

Direzione Progettazione e Realizzazione Lavori

S.S. 554 "Cagliaritana"

Adeguamento al tipo B dal km 12+000 al km 18+000 Ex S.S.125 Orientale Sarda — Connessione tra la S.S.554 e la nuova S.S.554

PROGETTO DEFINITIVO

COD. CA352

PROGETTAZIONE: ATI VIA - LOTTI - SERING - VDP - BRENG

RESPONSABILE DELL'INTEGRAZIONE DELLE PRESTAZIONI SPECIALISTICHE:

Dott. Ing. Francesco Nicchiarelli (Ord. Ing. Prov. Roma 14711)

PROGETTISTA:

Responsabile Tracciato stradale: Dott. Ing. Massimo Capasso

(Ord. Ing. Prov. Roma 26031)
Responsabile Strutture: Dott. Ing. Giovanni Piazza
(Ord. Ing. Prov. Roma 27296)
Responsabile Idraulica, Geoteonica e Impianti: Dott. Ing. Sergio Di Maio

(Ord. Ing. Prov. Palermo 2872) Responsabile Ambiente: Dott. Ing. Francesco Ventura (Ord. Ing. Prov. Roma 14660)

GEOLOGO:

Dott. Geol. Enrico Curcuruto (Ord. Geo. Regione Sicilia 966)

COORDINATORE SICUREZZA IN FASE DI PROGETTAZIONE:

Dott. Ing. Sergio Di Maio (Ord. Ing. Prov. Palermo 2872)

RESPONSABILE SIA:

Dott. Ing. Francesco Ventura (Ord. Ing. Prov. Roma 14660)

VISTO: IL RESPONSABILE DEL PROCEDIMENTO:

Dott. Ing. Francesco Corrias

GRUPPO DI PROGETTAZIONE

MANDATARIA:

MANDANTI:

OPERE D'ARTE MINORI SOTTOVIA

ST01 - SOTTOVIA Pr. 5+460,00

Relazione tecnica e di calcolo

CODICE PF	ROGETTO LIV. PROG. ANNO	NOME FILE CA352_POOST01STRRE	E01_A		REVISIONE	SCALA:
DPCA	0352 D 19	CODICE POOOSO1S	TRREO	1	A	_
D			_	_	_	-
С			_	_	_	-
В			_	_	_	-
Α	EMISSIONE		FEB.2020	F.SALUTE	G.PIAZZA	F.NICCHIARELLI
REV.	DESCRIZIONE		DATA	REDATTO	VERIFICATO	APPROVATO

Adeguamento al tipo B dal km 12+000 al km 18+000 (ex SS125 "Orientale Sarda" - Connessione tra la SS554 e la nuova SS554

CA352

Relazione tecnica e di calcolo ST01 - SOTTOVIA Pr. 5+460,00

Adeguamento al tipo B dal km 12+000 al km 18+000 (ex SS125 "Orientale Sarda" - Connessione tra la SS554 e la nuova SS554

CA352

Relazione tecnica e di calcolo ST01 - SOTTOVIA Pr. 5+460,00

INDICE

1	GE	NER	ALITA'	4
	1.1	OG	ЭЕТТО	4
	1.2	VITA	A NOMINALE DI PROGETTO, CLASSE D'USO E PERIODO DI RIFERIMENTO DELL'OPERA	4
	1.2	.1	Vita Nominale V _n	4
	1.2	.2	Classi d'Uso	5
	1.2	.3	Periodo di Riferimento per l'azione sismica	5
	1.3	DES	CRIZIONE DELLE OPERE	6
2	NO	RMA	TIVE E RIFERIMENTI	8
3	NO	RME	TECNICHE	8
4	CA	RAT	TERISTICHE DEI MATERIALI E RESISTENZE DI PROGETTO	9
	4.1	1.1	Caratteristiche ai fini della durabilità	9
	4.1	1.2	Copriferri nominali	10
	4.1	1.3	Resistenze di progetto	12
	4.1	1.4	Verifiche a fessurazione	12
	4.2	Acc	IAIO IN BARRE PER CEMENTO ARMATO E RETI ELETTROSALDATE	14
	4.2	2.1	Qualità dell'acciaio	14
	4.2	2.2	Resistenze di progetto	15
5	IN	QUAI	PRAMENTO GEOTECNICO	16
	5.1	STR	ATIGRAFIA DI CALCOLO	16
6	so	TTOF	PASSI SCATOLARI	18
	6.1	AZI	ONI E COMBINAZIONI DI PROGETTO	18
	6.1	.1	Modello di calcolo	18
	6.1	.2	Analisi dei carichi	18
	6.1	.3	Combinazioni delle azioni	21
	6.2	Sol	LECITAZIONI DI PROGETTO	23
	6.3	VEF	IIFICHE	23
	6.3	2.1	Verifiche Geotecniche	23

Adeguamento al tipo B dal km 12+000 al km 18+000 (ex SS125 "Orientale Sarda" - Connessione tra la SS554 e la nuova SS554)

CA352

Relazione tecnica e di calcolo ST01 - SOTTOVIA Pr. 5+460,00

	6.	.3.2	Verifiche strutturali	23
7	M	IURI A	NDATORI	35
	7.1	Mo	DELLO DI CALCOLO	35
	7.2	Са	LCOLO DELLA SPINTA	36
	7.	.2.1	Metodo di Culmann	36
	7.	.2.2	Spinta in presenza di sisma	36
	7.3	DE	TERMINAZIONE DEGLI SCARICHI SUI PALI	38
	7.4	VE	RIFICA A STABILITÀ GLOBALE	38
	7.5	VE	RIFICHE GEOTECNICHE SLU ED SLE DELLE FONDAZIONI SU PALI	39
	7.	.5.1	Criteri di Calcolo	39
	7.6	ΑZ	IONI E COMBINAZIONI DI PROGETTO	52
	7.	.6.1	Analisi dei carichi	52
	7.	.6.2	Combinazioni di Carico	53
	7.7	SE	ZIONI DI ANALISI E RISULTATI	54
	7.	.7.1	Riepilogo delle azioni in testa ai pali di fondazione	54
	7.	.7.2	Caratteristiche della sollecitazione per verifiche pali di fondazione	54
	7.8	VE	RIFICHE	55
	7.	.8.1	Verifiche strutturali dei pali di fondazione	55
	7.	.8.2	Verifiche geotecniche dei pali di fondazione	55
	7.	.8.3	Verifiche strutturali dei muri	57
	7.	.8.4	Verifiche geotecniche dei muri	57
8	D	ICHIA	RAZIONE ACCETTABILITÀ RISULTATI (PAR. 10.2 N.T.C. 2018)	58
	8.1	TIP	O DI ANALISI SVOLTE	58
	8.2	OR	IGINE E CARATTERISTICHE DEI CODICI DI CALCOLO	58
	8.3	AF	FIDABILITÀ DEI CODICI DI CALCOLO	58
	8.4	Mo	DALITÀ DI PRESENTAZIONE DEI RISULTATI	59
	8.5	INF	ORMAZIONI GENERALI SULL'ELABORAZIONE	59
	8.6	Git	JDIZIO MOTIVATO DI ACCETTABILITÀ DEI RISULTATI	59
9	Α	LLEG	ATI	60
	9.1	Sc	ATOLARE	60
	9.	.1.1	Report di calcolo Scatolare	60

Adeguamento al tipo B dal km 12+000 al km 18+000 (ex SS125 "Orientale Sarda" - Connessione tra la SS554 e la nuova SS554)

CA352

Relazione tecnica e di calcolo ST01 - SOTTOVIA Pr. 5+460,00

9.2	MURI ANDATORI	10
9.2.1	Report di calcolo e verifica Muri Andatori	10
9.2.2	Verifiche Geotecniche dei pali di fondazione dei muri andatori	50

CA352

Relazione tecnica e di calcolo ST01 - SOTTOVIA Pr. 5+460.00

1 GENERALITA'

1.1 Oggetto

La presente relazione illustra l'analisi e le verifiche strutturali e geotecniche effettuate per la progettazione del sottovia ST01 e dei relativi muri andatori previsti nell'ambito dei lavori "S.S. 554 "Cagliaritana" Adeguamento al tipo B dal km 12+000 al km 18+000 (ex SS125 "Orientale Sarda" - Connessione tra la SS554 e la nuova SS554".

I calcoli e le verifiche strutturali di resistenza relative alle sezioni più sollecitate sono stati elaborati utilizzando lo schema statico bidimensionale nel rispetto del metodo semiprobabilistico agli stati limite. E' stata eseguita, inoltre, la verifica allo stato limite di apertura delle fessure. Per gli scatolari agli stati limite di tipo geotecnico viene considerato il collasso per carico limite del complesso fondazione-terreno. Nei muri su pali, oltre alla portanza verticale, verrà verificata anche quella orizzontale.

Le analisi e le verifiche statiche sono condotte conformemente al livello di Progettazione Definitiva di cui trattasi e mirano al dimensionamento degli elementi principali per consentirne una piena definizione dal punto di vista prestazionale ed economico.

Le analisi e le verifiche degli aspetti di dettaglio, saranno sviluppate nella successiva fase di Progettazione Esecutiva.

1.2 Vita Nominale di progetto, Classe d'uso e Periodo di Riferimento dell'opera

1.2.1 Vita Nominale V_n

La vita nominale di progetto V_N di un'opera è convenzionalmente definita come il numero di anni nel quale è previsto che l'opera, purché soggetta alla necessaria manutenzione, mantenga specifici livelli prestazionali.

I valori minimi di V_N da adottare per i diversi tipi di costruzione sono riportati nella Tab. 2.4.I. (§ 2.4.1 NTC2018). Tali valori possono essere anche impiegati per definire le azioni dipendenti dal tempo.

Tab. 2.4.I – Valori minimi della Vita nominale V_N di progetto per i diversi tipi di costruzioni

	TIPI DI COSTRUZIONI	$\begin{array}{c} \text{Valori minimi} \\ \text{di V}_{\text{N}} \left(\text{anni} \right) \end{array}$
1	Costruzioni temporanee e provvisorie	10
2	Costruzioni con livelli di prestazioni ordinari	50
3	Costruzioni con livelli di prestazioni elevati	100

Tabella 1.1 – Valori minimi della Vita nominale Vn di progetto per i diversi tipi di costruzioni

In accordo con la Committenza Anas è stato assunto:

- Vita Nominale di progetto: $V_N = 100$ anni (costruzioni con livelli di prestazione elevati).

Adeguamento al tipo B dal km 12+000 al km 18+000 (ex SS125 "Orientale Sarda" -

Connessione tra la SS554 e la nuova SS554)

CA352

Relazione tecnica e di calcolo ST01 - SOTTOVIA Pr. 5+460.00

1.2.2 Classi d'Uso

Con riferimento alle conseguenze di una interruzione di operatività o di un eventuale collasso, le costruzioni sono suddivise in classi d'uso così definite (§2.4.2 NTC2018):

Classe I: Costruzioni con presenza solo occasionale di persone, edifici agricoli.

Classe II: Costruzioni il cui uso preveda normali affollamenti, senza contenuti pericolosi per l'ambiente e senza funzioni pubbliche e sociali essenziali. Industrie con attività non pericolose per l'ambiente. Ponti, opere infrastrutturali, reti viarie non ricadenti in Classe d'uso III o in Classe d'uso IV, reti ferroviarie la cui interruzione non provochi situazioni di emergenza. Dighe il cui collasso non provochi conseguenze rilevanti.

Classe III: Costruzioni il cui uso preveda affollamenti significativi. Industrie con attività pericolose per l'ambiente. Reti viarie extraurbane non ricadenti in Classe d'uso IV. Ponti e reti ferroviarie la cui interruzione provochi situazioni di emergenza. Dighe rilevanti per le conseguenze di un loro eventuale collasso.

Classe IV: Costruzioni con funzioni pubbliche o strategiche importanti, anche con riferimento alla gestione della protezione civile in caso di calamità. Industrie con attività particolarmente pericolose per l'ambiente. Reti viarie di tipo A o B, di cui al DM 5/11/2001, n. 6792, "Norme funzionali e geometriche per la costruzione delle strade", e di tipo C quando appartenenti ad itinerari di collegamento tra capoluoghi di provincia non altresì serviti da strade di tipo A o B. Ponti e reti ferroviarie di importanza critica per il mantenimento delle vie di comunicazione, particolarmente dopo un evento sismico. Dighe connesse al funzionamento di acquedotti e a impianti di produzione di energia elettrica.

Relativamente alle conseguenze di una interruzione di operatività o di un eventuale collasso, delle opere di cui trattasi, vi si attribuisce:

Classe d'Uso: IV;

 $C_U = 2.0.$ Coefficiente d'Uso:

1.2.3 Periodo di Riferimento per l'azione sismica

Il periodo di riferimento, impiegato nella valutazione delle azioni sismiche risulta pari a:

Periodo di Riferimento: $V_R = V_N \times C_U = 100 \times 2.0 = 200$ anni.

Adeguamento al tipo B dal km 12+000 al km 18+000 (ex SS125 "Orientale Sarda" - Connessione tra la SS554 e la nuova SS554)

CA352

Relazione tecnica e di calcolo ST01 - SOTTOVIA Pr. 5+460,00

1.3 Descrizione delle opere

Il sottopasso presenta le seguenti dimensioni:

Larghezza interna netta 7.00 m;
Altezza interna netta 5.00 m;
Spessore soletta di copertura 0.80 m;
Spessore piedritti 0.80 m;
Spessore soletta di fondazione 0.90 m;
Altezza di ricoprimento max 1.50 m;

I muri andatori dei sottopassi presentano le stesse caratteristiche geometriche con un altezza variabile tra i 2.70 m e i 6.55 al netto dello spessore della fondazione. la fondazione ha spessore di 1.50 m con pali di diametro 1.20 m ad interasse di 3.60 m in entrambe le direzioni.

Di seguito viene riportata una sezione tipo:

Adeguamento al tipo B dal km 12+000 al km 18+000 (ex SS125 "Orientale Sarda" - Connessione tra la SS554 e la nuova SS554)

CA352

Relazione tecnica e di calcolo ST01 - SOTTOVIA Pr. 5+460,00

MURI D'ALA SOTTOPASSO SEZIONE TRASVERSALE TIPO SCALA 1:100

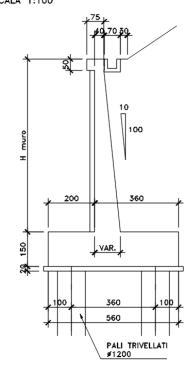


Figura 1.1 Sezione Muri andatori

Adeguamento al tipo B dal km 12+000 al km 18+000 (ex SS125 "Orientale Sarda" - Connessione tra la SS554 e la nuova SS554)

CA352

Relazione tecnica e di calcolo ST01 - SOTTOVIA Pr. 5+460,00

2 NORMATIVE E RIFERIMENTI

Le analisi e le verifiche delle strutture sono state effettuate nel rispetto della seguente normativa vigente:

- [D_1]. DM 17 gennaio 2018: Aggiornamento delle <<Norme tecniche per le costruzioni>> (nel seguito indicate come NTC18).
- [D_2]. Circolare 21 gennaio 2019 n.7: Istruzioni per l'applicazione dell' "Aggiornamento delle Norme tecniche per le costruzioni" di cui al DM 17 gennaio 2018, supplemento ordinario n° 5 alla G.
 U. n° 35 del 11/02/2019 (nel seguito indicate come CNTC18).
- [D_3]. Norma Europea UNI EN 206: Calcestruzzo Specificazione, prestazione, produzione e conformità (Dicembre 2016).
- [D_4]. Norma Italiana UNI 11104: Calcestruzzo Specificazione, prestazione, produzione e conformità – Specificazioni complementari per l'applicazione della EN 206 (luglio 2016).

3 NORME TECNICHE

Il metodo di calcolo adottato è quello semiprobabilistico agli stati limite, con applicazione di coefficienti parziali per le azioni o per l'effetto delle azioni, variabili in ragione dello stato limite indagato.

4 CARATTERISTICHE DEI MATERIALI E RESISTENZE DI PROGETTO

4.1.1 Caratteristiche ai fini della durabilità

Al fine di valutare le caratteristiche vincolanti delle miscele di calcestruzzo nei confronti della durabilità viene fatto riferimento alle norme [D_3] e [D_4].

Relativamente alla scelta delle classi di esposizione tenuto conto che il tracciato si sviluppa oltre 2 km dalla linea di costa è stato esclusa l'applicazione della classe XS (Corrosione indotta dai cloruri contenuti nell'acqua di mare).

Analogamente, in accordo alla "Classificazione del livello di rischio di attacco del gelo per aree climatiche del territorio italiano" contenuta nell'appendice A alla norma [D_4], che attribuisce alla Sardegna un livello di rischio Nullo, è stata esclusa l'applicazione della classe XF (Attacco dei cicli gelo/disgelo con o senza disgelanti), e conseguentemente della classe XD (corrosione indotta da cloruri esclusi quelli provenienti dall'acqua di mare).

Relativamente all'applicazione della classe XA (Attacco chimico da parte del terreno naturale e delle acque contenute nel terreno), le analisi chimiche eseguite su campioni di terreno e su acqua di falda ai sensi della norma UNI EN 206, hanno evidenziato concentrazioni di solfati (SO²₄) nelle acque di falda, tali da rientrare nei range illustrati nel prospetto 2 della norma [D_3].

Di seguito il prospetto di sintesi riportato nel report "Documentazione indagini ambientali", prodotto da TECNOIN (§4.4 – Attacco chimico del calcestruzzo).

Acqua Classi di esposizione Denominazione S01D-PZ S08-PZ S07-PZ S09D-PZ PARAMETRO U. M XA1 XA2 XA3 unità pl-7,34 4.0-4.5 Magnesio mg/L 66,00 Ammoniaca (ione ammonio) 2,76 498 3,21 477 2,49 mg/L Solfati (ione solfato) mg/L 11,00

Classe di esposizione per le acque

Le concentrazioni di solfati rilevate in larga prevalenza permettono di definire per le membrature di fondazione una classe di esposizione XA1.

Di seguito, per ciascun elemento viene riportata la classe di esposizione che risulta vincolante ai fini delle caratteristiche della miscela. Inoltre, sono riportati la classe di resistenza, i range previsti per le dimensioni massime degli aggregati, la classe di consistenza, il valore massimo del rapporto acqua/cemento, il tipo di cemento da impiegare in funzione della parte d'opera e il contenuto minimo di cemento:

CA352

Relazione tecnica e di calcolo ST01 - SOTTOVIA Pr. 5+460,00

CARATTERISTICHE DEI CA	ALCESTRU 11104)				
CALCESTRUZZO PEI	Magrone	Sottofondazioni Pali trivellati – muri andatori	Fondazioni – sottopasso e muri andatori *	Elevazioni – Sottopasso e muri andatori	
Classe di resistenza (fck/Rck)	(Mpa)	C12/15	C32/40	C32/40	C32/40
Classe di esposizione ambienta	ale	-	XC2 - XA1	XC2 - XA1	XC4
t may in arti (mm)	Dupper		32	32	25
φ max inerti (mm)	Dlower		20	20	16
Classe di consistenza		-	S5	S4	S4
Rapporto max acqua/cemento	-	0.50	0.50	0.50	
Tipo di cemento (secondo UNI EN 197-1)		-	CEM IV	CEM IV	CEM IV
Contenuto minimo di cemento ((kg/m³)	150	340***	340**-***	340**

Tabella 4.1 – Caratteristiche dei Calcestruzzi

- δT_{3qq} ≤ 35° per getti di spessore non superiore a 2 m;
- δT_{7qq} ≤ 35° per getti di spessore superiore a 2 m.

In ogni caso, dovrà essere garantito il rispetto delle classi di esposizione e resistenza sopra indicate.

4.1.2 Copriferri nominali

I valori minimi dello spessore dello strato di ricoprimento di calcestruzzo (copriferro), ai fini della protezione delle armature dalla corrosione, sono riportati nella Tab. C4.1.IV delle circolari applicative §[D_2], nella quale sono distinte le tre condizioni ambientali di Tab. 4.1.IV delle NTC:

Tabella C4.1.IV - Copriferri minimi in mm

		barre da c.a. elementi a piastra		barre da c.a. altri elementi		cavi da c.a.p. elementi a piastra		cavi da ca.p. altri elementi		
Cmin	C ₀	ambiente	C≥Co	C _{min} ≤C <c<sub>o</c<sub>	C≥C₀	C _{min} ≤C <c<sub>o</c<sub>	C≥C₀	C _{min} ≤C <c<sub>o</c<sub>	C≥C _o	C _{min} ≤C∢C _o
C25/30	C35/45	ordinario	15	20	20	25	25	30	30	35
C30/37	C40/50	aggressivo	25	30	30	35	35	40	40	45
C35/45	C45/55	molto ag.	35	40	40	45	45	50	50	50

^{*} Cemento LH (Low Heat) a basso calore di idratazione.

^{**} I contenuti di cemento indicati saranno verificati in sede di prequalifica, imponendo che il riscaldamento del calcestruzzo del nucleo in condizioni adiabatiche rispetti le seguenti condizioni:

^{***} cemento tipo SR resistente ai solfati secondo EN 197/1.

Adeguamento al tipo B dal km 12+000 al km 18+000 (ex SS125 "Orientale Sarda" - Connessione tra la SS554 e la nuova SS554)

CA352

Relazione tecnica e di calcolo ST01 - SOTTOVIA Pr. 5+460,00

I valori della tabella C4.1.IV si riferiscono a costruzioni con Vita Nominale di 5 anni (tipo 2 della Tab. 2.4.1 delle NTC). Per costruzioni con vita nominale di 100 anni (tipo 3 della citata Tab. 2.4.1), i valori della Tab. C4.1.IV vanno aumentati di 10 mm.

Per la definizione del calcestruzzo nominale, ai valori minimi di copriferro vanno aggiunte le tolleranze di posa, pari a 10 mm o minore, secondo indicazioni di norme di comprovata validità.

La tabella seguente illustra, i valori del calcestruzzo nominale, richiesti in base all'applicazione dei criteri sopra esposti e specializzati al caso in esame:

DETERMINAZIONE DEI COPRIFERRI NOMINALI SECONDO NTC2018

Dati generali relativi all'opera

Tipo di costruzione (1=temp. o provvisoria; 2 = prestazioni ordinarie; 3=prestazioni elevate) Vita nominale dell'opera

Tabella C4.1.IV Copriferri minimi in mm

	•			barre da c.a.					
			eleme	nti a piastra	altri el	ementi	lementi a piastr		
ambiente	R _{ckmin}	R _{ck0}	R _{ck} ≥R _{ck0}	$R_{ckmin} \le R_{ck} \le R_{ck0}$	R _{ck} ≥R _{ck0}	R _{ckmin} ≤R _{ck} ≤R _{ck0}	R _{ck} ≥R _{ck0}		
ordinario	30	45	15	20	20	25	25		
aggressivo	37	50	25	30	30	35	35		
molto ag.	45	55	35	40	40	45	5		

Elemento		Sottofondazioni - Pali trivellati e diaframmi	Fondazioni - Sottovia e muri andatori	Elevazioni - sottovia e muri andatori
Tipo di armatura (1=barre da c.a.; 2=cavi da c.a.p.)		1	1	1
Elemento a piastra		NO	SI	SI
Classe di esposizione		XC2 - XA1	XC2 - XA1	XC4
Ambiente		aggressivo	aggressivo	aggressivo
Rck	Мра	40	40	40
Check Rck min		OK	OK	OK
copriferro minimo (Tab. C4.1.IV NTC)	mm	35	30	30
incremento Per Vn=100 (tipo di costruzione 3)	mm	10	10	10
elem. prefabbricato con ver. Copriferri*		NO	NO	NO
riduzione per produzioni con ver. Copriferri		0	0	0
Tolleranza di posa		10	10	10
copriferro nominale	mm	55	50	50
* Elemento prefabbricato prodotto con sistema sottopost	o a controllo	di qualità che comp	orenda la verifica	dei copriferri
copriferro nominale di progetto	mm	75	50	50

Tabella 4.2 – Valori dei copriferri nominali in base alle NTC2018

I valori effettivamenti adottati per i copriferri nominali di progetto tengono conto anche di criteri di uniformità e della volontà di garantire valori maggiori dei minimi di norma per superfici contro-terra e particolarmente per le opere di sottofondazione. In questo caso, si è fatto riferimento alla indicazione

CA352

Relazione tecnica e di calcolo ST01 - SOTTOVIA Pr. 5+460,00

dell'EC2 (EN 1992-1-1), che fissa a 75 mm il valore da garantire per il copriferro di opere gettate direttamente contro il terreno.

4.1.3 Resistenze di progetto

Calcestruzzo C32/40:

Caratteristiche Calcestruzzo	Var	C32/40
Resistenza a compressione caratteristica cubica	R_{ck}	40
Resistenza a compressione caratteristica cilindrica	$f_{ck} = 0.83 R_{ck}$	32
Resistenza media a compressione cilindrica	$f_{cm} = f_{ck} + 8$	40.00
Resistenza media a trazione semplice	f ctm	3.02
Resistenza caratteristica a trazione semplice	$f_{ctk5\%}$ =0.7 f_{ctm}	2.12
Resistenza caratteristica a trazione semplice	$f_{ctk95\%}$ =1.3 f_{ctm}	3.93
Resistenza media a trazione per flessione	$f_{cfm} = 1.2 f_{ctm}$	3.63
Modulo elastico	$E_{cm} = 22000 x (f_{cm}/10)^{0.3}$	33346
STATI LIMITE ULTIMI	Var	
coefficiente γ_c	γc	1.50
coefficiente α_{cc}	$lpha_{ t cc}$	0.85
Resistenza a compressione di calcolo	$f_{cd} = \alpha_{cc} f_{ck} / \gamma_c$	18.13
Resistenza a trazione di calcolo	$f_{ctd} = f_{ctk}/\gamma_c$	1.41
STATI LIMITE DI ESERCIZIO	Var	
$\sigma_{c,\;max}$ - combinazione di carico caratteristica	$\sigma_{c,max}$ =0.60 f_{ck}	19.20
$\sigma_{c,\;\text{max}}$ - combinazione di carico quasi permanente	$\sigma_{c,max}$ =0.45 f_{ck}	14.40
$\sigma_{\!t}$ - stato limite di formazione delle fessure	$\sigma_t = f_{ctm}/1.2$	2.52
ANCORAGGIO DELLE BARRE	Var	
Tensione tan. ultima di ad. ϕ <=32 mm - buona ad.	f_{bd} =2.25 x 1.0 x 1.0 x f_{ctk}/g_c	3.18
Tensione tan. ultima di ad. φ <=32 mm - non buona ad.	f_{bd} =2.25 x 0.7 x 1.0 x f_{ctk}/g_c	2.22

4.1.4 Verifiche a fessurazione

Le condizioni ambientali, ai fini della protezione contro la corrosione delle armature, sono suddivise in ordinarie, aggressive e molto aggressive in relazione a quanto indicato dalla Tab. 4.1.III delle NTC2018:

Tab. 4.1.III - Descrizione delle condizioni ambientali

Condizioni ambientali	Classe di esposizione		
Ordinarie	X0, XC1, XC2, XC3, XF1		
Aggressive	XC4, XD1, XS1, XA1, XA2, XF2, XF3		
Molto aggressive	XD2, XD3, XS2, XS3, XA3, XF4		

CA352

Relazione tecnica e di calcolo ST01 - SOTTOVIA Pr. 5+460,00

Nel caso in esame si considerano:

- Condizioni aggressive: per le verifiche a fessurazione (classe di esposizione XC2-XA1, XC4);

La Tab. 4.1.IV stabilisce i criteri per la scelta degli stati limite di fessurazione in funzione delle condizioni ambientali e del tipo di armatura:

Tab. 4.1.IV - Criteri di scelta dello stato limite di fessurazione

pi ze	Condizioni	Combinazione di	Armatura					
Gruppi di Esigenze	ambientali	azioni	Sensibile		Poco sensibile			
Gr Esi	Condizioni Combinazione di Giorni azioni		Stato limite w _k		Stato limite	$\mathbf{w_k}$		
	0-1:	frequente	apertura fessure	≤ w ₂	apertura fessure	≤ w ₃		
A	Ordinarie	quasi permanente	apertura fessure	≤ w ₁	apertura fessure	≤ w ₂		
-	A	frequente	apertura fessure	≤ w ₁	apertura fessure	≤ w ₂		
В	Aggressive	quasi permanente	decompressione	-	apertura fessure	≤ w ₁		
)	Molto	frequente	formazione fessure	-	apertura fessure	≤ w ₁		
С	aggressive	quasi permanente	decompressione	-	apertura fessure	≤ w ₁		

Pertanto, nel caso in esame si ha:

- Verifiche a fessurazione – condizioni ambientali aggressive – Armatura poco sensibile:

o Combinazione di azioni frequente:

 $wk \le w3 = 0.3 \text{ mm}$

o Combinazione di azioni quasi permanente:

 $wk \le w2 = 0.2 \text{ mm}$

In diversi casi, in accordo al par. §4.1.2.2.4.5, le verifiche allo stato limite di apertura delle fessure sono state condotte senza calcolo diretto, verificando che la tensione di trazione dell'armatura, valutata nella sezione parzializzata per la combinazione di carico pertinente, sia contenuta entro i valori limite specificati nelle seguenti tabelle:

Tabella C4.1.II Diametri massimi delle barre per il controllo di fessurazione

Tensione nell'acciaio	Diametro massimo			
σ _s [MPa]	w3 = 0,4 mm	$w_2 = 0.3 \text{ mm}$	w ₁ = 0,2 mm	
160	40	32	25	
200	32	25	16	
240	20	16	12	
280	16	12	8	
320	12	10	6	
360	10	8	-	

CA352

Relazione tecnica e di calcolo ST01 - SOTTOVIA Pr. 5+460,00

Tabella C4.1.III -Spaziatura massima delle barre per il controllo di fessurazione

Tensione nell'acciaio	Spaziatura massima s delle barre (mm)				
σ _s [MPa]	$w_3 = 0.4 \text{ mm}$	$w_2 = 0.3 \text{ mm}$	w ₁ = 0,2 mm		
160	300	300	200		
200	300	250	150		
240	250	200	100		
280	200	150	50		
320	150	100	-		
360	100	50	-		

In rapporto a quanto specificato nelle precedenti tabelle è possibile individuare le tensioni limite dell'acciaio per ciascun diametro delle barre:

Tension	Tensioni limite in funzione diametro barre			
	Те	nsione max acci	aio	
Diametro barre		σ _s [Mpa]		
φ [mm]	w ₃ =0.4mm	w ₂ =0.3mm	w ₁ =0.2mm	
40	160	114	93	
36	180	137	111	
32	200	160	129	
30	207	171	138	
28	213	183	147	
26	220	194	156	
24	227	204	164	
22	233	213	173	
20	240	222	182	
18	260	231	191	
16	280	240	200	
14	300	260	220	
12	320	280	240	
10	360	320	260	
8	360	360	280	
6	360	360	320	

4.2 Acciaio in barre per cemento armato e Reti Elettrosaldate

4.2.1 Qualità dell'acciaio

Acciaio in barre B450C in accordo a DM 17/01/2018 (Capitolo 11).

Le Reti Elettrosaldate (RES), potranno essere realizzate impiegando acciaio B450A con le limitazioni all'impiego previste nel capitolo 11 delle NTC2018.

Adeguamento al tipo B dal km 12+000 al km 18+000 (ex SS125 "Orientale Sarda" - Connessione tra la SS554 e la nuova SS554)

CA352

Relazione tecnica e di calcolo ST01 - SOTTOVIA Pr. 5+460,00

4.2.2 Resistenze di progetto

Caratteristiche Acciaio per Calcestruzzo armato	Var	unità		
Qualità dell'acciaio			B450C	B450A
Tensione caratteristica di snervamento nominale	f_{yk}	Мра	450	450
Tensione caratteristica a carico ultimo nominale	f_{tk}	Мра	540	450
Modulo elastico	Es	Мра	210000	210000
diametro minimo della barra impiegabile	ϕ_{min}	mm	6	5
diametro massimo della barra impiegabile	ϕ_{max}	mm	40	10
STATI LIMITE ULTIMI	Var	unità		
coefficiente γ_s	γs		1.15	1.15
Resistenza di calcolo	$f_{yd} = f_{yk}/\gamma_s$	Мра	391.3	391.3
STATI LIMITE DI ESERCIZIO	Var	unità		
σ _{s,max} - combinazione di carico caratteristica	$\sigma_{s,max}$ =0.8 f_{yk}	Мра	360.0	360.0

Adeguamento al tipo B dal km 12+000 al km 18+000 (ex SS125 "Orientale Sarda" - Connessione tra la SS554 e la nuova SS554)

CA352

Relazione tecnica e di calcolo ST01 - SOTTOVIA Pr. 5+460,00

5 INQUADRAMENTO GEOTECNICO

5.1 Stratigrafia di calcolo

Sono stati adottati i seguenti parametri geotecnici:

Terreno di rinfianco e ritombamento

• Litotipo: Rilevato

• Peso per unità di volume del terreno: $\gamma = 19 \text{ kN/m}^3$

• Angolo di attrito: $\phi = 35^{\circ}$

• Coesione: c' = 0

• Coefficiente di spinta a riposo: $K_0 = (1-sen\phi) = 0,43$

Terreno di fondazione

• Litotipo: ALT

• Peso per unità di volume del terreno: $y = 17.3 \text{ kN/m}^3$

• Angolo di attrito: $\phi = 29^{\circ}$

• Coesione: c' = 0

Non è presente la falda.

Per le verifiche geotecniche dei pali dei muri andatori, si adotta la seguente stratigrafia:

Adeguamento al tipo B dal km 12+000 al km 18+000 (ex SS125 "Orientale Sarda" - Connessione tra la SS554 e la nuova SS554)

CA352

Relazione tecnica e di calcolo ST01 - SOTTOVIA Pr. 5+460,00

OPERA		SOTTOPA	SOTTOPASSO ST01											
STRATIG	RAFIA E P.	ARAMETR	STRATIGRAFIA E PARAMETRI GEOTECNICI	ICI DI PROGETTO										
								PAR,	PARAMETRI DI RESISTENZA	RESISTE	ENZA			
						Ś	VALORI MEDI	_			۸	VALORI MINIMI	⋝	
Strato	Da	V	Unità	Descrizione	Ymed	N _{SPT} med	Cumed		φ'med	Ymin	N _{SPT min}	cu _{min}	c' _{min}	φ'min
ċ	Ξ	Ξ			[kPa]	Ξ	[kPa]	[kPa]	₽	[kPa]	Ξ	[kPa]	[kPa]	₽
-	0.00	2.50	ALT	Alluvioni Terrazzate	17.3			13.0	35.6	17.3	10.0		13.0	28.8
7	2.50	7.50	Ma	Marne Alterate	18.0		223.0	29.0	28.1	15.9		191.0	13.6	24.7
က	7.50	50.00	Σ	Marne	17.6		360.0	20.3	32.8	15.9		294.0	14.7	29.2

Si considera la presenza della falda a quota testa pali.

LAVORO: SS554 "nuova cagliaritana" TABELLA PARAMETRI PER VERIFICHE OPERE DI FONDAZIONE

Adeguamento al tipo B dal km 12+000 al km 18+000 (ex SS125 "Orientale Sarda" - Connessione tra la SS554 e la nuova SS554)

CA352

Relazione tecnica e di calcolo ST01 - SOTTOVIA Pr. 5+460.00

6 SOTTOPASSI SCATOLARI

6.1 AZIONI E COMBINAZIONI DI PROGETTO

6.1.1 Modello di calcolo

Per la determinazione delle sollecitazioni agenti nei vari elementi strutturali, è stato sviluppato un modello di calcolo agli elementi finiti. Per semplicità di calcolo è stato analizzato un concio di larghezza unitaria del telaio scatolare.

Per la modellazione dell'interazione terreno-struttura, la fondazione ed i piedritti sono modellati come travi su suolo alla Winkler. La conformazione della struttura limita notevolmente la sua deformabilità, pertanto, nel calcolo delle spinte statiche del terreno a tergo dei piedritti è stato adottato coefficiente di spinta a riposo K_0 .

Per la risoluzione del modello, è stato utilizzato il programma di calcolo automatico "SCAT14" prodotto dalla Aztec Informatica s.r.l., Corso Umberto 43 – 87050 Casole Bruzio (CS).

6.1.2 Analisi dei carichi

Nel presente paragrafo si riporta l'analisi dei carichi permanenti ed accidentali agenti sulla struttura in esame condotta secondo la normativa di riferimento.

6.1.2.1 Carichi permanenti strutturali

Per quanto riguarda la struttura il peso proprio degli elementi strutturali é automaticamente valutato dal programma di calcolo utilizzato per l'analisi. Esso é calcolato considerando per il calcestruzzo della fondazione un peso per unità di volume pari a 25 kN/m³.

6.1.2.2 Carichi permanenti non strutturali

Per tener conto del peso del rilevato stradale e della pavimentazione è stato assunto un carico per unità di volume pari a 19 kN/mc.

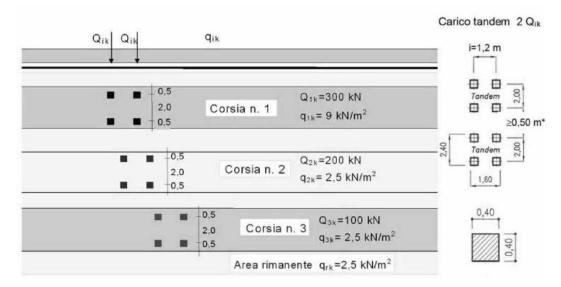
Il peso del peso del rilevato stradale e della pavimentazione a tergo della struttura scatolare determina un incremento delle spinte laterali sui piedritti assimilabile ad un carico uniformemente distribuito sugli stessi. Tale sovraccarico è stato valutato con riferimento al coefficiente di spinta a riposo K_0 .

6.1.2.3 Spinta delle terre

Il peso del terreno a tergo della struttura determina una spinta laterale sui piedritti avente distribuzione triangolare. Il calcolo della spinta del terreno è stata effettuato con riferimento al coefficiente di spinta a riposo K_0 .

6.1.2.4 Azioni da traffico

I carichi variabili da traffico sono definiti dagli schemi di carico descritti nel punto 5.1.3.3.3 delle NTC2018. Le intensità dei carichi concentrati e distribuiti considerate sono quelle relative ai Ponti di 1° Categoria richiamate nella Tab. 5.1.II delle suddette normative. Essi includono già gli effetti dinamici


CA352

Relazione tecnica e di calcolo ST01 - SOTTOVIA Pr. 5+460,00

per pavimentazioni di media rugosità. Pertanto non risulta necessario utilizzare coefficienti dinamici moltiplicativi.

6.1.2.5 Carichi verticali

Ai fini del calcolo si è fatto riferimento allo Schema di Carico 1 costituito da carichi concentrati su due assi tandem, applicati su impronte di pneumatico di forma quadrata e lato 0.40 m, e da carichi uniformemente distribuiti come mostrato nella seguente figura:

Schema di carico 1

Le specifiche dello schema di carico sono riportate di seguito.

Posizione	Carico asse Q _{ik} [kN]	q _{ik} [kN/m ²]
Corsia Numero 1	300	9,00
Corsia Numero 2	200	2,50
Corsia Numero 3	100	2,50
Altre corsie	0,00	2,50

6.1.2.6 Distribuzione del carico sulla soletta

L'impronta di ciascuna ruota è caratterizzata dalle seguenti dimensioni:

B = 0.40 m (in direzione perpendicolare all'asse del tombino)

L = 0.40 m (in direzione parallela all'asse del tombino)

Si considera, inoltre, una diffusione attraverso la pavimentazione e lo spessore della soletta, secondo un angolo di 45°, fino al piano medio della soletta. Si ottengono pertanto le seguenti dimensioni di diffusione:

Adeguamento al tipo B dal km 12+000 al km 18+000 (ex SS125 "Orientale Sarda" - Connessione tra la SS554 e la nuova SS554)

CA352

Relazione tecnica e di calcolo ST01 - SOTTOVIA Pr. 5+460,00

ST01			
ANALISI DEI CARICHI STRADALI SECONDO NTC 2018			
CARATTERISTICHE GEOMETRICHE DELLO SCATOLARE	s: .	- 00	
Larghezza interna netta scatolare	Bint	7.00	m
Altezza interna netta scatolare	Hint	5.00	m
Spessore soletta copertura scatolare	Scop Spied	0.80 0.80	m m
Spessore piedritti scatolare Spessore soletta fondazione scatolare	Sfond	0.80	m
Larghezza esterna complessiva scatolare	Best	8.60	m
Altezza esterna complessiva scatolare	Hest	6.70	m
Luce modello di calcolo	Bcal	7.80	m
Altezza modello di calcolo	Hcal	5.85	m
Spessore ritombamento + pavimentazione	Hbal	1.50	m
CARATTERISTICHE GEOTECNICHE			
Peso per unità di volume terreno rilevato/rinfianco	γ	19	kN/mc
Angolo di attrito terreno rilevato/rinfianco	ф	35	deg
Coefficiente di spinta a riposo	K_0	0.43	adim.
CARICHI PERMANENTI NON STRUTTURALI (G2)			
Carico verticale sulla soletta	pvert	29	kN/m
Sovraccarico laterale sui piedritti	plat	12	kN/m
SPINTA DEL TERRENO (G3)			
Spinta all'estradosso soletta copertura		0.0	
Spinta all'intradosso soletta di fondazione		54.3	
AZIONI DA TRAFFICO - SCHEMA DI CARICO 1			
<u>Impronta di carico</u>			
Larghezza impronta in dir. trasversale	В	0.40	m
Lunghezza impronta in dir. longitudinale	L	0.40	m
Spessore ritombamento + pavimentazione	H1	1.50	m
Spessore soletta	H2	0.80	m
<u>Diffusione dei carichi</u>	В'	4.20	m
Larghezza diffusione in dir. trasversale	L'	4.20	m m
Lunghezza diffusione in dir. longitudinale Larghezza diffusione in dir. trasversale adottata	B''	4.20	m
Lunghezza diffusione in dir. longitudinale adottata	L"	4.20	m
Area di diffusione adottata	Α''	17.64	
E' stata considerata una diffusione a 45° fino alla fibra media de assunta una larghezza di ripartizione trasversale pari alla largh eventuali sovrapposizioni di sollecitazioni dovute a veicoli transitar	nezza della co	orsia per t	
Carico verticale sulla struttura			
Corsia 1			
Carico asse	Qik	300	kN
Carico distribuito	qik	9	kN/mq
numero assi	n	2	adim.
Totale carichi concentrati	Qvktot	600	kN
Area di diffusione adottata	Α''	17.64 34.0	mq kN/mq
Carico concentrato diffuso	qdiff		
Carico concentrato diffuso	qdiff		
Carico concentrato diffuso Corsia 2	·	200	kN
Carico concentrato diffuso Corsia 2 Carico asse	Qik	200	kN kN/ma
Carico concentrato diffuso Corsia 2 Carico asse Carico distribuito	Qik qik	2.5	kN/mq
Carico concentrato diffuso Corsia 2 Carico asse Carico distribuito numero assi	Qik qik n	2.5 2	kN/mq adim.
Carico concentrato diffuso Corsia 2 Carico asse Carico distribuito numero assi Totale carichi concentrati	Qik qik n Qvktot	2.5 2 400	kN/mq adim. kN
Carico concentrato diffuso Corsia 2 Carico asse Carico distribuito numero assi	Qik qik n	2.5 2	kN/mq adim.
Carico concentrato diffuso Corsia 2 Carico asse Carico distribuito numero assi Totale carichi concentrati Area di diffusione adottata Carico concentrato diffuso	Qik qik n Qvktot A''	2.5 2 400 17.64	kN/mq adim. kN mq
Carico concentrato diffuso Corsia 2 Carico asse Carico distribuito numero assi Totale carichi concentrati Area di diffusione adottata	Qik qik n Qvktot A'' qdiff	2.5 2 400 17.64	kN/mq adim. kN mq
Carico concentrato diffuso Corsia 2 Carico asse Carico distribuito numero assi Totale carichi concentrati Area di diffusione adottata Carico concentrato diffuso Sovrapposizione	Qik qik n Qvktot A''	2.5 2 400 17.64 22.7	kN/mq adim. kN mq kN/mq

CA352

Relazione tecnica e di calcolo ST01 - SOTTOVIA Pr. 5+460,00

A favore di sicurezza i carichi diffusi equivalenti sono arrotondati a:

$$q_{diff1} = 30 \text{ kN/mq}$$

$$q_{diff2} = 60 \text{ kN/mq}$$

6.1.2.7 Azione del sovraccarico sui piedritti

Si assume un carico uniforme a tergo della struttura scatolare pari a 20 kN/m². L'incremento delle spinte laterali sui piedritti è calcolato considerando il coefficiente di spinta a riposo K₀.

6.1.2.8 Azione sismica

La spinta sismica è calcolata automaticamente dal programma di calcolo utilizzato in base ai parametri di riferimento illustrati. L'analisi della spinta del terreno in condizioni sismiche è stato eseguita secondo la teoria di Wood considerando un valore del coefficiente di riduzione dell'azione sismica β_m pari ad 1,00.

6.1.3 Combinazioni delle azioni

In accordo al par. 2.5.3 delle NTC2008 ai fini delle verifiche degli stati limite sono state considerate le seguenti combinazioni delle azioni:

• Combinazione fondamentale, impiegata per le verifiche agli stati limite ultimi (SLU):

$$\gamma_{G1} \cdot G_1 + \gamma_{G2} \cdot G_2 + \gamma_{P} \cdot P + \gamma_{O1} \cdot Q_{k1} + \gamma_{O2} \cdot \psi_{O2} \cdot Q_{k2} + \gamma_{O3} \cdot \psi_{O3} \cdot Q_{k3} + \dots$$
 (2.5.1)

Combinazione frequente, impiegata per le verifiche agli stati limite di esercizio (SLE) reversibili:

$$G_1 + G_2 + P + \psi_{11} \cdot Q_{k1} + \psi_{22} \cdot Q_{k2} + \psi_{23} \cdot Q_{k3} + \dots$$
 (2.5.3)

• Combinazione quasi permanente, impiegata per le verifiche agli stati limite di esercizio (SLE) effetti a lungo termine:

$$G_1 + G_2 + P + \psi_{21} \cdot Q_{k1} + \psi_{22} \cdot Q_{k2} + \psi_{23} \cdot Q_{k3} + \dots$$
 (2.5.4)

• Combinazione sismica, impiegata per gli stati limte ultimi e di esercizio connessi all'azione sismica E:

$$E + G_1 + G_2 + P + \psi_{21} \cdot Q_{k1} + \psi_{22} \cdot Q_{k2} + \dots$$
 (2.5.5)

Di seguito si riportano le tabelle che esplicitano i coefficienti parziali sopra illustrati:

Adeguamento al tipo B dal km 12+000 al km 18+000 (ex SS125 "Orientale Sarda" - Connessione tra la SS554 e la nuova SS554)

CA352

Relazione tecnica e di calcolo ST01 - SOTTOVIA Pr. 5+460,00

Tabella 5.1.V - Coefficienti parziali di sicurezza per le combinazioni di carico agli SLU

		Coefficiente	EQU ⁽¹⁾	A1 STR	A2 GEO
Carichi permanenti	favorevoli sfavorevoli	γ _{G1}	0,90 1,10	1,00 1,35	1,00 1,00
Carichi permanenti non strutturali ⁽²⁾	favorevoli sfavorevoli	γ _{G2}	0,00 1,50	0,00 1,50	0,00 1,30
Carichi variabili da traffico	favorevoli sfavorevoli	γο	0,00 1,35	0,00 1,35	0,00 1,15
Carichi variabili	favorevoli sfavorevoli	γQi	0,00 1,50	0,00 1,50	0,00 1,30
Distorsioni e presollecitazioni di progetto	favorevoli sfavorevoli	γε1	0,90 1,00 ⁽³⁾	1,00 1,00 ⁽⁴⁾	1,00 1,00
Ritiro e viscosità, Variazioni termiche, Cedimenti vincolari	favorevoli sfavorevoli	$\gamma_{\epsilon 2}, \gamma_{\epsilon 3}, \gamma_{\epsilon 4}$	0,00 1,20	0,00 1,20	0,00 1,00

⁽¹⁾ Equilibrio che non coinvolga i parametri di deformabilità e resistenza del terreno; altrimenti si applicano i valori di GEO.

 $\textbf{Tabella 5.1.VI} - \textit{Coefficienti} \ \psi \ \textit{per le} \ \textit{azioni variabili per ponti stradali e pedonali}$

Azioni	Gruppo di azioni (Tabella 5.1.IV)	Coefficiente Ψ₀ di combinazione	Coefficiente ψ 1 (valori frequenti)	Coefficiente ψ ₂ (valori quasi permanenti)
	Schema 1 (Carichi tandem)	0,75	0,75	0,0
	Schemi 1, 5 e 6 (Carichi distribuiti	0,40	0,40	0,0
	Schemi 3 e 4 (carichi concentrati)	0,40	0,40	0,0
Azioni da traffico	Schema 2	0,0	0,75	0,0
(Tabella 5.1.IV)	2	0,0	0,0	0,0
	3	0,0	0,0	0,0
	4 (folla)		0,75	0,0
	5	0,0	0,0	0,0
Vento q ₅	Vento a ponte scarico SLU e SLE Esecuzione	0,6 0,8	0,2	0,0 0,0
	Vento a ponte carico	0,6		
Nava a	SLU e SLE	0,0	0,0	0,0
Neve q ₅	esecuzione	0,8	0,6	0,5
Temperatura	T_k	0,6	0,6	0,5

⁽²⁾ Nel caso in cui i carichi permanenti non strutturali (ad es. carichi permanenti portati) siano compiutamente definiti si potranno adottare gli stessi coefficienti validi per le azioni permanenti.

^{(3) 1,30} per instabilità in strutture con precompressione esterna

^{(4) 1,20} per effetti locali

Adeguamento al tipo B dal km 12+000 al km 18+000 (ex SS125 "Orientale Sarda" - Connessione tra la SS554 e la nuova SS554)

CA352

Relazione tecnica e di calcolo ST01 - SOTTOVIA Pr. 5+460,00

6.2 Sollecitazioni di progetto

Di seguito sono riportati i valori di sollecitazione relativi agli inviluppi delle combinazioni di carico SLU e SLE. I valori sono espressi in kNm/m per i momenti flettenti e in kN/m per il taglio. Il segno positivo o negativo indica, rispettivamente, le fibre tese all'interno od all'esterno dello scatolare. Le verifiche sono state svolte considerando le sollecitazioni massime.

			<u> </u>	ST01	
		traverso	fondazione	piedritto sx	piedritto dx
	FAZIONI DI SETTO				
M+ SLU	kNm/m	690	810	0	0
M- SLU	kNm/m	-530	-555	-555	-555
V SLU	kN/m	470	620	230	230
N SLE-QP	kN/m	0	0	330	330
M+ SLE-R	kNm/m	520	615	0	0
M- SLE-R	kNm/m	-400	-420	-400	-400
M+ SLE-F	kNm/m	440	550	0	0
M- SLE-F	kNm/m	-340	-385	-385	-385
M+ SLE-QP	kNm/m	255	405	0	0
M- SLE-QP	kNm/m	-220	-325	-325	-325

6.3 Verifiche

6.3.1 Verifiche Geotecniche

Per l'elemento scatolare costituente il sottopasso viene eseguita la verifica a carico limite nei confronti del terreno di fondazione. I risultati sono mostrati negli allegati di calcolo al paragrafo 9.1.

6.3.2 Verifiche strutturali

Per il sottovia è prevista la seguente armatura:

La <u>soletta del traverso</u> sarà armata superiormente ed inferiromente con Ø24/10. Come armatura a taglio sono previste spille Ø12/40x20.

La <u>soletta di fondazione</u> sarà armata superiormente ed inferiromente con Ø24/10. Come armatura a taglio sono previste spille Ø12/40x20.

<u>I piedritti</u> saranno armati con Ø24/10 lato terra e Ø24/20 lato interno. Come armatura a taglio sono previste spille Ø12/40x20.

Per tutti gli elementi sono previsti ripartitori Ø16/20.

Adeguamento al tipo B dal km 12+000 al km 18+000 (ex SS125 "Orientale Sarda" -

Connessione tra la SS554 e la nuova SS554)

CA352

Relazione tecnica e di calcolo ST01 - SOTTOVIA Pr. 5+460.00

6.3.2.1 Verifiche a flessione

La verifiche a flessione e pressoflessione per le sezioni in c.a. sono state effettuate con il software RCSEC® prodotto da Geostru.

Si riportano le verifiche per l'inviluppo agli SLU/SLV e agli SLE per il traverso, la fondazione e i piedritti del sottovia:

Verifiche a flessione traverso

DATI GENERALI SEZIONE IN C.A.

NOME SEZIONE: ST01_TRAVERSO_01

(Percorso File: U:\ANAS\AQ 2018-2022\DG 26 - SARDEGNA\3 - CA352_SS125-SS554\07-Rel\STR\OPERE D'ARTE MINOR\\SOTTOPASSO\RC SEC\ST01_TRAVERSO_01.sez)

Descrizione Sezione:

Metodo di calcolo resistenza: Stati Limite Ultimi Tipologia sezione: Sezione generica Normativa di riferimento: N.T.C.

A Sforzo Norm. costante Percorso sollecitazione: Condizioni Ambientali: Moderat. aggressive Riferimento Sforzi assegnati: Assi x,y principali d'inerzia Zona non sismica Riferimento alla sismicità:

CARATTERISTICHE DOMINIO CONGLOMERATO

Forma del Don Classe Conglon		Poligonale C32/40
N°vertice:	X [cm]	Y [cm]
1	-50.0	0.0
2	-50.0	80.0
3	50.0	80.0
4	50.0	0.0

DATI BARRE ISOLATE

N°Barra	X [cm]	Y [cm]	DiamØ[mm]
1	-40.0	7.8	24
2	40.0	7.8	24
3	-40.0	72.2	24
4	40.0	72.2	24

DATI GENERAZIONI LINEARI DI BARRE

N°Gen. N°Barra Ini. N°Barra Fin. N°Barre Ø		Numero assegnato alla Numero della barra iniz Numero della barra fina Numero di barre gener Diametro in mm delle b	riale cui si riferisce la g ale cui si riferisce la gel ate equidistanti cui si ri	enerazione nerazione ferisce la generazione	
N°Gen.	N°Barra Ini.	N°Barra Fin.	N°Barre	Ø	
1	1	2	8	24	
2	3	Λ	8	24	

ST.LIM.ULTIMI - SFORZI PER OGNI COMBINAZIONE ASSEGNATA

Sforzo normale [kN] applicato nel Baric. (+ se di compressione) Mx Momento flettente [daNm] intorno all'asse x princ. d'inerzia

Adeguamento al tipo B dal km 12+000 al km 18+000 (ex SS125 "Orientale Sarda" - Connessione tra la SS554 e la nuova SS554)

CA352

Relazione tecnica e di calcolo ST01 - SOTTOVIA Pr. 5+460,00

My Vy Vx		Momento flettente [con verso positivo s Componente del Ta	daNm] intorno all'asse	il lembo destro della se sse princ.d'inerzia y	
N°Comb.	N	Mx	Му	Vy	Vx
1 2	0.00 0.00	690.00 -530.00	0.00 0.00	0.00 0.00	0.00 0.00

COMB. RARE (S.L.E.) - SFORZI PER OGNI COMBINAZIONE ASSEGNATA

N Mx My	Momento flettente con verso positivo	se tale da comprimere il lembo su	erzia (tra parentesi Mom.Fessurazione)
N°Comb.		se tale da comprimere il lembo de	
1	0.00	520.00	0.00
2	0.00	-400.00	0.00

COMB. FREQUENTI (S.L.E.) - SFORZI PER OGNI COMBINAZIONE ASSEGNATA

N Mx My	Momento fle con verso pe	ositivo se tale da comprimere il lembo	l'inerzia (tra parentesi Mom.Fessurazione	,
N°Comb.		ositivo se tale da comprimere il lembo Mx		,
1	0.00	440.00 (439.72)	0.00 (0.00)	
2	0.00	-340.00 (-439.72)	0.00 (0.00)	

COMB. QUASI PERMANENTI (S.L.E.) - SFORZI PER OGNI COMBINAZIONE ASSEGNATA

N Mx My	Momento fle con verso po Momento fle	ale [kN] applicato nei Baricentro (+ se sttente [kNm] intorno all'asse x princ. o positivo se tale da comprimere il lembo sttente [kNm] intorno all'asse y princ. o positivo se tale da comprimere il lembo	l'inerzia (tra parentesi Mom.Fessu superiore della sezione l'inerzia (tra parentesi Mom.Fessu	,
N°Comb.	N	Mx	Му	
1 2	0.00 0.00	255.00 (439.72) -220.00 (-439.72)	0.00 (0.00) 0.00 (0.00)	

RISULTATI DEL CALCOLO

Sezione verificata per tutte le combinazioni assegnate

METODO AGLI STATI LIMITE ULTIMI - RISULTATI PRESSO-TENSO FLESSIONE

Ver	S = combinazione verificata / N = combin. non verificata
N Sn	Sforzo normale allo snervamento [kN] nel baricentro B sezione cls.(positivo se di compressione)
Mx Sn	Momento di snervamento [kNm] riferito all'asse x princ. d'inerzia
My Sn	Momento di snervamento [kNm] riferito all'asse y princ. d'inerzia
N Ult	Sforzo normale ultimo [kN] nel baricentro B sezione cls.(positivo se di compress.)
Mx Ult	Momento flettente ultimo [kNm] riferito all'asse x princ. d'inerzia
My Ult	Momento flettente ultimo [kNm] riferito all'asse y princ. d'inerzia
Mis.Sic.	Misura sicurezza = rapporto vettoriale tra (N Ult, Mx Ult, My Ult) e (N, Mx, My)
	Verifica positiva se tale rapporto risulta >= 1.000
As Tesa	Area armature [cm²] in zona tesa (solo travi). Tra parentesi l'area minima di normativa

 N° Comb Ver N Sn Mx Sn My Sn N Ult Mx Ult My Ult Mis.Sic. As Tesa

Adeguamento al tipo B dal km 12+000 al km 18+000 (ex SS125 "Orientale Sarda" -Connessione tra la SS554 e la nuova SS554)

CA352

Relazione tecnica e di calcolo ST01 - SOTTOVIA Pr. 5+460.00

1	S	0.00	1148.59	0.00	0.00	1195.60	0.00	1.733	45.2(13.4)
2	S	0.00	-1148.59	0.00	0.00	-1195.60	0.00	2.256	45.2(13.4)

METODO AGLI STATI LIMITE ULTIMI - DEFORMAZIONI UNITARIE ALLO STATO ULTIMO

ec max ec 3/7	Deform. unit. massima del conglomerato a compressione Deform. unit. del conglomerato nella fibra a 3/7 dell'altezza efficace
Xc max	Ascissa in cm della fibra corrisp. a ec max (sistema rif. X,Y,O sez.)
Yc max	Ordinata in cm della fibra corrisp. a ec max (sistema rif. X,Y,O sez.)
es min	Deform. unit. minima nell'acciaio (negativa se di trazione)
Xs min	Ascissa in cm della barra corrisp. a es min (sistema rif. X,Y,O sez.)
Ys min	Ordinata in cm della barra corrisp. a es min (sistema rif. X,Y,O sez.)
es max	Deform. unit. massima nell'acciaio (positiva se di compress.)
Xs max	Ascissa in cm della barra corrisp. a es max (sistema rif. X,Y,O sez.)
Ys max	Ordinata in cm della barra corrisp. a es max (sistema rif. X,Y,O sez.)

N°Comb	ec max	ec 3/7	Xc max	Yc max	es min	Xs min	Ys min	es max	Xs max	Ys max
1	0.00350	-0.00991	-50.0	80.0	0.00045	-40.0	72.2	-0.02473	-40.0	7.8
2	0.00350	-0.00991	-50.0	0.0	0.00045	-40.0	7.8	-0.02473	-40.0	72.2

POSIZIONE ASSE NEUTRO PER OGNI COMB. DI RESISTENZA

a, b, c	Coeff. a, b, c nell'eq. dell'asse neutro aX+bY+c=0 nel rif. X,Y,O gen.
x/d	Rapp. di duttilità a rottura in presenza di sola fless.(travi)
C.Rid.	Coeff. di riduz. momenti per sola flessione in travi continue

N°Comb	a	b	С	x/d	C.Rid.
1	0.000000000	0.000391064	-0.027785138	0.124	0.700
2	0.000000000	-0.000391064	0.003500000	0.124	0.700

COMBINAZIONI RARE IN ESERCIZIO - MASSIME TENSIONI NORMALI ED APERTURA FESSURE

Ver	S = comb. verificata/ N = comb. non verificata
Sc max	Massima tensione (positiva se di compressione) nel c

conglomerato [Mpa] Ascissa, Ordinata [cm] del punto corrisp. a Sc max (sistema rif. X,Y,O) Xc max, Yc max Minima tensione (negativa se di trazione) nell'acciaio [Mpa] Xs min, Ys min Ascissa, Ordinata [cm] della barra corrisp. a Sf min (sistema rif. X,Y,O) Ac eff. Area di calcestruzzo [cm²] in zona tesa considerata aderente alle barre As eff. Area barre [cm²] in zona tesa considerate efficaci per l'apertura delle fessure Distanza tre le barre tese [cm] ai fini del calcolo dell'apertura fessure D barre

Prodotto dei coeff. di aderenza delle barre Beta1*Beta2 Beta12

N°Comb	Ver	Sc max	Xc max	Yc max	St min	Xs min	Ys min	Ac eff.	As eff.	D barre	Beta12
1	S	5.21	50.0	80.0	-177.6	31.1	7.8	2422	45.2	8.9	1.00
2	S	4.01	-50.0	0.0	-136.6	31.1	72.2	2422	45.2	8.9	1.00

COMBINAZIONI FREQUENTI IN ESERCIZIO - MASSIME TENSIONI NORMALI ED APERTURA FESSURE

N°Comb	Ver	Sc max	Xc max	Yc max	Sf min	Xs min	Ys min	Ac eff.	As eff.	D barre	Beta12
1	S	4.41	-50.0	80.0	-150.3	31.1	7.8	2422	45.2	8.9	1.00
2	S	3.41	-50.0	0.0	-116.1	31.1	72.2	2422	45.2	8.9	1.00

COMBINAZIONI FREQUENTI IN ESERCIZIO - APERTURA FESSURE [§B.6.6 DM96]

	La sezione viene assunta sempre fessurata anche nel caso in cui la trazione minima del calcestruzzo sia inferiore a fctm
Ver.	Esito della verifica
S1	Massima tensione [Mpa] di trazione nel calcestruzzo valutata in sezione non fessurata
S2	Minima tensione [Mpa] di trazione nel calcestruzzo valutata in sezione fessurata

k2 = 0.4 per barre ad aderenza migliorata k3 = 0.125 per flessione e presso-flessione; =(e1 + e2)/(2*e1) per trazione eccentrica Diametro [mm] medio delle barre tese comprese nell'area efficace Ac eff

Cf Copriferro [mm] netto calcolato con riferimento alla barra più tesa = 1-Beta12*(Ssr/Ss)² = 1-Beta12*(fctm/S2)² = 1-Beta12*(Mfess/M)² [B.6.6 DM96] Psi

Deformazione unitaria media tra le fessure [4.3.1.7.1.3 DM96]. Il valore limite = 0.4*Ss/Es è tra parentesi e sm

Distanza media tra le fessure [mm] srm

Valore caratteristico [mm] dell'apertura fessure = 1.7 * e sm * srm . Valore limite tra parentesi wk

Componente momento di prima fessurazione intorno all'asse X [kNm] MX fess. Componente momento di prima fessurazione intorno all'asse Y [kNm] MY fess.

Adeguamento al tipo B dal km 12+000 al km 18+000 (ex SS125 "Orientale Sarda" -Connessione tra la SS554 e la nuova SS554)

CA352 Relazione tecnica e di calcolo ST01 - SOTTOVIA Pr. 5+460.00

Comb.	Ver	S1		S2	k3	Ø	С	f Psi		e sm	srm	wk	Mx fess	My fess
1 2	S S	-3.1 -2.4			0.125 0.125	24 24	66 66			0 (0.00030) 3 (0.00023)	214 214	0.109 (0.30) 0.084 (0.30)	439.72 -439.72	0.00 0.00
COMBINA	ZIONI Q	UASI PERMA	NENTI IN	ESERCIZ	ZIO - MA	SSIME	TENSI	ONI NORM	IALI ED AP	ERTURA FE	SSURE			
N°Comb	Ver	Sc max	Xc max	Yc max	Sf	min X	s min	Ys min	Ac eff.	As eff.	D barre	Beta12		
1 2	S S	2.56 2.20	-50.0 50.0	80.0 0.0		7.1 5.1	13.3 31.1	7.8 72.2	2422 2422	45.2 45.2	8.9 8.9	0.50 0.50		
COMBINA	ZIONI Q	UASI PERMA	NENTI IN	ESERCIZ	ZIO - APE	RTURA	FESSI	URE [§B.6.	.6 DM96]					
Comb.	Ver	S1		S2	k3	Ø	С	f Psi		e sm	srm	wk	Mx fess	My fess
1 2	S S	-1.8 -1.6			0.125 0.125	24 24	66 66			7 (0.00017) 5 (0.00015)	214 214	0.063 (0.20) 0.055 (0.20)	439.72 -439.72	0.00 0.00

Verifica a flessione fondazione

DATI GENERALI SEZIONE IN C.A.

NOME SEZIONE: ST01_FONDAZIONE_01

(Percorso File: U:\ANAS\AQ 2018-2022\DG 26 - SARDEGNA\3 - CA352_SS125-SS554\07-Rel\STR\OPERE D'ARTE MINOR\\SOTTOPASSO\RC SEC\ST01_FONDAZIONE_01.sez)

Descrizione Sezione:

Metodo di calcolo resistenza: Stati Limite Ultimi Tipologia sezione: Sezione generica Normativa di riferimento: N.T.C.

Percorso sollecitazione: A Sforzo Norm. costante Condizioni Ambientali: Moderat. aggressive Riferimento Sforzi assegnati: Assi x,y principali d'inerzia Riferimento alla sismicità: Zona non sismica

CARATTERISTICHE DOMINIO CONGLOMERATO

Forma del Don Classe Conglom		Poligonale C32/40
N°vertice:	X [cm]	Y [cm]
1	-50.0	0.0
2	-50.0	90.0
3	50.0	90.0
4	50.0	0.0

DATI BARRE ISOLATE

N°Barra	X [cm]	Y [cm]	DiamØ[mm]
1	-40.0	7.8	24
2	40.0	7.8	24
3	-40.0	82.2	24
4	40.0	82.2	24

DATI GENERAZIONI LINEARI DI BARRE

N°Gen. Numero assegnato alla singola generazione lineare di barre N°Barra Ini. Numero della barra iniziale cui si riferisce la generazione N°Barra Fin. Numero della barra finale cui si riferisce la generazione

Numero di barre generate equidistanti cui si riferisce la generazione Diametro in mm delle barre della generazione N°Barre

N°Gen. N°Barra Ini. N°Barra Fin. N°Barre Ø

Adeguamento al tipo B dal km 12+000 al km 18+000 (ex SS125 "Orientale Sarda" -Connessione tra la SS554 e la nuova SS554)

CA352

Relazione tecnica e di calcolo ST01 - SOTTOVIA Pr. 5+460,00

1	1	2	8	24
2	3	4	8	24

ST.LIM.ULTIMI - SFORZI PER OGNI COMBINAZIONE ASSEGNATA

N Mx		Sforzo normale [kN] applicato nel Baric. (+ se di compressione) Momento flettente [daNm] intorno all'asse x princ. d'inerzia con verso positivo se tale da comprimere il lembo sup. della sez.					
Му			daNm] intorno all'asse e tale da comprimere	y princ. d'inerzia il lembo destro della se	Z.		
Vy		Componente del Ta	glio [kN] parallela all'a	sse princ.d'inerzia y			
Vx		Componente del Ta	glio [kN] parallela all'a	sse princ.d'inerzia x			
N°Comb.	N	Mx	Му	Vy	Vx		
1	0.00	810.00	0.00	0.00	0.00		
2	0.00	-555.00	0.00	0.00	0.00		

COMB. RARE (S.L.E.) - SFORZI PER OGNI COMBINAZIONE ASSEGNATA

N	Sforzo normale [kl	N] applicato nel Baricentro (+ se di	compressione)	
Mx	Momento flettente	[kNm] intorno all'asse x princ. d'ine	erzia (tra parentesi Mom.Fessura:	zione)
Му	con verso positivo se tale da comprimere il lembo superiore della sezione My Momento flettente [kNm] intorno all'asse y princ. d'inerzia (tra parentesi N con verso positivo se tale da comprimere il lembo destro della sezione			zione)
N°Comb.	N	Mx	My	
1	0.00	615.00	0.00	
2	0.00	-420.00	0.00	

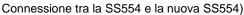
COMB. FREQUENTI (S.L.E.) - SFORZI PER OGNI COMBINAZIONE ASSEGNATA

N Mx My	Momento fle con verso po Momento fle	pale [kN] applicato nel Baricentro (+ sestente [kNm] intorno all'asse x princ. ossitivo se tale da comprimere il lembostettente [kNm] intorno all'asse y princ. ositivo se tale da comprimere il lembostivo se tale da comprimere il lembos	d'inerzia (tra parentesi Mom.Fessura: superiore della sezione d'inerzia (tra parentesi Mom.Fessura:	,
N°Comb.	N	Mx	Му	
1	0.00	550.00 (547.88)	0.00 (0.00)	
2	0.00	-385.00 (-547.88)	0.00 (0.00)	

COMB. QUASI PERMANENTI (S.L.E.) - SFORZI PER OGNI COMBINAZIONE ASSEGNATA

Mx Momento flettente [con verso positivo s My Momento flettente [ositivo se tale da comprimere il lembo	d'inerzia (tra parentesi Mom.Fessurazione) superiore della sezione d'inerzia (tra parentesi Mom.Fessurazione)
N°Comb.	N	Mx	Му
1 2	0.00 0.00	405.00 (547.88) -325.00 (-547.88)	0.00 (0.00) 0.00 (0.00)

RISULTATI DEL CALCOLO


Sezione verificata per tutte le combinazioni assegnate

Copriferro netto minimo barre longitudinali: 6.6 cm Interferro netto minimo barre longitudinali:

METODO AGLI STATI LIMITE ULTIMI - RISULTATI PRESSO-TENSO FLESSIONE

S = combinazione verificata / N = combin. non verificata Ver

Adeguamento al tipo B dal km 12+000 al km 18+000 (ex SS125 "Orientale Sarda" -

CA352

Relazione tecnica e di calcolo ST01 - SOTTOVIA Pr. 5+460.00

N Sn	Sforzo normale allo snervamento [kN] nel baricentro B sezione cls.(positivo se di compressione)
Mx Sn	Momento di snervamento [kNm] riferito all'asse x princ. d'inerzia

My Sn N Ult Momento di snervamento [kNm] riferito all'asse y princ. d'inerzia

Sforzo normale ultimo [kN] nel baricentro B sezione cls.(positivo se di compress.) Momento flettente ultimo [kNm] riferito all'asse x princ. d'inerzia Mx Ult

Momento flettente ultimo [kNm] riferito all'asse y princ. d'inerzia My Ult

Mis.Sic. Misura sicurezza = rapporto vettoriale tra (N Ult,Mx Ult,My Ult) e (N,Mx,My)

Verifica positiva se tale rapporto risulta >=1.000

As Tesa Area armature [cm²] in zona tesa (solo travi). Tra parentesi l'area minima di normativa

N°Comb	Ver	N Sn	Mx Sn	My Sn	N Ult	Mx Ult	My Ult	Mis.Sic.	As Tesa
1	S	0.00	1318.53	0.00	0.00	1372.46	0.00	1.694	45.2(14.7)
2	S	0.00	-1318.53	0.00	0.00	-1372.46	0.00	2.473	45.2(14.7)

METODO AGLI STATI LIMITE ULTIMI - DEFORMAZIONI UNITARIE ALLO STATO ULTIMO

ec max	Deform, unit, massima del conglomerato a compressione
ec 3/7	Deform. unit. del conglomerato nella fibra a 3/7 dell'altezza efficace
Xc max	Ascissa in cm della fibra corrisp. a ec max (sistema rif. X,Y,O sez.)
Yc max	Ordinata in cm della fibra corrisp. a ec max (sistema rif. X,Y,O sez.)
es min	Deform. unit. minima nell'acciaio (negativa se di trazione)
Xs min	Ascissa in cm della barra corrisp. a es min (sistema rif. X,Y,O sez.)
Ys min	Ordinata in cm della barra corrisp. a es min (sistema rif. X,Y,O sez.)
es max	Deform. unit. massima nell'acciaio (positiva se di compress.)
Xs max	Ascissa in cm della barra corrisp. a es max (sistema rif. X,Y,O sez.)
Ys max	Ordinata in cm della barra corrisp. a es max (sistema rif. X,Y,O sez.)

N°Comb	ec max	ec 3/7	Xc max	Yc max	es min	Xs min	Ys min	es max	Xs max	Ys max
1	0.00350	-0.01159	-50.0	90.0	0.00045	-40.0	82.2	-0.02865	-40.0	7.8
2	0.00350	-0.01159	-50.0	0.0	0.00045	-40.0	7.8	-0.02865	-40.0	82.2

gen.

POSIZIONE ASSE NEUTRO PER OGNI COMB. DI RESISTENZA

a, b, c	Coeff. a, b, c nell'eq. dell'asse neutro aX+bY+c=0 nel rif. X,Y,O
x/d	Rapp. di duttilità a rottura in presenza di sola fless.(travi)
C.Rid.	Coeff. di riduz. momenti per sola flessione in travi continue

N°Comb	а	b	С	x/d	C.Rid.
1	0.000000000	0.000391105	-0.031699441	0.109	0.700
2	0.000000000	-0.000391105	0.003500000	0.109	0.700

COMBINAZIONI RARE IN ESERCIZIO - MASSIME TENSIONI NORMALI ED APERTURA FESSURE

Ver S = comb. verificata/ N = comb. non verificata

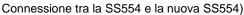
Massima tensione (positiva se di compressione) nel conglomerato [Mpa] Sc max Ascissa, Ordinata [cm] del punto corrisp. a Sc max (sistema rif. X,Y,O) Minima tensione (negativa se di trazione) nell'acciaio [Mpa] Xc max. Yc max Sf min Ascissa, Ordinata [cm] della barra corrisp. a Sf min (sistema rif. X,Y,O) Xs min, Ys min Area di calcestruzzo [cm²] in zona tesa considerata aderente alle barre Ac eff. As eff. Area barre [cm²] in zona tesa considerate efficaci per l'apertura delle fessure D barre Distanza tre le barre tese [cm] ai fini del calcolo dell'apertura fessure

Prodotto dei coeff. di aderenza delle barre Beta1*Beta2

As eff. N°Comb Beta12 Ver Sc max Xc max Yc max Sf min Xs min Ys min Ac eff. D barre 5.01 50.0 90.0 -183.0 2422 45.2 8.9 1.00 2 S 3.42 -125.082.2 2422 8.9 1.00 -50.00.0 31.1 45.2

COMBINAZIONI FREQUENTI IN ESERCIZIO - MASSIME TENSIONI NORMALI ED APERTURA FESSURE

N°Comb	Ver	Sc max	Xc max	Yc max	Sf min	Xs min	Ys min	Ac eff.	As eff.	D barre	Beta12
1	S	4.48	50.0	90.0	-163.7	31.1	7.8	2422	45.2	8.9	1.00
2	S	3.14	-50.0	0.0	-114.6	31.1	82.2	2422	45.2	8.9	1.00


COMBINAZIONI FREQUENTI IN ESERCIZIO - APERTURA FESSURE [§B.6.6 DM96]

La sezione viene assunta sempre fessurata anche nel caso in cui la trazione minima del calcestruzzo sia inferiore a fctm

Esito della verifica

Beta12

Adeguamento al tipo B dal km 12+000 al km 18+000 (ex SS125 "Orientale Sarda" -

CA352 F	Relazione tecnica e di calcol	o ST01 - SOTTOVIA	<i>Pr.</i> 5+460,00
---------	-------------------------------	-------------------	---------------------

S1 S2 k2 k3 Ø Cf Psi e sm srm wk MX fes		Minima te = 0.4 per = 0.125 pe Diametro Copriferro = 1-Beta1 Deformaz Distanza r Valore car Compone	nsione [Mpa barre ad ad er flessione [mm] medio [mm] netto 2*(Ssr/Ss)² ione unitaria media tra le ratteristico [inte moment	pa] di trazione ne lerenza migliora e presso-flessia delle barre tes calcolato con r = 1-Beta 12"(fot a fessure [mm] mm] dell'apertu to di prima fessi to di prima fessi	I calcestruz ta one; =(e1 + e compress ferimento a m/S2) ² = 1 ssure [4.3. ra fessure urazione in	zzo valutata e2)/(2*e1) e nell'area e e nell'area pi -Beta12*(Mi 1.7.1.3 DMS = 1.7 * e sm torno all'ass	per in seffication testing per in te	trazione fess trazione ecc ace Ac eff sa /M) ² [B.6.6 Il valore limi rm . Valore I [kNm]	urata centrica DM96] te = 0.4*Ss/E		esi			
Comb.	Ver	S1	;	S2	κ3	Ø	Cf	Psi		e sm	srm	wk	Mx fess	My fess
1 2	S S	-3.1 -2.2		0 0.12 0 0.12			66 66	0.008 -1.025		(0.00033) (0.00023)	214 214	0.119 (0.30) 0.083 (0.30)	547.88 -547.88	0.00 0.00
COMBINA	ZIONI Q	UASI PERMA	NENTI IN	ESERCIZIO	- MASS	ME TENS	ION	NI NORMA	LI ED APE	RTURA FE	SSURE			
N°Comb	Ver	Sc max	Xc max	Yc max	Sf min	Xs min	Υ	s min	Ac eff.	As eff.	D barre	Beta12		
1 2	S S	3.30 2.65	-50.0 -50.0	90.0 0.0	-120.5 -96.7	-4.4 31.1		7.8 82.2	2422 2422	45.2 45.2	8.9 8.9			
COMBINA	ZIONI Q	UASI PERMA	NENTI IN	ESERCIZIO	- APERT	JRA FES	SUF	RE [§B.6.6	DM96]					
Comb.	Ver	S1		S2	κ3	Ø	Cf	Psi		e sm	srm	wk	Mx fess	My fess
1 2	S S	-2.3 -1.8		0 0.12 0 0.12			66 66	0.085 -0.421		(0.00024) (0.00019)	214 214	0.088 (0.20) 0.070 (0.20)	547.88 -547.88	0.00 0.00

Verifica a flessione dei piedritti

DATI GENERALI SEZIONE IN C.A.

NOME SEZIONE: ST01_PIEDRITTI_01
(Percorso File: U:\ANAS\AQ 2018-2022\DG 26 - SARDEGNA\3 - CA352_SS125-SS554\07-Rel\STR\OPERE D'ARTE MINORI\SOTTOPASSO\RC SEC\ST01_PIEDRITTI_01.sez)

Descrizione Sezione:

Metodo di calcolo resistenza: Stati Limite Ultimi Tipologia sezione: Sezione generica

Normativa di riferimento: N.T.C.

Percorso sollecitazione: A Sforzo Norm. costante Moderat. aggressive Assi x,y principali d'inerzia Condizioni Ambientali: Riferimento Sforzi assegnati: Riferimento alla sismicità: Zona non sismica

CARATTERISTICHE DOMINIO CONGLOMERATO

Forma del Don Classe Conglom		Poligonale C32/40
N°vertice:	X [cm]	Y [cm]
1 2 3 4	-50.0 -50.0 50.0 50.0	0.0 80.0 80.0 0.0

DATI BARRE ISOLATE

N°Barra	X [cm]	Y [cm]	DiamØ[mm]
1	-40.0	7.8	24
2	40.0	7.8	24
3	-40.0	72.2	24

Adeguamento al tipo B dal km 12+000 al km 18+000 (ex SS125 "Orientale Sarda" - Connessione tra la SS554 e la nuova SS554)

CA352

Relazione tecnica e di calcolo ST01 - SOTTOVIA Pr. 5+460,00

4 40.0 72.2 24

DATI GENERAZIONI LINEARI DI BARRE

N°Gen. N°Barra Ini. N°Barra Fin. N°Barre Ø		Numero assegnato alla singola generazione lineare di barre Numero della barra iniziale cui si riferisce la generazione Numero della barra finale cui si riferisce la generazione Numero di barre generate equidistanti cui si riferisce la generazione Diametro in mm delle barre della generazione						
N°Gen.	N°Barra Ini.	N°Barra Fin.	N°Barre	Ø				
1	1	2	3	24				
2	3	4	8	24				

ST.LIM.ULTIMI - SFORZI PER OGNI COMBINAZIONE ASSEGNATA

N Mx My Vy Vx		Momento flettente [con verso positivo s Momento flettente [con verso positivo s Componente del Ta	daNm] intorno all'asse se tale da comprimere daNm] intorno all'asse	il lembo sup. della sez. y princ. d'inerzia il lembo destro della se sse princ.d'inerzia y	
N°Comb.	N	Mx	Му	Vy	Vx
1	330.00	-555.00	0.00	0.00	0.00

COMB. RARE (S.L.E.) - SFORZI PER OGNI COMBINAZIONE ASSEGNATA

N Mx My	Momento flettente con verso positivo	Sforzo normale [kN] applicato nel Baricentro (+ se di compressione) Momento flettente [kNm] intorno all'asse x princ. d'inerzia (tra parentesi Mom.Fessurazione) con verso positivo se tale da comprimere il lembo superiore della sezione Momento flettente [kNm] intorno all'asse y princ. d'inerzia (tra parentesi Mom.Fessurazione)						
N°Comb.	con verso positivo N	se tale da comprimere il lembo de Mx	stro della sezione My					
1	330.00	-400.00	0.00					

COMB. FREQUENTI (S.L.E.) - SFORZI PER OGNI COMBINAZIONE ASSEGNATA

N Mx	Momento fle con verso pe	ositivo se tale da comprimere il lembo	l'inerzia (tra parentesi Mom.Fessurazion	,
My N°Comb.		ositivo se tale da comprimere il lembo		<i>=)</i>
1	330.00	-385.00 (-481.98)	0.00 (0.00)	

COMB. QUASI PERMANENTI (S.L.E.) - SFORZI PER OGNI COMBINAZIONE ASSEGNATA

N	Sforzo norma	lle [kN] applicato nel Baricentro (+ se	di compressione)			
Mx		tente [kNm] intorno all'asse x princ. d sitivo se tale da comprimere il lembo	'inerzia (tra parentesi Mom.Fessurazione) superiore della sezione			
Му		Momento flettente [kNm] intorno all'asse y princ. d'inerzia (tra parentesi Mom.Fessurazione) con verso positivo se tale da comprimere il lembo destro della sezione				
N°Comb.	N	Mx	My			
1	330.00	-325.00 (-494.39)	0.00 (0.00)			

RISULTATI DEL CALCOLO

Sezione verificata per tutte le combinazioni assegnate

Adeguamento al tipo B dal km 12+000 al km 18+000 (ex SS125 "Orientale Sarda" -Connessione tra la SS554 e la nuova SS554)

CA352

Relazione tecnica e di calcolo ST01 - SOTTOVIA Pr. 5+460.00

Copriferro netto minimo barre longitudinali: 6.6 cm Interferro netto minimo barre longitudinali: 6.5 cm

METODO AGLI STATI LIMITE ULTIMI - RISULTATI PRESSO-TENSO FLESSIONE

S = combinazione verificata / N = combin. non verificata Sforzo normale allo snervamento [kN] nel baricentro B sezione cls.(positivo se di compressione) Momento di snervamento [kNm] riferito all'asse x princ. d'inerzia N Sn

Mx Sn Momento di snervamento [kNm] riferito all'asse y princ. d'inerzia My Sn

N Ult Sforzo normale ultimo [kN] nel baricentro B sezione cls.(positivo se di compress.)

Mx Ult Momento flettente ultimo [kNm] riferito all'asse x princ. d'inerzia My Ult Momento flettente ultimo [kNm] riferito all'asse y princ. d'inerzia

Misura sicurezza = rapporto vettoriale tra (N Ult,Mx Ult,My Ult) e (N,Mx,My) Verifica positiva se tale rapporto risulta >=1.000 Mis.Sic.

As Tesa Area armature [cm²] in zona tesa (solo travi). Tra parentesi l'area minima di normativa

N°Comb Ver N Sn Mx Sn My Sn N Ult Mx Ult My Ult Mis.Sic. As Tesa 1 S 330.00 -1242.28 5.31 330.02 -1300.53 0.00 2.331

METODO AGLI STATI LIMITE ULTIMI - DEFORMAZIONI UNITARIE ALLO STATO ULTIMO

Deform. unit. massima del conglomerato a compressione Deform. unit. del conglomerato nella fibra a 3/7 dell'altezza efficace ec 3/7 Xc max Ascissa in cm della fibra corrisp. a ec max (sistema rif. X,Y,O sez.) Yc max Ordinata in cm della fibra corrisp. a ec max (sistema rif. X,Y,O sez.) es min Deform. unit. minima nell'acciaio (negativa se di trazione) Ascissa in cm della barra corrisp. a es min (sistema rif. X,Y,O sez.) Ordinata in cm della barra corrisp. a es min (sistema rif. X,Y,O sez.) Xs min

Ys min Deform. unit. massima nell'acciaio (positiva se di compress.) es max Ascissa in cm della barra corrisp. a es max (sistema rif. X,Y,O sez.) Xs max Ordinata in cm della barra corrisp. a es max (sistema rif. X,Y,O sez.)

 $N^{\circ}Comb$ ec max ec 3/7 Xc max Yc max Xs min Ys min es max Xs max Ys max es min 0.00350 0.00099 722 1 -0.00755-50.00.0 -40 0 7.8 -0.01977-40.0

POSIZIONE ASSE NEUTRO PER OGNI COMB. DI RESISTENZA

Coeff. a, b, c nell'eq. dell'asse neutro aX+bY+c=0 nel rif. X,Y,O gen. Rapp. di duttilità a rottura in presenza di sola fless.(travi) C Rid Coeff. di riduz. momenti per sola flessione in travi continue

N°Comb C.Rid. b С x/d 0.000000000 -0.000322244 1 0.003500000

COMBINAZIONI RARE IN ESERCIZIO - MASSIME TENSIONI NORMALI ED APERTURA FESSURE

S = comb verificata/ N = comb non verificata

Massima tensione (positiva se di compressione) nel conglomerato [Mpa] Sc max Ascissa, Ordinata [cm] del punto corrisp. a Sc max (sistema rif. X,Y,O) Xc max, Yc max Minima tensione (negativa se di trazione) nell'acciaio [Mpa] Sf min Xs min, Ys min Ascissa, Ordinata [cm] della barra corrisp. a Sf min (sistema rif. X,Y,O) Ac eff. Area di calcestruzzo [cm²] in zona tesa considerata aderente alle barre As eff. Area barre [cm²] in zona tesa considerate efficaci per l'apertura delle fessure D barre Distanza tre le barre tese [cm] ai fini del calcolo dell'apertura fessure

Prodotto dei coeff. di aderenza delle barre Beta1*Beta2 Beta12

N°Comb Ver Sc max Xc max Yc max Sf min Xs min Ys min Ac eff. As eff. D barre Beta12 S 1 4.74 -50.0 0.0 -105.331.1 72.2 2422 45.2 8.9 1.00

COMBINAZIONI FREQUENTI IN ESERCIZIO - MASSIME TENSIONI NORMALI ED APERTURA FESSURE

N°Comb Ver Sc max Xc max Yc max Sf min Xs min Ys min Ac eff As eff. D barre Beta12 2422 1.00 1 S 4 57 -50.00.0 -1002311 722 452 89

COMBINAZIONI FREQUENTI IN ESERCIZIO - APERTURA FESSURE [§B.6.6 DM96]

Adeguamento al tipo B dal km 12+000 al km 18+000 (ex SS125 "Orientale Sarda" - Connessione tra la SS554 e la nuova SS554)

CA352

Relazione tecnica e di calcolo ST01 - SOTTOVIA Pr. 5+460,00

Ver.		La sezione Esito della		a sempre fessu	rata anche r	el caso in	cui la trazio	ne minima d	el calcestruzzo	sia inferiore	a fctm		
S1				di trazione nel	calcostruzza	valutata i	n coziono n	on foccurata					
S2				i trazione nel ca									
k2				enza migliorata	alcesti uzzo i	aiulala III	SEZIUNE IES	burata					
k3				oresso-flessione	· -(01 ± 02)	//2*o1) no	r traziono oo	contrico					
Ø				elle barre tese o				Centinca					
Cf				lcolato con rifer									
Psi				I-Beta12*(fctm/s				DM061					
e sm				nedia tra le fessi					/Ec à tra paron	toci			
srm			nedia tra le fes		JIE [4.3.1.7.	נספואום כ.ו	. II valule IIII	1116 - 0.4 33	/LS e lla paleil	ICOI			
wk				n] dell'apertura f	occura = 17	'* a cm * (erm Valoro	limita tra na	rontosi				
MX fes	e			di prima fessura				iiiiile ii a pa	rentesi				
MY fes				di prima fessura									
WIT ICS		Componer	nto momento c	ai piiina iossaia	ZIONO INIONI	o un usso	i [ixiviii]						
Comb.	Ver	S1	S2	2 k3	Ø	Cf	Psi		e sm	srm	wk	Mx fess	My fess
Comb.	• • • •	0.	02		~	0.			0 0111	Onn	••••	WIX 1000	1117 1000
1	S	-2.5	0	0.125	24	66	-0.567	0.00020	(0.00020)	214	0.073 (0.30)	-481.98	0.00
									((, , ,		
COMBINA	ZIONI Q	UASI PERMA	NENTI IN ES	SERCIZIO -	MASSIME	TENSIO	NI NORM	ALI ED AP	ERTURA FE	SSURE			
N°Comb	Ver	Sc max	Xc max Y	c max	Sf min X	s min '	Ys min	Ac eff.	As eff.	D barre	Beta12		
1	S	3.89	-50.0	0.0	-79.9	31.1	72.2	2422	45.2	8.9	0.50		
COMBINA	ZIONI Q	UASI PERMA	NENTI IN ES	SERCIZIO - A	PERTURA	FESSU	RE [8B.6.6	DM961					
							[3						
Comb.	Ver	S1	S2	2 k3	Ø	Cf	Psi		e sm	srm	wk	Mx fess	My fess
Comb.	VCI	31	02		Ø	Oi	1 31		6 3111	31111	VVIC	IVIX 1633	IVIY 1633

6.3.2.2 Verifiche a taglio

Di seguito ri riporta il calcolo del taglio resistente agli SLU secondo il metodo del traliccio ad inclinazione variabile:

Adeguamento al tipo B dal km 12+000 al km 18+000 (ex SS125 "Orientale Sarda" - Connessione tra la SS554 e la nuova SS554)

CA352

Relazione tecnica e di calcolo ST01 - SOTTOVIA Pr. 5+460,00

				ST01	
Sollecitazioni di calcolo	Var	unità	SOL.SUP	SOL.INF	PIED
Taglio di calcolo	V _{Ed}	kN	470.0	620.0	230.0
			 		
Dati	Var	unità			
Resistenza a compressione cubica caratteristica	Rck	Мра	40	40	40
Resistenza a compressione cilindrica caratteristica	fck	Мра	33.2	33.2	33.2
Coefficiente parziale γc	γC	•	1.50	1.50	1.50
Coefficiente parziale αcc	αcc		0.85	0.85	0.85
Resistenza a compressione di calcolo	fcd	Мра	18.8	18.8	18.8
Tensione caratteristica di snervamento acciaio di armatura	fyk	Мра	450	450	450
rensione di calcolo acciaio	fywd	Мра	391.3	391.3	391.3
Caratteristiche geometriche sezione					
Altezza (porre = 0 in caso di sezione circolare)	Н	m	0.80	0.90	0.80
Larghezza/ Diametro	В	m	1.00	1.00	1.00
Area calcestruzzo	Ac	m^2	0.80	0.90	0.80
Larghezza anima	bw	m	1.00	1.00	1.00
copriferro	С	m	0.078	0.078	0.078
altezza utile della sezione	d	m	0.72	0.82	0.72
Compressione agente nella sezione					
Sforzo normale di calcolo	N_{Ed}	kN	0.0	0.0	330.0
Elementi con armature trasversali resistenti al taglio					
Verifica del conglomerato					
Resistenza a taglio del conglomerato	V_{Rcd}	kN	4075.0	4639.4	4075.0
vesisteriza a taglio del congionierato	V Rcd	KIN	4073.0	4000.4	4073.0
Verifica dell'armatura trasversale					
diametro staffe	fsw	mm	12	12	12
passo staffe	scp	m	0.20	0.20	0.20
numero di bracci	nb		2.5	2.5	2.5
Armatura a taglio (staffe)	Asw	mmq	283	283	283
nclinazione dell'armatura trasversale rispetto all'asse della trave	α	deg	90	90	90
nclinazione dei puntoni in cls rispetto all'asse della trave	θ	deg	21.8	21.8	21.8
ensione media di compressione nella sezione	σср	kPa	0	0	413
coefficiente alpha	α_{c}		1.00	1.00	1.02
Resistenza a "taglio trazione"	V_{Rsd}	kN	898.7	1023.2	898.7
Resistenza a "taglio compressione"	V_{Rcd}	kN	2107.6	2399.5	2153.8
Resistenza a taglio	V _{Rd}	kN	898.7	1023.2	898.7
Coefficiente di sicurezza a taglio	C.S. (V)		1.9	1.7	3.9

Si osserva come il taglio resistente sia ampiamente maggiore di quello sollecitante di progetto.

