COMMITTENTE:



PROGETTAZIONE:



## **DIREZIONE TECNICA**

## **U.O. INFRASTRUTTURE CENTRO**

## **PROGETTO DEFINITIVO**

## RADDOPPIO LINEA FERROVIARIA ROMA-VITERBO TRATTA CESANO-VIGNA DI VALLE

# SOVRAPPASSO PEDONALE STAZIONE VIGNA DI VALLE IV04 - PASSERELLA PEDONALE - Vigna di Valle

| Impal | cat | to – I | Кe | azi | one | di | ca | co | lo |
|-------|-----|--------|----|-----|-----|----|----|----|----|
|-------|-----|--------|----|-----|-----|----|----|----|----|

| SCALA:   |
|----------|
| -        |
| <u> </u> |

| COMMESSA | LOTTO FASE | ENTE TIPO DOC. | OPERA/DISCIPLINA | PROGR. | REV. |
|----------|------------|----------------|------------------|--------|------|
| NR1J     | 0 0 D      | 2 9 C L        | I V 0 4 0 7      | 1 0 1  | Α    |

| Rev. | Descrizione         | Redatto | Data    | Verificato | Data    | Approvato   | Data    | Autorizzato Data                                                                                  |  |
|------|---------------------|---------|---------|------------|---------|-------------|---------|---------------------------------------------------------------------------------------------------|--|
| ^    | Emissione esecutiva | G. Usai | 11.2019 | G. Passaro | 11 2010 | T. Paoletti | 11 2010 |                                                                                                   |  |
| Α    | Emissione esecutiva | QH L    | 11.2019 | М          | 11.2019 | B           | 11.2019 | F. Arduini<br>11.2019                                                                             |  |
|      |                     |         |         | Ц          |         | 14          |         | 11.2019                                                                                           |  |
|      |                     |         |         |            |         |             |         | PALEPHNE D . A                                                                                    |  |
|      |                     |         |         |            |         |             |         | ITALFERIR S.p.A. Direzione Tecnica Infrastrutture Centro                                          |  |
|      |                     |         |         |            |         |             |         | Dott. Ing. Fabilizio Arduini<br>Ordine degli Ingegneri sella Provincia di Roma<br>nº 16392 pol. A |  |
|      |                     |         |         |            |         |             |         | W. 16305 TOT W                                                                                    |  |
|      |                     |         |         |            |         |             |         | 8                                                                                                 |  |

| File: NR1J00D29CLIV0407101A.DOC |  | n. Elab.: 1 | 40.06 |
|---------------------------------|--|-------------|-------|
|---------------------------------|--|-------------|-------|



SOVRAPP. PEDONALE STAZIONE VIGNA DI VALLE IV04 - PASSERELLA PEDONALE - Vigna di Valle IMPALCATO – Relazione di calcolo

 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 NR1J
 00 D 29
 CL
 IV0407 101
 A
 2 di 60

### **INDICE**

| 1    | PREMESSA                                                                           | 5     |
|------|------------------------------------------------------------------------------------|-------|
| 2    | NORMATIVE DI RIFERIMENTO                                                           | 11    |
| 3    | UNITÀ DI MISURA E SIMBOLOGIA                                                       | 12    |
| 4    | CARATTERISTICHE DEI MATERIALI                                                      | 13    |
| 4.1  | CALCESTRUZZO PER SOLETTA                                                           | 13    |
| 4.2  | ACCIAO PER C.A.                                                                    | 13    |
| 4.3  | ACCIAO PER CARPENTERIA METALLICA                                                   | 14    |
| 5    | ANALISI DEI CARICHI                                                                | 15    |
| 5.1  | PESI PROPRI STRUTTURALI (G1)                                                       | 15    |
| 5.2  | SOVRACCARICHI PERMANENTI PORTATI (G2)                                              | 16    |
| 5.3  | SOVRACCARICHI ACCIDENTALI (Q1)                                                     | 16    |
| 5.4  | AZIONE DEL VENTO (Q5)                                                              | 18    |
| 5.5  | EFFETTI AERODINAMICI ASSOCIATI AL PASSAGGIO DEI CONVOGLI FERROVIARI (Q5_AERO)      | 18    |
| 5.6  | S RITIRO (ε2)                                                                      | 19    |
| 5.7  | VARIAZIONE TERMICA UNIFORME (ε3_TU)                                                | 19    |
| 5.8  | S VARIAZIONE TERMICA NON UNIFORME (ε3_DT)                                          | 19    |
| 5.9  | AZIONE SISMICA (Q6)                                                                | 20    |
| 5.10 | URTI DA TRAFFICO VEICOLARE - TRAFFICO VEICOLARE SOTTO PONTI O ALTRE STRUTTURE      | 25    |
| 6    | MODELLO DI CALCOLO E.F.                                                            | 26    |
| 6.1  | ASSEGNAZIONE DEI VINCOLI ESTERNI                                                   | 28    |
| 6.2  | CARATTERISTICHE GEOMETRICHE ED INERZIALI DELLE SEZIONI ASSEGNATE AGLI ELEMENTI FRA | AME29 |
|      | 6.2.1 Travi principali                                                             | 29    |
|      | 6.2.2 Trasversi di appoggio                                                        | 30    |
|      | 6.2.3 Trasversi correnti                                                           | 30    |



SOVRAPP. PEDONALE STAZIONE VIGNA DI VALLE IV04 - PASSERELLA PEDONALE - Vigna di Valle IMPALCATO – Relazione di calcolo

 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 NR1J
 00 D 29
 CL
 IV0407 101
 A
 3 di 60

|      | 6.2.4  | Controventi                                                 | 31 |
|------|--------|-------------------------------------------------------------|----|
| 7    | ANAL   | SI MODALE                                                   | 32 |
| 7.1  | MA     | SSE SIMICHE                                                 | 32 |
| 7.2  | Со     | MBINAZIONE DELLE MASSE                                      | 32 |
| 7.3  | Fo     | RME MODALI PRINCIPALI                                       | 32 |
| 7.4  | Fa     | TTORI DI PARTECIPAZIONE MODALE DELLE MASSE                  | 34 |
| 7.5  | LIM    | ITAZIONE DELLE VIBRAZIONI (AI SENSI DI C5.1.8.1 DI NTC2018) | 35 |
| 8    | ANAL   | SI DELLE SOLLECITAZIONI ELEMENTARI                          | 36 |
| 8.1  | TRA    | AVI PRINCIPALI                                              | 36 |
|      | 8.1.1  | Carico g1                                                   | 36 |
|      | 8.1.2  | Carico g2                                                   | 36 |
|      | 8.1.3  | Carico q_C1+C2 (folla presente su entrambe le campate)      | 36 |
|      | 8.1.4  | Carico q_C1 (folla presente sulla campata C1 di sinstra)    | 37 |
|      | 8.1.5  | Carico q_C2 (folla presente sulla campata C2 di destra)     | 37 |
|      | 8.1.6  | Azione q5                                                   | 37 |
|      | 8.1.7  | Azione q5_aero                                              | 38 |
|      | 8.1.8  | Azione ε3_DT                                                | 38 |
| 9    | COEF   | FICIENTI DI COMBINAZIONE DELLE AZIONI                       | 39 |
| 10   | SOLL   | ECITAZIONI DI CALCOLO                                       | 42 |
| 10.1 | Co     | MBINAZIONE ENVE_SLE                                         | 42 |
| 10.2 | Co     | MBINAZIONE ENVE_SLU                                         | 42 |
| 10.3 | Co     | MBINAZIONE ENVE_SLV                                         | 42 |
| 11   | SLE -  | VERIFICHE STRUTTURALI DELLE TENSIONI NORMALI                | 43 |
| 11.1 | TRA    | AVI PRINCIPALI                                              | 43 |
|      | 11.1.1 | Sezione di appoggio su P2 (momento negativo)                | 43 |
|      | 11.1.2 | Sezione di campata C1 (momento positivo)                    | 44 |



SOVRAPP. PEDONALE STAZIONE VIGNA DI VALLE IV04 - PASSERELLA PEDONALE - Vigna di Valle IMPALCATO – Relazione di calcolo

| COMMESSA | LOTTO   | CODIFICA | DOCUMENTO  | REV. | FOGLIO  |
|----------|---------|----------|------------|------|---------|
| NR1J     | 00 D 29 | CL       | IV0407 101 | Α    | 4 di 60 |

|      | 11.1.3 Sezione di campata C2 (momento positivo) | 45 |
|------|-------------------------------------------------|----|
| 11.2 | 2 Trasversi correnti                            | 46 |
|      | 11.2.1 Sezione di estremità (momento negativo)  | 46 |
|      | 11.2.2 Sezione di campata (momento positivo)    | 47 |
| 11.3 | 3 TRASVERSI DI APPOGGIO                         | 48 |
|      | 11.3.1 Sezione di estremità (momento negativo)  | 48 |
|      | 11.3.2 Sezione di campata (momento positivo)    | 49 |
| 12   | SLU - VERIFICHE STRUTTURALI DI RESISTENZA       | 50 |
| 12.1 | TRAVI PRINCIPALI                                | 51 |
| 12.2 | 2 Trasversi                                     | 53 |
| 13   | APPOGGI E GIUNTI                                | 55 |
| 13.1 | REAZIONI ELEMENTARI                             | 55 |
| 13.2 | 2 SCARICHI SUGLI APPOGGI                        | 57 |
| 13.3 | 3 SPOSTAMENTI ELEMENTARI                        | 58 |
| 14   | FRECCE E CONTROMONTE                            | 59 |



#### 1 PREMESSA

Il progetto di raddoppio della tratta Cesano – Vigna di Valle, sulla linea ferroviaria Roma – Viterbo, costituisce la prima fase funzionale del più esteso intervento di raddoppio tra Cesano e Bracciano, previsto dal recente Accordo Quadro tra Regione Lazio e RFI del 22/02/2018.



Figura 1 – Stazione Vigna di Valle – Stralcio planimetrico

Relativamente alla nuova stazione di Vigna di Valle si prevede la realizzazione di una passerella pedonale di scavalco della linea ferroviaria, il cui impalcato è oggetto della presente relazione strutturale.



SOVRAPP. PEDONALE STAZIONE VIGNA DI VALLE IV04 - PASSERELLA PEDONALE - Vigna di Valle IMPALCATO – Relazione di calcolo

COMMESSA LOTTO CODIFICA DOCUMENTO REV. FOGLIO

NR1J 00 D 29 CL IV0407 101 A 6 di 60

### 1.1 DESCRIZIONE DELLA STRUTTURA

Si riportano a seguire delle immagini che illustrano lo scavalco della linea ferroviaria mediante la passerella pedonale.

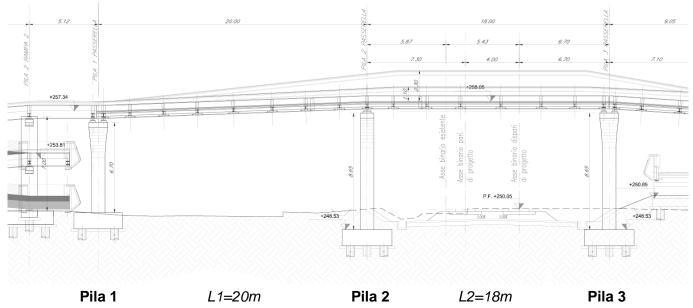



Figura 2 - Stazione Vigna di Valle - Sezione longitudinale attraversamento

L'impalcato della passerella presenta schema statico di trave continua su tre appoggi, con luci di 20m + 18m ed è realizzato in carpenteria metallica con soletta gettata in opera su lamiera grecata. Sono presenti due travi principali costituite da profili commerciali (HEB1000) poste ad interasse di 3.24m, costituite da conci solidarizzati tra loro in fase di montaggio.

I trasversi intradossati che collegano le due travi principali sono realizzati in carpenteria metallica e posti ad un interasse variabile tra 2m (in prossimità di un appoggio) e 3m (in mezzeria di campata); in particolare saranno impiegati profili commerciali HEB260 per i trasversi di appoggio (centrale e di estremità) e profili HEA220 per i trasversi correnti.

I controventi di piano inferiore sono costituiti da profili commerciali L80x80x8 disposti a croce in ogni campo compreso tra due trasversi adiacenti.

Le travi principali sono costituite ognuna da tre conci, di lunghezza pari a16m, 8m e 13.65m, solidarizzati in opera mediante unioni bullonate a completo ripristino.



SOVRAPP. PEDONALE STAZIONE VIGNA DI VALLE IV04 - PASSERELLA PEDONALE - Vigna di Valle IMPALCATO – Relazione di calcolo

| COMMESSA | LOTTO   | CODIFICA | DOCUMENTO  | REV. | FOGLIO  |
|----------|---------|----------|------------|------|---------|
| NR1J     | 00 D 29 | CL       | IV0407 101 | Α    | 7 di 60 |

La soletta è gettata in opera su lamiera grecata HI-BOND (A55/P600, sp=0.7mm), tessuta parallelamente alle travi principali e continua su tre o più trasversi consecutivi. Lo spessore complessivo della soletta è 9cm. Da un punto di vista strutturale, la soletta non è collegata rigidamente alla carpenteria metallica dell'impalcato.

All'estradosso della soletta è presente un massetto in c.a. atto a sagomare le pendenze trasversali, pari a ±1% e costante su l'intero sviluppo longitudinale dell'impalcato.

Il piano di calpestio è realizzato mediante una pavimentazione in WPC (*wood polymer composite*), tessuta trasversalmente su un magatello realizzato con profili di alluminio longitudinali aventi spessore 3cm e posti ad interasse di 60cm.

All'interfaccia tra soletta e massetto delle pendenze ed all'estradosso di quest'ultimo saranno posti in opera due strati di impermeabilizzazione, aventi ciascuno spessore pari a 1cm.

