-20,62	abbassamento dopo 3h	-4,05	abbassamento dopo 3h
-20,75	abbassamento dopo 3h 30¹	-4,23	abbassamento dopo 3h 30'
-20,94	abbassamento dopo 4h	-4,34	abbassamento dopo 4h
-21,12	abbassamento dopo 4h 30'	-4,38	abbassamento dopo 4h 30'
-21,24	abbassamento dopo 5h	-4,42	abbassamento dopo 5h
-21,43	abbassamento dopo 5h 30'	-4,52	abbassamento dopo 5h 30'
-21,54	abbassamento dopo 6h	-4,56	abbassamento dopo 6h


Il Responsabile di Cantiere dott. geol. Giuseppe Scicolone

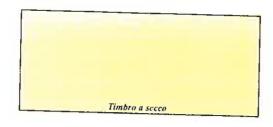
Il Vice Directore di Laboratorio dott. geol. Sabrina Chiavetta

Foglio 7 di 27

Il Responsabile d'Cantiere dott. geol. Giuseppe Scicolone

Il Vice Direttore di Laboratorio dott. geol/ Sabrina Chiavetta

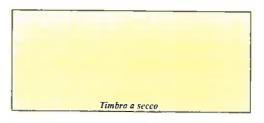
Foglio 8 di 27


Dati acquisiti in fase di risalita (1,8 l/s)

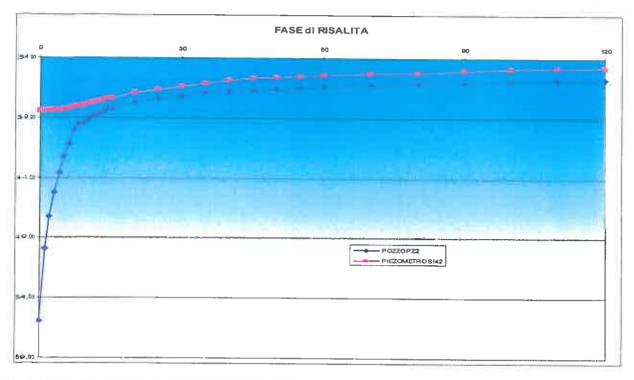
DATI RILEVATI						
ORA		Lettura	PZ2 [m], da p.c.	SI42 [m], da p.o		
15.40	05/07/11	Lo	34,42	33,84		
15.40		0	55,96	38,40		
15.41		1'	49,90	38,40		
15.42		2'	47,20	38,39		
15.43		3'	45,22	38,38		
15.44		4'	43,54	38,34		
15.45		5'	42,22	38,28		
15.46		6'	41,15	38,20		
15.47		7'	39,98	38,13		
15.48		8'	39,50	38,04		
15.49		9'	39,48	37,96		
15.50		10'	39,15	37,86		
15.51		11'	38,90	37,78		
15.52		12'	38,72	37,67		
15.53		13'	38,50	37,56		
15.54		14'	38,37	37,48		
15.55		15'	38,23	37 ,38		
L6.00		20'	37,74	36,96		
16.05		25'	37,38	36,64		
l6.10		30'	37,17	36,40		
6.15		35'	36,89	36,14		
6.20		40'	36,83	35,91		
6.25		45'	36,66	35,71		
6.30		50'	36,60	35,62		
6.35		55'	36,45	35,54		
6.40		60'	36,37	35,43		
6.50		70'	36,22	35,30		
7.00		80'	36,09	35,23		
7.10		90'	36,00	35,04		
7.20		100'	35,89	34,92		
7.30		110'	35,82	34,86		
7.40		120'	35,73	34,80		

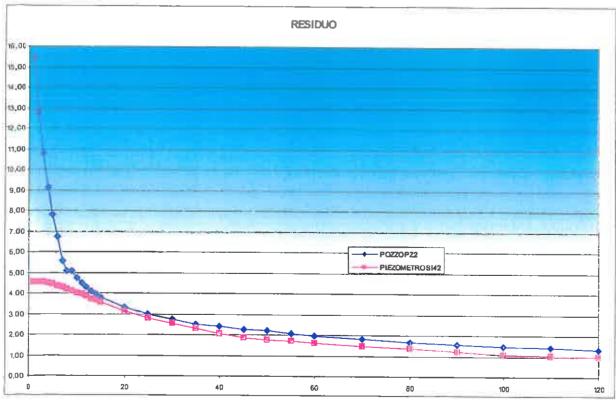
Il Responsabile di Cantiere dott. geol. Giuseppe Scicolone

Il Vice Direttore di Laboratorio dott. gedi Sabrina Chiavetta

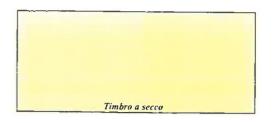

Foglio 9 di 27

PZZ [m]				SI42 [m]		
21,54	abbassamento assoluto a 6 h	Residuo per ritorno all'equilibrio		abbassamento assoluto a 6 h	Residuo per ritorno all'equilibrio	
6,06	recupero dopo 1'	-15,48	0,00		-4,56	
8,76	recupero dopo 2'	-12,78	0,01		-4,55	
10,74	recupero dopo 3'	-10,80	0,02		-4,54	
12,42	recupero dopo 4'	-9,12	0,06			
13,74	recupero dopo 5'	-7,80	0,12		-4,50	
14,81	recupero dopo 6'	-6,73	0,20		-4,44	
15,98	recupero dopo 7'	-5,56	0,27	1 1 1 1 1 1	-4,36	
16,46	recupero dopo 8'	-5,08	0,36		-4,29	
16,48	recupero dopo 9'	-5,06	0,44		-4,20	
16,81	recupero dopo 10'	-4,73	0,54	1 1 1 1 1 1 1	-4,12	
17,06	recupero dopo 11'	-4,48	0,62	recupero dopo 11'	-4,02	
17,24	recupero dopo 12'	-4,30	0,73	recupero dopo 12'	-3,94	
17,46	recupero dopo 13'	-4,08	0,84	recupero dopo 13'	-3,83	
17,590	recupero dopo 14'	-3,95	0,92	recupero dopo 14'	-3,72	
17,73	recupero dopo 15'	-3,81	1,02	recupero dopo 15'	-3,64 -3,54	
18,22	recupero dopo 20'	-3,32	1,44	recupero dopo 20'		
18,58	recupero dopo 25'	-2,96	1,76	recupero dopo 25'	-3,12	
18,79	recupero dopo 30'	-2,75	2,00	recupero dopo 30'	-2,80	
19,07	recupero dopo 35'	-2,47	2,26	recupero dopo 35'	-2,56	
19,13	recupero dopo 40'	-2,41	2,49	recupero dopo 40'	-2,30	
19,30	recupero dopo 45'	-2,24	2,69	recupero dopo 45'	-2,07	
19,36	recupero dopo 50'	-2,18	2,78	recupero dopo 50'	-1,87	
19,51	recupero dopo 55'	-2,03	2,86	recupero dopo 55'	-1,78	
19,59	recupero dopo 1 h		2,97	recupero dopo 1 h	-1,70	
19,74	recupero dopo 1h 10'		3,10	recupero dopo 1h 10'	-1,59	
L9,87	recupero dopo 1h 20'		3,17	recupero dopo 1h 20'	-1,46	
19,96	recupero dopo 1h 30'		3,36	recupero dopo 1h 30'	-1,39	
20,07	recupero dopo 1h 40'		3,48	recupero dopo 1h 40'	-1,20	
0,14	recupero dopo 1h 50'		3,54	recupero dopo 1h 50'	-1,08	
0,23	recupero dopo 2h		3,60	recupero dopo 2h	-1,02 -0,96	


Il Responsabile di Cantiere dott. geol. Giuseppo Scicolone


Il Vice Directore di Laboratorio dotti geoli Sabrina Chiavetta

Foglio 10 di 27



Il Responsabile di Cantiere dott. geol. Giuseppe Scicolone

Il Vice Direttore di Laboratorio dott geoli Sabrina Chiavetta

Foglio 11 di 27

Dati acquisiti in fase di pompaggio (2,5 l/s)


Portata di rif.: 2,5 (l/s) Intervallo di prova: 12 h

	DATI RILEVATI					
ORA	Data	Lettura	PZ2 [m], da p.c.	SI42 [m], da p.c.		
8.30	06/07/11	Lo	35,01	33,84		
8.30		0	35,01	34,22		
8.31		1'	41,16	34,22		
8.32		2'	45,50	34,23		
8.33		31	48,73	34,25		
8.34		4'	51,20	34,30		
8.35		5'	53,06	34,36		
8.36		6'	54,75	34,45		
8.37		7'	56,05	34,56		
8.38		8'	57,10	34,67		
8.39		9'	57,94	34,81		
8.40		101	58,68	34,95		
8.41		11'	59,30	35,08		
8.42		12'	59,79	35,21		
8.43		13'	60,25	35,35		
8.44		14'	60,54	35,52		
8.45		15'	60,90	35,68		
8.50		20'	61,89	36,37		
8.55		25'	62,57	36,85		
9.00		30'	63,01	37,24		
9.05		35'	63,30	37,52		
9.10		40'	63,52	37,76		

Il Responsabile di Cantiere dott. geol. Giuseppe Socolone

Il Vice Direttore di Laboratorio dott geol. Sabrina Chiavetta

Foglio 12 di 27

9.15	45'	63,80	37,96
9.20	50'	63,92	38,14
9.25	55'	64,15	38,28
9.30	60'	64,29	38,41
9.40	70'	64,47	38,67
9.50	80'	64,68	38,88
10.00	90'	64,83	39,03
10.10	100'	65,05	39,18
10.20	110'	65,23	39,31
10.30	120'	65,37	39,43
11.00	150'	65,62	39,73
11.30	180'	65,88	39,95
12.00	210'	66,15	40,17
12.30	240'	66,38	40,36
13.00	270'	66,65	40,50
13.30	300'	66,85	40,66
14.00	330'	67,00	40,80
14.30	360'	67,20	40,93
15.00	390'	67,34	41,08
15.30	420'	67,51	41,19
16.00	450'	67,70	41,30
16.30	480'	67,88	41,42
17.00	510'	68,02	41,53
17.30	540'	68,24	41,58
18.00	570'	68,47	41,68
18.30	600'	68,55	41,77
19.00	630'	68,64	41,86
19.30	660'	68,68	41,95
20.00	690'	68,79	42,04
20.30	720'	68,98	42,13

Il Responsabile di Cantiere dott. geol. Giuseppe Scicolone

Il Vice Direttore di Laboratorio don, geol. Sabrina Chiavetta

Timbro a secco

CBC 015 094

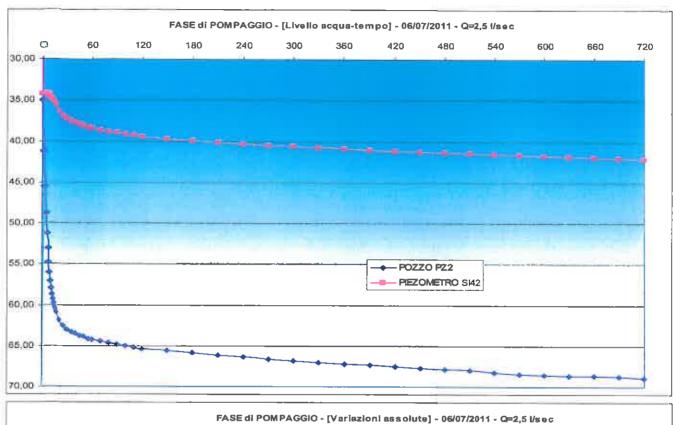
Foglio 13 di 27

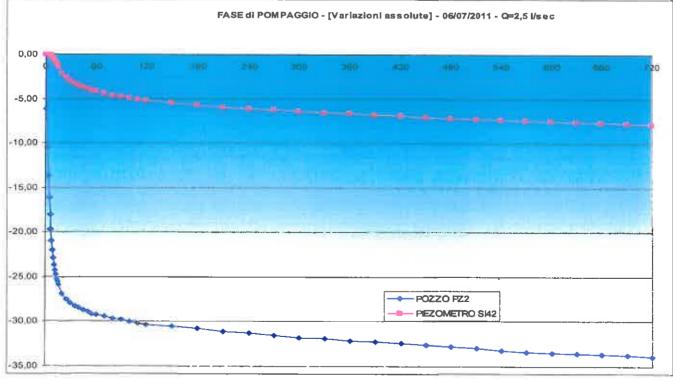
PZ2 [m]		SI42 [m]	
0,00	abbassamento assoluto a 12 h	0,38	abbassamento assoluto a 12 h
-6,15	abbassamento dopo 1'	0,00	abbassamento dopo 1'
-10,49	abbassamento dopo 2'	-0,01	abbassamento dopo 2'
-13,72	abbassamento dopo 3'	-0,03	abbassamento dopo 3'
-16,19	abbassamento dopo 4'	-0,08	abbassamento dopo 4'
-18,05	abbassamento dopo 5'	-0,14	abbassamento dopo 5'
-19,74	abbassamento dopo 6'	-0,23	abbassamento dopo 6'
-21,04	abbassamento dopo 7'	-0,34	abbassamento dopo 7'
-22,09	abbassamento dopo 8'	-0,45	abbassamento dopo 8'
-22,93	abbassamento dopo 9'	-0,59	abbassamento dopo 9'
-23,67	abbassamento dopo 10'	-0,73	abbassamento dopo 10'
-24,29	abbassamento dopo 11'	-0,86	abbassamento dopo 11'
-24,78	abbassamento dopo 12 ¹	-0,99	abbassamento dopo 12'
-25,24	abbassamento dopo 13'	-1,13	abbassamento dopo 13'
-25,530	abbassamento dopo 14'	-1,30	abbassamento dopo 14'
-25,89	abbassamento dopo 15'	-1,46	abbassamento dopo 15'
-26,88	abbassamento dopo 20'	-2,15	abbassamento dopo 20'
-27,56	abbassamento dopo 25'	-2,63	abbassamento dopo 25'
-28,00	abbassamento dopo 30'	-3,02	abbassamento dopo 30'
-28,29	abbassamento dopo 35'	-3,30	abbassamento dopo 35'
-28,51	abbassamento dopo 40'	-3,54	abbassamento dopo 40'
-28,79	abbassamento dopo 45'	-3,74	abbassamento dopo 45'
-28,91	abbassamento dopo 50'	-3,92	abbassamento dopo 50'
-29,14	abbassamento dopo 55'	-4,06	abbassamento dopo 55'
-29,28	abbassamento dopo 1 h	-4,19	abbassamento dopo 1 h
-29,46	abbassamento dopo 1h 10'	-4,45	abbassamento dopo 1h 10'
-29,67	abbassamento dopo 1h 20'	-4,66	abbassamento dopo 1h 20'
-29,82	abbassamento dopo 1h 30'	-4,81	abbassamento dopo 1h 30'
-30,04	abbassamento dopo 1h 40'	-4,96	abbassamento dopo 1h 40'

Il Responsabile di Cantiere dott. geol. Giuseppe Soicolone

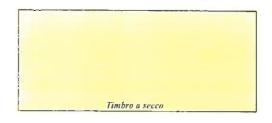
Il Vice Directore di Laboratorio dott. geol Sabrina Chiavetta

Foglio 14 di 27


abbassamento dopo 1h 50'	-5,09	abbassamento dopo 1h 50'
abbassamento dopo 2h	-5,21	abbassamento dopo 2h
abbassamento dopo 2h 30'	-5,51	abbassamento dopo 2h 30'
abbassamento dopo 3h	-5,73	abbassamento dopo 3h
abbassamento dopo 3h 30'	-5,95	abbassamento dopo 3h 30'
abbassamento dopo 4h	-6,14	abbassamento dopo 4h
abbassamento dopo 4h 30'	-6,28	abbassamento dopo 4h 30'
abbassamento dopo 5h	-6,44	abbassamento dopo 5h
abbassamento dopo 5h 30'	-6,58	abbassamento dopo 5h 30'
abbassamento dopo 6h	-6,71	abbassamento dopo 6h
abbassamento dopo 6h 30'	-6,86	abbassamento dopo 6h 30'
abbassamento dopo 7h	-6,97	abbassamento dopo 7h
abbassamento dopo 7h 30'	-7,08	abbassamento dopo 7h 30'
abbassamento dopo 8h	-7,20	abbassamento dopo 8h
abbassamento dopo 8h 30'	-7,31	abbassamento dopo 8h 30'
abbassamento dopo 9h	-7,36	abbassamento dopo 9h
abbassamento dopo 9h 30'	-7,46	abbassamento dopo 9h 30'
abbassamento dopo 10h	-7,55	abbassamento dopo 10h
abbassamento dopo 10h 30'	-7,64	abbassamento dopo 10h 30'
abbassamento dopo 11h	-7,73	abbassamento dopo 11h
abbassamento dopo 11h 30'	-7,82	abbassamento dopo 11h 30'
abbassamento dopo 12h	-7,91	abbassamento dopo 12h
	abbassamento dopo 2h abbassamento dopo 2h 30' abbassamento dopo 3h 30' abbassamento dopo 3h 30' abbassamento dopo 4h abbassamento dopo 4h 30' abbassamento dopo 5h abbassamento dopo 5h 30' abbassamento dopo 6h abbassamento dopo 6h 30' abbassamento dopo 7h abbassamento dopo 7h abbassamento dopo 8h abbassamento dopo 8h abbassamento dopo 9h abbassamento dopo 9h abbassamento dopo 10h abbassamento dopo 10h 30' abbassamento dopo 11h abbassamento dopo 11h	abbassamento dopo 2h -5,21 abbassamento dopo 2h 30' -5,51 abbassamento dopo 3h -5,73 abbassamento dopo 3h 30' -5,95 abbassamento dopo 4h -6,14 abbassamento dopo 4h 30' -6,28 abbassamento dopo 5h -6,44 abbassamento dopo 5h 30' -6,58 abbassamento dopo 6h -6,71 abbassamento dopo 6h 30' -6,86 abbassamento dopo 7h -6,97 abbassamento dopo 7h -7,08 abbassamento dopo 8h -7,20 abbassamento dopo 9h -7,36 abbassamento dopo 9h -7,36 abbassamento dopo 10h -7,55 abbassamento dopo 10h 30' -7,64 abbassamento dopo 11h 30' -7,82


Il Responsabile di Cantiere dott. geol. Giuseppe Scicolone Il Vice Direttore di Laboratorio dott. geol Sabrina Chiavetta

Foglio 15 di 27



Il Responsabile di Cantiere dott. geol. Giuseppe Scicolone

Il Vice Direttore di Laboratorio dott. geol/Sabrina Chiavetta

Foglio 16 di 27

Dati acquisiti in fase di risalita (2,5 l/s)

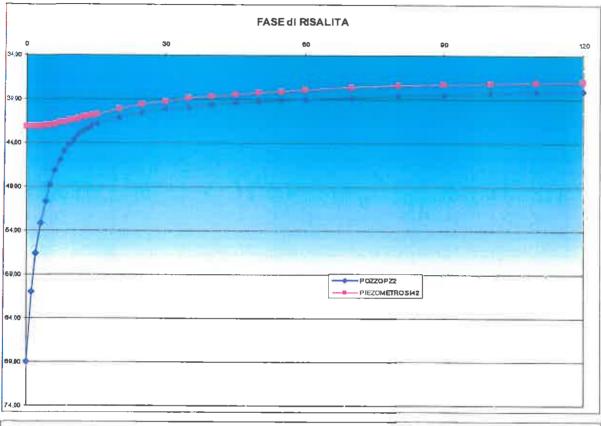
DATI RILEVATI					
			PZ2 [m], da		
ORA		Lettura	p.c.	SI42 [m], da p.c	
20.30	06/07/11	Lo	35,01	33,84	
20.30		0	68,98	42,13	
20.31		1'	60,97	42,13	
20.32		2'	56,60	42,12	
20.33		3'	53,20	42,09	
20.34		41	50,64	42,04	
20.35		51	48,80	41,98	
20.36		6'	47,17	41,94	
20.37		7'	45,96	41,76	
20.38		8'	44,98	41,66	
20.39		9'	44,21	41,51	
20.40		10'	43,59	41,38	
20.41		11'	43,10	41,25	
20.42		12'	42,66	41,12	
20.43		13'	42,34	40,98	
20.44		14'	42,03	40,85	
20.45		15'	41,80	40,72	
20.50		20'	41,04	40,12	
20.55		25'	40,53	39,67	
21.00		30'	40,15	39,27	
21.05		35'	39,89	38,93	
21.10		40'	39,65	38,70	
21.15		45'	39,45	38,47	
21.20		50'	39,28	38,30	
21.25		55'	39,12	38,18	
21.30		60'	39,00	37,93	
21.40		70'	38,76	37,63	
21.50		80'	38,59	37,46	
22.00		90'	38,43	37,33	
22.10		100'	38,29	37,21	
22.20		110'	38,16	37,08	
22.30		120'	38,08	37,00	

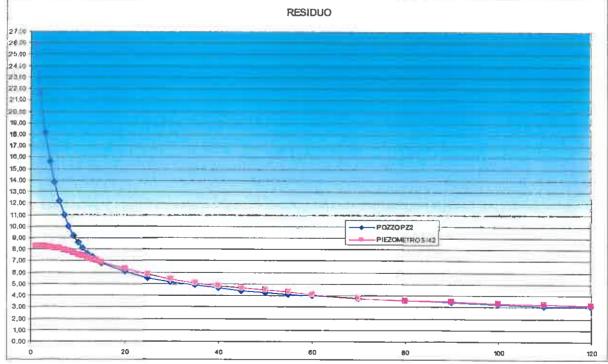
Il Responsabile di Cantiere dott. geol. Giuseppe Scicolone

Il Vice Direttore di Laboratorio dott. geni Sabrina Chiavetta

Foglio 17 di 27

PZ2 [m]			S142 [m]			
33,97	abbassamento assoluto a 12 h	Residuo per ritorno all'equilibrio	8,29	abbassamento assoluto a 12 h	Residuo per ritorno all'equilibrio	
8,01	recupero dopo 1'	-25,96	0,00	recupero dopo 1'	-8,29	
12,38	recupero dopo 2'	-21,59	0,01	recupero dopo 2'	-8,28	
15,78	recupero dopo 3'	-18,19	0,04	recupero dopo 3'	-8,25	
18,34	recupero dopo 4'	-15,63	0,09	recupero dopo 4'	-8,20	
20,18	recupero dopo 5'	-13,79	0,15	recupero dopo 5'	-8,14	
21,81	recupero dopo 6'	-12,16	0,19	recupero dopo 6'	-8,10	
23,02	recupero dopo 7'	-10,95	0,37	recupero dopo 7'	-7,92	
24,00	recupero dopo 8'	-9,97	0,47	recupero dopo 8'	-7,82	
24,77	recupero dopo 9'	-9,20	0,62	recupero dopo 9'	-7,67	
25,39	recupero dopo 10'	-8,58	0,75	recupero dopo 10'	-7,54	
25,88	recupero dopo 11'	-8,09	0,88	recupero dopo 11'	-7,41	
26,32	recupero dopo 12'	-7,65	1,01	recupero dopo 12'	-7,28	
26,64	recupero dopo 13'	-7,33	1,15	recupero dopo 13'	-7,14	
26,950	recupero dopo 14'	-7,02	1,28	recupero dopo 14'	-7,01	
27,18	recupero dopo 15'	-6,79	1,41	recupero dopo 15'	-6,88	
27,94	recupero dopo 20'	-6,03	2,01	recupero dopo 20'	-6,28	
28,45	recupero dopo 25'	-5,52	2,46	recupero dopo 25'	-5,83	
28,83	recupero dopo 30'	-5,14	2,86	recupero dopo 30'	-5,43	
29,09	recupero dopo 35'	-4,88	3,20	recupero dopo 35'	-5,09	
29,33	recupero dopo 40'	-4,64	3,43	recupero dopo 40'	-4,86	
29,53	recupero dopo 45'	-4,44	3,66	recupero dopo 45'	-4,63	
29,70	recupero dopo 50'	-4,27	3,83	recupero dopo 50'	-4,46	
29,86	recupero dopo 55'	-4,11	3,95	recupero dopo 55'	-4,34	
29,98	recupero dopo 1 h	-3,99	4,20	recupero dopo 1 h	-4,09	
30,22	recupero dopo 1h 10'	-3,75	4,50	recupero dopo 1h 10'	-3,79	
30,39	recupero dopo 1h 20'	-3,58	4,67	recupero dopo 1h 20'	-3,62	
30,55	recupero dopo 1h 30'	-3,42	4,80	recupero dopo 1h 30'	-3,49	
30,69	recupero dopo 1h 40'	-3,28	4,92	recupero dopo 1h 40'	-3,37	
30,82	recupero dopo 1h 50'	-3,15	5,05	recupero dopo 1h 50'	-3,24	
30,90	recupero dopo 2h	-3,07	5,13	recupero dopo 2h	-3,16	


Il Responsabile di Cantiere dott. geol. Giuseppe Scicolone

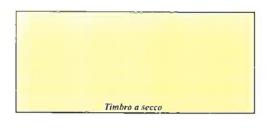

Il Vice Directore di Laboratorio dott. geol. Sabrina Chiavetta

Foglio 18 di 27

Il Responsabile di Cantiere dott. geol. Giuseppe Scicolone

Il Vice Directore di Laboratorio dott. geol Sabrina Chiavetta

Foglio 19 di 27


Dati acquisiti in fase di pompaggio (3,33 l/s)

Portata di rif.: 3,33 (l/s) Intervallo di prova: 12 h

	DATI RILEVATI					
ORA	Data	Lettura	PZ2 [m], da p.c.	SI42 [m], da p.c.		
8.00	07/07/11	Lo	36,38	35,36		
8.00		0	36,38	35,36		
8.01		1'	43,10	35,36		
8.02		2'	48,77	35,38		
8.03		3'	52,80	35,42		
8.04		4'	56,52	35,50		
8.05		5'	59,45	35,59		
8.06		6'	61,60	35,73		
8.07		7'	63,62	35,86		
8.08		8'	65,34	36,02		
8.09		9'	66,44	36,18		
8.10		10'	67,47	36,36		
8.11		11'	68,25	36,55		
8.12		12'	68,85	36,70		
8.13		13'	69,33	36,95		
8.14		14'	69,75	37,19		
8.15		15'	70,15	37,45		
8.20		201	71,26	38,34		
8.25		25'	71,99	38,97		
8.30		30'	72,42	39,43		
8.35		35'	72,74	39,82		
8.40		40'	72,96	40,06		
8.45		451	73,22	40,27		
8.50		50'	73,31	40,48		
8.55		55'	73,50	40,70		

Il Responsabile di Cantiere dott. geol. Giuseppe Scicolone Il Vice Directore di Laboratorio dott. gdol Sabrina Chiavetta

Foglio 20 di 27

9.00	60'	73,66	40,88
9.10	70'	73,89	41,18
9.20	80'	74,17	41,40
9.30	90'	74,36	41,63
9.40	100'	7 4,50	41,81
9.50	110'	74,68	41,98
10.00	120'	74,89	42,10
10.30	150'	75,24	42,54
11.00	180'	75,85	42,84
11.30	210'	76,11	43,05
12.00	240'	76,34	43,16
12.30	270'	76,50	43,38
13.00	300'	76,64	43,58
13.30	330'	76,86	43,72
14.00	360'	77,01	43,84
14.30	390'	77,18	44,05
15.00	420'	77,42	44,18
15.30	450'	77,62	44,27
16.00	480'	77,94	44,42
16.30	510'	77,95	44,44
17.00	540'	78,16	44,48
17.30	570'	78 ,17	44,08
18.00	600'	78,36	44,13
18.30	630'	78,41	44,09
19.00	660'	78,60	44,18
19.30	690'	78,70	44,25
20.00	720'	78,79	44,30

Il Responsabile di Cantiere dott. geol. Guseppe Scicolone Il Vice Directore di Laboratorio dott. geol. Sabrina Chiavetta

Timbro a secco

CBC 015 094

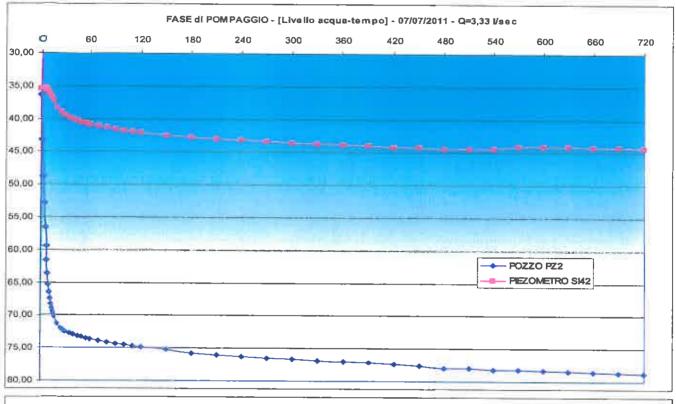
Foglio 21 di 27

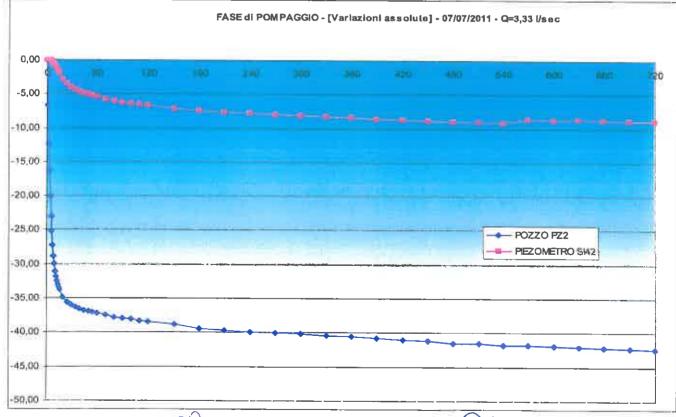
	PZ2 [m]		SI42 [m]
0,00	abbassamento assoluto a 12 h	0,00	abbassamento assoluto a 12 h
-6,72	abbassamento dopo 1'	0,00	abbassamento dopo 1'
-12,39	abbassamento dopo 2'	-0,02	abbassamento dopo 2'
-16,42	abbassamento dopo 3'	-0,06	abbassamento dopo 3'
-20,14	abbassamento dopo 4'	-0,14	abbassamento dopo 4'
-23,07	abbassamento dopo 5'	-0,23	abbassamento dopo 5'
-25,22	abbassamento dopo 6'	-0,37	abbassamento dopo 6'
-27,24	abbassamento dopo 7'	-0,50	abbassamento dopo 7'
-28,96	abbassamento dopo 8'	-0,66	abbassamento dopo 8'
-30,06	abbassamento dopo 9'	-0,82	abbassamento dopo 9'
-31,09	abbassamento dopo 10'	-1,00	abbassamento dopo 10'
-31,87	abbassamento dopo 11'	-1,19	abbassamento dopo 11'
-32,47	abbassamento dopo 12'	-1,34	abbassamento dopo 12'
-32,95	abbassamento dopo 13'	-1,59	abbassamento dopo 13'
-33,370	abbassamento dopo 14'	-1,83	abbassamento dopo 14'
-33,77	abbassamento dopo 15'	-2,09	abbassamento dopo 15'
-34,88	abbassamento dopo 20'	-2,98	abbassamento dopo 20'
-35,61	abbassamento dopo 25'	-3,61	abbassamento dopo 25'
-36,04	abbassamento dopo 30'	-4,07	abbassamento dopo 30'
-36,36	abbassamento dopo 35'	-4,46	abbassamento dopo 35'
-36,58	abbassamento dopo 40'	-4,70	abbassamento dopo 40'
-36,84	abbassamento dopo 45'	-4,91	abbassamento dopo 45'
-36,93	abbassamento dopo 50'	-5,12	abbassamento dopo 50'
-37,12	abbassamento dopo 55'	-5,34	abbassamento dopo 55'
-37,28	abbassamento dopo 1 h		abbassamento dopo 1 h
-37,51	abbassamento dopo 1h 10'	-5,82	abbassamento dopo 1h 10'
-37,79	abbassamento dopo 1h 20'	-6,04	abbassamento dopo 1h 20'
-37,98	abbassamento dopo 1h 30'	-6,27	abbassamento dopo 1h 30'
-38,12	abbassamento dopo 1h 40'	-6,45	abbassamento dopo 1h 40'

Il Responsabile di Cantiere dott. geol. Giuseppe Scicolone

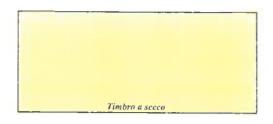
Il Vice Direttore di Laboratorio dott. geof Sabrina Chiavetta

