

Via Napoli, 363/I – 70132 Bari – Italy
www.bfpgroup.net – info@bfpgroup.net
tel. (+39) 0805046361 – fax (+39) 0805619384
AZIENDA CON SISTEMA GESTIONE

+39) 0805046361 - fax (+39) 080561938 IZIENDA CON SISTEMA GESTIONE UNI EN ISO 9001:2015 UNI EN ISO 14001:2015 OHSAS 18001:2007 GRE CODE

GRE.EEC.R.73.IT.W.15000.00.023.00

PAGE

1 di/of 12

TITI	F. PEI	AZIONE	CITTATA	MASSIMA

AVAILABLE LANGUAGE: IT

RELAZIONE GITTATA MASSIMA

SALICE SALENTINO-VEGLIE

File: GRE.EEC.R.73.IT.W.15000.00.023.00.dcx BFP BFP BFP 00 24/11/2020 Prima EMISSIONE Miglionico Marseglia Biscotti REV. DATE DESCRIPTION PREPARED VERIFIED **APPROVED GRE VALIDATION** BOCCI **TAMMA TAMMA COLLABORATORS** VERIFIED BY VALIDATED BY PROJECT / PLANT **GRE CODE** GROUP **FUNCION** TYPE ISSUER COUNTRY TEC PLANT SYSTEM PROGRESSIVE REVISION W 0 0 2 3 0 7 3 5 0 0 0 0 0 R Т **GRE EEC** CLASSIFICATION **UTILIZATION SCOPE**

This document is property of Enel Green Power S.p.A. It is strictly forbidden to reproduce this document, in whole or in part, and to provide to others any related information without the previous written consent by Enel Green Power S.p.A.

GRE CODE

GRE.EEC.R.73.IT.W.15000.00.023.00

PAGE

2 di/of 12

INDICE

1.	1. PREMESSA				
2.	. CENNI SUI PRINCIPI DI FUNZIONAMENTO DI UN AEROGENERATORE				
3.	3. ROTTURA DELLA PALA4				
	3.1.	Aerogeneratore modello SIEMENS GAMESA SG1704			
	3.2.	Definizioni4			
	3.3.	Formule e Calcoli risultanti			
4.	CALCO	LO DELLA TRAIETTORIA REALE DI UN FRAMMENTO DELLA PALA			
	4.1.	Fondamenti di Calcolo della traiettoria reale5			
	4.2.	Applicazione del calcolo della traiettoria reale alla Turbina SIEMENS GAMESA			
	SG170	7			
5.	CONSI	DERAZIONI FINALI8			
Figura 1-Relazione tra le direzioni del vento ed il verso di rotazione del rotore4					
Fig	Figura 2 Vista frontale dell'aerogeneratore e della traiettoria di un frammento di pala espulso8				
Fig	Figura 3 - Grafico della traiettoria di un frammento di pala				

GRE CODE

GRE.EEC.R.73.IT.W.15000.00.023.00

PAGE

3 di/of 12

1. PREMESSA

La presente relazione si riferisce al calcolo della gittata massima in caso di rottura di una pala dell'aerogeneratore e/o frammento di esso, relativo alla proposta progettuale per la realizzazione di un parco eolico proposto dalla società **ENEL GREEN POWER ITALIA s.r.l..**

La proposta progettuale è finalizzata alla realizzazione di un impianto eolico per la produzione di energia elettrica da fonte rinnovabile eolica, costituito da n. 14 aerogeneratori, ciascuno di potenza nominale pari a 6,0 MW per una potenza complessiva di 84,00 MW, da realizzarsi nella Provincia di Lecce, nei territori comunali di Salice Salentino e Veglie, in cui insistono gli aerogeneratori con annesse piazzole e relativi cavidotti di interconnessione interna, mentre i territori comunali di Avetrana (TA) e San Pancrazio Salentino (BR) vengono attraversati dall'elettrodotto esterno fino al comune di Erchie (BR) dove sono situate le opere di connessione alla RTN.

La relazione ha lo scopo di verificare e calcolare la gittata massima in caso di rottura della pala e/o di un frammento di pala di un aerogeneratore.

2. CENNI SUI PRINCIPI DI FUNZIONAMENTO DI UN AEROGENERATORE

Nel dettaglio, le pale sono fissate su un mozzo, e nell'insieme costituiscono il rotore; il mozzo, a sua volta, è collegato ad un primo albero di trasmissione, detto albero lento, che ruota alla stessa velocità angolare del rotore.

