

GRE.EEC.R.73.IT.W.14670.00.019.00

PAGE

1 di/of 13

TITLE: AVAILABLE LANGUAGE: IT

IMPIANTO EOLICO DI CERIGNOLA

PROGETTO DEFINITIVO

Relazione sulla manutenzione dell'impianto

File: GRE.EEC.R.73.IT.W.14670.00.019.00 - Piano di manutenzione dell'impianto

										-											
00	13/11/2020	Prima en	nissione								D	.Mans	<u>i</u>		N. Nov	ati			L. Lava	azza	
REV.	DATE			DESC	RIPTIC	ON					PF	REPAI	RED		VERIF	IED		,	APPR	OVE	D
					G	RE \	/ALI	DATI	ON												
Luzi (GRE)			Pansini (GRE)							Vigone (GRE)											
COLLABORATORS			VERIFIED BY							VALIDATED BY											
PROJECT	/PLANT							G	RE C	OD	E										
Cer	rignola	GROUP	FUNCION	TYPE	ISS	SUER	CO	UNTRY	TEC			PLAN	Т		SYSTE	И	PRO	GRESS	SIVE	REV	ISION
		GRE	EEC	R	7	3	I	Т	W	1	4	6	7	0	0 0)	1	9	0	0
CLASSIF	FICATION	PUBLI	IC			UTI	LIZAT	ION SC	OPE	В	AS	IC	DE	ESI	GN						

GRE CODE

GRE.EEC.R.73.IT.W.14670.00.019.00

PAGE

2 di/of 13

INDEX

1.	INTRODUZIONE3
	1.1. DESCRIZIONE DEL PROPONENTE
	1.2. CONTENUTI DELLA RELAZIONE
2.	INQUADRAMENTO TERRITORIALE
3.	CARATTERISTICHE DELL'IMPIANTO6
	3.1. CARATTERISTICHE DEGLI AEROGENERATORI DEL NUOVO IMPIANTO IN PROGETTO 6
	3.2. CARATTERISTICHE DELLE OPERE CIVILI ED ELETTRICHE A SERVIZIO DELL'IMPIANTO 7
	3.2.1. VIABILITÀ
	3.2.2. CAVIDOTTI MT8
	3.3. CARATTERISTICHE DELLA SOTTOSTAZIONE ELETTRICA
4.	LA MANUTENZIONE DELL'IMPIANTO9
	4.1. MANUTENZIONE PREVENTIVA DEGLI AEROGENERATORI
	4.2. MANUTENZIONE PREVENTIVA DELLE INFRASTRUTTURE DI SERVIZIO
	4.2.1. CAVIDOTTI INTERRATI
	4.2.2. VIABILITÀ
	4.3. MANUTENZIONE PREVENTIVA DELLA SOTTOSTAZIONE DI TRASFORMAZIONE E
	CONNESSIONE ALLA RETE

GRE CODE

GRE.EEC.R.73.IT.W.14670.00.019.00

PAGE

3 di/of 13

1. INTRODUZIONE

Stantec S.p.A., in qualità di Consulente Tecnico, è stata incaricata da Enel Green Power Italia S.r.I. ("EGP") di redigere il progetto definitivo per la costruzione di un nuovo impianto eolico denominato "Cerignola" e relative opere di connessione alla RTN, da ubicarsi nei comuni di Cerignola (FG) e Ascoli Satriano (FG).

Il progetto proposto prevede l'installazione di 10 nuove turbine eoliche ciascuna di potenza nominale fino a 6 MW, in linea con gli standard più alti presenti sul mercato, per una potenza installata totale pari a 60 MW.

L'energia prodotta dagli aerogeneratori, attraverso il sistema di cavidotti interrati in media tensione, verrà convogliata alla stazione elettrica di alta tensione di Terna denominata "Camerelle", situata nel comune di Ascoli Satriano. La connessione alla sottostazione esistente sarà effettuata a partire da una nuova stazione di trasformazione 33 kV/150 kV, che sarà connessa in antenna, tramite cavo in alta tensione aereo, alla stazione di Terna denominata "Camerelle".

Il progetto è in linea con gli obbiettivi nazionali ed europei per la riduzione delle emissioni di CO_2 , legate a processi di produzione di energia elettrica.