Si riportano a seguire delle figure che illustrano la geometria dell'impalcato metallico



SOVRAPP. PEDONALE STAZIONE VIGNA DI VALLE IV04 - PASSERELLA PEDONALE - Vigna di Valle IMPALCATO – Relazione di calcolo

 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 NR1J
 00 D 29
 CL
 IV0407 101
 A
 8 di 60

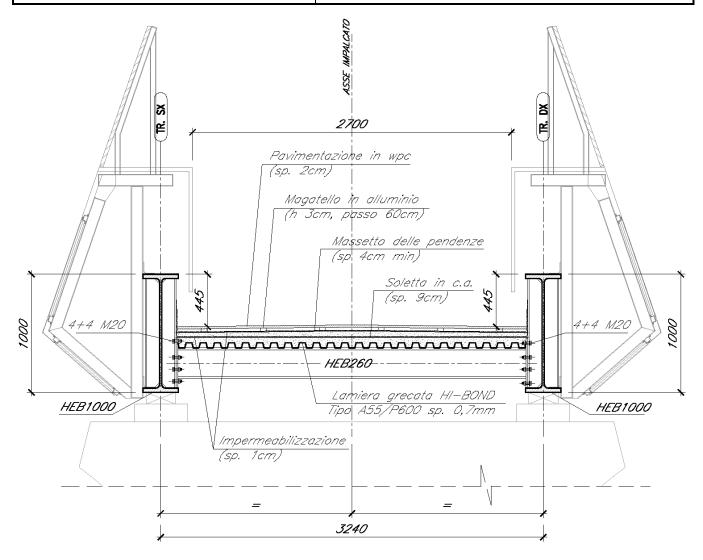



Figura 3 – Sezione trasversale dell'impalcato in asse appoggio [mm]



SOVRAPP. PEDONALE STAZIONE VIGNA DI VALLE IV04 - PASSERELLA PEDONALE - Vigna di Valle IMPALCATO – Relazione di calcolo NR1

 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 NR1J
 00 D 29
 CL
 IV0407 101
 A
 9 di 60

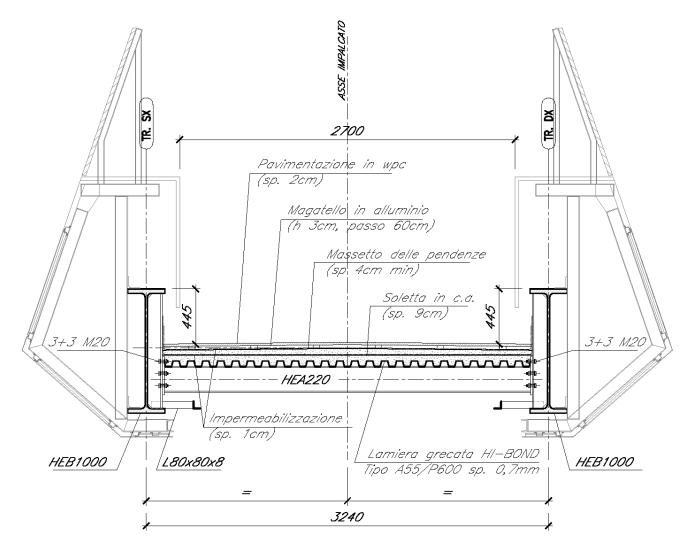



Figura 4 – Sezione trasversale dell'impalcato in adiacenza trasverso corrente [mm]



SOVRAPP. PEDONALE STAZIONE VIGNA DI VALLE IV04 - PASSERELLA PEDONALE - Vigna di Valle IMPALCATO – Relazione di calcolo

 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 NR1J
 00 D 29
 CL
 IV0407 101
 A
 10 di 60

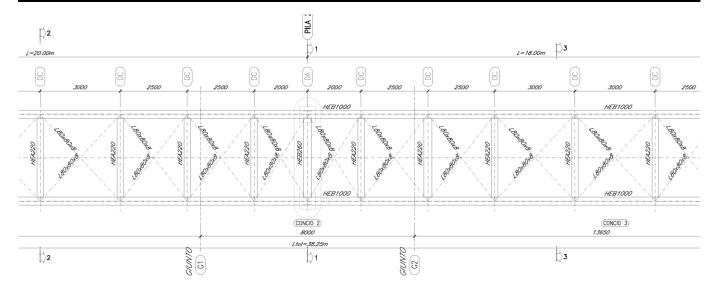



Figura 5 – Pianta impalcato in carpenteria metallica (stralcio) [mm]

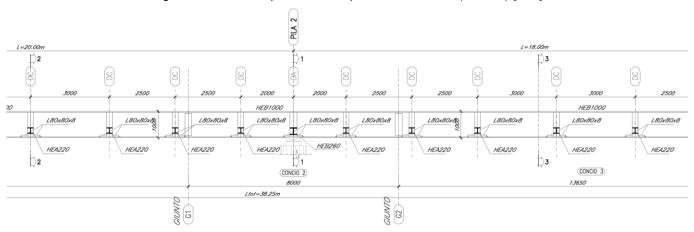



Figura 6 – Sezione longitudinale impalcato in carpenteria metallica (stralcio) [mm]



SOVRAPP. PEDONALE STAZIONE VIGNA DI VALLE IV04 - PASSERELLA PEDONALE - Vigna di Valle IMPALCATO – Relazione di calcolo

| COMMESSA | LOTTO   | CODIFICA | DOCUMENTO  | REV. | FOGLIO   |
|----------|---------|----------|------------|------|----------|
| NR1J     | 00 D 29 | CL       | IV0407 101 | Α    | 11 di 60 |

#### 2 NORMATIVE DI RIFERIMENTO

Sono state prese a riferimento le seguenti Normative nazionali ed internazionali vigenti alla data di redazione del presente documento:

- 1. Legge 5 novembre 1971 n. 1086 Norme per la disciplina delle opere di conglomerato cementizio armato normale e precompresso ed a struttura metallica
- 2. Legge 2 febbraio 1974 n. 64 Provvedimenti per le costruzioni con particolari prescrizioni per le zone sismiche
- 3. D.M. 17 gennaio 2018 Norme Tecniche per le Costruzioni
- 4. Circolare 21 gennaio 2019 Istruzioni per l'applicazione dell' "Aggiornamento delle Nuove norme tecniche per le costruzioni" di cui al D.M. 17 gennaio 2018
- 5. Eurocodice 2: Progettazione delle strutture in calcestruzzo Parte 1.1: Regole generali e regole per gli edifici.
- 6. UNI ENV 1992-1-1 Parte 1-1: Regole generali e regole per gli edifici;
- 7. UNI EN 206-1-2016: Calcestruzzo. "Specificazione, prestazione, produzione e conformità".
- 8. RFI DTC SI MA IFS 001 C Manuale di progettazione delle opere civili Parte I
- 9. RFI DTC SI AM MA IFS 001 B Manuale di progettazione delle opere civili Parte II Sezione 1 Ambiente
- 10. RFI DTC SI PS MA IFS 001 C Manuale di progettazione delle opere civili Parte II Sezione 2 Ponti e Strutture
- 11. RFI DTC SI CS MA IFS 001 C Manuale di progettazione delle opere civili Parte II Sezione 3 Corpo Stradale
- 12. RFI DTC SI CS MA IFS 001 C del 21.12.2018 "Capitolato generale tecnico di appalto delle opere civili".
- 13. Regolamento (UE) N. 1299/2014 della Commissione del 18/11/2014 relativo alle specifiche tecniche di interoperabilità per il sottosistema "infrastruttura" del sistema ferroviario dell'Unione Europea.



SOVRAPP. PEDONALE STAZIONE VIGNA DI VALLE IV04 - PASSERELLA PEDONALE - Vigna di Valle IMPALCATO – Relazione di calcolo

 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 NR1J
 00 D 29
 CL
 IV0407 101
 A
 12 di 60

## 3 UNITÀ DI MISURA E SIMBOLOGIA

Si utilizza il Sistema Internazionale (SI):

## unità di misura principali

N (Newton) unità di forza

m (metro) unità di lunghezza

kg (kilogrammo-massa) unità di massas (secondo) unità di tempo

## unità di misura derivate

**kN** (kiloNewton)  $10^3 \text{ N}$  **MN** (megaNewton)  $10^6 \text{ N}$ 

**kgf** (kilogrammo-forza) 1 kgf = 9.81 N

cm(centimetro) $10^{-2}$  mmm(millimetro) $10^{-3}$  mPa(Pascal) $1 \text{ N/m}^2$ kPa(kiloPascal) $10^3 \text{ N/m}^2$ MPa(megaPascal) $10^6 \text{ N/m}^2$ 

N/m³ (peso specifico)

g (accelerazione di gravità) ~9.81 m/s²

### corrispondenze notevoli

 $1 \text{ MPa} = 1 \text{ N/mm}^2$ 

1 MPa ~ 10 kgf/cm<sup>2</sup>

 $1 \text{ kN/m}^3 \sim 100 \text{ kgf/m}^3$ 

Si utilizzano i seguenti principali simboli con le relative unità di misura normalmente adottate:

 $\begin{array}{lll} \gamma & \text{(gamma)} & \text{peso dell'unità di volume} & \text{(kN/m}^3) \\ & & \text{(sigma)} & \text{tensione normale} & \text{(N/mm}^2) \\ & & \text{tau)} & \text{tensione tangenziale} & \text{(N/mm}^2) \end{array}$ 

ε (epsilon) deformazione (m/m - adimensionale)

φ (fi) angolo di resistenza (° sessagesimali)



SOVRAPP. PEDONALE STAZIONE VIGNA DI VALLE IV04 - PASSERELLA PEDONALE - Vigna di Valle IMPALCATO – Relazione di calcolo

COMMESSA LOTTO CODIFICA DOCUMENTO REV. FOGLIO

NR1J 00 D 29 CL IV0407 101 A 13 di 60

### 4 CARATTERISTICHE DEI MATERIALI

Si riportano di seguito i materiali previsti per la realizzazione delle strutture, suddivisi per elemento costruttivo.

## 4.1 Calcestruzzo per soletta

| Classe             | C32/40 |     |                                             |
|--------------------|--------|-----|---------------------------------------------|
| R <sub>ck</sub> =  | 40     | MPa | resistenza caratteristica cubica            |
| f <sub>ck</sub> =  | 33.2   | MPa | resistenza caratteristica cilindrica        |
| f <sub>cm</sub> =  | 41.2   | MPa | valor medio resistenza cilindrica           |
| α <sub>cc</sub> =  | 0.85   |     | coeff. rid. per carichi di lunga durata     |
| үм=                | 1.5    | -   | coefficiente parziale di sicurezza SLU      |
| f <sub>cd</sub> =  | 18.81  | MPa | resistenza di progetto                      |
| f <sub>ctm</sub> = | 3.10   | MPa | resistenza media a trazione semplice        |
| f <sub>cfm</sub> = | 3.72   | MPa | resistenza media a trazione per flessione   |
| f <sub>ctk</sub> = | 2.17   | MPa | valore caratteristico resistenza a trazione |
| E <sub>cm</sub> =  | 33642  | MPa | Modulo elastico di progetto                 |
| v =                | 0.2    |     | Coefficiente di Poisson                     |
| G <sub>c</sub> =   | 14017  | MPa | Modulo elastico Tangenziale di progetto     |

## 4.2 Acciao per c.a.

| B450C                        |        |     |                                        |
|------------------------------|--------|-----|----------------------------------------|
| f <sub>yk</sub> ≥            | 450    | MPa | tensione caratteristica di snervamento |
| f <sub>tk</sub> ≥            | 540    | MPa | tensione caratteristica di rottura     |
| $(f_t/f_y)_k \ge$            | 1.15   |     |                                        |
| $(f_t/f_y)_k <$              | 1.35   |     |                                        |
| γ <sub>s</sub> =             | 1.15   | -   | coefficiente parziale di sicurezza SLU |
| $f_{yd} =$                   | 391.3  | MPa | tensione caratteristica di snervamento |
| Es =                         | 200000 | MPa | Modulo elastico di progetto            |
| $\epsilon_{yd} =$            | 0.196% |     | deformazione di progetto a snervamento |
| $\epsilon_{uk} = (A_{gt})_k$ | 7.50%  |     | deformazione caratteristica ultima     |



SOVRAPP. PEDONALE STAZIONE VIGNA DI VALLE IV04 - PASSERELLA PEDONALE - Vigna di Valle IMPALCATO – Relazione di calcolo

 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 NR1J
 00 D 29
 CL
 IV0407 101
 A
 14 di 60

### 4.3 Acciao per carpenteria metallica

| S275                         |        |     |                                                     |  |
|------------------------------|--------|-----|-----------------------------------------------------|--|
| f <sub>yk</sub>              | 275    | MPa | tensione caratteristica di snervamento per t ≤ 40mm |  |
| f <sub>yk</sub>              | 255    | MPa | tensione caratteristica di snervamento per t > 40mm |  |
| γ <sub>S</sub> =             | 1.05   | -   | coefficiente parziale di sicurezza SLU              |  |
| $f_{yd} = f_{yk} / \gamma_s$ | 261.9  | MPa | tensione di progetto per t ≤ 40mm                   |  |
| $f_{yd} = f_{yk} / \gamma_s$ | 242.8  | MPa | tensione di progetto per t > 40mm                   |  |
| Es                           | 210000 | MPa | Modulo elastico                                     |  |
| v =                          | 0.3    |     | Coefficiente di Poisson                             |  |
| G <sub>c</sub> =             | 80769  | MPa | Modulo elastico Tangenziale di progetto             |  |



SOVRAPP. PEDONALE STAZIONE VIGNA DI VALLE IV04 - PASSERELLA PEDONALE - Vigna di Valle IMPALCATO – Relazione di calcolo

| COMMESSA | LOTTO   | CODIFICA | DOCUMENTO  | REV. | FOGLIO   |
|----------|---------|----------|------------|------|----------|
| NR1J     | 00 D 29 | CL       | IV0407 101 | Α    | 15 di 60 |

#### 5 ANALISI DEI CARICHI

### 5.1 Pesi propri strutturali (g1)

## Peso proprio acciaio

Il peso proprio strutturale delle travi è stato valutato fornendone le corrette dimensioni (vedi paragr. precedente) e la relativa densità di peso ( $\gamma = 78,5$  kN/m³) all'interno del software di calcolo impigato per la realizzazione del modello E.F.

Si riporta a seguire il computo del peso complessivo della carpenteria metallica che costituisce le travi principali, i trasversi ed i controventi di piano:

|                  | Travi prir | ncipali (CM) |           |       |       |    |         |      |       |       |       |      |
|------------------|------------|--------------|-----------|-------|-------|----|---------|------|-------|-------|-------|------|
|                  | Htot       | L            | Ala sup   |       | Anima |    | Ala inf |      | Α     | V     | P     | tot  |
|                  |            |              | Bsup      | tsup  | hw    | tw | Binf    | tinf |       |       |       |      |
|                  | mm         | mm           | mm        | mm    | mm    | mm | mm      | mm   | mm2   | m3    | kN    |      |
| C1               | 1000       | 16300        | 300       | 36    | 928   | 19 | 300     | 36   | 39232 | 0.639 | 50    |      |
| C2               | 1000       | 8000         | 300       | 36    | 928   | 19 | 300     | 36   | 39232 | 0.314 | 25    |      |
| С3               | 1000       | 13950        | 300       | 36    | 928   | 19 | 300     | 36   | 39232 | 0.547 | 43    | 117. |
|                  |            |              |           |       |       |    |         |      |       |       |       | kN   |
|                  |            |              |           |       |       |    |         |      |       |       |       |      |
|                  | Diaframn   | na appoggio  |           |       |       |    |         |      |       |       |       |      |
|                  | Htot       | L            | Ala sup   |       | Anima |    | Ala inf |      | Α     | ٧     | Р     | tot  |
|                  |            |              | Bsup      | tsup  | hw    | tw | Binf    | tinf |       |       |       |      |
|                  | mm         | mm           | mm        | mm    | mm    | mm | mm      | mm   | mm2   | m3    | kN    |      |
| HEB260           | 260        | 3000         | 260       | 17.5  | 225   | 10 | 260     | 17.5 | 11350 | 0.03  | 2.7   |      |
|                  |            |              |           |       |       |    |         |      | 0     | 0.00  | 0     | 2.7  |
|                  |            |              |           |       |       |    |         |      |       |       |       | kN   |
|                  |            |              |           |       |       |    |         |      |       |       |       |      |
|                  | Diaframn   | ni correnti  |           |       |       |    |         |      |       |       |       |      |
|                  | Htot       | L            | Ala sup   |       | Anima |    | Ala inf |      | Α     | ٧     | Р     | tot  |
|                  |            |              | Bsup      | tsup  | hw    | tw | Binf    | tinf |       |       |       |      |
|                  | mm         | mm           | mm        | mm    | mm    | mm | mm      | mm   | mm2   | m3    | kN    |      |
| HEA220           | 210        | 3000         | 220       | 11    | 188   | 7  | 220     | 11   | 6156  | 0.02  | 1.450 |      |
|                  |            |              |           |       |       |    |         |      | 0     | 0.00  | 0     | 1.4  |
|                  |            |              |           |       |       |    |         |      |       |       |       | kN   |
|                  |            |              |           |       |       |    |         |      |       |       |       |      |
|                  | Controve   | enti         |           |       |       |    |         |      |       |       |       |      |
|                  | num        | Sez          | Asez      | L     | Н     | В  | sp      |      | Α     | V     | Р     | tot  |
|                  |            |              | mm2       | mm    | mm    | mm | mm      |      | mm2   | m3    | kN    |      |
| inferiori        | 30         | L80X80X8     | 1230      | 4000  |       |    |         |      | 1230  | 0.148 | 12    |      |
|                  |            |              |           |       |       |    |         |      | 0     | 0.000 | 0     | 11.6 |
|                  |            |              |           |       |       |    |         |      |       |       |       | kN   |
|                  |            |              |           |       |       |    |         |      |       |       |       |      |
|                  | num        | peso unit.   | peso tot. | tot   |       |    |         |      |       |       |       |      |
|                  | 1          | kN           | kN        |       |       |    |         |      |       |       |       |      |
| Travi principali | 2          | 117.8        | 235.6     |       |       |    |         |      |       |       |       |      |
| diaframmi app.   | 3          | 2.7          | 8.0       |       |       |    |         |      |       |       |       |      |
| diaframmi corr.  | 13         | 1.4          | 18.8      |       |       |    |         |      |       |       |       |      |
| controventi      | 1          | 11.6         | 11.6      | 274.0 |       |    |         |      |       |       |       |      |
| CONTROVENIE      | _          | 11.0         | 11.0      | kN    |       |    |         |      |       |       |       |      |

Per tener conto di piastrame vario, controventi e bulloni, il peso di cui sopra è stato incrementato di un fattore pari a **1,1**, pertanto il peso complessivo della carpenteria metallica si assume pari a 302 kN, pari a 7.9 kN/m.



