

GRE.EEC.R.25.IT.W.14706.00.011.01

PAGE

1 di/of 26

TITLE: AVAILABLE LANGUAGE: IT

"IMPIANTO EOLICO LATIANO"

RELAZIONE IDROLOGICA

01	14/12/2020			REVI	REVISIONE					M.LABBRUZZI				F.DE CASTRO			G.CHIAIA				
00	30/11/2020	PRIMA EMISS				IONE					M.LABBRUZZI				F.DE CASTRO				G.CHIAIA		
REV.	DATE		DESCRIPTION								PREPARED				VERIFIED		D	APPROVED			
						GRE \	/ALII	OATIO	N												
	-	•				DI	SCIPI	LINE			PUOSI										
	COLLABO	RATORS				VE	RIFIE	D BY					VALIDATED BY								
PROJECT	T/PLANT				G	RE.E	EEC.	.R.25	IT.W	.14	706.	00.0)11.	01							
	ANTO EOLICO LATIANO	GROUP	FUNCION	TYPE		UER		UNTRY	TEC			PLANT			SYS	ТЕМ	PRO	GRES	SIVE	REVI	SION
		GRE	EEC	R	2	5	I	Т	W	1	4	7	0	6	0	0	0	1	1	0	1
CLASSIFICATION				UTILIZATION SCOPE																	

This document is property of Enel Green Power S.p.A. It is strictly forbidden to reproduce this document, in whole or in part, and to provide to others any related information without the previous written consent by Enel Green PowerS.p.A.

GRE.EEC.R.25.IT.W.14706.00.011.01

PAGE

2 di/of 26

INDEX

1.	INTRO	DUZIONE	. 3
2.	LOCALI	ZZAZIONE DEL PROGETTO	. 5
	2.1.	INQUADRAMENTO GEOGRAFICO E TERRITORIALE	. 5
3.	INDIVI	DUAZIONE DEL BACINO IDROGRAFICO	. 8
4.	STUDIO	D IDROLOGICO DEI BACINI IDROGRAFICI	10
	4.1.	CURVE DI PROBABILITA' PLUVIOMETRICA (METODO VAPI)	11
	4.2.	CURVE DI POSSIBILITÀ CLIMATICA METODO DI GUMBEL	18
5.	CONCL	USIONI	26

GRE.EEC.R.25.IT.W.14706.00.011.01

PAGE

3 di/of 26

1. INTRODUZIONE

La presente **relazione** ha lo scopo di inquadrare dal punto di vista idrologico l'area di studio sulla base dei dati idroclimatici ufficiali (Servizio Idrografico) e delle caratteristiche orografiche del suolo.

La società "Enel Green Power Italia Srl", nell'ambito della propria attività imprenditoriale, ha previsto la realizzazione di un parco eolico denominato "Latiano" che ricade nell'ambito del territorio amministrato dai Comuni di Latiano e Mesagne, in Provincia di Brindisi.

Come illustrato nella figura che segue, l'area interessata dall'intervento è ubicata nella Regione Puglia e ricade nei limiti territoriali dell'Autorità di Bacino Distrettuale dell'Appennino Meridionale Sede Puglia

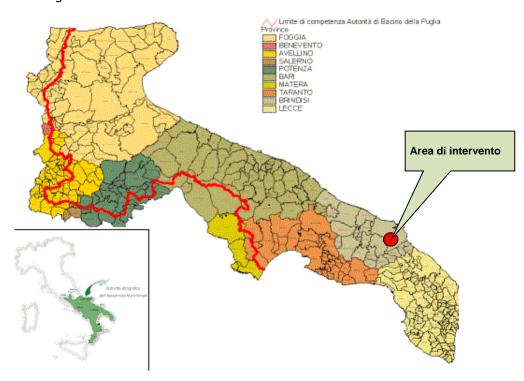


Figura 1: Inquadramento dell'area di studio.

Lo studio idrologico è articolato su due direttrici principali:

- A. analisi e descrizione delle caratteristiche geomorfologiche dei bacini idrografici relativi all'area di intervento;
- B. caratterizzazione del regime climatico dell'area, determinando le curve di possibilità climatica secondo due distinti approcci:
 - Il metodo VAPI elaborato dal Gruppo Nazionale Difesa dalle Catastrofi Idrogeologiche (GNDCI) del Consiglio Nazionale delle Ricerche nell'ambito degli studi per l'Analisi regionale dei massimi annuali delle precipitazioni in Puglia centro-meridionale (a cura del Dipartimento di Ingegneria delle Acque del Politecnico di Bari, 2001),
 - > Il metodo classico di Gumbel, verificando l'adattabilità della serie campionaria alla relativa distribuzione di probabilità dei valori estremi delle stazioni

GRE.EEC.R.25.IT.W.14706.00.011.01

PAGE

4 di/of 26

pluviometriche di Latiano, Grottaglie e Ceglie Messapica.

Gli elementi di base sono stati ricavati adottando il seguente approccio:

- ➤ la ricostruzione dell'orografia dell'area di intervento è stata effettuata elaborando i files vettoriali disponibili (DTM della Regione Puglia con risoluzione a terra di 8 m) in ambiente GIS, per poi trasferirli in ambiente CAD;
- ➢ le curve di possibilità climatica sono state ricostruite elaborando i dati di pioggia delle stazioni pluviometriche di Latiano, Grottaglie e Ceglie Messapica;

Alla presente Relazione sono allegati:

> Allegato 1 - Individuazione dei reticoli idrografici su I.G.M. 25.000.

GRE.EEC.R.25.IT.W.14706.00.011.01

PAGE

5 di/of 26

2. LOCALIZZAZIONE DEL PROGETTO

Come si è detto, le aree proposte per la realizzazione del parco eolico in progetto sono ubicate nei territori comunali di Latiano e Mesagne e sono ubicate a nord della SS7/E90, e sono adibite principalmente a seminativo e uliveti, con orografia pressoché pianeggiante.

2.1. INQUADRAMENTO GEOGRAFICO E TERRITORIALE

L'area di intervento, in cui ricadono le sorgenti, aerogeneratori del tipo Siemens Gamesa SG 6.0 - 170, è riportata nel Catasto Terreni dei Comuni di Latiano, Mesagne come nella tabella seguente.

