

GRE.EEC.R.24.IT.W.14670.00.037.00

PAGE

1 di/of 8

TITLE: AVAILABLE LANGUAGE: IT

IMPIANTO EOLICO DI CERIGNOLA

Relazione impatto elettromagnetico

File: GRE.EEC.R.24.IT.W.14670.00.037.00 - Relazione impatto elettromagnetico

				1 110.	,ı \ L . L		\. <u>_</u>		14070	.00						ipat			J1114	9110	
										Ī											
00	30/11/2020	Prima en	nicciono								D. S	tangal	ino		N. N	Novati			D. Star	ngalin	D
	30/11/2020	Fillia en	ilissione																		
REV.	DATE	DESCRIPTIO			N.					PREPARED				VERIFIED			APPROVED				
					G	RE \	/ALI	DATI	ON												
Luzi					Pansini Restaino																
	COLLABO	RATORS				VE	ERIFIE	D BY			VALIDATED BY										
PROJECT	/PLANT							G	RE C	OD	E										
Cerignola		GROUP	FUNCION	TYPE	ISS	SUER	cc	UNTRY	TEC			PLAN	т		SY	STEM	PR	OGRES	SSIVE	REV	/ISION
		GRE	EEC	R	2	4	ı	Т	W	1	4	6	7	0	0	0	0	3	7	0	0
CLASSII	CLASSIFICATION PUBLIC					UTILIZATION SCOPE BASIC DESIGN															
	This document is property of Enel Green Power S.p.A. It is strictly forbidden to reproduce this document, in whole or in part, and to provide to others any related information without the previous written consent by Enel Green Power S.p.A.																				

Engineering & Construction

GRE CODE

GRE.EEC.R.24.IT.W.14670.00.037.00

PAGE

2 di/of 8

INDEX

1.	INTRO	DUZIONE	. 3
2.	NORMA	ATIVA DI RIFERIMENTO	. 3
3.	IMPIAN	ITO EOLICO	. 3
4.	CAMPI	MAGNETICI	. 3
	4.1.	Generalità	. 3
	4.2.	Campo magnetico prodotto dal cavo di alta tensione	. 4
	4.3.	Campo magnetico prodotto dalla sottostazione	. 5
	4.4.	Campo magnetico prodotto daL trasformatore AT/MT	. 5
	4.5.	Campo magnetico prodotto dai cavi MT in sottostazione	. 6
	4.6.	Campo magnetico prodotto dai cavi MT nel parco eolico	. 6
5.	CAMPI	ELETTRICI	. 7
6.	CONCL	USIONI	. 8

Engineering & Construction

GRE CODE

GRE.EEC.R.24.IT.W.14670.00.037.00

PAGE

3 di/of 8

1. INTRODUZIONE

Il presente documento ha come scopo la valutazione dei campi elettromagnetici prodotti dalle apparecchiature elettriche (sottostazione in aria, trasformatori, linee in cavo in media tensione) installate nel nuovo impianto eolico di Cerignola che sarà connesso alla rete in alta tensione di RTN, attraverso una dedicata sottostazione collegata in antenna con cavo di alta tensione alla nuova stazione AT "Camerelle" di Terna.

Si tratta della realizzazione ex-novo di un impianto eolico che prevede l'installazione di n.10 nuove torri di generazione per una potenza complessiva di 60 MW.

La valutazione del campo magnetico consiste nella determinazione della distanza di prima approssimazione (nel seguito indicata con Dpa) in accordo alle prescrizioni del DPCM del 8 luglio 2003.

2. NORMATIVA DI RIFERIMENTO

Nella stesura della presente relazione tecnica, sono state seguite le prescrizioni indicate e applicabili al caso specifico dalle seguenti norme:

- ✓ Decreto Ministeriale del 21 marzo 1988 n. 449 "Approvazione delle norme tecniche per la progettazione, l'esecuzione e l'esercizio delle linee elettriche aeree esterne".
- ✓ Legge Quadro n. 36 del 22/02/01 e relativo DPCM 08-07-2003 sulla protezione dalle esposizioni a campi elettrici, magnetici ed elettromagnetici.
- ✓ Decreto del Presidente del Consiglio dei Ministri 8 luglio 2003: Fissazione dei limiti di esposizione, dei valori di attenzione e degli obiettivi di qualità per la protezione della popolazione dalle esposizioni ai campi elettrici e magnetici alla frequenza di rete (50 Hz) generati dagli elettrodotti.
- ✓ Decreto Ministeriale 29 maggio 2008: Approvazione della metodologia di calcolo per la determinazione delle fasce di rispetto per gli elettrodotti.
- ✓ Norma CEI 106-11: "Guida per la determinazione delle fasce di rispetto per gli elettrodotti secondo le disposizioni del DPCM 8 luglio 2003".
- ✓ Guida CEI 211-4 "Guida ai metodi di calcolo dei campi elettrici e magnetici generati da linee e da stazioni elettriche".
- ✓ Guida CEI CLC/TR 50453 "Valutazione dei campi elettromagnetici attorno ai trasformatori di potenza".
- ✓ DLgs 81/2008 del 9/4/2008 "Testo unico sulla sicurezza".
- ✓ Norma CEI EN 61936-1, "Impianti elettrici con tensione superiore a 1 kV in c.a. Parte 1: Prescrizioni comuni".