Foglio 22 di 27


20.20	.1.1		
-38,30	abbassamento dopo 1h 50'	-6,62	abbassamento dopo 1h 50'
-38,51	abbassamento dopo 2h	-6,74	abbassamento dopo 2h
-38,86	6 abbassamento dopo 2h 30'		abbassamento dopo 2h 30'
-39,47	abbassamento dopo 3h	-7,48	abbassamento dopo 3h
-39,73	abbassamento dopo 3h 30'	-7,69	abbassamento dopo 3h 30'
-39,96	abbassamento dopo 4h	-7,80	abbassamento dopo 4h
-40,12	abbassamento dopo 4h 30'	-8,02	abbassamento dopo 4h 30'
-40,26	abbassamento dopo 5h	-8,22	abbassamento dopo 5h
-40,48	abbassamento dopo 5h 30'	-8,36	abbassamento dopo 5h 30'
-40,63	abbassamento dopo 6h	-8,48	abbassamento dopo 6h
-40,80	abbassamento dopo 6h 30'	-8,69	abbassamento dopo 6h 30'
-41,04	abbassamento dopo 7h	-8,82	abbassamento dopo 7h
-41,24	abbassamento dopo 7h 30'	-8,91	abbassamento dopo 7h 30'
-41,56	abbassamento dopo 8h	-9,06	abbassamento dopo 8h
-41,57	abbassamento dopo 8h 30'	-9,08	abbassamento dopo 8h 30'
-41,78	abbassamento dopo 9h	-9,12	abbassamento dopo 9h
-41,79	abbassamento dopo 9h 30'	-8,72	abbassamento dopo 9h 30'
-41,98	abbassamento dopo 10h	-8,77	abbassamento dopo 10h
-42,03	abbassamento dopo 10h 30'	-8,73	abbassamento dopo 10h 30'
-42,22	abbassamento dopo 11h	-8,82	abbassamento dopo 11h
-42,32	abbassamento dopo 11h 30'	-8,89	abbassamento dopo 11h 30'
-42,41	abbassamento dopo 12h	-8,94	abbassamento dopo 12h


Il Responsabile di Cantiere dott. geol. Giuseppe Scicolone Il Vice Direttore di Laboratorio dott. geol Sabrina Chiavetta

Foglio 23 di 27



Il Responsabile di Cantiere dott. geol. Giuseppe Scicolone

Il Vice Directore di Laboratorio dott. geol Sabrina Chiavetta

Foglio 24 di 27

Dati acquisiti in fase di risalita (3,33 l/s)

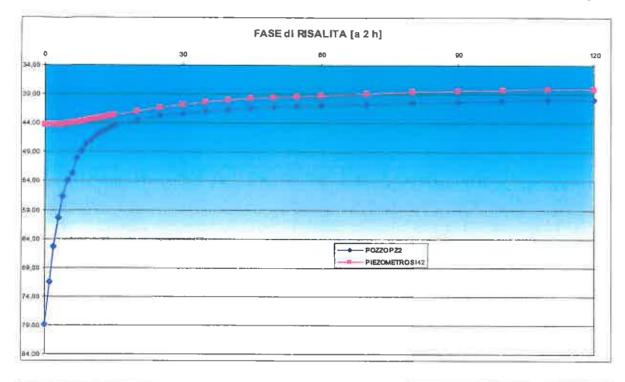
	·	DA	TI RILEVATI	
ORA	DATA	Lettura	PZ2 [m], da p.c.	SI42 [m], da p.c.
20.00	07/07/11	Lo	36,38	35,36
20.00	1 1 1	0	78,79	44,30
20.01		1'	71,50	44,30
20.02		21	65,33	44,29
20.03		3'	60,30	44,27
20.04		4'	56,70	44,21
20.05		5'	53,95	44,11
20.06		6'	52,70	44,04
20.07		7'	50,10	43,93
20.08		8'	48,76	43,80
20.09		9'	47,73	43,65
20.10		10'	46,96	43,50
20.11		11'	46,27	43,32
20.12		12'	45,68	43,15
20.13		13'	45,23	43,00
20.14		14'	44,82	42,84
20.15		15'	44,52	42,68
20.20		20'	43,42	41,96
20.25		25'	42,76	41,36
20.30		30'	42,32	40,86
20.35		35'	41,98	40,48
20.40		40'	41,69	40,12
20.45		45'	41,47	39,83
20.50		50'	41,28	39,62
20.55		55'	41,10	39,40
21.00		60'	40,95	39,28
21.10		70'	40,70	38,98
21.20		80'	40,49	38,66
21.30	_	90'	40,32	38,52
21.40		100'	40,16	38,38
21.50		110'	40,01	38,23
22.00		120'	39,89	38,12
8.00	08/07/11	720'	37,77	36,38

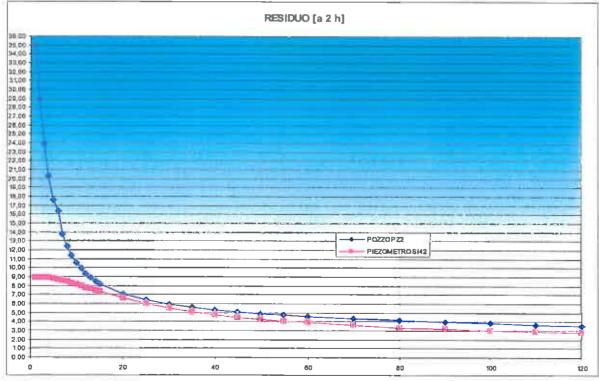
Il Responsabile di Cantiere dott. geol. Giuseppe cicolone

Il Vice Direttore il Laboratorio dott. geol. Sabriya Chiavetta

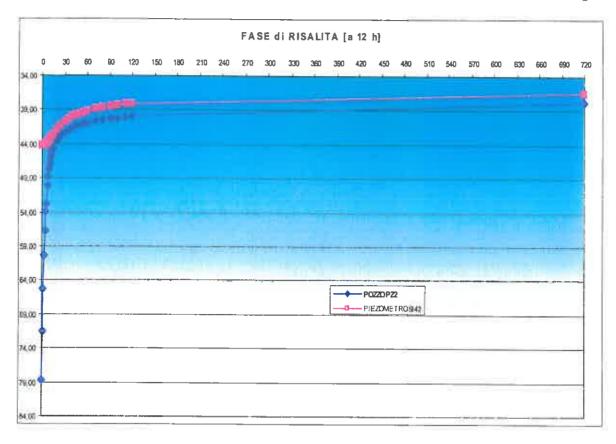
Foglio 25 di 27

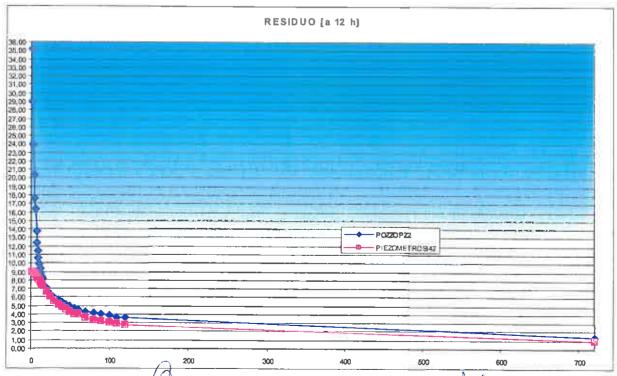
	P20 / 1					
PZ2 [m]			SI42 [m]			
42,41	abbassamento assoluto a 12 h	Residuo per ritorno all'equilibrio	8,94	abbassamento assoluto a 12 h	Residuo per ritorno all'equilibrio	
7,29	recupero dopo 1'	-35,12	0,00	recupero dopo 1'	-8,94	
13,46	recupero dopo 2'	-28,95	0,01	recupero dopo 2'	-8,93	
18,49	recupero dopo 3'	-23,92	0,03	recupero dopo 3'	-8,91	
22,09	recupero dopo 4'	-20,32	0,09	recupero dopo 4'	-8,85	
24,84	recupero dopo 5'	-17,57	0,19	recupero dopo 5'	-8,75	
26,09	recupero dopo 6'	-16,32	0,26	recupero dopo 6'	-8,68	
28,69	recupero dopo 7'	-13,72	0,37	recupero dopo 7'	-8,57	
30,03	recupero dopo 8'	-12,38	0,50	recupero dopo 8'	-8,44	
31,06	recupero dopo 9'	-11,35	0,65	recupero dopo 9'	-8,29	
31,83	recupero dopo 10'	-10,58	0,80	recupero dopo 10'	-8,14	
32,52	recupero dopo 11'	-9,89	0,98	recupero dopo 11'	-7,96	
33,11	recupero dopo 12'	-9,30	1,15	recupero dopo 12'	-7,79	
33,56	recupero dopo 13'	-8,85	1,30	recupero dopo 13'	-7,64	
33,970	recupero dopo 14'	-8,44	1,46	recupero dopo 14'	-7,48	
34,27	recupero dopo 15'	-8,14	1,62	recupero dopo 15'	-7,32	
35,37	recupero dopo 20'	-7,04	2,34	recupero dopo 20'	-6,60	
36,03	recupero dopo 25'	-6,38	2,94	recupero dopo 25'	-6,00	
36,47	recupero dopo 30'	-5,94	3,44	recupero dopo 30'	-5,50	
36,81	recupero dopo 35'	-5,60	3,82	recupero dopo 35'	-5,12	
37,10	recupero dopo 40'	-5,31	4,18	recupero dopo 40'	-4,76	
37,32	recupero dopo 45'	-5,09	4,47	recupero dopo 45'	-4,47	
37,51	recupero dopo 50'	-4,90	4,68	recupero dopo 50'	-4,26	
37,69	recupero dopo 55'	-4,72	4,90	recupero dopo 55'	-4,04	
37,84	recupero dopo 1 h	-4,57	5,02	recupero dopo 1 h	-3,92	
38,09	recupero dopo 1h 10'	-4,32	5,32	recupero dopo 1h 10'	-3,62	
38,30	recupero dopo 1h 20'	-4,11	5,64	recupero dopo 1h 20'	-3,30	
38,47	recupero dopo 1h 30'	-3,94	5,78	recupero dopo 1h 30'	-3,16	
38,63	recupero dopo 1h 40'	-3,78	5,92	recupero dopo 1h 40'	-3,02	
38,78	recupero dopo 1h 50'	-3,63	6,07	recupero dopo 1h 50'	-2,87	
38,90	recupero dopo 2h	-3,51	6,18	recupero dopo 2h	-2,76	
41,02	recupero dopo 12h	-1,39	7,92	recupero dopo 12h	-1,02	


Il Responsabile di Cantiere dott. geol. Giuseppe Scicolone


Il Vice Directore di Laboratorio dott. geol Sabrina Chiavetta

Foglio 26 di 27


Il Responsabile di Cantiere dott. geol. Giuseppe Schoolone


Il Vice Directore di Laboratorio dott. ggol. Sabrina Chiavetta

Foglio 27 di 27

Il Responsabile di Cantiere dott. geol. Giuseppe Scicolone

Il Vice Directore di Laboratorio dott. geol Sabrina Chiavetta

Laboratorio: C.da Calderaro (Zona Ind.) C.P. 287 - 93100 Caltanissetta

Tel.: 0934565012 Fax.: 0934575422 e-mail: info@sidercem.it

Esecuzione di indagini geognostiche, geofisiche, geotecniche in situ e prove di laboratorio a sostegno della progettazione esecutiva relativa alle attività prodromiche connesse ai lavori di adeguamento a quattro corsie della S.S. 640 "di Porto Empedocle" 2° lotto, tratto dal km 44+000 allo svincolo con l'A19

Ente Appaltante	ANAS S.p.A. – Direzione Generale Roma			
Contraente Generale	EMPEDOCLE 2 s.c.p.a			
Committente	EMPEDOCLE 2 s.c.p.a			

INDAGINI INTEGRATIVE 3° FASE

Spurgo e monitoraggio risalita del livello piezometrico

Comm. n° 263	Rev.	Periodo Indagine	Data Emissione	Redazione (RC)	Verifica (VRSQ)	Approvazione (RSQ)
263(*)	O1 Parti			. Oa	10	
(*) Consultare all'interno elenco prolocolli	Sottolineate oggetto de revisiona/nuovo insermento	Febbraio-Luglio 2011	29/07/2011	dott/ ged Giuseppe Scicolone	Carlo ha Russa	dott/ling. Vincepte Arena

C.F. - iscr C.C.(A.A. dl Caltanissetta 01754820874 P.L.V.A. 01479620856 Capitale Sociale 6 102.774.92 (v. Laboratorio di Caltanissetta C.da Calderaro (Zona Ind.) C.P. 287 – 93100 Caltanissetta

Tel.: 0934565012 Fax: 0934575422

Fax: 0934575422 e-mail: info@sidercem.it

Timbro a secco

Cartific	Certificato N° $\frac{Pro}{Da}$		CBA	001 684	Laboratorio in concessione di
Cerum			29/07/11		Caltanissetta D.M. 52507 del 11/10/2004
CBC 015 200	CBC 015 200 del 01//08/11		Inizio:	20/07/11	Divisione: Geotecnica - B - 349/STC
CDC 013 200 dcl 01//06/1		Periodo indagine:	Fine:	27/07/11	Settore: Prove in situ

Foglio 1 di 6

Ente Appaltante:

ANAS S.p.A. - Direzione Generale Roma

Contraente Generale:

EMPEDOCLE 2 s.c.p.a.

Richiedente/Committente:

EMPEDOCLE 2 s.c.p.a.

Oggetto:

Esecuzione di indagini geognostiche, geofisiche, geotecniche e prove di laboratorio a sostegno della progettazione esecutiva relativa alle attività prodromiche connesse ai lavori di adeguamento a quattro corsie della S.S. 640 "di Porto Empedocle" 2° lotto, tratto dal km

44+000 allo svincolo con l'A19 (3^ Fase)

(1) Il presente certificato è composto da 6 fogli numerati da 1 a 6.

(2) Il presente certificato viene autenticato dalla Sidercem s.r.l. di Caltanissetta mediante l'apposizione su ciascun foglio del timbro a secco visibile in alto. In assenza del timbro a secco il certificato è da ritenersi contraffatto.

(3) Le copie vengono autenticate dalla Sidercem s.r.l. di Caltanissetta mediante l'apposizione su ciascun foglio del timbro a secco visibile in alto. In assenza del timbro a secco la copia è da ritenersi contraffatta.

CERTIFICATO DI PROVA
Spurgo e monitoraggio risalita del livello piezometrico

Il Responsabile di Cantiere dott. geol. Giuseppe Scicolone Il Vice Directore di Laboratorio dott. geol Sabrina Chiavetta

Foglio 2 di 6

La prova consiste nello spurgare i piezometri esistenti - determinando un abbassamento del livello piezometrico - e misurando l'eventuale risalita nel tempo.

I piezometri sottoposti allo spurgo sono stati i seguenti: SI40, SI46, S8, S9, S10, SI41, SI43, SI45.

I Piezometri che hanno dato una risposta allo spurgo con abbassamento del livello freatico e successiva risalita sono i seguenti: SI46, SI41, SI45.

Di seguito vengono riportati i comportamenti di ogni singolo piezometro durante la prova:

Sondaggio SI 40 (Piezometro Casagrande)

Dopo aver avviato la prova con le modalità concordate per lo spurgo, raggiunta la pressione di 9 bar, si staccava (protezione) il motocompressore ed i livelli dei due tubi piezometrici, calandrati sulla cella di Casagrande posta a -120 m da p.c (nelle AB), da un livello piezometrico iniziale, stabilizzatosi a -28 m, si portavano entrambi (senza differenza di quota reciproca) a -39 m, senza che vi fosse alcuna venuta d'acqua in superficie dal tubo scarico.

Dopo qualche minuto, successivo allo stacco (provocato dal blocco di protezione) del compressore, i livelli piezometrici si riportavano alle condizioni iniziali, e cioè, di -28 m da p.c..

Su indicazione del CG si è provveduto a riempire entrambi i tubi fino a livello di p.c. (dando cioè una pressione di 2.8 bar sul letto della piezometrica) osservando un rapido abbassamento del livello idrico nei tubi, costringendo perciò, a continui rabbocchi.

Raggiunto un equilibrio, seppure instabile per le cause predette, si è insufflata nel tubo di mandata, nuovamente, aria compressa in bassa pressione, regolandola, per circa 30 min. A seguito di rottura di detto tubo dell'aria compressa (per raggiunta resistenza) si sospendeva la prova e si leggevano i livelli freatimetrici; essi venivano riscontrati ad una quota di -39.50 m dal p.c., analogamente a quanto rilevato nella prima fase.

Anche in questa seconda fase si è osservata una rapida risalita del livello piezometrico.

Il Responsabile di Cantiere dott. geol. Giuseppe Scicolone

Il Vice Direttore di Laboratorio dott. geol/Agbiina Chiavetta

Foglio 3 di 6

Sondaggio SI 46 (Piezometro Casagrande)

Prima di avviare la prova con le modalità concordate per lo spurgo, si è provveduto a riempire entrambi i tubi fino a livello di p.c. (dando cioè una pressione di 4.4 bar sul letto della piezometrica), insufflando aria compressa in uno dei due tubi della cella Casagrande posta a -110 m ad una pressione di 9 bar, si notava una risalita di acqua nel tubo di scarico, che culminava dopo 75' con lo "svuotamento" del tubo.

Si staccava il compressore e si iniziava il monitoraggio di risalita del livello piezometrico che è il seguente:

Data	Ora	Livello Piezometrico [m]
20/07/11	13.15	44,35 (Prima dello spurgo)
20/07/11	14.30	105,80 (Dopo lo spurgo)
20/07/11	15.30	93.94
20/07/11	16.30	93.26
20/07/11	17.30	92.95
20/07/11	18.30	92.60
20/07/11	19.30	92.40
20/07/11	20.30	92.12
21/07/11	03.30	91.30
21/07/11	09.30	90.40
21/07/11	15.30	89.62
22/07/11	3.30	88.50
22/07/11	15.30	88.75
23/07/11	15.30	76.35
24/07/11	15.30	53.60
25/07/11	15.30	44.95
26/07/11	15.30	44,95
27/07/11	15.30	44,94

Il Responsabile di Cantiere dott. geol. Giuseppe Scicolone

Il Vice Directore di Laboratorio dott. geol Sabrina Chiavetta

Foglio 4 di 6

Sondaggio S8 (Piezometro Casagrande)

Dopo aver avviato la prova con le modalità concordate per lo spurgo, si è provveduto a riempire entrambi i tubi fino a livello di p.c. (dando cioè una pressione di 3.3 bar sul letto della piezometrica), insufflando aria compressa in uno dei due tubi della cella Casagrande posta a maggiore profondità ad una pressione di 9 bar, si notava una risalita di aria nei due tubi della cella posta più in alto.

Dopo 120' di pompaggio di aria, non riscontrando nessuna variazione nel tubo di scarico e continuando a registrare la risalita di aria nei tubi posti a minore profondità, si è provveduto allo spegnimento del motocompressore ed all'interruzione della prova.

Sondaggio S9 (Piezometro Casagrande)

Dopo aver avviato la prova con le modalità concordate per lo spurgo, si è provveduto a riempire entrambi i tubi fino a livello di p.c. (dando cioè una pressione di 1.2 bar sul letto della piezometrica), insufflando aria compressa in uno dei due tubi della cella Casagrande posta a maggiore profondità ad una pressione di 9 bar, si notava che nel tubo di scarico, da un livello piezometrico iniziale, stabilizzatosi a -12.50 m, si portava a -17.44 m, senza che vi fosse alcuna venuta d'acqua in superficie e si notava una risalita di aria nel terreno circostante i tubi.

Dopo 100' di pompaggio di aria non avvenendo nessuna risalita di acqua si provvedeva a sospendere la prova.

Sondaggio S10 (Piezometro Casagrande)

Dopo aver avviato la prova con le modalità concordate per lo spurgo, si è provveduto a riempire entrambi i tubi fino a livello di p.c. (dando cioè una pressione di 1.9 bar sul letto della piezometrica), insufflando aria compressa in uno dei due tubi della cella Casagrande posta a maggiore profondità ad una pressione di 9 bar, si notava che nel tubo di scarico, da un livello piezometrico iniziale, stabilizzatosi a -19.50 m, si portava a -25.60 m, senza che vi fosse alcuna venuta d'acqua in superficie.

Dopo 120' di pompaggio di aria non avvenendo nessuna risalita di acqua si provvedeva a sospendere la prova.

Il Responsabile di Cantiere dott. geol. Giuseppe Scicolone

Il Vice Direttore di Laboratorio dott. geoff Sabrina Chiavetta

Foglio 5 di 6

Sondaggio SI 41 (Piezometro Casagrande)

Prima di avviare la prova con le modalità concordate per lo spurgo, si è provveduto a riempire entrambi i tubi fino a livello di p.c. (dando cioè una pressione di 2.3 bar sul letto della piezometrica), insufflando aria compressa in uno dei due tubi della cella Casagrande posta a -100 m ad una pressione di 9 bar, si notava una risalita molto lenta di acqua nel tubo di scarico. Tale risalita di acqua si concludeva dopo 100°, avendo la consapevolezza che il tubo non si sarebbe riuscito a svuotare del tutto.

Si staccava il compressore e si iniziava il monitoraggio di risalita del livello piezometrico che è il seguente:

Data	Ora	Livello Piezometrico [m]
21/07/11	11.45	23,75 (Prima dello spurgo)
21/07/11	13.25	58,50 (Dopo lo spurgo)
21/07/11	14.25	50.86
21/07/11	15.25	48.05
21/07/11	16.25	44.30
21/07/11	17.25	42.40
21/07/11	18.25	29.50
21/07/11	19.25	37.25
22/07/11	01.25	31.25
22/07/11	7.25	24.50
22/07/11	13.25	24.30
23/07/11	13.25	24.13
24/07/11	13.25	24.07
25/07/11	13.25	24.04
26/07/11	13.25	24,02
27/07/11	13.25	24,02

Il Responsabile di Cantiere dott. geol. Giuseppe Scicolone

Il Vice Direttore di Laboratorio dott. geol Sabrina Chiavetta

Foglio 6 di 6

Sondaggio SI43 (Piezometro Casagrande)

Dopo aver avviato la prova con le modalità concordate per lo spurgo, si è provveduto a riempire entrambi i tubi fino a livello di p.c. (dando cioè una pressione di 1.7 bar sul letto della piezometrica), insufflando aria compressa in uno dei due tubi della cella Casagrande posta a maggiore profondità ad una pressione di 9 bar, si notava una risalita di aria nei due tubi della cella posta più in alto.

Nel dettaglio:

- dopo 90', si riscontrava la variazione di livello nel tubo di scarico (tra -15 m e -6 m in alternanza);
- dopo 150', il livello si abbassava a 28 m;
- dopo 180', si interrompeva la prova in quanto non si sortiva alcun effetto di risalita.

Sondaggio SI 45 (Piezometro a tubo aperto)

Inserita la pompa ad una quota di 78 m dal p.c., si riscontrava un livello di falda pari a 45,42 m.

Avviata la fase di emungimento per 30' (oltre i quali non si pompava acqua per problemi di prevalenza della pompa) si riscontrava un livello di falda pari a 58,95 m.

[Si ricordi che nel tubo da 3" non è possibile (per via delle dimensioni) inserire la pompa (che ha prevalenza superiore) impiegata in altri PZ].

Il monitoraggio restituiva i seguenti dati:

Data	Ora	Livello Plezometrico [m]
25/07/11	17.45	Lettura di zero 45.42
25/07/11	18.15	Termine emungimento 58.95
25/07/11	18.45	58.20
26/07/11	06.15	46.10
26/07/11	12.15	45,8 8
26/07/11	18.15	45,69
27/07/11	06.15	45,69

Il Responsabile di Cantiere dott. geol. Giuseppe Scicolone Il Vice Directore di Laboratorio dott. geol/Sabrina Chiavetta

Laboratorio: C.da Calderaro (Zona Ind.) C.P. 287 - 93100 Caltanissetta

Tel.: 0934565012 Fax.: 0934575422 e-mail: info@sidercem.it

Esecuzione di indagini geognostiche, geofisiche, geotecniche in situ e prove di laboratorio a sostegno della progettazione esecutiva relativa alle attività prodromiche connesse ai lavori di adeguamento a quattro corsie della S.S. 640 "di Porto Empedocle" 2° lotto, tratto dal km 44+000 allo svincolo con l'A19

Ente Appaltante	ANAS S.p.A. – Direzione Generale Roma
Contraente Generale	EMPEDOCLE 2 s.c.p.a
Committente	EMPEDOCLE 2 s.c.p.a

INDAGINI INTEGRATIVE 3° FASE

Analisi chimiche acque

- Analisi chimica acqua di ruscellamento
- Campionamenti acque Pz2
- Analisi chimica acque Pz2
- Composti organici volatili

Comm, nº	Rev.	Periodo Indagine	Data Emissione	Redazione (RC)	Verifica (VRSQ)	Approvazione (RSQ)
263(*) (*) Consultare all'interno elenco protocoli	0	Febbralo-Maggio 2011	11/05/2011	dost, ing. Marcella Venturelli	geom earla La Russa	dott. Ing. Vincenzo Arena

Laboratorio: C.da Calderaro (Zona Ind.)

C.P. 287 - 93100 Caltanissetta

Tel.:

0934 565012

Fax.:

0934 575422 info@sidercem it

	Capitale Sociale C 102 (143)		Timbro a secco			e-man:	mio@sidercem.it
	Certificato N.		Protocollo N.	CCA	003 909	Luogo:	Laboratorio Sidercem di Caltanissetta
			Data accettazione: 17/01/2011				
			inizi		18/01/2011		
	CCC 018 485 01/02/201	01/02/2011	Data prova:	fine	01/02/2011	Divisione:	Ambiente
		01/02/2011	Materiale:		acqua	Settore:	Chimica

Ente Appaltante: ANAS S.p.A. – Direzione Generale Roma

Oggetto: Esecuzione di prove di Laboratorio a sostegno della progettazione esecutiva

relative alle attività prodromiche connesse ai lavori di adeguamento a quattro corsie della S.S. 640 di Porto Empedocle 2° lotto, tratto dal km 44±000 allo

Svincolo con l'A19

Contraente Generale: Empedocle 2 s.c.p.a.

Via Trieste 76 - 48122 Ravenna

Richiedente: dott. ing. Mario Liti in qualità di Responsabile di Commessa per il CG

Identificazione campioni: C1 e C2

Materiale: Acqua di ruscellamento

Ubicazione prelievo campioni: prelievo di acqua dal fiume Salso, in prossimità dello Svincolo tra la S.S. 640 e

l'A19 "Palermo - Catania"

(1) Il prelievo è stato eseguito dal per. min. Gaetano Farruggia (Personale SIDERCEM s.r.l.).

(2) Il campione è stato portato in Laboratorio dal per. min. Gaetano Farruggia (Personale SIDERCEM s.r.l.).

(3) Il presente certificato di prova è composto da 2 fogli numerati da 1 a 2.

(4) Il presente certificato viene autenticato dalla SIDERCEM s.r.l. di Caltanissetta mediante l'apposizione su ciascun foglio del timbro a secco visibile in alto. In assenza del timbro a secco il certificato è da ritenersi contraffatto.

(5) Le copie vengono autenticate dalla SIDERCEM di Caltanissetta mediante l'apposizione su ciascun foglio del timbro a secco visibile in alto. In assenza del timbro a secco la copia è da ritenersi contraffatta.

CERTIFICATO DI PROVA ANALISI CHIMICA ACQUA

(Manuale APAT IRSA CNR 29/2003)

Il Consulente Resyonsabile di Commessa dott. ing. Marcella Venturelli

Il Vice Direttore di Laboratorio dott. geol. Sabrina Chiavetta

vietata la riproduzione unche parviale del presente decimiento sensi la presenta autorizzazione sciniu della SIDERCEMATI Foglio 1 di 2

Laboratorio: C da Calderaro (Zona Ind.)

C.P 287 - 93100 Caltanissetta

Tel.: 0934 565012

0934 575422

Fax.: e-mail: info@sidercem.it

Protocollo N. **CCA** 003 909 Certificato N. Data accettazione: 17/01/2011 18/01/2011 Data prova:

Materiale:

Luogo:

Settore:

Laboratorio Sidercem di Caltanissetta

CCC 018 485 01/02/2011 inizio fine

acqua

01/02/2011 Divisione: Ambiente Chimica

Analisi chimica Acqua

Timbro a secco

Prova	U.d.m.	Campione C1	Campione C2	Valore medio	Metodo
pН	unità di pH	7.76	7.72	7.74	Manuale APAT IRSA CNR 29/2003 – Sezione 2060
SO₄	mg/l	968	1008	988	Manuale APAT IRSA CNR 29/2003 – Sezione 4140 – Metodo B
CI.	mg/l	3000	2920	2960	Manuale APAT IRSA CNR 29/2003 – Sezione 4090 – Metodo A1

Documentazione fotografica

Prelievo campione C2

Spettrofotometro per la determinazione della concentrazione di Sos

Il Consulente Responsabile di Commessa dott. ing. Mancella Venturelli

Il Vice Direttore di Laboratorio dott. geol. Sabrina Chiavetta

vietata la riproduzione, anche parziale, del piesente documento senza la preventiva autorizzazione sciuta delle SIDERCEMI «) Foglio 2 di 2

Laboratorio: C.da Calderaro (Zona Ind.)

C.P. 287 - 93100 Caltanissetta

Tel.: Fax.:

0934 575422

0934 565012

e-mail:

Capitale Social	Capitale Sociale (102 174 92		Timbro a secco			info@sidercem.it
	Certificato N.		CCA	004 047	Luogo:	Laboratorio Sidercem di Caltanissetta
Certific			Data accettazione: 18/04/2011			
			inizio	18/04/2011		
CCC 019 236	03/05/2011	- Data prova:	fine	18/04/2011	Divisione:	Ambiente
CCC 019 230	05/05/2011	Materiale:		acqua	Settore:	Chimica

Ente Appaltante: ANAS S.p.A. - Direzione Generale Roma

Oggetto: Esecuzione di prove di Laboratorio a sostegno della progettazione esecutiva

> relative alle attività prodromiche connesse ai lavori di adeguamento a quattro corsie della S.S. 640 di Porto Empedocle 2º lotto, tratto dal km 44÷000 allo

Svincolo con l'A19

Contraente Generale: Empedocle 2 s.c.p.a.

Via Trieste 76 - 48122 Ravenna

Richiedente: dott, ing. Mario Liti in qualità di Responsabile di Commessa per il CG

Identificazione campioni: PZ2

Materiale: Acqua di emungimento

Ubicazione prelievo campione: Pozzo PZ2

(1) Il prelievo è stato eseguito dal sig. Salvatore Fascianella (Personale SIDERCEM s.r.l.).

(2) Il campione è stato portato in Laboratorio dal sig. Salvatore Fascianella (Personale SIDERCEM s.r.l.).

(3) Il presente certificato di prova è composto da 2 fogli numerati da 1 a 2.

(4) Il presente certificato viene autenticato dalla SIDERCEM s.r.l. di Caltanissetta mediante l'apposizione su ciascun foglio del timbro a secco visibile in alto. In assenza del timbro a secco il certificato è da ritenersi contraffatto.

(5) Le copie vengono autenticate dalla SIDERCEM di Caltanissetta mediante l'apposizione su ciascun foglio del timbro a secco visibile in alto. In assenza del timbro a secco la copia è da ritenersi contraffatta.

PRELIEVO ACQUA DI EMUNGIMENTO

Il Consulente Responsabile di Commessa dott. ing. Mancella *Yenturelli*

abrina Chiavetta

Laboratorio: C.da Calderaro (Zona Ind.)

C.P. 287 - 93100 Caltanissetta

0934 565012

Tel.: 0

0934 575422

 Tim	bro a secc	0	e-mail:	info@sidercem.it
Protocollo N.	CCA	004 047	Luogo:	Laboratorio Sidercem di Caltanissetta
Data accettazione:		18/04/2011		

CCC 019 236 03/05/2011

Certificato N.

Data prova: inizio 18/04/2011
fine 18/04/2011

011 Divisione:

Ambiente

Materiale:

acqua 8

Settore: Chimica

Prelievo acqua di emungimento

Su richiesta dell'ing. Mario Liti (Responsabile di Commessa per il CG), si è proceduto al prelievo dell'acqua di emungimento dal pozzo PZ2 da inviare al Politecnico di Torino (Dipartimento di Ingegneria del Territorio, dell'Ambiente e delle Geotecnologie) per le prove di laboratorio.

Tale campione è stato prelevato alla profondità di 115 mt durante la prova di emungimento del pozzo PZ2 condotto dalla scrivente nella seconda settimana di Aprile.

Documentazione fotografica

Prelievo campione PZ2

Il Consulente Responsabile di Commessa dott. ing. Marçella Venturelli Il Vice Diretture di Laboratorio dott. geof. Sabrina Chiavetta

Foreigns to reproduce the partial of the presents discums in service to preventive unionizations scales della SIDERCEM sellangua to reproduce scales della S

CCC 020 060

Oggetto:

Laboratorio:

rio: C.da Calderaro (Zoria Ind.)