CA352

Relazione tecnica e di calcolo ST01 - SOTTOVIA Pr. 5+460.00

7 MURI ANDATORI

7.1 Modello di calcolo

La risoluzione dell'analisi è stata eseguita attraverso il programma di calcolo automatico "MAX15" prodotto dalla Aztec Informatica s.r.l., Corso Umberto 43 – 87050 Casole Bruzio (CS).

Per i muri andatori ad altezza variabile è stato realizzato un modello di calcolo con un paramento di altezza equivalente corrispondente alla spinta media fornita dal terreno a tergo del muro. Infatti, considerando le sezioni dei muri con altezza massima e minima ed una distribuzione di spinta triangolare, si ha:

$$S_1 = \frac{1}{2} \gamma k_a H_1^2$$

$$S_2 = \frac{1}{2} \gamma \; k_a \; H_2^2$$

Dove:

γ è il peso di volume del reinterro a monte

Ka è il coefficiente di spinta attiva del terreno sul muro

H₁ e H₂ sono rispettivamente le altezze minime e massime considerate

Ponendo:

$$S_{media} = \frac{S_1 + S_2}{2}$$

Si ottiene:

$$S_{media} = \frac{1}{2} \gamma k_a \cdot \frac{{H_1}^2 + {H_2}^2}{2}$$

Da cui è possibile ricavare l'altezza media equivalente del muro:

$$H_{media} = \sqrt{\frac{{H_1}^2 + {H_2}^2}{2}}$$

Ponendo:

$$H_1 = H_{min} = 2.70 \text{ m}$$

$$H_2 = H_{max} = 6.55 \text{ m}$$

Adeguamento al tipo B dal km 12+000 al km 18+000 (ex SS125 "Orientale Sarda" - Connessione tra la SS554 e la nuova SS554)

CA352

Relazione tecnica e di calcolo ST01 - SOTTOVIA Pr. 5+460,00

si ottiene:

 $H_{media} = 5.0 \text{ m}$

7.2 Calcolo della spinta

7.2.1 Metodo di Culmann

Il metodo di Culmann adotta le stesse ipotesi di base del metodo di Coulomb. La differenza sostanziale è che, mentre Coulomb considera un terrapieno con superficie a pendenza costante e carico uniformemente distribuito (il che permette di ottenere una espressione in forma chiusa per il coefficiente di spinta), il metodo di Culmann consente di analizzare situazioni con profilo di forma generica e carichi sia concentrati che distribuiti comunque disposti. Inoltre, rispetto al metodo di Coulomb, risulta più immediato e lineare tener conto della coesione del masso spingente. Il metodo di Culmann, nato come metodo essenzialmente grafico, si è evoluto per essere trattato mediante analisi numerica (noto in questa forma come metodo del cuneo di tentativo). Come il metodo di Coulomb anche questo metodo considera una superficie di rottura rettilinea.

I passi del procedimento risolutivo sono i seguenti:

- si impone una superficie di rottura (angolo di inclinazione ρ rispetto all'orizzontale) e si considera il cuneo di spinta delimitato dalla superficie di rottura stessa, dalla parete su cui si calcola la spinta e dal profilo del terreno;
- si valutano tutte le forze agenti sul cuneo di spinta e cioè peso proprio (W), carichi sul terrapieno, resistenza per attrito e per coesione lungo la superficie di rottura (R e C) e resistenza per coesione lungo la parete (A);
- dalle equazioni di equilibrio si ricava il valore della spinta S sulla parete.

Questo processo viene iterato fino a trovare l'angolo di rottura per cui la spinta risulta massima.

La convergenza non si raggiunge se il terrapieno risulta inclinato di un angolo maggiore dell'angolo d'attrito del terreno.

Nei casi in cui è applicabile il metodo di Coulomb (profilo a monte rettilineo e carico uniformemente distribuito) i risultati ottenuti col metodo di Culmann coincidono con quelli del metodo di Coulomb.

Le pressioni sulla parete di spinta si ricavano derivando l'espressione della spinta S rispetto all'ordinata z. Noto il diagramma delle pressioni è possibile ricavare il punto di applicazione della spinta.

7.2.2 Spinta in presenza di sisma

Per tener conto dell'incremento di spinta dovuta al sisma si fa riferimento al metodo di Mononobe-Okabe (cui fa riferimento la Normativa Italiana).

La Normativa Italiana suggerisce di tener conto di un incremento di spinta dovuto al sisma nel modo sequente.

Adeguamento al tipo B dal km 12+000 al km 18+000 (ex SS125 "Orientale Sarda" - Connessione tra la SS554 e la nuova SS554)

CA352

Relazione tecnica e di calcolo ST01 - SOTTOVIA Pr. 5+460.00

Detta ϵ l'inclinazione del terrapieno rispetto all'orizzontale e β l'inclinazione della parete rispetto alla verticale, si calcola la spinta S' considerando un'inclinazione del terrapieno e della parte pari a:

$$\varepsilon' = \varepsilon + \theta$$

$$\beta' = \beta + \theta$$

Avendo posto

$$\theta = \arctan\left(\frac{k_h}{1 \pm k_v}\right)$$

Dove k_h e k_v sono, rispettivamente, il coefficiente sismico orizzontale e verticale.

In presenza di falda a monte, θ assume le seguenti espressioni:

Terreno a bassa permeabilità

$$\theta = \arctan \left[\left(\frac{\gamma}{\gamma_{sat} - \gamma_{w}} \right) \cdot \left(\frac{k_{h}}{1 \pm k_{v}} \right) \right]$$

Terreno a permeabilità elevata

$$\theta = \arctan \left[\left(\frac{\gamma}{\gamma_{sat} - \gamma_{w}} \right) \cdot \left(\frac{k_{h}}{1 \pm k_{v}} \right) \right]$$

Detta S la spinta calcolata in condizioni statiche, l'incremento di spinta da applicare è espresso da:

$$\Delta S = \Delta S' - S$$

dove il coefficiente A vale

$$A = \frac{\cos^2(\beta + \theta)}{\cos^2(\beta)\cos(\theta)}$$

In presenza di falda a monte, nel coefficiente A si tiene conto dell'influenza dei pesi di volume nel calcolo di θ . Adottando il metodo di Mononobe-Okabe per il calcolo della spinta, il coefficiente A viene posto pari a 1. Tale incremento di spinta è applicato a metà altezza della parete di spinta nel caso di forma rettangolare del diagramma di incremento sismico, allo stesso punto di applicazione della spinta statica nel caso in cui la forma del diagramma di incremento sismico è uguale a quella del diagramma statico.

Oltre a questo incremento bisogna tener conto delle forze d'inerzia orizzontali e verticali che si destano per effetto del sisma. Tali forze vengono valutate come

$$F_{iH} = k_h W$$
 $F_{iV} = \pm k_v W$

dove W è il peso del muro, del terreno soprastante la mensola di monte ed i relativi sovraccarichi e va applicata nel baricentro dei pesi.

Adeguamento al tipo B dal km 12+000 al km 18+000 (ex SS125 "Orientale Sarda" - Connessione tra la SS554 e la nuova SS554)

CA352

Relazione tecnica e di calcolo ST01 - SOTTOVIA Pr. 5+460.00

Il metodo di Culmann tiene conto automaticamente dell'incremento di spinta. Basta inserire nell'equazione risolutiva la forza d'inerzia del cuneo di spinta. La superficie di rottura nel caso di sisma risulta meno inclinata della corrispondente superficie in assenza di sisma.

7.3 Determinazione degli scarichi sui pali

Gli scarichi sui pali vengono determinati mediante il metodo delle rigidezze.

La piastra di fondazione viene considerata infinitamente rigida (3 gradi di libertà) ed i pali vengono considerati incastrati o incernierati (la scelta del vincolo viene fatta dall'Utente nella tabella CARATTERISTICHE del sottomenu PALI) a tale piastra.

Viene effettuata una prima analisi di ogni palo di ciascuna fila (i pali di ogni fila hanno le stesse caratteristiche) per costruire una curva carichi-spostamenti del palo. Questa curva viene costruita considerando il palo elastico. Si tratta, in definitiva, della matrice di rigidezza del palo Ke, costruita imponendo traslazioni e rotazioni unitarie per determinare le corrispondenti sollecitazioni in testa al palo.

Nota la matrice di rigidezza di ogni palo si assembla la matrice globale (di dimensioni 3x3) della palificata, K.

A questo punto, note le forze agenti in fondazione (N, T, M) si possono ricavare gli spostamenti della piastra (abbassamento, traslazione e rotazione) e le forze che si scaricano su ciascun palo. Infatti indicando con p il vettore dei carichi e con u il vettore degli spostamenti della piastra abbiamo:

$$- u = K^{-1}p$$

Noti gli spostamenti della piastra, e quindi della testa dei pali, abbiamo gli scarichi su ciascun palo. Allora per ciascun palo viene effettuata un'analisi elastoplastica incrementale (tramite il metodo degli elementi finiti) che, tenendo conto della plasticizzazione del terreno, calcola le sollecitazioni in tutte le sezioni del palo; le caratteristiche del terreno (rappresentate da Kh) sono tali che se non è possibile raggiungere l'equilibrio si ha collasso per rottura del terreno.

7.4 Verifica a stabilità globale

La verifica alla stabilità globale del complesso muro + terreno deve fornire un coefficiente di sicurezza non inferiore a η_{g} .

Eseguendo il calcolo mediante gli Eurocodici si può impostare $\,\eta_{\scriptscriptstyle g} \ge 1.00\,.$

Viene usata la tecnica della suddivisione a strisce della superficie di scorrimento da analizzare. La superficie di scorrimento viene supposta circolare e determinata in modo tale da non avere intersezione con il profilo del muro o con i pali di fondazione. Si determina il minimo coefficiente di sicurezza su una maglia di centri di dimensioni 10x10 posta in prossimità della sommità del muro. Il numero di strisce è pari a 50.

Si adotta per la verifica di stabilità globale il **metodo di Bishop**. Il coefficiente di sicurezza nel metodo di Bishop si esprime secondo la seguente formula:

Adeguamento al tipo B dal km 12+000 al km 18+000 (ex SS125 "Orientale Sarda" - Connessione tra la SS554 e la nuova SS554)

CA352

Relazione tecnica e di calcolo ST01 - SOTTOVIA Pr. 5+460.00

$$\eta = \frac{\sum_{i} \left(\frac{c_{i}b_{i} + (W_{i} - u_{i}b_{i})\tan\varphi_{i})}{m} \right)}{\sum_{i} W_{i} sen\alpha_{i}}$$

dove il termine m è espresso da

$$m = \left(1 + \frac{tg\,\varphi_i \cdot tg\,\alpha_i}{\eta}\right)\cos\alpha_i$$

In questa espressione η è il numero delle strisce considerate, b_i e α_i sono la larghezza e l'inclinazione della base della striscia i-esima rispetto all'orizzontale, W_i è il peso della striscia i-esima , c_i e φ_i sono le caratteristiche del terreno (coesione ed angolo di attrito) lungo la base della striscia ed u_i è la pressione neutra lungo la base della striscia.

L'espressione del coefficiente di sicurezza di Bishop contiene al secondo membro il termine m che è funzione di η . Quindi essa viene risolta per successive approssimazioni assumendo un valore iniziale per η da inserire nell'espressione di m ed iterare fino a quando il valore calcolato coincide con il valore assunto.

7.5 VERIFICHE GEOTECNICHE SLU ED SLE DELLE FONDAZIONI SU PALI

In accordo alle NTC2018 le verifiche SLU di tipo geotecnico (GEO) delle fondazioni su pali sono state effettuate con riferimento ai seguenti stati limite, accertando che la condizione Ed ≤ Rd sia soddisfatta per ogni stato limite considerato:

- Collasso per carico limite del palo singolo nei riquardi dei carichi assiali;
- Collasso per carico limite della palificata nei riguardi dei carichi assiali;
- Collasso per carico limite di sfilamento del palo singolo nei riguardi dei carichi assiali di trazione;
- Collasso per carico limite del palo singolo nei riguardi dei carichi trasversali;
- Collasso per carico limite della palificata nei riguardi dei carichi trasversali;
- Stabilità globale.

Le verifiche di stabilità globale vengono effettuate esclusivamente nel caso di fondazioni posizionate su o in prossimità di pendii naturali o artificiali, mentre vengono omesse per fondazioni che ricadono su aree in piano o a pendenza estremamente modesta.

Le verifiche SLU di tipo strutturale (STR) sono illustrate nei capitoli relativi alle sottostrutture.

Relativamente agli stati limite di esercizio (SLE) date le caratteristiche del terreno presente, non si ritiene significativa la valutazione dei cedimenti dei pali soggetti a carichi verticali.

7.5.1 Criteri di Calcolo

Le verifiche di stabilità globale vengono effettuate seguendo l'Approccio 1 con la combinazione dei coefficienti parziali (A2, M2, R2) definiti dalle tabelle 6.2.I, 6.2.II e 6.8.I delle NTC2018:

Adeguamento al tipo B dal km 12+000 al km 18+000 (ex SS125 "Orientale Sarda" - Connessione tra la SS554 e la nuova SS554)

CA352

Relazione tecnica e di calcolo ST01 - SOTTOVIA Pr. 5+460,00

Tab. 6.2.I – Coefficienti parziali per le azioni o per l'effetto delle azioni

	Effetto	Coefficiente Parziale $\gamma_{\rm F}$ (o $\gamma_{\rm E}$)	EQU	(A1)	(A2)
Carichi permanenti G1	Favorevole	γ _{G1}	0,9	1,0	1,0
	Sfavorevole		1,1	1,3	1,0
Carichi permanenti G2(1)	Favorevole	γ _{G2}	0,8	0,8	0,8
	Sfavorevole		1,5	1,5	1,3
Azioni variabili Q	Favorevole	YQı	0,0	0,0	0,0
	Sfavorevole		1,5	1,5	1,3

⁽i) Per i carichi permanenti G2 si applica quanto indicato alla Tabella 2.6.I. Per la spinta delle terre si fa riferimento ai coefficienti γοι

Tab. 6.2.II - Coefficienti parziali per i parametri geotecnici del terreno

Parametro	Grandezza alla quale applicare il coefficiente parziale	Coefficiente parziale $\gamma_{ m M}$	(M1)	(M2)
Tangente dell'angolo di resi- stenza al taglio	$ an {\phi'}_k$	$\gamma_{\phi'}$	1,0	1,25
Coesione efficace	c′ _k	$\gamma_{c'}$	1,0	1,25
Resistenza non drenata	C _{uk}	$\gamma_{\rm cu}$	1,0	1,4
Peso dell'unità di volume	γγ	γ_{γ}	1,0	1,0

 $\underline{\textbf{Tab. 6.8.I -}} \textbf{Coefficienti parziali per le verifiche di sicurezza di opere di materiali sciolti e di fronti di scavo$

COEFFICIENTE	R2
$\gamma_{ m R}$	1,1

Le altre verifiche agli stati limite ultimi finalizzate al dimensionamento geotecnico (carico limite della palificatanei riguardi dei carichi assiali, trasversali e di sfilamento), sono state effettuate riferendosi all'Approccio 2 con i gruppi parziali A1, M1, R3 definiti dalle tabelle 6.2.I, 6.2.II, precedentemente illustrate, 6.4.II e 6.4.VI:

 $extbf{Tab. 6.4.II}$ – Coefficienti parziali $extstyle{\gamma_R}$ da applicare alle resistenze caratteristiche a carico verticale dei pali

Resistenza	Simbolo	Pali	Pali	Pali ad elica
		infissi	trivellati	continua
	γ_{R}	(R3)	(R3)	(R3)
Base	γь	1,15	1,35	1,3
Laterale in compressione	γ _s	1,15	1,15	1,15
Totale (*)	γ	1,15	1,30	1,25
Laterale in trazione	γ_{st}	1,25	1,25	1,25

[🖰] da applicare alle resistenze caratteristiche dedotte dai risultati di prove di carico di progetto.

 $\textbf{Tab. 6.4.VI -} \textit{Coefficiente parziale } \gamma_{\mathtt{T}} \textit{per le verifiche agli stati limite ultimi di pali soggetti a carichi trasversali}$

22	
Coefficiente parziale (R3)	
$\gamma_T = 1.3$	

Per quanto riguarda le verifiche agli SLU di tipo strutturale (STR), per le Verifiche di resistenza degli elementi strutturali si è utilizzato l'Approccio 2: A1+M1+R3.

In accordo con le nuove Norme Tecniche per le Costruzioni di cui al D.M. 17/01/2018 - capitolo 7.11 – sono state condotte anche le verifiche in condizioni sismiche applicando i coefficienti parziali dei parametri geotecnici ed alle resistenze, mentre i coefficienti parziali dei carichi sono stati posti pari ad 1.

Per quanto riguarda la stabilità globale si è utilizzato l'Approccio 1 Combinazione 2: M2+R2+kh±kv.

Adeguamento al tipo B dal km 12+000 al km 18+000 (ex SS125 "Orientale Sarda" -

Connessione tra la SS554 e la nuova SS554)

CA352

Relazione tecnica e di calcolo ST01 - SOTTOVIA Pr. 5+460.00

Per quanto riguarda le altre verifiche agli SLU di tipo geotecnico si è utilizzato l'Approccio 2: M1+R3+kh±kv.

Per quanto riguarda invece le verifiche agli SLU di tipo strutturale, per le Verifiche di resistenza degli elementi strutturali si è utilizzato l'Approccio 2: M1+R3+kh±kv.

7.5.1.1 Verifiche SLU di collasso per carico limite del palo singolo nei riguardi del carico assiale di compressione

Deve essere:

Fcd ≤ Rcd

Dove:

Fcd è il carico assiale di compressione assunto in progetto nelle verifiche allo SLU

agente sul palo singolo;

Rcd la Resistenza di progetto allo SLU per il palo singolo fornita dalla seguente

espressione:

Rcd = Rbd + Rsd - Wp

Essendo:

 $Rbd = Rbk / \gamma b$ la resistenza alla base di progetto;

 $Rsd = Rsk / \gamma s$ la resistenza laterale di progetto;

Wp il peso del palo alleggerito;

γb,γs coefficienti di sicurezza parziali da applicare alle resistenze caratteristiche a

carico verticale dei pali, forniti dalla Tab. 6.4.II delle NTC2018

precedentemente illustrata;

 $Rbk = Min [(Rbc,cal)_{media}/\xi_3;(Rbc,cal)_{min}/\xi_4]$ la resistenza alla punta caratteristica;

 $Rsk = Min [(Rsc, cal)_{media} / \xi_3; (Rsc, cal)_{min} / \xi_4]$ la resistenza laterale caratteristica;

 ξ_3 , ξ_4 coefficienti di riduzione che dipendono dal numero di verticali indagate,

determinati in base alla Tab. 6.4.IV delle NTC2018:

Tab. 6.4.IV - Fattori di correlazione ξ per la determinazione della resistenza caratteristica in funzione del numero di verticali indagate

Numero di verticali indagate	1	2	3	4	5	7	≥ 10
ξ ₃	1,70	1,65	1,60	1,55	1,50	1,45	1,40
ξ ₄	1,70	1,55	1,48	1,42	1,34	1,28	1,21

Rb,cal ed Rs,cal rappresentano le resistenze alla base e laterale di calcolo del palo valutate con la seguenti espressioni:

Rb,cal = qb Ap la resistenza alla punta e:

 $Rs, cal = \sum_{i=1}^{n} qs_i Al_i$ la resistenza laterale

Adeguamento al tipo B dal km 12+000 al km 18+000 (ex SS125 "Orientale Sarda" - Connessione tra la SS554 e la nuova SS554)

CA352

Relazione tecnica e di calcolo ST01 - SOTTOVIA Pr. 5+460,00

i è lo strato iesimo attraversato dal palo ed n il numero totale degli strati.

7.5.1.1.1 Unità a comportamento coesivo (Argille e limi)

La verifica è effettuata in termini di tensioni totali.

La <u>resistenza unitaria alla base</u> viene determinata attraverso la seguente espressione:

$$qb = \sigma v + 9 cu$$

essendo σv la tensione verticale totale alla quota della base del palo e cu la coesione non drenata del terreno di fondazione alla base.

Relativamente alla <u>resistenza laterale</u>, Il valore di qs_i viene determinato come:

$$qs_i = \alpha_i c_{ui}$$

Essendo:

 α un coefficiente riduttivo della coesione non drenata c_u , variabile secondo quanto suggerito da AGI (1984) per pali trivellati:

Tipo di palo	Valori di cu [kPa]	Valori di α
	c _u < 25	0.9
Trivallata	$25 \le c_u < 50$	0.8
Trivellato	50 ≤ c _u < 75	0.6
	c _u ≥ 75	0.4

Tabella 7.1 – Valori di α (AGI 1984)

7.5.1.1.2 Unità a comportamento incoerente (Sabbie, Sabbie limose e Ghiaie)

La verifica è effettuata in termini di tensioni efficaci.

Per pali trivellati di grande diametro <u>la resistenza unitaria alla base</u> viene determinata attraverso la seguente espressione:

$$qb = Nq^* x \sigma v'$$

 Nq^* è il coefficiente di capacità portante corrispondente all'insorgere di un cedimento alla base del palo pari a (0.06 – 0.1) D valutato secondo Berezantzev (1965), e $\sigma v'$ la tensione verticale alla base del palo in termini di tensioni efficaci.

Adeguamento al tipo B dal km 12+000 al km 18+000 (ex SS125 "Orientale Sarda" - Connessione tra la SS554 e la nuova SS554)

Sanas

CA352

Relazione tecnica e di calcolo ST01 - SOTTOVIA Pr. 5+460,00

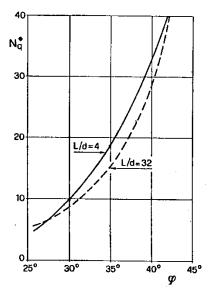


Figura 7.1 – Coefficienti Nq* (Berezantzev, 1965), corrispondenti all'insorgere delle deformazioni plastiche alla base

In ogni caso è stato assunto per qb un valore limite *qb,max* pari al minimo tra i valori forniti dalla seguente espressione [Gwizdala (1984), Reese&O'Neill (1988) e Matsui (1993)]:

 $qb,max1 = (Nspt)_m x \alpha_N (kPa)$

Essendo:

 α_N un coefficiente empirico pari a:

 α_N = 150 per ghiaie

 α_N = 120 per sabbie α_N =

 α_N = 85 per sabbie limose

(Nspt)_m II valore di Nspt medio su un tratto pari a 1.5 D al di sopra e al di sotto della base del palo.

e dalla seguente tabella:

qb,max2 = 7500 per ghiaie

qp,max2 = 5800 per sabbie

qp,max2 = 4300 per sabbie limose

La resistenza unitaria laterale *qs_i* viene determinata in accordo alla seguente espressione:

 $qs_i = \sigma v'_m Ks_i \tan \delta_i \le qs_i$ max

essendo:

 $\sigma V'_m$

il valore della tensione verticale determinata alla quota media dello

strato considerato;

Ks_i

è un coefficiente adimensionale che esprime il rapporto rta la tensione normale che agisce alla profondità di interesse sulla superficie laterale del palo e la tensione verticale alla stessa profondità. Per pali trivellati si assume $Ks = 1 - sen \varphi'$;

Adeguamento al tipo B dal km 12+000 al km 18+000 (ex SS125 "Orientale Sarda" - Connessione tra la SS554 e la nuova SS554)

CA352

Relazione tecnica e di calcolo ST01 - SOTTOVIA Pr. 5+460,00

 δ valore dell'angolo d'attrito tra superficie laterale del palo e terreno che per pali trivellati è assunto pari a φ ';

qs,max tensione tengenziale ultima consigliabile.

In accordo a Reese & Wright (1977) nel caso di pali trivellati a fango, il valore di *qs,max* è ricavabile dalle seguenti espressioni:

$$qs,max = 3 \times Nspt \ (kPa)$$
 per Nspt ≤ 53
 $qs,max = 142 + 0.32 \times Nspt \ (kPa)$ per Nspt > 53

7.5.1.1.3 Unità a comportamento lapideo

Per pali trivellati di grande diametro in roccia, <u>la resistenza unitaria alla base</u> viene determinata attraverso la seguente espressione riportata sul Canadian Foundation Manual (1978):

$$qb = K_{sp} \times q_u$$

con:

$$K_{sp} = \frac{3 + c/B}{10 \cdot \sqrt{1 + 300 \cdot \frac{\delta}{c}}}$$

Dove:

 q_u

 K_{sp} coefficiente empirico che dipende dalla spaziatura e include un fattore di sicurezza pari a 3, compreso tra 0.1 e 4;

valore medio della resistenza a compressione monoassiale della matrice rocciosa

(determinata su campioni di roccia intatta);

c spaziatura delle discontinuità;

 δ apertura delle discontinuità;

B diametro del palo.

<u>La resistenza unitaria laterale</u> *qs*, relativa alla porzione di palo ammorsato in roccia, viene determinata assumendo il minimo tra i valori ottenuti con le seguenti espressioni:

$$qs = 6.656 \cdot \sqrt{q_u} \qquad (kPa)$$
$$qs = 0.05 \ q_u$$

7.5.1.2 Verifiche SLU di collasso per carico limite della palificata nei riguardi del carico assiale di compressione

L'interasse tra i pali è fissato ad un valore non minore di tre volte il loro diametro.

La resistenza ai carichi verticali Rcd,_{gr} del gruppo di pali viene determinata in base alla seguente espressione:

$$Rcd_{,qr} = \eta n Rcd$$

Adeguamento al tipo B dal km 12+000 al km 18+000 (ex SS125 "Orientale Sarda" -

Connessione tra la SS554 e la nuova SS554)

CA352

Relazione tecnica e di calcolo ST01 - SOTTOVIA Pr. 5+460,00

In cui:

 η è l'efficienza del gruppo di pali;

n Il numero complessivo di pali del gruppo.

Rcd la Resistenza di progetto allo SLU per il palo singolo definito in accordo a

quanto illustrato nel paragrafo 7.5.1.1.

Per <u>palificate in terreni incoerenti e lapidei</u> e interassi usuali (non minori di tre volte il diametro dei pali), l'efficienza è sempre maggiore dell'unità e nel progetto viene assunta pari ad uno. In questi casi, la verifica di collasso per carico limite del palo singolo è certamente più gravosa di quella relativa al gruppo che, pertanto, viene omessa.

Per palificate in terreni coesivi, l'efficienza del gruppo di pali risulta minore dell'unità.

Il valore dell'efficienza è stato determinato attraverso la nota formula empirica di Converse-Labarre:

$$\eta = 1 - \frac{\arctan(d/i)}{\pi/2} \frac{(m-1)n + (n-1)m)}{m \, n}$$

In cui:

d diametro dei pali;

i interasse tra i pali;

m numero di file di pali;

n numero di pali per ciascuna fila.

La verifica si ritiene soddisfatta se:

 $N_{\text{max SLU}} \leq Rcd,_{gr}$

Dove:

N_{max SLU} è il massimo carico verticale agli SLU-STR o SLV agente sulla palificata.

7.5.1.3 Verifiche SLU di collasso per sfilamento del palo singolo nei riguardi del carico assiale di trazione

Deve essere:

Ftd ≤ Rtd

Dove:

Ftd è il carico assiale di trazione assunto in progetto nelle verifiche allo SLU

agente sul palo singolo;

Rtd la Resistenza di progetto allo SLU per il palo singolo fornita dalla seguente

espressione:

Rcd = 0.7 Rsd + Wp

Essendo:

Adeguamento al tipo B dal km 12+000 al km 18+000 (ex SS125 "Orientale Sarda" -

Connessione tra la SS554 e la nuova SS554)

CA352

Relazione tecnica e di calcolo ST01 - SOTTOVIA Pr. 5+460.00

 $Rsd = Rsk / \gamma s$ la resistenza laterale di progetto;

Wp il peso del palo alleggerito;

γb,γs coefficienti di sicurezza parziali da applicare alle resistenze caratteristiche a

carico verticale dei pali, forniti dalla Tab. 6.4.II delle NTC2018

precedentemente illustrata;

Rsk la resistenza laterale caratteristica, valutata secondo quanto illustrato al

paragrafo 7.5.1.1.

Come è possibile evincere per le verifiche a carichi di trazione si assume una resistenza laterale pari al 70% della corrispondente valutata per pali in compressione.

7.5.1.4 Verifiche SLU di collasso per carico limite del palo singolo nei riguardi del carico trasversale

Deve essere:

 $Ftrd \leq Rtr.d$

Dove:

Ftrd è il carico orizzontale di progetto nelle verifiche allo SLU agente sul palo

singolo;

Rtr,d la Resistenza di progetto ai carichi orizzontali allo SLU per il palo singolo

fornita dalla seguente espressione:

 $Rtr, d = Rtr, k / \gamma_T$ la resistenza caratteristica ai carichi orizzontali;

 γ_T coefficiente di sicurezza parziale per le verifiche agli stati limite ultimi di apli

soggetti a carichi trasversali, fornito dalla Tab. 6.4.VI delle NTC2018,

precedentemente illustrata;

 $Rtr,k = Min [(Rtr,cal)_{media} / \xi_3; (Rtr,cal)_{min} / \xi_4]$ la resistenza laterale caratteristica ai carichi

orizzontali allo SLU;

ξ₃, ξ₄ coefficienti di riduzione che dipendono dal numero di verticali indagate,

determinati in base alla Tab. 6.4.IV delle NTC2018:

Rtr,cal rappresenta la resistenza di calcolo del palo ai carichi orizzontali *Hlim* valutata in accordo alla teoria proposta da Broms (1984).

Le ipotesi assunte da Broms sono le seguenti:

- Terreno omogeneo;
- Comportamento dell'interfaccia palo-terreno di tipo rigido-perfettamente plastico;
- la forma del palo è ininfluente e l'interazione palo-terreno è determinata solo dalla dimensione caratteristica D della sezione del palo (il diametro per sezioni circolari, il lato per sezioni quadrate, etc.) misurata normalmente alla direzione del movimento;
- il palo ha comportamento rigido-perfettamente plastico, cioè si considerano trascurabili le deformazioni elastiche del palo.

Adeguamento al tipo B dal km 12+000 al km 18+000 (ex SS125 "Orientale Sarda" - Connessione tra la SS554 e la nuova SS554)

CA352

Relazione tecnica e di calcolo ST01 - SOTTOVIA Pr. 5+460.00

Questa ultima ipotesi comporta che il palo abbia solo moti rigidi finchè non si raggiunge il momento di plasticizzazione *My* del palo. A questo punto si ha la formazione di una cerniera plastica in cui la rotazione continua indefinitamente con momento costante.

In accordo alla condizione di vincolo dei pali nei plinti di fondazione, il palo è considerato impedito di ruotare in testa.

I meccanismi di rottura del complesso palo-terreno sono condizionati dalla lunghezza del palo, dal momento di plasticizzazione della sezione e dalla resistenza esercitata dal terreno. I possibili meccanismi di rottura sono riportati nella figura seguente e sono solitamente indicati come "palo corto", "intermedio" e "lungo".

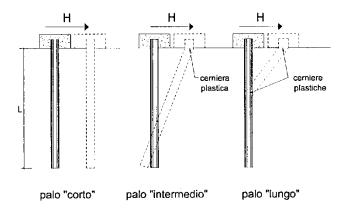


Figura 7.2 – meccanismi di rottura del complesso palo-terreno per pali impediti di ruotare alla testa soggetti a carichi orizzontali (Broms, 1984).

7.5.1.4.1 Unità a comportamento coesivo

Il diagramma di distribuzione della resistenza p offerta dal terreno lungo il fusto del palo è quello riportato nella figura seguente (a). Broms adotta al fine delle analisi una distribuzione semplificata (b) con reazione nulla fino a 1.5 D e costante con valore 9 cu D per profondità maggiori.

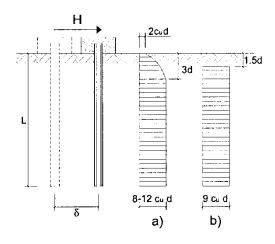
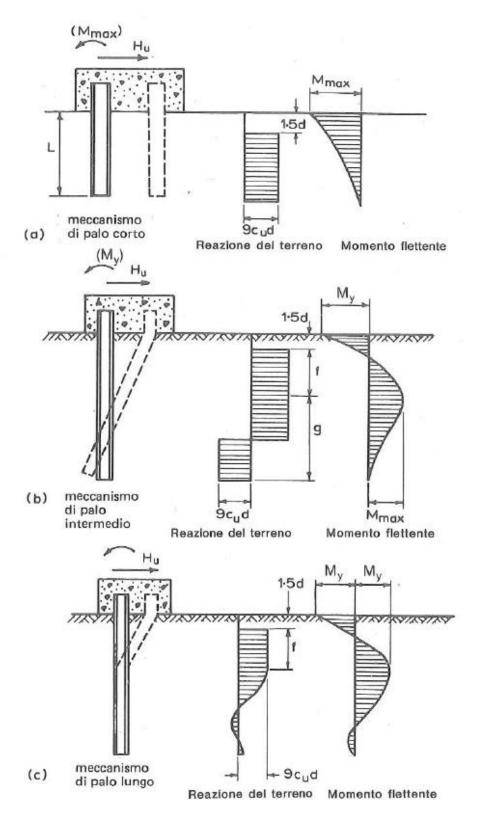


Figura 7.3 – distribuzione della resistenza offerta dal terreno a carichi orizzontali per pali impediti di ruotare alla testa (Broms, 1984).


Adeguamento al tipo B dal km 12+000 al km 18+000 (ex SS125 "Orientale Sarda" - Connessione tra la SS554 e la nuova SS554)

CA352

Relazione tecnica e di calcolo ST01 - SOTTOVIA Pr. 5+460,00

Nella figura seguente si riportano gli schemi di calcolo per i tre meccanismi di rottura precedentemente illustrati:

Adeguamento al tipo B dal km 12+000 al km 18+000 (ex SS125 "Orientale Sarda" - Connessione tra la SS554 e la nuova SS554)

CA352

Relazione tecnica e di calcolo ST01 - SOTTOVIA Pr. 5+460,00

Figura 7.4 – Schemi di calcolo per pali impediti di ruotare in testa e soggetti ad azioni trasversali in terreni coesivi (Broms, 1984).

Facendo ricorso a semplici equazioni di equilibrio ed imponendo la formazione di una cerniera plastica nelle sezioni che raggiungono un momento pari a My, è possibile calcolare il carico limite orizzontale corrispondente ai tre meccanismi di rottura:

$$H \lim_{n \to \infty} 9c_u D^2 \left(\frac{L}{D} - 1.5\right)$$
 palo corto

$$H \lim = -9c_u D^2 \left(\frac{L}{D} - 1.5\right) + 9c_u D^2 \sqrt{2\left(\frac{L}{D}\right)^2 + \frac{4}{9}\frac{My}{c_u D^3} + 4.5}$$
 palo intermedio

$$H \lim = -13.5c_u D^2 + c_u D^2 \sqrt{182.25 + 36 \frac{My}{c_u D^3}}$$
 palo lungo

Nel caso di palo scalzato (ove presente) e per il caso di palo lungo, il valore di *Hlim* si ottiene risolvendo le seguenti equazioni:

$$H \lim_{s \to 0} = 9c_u D \times (f - 1.5D)$$

$$H \lim_{s \to 0} (d_s + f) - 4.5c_u D(f - 1.5D)^2 - 2M_y = 0$$

Essendo:

- f la profondità della cerniera plastica dal piano di campagna
- d_s l'altezza della testa del palo rispetto al piano di campagna

7.5.1.5 Unità a comportamento incoerente

Per un terreno incoerente si assume che la resistenza opposta dal terreno alla traslazione del palo vari linearmente con la profondità con legge:

$$p = 3 k_p \gamma z D$$

essendo:

- k_p il coefficiente di spinta passiva;
- z la profondità da piano campagna;
- γ il peso di volume del terreno, nel caso in cui il terreno sia sotto falda si assume γ' .

Adeguamento al tipo B dal km 12+000 al km 18+000 (ex SS125 "Orientale Sarda" - Connessione tra la SS554 e la nuova SS554)

CA352

Relazione tecnica e di calcolo ST01 - SOTTOVIA Pr. 5+460,00

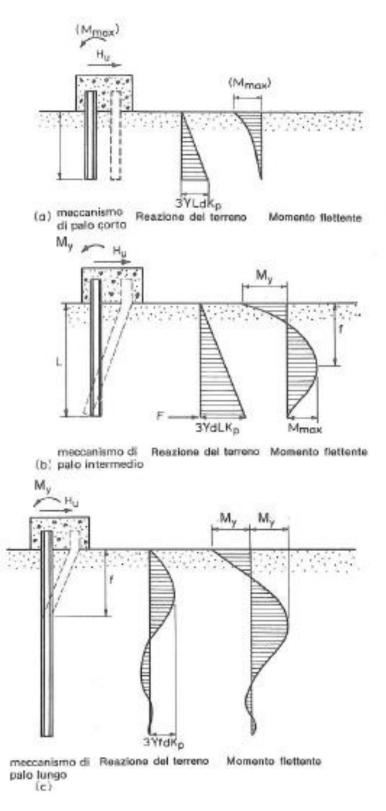
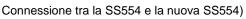



Figura 7.5 – Schemi di calcolo per pali impediti di ruotare in testa e soggetti ad azioni trasversali in terreni incoerenti (Broms, 1984).

Adeguamento al tipo B dal km 12+000 al km 18+000 (ex SS125 "Orientale Sarda" -

CA352

Relazione tecnica e di calcolo ST01 - SOTTOVIA Pr. 5+460.00

I valori del carico limite corrispondenti ai diversi meccanismi di rottura sono di seguito riportati:

$$H \lim = 1.5k_p \gamma D^3 \left(\frac{L}{D}\right)^2$$
 palo corto

$$H \lim_{n \to \infty} = \frac{1}{2} k_p \gamma D^3 \left(\frac{L}{D}\right)^2 + \frac{My}{L}$$
 palo intermedio

$$H \lim_{p} = k_p \gamma D^3 \sqrt[3]{\left(3.676 \frac{My}{k_p \gamma D^4}\right)^2}$$
 palo lungo

Nel caso di palo scalzato (ove presente) e per il caso di palo lungo, il valore di Hlim si ottiene risolvendo le seguenti equazioni:

$$H \lim_{n \to \infty} 1.5 k_n \gamma D f^2$$

$$f^3 + 1.5Df^2 - \left(\frac{2M_y}{k_p D}\right) = 0$$

Essendo:

f la profondità della cerniera plastica dal piano di campagna

 d_s l'altezza della testa del palo rispetto al piano di campagna

7.5.1.6 Verifiche SLU di collasso per carico limite della palificata nei riguardi del carico trasversale

La resistenza ai carichi trasversali Rcd, ar del gruppo di pali viene determinata in base alla seguente espressione:

 $Rtr, d_{ar} = \eta n Rtr, d1$

In cui:

è l'efficienza del gruppo di pali; ηtr

Il numero complessivo di pali del gruppo.

la Resistenza di progetto allo SLU per il palo singolo definito in accordo a Rtr,d1

> quanto illustrato nel paragrafo 7.5.1.1, per un valore del momento di plasticizzazione corrispondente allo sforzo normale medio agente sui pali

della palificata

Il carico limite orizzontale di un gruppo può essere notevolmente inferiore alla somma dei valori relativi ai singoli pali; l'efficienza di un gruppo di pali rispetto ai carichi orizzontali è sempre inferiore all'unità.

Dalle "raccomandazioni sui pali di fondazione" AGI, 1984, si riporta quanto segue:

Adeguamento al tipo B dal km 12+000 al km 18+000 (ex SS125 "Orientale Sarda" - Connessione tra la SS554 e la nuova SS554)

CA352

Relazione tecnica e di calcolo ST01 - SOTTOVIA Pr. 5+460.00

"Sulla base dei risultati sperimentali disponibili sembra che l'efficienza tenda all'unità per un interasse fra i pali del gruppo pari a cinque volte il diametro dei pali; per interasse minore, l'efficienza diminuisce fino a 0.5."

È possibile anche affermare che risulta più vantaggioso disporre il gruppo di pali normalmente alla direzione della forza orizzontale ovvero, a parità di numero di pali di un gruppo rettangolare resiste meglio se la forza orizzontale agisce parallelamente al lato corto.

Per il caso di interesse, relativo a pali disposti ad interasse non minore di 3 diametri si ritiene possibile considerare $\eta tr = 80\%$.

7.6 AZIONI E COMBINAZIONI DI PROGETTO

7.6.1 Analisi dei carichi

7.6.1.1 Carichi permanenti

7.6.1.1.1 Carichi permanenti strutturali

Il peso proprio degli elementi strutturali é automaticamente valutato dal programma di calcolo utilizzato per l'analisi. Esso é calcolato considerando per il calcestruzzo un peso per unità di volume pari a 25 kN/m³.

7.6.1.2 Spinta delle terre

Il calcolo della spinta del terreno è stata effettuato con riferimento al coefficiente di spinta attiva K_A.

7.6.1.3 Sovraccarico accidentale a tergo del muro

Si è considerato un sovraccarico accidentale sul rilevato pari a pari a 20 kN/m².

7.6.1.4 Azione sismica

L'analisi del muro in fase sismica è stato effettuato con gli usuali metodi pseudo statici in accordo a quanto previsto dalle NTC2018 (par. 7.11.6.2). L'incremento di spinta delle terre in fase sismica è stato valutato in accordo alla teoria di Mononobe-Okabe.

I coefficienti sismici orizzontale k_h e verticale k_v sono valutati come illustrato successivamente.

7.6.1.4.1 Parametri sismici fondamentali

I parametri sismici fondamentali sono stati determinati con l'ausilio del software-free SPETTRI-NTC ver. 1.0.3 (prodotto dal Consiglio Superiore dei Lavori Pubblici www.cslp.it).

Categoria di sottosuolo:

Categoria stratigrafica:

Si ottiene per gli SLV:

- Accelerazione orizzontale massima attesa su suolo rigido: $a_q/g = 0.073$;

Coefficiente di sottosuolo:
 S = 1.20.

Adeguamento al tipo B dal km 12+000 al km 18+000 (ex SS125 "Orientale Sarda" - Connessione tra la SS554 e la nuova SS554)

CA352

Relazione tecnica e di calcolo ST01 - SOTTOVIA Pr. 5+460,00

Per verifiche agli SLV dei muri su pali IL coefficiente di riduzione dell'accelerazione massima attesa al sito, determinato in accordo al par. 7.11.6.2.1 delle NTC2018, è pari a: $\beta_m = 1.00$.

Quindi:

- Coefficiente sismico orizzontale: $k_h = S \times a_g/g \times \beta_m = 1.20 \times 0.073 \times 1.0 = 0.0876$
- Coefficiente sismico verticale: $k_v = k_h/2 = \pm 0.0438$

7.6.2 Combinazioni di Carico

In accordo al par. 2.5.3 delle NTC2018 ai fini delle verifiche degli stati limite sono state considerate le sequenti combinazioni delle azioni:

- Combinazione fondamentale, impiegata per gli stati limite ultimi (SLU):

$$\gamma_{G1} \cdot G_1 + \gamma_{G2} \cdot G_2 + \gamma_P \cdot P + \gamma_{O1} \cdot Q_{k1} + \gamma_{O2} \cdot Q_{k2} + \gamma_{O3} \cdot Q_{k3} + \dots$$

- Combinazione caratteristica, cosiddetta rara, impiegata per gli stati limite di esercizio (SLE) irreversibili:

$$G_1 + G_2 + P + Q_{k1} + \psi_{02} \cdot Q_{k2} + \psi_{03} \cdot Q_{k3} + \dots$$

- Combinazione frequente, impiegata per gli stati limite di esercizio (SLE) reversibili:

$$G_1 + G_2 + P + \psi_{11} \cdot Q_{k1} + \psi_{22} \cdot Q_{k2} + \psi_{23} \cdot Q_{k3} +$$

- Combinazione quasi permanente (SLE), impiegata per gli effetti a lungo termine:

$$G_1 + G_2 + P + \psi_{21} \cdot Q_{k1} + \psi_{22} \cdot Q_{k2} + \psi_{23} \cdot Q_{k3} + \dots$$

 Combinazione sismica, impiegata per gli stati limite ultimi e di esercizio connessi all'azione sismica E:

$$E + G_1 + G_2 + P + \psi_{21} \cdot Q_{k1} + \psi_{22} \cdot Q_{k2} + \dots$$

- Combinazione eccezionale, impiegata per gli stati limite ultimi connessi alle azioni eccezionali A_d :

$$G_1 + G_2 + P + A_d + \psi_{21} \cdot Q_{k1} + \psi_{22} \cdot Q_{k2} + \dots$$

Dove:

- G₁ rappresenta il peso proprio di tutti gli elementi strutturali;
- G₂ rappresenta il peso proprio di tutti gli elementi non strutturali;
- P rappresenta le azioni di pretensione e precompressione (ove presenti);
- Q_{ki} rappresenta il valore caratteristico della i-esima azione variabile;
- E rappresenta l'azione sismica per lo stato limite in esame;
- A_d rappresenta le azioni eccezionali.
- ψ_{0j} , ψ_{1j} , ψ_{2j} sono i coefficienti di combinazione per tenere conto della ridotta probabilità di concomitanza delle azioni variabili con i rispettivi valori caratteristici.

Adeguamento al tipo B dal km 12+000 al km 18+000 (ex SS125 "Orientale Sarda" - Connessione tra la SS554 e la nuova SS554)

CA352

Relazione tecnica e di calcolo ST01 - SOTTOVIA Pr. 5+460.00

I valori dei coefficienti parziali delle azioni da assumere nell'analisi per la determinazione degli effetti delle azioni nelle verifiche SLU sono quelli già indicati al paragrafo **Errore. L'origine riferimento non è stata trovata.**.

I valori dei coefficienti ψ_{0j} , ψ_{1j} e ψ_{2j} per le diverse categorie di azioni sono riportati nella tabella 5.1.VI delle NTC2018.

7.7 SEZIONI DI ANALISI E RISULTATI

7.7.1 Riepilogo delle azioni in testa ai pali di fondazione

Di seguto si riportano in forma tabellare le azioni agenti in testa ai pali di fondazione dei muri andatori per i diversi stati limite ottenute dall'analisi effettuata attraverso il software di calcolo "MAX – Analisi e Calcolo Muri di Sostegno – Versione 15.0":

PARAMENTO CON H = 5 m

RIEPILOGO AZIONI IN TESTA AI PALI			SLU	SLV	SLE-CAR	SLE-FR	SLE-QP
Azione assiale massima (compressione)	Nmax	1530	1530	1510	1215	1137	1137
Azione assiale minima	Nmin	790	1057	7 90	1150	1137	1137
Azione trasversale massima	Vmax	300	300	300			

7.7.2 Caratteristiche della sollecitazione per verifiche pali di fondazione

Il momento flettente massimo agente sui pali è stato determinato nell'ipotesi di comportamento elastico lineare del palo e del terreno di fondazione.

Nell'ipotesi di palo incastrato in sommità, il momento massimo viene attinto all'incastro con il plinto di fondazione e vale:

$$M_{max} = V_i x (L_0)/2$$

Essendo L₀ la lunghezza elastica del palo pari a:

$$L_0 = [4 \times E_p \times I_p / E_s]^{0.25}$$

Ep il modulo di elasticità del palo;

Ip il momento d'inerzia del palo;

Es Modulo di reazione orizzontale del terreno costante con la profondità, relativo agli strati superficiali;

Di seguito si riporta:

- il calcolo della lunghezza libera d'inflessione dei pali di fondazione;
- Le caratteristiche della sollecitazione prese in conto per le verifiche dei pali di fondazione;

Adeguamento al tipo B dal km 12+000 al km 18+000 (ex SS125 "Orientale Sarda" - Connessione tra la SS554 e la nuova SS554)

CA352

Relazione tecnica e di calcolo ST01 - SOTTOVIA Pr. 5+460,00

LUNGHEZZA LIBERA D'INFLESSIONE PALI DI FONDAZIONE

Modulo di elasticità normale del calcestruzzo/malta	Ec	Мра	33346
Modulo di elasticità normale dell'acciaio	Ea	Мра	210000
Momento d'inerzia della sezione omogeneizzata al cls	lр	m4	0.1018
Kt Costante di reazione orizzontale (Vesic)	kt	kN/mc	30000
Lunghezza libera d'inflessione	L0	m	3.98

Le caratteristiche della sollecitazione prese in conto per le verifiche dei pali di fondazione sono le seguenti:

PARAMENTO CON H = 5 m

PARAIVIENTO CON H = 5 M							
RIEPILOGO AZIONI IN TESTA AI PALI			SLU	SLV	SLE-CAR	SLE-FR	SLE-QP
Azione assiale massima (compressione)	Nmax	1530	1530	1510	1215	1137	1137
Azione assiale minima	Nmin	790	1057	790	1150	1137	1137
Azione trasversale massima	Vmax	300	300	300	190	170	170
RIEPILOGO AZIONI VERTICALI AGLI SLI	J SULLA PAL	IFICATA	SLU	SLV			
Carico verticale massimo agente sulla palifi		10900	9560				
Carico verticale medio agente sui pali			1363	1195			
PARAMENTO CON H = 5 m							
CARATTERISTICHE DELLA SOLLECITA	AZIONI MASSI	ME SUI PALI	SLU	SLV	SLE-CAR	SLE-FR	SLE-QP
Sforzo normale massimo	Nmax	kN	1530	1510	1215	1137	1137
Sforzo normale minimo	Nmin	kN	1057	790	1150	1137	1137
Momento massimo in testa ai pali	Mmax	kNm	597	597	378	338	338
Sforzo di taglio massimo	Vmax	kN	300	300	190	170	170

7.8 VERIFICHE

7.8.1 Verifiche strutturali dei pali di fondazione

I pali di fondazione dei muri andatori dei sottopassi in oggetto saranno armati come segue:

primo tratto, pari a 6 m, armato con 24fi24 radiali e spirale fi12/10, la parte restante del palo armata con 20fi24 e spirale fi12/20.

La verifiche a pressoflessione e taglio per le sezioni in c.a. sono state effettuate con il software RCSEC® prodotto da Geostru.

7.8.2 Verifiche geotecniche dei pali di fondazione

La stratigrafia di progetto è quella riportata al paragrafo 5.1, il numero di verticali indagate spinte a profondità utile per il dimensionamento dei pali è pari a 6.

Adeguamento al tipo B dal km 12+000 al km 18+000 (ex SS125 "Orientale Sarda" - Connessione tra la SS554 e la nuova SS554)

CA352

Relazione tecnica e di calcolo ST01 - SOTTOVIA Pr. 5+460.00

7.8.2.1 Verifiche SLU di collasso per carico limite del palo singolo e della palificata nei riguardi del carico assiale di compressione e di trazione (sfilamento)

In allegato si riportano le curve Resistenza di progetto Rcd – Lunghezza del palo (Lp), che consentono il dimensionamento della lunghezza del palo in funzione dei carichi di progetto Fcd.

I valori di Fcd, Ftd e Fcd_{qr} considerati nelle verifiche, sono quelli illustrati nel capitolo 7.7.2.

La tabelle seguenti illustrano i risultati delle verifiche effettuate in termini di coefficienti di utilizzo, dati dal rapporto tra le azioni e le resistenze di calcolo; affinchè le verifiche siano soddisfatte è necessario che il valore del coefficiente di utilizzo sia non maggiore di uno.

LAVORO: CA352 SS554 OPERA: MURI ANDATORI SOTTOPASSO ST01 RESISTENZA DI PROGETTO DI UN PALO TRIVELLATO SINGOLO SOGGETTO AD AZIONI DI COMPRESSIONE/TRAZIONE																
PALI SOGGETTI A COMPRESSIONE PALI SOGGETTI A TRAZIONE RIEPILOGO RISULTATI PARAMETRI MEDI PARAMETRI MINIMI ENV MEDI MINIMI ENV																
Stratigrafia	Allineamenti	Lp [m]	Rsd [kN]	Rbd [kN]	Rcd [kN]	Rsd [kN]	Rbd [kN]	Rcd [kN]	Rcd [kN]	Edc [kN]	c.u. %	Rtd [kN]	Rtd [kN]	Rtd [kN]	Edt [kN]	c.u. %
STR1	ST01	12.0	2528	1957	4387	2705	1806	4387	4387	1530	35%	1868	2017	1868	0	0%

Tabella 7.2 – Riepilogo risultati verifiche di collasso per carico limite del palo singolo nei riguardi dei carichi assiali di compressione e di trazione (sfilamento)

LAVORO: CA352 SS554 MURI ANDATORI SOTTOPASSO ST01											
RESISTENZA DELLA PALIFICATA SOGGETTA AD AZIONI VERTICALI DI COMPRESSIONE											
RIEDII OGO I	RIEPILOGO RISULTATI MEDI MINIMI ENV										
Stratigrafia	Allineamenti	D	i	npali	η	Rcd,gr med	Rcd,gr min	Rcd,gr	Edc	c.u.	
[m] [m] (%) [kN] [kN] [kN] [kN]									%		
STR1	ST01	1.20	3.60	8	74%	26109	26111	26109	10900	42%	

Tabella 7.3 – Riepilogo risultati verifiche di collasso per carico limite della palificata nei riguardi dei carichi assiali di compressione

7.8.2.1.1 <u>Verifiche SLU di collasso per carico limite del palo singolo e della palificata nei riguardi del carico trasversale</u>

In allegato si riportano le curve Resistenza di progetto Rtr,d – Momento di plasticizzazione testa palo (MRd), che consentono il dimensionamento della lunghezza del palo in funzione dei carichi di progetto Ftr,d.

I valori di Ftr,d considerati nelle verifiche sono quelli illustrati nel capitolo 7.7.2.

Per la verifica del palo singolo, come illustrato in precedenza, si considera un valore della forza trasversale di progetto SLU amplificata del 20% rispetto a quella fornita dalla risoluzione della palificata.

Il momento ultimo, considerato per la valutazione della resistenza media della palificata è quello corrispondente allo sforzo normale medio.

Adeguamento al tipo B dal km 12+000 al km 18+000 (ex SS125 "Orientale Sarda" - Connessione tra la SS554 e la nuova SS554)

CA352

Relazione tecnica e di calcolo ST01 - SOTTOVIA Pr. 5+460,00

La tabella seguente illustra i risultati delle verifiche effettuate in termini di coefficienti di utilizzo, dati dal rapporto tra le azioni e le resistenze di calcolo; affinchè le verifiche siano soddisfatte è necessario che il valore del coefficiente di utilizzo sia non maggiore di uno.

LAVORO: CA352 SS554 OPERA: SOTTOPASSO ST01 RESISTENZA DI UN PALO E DELLA PALIFICATA AD AZIONI TRASVERSALI												
REGISTERER DI GRITALE DELEGRITARIA AD ALIGINI MAGVERGALI												
RIEPILOGO I	RISULTATI		PALO SI	NGOLO				P	ALIFICA	TA		
Stratigrafia	Allineamenti	My	Rtr,d	Ftr,d	c.u.1	My	Rtr,d1	npali	η	Rtr,dgr	Ftr,dgr	c.u.gr
		(kNm)	(kN)	(kN)		(kNm)	(kN)		(%)	(kN)	(kN)	
STR1	PALI MURI ANDATORI ST01	2190	978	300	31%	2283	1018	8	80%	6512	2400	37%

Tabella 7.4 – Riepilogo risultati verifiche di collasso per carico limite del palo singolo e della palificata nei riguardi dei carichi trasversali

7.8.3 Verifiche strutturali dei muri

Le verifiche strutturali del paramento frontale e della fondazione dei muri riportate in allegato sono eseguite dal programma e risultano soddisfatte.

7.8.4 Verifiche geotecniche dei muri

La verifica geotecnica del muro (stabilità globale) è riportata in allegato e risulta soddisfatta.

Adeguamento al tipo B dal km 12+000 al km 18+000 (ex SS125 "Orientale Sarda" - Connessione tra la SS554 e la nuova SS554)

CA352

Relazione tecnica e di calcolo ST01 - SOTTOVIA Pr. 5+460.00

8 DICHIARAZIONE ACCETTABILITÀ RISULTATI (PAR. 10.2 N.T.C. 2018)

8.1 Tipo di analisi svolte

Le analisi strutturali e le verifiche per il dimensionamento delle strutture sono state condotte con l'ausilio di codici di calcolo automatico. La verifica della sicurezza degli elementi strutturali è stata valutata con i metodi della scienza delle costruzioni.

Il calcolo dei muri di sostegno viene eseguito secondo le seguenti fasi:

- Calcolo della spinta del terreno
- Verifica della stabilità globale
- Calcolo delle sollecitazioni sia del muro che della fondazione, progetto delle armature e relative verifiche dei materiali.
- Calcolo della portanza assiale e trasversale dei pali. Progetto e verifica delle armature dei pali inseriti.

L'analisi strutturale sotto le azioni sismiche è condotta con il metodo dell'analisi statica equivalente secondo le disposizioni del capitolo 7 del D.M. 17/07/2018.

La verifica delle sezioni degli elementi strutturali è eseguita con il metodo degli Stati Limite. Le combinazioni di carico adottate sono esaustive relativamente agli scenari di carico più gravosi cui le opere saranno soggette.

8.2 Origine e caratteristiche dei codici di calcolo

ANALISI STRUTTURALE

Nome del Software: SCAT – Analisi Strutture Scatolari – Versione 14.0

Produttore Aztec Informatica srl, Casali del Manco - loc. Casole Bruzio (CS)

Licenza concessa a VIA INGEGNERIA s.r.l. – Licenza N° AIU4132SQ

Nome del Software: MAX – Analisi e Calcolo Muri di Sostegno – Versione 15.0

Produttore Aztec Informatica srl, Casali del Manco - loc. Casole Bruzio (CS)

Licenza concessa a VIA INGEGNERIA s.r.l. - Licenza N° AIU4132SQ

8.3 Affidabilità dei codici di calcolo

Un attento esame preliminare della documentazione a corredo del software ha consentito di valutarne l'affidabilità. La documentazione fornita dai produttori del software contiene esaurienti descrizioni delle basi teoriche e degli algoritmi impiegati con l'individuazione dei campi d'impiego.

Adeguamento al tipo B dal km 12+000 al km 18+000 (ex SS125 "Orientale Sarda" - Connessione tra la SS554 e la nuova SS554)

CA352

Relazione tecnica e di calcolo ST01 - SOTTOVIA Pr. 5+460,00

8.4 Modalità di presentazione dei risultati

Le relazioni di calcolo strutturale presentano i dati di calcolo tale da garantirne la leggibilità, la corretta interpretazione e la riproducibilità. Le relazioni di calcolo illustrano in modo esaustivo i dati in ingresso ed i risultati delle analisi in forma tabellare.

8.5 Informazioni generali sull'elaborazione

Il software consente di visualizzare e controllare, sia in forma grafica che tabellare, i dati del modello strutturale, in modo da avere una visione consapevole del comportamento corretto del modello strutturale.

8.6 Giudizio motivato di accettabilità dei risultati

I risultati delle elaborazioni sono stati sottoposti a controlli dal sottoscritto utente del software. Tale valutazione ha compreso il confronto con i risultati di semplici calcoli, eseguiti con metodi tradizionali. Inoltre sulla base di considerazioni riguardanti gli stati tensionali e deformativi determinati, si è valutata la validità delle scelte operate in sede di schematizzazione e di modellazione della struttura e delle azioni.

In base a quanto sopra, il Progettista delle Strutture asserisce che l'elaborazione è corretta ed idonea al caso specifico, pertanto i risultati di calcolo sono da ritenersi validi ed accettabili.

Adeguamento al tipo B dal km 12+000 al km 18+000 (ex SS125 "Orientale Sarda" - Connessione tra la SS554 e la nuova SS554)

CA352

Relazione tecnica e di calcolo ST01 - SOTTOVIA Pr. 5+460,00

9 ALLEGATI

9.1 Scatolare

9.1.1 Report di calcolo Scatolare

n.b. per le verifiche a taglio si faccia riferimento al paragrafo 6.3.2.2

Geometria scatolare

Descrizione:	Scatolare semplice	
Altezza esterna	6.70	[m]
Larghezza esterna	9.60	[m]
Lunghezza mensola di fondazione sinistra	0.00	[m]
Lunghezza mensola di fondazione destra	0.00	[m]
Spessore piedritto sinistro	0.80	[m]
Spessore piedritto destro	0.80	[m]
Spessore fondazione	0.90	[m]
Spessore traverso	0.80	[m]

Caratteristiche strati terreno

Strato di ricoprimento		
Descrizione	Terreno di ricoprimento	
Spessore dello strato	1.50	[m]
Peso di volume	19.0000	[kN/mc]
Peso di volume saturo	19.0000	[kN/mc]
Angolo di attrito	35.00	[°]
Coesione	0.000	[N/mmq]
Strato di rinfianco		
Descrizione	Terreno di rinfianco	
Peso di volume	19.0000	[kN/mc]
Peso di volume saturo	19.0000	[kN/mc]
Angolo di attrito	35.00	[°]
Angolo di attrito terreno struttura	20.00	[°]
Coesione	0.000	[N/mmq]
Costante di Winkler	0.012	[N/mmq/cm]
Strato di base		
Descrizione	Terreno di base	
Peso di volume	17.3000	[kN/mc]
Peso di volume saturo	17.3000	[kN/mc]
Angolo di attrito	29.00	[°]
Angolo di attrito terreno struttura	29.00	[°]
Coesione	0.000	[N/mmq]
Costante di Winkler	0.017	[N/mmq/cm]
Tensione limite	0.200	[N/mmq]

Caratteristiche materiali utilizzati

Materiale calcestruzzo		
R _{ck} calcestruzzo	40.000	[N/mmq]
Peso specifico calcestruzzo	25.0000	[kN/mc]
Modulo elastico E	33346.000	[N/mmq]
Tensione di snervamento acciaio	450.000	[N/mmq]
Coeff. omogeneizzazione cls teso/compresso (n')	0.50	
Coeff. omogeneizzazione acciaio/cls (n)	15.00	
Coefficiente dilatazione termica	0.0000120	

Condizioni di carico

Adeguamento al tipo B dal km 12+000 al km 18+000 (ex SS125 "Orientale Sarda" -Connessione tra la SS554 e la nuova SS554)

CA352

Relazione tecnica e di calcolo ST01 - SOTTOVIA Pr. 5+460.00

Convenzioni adottate
Origine in corrispondenza dello spigolo inferiore sinistro della struttura
Carichi verticali positivi se diretti verso il basso
Carichi orizzontali positivi se diretti verso destra
Coppie concentrate positive se antiorarie
Ascisse X (espresse in m) positive verso destra
Ordinate Y (espresse in m) positive verso l'alto
Carichi concentrati espressi in kNm
Coppie concentrate espressi in kNm
Carichi distribuiti espressi in kNm

Simbologia adottata e unità di misura

Simbologia adottata e unita di misura

Forze concentrate

X ascissa del punto di applicazione dei carichi verticali concentrati
Y ordinata del punto di applicazione dei carichi orizzontali concentrati
Fy componente Y del carico concentrato
M momento
Forze distribuite
Yi, Yr ascisse del punto iniziale e finale per carichi distribuiti verticali
Yi, Yi ordinate del punto iniziale e finale per carichi distribuiti orizzontali
Vai componente normale del carico distribuito nel punto iniziale
Vit componente normale del carico distribuito nel punto finale
Vit componente tangenziale del carico distribuito nel punto finale
Die variazione termica lembo esterno espressa in gradi centigradi
Die variazione termica lembo interno espressa in gradi centigradi

Condizione di carico n°1 (Peso Proprio)

Condizione di carico n°2 (Spinta terreno sinistra)

Condizione di carico n°3 (Spinta terreno destra)

Condizione di carico n°4 (Sisma da sinistra)

Condizione di carico n°5 (Sisma da destra)

Condizione	di carico n° 7	(Condizione 14	(VT Qconc))				
Distr	Traverso	X _i = 3.30	$X_{f} = 6.30$	$V_{ni} = 60.00$	$V_{nf} = 60.00$	$V_{ti} = 0.00$	$V_{tf} =$
0.00							
Distr	Traverso	$X_i = 2.10$	$X_{f} = 3.30$	$V_{ni} = 30.00$	$V_{nf} = 30.00$	$V_{ti} = 0.00$	$V_{tf} =$
0.00							
Distr	Traverso	$X_i = 6.30$	$X_{f} = 7.50$	$V_{ni} = 30.00$	$V_{nf} = 30.00$	$V_{ti} = 0.00$	$V_{tf} =$
0.00							
Condizione	di carico n°8	(Condizione 12	VT (qdistr))				
Distr	Traverso	$X_i = 0.00$	$X_{f} = 9.60$	$V_{ni} = 9.00$	$V_{nf} = 9.00$	$V_{ti} = 0.00$	$V_{tf} =$
0.00							
Condizione	di carico n°9	(spinta a tergo	<u>)</u>				
Distr	Pied_S	$Y_i = 0.00$	$Y_{f} = 6.70$	$V_{ni} = 8.60$	$V_{nf} = 8.60$	$V_{ti} = 0.00$	$V_{tf} =$
0.00							
Distr	Pied_D	$Y_i = 0.00$	$Y_f = 6.70$	$V_{ni} = -8.50$	$V_{nf} = -8.50$	$V_{ti} = 0.00$	$V_{\text{tf}} =$
0.00							

Impostazioni di progetto

Verifica materiali:

Stato Limite Ultimo

Coefficiente di sicurezza calcestruzzo γ_c	1.50
Fattore riduzione da resistenza cubica a cilindrica	0.83
Fattore di riduzione per carichi di lungo periodo	0.85
Coefficiente di sicurezza acciaio	1.15
Coefficiente di sicurezza per la sezione	1.00

Stato Limite di Esercizio

Criteri di scelta per verifiche tensioni di esercizio:	
Ambiente moderatamente aggressivo	
Limite tensioni di compressione nel calcestruzzo (comb. rare)	0.60
Limite tensioni di compressione nel calcestruzzo (comb. quasi perm.)	0.45
Limite tensioni di trazione nell'acciaio (comb. rare)	0.80

Criteri verifiche a fessurazione:
Armatura poco sensibile
Apertura limite fessure espresse in [mm]

Apertura limite fessure w1=0.20 w2=0.30 w3=0.40

fck

Adeguamento al tipo B dal km 12+000 al km 18+000 (ex SS125 "Orientale Sarda" -Connessione tra la SS554 e la nuova SS554)

CA352

Relazione tecnica e di calcolo ST01 - SOTTOVIA Pr. 5+460,00

<u>Verifiche secondo</u>:
Norme Tecniche 2018 - Approccio 1

Copriferro sezioni 7.80 [cm]

Descrizione combinazioni di carico

Simbologia adottata

Coefficiente di partecipazione della condizione Coefficiente di combinazione della condizione Coefficiente totale di partecipazione della condizione

Norme Tecniche 2018

Simbolog	ia adottata
γ_{Glsfav}	Coefficiente parziale sfavorevole sulle azioni permanenti
γ_{Glfav}	Coefficiente parziale favorevole sulle azioni permanenti
YGZsfav	Coefficiente parziale sfavorevole sulle azioni permanenti non struttural:
γ_{G2fav}	Coefficiente parziale favorevole sulle azioni permanenti non strutturali
γ₀	Coefficiente parziale sulle azioni variabili
γ _{tanφ} ,	Coefficiente parziale di riduzione dell'angolo di attrito drenato
γ.,	Coefficiente parziale di riduzione della coesione drenata
γ _{cu}	Coefficiente parziale di riduzione della coesione non drenata
$\gamma_{\rm qu}$	Coefficiente parziale di riduzione del carico ultimo

Coefficienti parziali per le azioni o per l'effetto delle azioni:

Coefficienti di partecipazione combinazioni statiche

Coefficienti parziali per le azi	one o por r orrocco dor			
Carichi	Effetto		A1	A2
Permanenti	Favorevole	$\gamma_{\texttt{Glfav}}$	1.00	1.00
Permanenti	Sfavorevole	$\gamma_{ t Glsfav}$	1.30	1.00
Permanenti non strutturali	Favorevole	γ_{G2fav}	0.80	0.80
Permanenti non strutturali	Sfavorevole	γ_{G2sfav}	1.50	1.30
Variabili	Favorevole	$\gamma_{ t Qifav}$	0.00	0.00
Variabili	Sfavorevole	$\gamma_{ t Qisfav}$	1.50	1.30
Variabili da traffico	Favorevole	$\gamma_{ t Qfav}$	0.00	0.00
Variabili da traffico	Sfavorevole	$\gamma_{ t Qsfav}$	1.35	1.15
Termici	Favorevole	$\gamma_{ exttt{sfav}}$	0.00	0.00
Termici	Sfavorevole	γ_{Esfav}	1.20	1.20
Coefficienti parziali per i para	ametri geotecnici del te	rreno:		
Parametri			M1	M2
Tangente dell'angolo di attrito		$\gamma_{ an\phi'}$	1.00	1.25
Coesione efficace		γ.,	1.00	1.25
Resistenza non drenata		γ_{cu}	1.00	1.40
Resistenza a compressione uniass	siale	$\gamma_{ ext{qu}}$	1.00	1.60
			1.00	1.00
Peso dell'unità di volume Coefficienti di partecipazione c		γ _γ	1.00	1.00
Peso dell'unità di volume			1.00 A1	A2
Peso dell'unità di volume Coefficienti di partecipazione c Coefficienti parziali per le azi	oni o per l'effetto del			
Peso dell'unità di volume Coefficienti di partecipazione c Coefficienti parziali per le azi Carichi	oni o per l'effetto del Effetto	le azioni:	A1	A2
Peso dell'unità di volume Coefficienti di partecipazione c Coefficienti parziali per le azi Carichi Permanenti	oni o per l'effetto del Effetto Favorevole	le azioni: γ _{Glfav}	<i>A1</i> 1.00	A2 1.00
Peso dell'unità di volume Coefficienti di partecipazione c Coefficienti parziali per le azi Carichi Permanenti Permanenti	oni o per l'effetto del Effetto Favorevole Sfavorevole	le azioni: γ _{Glfav} γ _{Glsfav}	A1 1.00 1.00	A2 1.00 1.00
Peso dell'unità di volume Coefficienti di partecipazione c Coefficienti parziali per le azi Carichi Permanenti Permanenti Permanenti	coni o per l'effetto del Effetto Favorevole Sfavorevole Favorevole	le azioni: γ _{Glfav} γ _{Glsfav} γ _{G2fav}	A1 1.00 1.00 0.00	A2 1.00 1.00 0.00
Peso dell'unità di volume Coefficienti di partecipazione c Coefficienti parziali per le azi Carichi Permanenti Permanenti Permanenti Permanenti	coni o per l'effetto del Effetto Favorevole Sfavorevole Favorevole Sfavorevole	le azioni: YGlfav YGlsfav YG2fav YG2sfav	A1 1.00 1.00 0.00 1.00	A2 1.00 1.00 0.00 1.00
Peso dell'unità di volume Coefficienti di partecipazione c Coefficienti parziali per le azi Carichi Permanenti Permanenti Permanenti Permanenti Variabili	coni o per l'effetto del Effetto Favorevole Sfavorevole Favorevole Sfavorevole Favorevole	le azioni: YGlfav YGlsfav YG2fav YG2sfav YQlfav	A1 1.00 1.00 0.00 1.00 0.00	A2 1.00 1.00 0.00 1.00
Peso dell'unità di volume Coefficienti di partecipazione c Coefficienti parziali per le azi Carichi Permanenti Permanenti Permanenti Permanenti Variabili Variabili da traffico	coni o per l'effetto del Effetto Favorevole Sfavorevole Favorevole Favorevole Favorevole Sfavorevole	le azioni: YGlfav YGlsfav YG2fav YG2sfav YQifav YQisfav	A1 1.00 1.00 0.00 1.00 0.00	A2 1.00 1.00 0.00 1.00 0.00
Peso dell'unità di volume Coefficienti di partecipazione c Coefficienti parziali per le azi Carichi Permanenti Permanenti Permanenti Permanenti Variabili Variabili	coni o per l'effetto del Effetto Favorevole Sfavorevole Favorevole Favorevole Sfavorevole Favorevole Favorevole Favorevole	le azioni: YGlfav YGlsfav YG2fav YG2sfav YG2sfav YQifav YQisfav YQisfav	A1 1.00 1.00 0.00 1.00 0.00 1.00 0.00	A2 1.00 1.00 0.00 1.00 0.00 1.00 0.00
Peso dell'unità di volume Coefficienti di partecipazione c Coefficienti parziali per le azi Carichi Permanenti Permanenti Permanenti Permanenti Variabili Variabili Variabili da traffico Variabili da traffico	coni o per l'effetto del Effetto Favorevole Sfavorevole Sfavorevole Favorevole Sfavorevole Favorevole Sfavorevole Favorevole Sfavorevole Sfavorevole	le azioni: YGlfav YGlsfav YG2fav YG2sfav Yoifav Yoisfav YOsfav YOfav	A1 1.00 1.00 0.00 1.00 0.00 1.00 0.00	A2 1.00 1.00 0.00 1.00 0.00 1.00 0.00
Peso dell'unità di volume Coefficienti di partecipazione co Coefficienti parziali per le azi Carichi Permanenti Permanenti Permanenti Permanenti Variabili Variabili Variabili da traffico Variabili da traffico Termici Termici	coni o per l'effetto del Effetto Favorevole Sfavorevole Sfavorevole Favorevole Sfavorevole Favorevole Favorevole Favorevole Sfavorevole Sfavorevole Sfavorevole Favorevole Sfavorevole Sfavorevole	le azioni: YGlfav YGlsfav YG2fav YG2sfav YOifav YOisfav YOsfav YGav YGsfav Ysfav Ysfav	A1 1.00 1.00 0.00 1.00 0.00 1.00 0.00 1.00 0.00	A2 1.00 1.00 0.00 1.00 0.00 1.00 0.00
Peso dell'unità di volume Coefficienti di partecipazione con Coefficienti parziali per le azi Carichi Permanenti Permanenti Permanenti Variabili Variabili da traffico Variabili da traffico Termici	coni o per l'effetto del Effetto Favorevole Sfavorevole Sfavorevole Favorevole Sfavorevole Favorevole Favorevole Favorevole Sfavorevole Sfavorevole Sfavorevole Favorevole Sfavorevole Sfavorevole	le azioni: YGlfav YGlsfav YG2fav YG2sfav YOifav YOisfav YOsfav YGav YGsfav Ysfav Ysfav	A1 1.00 1.00 0.00 1.00 0.00 1.00 0.00 1.00 0.00	A2 1.00 1.00 0.00 1.00 0.00 1.00 0.00
Peso dell'unità di volume Coefficienti di partecipazione con Coefficienti parziali per le azi Carichi Permanenti Permanenti Permanenti Variabili Variabili Variabili da traffico Variabili da traffico Termici Termici Coefficienti parziali per i para Parametri	coni o per l'effetto del Effetto Favorevole Sfavorevole Sfavorevole Favorevole Sfavorevole Favorevole Favorevole Favorevole Sfavorevole Sfavorevole Sfavorevole Favorevole Sfavorevole Sfavorevole	le azioni: YGlfav YGlsfav YG2fav YG2sfav YOifav YOisfav YOsfav YGav YGsfav Ysfav Ysfav	A1 1.00 1.00 0.00 1.00 0.00 1.00 0.00 1.00 0.00	A2 1.00 1.00 0.00 1.00 0.00 1.00 0.00 1.00
Peso dell'unità di volume Coefficienti di partecipazione con Coefficienti parziali per le azi Carichi Permanenti Permanenti Permanenti Variabili Variabili Variabili da traffico Variabili da traffico Termici Termici Coefficienti parziali per i para Parametri Tangente dell'angolo di attrito	coni o per l'effetto del Effetto Favorevole Sfavorevole Sfavorevole Favorevole Sfavorevole Favorevole Favorevole Favorevole Sfavorevole Sfavorevole Sfavorevole Favorevole Sfavorevole Sfavorevole	le azioni: YGlfav YGlsfav YG2fav YG2sfav YQifav YQisfav YQfav YQsfav Ysfav Ysfav Ysfav	A1 1.00 1.00 0.00 1.00 0.00 1.00 0.00 1.00 0.00	A2 1.00 1.00 0.00 1.00 0.00 1.00 0.00 1.00
Peso dell'unità di volume Coefficienti di partecipazione c Coefficienti parziali per le azi Carichi Permanenti Permanenti Permanenti Permanenti Variabili Variabili Variabili da traffico Variabili da traffico Termici Termici Coefficienti parziali per i para	coni o per l'effetto del Effetto Favorevole Sfavorevole Sfavorevole Favorevole Sfavorevole Favorevole Favorevole Favorevole Sfavorevole Sfavorevole Sfavorevole Favorevole Sfavorevole Sfavorevole	le azioni: YGlfav YGlsfav YG2fav YG2sfav YQifav YQisfav YQisfav YQsfav Ysfav Ysfav Ysfav Ysfav Ysfav	A1 1.00 1.00 0.00 1.00 0.00 1.00 0.00 1.00 0.00 1.00	A2 1.00 1.00 0.00 1.00 0.00 1.00 0.00 1.00 0.00
Peso dell'unità di volume Coefficienti di partecipazione con Coefficienti parziali per le azi Carichi Permanenti Permanenti Permanenti Permanenti Variabili Variabili Variabili da traffico Variabili da traffico Termici Termici Coefficienti parziali per i para Parametri Tangente dell'angolo di attrito Coesione efficace	coni o per l'effetto del Effetto Favorevole Sfavorevole Favorevole Favorevole Sfavorevole Favorevole Favorevole Favorevole Sfavorevole Favorevole Favorevole Favorevole Favorevole Sfavorevole	le azioni: YGlfav YGlsfav YG2fav YG2sfav YQifav YQisfav YQisfav YGsfav Ysfav Ysfav Ysfav Ytano	A1 1.00 1.00 0.00 1.00 0.00 1.00 0.00 1.00 0.00 1.00	A2 1.00 1.00 0.00 1.00 0.00 1.00 0.00 1.00 0.00

Adeguamento al tipo B dal km 12+000 al km 18+000 (ex SS125 "Orientale Sarda" - Connessione tra la SS554 e la nuova SS554)

CA352

Relazione tecnica e di calcolo ST01 - SOTTOVIA Pr. 5+460,00

Combinazione n° 1 SLU (Caso A1-M1)				
Peso Proprio	Effetto Sfavorevole	γ 1.30	Ψ 1.00	c 1.30
Spinta terreno sinistra	Sfavorevole	1.30	1.00	1.30
Spinta terreno destra	Sfavorevole	1.30	1.00	1.30
Combinazione n° 2 SLU (Caso A2-M2)				
Peso Proprio	Effetto Sfavorevole	γ 1.00	Ψ 1.00	c 1.00
Spinta terreno sinistra	Sfavorevole	1.00	1.00	1.00
Spinta terreno destra	Sfavorevole	1.00	1.00	1.00
Combinazione n° 3 SLU (Caso A1-M1)				
Peso Proprio	Effetto Sfavorevole	γ 1.30	Ψ 1.00	c 1.30
Spinta terreno sinistra	Sfavorevole	1.30	1.00	1.30
Spinta terreno destra	Sfavorevole	1.30	1.00	1.30
Condizione 14 (VT Qconc) Condizione 12 VT (qdistr)	Sfavorevole Sfavorevole	1.35	1.00	0.54
spinta a tergo	Sfavorevole	1.50	0.40	0.60
Combinazione n° 4 SLU (Caso A2-M2)				
Peso Proprio	Effetto Sfavorevole	γ 1.00	Ψ 1.00	C 1.00
Spinta terreno sinistra	Sfavorevole	1.00	1.00	1.00
Spinta terreno destra	Sfavorevole	1.00	1.00	1.00
Condizione 14 (VT Qconc) Condizione 12 VT (qdistr)	Sfavorevole Sfavorevole	1.15 1.15	1.00	1.15
spinta a tergo	Sfavorevole	1.30	0.40	0.52
Combinazione n° 5 SLU (Caso A1-M1)				
December 2	Effetto	γ 1.30	Ψ	C
Peso Proprio Spinta terreno sinistra	Sfavorevole Sfavorevole	1.30	1.00	1.30
Spinta terreno destra	Sfavorevole	1.30	1.00	1.30
Condizione 14 (VT Qconc) Condizione 12 VT (qdistr)	Sfavorevole Sfavorevole	1.35 1.35	0.75 1.00	1.01
spinta a tergo	Sfavorevole	1.50	0.40	0.60
Combinazione n° 6 SLU (Caso A2-M2)				
Dana Busania	Effetto	γ	Ψ	C
Peso Proprio Spinta terreno sinistra	Sfavorevole Sfavorevole	1.00	1.00	1.00
Spinta terreno destra	Sfavorevole	1.00	1.00	1.00
Condizione 14 (VT Qconc) Condizione 12 VT (qdistr)	Sfavorevole Sfavorevole	1.15 1.15	0.75 1.00	0.86 1.15
spinta a tergo	Sfavorevole	1.30	0.40	0.52
Combinazione n° 7 SLU (Caso A1-M1)				
December 2	Effetto	γ	Ψ	C
Peso Proprio Spinta terreno sinistra	Sfavorevole Sfavorevole	1.30	1.00	1.30
Spinta terreno destra	Sfavorevole	1.30	1.00	1.30
Condizione 14 (VT Qconc)	Sfavorevole Sfavorevole	1.35 1.35	0.75 0.40	1.01
Condizione 12 VT (qdistr) spinta a tergo	Sfavorevole	1.50	1.00	1.50
Combinazione n° 8 SLU (Caso A2-M2)				
Paga Proprie	Effetto	γ	Ψ	C
Peso Proprio Spinta terreno sinistra	Sfavorevole Sfavorevole	1.00	1.00	1.00
Spinta terreno destra	Sfavorevole	1.00	1.00	1.00
Condizione 14 (VT Qconc) Condizione 12 VT (qdistr)	Sfavorevole Sfavorevole	1.15 1.15	0.75 0.40	0.86
spinta a tergo	Sfavorevole	1.30	1.00	1.30
Combinazione n° 9 SLU (Caso A1-M1)				
Pasa Propria	Effetto Sfavorevole	γ 1.00	Ψ 1 00	c 1.00
Peso Proprio	Sfavorevole	1.00	1.00	1.00

Adeguamento al tipo B dal km 12+000 al km 18+000 (ex SS125 "Orientale Sarda" - Connessione tra la SS554 e la nuova SS554)