L'albero lento è, nella maggior parte dei casi, collegato ad un moltiplicatore di giri, da cui si diparte un albero veloce, che ruota con velocità angolare data da quella dell'albero lento per il rapporto di trasmissione del rotismo installato. Tutti i componenti sopra menzionati, ad eccezione, del rotore e del mozzo, sono ubicati entro una cabina, detta navicella la quale, a sua volta, è sistemata su un supporto-cuscinetto, in maniera da essere facilmente orientata secondo la direzione del vento.

Oltre ai componenti su elencati, vi è un sistema di controllo che esegue, il controllo della potenza ruotando le pale intorno al loro asse principale, il controllo dell'orientamento della navicella, detto controllo dell'imbardata, che serve ad allineare la macchina rispetto alla direzione del vento. Si riporta di seguito una figura che evidenzia il verso di rotazione dell'aerogeneratore, in relazione alla direzione del vento che causa tale moto. La conformazione del profilo alare dell'aerogeneratore è fissa, mentre è mobile il rotore sul quale sono ancorate le pale. Questo garantisce il fatto che il rotore possa orientarsi rispetto al vento in modo tale da offrire allo stesso sempre il medesimo profilo alare garantendo indipendentemente dalla direzione del vento un verso orario di rotazione. Questa considerazione ci serve per fissare in ogni momento il verso della velocità tangenziale, responsabile della gittata nel piano, rispetto a quello della velocità del vento, ortogonale alla velocità tangenziale ed a sua volta responsabile della gittata fuori dal piano. Dalla composizione delle due traiettorie si ottiene la traiettoria complessiva e quindi si capisce la direzione lungo la quale l'eventuale pala o parte di essa che si distacca percorre il suo moto.

GRE CODE

GRE.EEC.R.73.IT.W.15000.00.023.00

PAGE

4 di/of 12

Mettendo in relazione la traiettoria del corpo che si distacca con la corografia del luogo si capisce se la pala nella percorrenza della sua traiettoria può essere o meno un elemento di pericolo per la strada e/o altro edificio interessato.

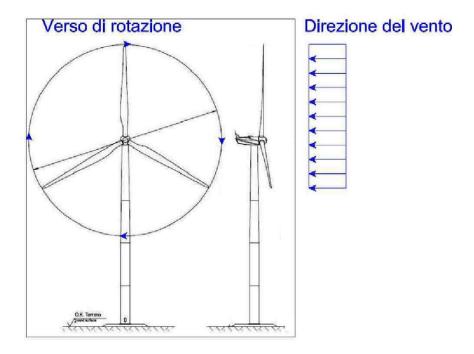


Figura 1-Relazione tra le direzioni del vento ed il verso di rotazione del rotore

3. ROTTURA DELLA PALA

3.1. AEROGENERATORE MODELLO SIEMENS GAMESA SG170

Il calcolo della gittata massima in caso di rottura di una pala dell'Aerogeneratore segue il principio della balistica applicata ai moto dei proiettili. Si evidenzia che i calcoli sono fatti considerando nullo l'attrito con l'aria.

Nel caso in esame (tipologia SIEMENS GAMESA SG170) si suppone che l'eventuale rottura della pala avvenga alle peggiori condizioni possibili ovvero:

- 1) alla velocità massima del rotore, pari a circa 8,5 giri/minuto
- 2) nel punto di ascissa e ordinata in cui la gittata è massima, con angolo = $-\Pi/4$
- 3) con il centro di massa posizionato ad 1/3 della lunghezza della pala, in prossimità del mozzo. L'aerogeneratore di tipo SIEMENS GAMESA SG170 previsto ha altezza al mozzo uguale a 135 mt, le pale costituenti il rotore sono lunghe 85 mt

3.2. **DEFINIZIONI**

H_m = Altezza al mozzo dell'aerogeneratore = 135 mt

L_P = Lunghezza della pala dell'aerogeneratore = 85 mt

 $\mathbf{D_{cm}}$ = Distanza dal mozzo del Centro di Massa della Pala = $L_P/3$ =28.33 mt

 V_{ang} = Max Velocità Angolare Rotore = 8,5 Giri/Minuto=8.5*2 Π /60=0.89 Rad/sec

