COMMITTENTE:

PROGETTAZIONE:

					_	_	
		\sim		_	\sim 1 \sim 1		а
INK	F7 I	ıın	! ┣━				Δ

U.O. INFRASTRUTTURE CENTRO

PROGETTO DEFINITIVO

RADDOPPIO LINEA FERROVIARIA ROMA-VITERBO TRATTA CESANO-VIGNA DI VALLE

SOVRAPPASSO PEDONALE STAZIONE VIGNA DI VALLE IV04 - RAMPA1 D'ACCESSO ALLA PASSERELLA - Vigna di Valle

PILE – Relazione di calcolo

SCALA:
-

COMMESSA LOTTO FASE ENTE TIPO DOC. OPERA/DISCIPLINA PROGR. REV.

NR 1 J 0 0 D 2 9 C L I V 0 4 0 5 2 0 1 A

Rev.	Descrizione	Redatto	Data	Verificato	Data	Approvato	Data	Autorizzato Data
		G. Usai	11 2010	G. Passaro	11 2010	T. Paoletti	11 2010	
Α	Emissione esecutiva	QtslU	11.2019	N	11.2019	/>	11.2019	F. Arduini 11.2019
				4		14		11.2019
								ITALFERR S.p.A.
								Direzione Tecnica Infrastrutture Centro
								Dott. Ing. Eablizio Arduini Ordine degli Ingegneri della Provincia di Roma n. 18392 pol. A
								103000
								9

File: NR1J00D29CLIV0405201A.doc		n. Elab.:	140.12
---------------------------------	--	-----------	--------

SOVRAPP. PEDONALE STAZIONE VIGNA DI VALLE IV04 - RAMPA1 D'ACCESSO ALLA PASSERELLA -Vigna di Valle PILE – Relazione di calcolo

COMMESSA LOTTO CODIFICA

DOCUMENTO

REV. FOGLIO

NR1J 00 D 29 CL IV0405 201 A 2 di 118

INDICE

1	PREMESSA	6
1.1	DESCRIZIONE DELLA STRUTTURA	7
2	NORMATIVA DI RIFERIMENTO	14
3	DOCUMENTI DI RIFERIMENTO	15
4	UNITÀ DI MISURA E SIMBOLOGIA	16
5	CARATTERISTICHE DEI MATERIALI	17
5.1	CALCESTRUZZO PER FUSTO PILA E PULVINO	17
5.2	CALCESTRUZZO PER PLINTO DI FONDAZIONE	18
5.3	CALCESTRUZZO PER PALI DI FONDAZIONE	19
5.4	ACCIAIO PER BARRE DI ARMATURA	20
6	CARATTERIZZAZIONE GEOTECNICA	21
7	CRITERI PROGETTUALI	22
7.1	VITA NOMINALE	22
7.2	CLASSE D'USO	22
7.3	PERIODO DI RIFERIMENTO PER L'AZIONE SISMICA	22
8	ANALISI DEI CARICHI DI PROGETTO	24
8.1	PESI PROPRI STRUTTURALI (G1)	24
8.2	SOVRACCARICHI PERMANENTI PORTATI (G2)	25
8.3	SOVRACCARICHI ACCIDENTALI (Q1)	26
8.4	AZIONE DEL VENTO SULL'IMPALCATO (Q5)	26
8.5	AZIONE DEL VENTO SULLA PILA (Q5.1)	26
8.6	VARIAZIONE TERMICA NON UNIFORME (ε3_DT)	27
8.7	AZIONE SISMICA (Q6)	27
8.8	RESISTENZA PARASSITA DEI VINCOLI (Q7)	30

SOVRAPP. PEDONALE STAZIONE VIGNA DI VALLE IV04 - RAMPA1 D'ACCESSO ALLA PASSERELLA -Vigna di Valle PILE – Relazione di calcolo

COMMESSA LOTTO CODIFICA DOCUMENTO REV. FOGLIO

NR1J 00 D 29 CL IV0405 201 A 3 di 118

9	ANALISI SISMICA DELLA PILA	31
9.1	MASSE SISMICHE	31
9.2	Analisi sismica – Pila 2	31
9.3	Analisi sismica – Pila 1	33
10	COMBINAZIONI DI CARICO	35
11	ANALISI DELLE SOLLECITAZIONI - PILA 2	38
11.1	REAZIONI VINCOLARI ELEMENTARI TRASMESSE DALL'IMPALCATO	38
11.2	SOLLECITAZIONI ELEMENTARI RIPORTATE AL BARICENTRO DELLA SEZIONE DI BASE DELLA PILA	38
11.3	SOLLECITAZIONI COMBINATE RIPORTATE AL BARICENTRO DELLA SEZIONE DI BASE DELLA PILA	39
11.4	SOLLECITAZIONI COMBINATE RIPORTATE AL BARICENTRO DELLA SEZIONE DI BASE DEL PLINTO	40
12	ANALISI DELLE SOLLECITAZIONI - PILA 1	42
12.1	REAZIONI VINCOLARI ELEMENTARI TRASMESSE DALL'IMPALCATO	42
12.2	SOLLECITAZIONI ELEMENTARI RIPORTATE AL BARICENTRO DELLA SEZIONE DI BASE DELLA PILA	42
12.3	SOLLECITAZIONI COMBINATE RIPORTATE AL BARICENTRO DELLA SEZIONE DI BASE DELLA PILA	44
12.4	SOLLECITAZIONI COMBINATE RIPORTATE AL BARICENTRO DELLA SEZIONE DI BASE DEL PLINTO	44
13	VERIFICHE STRUTTURALI DEL FUSTO PILA 2	46
13.1	GEOMETRIA DELLA SEZIONE DI VERIFICA E ARMATURA	46
	13.1.1 ARMATURA LONGITUDINALE	46
	13.1.2 ARMATURA TRASVERSALE	46
	13.1.3 VERIFICA DELL'ARMATURA MINIMA	47
13.2	VERIFICHE SLU A FLESSIONE	49
13.3	VERIFICHE SLU A TAGLIO	53
	13.3.1 VERIFICA A TAGLIO IN DIREZIONE LONGITUDINALE	54
	13.3.2 VERIFICA A TAGLIO IN DIREZIONE TRASVERSALE	55
13.4	VERIFICA SLE DELLE TENSIONI	56
13 5	VERIFICHE SLE A FESSURAZIONE	57

SOVRAPP. PEDONALE STAZIONE VIGNA DI VALLE IV04 - RAMPA1 D'ACCESSO ALLA PASSERELLA -Vigna di Valle PILE – Relazione di calcolo

COMMESSA LOTTO CODIFICA DOCUMENTO REV. FOGLIO

NR1J 00 D 29 CL IV0405 201 A 4 di 118

14	VERIFICHE STRUTTURALI DEI PALI DI FONDAZIONE – PILA 2	58
14.1	SOLLECITAZIONI ALLA TESTA DEI PALI	58
14.2	GEOMETRIA DELLA SEZIONE DI VERIFICA E ARMATURA	61
14.3	3 VERIFICA SLU A PRESSO-FLESSIONE	62
14.4	4 VERIFICA SLU A TAGLIO	64
14.5	5 VERIFICA SLE DELLE TENSIONI	65
14.6	S VERIFICA SLE A FESSURAZIONE	66
15	VERIFICHE STRUTTURALI DEL PLINTO DI FONDAZIONE – PILA 2	68
15.1	1 VERIFICHE SLU-SLE CON MECCANISMO TIRANTE-PUNTONE	68
15.2	2 GEOMETRIA PLINTO	70
15.3	GEOMETRIA TIRANTE-PUNTONE	71
15.4	4 VERIFICHE SLU E SLE	71
16	VERIFICHE STRUTTURALI DEL FUSTO PILA 1	72
16.1	GEOMETRIA DELLA SEZIONE DI VERIFICA E ARMATURA	72
	16.1.1 ARMATURA LONGITUDINALE	72
	16.1.2 ARMATURA TRASVERSALE	72
	16.1.3 VERIFICA DELL'ARMATURA MINIMA	73
16.2	2 VERIFICHE SLU A FLESSIONE	75
16.3	3 VERIFICHE SLU A TAGLIO	78
	16.3.1 VERIFICA A TAGLIO IN DIREZIONE LONGITUDINALE	79
	16.3.2 VERIFICA A TAGLIO IN DIREZIONE TRASVERSALE	80
16.4	4 VERIFICA SLE DELLE TENSIONI	81
16.5	5 VERIFICHE SLE A FESSURAZIONE	82
17	VERIFICHE STRUTTURALI DEI PALI DI FONDAZIONE – PILA 1	83
17.1	SOLLECITAZIONI ALLA TESTA DEI PALI	83
17.2	GEOMETRIA DELLA SEZIONE DI VERIFICA E ARMATURA	86

SOVRAPP. PEDONALE STAZIONE VIGNA DI VALLE IV04 - RAMPA1 D'ACCESSO ALLA PASSERELLA -Vigna di Valle PILE – Relazione di calcolo

 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 NR1J
 00 D 29
 CL
 IV0405 201
 A
 5 di 118

17.3	VERIFICA SLU A PRESSO-FLESSIONE	87
17.4	VERIFICA SLU A TAGLIO	89
17.5	VERIFICA SLE DELLE TENSIONI	90
17.6	VERIFICA SLE A FESSURAZIONE	91
18	VERIFICHE STRUTTURALI DEL PLINTO DI FONDAZIONE – PILA 1	93
18.1	VERIFICHE SLU-SLE CON MECCANISMO TIRANTE-PUNTONE	93
18.2	GEOMETRIA PLINTO	96
18.3	GEOMETRIA TIRANTE-PUNTONE	96
18.4	VERIFICHE SLU E SLE	97
19	VERIFICHE GEOTECNICHE DEI PALI	98
19.1	PALI DELLA PILA 2	98
19.2	PALI DELLA PILA 1	105
20	VERIFICA DEI PILASTRI DI SUPPORTO ALLE RAMPE	112
21	VERIFICA MENSOLE TOZZE DI SUPPORTO ALLE RAMPE	115
22	INCIDENZA ARMATURA	
22.1	PILA 1	118
22.2	PILA 2	118

1 PREMESSA

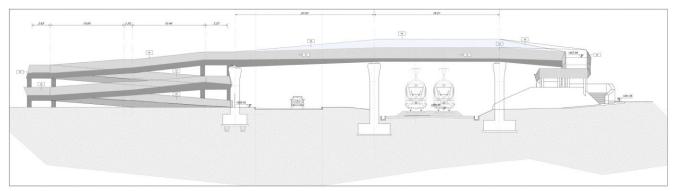
Il progetto di raddoppio della tratta Cesano – Vigna di Valle, sulla linea ferroviaria Roma – Viterbo, costituisce la prima fase funzionale del più esteso intervento di raddoppio tra Cesano e Bracciano, previsto dal recente Accordo Quadro tra Regione Lazio e RFI del 22/02/2018.

Figura 1 – Stazione Vigna di Valle – Stralcio planimetrico

Relativamente alla nuova stazione di Vigna di Valle si prevede la realizzazione di una passerella pedonale di scavalco della linea ferroviaria.

L'accesso a tale passerella di scavalco è consentito mediante una rampa, costituita da quattro rampe inclinate sostenute da due pile, le cui analisi e verifiche strutturali sono oggetto della presente relazione.

PROGETTO DEFINITIVO


DOCUMENTO FOGLIO REV. NR1J 00 D 29 CL IV0405 201 Α 7 di 118

1.1 **DESCRIZIONE DELLA STRUTTURA**

Vigna di Valle

PILE - Relazione di calcolo

Si riportano a seguire delle immagini che illustrano lo scavalco della linea ferroviaria mediante la passerella pedonale e l'accesso a tale passerella mediante le rampe ubicate ad ovest di quest'ultima.

Rampe di accesso

Passerella di scavalco

Figura 2 – Stazione Vigna di Valle – Sezione longitudinale attraversamento

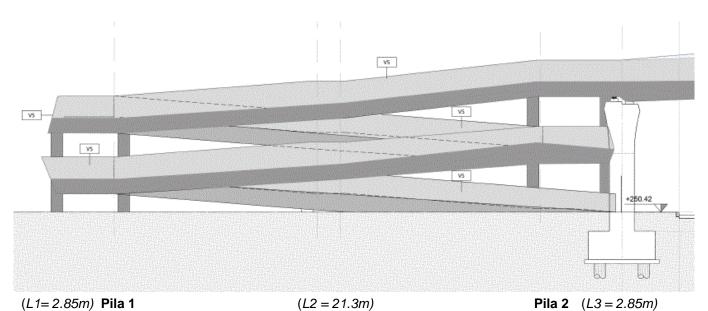
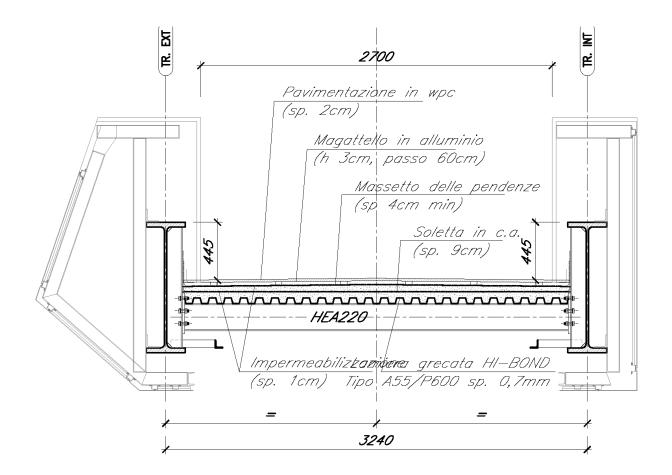


Figura 3 - Rampe di accesso alla passerella - Denominazione pile ed ampiezza luci

SOVRAPP. PEDONALE STAZIONE VIGNA DI VALLE IV04 - RAMPA1 D'ACCESSO ALLA PASSERELLA -Vigna di Valle PILE – Relazione di calcolo


NR1J 00 D 29 CL IV0405 201 A 8 di 118

DOCUMENTO

FOGLIO

RFV

CODIFICA

COMMESSA

LOTTO

Figura 4 – Sezione trasversale dell'impalcato delle rampe [mm]

L'accesso alla passerella avviene mediante quattro rampe sostenute da due pile in c.a. fondate su pali.

L'impalcato di ogni singola rampa presenta schema statico di trave continua su due appoggi con sbalzi di estremità simmetrici (luci di 2.85m+21.3m+2.85m) ed è realizzato in carpenteria metallica con soletta gettata in opera su lamiera grecata. Sono presenti due travi principali costituite da profili commerciali (HEB1000) poste ad interasse di 3.24m, costituite da conci solidarizzati tra loro in fase di montaggio. Il dislivello superato da ogni rampa è pari a 1.6-1.8m ca.

Le sottostrutture sono costituite da due pile in c.a. aventi altezze diverse tra loro e caratterizzate da sezione rettangolare del fusto in elevazione. La pila 2 presenta sezione 1.2m x 2.2m, mentre la pila 1 presenta sezione 1.2m x 1.3m.

SOVRAPP. PEDONALE STAZIONE VIGNA DI VALLE IV04 - RAMPA1 D'ACCESSO ALLA PASSERELLA -Vigna di Valle PILE – Relazione di calcolo

COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
NR1J	00 D 29	CL	IV0405 201	Α	9 di 118

A seguire sono riportate le altezze dei fusti delle pile:

- Pila 1 Hf = 5.10m
- Pila 2 Hf = 7.0m

Le pile sono fondate su plinti rettangolari in c.a. e 4 pali di diametro Ø600mm (L = 21m per P2 e L = 16m per P1). I plinti presentano dimensioni in pianta pari a 3.6m x 3.6m ed altezza pari a 1m. Le fondazioni delle due pile sono intestate alla medesima guota rispetto al p.c.

Il sostegno di ogni rampa sul lato adiacente alla pila (all. 2 e 3, vedere fig. seguenti) avviene mediante delle mensole tozze sulle quali alloggiano i dispositivi di appoggio dell'impalcato. Sul lato opposto alla mensola tozza (all. 1 e 4), il sostegno della rampa avviene mediante un pilastro realizzato in carpenteria metallica (HEB300) dissimulato all'interno del carter di protezione. Tali pilastri sono fondati a terra su un plinto in c.a. ed un palo ø600mm di lunghezza pari a 14m.

Le quote dei piani dei dispositivi di appoggio di ogni rampa in corrispondenza della pila 1 e 2 sono indicate a seguire, assumendo come riferimento la quota di estradosso del plinto di fondazione, posta pari a +0.00m:

•	Pila 1:	a q.ta	+1.70m	presenti 2 appoggi a sostegno interno di due rampe;
		a q.ta	+4.90m	presenti 2 appoggi a sostegno interno di due rampe.
•	Pila 2:	a q.ta	+3.30m	presenti 2 appoggi a sostegno interno di due rampe;
		a q.ta	+6.80m	presente 1 appoggio a sostegno interno di una rampa.

Le pile 1 e 2 sono fisse in direzione trasversale, mentre la sola pila 2 è fissa in direzione longitudinale.

Si riportano a seguire delle immagini che illustrano la geometria delle pile e delle relative sottostrutture.

SOVRAPP. PEDONALE STAZIONE VIGNA DI VALLE IV04 - RAMPA1 D'ACCESSO ALLA PASSERELLA -Vigna di Valle

PILE - Relazione di calcolo

COMMESSA LOTTO CODIFICA DOCUMENTO REV. FOGLIO NR1J CL IV0405 201 00 D 29 Α 10 di 118

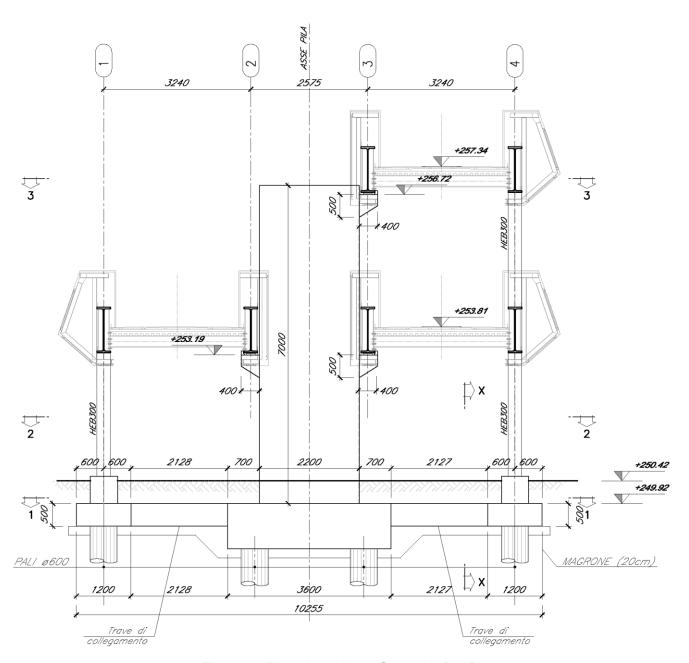
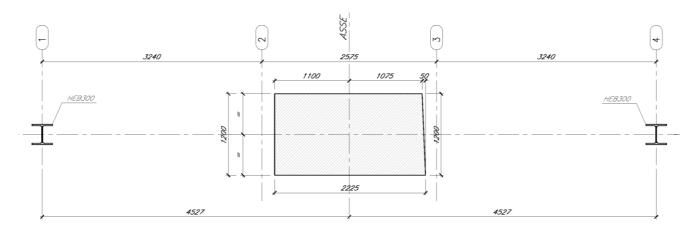


Figura 5 – Elevazione pila 2 - Geometria [mm]

SOVRAPP. PEDONALE STAZIONE VIGNA DI VALLE IV04 - RAMPA1 D'ACCESSO ALLA PASSERELLA -Vigna di Valle PILE – Relazione di calcolo


NR1J 00 D 29 CL IV0405 201 A 11 di 118

DOCUMENTO

REV.

FOGLIO

CODIFICA

COMMESSA

LOTTO

Figura 6 – Sezione orizzontale pila 2 - Geometria [mm]

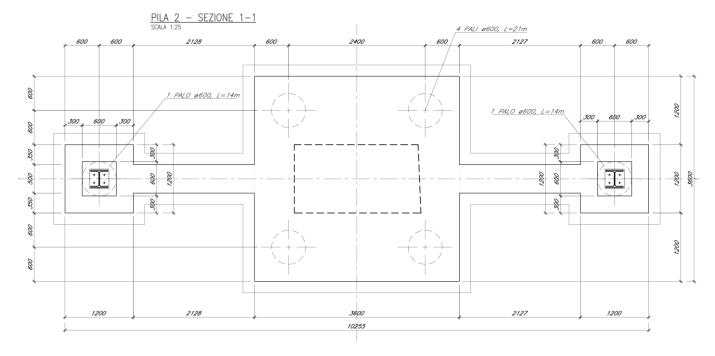
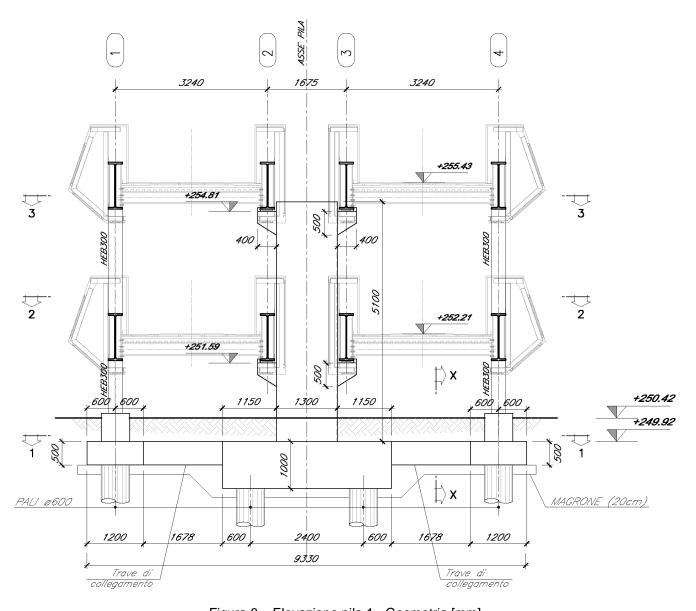


Figura 7 – Fondazione pila 2 - Geometria [mm]

SOVRAPP. PEDONALE STAZIONE VIGNA DI VALLE IV04 - RAMPA1 D'ACCESSO ALLA PASSERELLA -Vigna di Valle PILE – Relazione di calcolo


NR1J 00 D 29 CL IV0405 201 A 12 di 118

DOCUMENTO

REV.

