Regione Autonoma della Sardegna

Provincia di Sassari

Comune di Ittiri (SS)

Comune di Villanova Monteleone (SS)

Committente:

RWE RENEWABLES ITALIA S.R.L.

via Andrea Doria, 41/G - 00192 Roma P.IVA/C.F. 06400370968

Titolo del Progetto:

PARCO EOLICO "ALAS"

- Comuni di Ittiri e Villanova Monteleone (SS) -

Documento:
STUDIO DI IMPATTO AMBIENTALE

ID PROGETTO:

PEALAS

DISCIPLINA:

P

TIPOLOGIA:

FORMATO:

A4

Elaborato:

Analisi costi-benefici

FOGLIO: SCALA: Nome file: PEMN-S02.26_Analisi costi-benefici

A cura di:

Progettista:

Ing. Giuseppe Frongia

Gruppo di progettazione:

Ing. Giuseppe Frongia

(coordinatore e responsabile)

Ing. Marianna Barbarino

Ing. Enrica Batzella

Ing. Antonio Dedoni

Ing. Gianluca Melis

Ing. Emanuela Spiga

Dott. Andrea Cappai

Dott. Matteo Tatti

Rev:	Data Revisione	Descrizione Revisione	Redatto	Controllato	Approvato
1.1011					
00	15/07/2020	PRIMA EMISSIONE	IAT	GF	RWE

COD. ELABORATO

PEALAS-S02.26

TITOLO
ANALISI COSTI-BENEFICI

RWE

PAGINA

2 di 42

INDICE

1	L'ANAL	ISI CO	OSTI - BENEFICI: ASPETTI TEORICI E METODOLOGICI	4
1.1	Pre	emess	a generale	4
1.2			one alla valutazione degli effetti esterni ed il concetto di este nergetico	
1.3			azione delle esternalità: disponibilità a pagare e disponibilità pensazione	
1.4	II v	alore	economico totale	8
1.5	Te	cniche	e di valutazione	10
1.6	II n	netodo	o del valore attuale netto	14
2	IL CAS	DIS	TUDIO	15
2.1	Pre	emess	a	15
2.2	Atr	nosfei	ra, consumo di risorse non rinnovabili, salute pubblica e biod obale	iversità a
	2.2.1	_	essa	_
	2.2.2		sternalità della produzione energetica	
	2.2.3	Bilan	cio delle esternalità associate alla realizzazione del parco eolico	24
2.3	Pa	esagg	io	25
2.4	Ru	more.		27
2.5	Ve	getazi	one	32
2.6	Us	o ed o	ccupazione di suolo	32
	2.6.1	Prem	essa	32
	2.6.2		azione temporanea e permanente di suolo	
	2.6.3	Limit	azioni all'edificabilità	34
2.7	Ca	mpi el	ettromagnetici	35
2.8	Co	mpon	ente socio-economica	35
	2.8.1	Cons	olidamento della viabilità comunale	35
	2.8.2	_	mento di imposte locali	
	2.8.3	-	ppo progettuale dell'iniziativa	
	2.8.4		esso costruttivo	
	2.8.5		gestionale	
		8.5.1	Impiego di personale	
		8.5.2	Manutenzione ordinaria e straordinaria aerogeneratori	
	2.8.6	.8.5.3 Misu	Altri costi di gestione e monitoraggi ambientalire compensative a favore dei comuni interessati	
_			·	
3	(JUAI)R	O RIE	PILOGATIVO E CONCLUSIONI	40

COMMITTENTE RWE Renewables Italia S.r.l. Via Andrea Doria, 41/G - Roma (RM)	RWE	OGGETTO PARCO EOLICO "ALAS" STUDIO DI IMPATTO AMBIENTALE	COD. ELABORATO	PEALAS-S02.26
iat consulenza progetti.it		TITOLO ANALISI COSTI-BENEFICI	PAGINA	3 di 42

COMMITTENTE RWE Renewables Italia S.r.l. Via Andrea Doria, 41/G - Roma (RM)	RWE	OGGETTO PARCO EOLICO "ALAS" STUDIO DI IMPATTO AMBIENTALE	COD. ELABORATO PEALAS	S-S02.26
at consulen	ZA	TITOLO ANALISI COSTI-BENEFICI	PAGINA	4 di 42
www.iatprogetti.it				

1 L'ANALISI COSTI - BENEFICI: ASPETTI TEORICI E METODOLOGICI

1.1 Premessa generale

In termini generali, nella valutazione di un progetto o, più in generale, di una politica d'azione nasce di frequente l'esigenza di effettuare analisi e verifiche che vanno aldilà del semplice controllo del flusso monetario connesso all'investimento. A tale scopo, in particolare, le attuali norme sulle opere pubbliche prevedono obbligatoriamente il ricorso all'analisi costi-benefici come strumento di valutazione, attribuendogli un ruolo di crescente importanza.

Una delle caratteristiche peculiari dell'analisi costi-benefici è la separazione fra analisi finanziaria ed analisi economica che, pur avendo entrambe l'obiettivo della determinazione del flusso attualizzato dei benefici e costi relativi ad un dato investimento, così da rilevarne gli eventuali vantaggi, muovono da differenti punti di vista, quello del singolo per la prima e quello della collettività per la seconda. A tale proposito, si fa rilevare che l'investimento pubblico, a differenza di quello privato, avente come obiettivo prioritario la redditività dei capitali impiegati, non viene intrapreso al solo scopo di acquisire entrate monetarie a vantaggio dell'amministrazione interessata, ma soprattutto per assicurare un incremento di reddito (o benessere) a favore della collettività. A livello di semplice analisi finanziaria si ha a che fare con flussi di costi ed entrate, espressi in unità monetarie; tale analisi tende a stabilire soltanto se un progetto è fattibile in senso assoluto, perché darà un profitto. Naturalmente, affinché un progetto sia realizzabile, occorre comunque che i costi siano inferiori al *budget* stanziato per il finanziamento. Tale circostanza, se può talvolta essere sufficiente per l'analisi di progetti finanziati da soggetti privati, il cui scopo principale è la massimizzazione del profitto, non lo è per le opere finanziate dagli enti pubblici.

La teoria alla base dell'Analisi economica costi-benefici (ACB) è stata sviluppata principalmente nel corso degli ultimi 50 anni e si fonda sul concetto di "preferenza sociale". Le "preferenze sociali", a favore o contro qualcosa, sono legate da regole rigorose e assiomi ai concetti di "utilità" o "Benessere". Le preferenze si manifestano nel "mercato" attraverso decisioni espresse in termini di volontà di "spendere" o "non spendere" per un determinato obiettivo. Quindi "disponibilità a pagare" diventa il mezzo principale di misura le preferenze e il denaro diventa lo strumento di misurazione che permette l'aggregazione di preferenze.

Sebbene l'analisi costi-benefici abbia origine dalla necessità dell'operatore pubblico di dotarsi di uno strumento di calcolo per orientare le proprie scelte di intervento, poiché la stessa basa il proprio giudizio di opportunità anche su criteri sociali, l'ACB è in fase di crescente applicazione nei processi decisionali riguardanti la valutazione degli impatti ambientali afferenti iniziative progettuali in campo pubblico e/o privato.

Al fine di contribuire al processo decisionale concernente il proposto progetto di un nuovo parco

COMMITTENTE RWE Renewables Italia S.r.l. Via Andrea Doria, 41/G - Roma (RM)	RWE	OGGETTO PARCO EOLICO "ALAS" STUDIO DI IMPATTO AMBIENTALE	COD. ELABORATO	PEALAS-S02.26
iat consulenza e progetti.it		TITOLO ANALISI COSTI-BENEFICI	PAGINA	5 di 42

eolico nei territori di Ittiri e Villanova Monteleone (SS), quanto segue si propone, pertanto, di introdurre nella valutazione ambientale gli interessi degli interlocutori sociali, attraverso la valutazione di quelle che sono le principali esternalità positive e negative associate all'iniziativa, come più oltre definite e individuate.

In assenza di metodologie consolidate per la valutazione delle "esternalità" ambientali connesse agli impianti eolici, da condursi attraverso l'identificazione degli impatti più significativi e la loro quantificazione economica, quanto segue deve essere necessariamente inteso come un contributo analitico-conoscitivo alla valutazione di impatto complessiva e non come una sintesi della valutazione stessa, più diffusamente articolata e sviluppata nei restanti documenti dello Studio di impatto ambientale.

1.2 Introduzione alla valutazione degli effetti esterni ed il concetto di esternalità nel settore energetico

L'Analisi costi-benefici è ancora considerato uno strumento controverso, in particolare nell'ambito dell'analisi ambientale. Ogni progetto è, infatti, accompagnato da effetti "collaterali" per i quali non esiste un prezzo di mercato, giacché lo stesso implica tipicamente, oltre a costi e benefici finanziari, effetti non direttamente monetizzabili, definiti comunemente esternalità o effetti indiretti.

Il progressivo incremento dei consumi energetici associato alla crescita delle economie ha comportato, negli ultimi decenni, l'intensificarsi degli impatti ambientali locali e il manifestarsi di cambiamenti dell'ambiente su scala globale.

Intorno a questo tema si è sviluppato un esteso corpo di letteratura che, in parte, poggia sulla precedente riflessione economica in materia di effetti esterni.

Per esternalità s'intende un effetto esercitato dall'azione di un "agente", per es. attraverso la produzione o il consumo di un bene, su un altro "agente". Un caso classico è quello del fumo di sigaretta. L'agente A fuma una sigaretta (azione dalla quale trae piacere), ma la sua azione genera un impatto negativo sull'agente B, che non tollera il fumo. In altri termini, nella funzione di utilità di B compare una variabile (la sigaretta) che è sotto il controllo dell'agente A, il cui valore è deciso dall'agente A, senza tener conto dell'effetto su B, e la cui crescita distrugge l'utilità (o benessere) dell'agente B. In questo caso si parla di esternalità negativa. Ulteriori condizioni affinché si possa parlare di esternalità negativa, evidenziate dalla letteratura, sono: che l'esternalità sia un effetto non intenzionale di un'attività comunque legittima (Mishan, 1971); che l'agente che causa il danno non compensi il danneggiato (Baumol e Oates, 1988).

Per completezza, si precisa che vi sono anche casi di esternalità positive. Per esempio, se si considerano i due soggetti A e B come due vicini di casa, e si assume che A possieda un giardino adiacente alla casa di B e da essa visibile, allora siamo di fronte a un'esternalità positiva: l'utilità di B cresce come effetto della crescita della qualità del giardino di A, una variabile che non è sotto il

COMMITTENTE RWE Renewables Italia S.r.l. Via Andrea Doria, 41/G - Roma (RM)	RWE	OGGETTO PARCO EOLICO "ALAS" STUDIO DI IMPATTO AMBIENTALE	COD. ELABORATO	PEALAS-S02.26
iat consulenza progetti.it		TITOLO ANALISI COSTI-BENEFICI	PAGINA	6 di 42

controllo di B.

Sono possibili, inoltre, casi di funzioni di utilità che incorporano, senza possibilità di controllo da parte dell'agente, variabili presenti in funzioni di produzione di altri agenti: una persona che vive in prossimità di una centrale elettrica a forte impatto inquinante è danneggiata dalla bassa qualità dell'aria conseguente alle emissioni dell'impianto.

Sebbene questa definizione possa apparire semplice e univoca, e sebbene il concetto di esternalità venga studiato dal tempo di Alfred Marshall, uno dei padri della teoria economica, esso è caratterizzato da notevoli ambiguità.

Tibor Scitovsky, in un famoso articolo sull'argomento (Scitovsky, 1954), lo definisce uno dei concetti più elusivi della teoria economica. In particolare, tale ambiguità concerne la distinzione tra esternalità tecnologiche ed esternalità pecuniarie (Viner, 1931). I due esempi della sigaretta e del giardino costituiscono casi di esternalità tecnologiche, ovvero di effetti esterni che si realizzano indipendentemente dai meccanismi di mercato. Al contrario, le esternalità pecuniarie sono una conseguenza del funzionamento del mercato e si realizzano in virtù di variazioni dei prezzi; generalmente, esse si riferiscono a variazioni dei prezzi degli input produttivi utilizzati da un'impresa, conseguenti a una variazione dell'output di un'altra impresa. Per es., un produttore tessile, che insedia una nuova attività produttiva in un'area in cui vi è piena occupazione, causa una crescita del costo del lavoro in quell'area, arrecando un danno economico alle altre imprese presenti nello stesso territorio. Analogamente, l'insediamento di un vasto centro direzionale in un'area può causare la crescita dei prezzi degli immobili presenti in quel territorio, arrecando vantaggi economici ai proprietari di case (esternalità pecuniaria positiva) e svantaggi economici a coloro che intendono comprare o prendere in affitto una casa (esternalità pecuniaria negativa).

Le esternalità pecuniarie sono state al centro di un ampio dibattito nella teoria economica che si è essenzialmente concentrato sull'opportunità di un intervento pubblico finalizzato a controllarle, come pure sul loro funzionamento in un contesto statico oppure dinamico.

Con il diffondersi dell'industrializzazione e il conseguente manifestarsi dei problemi ambientali, le esternalità tecnologiche (in particolare quelle negative) hanno assunto una crescente importanza.

Un particolare tipo di esternalità è quella da congestione da traffico automobilistico, nella quale gli agenti sono nello stesso tempo danneggianti e danneggiati. Nel caso in cui il danno si scarichi direttamente sull'ambiente e solo indirettamente coinvolga l'uomo, si può parlare di esternalità ambientale (per es., acidificazione delle foreste). Essa, in relazione alla scala geografica prescelta, può avere carattere locale (per es., elevate concentrazioni di particolati in una città), regionale (per es., piogge acide) o globale (per es., riscaldamento globale). L'ampiezza della scala è rilevante poiché la sua estensione comporta spesso il crescere dell'incertezza scientifica intorno al fenomeno e della complessità negoziale associata agli accordi internazionali necessari per fronteggiare il problema.