1.1. DESCRIZIONE DEL PROPONENTE

Enel Green Power S.p.A., in qualità di soggetto proponente del progetto, è la società del Gruppo Enel che dal 2008 si occupa dello sviluppo e della gestione delle attività di generazione di energia da fonti rinnovabili.

Enel Green Power è presente in 28 Paesi nei 5 continenti con una capacità gestita di oltre 46 GW e più di 1200 impianti.

In Italia, il parco di generazione di Enel Green Power è rappresentato dalle seguenti tecnologie rinnovabili: idroelettrico, eolico, fotovoltaico, geotermia. Attualmente nel Paese conta una capacità gestita complessiva di oltre 14 GW.

1.2. CONTENUTI DELLA RELAZIONE

La presente relazione ha l'obiettivo di illustrare in estrema sintesi le azioni e le procedure che verranno svolte durante la fase di esercizio dell'impianto, a partire dunque dalla data di entrata in esercizio del parco eolico.

Nei seguenti capitoli verranno presentate le caratteristiche principali dell'impianto eolico e successivamente le operazioni di manutenzione ordinaria che si svolgeranno sui componenti meccanici ed elettrici degli aerogeneratori, sulle infrastrutture di servizio come strade, piazzole e cavidotti interrati e sulle opere presenti nella stazione di trasformazione e connessione alla rete di trasmissione nazionale.

2. INQUADRAMENTO TERRITORIALE

L'area di progetto per il nuovo impianto eolico "Cerignola" è identificata dalle seguenti coordinate geografiche:

Latitudine: 41°12'49.87"NLongitudine: 15°44'27.53"E

L'impianto in progetto ricade entro i confini comunali di Cerignola e Ascoli Satriano, in particolare all'interno dei seguenti riferimenti cartografici:

- Fogli di mappa catastale del Comune di Cerignola n° 337, 338, 340, 347, 348, 349, 351 e del Comune di Ascoli Satriano n° 70, 75, 116;
- Fogli I.G.M. in scala 1:25.000, codificati 175-I-SO (Borgo Libertà) e 175-IV-SE (Corleto);

GRE CODE

GRE.EEC.R.73.IT.W.14670.00.019.00

PAGE

4 di/of 13

Fogli della C.T.R. in scala 1:25.000, codificati 422131, 422132, 422133, 434041, 434042, 434043, 434044, 435011, 435014,

Figura 2-1: Collocazione geografica impianto eolico "Cerignola (Google Earth)

L'impianto eolico è ubicato nell'area del comune di Cerignola e Ascoli Satriano in provincia di Foggia, a poco più di 32 km a Sud-Est dal capoluogo di Provincia.

Il sito non presenta particolari complessità dal punto di vista orografico: è infatti caratterizzato da colline di elevazione limitata (massimo 240 m s.l.m.) con pendenze lievi.

In Figura 2-2 è riportato il posizionamento previsto per le turbine eoliche del nuovo impianto in progetto.

GRE.EEC.R.73.IT.W.14670.00.019.00

PAGE

5 di/of 13

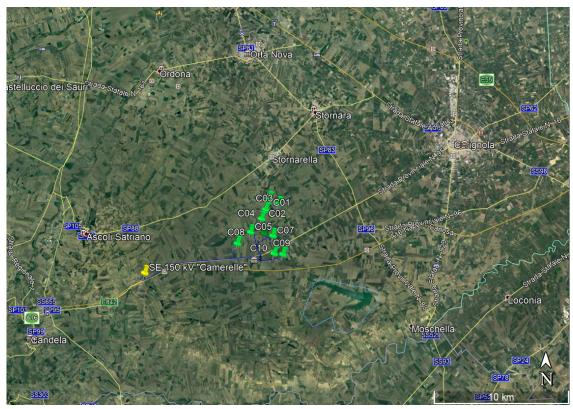


Figura 2-2: Inquadramento geografico nuovo impianto eolico "Cerignola" (Google Earth)

Il successivo inquadramento (Figura 2-3) mostra con maggior dettaglio il posizionamento delle turbine dell'impianto eolico "Cerignola".