SOVRAPP. PEDONALE STAZIONE VIGNA DI VALLE IV04 - PASSERELLA PEDONALE - Vigna di Valle IMPALCATO – Relazione di calcolo

| COMMESSA | LOTTO   | CODIFICA | DOCUMENTO  | REV. | FOGLIO   |
|----------|---------|----------|------------|------|----------|
| NR1J     | 00 D 29 | CL       | IV0407 101 | Α    | 16 di 60 |

### Peso proprio soletta

La soletta getta su lamiera grecata presenta uno spessore equivalente pari a 6.8cm, cui corrisponde un peso pari a 1.70 kN/m2.

Tale azione è stata applicata sugli elementi frame che rappresentano i trasversi stessi, moltiplicata per un coefficiente pari all'interasse tra due elementi adiacenti.

#### Peso proprio lamiera grecata

II peso della lamiera grecata di tipo HI-BOND A55-P600 (sp. 0.7mm) è a 9.15 kg/m2, pari a 0.092 kN/m2.

Tale azione è stata applicata sugli elementi frame che rappresentano i trasversi stessi, moltiplicata per un coefficiente pari all'interasse tra due elementi adiacenti.

#### 5.2 Sovraccarichi permanenti portati (g2)

#### Barriere laterali

Si assume un peso a metro lineare pari a **0.5 kN/m** per ogniallineamento longitudinale. Tale azione è stata applicata sugli elementi frame che rappresentano le travi principali.

#### Carter di finitura

Si assume un peso a metro lineare pari a **1.0 kN/m** per ogniallineamento longitudinale. Tale azione è stata applicata sugli elementi frame che rappresentano le travi principali.

#### Massetto delle pendenze

Lo spessore minimo del massetto è pari a 4cm e si assume una pendenza trasversale pari a 1%. Il peso medio del massetto si assume quindi pari a **1.25 kN/m2**. Tale azione è stata applicata sugli elementi frame che rappresentano i trasversi stessi, moltiplicata per un coefficiente pari all'interasse tra due elementi adiacenti.

#### **Pavimentazione**

La pavimentazione è costituita da uno strato di legno WPC (spessore 2cm) poggiato su un magatello in profili di alluminio (h = 3cm) posti ad interasse 60cm. Il peso complessivo della pavimentazione è 25 kg/m2, pari **0.25 kN/m2.** Tale azione è stata applicata sugli elementi frame che rappresentano i trasversi stessi, moltiplicata per un coefficiente pari all'interasse tra due elementi adiacenti.

### 5.3 Sovraccarichi accidentali (q1)

#### Folla compatta



SOVRAPP. PEDONALE STAZIONE VIGNA DI VALLE IV04 - PASSERELLA PEDONALE - Vigna di Valle IMPALCATO – Relazione di calcolo

| COMMESSA | LOTTO   | CODIFICA | DOCUMENTO  | REV. | FOGLIO   |
|----------|---------|----------|------------|------|----------|
| NR1J     | 00 D 29 | CL       | IV0407 101 | Α    | 17 di 60 |

Ai fini del dimensionamento e della verifica delle travi è stata considerata la presenza di folla  $\mathbf{q}_1 = \mathbf{5kN/m2}$  su l'impalcato e per una larghezza pari a 2.70m (larghezza calpestabile).

Tale azione è stata applicata sugli elementi frame che rappresentano i trasversi stessi, moltiplicata per un coefficiente pari all'interasse tra due elementi adiacenti.

Il carico della folla espresso a metro lineare di impalcato è pari a 5.00 kN/m2 x 2.70 = 13.50 kN/m.

Il carico della folla è stato considerato applicato contemporaneamente o alternativamente sulle due campate per massimizzare le sollecitazioni nelle varie sezioni di verifica.



SOVRAPP. PEDONALE STAZIONE VIGNA DI VALLE IV04 - PASSERELLA PEDONALE - Vigna di Valle IMPALCATO – Relazione di calcolo

| COMMESSA | LOTTO   | CODIFICA | DOCUMENTO  | REV. | FOGLIO   |
|----------|---------|----------|------------|------|----------|
| NR1J     | 00 D 29 | CL       | IV0407 101 | Α    | 18 di 60 |

### 5.4 Azione del vento (q5)

Cautelativamente si considera una pressione del vento di 2.5 KN/m2 agente, per l'intero sviluppo longitudinale della passerella, sulla sola trave esposta e considerando un coefficiente di esposizione unitario.

Tale azione viene assegnata alle travi come carico uniformemente distribuito pari a:

h = 3.3 m altezza superficie esposta;

b = 1.2 m distanza tra baricantro superficie esposta e baricentro impalcato;

i = 3.24 m interasse travi principali;

f5 = 2.5 Kn/m2 x 3.3m = 8.25 KN/m forza orizzontale trasversale

Mq5 = 8.25 kN/m x 1,2 m = 9.9 kNm/m momento torcente

q5 =  $9.9 \text{ kNm/m}/3.24\text{m} = \pm 3.1 \text{ KN/m}$  carico uniforme verticale

#### 5.5 Effetti aerodinamici associati al passaggio dei convogli ferroviari (q5\_aero)

I valori caratteristici dell'azione  $\pm$  q2k, relativi a superfici orizzontali al di sopra del binario, sono forniti nella figura seguente, in funzione della distanza hg della superficie inferiore della struttura dal PF, che nel caso in esame è pari a hg = 7.25m. Si assume quindi un valore di q2k = 0.25 kN/m², corrispondente ad una V = 200 km/h.

La larghezza d'applicazione del carico per gli elementi strutturali da considerare si estende sino a 10 m da ciascun lato a partire dalla mezzeria del binario. Nel caso in esame interessa l'intera campata P2-P3 di luce 18m.

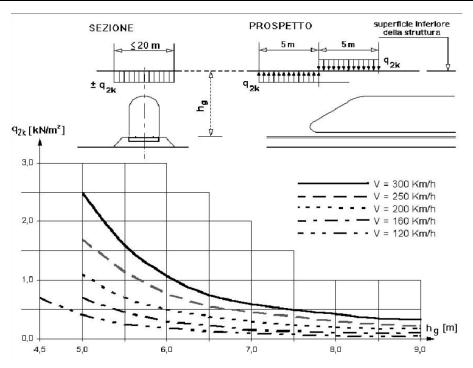
Per convogli transitanti in due direzioni opposte le azioni saranno sommate, come nel caso in esame.

L'azione q2k si deve ridurre del fattore k1, in accordo a quanto previsto nel § 5.2.2.6.1 delle NTC'18. Cautelativamente si assume k1 = 1.

Nel caso in esame si prende in considerazione solo il caso di pressione negativa sulla superficie inferiore dell'impalcato, in quanto concorde con i carichi gravitazionali e quindi più severa rispetto alla condizione di pressione positiva.

Nel caso in esame si applica una forza distribuita a ml verticale e diretta verso il basso su ogni trave principale dell'impalcato pari a :

Q2k = 2 \* 0.25 kN/m2 \* 3.24 m / 2 = 0.81 kN/m su ogni trave principale


Tale azione si considera contemporanea alla azione del vento q5.



SOVRAPP. PEDONALE STAZIONE VIGNA DI VALLE IV04 - PASSERELLA PEDONALE - Vigna di Valle IMPALCATO – Relazione di calcolo

 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 NR1J
 00 D 29
 CL
 IV0407 101
 A
 19 di 60



### 5.6 Ritiro (ε2)

Non avendo collegato la solleta in c.a. all'orditura metallica il ritiro della soletta non detrmina sollcitazioni sulle travi metalliche né sui trasversi.

## 5.7 Variazione termica uniforme (ε3\_TU)

Si considera una variazione termica uniforme pari a ±15°C.

## 5.8 Variazione termica non uniforme (ε3\_DT)

In aggiunta alla variazione termica uniforme, si considera un gradiente di temperatura di 10 °C fra intradosso soletta ed estradosso travi, considerando i due casi possibili: intradosso a temperatura superiore rispetto all'estradosso e intradosso a temperatura inferiore rispetto all'estradosso.



SOVRAPP. PEDONALE STAZIONE VIGNA DI VALLE IV04 - PASSERELLA PEDONALE - Vigna di Valle IMPALCATO – Relazione di calcolo

| COMMESSA | LOTTO   | CODIFICA | DOCUMENTO  | REV. | FOGLIO   |
|----------|---------|----------|------------|------|----------|
| NR1J     | 00 D 29 | CL       | IV0407 101 | Α    | 20 di 60 |

### 5.9 Azione sismica (q6)

Le opere in oggetto sono progettate per una vita nominale VN = 75 anni ed una classe d'uso III a cui corrisponde un coefficiente d'uso CU = 1.5.

L'azione sismica di progetto è definita per lo Stato Limite di Salvaguardia della Vita (SLV). Il periodo di ritorno di quest'ultima - in funzione della vita utile, della classe d'uso, del tipo di costruzione e dello stato limite di riferimento è di 1068 anni.

Dato il valore del periodo di ritorno suddetto, tramite la mappatura messa a disposizione in rete dall'Istituto Nazionale di Geofisica e Vulcanologia (INGV), è possibile definire i valori di ag, F0, T\*c.

- ag → accelerazione massima al sito;
- F0 → valore massimo del fattore di amplificazione dello spettro in accelerazione orizzontale;
- T\*c → periodo di inizio del tratto a velocità costante dello spettro in accelerazione orizzontale;
- S → coefficiente che comprende l'effetto dell'amplificazione stratigrafica (Ss) e dell'amplificazione topografica (St).

Cutelativamente si assume una categoria di sottosuolo C.

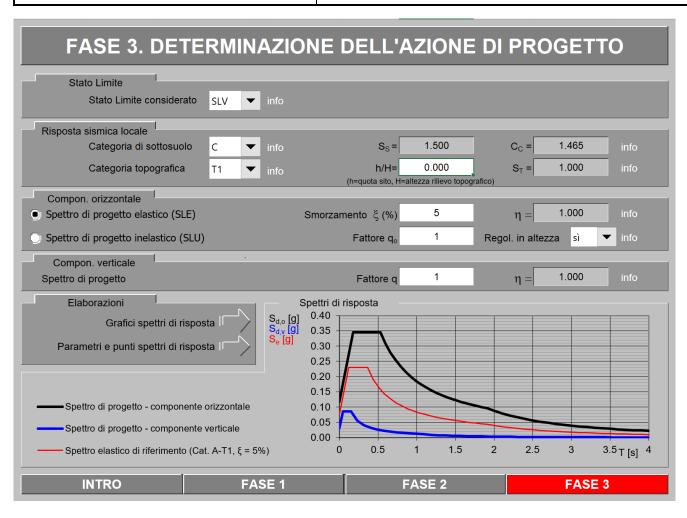


SOVRAPP. PEDONALE STAZIONE VIGNA DI VALLE IV04 - PASSERELLA PEDONALE - Vigna di Valle IMPALCATO – Relazione di calcolo

 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 NR1J
 00 D 29
 CL
 IV0407 101
 A
 21 di 60




| SLATO<br>LIMITE | T <sub>R</sub><br>[anni] | a <sub>g</sub><br>[g] | F。<br>[-] | T <sub>c</sub> *<br>[s] |
|-----------------|--------------------------|-----------------------|-----------|-------------------------|
| SLO             | 68                       | 0.040                 | 2.670     | 0.270                   |
| SLD             | 113                      | 0.046                 | 2.699     | 0.288                   |
| SLV             | 1068                     | 0.077                 | 2.978     | 0.365                   |
| SLC             | 2193                     | 0.088                 | 3.046     | 0.405                   |



SOVRAPP. PEDONALE STAZIONE VIGNA DI VALLE IV04 - PASSERELLA PEDONALE - Vigna di Valle IMPALCATO – Relazione di calcolo

 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 NR1J
 00 D 29
 CL
 IV0407 101
 A
 22 di 60



Si adotta un valore del fattore di struttura pari a q=1.