SISTEMA D	RIFERIMENTO UT	M WGS 84 - FUSO 33N	ID. C	ATAS	то
WTG	EST [m]	NORD [m]	COMUNE	FG	P.LLA
1	727561	4497784	LATIANO	8	54
2	729449	4497237	LATIANO	9	306
3	730314	4497021	LATIANO	9	319
4	733012	4497300	LATIANO	17	35
5	728316	4495815	LATIANO	12	475
6	729376	4495890	LATIANO	13	126
7	731274	4495999	LATIANO	24	1
8	731967	4495907	LATIANO	24	8
9	732497	4496151	MESAGNE	10	1
10	732997	4496386	MESAGNE	10	45
11	730635	4495094	LATIANO	23	61
12	732072	4494258	LATIANO	32	68
13	733802	4495632	MESAGNE	11	1

Tabella 1: Elenco delle sorgenti

GRE.EEC.R.25.IT.W.14706.00.011.01

PAGE

Figura 2: Inquadramento regionale

Figura 3: Inquadramento area di Intervento su Ortofoto

GRE.EEC.R.25.IT.W.14706.00.011.01

PAGE

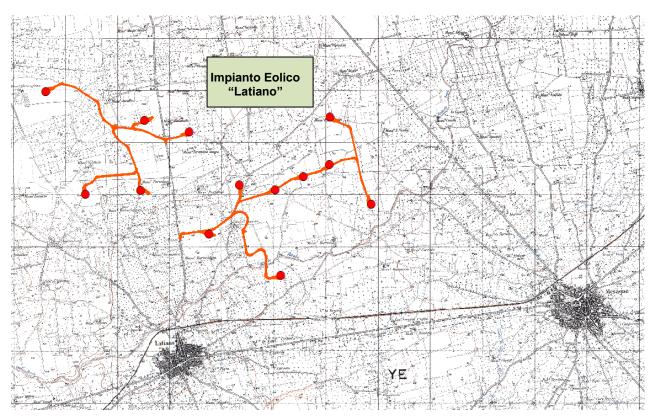


Figura 4: Inquadramento area di Intervento su IGM 1:25.0000.

GRE.EEC.R.25.IT.W.14706.00.011.01

PAGE

8 di/of 26

3. INDIVIDUAZIONE DEL BACINO IDROGRAFICO

Prima di delimitare il bacino idrografico sotteso alle aree di intervento, si è provveduto a verificare la coerenza planimetrica tra il reticolo rappresentato sulla cartografia I.G.M. 25.000 e quello deducibile dal DTM della Regione Puglia. Sono emerse talune leggere differenze, a fronte delle quali si sono assunte come maggiormente attendibili le informazioni ricavate dal DEM.

Dall'analisi dell'orografia dell'area di intervento è stato individuato un bacino idrografico le cui sezioni di chiusura sono prossime alle aree di interesse. Questo si sviluppa nei territori relativi ai comuni di Villa Castelli, Francavilla Fontana, Latiano e Mesagne, all'interno dei fogli 475, 476, 494 e 495 della cartografia I.G.M. 25.000 (Errore. L'origine riferimento non è stata trovata.).

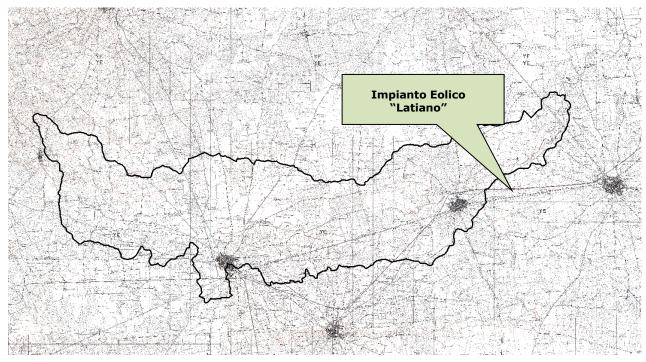


Figura 5: Inquadramento del bacino idrografico su carta IGM 1:25.000

GRE.EEC.R.25.IT.W.14706.00.011.01

PAGE

9 di/of 26

I parametri geomorfologici caratteristici dei bacini idrografici sono indicati in Tabella 2:

Bacino idrografic o	Superficie	Lungh. asta principale	H max del bacino	H min del bacino	H media del bacino	H monte dell'asta principale	H media dell'asta principale	Pendenza media bacino	Pendenza media dell'asta principale
ŭ	S [km²]	L [m]	H _{max} [m]	H _{min} [m]	н	H _m [m]	H _a [m]	i _m [%]	i _a [%]
Α	117.76	30824	28.84	56.60	192.62	154.41	15.60	0.84%	0.32%

Tabella 2 : Parametri geomorfologici del bacino idrografico

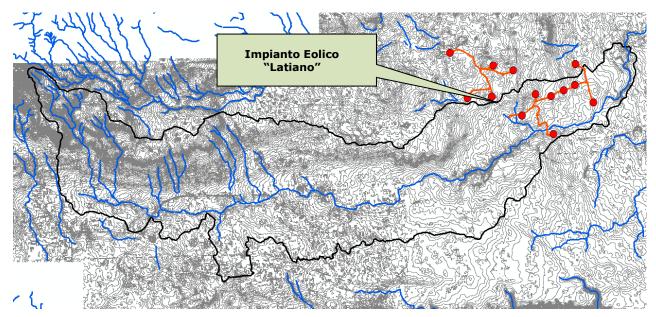


Figura 6: Inquadramento del bacino idrografico su curve di livello.

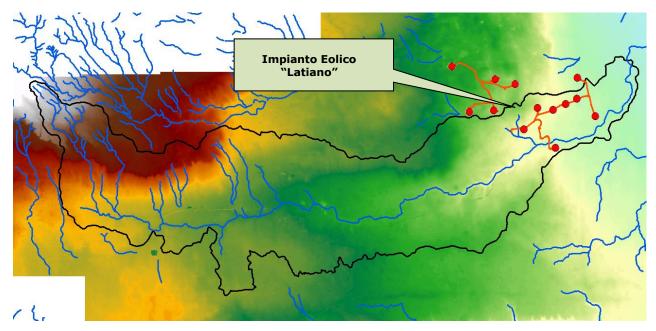


Figura 7: Inquadramento del bacino idrografico su DTM.

