COMMITTENTE:

PROGETTAZIONE:

	ID		TE		ICA
IJ	IR	w		C IV	ILA

U.O. INFRASTRUTTURE CENTRO

PROGETTO DEFINITIVO

RADDOPPIO LINEA FERROVIARIA ROMA-VITERBO TRATTA CESANO-VIGNA DI VALLE

SOVRAPPASSO PEDONALE STAZIONE VIGNA DI VALLE IV04 - PASSERELLA PEDONALE - Vigna di Valle

PILE – Relazione di calcolo

SCALA:
-

COMMESSA	LOTTO	FASE	ENTE	TIPO DOC.	OPERA/DISCIPLINA	PROGR.	REV.
NR1J	0 0	D	2 9	CL	I V 0 4 0 5	1 0 1	Α

Rev.	Descrizione	Redatto	Data	Verificato	Data	Approvato	Data	Autorizzato Data	
^	A Emissione esecutiva		11.2019	G. Passaro	11.2019	T. Paoletti	11.2019		
A			11.2019	A	11.2019	ß		F. Arduini 11.2019	
				4		14		11.2013	
								ITALFERR S.p.A.	
								Direzione Tecnica Infrastrutture Centro	
								Dott. ing. Eablizio Arduini Ordine degli Ingegneri della Provincia di Roma n. 16392 pol. A	
								1 10200 Toly	
								9	

File: NR1J00D29CLIV0405101A.DOC		n. Elab.: 140.07	
---------------------------------	--	------------------	--

SOVRAPP. PEDONALE STAZIONE VIGNA DI VALLE IV04 - PASSERELLA PEDONALE - Vigna di Valle PILE – Relazione di calcolo

COMMESSA LOTTO CODIFICA DOCUMENTO REV. FOGLIO

NR1J 00 D 29 CL IV0405 101 A 2 di 113

INDICE

1	PREMESSA	6
1.1	DESCRIZIONE DELLA STRUTTURA	7
2	NORMATIVA DI RIFERIMENTO	13
3	DOCUMENTI DI RIFERIMENTO	14
4	UNITÀ DI MISURA E SIMBOLOGIA	15
5	CARATTERISTICHE DEI MATERIALI	16
5.1	CALCESTRUZZO PER FUSTO PILA E PULVINO	16
5.2	CALCESTRUZZO PER PLINTO DI FONDAZIONE	17
5.3	CALCESTRUZZO PER PALI DI FONDAZIONE	18
5.4	ACCIAIO PER BARRE DI ARMATURA	19
6	CARATTERIZZAZIONE GEOTECNICA	20
7	CRITERI PROGETTUALI	21
7.1	VITA NOMINALE	21
7.2	CLASSE D'USO	21
7.3	PERIODO DI RIFERIMENTO PER L'AZIONE SISMICA	21
8	ANALISI DEI CARICHI DI PROGETTO	23
8.1	PESI PROPRI STRUTTURALI (G1)	23
8.2	SOVRACCARICHI PERMANENTI PORTATI (G2)	24
8.3	SOVRACCARICHI ACCIDENTALI (Q1)	25
8.4	AZIONE DEL VENTO SULL'IMPALCATO (Q5)	25
8.5	AZIONE DEL VENTO SULLA PILA (Q5)	25
8.6	EFFETTI AERODINAMICI ASSOCIATI AL PASSAGGIO DEI CONVOGLI FERROVIARI (Q5_AERO)	26
8.7	Variazione termica non uniforme (ε3_DT)	27
8.8	AZIONE SISMICA (Q6)	27

SOVRAPP. PEDONALE STAZIONE VIGNA DI VALLE IV04 - PASSERELLA PEDONALE - Vigna di Valle PILE – Relazione di calcolo

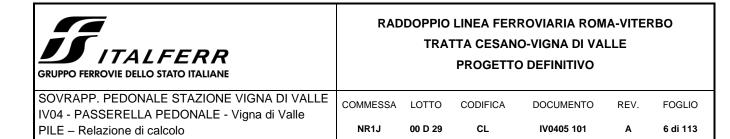
COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO	
NR1J	00 D 29	CL	IV0405 101	Α	3 di 113	

8.9	RESISTENZA PARASSITA DEI VINCOLI (Q7)	31
8.10	DERAGLIAMENTO (URTO)	31
9 A	NALISI SISMICA DELLA PILA	33
9.1	MASSE SISMICHE	33
9.2	ANALISI SISMICA – PILA 2	33
9.3	ANALISI SISMICA – PILA 1	35
10 C	COMBINAZIONI DI CARICO	37
11 A	NALISI DELLE SOLLECITAZIONI - PILA 2	40
11.1	REAZIONI VINCOLARI ELEMENTARI AL PIANO APPOGGI TRASMESSE DALL'IMPALCATO	40
11.2	SOLLECITAZIONI ELEMENTARI RIPORTATE AL BARICENTRO DEL PIANO APPOGGI	40
11.3	SOLLECITAZIONI ELEMENTARI RIPORTATE AL BARICENTRO DELLA SEZIONE DI BASE DELLA PILA	41
11.4	SOLLECITAZIONI COMBINATE RIPORTATE AL BARICENTRO DELLA SEZIONE DI BASE DELLA PILA	41
11.5	SOLLECITAZIONI COMBINATE RIPORTATE AL BARICENTRO DELLA SEZIONE DI BASE DEL PLINTO	42
12 A	NALISI DELLE SOLLECITAZIONI - PILA 1	44
12.1	REAZIONI VINCOLARI ELEMENTARI AL PIANO APPOGGI TRASMESSE DALL'IMPALCATO	44
12.2	SOLLECITAZIONI ELEMENTARI RIPORTATE AL BARICENTRO DEL PIANO APPOGGI	44
12.3	SOLLECITAZIONI ELEMENTARI RIPORTATE AL BARICENTRO DELLA SEZIONE DI BASE DELLA PILA	45
12.4	SOLLECITAZIONI COMBINATE RIPORTATE AL BARICENTRO DELLA SEZIONE DI BASE DELLA PILA	45
12.5	SOLLECITAZIONI COMBINATE RIPORTATE AL BARICENTRO DELLA SEZIONE DI BASE DEL PLINTO	46
13 V	'ERIFICHE STRUTTURALI DEL FUSTO PILA 2	48
13.1	GEOMETRIA DELLA SEZIONE DI VERIFICA E ARMATURA	48
1	3.1.1 ARMATURA LONGITUDINALE	48
1	3.1.2 ARMATURA TRASVERSALE	48
1	3.1.3 VERIFICA DELL'ARMATURA MINIMA	49
13.2	VERIFICHE SLU A FLESSIONE	51
13 3	VERIFICHE SI LI A TAGLIO	56

SOVRAPP. PEDONALE STAZIONE VIGNA DI VALLE IV04 - PASSERELLA PEDONALE - Vigna di Valle PILE – Relazione di calcolo

 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 NR1J
 00 D 29
 CL
 IV0405 101
 A
 4 di 113


	13.3.1 VERIFICA A TAGLIO IN DIREZIONE LONGITUDINALE	5/
	13.3.2 VERIFICA A TAGLIO IN DIREZIONE TRASVERSALE	58
13.4	VERIFICA SLE DELLE TENSIONI	59
13.5	VERIFICHE SLE A FESSURAZIONE	60
14	VERIFICHE STRUTTURALI DEI PALI DI FONDAZIONE – PILA 2	61
14.1	SOLLECITAZIONI ALLA TESTA DEI PALI	61
14.2	GEOMETRIA DELLA SEZIONE DI VERIFICA E ARMATURA	64
14.3	VERIFICA SLU A PRESSO-FLESSIONE	65
14.4	VERIFICA SLU A TAGLIO	67
14.5	VERIFICA SLE DELLE TENSIONI	68
14.6	VERIFICA SLE A FESSURAZIONE	69
15	VERIFICHE STRUTTURALI DEL PLINTO DI FONDAZIONE – PILA 2	70
15.1	VERIFICHE SLU-SLE CON MECCANISMO TIRANTE-PUNTONE	70
15.2	GEOMETRIA PLINTO	72
15.3	GEOMETRIA TIRANTE-PUNTONE	73
15.4	VERIFICHE SLU E SLE	74
16	VERIFICHE STRUTTURALI DEL FUSTO PILA 1	75
16.1	GEOMETRIA DELLA SEZIONE DI VERIFICA E ARMATURA	75
	16.1.1 ARMATURA LONGITUDINALE	75
	16.1.2 ARMATURA TRASVERSALE	75
	16.1.3 VERIFICA DELL'ARMATURA MINIMA	76
16.2	VERIFICHE SLU A FLESSIONE	78
16.3	VERIFICHE SLU A TAGLIO	82
	16.3.1 VERIFICA A TAGLIO IN DIREZIONE LONGITUDINALE	83
	16.3.2 VERIFICA A TAGLIO IN DIREZIONE TRASVERSALE	84
16 4	VERIFICA SLE DELLE TENSIONI	85

SOVRAPP. PEDONALE STAZIONE VIGNA DI VALLE IV04 - PASSERELLA PEDONALE - Vigna di Valle PILE – Relazione di calcolo

COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO	

16.5	VERIFICHE SLE A FESSURAZIONE	86
17 V	'ERIFICHE STRUTTURALI DEI PALI DI FONDAZIONE – PILA 1	87
17.1	SOLLECITAZIONI ALLA TESTA DEI PALI	87
17.2	GEOMETRIA DELLA SEZIONE DI VERIFICA E ARMATURA	90
17.3	VERIFICA SLU A PRESSO-FLESSIONE	91
17.4	VERIFICA SLU A TAGLIO	93
17.5	VERIFICA SLE DELLE TENSIONI	94
17.6	VERIFICA SLE A FESSURAZIONE	95
18 V	ERIFICHE STRUTTURALI DEL PLINTO DI FONDAZIONE – PILA 1	96
18.1	VERIFICHE SLU-SLE CON MECCANISMO TIRANTE-PUNTONE	96
18.2	GEOMETRIA PLINTO	99
18.3	GEOMETRIA TIRANTE-PUNTONE	99
18.4	VERIFICHE SLU E SLE	100
19 V	ERIFICHE GEOTECNICHE DEI PALI	101
19.1	PALI DELLA PILA 2	101
19.2	PALI DELLA PILA 1	107
20 IN	NCIDENZA ARMATURA	113
20.1	PILA 1	113
20.2	PILE 2 E 3	113

1 PREMESSA

Il progetto di raddoppio della tratta Cesano – Vigna di Valle, sulla linea ferroviaria Roma – Viterbo, costituisce la prima fase funzionale del più esteso intervento di raddoppio tra Cesano e Bracciano, previsto dal recente Accordo Quadro tra Regione Lazio e RFI del 22/02/2018.



Figura 1 – Stazione Vigna di Valle – Stralcio planimetrico

Relativamente alla nuova stazione di Vigna di Valle si prevede la realizzazione di una passerella pedonale di scavalco della linea ferroviaria, le cui sottostrutture sono oggetto della presente relazione strutturale.

1.1 DESCRIZIONE DELLA STRUTTURA

Si riportano a seguire delle immagini che illustrano lo scavalco della linea ferroviaria mediante la passerella pedonale.

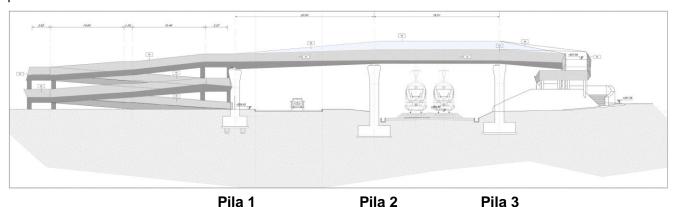


Figura 2 – Stazione Vigna di Valle – Sezione longitudinale attraversamento

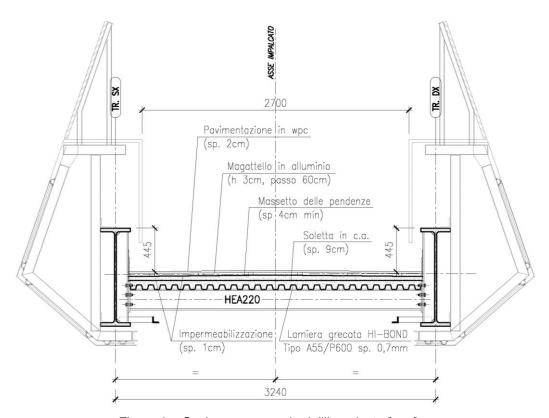


Figura 3 – Sezione trasversale dell'impalcato [mm]

SOVRAPP. PEDONALE STAZIONE VIGNA DI VALLE IV04 - PASSERELLA PEDONALE - Vigna di Valle PILE – Relazione di calcolo

 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 NR1J
 00 D 29
 CL
 IV0405 101
 A
 8 di 113

L'impalcato della passerella presenta schema statico di trave continua su tre appoggi, con luci di 20m + 18m ed è realizzato in carpenteria metallica con soletta gettata in opera su lamiera grecata. Sono presenti due travi principali costituite da profili commerciali (HEB1000) poste ad interasse di 3.24m, costituite da conci solidarizzati tra loro in fase di montaggio.

Le sottostrutture sono costituite da tre pile in c.a. aventi altezze diverse tra loro, caratterizzate da sezione rettangolare smussata del fusto in elevazione, il quale si allarga nella parte sommitale per sostenere le travi metalliche dell'impalcato. Le pile 2 e 3 presentano sezione 1m x 2.5m, mentre la pila 1 presenta sezione 1m x 2m. A seguire sono riportate le altezze dei fusti delle pile 1, 2 e 3 del sovrappasso:

- Pila 1 Hf = 6.70m
- Pila 2 Hf = 8.70m
- Pila 3 Hf = 8.70m

Le pile sono fondate su plinti rettangolari in c.a. e pali di diametro ø600mm, in numero di 8 per le pile 2 e 3 (L=25m) e in numero di 4 (L=12m) per la pila 1.

Le pile 1, 2 e 3 sono fisse in direzione trasversale, mentre la sola pila 2 è fissa in direzione longitudinale.

Essendo le pile 2 e 3 in adiacenza ai binari esistente, essa saranno oggetto di verifiche in condizione eccezionale di urto del convoglio ferroviario in caso di deragliamento. Tale azione risulta essere dimensionante per le pile e le relative sottostrutture.

Oggetto della presente relazione saranno la pila 2 (fissa longitudinalmente e soggetta ad urto per deragliamento) e la pila 1. La pila 3 presenta altezza inferiore rispetto alla pila 2 e ne mantiene invariate la geometria di sezione e l'armatura prevista, nonché le relative fondazioni (plinto e pali); essendo mobile in direzione longitudinale e quindi soggetta a sollecitazioni sismiche minori rispetto alla pila 2, la pila 3 si considera automaticamente verificata.

Si riportano a seguire delle immagini che illustrano la geometria delle pile e delle relative sottostrutture.

SOVRAPP. PEDONALE STAZIONE VIGNA DI VALLE IV04 - PASSERELLA PEDONALE - Vigna di Valle PILE – Relazione di calcolo

 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 NR1J
 00 D 29
 CL
 IV0405 101
 A
 9 di 113

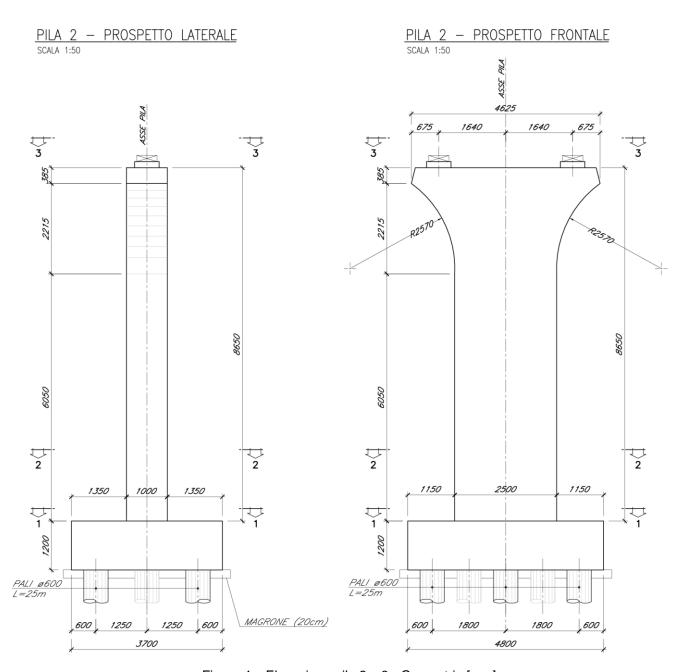


Figura 4 – Elevazione pile 2 e 3 - Geometria [mm]

SOVRAPP. PEDONALE STAZIONE VIGNA DI VALLE IV04 - PASSERELLA PEDONALE - Vigna di Valle PILE – Relazione di calcolo

 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 NR1J
 00 D 29
 CL
 IV0405 101
 A
 10 di 113

PILE 2 e 3 - SEZIONE 1-1 SCALA 1:50

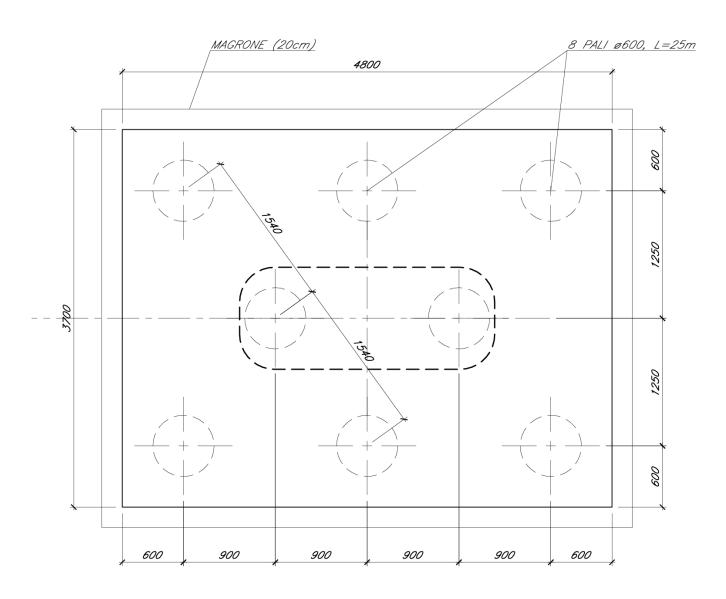
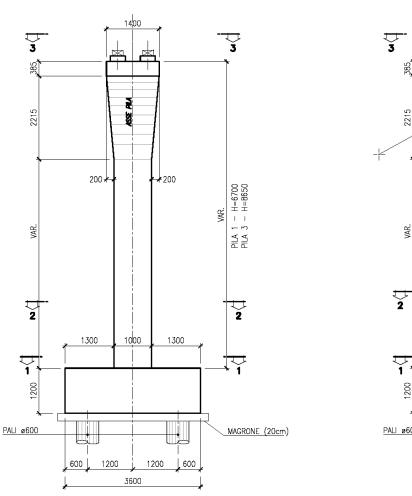


Figura 5 – Fondazione pile 2 e 3 - Geometria [mm]



<u>PILE LATERALI — PROSPETTO LATERALE</u>

SCALA 1:50

PILE LATERALI - PROSPETTO FRONTALE

SCALA 1:50

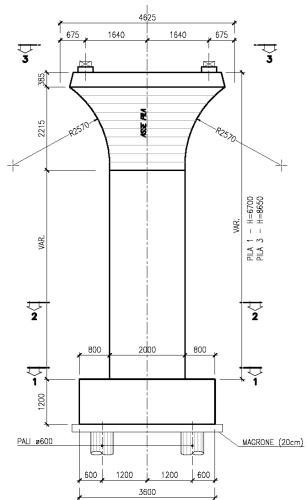


Figura 6 – Elevazione pile 1 - Geometria [mm]

SOVRAPP. PEDONALE STAZIONE VIGNA DI VALLE IV04 - PASSERELLA PEDONALE - Vigna di Valle PILE - Relazione di calcolo

LOTTO

CODIFICA

DOCUMENTO

FOGLIO REV.

00 D 29 CL IV0405 101 12 di 113 Α

PILE LATERALI - SEZIONE 1-1

COMMESSA

NR1J

MAGRONE (20cm) 4 PALI ø600, L=12m 3600 009 1200 1200 600 600 1200 1200 600

Figura 7 – Fondazione pila 1 - Geometria [mm]

SOVRAPP. PEDONALE STAZIONE VIGNA DI VALLE IV04 - PASSERELLA PEDONALE - Vigna di Valle PILE – Relazione di calcolo

 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 NR1J
 00 D 29
 CL
 IV0405 101
 A
 13 di 113

2 NORMATIVA DI RIFERIMENTO

- 1. Legge 5 novembre 1971 n. 1086 Norme per la disciplina delle opere di conglomerato cementizio armato normale e precompresso ed a struttura metallica
- 2. Legge 2 febbraio 1974 n. 64 Provvedimenti per le costruzioni con particolari prescrizioni per le zone sismiche
- 3. D.M. 17 gennaio 2018 Norme Tecniche per le Costruzioni
- 4. Circolare 21 gennaio 2019 Istruzioni per l'applicazione dell' "Aggiornamento delle Nuove norme tecniche per le costruzioni" di cui al D.M. 17 gennaio 2018
- 5. Eurocodice 2: Progettazione delle strutture in calcestruzzo Parte 1.1: Regole generali e regole per gli edifici.
- 6. UNI ENV 1992-1-1 Parte 1-1: Regole generali e regole per gli edifici;
- 7. UNI EN 206-1-2016: Calcestruzzo. "Specificazione, prestazione, produzione e conformità".
- 8. RFI DTC SI MA IFS 001 C Manuale di progettazione delle opere civili Parte I
- 9. RFI DTC SI AM MA IFS 001 B Manuale di progettazione delle opere civili Parte II Sezione 1

- Ambiente

10. RFI DTC SI PS MA IFS 001 C Manuale di progettazione delle opere civili – Parte II – Sezione 2

- Ponti e Strutture

- 11. RFI DTC SI CS MA IFS 001 C Manuale di progettazione delle opere civili Parte II Sezione 3
 - Corpo Stradale
- 12. RFI DTC SI CS MA IFS 001 C del 21.12.2018 "Capitolato generale tecnico di appalto delle opere civili".
- 13. Regolamento (UE) N. 1299/2014 della Commissione del 18/11/2014 relativo alle specifiche tecniche di interoperabilità per il sottosistema "infrastruttura" del sistema ferroviario dell'Unione Europea.

3 DOCUMENTI DI RIFERIMENTO

Vengono presi a riferimento tutti gli elaborati grafici progettuali di pertinenza.