FOGLIO

CODIFICA

COMMESSA

LOTTO

Figura 8 – Elevazione pila 1 - Geometria [mm]

SOVRAPP. PEDONALE STAZIONE VIGNA DI VALLE IV04 - RAMPA1 D'ACCESSO ALLA PASSERELLA -Vigna di Valle PILE – Relazione di calcolo

 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 NR1J
 00 D 29
 CL
 IV0405 201
 A
 13 di 118

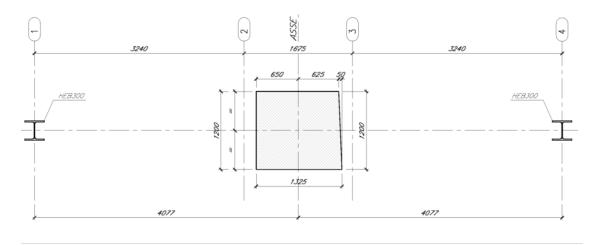


Figura 9 – Sezione orizzontale pila 1 - Geometria [mm]

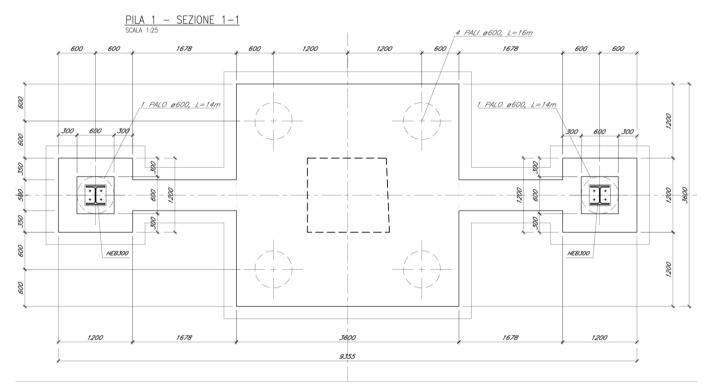


Figura 10 – Fondazione pila 1 - Geometria [mm]

SOVRAPP. PEDONALE STAZIONE VIGNA DI VALLE IV04 - RAMPA1 D'ACCESSO ALLA PASSERELLA -Vigna di Valle PILE – Relazione di calcolo

COMMESSA LOTTO CODIFICA DOCUMENTO REV. FOGLIO

NR1J 00 D 29 CL IV0405 201 A 14 di 118

2 NORMATIVA DI RIFERIMENTO

- 1. Legge 5 novembre 1971 n. 1086 Norme per la disciplina delle opere di conglomerato cementizio armato normale e precompresso ed a struttura metallica
- 2. Legge 2 febbraio 1974 n. 64 Provvedimenti per le costruzioni con particolari prescrizioni per le zone sismiche
- 3. D.M. 17 gennaio 2018 Norme Tecniche per le Costruzioni
- 4. Circolare 21 gennaio 2019 Istruzioni per l'applicazione dell' "Aggiornamento delle Nuove norme tecniche per le costruzioni" di cui al D.M. 17 gennaio 2018
- 5. Eurocodice 2: Progettazione delle strutture in calcestruzzo Parte 1.1: Regole generali e regole per gli edifici.
- 6. UNI ENV 1992-1-1 Parte 1-1: Regole generali e regole per gli edifici;
- 7. UNI EN 206-1-2016: Calcestruzzo. "Specificazione, prestazione, produzione e conformità".
- 8. RFI DTC SI MA IFS 001 C Manuale di progettazione delle opere civili Parte I
- 9. RFI DTC SI AM MA IFS 001 B Manuale di progettazione delle opere civili Parte II Sezione 1
 - Ambiente
- 10. RFI DTC SI PS MA IFS 001 C Manuale di progettazione delle opere civili Parte II Sezione 2
 - Ponti e Strutture
- 11. RFI DTC SI CS MA IFS 001 C Manuale di progettazione delle opere civili Parte II Sezione 3
 - Corpo Stradale
- 12. RFI DTC SI CS MA IFS 001 C del 21.12.2018 "Capitolato generale tecnico di appalto delle opere civili".
- 13. Regolamento (UE) N. 1299/2014 della Commissione del 18/11/2014 relativo alle specifiche tecniche di interoperabilità per il sottosistema "infrastruttura" del sistema ferroviario dell'Unione Europea.

3 DOCUMENTI DI RIFERIMENTO

Vengono presi a riferimento tutti gli elaborati grafici progettuali di pertinenza.

SOVRAPP. PEDONALE STAZIONE VIGNA DI VALLE IV04 - RAMPA1 D'ACCESSO ALLA PASSERELLA -Vigna di Valle PILE – Relazione di calcolo

COMMESSA LOTTO CODIFICA DOCUMENTO REV. FOGLIO

NR1J 00 D 29 CL IV0405 201 A 16 di 118

4 UNITÀ DI MISURA E SIMBOLOGIA

Si utilizza il Sistema Internazionale (SI):

unità di misura principali

N(Newton)unità di forzam(metro)unità di lunghezzakg(kilogrammo-massa)unità di massas(secondo)unità di tempo

unità di misura derivate

kN (kiloNewton) 10^3 N **MN** (megaNewton) 10^6 N

kgf (kilogrammo-forza) 1 kgf = 9.81 N

cm(centimetro) 10^{-2} mmm(millimetro) 10^{-3} mPa(Pascal) 1 N/m^2 kPa(kiloPascal) 10^3 N/m^2 MPa(megaPascal) 10^6 N/m^2

N/m³ (peso specifico)

g (accelerazione di gravità) ~9.81 m/s²

corrispondenze notevoli

 $1 \text{ MPa} = 1 \text{ N/mm}^2$

1 MPa ~ 10 kgf/cm²

 $1 \text{ kN/m}^3 \sim 100 \text{ kgf/m}^3$

Si utilizzano i seguenti principali simboli con le relative unità di misura normalmente adottate:

 $\begin{array}{llll} \gamma & \text{(gamma)} & \text{peso dell'unità di volume} & \text{(kN/m}^3) \\ & & \text{(sigma)} & \text{tensione normale} & \text{(N/mm}^2) \\ & & & \text{(tau)} & \text{tensione tangenziale} & \text{(N/mm}^2) \end{array}$

ε (epsilon) deformazione (m/m - adimensionale)

φ (fi) angolo di resistenza (° sessagesimali)

SOVRAPP. PEDONALE STAZIONE VIGNA DI VALLE IV04 - RAMPA1 D'ACCESSO ALLA PASSERELLA -Vigna di Valle PILE – Relazione di calcolo

COMMESSA LOTTO CODIFICA

DOCUMENTO

REV. FOGLIO

NR1J 00 D 29 CL IV0405 201 A 17 di 118

5 CARATTERISTICHE DEI MATERIALI

5.1 Calcestruzzo per fusto pila e pulvino

Classe C32/40			
R _{ck} =	40.00	MPa	Resistenza caratteristica cubica
$f_{ck} = 0.83 \; R_{ck} =$	33.20	MPa	Resistenza caratteristica cilindrica
$f_{cm} = f_{ck} + 8 =$	41.20	MPa	Valore medio resistenza cilindrica
α _{cc} =	0.85		Coeff. rid. per carichi di lunga durata
γм =	1.50	-	Coefficiente parziale di sicurezza SLU
$f_{cd} = \alpha_{cc} f_{ck}/\gamma_M =$	18.81	MPa	Resistenza di progetto
$f_{ctm} = 0.3 f_{ck}^{(2/3)} =$	3.10	MPa	Resistenza media a trazione semplice
$f_{cfm} = 1,2 f_{ctm} =$	3.72	MPa	Resistenza media a trazione per flessione
$f_{ctk} = 0.7 f_{ctm} =$	2.17	MPa	Valore caratteristico resistenza a trazione (frattile 5%)
$\sigma_c = 0,55 \; f_{ck} =$	18.26	MPa	Tensione limite in esercizio in comb. Rara (rif. §1.8.3.2.1 [3])
$\sigma_c = 0,40 \; f_{ck} =$	13.28	MPa	Tensione limite in esercizio in comb. quasi perm. (rif. §1.8.3.2.1 [3])
$E_{cm} = 22000 (f_{cm}/10)^{(0,3)} =$	33643.00	MPa	Modulo elastico di progetto
v =	0.20		Coefficiente di Poisson
$G_c = E_{cm} / (2(1+v)) =$	14018.00	MPa	Modulo elastico tangenziale di progetto
Condizioni ambientali =	Debolmer	nte aggre	ssive
Classe di esposizione =	XC4		
C =	4.00	cm	Copriferro minimo
w =	0.20	mm	Apertura massima fessure in esercizio in comb. Rara (rif. §1.8.3.2.4 [3])

SOVRAPP. PEDONALE STAZIONE VIGNA DI VALLE IV04 - RAMPA1 D'ACCESSO ALLA PASSERELLA -Vigna di Valle PILE – Relazione di calcolo

COMMESSA LOTTO CODIFICA

DOCUMENTO

REV. FOGLIO

Α

NR1J 00 D 29

CL

IV0405 201

18 di 118

5.2 Calcestruzzo per plinto di fondazione

Classe	C28/35
Classe	C28/35

R _{ck} =	35.00	MPa	Resistenza caratteristica cubica
$f_{ck} = 0.83 R_{ck} =$	29.05	MPa	Resistenza caratteristica cilindrica
$f_{cm} = f_{ck} + 8 =$	37.05	MPa	Valore medio resistenza cilindrica
$\alpha_{cc} =$	0.85		Coeff. rid. per carichi di lunga durata
γ _M =	1.50	-	Coefficiente parziale di sicurezza SLU
$f_{cd} = \alpha_{cc} \; f_{ck}/\gamma_M =$	16.46	MPa	Resistenza di progetto
$f_{ctm} = 0.3 f_{ck}^{(2/3)} =$	2.83	MPa	Resistenza media a trazione semplice
$f_{cfm} = 1,2 f_{ctm} =$	3.40	MPa	Resistenza media a trazione per flessione
$f_{ctk} = 0.7 f_{ctm} =$	1.98	MPa	Valore caratteristico resistenza a trazione (frattile 5%)
$\sigma_c = 0,55 \; f_{ck} =$	15.98	MPa	Tensione limite in esercizio in comb. Rara (rif. §1.8.3.2.1 [3])
$\sigma_c = 0,40 \; f_{ck} =$	11.62	MPa	Tensione limite in esercizio in comb. quasi perm. (rif. §1.8.3.2.1 [3])
$E_{cm} = 22000 (f_{cm}/10)^{(0,3)} =$	32588.00	MPa	Modulo elastico di progetto
v =	0.20		Coefficiente di Poisson
$G_c = E_{cm} / (2(1+ v) =$	13578.00	MPa	Modulo elastico tangenziale di progetto
Condizioni ambientali =	Ordinarie		
Classe di esposizione =	XC2		
C =	4.00	cm	Copriferro minimo
w =	0.30	mm	Apertura massima fessure in esercizio in comb. Rara (rif. §1.8.3.2.4 [3])

SOVRAPP. PEDONALE STAZIONE VIGNA DI VALLE IV04 - RAMPA1 D'ACCESSO ALLA PASSERELLA -Vigna di Valle

COMMESSA LOTTO CODIFICA DOCUMENTO

FOGLIO REV.

PILE – Relazione di calcolo

Classe C25/30

w =

NR1J 00 D 29 CL IV0405 201 Α 19 di 118

Apertura massima fessure in esercizio in comb. Rara

5.3 Calcestruzzo per pali di fondazione

R _{ck} =	30.00	MPa	Resistenza caratteristica cubica
$f_{ck} = 0.83 R_{ck} =$	24.90	MPa	Resistenza caratteristica cilindrica
$f_{cm} = f_{ck} + 8 =$	32.90	MPa	Valore medio resistenza cilindrica
$\alpha_{cc} =$	0.85		Coeff. rid. per carichi di lunga durata
γм =	1.50	-	Coefficiente parziale di sicurezza SLU
$f_{cd} = \alpha_{cc} \; f_{ck} / \gamma_M =$	14.11	MPa	Resistenza di progetto
$f_{ctm} = 0.3 f_{ck}^{(2/3)} =$	2.56	MPa	Resistenza media a trazione semplice
$f_{cfm} = 1,2 f_{ctm} =$	3.07	MPa	Resistenza media a trazione per flessione
$f_{ctk} = 0.7 f_{ctm} =$	1.79	MPa	Valore caratteristico resistenza a trazione (frattile 5%)
$\sigma_c = 0.55 f_{ck} =$	13.70	MPa	Tensione limite in esercizio in comb. Rara
00 - 0,00 lok -	10.70	IVII G	(rif. §1.8.3.2.1 [3])
$\sigma_c = 0.40 f_{ck} =$	9.96	MPa	Tensione limite in esercizio in comb. quasi perm.
			(rif. §1.8.3.2.1 [3])
$E_{cm} = 22000 (f_{cm}/10)^{(0,3)} =$	31447.00	MPa	Modulo elastico di progetto
v =	0.20		Coefficiente di Poisson
$G_c = E_{cm} / (2(1+v)) =$	13103.00	MPa	Modulo elastico tangenziale di progetto
Condizioni ambientali =	Ordinarie		
Classe di esposizione =	XC2		
C =	6.00	cm	Copriferro minimo

0.30

mm

(rif. §1.8.3.2.4 [3])

SOVRAPP. PEDONALE STAZIONE VIGNA DI VALLE IV04 - RAMPA1 D'ACCESSO ALLA PASSERELLA -Vigna di Valle PILE – Relazione di calcolo

COMMESSA LOTTO CODIFICA DOCUMENTO

REV. FOGLIO

NR1J 00 D 29 CL IV0405 201 A 20 di 118

5.4 Acciaio per barre di armatura

B450C			
$f_{yk} \ge$	450.00	MPa	Tensione caratteristica di snervamento
$f_{tk} \ge$	540.00	MPa	Tensione caratteristica di rottura
$(f_t / f_y)_k \ge$	1.15		
$(f_t / f_y)_k <$	1.35		
γ _s =	1.15	-	Coefficiente parziale di sicurezza SLU
$f_{yd} = f_{yk}/\gamma_s =$	391.30	MPa	Tensione caratteristica di snervamento
E _s =	210000.00	MPa	Modulo elastico di progetto
$\epsilon_{ ext{yd}} =$	0.20	%	Deformazione di progetto a snervamento
$\varepsilon_{uk} = (A_{gt})_k$	7.50	%	Deformazione caratteristica ultima
$\sigma_s = 0.75 \; f_{yk} =$	337.50	MPa	Tensione in esercizio in comb. Rara (rif. §1.8.3.2.1 [3])

SOVRAPP. PEDONALE STAZIONE VIGNA DI VALLE IV04 - RAMPA1 D'ACCESSO ALLA PASSERELLA -Vigna di Valle PILE – Relazione di calcolo

 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 NR1J
 00 D 29
 CL
 IV0405 201
 A
 21 di 118

6 CARATTERIZZAZIONE GEOTECNICA

Di seguito si riportano i modelli geotecnici considerati riportati nella relazione geotecnica generale allegata NR1J00D29GEGE0005001A.

• 9° Modello – Stazione di Vigna di Valle

Dalla pk 38+000 alla pk 39+497									
Descrizione	z iniz (m)	z fin (m)	spessore (m)	Peso di volume (kN/m³)	Tipo di terreno	Angolo di resistenza al taglio φ' (°)	C' (kPa)	Modulo elastico Eop (MPa)	K media (m/s)
Terreno vegetale sabbioso limoso con frammenti antropici	0	1	1		-	-	-	-	-
Limo sabbioso debolemente argilloso	1	3	2	17	GF	26	5	20	-
Sabbia limosa mediamnete addensata con presenza di ghiaia	3	19	16	17	GG	32	0	50	-
Sabbia debolemnete limosa con rarai clasti di litici vulcanici	19	30	11	17	GG	30	0	50	1,71*10-2

Profondità della falda: 35 m da p.c. – non interessa le fondazioni dell'opera

Categoria di suolo C

SOVRAPP. PEDONALE STAZIONE VIGNA DI VALLE IV04 - RAMPA1 D'ACCESSO ALLA PASSERELLA -Vigna di Valle PILE – Relazione di calcolo

COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
NR1J	00 D 29	CL	IV0405 201	Α	22 di 118

7 CRITERI PROGETTUALI

7.1 Vita Nominale

La vita nominale di progetto VN di un'opera è convenzionalmente definita come il numero di anni nel quale è previsto che l'opera, purché soggetta alla necessaria manutenzione, mantenga specifici livelli prestazionali. I valori minimi di VN da adottare per i diversi tipi di costruzione sono riportati nella Tab. 2.4.I.

 ${\bf Tab.~2.4.I-Valori~minimi~della~Vita~nominale~V}_{\rm N}~di~progetto~per~i~diversi~tipi~di~costruzioni$

	TIPI DI COSTRUZIONI	$egin{aligned} \mathbf{V_{alori}} & \mathbf{minimi} \\ \mathbf{di} & \mathbf{V_{N}} & (\mathbf{anni}) \end{aligned}$
1	Costruzioni temporanee e provvisorie	10
2	Costruzioni con livelli di prestazioni ordinari	50
3	Costruzioni con livelli di prestazioni elevati	100

Nel presente caso l'opera viene inserita nella seguente tipologia di costruzione:

2) Costruzioni con livelli di prestazioni ordinari, per cui si considera vita nominale 75 anni.

7.2 Classe d'uso

Con riferimento alle conseguenze di una interruzione di operatività o di un eventuale collasso, l'opera appartiene alla seguente classe d'uso:

Classe II: Costruzioni il cui uso preveda normali affollamenti, senza contenuti pericolosi per l'ambiente e senza funzioni pubbliche e sociali essenziali. Industrie con attività non pericolose per l'ambiente. Ponti, opere infrastrutturali, reti viarie non ricadenti in Classe d'uso III o in Classe d'uso IV, reti ferroviarie la cui interruzione non provochi situazioni di emergenza. Dighe il cui collasso non provochi conseguenze rilevanti.

Tab. 2.4.II - Valori del coefficiente d'uso C,

CLASSE D'USO	I	II	Ш	IV
COEFFICIENTE C _U	0,7	1,0	1,5	2,0

Il coefficiente d'uso è pari a: 1.5.

7.3 Periodo di riferimento per l'azione sismica

Le azioni sismiche sulle costruzioni vengono valutate in relazione ad un periodo di riferimento VR che si ricava, per ciascun tipo di costruzione, moltiplicandone la vita nominale di progetto VN per il coefficiente d'uso CU. Pertanto:

SOVRAPP. PEDONALE STAZIONE VIGNA DI VALLE IV04 - RAMPA1 D'ACCESSO ALLA PASSERELLA -Vigna di Valle PILE – Relazione di calcolo

COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
NR1J	00 D 29	CL	IV0405 201	Α	23 di 118

 $V_R = 75 \times 15 = 112.5 \text{ anni}$

Il valore di probabilità di superamento del periodo di riferimento P_{VR} , cui riferirsi per individuare l'azione sismica agente è:

 $P_{VR}(SLV) = 10\%$

II periodo di ritorno dell'azione sismica $T_R = 1068$

SOVRAPP. PEDONALE STAZIONE VIGNA DI VALLE IV04 - RAMPA1 D'ACCESSO ALLA PASSERELLA -Vigna di Valle PILE – Relazione di calcolo

 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 NR1J
 00 D 29
 CL
 IV0405 201
 A
 24 di 118

8 ANALISI DEI CARICHI DI PROGETTO

Si riporta seguire l'analisi dei carichi dell'impalcato a struttura metallica e della pila stessa.

8.1 Pesi propri strutturali (g1)

Peso proprio acciaio

Il peso proprio strutturale delle travi è stato valutato fornendone le corrette dimensioni (vedi paragr. precedente) e la relativa densità di peso (γ = 78,5 kN/m3) all'interno del software di calcolo impigato per la realizzazione del modello E.F dell'impalcato.

Si riporta a seguire il computo del peso complessivo della carpenteria metallica che costituisce le travi principali, i trasversi ed i controventi di piano:

	Travi prir	ncipali (CM)										
	Htot	L	Ala sup		Anima		Ala inf		Α	V	Р	tot
			Bsup	tsup	hw	tw	Binf	tinf				
	mm	mm	mm	mm	mm	mm	mm	mm	mm2	m3	kN	
C1	1000	8225	300	36	928	19	300	36	39232	0.323	25	
C2	1000	10550	300	36	928	19	300	36	39232	0.414	32	
С3	1000	8225	300	36	928	19	300	36	39232	0.323	25	83.2
												kN
	Diaframr	na appoggio										
	Htot	L	Ala sup		Anima		Ala inf		Α	V	Р	tot
			Bsup	tsup	hw	tw	Binf	tinf				
	mm	mm	mm	mm	mm	mm	mm	mm	mm2	m3	kN	
HEB260	260	3000	260	17.5	225	10	260	17.5	11350	0.03	2.7	
									0	0.00	0	2.7
												kN
	Diaframr	ni correnti										
	Htot	L	Ala sup		Anima		Ala inf		Α	V	Р	tot
			Bsup	tsup	hw	tw	Binf	tinf				
	mm	mm	mm	mm	mm	mm	mm	mm	mm2	m3	kN	
HEA220	210	3000	220	11	188	7	220	11	6156	0.02	1.450	
									0	0.00	0	1.4
												kN
	Controve	enti										
	num	Sez	Asez	L	Н	В	sp		Α	V	Р	tot
			mm2	mm	mm	mm	mm		mm2	m3	kN	
inferiori	22	L80X80X8	1230	4000					1230	0.108	8	
									0	0.000	0	8.5
												kN
	num	peso unit.	peso tot.	tot								
		kN	kN									
Travi principali	2	83.2	166.3									
diaframmi app.	2	2.7	5.3									
diaframmi corr.	10	1.4	14.5									
controventi	1	8.5	8.5	194.6								
				kN								

SOVRAPP. PEDONALE STAZIONE VIGNA DI VALLE IV04 - RAMPA1 D'ACCESSO ALLA PASSERELLA -Vigna di Valle PILE – Relazione di calcolo

COMMESSA LOTTO CODIFICA DOCUMENTO REV. FOGLIO

NR1J 00 D 29 CL IV0405 201 A 25 di 118

Per tener conto di piastrame vario, controventi e bulloni, il peso di cui sopra è stato incrementato di un fattore pari a 1,1, pertanto il peso complessivo della carpenteria metallica si assume pari a 214 kN, pari a 7.9 kN/m.

Peso proprio soletta

La soletta getta su lamiera grecata presenta uno spessore equivalente pari a 6.8cm, cui corrisponde un peso pari a 1.70 kN/m2.

Tale azione è stata applicata sugli elementi frame che rappresentano i trasversi stessi, moltiplicata per un coefficiente pari all'interasse tra due elementi adiacenti.

Peso proprio lamiera grecata

Il peso della lamiera grecata di tipo HI-BOND A55-P600 (sp. 0.7mm) è a 9.15 kg/m2, pari a 0.092 kN/m2.