GRE.EEC.R.25.IT.W.14706.00.011.01

PAGE

10 di/of 26

4. STUDIO IDROLOGICO DEI BACINI IDROGRAFICI

Lo studio idrologico dei bacini è stato condotto determinando le curve di possibilità climatica, come desunte dalle misure di precipitazione massime orarie riportate negli Annali Idrologici relative alle stazioni pluviografiche di Latiano, Grottaglie e Ceglie Messapica (BR).

Come si è già detto nel paragrafo 1, la valutazione di dette curve è stata condotta secondo due distinti approcci:

- Il metodo VAPI elaborato dal Gruppo Nazionale Difesa dalle Catastrofi Idrogeologiche (GNDCI) del Consiglio Nazionale delle Ricerche nell'ambito degli studi per l'Analisi regionale dei massimi annuali delle precipitazioni in Puglia centro-meridionale (a cura del Dipartimento di Ingegneria delle Acque del Politecnico di Bari, 2001),
- > Il metodo classico di Gumbel, verificando l'adattabilità della serie campionaria alla relativa distribuzione di probabilità dei valori estremi.

Le elaborazioni effettuate per giungere alla determinazione delle equazioni delle curve sono puntualmente descritte nei paragrafi che seguono, mentre si è omessa la descrizione dell'applicazione ai dati di precipitazione massima oraria delle analisi statistiche convenzionali (adattabilità delle serie campionarie a distribuzioni di probabilità), in quanto trattasi di procedura ormai consolidata e nota nella pratica tecnica.

I valori dei tempi di ritorno (T_R) utilizzati per la definizione delle curve di possibilità climatica e, di conseguenza, per la stima degli eventi di piena sono 5, 10, 20, 30, 50, 100, 200 e 500 anni.

GRE.EEC.R.25.IT.W.14706.00.011.01

PAGE

11 di/of 26

4.1. CURVE DI PROBABILITA' PLUVIOMETRICA (METODO VAPI)

L'approccio più moderno per lo studio degli eventi estremi in idrologia viene condotto con un insieme di procedure atte a trasferire l'informazione idrologica e nota come "analisi regionale". Alla base di un modello di regionalizzazione vi è la preventiva individuazione del meccanismo fisico-stocastico, che spiega la distribuzione della variabile idrologica di interesse nello spazio e nel dominio di freguenza statistica.

La scelta del tipo di modello richiede la conoscenza di alcuni aspetti fondamentali legati: alle risorse dedicabili allo studio, alla qualità dell'informazione disponibile e alla precisione richiesta dai risultati. Pertanto, la struttura del modello richiede la costruzione del risolutore numerico e un'attenta identificazione dei parametri di taratura.

Numerosi studi sono stati condotti in Inghilterra, negli Stati Uniti ed in Italia su questi modelli a più parametri, noti in letteratura con gli acronimi GEV (Jenkinson,1955), Wakeby (Hougthon 1978) e TCEV (Rossi e Versace,1982; Rossi et al. 1984).

Quest'ultima sigla deriva dall'espressione inglese *Two Component Extreme Value*, che rappresenta la distribuzione di probabilità corrispondente ad un certo evento estremo, sia che provenga dalla distribuzione statistica di eventi ordinari sia che provenga da quella degli eventi straordinari. A tal fine occorre sottolineare che la principale fonte di incertezza deriva proprio dagli eventi estremamente intensi che hanno caratteristiche di rarità in ogni sito e aleatorietà per quel che riguarda il sito ove potranno verificarsi nel futuro. Ciò implica che, se in un punto eventi straordinari di un certo tipo non si siano verificati storicamente, questo non è garanzia di sicurezza sulla loro non occorrenza nel futuro.

In seguito, dopo una breve indicazione circa i dati disponibili per lo studio, si procede a fornire i risultati delle varie fasi della procedura di regionalizzazione del territorio pugliese centromeridionale, territorio nel quale ricade il bacino oggetto di studio.

I dati pluviometrici utilizzati sono quelli pubblicati sugli annali idrologici del compartimento di Bari del S.I.I, le cui stazioni formano la rete di misura delle precipitazioni su tutto il territorio regionale con un'elevata densità territoriale.

Le osservazioni pluviometriche, utilizzate per la regionalizzazione, interessano il periodo dal 1960 al 2000 in tutte le stazioni di studio, con almeno quindici anni di misure, dei massimi annuali delle precipitazioni giornaliere ed orarie. Le serie sono variabili da un minimo di 19 ad un massimo di 47 dati per un numero totale di stazioni pari a 66, tutte appartenenti alla Puglia centro-meridionale.

Come si è detto, per i massimi annuali delle precipitazioni giornaliere, è stato adottato un modello di regionalizzazione basato sull'uso della distribuzione di probabilità TCEV (legge di distribuzione di probabilità del Valore Estremo a Doppia Componente), che rappresenta la distribuzione del massimo valore conseguito, in un dato intervallo temporale, da una variabile casuale distribuita secondo la miscela di due leggi esponenziali, nell'ipotesi che il numero di occorrenze di questa variabile segua la legge di Poisson. Il modello proposto ammette che le due componenti, quella straordinaria e ordinaria, appartengano a popolazioni diverse, anche

GRE.EEC.R.25.IT.W.14706.00.011.01

PAGE

12 di/of 26

se è ammessa la loro interferenza attraverso un processo poissoniano.

L'identificazione dei parametri della distribuzione TCEV ha consentito di costruire un modello regionale con struttura gerarchica, basata su tre livelli di regionalizzazione, grazie a cui è possibile individuare regioni in cui risulta costante il coefficiente di asimmetria, quindi risultano costanti i due parametri θ^* e Λ^* ad esso legati (primo livello di regionalizzazione), e sottoregioni di queste, più limitate, in cui sia costante anche il coefficiente di variazione, e quindi il parametro Λ^1 che da esso dipende (secondo livello di regionalizzazione). Il terzo livello è poi finalizzato alla ricerca di eventuali relazioni esistenti, all'interno di più piccole aree, tra il parametro di posizione della distribuzione di probabilità e le caratteristiche morfologiche. In particolare si nota che, all'interno di dette aree, i valori medi dei massimi annuali delle precipitazioni di diversa durata sono o costanti o strettamente correlati alla quota del sito di rilevamento.