SOVRAPP. PEDONALE STAZIONE VIGNA DI VALLE IV04 - PASSERELLA PEDONALE - Vigna di Valle PILE – Relazione di calcolo

 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 NR1J
 00 D 29
 CL
 IV0405 101
 A
 15 di 113

4 UNITÀ DI MISURA E SIMBOLOGIA

Si utilizza il Sistema Internazionale (SI):

unità di misura principali

N(Newton)unità di forzam(metro)unità di lunghezzakg(kilogrammo-massa)unità di massas(secondo)unità di tempo

unità di misura derivate

kN (kiloNewton) 10^3 N **MN** (megaNewton) 10^6 N

kgf (kilogrammo-forza) 1 kgf = 9.81 N

 cm
 (centimetro)
 10-2 m

 mm
 (millimetro)
 10-3 m

 Pa
 (Pascal)
 1 N/m²

 kPa
 (kiloPascal)
 103 N/m²

 MPa
 (megaPascal)
 106 N/m²

N/m³ (peso specifico)

g (accelerazione di gravità) ~9.81 m/s²

corrispondenze notevoli

 $1 \text{ MPa} = 1 \text{ N/mm}^2$

1 MPa ~ 10 kgf/cm²

 $1 \text{ kN/m}^3 \sim 100 \text{ kgf/m}^3$

Si utilizzano i seguenti principali simboli con le relative unità di misura normalmente adottate:

 $\begin{array}{lll} \gamma & \text{(gamma)} & \text{peso dell'unità di volume} & \text{(kN/m}^3) \\ & & \text{(sigma)} & \text{tensione normale} & \text{(N/mm}^2) \\ & & \text{tau)} & \text{tensione tangenziale} & \text{(N/mm}^2) \end{array}$

ε (epsilon) deformazione (m/m - adimensionale)

φ (fi) angolo di resistenza (° sessagesimali)

SOVRAPP. PEDONALE STAZIONE VIGNA DI VALLE IV04 - PASSERELLA PEDONALE - Vigna di Valle PILE – Relazione di calcolo

 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 NR1J
 00 D 29
 CL
 IV0405 101
 A
 16 di 113

5 CARATTERISTICHE DEI MATERIALI

5.1 Calcestruzzo per fusto pila e pulvino

Classe C32/40			
R _{ck} =	40.00	MPa	Resistenza caratteristica cubica
$f_{ck} = 0.83 R_{ck} =$	33.20	MPa	Resistenza caratteristica cilindrica
$f_{cm} = f_{ck} + 8 =$	41.20	MPa	Valore medio resistenza cilindrica
$\alpha_{cc} =$	0.85		Coeff. rid. per carichi di lunga durata
γм =	1.50	-	Coefficiente parziale di sicurezza SLU
$f_{cd} = \alpha_{cc} f_{ck}/\gamma_M =$	18.81	MPa	Resistenza di progetto
$f_{ctm} = 0.3 f_{ck}^{(2/3)} =$	3.10	MPa	Resistenza media a trazione semplice
$f_{cfm} = 1,2 f_{ctm} =$	3.72	MPa	Resistenza media a trazione per flessione
$f_{ctk} = 0.7 f_{ctm} =$	2.17	MPa	Valore caratteristico resistenza a trazione (frattile 5%)
$\sigma_c = 0.55 \; f_{ck} =$	18.26	MPa	Tensione limite in esercizio in comb. Rara (rif. §1.8.3.2.1 [3])
$\sigma_c = 0.40 \ f_{ck} =$	13.28	MPa	Tensione limite in esercizio in comb. quasi perm. (rif. §1.8.3.2.1 [3])
$E_{cm} = 22000 (f_{cm}/10)^{(0,3)} =$	33643.00	MPa	Modulo elastico di progetto
v =	0.20		Coefficiente di Poisson
$G_c = E_{cm} / (2(1+ v) =$	14018.00	MPa	Modulo elastico tangenziale di progetto
Condizioni ambientali =	Debolmer	nte aggre	essive
Classe di esposizione =	XC4		
C =	4.00	cm	Copriferro minimo
W =	0.20	mm	Apertura massima fessure in esercizio in comb. Rara (rif. §1.8.3.2.4 [3])

Classe C28/35

Condizioni ambientali =

Classe di esposizione =

c =

W =

Ordinarie

cm

mm

XC2

4.00

0.30

RADDOPPIO LINEA FERROVIARIA ROMA-VITERBO TRATTA CESANO-VIGNA DI VALLE PROGETTO DEFINITIVO

SOVRAPP. PEDONALE STAZIONE VIGNA DI VALLE IV04 - PASSERELLA PEDONALE - Vigna di Valle PILE – Relazione di calcolo

 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 NR1J
 00 D 29
 CL
 IV0405 101
 A
 17 di 113

5.2 Calcestruzzo per plinto di fondazione

R _{ck} =	35.00	MPa	Resistenza caratteristica cubica
$f_{ck} = 0.83 R_{ck} =$	29.05	MPa	Resistenza caratteristica cilindrica
$f_{cm} = f_{ck} + 8 =$	37.05	MPa	Valore medio resistenza cilindrica
$\alpha_{cc} =$	0.85		Coeff. rid. per carichi di lunga durata
γ _M =	1.50	-	Coefficiente parziale di sicurezza SLU
$f_{cd} = \alpha_{cc} \; f_{ck} \! / \gamma_M =$	16.46	MPa	Resistenza di progetto
$f_{ctm} = 0.3 f_{ck}^{(2/3)} =$	2.83	MPa	Resistenza media a trazione semplice
$f_{cfm} = 1,2 f_{ctm} =$	3.40	MPa	Resistenza media a trazione per flessione
$f_{ctk} = 0.7 f_{ctm} =$	1.98	MPa	Valore caratteristico resistenza a trazione (frattile 5%)
$\sigma_c = 0,55 \; f_{ck} =$	15.98	MPa	Tensione limite in esercizio in comb. Rara (rif. §1.8.3.2.1 [3])
$\sigma_c = 0{,}40 \ f_{ck} =$	11.62	MPa	Tensione limite in esercizio in comb. quasi perm. (rif. §1.8.3.2.1 [3])
$E_{cm} = 22000 (f_{cm}/10)^{(0,3)} =$	32588.00	MPa	Modulo elastico di progetto
v =	0.20		Coefficiente di Poisson
$G_c = E_{cm} / (2(1+v)=$	13578.00	MPa	Modulo elastico tangenziale di progetto

Copriferro minimo

(rif. §1.8.3.2.4 [3])

Apertura massima fessure in esercizio in comb. Rara

SOVRAPP. PEDONALE STAZIONE VIGNA DI VALLE IV04 - PASSERELLA PEDONALE - Vigna di Valle PILE – Relazione di calcolo

 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 NR1J
 00 D 29
 CL
 IV0405 101
 A
 18 di 113

5.3 Calcestruzzo per pali di fondazione

Classe C25/30			
R _{ck} =	30.00	MPa	Resistenza caratteristica cubica
$f_{ck} = 0.83 R_{ck} =$	24.90	MPa	Resistenza caratteristica cilindrica
$f_{cm} = f_{ck} + 8 =$	32.90	MPa	Valore medio resistenza cilindrica
$\alpha_{cc} =$	0.85		Coeff. rid. per carichi di lunga durata
γм =	1.50	-	Coefficiente parziale di sicurezza SLU
$f_{cd} = \alpha_{cc} f_{ck}/\gamma_M =$	14.11	MPa	Resistenza di progetto
$f_{ctm} = 0.3 f_{ck}^{(2/3)} =$	2.56	MPa	Resistenza media a trazione semplice
$f_{cfm} = 1,2 f_{ctm} =$	3.07	MPa	Resistenza media a trazione per flessione
$f_{ctk} = 0.7 f_{ctm} =$	1.79	MPa	Valore caratteristico resistenza a trazione (frattile 5%)
$\sigma_c = 0.55 f_{ck} =$	13.70	MPa	Tensione limite in esercizio in comb. Rara
- 0 - 1,1 - 101			(rif. §1.8.3.2.1 [3])
$\sigma_c = 0,40 \; f_{ck} =$	9.96	MPa	Tensione limite in esercizio in comb. quasi perm.
$E_{cm} = 22000 (f_{cm}/10)^{(0,3)} =$	31447.00	MPa	(rif. §1.8.3.2.1 [3]) Modulo elastico di progetto
, ,		IVII a	
v =	0.20		Coefficiente di Poisson
$G_c = E_{cm} / (2(1+ v) =$	13103.00	MPa	Modulo elastico tangenziale di progetto
Condizioni ambientali =	Ordinarie		
Classe di esposizione =	XC2		
C =	6.00	cm	Copriferro minimo
w =	0.30	mm	Apertura massima fessure in esercizio in comb. Rara

(rif. §1.8.3.2.4 [3])

SOVRAPP. PEDONALE STAZIONE VIGNA DI VALLE IV04 - PASSERELLA PEDONALE - Vigna di Valle PILE – Relazione di calcolo

 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 NR1J
 00 D 29
 CL
 IV0405 101
 A
 19 di 113

5.4 Acciaio per barre di armatura

B450C			
f _{yk} ≥	450.00	MPa	Tensione caratteristica di snervamento
f _{tk} ≥	540.00	MPa	Tensione caratteristica di rottura
$(f_t / f_y)_k \ge$	1.15		
$(f_t / f_y)_k <$	1.35		
γ s=	1.15	-	Coefficiente parziale di sicurezza SLU
$f_{yd} = f_{yk}/\gamma_s =$	391.30	MPa	Tensione caratteristica di snervamento
E _s =	210000.00	MPa	Modulo elastico di progetto
$\epsilon_{yd} =$	0.20	%	Deformazione di progetto a snervamento
$\epsilon_{uk} = (A_{gt})_k$	7.50	%	Deformazione caratteristica ultima
$\sigma_s = 0.75 f_{yk} =$	337.50	MPa	Tensione in esercizio in comb. Rara
Os — 0,7 0 1yk —	337.30	IVII a	(rif. §1.8.3.2.1 [3])

SOVRAPP. PEDONALE STAZIONE VIGNA DI VALLE IV04 - PASSERELLA PEDONALE - Vigna di Valle PILE – Relazione di calcolo

 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 NR1J
 00 D 29
 CL
 IV0405 101
 A
 20 di 113

6 CARATTERIZZAZIONE GEOTECNICA

Di seguito si riportano i modelli geotecnici considerati riportati nella relazione geotecnica generale allegata NR1J00D29GEGE0005001A.

• 9° Modello – Stazione di Vigna di Valle

Dalla pk 38+000 alla pk 39+497									
Descrizione	z iniz (m)	z fin (m)	spessore (m)	Peso di volume (kN/m³)	Tipo di terreno	Angolo di resistenza al taglio ф' (°)	C' (kPa)	Modulo elastico Eop (MPa)	K media (m/s)
Terreno vegetale sabbioso limoso con frammenti antropici	0	1	1	-	-	-	-	-	-
Limo sabbioso debolemente argilloso	1	3	2	17	GF	26	5	20	-
Sabbia limosa mediamnete addensata con presenza di ghiaia	3	19	16	17	GG	32	0	50	-
Sabbia debolemnete limosa con rarai clasti di litici vulcanici	19	30	11	17	GG	30	0	50	1,71*10-2

Profondità della falda: 35 m da p.c. – non interessa le fondazioni dell'opera

Categoria di suolo C

SOVRAPP. PEDONALE STAZIONE VIGNA DI VALLE IV04 - PASSERELLA PEDONALE - Vigna di Valle PILE – Relazione di calcolo

COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
NR1J	00 D 29	CL	IV0405 101	Α	21 di 113

7 CRITERI PROGETTUALI

7.1 Vita Nominale

La vita nominale di progetto VN di un'opera è convenzionalmente definita come il numero di anni nel quale è previsto che l'opera, purché soggetta alla necessaria manutenzione, mantenga specifici livelli prestazionali. I valori minimi di VN da adottare per i diversi tipi di costruzione sono riportati nella Tab. 2.4.I.

 $\textbf{Tab. 2.4.I} - \textit{Valori minimi della Vita nominale } V_N \textit{ di progetto per i diversi tipi di costruzioni}$

	TIPI DI COSTRUZIONI	Valori minimi di V _N (anni)
1	Costruzioni temporanee e provvisorie	10
2	Costruzioni con livelli di prestazioni ordinari	50
3	Costruzioni con livelli di prestazioni elevati	100

Nel presente caso l'opera viene inserita nella seguente tipologia di costruzione:

2) Costruzioni con livelli di prestazioni ordinari, per cui si considera vita nominale 75 anni.

7.2 Classe d'uso

Con riferimento alle conseguenze di una interruzione di operatività o di un eventuale collasso, l'opera appartiene alla seguente classe d'uso:

Classe II: Costruzioni il cui uso preveda normali affollamenti, senza contenuti pericolosi per l'ambiente e senza funzioni pubbliche e sociali essenziali. Industrie con attività non pericolose per l'ambiente. Ponti, opere infrastrutturali, reti viarie non ricadenti in Classe d'uso III o in Classe d'uso IV, reti ferroviarie la cui interruzione non provochi situazioni di emergenza. Dighe il cui collasso non provochi conseguenze rilevanti.

Tab. 2.4.II - Valori del coefficiente d'uso C,

CLASSE D'USO	I	II	Ш	IV
COEFFICIENTE C _U	0,7	1,0	1,5	2,0

Il coefficiente d'uso è pari a: 1.5.

7.3 Periodo di riferimento per l'azione sismica

Le azioni sismiche sulle costruzioni vengono valutate in relazione ad un periodo di riferimento VR che si ricava, per ciascun tipo di costruzione, moltiplicandone la vita nominale di progetto VN per il coefficiente d'uso CU. Pertanto:

 $V_R = 75 \times 15 = 112.5 \text{ anni}$

SOVRAPP. PEDONALE STAZIONE VIGNA DI VALLE IV04 - PASSERELLA PEDONALE - Vigna di Valle PILE – Relazione di calcolo

COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
NR1J	00 D 29	CL	IV0405 101	Α	22 di 113

Il valore di probabilità di superamento del periodo di riferimento P_{VR}, cui riferirsi per individuare l'azione sismica agente è:

 $P_{VR}(SLV) = 10\%$

II periodo di ritorno dell'azione sismica $T_R = 1068$

SOVRAPP. PEDONALE STAZIONE VIGNA DI VALLE IV04 - PASSERELLA PEDONALE - Vigna di Valle PILE – Relazione di calcolo

 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 NR1J
 00 D 29
 CL
 IV0405 101
 A
 23 di 113

8 ANALISI DEI CARICHI DI PROGETTO

Si riporta seguire l'analisi dei carichi dell'impalcato a struttura metallica e della pila stessa.

8.1 Pesi propri strutturali (g1)

Peso proprio acciaio

Il peso proprio strutturale delle travi è stato valutato fornendone le corrette dimensioni (vedi paragr. precedente) e la relativa densità di peso (□ = 78,5 kN/m3) all'interno del software di calcolo impigato per la realizzazione del modello E.F dell'impalcato.

Si riporta a seguire il computo del peso complessivo della carpenteria metallica che costituisce le travi principali, i trasversi ed i controventi di piano:

	Travi prir	ncipali (CM)										
	Htot	L	Ala sup		Anima		Ala inf		Α	V	P	tot
			Bsup	tsup	hw	tw	Binf	tinf				
	mm	mm	mm	mm	mm	mm	mm	mm	mm2	m3	kN	
C1	1000	16300	300	36	928	19	300	36	39232	0.639	50	
C2	1000	8000	300	36	928	19	300	36	39232	0.314	25	
С3	1000	13950	300	36	928	19	300	36	39232	0.547	43	117.8
												kN
	Diaframn	na appoggio										
	Htot	L	Ala sup		Anima		Ala inf		Α	V	P	tot
			Bsup	tsup	hw	tw	Binf	tinf				
	mm	mm	mm	mm	mm	mm	mm	mm	mm2	m3	kN	
HEB260	260	3000	260	17.5	225	10	260	17.5	11350	0.03	2.7	
									0	0.00	0	2.7
												tot
	Diaframn	ni correnti										
	Htot	L	Ala sup		Anima		Ala inf		Α	V	Р	
			Bsup	tsup	hw	tw	Binf	tinf				
	mm	mm	mm	mm	mm	mm	mm	mm	mm2	m3	kN	
HEA220	210	3000	220	11	188	7	220	11	6156	0.02	1.450	
									0	0.00	0	1.4
												kN
	Controve	enti										
	num	Sez	Asez	L	Н	В	sp		Α	V	P	tot
			mm2	mm	mm	mm	mm		mm2	m3	kN	
inferiori	30	L80X80X8	1230	4000					1230	0.148	12	
									0	0.000	0	11.6
												kN
	num	peso unit.	peso tot.	tot								
		kN	kN									
Travi principali	2	117.8	235.6									
diaframmi app.	3	2.7	8.0									
diaframmi corr.	13	1.4	18.8									
controventi	1	11.6	11.6	274.0								
				kN								

SOVRAPP. PEDONALE STAZIONE VIGNA DI VALLE IV04 - PASSERELLA PEDONALE - Vigna di Valle PILE – Relazione di calcolo

 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 NR1J
 00 D 29
 CL
 IV0405 101
 A
 24 di 113

Per tener conto di piastrame vario, controventi e bulloni, il peso di cui sopra è stato incrementato di un fattore pari a 1,1, pertanto il peso complessivo della carpenteria metallica si assume pari a 302 kN, pari a 7.9 kN/m.

Peso proprio soletta

La soletta getta su lamiera grecata presenta uno spessore equivalente pari a 6.8cm, cui corrisponde un peso pari a 1.70 kN/m2.

Tale azione è stata applicata sugli elementi frame che rappresentano i trasversi stessi, moltiplicata per un coefficiente pari all'interasse tra due elementi adiacenti.

Peso proprio lamiera grecata

Il peso della lamiera grecata di tipo HI-BOND A55-P600 (sp. 0.7mm) è a 9.15 kg/m2, pari a 0.092 kN/m2.

Tale azione è stata applicata sugli elementi frame che rappresentano i trasversi stessi, moltiplicata per un coefficiente pari all'interasse tra due elementi adiacenti.

8.2 Sovraccarichi permanenti portati (g2)

Barriere laterali

Si assume un peso a metro lineare pari a 0.5 kN/m per ogni allineamento longitudinale. Tale azione è stata applicata sugli elementi frame che rappresentano le travi principali.

Carter di finitura

Si assume un peso a metro lineare pari a 1.0 kN/m per ogni allineamento longitudinale. Tale azione è stata applicata sugli elementi frame che rappresentano le travi principali.

Massetto delle pendenze

Lo spessore minimo del massetto è pari a 4cm e si assume una pendenza trasversale pari a 1%. Lo spessore medio del massetto si assume quindi pari a 1.25 kN/m2. Tale azione è stata applicata sugli elementi frame che rappresentano i trasversi stessi, moltiplicata per un coefficiente pari all'interasse tra due elementi adiacenti.

Pavimentazione

La pavimentazione è costituita da uno strato di legno WPC (spessore 2cm) poggiato su un magatello in profili di alluminio (h = 3cm) posti ad interasse 60cm. Il peso complessivo della pavimentazione è 25 kg/m2, pari 0.25 kN/m2. Tale azione è stata applicata sugli elementi frame che rappresentano i trasversi stessi, moltiplicata per un coefficiente pari all'interasse tra due elementi adiacenti.

Peso proprio della pila

Pila 1 553 kN Pila 2 646 kN

SOVRAPP. PEDONALE STAZIONE VIGNA DI VALLE IV04 - PASSERELLA PEDONALE - Vigna di Valle PILE – Relazione di calcolo

 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 NR1J
 00 D 29
 CL
 IV0405 101
 A
 25 di 113

8.3 Sovraccarichi accidentali (q1)

Folla compatta

Ai fini del dimensionamento e della verifica delle travi è stata considerata la presenza di folla q1 = 5kN/m2 su l'impalcato e per una larghezza pari a 2.70m (larghezza calpestabile).

Tale azione è stata applicata sugli elementi frame che rappresentano i trasversi stessi, moltiplicata per un coefficiente pari all'interasse tra due elementi adiacenti.

Il carico della folla espresso a metro lineare di impalcato è pari a 5.00 kN/m2 x 2.70 = 13.50 kN/m.

Il carico della folla è stato considerato applicato contemporaneamente o alternativamente sulle due campate per massimizzare le sollecitazioni nelle varie sezioni di verifica.

8.4 Azione del vento sull'impalcato (q5)

Cautelativamente si considera una pressione del vento di 2.5 KN/m2 agente, per l'intero sviluppo longitudinale della passerella, sulla sola trave esposta e considerando un coefficiente di esposizione unitario.

Tale azione viene assegnata alle travi come carico uniformemente distribuito pari a:

h = 3.3 m altezza superficie esposta;

b = 1.2 m distanza tra baricentro superficie esposta e baricentro impalcato;

i = 3.24 m interasse travi principali;

f5 = 2.5 Kn/m2 x 3.3m = 8.25 KN/m forza orizzontale trasversale

Mq5 = 8.25 kN/m x 1,2 m = 9.9 kNm/m momento torcente q5 = $9.9 \text{ kNm/m} / 3.24 \text{m} = \pm 3.1 \text{ KN/m}$ carico uniforme verticale

8.5 Azione del vento sulla pila (q5)

Cautelativamente si considera una pressione del vento di 2.5 KN/m2 agente sulle superfici frontale e laterale della pila, considerando un coefficiente di esposizione unitario.

Tale azione viene assegnata alla pila come carico orizzontale uniformemente distribuito pari a:

PILA 1 (dlong = 1.0m; dtrasv = var: 2m per H=4.1m; 2.5m per H=2.6m)

f5.1_long = 2.5 KN/m2 x 2.0m = 5.0 KN/m forza orizzontale longitudinale

 $= 2.5 \text{ KN/m2} \times 2.5 \text{m} = 6.25 \text{ KN/m}$

f5.1 trasv = 2.5 KN/m2 x 1.0m = 2.5 KN/m forza orizzontale trasversale

SOVRAPP. PEDONALE STAZIONE VIGNA DI VALLE IV04 - PASSERELLA PEDONALE - Vigna di Valle PILE – Relazione di calcolo

 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 NR1J
 00 D 29
 CL
 IV0405 101
 A
 26 di 113

PILA 2 (dlong = 1.0m; dtrasv = var: 2.5m per H=6.1m; 3.0m per H=2.6m)

f5.1_long = 2.5 KN/m2 x 2.5m = 6.25 KN/m forza orizzontale longitudinale

 $= 2.5 \text{ KN/m2} \times 3.0 \text{m} = 7.5 \text{ KN/m}$

f5.1_trasv = 2.5 KN/m2 x 1.0m = 2.5 KN/m forza orizzontale trasversale

PILA 3 (dlong = 1.0m; dtrasv = var: 2.5m per H=5.6m; 3.0m per H=2.6m)

f5.1_long = 2.5 KN/m2 x 2.5m = 6.25 KN/m forza orizzontale longitudinale

 $= 2.5 \text{ KN/m2} \times 3.0 \text{m} = 7.5 \text{ KN/m}$

f5.1_trasv = 2.5 KN/m2 x 1.0m = 2.5 KN/m forza orizzontale trasversale

8.6 Effetti aerodinamici associati al passaggio dei convogli ferroviari (q5_aero)

I valori caratteristici dell'azione \pm q2k, relativi a superfici orizzontali al di sopra del binario, sono forniti nella figura seguente, in funzione della distanza hg della superficie inferiore della struttura dal PF, che nel caso in esame è pari a hg = 7.25m. Si assume quindi un valore di q2k = 0.25 kN/m², corrispondente ad una V = 200 km/h.

La larghezza d'applicazione del carico per gli elementi strutturali da considerare si estende sino a 10 m da ciascun lato a partire dalla mezzeria del binario. Nel caso in esame interessa l'intera campata P2-P3 di luce 18m.

Per convogli transitanti in due direzioni opposte le azioni saranno sommate, come nel caso in esame.

L'azione q2k si deve ridurre del fattore k1, in accordo a quanto previsto nel § 5.2.2.6.1 delle NTC'18. Cautelativamente si assume k1 = 1.

Nel caso in esame si prende in considerazione solo il caso di pressione negativa sulla superficie inferiore dell'impalcato, in quanto concorde con i carichi gravitazionali e quindi più severa rispetto alla condizione di pressione positiva.

Nel caso in esame si applica una forza distribuita a ml verticale e diretta verso il basso su ogni trave principale dell'impalcato pari a :

Q2k = 2 * 0.25 kN/m2 * 3.24 m / 2 = 0.81 kN/m su ogni trave principale

L'azione risultane applicata alla pila in forma di forza assiale concentrata in testa è pari a

Q2kp = 2 * 18m * 0.81 kN/m / 2 = 14.6 kN

Tale azione si considera contemporanea alla azione del vento q5.

SOVRAPP. PEDONALE STAZIONE VIGNA DI VALLE IV04 - PASSERELLA PEDONALE - Vigna di Valle PILE – Relazione di calcolo

 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 NR1J
 00 D 29
 CL
 IV0405 101
 A
 27 di 113

8.7 Variazione termica non uniforme (ε3_DT)

In aggiunta alla variazione termica uniforme, si considera un gradiente di temperatura di 10 °C fra intradosso soletta ed estradosso travi, considerando i due casi possibili: intradosso a temperatura superiore rispetto all'estradosso e intradosso a temperatura inferiore rispetto all'estradosso.

8.8 Azione sismica (q6)

Le opere in oggetto sono progettate per una vita nominale VN = 75 anni ed una classe d'uso III a cui corrisponde un coefficiente d'uso CU = 1.5.