C.P. 287 - 93100 Caltanissetta

Tel.:

0934 565012

Chimica

Fax.:

Settore:

0934 575422 info@sidercem.it

t distante trouvages e 102 774.72	timoro a secco			e-illaii.	miowsidercem.it	
	Protocollo N.	CCA	004 042	Luogo:	Laboratorio Sidercem di Caltanissetta	
Certificato N.	Data accettazione: 15/04/2011					
	Data prova:	inizio	15/04/2011			
000000000	~ ~ ~ Pr 0 1M1	fine	28/04/2011	Divisione:	Ambiente	

acqua

Ente Appaltante: ANAS S.p.A. - Direzione Generale Roma

16/06/2011

Esecuzione di prove di Laboratorio a sostegno della progettazione esecutiva relative alle attività prodromiche connesse ai lavori di adeguamento a quattro corsie della S.S. 640 di Porto Empedocle 2º lotto, tratto dal km 44+000 allo

Svincolo con l'A19

Materiale:

Contraente Generale: Empedocle 2 s.c.p.a.

Via Trieste 76 - 48122 Ravenna

Richiedente: dott. ing. Mario Liti in qualità di Responsabile di Commessa per il CG

Identificazione campioni: PZ2

Materiale: Acqua di emungimento

Ubicazione prelievo campione: Pozzo PZ2

(1) Il prelievo è stato eseguito dal sig. Salvatore Fascianella (Personale SIDERCEM s.r.l.).

(2) Il campione è stato portato in Laboratorio dal sig. Salvatore Fascianella (Personale SIDERCEM s.r.l.).

(3) Il presente certificato di prova è composto da 2 fogli numerati da 1 a 2.

(4) Il presente certificato viene autenticato dalla SIDERCEM s.r.l. di Caltanissetta mediante l'apposizione su ciascun foglio del timbro a secco visibile in alto. In assenza del timbro a secco il certificato è da ritenersi contraffatto.

(5) Le copie vengono autenticate dalla SIDERCEM di Caltanissetta mediante l'apposizione su ciascun foglio del timbro a secco visibile in alto. In assenza del timbro a secco la copia è da ritenersi contraffatta.

Emendamento al certificato n. CCC 019 235 del 03/05/2011

Il presente emendamento annulla e sostituisce il certificato n. CCC 019 235 del 03/05/2011, nel quale, a seguito di segnalazione del CG, è emerso che è stata effettuata una errata trascrizione del contenuto di Cloruri riportato nella tabella del Foglio 2. Pertanto il certificato n. CCC 019 235 del 03/05/2011 è da ritenersi annullato.

CERTIFICATO DI PROVA ANALISI CHIMICA ACQUA

(Manuale APAT IRSA CNR 29/2003 EPA 5030 C 2003 + EPA 8260 C 2006 UNI 8981)

> Il Vice Directore di Laboratorio dott. geo, Kabrina Chiavetta

E vietata la riproduzione, anche parziale, del presente documento senza la preventiva autorizzazione scritta della SIDERCEM s r Foglio 1 di 2

16/06/2011

CCC 020 060

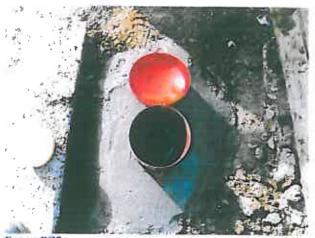
C.da Calderaro (Zon a Ind.) Laboratorio: C.P. 287 - 93100 Caltanissetta

0934 565012

Tel.:

Fax.: 0934 575422

e-mail: info@sidercem.it


Tumbro a secco Laboratorio Sidercem di Caltanissetta Protocollo N. CCA 004 042 Luogo: Certificato N. Data accettazione: 15/04/2011 inizio 15/04/2011

Data prova: fine 28/04/2011 Divisione: Ambiente Materiale: acqua Settore: Chimica

Analisi chimica Acqua

Prova	U.d.m.	Campione C1	Metodo
Temperatura	°C	16.9	Manuale APAT IRSA CNR 29/2003 – Sezione 2060
рН	unità di pH	7.76	Manuale APAT IRSA CNR 29/2003 – Sezione 2060
Conducibilità	μS/cm	5498	EPA 5030 C 2003 + EPA 8260 C 2006
Solidi Totali Disciolti	ppm	4317	EPA 5030 C 2003 + EPA 8260 C 2006
Salinità	ppm	5966	EPA 5030 C 2003 + EPA 8260 C 2006
Durezza totale	°F	31.2	EPA 5030 C 2003 + EPA 8260 C 2006
Solfati (SO ₄)	mg/l	785	Manuale APAT IRSA CNR 29/2003 – Sezione 4140 – Metodo B
Cloruri	mg/l	1360	Manuale APAT IRSA CNR 29/2003 – Sezione 4090 – Metodo A1
Fluoruri	mg/l	4.25	EPA 5030 C 2003 + EPA 8260 C 2006
Nitrato (NO ₃)	mg/l	< 5	EPA 5030 C 2003 + EPA 8260 C 2006
Nitrito (NO ₂)	mg/l	< 0.05	EPA 5030 C 2003 + EPA 8260 C 2006
Sodio	mg/l	637.3	EPA 5030 C 2003 + EPA 8260 C 2006
Calcio	mg/l	76.97	EPA 5030 C 2003 + EPA 8260 C 2006
Magnesio	mg/l	29.05	EPA 5030 C 2003 + EPA 8260 C 2006
Potassio	mg/l	26.37	EPA 5030 C 2003 + EPA 8260 C 2006
Bicarbonati (HCO ₃)	meq/l	16.0	EPA 5030 C 2003 + EPA 8260 C 2006
CO ₂ aggressiva	mg/l	46.2	UNI 8981
Idrogeno solforato (H ₂ S)	μg/l	91900	EPA 5030 C 2003 + EPA 8260 C 2006
Silice (SiO ₂)	mg/l	67.6	EPA 5030 C 2003 + EPA 8260 C 2006

Documentazione fotografica

Pozzo PZ2

Prelievo campione PZ2

tore di Laboratorio Sabrina Chiavetta

C.da Calderaro (Zona Ind.)

C.P. 287 - 93100 Caltanissetta

Tel.:

0934 565012

Fax.: e-mail: 0934 575422

info@sidercem.it

Protocollo N. Data accettazione:

004 113 17/05/2011

Luogo:

Laboratorio Sidercem di Caltanissetta

Certificato N.

inizio

Timbro a secco

CCA

18/05/2011 30/05/2011

Divisione:

Ambiente

CCC 019 720

30/05/2011

Materiale:

Data prova:

fine acqua

Settore:

Chimica

Ente Appaltante:

ANAS S.p.A. - Direzione Generale Roma

Oggetto:

Esecuzione di prove di Laboratorio a sostegno della progettazione esecutiva relative alle attività prodromiche connesse ai lavori di adeguamento a quattro corsie della S.S. 640 di Porto Empedocle 2º lotto, tratto dal km 44+000 allo

Svincolo con l'A19

Contraente Generale:

Empedocle 2 s.c.p.a.

Via Trieste 76 - 48122 Ravenna

Richiedente:

dott, ing. Mario Liti in qualità di Responsabile di Commessa per il CG

Identificazione campioni:

PZ3

Materiale:

Acqua di emungimento

Ubicazione prelievo campione: Pozzo PZ3

(1) Il prelievo è stato eseguito dal geol. Giuseppe Scicolone (Personale SIDERCEM s.r.l.).

(2) Il campione è stato portato in Laboratorio dal geol. Giuseppe Scicolone (Personale SIDERCEM s.r.l.).

(3) Il presente certificato di prova è composto da 2 fogli numerati da 1 a 2.

(4) Il presente certificato viene autenticato dalla SIDERCEM s.r.l. di Caltanissetta mediante l'apposizione su ciascun foglio del timbro a secco visibile in alto. In assenza del timbro a secco il certificato è da ritenersi contraffatto.

(5) Le copie vengono autenticate dalla SIDERCEM di Caltanissetta mediante l'apposizione su ciascun foglio del timbro a secco visibile in alto. In assenza del timbro a secco la copia è da ritenersi contraffatta.

CERTIFICATO DI PROVA ANALISI CHIMICA ACQUA

(Manuale APAT IRSA CNR 29/2003 EPA 5030 C 2003 + EPA 8260 C 2006 UNI 8981)

Il Consulente Responsabile di Commessa

dott. ing. Morcella Venturelli

Il Vice Di di Laboratorio ina Chiavetta

C.da Calderaro (Zona Ind.)

C.P. 287 - 93100 Caltanissetta

Tel.:

0934 565012

Fax.: e-mail: 0934 575422 info@sidercem.it

Timbro a secco Protocollo N. **CCA**

004 113

Luogo:

Laboratorio Sidercem di Caltanissetta

Certificato N.

Data accettazione:

17/05/2011

lnizio fine

18/05/2011 30/05/2011

Divisione:

Ambiente

CCC 019 720

30/05/2011

Materiale:

Data prova:

acqua

Settore:

Chimica

Analisi chimica Acqua – Campione PZ3

Prova	U.d.m.	Campione C1	Metodo
Temperatura	°C	16.4	Manuale APAT IRSA CNR 29/2003 – Sezione 2060
рН	unità di pH	8.27	Manuale APAT IRSA CNR 29/2003 – Sezione 2060
Conducibilità	μS/cm	1017	EPA 5030 C 2003 + EPA 8260 C 2006
Solidi Totali Disciolti	ppm	519.9	EPA 5030 C 2003 + EPA 8260 C 2006
Salinità	ppm	967.9	EPA 5030 C 2003 + EPA 8260 C 2006
Durezza totale	°F	29.1	EPA 5030 C 2003 + EPA 8260 C 2006
Solfati (SO ₄ ")	mg/l	59	Manuale APAT IRSA CNR 29/2003 – Sezione 4140 – Metodo B
Cloruri	mg/l	95	Manuale APAT IRSA CNR 29/2003 – Sezione 4090 – Metodo A1
Fluoruri	mg/l	1.44	EPA 5030 C 2003 + EPA 8260 C 2006
Nitrato (NO ₃)	mg/l	< 5.0	EPA 5030 C 2003 + EPA 8260 C 2006
Nitrito (NO ₂)	mg/l	0.17	EPA 5030 C 2003 + EPA 8260 C 2006
Sodio	mg/l	138.1	EPA 5030 C 2003 + EPA 8260 C 2006
Calcio	mg/I	49.40	EPA 5030 C 2003 + EPA 8260 C 2006
Magnesio	mg/l	46.4	EPA 5030 C 2003 + EPA 8260 C 2006
Potassio	mg/l	31.52	EPA 5030 C 2003 + EPA 8260 C 2006
Bicarbonati (HCO ₃)	meq/l	13.0	EPA 5030 C 2003 + EPA 8260 C 2006
CO ₂ aggressiva	mg/l	16.5	UNI 8981
Idrogeno solforato (H ₂ S)	μg/l	< 100.0	EPA 5030 C 2003 + EPA 8260 C 2006
Silice (SiO ₂)	mg/l	7.5	EPA 5030 C 2003 + EPA 8260 C 2006

Documentazione fotografica

Pozzo PZ3

Il Consulente Responsabile di Commessa dott. ing. Marcella Venturelli

Prelievo campione PZ3

ttore di Laboratorio abrina Chiavetta

C.da Calderaro (Zona Ind.)

C.P. 287 - 93100 Caltanissetta

Tel.:

0934 565012

Fax.:

0934 575422

_	€apitale Sociale € 162 774.92		Timbro a secco			e-mail:	info@sidercem.it
	Certificato N.		Protocollo N.	CCA	003 981	Luogo:	Laboratorio Sidercem di Caltanissetta
			Data accettazione: 21/03/2011				
			- Data prova:	inizio	25/03/2011		
	CCC 019 027	13/04/2011	Data prova:	fine	31/03/2011	Divisione:	Ambiente
		13/04/2011	Materiale:	fiala (Carboni Attivi	Settore:	Chimica

Richiedente: dott. ing. Mario Liti in qualità di Responsabile di Commessa per il CG

Cooperativa Muratori e Cementisti C.M.C. di Ravenna

Via Trieste, 76 - 48122 Ravenna

Oggetto: Esecuzione di prove di Laboratorio a sostegno della progettazione esecutiva relative

alle attività prodromiche connesse ai lavori di adeguamento a quattro corsie della S.S. 640 di Porto Empedocle 2° lotto, tratto dal km 44+000 allo Svincolo con l'A19

Ente Appaltante: ANAS S.p.A. – Direzione Generale Roma

Contraente Generale/Committente: Empedocle 2 s.c.p.a.

Identificazione campione: SI41 e SI27

Profondità tubo piezometrico SI41: 100,00 m

Profondità tubo piezometrico SI27: 80,00 m

Profondità campionamento aria SI41: 1,00 m

Profondità campionamento aria SI27: 21,00 m

- (1) Il campione è stato prelevato e portato in Laboratorio dal dott, geol. Giuseppe Scicolone (Personale SIDERCEM s.r.l.).
- (2) Il presente certificato di prova è composto da 3 fogli numerati da 1 a 3.
- (3) Il presente certificato viene autenticato dalla SIDERCEM s.r.l. di Caltanissetta mediante l'apposizione su ciascun foglio del timbro a secco visibile in alto. In assenza del timbro a secco il certificato è da ritenersi contraffatto.
- (4) Le copie vengono autenticate dalla SIDERCEM di Caltanissetta mediante l'apposizione su ciascun foglio del timbro a secco visibile in alto. In assenza del timbro a secco la copia è da ritenersi contraffatta.

CERTIFICATO DI PROVA

ESAME CHIMICO (OSHA 07:2002)

Il Consulente Responsabile di Commessa

dott. ing. Marcella Venturelli

Il Vice Directore di Laboratorio dott. geol Sahreta Chiavetta

Laboratorio: C.da Calderaro (Zona Ind.)

C.P. 287 ~ 93100 Caltanissetta

Tel.: 0934 565012 Fax.: 0934 575422

e-mail: info@sidercem it

Capitale Sociate (102 74.92		Tı	Timbro a secco		e-mail:	ınfo@sidercem.it	
		Protocollo N.	CCA	003 981	Luogo:	Laboratorio Sidercem di Caltanissetta	
Certifica	Certificato N.		Data accettazione: 21/03/2011				
		Data prova:	inizio	25/03/2011			
CCC 019 027	13/04/2011	Data prova.	fine	31/03/2011	Divisione:	Ambiente	
CCC 019 027	13/04/2011	Materiale:	fiala (arboni Attivi	Settore:	Chimica	

Analisi dei composti organici volatili - SI41

Risultati analisi:

Sostanze organiche volatili	Concentrazione	Metodo	
1,1,1,2 - Tetracloroetilene	< 4	OSHA 07:2002	
1,1,1-Tricloroetano	< 4	OSHA 07:2002	
1,1,2,2 - Tetracloroetano	< 4	OSHA 07:2002	
1,1,2-Tricloroetano	< 4	OSHA 07:2002	
1,1-Dicloropropene	< 4	OSHA 07:2002	
1, 2,3-Triclorobenzene	< 4	OSHA 07:2002	
1, 2,4 Triclorobenzene	< 4	OSHA 07:2002	
1, 2,3 Trimetilbenzene	< 4	OSHA 07:2002	
1,2-Dibromoetano	< 4	OSHA 07:2002	
1,1-Diclorobenzene	< 4	OSHA 07:2002	
1,2-Dicloroetano	< 4	OSHA 07:2002	
1,2-Dicloropropano	< 4	OSHA 07:2002	
1, 3,5 Trimetilbenzene	< 4	OSHA 07:2002	
1,3-Diclorobenzene	< 4	OSHA 07:2002	
1,3-Dicloropropano	< 4	OSHA 07:2002	
Trans-1,4 Dicloro-2-butadiene	< 4	OSHA 07:2002	
1,4-Diclorobenzene	< 4	OSHA 07:2002	
2-Butanone (MEK)	< 4	OSHA 07:2002	
2-Clorotoluene	< 4	OSHA 07:2002	
4-Clorotoluene	< 4	OSHA 07:2002	
4-Metil-2-Pentanone (MIBK)	< 4	OSHA 07:2002	
Benzene	< 4	OSHA 07:2002	
Bromobenzene	< 4	OSHA 07:2002	
Bromoclorometano	< 4	OSHA 07:2002	
Bromodiclorometano	< 4	OSHA 07:2002	
Bromoformio	< 4	OSHA 07:2002	
Carbonio tetracloruro	< 4	OSHA 07:2002	
Cloroacetonitile	< 4	OSHA 07:2002	
Clorobenzene	< 4	OSHA 07:2002	

Il Consulente Respinsabile di Commessa dott. ing. Marcella Venturelli

Il Vice Dire di Laboratorio rina Chiavetta

Laboratorio: C.da Calderaro (Zona Ind)

C.P. 287 - 93100 Caltanissetta

Tel.:

0934 565012

0934 575422

Timbro a secco

Fax.: e-mail:

info@sidercem.it Laboratorio Sidercem di Caltanissetta

Certificato N.

Protocollo N. **CCA** 003 981 Data accettazione: 21/03/2011 Luogo:

CCC 019 027

13/04/2011

inizio fine

25/03/2011 31/03/2011

Divisione:

Ambiente

Materiale:

Data prova:

fiala Carboni Attivi

Settore:

Chimica

Sostanze organiche volatili	Concentrazione [µg]	Metodo	
Cloroformio	< 4	OSHA 07:2002	
Cloruro di butile	< 4	OSHA 07:2002	
Dibromoclorometano	< 4	OSHA 07:2002	
Esaclorobutadiene	< 4	OSHA 07:2002	
Esacloroetano	< 4	OSHA 07:2002	
Etilemetacrilato	< 4	OSHA 07:2002	
Etileacetato	< 4	OSHA 07:2002	
Etilbenzene	< 4	OSHA 07:2002	
Isopropilbenzene	< 4	OSHA 07:2002	
m-Xilene + p-Xilene	< 4	OSHA 07:2002	
Metil acrilato	< 4	OSHA 07:2002	
Metil metacrilato	< 4	OSHA 07:2002	
Metilacrilonitrile	< 4	OSHA 07:2002	
n-Butilacetato	< 4	OSHA 07:2002	
n-Butilbenzene	< 4	OSHA 07:2002	
n- Proplbenzene	< 4	OSHA 07:2002	
Nitrobenzene	< 4	OSHA 07:2002	
o-Xilene	< 4	OSHA 07:2002	
p-Isopropil toluene	< 4	OSHA 07:2002	
Pentacloroetano	< 4	OSHA 07:2002	
Sec-Butilbenzene	< 4	OSHA 07:2002	
Stirene	< 4	OSHA 07:2002	
Tert- Butilbenzene	< 4	OSHA 07:2002	
Tetracloroetilene	< 4	OSHA 07:2002	
Tetraidrofurano	< 4	OSHA 07:2002	
Toluene	< 4	OSHA 07:2002	
Tricloroetilene	< 4	OSHA 07:2002	

Analisi sostanze organiche volatili - SI27

Sostanze organiche volatili	Concentrazione
CO ₂	4.5 – 4.6 %
CH ₄	170 ppm

Il Consulente Responsabile di Commessa

dott. ing, Marge la Venturelli

di Laboratorio dott. geot Sobrina Chiavetta

Laboratorio: C.da Calderaro (Zona Ind)

C.P. 287 - 93100 Caltanissetta

Tel.: 0934565012 Fax.: 0934575422 e-mail: info@sidercem.it

Timbro a secco

Esecuzione di indagini geognostiche, geofisiche, geotecniche in situ e prove di laboratorio a sostegno della progettazione esecutiva relativa alle attività prodromiche connesse ai lavori di adeguamento a quattro corsie della S.S. 640 "di Porto Empedocle" 2° lotto, tratto dal km 44+000 allo svincolo con l'A19

Ente Appaltante	ANAS S.p.A. – Direzione Generale Roma
Contraente Generale	EMPEDOCLE 2 s.c.p.a
Committente	EMPEDOCLE 2 s.c.p.a

INDAGINI INTEGRATIVE 3° FASE

Analisi chimica terra e roccia da scavo

Comm. n°	Rev.	Periodo Indagine	Data Emissione	Redazione (RC)	Verifica (VRSQ)	Approvatione (RSQ)
263(*) (*) Consultare all interno elenco prolocolli	0	Febbraio-Maggio 2011	11/05/2011	d ¢tt , ing. Marcella \Venture lli	geom/Carlo La Russa	dott. Ing. Vincenzo rena

Laboratorio: C.da Calderaro (Zona Ind.)

C.P. 287 - 93100 Caltanissetta

Tel.: 0934 565012

0934 575422

Fax . Timbro a secco info@sidercem.it e-mail:

Protocollo Nº CCA 003 946 Luogo; Laboratorio Sidercem di Caltanissetta Certificato Nº Data accettazione: 02/03/2011 02/03/2011 inizio Data prova: fine 04/03/2011 Divisione: Ambiente CCC 018 735 04/03/2011 Materiale: Terra e roccia da scavo Settore: Chimica

Foglio 1/2

Richiedente:

dott. ing. Mario Liti in qualità di Responsabile di Commessa per il CG

Empedocle 2 s.c.p.a.

via Trieste, 76 - 48122 Ravenna

Oggetto:

Esecuzione di prove di Laboratorio a sostegno della progettazione esecutiva relative alle attività prodromiche connesse ai lavori di adeguamento a quattro corsie della S.S. 640 di

Porto Empedocle 2º Lotto, tratto dal Km 44+000 allo svincolo con l'A19

Ente appaltante:

ANAS S.p.A. - Direzione Generale Roma

Contraente Generale /

Committente:

Empedocle 2 s.c.p.a.

Materiale:

Terra e roccia da scavo

Sigla Campione:

PT1

- (1) La provenienza e le caratteristiche del materiale sono dichiarate e sottoscritte dal Committente.
- (2) Il campione era in giacenza presso il Laboratorio della Sidercem s.r.l. (cfr. Prot. Sidercem n. 3765 del 01/12/2010), che lo aveva ricevuto dal dott. Giacomo Marcinnò (Geolab s.r.l.).
- (3) Il presente certificato è costituito di 2 fogli numerati da 1 a 2.
- (4) Il presente certificato viene autenticato dalla Sidercem s.r.l. di Caltanissetta mediante l'apposizione su ciascun foglio del timbro a secco visibile in alto. In assenza del timbro a secco il certificato è da ritenersi contraffatto.
- (5) Le copie vengono autenticate dalla Sidercem s.r.l. di Caltanissetta mediante l'apposizione su ciascun foglio del timbro a secco visibile in alto. In assenza del timbro a secco la copia è da ritenersi contraffatta.

CERTIFICATO DI PROVA

ANALISI CHIMICA

[D.Lgs 152/2006 Parte quarta Titolo V All. 5 Tab. 1]

Il Consulente Responsabile di Commessa dott. ing. Marcella Venturelli

Il Vice Direttore di Laboratorio dott, ing. Vincento Arena

E' vietata la riproduzione, anche parziale, del presente documento senza preventiva autorizzazione sentta della SIDERCEM s.r.l.

C.da Calderaro (Zona Ind.)

C.P. 287 - 93100 Caltanissetta

Tel.:

0934 565012

Fax.:

0934 575422 info@sidercem.it

Protocollo Nº

CCA 003 946

e-mail: Luogo:

Laboratorio Sidercem di Caltanissetta

Certificato Nº

Data accettazione:

Inizio

Timbro a secco

02/03/2011

CCC 018 735

04/03/2011

Data prova: fine

02/03/2011 04/03/2011

Divisione:

Ambiente

Materiale:

Terra e roccia da scavo

Settore:

Chimica

					Foglio 2/2
	· · · · · · · · · · · · · · · · · · ·	Campione	PT1 - RISULTA	TI ANALISI	
Analita	Concentrazione (mg/kg ss)	Incertezza	Valore limite	(mg/kg ss) (*)	Metodo
	(g. kg 00)		Colonna A	Colonna B	
	·		Composti inorganici		
Arsenico	6	±1,5	20	50	EPA 3051A/2007 + EPA 6010C/2007
Berillio	< 1	-	2	10	EPA 3051A/2007 + EPA 6010C/2007
Cadmio	0.3	±0,1	2	15	EPA 3051A/2007 + EPA 6010C/2007
Cobalto	9	±2	20	250	EPA 3051A/2007 + EPA 6010C/2007
Cromo totale	33	±8,3	150	800	EPA 3051A/2007 + EPA 6010C/2007
Mercurio	< 1	-	1	5	EPA 3051A/2007 + EPA 6010C/2007
Nichel	< 35	-	120	500	EPA 3051A/2007 + EPA 6010C/2007
Piombo	17	±4,3	100	1000	EPA 3051A/2007 + EPA 6010C/2007
Rame	19	±4,8	120	600	EPA 3051A/2007 + EPA 6010C/2007
Selenio	< 1	•	3	15	EPA 3051A/2007 + EPA 6010C/2007
Zinco	72	±10,8	150	1500	EPA 3051A/2007 + EPA 6010C/2007
			Idrocarburi		
Idrocarburi totali	26	-			calcolo
drocarburi leggeri C<12	< 1	-	10	250	EPA 5021A/2003+EPA8260C/2006
Idrocarburi pesanti C>12	< 25	-	50	750	ISO 16703/2004

Caratteristiche Fisiche	U.M.	Risultato	Incertezza	Limite	Metodo
Residuo secco a 105°C	%	95.8	± 6,7	25	CNR IRSA 2 Q 64 Vol. 2 1984
Umidità	%	4.2	-	-	CNR IRSA 2 Q 64 Vol. 2 1984
Sopra vaglio 2 mm	% ss	30.2	± 4,5	•	DM 13/09/1999 GU n. 248 del 21/10/1999 Met. il Parte 1
Sotto vaglio 2 mm	% ss	69.8	± 10,5	_	DM 13/09/1999 GU n. 248 del 21/10/1999 Met. II Parte 1

(*) I limiti di legge si riferiscono alla concentrazione soglia di contaminazione nel suolo e nel sottosuolo riferiti alla specifica destinazione d'uso dei siti da bonificare.

Per la Colonna A: siti ad uso Verde Pubblico, Privato e Residenziale.

Per la Colonna B: siti ad uso Commerciale ed Industriale.

Il Consulente Responsabile di Commessa dott, ing. Margella Venturelli

Il Vice Direttore di Laboratorio dott.ing. Vincenzo Arena

E' vietata la riproduzione, anche parziale, del presente documento senza preventiva autorizzazione scritta della SIDERCEM s.r.l.

Laboratorio: C.da Calderaro (Zona Ind.)

C.P. 287 - 93100 Caltanissetta

Tel.:

0934 565012

Fax.:

0934 575422

Capitale Sociale, € 102,774,92		Timbro a secco			e-mail:	info@sidercem.it
	Certificato N°		CCA	003 946	Luogo:	Laboratorio Sidercem di Caltanissetta
Certific			Data accettazione: 02/03/2011			
		Data prova:	inizio	02/03/2011		
C CC 010 536	0.4/0.2/2.044	Data prova-	fine	04/03/2011	Divisione:	Ambiente
C CC 018 736	04/03/2011	Materiale:	Тепта е	e roccia da scavo	Settore:	Chimica

Foglio 1/2

Richiedente:

dott, ing. Mario Liti in qualità di Responsabile di Commessa per il CG

Empedocle 2 s.c.p.a.

via Trieste, 76 - 48122 Ravenna

Oggetto:

Esecuzione di prove di Laboratorio a sostegno della progettazione esecutiva relative alle attività prodromiche connesse ai lavori di adeguamento a quattro corsie della S.S. 640 di

Porto Empedocle 2º Lotto, tratto dal Km 44+000 allo svincolo con l'A19

Ente appaltante:

ANAS S.p.A. - Direzione Generale Roma

Contraente Generale /

Committente:

Empedocle 2 s.c.p.a.

Materiale:

Terra e roccia da scavo

Sigla Campione:

PT2

- (1) La provenienza e le caratteristiche del materiale sono dichiarate e sottoscritte dal Committente.
- (2) Il campione era in giacenza presso il Laboratorio della Sidercem s.r.l. (cfr. Prot. Sidercem n. 3765 del 01/12/2010), che lo aveva ricevuto dal dott. Giacomo Marcinnò (Geolab s.r.l.).
- (3) Il presente certificato è costituito di 2 fogli numerati da 1 a 2.
- (4) Il presente certificato viene autenticato dalla Sidercem s.r.l. di Caltanissetta mediante l'apposizione su ciascun foglio del timbro a secco visibile in alto. In assenza del timbro a secco il certificato è da ritenersi contraffatto.
- (5) Le copie vengono autenticate dalla Sidercem s.r.l. di Caltanissetta mediante l'apposizione su ciascun foglio del timbro a secco visibile in alto. In assenza del timbro a secco la copia è da ritenersi contraffatta.

CERTIFICATO DI PROVA

ANALISI CHIMICA

[D.Lgs 152/2006 Parte quarta Titolo V All. 5 Tab. 1]

Il Consulente Responsabile di Commessa dott. ing. Marcella/Venturelli

Il Vice Direttore di Laboratorio dott. ing. Vincenzo Arena

E' vietata la riproduzione, anche parziale, del presente documento senza preventiva autorizzazione scritta della SIDERCEM s.r.l.

C.F. - Iscr. C.C.J.A.A. di Caltanissetta 01754620874 Capitale Sociale, € 102 774,92

Laboratorio:

C.da Calderaro (Zona Ind.)

C.P. 287 - 93100 Caltanissetta

Tel.:

0934 565012

Fax.:

0934 575422

Certificato Nº

Protocollo Nº

CCA 003 946

info@sidercem.it e-mail: Luogo:

Data accettazione: Data prova:

02/03/2011 Inizio

02/03/2011

Laboratorio Sidercem di Caltanissetta

CCC 018 736

04/03/2011

fine

Timbro a secco

04/03/2011

Divisione:

Ambiente

Materiale:

Тетта e roccia da scavo

Settore:

Chimica

					Foglio 2/2
		Campione	PT2 - RISULTA	TI ANALISI	
Analita	Concentrazione (mg/kg ss)		Valore limite	(mg/kg ss) (*)	Matodo
	(36 -0)		Colonna A	Colonna B	
			omposti Inorganici		
Arsenico	6	±1,5	20	50	EPA 3051A/2007 + EPA 6010C/2007
Berillio	< 1	-	2	10	EPA 3051A/2007 + EPA 6010C/2007
Cadmio	0.3	±0,1	2	15	EPA 3051A/2007 + EPA 6010C/2007
Cobalto	9.5	±2,1	20	250	EPA 3051A/2007 + EPA 6010C/2007
Cromo totale	35	±8,8	150	800	EPA 3051A/2007 + EPA 6010C/2007
Mercurio	< 1	_	1	5	EPA 3051A/2007 + EPA 6010C/2007
Nichel	< 35	-	120	500	EPA 3051A/2007 + EPA 6010C/2007
Piombo	16	±4	100	1000	EPA 3051A/2007 + EPA 6010C/2007
Rame	23	±5,8	120	600	EPA 3051A/2007 + EPA 6010C/2007
Selenio	< 1		3	15	EPA 3051A/2007 + EPA 6010C/2007
Zinco	68	±10,2	150	1500	EPA 3051A/2007 + EPA 6010C/2007
			Idrocarburi		
Idrocarburl totali	26	-			calcolo
drocarburi leggeri C<12	< 1	-	10	250	EPA 5021A/2003+EPA8260C/2006
drocarburi pesanti C>12	< 25	-	50	750	ISO 16703/2004

Caratteristiche Fisiche	U.M.	Risultato	Incertezza	Limite	Metodo
Residuo secco a 105°C	%	96.2	± 6,7	25	CNR IRSA 2 Q 64 Vol. 2 1984
Umidità	%	4.2	-	-	CNR IRSA 2 Q 64 Vol. 2 1984
Sopra vaglio 2 mm	% ss	36.5	± 5.4	-	DM 13/09/1999 GU n. 248 del 21/10/1999 Met. II Parte 1
Sotto vaglio 2 mm	% ss	63.5	± 9,5	-	DM 13/09/1999 GU n. 248 del 21/10/1999 Mel. Il Parte 1

(*) I limiti di legge si riferiscono alla concentrazione soglia di contaminazione nel suolo e nel sottosuolo riferiti alla specifica destinazione d'uso dei siti da bonificare.

Per la Colonna A: siti ad uso Verde Pubblico, Privato e Residenziale.

Per la Colonna B: siti ad uso Commerciale ed Industriale.

Il Consulente Responsabile di Commessa

dott. ing. Marce la Venturelli

Il Vice Direttore di Laboratorio dott. ing: Vincenzo Arena

E' vietata la riproduzione, anche parziale, del presente documento senza preventiva autorizzazione scritta della SIDERCEM s.r.l.