La preventiva suddivisione dell'area di studio in zone e sottozone omogenee è stata effettuata in base all'analisi delle massime precipitazioni giornaliere, di cui si dispone del maggior numero di informazioni. La procedura prevede che si ricerchino zone pluviometriche omogenee, entro le quali possano ritenersi costanti i valori dei parametri θ^* e Λ^* . I risultati ottenuti dall'analisi del I° livello e II° livello di regionalizzazione sono stati ricavati con riferimento ad un'ipotesi di invarianza dei parametri θ^* e Λ^* .

L'analisi del primo livello suggerisce la presenza di un'unica zona omogenea comprensiva di tutte le stazioni della regione.

Analogamente alla procedura operata al primo livello di regionalizzazione, la successiva verifica dell'ipotesi di un'unica zona omogenea è stata effettuata attraverso il confronto delle distribuzioni di frequenza cumulata dei valori osservati del coefficiente di variazione CV e di quelli generati, ottenendo un ottimo risultato che convalida ulteriormente l'ipotesi di intera regione omogenea con un valore costante di $\Lambda 1$. Alla luce di tali risultati, è stato possibile assumere realistica l'ipotesi di un'unica zona omogenea al primo e al secondo livello di regionalizzazione.

Nel riquadro a seguire si riportano i valori numerici dei parametri di interesse per lo studio.

	θ*	Λ*	Λ1
Puglia centro meridionale	2.121	0.353	17.55

Tabella 3 : Parametri d'interesse.

La distribuzione regionale della probabilità cumulata del massimo annuale di precipitazione di assegnata durata $X_{d,TR}$ viene espressa in funzione di una quantità K_{TR} , detta fattore probabilistico di crescita, funzione del periodo di ritorno T_R e indipendente dalla durata.

Tale fattore è, in generale, funzione del tempo di ritorno T_R ed è definito dal rapporto seguente:

GRE.EEC.R.25.IT.W.14706.00.011.01

PAGE

13 di/of 26

$$K_T = \frac{X_{d,T}}{\mu(X_{d,T_R})}$$

essendo X_{d,TR} il massimo annuale di precipitazione per assegnata durata e tempo di ritorno.

La curva di distribuzione di probabilità di tale rapporto ha caratteristiche regionali, in quanto è unica nell'ambito della regione nella quale sono costanti i parametri della distribuzione di probabilità della $X_{d,TR}$. Pertanto, fissati i parametri di forma e di scala della distribuzione di probabilità cumulata, all'interno della zona pluviometrica omogenea previamente identificata, è possibile esprimere la relazione tra il tempo di ritorno T_R ed il fattore di crescita K_{TR} , potendo ritenere trascurabile la variabilità del fattore di crescita con la durata. Infatti, calcolando, nelle stazioni disponibili, le medie pesate dei coefficienti di asimmetria e dei coefficienti di variazione alle diverse durate, si osserva una variabilità inferiore a quella campionaria.

L'indipendenza dalla durata di K_{TR} autorizza ad estendere anche alle piogge orarie i risultati ottenuti con riferimento alle piogge giornaliere ai primi due livelli di regionalizzazione.

Sulla scorta dei valori regionali dei parametri θ^* , Λ^* e $\Lambda 1$, è possibile calcolare la curva di crescita per la Puglia centro – meridionale, anche se tale fattore può essere calcolata in funzione di TR attraverso una approssimazione asintotica della curva di crescita, che ha la seguente forma:

$$K_{TR} = a + b * ln(T_R)$$

in cui i parametri a e b sono esprimibili in funzione dei valori regionali di θ^* , Λ^* e $\Lambda 1$.

Per la Puglia settentrionale, l'espressione della curva di crescita approssimata attraverso la relazione precedente è, quindi, la seguente:

$$K_T = 0.5648 + 0.415 * \ln T_R \tag{1}$$

Per la Puglia centro-meridionale, l'espressione della curva di crescita approssimata attraverso la relazione precedente è, invece, la seguente:

$$K_T = 0.1599 + 0.5166 * ln T_R$$
 (2)

anche se va rimarcato come l'utilizzo di questa approssimazione comporta una sottostima del fattore di crescita, con valori superiori al 10% per T<50 anni e superiori al 5% per T<100 anni. I valori di K_T utilizzati nel caso in esame sono riportati nella tabella seguente:

Tempo di ritorno (anni)	1	5	10	20	30	50	100	200	500
K(T) Zona 1-2-3-4	0.565	1.233	1.520	1.808	1.976	2.188	2.476	2.764	3.144
K(T) Zona 5-6	0.160	0.991	1.349	1.707	1.917	2.181	2.539	2.897	3.370

Tabella 4 : Valori di KT al variare della zona e del tempo di ritorno.

Nel terzo livello di analisi regionale viene analizzata la variabilità spaziale del parametro di posizione (media, moda, mediana) delle serie storiche in relazione a fattori locali. Nell'analisi delle piogge orarie, in analogia ai risultati classici della statistica idrologica, per ogni sito è possibile legare il valore medio $\mu(X_t)$ dei massimi annuali della precipitazione media di diversa

GRE.EEC.R.25.IT.W.14706.00.011.01

PAGE

14 di/of 26

durata alle durate stesse, attraverso la relazione:

$$\mu(X_d) = ad^n$$

essendo a ed n due parametri variabili da sito a sito. Ad essa si dà il nome di curva di probabilità pluviometrica.

Il VAPI individua le seguenti zone di 3º livello:

» nell'area della Puglia settentrionale, 4 aree omogenee dal punto di vista del legame fra altezza di precipitazione giornaliera $\mu(Xg)$ e quota. Ognuna di esse è caratterizzata da una correlazione lineare con elevati valori dell'indice di determinazione tra i valori $\mu(Xg)$ e le quote sul mare h:

ZONA 1-3	$\mu(h,t)=at^{(ch+D+lnq-lna)/ln24}$
ZONA 2-4	μ(h,t)=atʰ

Tabella 5 : Correlazione tra $\mu(Xg)$ e la durata di precipitazione.

in cui C e D sono parametri che dipendono dall'area omogenea;

nell'area centro-meridionale della Puglia, il territorio è suddivisibile in due sottozone omogenee individuate dal Nord-Barese - Murgia Centrale e dalla Penisola Salentina, contrassegnate rispettivamente come zona 5 e zona 6, nelle quali la struttura dell'equazione della curva di pioggia è identica a quella delle zone 1 e 3.