CA352

Relazione tecnica e di calcolo ST01 - SOTTOVIA Pr. 5+460,00

				_
0-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1	0.61	1 00	1 00	1 00
Spinta terreno sinistra	Sfavorevole	1.00	1.00	1.00
Spinta terreno destra	Sfavorevole	1.00	1.00	1.00
Sisma da sinistra	Sfavorevole	1.00	1.00	1.00
Combinazione n° 10 SLU (Caso A1-M1) - Sisma Vert. negativo			
	Effetto		Ψ	С
		γ		
Peso Proprio	Sfavorevole	1.00	1.00	1.00
Spinta terreno sinistra	Sfavorevole	1.00	1.00	1.00
Spinta terreno destra	Sfavorevole	1.00	1.00	1.00
Sisma da sinistra	Sfavorevole	1.00	1.00	1.00
Combinazione n° 11 SLU (Caso A2-M2	Ciama Wart pagiting			
COMBINAZIONE N 11 SLO (Caso AZ=MZ	·		177	
	Effetto	γ	Ψ	С
Peso Proprio	Sfavorevole	1.00	1.00	1.00
Spinta terreno sinistra	Sfavorevole	1.00	1.00	1.00
Spinta terreno destra	Sfavorevole	1.00	1.00	1.00
Sisma da sinistra	Sfavorevole	1.00	1.00	1.00
Combinazione n° 12 SLU (Caso A2-M2) - Siema Wert nogotimo			
COMPTHAZIONE N 12 SEU (CASO AZ-MZ			VT/	_
	Effetto	γ	Ψ	С
Peso Proprio	Sfavorevole	1.00	1.00	1.00
Spinta terreno sinistra	Sfavorevole	1.00	1.00	1.00
Spinta terreno destra	Sfavorevole	1.00	1.00	1.00
Sisma da sinistra	Sfavorevole	1.00	1.00	1.00
oloma da olimbolia	DIAVOICVOIC	1.00	1.00	1.00
0.40				
Combinazione n° 13 SLU (Caso A1-M1) - Sisma Vert. negativo			
	Effetto	γ	Ψ	С
Peso Proprio	Sfavorevole	1.00	1.00	1.00
Spinta terreno sinistra	Sfavorevole	1.00	1.00	1.00
Spinta terreno destra	Sfavorevole	1.00	1.00	1.00
Sisma da destra	Sfavorevole	1.00	1.00	1.00
_				
Combinazione n° 14 SLU (Caso A1-M1)) - Sisma Vert. positivo			
	Effetto	γ	Ψ	С
Peso Proprio	Sfavorevole	1.00	1.00	1.00
Spinta terreno sinistra	Sfavorevole	1.00	1.00	1.00
Spinta terreno destra	Sfavorevole	1.00	1.00	1.00
Spinta terreno destra	Stavorevore	1.00		
	0.5	1 00		
Sisma da destra	Sfavorevole	1.00	1.00	1.00
Sisma da destra	Sfavorevole	1.00		
		1.00		
Sisma da destra Combinazione n° 15 SLU (Caso A2-M2		1.00		
Combinazione n° 15 SLU (Caso A2-M2) - Sisma Vert. positivo Effetto	γ	Ψ	1.00 C
Combinazione n° 15 SLU (Caso A2-M2) Peso Proprio) - Sisma Vert. positivo Effetto Sfavorevole	γ 1.00	1.00 Ψ 1.00	1.00 c 1.00
Combinazione n° 15 SLU (Caso A2-M2 Peso Proprio Spinta terreno sinistra) - Sisma Vert. positivo Effetto Sfavorevole Sfavorevole	γ 1.00 1.00	Ψ 1.00 1.00	1.00 c 1.00 1.00
Combinazione n° 15 SLU (Caso A2-M2 Peso Proprio Spinta terreno sinistra Spinta terreno destra	- Sisma Vert. positivo Effetto Sfavorevole Sfavorevole Sfavorevole	Υ 1.00 1.00 1.00	1.00 Ψ 1.00 1.00 1.00	1.00 c 1.00 1.00 1.00
Combinazione n° 15 SLU (Caso A2-M2 Peso Proprio Spinta terreno sinistra) - Sisma Vert. positivo Effetto Sfavorevole Sfavorevole	γ 1.00 1.00	Ψ 1.00 1.00	1.00 c 1.00 1.00
Combinazione n° 15 SLU (Caso A2-M2 Peso Proprio Spinta terreno sinistra Spinta terreno destra	- Sisma Vert. positivo Effetto Sfavorevole Sfavorevole Sfavorevole	Υ 1.00 1.00 1.00	1.00 Ψ 1.00 1.00 1.00	1.00 c 1.00 1.00 1.00
Combinazione n° 15 SLU (Caso A2-M2 Peso Proprio Spinta terreno sinistra Spinta terreno destra Sisma da destra	- Sisma Vert. positivo Effetto Sfavorevole Sfavorevole Sfavorevole Sfavorevole	Υ 1.00 1.00 1.00	1.00 Ψ 1.00 1.00 1.00	1.00 c 1.00 1.00 1.00
Combinazione n° 15 SLU (Caso A2-M2 Peso Proprio Spinta terreno sinistra Spinta terreno destra	- Sisma Vert. positivo Effetto Sfavorevole Sfavorevole Sfavorevole Sfavorevole - Sisma Vert. negativo	Υ 1.00 1.00 1.00	1.00 Ψ 1.00 1.00 1.00 1.00	c 1.00 1.00 1.00 1.00
Combinazione n° 15 SLU (Caso A2-M2 Peso Proprio Spinta terreno sinistra Spinta terreno destra Sisma da destra	- Sisma Vert. positivo Effetto Sfavorevole Sfavorevole Sfavorevole Sfavorevole	Υ 1.00 1.00 1.00	1.00 Ψ 1.00 1.00 1.00	1.00 c 1.00 1.00 1.00
Combinazione n° 15 SLU (Caso A2-M2 Peso Proprio Spinta terreno sinistra Spinta terreno destra Sisma da destra	- Sisma Vert. positivo Effetto Sfavorevole Sfavorevole Sfavorevole Sfavorevole - Sisma Vert. negativo	γ 1.00 1.00 1.00 1.00	1.00 Ψ 1.00 1.00 1.00 1.00	c 1.00 1.00 1.00 1.00
Combinazione n° 15 SLU (Caso A2-M2 Peso Proprio Spinta terreno sinistra Spinta terreno destra Sisma da destra Combinazione n° 16 SLU (Caso A2-M2 Peso Proprio	- Sisma Vert. positivo Effetto Sfavorevole Sfavorevole Sfavorevole Sfavorevole - Sisma Vert. negativo Effetto Sfavorevole	Υ 1.00 1.00 1.00 1.00 1.00	Y 1.00 1.00 1.00 1.00 1.00	c 1.00 1.00 1.00 1.00
Combinazione n° 15 SLU (Caso A2-M2 Peso Proprio Spinta terreno sinistra Spinta terreno destra Sisma da destra Combinazione n° 16 SLU (Caso A2-M2 Peso Proprio Spinta terreno sinistra	- Sisma Vert. positivo Effetto Sfavorevole Sfavorevole Sfavorevole Sfavorevole - Sisma Vert. negativo Effetto Sfavorevole Sfavorevole Sfavorevole	Y 1.00 1.00 1.00 1.00 1.00	Y 1.00 1.00 1.00 1.00 1.00	c 1.00 1.00 1.00 1.00 1.00
Combinazione n° 15 SLU (Caso A2-M2 Peso Proprio Spinta terreno sinistra Spinta terreno destra Sisma da destra Combinazione n° 16 SLU (Caso A2-M2 Peso Proprio Spinta terreno sinistra Spinta terreno destra	Effetto Sfavorevole Sfavorevole Sfavorevole Sfavorevole Sfavorevole - Sisma Vert. negativo Effetto Sfavorevole Sfavorevole Sfavorevole Sfavorevole Sfavorevole	γ 1.00 1.00 1.00 1.00 1.00 1.00 1.00	Y 1.00 1.00 1.00 1.00 1.00 1.00	c 1.00 1.00 1.00 1.00 1.00 1.00 1.00
Combinazione n° 15 SLU (Caso A2-M2 Peso Proprio Spinta terreno sinistra Spinta terreno destra Sisma da destra Combinazione n° 16 SLU (Caso A2-M2 Peso Proprio Spinta terreno sinistra	- Sisma Vert. positivo Effetto Sfavorevole Sfavorevole Sfavorevole Sfavorevole - Sisma Vert. negativo Effetto Sfavorevole Sfavorevole Sfavorevole	Y 1.00 1.00 1.00 1.00 1.00	Y 1.00 1.00 1.00 1.00 1.00	c 1.00 1.00 1.00 1.00 1.00
Combinazione n° 15 SLU (Caso A2-M2 Peso Proprio Spinta terreno sinistra Spinta terreno destra Sisma da destra Combinazione n° 16 SLU (Caso A2-M2 Peso Proprio Spinta terreno sinistra Spinta terreno destra	Effetto Sfavorevole Sfavorevole Sfavorevole Sfavorevole Sfavorevole - Sisma Vert. negativo Effetto Sfavorevole Sfavorevole Sfavorevole Sfavorevole Sfavorevole	γ 1.00 1.00 1.00 1.00 1.00 1.00 1.00	Y 1.00 1.00 1.00 1.00 1.00 1.00	c 1.00 1.00 1.00 1.00 1.00 1.00 1.00
Combinazione n° 15 SLU (Caso A2-M2 Peso Proprio Spinta terreno sinistra Spinta terreno destra Sisma da destra Combinazione n° 16 SLU (Caso A2-M2 Peso Proprio Spinta terreno sinistra Spinta terreno destra Sisma da destra	- Sisma Vert. positivo Effetto Sfavorevole Sfavorevole Sfavorevole Sfavorevole - Sisma Vert. negativo Effetto Sfavorevole Sfavorevole Sfavorevole Sfavorevole Sfavorevole Sfavorevole	γ 1.00 1.00 1.00 1.00 1.00 1.00 1.00	Y 1.00 1.00 1.00 1.00 1.00 1.00	c 1.00 1.00 1.00 1.00 1.00 1.00 1.00
Combinazione n° 15 SLU (Caso A2-M2 Peso Proprio Spinta terreno sinistra Spinta terreno destra Sisma da destra Combinazione n° 16 SLU (Caso A2-M2 Peso Proprio Spinta terreno sinistra Spinta terreno destra	Effetto Sfavorevole Sfavorevole Sfavorevole Sfavorevole Sfavorevole - Sisma Vert. negativo Effetto Sfavorevole Sfavorevole Sfavorevole Sfavorevole Sfavorevole Sfavorevole Sfavorevole	γ 1.00 1.00 1.00 1.00 1.00 1.00 1.00	Y 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.0	c 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.0
Combinazione n° 15 SLU (Caso A2-M2 Peso Proprio Spinta terreno sinistra Spinta terreno destra Sisma da destra Combinazione n° 16 SLU (Caso A2-M2 Peso Proprio Spinta terreno sinistra Spinta terreno destra Sisma da destra	- Sisma Vert. positivo Effetto Sfavorevole Sfavorevole Sfavorevole Sfavorevole - Sisma Vert. negativo Effetto Sfavorevole Sfavorevole Sfavorevole Sfavorevole Sfavorevole Sfavorevole	γ 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.0	Ψ 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.0	c 1.00 1.00 1.00 1.00 1.00 1.00 1.00
Combinazione n° 15 SLU (Caso A2-M2 Peso Proprio Spinta terreno sinistra Spinta terreno destra Sisma da destra Combinazione n° 16 SLU (Caso A2-M2 Peso Proprio Spinta terreno sinistra Spinta terreno destra Sisma da destra	Effetto Sfavorevole Sfavorevole Sfavorevole Sfavorevole Sfavorevole - Sisma Vert. negativo Effetto Sfavorevole Sfavorevole Sfavorevole Sfavorevole Sfavorevole Sfavorevole Sfavorevole	γ 1.00 1.00 1.00 1.00 1.00 1.00 1.00	Y 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.0	c 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.0
Combinazione n° 15 SLU (Caso A2-M2 Peso Proprio Spinta terreno sinistra Spinta terreno destra Sisma da destra Combinazione n° 16 SLU (Caso A2-M2 Peso Proprio Spinta terreno sinistra Spinta terreno destra Sisma da destra Combinazione n° 17 SLE (Quasi Perma	Effetto Sfavorevole Sfavorevole Sfavorevole Sfavorevole Sfavorevole - Sisma Vert. negativo Effetto Sfavorevole	γ 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.0	Ψ 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.0	c 1.00 1.00 1.00 1.00 1.00 1.00 1.00 c 1.00 1.00
Combinazione n° 15 SLU (Caso A2-M2 Peso Proprio Spinta terreno sinistra Spinta terreno destra Sisma da destra Combinazione n° 16 SLU (Caso A2-M2 Peso Proprio Spinta terreno sinistra Spinta terreno destra Sisma da destra Combinazione n° 17 SLE (Quasi Perma Peso Proprio Spinta terreno sinistra	Effetto Sfavorevole Sfavorevole Sfavorevole Sfavorevole Sfavorevole Sfavorevole Sfavorevole Sfavorevole Sfavorevole Sfavorevole Sfavorevole Sfavorevole Sfavorevole Sfavorevole Sfavorevole Sfavorevole Sfavorevole Sfavorevole Sfavorevole Sfavorevole Sfavorevole	γ 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.0	Y 1.00 1.00 1.00 1.00 1.00 1.00 Y 1.00 1.00	c 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.0
Combinazione n° 15 SLU (Caso A2-M2 Peso Proprio Spinta terreno sinistra Spinta terreno destra Sisma da destra Combinazione n° 16 SLU (Caso A2-M2 Peso Proprio Spinta terreno sinistra Spinta terreno destra Sisma da destra Combinazione n° 17 SLE (Quasi Perma	Effetto Sfavorevole Sfavorevole Sfavorevole Sfavorevole Sfavorevole - Sisma Vert. negativo Effetto Sfavorevole	γ 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.0	Y 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.0	c 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.0
Combinazione n° 15 SLU (Caso A2-M2 Peso Proprio Spinta terreno sinistra Spinta terreno destra Sisma da destra Combinazione n° 16 SLU (Caso A2-M2 Peso Proprio Spinta terreno sinistra Spinta terreno destra Sisma da destra Combinazione n° 17 SLE (Quasi Perma Peso Proprio Spinta terreno sinistra	Effetto Sfavorevole Sfavorevole Sfavorevole Sfavorevole Sfavorevole Sfavorevole Sfavorevole Sfavorevole Sfavorevole Sfavorevole Sfavorevole Sfavorevole Sfavorevole Sfavorevole Sfavorevole Sfavorevole Sfavorevole Sfavorevole Sfavorevole Sfavorevole Sfavorevole	γ 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.0	Y 1.00 1.00 1.00 1.00 1.00 1.00 Y 1.00 1.00	c 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.0
Combinazione n° 15 SLU (Caso A2-M2 Peso Proprio Spinta terreno sinistra Spinta terreno destra Sisma da destra Combinazione n° 16 SLU (Caso A2-M2 Peso Proprio Spinta terreno sinistra Spinta terreno destra Sisma da destra Combinazione n° 17 SLE (Quasi Perma Peso Proprio Spinta terreno sinistra Spinta terreno sinistra Spinta terreno destra	Effetto Sfavorevole Sfavorevole Sfavorevole Sfavorevole Sfavorevole Sfavorevole Sfavorevole Sfavorevole Sfavorevole Sfavorevole Sfavorevole Sfavorevole Sfavorevole Sfavorevole Sfavorevole Sfavorevole Sfavorevole Sfavorevole Sfavorevole Sfavorevole Sfavorevole	γ 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.0	Y 1.00 1.00 1.00 1.00 1.00 1.00 Y 1.00 1.00	c 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.0
Combinazione n° 15 SLU (Caso A2-M2 Peso Proprio Spinta terreno sinistra Spinta terreno destra Sisma da destra Combinazione n° 16 SLU (Caso A2-M2 Peso Proprio Spinta terreno sinistra Spinta terreno destra Sisma da destra Combinazione n° 17 SLE (Quasi Perma Peso Proprio Spinta terreno sinistra	Effetto Sfavorevole Sfavorevole Sfavorevole Sfavorevole Sfavorevole D - Sisma Vert. negativo Effetto Sfavorevole	Y 1.00 1.00 1.00 1.00 1.00 1.00 Y 1.00 1.00	Y 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.0	c 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.0
Combinazione n° 15 SLU (Caso A2-M2) Peso Proprio Spinta terreno sinistra Spinta terreno destra Sisma da destra Combinazione n° 16 SLU (Caso A2-M2) Peso Proprio Spinta terreno sinistra Spinta terreno destra Sisma da destra Combinazione n° 17 SLE (Quasi Perma Peso Proprio Spinta terreno sinistra Spinta terreno sinistra Combinazione n° 17 SLE (Quasi Perma Peso Proprio Spinta terreno destra Combinazione n° 18 SLE (Frequente)	Effetto Sisma Vert. positivo Effetto Sfavorevole Sfavorevole Sfavorevole - Sisma Vert. negativo Effetto Sfavorevole Sfavorevole Sfavorevole Sfavorevole Sfavorevole Sfavorevole Sfavorevole Sfavorevole Effetto Effetto Sfavorevole Sfavorevole Sfavorevole Sfavorevole Sfavorevole Sfavorevole Sfavorevole	γ 1.00 1.00 1.00 1.00 1.00 γ 1.00 1.00	Y 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.0	c 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.0
Combinazione n° 15 SLU (Caso A2-M2 Peso Proprio Spinta terreno sinistra Spinta terreno destra Sisma da destra Combinazione n° 16 SLU (Caso A2-M2 Peso Proprio Spinta terreno sinistra Spinta terreno destra Sisma da destra Combinazione n° 17 SLE (Quasi Perma Peso Proprio Spinta terreno sinistra Spinta terreno destra Combinazione n° 17 SLE (Quasi Perma Peso Proprio Spinta terreno destra Combinazione n° 18 SLE (Frequente) Peso Proprio	Effetto Sfavorevole Sfavorevole Sfavorevole Sfavorevole Sfavorevole Sfavorevole - Sisma Vert. negativo Effetto Sfavorevole	Y 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.0	Y 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.0	c 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.0
Combinazione n° 15 SLU (Caso A2-M2) Peso Proprio Spinta terreno sinistra Spinta terreno destra Sisma da destra Combinazione n° 16 SLU (Caso A2-M2) Peso Proprio Spinta terreno sinistra Spinta terreno destra Sisma da destra Combinazione n° 17 SLE (Quasi Perma Peso Proprio Spinta terreno sinistra Spinta terreno sinistra Combinazione n° 17 SLE (Quasi Perma Peso Proprio Spinta terreno destra Combinazione n° 18 SLE (Frequente)	Effetto Sisma Vert. positivo Effetto Sfavorevole Sfavorevole Sfavorevole - Sisma Vert. negativo Effetto Sfavorevole Sfavorevole Sfavorevole Sfavorevole Sfavorevole Sfavorevole Sfavorevole Sfavorevole Effetto Effetto Sfavorevole Sfavorevole Sfavorevole Sfavorevole Sfavorevole Sfavorevole Sfavorevole	γ 1.00 1.00 1.00 1.00 1.00 1.00 γ 1.00 1.00	Y 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.0	c 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.0
Combinazione n° 15 SLU (Caso A2-M2 Peso Proprio Spinta terreno sinistra Spinta terreno destra Sisma da destra Combinazione n° 16 SLU (Caso A2-M2 Peso Proprio Spinta terreno sinistra Spinta terreno destra Sisma da destra Combinazione n° 17 SLE (Quasi Perma Peso Proprio Spinta terreno sinistra Spinta terreno destra Combinazione n° 17 SLE (Quasi Perma Peso Proprio Spinta terreno destra Combinazione n° 18 SLE (Frequente) Peso Proprio	Effetto Sfavorevole Sfavorevole Sfavorevole Sfavorevole Sfavorevole Sfavorevole - Sisma Vert. negativo Effetto Sfavorevole	Y 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.0	Y 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.0	c 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.0
Combinazione n° 15 SLU (Caso A2-M2 Peso Proprio Spinta terreno sinistra Spinta terreno destra Sisma da destra Combinazione n° 16 SLU (Caso A2-M2 Peso Proprio Spinta terreno sinistra Spinta terreno destra Sisma da destra Combinazione n° 17 SLE (Quasi Perma Peso Proprio Spinta terreno sinistra Spinta terreno destra Combinazione n° 18 SLE (Frequente) Peso Proprio Spinta terreno sinistra Spinta terreno destra	Effetto Sfavorevole Sfavorevole Sfavorevole Sfavorevole Sfavorevole Sfavorevole - Sisma Vert. negativo Effetto Sfavorevole	γ 1.00 1.00 1.00 1.00 1.00 1.00 γ 1.00 1.00	Y 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.0	c 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.0
Combinazione n° 15 SLU (Caso A2-M2 Peso Proprio Spinta terreno sinistra Spinta terreno destra Sisma da destra Combinazione n° 16 SLU (Caso A2-M2 Peso Proprio Spinta terreno sinistra Spinta terreno destra Sisma da destra Combinazione n° 17 SLE (Quasi Perma Peso Proprio Spinta terreno sinistra Spinta terreno destra Combinazione n° 18 SLE (Frequente) Peso Proprio Spinta terreno sinistra Spinta terreno sinistra Spinta terreno destra	Effetto Sfavorevole Sfavorevole Sfavorevole Sfavorevole Sfavorevole Sfavorevole - Sisma Vert. negativo Effetto Sfavorevole	Y 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.0	Y 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.0	c 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.0
Combinazione n° 15 SLU (Caso A2-M2 Peso Proprio Spinta terreno sinistra Spinta terreno destra Sisma da destra Combinazione n° 16 SLU (Caso A2-M2 Peso Proprio Spinta terreno sinistra Spinta terreno destra Sisma da destra Combinazione n° 17 SLE (Quasi Perma Peso Proprio Spinta terreno sinistra Spinta terreno destra Combinazione n° 18 SLE (Frequente) Peso Proprio Spinta terreno sinistra Spinta terreno sinistra Spinta terreno destra	Effetto Sfavorevole Sfavorevole Sfavorevole Sfavorevole Sfavorevole Sfavorevole - Sisma Vert. negativo Effetto Sfavorevole	Y 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.0	Y 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.0	c 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.0
Combinazione n° 15 SLU (Caso A2-M2 Peso Proprio Spinta terreno sinistra Spinta terreno destra Sisma da destra Combinazione n° 16 SLU (Caso A2-M2 Peso Proprio Spinta terreno sinistra Spinta terreno destra Sisma da destra Combinazione n° 17 SLE (Quasi Perma Peso Proprio Spinta terreno sinistra Spinta terreno destra Combinazione n° 18 SLE (Frequente) Peso Proprio Spinta terreno sinistra Spinta terreno sinistra Spinta terreno destra Combinazione n° 18 SLE (Frequente) Peso Proprio Spinta terreno destra Condizione 14 (VT Qconc)	Effetto Sfavorevole Sfavorevole Sfavorevole Sfavorevole Sfavorevole Sfavorevole - Sisma Vert. negativo Effetto Sfavorevole	Y 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.0	Y 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.0	c 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.0
Combinazione n° 15 SLU (Caso A2-M2 Peso Proprio Spinta terreno sinistra Spinta terreno destra Sisma da destra Combinazione n° 16 SLU (Caso A2-M2 Peso Proprio Spinta terreno sinistra Spinta terreno destra Sisma da destra Combinazione n° 17 SLE (Quasi Perma Peso Proprio Spinta terreno sinistra Spinta terreno destra Combinazione n° 18 SLE (Frequente) Peso Proprio Spinta terreno sinistra Spinta terreno sinistra Spinta terreno destra	Effetto Sfavorevole Sfavorevole Sfavorevole Sfavorevole Sfavorevole Sfavorevole - Sisma Vert. negativo Effetto Sfavorevole	γ 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.0	1.00 Y 1.00 1.00 1.00 1.00 1.00 1.00 1.	c 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.0
Combinazione n° 15 SLU (Caso A2-M2 Peso Proprio Spinta terreno sinistra Spinta terreno destra Sisma da destra Combinazione n° 16 SLU (Caso A2-M2 Peso Proprio Spinta terreno sinistra Spinta terreno destra Sisma da destra Combinazione n° 17 SLE (Quasi Perma Peso Proprio Spinta terreno sinistra Spinta terreno destra Combinazione n° 18 SLE (Frequente) Peso Proprio Spinta terreno destra Combinazione n° 18 SLE (Frequente) Peso Proprio Spinta terreno sinistra Spinta terreno destra Condizione 14 (VT Qconc)	Effetto Sfavorevole Sfavorevole Sfavorevole Sfavorevole Sfavorevole Description Effetto Sfavorevole	γ 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.0	Y 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.0	c 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.0
Combinazione n° 15 SLU (Caso A2-M2 Peso Proprio Spinta terreno sinistra Spinta terreno destra Sisma da destra Combinazione n° 16 SLU (Caso A2-M2 Peso Proprio Spinta terreno sinistra Spinta terreno destra Sisma da destra Combinazione n° 17 SLE (Quasi Perma Peso Proprio Spinta terreno sinistra Spinta terreno destra Combinazione n° 18 SLE (Frequente) Peso Proprio Spinta terreno sinistra Spinta terreno sinistra Spinta terreno destra Combinazione n° 18 SLE (Frequente) Peso Proprio Spinta terreno destra Condizione 14 (VT Qconc)	Effetto Sfavorevole Sfavorevole Sfavorevole Sfavorevole Sfavorevole Sfavorevole - Sisma Vert. negativo Effetto Sfavorevole	γ 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.0	1.00 Y 1.00 1.00 1.00 1.00 1.00 1.00 1.	c 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.0

Adeguamento al tipo B dal km 12+000 al km 18+000 (ex SS125 "Orientale Sarda" - Connessione tra la SS554 e la nuova SS554)

CA352

Relazione tecnica e di calcolo ST01 - SOTTOVIA Pr. 5+460,00

Spinta terreno sinistra Spinta terreno destra Condizione 12 VT (qdistr)	Sfavorevole Sfavorevole Sfavorevole	1.00 1.00 1.00	1.00 1.00 0.40	1.00 1.00 0.40
Combinazione n° 20 SLE (Frequente)	Effetto	γ	Ψ	С
Peso Proprio	Sfavorevole	1.00	1.00	1.00
Spinta terreno sinistra	Sfavorevole	1.00	1.00	1.00
Spinta terreno destra	Sfavorevole	1.00	1.00	1.00
spinta a tergo	Sfavorevole	1.00	0.40	0.40
Combinazione n° 21 SLE (Rara)				
	Effetto	γ	Ψ	С
Peso Proprio	Sfavorevole	1.00	1.00	1.00
Spinta terreno sinistra	Sfavorevole	1.00	1.00	1.00
Spinta terreno destra	Sfavorevole	1.00	1.00	1.00
Condizione 14 (VT Qconc)	Sfavorevole	1.00	1.00	1.00
Condizione 12 VT (qdistr)	Sfavorevole	1.00	0.40	0.40
spinta a tergo	Sfavorevole	1.00	0.40	0.40
Combinazione n° 22 SLE (Rara)				
	Effetto	γ	Ψ	С
Peso Proprio	Sfavorevole	1.00	1.00	1.00
Spinta terreno sinistra	Sfavorevole	1.00	1.00	1.00
Spinta terreno destra	Sfavorevole	1.00	1.00	1.00
Condizione 12 VT (qdistr)	Sfavorevole	1.00	1.00	1.00
Condizione 14 (VT Qconc)	Sfavorevole	1.00	0.75	0.75
spinta a tergo	Sfavorevole	1.00	0.40	0.40
Combinazione n° 23 SLE (Rara)				
<u> </u>	Effetto	γ	Ψ	С
Peso Proprio	Sfavorevole	1.00	1.00	1.00
Spinta terreno sinistra	Sfavorevole	1.00	1.00	1.00
Spinta terreno destra	Sfavorevole	1.00	1.00	1.00
spinta a tergo	Sfavorevole	1.00	1.00	1.00
Condizione 14 (VT Qconc)	Sfavorevole	1.00	0.75	0.75
Condizione 12 VT (qdistr)	Sfavorevole	1.00	0.40	0.40

Analisi della spinta e verifiche

Simbologia adottata ed unità di misura
Origine in corrispondenza dello spigolo inferiore sinistro della struttura
Le forze orizzontali sono considerate positive se agenti verso destra
Le forze verticali sono considerate positive se agenti verso il basso
X ascisse (espresse in m) positive verso destra
Y ordinate (espresse in m) positive verso l'alto
M momento espresso in kNm
V taglio espresso in kN
SN sforzo normale espresso in kN
ux spostamento direzione X espresso in cm
uy spostamento direzione Y espresso in cm
originativa della dell

Tipo di analisi

Tipo di analisi				
Pressione in calotta I carichi applicati sul terreno sono stati diffu Metodo di calcolo della portanza	si secondo angolo		geostatica	
Spinta sui piedritti		a Riposo	[combinazione	1]
		a Riposo	[combinazione	2]
		a Riposo	[combinazione	3]
		a Riposo	[combinazione	4]
		a Riposo	[combinazione	5]
		a Riposo	[combinazione	6]
		a Riposo	[combinazione	7]
		a Riposo	[combinazione	8]
		a Riposo	[combinazione	9]
		a Riposo	[combinazione	10]
		a Riposo	[combinazione	11]
		a Riposo	[combinazione	12]
		a Riposo	[combinazione	13]
		a Riposo	[combinazione	14]
		a Riposo	[combinazione	15]
		a Riposo	[combinazione	16]
		a Riposo	[combinazione	17]
		a Riposo	[combinazione	18]

Adeguamento al tipo B dal km 12+000 al km 18+000 (ex SS125 "Orientale Sarda" - Connessione tra la SS554 e la nuova SS554)

CA352

Relazione tecnica e di calcolo ST01 - SOTTOVIA Pr. 5+460,00

```
a Riposo [combinazione 19]
a Riposo [combinazione 20]
a Riposo [combinazione 21]
a Riposo [combinazione 22]
a Riposo [combinazione 23]
```

Tipo di opera

Tipo di costruzione elevati Vita nominale Classe d'uso molto pericolose Vita di riferimento

Combinazioni SLU

Accelerazione al suolo a_g = Coefficiente di amplificazione per tipo di sottosuolo (S) Coefficiente di amplificazione topografica (St) Coefficiente riduzione (β_m) Rapporto intensità sismica verticale/orizzontale Coefficiente di intensità sismica orizzontale (percento) Coefficiente di intensità sismica verticale (percento)

Combinazioni SLE

Spinta sismica

Accelerazione al suolo a_g = Coefficiente di amplificazione per tipo di sottosuolo (S) Coefficiente di amplificazione topografica (St) Coefficiente riduzione (β_m) Rapporto intensità sismica verticale/orizzontale Coefficiente di intensità sismica orizzontale (percento) Coefficiente di intensità sismica verticale (percento) Forma diagramma incremento sismico

Angolo diffusione sovraccarico

Coofficienti di eninte

Coefficienti di spinta					
N°combinazione	Statico	Sismico			
1	0.426	0.000			
2	0.511	0.000			
3	0.426	0.000			
4	0.511	0.000			
5	0.426	0.000			
6	0.511	0.000			
7	0.426	0.000			
8	0.511	0.000			
9	0.426	0.446			
10	0.426	0.446			
11	0.426	0.446			
12	0.426	0.446			
13	0.426	0.446			
14	0.426	0.446			
15	0.426	0.446			
16	0.426	0.446			
17	0.426	0.000			
18	0.426	0.000			
19	0.426	0.000			
20	0.426	0.000			
21	0.426	0.000			
22	0.426	0.000			
23	0.426	0.000			

Numero elementi fondazione Numero elementi traverso Numero elementi piedritto sinistro Numero elementi piedritto destro

Numero molle fondazione Numero molle piedritto sinistro Numero molle piedritto destro

Discretizzazione strutturale

Costruzioni con livelli di prestazioni

100 anni

IV - Opere strategiche ed industrie

200 anni

0.72 $[m/s^2]$ 1.20 1.00 1.00 0.50 $k_h = (a_g/g*\beta_m*st*ss) = 8.76$ $k_v = 0.50 * k_h = 4.38$

1.20
1.00
1.00
0.50 $k_h = (a_g/g^*\beta_m^*St^*Ss) = 0.00$ $k_v = 0.50 * k_h = 0.00$
Rettangolare

Wood

50

60

61

35.00 [°]

Adeguamento al tipo B dal km 12+000 al km 18+000 (ex SS125 "Orientale Sarda" - Connessione tra la SS554 e la nuova SS554)

CA352

Relazione tecnica e di calcolo ST01 - SOTTOVIA Pr. 5+460,00

Analisi della combinazione n° 1

Pressione in calotta(solo peso terreno) 37.0500 [kPa]

Carichi verticali in calotta

Xi Xj Q[kPa] -13.02 22.62 37.0500

 $\underline{\textit{Spinte sui piedritti}}$

Piedritto sinistro Pressione sup. 15.7990 [kPa] Pressione inf. 86.3678 [kPa] Piedritto destro Pressione sup. 15.7990 [kPa] Pressione inf. 86.3678 [kPa]

Analisi della combinazione n° 2

Pressione in calotta(solo peso terreno) 28.5000 [kPa]

Carichi verticali in calotta

Xi Xj Q[kPa] -13.02 22.62 28.5000

Spinte sui piedritti

Piedritto sinistro Pressione sup. 14.5717 [kPa] Pressione inf. 79.6584 [kPa] Piedritto destro Pressione sup. 14.5717 [kPa] Pressione inf. 79.6584 [kPa]

Analisi della combinazione n° 3

Pressione in calotta(solo peso terreno) 37.0500 [kPa]

<u>Carichi verticali in calotta</u>

Xi Xj Q[kPa] -13.02 22.62 37.0500

<u>Spinte sui piedritti</u>

Piedritto sinistro Pressione sup. 15.7990 [kPa] Pressione inf. 86.3678 [kPa] Piedritto destro Pressione sup. 15.7990 [kPa] Pressione inf. 86.3678 [kPa]

Analisi della combinazione n° 4

Pressione in calotta(solo peso terreno) 28.5000 [kPa]

Carichi verticali in calotta

Xi Xj Q[kPa] -13.02 22.62 28.5000

Spinte sui piedritti

Piedritto sinistro Pressione sup. 14.5717 [kPa] Pressione inf. 79.6584 [kPa] Piedritto destro Pressione sup. 14.5717 [kPa] Pressione inf. 79.6584 [kPa]

Analisi della combinazione n° 5

Pressione in calotta(solo peso terreno) 37.0500 [kPa]

Carichi verticali in calotta

Xi Xj Q[kPa] -13.02 22.62 37.0500

Adeguamento al tipo B dal km 12+000 al km 18+000 (ex SS125 "Orientale Sarda" - Connessione tra la SS554 e la nuova SS554)

CA352

Relazione tecnica e di calcolo ST01 - SOTTOVIA Pr. 5+460.00

Spinte sui piedritti

Piedritto sinistro Pressione sup. 15.7990 [kPa] Pressione inf. 86.3678 [kPa] Piedritto destro Pressione sup. 15.7990 [kPa] Pressione inf. 86.3678 [kPa]

Analisi della combinazione n° 6

Pressione in calotta(solo peso terreno) 28.5000 [kPa]

Carichi verticali in calotta

Xi Xj Q[kPa] -13.02 22.62 28.5000

Spinte sui piedritti

Piedritto sinistro Pressione sup. 14.5717 [kPa] Pressione inf. 79.6584 [kPa] Piedritto destro Pressione sup. 14.5717 [kPa] Pressione inf. 79.6584 [kPa]

Analisi della combinazione n° 7

Pressione in calotta(solo peso terreno) 37.0500 [kPa]

Carichi verticali in calotta

Xi Xj Q[kPa] -13.02 22.62 37.0500

 $\underline{\textit{Spinte sui piedritti}}$

Piedritto sinistro Pressione sup. 15.7990 [kPa] Pressione inf. 86.3678 [kPa] Piedritto destro Pressione sup. 15.7990 [kPa] Pressione inf. 86.3678 [kPa]

Analisi della combinazione n° 8

Pressione in calotta(solo peso terreno) 28.5000 [kPa]

Carichi verticali in calotta

Xi Xj Q[kPa] -13.02 22.62 28.5000

<u>Spinte sui piedritti</u>

Piedritto sinistro Pressione sup. 14.5717 [kPa] Pressione inf. 79.6584 [kPa] Piedritto destro Pressione sup. 14.5717 [kPa] Pressione inf. 79.6584 [kPa]

Analisi della combinazione n° 9

Pressione in calotta(solo peso terreno) 28.5000 [kPa]

<u>Carichi verticali in calotta</u>

Xi Xj Q[kPa] -13.02 22.62 28.5000

 $\underline{\textit{Spinte sui piedritti}}$

Piedritto sinistro Pressione sup. 12.1531 [kPa] Pressione inf. 66.4368 [kPa] Piedritto destro Pressione sup. 12.1531 [kPa] Pressione inf. 66.4368 [kPa]

Spinte sismiche sui piedritti

Piedritto sinistro Pressione sup. 16.1454 [kPa] Pressione inf. 16.1454 [kPa]

Adeguamento al tipo B dal km 12+000 al km 18+000 (ex SS125 "Orientale Sarda" - Connessione tra la SS554 e la nuova SS554)

CA352

Relazione tecnica e di calcolo ST01 - SOTTOVIA Pr. 5+460.00

Analisi della combinazione n° 10

Pressione in calotta(solo peso terreno) 28.5000 [kPa]

Carichi verticali in calotta

Xi Xj Q[kPa] -13.02 22.62 28.5000

Spinte sui piedritti

Piedritto sinistro Pressione sup. 12.1531 [kPa] Pressione inf. 66.4368 [kPa] Piedritto destro Pressione sup. 12.1531 [kPa] Pressione inf. 66.4368 [kPa]

Spinte sismiche sui piedritti

Piedritto sinistro Pressione sup. 16.1454 [kPa] Pressione inf. 16.1454 [kPa]

Analisi della combinazione n° 11

Pressione in calotta(solo peso terreno) 28.5000 [kPa]

Carichi verticali in calotta

Xi Xj Q[kPa] -13.02 22.62 28.5000

Spinte sui piedritti

Piedritto sinistro Pressione sup. 12.1531 [kPa] Pressione inf. 66.4368 [kPa] Piedritto destro Pressione sup. 12.1531 [kPa] Pressione inf. 66.4368 [kPa]

Spinte sismiche sui piedritti

Piedritto sinistro Pressione sup. 16.1454 [kPa] Pressione inf. 16.1454 [kPa]

Analisi della combinazione n° 12

Pressione in calotta(solo peso terreno) 28.5000 [kPa]

Carichi verticali in calotta

Xi Xj Q[kPa] -13.02 22.62 28.5000

<u>Spinte sui piedritti</u>

Piedritto sinistro Pressione sup. 12.1531 [kPa] Pressione inf. 66.4368 [kPa] Piedritto destro Pressione sup. 12.1531 [kPa] Pressione inf. 66.4368 [kPa]

 $\underline{\textit{Spinte sismiche sui piedritti}}$

Piedritto sinistro Pressione sup. 16.1454 [kPa] Pressione inf. 16.1454 [kPa]

Analisi della combinazione n° 13

Pressione in calotta(solo peso terreno) 28.5000 [kPa]

Carichi verticali in calotta

Xi Xj Q[kPa]

Adeguamento al tipo B dal km 12+000 al km 18+000 (ex SS125 "Orientale Sarda" -Connessione tra la SS554 e la nuova SS554)

CA352

Relazione tecnica e di calcolo ST01 - SOTTOVIA Pr. 5+460.00

-13.02 22.62 28.5000

Spinte sui piedritti

Piedritto sinistro Pressione sup. 12.1531 [kPa] Pressione inf. 66.4368 [kPa]

Piedritto destro Pressione sup. 12.1531 [kPa] Pressione inf. 66.4368 [kPa]

Spinte sismiche sui piedritti Piedritto destro Pressione sup. 16.1454 [kPa] Pressione inf. 16.1454 [kPa]

Analisi della combinazione n° 14

Pressione in calotta(solo peso terreno) 28.5000 [kPa]

Carichi verticali in calotta

Q[kPa] -13.02 28.5000 22.62

Spinte sui piedritti

Piedritto sinistro Pressione sup. 12.1531 [kPa] Pressione inf. 66.4368 [kPa]

Piedritto destro Pressione sup. 12.1531 [kPa] Pressione inf. 66.4368 [kPa]

Spinte sismiche sui piedritti Piedritto destro Pressione sup. 16.1454 [kPa] Pressione inf. 16.1454 [kPa]

Analisi della combinazione n° 15

Pressione in calotta(solo peso terreno) 28.5000 [kPa]

Carichi verticali in calotta

Xi Xj Q[kPa] 28.5000 -13.02 22.62

Spinte sui piedritti

Piedritto sinistro Pressione sup. 12.1531 [kPa] Pressione inf. 66.43 Piedritto destro Pressione sup. 12.1531 [kPa] Pressione inf. 66.4368 [kPa] Pressione inf. 66.4368 [kPa]

<u>Spinte sismiche sui piedritti</u> Piedritto destro Pressione sup. 16.1454 [kPa] Pressione inf. 16.1454 [kPa]

Analisi della combinazione n° 16

Pressione in calotta(solo peso terreno) 28.5000 [kPa]

Carichi verticali in calotta

Q[kPa] -13.02 22.62 28.5000

Spinte sui piedritti

Piedritto sinistro Pressione sup. 12.1531 [kPa] Piedritto destro Pressione sup. 12.1531 [kPa] Press: Pressione inf. 66.4368 [kPa] Pressione inf. 66.4368 [kPa]

Spinte sismiche sui piedritti
Piedritto destro Pressione sup. 16.1454 [kPa] Pressione inf. 16.1454 [kPa]

Adeguamento al tipo B dal km 12+000 al km 18+000 (ex SS125 "Orientale Sarda" - Connessione tra la SS554 e la nuova SS554)

CA352

Relazione tecnica e di calcolo ST01 - SOTTOVIA Pr. 5+460.00

Analisi della combinazione n° 17

Pressione in calotta(solo peso terreno) 28.5000 [kPa]

Carichi verticali in calotta

Xi Xj Q[kPa] -13.02 22.62 28.5000

 $\underline{\textit{Spinte sui piedritti}}$

Piedritto sinistro Pressione sup. 12.1531 [kPa] Pressione inf. 66.4368 [kPa] Piedritto destro Pressione sup. 12.1531 [kPa] Pressione inf. 66.4368 [kPa]

Analisi della combinazione n° 18

Pressione in calotta(solo peso terreno) 28.5000 [kPa]

Carichi verticali in calotta

Xi Xj Q[kPa] -13.02 22.62 28.5000

Spinte sui piedritti

Piedritto sinistro Pressione sup. 12.1531 [kPa] Pressione inf. 66.4368 [kPa] Piedritto destro Pressione sup. 12.1531 [kPa] Pressione inf. 66.4368 [kPa]

Analisi della combinazione n° 19

Pressione in calotta(solo peso terreno) 28.5000 [kPa]

<u>Carichi verticali in calotta</u>

Xi Xj Q[kPa] -13.02 22.62 28.5000

Spinte sui piedritti

Piedritto sinistro Pressione sup. 12.1531 [kPa] Pressione inf. 66.4368 [kPa] Piedritto destro Pressione sup. 12.1531 [kPa] Pressione inf. 66.4368 [kPa]

Analisi della combinazione n° 20

Pressione in calotta(solo peso terreno) 28.5000 [kPa]

Carichi verticali in calotta

Xi Xj Q[kPa] -13.02 22.62 28.5000

Spinte sui piedritti

Piedritto sinistro Pressione sup. 12.1531 [kPa] Pressione inf. 66.4368 [kPa] Piedritto destro Pressione sup. 12.1531 [kPa] Pressione inf. 66.4368 [kPa]

Analisi della combinazione n° 21

Pressione in calotta(solo peso terreno) 28.5000 [kPa]

Carichi verticali in calotta

Xi Xj Q[kPa] -13.02 22.62 28.5000

Adeguamento al tipo B dal km 12+000 al km 18+000 (ex SS125 "Orientale Sarda" - Connessione tra la SS554 e la nuova SS554)

CA352

Relazione tecnica e di calcolo ST01 - SOTTOVIA Pr. 5+460.00

Spinte sui piedritti

Piedritto sinistro Pressione sup. 12.1531 [kPa] Pressione inf. 66.4368 [kPa] Piedritto destro Pressione sup. 12.1531 [kPa] Pressione inf. 66.4368 [kPa]

Analisi della combinazione n° 22

Pressione in calotta(solo peso terreno) 28.5000 [kPa]

Carichi verticali in calotta

Xi Xj Q[kPa] -13.02 22.62 28.5000

Spinte sui piedritti

Piedritto sinistro Pressione sup. 12.1531 [kPa] Pressione inf. 66.4368 [kPa] Piedritto destro Pressione sup. 12.1531 [kPa] Pressione inf. 66.4368 [kPa]

Analisi della combinazione n° 23

Pressione in calotta(solo peso terreno) 28.5000 [kPa]

Carichi verticali in calotta

Xi Xj Q[kPa] -13.02 22.62 28.5000

Spinte sui piedritti

Piedritto sinistro Pressione sup. 12.1531 [kPa] Pressione inf. 66.4368 [kPa] Piedritto destro Pressione sup. 12.1531 [kPa] Pressione inf. 66.4368 [kPa]

Sollecitazioni

Sollecitazioni fondazione (Combinazione n° 1)

X [m]	M [kNm]	V [kN]	N [kN]
0.40	-417.4012	-424.3728	202.8219
2.56	279.0467	-211.0466	202.8219
4.80	522.3306	6.2853	202.8219
7.00	288.4900	219.2840	202.8219
9.20	-417.4004	424.3726	202.8219

Sollecitazioni traverso (Combinazione n° 1)

X [m]	M [kNm]	V [kN]	N [kN]
0.40	-283.0689	277.4201	96.8337
2.61	176.6494	137.8094	96.8337
4.80	327.2554	0.0001	96.8337
6.99	176.6498	-137.8092	96.8337
0 20	-293 0692	-277 /100	06 0227

Sollecitazioni piedritto sinistro (Combinazione ${\tt n}^{\circ}$ 1)

Y [m]	M [kNm]	V [kN]	N [kN]
0.45	-417.4012	202.8398	429.5201
3.38	-130.6881	7.8966	353.4701
6.30	-283.0689	-96.8337	277.4201

Sollecitazioni piedritto destro (Combinazione n° 1)

Y [m]	M [kNm]	V [kN]	N [kN]
0.45	-417.4004	-202.8397	429.5199
3.38	-130.6873	-7.8966	353.4699
6.30	-283.0682	96.8337	277.4199

Sollecitazioni fondazione (Combinazione n $^{\circ}$ 2)

Adeguamento al tipo B dal km 12+000 al km 18+000 (ex SS125 "Orientale Sarda" - Connessione tra la SS554 e la nuova SS554)

CA352

X [m]	M [kNm]	V [kN]	N [kN]
0.40	-332.8367	-326.4431	183.8886
2.56	202.9761	-162.3955	183.8886
4.80	390.1866	4.8364	183.8886
7.00	210.2425	168.7324	183.8886
9.20	-332.8360	326.4430	183.8886
Sollecitazion	i traverso (Combinazione n° 2)	
X [m]	M [kNm]	V [kn]	N [kN]
0.40	-225.7267	213.4001	91.8797
2.61	127.9027	106.0072	91.8797
4.80	243.7535	0.0001	91.8797
6.99	127.9030	-106.0071	91.8797
9.20	-225.7262	-213.3999	91.8797
Sollecitazion	i piedritto	sinistro (Combinazione n° 2)	
Y [m]	M [kNm]	V [kN]	N [kN]
0.45	-332.8367	183.9048	330.4001
3.38	-77.3470	4.4244	271.9001
6.30	-225.7267	-91.8797	213.4001
Sollecitazion	i piedritto	destro (Combinazione n° 2)	
Y [m]	M [kNm]	V [kN]	N [kN]
0.45	-332.8360	-183.9047	330.3999
3.38	-77.3464	-4.4244	271.8999
6.30	-225.7262	91.8797	213.3999
Sollecitazion	i fondazione	(Combinazione n° 3)	
X [m]	M [kNm]	V [kN]	N [kN]
0.40	-551.1733	-614.0707	200.2896
2.56	455.3886	-305.5423	200.2896
4.80	806.8365	8.4217	200.2896
7.00	469.0575	316.1533	200.2896
9.20	-551.1392	614.0741	200.2896
Sollecitazion	i traverso (Combinazione n° 3)	
X [m]	M [kNm]	V [kN]	N [kN]
X [m] 0.40	M [kNm] -526.1905	V [kN] 468.9021	N [kN]
	M [kNm] -526.1905 340.2535		N [kN] 131.7394 131.7394
0.40	-526.1905	468.9021	131.7394 131.7394
0.40 2.61 4.80	-526.1905 340.2535 686.4251	468.9021 297.7014 -0.0019	131.7394 131.7394 131.7394
0.40 2.61	-526.1905 340.2535	468.9021 297.7014 -0.0019	131.7394 131.7394
0.40 2.61 4.80 6.99	-526.1905 340.2535 686.4251 340.2453	468.9021 297.7014 -0.0019 -297.7051	131.7394 131.7394 131.7394 131.7394
0.40 2.61 4.80 6.99	-526.1905 340.2535 686.4251 340.2453	468.9021 297.7014 -0.0019 -297.7051	131.7394 131.7394 131.7394 131.7394
0.40 2.61 4.80 6.99 9.20	-526.1905 340.2535 686.4251 340.2453 -526.2068	468.9021 297.7014 -0.0019 -297.7051	131.7394 131.7394 131.7394 131.7394 131.7394
0.40 2.61 4.80 6.99 9.20	-526.1905 340.2535 686.4251 340.2453 -526.2068	468.9021 297.7014 -0.0019 -297.7051 -468.9059 sinistro (Combinazione n° 3)	131.7394 131.7394 131.7394 131.7394
0.40 2.61 4.80 6.99 9.20 Sollecitazion Y [m]	-526.1905 340.2535 686.4251 340.2453 -526.2068 i piedritto M [kNm]	468.9021 297.7014 -0.0019 -297.7051 -468.9059 sinistro (Combinazione n° 3) V [kN]	131.7394 131.7394 131.7394 131.7394 131.7394
0.40 2.61 4.80 6.99 9.20 Sollecitazion Y [m] 0.45	-526.1905 340.2535 686.4251 340.2453 -526.2068 i piedritto M [kNm] -551.1733	468.9021 297.7014 -0.0019 -297.7051 -468.9059 sinistro (Combinazione n° 3) v [kN] 200.3202	131.7394 131.7394 131.7394 131.7394 131.7394 N [kN]
0.40 2.61 4.80 6.99 9.20 Sollecitazion Y [m] 0.45 3.38	-526.1905 340.2535 686.4251 340.2453 -526.2068 i piedritto M [kNm] -551.1733 -295.0226	468.9021 297.7014 -0.0019 -297.7051 -468.9059 sinistro (Combinazione n° 3) V [kN] 200.3202 -10.8040	131.7394 131.7394 131.7394 131.7394 131.7394 N [kN] 621.0021 544.9521
0.40 2.61 4.80 6.99 9.20 Sollecitazion Y [m] 0.45 3.38 6.30	-526.1905 340.2535 686.4251 340.2453 -526.2068 i piedritto M [kNm] -551.1733 -295.0226 -526.1905	468.9021 297.7014 -0.0019 -297.7051 -468.9059 sinistro (Combinazione n° 3) V [kN] 200.3202 -10.8040 -131.7395	131.7394 131.7394 131.7394 131.7394 131.7394 N [kN]
0.40 2.61 4.80 6.99 9.20 Sollecitazion Y [m] 0.45 3.38 6.30	-526.1905 340.2535 686.4251 340.2453 -526.2068 i piedritto M [kNm] -551.1733 -295.0226 -526.1905	468.9021 297.7014 -0.0019 -297.7051 -468.9059 sinistro (Combinazione n° 3) V [kN] 200.3202 -10.8040	131.7394 131.7394 131.7394 131.7394 131.7394 N [kN] 621.0021 544.9521
0.40 2.61 4.80 6.99 9.20 Sollecitazion Y [m] 0.45 3.38 6.30	-526.1905 340.2535 686.4251 340.2453 -526.2068 i piedritto M [kNm] -551.1733 -295.0226 -526.1905	468.9021 297.7014 -0.0019 -297.7051 -468.9059 sinistro (Combinazione n° 3) V [kN] 200.3202 -10.8040 -131.7395	131.7394 131.7394 131.7394 131.7394 131.7394 N [kN] 621.0021 544.9521
0.40 2.61 4.80 6.99 9.20 Sollecitazion Y [m] 0.45 3.38 6.30 Sollecitazion	-526.1905 340.2535 686.4251 340.2453 -526.2068 i piedritto	468.9021 297.7014 -0.0019 -297.7051 -468.9059 sinistro (Combinazione n° 3) V [kN] 200.3202 -10.8040 -131.7395 destro (Combinazione n° 3) V [kN]	131.7394 131.7394 131.7394 131.7394 131.7394 N [kN] 621.0021 544.9521 468.9021
0.40 2.61 4.80 6.99 9.20 Sollecitazion Y [m] 0.45 3.38 6.30 Sollecitazion Y [m]	-526.1905 340.2535 686.4251 340.2453 -526.2068 i piedritto M [kNm] -551.1733 -295.0226 -526.1905 i piedritto M [kNm]	468.9021 297.7014 -0.0019 -297.7051 -468.9059 sinistro (Combinazione n° 3) V [kN] 200.3202 -10.8040 -131.7395 destro (Combinazione n° 3) V [kN] -200.2941	131.7394 131.7394 131.7394 131.7394 N [kN] 621.0021 544.9521 468.9021
0.40 2.61 4.80 6.99 9.20 Sollecitazion Y [m] 0.45 3.38 6.30 Sollecitazion Y [m] 0.45	-526.1905 340.2535 686.4251 340.2453 -526.2068 i piedritto M [kNm] -551.1733 -295.0226 -526.1905 i piedritto M [kNm] -551.1392	468.9021 297.7014 -0.0019 -297.7051 -468.9059 sinistro (Combinazione n° 3) V [kN] 200.3202 -10.8040 -131.7395 destro (Combinazione n° 3) V [kN] -200.2941 10.8135	131.7394 131.7394 131.7394 131.7394 131.7394 N [kN] 621.0021 N [kN] 621.0059
0.40 2.61 4.80 6.99 9.20 Sollecitazion Y [m] 0.45 3.38 6.30 Sollecitazion Y [m] 0.45 3.38	-526.1905 340.2535 686.4251 340.2453 -526.2068 i piedritto M [kNm] -551.1733 -295.0226 -526.1905 i piedritto M [kNm] -551.1392 -295.0302	468.9021 297.7014 -0.0019 -297.7051 -468.9059 sinistro (Combinazione n° 3) V [kN] 200.3202 -10.8040 -131.7395 destro (Combinazione n° 3) V [kN] -200.2941 10.8135	131.7394 131.7394 131.7394 131.7394 N [kN] 621.0021 544.9521 468.9021
0.40 2.61 4.80 6.99 9.20 Sollecitazion Y [m] 0.45 3.38 6.30 Sollecitazion Y [m] 0.45 3.38 6.30	-526.1905 340.2535 686.4251 340.2453 -526.2068 i piedritto	468.9021 297.7014 -0.0019 -297.7051 -468.9059 sinistro (Combinazione n° 3) V [kN] 200.3202 -10.8040 -131.7395 destro (Combinazione n° 3) V [kN] -200.2941 10.8135	131.7394 131.7394 131.7394 131.7394 N [kN] 621.0021 544.9521 468.9021
0.40 2.61 4.80 6.99 9.20 Sollecitazion Y [m] 0.45 3.38 6.30 Sollecitazion Y [m] 0.45 3.38 6.30	-526.1905 340.2535 686.4251 340.2453 -526.2068 i piedritto	468.9021 297.7014 -0.0019 -297.7051 -468.9059 sinistro (Combinazione n° 3) V [kN] 200.3202 -10.8040 -131.7395 destro (Combinazione n° 3) V [kN] -200.2941 10.8135 131.7376	131.7394 131.7394 131.7394 131.7394 N [kN] 621.0021 544.9521 468.9021
0.40 2.61 4.80 6.99 9.20 Sollecitazion Y [m] 0.45 3.38 6.30 Sollecitazion Y [m] 0.45 3.38 6.30 Sollecitazion X [m]	-526.1905 340.2535 686.4251 340.2453 -526.2068 i piedritto	468.9021 297.7014 -0.0019 -297.7051 -468.9059 sinistro (Combinazione n° 3) V [kN] 200.3202 -10.8040 -131.7395 destro (Combinazione n° 3) V [kN] -200.2941 10.8135 131.7376 (Combinazione n° 4) V [kN]	131.7394 131.7394 131.7394 131.7394 131.7394 N [kN] 621.0021 544.9521 468.9021 N [kN] 621.0059 544.9559 468.9059
0.40 2.61 4.80 6.99 9.20 Sollecitazion Y [m] 0.45 3.38 6.30 Sollecitazion Y [m] 0.45 3.38 6.30 Sollecitazion X [m] 0.40	-526.1905 340.2535 686.4251 340.2453 -526.2068 i piedritto	468.9021 297.7014 -0.0019 -297.7051 -468.9059 sinistro (Combinazione n° 3) v [kN] 200.3202 -10.8040 -131.7395 destro (Combinazione n° 3) v [kN] -200.2941 10.8135 131.7376 (Combinazione n° 4) v [kN] -488.0374	131.7394 131.7394 131.7394 131.7394 131.7394 N [kN] 621.0021 544.9521 468.9021 N [kN] 621.0059 544.9559 468.9059
0.40 2.61 4.80 6.99 9.20 Sollecitazion Y [m] 0.45 3.38 6.30 Sollecitazion Y [m] 0.45 3.38 6.30 Sollecitazion X [m] 0.40 2.56	-526.1905 340.2535 686.4251 340.2453 -526.2068 i piedritto	468.9021 297.7014 -0.0019 -297.7051 -468.9059 sinistro (Combinazione n° 3) V [kN] 200.3202 -10.8040 -131.7395 destro (Combinazione n° 3) V [kN] -200.2941 10.8135 131.7376 (Combinazione n° 4) V [kN] -488.0374 -242.8926	131.7394 131.7394 131.7394 131.7394 131.7394 N [kN] 621.0021 468.9021 N [kN] 624.055 448.9059
0.40 2.61 4.80 6.99 9.20 Sollecitazion Y [m] 0.45 3.38 6.30 Sollecitazion Y [m] 0.45 3.38 6.30 Sollecitazion X [m] 0.40 2.56 4.80	-526.1905 340.2535 686.4251 340.2453 -526.2068 i piedritto	468.9021 297.7014 -0.0019 -297.7051 -468.9059 sinistro (Combinazione n° 3) V [kN] 200.3202 -10.8040 -131.7395 destro (Combinazione n° 3) V [kN] -200.2941 10.8135 131.7376 (Combinazione n° 4) V [kN] -488.0374 -242.8926 6.6560	131.7394 131.7394 131.7394 131.7394 131.7394 N [kN] 621.0021 544.9521 468.9021 N [kN] 621.0059 544.9559 468.9059
0.40 2.61 4.80 6.99 9.20 Sollecitazion Y [m] 0.45 3.38 6.30 Sollecitazion Y [m] 0.45 3.38 6.30 Sollecitazion X [m] 0.40 2.56 4.80 7.00	-526.1905 340.2535 686.4251 340.2453 -526.2068 i piedritto	468.9021 297.7014 -0.0019 -297.7051 -468.9059 sinistro (Combinazione n° 3) V [kN] 200.3202 -10.8040 -131.7395 destro (Combinazione n° 3) V [kN] -200.2941 10.8135 131.7376 (Combinazione n° 4) V [kN] -488.0374 -242.8926 6.6560 251.2510	131.7394 131.7394 131.7394 131.7394 131.7394 N [kN] 621.0021 544.9521 468.9021 N [kN] 621.0059 468.9059
0.40 2.61 4.80 6.99 9.20 Sollecitazion Y [m] 0.45 3.38 6.30 Sollecitazion Y [m] 0.45 3.38 6.30 Sollecitazion X [m] 0.40 2.56 4.80	-526.1905 340.2535 686.4251 340.2453 -526.2068 i piedritto	468.9021 297.7014 -0.0019 -297.7051 -468.9059 sinistro (Combinazione n° 3) V [kN] 200.3202 -10.8040 -131.7395 destro (Combinazione n° 3) V [kN] -200.2941 10.8135 131.7376 (Combinazione n° 4) V [kN] -488.0374 -242.8926 6.6560	131.7394 131.7394 131.7394 131.7394 131.7394 N [kN] 621.0021 544.9521 468.9021 N [kN] 621.0059 544.9559 468.9059
0.40 2.61 4.80 6.99 9.20 Sollecitazion Y [m] 0.45 3.38 6.30 Sollecitazion Y [m] 0.45 3.38 6.30 Sollecitazion X [m] 0.40 2.56 4.80 7.00 9.20	-526.1905 340.2535 686.4251 340.2453 -526.2068 i piedritto	468.9021 297.7014 -0.0019 -297.7051 -468.9059 sinistro (Combinazione n° 3) V [kN] 200.3202 -10.8040 -131.7395 destro (Combinazione n° 3) V [kN] -200.2941 10.8135 131.7376 (Combinazione n° 4) V [kN] -488.0374 -242.8926 6.6560 251.2510	131.7394 131.7394 131.7394 131.7394 131.7394 N [kN] 621.0021 544.9521 468.9021 N [kN] 621.0059 468.9059
0.40 2.61 4.80 6.99 9.20 Sollecitazion Y [m] 0.45 3.38 6.30 Sollecitazion Y [m] 0.45 3.38 6.30 Sollecitazion X [m] 0.40 2.56 4.80 7.00 9.20	-526.1905 340.2535 686.4251 340.2453 -526.2068 i piedritto	468.9021 297.7014 -0.0019 -297.7051 -468.9059 sinistro (Combinazione n° 3) V [kN] 200.3202 -10.8040 -131.7395 destro (Combinazione n° 3) V [kN] -200.2941 10.8135 131.7376 (Combinazione n° 4) V [kN] -488.0374 -242.8926 6.6560 251.2510 488.0408	131.7394 131.7394 131.7394 131.7394 131.7394 N [kN] 621.0021 544.9521 468.9021 N [kN] 621.0059 468.9059

Adeguamento al tipo B dal km 12+000 al km 18+000 (ex SS125 "Orientale Sarda" - Connessione tra la SS554 e la nuova SS554)

CA352 Relazione tecnica e di calcolo ST01 - SOTTOVIA Pr. 5+460,00

0.40	-432.9115	376.5142	121.8298
2.61	267.1874	242.2113	121.8298
4.80	549.6307	-0.0018	121.8298
6.99	267.1795	-242.2150	121.8298
9.20	-432.9275	-376.5178	121.8298

Sollecitazioni piedritto sinistro (Combinazione ${\tt n}^{\circ}$ 4)

Y [m]	M [kNm]	V [kN]	N [kN]
0.45	-446.9010	181.9844	493.5142
3.38	-217.1090	-11.5008	435.0142
6.30	-432.9115	-121.8299	376.5142

Sollecitazioni piedritto destro (Combinazione n° 4)

Y [m]	M [kNm]	V [kN]	N [kN]
0.45	-446.8706	-181.9618	493.5178
3.38	-217.1152	11.5094	435.0178
6.30	-432.9275	121.8296	376.5178

Sollecitazioni fondazione (Combinazione n° 5)

X [m]	M [kNm]	V [kN]	N [kN]
0.40	-546.6356	-603.7197	203.7586
2.56	443.0237	-300.3982	203.7586
4.80	788.5861	8.3052	203.7586
7.00	456.4638	310.8794	203.7586
9 20	-546 6017	603 7230	203 7586

Sollecitazioni traverso (Combinazione n° 5)

X [m]	M [kNm]	V [kN]	N [kN]
0.40	-500.7735	458.4532	128.0620
2.61	326.0008	276.3175	128.0620
4.80	643.5958	-0.0018	128.0620
6.99	325.9929	-276.3211	128.0620
9.20	-500.7894	-458.4568	128.0620

$\underline{\text{Sollecitazioni piedritto sinistro (Combinazione } n^{\circ} \ 5)}$

Y [m]	M [kNm]	V [kN]	N [kN]
0.45	-546.6356	203.7895	610.5532
3.38	-280.2356	-7.2363	534.5032
6.30	-500.7735	-128.0620	458.4532

$\underline{ \texttt{Sollecitazioni piedritto destro (Combinazione n°5)} }$

Y [m]	M [kNm]	V [kN]	N [kN]
0.45	-546.6017	-203.7634	610.5568
3.38	-280.2433	7.2457	534.5068
6.30	-500.7894	128.0599	458.4568

Sollecitazioni fondazione (Combinazione n° 6)

X [m]	M [kNm]	V [kN]	N [kN]
0.40	-443.0356	-479.2199	184.9122
2.56	342.5506	-238.5106	184.9122
4.80	616.8887	6.5567	184.9122
7.00	353.2232	246.7584	184.9122
9.20	-443.0053	479.2232	184.9122

Sollecitazioni traverso (Combinazione n° 6)

X [m]	M [kNm]	V [kN]	N [kN]
0.40	-411.2599	367.6132	118.6970
2.61	255.0464	223.9953	118.6970
4.80	513.1464	-0.0018	118.6970
6.99	255.0384	-223.9990	118.6970
9 20	-411 2758	-367 6168	118 6970

Sollecitazioni piedritto sinistro (Combinazione n° 6)

 $Y \ [m] \qquad \qquad M \ [kNm] \qquad \qquad V \ [kN] \qquad \qquad N \ [kN]$

Adeguamento al tipo B dal km 12+000 al km 18+000 (ex SS125 "Orientale Sarda" - Connessione tra la SS554 e la nuova SS554)

0.45	-443.0356	184.9397	484.6132
3.38	-204.5128		426.1132
6.30	-411.2599	-118.6972	367.6132
Sollecitazion	i piedritto	destro (Combinazione n° 6)	
		· · · · · · · · · · · · · · · · · · ·	
Y [m]	M [kNm]	V [kN]	N [kN]
0.45	-443.0053	-184.9171	484.6168
3.38	-204.5189	8.4701	426.1168
6.30	-411.2758	118.6969	367.6168
Sollecitazion	i fondazione	e (Combinazione n° 7)	
v [m]	M [kNm]	77 []-37]	NT [1-NT]
X [m] 0.40	-534.5653	V [kN] -571.9441	N [kN] 227.4469
2.56	403.2249	-284.6203	227.4469
4.80	730.7450	7.9408	227.4469
7.00	415.9909	294.6930	227.4469
9.20	-534.4939	571.9488	227.4469
Sollecitazion	i traverso ((Combinazione n° 7)	
X [m]	M [kNm]	V [kN]	N [kN]
0.40	-479.9715	426.3764	148.7793
2.61	293.6472	260.3828	148.7793
4.80	593.8270	-0.0026	148.7793
6.99	293.6357	-260.3881	148.7793
9.20	-479.9947	-426.3816	148.7793
Sollecitazion	i piedritto	sinistro (Combinazione n° 7	7)
			<u> </u>
Y [m]	M [kNm]	V [kN]	N [kN]
0.45	-534.5653	227.4996	578.4764
3.38	-231.4334	-5.7364	502.4264
6.30	-479.9715	-148.7795	426.3764
0-11		dt (Gbii° 7)	
Sollecitazion	i piedritto	destro (Combinazione n° 7)	
		_	n [kn]
Y [m]	M [kNm]	V [kn]	N [kN] 578 4816
Y [m] 0.45	M [kNm]	V [kN] -227.4340	578.4816
Y [m]	M [kNm]	V [kn]	
Y [m] 0.45 3.38	M [kNm] -534.4939 -231.4581	V [kN] -227.4340 5.7558	578.4816 502.4316
Y [m] 0.45 3.38 6.30	M [kNm] -534.4939 -231.4581 -479.9947	V [kN] -227.4340 5.7558 148.7598	578.4816 502.4316
Y [m] 0.45 3.38 6.30	M [kNm] -534.4939 -231.4581 -479.9947	V [kN] -227.4340 5.7558	578.4816 502.4316
Y [m] 0.45 3.38 6.30	M [kNm] -534.4939 -231.4581 -479.9947	v [kn] -227.4340 5.7558 148.7598	578.4816 502.4316 426.3816
Y [m] 0.45 3.38 6.30 Sollecitazion X [m]	M [kNm] -534.4939 -231.4581 -479.9947 i fondazione M [kNm]	V [kN] -227.4340 5.7558 148.7598 ** (Combinazione n° 8) V [kN]	578.4816 502.4316 426.3816 N [kN]
Y [m] 0.45 3.38 6.30 Sollecitazion X [m] 0.40	M [kNm] -534.4939 -231.4581 -479.9947 i fondazione M [kNm] -432.9177	<pre>v [kN] -227.4340 5.7558 148.7598 ** (Combinazione n° 8) v [kN] -452.1519</pre>	578.4816 502.4316 426.3816 N [kN] 205.4302
Y [m] 0.45 3.38 6.30 Sollecitazion X [m] 0.40 2.56	M [kNm] -534.4939 -231.4581 -479.9947 i fondazione M [kNm] -432.9177 308.4849	V [kN] -227.4340 5.7558 148.7598 4 (Combinazione n° 8) V [kN] -452.1519 -225.0708	578.4816 502.4316 426.3816 N [kN] 205.4302 205.4302
Y [m] 0.45 3.38 6.30 Sollecitazion X [m] 0.40 2.56 4.80	M [kNm] -534.4939 -231.4581 -479.9947 ii fondazione M [kNm] -432.9177 308.4849 567.4543	v [kN] -227.4340 5.7558 148.7598 v [kN] -452.1519 -225.0708 6.2465	578.4816 502.4316 426.3816 N [kN] 205.4302 205.4302 205.4302
Y [m] 0.45 3.38 6.30 Sollecitazion X [m] 0.40 2.56 4.80 7.00	M [kNm] -534.4939 -231.4581 -479.9947 i fondazione M [kNm] -432.9177 308.4849 567.4543 318.5828	v [kN] -227.4340 5.7558 148.7598 • (Combinazione n° 8) v [kN] -452.1519 -225.0708 6.2465 232.9708	578.4816 502.4316 426.3816 N [kN] 205.4302 205.4302 205.4302 205.4302
Y [m] 0.45 3.38 6.30 Sollecitazion X [m] 0.40 2.56 4.80	M [kNm] -534.4939 -231.4581 -479.9947 ii fondazione M [kNm] -432.9177 308.4849 567.4543	v [kN] -227.4340 5.7558 148.7598 v [kN] -452.1519 -225.0708 6.2465	578.4816 502.4316 426.3816 N [kN] 205.4302 205.4302 205.4302
Y [m] 0.45 3.38 6.30 Sollecitazion X [m] 0.40 2.56 4.80 7.00 9.20	M [kNm] -534.4939 -231.4581 -479.9947 i fondazione M [kNm] -432.9177 308.4849 567.4543 318.5828 -432.8559	v [kN] -227.4340 5.7558 148.7598 • (Combinazione n° 8) v [kN] -452.1519 -225.0708 6.2465 232.9708	578.4816 502.4316 426.3816 N [kN] 205.4302 205.4302 205.4302 205.4302
Y [m] 0.45 3.38 6.30 Sollecitazion X [m] 0.40 2.56 4.80 7.00 9.20 Sollecitazion	M [kNm] -534.4939 -231.4581 -479.9947 i fondazione M [kNm] -432.9177 308.4849 567.4543 318.5828 -432.8559 i traverso (v [kN] -227.4340 5.7558 148.7598 v [kN] -452.1519 -225.0708 6.2465 232.9708 452.1563 (Combinazione n° 8)	578.4816 502.4316 426.3816 N [kN] 205.4302 205.4302 205.4302 205.4302
Y [m] 0.45 3.38 6.30 Sollecitazion X [m] 0.40 2.56 4.80 7.00 9.20 Sollecitazion X [m]	M [kNm] -534.4939 -231.4581 -479.9947 i fondazione M [kNm] -432.9177 308.4849 567.4543 318.5828 -432.8559 i traverso (M [kNm]	v [kN] -227.4340 5.7558 148.7598 v [kN] v [kN] -452.1519 -225.0708 6.2465 232.9708 452.1563 (Combinazione n° 8) v [kN]	N [kN] 205.4302 205.4302 205.4302 205.4302 205.4302 N [kN]
Y [m] 0.45 3.38 6.30 Sollecitazion X [m] 0.40 2.56 4.80 7.00 9.20 Sollecitazion X [m] 0.40	M [kNm] -534.4939 -231.4581 -479.9947 i fondazione M [kNm] -432.9177 308.4849 567.4543 318.5828 -432.8559 i traverso (M [kNm] -393.6633	v [kN] -227.4340 5.7558 148.7598 2 (Combinazione n° 8) v [kN] -452.1519 -225.0708 6.2465 232.9708 452.1563 (Combinazione n° 8) v [kN] 340.2885	N [kN] 205.4302 205.4302 205.4302 205.4302 205.4302 N [kN] 136.6708
Y [m] 0.45 3.38 6.30 Sollecitazion X [m] 0.40 2.56 4.80 7.00 9.20 Sollecitazion X [m] 0.40 2.61	M [kNm] -534.4939 -231.4581 -479.9947 i fondazione M [kNm] -432.9177 308.4849 567.4543 318.5828 -432.8559 i traverso (M [kNm] -393.6633 227.3624	v [kN] -227.4340 5.7558 148.7598 v [kN] -452.1519 -225.0708 6.2465 232.9708 452.1563 (Combinazione n° 8) v [kN] 340.2885 210.4214	N [kN] 205.4302 205.4302 205.4302 205.4302 205.4302 005.4302 106.4302 107.4302 108.4302 108.4302 108.4302
Y [m] 0.45 3.38 6.30 Sollecitazion X [m] 0.40 2.56 4.80 7.00 9.20 Sollecitazion X [m] 0.40 2.61 4.80	M [kNm] -534.4939 -231.4581 -479.9947 i fondazione M [kNm] -432.9177 308.4849 567.4543 318.5828 -432.8559 i traverso (v [kN] -227.4340 5.7558 148.7598 v [kN] -452.1519 -225.0708 6.2465 232.9708 452.1563 (Combinazione n° 8) v [kN] -452.1563 (Combinazione n° 8)	N [kN] 205.4302 205.4302 205.4302 205.4302 205.4302 205.4302 136.6708 136.6708 136.6708
Y [m] 0.45 3.38 6.30 Sollecitazion X [m] 0.40 2.56 4.80 7.00 9.20 Sollecitazion X [m] 0.40 2.66 6.99	M [kNm] -534.4939 -231.4581 -479.9947 i fondazione M [kNm] -432.9177 308.4849 567.4543 318.5828 -432.8559 i traverso (v [kN] -227.4340 5.7558 148.7598 v [kN] v [kN] -452.1519 -225.0708 6.2465 232.9708 452.1563 (Combinazione n° 8) v [kN] 340.2885 210.4214 -0.0025 -210.4263	N [kN] 205.4302 205.4302 205.4302 205.4302 205.4302 205.4302 136.6708 136.6708 136.6708
Y [m] 0.45 3.38 6.30 Sollecitazion X [m] 0.40 2.56 4.80 7.00 9.20 Sollecitazion X [m] 0.40 2.61 4.80	M [kNm] -534.4939 -231.4581 -479.9947 i fondazione M [kNm] -432.9177 308.4849 567.4543 318.5828 -432.8559 i traverso (v [kN] -227.4340 5.7558 148.7598 v [kN] -452.1519 -225.0708 6.2465 232.9708 452.1563 (Combinazione n° 8) v [kN] -452.1563 (Combinazione n° 8)	N [kN] 205.4302 205.4302 205.4302 205.4302 205.4302 205.4302 136.6708 136.6708 136.6708
Y [m] 0.45 3.38 6.30 Sollecitazion X [m] 0.40 2.56 4.80 7.00 9.20 Sollecitazion X [m] 0.40 2.66 6.99	M [kNm] -534.4939 -231.4581 -479.9947 i fondazione M [kNm] -432.9177 308.4849 567.4543 318.5828 -432.8559 i traverso (v [kN] -227.4340 5.7558 148.7598 v [kN] v [kN] -452.1519 -225.0708 6.2465 232.9708 452.1563 (Combinazione n° 8) v [kN] 340.2885 210.4214 -0.0025 -210.4263	N [kN] 205.4302 205.4302 205.4302 205.4302 205.4302 136.6708 136.6708 136.6708 136.6708
Y [m] 0.45 3.38 6.30 Sollecitazion X [m] 0.40 2.56 4.80 7.00 9.20 Sollecitazion X [m] 0.40 2.66 6.99	M [kNm] -534.4939 -231.4581 -479.9947 i fondazione M [kNm] -432.9177 308.4849 567.4543 318.5828 -432.8559 i traverso (v [kN] -227.4340 5.7558 148.7598 v [kN] v [kN] -452.1519 -225.0708 6.2465 232.9708 452.1563 (Combinazione n° 8) v [kN] 340.2885 210.4214 -0.0025 -210.4263	N [kN] 205.4302 205.4302 205.4302 205.4302 205.4302 205.4302 136.6708 136.6708 136.6708
Y [m] 0.45 3.38 6.30 Sollecitazion X [m] 0.40 2.56 4.80 7.00 9.20 Sollecitazion X [m] 0.40 2.66 4.80 6.99 9.20	M [kNm] -534.4939 -231.4581 -479.9947 i fondazione M [kNm] -432.9177 308.4849 567.4543 318.5828 -432.8559 i traverso (M [kNm] -393.6633 227.3624 470.6274 227.3517 -393.6849	v [kN] -227.4340 5.7558 148.7598 v [kN] v [kN] -452.1519 -225.0708 6.2465 232.9708 452.1563 (Combinazione n° 8) v [kN] 340.2885 210.4214 -0.0025 -210.4263	N [kN] 205.4302 205.4302 205.4302 205.4302 205.4302 305.4302 306.6708 136.6708 136.6708 136.6708
Y [m] 0.45 3.38 6.30 Sollecitazion X [m] 0.40 2.56 4.80 7.00 9.20 Sollecitazion X [m] 0.40 2.61 4.80 6.99 9.20	M [kNm] -534.4939 -231.4581 -479.9947 i fondazione M [kNm] -432.9177 308.4849 567.4543 318.5828 -432.8559 i traverso (M [kNm] -393.6633 227.3624 470.6274 227.3517 -393.6849	v [kN] -227.4340 5.7558 148.7598 2 (Combinazione n° 8) v [kN] -452.1519 -225.0708 6.2465 232.9708 452.1563 (Combinazione n° 8) v [kN] 340.2885 210.4214 -0.0025 -210.4263 -340.2935	N [kN] 205.4302 205.4302 205.4302 205.4302 205.4302 136.6708 136.6708 136.6708 136.6708
Y [m] 0.45 3.38 6.30 Sollecitazion X [m] 0.40 2.56 4.80 7.00 9.20 Sollecitazion X [m] 0.40 2.61 4.80 6.99 9.20 Sollecitazion Y [m]	M [kNm] -534.4939 -231.4581 -479.9947 i fondazione M [kNm] -432.9177 308.4849 567.4543 318.5828 -432.8559 i traverso (M [kNm] -393.6633 227.3624 470.6274 227.3517 -393.6849 i piedritto M [kNm]	v [kN] -227.4340 5.7558 148.7598 v [kN] -48.1519 -225.0708 6.2465 232.9708 452.1563 (Combinazione n° 8) v [kN] 340.2885 210.4214 -0.0025 -210.4263 -340.2935 sinistro (Combinazione n° 8 v [kN]	N [kN] 205.4302 205.4302 205.4302 205.4302 205.4302 305.4302 306.6708 136.6708 136.6708 136.6708 136.6708
Y [m] 0.45 3.38 6.30 Sollecitazion X [m] 0.40 2.56 4.80 7.00 9.20 Sollecitazion X [m] 0.40 2.61 4.80 6.99 9.20 Sollecitazion Y [m] 0.45	M [kNm] -534.4939 -231.4581 -479.9947 ii fondazione M [kNm] -432.9177 308.4849 567.4543 318.5828 -432.8559 ii traverso (M [kNm] -393.6633 227.3624 470.6274 227.3517 -393.6849 ii piedritto M [kNm] -432.9177	v [kN] -227.4340 5.7558 148.7598 v [kN] -452.1519 -225.0708 6.2465 232.9708 452.1563 (Combinazione n° 8) v [kN] 340.2885 210.4214 -0.0025 -210.4263 -340.2935 sinistro (Combinazione n° 8 v [kN] 205.4767	**N [kN]** **N [kN]** 205.4302 205.4302 205.4302 205.4302 205.4302 **N [kN]** 136.6708 136.6708 136.6708 136.6708 136.6708 136.6708 136.6708
Y [m] 0.45 3.38 6.30 Sollecitazion X [m] 0.40 2.56 4.80 7.00 9.20 Sollecitazion X [m] 0.40 2.61 4.80 6.99 9.20 Sollecitazion Y [m] 0.45 3.38	M [kNm] -534.4939 -231.4581 -479.9947 i fondazione M [kNm] -432.9177 308.4849 567.4543 318.5828 -432.8559 i traverso (v [kN] -227.4340 5.7558 148.7598 v [kN] v [kN] -452.1519 -225.0708 6.2465 232.9708 452.1563 (Combinazione n° 8) v [kN] 340.2885 210.4214 -0.0025 -210.4263 -340.2935 sinistro (Combinazione n° 8 v [kN] 205.4767 -7.1769	**N [kN] 205.4302 205
Y [m] 0.45 3.38 6.30 Sollecitazion X [m] 0.40 2.56 4.80 7.00 9.20 Sollecitazion X [m] 0.40 2.61 4.80 6.99 9.20 Sollecitazion Y [m] 0.45	M [kNm] -534.4939 -231.4581 -479.9947 ii fondazione M [kNm] -432.9177 308.4849 567.4543 318.5828 -432.8559 ii traverso (M [kNm] -393.6633 227.3624 470.6274 227.3517 -393.6849 ii piedritto M [kNm] -432.9177	v [kN] -227.4340 5.7558 148.7598 v [kN] -452.1519 -225.0708 6.2465 232.9708 452.1563 (Combinazione n° 8) v [kN] 340.2885 210.4214 -0.0025 -210.4263 -340.2935 sinistro (Combinazione n° 8 v [kN] 205.4767	**N [kN] 205.4302 205
Y [m] 0.45 3.38 6.30 Sollecitazion X [m] 0.40 2.56 4.80 7.00 9.20 Sollecitazion X [m] 0.40 2.61 4.80 6.99 9.20 Sollecitazion Y [m] 0.45 3.38 6.30	M [kNm] -534.4939 -231.4581 -479.9947 i fondazione M [kNm] -432.9177 -308.4849 567.4543 318.5828 -432.8559 i traverso (M [kNm] -393.6633 227.3624 470.6274 227.3517 -393.6849 i piedritto M [kNm] -432.9177 -162.6002 -393.6633	v [kN] -227.4340 5.7558 148.7598 v [kN] v [kN] -452.1519 -225.0708 6.2465 232.9708 452.1563 (Combinazione n° 8) v [kN] 340.2885 210.4214 -0.0025 -210.4263 -340.2935 sinistro (Combinazione n° 8 v [kN] 205.4767 -7.1769	**N [kN] 205.4302 205
Y [m] 0.45 3.38 6.30 Sollecitazion X [m] 0.40 2.56 4.80 7.00 9.20 Sollecitazion X [m] 0.40 2.61 4.80 6.99 9.20 Sollecitazion Y [m] 0.45 3.38 6.30	M [kNm] -534.4939 -231.4581 -479.9947 i fondazione M [kNm] -432.9177 -308.4849 567.4543 318.5828 -432.8559 i traverso (M [kNm] -393.6633 227.3624 470.6274 227.3517 -393.6849 i piedritto M [kNm] -432.9177 -162.6002 -393.6633	v [kN] -227.4340 5.7558 148.7598 v [kN] -48.1519 -225.0708 6.2465 232.9708 452.1563 (Combinazione n° 8) v [kN] 340.2885 210.4214 -0.0025 -210.4263 -340.2935 sinistro (Combinazione n° 8) v [kN] 205.4767 -7.1769 -136.6710	**N [kN] 205.4302 205
Y [m] 0.45 3.38 6.30 Sollecitazion X [m] 0.40 2.56 4.80 7.00 9.20 Sollecitazion X [m] 0.40 2.61 4.80 6.99 9.20 Sollecitazion Y [m] 0.45 3.38 6.30 Sollecitazion Y [m]	M [kNm] -534.4939 -231.4581 -479.9947 i fondazione M [kNm] -432.9177 308.4849 567.4543 318.5828 -432.8559 i traverso (V kN -227.4340 5.7558 148.7598	**N [kN] 205.4302 205
Y [m] 0.45 3.38 6.30 Sollecitazion X [m] 0.40 2.56 4.80 7.00 9.20 Sollecitazion X [m] 0.40 2.61 4.80 6.99 9.20 Sollecitazion Y [m] 0.45 3.38 6.30 Sollecitazion Y [m] 0.45	M [kNm] -534.4939 -231.4581 -479.9947 i fondazione M [kNm] -432.9177 308.4849 567.4543 318.5828 -432.8559 i traverso (M [kNm] -393.6633 227.3624 470.6274 227.3517 -393.6849 i piedritto M [kNm] -432.9177 -162.6002 -393.6633 i piedritto M [kNm] -432.9559	v [kN] -227.4340 5.7558 148.7598 v [kN] -452.1519 -225.0708 6.2465 232.9708 452.1563 (Combinazione n° 8) v [kN] 340.2885 210.4214 -0.0025 -210.4263 -340.2935 sinistro (Combinazione n° 8) v [kN] 205.4767 -7.1769 -136.6710 destro (Combinazione n° 8) v [kN] -205.4197	**N [kN]** **N [kN]** 205.4302 205.4302 205.4302 205.4302 205.4302 **N [kN]** 136.6708 136.6708 136.6708 136.6708 136.6708 136.788 136.6708 136.8788 136.87885 340.2885
Y [m] 0.45 3.38 6.30 Sollecitazion X [m] 0.40 2.56 4.80 7.00 9.20 Sollecitazion X [m] 0.40 2.61 4.80 6.99 9.20 Sollecitazion Y [m] 0.45 3.38 6.30 Sollecitazion Y [m] 0.45 3.38	M [kNm] -534.4939 -231.4581 -479.9947 i fondazione M [kNm] -432.9177 308.4849 567.4543 318.5828 -432.8559 ii traverso (M [kNm] -393.6633 227.3624 470.6274 227.3517 -393.6849 ii piedritto M [kNm] -432.9177 -162.6002 -393.6633 ii piedritto M [kNm] -432.9177 -162.6002 -393.6633	v [kN] -227.4340 5.7558 148.7598 v [kN] -452.1519 -225.0708 6.2465 232.9708 452.1563 (Combinazione n° 8) v [kN] 340.2885 210.4214 -0.0025 -210.4263 -340.2935 sinistro (Combinazione n° 8) v [kN] 205.4767 -7.1769 -136.6710 destro (Combinazione n° 8) v [kN] -205.4197 7.1939	**N [kN]** **N [kN]** **205.4302** **205.4302** **205.4302** **205.4302** **205.4302** **205.4302** **205.4302** **206.4302** **206.4302** **206.4302** **206.4302** **36.6708** **136.6708
Y [m] 0.45 3.38 6.30 Sollecitazion X [m] 0.40 2.56 4.80 7.00 9.20 Sollecitazion X [m] 0.40 2.61 4.80 6.99 9.20 Sollecitazion Y [m] 0.45 3.38 6.30 Sollecitazion Y [m] 0.45	M [kNm] -534.4939 -231.4581 -479.9947 i fondazione M [kNm] -432.9177 308.4849 567.4543 318.5828 -432.8559 i traverso (M [kNm] -393.6633 227.3624 470.6274 227.3517 -393.6849 i piedritto M [kNm] -432.9177 -162.6002 -393.6633 i piedritto M [kNm] -432.9559	v [kN] -227.4340 5.7558 148.7598 v [kN] -452.1519 -225.0708 6.2465 232.9708 452.1563 (Combinazione n° 8) v [kN] 340.2885 210.4214 -0.0025 -210.4263 -340.2935 sinistro (Combinazione n° 8) v [kN] 205.4767 -7.1769 -136.6710 destro (Combinazione n° 8) v [kN] -205.4197	**N [kN]** **N [kN]** 205.4302 205.4302 205.4302 205.4302 205.4302 **N [kN]** 136.6708 136.6708 136.6708 136.6708 136.6708 136.788 136.6708 136.8788 136.87885 340.2885

Adeguamento al tipo B dal km 12+000 al km 18+000 (ex SS125 "Orientale Sarda" - Connessione tra la SS554 e la nuova SS554)

CA352

Relazione tecnica e di calcolo ST01 - SOTTOVIA Pr. 5+460,00

Sollecitazioni	fondazione	(Combinazione n° 9)	
X [m]	M [kNm]	v [kn]	N [kN]
0.40	-358.7526	-334.0101	201.2915
2.56	191.7992	-168.0434	205.5404
4.80	388.0849	2.9530	209.9623
7.00	207.0397	172.2389	214.2977
9.20	-350.7486	336.5914	218.6331
Sollecitazioni	traverso (Combinazione n° 9)	
X [m]	M [kNm]	v [kn]	N [kN]
0.40	-234.2187	215.9010	122.3373
2.61	122.8015	106.5688	126.2160
4.80	237.7877	-1.3527	130.0447
6.99	116.8884		133.8734
9.20	-246.1222	-218.6064	137.7521
0.11			
Sollecitazioni	. piedritto :	sinistro (Combinazione n° 9)	-
Y [m] 0.45	M [kNm] -358.7526	V [kN] 211.1102	N [kN] 338.0247
3.38	-52.6521	9.7294	276.9629
6.30	-234.2187	-122.3373	215.9010
Sollecitazioni	piedritto (destro (Combinazione n° 9)	
		_	N [l-N]
Y [m]	M [kNm] -350.7486	V [kN]	N [kN]
0.45	-50.2502	-208.8512 -5.6754	279.6682
3.38	-246.1222	128.2664	218.6064
6.30	-240.1222	128.2004	218.0004
Sollecitazioni	fondazione	(Combinazione n° 10)	
X [m]	M [kNm]	v [kn]	N [kN]
0.40	-343.7951	-316.3022	199.6744
2.56	177.6665	-159.2720	203.9233
4.80	363.8054		208.3453
7.00	192.5292	163.0429	212.6807
9.20	-335.7644	318.8810	217.0161
Sollecitazioni	traverso (Combinazione n° 10)	
X [m]	M [kNm]	v [kn]	N [kN]
0.40	-228.6648	208.1949	123.9447
2.61	115.5861	102.7414	127.8235
4.80	226.3909	-1.3514	131.6521
6.99	109.6785	-105.4442	135.4808
9.20	-240.5572	-210.8977	139.3595
Sollecitazioni	piedritto :	sinistro (Combinazione n° 10	<u>))</u>
Y [m]	M [kNm]	V [kN]	N [kN]
0.45	-343.7951	209.5028	320.0712
3.38 6.30	-42.3964 -228.6648	8.1220 -123.9447	264.1331 208.1949
		destro (Combinazione n° 10)	
Y [m] 0.45	M [kNm] -335.7644	V [kN] -207.2243	N [kN]
3.38	-40.0215	-4.0682	266.8359
6.30	-240.5572	129.8647	210.8977
Sollecitazioni	fondazione	(Combinazione n° 11)	
X [m]	M [kNm]	V [kN]	N [kN]
0.40 2.56	-358.7526 191.7992	-334.0101 -168.0434	201.2915
4.80	388.0849	2.9530	209.9623
7.00	207.0397	172.2389	214.2977
9.20	-350.7486	336.5914	214.2977
		<u>-</u> -	

Sollecitazioni traverso (Combinazione n° 11)

Adeguamento al tipo B dal km 12+000 al km 18+000 (ex SS125 "Orientale Sarda" - Connessione tra la SS554 e la nuova SS554)