C.P. 287 - 93100 Caltanissetta

Tel.:

0934 565012

Fax.:

0934 575422

Capitale Sociale	Capitale Sociale € 102 774,92		Timbro a secco			info@sidercem.it	
		Protocollo Nº	CCA	003 946	Luogo:	Laboratorio Sidercem di Caltanissetta	
Certific	Certificato Nº		:	02/03/2011			
		Data prova:	inizio	02/03/2011			
C CC 018 737	6.60.040.505		fine	04/03/2011	Divisione:	Ambiente	
C CC 018 /3/	04/03/2011	Materiale:	Тегга	roccia da scavo	Settore:	Chimica	

Foglio 1/2

Richiedente:

dott. ing. Mario Liti in qualità di Responsabile di Commessa per il CG

Empedocle 2 s.c.p.a.

via Trieste, 76 - 48122 Ravenna

Oggetto:

Esecuzione di prove di Laboratorio a sostegno della progettazione esecutiva relative alle attività prodromiche connesse ai lavori di adeguamento a quattro corsie della S.S. 640 di

Porto Empedocle 2º Lotto, tratto dal Km 44+000 allo svincolo con l'A19

Ente appaltante:

ANAS S.p.A. - Direzione Generale Roma

Contraente Generale /

Committente:

Empedocle 2 s.c.p.a.

Materiale:

Terra e roccia da scavo

Sigla Campione:

PT3

- (1) La provenienza e le caratteristiche del materiale sono dichiarate e sottoscritte dal Committente.
- (2) Il campione era in giacenza presso il Laboratorio della Sidercem s.r.l. (cfr. Prot. Sidercem n. 3765 del 01/12/2010), che lo aveva ricevuto dal dott. Giacomo Marcinnò (Geolab s.r.l.).
- (3) Il presente certificato è costituito di 2 fogli numerati da 1 a 2.
- (4) Il presente certificato viene autenticato dalla Sidercem s.r.l. di Caltanissetta mediante l'apposizione su ciascun foglio del timbro a secco visibile in alto. In assenza del timbro a secco il certificato è da ritenersi contraffatto.
- (5) Le copie vengono autenticate dalla Sidercem s.r.l. di Caltanissetta mediante l'apposizione su ciascun foglio del timbro a secco visibile in alto. In assenza del timbro a secco la copia è da ritenersi contraffatta.

CERTIFICATO DI PROVA

ANALISI CHIMICA

[D.Lgs 152/2006 Parte quarta Titolo V All. 5 Tab. 1]

Il Consulente Responsabile di Commessa

dott. ing. Maccella Venturelli

Il Vice Direttore di Laboratorio dott. ing. Vineenzo Arena

C.da Calderaro (Zona Ind.)

C.P. 287 - 93100 Caltanissetta

Tel.:

0934 565012

Fax.: e-mail:

Luogo:

0934 575422

Protocollo Nº

Timbro a secco CCA 003 946

info@sidercem.it Laboratorio Sidercem di Caltanissetta

Certificato Nº

Data accettazione:

02/03/2011 inizio 02/03/2011

CCC 018 737

04/03/2011

Data prova: 04/03/2011 fine

Divisione:

Ambiente

Materiale:

Terra e roccia da scavo

Settore: Chimica

					Foglio 2/2
		Campione	PT3 - RISULTA	TI ANALISI	
Analita	Concentrazione (mg/kg ss)		Valore limite	(mg/kg ss) (*)	Metodo
	(g,g cc)		Colonna A	Colonna B	
			omposti Inorganici		
Arsenico	< 5		20	50	EPA 3051A/2007 + EPA 6010C/2007
Berillio	< 1		2	10	EPA 3051A/2007 + EPA 6010C/2007
Cadmio	0.2	±0,1	2	15	EPA 3051A/2007 + EPA 6010C/2007
Cobalto	10	±2,2	20	250	EPA 3051A/2007 + EPA 6010C/2007
Cromo totale	37	±9,3	150	800	EPA 3051A/2007 + EPA 6010C/2007
Mercurio	< 1	-	1	5	EPA 3051A/2007 + EPA 6010C/2007
Nichel	< 35	-	120	500	EPA 3051A/2007 + EPA 6010C/2007
Piombo	12	±3	100	1000	EPA 3051A/2007 + EPA 6010C/2007
Rame	26	±6,5	120	600	EPA 3051A/2007 + EPA 6010C/2007
Selenio	< 1	-	3	15	EPA 3051A/2007 + EPA 6010C/2007
Zinco	64	±9,6	150	1500	EPA 3051A/2007 + EPA 6010C/2007
			Idrocarburi		
Idrocarburi totali	26	-			calcolo
drocarburi leggeri C<12	< 1	-	10	250	EPA 5021A/2003+EPA8260C/2006
drocarburi pesanti C>12	< 25	E/U	50	750	ISO 16703/2004

Caratteristiche Fisiche	U.M.	Risultato	Incertezza	Limite	Metodo
Residuo secco a 105°C	%	96.9	± 6,8	25	CNR IRSA 2 Q 64 Vol. 2 1984
Umidità	%	3.1	-	-	CNR IRSA 2 Q 64 Vol. 2 1984
Sopra vaglio 2 mm	% ss	1.7	± 0,3		DM 13/09/1999 GU n. 248 del 21/10/1999 Met. Il Parte 1
Sotto vaglio 2 mm	% ss	98.3	± 14,7	•	DM 13/09/1999 GU n. 248 del 21/10/1999 Met. Il Parte 1

(*) I limiti di legge si riferiscono alla concentrazione soglia di contaminazione nel suolo e nel sottosuolo riferiti alla specifica destinazione d'uso dei siti da bonificare.

Per la Colonna A: siti ad uso Verde Pubblico, Privato e Residenziale.

Per la Colonna B: siti ad uso Commerciale ed Industriale.

Il Consulente Responsabile di Commessa dott ing. Marcella enturelli

Il Vice Direttore di Laboratorio dott. ing Mincenzo Arena

C.P. 287 - 93100 Caltanissetta

Tel.:

0934 565012

Fax.:

0934 575422

Capitale Sociale € 102,774,92 Timbro a secco e-mail:

info@sidercem.it

	Certificato Nº		CCA	003 946	Luogo:	Laboratorio Sidercem di Caltanissetta
Certific				02/03/2011		
		Data prova:	inlzio	02/03/2011	İ	
CCC 019 729	04/02/2011		fine	04/03/2011	Divisione:	Ambiente
CCC 018 /38	CCC 018 738 04/03/2011	Materiale:	Тетта е	roccia da scavo	Settore:	Chimica

Foglio 1/2

Richiedente:

dott, ing. Mario Liti in qualità di Responsabile di Commessa per il CG

Empedocle 2 s.c.p.a.

via Trieste, 76 - 48122 Ravenna

Oggetto:

Esecuzione di prove di Laboratorio a sostegno della progettazione esecutiva relative alle attività prodromiche connesse ai lavori di adeguamento a quattro corsie della S.S. 640 di

Porto Empedocle 2º Lotto, tratto dal Km 44+000 allo svincolo con l'A19

Ente appaltante:

ANAS S.p.A. - Direzione Generale Roma

Contraente Generale /

Committente:

Empedocle 2 s.c.p.a.

Materiale:

Terra e roccia da scavo

Sigla Campione:

PT4

- (1) La provenienza e le caratteristiche del materiale sono dichiarate e sottoscritte dal Committente.
- (2) Il campione era in giacenza presso il Laboratorio della Sidercem s.r.l. (cfr. Prot. Sidercem n. 3765 del 01/12/2010), che lo aveva ricevuto dal dott. Giacomo Marcinnò (Geolab s.r.l.).
- (3) Il presente certificato è costituito di 2 fogli numerati da 1 a 2.
- (4) Il presente certificato viene autenticato dalla Sidercem s.r.l. di Caltanissetta mediante l'apposizione su ciascun foglio del timbro a secco visibile in alto. In assenza del timbro a secco il certificato è da ritenersi contraffatto.
- (5) Le copie vengono autenticate dalla Sidercem s.r.l. di Caltanissetta mediante l'apposizione su ciascun foglio del timbro a secco visibile in alto. In assenza del timbro a secco la copia è da ritenersi contraffatta.

CERTIFICATO DI PROVA

ANALISI CHIMICA

[D.Lgs 152/2006 Parte quarta Titolo V All. 5 Tab. 1]

Il Consulente Responsabile di Commessa

dott. ing. Marcella Venturelli

Il Vice Direttore di Laboratorio dott. ing. Vinteenzo Arena

C.da Calderaro (Zona Ind.)

C.P. 287 - 93100 Caltanissetta

Tel.:

0934 565012

Fax.: e-mail:

0934 575422 info@sidercem.it

Protocollo Nº

003 946 Luogo:

Laboratorio Sidercem di Caltanissetta

Certificato Nº

Data accettazione:

Data prova:

02/03/2011 Inlzio 02/03/2011

CCC 018 738

04/03/2011

04/03/2011 Ппе

Divisione:

Ambiente

Materiale:

Terra e roccia da scavo

Timbro a secco

CCA

Settore:

Chimica

					Foglio 2/2
		Campione	PT4 - RISULTA	TI ANALISI	
Analita	Concentrazione (mg/kg ss)		Valore limite ((mg/kg ss) (*)	Metodo
	(119/19 00)		Colonna A	Colonna B	Ť
			omposti inorganici	_	
Arsenico	< 5		20	50	EPA 3051A/2007 + EPA 6010C/2007
Berillio	< 1	-	2	10	EPA 3051A/2007 + EPA 6010C/2007
Cadmio	0.4	±0.1	2	15	EPA 3051A/2007 + EPA 6010C/2007
Cobalto	9	±2	20	250	EPA 3051A/2007 + EPA 6010C/2007
Cromo totale	35	±8,8	150	800	EPA 3051A/2007 + EPA 6010C/2007
Mercurio	< 1	•	1	5	EPA 3051A/2007 + EPA 6010C/2007
Nichel	< 35	-	120	500	EPA 3051A/2007 + EPA 6010C/2007
Piombo	16	±4	100	1000	EPA 3051A/2007 + EPA 6010C/2007
Rame	20	±5	120	600	EPA 3051A/2007 + EPA 6010C/2007
Selenio	< 1	-	3	15	EPA 3051A/2007 + EPA 6010C/2007
Zinco	74	±11,1	150	1500	EPA 3051A/2007 + EPA 6010C/2007
			Idrocarburi		
Idrocarburi totali	26	-			calcolo
Idrocarburi leggeri C<12	< 1	-	10	250	EPA 5021A/2003+EPA8260C/2006
Idrocarburi pesanli C>12	< 25	-	50	750	ISO 16703/2004

Caratteristiche Fisiche	U.M.	Risultato	incertezza	Limite	Metodo
Residuo secco a 105°C	%	99.5	± 7,0 25		CNR IRSA 2 Q 64 Vol. 2 1984
Umidità	%	0.5		-	CNR IRSA 2 Q 64 Vol. 2 1984
Sopra vaglio 2 mm	% ss	6.4	± 1,0		DM 13/09/1999 GU n. 248 del 21/10/1999 Met. II Parte 1
Sotto vaglio 2 mm	% ss	93.6	± 14,0	•	DM 13/09/1999 GU n. 248 det 21/10/1999 Met. II Parte 1

(*) I limiti di legge si riferiscono alla concentrazione soglia di contaminazione nel suolo e nel sottosuolo riferiti alla specifica destinazione d'uso dei siti da bonificare.

Per la Colonna A: siti ad uso Verde Pubblico, Privato e Residenziale.

Per la Colonna B: siti ad uso Commerciale ed Industriale.

Il Consulente Responsabile di Commessa

dott. ing. Marcella Venturelli

Il Vice Direttore di Laboratorio

dott. ing. Vincenzo Arena

C.P. 287 - 93100 Caltanissetta

Tel.:

0934 565012

Fax.:

0934 575422

C ujsteaje Social	C 102 174,92	1	imbro a sec	000	e-mail:	info@sidercem.it
		Protocollo Nº	CCA	003 946	Luogo:	Laboratorio Sidercem di Caltanissetta
Certific	Certificato N°		:	02/03/2011		
		Data prova:	inizio	02/03/2011		
CCC 019 720	CCC 010 820		fine	04/03/2011	Divisione:	Ambiente
CCC 018 /39	CCC 018 739 04/03/2011		Тепта	e roccia da scavo	Settore:	Chimica
						······································

Foglio 1/2

Richiedente:

dott, ing. Mario Liti in qualità di Responsabile di Commessa per il CG

Empedocle 2 s.c.p.a.

via Trieste, 76 - 48122 Ravenna

Oggetto:

Esecuzione di prove di Laboratorio a sostegno della progettazione esecutiva relative alle attività prodromiche connesse ai lavori di adeguamento a quattro corsie della S.S. 640 di

Porto Empedocle 2º Lotto, tratto dal Km 44+000 allo svincolo con l'A19

Ente appaltante:

ANAS S.p.A. - Direzione Generale Roma

Contraente Generale /

Committente:

Empedocle 2 s.c.p.a.

Materiale:

Terra e roccia da scavo

Sigla Campione:

PT5

- (1) La provenienza e le caratteristiche del materiale sono dichiarate e sottoscritte dal Committente.
- (2) Il campione era in giacenza presso il Laboratorio della Sidercem s.r.l. (cfr. Prot. Sidercem n. 3765 del 01/12/2010), che lo aveva ricevuto dal dott. Giacomo Marcinnò (Geolab s.r.l.).
- (3) Il presente certificato è costituito di 2 fogli numerati da 1 a 2.
- (4) Il presente certificato viene autenticato dalla Sidercem s.r.l. di Caltanissetta mediante l'apposizione su ciascun foglio del timbro a secco visibile in alto. In assenza del timbro a secco il certificato è da ritenersi contraffatto.
- (5) Le copie vengono autenticate dalla Sidercem s.r.l. di Caltanissetta mediante l'apposizione su ciascun foglio del timbro a secco visibile in alto. In assenza del timbro a secco la copia è da ritenersi contraffatta.

CERTIFICATO DI PROVA

ANALISI CHIMICA

[D.Lgs 152/2006 Parte quarta Titolo V All. 5 Tab. 1]

Il Consulente Responsabile di Commessa dott. ing. Marcella Venturelli

Il Vice Direttore di Laboratorio dott. ing. Vincenzo Arena

C.da Calderaro (Zona Ind.)

C.P. 287 - 93100 Caltanissetta

Tel.:

0934 565012

Fax.:

0934 575422 info@sidercem.it

Protocollo Nº

CCA 003 946

Timbro a secco

e-mail: Luogo:

Laboratorio Sidercem di Caltanissetta

Certificato Nº

Data accettazione:

Data prova:

02/03/2011

CCC 018 739

04/03/2011

02/03/2011 inlzio fine

04/03/2011 Divisione:

Ambiente

Materiale: Terra e roccia da scavo

Settore: Chimica

Foolio 2/2

		Campione	PT5 - RISULTA	TI ANALISI	
Analita	Concentrazione (mg/kg ss)		Valore limite	(mg/kg ss) (*)	Metodo
	(mg/kg co)		Colonna A	Colonna B	1
			Composti inorganici		
Arsenico	11	±2,8	20	50	EPA 3051A/2007 + EPA 6010C/2003
Berillio	< 1	-	2	10	EPA 3051A/2007 + EPA 6010C/2007
Cadmio	0.6	±0,2	2	15	EPA 3051A/2007 + EPA 6010C/2007
Cobalto	9	±2	20	250	EPA 3051A/2007 + EPA 6010C/200
Cromo totale	38	±9,5	150	800	EPA 3051A/2007 + EPA 6010C/200
Mercurio	< 1	-	1	5	EPA 3051A/2007 + EPA 6010C/200
Nichel	< 35	-	120	500	EPA 3051A/2007 + EPA 6010C/2003
Piombo	15	±3,8	100	1000	EPA 3051A/2007 + EPA 6010C/200
Rame	37	±9,3	120	600	EPA 3051A/2007 + EPA 6010C/200
Selenio	< 1	- 1	3	15	EPA 3051A/2007 + EPA 6010C/200
Zinco	83	±12,5	150	1500	EPA 3051A/2007 + EPA 6010C/200
			Idrocarburi		
Idrocarburi totali	26	-			calcolo
Irocarburi leggeri C<12	< 1	-	10	250	EPA 5021A/2003+EPA8260C/2006
drocarburi pesanti C>12	< 25	-	50	750	ISO 16703/2004

Caratteristiche Fisiche	U.M.	Risultato	Incertezza	Limite	Metodo
Residuo secco a 105°C	% 97 ±		± 6,8	25	CNR IRSA 2 Q 64 Vol. 2 1984
Umidità	%	3.0	424	•	CNR IRSA 2 Q 64 Vol. 2 1984
Sopra vaglio 2 mm	% ss	5.7	± 0,9	-	DM 13/09/1999 GU n. 248 del 21/10/1999 Met. II Parte 1
Sotto vaglio 2 mm	% ss	94.3	± 14,1	_	DM 13/09/1999 GU n. 248 del 21/10/1999 Met. II Parte 1

(*) I limiti di legge si riferiscono alla concentrazione soglia di contaminazione nel suolo e nel sottosuolo riferiti alla specifica destinazione d'uso dei siti da bonificare.

Per la Colonna A: siti ad uso Verde Pubblico, Privato e Residenziale.

Per la Colonna B: siti ad uso Commerciale ed Industriale.

Il Consulente Responsabile di Commessa

dott. ing Marcella Venturelli

Il Vice Direttore di Laboratorio dott, ing. Vincenzo Arena

C.P. 287 - 93100 Caltanissetta

Tel.:

0934 565012

Fax.:

0934 575422

Capitale Social	E E 102 774,92		limbro a sec	200	e-mail:	info@sidercem.it
		Protocollo Nº	CCA	003 946	Luogo:	Laboratorio Sidercem di Caltanissetta
Certific	Certificato N°		Data accettazione: 02/03/2011			
			inizlo	02/03/2011		
CCC 018 740	CCC 019 740		fine	04/03/2011	Divisione:	Ambiente
CCC 018 /40	04/03/2011	Materiale:	Тетта	e roccia da scavo	Settore:	Chimica

Foglio 1/2

Richiedente:

dott, ing. Mario Liti in qualità di Responsabile di Commessa per il CG

Empedocle 2 s.c.p.a.

via Trieste, 76 - 48122 Ravenna

Oggetto:

Esecuzione di prove di Laboratorio a sostegno della progettazione esecutiva relative alle attività prodromiche connesse ai lavori di adeguamento a quattro corsie della S.S. 640 di

Porto Empedocle 2º Lotto, tratto dal Km 44+000 allo svincolo con l'A19

Ente appaltante:

ANAS S.p.A. - Direzione Generale Roma

Contraente Generale /

Empedocle 2 s.c.p.a.

Committente:

Materiale:

Тепта е госсіа da scavo

Sigla Campione: PT6

- (1) La provenienza e le caratteristiche del materiale sono dichiarate e sottoscritte dal Committente.
- (2) Il campione era in giacenza presso il Laboratorio della Sidercem s.r.l. (cfr. Prot. Sidercem n. 3765 del 01/12/2010), che lo aveva ricevuto dal dott. Giacomo Marcinnò (Geolab s.r.l.).
- (3) Il presente certificato è costituito di 2 fogli numerati da 1 a 2.
- (4) Il presente certificato viene autenticato dalla Sidercem s.r.l. di Caltanissetta mediante l'apposizione su ciascun foglio del timbro a secco visibile in alto. In assenza del timbro a secco il certificato è da ritenersi contraffatto.
- (5) Le copie vengono autenticate dalla Sidercem s.r.l. di Caltanissetta mediante l'apposizione su ciascun foglio del timbro a secco visibile in alto. In assenza del timbro a secco la copia è da ritenersi contraffatta.

CERTIFICATO DI PROVA

ANALISI CHIMICA

[D.Lgs 152/2006 Parte quarta Titolo V All. 5 Tab. 1]

Il Consulente Responsabile di Commessa dott. ing. Marcella Venturelli

Il Vice Direttore di Laboratorio dott. ing. Vincenzo Arena

C.da Calderaro (Zona Ind.)

C.P. 287 - 93100 Caltanissetta

Tel.:

0934 565012

Fax.:

0934 575422 info@sidercem.it

Protocollo No

e-mail: 003 946 Luogo:

Laboratorio Sidercem di Caltanissetta

Certificato Nº

Data accettazione:

02/03/2011 02/03/2011 inizio

€CC 018 740

04/03/2011

Data prova: fine

Timbro a secco

CCA

04/03/2011

Divisione:

Ambiente

Materiale:

Terra e roccia da scavo

Settore:

Chimica

Foglio 2/2

		Campione	PT6 - RISULTA	TI ANALISI		
Analita	Concentrazione	Concentrazione (mg/kg ss)		(mg/kg ss) (*)	Metodo	
	(g, x,g 00)		Colonna A	Colonna B	7	
			composti Inorganici			
Arsenico	< 5		20	50	EPA 3051A/2007 + EPA 6010C/200	
Berillio	< 1		2	10	EPA 3051A/2007 + EPA 6010C/200	
Cadmio	0.4	±0,1	2	15	EPA 3051A/2007 + EPA 6010C/200	
Cobalto	9.5	±2,1	20	250	EPA 3051A/2007 + EPA 6010C/200	
Cromo totale	38	±9,5	150	800	EPA 3051A/2007 + EPA 6010C/200	
Mercurio	< 1	-	1	5	EPA 3051A/2007 + EPA 5010C/200	
Nichel	< 35	-	120	500	EPA 3051A/2007 + EPA 6010C/200	
Piombo	14	±3,5	100	1000	EPA 3051A/2007 + EPA 6010C/200	
Rame	20	±5	120	600	EPA 3051A/2007 + EPA 6010C/200	
Selenio	< 1	-	3	15	EPA 3051A/2007 + EPA 6010C/200	
Zinco	69	±10,4	150	1500	EPA 3051A/2007 + EPA 6010C/200	
			Idrocarburi			
Idrocarburi totali	26	- 1			calcolo	
frocarburi leggeri C<12	< 1	-	10	250	EPA 5021A/2003+EPA8260C/2006	
drocarburi pesanti C>12	< 25	-	50	750	ISO 16703/2004	

Caratteristiche Fisiche	U.M.	Risultato	Incertezza	Limite	Metodo
Residuo secco a 105°C	%	97	± 6,8	25	CNR IRSA 2 Q 64 Vol. 2 1984
Umidità	%	3.0	-	•	CNR IRSA 2 Q 64 Vol. 2 1984
Sopra vaglio 2 mm	% ss	5.7	± 0,9	•	DM 13/09/1999 GU n. 248 del 21/10/1999 Met. II Parte 1
Sotto vaglio 2 mm	% ss	94.3	± 14,1	•	DM 13/09/1999 GU n. 248 del 21/10/1999 Met. Il Parte 1

(*) I limiti di legge si riferiscono alla concentrazione soglia di contaminazione nel suolo e nel sottosuolo riferiti alla specifica destinazione d'uso dei siti da bonificare.

Per la Colonna A: siti ad uso Verde Pubblico, Privato e Residenziale.

Per la Colonna B: siti ad uso Commerciale ed Industriale.

Il Consulente Responsabile di Commessa dott. ing. Marcella Venturelli

Il Vice Direttore di Laboratorio dott. ing. Vincenzo Arena

C.P. 287 - 93100 Caltanissetta

Tel.: 09

0934 565012

Fax.:

0934 575422 info@sidercem.it

- 1						+ 111-41	
	Caratificada NO		Protocollo Nº	CCA	003 946	Luogo:	Laboratorio Sidercem di Caltanissetta
			Data accettazione: 02/03/2011		1		
			Data prova:	inlzio	02/03/2011		
	CCC 010 541	0.440345044		fine	04/03/2011	Divisione:	Ambiente
	C CC 018 741 04/03/2011		Materiale:	Тепта	e roccia da scavo	Settore:	Chimica

Timbro a secco

Foglio 1/2

Richiedente:

dott, ing. Mario Liti in qualità di Responsabile di Commessa per il CG

Empedocle 2 s.c.p.a.

via Trieste, 76 - 48122 Ravenna

Oggetto:

Esecuzione di prove di Laboratorio a sostegno della progettazione esecutiva relative alle attività prodromiche connesse ai lavori di adeguamento a quattro corsie della S.S. 640 di

Porto Empedocle 2º Lotto, tratto dal Km 44+000 allo svincolo con l'A19

Ente appaltante:

ANAS S.p.A. - Direzione Generale Roma

Contraente Generale /

Committente:

Empedocle 2 s.c.p.a.

Materiale:

Terra e roccia da scavo

Sigla Campione:

PT7

- (1) La provenienza e le caratteristiche del materiale sono dichiarate e sottoscritte dal Committente.
- (2) Il campione era in giacenza presso il Laboratorio della Sidercem s.r.l. (cfr. Prot. Sidercem n. 3765 del 01/12/2010), che lo aveva ricevuto dal dott. Giacomo Marcinnò (Geolab s.r.l.).
- (3) Il presente certificato è costituito di 2 fogli numerati da 1 a 2.
- (4) Il presente certificato viene autenticato dalla Sidercem s.r.l. di Caltanissetta mediante l'apposizione su ciascun foglio del timbro a secco visibile in alto. In assenza del timbro a secco il certificato è da ritenersi contraffatto.
- (5) Le copie vengono autenticate dalla Sidercem s.r.l. di Caltanissetta mediante l'apposizione su ciascun foglio del timbro a secco visibile in alto. In assenza del timbro a secco la copia è da ritenersi contraffatta.

CERTIFICATO DI PROVA

ANALISI CHIMICA

[D.Lgs 152/2006 Parte quarta Titolo V All. 5 Tab. 1]

Il Consulente Responsabile di Commessa dott, ing. Marcolla Venturelli

Il Vice Direttore di Laboratorio dott. ing. Viricenzo Arena

C.da Calderaro (Zona Ind.)

C.P. 287 - 93100 Caltanissetta

Tel.:

0934 565012

Fax.:

0934 575422 info@sidercem it

Protocollo Nº

CCA 003 946

e-mail: Luogo:

Laboratorio Sidercem di Caltanissetta

Certificato Nº

Data accettazione:

intrio

Timbro a secco

02/03/2011 02/03/2011

CCC 018 741

04/03/2011

Data prova:

fine 04/03/2011

Divisione:

Ambiente

Materiale:

Terra e roccia da scavo

Settore:

Chimica

Foglio 2/2

		Campione	PT7 - RISULTA	TI ANALISI	
Analita	Concentrazione (mg/kg ss)	Incertezza	Valore limite (mg/kg ss) (*)		Metodo
	(mg/kg oo)		Colonna A	Colonna B	
			Composti Inorganici		
Arsenico	7	±1,8	20	50	EPA 3051A/2007 + EPA 6010C/2007
Berillio	< 1	-	2	10	EPA 3051A/2007 + EPA 6010C/2007
Cadmio	0.4	±0,1	2	15	EPA 3051A/2007 + EPA 6010C/2007
Cobalto	10	±2,2	20	250	EPA 3051A/2007 + EPA 6010C/2007
Cromo totale	42	±10,5	150	800	EPA 3051A/2007 + EPA 6010C/2007
Mercurio	< 1	•	1	5	EPA 3051A/2007 + EPA 6010C/2007
Nichel	< 35	-	120	500	EPA 3051A/2007 + EPA 6010C/2007
Piombo	16	±4	100	1000	EPA 3051A/2007 + EPA 6010C/2007
Rame	20	±5	120	600	EPA 3051A/2007 + EPA 6010C/2007
Selenio	< 1	-	3	15	EPA 3051A/2007 + EPA 6010C/2007
Zinco	73	±11	150	1500	EPA 3051A/2007 + EPA 6010C/2007
			Idrocarburi		
Idrocarburi totali	26	•			calcolo
drocarburi leggeri C<12	< 1	-	10	250	EPA 5021A/2003+EPA8260C/2006
drocarburi pesanti C>12	< 25	-	50	750	ISO 16703/2004

Caratteristiche Fisiche	U.M.	Risultato	Incertezza	Limite	Metodo
Residuo secco a 105°C	%	99.5	± 7,0	25	CNR IRSA 2 Q 64 Vol. 2 1984
Umidità	%	0.5	-	112	CNR IRSA 2 Q 64 Vol. 2 1984
Sopra vaglio 2 mm	% ss	11.2	± 1,7	-	DM 13/09/1999 GU n. 248 del 21/10/1999 Met. Il Parte 1
Sotto vaglio 2 mm	% ss	88.8	± 13,3	*	DM 13/09/1999 GU n. 248 del 21/10/1999 Met. Il Parte 1

(*) I limiti di legge si riferiscono alla concentrazione soglia di contaminazione nel suolo e nel sottosuolo riferiti alla specifica destinazione d'uso dei siti da bonificare.

Per la Colonna A: siti ad uso Verde Pubblico, Privato e Residenziale.

Per la Colonna B: siti ad uso Commerciale ed Industriale.

Il Consulente Responsabile di Commessa

dott. ing. Margella Venturelli

Il Vice Direttore di Laboratorio dott. ing. Vincenzo Arena

C.P. 287 - 93100 Caltanissetta

Tel.:

0934 565012

Fax.:

0934 575422

Capitale Social	€ 102 774,92		Timbro a sec	co	e-mail:	info@sidercem.it
		Protocollo Nº	CCA	003 946	Luogo:	Laboratorio Sidercem di Caltanissetta
Certific	ato N°	Data accettazione	e:	02/03/2011		
		- Data prova:	inizio	02/03/2011		
CCC 019 742	04/02/2011		fine	04/03/2011	Divisione:	Ambiente
CCC 018 742	04/03/2011	Materiale:	Тегта	e roccia da scavo	Settore:	Chimica

Foglio 1/2

Richiedente:

dott. ing. Mario Liti in qualità di Responsabile di Commessa per il CG

Empedocle 2 s.c.p.a.

via Trieste, 76 - 48122 Ravenna

Oggetto:

Esecuzione di prove di Laboratorio a sostegno della progettazione esecutiva relative alle attività prodromiche connesse ai lavori di adeguamento a quattro corsie della S.S. 640 di

Porto Empedocle 2º Lotto, tratto dal Km 44+000 allo svincolo con l'A19

Ente appaltante:

ANAS S.p.A. - Direzione Generale Roma

Contraente Generale /

Committente:

Empedocle 2 s.c.p.a.

Materiale:

Terra e roccia da scavo

Sigla Campione:

PT8

- (1) La provenienza e le caratteristiche del materiale sono dichiarate e sottoscritte dal Committente.
- (2) Il campione era in giacenza presso il Laboratorio della Sidercem s.r.l. (cfr. Prot. Sidercem n. 3765 del 01/12/2010), che lo aveva ricevuto dal dott. Giacomo Marcinnò (Geolab s.r.l.).
- (3) Il presente certificato è costituito di 2 fogli numerati da 1 a 2.
- (4) Il presente certificato viene autenticato dalla Sidercem s.r.l. di Caltanissetta mediante l'apposizione su ciascun foglio del timbro a secco visibile in alto. In assenza del timbro a secco il certificato è da ritenersi contraffatto.
- (5) Le copie vengono autenticate dalla Sidercem s.r.l. di Caltanissetta mediante l'apposizione su ciascun foglio del timbro a secco visibile in alto. In assenza del timbro a secco la copia è da ritenersi contraffatta.

ANALISI CHIMICA

[D.Lgs 152/2006 Parte quarta Titolo V All. 5 Tab. 1]

Il Consulente Responsabile di Commessa dott. ing. Marcella Venturelli

Il Vice Direttore di Laboratorio dott, ing. Vincenzo Arena

C.da Calderaro (Zona Ind.)

