COMMITTENTE:

PROGETTAZIONE:

DIREZIONE TECNICA

U.O. INFRASTRUTTURE CENTRO

PROGETTO DEFINITIVO

RADDOPPIO LINEA FERROVIARIA ROMA-VITERBO TRATTA CESANO-VIGNA DI VALLE

SOVRAPPASSO PEDONALE STAZIONE VIGNA DI VALLE IV04 - RAMPA1 D'ACCESSO ALLA PASSERELLA - Vigna di Valle

Impalcato – Relazione di calcolo

							SCALA:	
							-	
0014145004	LOTTO FACE	ENTE	TIDO DOO	ODED A /DIOCIDI INIA	DDOOD	חרי	1	

COMMESSA LOTTO FASE ENTE TIPO DOC. OPERA/DISCIPLINA PROGR. REV.

NR 1 J 0 0 D 2 9 C L I V 0 4 0 7 2 0 1 A

Rev.	Descrizione	Redatto	Data	Verificato	Data	Approvato	Data	Autorizzato Data
۸	Emissione esecutiva	G. Usai	11.2019	G. Passaro	11.2019	T. Paoletti	11.2019	
Α	Emissione esecutiva	Que de la	11.2019	М	11.2019	<i>/</i> >	11.2019	F. Arduini 11.2019
				y		14		11.2019
								ITAL PEND S a A
								ITALFERIT S.p.A. Direzione Tecnica Infrastrutture Centro
								Dott. Ing. Eablizio Arduini Ordine degli Ingegneri della Provincia di Roma nº 16392 dot. A
								N. 16305 401 V
								9

File: NR1J00D29CLIV0407201A.DOC		n. Elab.:	140.11
---------------------------------	--	-----------	--------

IV04 - PASSERELLA PEDONALE - Vigna di Valle IV04 - RAMPA1 D'ACCESSO ALLA PASSERELLA -Vigna di Valle Impalcato – Relazione di calcolo

 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 NR1J
 00 D 29
 CL
 IV0407 201
 A
 2 di 55

INDICE

1	PREMESSA	5
2	NORMATIVE DI RIFERIMENTO	10
3	UNITÀ DI MISURA E SIMBOLOGIA	11
4	CARATTERISTICHE DEI MATERIALI	12
4.1	CALCESTRUZZO PER SOLETTA	12
4.2	ACCIAIO PER C.A.	12
4.3	ACCIAIO PER CARPENTERIA METALLICA	13
5	ANALISI DEI CARICHI	14
5.1	Pesi propri strutturali (g1)	14
5.2	SOVRACCARICHI PERMANENTI PORTATI (G2)	15
5.3	SOVRACCARICHI ACCIDENTALI (Q1)	15
5.4	AZIONE DEL VENTO (Q5)	16
5.5	RITIRO (ε2)	16
5.6	Variazione termica uniforme (ε3_TU)	16
5.7	VARIAZIONE TERMICA NON UNIFORME (ε3_DT)	16
5.8	AZIONE SISMICA (Q6)	17
6	MODELLO DI CALCOLO E.F	22
6.1	ASSEGNAZIONE DEI VINCOLI ESTERNI	24
	6.1.1 Travi principali	25
	6.1.2 Trasversi di appoggio	26
	6.1.3 Trasversi correnti	26
	6.1.4 Controventi	27
7	ANALISI MODALE	28

IV04 - PASSERELLA PEDONALE - Vigna di Valle IV04 - RAMPA1 D'ACCESSO ALLA PASSERELLA -Vigna di Valle Impalcato – Relazione di calcolo

 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 NR1J
 00 D 29
 CL
 IV0407 201
 A
 3 di 55

7.1	MASSE SIMICHE	28
7.2	COMBINAZIONE DELLE MASSE	28
7.3	FORME MODALI PRINCIPALI	28
7.4	FATTORI DI PARTECIPAZIONE MODALE DELLE MASSE	29
7.5	LIMITAZIONE DELLE VIBRAZIONI (AI SENSI DI C5.1.8.1 DI NTC2018)	30
8	ANALISI DELLE SOLLECITAZIONI ELEMENTARI	31
8.1	Travi principali	31
	8.1.1 Carico g1	31
	8.1.2 Carico g2	31
	8.1.3 Carico q_C1+C2+C3 (folla presente sulle 3 campate)	32
	8.1.4 Carico q_C1+C3 (folla presente sulle campate C1 e C3)	32
	8.1.5 Carico q_C2 (folla presente sulla campata C2 di destra)	32
	8.1.6 Azione q5	33
9	COEFFICIENTI DI COMBINAZIONE DELLE AZIONI	34
10	SOLLECITAZIONI DI CALCOLO	37
10.1	1 COMBINAZIONE ENVE_SLE	37
10.2	2 COMBINAZIONE ENVE_SLU	37
10.3	3 COMBINAZIONE ENVE_SLV	37
11	SLE - VERIFICHE STRUTTURALI DELLE TENSIONI NORMALI	38
11.1	1 TRAVI PRINCIPALI	38
	11.1.1 Sezione di appoggio su P1 (momento negativo)	38
	11.1.2 Sezione di campata C2 (momento positivo)	39
	11.1.3 Sezione di appoggio su P2 (momento negativo)	40
11.2	2 Trasversi correnti	41
	11.2.1 Sezione di estremità (momento negativo)	41
	11.2.2 Sezione di campata (momento positivo)	42

IV04 - PASSERELLA PEDONALE - Vigna di Valle IV04 - RAMPA1 D'ACCESSO ALLA PASSERELLA -Vigna di Valle Impalcato – Relazione di calcolo

COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
NR1J	00 D 29	CL	IV0407 201	Α	4 di 55

11.3	TRASVERSI DI APPOGGIO	43
	11.3.1 Sezione di estremità (momento negativo)	43
	11.3.2 Sezione di campata (momento positivo)	44
12	SLU - VERIFICHE STRUTTURALI DI RESISTENZA	45
12.1	TRAVI PRINCIPALI	46
12.2	Trasversi	48
13	APPOGGI E GIUNTI	50
13.1	REAZIONI ELEMENTARI	50
13.2	SCARICHI SUGLI APPOGGI	52
13.3	SPOSTAMENTI ELEMENTARI	53
11	EDECCE E CONTROMONTE	EA

IV04 - PASSERELLA PEDONALE - Vigna di Valle IV04 - RAMPA1 D'ACCESSO ALLA PASSERELLA -Vigna di Valle Impalcato – Relazione di calcolo

COMMESSA LOTTO CODIFICA DOCUMENTO REV. FOGLIO

NR1J 00 D 29 CL IV0407 201 A 5 di 55

1 PREMESSA

Il progetto di raddoppio della tratta Cesano – Vigna di Valle, sulla linea ferroviaria Roma – Viterbo, costituisce la prima fase funzionale del più esteso intervento di raddoppio tra Cesano e Bracciano, previsto dal recente Accordo Quadro tra Regione Lazio e RFI del 22/02/2018.

Figura 1 – Stazione Vigna di Valle – Stralcio planimetrico

Relativamente alla nuova stazione di Vigna di Valle si prevede la realizzazione di una passerella pedonale di scavalco della linea ferroviaria. L'accesso a tale passerella sarà possibile mediante due rampe situate in adiacenza; l'impalcato di tali rampe è oggetto della presente relazione strutturale.

IV04 - PASSERELLA PEDONALE - Vigna di Valle IV04 - RAMPA1 D'ACCESSO ALLA PASSERELLA -Vigna di Valle Impalcato – Relazione di calcolo

COMMESSA LOTTO CODIFICA DOCUMENTO REV. FOGLIO

NR1J 00 D 29 CL IV0407 201 A 6 di 55

1.1 DESCRIZIONE DELLA STRUTTURA

Si riportano a seguire delle immagini che illustrano lo scavalco della linea ferroviaria mediante la passerella pedonale e rampe in adiacenza lato strada.

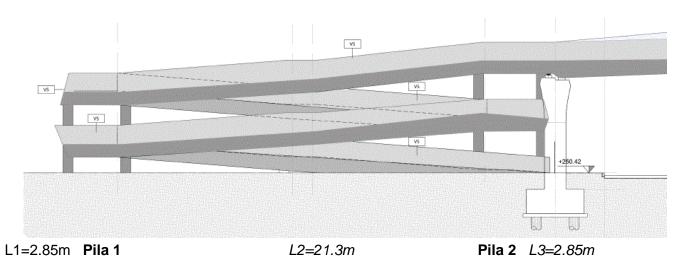


Figura 2 – Stazione Vigna di Valle – Sezione longitudinale attraversamento

L'impalcato tipologico di ogni rampa presenta schema statico di trave su due appoggi e sbalzi laterali simmetrici, con luci di 2.85m+21.3m+2.85m ed è realizzato in carpenteria metallica con soletta gettata in opera su lamiera grecata. Sono presenti due travi principali costituite da profili commerciali (HEB1000) poste ad interasse di 3.24m, costituite da conci solidarizzati tra loro in fase di montaggio.

I trasversi intradossati che collegano le due travi principali sono realizzati in carpenteria metallica e posti ad un interasse variabile tra 2m (in prossimità di un appoggio) e 3m (in mezzeria di campata); in particolare saranno impiegati profili commerciali HEB260 per i trasversi di appoggio e profili HEA220 per i trasversi correnti.

I controventi di piano inferiore sono costituiti da profili commerciali L80x80x8 disposti a croce in ogni campo compreso tra due trasversi adiacenti.

Le travi principali sono costituite ognuna da tre conci, di lunghezza pari a 8.2m, 10.5m e 8.2m, solidarizzati in opera mediante unioni bullonate a completo ripristino.

La soletta è gettata in opera su lamiera grecata HI-BOND (A55/P600, sp=0.7mm), tessuta parallelamente alle travi principali e continua su tre o più trasversi consecutivi. Lo spessore complessivo della soletta è 9cm. Da un punto di vista strutturale, la soletta non è collegata rigidamente alla carpenteria metallica dell'impalcato.

IV04 - PASSERELLA PEDONALE - Vigna di Valle IV04 - RAMPA1 D'ACCESSO ALLA PASSERELLA -Vigna di Valle Impalcato – Relazione di calcolo

COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
NR1J	00 D 29	CL	IV0407 201	Α	7 di 55

All'estradosso della soletta è presente un massetto in c.a. atto a sagomare le pendenze trasversali, pari a ±1% e costante su l'intero sviluppo longitudinale dell'impalcato.

Il piano di calpestio è realizzato mediante una pavimentazione in WPC (*wood polymer composite*), tessuta trasversalmente su un magatello realizzato con profili di alluminio longitudinali aventi spessore 3cm e posti ad interasse di 60cm.

All'interfaccia tra soletta e massetto delle pendenze ed all'estradosso di quest'ultimo saranno posti in opera due strati di impermeabilizzazione, aventi ciascuno spessore pari a 1cm.