Figura 2-3: Posizionamento turbine eoliche dell'impianto in progetto (Google Earth)

GRE CODE

GRE.EEC.R.73.IT.W.14670.00.019.00

PAGE

6 di/of 13

Di seguito è riportato in formato tabellare un dettaglio sul posizionamento delle WTG di nuova costruzione, in coordinate WGS84 UTM fuso 33N:

Tabella 2-1: Coordinate aerogeneratori

WTG	Comune	Est [m]	Nord [m]	Altitudine [m s.l.m.]		
C01	Cerignola	560715	4563772	199		
C02	Cerignola	561427	4563383	197		
C03	Cerignola	560465	4562950	206		
C04	Cerignola	560164	4562262	206		
C05	Cerignola	559342	4561253	216		
C06	Cerignola	560378	4561153	215		
C07	Cerignola	561021	4560997	214		
C08	Cerignola	558352	4560400	244		
C09	Cerignola	561772	4559617	224		
C10	Cerignola	561115	4559673	230		
SSE MT/AT	Ascoli Satriano	551268	4558280	344		

3. CARATTERISTICHE DELL'IMPIANTO

3.1. CARATTERISTICHE DEGLI AEROGENERATORI DEL NUOVO IMPIANTO IN PROGETTO

Gli aerogeneratori che verranno installati nel nuovo impianto di Cerignola saranno selezionati sulla base delle più innovative tecnologie disponibili sul mercato. La potenza nominale delle turbine previste sarà pari a massimo 6,0 MW. Il tipo e la taglia esatta dell'aerogeneratore saranno comunque individuati in seguito della fase di acquisto della macchina e verranno descritti in dettaglio in fase di progettazione esecutiva.

Si riportano di seguito le principali caratteristiche tecniche di un aerogeneratore con potenza nominale pari a 6,0 MW:

Potenza nominale	6,0 MW				
Diametro del rotore	170 m				
Lunghezza della pala	83 m				
Corda massima della pala	4,5 m				
Area spazzata	22.698 m²				
Altezza al mozzo	115 m				
Classe di vento IEC	IIIA				
Velocità cut-in	3 m/s				
V nominale	10 m/s				

GRE CODE

GRE.EEC.R.73.IT.W.14670.00.019.00

PAGE

7 di/of 13

V cut-out	25 m/s

Tabella 2: Caratteristiche dei nuovi aerogeneratori

Nell'immagine seguente è rappresentata una turbina con rotore di diametro pari a 170 m e potenza fino a 6,0 MW:

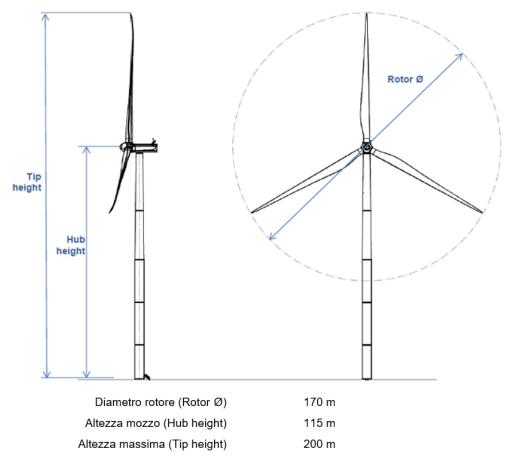


Figura 2-1: Vista e caratteristiche di un aerogeneratore da 6,0 MW

Ogni aerogeneratore è equipaggiato di generatore elettrico asincrono, di tipo DFIG (Directly Fed Induced Generator) che converte l'energia cinetica in energia elettrica ad una tensione nominale di 690 V. È inoltre presente su ogni macchina il trasformatore MT/BT per innalzare la tensione di esercizio da 690 V a 33.000 V.

3.2. CARATTERISTICHE DELLE OPERE CIVILI ED ELETTRICHE A SERVIZIO DELL'IMPIANTO

3.2.1. VIABILITÀ

La viabilità interna a servizio dell'impianto è costituita da una rete di strade con larghezza media di 6 m che saranno realizzate adeguando la viabilità già esistente e comunque seguendo l'andamento morfologico del sito.

Il sottofondo stradale sarà costituito da materiale pietroso misto frantumato mentre la rifinitura superficiale sarà formata da uno strato di misto stabilizzato opportunamente compattato.