C.P. 287 - 93100 Caltanissetta

Tel.:

0934 565012

Fax.: e-mail: 0934 575422

Protocollo Nº

003 946

info@sidercem.it Luogo: Laboratorio Sidercem di Caltanissetta

Certificato Nº

Data accettazione:

Data prova:

02/03/2011 02/03/2011

CCC 018 742

04/03/2011

inizio fine

Timbro a secco

CCA

04/03/2011

Divisione:

Ambiente

Materiale:

Тетта е госсіа da scavo

Settore: Chimica

Foglio 2/2

		Campione l	PT8 - RISULTA	TI ANALISI	
Analita	Concentrazione (mg/kg ss)	Incertezza	Valore Ilmite	(mg/kg ss) (*)	Metodo
	(mg/ng 55)		Colonna A	Colonna B	
			omposti Inorganici		
Arsenico	13	±3,3	20	50	EPA 3051A/2007 + EPA 6010C/2007
Berillio	< 1	-	2	10	EPA 3051A/2007 + EPA 6010C/2007
Cadmio	0.5	±0,1	2	15	EPA 3051A/2007 + EPA 6010C/2007
Cobalto	6.0	±1,3	20	250	EPA 3051A/2007 + EPA 6010C/2007
Cromo totale	42	±10,5	150	800	EPA 3051A/2007 + EPA 6010C/2007
Mercurio	< 1	-	1	5	EPA 3051A/2007 + EPA 6010C/2007
Nichel	< 35	-	120	500	EPA 3051A/2007 + EPA 6010C/2007
Piombo	11	±2,8	100	1000	EPA 3051A/2007 + EPA 6010C/2007
Rame	< 10	-	120	600	EPA 3051A/2007 + EPA 6010C/2007
Selenio	< 1	-	3	15	EPA 3051A/2007 + EPA 6010C/2007
Zinco	51	±7,7	150	1500	EPA 3051A/2007 + EPA 6010C/2007
		· · · · · · · · · · · · · · · · · · ·	Idrocarburi		2.7.05100,200.
Idrocarburi totali	26	-			calcolo
frocarburi leggeri C<12	< 1	-	10	250	EPA 5021A/2003+EPA8260C/2006
drocarburi pesanti C>12	< 25	-	50	750	ISO 16703/2004

Caratteristiche Fisiche	U.M.	Risultato	Incertezza	Limite	Metodo
Residuo secco a 105°C	%	99.3	± 7,0	25	CNR IRSA 2 Q 64 Vol. 2 1984
Umidità	%	0.7	-		CNR IRSA 2 Q 64 Vol. 2 1984
Sopra vaglio 2 mm	% ss	1.4	± 0,2	-	DM 13/09/1999 GU n. 248 del 21/10/1999 Met. II Parte 1
Sotto vaglio 2 mm	% ss	98.6	± 14,8	-	DM 13/09/1999 GU n. 248 del 21/10/1999 Met. Il Parte 1

(*) I limiti di legge si riferiscono alla concentrazione soglia di contaminazione nel suolo e nel sottosuolo riferiti alla specifica destinazione d'uso dei siti da bonificare.

Per la Colonna A: siti ad uso Verde Pubblico, Privato e Residenziale.

Per la Colonna B: siti ad uso Commerciale ed Industriale.

Il Consulente Responsabile di Commessa dott. ing. Marcelli Venturelli

Il Vice Direttore di Laboratorio dott. ing. Vincenzo Arena

Chimica

C.P. 287 - 93100 Caltanissetta

Tel.:

0934 565012

Fax.:

Settore:

0934 575422

Capitale Sociale	€ 102 774,92		limbro a sec	co	c-mail:	info@sidercem.it	
		Protocollo Nº	CCA	003 946	Luogo:	Laboratorio Sidercem di Caltanissetta	_
Certific	ato Nº	Data accettazione	:	02/03/2011			
		Data prova-	inizio	02/03/2011			
CCC 018 743	04/03/2011	244 6.0.0.	fine	04/03/2011	Divisione:	Ambiente	
		Capitale Sociale € 102 774.92 Certificato N° CCC 018 743 04/03/2011	Certificato N° Data accettazione Data prova:	Certificato N° CCA Data accettazione: Data prova: inizio fine	Protocollo N° CCA 003 946	Protocollo N° CCA 003 946 Luogo:	Certificato N° CCA 003 946 Luogo: Laboratorio Sidercem di Caltanissetta Data prova: inizio 02/03/2011 Divisione: Ambiente

Terra e roccia da scavo

Foglio 1/2

Richiedente:

dott. ing. Mario Liti in qualità di Responsabile di Commessa per il CG

Empedocle 2 s.c.p.a.

Materiale:

via Trieste, 76 - 48122 Ravenna

Oggetto:

Esecuzione di prove di Laboratorio a sostegno della progettazione esecutiva relative alle attività prodromiche connesse ai lavori di adeguamento a quattro corsie della S.S. 640 di

Porto Empedocle 2º Lotto, tratto dal Km 44+000 allo svincolo con l'A19

Ente appaltante:

ANAS S.p.A. - Direzione Generale Roma

Contraente Generale /

Committente:

Empedocle 2 s.c.p.a.

Materiale:

Тегта е госсіа da scavo

PT9

Sigla Campione:

- (1) La provenienza e le caratteristiche del materiale sono dichiarate e sottoscritte dal Committente.
- (2) Il campione era in giacenza presso il Laboratorio della Sidercem s.r.l. (cfr. Prot. Sidercem n. 3765 del 01/12/2010), che lo aveva ricevuto dal dott. Giacomo Marcinnò (Geolab s.r.l.).
- (3) Il presente certificato è costituito di 2 fogli numerati da 1 a 2.
- (4) Il presente certificato viene autenticato dalla Sidercem s.r.l. di Caltanissetta mediante l'apposizione su ciascun foglio del timbro a secco visibile in alto. In assenza del timbro a secco il certificato è da ritenersi contraffatto.
- (5) Le copie vengono autenticate dalla Sidercem s.r.l. di Caltanissetta mediante l'apposizione su ciascun foglio del timbro a secco visibile in alto. In assenza del timbro a secco la copia è da ritenersi contraffatta.

CERTIFICATO DI PROVA

ANALISI CHIMICA

[D.Lgs 152/2006 Parte quarta Titolo V All. 5 Tab. 1]

Il Consulente Responsabile di Commessa dott. ing. Maccella Venturelli

Il Vice Direttore di Laboratorio dott. ing. Vincenzo Arena

C.da Calderaro (Zona Ind.)

C.P. 287 - 93100 Caltanissetta

Tel.:

0934 565012

Fax.: e-mail:

0934 575422 info@sidercem.it

Timbro a secco

Protocollo Nº **CCA** 003 946 Luogo: Laboratorio Sidercem di Caltanissetta

Certificato Nº

Data accettazione:

Data prova:

02/03/2011 02/03/2011

CCC 018 743

04/03/2011

inizio 04/03/2011

Divisione:

Ambiente

Materiale:

Terra e roccia da scavo Settore:

Chimica

Foglio 2/2

		Campione	PT9 - RISULTA	TI ANALISI	
Analita	Concentrazione (mg/kg ss)	Incertezza	Valore limite	(mg/kg ss) (*)	Metodo
	(gg 0.0/		Colonna A	Colonna B	
			Composti Inorganici		
Arsenico	18	±4,5	20	50	EPA 3051A/2007 + EPA 6010C/2007
Berillio	< 1	-	2	10	EPA 3051A/2007 + EPA 6010C/2007
Cadmio	< 0.2	-	2	15	EPA 3051A/2007 + EPA 6010C/2007
Cobalto	7.0	±1,5	20	250	EPA 3051A/2007 + EPA 6010C/2007
Cromo totale	27	±6,8	150	800	EPA 3051A/2007 + EPA 6010C/2007
Mercurio	< 1	-	1	5	EPA 3051A/2007 + EPA 6010C/2007
Nichel	< 35		120	500	EPA 3051A/2007 + EPA 6010C/2007
Piombo	< 10	-	100	1000	EPA 3051A/2007 + EPA 6010C/2007
Rame	< 10	-	120	600	EPA 3051A/2007 + EPA 6010C/2007
Selenio	< 1		3	15	EPA 3051A/2007 + EPA 6010C/2007
Zinco	< 50	±7,5	150	1500	EPA 3051A/2007 + EPA 6010C/2007
			Idrocarburi		
Idrocarburi totali	26	-			calcolo
drocarburi leggeri C<12	< 1	-	10	250	EPA 5021A/2003+EPA8260C/2006
drocarburi pesanti C>12	< 25	-	50	750	ISO 16703/2004

Caratteristiche Fisiche	U.M.	Risultato	Incertezza	Limite	Metodo
Residuo secco a 105°C	%	99.9	± 7,0	25	CNR IRSA 2 Q 64 Vol. 2 1984
Umidità	%	< 0,5	<u> </u>	-	CNR IRSA 2 Q 64 Vol. 2 1984
Sopra vaglio 2 mm	% ss	< 1,0	-	•	DM 13/09/1999 GU n. 248 del 21/10/1999 Met. II Parte 1
Sotto vaglio 2 mm	% ss	99.2	± 14,9	-	DM 13/09/1999 GU n. 248 del 21/10/1999 Met. Il Parte 1

(*) I limiti di legge si riferiscono alla concentrazione soglia di contaminazione nel suolo e nel sottosuolo riferiti alla specifica destinazione d'uso dei siti da bonificare.

Per la Colonna A: siti ad uso Verde Pubblico, Privato e Residenziale.

Per la Colonna B: siti ad uso Commerciale ed Industriale.

Il Consulente Responsabile di Commessa

dott, ing. Marcella Venturelli

Il Vice Directore di Laboratorio dott. ing Vincenzo Arena

C.P. 287 - 93100 Caltanissetta

Tel.:

0934 565012

Fax.:

0934 575422

pitale Sociale + 102 774,92		Timbro a secco
	Protocollo Nº	CCA

e-mail: 003 946

info@sidercem.it

Certificato Nº

Data accettazione:

Data prova:

Materiale:

02/03/2011 02/03/2011 Luogo:

Laboratorio Sidercem di Caltanissetta

CCC 018 744

04/03/2011

inizio 04/03/2011 fine

Divisione:

Ambiente

Тетта e roccia da scavo Settore: Chimica

Foglio 1/2

Richiedente:

dott, ing. Mario Liti in qualità di Responsabile di Commessa per il CG

Empedocle 2 s.c.p.a.

via Trieste, 76 - 48122 Ravenna

Oggetto:

Esecuzione di prove di Laboratorio a sostegno della progettazione esecutiva relative alle

attività prodromiche connesse ai lavori di adeguamento a quattro corsie della S.S. 640 di Porto Empedocle 2º Lotto, tratto dal Km 44+000 allo svincolo con l'A19

Ente appaltante:

ANAS S.p.A. - Direzione Generale Roma

Contraente Generale /

Empedocle 2 s.c.p.a.

Committente:

Materiale:

Terra e roccia da scavo

Sigla Campione:

PT10

- (1) La provenienza e le caratteristiche del materiale sono dichiarate e sottoscritte dal Committente.
- (2) Il campione era in giacenza presso il Laboratorio della Sidercem s.r.l. (cfr. Prot. Sidercem n. 3765 del 01/12/2010), che lo aveva ricevuto dal dott. Giacomo Marcinnò (Geolab s.r.l.).
- (3) Il presente certificato è costituito di 2 fogli numerati da 1 a 2.
- (4) Il presente certificato viene autenticato dalla Sidercem s.r.l. di Caltanissetta mediante l'apposizione su ciascun foglio del timbro a secco visibile in alto. In assenza del timbro a secco il certificato è da ritenersi contraffatto.
- (5) Le copie vengono autenticate dalla Sidercem s.r.l. di Caltanissetta mediante l'apposizione su ciascun foglio del timbro a secco visibile in alto. In assenza del timbro a secco la copia è da ritenersi contraffatta.

CERTIFICATO DI PROVA

ANALISI CHIMICA

[D.Lgs 152/2006 Parte quarta Titolo V All. 5 Tab. 1]

Il Consulente Responsabile di Commessa dott. ing. Marcella Venturelli

Il Vice Direttore di Laboratorio dott, ing. Vincenzo Arena

C F Iscr C C J A A di Caltanissetta 01754820874 P IVA . 01479620856 Capitale Sociale, € 102 774,92

Laboratorio: C.da Calderaro (Zona Ind.)

C.P. 287 - 93100 Caltanissetta

Tel.:

0934 565012

Fax.:

0934 575422 info@sidercem.it

Protocollo Nº

CCA 003 946 e-mail:

Certificato Nº

Data accettazione:

Materiale:

02/03/2011

Luogo:

Laboratorio Sidercem di Caltanissetta

CCC 018 744

04/03/2011

Intzio Data prova:

Timbro a secco

02/03/2011 04/03/2011

Divisione:

Ambiente

Terra e roccia da scavo Settore: Chimica

Foolin 2/2

					Foghe 2/2	
		Campione F	PT10 - RISULTA	TI ANALISI		
Analita	Concentrazione (mg/kg ss)	Incertezza	Valore limite	(mg/kg ss) (*)	Metodo	
	(mg/mg cs)		Colonna A	Colonna B		
			Composti Inorganici			
Arsenico	8	±2	20	50	EPA 3051A/2007 + EPA 6010C/2007	
Berillio	< 1	_	2	10	EPA 3051A/2007 + EPA 6010C/2007	
Cadmio	0.4	±0,1	2	15	EPA 3051A/2007 + EPA 6010C/2007	
Cobalto	7.0	±1,5	20	250	EPA 3051A/2007 + EPA 6010C/2007	
Cromo totale	35	±8,8	150	800	EPA 3051A/2007 + EPA 6010C/2007	
Mercurio	< 1	- 1	1	5	EPA 3051A/2007 + EPA 6010C/2007	
Nichel	< 35	-	120	500	EPA 3051A/2007 + EPA 6010C/2007	
Piombo	11	±2,8	100	1000	EPA 3051A/2007 + EPA 6010C/2007	
Rame	11	±2,8	120	600	EPA 3051A/2007 + EPA 6010C/2007	
Selenio	< 1		3	15	EPA 3051A/2007 + EPA 6010C/2007	
Zinco	57	±8,6	150	1500	EPA 3051A/2007 + EPA 6010C/2007	
			Idrocarburi			
Idrocarburi totali	26	-			calcolo	
Irocarburi leggeri C<12	< 1	-	10	250	EPA 5021A/2003+EPA8260C/2006	
drocarburi pesanti C>12	< 25	-	50	750	ISO 16703/2004	

Caratteristiche Fisiche	U.M.	Risultato	Incertezza	Limite	Metodo
Residuo secco a 105°C	%	99.5	± 7,0	25	CNR IRSA 2 Q 64 Vol. 2 1984
Umidità	%	0.5		•	CNR IRSA 2 Q 64 Vol. 2 1984
Sopra vaglio 2 mm	% ss	5.1	± 0,8	•	DM 13/09/1999 GU n. 248 del 21/10/1999 Met. Il Parte 1
Sotto vaglio 2 mm	% ss	94.9	± 14,2	-	DM 13/09/1999 GU n. 248 del 21/10/1999 Met. Il Parte 1

(*) I limiti di legge si riferiscono alla concentrazione soglia di contaminazione nel suolo e nel sottosuolo riferiti alla specifica destinazione d'uso dei siti da bonificare.

Per la Colonna A: siti ad uso Verde Pubblico, Privato e Residenziale.

Per la Colonna B: siti ad uso Commerciale ed Industriale.

Il Consulente Responsabile di Commessa

dott. ing. Marcella Venturelli

Il Vice Direttore di Laboratorio dott. ing. Vincenzo Arena

C.P. 287 -- 93100 Caltanissetta

Tel.:

0934 565012

Fax.:

0934 575422

Capitale Sociale € 102 774,92 Timbro a secco info@sidercem.it e-mail: Protocollo No **CCA** 003 946 Laboratorio Sidercem di Caltanissetta Luogo: Certificato Nº Data accettazione: 02/03/2011 inlzlo 02/03/2011 Data prova: 04/03/2011 fine Divisione: Ambiente CCC 018 745 04/03/2011 Materiale: Terra e roccia da scavo Settore: Chimica

Foglio 1/2

Richiedente:

dott. ing. Mario Liti in qualità di Responsabile di Commessa per il CG

Empedocle 2 s.c.p.a.

via Trieste, 76 - 48122 Ravenna

Oggetto:

Esecuzione di prove di Laboratorio a sostegno della progettazione esecutiva relative alle attività prodromiche connesse ai lavori di adeguamento a quattro corsie della S.S. 640 di

Porto Empedocle 2º Lotto, tratto dal Km 44+000 allo svincolo con l'A19

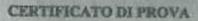
Ente appaltante:

ANAS S.p.A. - Direzione Generale Roma

Contraente Generale /

Committente:

Empedocle 2 s.c.p.a.


Materiale:

Тегга e roccia da scavo

Sigla Campione:

PT11

- (1) La provenienza e le caratteristiche del materiale sono dichiarate e sottoscritte dal Committente.
- (2) Il campione era in giacenza presso il Laboratorio della Sidercem s.r.l. (cfr. Prot. Sidercem n. 3765 del 01/12/2010), che lo aveva ricevuto dal dott. Giacomo Marcinnò (Geolab s.r.l.).
- (3) Il presente certificato è costituito di 2 fogli numerati da 1 a 2.
- (4) Il presente certificato viene autenticato dalla Sidercem s.r.l. di Caltanissetta mediante l'apposizione su ciascun foglio del timbro a secco visibile in alto. In assenza del timbro a secco il certificato è da ritenersi contraffatto.
- (5) Le copie vengono autenticate dalla Sidercem s.r.l. di Caltanissetta mediante l'apposizione su ciascun foglio del timbro a secco visibile in alto. In assenza del timbro a secco la copia è da ritenersi contraffatta.

ANALISI CHIMICA

[D.Lgs 152/2006 Parte quarta Titolo V All. 5 Tab. 1]

Il Consulente Responsabile di Commessa

dott. ing. Marcella Venturelli

Il Vice Direttore di Laboratorio dott. ing. Vincenzo Arena

C.da Calderaro (Zona Ind.)

C.P. 287 - 93100 Caltanissetta

Tel.;

0934 565012

Fax.:

0934 575422 info@sidercem.it

Certificato Nº

Protocollo No

CCA 003 946

e-mail: Luogo:

Laboratorio Sidercem di Caltanissetta

Data accettazione:

inizio

Timbro a secco

02/03/2011 02/03/2011

Divisione:

Ambiente

CCC 018 745

04/03/2011

Materiale:

Data prova:

fine 04/03/2011 Terra e roccia da scavo

Settore:

Chimica

Foglio 2/2

					Foglio 2/2
		Campione F	PT11 - RISULTA	TI ANALISI	
Analita	Concentrazione (mg/kg ss)		Valore limite	(mg/kg ss) (*)	Metodo
	(iiiBiwa ee)		Colonna A	Colonna B	
			Composti inorganici		
Arsenico	< 5	•	20	50	EPA 3051A/2007 + EPA 6010C/2007
Berillio	< 1	_	2	10	EPA 3051A/2007 + EPA 6010C/2007
Cadmio	0.3	±0,1	2	15	EPA 3051A/2007 + EPA 6010C/2007
Cobalto	6.0	±1,3	20	250	EPA 3051A/2007 + EPA 6010C/2007
Cromo totale	32	±8	150	800	EPA 3051A/2007 + EPA 6010C/2007
Mercurio	< 1		1	5	EPA 3051A/2007 + EPA 6010C/2007
Nichel	< 35	-	120	500	EPA 3051A/2007 + EPA 6010C/2007
Piombo	< 10	-	100	1000	EPA 3051A/2007 + EPA 6010C/2007
Rame	12	±3	120	600	EPA 3051A/2007 + EPA 6010C/2007
Selenio	< 1	-	3	15	EPA 3051A/2007 + EPA 6010C/2007
ZInco	53	±8	150	1500	EPA 3051A/2007 + EPA 6010C/2007
		<u>-</u>	Idrocarburi		
Idrocarburi totali	26	-			calcolo
drocarburi leggeri C<12	< 1	•	10	250	EPA 5021A/2003+EPA8260C/2006
drocarburi pesanti C>12	< 25	-	50	750	ISO 16703/2004

Caratteristiche Fisiche	U.M.	Risultato	Incertezza	Limite	Metodo
Residuo secco a 105°C	%	99.3	± 7,0	25	CNR IRSA 2 Q 64 Vol. 2 1984
Umidità	%	0.7		-	CNR IRSA 2 Q 64 Vol. 2 1984
Sopra vaglio 2 mm	% ss	6 ss 38.4 ± 5,8		-	DM 13/09/1999 GU n. 248 dei 21/10/1999 Met. II Parte 1
Sotto vaglio 2 mm	% ss	61.6	± 9,2		DM 13/09/1999 GU n. 248 del 21/10/1999 Met, II Parte 1

(*) I limiti di legge si riferiscono alla concentrazione soglia di contaminazione nel suolo e nel sottosuolo riferiti alla specifica destinazione d'uso dei siti da bonificare.

Per la Colonna A: siti ad uso Verde Pubblico, Privato e Residenziale.

Per la Colonna B: siti ad uso Commerciale ed Industriale.

Il Consulente Responsabile di Commessa dott. ing. Marcella/Venturelli

Il Vice Direttore di Laboratorio dott. ingliVincenzo Arena

C.P. 287 - 93100 Caltanissetta

Tel.:

0934 565012

Fax.: a mails 0934 575422 info@sidercem it

 Capitale Sociale € 102 774,92	Timbro a sec	cco	e-mail:	info@sidercem.it
	Protocollo Nº CCA	003 946	Luogo:	Laboratorio Sidercem di Caltanissetta
Certificato N°	Data accettazione:	02/03/2011		
	Inizia	02/03/2011		

02/03/2011

Тегга е госсіа da scavo

CCC 018 746 04/03/2011 Data prova: 04/03/2011 fine

Divisione:

Ambiente

Settore: Chimica

Foglio 1/2

Richiedente:

dott. ing. Mario Liti in qualità di Responsabile di Commessa per il CG

Empedocle 2 s.c.p.a.

Materiale:

via Trieste, 76 - 48122 Ravenna

Oggetto:

Esecuzione di prove di Laboratorio a sostegno della progettazione esecutiva relative alle attività prodromiche connesse ai lavori di adeguamento a quattro corsie della S.S. 640 di

Porto Empedocle 2º Lotto, tratto dal Km 44+000 allo svincolo con l'A19

Ente appaltante:

ANAS S.p.A. - Direzione Generale Roma

Contraente Generale /

Committente:

Empedocle 2 s.c.p.a.

Materiale:

Terra e roccia da scavo

Sigla Campione:

PT12

- (1) La provenienza e le caratteristiche del materiale sono dichiarate e sottoscritte dal Committente.
- (2) Il campione era in giacenza presso il Laboratorio della Sidercem s.r.l. (cfr. Prot. Sidercem n. 3765 del 01/12/2010), che lo aveva ricevuto dal dott. Giacomo Marcinnò (Geolab s.r.l.).
- (3) Il presente certificato è costituito di 2 fogli numerati da 1 a 2.
- (4) Il presente certificato viene autenticato dalla Sidercem s.r.l. di Caltanissetta mediante l'apposizione su ciascun foglio del timbro a secco visibile in alto. In assenza del timbro a secco il certificato è da ritenersi contraffatto.
- (5) Le copie vengono autenticate dalla Sidercem s.r.l. di Caltanissetta mediante l'apposizione su ciascun foglio del timbro a secco visibile in alto. In assenza del timbro a secco la copia è da ritenersi contraffatta.

CERTIFICATO DI PROVA

ANALISI CHIMICA

[D.Lgs 152/2006 Parte quarta Titolo V All. 5 Tab. 1]

Il Consulente Responsabile di Commessa dott. ing. Marcella Venturelli

Il Vice Direttore di Laboratorio dott. Vincenzo Arena

C.da Calderaro (Zona Ind.)

C.P. 287 - 93100 Caltanissetta

E--11- 2/2

EPA 5021A/2003+EPA8260C/2006

ISO 16703/2004

Tel.:

0934 565012

Fax.: e-mail: 0934 575422 info@sidercem.it

Certificato Nº

Protocullo Nº

Timbro a secco **CCA** 003 946

Luogo: Laboratorio Sidercem di Caltanissetta

Data accettazione:

Data prova:

02/03/2011 Inizlo 02/03/2011

CCC 018 746

Idrocarburi leggeri C<12

Idrocarburi pesanti C>12

04/03/2011

04/03/2011 fine

Divisione:

Ambiente

Materiale:

Terra e roccia da scavo

Settore:

250

750

Chimica

		Campione F	T12 - RISULTA	TI ANALISI	Foglio 2/2
Analita	Concentrazione (mg/kg ss)	Incertezza	Valore limite		Metodo
	(g.kg 00)		Colonna A	Colonna B	
			omposti inorganici		
Arsenico	5	±1	20	50	EPA 3051A/2007 + EPA 6010C/2
Berillio	< 1		2	10	EPA 3051A/2007 + EPA 6010C/2
Cadmio	0.2	±0,1	2	15	EPA 3051A/2007 + EPA 6010C/2
Cobalto	8.0	±1,8	20	250	EPA 3051A/2007 + EPA 6010C/2
Cromo totale	35	±8,8	150	800	EPA 3051A/2007 + EPA 6010C/2
Mercurio	< 1	-	1	5	EPA 3051A/2007 + EPA 6010C/20
Nichet	< 35	-	120	500	EPA 3051A/2007 + EPA 6010C/20
Piombo	< 10	-	100	1000	EPA 3051A/2007 + EPA 6010C/20
Rame	15	±3,8	120	600	EPA 3051A/2007 + EPA 6010C/2
Selenio	< 1	-	3	15	EPA 3051A/2007 + EPA 6010C/20
Zinco	67	±10,1	150	1500	EPA 3051A/2007 + EPA 6010C/20
			Idrocarburi		
drocarburi totali	26	-			calcolo

Caratteristiche Fisiche	U.M.	Risultato	Incertezza	Limite	Metodo
Residuo secco a 105°C			25	CNR IRSA 2 Q 64 Vol. 2 1984	
Umidità	%	0.7			CNR IRSA 2 Q 64 Vol. 2 1984
Sopra vagllo 2 mm	% ss	23.1	± 3,5	-	DM 13/09/1999 GU n. 248 del 21/10/1999 Met. II Parte 1
Sotto vaglio 2 mm	% ss	76.9	± 11,5	_	DM 13/09/1999 GU n. 248 del 21/10/1999 Mel. II Parte 1

10

50

(*) I limiti di legge si riferiscono alla concentrazione soglia di contaminazione nel suolo e nel sottosuolo riferiti alla specifica destinazione d'uso dei siti da bonificare.

Per la Colonna A: siti ad uso Verde Pubblico, Privato e Residenziale.

Per la Colonna B: siti ad uso Commerciale ed Industriale.

< 1

< 25

Il Consulente Responsabile di Commessa

dott. ing. Marcella/Venturelli

Il Vice Direttore di Laboratorio dott, ing. Vincenzo Arena

C.P. 287 - 93100 Caltanissetta

Tel.:

0934 565012

Fax.:

0934 575422

			undro a sec	60	e-mail:	info@sidercem.if
		Protocollo Nº	CCA	003 946	Luogo:	Laboratorio Sidercem di Caltanissetta
Certific	Certificato N°		:	02/03/2011		
		Data prova:	inizio	02/03/2011		
C CC 018 747	04/02/2011	,	fine	04/03/2011	Divisione:	Ambiente
C CC 018 /4/	04/03/2011	Materiale:	Тетта с	roccia da scavo	Settore:	Chimica

Foglio 1/2

Richiedente:

dott. ing. Mario Liti in qualità di Responsabile di Commessa per il CG

Empedocle 2 s.c.p.a.

via Trieste, 76 - 48122 Ravenna

Oggetto:

Esecuzione di prove di Laboratorio a sostegno della progettazione esecutiva relative alle attività prodromiche connesse ai lavori di adeguamento a quattro corsie della S.S. 640 di

Porto Empedocle 2º Lotto, tratto dal Km 44+000 allo svincolo con l'A19

Ente appaltante:

ANAS S.p.A. - Direzione Generale Roma

Contraente Generale /

Committente:

Empedocle 2 s.c.p.a.

Materiale:

Terra e roccia da scavo

Sigla Campione:

PT13

- (1) La provenienza e le caratteristiche del materiale sono dichiarate e sottoscritte dal Committente.
- (2) Il campione era in giacenza presso il Laboratorio della Sidercem s.r.l. (cfr. Prot. Sidercem n. 3765 del 01/12/2010), che lo aveva ricevuto dal dott. Giacomo Marcinnò (Geolab s.r.l.).
- (3) Il presente certificato è costituito di 2 fogli numerati da 1 a 2,
- (4) Il presente certificato viene autenticato dalla Sidercem s.r.l. di Caltanissetta mediante l'apposizione su ciascun foglio del timbro a secco visibile in alto. In assenza del timbro a secco il certificato è da ritenersi contraffatto.
- (5) Le copie vengono autenticate dalla Sidercem s.r.l. di Caltanissetta mediante l'apposizione su ciascun foglio del timbro a secco visibile in alto. In assenza del timbro a secco la copia è da ritenersi contraffatta.

CERTIFICATO DI PROVA

ANALISI CHIMICA

[D.Lgs 152/2006 Parte quarta Titolo V All. 5 Tab. 1]

Il Consulente Responsabile di Commessa dott. ing. Marcella Venturelli

Il Vice Direttore di Laboratorio dott. ing. Vincenzo Arena

Capitale Sociale € 102 774,92

Laboratorio:

C.da Calderaro (Zona Ind.)

C.P. 287 - 93100 Caltanissetta

Tel.:

0934 565012

Fax.: e-mail: 0934 575422

Protocollo Nº

Timbro a secco CCA 003 946 info@sidercem.it

Certificato Nº

Data accettazione:

Data prova:

02/03/2011 inizio

Luogo:

Laboratorio Sidercem di Caltanissetta

CCC 018 747

04/03/2011

fine

02/03/2011 04/03/2011

Divisione:

Ambiente

Materiale:

Terra e roccia da scavo

Settore:

Chimica

		Campione F	PT13 - RISULTA	TI ANIAL ICI	Foglio 2/2
Analita	Concentrazione (mg/kg ss)		Valore limite (Metodo
	(mg/kg se/		Colonna A	Colonna B	1
			omposti Inorganici		
Arsenico	< 5	-	20	50	EPA 3051A/2007 + EPA 6010C/200
Berillio	< 1	-	2	10	EPA 3051A/2007 + EPA 6010C/200
Cadmio	0.2	±0,1	2	15	EPA 3051A/2007 + EPA 6010C/200
Cobalto	8.0	±1,8	20	250	EPA 3051A/2007 + EPA 6010C/200
Cromo totale	33	±8,3	150	800	EPA 3051A/2007 + EPA 6010C/20
Mercurio	< 1	-	1	5	EPA 3051A/2007 + EPA 6010C/200
Nichel	< 35		120	500	EPA 3051A/2007 + EPA 6010C/20
Piombo	< 10	-	100	1000	EPA 3051A/2007 + EPA 6010C/20
Rame	14	±3,5	120	600	EPA 3051A/2007 + EPA 6010C/20
Selenio	< 1	-	3	15	EPA 3051A/2007 + EPA 6010C/20
Zinco	52	±7,8	150	1500	EPA 3051A/2007 + EPA 6010C/200
			Idrocarburi		
Idrocarburi totali	26	-			calcolo
rocarburi leggeri C<12	< 1	-	10	250	EPA 5021A/2003+EPA8260C/200
rocarburi pesanti C>12	< 25	-	50	750	ISO 16703/2004

Caratteristiche Fisiche	U.M.	Risultato	Incertezza	Limite	Metodo
Residuo secco a 105°C	% 94.6 ± 6,6		25	CNR IRSA 2 Q 64 Vol. 2 1984	
Umidità	%	5.4	-	-	CNR IRSA 2 Q 64 Vol. 2 1984
Sopra vaglio 2 mm	% ss	ss 28.9 ± 4,3	± 4,3	•	DM 13/09/1999 GU n. 248 del 21/10/1999 Met. II Parte 1
Sotto vaglio 2 mm	% ss	71.1	± 10,7	-	DM 13/09/1999 GU n. 248 del 21/10/1999 Met. Il Parte 1

(*) I limiti di legge si riferiscono alla concentrazione soglia di contaminazione nel suolo e nel sottosuolo riferiti alla specifica destinazione d'uso dei siti da bonificare.

Per la Colonna A: siti ad uso Verde Pubblico, Privato e Residenziale.

Per la Colonna B: siti ad uso Commerciale ed Industriale.

Il Consulente Responsabile di Commessa dott. ing. Marcella Venturelli

Il Vice Direttore di Laboratorio dott. ing. Nincenzo Arena

C.P. 287 - 93100 Caltanissetta

Tel.:

0934 565012

Fax.:

0934 575422

Timbro a secco e-mail: info@sidercem.it Protocollo Nº CCA 003 946 Luogo: Laboratorio Sidercem di Caltanissetta Certificato No Data accettazione: 02/03/2011 02/03/2011 Inizia Data prova: fine 04/03/2011 Divisione: Ambiente CCC 018 748 04/03/2011 Materiale: Terra e roccia da scavo Settore: Chimica

Foglio 1/2

Richiedente:

dott, ing. Mario Liti in qualità di Responsabile di Commessa per il CG

Empedocle 2 s.c.p.a.

via Trieste, 76 - 48122 Ravenna

Oggetto:

Esecuzione di prove di Laboratorio a sostegno della progettazione esecutiva relative alle

attività prodromiche connesse ai lavori di adeguamento a quattro corsie della S.S. 640 di

Porto Empedocle 2º Lotto, tratto dal Km 44+000 allo svincolo con l'A19

Ente appaltante:

ANAS S.p.A. - Direzione Generale Roma

Contraente Generale /

Committente:

Empedocle 2 s.c.p.a.