Si riportano a seguire delle figure che illustrano la geometria dell'impalcato metallico

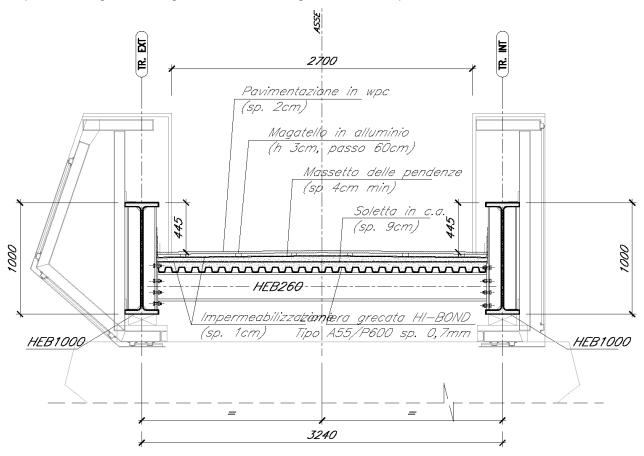


Figura 3 – Sezione trasversale dell'impalcato in asse appoggio [mm]

IV04 - PASSERELLA PEDONALE - Vigna di Valle IV04 - RAMPA1 D'ACCESSO ALLA PASSERELLA -Vigna di Valle Impalcato – Relazione di calcolo

 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 NR1J
 00 D 29
 CL
 IV0407 201
 A
 8 di 55

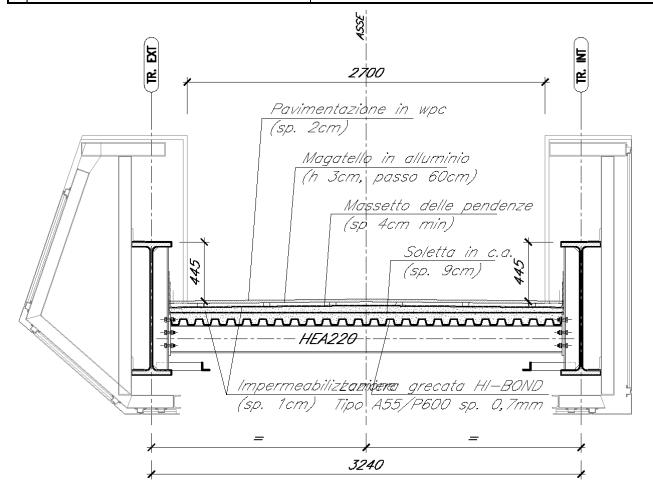


Figura 4 – Sezione trasversale dell'impalcato in adiacenza trasverso corrente [mm]

IV04 - PASSERELLA PEDONALE - Vigna di Valle IV04 - RAMPA1 D'ACCESSO ALLA PASSERELLA -Vigna di Valle Impalcato – Relazione di calcolo

COMMESSA LOTTO CODIFICA DOCUMENTO REV. FOGLIO

NR1J 00 D 29 CL IV0407 201 A 9 di 55

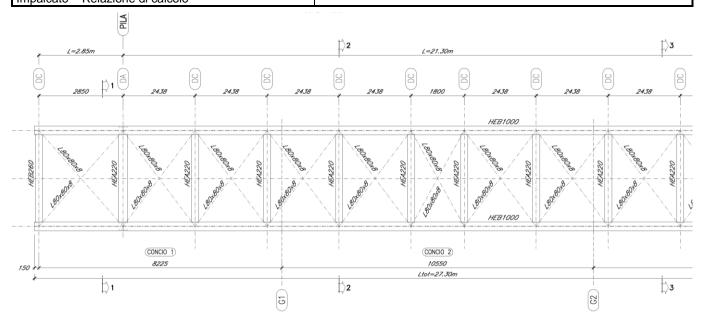


Figura 5 – Pianta impalcato in carpenteria metallica (stralcio) [mm]

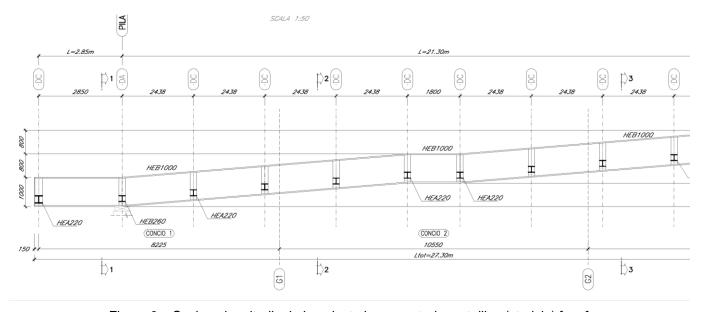


Figura 6 – Sezione longitudinale impalcato in carpenteria metallica (stralcio) [mm]

IV04 - PASSERELLA PEDONALE - Vigna di Valle IV04 - RAMPA1 D'ACCESSO ALLA PASSERELLA -Vigna di Valle Impalcato – Relazione di calcolo

COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
NR1J	00 D 29	CL	IV0407 201	Α	10 di 55

2 NORMATIVE DI RIFERIMENTO

Sono state prese a riferimento le seguenti Normative nazionali ed internazionali vigenti alla data di redazione del presente documento:

- 1. Legge 5 novembre 1971 n. 1086 Norme per la disciplina delle opere di conglomerato cementizio armato normale e precompresso ed a struttura metallica
- 2. Legge 2 febbraio 1974 n. 64 Provvedimenti per le costruzioni con particolari prescrizioni per le zone sismiche
- 3. D.M. 17 gennaio 2018 Norme Tecniche per le Costruzioni
- 4. Circolare 21 gennaio 2019 Istruzioni per l'applicazione dell' "Aggiornamento delle Nuove norme tecniche per le costruzioni" di cui al D.M. 17 gennaio 2018
- 5. Eurocodice 2: Progettazione delle strutture in calcestruzzo Parte 1.1: Regole generali e regole per gli edifici.
- 6. UNI ENV 1992-1-1 Parte 1-1: Regole generali e regole per gli edifici;
- 7. UNI EN 206-1-2016: Calcestruzzo. "Specificazione, prestazione, produzione e conformità".
- 8. RFI DTC SI MA IFS 001 C Manuale di progettazione delle opere civili Parte I
- 9. RFI DTC SI AM MA IFS 001 B Manuale di progettazione delle opere civili Parte II Sezione 1 Ambiente
- 10. RFI DTC SI PS MA IFS 001 C Manuale di progettazione delle opere civili Parte II Sezione 2 Ponti e Strutture
- 11. RFI DTC SI CS MA IFS 001 C Manuale di progettazione delle opere civili Parte II Sezione 3 Corpo Stradale
- 12. RFI DTC SI CS MA IFS 001 C del 21.12.2018 "Capitolato generale tecnico di appalto delle opere civili".
- 13. Regolamento (UE) N. 1299/2014 della Commissione del 18/11/2014 relativo alle specifiche tecniche di interoperabilità per il sottosistema "infrastruttura" del sistema ferroviario dell'Unione Europea.

IV04 - PASSERELLA PEDONALE - Vigna di Valle IV04 - RAMPA1 D'ACCESSO ALLA PASSERELLA -Vigna di Valle Impalcato – Relazione di calcolo

COMMESSA LOTTO CODIFICA DOCUMENTO REV. FOGLIO

NR1J 00 D 29 CL IV0407 201 A 11 di 55

3 UNITÀ DI MISURA E SIMBOLOGIA

Si utilizza il Sistema Internazionale (SI):

unità di misura principali

N(Newton)unità di forzam(metro)unità di lunghezzakg(kilogrammo-massa)unità di massa

unità di misura derivate

(secondo)

kN (kiloNewton) 10^3 N **MN** (megaNewton) 10^6 N

kgf (kilogrammo-forza) 1 kgf = 9.81 N

cm(centimetro) 10^{-2} mmm(millimetro) 10^{-3} mPa(Pascal) 1 N/m^2 kPa(kiloPascal) 10^3 N/m^2 MPa(megaPascal) 10^6 N/m^2

N/m³ (peso specifico)

g (accelerazione di gravità) ~9.81 m/s²

corrispondenze notevoli

 $1 \text{ MPa} = 1 \text{ N/mm}^2$

1 MPa ~ 10 kgf/cm²

 $1 \text{ kN/m}^3 \sim 100 \text{ kgf/m}^3$

Si utilizzano i seguenti principali simboli con le relative unità di misura normalmente adottate:

unità di tempo

 $\begin{array}{lll} \gamma & \text{(gamma)} & \text{peso dell'unità di volume} & \text{(kN/m}^3) \\ & & \text{(sigma)} & \text{tensione normale} & \text{(N/mm}^2) \\ & & \text{tau)} & \text{tensione tangenziale} & \text{(N/mm}^2) \end{array}$

ε (epsilon) deformazione (m/m - adimensionale)

φ (fi) angolo di resistenza (° sessagesimali)

IV04 - PASSERELLA PEDONALE - Vigna di Valle IV04 - RAMPA1 D'ACCESSO ALLA PASSERELLA -Vigna di Valle Impalcato – Relazione di calcolo

 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 NR1J
 00 D 29
 CL
 IV0407 201
 A
 12 di 55

4 CARATTERISTICHE DEI MATERIALI

Si riportano di seguito i materiali previsti per la realizzazione delle strutture, suddivisi per elemento costruttivo.

4.1 Calcestruzzo per soletta

Classe	C32/40	C32/40			
R _{ck} =	40	MPa	resistenza caratteristica cubica		
f _{ck} =	33.2	MPa	resistenza caratteristica cilindrica		
f _{cm} =	41.2	MPa	valor medio resistenza cilindrica		
α _{cc} =	0.85		coeff. rid. per carichi di lunga durata		
үм=	1.5	-	coefficiente parziale di sicurezza SLU		
$f_{cd} =$	18.81	MPa	resistenza di progetto		
f _{ctm} =	3.10	MPa	resistenza media a trazione semplice		
$f_{\text{cfm}} =$	3.72	MPa	resistenza media a trazione per flessione		
f _{ctk} =	2.17	MPa	valore caratteristico resistenza a trazione		
E _{cm} =	33642	MPa	Modulo elastico di progetto		
v =	0.2		Coefficiente di Poisson		
G _c =	14017	MPa	Modulo elastico Tangenziale di progetto		

4.2 Acciaio per c.a.

B450C	B450C					
f _{yk} ≥	450	MPa	tensione caratteristica di snervamento			
f _{tk} ≥	540	MPa	tensione caratteristica di rottura			
$(f_t/f_y)_k \ge$	1.15					
$(f_t/f_y)_k <$	1.35					
γs=	1.15	-	coefficiente parziale di sicurezza SLU			
$f_{yd} =$	391.3	MPa	tensione caratteristica di snervamento			
Es =	200000	MPa	Modulo elastico di progetto			
$\epsilon_{yd} =$	0.196%		deformazione di progetto a snervamento			
$\epsilon_{uk} = (A_{gt})_k$	7.50%		deformazione caratteristica ultima			

IV04 - PASSERELLA PEDONALE - Vigna di Valle IV04 - RAMPA1 D'ACCESSO ALLA PASSERELLA -Vigna di Valle Impalcato – Relazione di calcolo

COMMESSA LOTTO CODIFICA DOCUMENTO REV. FOGLIO

NR1J 00 D 29 CL IV0407 201 A 13 di 55

4.3 Acciaio per carpenteria metallica

S275	S275				
f _{yk}	275	MPa	tensione caratteristica di snervamento per t ≤ 40mm		
f _{yk}	255	MPa	tensione caratteristica di snervamento per t > 40mm		
γ _S =	1.05	-	coefficiente parziale di sicurezza SLU		
$f_{yd} = f_{yk} / \gamma_s$	261.9	MPa	tensione di progetto per t ≤ 40mm		
$f_{yd} = f_{yk} / \gamma_s$	242.8	MPa	tensione di progetto per t > 40mm		
Es	210000	MPa	Modulo elastico		
v =	0.3		Coefficiente di Poisson		
G _c =	80769	MPa	Modulo elastico Tangenziale di progetto		

IV04 - PASSERELLA PEDONALE - Vigna di Valle IV04 - RAMPA1 D'ACCESSO ALLA PASSERELLA -Vigna di Valle Impalcato – Relazione di calcolo

COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
NR1J	00 D 29	CL	IV0407 201	Α	14 di 55

5 ANALISI DEI CARICHI

5.1 Pesi propri strutturali (g1)

Peso proprio acciaio

Il peso proprio strutturale delle travi è stato valutato fornendone le corrette dimensioni (vedi paragr. precedente) e la relativa densità di peso ($\gamma = 78,5$ kN/m³) all'interno del software di calcolo impigato per la realizzazione del modello E.F.

Si riporta a seguire il computo del peso complessivo della carpenteria metallica che costituisce le travi principali, i trasversi ed i controventi di piano:

	Travi prir	ncipali (CM)										
	Htot	L	Ala sup		Anima		Ala inf		Α	V	P	tot
			Bsup	tsup	hw	tw	Binf	tinf				
	mm	mm	mm	mm	mm	mm	mm	mm	mm2	m3	kN	
C1	1000	8225	300	36	928	19	300	36	39232	0.323	25	
C2	1000	10550	300	36	928	19	300	36	39232	0.414	32	
C3	1000	8225	300	36	928	19	300	36	39232	0.323	25	83.2
												kN
	Diaframn	na appoggio										
	Htot	L	Ala sup		Anima		Ala inf		Α	V	P	tot
			Bsup	tsup	hw	tw	Binf	tinf				
	mm	mm	mm	mm	mm	mm	mm	mm	mm2	m3	kN	
HEB260	260	3000	260	17.5	225	10	260	17.5	11350	0.03	2.7	
									0	0.00	0	2.7
												kN
	Diaframn	ni correnti										
	Htot	L	Ala sup		Anima		Ala inf		Α	٧	P	tot
			Bsup	tsup	hw	tw	Binf	tinf				
	mm	mm	mm	mm	mm	mm	mm	mm	mm2	m3	kN	
HEA220	210	3000	220	11	188	7	220	11	6156	0.02	1.450	
									0	0.00	0	1.4
												kN
	Controve	nti										
	num	Sez	Asez	L	Н	В	sp		Α	٧	Р	tot
			mm2	mm	mm	mm	mm		mm2	m3	kN	
inferiori	22	L80X80X8	1230	4000					1230	0.108	8	
									0	0.000	0	8.5
												kN
	num	peso unit.	peso tot.	tot								
		kN	kN									
Travi principali	2	83.2	166.3									
diaframmi app.	2	2.7	5.3									
diaframmi corr.	10	1.4	14.5									
controventi	1	8.5	8.5	194.6								
				kN								

Per tener conto di piastrame vario, controventi e bulloni, il peso di cui sopra è stato incrementato di un fattore pari a **1,1**, pertanto il peso complessivo della carpenteria metallica si assume pari a 214 kN, pari a 7.9 kN/m.