SOVRAPP. PEDONALE STAZIONE VIGNA DI VALLE IV04 - PASSERELLA PEDONALE - Vigna di Valle IMPALCATO – Relazione di calcolo

 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 NR1J
 00 D 29
 CL
 IV0407 101
 A
 23 di 60

## Parametri e punti dello spettro di risposta orizzontale per lo stato limite: SLV

(NTC-07 Eq. 3.2.7)

### Parametri indipendenti

| STATO LIMITE     | SLV     |  |  |  |
|------------------|---------|--|--|--|
| a <sub>a</sub>   | 0.077 g |  |  |  |
| F <sub>o</sub>   | 2.978   |  |  |  |
| T <sub>C</sub> * | 0.365 s |  |  |  |
| S <sub>S</sub>   | 1.500   |  |  |  |
| C <sub>C</sub>   | 1.465   |  |  |  |
| S <sub>T</sub>   | 1.000   |  |  |  |
| q                | 1.000   |  |  |  |

#### Parametri dipendenti

 $T_C = C_C \cdot T_C^*$ 

| S              | 1.500   |
|----------------|---------|
| η              | 1.000   |
| T <sub>B</sub> | 0.178 s |
| T <sub>C</sub> | 0.534 s |
| T <sub>D</sub> | 1.909 s |

#### Espressioni dei parametri dipendenti

| $\mathbf{S} = \mathbf{S}_S \cdot \mathbf{S}_T$    | (NTC-08 Eq. 3.2.5)             |
|---------------------------------------------------|--------------------------------|
| $\eta = \sqrt{10/(5+\xi)} \ge 0.55; \ \eta = 1/q$ | (NTC-08 Eq. 3.2.6; §. 3.2.3.5) |
| $T_{B} = T_{C} / 3$                               | (NTC-07 Eq. 3.2.8)             |

$$T_D = 4,0 \cdot a_g / g + 1,6$$
 (NTC-07 Eq. 3.2.9)

#### Espressioni dello spettro di risposta (NTC-08 Eq. 3.2.4)

$$\begin{split} 0 &\leq T < T_B & S_e(T) = a_g \cdot S \cdot \eta \cdot F_o \cdot \left[ \frac{T}{T_B} + \frac{1}{\eta \cdot F_o} \left( 1 - \frac{T}{T_B} \right) \right] \\ T_B &\leq T < T_C & S_e(T) = a_g \cdot S \cdot \eta \cdot F_o \\ T_C &\leq T < T_D & S_e(T) = a_g \cdot S \cdot \eta \cdot F_o \cdot \left( \frac{T_C}{T} \right) \\ T_D &\leq T & S_e(T) = a_g \cdot S \cdot \eta \cdot F_o \cdot \left( \frac{T_C T_D}{T^2} \right) \end{split}$$

Lo spettro di progetto  $S_d(T)$  per le verifiche agli Stati Limite Ultimi è ottenuto dalle espressioni dello spettro elastico  $S_e(T)$  sostituendo  $\eta$  con 1/q, dove q è il fattore di struttura. (NTC-08 § 3.2.3.5)

### Punti dello spettro di risposta

| Pulli            | dello spettr |        |
|------------------|--------------|--------|
|                  | T [s]        | Se [g] |
|                  | 0.000        | 0.116  |
| T <sub>B</sub> ◀ | 0.178        | 0.345  |
| T <sub>C</sub> ◀ | 0.534        | 0.345  |
|                  | 0.600        | 0.307  |
|                  | 0.665        | 0.277  |
|                  | 0.731        | 0.252  |
|                  | 0.796        | 0.231  |
|                  | 0.861        | 0.214  |
|                  | 0.927        | 0.199  |
|                  | 0.992        | 0.186  |
|                  | 1.058        | 0.174  |
|                  | 1.123        | 0.164  |
|                  | 1.189        | 0.155  |
|                  | 1.254        | 0.147  |
|                  | 1.320        | 0.140  |
|                  | 1.385        | 0.133  |
|                  | 1.451        | 0.127  |
|                  | 1.516        | 0.122  |
|                  | 1.582        | 0.117  |
|                  | 1.647        | 0.112  |
|                  | 1.713        | 0.108  |
|                  | 1.778        | 0.104  |
|                  | 1.843        | 0.100  |
| T <sub>D</sub> ◀ | 1.909        | 0.097  |
|                  | 2.009        | 0.087  |
|                  | 2.108        | 0.079  |
|                  | 2.208        | 0.072  |
|                  | 2.307        | 0.066  |
|                  | 2.407        | 0.061  |
|                  | 2.506        | 0.056  |
|                  | 2.606        | 0.052  |
|                  | 2.706        | 0.048  |
|                  | 2.805        | 0.045  |
|                  | 2.905        | 0.042  |
|                  | 3.004        | 0.039  |
|                  | 3.104        | 0.037  |
|                  | 3.203        | 0.034  |
|                  | 3.303        | 0.032  |
|                  | 3.403        | 0.030  |
|                  | 3.502        | 0.029  |
|                  | 3.602        | 0.027  |
|                  | 3.701        | 0.026  |
|                  | 3.801        | 0.024  |
|                  | 3.900        | 0.023  |
|                  | 4.000        | 0.022  |



SOVRAPP. PEDONALE STAZIONE VIGNA DI VALLE IV04 - PASSERELLA PEDONALE - Vigna di Valle IMPALCATO - Relazione di calcolo

| COMMESSA | LOTTO   | CODIFICA | DOCUMENTO  | REV. | FOGLIO   |
|----------|---------|----------|------------|------|----------|
| NR1J     | 00 D 29 | CL       | IV0407 101 | Α    | 24 di 60 |

#### Parametri e punti dello spettro di risposta verticale per lo stato limite: SLV

Parametri indipendenti

| STATO LIMITE    | SLV     |
|-----------------|---------|
| a <sub>ov</sub> | 0.029 g |
| S <sub>S</sub>  | 1.000   |
| S <sub>T</sub>  | 1.000   |
| q               | 1.000   |
| T <sub>B</sub>  | 0.050 s |
| T <sub>C</sub>  | 0.150 s |
| $T_D$           | 1.000 s |

#### Parametri dipendenti

| F <sub>v</sub> | 1.117 |
|----------------|-------|
| S              | 1.000 |
| η              | 1.000 |

### Espressioni dei parametri dipendenti

$$\mathbf{S} = \mathbf{S}_{\!S} \cdot \mathbf{S}_{T}$$
 (NTC-08 Eq. 3.2.5)

$$\eta = 1/q$$
 (NTC-08 §. 3.2.3.5)

$$\eta = 1/q \tag{NTC-08 §. 3.2.3.5} \\ F_v = 1,35 \cdot F_o \cdot \left(\frac{a_g}{g}\right)^{0,5} \tag{NTC-08 Eq. 3.2.11} \label{eq:power_power}$$

#### Espressioni dello spettro di risposta (NTC-08 Eq. 3.2.10)

$$\begin{split} 0 &\leq T < T_B \quad \quad S_e(T) = a_g \cdot S \cdot \eta \cdot F_v \cdot \left[ \frac{T}{T_B} + \frac{1}{\eta \cdot F_o} \left( 1 - \frac{T}{T_B} \right) \right] \\ T_B &\leq T < T_C \quad \quad S_e(T) = a_g \cdot S \cdot \eta \cdot F_v \\ T_C &\leq T < T_D \quad \quad S_e(T) = a_g \cdot S \cdot \eta \cdot F_v \cdot \left( \frac{T_C}{T} \right) \\ T_D &\leq T \quad \quad \quad S_e(T) = a_g \cdot S \cdot \eta \cdot F_v \cdot \left( \frac{T_C T_D}{T^2} \right) \end{split}$$

## Punti dello spettro di risposta

| Punt             | i dello spettr | o di risposta  |
|------------------|----------------|----------------|
|                  | T [s]          | Se [g]         |
|                  | 0.000          | 0.029          |
| T <sub>B</sub> ◀ | 0.050          | 0.086          |
| T <sub>c</sub> ← | 0.150          | 0.086          |
|                  | 0.235          | 0.055          |
|                  | 0.320          | 0.040          |
|                  | 0.405          | 0.032          |
|                  | 0.490          | 0.026          |
|                  | 0.575          | 0.023          |
|                  | 0.660          | 0.020          |
|                  | 0.745          | 0.017          |
|                  | 0.830          | 0.016          |
|                  | 0.915          | 0.014          |
| T <sub>D</sub> ← | 1.000          | 0.013          |
|                  | 1.094          | 0.011          |
|                  | 1.188          | 0.009          |
|                  | 1.281          | 0.008          |
|                  | 1.375          | 0.007          |
|                  | 1.469          | 0.006          |
|                  | 1.563          | 0.005          |
|                  | 1.656          | 0.005          |
|                  | 1.750          | 0.004          |
|                  | 1.844          | 0.004          |
|                  | 1.938          | 0.003          |
|                  | 2.031          | 0.003          |
|                  | 2.125          | 0.003          |
|                  | 2.219          | 0.003          |
|                  | 2.313          | 0.002          |
|                  | 2.406          | 0.002          |
|                  | 2.500          | 0.002          |
|                  | 2.594          | 0.002          |
|                  | 2.688          | 0.002          |
|                  | 2.781          | 0.002          |
|                  | 2.875          | 0.002          |
|                  | 2.969          | 0.001          |
|                  | 3.063          | 0.001          |
|                  | 3.156          | 0.001          |
|                  | 3.250          | 0.001          |
|                  | 3.344          | 0.001          |
|                  | 3.438          | 0.001          |
|                  | 3.531          | 0.001          |
|                  | 3.625          | 0.001          |
|                  | 3.719          | 0.001          |
|                  | 3.813<br>3.906 | 0.001<br>0.001 |
|                  | 4.000          |                |
|                  | 4.000          | 0.001          |



SOVRAPP. PEDONALE STAZIONE VIGNA DI VALLE IV04 - PASSERELLA PEDONALE - Vigna di Valle IMPALCATO – Relazione di calcolo

| COMMESSA | LOTTO   | CODIFICA | DOCUMENTO  | REV. | FOGLIO   |
|----------|---------|----------|------------|------|----------|
| NR1J     | 00 D 29 | CL       | IV0407 101 | Α    | 25 di 60 |

## 5.10 Urti da traffico veicolare - Traffico veicolare sotto ponti o altre strutture

Le azioni da urto hanno direzione parallela a quella del moto del veicolo al momento dell'impatto.

Nel caso di urti su elementi strutturali orizzontali al di sopra della strada, la forza risultante di collisione F da utilizzare per le verifiche dell'equilibrio statico o della resistenza o della capacità di deformazione degli elementi strutturali è data da:

### F = r Fd,x

dove il fattore r è pari ad 1,0 per altezze del sottovia fino a 5 m, decresce linearmente da 1,0 a 0 per altezze comprese fra 5 e 6 m ed è pari a 0 per altezze superiori a 6 m.

Nel caso in esame, come illustrato dalla seguente figura, l'altezza del franco in corrispondenza della prima campata della passerella, è superiore a 6.0m, quindi l'azione in oggetto si considera nulla.

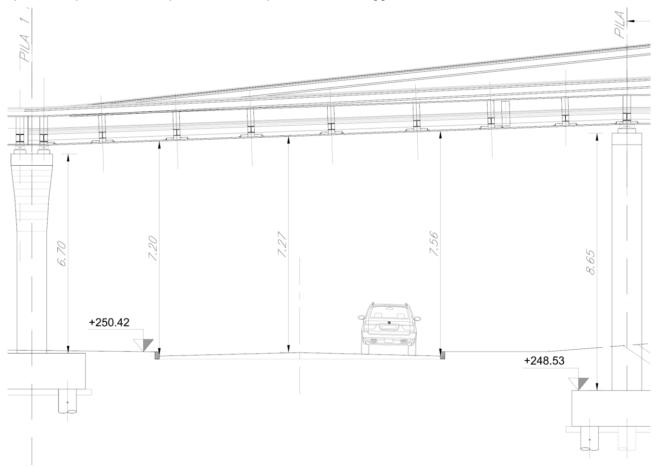



Figura 7 – Passerella, prima campata – Sezione longitudinale [m]



SOVRAPP. PEDONALE STAZIONE VIGNA DI VALLE IV04 - PASSERELLA PEDONALE - Vigna di Valle IMPALCATO – Relazione di calcolo

 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 NR1J
 00 D 29
 CL
 IV0407 101
 A
 26 di 60

#### 6 MODELLO DI CALCOLO E.F.

E' stato realizzato un modello di calcolo agli E.F. mediante l'ausilio del software "SAP2000 Plus v. 15.1.0", della "Computers and Structures, Inc.", Berkley, CA.

Tale modello E.F. è formato da 32 nodi e 76 elementi frame ai quali sono state assegnate proprietà geometriche, inerziali e meccaniche coerenti con le reali proprietà degli elementi strutturali.

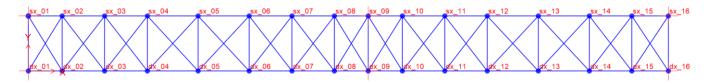



Figura 8 – Modello di calcolo E.F. – Denominazione nodi

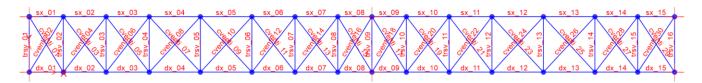



Figura 9 - Modello di calcolo E.F. - Denominazione aste

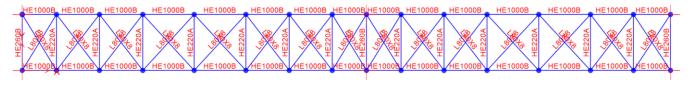



Figura 10 - Modello di calcolo E.F. - Assegnazione delle proprietà di sezione alle aste



A seguire si riportano alcune immagini del modello E.F. realizzato per lo svolgimento delle analisi.

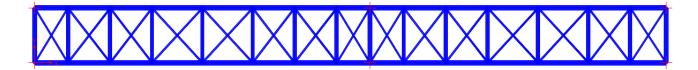



Figura 11 – Modello di calcolo E.F. – Vista in pianta

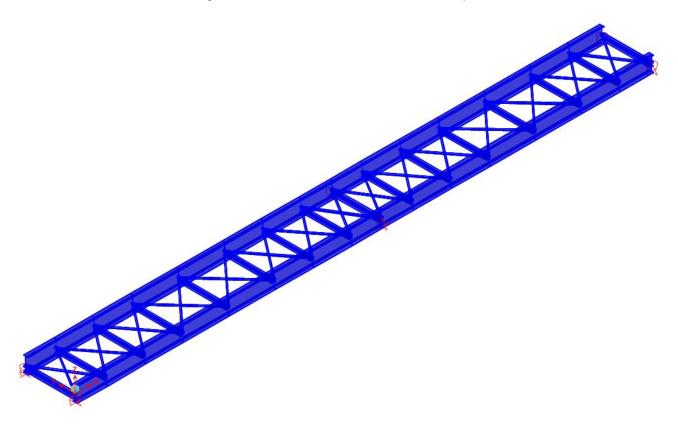



Figura 12 – Modello di calcolo E.F. – Vista isometrica



SOVRAPP. PEDONALE STAZIONE VIGNA DI VALLE IV04 - PASSERELLA PEDONALE - Vigna di Valle IMPALCATO – Relazione di calcolo

 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 NR1J
 00 D 29
 CL
 IV0407 101
 A
 28 di 60

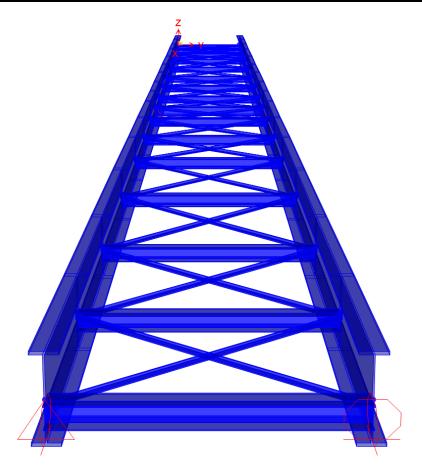


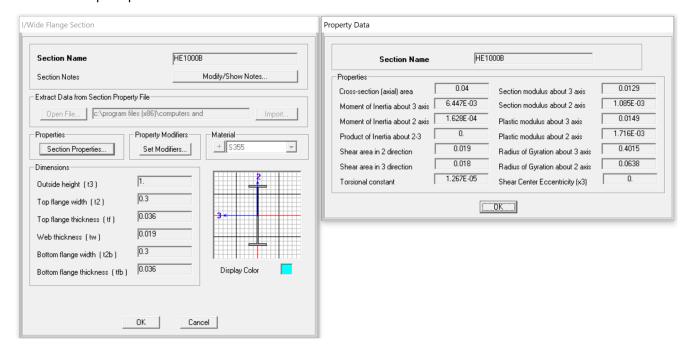

Figura 13 – Modello di calcolo E.F. – Vista prospettica

## 6.1 Assegnazione dei vincoli esterni





SOVRAPP. PEDONALE STAZIONE VIGNA DI VALLE IV04 - PASSERELLA PEDONALE - Vigna di Valle IMPALCATO – Relazione di calcolo


| COMMESSA | LOTTO   | CODIFICA | DOCUMENTO  | REV. | FOGLIO   |
|----------|---------|----------|------------|------|----------|
| NR1J     | 00 D 29 | CL       | IV0407 101 | Α    | 29 di 60 |

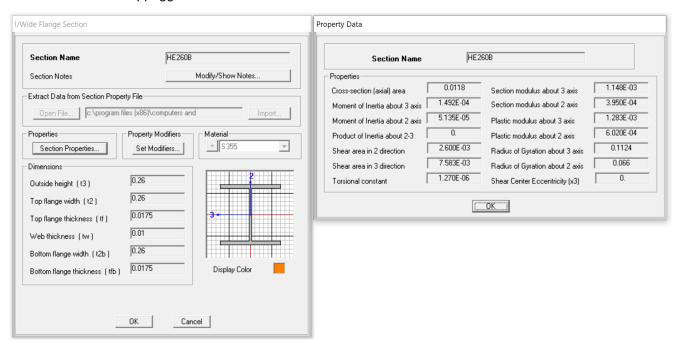
### 6.2 Caratteristiche geometriche ed inerziali delle sezioni assegnate agli elementi frame

#### Si definiscono:

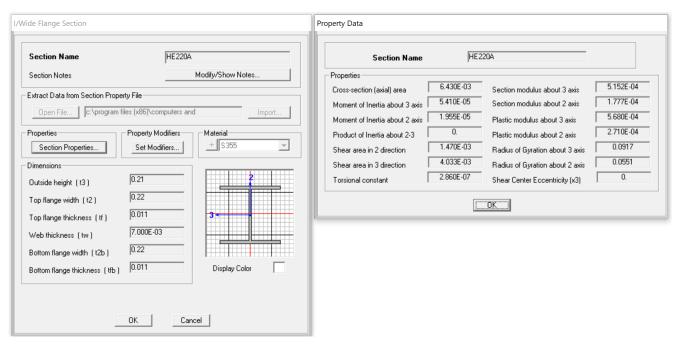
- t<sub>3</sub>: altezza MEDIA totale della trave;
- t<sub>2</sub>: larghezza del piatto superiore;
- t<sub>f</sub>: spessore del piatto superiore;
- t<sub>2b</sub>: larghezza del piatto inferiore;
- t<sub>fb</sub>: spessore del piatto inferiore;
- t<sub>w</sub>: spessore dell'anima;
- A: area della sezione in acciaio.
- J<sub>3</sub>: momento d'inerzia della trave rispetto all'asse orizzontale 3-3 passante per il suo baricentro.
- J<sub>2</sub>: momento d'inerzia della trave rispetto all'asse verticale 2-2 passante per il suo baricentro.
- J<sub>T</sub> = rigidezza torsionale.
- At2: area di taglio in direzione 2;
- At3: area di taglio in direzione 3; si assume pari a 5/6 della somma delle aree delle due ali.