Materiale:

Тегта е roccia da scavo

Sigla Campione:

PT14

- (1) La provenienza e le caratteristiche del materiale sono dichiarate e sottoscritte dal Committente.
- (2) Il campione era in giacenza presso il Laboratorio della Sidercem s.r.l. (cfr. Prot. Sidercem n. 3765 del 01/12/2010), che lo aveva ricevuto dal dott. Giacomo Marcinnò (Geolab s.r.l.).
- (3) Il presente certificato è costituito di 2 fogli numerati da 1 a 2.
- (4) Il presente certificato viene autenticato dalla Sidercem s.r.l. di Caltanissetta mediante l'apposizione su ciascun foglio del timbro a secco visibile in alto. In assenza del timbro a secco il certificato è da ritenersi contraffatto.
- (5) Le copie vengono autenticate dalla Sidercem s.r.l. di Caltanissetta mediante l'apposizione su ciascun foglio del timbro a secco visibile in alto. In assenza del timbro a secco la copia è da ritenersi contraffatta.

CERTIFICATO DI PROVA

ANALISI CHIMICA

[D.Lgs 152/2006 Parte quarta Titolo V All. 5 Tab. 1]

Il Consulente Responsabile di Commessa dott. ing. Majcella Venturelli

Il Vice Direttor# di Laboratorio dott. ing. Vincenzo Arena

C.da Calderaro (Zona Ind.)

C.P. 287 - 93100 Caltanissetta

Tel.:

0934 565012

Fax.:

0934 575422

Protocollo Nº

003 946 **CCA**

info@sidercem.it e-mail: Laboratorio Sidercem di Caltanissetta

Certificato Nº

Data accettazione:

Materiale:

02/03/2011

Luogo:

CCC 018 748

04/03/2011

inlzio Data prova: fine

Timbro a secco

02/03/2011 04/03/2011

Divisione:

Ambiente

Terra e roccia da scavo Settore: Chimica

Foolio 2/2

					rogno 2/2
		Campione F	T14 - RISULTA	TI ANALISI	
Analita	Concentrazione (mg/kg ss)	incertezza Valore limite (mg/kg ss)		(mg/kg ss) (*)	Metodo
	(mg/kg aa/		Colonna A	Colonna B	
		(omposti Inorganici		
Arsenico	5	±1	20	50	EPA 3051A/2007 + EPA 6010C/2007
Berillio	< 1	-	2	10	EPA 3051A/2007 + EPA 6010C/2007
Cadmio	< 0.2	-	2	15	EPA 3051A/2007 + EPA 6010C/2007
Cobalto	6.0	±1,3	20	250	EPA 3051A/2007 + EPA 6010C/2007
Cromo totale	30	±7,5	150	800	EPA 3051A/2007 + EPA 6010C/2007
Mercurio	< 1	-	1	5	EPA 3051A/2007 + EPA 6010C/2007
Nichel	< 35	•	120	500	EPA 3051A/2007 + EPA 6010C/2007
Piombo	< 10		100	1000	EPA 3051A/2007 + EPA 6010C/2007
Rame	16	±4	120	600	EPA 3051A/2007 + EPA 6010C/2007
Selenio	< 1	-	3	15	EPA 3051A/2007 + EPA 6010C/2007
Zinco	< 50	±7,5	150	1500	EPA 3051A/2007 + EPA 6010C/2007
			Idrocarburi		
Idrocarburi totali	26	•			calcolo
drocarburi leggeri C<12	< 1	-	10	250	EPA 5021A/2003+EPA8260C/2006
Idrocarburi pesanti C>12	< 25	-	50	750	ISO 16703/2004

Caratteristiche Fisiche	U.M.	Risultato	Incertezza	Limite	Metodo
Residuo secco a 105°C	%	95.1	± 6,7	25	CNR IRSA 2 Q 64 Vol. 2 1984
Umidità	%	4.9	-	-	CNR IRSA 2 Q 64 Vol. 2 1984
Sopra vaglio 2 mm	% ss	40.7	± 6,1		DM 13/09/1999 GU n. 248 del 21/10/1999 Met. Il Parte 1
Sotto vaglio 2 mm	% ss	59.3	± 8,9	-	DM 13/09/1999 GU n. 248 del 21/10/1999 Met. Il Parte 1

(*) I limiti di legge si riferiscono alla concentrazione soglia di contaminazione nel suolo e nel sottosuolo riferiti alla specifica destinazione d'uso dei siti da bonificare.

Per la Colonna A: siti ad uso Verde Pubblico, Privato e Residenziale.

Per la Colonna B: siti ad uso Commerciale ed Industriale.

Il Consulente Responsabile di Commessa

dott. ing. Marcella Venturelli

Il Vice Direttore di Laboratorio dott. ing. Vincenzo Arena

Capitale Sociale € 102 774,92

Laboratorio: C.da Calderaro (Zona Ind.)

C.P. 287 - 93100 Caltanissetta

Tel.:

0934 565012

Fax.:

0934 575422 info@sidercem it

			miore a pec		e-man;	mtowsidereem.n
		Protocollo Nº	CCA	003 946	Luogo:	Laboratorio Sidercem di Caltanissetta
Certific	ato Nº	Data accettazione:	:	02/03/2011		
		Data prova:	inizio	02/03/2011		
CCC 018 749	04/02/2044		fine	04/03/2011	Divisione:	Ambiente
CCC 018 /49	04/03/2011	Materiale:	Тепта с	roccia da scavo	Settore:	Chimica

Timbro a secon

Foglio 1/2

Richiedente:

dott, ing. Mario Liti in qualità di Responsabile di Commessa per il CG

Empedocle 2 s.c.p.a.

via Trieste, 76 - 48122 Ravenna

Oggetto:

Esecuzione di prove di Laboratorio a sostegno della progettazione esecutiva relative alle

attività prodromiche connesse ai lavori di adeguamento a quattro corsie della S.S. 640 di

Porto Empedocle 2º Lotto, tratto dal Km 44+000 allo svincolo con l'A19

Ente appaltante:

ANAS S.p.A. - Direzione Generale Roma

Contraente Generale / Committente:

Empedocle 2 s.c.p.a.

Materiale:

Тетта е госсіа da scavo

Sigla Campione:

PT15

- (1) La provenienza e le caratteristiche del materiale sono dichiarate e sottoscritte dal Committente.
- (2) Il campione era in giacenza presso il Laboratorio della Sidercem s.r.l. (cfr. Prot. Sidercem n. 3765 del 01/12/2010), che lo aveva ricevuto dal dott. Giacomo Marcinnò (Geolab s.r.l.).
- (3) Il presente certificato è costituito di 2 fogli numerati da 1 a 2.
- (4) Il presente certificato viene autenticato dalla Sidercem s.r.l. di Caltanissetta mediante l'apposizione su ciascun foglio del timbro a secco visibile in alto. In assenza del timbro a secco il certificato è da ritenersi contraffatto.
- (5) Le copie vengono autenticate dalla Sidercem s.r.l. di Caltanissetta mediante l'apposizione su ciascun foglio del timbro a secco visibile in alto. In assenza del timbro a secco la copia è da ritenersi contraffatta.

CERTIFICATO DI PROVA

ANALISI CHIMICA

[D.Lgs 152/2006 Parte quarta Titolo V All. 5 Tab. 1]

Il Consulente Responsabile di Commessa dott. ing. Maroella Venturelli

Il Vice Direttore di Laboratorio dott. ing. Mincenzo Arena

C.da Calderaro (Zona Ind.)

C.P. 287 - 93100 Caltanissetta

Tel.:

0934 565012

Fax.:

0934 575422 info@sidercem.it

Certificato Nº

Protocollo No

Data prova:

CCA 003 946

e-mail: Luogo:

Laboratorio Sidercem di Caltanissetta

Data accettazione:

02/03/2011 02/03/2011 inizio

CCC 018 749

04/03/2011

Timbro a secco

Divisione:

Ambiente

Materiale:

04/03/2011 Terra e roccia da scavo

Settore:

Chimica

Foglio 2/2

					Foglio 2/2
		Campione F	PT15 - RISULTA	TI ANALISI	
Analita	Concentrazione (mg/kg ss)	Incertezza	Valore limite (mg/kg ss) (*)		Metodo
	(mg/kg 55)		Colonna A	Colonna B	
			omposti Inorganici		
Arsenico	6	±1,2	20	50	EPA 3051A/2007 + EPA 6010C/2007
Berillio	< 1		2	10	EPA 3051A/2007 + EPA 6010C/2007
Cadmio	0.3	±0,1	2	15	EPA 3051A/2007 + EPA 6010C/2007
Cobalto	10.0	±2	20	250	EPA 3051A/2007 + EPA 6010C/2007
Cromo totale	42	±10,5	150	800	EPA 3051A/2007 + EPA 6010C/2003
Mercurio	< 1	-	1	5	EPA 3051A/2007 + EPA 6010C/2007
Nichel	< 35	-	120	500	EPA 3051A/2007 + EPA 6010C/2007
Piombo	10	±2,5	100	1000	EPA 3051A/2007 + EPA 6010C/2007
Rame	15	±3,8	120	600	EPA 3051A/2007 + EPA 6010C/2007
Selenio	< 1	-	3	15	EPA 3051A/2007 + EPA 6010C/2007
Zinco	61	±9,2	150	1500	EPA 3051A/2007 + EPA 6010C/2007
			Idrocarburi		
Idrocarburi totali	26	-			calcolo
drocarburi leggeri C<12	< 1	-	10	250	EPA 5021A/2003+EPA8260C/2006
drocarburi pesanti C>12	< 25	-	50	750	ISO 16703/2004

Caratteristiche Flsiche	U.M.	Risultato	Incertezza	Limite	Metodo
Residuo secco a 105°C	%	99.8	± 7,0	25	CNR IRSA 2 Q 64 Vol. 2 1984
Umidità	%	< 0,5	_	-	CNR IRSA 2 Q 64 Vol. 2 1984
Sopra vaglio 2 mm	% ss	5.3	± 0,8	•	DM 13/09/1999 GU n. 248 del 21/10/1999 Met. Il Parte 1
Sotto vaglio 2 mm	% ss	94.7	± 14,2	•	DM 13/09/1999 GU n. 248 del 21/10/1999 Met. Il Parte 1

(*) I limiti di legge si riferiscono alla concentrazione soglia di contaminazione nel suolo e nel sottosuolo riferiti alla specifica destinazione d'uso dei siti da bonificare.

Per la Colonna A: siti ad uso Verde Pubblico, Privato e Residenziale.

Per la Colonna B: siti ad uso Commerciale ed Industriale.

Il Consulente Responsabile di Commessa

dott. ing. Marce la Venturelli

Il Vice Direttore di Laboratorio dott. ing. Vincenzo Arena

C.P. 287 - 93100 Caltanissetta

Tel.:

0934 565012

Fax.:

0934 575422

					C-IIIAII;	into again creening
			CCA	003 946	Luogo:	Laboratorio Sidercem di Caltanissetta
Certificato Nº		Data accettazione:	:	02/03/2011		
		Data prova:	Inlzio	02/03/2011		
CCC 010 750	04/03/0044		fine	04/03/2011	Divisione:	Ambiente
CCC 018 750	04/03/2011	Materiale:	Тепта е	roccia da scavo	Settore:	Chimica

Timbro a secon

Foglio 1/2

Richiedente:

dott. ing. Mario Liti in qualità di Responsabile di Commessa per il CG

Empedocle 2 s.c.p.a.

via Trieste, 76 - 48122 Ravenna

Oggetto:

Esecuzione di prove di Laboratorio a sostegno della progettazione esecutiva relative alle attività prodromiche connesse ai lavori di adeguamento a quattro corsie della S.S. 640 di

Porto Empedocle 2° Lotto, tratto dal Km 44+000 allo svincolo con l'A19

Ente appaltante:

ANAS S.p.A. - Direzione Generale Roma

Contraente Generale /

Committente:

Empedocle 2 s.c.p.a.

Materiale: Terra e roccia da scavo
Sigla Campione: Miscela Trinche da T1 a T6

- (1) La provenienza e le caratteristiche del materiale sono dichiarate e sottoscritte dal Committente.
- (2) Il campione era in giacenza presso il Laboratorio della Sidercem s.r.l. (cfr. Prot. Sidercem n. 3766 del 01/12/2010), il quale aveva provveduto al ritiro presso i siti stabiliti dal Committente.
- (3) Il presente certificato è costituito di 2 fogli numerati da 1 a 2.
- (4) Il presente certificato viene autenticato dalla Sidercem s.r.l. di Caltanissetta mediante l'apposizione su ciascun foglio del timbro a secco visibile in alto. In assenza del timbro a secco il certificato è da ritenersi contraffatto.
- (5) Le copie vengono autenticate dalla Sidercem s.r.l. di Caltanissetta mediante l'apposizione su ciascun foglio del timbro a secco visibile in alto. In assenza del timbro a secco la copia è da ritenersi contraffatta.

CERTIFICATO DI PROVA

ANALISI CHIMICA

[D.Lgs 152/2006 Parte quarta Titolo V All. 5 Tab. 1]

Il Consulente Responsabile di Commessa dott. ing. Marcella Venturelli Il Vice Direttore di Laboratorio dott. ing. Vincenzo Arena

C.da Calderaro (Zona Ind.)

C.P. 287 - 93100 Caltanissetta

Tel.:

0934 565012

Fax.:

0934 575422 info@sidercem.it

Timbro a secco CCA

Protocollo Nº

003 946

e-mail: Luogo:

Laboratorio Sidercem di Caltanissetta

Certificato Nº

Data accettazione:

02/03/2011 inizio 02/03/2011

CCC 018 750

Idrocarburi leggeri C<12

Idrocarburi pesanti C>12

04/03/2011

Data prova: fine

04/03/2011

Divisione:

Ambiente

Materiale:

Terra e roccia da scavo

Settore:

250

750

Chimica

	Campione	Miscela Trir	nche da T1 a T6	- RISULTATI A	Foglio 2/2
Analita	Concentrazione (mg/kg ss)	Incertezza	Valore limite	(mg/kg ss) (*)	Metodo
	(mg/kg as)		Colonna A	Colonna B	
			composti inorganici		
Arsenico	< 5	-	20	50	EPA 3051A/2007 + EPA 6010C/200
Berillio	< 1		2	10	EPA 3051A/2007 + EPA 6010C/200
Cadmin	0.3	±0,1	2	15	EPA 3051A/2007 + EPA 6010C/200
Cobalto	< 5.0	-	20	250	EPA 3051A/2007 + EPA 6010C/200
Cromo totale	18	±4,5	150	800	EPA 3051A/2007 + EPA 6010C/200
Mercurio	< 1	-	1	5	EPA 3051A/2007 + EPA 6010C/200
Nichel	< 35	-	120	500	EPA 3051A/2007 + EPA 6010C/200
Piombo	< 10	-	100	1000	EPA 3051A/2007 + EPA 6010C/200
Rame	15	±3,8	120	600	EPA 3051A/2007 + EPA 6010C/200
Selenio	1.1	-	3	15	EPA 3051A/2007 + EPA 6010C/200
Zinco	35	±5,3	150	1500	EPA 3051A/2007 + EPA 6010C/200
			Idrocarburi		
Idrocarburi totali	26	-			calcolo
					Lalwin

Caratteristiche Fisiche	U.M.	Risultato	Incertezza	Limite	Metodo
Residuo secco a 105°C	%	98.9	± 6.6	25	CNR IRSA 2 Q 64 Vol. 2 1984
Umidità	%	0.5	-	-	CNR IRSA 2 Q 64 Vol. 2 1984
Sopra vaglio 2 mm	% ss	28.8	± 4,3	•	DM 13/09/1999 GU n. 248 del 21/10/1999 Mel. II Parle 1
Sotto vaglio 2 mm	% ss	71.2	± 10,7	-	DM 13/09/1999 GU n. 248 del 21/10/199 Met. Il Parte 1

10

50

(*) I limiti di legge si riferiscono alla concentrazione soglia di contaminazione nel suolo e nel sottosuolo riferiti alla specifica destinazione d'uso dei siti da bonificare.

Per la Colonna A: siti ad uso Verde Pubblico, Privato e Residenziale.

Per la Colonna B: siti ad uso Commerciale ed Industriale.

< 1

< 25

Il Consulente Responsabile di Commessa

dott. ing. Marcella Venturelli

Il Vice Direttore di Laboratorio dott. ing Vincenzo Arena

EPA 5021A/2003+EPA8260C/2006

ISO 16703/2004

Chimica

C.P. 287 - 93100 Caltanissetta

Tel.:

0934 565012

Fax.:

Settore:

0934 575422

Capitale Sociale	Capitale Sociale € 102 774,92		Timbro a secco			info@sidercem.it
0.00		Protocollo Nº	CCA	003 946	Luogo:	Laboratorio Sidercem di Caltanissetta
Certific	Certificato Nº		Data accettazione: 02/03/2011			
			inizio	02/03/2011		Ambiente
000010 151		- Data prova:	fine	04/03/2011	Divisione:	
CCC 018 751	04/03/ 201 1		_		1	

Terra e roccia da scavo

Foglio 1/2

Richiedente:

dott, ing. Mario Liti in qualità di Responsabile di Commessa per il CG

Empedocle 2 s.c.p.a.

Materiale:

via Trieste, 76 - 48122 Ravenna

Oggetto:

Esecuzione di prove di Laboratorio a sostegno della progettazione esecutiva relative alle attività prodromiche connesse ai lavori di adeguamento a quattro corsie della S.S. 640 di

Porto Empedocle 2º Lotto, tratto dal Km 44+000 allo svincolo con l'A19

Ente appaltante:

ANAS S.p.A. - Direzione Generale Roma

Contraente Generale /

Empedocle 2 s.c.p.a.

Committente:

Materiale: Sigla Campione: Terra e roccia da scavo Miscela Trinche da T7 a T13

- (1) La provenienza e le caratteristiche del materiale sono dichiarate e sottoscritte dal Committente.
- (2) Il campione era in giacenza presso il Laboratorio della Sidercem s.r.l. (cfr. Prot. Sidercem n. 3766 del 01/12/2010), il quale aveva provveduto al ritiro presso i siti stabiliti dal Committente.
- (3) Il presente certificato è costituito di 2 fogli numerati da 1 a 2.
- (4) Il presente certificato viene autenticato dalla Sidercem s.r.l. di Caltanissetta mediante l'apposizione su ciascun foglio del timbro a secco visibile in alto. In assenza del timbro a secco il certificato è da ritenersi contraffatto.
- (5) Le copie vengono autenticate dalla Sidercem s.r.l. di Caltanissetta mediante l'apposizione su ciascun foglio del timbro a secco visibile in alto. In assenza del timbro a secco la copia è da ritenersi contraffatta.

CERTIFICATO DI PROVA

ANALISI CHIMICA

[D.Lgs 152/2006 Parte quarta Titolo V All. 5 Tab. 1]

Il Consulente Responsabile di Commessa dott. ing. Matgella Venturelli

Il Vice Direttore di Laboratorio dott. ing. Vincenzo Arena

C.da Calderaro (Zona Ind.)

C.P. 287 - 93100 Caltanissetta

Tel.:

0934 565012

Fax.: e-mail:

0934 575422

Protocollo Nº

Data prova:

CCA 003 946 info@sidercem.it

Certificato Nº

Data accettazione:

02/03/2011

Laboratorio Sidercem di Caltanissetta

CCC 018 751

04/03/2011

02/03/2011 Intzio fine 04/03/2011

Timbro a secco

Divisione:

Luogo:

Ambiente

Materiale:

Terra e roccia da scavo

Settore:

Chimica

Foolio 2/2

Analita	Concentrazione (mg/kg ss)	Incertezza	Valore limite	(mg/kg ss) (*)	Metodo
	(mBivA 22)	=Ĺ	Colonna A	Colonna B	
			omposti inorganici		**************************************
Arsenico	< 5		20	50	EPA 3051A/2007 + EPA 6010C/2007
Berillio	< 1	-	2	10	EPA 3051A/2007 + EPA 6010C/2007
Cadmio	0.2	±0,1	2	15	EPA 3051A/2007 + EPA 6010C/2007
Cobalto	5.8	±1,2	20	250	EPA 3051A/2007 + EPA 6010C/2007
Cromo totale	23	±5,8	150	800	EPA 3051A/2007 + EPA 6010C/2007
Mercurio	< 1	-	1	5	EPA 3051A/2007 + EPA 6010C/2007
Nichel	< 35	-	120	500	EPA 3051A/2007 + EPA 6010C/2007
Piombo	< 10	-	100	1000	EPA 3051A/2007 + EPA 6010C/2007
Rame	< 10	-	120	600	EPA 3051A/2007 + EPA 6010C/2007
Selenio	1	-	3	15	EPA 3051A/2007 + EPA 6010C/2007
Zinco	38	±5,7	150	1500	EPA 3051A/2007 + EPA 6010C/2007
		<u>-</u> -	Idrocarburi		
Idrocarburi totali	26	-			calcolo
rocarburi leggeri C<12	< 1	-	10	250	EPA 5021A/2003+EPA8260C/2006
frocarburi pesanti C>12	< 25	-	50	750	ISO 16703/2004

Caratteristiche Fisiche	U.M.	Risultato	Incertezza	Limite	Metodo
Residuo secco a 105°C % 99.1		± 6,9	25	CNR IRSA 2 Q 64 Vol. 2 1984	
Umidità	%	0.8			CNR IRSA 2 Q 64 Vol. 2 1984
Sopra vaglio 2 mm	% ss	36.5	± 5,5		DM 13/09/1999 GU n. 248 del 21/10/1999 Met. Il Parte 1
Sotto vaglio 2 mm	% ss	63.5	± 9,5	-	DM 13/09/1999 GU n. 248 del 21/10/1999 Met. II Parte 1

(*) I limiti di legge si riferiscono alla concentrazione soglia di contaminazione nel suolo e nel sottosuolo riferiti alla specifica destinazione d'uso dei siti da bonificare.

Per la Colonna A: siti ad uso Verde Pubblico, Privato e Residenziale.

Per la Colonna B: siti ad uso Commerciale ed Industriale.

Il Consulente Responsabile di Commessa

dott. ing. Marcella Venturelli

Il Vice Direttore di Laboratorio dott, ing. Vincenzo Arena

C.P. 287 - 93100 Caltanissetta

Tel.:

0934 565012

Fax.:

0934 575422 info@sidercem it

Capitale Social	€ 102 774,92		Timbro a sec	co	e-mail:	info@sidercem.it
			CCA	003 946	Luogo:	Laboratono Sidercem di Caltanissetta
Certific	ato Nº	Data accettazione	:	02/03/2011		
	r	Data prova:	inizlo	02/03/2011		
C CC 018 752	C CC 019 753		fine	04/03/2011	Divisione:	Ambiente
C CC 018 /52	04/03/2011	Materiale:	Тетта	e roccia da scavo	Settore:	Chimica

Foglio 1/2

Richiedente:

dott. ing. Mario Liti in qualità di Responsabile di Commessa per il CG

Empedocle 2 s.c.p.a.

via Trieste, 76 - 48122 Ravenna

Oggetto:

Esecuzione di prove di Laboratorio a sostegno della progettazione esecutiva relative alle attività prodromiche connesse ai lavori di adeguamento a quattro corsie della S.S. 640 di

Porto Empedocle 2º Lotto, tratto dal Km 44+000 allo svincolo con l'A19

Ente appaltante:

ANAS S.p.A. - Direzione Generale Roma

Contraente Generale /

Committente:

Empedocle 2 s.c.p.a.

Materiale: Terra e roccia da scavo

Sigla Campione: Miscela Trinche da T14 a T18

- (1) La provenienza e le caratteristiche del materiale sono dichiarate e sottoscritte dal Committente.
- (2) Il campione era in giacenza presso il Laboratorio della Sidercem s.r.l. (cfr. Prot. Sidercem n. 3766 del 01/12/2010), il quale aveva provveduto al ritiro presso i siti stabiliti dal Committente.
- (3) Il presente certificato è costituito di 2 fogli numerati da 1 a 2.
- (4) Il presente certificato viene autenticato dalla Sidercem s.r.l. di Caltanissetta mediante l'apposizione su ciascun foglio del timbro a secco visibile in alto. In assenza del timbro a secco il certificato è da ritenersi contraffatto.
- (5) Le copie vengono autenticate dalla Sidercem s.r.l. di Caltanissetta mediante l'apposizione su ciascun foglio del timbro a secco visibile in alto. In assenza del timbro a secco la copia è da ritenersi contraffatta.

CERTIFICATO DI PROVA

ANALISI CHIMICA

[D.Lgs 152/2006 Parte quarta Titolo V All. 5 Tab. 1]

Il Consulente Responsabile di Commessa dott. ing. Margella Venturelli Il Vice Direttore di Laboratorio dott. ing. Vincenzo Arena

C.da Calderaro (Zona Ind.)

C.P. 287 - 93100 Caltanissetta

Tel.:

0934 565012

Fax.:

0934 575422

Protocollo Nº

003 946 02/03/2011

e-mail: Luogo:

info@sidercem.it Laboratorio Sidercem di Caltanissetta

Certificato Nº

Data accettazione: Data prova:

inizio 02/03/2011

CCC 018 752

04/03/2011

Timbro a secco

CCA

04/03/2011

Divisione:

Ambiense

Materiale:

Terra e roccia da scavo

Settore:

Chimica

Foglio 2/2

	Campione N	liscela Trino	he da T14 a T1	8 - RISULTATI	ANALISI	
Analita	Concentrazione (mg/kg ss)	Incertezza Valore limite (mg/kg ss) (*)			Metodo	
	(Colonna A	Colonna B		
			Composti Inorganici	_		
Arsenico	< 5	-	20	50	EPA 3051A/2007 + EPA 6010C/2007	
Berillio	< 1	-	2	10	EPA 3051A/2007 + EPA 6010C/2007	
Cadmio	0.2	±0,1	2	15	EPA 3051A/2007 + EPA 6010C/2007	
Cobalto	< 5.0	-	20	250	EPA 3051A/2007 + EPA 6010C/2007	
Cromo totale	18	±4,5	150	800	EPA 3051A/2007 + EPA 6010C/2007	
Mercurio	< 1	-	1	5	EPA 3051A/2007 + EPA 6010C/2007	
Nichel	< 35	-	120	500	EPA 3051A/2007 + EPA 6010C/2007	
Piombo	< 10	-	100	1000	EPA 3051A/2007 + EPA 6010C/2007	
Rame	< 10	-	120	600	EPA 3051A/2007 + EPA 6010C/2007	
Selenio	1	-	3	15	EPA 3051A/2007 + EPA 6010C/2007	
Zinco	43	±6,5	150	1500	EPA 3051A/2007 + EPA 6010C/2007	
			Idrocarburi		2771070072007	
Idrocarburi totali	26	-			calcolo	
rocarburi leggeri C<12	< 1	-	10	250	EPA 5021A/2003+EPA8260C/2006	
frocarburi pesanti C>12	< 25	-	50	750	ISO 16703/2004	

Caratteristiche Fisiche	U.M.	Risultato	Incertezza	Limite	Metodo
Residuo secco a 105°C	%	99.1	± 6,9	25	CNR IRSA 2 Q 64 Vol. 2 1984
Umidità	%	0.5			CNR IRSA 2 Q 64 Vol. 2 1984
Sopra vaglio 2 mm	% ss	18.5	± 2,8		DM 13/09/1999 GU n. 248 del 21/10/1999 Met. Il Parte 1
Sotto vaglio 2 mm	% ss	81.5	± 12,2	-	DM 13/09/1999 GU n. 248 del 21/10/1999 Met. Il Parte 1

(*) I limiti di legge si riferiscono alla concentrazione soglia di contaminazione nel suolo e nel sottosuolo riferiti alla specifica destinazione d'uso dei siti da bonificare,

Per la Colonna A: siti ad uso Verde Pubblico, Privato e Residenziale.

Per la Colonna B: siti ad uso Commerciale ed Industriale.

Il Consulente Responsabile di Commessa

dott. ing. Marcella Venturelli

Il Vice Direttore di Laboratorio dott. ing. Vincenzo Arena

C.P. 287 - 93100 Caltanissetta

Tel.:

0934 565012

Fax.:

0934 575422

- 1			1	imbro a sec	co	e-mail:	info@sidercem.it
			Protocollo Nº	CCA	003 946	Luogo:	Laboratorio Sidercem di Caltanissetta
	Certific	ato Nº	Data accettazione	:	02/03/2011		
			Data prova:	inlzio	02/03/2011		
	CCC 018 753	04/03/2011		fine	04/03/2011	Divisione:	Ambiente
	CCC 016 /33	04/03/2011	Materiale:	Тетта	e roccia da scavo	Settore:	Chimica

Foglio 1/2

Richiedente:

dott. ing. Mario Liti in qualità di Responsabile di Commessa per il CG

Empedocle 2 s.c.p.a.

via Trieste, 76 - 48122 Ravenna

Oggetto:

Esecuzione di prove di Laboratorio a sostegno della progettazione esecutiva relative alle attività prodromiche connesse ai lavori di adeguamento a quattro corsie della S.S. 640 di

Porto Empedocle 2º Lotto, tratto dal Km 44+000 allo svincolo con l'A19

Ente appaltante:

ANAS S.p.A. - Direzione Generale Roma

Contraente Generale /

Empedocle 2 s.c.p.a.

Committente:

Materiale:

Terra e roccia da scavo

Sigla Campione:

Miscela Trinche da T19 a T23

- (1) La provenienza e le caratteristiche del materiale sono dichiarate e sottoscritte dal Committente.
- (2) Il campione era in giacenza presso il Laboratorio della Sidercem s.r.l. (cfr. Prot. Sidercem n. 3766 del 01/12/2010), il quale aveva provveduto al ritiro presso i siti stabiliti dal Committente.
- (3) Il presente certificato è costituito di 2 fogli numerati da 1 a 2.
- (4) Il presente certificato viene autenticato dalla Sidercem s.r.l. di Caltanissetta mediante l'apposizione su ciascun foglio del timbro a secco visibile in alto. In assenza del tímbro a secco il certificato è da ritenersi contraffatto.
- (5) Le copie vengono autenticate dalla Sidercem s.r.l. di Caltanissetta mediante l'apposizione su ciascun foglio del timbro a secco visibile in alto. In assenza del timbro a secco la copia è da ritenersi contraffatta.

CERTIFICATO DI PROVA

ANALISI CHIMICA

[D.Lgs 152/2006 Parte quarta Titolo V All. 5 Tab. 1]

Il Consulente Responsabile di Commessa dott. ing. Marce la Venturelli

Il Vice Direttore di Laboratorio dott. ing. Vincenzo Arena

C.da Calderaro (Zona Ind.)

C.P. 287 - 93100 Caltanissetta

Tel.:

0934 565012

Fax.: 0934 575422

Timbro a secco

CCA

e-mail: Luogo:

info@sidercem.it Laboratorio Sidercem di Caltanissetta

Certificato Nº

Protocollo Nº Data accettazione:

02/03/2011

003 946

CCC 018 753

04/03/2011

Data prova: fine

inlzío 02/03/2011 04/03/2011

Divisione:

Ambiente

Materiale:

Terra e roccia da scavo

Settore:

Chimica

Foglio 2/2

	Campione	iisceia i rinc	che da T19 a T2	3 - RISULTATI	ANALISI
Analita	Concentrazione (mg/kg ss)	Incertezza Valore limite (mg/kg ss) (*)			Metodo
	(Colonna A	Colonna B	İ
			Composti Inorganici		
Arsenico	< 5		20	50	EPA 3051A/2007 + EPA 6010C/2007
Berillio	< 1		2	10	EPA 3051A/2007 + EPA 6010C/2007
Cadmio	0.2	±0,1	2	15	EPA 3051A/2007 + EPA 6010C/2007
Cobalto	< 5.0	-	20	250	EPA 3051A/2007 + EPA 6010C/200
Cromo totale	23	±5,8	150	800	EPA 3051A/2007 + EPA 6010C/200
Mercurio	< 1	-	1	5	EPA 3051A/2007 + EPA 6010C/2007
Nichel	< 35	-	120	500	EPA 3051A/2007 + EPA 6010C/2003
Piombo	< 10	-	100	1000	EPA 3051A/2007 + EPA 6010C/200
Rame	< 10	-	120	600	EPA 3051A/2007 + EPA 6010C/200
Selenio	< 1	-	3	15	EPA 3051A/2007 + EPA 6010C/2007
Zinco	41	±6,2	150	1500	EPA 3051A/2007 + EPA 6010C/2007
			Idrocarburi		
Idrocarburi totali	26	-			calcolo
drocarburi leggeri C<12	< 1	-	10	250	EPA 5021A/2003+EPA8260C/2006
drocarburi pesanti C>12	< 25	-	50	750	ISO 16703/2004

Caratteristiche Fisiche	U.M.	Risultato	Incertezza	Limite	Metodo
Residuo secco a 105°C	%	99.2	± 7 ,0	25	CNR IRSA 2 Q 64 Vol. 2 1984
Umidità	%	0.5	-		CNR IRSA 2 Q 64 Vol. 2 1984
Sopra vaglio 2 mm	% ss	20.5	± 3,1		DM 13/09/1999 GU n. 248 del 21/10/1999 Met. II Parte 1
Sotto vaglio 2 mm	% ss	79.5	± 11,9	-	DM 13/09/1999 GU n. 248 del 21/10/1999 Met. Il Parte 1

(*) I limiti di legge si riferiscono alla concentrazione soglia di contaminazione nel suolo e nel sottosuolo riferiti alla specifica destinazione d'uso dei siti da bonificare.