IV04 - PASSERELLA PEDONALE - Vigna di Valle IV04 - RAMPA1 D'ACCESSO ALLA PASSERELLA -Vigna di Valle Impalcato – Relazione di calcolo

COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
NR1J	00 D 29	CL	IV0407 201	Α	15 di 55

Peso proprio soletta

La soletta getta su lamiera grecata presenta uno spessore equivalente pari a 6.8cm, cui corrisponde un peso pari a 1.70 kN/m2.

Tale azione è stata applicata sugli elementi frame che rappresentano i trasversi stessi, moltiplicata per un coefficiente pari all'interasse tra due elementi adiacenti.

Peso proprio lamiera grecata

Il peso della lamiera grecata di tipo HI-BOND A55-P600 (sp. 0.7mm) è a 9.15 kg/m2, pari a 0.092 kN/m2.

Tale azione è stata applicata sugli elementi frame che rappresentano i trasversi stessi, moltiplicata per un coefficiente pari all'interasse tra due elementi adiacenti.

5.2 Sovraccarichi permanenti portati (g2)

Barriere laterali

Si assume un peso a metro lineare pari a **0.5 kN/m** per ogni allineamento longitudinale. Tale azione è stata applicata sugli elementi frame che rappresentano le travi principali.

Carter di finitura

Si assume un peso a metro lineare pari a **1.0 kN/m** per ogni allineamento longitudinale. Tale azione è stata applicata sugli elementi frame che rappresentano le travi principali.

Massetto delle pendenze

Lo spessore minimo del massetto è pari a 4cm e si assume una pendenza trasversale pari a 1%. Lo spessore medio del massetto si assume quindi pari a **1.25 kN/m2**. Tale azione è stata applicata sugli elementi frame che rappresentano i trasversi stessi, moltiplicata per un coefficiente pari all'interasse tra due elementi adiacenti.

Pavimentazione

La pavimentazione è costituita da uno strato di legno WPC (spessore 2cm) poggiato su un magatello in profili di alluminio (h = 3cm) posti ad interasse 60cm. Il peso complessivo della pavimentazione è 25 kg/m2, pari **0.25 kN/m2.** Tale azione è stata applicata sugli elementi frame che rappresentano i trasversi stessi, moltiplicata per un coefficiente pari all'interasse tra due elementi adiacenti.

5.3 Sovraccarichi accidentali (q₁)

Folla compatta

Ai fini del dimensionamento e della verifica delle travi è stata considerata la presenza di folla $\mathbf{q}_1 = \mathbf{5kN/m2}$ su l'impalcato e per una larghezza pari a 2.70m (larghezza calpestabile).

Tale azione è stata applicata sugli elementi frame che rappresentano i trasversi stessi, moltiplicata per un coefficiente pari all'interasse tra due elementi adiacenti.

IV04 - PASSERELLA PEDONALE - Vigna di Valle IV04 - RAMPA1 D'ACCESSO ALLA PASSERELLA -Vigna di Valle Impalcato – Relazione di calcolo

COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
NR1J	00 D 29	CL	IV0407 201	Α	16 di 55

Il carico della folla espresso a metro lineare di impalcato è pari a 5.00 kN/m2 x 2.70 = 13.50 kN/m.

Il carico della folla è stato considerato applicato contemporaneamente o alternativamente sulle tre campate per massimizzare le sollecitazioni nelle varie sezioni di verifica.

5.4 Azione del vento (q5)

Cautelativamente si considera una pressione del vento di 2.5 KN/m2 agente, per l'intero sviluppo longitudinale della passerella, sulla sola trave esposta e considerando un coefficiente di esposizione unitario.

Tale azione viene assegnata alle travi come carico uniformemente distribuito pari a:

h = 3.3 m altezza superficie esposta;

b = 1.2 m distanza tra baricentro superficie esposta e baricentro impalcato;

i = 3.24 m interasse travi principali;

f5 = 2.5 Kn/m2 x 3.3m = 8.25 KN/m forza orizzontale trasversale

Mq5 = 8.25 kN/m x 1,2 m = 9.9 kNm/m momento torcente

q5 = $9.9 \text{ kNm/m} / 3.24 \text{m} = \pm 3.1 \text{ KN/m}$ carico uniforme verticale

5.5 Ritiro (ε2)

Non avendo collegato la soletta in c.a. all'orditura metallica il ritiro della soletta non determina sollecitazioni sulle travi metalliche né sui trasversi.

5.6 Variazione termica uniforme (ε3_TU)

Si considera una variazione termica uniforme pari a ±15°C.

5.7 Variazione termica non uniforme (ε3_DT)

In aggiunta alla variazione termica uniforme, si considera un gradiente di temperatura di 10 °C fra intradosso soletta ed estradosso travi, considerando i due casi possibili: intradosso a temperatura superiore rispetto all'estradosso e intradosso a temperatura inferiore rispetto all'estradosso.

IV04 - PASSERELLA PEDONALE - Vigna di Valle IV04 - RAMPA1 D'ACCESSO ALLA PASSERELLA -Vigna di Valle Impalcato – Relazione di calcolo

COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
NR1J	00 D 29	CL	IV0407 201	Α	17 di 55

5.8 Azione sismica (q6)

Le opere in oggetto sono progettate per una vita nominale VN = 75 anni ed una classe d'uso III a cui corrisponde un coefficiente d'uso CU = 1.5.

L'azione sismica di progetto è definita per lo Stato Limite di Salvaguardia della Vita (SLV). Il periodo di ritorno di quest'ultima - in funzione della vita utile, della classe d'uso, del tipo di costruzione e dello stato limite di riferimento è di 1068 anni.

Dato il valore del periodo di ritorno suddetto, tramite la mappatura messa a disposizione in rete dall'Istituto Nazionale di Geofisica e Vulcanologia (INGV), è possibile definire i valori di ag, F0, T*c.

- ag → accelerazione massima al sito;
- F0 → valore massimo del fattore di amplificazione dello spettro in accelerazione orizzontale;
- T*c → periodo di inizio del tratto a velocità costante dello spettro in accelerazione orizzontale;
- S → coefficiente che comprende l'effetto dell'amplificazione stratigrafica (Ss) e dell'amplificazione topografica (St).

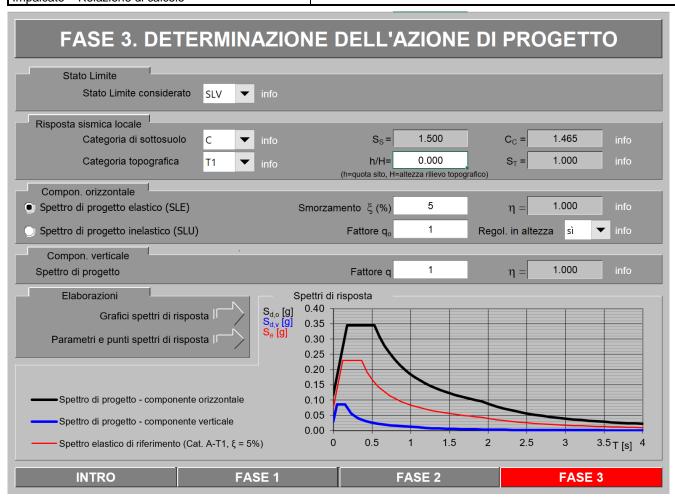
Cautelativamente si assume una categoria di sottosuolo C.

IV04 - PASSERELLA PEDONALE - Vigna di Valle IV04 - RAMPA1 D'ACCESSO ALLA PASSERELLA -

Vigna di Valle

Impalcato - Relazione di calcolo

COMMESSA CODIFICA DOCUMENTO FOGLIO LOTTO REV. NR1J 00 D 29 CL IV0407 201 Α 18 di 55


SLATO LIMITE	T _R [anni]	a _g [g]	F。 [-]	T _C *
SLO	68	0.040	2.670	0.270
SLD	113	0.046	2.699	0.288
SLV	1068	0.077	2.978	0.365
SLC	2193	0.088	3.046	0.405

IV04 - PASSERELLA PEDONALE - Vigna di Valle IV04 - RAMPA1 D'ACCESSO ALLA PASSERELLA -Vigna di Valle Impalcato – Relazione di calcolo

COMMESSA LOTTO CODIFICA DOCUMENTO REV. FOGLIO

NR1J 00 D 29 CL IV0407 201 A 19 di 55

Si adotta un valore del fattore di struttura pari a **q=1**.

IV04 - PASSERELLA PEDONALE - Vigna di Valle IV04 - RAMPA1 D'ACCESSO ALLA PASSERELLA -Vigna di Valle Impalcato – Relazione di calcolo

COMMESSA LOTTO CODIFICA DOCUMENTO REV. FOGLIO

NR1J 00 D 29 CL IV0407 201 A 20 di 55

Parametri e punti dello spettro di risposta orizzontale per lo stato limite: SLV

Parametri indipendenti

i aramour maiponaona				
STATO LIMITE	SLV			
a _a	0.077 g			
F _o	2.978			
T_C^*	0.365 s			
S _S	1.500			
C _C	1.465			
S _T	1.000			
q	1.000			

Parametri dipendenti

 $T_D = 4,0 \cdot a_g / g + 1,6$

S	1.500
η	1.000
T _B	0.178 s
T _C	0.534 s
T _D	1.909 s

Espressioni dei parametri dipendenti

(NTC-08 Eq. 3.2.5)
(NTC-08 Eq. 3.2.6; §. 3.2.3.5)
(NTC-07 Eq. 3.2.8)
(NTC-07 Eq. 3.2.7)

Espressioni dello spettro di risposta (NTC-08 Eq. 3.2.4)

(NTC-07 Eq. 3.2.9)

$$\begin{split} 0 &\leq T < T_B & \quad S_e(T) = a_g \cdot S \cdot \eta \cdot F_o \cdot \left[\frac{T}{T_B} + \frac{1}{\eta \cdot F_o} \left(1 - \frac{T}{T_B} \right) \right] \\ T_B &\leq T < T_C & \quad S_e(T) = a_g \cdot S \cdot \eta \cdot F_o \\ T_C &\leq T < T_D & \quad S_e(T) = a_g \cdot S \cdot \eta \cdot F_o \cdot \left(\frac{T_C}{T} \right) \\ T_D &\leq T & \quad S_e(T) = a_g \cdot S \cdot \eta \cdot F_o \cdot \left(\frac{T_C T_D}{T^2} \right) \end{split}$$

Lo spettro di progetto $S_d(T)$ per le verifiche agli Stati Limite Ultimi è ottenuto dalle espressioni dello spettro elastico $S_e(T)$ sostituendo η con 1/q, dove q è il fattore di struttura. (NTC-08 § 3.2.3.5)

Punti dello spettro di risposta

· uni	T [s]	Se [g]
	0.000	0.116
T _B ◀	0.178	0.345
T _C ←	0.534	0.345
	0.600	0.307
	0.665	0.277
	0.731	0.252
	0.796	0.231
	0.861	0.214
	0.927	0.199
	0.992	0.186
	1.058	0.174
	1.123	0.164
	1.189	0.155
	1.254	0.147
	1.320	0.140
	1.385	0.133
	1.451	0.127
	1.516	0.122
	1.582	0.117
	1.647	0.112
	1.713	0.108
	1.778	0.104
	1.843	0.100
T _D ◀	1.909	0.097
	2.009	0.087
	2.108	0.079
	2.208	0.072
	2.307	0.066
	2.407	0.061
	2.506	0.056
	2.606	0.052
	2.706	0.048
	2.805	0.045
	2.905	0.042
	3.004	0.039
	3.104	0.037
	3.203	0.034
	3.303	0.032
	3.403	0.030
	3.502	0.029
	3.602	0.027
	3.701	0.026
	3.801	0.024
	3.900	0.023
	4.000	0.022