### 6.2.1 Travi principali






SOVRAPP. PEDONALE STAZIONE VIGNA DI VALLE IV04 - PASSERELLA PEDONALE - Vigna di Valle IMPALCATO – Relazione di calcolo


 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

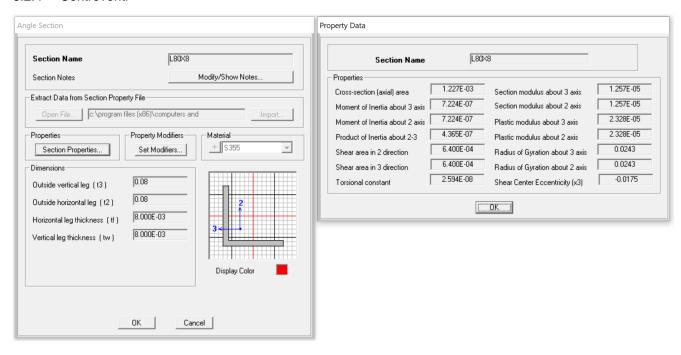
 NR1J
 00 D 29
 CL
 IV0407 101
 A
 30 di 60

#### 6.2.2 Trasversi di appoggio



## 6.2.3 Trasversi correnti






SOVRAPP. PEDONALE STAZIONE VIGNA DI VALLE IV04 - PASSERELLA PEDONALE - Vigna di Valle IMPALCATO – Relazione di calcolo

 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 NR1J
 00 D 29
 CL
 IV0407 101
 A
 31 di 60

### 6.2.4 Controventi





SOVRAPP. PEDONALE STAZIONE VIGNA DI VALLE IV04 - PASSERELLA PEDONALE - Vigna di Valle IMPALCATO – Relazione di calcolo

| COMMESSA | LOTTO   | CODIFICA | DOCUMENTO  | REV. | FOGLIO   |
|----------|---------|----------|------------|------|----------|
| NR1J     | 00 D 29 | CL       | IV0407 101 | Α    | 32 di 60 |

#### 7 ANALISI MODALE

#### 7.1 Masse simiche

La massa dell'impalcato (pesi propri strutturali g1 + permanenti portati g2) è pari a ca 80 ton, corrispondenti a ca 2.1 ton/m.

## 7.2 Combinazione delle masse

Sono prese in considerazione le masse associate ai seguenti carichi gravitazionali:

 $g_1 + g_2 + 0.2 q_1$ 

## 7.3 Forme modali principali



Figura 14 - Modo num. 1, verticale

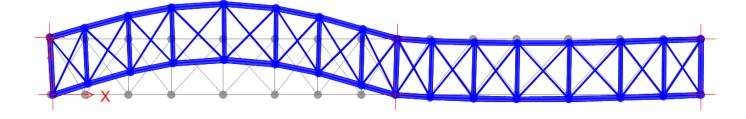



Figura 15 - Modo num. 3, trasversale



SOVRAPP. PEDONALE STAZIONE VIGNA DI VALLE IV04 - PASSERELLA PEDONALE - Vigna di Valle IMPALCATO – Relazione di calcolo

 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 NR1J
 00 D 29
 CL
 IV0407 101
 A
 33 di 60

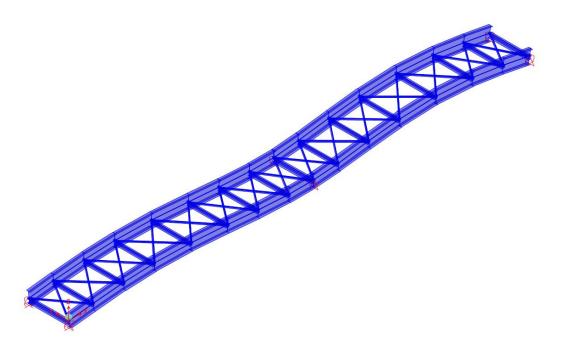



Figura 16 - Modo num. 4, verticale

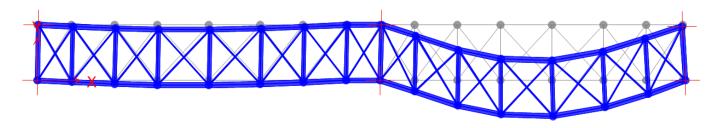



Figura 17 - Modo num. 6, trasversale



SOVRAPP. PEDONALE STAZIONE VIGNA DI VALLE IV04 - PASSERELLA PEDONALE - Vigna di Valle IMPALCATO – Relazione di calcolo

 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 NR1J
 00 D 29
 CL
 IV0407 101
 A
 34 di 60

## 7.4 Fattori di partecipazione modale delle masse.

Si riportano a seguire i fattori di partecipazione modale relativi ai primi 24 modi indagati.

| OutputCase | StepNum  | Period | UX       | UY       | UZ       | SumUX    | SumUY    | SumUZ    |
|------------|----------|--------|----------|----------|----------|----------|----------|----------|
| Text       | Unitless | Sec    | Unitless | Unitless | Unitless | Unitless | Unitless | Unitless |
| MODAL      | 1        | 0.221  | 0%       | 0%       | 7%       | 0%       | 0%       | 7%       |
| MODAL      | 2        | 0.220  | 0%       | 0%       | 0%       | 0%       | 0%       | 7%       |
| MODAL      | 3        | 0.149  | 0%       | 38%      | 0%       | 0%       | 38%      | 7%       |
| MODAL      | 4        | 0.137  | 0%       | 0%       | 75%      | 0%       | 38%      | 82%      |
| MODAL      | 5        | 0.137  | 0%       | 1%       | 0%       | 0%       | 39%      | 82%      |
| MODAL      | 6        | 0.129  | 0%       | 44%      | 0%       | 0%       | 83%      | 82%      |
| MODAL      | 7        | 0.072  | 1%       | 0%       | 0%       | 1%       | 83%      | 82%      |
| MODAL      | 8        | 0.063  | 2%       | 0%       | 0%       | 3%       | 83%      | 82%      |
| MODAL      | 9        | 0.059  | 0%       | 0%       | 1%       | 3%       | 83%      | 82%      |
| MODAL      | 10       | 0.059  | 2%       | 0%       | 0%       | 5%       | 83%      | 82%      |
| MODAL      | 11       | 0.058  | 70%      | 0%       | 0%       | 74%      | 83%      | 82%      |
| MODAL      | 12       | 0.047  | 0%       | 4%       | 0%       | 75%      | 88%      | 82%      |
| MODAL      | 13       | 0.044  | 0%       | 0%       | 1%       | 75%      | 88%      | 83%      |
| MODAL      | 14       | 0.044  | 0%       | 0%       | 0%       | 75%      | 88%      | 83%      |
| MODAL      | 15       | 0.042  | 0%       | 4%       | 0%       | 75%      | 92%      | 83%      |
| MODAL      | 16       | 0.036  | 0%       | 0%       | 0%       | 75%      | 92%      | 83%      |
| MODAL      | 17       | 0.032  | 0%       | 0%       | 0%       | 75%      | 92%      | 83%      |
| MODAL      | 18       | 0.031  | 0%       | 2%       | 0%       | 75%      | 94%      | 83%      |
| MODAL      | 19       | 0.029  | 0%       | 0%       | 0%       | 75%      | 94%      | 83%      |
| MODAL      | 20       | 0.028  | 0%       | 0%       | 4%       | 75%      | 94%      | 87%      |
| MODAL      | 21       | 0.028  | 0%       | 0%       | 0%       | 75%      | 94%      | 87%      |
| MODAL      | 22       | 0.026  | 0%       | 1%       | 0%       | 75%      | 95%      | 87%      |
| MODAL      | 23       | 0.024  | 14%      | 0%       | 0%       | 89%      | 95%      | 87%      |
| MODAL      | 24       | 0.024  | 2%       | 0%       | 0%       | 91%      | 95%      | 87%      |

Nello svolgimento delle analisi sono stati indagati un numero di modi sufficienti ad eccitare la minima percentuale di massa strutturale richiesta dalla normativa, pari al 90% della massa totale.



SOVRAPP. PEDONALE STAZIONE VIGNA DI VALLE IV04 - PASSERELLA PEDONALE - Vigna di Valle IMPALCATO – Relazione di calcolo

 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 NR1J
 00 D 29
 CL
 IV0407 101
 A
 35 di 60

### 7.5 Limitazione delle vibrazioni (ai sensi di C5.1.8.1 di NTC2018)

Vibrazioni nei ponti pedonali possono essere indotte da varie cause quali, per esempio, vento o persone singole o in gruppo che camminano, corrono, saltano o danzano sul ponte.

Si può considerare che una persona che cammini ecciti il ponte con un'azione periodica verticale di frequenza compresa tra 1 e 3 Hz e un'azione orizzontale simultanea di frequenza compresa tra 0,5 e 1,5 Hz, e che un gruppo di persone in leggera corsa ecciti il ponte con una frequenza verticale pari a circa 3 Hz.

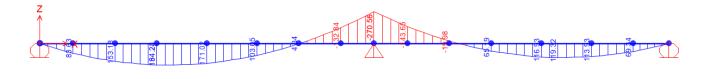
Nel caso in esame le frequenze in Hz associate ai primi modi significativi in direzione verticale e orizzontale sono rispettivamente pari a:

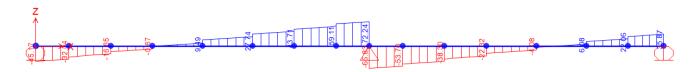
 $fr_{1v} = 1/.0.137 \text{ sec} = 7.3 \text{ Hz}$  > 3 Hz 1a frequenza verticale (modo 4)  $fr_{1h} = 1/0.149 \text{ sec} = 6.7 \text{ Hz}$  > 1.5 Hz 1a frequenza orizzontale (modo 3)

La struttura è in grado di offrire un adeguato livello di confort nei confronti delle vibrazioni.



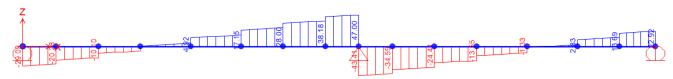
SOVRAPP. PEDONALE STAZIONE VIGNA DI VALLE IV04 - PASSERELLA PEDONALE - Vigna di Valle IMPALCATO – Relazione di calcolo


| COMMESSA | LOTTO   | CODIFICA | DOCUMENTO  | REV. | FOGLIO   |
|----------|---------|----------|------------|------|----------|
| NR1J     | 00 D 29 | CL       | IV0407 101 | Α    | 36 di 60 |


#### 8 ANALISI DELLE SOLLECITAZIONI ELEMENTARI

### 8.1 Travi principali

Si riportano a seguire le sollecitazioni relative alla sola trave sinistra, essendo la struttura simmetrica e le sollecitazioni invertibili sul piano orizzantale. Per ogni azione elementare sono riportati prima il momento flettente M33 [kNm] e a seguire il taglio V22 [kN].


### 8.1.1 Carico g1



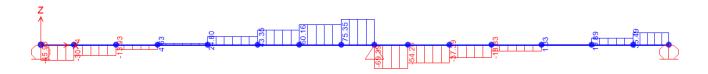


## 8.1.2 Carico g2

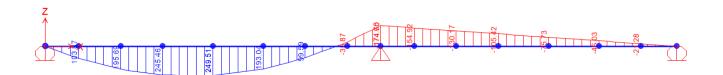


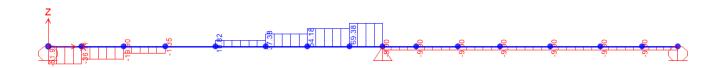


### 8.1.3 Carico q\_C1+C2 (folla presente su entrambe le campate)

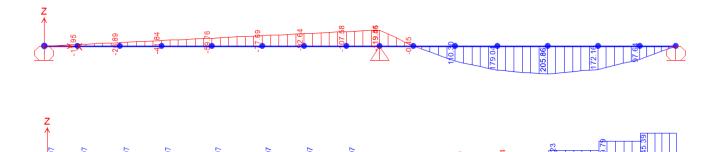




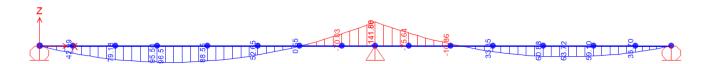


SOVRAPP. PEDONALE STAZIONE VIGNA DI VALLE IV04 - PASSERELLA PEDONALE - Vigna di Valle IMPALCATO – Relazione di calcolo


 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 NR1J
 00 D 29
 CL
 IV0407 101
 A
 37 di 60




8.1.4 Carico q\_C1 (folla presente sulla campata C1 di sinstra)

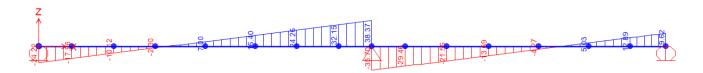




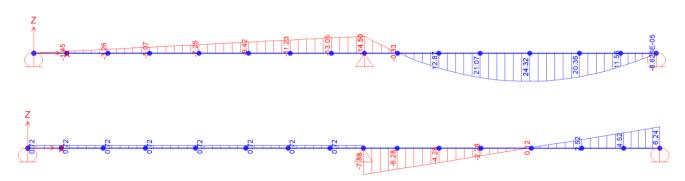

8.1.5 Carico q\_C2 (folla presente sulla campata C2 di destra)



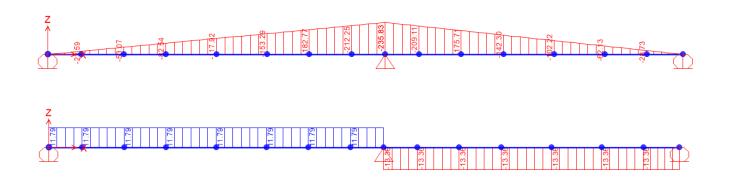
### 8.1.6 Azione q5







SOVRAPP. PEDONALE STAZIONE VIGNA DI VALLE IV04 - PASSERELLA PEDONALE - Vigna di Valle IMPALCATO – Relazione di calcolo

 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO


 NR1J
 00 D 29
 CL
 IV0407 101
 A
 38 di 60



### 8.1.7 Azione q5\_aero



### 8.1.8 Azione ε3\_DT





SOVRAPP. PEDONALE STAZIONE VIGNA DI VALLE IV04 - PASSERELLA PEDONALE - Vigna di Valle IMPALCATO – Relazione di calcolo

| COMMESSA | LOTTO   | CODIFICA | DOCUMENTO  | REV. | FOGLIO   |
|----------|---------|----------|------------|------|----------|
| NR1J     | 00 D 29 | CL       | IV0407 101 | Α    | 39 di 60 |

#### 9 COEFFICIENTI DI COMBINAZIONE DELLE AZIONI

In linea con quanto riportato nel quadro normativo vigente, le azioni descritte nei paragrafi precedenti, sono combinate nel modo seguente:

- combinazione fondamentale (SLU):
- · combinazione sismica:
- · combinazione eccezionale:
- combinazione Rara (SLE irreversibile):
- combinazione Frequente (SLE reversibile):
- combinazione Quasi Permanente (SLE per gli effetti a lungo termine):

Ai fini delle verifiche degli stati limite di esercizio si definiscono le seguenti combinazioni:

- Rara -> G1+G2 +Qk1+∑iψ0i·Qki
- Frequente -> G1+G2 +ψ11 ·Qk1+∑iψ2i·Qki
- Quasi permanente -> G1+G2 +ψ21 ·Qk1+∑iψ2i·Qki

Per le verifiche agli stati limite ultimi si adottano i valori dei coefficienti parziali  $\gamma$  in Tab. 5.1.V e i coefficienti di combinazione  $\psi$  in Tab. 5.1.VI di [3].