COMMITTENTE RWE Renewables Italia S.r.l. Via Andrea Doria, 41/G - Roma (RM)	RWE	OGGETTO PARCO EOLICO "ALAS" STUDIO DI IMPATTO AMBIENTALE	COD. ELABORATO	PEALAS-S02.26
lat consulent e progett	ZA	TITOLO ANALISI COSTI-BENEFICI	PAGINA	7 di 42
www.iatprogetti.it				

È proprio il manifestarsi delle esternalità ambientali di carattere globale ad aver dato un forte impulso al concetto di sviluppo sostenibile. Secondo la definizione del Rapporto Brundtland (WCED, 1987), per sviluppo sostenibile s'intende uno sviluppo che soddisfi i bisogni delle generazioni presenti senza compromettere le possibilità delle generazioni future di soddisfare i propri. Pur nella sua concisione, tale definizione esprime un concetto alquanto complesso; cruciali, in esso, sono le due idee di equità intergenerazionale ed equità intragenerazionale: affinché vi sia sostenibilità, occorre che non solo le generazioni future possano realizzare i propri obiettivi, ma anche che quelle presenti, in particolare quelle appartenenti ai paesi poveri, possano soddisfare i propri bisogni.

Pertanto, la protezione dell'ambiente e lo sviluppo armonico dei paesi poveri costituiscono i due cardini dell'idea di sostenibilità: la riflessione sulla reale possibilità di coesistenza tra questi due obiettivi costituisce un tema di grande interesse. Numerosi autori hanno esplorato il tema della sostenibilità da diversi punti di vista.

Dal punto di vista economico, le esternalità rappresentano una forma di fallimento del mercato, ovvero esistono in quanto non vi è un mercato che, assegnando a esse un prezzo, realizzi un'allocazione ottimale delle risorse.

L'incorporazione dei costi esterni nel prezzo dei beni costituisce l'oggetto della politica ambientale. Essa può essere realizzata essenzialmente in due modi: attraverso una strategia di comando e controllo, ossia ricorrendo a standard ambientali restrittivi il cui superamento sia sanzionato, oppure, attraverso gli strumenti economici di controllo dell'inquinamento (tasse pigouviane, permessi negoziabili d'inquinamento) che, non punitivi, sfruttano la razionalità degli agenti per portarli nel punto di esternalità ottima. Questa idea è alla base della tassazione energetico-ambientale (tasse sulle emissioni, carbon tax, tasse sul contenuto energetico dei combustibili, ecc.).

Tanto l'approccio di comando e controllo quanto gli strumenti economici sono tesi a internalizzare l'esternalità, ovvero a farne ricadere il costo sull'inquinatore, in applicazione del principio "chi inquina paga". Pertanto, più in generale, per internalizzazione dell'esternalità s'intende la sua considerazione all'interno del sistema economico, attraverso forme di regolazione o di negoziazione privata tra danneggianti e danneggiati.

1.3 Monetizzazione delle esternalità: disponibilità a pagare e disponibilità ad accettare una compensazione

I due concetti con cui, più di frequente, si misura in termini monetari il danno ambientale sono quelli di *Disponibilità a Pagare* (Willingness to pay - WTP), per evitare un danno ambientale, e *Disponibilità ad Accettare una Compensazione* (Willingness to accept - WTA), per un danno ambientale subito. In termini più rigorosi, si tratta delle misure hicksiane del surplus del

COMMITTENTE RWE Renewables Italia S.r.l. Via Andrea Doria, 41/G - Roma (RM)	RWE	OGGETTO PARCO EOLICO "ALAS" STUDIO DI IMPATTO AMBIENTALE	COD. ELABORATO	PEALAS-S02.26
iat consulenza e progetti.		TITOLO ANALISI COSTI-BENEFICI	PAGINA	8 di 42

consumatore (ossia la differenza tra il prezzo che un consumatore sarebbe disposto a pagare per comprare una determinata quantità di un bene e quello effettivamente pagato), che fanno riferimento ai concetti di variazione compensativa e variazione equivalente. La prima rappresenta la somma di denaro che, sottratta all'agente, previene il verificarsi di un danno ambientale nel futuro (WTP); la seconda, invece, rappresenta l'ammontare di denaro che deve essere dato all'agente per compensarlo della perdita di benessere subita a seguito di un danno ambientale (WTA).

Numerosi studi, sia empirici sia teorici (Bishop e Heberlein, 1979; Hanemann, 1991; Shogren et al., 1994), mostrano come queste due misure non siano equivalenti, essendo la seconda più elevata della prima. David Brookshire e Don Coursey (1987) hanno evidenziato come la differenza tra WTA e WTP possa essere notevole (tra 2,4 e 61 volte), mentre John Horowitz e Kenneth McConnell (2002) hanno rilevato come il rapporto WTA/WTP sia più alto per i beni pubblici rispetto a quelli privati.

All'origine della divergenza tra WTA e WTP vi sono ragioni che appartengono sia alla sfera dell'economia sia a quella della psicologia. Tra le prime, va citato il ruolo dell'effetto reddito e dell'effetto sostituzione, la possibilità di un atteggiamento di protesta verso il pagamento di una somma di denaro per un danno subito (Mitchell e Carson, 1989) e il fatto che la WTP, al contrario della WTA, sia limitata da un vincolo di bilancio. Tra le seconde, si ricordano la teoria della dissonanza cognitiva e la *prospect theory* di Daniel Kahneman e Amos Tversky (1979), che mostrano come gli agenti abbiano, nel dominio dei guadagni, comportamenti diversi rispetto al dominio delle perdite: alla perdita di un bene è annesso un valore maggiore del guadagno derivante dall'acquisto del medesimo bene.

Sul piano operativo, la possibilità di valori di WTA molto elevati, e conseguentemente di compensazioni monetarie per danni ambientali eccessivamente onerose per le imprese, ha indotto studiosi prestigiosi, quali i due Nobel per l'economia Kenneth Arrow e Robert Solow, a suggerire l'utilizzo della WTP nella monetizzazione delle esternalità (NOAA, 1993).

1.4 Il valore economico totale

La disponibilità a pagare per proteggere un bene ambientale (per es., un parco naturale) da possibili danni esprime il *Valore Economico Totale* (VET) del bene stesso.

Il VET è la somma di tre valori: valore d'uso, valore d'opzione, valore di esistenza.

Il primo si riferisce all'uso corrente del bene (per es., raccolta della legna), il secondo a un uso potenziale che potrà esservi nel futuro (per es., visitare il parco tra dieci anni), il terzo alla disponibilità a pagare per la semplice esistenza del bene, indipendentemente da qualsiasi uso, presente e futuro.

COMMITTENTE RWE Renewables Italia S.r.I. Via Andrea Doria, 41/G - Roma (RM)	RWE	OGGETTO PARCO EOLICO "ALAS" STUDIO DI IMPATTO AMBIENTALE	COD. ELABORATO	PEALAS-S02.26
Calat CONSULENZA PROGETTI		TITOLO ANALISI COSTI-BENEFICI	PAGINA	9 di 42
www.iatprogetti.it				

La considerazione del valore d'opzione e, ancor più, di quello di esistenza pone numerosi problemi, concettuali e operativi. Sul concetto di valore di opzione, e su quello più sottile di quasi-opzione (il valore dell'informazione resa disponibile dalla preservazione di una risorsa naturale), esiste un'ampia letteratura che si è concentrata tanto sulle condizioni della sua esistenza e sul ruolo dell'incertezza, quanto sulla questione del suo segno, positivo o negativo (Freeman, 1993).

Per quanto concerne il valore di esistenza (Krutilla, 1967), mentre secondo alcuni autori (Pearce e Turner, 1990) esso avrebbe origine in un atteggiamento altruista da parte degli interessati e sarebbe un concetto pregno di significato, secondo altri (Cummings e Harrison, 1995; Weikard, 2002) si tratterebbe invece di un concetto debole sul piano operativo e inutile. Tale opposizione di opinioni ha grande rilevanza a ragione delle implicazioni operative: la contabilizzazione, o meno, del valore di esistenza può alterare in modo significativo la valutazione monetaria di un danno ambientale.

A tale proposito, un caso paradigmatico è quello dell'incidente ambientale di cui fu protagonista la petroliera Exxon Valdez, che nel 1989 riversò sulle coste dell'Alaska circa 257.000 barili di greggio. Nella contabilizzazione del danno ambientale si tenne conto anche del valore di esistenza, scelta che concorse a originare un dibattito, scientifico oltre che legale, tra la compagnia Exxon, lo Stato dell'Alaska e il governo degli Stati Uniti.

In particolare, il concetto di valore di esistenza e la possibilità di una sua misurazione vennero attaccati in uno studio sponsorizzato dalla stessa Exxon (Desvouges et al., 1993), che costituisce un punto di riferimento della letteratura sull'argomento.

Altro nodo critico nella monetizzazione dei danni ambientali è quello concernente l'operazione di sconto, che tende ad assegnare un peso minore ai danni che si verificheranno nel futuro rispetto a quelli che occorrono nel presente. In altri termini, l'estensione della tradizionale operazione di sconto al campo ambientale costituisce un'implicita discriminazione delle generazioni future e, quindi, una negazione del concetto di sviluppo sostenibile. Questi limiti sono stati segnalati, in periodi diversi, da numerosi studiosi che hanno posto in discussione le due fonti dell'operazione di sconto: la preferenza temporale e il costo di opportunità sociale. Circa la prima, che sintetizza la preferenza assegnata dagli agenti al consumo di un bene oggi piuttosto che nel futuro, alcuni autori (Pigou, 1920; Strotz, 1956) hanno messo in evidenza l'irrazionalità dell'impazienza da cui ha origine tale preferenza temporale. Circa la seconda fonte, che riflette la produttività del capitale nel tempo, alcuni studiosi hanno criticato l'assunzione implicita che i rendimenti originati dall'investimento di un certo capitale siano totalmente reinvestiti di periodo in periodo e non consumati (Parfit, 1983).

L'ampiezza della letteratura critica sul tasso sociale di sconto, arricchita da interventi ora molto forti (Cowen e Parfit, 1992), ora più moderati (Markandya e Pearce, 1991), riflette la complessità della questione e il ruolo centrale dell'operazione di sconto nel contesto del dibattito ambientale.

COMMITTENTE RWE Renewables Italia S.r.I. Via Andrea Doria, 41/G - Roma (RM)	RWE	OGGETTO PARCO EOLICO "ALAS" STUDIO DI IMPATTO AMBIENTALE	COD. ELABORATO	PEALAS-S02.26
at consulenz	ZA	TITOLO ANALISI COSTI-BENEFICI	PAGINA	10 di 42
www.iatprogetti.it				

1.5 Tecniche di valutazione

Al di là dei problemi teorici illustrati (valore di opzione, valore di esistenza, tasso di sconto), la monetizzazione dei danni ambientali è caratterizzata da notevoli difficoltà di misurazione. Le tecniche di valutazione disponibili sono essenzialmente tre: i *prezzi edonici*, i *costi di viaggio*, la *valutazione contingente* di cui si è accennato al par. 1.3.

Le prime due monetizzano il valore dell'ambiente, per il quale non vi è un mercato di riferimento, facendo ricorso a un mercato surrogato. Nel caso dei prezzi edonici il mercato è quello immobiliare. L'idea su cui si basa questa tecnica è che, a parità di condizioni, il prezzo degli immobili tende a crescere al migliorare della qualità ambientale, e pertanto la riflette. La clausola, a parità di condizioni, è di estrema importanza poiché il valore di mercato degli immobili risente, oltre che della qualità ambientale, di altre classi di variabili: proprietà (caratteristiche e dimensione delle abitazioni); vicinato (caratteristiche del quartiere, disponibilità di servizi); accesso (disponibilità di mezzi di trasporto, qualità dei collegamenti con il centro cittadino). Pertanto, in alcuni casi, come nelle aree metropolitane, può accadere che il prezzo degli immobili sia alto nonostante la bassa qualità ambientale; al contrario, in aree rurali caratterizzate da elevata qualità ambientale esso può essere basso. Ciò accade a ragione dell'influenza che altre variabili, non ambientali, esercitano sul prezzo delle case.

La tecnica dei prezzi edonici, in definitiva, consiste in stime di carattere statistico che cercano di valutare in che misura ciascuna variabile, e quindi anche quelle ambientali, influisca sul prezzo degli immobili. Come oggetto d'indagine si può considerare la serie storica del prezzo degli immobili di un'area, oppure ci si può riferire ai prezzi di più aree nel medesimo anno (*cross section*).

In tal modo, dato un certo parco immobiliare, spiegando in che misura la variazione del suo valore monetario complessivo dipenda dalla qualità dell'ambiente, si perverrà alla monetizzazione del valore d'uso dell'ambiente.

Naturalmente, si tratta di esercizi piuttosto complessi che ereditano tutti i problemi tecnici dell'indagine statistica, tra cui la possibilità di correlazione tra variabili esplicative e/o di omissione di variabili rilevanti. Inoltre, la possibile imperfezione del mercato immobiliare, la bassa mobilità degli agenti e l'imperfetta informazione circa i danni ambientali possono inficiare in modo significativo la monetizzazione della qualità ambientale.

L'affidabilità della tecnica dei prezzi edonici crescerebbe, invece, qualora la variazione del prezzo delle case fosse legata al verificarsi di un preciso evento di carattere ambientale (per es., danni a un litorale in seguito a una perdita di combustibile).

Analoga a quella dei prezzi edonici è la tecnica dei costi di viaggio che, impiegata soprattutto per la valutazione di luoghi di ricreazione (per es., parchi), utilizza come mercato surrogato le spese

COMMITTENTE RWE Renewables Italia S.r.I. Via Andrea Doria, 41/G - Roma (RM)	RWE	OGGETTO PARCO EOLICO "ALAS" STUDIO DI IMPATTO AMBIENTALE	COD. ELABORATO	PEALAS-S02.26
Calat consulenza progetti		TITOLO ANALISI COSTI-BENEFICI	PAGINA	11 di 42
www.iatprogetti.it				

sostenute dagli interessati per raggiungere tali luoghi. Tra le difficoltà insite in tale tecnica occorre segnalare: ostacoli statistici (legati sia alla disomogeneità dei dati rilevati, sia alla stima di essi); individuazione delle classi di spese di viaggio da considerare (per es., carburante, pedaggi stradali, deterioramento auto, assicurazione auto); monetizzazione del costo opportunità del tempo libero speso per la visita al luogo oggetto di valutazione; individuazione dei viaggiatori fittizi per i quali la visita non è l'obiettivo principale.