Tale azione è stata applicata sugli elementi frame che rappresentano i trasversi stessi, moltiplicata per un coefficiente pari all'interasse tra due elementi adiacenti.

8.2 Sovraccarichi permanenti portati (g2)

Barriere laterali

Si assume un peso a metro lineare pari a 0.5 kN/m per ogni allineamento longitudinale. Tale azione è stata applicata sugli elementi frame che rappresentano le travi principali.

Carter di finitura

Si assume un peso a metro lineare pari a 1.0 kN/m per ogniallineamento longitudinale. Tale azione è stata applicata sugli elementi frame che rappresentano le travi principali.

Massetto delle pendenze

Lo spessore minimo del massetto è pari a 4cm e si assume una pendenza trasversale pari a 1%. Lo spessore medio del massetto si aasum quindi pari a 1.25 kN/m2. Tale azione è stata applicata sugli elementi frame che rappresentano i trasversi stessi, moltiplicata per un coefficiente pari all'interasse tra due elementi adiacenti.

Pavimentazione

La pavimentazione è costituita da uno strato di legno WPC (spessore 2cm) poggiato su un bagattelo in profili di alluminio (h = 3cm) posti ad interasse 60cm. Il peso complessivo della pavimentazione è 25 kg/m2, pari 0.25 kN/m2. Tale azione è stata applicata sugli elementi frame che rappresentano i trasversi stessi, moltiplicata per un coefficiente pari all'interasse tra due elementi adiacenti.

Peso proprio della pila

Pila 1 195 kN Pila 2 449 kN

SOVRAPP. PEDONALE STAZIONE VIGNA DI VALLE IV04 - RAMPA1 D'ACCESSO ALLA PASSERELLA -Vigna di Valle PILE – Relazione di calcolo

 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 NR1J
 00 D 29
 CL
 IV0405 201
 A
 26 di 118

8.3 Sovraccarichi accidentali (q1)

Folla compatta

Ai fini del dimensionamento e della verifica delle travi è stata considerata la presenza di folla q1 = 5kN/m2 su l'impalcato e per una larghezza pari a 2.70m (larghezza calpestabile).

Tale azione è stata applicata sugli elementi frame che rappresentano i trasversi stessi, moltiplicata per un coefficiente pari all'interasse tra due elementi adiacenti.

Il carico della folla espresso a metro lineare di impalcato è pari a 5.00 kN/m2 x 2.70 = 13.50 kN/m.

Sono state considerate due configurazioni di carico della folla, in particolare:

- q1_Nmax = folla presente su tutte le 4 rampe presenti, al fine di massimizzare il carico verticale;
- q1_Mtmax = folla presente su una sola coppia di rampe (nord o sud), al fine di massimizzare il momento trasversale.

8.4 Azione del vento sull'impalcato (q5)

Cautelativamente si considera una pressione del vento di 2.5 KN/m² agente, per l'intero sviluppo longitudinale della passerella, sulla sola trave esposta e considerando un coefficiente di esposizione unitario.

Tale azione viene assegnata alle travi come carico uniformemente distribuito pari a:

h = 3.3 m altezza superficie esposta;

b = 1.2 m distanza tra baricentro superficie esposta e baricentro impalcato;

i = 3.24 m interasse travi principali;

f5 = 2.5 Kn/m2 x 3.3m = 8.25 KN/m forza orizzontale trasversale

Mq5 = $8.25 \text{ kN/m} \times 1.2 \text{ m}$ = 9.9 kNm/m momento torcente

q5 = $9.9 \text{ kNm/m} / 3.24 \text{m} = \pm 3.1 \text{ KN/m}$ carico uniforme verticale

8.5 Azione del vento sulla pila (q5.1)

Cautelativamente si considera una pressione del vento di 2.5 KN/m2 agente sulle superfici frontale e laterale della pila, considerando un coefficiente di esposizione unitario.

Tale azione viene assegnata alla pila come carico orizzontale uniformemente distribuito pari a:

PILA 1 (dlong = 1.2m; dtrasv = 1.3m)

f5.1_long = 2.5 Kn/m2 x 1.3m = 3.25 KN/m forza orizzontale longitudinale f5.1 trasv = 2.5 Kn/m2 x 1.2m = 3.0 KN/m forza orizzontale trasversale

SOVRAPP. PEDONALE STAZIONE VIGNA DI VALLE IV04 - RAMPA1 D'ACCESSO ALLA PASSERELLA -Vigna di Valle PILE – Relazione di calcolo

 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 NR1J
 00 D 29
 CL
 IV0405 201
 A
 27 di 118

PILA 2 (dlong = 1.2m; dtrasv = 2.2m)

 $f5.1_long = 2.5 \text{ Kn/m2 x } 2.2 \text{m} = 5.5 \text{ KN/m}$ forza orizzontale longitudinale $f5.1_trasv = 2.5 \text{ Kn/m2 x } 1.2 \text{m} = 3.0 \text{ KN/m}$ forza orizzontale trasversale

8.6 Variazione termica non uniforme (ε3_DT)

In aggiunta alla variazione termica uniforme, si considera un gradiente di temperatura di 10 °C fra intradosso soletta ed estradosso travi, considerando i due casi possibili: intradosso a temperatura superiore rispetto all'estradosso e intradosso a temperatura inferiore rispetto all'estradosso.

8.7 Azione sismica (q6)

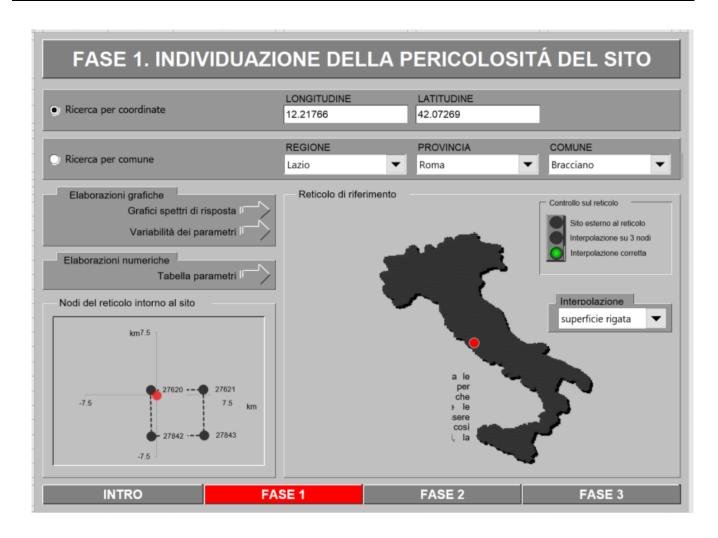
Le opere in oggetto sono progettate per una vita nominale VN = 75 anni ed una classe d'uso III a cui corrisponde un coefficiente d'uso CU = 1.5.

L'azione sismica di progetto è definita per lo Stato Limite di Salvaguardia della Vita (SLV). Il periodo di ritorno di quest'ultima - in funzione della vita utile, della classe d'uso, del tipo di costruzione e dello stato limite di riferimento è di 1068 anni.

Dato il valore del periodo di ritorno suddetto, tramite la mappatura messa a disposizione in rete dall'Istituto Nazionale di Geofisica e Vulcanologia (INGV), è possibile definire i valori di ag, F0, T*c.

- ag → accelerazione massima al sito;
- F0 → valore massimo del fattore di amplificazione dello spettro in accelerazione orizzontale;
- T*c → periodo di inizio del tratto a velocità costante dello spettro in accelerazione orizzontale;
- S \rightarrow coefficiente che comprende l'effetto dell'amplificazione stratigrafica (Ss) e dell'amplificazione topografica (St).

Cautelativamente si assume una categoria di sottosuolo C.



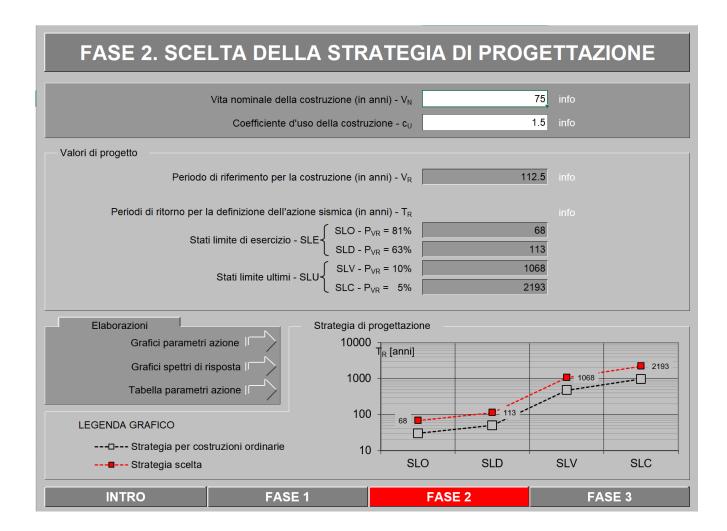
SOVRAPP. PEDONALE STAZIONE VIGNA DI VALLE IV04 - RAMPA1 D'ACCESSO ALLA PASSERELLA - Vigna di Valle

PILE - Relazione di calcolo

 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 NR1J
 00 D 29
 CL
 IV0405 201
 A
 28 di 118

SLATO	T _R	a_g	F _o	Tc
LIMITE	[anni]	[g]	[-]	[s]
SLO	68	0.040	2.670	0.270
SLD	113	0.046	2.699	0.288
SLV	1068	0.077	2.978	0.365
SLC	2193	0.088	3.046	0.405



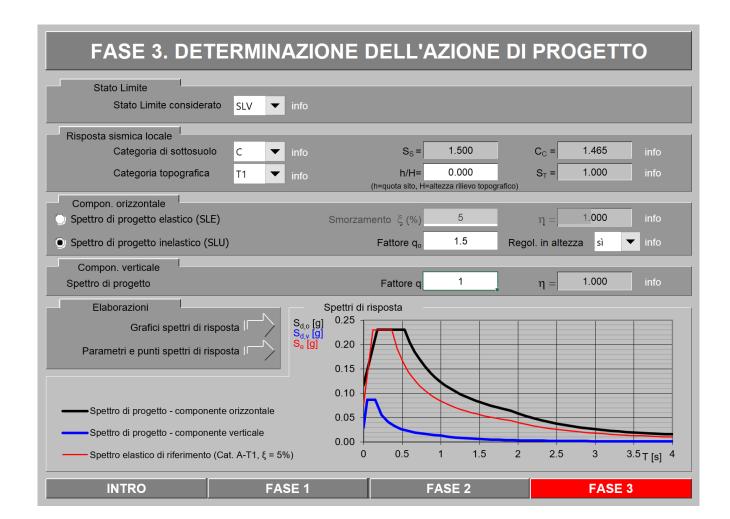
SOVRAPP. PEDONALE STAZIONE VIGNA DI VALLE IV04 - RAMPA1 D'ACCESSO ALLA PASSERELLA -Vigna di Valle

PILE - Relazione di calcolo

 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 NR1J
 00 D 29
 CL
 IV0405 201
 A
 29 di 118

SOVRAPP. PEDONALE STAZIONE VIGNA DI VALLE IV04 - RAMPA1 D'ACCESSO ALLA PASSERELLA -Vigna di Valle PILE – Relazione di calcolo


NR1J 00 D 29 CL IV0405 201 A 30 di 118

DOCUMENTO

REV.

FOGLIO

CODIFICA

COMMESSA

LOTTO

Si adotta un valore del fattore di struttura pari a q=1.5.

8.8 Resistenza parassita dei vincoli (q7)

Si assume un coefficiente di attrito pari a 5%.

Tale azione si ignora nel caso della pila 2, fissa longitudinalmente.

SOVRAPP. PEDONALE STAZIONE VIGNA DI VALLE IV04 - RAMPA1 D'ACCESSO ALLA PASSERELLA -Vigna di Valle PILE – Relazione di calcolo

COMMESSA LOTTO CODIFICA DOCUMENTO REV. FOGLIO

NR1J 00 D 29 CL IV0405 201 A 31 di 118

9 ANALISI SISMICA DELLA PILA

9.1 Masse sismiche

Il peso dell'impalcato (pesi propri strutturali g1 + permanenti portati g2) è pari a 20.8 kN/m.

Il peso della folla compatta è pari a 13.5 kN/m.

Il peso totale dell'impalcato è pari a 562 kN per ogni rampa.

Il peso totale della folla compatta (presente sull'intero sviluppo della rampa) è pari a 365 kN per ogni rampa.

Complessivamente sono presenti 4 rampe che superano un dislivello totale pari a 6.8m ca.

Si assume il seguente schema vincolare delle rampe in relazione alle pile 1 e 2:

- la prima rampa a quota inferiore si considera in direzione longitudinale fissa a terra ed in direzione trasversale fissa a terra (ad una estremità) ed alla pila 1 (all'estremità opposta);
- le restanti tre rampe, si considerano in direzione longitudinale fisse alla pila 2 ed in direzione trasversale fisse alla pila 2 (ad una estremità) ed alla pila 1 (altra estremità).

Alla pila 2 compete quindi il 100% della massa di tre rampe in direzione longitudinale ed il 50% della loro massa in direzione trasversale.

Alla pila 1 compete quindi lo 0% della massa in direzione longitudinale ed il 50% della massa di quattro rampe in direzione trasversale.

Conservativamente le masse sopra indicate saranno considerate concentrate alla testa della corrispondente pila.

Il peso della pila 1 è pari a 195 kN.

Il peso della pila 2 è pari a 449 kN.

9.2 Analisi sismica - Pila 2

Masse sismiche afferenti agli impalcati

Massa impalcato = 1686 kNMassa folla (psi = 0.2) = 219 kN

Masse sismiche afferenti alla pila

Massa pila = 449 kNMassa efficace pila = 224 kN

SOVRAPP. PEDONALE STAZIONE VIGNA DI VALLE IV04 - RAMPA1 D'ACCESSO ALLA PASSERELLA -Vigna di Valle PILE – Relazione di calcolo

 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 NR1J
 00 D 29
 CL
 IV0405 201
 A
 32 di 118

Masse totali

in direzione longitudinale = 2128 kN in direzione trasversale = 1176 kN

Analisi statica lineare

Ac	2.64	m2	Area sezione della pila
H1	6.8	m	Altezzza fusto pila
H2		m	Altezza baggioli
H3		m	Altezza appoggi
Hpila	6.8	m	
yg_imp	0	m	posizione baricentro impalcato
Ecm	33722	N*/mm2	Modulo elastico del cls

Dir. longitudinale

llong	0.317	m4	Inerzia della sezione della pila
Wlong	2128	kN/m	Peso associato alla massa sismica
Mlong	217	ton	Massa sismica
Lvlong	6.80	m	Luce di taglio longitudinale
Klong	1.0E+05	kN/m	Rigidezza della pila (non fessurata)
Tlong	0.290	sec	Periodo dell'oscillatore semplice
Sdlong	0.229	g	Accelerazione spettrale
Flong	488	kN	Azione sismica longitudinale

Dir. trasversale

Itrasv	1.06	m4	Inerzia della sezione della pila
Wtrasv	1176	ton	Peso associato alla massa sismica
Mtrasv	120	ton	Massa sismica
Lvtrasv	6.80	m	Luce di taglio trasversale
Ktrasv	3.4E+05	kN/m	Rigidezza della pila (non fessurata)
Ttrasv	0.118	sec	Periodo dell'oscillatore semplice
Sdtrasv	0.191	g	Accelerazione spettrale
Ftrasv	224	kN	Azione sismica trasversale

SOVRAPP. PEDONALE STAZIONE VIGNA DI VALLE IV04 - RAMPA1 D'ACCESSO ALLA PASSERELLA -Vigna di Valle PILE – Relazione di calcolo

 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 NR1J
 00 D 29
 CL
 IV0405 201
 A
 33 di 118

9.3 Analisi sismica - Pila 1

Masse sismiche afferenti agli impalcati

Massa impalcato = 2248 kNMassa folla (psi = 0.2) = 292 kN

Masse sismiche afferenti alla pila

Massa pila = 195 kNMassa efficace pila = 98 kN

Masse totali

in direzione longitudinale = 98 kN in direzione trasversale = 1368 kN

Analisi statica lineare

Ac	1.56	m2	Area sezione della pila
H1	5.00	m	Altezzza fusto pila
H2	0.00	m	Altezza baggioli
H3	0.00	m	Altezza appoggi
Hpila	5.0	m	
yg_imp	0.00	m	posizione baricentro impalcato

Ecm 33722 N*/mm2 Modulo elastico del cls

Dir. longitudinale

llong	0.187	m4	Inerzia della sezione della pila
Wlong	98	kN/m	Peso associato alla massa sismica
Mlong	10	ton	Massa sismica
Lvlong	5.00	m	Luce di taglio longitudinale
Klong	1.5E+05	kN/m	Rigidezza della pila (non fessurata)
Tlong	0.051	sec	Periodo dell'oscillatore semplice
Sdlong	0.148	g	Accelerazione spettrale

Flong kN Azione sismica longitudinale

SOVRAPP. PEDONALE STAZIONE VIGNA DI VALLE IV04 - RAMPA1 D'ACCESSO ALLA PASSERELLA -Vigna di Valle PILE – Relazione di calcolo

NR1J 00 D 29 CL IV0405 201 Α 34 di 118

DOCUMENTO

CODIFICA

FOGLIO

REV.

COMMESSA LOTTO

Dir. trasversale

Itrasv	0.22	m4	Inerzia della sezione della pila
Wtrasv	1367	ton	Peso associato alla massa sismica
Mtrasv	139	ton	Massa sismica
Lvtrasv	5.00	m	Luce di taglio trasversale
Ktrasv	1.8E+05	kN/m	Rigidezza della pila (non fessurata)
Ttrasv	0.176	sec	Periodo dell'oscillatore semplice
Sdtrasv	0.228	g	Accelerazione spettrale
Ftrasv	311	kN	Azione sismica trasversale

SOVRAPP. PEDONALE STAZIONE VIGNA DI VALLE IV04 - RAMPA1 D'ACCESSO ALLA PASSERELLA -Vigna di Valle PILE – Relazione di calcolo

COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
NR1J	00 D 29	CL	IV0405 201	Α	35 di 118

10 COMBINAZIONI DI CARICO

In linea con quanto riportato nel quadro normativo vigente, le azioni descritte nei paragrafi precedenti, sono combinate nel modo seguente:

• combinazione fondamentale (SLU):

$$\gamma_{\text{G1}} \cdot \textbf{G}_{\text{1}} + \gamma_{\text{G2}} \cdot \textbf{G}_{\text{2}} + \gamma_{\text{p}} \cdot \textbf{P} + \gamma_{\text{O1}} \cdot \textbf{Q}_{\text{k1}} + \gamma_{\text{O2}} \cdot \psi_{\text{02}} \cdot \textbf{Q}_{\text{k2}} + \gamma_{\text{O3}} \cdot \psi_{\text{03}} \cdot \textbf{Q}_{\text{k3}} + \dots$$

• combinazione sismica:

$$E + G_1 + G_2 + P + \psi_{21} \cdot Q_{k1} + \psi_{22} \cdot Q_{k2} + ...$$

• combinazione eccezionale:

$$G_1 + G_2 + P + A_d + \psi_{21} \cdot Q_{k1} + \psi_{22} \cdot Q_{k2} + ...$$

• combinazione Rara (SLE irreversibile):

$$G_1 + G_2 + P + Q_{k1} + \psi_{02} \cdot Q_{k2} + \psi_{03} \cdot Q_{k3} + ...$$

• combinazione Frequente (SLE reversibile):

$$G_1 + G_2 + P + \psi_{11} \cdot Q_{k1} + \psi_{22} \cdot Q_{k2} + \psi_{23} \cdot Q_{k3} + \dots$$

combinazione Quasi Permanente (SLE per gli effetti a lungo termine):

$$G_1 + G_2 + P + \psi_{21} \cdot Q_{k1} + \psi_{22} \cdot Q_{k2} + \psi_{23} \cdot Q_{k3} + \dots$$

Ai fini delle verifiche degli stati limite di esercizio si definiscono le seguenti combinazioni:

Rara) \rightarrow G1+G2 +Q_{k1}+ \sum_{i} \ $_{i}$ \ $_{i}$ \ $_{i}$ \ $_{i}$ \ $_{i}$ \ $_{i}$

Frequente) \rightarrow $G_1+G_2+\psi_{11}\cdot Q_{k1}+\sum_i\psi_{2i}\cdot Q_{ki}$

Quasi permanente) \rightarrow G₁+G₂ + ψ ₂₁ ·Q_{k1}+ $\sum_i \psi$ _{2i}·Q_{ki}

Sono prese in considerazione le seguenti verifiche agli stati limite ultimi:

SLU di tipo Geotecnico (GEO), relative a condizioni di:

Collasso per carico limite dell'insieme fondazione – terreno;

• SLU di tipo strutturale (STR), relative a condizioni di:

Raggiungimento della resistenza negli elementi strutturali.

• Le verifiche sono svolte considerando il seguente approccio:

Approccio 2:

A1 + M1 + R3

SOVRAPP. PEDONALE STAZIONE VIGNA DI VALLE IV04 - RAMPA1 D'ACCESSO ALLA PASSERELLA -Vigna di Valle PILE – Relazione di calcolo

COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
NR1J	00 D 29	CL	IV0405 201	Α	36 di 118

Tale approccio prevede un'unica combinazione di gruppi di coefficienti, da adottare sia nelle verifiche strutturali che nelle verifiche geotecniche.

Tab. 6.2.II - Coefficienti parziali per i parametri geotecnici del terreno

Parametro	Grandezza alla quale applicare il coefficiente parziale	Coefficiente parziale γ_{M}	(MI)	(M2)
Tangente dell'angolo di resi- stenza al taglio	$\tan {\phi'}_k$	$\gamma_{\phi'}$	1,0	1,25
Coesione efficace	c′ _k	γe	1,0	1,25
Resistenza non drenata	c _{uk}	γα	1,0	1,4
Peso dell'unità di volume	γγ	γ_{γ}	1,0	1,0

Tab. 6.4.I – Coefficienti parziali γ_R per le verifiche agli stati limite ultimi di fondazioni superficiali

Verifica	Coefficiente	
	parziale	
	(R3)	
Carico limite	$\gamma_R = 2.3$	
Scorrimento	$\gamma_R = 1.1$	

Tabella 1: Coefficienti parziali per i parametri geotecnici del terreno

Per la condizione sismica, la combinazione per gli stati limite ultimi da prendere in considerazione è: Combinazione sismica \rightarrow E+G₁+G₂+ $\sum_{i}|\psi_{2i}\cdot Q_{ki}|$

A seguire si riporta la tabella dei coefficienti delle combinazioni dei carichi elementari.