Per le verifiche agli stati limite d'esercizio si adottano i valori dei coefficienti di combinazione  $\psi$  in Tab. 5.1.VI.

Tab. 5.1.V – Coefficienti parziali di sicurezza per le combinazioni di carico agli SLU

|                                                                    |                           | Coefficiente                      | EQU(1)                      | A1                          | A2           |
|--------------------------------------------------------------------|---------------------------|-----------------------------------|-----------------------------|-----------------------------|--------------|
| Azioni permanenti g <sub>1</sub> e g <sub>3</sub>                  | favorevoli<br>sfavorevoli | γ <sub>G1</sub> e γ <sub>G3</sub> | 0,90<br>1,10                | 1,00<br>1,35                | 1,00<br>1,00 |
| Azioni permanenti non<br>strutturali <sup>(2)</sup> g <sub>2</sub> | favorevoli<br>sfavorevoli | YG2                               | 0,00<br>1,50                | 0,00<br>1,50                | 0,00<br>1,30 |
| Azioni variabili da traffico                                       | favorevoli<br>sfavorevoli | ΥQ                                | 0,00<br>1,35                | 0,00<br>1,35                | 0,00<br>1,15 |
| Azioni variabili                                                   | favorevoli<br>sfavorevoli | ΥQi                               | 0,00<br>1,50                | 0,00<br>1,50                | 0,00<br>1,30 |
| Distorsioni e presollecita-<br>zioni di progetto                   | favorevoli<br>sfavorevoli | Υε1                               | 0,90<br>1,00 <sup>(3)</sup> | 1,00<br>1,00 <sup>(4)</sup> | 1,00<br>1,00 |
| Ritiro e viscosità, Cedimenti<br>vincolari                         | favorevoli<br>sfavorevoli | Y 62, Y 63, Y 64                  | 0,00<br>1,20                | 0,00<br>1,20                | 0,00<br>1,00 |



SOVRAPP. PEDONALE STAZIONE VIGNA DI VALLE IV04 - PASSERELLA PEDONALE - Vigna di Valle IMPALCATO – Relazione di calcolo

 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 NR1J
 00 D 29
 CL
 IV0407 101
 A
 40 di 60

 $\textbf{Tab. 5.1.VI -} Coefficienti \ \psi \ per \ le \ azioni \ variabili \ per \ ponti \ stradali \ e \ pedonali$ 

| Azioni                | Gruppo di azioni<br>(Tab. 5.1.IV)    | Coefficiente<br>Ψ <sub>0</sub> di combi-<br>nazione | Coefficiente<br>Ψ <sub>1</sub> (valori<br>frequenti) | Coefficiente Ψ <sub>2</sub><br>(valori quasi<br>permanenti) |
|-----------------------|--------------------------------------|-----------------------------------------------------|------------------------------------------------------|-------------------------------------------------------------|
|                       | Schema 1 (carichi tandem)            | 0,75                                                | 0,75                                                 | 0,0                                                         |
|                       | Schemi 1, 5 e 6 (carichi distribuiti | 0,40                                                | 0,40                                                 | 0,0                                                         |
| Azioni da<br>traffico | Schemi 3 e 4 (carichi concentrati)   | 0,40                                                | 0,40                                                 | 0,0                                                         |
| (Tab. 5.1.IV)         | Schema 2                             | 0,0                                                 | 0,75                                                 | 0,0                                                         |
|                       | 2                                    | 0,0                                                 | 0,0                                                  | 0,0                                                         |
|                       | 3                                    | 0,0                                                 | 0,0                                                  | 0,0                                                         |
|                       | 4 (folla)                            |                                                     | 0,75                                                 | 0,0                                                         |
|                       | 5                                    | 0,0                                                 | 0,0                                                  | 0,0                                                         |
|                       | a ponte scarico<br>SLU e SLE         | 0,6                                                 | 0,2                                                  | 0,0                                                         |
| Vento                 | in esecuzione                        | 0,8                                                 | 0,0                                                  | 0,0                                                         |
|                       | a ponte carico<br>SLU e SLE          | 0,6                                                 | 0,0                                                  | 0,0                                                         |
| Neve                  | SLU e SLE                            | 0,0                                                 | 0,0                                                  | 0,0                                                         |
| Neve                  | in esecuzione                        | 0,8                                                 | 0,6                                                  | 0,5                                                         |
| Temperatura           | SLU e SLE                            | 0,6                                                 | 0,6                                                  | 0,5                                                         |



SOVRAPP. PEDONALE STAZIONE VIGNA DI VALLE IV04 - PASSERELLA PEDONALE - Vigna di Valle IMPALCATO – Relazione di calcolo

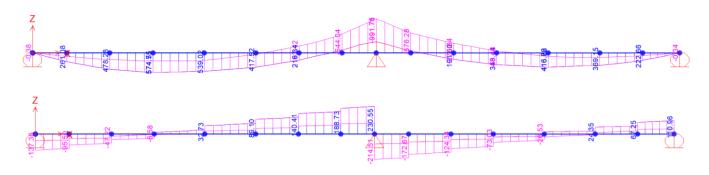
 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 NR1J
 00 D 29
 CL
 IV0407 101
 A
 41 di 60

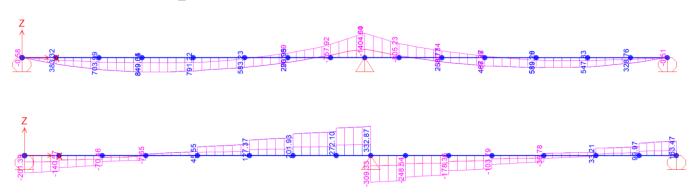
|    | COMBINAZIONI   | 81   | 82   | q1(c1+c2) | q1(c1) | q1(c2) | q5+q5_aero | e3_DT | SISM_VERT_q1 |
|----|----------------|------|------|-----------|--------|--------|------------|-------|--------------|
| 1  | SLE_1.1        | 1    | 1    | 1         | 0      | 0      | 0.6        | 0.6   | 0            |
| 2  | SLE_2.1        | 1    | 1    | 0         | 1      | 0      | 0.6        | 0.6   | 0            |
| 3  | SLE_3.1        | 1    | 1    | 0         | 0      | 1      | 0.6        | 0.6   | 0            |
| 4  | SLE_4.1        | 1    | 1    | 0.75      | 0      | 0      | 1          | 0.6   | 0            |
| 5  | SLE_5.1        | 1    | 1    | 0         | 0.75   | 0      | 1          | 0.6   | 0            |
| 6  | SLE_6.1        | 1    | 1    | 0         | 0      | 0.75   | 1          | 0.6   | 0            |
| 7  | SLE_1.2        | 1    | 1    | 1         | 0      | 0      | -0.6       | -0.6  | 0            |
| 8  | SLE_2.2        | 1    | 1    | 0         | 1      | 0      | -0.6       | -0.6  | 0            |
| 9  | SLE_3.2        | 1    | 1    | 0         | 0      | 1      | -0.6       | -0.6  | 0            |
| 10 | SLE_4.2        | 1    | 1    | 0.75      | 0      | 0      | -1         | -0.6  | 0            |
| 11 | SLE_5.2        | 1    | 1    | 0         | 0.75   | 0      | -1         | -0.6  | 0            |
| 12 | SLE_6.2        | 1    | 1    | 0         | 0      | 0.75   | -1         | -0.6  | 0            |
| 13 | SLU_1.1        | 1.35 | 1.35 | 1.5       | 0      | 0      | 0.9        | 0.72  | 0            |
| 14 | SLU_2.1        | 1.35 | 1.35 | 0         | 1.5    | 0      | 0.9        | 0.72  | 0            |
| 15 | SLU_3.1        | 1.35 | 1.35 | 0         | 0      | 1.5    | 0.9        | 0.72  | 0            |
| 16 | SLU_4.1        | 1.35 | 1.35 | 1.125     | 0      | 0      | 1.5        | 0.72  | 0            |
| 17 | SLU_5.1        | 1.35 | 1.35 | 0         | 1.125  | 0      | 1.5        | 0.72  | 0            |
| 18 | SLU_6.1        | 1.35 | 1.35 | 0         | 0      | 1.125  | 1.5        | 0.72  | 0            |
| 19 | SLU_1.2        | 1.35 | 1.35 | 1.5       | 0      | 0      | -0.6       | -0.6  | 0            |
| 20 | SLU_2.2        | 1.35 | 1.35 | 0         | 1.5    | 0      | -0.6       | -0.6  | 0            |
| 21 | SLU_3.2        | 1.35 | 1.35 | 0         | 0      | 1.5    | -0.6       | -0.6  | 0            |
| 22 | SLU_4.2        | 1.35 | 1.35 | 1.125     | 0      | 0      | -1.5       | -0.72 | 0            |
| 23 | SLU_5.2        | 1.35 | 1.35 | 0         | 1.125  | 0      | -1.5       | -0.72 | 0            |
| 24 | SLU_6.2        | 1.35 | 1.35 | 0         | 0      | 1.125  | -1.5       | -0.72 | 0            |
| 25 | SLV_1_VERT_DT+ | 1    | 1    | 0.2       | 0      | 0      | 0          | 0.5   | 1            |
| 26 | SLV_2_VERT_DT+ | 1    | 1    | 0         | 0.2    | 0      | 0          | 0.5   | 1            |
| 27 | SLV_3_VERT_DT+ | 1    | 1    | 0         | 0      | 0.2    | 0          | 0.5   | 1            |
| 28 | SLV_1_VERT_DT- | 1    | 1    | 0.2       | 0      | 0      | 0          | -0.5  | -1           |
| 29 | SLV_2_VERT_DT- | 1    | 1    | 0         | 0.2    | 0      | 0          | -0.5  | -1           |
| 30 | SLV_3_VERT_DT- | 1    | 1    | 0         | 0      | 0.2    | 0          | -0.5  | -1           |

Inoltre sono state definite delle combinazioni di inviluppo delle precedenti, una per ogni gruppo di combinazioni SLE, SLU ed SLV e denominate rispettivamente ENVE\_SLE, ENVE\_SLU ed ENVE\_SLV.

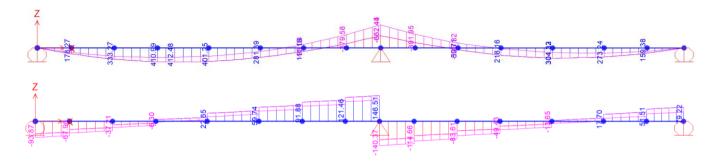



SOVRAPP. PEDONALE STAZIONE VIGNA DI VALLE IV04 - PASSERELLA PEDONALE - Vigna di Valle IMPALCATO – Relazione di calcolo

 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO


 NR1J
 00 D 29
 CL
 IV0407 101
 A
 42 di 60

#### 10 SOLLECITAZIONI DI CALCOLO

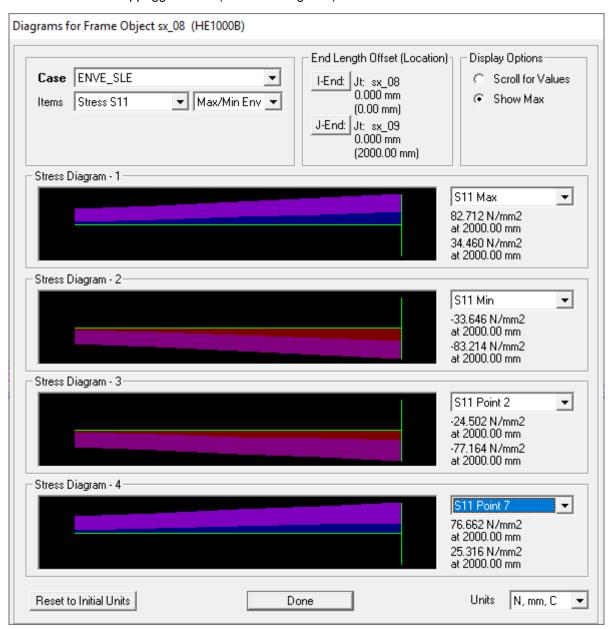

### 10.1 Combinazione ENVE\_SLE



### 10.2 Combinazione ENVE\_SLU



### 10.3 Combinazione ENVE\_SLV






### 11 SLE - VERIFICHE STRUTTURALI DELLE TENSIONI NORMALI

### 11.1 Travi principali

### 11.1.1 Sezione di appoggio su P2 (momento negativo)





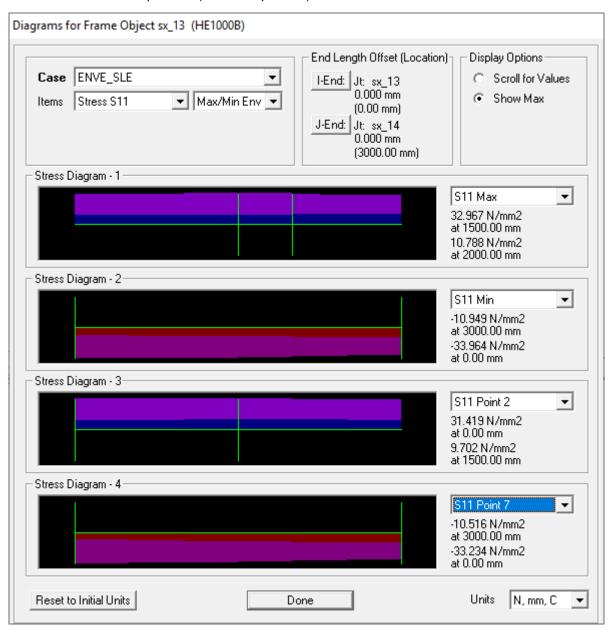

SOVRAPP. PEDONALE STAZIONE VIGNA DI VALLE IV04 - PASSERELLA PEDONALE - Vigna di Valle IMPALCATO – Relazione di calcolo