GRE CODE

GRE.EEC.R.73.IT.W.15000.00.023.00

PAGE

5 di/of 12

3.3. FORMULE E CALCOLI RISULTANTI

L'Ordinata di Massima Velocità O_{mv} al momento di rottura è data dalla somma dell'altezza del mozzo più la componente verticale del Centro di Massa:

- ho_{mv} =Ordinata di Massima Velocità = $H_m + D_{cm}^*$ Radice(2)/2 = **155,03 m** Analogamente l'ascissa di Massima Velocità A_{mv} al momento di rottura:
- ▶ A_{mv} = Ascissa di Massima Velocità = D_{cm} * Radice(2)/2 = -20,03 m
 La Velocità Lineare al Centro di Massa V_{max} è desunta dalla Velocità Angolare V_{ang}
- V_{max}= Velocità Lineare al Centro di Massa = V_{ang} * D_{cm} = 25.22 m/sec
 Le componenti Verticale V_y ed Orizzontale V_x di tale velocità Lineare al Centro di Massa si ottengono moltiplicando per il Seno ed il Coseno dell'angolo:
- V_y = Componente Verticale Velocità = V_{max} * Radice(2)/2= **17.83 m/sec**
- V_x = Componente Orizzontale Velocità = V_{max} * Radice(2)/2=17.83 m/sec

Il tempo necessario T_y perché la componente verticale della velocità sia nullo è dato dalla formula:

- T_y = Tempo di decelerazione Verticale = V_y /9.8 m/sec² = 1,82 sec L'altezza Massima H_{max} si ottiene dalla formula:
- $H_{max} = O_{mv} + V_y * T_y 1/2*g* T_y^2 = 171.24 m$

Il tempo necessario T_{max} affinché l'elemento rotante precipiti a terra dalla sommità si ottiene dalla relazione:

Arr T_{max} = tempo di caduta =Radice(171,24/9.8m/sec²) =4.18 sec

La distanza massima DL_{max} dalla base della torre percorsa dall'elemento rotante distaccatosi è quindi fornito dalla formula:

$$DL_{max} = Vx * (T_{max} + T_y) + A_{mv} + (L_p - D_{cm}) = 143.55 m$$

4. CALCOLO DELLA TRAIETTORIA REALE DI UN FRAMMENTO DELLA PALA

4.1. FONDAMENTI DI CALCOLO DELLA TRAIETTORIA REALE

La determinazione di una traiettoria reale che tenga conto della resistenza dell'aria, è fattibile con un calcolo iterativo che consideri la traiettoria come una successione di elementi minimi, per ciascuno dei quali sia possibile ricalcolare la distanza, l'altezza, l'inclinazione e la velocità finali. Il calcolo risulta facilitato se la sequenza dei punti è determinata da incrementi di tempo costanti \mathbf{t}_{e} . Passando dal punto \mathbf{P} a quello successivo gli elementi della traiettoria possono allora essere così ricalcolati:

Tempo totale

$$t_{p+1} = t_p + t_e$$

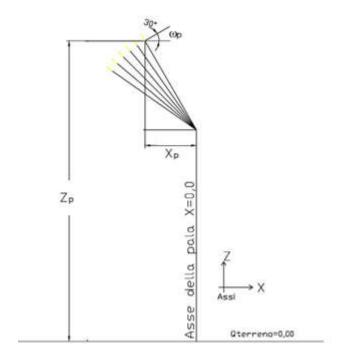
Ascissa o distanza in piano

$$X_{p+l} = X_p + cos\omega_p \times V_p \times t_e$$

Altezza o quota

$$Z_{p+1} = Z_p + \operatorname{sen}\omega_p \times V_p \times t_e - g \times t_e^2 / 2$$

Si precisa che:


GRE CODE

GRE.EEC.R.73.IT.W.15000.00.023.00

PAGE

6 di/of 12

- 1. si assume come origine degli assi la base della torre della turbina ed un sistema di riferimento come illustrato nella figura seguente;
- 2. Xp e Zp sono le coordinate di partenza del centro di massa del frammento di pala e variano al variare dell'angolo di partenza;
 - 3. Xp e Zp sono state ricavare graficamente così come indicato nella seguente immagine:

Inclinazione

$$\omega_{p+1} = \arctan \left[\tan \omega_p - g \times (X_{p+1} - X_p) / (\cos^2 \omega_p \times V_p^2) \right]$$

Velocità

$$V_{p+1} = [(V_p^2 - 2g \times (Z_{p+1} - Z_p)) - \sigma_p \times t_e]^{1/2}$$

dove σ la decelerazione (o **ritardazione** come si dice in balistica) causata dalla resistenza dell'aria.