La terza tecnica, quella della <u>valutazione contingente</u>, si differenzia dalle altre due in quanto non fa ricorso a un mercato surrogato, ma <u>deriva il valore del bene ambientale attraverso un'intervista</u>. Si tratta di una tecnica caratterizzata da una grande flessibilità che consente di valutare numerose classi di beni e di danni ambientali, riuscendo a catturare non solo i valori di uso corrente, ma anche il valore di opzione e quello di esistenza.

Essa è stata anche utilizzata, soprattutto nei paesi in via di industrializzazione, per la valutazione dei beni e delle infrastrutture pubbliche (per es., fognature, servizio raccolta rifiuti, acqua potabile), mentre nei paesi industrializzati è stata impiegata principalmente nella valutazione di beni ambientali e di politiche a favore dell'ambiente.

Nell'ambito di tale procedimento, il questionario viene somministrato in intervista diretta, oppure, più raramente, via posta o telefono. Esso si compone, tradizionalmente, di tre sezioni: una introduttiva, con informazioni e domande sulle attitudini ambientali del rispondente; una centrale, in cui si pone la domanda sulla WTP per un certo bene; una conclusiva, con domande sulle caratteristiche sociodemografiche del rispondente. La domanda sulla WTP può essere posta attraverso: a) domanda aperta; b) bidding game, ossia gioco al rialzo o al ribasso, partendo da un valore di WTP proposto dall'intervistatore che l'intervistato può accettare, nel qual caso seguirà un rialzo, o rifiutare, nel qual caso seguirà un ribasso; c) carte, quando il rispondente sceglie tra diversi valori monetari di riferimento indicati su una carta, alcuni dei quali riportano quanto l'intervistato già paga per alcuni servizi pubblici; d) take it or leave it, in cui il rispondente deve scegliere se accettare (take) o rifiutare (leave) un prezzo estratto a sorte da un insieme di prezzi precedentemente definiti.

Tra i limiti intrinseci della valutazione contingente vi è, in primo luogo, l'ipoteticità, ossia il fatto che l'intervista non dà luogo a pagamenti reali (Seip e Strand, 1992). In secondo luogo, può esservi un problema informativo dato che l'intervistato in molti casi non ha una conoscenza diretta del bene (per es., nella valutazione di una politica pubblica oppure di una specie minacciata da estinzione).

Più in generale, la tecnica della valutazione contingente è ostacolata da possibili distorsioni delle quali le più importanti sono (Mitchell e Carson, 1989):

• la distorsione strategica, legata ai fenomeni del *freeriding* (dichiarazione di una WTP più bassa di quella vera, nell'aspettativa che altri intervistati paghino per il bene proposto) e

COMMITTENTE RWE Renewables Italia S.r.l. Via Andrea Doria, 41/G - Roma (RM)	RWE	OGGETTO PARCO EOLICO "ALAS" STUDIO DI IMPATTO AMBIENTALE	COD. ELABORATO	PEALAS-S02.26
CONSULENZA E PROGETTI		TITOLO ANALISI COSTI-BENEFICI	PAGINA	12 di 42
www.iatprogetti.it				

dell'overpledging (dichiarazione di una WTP più alta di quella vera al fine di influenzare positivamente l'offerta per il bene valutato, nella convinzione che non vi sia una relazione tra quanto dichiarato e l'eventuale futuro pagamento reale);

- la distorsione da punto di partenza, ossia la possibilità che i valori di WTP dichiarati possano essere condizionati dai valori proposti nel *bidding game*;
- la distorsione da veicolo di pagamento, ovvero la probabilità di una risposta di protesta (WTP più bassa di quella vera) associata a uno strumento di pagamento (per es., tassa) che invece dovrebbe essere neutrale:
- la distorsione da vincolo di bilancio, ossia la possibilità che il rispondente esprima la propria
 WTP facendo riferimento non alle proprie condizioni economiche ma a un vincolo di bilancio ipotetico;
- la distorsione parte/tutto (fenomeno dell'embedding), ossia la possibilità di ampie variazioni nella WTP dichiarata a seconda che il bene sia valutato isolatamente oppure come parte di un insieme più ampio di beni;
- la distorsione da simbolicità, ossia la possibilità che il bene specifico oggetto di valutazione sia percepito dal rispondente come un simbolo dell'ambiente in generale, dando luogo a valutazioni eccessivamente elevate.

Ciascuna di queste distorsioni può comportare, rispetto alla WTP, errori sistematici (non validità) e/o errori casuali (non affidabilità). La possibilità di errori invalidanti, congiuntamente al citato episodio della Exxon Valdez, ha posto la valutazione contingente al centro di un ampio dibattito (Hausman, 1993; Bjornstad e Kahn, 1996) dai risvolti fortemente operativi, tanto da indurre la *National Oceanic and Atmospheric Administration* (NOAA, 1993) degli Stati Uniti a istituire un gruppo di studio (NOAA Panel) incaricato di definire linee guida sulla valutazione contingente.

Tra i suggerimenti del NOAA Panel vanno ricordati:

a) l'intervista diretta, svolta da un intervistatore; b) un pre-test, che precede il *survey* vero e proprio, finalizzato a individuare possibili effetti indotti dall'intervistatore o dall'uso di fotografie; c) l'esecuzione delle interviste in periodi di tempo distanti dall'evento che ha causato il danno, al fine di mitigare l'influenza di reazioni emotive negli intervistati; d) l'opportunità di ricordare al rispondente l'esistenza di beni sostituti; e) la produzione, da parte del governo federale, di survey e valori standard di riferimento, in particolare per le perdite di combustibile, che possano essere adottati come riferimento per successivi studi di valutazione contingente.

Nell'ambito della letteratura sulla valutazione dei danni ambientali va ricordato l'approccio dose/risposta che, pur non pervenendo a un'effettiva monetizzazione del danno, ambisce a definire in che misura una certa quantità di inquinante (dose) ha effetto sulla salute umana

COMMITTENTE RWE Renewables Italia S.r.l. Via Andrea Doria, 41/G - Roma (RM)	RWE	OGGETTO PARCO EOLICO "ALAS" STUDIO DI IMPATTO AMBIENTALE	COD. ELABORATO	PEALAS-S02.26
Calat consulenza progetti		TITOLO ANALISI COSTI-BENEFICI	PAGINA	13 di 42
www.iatprogetti.it				

(risposta), in termini di mortalità e morbilità. Definito tale effetto, la monetizzazione del danno alla salute umana e della morte costituisce un ulteriore, complesso esercizio che, coinvolgendo concetti quali VSL (*Value of Statistical Life*) e YOLL (*Years Of Life Lost*), necessariamente si svolge su un piano nel quale sono implicati anche i valori morali e, più in generale, l'etica.

In tale contesto, ExternE (*Externality from Energy*) certamente rappresenta un punto di riferimento della letteratura sulla valutazione dei danni ambientali originati dall'energia. ExternE è un progetto di ricerca della Commissione Europea (*European Commission* 1995a,b, 1999a,b, 2003) finalizzato a monetizzare le esternalità originate dall'uso dell'energia. Lo studio è caratterizzato da notevole estensione e complessità e, partendo da una metodologia comune, perviene alla monetizzazione delle esternalità dei diversi combustibili a livello di singolo paese europeo. Un possibile sentiero d'impatto degli inquinanti (*impact pathway*) adottato da ExternE è illustrato nella Figura 1.1, che offre un quadro sintetico della valutazione delle esternalità ambientali, mostrando i diversi e numerosi nodi critici del percorso che va dall'emissione inquinante al danno ambientale monetizzato. Ciascun nodo è oggetto di analisi quantitative, spesso modellistiche, e ciò conferma quanto l'operazione di monetizzazione delle esternalità rappresenti un esercizio complesso, soggetto a notevoli incertezze. I valori che emergono dalla monetizzazione, pertanto, devono necessariamente essere interpretati come un riferimento orientativo.

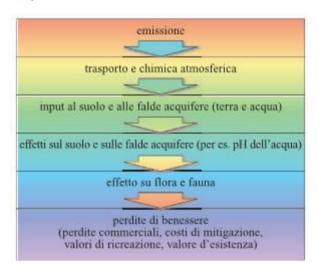


Figura 1.1: Dall'emissione ai costi ambientali (Commissione Europea, 1999)

Un ulteriore metodo di valutazione (metodo indiretto), infine, prevede la valutazione dell'impatto ambientale conseguente alla realizzazione del progetto, ricercando la relazione tra l'entità del fenomeno e quella dei danni conseguenti. In tal senso si può assumere un criterio fatto proprio già dalla Convenzione di Lugano, stabilendo che "la quantificazione del danno (o dell'impatto ndr.) debba basarsi sui costi delle soluzioni alternative, finalizzate all'introduzione nell'ambiente di

COMMITTENTE RWE Renewables Italia S.r.l. Via Andrea Doria, 41/G - Roma (RM)	RWE	OGGETTO PARCO EOLICO "ALAS" STUDIO DI IMPATTO AMBIENTALE	COD. ELABORATO PEALAS-S	302.26
Calat Consulenza PROGETTI		TITOLO ANALISI COSTI-BENEFICI	PAGINA 14	di 42
www.iatprogetti.it				

risorse equivalenti a quelle distrutte".

1.6 Il metodo del valore attuale netto

Il Valore Attuale Netto (VAN) di un progetto è un criterio di investimento che, operativamente, richiede lo sconto al tempo presente, ad un tasso determinato, della somma di tutti i benefici netti futuri (=benefici meno costi) derivanti dal progetto.

In pratica, il VAN fornisce la dimensione assoluta dei benefici netti ricavabili dal progetto stesso. Conseguentemente, con il criterio di investimento così formulato si assume che ogni progetto che presenti un VAN positivo risulti economicamente, o finanziariamente, ammissibile.

Una volta noto il flusso di cassa del progetto, ed individuato il saggio di sconto ottimale per lo stesso, il valore attuale netto risulta, sulla base della definizione datane sopra, dalla formula seguente:

$$VAN = \sum_{t=1}^{n} \frac{B_t - C_t}{(1+s)^t}$$

Il valore attuale netto è individuato come criterio di investimento perché, qualora non esistesse una concreta alternativa progettuale, cioè a dire che se il decisore (pubblico) non debba scegliere fra più progetti che si escludono vicendevolmente, l'opzione in esame s'intende accettata allorché sussista la condizione per cui il VAN > 0.

Il rispetto di questa condizione per l'accettazione del progetto esaminato risiede nel fatto che un VAN positivo, ossia un progetto caratterizzato da un flusso di benefici che supera il flusso dei costi, identifica un utilizzo delle risorse a disposizione volto ad incrementare il benessere della collettività interessata. Grazie alla contabilizzazione dei costi opportunità, un VAN positivo implica il fatto che l'alternativa progettuale è più conveniente dell'opzione zero; nel caso particolare di un VAN pari a zero, il progetto si trova al limite della convenienza economica.

Il decisore (pubblico) dovrà, peraltro, considerare criteri aggiuntivi per decidere sulla sua realizzazione o meno, poiché il benessere della collettività apparentemente non muta, ma potrebbero esistere benefici aggiuntivi che l'ACB tradizionale non considera.

COMMITTENTE RWE Renewables Italia S.r.l. Via Andrea Doria, 41/G - Roma (RM)	RWE	OGGETTO PARCO EOLICO "ALAS" STUDIO DI IMPATTO AMBIENTALE	COD. ELABORATO PEALAS	S-S02.26
Calat Consulenza PROGETTI		TITOLO ANALISI COSTI-BENEFICI	PAGINA	15 di 42
www.iatprogetti.it				

2 IL CASO DI STUDIO

2.1 Premessa

Quanto segue si propone di pervenire ad una monetizzazione dei principali effetti ambientali, positivi e negativi, attesi a seguito della realizzazione del proposto parco eolico "Alas", utili a fini di una sommaria analisi economica costi-benefici del progetto. L'obiettivo della presente analisi è, pertanto, la verifica della sostenibilità economico-ambientale della configurazione impiantistica di n. 11 WTG

In coerenza con quanto sviluppato nell'ambito del citato progetto ExternE, promosso dalla Commissione Europea, e in analogia con quanto proposto dal CESI Ricerca in ordine alla valutazione delle esternalità ambientali delle linee elettriche aeree ad alta tensione¹, la metodologia seguita è quella del "percorso degli impatti" (*impact pathway*). Tale metodologia prevede l'individuazione dei fattori agenti, la determinazione dell'impatto e la quantificazione di tale impatto in termini monetari (danno o beneficio).

Nello specifico sono state considerate le componenti ambientali più esposte e gli impatti più rilevanti per la specifica categoria progettuale, distinte in base al contesto di riferimento: globale o locale. Al contesto globale sono riconducibili le principali esternalità evitate dal proposto progetto, associate alla produzione energetica da fonte convenzionale.

Livello globale

Atmosfera, consumo di risorse non rinnovabili, salute pubblica e biodiversità

Livello locale

- Paesaggio
- Rumore
- Vegetazione
- Uso ed occupazione del suolo
- Campi elettrici e magnetici
- Componente socio-economica.

¹ CESI Ricerca, Esternalità delle linee elettriche. Metodi di quantificazione per i diversi comparti ambientali, 2008

COMMITTENTE RWE Renewables Italia S.r.l. Via Andrea Doria, 41/G - Roma (RM)	RWE	OGGETTO PARCO EOLICO "ALAS" STUDIO DI IMPATTO AMBIENTALE	COD. ELABORATO	PEALAS-S02.26
lat consulenza progetti		TITOLO ANALISI COSTI-BENEFICI	PAGINA	16 di 42
www.iatprogetti.it				

2.2 Atmosfera, consumo di risorse non rinnovabili, salute pubblica e biodiversità a livello globale

2.2.1 Premessa

L'economia del settore eolico mostra che i costi di investimento, quelli di gestione e manutenzione ordinaria, le imposte, le spese assicurative e qualunque altra voce di costo, unitamente all'utile per il produttore, costituiscono la base per la formazione del prezzo del chilowattora di energia prodotta. In termini generali, sulla base della specifica situazione di mercato e delle eventuali misure incentivanti, la produzione di energia eolica può risultare o meno competitiva con le fonti energetiche tradizionali.

D'altro canto, è considerazione comune che, sebbene l'energia da fonte eolica e le altre energie rinnovabili presentino degli indubbi benefici ambientali al confronto con le altre fonti tradizionali di produzione di energia elettrica, proprio tali innegabili benefici non si riflettano pienamente nel prezzo di mercato dell'energia elettrica. In definitiva il prezzo dell'energia sembra non tenere conto in modo appropriato dei costi sociali conseguenti alle diverse tecnologie di produzione energetica.