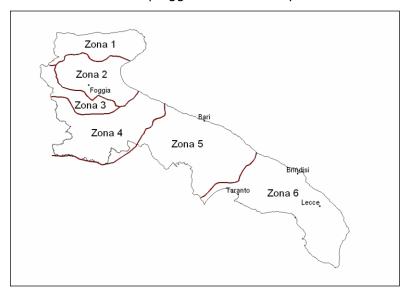


Figura 8: Regione Puglia: zone omogenee al 3° livello.

GRE.EEC.R.25.IT.W.14706.00.011.01

PAGE

15 di/of 26

ZONA 5-6
$$\mu(h,t) = at^{(ch+D+lnq-lna)/ln24}$$

Alla luce di quanto fin qui esposto, la relazione che lega l'altezza media di precipitazione alla durata ed alla quota del sito, per le due aree in esame, è generalizzata nella forma:

$$\mu(X_d) = ad^{(Ch+D+\ln\alpha-\ln\alpha)/\ln24} \tag{3}$$

in cui a è il valor medio, pesato sugli anni di funzionamento, dei valori di $\mu(Xd)$ relativi alle serie con N \geq 10 anni ricadenti in ciascuna zona omogenea e α = xg/x24 è il rapporto fra le medie delle piogge giornaliere e quelle di durata 24 ore per serie storiche di pari numerosità.

Per la Puglia il valore del coefficiente α è risultato praticamente costante sull'intera regione e pari a 0.89; C e D rappresentano invece i coefficienti della regressione lineare fra il valor medio dei massimi annuali delle piogge giornaliere e la quota sul livello del mare. Per le zone individuate, i valori dei parametri sono riportati nel riquadro a seguire:

Zona	а	а	С	D	N
1	0,89	28,66	0,00503	3,959	-
2	0,89	22,23	=	=	0,247
3	0,89	25,325	0,000531	3,811	-
4	0,89	24,7	=	-	0,256
5	0,89	28,2	0,0002	4,0837	-
6	0,89	33,7	0,0022	4,1223	-

Tabella 6 : Coefficienti del 3° livello di regionalizzazione.

Quindi, per ottenere l'altezza di precipitazione della zona di interesse si deve moltiplicare il fattore di crescita (K_T) per la precipitazione media:

$$h = K_T \cdot \mu(X_d) \tag{4}$$

L'area d'intervento si trova nella Puglia meridionale e, in particolare, nella zona 6 (cfr. figura seguente). Quindi per la determinazione delle curve di possibilità climatica si è applicata la relazione (4) e utilizzando i valori della *Tabella 6* relativi alla zona 6 ottenendo così le curve di possibilità climatica relative alla zona di interesse.

$$\mu(X_d) = 33,70 \cdot t^{[(0.488 + 0.0022 \cdot z)/3.178]} \tag{5}$$

dove z è il parametro geomorfologico della quota assoluta sul livello del mare (espressa in metri).

GRE.EEC.R.25.IT.W.14706.00.011.01

PAGE

16 di/of 26

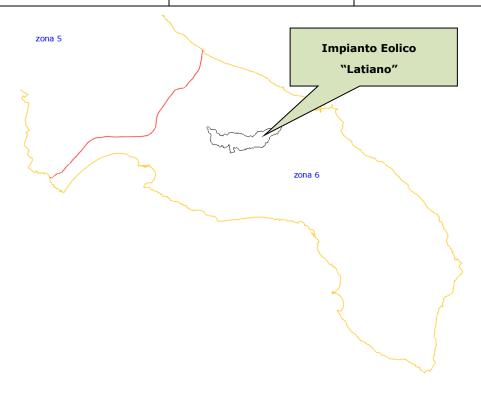


Figura 9: Individuazione della zona del VAPI in cui ricade il bacino idrografico.

Nelle tabelle che seguono si riportano i valori dei parametri a ed n (Tabella~7) le altezze di pioggia ricavate dalla (4) e (5) (Tabella~8), rappresentate graficamente in Figura~10.

T [anni]	a [mm/ore ⁿ]	n [-]
5	33.41	0.223
10	45.48	0.223
20	57.54	0.223
30	64.60	0.223
50	73.49	0.223
100	85.56	0.223
200	97.63	0.223
500	113.58	0.223

Tabella 7 : Parametri del VAPI ottenuti per diversi tempi di ritorno.

Tr		h									
anni	1 h	3 h	6 h	12 h	24 h						
5	33.41	42.67	49.80	58.11	67.82						
10	45.48	58.09	67.78	79.10	92.31						
20	57.54	73.50	85.77	100.09	116.81						
30	64.60	82.52	96.29	112.37	131.14						
50	73.49	93.87	109.55	127.84	149.19						
100	85.56	109.29	127.54	148.83	173.69						
200	97.63	124.70	145.53	169.83	198.18						
500	113.58	145.08	169.30	197.57	230.56						

Tabella 8 : Distribuzione probabilistica: VAPI - Altezze di pioggia (mm).

GRE.EEC.R.25.IT.W.14706.00.011.01

PAGE

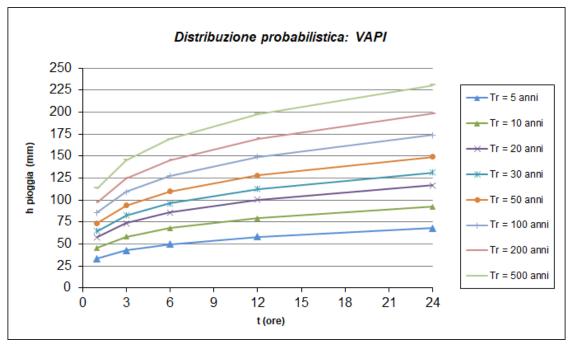


Figura 10: Curve di probabilità pluviometrica ricavate con la metodologia VAPI.

GRE.EEC.R.25.IT.W.14706.00.011.01

PAGE

18 di/of 26

4.2. CURVE DI POSSIBILITÀ CLIMATICA METODO DI GUMBEL

Per la determinazione delle curve di possibilità climatiche con il metodo di Gumbel si è fatto riferimento alle stazioni pluviometriche che interessano il bacino idrografico di interesse. Essi ricadono all'interno dei topoieti delle stazioni pluviometriche di Latiano, Grottaglie e Ceglie Messapica.