La realizzazione degli interventi di adeguamento della viabilità interna e realizzazione dei nuovi tratti stradali prevede l'esecuzione delle seguenti attività:

GRE.EEC.R.73.IT.W.14670.00.019.00

PAGE

8 di/of 13

- **Engineering & Construction**
 - scoticamento di 30 cm del terreno esistente;
 - regolarizzazione delle pendenze mediante la stesura di strati di materiale idoneo;
 - la posa di una fibra tessile (tessuto/non-tessuto) di separazione;
 - posa di uno strato di 40 cm di misto di cava e 20 cm di misto granulare stabilizzato;

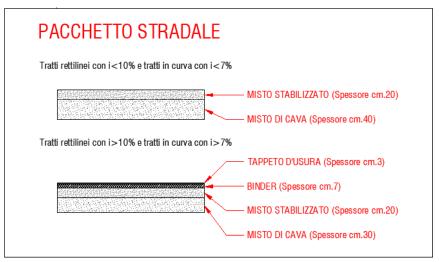


Figura 2-2: Pacchetti stradali

3.2.2. CAVIDOTTI MT

Per raccogliere l'energia prodotta dal campo eolico e convogliarla verso la stazione di trasformazione sarà prevista una rete elettrica costituita da tratte di elettrodotti in cavo interrato aventi tensione di esercizio di 33 kV e posati direttamente nel terreno in apposite trincee che saranno realizzate lungo la nuova viabilità dell'impianto. Saranno presenti pozzettoni ogni 2,5 km, ai fini della manutenzione e della riparazione in caso di guasto dei cavi.

I 4 sottocampi del parco eolico, costituiti da 2 o 3 aerogeneratori collegati in entra-esci con linee in cavo, saranno connessi alla stazione di trasformazione tramite 4 cavidotti:

Cavidotto 1: C-01, C-03;

Cavidotto 2: C-02, C-04;

Cavidotto 3: C-05, C-06, C07;

Cavidotto 4: C-09, C10, C08.

I cavi saranno interrati direttamente, con posa a trifoglio, e saranno previsti di protezione meccanica supplementare (lastra piana a tegola). La profondità di interramento sarà non inferiore a 1,00 m. Sarà prevista una segnalazione con nastro monitore posta a 40-50 cm al di sopra dei cavi MT.

All'interno dello scavo per la posa dei cavi media tensione saranno posate anche la fibra ottica e la corda di rame dell'impianto di terra.

L'installazione dei cavi soddisferà tutti i requisiti imposti dalla normativa vigente e dalle norme tecniche ed in particolare la norma CEI 11-17.

Saranno impiegati cavi con conduttore in alluminio, isolamento in polietilene di tipo XLPE, ridotto spessore di isolamento, schermo in nastro di alluminio e rivestimento esterno in poliolefine tipo DMZ1, aventi sigla ARE4H5E tensione di isolamento 18/30 kV, idonei per un sistema operante a tensione nominale 33 kV.

Nella stazione di trasformazione esistente saranno installati n.2 quadri di media tensione (isolamento 36 kV) per la connessione degli elettrodotti provenienti dal parco eolico, in

GRE CODE

GRE.EEC.R.73.IT.W.14670.00.019.00

PAGE

9 di/of 13

sostituzione di quelli già presenti che saranno preventivamente dismessi.

I quadri di media tensione saranno conformi alla norma IEC 62271-200 e avranno le seguenti caratteristiche: $1250 \text{ A} - 16 \text{ kA} \times 1 \text{ s}$.

Ogni scomparto sarà equipaggiato con interruttore sottovuoto, trasformatori di misura, protezioni elettriche e contatori di energia.

Infine, sarà previsto uno scomparto misure di sbarra equipaggiato con i trasformatori di tensione e uno scomparto con sezionatore sotto-carico e fusibile per la protezione del trasformatore.

3.3. CARATTERISTICHE DELLA SOTTOSTAZIONE ELETTRICA

La stazione a 150 kV sarà collegata in antenna con connessione in cavidotto interrato alla adiacente stazione di Terna S.p.A., e si compone di:

- Stallo AT arrivo linea 150 kV;
- N. 1 stallo AT montanti trasformatori;
- N.1 trasformatori 150 kV/33 kV;
- N.1 quadri di media tensione 33 kV;
- N.1 trasformatori 33 kV/400 V per i servizi ausiliari;
- N.1 quadro servizi ausiliari in bassa tensione;
- Quadri protezione;
- · Contatori di misura.