CA352

Relazione tecnica e di calcolo ST01 - SOTTOVIA Pr. 5+460,00

X [m] 0.40 2.61 4.80 6.99	M [kNm] -234.2187 122.8015 237.7877 116.8884	V [kN] 215.9010 106.5688 -1.3527 -109.2741	N [kN] 122.3373 126.2160 130.0447 133.8734
9.20	-246.1222	-218.6064	137.7521
·			
Y [m] 0.45	M [kNm] -358.7526	V [kN] 211.1102	N [kN] 338.0247
3.38	-52.6521	9.7294	276.9629
6.30	-234.2187	-122.3373	215.9010
Sollecitazioni	piedritto d	lestro (Combinazione n° 11)	
Y [m]	M [kNm]	V [kN]	N [kN]
0.45	-350.7486	-208.8512	340.7300
3.38 6.30	-50.2502 -246.1222	-5.6754 128.2664	279.6682 218.6064
Sollecitazioni	fondazione	(Combinazione n° 12)	
X [m]	M [kNm]	V [kN]	n [kn]
0.40	-343.7951	-316.3022	199.6744
2.56 4.80	177.6665 363.8054	-159.2720 2.6493	203.9233 208.3453
7.00	192.5292	163.0429	212.6807
9.20	-335.7644	318.8810	217.0161
Sollecitazioni	traverso (C	combinazione n° 12)	
X [m]	M [kNm]	V [kN]	N [kN]
0.40	-228.6648		123.9447
		208.1949	
2.61 4.80	115.5861 226.3909	208.1949 102.7414 -1.3514	127.8235 131.6521
2.61 4.80 6.99	115.5861 226.3909 109.6785	102.7414 -1.3514 -105.4442	127.8235 131.6521 135.4808
2.61 4.80	115.5861 226.3909	102.7414 -1.3514	127.8235 131.6521
2.61 4.80 6.99	115.5861 226.3909 109.6785	102.7414 -1.3514 -105.4442	127.8235 131.6521 135.4808
2.61 4.80 6.99 9.20	115.5861 226.3909 109.6785 -240.5572	102.7414 -1.3514 -105.4442	127.8235 131.6521 135.4808 139.3595
2.61 4.80 6.99 9.20	115.5861 226.3909 109.6785 -240.5572	102.7414 -1.3514 -105.4442 -210.8977 Sinistro (Combinazione n° 12 V [kN]	127.8235 131.6521 135.4808 139.3595
2.61 4.80 6.99 9.20 Sollecitazioni Y [m] 0.45	115.5861 226.3909 109.6785 -240.5572 piedritto s M [kNm] -343.7951	102.7414 -1.3514 -105.4442 -210.8977 sinistro (Combinazione n° 12 V [kN] 209.5028	127.8235 131.6521 135.4808 139.3595 2) N [kN] 320.0712
2.61 4.80 6.99 9.20 Sollecitazioni Y [m]	115.5861 226.3909 109.6785 -240.5572 piedritto s M [kNm]	102.7414 -1.3514 -105.4442 -210.8977 Sinistro (Combinazione n° 12 V [kN]	127.8235 131.6521 135.4808 139.3595 N [kN]
2.61 4.80 6.99 9.20 Sollecitazioni Y [m] 0.45 3.38 6.30	115.5861 226.3909 109.6785 -240.5572 piedritto s M [kNm] -343.7951 -42.3964 -228.6648	102.7414 -1.3514 -105.4442 -210.8977 Sinistro (Combinazione n° 12 V [kN] 209.5028 8.1220 -123.9447	127.8235 131.6521 135.4808 139.3595 2) N [kN] 320.0712 264.1331
2.61 4.80 6.99 9.20 Sollecitazioni Y [m] 0.45 3.38 6.30 Sollecitazioni	115.5861 226.3909 109.6785 -240.5572 piedritto s M [kNm] -343.7951 -42.3964 -228.6648 piedritto d	102.7414 -1.3514 -105.4442 -210.8977 Sinistro (Combinazione n° 12 V [kN] 209.5028 8.1220 -123.9447 Lestro (Combinazione n° 12)	127.8235 131.6521 135.4808 139.3595 N [kN] 320.0712 264.1331 208.1949
2.61 4.80 6.99 9.20 Sollecitazioni Y [m] 0.45 3.38 6.30 Sollecitazioni Y [m]	115.5861 226.3909 109.6785 -240.5572 piedritto s M [kNm] -343.7951 -42.3964 -228.6648	102.7414 -1.3514 -105.4442 -210.8977 sinistro (Combinazione n° 12 V [kN] 209.5028 8.1220 -123.9447 lestro (Combinazione n° 12) V [kN]	127.8235 131.6521 135.4808 139.3595 N [kN] 320.0712 264.1331 208.1949
2.61 4.80 6.99 9.20 Sollecitazioni Y [m] 0.45 3.38 6.30 Sollecitazioni Y [m] 0.45 3.38	115.5861 226.3909 109.6785 -240.5572 piedritto s	102.7414 -1.3514 -105.4442 -210.8977 Sinistro (Combinazione n° 12 V [kN] 209.5028 8.1220 -123.9447 Lestro (Combinazione n° 12) V [kN] -207.2243 -4.0682	127.8235 131.6521 135.4808 139.3595 N [kN] 320.0712 264.1331 208.1949 N [kN] 322.7740 266.8359
2.61 4.80 6.99 9.20 Sollecitazioni Y [m] 0.45 3.38 6.30 Sollecitazioni Y [m] 0.45	115.5861 226.3909 109.6785 -240.5572 piedritto s M [kNm] -343.7951 -42.3964 -228.6648 piedritto d M [kNm] -335.7644	102.7414 -1.3514 -105.4442 -210.8977 Sinistro (Combinazione n° 12 V [kN] 209.5028 8.1220 -123.9447 Hestro (Combinazione n° 12) V [kN] -207.2243	127.8235 131.6521 135.4808 139.3595 N [kN] 320.0712 264.1331 208.1949 N [kN] 322.7740
2.61 4.80 6.99 9.20 Sollecitazioni Y [m] 0.45 3.38 6.30 Sollecitazioni Y [m] 0.45 3.38 6.30	115.5861 226.3909 109.6785 -240.5572 piedritto s	102.7414 -1.3514 -105.4442 -210.8977 V [kN] 209.5028 8.1220 -123.9447 lestro (Combinazione n° 12) V [kN] -207.2243 -4.0682 129.8647	127.8235 131.6521 135.4808 139.3595 N [kN] 320.0712 264.1331 208.1949 N [kN] 322.7740 266.8359
2.61 4.80 6.99 9.20 Sollecitazioni Y [m] 0.45 3.38 6.30 Sollecitazioni Y [m] 0.45 3.38 6.30	115.5861 226.3909 109.6785 -240.5572 piedritto s	102.7414 -1.3514 -105.4442 -210.8977 v [kN] 209.5028 8.1220 -123.9447 lestro (Combinazione n° 12) v [kN] -207.2243 -4.0682 129.8647 (Combinazione n° 13)	127.8235 131.6521 135.4808 139.3595 N [kN] 320.0712 264.1331 208.1949 N [kN] 322.7740 266.8359 210.8977
2.61 4.80 6.99 9.20 Sollecitazioni Y [m] 0.45 3.38 6.30 Sollecitazioni Y [m] 0.45 3.38 6.30	115.5861 226.3909 109.6785 -240.5572 piedritto s	102.7414 -1.3514 -105.4442 -210.8977 v [kN] 209.5028 8.1220 -123.9447 lestro (Combinazione n° 12) v [kN] -207.2243 -4.0682 129.8647 (Combinazione n° 13) v [kN]	127.8235 131.6521 135.4808 139.3595 N [kN] 320.0712 264.1331 208.1949 N [kN] 322.7740 266.8359 210.8977
2.61 4.80 6.99 9.20 Sollecitazioni Y [m] 0.45 3.38 6.30 Sollecitazioni Y [m] 0.45 3.38 6.30	115.5861 226.3909 109.6785 -240.5572 piedritto s	102.7414 -1.3514 -105.4442 -210.8977 v [kN] 209.5028 8.1220 -123.9447 lestro (Combinazione n° 12) v [kN] -207.2243 -4.0682 129.8647 (Combinazione n° 13) v [kN] -318.8811 -156.8720	127.8235 131.6521 135.4808 139.3595 N [kN] 320.0712 264.1331 208.1949 N [kN] 322.7740 266.8359 210.8977
2.61 4.80 6.99 9.20 Sollecitazioni Y [m] 0.45 3.38 6.30 Sollecitazioni Y [m] 0.45 3.38 6.30 Sollecitazioni X [m] 0.40 2.56 4.80	115.5861 226.3909 109.6785 -240.5572 piedritto s	102.7414 -1.3514 -105.4442 -210.8977 V [kN] 209.5028 8.1220 -123.9447 Lestro (Combinazione n° 12) V [kN] -207.2243 -4.0682 129.8647 (Combinazione n° 13) V [kN] -318.8811 -156.8720 6.7276	127.8235 131.6521 135.4808 139.3595 N [kN] 320.0712 264.1331 208.1949 N [kN] 322.7740 266.8359 210.8977 N [kN] 217.0161 217.0161 212.7672 208.3453
2.61 4.80 6.99 9.20 Sollecitazioni Y [m] 0.45 3.38 6.30 Sollecitazioni Y [m] 0.45 3.38 6.30	115.5861 226.3909 109.6785 -240.5572 piedritto s	102.7414 -1.3514 -105.4442 -210.8977 v [kN] 209.5028 8.1220 -123.9447 lestro (Combinazione n° 12) v [kN] -207.2243 -4.0682 129.8647 (Combinazione n° 13) v [kN] -318.8811 -156.8720	127.8235 131.6521 135.4808 139.3595 N [kN] 320.0712 264.1331 208.1949 N [kN] 322.7740 266.8359 210.8977
2.61 4.80 6.99 9.20 Sollecitazioni Y [m] 0.45 3.38 6.30 Sollecitazioni Y [m] 0.45 3.38 6.30 Sollecitazioni X [m] 0.40 2.56 4.80 7.00 9.20	115.5861 226.3909 109.6785 -240.5572 piedritto s	102.7414 -1.3514 -105.4442 -210.8977 V [kN] 209.5028 8.1220 -123.9447 Lestro (Combinazione n° 12) V [kN] -207.2243 -4.0682 129.8647 (Combinazione n° 13) V [kN] -318.881 -156.8720 6.7276 165.3577	127.8235 131.6521 135.4808 139.3595 N [kN] 320.0712 264.1331 208.1949 N [kN] 322.7740 266.8359 210.8977 N [kN] 217.0161 212.7672 208.3453 204.0099
2.61 4.80 6.99 9.20 Sollecitazioni Y [m] 0.45 3.38 6.30 Sollecitazioni Y [m] 0.45 3.38 6.30 Sollecitazioni X [m] 0.40 2.56 4.80 7.00 9.20	115.5861 226.3909 109.6785 -240.5572 piedritto s	102.7414 -1.3514 -105.4442 -210.8977 Sinistro (Combinazione n° 12 V [kN] 209.5028 8.1220 -123.9447 Lestro (Combinazione n° 12) V [kN] -207.2243 -4.0682 129.8647 (Combinazione n° 13) V [kN] -318.8811 -156.8720 6.7276 165.3577 316.3021	127.8235 131.6521 135.4808 139.3595 N [kN] 320.0712 264.1331 208.1949 N [kN] 322.7740 266.8359 210.8977 N [kN] 217.0161 212.7672 208.3453 204.0099
2.61 4.80 6.99 9.20 Sollecitazioni Y [m] 0.45 3.38 6.30 Sollecitazioni Y [m] 0.45 3.38 6.30 Sollecitazioni X [m] 0.40 2.56 4.80 7.00 9.20 Sollecitazioni X [m] 0.40	115.5861 226.3909 109.6785 -240.5572 piedritto s	102.7414 -1.3514 -105.4442 -210.8977 v [kN] 209.5028 8.1220 -123.9447 lestro (Combinazione n° 12) v [kN] -207.2243 -4.0682 129.8647 (Combinazione n° 13) v [kN] -318.8811 -156.8720 6.7276 165.3577 316.3021 combinazione n° 13) v [kN] 200.8978	127.8235 131.6521 135.4808 139.3595 N [kN] 320.0712 264.1331 208.1949 N [kN] 322.7740 266.8359 210.8977 N [kN] 217.0161 212.7672 208.3453 204.0099 199.6744 N [kN] 139.3595
2.61 4.80 6.99 9.20 Sollecitazioni Y [m] 0.45 3.38 6.30 Sollecitazioni Y [m] 0.45 3.38 6.30 Sollecitazioni X [m] 0.40 2.56 4.80 7.00 9.20 Sollecitazioni X [m] 0.40 2.56	115.5861 226.3909 109.6785 -240.5572 piedritto s	102.7414 -1.3514 -105.4442 -210.8977 v [kN] 209.5028 8.1220 -123.9447 lestro (Combinazione n° 12) v [kN] -207.2243 -4.0682 129.8647 (Combinazione n° 13) v [kN] -318.8811 -156.8720 6.7276 165.3577 316.3021 combinazione n° 13) v [kN] 210.8978 105.4443	127.8235 131.6521 135.4808 139.3595 N [kN] 320.0712 264.1331 208.1949 N [kN] 322.7740 266.8359 210.8977 N [kN] 217.0161 212.7672 208.3453 204.0099 199.6744 N [kN] 139.3595 135.4808
2.61 4.80 6.99 9.20 Sollecitazioni Y [m] 0.45 3.38 6.30 Sollecitazioni Y [m] 0.45 3.38 6.30 Sollecitazioni X [m] 0.40 2.56 4.80 7.00 9.20 Sollecitazioni X [m] 0.40	115.5861 226.3909 109.6785 -240.5572 piedritto s	102.7414 -1.3514 -105.4442 -210.8977 v [kN] 209.5028 8.1220 -123.9447 lestro (Combinazione n° 12) v [kN] -207.2243 -4.0682 129.8647 (Combinazione n° 13) v [kN] -318.8811 -156.8720 6.7276 165.3577 316.3021 combinazione n° 13) v [kN] 200.8978	127.8235 131.6521 135.4808 139.3595 N [kN] 320.0712 264.1331 208.1949 N [kN] 322.7740 266.8359 210.8977 N [kN] 217.0161 212.7672 208.3453 204.0099 199.6744 N [kN] 139.3595

 $\underline{Sollecitazioni\ piedritto\ sinistro\ (Combinazione\ n^\circ\ 13)}$

Adeguamento al tipo B dal km 12+000 al km 18+000 (ex SS125 "Orientale Sarda" - Connessione tra la SS554 e la nuova SS554)

CA352

Y [m]	M [kNm]	V [kN]	N [kN]
0.45	-335.7650	207.2243	322.7742
3.38	-40.0221	4.0682	266.8360
6.30	-240.5577	-129.8647	210.8978
Sollecitazioni	piedritto	destro (Combinazione n° 13)	
	•	· · · · · · · · · · · · · · · · · · ·	
Y [m]	M [kNm]	V [kN]	N [kN]
0.45	-343.7946	-209.5028	320.0711
3.38 6.30	-42.3958 -228.6643	-8.1219 123.9447	264.1329 208.1948
0.50	-220.0043	123.944/	200.1940
Sollecitazioni	fondazione	e (Combinazione n° 14)	
X [m]	M [kNm]	V [kN]	N [kN]
0.40	-350.7493	-336.5916	218.6331
2.56	199.6251	-165.6500	214.3842
4.80	388.0850	7.0235	209.9623
7.00	199.3171	174.5473	205.6269
9.20	-358.7520	334.0099	201.2915
Sollecitazioni	traverso	(Combinazione n° 14)	
X [m]	M [kNm]	V [kN]	N [kN]
0.40	-246.1228	218.6065	137.7521
2.61	116.8881	109.2743	133.8734
4.80	237.7877	1.3528	130.0447
6.99	122.8017	-106.5687	126.2160
9.20	-234.2182	-215.9009	122.3373
Sollecitazioni	piedritto	sinistro (Combinazione n° 14	1)
Y [m]	M [kNm]	V [kN]	N [kN]
0.45	-350.7493	208.8512	340.7302
3.38	-50.2508	5.6754	279.6683
6.30	-246.1228	-128.2664	218.6065
Sollecitazioni	piedritto	destro (Combinazione n° 14)	
			N Davi
Y [m]	M [kNm]	V [kN]	N [kN]
Y [m] 0.45	M [kNm]	V [kN] -211.1102	338.0246
Y [m]	M [kNm]	V [kN]	
Y [m] 0.45 3.38	M [kNm] -358.7520 -52.6515	V [kN] -211.1102 -9.7294	338.0246 276.9627
Y [m] 0.45 3.38 6.30	M [kNm] -358.7520 -52.6515 -234.2182	V [kN] -211.1102 -9.7294 122.3373	338.0246 276.9627
Y [m] 0.45 3.38 6.30	M [kNm] -358.7520 -52.6515 -234.2182	V [kN] -211.1102 -9.7294	338.0246 276.9627
Y [m] 0.45 3.38 6.30 Sollecitazioni X [m]	M [kNm] -358.7520 -52.6515 -234.2182 fondazione M [kNm]	V [kN] -211.1102 -9.7294 122.3373 • (Combinazione n° 15) V [kN]	338.0246 276.9627 215.9009 N [kN]
Y [m] 0.45 3.38 6.30 Sollecitazioni X [m] 0.40	M [kNm] -358.7520 -52.6515 -234.2182 fondazione M [kNm] -350.7493	V [kN] -211.1102 -9.7294 122.3373 * (Combinazione n° 15) V [kN] -336.5916	338.0246 276.9627 215.9009 N [kN] 218.6331
Y [m] 0.45 3.38 6.30 Sollecitazioni X [m] 0.40 2.56	M [kNm] -358.7520 -52.6515 -234.2182 fondazione M [kNm] -350.7493 199.6251	V [kN] -211.1102 -9.7294 122.3373 • (Combinazione n° 15) V [kN] -336.5916 -165.6500	338.0246 276.9627 215.9009 N [kN] 218.6331 214.3842
Y [m] 0.45 3.38 6.30 Sollecitazioni X [m] 0.40 2.56 4.80	M [kNm] -358.7520 -52.6515 -234.2182 fondazione M [kNm] -350.7493 199.6251 388.0850	V [kN] -211.1102 -9.7294 122.3373 • (Combinazione n° 15) V [kN] -336.5916 -165.6500 7.0235	338.0246 276.9627 215.9009 N [kN] 218.6331 214.3842 209.9623
Y [m] 0.45 3.38 6.30 Sollecitazioni X [m] 0.40 2.56	M [kNm] -358.7520 -52.6515 -234.2182 fondazione M [kNm] -350.7493 199.6251	V [kN] -211.1102 -9.7294 122.3373 • (Combinazione n° 15) V [kN] -336.5916 -165.6500	338.0246 276.9627 215.9009 N [kN] 218.6331 214.3842
Y [m] 0.45 3.38 6.30 Sollecitazioni X [m] 0.40 2.56 4.80 7.00 9.20	M [kNm] -358.7520 -52.6515 -234.2182 fondazione M [kNm] -350.7493 199.6251 388.0850 199.3171 -358.7520	V [kN] -211.1102 -9.7294 122.3373 * (Combinazione n° 15) V [kN] -336.5916 -165.6500 7.0235 174.5473 334.0099	38.0246 276.9627 215.9009 N [kN] 218.6331 214.3842 209.9623 205.6269
Y [m] 0.45 3.38 6.30 Sollecitazioni X [m] 0.40 2.56 4.80 7.00 9.20	M [kNm] -358.7520 -52.6515 -234.2182 fondazione M [kNm] -350.7493 199.6251 388.0850 199.3171 -358.7520	V [kN] -211.1102 -9.7294 122.3373 • (Combinazione n° 15) V [kN] -336.5916 -165.6500 7.0235 174.5473	38.0246 276.9627 215.9009 N [kN] 218.6331 214.3842 209.9623 205.6269
Y [m] 0.45 3.38 6.30 Sollecitazioni X [m] 0.40 2.56 4.80 7.00 9.20	M [kNm] -358.7520 -52.6515 -234.2182 fondazione M [kNm] -350.7493 199.6251 388.0850 199.3171 -358.7520	V [kN] -211.1102 -9.7294 122.3373 * (Combinazione n° 15) V [kN] -336.5916 -165.6500 7.0235 174.5473 334.0099	38.0246 276.9627 215.9009 N [kN] 218.6331 214.3842 209.9623 205.6269
Y [m] 0.45 3.38 6.30 Sollecitazioni X [m] 0.40 2.56 4.80 7.00 9.20 Sollecitazioni X [m] 0.40	M [kNm] -358.7520 -52.6515 -234.2182 fondazione M [kNm] -350.7493 199.6251 388.0850 199.3171 -358.7520 traverso M [kNm] -246.1228	V [kN] -211.1102 -9.7294 122.3373 • (Combinazione n° 15) V [kN] -336.5916 -165.6500 7.0235 174.5473 334.0099 (Combinazione n° 15) V [kN] 218.6065	338.0246 276.9627 215.9009 N [kN] 218.6331 214.3842 205.6269 201.2915 N [kN] 137.7521
Y [m] 0.45 3.38 6.30 Sollecitazioni X [m] 0.40 2.56 4.80 7.00 9.20 Sollecitazioni X [m] 0.40 2.51	M [kNm] -358.7520 -52.6515 -234.2182 fondazione M [kNm] -350.7493 199.6251 388.0850 199.3171 -358.7520 traverso M [kNm] -246.1228 116.8881	V [kN] -211.1102 -9.7294 122.3373 * (Combinazione n° 15) V [kN] -336.5916 -165.6500 7.0235 174.5473 334.0099 (Combinazione n° 15) V [kN] 218.6065 109.2743	338.0246 276.9627 215.9009 N [kN] 218.6331 214.3842 209.9623 205.6269 201.2915 N [kN] 137.7521 133.8734
Y [m] 0.45 3.38 6.30 Sollecitazioni X [m] 0.40 2.56 4.80 7.00 9.20 Sollecitazioni X [m] 0.40 2.61 4.80	M [kNm] -358.7520 -52.6515 -234.2182 fondazione M [kNm] -350.7493 199.6251 388.0850 199.3171 -358.7520 traverso M [kNm] -246.1228 116.8881 237.7877	V [kN] -211.1102 -9.7294 122.3373 • (Combinazione n° 15) V [kN] -336.5916 -165.6500 7.0235 174.5473 334.0099 (Combinazione n° 15) V [kN] 218.6065 109.2743 1.3528	38.0246 276.9627 215.9009 N [kN] 218.6331 214.3842 209.9623 205.6269 201.2915 N [kN] 137.7521 133.8734 130.0447
Y [m] 0.45 3.38 6.30 Sollecitazioni X [m] 0.40 2.56 4.80 7.00 9.20 Sollecitazioni X [m] 0.40 2.61 4.80 6.99	M [kNm] -358.7520 -52.6515 -234.2182 fondazione M [kNm] -350.7493 199.6251 388.0850 199.3171 -358.7520 traverso M [kNm] -246.1228 116.8881 237.7877 122.8017	V [kN] -211.1102 -9.7294 122.3373 • (Combinazione n° 15) V [kN] -336.5916 -165.6500 7.0235 174.5473 334.0099 (Combinazione n° 15) V [kN] 218.6065 109.2743 1.3528 -106.5687	38.0246 276.9627 215.9009 N [kN] 218.6331 214.3842 209.9623 205.6269 201.2915 N [kN] 137.7521 133.8734 130.0447 126.2160
Y [m] 0.45 3.38 6.30 Sollecitazioni X [m] 0.40 2.56 4.80 7.00 9.20 Sollecitazioni X [m] 0.40 2.61 4.80	M [kNm] -358.7520 -52.6515 -234.2182 fondazione M [kNm] -350.7493 199.6251 388.0850 199.3171 -358.7520 traverso M [kNm] -246.1228 116.8881 237.7877	V [kN] -211.1102 -9.7294 122.3373 • (Combinazione n° 15) V [kN] -336.5916 -165.6500 7.0235 174.5473 334.0099 (Combinazione n° 15) V [kN] 218.6065 109.2743 1.3528 -106.5687	38.0246 276.9627 215.9009 N [kN] 218.6331 214.3842 209.9623 205.6269 201.2915 N [kN] 137.7521 133.8734 130.0447
Y [m] 0.45 3.38 6.30 Sollecitazioni X [m] 0.40 2.56 4.80 7.00 9.20 Sollecitazioni X [m] 0.40 2.61 4.80 6.99	M [kNm] -358.7520 -52.6515 -234.2182 fondazione M [kNm] -350.7493 199.6251 388.0850 199.3171 -358.7520 traverso M [kNm] -246.1228 116.8881 237.7877 122.8017	V [kN] -211.1102 -9.7294 122.3373 • (Combinazione n° 15) V [kN] -336.5916 -165.6500 7.0235 174.5473 334.0099 (Combinazione n° 15) V [kN] 218.6065 109.2743 1.3528 -106.5687	38.0246 276.9627 215.9009 N [kN] 218.6331 214.3842 209.9623 205.6269 201.2915 N [kN] 137.7521 133.8734 130.0447 126.2160
Y [m] 0.45 3.38 6.30 Sollecitazioni X [m] 0.40 2.56 4.80 7.00 9.20 Sollecitazioni X [m] 0.40 2.61 4.80 6.99 9.20	M [kNm] -358.7520 -52.6515 -234.2182 fondazione M [kNm] -350.7493 199.6251 388.0850 199.3171 -358.7520 traverso M [kNm] -246.1228 116.8881 237.7877 122.8017 -234.2182	V [kN] -211.1102 -9.7294 122.3373 • (Combinazione n° 15) V [kN] -336.5916 -165.6500 7.0235 174.5473 334.0099 (Combinazione n° 15) V [kN] 218.6065 109.2743 1.3528 -106.5687	38.0246 276.9627 215.9009 N [kN] 218.6331 214.3842 209.9623 205.6269 201.2915 N [kN] 137.7521 133.8734 130.0447 126.2160 122.3373
Y [m] 0.45 3.38 6.30 Sollecitazioni X [m] 0.40 2.56 4.80 7.00 9.20 Sollecitazioni X [m] 0.40 2.61 4.80 6.99 9.20 Sollecitazioni Sollecitazioni	M [kNm] -358.7520 -52.6515 -234.2182 fondazione M [kNm] -350.7493 199.6251 388.0850 199.3171 -358.7520 traverso M [kNm] -246.1228 116.8881 237.7877 122.8017 -234.2182	V [kN] -211.1102 -9.7294 122.3373 E (Combinazione n° 15) V [kN] -336.5916 -165.6500 7.0235 174.5473 334.0099 (Combinazione n° 15) V [kN] 218.6065 109.2743 1.3528 -106.5687 -215.9009 sinistro (Combinazione n° 15	388.0246 276.9627 215.9009 N [kN] 218.6331 214.3842 209.9623 205.6269 201.2915 N [kN] 137.7521 133.8734 130.0447 126.2160 122.3373
Y [m] 0.45 3.38 6.30 Sollecitazioni X [m] 0.40 2.56 4.80 7.00 9.20 Sollecitazioni X [m] 0.40 2.61 4.80 6.99 9.20 Sollecitazioni Y [m]	M [kNm] -358.7520 -52.6515 -234.2182 fondazione M [kNm] -350.7493 199.6251 388.0850 199.3171 -358.7520 traverso M [kNm] -246.1228 116.8881 237.7877 122.8017 -234.2182 piedritto M [kNm]	V [kN] -211.1102 -9.7294 122.3373 • (Combinazione n° 15) V [kN] -336.5916 -165.6500 7.0235 174.5473 334.0099 (Combinazione n° 15) V [kN] 218.6065 109.2743 1.3528 -106.5687 -215.9009 sinistro (Combinazione n° 15) V [kN]	338.0246 276.9627 215.9009 N [kN] 218.6331 214.3842 209.9623 205.6269 201.2915 N [kN] 137.7521 133.8734 130.0447 126.2160 122.3373
Y [m] 0.45 3.38 6.30 Sollecitazioni X [m] 0.40 2.56 4.80 7.00 9.20 Sollecitazioni X [m] 0.40 2.61 4.80 6.99 9.20 Sollecitazioni Y [m] 0.45	M [kNm] -358.7520 -52.6515 -234.2182 fondazione M [kNm] -350.7493 199.6251 388.0850 199.3171 -358.7520 traverso M [kNm] -246.1228 116.8881 237.7877 122.8017 -234.2182 piedritto M [kNm] -350.7493	V [kN] -211.1102 -9.7294 122.3373 • (Combinazione n° 15) V [kN] -336.5916 -165.6500 7.0235 174.5473 334.0099 (Combinazione n° 15) V [kN] 218.6065 109.2743 1.3528 -106.5687 -215.9009 sinistro (Combinazione n° 15) V [kN] 208.8512	388.0246 276.9627 215.9009 N [kN] 218.6331 214.3842 209.9623 205.6269 201.2915 N [kN] 137.7521 133.8734 130.0447 126.2160 122.3373
Y [m] 0.45 3.38 6.30 Sollecitazioni X [m] 0.40 2.56 4.80 7.00 9.20 Sollecitazioni X [m] 0.40 2.61 4.80 6.99 9.20 Sollecitazioni Y [m]	M [kNm] -358.7520 -52.6515 -234.2182 fondazione M [kNm] -350.7493 199.6251 388.0850 199.3171 -358.7520 traverso M [kNm] -246.1228 116.8881 237.7877 122.8017 -234.2182 piedritto M [kNm]	V [kN] -211.1102 -9.7294 122.3373 • (Combinazione n° 15) V [kN] -336.5916 -165.6500 7.0235 174.5473 334.0099 (Combinazione n° 15) V [kN] 218.6065 109.2743 1.3528 -106.5687 -215.9009 sinistro (Combinazione n° 15) V [kN] 208.8512 5.6754	338.0246 276.9627 215.9009 N [kN] 218.6331 214.3842 209.9623 205.6269 201.2915 N [kN] 137.7521 133.8734 130.0447 126.2160 122.3373
Y [m] 0.45 3.38 6.30 Sollecitazioni X [m] 0.40 2.56 4.80 7.00 9.20 Sollecitazioni X [m] 0.40 2.61 4.80 6.99 9.20 Sollecitazioni Y [m] 0.45 3.38 6.30	M [kNm] -358.7520 -52.6515 -234.2182 fondazione M [kNm] -350.7493 199.6251 388.0850 199.3171 -358.7520 traverso M [kNm] -246.1228 116.8881 237.7877 122.8017 -234.2182 piedritto M [kNm] -350.7493 -50.2508 -246.1228	V [kN] -211.1102 -9.7294 122.3373 (Combinazione n° 15) V [kN] -336.5916 -165.6500 7.0235 174.5473 334.0099 (Combinazione n° 15) V [kN] 218.6065 109.2743 1.3528 -106.5687 -215.9009 sinistro (Combinazione n° 15 V [kN] 208.8512 5.6754 -128.2664	338.0246 276.9627 215.9009 N [kN] 218.6331 214.3842 209.9623 205.6269 201.2915 N [kN] 137.7521 133.8734 130.0447 126.2160 122.3373
Y [m] 0.45 3.38 6.30 Sollecitazioni X [m] 0.40 2.56 4.80 7.00 9.20 Sollecitazioni X [m] 0.40 2.61 4.80 6.99 9.20 Sollecitazioni Y [m] 0.45 3.38 6.30 Sollecitazioni	M [kNm] -358.7520 -52.6515 -234.2182 fondazione M [kNm] -350.7493 199.6251 388.0850 199.3171 -358.7520 traverso M [kNm] -246.1228 116.8881 237.7877 122.8017 -234.2182 piedritto M [kNm] -350.7493 -50.2508 -246.1228 piedritto	V [kN] -211.1102 -9.7294 122.3373 v [kN] -336.5916 -165.6500 7.0235 174.5473 334.0099 (Combinazione n° 15) V [kN] 218.6065 109.2743 1.3528 -106.5687 -215.9009 sinistro (Combinazione n° 15 V [kN] 208.8512 5.6754 -128.2664 destro (Combinazione n° 15)	338.0246 276.9627 215.9009 N [kN] 218.6331 214.3842 209.9623 205.6269 201.2915 N [kN] 137.7521 133.8734 130.0447 126.2160 122.3373
Y [m] 0.45 3.38 6.30 Sollecitazioni X [m] 0.40 2.56 4.80 7.00 9.20 Sollecitazioni X [m] 0.40 2.61 4.80 6.99 9.20 Sollecitazioni Y [m] 0.45 3.38 6.30 Sollecitazioni Y [m]	M [kNm] -358.7520 -52.6515 -234.2182 fondazione M [kNm] -350.7493 199.6251 388.0850 199.3171 -358.7520 traverso (M [kNm] -246.1228 116.8881 237.7877 122.8017 -234.2182 piedritto M [kNm] -350.7493 -50.2508 -246.1228 piedritto M [kNm]	V [kN] -211.1102 -9.7294 122.3373 E (Combinazione n° 15) V [kN] -336.5916 -165.6500 7.0235 174.5473 334.0099 (Combinazione n° 15) V [kN] 218.6065 109.2743 1.3528 -106.5687 -215.9009 Sinistro (Combinazione n° 15) V [kN] 208.8512 5.6754 -128.2664 destro (Combinazione n° 15)	338.0246 276.9627 215.9009 N [kN] 218.6331 214.3842 205.6269 201.2915 N [kN] 137.7521 133.8734 130.0447 126.2160 122.3373
Y [m] 0.45 3.38 6.30 Sollecitazioni X [m] 0.40 2.56 4.80 7.00 9.20 Sollecitazioni X [m] 0.40 2.61 4.80 6.99 9.20 Sollecitazioni Y [m] 0.45 3.38 6.30 Sollecitazioni	M [kNm] -358.7520 -52.6515 -234.2182 fondazione M [kNm] -350.7493 199.6251 388.0850 199.3171 -358.7520 traverso M [kNm] -246.1228 116.8881 237.7877 122.8017 -234.2182 piedritto M [kNm] -350.7493 -50.2508 -246.1228 piedritto	V [kN] -211.1102 -9.7294 122.3373 v [kN] -336.5916 -165.6500 7.0235 174.5473 334.0099 (Combinazione n° 15) V [kN] 218.6065 109.2743 1.3528 -106.5687 -215.9009 sinistro (Combinazione n° 15 V [kN] 208.8512 5.6754 -128.2664 destro (Combinazione n° 15)	338.0246 276.9627 215.9009 N [kN] 218.6331 214.3842 209.9623 205.6269 201.2915 N [kN] 137.7521 133.8734 130.0447 126.2160 122.3373

Adeguamento al tipo B dal km 12+000 al km 18+000 (ex SS125 "Orientale Sarda" - Connessione tra la SS554 e la nuova SS554)

CA352

6.30	-234.2182	122.3373	215.9009
Sollegitazioni	fondazione	(Combinazione n° 16)	
DOTTECTCAZIONI	TONGAZIONE	(COMDINAZIONE II 10)	
X [m]	M [kNm]	v [kn]	N [kN]
0.40 2.56	-335.7650 185.5090	-318.8811 -156.8720	217.0161 212.7672
4.80	363.8054	6.7276	208.3453
7.00	184.7903	165.3577	204.0099
9.20	-343.7946	316.3021	199.6744
Sollecitazioni	traverso (C	Combinazione n° 16)	
* * * *			
X [m] 0.40	M [kNm] -240.5577	V [kN] 210.8978	N [kN] 139.3595
2.61	109.6783	105.4443	135.4808
4.80	226.3909	1.3515	131.6521
6.99 9.20	115.5864 -228.6643	-102.7413 -208.1948	127.8235 123.9447
3.20	220.0010	200.1310	123.3117
Sollecitazioni	piedritto s	sinistro (Combinazione n° 10	<u>6)</u>
Y [m]	M [leNes]	77 []-N]	NT [l-NT]
0.45	M [kNm] -335.7650	V [kN] 207.2243	N [kN] 322.7742
3.38	-40.0221	4.0682	266.8360
6.30	-240.5577	-129.8647	210.8978
Sollecitazioni	piedritto d	destro (Combinazione n° 16)	
			37 [1-37]
Y [m] 0.45	M [kNm] -343.7946	V [kN] -209.5028	N [kN] 320.0711
3.38	-42.3958	-8.1219	264.1329
6.30	-228.6643	123.9447	208.1948
Sollecitazioni	fondazione	(Combinazione n° 17)	
X [m]	M [kNm]	V [kN]	N [kN]
0.40	-321.0779	-326.4406	156.0169
2.56	214.6513	-162.3435	156.0169
4.80 7.00	401.7928 221.9154	4.8348 168.6800	156.0169 156.0169
9.20	-321.0772	326.4405	156.0169
Sollecitazioni	traverso (Combinazione n° 17)	
X [m] 0.40	M [kNm] -217.7453	V [kN] 213.4001	N [kN] 74.4875
2.61	135.8842	106.0072	74.4875
4.80	251.7350	0.0001	74.4875
6.99	135.8844	-106.0071 -213.3999	74.4875 74.4875
9.20	-217.7448	-213.3999	14.4013
Sollecitazioni	piedritto s	sinistro (Combinazione n° 1	7)
Y [m]	M [kNm]	V [kn]	N [LN]
0.45	-321.0779	156.0306	N [kN] 330.4001
3.38	-100.5293	6.0743	271.9001
6.30	-217.7453	-74.4875	213.4001
Sollecitazioni	piedritto d	destro (Combinazione n° 17)	
Y [m]	M [kNm]	V [kn]	N [kN]
0.45	-321.0772	-156.0306	330.3999
3.38	-100.5287	-6.0743	271.8999
6.30	-217.7448	74.4875	213.3999
Sollecitazioni			
DOTTECTEGRICAL	fondazione	(Combinazione n° 18)	
X [m]	M [kNm]	V [kN]	N [kN]
X [m] 0.40	M [kNm]	V [kN] -420.0591	146.4548
X [m] 0.40 2.56	M [kNm] -382.6884 306.0533	V [kN] -420.0591 -208.9568	146.4548 146.4548
X [m] 0.40 2.56 4.80 7.00	M [kNm] -382.6884 306.0533 546.5429 315.3891	V [kN] -420.0591	146.4548 146.4548 146.4548 146.4548
x [m] 0.40 2.56 4.80	M [kNm] -382.6884 306.0533 546.5429	V [kN] -420.0591 -208.9568 5.8919	146.4548 146.4548 146.4548

Adeguamento al tipo B dal km 12+000 al km 18+000 (ex SS125 "Orientale Sarda" - Connessione tra la SS554 e la nuova SS554)

CA352

Sollecitazion	i traverso	(Combinazione n° 18)	
X [m]	M [kNm]	V [kN]	N [kN]
0.40	-338.9476	307.9001	85.3222
2.61	220.9564		85.3222
4.80	439.0078		85.3222
6.99 9.20	220.9567 -338.9469		85.3222 85.3222
9.20	-330.9409	-307.0999	03.3222
Sollecitazion	i piedritto	sinistro (Combinazione n° 1	8)
Y [m]	M [kNm]	V [kN]	N [kN]
0.45	-382.6884		424.9001
3.38	-190.7726		366.4001
6.30	-338.9476	-85.3222	307.9001
Sollecitazion	i piedritto	destro (Combinazione n° 18)	
Y [m]	M [kNm]		N [kN]
0.45 3.38	-382.6876 -190.7718		424.8999 366.3999
6.30	-338.9469		307.8999
Sollecitazion:	i fondazion	e (Combinazione n° 19)	
X [m]	M [kNm]	V [kN]	N [kN]
0.40	-332.5283		155.6051
2.56	228.8567	-170.1618	155.6051
4.80	424.9469		155.6051
7.00	236.4682		155.6051
9.20	-332.5276		155.6051
Sollecitazion:	i traverso	(Combinazione n° 19)	
X [m]	M [kNm]	V [kN]	N [kN]
0.40 2.61	-232.1275 147.7508	229.2401	75.0791
4.80	272.2008		75.0791 75.0791
6.99	147.7511		75.0791
9.20	-232.1269	-229.2399	75.0791
Sollecitazion	i piedritto	sinistro (Combinazione n° 1	9)
Y [m] 0.45	M [kNm]		N [kN]
3.38	-332.5283 -113.2811		346.2401 287.7401
6.30	-232.1275		229.2401
Sollecitazion	i piedritto	destro (Combinazione n° 19)	
Y [m]	M [kNm]	V [kN]	N [kN]
0.45	-332.5276	-155.6187	346.2399
3.38 6.30	-113.2805 -232.1269		287.7399
0.30	232.1203	73.0731	223.2333
Sollecitazion	i fondazion	e (Combinazione n° 20)	
X [m]	M [kNm]	V [kN]	N [kN]
0.40 2.56	-326.0208 209.7456		166.1741 166.1741
4.80	396.9244		166.1741
7.00	217.0273		166.1741
9.20	-325.9991	326.4427	166.1741
Sollecitazion	i traverso	(Combinazione n° 20)	
X [m]	M [kNm]	V [kN]	N [kN]
0.40 2.61	-221.4400	213.3988	84.2242
4.80	132.1867 248.0348	106.0059 -0.0012	84.2242 84.2242
6.99	132.1815	-106.0083	84.2242
9.20	-221.4505	-213.4012	84.2242

Adeguamento al tipo B dal km 12+000 al km 18+000 (ex SS125 "Orientale Sarda" - Connessione tra la SS554 e la nuova SS554)

CA352

Sollecitazioni	piedritto	sinistro (Combinazione n° 20	0)
Y [m]	M [kNm]	V [kN]	N [kN]
0.45	-326.0208	166.1975	330.3988
3.38	-90.3171	6.2892	271.8988
6.30	-221.4400	-84.2242	213.3988
Sollecitazioni	piedritto	destro (Combinazione n° 20)	
Y [m]	M [kNm]	V [kN]	N [kN]
0.45	-325.9991	-166.1800	330.4012
3.38	-90.3220 -221.4505	-6.2830 84.2227	271.9012
6.30	-221.4505	84.2227	213.4012
Sollecitazioni	fondazione	(Combinazione n° 21)	
X [m]	M [kNm]	V [kN]	N [kN]
0.40	-419.6194	-466.9574	153.0125
2.56	345.8197	-232.3377	153.0125
4.80	613.0788	6.4176	153.0125
7.00	356.2126	240.4328	153.0125
9.20	-419.5958	466.9600	153.0125
Sollecitazioni	traverso (Combinazione n° 21)	
X [m]	M [kNm]	V [kN]	N [kN]
0.40	-397.4242	355.2386	99.2611
2.61	257.4835	224.4458	99.2611
4.80 6.99	518.1977 257.4775	-0.0014 -224.4485	99.2611 99.2611
9.20	-397.4364	-355.2414	99.2611
9.20	-397.4304	-333.2414	99.2011
Sollecitazioni	piedritto	sinistro (Combinazione n° 2	1)
Y [m]	M [kNm]	V [kN]	N [kN]
0.45	-419.6194	153.0346	472.2386
3.38	-223.3935	-7.8018	413.7386
6.30	-397.4242	-99.2613	355.2386
Sollecitazioni	piedritto	destro (Combinazione n° 21)	
Y [m]	M [kNm]	V [kN]	N [kN]
0.45	-419.5958	-153.0172	472.2414
3.38	-223.3980	7.8084	413.7414
6.30	-397.4364	99.2610	355.2414
Sollecitazioni	fondazione	(Combinazione n° 22)	
X [m]	M [kNm]	V [kN]	N [kN]
0.40	-416.2581	-459.2900	155.5821
2.56	336.6604	-228.5273	155.5821
4.80	599.5600	6.3313	155.5821
7.00	346.8839	236.5262	155.5821
9.20	-416.2346	459.2925	155.5821
Sollecitazioni	traverso (Combinazione n° 22)	
X [m]	M [kNm]	V [kN]	N [kN]
0.40	-378.5967	347.4986	96.5370
2.61	246.9260	208.6058	96.5370
4.80	486.4723	-0.0014	96.5370
6.99	246.9200		96.5370
9.20	-378.6088	-347.5014	96.5370
Sollecitazioni	piedritto	sinistro (Combinazione n° 23	2)
Y [m]	M [kNm]	V [kN]	N [kN]
0.45	-416.2581	155.6045	464.4986
3.38	-212.4402		405.9986
6.30	-378.5967	-96.5372	347.4986
Sollecitazioni	piedritto	destro (Combinazione n° 22)	
Y [m]	M [kNm]	V [kN]	N [kN]

Adeguamento al tipo B dal km 12+000 al km 18+000 (ex SS125 "Orientale Sarda" - Connessione tra la SS554 e la nuova SS554)

CA352 Relazione tecnica e di calcolo ST01 - SOTTOVIA Pr. 5+460,00

0.45	-416.2346	-155.5871	464.5014
3.38	-212.4447	5.1655	406.0014
6.30	-378.6088	96.5369	347.5014

Sollecitazioni fondazione (Combinazione n° 23)

X [m]	M [kNm]	V [kN]	N [kN]
0.40	-406.4937	-435.7525	171.4359
2.56	307.9972	-216.8359	171.4359
4.80	557.5261	6.0618	171.4359
7.00	317.7190	224.5330	171.4359
9.20	-406.4452	435.7558	171.4359

Sollecitazioni traverso (Combinazione n° 23)

X [m]	M [kNm]	V [kN]	N [kN]
0.40	-362.5717	323.7381	110.2598
2.61	223.5768	196.8024	110.2598
4.80	450.2232	-0.0019	110.2598
6.99	223.5687	-196.8061	110.2598
9.20	-362.5880	-323.7419	110.2598

$\underline{Sollecitazioni\ piedritto\ sinistro\ (Combinazione\ n^{\circ}\ 23)}$

Y [m]	M [kNm]	V [kN]	N [kN]
0.45	-406.4937	171.4728	440.7381
3.38	-177.9924	-4.0837	382.2381
6 30	-362 5717	-110 2600	323 7381

Sollecitazioni piedritto destro (Combinazione n° 23)

Y [m]	M [kNm]	V [kN]	N [kN]
0.45	-406.4452	-171.4291	440.7419
3.38	-178.0087	4.0968	382.2419
6.30	-362.5880	110.2478	323.7419

Pressioni terreno

Pressioni sul terreno di fondazione (Combinazione n $^{\circ}$ 1)

X [m]	σ_{t} [N/mmq]
0.40	0.129
2.56	0.127
4.80	0.126
7.00	0.127
9.20	0.129

Pressioni sul terreno di fondazione (Combinazione n° 2)

X [m]	σ _t [N/mmq]
0.40	0.099
2.56	0.097
4.80	0.097
7.00	0.097
9.20	0.099

Pressioni sul terreno di fondazione (Combinazione n° 3)

X [m]	σ_{t} [N/mmq]
0.40	0.173
2.56	0.170
4.80	0.169
7.00	0.170
9 20	0 173

$\underline{\text{Pressioni sul terreno di fondazione (Combinazione n° 4)}}$

[N/mmq]	$\sigma_{ t t}$	X [m]
0.137		0.40
0.134		2.56
0.133		4.80
0.134		7.00
0.137		9.20

Pressioni sul terreno di fondazione (Combinazione n° 5)

Adeguamento al tipo B dal km 12+000 al km 18+000 (ex SS125 "Orientale Sarda" - Connessione tra la SS554 e la nuova SS554)

CA352

Relazione tecnica e di calcolo ST01 - SOTTOVIA Pr. 5+460,00

X [m]	σ_{t} [N/mmq]
0.40	0.171
2.56	0.168
4.80	0.166
7.00	0.168
9.20	0.171

Pressioni sul terreno di fondazione (Combinazione n° 6)

X [m]	$\sigma_{\rm t}$ [N/mmq]
0.40	0.135
2.56	0.132
4.80	0.131
7.00	0.132
9.20	0.135

Pressioni sul terreno di fondazione (Combinazione n° 7)

X [m]	σ_{t} [N/mmq]
0.40	0.163
2.56	0.161
4.80	0.159
7.00	0.160
9.20	0.163

Pressioni sul terreno di fondazione (Combinazione n° 8)

X [m]	σ_{t} [N/mmq]
0.40	0.128
2.56	0.126
4.80	0.125
7.00	0.126
9.20	0.128

Pressioni sul terreno di fondazione (Combinazione n° 9)

X [m]	σ _t [N/mmq
0.40	0.10
2.56	0.10
4.80	0.10
7.00	0.10
9.20	0.10

$\underline{\text{Pressioni sul terreno di fondazione (Combinazione n° 10)}}$

[N/mmq]	$\sigma_{ t t}$	X [m]
0.094		0.40
0.094		2.56
0.094		4.80
0.095		7.00
0.097		9.20

$\underline{\text{Pressioni sul terreno di fondazione (Combinazione n° 11)}}$

X [m]	$\sigma_{\rm t}$ [N/mmq]
0.40	0.100
2.56	0.100
4.80	0.100
7.00	0.101
0 20	0 102

Pressioni sul terreno di fondazione (Combinazione n° 12)

[N/mmq]	$\sigma_{ t t}$	X [m]
0.094		0.40
0.094		2.56
0.094		4.80
0.095		7.00
0 097		9 20

$\underline{\text{Pressioni sul terreno di fondazione (Combinazione n° 13)}}$

X [m]	σ_{t} [N/mmq]
0.40	0.097
2.56	0.095
4.80	0.094
7.00	0.094
9.20	0.094

Adeguamento al tipo B dal km 12+000 al km 18+000 (ex SS125 "Orientale Sarda" - Connessione tra la SS554 e la nuova SS554)

CA352

Relazione tecnica e di calcolo ST01 - SOTTOVIA Pr. 5+460,00

Pressioni sul terreno di fondazione (Combinazione n° 14)

σ_{t}	X [m]	[N/mmq]
	0.40	0.103
	2.56	0.101
	4.80	0.100
	7.00	0.100
	9.20	0.100

Pressioni sul terreno di fondazione (Combinazione n° 15)

X [m]	σ_{t} [N/mmq]
0.40	0.103
2.56	0.101
4.80	0.100
7.00	0.100
9.20	0.100

Pressioni sul terreno di fondazione (Combinazione n° 16)

X [m]	σ_{t} [N/mmq]
0.40	0.097
2.56	0.095
4.80	0.094
7.00	0.094
9.20	0.094

Pressioni sul terreno di fondazione (Combinazione n $^{\circ}$ 17)

X [m]	σ_{t} [N/mmq]
0.40	0.099
2.56	0.097
4.80	0.097
7.00	0.097
9.20	0.099

Pressioni sul terreno di fondazione (Combinazione n° 18)

X [m]	σ_{t} [N/mmq]
0.40	0.121
2.56	0.119
4.80	0.118
7.00	0.119
9.20	0.121

$\underline{\text{Pressioni sul terreno di fondazione (Combinazione n° 19)}}$

X [m]	σ_{t}	[N/mmq]
0.40		0.103
2.56		0.101
4.80		0.100
7.00		0.101
9 20		0 103

Pressioni sul terreno di fondazione (Combinazione n° 20)

X [1	m]	σ_{t}	[N/mmq]
0.4	40		0.099
2.	56		0.097
4.8	80		0.097
7.0	00		0.097
9 :	20		0 099

$\underline{\text{Pressioni sul terreno di fondazione (Combinazione n° 21)}}$

x	[m]	σ.	[N/mmq]
		Ot.	
0	.40		0.132
2	.56		0.130
4	.80		0.128
7	.00		0.130
C	20		0 132

$\underline{\text{Pressioni sul terreno di fondazione (Combinazione n° 22)}}$

X [m]	σ_{t} [N/mmq]
0.40	0.130
2.56	0.128
4.80	0.127
7 00	0 128

Adeguamento al tipo B dal km 12+000 al km 18+000 (ex SS125 "Orientale Sarda" -Connessione tra la SS554 e la nuova SS554)

CA352

Relazione tecnica e di calcolo ST01 - SOTTOVIA Pr. 5+460,00

9.20 0.130

Pressioni sul terreno di fondazione (Combinazione n° 23)

X [m]	σ_{t} [N/mmq]
0.40	0.125
2.56	0.123
4.80	0.121
7.00	0.122
9.20	0.125

Verifiche combinazioni SLU

Simbologia adottata ed unità di misura

adottata ed unità di misura
Indice sezione
Ascissa/Ordinata sezione, espresso in cm
Momento flettente, espresso in khm
Taglio, espresso in kh
Sforzo normale, espresso in kh
Sforzo normale utitimo, espressa in kN
Momento ultimo, espressa in kN
Momento ultimo, espressa in kN
Momento ultimo, espressa in cmq
Area armatura inferiore, espresse in cmq
Area armatura inferiore, espresse in cmq
Coeff. di sicurezza sezione
Aliquota taglio assorbita dal calcestruzzo in elementi senza armature trasversali, espressa in kN
Aliquota taglio assorbita dal calcestruzzo in elementi con armature trasversali, espressa in kN
Aliquota taglio assorbita al rmature trasversali, espressa in kN
Aliquota taglio assorbita armature trasversali, espressa in kN
Area armature trasversali nella sezione, espressa in cmq

Base sezione B = 100 cmAltezza sezione H = 90.00 cm

Verifiche presso-flessione

и°	x	м	N	N_u	$\mathbf{M}_{\mathbf{u}}$	${\tt A_{fi}}$	${ t A_{fs}}$	CS
1	0.40	417.40 (417.40)	202.82	802.33	1651.16	45.24	45.24	3.96
2	2.56	-279.05 (-435.18)	202.82	762.97	-1637.04	45.24	45.24	3.76
3	4.80	-522.33 (-522.33)	202.82	615.07	-1583.99	45.24	45.24	3.03
4	7.00	-288.49 (-450.72)	202.82	731.61	-1625.79	45.24	45.24	3.61
5	9.20	417.40 (417.40)	202.82	802.33	1651.16	45.24	45.24	3.96

B = 100 cmBase sezione

Altezza sezione H = 80.00 cm

Verifi	che pre	sso-flessione						
и°	Х	м	N	N_u	\mathbf{M}_{u}	${\tt A_{fi}}$	$\mathtt{A}_{\mathtt{fs}}$	CS
1	0.40	-283.07 (-283.07)	96.83	455.19	-1330.64	45.24	45.24	4.70
2	2.61	176.65 (266.20)	96.83	487.73	1340.79	45.24	45.24	5.04
3	4.80	327.26 (327.26)	96.83	387.48	1309.52	45.24	45.24	4.00
4	6.99	176.65 (266.20)	96.83	487.73	1340.79	45.24	45.24	5.04
5	9 20	-283 07 (-283 07)	96 83	455 19	-1330 64	45 24	45 24	4 70

B = 100 cmBase sezione

Altezza sezione H = 80.00 cm

Verifi	che pre	sso-flessione						
и°	X	м	N	N_u	$\mathbf{M}_{\mathbf{u}}$	${\tt A_{fi}}$	${ t A_{fs}}$	CS
1	0.45	-417.40 (-417.40)	429.52	1763.27	-1713.52	22.62	45.24	4.11
2	3.38	-130.69 (-135.82)	353.47	5992.55	-2302.61	22.62	45.24	16.95
3	6.30	-283.07 (-345.99)	277.42	1252.16	-1561.66	22.62	45.24	4.51

Vei	rifiche pres	sso-flessione						
N	° x	M	ı N	$N_{\rm u}$	\mathbf{M}_{u}	${\tt A_{fi}}$	${ t A}_{ t fs}$	CS

Adeguamento al tipo B dal km 12+000 al km 18+000 (ex SS125 "Orientale Sarda" - Connessione tra la SS554 e la nuova SS554)

CA352

Relazione tecnica e di calcolo ST01 - SOTTOVIA Pr. 5+460,00

1	0.45	-417.40 (-417.40)	429.52	1763.27	-1713.52	22.62	45.24	4.11
2	3.38	-130.69 (-135.82)	353.47	5992.58	-2302.61	22.62	45.24	16.95
3	6.30	-283.07 (-345.99)	277.42	1252.16	-1561.66	22.62	45.24	4.51

Verifica sezioni fondazione [Combinazione n° 2 - SLU (Caso A2-M2)]

Base sezione B = 100 cm Altezza sezione H = 90.00 cm

Verifiche presso-flessione

и°	х	м	N	N_u	\mathbf{M}_{u}	${\tt A_{fi}}$	${ t A_{fs}}$	CS
1	0.40	332.84 (332.84)	183.89	939.42	1700.34	45.24	45.24	5.11
2	2.56	-202.98 (-323.12)	183.89	974.93	-1713.08	45.24	45.24	5.30
3	4.80	-390.19 (-390.19)	183.89	773.25	-1640.73	45.24	45.24	4.20
4	7.00	-210.24 (-335.07)	183.89	931.62	-1697.54	45.24	45.24	5.07
5	9.20	332.84 (332.84)	183.89	939.42	1700.34	45.24	45.24	5.11

$\underline{\text{Verifica sezioni traverso [Combinazione n° 2 - SLU (Caso A2-M2)]}}$

Base sezione B = 100 cmAltezza sezione H = 80.00 cm

 $\underline{\text{Verifiche presso-flessione}}$

и°	x	м	N	N_u	$\mathbf{M}_{\mathbf{u}}$	${f A_{fi}}$	${ t A_{fs}}$	CS
1	0.40	-225.73 (-225.73)	91.88	554.19	-1361.52	45.24	45.24	6.03
2	2.61	127.90 (196.79)	91.88	649.59	1391.27	45.24	45.24	7.07
3	4.80	243.75 (243.75)	91.88	507.74	1347.03	45.24	45.24	5.53
4	6.99	127.90 (196.79)	91.88	649.58	1391.27	45.24	45.24	7.07
5	9.20	-225.73 (-225.73)	91.88	554.19	-1361.52	45.24	45.24	6.03

Base sezione B = 100 cmAltezza sezione H = 80.00 cm

Verifi	che pre	sso-flessione						
и°	X	м	N	$\mathbf{N}_{\mathbf{u}}$	$\mathbf{M}_{\mathbf{u}}$	${\tt A_{fi}}$	${ t A_{ t fs}}$	CS
1	0.45	-332.84 (-332.84)	330.40	1674.92	-1687.27	22.62	45.24	5.07
2	3.38	-77.35 (-80.22)	271.90	7358.29	-2171.01	22.62	45.24	27.06
3	6.30	-225.73 (-285.43)	213.40	1143.41	-1529.35	22.62	45.24	5.36

$\underline{\text{Verifica sezioni piedritto destro [Combinazione n° 2 - SLU (Caso A2-M2)]}}$

Base sezione B = 100 cm Altezza sezione H = 80.00 cm

Verifiche presso-flessione

и°	х	M	N	N_u	$\mathbf{M}_{\mathbf{u}}$	${\tt A_{fi}}$	${ t A_{ t fs}}$	CS
1	0.45	-332.84 (-332.84)	330.40	1674.92	-1687.27	22.62	45.24	5.07
2	3.38	-77.35 (-80.22)	271.90	7358.33	-2171.00	22.62	45.24	27.06
3	6.30	-225.73 (-285.43)	213.40	1143.41	-1529.35	22.62	45.24	5.36

$\underline{\text{Verifica sezioni fondazione [Combinazione n}^{\circ} \text{ 3 - SLU (Caso A1-M1)]}}$

Verifi	.che pre	sso-flessione						
и°	Х	м	N	N_u	$\mathbf{M}_{\mathbf{u}}$	${f A_{fi}}$	${ t A_{fs}}$	CS
1	0.40	551.17 (551.17)	200.29	569.69	1567.71	45.24	45.24	2.84
2	2.56	-455.39 (-681.43)	200.29	447.96	-1524.04	45.24	45.24	2.24
3	4.80	-806.84 (-806.84)	200.29	371.52	-1496.62	45.24	45.24	1.85
4	7.00	-469.06 (-702.95)	200.29	432.68	-1518.56	45.24	45.24	2.16
5	9.20	551.14 (551.17)	200.29	569.69	1567.71	45.24	45.24	2.84

Adeguamento al tipo B dal km 12+000 al km 18+000 (ex SS125 "Orientale Sarda" - Connessione tra la SS554 e la nuova SS554)

CA352

Relazione tecnica e di calcolo ST01 - SOTTOVIA Pr. 5+460,00

Verifica sezioni traverso [Combinazione n° 3 - SLU (Caso A1-M1)]

Base sezione B = 100 cmAltezza sezione H = 80.00 cm

Verifi	che pre	sso-flessione						
и°	х	м	N	N_u	$\mathbf{M}_{\mathbf{u}}$	${f A_{fi}}$	${ t A_{fs}}$	CS
1	0.40	-526.19 (-526.21)	131.74	322.79	-1289.34	45.24	45.24	2.45
2	2.61	340.25 (533.70)	131.74	317.88	1287.81	45.24	45.24	2.41
3	4.80	686.43 (686.43)	131.74	242.65	1264.34	45.24	45.24	1.84
4	6.99	340.25 (533.69)	131.74	317.89	1287.81	45.24	45.24	2.41
5	9.20	-526.21 (-526.21)	131.74	322.79	-1289.34	45.24	45.24	2.45

Base sezione B = 100 cmAltezza sezione H = 80.00 cm

Verifi	che pre	sso-flessione						
и°	X	м	N	\mathbf{N}_{u}	\mathbf{M}_{u}	${\tt A_{fi}}$	$\mathtt{A}_{\mathtt{fs}}$	CS
1	0.45	-551.17 (-551.17)	621.00	2008.26	-1782.44	22.62	45.24	3.23
2	3.38	-295.02 (-302.04)	544.95	3852.76	-2135.42	22.62	45.24	7.07
3	6 30	-526 19 (-551 17)	468 90	1354 40	-1592 04	22 62	45 24	2 89

Verifica sezioni piedritto destro [Combinazione n° 3 - SLU (Caso A1-M1)]

Base sezione B = 100 cmAltezza sezione H = 80.00 cm

Verifiche presso-flessione										
и°	Х	м	N	N_u	$\mathbf{M}_{\mathbf{u}}$	${\tt A_{fi}}$	${ t A_{ t fs}}$	CS		
1	0.45	-551.14 (-551.14)	621.01	2008.44	-1782.48	22.62	45.24	3.23		
2	3.38	-295.03 (-302.06)	544.96	3852.55	-2135.38	22.62	45.24	7.07		
3	6.30	-526.21 (-551.14)	468.91	1354.53	-1592.08	22.62	45.24	2.89		

Base sezione B = 100 cmAltezza sezione H = 90.00 cm

Verifiche presso-flessione										
и°	Х	м	N	N_u	$\mathbf{M}_{\mathbf{u}}$	${\tt A_{fi}}$	${ t A_{fs}}$	CS		
1	0.40	446.90 (446.90)	181.96	650.03	1596.53	45.24	45.24	3.57		
2	2.56	-353.08 (-532.78)	181.96	530.63	-1553.70	45.24	45.24	2.92		
3	4.80	-632.44 (-632.44)	181.96	437.39	-1520.25	45.24	45.24	2.40		
4	7.00	-363.95 (-549.83)	181.96	511.96	-1547.00	45.24	45.24	2.81		
5	9.20	446.87 (446.90)	181.96	650.03	1596.53	45.24	45.24	3.57		

Verifica sezioni traverso [Combinazione n° 4 - SLU (Caso A2-M2)]

Base sezione B = 100 cm Altezza sezione H = 80.00 cm

Verifi	Verifiche presso-flessione											
и°	Х		N	N_u	$\mathbf{M}_{\mathbf{u}}$	${\tt A_{fi}}$	$\mathtt{A}_{\mathtt{fs}}$	CS				
1	0.40	-432.91 (-432.93)	121.83	366.68	-1303.03	45.24	45.24	3.01				
2	2.61	267.19 (424.58)	121.83	374.61	1305.50	45.24	45.24	3.07				
3	4.80	549.63 (549.63)	121.83	283.04	1276.94	45.24	45.24	2.32				
4	6.99	267.18 (424.57)	121.83	374.61	1305.50	45.24	45.24	3.07				
5	9.20	-432.93 (-432.93)	121.83	366.68	-1303.03	45.24	45.24	3.01				

Verifica sezioni piedritto sinistro [Combinazione n° 4 - SLU (Caso A2-M2)]

Adeguamento al tipo B dal km 12+000 al km 18+000 (ex SS125 "Orientale Sarda" - Connessione tra la SS554 e la nuova SS554)

CA352

Relazione tecnica e di calcolo ST01 - SOTTOVIA Pr. 5+460,00

Base sezione B = 100 cm Altezza sezione H = 80.00 cm

Verifiche	presso-flessione

Ν°	х	M	N	N_u	$\mathbf{M}_{\mathbf{u}}$	$\mathbf{A}_{\mathtt{fi}}$	${f A_{fs}}$	CS
1	0.45	-446.90 (-446.90)	493.51	1955.23	-1770.55	22.62	45.24	3.96
2	3.38	-217.11 (-224.58)	435.01	4222.51	-2179.93	22.62	45.24	9.71
3	6.30	-432.91 (-446.90)	376.51	1336.92	-1586.84	22.62	45.24	3.55

Verifica sezioni piedritto destro [Combinazione n° 4 - SLU (Caso A2-M2)]

Base sezione B = 100 cmAltezza sezione H = 80.00 cm

Verifiche presso-flessione

и°	x	M	N	\mathbf{N}_{u}	\mathbf{M}_{u}	${\tt A_{fi}}$	${ t A_{ t fs}}$	CS
1	0.45	-446.87 (-446.87)	493.52	1955.45	-1770.62	22.62	45.24	3.96
2	3.38	-217.12 (-224.59)	435.02	4222.28	-2179.91	22.62	45.24	9.71
3	6.30	-432.93 (-446.87)	376.52	1337.05	-1586.88	22.62	45.24	3.55

Base sezione B = 100 cmAltezza sezione H = 90.00 cm

Verifiche presso-flessione

и°	x	M	N	\mathbf{N}_{u}	\mathbf{M}_{u}	${\tt A_{fi}}$	${ t A}_{ t fs}$	CS
1	0.40	546.64 (546.64)	203.76	586.63	1573.79	45.24	45.24	2.88
2	2.56	-443.02 (-665.26)	203.76	469.12	-1531.63	45.24	45.24	2.30
3	4.80	-788.59 (-788.59)	203.76	388.26	-1502.63	45.24	45.24	1.91
4	7.00	-456.46 (-686.45)	203.76	452.91	-1525.82	45.24	45.24	2.22
5	9.20	546.60 (546.64)	203.76	586.63	1573.79	45.24	45.24	2.88

Base sezione B = 100 cm Altezza sezione H = 80.00 cm

Verifiche presso-flessione

и°	Х	м	N	N_u	$\mathbf{M}_{\mathbf{u}}$	${\tt A_{fi}}$	${ t A_{fs}}$	CS
1	0.40	-500.77 (-500.79)	128.06	330.31	-1291.68	45.24	45.24	2.58
2	2.61	326.00 (505.55)	128.06	326.93	1290.63	45.24	45.24	2.55
3	4.80	643.60 (643.60)	128.06	252.17	1267.31	45.24	45.24	1.97
4	6.99	325.99 (505.55)	128.06	326.94	1290.63	45.24	45.24	2.55
5	9.20	-500.79 (-500.79)	128.06	330.31	-1291.68	45.24	45.24	2.58

Base sezione B = 100 cm Altezza sezione H = 80.00 cm

Verifiche presso-flessione									
и°	Х	м	N	N_u	\mathbf{M}_{u}	${\tt A_{fi}}$	${ t A_{ t fs}}$	CS	
1	0.45	-546.64 (-546.64)	610.55	1985.27	-1777.43	22.62	45.24	3.25	
2	3.38	-280.24 (-284.94)	534.50	4054.27	-2161.29	22.62	45.24	7.59	
3	6.30	-500.77 (-546.64)	458.45	1328.85	-1584.45	22.62	45.24	2.90	

$\underline{\text{Verifica sezioni piedritto destro [Combinazione n° 5 - SLU (Caso A1-M1)]}}$

Verifi	che pre	sso-flessione						
и°	X	М	N	N_u	$\mathbf{M}_{\mathbf{u}}$	${\tt A_{fi}}$	$\mathtt{A}_{\mathtt{fs}}$	CS
1	0.45	-546.60 (-546.60)	610.56	1985.44	-1777.47	22.62	45.24	3.25
2	3.38	-280.24 (-284.95)	534.51	4054.06	-2161.26	22.62	45.24	7.58
3	6.30	-500.79 (-546.60)	458.46	1328.97	-1584.48	22.62	45.24	2.90

Adeguamento al tipo B dal km 12+000 al km 18+000 (ex SS125 "Orientale Sarda" -Connessione tra la SS554 e la nuova SS554)

CA352

Relazione tecnica e di calcolo ST01 - SOTTOVIA Pr. 5+460,00

Verifica sezioni fondazione [Combinazione n° 6 - SLU (Caso A2-M2)]

Base sezione B = 100 cm

Altezza sezione H = 90.00 cm

Verifi	.che pre	sso-flessione						
и°	х	м	N	N_u	$\mathbf{M}_{\mathbf{u}}$	${f A_{fi}}$	${ t A_{fs}}$	CS
1	0.40	443.04 (443.04)	184.91	669.23	1603.42	45.24	45.24	3.62
2	2.56	-342.55 (-519.00)	184.91	556.92	-1563.13	45.24	45.24	3.01
3	4.80	-616.89 (-616.89)	184.91	457.90	-1527.61	45.24	45.24	2.48
4	7.00	-353.22 (-535.78)	184.91	537.02	-1555.99	45.24	45.24	2.90
5	9.20	443.01 (443.04)	184.91	669.23	1603.42	45.24	45.24	3.62

Verifica sezioni traverso [Combinazione n° 6 - SLU (Caso A2-M2)]

Base sezione B = 100 cmAltezza sezione H = 80.00 cm

 $\underline{\text{Verifiche presso-flessione}}$

и°	Х	м	N	N_u	$\mathbf{M}_{\mathbf{u}}$	$\mathtt{A_{fi}}$	$\mathtt{A}_{\mathtt{fs}}$	CS
1	0.40	-411.26 (-411.28)	118.70	376.99	-1306.25	45.24	45.24	3.18
2	2.61	255.05 (400.60)	118.70	388.06	1309.70	45.24	45.24	3.27
3	4.80	513.15 (513.15)	118.70	296.33	1281.09	45.24	45.24	2.50
4	6.99	255.04 (400.59)	118.70	388.07	1309.70	45.24	45.24	3.27
5	9.20	-411.28 (-411.28)	118.70	376.99	-1306.25	45.24	45.24	3.18

$\underline{\text{Verifica sezioni piedritto sinistro [Combinazione n° 6 - SLU (Caso A2-M2)]}}$

Base sezione B = 100 cm

Altezza sezione H = 80.00 cm

Verifi	che pre	sso-flessione						
и°	Х	м	N	N_u	\mathbf{M}_{u}	${\tt A_{fi}}$	${ t A}_{ t fs}$	CS
1	0.45	-443.04 (-443.04)	484.61	1927.80	-1762.40	22.62	45.24	3.98
2	3.38	-204.51 (-210.01)	426.11	4481.27	-2208.61	22.62	45.24	10.52
.3	6.30	-411.26 (-443.04)	367.61	1310.08	-1578.87	22.62	45.24	3.56

Verifica sezioni piedritto destro [Combinazione n° 6 - SLU (Caso A2-M2)]

Base sezione B = 100 cm Altezza sezione H = 80.00 cm

 $\underline{\text{Verifiche presso-flessione}}$

и°	X	M	N	$N_{\rm u}$	$\mathbf{M}_{\mathbf{u}}$	${\tt A_{fi}}$	${ t A}_{ t fs}$	CS
1	0.45	-443.01 (-443.01)	484.62	1928.02	-1762.47	22.62	45.24	3.98
2	3.38	-204.52 (-210.02)	426.12	4481.00	-2208.58	22.62	45.24	10.52
3	6.30	-411.28 (-443.01)	367.62	1310.22	-1578.91	22.62	45.24	3.56

$\underline{\text{Verifica sezioni fondazione [Combinazione n° 7 - SLU (Caso A1-M1)]}}$

Base sezione B = 100 cmAltezza sezione H = 90.00 cm

Verifiche presso-flessione

veriti	.cne pre:	SSO-TIESSIONE						
и°	X	м	N	N_u	\mathbf{M}_{u}	${\tt A_{fi}}$	${ t A_{fs}}$	CS
1	0.40	534.57 (534.57)	227.45	684.56	1608.92	45.24	45.24	3.01
2	2.56	-403.22 (-613.79)	227.45	582.66	-1572.36	45.24	45.24	2.56
3	4.80	-730.74 (-730.74)	227.45	477.68	-1534.71	45.24	45.24	2.10
4	7.00	-415.99 (-634.00)	227.45	561.34	-1564.71	45.24	45.24	2.47
5	9.20	534.49 (534.57)	227.45	684.56	1608.92	45.24	45.24	3.01

Adeguamento al tipo B dal km 12+000 al km 18+000 (ex SS125 "Orientale Sarda" -Connessione tra la SS554 e la nuova SS554)

CA352

Relazione tecnica e di calcolo ST01 - SOTTOVIA Pr. 5+460,00

Base sezione B = 100 cm Altezza sezione H = 80.00 cm						
Verifiche presso-flessione						
N° X M	N	N_u	\mathbf{M}_{u}	${\tt A_{fi}}$	$\mathtt{A}_{\mathtt{fs}}$	CS
1 0.40 -479.97 (-479.99)	148.78	407.87	-1315.88	45.24	45.24	2.74
2 2.61 293.65 (462.84)	148.78	424.67	1321.12	45.24	45.24	2.85
3 4.80 593.83 (593.83) 4 6.99 293.64 (462.84)	148.78	323.06	1289.42	45.24	45.24	2.17
4 6.99 293.64 (462.84) 5 9.20 -479.99 (-479.99)	148.78 148.78	424.68 407.87	1321.12 -1315.88	45.24 45.24	45.24 45.24	2.85
3123 173133 (173133)	110.70	107.07	1313.00	10.21	10.21	2.77
Verifica sezioni piedritto sinistr	co [Combinazi	one n° 7 - SL	.U (Caso A1-M1)	<u>1</u>		
Base sezione B = 100 cm Altezza sezione H = 80.00 cm						
AICEZZA SEZIONE N - 00.00 CM						
Verifiche presso-flessione						
N° X M	N	N _u	M _u	A _{fi}	Afs	CS
1 0.45 -534.57 (-534.57) 2 3.38 -231.43 (-235.16)	578.48 502.43	1897.40 4792.41	-1753.37 -2243.09	22.62 22.62	45.24 45.24	3.28 9.54
3 6.30 -479.97 (-534.57)	426.38	1243.56	-1559.11	22.62	45.24	2.92
Verifica sezioni piedritto destro	[Combinazior	ne n°7 - SLU	(Caso A1-M1)]			
Base sezione B = 100 cm Altezza sezione H = 80.00 cm						
Verifiche presso-flessione N° X M	N	N_{u}	\mathbf{M}_{u}	${f A_{fi}}$	$\mathtt{A}_{\mathtt{fs}}$	cs
1 0.45 -534.49 (-534.49)	578.48	1897.80	-1753.49	22.62	45.24	3.28
2 3.38 -231.46 (-235.20)	502.43	4791.48	-2242.99	22.62	45.24	9.54
3 6.30 -479.99 (-534.49)	426.38	1243.80	-1559.18	22.62	45.24	2.92
Verifica sezioni fondazione [Combi	inazione n° 8	3 - SLU (Caso	A2-M2)]			
Base sezione B = 100 cm						
Altezza sezione H = 90.00 cm						
Verifiche presso-flessione						
N° X M	N	N_u	$\mathbf{M}_{\mathbf{u}}$	$\mathbf{A}_{\mathtt{fi}}$	A _{fs}	cs
1 0.40 432.92 (432.92)	205.43	779.66	1643.03	45.24	45.24	3.80
2 2.56 -308.48 (-474.99) 3 4.80 -567.45 (-567.45)	205.43	697.92 567.22	-1613.71 -1566.83	45.24 45.24	45.24 45.24	3.40 2.76
4 7.00 -318.58 (-490.93)	205.43	671.25	-1604.14	45.24	45.24	3.27
5 9.20 432.86 (432.92)	205.43	779.66	1643.03	45.24	45.24	3.80
Verifica sezioni traverso [Combina	zione n°8 -	- SLU (Caso A2	-M2)]			
Base sezione B = 100 cm Altezza sezione H = 80.00 cm						
Verifiche presso-flessione N° X M	N	\mathbf{N}_{u}	$\mathbf{M}_{\!\mathrm{u}}$	${\tt A_{fi}}$	A .	cs
1 0.40 -393.66 (-393.68)	136.67	462.76	-1333.00	45.24	A_{fs} 45 24	3.39

Verifica sezioni piedritto sinistro [Combinazione n° 8 - SLU (Caso A2-M2)]

136.67 136.67 136.67

136.67

Base sezione B = 100 cm Altezza sezione H = 80.00 cm

0.40 -393.66 (-393.68)

2.61 227.36 (364.09) 4.80 470.63 (470.63) 6.99 227.35 (364.09)

9.20 -393.68 (-393.68)

Verifiche presso-flessione CS ${\tt A_{fi}}$ ${\tt A}_{\tt fs}$

462.76 505.36

379.57

505.37

462.76

-1333.00 1346.28 1307.05

1346.29

-1333.00

3.39 3.70

2.78

3.39

A_{fs} 45.24 45.24

45.24

45.24

45.24

45.24 45.24

45.24

45.24

Adeguamento al tipo B dal km 12+000 al km 18+000 (ex SS125 "Orientale Sarda" - Connessione tra la SS554 e la nuova SS554)

CA352

Relazione tecnica e di calcolo ST01 - SOTTOVIA Pr. 5+460,00

1	0.45	-432.92 (-432.92)	457.29	1831.35	-1733.75	22.62	45.24	4.00
2	3.38	-162.60 (-167.26)	398.79	5451.56	-2286.55	22.62	45.24	13.67
3	6.30	-393.66 (-432.92)	340.29	1220.01	-1552.11	22.62	45.24	3.59

Base sezione B = 100 cm Altezza sezione H = 80.00 cm

Verifiche presso-flessione

и°	Х	м	N	\mathbf{N}_{u}	$\mathbf{M}_{\mathbf{u}}$	${\tt A_{fi}}$	${ t A_{ t fs}}$	CS
1	0.45	-432.86 (-432.86)	457.29	1831.76	-1733.87	22.62	45.24	4.01
2	3.38	-162.62 (-167.30)	398.79	5450.44	-2286.48	22.62	45.24	13.67
3	6.30	-393.68 (-432.86)	340.29	1220.26	-1552.18	22.62	45.24	3.59

Base sezione B = 100 cmAltezza sezione H = 90.00 cm

Verifiche	presso-flessione

A CT TTT	.ciic pic	000 1100010110						
и°	X	м	N	\mathbf{N}_{u}	\mathbf{M}_{u}	${\tt A_{fi}}$	$\mathtt{A}_{\mathtt{fs}}$	CS
1	0.40	358.75 (358.75)	201.29	957.72	1706.91	45.24	45.24	4.76
2	2.56	-191.80 (-316.12)	205.54	1156.11	-1778.07	45.24	45.24	5.62
3	4.80	-388.08 (-388.08)	209.96	915.23	-1691.66	45.24	45.24	4.36
4	7.00	-207.04 (-334.46)	214.30	1134.22	-1770.22	45.24	45.24	5.29
5	9.20	350.75 (358.75)	218.63	1063.32	1744.79	45.24	45.24	4.86

Base sezione B = 100 cmAltezza sezione H = 80.00 cm

Verifiche	presso-flessione

и°	X	м	N	N_u	$\mathbf{M}_{\mathbf{u}}$	${f A_{fi}}$	${ t A_{ t fs}}$	CS
1	0.40	-234.22 (-246.12)	122.34	699.24	-1406.76	45.24	45.24	5.72
2	2.61	122.80 (192.05)	126.22	982.62	1495.15	45.24	45.24	7.79
3	4.80	237.79 (237.79)	130.04	783.77	1433.12	45.24	45.24	6.03
4	6.99	116.89 (187.89)	133.87	1088.90	1528.30	45.24	45.24	8.13
5	9.20	-246.12 (-246.12)	137.75	805.98	-1440.05	45.24	45.24	5.85

Base sezione B = 100 cm Altezza sezione H = 80.00 cm

*** * * * * * * * * * * * * * * * * * *	
verifiche	presso-flessione

	one pro	DDG EEGGGEGIIG						
п°	Х		N	N_u	$\mathbf{M}_{\mathbf{u}}$	${\tt A_{fi}}$	${ t A_{ t fs}}$	CS
1	0.45	-358.75 (-358.75)	338.02	1556.68	-1652.14	22.62	45.24	4.61
2	3.38	-52.65 (-58.97)	276.96	9036.56	-1924.17	22.62	45.24	32.63
3	6.30	-234.22 (-313.71)	215.90	1029.15	-1495.40	22.62	45.24	4.77

Base sezione B = 100 cm Altezza sezione H = 80.00 cm

Verifiche presso-flessione

и°	x	м	N	$\mathbf{N}_{\mathbf{u}}$	\mathbf{M}_{u}	${\tt A_{fi}}$	${ t A_{ t fs}}$	CS
1	0.45	-350.75 (-350.75)	340.73	1624.53	-1672.30	22.62	45.24	4.77
2	3.38	-50.25 (-53.94)	279.67	9542.93	-1840.49	22.62	45.24	34.12
3	6.30	-246.12 (-329.47)	218.61	983.14	-1481.73	22.62	45.24	4.50

Base sezione B = 100 cm

Adeguamento al tipo B dal km 12+000 al km 18+000 (ex SS125 "Orientale Sarda" - Connessione tra la SS554 e la nuova SS554)

CA352

Relazione tecnica e di calcolo ST01 - SOTTOVIA Pr. 5+460,00

Altezza sezione H = 90.00 cm

Verifiche	presso-flessione
n°	x

N°	x	M	N	N_u	\mathbf{M}_{u}	${f A_{fi}}$	${ t A_{ t fs}}$	CS
1	0.40	343.80 (343.80)	199.67	1000.22	1722.15	45.24	45.24	5.01
2	2.56	-177.67 (-295.50)	203.92	1250.40	-1811.90	45.24	45.24	6.13
3	4.80	-363.81 (-363.81)	208.35	982.63	-1715.84	45.24	45.24	4.72
4	7.00	-192.53 (-313.15)	212.68	1224.20	-1802.50	45.24	45.24	5.76
5	9.20	335.76 (343.80)	217.02	1112.51	1762.43	45.24	45.24	5.13

Verifica sezioni traverso [Combinazione n° 10 - SLU (Caso A1-M1) - Sisma Vert. negativo]

Base sezione B = 100 cmAltezza sezione H = 80.00 cm

Verifiche presso-flessione								
и°	X	м	N	N_u	$\mathbf{M}_{\mathbf{u}}$	${\tt A_{fi}}$	${\tt A_{fs}}$	cs
1	0.40	-228.66 (-240.56)	123.94	729.72	-1416.26	45.24	45.24	5.89
2	2.61	115.59 (182.35)	127.82	1066.40	1521.28	45.24	45.24	8.34
3	4.80	226.39 (226.39)	131.65	844.40	1452.03	45.24	45.24	6.41
4	6.99	109.68 (178.20)	135.48	1184.66	1558.17	45.24	45.24	8.74
5	9.20	-240.56 (-240.56)	139.36	840.49	-1450.81	45.24	45.24	6.03

Base sezione B = 100 cm Altezza sezione H = 80.00 cm

Verifiche	presso-flessione

	one pro	000 1100010110						
и°	X	м	N	$\mathbf{N}_{\mathbf{u}}$	$\mathbf{M}_{\mathbf{u}}$	${\tt A_{fi}}$	${ t A_{ t fs}}$	CS
1	0.45	-343.80 (-343.80)	320.07	1531.04	-1644.52	22.62	45.24	4.78
2	3.38	-42.40 (-47.67)	264.13	9879.42	-1783.16	22.62	45.24	37.40
3	6.30	-228.66 (-309.20)	208.19	1001.32	-1487.13	22.62	45.24	4.81

Verifica sezioni piedritto destro [Combinazione n° 10 - SLU (Caso A1-M1) - Sisma Vert. negativo]

Base sezione B = 100 cm Altezza sezione H = 80.00 cm

Verifiche presso-flessione

и°	х	м	N	$\mathbf{N}_{\mathbf{u}}$	\mathbf{M}_{u}	${\tt A_{fi}}$	${ t A_{ t fs}}$	CS
1	0.45	-335.76 (-335.76)	322.77	1600.83	-1665.26	22.62	45.24	4.96
2	3.38	-40.02 (-42.66)	266.84	10467.42	-1673.66	22.62	45.24	39.23
3	6.30	-240.56 (-324.94)	210.90	956.56	-1473.83	22.62	45.24	4.54

Verifica sezioni fondazione [Combinazione n° 11 - SLU (Caso A2-M2) - Sisma Vert. positivo]

Base sezione B = 100 cmAltezza sezione H = 90.00 cm

Verifiche presso-flessione										
и°	X	M	N	N_u	\mathbf{M}_{u}	${\tt A_{fi}}$	$\mathbf{A}_{\mathtt{fs}}$	CS		
1	0.40	358.75 (358.75)	201.29	957.72	1706.91	45.24	45.24	4.76		
2	2.56	-191.80 (-316.12)	205.54	1156.11	-1778.07	45.24	45.24	5.62		
3	4.80	-388.08 (-388.08)	209.96	915.23	-1691.66	45.24	45.24	4.36		
4	7.00	-207.04 (-334.46)	214.30	1134.22	-1770.22	45.24	45.24	5.29		
5	9.20	350.75 (358.75)	218.63	1063.32	1744.79	45.24	45.24	4.86		

Adeguamento al tipo B dal km 12+000 al km 18+000 (ex SS125 "Orientale Sarda" - Connessione tra la SS554 e la nuova SS554)

CA352

Relazione tecnica e di calcolo ST01 - SOTTOVIA Pr. 5+460,00

Verifi	erifiche presso-flessione										
и°	Х	м	N	N_u	\mathbf{M}_{u}	${\tt A_{fi}}$	$\mathtt{A}_{\mathtt{fs}}$	CS			
1	0.40	-234.22 (-246.12)	122.34	699.24	-1406.76	45.24	45.24	5.72			
2	2.61	122.80 (192.05)	126.22	982.62	1495.15	45.24	45.24	7.79			
3	4.80	237.79 (237.79)	130.04	783.77	1433.12	45.24	45.24	6.03			
4	6.99	116.89 (187.89)	133.87	1088.90	1528.30	45.24	45.24	8.13			
5	9.20	-246.12 (-246.12)	137.75	805.98	-1440.05	45.24	45.24	5.85			

Base sezione B = 100 cmAltezza sezione H = 80.00 cm

Verifiche presso-flessione								
и°	X	м	N	N_u	\mathbf{M}_{u}	${\tt A_{fi}}$	${ t A}_{ t fs}$	CS
1	0.45	-358.75 (-358.75)	338.02	1556.68	-1652.14	22.62	45.24	4.61
2	3.38	-52.65 (-58.97)	276.96	9036.56	-1924.17	22.62	45.24	32.63
3	6.30	-234.22 (-313.71)	215.90	1029.15	-1495.40	22.62	45.24	4.77

Verifica sezioni piedritto destro [Combinazione n° 11 - SLU (Caso A2-M2) - Sisma Vert. positivo]

Base sezione B = 100 cmAltezza sezione H = 80.00 cm

Verifiche presso-flessione											
и°	X	м	N	$\mathbf{N}_{\mathbf{u}}$	$\mathbf{M}_{\mathbf{u}}$	${\tt A_{fi}}$	${ t A_{ t fs}}$	CS			
1	0.45	-350.75 (-350.75)	340.73	1624.53	-1672.30	22.62	45.24	4.77			
2	3.38	-50.25 (-53.94)	279.67	9542.93	-1840.49	22.62	45.24	34.12			
3	6.30	-246.12 (-329.47)	218.61	983.14	-1481.73	22.62	45.24	4.50			

Base sezione B = 100 cmAltezza sezione H = 90.00 cm

Verifiche presso-flessione										
и°	X	м	N	$\mathbf{N}_{\mathbf{u}}$	$\mathbf{M}_{\mathbf{u}}$	${\tt A_{fi}}$	${ t A_{fs}}$	CS		
1	0.40	343.80 (343.80)	199.67	1000.22	1722.15	45.24	45.24	5.01		
2	2.56	-177.67 (-295.50)	203.92	1250.40	-1811.90	45.24	45.24	6.13		
3	4.80	-363.81 (-363.81)	208.35	982.63	-1715.84	45.24	45.24	4.72		
4	7.00	-192.53 (-313.15)	212.68	1224.20	-1802.50	45.24	45.24	5.76		
5	9.20	335.76 (343.80)	217.02	1112.51	1762.43	45.24	45.24	5.13		

$\underline{\text{Verifica sezioni traverso [Combinazione n}^{\circ} \ 12 \ - \ \text{SLU (Caso A2-M2)} \ - \ \text{Sisma Vert. negativo]}}$

Base sezione B = 100 cm Altezza sezione H = 80.00 cm

Verifi	erifiche presso-flessione									
и°	X	м	N	$\mathbf{N}_{\mathbf{u}}$	$\mathbf{M}_{\mathbf{u}}$	${\tt A_{fi}}$	$\mathtt{A}_{\mathtt{fs}}$	CS		
1	0.40	-228.66 (-240.56)	123.94	729.72	-1416.26	45.24	45.24	5.89		
2	2.61	115.59 (182.35)	127.82	1066.40	1521.28	45.24	45.24	8.34		
3	4.80	226.39 (226.39)	131.65	844.40	1452.03	45.24	45.24	6.41		
4	6.99	109.68 (178.20)	135.48	1184.66	1558.17	45.24	45.24	8.74		
5	9.20	-240.56 (-240.56)	139.36	840.49	-1450.81	45.24	45.24	6.03		

Verifica sezioni piedritto sinistro [Combinazione n° 12 - SLU (Caso A2-M2) - Sisma Vert. negativo]

Verific	he presso-flessione	•						
и°	Х	М	N	N_u	$\mathbf{M}_{\mathbf{u}}$	${\tt A_{fi}}$	${ t A_{ t fs}}$	CS

Adeguamento al tipo B dal km 12+000 al km 18+000 (ex SS125 "Orientale Sarda" - Connessione tra la SS554 e la nuova SS554)

CA352

Relazione tecnica e di calcolo ST01 - SOTTOVIA Pr. 5+460,00

1	0.45	-343.80 (-343.80)	320.07	1531.04	-1644.52	22.62	45.24	4.78
2	3.38	-42.40 (-47.67)	264.13	9879.42	-1783.16	22.62	45.24	37.40
3	6.30	-228.66 (-309.20)	208.19	1001.32	-1487.13	22.62	45.24	4.81

Base sezione B = 100 cmAltezza sezione H = 80.00 cm

Verifiche presso-flessione

A CT TTT	CIIC PIC	DDO IICDDIONC						
и°	Х	м	N	$\mathbf{N}_{\mathbf{u}}$	$\mathbf{M}_{\mathbf{u}}$	${\tt A_{fi}}$	${ t A_{fs}}$	CS
1	0.45	-335.76 (-335.76)	322.77	1600.83	-1665.26	22.62	45.24	4.96
2	3.38	-40.02 (-42.66)	266.84	10467.42	-1673.66	22.62	45.24	39.23
3	6.30	-240.56 (-324.94)	210.90	956.56	-1473.83	22.62	45.24	4.54

Base sezione B = 100 cmAltezza sezione H = 90.00 cm

 $\underline{\text{Verifiche presso-flessione}}$

N°	X	м	N	$N_{\rm u}$	\mathbf{M}_{u}	${\tt A_{fi}}$	$\mathtt{A}_{\mathtt{fs}}$	cs
1	0.40	335.77 (343.79)	217.02	1112.51	1762.43	45.24	45.24	5.13
2	2.56	-185.51 (-301.56)	212.77	1287.86	-1825.33	45.24	45.24	6.05
3	4.80	-363.81 (-363.81)	208.35	982.63	-1715.84	45.24	45.24	4.72
4	7.00	-184.79 (-307.12)	204.01	1188.93	-1789.85	45.24	45.24	5.83
5	9.20	343.79 (343.79)	199.67	1000.22	1722.15	45.24	45.24	5.01

$\underline{\text{Verifica sezioni traverso [Combinazione n}^{\circ} \ 13 \ \text{-- SLU (Caso A1-M1)} \ \text{-- Sisma Vert. negativo]}}$

Base sezione B = 100 cmAltezza sezione H = 80.00 cm

Verifiche presso-flessione

и°	x	м	N	N_u	$\mathbf{M}_{\mathbf{u}}$	${f A_{fi}}$	${ t A_{ t fs}}$	CS
1	0.40	-240.56 (-240.56)	139.36	840.48	-1450.81	45.24	45.24	6.03
2	2.61	109.68 (178.20)	135.48	1184.66	1558.17	45.24	45.24	8.74
3	4.80	226.39 (226.39)	131.65	844.40	1452.03	45.24	45.24	6.41
4	6.99	115.59 (182.35)	127.82	1066.40	1521.28	45.24	45.24	8.34
5	9.20	-228.66 (-240.56)	123.94	729.71	-1416.26	45.24	45.24	5.89

Base sezione B = 100 cm Altezza sezione H = 80.00 cm

Verifiche presso-flessione

и°	Х	м	N	N_u	\mathbf{M}_{u}	${\tt A_{fi}}$	${ t A_{ t fs}}$	CS
1	0.45	-335.77 (-335.77)	322.77	1600.83	-1665.26	22.62	45.24	4.96
2	3.38	-40.02 (-42.67)	266.84	10467.35	-1673.67	22.62	45.24	39.23
3	6.30	-240.56 (-324.94)	210.90	956.56	-1473.83	22.62	45.24	4.54

Verifiche presso-flessione										
и°	х	м	N	$N_{\rm u}$	\mathbf{M}_{u}	${\tt A_{fi}}$	${ t A}_{ t fs}$	CS		
1	0.45	-343.79 (-343.79)	320.07	1531.04	-1644.52	22.62	45.24	4.78		
2	3.38	-42.40 (-47.67)	264.13	9879.48	-1783.15	22.62	45.24	37.40		
3	6.30	-228.66 (-309.20)	208.19	1001.33	-1487.13	22.62	45.24	4.81		

Adeguamento al tipo B dal km 12+000 al km 18+000 (ex SS125 "Orientale Sarda" - Connessione tra la SS554 e la nuova SS554)

CA352

Relazione tecnica e di calcolo ST01 - SOTTOVIA Pr. 5+460,00

Verifica sezioni fondazione [Combinazione n° 14 - SLU (Caso A1-M1) - Sisma Vert. positivo]