Per valutare la **resistenza R** opposta dall'aria, la formula usata nella meccanica dei fluidi è in genere la seguente:

$$\mathbf{R} = 1/2 \times Cr \times \rho \times S \times V^2$$

dove:

R = resistenza (N)

S = sezione del corpo rispetto al movimento (m²)

V = velocità (m/s)

Cr = coefficiente di forma (adimensionale)

 ρ = densità del fluido attraversato (kg/m³m)

E' da notare che il **coefficiente di forma Cr** varia esso stesso in funzione della velocità, ma può essere considerato costante per variazioni di velocità che non comportano significativi cambiamenti nei regimi di turbolenza del fluido attraversato. Oggi sono disponibili numerosi modelli di simulazione che consentono di calcolare con approssimazione il valore di **Cr**.

GRE CODE

GRE.EEC.R.73.IT.W.15000.00.023.00

PAGE

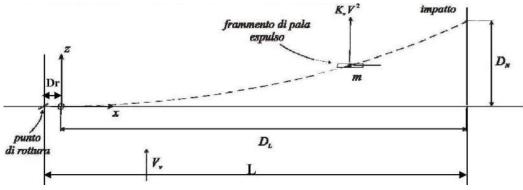
7 di/of 12

Essendo \mathbf{R} e σ ovviamente correlati dalla massa m_f (kg) del frammento secondo la relazione $R = m_f \times \sigma$, per un regime uniforme di velocità, la ritardazione (m/s²) è così esprimibile:

$$\sigma = (1/2 \times Cr \times \rho \times S \times V^2)/m_f$$

ciò significa che a parità di altre condizioni la ritardazione diminuisce con l'aumentare della massa del frammento e aumenta con l'aumentare della sua sezione.

4.2. APPLICAZIONE DEL CALCOLO DELLA TRAIETTORIA REALE ALLA TURBINA SIEMENS GAMESA SG170


Il calcolo della gittata del frammento di pala è stato condotto considerando i seguenti dati di partenza:

 $S = 4.0 \text{ m}^2$ (sezione del corpo rispetto al movimento)

 $V_0 = 72,69 \text{ m/s}$

Nel Calcolo si considerano le seguenti condizioni:

- 1. Dalla campagna anemometrica si evince che le velocità del vento sul sito variano prevalentemente da 0 a 10 m/s, quindi la probabile rottura del frammento avverrà in questo range di velocità;
- 2. Inoltre l'azione dinamica del vento, ortogonale al piano che contiene la parabola, riduce ulteriormente lo sviluppo della traiettoria reale rispetto a quella teorica quindi tanto maggiore è la velocità del vento tanto maggiore è la curvatura fuori dal piano;

 V_0 viene ricavato dalla seguente formula:

$$V_0 = V_r x 2\Pi/60 x R_f$$

Dove

Vr è la velocità di rotazione

Rf è il raggio del frammento di pala (dall'asse navicella al centro di massa del frammento)

V0=98.41m/s

Cr = 1,5 (coefficiente di forma (adimensionale))

 $\rho = 1,225 \text{ kg/m}^3\text{m}$ (densità del fluido attraversato)

GRE CODE

GRE.EEC.R.73.IT.W.15000.00.023.00

PAGE

8 di/of 12

 $m_f = 150 \text{ kg (massa del frammento)}$

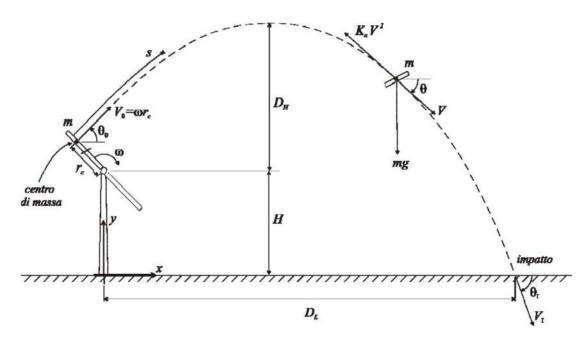


Figura 2 Vista frontale dell'aerogeneratore e della traiettoria di un frammento di pala espulso