IV04 - PASSERELLA PEDONALE - Vigna di Valle IV04 - RAMPA1 D'ACCESSO ALLA PASSERELLA -Vigna di Valle Impalcato – Relazione di calcolo

COMMESSA LOTTO CODIFICA DOCUMENTO REV. FOGLIO

NR1J 00 D 29 CL IV0407 201 A 21 di 55

Parametri e punti dello spettro di risposta verticale per lo stato limite: SLV

Parametri indipendenti

i arameur muip	- IIuciiu
STATO LIMITE	SLV
a _{ov}	0.029 g
S _S	1.000
S _T	1.000
q	1.000
T _B	0.050 s
T _C	0.150 s
Tn	1.000 s

Parametri dipendenti

F _v	1.117
S	1.000
η	1.000

Espressioni dei parametri dipendenti

$$\mathbf{S} = \mathbf{S}_{\!S} \cdot \mathbf{S}_{T} \tag{NTC-08 Eq. 3.2.5} \label{eq:state}$$

$$\eta = 1/q$$
 (NTC-08 §. 3.2.3.5)

$$F_{\rm v} = 1,35 \cdot F_{\rm o} \cdot \left(\frac{a_{\rm g}}{\rm g}\right)^{0.5}$$
 (NTC-08 Eq. 3.2.11)

Espressioni dello spettro di risposta (NTC-08 Eq. 3.2.10)

$$\begin{split} 0 &\leq T < T_B & S_e(T) = a_g \cdot S \cdot \eta \cdot F_v \cdot \left[\frac{T}{T_B} + \frac{1}{\eta \cdot F_o} \left(1 - \frac{T}{T_B} \right) \right] \\ T_B &\leq T < T_C & S_e(T) = a_g \cdot S \cdot \eta \cdot F_v \\ T_C &\leq T < T_D & S_e(T) = a_g \cdot S \cdot \eta \cdot F_v \cdot \left(\frac{T_C}{T} \right) \\ T_D &\leq T & S_e(T) = a_g \cdot S \cdot \eta \cdot F_v \cdot \left(\frac{T_C T_D}{T^2} \right) \end{split}$$

Punti dello spettro di risposta

Punt	i dello spettr	
	T [s]	Se [g]
	0.000	0.029
T _B ◀	0.050	0.086
T _C ◀	0.150	0.086
	0.235	0.055
	0.320	0.040
	0.405	0.032
	0.490	0.026
	0.575	0.023
	0.660	0.020
	0.745	0.017
	0.830	0.016
	0.915	0.014
T _D ◀	1.000	0.013
	1.094	0.011
	1.188	0.009
	1.281	0.008
	1.375	0.007
	1.469	0.006
	1.563	0.005
	1.656	0.005
	1.750	0.004
	1.844	0.004
	1.938	0.003
	2.031	0.003
	2.125	0.003
	2.219	0.003
	2.313	0.002
	2.406	0.002
	2.500	0.002
	2.594	0.002
	2.688	0.002
	2.781	0.002
	2.875	0.002
	2.969	0.001
	3.063	0.001
	3.156	0.001
	3.250	0.001
	3.344	0.001
	3.438	0.001
	3.531	0.001
	3.625	0.001
	3.719	0.001
	3.813	0.001
	3.906	0.001
	4.000	0.001
	4.000	0.001

FOGLIO

22 di 55

IV04 - PASSERELLA PEDONALE - Vigna di Valle
IV04 - RAMPA1 D'ACCESSO ALLA PASSERELLA Vigna di Valle
Impalcato – Relazione di calcolo

COMMESSA LOTTO CODIFICA DOCUMENTO REV.

NR1J 00 D 29 CL IV0407 201 A

6 MODELLO DI CALCOLO E.F.

E' stato realizzato un modello di calcolo agli E.F. mediante l'ausilio del software "SAP2000 Plus v. 15.1.0", della "Computers and Structures, Inc.", Berkley, CA.

Tale modello E.F. è formato da 24 nodi e 56 elementi frame ai quali sono state assegnate proprietà geometriche, inerziali e meccaniche coerenti con le reali proprietà degli elementi strutturali.

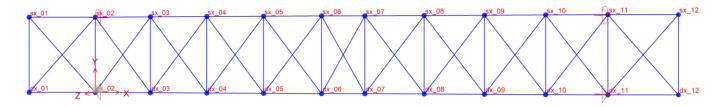


Figura 7 – Modello di calcolo E.F. – Denominazione nodi

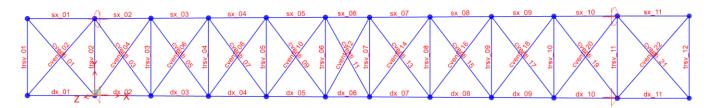


Figura 8 - Modello di calcolo E.F. - Denominazione aste

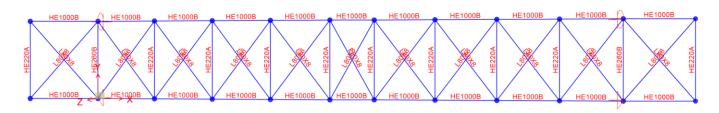


Figura 9 – Modello di calcolo E.F. – Assegnazione delle proprietà di sezione alle aste

IV04 - PASSERELLA PEDONALE - Vigna di Valle IV04 - RAMPA1 D'ACCESSO ALLA PASSERELLA -Vigna di Valle Impalcato – Relazione di calcolo

COMMESSA LOTTO CODIFICA DOCUMENTO REV. FOGLIO

NR1J 00 D 29 CL IV0407 201 A 23 di 55

A seguire si riportano alcune immagini del modello E.F. realizzato per lo svolgimento delle analisi.

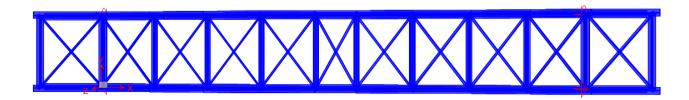


Figura 10 – Modello di calcolo E.F. – Vista in pianta

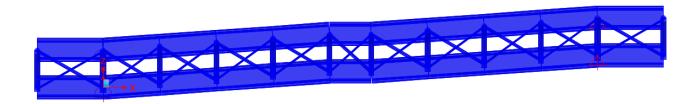


Figura 11 – Modello di calcolo E.F. – Vista isometrica

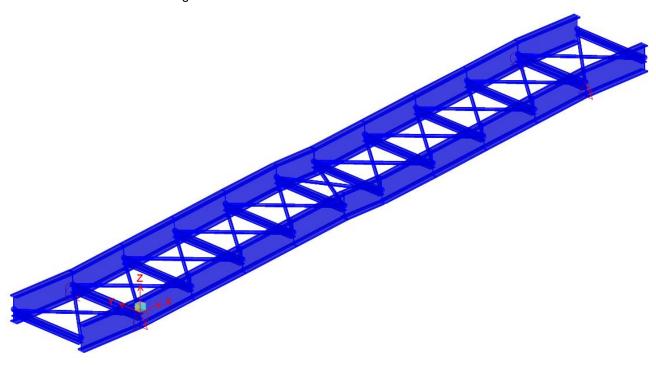


Figura 12 - Modello di calcolo E.F. - Vista prospettica

IV04 - PASSERELLA PEDONALE - Vigna di Valle IV04 - RAMPA1 D'ACCESSO ALLA PASSERELLA -Vigna di Valle Impalcato – Relazione di calcolo

COMMESSA LOTTO CODIFICA DOCUMENTO REV. FOGLIO

NR1J 00 D 29 CL IV0407 201 A 24 di 55

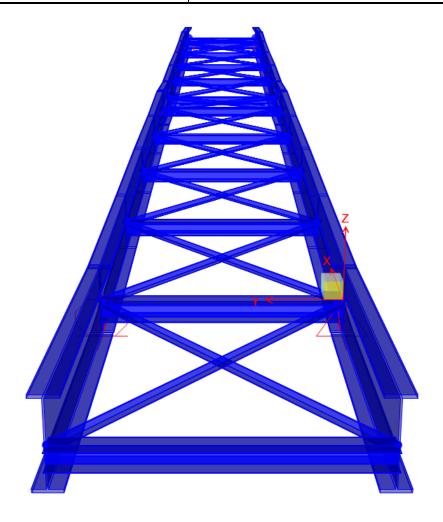


Figura 13 – Modello di calcolo E.F. – Vista prospettica

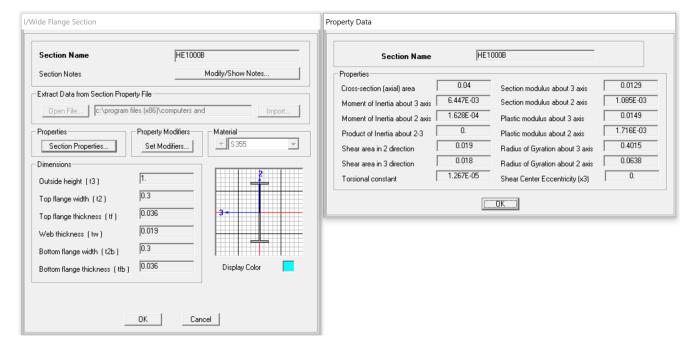
6.1 Assegnazione dei vincoli esterni

sx_11 dx_11

sxZ₀₂

PILA 1 PILA 2

IV04 - PASSERELLA PEDONALE - Vigna di Valle IV04 - RAMPA1 D'ACCESSO ALLA PASSERELLA -Vigna di Valle Impalcato – Relazione di calcolo

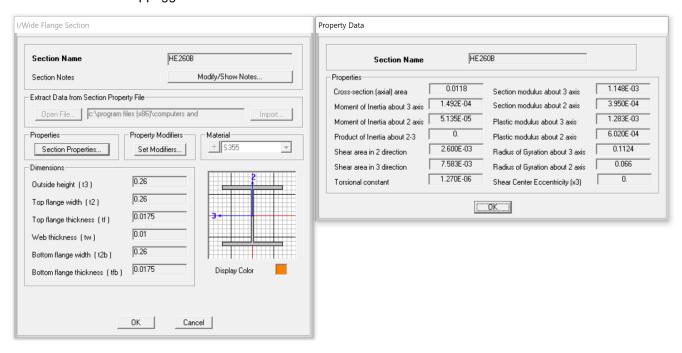

COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
NR1J	00 D 29	CL	IV0407 201	Α	25 di 55

Caratteristiche geometriche ed inerziali delle sezioni assegnate agli elementi frame

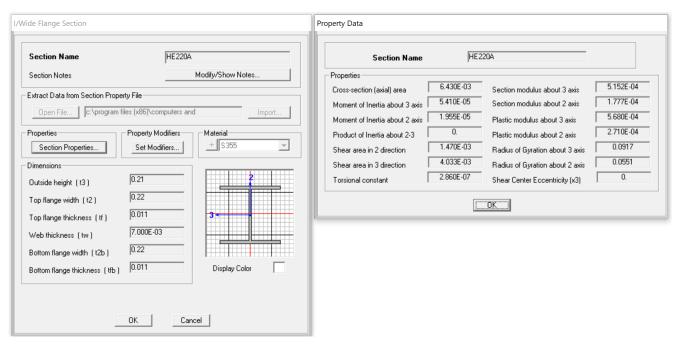
Si definiscono:

- t₃: altezza MEDIA totale della trave;
- t2: larghezza del piatto superiore;
- t_f: spessore del piatto superiore;
- t_{2b}: larghezza del piatto inferiore;
- t_{fb}: spessore del piatto inferiore;
- t_w: spessore dell'anima;
- A: area della sezione in acciaio.
- J₃: momento d'inerzia della trave rispetto all'asse orizzontale 3-3 passante per il suo baricentro.
- J₂: momento d'inerzia della trave rispetto all'asse verticale 2-2 passante per il suo baricentro.
- J_T = rigidezza torsionale.
- A_{t2}: area di taglio in direzione 2;
- At: area di taglio in direzione 3; si assume pari a 5/6 della somma delle aree delle due ali.