La valutazione dei cosiddetti costi esterni o esternalità della produzione energetica risponde all'obiettivo di stimare proprio i benefici (o costi) ambientali e sociali conseguenti alla produzione di energia elettrica che non sono tenuti in debita considerazione nella formazione del prezzo del chilowattora. Come espresso in sede introduttiva, tali costi sono definiti "esterni" in quanto gli stessi risultano comunque pagati da terzi e dalle future generazioni. Per quanto sopra, un'analisi costibenefici del progetto proposto, per quanto sommaria, necessita di operare un'adeguata valutazione economica dei costi esterni indotti dalle possibili alternative strategiche di produzione di energia elettrica (c.d. centrali convenzionali), considerando opportunamente tutte le possibili voci di costo pagate dalla società, siano esse interne o esterne.

Come noto, le esternalità negative principali della produzione energetica si riferiscono, a livello globale, all'emissione di sostanze inquinanti, o climalteranti, in atmosfera, ai conseguenti effetti del decadimento della qualità dell'aria sulla salute pubblica, alle conseguenze dei cambiamenti climatici sulla biodiversità, alla riduzione delle terre emerse per effetto dell'innalzamento dei mari, agli effetti delle piogge acide sul patrimonio storico-artistico e immobiliare.

Sebbene i mercati non tengano in considerazione i costi delle esternalità, risulta comunque estremamente significativo identificare gli effetti esterni dei differenti sistemi di produzione di energia elettrica e procedere alla loro monetizzazione; ciò, a maggior ragione, se si considera che gli stessi sono dello stesso ordine di grandezza dei costi interni di produzione e variano sensibilmente in funzione della fonte energetica considerata, così come avviene tra la produzione di energia elettrica da fonti convenzionali e da fonte eolica.

Se il mercato, infatti, non internalizza i costi esterni, il processo di internalizzazione dovrebbe

COMMITTENTE RWE Renewables Italia S.r.l. Via Andrea Doria, 41/G - Roma (RM)	RWE	OGGETTO PARCO EOLICO "ALAS" STUDIO DI IMPATTO AMBIENTALE	COD. ELABORATO	PEALAS-S02.26
consulenza e progetti.it		TITOLO ANALISI COSTI-BENEFICI	PAGINA	17 di 42

essere conseguito attraverso adeguate misure di carattere politico-economico quali l'introduzione di tasse o di adeguamento delle tariffe elettriche. E' evidente, a tale proposito, l'importanza di assicurare una quantificazione attendibile dei costi esterni preliminarmente all'introduzione di tali azioni di politica economica.

L'analisi e quantificazione dei costi esterni non è certamente un obiettivo semplice ed investe questioni di carattere scientifico (per capire la reale portata dell'impatto) ed economico (per monetizzare tale impatto).

Quanto più è complessa la valutazione dei beni intangibili (per esempio la quantificazione economica di una persona ammalatasi a seguito di un incidente nucleare o del costo conseguente all'intrusione visiva di una turbina eolica o, ancora, del danno futuro conseguente all'emissione in atmosfera di una tonnellata di CO₂) tanto più la stima delle esternalità è affetta da incertezze. Questa circostanza è alla base, molto spesso, di estreme difficoltà nell'implementazione delle esternalità nelle misure di politica economica. D'altro canto, proprio la stima dei costi esterni offre l'opportunità al livello politico di migliorare il processo di distribuzione delle quote di mercato tra le varie fonti energetiche. La questione si pone in tutta chiarezza allorquando l'internalizzazione dei costi esterni nel meccanismo del prezzo di mercato può riflettersi pesantemente sulla competitività di differenti tecnologie di produzione energetica. La Figura 2.1, relativa alla tecnologia dell'eolico ma trasponibile alle altre fonti energetiche rinnovabili, illustra con estrema chiarezza le precedenti considerazioni.

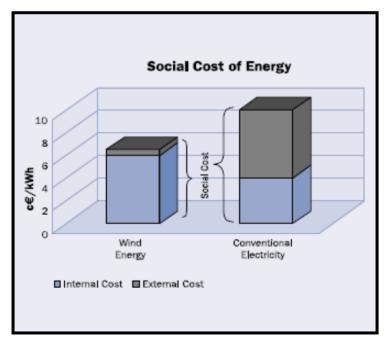


Figura 2.1 – Grafico esemplificativo di comparazione dei costi totali (interni ed esterni) dell'energia da fonte rinnovabile e da fonti convenzionali (Fonte Commissione Europea)

COMMITTENTE RWE Renewables Italia S.r.l. Via Andrea Doria, 41/G - Roma (RM)	RWE	OGGETTO PARCO EOLICO "ALAS" STUDIO DI IMPATTO AMBIENTALE	COD. ELABORATO	EALAS-S02.26
iat consulenza e progetti		TITOLO ANALISI COSTI-BENEFICI	PAGINA	18 di 42
www.iatprogetti.it				

Con l'intento di fornire alcuni elementi di valutazione utili per un'analisi costi-benefici del progetto, nel prosieguo sarà illustrato l'attuale stato di conoscenze sulla valutazione dei costi esterni conseguenti alla produzione di energia elettrica in Europa e si procederà a quantificare approssimativamente le più sopra richiamate esternalità a livello globale (negative e positive) che presumibilmente scaturiranno dalla realizzazione dell'intervento in progetto, stimate sulla base di costi unitari medi e della producibilità attesa degli aerogeneratori in progetto.

2.2.2 Le esternalità della produzione energetica

Le attività di produzione energetica possono dar luogo a impatti significativi a carico di numerosi potenziali recettori, quali la salute pubblica, gli ecosistemi naturali e l'ambiente costruito, e tali impatti sono da intendersi come costi esterni dell'energia (Commissione Europea, 1994).

Le principali emissioni associate alla produzione di energia elettrica da combustibili fossili, alle quali deve attribuirsi una quota significativa dei costi esterni, si riferiscono all'anidride carbonica (CO₂), al biossido di zolfo (SO₂), agli ossidi di azoto (NO_x) ed al pulviscolo atmosferico con diametro inferiore a 10 millesimi di millimetro (PM₁₀). Le caratteristiche delle emissioni dipendono, evidentemente, dal tipo di combustibile considerato. Ad oggi non esistono tecniche efficaci a costi sostenibili che consentano la riduzione delle emissioni di CO₂ attraverso sistemi di depurazione fumi; d'altro canto, in un prossimo futuro, l'impiego di ossigeno puro come comburente e la segregazione del gas di combustione potrebbe ridurre il contenuto in carbonio delle emissioni (IPPC, 2002).

Relativamente alla SO₂, la quantità emessa per kWh di elettricità generata dipende dal contenuto di zolfo del combustibile. Peraltro, la presenza di SO₂ nei gas di combustione può essere ridotta attraverso la separazione del biossido di zolfo e la sua successiva conversione in gesso o zolfo elementare. In linea generale il contenuto di zolfo nella lignite è piuttosto alto, l'olio combustibile ed il carbone hanno un contenuto medio di zolfo mentre il gas naturale ne è pressoché privo.

Le emissioni di NO_x , viceversa, non sono necessariamente correlate alla qualità del combustibile. Poiché la formazione del composto consegue dalla naturale presenza di azoto nell'aria di combustione, la sua formazione dipende principalmente dalla temperatura di combustione. Conseguentemente le emissioni di NO_x possono essere ridotte attraverso la regolazione di una temperatura di combustione convenientemente bassa oppure attraverso la denitrificazione del gas esausto (con filtrazione ad umido).

Nel settore della produzione energetica i costi esterni incominciarono ad essere quantificati nell'ambito di studi pionieristici alla fine degli anni '80 e all'inizio degli anni '90. Tali studi furono la base per accrescere l'interesse attorno a tali problematiche e rappresentarono il punto di partenza

COMMITTENTE RWE Renewables Italia S.r.I. Via Andrea Doria, 41/G - Roma (RM)	RWE	OGGETTO PARCO EOLICO "ALAS" STUDIO DI IMPATTO AMBIENTALE	COD. ELABORATO	PEALAS-S02.26
Consulenza PROGETTI		TITOLO ANALISI COSTI-BENEFICI	PAGINA	19 di 42
www.iatprogetti.it				

per l'assunzione delle esternalità come strumento decisionale nell'ambito dello sviluppo delle politiche energetiche. Il principale studio avviato in Europa nell'ottica di procedere alla quantificazione dei costi esterni della produzione energetica è certamente il già richiamato progetto ExternE. Di particolare interesse, inoltre, sono le risultanze del più recente progetto CASES - Cost Assessment for Sustainable Energy Systems (Valutazione dei costi per sistemi energetici sostenibili), sviluppato da un Consorzio di 26 partner accreditati (in prevalenza centri di ricerca e/o istituti universitari), attraverso un'azione di coordinamento della Commissione Europea nell'ambito del Sesto Programma Quadro per la sostenibilità dei sistemi energetici.

I vari studi si sono proposti di delineare un quadro consistente e completo dei costi totali di produzione dell'energia e di diffondere questa conoscenza tra tutti gli operatori del settore, sia economici che politici.

Una valutazione completa ed omogenea dei costi totali dell'energia, che includa sia i costi privati di produzione che il costo delle esternalità, è infatti di fondamentale importanza per le decisioni politiche nell'ambito sia produttivo che ambientale. Le decisioni di politica energetica riguardano da un lato l'offerta e dall'altro la domanda di fornitura di energia. Sul lato dell'offerta, la conoscenza del costo totale per ogni fonte di energia permette di scegliere tra possibilità alternative di investimento. Dal lato della domanda, la massimizzazione del benessere sociale dovrebbe portare alla formulazione di politiche energetiche, che indirizzino il comportamento del consumatore in modo da portare alla minimizzazione dei costi sociali ed ambientali imposti alla società nel suo complesso.

Al riguardo, va rilevato che i costi sono dinamici. I costi privati ed i costi esterni variano, infatti, nel tempo, con lo sviluppo delle tecnologie, con l'aumento della conoscenza sull'impatto dell'uso dell'energia sull'ambiente e con il cambiamento delle preferenze individuali per l'ambiente.

Un aspetto importante di qualunque analisi delle esternalità ambientali associate alle fasi di produzione dell'energia elettrica è quello di individuare le attività correlate che possono determinare impatti sull'ambiente. In quest'ottica, gli impatti conseguenti alla produzione energetica non sono unicamente quelli associati al ciclo produttivo ma anche quelli derivanti dall'intera filiera di produzione e distribuzione, come ad esempio l'estrazione del materiale di alimentazione, la sua lavorazione e trasformazione, la costruzione ed installazione delle infrastrutture necessarie, così come la realizzazione ed esercizio dei relativi impianti di smaltimento dei residui di processo. I vari stadi che costituiscono la catena della produzione e distribuzione dell'energia elettrica sono noti come "fuel cycle" e ogni tecnologia di produzione (eolica, idroelettrica, a carbone, a gas, ecc.) è caratterizzata da un distinto "fuel cycle".

L'approccio della metodologia di valutazione dei costi esterni è generalmente del tipo "bottom-up", ossia si concentra inizialmente sui primi livelli del "fuel cycle" relativo allo specifico sistema (p.e. sulla produzione di carbone per le centrali termoelettriche), individuando le attività associate alla

COMMITTENTE RWE Renewables Italia S.r.I. Via Andrea Doria, 41/G - Roma (RM)	RWE	OGGETTO PARCO EOLICO "ALAS" STUDIO DI IMPATTO AMBIENTALE	COD. ELABORATO PEALAS-S02.26
CONSULENZA E PROGETTI		TITOLO ANALISI COSTI-BENEFICI	PAGINA 20 di 42
www.iatprogetti.it			

tecnologia di produzione. In una fase successiva si definiscono con completezza il quadro delle possibili attività generatrici di potenziali impatti, i conseguenti effetti ambientali e la portata degli stessi in termini di magnitudo e distribuzione spaziale prevedibile. In ultimo, la metodologia prevede una quantificazione economica dei costi e dei benefici ambientali indotti da ciascuna attività considerata. I risultati, per i singoli processi, sono generalmente riferiti all'unità funzionale di un chilowattora di energia elettrica netta prodotta ed immessa in rete.

Per le finalità in premessa, i costi esterni della produzione energetica sono stati desunti dai più recenti studi reperiti sull'argomento (Karkour S. et al., 2020).

L'obiettivo perseguito dallo studio citato è stato quello di stimare i più recenti costi esterni della produzione energetica dei paesi del G20 considerando un più ampio spettro di categorie di impatto, alcune delle quali non considerate dai principali studi pubblicati sull'argomento (p.e. il consumo di suolo o l'occupazione di territorio).

Detti studi, infatti, tra cui quello della commissione europea pubblicato nel 2008², hanno focalizzato l'attenzione sui danni conseguenti all'inquinamento atmosferico o al cambiamento climatico in atto, il che può condurre facilmente ad una sottostima dei costi esterni. Le stime di seguito riportate, di contro, assumono categorie di impatto non considerate in precedenza, quali il consumo di risorse (minerali, fossili e acqua) e le trasformazioni di territorio.

Al fine di pervenire ad una stima più attendibile dei costi esterni della produzione energetica, pertanto, il richiamato studio pubblicato nel 2020 ha fatto riferimento ad un approccio basato sull'impostazione del *Life Cycle Assessment*, avuto riguardo delle seguenti 7 linee di impatto: cambiamento climatico, inquinamento atmosferico, ossidanti fotochimici, consumi idrici, consumo di suolo, consumo di risorse minerali, fossili e combustibili. L'approccio schematico seguito dallo studio è illustrato in Figura 2.2.

² https://www.eea.europa.eu/data-and-maps/indicators/en35-external-costs-of-electricity-production-1

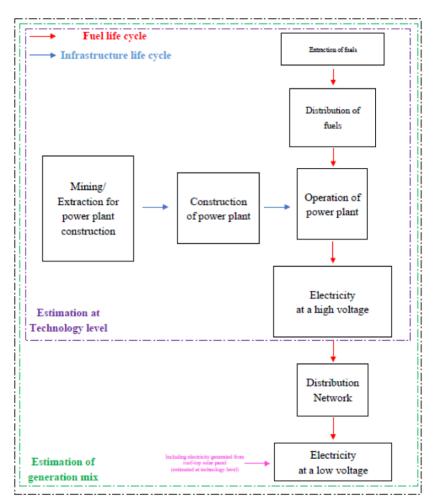


Figure 3. Studied system boundaries.