Per la Colonna A: siti ad uso Verde Pubblico, Privato e Residenziale.

Per la Colonna B: siti ad uso Commerciale ed Industriale.

Il Consulente Responsabile di Commessa

dott. ing. Maroella Venturelli

Il Vice Direttore di Laboratorio dott. ing. Vincenzo Arena

C.P. 287 - 93100 Caltanissetta

Tel.:

0934 565012

Fax.:

0934 575422

	Capitale Sociale € 102 774,92		Timbro a secco			e-mail:	info@sidercem.it
	Cartificants NO		Protocollo Nº	CCA	003 946	Luogo:	Laboratorio Sidercem di Caltanissetta
			Data accettazione: 02/03/2011				
			Data prova:	Inlzio	02/03/2011		
	CCC 018 754 04/03/2011	04/02/2011		Ппе	04/03/2011	Divisione:	Ambiente
		Materiale:	Тепта	e roccia da scavo	Settore:	Chimica	

Foglio 1/2

Richiedente:

dott, ing. Mario Liti in qualità di Responsabile di Commessa per il CG

Empedocle 2 s.c.p.a.

via Trieste, 76 - 48122 Ravenna

Oggetto:

Esecuzione di prove di Laboratorio a sostegno della progettazione esecutiva relative alle attività prodromiche connesse ai lavori di adeguamento a quattro corsie della S.S. 640 di

Porto Empedocle 2º Lotto, tratto dal Km 44+000 allo svincolo con l'A19

Ente appaltante:

ANAS S.p.A. - Direzione Generale Roma

Contraente Generale /

Committente:

Empedocle 2 s.c.p.a.

Materiale:

Terra e roccia da scavo

Sigla Campione:

Miscela Trinche da T24 a T34

- (1) La provenienza e le caratteristiche del materiale sono dichiarate e sottoscritte dal Committente.
- (2) Il campione era in giacenza presso il Laboratorio della Sidercem s.r.l. (cfr. Prot. Sidercem n. 3766 del 01/12/2010), il quale aveva provveduto al ritiro presso i siti stabiliti dal Committente.
- (3) Il presente certificato è costituito di 2 fogli numerati da 1 a 2.
- (4) Il presente certificato viene autenticato dalla Sidercem s.r.l. di Caltanissetta mediante l'apposizione su ciascun foglio del timbro a secco visibile in alto. In assenza del timbro a secco il certificato è da ritenersi contraffatto.
- (5) Le copie vengono autenticate dalla Sidercem s.r.l. di Caltanissetta mediante l'apposizione su ciascun foglio del timbro a secco visibile in alto. In assenza del timbro a secco la copia è da ritenersi contraffatta.

CERTIFICATO DI PROVA

ANALISI CHIMICA

[D.Lgs 152/2006 Parte quarta Titolo V All. 5 Tab. 1]

Il Consulente Responsabile di Commessa dott. ing. Marce la Venturelli

Il Vice Direttore di Laboratorio dott. ing. Vincenzo Arena

C.da Calderaro (Zona Ind.)

C.P. 287 - 93100 Caltanissetta

Tel.:

0934 565012

Fax.:

0934 575422 info@sidercem.it

Capitale Sociale, € 102 774,92

Timbro a secco CCA

e-mail: Luogo:

Laboratorio Sidercem di Caltanissetta

Certificato Nº

Protocollo Nº Data accettazione:

Data prova:

02/03/2011 02/03/2011

003 946

CCC 018 754

04/03/2011

inlzio fine

04/03/2011

Divisione:

Ambiente

Materiale:

Terra e roccia da scavo

Settore:

Chimica

					Foglio 2/2
	Campione I	viscela Trino	he da T24 a T3	4 - RISULTATI	ANALISI
Analita	Concentrazione (mg/kg ss)	Incertezza G	Valore limite ((mg/kg ss) (*)	Metodo
	(Colonna A	Colonna B	
			omposti Inorganici		
Arsenico	< 5	-	20	50	EPA 3051A/2007 + EPA 6010C/2007
Berillio	< 1	-	2	10	EPA 3051A/2007 + EPA 6010C/2007
Cadmio	0.3	±0,1	2	15	EPA 3051A/2007 + EPA 6010C/2007
Cobalto	6.0	±1,5	20	250	EPA 3051A/2007 + EPA 6010C/2007
Cromo totale	19	±4,8	150	800	EPA 3051A/2007 + EPA 6010C/2007
Mercurio	< 1	-	1	5	EPA 3051A/2007 + EPA 6010C/2007
Nichel	< 35	_	120	500	EPA 3051A/2007 + EPA 6010C/2007
Piombo	< 10	-	100	1000	EPA 3051A/2007 + EPA 6010C/2007
Rame	12	±3	120	600	EPA 3051A/2007 + EPA 6010C/2007
Selenio	2	_	3	15	
Zinco	38	±5.7	150	1500	EPA 3051A/2007 + EPA 6010C/2007
			Idrocarburi	1300	EPA 3051A/2007 + EPA 6010C/2007
Idrocarburi totali	28		10,000,001		
Idrocarburi leggeri C<12	< 1		40		calcolo
			10	250	EPA 5021A/2003+EPA8260C/2006
Idrocarburi pesanti C>12	27	-	50	750	ISO 16703/2004

Caratteristiche Fisiche	U.M.	Risultato	Incertezza	Limite	Metodo
Residuo secco a 105°C	%	99.2	± 6,9	25	CNR IRSA 2 Q 64 Vol. 2 1984
Umidità	%	0.8	<u> </u>	-	CNR IRSA 2 Q 64 Vol. 2 1984
Sopra vaglio 2 mm % ss 2		20.2	± 3,0 -		DM 13/09/1999 GU n. 248 del 21/10/199 Met. Il Parte 1
Sotto vaglio 2 mm	% ss	79.8	± 12,0	•	DM 13/09/1999 GU n. 248 del 21/10/1999 Mel. II Parte 1

(*) I limiti di legge si riferiscono alla concentrazione soglia di contaminazione nel suolo e nel sottosuolo riferiti alla specifica destinazione d'uso dei siti da bonificare.

Per la Colonna A: siti ad uso Verde Pubblico, Privato e Residenziale.

Per la Colonna B: siti ad uso Commerciale ed Industriale.

Il Consulente Responsabile di Commessa

dott. ing. Marcella Venturelli

Il Vice Direttore di Laboratorio dott. ing. Vincenzo Arena

C.P. 287 - 93100 Caltanissetta

Tel.:

0934 565012

Fax.:

0934 575422 info@sidercem it

Capitale Social	€ 102.774,92		imbro a sec	co	e-mail:	info@sidercem.it
		Protocollo Nº	CCA	003 946	Luogo:	Laboratorio Sidercem di Caltanissetta
Certific	ato Nº	Data accettazione	:	02/03/2011	1	
		Data prova:	inizio	02/03/2011		
CCC 010 555	0.4/0.0 (0.04.4	2000	fine	04/03/2011	Divisione:	Ambiente
CCC 018 755	04/03/2011	Materiale:	Тепта с	roccia da scavo	Settore:	Chimica

Foglio 1/2

Richiedente:

dott. ing. Mario Liti in qualità di Responsabile di Commessa per il CG

Empedocle 2 s.c.p.a.

via Trieste, 76 - 48122 Ravenna

Oggetto:

Esecuzione di prove di Laboratorio a sostegno della progettazione esecutiva relative alle attività prodromiche connesse ai lavori di adeguamento a quattro corsie della S.S. 640 di

Porto Empedocle 2º Lotto, tratto dal Km 44+000 allo svincolo con l'A19

Ente appaltante:

ANAS S.p.A. - Direzione Generale Roma

Contraente Generale /

Committente:

Empedocle 2 s.c.p.a.

Materiale:

Terra e roccia da scavo

Sigla Campione:

Miscela Trinche da T35 a T44

- (1) La provenienza e le caratteristiche del materiale sono dichiarate e sottoscritte dal Committente.
- (2) Il campione era in giacenza presso il Laboratorio della Sidercem s.r.l. (cfr. Prot. Sidercem n. 3766 del 01/12/2010), il quale aveva provveduto al ritiro presso i siti stabiliti dal Committente.
- (3) Il presente certificato è costituito di 2 fogli numerati da 1 a 2.
- (4) Il presente certificato viene autenticato dalla Sidercem s.r.l. di Caltanissetta mediante l'apposizione su ciascun foglio del timbro a secco visibile in alto. In assenza del timbro a secco il certificato è da ritenersi contraffatto.
- (5) Le copie vengono autenticate dalla Sidercem s.r.l. di Caltanissetta mediante l'apposizione su ciascun foglio del timbro a secco visibile in alto. In assenza del timbro a secco la copia è da ritenersi contraffatta.

CERTIFICATO DI PROVA

ANALISI CHIMICA

[D.Lgs 152/2006 Parte quarta Titolo V All. 5 Tab. 1]

Il Consulente Responsabile di Commessa dott. ing. Marcel a Venturelli Il Vice Direttore di Laboratorio dott. ing. Vincenzo Arena

C P. 287 - 93100 Caltanissetta

Tel.:

0934 565012

Fax.:

0934 575422

Protocollo Nº

e-mail: **CCA** 003 946 Luogo:

info@sidercem.it

Certificato Nº

Data accettazione:

02/03/2011

Laboratorio Sidercem di Caltanissetta

CCC 018 755

04/03/2011

inizio Data prova: fine

02/03/2011 04/03/2011

Divisione:

Ambiente

Materiale:

Terra e roccia da scavo

Timbro a secco

Settore:

Chimica

Foglio 2/2

	Campione N	liscela Trino	he da T35 a T4	4 - RISULTATI	ANALISI
Analita	Concentrazione (mg/kg ss)	Incertezza	Valore limite	(mg/kg ss) (*)	Metodo
	(iliging da)		Colonna A	Colonna B	
			Composti Inorganici		
Arsenico	< 5	-	20	50	EPA 3051A/2007 + EPA 6010C/2007
Berillio	< 1	-	2	10	EPA 3051A/2007 + EPA 6010C/2007
Cadmio	< 0,2	-	2	15	EPA 3051A/2007 + EPA 6010C/2007
Cobalto	< 5,0	-	20	250	EPA 3051A/2007 + EPA 6010C/2007
Cromo totale	< 15	-	150	800	EPA 3051A/2007 + EPA 6010C/2007
Mercurio	< 1	-	1	5	EPA 3051A/2007 + EPA 6010C/2007
Nichel	< 35	-	120	500	EPA 3051A/2007 + EPA 6010C/2007
Piombo	< 10	-	100	1000	EPA 3051A/2007 + EPA 6010C/2007
Rame	< 10	-	120	600	EPA 3051A/2007 + EPA 6010C/2007
Selenio	< 1	-	3	15	EPA 3051A/2007 + EPA 6010C/2007
Zinco	< 50	-	150	1500	EPA 3051A/2007 + EPA 6010C/2007
	-		Idrocarburi		
idrocarburi totali	30,6		and a second		calcolo
frocarburi leggeri C<12	< 1	-	10	250	EPA 5021A/2003+EPA8260C/2006
drocarburi pesanti C>12	29,6	-	50	750	ISO 16703/2004

Caratteristiche Fisiche	ristiche Fisiche U.M. Risultato Incertezza		Limite	Metodo	
Residuo secco a 105°C	%	99	± 6,9	25	CNR IRSA 2 Q 64 Vol. 2 1984
Umidità	%	1,0	-	-	CNR IRSA 2 Q 64 Vol. 2 1984
Sopra vaglio 2 mm	% ss	35,9	± 5,4	-	DM 13/09/1999 GU n. 248 del 21/10/1999 Met. Il Parte 1
Sotto vaglio 2 mm	% ss	64,1	± 9,6	-	DM 13/09/1999 GU n. 248 del 21/10/1999 Met. Il Parte 1

(*) I limiti di legge si riferiscono alla concentrazione soglia di contaminazione nel suolo e nel sottosuolo riferiti alla specifica destinazione d'uso dei siti da bonificare.

Per la Colonna A: siti ad uso Verde Pubblico, Privato e Residenziale.

Per la Colonna B: siti ad uso Commerciale ed Industriale.

Il Consulente Responsabile di Commessa

dott. ing. Marcella Venturelli

Il Vice Direttore di Laboratorio dott. ing. Vincenzo Arena

C.P. 287 - 93100 Caltanissetta

Tel.:

0934 565012

Fax.: Timbro a secco e-mail:

0934 575422

info@sidercem.it

Certificato No

Protocollo Nº **CCA** 003 946 Data accettazione: 02/03/2011 Luogo:

Laboratorio Sidercem di Caltanissetta

Data prova: 04/03/2011

Materiale:

Inizio 02/03/2011 fine 04/03/2011

Divisione:

Ambiente

Terra e roccia da scavo Settore: Chimica

Foglio 1/2

Richiedente:

CCC 018 756

dott, ing. Mario Liti in qualità di Responsabile di Commessa per il CG

Empedocle 2 s.c.p.a.

via Trieste, 76 - 48122 Ravenna

Oggetto:

Esecuzione di prove di Laboratorio a sostegno della progettazione esecutiva relative alle attività prodromiche connesse ai lavori di adeguamento a quattro corsie della S.S. 640 di

Porto Empedocle 2º Lotto, tratto dal Km 44+000 allo svincolo con l'A19

Ente appaltante:

ANAS S.p.A. - Direzione Generale Roma

Contraente Generale /

Committente:

Empedocle 2 s.c.p.a.

Materiale:

Terra e roccia da scavo

Sigla Campione:

Miscela Trinche da T45 a T50

- (1) La provenienza e le caratteristiche del materiale sono dichiarate e sottoscritte dal Committente.
- (2) Il campione era in giacenza presso il Laboratorio della Sidercem s.r.l. (cfr. Prot. Sidercem n. 3766 del 01/12/2010), il quale aveva provveduto al ritiro presso i siti stabiliti dal Committente.
- (3) Il presente certificato è costituito di 2 fogli numerati da 1 a 2.
- (4) Il presente certificato viene autenticato dalla Sidercem s.r.l. di Caltanissetta mediante l'apposizione su ciascun foglio del timbro a secco visibile in alto. In assenza del timbro a secco il certificato è da ritenersi contraffatto.
- (5) Le copie vengono autenticate dalla Sidercem s.r.l. di Caltanissetta mediante l'apposizione su ciascun foglio del timbro a secco visibile in alto. In assenza del timbro a secco la copia è da ritenersi contraffatta.

CERTIFICATO DI PROVA

ANALISI CHIMICA

[D.Lgs 152/2006 Parte quarta Titolo V All. 5 Tab. 1]

Il Consulente Responsabile di Commessa dott. ing. Margella Venturelli

Il Vice Direttore di Laboratorio dott. ing. Vincenzo Arena

C.da Calderaro (Zona Ind.)

C.P. 287 - 93100 Caltanissetta

Tel.:

0934 565012

Fax.:

0934 575422 info@sidercem.it

Certificato Nº

Protocollo Nº

Timbro a secco CCA 003 946

e-mail: Luogo:

Laboratorio Sidercem di Caltanissetta

Data accettazione:

Data prova:

02/03/2011 Inizio 02/03/2011

Divisione:

Ambiente

CCC 018 756

04/03/2011

Materiale:

fine 04/03/2011 Terra e roccia da scavo

Settore:

Chimica

	Campione N	liscela Trino	che da T45 a T5	0 - RISULTATI	Foglie 2/2 ANALISI	
Analita	Concentrazione (mg/kg ss)	Incertezza	Valore limite (mg/kg ss) (*)		Metodo	
	(mg/kg so)		Colonna A	Colonna B	-	
			omposti inorganici			
Arsenico	< 5	-	20	50	EPA 3051A/2007 + EPA 6010C/2007	
Berillio	< 1	-	2	10	EPA 3051A/2007 + EPA 6010C/2007	
Cadmio	0.2	±0,1	2	15	EPA 3051A/2007 + EPA 6010C/2007	
Cobalto	< 5.0	-	20	250	EPA 3051A/2007 + EPA 6010C/2007	
Cromo totale	< 15	-	150	800	EPA 3051A/2007 + EPA 6010C/2007	
Mercurio	< 1	-	1	5	EPA 3051A/2007 + EPA 6010C/2007	
Nichel	< 35	-	120	500	EPA 3051A/2007 + EPA 6010C/2007	
Piombo	< 10		100	1000	EPA 3051A/2007 + EPA 6010C/2007	
Rame	< 10	-	120	600	EPA 3051A/2007 + EPA 6010C/2007	
Selenio	1	-	3	15	EPA 3051A/2007 + EPA 6010C/2007	
Zinco	< 50	-	150	1500	EPA 3051A/2007 + EPA 6010C/2007	
			Idrocarburi		ETA GOOTA ETA GOTOCIZOOA	
Idrocarburi totali	45.3	4			calcolo	
drocarburi leggeri C<12	< 1	-	10	250	EPA 5021A/2003+EPA8260C/2006	
drocarburi pesanti C>12	44.3	-	50	750	ISO 16703/2004	

Caratteristiche Fisiche	U.M.	Risultato	Incertezza	Limite	Metodo
Residuo secco a 105°C	%	99.5	± 7.0	25	CNR IRSA 2 Q 64 Vol. 2 1984
Umidità	%	0.5		-	CNR IRSA 2 Q 64 Vol. 2 1984
Sopra vaglio 2 mm	% ss	26.3	± 3.9	-	DM 13/09/1999 GU n. 248 del 21/10/1999 Mel. Il Parte 1
Sotto vaglio 2 mm	% ss	73.7	± 9,6	-	DM 13/09/1999 GU n. 248 del 21/10/1999 Met. Il Parte 1

(*) I limiti di legge si riferiscono alla concentrazione soglia di contaminazione nel suolo e nel sottosuolo riferiti alla specifica destinazione d'uso dei siti da bonificare.

Per la Colonna A: siti ad uso Verde Pubblico, Privato e Residenziale.

Per la Colonna B: siti ad uso Commerciale ed Industriale.

Il Consulente Responsabile di Commessa

dott. ing. Marcella Venturelli Il Vice Direttore di Laboratorio dott, ing. Vincenzo Arena

C.P. 287 - 93100 Caltanissetta

Tel.:

0934 565012

Fax.:

0934 575422

-	Capitale oociale	C 102.774,92	1	imbro a sec	co	e-mail:	into@sidercem.it	
			Protocollo Nº	CCA	003 946	Luogo;	Laboratorio Sidercem di Caltanissetta	
	Certific	ato Nº	Data accettazione:	:	02/03/2011			
			Data prova:	inizio	02/03/2011	1		
	CCC 018 757 04/03/2011			fine	04/03/2011	Divisione:	Ambiente	
	CCC 010 /3/	04/03/2011	Materiale:	Тетта	e roccia da scavo	Settore:	Chimica	

Foglio 1/2

Richiedente:

dott. ing. Mario Liti in qualità di Responsabile di Commessa per il CG

Empedocle 2 s.c.p.a.

via Trieste, 76 - 43122 Ravenna

Oggetto:

Esecuzione di prove di Laboratorio a sostegno della progettazione esecutiva relative alle

attività prodromiche connesse ai lavori di adeguamento a quattro corsie della S.S. 640 di

Porto Empedocle 2º Lotto, tratto dal Km 44+000 allo svincolo con l'A19

Ente appaltante:

ANAS S.p.A. - Direzione Generale Roma

Contraente Generale /

Committente:

Empedocle 2 s.c.p.a.

Materiale:

Terra e roccia da scavo

Sigla Campione:

Miscela Trinche da T51 a T54

- (1) La provenienza e le caratteristiche del materiale sono dichiarate e sottoscritte dal Committente.
- (2) Il campione era in giacenza presso il Laboratorio della Sidercem s.r.l. (cfr. Prot. Sidercem n. 3766 del 01/12/2010), il quale aveva provveduto al ritiro presso i siti stabiliti dal Committente.
- (3) Il presente certificato è costituito di 2 fogli numerati da 1 a 2.
- (4) Il presente certificato viene autenticato dalla Sidercem s.r.l. di Caltanissetta mediante l'apposizione su ciascun foglio del timbro a secco visibile in alto. In assenza del timbro a secco il certificato è da ritenersi contraffatto.
- (5) Le copie vengono autenticate dalla Sidercem s.r.l. di Caltanissetta mediante l'apposizione su ciascun foglio del timbro a secco visibile in alto. In assenza del timbro a secco la copia è da ritenersi contraffatta.

CERTIFICATO DI PROVA

ANALISI CHIMICA

[D.Lgs 152/2006 Parte quarta Titolo V All. 5 Tab. 1]

Il Consulente Responsabile di Commessa dott. ing. Marcella Venturelli

Il Vice Direttore di Laboratorio dott ing. Vincenzo Arena

C.da Calderaro (Zona Ind.)

C.P. 287 - 93100 Caltanissetta

Tel.:

0934 565012

Fax.:

0934 575422

Protocollo Nº

CCA 003 946 02/03/2011

info@sidercem.it e-mail: Luogo: Laboratorio Sidercem di Caltanissetta

Certificato Nº

Data accettazione:

Data prova:

02/03/2011 inlzio

CCC 018 757

04/03/2011

04/03/2011

Timbro a secco

Divisione:

Ambiente

Materiale:

Terra e roccia da scavo

Settore:

Chimica

Foolio 2/2

Analita	Concentrazione (mg/kg ss)	Incertezza	Valore (Imite	(mg/kg ss) (*)	Metodo
	(mg/kg as)		Colonna A	Colonna B	16
			omposti Inorganici		
Arsenico	6	±1.8	20	50	EPA 3051A/2007 + EPA 6010C/2007
Berillio	< 1	-	2	10	EPA 3051A/2007 + EPA 6010C/200
Cadmio	0.3	±0.1	2	15	EPA 3051A/2007 + EPA 6010C/200
Cobalto	< 5.0	-	20	250	EPA 3051A/2007 + EPA 6010C/200
Cromo totale	25	±6.3	150	800	EPA 3051A/2007 + EPA 6010C/200
Mercurio	< 1	-	1	5	EPA 3051A/2007 + EPA 6010C/200
Nichel	< 35	-	120	500	EPA 3051A/2007 + EPA 6010C/200
Piombo	< 10	-	100	1000	EPA 3051A/2007 + EPA 6010C/200
Rame	< 10	-	120	600	EPA 3051A/2007 + EPA 6010C/200
Selenio	< 1		3	15	EPA 3051A/2007 + EPA 6010C/200
Zinco	< 50	-	150	1500	EPA 3051A/2007 + EPA 6010C/200
			Idrocarburi		
Idrocarburi totali	26	_	T		calcolo
rocarburi leggeri C<12	< 1	-	10	250	EPA 5021A/2003+EPA8260C/2006
drocarburi pesanti C>12	< 25	_ i	50	750	ISO 16703/2004

Caratteristiche Fisiche	U.M.	Risultato	Incertezza	Limite	Metodo
Residuo secco a 105°C	%	99.9	± 7,0	25	CNR IRSA 2 Q 64 Vol. 2 1984
Umidità	%	< 0.5	-		CNR IRSA 2 Q 64 Vol. 2 1984
Sopra vaglio 2 mm	% ss	42.4	± 6.4	•	DM 13/09/1999 GU n. 248 del 21/10/1999 Met. il Parte 1
Sotto vaglio 2 mm	% ss	57.6	± 8,6	•	OM 13/09/1999 GU n. 248 del 21/10/1999 Met. Il Parle 1

(*) I limiti di legge si riferiscono alla concentrazione soglia di contaminazione nel suolo e nel sottosuolo riferiti alla specifica destinazione d'uso dei siti da bonificare.

Per la Colonna A: siti ad uso Verde Pubblico, Privato e Residenziale.

Per la Colonna B: siti ad uso Commerciale ed Industriale.

Il Consulente Responsabile di Commessa

dott. ing. Marcella Venturelli

Il Vice Direttore di Laboratorio dott. ing. V ncenzo Arena

C.P. 287 - 93100 Caltanissetta

Tel.:

0934 565012

Fax.:

0934 575422

- 1			· · · · · · · · ·	moro a sec	ÇÜ	e-mail:	inio@sidercem.it
ĺ			Protocollo Nº	CCA	003 946	Luogo:	Laboratorio Sidercem di Caltanissetta
	Certificato N°		Data accettazione: 02/03/2011				
			Data prova:	inizio	02/03/2011		
	CCC 018 758	CCC 019 759 04/03/3011		fine	04/03/2011	Divisione:	Ambiente
ĺ	CCC 018 /38	04/03/2011	Materiale:	Тетта	e roccia da scavo	Settore:	Chimica

Foglio 1/2

Richiedente:

dott. ing. Mario Liti in qualità di Responsabile di Commessa per il CG

Empedocle 2 s.c.p.a.

via Trieste, 76 - 48122 Ravenna

Oggetto:

Esecuzione di prove di Laboratorio a sostegno della progettazione esecutiva relative alle attività prodromiche connesse ai lavori di adeguamento a quattro corsie della S.S. 640 di

Porto Empedocle 2° Lotto, tratto dal Km 44+000 allo svincolo con l'A19

Ente appaltante:

ANAS S.p.A. - Direzione Generale Roma

Contraente Generale /

Committente:

Empedocle 2 s.c.p.a.

Materiale:

Terra e roccia da scavo

Sigla Campione:

Miscela Trinche da T55 a T57

- (1) La provenienza e le caratteristiche del materiale sono dichiarate e sottoscritte dal Committente.
- (2) Il campione era in giacenza presso il Laboratorio della Sidercem s.r.l. (cfr. Prot. Sidercem n. 3766 del 01/12/2010), il quale aveva provveduto al ritiro presso i siti stabiliti dal Committente.
- (3) Il presente certificato è costituito di 2 fogli numerati da 1 a 2.
- (4) Il presente certificato viene autenticato dalla Sidercem s.r.l. di Caltanissetta mediante l'apposizione su ciascun foglio del timbro a secco visibile in alto. In assenza del timbro a secco il certificato è da ritenersi contraffatto.
- (5) Le copie vengono autenticate dalla Sidercem s.r.l. di Caltanissetta mediante l'apposizione su ciascun foglio del timbro a secco visibile in alto. In assenza del timbro a secco la copia è da ritenersi contraffatta.

CERTIFICATO DI PROVA

ANALISI CHIMICA

[D.Lgs 152/2006 Parte quarta Titolo V All. 5 Tab. 1]

Il Consulente Responsabile di Commessa dott. ing. Ma cella Venturelli

Il Vice Direttore di Laboratorio dott. ing. Vincenzo Arena

C.da Calderaro (Zona Ind.)

C.P. 287 - 93100 Caltanissetta

Tel.:

0934 565012

Fax.:

0934 575422 info@sidercem.it

Certificato Nº

Protocollo Nº Data accettazione:

Timbro a secco **CCA** 003 946 02/03/2011

e-mail: Luogo:

Laboratorio Sidercem di Caltanissetta

CCC 018 758

04/03/2011

Data prova:

Inizio 02/03/2011 fine 04/03/2011

Divisione:

Ambiente

Materiale:

Terra e roccia da scavo

Settore:

Chimica

E--11- 2/2

	Campione N	<u> Aiscela Trin</u>	che da T55 a T5	7 - RISULTATI	ANALISI
Analita	Concentrazione (mg/kg ss)	Incertezza	Valore limite	(mg/kg ss) (*)	Metodo
	(Colonna A	Colonna B	
			Composti Inorganici		
Arsenico	5	±1.3	20	50	EPA 3051A/2007 + EPA 6010C/2007
Berillio	< 1	-	2	10	EPA 3051A/2007 + EPA 6010C/2007
Cadmio	0.3	±0.1	2	15	EPA 3051A/2007 + EPA 6010C/2007
Cobalto	6.0	±1	20	250	EPA 3051A/2007 + EPA 6010C/2007
Cromo totale	23	±5.8	150	800	EPA 3051A/2007 + EPA 6010C/200
Mercurio	< 1	-	1	5	EPA 3051A/2007 + EPA 6010C/2007
Nichel	< 35	-	120	500	EPA 3051A/2007 + EPA 6010C/2007
Piombo	< 10	_	100	1000	EPA 3051A/2007 + EPA 6010C/200
Rame	< 10	-	120	600	EPA 3051A/2007 + EPA 6010C/2007
Selenio	< 1	-	3	15	EPA 3051A/2007 + EPA 6010C/2007
Zinco	< 50	-	150	1500	EPA 3051A/2007 + EPA 6010C/2007
			Idrocarburi		E17 000 1742007 1 E17 A 0010 C/2007
Idrocarburi totali	26	-			calcolo
Irocarburi leggeri C<12	< 1		10	250	EPA 5021A/2003+EPA8260C/2006
frocarburi pesanti C>12	< 25	-	50	750	ISO 16703/2004

Caratteristiche Fisiche	U.M.	Risultato	Incertezza	Limite	Metodo
Residuo secco a 105°C	%	99.5	± 7,0	25	CNR IRSA 2 Q 64 Vol. 2 1984
Umidità	%	0.5	-		CNR IRSA 2 Q 64 Vol. 2 1984
Sopra vaglio 2 mm	% ss	28.1	± 4.2	-	DM 13/09/1999 GU n. 248 del 21/10/1999 Met. II Parte 1
Sotto vaglio 2 mm	% ss	71.9	± 10.8	_	DM 13/09/1999 GU n. 248 del 21/10/1999 Met. II Parte 1

(*) I limiti di legge si riferiscono alla concentrazione soglia di contaminazione nel suolo e nel sottosuolo riferiti alla specifica destinazione d'uso dei siti da bonificare.

Per la Colonna A: siti ad uso Verde Pubblico, Privato e Residenziale.

Per la Colonna B: siti ad uso Commerciale ed Industriale.

Il Consulente Responsabile di Commessa

dott. ing. Marcella Venturelli

Il Vice Directore di Laboratorio dott. ing Vincenzo Arena

C.P. 287 - 93100 Caltanissetta

Tel.:

0934 565012

Fax.:

0934 575422

Capitale Sociale, € 102 774,92 Timbro a secco Protocollo Nº **CCA**

e-mail:

info@sidercem.it

Certificato Nº

Data accettazione:

Data prova:

Materiale:

003 946 02/03/2011 Luogo: Laboratorio Sidercem di Caltanissetta

CCC 018 759

04/03/2011

02/03/2011 inizio fine 04/03/2011

Terra e roccia da scavo

Divisione:

Ambiente

Settore: Chimica

Foglio 1/2

Richiedente:

dott, ing. Mario Liti in qualità di Responsabile di Commessa per il CG

Empedocle 2 s.c.p.a.

via Trieste, 76 - 48122 Ravenna

Oggetto:

Esecuzione di prove di Laboratorio a sostegno della progettazione esecutiva relative alle attività prodromiche connesse ai lavori di adeguamento a quattro corsie della S.S. 640 di

Porto Empedocle 2º Lotto, tratto dal Km 44+000 allo svincolo con l'A19

Ente appaltante:

ANAS S.p.A. - Direzione Generale Roma

Contraente Generale /

Committente:

Empedocle 2 s.c.p.a.

Materiale:

Terra e roccia da scavo

Sigla Campione:

Miscela Trinche da T58 a T62

- (1) La provenienza e le caratteristiche del materiale sono dichiarate e sottoscritte dal Committente.
- (2) Il campione era in giacenza presso il Laboratorio della Sidercem s.r.l. (cfr. Prot. Sidercem n. 3766 del 01/12/2010), il quale aveva provveduto al ritiro presso i siti stabiliti dal Committente.
- (3) Il presente certificato è costituito di 2 fogli numerati da 1 a 2.
- (4) Il presente certificato viene autenticato dalla Sidercem s.r.l. di Caltanissetta mediante l'apposizione su ciascun foglio del timbro a secco visibile in alto. In assenza del timbro a secco il certificato è da ritenersi contraffatto.
- (5) Le copie vengono autenticate dalla Sidercem s.r.l. di Caltanissetta mediante l'apposizione su ciascun foglio del timbro a secco visibile in alto. In assenza del timbro a secco la copia è da ritenersi contraffatta.