6.1.1 Travi principali



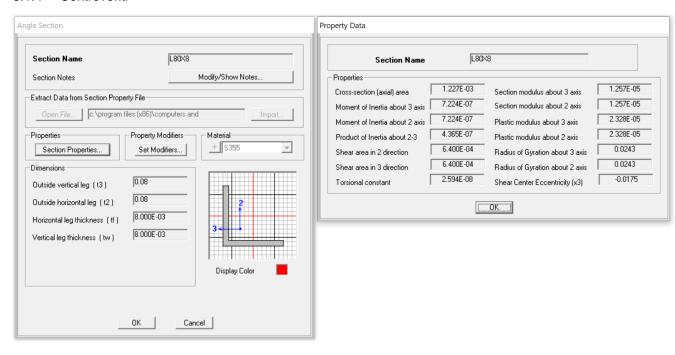
IV04 - PASSERELLA PEDONALE - Vigna di Valle IV04 - RAMPA1 D'ACCESSO ALLA PASSERELLA -Vigna di Valle Impalcato – Relazione di calcolo


 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 NR1J
 00 D 29
 CL
 IV0407 201
 A
 26 di 55

6.1.2 Trasversi di appoggio

6.1.3 Trasversi correnti



IV04 - PASSERELLA PEDONALE - Vigna di Valle IV04 - RAMPA1 D'ACCESSO ALLA PASSERELLA -Vigna di Valle Impalcato – Relazione di calcolo

 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 NR1J
 00 D 29
 CL
 IV0407 201
 A
 27 di 55

6.1.4 Controventi

IV04 - PASSERELLA PEDONALE - Vigna di Valle IV04 - RAMPA1 D'ACCESSO ALLA PASSERELLA -Vigna di Valle Impalcato – Relazione di calcolo

 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 NR1J
 00 D 29
 CL
 IV0407 201
 A
 28 di 55

7 ANALISI MODALE

7.1 Masse simiche

La massa dell'impalcato (pesi propri strutturali g1 + permanenti portati g2) è pari a ca 80 ton, corrispondenti a ca 2.1 ton/m.

7.2 Combinazione delle masse

Sono prese in considerazione le masse associate ai seguenti carichi gravitazionali:

 $g_1 + g_2 + 0.2 q_1$

7.3 Forme modali principali

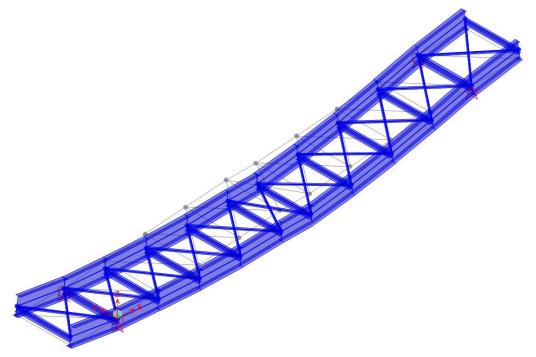


Figura 14 - Modo num. 1, verticale

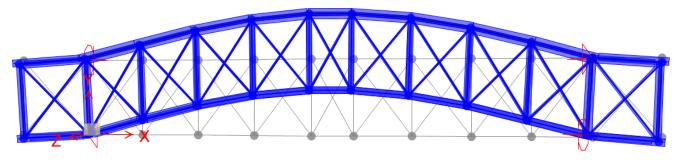


Figura 15 - Modo num. 3, trasversale

IV04 - PASSERELLA PEDONALE - Vigna di Valle IV04 - RAMPA1 D'ACCESSO ALLA PASSERELLA -Vigna di Valle Impalcato – Relazione di calcolo

COMMESSA LOTTO CODIFICA DOCUMENTO REV. FOGLIO

NR1J 00 D 29 CL IV0407 201 A 29 di 55

7.4 Fattori di partecipazione modale delle masse.

Si riportano a seguire i fattori di partecipazione modale relativi ai primi 24 modi indagati.

OutputCase	StepNum	Period	UX	UY	UZ	SumUX	SumUY	SumUZ
Text	Unitless	Sec	Unitless	Unitless	Unitless	Unitless	Unitless	Unitless
MODAL	1	0.289	0%	0%	61%	0%	0%	61%
MODAL	2	0.285	0%	0%	0%	0%	0%	61%
MODAL	3	0.165	1%	66%	0%	1%	66%	61%
MODAL	4	0.079	2%	0%	0%	4%	66%	61%
MODAL	5	0.079	0%	0%	0%	4%	67%	61%
MODAL	6	0.077	10%	0%	0%	14%	67%	61%
MODAL	7	0.072	47%	1%	0%	61%	67%	61%
MODAL	8	0.051	0%	2%	0%	61%	70%	61%
MODAL	9	0.049	4%	18%	0%	66%	87%	61%
MODAL	10	0.044	3%	0%	1%	69%	88%	63%
MODAL	11	0.044	1%	0%	4%	70%	88%	67%
MODAL	12	0.043	14%	3%	0%	84%	91%	67%
MODAL	13	0.038	0%	0%	0%	84%	91%	67%
MODAL	14	0.033	0%	0%	0%	84%	91%	67%
MODAL	15	0.033	0%	0%	0%	84%	91%	67%
MODAL	16	0.031	0%	3%	0%	84%	94%	67%
MODAL	17	0.028	6%	0%	0%	90%	94%	67%
MODAL	18	0.026	0%	0%	26%	90%	94%	93%
MODAL	19	0.026	0%	0%	1%	90%	94%	94%
MODAL	20	0.025	0%	0%	0%	90%	94%	94%
MODAL	21	0.023	0%	1%	0%	90%	94%	94%
MODAL	22	0.019	1%	0%	0%	91%	94%	94%
MODAL	23	0.019	0%	0%	0%	91%	94%	94%
MODAL	24	0.018	0%	0%	0%	91%	94%	94%

Nello svolgimento delle analisi sono stati indagati un numero di modi sufficienti ad eccitare la minima percentuale di massa strutturale richiesta dalla normativa, pari al 90% della massa totale.

IV04 - PASSERELLA PEDONALE - Vigna di Valle IV04 - RAMPA1 D'ACCESSO ALLA PASSERELLA -Vigna di Valle Impalcato – Relazione di calcolo

COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
NR1J	00 D 29	CL	IV0407 201	Α	30 di 55

7.5 Limitazione delle vibrazioni (ai sensi di C5.1.8.1 di NTC2018)

Vibrazioni nei ponti pedonali possono essere indotte da varie cause quali, per esempio, vento o persone singole o in gruppo che camminano, corrono, saltano o danzano sul ponte.

Si può considerare che una persona che cammini ecciti il ponte con un'azione periodica verticale di frequenza compresa tra 1 e 3 Hz e un'azione orizzontale simultanea di frequenza compresa tra 0,5 e 1,5 Hz, e che un gruppo di persone in leggera corsa ecciti il ponte con una frequenza verticale pari a circa 3 Hz.

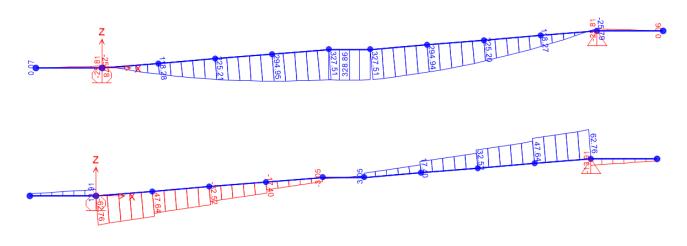
Nel caso in esame le frequenze in Hz associate ai primi modi significativi in direzione verticale e orizzontale sono rispettivamente pari a:

 $fr_{1v} = 1/.0.289 \text{ sec} = 3.5 \text{ Hz}$ > 3 Hz 1a frequenza verticale (modo 1) $fr_{1h} = 1/0.165 \text{ sec} = 6.1 \text{ Hz}$ > 1.5 Hz 1a frequenza orizzontale (modo 3)

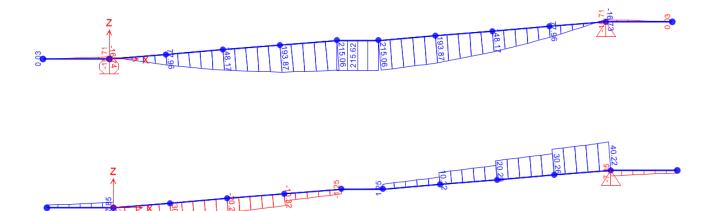
La struttura è in grado di offrire un adeguato livello di confort nei confronti delle vibrazioni.

IV04 - PASSERELLA PEDONALE - Vigna di Valle IV04 - RAMPA1 D'ACCESSO ALLA PASSERELLA -Vigna di Valle Impalcato – Relazione di calcolo

COMMESSA LOTTO CODIFICA DOCUMENTO REV. FOGLIO


NR1J 00 D 29 CL IV0407 201 A 31 di 55

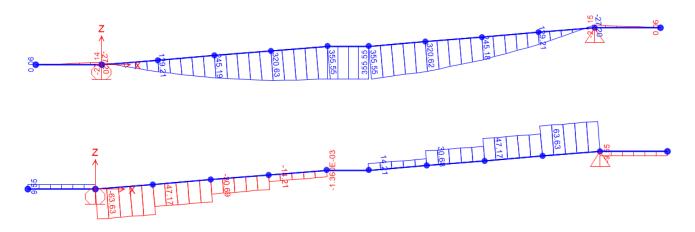
8 ANALISI DELLE SOLLECITAZIONI ELEMENTARI


8.1 Travi principali

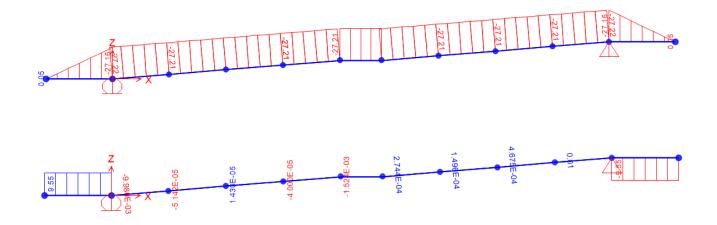
Si riportano a seguire le sollecitazioni relative alla sola trave sinistra, essendo la struttura simmetrica e le sollecitazioni invertibili sul piano orizzontale. Per ogni azione elementare sono riportati prima il momento flettente M33 [kNm] e a seguire il taglio V22 [kN].

8.1.1 Carico g1

8.1.2 Carico g2



IV04 - PASSERELLA PEDONALE - Vigna di Valle IV04 - RAMPA1 D'ACCESSO ALLA PASSERELLA -Vigna di Valle Impalcato – Relazione di calcolo

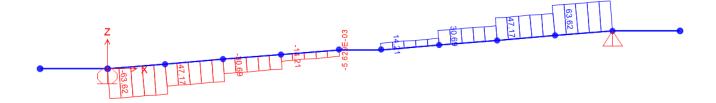

COMMESSA LOTTO CODIFICA DOCUMENTO REV. FOGLIO

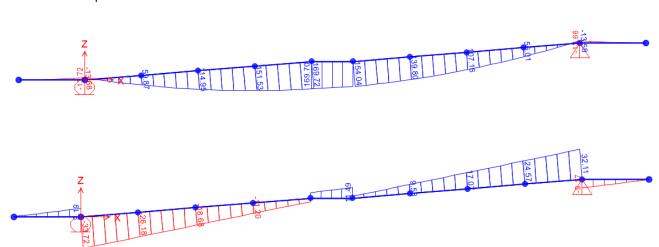
NR1J 00 D 29 CL IV0407 201 A 32 di 55

8.1.3 Carico q_C1+C2+C3 (folla presente sulle 3 campate)

8.1.4 Carico q_C1+C3 (folla presente sulle campate C1 e C3)

8.1.5 Carico q_C2 (folla presente sulla campata C2 di destra)




IV04 - PASSERELLA PEDONALE - Vigna di Valle IV04 - RAMPA1 D'ACCESSO ALLA PASSERELLA -Vigna di Valle Impalcato – Relazione di calcolo

COMMESSA LOTTO CODIFICA DOCUMENTO REV. FOGLIO

NR1J 00 D 29 CL IV0407 201 A 33 di 55

8.1.6 Azione q5

IV04 - PASSERELLA PEDONALE - Vigna di Valle IV04 - RAMPA1 D'ACCESSO ALLA PASSERELLA -Vigna di Valle Impalcato – Relazione di calcolo

COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
NR1J	00 D 29	CL	IV0407 201	Α	34 di 55

9 COEFFICIENTI DI COMBINAZIONE DELLE AZIONI

In linea con quanto riportato nel quadro normativo vigente, le azioni descritte nei paragrafi precedenti, sono combinate nel modo seguente:

- combinazione fondamentale (SLU):
- · combinazione sismica:
- · combinazione eccezionale:
- combinazione Rara (SLE irreversibile):
- combinazione Frequente (SLE reversibile):
- combinazione Quasi Permanente (SLE per gli effetti a lungo termine):

Ai fini delle verifiche degli stati limite di esercizio si definiscono le seguenti combinazioni:

- Rara -> G1+G2 +Qk1+∑iψ0i⋅Qki
- Frequente -> G1+G2 +ψ11 ·Qk1+∑iψ2i·Qki
- Quasi permanente -> G1+G2 +ψ21 ·Qk1+∑iψ2i·Qki

Per le verifiche agli stati limite ultimi si adottano i valori dei coefficienti parziali γ in Tab. 5.1.V e i coefficienti di combinazione ψ in Tab. 5.1.VI di [3].