 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 NR1J
 00 D 29
 CL
 IV0407 101
 A
 44 di 60

### 11.1.2 Sezione di campata C1 (momento positivo)






SOVRAPP. PEDONALE STAZIONE VIGNA DI VALLE IV04 - PASSERELLA PEDONALE - Vigna di Valle IMPALCATO – Relazione di calcolo

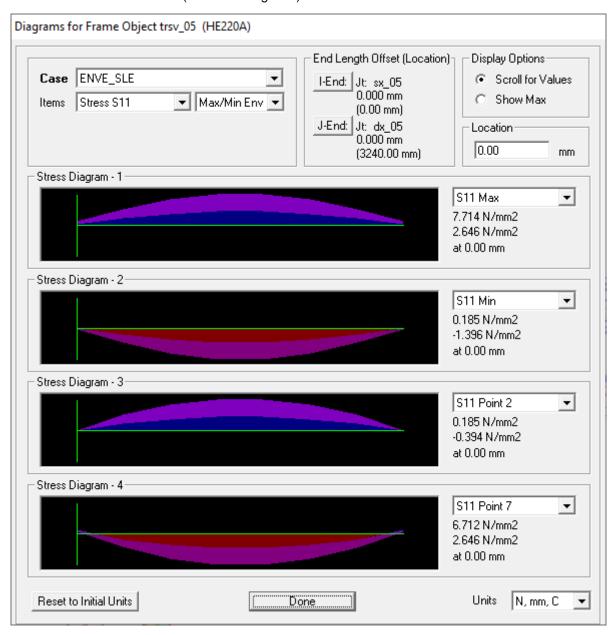
 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 NR1J
 00 D 29
 CL
 IV0407 101
 A
 45 di 60

### 11.1.3 Sezione di campata C2 (momento positivo)






 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

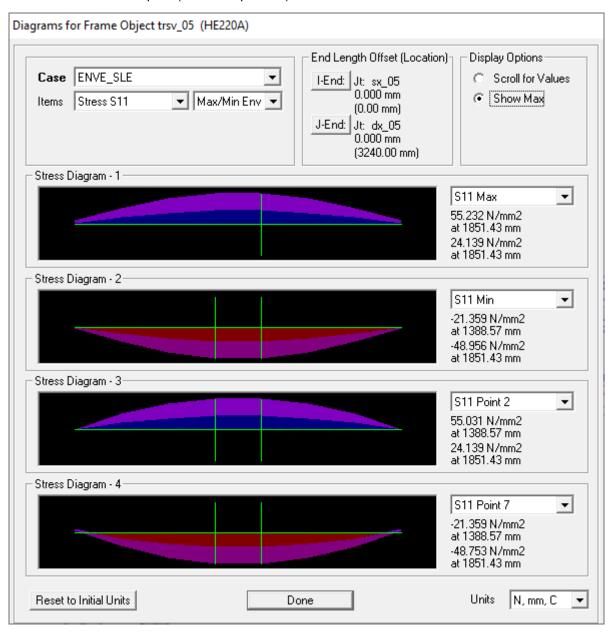
 NR1J
 00 D 29
 CL
 IV0407 101
 A
 46 di 60

#### 11.2 Trasversi correnti

IMPALCATO - Relazione di calcolo

### 11.2.1 Sezione di estremità (momento negativo)

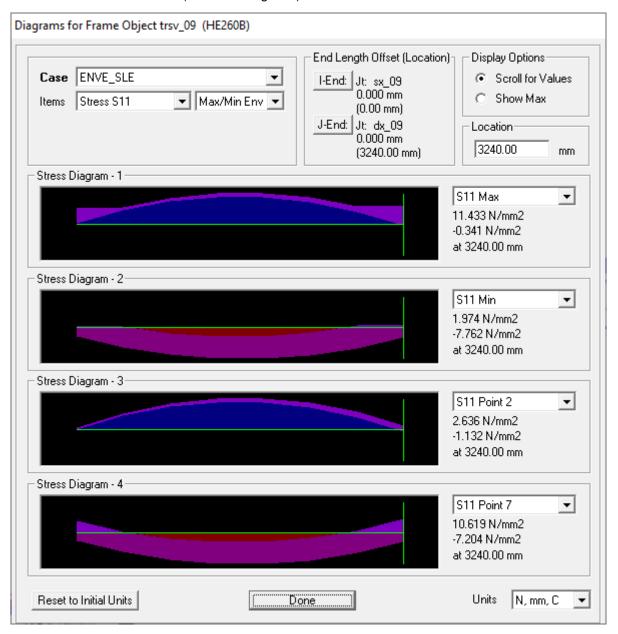





SOVRAPP. PEDONALE STAZIONE VIGNA DI VALLE IV04 - PASSERELLA PEDONALE - Vigna di Valle IMPALCATO – Relazione di calcolo

 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 NR1J
 00 D 29
 CL
 IV0407 101
 A
 47 di 60


### 11.2.2 Sezione di campata (momento positivo)

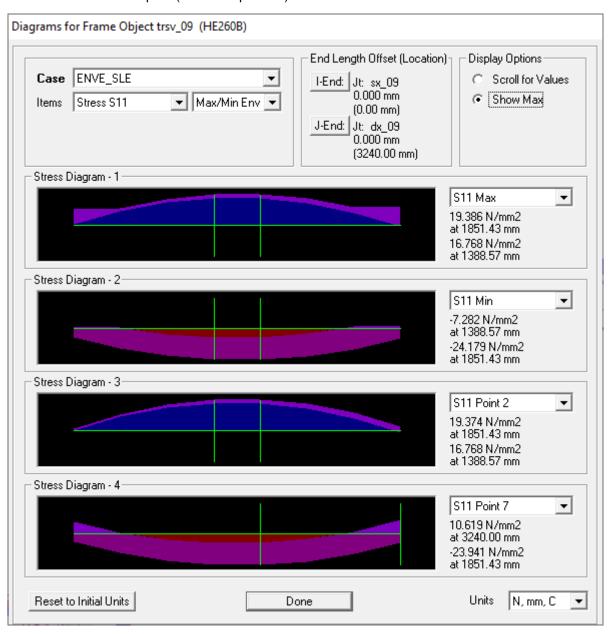




## 11.3 Trasversi di appoggio

### 11.3.1 Sezione di estremità (momento negativo)






SOVRAPP. PEDONALE STAZIONE VIGNA DI VALLE IV04 - PASSERELLA PEDONALE - Vigna di Valle IMPALCATO – Relazione di calcolo

 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 NR1J
 00 D 29
 CL
 IV0407 101
 A
 49 di 60

### 11.3.2 Sezione di campata (momento positivo)





SOVRAPP. PEDONALE STAZIONE VIGNA DI VALLE IV04 - PASSERELLA PEDONALE - Vigna di Valle IMPALCATO – Relazione di calcolo

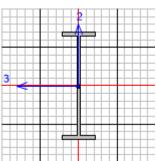
| COMMESSA | LOTTO   | CODIFICA | DOCUMENTO  | REV. | FOGLIO   |
|----------|---------|----------|------------|------|----------|
| NR1J     | 00 D 29 | CL       | IV0407 101 | Α    | 50 di 60 |

### 12 SLU - VERIFICHE STRUTTURALI DI RESISTENZA

Si riporta a seguire uno schema grafico che illustra le distribuzione dei coefficienti di impegno dei vari elementi strutturali, espressi come il rapporto tra richiesta e capacità di resistenza.

Sono evidenziati gli elementi averti maggiore coefficiente di impegno, per i quali è riportato a seguire il dettaglio delle verifiche.






SOVRAPP. PEDONALE STAZIONE VIGNA DI VALLE IV04 - PASSERELLA PEDONALE - Vigna di Valle IMPALCATO – Relazione di calcolo

 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 NR1J
 00 D 29
 CL
 IV0407 101
 A
 51 di 60

### 12.1 Travi principali



```
Italian NTC 2018 STEEL SECTION CHECK
                                          (Summary for Combo and Station)
Units : KN, m, C
Design Type: Beam
                                                                Frame Type: DCH-MRF
                                                                Rolled : Yes
Interaction=Method B
                                      MultiResponse=Envelopes
                                                                               P-Delta Done? No
Consider Torsion? No
                                      GammaM2=1.25
GammaM0=1.05 GammaM1=1.05
An/Ag=1.
                  RLLF=1.
                                      PLLF=0.75
                                                        D/C Lim=0.95
Aeff=0.04
                  eNy=0.
                                      eNz=0.
                   Iyy=0.006
                                      iyy=0.401
A=0.04
                                                          Wel, yy=0.013
                                                                             Weff, yy=0.013
                                   izz=0.064
                 Izz=1.628E-04
                                                                              Weff, zz=0.001
It=1.267E-05
                                                         Wel, zz=0.001
Iw=3.782E-05
                                                          Wpl,yy=0.015
                   Iyz=0.
                                      h=1.
                                                                               Av, y=0.022
E=210000000.
                  fy=275000.
                                      fu=430000.
                                                          Wpl,zz=0.002
                                                                              Av, z=0.021
STRESS CHECK FORCES & MOMENTS
                                             Med, zz
    Location Ned
                                    Med, yy
                                                              Ved, z
                                                                           Ved, y
                                                                                           Ted
                       -8.293
                                -1385.533
                                                            324.731
                                                                                        -0.895
                                                -9.891
                                                                            8.133
PMM DEMAND/CAPACITY RATIO (Governing Equation NTC Eq C4.2.38)

D/C Ratio: 0.357 = 0. + 0.346 + 0.011 < 0.95 OK

= NEd/(Chi_z NRk/GammaM1) + kzy (My,Ed+NEd eNy)/(Chi_LT My,Rk/GammaM1)
                             + kzz (Mz, Ed+NEd eNz) / (Mz, Rk/GammaM1)
                                                                           (NTC Eq C4.2.38)
AXIAL FORCE DESIGN
                          Ned
                                    Nc,Rd
                                                 Nt,Rd
                                Capacity
10476.19
                                            Capacity
10476.19
                       Force
    Axial
                       -8.293
                       Npl,Rd
                                     Nu, Rd
                                                                            An/Aq
                                Nu,Rd NGI,1 ....,
12384. 124791.402 124791.402
                                                  Ncr.T
                                                              Ncr.TF
                     10476.19
                Curve
                        Alpha
                                       Ncr LambdaBar
                                                                 Phi
                                                                             Chi
                                                                                         Nb, Rd
                                                            0.704
                               33405.404
                                             0.574
                                                                                    9424.832
                                                                            0.9
    Major (y-y)
                 a
                        0.21
                                 33405.404
                                                  0.574
                                                               0.704
                                                                                      9424.832
    MajorB(y-y)
                    a
                         0.21
                                                                              0.9
    Minor (z-z) b 0.34 84355.509
MinorB(z-z) b 0.34 84355.509
Torsional TF b 0.34 124791.402
                                84355.509
                                                  0.361
                                                               0.593
                                                                           0.941
                                                                                      9860.489

      0.361
      0.593

      0.361
      0.593

      0.297
      0.561

                                                                       0.941 9860.489
0.965 10112.072
                                84355.509
```



SOVRAPP. PEDONALE STAZIONE VIGNA DI VALLE IV04 - PASSERELLA PEDONALE - Vigna di Valle IMPALCATO – Relazione di calcolo

 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

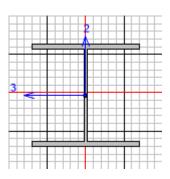
 NR1J
 00 D 29
 CL
 IV0407 101
 A
 52 di 60

| MOMENT DESIGN |                   |              |            |          |              |           |
|---------------|-------------------|--------------|------------|----------|--------------|-----------|
|               | Med               |              | •          | Meq, Ed  |              |           |
|               | Moment            | Moment       |            |          |              |           |
|               | -1385.533         |              |            |          |              |           |
| Minor (z-z)   | -9.891            | -9.891       | -9.891     | -9.891   |              |           |
|               | Mar Dal           | 26 - D d     | Mr. Dd     | and to d |              |           |
|               | Mc, Rd            | •            | Mn, Rd     | Mb, Rd   |              |           |
|               |                   | Capacity     |            |          |              |           |
| Major (y-y)   |                   | 3891.905     |            | 3851.898 |              |           |
| Minor (z-z)   | 449.429           | 449.429      | 449.429    |          |              |           |
|               | Curve AlphaLT     | TambdaDawIII | PhiLT      | ChiLT    | noi          | Mcr       |
| LTB           | c 0.49            |              | 0.558      | 0.99     | psi<br>1.267 |           |
| TIR           | 0.49              | 0.278        | 0.558      | 0.99     | 1.207        | 52840.781 |
|               | kyy               | kyz          | kzv        | kzz      |              |           |
| Factors       | 0.818             | -            | 0.961      |          |              |           |
|               |                   |              |            |          |              |           |
| SHEAR DESIGN  |                   |              |            |          |              |           |
|               | Ved               |              | Vc,Rd      | Stress   | Status       |           |
|               | Force             |              | Capacity   | Ratio    | Check        |           |
| Major (z)     | 324.731           |              |            | 0.101    | OK           |           |
| Minor (y)     | 8.133             | 0.895        | 3382.281   | 0.002    | OK           |           |
|               | Wol Dd            | E+-          | LambdabarW |          |              |           |
| Reduction     | Vpl,Rd<br>3212.32 | 1.           | 0.526      |          |              |           |
| Reduction     | 3212.32           | 1.           | 0.526      |          |              |           |

### CONNECTION SHEAR FORCES FOR BEAMS

 VMajor
 VMajor

 Left
 Right


 Major (V2)
 305.844
 324.731



SOVRAPP. PEDONALE STAZIONE VIGNA DI VALLE IV04 - PASSERELLA PEDONALE - Vigna di Valle IMPALCATO - Relazione di calcolo

COMMESSA LOTTO CODIFICA DOCUMENTO RFV **FOGLIO** NR1J 00 D 29 CL IV0407 101 Α 53 di 60

#### 12.2 Trasversi



Italian NTC 2018 STEEL SECTION CHECK (Summary for Combo and Station) Units : KN, m, C

Design Type: Beam Frame Type: DCH-MRF Rolled : Yes

Interaction=Method B MultiResponse=Envelopes P-Delta Done? No Consider Torsion? No

GammaM2=1.25 GammaM0=1.05 GammaM1=1.05

An/Ag=1. RLLF=1. PLLF=0.75 D/C Lim=0.95

Aeff=0.006 eNy=0. eNz=0. A=0.006 Iyy=5.410E-05

iyy=0.092 izz=0.055 Wel, yy=5.152E-04 Weff, yy=5.152E-04 Wel, zz=1.777E-04
Wpl, yy=5.680E-04
Wpl, zz=2.710E-04
Wpl, zz=2.710E-04
Wpl, zz=0.002 It=0.Izz=1.955E-05Tw=0. Iyz=0.h=0.21E=210000000. fy=275000. fu=430000.