CERTIFICATO DI PROVA

ANALISI CHIMICA

[D.Lgs 152/2006 Parte quarta Titolo V All. 5 Tab. 1]

Il Consulente Responsabile di Commessa dott. ing. Markella Venturelli

Il Vice Direttore di Laboratorio dott. ing. Vincenzo Arena

C.da Calderaro (Zona Ind.)

C.P. 287 - 93100 Caltanissetta

Tel.:

0934 565012

Fax.: e-mail:

0934 575422 info@sidercem.it

Certificato Nº

Protocollo Nº Data accettazione:

Data prova:

003 946 Luogo: 02/03/2011

Laboratorio Sidercem di Caltanissetta

CCC 018 759

04/03/2011

inizio 02/03/2011 fine

04/03/2011

Divisione:

Ambiente

Materiale:

Terra e roccia da scavo

Timbro a secco

CCA

Settore:

Chimica

	Campione N	liscela Trino	che da T58 a T6	2 - RISULTATI	ANALISI
Anailta	Concentrazione (mg/kg ss)	Incertezza	Valore limite	(mg/kg ss) (*)	Metodo
	(Colonna A	Colonna B	
			Composti inorganici		
Arsenico	< 5	-	20	50	EPA 3051A/2007 + EPA 6010C/2007
Berillio	< 1		2	10	EPA 3051A/2007 + EPA 6010C/2007
Cadmio	0.3	±0.1	2	15	EPA 3051A/2007 + EPA 6010C/2007
Cobalto	< 5.0	-	20	250	EPA 3051A/2007 + EPA 6010C/200
Cromo totale	17	±4	150	800	EPA 3051A/2007 + EPA 6010C/200
Mercurio	< 1	-	1	5	EPA 3051A/2007 + EPA 6010C/200
Nichel	< 35	-	120	500	EPA 3051A/2007 + EPA 6010C/2007
Piombo	< 10	-	100	1000	EPA 3051A/2007 + EPA 6010C/2007
Rame	< 10	-	120	600	EPA 3051A/2007 + EPA 6010C/2007
Selenio	1	_	3	15	EPA 3051A/2007 + EPA 6010C/2007
Zinco	< 50		150	1500	EPA 3051A/2007 + EPA 6010C/2007
			Idrocarburi		EFA 303 1A 2007 + EFA 6010C/2007
Idrocarburi totali	26	_			calcolo
rocarburi leggeri C<12	< 1	-	10	250	EPA 5021A/2003+EPA8260C/2006
rocarburi pesanti C>12	< 25		50	750	ISO 16703/2004

Caratteristiche Fisiche	U.M.	Risultato	Incertezza	Limite	Metodo
Residuo secco a 105°C	%	99.7	± 7,0	25	CNR IRSA 2 Q 64 Vol 2 1984
Umidità	%	< 0.5		-	CNR IRSA 2 Q 64 Vol. 2 1984
Sopra vaglio 2 mm	% ss	35.0	± 4.2	•	DM 13/09/1999 GU n. 248 del 21/10/1999 Mel. II Parte 1
Sotto vaglio 2 mm	% ss	65.0	± 9.8	•	DM 13/09/1999 GU n. 248 del 21/10/1999 Met. Il Parte 1

(*) I limiti di legge si riferiscono alla concentrazione soglia di contaminazione nel suolo e nel sottosuolo riferiti alla specifica destinazione d'uso dei siti da bonificare.

Per la Colonna A: siti ad uso Verde Pubblico, Privato e Residenziale.

Per la Colonna B: siti ad uso Commerciale ed Industriale.

Il Consulente Responsabile di Commessa dott. ing. Marcella Venturelli

Il Vice Direttore di Laboratorio dott. ing. Vincenzo Arena

C.P. 287 - 93100 Caltanissetta

Tel.:

0934 565012

Fax.:

0934 575422

- 1			1	minio a sec	co	e-mail:	inio@sidercem.it
i			Protocollo Nº	CCA	003 946	Luogo:	Laboratorio Sidercem di Caltanissetta
ļ	Certific	Certificato Nº		•	02/03/2011		
ļ			Data prova:	inízio	02/03/2011		
ı	CCC 018 760	04/02/2011	Data prova.	fine	04/03/2011	Divisione:	Ambiente
	CCC 018 /00	04/03/2011	Materiale:	Terra e	roccia da scavo	Settore:	Chimica

Foglio 1/2

Richiedente: dott. in

dott. ing. Mario Liti in qualità di Responsabile di Commessa per il CG

Empedocle 2 s.c.p.a.

via Trieste, 76 - 48122 Ravenna

Oggetto: Esecuzione di prove di Laboratorio a sostegno della progettazione esecutiva relative alle

attività prodromiche connesse ai lavori di adeguamento a quattro corsie della S.S. 640 di

Porto Empedocle 2º Lotto, tratto dal Km 44+000 allo svincolo con l'A19

Ente appaltante:

ANAS S.p.A. - Direzione Generale Roma

Contraente Generale /

Empedocle 2 s.c.p.a.

Committente:

Materiale:

Terra e roccia da scavo

Sigla Campione: Miscela Trinche da T63 a T69

- (1) La provenienza e le caratteristiche del materiale sono dichiarate e sottoscritte dal Committente.
- (2) Il campione era in giacenza presso il Laboratorio della Sidercem s.r.l. (cfr. Prot. Sidercem n. 3766 del 01/12/2010), il quale aveva provveduto al ritiro presso i siti stabiliti dal Committente.
- (3) Il presente certificato è costituito di 2 fogli numerati da 1 a 2.
- (4) Il presente certificato viene autenticato dalla Sidercem s.r.l. di Caltanissetta mediante l'apposizione su ciascun foglio del timbro a secco visibile in alto. In assenza del timbro a secco il certificato è da ritenersi contraffatto.
- (5) Le copie vengono autenticate dalla Sidercem s.r.l. di Caltanissetta mediante l'apposizione su ciascun foglio del timbro a secco visibile in alto. In assenza del timbro a secco la copia è da ritenersi contraffatta.

CERTIFICATO DI PROVA

ANALISI CHIMICA

[D.Lgs 152/2006 Parte quarta Titolo V All. 5 Tab. 1]

Il Consulente Responsabile di Commessa dott. ing. Marcella Venturelli

Il Vice Direttore di Laboratorio dott. ing. Vincenzo Arena

Certificato Nº

C P 287 - 93100 Caltanissetta

Tel.:

0934 565012

Fax.:

e-mail:

Luogo:

0934 575422 info@sidercem.it

Timbro a secco Protocoilo Nº

CCA 003 946 Data accettazione: 02/03/2011

Laboratorio Sidercem di Caltanissetta

CCC 018 760

04/03/2011

inizio Data prova: fine

Materiale:

02/03/2011 04/03/2011

Terra e roccia da scavo

Divisione:

Ambiente Chimica

Settore:

Foglio 2/2

	Campione N	liscela Trino	he da T63 a T6	9 - RISULTATI	ANALISI
Analita	Concentrazione (mg/kg ss)	Incertezza	Valore limite	(mg/kg ss) (*)	Metodo
<u></u>	(iliging 55)		Colonna A	Colonna B	-
		(Composti Inorganici		
Arsenico	< 5		20	50	EPA 3051A/2007 + EPA 6010C/2007
Berillio	< 1	-	2	10	EPA 3051A/2007 + EPA 6010C/2007
Cadmio	0,2	±0.1	2	15	EPA 3051A/2007 + EPA 6010C/2007
Cobalto	< 5,0	-	20	250	EPA 3051A/2007 + EPA 6010C/2007
Cromo totale	< 15	-	150	800	EPA 3051A/2007 + EPA 6010C/2007
Mercurio	< 1	-	1	5	EPA 3051A/2007 + EPA 6010C/2007
Nichel	< 35	-	120	500	EPA 3051A/2007 + EPA 6010C/2007
Piombo	< 10	-	100	1000	EPA 3051A/2007 + EPA 6010C/2007
Rame	< 10	-	120	600	EPA 3051A/2007 + EPA 6010C/2007
Selenio	1	-	3	15	EPA 3051A/2007 + EPA 6010C/2007
Zinco	< 50	-	150	1500	EPA 3051A/2007 + EPA 6010C/2007
			Idrocarburi		
Idrocarburi totali	26	• 1E		27243	calcolo
drocarburi leggeri C<12	< 1	-	10	250	EPA 5021A/2003+EPA8260C/2006
drocarburi pesanti C>12	< 25	_	50	750	ISO 16703/2004

Caratteristiche Fisiche	U.M.	Risultato	Incertezza	Limite	Metodo
Residuo secco a 105°C	%	99,5	± 7,0	25	CNR IRSA 2 Q 64 Vol. 2 1984
Umidità	%	0,5	-	-	CNR IRSA 2 Q 64 Vol. 2 1984
Sopra vaglio 2 mm	% ss	33,6	± 5	-	DM 13/09/1999 GU n. 248 del 21/10/1999 Met. Il Parte 1
Sotto vaglio 2 mm	% ss	66,4	± 10.0	-	DM 13/09/1999 GU n. 248 del 21/10/1999 Met. Il Parte 1

(*) I limiti di legge si riferiscono alla concentrazione soglia di contaminazione nel suolo e nel sottosuolo riferiti alla specifica destinazione d'uso dei siti da bonificare.

Per la Colonna A: siti ad uso Verde Pubblico, Privato e Residenziale.

Per la Colonna B: siti ad uso Commerciale ed Industriale.

Il Consulente Responsabile di Commessa

dott. ing. Marcella Venturelli

Il Vice Direttore di Laboratorio dott. ing. Vincenzo Arena

C.P. 287 - 93100 Caltanissetta

Tel.: Fax.:

Luogo:

0934 565012 0934 575422

Timbro a secco

e-mail:

info@sidercem.it

Laboratorio Sidercem di Caltanissetta

Certificato N°

CCC 018 761 04/03/2011

 Protocollo N°
 CCA
 003 946

 Data accettazione:
 02/03/2011

 Data prova:
 inizio
 02/03/2011

Divisione

Settore:

Ambiente

Materiale:

fine 04/03/2011

Terra e roccia da scavo

livisione:

Ambiente Chimica

Foglio 1/2

Richiedente:

dott, ing. Mario Liti in qualità di Responsabile di Commessa per il CG

Empedocle 2 s.c.p.a.

via Trieste, 76 - 48122 Ravenna

Oggetto:

Esecuzione di prove di Laboratorio a sostegno della progettazione esecutiva relative alle attività prodromiche connesse ai lavori di adeguamento a quattro corsie della S.S. 640 di

Porto Empedocle 2º Lotto, tratto dal Km 44+000 allo svincolo con l'A19

Ente appaltante:

ANAS S.p.A. - Direzione Generale Roma

Contraente Generale /

Empedocle 2 s.c.p.a.

Committente:

Materiale:

Terra e roccia da scavo

Sigla Campione:

Miscela Trinche da T70 a T75

- (1) La provenienza e le caratteristiche del materiale sono dichiarate e sottoscritte dal Committente.
- (2) Il campione era in giacenza presso il Laboratorio della Sidercem s.r.l. (cfr. Prot. Sidercem n. 3766 del 01/12/2010), il quale aveva provveduto al ritiro presso i siti stabiliti dal Committente.
- (3) Il presente certificato è costituito di 2 fogli numerati da 1 a 2.
- (4) Il presente certificato viene autenticato dalla Sidercem s.r.l. di Caltanissetta mediante l'apposizione su ciascun foglio del timbro a secco visibile in alto. In assenza del timbro a secco il certificato è da ritenersi contraffatto.
- (5) Le copie vengono autenticate dalla Sidercem s.r.l. di Caltanissetta mediante l'apposizione su ciascun foglio del timbro a secco visibile in alto. In assenza del timbro a secco la copia è da ritenersi contraffatta.

CERTIFICATO DI PROVA

ANALISI CHIMICA

[D.Lgs 152/2006 Parte quarta Titolo V All. 5 Tab. 1]

Il Consulente Responsabile di Commessa dott. ing. Marcella Venturelli Il Vice Direttore di Laboratorio dott. ing. Vincenzo Arena

C.da Calderaro (Zona Ind.)

C.P. 287 - 93100 Caltanissetta

Tel.:

0934 565012

Fax.: e-mail: 0934 575422

Timbro a secco

Protocollo Nº **CCA**

003 946 Luogo: info@sidercem.it Laboratorio Sidercem di Caltanissetta

Certificato Nº

Data accettazione:

02/03/2011 02/03/2011 inizio

Divisione:

Ambiente

CCC 018 761

04/03/2011

Data prova: Materiale:

fine 04/03/2011

Terra e roccia da scavo Settore: Chimica

	Campione	finesta T-in-	h - d - T70 - T7	·	Foglio 2/2
	Campione	niscela i rinc	he da T70 a T7	5 - RISULTATI	ANALISI
Analita	Concentrazione (mg/kg ss)	Incertezza	Valore (Imite	(mg/kg ss) (*)	Metodo
	(mg/kg dd/		Colonna A	Colonna B	
			omposti Inorganici		
Arsenico	< 5	-	20	50	EPA 3051A/2007 + EPA 6010C/2007
Berillio	< 1	_	2	10	EPA 3051A/2007 + EPA 6010C/2007
Cadmio	0.2	±0.1	2	15	EPA 3051A/2007 + EPA 6010C/2007
Cobalto	< 5.0	-	20	250	EPA 3051A/2007 + EPA 6010C/2007
Cromo totale	< 15	-	150	800	EPA 3051A/2007 + EPA 6010C/2007
Mercurio	< 1	-	1	5	EPA 3051A/2007 + EPA 6010C/2007
Nichel	< 35	-	120	500	EPA 3051A/2007 + EPA 6010C/2007
Piombo	< 10	-	100	1000	EPA 3051A/2007 + EPA 6010C/2007
Rame	< 10	-	120	600	EPA 3051A/2007 + EPA 6010C/2007
Selenio	< 1	_	3	15	EPA 3051A/2007 + EPA 6010C/2007
Zinco	< 50	-	150	1500	EPA 3051A/2007 + EPA 6010C/2007
			Idrocarburi		217 0001772007 1 EF A 0010G/2007
!drocarburi totali	26	-			calcolo
frocarburi leggeri C<12	< 1	-	10	250	EPA 5021A/2003+EPA8260C/2006
frocarburi pesanti C>12	< 25	-	50	750	ISO 16703/2004

Caratteristiche Fisiche	U.M.	Risultato	Incertezza	Limite	Metodo
Residuo secco a 105°C	%	99.4	± 7,0	25	CNR IRSA 2 Q 64 Vol. 2 1984
Umidità	%	0.6	-		CNR IRSA 2 Q 64 Vol. 2 1984
Sopra vaglio 2 mm	% ss	40.2	± 6.0	-	DM 13/09/1999 GU n. 248 dei 21/10/1999 Met. II Parie 1
Sotto vaglio 2 mm	% ss	59.8	± 9.0	-	DM 13/09/1999 GU n. 248 del 21/10/1999 Met. Il Parle 1

(*) I limiti di legge si riferiscono alla concentrazione soglia di contaminazione nel suolo e nel sottosuolo riferiti alla specifica destinazione d'uso dei siti da bonificare.

Per la Colonna A: siti ad uso Verde Pubblico, Privato e Residenziale.

Per la Colonna B: siti ad uso Commerciale ed Industriale.

Il Consulente Responsabile di Commessa dott. ing. Mareella Venturelli

Il Vice Direttore di Laboratorio dott, ing, Vincenzo Arena

C.P. 287 - 93100 Caltanissetta

Tel.:

0934 565012

Fax.:

0934 575422

Capitale Sociale € 102,774,92 Timbro a secco e-mail: Protocollo Nº CCA 003 946 Luogo: Certificato Nº Data accettazione: 02/03/2011 inizio 02/03/2011 Data prova: fine 04/03/2011 Divisione:

info@sidercem.it Laboratorio Sidercem di Caltanissetta

Chimica

CCC 018 762

04/03/2011

Materiale: Terra e roccia da scavo

Amhiente Settore:

Foglio 1/2

Richiedente:

dott. ing. Mario Liti in qualità di Responsabile di Commessa per il CG

Empedocle 2 s.c.p.a.

via Trieste, 76 - 48122 Ravenna

Oggetto:

Esecuzione di prove di Laboratorio a sostegno della progettazione esecutiva relative alle attività prodromiche connesse ai lavori di adeguamento a quattro corsie della S.S. 640 di

Porto Empedocle 2º Lotto, tratto dal Km 44+000 allo svincolo con l'A19

Ente appaltante:

ANAS S.p.A. - Direzione Generale Roma

Contraente Generale /

Committente:

Empedocle 2 s.c.p.a.

Materiale:

Terra e roccia da scavo

Sigla Campione:

Miscela Trinche da T76 a T84

- (1) La provenienza e le caratteristiche del materiale sono dichiarate e sottoscritte dal Committente.
- (2) Il campione era in giacenza presso il Laboratorio della Sidercem s.r.l. (cfr. Prot. Sidercem n. 3766 del 01/12/2010), il quale aveva provveduto al ritiro presso i siti stabiliti dal Committente.
- (3) Il presente certificato è costituito di 2 fogli numerati da 1 a 2.
- (4) Il presente certificato viene autenticato dalla Sidercem s.r.l. di Caltanissetta mediante l'apposizione su ciascun foglio del timbro a secco visibile in alto. In assenza del timbro a secco il certificato è da ritenersi contraffatto.
- (5) Le copie vengono autenticate dalla Sidercem s.r.l. di Caltanissetta mediante l'apposizione su ciascun foglio del timbro a secco visibile in alto. In assenza del timbro a secco la copia è da ritenersi contraffatta.

CERTIFICATO DI PROVA

ANALISI CHIMICA

[D.Lgs 152/2006 Parte quarta Titolo V All. 5 Tab. 1]

Il Consulente Responsabile di Commessa dott. ing. Marcella Venturelli

Il Vice Directore di Laboratorio dott. ing Vincenzo Arena

C.da Calderaro (Zona Ind.)

C.P. 287 - 93100 Caltanissetta

Tel.:

0934 565012

Fax.: e-mail: 0934 575422 info@sidercem.it

Timbro a secco Protocollo Nº

CCA

003 946 Luogo: 02/03/2011

Laboratorio Sidercem di Caltanissetta

Certificato Nº

Data accettazione:

Inizio

02/03/2011

CCC 018 762

04/03/2011

Data prova: fine 04/03/2011

Ambiente

Materiale:

Terra e roccia da scavo

Divisione: Settore:

Chimica

Englin 2/2

	Campione N	liscela Trino	che da T76 a T8	4 - RISULTATI	ANALISI
Analita	Concentrazione (mg/kg ss)	Incertezza	Valore limite (mg/kg ss) (*)		Metodo
	(118.118		Colonna A	Colonna B	
			Composti Inorganici		
Arsenico	< 5	-	20	50	EPA 3051A/2007 + EPA 6010C/2007
Berillio	< 1	-	2	10	EPA 3051A/2007 + EPA 6010C/2007
Cadmio	0.3	±0.1	2	15	EPA 3051A/2007 + EPA 6010C/2007
Cobalto	< 5.0	-	20	250	EPA 3051A/2007 + EPA 6010C/2007
Cromo totale	< 15	-	150	800	EPA 3051A/2007 + EPA 6010C/2007
Mercurio	< 1	-	1	5	EPA 3051A/2007 + EPA 6010C/2007
Nichel	< 35	-	120	500	EPA 3051A/2007 + EPA 6010C/2007
Piombo	< 10	-	100	1000	EPA 3051A/2007 + EPA 6010C/2007
Rame	< 10		120	600	EPA 3051A/2007 + EPA 6010C/2007
Selenio	1	_	3	15	EPA 3051A/2007 + EPA 6010C/2007
Zinco	< 50	_	150	1500	EPA 3051A/2007 + EPA 6010C/2007
			Idrocarburi		
Idrocarburi totali	26	-			calcolo
Irocarburi leggeri C<12	< 1	_	10	250	EPA 5021A/2003+EPA8260C/2006
frocarburi pesanti C>12	< 25	-	50	750	ISO 16703/2004

Caratteristiche Fisiche	U.M.	Risultato	Incertezza	Limite	Metodo
Residuo secco a 105°C	%	98.6	± 6.9	25	CNR IRSA 2 Q 64 Vol. 2 1984
Umidità	%	11.4	_	-	CNR IRSA 2 Q 64 Vol. 2 1984
Sopra vaglio 2 mm	% ss	32.3	± 4.8	-	DM 13/09/1999 GU n. 248 del 21/10/1999 Met. Il Parte 1
Sotto vaglio 2 mm	% ss	67.7	± 10.2	-	DM 13/09/1999 GU n. 248 del 21/10/1999 Met. Il Parte 1

(*) I limiti di legge si riferiscono alla concentrazione soglia di contaminazione nel suolo e nel sottosuolo riferiti alla specifica destinazione d'uso dei siti da bonificare.

Per la Colonna A: siti ad uso Verde Pubblico, Privato e Residenziale.

Per la Colonna B: siti ad uso Commerciale ed Industriale.

Il Consulente Responsabile di Commessa

dott. ing. Mardella Venturelli

Il Vice Direttoffe di Laboratorio dott, ing incenzo Arena

C.P. 287 - 93100 Caltanissetta

Tel.:

0934 565012

Fax.:

0934 575422

Timbro a secco Protocollo Nº **CCA**

e-mail:

info@sidercem.it

Certificato Nº

Data accettazione:

Data prova:

02/03/2011 02/03/2011

003 946

Luogo:

Laboratorio Sidercem di Caltanissetta

CCC 018 763

04/03/2011

inizio fine 04/03/2011

Divisione:

Ambiente

Materiale: Terra e roccia da scavo Settore:

Chimica

Foglio 1/2

Richiedente:

dott. ing. Mario Liti in qualità di Responsabile di Commessa per il CG

Empedocle 2 s.c.p.a.

via Trieste, 76 - 48122 Ravenna

Oggetto:

Esecuzione di prove di Laboratorio a sostegno della progettazione esecutiva relative alle attività prodromiche connesse ai lavori di adeguamento a quattro corsie della S.S. 640 di

Porto Empedocle 2º Lotto, tratto dal Km 44+000 allo svincolo con l'A19

Ente appaltante:

ANAS S.p.A. - Direzione Generale Roma

Contraente Generale /

Committente:

Empedocle 2 s.c.p.a.

Materiale:

Terra e roccia da scavo

Sigla Campione: Profondità foro di sondaggio: 73,5 m

SI 26 bis

- (1) La provenienza e le caratteristiche del materiale sono dichiarate e sottoscritte dal Committente.
- (2) Il campione era in giacenza presso il Laboratorio della Sidercem s.r.l. (cfr. Prot. Sidercem n. 3767del 01/12/2010), il quale aveva provveduto al prelievo tramite perforazione a carotaggio continuo.
- (3) Il presente certificato è costituito di 2 fogli numerati da 1 a 2.
- (4) Il presente certificato viene autenticato dalla Sidercem s.r.l. di Caltanissetta mediante l'apposizione su ciascun foglio del timbro a secco visibile in alto. In assenza del timbro a secco il certificato è da ritenersi contraffatto.
- (5) Le copie vengono autenticate dalla Sidercem s.r.l. di Caltanissetta mediante l'apposizione su ciascun foglio del timbro a secco visibile in alto. In assenza del timbro a secco la copia è da ritenersi contraffatta.

CERTIFICATO DI PROVA

ANALISI CHIMICA

[D.Lgs 152/2006 Parte quarta Titolo V All. 5 Tab. 1]

Il Consulente Responsabile di Commessa dott. ing. Marcella Venturelli

Il Vice Direttore di Laboratorio dott. ing. Vincenzo Arena

C.da Calderaro (Zona Ind.)

C.P. 287 - 93100 Caltanissetta

Tel.:

0934 565012

Fax.: e-mail:

Luogo:

0934 575422

Protocollo Nº

CCA 003 946

Timbro a secco

info@sidercem.it

Certificato Nº

Data accettazione:

Data prova:

02/03/2011

Laboratorio Sidercem di Caltanissetta

CCC 018 763

04/03/2011

inizio 02/03/2011

Ambiense

fine 04/03/2011

Materiale:

Terra e roccia da scavo

Divisione: Settore:

Chimica

Foolin 2/2

	C	ampione SI	26 bis - RISULT	TATI ANALISI	
Analita	Concentrazione (mg/kg ss)	incertezza	Valore limite (mg/kg ss) (*)		Metodo
	(gg 00)		Colonna A	Colonna B	
			Composti inorganici		
Arsenico	< 5	-	20	50	EPA 3051A/2007 + EPA 6010C/2007
Berillio	< 1	-	2	10	EPA 3051A/2007 + EPA 6010C/2007
Cadmio	0,3	±0,1	2	15	EPA 3051A/2007 + EPA 6010C/2007
Cobalto	8,0	±2	20	250	EPA 3051A/2007 + EPA 6010C/2007
Cromo totale	28	±7	150	800	EPA 3051A/2007 + EPA 6010C/2007
Mercurio	< 1	-	1	5	EPA 3051A/2007 + EPA 6010C/2007
Nichel	< 35	-	120	500	EPA 3051A/2007 + EPA 6010C/2007
Piombo	< 10	-	100	1000	EPA 3051A/2007 + EPA 6010C/2007
Rame	14	±4	120	600	EPA 3051A/2007 + EPA 6010C/2007
Selenio	< 1	•	3	15	EPA 3051A/2007 + EPA 6010C/2007
Zinco	61	±9,2	150	1500	EPA 3051A/2007 + EPA 6010C/2007
			Idrocarburi		
Idrocarburi totali	26	- 1			calcolo
rocarburi leggeri C<12	< 1	- 1	10	250	EPA 5021A/2003+EPA8260C/2006
frocarburi pesanli C>12	< 25		50	750	ISO 16703/2004

Caratteristiche Fisiche	U.M.	Risultato	Incertezza	Limite	Metodo
Residuo secco a 105°C	%	99,8	± 7.0	25	CNR IRSA 2 Q 64 Vol. 2 1984
Umidità	%	< 0.5	-	•	CNR IRSA 2 Q 64 Vol. 2 1984
Sopra vaglio 2 mm	% ss	31,5	± 4.7		DM 13/09/1999 GU n. 248 del 21/10/1999 Met. Il Parte 1
Sotto vaglio 2 mm	% ss	68,5	± 10,3	-	DM 13/09/1999 GU n. 248 del 21/10/1999 Met. II Parte 1

(*) ! limiti di legge si riferiscono alla concentrazione soglia di contaminazione nel suolo e nel sottosuolo riferiti alla specifica destinazione d'uso dei siti da bonificare.

Per la Colonna A: siti ad uso Verde Pubblico, Privato e Residenziale.

Per la Colonna B: siti ad uso Commerciale ed Industriale.

Il Consulente Responsabile di Commessa

dott. ing. Matoella Venturelli

Il Vice Digettore di Laboratorio dott. ing Vincenzo Arena

04/03/2011

Laboratorio: C.da Calderaro (Zona Ind.)

Chimica

C.P. 287 - 93100 Caltanissetta

Tel.:

Settore:

Fax.:

0934 565012 0934 575422

Capitale Sociale, € 102 774,92 Timbro a secco info@sidercem.it e-mail: Protocollo Nº CCA 003 946 Luogo: Laboratorio Sidercem di Caltanissetta Certificato No Data accettazione: 02/03/2011 inizio 02/03/2011 Data prova: fine 04/03/2011 Divisione: Ambiente

Terra e roccia da scavo

Foglio 1/2

Richiedente:

CCC 018 764

dott. ing. Mario Liti in qualità di Responsabile di Commessa per il CG

Empedocle 2 s.c.p.a.

Materiale:

via Trieste, 76 - 48122 Ravenna

Oggetto:

Esecuzione di prove di Laboratorio a sostegno della progettazione esecutiva relative alle attività prodromiche connesse ai lavori di adeguamento a quattro corsie della S.S. 640 di

Porto Empedocle 2º Lotto, tratto dal Km 44+000 allo svincolo con l'A19

Ente appaltante:

ANAS S.p.A. - Direzione Generale Roma

Contraente Generale /

Committente:

Empedocle 2 s.c.p.a.

Materiale:

Terra e roccia da scavo

Sigla Campione: SI 27 Profondità foro di sondaggio: 97 m

- (1) La provenienza e le caratteristiche del materiale sono dichiarate e sottoscritte dal Committente.
- (2) Il campione era in giacenza presso il Laboratorio della Sidercem s.r.l. (cfr. Prot. Sidercem n. 3767del 01/12/2010), il quale aveva provveduto al prelievo tramite perforazione a carotaggio continuo.
- (3) Il presente certificato è costituito di 2 fogli numerati da 1 a 2.
- (4) Il presente certificato viene autenticato dalla Sidercem s.r.l. di Caltanissetta mediante l'apposizione su ciascun foglio del timbro a secco visibile in alto. In assenza del timbro a secco il certificato è da ritenersi contraffatto.
- (5) Le copie vengono autenticate dalla Sidercem s.r.l. di Caltanissetta mediante l'apposizione su ciascun foglio del timbro a secco vi sibile in alto. In assenza del timbro a secco la copia è da ritenersi contraffatta.

CERTIFICATO DI PROVA

ANALISI CHIMICA

[D.Lgs 152/2006 Parte quarta Titolo V All. 5 Tab. 1]

Il Consulente Responsabile di Commessa dott. ing. Marcella Venturelli

Il Vice Direttore di Laboratorio dott. ing. Vincenzo Arena

C.da Calderaro (Zona Ind.)

C.P. 287 - 93100 Caltanissetta

Tel.:

0934 565012

Fax.: e-mail:

Luogo:

0934 575422

Timbro a secco Protocollo Nº CCA

003 946

info@sidercem.it Laboratorio Sidercem di Caltanissetta

Certificato Nº

Data accettazione: Data prova:

02/03/2011 intzio 02/03/2011

CCC 018 764

04/03/2011

Materiale:

04/03/2011 Divisione: fine

Ambiente

Terra e roccia da scavo Settore: Chímica

		Campione	SI 27 - DICILI TA	TI ANIAL ICI	Foglio 2/2
Analita	Concentrazione (mg/kg ss)	Incertezza	Campione SI 27 - RISULTATI ANALISI Valore limite (mg/kg ss) (*)		Metodo
			Colonna A	Colonna B	1
			Composti Inorganici		
Arsenico	6		20	50	EPA 3051A/2007 + EPA 6010C/2007
Berillio	< 1		2	10	EPA 3051A/2007 + EPA 6010C/2007
Cadmio	0.3	±0,1	2	15	EPA 3051A/2007 + EPA 6010C/2007
Cobalto	5.0	±1,3	20	250	
Cromo totale	18	±4,5	150	800	EPA 3051A/2007 + EPA 6010C/2007
Mercurio	< 1	-	1	5	EPA 3051A/2007 + EPA 6010C/2007
Nichel	< 35		120	500	EPA 3051A/2007 + EPA 6010C/2007
Piombo	< 10		100		EPA 3051A/2007 + EPA 6010C/2007
Rame	17	±4		1000	EPA 3051A/2007 + EPA 6010C/2007
Selenio	2	±1	120	600	EPA 3051A/2007 + EPA 6010C/2007
Zinco	< 50	<u> </u>	3	15	EPA 3051A/2007 + EPA 6010C/2007
21100	\ 50		150	1500	EPA 3051A/2007 + EPA 6010C/2007
Idea and the state			Idrocarburi		
Idrocarburi totali	26				calcolo
rocarburi leggeri C<12	< 1	-	10	250	EPA 5021A/2003+EPA8260C/2006
Irocarburi pesanti C>12	< 25		50	750	ISO 16703/2004

Caratteristiche Fisiche	U.M.	Risultato	Incertezza	Limite	Metodo
Residuo secco a 105°C	%	99.8	± 7.0	25	
Umidità	%	< 0.5			CNR IRSA 2 Q 64 Vol. 2 1984
			· · · · · · · · · · · · · · · · · · ·	-	CNR IRSA 2 Q 64 Vol. 2 1984
Sopra vaglio 2 mm	% ss 32	32.1	± 4.87	-	DM 13/09/1999 GU n. 248 del 21/10/1999 Met. II Parte 1
Sotto vaglio 2 mm	% ss	67.9	± 10,2	-	DM 13/09/1999 GU n. 248 del 21/10/1998 Met. Il Parte 1

(*) I limiti di legge si riferiscono alla concentrazione soglia di contaminazione nel suolo e nel sottosuolo riferiti alla specifica destinazione d'uso dei siti da bonificare.

Per la Colonna A: siti ad uso Verde Pubblico, Privato e Residenziale.

Per la Colonna B: siti ad uso Commerciale ed Industriale.

Il Consulente Responsabile di Commessa

dott. ing. Mardella Venturelli

Il Vice Direttore di Laboratorio dott ing Vincenzo Arena