Per le verifiche agli stati limite d'esercizio si adottano i valori dei coefficienti di combinazione ψ in Tab. 5.1.VI.

Tab. 5.1.V - Coefficienti parziali di sicurezza per le combinazioni di carico agli SLU

		Coefficiente	EQU ⁽¹⁾	A1	A2
Azioni permanenti g ₁ e g ₃	favorevoli sfavorevoli	γ _{G1} e γ _{G3}	0,90 1,10	1,00 1,35	1,00 1,00
Azioni permanenti non strutturali ⁽²⁾ g ₂	favorevoli sfavorevoli	ΥG2	0,00 1,50	0,00 1,50	0,00 1,30
Azioni variabili da traffico	favorevoli sfavorevoli	ΥQ	0,00 1,35	0,00 1,35	0,00 1,15
Azioni variabili	favorevoli sfavorevoli	ΥQi	0,00 1,50	0,00 1,50	0,00 1,30
Distorsioni e presollecita- zioni di progetto	favorevoli sfavorevoli	Υε1	0,90 1,00 ⁽³⁾	1,00 1,00 ⁽⁴⁾	1,00 1,00
Ritiro e viscosità, Cedimenti vincolari	favorevoli sfavorevoli	Υε2, Υε3, Υε 4	0,00 1,20	0,00 1,20	0,00 1,00

IV04 - PASSERELLA PEDONALE - Vigna di Valle IV04 - RAMPA1 D'ACCESSO ALLA PASSERELLA -Vigna di Valle Impalcato – Relazione di calcolo

COMMESSA LOTTO CODIFICA DOCUMENTO REV. FOGLIO

NR1J 00 D 29 CL IV0407 201 A 35 di 55

 $extbf{Tab. 5.1.VI}$ - Coefficienti ψ per le azioni variabili per ponti stradali e pedonali

Azioni	Gruppo di azioni (Tab. 5.1.IV)	Coefficiente Ψ ₀ di combi- nazione	Coefficiente Ψ ₁ (valori frequenti)	Coefficiente Ψ ₂ (valori quasi permanenti)
	Schema 1 (carichi tandem)	0,75	0,75	0,0
	Schemi 1, 5 e 6 (carichi distribuiti	0,40	0,40	0,0
Azioni da traffico	Schemi 3 e 4 (carichi concentrati)	0,40	0,40	0,0
(Tab. 5.1.IV)	Schema 2	0,0	0,75	0,0
	2	0,0	0,0	0,0
	3	0,0	0,0	0,0
	4 (folla)		0,75	0,0
	5	0,0	0,0	0,0
	a ponte scarico SLU e SLE	0,6	0,2	0,0
Vento	in esecuzione	0,8	0,0	0,0
	a ponte carico SLU e SLE	0,6	0,0	0,0
Neve	SLU e SLE	0,0	0,0	0,0
	in esecuzione	0,8	0,6	0,5
Temperatura	SLU e SLE	0,6	0,6	0,5

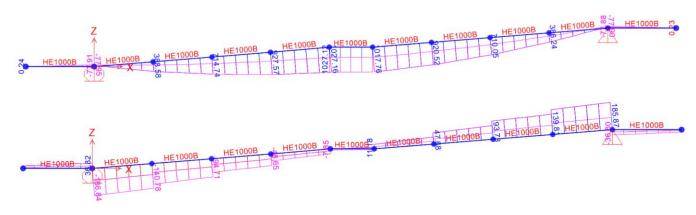
IV04 - PASSERELLA PEDONALE - Vigna di Valle IV04 - RAMPA1 D'ACCESSO ALLA PASSERELLA -Vigna di Valle Impalcato – Relazione di calcolo

 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

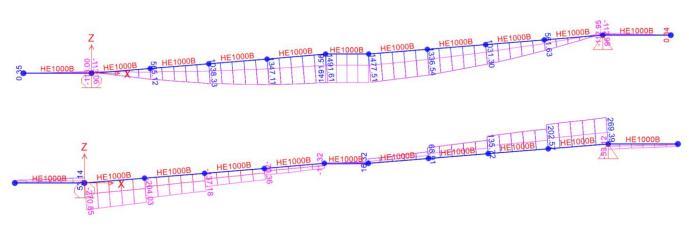
 NR1J
 00 D 29
 CL
 IV0407 201
 A
 36 di 55

	COMBINAZIONI	81	82	q1(c1+c2)	q1(c1)	q1(c2)	q5+q5_aero	e3_DT	SISM_VERT_q1
1	SLE_1.1	1	1	1	0	0	0.6	0.6	0
2	SLE_2.1	1	1	0	1	0	0.6	0.6	0
3	SLE_3.1	1	1	0	0	1	0.6	0.6	0
4	SLE_4.1	1	1	0.75	0	0	1	0.6	0
5	SLE_5.1	1	1	0	0.75	0	1	0.6	0
6	SLE_6.1	1	1	0	0	0.75	1	0.6	0
7	SLE_1.2	1	1	1	0	0	-0.6	-0.6	0
8	SLE_2.2	1	1	0	1	0	-0.6	-0.6	0
9	SLE_3.2	1	1	0	0	1	-0.6	-0.6	0
10	SLE_4.2	1	1	0.75	0	0	-1	-0.6	0
11	SLE_5.2	1	1	0	0.75	0	-1	-0.6	0
12	SLE_6.2	1	1	0	0	0.75	-1	-0.6	0
13	SLU_1.1	1.35	1.35	1.5	0	0	0.9	0.72	0
14	SLU_2.1	1.35	1.35	0	1.5	0	0.9	0.72	0
15	SLU_3.1	1.35	1.35	0	0	1.5	0.9	0.72	0
16	SLU_4.1	1.35	1.35	1.125	0	0	1.5	0.72	0
17	SLU_5.1	1.35	1.35	0	1.125	0	1.5	0.72	0
18	SLU_6.1	1.35	1.35	0	0	1.125	1.5	0.72	0
19	SLU_1.2	1.35	1.35	1.5	0	0	-0.6	-0.6	0
20	SLU_2.2	1.35	1.35	0	1.5	0	-0.6	-0.6	0
21	SLU_3.2	1.35	1.35	0	0	1.5	-0.6	-0.6	0
22	SLU_4.2	1.35	1.35	1.125	0	0	-1.5	-0.72	0
23	SLU_5.2	1.35	1.35	0	1.125	0	-1.5	-0.72	0
24	SLU_6.2	1.35	1.35	0	0	1.125	-1.5	-0.72	0
25	SLV_1_VERT_DT+	1	1	0.2	0	0	0	0.5	1
26	SLV_2_VERT_DT+	1	1	0	0.2	0	0	0.5	1
27	SLV_3_VERT_DT+	1	1	0	0	0.2	0	0.5	1
28	SLV_1_VERT_DT-	1	1	0.2	0	0	0	-0.5	-1
29	SLV_2_VERT_DT-	1	1	0	0.2	0	0	-0.5	-1
30	SLV_3_VERT_DT-	1	1	0	0	0.2	0	-0.5	-1

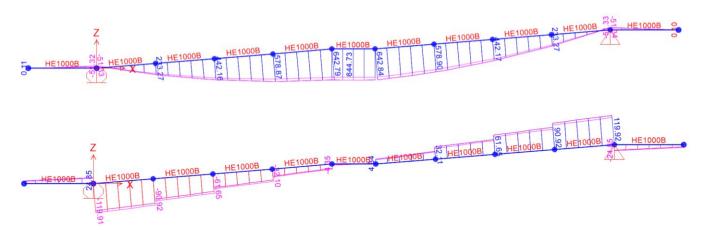
Inoltre sono state definite delle combinazioni di inviluppo delle precedenti, una per ogni gruppo di combinazioni SLE, SLU ed SLV e denominate rispettivamente ENVE_SLE, ENVE_SLU ed ENVE_SLV.


IV04 - PASSERELLA PEDONALE - Vigna di Valle IV04 - RAMPA1 D'ACCESSO ALLA PASSERELLA -Vigna di Valle Impalcato – Relazione di calcolo

COMMESSA LOTTO CODIFICA DOCUMENTO REV. FOGLIO

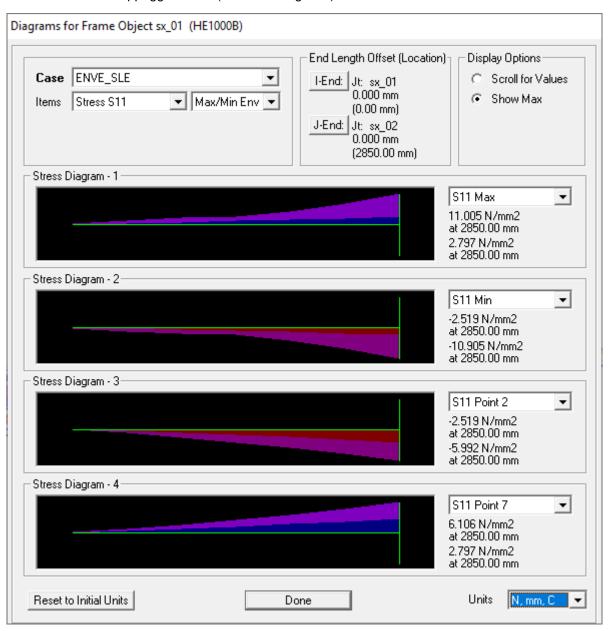

NR1J 00 D 29 CL IV0407 201 A 37 di 55

10 SOLLECITAZIONI DI CALCOLO


10.1 Combinazione ENVE_SLE

10.2 Combinazione ENVE_SLU

10.3 Combinazione ENVE_SLV



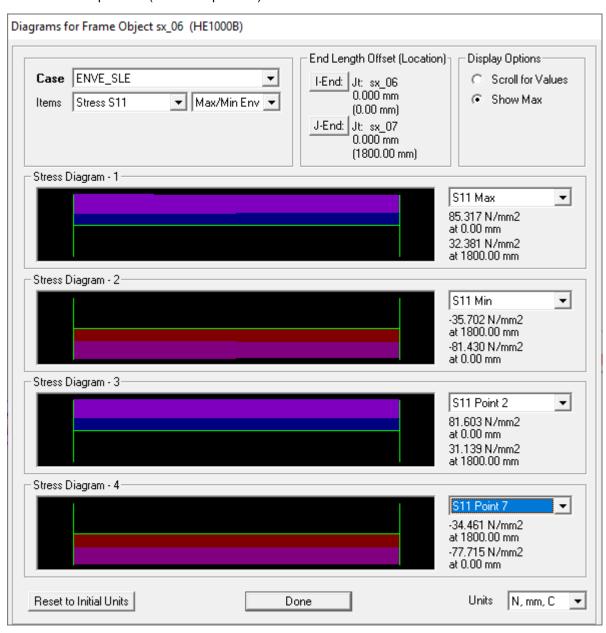
11 SLE - VERIFICHE STRUTTURALI DELLE TENSIONI NORMALI

11.1 Travi principali

11.1.1 Sezione di appoggio su P1 (momento negativo)

IV04 - PASSERELLA PEDONALE - Vigna di Valle IV04 - RAMPA1 D'ACCESSO ALLA PASSERELLA -Vigna di Valle Impalcato – Relazione di calcolo

NR1J 00 D 29 CL IV0407 201 A 39 di 55


DOCUMENTO

REV.