L'azione sismica di progetto è definita per lo Stato Limite di Salvaguardia della Vita (SLV). Il periodo di ritorno di quest'ultima - in funzione della vita utile, della classe d'uso, del tipo di costruzione e dello stato limite di riferimento è di 1068 anni.

Dato il valore del periodo di ritorno suddetto, tramite la mappatura messa a disposizione in rete dall'Istituto Nazionale di Geofisica e Vulcanologia (INGV), è possibile definire i valori di ag, F0, T*c.

- ag → accelerazione massima al sito;
- F0 → valore massimo del fattore di amplificazione dello spettro in accelerazione orizzontale;
- T*c → periodo di inizio del tratto a velocità costante dello spettro in accelerazione orizzontale;

SOVRAPP. PEDONALE STAZIONE VIGNA DI VALLE IV04 - PASSERELLA PEDONALE - Vigna di Valle PILE – Relazione di calcolo

COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
NR1J	00 D 29	CL	IV0405 101	Α	28 di 113

• S \rightarrow coefficiente che comprende l'effetto dell'amplificazione stratigrafica (Ss) e dell'amplificazione topografica (St).

Cautelativamente si assume una categoria di sottosuolo C.

SOVRAPP. PEDONALE STAZIONE VIGNA DI VALLE IV04 - PASSERELLA PEDONALE - Vigna di Valle PILE – Relazione di calcolo

 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

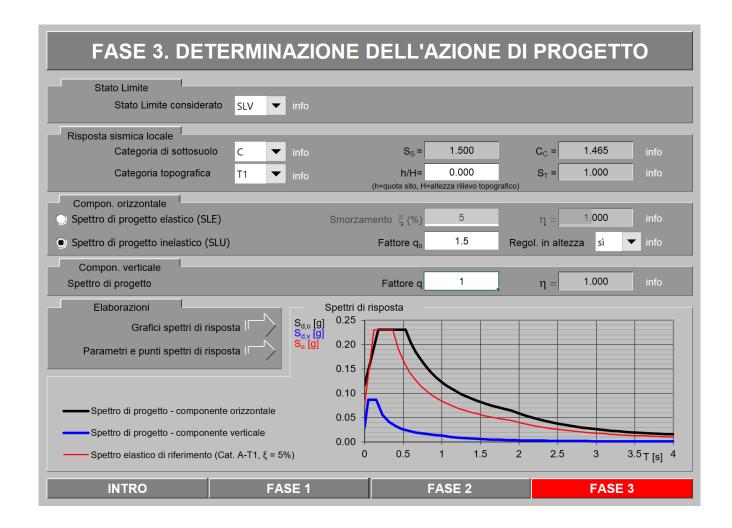
 NR1J
 00 D 29
 CL
 IV0405 101
 A
 29 di 113

SLATO LIMITE	T _R [anni]	a _g [g]	F。 [-]	T _c * [s]
SLO	68	0.040	2.670	0.270
SLD	113	0.046	2.699	0.288
SLV	1068	0.077	2.978	0.365
SLC	2193	0.088	3.046	0.405

SOVRAPP. PEDONALE STAZIONE VIGNA DI VALLE IV04 - PASSERELLA PEDONALE - Vigna di Valle PILE – Relazione di calcolo

 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 NR1J
 00 D 29
 CL
 IV0405 101
 A
 30 di 113



SOVRAPP. PEDONALE STAZIONE VIGNA DI VALLE IV04 - PASSERELLA PEDONALE - Vigna di Valle PILE – Relazione di calcolo

 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 NR1J
 00 D 29
 CL
 IV0405 101
 A
 31 di 113

Si adotta un valore del fattore di struttura pari a q=1.5.

8.9 Resistenza parassita dei vincoli (q7)

Si assume un coefficiente di attrito pari a 5%.

Tale azione si ignora nel caso della pila 2, fissa longitudinalmente.

8.10 Deragliamento (URTO)

Tale azione è presa in considerazione nel solo caso delle pile 2 e 3, essendo queste in prossimità dei binari ferroviario esistenti.

SOVRAPP. PEDONALE STAZIONE VIGNA DI VALLE IV04 - PASSERELLA PEDONALE - Vigna di Valle PILE – Relazione di calcolo

 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 NR1J
 00 D 29
 CL
 IV0405 101
 A
 32 di 113

La distanza tra la pila in oggetto e l'asse del binario è pari a ca 6.5m (>5m), quindi sono prese in conto le azioni di deragliamento indicate a seguire:

Fpar_bin = 2000 kN azione parallela al binario e trasversale rispetto alla pila; Fnorm_bin = 750 kN azione normale al binario e longitudinale rispetto alla pila.

Tali azioni sono applicate ad una altezza di 1.80m rispetto al P.F. e non devono considerarsi contemporanee. Nel caso in esame il punto di applicazione delle forze concentrate si considera cautelativamente ad una altezza di 4.25m rispetto alla sezione di base della pila.

SOVRAPP. PEDONALE STAZIONE VIGNA DI VALLE IV04 - PASSERELLA PEDONALE - Vigna di Valle PILE – Relazione di calcolo

 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 NR1J
 00 D 29
 CL
 IV0405 101
 A
 33 di 113

9 ANALISI SISMICA DELLA PILA

9.1 Masse sismiche

Il peso dell'impalcato (pesi propri strutturali g1 + permanenti portati g2) è pari a 20.8 kN/m.

Il peso della folla compatta è pari a 13.5 kN/m.

Il peso totale dell'impalcato è pari a 791 kN.

Il peso totale della folla compatta (presente sull'intero sviluppo dell'impalcato) è pari a 513 kN.

Il peso della pila 1 è pari a 553 kN.

Il peso della pila 2 è pari a 646 kN.

La pila 2 è fissa sia in direzione longitudinale che in direzione trasversale.

La pila 1 e la pila 3 sono mobili in direzione longitudinale e fisse in direzione trasversale.

Alla pila 2 compete quindi il 100% della massa dell'impalcato in direzione longitudinale ed il 62.5% della massa in direzione trasversale.

Alla pila 1 (e 3) compete quindi lo 0% della massa dell'impalcato in direzione longitudinale ed il 18.75% della massa in direzione trasversale.

9.2 Analisi sismica – Pila 2

Masse sismiche afferenti agli impalcati

Massa impalcato = 791 kNMassa folla (psi = 0.2) = 103 kN

Masse sismiche afferenti alla pila

Massa pila = 646 kN Massa efficace pila = 323 kN

Masse totali

in direzione longitudinale = 1216 kN in direzione trasversale = 881 kN

SOVRAPP. PEDONALE STAZIONE VIGNA DI VALLE IV04 - PASSERELLA PEDONALE - Vigna di Valle PILE – Relazione di calcolo

 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 NR1J
 00 D 29
 CL
 IV0405 101
 A
 34 di 113

Analisi statica lineare

zione della pila	? Are	m2	2.50	Ac
zza fusto pila	,	m	9.00	H1
zza baggioli		m	0.65	H2
zza appoggi		m	0.35	НЗ
		m	10.0	Hpila
aricentro impalcato	posizio	m	0.50	yg_imp

Ecm 33722 N*/mm2 Modulo elastico del cls

Dir. longitudinale

	_		
llong	0.208	m4	Inerzia della sezione della pila
Wlong	1216	kN/m	Peso associato alla massa sismica
Mlong	124	ton	Massa sismica
Lvlong	10.00	m	Luce di taglio longitudinale
Klong	2.1E+04	kN/m	Rigidezza della pila (non fessurata)
Tlong	0.482	sec	Periodo dell'oscillatore semplice
Sdlong	0.229	g	Accelerazione spettrale
Flong	279	kN	Azione sismica longitudinale

Dir. trasversale

Itrasv	1.30	m4	Inerzia della sezione della pila
Wtrasv	881	ton	Peso associato alla massa sismica
Mtrasv	90	ton	Massa sismica
Lvtrasv	10.50	m	Luce di taglio trasversale
Ktrasv	1.1E+05	kN/m	Rigidezza della pila (non fessurata)
Ttrasv	0.177	sec	Periodo dell'oscillatore semplice
Sdtrasv	0.228	g	Accelerazione spettrale
Ftrasv	201	kN	Azione sismica trasversale

SOVRAPP. PEDONALE STAZIONE VIGNA DI VALLE IV04 - PASSERELLA PEDONALE - Vigna di Valle PILE – Relazione di calcolo

 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 NR1J
 00 D 29
 CL
 IV0405 101
 A
 35 di 113

9.3 Analisi sismica - Pila 1

Masse sismiche afferenti agli impalcati

Massa impalcato = 791 kNMassa folla (psi = 0.2) = 103 kN

Masse sismiche afferenti alla pila

Massa pila = 553 kN Massa efficace pila = 276 kN

Masse totali

in direzione longitudinale = 276 kN in direzione trasversale = 444 kN

Analisi statica lineare

Ac	2.00	m2	Area sezione della pila
H1	8.50	m	Altezza fusto pila
H2	0.65	m	Altezza baggioli
H3	0.35	m	Altezza appoggi
Hpila	10.0	m	
yg_imp	0.50	m	posizione baricentro impalcato

Ecm 33722 N*/mm2 Modulo elastico del cls

Dir. longitudinale

llong	0.167	m4	Inerzia della sezione della pila
Wlong	276	kN/m	Peso associato alla massa sismica
Mlong	28	ton	Massa sismica
Lvlong	9.50	m	Luce di taglio longitudinale
Klong	2.0E+04	kN/m	Rigidezza della pila (non fessurata)
Tlong	0.238	sec	Periodo dell'oscillatore semplice
Sdlong	0.229	g	Accelerazione spettrale
Flong	63	kN	Azione sismica longitudinale

SOVRAPP. PEDONALE STAZIONE VIGNA DI VALLE IV04 - PASSERELLA PEDONALE - Vigna di Valle PILE – Relazione di calcolo

COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
NR1J	00 D 29	CL	IV0405 101	Α	36 di 113

Dir. trasversale

Itrasv	0.67	m4	Inerzia della sezione della pila
Wtrasv	444	ton	Peso associato alla massa sismica
Mtrasv	45	ton	Massa sismica
Lvtrasv	10.00	m	Luce di taglio trasversale
Ktrasv	6.7E+04	kN/m	Rigidezza della pila (non fessurata)
Ttrasv	0.163	sec	Periodo dell'oscillatore semplice
Sdtrasv	0.220	g	Accelerazione spettrale
Ftrasv	97	kN	Azione sismica trasversale

SOVRAPP. PEDONALE STAZIONE VIGNA DI VALLE IV04 - PASSERELLA PEDONALE - Vigna di Valle PILE – Relazione di calcolo

COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
NR1J	00 D 29	CL	IV0405 101	Α	37 di 113

10 COMBINAZIONI DI CARICO

In linea con quanto riportato nel quadro normativo vigente, le azioni descritte nei paragrafi precedenti, sono combinate nel modo seguente:

• combinazione fondamentale (SLU):

$$\gamma_{\text{G1}} \cdot \textbf{G}_1 + \gamma_{\text{G2}} \cdot \textbf{G}_2 + \gamma_{\text{p}} \cdot \textbf{P} + \gamma_{\text{O1}} \cdot \textbf{Q}_{\text{k1}} + \gamma_{\text{O2}} \cdot \psi_{\text{O2}} \cdot \textbf{Q}_{\text{k2}} + \gamma_{\text{O3}} \cdot \psi_{\text{O3}} \cdot \textbf{Q}_{\text{k3}} + \dots$$

• combinazione sismica:

$$E + G_1 + G_2 + P + \psi_{21} \cdot Q_{k1} + \psi_{22} \cdot Q_{k2} + ...$$

combinazione eccezionale:

$$G_1 + G_2 + P + A_d + \psi_{21} \cdot Q_{k1} + \psi_{22} \cdot Q_{k2} + ...$$

• combinazione Rara (SLE irreversibile):

$$\boldsymbol{G_{1}} + \boldsymbol{G_{2}} + \boldsymbol{P} + \boldsymbol{Q_{k1}} + \boldsymbol{\psi_{02}} \cdot \boldsymbol{Q_{k2}} + \boldsymbol{\psi_{03}} \cdot \boldsymbol{Q_{k3}} + ...$$

• combinazione Frequente (SLE reversibile):

$$G_1 + G_2 + P + \psi_{11} \cdot Q_{k1} + \psi_{22} \cdot Q_{k2} + \psi_{23} \cdot Q_{k3} + \dots$$

• combinazione Quasi Permanente (SLE per gli effetti a lungo termine):

$$G_1 + G_2 + P + \psi_{21} \cdot Q_{k1} + \psi_{22} \cdot Q_{k2} + \psi_{23} \cdot Q_{k3} + ...$$

Ai fini delle verifiche degli stati limite di esercizio si definiscono le seguenti combinazioni:

Rara) \rightarrow G1+G2 +Q_{k1}+ $\sum_{i}V_{i}O_{i}\cdot Q_{ki}$

Frequente) \rightarrow $G_1+G_2+\psi_{11}\cdot Q_{k1}+\sum_i \psi_{2i}\cdot Q_{ki}$

Quasi permanente) \rightarrow $G_1+G_2+\psi_{21}\cdot Q_{k1}+\sum_i\psi_{2i}\cdot Q_{ki}$

Sono prese in considerazione le seguenti verifiche agli stati limite ultimi:

• SLU di tipo Geotecnico (GEO), relative a condizioni di:

Collasso per carico limite dell'insieme fondazione – terreno;

• SLU di tipo strutturale (STR), relative a condizioni di:

Raggiungimento della resistenza negli elementi strutturali.

• Le verifiche sono svolte considerando il seguente approccio:

Approccio 2:

A1 + M1 + R3

SOVRAPP. PEDONALE STAZIONE VIGNA DI VALLE IV04 - PASSERELLA PEDONALE - Vigna di Valle PILE – Relazione di calcolo

COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO	
NR1J	00 D 29	CL	IV0405 101	Α	38 di 113	

Tale approccio prevede un'unica combinazione di gruppi di coefficienti, da adottare sia nelle verifiche strutturali che nelle verifiche geotecniche.

Tab. 6.2.II – Coefficienti parziali per i parametri geotecnici del terreno

Parametro	Grandezza alla quale applicare il coefficiente parziale	Coefficiente parziale γ_{M}	(M1)	(M2)
Tangente dell'angolo di resi- stenza al taglio	$\tan {\phi'}_k$	$\gamma_{\phi'}$	1,0	1,25
Coesione efficace	c′ _k	γe	1,0	1,25
Resistenza non drenata	c _{uk}	γα	1,0	1,4
Peso dell'unità di volume	γγ	γ_{γ}	1,0	1,0

Tab. 6.4.I – Coefficienti parziali γ_R per le verifiche agli stati limite ultimi di fondazioni superficiali

Verifica	Coefficiente
	parziale
	(R3)
Carico limite	$\gamma_R = 2.3$
Scorrimento	$\gamma_R = 1.1$

Tabella 1: Coefficienti parziali per i parametri geotecnici del terreno

Per la condizione sismica, la combinazione per gli stati limite ultimi da prendere in considerazione è: Combinazione sismica \rightarrow E+G₁+G₂+ \sum_{i} ψ_{2i} ·Q_{ki}

A seguire si riporta la tabella dei coefficienti delle combinazioni dei carichi elementari.

SOVRAPP. PEDONALE STAZIONE VIGNA DI VALLE IV04 - PASSERELLA PEDONALE - Vigna di Valle PILE – Relazione di calcolo

COMMESSA LOTTO CODIFICA DOCUMENTO REV. FOGLIO

NR1J 00 D 29 CL IV0405 101 A 39 di 113

Coefficienti combinazione

	91	92	q1_C1+C2	q1_C1	q1_C2	d2	e3_DT	SISM_LONG_q1.5	SISM_TRASV_q1.5	SISM_VERT_q1	URTO_long	URTO_trasv
SLE_1.1	1	1	1	0	0	0.6	0.6	0	0	0	0	0
SLE_2.1	1	1	0	1	0	0.6	0.6	0	0	0	0	0
SLE_3.1	1	1	0	0	1	0.6	0.6	0	0	0	0	0
SLE_1.2	1	1	1	0	0	-0.6	-0.6	0	0	0	0	0
SLE_2.2	1	1	0	1	0	-0.6	-0.6	0	0	0	0	0
SLE_3.2	1	1	0	0	1	-0.6	-0.6	0	0	0	0	0
SLU_1.1	1.35	1.5	1.5	0	0	0.72	0.9	0	0	0	0	0
SLU_2.1	1.35	1.5	0	1.5	0	0.72	0.9	0	0	0	0	0
SLU_3.1	1.35	1.5	0	0	1.5	0.72	0.9	0	0	0	0	0
SLU_1.2	1.35	1.5	1.5	0	0	-0.72	-0.9	0	0	0	0	0
SLU_2.2	1.35	1.5	0	1.5	0	-0.72	-0.9	0	0	0	0	0
SLU_3.2	1.35	1.5	0	0	1.5	-0.72	-0.9	0	0	0	0	0
GEO_1.1	1	1.3	1.25	0	0	0.78	0.78	0	0	0	0	0
GEO_2.1	1	1.3	0	1.25	0	0.78	0.78	0	0	0	0	0
GEO_3.1	1	1.3	0	0	1.25	0.78	0.78	0	0	0	0	0
GEO_1.2	1	1.3	1.25	0	0	-0.78	-0.78	0	0	0	0	0
GEO_2.2	1	1.3	0	1.25	0	-0.78	-0.78	0	0	0	0	0
GEO_3.2	1	1.3	0	0	1.25	-0.78	-0.78	0	0	0	0	0
SLV_long_z+	1	1	0.2	0	0	0	0.5	1	0.3	0.3	0	0
SLV_trasv_z+	1	1	0	0.2	0	0	0.5	0	1	0.3	0	0
SLV_vert_z+	1	1	0	0	0.2	0	0.5	0.3	0.3	1	0	0
SLV_long_z-	1	1	0.2	0	0	0	-0.5	1	0.3	-0.3	0	0
SLV_trasv_z-	1	1	0	0.2	0	0	-0.5	0	1	-0.3	0	0
SLV_vert_z-	1	1	0	0	0.2	0	-0.5	0.3	0.3	-1	0	0
ACC_long	1	1	0	0	0	0	0.5	0	0	0	1	0
ACC_trasv	1	1	0	0	0	0	0.5	0	0	0	0	1

SOVRAPP. PEDONALE STAZIONE VIGNA DI VALLE IV04 - PASSERELLA PEDONALE - Vigna di Valle PILE – Relazione di calcolo

 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 NR1J
 00 D 29
 CL
 IV0405 101
 A
 40 di 113

11 ANALISI DELLE SOLLECITAZIONI - PILA 2

11.1 Reazioni vincolari elementari al piano appoggi trasmesse dall'impalcato

Appoggio SX Appoggio DX

	<u> </u>	7.pp-99 = 7.				
OutputCase	Flong	Ftrasv	Fvert	Flong	Ftrasv	Fvert
	kN	kN	kN	kN	kN	kN
g1	0	0	-146	0	0	-146
g2	0	0	-96	0	0	-96
q1_C1+C2	0	0	-158	0	0	-158
q1_C1	0	0	-93	0	0	-93
q1_C2	0	0	-79	0	0	-79
q5	0	0	-73	0	-170	73
e3_DT	0	0	-25	0	0	-25
SISM_LONG_q1	0	0	0	279	0	0
SISM_TRASV_q	0	-101	-93	0	-101	93
SISM_VERT_q1	0	0	-39	0	0	-39

11.2 Sollecitazioni elementari riportate al baricentro del piano appoggi

OutputCase	Flong	Ftrasv	Fvert	Mtrasv	Mlong	Mtorc
	kN	kN	kN	kNm	kNm	kNm
g1	0	0	-292	0	0	0
g2	0	0	-192	0	0	0
q1_C1+C2	0	0	-316	0	0	0
q1_C1	0	0	-186	0	0	3
q1_C2	0	0	-158	0	0	-3
q5	0	-170	0	-237	0	-52
e3_DT	0	0	-50	0	0	0
SISM_LONG_q1	279	0	0	0	0	0
SISM_TRASV_q	0	-201	0	-201	0	0
SISM_VERT_q1	0	0	-77	0	0	0

SOVRAPP. PEDONALE STAZIONE VIGNA DI VALLE IV04 - PASSERELLA PEDONALE - Vigna di Valle PILE – Relazione di calcolo

NR1J 00 D 29 CL IV0405 101 A 41 di 113

DOCUMENTO

REV.

FOGLIO

CODIFICA

11.3 Sollecitazioni elementari riportate al baricentro della sezione di base della pila

Le sollecitazioni sono riportate al baricentro della sezione di base della pila ed incrementate del peso della pila stessa (g1_pila) e e della sua inerzia verticale (Iz_pila).

COMMESSA

LOTTO

g1_pila 646 kN peso proprio pila lz_pila 19 kN inerzia verticale pila

Htot = 10m

OutputCase	Flong	Ftrasv	Fvert	Mtrasv	Mlong	Mtorc
	kN	kN	kN	kNm	kNm	kNm
g1 (+g1_pila)	0	0	-938	0	0	0
g2	0	0	-192	0	0	0
q1_C1+C2	0	0	-316	0	0	0
q1_C1	0	0	-186	0	0	3
q1_C2	0	0	-158	0	0	-3
q5	0	-170	0	-1937	0	-52
e3_DT	0	0	-50	0	0	0
SISM_LONG_q1.5	279	0	0	0	2789	0
SISM_TRASV_q1.5	0	-201	0	-2214	0	0
SISM_VERT_q1 (+Iz_pila)	0	0	-96	0	0	0
URTO_long	750	0	0	0	3188	0
URTO_trasv	0	-2000	0	-8500	0	0

11.4 Sollecitazioni combinate riportate al baricentro della sezione di base della pila

	Flong	Ftrasv	Fvert	Mtrasv	Mlong	Mtorc
	kN	kN	kN	kNm	kNm	kNm
SLE_1.1	0	-102	-1476	-1162	0	-31
SLE_2.1	0	-102	-1346	-1162	0	-28
SLE_3.1	0	-102	-1318	-1162	0	-34
SLE_1.2	0	102	-1416	1162	0	31
SLE_2.2	0	102	-1286	1162	0	34
SLE_3.2	0	102	-1258	1162	0	28
SLU_1.1	0	-122	-2074	-1394	0	-37
SLU_2.1	0	-122	-1879	-1394	0	-32
SLU_3.1	0	-122	-1837	-1394	0	-42
SLU_1.2	0	122	-1984	1394	0	37
SLU_2.2	0	122	-1789	1394	0	42

SOVRAPP. PEDONALE STAZIONE VIGNA DI VALLE IV04 - PASSERELLA PEDONALE - Vigna di Valle PILE – Relazione di calcolo

 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 NR1J
 00 D 29
 CL
 IV0405 101
 A
 42 di 113

	Flong	Ftrasv	Fvert	Mtrasv	Mlong	Mtorc
	kN	kN	kN	kNm	kNm	kNm
SLU_3.2	0	122	-1747	1394	0	32
GEO_1.1	0	-133	-1622	-1510	0	-40
GEO_2.1	0	-133	-1459	-1510	0	-36
GEO_3.1	0	-133	-1424	-1510	0	-44
GEO_1.2	0	133	-1544	1510	0	40
GEO_2.2	0	133	-1381	1510	0	44
GEO_3.2	0	133	-1346	1510	0	36
SLV_long_z+	279	-60	-1247	-664	2789	0
SLV_trasv_z+	0	-201	-1221	-2214	0	1
SLV_vert_z+	84	-60	-1283	-664	837	-1
SLV_long_z-	279	-60	-1140	-664	2789	0
SLV_trasv_z-	0	-201	-1114	-2214	0	1
SLV_vert_z-	84	-60	-1041	-664	837	-1
ACC_long	750	0	-1155	0	3188	0
ACC_trasv	0	-2000	-1155	-8500	0	0

11.5 Sollecitazioni combinate riportate al baricentro della sezione di base del plinto

Le sollecitazioni sono riportate al baricentro della sezione di base del plinto ed incrementate del peso del plinto stesso (g1_plinto) e della sua inerzia (lh_plinto e lz_plinto).