Base sezione B = 100 cmAltezza sezione H = 90 00 cm

Altezza	sezione	Η	=	90.00	CI

erifiche presso-flessione											
X	м	N	N_u	$\mathbf{M}_{\mathbf{u}}$	${\tt A_{fi}}$	${\tt A_{fs}}$	CS				
0.40	350.75 (358.75)	218.63	1063.32	1744.79	45.24	45.24	4.86				
2.56	-199.63 (-322.17)	214.38	1191.68	-1790.83	45.24	45.24	5.56				
4.80	-388.08 (-388.08)	209.96	915.23	-1691.66	45.24	45.24	4.36				
7.00	-199.32 (-328.45)	205.63	1100.74	-1758.21	45.24	45.24	5.35				
9.20	358.75 (358.75)	201.29	957.73	1706.91	45.24	45.24	4.76				
	X 0.40 2.56 4.80 7.00	X M 0.40 350.75 (358.75) 2.56 -199.63 (-322.17) 4.80 -388.08 (-388.08) 7.00 -199.32 (-328.45)	X M N 0.40 350.75 (358.75) 218.63 2.56 -199.63 (-322.17) 214.38 4.80 -388.08 (-388.08) 209.96 7.00 -199.32 (-328.45) 205.63	X M N Nu 0.40 350.75 (358.75) 218.63 1063.32 2.56 -199.63 (-322.17) 214.38 1191.68 4.80 -388.08 (-388.08) 209.96 915.23 7.00 -199.32 (-328.45) 205.63 1100.74	X M N Nu Mu 0.40 350.75 (358.75) 218.63 1063.32 1744.79 2.56 -199.63 (-322.17) 214.38 1191.68 -1790.83 4.80 -388.08 (-388.08) 209.96 915.23 -1691.66 7.00 -199.32 (-328.45) 205.63 1100.74 -1758.21	X M N Nu Mu Afi 0.40 350.75 (358.75) 218.63 1063.32 1744.79 45.24 2.56 -199.63 (-322.17) 214.38 1191.68 -1790.83 45.24 4.80 -388.08 (-388.08) 209.96 915.23 -1691.66 45.24 7.00 -199.32 (-328.45) 205.63 1100.74 -1758.21 45.24	X M N Nu Mu Afi Afs 0.40 350.75 (358.75) 218.63 1063.32 1744.79 45.24 45.24 2.56 -199.63 (-322.17) 214.38 1191.68 -1790.83 45.24 45.24 4.80 -388.08 (-388.08) 209.96 915.23 -1691.66 45.24 45.24 7.00 -199.32 (-328.45) 205.63 1100.74 -1758.21 45.24 45.24				

Base sezione B = 100 cm Altezza sezione H = 80.00 cm

Verifiche presso-flessione											
п°	Х	м	N	N_u	$\mathbf{M}_{\mathbf{u}}$	${\tt A_{fi}}$	${ t A_{fs}}$	CS			
1	0.40	-246.12 (-246.12)	137.75	805.98	-1440.05	45.24	45.24	5.85			
2	2.61	116.89 (187.89)	133.87	1088.90	1528.30	45.24	45.24	8.13			
3	4.80	237.79 (237.79)	130.04	783.77	1433.12	45.24	45.24	6.03			
4	6.99	122.80 (192.05)	126.22	982.62	1495.15	45.24	45.24	7.79			
5	9.20	-234.22 (-246.12)	122.34	699.24	-1406.76	45.24	45.24	5.72			

Verifica sezioni piedritto sinistro [Combinazione n° 14 - SLU (Caso A1-M1) - Sisma Vert. positivo]

Base sezione B = 100 cm Altezza sezione H = 80.00 cm

AICEZZA	36210116	11 -	. 00.00	Cil
Verifich	e presso-	-fle	essione	

и°	X	м	N	\mathbf{N}_{u}	$\mathbf{M}_{\mathbf{u}}$	${\tt A_{fi}}$	${ t A_{ t fs}}$	CS
1	0.45	-350.75 (-350.75)	340.73	1624.53	-1672.30	22.62	45.24	4.77
2	3.38	-50.25 (-53.94)	279.67	9542.87	-1840.50	22.62	45.24	34.12
3	6.30	-246.12 (-329.47)	218.61	983.14	-1481.73	22.62	45.24	4.50

Base sezione B = 100 cmAltezza sezione H = 80.00 cm

Verifi	che pre	sso-flessione						
и°	X	м	N	N_u	$\mathbf{M}_{\mathbf{u}}$	${\tt A_{fi}}$	${ t A_{fs}}$	CS
1	0.45	-358.75 (-358.75)	338.02	1556.69	-1652.14	22.62	45.24	4.61
2	3.38	-52.65 (-58.97)	276.96	9036.61	-1924.16	22.62	45.24	32.63
3	6.30	-234.22 (-313.71)	215.90	1029.15	-1495.40	22.62	45.24	4.77

Base sezione B = 100 cm Altezza sezione H = 90.00 cm

Verifiche	presso-flessione

veriti	.cne pre:	sso-messione						
и°	Х	м	N	N_u	\mathbf{M}_{u}	${\tt A_{fi}}$	${ t A_{fs}}$	CS
1	0.40	350.75 (358.75)	218.63	1063.32	1744.79	45.24	45.24	4.86
2	2.56	-199.63 (-322.17)	214.38	1191.68	-1790.83	45.24	45.24	5.56
3	4.80	-388.08 (-388.08)	209.96	915.23	-1691.66	45.24	45.24	4.36
4	7.00	-199.32 (-328.45)	205.63	1100.74	-1758.21	45.24	45.24	5.35
5	9.20	358.75 (358.75)	201.29	957.73	1706.91	45.24	45.24	4.76

Adeguamento al tipo B dal km 12+000 al km 18+000 (ex SS125 "Orientale Sarda" - Connessione tra la SS554 e la nuova SS554)

CA352

Relazione tecnica e di calcolo ST01 - SOTTOVIA Pr. 5+460.00

Base sezione B = 100 cmAltezza sezione H = 80.00 cm

Verifiche presso-flessione											
и°	х	м	N	N_u	$\mathbf{M}_{\mathbf{u}}$	${\tt A_{fi}}$	${ t A_{fs}}$	CS			
1	0.40	-246.12 (-246.12)	137.75	805.98	-1440.05	45.24	45.24	5.85			
2	2.61	116.89 (187.89)	133.87	1088.90	1528.30	45.24	45.24	8.13			
3	4.80	237.79 (237.79)	130.04	783.77	1433.12	45.24	45.24	6.03			
4	6.99	122.80 (192.05)	126.22	982.62	1495.15	45.24	45.24	7.79			
5	9.20	-234.22 (-246.12)	122.34	699.24	-1406.76	45.24	45.24	5.72			

Base sezione B = 100 cmAltezza sezione H = 80.00 cm

Verifiche presso-flessione										
и°	X	м	N	N_u	$\mathbf{M}_{\mathbf{u}}$	${f A_{fi}}$	${ t A_{fs}}$	CS		
1	0.45	-350.75 (-350.75)	340.73	1624.53	-1672.30	22.62	45.24	4.77		
2	3.38	-50.25 (-53.94)	279.67	9542.87	-1840.50	22.62	45.24	34.12		
3	6.30	-246.12 (-329.47)	218.61	983.14	-1481.73	22.62	45.24	4.50		

Base sezione B = 100 cmAltezza sezione H = 80.00 cm

Verifiche presso-flessione									
и°	Х	м	N	N_u	$\mathbf{M}_{\mathbf{u}}$	${f A_{fi}}$	${ t A_{fs}}$	CS	
1	0.45	-358.75 (-358.75)	338.02	1556.69	-1652.14	22.62	45.24	4.61	
2	3.38	-52.65 (-58.97)	276.96	9036.61	-1924.16	22.62	45.24	32.63	
3	6.30	-234.22 (-313.71)	215.90	1029.15	-1495.40	22.62	45.24	4.77	

Verifica sezioni fondazione [Combinazione n° 16 - SLU (Caso A2-M2) - Sisma Vert. negativo]

Base sezione B = 100 cmAltezza sezione H = 90.00 cm

Verifiche presso-flessione											
и°	Х	м	N	$N_{\rm u}$	$\mathbf{M}_{\mathbf{u}}$	${\tt A_{fi}}$	$\mathtt{A}_{\mathtt{fs}}$	CS			
1	0.40	335.77 (343.79)	217.02	1112.51	1762.43	45.24	45.24	5.13			
2	2.56	-185.51 (-301.56)	212.77	1287.86	-1825.33	45.24	45.24	6.05			
3	4.80	-363.81 (-363.81)	208.35	982.63	-1715.84	45.24	45.24	4.72			
4	7.00	-184.79 (-307.12)	204.01	1188.93	-1789.85	45.24	45.24	5.83			
5	9.20	343.79 (343.79)	199.67	1000.22	1722.15	45.24	45.24	5.01			

Base sezione B = 100 cm Altezza sezione H = 80.00 cm

Ν°	X	М	N	$N_{\rm u}$	\mathbf{M}_{u}	${\tt A_{fi}}$	${ t A_{fs}}$	CS
1	0.40	-240.56 (-240.56)	139.36	840.48	-1450.81	45.24	45.24	6.03
2	2.61	109.68 (178.20)	135.48	1184.66	1558.17	45.24	45.24	8.74
3	4.80	226.39 (226.39)	131.65	844.40	1452.03	45.24	45.24	6.41
4	6.99	115.59 (182.35)	127.82	1066.40	1521.28	45.24	45.24	8.34
5	9.20	-228.66 (-240.56)	123.94	729.71	-1416.26	45.24	45.24	5.89

Base sezione B = 100 cm

Adeguamento al tipo B dal km 12+000 al km 18+000 (ex SS125 "Orientale Sarda" -Connessione tra la SS554 e la nuova SS554)

CA352

Relazione tecnica e di calcolo ST01 - SOTTOVIA Pr. 5+460,00

Altezza sezione H = 80.00 cm

Verifiche presso-flessione

и°	x	M	N	N_u	$\mathbf{M}_{\mathbf{u}}$	${\tt A_{fi}}$	${ t A_{ t fs}}$	CS
1	0.45	-335.77 (-335.77)	322.77	1600.83	-1665.26	22.62	45.24	4.96
2	3.38	-40.02 (-42.67)	266.84	10467.35	-1673.67	22.62	45.24	39.23
3	6.30	-240.56 (-324.94)	210.90	956.56	-1473.83	22.62	45.24	4.54

Base sezione B = 100 cm Altezza sezione H = 80.00 cm

Verifiche presso-flessione

	one pro	000 1100010110						
и°	X	м	N	N_u	$\mathbf{M}_{\mathbf{u}}$	${\tt A_{fi}}$	${ t A_{ t fs}}$	CS
1	0.45	-343.79 (-343.79)	320.07	1531.04	-1644.52	22.62	45.24	4.78
2	3.38	-42.40 (-47.67)	264.13	9879.48	-1783.15	22.62	45.24	37.40
3	6.30	-228.66 (-309.20)	208.19	1001.33	-1487.13	22.62	45.24	4.81

Verifiche combinazioni SLE

Simbologia adottata ed unità di misura

N° Indice sezione

X Ascissa/Ordinata sezione, espresso in m

M Momento flettente, espresso in kNm

V Taglio, espresso in kN

N Sforzo normale, espresso in kN

Ari Area armatura inferiore, espressa in cmq

Gr: Tensione nell'armatura disposta in corrispondenza del lembo inferiore, espresse in N/mmq

Gr: Tensione nell'armatura disposta in corrispondenza del lembo superiore, espresse in N/mmq

Gr: Tensione nel calcestruzzo, espresse in N/mmq

Te Tensione tangenziale nel calcestruzzo, espresse in N/mmq

Aav Area armature trasversali nella sezione, espressa in cmq

Verifica sezioni fondazione [Combinazione n° 17 - SLE (Quasi Permanente)]

Base sezione Altezza sezione H = 90.00 cm

Verifiche presso-flessione

и°	х	М	N	${ t A_{ t fi}}$	${ t A_{ t fs}}$	$\sigma_{ t fs}$	$\sigma_{\mathtt{fi}}$	σ_{c}	
1	0.40	321.08	156.02	45.24	45.24	29.66	79.88	2.74	
2	2.56	-214.65	156.02	45.24	45.24	48.40	20.75	1.87	
3	4.80	-401.79	156.02	45.24	45.24	103.82	36.36	3.40	
4	7.00	-221.92	156.02	45.24	45.24	50.54	21.36	1.93	
5	9.20	321.08	156.02	45.24	45.24	29.66	79.88	2.74	

Verifica sezioni traverso [Combinazione n° 17 - SLE (Quasi Permanente)]

Base sezione B = 100 cm Altezza sezione H = 80.00 cm

Verifiche presso-flessione

N°	х	М	N	${\tt A_{fi}}$	${ t A_{fs}}$	$\sigma_{ t fs}$	$\sigma_{\mathtt{fi}}$	σ_{c}
1	0.40	-217.75	74.49	45.24	45.24	66.77	22.91	2.25
2	2.61	135.88	74.49	45.24	45.24	14.90	38.88	1.43
3	4.80	251.73	74.49	45.24	45.24	26.22	78.37	2.59
4	6.99	135.88	74.49	45.24	45.24	14.90	38.88	1.43
5	9 20	-217.74	74 49	45 24	45 24	66 77	22.91	2 25

Verifica sezioni piedritto sinistro [Combinazione n° 17 - SLE (Quasi Permanente)]

B = 100 cmBase sezione Altezza sezione H = 80.00 cm

Verifiche presso-flessione

N°	X	M	N	A_{fi}	A _{fs}	$\sigma_{ t fs}$	$\sigma_{\mathtt{fi}}$	σ_{c}
1	0.45	-321.08	330.40	22.62	45.24	78.53	43.00	3.85
2	3.38	-100.53	271.90	22.62	45.24	11.59	15.89	1.28

Adeguamento al tipo B dal km 12+000 al km 18+000 (ex SS125 "Orientale Sarda" - Connessione tra la SS554 e la nuova SS554)

CA352

Relazione tecnica e di calcolo ST01 - SOTTOVIA Pr. 5+460,00

3 6.30 -217.75 213.40 22.62 45.24 54.22 28.96 2.60

Base sezione B = 100 cm Altezza sezione H = 80.00 cm

Verifiche presso-flessione

ACTITI	cire pres	30 1163310116						
и°	х	М	N	${ t A_{fi}}$	$\mathtt{A}_{\mathtt{fs}}$	$\sigma_{ t fs}$	$\sigma_{\mathtt{fi}}$	$\sigma_{\rm c}$
1	0.45	-321.08	330.40	22.62	45.24	78.53	43.00	3.85
2	3.38	-100.53	271.90	22.62	45.24	11.59	15.89	1.28
.3	6.30	-217.74	213.40	22.62	45.24	54.22	28.96	2.60

Verifica sezioni fondazione [Combinazione n° 18 - SLE (Frequente)]

Base sezione B = 100 cm Altezza sezione H = 90.00 cm

Verifiche presso-flessione

n°	x	м	N	${\tt A_{fi}}$	$\mathtt{A}_{\mathtt{fs}}$	$\sigma_{ t fs}$	$\sigma_{\mathtt{fi}}$	σ_{c}
1	0.40	382.69	146.45	45.24	45.24	34.59	99.10	3.24
2	2.56	-306.05	146.45	45.24	45.24	76.36	28.23	2.61
3	4.80	-546.54	146.45	45.24	45.24	147.78	48.15	4.58
4	7.00	-315.39	146.45	45.24	45.24	79.13	29.00	2.69
5	9.20	382.69	146.45	45.24	45.24	34.59	99.10	3.24

Verifica sezioni traverso [Combinazione n° 18 - SLE (Frequente)]

Base sezione B = 100 cmAltezza sezione H = 80.00 cm

<u>Verifiche presso-flessione</u>

	one proc	00 1100010110						
и°	х	М	N	${\tt A_{fi}}$	${ t A}_{ t fs}$	$\sigma_{ t fs}$	$\sigma_{\mathtt{fi}}$	σ_{c}
1	0.40	-338.95	85.32	45.24	45.24	107.03	34.96	3.48
2	2.61	220.96	85.32	45.24	45.24	23.46	66.78	2.29
3	4.80	439.01	85.32	45.24	45.24	44.71	141.19	4.48
4	6.99	220.96	85.32	45.24	45.24	23.46	66.78	2.29
5	9.20	-338.95	85.32	45.24	45.24	107.03	34.96	3.48

$\underline{\text{Verifica sezioni piedritto sinistro [Combinazione n° 18 - SLE (Frequente)]}}$

Base sezione B = 100 cm Altezza sezione H = 80.00 cm

Verifiche presso-flessione

VCITII	.cnc prcs	OO IICODIONC						
n°	x	M	N	${\tt A_{fi}}$	${ t A}_{ t fs}$	$\sigma_{ t fs}$	$\sigma_{\mathtt{fi}}$	σ_{c}
1	0.45	-382.69	424.90	22.62	45.24	90.80	51.82	4.61
2	3.38	-190.77	366.40	22.62	45.24	32.39	28.27	2.37
3	6.30	-338.95	307.90	22.62	45.24	86.62	44.61	4.03

Verifica sezioni piedritto destro [Combinazione n° 18 - SLE (Frequente)]

Base sezione B = 100 cm Altezza sezione H = 80.00 cm

 $\underline{\text{Verifiche presso-flessione}}$

n°	x	м	N	${\tt A_{fi}}$	$\mathtt{A}_{\mathtt{fs}}$	$\sigma_{ t fs}$	$\sigma_{\mathtt{fi}}$	σ_{c}
1	0.45	-382.69	424.90	22.62	45.24	90.80	51.82	4.61
2	3.38	-190.77	366.40	22.62	45.24	32.39	28.27	2.37
3	6.30	-338.95	307.90	22.62	45.24	86.62	44.61	4.03

Verifica sezioni fondazione [Combinazione n° 19 - SLE (Frequente)]

Adeguamento al tipo B dal km 12+000 al km 18+000 (ex SS125 "Orientale Sarda" - Connessione tra la SS554 e la nuova SS554)

CA352

Relazione tecnica e di calcolo ST01 - SOTTOVIA Pr. 5+460,00

Base sezione B = 100 cm Altezza sezione H = 90.00 cm

Verifiche presso-flessione

и°	x	M	N	${\tt A_{fi}}$	${ t A_{fs}}$	$\sigma_{ t fs}$	$\sigma_{\mathtt{fi}}$	σ_{c}
1	0.40	332.53	155.61	45.24	45.24	30.60	83.31	2.84
2	2.56	-228.86	155.61	45.24	45.24	52.63	21.94	1.98
3	4.80	-424.95	155.61	45.24	45.24	110.74	38.27	3.59
4	7.00	-236.47	155.61	45.24	45.24	54.88	22.58	2.05
5	9.20	332.53	155.61	45.24	45.24	30.60	83.31	2.84

Verifica sezioni traverso [Combinazione n° 19 - SLE (Frequente)]

Base sezione B = 100 cm Altezza sezione H = 80.00 cm

Verifiche presso-flessione

N°	х	М	N	${\tt A_{fi}}$	${ t A_{fs}}$	$\sigma_{ t fs}$	$\sigma_{\mathtt{fi}}$	$\sigma_{\rm c}$	
1	0.40	-232.13	75.08	45.24	45.24	71.62	24.32	2.40	
2	2.61	147.75	75.08	45.24	45.24	16.07	42.86	1.55	
3	4.80	272.20	75.08	45.24	45.24	28.23	85.29	2.80	
4	6.99	147.75	75.08	45.24	45.24	16.07	42.86	1.55	
5	9.20	-232.13	75.08	45.24	45.24	71.62	24.32	2.40	

Verifica sezioni piedritto sinistro [Combinazione n° 19 - SLE (Frequente)]

Base sezione B = 100 cmAltezza sezione H = 80.00 cm

Verifiche presso-flessione

n°	х	М	N	${\tt A_{fi}}$	$\mathtt{A}_{\mathtt{fs}}$	$\sigma_{ t fs}$	$\sigma_{\mathtt{fi}}$	σ_{\circ}
1	0.45	-332.53	346.24	22.62	45.24	80.96	44.60	3.99
2	3.38	-113.28	287.74	22.62	45.24	14.25	17.68	1.44
3	6.30	-232.13	229.24	22.62	45.24	57.64	30.90	2.78

Verifica sezioni piedritto destro [Combinazione n° 19 - SLE (Frequente)]

Base sezione B = 100 cm Altezza sezione H = 80.00 cm

Verifiche presso-flessione

Ν°	X	M	N	${\tt A_{fi}}$	${f A_{fs}}$	$\sigma_{ t fs}$	$\sigma_{\mathtt{fi}}$	σ_{c}
1	0.45	-332.53	346.24	22.62	45.24	80.96	44.60	3.99
2	3.38	-113.28	287.74	22.62	45.24	14.25	17.68	1.44
3	6.30	-232.13	229.24	22.62	45.24	57.64	30.90	2.78

Verifica sezioni fondazione [Combinazione n° 20 - SLE (Frequente)]

Base sezione B = 100 cmAltezza sezione H = 90.00 cm

Verifiche presso-flessione

и°	x	M	N	${\tt A_{fi}}$	${ t A_{fs}}$	$\sigma_{ t fs}$	$\sigma_{\mathtt{fi}}$	σ_{c}
1	0.40	326.02	166.17	45.24	45.24	30.26	80.35	2.79
2	2.56	-209.75	166.17	45.24	45.24	46.00	20.50	1.83
3	4.80	-396.92	166.17	45.24	45.24	101.37	36.15	3.37
4	7.00	-217.03	166.17	45.24	45.24	48.14	21.12	1.89
5	9.20	326.00	166.17	45.24	45.24	30.26	80.34	2.79

Verifica sezioni traverso [Combinazione n° 20 - SLE (Frequente)]

Base sezione B = 100 cm Altezza sezione H = 80.00 cm

<u>Verifiche presso-flessione</u>

Adeguamento al tipo B dal km 12+000 al km 18+000 (ex SS125 "Orientale Sarda" - Connessione tra la SS554 e la nuova SS554)

CA352

Relazione tecnica e di calcolo ST01 - SOTTOVIA Pr. 5+460,00

и°	x	М	N	${ t A_{fi}}$	$\mathtt{A}_{\mathtt{fs}}$	$\sigma_{ t fs}$	$\sigma_{\mathtt{fi}}$	$\sigma_{\rm c}$
1	0.40	-221.44	84.22	45.24	45.24	67.05	23.48	2.30
2	2.61	132.19	84.22	45.24	45.24	14.73	36.66	1.40
3	4.80	248.03	84.22	45.24	45.24	26.08	76.12	2.56
4	6.99	132.18	84.22	45.24	45.24	14.73	36.66	1.40
5	9.20	-221.45	84.22	45.24	45.24	67.06	23.48	2.30

$\underline{\text{Verifica sezioni piedritto sinistro [Combinazione n° 20 - SLE (Frequente)]}}$

Base sezione B = 100 cm Altezza sezione H = 80.00 cm

Verifiche presso-flessione

и°	2	K M	N	${\tt A_{fi}}$	${ t A}_{ t fs}$	$\sigma_{ t fs}$	$\sigma_{\mathtt{fi}}$	$\sigma_{\rm c}$
1	0.45	-326.02	330.40	22.62	45.24	80.20	43.56	3.90
2	3.38	-90.32	271.90	22.62	45.24	8.79	14.59	1.16
3	6.30	-221.44	213.40	22.62	45.24	55.47	29.38	2.64

Base sezione B = 100 cmAltezza sezione H = 80.00 cm

Verifiche presso-flessione

и°	х	М	N	${ t A_{ t fi}}$	$\mathtt{A}_{\mathtt{fs}}$	$\sigma_{ t fs}$	$\sigma_{\mathtt{fi}}$	$\sigma_{\rm c}$
1	0.45	-326.00	330.40	22.62	45.24	80.19	43.56	3.90
2	3.38	-90.32	271.90	22.62	45.24	8.79	14.59	1.16
3	6.30	-221.45	213.40	22.62	45.24	55.48	29.38	2.64

$\underline{\text{Verifica sezioni fondazione [Combinazione n}^{\circ} \ 21 \ - \ \text{SLE (Rara)]}}$

Base sezione B = 100 cm Altezza sezione H = 90.00 cm

Altezza sezione n - 50.00 c.

AGTITI	reme bres	20-TIE22IONE						
N°	х	М	N	${\tt A_{fi}}$	$\mathtt{A}_{\mathtt{fs}}$	$\sigma_{ t fs}$	$\sigma_{\mathtt{fi}}$	σ_{c}
1	0.40	419.62	153.01	45.24	45.24	37.78	109.41	3.55
2	2.56	-345.82	153.01	45.24	45.24	87.51	31.66	2.94
3	4.80	-613.08	153.01	45.24	45.24	166.91	53.78	5.13
4	7.00	-356.21	153.01	45.24	45.24	90.59	32.52	3.03
5	9.20	419.60	153.01	45.24	45.24	37.78	109.41	3.55

$\underline{\text{Verifica sezioni traverso [Combinazione n° 21 - SLE (Rara)]}}$

Base sezione B = 100 cmAltezza sezione H = 80.00 cm

Verifiche presso-flessione

AGTITI	che bres	20-TIE22IONE						
n°	x	М	N	${\tt A_{fi}}$	$\mathtt{A}_{\mathtt{fs}}$	$\sigma_{ t fs}$	$\sigma_{\mathtt{fi}}$	$\sigma_{\rm c}$
1	0.40	-397.42	99.26	45.24	45.24	125.58	40.98	4.08
2	2.61	257.48	99.26	45.24	45.24	27.33	77.84	2.67
3	4.80	518.20	99.26	45.24	45.24	52.74	166.81	5.29
4	6.99	257.48	99.26	45.24	45.24	27.33	77.83	2.67
5	9.20	-397.44	99.26	45.24	45.24	125.58	40.98	4.08

Base sezione B = 100 cmAltezza sezione H = 80.00 cm

 $\underline{\text{Verifiche presso-flessione}}$

n°	х	M	N	${\tt A_{fi}}$	${\tt A_{fs}}$	$\sigma_{ t fs}$	$\sigma_{\mathtt{fi}}$	σ_{c}
1	0.45	-419.62	472.24	22.62	45.24	99.00	56.93	5.05
2	3.38	-223.39	413.74	22.62	45.24	39.11	32.89	2.77
3	6.30	-397.42	355.24	22.62	45.24	102.10	52.20	4.73

Adeguamento al tipo B dal km 12+000 al km 18+000 (ex SS125 "Orientale Sarda" - Connessione tra la SS554 e la nuova SS554)

CA352

Relazione tecnica e di calcolo ST01 - SOTTOVIA Pr. 5+460,00

Verifica sezioni piedritto destro [Combinazione n° 21 - SLE (Rara)]

Base sezione B = 100 cm Altezza sezione H = 80.00 cm

 $\underline{\text{Verifiche presso-flessione}}$

и°	x	м	N	${\tt A_{fi}}$	${ t A_{fs}}$	$\sigma_{ t fs}$	$\sigma_{\mathtt{fi}}$	σ_{c}
1	0.45	-419.60	472.24	22.62	45.24	98.99	56.93	5.05
2	3.38	-223.40	413.74	22.62	45.24	39.11	32.89	2.77
3	6.30	-397.44	355.24	22.62	45.24	102.10	52.20	4.73

Base sezione B = 100 cm Altezza sezione H = 90.00 cm

Verifiche presso-flessione

x	М	N	${\tt A_{fi}}$	$\mathtt{A}_{\mathtt{fs}}$	$\sigma_{ t fs}$	$\sigma_{\mathtt{fi}}$	$\sigma_{\rm c}$
0.40	416.26	155.58	45.24	45.24	37.55	108.16	3.52
2.56	-336.66	155.58	45.24	45.24	84.54	30.94	2.87
4.80	-599.56	155.58	45.24	45.24	162.63	52.71	5.02
7.00	-346.88	155.58	45.24	45.24	87.57	31.79	2.95
9.20	416.23	155.58	45.24	45.24	37.55	108.15	3.52
	X 0.40 2.56 4.80 7.00	X M 0.40 416.26 2.56 -336.66 4.80 -599.56 7.00 -346.88	X M N 0.40 416.26 155.58 2.56 -336.66 155.58 4.80 -599.56 155.58 7.00 -346.88 155.58	X M N A _{fi} 0.40 416.26 155.58 45.24 2.56 -336.66 155.58 45.24 4.80 -599.56 155.58 45.24 7.00 -346.88 155.58 45.24	X M N A _{fi} A _{fs} 0.40 416.26 155.58 45.24 45.24 2.56 -336.66 155.58 45.24 45.24 4.80 -599.56 155.58 45.24 45.24 7.00 -346.88 155.58 45.24 45.24	X M N Afile Afs Offs 0.40 416.26 155.58 45.24 45.24 37.55 2.56 -336.66 155.58 45.24 45.24 84.54 4.80 -599.56 155.58 45.24 45.24 162.63 7.00 -346.88 155.58 45.24 45.24 87.57	X M N A _{fi} A _{fs} O _{fs} O _{fi} 0.40 416.26 155.58 45.24 45.24 37.55 108.16 2.56 -336.66 155.58 45.24 45.24 84.54 30.94 4.80 -599.56 155.58 45.24 45.24 162.63 52.71 7.00 -346.88 155.58 45.24 45.24 87.57 31.79

$\underline{\text{Verifica sezioni traverso [Combinazione n° 22 - SLE (Rara)]}}$

Base sezione B = 100 cmAltezza sezione H = 80.00 cm

 $\underline{\text{Verifiche presso-flessione}}$

и°	x	М	N	${\tt A_{fi}}$	${\tt A_{fs}}$	$\sigma_{ t fs}$	$\sigma_{\mathtt{fi}}$	σ_{c}
1	0.40	-378.60	96.54	45.24	45.24	119.43	39.08	3.89
2	2.61	246.93	96.54	45.24	45.24	26.24	74.51	2.56
3	4.80	486.47	96.54	45.24	45.24	49.59	156.25	4.97
4	6.99	246.92	96.54	45.24	45.24	26.24	74.51	2.56
5	9.20	-378.61	96.54	45.24	45.24	119.43	39.08	3.89

$\underline{\text{Verifica sezioni piedritto sinistro [Combinazione n° 22 - SLE (Rara)]}}$

Base sezione B = 100 cmAltezza sezione H = 80.00 cm

Verifiche presso-flessione

и°	x	M	N	${\tt A_{fi}}$	${ t A_{ t fs}}$	$\sigma_{ t fs}$	$\sigma_{\mathtt{fi}}$	σ_{c}
1	0.45	-416.26	464.50	22.62	45.24	98.56	56.40	5.01
2	3.38	-212.44	406.00	22.62	45.24	36.22	31.46	2.64
3	6.30	-378.60	347.50	22.62	45.24	96.43	49.90	4.51

Verifica sezioni piedritto destro [Combinazione n° 22 - SLE (Rara)]

Base sezione B = 100 cmAltezza sezione H = 80.00 cm

Verifiche presso-flessione

и°	х	М	N	${\tt A_{fi}}$	$\mathtt{A}_{\mathtt{fs}}$	$\sigma_{ t fs}$	$\sigma_{\mathtt{fi}}$	$\sigma_{\rm c}$
1	0.45	-416.23	464.50	22.62	45.24	98.55	56.40	5.01
2	3.38	-212.44	406.00	22.62	45.24	36.22	31.46	2.64
3	6.30	-378.61	347.50	22.62	45.24	96.43	49.90	4.51

Adeguamento al tipo B dal km 12+000 al km 18+000 (ex SS125 "Orientale Sarda" -Connessione tra la SS554 e la nuova SS554)

CA352

Relazione tecnica e di calcolo ST01 - SOTTOVIA Pr. 5+460,00

$\underline{\text{Verifica sezioni fondazione [Combinazione n° 23 - SLE (Rara)]}}$

B = 100 cmBase sezione Altezza sezione H = 90.00 cm

Verifiche presso-flessione

и°	х	М	N	${\tt A_{fi}}$	${\tt A_{fs}}$	$\sigma_{ t fs}$	$\sigma_{\mathtt{fi}}$	σ_{c}
1	0.40	406.49	171.44	45.24	45.24	37.05	103.69	3.45
2	2.56	-308.00	171.44	45.24	45.24	74.50	28.85	2.65
3	4.80	-557.53	171.44	45.24	45.24	148.55	49.56	4.69
4	7.00	-317.72	171.44	45.24	45.24	77.37	29.66	2.73
5	9.20	406.45	171.44	45.24	45.24	37.05	103.68	3.45

$\underline{\text{Verifica sezioni traverso [Combinazione n}^{\circ} \ 23 \ - \ \text{SLE (Rara)]}}$

Base sezione B = 100 cmAltezza sezione H = 80.00 cm

 $\underline{\text{Verifiche presso-flessione}}$

n°	x	M	N	${\tt A_{fi}}$	${\tt A_{fs}}$	$\sigma_{ t fs}$	$\sigma_{\mathtt{fi}}$	σ_{\circ}
1	0.40	-362.57	110.26	45.24	45.24	112.57	37.83	3.74
2	2.61	223.58	110.26	45.24	45.24	24.25	65.18	2.34
3	4.80	450.22	110.26	45.24	45.24	46.37	142.48	4.62
4	6.99	223.57	110.26	45.24	45.24	24.25	65.18	2.34
5	9.20	-362.59	110.26	45.24	45.24	112.58	37.83	3.74

Verifica sezioni piedritto sinistro [Combinazione n° 23 - SLE (Rara)]

Base sezione B = 100 cm Altezza sezione H = 80.00 cm

Verifiche presso-flessione

n°	x	M	N	${f A_{fi}}$	${f A_{fs}}$	$\sigma_{ t fs}$	$\sigma_{\mathtt{fi}}$	σ_{c}
1	0.45	-406.49	440.74	22.62	45.24	97.40	54.85	4.89
2	3.38	-177.99	382.24	22.62	45.24	27.20	26.92	2.23
3	6.30	-362.57	323.74	22.62	45.24	93.18	47.61	4.31

Base sezione B = 100 cm Altezza sezione H = 80.00 cm

Verifiche presso-flessione

n°	х	М	N	${\tt A_{fi}}$	$\mathtt{A}_{\mathtt{fs}}$	$\sigma_{ t fs}$	$\sigma_{\mathtt{fi}}$	σ_{c}
1	0.45	-406.45	440.74	22.62	45.24	97.38	54.84	4.89
2	3.38	-178.01	382.24	22.62	45.24	27.21	26.92	2.23
3	6.30	-362.59	323.74	22.62	45.24	93.18	47.61	4.31

Verifiche fessurazione

Simbologia adottata ed unità di misura N^* Indice sezione X_i Ascissa/Ordinata sezione, espresso in m M_p Momento, espresse in kNm M_n Momento, espresse in kNm M_n Momento, espresse in kNm M_n Momento, espresse in mm M_n Appiezza fessure, espresse in mm M_n Apertura limite fessure, espresse in mm M_n S Distanza media tra le fessure, espresse in mm M_n Deformazione nelle fessure, espresse in M_n

$\underline{\text{Verifica fessurazione fondazione [Combinazione n}^{\circ} \ 17 \ \text{-- SLE (Quasi Permanente)]}$

и°	x	${\tt A_{fi}}$	$\mathtt{A}_{\mathtt{fs}}$	Mp	Mn	M	w	$\mathbf{w}_{\mathtt{lim}}$	$s_{\mathtt{m}}$	€ _{sm}
1	0.40	45.24	45.24	496.09	-496.09	321.08	0.00	0.20	0.00	0.000000
2	2.56	45.24	45.24	496.09	-496.09	-214.65	0.00	0.20	0.00	0.000000
3	4.80	45.24	45.24	496.09	-496.09	-401.79	0.00	0.20	0.00	0.000000
4	7.00	45.24	45.24	496.09	-496.09	-221.92	0.00	0.20	0.00	0.000000

Adeguamento al tipo B dal km 12+000 al km 18+000 (ex SS125 "Orientale Sarda" - Connessione tra la SS554 e la nuova SS554)

CA352	Relazione tecnica e di calcolo ST01 - SOTTOVIA Pr. 5+460,00	
		ĺ

5	9.20	45.24	45.24	496.09	-496.09	321.08	0.00	0.20	0.00	0.000000
***	5 ; 5				n° 17 - SLE (O: B	-+-\1			
veri	.iica iess	surazione t	raverso [C	Ombinazione	n 17 - SLE (Quasi Permaner	ice)]			
и°	x	$\mathtt{A}_{\mathtt{fi}}$	$\mathtt{A}_{\mathtt{fs}}$	Mp	Mn	м	w	$\mathbf{w}_{\mathtt{lim}}$	$\mathbf{s}_{\mathtt{m}}$	ε _{sm}
1	0.40	45.24	45.24	396.59	-396.59	-217.75	0.00	0.20	0.00	0.00000
2	2.61	45.24	45.24	396.59	-396.59	135.88	0.00	0.20	0.00	0.000000
3 4	4.80 6.99	45.24 45.24	45.24 45.24	396.59 396.59	-396.59 -396.59	251.73 135.88	0.00	0.20	0.00	0.000000
5	9.20	45.24	45.24	396.59	-396.59	-217.74	0.00	0.20	0.00	0.000000
Veri	fica fess.	surazione p	oiedritto s	inistro [Co	mbinazione n°	17 - SLE (Quas	si Permanen	ıte)]		
n°	х	$\mathtt{A}_{\mathtt{fi}}$	$\mathtt{A}_{\mathtt{fs}}$	Мр	Mn	M	W	W _{lim}	s _m	8 ₅m
1	0.45	22.62	45.24	367.55	-391.11	-321.08	0.00	0.20	0.00	0.000000
2	3.38 6.30	22.62 22.62	45.24 45.24	367.55 367.55	-391.11 -391.11	-100.53 -217.75	0.00	0.20	0.00	0.000000
3	0.30	22.02	43.24	307.33	-391.11	-217.73	0.00	0.20	0.00	0.000000
Veri	fica fess.	surazione p	eiedritto d	lestro [Comb.	inazione n° 17	- SLE (Quasi	Permanente	<u>:)]</u>		
N°	X	A _{fi}	Afs	Mp	Mn	M	w	Wlim	S m	€ _{sm}
1 2	0.45 3.38	22.62 22.62	45.24 45.24	367.55 367.55	-391.11 -391.11	-321.08 -100.53	0.00	0.20	0.00	0.000000
3	6.30	22.62	45.24	367.55	-391.11	-217.74	0.00	0.20	0.00	0.000000
	fica fess.	surazione f	ondazione	[Combinazio	ne n° 18 - SLE	(Frequente)]				
N°	X	A_{fi}	A _{fs}	Мp	Mn	M	w	W _{lim}	s _m	E _{sm}
1 2	0.40 2.56	45.24 45.24	45.24 45.24	496.09 496.09	-496.09 -496.09	382.69 -306.05	0.00	0.30	0.00	0.000000
3	4.80	45.24	45.24	496.09	-496.09	-546.54	0.14	0.30	213.86	0.000037
4	7.00	45.24	45.24	496.09	-496.09	-315.39	0.00	0.30	0.00	0.000000
5	9.20	45.24	45.24	496.09	-496.09	382.69	0.00	0.30	0.00	0.000000
Veri	fica fess.	surazione t	raverso [C	combinazione	n° 18 - SLE (Frequente)]				
и°	x	$\mathtt{A}_{\mathtt{fi}}$	$\mathbf{A}_{\mathtt{fs}}$	Мр	Mn	м	w	$\mathbf{w}_{\mathtt{lim}}$	s_{m}	€ sm
1	0.40	45.24	45.24	396.59	-396.59	-338.95	0.00	0.30	0.00	0.00000
2	2.61	45.24	45.24	396.59	-396.59	220.96	0.00	0.30	0.00	0.000000
3 4	4.80 6.99	45.24 45.24	45.24 45.24	396.59 396.59	-396.59 -396.59	439.01 220.96	0.14	0.30	206.81 0.00	0.000038
5	9.20	45.24	45.24	396.59	-396.59	-338.95	0.00	0.30	0.00	0.000000
					mbinazione n°					_
n° 1	X 0.45	A_{fi} 22.62	A_{fs} 45.24	Mp 367.55	Mn -391.11	M -382.69	w 0.00	W lim 0.30	s m 0.00	8 _{sm}
2	3.38	22.62	45.24	367.55	-391.11	-190.77	0.00	0.30	0.00	0.000000
3	6.30	22.62	45.24	367.55	-391.11	-338.95	0.00	0.30	0.00	0.000000
Veri	fica fees	urazione n	siedritto d	lestro [Comb	inazione n° 18	- SLE (Freque	ante) l			
n°	X	-			Mn	м		W.		e
1	0.45	A_{fi} 22.62	A_{fs} 45.24	Mp 367.55	-391.11	-382.69	w 0.00	W lim 0.30	$\mathbf{s_m}$	8 _{sm}
2	3.38	22.62	45.24	367.55	-391.11	-190.77	0.00	0.30	0.00	0.000000
3	6.30	22.62	45.24	367.55	-391.11	-338.95	0.00	0.30	0.00	0.000000
Veri	fica fess.	surazione f	ondazione	[Combinazio	ne n° 19 - SLE	(Frequente) l				
n°	х	$\mathbf{A}_{\mathtt{fi}}$	${f A_{fs}}$	Мр	Mn	м	w	$\mathbf{w}_{\mathtt{lim}}$	s _m	€sm
1	0.40	45.24	45.24	496.09	-496.09	332.53	0.00	0.30	0.00	0.000000
2	2.56 4.80	45.24 45.24	45.24 45.24	496.09 496.09	-496.09 -496.09	-228.86 -424.95	0.00	0.30	0.00	0.000000
J	4.00	47.24	40.24	₩20.03	-490.09	-424.90	0.00	0.30	0.00	0.00000

Adeguamento al tipo B dal km 12+000 al km 18+000 (ex SS125 "Orientale Sarda" - Connessione tra la SS554 e la nuova SS554)

	CA352	Rel	azione ted	cnica e di d	calcolo ST01	- SOTTOVIA	4 <i>Pr. 5</i> +	460,00	GRUPPO FS ITALIANE		
4 5	7.00 9.20	45.24 45.24	45.24 45.24	496.09 496.09	-496.09 -496.09	-236.47 332.53	0.00	0.30	0.00	0.000000	
Ver	ifica fess	surazione	traverso [C	ombinazione	n° 19 - SLE (Frequente)]					
N° 1 2 3 4 5	0.40 2.61 4.80 6.99 9.20	A _{fi} 45.24 45.24 45.24 45.24 45.24	A _{fs} 45.24 45.24 45.24 45.24 45.24	Mp 396.59 396.59 396.59 396.59	Mn -396.59 -396.59 -396.59 -396.59 -396.59	-232.13 147.75 272.20 147.75 -232.13	0.00 0.00 0.00 0.00 0.00	W _{lim} 0.30 0.30 0.30 0.30 0.30 0.30	s _m 0.00 0.00 0.00 0.00 0.00	8 _{sm} 0.000000 0.000000 0.000000 0.000000 0.000000	
Ver	ifica fess	surazione	piedritto s	inistro [Co	mbinazione n°	19 - SLE (Fre	quente)]				
n° 1 2 3	x 0.45 3.38 6.30	A _{fi} 22.62 22.62 22.62	A _{fs} 45.24 45.24 45.24	Mp 367.55 367.55 367.55	Mn -391.11 -391.11 -391.11	-332.53 -113.28 -232.13	w 0.00 0.00 0.00	W _{lim} 0.30 0.30 0.30	s _m 0.00 0.00 0.00	Esm 0.000000 0.000000 0.000000	
Ver	ifica fess	surazione	piedritto d	lestro [Comb.	inazione n° 19	- SLE (Freque	ente)]				
N° 1 2 3	x 0.45 3.38 6.30	A fi 22.62 22.62 22.62	A fs 45.24 45.24 45.24	Mp 367.55 367.55 367.55	Mn -391.11 -391.11 -391.11	-332.53 -113.28 -232.13	w 0.00 0.00 0.00	W _{lim} 0.30 0.30 0.30	s m 0.00 0.00 0.00	8sm 0.00000 0.000000 0.000000	
Ver	ifica fess	surazione	fondazione	[Combinazio	ne n° 20 - SLE	(Frequente)]					
N° 1 2 3 4 5	x 0.40 2.56 4.80 7.00 9.20	A _{fi} 45.24 45.24 45.24 45.24 45.24	A _{fs} 45.24 45.24 45.24 45.24 45.24	Mp 496.09 496.09 496.09 496.09	Mn -496.09 -496.09 -496.09 -496.09 -496.09	326.02 -209.75 -396.92 -217.03 326.00	0.00 0.00 0.00 0.00 0.00	W _{1im} 0.30 0.30 0.30 0.30 0.30 0.30	s _m 0.00 0.00 0.00 0.00 0.00	8sm 0.000000 0.000000 0.000000 0.000000 0.000000	
Ver	ifica fess	surazione	traverso [C	ombinazione	n° 20 - SLE (Frequente)]					
N° 1 2 3 4 5	X 0.40 2.61 4.80 6.99 9.20	A _{fi} 45.24 45.24 45.24 45.24 45.24	A _{fs} 45.24 45.24 45.24 45.24 45.24	Mp 396.59 396.59 396.59 396.59 396.59	Mn -396.59 -396.59 -396.59 -396.59 -396.59	-221.44 132.19 248.03 132.18 -221.45	0.00 0.00 0.00 0.00 0.00	W _{lim} 0.30 0.30 0.30 0.30 0.30 0.30	s _m 0.00 0.00 0.00 0.00 0.00	8sm 0.000000 0.000000 0.000000 0.000000 0.000000	
Ver	ifica fess	surazione	piedritto s	inistro [Co	mbinazione n°	20 - SLE (Fre	quente)]				
n° 1 2 3	x 0.45 3.38 6.30	A_{fi} 22.62 22.62 22.62	A _{fs} 45.24 45.24 45.24	Mp 367.55 367.55 367.55	Mn -391.11 -391.11 -391.11	M -326.02 -90.32 -221.44	w 0.00 0.00 0.00	W _{lim} 0.30 0.30 0.30	S _m 0.00 0.00 0.00	Esm 0.000000 0.000000 0.000000	
<u>Ver</u>	ifica fess	surazione	piedritto d	lestro [Comb	inazione n°20	- SLE (Freque	ente)]				
N° 1 2 3	x 0.45 3.38 6.30	A _{fi} 22.62 22.62 22.62	A _{fs} 45.24 45.24 45.24	Mp 367.55 367.55 367.55	Mn -391.11 -391.11 -391.11	-326.00 -90.32 -221.45	w 0.00 0.00 0.00	W _{lim} 0.30 0.30 0.30	s _m 0.00 0.00 0.00	8 _{sm} 0.000000 0.000000 0.000000	
Ver	ifica fess	surazione	fondazione	[Combinazio	ne n° 21 - SLE	(Rara)]					
n° 1 2	x 0.40 2.56	A fi 45.24 45.24	A fs 45.24 45.24	Mp 496.09 496.09	Mn -496.09 -496.09	M 419.62 -345.82	w 0.00 0.00	Wlim 100.00 100.00	s m 0.00 0.00	ε _{sm} 0.000000 0.000000	

Adeguamento al tipo B dal km 12+000 al km 18+000 (ex SS125 "Orientale Sarda" - Connessione tra la SS554 e la nuova SS554)

(CA352	Rela	zione ted	cnica e di d	calcolo ST01	- SOTTOVIA	A <i>Pr.</i> 5+	460,00	GRUPPO	FS ITALIANE
3 4 5	4.80 7.00 9.20	45.24 45.24 45.24	45.24 45.24 45.24	496.09 496.09 496.09	-496.09 -496.09 -496.09	-613.08 -356.21 419.60	0.19 0.00 0.00	100.00 100.00 100.00	213.86 0.00 0.00	0.000050 0.000000 0.000000
Veri	ifica fess	surazione t	raverso [C	ombinazione	n° 21 - SLE (Rara)]				
N° 1 2 3 4 5	x 0.40 2.61 4.80 6.99 9.20	A fi 45.24 45.24 45.24 45.24 45.24	Afs 45.24 45.24 45.24 45.24 45.24	Mp 396.59 396.59 396.59 396.59	Mn -396.59 -396.59 -396.59 -396.59 -396.59	-397.42 257.48 518.20 257.48 -397.44	0.10 0.00 0.20 0.00	Wlim 100.00 100.00 100.00 100.00 100.00	Sm 213.86 0.00 206.81 0.00 213.86	8 _{sm} 0.000027 0.000000 0.000055 0.000000 0.000027
Veri	ifica fess	surazione p	iedritto s	inistro [Co	mbinazione n°	21 - SLE (Rara	a)]			
n° 1 2 3	x 0.45 3.38 6.30	A _{fi} 22.62 22.62 22.62	A _{fs} 45.24 45.24 45.24	Mp 367.55 367.55 367.55	Mn -391.11 -391.11 -391.11	-419.62 -223.39 -397.42	w 0.07 0.00 0.07	W _{lim} 100.00 100.00 100.00	s _m 213.86 0.00 213.86	E _{sm} 0.000019 0.000000 0.000019
Veri	ifica fess	surazione p	iedritto d	lestro [Comb	inazione n°21	- SLE (Rara)]	<u>l</u>			
n° 1 2 3	x 0.45 3.38 6.30	A _{fi} 22.62 22.62 22.62	A _{fs} 45.24 45.24 45.24	Mp 367.55 367.55 367.55	Mn -391.11 -391.11 -391.11	M -419.60 -223.40 -397.44	0.07 0.00 0.07	W _{lim} 100.00 100.00 100.00	s _m 213.86 0.00 213.86	8 _{sm} 0.000019 0.000019
Veri	ifica fess	surazione f	ondazione	[Combinazio	ne n°22 - SLE	(Rara)]				
N° 1 2 3 4 5	x 0.40 2.56 4.80 7.00 9.20	A fi 45.24 45.24 45.24 45.24 45.24	A fs 45.24 45.24 45.24 45.24 45.24	Mp 496.09 496.09 496.09 496.09	Mn -496.09 -496.09 -496.09 -496.09 -496.09	M 416.26 -336.66 -599.56 -346.88 416.23	0.00 0.00 0.17 0.00 0.00	Wlim 100.00 100.00 100.00 100.00 100.00	Sm 0.00 0.00 213.86 0.00 0.00	8 _{sm} 0.000000 0.000000 0.000047 0.000000 0.000000
Veri	ifica fess	surazione t	raverso [C	ombinazione	n° 22 - SLE (Rara)]				
N° 1 2 3 4 5	X 0.40 2.61 4.80 6.99 9.20	A _{fi} 45.24 45.24 45.24 45.24 45.24	A _{fs} 45.24 45.24 45.24 45.24 45.24	Mp 396.59 396.59 396.59 396.59	Mn -396.59 -396.59 -396.59 -396.59 -396.59	-378.60 246.93 486.47 246.92 -378.61	0.00 0.00 0.17 0.00 0.00	W _{lim} 100.00 100.00 100.00 100.00 100.00	s _m 0.00 0.00 206.81 0.00 0.00	8 _{sm} 0.00000 0.000000 0.000048 0.000000
Veri	ifica fess	surazione p	iedritto s	inistro [Co	mbinazione n°	22 - SLE (Rara	a)]			
n° 1 2 3	x 0.45 3.38 6.30	A fi 22.62 22.62 22.62	A _{fs} 45.24 45.24 45.24	Mp 367.55 367.55 367.55	Mn -391.11 -391.11 -391.11	M -416.26 -212.44 -378.60	w 0.07 0.00 0.00	W _{lim} 100.00 100.00	s _m 213.86 0.00 0.00	8 _{sm} 0.000019 0.000000 0.000000
Veri	ifica fess	surazione p	iedritto d	lestro [Comb	inazione n°22	- SLE (Rara)]	L			
n° 1 2 3	x 0.45 3.38 6.30	A _{fi} 22.62 22.62 22.62	A _{fs} 45.24 45.24 45.24	Mp 367.55 367.55 367.55	Mn -391.11 -391.11 -391.11	-416.23 -212.44 -378.61	w 0.07 0.00 0.00	W _{lim} 100.00 100.00 100.00	s _m 213.86 0.00 0.00	8 _{sm} 0.000019 0.000000 0.000000
Veri	ifica fess	surazione f	ondazione	[Combinazio	ne n° 23 - SLE	(Rara)]				
n° 1	x 0.40	A fi 45.24	A fs 45.24	Mp 496.09	Mn -496.09	M 406.49	w 0.00	W lim 100.00	s _m 0.00	E _{sm}

Adeguamento al tipo B dal km 12+000 al km 18+000 (ex SS125 "Orientale Sarda" - Connessione tra la SS554 e la nuova SS554)

			Cornies		555 4 e la liuo	va 00004)			🔾 🔾 🤇	anas
С	A352	Rela	zione ted	cnica e di ca	alcolo ST01	- SOTTO	/IA Pr. 5+	-460,00	GRUPPO	FS ITALIANE
	2.56 4.80 7.00 9.20	45.24 45.24 45.24 45.24	45.24 45.24 45.24 45.24	496.09 496.09 496.09 496.09	-496.09 -496.09 -496.09 -496.09	-308.00 -557.53 -317.72 406.45	0.00 0.14 0.00 0.00	100.00 100.00 100.00 100.00	0.00 213.86 0.00 0.00	0.00000 0.00003 0.00000 0.00000
eri	fica fes	surazione t	raverso [C	Combinazione 1	n° 23 - SLE (I	Rara)]				
•	x 0.40 2.61 4.80 6.99 9.20	A fi 45.24 45.24 45.24 45.24 45.24	A _{fs} 45.24 45.24 45.24 45.24 45.24	Mp 396.59 396.59 396.59 396.59 396.59	Mn -396.59 -396.59 -396.59 -396.59	-362.57 223.58 450.22 223.57 -362.59	0.00 0.00 0.14 0.00 0.00	W _{lim} 100.00 100.00 100.00 100.00	Sm 0.00 0.00 206.81 0.00 0.00	8, 0.00000 0.00000 0.00003 0.00000 0.00000
eri	fica fes:	surazione p	iedritto s	sinistro [Coml	binazione n° 2	23 - SLE (Ra	ara)]			
1° L 2	x 0.45 3.38 6.30	A fi 22.62 22.62 22.62	A _{fs} 45.24 45.24 45.24	Mp 367.55 367.55 367.55	Mn -391.11 -391.11 -391.11	-406.49 -177.99 -362.57	0.07 0.00 0.00	W _{lim} 100.00 100.00	s _m 213.86 0.00 0.00	E ₈ 0.00001 0.00000 0.00000
Veri:	fica fes	surazione p	iedritto d	destro [Combin	nazione n° 23	- SLE (Rara	a)]			
3 7 7	x 0.45 3.38 6.30	A _{fi} 22.62 22.62 22.62	A _{fs} 45.24 45.24 45.24	Mp 367.55 367.55 367.55	Mn -391.11 -391.11 -391.11	-406.45 -178.01 -362.59	0.07 0.00 0.00	W _{lim} 100.00 100.00 100.00	s _m 213.86 0.00 0.00	8, 0.00001 0.00000 0.00000
		solleci								
([m		M _{min} [M _{max} [kNm]	$\mathbf{V}_{\mathtt{min}}$ [[kn]	V _{max} [kN]		[kN]	N _{max} [kN
.40 .56 .80 .00		17 36 18	51.17 77.67 53.81 34.79 51.14	-321.08 455.39 806.84 469.06 -321.08	163		-316.30 -156.87 8.42 316.15 614.07	1 1 1	46.45 46.45 46.45 46.45 46.45	227.45 227.45 227.45 227.45 227.45
Invi	luppo so	llecitazion	i traverso	2						
X [m 0.40 2.61 4.80 6.99 9.20	1	10 22 10	[kNm] 26.19 99.68 26.39 99.68 26.21	M _{max} [kNm] -217.75 340.25 686.43 340.25 -217.74	102	3.19 2.74 35 7.71	V _{max} [kN] 468.90 297.70 1.35 -102.74 -208.19		[kN] 74.49 74.49 74.49 74.49 74.49	N _{max} [kN 148.78 148.78 148.78 148.78
Invi	luppo so	llecitazion	i piedritt	co sinistro						
[m] 0.45 3.38 6.30] M	M _{min} [kNm] -551.17 -295.02 -526.19	-3 -	[kNm] 21.08 40.02 17.75	V _{min} [kN] 146.47 -11.50 -148.78	22	[kN] 27.50 9.73 74.49	N _{min} [kN] 320.07 264.13 208.19	62 54	[kN] 21.00 44.95 58.90
Invi	luppo so	llecitazion	i piedritt	to destro						
Y [m 0.45 3.38 6.30] M	M _{min} [kNm] -551.14 -295.03 -526.21	-3 -	[kNm] 21.08 40.02 17.74	V _{min} [kN] -227.43 -9.73 74.49	-14 1	[kN] 46.47 11.51 48.76	N _{min} [kN] 320.07 264.13 208.19	62 54	[kN] 21.01 14.96 58.91

Inviluppo pressioni terreno

<u>Inviluppo pressioni sul terreno di fondazione</u>

Adeguamento al tipo B dal km 12+000 al km 18+000 (ex SS125 "Orientale Sarda" - Connessione tra la SS554 e la nuova SS554)

CA352

Relazione tecnica e di calcolo ST01 - SOTTOVIA Pr. 5+460,00

X [m]	$\sigma_{\tt tmin}$ [N/mmq]	σ_{tmax} [N/mmq]
0.40	0.094	0.173
2.56	0.094	0.170
4.80	0.094	0.169
7.00	0.094	0.170
9.20	0.094	0.173

Inviluppo verifiche stato limite ultimo (SLU)

Verifica sezioni fondazione (Inviluppo)

Base sea	zione	В	=	100 cm	n
Altezza	sezione	Н	=	90.00	cm

x	${\tt A_{fi}}$	A _{fs}	cs
0.40	45.24	45.24	2.84
2.56	45.24	45.24	2.24
4.80	45.24	45.24	1.85
7.00	45.24	45.24	2.16
9.20	45.24	45.24	2.84

x	$ m V_{Rd}$	$ m V_{Rsd}$	$\mathbf{v}_{\mathtt{Red}}$	A_{sw}
0.40	418.54	0.00	3468.35	0.00
2.56	418.54	0.00	0.00	0.00
4.80	418.54	0.00	0.00	0.00
7.00	418.54	0.00	0.00	0.00
9.20	418.54	0.00	3468.35	0.00

Verifica sezioni traverso (Inviluppo)

Base sezione B = 100 cmAltezza sezione H = 80.00 cm

x	${ t A_{ t fi}}$	${ t A_{fs}}$	CS
0.40	45.24	45.24	2.45
2.61	45.24	45.24	2.41
4.80	45.24	45.24	1.84
6.99	45.24	45.24	2.41
9.20	45.24	45.24	2.45

x	${f v}_{\tt Rd}$	$\mathbf{V}_{\mathtt{Rsd}}$	$\mathbf{v}_{\mathtt{Red}}$	A_{sw}
0.40	379.43	0.00	0.00	0.00
2.61	379.43	0.00	0.00	0.00
4.80	379.43	0.00	0.00	0.00
6.99	379.43	0.00	0.00	0.00
9.20	379.43	0.00	0.00	0.00

<u>Verifica sezioni piedritto sinistro (Inviluppo)</u>

Base sezione B = 100 cmAltezza sezione H = 80.00 cm

Y	${\tt A_{fi}}$	${ t A_{fs}}$	cs
0.45	22.62	45.24	3.23
3.38	22.62	45.24	7.07
6.30	22.62	45.24	2.89

Y	${f V}_{\sf Rd}$	$\mathbf{V}_{\mathtt{Rsd}}$	${f V}_{ m Red}$	A _{sw}
0.45	424.47	0.00	0.00	0.00
3.38	414.17	0.00	0.00	0.00
6.30	403.87	0.00	0.00	0.00

Verifica sezioni piedritto destro (Inviluppo)

Base sezione B = 100 cm Altezza sezione H = 80.00 cm

Y Afi Afs CS

Adeguamento al tipo B dal km 12+000 al km 18+000 (ex SS125 "Orientale Sarda" -Connessione tra la SS554 e la nuova SS554)

CA352	Relazione tecnica e di calcolo ST01 - SOTTOVIA Pr. 5+460,00
-------	---

0.30	13.21	2.03	
0.50 22.02	10.21	2.03	
6.30 22.62	2 45.24	2.89	
3.38 22.62	2 45.24	7.07	
0.45 22.62	2 45.24	3.23	

Y	$\mathbf{V}_{\mathtt{Rd}}$	$\mathbf{V}_{\mathtt{Rsd}}$	$\mathbf{v}_{\mathtt{Rcd}}$	A_{sw}
0.45	424.47	0.00	0.00	0.00
3.38	414.17	0.00	0.00	0.00
6.30	403.87	0.00	0.00	0.00

Inviluppo verifiche stato limite esercizio (SLE)

Verifica sezioni fondazione (Inviluppo)

Base sezione B = 100 cmAltezza sezione H = 90.00 cm

.24 36210116	90.00 CM				
x	${\tt A_{fi}}$	$\mathtt{A}_{\mathtt{fs}}$	σ_{c}	$\sigma_{\mathtt{fi}}$	$\sigma_{ t fs}$
0.40	45.24	45.24	3.547	109.413	37.780
2.56	45.24	45.24	2.943	31.657	87.508
4.80	45.24	45.24	5.128	53.777	166.905
7.00	45.24	45.24	3.029	32.521	90.591
9.20	45.24	45.24	3.547	109.406	37.778
x	τς		$\mathtt{A}_{\mathtt{sw}}$		
0.40	-0.67		0.00		
2.56	-0.33		0.00		
4.80	0.01		0.00		
7.00	0.34		0.00		
9.20	0.67		0.00		

0.00

Verifica sezioni traverso (Inviluppo)

Base sezione B = 100 cmAltezza sezione H = 80.00 cm

x	$\mathtt{A}_{\mathtt{fi}}$	${f A_{fs}}$	$\sigma_{\rm c}$	$\sigma_{\mathtt{fi}}$	$\sigma_{\scriptscriptstyle{\mathrm{fs}}}$
0.40	45.24	45.24	4.077	40.979	125.577
2.61	45.24	45.24	2.671	77.835	27.332
4.80	45.24	45.24	5.288	166.805	52.736
6.99	45.24	45.24	2.671	77.833	27.332
9.20	45.24	45.24	4.077	40.980	125.581
x	τ _c		\mathbf{A}_{sw}		
0.40	0.58		0.00		
2.61	0.37		0.00		
4.80	0.00		0.00		
6.99	-0.37		0.00		
9 20	-0.58		0 00		

Verifica sezioni piedritto sinistro (Inviluppo)

-0.58

Base sezione B = 100 cm Altezza sezione H = 80.00 cm

9.20

20 0021011	J 11 00.00 0				
Y	$\mathtt{A}_{\mathtt{fi}}$	$\mathtt{A}_{\mathtt{fs}}$	$\sigma_{\rm c}$	$\sigma_{\mathtt{fi}}$	$\sigma_{\!\scriptscriptstyle \mathrm{fs}}$
0.45	22.62	45.24	5.054	56.931	99.002
3.38	22.62	45.24	2.774	32.893	39.113
6.30	22.62	45.24	4.726	52.196	102.098
Y	$ au_{ ext{c}}$		$\mathtt{A}_{\mathtt{sw}}$		
0.45	0.28		0.00		
3.38	-0.01		0.00		
6.30	-0.18		0.00		

Verifica sezioni piedritto destro (Inviluppo)

Adeguamento al tipo B dal km 12+000 al km 18+000 (ex SS125 "Orientale Sarda" -Connessione tra la SS554 e la nuova SS554)

0.00

CA352

Relazione tecnica e di calcolo ST01 - SOTTOVIA Pr. 5+460,00

Base sezione Altezza sezione	B = 100 cm H = 80.00 cm				
Y	${f A_{fi}}$	$\mathtt{A}_{\mathtt{fs}}$	$\sigma_{\rm c}$	$\sigma_{\mathtt{fi}}$	$\sigma_{ t fs}$
0.45	22.62	45.24	5.054	56.928	98.993
3.38	22.62	45.24	2.774	32.894	39.114
6.30	22.62	45.24	4.726	52.198	102.102
Y	$ au_{ ext{c}}$		\mathbf{A}_{sw}		
0.45	-0.28		0.00		
3.38	0.01		0.00		

Verifiche geotecniche

6.30

Simbologia adottata
IC Indice della combinazione
Nc, Nq, N_g Fattori di capacità portante
Nc, Nq, N_g Fattori di capacità portante corretti per effetto forma, inclinazione del carico, affondamento, etc.
qu Portanza ultima del terreno, espressa in [N/mmq] O_V Portanza ultima del terreno, espressa in [kN]/m
FS Fattore di sicurezza a carico limite

0.18

IC	Nc	Nq	Nγ	N'c	N'q	N'γ	qu	Q_{σ}	Q_{Y}	FS
1	34.24	19.98	16.27	34.24	19.98	16.27	4.464	42854.13	1116.44	38.38
2	23.22	11.30	6.81	23.22	11.30	6.81	2.325	22323.48	858.80	25.99
3	34.24	19.98	16.27	34.24	19.98	16.27	4.464	42853.83	1499.41	28.58
4	23.22	11.30	6.81	23.22	11.30	6.81	2.325	22323.30	1185.03	18.84
5	34.24	19.98	16.27	34.24	19.98	16.27	4.464	42853.83	1478.51	28.98
6	23.22	11.30	6.81	23.22	11.30	6.81	2.325	22323.30	1167.23	19.13
7	34.24	19.98	16.27	34.24	19.98	16.27	4.464	42853.54	1414.36	30.30
8	23.22	11.30	6.81	23.22	11.30	6.81	2.325	22323.13	1112.58	20.06
9	34.24	19.98	16.27	34.24	19.98	16.27	4.443	42653.40	885.43	48.17
10	34.24	19.98	16.27	34.24	19.98	16.27	4.442	42640.39	832.17	51.24
11	34.24	19.98	16.27	34.24	19.98	16.27	4.443	42653.40	885.43	48.17
12	34.24	19.98	16.27	34.24	19.98	16.27	4.442	42640.39	832.17	51.24
13	34.24	19.98	16.27	34.24	19.98	16.27	4.442	42640.39	832.17	51.24
14	34.24	19.98	16.27	34.24	19.98	16.27	4.443	42653.40	885.43	48.17
15	34.24	19.98	16.27	34.24	19.98	16.27	4.443	42653.40	885.43	48.17
16	34.24	19.98	16.27	34.24	19.98	16.27	4.442	42640.39	832.17	51.24

Computo dei ferri

Diametro [mm]	Lunghezza [m]	Peso [kN]
24.00	698.92	24.3409
16.00	296.00	4.5816
12.00	271.97	2.3679

Computo delle quantità

Volume calcestruzzo in fondazione	mc	8.64
Volume calcestruzzo in elevazione	mc	15.68
Superficie casseri	mq	29.80
Acciaio per armature	Kg	3190.69

Adeguamento al tipo B dal km 12+000 al km 18+000 (ex SS125 "Orientale Sarda" -

Connessione tra la SS554 e la nuova SS554)

CA352

Relazione tecnica e di calcolo ST01 - SOTTOVIA Pr. 5+460.00

Muri andatori

9.2.1 Report di calcolo e verifica Muri Andatori

Dati

<u>Materiali</u>

Simbologia adottata

Indice materiale Descr Descrizione del materiale

Calcestruzzo armato

Classe di resistenza del cls

Ä Classe di resistenza dell'acciaio

Peso specifico, espresso in [kN/mc]
Resistenza caratteristica a compressione, espressa in [kPa] R_{ck}

Modulo elastico, espresso in [kPa]

Coeff. di Poisson

Coeff. di omogenizzazione acciaio/cls Coeff. di omogenizzazione cls teso/compresso

Calcestruzzo armato

n°	Descr	С	Α	γ	R _{ck}	E	ν	n	ntc
				[kN/mc]	[kPa]	[kPa]			
5	C32/40	C32/40	B450C	25.0000	40000	33346000	0.30	15.00	0.50

Acciai

Descr	f _{vk}	f _{uk}	
	[kPa]	[kPa]	
B450C	450000	540000	

Tipologie pali

Simbologia adottata

Indice tipologia palo Descrizione tipologia palo

Contributo portanza palo (laterale e/o punta)
Tecnologia costruttiva (trivellato, infisso o elica continua)
Vincolo palo-fondazione: Cerniera o Incastro (libero o impedito di ruotare in testa)

Imat Indice materiale che lo costituisce usa metodo di Bustamante-Doix

PN Portanza nota

Portanza di punta e laterale caratteristica, espressa in [kN]

0	Donne		-	V	Tuest	BD	PN	Dn	DI
n°	Descr	P		V	Imat	עם	PN	PP	PI
1	Tinologia nalo	Laterale + Punta	Trivellato	Incastro	5	NO	NO		

Geometria profilo terreno a monte del muro

Simbologia adottata (Sistema di riferimento con origine in testa al muro, ascissa X positiva verso monte, ordinata Y positiva verso l'alto)

numero ordine del punto ascissa del punto espressa in [m] ordinata del punto espressa in [m] inclinazione del tratto espressa in [°]

n°	X	Y	A
	[m]	[m]	[°]
1	0.00	0.00	0.000
2	20.00	0.00	0.000

Adeguamento al tipo B dal km 12+000 al km 18+000 (ex SS125 "Orientale Sarda" -Connessione tra la SS554 e la nuova SS554)

CA352

Relazione tecnica e di calcolo ST01 - SOTTOVIA Pr. 5+460,00

Inclinazione terreno a valle del muro rispetto all'orizzontale 0.000 [°]

Geometria muro

Geometria paramento e fondazione

Paramento		
Materiale	C32/40	
Altezza paramento	5.00	[m]
Altezza paramento libero	5.00	[m]
Spessore in sommità	0.40	[m]
Spessore all'attacco con la fondazione	0.90	[m]
Inclinazione paramento esterno	0.00	[°]
Inclinazione paramento interno	5.71	[°]
Mensola di marciapiede		
Posizione rispetto alla testa del muro	0.00	[m]
Lunghezza	0.35	[m]
Spessore all'estremità libera	0.50	[m]
Spessore all'incastro	0.50	[m]
E. C. C.		
Fondazione Materiale	C22/40	
Materiale	C32/40	F . 3
Lunghezza mensola di valle	2.00	[m]
Lunghezza mensola di monte	2.70	[m]
Lunghezza totale	5.60	[m]
Inclinazione piano di posa	0.00	[°]
Spessore	1.50	[m]
Spessore magrone	0.20	[m]

Condizioni di carico

Simbologia adottata

Carichi verticali positivi verso il basso. Carichi orizzontali positivi verso sinistra. Momento positivo senso antiorario.

Ascissa del punto di applicazione del carico concentrato espressa in [m]
Componente orizzontale del carico concentrato espressa in [kN]
Componente verticale del carico concentrato espressa in [kN]
Momento espresso in [kNm]

F_y M X_i X_f Q_i Q_f Ascissa del punto iniziale del carico ripartito espressa in [m] Ascissa del punto finale del carico ripartito espressa in [m] Intensità del carico per $x=X_i$ espressa in [kN]

Intensità del carico per x=X_f espressa in [kN]

Condizione nº 1 (Condizione 1) - VARIABILE

Coeff. di combinazione Ψ_0 =0.75 - Ψ_1 =0.75 - Ψ_2 =0.00

Carichi sul terreno

n°	Tipo	X	Fx	Fy	М	Xi	Xf	Qi	Qf
		[m]	[kN]	[kN]	[kNm]	[m]	[m]	[kN]	[kN]
1	Distribuito					0.00	20.00	20.0000	20.0000

Normativa

Normativa usata: Norme Tecniche sulle Costruzioni 2018 (D.M. 17.01.2018) + Circolare C.S.LL.PP. 21/01/2019 n.7

Coeff. parziali per le azioni o per l'effetto delle azioni

Carichi	Effetto	Combinazioni statiche	Combinazioni sismiche	

Adeguamento al tipo B dal km 12+000 al km 18+000 (ex SS125 "Orientale Sarda" - Connessione tra la SS554 e la nuova SS554)

CA352

Relazione tecnica e di calcolo ST01 - SOTTOVIA Pr. 5+460.00

			HYD	UPL	EQU	A1	A2	EQU	A1	A2
Permanenti strutturali	Favorevoli	γG1,fav	1.00	0.90	1.00	1.00	1.00	1.00	1.00	1.00
Permanenti strutturali	Sfavorevoli	γG1,sfav	1.00	1.10	1.30	1.30	1.00	1.00	1.00	1.00
Permanenti non strutturali	Favorevoli	γG2,fav	0.00	0.80	0.80	0.80	0.80	0.00	0.00	0.00
Permanenti non strutturali	Sfavorevoli	γG2,sfav	1.00	1.50	1.50	1.50	1.30	1.00	1.00	1.00
Variabili	Favorevoli	γo,fav	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Variabili	Sfavorevoli	γ _{Q,sfav}	1.00	1.50	1.50	1.50	1.30	1.00	1.00	1.00
Variabili da traffico	Favorevoli	γoτ,fav	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Variabili da traffico	Sfavorevoli	γoτ,sfav	1.00	1.50	1.35	1.35	1.15	1.00	1.00	1.00

Coeff. parziali per i parametri geotecnici del terreno

Parametro		Combinazio	oni statiche	Combinazioni sismiche		
		M1	M2	M1	M2	
Tangente dell'angolo di attrito	γtan(φ')	1.00	1.25	1.00	1.00	
Coesione efficace	γc	1.00	1.25	1.00	1.00	
Resistenza non drenata	γcu	1.00	1.40	1.00	1.00	
Peso nell'unita di volume	γ_{γ}	1.00	1.00	1.00	1.00	

Coeff. parziali γ_R per le verifiche agli stati limite ultimi STR e GEO

Verifica	Com	binazioni stat	iche	Combinazioni sismiche			
	R1	R2	R3	R1	R2	R3	
Capacità portante			1.40			1.20	
Scorrimento			1.10			1.00	
Resistenza terreno a valle			1.40			1.20	
Ribaltameno			1.15			1.00	
Stabilità fronte di scavo		1.10			1.20		

Carichi verticali. Coeff. parziali γ_R da applicare alle resistenze caratteristiche

Resistenza		Pali infissi		Pali trivellati			Pali ad elica continua			
		R1	R2	R3	R1	R2	R3	R1	R2	R3
Punta	γь			1.15			1.35			1.30
Laterale compressione	γs			1.15			1.15			1.15
Totale compressione	γt			1.15			1.30			1.25
Laterale trazione	γ _{st}			1.25			1.25			1.25

Carichi trasversali. Coeff. parziali y_R da applicare alle resistenze caratteristiche

		R1	R2	R3
Trasversale	γt			1.30

Coefficienti di riduzione ζ per la determinazione della resistenza caratteristica dei pali Numero di verticali indagate 1 $\zeta_3=1.70$ $\zeta_4=1.70$

Descrizione combinazioni di carico

Con riferimento alle azioni elementari prima determinate, si sono considerate le seguenti combinazioni di carico:

- Combinazione fondamentale, impiegata per gli stati limite ultimi (SLU):

$$\gamma_{G1} \; G_1 \; + \; \gamma_{G2} \; G_2 \; + \; \gamma_{Q1} \; Q_{k1} \; + \; \gamma_{Q2} \; Q_{k2} \; + \; \gamma_{Q3} \; Q_{k3} \; + \; \dots$$

- Combinazione caratteristica, cosiddetta rara, impiegata per gli stati limite di esercizio (SLE) irreversibili:

$$G_1 \, + \, G_2 \, + \, Q_{k1} \, + \, \Psi_{0,2} \; Q_{k2} \, + \, \Psi_{0,3} \; Q_{k3} \, + \, ...$$

- Combinazione frequente, impiegata per gli stati limite di esercizio (SLE) reversibili:

$$G_1 \, + \, G_2 \, + \, \Psi_{1,1} \, \, Q_{k1} \, + \, \Psi_{2,2} \, \, Q_{k2} \, + \, \Psi_{2,3} \, \, Q_{k3} \, + \, ...$$

- Combinazione quasi permanente, impiegata per gli effetti di lungo periodo:

$$G_1 + G_2 + \Psi_{2,1} Q_{k1} + \Psi_{2,2} Q_{k2} + \Psi_{2,3} Q_{k3} + ...$$

Adeguamento al tipo B dal km 12+000 al km 18+000 (ex SS125 "Orientale Sarda" -Connessione tra la SS554 e la nuova SS554)

CA352

Relazione tecnica e di calcolo ST01 - SOTTOVIA Pr. 5+460,00

- Combinazione sismica, impiegata per gli stati limite ultimi connessi all'azione sismica E:

$$E + G_1 + G_2 + \Psi_{2,1} \ Q_{k1} + \Psi_{2,2} \ Q_{k2} + \Psi_{2,3} \ Q_{k3} + ...$$

I valori dei coeff. $\Psi_{0,j}$, $\Psi_{1,j}$, $\Psi_{2,j}$ sono definiti nelle singole condizioni variabili.par I valori dei coeff. γ_G e γ_Q , sono definiti nella tabella normativa.

In particolare si sono considerate le seguenti combinazioni:

 $\begin{array}{ll} \text{Simbologia adottata} \\ \gamma & \text{Coefficiente di partecipazione della condizione} \end{array}$ Coefficiente di combinazione della condizione

Combinazione nº 1 - STR (A1-M1-R3)

Condizione	Y	Ψ	Effetto
Peso muro	1.00		Favorevole
Peso terrapieno	1.00		Favorevole
Spinta terreno	1.30		Sfavorevole

Combinazione nº 2 - STR (A1-M1-R3) H + V

Condizione	Y	Ψ	Effetto
Peso muro	1.00		Favorevole
Peso terrapieno	1.00		Favorevole
Spinta terreno	1.00		Sfavorevole

Combinazione nº 3 - STR (A1-M1-R3)

Condizione	γ	Ψ	Effetto
Peso muro	1.00		Favorevole
Peso terrapieno	1.00		Favorevole
Spinta terreno	1.30		Sfavorevole
Condizione 1	1.50	1.00	Sfavorevole

Combinazione nº 4 - STR (A1-M1-R3) H - V

Condizione	Y	Ψ	Effetto
Peso muro	1.00		Sfavorevole
Peso terrapieno	1.00		Sfavorevole
Spinta terreno	1.00		Sfavorevole

Combinazione nº 5 - SLER

Condizione	γ	Ψ	Effetto
Peso muro	1.00		Sfavorevole
Peso terrapieno	1.00		Sfavorevole
Spinta terreno	1.00		Sfavorevole
Condizione 1	1.00	0.75	Sfavorevole

Combinazione nº 6 - SLEF

Condizione	γ	Ψ	Effetto
Peso muro	1.00		Sfavorevole
Peso terrapieno	1.00		Sfavorevole
Spinta terreno	1.00		Sfavorevole

Combinazione nº 7 - SLEQ

Condizione	γ	Ψ	Effetto
Peso muro	1.00		Sfavorevole
Peso terrapieno	1.00		Sfavorevole
Spinta terreno	1.00		Sfavorevole

Adeguamento al tipo B dal km 12+000 al km 18+000 (ex SS125 "Orientale Sarda" - Connessione tra la SS554 e la nuova SS554)

CA352

Relazione tecnica e di calcolo ST01 - SOTTOVIA Pr. 5+460.00

Dati sismici

	Simbolo	U.M.		SLU	SLE
Accelerazione al suolo	a _q	[m/s ²]		0.716	0.000
Accelerazione al suolo	a _q /g	[%]		0.073	0.000
Massimo fattore amplificazione spettro orizzontale	F0			3.076	2.430
Periodo inizio tratto spettro a velocità costante	Tc*			0.404	0.370
Tipo di sottosuolo - Coefficiente stratigrafico	Ss		В	1.200	1.200
Categoria topografica - Coefficiente amplificazione topografica	St		T1	1.000	

Stato limite	Coeff. di riduzione β _m	kh	kv
Ultimo	1.000	8.758	4.379
Ultimo - Ribaltamento	1.000	8.758	4.379
Esercizio	1.000	0.000	0.000

Forma diagramma incremento sismico Rettangolare

Opzioni di calcolo

<u>Spinta</u>

Metodo di calcolo della spinta Culmann
Tipo di spinta Spinta Spinta attiva

Terreno a bassa permeabilità NO Superficie di spinta limitata NO

Stabilità globale

Metodo di calcolo della stabilità globale Bishop

<u>Altro</u>

Partecipazione spinta passiva terreno antistante 0.00
Partecipazione resistenza passiva dente di fondazione 50.00
Componente verticale della spinta nel calcolo delle sollecitazioni NO
Considera terreno sulla fondazione di valle NO
Considera spinta e peso acqua fondazione di valle NO

Specifiche per le verifiche nelle combinazioni allo Stato Limite Ultimo (SLU)

	SLU	Eccezionale
Coefficiente di sicurezza calcestruzzo a compressione	1.50	1.00
Coefficiente di sicurezza acciaio	1.15	1.00
Fattore di riduzione da resistenza cubica a cilindrica	0.83	0.83
Fattore di riduzione per carichi di lungo periodo	0.85	0.85
Coefficiente di sicurezza per la sezione	1.00	1.00

Specifiche per le verifiche nelle combinazioni allo Stato Limite di Esercizio (SLE)

Paramento e fondazione muro

Condizioni ambientali Aggressive Armatura ad aderenza migliorata SI

Verifica a fessurazione

Sensibilità armatura Poco sensibile

Metodo di calcolo aperture delle fessure NTC 2018 - CIRCOLARE 21 gennaio 2019, n. 7 C.S.LL.PP.