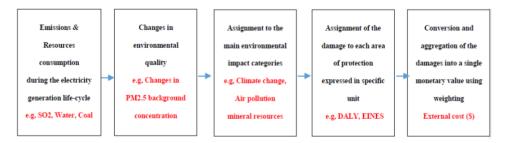


Figura 2.2 – Percorso seguito per la stima dei costi esterni della produzione energetica (Fonte Karkour, et al, 2020)

La Figura 2.3 mostra la valutazione dei costi esterni della produzione energetica nei paesi del G20, stimata nell'ambito del recente studio citato.

I costi sterni riferiti alla generazione elettrica delle diverse tecnologie nei paesi del G20 sono

COMMITTENTE RWE Renewables Italia S.r.l. Via Andrea Doria, 41/G - Roma (RM)	RWE	OGGETTO PARCO EOLICO "ALAS" STUDIO DI IMPATTO AMBIENTALE	COD. ELABORATO	PEALAS-S02.26
Calat consulenza e progetti		TITOLO ANALISI COSTI-BENEFICI	PAGINA	22 di 42
www.iatprogetti.it				

riportati in Tabella 2.1. La Tabella 2.2 riporta i *range* di variabilità dei costi esterni per le diverse linee di impatto della produzione energetica, anch'essi riferiti ai paesi del G20.

Tabella 2.1 – Stima dei costi esterni per ogni tecnologia in ognuno dei paesi del G20 (Fonte Karkour, et al, 2020)

	НС	Lignite	NG	Oil	Wind	GEO -	Hydro	Nuclear	Solar
	ne	8	C/CC	On	ON/OFF	GLO .	RR/PS/R	BW/PW	OG/Roof
ARG	-	-	-/-	-	-/-	-	-/-/-	-/-	-
AUS	0.026	0.026	0.013/0.008	0.096	0.002/-	-	0.000/0.031/-	-/-	0.004/0.003
BRA	0.023	0.047	0.013/0.009	0.081	0.003/-	-	-/-/0.002	-/0.001	-/0.006
CAN	0.034	0.029	0.022/0.014	0.071	0.004/-	-	0.001/0.017/0.002	-/0.004	0.008/0.009
CHN	0.101	-	0.021/0.020	0.146	0.009/0.006	0.009	0.001/0.112/-	-/0.004	0.015/0.014
DEU	0.021	0.027	0.019/0.012	0.083	0.005/0.004	0.005	0.001/0.024/0.004	0.002/0.002	0.011/0.010
FRA	0.037	-	0.017/0.012	0.087	0.003/0.003	0.004	0.001/0.005/0.004	-/0.002	0.009/0.008
GBR	0.064	-	0.017/0.012	0.24	0.004/0.005	0.007	0.001/0.058/-	0.005/0.005	0.014/0.017
IDN	-	0.194	0.020/0.012	0.133	0.002/-	0.006	-/-/0.005	-/-	-/0.010
IND	0.174	0.143	0.021/0.020	0.112	0.006/-	0.009	0.001/0.227/0.068	0.005/0.004	-/0.010
ITA	0.041	0.133	0.019/0.011	0.083	0.005/-	0.005	0.001/0.028/0.006	-/-	0.010/0.009
JPN	0.036	-	0.020/0.013	0.041	0.005/0.005	0.005	0.001/0.038/0.028	0.005/0.005	0.011/0.010
KOR	0.062	0.282	0.020/0.011	0.082	0.004/0.004	-	0.001/0.062/0.042	-/0.007	0.015/0.015
MEX	0.027	0.043	0.022/0.014	0.134	0.003/-	0.004	0.001/-/-	0.003/-	0.009/0.005
RUS	0.033	0.069	0.031/0.008	0.141	0.015/-	0.004	0.000/0.032/0.002	0.001/0.001	-/0.008
SAU	-	-	0.015/0.008	0.046	-/-	-	-/-/-	-/-	-/0.005
TUR	0.048	0.141	0.014/0.009	0.133	0.003/-	0.005	0.001/-/0.009	-/-	-/0.008
USA	0.028	0.055	0.020/0.013	0.138	0.003/-	0.004	0.001/0.029/0.011	0.002/0.002	0.007/0.007
ZAF	0.035	-	-/0.007	0.047	0.006/-	0.004	0.001/0.049/0.013	-/0.002	-/0.009
AVG	0.049	0.099	0.019/0.012	0.105	0.005/0.005	0.005	0.001/0.055/0.015	0.003/0.003	0.011/0.009

COMMITTENTE RWE Renewables Italia S.r.I. Via Andrea Doria, 41/G - Roma (RM)	RWE	OGGETTO PARCO EOLICO "ALAS" STUDIO DI IMPATTO AMBIENTALE	COD. ELABORATO PEAL	AS-S02.26
iat consulenza e progetti		TITOLO ANALISI COSTI-BENEFICI	PAGINA	23 di 42
www.iatprogetti.it				

Tabella 2.2 – Variabilità dei costi esterni relativi alle principali linee di impatto della produzione energetica nei paesi del G20 (Fonte Karkour, et al, 2020)

CO ₂	0.001-0.026 [0.012] [0.006]
SO ₂	0-0.020 [0.005] [0.006]
NOx	0-0.027 [0.004] [0.006]
NMVOC	0–0 [0] [0]
PM2.5	0-0.089 [0.013] [0.027]
Oil_R	0-0.017 [0.003] [0.006]
Coal_R	0-0.015[0.002] [0.004]
Natural Gas_R	0-0.004 [0.001] [0.001]
Water	0-0.006 [0.001] [0.001]
Land transformation	0-0.003 [0.001] [0.001]
Land Occupation	0-0.001 [0.000] [0]
Mineral	0.001–0.002 [0.002] [0]

I danni derivanti dal cambiamento climatico, associato alle elevate emissioni di gas a effetto serra, nonché gli impatti sulla qualità dell'aria, derivanti dalla produzione di energia elettrica da combustibili fossili, incidono significativamente sui costi esterni. Tuttavia, in considerazione dell'estensione temporale degli scenari di riferimento e della mancanza di uno scenario univoco sui futuri impatti del cambiamento climatico in sé, vi è una notevole incertezza nelle stime dei danni conseguenti. L'incertezza dei costi esterni del cambiamento climatico riguarda non solo il "reale" valore degli impatti che sono previsti dai modelli, ma anche l'incertezza sugli impatti che non sono ancora stati quantificati e valutati. Inoltre, nessuna delle attuali stime dei costi esterni comprende tutti gli effetti del cambiamento climatico.

Il livello complessivo delle esternalità dipende da una serie di fattori tra cui:

- il mix di combustibili per la generazione di energia elettrica;
- l'efficienza della produzione di energia elettrica;
- l'uso di tecnologie di abbattimento dell'inquinamento;
- l'ubicazione dell'impianto di riferimento rispetto ai centri abitati, terreni agricoli, ecc.

I costi esterni della produzione elettrica stimati per i paesi del G20 sono diagrammati in Figura 2.3. In Italia, il relativo costo esterno è stato stimato in **0.021 \$/kWh** (**1.9 c€/kWh** al cambio attuale),

COMMITTENTE RWE Renewables Italia S.r.l. Via Andrea Doria, 41/G - Roma (RM)	RWE	OGGETTO PARCO EOLICO "ALAS" STUDIO DI IMPATTO AMBIENTALE	COD. ELABORATO	PEALAS-S02.26
at consulent progett	ZA	TITOLO ANALISI COSTI-BENEFICI	PAGINA	24 di 42
www.iatprogetti.it				

riferito al mix di generazione dell'anno 2014.

L'ammontare complessivo dei costi esterni della generazione elettrica a livello nazionale è stato stimato in circa 6 miliardi di euro/anno.

La progressiva diminuzione dei costi esterni registrata in alcuni paesi dell'UE, tra cui l'Italia, è principalmente il risultato della dismissione di impianti obsoleti e inefficienti a carbone e della loro sostituzione con impianti più efficienti a carbone o impianti nuovi a gas, nonché dell'adozione di più efficaci sistemi di abbattimento delle emissioni. In Europa orientale questo processo è stato innescato soprattutto dalla ristrutturazione economica e declino dell'industria pesante (in Germania questo si è verificato nella prima parte del 1990 a causa di riunificazione). Al contrario, nel Regno Unito il fenomeno è stato principalmente spinto da fattori economici, con il gas che è diventato il combustibile principale per i nuovi impianti. Ciò ha portato anche a conseguire elevate efficienze di generazione complessive attraverso l'uso di turbine a gas a ciclo combinato (CCGT).

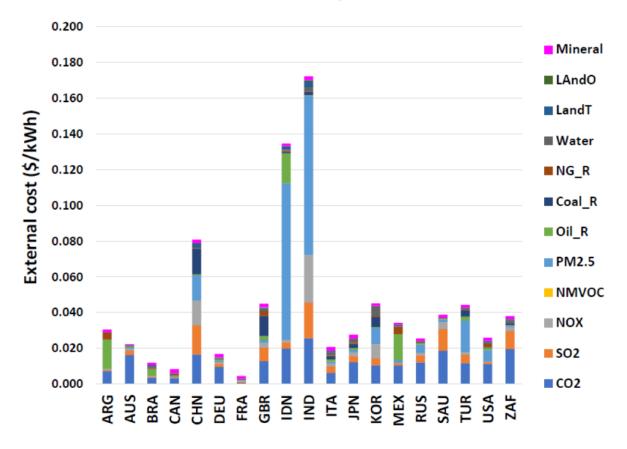


Figura 2.3 – Costi esterni di generazione elettrica nei paesi del G20 (valori espressi in \$/kWh)

2.2.3 Bilancio delle esternalità associate alla realizzazione del parco eolicoSulla base dei dati sopra riportati, riferiti ai costi esterni stimati per la produzione energetica nei

COMMITTENTE RWE Renewables Italia S.r.l. Via Andrea Doria, 41/G - Roma (RM)	RWE	OGGETTO PARCO EOLICO "ALAS" STUDIO DI IMPATTO AMBIENTALE	COD. ELABORATO PEALAS-S	302.26
lat consulenza e progetti		TITOLO ANALISI COSTI-BENEFICI	PAGINA 25	di 42
www.iatprogetti.it				

paesi del G20, si propone nel prosieguo una stima delle esternalità a livello globale, indotte ed evitate, conseguenti all'entrata in esercizio del parco eolico in progetto.

Come espresso in precedenza, trattandosi di una materia piuttosto complessa ed essendo i parametri di riferimento dati medi, stimati sulla base di contesti ambientali sensibilmente differenti tra loro, le valutazioni monetarie non hanno affatto la pretesa di essere attendibili ma hanno il solo obiettivo di rappresentare l'ordine di grandezza dei valori in gioco al fine di fornire elementi comunque utili per il processo di valutazione ambientale del progetto. Corre l'obbligo di ribadire, a questo proposito, i principali limiti intrinseci della metodologia di stima dei costi esterni:

- le stime, per loro intrinseca natura, sono sito-specifiche e sono correlate al grado di sviluppo delle tecnologie di riferimento e, conseguentemente non si prestano a generalizzazioni;
- i valori di riferimento riflettono lo stato dell'arte delle tecnologie di produzione dell'energia elettrica al momento della loro determinazione;
- la stima dei costi esterni di riferimento tiene conto, principalmente, degli impatti derivanti dai cambiamenti climatici, del decadimento della qualità dell'aria, degli effetti sulla salute pubblica, sugli ecosistemi e sulle attività agricole.

Con tali doverose premesse il prospetto seguente illustra l'ordine di grandezza dei costi esterni indotti dal progetto proposto, su scala globale, nonché di quelli evitati.

Le esternalità negative della produzione energetica con tecnologia dell'eolico sono state desunte dal citato studio pubblicato nel 2020 e quantificate in **0.50 c€/kWh**.

Producibilità dell'impianto	Costi esterni indotti	Costi esterni evitati
(kWh/anno)	(€/anno)	(€/anno)
165.000.000	825.000,00	3.135.000,00

2.3 Paesaggio

Il paesaggio agricolo è un bene estremamente complesso. La Convenzione Europea del Paesaggio definisce il paesaggio come "una zona, come è percepita dalle popolazioni, il cui carattere è il risultato dell'azione e dell'interazione di fattori naturali e / o umani" (Consiglio d'Europa 2000). Paesaggio agricolo è il risultato visibile delle interazioni tra agricoltura, risorse naturali e ambiente, e comprende valenze socio-economiche, ricreative, culturali e altri valori sociali. In accordo con quanto sostenuto dall'OCSE (2000), il paesaggio può considerarsi

COMMITTENTE RWE Renewables Italia S.r.l. Via Andrea Doria, 41/G - Roma (RM)	SME	OGGETTO PARCO EOLICO "ALAS" STUDIO DI IMPATTO AMBIENTALE	COD. ELABORATO	PEALAS-S02.26
at consulenza e progetti	A	TITOLO ANALISI COSTI-BENEFICI	PAGINA	26 di 42
www.iatprogetti.it				

composto da tre elementi chiave: 1) la struttura o l'aspetto: comprendente le caratteristiche ambientali (ad esempio flora, la fauna, habitat ed ecosistemi), i tipi di uso del suolo (ad esempio tipi di colture e sistemi di coltivazione), e gli elementi antropici o le caratteristiche culturali (ad esempio siepi, fabbricati agricoli), 2) gli aspetti funzionali: come luoghi in cui vivere, lavorare, visitare il sito, e fornire vari servizi ambientali, 3) il sistema di valori: i costi sostenuti dagli agricoltori per conservare il paesaggio ed i valori sociali del paesaggio agrario, quali le valenze culturali e ricreative. Il valore del paesaggio è determinato da diverse componenti, come ad esempio: la diversità biologica (ad esempio, le specie e la diversità genetica degli ecosistemi, agrobiodiversità); gli aspetti culturali e storici (es. modalità gestionali del paesaggio naturale, gli edifici, le tradizioni, l'artigianato, la storia, le tradizioni musicali); l'amenità del paesaggio (valore estetico); gli aspetti ricreazionali e di fruibilità (ad esempio, attività ricreative all'aperto, sci, mountain bike, campeggio) e gli aspetti di carattere scientifico ed educazionali (ad esempio l'archeologia, la storia, la geografia, l'ecologia, l'economia e architettura) (Romstad et al, 2000; Vanslembrouck e van Huylenbroeck 2005).