STRESS CHECK FORCES & MOMENTS

Location Med, yy Med,zz Ved, z Ved, y Ted Ned 29.563 -0.001 2.777 18.319 0.186 37.515 -0.149

PMM DEMAND/CAPACITY RATIO (Governing Equation NTC Eq C4.2.38)

D/C Ratio: 0.292 = 0. + 0.29 + 0.001 < 0.95 OK

= NEd/(Chi\_z NRk/GammaM1) + kzy (My,Ed+NEd eNy)/(Chi\_LT My,Rk/GammaM1) + kzz (Mz, Ed+NEd eNz) / (Mz, Rk/GammaM1) (NTC Eq C4.2.38)

AXIAL FORCE DESIGN

| XIAL FORCE DESIG | N   |         |           |           |          |       |          |  |
|------------------|-----|---------|-----------|-----------|----------|-------|----------|--|
|                  |     | Ned     | Nc, Rd    | Nt,Rd     |          |       |          |  |
|                  |     | Force   | Capacity  | Capacity  |          |       |          |  |
| Axial            |     | 29.563  | 1684.048  | 1684.048  |          |       |          |  |
|                  |     | Npl,Rd  | Nu, Rd    | Ncr,T     | Ncr, TF  | An/Ag |          |  |
|                  | 1   | 684.048 | 1990.728  | 5353.003  | 5353.003 | 1.    |          |  |
| Cu:              | rve | Alpha   | Ncr       | LambdaBar | Phi      | Chi   | Nb,Rd    |  |
| Major (y-y)      | b   | 0.34    | 10681.353 | 0.407     | 0.618    | 0.923 | 1554.944 |  |
| MajorB(y-y)      | b   | 0.34    | 10681.353 | 0.407     | 0.618    | 0.923 | 1554.944 |  |
| Minor (z-z)      | С   | 0.49    | 3859.898  | 0.677     | 0.846    | 0.739 | 1244.467 |  |
| MinorB(z-z)      | С   | 0.49    | 3859.898  | 0.677     | 0.846    | 0.739 | 1244.467 |  |
| Torsional TF     | С   | 0.49    | 5353.003  | 0.575     | 0.757    | 0.8   | 1347.663 |  |
|                  |     |         |           |           |          |       |          |  |



SOVRAPP. PEDONALE STAZIONE VIGNA DI VALLE IV04 - PASSERELLA PEDONALE - Vigna di Valle IMPALCATO – Relazione di calcolo

| COMMESSA | LOTTO   | CODIFICA | DOCUMENTO  | REV. | FOGLIO   |
|----------|---------|----------|------------|------|----------|
| NR1J     | 00 D 29 | CL       | IV0407 101 | Α    | 54 di 60 |

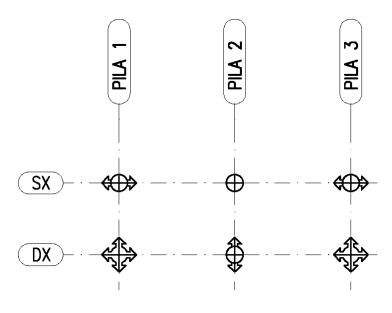
| MOMENT DESIGN |               |             |            |          |        |         |
|---------------|---------------|-------------|------------|----------|--------|---------|
|               | Med           | Med, span   | Mm, Ed     | Meg, Ed  |        |         |
|               | Moment        | Moment      | Moment     | Moment   |        |         |
| Major (y-y)   | 18.319        | 39.125      | 18.319     | 29.344   |        |         |
| Minor (z-z)   |               | 0.255       | 0.013      | 0.102    |        |         |
| , ,           |               |             |            |          |        |         |
|               | Mc,Rd         | Mv,Rd       | Mn, Rd     | Mb, Rd   |        |         |
|               | Capacity      | Capacity    | Capacity   | Capacity |        |         |
| Major (y-y)   |               |             | 148.762    |          |        |         |
| Minor (z-z)   |               | 70.976      | 70.976     |          |        |         |
|               |               |             |            |          |        |         |
|               | Curve AlphaLT | LambdaBarLT | PhiLT      | ChiLT    | psi    | Mcr     |
| LTB           | b 0.34        |             | 0.696      | 0.906    | 1.147  | 558.004 |
|               |               |             |            |          |        |         |
|               | kyy           | kyz         | kzy        | kzz      |        |         |
| Factors       | 0.946         | 0.24        | 1.         | 0.4      |        |         |
|               |               |             |            |          |        |         |
| SHEAR DESIGN  |               |             |            |          |        |         |
|               | Ved           | Ted         | Vc,Rd      | Stress   | Status |         |
|               | Force         | Torsion     | Capacity   | Ratio    | Check  |         |
| Major (z)     | 37.515        | 0.001       | 311.948    | 0.12     | OK     |         |
| Minor (y)     | 0.149         | 0.001       | 773.292    | 0.       | OK     |         |
|               |               |             |            |          |        |         |
|               | Vpl,Rd        |             | LambdabarW |          |        |         |
| Reduction     | 311.948       | 1.          | 0.329      |          |        |         |
|               |               |             |            |          |        |         |

### CONNECTION SHEAR FORCES FOR BEAMS

 VMajor
 VMajor

 Left
 Right

 Major (V2)
 52.726
 52.555




SOVRAPP. PEDONALE STAZIONE VIGNA DI VALLE IV04 - PASSERELLA PEDONALE - Vigna di Valle IMPALCATO – Relazione di calcolo

| COMMESSA | LOTTO   | CODIFICA | DOCUMENTO  | REV. | FOGLIO   |
|----------|---------|----------|------------|------|----------|
| NR1J     | 00 D 29 | CL       | IV0407 101 | Α    | 55 di 60 |

### 13 APPOGGI E GIUNTI

Si riporta a seguire lo schema dei dispositivi di appoggio.



PILA 1 Lc=20m PILA 2 Lc=18m PILA3

## 13.1 Reazioni elementari

Si riporta a seguire la denominazione dei nodi corrispondenti ai vincoli esterni.



Seguono le reazioni elementari dovute alle varie azioni.



SOVRAPP. PEDONALE STAZIONE VIGNA DI VALLE IV04 - PASSERELLA PEDONALE - Vigna di Valle IMPALCATO – Relazione di calcolo

 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 NR1J
 00 D 29
 CL
 IV0407 101
 A
 56 di 60

| Joint | OutputCase    | StepType | F1  | F2   | F3  | Joint | F1 | F2 | F3  |
|-------|---------------|----------|-----|------|-----|-------|----|----|-----|
| Text  | Text          | Text     | KN  | KN   | KN  | Text  | KN | KN | KN  |
| dx_01 | g1            |          | 0   | 0    | 49  | sx_01 | 0  | 0  | 49  |
| dx_01 | g2            |          | 0   | 0    | 32  | sx_01 | 0  | 0  | 32  |
| dx_01 | q1_C1+C2      |          | 0   | 0    | 53  | sx_01 | 0  | 0  | 53  |
| dx_01 | q1_C1         |          | 0   | 0    | 59  | sx_01 | 0  | 0  | 59  |
| dx_01 | q1_C2         |          | 0   | 0    | -6  | sx_01 | 0  | 0  | -6  |
| dx_01 | q5            |          | 0   | -75  | -25 | sx_01 | 0  | 0  | 23  |
| dx_01 | e3_DT         |          | 0   | 0    | -12 | sx_01 | 0  | 0  | -12 |
| dx_01 | SISM_LONG_q1  | Max      | 0   | 10   | 0   | sx_01 | 0  | 0  | 0   |
| dx_01 | SISM_TRASV_q1 | Max      | 0   | 52   | 1   | sx_01 | 0  | 0  | 1   |
| dx_01 | SISM_VERT_q1  | Max      | 0   | 0    | 5   | sx_01 | 0  | 0  | 5   |
| dx_01 | q5_aero       |          | 0   | 0    | -1  | sx_01 | 0  | 0  | -1  |
| dx_09 | g1            |          | 0   | 0    | 146 | sx_09 | 0  | 0  | 146 |
| dx_09 | g2            |          | 0   | 0    | 96  | sx_09 | 0  | 0  | 96  |
| dx_09 | q1_C1+C2      |          | 0   | 0    | 158 | sx_09 | 0  | 0  | 158 |
| dx_09 | q1_C1         |          | 0   | 0    | 93  | sx_09 | 0  | 0  | 93  |
| dx_09 | q1_C2         |          | 0   | 0    | 79  | sx_09 | 0  | 0  | 79  |
| dx_09 | q5            |          | 0   | -170 | -65 | sx_09 | 0  | 0  | 82  |
| dx_09 | e3_DT         |          | 0   | 0    | 25  | sx_09 | 0  | 0  | 25  |
| dx_09 | SISM_LONG_q1  | Max      | 125 | 6    | 1   | sx_09 | 0  | 0  | 1   |
| dx_09 | SISM_TRASV_q1 | Max      | 9   | 95   | 6   | sx_09 | 0  | 0  | 6   |
| dx_09 | SISM_VERT_q1  | Max      | 0   | 0    | 16  | sx_09 | 0  | 0  | 16  |
| dx_09 | q5_aero       |          | 0   | 0    | 9   | sx_09 | 0  | 0  | 9   |
| dx_16 | g1            |          | 0   | 0    | 40  | sx_16 | 0  | 0  | 40  |
| dx_16 | g2            |          | 0   | 0    | 26  | sx_16 | 0  | 0  | 26  |
| dx_16 | q1_C1+C2      |          | 0   | 0    | 43  | sx_16 | 0  | 0  | 43  |
| dx_16 | q1_C1         |          | 0   | 0    | -10 | sx_16 | 0  | 0  | -10 |
| dx_16 | q1_C2         |          | 0   | 0    | 53  | sx_16 | 0  | 0  | 53  |
| dx_16 | q5            |          | 0   | -65  | -13 | sx_16 | 0  | 0  | 26  |
| dx_16 | e3_DT         |          | 0   | 0    | -13 | sx_16 | 0  | 0  | -13 |
| dx_16 | SISM_LONG_q1  | Max      | 0   | 10   | 0   | sx_16 | 0  | 0  | 0   |
| dx_16 | SISM_TRASV_q1 | Max      | 0   | 45   | 3   | sx_16 | 0  | 0  | 3   |
| dx_16 | SISM_VERT_q1  | Max      | 0   | 0    | 7   | sx_16 | 0  | 0  | 7   |
| dx_16 | q5_aero       |          | 0   | 0    | 6   | sx_16 | 0  | 0  | 6   |



 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 NR1J
 00 D 29
 CL
 IV0407 101
 A
 57 di 60

### 13.2 Scarichi sugli appoggi

IMPALCATO - Relazione di calcolo

Seguono gli scarichi combinati sugli appoggi.

IV04 - PASSERELLA PEDONALE - Vigna di Valle

| Joint | OutputCase | StepType | F1 | F2   | F3  | Joint | F1 | F2 | F3  |
|-------|------------|----------|----|------|-----|-------|----|----|-----|
| Text  | Text       | Text     | KN | KN   | KN  | Text  | KN | KN | KN  |
| dx_01 | ENVE_SLE   | Max      | 0  | 46   | 162 | sx_01 | 0  | 0  | 147 |
| dx_01 | ENVE_SLE   | Min      | 0  | -45  | 53  | sx_01 | 0  | 0  | 68  |
| dx_01 | ENVE_SLU   | Max      | 0  | 68   | 233 | sx_01 | 0  | 0  | 214 |
| dx_01 | ENVE_SLU   | Min      | 0  | -68  | 74  | sx_01 | 0  | 0  | 93  |
| dx_01 | ENVE_SLV   | Max      | 0  | 0    | 102 | sx_01 | 0  | 0  | 102 |
| dx_01 | ENVE_SLV   | Min      | 0  | 0    | 81  | sx_01 | 0  | 0  | 81  |
| dx_09 | ENVE_SLE   | Max      | 0  | 102  | 423 | sx_09 | 0  | 0  | 464 |
| dx_09 | ENVE_SLE   | Min      | 0  | -103 | 296 | sx_09 | 0  | 0  | 256 |
| dx_09 | ENVE_SLU   | Max      | 0  | 153  | 618 | sx_09 | 0  | 0  | 669 |
| dx_09 | ENVE_SLU   | Min      | 0  | -154 | 418 | sx_09 | 0  | 0  | 367 |
| dx_09 | ENVE_SLV   | Max      | 0  | 0    | 301 | sx_09 | 0  | 0  | 301 |
| dx_09 | ENVE_SLV   | Min      | 0  | 0    | 245 | sx_09 | 0  | 0  | 245 |
| dx_16 | ENVE_SLE   | Max      | 0  | 39   | 134 | sx_16 | 0  | 0  | 126 |
| dx_16 | ENVE_SLE   | Min      | 0  | -39  | 40  | sx_16 | 0  | 0  | 49  |
| dx_16 | ENVE_SLU   | Max      | 0  | 59   | 193 | sx_16 | 0  | 0  | 185 |
| dx_16 | ENVE_SLU   | Min      | 0  | -58  | 57  | sx_16 | 0  | 0  | 65  |
| dx_16 | ENVE_SLV   | Max      | 0  | 0    | 88  | sx_16 | 0  | 0  | 88  |
| dx_16 | ENVE_SLV   | Min      | 0  | 0    | 61  | sx_16 | 0  | 0  | 61  |



SOVRAPP. PEDONALE STAZIONE VIGNA DI VALLE IV04 - PASSERELLA PEDONALE - Vigna di Valle IMPALCATO – Relazione di calcolo

| COMMESSA | LOTTO   | CODIFICA | DOCUMENTO  | REV. | FOGLIO   |
|----------|---------|----------|------------|------|----------|
| NR1J     | 00 D 29 | CL       | IV0407 101 | Α    | 58 di 60 |

### 13.3 Spostamenti elementari

Si riportano a seguire i valori degli spostamenti [m] dei vincoli di estremità dell'impalcato, dovuti all'azione della termica uniforme  $\varepsilon 3_TU$ .







pari a ±3.5 mm in direzione longitudinale,



pari a ±3.1 mm in direzione longitudinale.



SOVRAPP. PEDONALE STAZIONE VIGNA DI VALLE IV04 - PASSERELLA PEDONALE - Vigna di Valle IMPALCATO – Relazione di calcolo

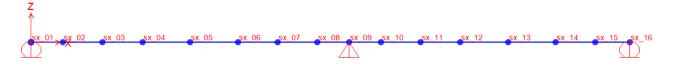
| COMMESSA | LOTTO   | CODIFICA | DOCUMENTO  | REV. | FOGLIO   |
|----------|---------|----------|------------|------|----------|
| NR1J     | 00 D 29 | CL       | IV0407 101 | Α    | 59 di 60 |

#### 14 FRECCE E CONTROMONTE.

Le deformazioni massime della passerella devono risultare compatibili con la geometria della struttura in relazione alle esigenze del traffico pedonale.

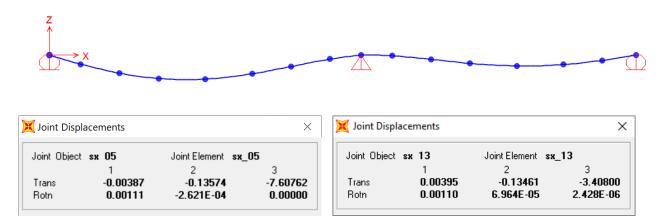
Dovrà comunque verificarsi quanto segue:

- l'impalcato deve presentare una contromonta da determinare per la totalità dei carichi permanenti, nonché per il 25% dei carichi accidentali;
- limitatamente agli elementi principali si dovranno rispettare i seguenti limiti di deformazione:


f < Lc/300 sotto l'azione dei permanenti

dove:

Lc = luce di calcolo = 20.00m


f = massima freccia

In base ai risultati ottenuti dall'analisi si ottengono i seguenti valori degli abbassamenti in mezzeria:



PILA 1 PILA 2 PILA 3

spostamenti verticali [mm] dovuti a g1+g2:





spostamenti verticali [mm] dovuti a q1:



E' ampiamente verificato che: f = 7.6 mm < Lc/300 = 66 mm

La contromonta da adottare è pari a 8mm per la campata C1 (sx) e 4mm per la campata C2 (dx).