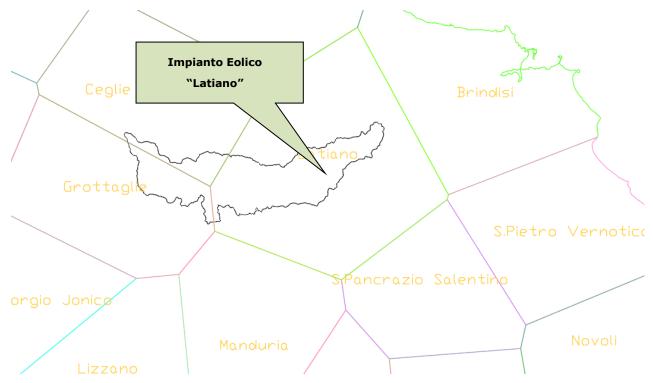


Figura 11: Individuazione dei topoieti delle stazioni pluviometriche in cui ricade il bacino idrografico.

GRE.EEC.R.25.IT.W.14706.00.011.01

PAGE

19 di/of 26

Nelle tabelle seguenti si riportano le serie di eventi pluviometrici rispettivamente delle stazioni pluviometriche di Grottaglie, Latiano e Ceglie Messapica.

Stazione di:	GROTTAGLIE							
			durate [o	re]				
anni	1	3	6	12	24			
1958	43.4	44.6	46.6	46.6	47.0			
1959	40.6	46.8	54.6	67.0	75.4			
1960	18.4	32.6	41.8	53.0	90.6			
1961	63.0	65.4	65.6	66.6	66.8			
1963	43.6	66.8	66.8	67.2	103.0			
1964	34.6	50.0	76.4	113.4	128.0			
1965	12.2	18.6	30.0	40.2	47.2			
1966	38.6	43.8	45.6	49.4	49.4			
1967	38.6	39.2	39.2	39.2	39.4			
1968	26.8	35.4	41.2	41.2	41.2			
1969	26.2	38.4	41.6	71.6	73.6			
1970	51.2	55.2	63.0	82.0	94.0			
1971	13.6	21.2	31.0	41.4	45.0			
1972	32.2	36.6	38.8	48.6	49.4			
1973	42.0	54.2	54.2	54.2	54.4			
1974	28.2	31.6	43.0	59.2	71.2			
1975	21.0	29.2	32.4	41.4	43.4			
1977	41.2	54.2	55.2	57.8	57.8			
1978	14.8	25.6	33.2	45.8	45.8			
1979	20.8	22.4	22.4	29.4	49.4			
1980	44.0	75.0	77.2	77.2	77.2			
1981	19.8	30.0	45.8	50.2	50.2			
1982	57.8	58.6	58.6	58.8	66.2			
1983	29.2	29.2	36.6	38.0	44.6			
1985	31.6	35.6	36.0	38.4	48.4			
1986	15.8	18.4	18.4	19.0	>>			
1987	15.4	18.4	18.4	26.0	29.0			
1988	54.2	66.6	67.0	86.8	87.0			
1989	23.4	24.6	28.8	31.4	31.4			
1990	>>	>>	137.4	137.4	137.4			
1991	28.2	28.2	34.4	42.0	44.0			
1992	28.0	56.2	62.8	64.0	70.4			
1993	>>	>>	>>	>>	64.0			
1994	26.6	26.6	30.4	32.6	35.8			
1996	37.8	46.6	54.0	74.8	89.4			
1997	40.0	43.6	47.2	56.8	71.2			
1998	35.2	46.6	49.4	67.4	69.0			
2000	35.0	37.6	37.8	37.8	47.0			
2001	21.4	21.8	26.8	35.8	43.2			
2002	49.8	52.2	52.2	54.4	88.6			
2003	22.8	49.4	70.0	72.4	79.0			

GRE.EEC.R.25.IT.W.14706.00.011.01

PAGE

Stazione di:	GROTTAGLIE								
anni	durate [ore]								
aiiii	1	3	6	12	24				
2004	61.8	69.0	81.8	82.6	82.6				
2005	35.2	49.2	58.2	70.0	77.0				
2006	>>	>>	>>	>>	>>				
2007	>>	>>	>>	>>	>>				
2008	29.4	40.8	67.6	73.8	75.8				
2009	34.4	41.6	42.2	42.2	42.2				
2010	23.4	41.0	51.2	66.0	82.0				
2011	16.0	21.8	27.0	43.4	51.8				
2012	80.2	87.8	87.8	87.8	88.0				
2013	22.4	32.0	44.4	51.8	67.0				

Tabella 9 : Serie degli eventi pluviometrici – stazione di Grottaglie.

GRE.EEC.R.25.IT.W.14706.00.011.01

PAGE

Stazione di:	LATIANO						
anni	durate [ore]						
aiiii	1	3	6	12	24		
1958	30.2	49.4	51.8	72.0	96.4		
1959	20.4	23.2	32.0	37.0	60.2		
1960	35.2	40.8	63.6	102.8	130.4		
1962	47.0	47.8	50.2	50.4	52.0		
1963	44.0	56.4	56.6	58.4	72.4		
1964	52.6	52.6	52.6	52.6	63.6		
1965	14.8	18.4	19.6	35.0	52.6		
1966	37.0	46.6	50.6	51.4	52.6		
1967	22.0	24.8	36.0	40.6	40.6		
1968	38.4	40.6	50.6	60.2	62.8		
1969	32.8	44.4	62.6	75.0	106.0		
1970	42.8	55.6	78.8	147.0	183.6		
1971	24.0	40.0	40.8	42.8	47.2		
1972	36.8	42.0	42.4	60.0	66.2		
1973	25.6	31.0	31.6	39.6	48.0		
1975	19.2	37.8	43.2	46.6	46.8		
1976	25.8	37.4	48.4	67.8	98.0		
1977	27.2	31.6	40.8	41.0	41.6		
1978	16.8	19.0	24.8	34.0	35.6		
1979	16.8	16.8	26.0	41.8	76.4		
1980	29.6	33.4	40.4	58.2	63.6		
1981	14.4	20.2	21.8	23.4	29.0		
1983	>>	>>	>>	>>	72.6		
1984	17.6	24.4	33.6	33.8	34.2		
1986	12.2	16.2	16.6	25.6	36.0		
1987	30.4	30.4	37.8	48.0	54.8		
1988	37.0	44.0	52.4	61.2	64.8		
1989	32.0	32.0	32.0	32.0	32.0		
1990	21.2	22.0	33.0	43.8	54.6		
1991	18.0	43.6	60.6	68.0	68.2		
1992	29.0	38.4	55.6	57.0	59.2		
1993	22.2	29.2	33.0	42.2	42.2		
1995	28.6	38.0	42.6	59.4	109.0		
1996	27.0	46.4	48.8	74.6	91.6		
1997	22.8	44.4	74.4	78.0	90.4		
1998	42.6	44.0	44.4	45.4	70.6		
1999	45.4	46.4	46.4	46.4	55.8		
2000	20.4	38.2	53.2	79.2	102.0		
2001	26.6	32.6	45.6	47.0	51.4		
2002	33.6	33.6	33.6	37.8	41.0		
2003	31.0	56.2	95.0	136.2	138.4		
2004	35.2	49.2	59.8	68.4	77.0		