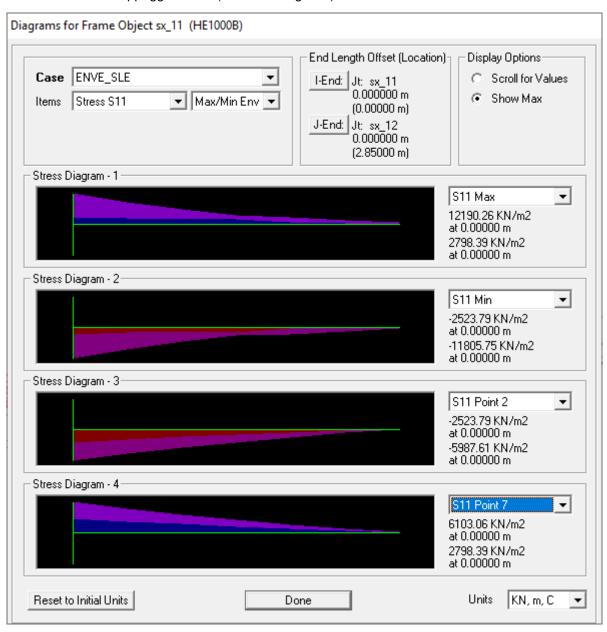
FOGLIO

CODIFICA

11.1.2 Sezione di campata C2 (momento positivo)

COMMESSA

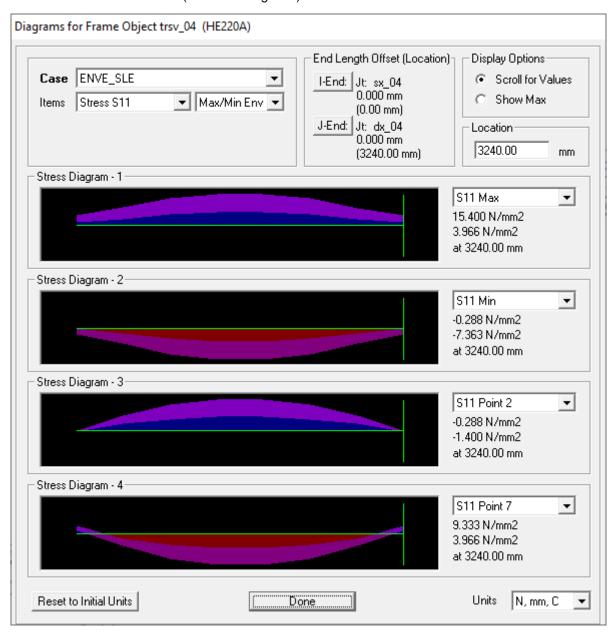
LOTTO



IV04 - PASSERELLA PEDONALE - Vigna di Valle IV04 - RAMPA1 D'ACCESSO ALLA PASSERELLA -Vigna di Valle Impalcato – Relazione di calcolo

COMMESSA LOTTO CODIFICA DOCUMENTO REV. FOGLIO

NR1J 00 D 29 CL IV0407 201 A 40 di 55

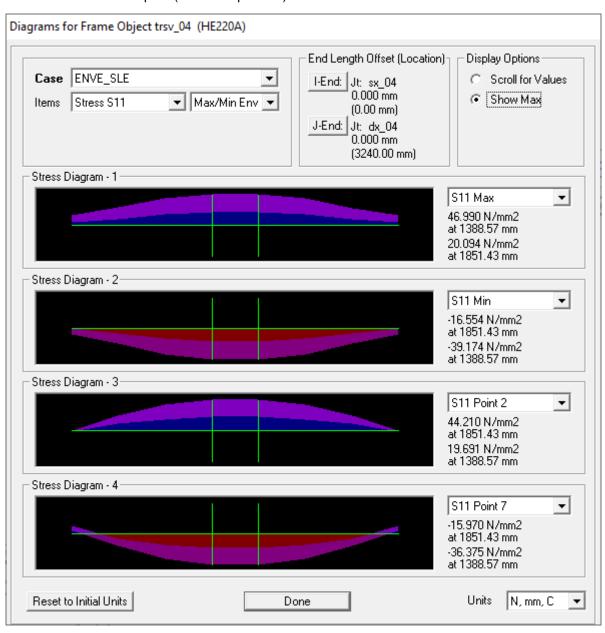

11.1.3 Sezione di appoggio su P2 (momento negativo)

11.2 Trasversi correnti

11.2.1 Sezione di estremità (momento negativo)

IV04 - PASSERELLA PEDONALE - Vigna di Valle IV04 - RAMPA1 D'ACCESSO ALLA PASSERELLA -Vigna di Valle Impalcato – Relazione di calcolo

NR1J 00 D 29 CL IV0407 201 A 42 di 55

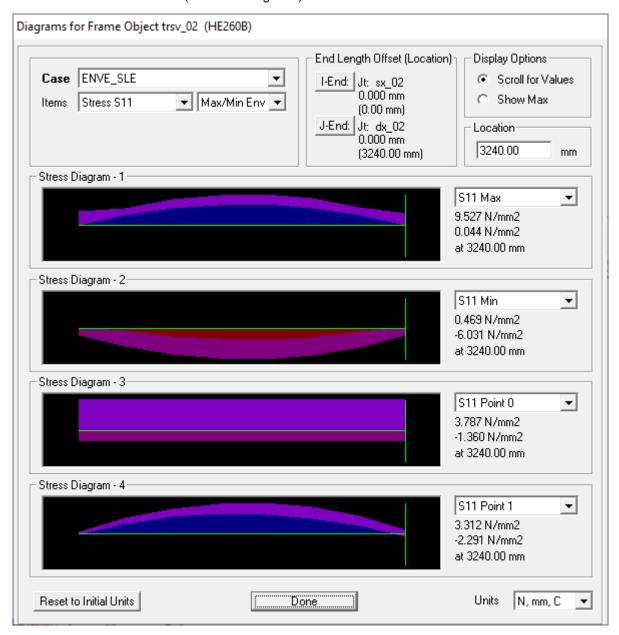

DOCUMENTO

REV.

FOGLIO

CODIFICA

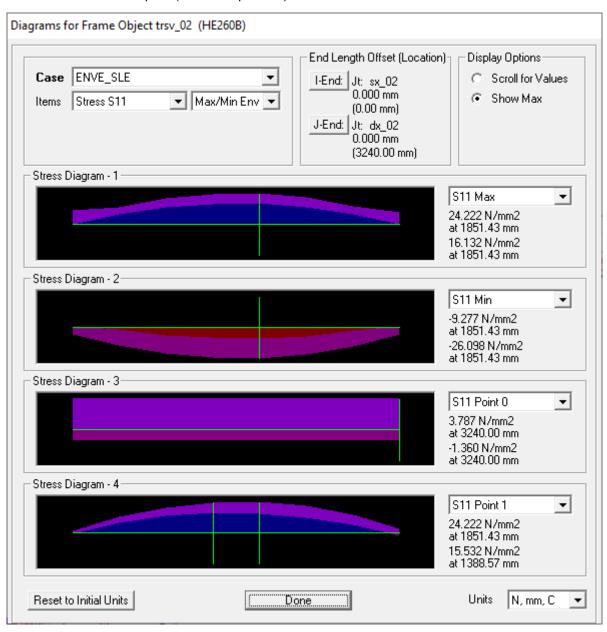
11.2.2 Sezione di campata (momento positivo)


COMMESSA

LOTTO

11.3 Trasversi di appoggio

11.3.1 Sezione di estremità (momento negativo)



IV04 - PASSERELLA PEDONALE - Vigna di Valle IV04 - RAMPA1 D'ACCESSO ALLA PASSERELLA -Vigna di Valle Impalcato – Relazione di calcolo

 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 NR1J
 00 D 29
 CL
 IV0407 201
 A
 44 di 55

11.3.2 Sezione di campata (momento positivo)

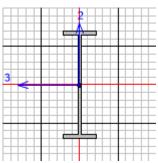
IV04 - PASSERELLA PEDONALE - Vigna di Valle IV04 - RAMPA1 D'ACCESSO ALLA PASSERELLA -Vigna di Valle Impalcato – Relazione di calcolo

COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
NR1J	00 D 29	CL	IV0407 201	Α	45 di 55

12 SLU - VERIFICHE STRUTTURALI DI RESISTENZA

Si riporta a seguire uno schema grafico che illustra le distribuzione dei coefficienti di impegno dei vari elementi strutturali, espressi come il rapporto tra richiesta e capacità di resistenza.

Sono evidenziati gli elementi averti maggiore coefficiente di impegno, per i quali è riportato a seguire il dettaglio delle verifiche.



IV04 - PASSERELLA PEDONALE - Vigna di Valle IV04 - RAMPA1 D'ACCESSO ALLA PASSERELLA -Vigna di Valle Impalcato – Relazione di calcolo

 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 NR1J
 00 D 29
 CL
 IV0407 201
 A
 46 di 55

12.1 Travi principali

Italian NTC 2018 STEEL SECTION CHECK (Summary for Combo and Station) Units : KN, m, C Combo: SLU_2.1 Shape: HE1000B Design Type: Brace Frame Type: DCH-MRF Shape: Martin Class: Class 1 Rolled : Yes Interaction=Method B MultiResponse=Envelopes P-Delta Done? No Consider Torsion? No GammaM1=1.05 GammaM2=1.25 GammaM0=1.05 An/Ag=1. RLLF=1.PLLF=0.75 D/C Lim=0.95 Aeff=0.04 eNy=0. eNz=0. Iyy=0.006 iyy=0.401 A=0.04 Wel, yy=0.013 Weff, yy=0.013 Izz=1.628E-04 It=1.267E-05 izz=0.064 Wel, zz=0.001 Weff, zz=0.001 Wpl,yy=0.015 Tw=3.782E-05 Iyz=0.h=1. Av, y=0.022E=210000000. fy=275000.fu=430000. Wpl,zz=0.002 Av, z=0.021STRESS CHECK FORCES & MOMENTS Location Ned Med, yy Med,zz Ved, z Ved, y Ted 125.609 1491.626 -0.281 2.458 5.927 -47.221 1.181 PMM DEMAND/CAPACITY RATIO (Governing Equation NTC Eq C4.2.38)

D/C Ratio: 0.427 = 0. + 0.417 + 0.011 < 0.95 OK

= NEd/(Chi_z NRk/GammaM1) + kzy (My,Ed+NEd eNy)/(Chi_LT My,Rk/GammaM1) + kzz (Mz, Ed+NEd eNz) / (Mz, Rk/GammaM1) (NTC Eq C4.2.38) AXIAL FORCE DESIGN Ned Nc, Rd Nt,Rd Capacity 10476.19 Force Capacity 10476.19 Axial 125.609 Npl,Rd Nu, Rd Ncr.T Ncr.TF An/Aq 10476.19 LambdaBar Curve Alpha Ncr Phi Chi Nb, Rd 0.616 9260.303 29015.377 0.733 Major (y-y) a 0.21 0.884 29015.377 0.616 0.733 0.884 9260.303 MajorB(y-y) a 0.21 0.444 0.444 0.36 Minor (z-z) b 0.34 MinorB(z-z) b 0.34 Torsional TF b 0.34 55841.462 0.64 0.908 9515.437 0.908 0.942 55841.462 0.64 9515.437 84702.459 9863.459 0.592

Axial

RADDOPPIO LINEA FERROVIARIA ROMA-VITERBO TRATTA CESANO-VIGNA DI VALLE PROGETTO DEFINITIVO

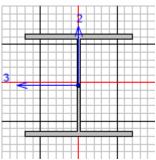
IV04 - PASSERELLA PEDONALE - Vigna di Valle IV04 - RAMPA1 D'ACCESSO ALLA PASSERELLA -Vigna di Valle Impalcato – Relazione di calcolo

 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 NR1J
 00 D 29
 CL
 IV0407 201
 A
 47 di 55

MON	MENT DESIGN						
1101	ENT DECICIO	Med	Med.snan	Mm, Ed	Meg. Ed		
		Moment		Moment			
	Major (y-y)			1419.37			
	Minor (z-z)			5.927			
	MINOR (2-2)	5.927	6.059	5.927	6.059		
		Mc, Rd	Mv, Rd	Mn, Rd	Mb, Rd		
		Capacity	Capacity	Capacity	Capacity		
	Major (y-y)			3891.905			
		449.429					
	1111101 (2 2)	113.123	113.123	113.123			
		Curve AlphaLT				psi	
	LTB	c 0.49	0.374	0.612	0.92	1.046	29254.561
		kyy	kyz	kzy	kzz		
	Factors	0.961		1.			
	1400015	0.501	0.101		0.002		
SHE	EAR DESIGN						
		Ved		Vc,Rd		Status	
		Force			Ratio	Check	
	Major (z)	47.221	0.281	3212.32	0.015	OK	
	Minor (y)	1.181	0.281	3382.281	0.	OK	
		Vpl,Rd	Eta	LambdabarW			
	Reduction	3212.32		0.54			
	REGUCCION	3212.32	Ι.	0.54			
BRA	ACE MAXIMUM A						
		P	P				
		Comp	Tens				
	A contract to the contract of	^	105 600				

125.609


0.