Si considera inoltre una altezza di terreno di ricoprimento pari a 0.5m ed il peso ad esso associato.

Plinto di fondazione

dlong	3.7	m	g1_plinto	533	kN	PGA_h	0.116	g
dtrasv	4.8	m	g1_terr	137	kN	PGA_v	0.029	g
hpl	1.2	m	g1_tot	670	kN	Ih_plinto	62	kN
hterr	0.5	m				lz_plinto	15	kN
γ terr	18	kN/m3						
Apila	2.5	m2						

	Flong	Ftrasv	Fvert	Mtrasv	Mlong	Mtorc
	kN	kN	kN	kNm	kNm	kNm
SLE_1.1	0	-102	-2146	-1284	0	-31
SLE_2.1	0	-102	-2016	-1284	0	-28
SLE_3.1	0	-102	-1988	-1284	0	-34
SLE_1.2	0	102	-2086	1284	0	31

SOVRAPP. PEDONALE STAZIONE VIGNA DI VALLE IV04 - PASSERELLA PEDONALE - Vigna di Valle PILE – Relazione di calcolo

NR1J

COMMESSA LOTTO 00 D 29

CODIFICA CL

DOCUMENTO IV0405 101

REV. FOGLIO

Α 43 di 113

	Flong	Ftrasv	Fvert	Mtrasv	Mlong	Mtorc
	kN	kN	kN	kNm	kNm	kNm
SLE_2.2	0	102	-1956	1284	0	34
SLE_3.2	0	102	-1928	1284	0	28
SLU_1.1	0	-122	-2744	-1541	0	-37
SLU_2.1	0	-122	-2549	-1541	0	-32
SLU_3.1	0	-122	-2507	-1541	0	-42
SLU_1.2	0	122	-2654	1541	0	37
SLU_2.2	0	122	-2459	1541	0	42
SLU_3.2	0	122	-2417	1541	0	32
GEO_1.1	0	-133	-2292	-1670	0	-40
GEO_2.1	0	-133	-2129	-1670	0	-36
GEO_3.1	0	-133	-2094	-1670	0	-44
GEO_1.2	0	133	-2214	1670	0	40
GEO_2.2	0	133	-2051	1670	0	44
GEO_3.2	0	133	-2016	1670	0	36
SLV_long_z+	368	-48	-1922	-774	3448	-3
SLV_trasv_z+	18	-160	-1896	-2691	37	-2
SLV_vert_z+	111	-48	-1968	-799	1042	-10
SLV_long_z-	368	-48	-1805	-774	3448	3
SLV_trasv_z-	18	-160	-1779	-2691	37	3
SLV_vert_z-	111	-48	-1696	-799	1042	9
ACC_long	750	0	-1825	0	4088	0
ACC_trasv	0	-2000	-1825	-10900	0	0

SOVRAPP. PEDONALE STAZIONE VIGNA DI VALLE IV04 - PASSERELLA PEDONALE - Vigna di Valle PILE – Relazione di calcolo

 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 NR1J
 00 D 29
 CL
 IV0405 101
 A
 44 di 113

12 ANALISI DELLE SOLLECITAZIONI - PILA 1

12.1 Reazioni vincolari elementari al piano appoggi trasmesse dall'impalcato

Appoggio SX Appoggio DX

	, ipp = 33.4			, ibb - 33.		
OutputCase	Flong	Ftrasv	Fvert	Flong	Ftrasv	Fvert
	kN	kN	kN	kN	kN	kN
g1	0	0	-49	0	0	-49
g2	0	0	-32	0	0	-32
q1_C1+C2	0	0	-53	0	0	-53
q1_C1	0	0	-59	0	0	-59
q1_C2	0	0	6	0	0	6
q5	0	0	-24	0	-74	24
q7	4	0	0	4	0	0
e3_DT	0	0	-12	0	0	-12
SISM_LONG_q1	0	0	0	63	0	0
SISM_TRASV_q	0	-49	-45	0	-49	45
SISM_VERT_q1	0	0	-7	0	0	-7

12.2 Sollecitazioni elementari riportate al baricentro del piano appoggi

OutputCase	Flong	Ftrasv	Fvert	Mtrasv	Mlong	Mtorc
	kN	kN	kN	kNm	kNm	kNm
g1	0	0	-98	0	0	0
g2	0	0	-64	0	0	0
q1_C1+C2	0	0	-106	0	0	0
q1_C1	0	0	-118	0	0	0
q1_C2	0	0	12	0	0	0
q5	0	-74	0	-78	0	0
q7	8	0	0	0	0	0
e3_DT	0	0	-24	0	0	0
SISM_LONG_q1	63	0	0	0	0	0
SISM_TRASV_q	0	-97	0	-146	0	0
SISM_VERT_q1	0	0	-14	0	0	0

SOVRAPP. PEDONALE STAZIONE VIGNA DI VALLE IV04 - PASSERELLA PEDONALE - Vigna di Valle PILE – Relazione di calcolo

 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 NR1J
 00 D 29
 CL
 IV0405 101
 A
 45 di 113

12.3 Sollecitazioni elementari riportate al baricentro della sezione di base della pila

Le sollecitazioni sono riportate al baricentro della sezione di base della pila ed incrementate del peso della pila stessa (g1_pila) e della sua inerzia verticale (lz_pila).

g1_pila 553 kN peso proprio pila lz_pila 16 kN inerzia verticale pila

Htot = 9.5m

OutputCase	Flong	Ftrasv	Fvert	Mtrasv	Mlong	Mtorc
	kN	kN	kN	kNm	kNm	kNm
g1 (+g1_pila)	0	0	-651	0	0	0
g2	0	0	-64	0	0	0
q1_C1+C2	0	0	-106	0	0	0
q1_C1	0	0	-118	0	0	0
q1_C2	0	0	12	0	0	0
q5	0	-74	0	-781	0	0
q7	8	0	0	0	77	0
e3_DT	0	0	-24	0	0	0
SISM_LONG_q1.5	63	0	0	0	602	0
SISM_TRASV_q1.5	0	-97	0	-1072	0	0
SISM_VERT_q1 (+Iz_pila)	0	0	-30	0	0	0
URTO_long	0	0	0	0	0	0
URTO_trasv	0	0	0	0	0	0

12.4 Sollecitazioni combinate riportate al baricentro della sezione di base della pila

	Flong	Ftrasv	Fvert	Mtrasv	Mlong	Mtorc
	kN	kN	kN	kNm	kNm	kNm
SLE_1.1	8	-44	-835	-468	77	0
SLE_2.1	8	-44	-847	-468	77	0
SLE_3.1	8	-44	-717	-468	77	0
SLE_1.2	8	44	-806	468	77	0
SLE_2.2	8	44	-818	468	77	0
SLE_3.2	8	44	-688	468	77	0
SLU_1.1	10	-53	-1155	-562	92	0
SLU_2.1	10	-53	-1173	-562	92	0
SLU_3.1	10	-53	-978	-562	92	0
SLU_1.2	10	53	-1112	562	92	0

SOVRAPP. PEDONALE STAZIONE VIGNA DI VALLE IV04 - PASSERELLA PEDONALE - Vigna di Valle

PILE – Relazione di calcolo

 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 NR1J
 00 D 29
 CL
 IV0405 101
 A
 46 di 113

	Flong	Ftrasv	Fvert	Mtrasv	Mlong	Mtorc
	kN	kN	kN	kNm	kNm	kNm
SLU_2.2	10	53	-1130	562	92	0
SLU_3.2	10	53	-935	562	92	0
GEO_1.1	10	-58	-885	-609	92	0
GEO_2.1	10	-58	-900	-609	92	0
GEO_3.1	10	-58	-737	-609	92	0
GEO_1.2	10	58	-847	609	92	0
GEO_2.2	10	58	-862	609	92	0
GEO_3.2	10	58	-700	609	92	0
SLV_long_z+	63	-29	-757	-321	602	0
SLV_trasv_z+	0	-97	-759	-1072	0	0
SLV_vert_z+	19	-29	-755	-321	181	0
SLV_long_z-	63	-29	-715	-321	602	0
SLV_trasv_z-	0	-97	-717	-1072	0	0
SLV_vert_z-	19	-29	-670	-321	181	0
ACC_long	0	0	0	0	0	0
ACC_trasv	0	0	0	0	0	0

12.5 Sollecitazioni combinate riportate al baricentro della sezione di base del plinto

Le sollecitazioni sono riportate al baricentro della sezione di base del plinto ed incrementate del peso del plinto stesso (g1_plinto) e della sua inerzia (lh_plinto e lz_plinto).

Si considera inoltre una altezza di terreno di ricoprimento pari a 0.5m.

Plinto di fondazione

dlong	3.6	m	g1_plinto	389	kN	PGA_h	0.116	g
dtrasv	3.6	m	g1_terr	99	kN	PGA_v	0.029	g
hpl	1.2	m	g1_tot	487	kN	Ih_plinto	45	kN
hterr	0.5	m				lz_plinto	11	kN

γterr 18 kN/m3 Apila 2 m2

SOVRAPP. PEDONALE STAZIONE VIGNA DI VALLE IV04 - PASSERELLA PEDONALE - Vigna di Valle PILE – Relazione di calcolo

COMMESSA LOTTO CODIFICA DOCUMENTO REV. FOGLIO

NR1J 00 D 29 CL IV0405 101 A 47 di 113

	Flong	Ftrasv	Fvert	Mtrasv	Mlong	Mtorc
	kN	kN	kN	kNm	kNm	kNm
SLE_1.1	8	-44	-1322	-522	87	0
SLE_2.1	8	-44	-1334	-522	87	0
SLE_3.1	8	-44	-1204	-522	87	0
SLE_1.2	8	44	-1294	522	87	0
SLE_2.2	8	44	-1306	522	87	0
SLE_3.2	8	44	-1176	522	87	0
SLU_1.1	10	-53	-1642	-626	104	0
SLU_2.1	10	-53	-1660	-626	104	0
SLU_3.1	10	-53	-1465	-626	104	0
SLU_1.2	10	53	-1599	626	104	0
SLU_2.2	10	53	-1617	626	104	0
SLU_3.2	10	53	-1422	626	104	0
GEO_1.1	10	-58	-1372	-678	104	0
GEO_2.1	10	-58	-1387	-678	104	0
GEO_3.1	10	-58	-1225	-678	104	0
GEO_1.2	10	58	-1335	678	104	0
GEO_2.2	10	58	-1350	678	104	0
GEO_3.2	10	58	-1187	678	104	0
SLV_long_z+	70	-32	-1244	-392	746	0
SLV_trasv_z+	0	-107	-1247	-1307	0	0
SLV_vert_z+	21	-32	-1242	-392	224	0
SLV_long_z-	70	-32	-1202	-392	746	0
SLV_trasv_z-	0	-107	-1204	-1307	0	0
SLV_vert_z-	21	-32	-1157	-392	224	0
ACC_long	0	0	-487	0	0	0
ACC_trasv	0	0	-487	0	0	0

SOVRAPP. PEDONALE STAZIONE VIGNA DI VALLE IV04 - PASSERELLA PEDONALE - Vigna di Valle PILE – Relazione di calcolo

 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 NR1J
 00 D 29
 CL
 IV0405 101
 A
 48 di 113

13 VERIFICHE STRUTTURALI DEL FUSTO PILA 2

13.1 GEOMETRIA DELLA SEZIONE DI VERIFICA E ARMATURA

Si riporta a seguire una figura che illustra la geometria della sezione di verifica alla base della pila.

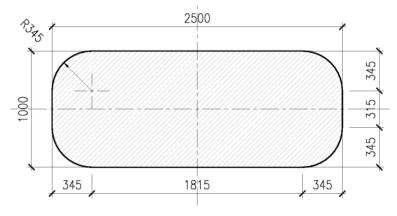


Figura 8 – Geometria della sezione trasversale della pila [cm]

13.1.1 ARMATURA LONGITUDINALE

A seguire è indicata l'armatura flessionale prevista nella sezione di base del fusto pila:

n barre 50

fi barre 26 mm

13.1.2 ARMATURA TRASVERSALE

A seguire è indicata l'armatura a taglio prevista nella sezione di base del fusto pila, all'interno della zona critica, avente una altezza pari a 0.2 * Hpila = 2.0m.

Direzione longitudinale

Staffe:

 øw
 14
 mm

 A1b
 153.86
 mm2

 passo
 200
 mm

bracci 8

<u>Direzione trasversale</u>

Staffe:

 øw
 14
 mm

 A1b
 153.86
 mm2

 passo
 200
 mm

 bracci
 4

SOVRAPP. PEDONALE STAZIONE VIGNA DI VALLE IV04 - PASSERELLA PEDONALE - Vigna di Valle PILE – Relazione di calcolo

COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
NR1J	00 D 29	CL	IV0405 101	Α	49 di 113

13.1.3 VERIFICA DELL'ARMATURA MINIMA

Le armature del fusto pila devono soddisfare le quantità minime indicate dalla normativa e che vengono riepilogate di seguito.

Armatura minima longitudinale:

• $\rho_{min} = 0.60 \%$

Armatura minima trasversale nelle zone critiche:

La percentuale meccanica è definita dalle espressioni:

• $\omega_{wd,r} = A_{sw}/(s \cdot b) \cdot f_{yd}/f_{cd}$ per sezioni rettangolari

• $\omega_{\text{wd,c}} = 4 \text{ A}_{\text{sp}}/(D_{\text{sp}} \cdot s) \cdot f_{\text{yd}}/f_{\text{cd}}$ per sezioni circolari

Deve verificarsi:

- $A_{sw}/(s \cdot b) \cdot f_{yd}/f_{cd} \ge \zeta$ per sezioni rettangolari
- $\rho_w \cdot f_{yd}/f_{cd} \ge 1,40 \cdot \zeta$ per sezioni circolari

con:

 $\rho_w = V_{sc}/V_{cc}$ rapporto tra il volume complessivo delle armature di confinamento V_{sc} e volume di calcestruzzo confinato V_{cc} ;

 $\zeta = 0.07 \text{per ag} \ge 0.35 \text{ g};$

 $\zeta = 0.05 per a_g \ge 0.25 g;$

 $\zeta = 0.04 \text{per a}_g \ge 0.15 \text{ g};$

 $\zeta = 0.03$ per $a_g < 0.15$ g.

SOVRAPP. PEDONALE STAZIONE VIGNA DI VALLE IV04 - PASSERELLA PEDONALE - Vigna di Valle PILE - Relazione di calcolo

COMMESSA

NR1J

LOTTO 00 D 29 CODIFICA CL

DOCUMENTO

IV0405 101

REV.

Α

FOGLIO

50 di 113

Verifica armatura minima longitudinale

ρmin = 0.60%

Ac =2500000 mm2 15000 As,min = mm2

n barre (1° str.) 50

fi barre (1° str.) 26 mm

As 26533 mm2

1.06% requisito soddisfatto ρ

Verifica armatura minima trasversale

ag = 0.077 g

ζ = 0.04 ω wd,r min = 0.04

Armatura in dir. longitudinale

Asw/s staffe = 0.0062 m2/m Asw/s spille = 0.0000 m2/m b =2.50 m fyd = 391 MPa

fcd = 18.13 MPa

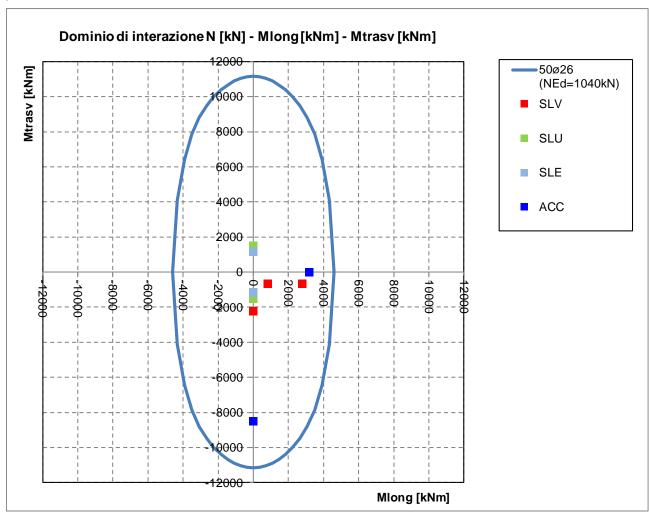
 ω wd,r = 0.053 requisito soddisfatto

Armatura in dir. trasversale

Asw/s staffe = 0.0031 m2/m Asw/s spille = m2/m 0.0000 b =1.00 m fyd =391 MPa fcd = 18.13 MPa

 ω wd,r = 0.067 requisito soddisfatto

L'armatura longitudinale di calcolo e l'armatura trasversale di calcolo rispettano le quantità minime indicate dalla normativa.


SOVRAPP. PEDONALE STAZIONE VIGNA DI VALLE IV04 - PASSERELLA PEDONALE - Vigna di Valle PILE – Relazione di calcolo

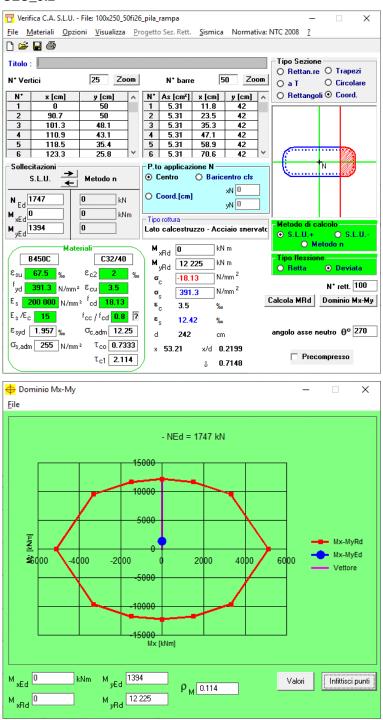
 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 NR1J
 00 D 29
 CL
 IV0405 101
 A
 51 di 113

13.2 VERIFICHE SLU A FLESSIONE

Sono riportate a seguire le verifiche SLU della sezione di base della pila, espresse in forma sintetica mediante il diagramma di interazione Mlong - Mtrasv , valutato per una forza assiale corrispondente alla condizione di verifica più severa.

La verifica SLU di tipo flessionale si effettua verificando che:

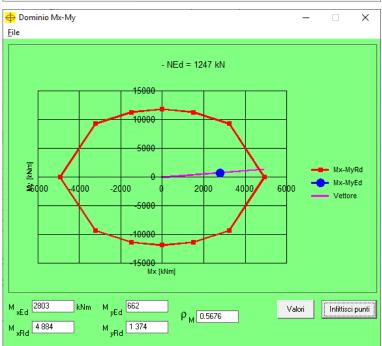

$$FS = (M_{Rd,long}^2 + M_{Rd,trasv}^2)^{0.5} / (M_{Ed,long}^2 + M_{Ed,trasv}^2)^{0.5} \ge 1$$

Si osserva inoltre che: $\rho M = 1/FS$.

SITALFERR GRUPPO FERROVIE DELLO STATO ITALIANE	RAD		TTA CESAN	ROVIARIA ROM O-VIGNA DI VA D DEFINITIVO		₹ВО
SOVRAPP. PEDONALE STAZIONE VIGNA DI VALLE IV04 - PASSERELLA PEDONALE - Vigna di Valle	COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
PILE – Relazione di calcolo	NR1J	00 D 29	CL	IV0405 101	Α	52 di 113

Si riportano le verifiche di dettaglio nelle combinazioni di carico più gravose.

SLU_3.2


SOVRAPP. PEDONALE STAZIONE VIGNA DI VALLE IV04 - PASSERELLA PEDONALE - Vigna di Valle PILE – Relazione di calcolo

 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

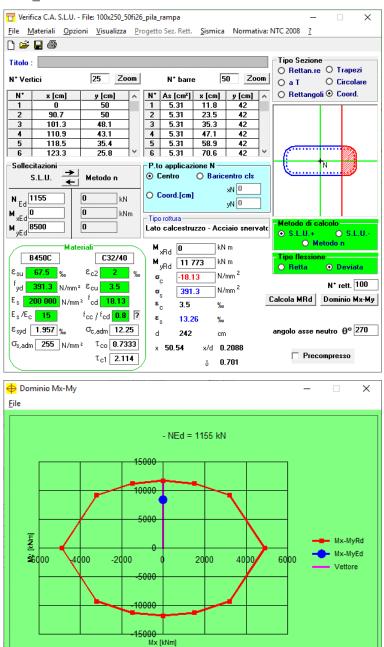
 NR1J
 00 D 29
 CL
 IV0405 101
 A
 53 di 113

SLV_long_z+

SOVRAPP. PEDONALE STAZIONE VIGNA DI VALLE IV04 - PASSERELLA PEDONALE - Vigna di Valle PILE – Relazione di calcolo

 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 NR1J
 00 D 29
 CL
 IV0405 101
 A
 54 di 113


ACC trasv

M xEd 0

M _{xRd} 0

kNm M vEd 8500

M _{yRd} 11 773

Valori

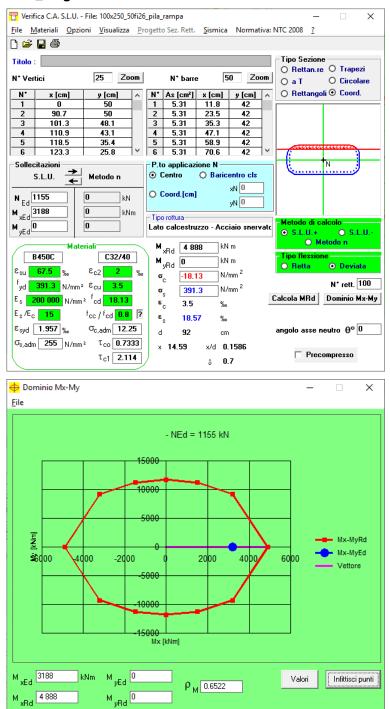
ρ_M 0.722

Infittisci punti

SOVRAPP. PEDONALE STAZIONE VIGNA DI VALLE IV04 - PASSERELLA PEDONALE - Vigna di Valle PILE - Relazione di calcolo

CODIFICA NR1J 00 D 29 CL IV0405 101 Α 55 di 113

DOCUMENTO


FOGLIO

RFV

COMMESSA

LOTTO

ACC_long

Le verifiche risultano soddisfatte.

SOVRAPP. PEDONALE STAZIONE VIGNA DI VALLE IV04 - PASSERELLA PEDONALE - Vigna di Valle PILE – Relazione di calcolo

COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
NR1J	00 D 29	CL	IV0405 101	Α	56 di 113

13.3 VERIFICHE SLU A TAGLIO

Nel caso di sezioni rettangolari la verifica viene effettuata distintamente per le due direzioni longitudinale e trasversale.