SOVRAPP. PEDONALE STAZIONE VIGNA DI VALLE IV04 - RAMPA1 D'ACCESSO ALLA PASSERELLA -Vigna di Valle PILE – Relazione di calcolo

COMMESSA LOTTO FOGLIO CODIFICA DOCUMENTO REV. NR1J 00 D 29 CL IV0405 201 37 di 118 Α

Coefficienti combinazione

	g1	82	q1_Mt_max	q1_N_max	q5	e3_DT	SISM_LONG_q1.5	SISM_TRASV_q1.5	SISM_VERT_q1
SLE_1.1	1	1	1	0	0.6	0.6	0	0	0
SLE_2.1	1	1	0	1	0.6	0.6	0	0	0
SLE_1.2	1	1	1	0	-0.6	-0.6	0	0	0
SLE_2.2	1	1	0	1	-0.6	-0.6	0	0	0
SLU_1.1	1.35	1.5	1.5	0	0.72	0.9	0	0	0
SLU_2.1	1.35	1.5	0	1.5	0.72	0.9	0	0	0
SLU_1.2	1.35	1.5	1.5	0	-0.72	-0.9	0	0	0
SLU_2.2	1.35	1.5	0	1.5	-0.72	-0.9	0	0	0
GEO_1.1	1	1.3	1.25	0	0.78	0.78	0	0	0
GEO_2.1	1	1.3	0	1.25	0.78	0.78	0	0	0
GEO_1.2	1	1.3	1.25	0	-0.78	-0.78	0	0	0
GEO_2.2	1	1.3	0	1.25	-0.78	-0.78	0	0	0
SLV1_long_z+	1	1	0.2	0	0	0.5	1	0.3	0.3
SLV2_long_z+	1	1	0	0.2	0	0.5	1	0.3	0.3
SLV1_trasv_z+	1	1	0.2	0	0	0.5	0.3	1	0.3
SLV2_trasv_z+	1	1	0	0.2	0	0.5	0.3	1	0.3
SLV1_vert_z+	1	1	0.2	0	0	0.5	0.3	0.3	1
SLV2_vert_z+	1	1	0	0.2	0	0.5	0.3	0.3	1
SLV1_long_z-	1	1	0.2	0	0	-0.5	1	0.3	-0.3
SLV2_long_z-	1	1	0	0.2	0	-0.5	1	0.3	-0.3
SLV1_trasv_z-	1	1	0.2	0	0	-0.5	0.3	1	-0.3
SLV2_trasv_z-	1	1	0	0.2	0	-0.5	0.3	1	-0.3
SLV1_vert_z-	1	1	0.2	0	0	-0.5	0.3	0.3	-1
SLV2_vert_z-	1	1	0	0.2	0	-0.5	0.3	0.3	-1

SOVRAPP. PEDONALE STAZIONE VIGNA DI VALLE IV04 - RAMPA1 D'ACCESSO ALLA PASSERELLA - Vigna di Valle

 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 NR1J
 00 D 29
 CL
 IV0405 201
 A
 38 di 118

PILE – Relazione di calcolo

11 ANALISI DELLE SOLLECITAZIONI - PILA 2

11.1 Reazioni vincolari elementari trasmesse dall'impalcato

Appoggi a q.ta +6.80m

	Flong	Ftrasv	Nvert	Mtrasv	Mlong	Mtorc
	KN	KN	KN	kNm	kNm	kNm
g1	0	0	-85	110	0	0
g2	0	0	-55	72	0	0
q1_Mt_max	0	0	-90	117	0	0
q1_Nmax	0	0	-90	117	0	0
q5	0	112	-40	0	0	0
SISM_LONG_q1.5	488	0	0	0	0	0
SISM_TRASV_q1.5	0	224	0	0	0	0
SISM_VERT_q1	0	0	-82	0	0	0

Appoggi a q.ta +3.30m

	Flong	Ftrasv	Nvert	Mtrasv	Mlong	Mtorc
	KN	KN	KN	kNm	kNm	kNm
g1	0	0	-170	0	0	0
g2	0	0	-111	0	0	0
q1_Mt_max	0	0	-90	117	0	0
q1_Nmax	0	0	-180	0	0	0
q5	0	224	-81	0	0	0

11.2 Sollecitazioni elementari riportate al baricentro della sezione di base della pila

Appoggi a q.ta +6.80m

	Flong	Ftrasv	Nvert	Mtrasv	Mlong	Mtorc
	KN	KN	KN	kNm	kNm	kNm
g1	0	0	-85	110		
g2	0	0	-55	72		
q1_Mt_max	0	0	-90	117		
q1_Nmax	0	0	-90	117		
q5	0	112	-40	762		
SISM_LONG_q1.5	488	0	0		3318	
SISM_TRASV_q1.5	0	224	0	1525		
SISM_VERT_q1	0	0	-82			

SOVRAPP. PEDONALE STAZIONE VIGNA DI VALLE IV04 - RAMPA1 D'ACCESSO ALLA PASSERELLA -Vigna di Valle PILE – Relazione di calcolo

COMMESSA LOTTO

CODIFICA

DOCUMENTO

REV. FOGLIO

NR1J 00 D 29 CL IV0405 201 A 39 di 118

Appoggi a q.ta +3.30m

	Flong	Ftrasv	Nvert	Mtrasv	Mlong	Mtorc
	KN	KN	KN	kNm	kNm	kNm
g1	0	0	-170	0		
g2	0	0	-111	0		
q1_Mt_max	0	0	-90	117		
q1_Nmax	0	0	-180	0		
q5	0	224	-81	740		

Seguono le sollecitazioni elementari sommate ed incrementate del peso della pila stessa (g1_pila) e della sua inerzia verticale (Iz_pila).

g1_pila 449 kN peso proprio pila lz_pila 13 kN inerzia verticale pila

OutputCase	Flong	Ftrasv	Nvert	Mtrasv	Mlong	Mtorc
Text	KN	KN	KN	kNm	kNm	kNm
g1 (+g1_pila)	0	0	-704	110	0	0
g2	0	0	-166	72	0	0
q1_Mt_max	0	0	-180	234	0	0
q1_Nmax	0	0	-270	117	0	0
q5	0	336	-121	1502	0	0
e3_DT	0	0	0	0	0	0
SISM_LONG_q1.5	488	0	0	0	3318	0
SISM_TRASV_q1.5	0	224	0	1525	0	0
SISM_VERT_q1 (+Iz_pila)	0	0	-95	0	0	0

11.3 Sollecitazioni combinate riportate al baricentro della sezione di base della pila

	Flong	Ftrasv	Fvert	Mtrasv	Mlong	Mtorc
	kN	kN	kN	kNm	kNm	kNm
SLE_1.1	0	202	-1122	1317	0	0
SLE_2.1	0	202	-1212	1200	0	0
SLE_1.2	0	-202	-977	-485	0	0
SLE_2.2	0	-202	-1067	-602	0	0
SLU_1.1	0	242	-1556	1689	0	0
SLU_2.1	0	242	-1690	1513	0	0
SLU 1.2	0	-242	-1381	-473	0	0

SOVRAPP. PEDONALE STAZIONE VIGNA DI VALLE IV04 - RAMPA1 D'ACCESSO ALLA PASSERELLA -Vigna di Valle

COMMESSA LOTTO CODIFICA

DOCUMENTO

REV. FOGLIO

PILE – Relazione di calcolo

NR1J 00 D 29 CL IV0405 201 A 40 di 118

	Flong	Ftrasv	Fvert	Mtrasv	Mlong	Mtorc
	kN	kN	kN	kNm	kNm	kNm
SLU_2.2	0	-242	-1516	-649	0	0
GEO_1.1	0	262	-1238	1667	0	0
GEO_2.1	0	262	-1351	1521	0	0
GEO_1.2	0	-262	-1050	-675	0	0
GEO_2.2	0	-262	-1162	-821	0	0
SLV1_long_z+	488	67	-934	686	3318	0
SLV2_long_z+	488	67	-952	663	3318	0
SLV1_trasv_z+	146	224	-934	1754	995	0
SLV2_trasv_z+	146	224	-952	1730	995	0
SLV1_vert_z+	146	67	-1001	686	995	0
SLV2_vert_z+	146	67	-1019	663	995	0
SLV1_long_z-	488	67	-877	686	3318	0
SLV2_long_z-	488	67	-895	663	3318	0
SLV1_trasv_z-	146	224	-877	1754	995	0
SLV2_trasv_z-	146	224	-895	1730	995	0
SLV1_vert_z-	146	67	-810	686	995	0
SLV2_vert_z-	146	67	-828	663	995	0

11.4 Sollecitazioni combinate riportate al baricentro della sezione di base del plinto

Le sollecitazioni sono riportate al baricentro della sezione di base del plinto ed incrementate del peso del plinto stesso (g1_plinto) e della sua inerzia (lh_plinto e lz_plinto).

Si considera inoltre una altezza di terreno di ricoprimento pari a 0.5m ed il peso ad esso associato.

Plinto di fondazione

dlong	3.6	m	g1_plinto	324	kN	PGA_h	0.116	g
dtrasv	3.6	m	g1_terr	94	kN	PGA_v	0.029	g
hpl	1.0	m	g1_tot	418	kN	Ih_plinto	37	kΝ
hterr	0.5	m				Iz_plinto	9	kΝ

 $\begin{array}{cccc} \gamma terr & 18 & kN/m3 \\ \text{Apila} & \textcolor{red}{2.64} & m2 \end{array}$

SOVRAPP. PEDONALE STAZIONE VIGNA DI VALLE IV04 - RAMPA1 D'ACCESSO ALLA PASSERELLA -Vigna di Valle PILE – Relazione di calcolo

COMMESSA LOTTO FOGLIO CODIFICA DOCUMENTO REV. NR1J 00 D 29 CL IV0405 201 Α 41 di 118

	Flong	Ftrasv	Fvert	Mtrasv	Mlong	Mtorc
	F1	F2	F3	M1	M2	M3
	kN	kN	kN	kNm	kNm	kNm
SLE_1.1	0	202	-1540	1519	0	0
SLE_2.1	0	202	-1630	1402	0	0
SLE_1.2	0	-202	-1395	-687	0	0
SLE_2.2	0	-202	-1485	-803	0	0
SLU_1.1	0	242	-1974	1931	0	0
SLU_2.1	0	242	-2109	1755	0	0
SLU_1.2	0	-242	-1799	-716	0	0
SLU_2.2	0	-242	-1934	-891	0	0
GEO_1.1	0	262	-1657	1930	0	0
GEO_2.1	0	262	-1769	1783	0	0
GEO_1.2	0	-262	-1468	-937	0	0
GEO_2.2	0	-262	-1580	-1083	0	0
SLV1_long_z+	488	67	-1352	754	3806	0
SLV2_long_z+	488	67	-1370	730	3806	0
SLV1_trasv_z+	146	224	-1352	1978	1142	0
SLV2_trasv_z+	146	224	-1370	1955	1142	0
SLV1_vert_z+	146	67	-1419	754	1142	0
SLV2_vert_z+	146	67	-1437	730	1142	0
SLV1_long_z-	574	85	-1298	835	4205	-1
SLV2_long_z-	548	111	-1316	822	4192	-1
SLV1_trasv_z-	172	258	-1304	2181	1262	-5
SLV2_trasv_z-	198	258	-1310	2156	1275	1
SLV1_vert_z-	172	111	-1225	848	1262	1
SLV2_vert_z-	172	85	-1237	809	1262	5

SOVRAPP. PEDONALE STAZIONE VIGNA DI VALLE IV04 - RAMPA1 D'ACCESSO ALLA PASSERELLA - Vigna di Valle

COMMESSA LOTTO CODIFICA DOCUMENTO REV. FOGLIO

NR1J 00 D 29 CL IV0405 201 A 42 di 118

PILE – Relazione di calcolo

12 ANALISI DELLE SOLLECITAZIONI - PILA 1

12.1 Reazioni vincolari elementari trasmesse dall'impalcato

Appoggi a q.ta +4.90m

	Flong	Ftrasv	Nvert	Mtrasv	Mlong	Mtorc
	KN	KN	KN	kNm	kNm	kNm
g1	0	0	-170	0	0	0
g2	0	0	-111	0	0	0
q1_Mt_max	0	0	-90	117	0	0
q1_Nmax	0	0	-180	0	0	0
q5	0	224	-81	0	0	0
q7_attr	14	0	0	0	0	0
SISM_LONG_q1.5	14	0	0	0	0	0
SISM_TRASV_q1.5	0	311	0	0	0	0
SISM_VERT_q1	0	0	-110	0	0	0

Appoggi a q.ta +1.70m

	Flong	Ftrasv	Nvert	Mtrasv	Mlong	Mtorc
	KN	KN	KN	kNm	kNm	kNm
g1	0	0	-170	0	0	0
g2	0	0	-111	0	0	0
q1_Mt_max	0	0	-90	117	0	0
q1_Nmax	0	0	-180	0	0	0
q5	0	224	-81	0	0	0
q7_attr	14	0	0	0	0	0

12.2 Sollecitazioni elementari riportate al baricentro della sezione di base della pila

Appoggi a q.ta +4.90m

	Flong	Ftrasv	Nvert	Mtrasv	Mlong	Mtorc
	KN	KN	KN	kNm	kNm	kNm
g1	0	0	-170	0	0	0
g2	0	0	-111	0	0	0
q1_Mt_max	0	0	-90	117	0	0
q1_Nmax	0	0	-180	0	0	0
q5	0	224	-81	1098	0	0

SOVRAPP. PEDONALE STAZIONE VIGNA DI VALLE IV04 - RAMPA1 D'ACCESSO ALLA PASSERELLA -Vigna di Valle PILE – Relazione di calcolo

COMMESSA LOTTO CODIFICA DOCUMENTO REV. FOGLIO

NR1J 00 D 29 CL IV0405 201 A 43 di 118

q7_attr	14	0	0	0	69	0
SISM_LONG_q1.5	14	0	0	0	71	0
SISM_TRASV_q1.5	0	311	0	1526	0	0
SISM_VERT_q1	0	0	-110	0	0	0

Appoggi a q.ta +1.70m

	Flong	Ftrasv	Nvert	Mtrasv	Mlong	Mtorc
	KN	KN	KN	kNm	kNm	kNm
g1	0	0	-170	0	0	0
g2	0	0	-111	0	0	0
q1_Mt_max	0	0	-90	117	0	0
q1_Nmax	0	0	-180	0	0	0
q5	0	224	-81	381	0	0
q7_attr	14	0	0		24	0

Seguono le sollecitazioni elementari sommate ed incrementate del peso della pila stessa (g1_pila) e della sua inerzia verticale (Iz_pila).

g1_pila 195 kN peso proprio pila Iz_pila 6 kN inerzia verticale pila

OutputCase	Flong	Ftrasv	Nvert	Mtrasv	Mlong	Mtorc
Text	KN	KN	KN	kNm	kNm	kNm
g1 (+g1_pila)	0	0	-535	0	0	0
g2	0	0	-221	0	0	0
q1_Mt_max	0	0	-180	234	0	0
q1_Nmax	0	0	-360	0	0	0
q5	0	448	-161	1479	0	0
q7_attr	28	0	0	0	93	0
e3_DT	0	0	0	0	0	0
SISM_LONG_q1.5	14	0	0	0	71	0
SISM_TRASV_q1.5	0	311	0	1526	0	0
SISM_VERT_q1 (+Iz_pila)	0	0	-115	0	0	0

SOVRAPP. PEDONALE STAZIONE VIGNA DI VALLE IV04 - RAMPA1 D'ACCESSO ALLA PASSERELLA -Vigna di Valle PILE – Relazione di calcolo

 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 NR1J
 00 D 29
 CL
 IV0405 201
 A
 44 di 118

12.3 Sollecitazioni combinate riportate al baricentro della sezione di base della pila

	Flong	Ftrasv	Fvert	Mtrasv	Mlong	Mtorc
	kN	kN	kN	kNm	kNm	kNm
SLE_1.1	28	269	-1032	1121	93	0
SLE_2.1	28	269	-1212	887	93	0
SLE_1.2	28	-269	-839	-654	93	0
SLE_2.2	28	-269	-1019	-887	93	0
SLU_1.1	34	323	-1439	1416	111	0
SLU_2.1	34	323	-1709	1065	111	0
SLU_1.2	34	-323	-1207	-714	111	0
SLU_2.2	34	-323	-1477	-1065	111	0
GEO_1.1	34	350	-1173	1446	111	0
GEO_2.1	34	350	-1398	1154	111	0
GEO_1.2	34	-350	-921	-861	111	0
GEO_2.2	34	-350	-1146	-1154	111	0
SLV1_long_z+	14	93	-826	505	71	0
SLV2_long_z+	14	93	-862	458	71	0
SLV1_trasv_z+	4	311	-826	1573	21	0
SLV2_trasv_z+	4	311	-862	1526	21	0
SLV1_vert_z+	4	93	-907	505	21	0
SLV2_vert_z+	4	93	-943	458	21	0
SLV1_long_z-	14	93	-757	505	71	0
SLV2_long_z-	14	93	-793	458	71	0
SLV1_trasv_z-	4	311	-757	1573	21	0
SLV2_trasv_z-	4	311	-793	1526	21	0
SLV1_vert_z-	4	93	-676	505	21	0
SLV2_vert_z-	4	93	-712	458	21	0

12.4 Sollecitazioni combinate riportate al baricentro della sezione di base del plinto

Le sollecitazioni sono riportate al baricentro della sezione di base del plinto ed incrementate del peso del plinto stesso (g1_plinto) e della sua inerzia (lh_plinto e lz_plinto).

Si considera inoltre una altezza di terreno di ricoprimento pari a 0.5m ed il peso ad esso associato.

SOVRAPP. PEDONALE STAZIONE VIGNA DI VALLE IV04 - RAMPA1 D'ACCESSO ALLA PASSERELLA -Vigna di Valle PILE – Relazione di calcolo

NR1J 00 D 29 CL IV0405 201 Α

CODIFICA

45 di 118

DOCUMENTO

FOGLIO

REV.

Plinto di fondazione

kΝ PGA_h 0.116 dlong 3.6 m g1_plinto 324 g 3.6 dtrasv g1_terr 94 kΝ PGA_v 0.029 m g Ih_plinto hpl 1.0 m g1_tot 418 kΝ 37 kΝ 0.5 Iz_plinto 9 kΝ hterr m

COMMESSA

LOTTO

18 kN/m3 γterr 2.64 Apila m2

	Flong	Ftrasv	Fvert	Mtrasv	Mlong	Mtorc
	F1	F2	F3	M1	M2	M3
	kN	kN	kN	kNm	kNm	kNm
SLE_1.1	28	269	-1451	1390	121	0
SLE_2.1	28	269	-1631	1156	121	0
SLE_1.2	28	-269	-1257	-923	121	0
SLE_2.2	28	-269	-1437	-1156	121	0
SLU_1.1	34	323	-1858	1739	145	0
SLU_2.1	34	323	-2127	1388	145	0
SLU_1.2	34	-323	-1625	-1037	145	0
SLU_2.2	34	-323	-1895	-1388	145	0
GEO_1.1	34	350	-1591	1796	145	0
GEO_2.1	34	350	-1816	1503	145	0
GEO_1.2	34	-350	-1339	-1211	145	0
GEO_2.2	34	-350	-1564	-1503	145	0
SLV1_long_z+	14	93	-1244	598	85	0
SLV2_long_z+	14	93	-1280	551	85	0
SLV1_trasv_z+	4	311	-1244	1885	26	0
SLV2_trasv_z+	4	311	-1280	1838	26	0
SLV1_vert_z+	4	93	-1325	598	26	0
SLV2_vert_z+	4	93	-1361	551	26	0
SLV1_long_z-	53	114	-1178	664	112	-1
SLV2_long_z-	27	140	-1214	625	99	-1
SLV1_trasv_z-	16	354	-1185	2079	34	-5
SLV2_trasv_z-	42	354	-1208	2027	47	1
SLV1_vert_z-	16	140	-1092	677	34	1
SLV2_vert_z-	16	114	-1121	612	34	5

SOVRAPP. PEDONALE STAZIONE VIGNA DI VALLE IV04 - RAMPA1 D'ACCESSO ALLA PASSERELLA -Vigna di Valle PILE – Relazione di calcolo

 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 NR1J
 00 D 29
 CL
 IV0405 201
 A
 46 di 118

13 VERIFICHE STRUTTURALI DEL FUSTO PILA 2

13.1 GEOMETRIA DELLA SEZIONE DI VERIFICA E ARMATURA

Si riporta a seguire una figura che illustra la geometria della sezione di verifica alla base della pila.

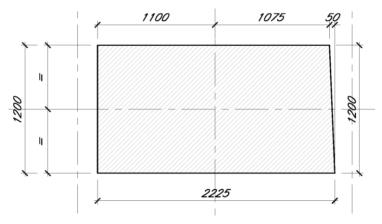


Figura 11 - Geometria della sezione trasversale della pila [cm]

13.1.1 ARMATURA LONGITUDINALE

A seguire è indicata l'armatura flessionale prevista nella sezione di base del fusto pila:

n barre 40

fi barre 26 mm

13.1.2 ARMATURA TRASVERSALE

A seguire è indicata l'armatura a taglio prevista nella sezione di base del fusto pila, all'interno della zona critica, avente una altezza pari a 0.2 * Hpila = 2.0m.

Direzione longitudinale – Staffe:

øw	14	mm
A1b	154	mm2
passo	200	mm
bracci	8	

Direzione trasversale – Staffe:

øw	14	mm
A1b	154	mm2
passo	200	mm
bracci	4	

SOVRAPP. PEDONALE STAZIONE VIGNA DI VALLE IV04 - RAMPA1 D'ACCESSO ALLA PASSERELLA -Vigna di Valle PILE – Relazione di calcolo

COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
NR1J	00 D 29	CL	IV0405 201	Α	47 di 118

13.1.3 VERIFICA DELL'ARMATURA MINIMA

Le armature del fusto pila devono soddisfare le quantità minime indicate dalla normativa e che vengono riepilogate di seguito.

Armatura minima longitudinale:

• $\rho_{min} = 0.60 \%$

Armatura minima trasversale nelle zone critiche:

La percentuale meccanica è definita dalle espressioni:

• $\omega_{wd,r} = A_{sw}/(s \cdot b) \cdot f_{yd}/f_{cd}$ per sezioni rettangolari

• $\omega_{wd,c} = 4 \text{ A}_{sp}/(D_{sp} \cdot s) \cdot f_{yd}/f_{cd}$ per sezioni circolari

Deve verificarsi:

• $A_{sw}/(s \cdot b) \cdot f_{yd}/f_{cd} \ge \zeta$ per sezioni rettangolari

• $\rho_w \cdot f_{yd}/f_{cd} \ge 1,40 \cdot \zeta$ per sezioni circolari

con:

 $\rho_{w} = V_{sc}/V_{cc}$ rapporto tra il volume complessivo delle armature di confinamento V_{sc} e volume di calcestruzzo confinato V_{cc} ;

 $\zeta = 0.07 \text{per } a_g \ge 0.35 \text{ g};$

 $\zeta = 0.05 \text{per a}_g \ge 0.25 \text{ g};$

 $\zeta = 0.04 \text{per a}_g \ge 0.15 \text{ g};$

 ζ = 0,03per a_g < 0,15 g.