Valori limite aperture delle fessure:

 $w_1=0.20$ $w_2=0.30$ $w_3=0.40$

Verifica delle tensioni

Valori limite delle tensioni nei materiali:

Combinazione	Calcestruzzo	Acciaio
Rara	0.60 f _{ck}	0.80 f _{yk}

Adeguamento al tipo B dal km 12+000 al km 18+000 (ex SS125 "Orientale Sarda" -Connessione tra la SS554 e la nuova SS554)

CA352

Relazione tecnica e di calcolo ST01 - SOTTOVIA Pr. 5+460,00

Combinazione	Calcestruzzo	Acciaio
Frequente	1.00 f _{ck}	1.00 f _{yk}
Quasi permanente	0.45 f _{ck}	1.00 f _{yk}

Risultati per combinazione

Spinta e forze

Simbologia adottata

Indice della combinazione

Tipo azione

Ic A I V C_X, C_Y P_X, P_Y Inclinazione della spinta, espressa in [°]

Valore dell'azione, espressa in [kN]
Componente in direzione X ed Y dell'azione, espressa in [kN]
Coordinata X ed Y del punto di applicazione dell'azione, espressa in [m]

Ic	A	V	I	C _x	C _Y	P _X	P _Y
		[kN]	[°]	[kN]	[kN]	[m]	[m]
1	Spinta statica	127.53	23.33	117.11	50.51	3.20	-4.33
	Peso/Inerzia muro			0.00	295.62/0.00	0.26	-4.86
	Peso/Inerzia terrapieno			0.00	280.25/0.00	1.72	-2.43
	Resistenza pali			-339.60			
2	Spinta statica	98.10	23.33	90.08	38.85	3.20	-4.33
	Incremento di spinta sismica		25.58	23.49	10.13	3.20	-3.25
	Peso/Inerzia muro			25.89	295.62/12.95	0.26	-4.86
	Peso/Inerzia terrapieno			24.55	280.25/12.27	1.72	-2.43
	Resistenza pali			-392.17			
3		175.19	23.33	160.87	69.38	3.20	-4.04
	Peso/Inerzia muro			0.00	295.62/0.00	0.26	-4.86
	Peso/Inerzia terrapieno			0.00	376.25/0.00	1.69	-2.41
	Resistenza pali	-		-350.45			
4	Spinta statica	98.10	23.33	90.08	38.85	3.20	-4.33
	Incremento di spinta sismica	30.10	17.18	15.77	6.80	3.20	-3.25
	Peso/Inerzia muro		17.10	25.89	295.62/-12.95	0.26	-4.86
	Peso/Inerzia terrapieno			24.55	280.25/-12.27	1.72	-2.43
	Resistenza pali			-394.86	200.23/-12.27	1.72	-2.73
	resisteriza pan			331.00			
5	Spinta statica	121.93	23.33	111.96	48.29	3.20	-4.12
	Peso/Inerzia muro			0.00	295.62/0.00	0.26	-4.86
	Peso/Inerzia terrapieno			0.00	328.25/0.00	1.71	-2.42
	Resistenza pali			-424.23			
6	- P	98.10	23.33	90.08	38.85	3.20	-4.33
	Peso/Inerzia muro			0.00	295.62/0.00	0.26	-4.86
	Peso/Inerzia terrapieno			0.00	280.25/0.00	1.72	-2.43
	Resistenza pali	-		-409.41			
7	Spinta statica	98.10	23.33	90.08	38.85	3.20	-4.33
-	Peso/Inerzia muro	50.10	20.00	0.00	295.62/0.00	0.26	-4.86
	Peso/Inerzia terrapieno			0.00	280.25/0.00	1.72	-2.43
	Resistenza pali			-409.41	200.20, 0.00	2.7.2	2.13

Risultanti globali

Simbologia adottata

Indice/Tipo combinazione Componente normale al piano di posa, espressa in [kN] Componente parallela al piano di posa, espressa in [kN]

Cmb N T M_r Momento ribaltante, espresso in [kNm] Momento stabilizzante, espresso in [kNm] Eccentricità risultante, espressa in [m]

To	N	T	м	м	acc
10			I'I _r	I'le	ecc

Adeguamento al tipo B dal km 12+000 al km 18+000 (ex SS125 "Orientale Sarda" -Connessione tra la SS554 e la nuova SS554)

CA352

Relazione tecnica e di calcolo ST01 - SOTTOVIA Pr. 5+460,00

	[kN]	[kN]	[kNm]	[kNm]	[m]
1 - STR (A1-M1-R3)	626.37	117.11	253.74	2224.03	-0.346
2 - STR (A1-M1-R3)	650.07	164.00	413.80	2300.49	-0.102
3 - STR (A1-M1-R3)	741.25	160.87	395.97	2714.96	-0.329
4 - STR (A1-M1-R3)	596.30	156.29	473.75	2196.86	-0.090

Sollecitazioni

Elementi calcolati a trave

Simbologia adottata

Sforzo normale, espresso in [kN]. Positivo se di compressione.
Taglio, espresso in [kN]. Positivo se diretto da monte verso valle
Momento, espresso in [kNm]. Positivo se tende le fibre contro terra (a monte) N T M

Paramento

Combinazione nº 1 - STR (A1-M1-R3)

n°	X	N	Т	M
	[m]	[kN]	[kN]	[kNm]
1	0.00	4.37	0.00	0.77
2	-0.10	5.39	0.03	0.77
3	-0.20	6.42	0.12	0.78
4	-0.30	7.49	0.28	0.82
5	-0.40	8.57	0.50	0.87
6	-0.50	9.69	0.77	0.96
7	-0.60	10.82	1.11	1.08
8	-0.70	11.99	1.52	1.25
9	-0.80	13.17	1.98	1.46
10	-0.90	14.39	2.50	1.74
11	-1.00	15.62	3.09	2.07
12	-1.10	16.89	3.74	2.47
13	-1.20	18.17	4.45	2.94
14	-1.30	19.49	5.22	3.50
15	-1.40	20.82	6.05	4.14
16	-1.50	22.19	6.95	4.87
17	-1.60	23.57	7.90	5.71
18	-1.70	24.99	8.92	6.65
19	-1.80	26.42	10.00	7.70
20	-1.90	27.89	11.14	8.87
21	-2.00	29.37	12.35	10.17
22	-2.10	30.89	13.61	11.59
23	-2.20	32.42	14.94	13.16
24	-2.30	33.99	16.33	14.86
25	-2.40	35.57	17.78	16.72
26	-2.50	37.19	19.29	18.73
27	-2.60	38.82	20.86	20.91
28	-2.70	40.49	22.50	23.25
29	-2.80	42.17	24.20	25.77
30	-2.90	43.89	25.96	28.47
31	-3.00	45.62	27.78	31.36
32	-3.10	47.39	29.66	34.44
33	-3.20	49.17	31.60	37.72
34	-3.30	50.99	33.61	41.21
35	-3.40	52.82	35.68	44.91
36	-3.50	54.69	37.81	48.83
37	-3.60	56.57	40.00	52.98
38	-3.70	58.49	42.25	57.36
39	-3.80	60.42	44.56	61.97
40	-3.90	62.39	46.94	66.83
41	-4.00	64.37	49.38	71.94
42	-4.10	66.39	51.88	77.31
43	-4.20	68.42	54.44	82.94
44	-4.30	70.49	57.06	88.84
45	-4.40	72.57	59.75	95.02
46	-4.50	74.68	62.49	101.47
47	-4.60	76.82	65.30	108.22
17	1.00	70.02	03.30	100.22

Adeguamento al tipo B dal km 12+000 al km 18+000 (ex SS125 "Orientale Sarda" - Connessione tra la SS554 e la nuova SS554)

CA352

Relazione tecnica e di calcolo ST01 - SOTTOVIA Pr. 5+460,00

n°	X	N	Т	М
	[m]	[kN]	[kN]	[kNm]
48	-4.70	78.98	68.17	115.26
49	-4.80	81.17	71.10	122.60
50	-4.90	83.38	74.10	130.25
51	-5.00	85.62	77.15	138.21

Combinazione nº 2 - STR (A1-M1-R3) H + V

n°	X	N	Т	М
	[m]	[kN]	[kN]	[kNm]
1	0.00	4.57	0.00	0.80
2	-0.10	5.58	0.40	0.82
3	-0.20	6.62	0.85	0.89
4	-0.30	7.68	1.35	1.01
5	-0.40	8.77	1.90	1.19
6	-0.50	9.88	2.50	1.44
7	-0.60	11.02	3.15	1.75
8	-0.70	12.18	3.85	2.13
9	-0.80	13.37	4.60	2.60
10	-0.90	14.58	5.40	3.14
11	-1.00	15.82	6.24	3.78
12	-1.10	17.08	7.14	4.51
13	-1.20	18.37	8.09	5.33
14	-1.30	19.68	9.08	6.26
15	-1.40	21.02	10.13	7.30
16	-1.50	22.38	11.23	8.46
17	-1.60	23.77	12.37	9.73
18	-1.70	25.18	13.57	11.12
19	-1.80	26.62	14.81	12.65
20	-1.90	28.08	16.11	14.31
21	-2.00	29.57	17.45	16.11
22	-2.10	31.08	18.85	18.05
23	-2.20	32.62	20.29	20.14
24	-2.30	34.18	21.78	22.39
25	-2.40	35.77	23.32	24.80
26	-2.50	37.38	24.92	27.37
27	-2.60	39.02	26.56	30.11
28	-2.70	40.68	28.25	33.03
29	-2.80	42.37	29.99	36.12
30	-2.90	44.08	31.78	39.41
31	-3.00	45.82	33.63	42.88
32	-3.10	47.58	35.52	46.54
33	-3.20	49.37	37.46	50.41
34	-3.30	51.18	39.45	54.49
35	-3.40	53.02	41.49	58.77
36	-3.50	54.88	43.57	63.27
37	-3.60	56.76	45.71	67.99
38	-3.70	58.68	47.90	72.94
39	-3.80	60.61	50.14	78.11
40	-3.90	62.58	52.43	83.53
41	-4.00	64.56	54.77	89.18
42	-4.10	66.58	57.15	95.08
43	-4.20	68.61	59.59	101.23
44	-4.30	70.68	62.08	107.64
45	-4.40	72.76	64.61	114.31
46	-4.50	74.88	67.20	121.25
47	-4.60	77.01	69.83	128.45
48	-4.70	79.18	72.52	135.94
49	-4.80	81.36	75.25	143.71
50	-4.90	83.58	78.04	151.76
51	-5.00	85.81	80.87	160.11

Combinazione nº 3 - STR (A1-M1-R3)

n°	X	N	Т	M
	[m]	[kN]	[kN]	[kNm]
1	0.00	4.37	0.00	0.77
2	-0.10	5.39	0.78	0.81

Adeguamento al tipo B dal km 12+000 al km 18+000 (ex SS125 "Orientale Sarda" - Connessione tra la SS554 e la nuova SS554)

CA352

Relazione tecnica e di calcolo ST01 - SOTTOVIA Pr. 5+460,00

n°	Х	N	т	М
	[m]	[kN]	[kN]	[kNm]
3	-0.20	6.42	1.62	0.93
4	-0.30	7.49	2.53	1.15
5	-0.40	8.57	3.50	1.47
6	-0.50	9.69	4.52	1.90
7	-0.60	10.82	5.61	2.43
8	-0.70	11.99	6.76	3.09
9	-0.80	13.17	7.97	3.86
10	-0.90	14.39	9.25	4.77
11	-1.00	15.62	10.59	5.82
12	-1.10	16.89	11.98	7.00
13	-1.20	18.17	13.44	8.34
14	-1.30	19.49	14.96	9.83
15	-1.40	20.82	16.55	11.49
16	-1.50	22.19	18.19	13.31
17	-1.60	23.57	19.90	15.30
18	-1.70	24.99	21.66	17.48
19	-1.80	26.42	23.49	19.84
20	-1.90	27.89	25.39	22.40
21	-2.00	29.37	27.34	25.16
22	-2.10	30.89	29.35	28.12
23	-2.20	32.42	31.43	31.30
24	-2.30	33.99	33.57	34.69
25	-2.40	35.57	35.77	38.31
26	-2.50	37.19	38.03	42.16
27	-2.60	38.82	40.35	46.25
28	-2.70	40.49	42.74	50.58
29	-2.80	42.17	45.19	55.16
30	-2.90	43.89	47.69	59.99
31	-3.00	45.62	50.27	65.09
32	-3.10	47.39	52.90	70.46
33	-3.20	49.17	55.59	76.10
34	-3.30	50.99	58.35	82.03
35	-3.40	52.82	61.16	88.24
36	-3.50	54.69	64.04	94.75
37	-3.60	56.57	66.98	101.56
38	-3.70	58.49	69.99	108.67
39	-3.80	60.42	73.05	116.10
40	-3.90	62.39	76.18	123.84
41	-4.00	64.37	79.36	131.91
42	-4.10	66.39	82.61	140.32
43	-4.20	68.42	85.92	149.06
44	-4.30	70.49	89.30	158.14
45	-4.40	72.57	92.73	167.58
46	-4.50	74.68	96.23	177.37
47	-4.60	76.82	99.78	187.53
48	-4.70	78.98	103.40	198.06
49	-4.70	81.17	103.40	208.96
50	-4.80 -4.90	83.38	110.83	220.24
51	-5.00	85.62	110.63	231.92
31	-5.00	05.02	117.03	231.32

Combinazione nº 4 - STR (A1-M1-R3) H - V

n°	Х	N	T	М
	[m]	[kN]	[kN]	[kNm]
1	0.00	4.37	0.00	0.77
2	-0.10	5.39	0.30	0.78
3	-0.20	6.42	0.65	0.84
4	-0.30	7.49	1.05	0.93
5	-0.40	8.57	1.49	1.08
6	-0.50	9.69	1.99	1.28
7	-0.60	10.82	2.54	1.53
8	-0.70	11.99	3.13	1.85
9	-0.80	13.17	3.78	2.24
10	-0.90	14.39	4.48	2.70
11	-1.00	15.62	5.22	3.23
12	-1.10	16.89	6.02	3.85
13	-1.20	18.17	6.86	4.56
14	-1.30	19.49	7.75	5.37

Adeguamento al tipo B dal km 12+000 al km 18+000 (ex SS125 "Orientale Sarda" - Connessione tra la SS554 e la nuova SS554)

CA352

Relazione tecnica e di calcolo ST01 - SOTTOVIA Pr. 5+460,00

n°	Х	N	T	М
	[m]	[kN]	[kN]	[kNm]
15	-1.40	20.82	8.70	6.27
16	-1.50	22.19	9.69	7.27
17	-1.60	23.57	10.74	8.39
18	-1.70	24.99	11.83	9.61
19	-1.80	26.42	12.97	10.96
20	-1.90	27.89	14.16	12.43
21	-2.00	29.37	15.41	14.03
22	-2.10	30.89	16.70	15.76
23	-2.20	32.42	18.04	17.63
24	-2.30	33.99	19.43	19.65
25	-2.40	35.57	20.87	21.82
26	-2.50	37.19	22.36	24.14
27	-2.60	38.82	23.90	26.62
28	-2.70	40.49	25.49	29.27
29	-2.80	42.17	27.13	32.08
30	-2.90	43.89	28.82	35.07
31	-3.00	45.62	30.56	38.24
32	-3.10	47.39	32.34	41.60
33	-3.20	49.17	34.18	45.14
34	-3.30	50.99	36.07	48.88
35	-3.40	52.82	38.01	52.82
36	-3.50	54.69	39.99	56.97
37	-3.60	56.57	42.03	61.33
38	-3.70	58.49	44.12	65.90
39	-3.80	60.42	46.25	70.69
40	-3.90	62.39	48.44	75.71
41	-4.00	64.37	50.67	80.96
42	-4.10	66.39	52.96	86.45
43	-4.20	68.42	55.29	92.18
44	-4.30	70.49	57.68	98.15
45	-4.40	72.57	60.11	104.38
46	-4.50	74.68	62.60	110.86
47	-4.60	76.82	65.13	117.60
48	-4.70	78.98	67.71	124.61
49	-4.80	81.17	70.34	131.89
50	-4.90	83.38	73.03	139.45
51	-5.00	85.62	75.76	147.29

Combinazione nº 5 - SLER

n°	Х	N	Т	М
	[m]	[kN]	[kN]	[kNm]
1	0.00	4.37	0.00	0.77
2	-0.10	5.39	0.40	0.79
3	-0.20	6.42	0.85	0.86
4	-0.30	7.49	1.34	0.98
5	-0.40	8.57	1.88	1.16
6	-0.50	9.69	2.47	1.40
7	-0.60	10.82	3.11	1.71
8	-0.70	11.99	3.79	2.09
9	-0.80	13.17	4.52	2.54
10	-0.90	14.39	5.30	3.08
11	-1.00	15.62	6.12	3.70
12	-1.10	16.89	7.00	4.42
13	-1.20	18.17	7.92	5.23
14	-1.30	19.49	8.89	6.14
15	-1.40	20.82	9.90	7.16
16	-1.50	22.19	10.97	8.29
17	-1.60	23.57	12.08	9.53
18	-1.70	24.99	13.23	10.90
19	-1.80	26.42	14.44	12.39
20	-1.90	27.89	15.69	14.01
21	-2.00	29.37	16.99	15.76
22	-2.10	30.89	18.34	17.66
23	-2.20	32.42	19.74	19.70
24	-2.30	33.99	21.18	21.89
25	-2.40	35.57	22.67	24.23
26	-2.50	37.19	24.21	26.74

Adeguamento al tipo B dal km 12+000 al km 18+000 (ex SS125 "Orientale Sarda" - Connessione tra la SS554 e la nuova SS554)

CA352

Relazione tecnica e di calcolo ST01 - SOTTOVIA Pr. 5+460,00

n°	Х	N	Т	М
	[m]	[kN]	[kN]	[kNm]
27	-2.60	38.82	25.79	29.40
28	-2.70	40.49	27.43	32.24
29	-2.80	42.17	29.11	35.25
30	-2.90	43.89	30.84	38.44
31	-3.00	45.62	32.61	41.81
32	-3.10	47.39	34.43	45.38
33	-3.20	49.17	36.30	49.13
34	-3.30	50.99	38.22	53.09
35	-3.40	52.82	40.19	57.25
36	-3.50	54.69	42.20	61.61
37	-3.60	56.57	44.26	66.19
38	-3.70	58.49	46.37	70.99
39	-3.80	60.42	48.52	76.01
40	-3.90	62.39	50.73	81.25
41	-4.00	64.37	52.98	86.73
42	-4.10	66.39	55.27	92.45
43	-4.20	68.42	57.62	98.41
44	-4.30	70.49	60.01	104.62
45	-4.40	72.57	62.45	111.07
46	-4.50	74.68	64.94	117.79
47	-4.60	76.82	67.47	124.77
48	-4.70	78.98	70.06	132.01
49	-4.80	81.17	72.69	139.53
50	-4.90	83.38	75.36	147.32
51	-5.00	85.62	78.09	155.39

Combinazione nº 6 - SLEF

n°	Х	N	Т	М
	[m]	[kN]	[kN]	[kNm]
1	0.00	4.37	0.00	0.77
2	-0.10	5.39	0.02	0.77
3	-0.20	6.42	0.10	0.78
4	-0.30	7.49	0.22	0.81
5	-0.40	8.57	0.38	0.86
6	-0.50	9.69	0.60	0.93
7	-0.60	10.82	0.86	1.03
8	-0.70	11.99	1.17	1.17
9	-0.80	13.17	1.52	1.34
10	-0.90	14.39	1.93	1.56
11	-1.00	15.62	2.38	1.83
12	-1.10	16.89	2.87	2.15
13	-1.20	18.17	3.42	2.53
14	-1.30	19.49	4.01	2.97
15	-1.40	20.82	4.66	3.49
16	-1.50	22.19	5.34	4.07
17	-1.60	23.57	6.08	4.74
18	-1.70	24.99	6.86	5.48
19	-1.80	26.42	7.69	6.32
20	-1.90	27.89	8.57	7.24
21	-2.00	29.37	9.50	8.27
22	-2.10	30.89	10.47	9.39
23	-2.20	32.42	11.49	10.63
24	-2.30	33.99	12.56	11.97
25	-2.40	35.57	13.68	13.44
26	-2.50	37.19	14.84	15.02
27	-2.60	38.82	16.05	16.73
28	-2.70	40.49	17.31	18.58
29	-2.80	42.17	18.61	20.56
30	-2.90	43.89	19.97	22.68
31	-3.00	45.62	21.37	24.95
32	-3.10	47.39	22.81	27.37
33	-3.20	49.17	24.31	29.94
34	-3.30	50.99	25.85	32.68
35	-3.40	52.82	27.44	35.58
36	-3.50	54.69	29.08	38.65
37	-3.60	56.57	30.77	41.90
38	-3.70	58.49	32.50	45.33

Adeguamento al tipo B dal km 12+000 al km 18+000 (ex SS125 "Orientale Sarda" - Connessione tra la SS554 e la nuova SS554)

CA352

Relazione tecnica e di calcolo ST01 - SOTTOVIA Pr. 5+460,00

n°	Х	N	Т	M
	[m]	[kN]	[kN]	[kNm]
39	-3.80	60.42	34.28	48.95
40	-3.90	62.39	36.11	52.75
41	-4.00	64.37	37.98	56.75
42	-4.10	66.39	39.91	60.95
43	-4.20	68.42	41.88	65.35
44	-4.30	70.49	43.89	69.96
45	-4.40	72.57	45.96	74.79
46	-4.50	74.68	48.07	79.84
47	-4.60	76.82	50.23	85.11
48	-4.70	78.98	52.44	90.61
49	-4.80	81.17	54.69	96.35
50	-4.90	83.38	57.00	102.32
51	-5.00	85.62	59.35	108.54

Combinazione nº 7 - SLEQ

n°	Х	N	Т	М
	[m]	[kN]	[kN]	[kNm]
1	0.00	4.37	0.00	0.77
2	-0.10	5.39	0.02	0.77
3	-0.20	6.42	0.10	0.78
4	-0.30	7.49	0.22	0.81
5	-0.40	8.57	0.38	0.86
6	-0.50	9.69	0.60	0.93
7	-0.60	10.82	0.86	1.03
8	-0.70	11.99	1.17	1.17
9	-0.80	13.17	1.52	1.34
10	-0.90	14.39	1.93	1.56
11	-1.00	15.62	2.38	1.83
12	-1.10	16.89	2.87	2.15
13	-1.20	18.17	3.42	2.53
14	-1.30	19.49	4.01	2.97
15	-1.40	20.82	4.66	3.49
16	-1.50	22.19	5.34	4.07
17	-1.60	23.57	6.08	4.74
18	-1.70	24.99	6.86	5.48
19	-1.70	26.42	7.69	6.32
20	-1.90	27.89	8.57	7.24
21	-2.00	29.37	9.50	8.27
22	-2.10	30.89	10.47	9.39
23	-2.10	32.42		10.63
			11.49	
24 25	-2.30 -2.40	33.99 35.57	12.56 13.68	11.97
26	-2.40		14.84	
27	-2.50	37.19 38.82	16.05	15.02 16.73
28	-2.70	40.49	17.31	18.58
29	-2.70	42.17	18.61	20.56
30	-2.60	43.89	19.97	22.68
31	-3.00	45.62	21.37	24.95
32		47.39		27.37
33	-3.10 -3.20	49.17	22.81 24.31	29.94
34		50.99		
35	-3.30		25.85	32.68
36	-3.40 -3.50	52.82 54.69	27.44 29.08	35.58 38.65
37		56.57		
38	-3.60		30.77	41.90
	-3.70	58.49	32.50	45.33
39	-3.80	60.42	34.28	48.95
40	-3.90	62.39	36.11	52.75
41	-4.00	64.37	37.98	56.75
42	-4.10	66.39	39.91	60.95
43	-4.20	68.42	41.88	65.35
44	-4.30	70.49	43.89	69.96
45	-4.40	72.57	45.96	74.79
46	-4.50	74.68	48.07	79.84
47	-4.60	76.82	50.23	85.11
48	-4.70	78.98	52.44	90.61
49	-4.80	81.17	54.69	96.35
50	-4.90	83.38	57.00	102.32

Adeguamento al tipo B dal km 12+000 al km 18+000 (ex SS125 "Orientale Sarda" - Connessione tra la SS554 e la nuova SS554)

CA352

Relazione tecnica e di calcolo ST01 - SOTTOVIA Pr. 5+460,00

n°	X	N	Т	M
	[m]	[kN]	[kN]	[kNm]
51	-5.00	85.62	59.35	108.54

Mensola valle

Combinazione nº 1 - STR (A1-M1-R3)

n°	Х	N	Т	М
	[m]	[kN]	[kN]	[kNm]
1	-0.75	0.00	0.00	0.00
2	-0.66	0.00	1.09	0.05
3	-0.57	0.00	2.19	0.19
4	-0.49	0.00	3.28	0.43
5	-0.40	0.00	4.37	0.77

Combinazione nº 2 - STR (A1-M1-R3) H + V

n°	Х	N	Т	М
	[m]	[kN]	[kN]	[kNm]
1	-0.75	0.00	0.00	0.00
2	-0.66	0.00	1.14	0.05
3	-0.57	0.00	2.28	0.20
4	-0.49	0.00	3.42	0.45
5	-0.40	0.00	4.57	0.80

Combinazione nº 3 - STR (A1-M1-R3)

n°	X	N	T	M
	[m]	[kN]	[kN]	[kNm]
1	-0.75	0.00	0.00	0.00
2	-0.66	0.00	1.09	0.05
3	-0.57	0.00	2.19	0.19
4	-0.49	0.00	3.28	0.43
5	-0.40	0.00	4.37	0.77

Combinazione nº 4 - STR (A1-M1-R3) H - V

n°	X	N	Т	М
	[m]	[kN]	[kN]	[kNm]
1	-0.75	0.00	0.00	0.00
2	-0.66	0.00	1.09	0.05
3	-0.57	0.00	2.19	0.19
4	-0.49	0.00	3.28	0.43
5	-0.40	0.00	4.37	0.77

Combinazione nº 5 - SLER

n°	Х	N	Т	М
	[m]	[kN]	[kN]	[kNm]
1	-0.75	0.00	0.00	0.00
2	-0.66	0.00	1.09	0.05
3	-0.57	0.00	2.19	0.19
4	-0.49	0.00	3.28	0.43
5	-0.40	0.00	4.37	0.77

Combinazione nº 6 - SLEF

n°	x	N	Т	M
	[m]	[kN]	[kN]	[kNm]
1	-0.75	0.00	0.00	0.00
2	-0.66	0.00	1.09	0.05
3	-0.57	0.00	2.19	0.19
4	-0.49	0.00	3.28	0.43
5	-0.40	0.00	4.37	0.77

Adeguamento al tipo B dal km 12+000 al km 18+000 (ex SS125 "Orientale Sarda" -Connessione tra la SS554 e la nuova SS554)

CA352

Relazione tecnica e di calcolo ST01 - SOTTOVIA Pr. 5+460,00

Combinazione nº 7 - SLEQ

n°	X	N	Т	М
	[m]	[kN]	[kN]	[kNm]
1	-0.75	0.00	0.00	0.00
2	-0.66	0.00	1.09	0.05
3	-0.57	0.00	2.19	0.19
4	-0.49	0.00	3.28	0.43
5	-0.40	0.00	4.37	0.77

Verifiche strutturali

Verifiche a flessione

Elementi calcolati a trave

Simbologia adottata

n° Y B H Afi Afs M N Mu indice sezione ordinata sezione espressa in [m] ordinata sezione espressa in [m] larghezza sezione espresso in [cm] altezza sezione espressa in [cm] area ferri inferiori espressa in [cmq] area ferri superiori espressa in [kNm] momento agente espressa in [kNm] inomento agente espressa in [kNii] sforzo normale agente espressa in [kNi] momento ultimi espresso in [kNii] sforzo normale ultimo espressa in [kNi] fattore di sicurezza (rapporto tra sollecitazione ultima e sollecitazione agente)

Paramento

Combinazione nº 1 - STR (A1-M1-R3)

n°	Y	В	Н	Afi	Afs	М	N	Mu	Nu	FS
	[m]	[cm]	[cm]	[cmq]	[cmq]	[kNm]	[kN]	[kNm]	[kN]	
1	0.00	100	40	15.71	22.62	0.77	4.37	580.07	3314.70	757.646
2	-0.10	100	41	15.71	22.62	0.77	5.39	571.85	4005.32	743.448
3	-0.20	100	42	15.71	22.62	0.78	6.42	562.78	4611.38	717.725
4	-0.30	100	43	15.71	22.62	0.82	7.49	556.63	5102.69	681.495
5	-0.40	100	44	15.71	22.62	0.87	8.57	558.38	5482.16	639.320
6	-0.50	100	45	15.71	22.62	0.96	9.69	568.51	5735.60	592.064
7	-0.60	100	46	15.71	22.62	1.08	10.82	589.02	5884.59	543.613
8	-0.70	100	47	15.71	22.62	1.25	11.99	619.35	5941.35	495.632
9	-0.80	100	48	15.71	22.62	1.46	13.17	658.31	5921.11	449.423
10	-0.90	100	49	15.71	22.62	1.74	14.39	702.94	5828.06	405.081
11	-1.00	100	50	15.71	22.62	2.07	15.62	752.94	5690.14	364.172
12	-1.10	100	51	15.71	22.62	2.47	16.89	806.46	5518.87	326.805
13	-1.20	100	52	15.71	22.62	2.94	18.17	860.77	5317.32	292.566
14	-1.30	100	53	15.71	22.62	3.50	19.49	916.89	5109.21	262.182
15	-1.40	100	54	15.71	22.62	4.14	20.82	968.88	4874.75	234.084
16	-1.50	100	55	15.71	22.62	4.87	22.19	1019.50	4640.88	209.169
17	-1.60	100	56	15.71	22.62	5.71	23.57	1053.40	4350.28	184.532
18	-1.70	100	57	15.71	22.62	6.65	24.99	1071.85	4028.22	161.212
19	-1.80	100	58	15.71	22.62	7.70	26.42	1079.58	3704.39	140.187
20	-1.90	100	59	15.71	22.62	8.87	27.89	1079.01	3391.78	121.626
21	-2.00	100	60	15.71	22.62	10.17	29.37	1076.97	3111.63	105.930
22	-2.10	100	61	15.71	22.62	11.59	30.89	1063.29	2832.87	91.718
23	-2.20	100	62	15.71	22.62	13.16	32.42	1054.20	2598.11	80.128
24	-2.30	100	63	15.71	22.62	14.86	33.99	1035.60	2368.00	69.674
25	-2.40	100	64	15.71	22.62	16.72	35.57	1022.49	2175.47	61.153
26	-2.50	100	65	15.71	22.62	18.73	37.19	1007.14	1999.25	53.763
27	-2.60	100	66	15.71	22.62	20.91	38.82	988.82	1836.10	47.293
28	-2.70	100	67	15.71	22.62	23.25	40.49	975.38	1698.30	41.947
29	-2.80	100	68	15.71	22.62	25.77	42.17	963.20	1576.24	37.375
30	-2.90	100	69	15.71	22.62	28.47	43.89	947.25	1460.09	33.270
31	-3.00	100	70	15.71	22.62	31.36	45.62	934.83	1360.03	29.810
32	-3.10	100	71	15.71	22.62	34.44	47.39	925.27	1273.02	26.865
33	-3.20	100	72	15.71	22.62	37.72	49.17	918.07	1196.72	24.337

Adeguamento al tipo B dal km 12+000 al km 18+000 (ex SS125 "Orientale Sarda" - Connessione tra la SS554 e la nuova SS554)

CA352

Relazione tecnica e di calcolo ST01 - SOTTOVIA Pr. 5+460,00

n°	Y	В	Н	Afi	Afs	М	N	Mu	Nu	FS
	[m]	[cm]	[cm]	[cmq]	[cmq]	[kNm]	[kN]	[kNm]	[kN]	
34	-3.30	100	73	15.71	22.62	41.21	50.99	912.84	1129.32	22.150
35	-3.40	100	74	15.71	22.62	44.91	52.82	909.27	1069.40	20.245
36	-3.50	100	75	15.71	22.62	48.83	54.69	907.11	1015.80	18.575
37	-3.60	100	76	15.71	22.62	52.98	56.57	906.16	967.61	17.104
38	-3.70	100	77	15.71	22.62	57.36	58.49	906.25	924.08	15.800
39	-3.80	100	78	15.71	22.62	61.97	60.42	907.26	884.56	14.640
40	-3.90	100	79	15.71	22.62	66.83	62.39	909.06	848.56	13.602
41	-4.00	100	80	15.71	22.62	71.94	64.37	911.56	815.64	12.671
42	-4.10	100	81	15.71	45.24	77.31	66.39	1717.09	1474.43	22.210
43	-4.20	100	82	31.42	45.24	82.94	68.42	1774.93	1464.24	21.400
44	-4.30	100	83	15.71	45.24	88.84	70.49	1741.73	1381.87	19.605
45	-4.40	100	84	15.71	45.24	95.02	72.57	1755.14	1340.55	18.472
46	-4.50	100	85	15.71	45.24	101.47	74.68	1769.00	1301.98	17.433
47	-4.60	100	86	15.71	45.24	108.22	76.82	1782.22	1265.14	16.468
48	-4.70	100	87	15.71	45.24	115.26	78.98	1792.26	1228.18	15.550
49	-4.80	100	88	15.71	45.24	122.60	81.17	1802.81	1193.60	14.705
50	-4.90	100	89	15.71	45.24	130.25	83.38	1813.84	1161.18	13.926
51	-5.00	100	90	15.71	45.24	138.21	85.62	1825.30	1130.75	13.206

Combinazione nº 2 - STR (A1-M1-R3) H + V

n°	Y	В	Н	Afi	Afs	М	N	Mu	Nu	FS
	[m]	[cm]	[cm]	[cmq]	[cmq]	[kNm]	[kN]	[kNm]	[kN]	
1	0.00	100	40	15.71	22.62	0.80	4.57	580.07	3314.70	725.859
2	-0.10	100	41	15.71	22.62	0.82	5.58	577.40	3922.28	703.032
3	-0.20	100	42	15.71	22.62	0.89	6.62	582.41	4324.15	653.533
4	-0.30	100	43	15.71	22.62	1.01	7.68	599.80	4542.70	591.569
5	-0.40	100	44	15.71	22.62	1.19	8.77	628.12	4609.61	525.817
6	-0.50	100	45	15.71	22.62	1.44	9.88	664.93	4567.57	462.349
7	-0.60	100	46	15.71	22.62	1.75	11.02	707.77	4456.05	404.487
8	-0.70	100	47	15.71	22.62	2.13	12.18	752.28	4292.23	352.428
9	-0.80	100	48	15.71	22.62	2.60	13.37	797.08	4101.67	306.862
10	-0.90	100	49	15.71	22.62	3.14	14.58	838.12	3886.65	266.593
11	-1.00	100	50	15.71	22.62	3.78	15.82	857.30	3588.55	226.887
12	-1.10	100	51	15.71	22.62	4.51	17.08	867.19	3286.38	192.423
13	-1.20	100	52	15.71	22.62	5.33	18.37	871.56	3001.33	163.414
14	-1.30	100	53	15.71	22.62	6.26	19.68	872.12	2739.86	139.229
15	-1.40	100	54	15.71	22.62	7.30	21.02	864.96	2489.10	118.436
16	-1.50	100	55	15.71	22.62	8.46	22.38	860.55	2277.38	101.765
17	-1.60	100	56	15.71	22.62	9.73	23.77	849.18	2074.56	87.290
18	-1.70	100	57	15.71	22.62	11.12	25.18	841.62	1904.93	75.656
19	-1.80	100	58	15.71	22.62	12.65	26.62	833.46	1753.72	65.889
20	-1.90	100	59	15.71	22.62	14.31	28.08	821.53	1612.11	57.414
21	-2.00	100	60	15.71	22.62	16.11	29.57	813.56	1493.31	50.508
22	-2.10	100	61	15.71	22.62	18.05	31.08	808.70	1392.37	44.802
23	-2.20	100	62	15.71	22.62	20.14	32.62	799.91	1295.20	39.711
24	-2.30	100	63	15.71	22.62	22.39	34.18	793.68	1211.51	35.447
25	-2.40	100	64	15.71	22.62	24.80	35.77	789.52	1138.73	31.839
26	-2.50	100	65	15.71	22.62	27.37	37.38	787.08	1074.91	28.758
27	-2.60	100	66	15.71	22.62	30.11	39.02	786.06	1018.53	26.106
28	-2.70	100	67	15.71	22.62	33.03	40.68	786.26	968.39	23.806
29	-2.80	100	68	15.71	22.62	36.12	42.37	787.47	923.53	21.799
30	-2.90	100	69	15.71	22.62	39.41	44.08	789.56	883.18	20.037
31	-3.00	100	70	15.71	22.62	42.88	45.82	792.42	846.71	18.481
32	-3.10	100	71	15.71	22.62	46.54	47.58	795.93	813.59	17.100
33	-3.20	100	72	15.71	22.62	50.41	49.37	800.02	783.40	15.869
34	-3.30	100	73	15.71	22.62	54.49	51.18	804.62	755.77	14.768
35	-3.40	100	74	15.71	22.62	58.77	53.02	809.68	730.40	13.777
36	-3.50	100	75	15.71	22.62	63.27	54.88	815.14	707.03	12.884
37	-3.60	100	76	15.71	22.62	67.99	56.76	820.96	685.43	12.075
38	-3.70	100	77	15.71	22.62	72.94	58.68	827.10	665.42	11.340
39	-3.80	100	78	15.71	22.62	78.11	60.61	833.54	646.82	10.671
40	-3.90	100	79	15.71	22.62	83.53	62.58	840.25	629.51	10.060
41	-4.00	100	80	15.71	22.62	89.18	64.56	847.20	613.36	9.500
42	-4.10	100	81	15.71	45.24	95.08	66.58	1627.94	1139.91	17.122
43	-4.20	100	82	31.42	45.24	101.23	68.61	1662.82	1127.05	16.426
44	-4.30	100	83	15.71	45.24	107.64	70.68	1655.65	1087.10	15.381
45	-4.40	100	84	15.71	45.24	114.31	72.76	1669.71	1062.85	14.607

Adeguamento al tipo B dal km 12+000 al km 18+000 (ex SS125 "Orientale Sarda" - Connessione tra la SS554 e la nuova SS554)

CA352

Relazione tecnica e di calcolo ST01 - SOTTOVIA Pr. 5+460,00

n°	Y	В	Н	Afi	Afs	М	N	Mu	Nu	FS
	[m]	[cm]	[cm]	[cmq]	[cmq]	[kNm]	[kN]	[kNm]	[kN]	
46	-4.50	100	85	15.71	45.24	121.25	74.88	1683.94	1039.93	13.889
47	-4.60	100	86	15.71	45.24	128.45	77.01	1698.38	1018.25	13.222
48	-4.70	100	87	15.71	45.24	135.94	79.18	1713.03	997.73	12.601
49	-4.80	100	88	15.71	45.24	143.71	81.36	1727.88	978.29	12.024
50	-4.90	100	89	15.71	45.24	151.76	83.58	1742.93	959.85	11.485
51	-5.00	100	90	15.71	45.24	160.11	85.81	1758.14	942.33	10.981

Combinazione nº 3 - STR (A1-M1-R3)

	26 719.491 20 639.363 40 546.832 17 457.047 24 379.278 21 305.055 35 242.116 44 191.913
2 -0.10 100 41 15.71 22.62 0.81 5.39 580.39 3876 3 -0.20 100 42 15.71 22.62 0.93 6.42 597.19 4107 4 -0.30 100 43 15.71 22.62 1.15 7.49 631.10 4094 5 -0.40 100 44 15.71 22.62 1.17 8.57 673.27 3919 6 -0.50 100 45 15.71 22.62 1.90 9.69 719.58 3674 7 -0.60 100 46 15.71 22.62 2.43 1.082 742.15 330 8 -0.70 100 47 15.71 22.62 3.09 11.99 742.21 2902 9 -0.80 100 48 15.71 22.62 3.86 13.17 741.47 729.19 2198 11 -1.00 100 50 15.71 <th>26 719.491 20 639.363 40 546.832 17 457.047 24 379.278 21 305.055 35 242.116 44 191.913</th>	26 719.491 20 639.363 40 546.832 17 457.047 24 379.278 21 305.055 35 242.116 44 191.913
3	00 639.363 40 546.832 17 457.047 24 379.278 21 305.055 35 242.116 14 191.913
4 -0.30 100 43 15.71 22.62 1.15 7.49 631.10 4094 5 -0.40 100 44 15.71 22.62 1.47 8.57 673.27 3919 6 -0.50 100 45 15.71 22.62 1.90 9.69 719.58 3674 7 -0.60 100 46 15.71 22.62 2.43 10.82 742.15 3302 8 -0.70 100 47 15.71 22.62 3.09 11.99 747.21 2902 9 -0.80 100 48 15.71 22.62 3.86 13.17 741.47 2528 10 -0.90 100 50 15.71 22.62 3.86 13.17 741.47 22.92 11 -1.00 100 50 15.71 22.62 5.82 15.62 715.92 193 12 -1.10 100 51 15.71 22.62	40 546.832 17 457.047 24 379.278 21 305.055 35 242.116 14 191.913
5 -0.40 100 44 15.71 22.62 1.47 8.57 673.27 3919 6 -0.50 100 45 15.71 22.62 1.90 9.69 719.58 3674 7 -0.60 100 46 15.71 22.62 2.43 10.82 742.15 3302 8 -0.70 100 47 15.71 22.62 3.09 11.99 747.21 2902 9 -0.80 100 48 15.71 22.62 3.86 13.17 741.47 2528 10 -0.90 100 49 15.71 22.62 4.77 14.39 729.19 2198 11 -1.00 100 50 15.71 22.62 5.82 15.62 715.92 1923 12 -1.10 100 51 15.71 22.62 8.34 18.17 687.53 1498 14 -1.30 100 53 15.71 22.	17 457.047 24 379.278 21 305.055 35 242.116 14 191.913
6 -0.50 100 45 15.71 22.62 1.90 9.69 719.58 3674 7 -0.60 100 46 15.71 22.62 2.43 10.82 742.15 3302 8 -0.70 100 47 15.71 22.62 3.09 11.99 747.21 2902 9 -0.80 100 48 15.71 22.62 3.86 13.17 741.47 2528 10 -0.90 100 49 15.71 22.62 4.77 14.39 729.19 2198 11 -1.00 100 50 15.71 22.62 5.82 15.62 715.92 1923 12 -1.10 100 51 15.71 22.62 8.34 18.17 687.53 1498 14 -1.30 100 53 15.71 22.62 9.83 19.49 672.49 1332 15 -1.40 100 54 15.71 2	24 379.278 21 305.055 35 242.116 44 191.913
7 -0.60 100 46 15.71 22.62 2.43 10.82 742.15 3302 8 -0.70 100 47 15.71 22.62 3.09 11.99 747.21 2902 9 -0.80 100 48 15.71 22.62 3.86 13.17 741.47 2528 10 -0.90 100 49 15.71 22.62 4.77 14.39 729.19 2198 11 -1.00 100 50 15.71 22.62 5.82 15.62 715.92 1923 12 -1.10 100 51 15.71 22.62 7.00 16.89 700.95 1690 13 -1.20 100 52 15.71 22.62 8.34 18.17 687.53 1498 14 -1.30 100 53 15.71 22.62 18.34 18.17 687.53 1498 15 -1.40 100 54 15.71 <t< td=""><td>21 305.055 35 242.116 44 191.913</td></t<>	21 305.055 35 242.116 44 191.913
7 -0.60 100 46 15.71 22.62 2.43 10.82 742.15 3302 8 -0.70 100 47 15.71 22.62 3.09 11.99 747.21 2902 9 -0.80 100 48 15.71 22.62 3.86 13.17 741.47 2528 10 -0.90 100 49 15.71 22.62 4.77 14.39 729.19 2198 11 -1.00 100 50 15.71 22.62 5.82 15.62 715.92 1923 12 -1.10 100 51 15.71 22.62 7.00 16.89 700.95 1690 13 -1.20 100 52 15.71 22.62 8.34 18.17 687.53 1498 14 -1.30 100 53 15.71 22.62 18.34 18.17 687.53 1498 15 -1.40 100 54 15.71 <t< td=""><td>21 305.055 35 242.116 44 191.913</td></t<>	21 305.055 35 242.116 44 191.913
8 -0.70 100 47 15.71 22.62 3.09 11.99 747.21 2902 9 -0.80 100 48 15.71 22.62 3.86 13.17 741.47 2528 10 -0.90 100 49 15.71 22.62 4.77 14.39 729.19 2198 11 -1.00 100 50 15.71 22.62 5.82 15.62 715.92 1923 12 -1.10 100 51 15.71 22.62 7.00 16.89 700.95 1690 13 -1.20 100 52 15.71 22.62 8.34 18.17 687.53 1498 14 -1.30 100 53 15.71 22.62 9.83 19.49 672.49 1332 15 -1.40 100 54 15.71 22.62 11.49 20.82 663.05 1202 16 -1.50 100 55 15.71 <	191.913
10 -0.90 100 49 15.71 22.62 4.77 14.39 729.19 2198 11 -1.00 100 50 15.71 22.62 5.82 15.62 715.92 1923 12 -1.10 100 51 15.71 22.62 7.00 16.89 700.95 1690 13 -1.20 100 52 15.71 22.62 8.34 18.17 687.53 1498 14 -1.30 100 53 15.71 22.62 9.83 19.49 672.49 1332 15 -1.40 100 54 15.71 22.62 11.49 20.82 663.05 1202 16 -1.50 100 55 15.71 22.62 11.49 20.82 663.05 1202 16 -1.50 100 56 15.71 22.62 15.30 23.57 647.19 996 18 -1.70 100 57 15.71	
10 -0.90 100 49 15.71 22.62 4.77 14.39 729.19 2198 11 -1.00 100 50 15.71 22.62 5.82 15.62 715.92 1923 12 -1.10 100 51 15.71 22.62 7.00 16.89 700.95 1690 13 -1.20 100 52 15.71 22.62 8.34 18.17 687.53 1498 14 -1.30 100 53 15.71 22.62 9.83 19.49 672.49 1332 15 -1.40 100 54 15.71 22.62 11.49 20.82 663.05 1202 16 -1.50 100 55 15.71 22.62 11.49 20.82 663.05 1202 16 -1.50 100 56 15.71 22.62 13.31 22.19 654.10 1090 17 -1.60 100 56 15.71	
11 -1.00 100 50 15.71 22.62 5.82 15.62 715.92 1923 12 -1.10 100 51 15.71 22.62 7.00 16.89 700.95 1690 13 -1.20 100 52 15.71 22.62 8.34 18.17 687.53 1498 14 -1.30 100 53 15.71 22.62 9.83 19.49 672.49 1332 15 -1.40 100 54 15.71 22.62 11.49 20.82 663.05 1202 16 -1.50 100 55 15.71 22.62 13.31 22.19 654.10 1090 17 -1.60 100 56 15.71 22.62 15.30 23.57 647.19 996 18 -1.70 100 57 15.71 22.62 17.48 24.99 643.05 919 19 -1.80 100 58 15.71	33 152.830
13 -1.20 100 52 15.71 22.62 8.34 18.17 687.53 1498 14 -1.30 100 53 15.71 22.62 9.83 19.49 672.49 1332 15 -1.40 100 54 15.71 22.62 11.49 20.82 663.05 1202 16 -1.50 100 55 15.71 22.62 13.31 22.19 654.10 1090 17 -1.60 100 56 15.71 22.62 15.30 23.57 647.19 996 18 -1.70 100 57 15.71 22.62 17.48 24.99 643.05 919 19 -1.80 100 58 15.71 22.62 19.84 26.42 641.06 853 20 -1.90 100 59 15.71 22.62 22.40 27.89 640.77 797 21 -2.00 100 60 15.71	123.104
13 -1.20 100 52 15.71 22.62 8.34 18.17 687.53 1498 14 -1.30 100 53 15.71 22.62 9.83 19.49 672.49 1332 15 -1.40 100 54 15.71 22.62 11.49 20.82 663.05 1202 16 -1.50 100 55 15.71 22.62 13.31 22.19 654.10 1090 17 -1.60 100 56 15.71 22.62 15.30 23.57 647.19 996 18 -1.70 100 57 15.71 22.62 17.48 24.99 643.05 919 19 -1.80 100 58 15.71 22.62 17.48 24.99 643.05 919 20 -1.90 100 59 15.71 22.62 22.40 27.89 640.77 797 21 -2.00 100 60 15.71	100.095
14 -1.30 100 53 15.71 22.62 9.83 19.49 672.49 1332 15 -1.40 100 54 15.71 22.62 11.49 20.82 663.05 1202 16 -1.50 100 55 15.71 22.62 13.31 22.19 654.10 1090 17 -1.60 100 56 15.71 22.62 15.30 23.57 647.19 996 18 -1.70 100 57 15.71 22.62 17.48 24.99 643.05 919 19 -1.80 100 58 15.71 22.62 19.84 26.42 641.06 853 20 -1.90 100 59 15.71 22.62 22.40 27.89 640.77 797 21 -2.00 100 60 15.71 22.62 25.16 29.37 641.85 749 22 -2.10 100 61 15.71	10 82.444
15 -1.40 100 54 15.71 22.62 11.49 20.82 663.05 1202 16 -1.50 100 55 15.71 22.62 13.31 22.19 654.10 1090 17 -1.60 100 56 15.71 22.62 15.30 23.57 647.19 996 18 -1.70 100 57 15.71 22.62 17.48 24.99 643.05 919 19 -1.80 100 58 15.71 22.62 19.84 26.42 641.06 853 20 -1.90 100 59 15.71 22.62 22.40 27.89 640.77 797 21 -2.00 100 60 15.71 22.62 25.16 29.37 641.85 749 22 -2.10 100 61 15.71 22.62 28.12 30.89 644.03 707 23 -2.20 100 62 15.71	
16 -1.50 100 55 15.71 22.62 13.31 22.19 654.10 1090 17 -1.60 100 56 15.71 22.62 15.30 23.57 647.19 996 18 -1.70 100 57 15.71 22.62 17.48 24.99 643.05 919 19 -1.80 100 58 15.71 22.62 19.84 26.42 641.06 853 20 -1.90 100 59 15.71 22.62 22.40 27.89 640.77 797 21 -2.00 100 60 15.71 22.62 25.16 29.37 641.85 749 22 -2.10 100 61 15.71 22.62 28.12 30.89 644.03 707 23 -2.20 100 62 15.71 22.62 31.30 32.42 647.14 670 24 -2.30 100 63 15.71	
17 -1.60 100 56 15.71 22.62 15.30 23.57 647.19 996 18 -1.70 100 57 15.71 22.62 17.48 24.99 643.05 919 19 -1.80 100 58 15.71 22.62 19.84 26.42 641.06 853 20 -1.90 100 59 15.71 22.62 22.40 27.89 640.77 797 21 -2.00 100 60 15.71 22.62 25.16 29.37 641.85 749 22 -2.10 100 61 15.71 22.62 28.12 30.89 644.03 707 23 -2.20 100 62 15.71 22.62 31.30 32.42 647.14 670 24 -2.30 100 63 15.71 22.62 38.31 35.57 655.55 608 25 -2.40 100 64 15.71	
18 -1.70 100 57 15.71 22.62 17.48 24.99 643.05 919 19 -1.80 100 58 15.71 22.62 19.84 26.42 641.06 853 20 -1.90 100 59 15.71 22.62 22.40 27.89 640.77 797 21 -2.00 100 60 15.71 22.62 25.16 29.37 641.85 749 22 -2.10 100 61 15.71 22.62 28.12 30.89 644.03 707 23 -2.20 100 62 15.71 22.62 31.30 32.42 647.14 670 24 -2.30 100 63 15.71 22.62 38.31 35.57 655.55 608 25 -2.40 100 64 15.71 22.62 38.31 35.57 655.55 608 26 -2.50 100 65 15.71	
19 -1.80 100 58 15.71 22.62 19.84 26.42 641.06 853 20 -1.90 100 59 15.71 22.62 22.40 27.89 640.77 797 21 -2.00 100 60 15.71 22.62 25.16 29.37 641.85 749 22 -2.10 100 61 15.71 22.62 28.12 30.89 644.03 707 23 -2.20 100 62 15.71 22.62 31.30 32.42 647.14 670 24 -2.30 100 63 15.71 22.62 38.31 35.57 655.55 608 25 -2.40 100 64 15.71 22.62 38.31 35.57 655.55 608 26 -2.50 100 65 15.71 22.62 42.16 37.19 660.63 582 27 -2.60 100 66 15.71	
20 -1.90 100 59 15.71 22.62 22.40 27.89 640.77 797 21 -2.00 100 60 15.71 22.62 25.16 29.37 641.85 749 22 -2.10 100 61 15.71 22.62 28.12 30.89 644.03 707 23 -2.20 100 62 15.71 22.62 31.30 32.42 647.14 670 24 -2.30 100 63 15.71 22.62 38.31 35.57 655.55 608 25 -2.40 100 64 15.71 22.62 38.31 35.57 655.55 608 26 -2.50 100 65 15.71 22.62 42.16 37.19 660.63 582 27 -2.60 100 66 15.71 22.62 46.25 38.82 666.19 559 28 -2.70 100 67 15.71	
21 -2.00 100 60 15.71 22.62 25.16 29.37 641.85 749 22 -2.10 100 61 15.71 22.62 28.12 30.89 644.03 707 23 -2.20 100 62 15.71 22.62 31.30 32.42 647.14 670 24 -2.30 100 63 15.71 22.62 34.69 33.99 651.02 637 25 -2.40 100 64 15.71 22.62 38.31 35.57 655.55 608 26 -2.50 100 65 15.71 22.62 42.16 37.19 660.63 582 27 -2.60 100 66 15.71 22.62 46.25 38.82 666.19 559 28 -2.70 100 67 15.71 22.62 55.16 42.17 678.50 518 29 -2.80 100 68 15.71	
22 -2.10 100 61 15.71 22.62 28.12 30.89 644.03 707 23 -2.20 100 62 15.71 22.62 31.30 32.42 647.14 670 24 -2.30 100 63 15.71 22.62 34.69 33.99 651.02 637 25 -2.40 100 64 15.71 22.62 38.31 35.57 655.55 608 26 -2.50 100 65 15.71 22.62 42.16 37.19 660.63 582 27 -2.60 100 66 15.71 22.62 46.25 38.82 661.9 559 28 -2.70 100 67 15.71 22.62 55.16 42.17 678.50 518 29 -2.80 100 68 15.71 22.62 55.16 42.17 678.50 518 30 -2.90 100 69 15.71 <	
23 -2.20 100 62 15.71 22.62 31.30 32.42 647.14 670 24 -2.30 100 63 15.71 22.62 34.69 33.99 651.02 637 25 -2.40 100 64 15.71 22.62 38.31 35.57 655.55 608 26 -2.50 100 65 15.71 22.62 42.16 37.19 660.63 582 27 -2.60 100 66 15.71 22.62 46.25 38.82 666.19 559 28 -2.70 100 67 15.71 22.62 50.58 40.49 672.17 538 29 -2.80 100 68 15.71 22.62 55.16 42.17 678.50 518 30 -2.90 100 69 15.71 22.62 59.99 43.89 685.16 501 31 -3.00 100 70 15.71	
24 -2.30 100 63 15.71 22.62 34.69 33.99 651.02 637 25 -2.40 100 64 15.71 22.62 38.31 35.57 655.55 608 26 -2.50 100 65 15.71 22.62 42.16 37.19 660.63 582 27 -2.60 100 66 15.71 22.62 46.25 38.82 666.19 559 28 -2.70 100 67 15.71 22.62 50.58 40.49 672.17 538 29 -2.80 100 68 15.71 22.62 55.16 42.17 678.50 518 30 -2.90 100 69 15.71 22.62 59.99 43.89 685.16 501 31 -3.00 100 70 15.71 22.62 65.09 45.62 692.09 485	
25 -2.40 100 64 15.71 22.62 38.31 35.57 655.55 608 26 -2.50 100 65 15.71 22.62 42.16 37.19 660.63 582 27 -2.60 100 66 15.71 22.62 46.25 38.82 666.19 559 28 -2.70 100 67 15.71 22.62 50.58 40.49 672.17 538 29 -2.80 100 68 15.71 22.62 55.16 42.17 678.50 518 30 -2.90 100 69 15.71 22.62 59.99 43.89 685.16 501 31 -3.00 100 70 15.71 22.62 65.09 45.62 692.09 485	
26 -2.50 100 65 15.71 22.62 42.16 37.19 660.63 582 27 -2.60 100 66 15.71 22.62 46.25 38.82 666.19 559 28 -2.70 100 67 15.71 22.62 50.58 40.49 672.17 538 29 -2.80 100 68 15.71 22.62 55.16 42.17 678.50 518 30 -2.90 100 69 15.71 22.62 59.99 43.89 685.16 501 31 -3.00 100 70 15.71 22.62 65.09 45.62 692.09 485	
27 -2.60 100 66 15.71 22.62 46.25 38.82 666.19 559 28 -2.70 100 67 15.71 22.62 50.58 40.49 672.17 538 29 -2.80 100 68 15.71 22.62 55.16 42.17 678.50 518 30 -2.90 100 69 15.71 22.62 59.99 43.89 685.16 501 31 -3.00 100 70 15.71 22.62 65.09 45.62 692.09 485	
28 -2.70 100 67 15.71 22.62 50.58 40.49 672.17 538 29 -2.80 100 68 15.71 22.62 55.16 42.17 678.50 518 30 -2.90 100 69 15.71 22.62 59.99 43.89 685.16 501 31 -3.00 100 70 15.71 22.62 65.09 45.62 692.09 485	
29 -2.80 100 68 15.71 22.62 55.16 42.17 678.50 518 30 -2.90 100 69 15.71 22.62 59.99 43.89 685.16 501 31 -3.00 100 70 15.71 22.62 65.09 45.62 692.09 485	
30 -2.90 100 69 15.71 22.62 59.99 43.89 685.16 501 31 -3.00 100 70 15.71 22.62 65.09 45.62 692.09 485	
31 -3.00 100 70 15.71 22.62 65.09 45.62 692.09 485	
32 -3.10 100 71 15.71 22.62 70.46 47.39 699.28 470	
33 -3.20 100 72 15.71 22.62 76.10 49.17 706.49 456	
34 -3.30 100 73 15.71 22.62 82.03 50.99 713.19 443	
35 -3.40 100 74 15.71 22.62 88.24 52.82 720.06 431	
36 -3.50 100 75 15.71 22.62 94.75 54.69 727.11 419	
37 -3.60 100 76 15.71 22.62 101.56 56.57 734.30 409	
38 -3.70 100 77 15.71 22.62 108.67 58.49 741.62 399	
39 -3.80 100 78 15.71 22.62 116.10 60.42 749.07 389	
40 -3.90 100 79 15.71 22.62 123.84 62.39 756.63 381	
41 -4.00 100 80 15.71 22.62 131.91 64.37 764.28 372	
42 -4.10 100 81 15.71 45.24 140.32 66.39 1489.82 704	
43 -4.20 100 82 31.42 45.24 149.06 68.42 1520.10 697	
44 -4.30 100 83 15.71 45.24 158.14 70.49 1522.07 678	
45 -4.40 100 84 15.71 45.24 167.58 72.57 1538.36 666	
46 -4.50 100 85 15.71 45.24 177.37 74.68 1554.72 654	
47 -4.60 100 86 15.71 45.24 187.53 76.82 1571.16 643	
48 -4.70 100 87 15.71 45.24 198.06 78.98 1587.69 633	8.765
49 -4.80 100 88 15.71 45.24 208.96 81.17 1604.31 623	8.765 8.378
50 -4.90 100 89 15.71 45.24 220.24 83.38 1621.01 613	8.765 8.378 8.016
51 -5.00 100 90 15.71 45.24 231.92 85.62 1637.78 604	8.765 8.378 8.016 7.678

Combinazione nº 4 - STR (A1-M1-R3) H - V

n°	Y	В	Н	Afi	Afs	М	N	Mu	Nu	FS
	[m]	[cm]	[cm]	[cmq]	[cmq]	[kNm]	[kN]	[kNm]	[kN]	

Adeguamento al tipo B dal km 12+000 al km 18+000 (ex SS125 "Orientale Sarda" - Connessione tra la SS554 e la nuova SS554)

CA352

Relazione tecnica e di calcolo ST01 - SOTTOVIA Pr. 5+460,00

n°	Υ	В	н	Afi	Afs	М	N	Mu	Nu	FS
	[m]	[cm]	[cm]	[cmq]	[cmq]	[kNm]	[kN]	[kNm]	[kN]	
1	0.00	100	40	15.71	22.62	0.77	4.37	580.07	3314.70	757.646
2	-0.10	100	41	15.71	22.62	0.78	5.39	575.01	3958.11	734.684
3	-0.20	100	42	15.71	22.62	0.84	6.42	575.89	4419.64	687.882
4	-0.30	100	43	15.71	22.62	0.93	7.49	587.99	4711.87	629.299
5	-0.40	100	44	15.71	22.62	1.08	8.57	610.66	4852.14	565.848
6	-0.50	100	45	15.71	22.62	1.28	9.69	642.55	4875.35	503.263
7	-0.60	100	46	15.71	22.62	1.53	10.82	681.28	4813.39	444.657
8	-0.70	100	47	15.71	22.62	1.85	11.99	725.04	4697.01	391.828
9	-0.80	100	48	15.71	22.62	2.24	13.17	772.18	4548.43	345.234
10	-0.90	100	49	15.71	22.62	2.70	14.39	817.27	4361.37	303.138
11	-1.00	100	50	15.71	22.62	3.23	15.62	863.09	4170.55	266.917
12	-1.10	100	51	15.71	22.62	3.85	16.89	894.59	3919.55	232.100
13	-1.20	100	52	15.71	22.62	4.56	18.17	913.03	3636.33	200.075
14	-1.30	100	53	15.71	22.62	5.37	19.49	922.56	3350.35	171.925
15	-1.40	100	54	15.71	22.62	6.27	20.82	925.53	3075.37	147.679
16	-1.50	100	55	15.71	22.62	7.27	22.19	927.27	2829.17	127.514
17	-1.60	100	56	15.71	22.62	8.39	23.57	919.57	2585.28	109.664
18	-1.70	100	57	15.71	22.62	9.61	24.99	915.65	2380.14	95.255
19	-1.80	100	58	15.71	22.62	10.96	26.42	904.39	2180.71	82.526
20	-1.90	100	59	15.71	22.62	12.43	27.89	896.52	2011.52	72.131
21	-2.00	100	60	15.71	22.62	14.03	29.37	889.73	1863.05	63.424
22	-2.10	100	61	15.71	22.62	15.76	30.89	876.76	1718.11	55.626
23	-2.20	100	62	15.71	22.62	17.63	32.42	867.78	1595.58	49.209
24	-2.30	100	63	15.71	22.62	19.65	33.99	861.98	1490.77	43.863
25	-2.40	100	64	15.71	22.62	21.82	35.57	853.41	1391.47	39.115
26	-2.50	100	65	15.71	22.62	24.14	37.19	845.58	1302.62	35.029
27	-2.60	100	66	15.71	22.62	26.62	38.82	839.97	1225.07	31.554
28	-2.70	100	67	15.71	22.62	29.27	40.49	836.22	1156.85	28.574
29	-2.80	100	68	15.71	22.62	32.08	42.17	834.02	1096.42	25.997
30	-2.90	100	69	15.71	22.62	35.07	43.89	833.12	1042.54	23.755
31	-3.00	100	70	15.71	22.62	38.24	45.62	833.34	994.23	21.792
32	-3.10	100	71	15.71	22.62	41.60	47.39	834.52	950.68	20.062
33	-3.20	100	72	15.71	22.62	45.14	49.17	836.54	911.25	18.531
34	-3.30	100	73	15.71	22.62	48.88	50.99	839.28	875.39	17.169
35	-3.40	100	74	15.71	22.62	52.82	52.82	842.66	842.65	15.952
36	-3.50	100	75	15.71	22.62	56.97	54.69	846.60	812.65	14.860
37	-3.60	100	76	15.71	22.62	61.33	56.57	851.04	785.07	13.877
38	-3.70	100	77	15.71	22.62	65.90	58.49	855.93	759.63	12.988
39	-3.80	100	78	15.71	22.62	70.69	60.42	861.23	736.11	12.183
40	-3.90	100	79	15.71	22.62	75.71	62.39	866.88	730.11	11.450
41	-4.00	100	80	15.71	22.62	80.96	64.37	872.86	694.00	10.781
42	-4.10	100	81		45.24	86.45	66.39		1278.46	19.258
43	-4.10 -4.20	100	82	15.71 31.42	45.24	92.18	68.42	1664.86 1710.17	12/8.46	19.258
43	-4.20 -4.30	100	83	15.71	45.24	98.15	70.49	1697.37	1218.94	17.294
45	-4.30 -4.40	100	83	15.71	45.24	104.38	70.49	1711.91	1190.30	16.402
45	-4.40 -4.50	100	85	15.71	45.24	110.86	74.68	1711.91	1162.09	15.560
46	-4.50 -4.60	100	86	15.71	45.24 45.24	110.86	74.68	1724.91	1162.09	15.560
47		100	86		45.24 45.24		76.82			14.781
48	-4.70 -4.80	100	88	15.71	45.24 45.24	124.61	78.98 81.17	1751.76	1110.38	
				15.71		131.89		1765.59	1086.65	13.387
50	-4.90	100	89	15.71	45.24	139.45	83.38	1779.68	1064.19	12.762
51	-5.00	100	90	15.71	45.24	147.29	85.62	1793.99	1042.90	12.180

Mensola valle

Combinazione nº 1 - STR (A1-M1-R3)

n°	Υ	В	Н	Afi	Afs	М	N	Mu	Nu	FS
	[m]	[cm]	[cm]	[cmq]	[cmq]	[kNm]	[kN]	[kNm]	[kN]	
1	-0.75	100	50	7.92	7.92	0.00	0.00	0.00	0.00	1000.000
2	-0.66	100	50	7.92	7.92	-0.05	0.00	0.00	0.00	1000.000
3	-0.57	100	50	7.92	7.92	-0.19	0.00	-135.90	0.00	710.025
4	-0.49	100	50	7.92	7.92	-0.43	0.00	-135.90	0.00	315.567
5	-0.40	100	50	7.92	7.92	-0.77	0.00	-135.90	0.00	177.506

Combinazione nº 2 - STR (A1-M1-R3) H + V

Adeguamento al tipo B dal km 12+000 al km 18+000 (ex SS125 "Orientale Sarda" -Connessione tra la SS554 e la nuova SS554)

CA352

Relazione tecnica e di calcolo ST01 - SOTTOVIA Pr. 5+460,00

n°	Υ	В	Н	Afi	Afs	M	N	Mu	Nu	FS
	[m]	[cm]	[cm]	[cmq]	[cmq]	[kNm]	[kN]	[kNm]	[kN]	
1	-0.75	100	50	7.92	7.92	0.00	0.00	0.00	0.00	1000.000
2	-0.66	100	50	7.92	7.92	-0.05	0.00	0.00	0.00	1000.000
3	-0.57	100	50	7.92	7.92	-0.20	0.00	-135.90	0.00	680.236
4	-0.49	100	50	7.92	7.92	-0.45	0.00	-135.90	0.00	302.327
5	-0.40	100	50	7.92	7.92	-0.80	0.00	-135.90	0.00	170.059

Combinazione nº 3 - STR (A1-M1-R3)

n°	Y	В	Н	Afi	Afs	М	N	Mu	Nu	FS
	[m]	[cm]	[cm]	[cmq]	[cmq]	[kNm]	[kN]	[kNm]	[kN]	
1	-0.75	100	50	7.92	7.92	0.00	0.00	0.00	0.00	1000.000
2	-0.66	100	50	7.92	7.92	-0.05	0.00	0.00	0.00	1000.000
3	-0.57	100	50	7.92	7.92	-0.19	0.00	-135.90	0.00	710.025
4	-0.49	100	50	7.92	7.92	-0.43	0.00	-135.90	0.00	315.567
5	-0.40	100	50	7.92	7.92	-0.77	0.00	-135.90	0.00	177.506

Combinazione nº 4 - STR (A1-M1-R3) H - V

n°	Υ	В	Н	Afi	Afs	М	N	Mu	Nu	FS
	[m]	[cm]	[cm]	[cmq]	[cmq]	[kNm]	[kN]	[kNm]	[kN]	
1	-0.75	100	50	7.92	7.92	0.00	0.00	0.00	0.00	1000.000
2	-0.66	100	50	7.92	7.92	-0.05	0.00	0.00	0.00	1000.000
3	-0.57	100	50	7.92	7.92	-0.19	0.00	-135.90	0.00	710.025
4	-0.49	100	50	7.92	7.92	-0.43	0.00	-135.90	0.00	315.567
5	-0.40	100	50	7.92	7.92	-0.77	0.00	-135.90	0.00	177.506

Verifiche a taglio

Simbologia adottata

Is Y B H A_{sw} indice sezione ordinata sezione espressa in [m]

cotgθ V_{Rcd}

ordinata sezione espressa in [m]
larghezza sezione espresso in [cm]
altezza sezione espresso in [cm]
altezza sezione espresso in [cm]
area ferri a taglio espresso in [cmq]
inclinazione delle bielle compresse, 6 inclinazione dei puntoni di calcestruzzo
resistenza di progetto a 'taglio compressione' espressa in [kN]
resistenza di progetto a 'taglio trazione' espressa in [kN]
resistenza di progetto a taglio espresso in [kN]. Per elementi con armature trasversali resistenti al taglio (A_{SW}>0.0) V_{Rd}=min(V_{Rcd}, V_{Rsd}).
taglio agente espressa in [kN]
fattore di sicurezza (rapporto tra sollecitazione resistente e sollecitazione agente) V_{Rd} T FS

Paramento

Combinazione nº 1 - STR (A1-M1-R3)

n°	Y	В	Н	A _{sw}	S	cotθ	V_{Rcd}	V_{Rsd}	V_{Rd}	Т	FS
	[m]	[cm]	[cm]	[cmq]	[cm]		[kN]	[kN]	[kN]	[kN]	
1	0.00	100	40	0.00	0.00		0.00	0.00	246.65	0.00	100.000
2	-0.10	100	41	0.00	0.00		0.00	0.00	249.94	0.03	7999.942
3	-0.20	100	42	0.00	0.00		0.00	0.00	253.20	0.12	2026.060
4	-0.30	100	43	0.00	0.00		0.00	0.00	256.43	0.28	914.448
5	-0.40	100	44	0.00	0.00		0.00	0.00	259.63	0.50	522.583
6	-0.50	100	45	0.00	0.00		0.00	0.00	262.80	0.77	339.293
7	-0.60	100	46	0.00	0.00		0.00	0.00	265.95	1.11	238.729
8	-0.70	100	47	0.00	0.00		0.00	0.00	269.06	1.52	177.579
9	-0.80	100	48	0.00	0.00		0.00	0.00	272.16	1.98	137.588
10	-0.90	100	49	0.00	0.00		0.00	0.00	275.23	2.50	109.974
11	-1.00	100	50	0.00	0.00		0.00	0.00	278.28	3.09	90.087
12	-1.10	100	51	0.00	0.00		0.00	0.00	281.30	3.74	75.274
13	-1.20	100	52	0.00	0.00		0.00	0.00	284.31	4.45	63.936
14	-1.30	100	53	0.00	0.00		0.00	0.00	287.30	5.22	55.055
15	-1.40	100	54	0.00	0.00		0.00	0.00	290.26	6.05	47.965
16	-1.50	100	55	0.00	0.00		0.00	0.00	293.21	6.95	42.210
17	-1.60	100	56	0.00	0.00		0.00	0.00	296.14	7.90	37.471
18	-1.70	100	57	0.00	0.00		0.00	0.00	299.05	8.92	33.520
19	-1.80	100	58	0.00	0.00		0.00	0.00	301.94	10.00	30.190

Adeguamento al tipo B dal km 12+000 al km 18+000 (ex SS125 "Orientale Sarda" - Connessione tra la SS554 e la nuova SS554)

CA352

Relazione tecnica e di calcolo ST01 - SOTTOVIA Pr. 5+460,00

n°	Υ	В	Н	A _{sw}	S	cotθ	V_{Rcd}	V _{Rsd}	V_{Rd}	Т	FS
	[m]	[cm]	[cm]	[cmq]	[cm]		[kN]	[kN]	[kN]	[kN]	
20	-1.90	100	59	0.00	0.00		0.00	0.00	304.82	11.14	27.355
21	-2.00	100	60	0.00	0.00		0.00	0.00	307.68	12.35	24.920
22	-2.10	100	61	0.00	0.00		0.00	0.00	310.53	13.61	22.813
23	-2.20	100	62	0.00	0.00		0.00	0.00	313.36	14.94	20.976
24	-2.30	100	63	0.00	0.00		0.00	0.00	316.18	16.33	19.365
25	-2.40	100	64	0.00	0.00		0.00	0.00	318.98	17.78	17.942
26	-2.50	100	65	0.00	0.00		0.00	0.00	321.77	19.29	16.681
27	-2.60	100	66	0.00	0.00		0.00	0.00	324.55	20.86	15.555
28	-2.70	100	67	0.00	0.00		0.00	0.00	327.31	22.50	14.548
29	-2.80	100	68	0.00	0.00		0.00	0.00	330.07	24.20	13.641
30	-2.90	100	69	0.00	0.00		0.00	0.00	332.81	25.96	12.822
31	-3.00	100	70	0.00	0.00		0.00	0.00	335.54	27.78	12.080
32	-3.10	100	71	0.00	0.00		0.00	0.00	338.25	29.66	11.405
33	-3.20	100	72	0.00	0.00		0.00	0.00	340.96	31.60	10.789
34	-3.30	100	73	0.00	0.00		0.00	0.00	343.66	33.61	10.225
35	-3.40	100	74	0.00	0.00		0.00	0.00	346.34	35.68	9.708
36	-3.50	100	75	0.00	0.00		0.00	0.00	349.02	37.81	9.232
37	-3.60	100	76	0.00	0.00		0.00	0.00	351.69	40.00	8.793
38	-3.70	100	77	0.00	0.00		0.00	0.00	354.34	42.25	8.387
39	-3.80	100	78	0.00	0.00		0.00	0.00	356.99	44.56	8.011
40	-3.90	100	79	0.00	0.00		0.00	0.00	359.63	46.94	7.661
41	-4.00	100	80	0.00	0.00		0.00	0.00	362.26	49.38	7.336
42	-4.10	100	81	0.00	0.00		0.00	0.00	424.33	51.88	8.179
43	-4.20	100	82	0.00	0.00		0.00	0.00	460.51	54.44	8.459
44	-4.30	100	83	0.00	0.00		0.00	0.00	430.33	57.06	7.541
45	-4.40	100	84	0.00	0.00		0.00	0.00	433.31	59.75	7.252
46	-4.50	100	85	0.00	0.00		0.00	0.00	436.28	62.49	6.981
47	-4.60	100	86	0.00	0.00		0.00	0.00	439.25	65.30	6.726
48	-4.70	100	87	0.00	0.00		0.00	0.00	442.20	68.17	6.487
49	-4.80	100	88	0.00	0.00		0.00	0.00	445.15	71.10	6.261
50	-4.90	100	89	0.00	0.00		0.00	0.00	448.08	74.10	6.047
51	-5.00	100	90	0.00	0.00		0.00	0.00	451.01	77.15	5.846

Combinazione nº 2 - STR (A1-M1-R3) H + V

n°	Υ	В	Н	A _{sw}	S	cotθ	V_{Rcd}	V_{Rsd}	V_{Rd}	Т	FS
	[m]	[cm]	[cm]	[cmq]	[cm]		[kN]	[kN]	[kN]	[kN]	
1	0.00	100	40	0.00	0.00		0.00	0.00	246.68	0.00	100.000
2	-0.10	100	41	0.00	0.00		0.00	0.00	249.97	0.40	623.503
3	-0.20	100	42	0.00	0.00		0.00	0.00	253.23	0.85	297.189
4	-0.30	100	43	0.00	0.00		0.00	0.00	256.46	1.35	189.559
5	-0.40	100	44	0.00	0.00		0.00	0.00	259.66	1.90	136.458
6	-0.50	100	45	0.00	0.00		0.00	0.00	262.83	2.50	105.043
7	-0.60	100	46	0.00	0.00		0.00	0.00	265.97	3.15	84.408
8	-0.70	100	47	0.00	0.00		0.00	0.00	269.09	3.85	69.900
9	-0.80	100	48	0.00	0.00		0.00	0.00	272.19	4.60	59.197
10	-0.90	100	49	0.00	0.00		0.00	0.00	275.26	5.40	51.012
11	-1.00	100	50	0.00	0.00		0.00	0.00	278.30	6.24	44.575
12	-1.10	100	51	0.00	0.00		0.00	0.00	281.33	7.14	39.398
13	-1.20	100	52	0.00	0.00		0.00	0.00	284.34	8.09	35.157
14	-1.30	100	53	0.00	0.00		0.00	0.00	287.32	9.08	31.628
15	-1.40	100	54	0.00	0.00		0.00	0.00	290.29	10.13	28.655
16	-1.50	100	55	0.00	0.00		0.00	0.00	293.23	11.23	26.120
17	-1.60	100	56	0.00	0.00		0.00	0.00	296.16	12.37	23.938
18	-1.70	100	57	0.00	0.00		0.00	0.00	299.07	13.57	22.044
19	-1.80	100	58	0.00	0.00		0.00	0.00	301.97	14.81	20.386
20	-1.90	100	59	0.00	0.00		0.00	0.00	304.85	16.11	18.927
21	-2.00	100	60	0.00	0.00		0.00	0.00	307.71	17.45	17.633
22	-2.10	100	61	0.00	0.00		0.00	0.00	310.55	18.85	16.479
23	-2.20	100	62	0.00	0.00		0.00	0.00	313.39	20.29	15.446
24	-2.30	100	63	0.00	0.00		0.00	0.00	316.20	21.78	14.517
25	-2.40	100	64	0.00	0.00		0.00	0.00	319.01	23.32	13.677
26	-2.50	100	65	0.00	0.00		0.00	0.00	321.80	24.92	12.915
27	-2.60	100	66	0.00	0.00		0.00	0.00	324.58	26.56	12.221
28	-2.70	100	67	0.00	0.00		0.00	0.00	327.34	28.25	11.587
29	-2.80	100	68	0.00	0.00		0.00	0.00	330.09	29.99	11.006
30	-2.90	100	69	0.00	0.00		0.00	0.00	332.83	31.78	10.472
31	-3.00	100	70	0.00	0.00		0.00	0.00	335.56	33.63	9.979

Adeguamento al tipo B dal km 12+000 al km 18+000 (ex SS125 "Orientale Sarda" - Connessione tra la SS554 e la nuova SS554)

CA352

Relazione tecnica e di calcolo ST01 - SOTTOVIA Pr. 5+460,00

n°	Y	В	Н	A _{sw}	S	cotθ	V_{Rcd}	V_{Rsd}	V_{Rd}	Т	FS
	[m]	[cm]	[cm]	[cmq]	[cm]		[kN]	[kN]	[kN]	[kN]	
32	-3.10	100	71	0.00	0.00		0.00	0.00	338.28	35.52	9.525
33	-3.20	100	72	0.00	0.00		0.00	0.00	340.99	37.46	9.104
34	-3.30	100	73	0.00	0.00		0.00	0.00	343.68	39.45	8.713
35	-3.40	100	74	0.00	0.00		0.00	0.00	346.37	41.49	8.349
36	-3.50	100	75	0.00	0.00		0.00	0.00	349.05	43.57	8.010
37	-3.60	100	76	0.00	0.00		0.00	0.00	351.71	45.71	7.694
38	-3.70	100	77	0.00	0.00		0.00	0.00	354.37	47.90	7.398
39	-3.80	100	78	0.00	0.00		0.00	0.00	357.02	50.14	7.120
40	-3.90	100	79	0.00	0.00		0.00	0.00	359.66	52.43	6.860
41	-4.00	100	80	0.00	0.00		0.00	0.00	362.29	54.77	6.615
42	-4.10	100	81	0.00	0.00		0.00	0.00	424.36	57.15	7.425
43	-4.20	100	82	0.00	0.00		0.00	0.00	460.54	59.59	7.728
44	-4.30	100	83	0.00	0.00		0.00	0.00	430.35	62.08	6.933
45	-4.40	100	84	0.00	0.00		0.00	0.00	433.34	64.61	6.707
46	-4.50	100	85	0.00	0.00		0.00	0.00	436.31	67.20	6.493
47	-4.60	100	86	0.00	0.00		0.00	0.00	439.27	69.83	6.290
48	-4.70	100	87	0.00	0.00		0.00	0.00	442.23	72.52	6.098
49	-4.80	100	88	0.00	0.00		0.00	0.00	445.17	75.25	5.916
50	-4.90	100	89	0.00	0.00		0.00	0.00	448.11	78.04	5.742
51	-5.00	100	90	0.00	0.00		0.00	0.00	451.04	80.87	5.577

Combinazione nº 3 - STR (A1-M1-R3)

n°	Υ	В	Н	A _{sw}	S	cotθ	V _{Rcd}	V _{Rsd}	V _{Rd}	Т	FS
	[m]	[cm]	[cm]	[cmq]	[cm]		[kN]	[kN]	[kN]	[kN]	
1	0.00	100	40	0.00	0.00		0.00	0.00	246.65	0.00	100.000
2	-0.10	100	41	0.00	0.00		0.00	0.00	249.94	0.78	320.098
3	-0.20	100	42	0.00	0.00		0.00	0.00	253.20	1.62	155.896
4	-0.30	100	43	0.00	0.00		0.00	0.00	256.43	2.53	101.386
5	-0.40	100	44	0.00	0.00		0.00	0.00	259.63	3.50	74.280
6	-0.50	100	45	0.00	0.00		0.00	0.00	262.80	4.52	58.108
7	-0.60	100	46	0.00	0.00		0.00	0.00	265.95	5.61	47.391
8	-0.70	100	47	0.00	0.00		0.00	0.00	269.06	6.76	39.788
9	-0.80	100	48	0.00	0.00		0.00	0.00	272.16	7.97	34.127
10	-0.90	100	49	0.00	0.00		0.00	0.00	275.23	9.25	29.757
11	-1.00	100	50	0.00	0.00		0.00	0.00	278.28	10.59	26.289
12	-1.10	100	51	0.00	0.00		0.00	0.00	281.30	11.98	23.476
13	-1.20	100	52	0.00	0.00		0.00	0.00	284.31	13.44	21.151
14	-1.30	100	53	0.00	0.00		0.00	0.00	287.30	14.96	19.200
15	-1.40	100	54	0.00	0.00		0.00	0.00	290.26	16.55	17.543
16	-1.50	100	55	0.00	0.00		0.00	0.00	293.21	18.19	16.119
17	-1.60	100	56	0.00	0.00		0.00	0.00	296.14	19.90	14.884
18	-1.70	100	57	0.00	0.00		0.00	0.00	299.05	21.66	13.803
19	-1.80	100	58	0.00	0.00		0.00	0.00	301.94	23.49	12.852
20	-1.90	100	59	0.00	0.00		0.00	0.00	304.82	25.39	12.007
21	-2.00	100	60	0.00	0.00		0.00	0.00	307.68	27.34	11.254
22	-2.10	100	61	0.00	0.00		0.00	0.00	310.53	29.35	10.579
23	-2.20	100	62	0.00	0.00		0.00	0.00	313.36	31.43	9.970
24	-2.30	100	63	0.00	0.00		0.00	0.00	316.18	33.57	9.419
25	-2.40	100	64	0.00	0.00		0.00	0.00	318.98	35.77	8.918
26	-2.50	100	65	0.00	0.00		0.00	0.00	321.77	38.03	8.461
27	-2.60	100	66	0.00	0.00		0.00	0.00	324.55	40.35	8.043
28	-2.70	100	67	0.00	0.00		0.00	0.00	327.31	42.74	7.658
29	-2.80	100	68	0.00	0.00		0.00	0.00	330.07	45.19	7.305
30	-2.90	100	69	0.00	0.00		0.00	0.00	332.81	47.69	6.978
31	-3.00	100	70	0.00	0.00		0.00	0.00	335.54	50.27	6.675
32	-3.10	100	71	0.00	0.00		0.00	0.00	338.25	52.90	6.395
33	-3.20	100	72	0.00	0.00		0.00	0.00	340.96	55.59	6.133
34	-3.30	100	73	0.00	0.00		0.00	0.00	343.66	58.35	5.890
35	-3.40	100	74	0.00	0.00		0.00	0.00	346.34	61.16	5.663
36	-3.50	100	75	0.00	0.00		0.00	0.00	349.02	64.04	5.450
37	-3.60	100	76	0.00	0.00		0.00	0.00	351.69	66.98	5.250
38	-3.70	100	77	0.00	0.00		0.00	0.00	354.34	69.99	5.063
39	-3.80	100	78	0.00	0.00		0.00	0.00	356.99	73.05	4.887
40	-3.90	100	79	0.00	0.00		0.00	0.00	359.63	76.18	4.721
41	-4.00	100	80	0.00	0.00		0.00	0.00	362.26	79.36	4.565
42	-4.10	100	81	0.00	0.00		0.00	0.00	424.33	82.61	5.136
43	-4.20	100	82	0.00	0.00		0.00	0.00	460.51	85.92	5.360

Adeguamento al tipo B dal km 12+000 al km 18+000 (ex SS125 "Orientale Sarda" - Connessione tra la SS554 e la nuova SS554)

CA352

Relazione tecnica e di calcolo ST01 - SOTTOVIA Pr. 5+460,00

n°	Y	В	Н	A _{sw}	S	cot0	V_{Rcd}	V_{Rsd}	V_{Rd}	T	FS
	[m]	[cm]	[cm]	[cmq]	[cm]		[kN]	[kN]	[kN]	[kN]	
44	-4.30	100	83	0.00	0.00		0.00	0.00	430.33	89.30	4.819
45	-4.40	100	84	0.00	0.00		0.00	0.00	433.31	92.73	4.673
46	-4.50	100	85	0.00	0.00		0.00	0.00	436.28	96.23	4.534
47	-4.60	100	86	0.00	0.00		0.00	0.00	439.25	99.78	4.402
48	-4.70	100	87	0.00	0.00		0.00	0.00	442.20	103.40	4.276
49	-4.80	100	88	0.00	0.00		0.00	0.00	445.15	107.08	4.157
50	-4.90	100	89	0.00	0.00		0.00	0.00	448.08	110.83	4.043
51	-5.00	100	90	0.00	0.00		0.00	0.00	451.01	114.63	3.934

Combinazione nº 4 - STR (A1-M1-R3) H - V

n°	Y	В	н	A _{sw}	S	cotθ	V _{Rcd}	V _{Rsd}	V _{Rd}	Т	FS
	[m]	[cm]	[cm]	[cmq]	[cm]		[kN]	[kN]	[kN]	[kN]	
1	0.00	100	40	0.00	0.00		0.00	0.00	246.65	0.00	100.000
2	-0.10	100	41	0.00	0.00		0.00	0.00	249.94	0.30	836.992
3	-0.20	100	42	0.00	0.00		0.00	0.00	253.20	0.65	391.047
4	-0.30	100	43	0.00	0.00		0.00	0.00	256.43	1.05	245.144
5	-0.40	100	44	0.00	0.00		0.00	0.00	259.63	1.49	173.821
6	-0.50	100	45	0.00	0.00		0.00	0.00	262.80	1.99	132.018
7	-0.60	100	46	0.00	0.00		0.00	0.00	265.95	2.54	104.814
8	-0.70	100	47	0.00	0.00		0.00	0.00	269.06	3.13	85.864
9	-0.80	100	48	0.00	0.00		0.00	0.00	272.16	3.78	72.007
10	-0.90	100	49	0.00	0.00		0.00	0.00	275.23	4.48	61.501
11	-1.00	100	50	0.00	0.00		0.00	0.00	278.28	5.22	53.304
12	-1.10	100	51	0.00	0.00		0.00	0.00	281.30	6.02	46.763
13	-1.20	100	52	0.00	0.00		0.00	0.00	284.31	6.86	41.443
14	-1.30	100	53	0.00	0.00		0.00	0.00	287.30	7.75	37.049
15	-1.40	100	54	0.00	0.00		0.00	0.00	290.26	8.70	33.369
16	-1.50	100	55	0.00	0.00		0.00	0.00	293.21	9.69	30.252
17	-1.60	100	56	0.00	0.00		0.00	0.00	296.14	10.74	27.585
18	-1.70	100	57	0.00	0.00		0.00	0.00	299.05	11.83	25.282
19	-1.80	100	58	0.00	0.00		0.00	0.00	301.94	12.97	23.278
20	-1.90	100	59	0.00	0.00		0.00	0.00	304.82	14.16	21.522
21	-2.00	100	60	0.00	0.00		0.00	0.00	307.68	15.41	19.972
22	-2.10	100	61	0.00	0.00		0.00	0.00	310.53	16.70	18.598
23	-2.20	100	62	0.00	0.00		0.00	0.00	313.36	18.04	17.372
24	-2.30	100	63	0.00	0.00		0.00	0.00	316.18	19.43	16.273
25	-2.40	100	64	0.00	0.00		0.00	0.00	318.98	20.87	15.284
26	-2.50	100	65	0.00	0.00		0.00	0.00	321.77	22.36	14.390
27	-2.60	100	66	0.00	0.00		0.00	0.00	324.55	23.90	13.579
28	-2.70	100	67	0.00	0.00		0.00	0.00	327.31	25.49	12.841
29	-2.80	100	68	0.00	0.00		0.00	0.00	330.07	27.13	12.167
30	-2.90	100	69	0.00	0.00		0.00	0.00	332.81	28.82	11.549
31	-3.00	100	70	0.00	0.00		0.00	0.00	335.54	30.56	10.981
32	-3.10	100	71	0.00	0.00		0.00	0.00	338.25	32.34	10.458
33	-3.20	100	72	0.00	0.00		0.00	0.00	340.96	34.18	9.975
34	-3.30	100	73	0.00	0.00		0.00	0.00	343.66	36.07	9.527
35	-3.40	100	74	0.00	0.00		0.00	0.00	346.34	38.01	9.112
36	-3.50	100	75	0.00	0.00		0.00	0.00	349.02	39.99	8.727
37	-3.60	100	76	0.00	0.00		0.00	0.00	351.69	42.03	8.367
38	-3.70	100	77	0.00	0.00		0.00	0.00	354.34	44.12	8.032
39	-3.80	100	78	0.00	0.00		0.00	0.00	356.99	46.25	7.718
40	-3.90	100	79	0.00	0.00		0.00	0.00	359.63	48.44	7.424
41	-4.00	100	80	0.00	0.00		0.00	0.00	362.26	50.67	7.149
42	-4.10	100	81	0.00	0.00		0.00	0.00	424.33	52.96	8.012
43	-4.20	100	82	0.00	0.00		0.00	0.00	460.51	55.29	8.328
44	-4.30	100	83	0.00	0.00		0.00	0.00	430.33	57.68	7.461
45	-4.40	100	84	0.00	0.00		0.00	0.00	433.31	60.11	7.208
46	-4.50	100	85	0.00	0.00		0.00	0.00	436.28	62.60	6.970
47	-4.60	100	86	0.00	0.00		0.00	0.00	439.25	65.13	6.744
48	-4.70	100	87	0.00	0.00		0.00	0.00	442.20	67.71	6.531
49	-4.80	100	88	0.00	0.00		0.00	0.00	445.15	70.34	6.328
50	-4.90	100	89	0.00	0.00		0.00	0.00	448.08	73.03	6.136
51	-5.00	100	90	0.00	0.00		0.00	0.00	451.01	75.76	5.953

Mensola valle

Adeguamento al tipo B dal km 12+000 al km 18+000 (ex SS125 "Orientale Sarda" -Connessione tra la SS554 e la nuova SS554)

CA352

Relazione tecnica e di calcolo ST01 - SOTTOVIA Pr. 5+460.00

Combinazione nº 1 - STR (A1-M1-R3)

n°	Y	В	Н	A _{sw}	S	cotθ	V_{Rcd}	V _{Rsd}	V_{Rd}	T	FS
	[m]	[cm]	[cm]	[cmq]	[cm]		[kN]	[kN]	[kN]	[kN]	
1	-0.75	100	50	0.00	0.00		0.00	0.00	205.69	0.00	100.000
2	-0.66	100	50	0.00	0.00		0.00	0.00	205.69	1.09	188.055
3	-0.57	100	50	0.00	0.00		0.00	0.00	205.69	2.19	94.028
4	-0.49	100	50	0.00	0.00		0.00	0.00	205.69	3.28	62.685
5	-0.40	100	50	0.00	0.00		0.00	0.00	205.69	4.37	47.014

Combinazione nº 2 - STR (A1-M1-R3) H + V

n°	Y	В	Н	A _{sw}	S	cotθ	V _{Rcd}	V_{Rsd}	V_{Rd}	T	FS
	[m]	[cm]	[cm]	[cmq]	[cm]		[kN]	[kN]	[kN]	[kN]	
1	-0.75	100	50	0.00	0.00		0.00	0.00	205.69	0.00	100.000
2	-0.66	100	50	0.00	0.00		0.00	0.00	205.69	1.14	180.165
3	-0.57	100	50	0.00	0.00		0.00	0.00	205.69	2.28	90.083
4	-0.49	100	50	0.00	0.00		0.00	0.00	205.69	3.42	60.055
5	-0.40	100	50	0.00	0.00		0.00	0.00	205.69	4.57	45.041

Combinazione nº 3 - STR (A1-M1-R3)

n°	Y	В	Н	A _{sw}	S	cotθ	V _{Rcd}	V_{Rsd}	V_{Rd}	Т	FS
	[m]	[cm]	[cm]	[cmq]	[cm]		[kN]	[kN]	[kN]	[kN]	
1	-0.75	100	50	0.00	0.00		0.00	0.00	205.69	0.00	100.000
2	-0.66	100	50	0.00	0.00		0.00	0.00	205.69	1.09	188.055
3	-0.57	100	50	0.00	0.00		0.00	0.00	205.69	2.19	94.028
4	-0.49	100	50	0.00	0.00		0.00	0.00	205.69	3.28	62.685
5	-0.40	100	50	0.00	0.00		0.00	0.00	205.69	4.37	47.014

Combinazione nº 4 - STR (A1-M1-R3) H - V

n°	Y	В	Н	A _{sw}	s	cotθ	V_{Rcd}	V_{Rsd}	V_{Rd}	T	FS
	[m]	[cm]	[cm]	[cmq]	[cm]		[kN]	[kN]	[kN]	[kN]	
1	-0.75	100	50	0.00	0.00		0.00	0.00	205.69	0.00	100.000
2	-0.66	100	50	0.00	0.00		0.00	0.00	205.69	1.09	188.055
3	-0.57	100	50	0.00	0.00		0.00	0.00	205.69	2.19	94.028
4	-0.49	100	50	0.00	0.00		0.00	0.00	205.69	3.28	62.685
5	-0.40	100	50	0.00	0.00		0.00	0.00	205.69	4.37	47.014

Verifica a punzonamento

Simbologia adottata

OP P Oggetto che viene punzonato Oggetto che punzona

Dimensioni pilastro nelle due direzioni, espressa in [mm] C₁, C₂

Altezza utile della fondazione, espressa in [mm] Lunghezza perimetro di verifica a faccia pilastro, espresso in [mm] u_0

Lunghezza perimetro di verifica per effetto della diffusione, espresso in [mm] Percentuali di armatura piastra in zona tesa u_1

 $\begin{array}{c} \rho_y,\; \rho_z \\ \text{dpc, duc} \end{array}$ distanza della prima e dell'ultima cucitura dalla faccia del pilastro
Tensione di taglio sul perimetro del pilastro, espressa in [kPa]
Valore di progetto del massimo taglio-punzonamento resistente, espressa in [kPa] $V_{Ed,i}$

V_{Rd,max}

 $V_{Ed,f}$ Tensione di taglio sul perimetro di verifica u1, espresso in [kPa] Valore di progetto del taglio-punzonamento resistente senza armature sul perimetro di verifica u1, espresso in [kPa]

 $V_{Rd,cf}$ $V_{Rd,cs}$ Valore di progetto del taglio-punzonamento resistente con armature, espresso in [kPa] Numero di serie di cuciture

nsc

Numero di cuciture

Fattore di sicurezza (minore tra i rapporti $V_{Rd,max}/V_{Ed,ir}$, $V_{Rd,cf}/V_{Ed,f}$ e $V_{Rd,cs}/V_{Ed,f}$)

Verifica delle tensioni

Simbologia adottata

indice sezione

n° Y B ordinata sezione, espressa in [m] larghezza sezione, espresso in [cm] altezza sezione, espressa in [cm] Afi area ferri inferiori, espresso in [cmq] area ferri superiori, espressa in [cmq]

Adeguamento al tipo B dal km 12+000 al km 18+000 (ex SS125 "Orientale Sarda" - Connessione tra la SS554 e la nuova SS554)

CA352

Relazione tecnica e di calcolo ST01 - SOTTOVIA Pr. 5+460,00

M momento agente, espressa in [kNm]
N sforzo normale agente, espressa in [kN]
σc tensione di compressione nel cls, espressa in [kPa]
σfi tensione nei ferri inferiori, espressa in [kPa]
σfs tensione nei ferri superiori, espressa in [kPa]

Combinazioni SLER

Paramento

Combinazione nº 5 - SLER

Tensione massima di compressione nel calcestruzzo 19920 [kPa] Tensione massima di trazione dell'acciaio 360000 [kPa]

n°	Y	В	Н	Afi	Afs	М	N	σС	σfi	σfs
	[m]	[cm]	[cm]	[cmq]	[cmq]	[kNm]	[kN]	[kPa]	[kPa]	[kPa]
1	0.00	100	40	15.71	22.62	0.77	4.37	39	324	455
2	-0.10	100	41	15.71	22.62	0.79	5.39	39	211	472
3	-0.20	100	42	15.71	22.62	0.86	6.42	41	160	508
4	-0.30	100	43	15.71	22.62	0.98	7.49	45	152	564
5	-0.40	100	44	15.71	22.62	1.16	8.57	51	181	639
6	-0.50	100	45	15.71	22.62	1.40	9.69	58	246	734
7	-0.60	100	46	15.71	22.62	1.71	10.82	68	353	848
8	-0.70	100	47	15.71	22.62	2.09	11.99	79	507	982
9	-0.80	100	48	15.71	22.62	2.54	13.17	92	716	1136
10	-0.90	100	49	15.71	22.62	3.08	14.39	107	985	1309
11	-1.00	100	50	15.71	22.62	3.70	15.62	124	1316	1501
12	-1.10	100	51	15.71	22.62	4.42	16.89	142	1713	1710
13	-1.20	100	52	15.71	22.62	5.23	18.17	162	2176	1938
14	-1.30	100	53	15.71	22.62	6.14	19.49	183	2706	2182
15	-1.40	100	54	15.71	22.62	7.16	20.82	206	3304	2443
16	-1.50	100	55	15.71	22.62	8.29	22.19	231	3969	2720
17	-1.60	100	56	15.71	22.62	9.53	23.57	257	4703	3013
18	-1.70	100	57	15.71	22.62	10.90	24.99	284	5504	3322
19	-1.80	100	58	15.71	22.62	12.39	26.42	313	6373	3646
20	-1.90	100	59	15.71	22.62	14.01	27.89	342	7310	3985
21	-2.00	100	60	15.71	22.62	15.76	29.37	374	8316	4339
22	-2.10	100	61	15.71	22.62	17.66	30.89	406	9389	4708
23	-2.20	100	62	15.71	22.62	19.70	32.42	440	10530	5092
24	-2.30	100	63	15.71	22.62	21.89	33.99	474	11740	5490
25	-2.40	100	64	15.71	22.62	24.23	35.57	510	13017	5903
26	-2.50	100	65	15.71	22.62	26.74	37.19	547	14363	6330
27	-2.60	100	66	15.71	22.62	29.40	38.82	586	15777	6771
28	-2.70	100	67	15.71	22.62	32.24	40.49	625	17260	7226
29	-2.80	100	68	15.71	22.62	35.25	42.17	665	18810	7694
30	-2.90	100	69	15.71	22.62	38.44	43.89	707	20429	8176
31	-3.00	100	70	15.71	22.62	41.81	45.62	749	22117	8672
32	-3.10	100	71	15.71	22.62	45.38	47.39	793	23873	9181
33	-3.20	100	72	15.71	22.62	49.13	49.17	837	25697	9703
34	-3.30	100	73	15.71	22.62	53.09	50.99	883	27590	10238
35	-3.40	100	74	15.71	22.62	57.25	52.82	929	29552	10786
36	-3.50	100	75	15.71	22.62	61.61	54.69	977	31582	11346
37	-3.60	100	76	15.71	22.62	66.19	56.57	1025	33680	11920
38	-3.70	100	77	15.71	22.62	70.99	58.49	1074	35848	12506
39	-3.80	100	78	15.71	22.62	76.01	60.42	1125	38084	13104
40	-3.90	100	79	15.71	22.62	81.25	62.39	1176	40388	13714
41	-4.00	100	80	15.71	22.62	86.73	64.37	1228	42762	14337
42	-4.10	100	81	15.71	45.24	92.45	66.39	1030	23828	12867
43	-4.20	100	82	31.42	45.24	98.41	68.42	983	24656	12189
43	-4.20 -4.30	100	83	15.71	45.24	104.62	70.49	1115	26472	13954
45	-4.40	100	84	15.71	45.24	111.07	70.49	1158	27847	14511
46	-4.40 -4.50	100	85	15.71	45.24	117.79	74.68	1202	29257	15077
40	-4.50 -4.60	100	86	15.71	45.24	124.77	76.82	1202	30702	15652
48	-4.00 -4.70	100	87	15.71	45.24	132.01	78.98	1297	32183	16235
49	-4.70 -4.80	100	88		45.24					
50	-4.80 -4.90	100	88	15.71 15.71		139.53	81.17	1338 1384	33699	16827 17428
50	-4.90	100	89	15./1	45.24	147.32	83.38	1384	35250	1/428