Di seguito sono riportati i grafici delle traiettorie calcolati al variare dell'angolo di lancio con il metodo complesso:

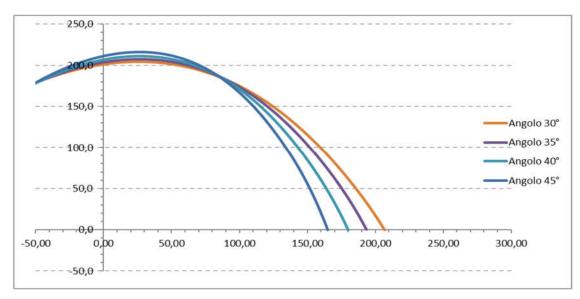


Figura 3 - Grafico della traiettoria di un frammento di pala

5. CONSIDERAZIONI FINALI

GRE CODE

GRE.EEC.R.73.IT.W.15000.00.023.00

PAGE

9 di/of 12

Ponendoci nella condizione peggiore che un frammento o l'intera pala si staccasse dal mozzo, si è dimostrato che l'impatto della stessa avviene a distanze molto contenute.

Infatti nel caso si staccasse l'intera pala il suo valore massimo di gittata è di **145** mt alla velocità massima di rotazione, nella direzione prevalente di vento e trascurando l'attrito dell'aria.

Nel caso di rottura di un frammento di pala, per il quale vigono solo calcoli di tipo probabilistico, come si evince dai calcoli, si ha un valore di gittata pari a circa **210 mt** per un frammento pari a 5m della pala.

Tale valore risultante dai calcoli è perfettamente in linea con quanto dichiarato nel gennaio 2012 da degli esperti dei Dipartimenti di Protezione ambientale e Sanità Pubblica del Massachusetts che hanno affermato " nella maggior parte dei casi la gittata è limitata ad un raggio non superiore all'altezza della pala".

Si tenga presente che tale valore nella realtà risulta inferiore; difatti è giusto considerare agire simultaneamente le condizioni peggiori di velocità del vento, di angolo di lancio, velocità di rotazione, azione di portanza sul profilo alare dopo il distacco ma le cause che porterebbero ad un eventuale distacco della pala o parte di essa sono rappresentate da un colpo di fulmine o da un urto accidentale di notevole intensità agente alla base della torre.

L'accadimento di tali fenomeni ha un valore di rischio molto basso, resi ancora più bassi dal fattore di contemporaneità. Si tenga conto che tutte le turbine eoliche sono dotate di un complesso sistema parafulmine, e per quanto riguarda l'urto non è pensabile potersi tutelare da un incidente, quale un velivolo o altro, che impatta sul rotore di una turbina o alla base della torre.

Riportando quanto scritto dalla BP POWER nel "Blade throw calculation under normal operating" "esperienze basate su dati reali (su una casistica di 1578 casi) fino all'agosto del 2006 hanno dimostrato che nel caso di distacco della pala o parti di essa l'unico moto che si è registrato è stato un moto di completa rotazione e che le distanze percorse lungo il moto sono risultate sempre inferiori alle lunghezze riportate nella relazione. Il distacco delle parti, in genere piccole, dovuto a guasti causati da eventi eccezionali (quali la straordinaria energia prodotta da un fulmine) ha portato nel peggiore dei casi, a ritrovare le parti stesse a distanze non superiori ai 40-50 metri dalla base della torre."

Si riportano i Tabulati di calcolo per angolo di partenza con percorrenza massima del frammento:

Via Napoli, 363/l – 70132 Bari – Italy
www.bfpgroup.net – info@bfpgroup.net
tel. (+39) 0805046361 – fax (+39) 0805619384
AZIENDA CON SISTEMA GESTIONE
UNI EN ISO 9001:2015
UNI EN ISO 14001:2015
OHSAS 18001:2007