IV04 - PASSERELLA PEDONALE - Vigna di Valle IV04 - RAMPA1 D'ACCESSO ALLA PASSERELLA -Vigna di Valle Impalcato – Relazione di calcolo

COMMESSA LOTTO CODIFICA DOCUMENTO FOGLIO RFV NR1J 00 D 29 CL IV0407 201 Α 48 di 55

12.2 Trasversi

Italian NTC 2018 STEEL SECTION CHECK (Summary for Combo and Station) Units : KN, m, C Combo: SLU_2.2 Shape: HE220A Frame: trsv_04 X Mid: 4.9 Length: 3.24 Y Mid: 1.62 Loc: 2.777 Z Mid: 0.4 Design Type: Beam Frame Type: DCH-MRF Class: Class 1 Rolled : Yes Interaction=Method B MultiResponse=Envelopes P-Delta Done? No Consider Torsion? No GammaM2=1.25 GammaM0=1.05 GammaM1=1.05 An/Ag=1. RLLF=1. PLLF=0.75 D/C Lim=0.95 Aeff=0.006 eNy=0. eNz=0. iyy=0.092 A=0.006 Iyy=5.410E-05 Wel, yy=5.152E-04 Weff, yy=5.152E-04 Weff, zz=1.777E-04 Izz=1.955E-05 izz=0.055 Wel,zz=1.777E-04 Tt=0. Wpl,yy=5.680E-04 Tw=0. Iyz=0.h=0.21Av, y=0.005E=210000000. fy=275000.fu=430000. Wpl, zz=2.710E-04 Av, z=0.002STRESS CHECK FORCES & MOMENTS Location Ned Med, yy Med,zz Ved, z Ved, y Ted 36.806 13.263 -0.008 2.777 1.464 30.959 -0.761PMM DEMAND/CAPACITY RATIO (Governing Equation NTC Eq C4.2.38)

D/C Ratio: 0.237 = 0. + 0.226 + 0.012 < 0.95 OK

= NEd/(Chi_z NRk/GammaM1) + kzy (My,Ed+NEd eNy)/(Chi_LT My,Rk/GammaM1) + kzz (Mz, Ed+NEd eNz) / (Mz, Rk/GammaM1) (NTC Eq C4.2.38) AXIAL FORCE DESIGN Ned Nc,Rd Nt,Rd Force Capacity Capacity 1684.048 1684.048 Axial 36.806 Npl,Rd Nu, Rd Ncr, T Ncr, TF An/Aq 1684.048 1990.728 5353.003 5353.003 LambdaBar Curve Alpha Ncr Phi Chi Nb, Rd 1554.944 10681.353 0.407 0.618 Major (y-y) b 0.34 0.923 0.34 10681.353 0.407 0.618 0.923 1554.944 MajorB(y-y) b 0.739 Minor (z-z) c 0.49 c 0.49 c 0.49 3859.898 0.677 0.846 1244.467

0.677

0.575

0.846

0.757

0.739

0.8

1244.467

1347.663

3859.898 5353.003

MinorB(z-z)

Torsional TF

IV04 - PASSERELLA PEDONALE - Vigna di Valle IV04 - RAMPA1 D'ACCESSO ALLA PASSERELLA -Vigna di Valle Impalcato – Relazione di calcolo

COMMESSA LOTTO CODIFICA DOCUMENTO REV. FOGLIO

NR1J 00 D 29 CL IV0407 201 A 49 di 55

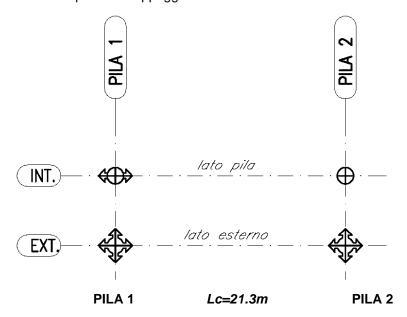
MOMENT DESIGN						
	Med	Med, span	Mm, Ed	Meq, Ed		
	Moment	Moment	Moment	Moment		
Major (y-y)	13.263	30.45	13.263	22.837		
Minor (z-z)	1.464	1.816	0.583	0.83		
	Mc,Rd	Mv,Rd	Mn, Rd	Mb, Rd		
	Capacity	Capacity	Capacity	Capacity		
Major (y-y)			148.762			
Minor (z-z)		70.976	70.976			
,						
	Curve AlphaLT	LambdaBarLT	PhiLT	ChiLT	psi	Mcr
LTB	b 0.34		0.694	0.907	1.157	562.833
1110	D 0.31	0.027	0.031	0.307	1.107	302.033
	kyy	kyz	kzy	kzz		
Factors	0.943	-	1.	0.457		
1400015	0.310	0.271		0.107		
SHEAR DESIGN						
	Ved	Ted	Vc, Rd	Stress	Status	
	Force	Torsion	Capacity	Ratio	Check	
Major (z)	30.959	0.008	311.948	0.099	OK	
Minor (y)	0.761	0.008	773.292	0.001	OK	
- (2)						
	Vpl,Rd	Eta	LambdabarW			
Reduction	311.948	1.	0.329			

CONNECTION SHEAR FORCES FOR BEAMS

 VMajor
 VMajor

 Left
 Right

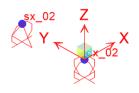
 Major (V2)
 43.396
 43.396



IV04 - PASSERELLA PEDONALE - Vigna di Valle IV04 - RAMPA1 D'ACCESSO ALLA PASSERELLA -Vigna di Valle Impalcato – Relazione di calcolo

COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
NR1J	00 D 29	CL	IV0407 201	Α	50 di 55

13 APPOGGI E GIUNTI


Si riporta a seguire lo schema dei dispositivi di appoggio.

13.1 Reazioni elementari

Si riporta a seguire la denominazione dei nodi corrispondenti ai vincoli esterni.

IV04 - PASSERELLA PEDONALE - Vigna di Valle IV04 - RAMPA1 D'ACCESSO ALLA PASSERELLA -Vigna di Valle Impalcato – Relazione di calcolo

COMMESSA LOTTO CODIFICA DOCUMENTO REV. FOGLIO

NR1J 00 D 29 CL IV0407 201 A 51 di 55

Seguono le reazioni elementari dovute alle varie azioni.

Joint	OutputCase	StepType	Flong	Ftrasv	Nvert	Joint	StepType	Flong	Ftrasv	Nvert
Text	Text	Text	KN	KN	KN	Text	Text	KN	KN	KN
dx_02	g1		0	0	85	sx_02		0	0	85
dx_02	g2		0	0	55	sx_02		0	0	55
dx_02	q1_C1+C2+C3		0	0	91	sx_02		0	0	91
dx_02	q1_C1+C3		0	0	19	sx_02		0	0	19
dx_02	q1_C2		0	0	72	sx_02		0	0	72
dx_02	q5		0	0	-44	sx_02		0	-112	44
dx_02	e3_DT		0	0	0	sx_02		0	0	0
dx_02	SISM_LONG_q1	Max	0	0	3	sx_02	Max	0	19	3
dx_02	SISM_TRASV_q1	Max	0	0	1	sx_02	Max	0	67	1
dx_02	SISM_VERT_q1	Max	0	0	4	sx_02	Max	0	0	4
dx_11	g1		0	0	85	sx_11		0	0	85
dx_11	g2		0	0	55	sx_11		0	0	55
dx_11	q1_C1+C2+C3		0	0	90	sx_11		0	0	90
dx_11	q1_C1+C3		0	0	19	sx_11		0	0	19
dx_11	q1_C2		0	0	72	sx_11		0	0	72
dx_11	q5		0	0	-40	sx_11		0	-112	40
dx_11	e3_DT		0	0	0	sx_11		0	0	0
dx_11	SISM_LONG_q1	Max	0	0	3	sx_11	Max	78	27	7
dx_11	SISM_TRASV_q1	Max	0	0	1	sx_11	Max	18	64	1
dx_11	SISM_VERT_q1	Max	0	0	4	sx_11	Max	2	1	4

IV04 - PASSERELLA PEDONALE - Vigna di Valle IV04 - RAMPA1 D'ACCESSO ALLA PASSERELLA -Vigna di Valle Impalcato – Relazione di calcolo

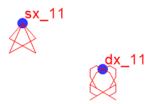
COMMESSA LOTTO CODIFICA DOCUMENTO REV. FOGLIO

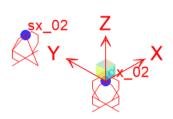
NR1J 00 D 29 CL IV0407 201 A 52 di 55

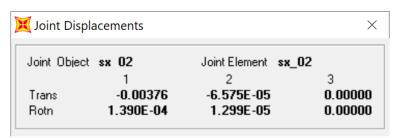
13.2 Scarichi sugli appoggi

Seguono gli scarichi combinati sugli appoggi.

Joint	OutputCase	StepType	Flong	Ftrasv	Nvert	Joint	StepType	Flong	Ftrasv	Nvert
Text	Text	Text	KN	KN	KN	Text	Text	KN	KN	KN
dx_02	ENVE_SLE	Max	0	0	258	sx_02	Max	0	67	258
dx_02	ENVE_SLE	Min	0	0	133	sx_02	Min	0	-67	133
dx_02	ENVE_SLU	Max	0	0	374	sx_02	Max	0	101	374
dx_02	ENVE_SLU	Min	0	0	187	sx_02	Min	0	-101	187
dx_02	ENVE_SLV	Max	0	0	163	sx_02	Max	0	0	163
dx_02	ENVE_SLV	Min	0	0	154	sx_02	Min	0	0	154
dx_11	ENVE_SLE	Max	0	0	254	sx_11	Max	0	67	254
dx_11	ENVE_SLE	Min	0	0	135	sx_11	Min	0	-67	135
dx_11	ENVE_SLU	Max	0	0	369	sx_11	Max	0	101	369
dx_11	ENVE_SLU	Min	0	0	190	sx_11	Min	0	-101	190
dx_11	ENVE_SLV	Max	0	0	162	sx_11	Max	2	1	162
dx_11	ENVE_SLV	Min	0	0	154	sx_11	Min	-2	-1	154




IV04 - PASSERELLA PEDONALE - Vigna di Valle IV04 - RAMPA1 D'ACCESSO ALLA PASSERELLA -Vigna di Valle Impalcato – Relazione di calcolo


COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
NR1J	00 D 29	CL	IV0407 201	Α	53 di 55

13.3 Spostamenti elementari

Si riportano a seguire i valori degli spostamenti [m] dei vincoli di estremità dell'impalcato, dovuti all'azione della termica uniforme $\varepsilon 3_TU$.

pari a ±3.8 mm in direzione longitudinale,

IV04 - PASSERELLA PEDONALE - Vigna di Valle IV04 - RAMPA1 D'ACCESSO ALLA PASSERELLA -Vigna di Valle Impalcato – Relazione di calcolo

COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
NR1J	00 D 29	CL	IV0407 201	Α	54 di 55

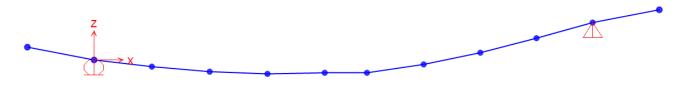
14 FRECCE E CONTROMONTE.

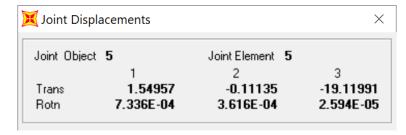
Le deformazioni massime della passerella devono risultare compatibili con la geometria della struttura in relazione alle esigenze del traffico pedonale.

Dovrà comunque verificarsi quanto segue:

- l'impalcato deve presentare una contromonta da determinare per la totalità dei carichi permanenti, nonché per il 25% dei carichi accidentali;
- limitatamente agli elementi principali si dovranno rispettare i seguenti limiti di deformazione:
 f < Lc/300 sotto l'azione dei permanenti

dove:


Lc = luce di calcolo = 21.3m


f = massima freccia

In base ai risultati ottenuti dall'analisi si ottengono i seguenti valori degli abbassamenti in mezzeria:

spostamenti verticali [mm] dovuti a g1+g2:

IV04 - PASSERELLA PEDONALE - Vigna di Valle IV04 - RAMPA1 D'ACCESSO ALLA PASSERELLA -Vigna di Valle Impalcato – Relazione di calcolo

COMMESSA LOTTO CODIFICA DOCUMENTO REV. FOGLIO

NR1J 00 D 29 CL IV0407 201 A 55 di 55

spostamenti verticali [mm] dovuti a q1:

E' ampiamente verificato che: f = 19.1 mm < Lc/300 = 71 mm

La contromonta da adottare è pari a 22.4mm per la campata C2.