Le apparecchiature AT e i trasformatori sono installati all'aperto, i quadri di media tensione, dei servizi ausiliari e i sistemi di protezione, controllo e misura sono installati all'interno del fabbricato esistente. La stazione è opportunamente recintata e munita di accessi conformi alla normativa vigente.

4. LA MANUTENZIONE DELL'IMPIANTO

Va innanzitutto premesso che l'impianto eolico non richiede, di per sé, il presidio da parte di personale preposto.

La centrale, infatti, viene tenuta sotto controllo mediante un sistema di supervisione che permette di rilevare le condizioni di funzionamento con continuità e da posizione remota.

In generale, dunque, l'attivazione di interventi da parte di personale tecnico addetto alla gestione e conduzione dell'impianto sarà subordinata ai seguenti casi:

- Manutenzione <u>preventiva</u>: svolgimento di attività di manutenzione ordinaria e programmata;
- Manutenzione <u>correttiva</u>: svolgimento di attività di manutenzione straordinaria su segnalazione da parte del sistema di monitoraggio, di controllo e di sicurezza.

La manutenzione preventiva consiste in tutte quelle attività con cadenza prestabilita e dunque programmata sui vari componenti dell'impianto e sulle principali infrastrutture di servizio.

La manutenzione correttiva invece include le attività di ricerca guasto, riparazione e eventualmente sostituzione sia dei componenti principali dell'impianto (ad esempio generatori, trasformatore MT/AT, pale) per cui è necessario ricorrere a mezzi speciali (ad esempio gru, piattaforma aerea etc.) sia dei componenti secondari (ad esempio giunti,

GRE.EEC.R.73.IT.W.14670.00.019.00

PAGE

10 di/of 13

Engineering & Construction

quadri, etc.), dove invece è sufficiente intervenire con una squadra ridotta e senza mezzi speciali.

Le maggior parte delle attività di manutenzione correttiva sono eseguite con tempestività grazie ad un monitoraggio da remoto in continuo dell'impianto. Quando si verifica un guasto ad un componente dell'impianto, esso viene rilevato da remoto e vengono prontamente allertate le squadre tecniche per il primo intervento. I protocolli messi in atto consentono una rapida risoluzione della maggior parte delle problematiche, consentendo di garantire i più elevati livelli di disponibilità e la conseguente produzione di energia elettrica.

Tutte le attività sono eseguite nel pieno rispetto della normativa vigente, utilizzando attrezzature conformi alla normativa ed utilizzando personale formato allo scopo.

In particolare, il personale è formato sul piano tecnico e sotto il profilo della sicurezza ed agisce in conformità al DVR. Tra le attività formative sulla sicurezza, si segnalano quelle erogate secondo gli standard normativi e del Global Wind Organisation:

- Formazione/Informazione;
- · Prevenzione incendi;
- Primo soccorso;
- Movimentazione manuale dei carichi;
- Lavori in quota ed evacuazione di emergenza;

Affiancata alla formazione di sicurezza vi è poi la formazione tecnica erogata in parte in aula ed in parte sul lavoro, che ha come obiettivo primario la creazione di professionalità volte alla manutenzione preventiva (pulizia, lubrificazione, ispezione, serraggi) ed alla manutenzione correttiva (ricerca guasto ed interventi di riparazione)

La manutenzione preventiva viene effettuata con una frequenza che è:

- Semestrale per gli aerogeneratori;
- Annuale per la sottostazione;
- Annuale per i giunti e terminali dei cavidotti;
- Quando necessario per la viabilità e le piazzole.

Le attività vengono condotte con squadre tecniche secondo il dettaglio che segue:

- Aerogeneratore:
 - Durata della manutenzione quantificabile in tre giorni per turbina.
 - Una squadra tecnica composta da tre persone;
- Sottostazione:
 - Durata della manutenzione quantificabile in 3 giorni;
 - Una squadra tecnica composta da otto persone.
- Cavidotti ed accessori MT in sito:
 - Durata della manutenzione quantificabile in due giorni;
 - Una squadra Tecnica composta da due persone

GRE CODE

GRE.EEC.R.73.IT.W.14670.00.019.00

PAGE

11 di/of 13

Viabilità e Piazzole:

- o La durata della manutenzione dipende dagli interventi da realizzare;
- Una squadra tecnica composta da una persona che supervisiona le opere realizzate da imprese edili locali.