Nel caso si sezione circolare si esegue la verifica per un valore del taglio pari a:

$$V = \sqrt{(F1^2 + F2^2)}$$

Per quanto riguarda le combinazioni sismiche, con riferimento ai criteri della GR e a quanto precedentemente dichiarato nel §8.3.2, si procede al calcolo del taglio agente di calcolo sulla base dei risultati delle verifiche flessionali.

$$V_{gr} = V_{Ed} \cdot \gamma_{Rd} \cdot M_{Rd}/M_{Ed} \le q \cdot V_{Ed}$$

Il valore resistente a taglio della sezione si determina secondo:

 $V_{Rd} = min (V_{Rcd}; V_{Rsd})$

 $V_{Rcd} = 0.9 \cdot d \cdot b_w \cdot \alpha_c \cdot f_{cd} \cdot (ctg \alpha + ctg \theta)/(1 + ctg^2 \theta)$

 $V_{Rsd} = 0.9 \cdot d \cdot A_{sw}/s \cdot f_{vd} \cdot (ctg \alpha + ctg \theta) \cdot sen \alpha$

in cui

d altezza utile della sezione

bw larghezza minima della sezione

Asw area dell'armatura trasversale

s interasse tra due armature trasversali consecutive

θ inclinazione delle bielle di calcestruzzo

 α $\,$ angolo di inclinazione dell'armatura trasversale rispetto all'asse dell'elemento

fcd' resistenza a compressione ridotta (pari a 0,5 fcd)

αc coefficiente maggiorativo che tiene conto della compressione

Nel caso di sezione circolare, le dimensioni della sezione rettangolare equivalente da utilizzare per il calcolo della resistenza a taglio della sezione si determinano secondo:

$$d = r + 2 \cdot r_s / \pi$$
$$b = 0.9 \cdot 2 \cdot r$$

I valori di resistenza a taglio degli elementi in c.a. devono inoltre essere divisi per un coefficiente di sicurezza aggiuntivo nei confronti della rottura fragile γ_{Bd} valutato mediante la seguente espressione:

$$1 \le \gamma_{Bd} = 1.25 + 1 - q \cdot V_{Ed} / V_{gr} \le 1.25$$

SOVRAPP. PEDONALE STAZIONE VIGNA DI VALLE IV04 - PASSERELLA PEDONALE - Vigna di Valle PILE – Relazione di calcolo

 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 NR1J
 00 D 29
 CL
 IV0405 101
 A
 57 di 113

13.3.1 VERIFICA A TAGLIO IN DIREZIONE LONGITUDINALE

40 N/mm ²	R _{ck}	classe cls
33 N/mm ²	f _{ck}	resist. Caratteristica cilindrica
19	f _{cd}	
1.5	Уc	coeff. parziale
2500 mm	b_w	larghezza membratura resistene a V
1000 mm	Н	altezza membratura resistene a V
900 mm	d	altezza utille
2250000 mm2	A _{TOT}	area della sezione
1155000 N	N	sforzo assiale dovuto ai carichi o precompressione
0.46 N/mm ²	$\sigma_{\sf cp}$	ok
1.02	α_{c}	
450 N/mm ²	f _{yk}	Acciaio
391 N/mm ²	f _{yd}	Feb44k
14 mm	Ø _w	diametro staffe (spille)
154 mm ²	Aø _w	Area staffa (spilla)
810 mm	Z	0.9 d
200 mm	S _w	passo delle staffe (spille)
8	nº bracci	
45.0 °	θ	angolo di inclinazione
1.00	cot(θ)	deve essere compreso tra 1 e 2.5
90 °	α	angolo di inclinazione armatura rispetto asse palo
0.00	cot(a)	
6.16 mm ² /mm	As _w /s _w	
1952 kN	V_{Rsd}	Taglio resistente per "taglio trazione"
9758 kN	V _{Rcd}	Taglio resistente per "taglio compressione"
750 kN	V_{Ed}	taglio sollecitante
1	γRd	fattore di sicurezza per GR (par. 7.9.5.2.2)
1952 kN	V_{Rd}	taglio resistente
< V _{Rd}	V _{Ed}	-

SOVRAPP. PEDONALE STAZIONE VIGNA DI VALLE IV04 - PASSERELLA PEDONALE - Vigna di Valle PILE – Relazione di calcolo

COMMESSA LOTTO CODIFICA DOCUMENTO REV. FOGLIO

NR1J 00 D 29 CL IV0405 101 A 58 di 113

13.3.2 VERIFICA A TAGLIO IN DIREZIONE TRASVERSALE

classe cls	R _{ck}	40	N/mm ²
resist. Caratteristica cilindrica		33	N/mm ²
resist. Caratteristica cilindrica	f _{ck}	19	IN/ITIII
acett powiele	f _{cd}		
coeff. parziale	Уc	1.5	
larghezza membratura resistene a V	b _w	1000	mm
altezza membratura resistene a V	Н	2500	mm
altezza utille	d	2250	mm
area della sezione	A _{TOT}	2250000	mm2
sforzo assiale dovuto ai carichi o precompressione	N	1155000	N
ok	$\sigma_{\sf cp}$	0.46	N/mm ²
	α_{c}	1.02	
Acciaio	f_{yk}	450	N/mm ²
Feb44k	f_{yd}	391	N/mm ²
diametro staffe (spille)	\emptyset_{W}	14	mm
Area staffa (spilla)	$Aø_w$	154	mm ²
0.9 d	Z	2025	mm
passo delle staffe (spille)	S _w	200	mm
	nº bracci	4	
angolo di inclinazione	θ	45.0	0
deve essere compreso tra 1 e 2.5	cot(θ)	1.00	
angolo di inclinazione armatura rispetto asse palo	α	90	0
	cot(α)	0.00	
	As _w /s _w	3.08	mm²/mm
	**		
Taglio resistente per "taglio trazione"	V _{Rsd}	2440	kN
Taglio resistente per "taglio compressione"	V _{Rcd}	9758	kN
, , , , , , , , , , , , , , , , , , , ,	Nou		
taglio sollecitante	V_{Ed}	2000	kN
fattore di sicurezza per GR (par. 7.9.5.2.2)	γRd	1	
taglio resistente	V _{Rd}	2440	kN
1.00.000110	V _{Ed}	<	V _{Rd}
	- Ea	verifica	- Ka
		7 C11110 a	

 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

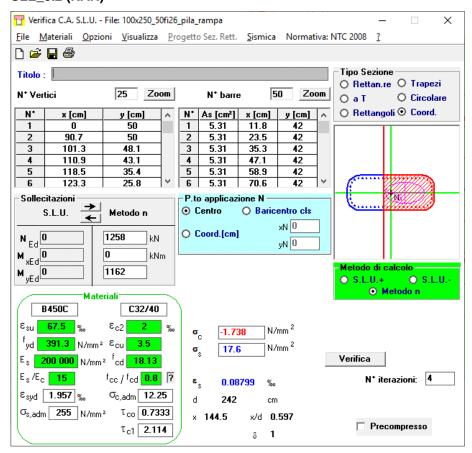
 NR1J
 00 D 29
 CL
 IV0405 101
 A
 59 di 113

13.4 VERIFICA SLE DELLE TENSIONI

La verifica SLE di tipo tensionale si effettua verificando che le massime tensioni agenti nella sezione risultino inferiori ai seguenti valori limite:

per le combinazioni SLE-RAR:

PILE - Relazione di calcolo


• tensione limite nel calcestruzzo: $\sigma_c = 0.55 f_{ck} = 18.3 MPa$

tensione limite nelle barre: $\sigma_s = 0.75 \, f_{yk} = 337.5 \, MPa$

per le combinazioni SLE-QPE:

tensione limite nel calcestruzzo: σ_c = 0.40 f_{ck} = 13.3 MPa

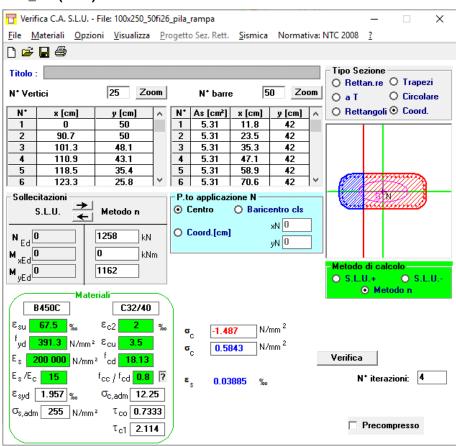
SLE_3.2 (RAR)

I valori di tensione sono compatibili con i limiti di normativa.

13.5 VERIFICHE SLE A FESSURAZIONE

La verifica SLE a fessurazione si effettua verificando che il massimo valore di apertura delle fessure risulti inferiore ai seguenti valori limite:

FOGLIO


60 di 113

per le combinazioni SLE-RAR:

• apertura fessure limite: $w_{lim} = w_1 = 0.20 \text{ mm}$

Nel caso in esame si verifica lo stato limite di formazione delle fessure, considerando il calcestruzzo reagente a trazione (I stadio del c.a.)

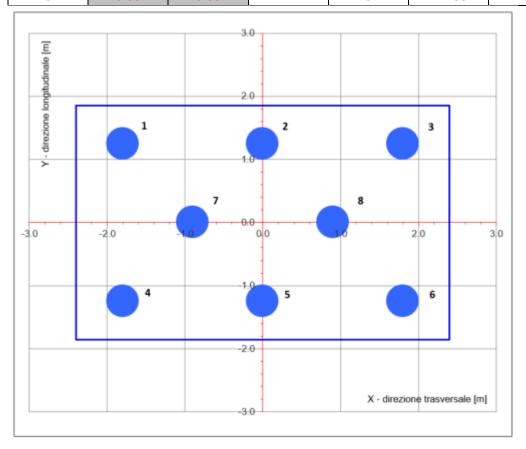
SLE_3.2 (RAR)

La verifica risulta soddisfatta in quanto σ_c < $f_{ctm}/1.2$ = 3.1 MPa , quindi non si formano fessure.

REV.

Α

FOGLIO


61 di 113

VERIFICHE STRUTTURALI DEI PALI DI FONDAZIONE – PILA 2 14

14.1 SOLLECITAZIONI ALLA TESTA DEI PALI

Le sollecitazioni combinate alla base del plinto sono distribuite rigidamente alla testa dei pali. Geometria della palificata

Palo num.	X (trasv)	Y (long)	X ²	Y ²	WI	Wt
	m	m	m²	m ²		
1	-1.80	1.25	3	1.6	7.50E+00	-7.20E+00
2	0.00	1.25	0	1.6	7.50E+00	1.00E+99
3	1.80	1.25	3	1.6	7.50E+00	7.20E+00
4	-1.80	-1.25	3	2	-7.50E+00	-7.20E+00
5	0.00	-1.25	0	2	-7.50E+00	1.00E+99
6	1.80	-1.25	3	2	-7.50E+00	7.20E+00
7	-0.90	0.00	1	0	1.00E+99	-1.62E+01
8	0.90	0.00	1	0	1E+99	16.2

SOVRAPP. PEDONALE STAZIONE VIGNA DI VALLE IV04 - PASSERELLA PEDONALE - Vigna di Valle PILE – Relazione di calcolo

COMMESSA LOTTO CODIFICA DOCUMENTO REV. FOGLIO

NR1J 00 D 29 CL IV0405 101 A 62 di 113

Seguono le forze assiali N [kN] agenti alla testa dei pali:

	Palo	Palo	Palo	Palo	Palo	Palo	Palo	Palo
	1	2	3	4	5	6	7	8
SLE_1.1	427	268	110	427	268	110	348	189
SLE_2.1	411	252	93	411	252	93	331	173
SLE_3.1	407	249	90	407	249	90	328	169
SLE_1.2	102	261	419	102	261	419	182	340
SLE_2.2	86	245	403	86	245	403	165	324
SLE_3.2	82	241	400	82	241	400	162	320
SLU_1.1	533	343	153	533	343	153	438	248
SLU_2.1	509	319	128	509	319	128	414	223
SLU_3.1	504	313	123	504	313	123	408	218
SLU_1.2	141	332	522	141	332	522	237	427
SLU_2.2	117	307	498	117	307	498	212	402
SLU_3.2	112	302	492	112	302	492	207	397
GEO_1.1	493	286	80	493	286	80	390	183
GEO_2.1	472	266	60	472	266	60	369	163
GEO_3.1	468	262	56	468	262	56	365	159
GEO_1.2	71	277	483	71	277	483	174	380
GEO_2.2	50	256	463	50	256	463	153	359
GEO_3.2	46	252	458	46	252	458	149	355
SLV_long_z+	809	703	598	-117	-223	-328	293	187
SLV_trasv_z+	590	238	-113	587	236	-116	413	61
SLV_vert_z+	491	385	279	213	107	2	299	193
SLV_long_z-	794	689	583	-132	-237	-343	278	173
SLV_trasv_z-	576	224	-128	573	221	-131	398	47
SLV_vert_z-	456	351	245	179	73	-33	265	159
ACC_long	773	773	773	-317	-317	-317	228	228
ACC_trasv	1574	228	-1118	1574	228	-1118	901	-445

D (m)	0.6
k _h (kN/m ³)	33333
f _{ck} (Mpa)	25
E (Mpa)	31476
J (m ⁴)	0.0064
λ (cm)	251.56

SOVRAPP. PEDONALE STAZIONE VIGNA DI VALLE IV04 - PASSERELLA PEDONALE - Vigna di Valle PILE – Relazione di calcolo

COMMESSA LOTTO CODIFICA DOCUMENTO REV. FOGLIO

NR1J 00 D 29 CL IV0405 101 A 63 di 113

Segue riepilogo dei valori massimi e minimi della forza assiale N [kN] e del taglio medio T [kN]:

	Nmax	Nmin	Tmedia	Mmax
	[kN]	[kN]	[kN]	[kNm]
SLE_1.1	427	110	13	16
SLE_2.1	411	93	13	16
SLE_3.1	407	90	13	16
SLE_1.2	419	102	13	16
SLE_2.2	403	86	13	16
SLE_3.2	400	82	13	16
SLU_1.1	533	153	15	19
SLU_2.1	509	128	15	19
SLU_3.1	504	123	15	19
SLU_1.2	522	141	15	19
SLU_2.2	498	117	15	19
SLU_3.2	492	112	15	19
GEO_1.1	493	80	17	21
GEO_2.1	472	60	17	21
GEO_3.1	468	56	17	21
GEO_1.2	483	71	17	21
GEO_2.2	463	50	17	21
GEO_3.2	458	46	17	21
SLV_long_z+	809	-328	47	59
SLV_trasv_z+	590	-116	35	45
SLV_vert_z+	491	2	17	22
SLV_long_z-	794	-343	47	59
SLV_trasv_z-	576	-131	35	45
SLV_vert_z-	456	-33	17	22
ACC_long	773	-317	94	118
ACC_trasv	1574	-1118	250	314

SOVRAPP. PEDONALE STAZIONE VIGNA DI VALLE IV04 - PASSERELLA PEDONALE - Vigna di Valle PILE – Relazione di calcolo

COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
NR1J	00 D 29	CL	IV0405 101	Α	64 di 113

14.2 GEOMETRIA DELLA SEZIONE DI VERIFICA E ARMATURA

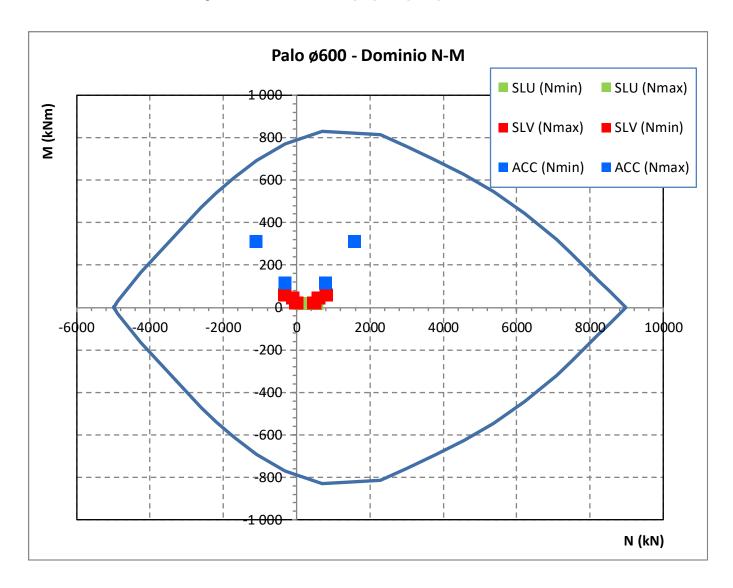
Nelle tabelle seguenti sono descritte le caratteristiche geometriche della sezione di verifica dei pali di fondazione, nonché le caratteristiche di resistenza dei materiali.

GEOMETRIA DELLA SEZIONE		
Diametro del palo =	600	mm
Copriferro netto c =	60	mm
Classe di resistenza calcestruzzo =	C25/30	Мра
Classe di resistenza delle barre =	B450C	MPa

Nella seguente tabella sono descritte le caratteristiche geometriche dell'armatura flessionale e a taglio dei pali.

ARMATURA LONGITUDINALE		
Numero barre long.	24	-
Diametro barre long.	26	mm
<u>ARMATURA TRASVERSALE</u>		
Diametro barre trasv.	14	mm
Passo arm. trasv.	150	mm
VERIFICA ARMATURA MINIMA LONG.		
ρmin =	1.00%	
Ac =	282743	mm2
As, _{min} =	2827	mm2
Armatura long. tot Asd,tot =	12720	mm2
ρl =	3.8%	

14.3 VERIFICA SLU A PRESSO-FLESSIONE


Sono riportate a seguire le verifiche SLU della sezione di sommità del palo maggiormente sollecitato, espresse in forma sintetica mediante il diagramma di interazione N [kN] - M [kNm].

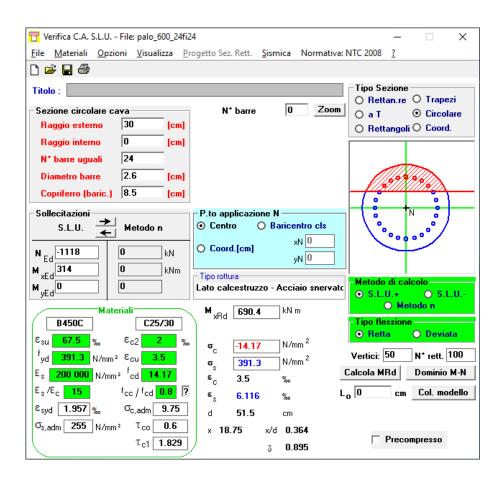
REV.

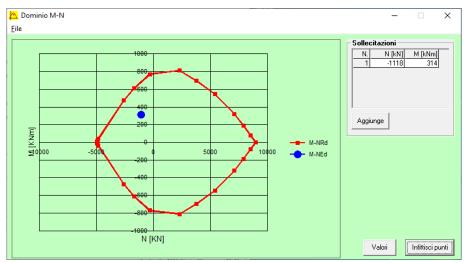
Α

FOGLIO

65 di 113

Si riportano le verifiche di dettaglio nelle combinazioni di carico più gravose.




SOVRAPP. PEDONALE STAZIONE VIGNA DI VALLE IV04 - PASSERELLA PEDONALE - Vigna di Valle PILE – Relazione di calcolo

 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

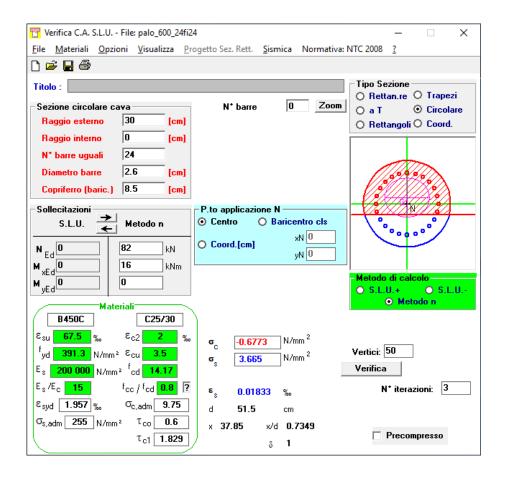
 NR1J
 00 D 29
 CL
 IV0405 101
 A
 66 di 113

ACC_TRASV

SOVRAPP. PEDONALE STAZIONE VIGNA DI VALLE IV04 - PASSERELLA PEDONALE - Vigna di Valle PILE – Relazione di calcolo

 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

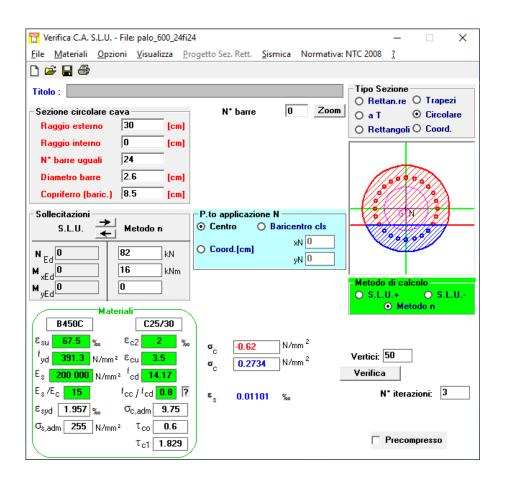
 NR1J
 00 D 29
 CL
 IV0405 101
 A
 67 di 113


14.4 VERIFICA SLU A TAGLIO

classe cls	R _{ck}	30	N/mm ²
resist. Caratteristica cilindrica	f _{ck}	25	N/mm ²
	f _{cd}	14	N/mm ²
diametro	Φ	600	mm
Area sezione	Α	282743	mm ²
copriferro	С	80	mm
Area sezione rettangolare equivalente	A _{eq}	222244	mm ²
altezza utile equivalente	d	440	mm
larghezza equivalente	b _w	505	mm
altezza equivalente	h _{eq}	559.8476	mm
sforzo assiale dovuto ai carichi o precompressione	N	-1317000	N
	$\sigma_{\sf cp}$	-4.7	N/mm ²
	$\alpha_{\sf cp}$	0.67	
Acciaio	f _{yk}	450	N/mm ²
Feb44k	f_{yd}	391	N/mm ²
diametro staffe (spille)	Ø _w	14	mm
Area staffa (spilla)	Aø _w	154	mm ²
0.9 d	Z	396	mm
passo spirale	S _w	150	mm
	n° bracci	2	
angolo di inclinazione biella compressa	θ	45.0	0
deve essere compreso tra 1 e 2.5	cot(θ)	1.00	
angolo di inclinazione armatura rispetto asse palo	α	90	0
	$\cot(\alpha)$	0.00	
	As _w / s _w	2.053	mm²/mm
Taglio resistente per "taglio trazione"	V_{Rsd}	318	kN
Taglio resistente per "taglio compressione"	V _{Rcd}	473	kN
taglio sollecitante	V_{Ed}	250	kN
fattore di sicurezza per GR (par. 7.9.5.2.2)	γRd	1	
taglio resistente	V_{Rd}	318	kN
	V_{Ed}	<	V_{Rd}
		verifica	

14.5 VERIFICA SLE DELLE TENSIONI

SLE_3.2 (RAR)


I valori di tensione sono compatibili con i limiti di normativa.

14.6 VERIFICA SLE A FESSURAZIONE

Nel caso in esame si verifica lo stato limite di formazione delle fessure, considerando il calcestruzzo reagente a trazione (I stadio del c.a.)

SLE_3.2 (RAR)

La verifica risulta soddisfatta in quanto σ_c < $f_{ctm}/1.2$ = 2.56 MPa , quindi non si formano fessure.

SOVRAPP. PEDONALE STAZIONE VIGNA DI VALLE IV04 - PASSERELLA PEDONALE - Vigna di Valle PILE – Relazione di calcolo NR1J 00 D 29 CL IV0405 101 A 70 di 113

15 VERIFICHE STRUTTURALI DEL PLINTO DI FONDAZIONE – PILA 2

15.1 VERIFICHE SLU-SLE CON MECCANISMO TIRANTE-PUNTONE

La verifica strutturale del plinto viene condotta a seguire impiegando un modello tirante-puntone, come quello rappresentato nella figura seguente, tratta da §C4.1.2.1.5 [2].

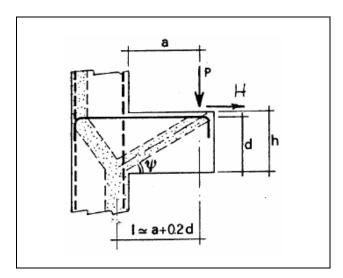


Figura 9 – Meccanismo tirante puntone della mensola tozza

Si distinguono due meccanismi di tipo tirante-puntone principali nel plinto di fondazione, illustrati nelle figure seguenti e descritti a seguire:

- un primo meccanismo è innescato dalle azioni trasmesse al plinto dai pali centrali e coinvolge un tirantepuntone parallelo alla direzione longitudinale (evidenziato in verde). Tale meccanismo coinvolge la sola armatura longitudinale inferiore del plinto.
- un secondo meccanismo coinvolge i pali di spigolo ed innesca un tirante-puntone con direzione diagonale (evidenziato in rosso), individuata da un angolo α misurato rispetto alla direzione trasversale. Tale meccanismo coinvolge sia l'armatura longitudinale inferiore del plinto che l'armatura trasversale, pertanto, ai fini delle verifiche del tirante di armatura e della biella di calcestruzzo, si considera composto dalla somma vettoriale di due meccanismi ortogonali disaccoppiati.