Negli ultimi decenni c'è stato un grande sforzo della ricerca finalizzato ad attribuire un valore (o attribuire un prezzo) al paesaggio agrario (ad esempio Drake, 1992; Garrod e Willis, 1995; Hanley e Ruffell, 1993; Pruckner, 1995; Campbell, Hutchinson Scarpa e 2005; Johns et al 2008). Poiché il paesaggio non è un bene di mercato il suo valore monetario non può essere osservato e quindi non è disponibile da fonti statistiche tradizionali. La letteratura, quindi, il più delle volte applica un approccio di valutazione legato alle preferenze dichiarate, utilizzando metodi basati su specifiche indagini per scoprire la disponibilità dei consumatori a pagare (WTP) per la conservazione del paesaggio. La maggior parte di questi studi indicano che la società valuta positivamente paesaggio agrario. Tuttavia, un inconveniente importante di questi studi è che quasi tutti riguardano contesti estremamente specifici. Ci sono pochi studi che si sono prefissi di aggregare i risultati per gli Stati membri o per l'Unione europea nel suo complesso.

Uno tra gli studi principali, a cui si può fare riferimento per una stima monetaria degli impatti paesaggistici introdotti dal progetto proposto, è stato promosso dalla Commissione Europea e raccoglie i risultati di numerosi studi condotti nei paesi dell'Unione nel periodo 1991-2009. Le analisi condotte nell'ambito del citato studio indicano che la WTP nella UE varia dai 134 ai 201 €/ettaro, con un valore medio di 149 €/ettaro nel 2009.

Con specifico riferimento ai paesaggi agrari caratterizzati dalla prevalente presenza di prati, ai quali può assimilarsi astrattamente il territorio di interesse, lo studio valuta, per il territorio italiano, una WTP media di 207 €/ettaro x anno.

Atteso che i potenziali effetti introdotti dai proposti aerogeneratori non sono suscettibili di innescare effetti irreversibili di alterazione e/o destrutturazione delle caratteristiche funzionali ed ecologiche del paesaggio agrario e che la stessa presenza dell'impianto non altera in maniera apprezzabile le

COMMITTENTE RWE Renewables Italia S.r.l. Via Andrea Doria, 41/G - Roma (RM)	RWE	OGGETTO PARCO EOLICO "ALAS" STUDIO DI IMPATTO AMBIENTALE	COD. ELABORATO	PEALAS-S02.26
at consulen	ZA	TITOLO ANALISI COSTI-BENEFICI	PAGINA	27 di 42
www.iatprogetti.it				

potenzialità d'uso dei terreni, ai fini della presente ACB si assumerà l'ipotesi che il costo ambientale conseguente all'impatto del progetto sul paesaggio agrario comporti una "perdita" dell'integrità paesaggistica entro un areale di 1 km dall'impianto, valutata in misura del 50% rispetto all'importo precedentemente indicato (Figura 2.4).

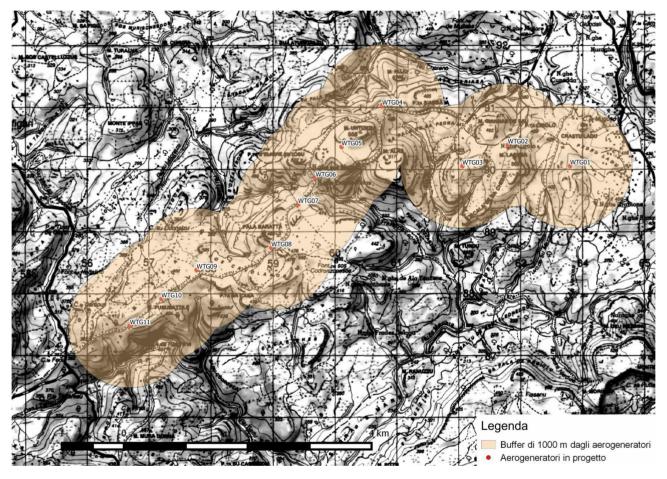


Figura 2.4 – Superfici entro il buffer di 1km dagli aerogeneratori in progetto.

Con tali presupposti, posto che le superfici in cui si è stimata una più marcata interferenza paesaggistica sono risultate pari a circa 20.385.000 m² (20 km² circa), il costo esterno da attribuirsi all'impatto paesaggistico è conseguentemente valutabile in 2038 ha x 103.5 €/ha x anno = 210.933,00 euro/anno.

2.4 Rumore

Negli ultimi anni l'inquinamento acustico è stato oggetto di studio anche da parte della Comunità Europea; infatti, la Commissione Europea ha riconosciuto l'inadeguatezza delle misure finora adottate per l'abbattimento del rumore e ha inteso riaprire un dibattito sull'argomento. Inoltre, progetti quali ExternE (1998) hanno cercato di produrre metodi, applicabili a livello europeo, per la valutazione economica dei danni, stimando il costo marginale derivante dall'incremento di un'unità

COMMITTENTE RWE Renewables Italia S.r.l. Via Andrea Doria, 41/G - Roma (RM)	RWE	OGGETTO PARCO EOLICO "ALAS" STUDIO DI IMPATTO AMBIENTALE	COD. ELABORATO	PEALAS-S02.26
at consulen	ZA	TITOLO ANALISI COSTI-BENEFICI	PAGINA	28 di 42
www.iatprogetti.it				

del livello acustico. La comunità europea ha avviato due progetti a riguardo: un primo dedicato all'analisi costi benefici per le politiche del rumore (Vainio et al. 2001) ed un secondo dedicato alla verifica dello stato dell'arte in materia di valutazione economica del rumore (Navrud 2002; Vainio e Paque 2002).

Tra tutti i lavori analizzati, i più significativi per completezza e chiarezza nelle metodologie proposte sono risultati due:

- lo studio di Navrud (Navrud s, 2002), che consiste in una review degli studi di impatto condotti in America e in Europa, con un'indagine approfondita della bibliografia e della letteratura grigia correlata;
- lo studio ExternE (Bickel P., Friedrich R. 2005), che focalizza la propria attenzione sul rumore generato dalla produzione di energia eolica. Questa, se confrontata con altre fonti di energia, è caratterizzata da un minor impatto acustico; tuttavia, il fatto che vi siano poche esternalità di altro tipo (ad es. assenza di emissioni atmosferiche) e che le strutture siano collocate in aree rurali (con scarsa presenza di forti rumori di fondo background noise), ha fatto sì che l'impatto acustico generato dall'eolico sia stato oggetto di dettagliate analisi. Comunque, la metodologia proposta è applicabile e riferita anche ad altri contesti.

La funzione dose risposta è, nell'approccio metodologico definito da ExternE (European Commission, 1998), una funzione che lega una variazione dello stato dell'ambiente ad un impatto. Tipicamente una data concentrazione di inquinanti e il conseguente numero di ricoveri ospedalieri o giorni di malattia. Nel caso del rumore quindi la funzione dose risposta dovrebbe legare un dato incremento di livello acustico ad un certo numero di giorni di malattia o di persone "disturbate". Tali tipologie di funzioni dose risposta sono effettivamente presenti in letteratura. Tuttavia i risultati di tali funzioni sono difficilmente traducibili in un danno economico (Bickel P., Friedrich R. 2005). Le funzioni di monetizzazione più accreditate in letteratura, utilizzano come dati di ingresso direttamente l'incremento di livello acustico, saltando la quantificazione degli effetti.

In analogia con quanto concluso dal CESI Ricerche a valle di un'approfondita disamina delle tecniche di valutazione economica dei danni da rumore generato dalle linee elettriche, l'approccio proposto per le finalità del presente studio si basa sul metodo dei prezzi edonici (*Hedonic Price Method*, HPM). Tale approccio consiste nello stimare la minor rendita del patrimonio immobiliare all'interno del dominio di calcolo per ogni dB(A) di aumento del livello sonoro equivalente Leq.

Importanti indicazioni sul NDSI (*Noise Depreciation Sensitivity Index*, cioè la percentuale di deprezzamento causato da un'unità aggiuntiva del livello di rumore) derivano da una serie di studi condotti a livello internazionale e raccolti in un rapporto di Bateman (Bateman et al. 2000), da cui si ricavano i seguenti valori:

COMMITTENTE RWE Renewables Italia S.r.I. Via Andrea Doria, 41/G - Roma (RM)	RWE	OGGETTO PARCO EOLICO "ALAS" STUDIO DI IMPATTO AMBIENTALE	COD. ELABORATO PEALA	AS-S02.26
iat consulenza e progetti		TITOLO ANALISI COSTI-BENEFICI	PAGINA	29 di 42
www.iatprogetti.it				

- valore minimo: 0,08%; valore massimo: 2,30%;
- 0,722% media complessiva relativa a tutti i 57 studi citati da Bateman stesso (studi comprendenti città europee, nordamericane, giapponesi e australiane, sia su rumore stradale che aeroportuale; per il rumore stradale vengono utilizzati diversi descrittori del rumore, quali Leq, Ldn, L₁₀, ecc.);
- 0,835% media delle sole città europee per il solo rumore stradale (studi basati su diversi parametri descrittori del rumore).
- 0,713% media di tutti i casi con utilizzo di Leg per il solo rumore stradale;
- 0,822% media degli studi europei che utilizzano il parametro Leq.

In definitiva si può assumere un valore di 0,822% di diminuzione del valore immobiliare per dB(A) aggiuntivo del L_{eq} , ottenuto come media degli studi relativi alle città europee per il rumore stradale. Poiché occorre distribuire temporalmente il danno, è opportuno applicare la perdita dello 0,822% alla rendita annua degli immobili e non al loro intero valore. Per il coefficiente di rendita si ha come riferimento la rendita catastale, che è pari a circa l'1% del valore di catasto. Poiché però, com'è noto, il valore catastale è in generale inferiore al valore di mercato, per evitare di sottostimare il danno, è bene riferire l'1% della rendita al valore del mercato reale. Quindi il danno annuo associabile ad un incremento del rumore di ΔL_{eq} risulta pari a:

Costo esterno annuo = $0.01 \times \{valore\ immobile\} \times \Delta L_{eq} \times 0.0082$

in cui ΔL_{eq} si può ricavare dalle risultanze dello Studio previsionale di impatto acustico (Elaborato PEALAS-RA5). Con tali assunzioni, il danno annuo per ogni milione di euro di valore degli immobili risulterebbe pari a $1.000.000 \times 1\% \times 0.822\% = 82,2$ euro per ogni decibel in più.

Ai fini della stima delle esternalità associate all'aspetto ambientale rumore, ritenuta indispensabile una semplificazione del problema, anche in rapporto alle finalità del presente elaborato, sono state formulate le seguenti assunzioni:

- il territorio interessato da una apprezzabile modifica del clima acustico si caratterizza per un livello di rumore residuo nel periodo di riferimento notturno nell'intervallo 32÷37 dB(A), come risultante dai rilievi fonometrici condotti;
- l'estensione dell'area di influenza del proposto impianto eolico, in termini di apprezzabile impatto acustico, si estende al massimo entro 1.000 m di distanza dalle postazioni di macchina, laddove il contributo al livello sonoro attribuibile all'impianto è stimabile in circa 33 dB(A) ed il rumore attribuibile al funzionamento delle turbine non sarà realisticamente distinguibile dal rumore residuo;
- il numero di edifici con possibile permanenza di persone (nel periodo diurno o, in taluni casi, notturno) entro tale fascia di territorio è quantificabile in 82 unità (si veda planimetria nell'Elaborato PEALAS-S02.20 - Carta con individuazione e classificazione dei fabbricati entro 1000 metri dal parco eolico);
- il valore immobiliare medio nel territorio di Ittiri e Villanova Monteleone può stimarsi in circa 800

COMMITTENTE RWE Renewables Italia S.r.I. Via Andrea Doria, 41/G - Roma (RM)	RWE	OGGETTO PARCO EOLICO "ALAS" STUDIO DI IMPATTO AMBIENTALE	COD. ELABORATO	PEALAS-S02.26
lat consulenz	ZA I	TITOLO ANALISI COSTI-BENEFICI	PAGINA	30 di 42

€/m² (Fonte http://www.mercato-immobiliare.info);

 valutata la tipologia costruttiva dell'edificio di interesse (edificio indipendente a 1 piano), la superficie dello stabile è stimata complessivamente in 150 m².

In base alle risultanze della modellazione acustica previsionale (Elaborato PEALAS-S02.34 - Campo sonoro previsionale generato dall'impianto eolico) e sulla scorta delle assunzioni più sopra esposte, si stimano costi associati al decadimento del clima acustico piuttosto contenuti, come di seguito riportato.