PILE - Relazione di calcolo

RADDOPPIO LINEA FERROVIARIA ROMA-VITERBO TRATTA CESANO-VIGNA DI VALLE **PROGETTO DEFINITIVO**

SOVRAPP. PEDONALE STAZIONE VIGNA DI VALLE IV04 - RAMPA1 D'ACCESSO ALLA PASSERELLA -Vigna di Valle

COMMESSA

LOTTO

CODIFICA

DOCUMENTO

REV.

FOGLIO

CL NR1J 00 D 29 IV0405 201 Α 48 di 118

Verifica armatura minima longitudinale

ρmin = 0.60%

Ac = 2640000 mm2 As,min = 15840 mm2

n barre (1° str.) 40

fi barre (1° str.) 26 mm

As 21226 mm2

0.80% requisito soddisfatto ρ

Verifica armatura minima trasversale

ag = 0.077 g

ζ = 0.04 ω wd,r min = 0.04

Armatura in dir. longitudinale

Asw/s staffe = 0.0062 m2/m Asw/s spille = 0.0000 m2/m 2.20 b =m fyd = 391 MPa fcd = 18.13 MPa

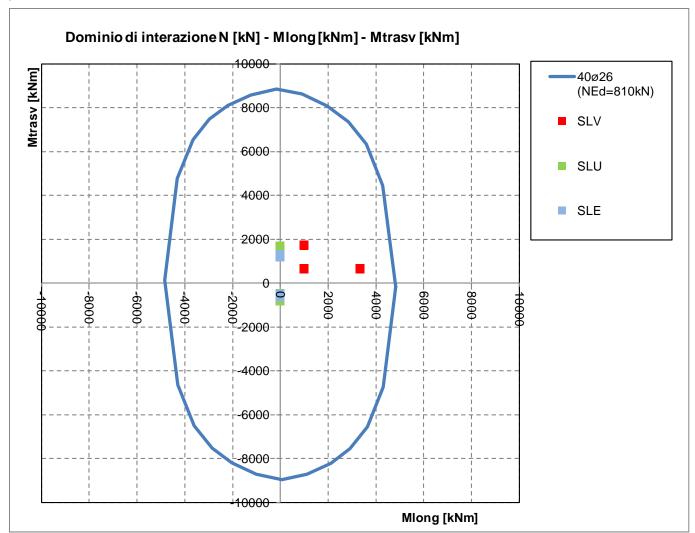
 ω wd,r = 0.061 requisito soddisfatto

Armatura in dir. trasversale

Asw/s staffe = 0.0031 m2/m Asw/s spille = 0.0000 m2/m b = 1.20 m fyd = 391 MPa fcd = MPa 18.13

 ω wd,r = 0.056 requisito soddisfatto

L'armatura longitudinale di calcolo e l'armatura trasversale di calcolo rispettano le quantità minime indicate dalla normativa.


SOVRAPP. PEDONALE STAZIONE VIGNA DI VALLE IV04 - RAMPA1 D'ACCESSO ALLA PASSERELLA -Vigna di Valle PILE – Relazione di calcolo

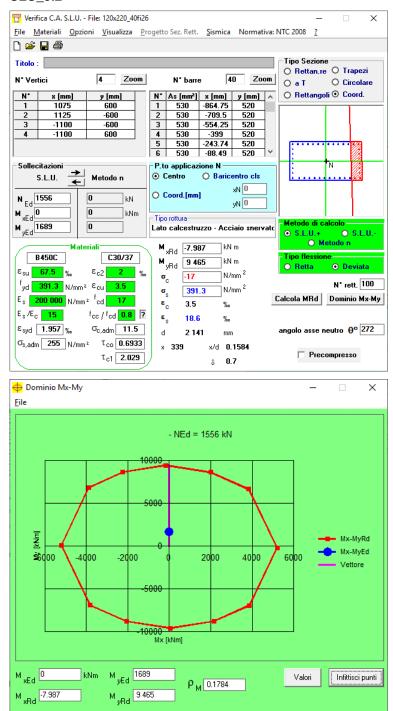
COMMESSA LOTTO CODIFICA DOCUMENTO REV. FOGLIO

NR1J 00 D 29 CL IV0405 201 A 49 di 118

13.2 VERIFICHE SLU A FLESSIONE

Sono riportate a seguire le verifiche SLU della sezione di base della pila, espresse in forma sintetica mediante il diagramma di interazione Mlong - Mtrasv , valutato per una forza assiale corrispondente alla condizione di verifica più severa.

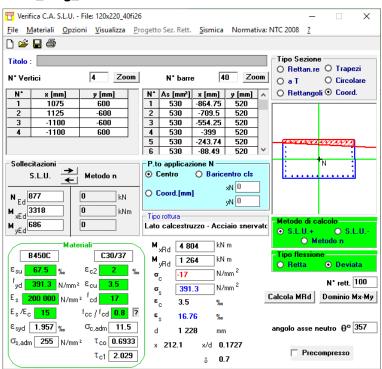
La verifica SLU di tipo flessionale si effettua verificando che:

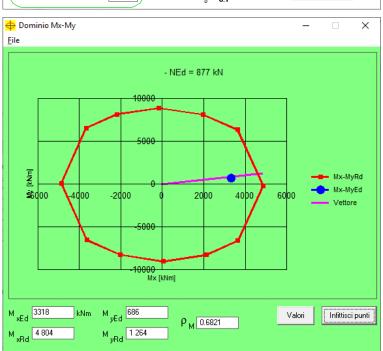

 $FS = (M_{Rd,long}^2 + M_{Rd,trasv}^2)^{0.5} / (M_{Ed,long}^2 + M_{Ed,trasv}^2)^{0.5} \ge 1$

Si osserva inoltre che: $\rho_M = 1/FS$.

Si riportano le verifiche di dettaglio nelle combinazioni di carico più gravose.

SLU_3.2

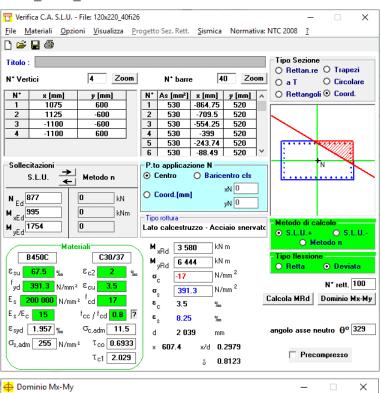


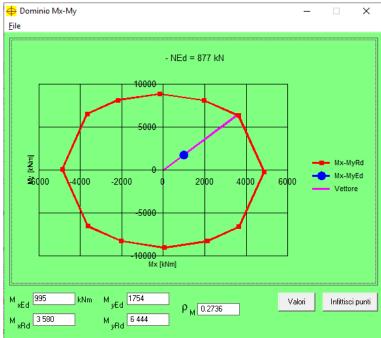

SOVRAPP. PEDONALE STAZIONE VIGNA DI VALLE IV04 - RAMPA1 D'ACCESSO ALLA PASSERELLA -Vigna di Valle PILE – Relazione di calcolo

 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 NR1J
 00 D 29
 CL
 IV0405 201
 A
 51 di 118

SLV1_long_z-




SOVRAPP. PEDONALE STAZIONE VIGNA DI VALLE IV04 - RAMPA1 D'ACCESSO ALLA PASSERELLA -Vigna di Valle PILE – Relazione di calcolo

 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 NR1J
 00 D 29
 CL
 IV0405 201
 A
 52 di 118

SLV1_trasv_z-

Le verifiche risultano soddisfatte.

SOVRAPP. PEDONALE STAZIONE VIGNA DI VALLE IV04 - RAMPA1 D'ACCESSO ALLA PASSERELLA -Vigna di Valle PILE – Relazione di calcolo

COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
NR1J	00 D 29	CL	IV0405 201	Α	53 di 118

13.3 VERIFICHE SLU A TAGLIO

Nel caso di sezioni rettangolari la verifica viene effettuata distintamente per le due direzioni longitudinale e trasversale.

Nel caso si sezione circolare si esegue la verifica per un valore del taglio pari a:

$$V = \sqrt{(F1^2 + F2^2)}$$

Per quanto riguarda le combinazioni sismiche, con riferimento ai criteri della GR e a quanto precedentemente dichiarato nel §8.3.2, si procede al calcolo del taglio agente di calcolo sulla base dei risultati delle verifiche flessionali.

$$V_{gr} = V_{Ed} \cdot \gamma_{Rd} \cdot M_{Rd}/M_{Ed} \le q \cdot V_{Ed}$$

Il valore resistente a taglio della sezione si determina secondo:

 $V_{Rd} = min(V_{Rcd}; V_{Rsd})$

 $V_{Rcd} = 0.9 \cdot d \cdot b_w \cdot \alpha_c \cdot f_{cd} \cdot (ctg \alpha + ctg \theta)/(1 + ctg^2 \theta)$

 $V_{Rsd} = 0.9 \cdot d \cdot A_{sw}/s \cdot f_{vd} \cdot (ctg \alpha + ctg \theta) \cdot sen \alpha$ in cui

d altezza utile della sezione

bw larghezza minima della sezione

Asw area dell'armatura trasversale

s interasse tra due armature trasversali consecutive

θ inclinazione delle bielle di calcestruzzo

 α $\,$ angolo di inclinazione dell'armatura trasversale rispetto all'asse dell'elemento

fcd' resistenza a compressione ridotta (pari a 0,5 fcd)

αc coefficiente maggiorativo che tiene conto della compressione

Nel caso di sezione circolare, le dimensioni della sezione rettangolare equivalente da utilizzare per il calcolo della resistenza a taglio della sezione si determinano secondo:

$$d = r + 2 \cdot r_s / \pi$$
$$b = 0.9 \cdot 2 \cdot r$$

I valori di resistenza a taglio degli elementi in c.a. devono inoltre essere divisi per un coefficiente di sicurezza aggiuntivo nei confronti della rottura fragile γ_{Bd} valutato mediante la seguente espressione:

$$1 \le \gamma_{Bd} = 1.25 + 1 - q \cdot V_{Ed} / V_{gr} \le 1.25$$

SOVRAPP. PEDONALE STAZIONE VIGNA DI VALLE IV04 - RAMPA1 D'ACCESSO ALLA PASSERELLA -Vigna di Valle PILE – Relazione di calcolo

 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 NR1J
 00 D 29
 CL
 IV0405 201
 A
 54 di 118

13.3.1 VERIFICA A TAGLIO IN DIREZIONE LONGITUDINALE

_			
N/mm ²	40	R_{ck}	classe cls
N/mm ²	33	f _{ck}	resist. Caratteristica cilindrica
	19	f _{cd}	
	1.5	Уc	coeff. parziale
0 mm	2200	b_w	larghezza membratura resistene a V
0 mm	1200	Н	altezza membratura resistene a V
0 mm	1080	d	altezza utille
000 mm2	2376000	A _{TOT}	area della sezione
00 N	810000	N	sforzo assiale dovuto ai carichi o precompressione
1 N/mm ²	0.31	$\sigma_{\sf cp}$	ok
2	1.02	α_{c}	
N/mm ²	450	f_{yk}	Acciaio
N/mm ²	391	f_{yd}	Feb44k
mm	14	Ø _w	diametro staffe (spille)
1 mm ²	154	Aø _w	Area staffa (spilla)
2 mm	972	Z	0.9 d
) mm	200	S _w	passo delle staffe (spille)
	4	n° bracci	
0 °	45.0	θ	angolo di inclinazione
0	1.00	$\cot(\theta)$	deve essere compreso tra 1 e 2.5
0	90	α	angolo di inclinazione armatura rispetto asse palo
0	0.00	$\cot(\alpha)$	
8 mm²/mm	3.08	As _w /s _w	
1 kN	1171	V_{Rsd}	Taglio resistente per "taglio trazione"
22 kN	10222	V_{Rcd}	Taglio resistente per "taglio compressione"
3 kN	488	V_{Ed}	taglio sollecitante
	1	γRd	fattore di sicurezza per GR (par. 7.9.5.2.2)
1 kN	1171	V_{Rd}	taglio resistente
V_{Rd}	<	V_{Ed}	

SOVRAPP. PEDONALE STAZIONE VIGNA DI VALLE IV04 - RAMPA1 D'ACCESSO ALLA PASSERELLA -Vigna di Valle PILE – Relazione di calcolo

 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 NR1J
 00 D 29
 CL
 IV0405 201
 A
 55 di 118

13.3.2 VERIFICA A TAGLIO IN DIREZIONE TRASVERSALE

				_
classe		R _{ck}	40	N/mm ²
resist. Caratteristica cilindr	ica	f _{ck}	33	N/mm ²
		f _{cd}	19	
coeff. parzi	iale	Уc	1.5	
larghezza membratura resistene	a V	b_w	1200	mm
altezza membratura resistene	a V	Н	2200	mm
altezza u	tille	d	1980	mm
area della sezio	one	A_{TOT}	2376000	mm2
sforzo assiale dovuto ai carichi o precompressio	one	N	810000	N
	ok	$\sigma_{\sf cp}$	0.31	N/mm ²
		α_{c}	1.02	
Accia	aio	f _{yk}	450	N/mm ²
Feb ₄	44k	f_{yd}	391	N/mm ²
diametro staffe (spi	ille)	Ø _w	14	mm
Area staffa (sp	illa)	Aø _w	154	mm ²
0.	9 d	Z	1782	mm
passo delle staffe (spi	ille)	S _w	200	mm
		n° bracci	4	
angolo di inclinazio	one	θ	45.0	0
deve essere compreso tra 1 e	2.5	cot(θ)	1.00	
angolo di inclinazione armatura rispetto asse p	alo	α	90	0
		$cot(\alpha)$	0.00	
		As _w / s _w	3.08	mm²/mm
Taglio resistente per "taglio trazio	ne"	V_{Rsd}	2147	kN
Taglio resistente per "taglio compressio		V _{Rcd}	10222	kN
taglio sollecita	nte	V_{Ed}	262	kN
fattore di sicurezza per GR (par. 7.9.5.2		γ _{Rd}	1	
taglio resiste	-	V _{Rd}	2147	kN
		V _{Ed}	<	V_{Rd}

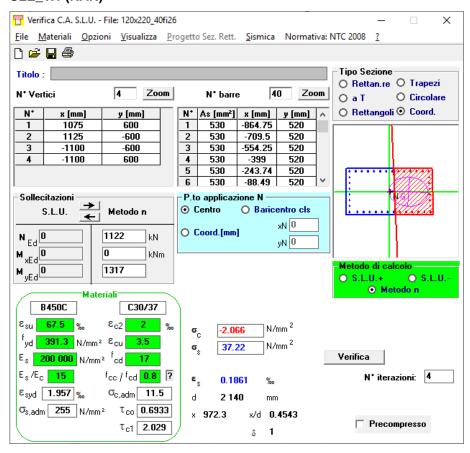
SOVRAPP. PEDONALE STAZIONE VIGNA DI VALLE IV04 - RAMPA1 D'ACCESSO ALLA PASSERELLA -Vigna di Valle PILE – Relazione di calcolo

 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

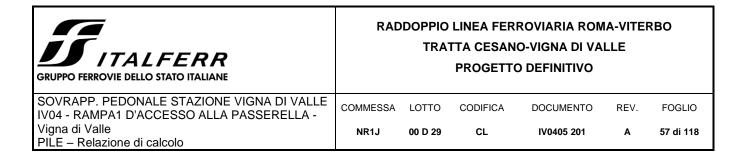
 NR1J
 00 D 29
 CL
 IV0405 201
 A
 56 di 118

13.4 VERIFICA SLE DELLE TENSIONI

La verifica SLE di tipo tensionale si effettua verificando che le massime tensioni agenti nella sezione risultino inferiori ai seguenti valori limite:


per le combinazioni SLE-RAR:

• tensione limite nel calcestruzzo: $\sigma_c = 0.55 \; f_{ck} = 18.3 \; MPa$ • tensione limite nelle barre: $\sigma_s = 0.75 \; f_{yk} = 337.5 \; MPa$

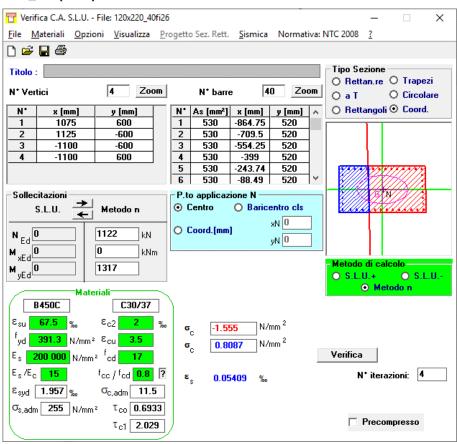

per le combinazioni SLE-QPE:

• tensione limite nel calcestruzzo: $\sigma_c = 0.40 f_{ck} = 13.3 MPa$

SLE_1.1 (RAR)

I valori di tensione sono compatibili con i limiti di normativa.

13.5 VERIFICHE SLE A FESSURAZIONE


La verifica SLE a fessurazione si effettua verificando che il massimo valore di apertura delle fessure risulti inferiore ai seguenti valori limite:

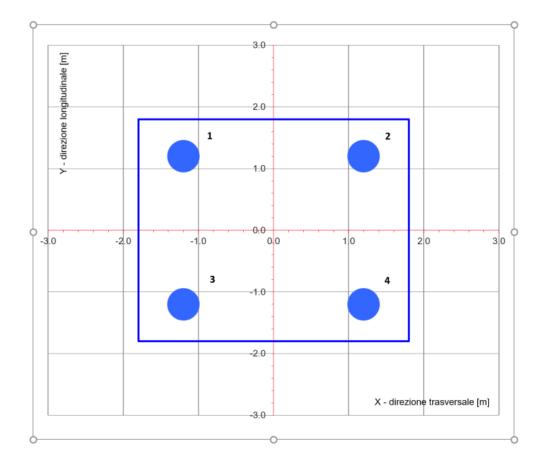
per le combinazioni SLE-RAR:

• apertura fessure limite: $w_{lim} = w_1 = 0.20 \text{ mm}$

Nel caso in esame si verifica lo stato limite di formazione delle fessure, considerando il calcestruzzo reagente a trazione (I stadio del c.a.)

SLE_1.1 (RAR)

La verifica risulta soddisfatta in quanto $\sigma_c < f_{ctm}/1.2 = 3.1$ MPa , quindi non si formano fessure.


14 VERIFICHE STRUTTURALI DEI PALI DI FONDAZIONE – PILA 2

14.1 SOLLECITAZIONI ALLA TESTA DEI PALI

Le sollecitazioni combinate alla base del plinto sono distribuite rigidamente alla testa dei pali.

Geometria della palificata

num.	X (trasv)	Y (long)	X ²	Υ2	WI	Wt
	m	m	m²	m ²		
1	-1.20	1.20	1	1.4	4.80E+00	-4.80E+00
2	1.20	1.20	1	1.4	4.80E+00	4.80E+00
3	-1.20	-1.20	1	1.4	-4.80E+00	-4.80E+00
4	1.20	-1.20	1	1	-4.80E+00	4.80E+00

SOVRAPP. PEDONALE STAZIONE VIGNA DI VALLE IV04 - RAMPA1 D'ACCESSO ALLA PASSERELLA -Vigna di Valle PILE – Relazione di calcolo

 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 NR1J
 00 D 29
 CL
 IV0405 201
 A
 59 di 118

Seguono le forze assiali N [kN] agenti alla testa dei pali:

	Palo	Palo	Palo	Palo
	1	2	3	4
SLE_1.1	69	701	69	701
SLE_2.1	115	700	115	700
SLE_1.2	492	206	492	206
SLE_2.2	539	204	539	204
SLU_1.1	91	896	91	896
SLU_2.1	161	893	161	893
SLU_1.2	599	301	599	301
SLU_2.2	669	298	669	298
GEO_1.1	12	816	12	816
GEO_2.1	71	814	71	814
GEO_1.2	562	172	562	172
GEO_2.2	621	169	621	169
SLV1_long_z+	974	1288	-612	-298
SLV2_long_z+	983	1288	-603	-298
SLV1_trasv_z+	164	988	-312	512
SLV2_trasv_z+	173	988	-303	512
SLV1_vert_z+	436	750	-40	274
SLV2_vert_z+	445	749	-31	273
SLV1_long_z-	1027	1374	-726	-378
SLV2_long_z-	1031	1374	-716	-373
SLV1_trasv_z-	134	1043	-391	518
SLV2_trasv_z-	144	1042	-387	511
SLV1_vert_z-	393	746	-133	220
SLV2_vert_z-	404	741	-122	215

D (m)	0.6
k _h (kN/m ³)	33333
f _{ck} (Mpa)	25
E (Mpa)	31476
J (m ⁴)	0.0064
λ (cm)	251.56

SOVRAPP. PEDONALE STAZIONE VIGNA DI VALLE IV04 - RAMPA1 D'ACCESSO ALLA PASSERELLA -Vigna di Valle PILE – Relazione di calcolo

 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 NR1J
 00 D 29
 CL
 IV0405 201
 A
 60 di 118

Segue riepilogo dei valori massimi e minimi della forza assiale N [kN] e del taglio medio T [kN]:

	Nmax	Nmin	Tmedia	Mmax
	[kN]	[kN]	[kN]	[kNm]
SLE_1.1	701	69	50	63
SLE_2.1	700	115	50	63
SLE_1.2	492	206	50	63
SLE_2.2	539	204	50	63
SLU_1.1	896	91	61	76
SLU_2.1	893	161	61	76
SLU_1.2	599	301	61	76
SLU_2.2	669	298	61	76
GEO_1.1	816	12	66	82
GEO_2.1	814	71	66	82
GEO_1.2	562	172	66	82
GEO_2.2	621	169	66	82
SLV1_long_z+	1288	-612	123	155
SLV2_long_z+	1288	-603	123	155
SLV1_trasv_z+	988	-312	67	84
SLV2_trasv_z+	988	-303	67	84
SLV1_vert_z+	750	-40	40	51
SLV2_vert_z+	749	-31	40	51
SLV1_long_z-	1374	-726	145	183
SLV2_long_z-	1374	-716	140	176
SLV1_trasv_z-	1043	-391	78	98
SLV2_trasv_z-	1042	-387	81	102
SLV1_vert_z-	746	-133	51	65
SLV2_vert_z-	741	-122	48	60

SOVRAPP. PEDONALE STAZIONE VIGNA DI VALLE IV04 - RAMPA1 D'ACCESSO ALLA PASSERELLA -Vigna di Valle PILE – Relazione di calcolo

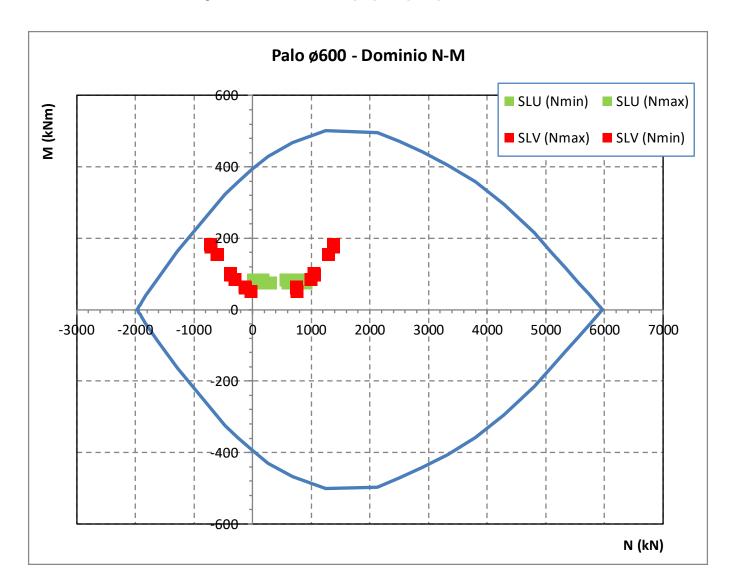
 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 NR1J
 00 D 29
 CL
 IV0405 201
 A
 61 di 118

14.2 GEOMETRIA DELLA SEZIONE DI VERIFICA E ARMATURA

Nelle tabelle seguenti sono descritte le caratteristiche geometriche della sezione di verifica dei pali di fondazione, nonché le caratteristiche di resistenza dei materiali.