Adeguamento al tipo B dal km 12+000 al km 18+000 (ex SS125 "Orientale Sarda" - Connessione tra la SS554 e la nuova SS554)

CA352

Relazione tecnica e di calcolo ST01 - SOTTOVIA Pr. 5+460,00

n°	Υ	В	Н	Afi	Afs	М	N	σC	σfi	σfs
	[m]	[cm]	[cm]	[cmq]	[cmq]	[kNm]	[kN]	[kPa]	[kPa]	[kPa]
51	-5.00	100	90	15.71	45.24	155.39	85.62	1431	36836	18037

Mensola valle

Combinazione nº 5 - SLER

Tensione massima di compressione nel calcestruzzo 19920 [kPa] Tensione massima di trazione dell'acciaio 360000 [kPa]

n°	Υ	В	Н	Afi	Afs	М	N	σC	ofi	σfs
	[m]	[cm]	[cm]	[cmq]	[cmq]	[kNm]	[kN]	[kPa]	[kPa]	[kPa]
1	-0.75	100	50	7.92	7.92	0.00	0.00	0	0	0
2	-0.66	100	50	7.92	7.92	-0.05	0.00	2	15	144
3	-0.57	100	50	7.92	7.92	-0.19	0.00	9	60	578
4	-0.49	100	50	7.92	7.92	-0.43	0.00	21	136	1300
5	-0.40	100	50	7.92	7.92	-0.77	0.00	37	241	2310

Combinazioni SLEF

<u>Paramento</u>

Combinazione nº 6 - SLEF

Tensione massima di compressione nel calcestruzzo 33200 [kPa] Tensione massima di trazione dell'acciaio 450000 [kPa]

n°	Y	В	н	Afi	Afs	М	N	σс	σfi	σfs
	[m]	[cm]	[cm]	[cmq]	[cmq]	[kNm]	[kN]	[kPa]	[kPa]	[kPa]
1	0.00	100	40	15.71	22.62	0.77	4.37	39	324	455
2	-0.10	100	41	15.71	22.62	0.77	5.39	38	193	463
3	-0.20	100	42	15.71	22.62	0.78	6.42	38	104	476
4	-0.30	100	43	15.71	22.62	0.81	7.49	39	46	498
5	-0.40	100	44	15.71	22.62	0.86	8.57	40	9	527
6	-0.50	100	45	15.71	22.62	0.93	9.69	43	13	566
7	-0.60	100	46	15.71	22.62	1.03	10.82	46	24	612
8	-0.70	100	47	15.71	22.62	1.17	11.99	50	24	666
9	-0.80	100	48	15.71	22.62	1.34	13.17	55	14	729
10	-0.90	100	49	15.71	22.62	1.56	14.39	60	9	802
11	-1.00	100	50	15.71	22.62	1.83	15.62	67	47	885
12	-1.10	100	51	15.71	22.62	2.15	16.89	74	103	979
13	-1.20	100	52	15.71	22.62	2.53	18.17	82	183	1086
14	-1.30	100	53	15.71	22.62	2.97	19.49	92	292	1207
15	-1.40	100	54	15.71	22.62	3.49	20.82	103	434	1343
16	-1.50	100	55	15.71	22.62	4.07	22.19	115	616	1494
17	-1.60	100	56	15.71	22.62	4.74	23.57	129	843	1660
18	-1.70	100	57	15.71	22.62	5.48	24.99	144	1119	1842
19	-1.80	100	58	15.71	22.62	6.32	26.42	160	1447	2039
20	-1.90	100	59	15.71	22.62	7.24	27.89	178	1829	2252
21	-2.00	100	60	15.71	22.62	8.27	29.37	197	2269	2478
22	-2.10	100	61	15.71	22.62	9.39	30.89	217	2767	2719
23	-2.20	100	62	15.71	22.62	10.63	32.42	239	3323	2974
24	-2.30	100	63	15.71	22.62	11.97	33.99	261	3940	3243
25	-2.40	100	64	15.71	22.62	13.44	35.57	285	4616	3525
26	-2.50	100	65	15.71	22.62	15.02	37.19	310	5353	3820
27	-2.60	100	66	15.71	22.62	16.73	38.82	336	6150	4129
28	-2.70	100	67	15.71	22.62	18.58	40.49	364	7009	4451
29	-2.80	100	68	15.71	22.62	20.56	42.17	392	7929	4785
30	-2.90	100	69	15.71	22.62	22.68	43.89	422	8911	5133
31	-3.00	100	70	15.71	22.62	24.95	45.62	452	9955	5493
32	-3.10	100	71	15.71	22.62	27.37	47.39	484	11062	5866
33	-3.20	100	72	15.71	22.62	29.94	49.17	516	12230	6251

Adeguamento al tipo B dal km 12+000 al km 18+000 (ex SS125 "Orientale Sarda" - Connessione tra la SS554 e la nuova SS554)

CA352

Relazione tecnica e di calcolo ST01 - SOTTOVIA Pr. 5+460,00

n°	Y	В	Н	Afi	Afs	М	N	σC	σfi	σfs
	[m]	[cm]	[cm]	[cmq]	[cmq]	[kNm]	[kN]	[kPa]	[kPa]	[kPa]
34	-3.30	100	73	15.71	22.62	32.68	50.99	550	13462	6649
35	-3.40	100	74	15.71	22.62	35.58	52.82	584	14756	7060
36	-3.50	100	75	15.71	22.62	38.65	54.69	620	16114	7483
37	-3.60	100	76	15.71	22.62	41.90	56.57	656	17535	7918
38	-3.70	100	77	15.71	22.62	45.33	58.49	694	19019	8366
39	-3.80	100	78	15.71	22.62	48.95	60.42	732	20568	8826
40	-3.90	100	79	15.71	22.62	52.75	62.39	772	22181	9298
41	-4.00	100	80	15.71	22.62	56.75	64.37	812	23857	9782
42	-4.10	100	81	15.71	45.24	60.95	66.39	698	13763	8881
43	-4.20	100	82	31.42	45.24	65.35	68.42	671	14332	8483
44	-4.30	100	83	15.71	45.24	69.96	70.49	765	15684	9739
45	-4.40	100	84	15.71	45.24	74.79	72.57	800	16694	10181
46	-4.50	100	85	15.71	45.24	79.84	74.68	835	17737	10633
47	-4.60	100	86	15.71	45.24	85.11	76.82	871	18814	11094
48	-4.70	100	87	15.71	45.24	90.61	78.98	907	19925	11565
49	-4.80	100	88	15.71	45.24	96.35	81.17	944	21069	12044
50	-4.90	100	89	15.71	45.24	102.32	83.38	982	22246	12532
51	-5.00	100	90	15.71	45.24	108.54	85.62	1021	23458	13028

Mensola valle

Combinazione nº 6 - SLEF

Tensione massima di compressione nel calcestruzzo Tensione massima di trazione dell'acciaio 33200 [kPa] 450000 [kPa]

n°	Y	В	Н	Afi	Afs	М	N	σε	σfi	σfs
	[m]	[cm]	[cm]	[cmq]	[cmq]	[kNm]	[kN]	[kPa]	[kPa]	[kPa]
1	-0.75	100	50	7.92	7.92	0.00	0.00	0	0	0
2	-0.66	100	50	7.92	7.92	-0.05	0.00	2	15	144
3	-0.57	100	50	7.92	7.92	-0.19	0.00	9	60	578
4	-0.49	100	50	7.92	7.92	-0.43	0.00	21	136	1300
5	-0.40	100	50	7.92	7.92	-0.77	0.00	37	241	2310

Combinazioni SLEQ

<u>Paramento</u>

Combinazione nº 7 - SLEQ

Tensione massima di compressione nel calcestruzzo 14940 [kPa] Tensione massima di trazione dell'acciaio 450000 [kPa]

n°	Υ	В	Н	Afi	Afs	М	N	σс	σfi	σfs
	[m]	[cm]	[cm]	[cmq]	[cmq]	[kNm]	[kN]	[kPa]	[kPa]	[kPa]
1	0.00	100	40	15.71	22.62	0.77	4.37	39	324	455
2	-0.10	100	41	15.71	22.62	0.77	5.39	38	193	463
3	-0.20	100	42	15.71	22.62	0.78	6.42	38	104	476
4	-0.30	100	43	15.71	22.62	0.81	7.49	39	46	498
5	-0.40	100	44	15.71	22.62	0.86	8.57	40	9	527
6	-0.50	100	45	15.71	22.62	0.93	9.69	43	13	566
7	-0.60	100	46	15.71	22.62	1.03	10.82	46	24	612
8	-0.70	100	47	15.71	22.62	1.17	11.99	50	24	666
9	-0.80	100	48	15.71	22.62	1.34	13.17	55	14	729
10	-0.90	100	49	15.71	22.62	1.56	14.39	60	9	802
11	-1.00	100	50	15.71	22.62	1.83	15.62	67	47	885
12	-1.10	100	51	15.71	22.62	2.15	16.89	74	103	979
13	-1.20	100	52	15.71	22.62	2.53	18.17	82	183	1086
14	-1.30	100	53	15.71	22.62	2.97	19.49	92	292	1207
15	-1.40	100	54	15.71	22.62	3.49	20.82	103	434	1343
16	-1.50	100	55	15.71	22.62	4.07	22.19	115	616	1494

Adeguamento al tipo B dal km 12+000 al km 18+000 (ex SS125 "Orientale Sarda" -Connessione tra la SS554 e la nuova SS554)

CA352

Relazione tecnica e di calcolo ST01 - SOTTOVIA Pr. 5+460,00

n°	Y	В	Н	Afi	Afs	М	N	σC	σfi	σfs
	[m]	[cm]	[cm]	[cmq]	[cmq]	[kNm]	[kN]	[kPa]	[kPa]	[kPa]
17	-1.60	100	56	15.71	22.62	4.74	23.57	129	843	1660
18	-1.70	100	57	15.71	22.62	5.48	24.99	144	1119	1842
19	-1.80	100	58	15.71	22.62	6.32	26.42	160	1447	2039
20	-1.90	100	59	15.71	22.62	7.24	27.89	178	1829	2252
21	-2.00	100	60	15.71	22.62	8.27	29.37	197	2269	2478
22	-2.10	100	61	15.71	22.62	9.39	30.89	217	2767	2719
23	-2.20	100	62	15.71	22.62	10.63	32.42	239	3323	2974
24	-2.30	100	63	15.71	22.62	11.97	33.99	261	3940	3243
25	-2.40	100	64	15.71	22.62	13.44	35.57	285	4616	3525
26	-2.50	100	65	15.71	22.62	15.02	37.19	310	5353	3820
27	-2.60	100	66	15.71	22.62	16.73	38.82	336	6150	4129
28	-2.70	100	67	15.71	22.62	18.58	40.49	364	7009	4451
29	-2.80	100	68	15.71	22.62	20.56	42.17	392	7929	4785
30	-2.90	100	69	15.71	22.62	22.68	43.89	422	8911	5133
31	-3.00	100	70	15.71	22.62	24.95	45.62	452	9955	5493
32	-3.10	100	71	15.71	22.62	27.37	47.39	484	11062	5866
33	-3.20	100	72	15.71	22.62	29.94	49.17	516	12230	6251
34	-3.30	100	73	15.71	22.62	32.68	50.99	550	13462	6649
35	-3.40	100	74	15.71	22.62	35.58	52.82	584	14756	7060
36	-3.50	100	75	15.71	22.62	38.65	54.69	620	16114	7483
37	-3.60	100	76	15.71	22.62	41.90	56.57	656	17535	7918
38	-3.70	100	77	15.71	22.62	45.33	58.49	694	19019	8366
39	-3.80	100	78	15.71	22.62	48.95	60.42	732	20568	8826
40	-3.90	100	79	15.71	22.62	52.75	62.39	772	22181	9298
41	-4.00	100	80	15.71	22.62	56.75	64.37	812	23857	9782
42	-4.10	100	81	15.71	45.24	60.95	66.39	698	13763	8881
43	-4.20	100	82	31.42	45.24	65.35	68.42	671	14332	8483
44	-4.30	100	83	15.71	45.24	69.96	70.49	765	15684	9739
45	-4.40	100	84	15.71	45.24	74.79	72.57	800	16694	10181
46	-4.50	100	85	15.71	45.24	79.84	74.68	835	17737	10633
47	-4.60	100	86	15.71	45.24	85.11	76.82	871	18814	11094
48	-4.70	100	87	15.71	45.24	90.61	78.98	907	19925	11565
49	-4.80	100	88	15.71	45.24	96.35	81.17	944	21069	12044
50	-4.90	100	89	15.71	45.24	102.32	83.38	982	22246	12532
51	-5.00	100	90	15.71	45.24	108.54	85.62	1021	23458	13028

Mensola valle

Combinazione nº 7 - SLEQ

Tensione massima di compressione nel calcestruzzo 14940 [kPa] Tensione massima di trazione dell'acciaio 450000 [kPa]

n°	Y	В	Н	Afi	Afs	М	N	σς	σfi	σfs
	[m]	[cm]	[cm]	[cmq]	[cmq]	[kNm]	[kN]	[kPa]	[kPa]	[kPa]
1	-0.75	100	50	7.92	7.92	0.00	0.00	0	0	0
2	-0.66	100	50	7.92	7.92	-0.05	0.00	2	15	144
3	-0.57	100	50	7.92	7.92	-0.19	0.00	9	60	578
4	-0.49	100	50	7.92	7.92	-0.43	0.00	21	136	1300
5	-0.40	100	50	7.92	7.92	-0.77	0.00	37	241	2310

Verifica a fessurazione

Simbologia adottata

n° Y B H Af Aeff indice sezione ordinata sezione espressa in [m] larghezza sezione espresso in [cm] altezza sezione espressa in [cm] area ferri zona tesa espresso in [cmq] area efficace espressa in [cmq] momento agente espressa in [kNm]

momento di prima fessurazione espressa in [kNm] deformazione espresso in % Mpf

spaziatura tra le fessure espressa in [mm] apertura delle fessure espressa in [mm]

Adeguamento al tipo B dal km 12+000 al km 18+000 (ex SS125 "Orientale Sarda" - Connessione tra la SS554 e la nuova SS554)

CA352

Relazione tecnica e di calcolo ST01 - SOTTOVIA Pr. 5+460,00

Combinazioni SLEF

Paramento

Combinazione nº 6 - SLEF

Apertura limite fessure w_{lim} =0.30

n°	Y	В	н	Af	Aeff	М	Mpf	8	Sm	w
	[m]	[cm]	[cm]	[cmq]	[cmq]	[kNm]	[kNm]	[%]	[mm]	[mm]
1	0.00	100	40	22.62	1250.00	0.77	175.97	0.0000	0.00	0.000
2	-0.10	100	41	22.62	1250.00	0.77	223.33	0.0000	0.00	0.000
3	-0.20	100	42	22.62	1250.00	0.78	295.09	0.0000	0.00	0.000
4	-0.30	100	43	22.62	1250.00	0.81	405.09	0.0000	0.00	0.000
5	-0.40	100	44	22.62	1250.00	0.86	567.23	0.0000	0.00	0.000
6	-0.50	100	45	0.00	0.00	0.93	772.25	0.0000	0.00	0.000
7	-0.60	100	46	0.00	0.00	1.03	947.08	0.0000	0.00	0.000
8	-0.70	100	47	0.00	0.00	1.17	991.33	0.0000	0.00	0.000
9	-0.80	100	48	0.00	0.00	1.34	908.51	0.0000	0.00	0.000
10	-0.90	100	49	22.62	1250.00	1.56	782.62	0.0000	0.00	0.000
11	-1.00	100	50	22.62	1250.00	1.83	668.98	0.0000	0.00	0.000
12	-1.10	100	51	22.62	1250.00	2.15	581.57	0.0000	0.00	0.000
13	-1.20	100	52	22.62	1250.00	2.53	517.75	0.0000	0.00	0.000
14	-1.30	100	53	22.62	1250.00	2.97	471.76	0.0000	0.00	0.000
15	-1.40	100	54	22.62	1250.00	3.49	438.64	0.0000	0.00	0.000
16	-1.50	100	55	22.62	1250.00	4.07	414.74	0.0000	0.00	0.000
17	-1.60	100	56	22.62	1250.00	4.74	397.55	0.0000	0.00	0.000
18	-1.70	100	57	22.62	1250.00	5.48	385.32	0.0000	0.00	0.000
19	-1.70	100	58	22.62	1250.00	6.32	376.82	0.0000	0.00	0.000
20	-1.80	100	59	22.62	1250.00	7.24	371.18	0.0000	0.00	0.000
21										
	-2.00	100	60	22.62	1250.00	8.27	367.80	0.0000	0.00	0.000
22	-2.10	100	61	22.62	1250.00	9.39	366.19	0.0000	0.00	0.000
23	-2.20	100	62	22.62	1250.00	10.63	366.04	0.0000	0.00	0.000
24	-2.30	100	63	22.62	1250.00	11.97	367.07	0.0000	0.00	0.000
25	-2.40	100	64	22.62	1250.00	13.44	369.09	0.0000	0.00	0.000
26	-2.50	100	65	22.62	1250.00	15.02	371.95	0.0000	0.00	0.000
27	-2.60	100	66	22.62	1250.00	16.73	375.53	0.0000	0.00	0.000
28	-2.70	100	67	22.62	1250.00	18.58	379.72	0.0000	0.00	0.000
29	-2.80	100	68	22.62	1250.00	20.56	384.45	0.0000	0.00	0.000
30	-2.90	100	69	22.62	1250.00	22.68	389.66	0.0000	0.00	0.000
31	-3.00	100	70	22.62	1250.00	24.95	395.30	0.0000	0.00	0.000
32	-3.10	100	71	22.62	1250.00	27.37	401.31	0.0000	0.00	0.000
33	-3.20	100	72	22.62	1250.00	29.94	407.68	0.0000	0.00	0.000
34	-3.30	100	73	22.62	1250.00	32.68	414.36	0.0000	0.00	0.000
35	-3.40	100	74	22.62	1250.00	35.58	421.33	0.0000	0.00	0.000
36	-3.50	100	75	22.62	1250.00	38.65	428.58	0.0000	0.00	0.000
37	-3.60	100	76	22.62	1250.00	41.90	436.07	0.0000	0.00	0.000
38	-3.70	100	77	22.62	1250.00	45.33	443.81	0.0000	0.00	0.000
39	-3.80	100	78	22.62	1250.00	48.95	451.76	0.0000	0.00	0.000
40	-3.90	100	79	22.62	1250.00	52.75	459.93	0.0000	0.00	0.000
41	-4.00	100	80	22.62	1250.00	56.75	468.30	0.0000	0.00	0.000
42	-4.10	100	81	45.24	1250.00	60.95	529.90	0.0000	0.00	0.000
43	-4.20	100	82	45.24	1250.00	65.35	563.73	0.0000	0.00	0.000
44	-4.30	100	83	45.24	1250.00	69.96	548.82	0.0000	0.00	0.000
45	-4.40	100	84	45.24	1250.00	74.79	558.54	0.0000	0.00	0.000
46	-4.50	100	85	45.24	1250.00	79.84	568.44	0.0000	0.00	0.000
47	-4.60	100	86	45.24	1250.00	85.11	578.50	0.0000	0.00	0.000
48	-4.70	100	87	45.24	1250.00	90.61	588.72	0.0000	0.00	0.000
49	-4.80	100	88	45.24	1250.00	96.35	599.10	0.0000	0.00	0.000
50	-4.90	100	89	45.24	1250.00	102.32	609.63	0.0000	0.00	0.000
51	-5.00	100	90	45.24	1250.00	108.54	620.31	0.0000	0.00	0.000
31	5.00	100	50	15121	1250.00	200.51	520.51	5.0000	0.00	0.000

Mensola valle

Combinazione nº 6 - SLEF

Adeguamento al tipo B dal km 12+000 al km 18+000 (ex SS125 "Orientale Sarda" - Connessione tra la SS554 e la nuova SS554)

CA352

Relazione tecnica e di calcolo ST01 - SOTTOVIA Pr. 5+460,00

Apertura limite fessure w_{lim} =0.30

n°	Y	В	Н	Af	Aeff	М	Mpf	3	Sm	w
	[m]	[cm]	[cm]	[cmq]	[cmq]	[kNm]	[kNm]	[%]	[mm]	[mm]
1	-0.75	100	50	0.00	0.00	0.00	0.00	0.0000	0.00	0.000
2	-0.66	100	50	0.00	0.00	-0.05	0.00	0.0000	0.00	0.000
3	-0.57	100	50	7.92	1250.00	-0.19	-142.23	0.0000	0.00	0.000
4	-0.49	100	50	7.92	1250.00	-0.43	-142.23	0.0000	0.00	0.000
5	-0.40	100	50	7.92	1250.00	-0.77	-142.23	0.0000	0.00	0.000

Combinazioni SLEQ

<u>Paramento</u>

Combinazione nº 7 - SLEQ

Apertura limite fessure w_{lim} =0.20

n°	Υ	В	Н	Af	Aeff	М	Mpf	8	Sm	w
	[m]	[cm]	[cm]	[cmq]	[cmq]	[kNm]	[kNm]	[%]	[mm]	[mm]
1	0.00	100	40	22.62	1250.00	0.77	175.97	0.0000	0.00	0.000
2	-0.10	100	41	22.62	1250.00	0.77	223.33	0.0000	0.00	0.000
3	-0.20	100	42	22.62	1250.00	0.78	295.09	0.0000	0.00	0.000
4	-0.30	100	43	22.62	1250.00	0.81	405.09	0.0000	0.00	0.000
5	-0.40	100	44	22.62	1250.00	0.86	567.23	0.0000	0.00	0.000
6	-0.50	100	45	0.00	0.00	0.93	772.25	0.0000	0.00	0.000
7	-0.60	100	46	0.00	0.00	1.03	947.08	0.0000	0.00	0.000
8	-0.70	100	47	0.00	0.00	1.17	991.33	0.0000	0.00	0.000
9	-0.80	100	48	0.00	0.00	1.34	908.51	0.0000	0.00	0.000
10	-0.90	100	49	22.62	1250.00	1.56	782.62	0.0000	0.00	0.000
11	-1.00	100	50	22.62	1250.00	1.83	668.98	0.0000	0.00	0.000
12	-1.10	100	51	22.62	1250.00	2.15	581.57	0.0000	0.00	0.000
13	-1.20	100	52	22.62	1250.00	2.53	517.75	0.0000	0.00	0.000
14	-1.30	100	53	22.62	1250.00	2.97	471.76	0.0000	0.00	0.000
15	-1.40	100	54	22.62	1250.00	3.49	438.64	0.0000	0.00	0.000
16	-1.50	100	55	22.62	1250.00	4.07	414.74	0.0000	0.00	0.000
17	-1.60	100	56	22.62	1250.00	4.74	397.55	0.0000	0.00	0.000
18	-1.70	100	57	22.62	1250.00	5.48	385.32	0.0000	0.00	0.000
19	-1.80	100	58	22.62	1250.00	6.32	376.82	0.0000	0.00	0.000
		100						0.0000		0.000
20	-1.90		59	22.62	1250.00	7.24	371.18		0.00	
	-2.00	100	60	22.62	1250.00	8.27	367.80	0.0000	0.00	0.000
22	-2.10	100	61	22.62	1250.00	9.39	366.19	0.0000	0.00	0.000
23	-2.20	100	62	22.62	1250.00	10.63	366.04	0.0000	0.00	0.000
24	-2.30	100	63	22.62	1250.00	11.97	367.07	0.0000	0.00	0.000
25	-2.40	100	64	22.62	1250.00	13.44	369.09	0.0000	0.00	0.000
26	-2.50	100	65	22.62	1250.00	15.02	371.95	0.0000	0.00	0.000
27	-2.60	100	66	22.62	1250.00	16.73	375.53	0.0000	0.00	0.000
28	-2.70	100	67	22.62	1250.00	18.58	379.72	0.0000	0.00	0.000
29	-2.80	100	68	22.62	1250.00	20.56	384.45	0.0000	0.00	0.000
30	-2.90	100	69	22.62	1250.00	22.68	389.66	0.0000	0.00	0.000
31	-3.00	100	70	22.62	1250.00	24.95	395.30	0.0000	0.00	0.000
32	-3.10	100	71	22.62	1250.00	27.37	401.31	0.0000	0.00	0.000
33	-3.20	100	72	22.62	1250.00	29.94	407.68	0.0000	0.00	0.000
34	-3.30	100	73	22.62	1250.00	32.68	414.36	0.0000	0.00	0.000
35	-3.40	100	74	22.62	1250.00	35.58	421.33	0.0000	0.00	0.000
36	-3.50	100	75	22.62	1250.00	38.65	428.58	0.0000	0.00	0.000
37	-3.60	100	76	22.62	1250.00	41.90	436.07	0.0000	0.00	0.000
38	-3.70	100	77	22.62	1250.00	45.33	443.81	0.0000	0.00	0.000
39	-3.80	100	78	22.62	1250.00	48.95	451.76	0.0000	0.00	0.000
40	-3.90	100	79	22.62	1250.00	52.75	459.93	0.0000	0.00	0.000
41	-4.00	100	80	22.62	1250.00	56.75	468.30	0.0000	0.00	0.000
42	-4.10	100	81	45.24	1250.00	60.95	529.90	0.0000	0.00	0.000
43	-4.20	100	82	45.24	1250.00	65.35	563.73	0.0000	0.00	0.000
44	-4.30	100	83	45.24	1250.00	69.96	548.82	0.0000	0.00	0.000
45	-4.40	100	84	45.24	1250.00	74.79	558.54	0.0000	0.00	0.000
46	-4.50	100	85	45.24	1250.00	79.84	568.44	0.0000	0.00	0.000
47	-4.60	100	86	45.24	1250.00	85.11	578.50	0.0000	0.00	0.000

Adeguamento al tipo B dal km 12+000 al km 18+000 (ex SS125 "Orientale Sarda" -Connessione tra la SS554 e la nuova SS554)

CA352

Relazione tecnica e di calcolo ST01 - SOTTOVIA Pr. 5+460,00

n°	Υ	В	Н	Af	Aeff	М	Mpf	8	Sm	w
	[m]	[cm]	[cm]	[cmq]	[cmq]	[kNm]	[kNm]	[%]	[mm]	[mm]
48	-4.70	100	87	45.24	1250.00	90.61	588.72	0.0000	0.00	0.000
49	-4.80	100	88	45.24	1250.00	96.35	599.10	0.0000	0.00	0.000
50	-4.90	100	89	45.24	1250.00	102.32	609.63	0.0000	0.00	0.000
51	-5.00	100	90	45.24	1250.00	108.54	620.31	0.0000	0.00	0.000

Mensola valle

Combinazione nº 7 - SLEQ

Apertura limite fessure w_{lim}=0.20

n°	Y	В	Н	Af	Aeff	М	Mpf	ε	Sm	w
	[m]	[cm]	[cm]	[cmq]	[cmq]	[kNm]	[kNm]	[%]	[mm]	[mm]
1	-0.75	100	50	0.00	0.00	0.00	0.00	0.0000	0.00	0.000
2	-0.66	100	50	0.00	0.00	-0.05	0.00	0.0000	0.00	0.000
3	-0.57	100	50	7.92	1250.00	-0.19	-142.23	0.0000	0.00	0.000
4	-0.49	100	50	7.92	1250.00	-0.43	-142.23	0.0000	0.00	0.000
5	-0.40	100	50	7.92	1250.00	-0.77	-142.23	0.0000	0.00	0.000

Risultati per inviluppo

Spinta e forze

Simbologia adottata

Indice della combinazione

Ic A I V

Inclinazione della spinta, espressa in [°]

Coordinata X ed Y del punto di applicazione, espressa in [kN]

Ic A	V	I	C _X	C _Y	P _X	P _Y
	[kN]	[°]	[kN]	[kN]	[m]	[m]
3 Spinta statica	175.19	23.33	160.87	69.38	3.20	-4.04
Peso/Inerzia muro			0.00	295.62/0.00	0.26	-4.86
Peso/Inerzia terrapieno			0.00	376.25/0.00	1.69	-2.41
Resistenza pali			-350.45			

Risultanti globali

Simbologia adottata

Cmb Indice/Tipo combinazione

N Componente normale al piano di posa, espressa in [kN] T M_r

Componente parallela al piano di posa, espressa in [kN] Momento ribaltante, espresso in [kNm]

Momento stabilizzante, espresso in [kNm] Eccentricità risultante, espressa in [m]

Ic	N	T	M _r	M _s	ecc
	[kN]	[kN]	[kNm]	[kNm]	[m]
1 - STR (A1-M1-R3)	626.37	117.11	253.74	2224.03	-0.346
2 - STR (A1-M1-R3)	650.07	164.00	413.80	2300.49	-0.102
3 - STR (A1-M1-R3)	741.25	160.87	395.97	2714.96	-0.329
4 - STR (A1-M1-R3)	596.30	156.29	473.75	2196.86	-0.090

Sollecitazioni

Elementi calcolati a trave

Simbologia adottata

Sforzo normale, espresso in [kN]. Positivo se di compressione.

Taglio, espresso in [kN]. Positivo se diretto da monte verso valle Momento, espresso in [kNm]. Positivo se tende le fibre contro terra (a monte)

Adeguamento al tipo B dal km 12+000 al km 18+000 (ex SS125 "Orientale Sarda" - Connessione tra la SS554 e la nuova SS554)

CA352

Relazione tecnica e di calcolo ST01 - SOTTOVIA Pr. 5+460,00

Paramento

n°	X	N _{min}	N _{max}	T _{min}	T _{max}	M _{min}	M _{max}
	[m]	[kN]	[kN]	[kN]	[kN]	[kNm]	[kNm]
1	0.00	4.37	4.57	0.00	0.00	0.77	0.80
2	-0.10	5.39	5.58	0.02	0.78	0.77	0.82
3	-0.20	6.42	6.62	0.10	1.62	0.78	0.93
4	-0.30	7.49	7.68	0.22	2.53	0.81	1.15
5	-0.40	8.57	8.77	0.38	3.50	0.86	1.47
6	-0.50	9.69	9.88	0.60	4.52	0.93	1.90
7	-0.60	10.82	11.02	0.86	5.61	1.03	2.43
8	-0.70	11.99	12.18	1.17	6.76	1.17	3.09
9	-0.80	13.17	13.37	1.52	7.97	1.34	3.86
10	-0.90	14.39	14.58	1.93	9.25	1.56	4.77
11	-1.00	15.62	15.82	2.38	10.59	1.83	5.82
12	-1.10	16.89	17.08	2.87	11.98	2.15	7.00
13	-1.20	18.17	18.37	3.42	13.44	2.53	8.34
14	-1.30	19.49	19.68	4.01	14.96	2.97	9.83
15	-1.40	20.82	21.02	4.66	16.55	3.49	11.49
16	-1.50	22.19	22.38	5.34	18.19	4.07	13.31
17	-1.60	23.57	23.77	6.08	19.90	4.74	15.30
18	-1.70	24.99	25.18	6.86	21.66	5.48	17.48
19	-1.80	26.42	26.62	7.69	23.49	6.32	19.84
20	-1.90	27.89	28.08	8.57	25.39	7.24	22.40
21	-2.00	29.37	29.57	9.50	27.34	8.27	25.16
22	-2.10	30.89	31.08	10.47	29.35	9.39	28.12
23	-2.20	32.42	32.62	11.49	31.43	10.63	31.30
24	-2.30	33.99	34.18	12.56	33.57	11.97	34.69
25	-2.40	35.57	35.77	13.68	35.77	13.44	38.31
26	-2.50	37.19	37.38	14.84	38.03	15.02	42.16
27	-2.60	38.82	39.02	16.05	40.35	16.73	46.25
28	-2.70	40.49	40.68	17.31	42.74	18.58	50.58
29	-2.80	42.17	42.37	18.61	45.19	20.56	55.16
30	-2.90	43.89	44.08	19.97	47.69	22.68	59.99
31	-3.00	45.62	45.82	21.37	50.27	24.95	65.09
32	-3.10	47.39	47.58	22.81	52.90	27.37	70.46
33	-3.20	49.17	49.37	24.31	55.59	29.94	76.10
34	-3.30	50.99	51.18	25.85	58.35	32.68	82.03
35	-3.40	52.82	53.02	27.44	61.16	35.58	88.24
36	-3.50	54.69	54.88	29.08	64.04	38.65	94.75
37	-3.60	56.57	56.76	30.77	66.98	41.90	101.56
38	-3.70	58.49	58.68	32.50	69.99	45.33	108.67
39	-3.80	60.42	60.61	34.28	73.05	48.95	116.10
40	-3.90	62.39	62.58	36.11	76.18	52.75	123.84
41	-4.00	64.37	64.56	37.98	79.36	56.75	131.91
42	-4.10	66.39	66.58	39.91	82.61	60.95	140.32
43	-4.20	68.42	68.61	41.88	85.92	65.35	149.06
44	-4.30	70.49	70.68	43.89	89.30	69.96	158.14
45	-4.40	72.57	72.76	45.96	92.73	74.79	167.58
46	-4.50	74.68	74.88	48.07	96.23	79.84	177.37
47	-4.60	76.82	77.01	50.23	99.78	85.11	187.53
48	-4.70	78.98	79.18	52.44	103.40	90.61	198.06
49	-4.80	81.17	81.36	54.69	107.08	96.35	208.96
50	-4.90	83.38	83.58	57.00	110.83	102.32	220.24
51	-5.00	85.62	85.81	59.35	114.63	108.54	231.92

Mensola valle

n°	Х	N _{min}	N _{max}	T _{min}	T _{max}	M _{min}	M _{max}
	[m]	[kN]	[kN]	[kN]	[kN]	[kNm]	[kNm]
1	-0.75	0.00	0.00	0.00	0.00	0.00	0.00
2	-0.66	0.00	0.00	1.09	1.14	0.05	0.05
3	-0.57	0.00	0.00	2.19	2.28	0.19	0.20
4	-0.49	0.00	0.00	3.28	3.42	0.43	0.45
5	-0.40	0.00	0.00	4.37	4.57	0.77	0.80

Adeguamento al tipo B dal km 12+000 al km 18+000 (ex SS125 "Orientale Sarda" -Connessione tra la SS554 e la nuova SS554)

CA352

Relazione tecnica e di calcolo ST01 - SOTTOVIA Pr. 5+460,00

Verifiche strutturali

Verifiche a flessione

Elementi calcolati a trave

Simbologia adottata

indice sezione

indice sezione
ordinata sezione espressa in [m]
larghezza sezione espresso in [cm]
altezza sezione espresso in [cm]
area ferri inferiori espresso in [cmq]
area ferri superiori espressa in [kMm]
sforzo normale agente espressa in [kNm]
sforzo normale ultimo espressa in [kN]
forzo normale ultimo espressa in [kN]
sforzo normale ultimo espressa in [kN]

fattore di sicurezza (rapporto tra sollecitazione ultima e sollecitazione agente)

Paramento

n°	В	Н	Afi	Afs	М	N	Mu	Nu	FS
	[cm]	[cm]	[cmq]	[cmq]	[kNm]	[kN]	[kNm]	[kN]	
1	100	40	15.71	22.62	0.80	4.57	580.07	3314.70	725.859
2	100	41	15.71	22.62	0.82	5.58	577.40	3922.28	703.032
3	100	42	15.71	22.62	0.93	6.42	597.19	4107.90	639.363
4	100	43	15.71	22.62	1.15	7.49	631.10	4094.40	546.832
5	100	44	15.71	22.62	1.47	8.57	673.27	3919.17	457.047
6	100	45	15.71	22.62	1.90	9.69	719.58	3674.24	379.278
7	100	46	15.71	22.62	2.43	10.82	742.15	3302.21	305.055
8	100	47	15.71	22.62	3.09	11.99	747.21	2902.35	242.116
9	100	48	15.71	22.62	3.86	13.17	741.47	2528.44	191.913
10	100	49	15.71	22.62	4.77	14.39	729.19	2198.83	152.830
11	100	50	15.71	22.62	5.82	15.62	715.92	1923.48	123.104
12	100	51	15.71	22.62	7.00	16.89	700.95	1690.34	100.095
13	100	52	15.71	22.62	8.34	18.17	687.53	1498.40	82.444
14	100	53	15.71	22.62	9.83	19.49	672.49	1332.96	68.402
15	100	54	15.71	22.62	11.49	20.82	663.05	1202.22	57.731
16	100	55	15.71	22.62	13.31	22.19	654.10	1090.59	49.154
17	100	56	15.71	22.62	15.30	23.57	647.19	996.97	42.290
18	100	57	15.71	22.62	17.48	24.99	643.05	919.19	36.786
19	100	58	15.71	22.62	19.84	26.42	641.06	853.61	32.304
20	100	59	15.71	22.62	22.40	27.89	640.77	797.65	28.603
21	100	60	15.71	22.62	25.16	29.37	641.85	749.38	25.511
22	100	61	15.71	22.62	28.12	30.89	644.03	707.35	22.901
23	100	62	15.71	22.62	31.30	32.42	647.14	670.45	20.677
24	100	63	15.71	22.62	34.69	33.99	651.02	637.81	18.766
25	100	64	15.71	22.62	38.31	35.57	655.55	608.75	17.112
26	100	65	15.71	22.62	42.16	37.19	660.63	582.72	15.670
27	100	66	15.71	22.62	46.25	38.82	666.19	559.28	14.406
28	100	67	15.71	22.62	50.58	40.49	672.17	538.08	13.290
29	100	68	15.71	22.62	55.16	42.17	678.50	518.80	12.301
30	100	69	15.71	22.62	59.99	43.89	685.16	501.21	11.421
31	100	70	15.71	22.62	65.09	45.62	692.09	485.09	10.632
32	100	71	15.71	22.62	70.46	47.39	699.28	470.28	9.924
33	100	72	15.71	22.62	76.10	49.17	706.49	456.49	9.283
34	100	73	15.71	22.62	82.03	50.99	713.19	443.29	8.694
35	100	74	15.71	22.62	88.24	52.82	720.06	431.05	8.160
36	100	75	15.71	22.62	94.75	54.69	727.11	419.67	7.674
37	100	76	15.71	22.62	101.56	56.57	734.30	409.06	7.231
38	100	77	15.71	22.62	108.67	58.49	741.62	399.14	6.825
39	100	78	15.71	22.62	116.10	60.42	749.07	389.86	6.452
40	100	79	15.71	22.62	123.84	62.39	756.63	381.15	6.110
41	100	80	15.71	22.62	131.91	64.37	764.28	372.97	5.794
42	100	81	15.71	45.24	140.32	66.39	1489.82	704.85	10.618
43	100	82	31.42	45.24	149.06	68.42	1520.10	697.78	10.198
44	100	83	15.71	45.24	158.14	70.49	1522.07	678.39	9.625
45	100	84	15.71	45.24	167.58	72.57	1538.36	666.21	9.180
46	100	85	15.71	45.24	177.37	74.68	1554.72	654.63	8.765

Adeguamento al tipo B dal km 12+000 al km 18+000 (ex SS125 "Orientale Sarda" -Connessione tra la SS554 e la nuova SS554)

CA352

Relazione tecnica e di calcolo ST01 - SOTTOVIA Pr. 5+460,00

n°	В	Н	Afi	Afs	М	N	Mu	Nu	FS
	[cm]	[cm]	[cmq]	[cmq]	[kNm]	[kN]	[kNm]	[kN]	
47	100	86	15.71	45.24	187.53	76.82	1571.16	643.63	8.378
48	100	87	15.71	45.24	198.06	78.98	1587.69	633.17	8.016
49	100	88	15.71	45.24	208.96	81.17	1604.31	623.21	7.678
50	100	89	15.71	45.24	220.24	83.38	1621.01	613.71	7.360
51	100	90	15.71	45.24	231.92	85.62	1637.78	604.65	7.062

Mensola valle

n°	В	Н	Afi	Afs	М	N	Mu	Nu	FS
	[cm]	[cm]	[cmq]	[cmq]	[kNm]	[kN]	[kNm]	[kN]	
1	100	50	7.92	7.92	0.00	0.00	0.00	0.00	1000.000
2	100	50	7.92	7.92	0.00	0.00	0.00	0.00	1000.000
3	100	50	7.92	7.92	-0.20	0.00	-135.90	0.00	680.236
4	100	50	7.92	7.92	-0.45	0.00	-135.90	0.00	302.327
5	100	50	7.92	7.92	-0.80	0.00	-135.90	0.00	170.059

Verifiche a taglio

Simbologia adottata

Is
Y
B
H
A_{sw}
cotgθ
V_{Rcd}
V_{Rsd}
V_o indice sezione ordinata sezione espressa in [m] larghezza sezione espresso in [cm]

larghezza sezione espresso in [cm]
area ferri a taglio espresso in [cm]
area ferri a taglio espresso in [cmq]
inclinazione delle bielle compresse, θ inclinazione dei puntoni di calcestruzzo
resistenza di progetto a 'taglio compressione' espressa in [kN]
resistenza di progetto a 'taglio trazione' espressa in [kN]
resistenza di progetto a 'taglio trazione' espressa in [kN]
resistenza di progetto a taglio espresso in [kN]. Per elementi con armature trasversali resistenti al taglio (A_{sw}>0.0) V_{Rd}=min(V_{Rcd}, V_{Rsd}).
taglio agente espressa in [kN] V_{Rd} T FS

fattore di sicurezza (rapporto tra sollecitazione resistente e sollecitazione agente)

Paramento

n°	В	Н	A _{sw}	cotθ	V_{Rcd}	V _{Rsd}	V _{Rd}	T	FS
	[cm]	[cm]	[cmq]		[kN]	[kN]	[kN]	[kN]	
1	100	40	0.00		0.00	0.00	246.65	0.00	100.000
2	100	41	0.00		0.00	0.00	249.94	0.78	320.098
3	100	42	0.00		0.00	0.00	253.20	1.62	155.896
4	100	43	0.00		0.00	0.00	256.43	2.53	101.386
5	100	44	0.00		0.00	0.00	259.63	3.50	74.280
6	100	45	0.00		0.00	0.00	262.80	4.52	58.108
7	100	46	0.00		0.00	0.00	265.95	5.61	47.391
8	100	47	0.00		0.00	0.00	269.06	6.76	39.788
9	100	48	0.00		0.00	0.00	272.16	7.97	34.127
10	100	49	0.00		0.00	0.00	275.23	9.25	29.757
11	100	50	0.00		0.00	0.00	278.28	10.59	26.289
12	100	51	0.00		0.00	0.00	281.30	11.98	23.476
13	100	52	0.00		0.00	0.00	284.31	13.44	21.151
14	100	53	0.00		0.00	0.00	287.30	14.96	19.200
15	100	54	0.00		0.00	0.00	290.26	16.55	17.543
16	100	55	0.00		0.00	0.00	293.21	18.19	16.119
17	100	56	0.00		0.00	0.00	296.14	19.90	14.884
18	100	57	0.00		0.00	0.00	299.05	21.66	13.803
19	100	58	0.00		0.00	0.00	301.94	23.49	12.852
20	100	59	0.00		0.00	0.00	304.82	25.39	12.007
21	100	60	0.00		0.00	0.00	307.68	27.34	11.254
22	100	61	0.00		0.00	0.00	310.53	29.35	10.579
23	100	62	0.00		0.00	0.00	313.36	31.43	9.970
24	100	63	0.00		0.00	0.00	316.18	33.57	9.419
25	100	64	0.00		0.00	0.00	318.98	35.77	8.918
26	100	65	0.00		0.00	0.00	321.77	38.03	8.461
27	100	66	0.00		0.00	0.00	324.55	40.35	8.043
28	100	67	0.00		0.00	0.00	327.31	42.74	7.658
29	100	68	0.00		0.00	0.00	330.07	45.19	7.305
30	100	69	0.00		0.00	0.00	332.81	47.69	6.978
31	100	70	0.00		0.00	0.00	335.54	50.27	6.675

Adeguamento al tipo B dal km 12+000 al km 18+000 (ex SS125 "Orientale Sarda" -Connessione tra la SS554 e la nuova SS554)

CA352

Relazione tecnica e di calcolo ST01 - SOTTOVIA Pr. 5+460.00

n°	В	Н	A _{sw}	cotθ	V_{Rcd}	V_{Rsd}	V_{Rd}	Т	FS
	[cm]	[cm]	[cmq]		[kN]	[kN]	[kN]	[kN]	
32	100	71	0.00		0.00	0.00	338.25	52.90	6.395
33	100	72	0.00		0.00	0.00	340.96	55.59	6.133
34	100	73	0.00		0.00	0.00	343.66	58.35	5.890
35	100	74	0.00		0.00	0.00	346.34	61.16	5.663
36	100	75	0.00		0.00	0.00	349.02	64.04	5.450
37	100	76	0.00		0.00	0.00	351.69	66.98	5.250
38	100	77	0.00		0.00	0.00	354.34	69.99	5.063
39	100	78	0.00		0.00	0.00	356.99	73.05	4.887
40	100	79	0.00		0.00	0.00	359.63	76.18	4.721
41	100	80	0.00		0.00	0.00	362.26	79.36	4.565
42	100	81	0.00		0.00	0.00	424.33	82.61	5.136
43	100	82	0.00		0.00	0.00	460.51	85.92	5.360
44	100	83	0.00		0.00	0.00	430.33	89.30	4.819
45	100	84	0.00		0.00	0.00	433.31	92.73	4.673
46	100	85	0.00		0.00	0.00	436.28	96.23	4.534
47	100	86	0.00		0.00	0.00	439.25	99.78	4.402
48	100	87	0.00		0.00	0.00	442.20	103.40	4.276
49	100	88	0.00		0.00	0.00	445.15	107.08	4.157
50	100	89	0.00		0.00	0.00	448.08	110.83	4.043
51	100	90	0.00		0.00	0.00	451.01	114.63	3.934

Mensola valle

n°	В	Н	A _{sw}	cotθ	V_{Rcd}	V_{Rsd}	V_{Rd}	т	FS
	[cm]	[cm]	[cmq]		[kN]	[kN]	[kN]	[kN]	
1	100	50	0.00		0.00	0.00	205.69	0.00	100.000
2	100	50	0.00		0.00	0.00	205.69	1.14	180.165
3	100	50	0.00		0.00	0.00	205.69	2.28	90.083
4	100	50	0.00		0.00	0.00	205.69	3.42	60.055
5	100	50	0.00		0.00	0.00	205.69	4.57	45.041

Verifica a punzonamento

Simbologia adottata

Oggetto che viene punzonato OP

Oggetto che punzona
Dimensioni pilastro nelle due direzioni, espressa in [mm] c₁, c₂ d

Altezza utile della fondazione, espressa in [mm]

Lunghezza perimetro di verifica a faccia pilastro, espresso in [mm]

Lunghezza perimetro di verifica per effetto della diffusione, espresso in [mm] u_0 u_1

Percentuali di armatura piastra in zona tesa

 $\begin{array}{c} \rho_y, \; \rho_z \\ dpc, \; duc \end{array}$ distanza della prima e dell'ultima cucitura dalla faccia del pilastro Tensione di taglio sul perimetro del pilastro, espressa in [kPa] $V_{\text{Ed,i}}$

Valore di progetto del massimo taglio-punzonamento resistente, espressa in [kPa] Tensione di taglio sul perimetro di verifica u1, espresso in [kPa] $V_{Rd,max}$

 $V_{\text{Ed,f}}$

 $V_{Rd,cf}$ Valore di progetto del taglio-punzonamento resistente senza armature sul perimetro di verifica u1, espresso in [kPa]

V_{Rd,cs} nsc Valore di progetto del taglio-punzonamento resistente con armature, espresso in [kPa] Numero di serie di cuciture

Numero di cuciture Fattore di sicurezza (minore tra i rapporti $V_{Rd,max}/V_{Ed,i}$, $V_{Rd,cf}/V_{Ed,f}$ e $V_{Rd,cs}/V_{Ed,f}$)

Verifica delle tensioni

Simbologia adottata

indice sezione

ordinata sezione, espressa in [m] larghezza sezione, espresso in [cm] H Afi altezza sezione, espressa in [cm] area ferri inferiori, espresso in [cmq] area ferri superiori, espressa in [cmq] M N momento agente, espressa in [kNm] sforzo normale agente, espressa in [kN]

tensione di compressione nel cls, espressa in [kPa] tensione nei ferri inferiori, espressa in [kPa] σC σfi tensione nei ferri superiori, espressa in [kPa]

Combinazioni SLER

Adeguamento al tipo B dal km 12+000 al km 18+000 (ex SS125 "Orientale Sarda" - Connessione tra la SS554 e la nuova SS554)

CA352

Relazione tecnica e di calcolo ST01 - SOTTOVIA Pr. 5+460,00

<u>Paramento</u>

Tensione massima di compressione nel calcestruzzo 19920 [kPa] Tensione massima di trazione dell'acciaio 360000 [kPa]

n°	В	Н	Afi	Afs	М	N	σс	σfi	σfs
	[cm]	[cm]	[cmq]	[cmq]	[kNm]	[kN]	[kPa]	[kPa]	[kPa]
1	100	40	15.71	22.62	0.77	4.37	39 (5)	324 (5)	455 (5)
2	100	41	15.71	22.62	0.79	5.39	39 (5)	211 (5)	472 (5)
3	100	42	15.71	22.62	0.86	6.42	41 (5)	160 (5)	508 (5)
4	100	43	15.71	22.62	0.98	7.49	45 (5)	152 (5)	564 (5)
5	100	44	15.71	22.62	1.16	8.57	51 (5)	181 (5)	639 (5)
6	100	45	15.71	22.62	1.40	9.69	58 (5)	246 (5)	734 (5)
7	100	46	15.71	22.62	1.71	10.82	68 (5)	353 (5)	848 (5)
8	100	47	15.71	22.62	2.09	11.99	79 (5)	507 (5)	982 (5)
9	100	48	15.71	22.62	2.54	13.17	92 (5)	716 (5)	1136 (5)
10	100	49	15.71	22.62	3.08	14.39	107 (5)	985 (5)	1309 (5)
11	100	50	15.71	22.62	3.70	15.62	124 (5)	1316 (5)	1501 (5)
12	100	51	15.71	22.62	4.42	16.89	142 (5)	1713 (5)	1710 (5)
13	100	52	15.71	22.62	5.23	18.17	162 (5)	2176 (5)	1938 (5)
14	100	53	15.71	22.62	6.14	19.49	183 (5)	2706 (5)	2182 (5)
15	100	54	15.71	22.62	7.16	20.82	206 (5)	3304 (5)	2443 (5)
16	100	55	15.71	22.62	8.29	22.19	231 (5)	3969 (5)	2720 (5)
17	100	56	15.71	22.62	9.53	23.57	257 (5)	4703 (5)	3013 (5)
18	100	57	15.71	22.62	10.90	24.99	284 (5)	5504 (5)	3322 (5)
19	100	58	15.71	22.62	12.39	26.42	313 (5)	6373 (5)	3646 (5)
20	100	59	15.71	22.62	14.01	27.89	342 (5)		3985 (5)
								7310 (5)	
21	100	60 61	15.71 15.71	22.62 22.62	15.76 17.66	29.37 30.89	374 (5)	8316 (5)	4339 (5)
							406 (5)	9389 (5)	4708 (5)
23	100	62	15.71	22.62	19.70	32.42	440 (5)	10530 (5)	5092 (5)
24	100	63	15.71	22.62	21.89	33.99	474 (5)	11740 (5)	5490 (5)
25	100	64	15.71	22.62	24.23	35.57	510 (5)	13017 (5)	5903 (5)
26	100	65	15.71	22.62	26.74	37.19	547 (5)	14363 (5)	6330 (5)
27	100	66	15.71	22.62	29.40	38.82	586 (5)	15777 (5)	6771 (5)
28	100	67	15.71	22.62	32.24	40.49	625 (5)	17260 (5)	7226 (5)
29	100	68	15.71	22.62	35.25	42.17	665 (5)	18810 (5)	7694 (5)
30	100	69	15.71	22.62	38.44	43.89	707 (5)	20429 (5)	8176 (5)
31	100	70	15.71	22.62	41.81	45.62	749 (5)	22117 (5)	8672 (5)
32	100	71	15.71	22.62	45.38	47.39	793 (5)	23873 (5)	9181 (5)
33	100	72	15.71	22.62	49.13	49.17	837 (5)	25697 (5)	9703 (5)
34	100	73	15.71	22.62	53.09	50.99	883 (5)	27590 (5)	10238 (5)
35	100	74	15.71	22.62	57.25	52.82	929 (5)	29552 (5)	10786 (5)
36	100	75	15.71	22.62	61.61	54.69	977 (5)	31582 (5)	11346 (5)
37	100	76	15.71	22.62	66.19	56.57	1025 (5)	33680 (5)	11920 (5)
38	100	77	15.71	22.62	70.99	58.49	1074 (5)	35848 (5)	12506 (5)
39	100	78	15.71	22.62	76.01	60.42	1125 (5)	38084 (5)	13104 (5)
40	100	79	15.71	22.62	81.25	62.39	1176 (5)	40388 (5)	13714 (5)
41	100	80	15.71	22.62	86.73	64.37	1228 (5)	42762 (5)	14337 (5)
42	100	81	15.71	45.24	92.45	66.39	1030 (5)	23828 (5)	12867 (5)
43	100	82	31.42	45.24	98.41	68.42	983 (5)	24656 (5)	12189 (5)
44	100	83	15.71	45.24	104.62	70.49	1115 (5)	26472 (5)	13954 (5)
45	100	84	15.71	45.24	111.07	72.57	1158 (5)	27847 (5)	14511 (5)
46	100	85	15.71	45.24	117.79	74.68	1202 (5)	29257 (5)	15077 (5)
47	100	86	15.71	45.24	124.77	76.82	1247 (5)	30702 (5)	15652 (5)
48	100	87	15.71	45.24	132.01	78.98	1292 (5)	32183 (5)	16235 (5)
49	100	88	15.71	45.24	139.53	81.17	1338 (5)	33699 (5)	16827 (5)
50	100	89	15.71	45.24	147.32	83.38	1384 (5)	35250 (5)	17428 (5)
51	100	90	15.71	45.24	155.39	85.62	1431 (5)	36836 (5)	18037 (5)

Mensola valle

Tensione massima di compressione nel calcestruzzo 19920 [kPa] Tensione massima di trazione dell'acciaio 360000 [kPa]

Adeguamento al tipo B dal km 12+000 al km 18+000 (ex SS125 "Orientale Sarda" - Connessione tra la SS554 e la nuova SS554)

CA352

Relazione tecnica e di calcolo ST01 - SOTTOVIA Pr. 5+460,00

n°	В	Н	Afi	Afs	М	N	σC	σfi	σfs
	[cm]	[cm]	[cmq]	[cmq]	[kNm]	[kN]	[kPa]	[kPa]	[kPa]
1	100	50	7.92	7.92	0.00	0.00	0 (5)	0 (5)	0 (5)
2	100	50	7.92	7.92	-0.05	0.00	2 (5)	15 (5)	144 (5)
3	100	50	7.92	7.92	-0.19	0.00	9 (5)	60 (5)	578 (5)
4	100	50	7.92	7.92	-0.43	0.00	21 (5)	136 (5)	1300 (5)
5	100	50	7.92	7.92	-0.77	0.00	37 (5)	241 (5)	2310 (5)

Combinazioni SLEF

<u>Paramento</u>

Tensione massima di compressione nel calcestruzzo 33200 [kPa] Tensione massima di trazione dell'acciaio 450000 [kPa]

n°	В	Н	Afi	Afs	М	N	σc	ofi	ofs
	[cm]	[cm]	[cmq]	[cmq]	[kNm]	[kN]	[kPa]	[kPa]	[kPa]
1	100	40	15.71	22.62	0.77	4.37	39 (6)	324 (6)	455 (6)
2	100	41	15.71	22.62	0.77	5.39	38 (6)	193 (6)	463 (6)
3	100	42	15.71	22.62	0.78	6.42	38 (6)	104 (6)	476 (6)
4	100	43	15.71	22.62	0.81	7.49	39 (6)	46 (6)	498 (6)
5	100	44	15.71	22.62	0.86	8.57	40 (6)	9 (6)	527 (6)
6	100	45	15.71	22.62	0.93	9.69	43 (6)	13 (6)	566 (6)
7	100	46	15.71	22.62	1.03	10.82	46 (6)	24 (6)	612 (6)
8	100	47	15.71	22.62	1.17	11.99	50 (6)	24 (6)	666 (6)
9	100	48	15.71	22.62	1.34	13.17	55 (6)	14 (6)	729 (6)
10	100	49	15.71	22.62	1.56	14.39	60 (6)	9 (6)	802 (6)
11	100	50	15.71	22.62	1.83	15.62	67 (6)	47 (6)	885 (6)
12	100	51	15.71	22.62	2.15	16.89	74 (6)	103 (6)	979 (6)
13	100	52	15.71	22.62	2.53	18.17	82 (6)	183 (6)	1086 (6)
14	100	53	15.71	22.62	2.97	19.49	92 (6)	292 (6)	1207 (6)
15	100	54	15.71	22.62	3.49	20.82	103 (6)	434 (6)	1343 (6)
16	100	55	15.71	22.62	4.07	22.19	115 (6)	616 (6)	1494 (6)
17	100	56	15.71	22.62	4.74	23.57	129 (6)	843 (6)	1660 (6)
18	100	57	15.71	22.62	5.48	24.99	144 (6)	1119 (6)	1842 (6)
19	100	58	15.71	22.62	6.32	26.42	160 (6)	1447 (6)	2039 (6)
20	100	59	15.71	22.62	7.24	27.89	178 (6)	1829 (6)	2252 (6)
21	100	60	15.71	22.62	8.27	29.37	197 (6)	2269 (6)	2478 (6)
22	100	61	15.71	22.62	9.39	30.89	217 (6)	2767 (6)	2719 (6)
23	100	62	15.71	22.62	10.63	32.42	239 (6)	3323 (6)	2974 (6)
24	100	63	15.71	22.62	11.97	33.99	261 (6)	3940 (6)	3243 (6)
25	100	64	15.71	22.62	13.44	35.57	285 (6)	4616 (6)	3525 (6)
26	100	65	15.71	22.62	15.02	37.19	310 (6)	5353 (6)	3820 (6)
27	100	66	15.71	22.62	16.73	38.82	336 (6)	6150 (6)	4129 (6)
28	100	67	15.71	22.62	18.58	40.49	364 (6)	7009 (6)	4451 (6)
29	100	68	15.71	22.62	20.56	42.17	392 (6)	7929 (6)	4785 (6)
30	100	69	15.71	22.62	22.68	43.89	422 (6)	8911 (6)	5133 (6)
31	100	70	15.71	22.62	24.95	45.62	452 (6)	9955 (6)	5493 (6)
32	100	71	15.71	22.62	27.37	47.39	484 (6)	11062 (6)	
33	100	72	15.71	22.62	29.94	49.17	516 (6)	12230 (6)	5866 (6) 6251 (6)
34	100	73		22.62	32.68	50.99			
35	100	74	15.71 15.71	22.62	35.58	52.82	550 (6)	13462 (6)	6649 (6)
							584 (6)	14756 (6)	7060 (6)
36 37	100	75 76	15.71	22.62 22.62	38.65	54.69 56.57	620 (6)	16114 (6)	7483 (6)
38			15.71		41.90		656 (6)	17535 (6)	7918 (6)
	100	77	15.71	22.62	45.33	58.49	694 (6)	19019 (6)	8366 (6)
39	100	78	15.71	22.62	48.95	60.42	732 (6)	20568 (6)	8826 (6)
40	100	79	15.71	22.62	52.75	62.39	772 (6)	22181 (6)	9298 (6)
41	100	80	15.71	22.62	56.75	64.37	812 (6)	23857 (6)	9782 (6)
42	100	81	15.71	45.24	60.95	66.39	698 (6)	13763 (6)	8881 (6)
43	100	82	31.42	45.24	65.35	68.42	671 (6)	14332 (6)	8483 (6)
44	100	83	15.71	45.24	69.96	70.49	765 (6)	15684 (6)	9739 (6)
45	100	84	15.71	45.24	74.79	72.57	800 (6)	16694 (6)	10181 (6)
46	100	85	15.71	45.24	79.84	74.68	835 (6)	17737 (6)	10633 (6)
47	100	86	15.71	45.24	85.11	76.82	871 (6)	18814 (6)	11094 (6)
48	100	87	15.71	45.24	90.61	78.98	907 (6)	19925 (6)	11565 (6)
49	100	88	15.71	45.24	96.35	81.17	944 (6)	21069 (6)	12044 (6)

Adeguamento al tipo B dal km 12+000 al km 18+000 (ex SS125 "Orientale Sarda" - Connessione tra la SS554 e la nuova SS554)

CA352

Relazione tecnica e di calcolo ST01 - SOTTOVIA Pr. 5+460,00

n°	В	Н	Afi	Afs	М	N	σC	σfi	σfs
	[cm]	[cm]	[cmq]	[cmq]	[kNm]	[kN]	[kPa]	[kPa]	[kPa]
50	100	89	15.71	45.24	102.32	83.38	982 (6)	22246 (6)	12532 (6)
51	100	90	15.71	45.24	108.54	85.62	1021 (6)	23458 (6)	13028 (6)

Mensola valle

Tensione massima di compressione nel calcestruzzo 33200 Tensione massima di trazione dell'acciaio 450000

33200 [kPa] 450000 [kPa]

n°	В	Н	Afi	Afs	М	N	σC	σfi	σfs
	[cm]	[cm]	[cmq]	[cmq]	[kNm]	[kN]	[kPa]	[kPa]	[kPa]
1	100	50	7.92	7.92	0.00	0.00	0 (6)	0 (6)	0 (6)
2	100	50	7.92	7.92	-0.05	0.00	2 (6)	15 (6)	144 (6)
3	100	50	7.92	7.92	-0.19	0.00	9 (6)	60 (6)	578 (6)
4	100	50	7.92	7.92	-0.43	0.00	21 (6)	136 (6)	1300 (6)
5	100	50	7.92	7.92	-0.77	0.00	37 (6)	241 (6)	2310 (6)

Combinazioni SLEQ

<u>Paramento</u>

Tensione massima di compressione nel calcestruzzo 14940 [kPa] Tensione massima di trazione dell'acciaio 450000 [kPa]

n°	В	Н	Afi	Afs	М	N	σс	σfi	σfs
	[cm]	[cm]	[cmq]	[cmq]	[kNm]	[kN]	[kPa]	[kPa]	[kPa]
1	100	40	15.71	22.62	0.77	4.37	39 (7)	324 (7)	455 (7)
2	100	41	15.71	22.62	0.77	5.39	38 (7)	193 (7)	463 (7)
3	100	42	15.71	22.62	0.78	6.42	38 (7)	104 (7)	476 (7)
4	100	43	15.71	22.62	0.81	7.49	39 (7)	46 (7)	498 (7)
5	100	44	15.71	22.62	0.86	8.57	40 (7)	9 (7)	527 (7)
6	100	45	15.71	22.62	0.93	9.69	43 (7)	13 (7)	566 (7)
7	100	46	15.71	22.62	1.03	10.82	46 (7)	24 (7)	612 (7)
8	100	47	15.71	22.62	1.17	11.99	50 (7)	24 (7)	666 (7)
9	100	48	15.71	22.62	1.34	13.17	55 (7)	14 (7)	729 (7)
10	100	49	15.71	22.62	1.56	14.39	60 (7)	9 (7)	802 (7)
11	100	50	15.71	22.62	1.83	15.62	67 (7)	47 (7)	885 (7)
12	100	51	15.71	22.62	2.15	16.89	74 (7)	103 (7)	979 (7)
13	100	52	15.71	22.62	2.53	18.17	82 (7)	183 (7)	1086 (7)
14	100	53	15.71	22.62	2.97	19.49	92 (7)	292 (7)	1207 (7)
15	100	54	15.71	22.62	3.49	20.82	103 (7)	434 (7)	1343 (7)
16	100	55	15.71	22.62	4.07	22.19	115 (7)	616 (7)	1494 (7)
17	100	56	15.71	22.62	4.74	23.57	129 (7)	843 (7)	1660 (7)
18	100	57	15.71	22.62	5.48	24.99	144 (7)	1119 (7)	1842 (7)
19	100	58	15.71	22.62	6.32	26.42	160 (7)	1447 (7)	2039 (7)
20	100	59	15.71	22.62	7.24	27.89	178 (7)	1829 (7)	2252 (7)
21	100	60	15.71	22.62	8.27	29.37	197 (7)	2269 (7)	2478 (7)
22	100	61	15.71	22.62	9.39	30.89	217 (7)	2767 (7)	2719 (7)
23	100	62	15.71	22.62	10.63	32.42	239 (7)	3323 (7)	2974 (7)
24	100	63	15.71	22.62	11.97	33.99	261 (7)	3940 (7)	3243 (7)
25	100	64	15.71	22.62	13.44	35.57	285 (7)	4616 (7)	3525 (7)
26	100	65	15.71	22.62	15.02	37.19	310 (7)	5353 (7)	3820 (7)
27	100	66	15.71	22.62	16.73	38.82	336 (7)	6150 (7)	4129 (7)
28	100	67	15.71	22.62	18.58	40.49	364 (7)	7009 (7)	4451 (7)
29	100	68	15.71	22.62	20.56	42.17	392 (7)	7929 (7)	4785 (7)
30	100	69	15.71	22.62	22.68	43.89	422 (7)	8911 (7)	5133 (7)
31	100	70	15.71	22.62	24.95	45.62	452 (7)	9955 (7)	5493 (7)
32	100	71	15.71	22.62	27.37	47.39	484 (7)	11062 (7)	5866 (7)
33	100	72	15.71	22.62	29.94	49.17	516 (7)	12230 (7)	6251 (7)
34	100	73	15.71	22.62	32.68	50.99	550 (7)	13462 (7)	6649 (7)
35	100	74	15.71	22.62	35.58	52.82	584 (7)	14756 (7)	7060 (7)
36	100	75	15.71	22.62	38.65	54.69	620 (7)	16114 (7)	7483 (7)

Adeguamento al tipo B dal km 12+000 al km 18+000 (ex SS125 "Orientale Sarda" -Connessione tra la SS554 e la nuova SS554)

CA352

Relazione tecnica e di calcolo ST01 - SOTTOVIA Pr. 5+460,00

n°	В	Н	Afi	Afs	М	N	σc	σfi	ofs
	[cm]	[cm]	[cmq]	[cmq]	[kNm]	[kN]	[kPa]	[kPa]	[kPa]
37	100	76	15.71	22.62	41.90	56.57	656 (7)	17535 (7)	7918 (7)
38	100	77	15.71	22.62	45.33	58.49	694 (7)	19019 (7)	8366 (7)
39	100	78	15.71	22.62	48.95	60.42	732 (7)	20568 (7)	8826 (7)
40	100	79	15.71	22.62	52.75	62.39	772 (7)	22181 (7)	9298 (7)
41	100	80	15.71	22.62	56.75	64.37	812 (7)	23857 (7)	9782 (7)
42	100	81	15.71	45.24	60.95	66.39	698 (7)	13763 (7)	8881 (7)
43	100	82	31.42	45.24	65.35	68.42	671 (7)	14332 (7)	8483 (7)
44	100	83	15.71	45.24	69.96	70.49	765 (7)	15684 (7)	9739 (7)
45	100	84	15.71	45.24	74.79	72.57	800 (7)	16694 (7)	10181 (7)
46	100	85	15.71	45.24	79.84	74.68	835 (7)	17737 (7)	10633 (7)
47	100	86	15.71	45.24	85.11	76.82	871 (7)	18814 (7)	11094 (7)
48	100	87	15.71	45.24	90.61	78.98	907 (7)	19925 (7)	11565 (7)
49	100	88	15.71	45.24	96.35	81.17	944 (7)	21069 (7)	12044 (7)
50	100	89	15.71	45.24	102.32	83.38	982 (7)	22246 (7)	12532 (7)
51	100	90	15.71	45.24	108.54	85.62	1021 (7)	23458 (7)	13028 (7)

Mensola valle

Tensione massima di compressione nel calcestruzzo Tensione massima di trazione dell'acciaio

14940 [kPa] 450000 [kPa]

n°	В	Н	Afi	Afs	М	N	σC	σfi	σfs
	[cm]	[cm]	[cmq]	[cmq]	[kNm]	[kN]	[kPa]	[kPa]	[kPa]
1	100	50	7.92	7.92	0.00	0.00	0 (7)	0 (7)	0 (7)
2	100	50	7.92	7.92	-0.05	0.00	2 (7)	15 (7)	144 (7)
3	100	50	7.92	7.92	-0.19	0.00	9 (7)	60 (7)	578 (7)
4	100	50	7.92	7.92	-0.43	0.00	21 (7)	136 (7)	1300 (7)
5	100	50	7.92	7.92	-0.77	0.00	37 (7)	241 (7)	2310 (7)

Verifica a fessurazione

Simbologia adottata

indice sezione

n° Y B H Af Aeff ordinata sezione espressa in [m] larghezza sezione espresso in [cm] altezza sezione espressa in [cm]
area ferri zona tesa espresso in [cmq]
area efficace espressa in [cmq]
momento agente espressa in [kNm]
momento di prima fessurazione espressa in [kNm]

Mpf

ε Sm

deformazione espresso in % spaziatura tra le fessure espressa in [mm] apertura delle fessure espressa in [mm]

Combinazioni SLEF

<u>Paramento</u>

Apertura limite fessure w_{lim}=0.30

n°	В	н	Af	Aeff	М	Mpf	8	Sm	w
	[cm]	[cm]	[cmq]	[cmq]	[kNm]	[kNm]	[%]	[mm]	[mm]
1	100	40	22.62	1250.00	0.77	175.97	0.0000	0.00	0.000 (6)
2	100	41	22.62	1250.00	0.77	223.33	0.0000	0.00	0.000 (6)
3	100	42	22.62	1250.00	0.78	295.09	0.0000	0.00	0.000 (6)
4	100	43	22.62	1250.00	0.81	405.09	0.0000	0.00	0.000 (6)
5	100	44	22.62	1250.00	0.86	567.23	0.0000	0.00	0.000 (6)
6	100	45	0.00	0.00	0.93	772.25	0.0000	0.00	0.000 (6)
7	100	46	0.00	0.00	1.03	947.08	0.0000	0.00	0.000 (6)
8	100	47	0.00	0.00	1.17	991.33	0.0000	0.00	0.000 (6)
9	100	48	0.00	0.00	1.34	908.51	0.0000	0.00	0.000 (6)
10	100	49	22.62	1250.00	1.56	782.62	0.0000	0.00	0.000 (6)
11	100	50	22.62	1250.00	1.83	668.98	0.0000	0.00	0.000 (6)

Adeguamento al tipo B dal km 12+000 al km 18+000 (ex SS125 "Orientale Sarda" - Connessione tra la SS554 e la nuova SS554)

CA352

Relazione tecnica e di calcolo ST01 - SOTTOVIA Pr. 5+460,00

n°	В	Н	Af	Aeff	М	Mpf	8	Sm	w
	[cm]	[cm]	[cmq]	[cmq]	[kNm]	[kNm]	[%]	[mm]	[mm]
12	100	51	22.62	1250.00	2.15	581.57	0.0000	0.00	0.000 (6)
13	100	52	22.62	1250.00	2.53	517.75	0.0000	0.00	0.000 (6)
14	100	53	22.62	1250.00	2.97	471.76	0.0000	0.00	0.000 (6)
15	100	54	22.62	1250.00	3.49	438.64	0.0000	0.00	0.000 (6)
16	100	55	22.62	1250.00	4.07	414.74	0.0000	0.00	0.000 (6)
17	100	56	22.62	1250.00	4.74	397.55	0.0000	0.00	0.000 (6)
18	100	57	22.62	1250.00	5.48	385.32	0.0000	0.00	0.000 (6)
19	100	58	22.62	1250.00	6.32	376.82	0.0000	0.00	0.000 (6)
20	100	59	22.62	1250.00	7.24	371.18	0.0000	0.00	0.000 (6)
21	100	60	22.62	1250.00	8.27	367.80	0.0000	0.00	0.000 (6)
22	100	61	22.62	1250.00	9.39	366.19	0.0000	0.00	0.000 (6)
23	100	62	22.62	1250.00	10.63	366.04	0.0000	0.00	0.000 (6)
24	100	63	22.62	1250.00	11.97	367.07	0.0000	0.00	0.000 (6)
25	100	64	22.62	1250.00	13.44	369.09	0.0000	0.00	0.000 (6)
26	100	65	22.62	1250.00	15.02	371.95	0.0000	0.00	0.000 (6)
27	100	66	22.62	1250.00	16.73	375.53	0.0000	0.00	0.000 (6)
28	100	67	22.62	1250.00	18.58	379.72	0.0000	0.00	0.000 (6)
29	100	68	22.62	1250.00	20.56	384.45	0.0000	0.00	0.000 (6)
30	100	69	22.62	1250.00	22.68	389.66	0.0000	0.00	0.000 (6)
31	100	70	22.62	1250.00	24.95	395.30	0.0000	0.00	0.000 (6)
32	100	71	22.62	1250.00	27.37	401.31	0.0000	0.00	0.000 (6)
33	100	72	22.62	1250.00	29.94	407.68	0.0000	0.00	0.000 (6)
34	100	73	22.62	1250.00	32.68	414.36	0.0000	0.00	0.000 (6)
35	100	74	22.62	1250.00	35.58	421.33	0.0000	0.00	0.000 (6)
36	100	75	22.62	1250.00	38.65	428.58	0.0000	0.00	0.000 (6)
37	100	76	22.62	1250.00	41.90	436.07	0.0000	0.00	0.000 (6)
38	100	77	22.62	1250.00	45.33	443.81	0.0000	0.00	0.000 (6)
39	100	78	22.62	1250.00	48.95	451.76	0.0000	0.00	0.000 (6)
40	100	79	22.62	1250.00	52.75	459.93	0.0000	0.00	0.000 (6)
41	100	80	22.62	1250.00	56.75	468.30	0.0000	0.00	0.000 (6)
42	100	81	45.24	1250.00	60.95	529.90	0.0000	0.00	0.000 (6)
43	100	82	45.24	1250.00	65.35	563.73	0.0000	0.00	0.000 (6)
44	100	83	45.24	1250.00	69.96	548.82	0.0000	0.00	0.000 (6)
45	100	84	45.24	1250.00	74.79	558.54	0.0000	0.00	0.000 (6)
46	100	85	45.24	1250.00	79.84	568.44	0.0000	0.00	0.000 (6)
47	100	86	45.24	1250.00	85.11	578.50	0.0000	0.00	0.000 (6)
48	100	87	45.24	1250.00	90.61	588.72	0.0000	0.00	0.000 (6)
49	100	88	45.24	1250.00	96.35	599.10	0.0000	0.00	0.000 (6)
50	100	89	45.24	1250.00	102.32	609.63	0.0000	0.00	0.000 (6)
51	100	90	45.24	1250.00	108.54	620.31	0.0000	0.00	0.000 (6)

Mensola valle

Apertura limite fessure w_{lim} =0.30

n°	В	Н	Af	Aeff	М	Mpf	8	Sm	w
	[cm]	[cm]	[cmq]	[cmq]	[kNm]	[kNm]	[%]	[mm]	[mm]
1	100	50	0.00	0.00	0.00	0.00	0.0000	0.00	0.000 (6)
2	100	50	0.00	0.00	-0.05	0.00	0.0000	0.00	0.000 (6)
3	100	50	7.92	1250.00	-0.19	-142.23	0.0000	0.00	0.000 (6)
4	100	50	7.92	1250.00	-0.43	-142.23	0.0000	0.00	0.000 (6)
5	100	50	7.92	1250.00	-0.77	-142.23	0.0000	0.00	0.000 (6)

Combinazioni SLEQ

<u>Paramento</u>

Apertura limite fessure w_{lim} =0.20

n°	В	Н	Af	Aeff	М	Mpf	8	Sm	w
	[cm]	[cm]	[cmq]	[cmq]	[kNm]	[kNm]	[%]	[mm]	[mm]
1	100	40	22.62	1250.00	0.77	175.97	0.0000	0.00	0.000 (7)
2	100	41	22.62	1250.00	0.77	223.33	0.0000	0.00	0.000 (7)

Adeguamento al tipo B dal km 12+000 al km 18+000 (ex SS125 "Orientale Sarda" - Connessione tra la SS554 e la nuova SS554)

CA352

Relazione tecnica e di calcolo ST01 - SOTTOVIA Pr. 5+460,00

n°	В	н	Af	Aeff	М	Mpf	8	Sm	w
	[cm]	[cm]	[cmq]	[cmq]	[kNm]	[kNm]	<i>[%]</i>	[mm]	[mm]
3	100	42	22.62	1250.00	0.78	295.09	0.0000	0.00	0.000 (7)
4	100	43	22.62	1250.00	0.81	405.09	0.0000	0.00	0.000 (7)
5	100	44	22.62	1250.00	0.86	567.23	0.0000	0.00	0.000 (7)
6	100	45	0.00	0.00	0.93	772.25	0.0000	0.00	0.000 (7)
7	100	46	0.00	0.00	1.03	947.08	0.0000	0.00	0.000 (7)
8	100	47	0.00	0.00	1.17	991.33	0.0000	0.00	0.000 (7)
9	100	48	0.00	0.00	1.34	908.51	0.0000	0.00	0.000 (7)
10	100	49	22.62	1250.00	1.56	782.62	0.0000	0.00	0.000 (7)
11	100	50	22.62	1250.00	1.83	668.98	0.0000	0.00	0.000 (7)
12	100	51	22.62	1250.00	2.15	581.57	0.0000	0.00	0.000 (7)
13	100	52	22.62	1250.00	2.53	517.75	0.0000	0.00	0.000 (7)
14	100	53	22.62	1250.00	2.97	471.76	0.0000	0.00	0.000 (7)
15	100	54	22.62	1250.00	3.49	438.64	0.0000	0.00	0.000 (7)
16	100	55	22.62	1250.00	4.07	414.74	0.0000	0.00	0.000 (7)
17	100	56	22.62	1250.00	4.74	397.55	0.0000	0.00	0.000 (7)
18	100	57	22.62	1250.00	5.48	385.32	0.0000	0.00	0.000 (7)
19	100	58	22.62	1250.00	6.32	376.82	0.0000	0.00	
	100	59	22.62	1250.00			0.0000	0.00	0.000 (7)
20					7.24	371.18			0.000 (7)
21	100	60	22.62	1250.00	8.27	367.80	0.0000	0.00	0.000 (7)
22	100	61	22.62	1250.00	9.39	366.19	0.0000	0.00	0.000 (7)
23	100	62	22.62	1250.00	10.63	366.04	0.0000	0.00	0.000 (7)
24	100	63	22.62	1250.00	11.97	367.07	0.0000	0.00	0.000 (7)
25	100	64	22.62	1250.00	13.44	369.09	0.0000	0.00	0.000 (7)
26	100	65	22.62	1250.00	15.02	371.95	0.0000	0.00	0.000 (7)
27	100	66	22.62	1250.00	16.73	375.53	0.0000	0.00	0.000 (7)
28	100	67	22.62	1250.00	18.58	379.72	0.0000	0.00	0.000 (7)
29	100	68	22.62	1250.00	20.56	384.45	0.0000	0.00	0.000 (7)
30	100	69	22.62	1250.00	22.68	389.66	0.0000	0.00	0.000 (7)
31	100	70	22.62	1250.00	24.95	395.30	0.0000	0.00	0.000 (7)
32	100	71	22.62	1250.00	27.37	401.31	0.0000	0.00	0.000 (7)
33	100	72	22.62	1250.00	29.94	407.68	0.0000	0.00	0.000 (7)
34	100	73	22.62	1250.00	32.68	414.36	0.0000	0.00	0.000 (7)
35	100	74	22.62	1250.00	35.58	421.33	0.0000	0.00	0.000 (7)
36	100	75	22.62	1250.00	38.65	428.58	0.0000	0.00	0.000 (7)
37	100	76	22.62	1250.00	41.90	436.07	0.0000	0.00	0.000 (7)
38	100	77	22.62	1250.00	45.33	443.81	0.0000	0.00	0.000 (7)
39	100	78	22.62	1250.00	48.95	451.76	0.0000	0.00	0.000 (7)
40	100	79	22.62	1250.00	52.75	459.93	0.0000	0.00	0.000 (7)
41	100	80	22.62	1250.00	56.75	468.30	0.0000	0.00	0.000 (7)
42	100	81	45.24	1250.00	60.95	529.90	0.0000	0.00	0.000 (7)
43	100	82	45.24	1250.00	65.35	563.73	0.0000	0.00	0.000 (7)
44	100	83	45.24	1250.00	69.96	548.82	0.0000	0.00	0.000 (7)
45	100	84	45.24	1250.00	74.79	558.54	0.0000	0.00	0.000 (7)
46	100	85	45.24	1250.00	79.84	568.44	0.0000	0.00	0.000 (7)
47	100	86	45.24	1250.00	85.11	578.50	0.0000	0.00	0.000 (7)
48	100	87	45.24	1250.00	90.61	588.72	0.0000	0.00	0.000 (7)
49	100	88	45.24	1250.00	96.35	599.10	0.0000	0.00	0.000 (7)
50	100	89	45.24	1250.00	102.32	609.63	0.0000	0.00	0.000 (7)
51	100	90	45.24	1250.00	108.54	620.31	0.0000	0.00	0.000 (7)

Mensola valle

Apertura limite fessure w_{lim} =0.20

n°	В	Н	Af	Aeff	М	Mpf	ε	Sm	w
	[cm]	[cm]	[cmq]	[cmq]	[kNm]	[kNm]	[%]	[mm]	[mm]
1	100	50	0.00	0.00	0.00	0.00	0.0000	0.00	0.000 (7)
2	100	50	0.00	0.00	-0.05	0.00	0.0000	0.00	0.000 (7)
3	100	50	7.92	1250.00	-0.19	-142.23	0.0000	0.00	0.000 (7)
4	100	50	7.92	1250.00	-0.43	-142.23	0.0000	0.00	0.000 (7)
5	100	50	7.92	1250.00	-0.77	-142.23	0.0000	0.00	0.000 (7)

Adeguamento al tipo B dal km 12+000 al km 18+000 (ex SS125 "Orientale Sarda" -Connessione tra la SS554 e la nuova SS554)

CA352

Relazione tecnica e di calcolo ST01 - SOTTOVIA Pr. 5+460,00

Elenco ferri

Simbologia adottata n° Indice del ferro nf numero ferri D diametro ferro e L Lunghezza ferro diametro ferro espresso in [mm] Lunghezza ferro espresso in [m] Peso ferro espresso in [kN]

Paramento

n°	Tipo	nf	D	L	Pf	P _{qf}	V _{cls}
			[mm]	[m]	[kN]	[kN]	[mc]
1	Diritto inferiore	5	20.00	3.04	0.0735	0.3676	
2	Diritto superiore	10	24.00	3.37	0.1173	1.1726	
3	Diritto inferiore	5	20.00	5.74	0.1388	0.6941	
4	Diritto superiore	5	24.00	5.92	0.2061	1.0305	
5	Ripartitore	20	16.00	1.00	0.0155	0.3096	
6	Gancio	15	16.00	1.10	0.0170	0.2543	
	Totale al metro					3.9179	3.42
	Totale					1466.75	12.67

Mensola valle

n°	Tipo	nf	D	L	P _f	P _{qf}	V _{cls}
			[mm]	[m]	[kN]	[kN]	[mc]
1	Diritto inferiore	7	12.00	1.31	0.0114	0.0798	
2	Diritto superiore	7	12.00	1.31	0.0114	0.0798	
3	Ripartitore	2	16.00	1.00	0.0155	0.0310	
4	Gancio	2	16.00	0.70	0.0108	0.0215	
	Totale al metro					3.9179	3.42
	Totale					1466.75	12.67

Piastra fondazione

n°	Тіро	nf	D	L	P _f	P _{qf}	V _{cls}
			[mm]	[m]	[kN]	[kN]	[mc]
1	Diritto superiore Orizzontale	26	16.00	6.40	0.0991	2.5756	
2	Diritto inferiore Orizzontale [M]	26	16.00	6.40	0.0991	2.5756	
3	Diritto inferiore Verticale [M]	38	24.00	8.30	0.2891	10.9842	
4	Diritto superiore Verticale [M]	20	24.00	8.30	0.2891	5.7812	
5	Sagomato superiore Verticale	8	16.00	4.86	0.0752	0.6018	
	Totale					22.5184	31.08

Scarichi in testa ai pali

Simbologia adottata

Indice/Tipo combinazione
Indice/Tipo combinazione
Indice palo
Sforzo normale, espresso in [kN]
Momento, espresso in [kNm]
Taglio, espresso in [kN] Cmb Ip N M T

Cmb	Ip	N	M	Т
		[kN]	[kNm]	[kN]
1 - STR (A1-M1-R3)	1	1057.63	-571.76	-216.65
	2	1253.95	-571.76	-216.65
2 - STR (A1-M1-R3) H + V	1	885.80	-693.38	-303.41
	2	1510.44	-693.38	-303.41
3 - STR (A1-M1-R3)	1	1198.83	-761.00	-297.61
	2	1530.78	-761.00	-297.61

Adeguamento al tipo B dal km 12+000 al km 18+000 (ex SS125 "Orientale Sarda" - Connessione tra la SS554 e la nuova SS554)

CA352

Relazione tecnica e di calcolo ST01 - SOTTOVIA Pr. 5+460,00

Cmb	Ip	N	M	Т
		[kN]	[kNm]	[kN]
4 - STR (A1-M1-R3) H - V	1	793.54	-656.27	-289.14
	2	1412.78	-656.27	-289.14
5 - SLER	1	1150.49	-568.86	-207.13
	2	1250.48	-568.86	-207.13
6 - SLEF	1	1137.11	-474.24	-166.65
	2	1137.11	-474.24	-166.65
7 - SLEQ	1	1137.11	-474.24	-166.65
	2	1137.11	-474.24	-166.65

9.2.2 Verifiche Geotecniche dei pali di fondazione dei muri andatori

LAVORO: CA352 SS554 OPERA: **ST01 - MURI ANDATORI** ALLINEAMENTI:

RESISTENZA DI UN PALO TRIVELLATO SOGGETTO AD AZIONI ASSIALI DI COMPRESSIONE/TRAZIONE **VALORI DEI PARAMETRI GEOTECNICI: MEDI**

Il valore di progetto Rcd della Resistenza di pali soggetti a carichi assiali di compressione è pari a: Rcd = Rbd + Rsd - Wp

Il valore di progetto Rtd della Resistenza di pali soggetti a carichi assiali di trazione è pari a: Rtd = 0.7 Rsd + Wp

in cui:

Rbd = Rbk / γ b: Resistenza alla base di progetto Rsd = Rsk / γ s: Resistenza laterale di progetto Rbk = Min [(Rbc,cal)_{media} / ξ 3; (Rbc,cal)_{min} / ξ 4 Resistenza alla punta caratteristica Rsk = Min [(Rsc,cal)_{media} / ξ3; (Rsc,cal)_{min} / ξ4 Resistenza laterale caratteristica Rsc,calc = Qb: Resistenza alla base di calcolo

Rsc,calc = Qs: Resistenza laterale di calcolo Wp: peso proprio del palo alleggerito

I Coefficienti parziali gR da applicare alle	Pali	Pali	Pali ad elica	
resistenze Rk a carico verticale sono for	niti	infissi	trivellati	continua
dalla presente tabella:	γ_{R}	(R3)	(R3)	(R3)
		1	2	3
Base	γ_{b}	1.15	1.35	1.30
Laterale in compressione	γ_s	1.15	1.15	1.15
Totale (*)	γ	1.15	1.30	1.25
Laterale in trazione	γ_{st}	1.25	1.25	1.25

l Fattori di correlazione ξ per la determinazione della resistenza caratteristica

III TUHZIONE	dei numen	o di verticali i	nuagate sonc	dali dalia se	guerne tabe	tiid	
n. Vert.	1	2	3	4	5	7	10
ξ3	1.70	1.65	1.60	1.55	1.50	1.45	1.40
ξ4	1.70	1.55	1.48	1.42	1.34	1.28	1.21

Peso del palo

Si considera il peso del palo dovuto alla differenza tra il peso di volume del cls e quello del volume di terreno asportato: $Wp(z) = (\gamma_{cls} - \gamma_{nat}) Ap \Delta z$

CARATTERISTICHE GEOMETRICHE DEL PALO	unità	var	
Diametro palo	m		1.20
Superficie resistente alla base	mq	Ab	1.13
Superficie laterale per lunghezza unitaria	mq	As	3.77
peso specifico del palo	kN/m ³	γр	25.00

LIVELLO DELLA FALDA E AFF. DELLA TESTA DEL PALO (DA P.C.)	unità	var	
Profondità della falda da piano di campagna	ZW	m	3.00
Affondamento della testa del palo da piano di compagna	ztp	m	3.00

N.B. Per palo che emerge da p.c. valore negativo

La Resistenza alla base di calcolo è pari a:

 $Qb = qb \times Ab$

dove:

Ab: Area della superficie di base del palo

qb: resistenza unitaria alla base appresso specificata per terreni

coesivi e granulari

La Resistenza laterale di calcolo è pari a:

 $Qs = As \times \Sigma (qsi \times dzi)$

dove:

As: Area della superficie laterale del palo qsi: resistenza laterale unitaria dell'iesimo strato

dzi: altezza dell'iesimo strato

Terreni coesivi (c<>0)

Il calcolo è svolto in termini di Tensioni Totali

Resistenza unitaria alla base

La resistenza alla base viene espressa come:

 $qb = \sigma v + 9 c_u$

Resistenza laterale unitaria

 $qs = \alpha cu$

 α variabile in funzione di cu secondo la seguente tabella [AGI]

cu (kPa)	α
<=25	0.9
da 26 a 50	0.8
da 50 a 75	0.6
>75	0.4

In ogni caso non viene superato il valore limite di: qs,max = 100 kPa (AGI 1984).