COMMITTENTE RWE Renewables Italia S.r.I. Via Andrea Doria, 41/G - Roma (RM)	RWE	OGGETTO PARCO EOLICO "ALAS" STUDIO DI IMPATTO AMBIENTALE	COD. ELABORATO	PEALAS-S02.26
Calat Consulenza PROGETTI		TITOLO ANALISI COSTI-BENEFICI	PAGINA	31 di 42
www.iatprogetti.it				

Fascia acustica da isofoniche	Numero di Edifici	Rumore impianto [dB(A)]	Rumore residuo [dB(A)]	Rumore ambientale [dB(A)]	Differenziale [dB(A)]	Costo deterioramento clima acustico (€/anno)
31 a 32 (dB)	5	32	34,5	36,4	1,9	95,34
32 a 33 (dB)	16	33	34,5	36,8	2,3	366,01
33 a 34 (dB)	16	34	34,5	37,3	2,8	435,71
34 a 35 (dB)	13	35	34,5	37,8	3,3	417,98
35 a 36 (dB)	6	36	34,5	38,3	3,8	225,81
36 a 37 (dB)	8	37	34,5	38,9	4,4	349,34
37 a 38 (dB)	4	38	34,5	39,6	5,1	200,88
38 a 39 (dB)	1	39	34,5	40,3	5,8	57,26
39 a 40 (dB)	2	40	34,5	41,1	6,6	129,46
40 a 41 (dB)	5	41	34,5	41,9	7,4	362,97
41 a 42 (dB)	1	42	34,5	42,7	8,2	80,79
42a 43 (dB)	3	43	34,5	43,6	9,1	267,86
43 a 44 (dB)	0	44	34,5	44,5	10,0	-
44 a 45 (dB)	2	45	34,5	45,4	10,9	213,94
		1	1		Totale (€/anno)	3.203,35

COMMITTENTE RWE Renewables Italia S.r.l. Via Andrea Doria, 41/G - Roma (RM)	RWE	OGGETTO PARCO EOLICO "ALAS" STUDIO DI IMPATTO AMBIENTALE	COD. ELABORATO PEAL	AS-S02.26
lat consulenza e progetti		TITOLO ANALISI COSTI-BENEFICI	PAGINA	32 di 42
www.iatprogetti.it				

2.5 Vegetazione

La tradizionale stima dei danni sui sistemi vegetali, naturali e/o antropici (aree agricole), consiste nel determinare il valore relativo alla perdita di produzione del terreno (laddove la stessa sia ravvisabile) oltre i costi necessari per ripristinare la situazione ex ante (costi di ripristino). Questa stima, ampiamente impiegata in passato, è da ritenersi tuttavia riduttiva, in quanto non tiene conto del valore ambientale complessivo attribuibile alla copertura vegetale, in relazione alle sue differenti funzioni, che hanno progressivamente assunto significati e pesi differenti. Si pensi, a titolo di esempio, ai concetti di "paesaggio" o di "habitat", rispetto ai quali la componente vegetazionale costituisce un importante tassello; o, allo stesso modo, alla funzione protettiva che la stessa vegetazione esercita ai fini della protezione contro l'erosione, nonché al ruolo cruciale legato alla produzione di ossigeno e alla cattura della CO₂. Esiste quindi un'importante dimensione economica legata alle funzioni socio-ambientali dei sistemi vegetali, che sebbene spesso indirette non sono per questo di minore importanza. Una parte significativa di questa dimensione economica, per le finalità del presente studio, è computata attraverso la stima del danno monetario al paesaggio. Al fine di pervenire ad una stima esaustiva dei costi esterni che tenga conto anche degli altri aspetti sopra descritti, si è deciso di utilizzare i costi di ripristino in analogia con quanto proposto dal progetto ExternE (Bickel & Rainer, 2004). In linea di principio si tratterebbe di quantificare i costi necessari ad un intervento che ripristini una vegetazione autoctona, o comunque analoga alla preesistente, e che scongiuri, per quanto possibile, l'infiltrazione di specie alloctone.

Poiché gli effetti del progetto in termini di alterazione della copertura vegetale sono riferibili alla necessità di procedere all'eliminazione prevalente di superfici a pascolo e, solo localmente di alcuni esemplari arboreo/arbustivi, i costi di ripristino per delle superfici delle piazzole di macchina, comprese le scarpate, sono quantificabili indicativamente in € 216.100,00, come desunti dal Computo metrico estimativo delle opere civili allegato al progetto definitivo.

2.6 Uso ed occupazione di suolo

2.6.1 Premessa

Gli impianti eolici e le relative infrastrutture, civili ed elettriche, possono potenzialmente interferire, in vario modo, con le attività economiche e con l'utilizzo del suolo ad esse correlato. Un effetto diretto è conseguente alla sottrazione diretta di terreno (piazzole di macchina, aree per le stazioni di utenza e/o connessione alla RTN, nuove strade, ecc.). Gli impianti eolici possono, inoltre, localmente risultare incompatibili o scarsamente compatibili con la presenza di civili abitazioni nelle immediate vicinanze delle installazioni, in particolare per problemi associati all'emissione di

COMMITTENTE RWE Renewables Italia S.r.I. Via Andrea Doria, 41/G - Roma (RM)	RWE	OGGETTO PARCO EOLICO "ALAS" STUDIO DI IMPATTO AMBIENTALE	COD. ELABORATO PEALAS-S02.26
Calat consulenza e progetti		TITOLO ANALISI COSTI-BENEFICI	PAGINA 33 di 42
www.iatprogetti.it			

rumore.

D'altro canto, la presenza degli aerogeneratori è assolutamente compatibile con l'esercizio delle normali pratiche agricole e zootecniche.

Un ulteriore effetto potenziale, riscontrato anche per linee elettriche AT (CESI, 2008), può riferirsi alla modifica del valore delle abitazioni, mentre non si hanno segnalazioni analoghe riguardo alle industrie o al commercio.

2.6.2 Sottrazione temporanea e permanente di suolo

La perdita economica connessa alla sottrazione di suolo per l'installazione degli aerogeneratori e delle opere connesse può essere stimata facendo riferimento al valore agricolo del terreno per il tipo di colture o uso praticato.

Nella stima del danno connesso alla sottrazione di suolo è opportuno, in ogni caso, distinguere tra l'ottica privata e quella pubblica. Mentre il danno subito dal proprietario corrisponde esattamente al valore di mercato del terreno sottratto, cioè alla somma che dovrebbe spendere per reintegrare la parte sottratta all'azienda, il danno sociale è notevolmente inferiore poiché deve fare riferimento esclusivamente ai minori redditi che potranno essere goduti dalla collettività per la perdita del suolo. Tali redditi sono esclusivamente quelli derivanti dall'uso agricolo o zootecnico e corrispondono al beneficio fondiario, cioè al reddito del proprietario fondiario. Al riguardo può assumersi come riferimento il Reddito Lordo Standard (RLS), che rappresenta il criterio economico alla base della classificazione delle aziende agricole europee, conosciuta come Tipologia comunitaria delle aziende agricole. Il RLS viene calcolato a livello regionale sulla base di dati empirici per ogni attività produttiva agricola finalizzata all'allevamento di bestiame o all'utilizzo agricolo del terreno.

Il metodo di stima applicato tiene conto della tipologia di coltura della particella (qualità), della superficie espressa in ettari (ha) e dei valori agricoli medi (€/ha) determinati per la Provincia di Sassari, dall'Osservatorio del Mercato Immobiliare dell'Agenzia delle Entrate.

I terreni interessati dalle opere ricadono nelle seguenti regioni agrarie:

- Regione Agraria n° 4 "Colline del Logudoro Occidentale" che ricomprende i terreni ricadenti nel Comune di Ittiri;
- Regione Agraria n° 12 "Colline litoranee dell'Alto Temo" che ricomprende i terreni ricadenti nel Comune di Villanova Monteleone.

L'indennità di esproprio da riconoscere è stata calcolata in funzione della superficie da occupare e del valore agricolo medio della tipologia colturale del terreno.

COMMITTENTE RWE Renewables Italia S.r.l. Via Andrea Doria, 41/G - Roma (RM)	RWE	OGGETTO PARCO EOLICO "ALAS" STUDIO DI IMPATTO AMBIENTALE	COD. ELABORATO	EALAS-S02.26
at consulent	ZA	TITOLO ANALISI COSTI-BENEFICI	PAGINA	34 di 42
www.iatprogetti.it				

I valori agricoli medi più recenti, individuati dall'Osservatorio del Mercato Immobiliare per le regioni agricole di interesse, risalgono all'annualità 2007. Per poterli utilizzare al fine del calcolo delle indennità si è proceduto ad attualizzare i Valori medi, moltiplicandoli per un opportuno coefficiente di rivalutazione, secondo quanto descritto in dettaglio nell'Elaborato progettuale PEALAS-P.09.05a (*Relazione di stima per indennità di esproprio*).

Il totale delle superfici impegnate in modo permanente dalla realizzazione dell'opera, unitamente al calcolo degli indennizzi, è desumibile dall'esame degli elaborati PEALAS-P09.05b_Tabelle indennità di esproprio (Progetto civile) e PEALAS-E07.03b_Tabelle indennità di esproprio (Progetto elettrico).

I costi attribuibili alle superfici di terreno agricolo sottratte in modo permanente e/o temporaneo sono di seguito riepilogate arrotondandole per eccesso:

Indennizzi per espropri e asservimenti = 400.000,00 €

2.6.3 Limitazioni all'edificabilità

La realizzazione del progetto introduce, potenzialmente, delle limitazioni all'edificabilità nell'immediato intorno del proposto impianto eolico. Ciò nella misura in cui l'eventuale costruzione di fabbricati agricoli, eventualmente a fini residenziali, nelle più immediate pertinenze delle installazioni eoliche potrebbe risultare poco appetibile, in prevalenza per aspetti legati alla rumorosità delle turbine.

Muovendo dalla considerazione che la rumorosità indotta dagli aerogeneratori decade sensibilmente a poche centinaia di metri dalle postazioni eoliche e valutato che gli attuali indirizzi regionali (Studio ex art. 112 PPR) suggeriscono di ubicare le installazioni eoliche a distanze superiori ai 500 metri dalle unità abitative, si ritiene che la potenziale area in cui sussistano limitazioni delle opportunità di edificazione possa essere ricondotta a tali porzioni di territorio.

Con tali presupposti, la superficie per la quale la possibilità di edificazione successiva alla realizzazione delle opere risulterebbe astrattamente penalizzata, è valutata in circa 761 ettari.

Il costo sostenuto dalla collettività per un'eventuale mancata capacità edificatoria è valutabile nella rendita degli immobili che potrebbero realisticamente realizzarsi nelle superfici potenzialmente influenzate dalla presenza dell'impianto, come sopra individuate. Assunto che la densità media dei fabbricati con categoria catastale "A" (abitazioni), è di appena 0.005 edifici per ettaro (sono stati individuati 10 fabbricati di tale categoria in circa 2040 ettari corrispondente ad un'areale compreso entro 1000 metri dagli aerogeneratori), è ragionevolmente ipotizzabile che un ipotetico sviluppo edificatorio delle aree entro 500 metri dalle postazioni eoliche (~761 ettari) sia quantificabile conservativamente in circa 4 edifici destinati ad abitazione.

COMMITTENTE RWE Renewables Italia S.r.l. Via Andrea Doria, 41/G - Roma (RM)	RWE	OGGETTO PARCO EOLICO "ALAS" STUDIO DI IMPATTO AMBIENTALE	COD. ELABORATO	PEALAS-S02.26
at consulent	ZA	TITOLO ANALISI COSTI-BENEFICI	PAGINA	35 di 42
www.iatprogetti.it				

Assumendo una superficie media degli immobili di 150 m², un valore immobiliare pari a quello del territorio agricolo in esame (~800 €/m², fonte http://www.mercato-immobiliare.info/) ed una rendita del 1% sul valore immobiliare, il costo per le limitazioni indotte sulla capacità edificatoria è così quantificabile:

4 ab. × 150 m^2 /ab. × 800 €/ m^2 × 0.01 = **4.800.00** €/anno.

2.7 Campi elettromagnetici

Nel caso dei campi elettromagnetici uno spunto metodologico per procedere con una valutazione delle esternalità può venire dalla normativa nazionale che prevede la definizione di fasce di rispetto (Distanze di prima approssimazione – DPA) all'interno delle quali non si possono condurre pratiche edilizie continuative o attività che comportino la permanenza di persone per tempi prolungati. La documentazione allegata all'istanza di VIA del progetto contiene uno specifico elaborato, concernente lo studio sulla propagazione dei campi elettromagnetici (PEALAS-S02.29), all'interno del quale è stata determinata l'ampiezza della fascia di rispetto associata alle varie infrastrutture elettriche. Poiché per i cavidotti MT interrati non è prevista alcuna DPA, la monetizzazione si ritiene possa essere sostanzialmente interiorizzata dalle analisi delle esternalità sull'uso e l'occupazione di suolo, esposte nei precedenti paragrafi.

2.8 Componente socio-economica

2.8.1 Consolidamento della viabilità comunale

La viabilità comunale presente nel sito di progetto rappresenterà la dorsale principale di collegamento stradale del Parco eolico Alas. Con tali presupposti, il progetto prevede il locale adeguamento dell'infrastruttura al fine di consentire il regolare transito dei mezzi impegnati nelle operazioni di trasporto della componentistica degli aerogeneratori, da conseguirsi attraverso:

- 1) L'ampliamento, ove necessario, della carreggiata per assicurare ovunque una larghezza non inferiore a 4.5 metri;
- 2) La realizzazione di locali allargamenti e/o aree di manovra in corrispondenza delle curve a ridotto raggio, in accordo con quanto rappresentato negli elaborati grafici di progetto (vedasi gli Elaborati PEALAS-P05.04 "Viabilità ed aree di cantiere Interventi su viabilità comunale Planimetria generale" e PEALAS-P05.05 "Viabilità ed aree di cantiere Interventi su viabilità comunale Planimetria di progetto");
- 3) Il locale addolcimento dei raggi di curvatura verticali, con miglioramento delle condizioni generali di visibilità;
- 4) L'adattamento dell'andamento altimetrico, in corrispondenza delle postazioni eoliche WTG 6-8-10-11, al fine di raccordare correttamente la viabilità esistente alle piazzole di cantiere;

F	COMMITTENTE RWE Renewables Italia S.r.l. /ia Andrea Doria, 41/G - Roma (RM)	RWE	OGGETTO PARCO EOLICO "ALAS" STUDIO DI IMPATTO AMBIENTALE	COD. ELABORATO	PEALAS-S02.26
	at consulen:	ZA	TITOLO ANALISI COSTI-BENEFICI	PAGINA	36 di 42
	www.iatprogetti.it				

- 5) la realizzazione di nuove barriere di protezione in acciaio e legno ove necessario;
- 6) il rifacimento del manto di conglomerato bituminoso;
- 7) la ripulitura/risagomatura delle banchine e delle cunette al fine di consentire un migliore deflusso delle acque piovane e aumentare i franchi laterali per una migliore percezione della strada;
- 8) la ripulitura di cavalcafossi e tombini.

I costi stimati per l'adeguamento geometrico e funzionale della viabilità comunale interessata, comprensiva del rifacimento del manto di usura al termine dei lavori per una lunghezza complessiva di circa 16 km, **sono pari a circa 1.400.000,00 euro**.

Poiché si prevede che i suddetti lavori siano affidati a imprese e professionalità locali, in possesso delle necessarie qualifiche, gli annessi benefici per il territorio sono misurabili nel miglioramento delle condizioni generali di transito e sicurezza dell'infrastruttura nonché, indirettamente, in termini di indotto per il settore delle costruzioni, secondo quanto computato al par. 2.8.4 relativamente ai lavori civili e impiantistici che si prevede possano essere appaltati a ditte locali.