GRE.EEC.R.25.IT.W.14706.00.011.01

PAGE

Stazione di:	LATIANO						
anni	durate [ore]						
	1	3	6	12	24		
2006	25.0	38.0	44.4	60.4	101.2		
2007	61.8	66.2	70.0	70.2	74.4		
2008	22.8	37.2	46.8	61.4	87.0		
2009	43.4	43.4	43.4	44.2	65.2		
2010	32.4	64.4	79.4	96.6	102.2		
2011	33.2	45.0	48.2 51.6		65.6		
2012	24.2	44.0	53.4	74.4	74.6		
2013	30.8	43.4	55.0	60.6	67.6		

Tabella 10 : Serie degli eventi pluviometrici - stazione di Latiano.

GRE.EEC.R.25.IT.W.14706.00.011.01

PAGE

Stazione di:	CEGLIE MESSAPICA						
_			durate [or	e]			
anni	1	3	6	12	24		
1962	32.0	38.0	38.0	38.0	50.0		
1964	22.2	50.6	62.4	91.6	114.8		
1966	22.2	23.8	23.8	26.2	39.8		
1967	37.0	37.0	37.2	37.2	41.6		
1970	36.6	63.6	105.2	147.0	183.0		
1971	20.0	29.2	37.4	55.4	68.8		
1972	34.6	34.6	35.6	38.6	55.2		
1974	38.6	81.6	100.2	128.2	144.6		
1975	>>	32.6	40.2	51.6	52.6		
1976	>>	36.0	42.0	49.6	71.2		
1977	47.4	48.0	48.0	48.2	48.4		
1979	31.8	34.4	34.4	>>	>>		
1982	37.6	68.8	70.8	71.8	86.8		
1983	30.8	31.2	37.0	59.4	71.6		
1984	58.0	97.0	98.8	103.8	107.6		
1985	18.4	28.4	28.6	33.2	43.0		
1986	15.8	23.6	23.6	24.2	27.2		
1988	53.0	65.2	67.4	93.4	95.6		
1990	38.6	79.4	86.4	86.4	86.6		
1991	27.6	27.6	36.0	42.4	44.0		
1992	30.0	55.6	63.6	64.0	70.6		
1993	>>	>>	>>	58.0	58.0		
1996	37.2	44.4	44.8	72.0	103.2		
1997	>>	30.0	48.0	63.4	68.6		
1998	35.4	52.4	52.8	56.2	58.4		
1999	35.4	35.4	35.4	38.2	43.6		
2000	16.6	16.6	26.6	42.4	58.4		
2001	34.6	59.6	64.0	64.0	64.0		
2002	41.2	53.6	54.0	59.4	69.2		
2003	39.8	76.4	93.4	93.8	96.6		
2004	43.0	57.0	75.0	79.2	79.2		
2005	14.6	17.0	23.6	36.4	40.8		
2006	37.4	64.0	110.2	129.6	143.6		
2007	46.0	55.0	55.4	55.4	69.0		
2008	23.6	34.2	56.2	61.6	64.0		
2009	44.0	61.0	61.8	61.8	76.4		
2010	24.6	54.6	70.6	85.8	92.8		
2011	25.2	31.2	34.0	40.2	71.6		
2012	16.4	28.6	34.2	35.8	43.6		
2013	45.6	103.0	114.6	114.8	142.4		

Tabella 11 : Serie degli eventi pluviometrici – stazione di Ceglie Messapica.

GRE.EEC.R.25.IT.W.14706.00.011.01

PAGE

24 di/of 26

L'elaborazione dei dati pluviometrici secondo le metodologie standard (minimi quadrati), ha condotto alla determinazione dei parametri a ed n della equazione:

$$h = a \times t^n$$

T [anni]	a [mm/ore ⁿ]	n [-]		
5	38.71	0.267		
10	45.12	0.274		
20	51.26	0.279		
30	54.80	0.281		
50	59.22	0.283		
100	65.18	0.286		
200	71.12	0.288		
500	78.96	0.290		

Tabella 12 : Parametri di Gumbel ottenuti per diversi tempi di ritorno.

Conseguentemente sono state ricavate le altezze di pioggia per i differenti tempi di ritorno e per le durate di 1, 3, 6, 12 e 24 ore.

Tr	h							
anni	1 3		6	12	24			
5	38.71	51.93	62.50	75.23	90.55			
10	45.12	60.95	73.70	89.10	107.73			
20	51.26	69.61	84.43	102.41	124.22			
30	54.80	74.59	90.61	110.07	133.71			
50	59.22	80.81	98.33	119.64	145.57			
100	65.18	89.21	108.74	132.56	161.58			
200	71.12	97.58	119.12	145.43	177.54			
500	78.96	108.61	132.81	162.40	198.59			

Tabella 13 : Distribuzione probabilistica: GUMBEL - Altezze di pioggia (mm)

GRE.EEC.R.25.IT.W.14706.00.011.01

PAGE

25 di/of 26

In (Figura 12) si è riportata la rappresentazione grafica delle curve di possibilità climatica.