Ogni componente dell'impianto è dotato di un manuale di uso e di un manuale di manutenzione che vengono redatti dal costruttore del componente una volta che il componente viene installato, avviato e testato. In particolare, saranno disponibili i manuali della sottostazione e degli aerogeneratori, che definiscono le modalità di corretta conduzione e manutenzione dei componenti stessi, del loro esercizio in sicurezza.

4.1. MANUTENZIONE PREVENTIVA DEGLI AEROGENERATORI

Le attività di manutenzione preventiva degli aerogeneratori possono essere suddivise in macroaree: pulizia, controllo componenti meccanici e livelli olio, misure e verifiche.

La lista delle attività che si svolgeranno nei regolari interventi di manutenzione preventiva è la seguente:

1. Pulizia:

- Pulizia generale della navicella;
- 2. Controllo dei componenti meccanici e dei livelli dell'olio:
 - Prelievo dei campioni di olio dal moltiplicatore di giri e dal sistema idraulico;
 - rabbocchi di olio, se necessario;
 - lubrificazione delle differenti parti componenti la turbina;
 - sostituzione dei filtri;
 - controllo delle condizioni del moltiplicatore di giri;
- 3. Misure e test dei vari sensori;

4. Verifiche:

- verifica di funzionamento generale;
- verifica del sistema frenante;
- verifica del sistema regolazione dell'imbardata;
- verifica del sistema di attuazione del passo delle pale;
- verifica ed eventuale ricarica degli accumulatori;
- verifica degli estintori secondo i dettami di legge;
- verifica degli impianti di rivelazione fumi, laddove presenti;
- verifica delle linee vita;
- verifica di paranchi ed ascensori secondo le prescrizioni di legge.

4.2. MANUTENZIONE PREVENTIVA DELLE INFRASTRUTTURE DI SERVIZIO

4.2.1. CAVIDOTTI INTERRATI

GRE.EEC.R.73.IT.W.14670.00.019.00

PAGE

12 di/of 13

Engineering & Construction

La lista delle attività che si svolgeranno nei regolari interventi di manutenzione preventiva è la seguente:

- Apertura, ispezione e pulizia generale degli scomparti;
- ispezione, pulizia e lubrificazione di tutti i contatti mobili;
- verifica di tutti i serraggi.

4.2.2. VIABILITÀ

La lista delle attività che si svolgeranno nei regolari interventi di manutenzione preventiva è la seguente:

- Utilizzo di escavatore per:
 - Sistemazione e ripristino massicciata stradale;
 - chiusura di buche;
 - recupero di materiale proveniente da erosione;
 - realizzazione di canali di scolo.
- Posa in opera di materiale anticapillare di idonea granulometria compresa la stesura a superfici piane e livellate, il compattamento meccanico e la finitura.

4.3. MANUTENZIONE PREVENTIVA DELLA SOTTOSTAZIONE DI TRASFORMAZIONE E CONNESSIONE ALLA RETE

Le attività di manutenzione preventiva della sottostazione possono essere suddivise in macroaree: pulizia, controllo e misure ed infine verifiche.

La lista delle attività che si svolgeranno nei regolari interventi di manutenzione preventiva è la seguente:

- 1. Pulizia:
 - Pulizia generale della sottostazione;
 - pulizia e lubrificazione di tutti i contatti mobili, sia della sezione mt che at;
 - pulizia degli isolatori;
- 2. Controlli e misure:
 - Controllo dei tempi di intervento di tutti gli interruttori e protezioni;
 - controllo dei collegamenti di terra;
 - misure elettriche sul trasformatore;
 - termografia;
- 3. Verifiche:
 - Verifica di funzionamento dei circuiti ausiliari e delle protezioni del trasformatore;
 - verifica della rigidità dielettrica dell'olio e sua campionatura;

GRE CODE

GRE.EEC.R.73.IT.W.14670.00.019.00

PAGE

13 di/of 13

- verifica generale dei quadri elettrici, lubrificazione degli organi meccanici, misure di isolamento;
- verifica dei componenti dei servizi ausiliari;
- verifica della presenza ed integrità della cartellonistica.