GEOMETRIA DELLA SEZIONE		
Diametro del palo =	600	mm
Copriferro netto c =	60	mm
Classe di resistenza calcestruzzo =	C25/30	Мра
Classe di resistenza delle barre =	B450C	MPa

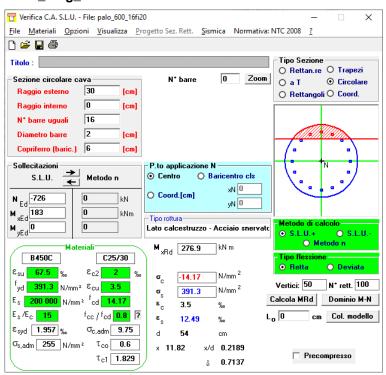

Nella seguente tabella sono descritte le caratteristiche geometriche dell'armatura flessionale e a taglio dei pali.

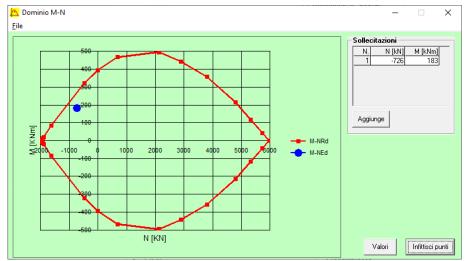
ARMATURA LONGITUDINALE		
Numero barre long.	16	-
Diametro barre long.	20	mm
ARMATURA TRASVERSALE		
Diametro barre trasv.	12	mm
Passo arm. trasv.	200	mm
VERIFICA ARMATURA MINIMA LONG.		
ρmin =	1.00%	
Ac =	282743	mm2
As _{,min} =	2827	mm2
Armatura long. tot Asd,tot =	5024	mm2
ρl =	1.8%	

14.3 VERIFICA SLU A PRESSO-FLESSIONE

Sono riportate a seguire le verifiche SLU della sezione di sommità del palo maggiormente sollecitato, espresse in forma sintetica mediante il diagramma di interazione N [kN] – M [kNm].

Si riportano le verifiche di dettaglio nelle combinazioni di carico più gravose.




SOVRAPP. PEDONALE STAZIONE VIGNA DI VALLE IV04 - RAMPA1 D'ACCESSO ALLA PASSERELLA -Vigna di Valle PILE – Relazione di calcolo

 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

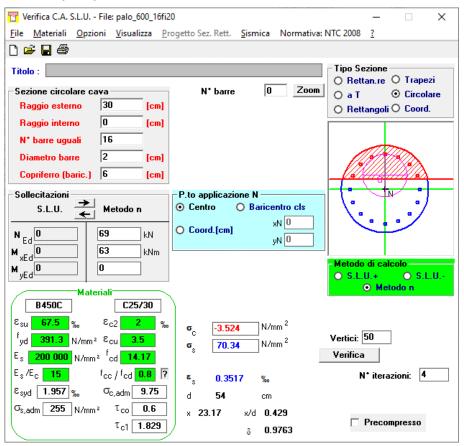
 NR1J
 00 D 29
 CL
 IV0405 201
 A
 63 di 118

SLV1_long_z-

SOVRAPP. PEDONALE STAZIONE VIGNA DI VALLE IV04 - RAMPA1 D'ACCESSO ALLA PASSERELLA -Vigna di Valle PILE – Relazione di calcolo

 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

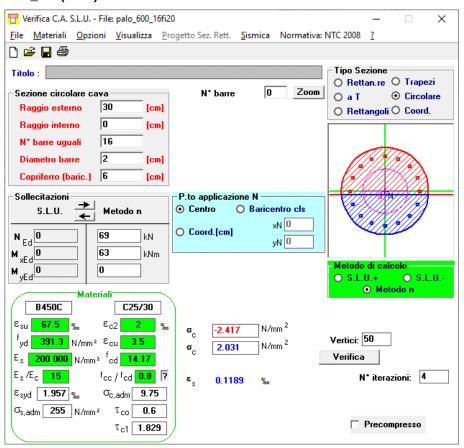
 NR1J
 00 D 29
 CL
 IV0405 201
 A
 64 di 118


14.4 VERIFICA SLU A TAGLIO

classe cls	R _{ck}	30	N/mm ²
resist. Caratteristica cilindrica	f _{ck}	25	N/mm ²
	f _{cd}	14	N/mm ²
diametro	Φ	600	mm
Area sezione	Α	282743	mm ²
copriferro	С	80	mm
Area sezione rettangolare equivalente	A _{eq}	222244	mm ²
altezza utile equivalente	d	440	mm
larghezza equivalente	b _w	505	mm
altezza equivalente	h _{eq}	559.8476	mm
sforzo assiale dovuto ai carichi o precompressione	N	-715000	N
	$\sigma_{\sf cp}$	-2.5	N/mm ²
	$\alpha_{\sf cp}$	0.82	
Acciaio	f _{yk}	450	N/mm ²
Feb44k	f _{yd}	391	N/mm ²
diametro staffe (spille)	Ø _w	12	mm
Area staffa (spilla)	Aø _w	113	mm ²
0.9 d	Z	396	mm
passo spirale	S _w	200	mm
	n° bracci	2	
angolo di inclinazione biella compressa	θ	45.0	o
deve essere compreso tra 1 e 2.5	cot(θ)	1.00	
angolo di inclinazione armatura rispetto asse palo	α	90	o
	cot(α)	0.00	
	As _w / s _w	1.131	mm²/mm
Taglio resistente per "taglio trazione"	V_{Rsd}	175	kN
Taglio resistente per "taglio compressione"	V_{Rcd}	579	kN
taglio sollecitante	V_{Ed}	145	kN
fattore di sicurezza per GR (par. 7.9.5.2.2)	γRd	1	
taglio resistente	\mathbf{V}_{Rd}	175	kN
	V_{Ed}	<	V_{Rd}
	-		

14.5 VERIFICA SLE DELLE TENSIONI

SLE_1.1 (RAR)


I valori di tensione sono compatibili con i limiti di normativa.

14.6 VERIFICA SLE A FESSURAZIONE

Nel caso in esame si verifica lo stato limite di formazione delle fessure, considerando il calcestruzzo reagente a trazione (I stadio del c.a.)

SLE_1.1 (RAR)

 $\sigma_c\!>f_{ctm}/1.2=2.56~\text{MPa}$, quindi si svolge la verifica di apertura delle fessure.

SOVRAPP. PEDONALE STAZIONE VIGNA DI VALLE IV04 - RAMPA1 D'ACCESSO ALLA PASSERELLA -Vigna di Valle PILE – Relazione di calcolo

COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
NR1J	00 D 29	CL	IV0405 201	Α	67 di 118

	INPUT	
Rck	30	Mpa
D	600	mm
c_{1}	82	mm
Ø ₁	20	mm
n_1	16	
c ₂	82	mm
Ø ₂	0	mm
n ₂	16	
d	518	mm
b _{eff}	85.6	mm
x	232	mm
$\sigma_{\text{s_max1}}$	70.3	Мра
$\sigma_{\text{s_max2}}$		Mpa
h _{c,eff}	122.7	mm
A _{c,eff}	10501	mm ²
ρ p,eff	0.030	
kt	0.6	
k1	0.8	
k2	0.5	
k3	3.4	
k4	0.425	

	OUTPUT				
diff. def. arn	nature-cls				
ε sm -ε cm	2.05E-04 -				
distanza ma	x fessure				
s r, max	3.58E+02 mm	1			
ampiezza fe	ampiezza fessure:				
wk	0.073 mr	n			
	0.075 1111	••			
LIMITE	0.20 mm				

La verifica è soddisfatta, in quanto wk < 0.20mm.

SOVRAPP. PEDONALE STAZIONE VIGNA DI VALLE COMMESSA LOTTO CODIFICA IV04 - RAMPA1 D'ACCESSO ALLA PASSERELLA -Vigna di Valle NR1J 00 D 29 CL PILE - Relazione di calcolo

DOCUMENTO FOGLIO RFV IV0405 201 Α 68 di 118

15 **VERIFICHE STRUTTURALI DEL PLINTO DI FONDAZIONE – PILA 2**

15.1 VERIFICHE SLU-SLE CON MECCANISMO TIRANTE-PUNTONE

La verifica strutturale del plinto viene condotta a seguire impiegando un modello tirante-puntone, come quello rappresentato nella figura seguente, tratta da §C4.1.2.1.5 [2].

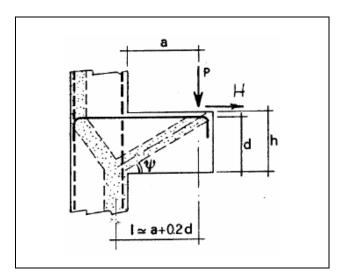


Figura 12 – Meccanismo tirante puntone della mensola tozza

Si distinguono due meccanismi di tipo tirante-puntone principali nel plinto di fondazione, illustrati nelle figure seguenti e descritti a seguire:

- un primo meccanismo è innescato dalle azioni trasmesse al plinto dai pali centrali e coinvolge un tirantepuntone parallelo alla direzione longitudinale (evidenziato in verde). Tale meccanismo coinvolge la sola armatura longitudinale inferiore del plinto.
- un secondo meccanismo coinvolge i pali di spigolo ed innesca un tirante-puntone con direzione diagonale (evidenziato in rosso), individuata da un angolo α misurato rispetto alla direzione trasversale. Tale meccanismo coinvolge sia l'armatura longitudinale inferiore del plinto che l'armatura trasversale, pertanto, ai fini delle verifiche del tirante di armatura e della biella di calcestruzzo, si considera composto dalla somma vettoriale di due meccanismi ortogonali disaccoppiati.

SOVRAPP. PEDONALE STAZIONE VIGNA DI VALLE IV04 - RAMPA1 D'ACCESSO ALLA PASSERELLA -Vigna di Valle PILE – Relazione di calcolo

 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 NR1J
 00 D 29
 CL
 IV0405 201
 A
 69 di 118

A seguire si riporta una immagine che illustra, in una vista in sezione, la geometria di un generico meccanismo tirante puntone che si innesca nel plinto per azione dei carichi concentrati trasmessi dai pali di fondazione

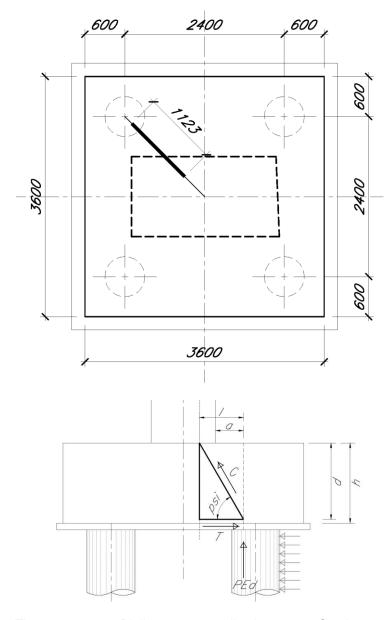


Figura 13 - Tirante puntone - Biella compressa di calcestruzzo C e tirante di armatura T

La forza di taglio di calcolo H_{Ed} agente alla testa del palo si trascura in via conservativa, in quanto il suo effetto ridurrebbe la trazione nel tirante inferiore d'armatura, essendo tale azione di taglio indotta dalla reazione del terreno.

SOVRAPP. PEDONALE STAZIONE VIGNA DI VALLE IV04 - RAMPA1 D'ACCESSO ALLA PASSERELLA -Vigna di Valle PILE – Relazione di calcolo

COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
NR1J	00 D 29	CL	IV0405 201	Α	70 di 118

Ai fini delle successive verifiche, le azioni concentrate P_{Ed} [kN] trasmesse dai pali al plinto sono assunte pari alle forze assiali agenti in testa al palo N_{max} [kN], ridotte della quota parte spettante ad ogni palo del peso del plinto P_{pl} [kN] e del peso del rinterro P_{terr} [kN] presente all'estradosso del plinto:

$$P_{Ed} = N_{max} - (P_{pl} + P_{terr}) / n_{pali}$$

La larghezza della sezione resistente del tirante di armatura e della biella compressa (B_{eff} = larghezza efficace) viene assunta pari a:

- per i pali centrali all'interasse pali i (B_{eff} = i = 3 diam);
- per i pali di bordo a metà interasse pali i più la distanza dal bordo d_b (B_{eff} = i / 2 + d_b = 2.5 diam).

L'altezza della sezione della biella compressa viene assunta pari a

 $h_c = 0.4 c d sen \psi$ (si assume c = 1)

15.2 Geometria plinto

PLINTO			PALI		
dlong	3.6	m	n long	2	
dtrasv	3.6	m	n trasv	2	
Hpl	1	m	n tot	4	
gcls	25	kN/m3	fi_palo	0.6	m
Vpl	12.96	m3	i_long	2.4	m
Ppl	324	kN	i_trasv	2.4	m
TERRENO			PILA		
Hterr	0.5	m	PILA dlong	1.2	m
	0.5 2.64			1.2 2.2	m m
Hterr		m2	dlong		
Hterr Apila	2.64	m2 m2	dlong		
Hterr Apila Apl	2.64 12.96 10.32	m2 m2	dlong		
Hterr Apila Apl Aterr	2.64 12.96 10.32 20	m2 m2 m2	dlong		
Hterr Apila Apl Aterr gterr	2.64 12.96 10.32 20	m2 m2 m2 kN/m3 m3	dlong		

SOVRAPP. PEDONALE STAZIONE VIGNA DI VALLE IV04 - RAMPA1 D'ACCESSO ALLA PASSERELLA -Vigna di Valle PILE – Relazione di calcolo

 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 NR1J
 00 D 29
 CL
 IV0405 201
 A
 71 di 118

15.3 Geometria tirante-puntone

Direzione diagonale (Pali 1, 2, 3 e 4)				
а	1.12	m		
h	1.00	m		
d = h-cferro	0.90	m		
I	1.30	m		
tan psi	0.62			
psi	31.9	0		
1/tan psi	1.60			
С	1			

15.4 Verifiche SLU e SLE

L'armatura inferiore del plinto è pari a:

direzione longitudinale ø26/200
direzione trasversale ø26/200

La sezione del puntone di calcestruzzo ha dimensioni 1.8m x 0.2m.

	Armatura inferiore											
	N _{max}	P _{Ed}	H _{Ed}	Т	σ_{s_long}	$\sigma_{\text{s_trasv}}$	٧	f _{yd}	С	σ_{c}	<	f _{cd} '
SLU	896	789	0	1266	187	187		VERO	1492	4.4		VERO
SLV	1374	1268	0	2034	301	301		VERO	2397	7.0		VERO
	kN	kN	kN	kN	Мра	Мра			kN	Мра		
	Armatura inferiore											
	N _{max}	P _{Ed}	H _{Ed}	Т	σ_{s_long}	σ_{s_trasv}	<	0.8 f _{yk}	С	σ_{c}	<	0.45 f _{cd} '
SLE	701	595	0	954	141	141		VERO	1124	3.3		VERO
	kN	kN	kN	kN	Мра	Мра			kN	Мра		

Le verifiche risultano soddisfatte.

SOVRAPP. PEDONALE STAZIONE VIGNA DI VALLE IV04 - RAMPA1 D'ACCESSO ALLA PASSERELLA -Vigna di Valle PILE – Relazione di calcolo

COMMESSA LOTTO CODIFICA DOCUMENTO REV. FOGLIO

NR1J 00 D 29 CL IV0405 201 A 72 di 118

16 VERIFICHE STRUTTURALI DEL FUSTO PILA 1

16.1 GEOMETRIA DELLA SEZIONE DI VERIFICA E ARMATURA

Si riporta a seguire una figura che illustra la geometria della sezione di verifica alla base della pila.

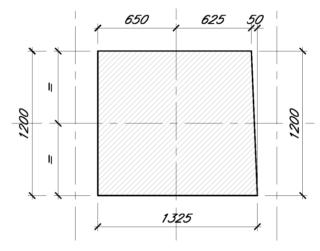


Figura 14 – Geometria della sezione trasversale della pila [cm]

16.1.1 ARMATURA LONGITUDINALE

A seguire è indicata l'armatura flessionale prevista nella sezione di base del fusto pila:

n barre 28

fi barre 26 mm

16.1.2 ARMATURA TRASVERSALE

A seguire è indicata l'armatura a taglio prevista nella sezione di base del fusto pila, all'interno della zona critica, avente una altezza pari a 0.2*Hpila = 2.0m.

Direzione longitudinale - Staffe

øw	14	mm
A1b	153.86	mm2
passo	200	mm
bracci	8	

_. .

<u>Direzione trasversale – Staffe:</u>

ØW	14	16	mm
A1b	153.86	200.96	mm2
passo	200	100	mm
hracci	8	4	

SOVRAPP. PEDONALE STAZIONE VIGNA DI VALLE IV04 - RAMPA1 D'ACCESSO ALLA PASSERELLA -Vigna di Valle PILE – Relazione di calcolo

 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 NR1J
 00 D 29
 CL
 IV0405 201
 A
 73 di 118

16.1.3 VERIFICA DELL'ARMATURA MINIMA

Le armature del fusto pila devono soddisfare le quantità minime indicate dalla normativa e che vengono riepilogate di seguito.

Armatura minima longitudinale:

• $\rho_{min} = 0,60 \%$

Armatura minima trasversale nelle zone critiche:

La percentuale meccanica è definita dalle espressioni:

• $\omega_{wd,r} = A_{sw}/(s \cdot b) \cdot f_{yd}/f_{cd}$ per sezioni rettangolari

• $\omega_{wd,c} = 4 \text{ A}_{sp}/(D_{sp} \cdot s) \cdot f_{yd}/f_{cd}$ per sezioni circolari

Deve verificarsi:

• $A_{sw}/(s \cdot b) \cdot f_{yd}/f_{cd} \ge \zeta$ per sezioni rettangolari

• $\rho_w \cdot f_{yd}/f_{cd} \ge 1,40 \cdot \zeta$ per sezioni circolari

con:

 $\rho_w = V_{sc}/V_{cc}$ rapporto tra il volume complessivo delle armature di confinamento V_{sc} e volume di calcestruzzo confinato V_{cc} ;

 $\zeta = 0.07 \text{per a}_g \ge 0.35 \text{ g};$

 $\zeta = 0.05 \text{per a}_g \ge 0.25 \text{ g};$

 $\zeta = 0.04 \text{per a}_g \ge 0.15 \text{ g};$

 $\zeta = 0.03$ per $a_g < 0.15$ g.

SOVRAPP. PEDONALE STAZIONE VIGNA DI VALLE IV04 - RAMPA1 D'ACCESSO ALLA PASSERELLA -Vigna di Valle

PILE - Relazione di calcolo

COMMESSA LOTTO CODIFICA DOCUMENTO REV. FOGLIO CL NR1J 00 D 29 IV0405 201 Α 74 di 118

Verifica armatura minima longitudinale

ρmin = 0.60%

Ac =1560000 mm2 As,min =9360 mm2

n barre (1° str.) 28

fi barre (1° str.) 26 mm

As 14858 mm2

0.95% requisito soddisfatto ρ

Verifica armatura minima trasversale

0.077 ag = g

ζ = 0.04

 ω wd,r min = 0.04

Armatura in dir. longitudinale

Asw/s staffe = 0.0062 m2/m Asw/s spille = 0.0000 m2/m b =1.3 m fvd =391 MPa

fcd = 18.13 MPa

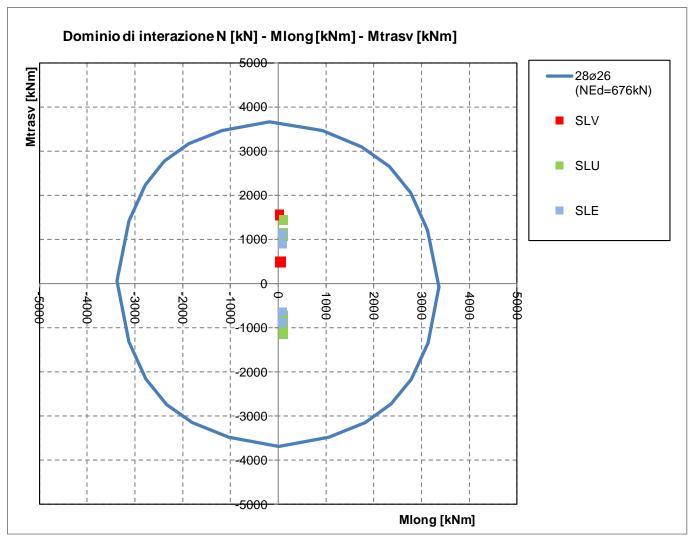
 ω wd,r = 0.102 requisito soddisfatto

Armatura in dir. trasversale

Asw/s staffe = 0.0031 m2/m Asw/s spille = m2/m 0.0000 b =1.20 m fyd = 391 MPa fcd = 18.13 MPa

 ω wd,r = 0.056 requisito soddisfatto

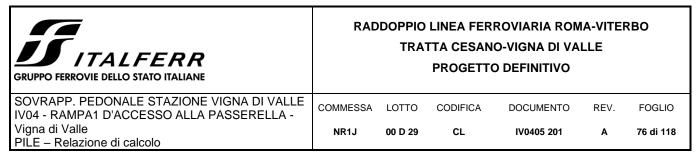
L'armatura longitudinale di calcolo e l'armatura trasversale di calcolo rispettano le quantità minime indicate dalla normativa.