SOVRAPP. PEDONALE STAZIONE VIGNA DI VALLE IV04 - PASSERELLA PEDONALE - Vigna di Valle PILE – Relazione di calcolo

COMMESSA LOTTO CODIFICA DOCUMENTO REV. FOGLIO

NR1J 00 D 29 CL IV0405 101 A 71 di 113

A seguire si riporta una immagine che illustra, in una vista in sezione, la geometria di un generico meccanismo tirante puntone che si innesca nel plinto per azione dei carichi concentrati trasmessi dai pali di fondazione

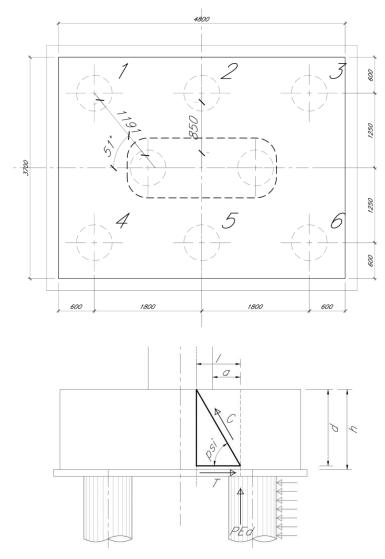


Figura 10 – Tirante puntone - Biella compressa di calcestruzzo C e tirante di armatura T

La forza di taglio di calcolo H_{Ed} agente alla testa del palo si trascura in via conservativa, in quanto il suo effetto ridurrebbe la trazione nel tirante inferiore d'armatura, essendo tale azione di taglio indotta dalla reazione del terreno.

SOVRAPP. PEDONALE STAZIONE VIGNA DI VALLE IV04 - PASSERELLA PEDONALE - Vigna di Valle PILE – Relazione di calcolo

COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
NR1J	00 D 29	CL	IV0405 101	Α	72 di 113

Ai fini delle successive verifiche, le azioni concentrate P_{Ed} [kN] trasmesse dai pali al plinto sono assunte pari alle forze assiali agenti in testa al palo N_{max} [kN], ridotte della quota parte spettante ad ogni palo del peso del plinto P_{pl} [kN] e del peso del rinterro P_{terr} [kN] presente all'estradosso del plinto:

$$P_{Ed} = N_{max} - (P_{pl} + P_{terr}) / n_{pali}$$

La larghezza della sezione resistente del tirante di armatura e della biella compressa (B_{eff} = larghezza efficace) viene assunta pari a:

- per i pali centrali all'interasse pali i (B_{eff} = i = 3 diam);
- per i pali di bordo a metà interasse pali i più la distanza dal bordo d_b (B_{eff} = i / 2 + d_b = 2.5 diam).

Si ignorano i pali 7 e 8 in quanto ubicati al di sotto della pila.

L'altezza della sezione della biella compressa viene assunta pari a

$$h_c = 0.4 \text{ c d sen } \psi \text{ (si assume c = 1)}$$

15.2 Geometria plinto

PLINTO			PALI		
dlong	3.7	m	n long	2	
dtrasv	4.8	m	n trasv	3	
Hpl	1.2	m	n tot	6	
gcls	25	kN/m3	fi_palo	0.6	m
Vpl	21.312	m3	i_long	2.5	m
Ppl	532.8	kN	i_trasv	1.8	m
TERRENO			PILA		
Hterr	0.5	m	dlong	1	m
Apila	2.5	m2	dtrasv	2.5	m
Apl	17.76	m2			
Aterr	15.26	m2			
gterr	20	kN/m3			
Vterr	7.63	m3			
Pterr	153	kN			

SOVRAPP. PEDONALE STAZIONE VIGNA DI VALLE IV04 - PASSERELLA PEDONALE - Vigna di Valle PILE – Relazione di calcolo

 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 NR1J
 00 D 29
 CL
 IV0405 101
 A
 73 di 113

15.3 Geometria tirante-puntone

Direzione diagonale (Pali 1, 3, 4 e 6)						
а	1.19	m				
h	1.20	m				
d = h-cferro	1.10	m				
ļ	1.41	m				
tan psi	0.70					
psi	35.1	0				
1/tan psi	1.42					
С	1					

Direzione lo	Direzione longitudinale (Pali 2 e 5)						
а	0.85	m					
h	1.20	m					
d = h-cferro	1.10	m					
I	1.07	m					
tan psi	1.16						
psi	49.4	0					
1/tan psi	0.86						
С	1						

SOVRAPP. PEDONALE STAZIONE VIGNA DI VALLE IV04 - PASSERELLA PEDONALE - Vigna di Valle PILE – Relazione di calcolo

COMMESSA LOTTO

CODIFICA

DOCUMENTO

REV. FOGLIO

NR1J 00 D 29 CL IV0405 101 A 74 di 113

15.4 Verifiche SLU e SLE

L'armatura inferiore del plinto è pari a:

La sezione del puntone di calcestruzzo ha dimensioni 1.5m x 0.2m.

	Pali di spigo	olo maggiorn	nente solleci	tati								
	Armatura in	feriore										
	N _{max}	P _{Ed}	H _{Ed}	Т	σ_{s_long}	σ_{s_trasv}	<	f _{yd}	С	σ_{c}	<	f _{cd} '
SLU	533	448	0	637	85	69		VERO	779	2.1		VERO
SLV	809	723	0	1030	137	111		VERO	1259	3.3		VERO
ACC	1574	1488	0	2120	282	229		VERO	2590	6.8		VERO
	kN	kN	kN	kN	Мра	Мра			kN	Мра		
	Armatura in	feriore										
	N _{max}	P _{Ed}	H _{Ed}	Т	σ_{s_long}	σ_{s_trasv}	<	0.8 f _{yk}	С	σ_{c}	<	0.45 f _{cd} '
SLE	427	341	0	486	65	52		VERO	594	1.6		VERO
	kN	kN	kN	kN	Mpa	Мра			kN	Mpa		

	Pali centrali											
	Armatura in	feriore										
	N _{max}	P _{Ed}	H _{Ed}	T	σ_{s_long}	σ_{s_trasv}	<	f _{yd}	С	σ_{c}	<	f _{cd} '
SLU	343	257	0	221	32	-		VERO	339	0.6		VERO
SLV	703	618	0	530	77	-		VERO	814	1.4		VERO
ACC	773	687	0	590	86	-		VERO	906	1.5		VERO
	kN	kN	kN	kN	Мра	Мра			kN	Мра		
	Armatura in	feriore										
	N _{max}	P _{Ed}	H _{Ed}	Т	σ_{s_long}	σ_{s_trasv}	<	0.8 f _{yk}	С	σ_{c}	<	0.45 f _{cd} '
SLE	268	183	0	157	23	-		VERO	241	0.4		VERO
	kN	kN	kN	kN	Mpa	Мра			kN	Мра		

Le verifiche risultano soddisfatte.

SOVRAPP. PEDONALE STAZIONE VIGNA DI VALLE IV04 - PASSERELLA PEDONALE - Vigna di Valle PILE – Relazione di calcolo

 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 NR1J
 00 D 29
 CL
 IV0405 101
 A
 75 di 113

16 VERIFICHE STRUTTURALI DEL FUSTO PILA 1

16.1 GEOMETRIA DELLA SEZIONE DI VERIFICA E ARMATURA

Si riporta a seguire una figura che illustra la geometria della sezione di verifica alla base della pila.

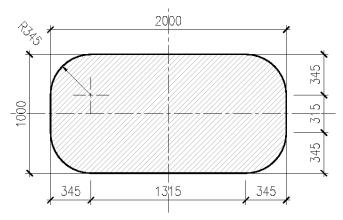


Figura 11 – Geometria della sezione trasversale della pila [cm]

16.1.1 ARMATURA LONGITUDINALE

A seguire è indicata l'armatura flessionale prevista nella sezione di base del fusto pila:

n barre 32

fi barre 26 mm

16.1.2 ARMATURA TRASVERSALE

A seguire è indicata l'armatura a taglio prevista nella sezione di base del fusto pila, all'interno della zona critica, avente una altezza pari a 0.2*Hpila = 2.0m.

Direzione longitudinale

Staffe:

 øw
 14
 mm

 A1b
 153.86
 mm2

 passo
 200
 mm

bracci 8

Direzione trasversale

Staffe:

ØW	14	16	mm
A1b	153.86	200.96	mm2
passo	200	100	mm
bracci	8	4	

SOVRAPP. PEDONALE STAZIONE VIGNA DI VALLE IV04 - PASSERELLA PEDONALE - Vigna di Valle PILE – Relazione di calcolo

COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
NR1J	00 D 29	CL	IV0405 101	Α	76 di 113

16.1.3 VERIFICA DELL'ARMATURA MINIMA

Le armature del fusto pila devono soddisfare le quantità minime indicate dalla normativa e che vengono riepilogate di seguito.

Armatura minima longitudinale:

• $\rho_{min} = 0.60 \%$

Armatura minima trasversale nelle zone critiche:

La percentuale meccanica è definita dalle espressioni:

• $\omega_{wd,r} = A_{sw}/(s \cdot b) \cdot f_{yd}/f_{cd}$ per sezioni rettangolari

• $\omega_{wd,c} = 4 \text{ A}_{sp}/(D_{sp} \cdot s) \cdot f_{yd}/f_{cd}$ per sezioni circolari

Deve verificarsi:

- $A_{sw}/(s \cdot b) \cdot f_{yd}/f_{cd} \ge \zeta$ per sezioni rettangolari
- $\rho_w \cdot f_{yd}/f_{cd} \ge 1,40 \cdot \zeta$ per sezioni circolari

con:

 $\rho_w = V_{sc}/V_{cc}$ rapporto tra il volume complessivo delle armature di confinamento V_{sc} e volume di calcestruzzo confinato V_{cc} ;

 $\zeta = 0.07 \text{per ag} \ge 0.35 \text{ g};$

 $\zeta = 0.05 per a_g \ge 0.25 g;$

 $\zeta = 0.04 \text{per a}_g \ge 0.15 \text{ g};$

 $\zeta = 0.03$ per $a_g < 0.15$ g.

SOVRAPP. PEDONALE STAZIONE VIGNA DI VALLE IV04 - PASSERELLA PEDONALE - Vigna di Valle PILE – Relazione di calcolo

 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 NR1J
 00 D 29
 CL
 IV0405 101
 A
 77 di 113

Verifica armatura minima longitudinale

pmin = 0.60%

Ac = 2000000 mm2As, min = 12000 mm2

n barre (1° str.) 32

fi barre (1° str.) 26 mm

As 16981 mm2

ρ **0.85%** requisito soddisfatto

Verifica armatura minima trasversale

ag = 0.077 g

 $\zeta = 0.04$ wwd,r min = 0.04

Armatura in dir. longitudinale

fcd = 18.13 MPa

wwd,r = **0.067** requisito soddisfatto

Armatura in dir. trasversale

Asw/s staffe = 0.0031 m2/m
Asw/s spille = 0.0000 m2/m
b = 1.00 m
fyd = 391 MPa
fcd = 18.13 MPa

 ω wd,r = **0.067** requisito soddisfatto

L'armatura longitudinale di calcolo e l'armatura trasversale di calcolo rispettano le quantità minime indicate dalla normativa.


SOVRAPP. PEDONALE STAZIONE VIGNA DI VALLE IV04 - PASSERELLA PEDONALE - Vigna di Valle PILE – Relazione di calcolo

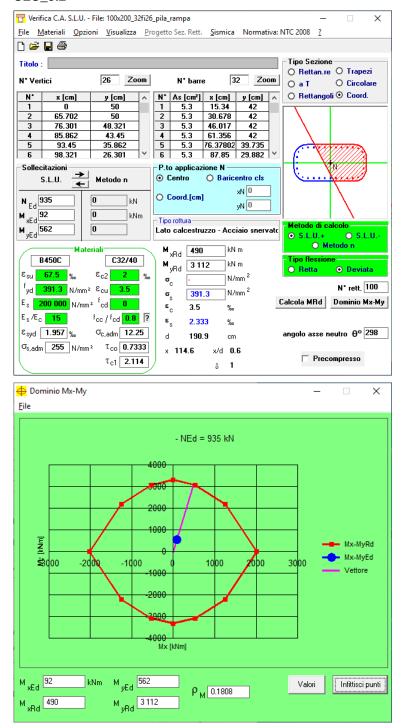
 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 NR1J
 00 D 29
 CL
 IV0405 101
 A
 78 di 113

16.2 VERIFICHE SLU A FLESSIONE

Sono riportate a seguire le verifiche SLU della sezione di base della pila, espresse in forma sintetica mediante il diagramma di interazione Mlong - Mtrasv , valutato per una forza assiale corrispondente alla condizione di verifica più severa.

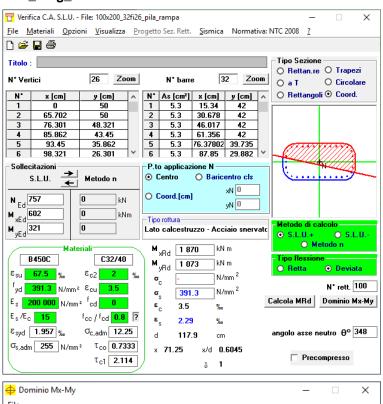
La verifica SLU di tipo flessionale si effettua verificando che:

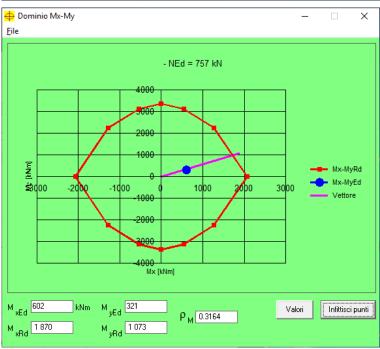

$$FS = (M_{Rd,long}^2 + M_{Rd,trasv}^2)^{0.5} / (M_{Ed,long}^2 + M_{Ed,trasv}^2)^{0.5} \ge 1$$

Si osserva inoltre che: $\rho M = 1/FS$.

Si riportano le verifiche di dettaglio nelle combinazioni di carico più gravose.

SLU_3.2



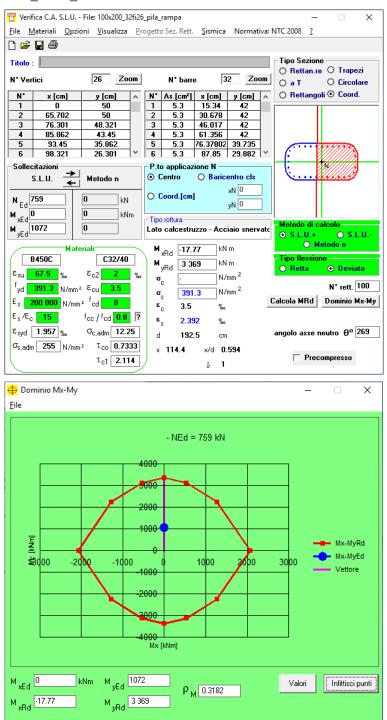

SOVRAPP. PEDONALE STAZIONE VIGNA DI VALLE IV04 - PASSERELLA PEDONALE - Vigna di Valle PILE – Relazione di calcolo

 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 NR1J
 00 D 29
 CL
 IV0405 101
 A
 80 di 113

SLV_long_z+

SOVRAPP. PEDONALE STAZIONE VIGNA DI VALLE IV04 - PASSERELLA PEDONALE - Vigna di Valle PILE - Relazione di calcolo


COMMESSA DOCUMENTO FOGLIO NR1J 00 D 29 CL IV0405 101 Α 81 di 113

RFV

CODIFICA

LOTTO

SLV_trasv_z+

Le verifiche risultano soddisfatte.

SOVRAPP. PEDONALE STAZIONE VIGNA DI VALLE IV04 - PASSERELLA PEDONALE - Vigna di Valle PILE – Relazione di calcolo

COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
NR1J	00 D 29	CL	IV0405 101	Α	82 di 113

16.3 VERIFICHE SLU A TAGLIO

Nel caso di sezioni rettangolari la verifica viene effettuata distintamente per le due direzioni longitudinale e trasversale.

Nel caso si sezione circolare si esegue la verifica per un valore del taglio pari a:

$$V = \sqrt{(F1^2 + F2^2)}$$

Per quanto riguarda le combinazioni sismiche, con riferimento ai criteri della GR e a quanto precedentemente dichiarato nel §8.3.2, si procede al calcolo del taglio agente di calcolo sulla base dei risultati delle verifiche flessionali.

$$V_{gr} = V_{Ed} \cdot \gamma_{Rd} \cdot M_{Rd}/M_{Ed} \le q \cdot V_{Ed}$$

Il valore resistente a taglio della sezione si determina secondo:

 $V_{Rd} = min(V_{Rcd}; V_{Rsd})$

 $V_{Rcd} = 0.9 \cdot d \cdot b_w \cdot \alpha_c \cdot f_{cd}' \cdot (ctg \alpha + ctg \theta)/(1 + ctg^2 \theta)$

 $V_{Rsd} = 0.9 \cdot d \cdot A_{sw}/s \cdot f_{yd} \cdot (ctg \alpha + ctg \theta) \cdot sen \alpha$ in cui

d altezza utile della sezione

b_w larghezza minima della sezione

Asw area dell'armatura trasversale

s interasse tra due armature trasversali consecutive

θ inclinazione delle bielle di calcestruzzo

angolo di inclinazione dell'armatura trasversale rispetto all'asse dell'elemento

f_{cd}' resistenza a compressione ridotta (pari a 0,5 f_{cd})

αc coefficiente maggiorativo che tiene conto della compressione

Nel caso di sezione circolare, le dimensioni della sezione rettangolare equivalente da utilizzare per il calcolo della resistenza a taglio della sezione si determinano secondo:

$$d = r + 2 \cdot r_s / \pi$$
$$b = 0.9 \cdot 2 \cdot r$$

I valori di resistenza a taglio degli elementi in c.a. devono inoltre essere divisi per un coefficiente di sicurezza aggiuntivo nei confronti della rottura fragile γ_{Bd} valutato mediante la seguente espressione:

$$1 \le \gamma_{Bd} = 1.25 + 1 - q \cdot V_{Ed} / V_{gr} \le 1.25$$

SOVRAPP. PEDONALE STAZIONE VIGNA DI VALLE IV04 - PASSERELLA PEDONALE - Vigna di Valle PILE – Relazione di calcolo

 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 NR1J
 00 D 29
 CL
 IV0405 101
 A
 83 di 113

16.3.1 VERIFICA A TAGLIO IN DIREZIONE LONGITUDINALE

	R_{ck}	classe cls
	f _{ck}	resist. Caratteristica cilindrica
19	f _{cd}	
1.5	Уc	coeff. parziale
, 2000 mm	b_w	larghezza membratura resistene a V
1000 mm	Н	altezza membratura resistene a V
900 mm	d	altezza utille
ot 1800000 mm2	A _{TOT}	area della sezione
757000 N	N	sforzo assiale dovuto ai carichi o precompressione
0.38 N/mm ²	$\sigma_{\sf cp}$	ok
1.02	α_{c}	
450 N/mm ²	f_{yk}	Acciaio
391 N/mm ²	f_{yd}	Feb44k
, 14 mm	Ø _w	diametro staffe (spille)
w 154 mm ²	Aø _w	Area staffa (spilla)
810 mm	Z	0.9 d
, 200 mm	S _w	passo delle staffe (spille)
acci 8	n° bracci	
45.0 °	θ	angolo di inclinazione
θ) 1.00	cot(θ)	deve essere compreso tra 1 e 2.5
90 °	α	angolo di inclinazione armatura rispetto asse palo
α) 0.00	cot(a)	
$^{\prime}$ s _w 6.16 mm ² /mr	As _w /s _w	
{sd} 1952 kN	V{Rsd}	Taglio resistente per "taglio trazione"
	V _{Rcd}	Taglio resistente per "taglio compressione"
d 63 kN	V_{Ed}	taglio sollecitante
1	γRd	fattore di sicurezza per GR (par. 7.9.5.2.2)
	V_{Rd}	taglio resistente
	V_{Ed}	

SOVRAPP. PEDONALE STAZIONE VIGNA DI VALLE IV04 - PASSERELLA PEDONALE - Vigna di Valle PILE – Relazione di calcolo

COMMESSA LOTTO CODIFICA DOCUMENTO REV. FOGLIO

NR1J 00 D 29 CL IV0405 101 A 84 di 113

16.3.2 VERIFICA A TAGLIO IN DIREZIONE TRASVERSALE

-	40	2
		N/mm ²
		N/mm ²
Уc		
	1000	mm
Н		mm
d		mm
A _{TOT}	1800000	mm2
N	759000	N
$\sigma_{\sf cp}$	0.38	N/mm ²
α_{c}	1.02	
f _{yk}	450	N/mm ²
f _{yd}	391	N/mm ²
Ø _w	14	mm
Aø _w	154	mm ²
Z	1620	mm
S _w	200	mm
n° bracci	4	
θ	45.0	0
cot(θ)	1.00	
α	90	o
cot(a)	0.00	
As _w / s _w	3.08	mm²/mm
V_{Rsd}	1952	kN
	7773	kN
1100		
V_{Ed}	97	kN
	1	
	1952	kN
V _{Ed}	<	V _{Rd}
	$\begin{array}{c} \textbf{b}_{\text{w}} \\ \textbf{H} \\ \textbf{d} \\ \textbf{A}_{\text{TOT}} \\ \textbf{N} \\ \boldsymbol{\sigma}_{\text{cp}} \\ \boldsymbol{\alpha}_{\text{c}} \\ \textbf{f}_{yk} \\ \textbf{f}_{yd} \\ \boldsymbol{\varnothing}_{\text{w}} \\ \textbf{A} \boldsymbol{\varnothing}_{\text{w}} \\ \textbf{z} \\ \textbf{s}_{\text{w}} \\ \textbf{n}^{\circ} \textbf{bracci} \\ \boldsymbol{\theta} \\ \textbf{cot}(\boldsymbol{\theta}) \\ \boldsymbol{\alpha} \\ \textbf{cot}(\boldsymbol{\alpha}) \\ \textbf{As}_{\text{w}} / \textbf{s}_{\text{w}} \\ \\ \textbf{V}_{\text{Rsd}} \\ \textbf{V}_{\text{Rcd}} \\ \\ \textbf{V}_{\text{Rd}} \\ \\ \textbf{V}_{\text{Rd}} \\ \end{array}$	$\begin{array}{c cccc} f_{ck} & 33 \\ f_{cd} & 19 \\ y_c & 1.5 \\ b_w & 1000 \\ H & 2000 \\ d & 1800 \\ O & 1800000 \\ \hline N & 759000 \\ \hline \sigma_{cp} & 0.38 \\ \hline \alpha_c & 1.02 \\ f_{yk} & 450 \\ f_{yd} & 391 \\ \hline \varnothing_w & 14 \\ O & 2 \\ O & 300 \\ O & 30$

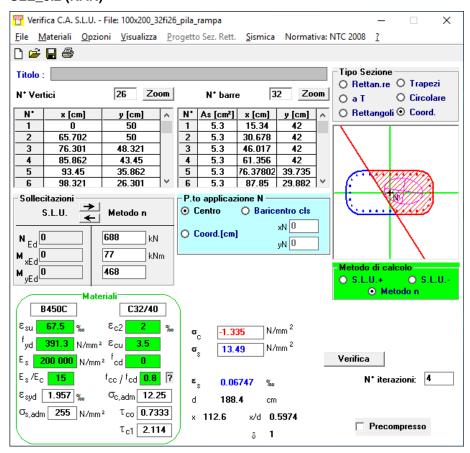
SOVRAPP. PEDONALE STAZIONE VIGNA DI VALLE IV04 - PASSERELLA PEDONALE - Vigna di Valle PILE – Relazione di calcolo

COMMESSA LOTTO CODIFICA DOCUMENTO REV. FOGLIO

NR1J 00 D 29 CL IV0405 101 A 85 di 113

16.4 VERIFICA SLE DELLE TENSIONI

La verifica SLE di tipo tensionale si effettua verificando che le massime tensioni agenti nella sezione risultino inferiori ai seguenti valori limite:


per le combinazioni SLE-RAR:

• tensione limite nel calcestruzzo: $\sigma_c = 0.55 \; f_{ck} = 18.3 \; MPa$ • tensione limite nelle barre: $\sigma_s = 0.75 \; f_{yk} = 337.5 \; MPa$

per le combinazioni SLE-QPE:

• tensione limite nel calcestruzzo: $\sigma_c = 0.40 \, f_{ck} = 13.3 \, MPa$

SLE_3.2 (RAR)

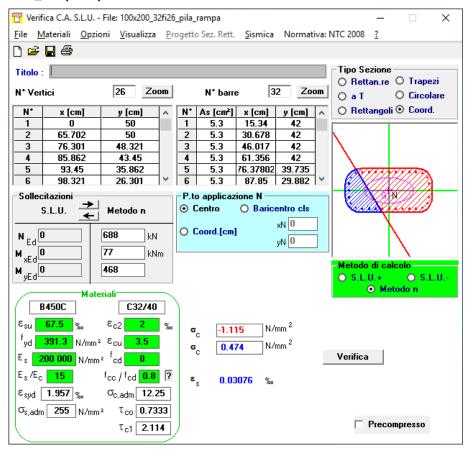
I valori di tensione sono compatibili con i limiti di normativa.