GRE CODE

GRE.EEC.R.73.IT.W.15000.00.023.00

PAGE

10 di/of 12

S	m	0	m
0,00	-40,83	30,00	184,7
0,10	-37,31	28,79	186,7
0,20	-33,79	27,55	188,6
0,30	-30,29	26,27	190,4
0,40	-26,81	24,96	192,0
0,50	-23,34	23,61	193,6
0,60	-19,89	22,23	195,1
0,70	-16,45	20,82	196,4
0,80	-13,03	19,37	197,7
0,90	-9,62	17,89	198,8
1,00	-6,24	16,37	199,9
1,10	-2,87	14,82	200,8
1,20	0,48	13,24	201,6
1,30	3,81	11,63	202,4
1,40	7,13	10,00	203,0
1,50	10,42	8,34	203,5
1,60	13,70	6,65	204,0
1,70	16,95	4,94	204,3
1,80	20,19	3,21	204,5
1,90	23,41	1,47	204,7
2,00	26,60	-0,29	204,7
2,10	29,78	-2,06	204,6
2,20	32,93	-3,84	204,5
2,30	36,07	-5,62	204,2
2,40	39,18	-7,40	203,9
2,50	42,28	-9,18	203,4
2,60	45,35	-10,95	202,9
2,70	48,40	-12,71	202,2
2,80	51,43	-14,46	201,5
2,90	54,45	-16,20	200,7
3,00	57,44	-17,92	199,7
3,10	60,41	-19,61	198,7
3,20	63,37	-21,28	197,6
3,30	66,30	-22,92	196,4

Via Napoli, 363/l – 70132 Bari – Italy
www.bfpgroup.net – info@bfpgroup.net
tel. (+39) 0805046361 – fax (+39) 0805619384
AZIENDA CON SISTEMA GESTIONE
UNI EN ISO 9001:2015
UNI EN ISO 14001:2015
OHSAS 18001:2007

GRE CODE

GRE.EEC.R.73.IT.W.15000.00.023.00

PAGE

11 di/of 12

3,40	69,22	-24,54	195,2
3,50	72,12	-26,12	193,8
3,60	74,99	-27,68	192,3
3,70	77,86	-29,20	190,8
3,80	80,70	-30,68	189,1
3,90	83,53	-32,13	187,4
4,00	86,34	-33,54	185,6
4,10	89,13	-34,91	183,7
4,20	91,91	-36,25	181,7
4,30	94,68	-37,55	179,6
4,40	97,43	-38,81	177,5
4,50	100,16	-40,04	175,2
4,60	102,88	-41,23	172,9
4,70	105,59	-42,38	170,5
4,80	108,29	-43,50	168,0
4,90	110,97	-44,58	165,4
5,00	113,64	-45,63	162,7
5,10	116,30	-46,65	159,9
5,20	118,94	-47,63	157,1
5,30	121,58	-48,58	154,1
5,40	124,20	-49,50	151,1
5,50	126,82	-50,39	148,0
5,60	129,42	-51,25	144,8
5,70	132,01	-52,09	141,5
5,80	134,60	-52,89	138,1
5,90	137,17	-53,67	134,7
6,00	139,74	-54,43	131,2
6,10	142,30	-55,16	127,5
6,20	144,85	-55,86	123,8
6,30	147,39	-56,55	120,0
6,40	149,92	-57,21	116,1
6,50	152,45	-57,85	112,2
6,60	154,97	-58,47	108,1
6,70	157,48	-59,07	104,0
6,80	159,99	-59,66	99,7

Via Napoli, 363/I – 70132 Bari – Italy
www.bfpgroup.net – info@bfpgroup.net
tel. (+39) 0805046361 – fax (+39) 0805619384
AZIENDA CON SISTEMA GESTIONE
UNI EN ISO 9001:2015
UNI EN ISO 14001:2015
OHSAS 18001:2007

GRE CODE

GRE.EEC.R.73.IT.W.15000.00.023.00

PAGE

12 di/of 12

6,90	162,49	-60,22	95,4
7,00	164,98	-60,77	91,0
7,10	167,47	-61,30	86,5
7,20	169,95	-61,81	81,9
7,30	172,42	-62,31	77,3
7,40	174,89	-62,79	72,5
7,50	177,35	-63,26	67,7
7,60	179,81	-63,72	62,7
7,70	182,26	-64,16	57,7
7,80	184,71	-64,59	52,6
7,90	187,16	-65,05	47,4
8,00	189,59	-65,53	42,1
8,10	192,03	-66,04	36,7
8,20	194,46	-66,57	31,2
8,30	196,88	-67,11	25,5
8,40	199,30	-67,66	19,7
8,50	201,72	-68,22	13,7
8,72	207,03	-69,44	0,0