2.8.2 Pagamento di imposte locali

Come chiarito dalla Corte di Cassazione i parchi eolici rappresentano a tutti gli effetti una centrale elettrica e pertanto devono essere accatastati nella categoria D/1 - opifici. Conseguentemente il gestore dell'impianto sarà tenuto al pagamento annuale dell'IMU.

Gli introiti per IMU, stimati, sono indicativamente i seguenti:

- per ogni aerogeneratore €/anno 40.500,00

- per i n. 11 aerogeneratori dell'impianto €/anno 445.500,00.

Valutato che indicativamente il 90% del gettito IMU è riservata allo Stato, gli importi destinati ai Comuni di Ittiri e Villanova Monteleone saranno indicativamente pari a **44.550,00 €/anno**.

2.8.3 Sviluppo progettuale dell'iniziativa

Lo sviluppo delle attività tecnico-progettuali esecutive sarà in buona parte affidato a professionisti e/o ditte locali. Per tali attività, comprese le indagini ambientali e quelle di sviluppo del progetto, si stima complessivamente un importo di circa 725.000,00 euro, con conseguenti ricadute positive sul tessuto socio-economico regionale.

Il beneficio diretto per servizi di ingegneria a livello locale (rilievi, indagini, progettazione, DL) è sommariamente quantificabile, indicativamente, in **362.500,00 euro** (50% del predetto importo

COMMITTENTE RWE Renewables Italia S.r.I. Via Andrea Doria, 41/G - Roma (RM)	RWE	OGGETTO PARCO EOLICO "ALAS" STUDIO DI IMPATTO AMBIENTALE	COD. ELABORATO	PEALAS-S02.26
iat consulen	ZA	TITOLO ANALISI COSTI-BENEFICI	PAGINA	37 di 42
www.iatprogetti.it				

complessivo), pari a circa 10 annixuomo di lavori e con un impegno di risorse stimato in circa 10 unità.

2.8.4 Processo costruttivo

Realisticamente si stima che possano essere affidate a ditte locali le seguenti opere;

Costruzioni stradali	€ 2.271.132,11
Formazione piazzole	€ 1.454.234,72
Fondazioni	€ 5.206.148,20
Recupero ambientale	€ 216.054,68
Realizzazione cavidotti	€ 3.173.465,70

TOTALE € 12.321.035,41

L'ammontare complessivo dei lavori appaltati a ditte locali è stimabile, pertanto, in circa € 12.300.000,00. Ipotizzata una incidenza media della manodopera del 25% sulle lavorazioni (3.080.258,85 €) ed una durata dei lavori di circa 12 mesi, può stimarsi un numero complessivo di addetti coinvolti in fase di cantiere pari a circa 112 ³.

2.8.5 Fase gestionale

2.8.5.1 Impiego di personale

Nell'ambito della fase gestionale, per le ordinarie attività di esercizio degli aerogeneratori, la RWE Renewables Italia ha in programma l'assunzione di **n. 4 unità lavorative di provenienza locale**, per un costo valutato in **110.000,00 €/anno**.

In tale prospettiva il numero di occupati in modo permanente presso il sito di impianto sarà pari a 29 unità.

2.8.5.2 Manutenzione ordinaria e straordinaria aerogeneratori

Valutata la prospettiva di instaurare un contratto di O&M con il costruttore per ogni aerogeneratore ed assumendo un costo medio di €/anno×WTG pari a 30.000,00, si stima un costo complessivo

³ Il numero di unità impiegate è stimato sulla base di un costo della manodopera di circa 3.100.000,00 €, una durata del cantiere di 240 giorni lavorativi ed una retribuzione annua media di 30.000,00 €/addetto (~115 €/giorno x addetto)

COMMITTENTE RWE Renewables Italia S.r.l. Via Andrea Doria, 41/G - Roma (RM)	RWE	OGGETTO PARCO EOLICO "ALAS" STUDIO DI IMPATTO AMBIENTALE	COD. ELABORATO PEALA	\S-S02.26
at consulen	ZA	TITOLO ANALISI COSTI-BENEFICI	PAGINA	38 di 42
www.iatprogetti.it				

indicativo di 330.000,00 €/anno per gli 11 aerogeneratori.

L'incidenza della manodopera sull'ammontare stimato dei costi di manutenzione WTG si stima almeno pari al 50%.

Valutando che le suddette attività manutentive sono di norma svolte da personale residente in Sardegna, la ricaduta sul territorio per attività di O&M è stimata mediamente in 165.000,00 €/anno, valutabile nel contributo di circa 4 addetti locali/anno.

Tali costi non includono quelli destinati alle manutenzioni ordinarie e straordinarie sulla stazione elettrica 30 kV/150 kV.

2.8.5.3 Altri costi di gestione e monitoraggi ambientali

Gli ulteriori costi di manutenzione, gestione ordinaria e monitoraggi a favore di operatori e imprese locali possono valutarsi forfetariamente in 100.000,00 €/anno.

2.8.6 Misure compensative a favore dei comuni interessati

L'attuale disciplina autorizzativa degli impianti alimentati da fonti rinnovabili stabilisce che per l'attività di produzione di energia elettrica da FER non è dovuto alcun corrispettivo monetario in favore dei Comuni. L'autorizzazione unica può prevedere l'individuazione di misure compensative, a carattere non meramente patrimoniale, a favore degli stessi Comuni e da orientare su interventi di miglioramento ambientale correlati alla mitigazione degli impatti riconducibili al progetto, ad interventi di efficienza energetica, di diffusione di installazioni di impianti a fonti rinnovabili e di sensibilizzazione della cittadinanza sui predetti temi, nel rispetto dei criteri di cui all'Allegato 2 del D.M. 10/09/2010.

Le eventuali misure di compensazione ambientale e territoriale non possono, in ogni caso, essere superiori al 3 per cento dei proventi, comprensivi degli incentivi vigenti, derivanti dalla valorizzazione dell'energia elettrica prodotta annualmente dall'impianto.

Come indicazione di massima degli interventi di compensazione ambientale che, previo accordo con le Amministrazioni comunali coinvolte, potranno essere attuati da RWE Renewables Italia, sono individuabili, a titolo esemplificativo e non esaustivo nelle seguenti categorie:

Interventi sul territorio

Realizzazione di mirati interventi sulla mobilità urbana e sulla viabilità pubblica orientati al
contenimento dell'inquinamento atmosferico e acustico (realizzazione / sistemazione di
piste ciclabili e percorsi pedonali, adozione di asfalto fonoassorbente, contributo
all'acquisito di veicoli elettrici o basso emissivi);

COMMITTENTE RWE Renewables Italia S.r.l. Via Andrea Doria, 41/G - Roma (RM)	RWE	OGGETTO PARCO EOLICO "ALAS" STUDIO DI IMPATTO AMBIENTALE	COD. ELABORATO	PEALAS-S02.26
at consulen	ZA	TITOLO ANALISI COSTI-BENEFICI	PAGINA	39 di 42
www.iatprogetti.it				

- interventi volti alla mitigazione delle situazioni di rischio idrogeologico;
- interventi di rafforzamento e salvaguardia del patrimonio boschivo;
- realizzazione di interventi volti ad eventuali ottimizzazioni del ciclo di gestione delle acque reflue:
- contributo all'acquisto automezzi, mezzi meccanici ed attrezzature per la gestione del patrimonio comunale (territorio, viabilità, impianti);

Interventi volti al miglioramento della qualità e fruibilità paesaggistica

- finanziamento di campagne di scavo dei resti archeologici censiti nel territorio, scelti in accordo con le amministrazioni locali e competente Soprintendenza MIBACT;
- custodia dei predetti resti archeologici, da attuarsi sinergicamente alle attività di sorveglianza del parco eolico;
- creazione di percorsi di fruizione del patrimonio storico-culturale e paesaggistico locale;
- contributo al risanamento e/o riqualificazione di edifici storici.

Interventi di efficientamento energetico:

- contributo all'installazione di impianti fotovoltaici su immobili comunali;
- installazione di sistemi di illuminazione a basso consumo e/o a basso inquinamento luminoso;
- interventi finalizzati al miglioramento delle prestazioni energetiche degli edifici comunali.

Per l'impianto in oggetto la tariffa incentivante sarà disciplinata dal meccanismo delle aste, come disciplinato dal Decreto del 4 luglio 2019, pertanto non definibile a priori in modo puntuale. Allo scopo di fornire un valore indicativo della compensazione ambientale, sulla base degli attuali prezzi di mercato dell'energia, può stimarsi una tariffa di 50 €/MWh.

Sulla base di una producibilità annua calcolata di 165.000.000 kWh/anno e di una aliquota delle compensazioni valutata preliminarmente, ed a titolo meramente indicativo, in misura del 2% dei proventi della vendita dell'energia, si ottiene un importo delle risorse da destinare a misure compensative territoriali pari a 165.000,00 €/anno.

Si precisa che le suddette cifre sono puramente indicative e che quelle reali saranno dettate dalla tariffa base di riferimento ed al contingente d'asta al quale rientrerà il progetto

Per quanto precede i corrispettivi da destinare a misure compensative territoriali a favore dei comuni interessati è indicativamente valutabile in 165.000,00 €/anno (3.300.000,00 € in 20 anni).

COMMITTENTE RWE Renewables Italia S.r.l. Via Andrea Doria, 41/G - Roma (RM)	RWE	OGGETTO PARCO EOLICO "ALAS" STUDIO DI IMPATTO AMBIENTALE	COD. ELABORATO	PEALAS-S02.26
at consulent	ZA I	TITOLO ANALISI COSTI-BENEFICI	PAGINA	40 di 42
www.iatprogetti.it				

3 QUADRO RIEPILOGATIVO E CONCLUSIONI

A conclusione delle precedenti analisi, si riporta di seguito il quadro riepilogativo dei costi e dei benefici stimati nell'intero arco di vita dei nuovi aerogeneratori, assunto pari a 20 anni.

Il prospetto riepilogativo riporta il costo/beneficio annuo stimato per ciascun aspetto ambientale significativo preso in esame unitamente al Valore Attuale Netto a 20 anni, calcolato assumendo un tasso di sconto pari a zero. Tale ipotesi, come precisato in sede introduttiva, equivale ad assumere che, ai fini delle analisi, i costi/benefici per la collettività che si manifesteranno nel futuro abbiano lo stesso peso di quelli che si manifestano nel presente. Ad ogni buon conto, come chiaramente mostrato dalle cifre in gioco, la sensitività dei risultati dell'analisi economica rispetto alle ipotesi sul tasso di sconto è del tutto ininfluente.

Il prospetto seguente mostra in tutta evidenza che se si considerano tutti i principali aspetti ambientali significativi del progetto, da quelli di più stretta rilevanza locale a quelli di importanza a livello internazionale e globale, il VAN del progetto a 20 anni è positivo ed assume proporzioni considerevoli (+57 M€, circa).

Anche volendo focalizzare le analisi sulla sola scala locale, ancorché tale ipotesi non sia strettamente coerente con gli obiettivi di un'esaustiva analisi ambientale, i risultati mostrano in tutta evidenza come l'iniziativa proposta determini significative ricadute ambientali positive sul territorio (+10,5 M€ circa in 20 anni), al netto della valutazione economica dei principali impatti negativi attesi.

COMMITTENTE RWE Renewables Italia S.r.l. Via Andrea Doria, 41/G - Roma (RM)	OGGETTO PARCO EOLICO "ALAS" STUDIO DI IMPATTO AMBIENTALE	COD. ELABORATO PEALAS-S02.26
iat consulenza e progetti	TITOLO ANALISI COSTI-BENEFICI	PAGINA 41 di 42
www.iatprogetti.it		

ASPETTI AMBIENTALI	Costi (€/anno)	Benefici (€/anno)	VAN A 20 ANNI (€)
Atmosfera, consumo risorse, salute pubblica	825.000,00	3.135.000,00	46.200.000,00
Paesaggio	210.933,00		- 4.218.660,00
Rumore	3.203,35		- 64.066,95
Vegetazione	10.802,73		- 216.054,68
Sottrazione di suolo	20.000,00		- 400.000,00
Limitazioni all'edificabilità	4.800,00		- 96.000,00
Pagamento di imposte locali		44.550,00	1.336.500,00
Sviluppo progettuale		18.125,00	362.500,00
Processo costruttivo		108.933,33	3.080.258,85
Gestione generale impianto (impiego personale)		110.000,00	2.200.000,00
Manutenzione ordinaria e straordinaria aerogeneratori		165.000,00	3.300.000,00
Altri costi di gestione e monitoraggi ambientali		100.000,00	2.000.000,00
Misure di compensazione ambientale ex DM 10/10/2010		165.000,00	3.300.000,00
TOTALE su scala globale	1.074.739,08	3.846.608,33	56.784.477,22
TOTALE su scala locale	249.739,08	711.608,33	10.584.477,22

COMMITTENTE RWE Renewables Italia S.r.I. Via Andrea Doria, 41/G - Roma (RM)	RWE	OGGETTO PARCO EOLICO "ALAS" STUDIO DI IMPATTO AMBIENTALE	COD. ELABORATO	PEALAS-S02.26
3 lat consulenza	A	TITOLO ANALISI COSTI-BENEFICI	PAGINA	42 di 42
www.iatprogetti.it				

4 BIBLIOGRAFIA

Treccani, l'Enciclopedia degli idrocarburi - Volume IV / Economia, politica, diritto degli idrocarburi;

OECD - Organization for Economic Co-Operation And Development, Cost-Benefit Analysis and the Environment - Recent developments, 2006;

CESI Ricerca, Esternalità delle linee elettriche. Metodi di quantificazione per i diversi comparti ambientali, 2008;

Commissione Europea, progetto ExternE – Externalities of energy, http://www.externe.info, 2005;

European Commission, Joint Research Centre, Institute for Prospective Technological Studies, The Value of EU Agricultural Landscape, 2011;

Regione Sardegna - Assessorato dell'Agricoltura e Riforma Agro-Pastorale, Allegato 1 alla Determinazione n. 15737/706 del 04.08.2009. Redditi Lordi Standard (per ettaro di superficie coltivata 1 e per capo allevato (Fonte: INEA)

Sito web: http://www.mercato-immobiliare.info.

Selim Karkour, et al. External-Cost Estimation of Electricity Generation in G20 Countries: Case Study Using a Global Life-Cycle Impact-Assessment Method (2020)