Terreni granulari (c' = 0, φ' <> 0)

Il calcolo è svolto in termini di Tensioni Efficaci

Resistenza unitaria alla base

In accordo alla teoria di Berenzantsev^(*):

 $qb = Nq^* \times \sigma'v$ con:

Nq*: coefficiente di capacità portante corrispondente all'insorgere

delle prime deformazioni plastiche (dp = 0.06-0.1 D)

In ogni caso viene assunto per qp il valore limite qp,max pari al minimo

tra i valori forniti dalla seguente espressione:

 $qbmax1 = Nspt x \alpha_N$

 α_N = 150 per Ghiaie, 120 per Sabbie e 85 per Sabbie limose [Gwizdala (1984), Reese & O'Neill (1988), Matsui (1993)]

e dalla seguente tabella

Ghiaie: qb,max = 7500 kPaSabbie: qb,max = 5800 kPaSabbie limose: qb,max = 4300 kPa

Resistenza laterale unitaria

qs = Ks tanδ σ'v

 $tan\delta = tan\phi$

Do

In ogni caso non viene superato il valore limite di ql,max, ricavabile dalle seguenti espressioni per pali trivellati con uso di fanghi (Reese&Wright 1977):

qsmax = 3 x Nspt per Nspt <= 53 gsmax = 142 + 0.32 x Nsptper Nspt > 53

SOVRACCARICO A PIANO TESTA PALO

Tensione totale in testa palo	kPa	σνί	51.9
Tensione efficace in testa palo	kPa	σv'i	51.9

COFFFICIENTI PARZIAI I RESISTENZE CARATTERISTICHE

COEFFICIENTI PARZIALI RESISTENZE CARATTERISTICHE	κs
Metodologia realizzativa (1 = Pali infissi; 2 = Pali trivellati; 3 =pali ad elica)	2
coefficiente γb	1.35
coefficiente γs	1.15

FATTORI DI CORRELAZIONE RESISTENZA CARATTERISTICA

Valori dei parametri geotecnici (MEDI - MINIMI)	MEDI
Numero delle verticali indagate spinte a profondità superiore della lunghezza dei pali	6
coefficiente ⁸	1.50

STRATIGRAFIA DI PROGETTO (DA p.c.)

STRATIG	RAFIA DI PROGETTO	(DA p.c.)				COMB	INAZIONE	M1								
Unità	DESCRIZIONE	DA	Α	Tip	cuk	φ'k	γcu	γφ'	cud	φ'd	γ	Nspt	ql,max	α_{N}	Nspt*α _N	qp,max
n.		m	m		kPa	deg			kPa	deg	kN/m³		kPa			kPa
1	ALT	0.0	2.5	S		35.6	1.00	1.00	0.0	35.6	17.3	30	90	120	3600	3600
2	Ma	2.5	7.5	С	223.0	28.1	1.00	1.00	223.0	28.1	18.0		100			4000
3	M	7.5	50.0	С	360.0	32.8	1.00	1.00	360.0	32.8	17.6		100			4000
4																
5														•		

Tip = C: Terreni coesivi - S: sabbie - G: ghiaie - SL sabbie limose

LAVORO: CA352 SS554

OPERA:

ST01 - MURI ANDATORI

ALLINEAMENTI:

RESISTENZA DI UN PALO TRIVELLATO SOGGETTO AD AZIONI ASSIALI DI COMPRESSIONE/TRAZIONE

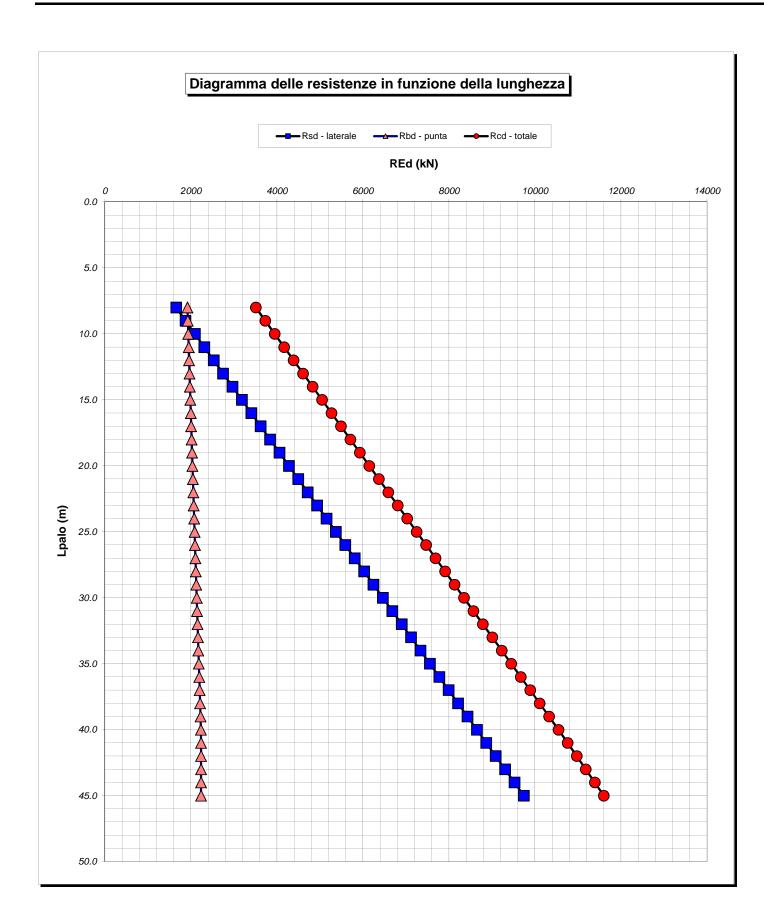
VALORI DEI PARAMETRI GEOTECNICI:

MEDI

Unite m m m m m m m m m		Z	Lp	cud	φ'd	۸/	v'	qa	Ks	σ٧	σν'	tanδ	qs,max	ae	Qs	Ng*	9*cu	qb,max	qb	Qb	Rsd	Rbd	Wp	Rcd	Rtd
2 1.0 0.0 1.0 22.0 2.0 1.10 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0	Unità				•	γ kN/m³	kN/m³	-	1/2			tano	l ' '	qs kPa		NY		• •	•	•			•		
2 40 1.0 2230 281 180 82 2892 0.03 891 0.05 10.05 10.05 10.05 10.05 10.05 11.0 8 1347 144 25 10.0 80 1.0 10.0 10.0 10.0 10.0 10.0 10	_		` ,	KFa	ueg	,		KFa					Kra	NГа	KIN		Kra	KF a	NΓα	KIN	KIN	NIN .		KIN	VIA
2 5.0 2.0 223.0 223.1 18.0 8.2 082 0.53 07.5 86.3 0.534 100 89.2 073 1000 2007 2000 2000 2084 3 2889 390 1170 16 1544 289 2 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10	-			223.0	28.1			80.2	0.53			0.534	100	80.2	336		2007.0	4000	2076.9	23/10	105	1160		1347	144
2		-		.																					
2 7.0 4.0 273.0 781 1 16.0 8.2 69.2 65.5 173.0 8.2 17.0 7.8 14.0 0.40 173.0 173.0 8.2 173.0 8.2 173.0 3 8.0 5.0 98.0 189			_				_										+								
3 9.0 5.0 360.0 50.0 360.0 176 7.8 144.0 04.0 141.5 182.5 0.644 100 100.0 100.0 1722 324.0 400 3391.5 384.2 999 1880 44 3247 7392 31 10.0 7.0 360.0 32.8 17.6 7.8 144.0 04.0 170.7 100.0 0.644 100 100.0 2995 204.0 4000 3391.5 384.4 1371 1989 48 3079 790 31 10.0 7.0 360.0 32.8 17.6 7.8 144.0 0.46 170.7 100.0 0.644 100 100.0 2476 2340.0 4000 344.7 3384.1 1951 1910 65 3507 1223 31 10.0 8.0 360.0 32.8 17.6 7.8 144.0 0.46 170.7 100.0 0.644 100 100.0 2553 3240.0 4000 344.5 3384 1654 1910 65 3507 1223 31 10.0 8.0 360.0 32.8 17.6 7.8 144.0 0.46 211.9 121.6 10.44 10.0 10.0 320 324.0 4000 344.5 384.1 1554 1916 65 3507 1223 31 10.0 360.0 32.8 17.0 17.0 7.8 144.0 0.46 211.9 121.6 10.44 10.0 10.0 320 324.0 4000 344.5 384.1 1554 1916 65 3507 1223 31 10.0 360.0 32.8 17.6 7.8 144.0 0.46 22.5 1314 10.44 10.0 10.0 320 324.0 4000 344.5 384.2 2011 1383 22 3347 1546 33.1 15.0 15.0 15.0 15.0 15.0 15.0 15.0 15							_										+								
3 100 60 3800 328 17/8 78 1440 040 1991 1002 0694 100 1000 2765 32700 4000 3391 3444 1277 1898 48 3067 8907 1922 31 110 8.0 3600 32.8 17/8 7.8 1440 040 1943 115.8 0.644 110 100 1000 2765 3200 4000 34167 3894 135 1940 57 3287 1652 31 10 8.0 3600 32.8 17/6 7.8 1440 040 1943 115.8 0.644 110 100 1000 3263 3240 4000 34463 3894 1955 1948 65 3507 1223 31 10 10 10 3600 32.8 17/6 7.8 1440 040 229.5 131.4 0.941 100 1000 3607 3240 4000 3404 3384 1955 1948 65 3507 1223 31 10 10 3600 32.8 17/6 7.8 1440 040 229.5 131.4 0.941 100 1000 3607 3240 4000 3404 3384 1955 1948 99 4877 1594 31 140 10 10 1000 3607 3240 4000 3404 300 3407 1970 1970 1970 1970 1970 1970 1970 19		-																							
3 110.0 7.0 380.0 12.8 17.6 7.8 144.0 0.46 176.7 108.0 0.644 100 100.0 2476 3240.0 400.0 3416.7 3844 1145. 1908 57 3287 1062. 3 112.0 9.0 360.0 32.8 17.6 7.8 144.0 0.46 2119 123.6 0.644 100 100.0 3607 3220 3240.0 4000 3451.9 3904 1872 1932 74 3727 1334 3130 10.0 380.0 32.8 17.6 7.8 144.0 0.46 2215 1314.0 0.41 100 100.0 3607 3240.0 4000 3451.9 3904 1872 1932 74 3727 1334 314.0 110 360.0 12.8 17.6 7.8 144.0 0.46 225.5 1314.0 0.44 100 100.0 3607 3240.0 4000 3461.5 3904 201 1938 22 3947 1546 3 110 340.0 100.0 100.0							_																		
3 11.0 6.0 380.0 32.8 17.6 7.8 144.0 0.46 194.3 118.8 0.644 100 100.0 2853 3240.0 4000 34513 3884 1654 1918 65 3507 1223 31 3.0 10.0 380.0 32.8 17.6 7.8 144.0 0.46 229.5 131.4 0.544 100 100.0 3807 224.0 4000 34513 3894 1271 1928 74 37727 1384 3 14.0 11.0 380.0 32.8 17.6 7.8 144.0 0.46 229.5 131.4 0.544 100 100.0 3807 224.0 4000 34513 3844 2210 1948 39 4167 176 7.8 144.0 0.46 227.1 139.5 0.544 100 100.0 3807 324.0 4000 34513 3844 2210 1948 39 4167 176 7.8 144.0 0.46 227.1 139.5 0.544 100 100.0 3801 324.0 4000 34513 3844 2210 1948 39 4167 176 7.8 144.0 0.46 227.1 139.5 0.544 100 100.0 3801 324.0 4000 34513 3844 2210 1948 39 4167 176 7.8 144.0 0.46 227.1 139.5 0.544 100 100.0 478 1 324.0 400 352.3 3944 2210 1948 39 4167 176 7.8 144.0 0.46 227.1 139.5 0.544 100 100.0 478 1 324.0 400 352.3 3944 2210 1948 39 4167 176 7.8 144.0 0.46 227.1 139.5 0.544 100 100.0 478 1 324.0 400 352.3 3944 227.1 139.5 14.0 380.0 32.8 17.6 7.8 144.0 0.46 228.3 154.6 0.544 100 100.0 478 1 324.0 400 352.3 3944 227.1 139.5 14.0 380.0 32.8 17.6 7.8 144.0 0.46 228.3 154.6 0.544 100 100.0 100.0 478 1 324.0 400 352.3 3944 227.1 139.5 14.0 380.0 32.8 17.6 7.8 144.0 0.46 325.3 154.5	3						_																		
3 1120 9.0 3800 32.8 17.6 7.8 1440 0.46 2119 2136 0.644 100 1000 3807 3240 4000 34519 3924 8772 1928 74 3727 1384 3 11.0 11.0 3800 32.8 17.6 7.8 144.0 0.46 2285 314 0.64 100 1000 3804 3240 4000 34571 3844 2310 1848 90 4167 1707 3 15.0 11.0 3800 32.8 17.6 7.8 144.0 0.46 764.7 147.0 0.64 41 00 100.0 3804 324.0 4000 34571 3844 2310 1848 90 4167 1707 3 15.0 12.0 3800 32.8 17.6 7.8 144.0 0.46 764.7 147.0 0.64 41 00 100.0 4861 324.0 400 557.5 3848 224.0 4800 32.8 1957 99 4387 1800 32.8 17.6 7.8 144.0 0.46 764.7 147.0	-																								
3 14.0 16.0 56.0 32.8 17.6 7.8 144.0 0.46 22/5 13/4 0.64 100 100.0 3807 3240 0.4000 3481.1 3944 2210 1948 82 3947 1546 3 150 112.0 360.0 32.8 17.6 7.8 144.0 0.46 247.1 147.0 0.64 100 100.0 3894 3240 4000 359.4 7 3964 2528 1957 99 4387 1868 3 15.0 13.0 30.0 32.8 17.6 7.8 144.0 0.46 282.3 184.8 0.64 100 100.0 481 324.0 4000 359.4 7 3964 2528 1957 107 4607 2030 3 16.0 15.0 15.0 15.0 15.0 15.0 15.0 15.0 15				.													+								
3 15.0 14.0 56.0 32.8 17.6 7.8 144.0 04.6 247.7 13.2 06.4 100 100.0 3984 3200 0400 350.7 3984 2528 1957 99 4387 1868 3 15.0 15.0 36.0 32.8 17.6 7.8 144.0 04.8 287.9 14.8 14.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0	3	13.0	10.0	360.0	32.8	17.6	7.8	144.0	0.46								3240.0			3924	2091	1938	82		
3 11.0 13.0 380,0 32.8 17.6 7.8 144.0 0.46 282.3 154.8 0.644 100 100.0 4738 2240.0 4000 3522.3 3984 277 197 107 4807 2030 3 11.0 14.0 380,0 32.8 17.6 7.8 144.0 0.46 293 162.6 0.644 100 100.0 100.0 1515 3240.0 4000 3557.5 4023 3184 1977 115 4827 2791 3 11.0 15.0 380,0 32.8 17.6 7.8 144.0 0.46 337.5 170.4 0.644 100 100.0 5482 3240.0 4000 3557.5 4023 3184 1977 115 2567 2514 3 20.0 171.0 380,0 32.8 17.6 7.8 144.0 0.46 352.7 185.0 0.644 100 100.0 100.0 5892 3240.0 4000 3557.5 4023 3184 1977 115 2567 2514 3 20.0 171.0 380,0 32.8 17.6 7.8 144.0 0.46 352.7 185.9 0.644 100 100.0 5869 3240.0 4000 3557.5 4023 3184 1977 112 45977 2352 3252 3252 3252 3252 3252 3252 32	3	14.0	11.0	360.0	32.8	17.6	7.8	144.0	0.46	247.1		0.644	100	100.0	3984		3240.0	4000	3487.1	3944	2310	1948	90		
3 110 14.0 3800 32.8 17.6 7.8 144.0 0.46 299.9 162.0 0.644 100 100.0 515 32.00 4000 3393.9 4004 2995 1977 115 4827 2791 3 10.0 15.0 380.0 32.8 17.6 7.8 144.0 0.46 335.1 778.1 0.644 100 100.0 582 32.00 4000 3357.5 4023 1344 1987 124 5047 2514 3 10.0 11.0 11.0 10.0 10.0 10.0 10.0 10	3	15.0	12.0	360.0	32.8	17.6	7.8	144.0	0.46	264.7	147.0	0.644	100	100.0	4361		3240.0	4000	3504.7	3964	2528	1957	99	4387	1868
3 19.0 15.0 36.0 32.8 17.6 7.8 144.0 0.46 317.5 170.4 0.44 100 100.0 5492 3240.0 4000 3557.5 4023 3164 1987 124 5047 2552 314 3 19.0 15.0 390.0 32.8 17.6 7.8 144.0 0.46 352.7 185.9 0.644 100 100.0 624 3240.0 4000 3552.7 14083 3802 1907 140 5487 2653 3 21.0 18.0 380.0 32.8 17.6 7.8 144.0 0.46 352.7 185.9 0.644 100 100.0 622 3240.0 4000 3552.7 14083 380.2 12007 140 5487 2653 3 21.0 18.0 380.0 32.8 17.6 7.8 144.0 0.46 387.9 21.5 0.644 100 100.0 622 3240.0 4000 362.7 140 400 382.7 140 400 382.7 140 400 382.7 140 400 400 400 382.7 140 400 400 400 400 400 400 400 400 400	3	16.0	13.0	360.0	32.8	17.6	7.8	144.0	0.46	282.3	154.8	0.644	100	100.0	4738		3240.0	4000	3522.3	3984	2747	1967	107	4607	2030
3 200 17.0 36.0 38.0 17.6 7.8 144.0 0.46 335.1 17.8 1.8 0.644 100 100 100 624 324.0 4000 357.5 1 4043 3402 1997 132 5267 2514 32.0 10 18.0 36.0 32.8 17.6 7.8 144.0 0.46 370.3 193.7 0.644 100 100 624 324.0 4000 3510.3 4083 3839 2016 149 5707 2836 3 22.0 19.0 36.0 32.8 17.6 7.8 144.0 0.46 370.3 193.7 0.644 100 100 100 623 324.0 4000 3510.3 4083 3839 2016 149 5707 2836 3 22.0 19.0 360.0 32.8 17.6 7.8 144.0 0.46 387.9 2015. 0.644 100 100 100 623 324.0 4000 3510.3 4083 3839 2016 149 5707 2836 3 23.0 20.0 360.0 32.8 17.6 7.8 144.0 0.46 405.5 200.3 0.644 100 100 100 7704 324.0 4000 3510.3 4083 3839 2016 149 5707 2836 3 23.0 20.0 360.0 32.8 17.6 7.8 144.0 0.46 405.5 200.3 0.644 100 100 100 774 324.0 4000 354.5 4123 4276 2036 166 6147 315.9 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0	3	17.0	14.0	360.0	32.8	17.6	7.8	144.0	0.46	299.9	162.6	0.644	100	100.0	5115		3240.0	4000	3539.9	4004	2965	1977	115	4827	2191
3 200 17.0 18.0 360.0 32.8 17.6 7.8 144.0 0.46 352.7 185.9 0.644 100 100.0 622.3 3240.0 4000 380.3 362.7 4063 3821 2007 140 5487 2675 380.0 19.0 18.0 360.0 32.8 17.6 7.8 144.0 0.46 387.9 201.5 0.644 100 100.0 622.3 3240.0 4000 380.3 4083 3839 2016 149 5707 2836.0 32.0 19.0 360.0 32.8 17.6 7.8 144.0 0.46 387.9 201.5 0.644 100 100.0 737. 3240.0 4000 386.5 427.3 4276 203.8 166 147 3159.3 32.0 12.0 350.0 32.8 17.6 7.8 144.0 0.46 40.5 203.0 12.1 10.0 100.0 737. 3240.0 4000 386.5 423.2 4276 203.8 166 147 3159.3 32.0 12.0 12.0 12.0 12.0 12.0 12.0 12.0 1	3	18.0	15.0	360.0	32.8	17.6	7.8	144.0	0.46	317.5	170.4	0.644	100	100.0	5492		3240.0	4000	3557.5	4023	3184	1987	124	5047	2352
3 21.0 18.0 390.0 32.8 17.6 7.8 144.0 0.46 370.3 193.7 0.644 100 100.0 700.0 32.8 17.6 7.8 144.0 0.46 370.3 193.7 0.644 100 100.0 700.0 32.0 400.0 3610.3 408.3 3839 2016 149 577 5927 2938 3 23.0 20.0 380.0 32.8 17.6 7.8 144.0 0.46 40.5 209.3 0.644 100 100.0 700.0 7377 324.0 400.0 361.5 4123 4276 2036 166 6147 3159 3 24.0 21.0 380.0 32.8 17.6 7.8 144.0 0.46 423.1 217.1 0.644 100 100.0 7754 324.0 400.0 361.3 4183 4495 2046 174 6367 3320 3 25.0 22.0 380.0 32.8 17.6 7.8 144.0 0.46 440.7 224.9 0.644 100 100.0 8131 324.0 400.0 368.0 4163 4714 2055 182 6567 3320 3 27.0 24.0 380.0 32.8 17.6 7.8 144.0 0.46 468.3 232.7 0.644 100 100.0 8508 324.0 400.0 368.0 4163 4714 2055 182 6567 348.0 3 27.0 24.0 380.0 32.8 17.6 7.8 144.0 0.46 475.9 240.5 40.44 100 100.0 8508 324.0 400.0 368.0 4163 4714 2055 182 6567 348.3 3 28.0 25.0 380.0 32.8 17.6 7.8 144.0 0.46 495.5 248.3 0.644 100 100.0 8508 324.0 400.0 375.5 240.3 5151 2075 199 7027 386.3 3 28.0 25.0 380.0 32.8 17.6 7.8 144.0 0.46 493.5 248.3 0.644 100 100.0 822 324.0 400.0 375.3 422 256.0 580.0 277 7247 396.0 32.0 32.0 32.0 32.0 32.8 17.6 7.8 144.0 0.46 528.7 283.8 0.644 100 100.0 8639 324.0 400.0 375.1 422 5588 2095 216 767 7457 415.0 34.0 34.0 34.0 34.0 375.1 42.0 34.0 375.1 42.2 5588 2095 216 7467 445.0 34.0 34.0 34.0 34.0 375.1 42.2 5588 2095 216 7467 445.0 34.0 34.0 34.0 34.0 375.1 42.0 34.0 375.1 42.2 5588 2095 216 7467 445.0 34.0 34.0 34.0 34.0 34.0 375.1 42.2 5588 2095 216 7467 445.0 34.0 34.0 34.0 34.0 34.0 34.0 376.3 34.0 34.0 34.0 376.3 34.0 34.0 34.0 376.3 34.0 34.0 34.0 34.0 376.3 34.0 34.0 34.0 34.0 34.0 34.0 34.0 34	3	19.0	16.0	360.0	32.8	17.6	7.8	144.0	0.46	335.1	178.1	0.644	100	100.0	5869		3240.0	4000	3575.1	4043	3402	1997	132	5267	2514
3 22.0 19.0 360.0 32.8 17.6 7.8 144.0 0.46 405.5 209.3 0.644 100 100.0 7700 3240.0 4000 3827.9 4103 4058 2026 157 5927 2998. 3 24.0 21.0 360.0 32.8 17.6 7.8 144.0 0.46 405.5 209.3 0.644 100 100.0 7754 3240.0 4000 3845.5 4123 4276 2038 166 6147 3159 3240.0 4000 382.8 17.6 7.8 144.0 0.46 405.5 209.3 0.644 100 100.0 100	3	20.0	17.0	360.0	32.8	17.6	7.8	144.0	0.46	352.7	185.9	0.644	100	100.0	6246		3240.0	4000	3592.7	4063	3621	2007	140	5487	2675
3 22.0 20.0 360.0 32.8 17.6 7.8 144.0 0.46 405.5 209.3 0.644 100 100.0 7377 324.0 4000 3645.5 4123 4276 2036 166 6147 3159 3240 3 24.0 4000 3665.5 4123 4276 2036 166 6147 3159 3240 3 24.0 4000 3663.1 4143 4495 2046 174 6367 3320 3 25.0 12.0 360.0 32.8 17.6 7.8 144.0 0.46 4407 224.9 0.644 100 100.0 8131 3240.0 4000 3683.7 4453 4714 2056 182 6587 3482 3 26.0 12.0 3.0 360.0 32.8 17.6 7.8 144.0 0.46 458.3 232.7 0.644 100 100.0 8885 3240.0 4000 371.5 422 3666 191 6807 3643 3 27.0 24.0 360.0 32.8 17.6 7.8 144.0 0.46 475.9 24.0 5.0 644 100 100.0 8885 3240.0 4000 371.5 9 4203 5151 2075 199 7027 3605 3 28.0 25.0 360.0 32.8 17.6 7.8 144.0 0.46 475.9 24.0 5.0 644 100 100.0 8885 3240.0 4000 371.5 9 4203 5151 2075 199 7027 3605 3 28.0 25.0 360.0 32.8 17.6 7.8 144.0 0.46 475.9 24.8 3 0.644 100 100.0 8885 3240.0 4000 371.5 4222 3569 2085 207 7247 3965 3 28.0 25.0 360.0 32.8 17.6 7.8 144.0 0.46 451.1 256.0 0.644 100 100.0 9639 3240.0 4000 371.5 4222 5888 2085 207 7247 3965 3 29.0 26.0 360.0 32.8 17.6 7.8 144.0 0.46 511.1 256.0 0.644 100 100.0 9639 3240.0 4000 3761.7 4242 5888 2085 216 7467 4127 3 361.0 25.0 360.0 32.8 17.6 7.8 144.0 0.46 546.3 276.0 644 100 100.0 10016 3240.0 4000 3761.7 4242 5888 2085 216 7467 4127 3 361.0 25.0 360.0 32.8 17.6 7.8 144.0 0.46 546.3 2763.8 0.644 100 100.0 10016 3240.0 4000 3768.7 4262 5806 2105 224 7687 4450 3 31.0 2.0 360.0 32.8 17.6 7.8 144.0 0.46 546.3 276.0 644 100 100.0 10016 3240.0 4000 3768.7 4262 5806 2105 224 7687 4450 3 32.0 32.0 32.0 32.0 32.0 32.0 32.8 17.6 7.8 144.0 0.46 563.9 279.4 0.644 100 100.0 10016 3240.0 4000 3768.7 4262 5806 2105 224 7687 4450 3 32.0 32.0 32.0 32.0 32.0 32.0 32.0 3	3	21.0	18.0	360.0	32.8	17.6	7.8	144.0	0.46	370.3	193.7	0.644	100	100.0	6623		3240.0	4000	3610.3	4083	3839	2016	149	5707	2836
3	3	22.0	19.0	360.0	32.8	17.6	7.8	144.0	0.46	387.9	201.5	0.644	100	100.0	7000		3240.0	4000	3627.9	4103	4058	2026	157	5927	2998
3 25.0 22.0 380.0 32.8 17.6 7.8 144.0 0.46 440.7 22.49 0.644 100 100.0 88131 324.0 4000 3680.7 4163 4714 2056 182 6587 3482 3 27.0 24.0 360.0 32.8 17.6 7.8 144.0 0.46 458.3 232.7 0.644 100 100.0 8885 3240.0 4000 3715.9 4203 5151 2075 199 7027 3805 3 28.0 25.0 360.0 32.8 17.6 7.8 144.0 0.46 493.5 248.3 0.644 100 100.0 983 3240.0 4000 373.5 4222 5569 2085 207 7247 396.0 3 28.0 25.0 360.0 32.8 17.6 7.8 144.0 0.46 552.7 263.8 0.644 100 100.0 963 3240.0 4000	3	23.0	20.0	360.0	32.8	17.6	7.8	144.0	0.46	405.5	209.3	0.644	100	100.0	7377		3240.0	4000	3645.5	4123	4276	2036	166	6147	3159
3	3	24.0	21.0	360.0	32.8	17.6	7.8	144.0	0.46	423.1	217.1	0.644	100	100.0	7754		3240.0	4000	3663.1	4143	4495	2046	174	6367	3320
3 27.0 24.0 360.0 32.8 17.6 7.8 144.0 0.46 475.9 240.5 0.644 100 100.0 8885 324.0 4000 3715.9 4203 5151 2075 199 7027 3805 3 28.0 25.0 360.0 32.8 17.6 7.8 144.0 0.46 511.1 256.0 0.644 100 100.0 9639 3240.0 4000 3751.1 4242 5588 2095 216 7467 4127 3 30.0 27.0 360.0 32.8 17.6 7.8 144.0 0.46 528.7 263.8 0.644 100 100.0 10016 3240.0 4000 3763.7 4262 5806 2105 224 7687 4289 3 3.10 28.0 360.0 32.8 17.6 7.8 144.0 0.46 563.9 279.4 0.644 100 100.0 10770 3240.0 4000	3	25.0	22.0	360.0	32.8	17.6	7.8	144.0	0.46	440.7	224.9	0.644	100	100.0	8131		3240.0	4000	3680.7	4163	4714	2056	182	6587	
3 28.0 25.0 360.0 32.8 17.6 7.8 144.0 0.46 493.5 248.3 0.644 100 100.0 926.2 3340.0 4000 3733.5 4222 589 208 207 7247 3966 3 29.0 360.0 32.8 17.6 7.8 144.0 0.46 511.1 256.0 0.644 100 100.0 10016 3240.0 4000 3731.1 4242 5588 208 216 7467 4127 3 30.0 27.0 360.0 32.8 17.6 7.8 144.0 0.46 563.3 271.6 0.644 100 100.0 1093 3240.0 4000 378.5 4282 6025 2115 224 7687 4289 3 31.0 28.0 360.0 32.8 17.6 7.8 144.0 0.46 563.3 271.6 0.644 100 100.0 11970 3240.0 4000 3883.9	3	26.0	23.0	360.0	32.8	17.6	7.8	144.0	0.46	458.3	232.7	0.644	100	100.0	8508		3240.0		3698.3	4183	4932	2066	191	6807	
3 29.0 26.0 360.0 32.8 17.6 7.8 144.0 0.46 511.1 256.0 0.644 100 100.0 9639 3240.0 4000 3751.1 4242 5588 2095 216 7467 4127 33 30.0 27.0 360.0 32.8 17.6 7.8 144.0 0.46 528.7 263.8 0.644 100 100.0 10016 3240.0 4000 3768.7 4262 5806 2105 224 7687 4289 3 31.0 28.0 360.0 32.8 17.6 7.8 144.0 0.46 546.3 271.6 0.644 100 100.0 10393 3240.0 4000 3768.7 4282 6025 2115 233 7907 4450 3 32.0 29.0 360.0 32.8 17.6 7.8 144.0 0.46 563.9 279.4 0.644 100 100.0 10770 3240.0 4000 3803.9 4302 6423 2124 241 8127 4611 33.3 30.0 360.0 32.8 17.6 7.8 144.0 0.46 563.9 279.4 0.644 100 100.0 10770 3240.0 4000 3803.9 4302 6423 2124 241 8127 4611 34.0 34.0 34.0 31.0 360.0 32.8 17.6 7.8 144.0 0.46 589.1 295.0 0.644 100 100.0 11147 3240.0 4000 3821.5 4322 642.2 1314 249 8347 4773 3 34.0 31.0 360.0 32.8 17.6 7.8 144.0 0.46 599.1 295.0 0.644 100 100.0 11524 3240.0 4000 3831.5 4322 642.2 1314 249 8347 4773 3 35.0 32.0 360.0 32.8 17.6 7.8 144.0 0.46 663.3 310.0 0.644 100 100.0 11524 3240.0 4000 3831.5 4322 642.2 1314 249 8347 4773 3 35.0 32.0 360.0 32.8 17.6 7.8 144.0 0.46 663.3 310.0 0.644 100 100.0 11524 3240.0 4000 3831.1 4342 6681 2144 258 8567 4934 33.3 35.0 360.0 32.8 17.6 7.8 144.0 0.46 663.3 310.0 0.644 100 100.0 12278 3240.0 4000 3856.7 4362 6899 2154 266 8787 5095 3 340.0 360.0 32.8 17.6 7.8 144.0 0.46 663.3 310.0 0.644 100 100.0 12278 3240.0 4000 3851.5 4382 7148 2164 274 9007 5257 3 3 39.0 36.0 360.0 32.8 17.6 7.8 144.0 0.46 669.5 326.2 0.644 100 100.0 13032 3240.0 4000 3891.9 4402 7336 2174 283 9227 5418 3 340.0 360.0 32.8 17.6 7.8 144.0 0.46 687.1 333.9 0.644 100 100.0 13032 3240.0 4000 3891.9 4402 7336 2174 283 9227 5418 3 340.0 400.0 380.0 32.8 17.6 7.8 144.0 0.46 687.1 333.9 0.644 100 100.0 13032 3240.0 4000 399.5 4422 7555 2183 291 9447 5579 3 34.0 40.0 380.0 32.8 17.6 7.8 144.0 0.46 687.1 333.9 0.644 100 100.0 13049 3240.0 4000 399.5 4422 7555 2183 291 9447 5579 3 34.0 40.0 380.0 32.8 17.6 7.8 144.0 0.46 775.1 372.9 0.644 100 100.0 13049 3240.0 4000 399.5 4422 7555 2183 291 9447 5579 3 34.0 40.0 380.0 32.8 17.6 7.8 144.0 0.46 687	3	27.0	24.0	360.0	32.8	17.6	7.8	144.0	0.46	475.9	240.5	0.644	100	100.0	8885		3240.0	4000	3715.9	4203	5151	2075	199		
3 30.0 27.0 360.0 32.8 17.6 7.8 144.0 0.46 528.7 263.8 0.644 100 100.0 1006 3240.0 4000 3768.7 4262 5806 2105 224 7687 4289 3 31.0 28.0 360.0 32.8 17.6 7.8 144.0 0.46 563.9 27.1 0.644 100 100.0 10770 3240.0 4000 3803.9 4302 6243 2124 241 8127 4611 3 320.0 30.0 38.0 38.0 38.0 38.0 38.0 38.0 3						17.6	_			493.5			100												
3 31.0 28.0 360.0 32.8 17.6 7.8 144.0 0.46 546.3 271.6 0.644 100 100.0 1033 3240.0 4000 3786.3 4282 6025 2115 233 7907 4450 3 32.0 29.0 360.0 32.8 17.6 7.8 144.0 0.46 581.5 272 0.644 100 100.0 10770 3240.0 4000 380.9 4302 6243 2124 241 8127 4611 3 33.0 30.0 360.0 32.8 17.6 7.8 144.0 0.46 581.5 287.2 0.644 100 100.0 11147 3240.0 4000 383.1 4322 6462 2134 224 8347 4773 3 34.0 31.0 360.0 32.8 17.6 7.8 144.0 0.46 599.1 295.0 0.644 100 100.0 11524 3240.0 4000 383.1 4342 6681 2144 258 8567 4934 3 35.0 32.0 360.0 32.8 17.6 7.8 144.0 0.46 634.3 310.6 0.644 100 100.0 11901 3240.0 4000 383.1 4342 6681 2144 258 8567 4934 3 35.0 32.0 360.0 32.8 17.6 7.8 144.0 0.46 634.3 310.6 0.644 100 100.0 11901 3240.0 4000 3857.4 3462 6899 2154 266 8787 5095 3 37.0 34.0 360.0 32.8 17.6 7.8 144.0 0.46 651.9 318.4 0.644 100 100.0 12278 3240.0 4000 3874.3 4342 7718 2164 274 9007 5257 3 37.0 34.0 360.0 32.8 17.6 7.8 144.0 0.46 651.9 318.4 0.644 100 100.0 12655 3240.0 4000 3891.9 4402 7336 2174 283 9227 5478 3 39.0 36.0 360.0 32.8 17.6 7.8 144.0 0.46 687.1 333.9 0.644 100 100.0 13032 3240.0 4000 3891.9 4402 7336 2174 283 9227 5478 3 39.0 36.0 360.0 32.8 17.6 7.8 144.0 0.46 687.1 333.9 0.644 100 100.0 13032 3240.0 4000 3891.9 4402 7336 2174 283 9227 5478 3 40.0 37.0 360.0 32.8 17.6 7.8 144.0 0.46 687.1 333.9 0.644 100 100.0 13032 3240.0 4000 3891.9 4402 7356 2183 291 9447 5579 3 40.0 37.0 360.0 32.8 17.6 7.8 144.0 0.46 70.7 341.7 0.644 100 100.0 13786 3240.0 4000 394.7 4461 7992 2203 308 9887 5902 3 41.0 38.0 360.0 32.8 17.6 7.8 144.0 0.46 70.7 39.1 37.0 0.644 100 100.0 14504 3240.0 4000 397.1 4461 7992 2203 308 9887 5902 3 41.0 38.0 360.0 32.8 17.6 7.8 144.0 0.46 757.5 365.1 0.644 100 100.0 14504 3240.0 4000 397.5 4521 866 2234 341 10759 6547 3 44.0 41.0 360.0 32.8 17.6 7.8 144.0 0.46 757.5 365.1 0.644 100 100.0 15294 3240.0 4000 400.0 4524 9805 2234 351 10547 6386 3 44.0 41.0 360.0 32.8 17.6 7.8 144.0 0.46 757.5 365.1 0.644 100 100.0 15294 3240.0 4000 400.0 4524 9805 2234 351 10547 6386 3 44.0 41.0 360.0 32.8 17.6 7.8 144.0 0.46 757.5 365.1	-						_										+								
3 32.0 29.0 360.0 32.8 17.6 7.8 144.0 0.46 563.9 279.4 0.644 100 100.0 10770 3240.0 4000 3803.9 4302 6243 2124 241 8127 4611 3 3 3.0 30.0 360.0 32.8 17.6 7.8 144.0 0.46 581.5 287.2 0.644 100 100.0 11147 3240.0 4000 3821.5 4322 6462 2134 249 8347 4773 3 4 3 4 3 4 4 4 4 4 4 4 4 4 4 4							_										+								
3 33.0 30.0 360.0 32.8 17.6 7.8 144.0 0.46 581.5 287.2 0.644 100 100.0 11147 3240.0 4000 3821.5 4322 6462 2134 249 8347 4773 3 34.0 31.0 360.0 32.8 17.6 7.8 144.0 0.46 599.1 295.0 0.644 100 100.0 11524 3240.0 4000 3839.1 4342 6681 2144 258 8567 4934 3 35.0 32.0 360.0 32.8 17.6 7.8 144.0 0.46 616.7 302.8 0.644 100 100.0 11901 3240.0 4000 3851.7 4362 6899 2154 266 8787 5095 3 36.0 33.0 360.0 32.8 17.6 7.8 144.0 0.46 616.7 302.8 0.644 100 100.0 12278 3240.0 4000 3851.7 4382 7118 2164 274 9007 5257 3 37.0 34.0 360.0 32.8 17.6 7.8 144.0 0.46 661.9 318.4 0.644 100 100.0 12278 3240.0 4000 3891.9 4402 7336 2174 283 9227 5418 3 38.0 35.0 360.0 32.8 17.6 7.8 144.0 0.46 669.5 326.2 0.644 100 100.0 12655 3240.0 4000 3891.9 4402 7336 2174 283 9227 5418 3 39.0 36.0 360.0 32.8 17.6 7.8 144.0 0.46 689.1 333.9 0.644 100 100.0 13032 3240.0 4000 3891.9 4402 7336 2174 283 9227 5418 3 40.0 37.0 360.0 32.8 17.6 7.8 144.0 0.46 689.1 333.9 0.644 100 100.0 13032 3240.0 4000 3891.9 4402 7336 2174 283 9227 5579 3 41.0 38.0 360.0 32.8 17.6 7.8 144.0 0.46 689.1 333.9 0.644 100 100.0 13049 3240.0 4000 3909.5 4422 7555 2183 291 9467 5579 3 41.0 38.0 360.0 32.8 17.6 7.8 144.0 0.46 722.3 349.5 0.644 100 100.0 13786 3240.0 4000 3927.1 4441 7773 2193 299 9667 5741 3 42.0 39.0 360.0 32.8 17.6 7.8 144.0 0.46 732.9 349.5 0.644 100 100.0 14163 3240.0 4000 3962.3 4481 8210 2213 316 10107 6063 342.0 360.0 32.8 17.6 7.8 144.0 0.46 739.9 357.3 0.644 100 100.0 14917 3240.0 4000 3997.5 4521 8647 2233 333 10547 6386 340.0 40.0 360.0 32.8 17.6 7.8 144.0 0.46 757.5 365.1 0.644 100 100.0 14917 3240.0 4000 3997.5 4521 8647 2233 333 10547 6386 340.0 40.0 400.0 3897.5 4521 8667 2234 341 10759 6547 340.0 440.0 360.0 32.8 17.6 7.8 144.0 0.46 757.5 365.1 0.644 100 100.0 14917 3240.0 4000 4000.0 4524 8866 2234 341 10759 6547 340.0 440.0 440.0 360.0 32.8 17.6 7.8 144.0 0.46 757.5 365.1 0.644 100 100.0 16425 3240.0 4000 4000.0 4524 8866 2234 341 10759 6547 340.0 440.0 360.0 32.8 17.6 7.8 144.0 0.46 757.5 365.1 0.644 100 100.0 16425 3240.0 4000 4000.0 4524 8866 2234 34							_																		
3 34.0 31.0 360.0 32.8 17.6 7.8 144.0 0.46 599.1 295.0 0.644 100 100.0 11524 3240.0 4000 3839.1 4342 6681 2144 258 8567 4934 350 32.0 360.0 32.8 17.6 7.8 144.0 0.46 616.7 302.8 0.644 100 100.0 11901 3240.0 4000 3856.7 4362 6899 2154 266 8767 5095 326.0 32.0 360.0 32.8 17.6 7.8 144.0 0.46 634.3 310.6 0.644 100 100.0 12278 3240.0 4000 3856.7 4362 6899 2154 266 8767 5095 326.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32																	+								
3 35.0 32.0 360.0 32.8 17.6 7.8 144.0 0.46 616.7 302.8 0.644 100 100.0 11901 3240.0 4000 3856.7 4362 6899 2154 266 8787 5095 3 36.0 33.0 360.0 32.8 17.6 7.8 144.0 0.46 654.3 310.6 0.644 100 100.0 12278 3240.0 4000 3874.3 4382 7118 2164 274 9007 5257 3 37.0 34.0 360.0 32.8 17.6 7.8 144.0 0.46 651.9 318.4 0.644 100 100.0 12655 3240.0 4000 3891.9 4402 7336 2174 283 9227 5418 3 38.0 35.0 360.0 32.8 17.6 7.8 144.0 0.46 669.5 326.2 0.644 100 100.0 13032 3240.0 4000 3909.5 4422 7555 2183 291 9447 5579 3 39.0 36.0 360.0 32.8 17.6 7.8 144.0 0.46 689.5 326.2 0.644 100 100.0 13032 3240.0 4000 3909.5 4422 7555 2183 291 9447 5579 3 41.0 38.0 360.0 32.8 17.6 7.8 144.0 0.46 689.5 326.2 0.644 100 100.0 13032 3240.0 4000 3909.5 4422 7555 2183 291 9447 5579 3 41.0 38.0 360.0 32.8 17.6 7.8 144.0 0.46 687.1 333.9 0.644 100 100.0 13786 3240.0 4000 3927.1 4441 7773 2193 299 9667 5741 3 41.0 38.0 360.0 32.8 17.6 7.8 144.0 0.46 722.3 349.5 0.644 100 100.0 13786 3240.0 4000 394.7 4461 7992 2203 308 9887 5902 3 41.0 38.0 360.0 32.8 17.6 7.8 144.0 0.46 722.3 349.5 0.644 100 100.0 13786 3240.0 4000 394.7 4461 7992 2203 308 9887 5902 3 41.0 38.0 360.0 32.8 17.6 7.8 144.0 0.46 722.3 349.5 0.644 100 100.0 14540 3240.0 4000 3979.9 4501 8429 2223 325 10327 6225 3 44.0 40.0 360.0 32.8 17.6 7.8 144.0 0.46 757.5 365.1 0.644 100 100.0 14540 3240.0 4000 397.5 4521 8647 2233 333 10547 6386 3 44.0 41.0 360.0 32.8 17.6 7.8 144.0 0.46 757.5 365.1 0.644 100 100.0 15294 3240.0 4000 3997.5 4521 8647 2233 333 10547 6386 3 44.0 41.0 360.0 32.8 17.6 7.8 144.0 0.46 757.5 365.1 0.644 100 100.0 15294 3240.0 4000 3997.5 4521 8667 2233 333 10547 6386 3 44.0 41.0 360.0 32.8 17.6 7.8 144.0 0.46 757.5 365.1 0.644 100 100.0 15671 3240.0 4000 4000.0 4524 8866 2234 341 10759 6547 34.0 44.0 44.0 44.0 360.0 32.8 17.6 7.8 144.0 0.46 757.5 365.1 0.644 100 100.0 15671 3240.0 4000 4000.0 4524 9303 2234 350 10969 6709 4400 4400 4400 4400 4400 4400 4400 4							_				_						+								
3 36.0 33.0 360.0 32.8 17.6 7.8 144.0 0.46 634.3 310.6 0.644 100 100.0 1278 3240.0 4000 3874.3 4382 7118 2164 274 9007 5257 317.0 34.0 360.0 32.8 17.6 7.8 144.0 0.46 651.9 318.4 0.644 100 100.0 12655 3240.0 4000 3891.9 4402 7336 2174 283 9227 5418 31.0 38.0 350.0 360.0 32.8 17.6 7.8 144.0 0.46 669.5 326.2 0.644 100 100.0 13032 3240.0 4000 399.5 4422 7555 2183 291 9447 5579 31.0 34.0 37.0 360.0 32.8 17.6 7.8 144.0 0.46 687.1 333.9 0.644 100 100.0 13032 3240.0 4000 399.5 4422 7555 2183 291 9447 5579 31.0 40.0 37.0 360.0 32.8 17.6 7.8 144.0 0.46 687.1 333.9 0.644 100 100.0 13786 3240.0 4000 394.7 4461 7992 2203 308 9887 5902 31.0 36.0 32.8 17.6 7.8 144.0 0.46 722.3 349.5 0.644 100 100.0 14163 3240.0 4000 394.7 4461 7992 2203 308 9887 5902 31.0 34.0 34.0 360.0 32.8 17.6 7.8 144.0 0.46 739.9 357.3 0.644 100 100.0 14540 3240.0 4000 397.9 4501 8429 2223 325 10327 6225 31.0 34.0 40.0 360.0 32.8 17.6 7.8 144.0 0.46 757.5 365.1 0.644 100 100.0 14917 3240.0 4000 397.9 4501 8429 2223 325 10327 6225 31.0 34.0 41.0 360.0 32.8 17.6 7.8 144.0 0.46 757.5 365.1 0.644 100 100.0 14917 3240.0 4000 397.5 4521 8647 2233 333 10547 6386 34.0 41.0 360.0 32.8 17.6 7.8 144.0 0.46 757.5 365.1 0.644 100 100.0 14917 3240.0 4000 397.5 4521 8647 2233 333 10547 6386 34.0 41.0 360.0 32.8 17.6 7.8 144.0 0.46 757.5 365.1 0.644 100 100.0 14917 3240.0 4000 3997.5 4521 8647 2233 333 10547 6386 34.0 41.0 360.0 32.8 17.6 7.8 144.0 0.46 757.5 365.1 0.644 100 100.0 15671 3240.0 4000 4000.0 4524 8866 2234 341 10759 6570 34.0 40.0 42.0 360.0 32.8 17.6 7.8 144.0 0.46 872.7 380.7 0.644 100 100.0 15671 3240.0 4000 4000.0 4524 9085 2234 350 10969 6709 34.0 40.0 44.0 360.0 32.8 17.6 7.8 144.0 0.46 872.7 380.7 0.644 100 100.0 16048 3240.0 4000 4000.0 4524 9085 2234 350 10969 6709 34.0 40.0 44.0 360.0 32.8 17.6 7.8 144.0 0.46 872.7 380.7 0.644 100 100.0 16048 3240.0 4000 4000.0 4524 9085 2234 350 10969 6709 34.0 40.0 44.0 360.0 32.8 17.6 7.8 144.0 0.46 872.7 380.7 0.644 100 100.0 16048 3240.0 4000 4000.0 4524 9085 2234 350 10969 6709 34.0 40.0 44.0 360.0 32.8 17.							_										+								
3 37.0 34.0 360.0 32.8 17.6 7.8 144.0 0.46 651.9 318.4 0.644 100 100.0 12655 3240.0 4000 3891.9 4402 7336 2174 283 9227 5418 3 38.0 35.0 360.0 32.8 17.6 7.8 144.0 0.46 669.5 326.2 0.644 100 100.0 13032 3240.0 4000 399.5 4422 7555 2183 291 9447 5579 3 39.0 36.0 360.0 32.8 17.6 7.8 144.0 0.46 687.1 333.9 0.644 100 100.0 13786 3240.0 4000 3927.1 4441 7773 2193 299 9667 5741 3 40.0 37.0 360.0 32.8 17.6 7.8 144.0 0.46 704.7 341.7 0.644 100 100.0 13786 3240.0 4000 394.7 4461 7992 2203 308 9887 5902 3 41.0 38.0 360.0 32.8 17.6 7.8 144.0 0.46 722.3 349.5 0.644 100 100.0 14163 3240.0 4000 3962.3 4481 8210 2213 316 10107 6063 3 42.0 39.0 360.0 32.8 17.6 7.8 144.0 0.46 739.9 357.3 0.644 100 100.0 14540 3240.0 4000 397.9 4501 8429 2223 325 10327 6225 3 43.0 40.0 360.0 32.8 17.6 7.8 144.0 0.46 775.1 372.9 0.644 100 100.0 14917 3240.0 4000 397.5 4521 8647 2233 333 10547 6386 3 44.0 41.0 360.0 32.8 17.6 7.8 144.0 0.46 775.1 372.9 0.644 100 100.0 15294 3240.0 4000 4000 4000.0 4524 8866 2234 341 10759 6547 3 45.0 42.0 360.0 32.8 17.6 7.8 144.0 0.46 792.7 380.7 0.644 100 100.0 15671 3240.0 4000 4000.0 4524 9085 2234 350 10969 6709 3 46.0 43.0 360.0 32.8 17.6 7.8 144.0 0.46 827.9 396.3 0.644 100 100.0 16425 3240.0 4000 4000.0 4524 9303 2234 358 11179 6870				.			_										+								
3 38.0 35.0 360.0 32.8 17.6 7.8 144.0 0.46 669.5 326.2 0.644 100 100.0 13032 3240.0 4000 399.5 4422 7555 2183 291 9447 5579 39.0 360.0 32.8 17.6 7.8 144.0 0.46 687.1 333.9 0.644 100 100.0 13409 3240.0 4000 3927.1 4441 7773 2193 299 9667 5741 340.0 37.0 360.0 32.8 17.6 7.8 144.0 0.46 704.7 341.7 0.644 100 100.0 13786 3240.0 4000 394.7 4461 7992 2203 308 9887 5902 340.0 38.0 360.0 32.8 17.6 7.8 144.0 0.46 722.3 349.5 0.644 100 100.0 14163 3240.0 4000 396.3 4481 8210 2213 316 10107 6063 342.0 39.0 360.0 32.8 17.6 7.8 144.0 0.46 739.9 357.3 0.644 100 100.0 14540 3240.0 4000 397.9 4501 8429 223 325 10327 6225 343.0 44.0 41.0 360.0 32.8 17.6 7.8 144.0 0.46 757.5 365.1 0.644 100 100.0 14917 3240.0 4000 3997.5 4521 8647 2233 333 10547 6386 344.0 41.0 360.0 32.8 17.6 7.8 144.0 0.46 757.5 365.1 0.644 100 100.0 15294 3240.0 4000 3997.5 4521 8647 2233 333 10547 6386 345.0 42.0 360.0 32.8 17.6 7.8 144.0 0.46 775.1 372.9 0.644 100 100.0 15294 3240.0 4000 400.0 4524 8866 2234 341 10759 6547 346.0 43.0 360.0 32.8 17.6 7.8 144.0 0.46 810.3 388.5 0.644 100 100.0 15671 3240.0 4000 4000.0 4524 9085 2234 350 10969 6709 347.0 44.0 360.0 32.8 17.6 7.8 144.0 0.46 810.3 388.5 0.644 100 100.0 16425 3240.0 4000 4000.0 4524 9303 2234 358 11179 6870 347.0 44.0 360.0 32.8 17.6 7.8 144.0 0.46 827.9 396.3 0.644 100 100.0 16425 3240.0 4000 4000.0 4524 9303 2234 358 11179 6870 347.0 44.0 360.0 32.8 17.6 7.8 144.0 0.46 827.9 396.3 0.644 100 100.0 16425 3240.0 4000 4000.0 4524 9303 2234 366 11389 7032																									
3 39.0 36.0 36.0 32.8 17.6 7.8 144.0 0.46 687.1 333.9 0.644 100 100.0 13409 3240.0 4000 3927.1 4441 7773 2193 299 9667 5741 3 40.0 37.0 360.0 32.8 17.6 7.8 144.0 0.46 704.7 341.7 0.644 100 100.0 13786 3240.0 4000 3944.7 4461 7992 2203 308 9887 5902 3 41.0 38.0 360.0 32.8 17.6 7.8 144.0 0.46 722.3 349.5 0.644 100 100.0 14163 3240.0 4000 3962.3 4481 8210 2213 316 10107 6063 3 42.0 39.0 360.0 32.8 17.6 7.8 144.0 0.46 739.9 357.3 0.644 100 100.0 14540 3240.0 4000 3979.9 4501 8429 2223 325 10327 6225 3 43.0 40.0 360.0 32.8 17.6 7.8 144.0 0.46 757.5 365.1 0.644 100 100.0 14917 3240.0 4000 397.5 4521 8647 2233 333 10547 6386 3 44.0 41.0 360.0 32.8 17.6 7.8 144.0 0.46 775.1 372.9 0.644 100 100.0 15294 3240.0 4000 4000.0 4524 8866 2234 341 10759 6547 3 45.0 42.0 360.0 32.8 17.6 7.8 144.0 0.46 792.7 380.7 0.644 100 100.0 15671 3240.0 4000 4000.0 4524 9085 2234 350 10969 6709 3 46.0 43.0 360.0 32.8 17.6 7.8 144.0 0.46 810.3 388.5 0.644 100 100.0 16048 3240.0 4000 4000.0 4524 9303 2234 358 11179 6870 3 47.0 44.0 360.0 32.8 17.6 7.8 144.0 0.46 827.9 396.3 0.644 100 100.0 16425 3240.0 4000 4000.0 4524 9522 2234 366 11389 7032																									
3 40.0 37.0 360.0 32.8 17.6 7.8 144.0 0.46 704.7 341.7 0.644 100 100.0 13786 3240.0 4000 3944.7 4461 7992 2203 308 9887 5902 3 41.0 38.0 360.0 32.8 17.6 7.8 144.0 0.46 722.3 349.5 0.644 100 100.0 14163 3240.0 4000 3962.3 4481 8210 2213 316 10107 6063 3 42.0 39.0 360.0 32.8 17.6 7.8 144.0 0.46 739.9 357.3 0.644 100 100.0 14540 3240.0 4000 397.9 4501 8429 2223 325 10327 6225 3 43.0 40.0 360.0 32.8 17.6 7.8 144.0 0.46 757.5 365.1 0.644 100 100.0 14917 3240.0 4000 3997.5 4521 8647 2233 333 10547 6386 <				.													1								
3 41.0 38.0 360.0 32.8 17.6 7.8 144.0 0.46 722.3 349.5 0.644 100 100.0 14163 3240.0 4000 3962.3 4481 8210 2213 316 10107 6063 3 42.0 39.0 360.0 32.8 17.6 7.8 144.0 0.46 739.9 357.3 0.644 100 100.0 14540 3240.0 4000 397.9 4501 8429 2223 325 10327 6225 3 43.0 40.0 360.0 32.8 17.6 7.8 144.0 0.46 757.5 365.1 0.644 100 100.0 14917 3240.0 4000 3997.5 4521 8647 2233 333 10547 6386 3 44.0 41.0 360.0 32.8 17.6 7.8 144.0 0.46 775.1 372.9 0.644 100 100.0 15294 3240.0 4000 4000.0 4524 8866 2234 341 10759 6547	-																								
3 42.0 39.0 360.0 32.8 17.6 7.8 144.0 0.46 739.9 357.3 0.644 100 100.0 14540 3240.0 4000 397.9 4501 8429 2223 325 10327 6225 3 43.0 40.0 360.0 32.8 17.6 7.8 144.0 0.46 757.5 365.1 0.644 100 100.0 14917 3240.0 4000 397.5 4521 8647 2233 333 10547 6386 3 44.0 41.0 360.0 32.8 17.6 7.8 144.0 0.46 775.1 372.9 0.644 100 100.0 15294 3240.0 4000 4000.0 4524 8866 2234 341 10759 6547 3 45.0 42.0 360.0 32.8 17.6 7.8 144.0 0.46 792.7 380.7 0.644 100 100.0 15671 3240.0 4000 4000.0 4524 9085 2234 350 10969 6709 <																	+								
3 43.0 40.0 360.0 32.8 17.6 7.8 144.0 0.46 757.5 365.1 0.644 100 100.0 14917 3240.0 4000 3997.5 4521 8647 2233 333 10547 6386 3 44.0 41.0 360.0 32.8 17.6 7.8 144.0 0.46 775.1 372.9 0.644 100 100.0 15294 3240.0 4000 4000.0 4524 8866 2234 341 10759 6547 3 45.0 42.0 360.0 32.8 17.6 7.8 144.0 0.46 792.7 380.7 0.644 100 100.0 15671 3240.0 4000 4000.0 4524 9085 2234 350 10969 6709 3 46.0 43.0 360.0 32.8 17.6 7.8 144.0 0.46 810.3 388.5 0.644 100 100.0 16048 3240.0 4000 4000.0 4524 9303 2234 358 11179 6870	-																								
3 44.0 41.0 360.0 32.8 17.6 7.8 144.0 0.46 775.1 372.9 0.644 100 100.0 15294 3240.0 4000 4000.0 4524 8866 2234 341 10759 6547 3 45.0 42.0 360.0 32.8 17.6 7.8 144.0 0.46 792.7 380.7 0.644 100 100.0 15671 3240.0 4000 4000.0 4524 9085 2234 350 10969 6709 3 46.0 43.0 360.0 32.8 17.6 7.8 144.0 0.46 810.3 388.5 0.644 100 100.0 16048 3240.0 4000 4000.0 4524 9303 2234 358 11179 6870 3 47.0 44.0 360.0 32.8 17.6 7.8 144.0 0.46 827.9 396.3 0.644 100 100.0 16048 3240.0 4000 4000.0 4524 9303 2234 358 11179 6870																	+	-							
3 45.0 42.0 360.0 32.8 17.6 7.8 144.0 0.46 792.7 380.7 0.644 100 100.0 15671 3240.0 4000 4000.0 4524 9085 2234 350 10969 6709 3 46.0 43.0 360.0 32.8 17.6 7.8 144.0 0.46 810.3 388.5 0.644 100 100.0 16048 3240.0 4000 4000.0 4524 9303 2234 358 11179 6870 3 47.0 44.0 360.0 32.8 17.6 7.8 144.0 0.46 827.9 396.3 0.644 100 100.0 16425 3240.0 4000 4000.0 4524 9522 2234 366 11389 7032																									
3 46.0 43.0 360.0 32.8 17.6 7.8 144.0 0.46 810.3 388.5 0.644 100 100.0 16048 3240.0 4000 4000.0 4524 9303 2234 358 11179 6870 3 47.0 44.0 360.0 32.8 17.6 7.8 144.0 0.46 827.9 396.3 0.644 100 100.0 16425 3240.0 4000 4000.0 4524 9522 2234 366 11389 7032																									
3 47.0 44.0 360.0 32.8 17.6 7.8 144.0 0.46 827.9 396.3 0.644 100 100.0 16425 3240.0 4000 4000.0 4524 9522 2234 366 11389 7032	-																								
	-					+																			
	3	48.0	45.0	360.0	32.8	17.6	7.8	144.0	0.46	845.5	404.1	0.644	100	100.0	16802		3240.0	4000	4000.0	4524	9740	2234	375	11599	7193

LAVORO: CA352 SS554

OPERA:


ST01 - MURI ANDATORI

RESISTENZA DI UN PALO TRIVELLATO SOGGETTO AD AZIONI ASSIALI DI COMPRESSIONE/TRAZIONE

ALLINEAMENTI:

VALORI DEI PARAMETRI GEOTECNICI:

MEDI

ALLINEAMENTO	SISTENZA / Lp (m)	Rsd (kN)	Rbd (kN)	Rcd (kN)	Fcd (kN)	c.u.c	Rtd (kN)	Ftd (kN)	c.u.t
ST01	12.0	2528	1957	4387	1530	35%	1868	0	0%

RESISTENZA A COMPRESSIONE A COMPRESSIONE DELLA PALIFICATA

La resistenza ai carichi assiali di compressione del gruppo **Rcd,gr** viene determinatain base alla seguente espressione:

Rcd,gr = npali x η x Rcd

in cui: npali:

npal n

Rcd è il numero complessivo di pali presenti nella palificata

efficienza della palificata

L'efficienza della r Resistenza di progetto del palo singolo ai carichi assiali di compressione

Relativamente ai terreni coesivi aventi interasse tra i pali non inferiore a 3D, l'efficienza viene determinata mediante la nota espressione di Converse- Labarre:

$$\eta = 1 - rac{\arctan(d/i)}{\pi/2} rac{(m-1)n + (n-1)m)}{m \ n}$$
 nella quale: i d

i interasse tra i pali d diametro dei pali m numero di file

n numero massimo di pali in ciascuna fila

RESISTENZA DELLA PALIFICATA

ALLINEAMENTO	Dp (m)	i (m)	npali	m	n	η	Rcd,gr (kN)	Ecd,gr (kN)	c.u.gr
ST01	1.20	3.60	8	2	4	0.74	26109	10900	42%
	0	0.00		_		U	_0.00		,

LAVORO: CA352 SS554 OPERA: ST01 - MURI ANDATORI ALLINEAMENTI: RESISTENZA DI UN PALO TRIVELLATO SOGGETTO AD AZIONI ASSIALI DI COMPRESSIONE/TRAZIONE **VALORI DEI PARAMETRI GEOTECNICI:** MINIMI

Il valore di progetto Rcd della Resistenza di pali soggetti a carichi assiali di compressione è pari a: Rcd = Rbd + Rsd - Wp Il valore di progetto Rtd della Resistenza di pali soggetti a carichi assiali di trazione è pari a: Rtd = 0.7 Rsd + Wp in cui: Rbd = Rbk / γ b: Resistenza alla base di progetto Rsd = Rsk / γ s: Resistenza laterale di progetto Rbk = Min [(Rbc,cal)_{media} / ξ3; (Rbc,cal)_{min} / ξ4 Resistenza alla punta caratteristica Rsk = Min [(Rsc,cal)_{media} / ξ3; (Rsc,cal)_{min} / ξ4 Resistenza laterale caratteristica Rsc,calc = Qb: Resistenza alla base di calcolo Rsc.calc = Qs: Resistenza laterale di calcolo :qW peso proprio del palo alleggerito I Coefficienti parziali qR da applicare alle Pali Pali Pali ad elica resistenze Rk a carico verticale sono forniti infissi trivellati continua dalla presente tabella: (R3) (R3) (R3) Base 1.15 1.30 1.35 γ_b Laterale in compressione γ_s 1.15 1.15 1.15 Totale (*) 1.15 1.30 1.25 Laterale in trazione 1.25 1.25 1.25 γ_{st} I Fattori di correlazione ξ per la determinazione della resistenza caratteristica in funzione del numero di verticali indagate sono dati dalla seguente tabella n. Vert. 3 5 10 1.55 1.40 1.70 1.65 1.60 1.50 1.45 ξ4 1.70 1.55 1.48 1.42 1.34 1.28 1.21 Peso del palo

CARATTERISTICHE GEOMETRICHE DEL PALO	unità	var	
Diametro palo	m		1.20
Superficie resistente alla base	mq	Ab	1.13
Superficie laterale per lunghezza unitaria	mq	As	3.77
peso specifico del palo	kN/m ³	γp	25.00

Si considera il peso del palo dovuto alla differenza tra il peso di volume del cls

LIVELLO DELLA FALDA E AFF. DELLA TESTA DEL PALO (DA P.C.)	unità	var	
Profondità della falda da piano di campagna	ZW	m	3.00
Affondamento della testa del palo da piano di compagna	ztp	m	3.00

N.B. Per palo che emerge da p.c. valore negativo

La Resistenza alla	base di cal	lcolo è pari	a:
--------------------	-------------	--------------	----

 $Qb = ab \times Ab$

dove:

Ab: Area della superficie di base del palo

qb: resistenza unitaria alla base appresso specificata per terreni

coesivi e granulari

La Resistenza laterale di calcolo è pari a:

Qs = As $x \Sigma$ (qsi x dzi)

dove:

As: Area della superficie laterale del palo asi: resistenza laterale unitaria dell'iesimo strato dzi:

altezza dell'iesimo strato

Terreni coesivi (c<>0)

Il calcolo è svolto in termini di Tensioni Totali

Resistenza unitaria alla base

La resistenza alla base viene espressa come:

 $qb = \sigma v + 9 c_u$

Resistenza laterale unitaria

 $as = \alpha cu$

α variabile in funzione di cu secondo la seguente tabella [AGI]

cu (kPa)	α
<=25	0.9
da 26 a 50	0.8
da 50 a 75	0.6
>75	0.4

In ogni caso non viene superato il valore limite di: qs,max = 100 kPa (AGI 1984).

erreni granulari (c' = 0, 6' <> 0)

Il calcolo è svolto in termini di Tensioni Efficaci

Resistenza unitaria alla base

In accordo alla teoria di Berenzantsev(*):

 $qb = Nq^* \times \sigma'v$

Ng*: coefficiente di capacità portante corrispondente all'insorgere

delle prime deformazioni plastiche (dp = 0,06-0,1 D)

In ogni caso viene assunto per qp il valore limite qp,max pari al minimo

tra i valori forniti dalla seguente espressione:

 $qbmax1 = Nspt x \alpha_N$

 α_N = 150 per Ghiaie, 120 per Sabbie e 85 per Sabbie limose [Gwizdala (1984), Reese & O'Neill (1988), Matsui (1993)]

e dalla sequente tabella

Ghiaie: qb.max = 7500 kPaSabbie: gb.max = 5800 kPa Sabbie limose: qb,max = 4300 kPa

Resistenza laterale unitaria

gs = Ks tanδ g'vKs assunto pari a 1-sen o'

 $tan\delta = tan\phi$

In ogni caso non viene superato il valore limite di ql,max, ricavabile dalle sequenti espressioni per pali trivellati con uso di fanghi

(Reese&Wright 1977):

qsmax = 3 x Nsptper Nspt <= 53 qsmax = 142 + 0.32 x Nsptper Nspt > 53

SOVRACCARICO A PIANO TESTA PALO

Tensione totale in testa palo	kPa σvi	51.9
Tensione efficace in testa palo	kPa σν'i	51.9

COEFFICIENTI PARZIALI RESISTENZE CARATTERISTICHE

2

R3

Metodologia realizzativa (1 = Pali infissi; 2 = Pali trivellati; 3 =pali ad elica) coefficiente yb 1.35 coefficiente ys 1.15

FATTORI DI CORRELAZIONE RESISTENZA CARATTERISTICA

Valori dei parametri geotecnici (MEDI - MINIMI)	MINIMI
Numero delle verticali indagate spinte a profondità superiore della lunghezza dei pali	6
coefficiente ξ	1.34

STRATIGRAFIA DI PROGETTO (DA p.c.)

e quello del volume di terreno asportato:

Wp(z) = $(\gamma_{cls} - \gamma_{nat})$ Ap Δz

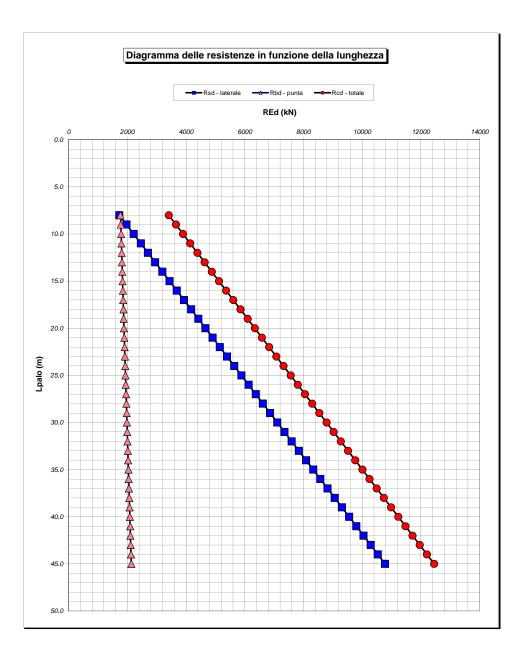
COMBINAZIONE M1

Unità	DESCRIZIONE	DA	Α	Tip	cuk	φ'k	γcu	γφ'	cud	φ'd	γ	Nspt	ql,max	α_{N}	Nspt*α _N	qp,max
n.		m	m		kPa	deg			kPa	deg	kN/m³		kPa			kPa
1	ALT	0.0	2.5	S		28.8	1.00	1.00	0.0	28.8	17.3	10	30	120	1200	1200
2	Ма	2.5	7.5	С	191.0	24.7	1.00	1.00	191.0	24.7	15.9		100			4000
3	M	7.5	50.0	С	294.0	29.2	1.00	1.00	294.0	29.2	15.9		100			4000
4																
5																

Tip = C: Terreni coesivi - S: sabbie - G: ghiaie - SL sabbie limose

LAVORO: CA352 SS554 OPERA: ST01 - MURI ANDATORI RESISTENZA DI UN PALO TRIVELLATO SOGGETTO AD AZIONI ASSIALI DI COMPRESSIONE/TRAZIONE

ALLINEAMENTI: VALORI DEI PARAMETRI GEOTECNICI:


0 MINIMI

	Z	Lp	cud	φ'd	γ	γ'	qa	Ks	σ٧	σv'	tanδ	qs,max	qs	Qs	Ng*	9*cu	qb,max	qb	Qb	Rsd	Rbd	Wp	Rcd	Rtd
Unità	m	(m)	kPa	deg	kN/m³	kN/m³	kPa		kPa	kPa		kPa	kPa	kN		kPa	kPa	kPa	kN	kN	kN	kN	kN	kN
2	3.0	0.0		1	15.9	15.9			51.9	51.9												0		
2	4.0	1.0	191.0	24.7	15.9	6.1	76.4	0.58	67.8	58.0	0.460	100	76.4	288		1719.0	4000	1786.8	2021	187	1117	10	1294	141
2	5.0	2.0	191.0	24.7	15.9	6.1	76.4	0.58	83.7	64.1	0.460	100	76.4	576		1719.0	4000	1802.7	2039	374	1127	21	1480	282
2	6.0	3.0	191.0	24.7	15.9	6.1	76.4	0.58	99.6	70.2	0.460	100	76.4	864		1719.0	4000	1818.6	2057	561	1137	31	1667	423
2	7.0	4.0	191.0	24.7	15.9	6.1	76.4	0.58	115.5	76.3	0.460	100	76.4	1152		1719.0	4000	1834.5	2075	748	1147	41	1853	565
3	8.0	5.0	294.0	29.2	15.9	6.1	117.6	0.51	131.4	82.4	0.559	100	100.0	1529		2646.0	4000	2777.4	3141	992	1736	51	2677	746
3	9.0	6.0	294.0	29.2	15.9	6.1	117.6	0.51	147.3	88.4	0.559	100	100.0	1906		2646.0	4000	2793.3	3159	1237	1746	62	2922	928
3	10.0	7.0	294.0	29.2	15.9	6.1	117.6	0.51	163.2	94.5	0.559	100	100.0	2283		2646.0	4000	2809.2	3177	1482	1756	72	3166	1109
3	11.0	8.0	294.0	29.2	15.9	6.1	117.6	0.51	179.1	100.6	0.559	100	100.0	2660		2646.0	4000	2825.1	3195	1726	1766	82	3410	1291
3	12.0	9.0	294.0	29.2	15.9	6.1	117.6	0.51	195.0	106.7	0.559	100	100.0	3037		2646.0	4000	2841.0	3213	1971	1776	93	3654	1472
3	13.0	10.0	294.0	29.2	15.9	6.1	117.6	0.51	210.9	112.8	0.559	100	100.0	3414		2646.0	4000	2856.9	3231	2215	1786	103	3899	1654
3	14.0	11.0	294.0	29.2	15.9	6.1	117.6	0.51	226.8	118.9	0.559	100	100.0	3791		2646.0	4000	2872.8	3249	2460	1796	113	4143	1835
3	15.0	12.0	294.0	29.2	15.9	6.1	117.6	0.51	242.7	125.0	0.559	100	100.0	4168		2646.0	4000	2888.7	3267	2705	1806	124	4387	2017
3	16.0	13.0	294.0	29.2	15.9	6.1	117.6	0.51	258.6	131.1	0.559	100	100.0	4545		2646.0	4000	2904.6	3285	2949	1816	134	4632	2198
3	17.0	14.0	294.0	29.2	15.9	6.1	117.6	0.51	274.5	137.2	0.559	100	100.0	4922		2646.0	4000	2920.5	3303	3194	1826	144	4876	2380
3	18.0	15.0	294.0	29.2	15.9	6.1	117.6	0.51	290.4	143.3	0.559	100	100.0	5299		2646.0	4000	2936.4	3321	3439	1836	154	5120	2561
3	19.0	16.0	294.0	29.2	15.9	6.1	117.6	0.51	306.3	149.3	0.559	100	100.0	5676		2646.0	4000	2952.3	3339	3683	1846	165	5364	2743
3	20.0	17.0	294.0	29.2	15.9	6.1	117.6	0.51	322.2	155.4	0.559	100	100.0	6053		2646.0	4000	2968.2	3357	3928	1856	175	5609	2925
3	21.0	18.0	294.0	29.2	15.9	6.1	117.6	0.51	338.1	161.5	0.559	100	100.0	6430		2646.0	4000	2984.1	3375	4173	1866	185	5853	3106
3	22.0	19.0	294.0	29.2	15.9	6.1	117.6	0.51	354.0	167.6	0.559	100	100.0	6807		2646.0	4000	3000.0	3393	4417	1876	196	6097	3288
3	23.0	20.0	294.0	29.2	15.9	6.1	117.6	0.51	369.9	173.7	0.559	100	100.0	7184		2646.0	4000	3015.9	3411	4662	1886	206	6342	3469
3	24.0	21.0	294.0	29.2	15.9	6.1	117.6	0.51	385.8	179.8	0.559	100	100.0	7561		2646.0	4000	3031.8	3429	4907	1895	216	6586	3651
3	25.0	22.0	294.0	29.2	15.9	6.1	117.6	0.51	401.7	185.9	0.559	100	100.0	7938		2646.0	4000	3047.7	3447	5151	1905	226	6830	3832
3	26.0	23.0	294.0	29.2	15.9	6.1	117.6	0.51	417.6	192.0	0.559	100	100.0	8315		2646.0	4000	3063.6	3465	5396	1915	237	7074	4014
3	27.0	24.0	294.0	29.2	15.9	6.1	117.6	0.51	433.5	198.1	0.559	100	100.0	8692		2646.0	4000	3079.5	3483	5640	1925	247	7319	4195
3	28.0	25.0	294.0	29.2	15.9	6.1	117.6	0.51	449.4	204.2	0.559	100	100.0	9069		2646.0	4000	3095.4	3501	5885	1935	257	7563	4377
3	29.0	26.0	294.0	29.2	15.9	6.1	117.6	0.51	465.3	210.2	0.559	100	100.0	9446		2646.0	4000	3111.3	3519	6130	1945	268	7807	4558
3	30.0	27.0	294.0	29.2	15.9	6.1	117.6	0.51	481.2	216.3	0.559	100	100.0	9823		2646.0	4000	3127.2	3537	6374	1955	278	8052	4740
3	31.0	28.0	294.0	29.2	15.9	6.1	117.6	0.51	497.1	222.4	0.559	100	100.0	10200		2646.0	4000	3143.1	3555	6619	1965	288	8296	4921
3	32.0	29.0	294.0	29.2	15.9	6.1	117.6	0.51	513.0	228.5	0.559	100	100.0	10577		2646.0	4000	3159.0	3573	6864	1975	298	8540	5103
3	33.0	30.0	294.0	29.2	15.9	6.1	117.6	0.51	528.9	234.6	0.559	100	100.0	10954		2646.0	4000	3174.9	3591	7108	1985	309	8784	5285
3	34.0	31.0	294.0	29.2	15.9	6.1	117.6	0.51	544.8	240.7	0.559	100	100.0	11331		2646.0	4000	3190.8	3609	7353	1995	319	9029	5466
3	35.0	32.0	294.0	29.2	15.9	6.1	117.6	0.51	560.7	246.8	0.559	100	100.0	11708		2646.0	4000	3206.7	3627	7598	2005	329	9273	5648
3	36.0	33.0	294.0	29.2	15.9	6.1	117.6	0.51	576.6	252.9	0.559	100	100.0	12085		2646.0	4000	3222.6	3645	7842	2015	340	9517	5829
3	37.0	34.0	294.0	29.2	15.9	6.1	117.6	0.51	592.5	259.0	0.559	100	100.0	12462		2646.0	4000	3238.5	3663	8087	2025	350	9762	6011
3	38.0	35.0	294.0	29.2	15.9	6.1	117.6	0.51	608.4	265.1	0.559	100	100.0	12839		2646.0	4000	3254.4	3681	8331	2035	360	10006	6192
3	39.0	36.0	294.0	29.2	15.9	6.1	117.6	0.51	624.3	271.1	0.559	100	100.0	13216		2646.0	4000	3270.3	3699	8576	2045	371	10250	6374
3	40.0	37.0	294.0	29.2	15.9	6.1	117.6	0.51	640.2	277.2	0.559	100	100.0	13593		2646.0	4000	3286.2	3717	8821	2055	381	10494	6555
3	41.0	38.0	294.0	29.2	15.9	6.1	117.6	0.51	656.1	283.3	0.559	100	100.0	13970		2646.0	4000	3302.1	3735	9065	2064	391	10739	6737
3	42.0	39.0	294.0	29.2	15.9	6.1	117.6	0.51	672.0	289.4	0.559	100	100.0	14347		2646.0	4000	3318.0	3753	9310	2074	401	10983	6918
3	43.0	40.0	294.0	29.2	15.9	6.1	117.6	0.51	687.9	295.5	0.559	100	100.0	14724		2646.0	4000	3333.9	3771	9555	2084	412	11227	7100
3	44.0	41.0	294.0	29.2	15.9	6.1	117.6	0.51	703.8	301.6	0.559	100	100.0	15101		2646.0	4000	3349.8	3789	9799	2094	422	11472	7281
3	45.0	42.0	294.0	29.2	15.9	6.1	117.6	0.51	719.7	307.7	0.559	100	100.0	15478		2646.0	4000	3365.7	3807	10044	2104	432	11716	7463
3	46.0	43.0	294.0	29.2	15.9	6.1	117.6	0.51	735.6	313.8	0.559	100	100.0	15855		2646.0	4000	3381.6	3824	10289	2114	443	11960	7645
3	47.0	44.0	294.0	29.2	15.9	6.1	117.6	0.51	751.5	319.9	0.559	100	100.0	16232		2646.0	4000	3397.5	3842	10533	2124	453	12204	7826
3	48.0	45.0	294.0	29.2	15.9	6.1	117.6	0.51	767.4	326.0	0.559	100	100.0	16609		2646.0	4000	3413.4	3860	10778	2134	463	12449	8008

LAVORO: CA352 SS554 OPERA: ST01 - MURI ANDATORI RESISTENZA DI UN PALO TRIVELLATO SOGGETTO AD AZIONI ASSIALI DI COMPRESSIONE/TRAZIONE

ALLINEAMENTI: **VALORI DEI PARAMETRI GEOTECNICI:**

MINIMI

ALLINEAMENTO	Lp (m)	Rsd (kN)	Rbd (kN)	Rcd (kN)	Fcd (kN)	c.u.c	Rtd (kN)	Ftd (kN)	c.u.t
ST01	12.0	2705	1806	4387	1530	35%	2017	0	0%

RESISTENZA A COMPRESSIONE A COMPRESSIONE DELLA PALIFICATA

La resistenza ai carichi assiali di compressione del gruppo Rcd,gr viene determinatain base alla seguente espressione:

Rcd,gr = npali x η x Rcd

in cui: npali:

Rcd

è il numero complessivo di pali presenti nella palificata

efficienza della palificata

L'efficienza della ¡Resistenza di progetto del palo singolo ai carichi assiali di compressione

Relativamente ai terreni coesivi aventi interasse tra i pali non inferiore a 3D, l'efficienza viene determinata mediante la nota

espressione di Converse-Labarre:

interasse tra i pali diametro dei pali numero di file

numero massimo di pali in ciascuna fila

RESISTENZA DELLA PALIFICATA

ALLINEAMENTO	Dр	i	npali	m	n	η	Rcd,gr	Ecd,gr	c.u.gr
	(m)	(m)					(kN)	(kN)	
ST01	1.20	3.60	8	2	4	0.74	26111	10900	42%

SOTTOPASSO ST01

OPERA:

LAVORO: CA352 SS554

RESISTENZA DI UN PALO SOGGETTO AD AZIONI TRASVERSALI ALLINEAMENTI: PALI MURI ANDATORI ST01

Il valore di progetto Rcd della Resistenza di pali soggetti a carichi trasversali Rtr,d è pari a:

 $\begin{array}{ll} Rtr,d = Rtr,k \ / \ \gamma T: & Resistenza \ ai \ carichi \ trasversali \ di \ progetto \\ Rtr,k = Min \ [(Rtr,cal)_{media} \ / \ \xi 3; \ (Rtr,cal)_{min} \ / \ \xi 4 & Resistenza \ ai \ carichi \ trasversali \ caratteristica \\ Rtr,calc = Hlim: & Resistenza \ ai \ carichi \ trasversali \ di \ calcolo \\ \end{array}$

Il coefficiente parziale γ_T per verifiche SLU di pali soggetti ad azioni trasversali è pari a:

Coefficiente parziale (R3) γ_T 1.30

La resistenza ai carichi trasversali di calcolo è valutata in accordo a Broms (1984):

Terreni coesivi:

palo corto: Hlim = 9 cu D (L - 1.5 D)

palo intermedio: Hlim = -9 cu D^2 (L/D + 1.5) + 9 cu D^2 (2 (L/D)² + 4/9 My /(cu D^3) + 4.5)^{0.5}

palo lungo: Hlim = -13.5 cu D^2 + cu D^2 (182.25 + 36 My /(cu D^3))^{0.5}

Terreni incoerenti:

palo corto: Hlim = $1.5 L^2 \text{ Kp } \gamma' D$ palo intermedio: Hlim = $0.5 L^2 \text{ Kp } \gamma' D + \text{My } / L$

palo lungo: Hlim = Kp γ' D³ ((3.681 My / (Kp γ' D⁴))²)^{1/3}

I Fattori di correlazione ξ per la determinazione della resistenza caratteristica in funzione del numero di verticali indagate sono dati dalla seguente tabella

n. Vert.	1	2	3	4	5	7	10	
ξ3	1.70	1.65	1.60	1.55	1.50	1.45	1.40	
ξ ₄	1.70	1.55	1.48	1.42	1.34	1.28	1.21	

CARATTERISTICHE GEOMETRICHE DEL PALO

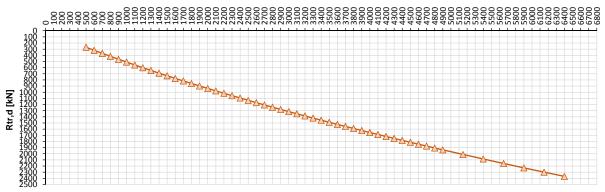
Diametro del palo	D	m	1.20	ı
Lunghezza minima del palo	L	m	12.00	

FATTORI DI CORRELAZIONE RESISTENZA CARATTERISTICA

Numero delle verticali indagate spinte a profondità superiore della lunghezza dei pali	6
coefficiente 53	1.50
coefficiente 54	1 34

PARAMETRI GEOTECNICI

		TERREN	ENI COESIVI TERRENI INCOERENTI								
DESCI	RIZIONE	cu,med kPa	cu,min kPa	γ',med kN/m ³	φ'med deg	kp,med	γ',min kN/m³	φ'min deg	kp,min		
Ma	TRATTO I	220.0	190.0	18.0		1.00	15.9		1.00		


^{*} Per terreni incoerenti impostare cu,med = cu,min = ""

		PAI	RAMETRI ME	DI			PAR	RAMETRI MII	IMI		ı
	palo corto	palo intermedio	palo lungo			palo corto	palo intermedio	palo lungo			
My=MRd (kNm)	H _{lim1,med} (kN)	H _{lim2,med} (kN)	H _{lim3,med} (kN)	H _{lim} (kN)	Rtr,d _{med} (kN)	H _{lim1,min} (kN)	H _{lim2,min} (kN)	H _{lim3,min} (kN)	H _{lim} (kN)	Rtr,d _{min} (kN)	Rtr,d (kN)
500	24235	8043	524	524	268	20930	6954	519	519	298	268
600	24235	8054	622	622	319	20930	6965	615	615	353	319
700	24235	8066	718	718	368	20930	6977	710	710	407	368
800	24235	8077	812	812	416	20930	6989	802	802	460	416
900	24235	8089	904	904	464	20930	7000	892	892	512	464
1000	24235	8101	995	995	510	20930	7012	981	981	563	510
1100	24235	8112	1085	1085	556	20930	7024	1068	1068	613	556
1200	24235	8124	1173	1173	601	20930	7035	1153	1153	662	601
1300	24235	8136	1259	1259	646	20930	7047	1237	1237	710	646
1400	24235	8147	1344	1344	689	20930	7058	1320	1320	758	689
1500	24235	8159	1428	1428	732	20930	7070	1401	1401	804	732
1600	24235	8170	1511	1511	775	20930	7082	1481	1481	850	775
1700	24235	8182	1592	1592	817	20930	7093	1560	1560	895	817
1800	24235	8194	1673	1673	858	20930	7105	1637	1637	940	858
1900	24235	8205	1752	1752	899	20930	7116	1714	1714	984	899
2000	24235	8217	1830	1830	939	20930	7128	1789	1789	1027	939
2100	24235	8228	1908	1908	978	20930	7139	1863	1863	1070	978
2200	24235	8240	1984	1984	1018	20930	7151	1937	1937	1112	1018
2300	24235	8252	2060	2060	1056	20930	7163	2009	2009	1153	1056
2400	24235	8263	2134	2134	1094	20930	7174	2081	2081	1194	1094
2500	24235	8275	2208	2208	1132	20930	7186	2151	2151	1235	1132
2600	24235	8286	2281	2281	1170	20930	7197	2221	2221	1275	1170
2700	24235	8298	2353	2353	1207	20930	7209	2290	2290	1315	1207
2800	24235	8309	2424	2424	1243	20930	7220	2358	2358	1354	1243
2900	24235	8321	2495	2495	1279	20930	7232	2426	2426	1392	1279
3000	24235	8333	2564	2564	1315	20930	7244	2492	2492	1431	1315
3100	24235	8344	2634	2634	1351	20930	7255	2558	2558	1469	1351
3200	24235	8356	2702	2702	1386	20930	7267	2624	2624	1506	1386
3300	24235	8367	2770	2770	1420	20930	7278	2688	2688	1543	1420
3400	24235	8379	2837	2837	1455	20930	7290	2752	2752	1580	1455
3500	24235	8390	2903	2903	1489	20930	7301	2816	2816	1616	1489
3600	24235	8402	2969	2969	1523	20930	7313	2878	2878	1652	1523
3700	24235	8413	3035	3035	1556	20930	7324	2941	2941	1688	1556
3800	24235	8425	3099	3099	1589	20930	7336	3002	3002	1723	1589
3900	24235	8436	3163	3163	1622	20930	7347	3063	3063	1758	1622

LAVORO	: CA352 S	S554						OPERA:		SOTTOP	ASSO ST01
RESISTE	NZA DI UN	I PALO SO	OGGETTO	AD AZIO	NI TRASV	ERSALI	ALLINEAMENTI:			PALI MU	RI ANDATORI ST01
	1					1					i
4000	24235	8448	3227	3227	1655	20930	7359	3124	3124	1793	1655
4100	24235	8459	3290	3290	1687	20930	7370	3184	3184	1828	1687
4200	24235	8471	3353	3353	1719	20930	7382	3243	3243	1862	1719
4300	24235	8482	3415	3415	1751	20930	7393	3302	3302	1895	1751
4400	24235	8494	3476	3476	1783	20930	7405	3360	3360	1929	1783
4500	24235	8505	3537	3537	1814	20930	7416	3418	3418	1962	1814
4600	24235	8517	3598	3598	1845	20930	7428	3476	3476	1995	1845
4700	24235	8528	3658	3658	1876	20930	7439	3533	3533	2028	1876
4800	24235	8540	3718	3718	1906	20930	7451	3589	3589	2060	1906
4900	24235	8551	3777	3777	1937	20930	7462	3645	3645	2093	1937
5150	24235	8580	3923	3923	2012	20930	7491	3784	3784	2172	2012
5400	24235	8609	4067	4067	2085	20930	7519	3920	3920	2250	2085
5650	24235	8638	4208	4208	2158	20930	7548	4054	4054	2327	2158
5900	24235	8666	4347	4347	2229	20930	7577	4185	4185	2402	2229
6150	24235	8695	4483	4483	2299	20930	7605	4314	4314	2476	2299
6400	24235	8724	4618	4618	2368	20930	7634	4441	4441	2549	2368

Resistenza di progetto del palo singolo alle azioni trasversali Palo impedito di ruotare in testa (incastro)

MRd [kNm]

		PALO S	NGOLO			PALIFICATA						
ALLINEAMENTO	Му	Rtr,d	Ftr,d	c.u.1	Му	Rtr,d1	npali	η	Rtr,dgr	Ftr,dgr	c.u.gr	
	(kNm)	(kN)	(kN)		(kNm)	(kN)		(%)	(kN)	(kN)		
PALI MURI	2190.0	978	300.0	31%	2283.0	1018	8.0	80%	6512	2400.0	37%	