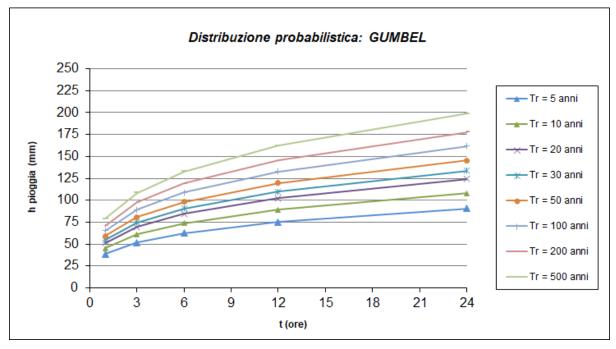
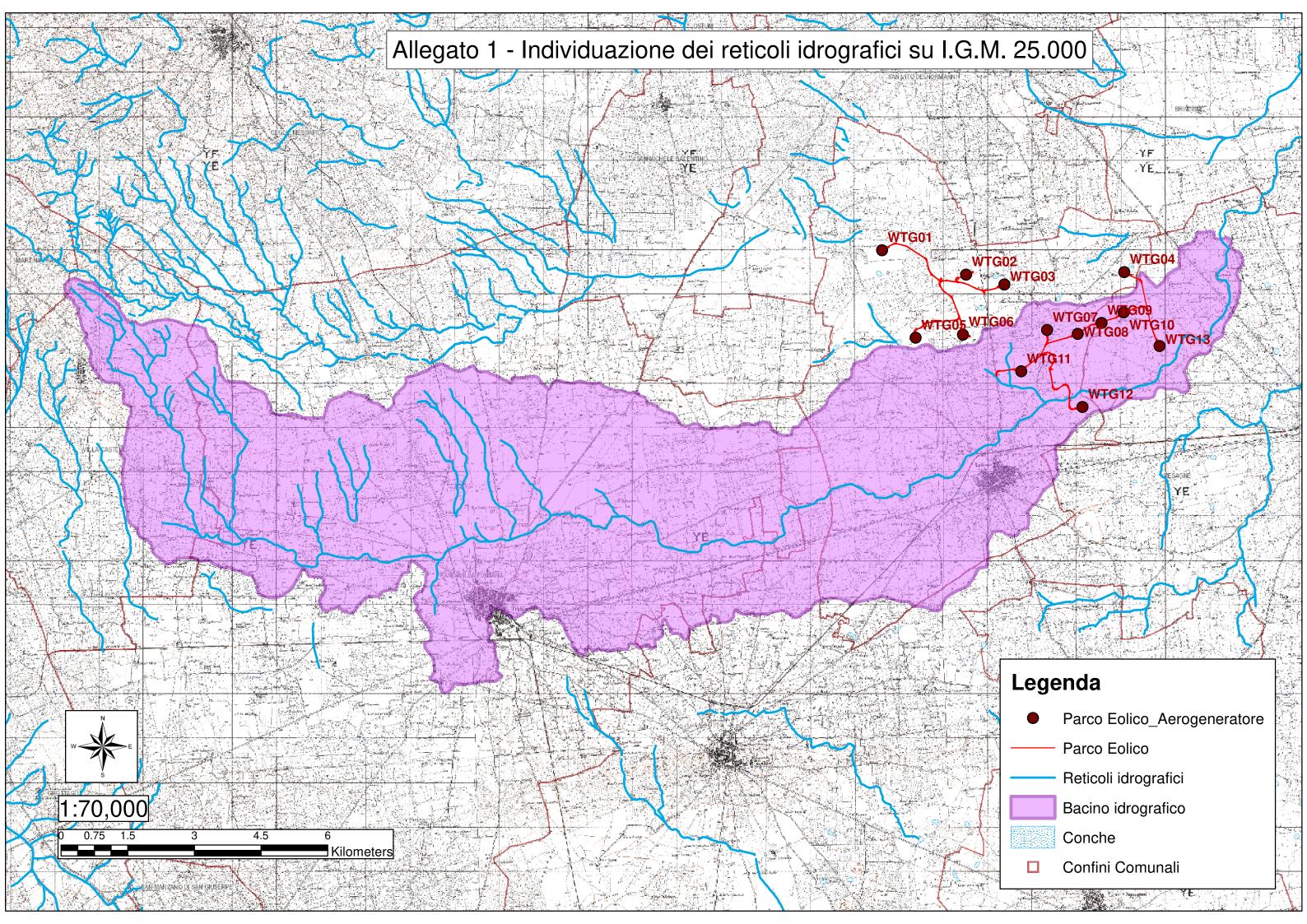


Figura 12: Curve possibilità climatica della metodologia GUMBEL.

GRE.EEC.R.25.IT.W.14706.00.011.01

PAGE

26 di/of 26


5. CONCLUSIONI

Nella *Tabella 14* è riportato il confronto tra le altezze di pioggia ricavate con le due metodologie al variare della durata dell'evento e del tempo di ritorno.

Tr	DURATE [ore]									
anni	1 h		3 h		6 h		12 h		24 h	
	GUMBEL	VAPI	GUMBEL	VAPI	GUMBEL	VAPI	GUMBEL	VAPI	GUMBEL	VAPI
5	38.71	33.41	51.93	42.67	62.50	49.80	75.23	58.11	90.55	67.82
10	45.12	45.48	60.95	58.09	73.70	67.78	89.10	79.10	107.73	92.31
20	51.26	57.54	69.61	73.50	84.43	85.77	102.41	100.09	124.22	116.81
30	54.80	64.60	74.59	82.52	90.61	96.29	110.07	112.37	133.71	131.14
50	59.22	73.49	80.81	93.87	98.33	109.55	119.64	127.84	145.57	149.19
100	65.18	85.56	89.21	109.29	108.74	127.54	132.56	148.83	161.58	173.69
200	71.12	97.63	97.58	124.70	119.12	145.53	145.43	169.83	177.54	198.18
500	78.96	113.58	108.61	145.08	132.81	169.30	162.40	197.57	198.59	230.56

Tabella 14 : Confronto tra le altezze di pioggia ricavate con le due metodologie al variare della durata e del Tempo di Ritorno. In grassetto i valori maggiori per ciascuna delle durate analizzate

Si osservi come le altezze di pioggia ricavate utilizzando la metodologia VAPI risultino sempre più elevate di quelle derivate dall'utilizzo della distribuzione probabilistica di GUMBEL per tempi di ritorno maggiore di 20 anni. A seguito di ciò nei calcoli idraulici (cfr. relazione Idraulica), si è fatto riferimento alle portate ricavate a partire dalle curve di probabilità pluviometrica costruite con la metodologia VAPI.