3. IMPIANTO EOLICO

Il progetto di costruzione dell'impianto eolico consiste nell'installazione di n. 10 torri di generazione eolica di nuova costruzione ciascuna equipaggiata con generatore asincrono DIFG in bassa tensione 690 V da 6 MW, convertitore di frequenza per la regolazione della corrente di rotore, interruttore principale, servizi ausiliari, trasformatore elevatore a 33 kV e quadro di media tensione (36 kV isolamento) per la connessione esterna.

Tutte le suddette apparecchiature sono installate sulla navicella in quota sulla torre di generazione.

La massima potenzialità del parco eolico sarà di 60 MW.

Le nuove torri di generazione saranno installate nella posizione indicata sulla planimetria di installazione (documento n. "GRE.EEC.D.73.IT.W.14670.00.010.00 - Inquadramento impianto eolico su CTR").

4. CAMPI MAGNETICI

4.1. GENERALITÀ

L'intensità del campo magnetico prodotto dagli elettrodotti (sia linee in cavo che conduttori

GRE.EEC.R.24.IT.W.14670.00.037.00

PAGE

4 di/of 8

Engineering & Construction

nudi aerei) e/o dalle apparecchiature elettriche installate nelle sottostazioni elettriche può essere calcolata con formule approssimate secondo i modelli bidimensionali indicati dal DPCM 8/7/2003 e dal DM 29/5/2008.

La Norma CEI 106-11 costituisce una guida per la determinazione della fascia di rispetto per gli elettrodotti in accordo al suddetto DPCM.

La fascia di rispetto comprende lo spazio circostante un elettrodotto, al di sopra e al di sotto del livello del suolo, dove l'induzione magnetica è uguale o maggiore dell'obiettivo di qualità. Secondo la Legge 36/01 e il DPCM 8/7/03 allegato A l'obiettivo di qualità corrisponde al limite di $3~\mu T$ da rispettare nella costruzione dei nuovi elettrodotti.

Dalla proiezione al suolo della fascia di rispetto si ottiene la Dpa (distanza di prima approssimazione) misurata tra la proiezione al suolo del baricentro dei conduttori e la proiezione al suolo della fascia di rispetto.

Infine, si tenga presente che l'intensità del campo magnetico è funzione dell'intensità della corrente e della distanza tra i conduttori e diminuisce all'aumentare della distanza dal baricentro dei conduttori.

A favore della sicurezza per il calcolo della fascia di rispetto, il DM 29/5/2008 impone che si utilizzi la portata massima dell'elettrodotto e/o delle linee in cavo, e non la corrente di massimo impiego. La portata massima è definita in funzione delle caratteristiche costruttive delle apparecchiature e delle linee elettriche.

4.2. CAMPO MAGNETICO PRODOTTO DAL CAVO DI ALTA TENSIONE

Le caratteristiche del cavo di alta tensione utilizzato per la connessione della sottostazione alla Stazione Terna "Camerelle" sono di seguito riportate:

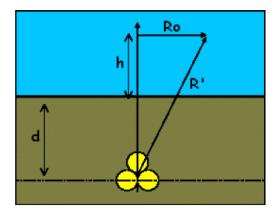
Tipo di cavo: 170 kV

Formazione: 3x(1x2000) mm2

Tipo di isolamento: XLPE (polietilene reticolato)

Materiale: alluminio Schermo: alluminio

Portata nominale: 1255 A per il cavo da 2000 mm2 Diametro esterno: 105 mm per il cavo da 2000 mm2


Il calcolo delle fasce di rispetto è stato eseguito in accordo con quanto previsto dal Decreto 29 Maggio 2008 del ministero dell'Ambiente e relativo allegato, valutando:

- la distanza di prima approssimazione (DPA) generata dal cavo in oggetto,
- la fascia di rispetto calcolata ad 1m dal suolo.