SOVRAPP. PEDONALE STAZIONE VIGNA DI VALLE IV04 - RAMPA1 D'ACCESSO ALLA PASSERELLA -Vigna di Valle PILE – Relazione di calcolo

 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 NR1J
 00 D 29
 CL
 IV0405 201
 A
 75 di 118

16.2 VERIFICHE SLU A FLESSIONE


Sono riportate a seguire le verifiche SLU della sezione di base della pila, espresse in forma sintetica mediante il diagramma di interazione Mlong - Mtrasv , valutato per una forza assiale corrispondente alla condizione di verifica più severa.

La verifica SLU di tipo flessionale si effettua verificando che:


$$FS = (M_{Rd,long}^2 + M_{Rd,trasv}^2)^{0.5} / (M_{Ed,long}^2 + M_{Ed,trasv}^2)^{0.5} \ge 1$$

Si osserva inoltre che: $\rho_M = 1/FS$.

Si riportano le verifiche di dettaglio nelle combinazioni di carico più gravose.

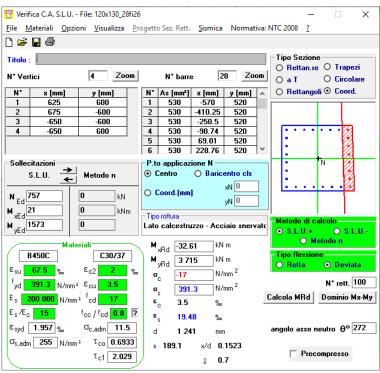
SLU_1.1

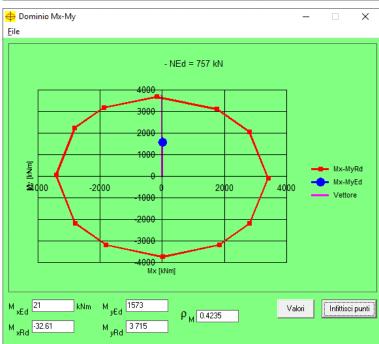
SOVRAPP. PEDONALE STAZIONE VIGNA DI VALLE IV04 - RAMPA1 D'ACCESSO ALLA PASSERELLA -Vigna di Valle PILE – Relazione di calcolo

NR1J 00 D 29 CL IV0405 201 A 77 di 118

DOCUMENTO

FOGLIO


RFV


CODIFICA

COMMESSA

LOTTO

SLV1_trasv_z-

Le verifiche risultano soddisfatte.

SOVRAPP. PEDONALE STAZIONE VIGNA DI VALLE IV04 - RAMPA1 D'ACCESSO ALLA PASSERELLA -Vigna di Valle PILE – Relazione di calcolo

COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
NR1J	00 D 29	CL	IV0405 201	Α	78 di 118

16.3 VERIFICHE SLU A TAGLIO

Nel caso di sezioni rettangolari la verifica viene effettuata distintamente per le due direzioni longitudinale e trasversale.

Nel caso si sezione circolare si esegue la verifica per un valore del taglio pari a:

$$V = \sqrt{(F1^2 + F2^2)}$$

Per quanto riguarda le combinazioni sismiche, con riferimento ai criteri della GR e a quanto precedentemente dichiarato nel §8.3.2, si procede al calcolo del taglio agente di calcolo sulla base dei risultati delle verifiche flessionali.

$$V_{gr} = V_{Ed} \cdot \gamma_{Rd} \cdot M_{Rd}/M_{Ed} \le q \cdot V_{Ed}$$

Il valore resistente a taglio della sezione si determina secondo:

 $V_{Rd} = min (V_{Rcd}; V_{Rsd})$

 $V_{Rcd} = 0.9 \cdot d \cdot b_w \cdot \alpha_c \cdot f_{cd}' \cdot (ctg \alpha + ctg \theta)/(1 + ctg^2 \theta)$

 $V_{Rsd} = 0.9 \cdot d \cdot A_{sw}/s \cdot f_{yd} \cdot (ctg \alpha + ctg \theta) \cdot sen \alpha$ in cui

d altezza utile della sezione

b_w larghezza minima della sezione

Asw area dell'armatura trasversale

s interasse tra due armature trasversali consecutive

θ inclinazione delle bielle di calcestruzzo

angolo di inclinazione dell'armatura trasversale rispetto all'asse dell'elemento

f_{cd}' resistenza a compressione ridotta (pari a 0,5 f_{cd})

αc coefficiente maggiorativo che tiene conto della compressione

Nel caso di sezione circolare, le dimensioni della sezione rettangolare equivalente da utilizzare per il calcolo della resistenza a taglio della sezione si determinano secondo:

$$d = r + 2 \cdot r_s / \pi$$
$$b = 0.9 \cdot 2 \cdot r$$

I valori di resistenza a taglio degli elementi in c.a. devono inoltre essere divisi per un coefficiente di sicurezza aggiuntivo nei confronti della rottura fragile γ_{Bd} valutato mediante la seguente espressione:

$$1 \le \gamma_{Bd} = 1.25 + 1 - q \cdot V_{Ed} / V_{gr} \le 1.25$$

SOVRAPP. PEDONALE STAZIONE VIGNA DI VALLE IV04 - RAMPA1 D'ACCESSO ALLA PASSERELLA -Vigna di Valle PILE – Relazione di calcolo

 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 NR1J
 00 D 29
 CL
 IV0405 201
 A
 79 di 118

16.3.1 VERIFICA A TAGLIO IN DIREZIONE LONGITUDINALE

V_{Rsd} V_{Rcd} V_{Ed} V_{Rd} V_{Rd} V_{Ed}	34 1 1171	kN kN kN V _{Rd}
V_{Rcd} V_{Ed} γ_{Rd}	6080 34 1	kN
V _{Rcd}	6080	kN
V _{Rcd}	6080	kN
A Bey	11/1	
V	1171	kN
, to _W , o _W	0.00	111111/111111
. ,		mm²/mm
		0
		0
••		mm
	-	mm
		mm ²
		mm
•		N/mm ²
•		N/mm ²
α_{c}		
$\sigma_{\sf cp}$	0.43	N/mm ²
N	676000	N
A_{TOT}	1404000	mm2
d	1080	mm
Н	1200	mm
b _w	1300	mm
Уc	1.5	
f _{cd}	19	
•	33	N/mm ² N/mm ²
	$\begin{array}{c} y_c \\ b_w \\ H \\ d \\ A_{TOT} \\ N \\ \sigma_{cp} \\ \alpha_c \\ f_{yk} \\ f_{yd} \\ \varnothing_w \\ A \varnothing_w \\ z \\ s_w \\ n^\circ \ bracci \\ \theta \\ cot(\theta) \\ \alpha \\ cot(\alpha) \\ A s_w / s_w \\ \end{array}$	$\begin{array}{c cccc} f_{ck} & 33 \\ f_{cd} & 19 \\ y_c & 1.5 \\ \hline b_w & 1300 \\ H & 1200 \\ d & 1080 \\ \hline A_{TOT} & 1404000 \\ \hline N & 676000 \\ \hline \sigma_{cp} & 0.43 \\ \hline \alpha_c & 1.02 \\ \hline f_{yk} & 450 \\ \hline f_{yd} & 391 \\ \hline \varnothing_w & 14 \\ \hline A\varnothing_w & 154 \\ \hline z & 972 \\ \hline s_w & 200 \\ \hline n^o bracci & 4 \\ \hline \theta & 45.0 \\ \hline \cot(\theta) & 1.00 \\ \hline \alpha & 90 \\ \hline \cot(\alpha) & 0.00 \\ \hline \end{array}$

SOVRAPP. PEDONALE STAZIONE VIGNA DI VALLE IV04 - RAMPA1 D'ACCESSO ALLA PASSERELLA -Vigna di Valle PILE – Relazione di calcolo

 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 NR1J
 00 D 29
 CL
 IV0405 201
 A
 80 di 118

16.3.2 VERIFICA A TAGLIO IN DIREZIONE TRASVERSALE

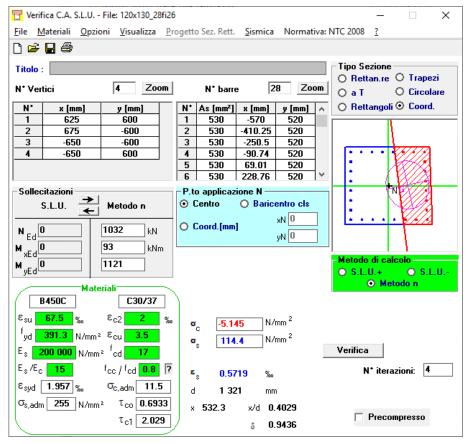
V_{Rsd} V_{Rcd} V_{Ed} V_{Rd} V_{Rd} V_{Ed}	350 1 1269	kN kN kN V _{Rd}
V_{Rcd} V_{Ed} γ_{Rd}	350 1	kN
V _{Rcd}	6080 350	kN
V _{Rcd}	6080	kN
A Bey	1200	
V	1260	kN
, to _W , o _W	0.00	111111 /111111
. ,		mm²/mm
		0
		0
••		mm
		mm
		mm ²
		mm
•		N/mm ²
f _{yk}		N/mm ²
α_{c}		
$\sigma_{\sf cp}$	0.43	N/mm ²
N	676000	N
A _{TOT}	1404000	mm2
d	1170	mm
Н	1300	mm
b _w	1200	mm
Уc	1.5	
f _{cd}	19	
	33	N/mm ² N/mm ²
	$\begin{array}{c} \textbf{y}_{c} \\ \textbf{b}_{w} \\ \textbf{H} \\ \textbf{d} \\ \textbf{A}_{TOT} \\ \textbf{N} \\ \boldsymbol{\sigma}_{cp} \\ \boldsymbol{\alpha}_{c} \\ \textbf{f}_{yk} \\ \textbf{f}_{yd} \\ \boldsymbol{\varnothing}_{w} \\ \textbf{A} \boldsymbol{\varnothing}_{w} \\ \textbf{z} \\ \textbf{s}_{w} \\ \textbf{n}^{\circ} \ \textbf{bracci} \\ \boldsymbol{\theta} \\ \textbf{cot}(\boldsymbol{\theta}) \\ \boldsymbol{\alpha} \\ \textbf{cot}(\boldsymbol{\alpha}) \\ \textbf{As}_{w} / \textbf{s}_{w} \end{array}$	$\begin{array}{c cccc} f_{ck} & 33 \\ f_{cd} & 19 \\ y_c & 1.5 \\ \hline b_w & 1200 \\ H & 1300 \\ d & 1170 \\ \hline A_{TOT} & 1404000 \\ \hline N & 676000 \\ \hline \sigma_{cp} & 0.43 \\ \hline \alpha_c & 1.02 \\ \hline f_{yk} & 450 \\ f_{yd} & 391 \\ \hline \varnothing_w & 14 \\ \hline A\varnothing_w & 154 \\ \hline z & 1053 \\ \hline s_w & 200 \\ \hline n^o bracci & 4 \\ \hline \theta & 45.0 \\ \hline \cot(\theta) & 1.00 \\ \hline \alpha & 90 \\ \hline \cot(\alpha) & 0.00 \\ \hline \end{array}$

SOVRAPP. PEDONALE STAZIONE VIGNA DI VALLE COMMESSA LOTTO CODIFICA DOCUMENTO RFV **FOGLIO** IV04 - RAMPA1 D'ACCESSO ALLA PASSERELLA -Vigna di Valle NR1J 00 D 29 CL IV0405 201 Α 81 di 118 PILE - Relazione di calcolo

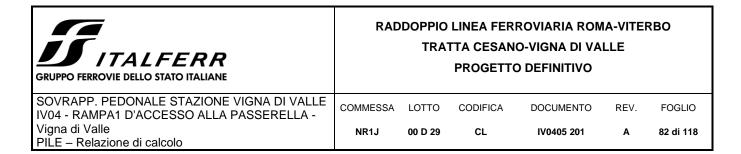
16.4 VERIFICA SLE DELLE TENSIONI

La verifica SLE di tipo tensionale si effettua verificando che le massime tensioni agenti nella sezione risultino inferiori ai seguenti valori limite:

per le combinazioni SLE-RAR:


• tensione limite nel calcestruzzo: $\sigma_c = 0.55 f_{ck} = 18.3 MPa$

tensione limite nelle barre: $\sigma_s = 0.75 \, f_{yk} = 337.5 \, MPa$


per le combinazioni SLE-QPE:

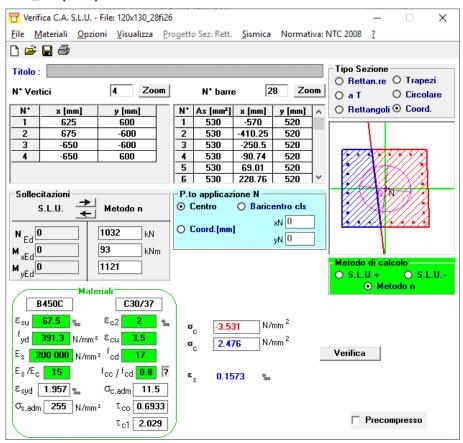
tensione limite nel calcestruzzo: σ_c = 0.40 f_{ck} = 13.3 MPa

SLE_1.1 (RAR)

I valori di tensione sono compatibili con i limiti di normativa.

16.5 VERIFICHE SLE A FESSURAZIONE

La verifica SLE a fessurazione si effettua verificando che il massimo valore di apertura delle fessure risulti inferiore ai seguenti valori limite:


per le combinazioni SLE-RAR:

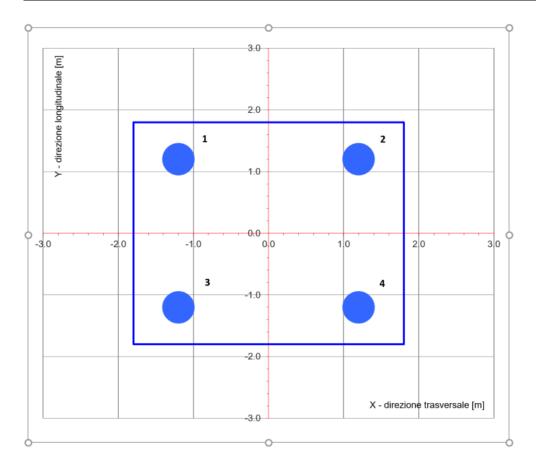
apertura fessure limite:

 $w_{lim} = w_1 = 0.20 \text{ mm}$

Nel caso in esame si verifica lo stato limite di formazione delle fessure, considerando il calcestruzzo reagente a trazione (I stadio del c.a.)

SLE_1.1 (RAR)

La verifica risulta soddisfatta in quanto $\sigma_c < f_{ctm}/1.2 = 3.1$ MPa , quindi non si formano fessure.



17 VERIFICHE STRUTTURALI DEI PALI DI FONDAZIONE – PILA 1

17.1 SOLLECITAZIONI ALLA TESTA DEI PALI

Le sollecitazioni combinate alla base del plinto sono distribuite rigidamente alla testa dei pali. Geometria della palificata

num.	X (trasv)	Y (long)	X ²	Y ²	WI	Wt
	m	m	m²	m²		
1	-1.20	1.20	1	1.4	4.80E+00	-4.80E+00
2	1.20	1.20	1	1.4	4.80E+00	4.80E+00
3	-1.20	-1.20	1	1.4	-4.80E+00	-4.80E+00
4	1.20	-1.20	1	1	-4.80E+00	4.80E+00

SOVRAPP. PEDONALE STAZIONE VIGNA DI VALLE IV04 - RAMPA1 D'ACCESSO ALLA PASSERELLA -Vigna di Valle PILE – Relazione di calcolo

COMMESSA LOTTO CODIFICA DOCUMENTO REV. FOGLIO

NR1J 00 D 29 CL IV0405 201 A 84 di 118

Seguono le forze assiali N [kN] agenti alla testa dei pali:

	Palo	Palo	Palo	Palo
	1	2	3	4
SLE_1.1	98	677	48	627
SLE_2.1	192	674	142	623
SLE_1.2	532	147	481	97
SLE_2.2	625	143	575	93
SLU_1.1	132	857	72	796
SLU_2.1	273	851	213	791
SLU_1.2	652	220	592	160
SLU_2.2	793	215	733	155
GEO_1.1	54	802	-7	742
GEO_2.1	171	797	111	737
GEO_1.2	617	113	557	52
GEO_2.2	734	108	674	48
SLV1_long_z+	204	453	169	418
SLV2_long_z+	223	453	188	417
SLV1_trasv_z+	-76	709	-87	698
SLV2_trasv_z+	-57	708	-68	698
SLV1_vert_z+	212	461	201	451
SLV2_vert_z+	231	460	220	450
SLV1_long_z-	180	456	133	409
SLV2_long_z-	194	454	153	413
SLV1_trasv_z-	-130	736	-144	722
SLV2_trasv_z-	-110	734	-130	715
SLV1_vert_z-	139	421	125	407
SLV2_vert_z-	160	415	146	401

D (m)	0.6	
k _h (kN/m³)	33333	
f _{ck} (Mpa)	25	
E (Mpa)	31476	
J (m ⁴)	0.0064	
λ (cm)	251.56	

SOVRAPP. PEDONALE STAZIONE VIGNA DI VALLE IV04 - RAMPA1 D'ACCESSO ALLA PASSERELLA -Vigna di Valle PILE – Relazione di calcolo

 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 NR1J
 00 D 29
 CL
 IV0405 201
 A
 85 di 118

Segue riepilogo dei valori massimi e minimi della forza assiale N [kN] e del taglio medio T [kN]:

	Nmax	Nmin	Tmedia	Mmax
	[kN]	[kN]	[kN]	[kNm]
SLE_1.1	677	48	68	85
SLE_2.1	674	142	68	85
SLE_1.2	532	97	68	85
SLE_2.2	625	93	68	85
SLU_1.1	857	72	81	102
SLU_2.1	851	213	81	102
SLU_1.2	652	160	81	102
SLU_2.2	793	155	81	102
GEO_1.1	802	-7	88	110
GEO_2.1	797	111	88	110
GEO_1.2	617	52	88	110
GEO_2.2	734	48	88	110
SLV1_long_z+	453	169	24	30
SLV2_long_z+	453	188	24	30
SLV1_trasv_z+	709	-87	78	98
SLV2_trasv_z+	708	-68	78	98
SLV1_vert_z+	461	201	23	29
SLV2_vert_z+	460	220	23	29
SLV1_long_z-	456	133	31	40
SLV2_long_z-	454	153	36	45
SLV1_trasv_z-	736	-144	89	111
SLV2_trasv_z-	734	-130	89	112
SLV1_vert_z-	421	125	35	44
SLV2_vert_z-	415	146	29	36

SOVRAPP. PEDONALE STAZIONE VIGNA DI VALLE IV04 - RAMPA1 D'ACCESSO ALLA PASSERELLA -Vigna di Valle PILE – Relazione di calcolo

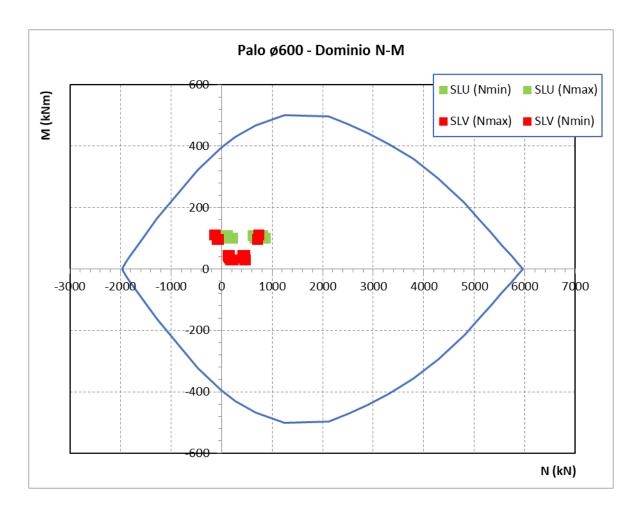
 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 NR1J
 00 D 29
 CL
 IV0405 201
 A
 86 di 118

17.2 GEOMETRIA DELLA SEZIONE DI VERIFICA E ARMATURA

Nelle tabelle seguenti sono descritte le caratteristiche geometriche della sezione di verifica dei pali di fondazione, nonché le caratteristiche di resistenza dei materiali.

GEOMETRIA DELLA SEZIONE		
Diametro del palo =	600	mm
Copriferro netto c =	60	mm
Classe di resistenza calcestruzzo =	C25/30	Мра
Classe di resistenza delle barre =	B450C	MPa


Nella seguente tabella sono descritte le caratteristiche geometriche dell'armatura flessionale e a taglio dei pali.

<u>ARMATURA LONGITUDINALE</u>		
Numero barre long.	16	-
Diametro barre long.	16	mm
<u>ARMATURA TRASVERSALE</u>		
Diametro barre trasv.	12	mm
Passo arm. trasv.	200	mm
VERIFICA ARMATURA MINIMA LONG.		
ρmin =	1.00%	
Ac =	282743	mm2
$As_{min} =$	2827	mm2
Armatura long. tot Asd,tot =	3216	mm2
ρΙ =	1.1%	

17.3 VERIFICA SLU A PRESSO-FLESSIONE

Sono riportate a seguire le verifiche SLU della sezione di sommità del palo maggiormente sollecitato, espresse in forma sintetica mediante il diagramma di interazione N [kN] – M [kNm].

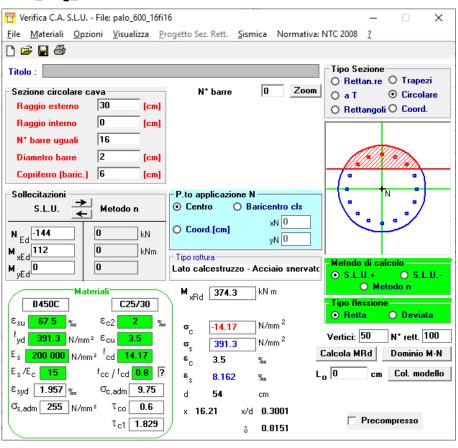
Si riportano le verifiche di dettaglio nelle combinazioni di carico più gravose.