16.5 VERIFICHE SLE A FESSURAZIONE

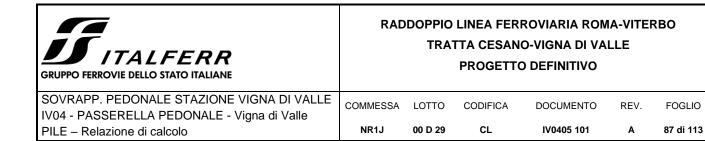
La verifica SLE a fessurazione si effettua verificando che il massimo valore di apertura delle fessure risulti inferiore ai seguenti valori limite:

FOGLIO

86 di 113


Α

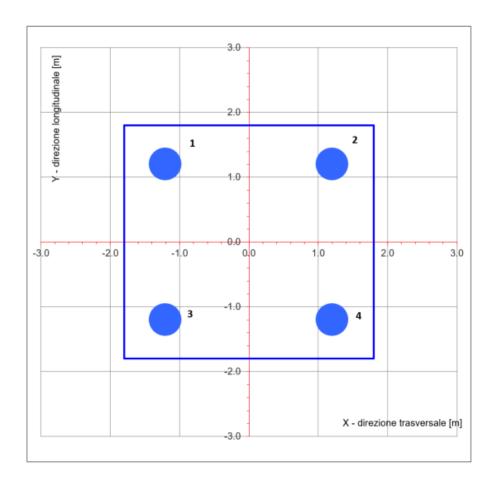
per le combinazioni SLE-RAR:


apertura fessure limite: $w_{lim} = w_1 = 0.20 \text{ mm}$

Nel caso in esame si verifica lo stato limite di formazione delle fessure, considerando il calcestruzzo reagente a trazione (I stadio del c.a.)

SLE_3.2 (RAR)

La verifica risulta soddisfatta in quanto σ_c < $f_{ctm}/1.2 = 3.1$ MPa , quindi non si formano fessure.



17 VERIFICHE STRUTTURALI DEI PALI DI FONDAZIONE – PILA 1

17.1 SOLLECITAZIONI ALLA TESTA DEI PALI

Le sollecitazioni combinate alla base del plinto sono distribuite rigidamente alla testa dei pali. Geometria della palificata

Palo num.	X (trasv)	Y (long)	X ²	Y ²	WI	Wt
	m	m	m²	m²		
1	-1.20	1.20	1	1.4	4.80E+00	-4.80E+00
2	1.20	1.20	1	1.4	4.80E+00	4.80E+00
3	-1.20	-1.20	1	1.4	-4.80E+00	-4.80E+00
4	1.20	-1.20	1	1	-4.80E+00	4.80E+00

SOVRAPP. PEDONALE STAZIONE VIGNA DI VALLE IV04 - PASSERELLA PEDONALE - Vigna di Valle PILE – Relazione di calcolo

COMMESSA LOTTO CODIFICA DOCUMENTO REV. FOGLIO

NR1J 00 D 29 CL IV0405 101 A 88 di 113

Seguono le forze assiali N [kN] agenti alla testa dei pali:

	Palo	Palo	Palo	Palo
	1	2	3	4
SLE_1.1	457	240	421	204
SLE_2.1	460	243	424	207
SLE_3.1	428	210	392	174
SLE_1.2	233	450	197	414
SLE_2.2	236	453	200	417
SLE_3.2	203	421	167	385
SLU_1.1	563	302	519	258
SLU_2.1	567	306	524	263
SLU_3.1	518	258	475	214
SLU_1.2	291	552	248	509
SLU_2.2	295	556	252	513
SLU_3.2	247	508	203	464
GEO_1.1	506	223	463	180
GEO_2.1	510	227	466	184
GEO_3.1	469	187	426	143
GEO_1.2	214	497	171	453
GEO_2.2	218	500	175	457
GEO_3.2	177	460	134	416
SLV_long_z+	556	389	234	68
SLV_trasv_z+	592	36	589	33
SLV_vert_z+	445	278	348	182
SLV_long_z-	544	377	222	55
SLV_trasv_z-	580	24	577	21
SLV_vert_z-	418	251	322	155

D (m)	0.6		
k _h (kN/m ³)	33333		
f _{ck} (Mpa)	25		
E (Mpa)	31476		
J (m ⁴)	0.0064		
λ (cm)	251.56		

SOVRAPP. PEDONALE STAZIONE VIGNA DI VALLE IV04 - PASSERELLA PEDONALE - Vigna di Valle PILE – Relazione di calcolo

COMMESSA LOTTO CODIFICA DOCUMENTO REV. FOGLIO

NR1J 00 D 29 CL IV0405 101 A 89 di 113

Segue riepilogo dei valori massimi e minimi della forza assiale N [kN] e del taglio medio T [kN]:

	Nmax	Nmin	Tmedia	Mmax
	[kN]	[kN]	[kN]	[kNm]
SLE_1.1	457	204	11	14
SLE_2.1	460	207	11	14
SLE_3.1	428	174	11	14
SLE_1.2	450	197	11	14
SLE_2.2	453	200	11	14
SLE_3.2	421	167	11	14
SLU_1.1	563	258	14	17
SLU_2.1	567	263	14	17
SLU_3.1	518	214	14	17
SLU_1.2	552	248	14	17
SLU_2.2	556	252	14	17
SLU_3.2	508	203	14	17
GEO_1.1	506	180	15	18
GEO_2.1	510	184	15	18
GEO_3.1	469	143	15	18
GEO_1.2	497	171	15	18
GEO_2.2	500	175	15	18
GEO_3.2	460	134	15	18
SLV_long_z+	556	68	31	39
SLV_trasv_z+	592	33	38	48
SLV_vert_z+	445	182	14	18
SLV_long_z-	544	55	31	39
SLV_trasv_z-	580	21	38	48
SLV_vert_z-	418	155	14	18

SOVRAPP. PEDONALE STAZIONE VIGNA DI VALLE IV04 - PASSERELLA PEDONALE - Vigna di Valle PILE – Relazione di calcolo

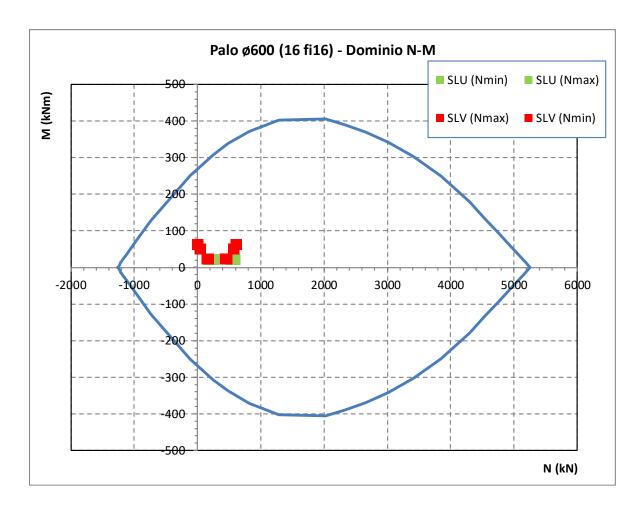
 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 NR1J
 00 D 29
 CL
 IV0405 101
 A
 90 di 113

17.2 GEOMETRIA DELLA SEZIONE DI VERIFICA E ARMATURA

Nelle tabelle seguenti sono descritte le caratteristiche geometriche della sezione di verifica dei pali di fondazione, nonché le caratteristiche di resistenza dei materiali.

GEOMETRIA DELLA SEZIONE		
Diametro del palo =	600	mm
Copriferro netto c =	60	mm
Classe di resistenza calcestruzzo =	C25/30	Мра
Classe di resistenza delle barre =	B450C	MPa

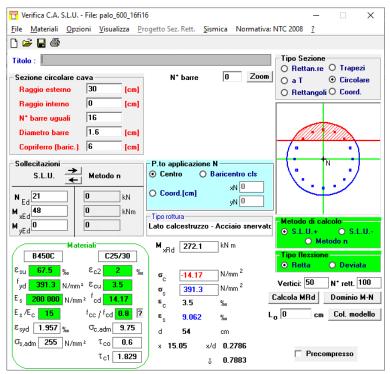

Nella seguente tabella sono descritte le caratteristiche geometriche dell'armatura flessionale e a taglio dei pali.

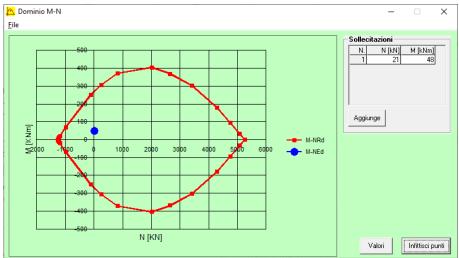
ARMATURA LONGITUDINALE		
Numero barre long.	16	-
Diametro barre long.	16	mm
ARMATURA TRASVERSALE		
Diametro barre trasv.	12	mm
Passo arm. trasv.	200	mm
VERIFICA ARMATURA MINIMA LONG.		
ρmin =	1.00%	
Ac =	282743	mm2
As, _{min} =	2827	mm2
Armatura long. tot Asd,tot =	3216	mm2
ρl =	1.1%	

17.3 VERIFICA SLU A PRESSO-FLESSIONE

Sono riportate a seguire le verifiche SLU della sezione di sommità del palo maggiormente sollecitato, espresse in forma sintetica mediante il diagramma di interazione N [kN] – M [kNm].

Si riportano le verifiche di dettaglio nelle combinazioni di carico più gravose.




SOVRAPP. PEDONALE STAZIONE VIGNA DI VALLE IV04 - PASSERELLA PEDONALE - Vigna di Valle PILE – Relazione di calcolo

 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

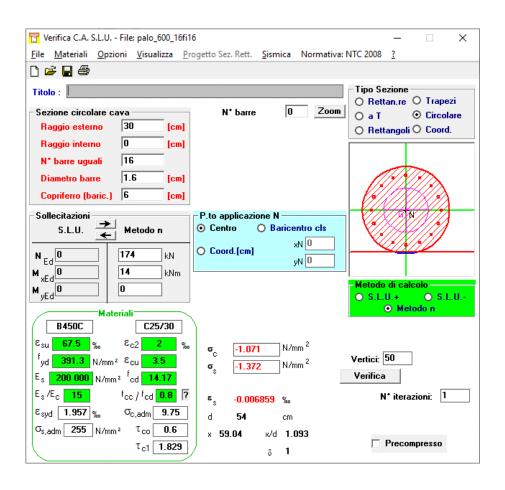
 NR1J
 00 D 29
 CL
 IV0405 101
 A
 92 di 113

SLV_trasv_z-

SOVRAPP. PEDONALE STAZIONE VIGNA DI VALLE IV04 - PASSERELLA PEDONALE - Vigna di Valle PILE – Relazione di calcolo

 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

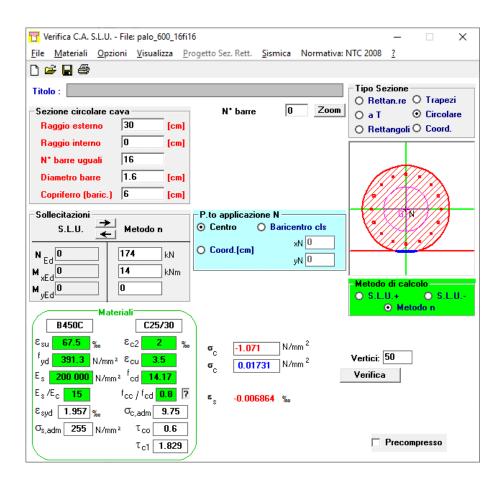
 NR1J
 00 D 29
 CL
 IV0405 101
 A
 93 di 113


17.4 VERIFICA SLU A TAGLIO

classe cls	R_{ck}	30	N/mm ²
resist. Caratteristica cilindrica	f _{ck}	25	N/mm ²
	f_{cd}	14	N/mm ²
diametro	Φ	600	mm
Area sezione	Α	282743	mm ²
copriferro	С	80	mm
Area sezione rettangolare equivalente	A_{eq}	222244	mm ²
altezza utile equivalente	d	440	mm
larghezza equivalente	b_w	505	mm
altezza equivalente	h _{eq}	559.8476	mm
sforzo assiale dovuto ai carichi o precompressione	N	-1317000	N
	$\sigma_{\sf cp}$	-4.7	N/mm ²
	$\alpha_{\sf cp}$	0.67	
Acciaio	f _{yk}	450	N/mm ²
Feb44k	f_{yd}	391	N/mm ²
diametro staffe (spille)	Ø _w	12	mm
Area staffa (spilla)	Aø _w	113	mm ²
0.9 d	Z	396	mm
passo spirale	S _w	200	mm
	n° bracci	2	
angolo di inclinazione biella compressa	θ	45.0	0
deve essere compreso tra 1 e 2.5	cot(θ)	1.00	
angolo di inclinazione armatura rispetto asse palo	α	90	0
	cot(a)	0.00	
	As _w / s _w	1.131	mm²/mm
Taglio resistente per "taglio trazione"	V _{Rsd}	175	kN
Taglio resistente per "taglio compressione"	V _{Rcd}	473	kN
taglio sollecitante	V_{Ed}	39	kN
fattore di sicurezza per GR (par. 7.9.5.2.2)	γRd	1	
taglio resistente	V _{Rd}	175	kN
12.13.12 1 30.000 110	V _{Ed}	<	V _{Rd}

17.5 VERIFICA SLE DELLE TENSIONI

SLE_3.2 (RAR)


I valori di tensione sono compatibili con i limiti di normativa.

17.6 VERIFICA SLE A FESSURAZIONE

Nel caso in esame si verifica lo stato limite di formazione delle fessure, considerando il calcestruzzo reagente a trazione (I stadio del c.a.)

SLE_3.2 (RAR)

La verifica risulta soddisfatta in quanto σ_{c} < $f_{\text{ctm}}/1.2$ = 2.56 MPa , quindi non si formano fessure.

SOVRAPP. PEDONALE STAZIONE VIGNA DI VALLE IV04 - PASSERELLA PEDONALE - Vigna di Valle PILE – Relazione di calcolo

COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
NR1J	00 D 29	CL	IV0405 101	Α	96 di 113

18 VERIFICHE STRUTTURALI DEL PLINTO DI FONDAZIONE – PILA 1

18.1 VERIFICHE SLU-SLE CON MECCANISMO TIRANTE-PUNTONE

La verifica strutturale del plinto viene condotta a seguire impiegando un modello tirante-puntone, come quello rappresentato nella figura seguente:

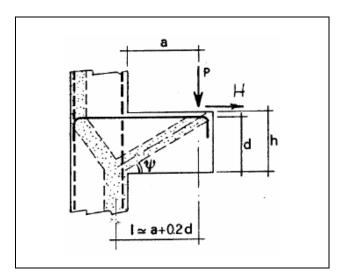


Figura 12 – Meccanismo tirante puntone della mensola tozza

Si distinguono due meccanismi di tipo tirante-puntone principali nel plinto di fondazione, illustrati nelle figure seguenti e descritti a seguire:

- un primo meccanismo è innescato dalle azioni trasmesse al plinto dai pali centrali e coinvolge un tirantepuntone parallelo alla direzione longitudinale. Tale meccanismo coinvolge la sola armatura longitudinale inferiore del plinto.
- un secondo meccanismo coinvolge i pali di spigolo ed innesca un tirante-puntone con direzione diagonale, individuata da un angolo α misurato rispetto alla direzione trasversale. Tale meccanismo coinvolge sia l'armatura longitudinale inferiore del plinto che l'armatura trasversale, pertanto, ai fini delle verifiche del tirante di armatura e della biella di calcestruzzo, si considera composto dalla somma vettoriale di due meccanismi ortogonali disaccoppiati.

SOVRAPP. PEDONALE STAZIONE VIGNA DI VALLE IV04 - PASSERELLA PEDONALE - Vigna di Valle PILE – Relazione di calcolo

 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 NR1J
 00 D 29
 CL
 IV0405 101
 A
 97 di 113

A seguire si riporta una immagine che illustra, in una vista in sezione, la geometria di un generico meccanismo tirante puntone che si innesca nel plinto per azione dei carichi concentrati trasmessi dai pali di fondazione

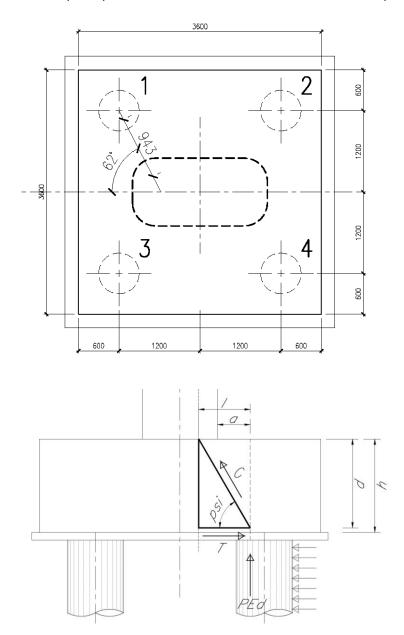


Figura 13 - Tirante puntone - Biella compressa di calcestruzzo C e tirante di armatura T

La forza di taglio di calcolo H_{Ed} agente alla testa del palo si trascura in via conservativa, in quanto il suo effetto ridurrebbe la trazione nel tirante inferiore d'armatura, essendo tale azione di taglio indotta dalla reazione del terreno.

SOVRAPP. PEDONALE STAZIONE VIGNA DI VALLE IV04 - PASSERELLA PEDONALE - Vigna di Valle PILE – Relazione di calcolo

COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
NR1J	00 D 29	CL	IV0405 101	Α	98 di 113

Ai fini delle successive verifiche, le azioni concentrate P_{Ed} [kN] trasmesse dai pali al plinto sono assunte pari alle forze assiali agenti in testa al palo N_{max} [kN], ridotte della quota parte spettante ad ogni palo del peso del plinto P_{pl} [kN] e del peso del rinterro P_{terr} [kN] presente all'estradosso del plinto:

$$P_{Ed} = N_{max} - (P_{pl} + P_{terr}) / n_{pali}$$

La larghezza della sezione resistente del tirante di armatura e della biella compressa (B_{eff} = larghezza efficace) viene assunta pari a:

- per i pali centrali all'interasse pali i (B_{eff} = i = 3 diam);
- per i pali di bordo a metà interasse pali i più la distanza dal bordo d_b (B_{eff} = i / 2 + d_b = 2.5 diam).

L'altezza della sezione della biella compressa viene assunta pari a

 $h_c = 0.4 c d sen \psi (si assume c = 1)$

SOVRAPP. PEDONALE STAZIONE VIGNA DI VALLE IV04 - PASSERELLA PEDONALE - Vigna di Valle PILE – Relazione di calcolo

 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 NR1J
 00 D 29
 CL
 IV0405 101
 A
 99 di 113

18.2 Geometria plinto

PLINTO			PALI		
dlong	3.6	m	n long	2	
dtrasv	3.6	m	n trasv	2	
Hpl	1.2	m	n tot	4	
gcls	25	kN/m3	fi_palo	0.6	m
Vpl	15.552	m3	i_long	2.4	m
Ppl	388.8	kN	i_trasv	2.4	m
TERRENO			PILA		
Hterr	0.5	m	dlong	1	m
Apila	2	m2	dtrasv	2	m
Apl	12.96	m2			
Aterr	10.96	m2			
gterr	20	kN/m3			
Vterr	5.48	m3			
Pterr	110	kN			

18.3 Geometria tirante-puntone

Direzione d	iagonale (Pali 1, 2, 3 e 4)
а	0.94	m
h	1.20	m
d = h-cferro	1.10	m
I	1.16	m
tan psi	0.85	
psi	40.4	0
1/tan psi	1.17	
С	1	

SOVRAPP. PEDONALE STAZIONE VIGNA DI VALLE IV04 - PASSERELLA PEDONALE - Vigna di Valle PILE – Relazione di calcolo

 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 NR1J
 00 D 29
 CL
 IV0405 101
 A
 100 di 113

18.4 Verifiche SLU e SLE

L'armatura inferiore del plinto è pari a:

direzione longitudinale ø24/200direzione trasversale ø24/200

La sezione del puntone di calcestruzzo ha dimensioni 1.5m x 0.3m.