Considerando una posa interrata a trifoglio alla profondità di 1,5 m si ottiene una distanza di prima approssimazione Dpa (distanza R' della figura 1) pari a: 3,28 m

La distanza dall'asse della linea a livello del suolo oltre la quale l'induzione magnetica è inferiore a 3 microtesla (distanza Ro della figura 1 con h=0), risulta essere: 3.05 m

Il valore dell'induzione a 1 m dal suolo, sull'asse della linea risulta essere: 5,165 µT

Schema e distanze di cavi interrati posati a trifoglio (CEI 106-11)

GRE.EEC.R.24.IT.W.14670.00.037.00

PAGE

5 di/of 8

Figura 1

4.3. CAMPO MAGNETICO PRODOTTO DALLA SOTTOSTAZIONE

Secondo il DM 29/5/2008 (art. 5.2.2) per le sottostazioni in genere la fascia di rispetto dovrebbe rientrare nei confini dell'area di pertinenza dell'impianto stesso.

Considerando le sbarre principali in tubolare di alluminio di diametro 100/86 mm, con una distanza tra le fasi di 2,2 m (valore unificato dal codice di rete di Terna per le stazioni a 132/150 kV), con una corrente nominale delle sbarre di 2000 A, si ottiene una fascia di rispetto e quindi una Dpa (distanza di prima approssimazione) di 22,55 m, oltre la quale l'induzione è inferiore ai 3 microtesla e quindi nei limiti di legge imposti dalla normativa nazionale (obiettivo di qualità del DPCM 8/7/03).

I 22,55 m vanno calcolati dal baricentro dei conduttori e quindi dalla fase centrale delle sbarre in aria.

La proiezione al suolo di tale fascia di rispetto determina la distanza di prima approssimazione Dpa che risulta essere quindi di 22,55 m.

4.4. CAMPO MAGNETICO PRODOTTO DAL TRASFORMATORE AT/MT

Le caratteristiche del trasformatore elevatore sono di seguito indicate:

		TR1
Potenza nominale	MVA	60/70
Tensione nominale primaria	kV	150
Corrente primaria	A	269,75
Tensione nominale secondaria	kV	33
Corrente secondaria	A	1226,13
Regolazione		± 10 x 1,25%
Commutatore		Sotto carico
Gruppo vettoriale		YNd11
Impedenza di corto circuito	Vcc	13
Sistema di raffreddamento		ONAN-ONAF

La valutazione del campo magnetico è stata effettuata recependo alcune indicazioni del rapporto CLC/TR 50453 e della Guida CEI 211-4, in quanto nel D.M. 29 maggio 2008 "Metodi numerici per il calcolo delle fasce di rispetto" non viene contemplato questo particolare caso. Le indicazioni delle suddette pubblicazioni permettono di poter effettuare le seguenti considerazioni:

- I valori più significativi del campo magnetico a frequenza di rete sono dovuti alla corrente che circola nei terminali a bassa tensione.
- Il campo magnetico del trasformatore, prodotto dalle correnti che circolano negli avvolgimenti può essere trascurato.

Sulla base delle considerazioni sopra esposte si può ritenere che i valori più significativi sono quelli prodotti dai cavi elettrici di media tensione collegati all'avvolgimento secondario.

La linea collegata all'avvolgimento secondario sarà composta da 5 cavi (1x240) mm² in parallelo per fase.

In corrispondenza dei terminali di media tensione i cavi di ogni fase sono tutti raggruppati insieme e collegati allo stesso terminale. La distanza tra i terminali di media tensione è di 350 mm.

Considerando come valore di corrente la portata nominale (1747,87 A), si ottiene per la configurazione descritta un valore della distanza di prima approssimazione pari a 8,4 m.

In analogia al paragrafo 5.1.4.5 del decreto 29 Maggio 2008 incrementiamo la distanza di prima approssimazione di 1,5 volte per eventuali cambi di direzione, ottenendo un valore di 12,6 m.

In conclusione, la distanza di prima approssimazione (Dpa) del trasformatore CT1 risulta essere di 12,6 m.

GRE.EEC.R.24.IT.W.14670.00.037.00

PAGE

6 di/of 8

Engineering & Construction

4.5. CAMPO MAGNETICO PRODOTTO DAI CAVI MT IN SOTTOSTAZIONE

I cavi di media tensione impiegati per il collegamento delle apparecchiature elettriche (trasformatore elevatore, trasformatore dei servizi ausiliari) hanno

caratteristiche:

Tensione isolamento:

Tipo di cavo unipolare

Conduttore: rame ricotto stagnato secondo norma CEI 20-29

Forma conduttore: corda rotonda compatta

Isolamento: mescola etilenpropilenica di qualità G7 (HEPR)

rame non stagnato Schermo metallico:

mescola termoplastica in PVC qualità Rz Guaina esterna: 90 °Cin condizioni di esercizio normali Temperatura massima: 250°C in condizioni di corto circuito

interrata in cunicolo

18/30 kV Designazione del cavo: RG7H1R 18/30 kV

Per il calcolo della Dpa sono state considerate le seguenti condizioni:

- Massima corrente per ogni singola linea, corrispondente alla massima portata dei
- Geometria in funzione del percorso cavi

Le formazioni per ciascuna linea di media tensione e i valori della fascia di rispetto e quindi della Dpa (distanza di prima approssimazione) sono di seguito indicati:

Formazione [mm2]	Da	А	Diametro esterno [mm]	Portata [A] (NOTA 1)	Posa	Dpa [m]
5x3x(1x240)	TR1	QMT	45	525	A trifoglio interrati/passerella	1,39
3x(1x50)	QMT	TSA1	34,1	214	A trifoglio interrati/passerella	0,77

Nota 1: valore di portata effettiva della singola terna.

Si precisa che i valori della Dpa sono stati calcolati considerando una sola terna di conduttori. Per linee composte da più terne in parallelo si evidenzia che queste saranno posate in tubi distanziati tra loro di 2 volte il diametro esterno dei cavi oppure su passerelle distanziate di 300 mm in verticale e con una distanza di 2 volte il diametro tra due terne adiacenti. Quindi possono essere considerate come linee indipendenti.

I suddetti cavi sono posati all'interno di banchi tubi interrati alla profondità di 1 m nel piazzale della sottostazione e su passerelle all'interno dell'edificio della sottostazione.

4.6. CAMPO MAGNETICO PRODOTTO DAI CAVI MT NEL PARCO EOLICO

I cavi di media tensione impiegati per il collegamento tra le singole torri di generazione e la sottostazione hanno le seguenti caratteristiche:

Tipo di cavo unipolare Conduttore: alluminio

Forma conduttore: corda rotonda compatta Isolamento: in polietilene di tipo XLPE Schermo metallico: in nastro di alluminio

Guaina esterna: polietilene

Temperatura massima: 90 °Cin condizioni di esercizio normali 250°C in condizioni di corto circuito

Engineering & Construction

GRE CODE

GRE.EEC.R.24.IT.W.14670.00.037.00

PAGE

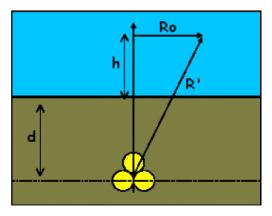
7 di/of 8

Posa: interrata

Tensione isolamento: 18/30 kV Designazione del cavo: ARE4H5E

Sono usate le seguenti sezioni di cavo:

Formazione [mm2]	Diametro esterno [mm]	Portata [A]
1x300	44	480
1x630	51	606


Per il calcolo della Dpa sono state considerate le seguenti condizioni:

- Massima corrente per ogni singola linea, corrispondente alla massima portata dei cavi.
- Geometria in funzione del percorso cavi e del tipo di posa: a trifoglio alla profondità di 1,2 m.

In riferimento alle suddette condizioni di posa si ottiene una distanza di prima approssimazione Dpa, intesa come distanza dal baricentro della linea in tutte le direzioni (R' nella figura 2), come indicato in tabella.

Invece della distanza dal baricentro può essere interessante conoscere la distanza dall'asse della linea a livello del suolo (distanza Ro nella figura 2, con h=0), come indicato in tabella.

Formazione [mm2]	Diametro esterno [mm]	Dpa [m]	Distanza asse a livello del suolo	Valore induzione a 1 m dal suolo [µT]	
1x300	44	1,31	0,729	1,069	
1x630	51	1,60	1,017	1,211	

Schema e distanze di cavi interrati posati a trifoglio (CEI 106-11)

Figura 2

5. CAMPI ELETTRICI

Tutti i componenti dell'impianto presentano al loro interno schermature o parti metalliche

GRE.EEC.R.24.IT.W.14670.00.037.00

PAGE

8 di/of 8

Engineering & Construction

collegate all'impianto di terra, per cui i campi elettrici risultanti all'esterno sono del tutto trascurabili o nulli.

Tutti gli schermi o le masse metalliche saranno collegati a terra, imponendo il potenziale di terra, ovvero zero, agli stessi, col risultato di schermare completamente i campi elettrici. Anche nel caso in cui gli effetti mitigatori delle schermature non dovessero essere totali, sicuramente le fasce di rispetto dovute ai campi elettrici saranno ridotte e ricadrebbero all'interno di quelle già calcolate per i campi magnetici.

Per le linee in cavo di media tensione essendo i cavi schermati il campo elettrico esterno allo schermo è nullo o comunque inferiore al valore di 5 kV/m imposto dalla Norma.

6. CONCLUSIONI

Dall'analisi dei risultati si può concludere che i valori di induzione calcolati sono compatibili con i vincoli previsti dalla normativa vigente.

Infatti, le aree di prima approssimazione individuate non includono in nessun punto luoghi con permanenza abituale di persone superiore a 4 ore, ed essendo contenute all'interno o nei dintorni dell'area di insediamento del nuovo parco eolico e della sottostazione annessa non coinvolgono né civili abitazioni, né locali pubblici con permanenza di persone, né luoghi di divertimento o svago.