	Pali di sp	igolo mag	giorment	e sollecita	nti							
	Armatura	inferiore										
	N _{max}	P _{Ed}	H _{Ed}	Т	σ_{s_long}	σ _{s_trasv}	<	f _{yd}	С	σς	<	f _{cd} '
SLU	567	443	0	520	145	77		VERO	683	1.6		VERO
SLV	592	468	0	549	153	81		VERO	721	1.7		VERO
	kN	kN	kN	kN	Мра	Мра			kN	Мра		
	Armatura	inferiore										
	N_{max}	P _{Ed}	H _{Ed}	Т	σ_{s_long}	σ_{s_trasv}	<	0.8 f _{yk}	С	σς	<	0.45 f _{cd} '
SLE	460	336	0	394	110	59		VERO	518	1.2		VERO
	kN	kN	kN	kN	Мра	Мра			kN	Мра		

SOVRAPP. PEDONALE STAZIONE VIGNA DI VALLE IV04 - PASSERELLA PEDONALE - Vigna di Valle PILE – Relazione di calcolo

 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 NR1J
 00 D 29
 CL
 IV0405 101
 A
 101 di 113

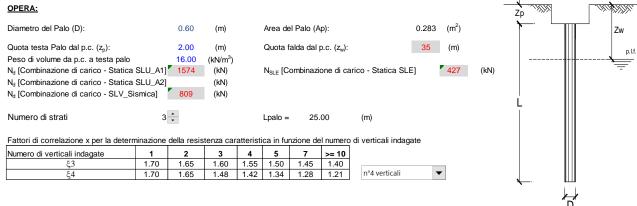
19 VERIFICHE GEOTECNICHE DEI PALI

19.1 PALI DELLA PILA 2

Sono presenti 8 pali ø600 aventi lunghezza pari a 25m. Si adottano i seguenti parametri geotecnici:

Modello 9

Dalla pk 38+000 alla pk 39+497									
Descrizione	z iniz (m)	z fin (m)	spessore (m)	Peso di volume (kN/m³)	Tipo di terreno	Angolo di resistenza al taglio φ' (°)	C' (kPa)	Modulo elastico Eop (MPa)	K media (m/s)
Terreno vegetale sabbioso limoso con frammenti antropici	0	1	1	-	-	-	-	-	•
Limo sabbioso debolemente argilloso	1	3	2	17	GF	26	5	20	-
Sabbia limosa mediamnete addensata con presenza di ghiaia	3	19	16	17	GG	32	0	50	-
Sabbia debolemnete limosa con rarai clasti di litici vulcanici	19	30	11	17	GG	30	0	50	1,71*10-2



SOVRAPP. PEDONALE STAZIONE VIGNA DI VALLE IV04 - PASSERELLA PEDONALE - Vigna di Valle

PILE - Relazione di calcolo

COMMESSA DOCUMENTO FOGLIO LOTTO CODIFICA RFV NR1J 00 D 29 CL IV0405 101 Α 102 di 113

CALCOLO DELLA CAPACITA' PORTANTE DI UN PALO TRIVELLATO DI GRANDE DIAMETRO

CARATTERISTICHE GEOTECNICHE DEL TERRENO:

Strata	Spess		Parametri del terreno			Coefficienti di Calcolo					
Strato	opess	Tipo di terreno	γ	c'	φ'	Cu	N _{SPT}	k	μ	а	α
(-)	(m)		(kN/m ³)	(kPa)	(°)	(kPa)	(-)	(-)	(-)	(-)	(-)
1	2.0	Limo sabbioso debolmente argilloso	17.00	5.0	26.0	5.0		0.56	0.49		ĺ
2	16.0	Sabbia limosa med addensata con presenza di ghiaia	17.00	0.0	32.0			0.47	0.62		İ
3	7.00		17.00	0.0	30.0			0.50	0.58		ĺ
											ĺ
											ĺ
											ĺ

	Risultati										
τ_{lim}	Qsi	Qsi Nq Nc qb Qbm									
(kPa)	(kN)	(-)	(-)	(kPa)	(kN)						
100.0	0										
	1790										
	1514	8.63	0.00	3943.2	1114.9						
7											

▼ 177

(kN)

q_{b_lim} 4000 (kPa)

(n.b.: lo spessore degli strati è computato dalla quota di intradosso del plinto)

CAPACITA' PORTANTE MEDIA

CAPACITA' PORTANTE DI PROGETTO

Peso palo

alla base 1114.9 (kN) $Q_d = Q_{bm}/(\xi \cdot \gamma b) + Q_{lm}/(\xi \cdot \gamma s)$ Qd = 4418 (kN) laterale 3303.6 (kN)

4418.5 (kN) totale

	Ed	R_d	Fs		D
	(kN)	(kN)	(-)		$\frac{R_d}{2} \ge 1$
SLU - Approccio 2: A1+M1+R3	1812	2386	1.32	ok	E_d
SLV - EQK+M1+R3_sisma	986	2386	2.42	ok	
	N _{SLE/SLD}	R _{c,cal,lat}	Fs]	
	(kN)	(kN)	(-)		
SLE	604	3304	5.47	ok	$R_{c,callat} / 1.25 > N_{SLE/SLD}$

VERIFICA A TRAZIONE DEL PALO

N_d [Combinazione di carico - Statica SLU_A1] -1118 N_d [Combinazione di carico - Statica SLU_A2]
N_d [Combinazione di carico - SLV_Sismica]
-343

	E _d	R _d	Fs	
	(kN)	(kN)	(-)	
SLU - Approccio 2: A1+M1+R3	-941	-1705	1.81	ol

SLV - EQK+M1+R3_sisma -166 -1705 10.25 ok

SOVRAPP. PEDONALE STAZIONE VIGNA DI VALLE IV04 - PASSERELLA PEDONALE - Vigna di Valle PILE – Relazione di calcolo

COMMESSA LOTTO CODIFICA DOCUMENTO REV. FOGLIO

NR1J 00 D 29 CL IV0405 101 A 103 di 113

Si considera un fattore Eg di riduzione della capacità portante per della palificata rispetto al palo singolo, valutato secondo la formula di Converse – Labarre:

$$E_g = 1 - \frac{\theta(n-1)m + (m-1)n}{90 \ mn} \tag{15.68}$$

where m = number of columns of piles in a group,

n = number of rows,

 $\theta = \tan^{-1}(d/s)$ in degrees,

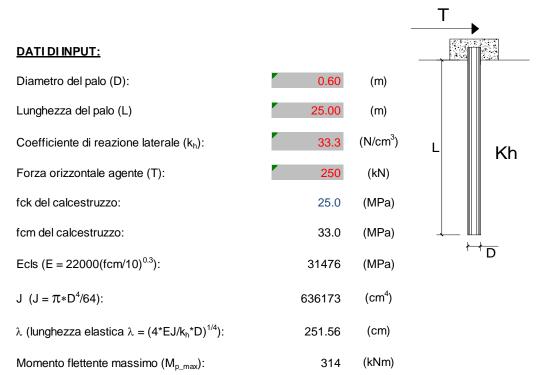
d = diameter of pile,

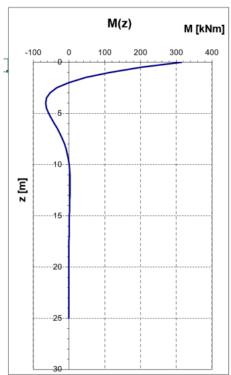
s =spacing of piles center to center.

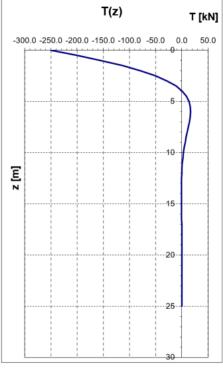
m	2	
n	3	
d	0.6	m
S	1.54	m
θ	21.3	0
Eg	0.84	

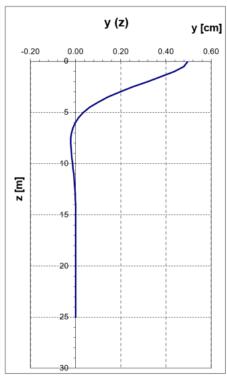
Il minimo fattore di sicurezza della capacità portante del singolo palo si deve quindi ridurre come :

La verifica è soddisfatta.



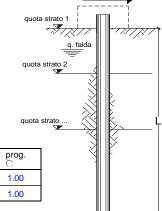

SOVRAPP. PEDONALE STAZIONE VIGNA DI VALLE IV04 - PASSERELLA PEDONALE - Vigna di Valle PILE – Relazione di calcolo


 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO


 NR1J
 00 D 29
 CL
 IV0405 101
 A
 104 di 113

PALI IMPEDITI DI RUOTARE IN TESTA SOGGETTI A FORZE ORIZZONTALI

SOVRAPP. PEDONALE STAZIONE VIGNA DI VALLE IV04 - PASSERELLA PEDONALE - Vigna di Valle PILE – Relazione di calcolo


 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 NR1J
 00 D 29
 CL
 IV0405 101
 A
 105 di 113

CARICO LIMITE ORIZZONTALE DI UN PALO IN TERRENI INCOERENTI

PALI CON ROTAZIONE IN TESTA IMPEDITA

	coefficienti parziali		Α	١ -	M	M		
	Metodo di calcolo		permanenti γ _G	variabili ^γ α	$\gamma_{\phi'}$	Ϋ́cu	γт	
	A1+M1+R1	0	1.30	1.50	1.00	1.00	1.00	
SLU	A2+M1+R2	0	1.00	1.30	1.00	1.00	1.60	
SI	A1+M1+R3	0	1.30	1.50	1.00	1.00	1.30	
	SISMA	•	1.00	1.00	1.00	1.00	1.30	
DM88		0	1.00	1.00	1.00	1.00	1.00	
definiti d	lal progettista	0	1.30	1.50	1.25	1.40	1.00	

n	1	2	3	4 •	5 O	7	≥10 ○	T.A.	prog.
ξ3	1.70	1.65	1.60	1.55	1.50	1.45	1.40	1.00	1.00
ξ4	1.70	1.55	1.48	1.42	1.34	1.28	1.21	1.00	1.00

									D		
						Parametri me	edi	Pa	Parametri minimi		
strati terreno	descrizione	quote	γ	γ'	φ	k _p	Cu	φ	k _p	Cu	
		(m)	(kN/m ³)	(kN/m ³)	(°)		(kPa)	(°)		(kPa)	
p.c.=strato 1		0.0	17	7	26	2.56		26	2.56		
☑ strato 2		-2.0	17	7	32	3.25		32	3.25		
✓ strato 3		-18.0	17	7	30	3.00		30	3.00		
☐ strato 4						1.00			1.00		
☐ strato 5						1.00			1.00		
☐ strato 6						1.00			1.00		

 Quota falda
 -35.0 (m)

 Diametro del palo D
 0.60 (m)

 Lunghezza del palo L
 23.00 (m)

 Momento di plasticizzazione palo My
 799 (kNm)

 Step di calcolo
 0.01 (m)

palo impedito di ruotare
 palo libero

Calcolo (ctrl+r)

	<u>H</u>	medio_			<u>H :</u>	minimo		
Palo lungo		630.1	(kN)			630.1	(kN)	
Palo intermedio		6731.3	(kN)			6731.3	(kN)	
Palo corto		25500.7	(kN)			25500.7	(kN)	
	H_{med}	630.1	(kN)	Palo lungo	H_{\min}	630.1	(kN)	Palo lungo
	H _k =	Min(H _{med}	/ξ₃ ; R _{mi}	_n /ξ ₄)	406	(1	kN)	
	н	$_{\rm d}$ = $H_{\rm k}/\gamma_{\rm T}$			313	(kN)	
	Carico Trasv	ersale (Fd):	Fd =	250	(1	kN)	

SOVRAPP. PEDONALE STAZIONE VIGNA DI VALLE IV04 - PASSERELLA PEDONALE - Vigna di Valle PILE – Relazione di calcolo

 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 NR1J
 00 D 29
 CL
 IV0405 101
 A
 106 di 113

CALCOLO DEL PALO SINGOLO E DELLA PALIFICATA

OPERA:

DATI DI INPUT:

Diametro del Palo (D):

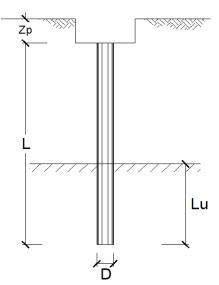
Carico sul palo (P):

Lunghezza del Palo (L):

Lunghezza Utile del Palo (Lu):

Peso del Palo (P_{palo}):

Carico base palo (P_{base}):


Modulo di Deformazione (E):

Numero di pali della Palificata (n):

Spaziatura dei pali (s)

Fine costr. SLE-QP							
0.60	(m)						
242	(kN) (m) (m) (kN)						
25.0	(m)						
25.0	(m)						
25.0 25.0 177	(kN)						
419	(kN)						
47.3	(MPa)						
8	(-)						
1.54	(-) (m)						

CEDIMENTO DEL PALO SINGOLO:

δ = β * P / E * Lutile

Coefficiente di forma

 $\beta = 0.5 + \text{Log(Lutile / D)}$:

Cedimento del palo

 $\delta = \beta * P / E * Lutile$

SLE	-QP
2.12	(-)
0.8	(mm)

SLE-	RAR
2.12	(-)
1.1	(mm)

 $\Delta \delta$ = 0.3 (mm)

(mm)

 $\Delta \delta_{p} =$

CEDIMENTO DELLA PALIFICATA:

 $\delta p = Rs * \delta = n *Rg * \delta$

Coefficiente di Gruppo

$$Rg = 0.5 / R + 0.13 / R^2$$

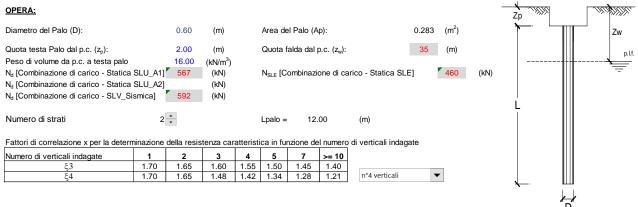
Cedimento della palificata

$$R = (n * s / L)^{0,5}$$

 $\delta p = n * Rg * \delta =$

SOVRAPP. PEDONALE STAZIONE VIGNA DI VALLE IV04 - PASSERELLA PEDONALE - Vigna di Valle PILE – Relazione di calcolo

COMMESSA CODIFICA DOCUMENTO FOGLIO LOTTO RFV NR1J 00 D 29 CL IV0405 101 Α 107 di 113


19.2 PALI DELLA PILA 1

Sono presenti 4 pali ø600 aventi lunghezza pari a 12m. Si adottano i seguenti parametri geotecnici:

Modello 9

Dalla pk 38+000 alla pk 39+497									
Descrizione	z iniz (m)	z fin (m)	spessore (m)	Peso di volume (kN/m³)	Tipo di terreno	Angolo di resistenza al taglio ф' (°)	C' (kPa)	Modulo elastico Eop (MPa)	K media (m/s)
Terreno vegetale sabbioso limoso con frammenti antropici	0	1	1	-	-	-	-	-	-
Limo sabbioso debolemente argilloso	1	3	2	17	GF	26	5	20	-
Sabbia limosa mediamnete addensata con presenza di ghiaia	3	19	16	17	GG	32	0	50	-
Sabbia debolemnete limosa con rarai clasti di litici vulcanici	19	30	11	17	GG	30	0	50	1,71*10-2

CALCOLO DELLA CAPACITA' PORTANTE DI UN PALO TRIVELLATO DI GRANDE DIAMETRO

CARATTERISTICHE GEOTECNICHE DEL TERRENO:

Strata	Spess		Par	Parametri del terreno				Coefficienti di Calcolo			
Strato	opess	Tipo di terreno	γ	c'	φ'	Cu	N _{SPT}	k	μ	а	α
(-)	(m)		(kN/m ³)	(kPa)	(°)	(kPa)	(-)	(-)	(-)	(-)	(-)
1	2.0	Limo sabbioso debolmente argilloso	17.00	5.0	26.0	5.0		0.56	0.49		
2	10.0	Sabbia limosa med addensata con presenza di ghiaia	17.00	0.0	32.0			0.47	0.62		

Risultati				
Qsi	Nq	Nc	qb	Qbm
(kN)	(-)	(-)	(kPa)	(kN)
0				
836	11.65	0.00	2749.3	777.4
	(kN) 0	Qsi Nq (kN) (-) 0	Qsi Nq Nc (kN) (-) (-) 0	Qsi Nq Nc qb (kN) (-) (-) (kPa) 0 <t< td=""></t<>

Q_{b_lim} 4000 (kPa)

CAPACITA' PORTANTE MEDIA

CAPACITA'	PORTANTE	DI PROGET
-----------	----------	-----------

alla base 777.4 (kN) $Q_{\rm d} = Q_{\rm bm}/(\xi\!\cdot\!\gamma b) + Q_{\rm im}/(\xi\!\cdot\!\gamma s)$ 1613 (kN) Qd = laterale 836.1 (kN) 1613.4 (kN) totale

	Ed	R _d	Fs	7
	(kN)	(kN)	(-)	7
SLU - Approccio 2: A1+M1+R3	682	841	1.23	OŁ
SLV - EQK+M1+R3_sisma	677	841	1.24	ok

	002	0	0		
				_	
na	677	841	1.24	ok	
				-	

	N _{SLE/SLD}	R _{c,cal,lat}	Fs	
	(kN)	(kN)	(-)	ı
SLE	545	836	1.53	lc

 $R_{c,cal,lat} / 1.25 > N_{SLE/SLD}$

Peso palo

SOVRAPP. PEDONALE STAZIONE VIGNA DI VALLE IV04 - PASSERELLA PEDONALE - Vigna di Valle PILE – Relazione di calcolo

COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
NR1J	00 D 29	CL	IV0405 101	Α	108 di 113

Si considera un fattore Eg di riduzione della capacità portante per della palificata rispetto al palo singolo valutato secondo la formula di Converse – Labarre:

$$E_g = 1 - \frac{\theta(n-1)m + (m-1)n}{90 \ mn} \tag{15.68}$$

where m = number of columns of piles in a group,

n = number of rows,

 $\theta = \tan^{-1}(d/s)$ in degrees,

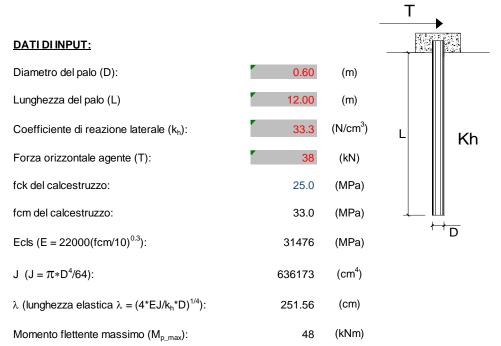
d = diameter of pile,

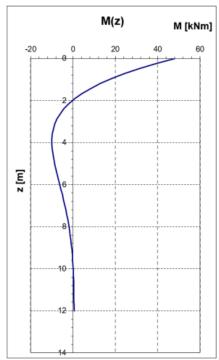
s =spacing of piles center to center.

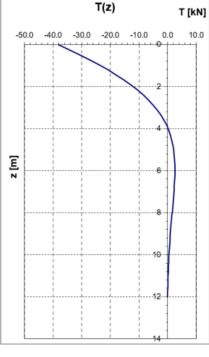
m	2	
n	2	
d	0.6	m
S	2.4	m
θ	14.0	0
Eg	0.92	

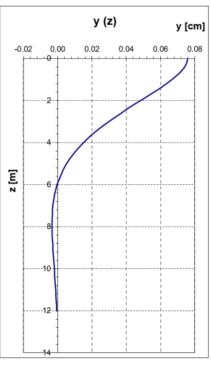
Il minimo fattore di sicurezza della capacità portante del singolo palo si deve quindi ridurre come :

La verifica è soddisfatta.




SOVRAPP. PEDONALE STAZIONE VIGNA DI VALLE IV04 - PASSERELLA PEDONALE - Vigna di Valle PILE – Relazione di calcolo


 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

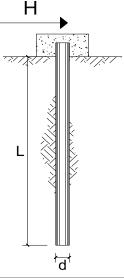

 NR1J
 00 D 29
 CL
 IV0405 101
 A
 109 di 113

PALI IMPEDITI DI RUOTARE IN TESTA SOGGETTI A FORZE ORIZZONTALI

SOVRAPP. PEDONALE STAZIONE VIGNA DI VALLE IV04 - PASSERELLA PEDONALE - Vigna di Valle PILE - Relazione di calcolo

COMMESSA CODIFICA DOCUMENTO REV. FOGLIO LOTTO NR1J 00 D 29 CL IV0405 101 Α 110 di 113

CARICO LIMITE ORIZZONTALE DI UN PALO IN TERRENI INCOERENTI


PALI CON ROTAZIONE IN TESTA IMPEDITA

OPERA:

TEORIA DI BASE:

(Broms, 1964)

CC	pefficienti parz	iali	Α		M	R
	Metodo di calcolo		permanenti	variabili	$\gamma_{\omega'}$	γ_{T}
			γg	γα	7φ	/ 1
	A1+M1+R1	0	1.30	1.50	1.00	1.00
SLU	A2+M1+R2	0	1.00	1.30	1.00	1.60
S	A1+M1+R3	0	1.30	1.50	1.00	1.30
	SISMA	•	1.00	1.00	1.00	1.30
DM88	· ·	0	1.00	1.00	1.00	1.00
definiti dal progettista		1.30	1.50	1.25	1.00	

n	1 0	2	3 •	4	5 O	7	≥10 ○	T.A.	prog.
ξ ₃	1.70	1.65	1.60	1.55	1.50	1.45	1.40	1.00	1.00
ξ ₄	1.70	1.55	1.48	1.42	1.34	1.28	1.21	1.00	1.00

$$\label{eq:Halocorto:Halo$$

Palo intermedio:
$$H = \frac{1}{2} k_p \gamma d^3 \left(\frac{L}{d} \right)^2 + \frac{M_y}{L}$$

$$\begin{aligned} & \underline{\textit{Palo intermedio:}} & & H = \frac{1}{2} \, k_p \gamma d^3 \bigg(\frac{L}{d} \bigg)^2 + \frac{M_y}{L} \\ & \\ & \underline{\textit{Palo lungo:}} & & H = k_p \gamma d^3 \sqrt[3]{3.676 \, \frac{M_y}{k_p \gamma d^4}} \bigg)^2 \end{aligned}$$

DATI DI INPUT:

Lunghezza del palo	L =	12.00	(m)			
Diametro del palo	d =	0.60	(m)			
Momento di plasticizzazione della sezione	My =	288.31	(kN m)			_
Angolo di attrito del terreno	$\phi'_{\text{med}} =$	26.00	(°)	$\phi'_{min} =$	26.00	(°)
Angolo di attrito di calcolo del terreno	$\phi'_{\text{med,d}} =$	26.00	(°)	$\phi'_{min,d} =$	26.00	(°)
Coeff. di spinta passiva (kp = $(1+\sin\varphi')/(1-\sin\varphi')$)	kp _{med} =	2.56	(-)	$kp_{min} =$	2.56	(-)
Peso di unità di volume (con falda $\gamma = \gamma'$)	$\gamma =$	17.00	(kN/m³)			
Carico Assiale Permanente (G):	G =	38	(kN)			

SOVRAPP. PEDONALE STAZIONE VIGNA DI VALLE IV04 - PASSERELLA PEDONALE - Vigna di Valle PILE – Relazione di calcolo

NR1.I	00 D 29	CI	IV0405 101	Δ	111 di 113	
COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO	

Palo corto:

H1_{med}= 5642.55 (kN) H1_{min}= 5642.55 (kN)

Palo intermedio:

 $H2_{med}$ = 1904.88 (kN) $H2_{min}$ = 1904.88 (kN)

Palo lungo:

 $H3_{med} = 308.43$ (kN) $H3_{min} = 308.43$ (kN)

 $H_{med} = 308.43$ (kN) palo lungo $H_{min} = 308.43$ (kN) palo lungo

 $H_k = Min(H_{med}/\xi_3; R_{min}/\xi_4) = 192.77$ (kN)

 $H_d = H_k / \gamma_T = 148.29$ (kN)

 $F_d = G \cdot \gamma_G + Q \cdot \gamma_Q = 38.00$ (kN)

FS = Hd/Fd = 3.90

SOVRAPP. PEDONALE STAZIONE VIGNA DI VALLE IV04 - PASSERELLA PEDONALE - Vigna di Valle PILE – Relazione di calcolo

 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 NR1J
 00 D 29
 CL
 IV0405 101
 A
 112 di 113

CALCOLO DEL PALO SINGOLO E DELLA PALIFICATA

OPERA:

DATI DI INPUT:

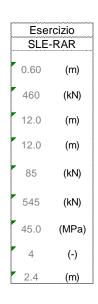
Diametro del Palo (D):

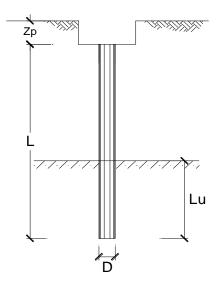
Carico sul palo (P):

Lunghezza del Palo (L):

Lunghezza Utile del Palo (Lu):

Peso del Palo (Ppalo):


Carico base palo (P_{base}):


Modulo di Deformazione (E):

Numero di pali della Palificata (n):

Spaziatura dei pali (s)

	costr.
SLE	-QP
0.60	(m)
320	(kN)
12.0	(m)
12.0	(m)
85	(kN)
405	(kN)
45.0	(MPa)
4	(-)
2.4	(m)

(mm)

(mm)

CEDIMENTO DEL PALO SINGOLO:

δ = β * P / E * Lutile

Coefficiente di forma

 $\beta = 0.5 + \text{Log(Lutile / D)}$:

Cedimento del palo

 $\delta = \beta * P / E * Lutile$

SLE-QP		
1.80	(-)	
1.4	(mm)	

SLE-	RAR	
1.80	(-)	
1.8	(mm)	$\Delta\delta$ =

CEDIMENTO DELLA PALIFICATA:

 δp = Rs * δ = n *Rg * δ

Coefficiente di Gruppo

 $Rg = 0.5 / R + 0.13 / R^{2}$

3 -7-- -7 --

 $R = (n * s / L)^{0.5}$ Cedimento della palificata

 $\delta p = n * Rg * \delta =$

R

 $\Delta \delta_p =$

SOVRAPP. PEDONALE STAZIONE VIGNA DI VALLE IV04 - PASSERELLA PEDONALE - Vigna di Valle PILE – Relazione di calcolo

 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 NR1J
 00 D 29
 CL
 IV0405 101
 A
 113 di 113

20 INCIDENZA ARMATURA

20.1 Pila 1

Incidenza pali (ø600, L=12m)	175 kg/m3
Incidenza plinto di fondazione	130 kg/m3
Incidenza fusto in elevazione	165 kg/m3

20.2 Pile 2 e 3

Incidenza pali (ø600, L=25m)	300 kg/m3
Incidenza plinto di fondazione	140 kg/m3
Incidenza fusto in elevazione	185 kg/m3