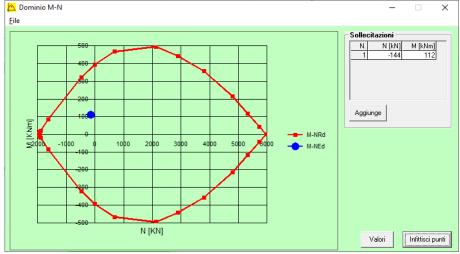
SOVRAPP. PEDONALE STAZIONE VIGNA DI VALLE IV04 - RAMPA1 D'ACCESSO ALLA PASSERELLA -Vigna di Valle PILE – Relazione di calcolo

NR1J 00 D 29 CL IV0405 201 A 88 di 118

DOCUMENTO

FOGLIO


RFV


CODIFICA

COMMESSA

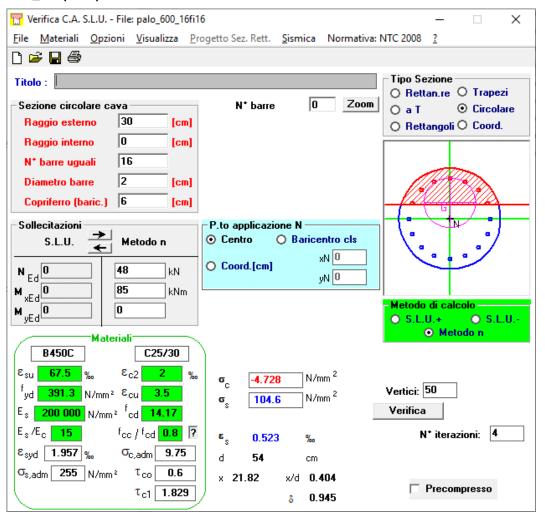
LOTTO

SLV1_long_z-

SOVRAPP. PEDONALE STAZIONE VIGNA DI VALLE IV04 - RAMPA1 D'ACCESSO ALLA PASSERELLA -Vigna di Valle PILE – Relazione di calcolo

 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

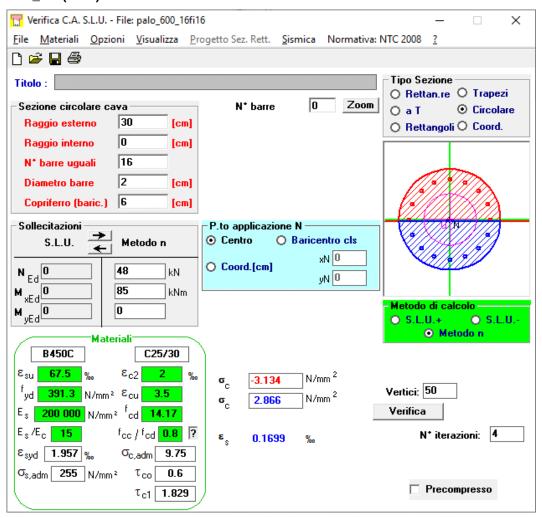
 NR1J
 00 D 29
 CL
 IV0405 201
 A
 89 di 118


17.4 VERIFICA SLU A TAGLIO

classe cls	R _{ck}	30	N/mm ²
resist. Caratteristica cilindrica	f _{ck}	25	N/mm ²
	f _{cd}	14	N/mm ²
diametro	Φ	600	mm
Area sezione	Α	282743	mm ²
copriferro	С	80	mm
Area sezione rettangolare equivalente	A_{eq}	222244	mm ²
altezza utile equivalente	d	440	mm
larghezza equivalente	b _w	505	mm
altezza equivalente	h _{eq}	559.8476	mm
sforzo assiale dovuto ai carichi o precompressione	N	-144000	N
	$\sigma_{\sf cp}$	-0.5	N/mm ²
	$\alpha_{\sf cp}$	0.96	
Acciaio	f _{yk}	450	N/mm ²
Feb44k	f _{yd}	391	N/mm ²
diametro staffe (spille)	Ø _w	12	mm
Area staffa (spilla)	Aø _w	113	mm ²
0.9 d	Z	396	mm
passo spirale	S _w	200	mm
	n° bracci	2	
angolo di inclinazione biella compressa	θ	45.0	o
deve essere compreso tra 1 e 2.5	cot(θ)	1.00	
angolo di inclinazione armatura rispetto asse palo	α	90	0
	cot(a)	0.00	
	As _w / s _w	1.131	mm²/mm
Taglio resistente per "taglio trazione"	V_{Rsd}	175	kN
Taglio resistente per "taglio compressione"	V_{Rcd}	680	kN
taglio sollecitante	V_{Ed}	89	kN
fattore di sicurezza per GR (par. 7.9.5.2.2)	γRd	1	
taglio resistente	V_{Rd}	175	kN
-	V _{Ed}	<	V_{Rd}

17.5 VERIFICA SLE DELLE TENSIONI

SLE_3.2 (RAR)


I valori di tensione sono compatibili con i limiti di normativa.

17.6 VERIFICA SLE A FESSURAZIONE

Nel caso in esame si verifica lo stato limite di formazione delle fessure, considerando il calcestruzzo reagente a trazione (I stadio del c.a.)

SLE_3.2 (RAR)

 $\sigma_c\!>f_{ctm}/1.2=2.56$ MPa , quindi si svolge la verifica di apertura delle fessure.

SOVRAPP. PEDONALE STAZIONE VIGNA DI VALLE IV04 - RAMPA1 D'ACCESSO ALLA PASSERELLA -Vigna di Valle PILE – Relazione di calcolo

COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
NR1J	00 D 29	CL	IV0405 201	Α	92 di 118

	INPUT	
Rck	30	Мра
D	600	mm
C ₁	82	mm
ϕ_1	20	mm
n ₁	16	
c ₂	82	mm
Ø ₂	0	mm
n ₂	16	
d	518	mm
b _{eff}	85.6	mm
x	218	mm
$\sigma_{\text{s_max1}}$	105	Мра
$\sigma_{\text{s_max2}}$		Мра
h _{c,eff}	127.3	mm
A _{c,eff}	10901	mm ²
ρ p,eff	0.029	
kt	0.6	
k1	0.8	
k2	0.5	
k3	3.4	
k4	0.425	

OUTPUT						
diff. def. arn	nature-cls					
ε sm -ε cm	3.06E-04 -					
distanza ma	x fessure					
s r, max 3.63E+02 mm						
ampiezza fe	ampiezza fessure:					
wk	0.111 mm					
LIMITE	0.20 mm					
Sez. verificata						

La verifica è soddisfatta, in quanto wk < 0.20mm.

SOVRAPP. PEDONALE STAZIONE VIGNA DI VALLE IV04 - RAMPA1 D'ACCESSO ALLA PASSERELLA -Vigna di Valle PILE – Relazione di calcolo

COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
NR1J	00 D 29	CL	IV0405 201	Α	93 di 118

18 VERIFICHE STRUTTURALI DEL PLINTO DI FONDAZIONE – PILA 1

18.1 VERIFICHE SLU-SLE CON MECCANISMO TIRANTE-PUNTONE

La verifica strutturale del plinto viene condotta a seguire impiegando un modello tirante-puntone, come quello rappresentato nella figura seguente:

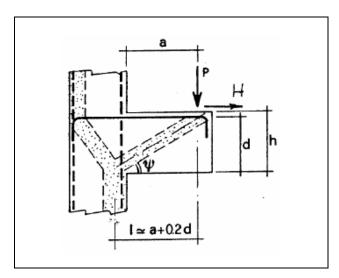


Figura 15 – Meccanismo tirante puntone della mensola tozza

Si distinguono due meccanismi di tipo tirante-puntone principali nel plinto di fondazione, illustrati nelle figure seguenti e descritti a seguire:

- un primo meccanismo è innescato dalle azioni trasmesse al plinto dai pali centrali e coinvolge un tirantepuntone parallelo alla direzione longitudinale. Tale meccanismo coinvolge la sola armatura longitudinale inferiore del plinto.
- un secondo meccanismo coinvolge i pali di spigolo ed innesca un tirante-puntone con direzione diagonale, individuata da un angolo α misurato rispetto alla direzione trasversale. Tale meccanismo coinvolge sia l'armatura longitudinale inferiore del plinto che l'armatura trasversale, pertanto, ai fini delle verifiche del tirante di armatura e della biella di calcestruzzo, si considera composto dalla somma vettoriale di due meccanismi ortogonali disaccoppiati.

SOVRAPP. PEDONALE STAZIONE VIGNA DI VALLE IV04 - RAMPA1 D'ACCESSO ALLA PASSERELLA -Vigna di Valle PILE – Relazione di calcolo

NR1J 00 D 29 CL IV0405 201 A 94 di 118

DOCUMENTO

REV.

FOGLIO

CODIFICA

A seguire si riporta una immagine che illustra, in una vista in sezione, la geometria di un generico meccanismo tirante puntone che si innesca nel plinto per azione dei carichi concentrati trasmessi dai pali di fondazione

COMMESSA

LOTTO

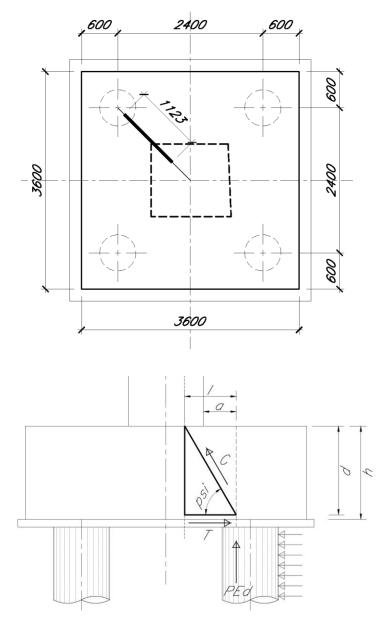


Figura 16 – Tirante puntone - Biella compressa di calcestruzzo C e tirante di armatura T

La forza di taglio di calcolo H_{Ed} agente alla testa del palo si trascura in via conservativa, in quanto il suo effetto ridurrebbe la trazione nel tirante inferiore d'armatura, essendo tale azione di taglio indotta dalla reazione del terreno.

SOVRAPP. PEDONALE STAZIONE VIGNA DI VALLE IV04 - RAMPA1 D'ACCESSO ALLA PASSERELLA -Vigna di Valle PILE – Relazione di calcolo

COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
NR1J	00 D 29	CL	IV0405 201	Α	95 di 118

Ai fini delle successive verifiche, le azioni concentrate P_{Ed} [kN] trasmesse dai pali al plinto sono assunte pari alle forze assiali agenti in testa al palo N_{max} [kN], ridotte della quota parte spettante ad ogni palo del peso del plinto P_{pl} [kN] e del peso del rinterro P_{terr} [kN] presente all'estradosso del plinto:

$$P_{Ed} = N_{max} - (P_{pl} + P_{terr}) / n_{pali}$$

La larghezza della sezione resistente del tirante di armatura e della biella compressa (B_{eff} = larghezza efficace) viene assunta pari a:

- per i pali centrali all'interasse pali i (B_{eff} = i = 3 diam);
- per i pali di bordo a metà interasse pali i più la distanza dal bordo d_b (B_{eff} = i / 2 + d_b = 2.5 diam).

L'altezza della sezione della biella compressa viene assunta pari a

 $h_c = 0.4 c d sen \psi$ (si assume c = 1)

SOVRAPP. PEDONALE STAZIONE VIGNA DI VALLE IV04 - RAMPA1 D'ACCESSO ALLA PASSERELLA - Vigna di Valle

 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 NR1J
 00 D 29
 CL
 IV0405 201
 A
 96 di 118

PILE – Relazione di calcolo

18.2 Geometria plinto

PLINTO			PALI		
dlong	3.6	m	n long	2	
dtrasv	3.6	m	n trasv	2	
Hpl	1	m	n tot	4	
gcls	25	kN/m3	fi_palo	0.6	m
Vpl	12.96	m3	i_long	2.4	m
Ppl	324	kN	i_trasv	2.4	m
TERRENO			PILA		
Hterr	0.5	m	dlong	1.2	m
Apila	2.64	m2	dtrasv	2.2	m
Apl	12.96	m2			
Aterr	10.32	m2			
gterr	20	kN/m3			
Vterr	5.16	m3			
Pterr	103	kN			

18.3 Geometria tirante-puntone

Direzione d	iagonale (Pali 1, 2, 3 e 4)
а	1.12	m
h	1.00	m
d = h-cferro	0.90	m
ļ	1.30	m
tan psi	0.62	
psi	31.9	0
1/tan psi	1.60	
С	1	

SOVRAPP. PEDONALE STAZIONE VIGNA DI VALLE IV04 - RAMPA1 D'ACCESSO ALLA PASSERELLA -Vigna di Valle

 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 NR1J
 00 D 29
 CL
 IV0405 201
 A
 97 di 118

PILE – Relazione di calcolo

18.4 Verifiche SLU e SLE

L'armatura inferiore del plinto è pari a:

direzione longitudinale ø24/200direzione trasversale ø24/200

La sezione del puntone di calcestruzzo ha dimensioni 1.8m x 0.2m.

	N _{max}	P_{Ed}	H _{Ed}	Т	σ_{s_long}	σ_{s_trasv}	<	f _{yd}	С	σ_{c}	<	f _{cd} '
SLU	857	750	0	1204	209	209		VERO	1418	4.1		VERO
SLV	736	629	0	1010	176	176		VERO	1190	3.5		VERO
	kN	kN	kN	kN	Мра	Мра			kN	Мра		
	Armatura	inferiore)									
	N _{max}	P_{Ed}	H _{Ed}	Т	σ_{s_long}	σ_{s_trasv}	<	0.8 f _{yk}	С	σ_{c}	<	0.45 f _{cd} '
SLE	677	571	0	916	159	159		VERO	1079	3.1		VERO
	kN	kN	kN	kN	Мра	Мра			kN	Мра		

SOVRAPP. PEDONALE STAZIONE VIGNA DI VALLE IV04 - RAMPA1 D'ACCESSO ALLA PASSERELLA -Vigna di Valle PILE – Relazione di calcolo

 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 NR1J
 00 D 29
 CL
 IV0405 201
 A
 98 di 118

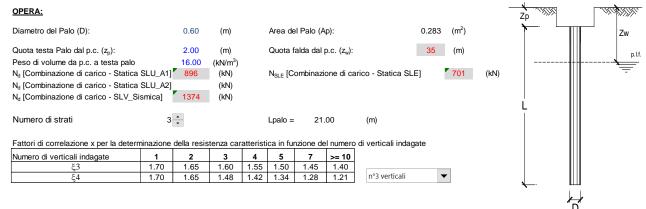
19 VERIFICHE GEOTECNICHE DEI PALI

19.1 PALI DELLA PILA 2

Sono presenti 4 pali ø600 aventi lunghezza pari a 21m. Si adottano i seguenti parametri geotecnici:

Modello 9

Dalla pk 38+000 alla pk 39+497									
Descrizione	z iniz (m)	z fin (m)	spessore (m)	Peso di volume (kN/m³)	Tipo di terreno	Angolo di resistenza al taglio φ' (°)	C' (kPa)	Modulo elastico Eop (MPa)	K media (m/s)
Terreno vegetale sabbioso limoso con frammenti antropici	0	1	1	-	-	-	-	-	-
Limo sabbioso debolemente argilloso	1	3	2	17	GF	26	5	20	-
Sabbia limosa mediamnete addensata con presenza di ghiaia	3	19	16	17	GG	32	0	50	-
Sabbia debolemnete limosa con rarai clasti di litici vulcanici	19	30	11	17	GG	30	0	50	1,71*10-2


SOVRAPP. PEDONALE STAZIONE VIGNA DI VALLE IV04 - RAMPA1 D'ACCESSO ALLA PASSERELLA -Vigna di Valle

COMMESSA LOTTO CODIFICA DOCUMENTO REV. FOGLIO

NR1J 00 D 29 CL IV0405 201 A 99 di 118

PILE – Relazione di calcolo

CALCOLO DELLA CAPACITA' PORTANTE DI UN PALO TRIVELLATO DI GRANDE DIAMETRO

CARATTERISTICHE GEOTECNICHE DEL TERRENO:

Strata	Spess		Par	ametri e	del terre	no		Coefficienti di Calcolo			
Strato	opess	Tipo di terreno	γ	c'	φ'	Cu	N _{SPT}	k	μ	а	α
(-)	(m)		(kN/m ³)	(kPa)	(°)	(kPa)	(-)	(-)	(-)	(-)	(-)
1	2.0	Limo sabbioso debolmente argilloso	17.00	5.0	26.0	5.0		0.56	0.49		
2	16.0	Sabbia limosa med addensata con presenza di ghiaia	17.00	0.0	32.0			0.47	0.62		
3	3.00		17.00	0.0	30.0			0.50	0.58		

		Risultati								
τ_{lim}	Qsi	Nq	Nc	qb	Qbm					
(kPa)	(kN)	(-)	(-)	(kPa)	(kN)					
100.0	0									
	1790									
	593	8.63	0.00	3356.4	949.0					
-										
	1									

q_{b_lim} 4000 (kPa)

(n.b.: lo spessore degli strati è computato dalla quota di intradosso del plinto)

CAPACITA' PORTANTE MEDIA

CAPACITA' PORTANTE DI PROGETTO

alla base R_{bm} = 949.0 (kN) $Q_d = Q_{bm}/(\xi \cdot \gamma b) + Q_{lm}/(\xi \cdot \gamma s)$ laterale R_{sm} = 2382.9 (kN) $Q_d = 3332$ (kN) totale R_{cm} = 3331.9 (kN)

$Q_d = Q_{bm}/(\xi \cdot \gamma b) + Q_{lm}/(\xi \cdot \gamma s)$	Peso palo	•	148	(kN)

	E _d	R _d	Fs	
	(kN)	(kN)	(-)	
SLU - Approccio 2: A1+M1+R3	1096	1734	1.58	ok
SLV - EQK+M1+R3 sisma	1523	1734	1.14	- Jok

	N _{SLE/SLD}	R _{c,cal,lat}	Fs		
	(kN)	(kN)	(-)		
SLE	850	2383	2.80	ok	R

 $R_{c,cal,lat} / 1.25 > N_{SLE/SLD}$

VERIFICA A TRAZIONE DEL PALO

N _d [Combinazione di carico - Statica SLU_A1]		(kN)
N _d [Combinazione di carico - Statica SLU_A2]		(kN)
N _d [Combinazione di carico - SLV_Sismica]	-726	(kN)

	Ed	R _d	Fs	
	(kN)	(kN)	(-)	
SLU - Approccio 2: A1+M1+R3				
SLV - EQK+M1+R3_sisma	-577	-1191	2.06	ol

SOVRAPP. PEDONALE STAZIONE VIGNA DI VALLE IV04 - RAMPA1 D'ACCESSO ALLA PASSERELLA -Vigna di Valle PILE – Relazione di calcolo

 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 NR1J
 00 D 29
 CL
 IV0405 201
 A
 100 di 118

Si considera un fattore Eg di riduzione della capacità portante per della palificata rispetto al palo singolo valutatto secondo la formula di Converse – Labarre:

$$E_g = 1 - \frac{\theta(n-1)m + (m-1)n}{90 \, mn} \tag{15.68}$$

where m = number of columns of piles in a group,

n = number of rows,

 $\theta = \tan^{-1}(d/s)$ in degrees,

d = diameter of pile,

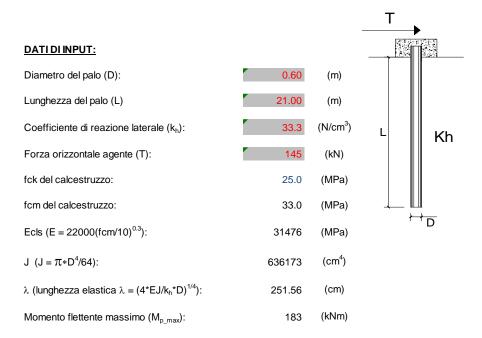
s =spacing of piles center to center.

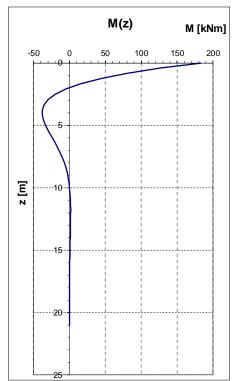
m	2	
n	2	
d	0.6	m
S	2.4	m
θ	14.0	o
Eg	0.92	

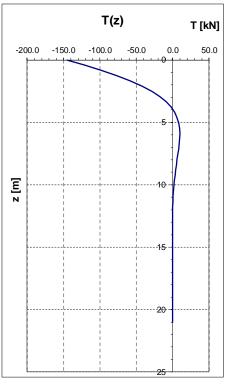
Il minimo fattore di sicurezza della capacità portante del singolo palo si deve quindi ridurre come :

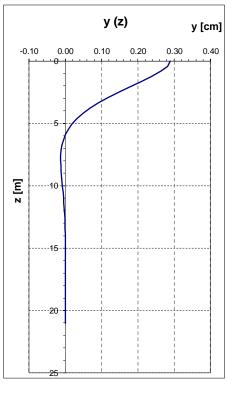
$$FS^* = FS * Eg = 1.14 * 0.92 = 1.05 > 1$$

La verifica è soddisfatta.


SOVRAPP. PEDONALE STAZIONE VIGNA DI VALLE IV04 - RAMPA1 D'ACCESSO ALLA PASSERELLA -Vigna di Valle


 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO


 NR1J
 00 D 29
 CL
 IV0405 201
 A
 101 di 118


PILE - Relazione di calcolo

PALI IMPEDITI DI RUOTARE IN TESTA SOGGETTI A FORZE ORIZZONTALI

SOVRAPP. PEDONALE STAZIONE VIGNA DI VALLE IV04 - RAMPA1 D'ACCESSO ALLA PASSERELLA -Vigna di Valle PILE - Relazione di calcolo

00 D 29 CL IV0405 201 Α

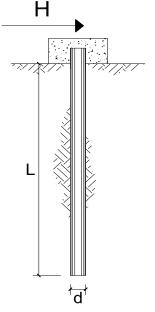
CODIFICA

NR1J 102 di 118

DOCUMENTO

CARICO LIMITE ORIZZONTALE DI UN PALO IN TERRENI INCOERENTI PALI CON ROTAZIONE IN TESTA IMPEDITA

COMMESSA


LOTTO

OPERA:

TEORIA DI BASE:

(Broms, 1964)

CC	coefficienti parziali				М	R
	letodo di calco	nio.	permanenti	variabili	٥,	24
		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	γg	γq	γ_{ϕ} '	γт
	A1+M1+R1	0	1.30	1.50	1.00	1.00
SLU	A2+M1+R2	0	1.00	1.30	1.00	1.60
S	A1+M1+R3	0	1.30	1.50	1.00	1.30
	SISMA	•	1.00	1.00	1.00	1.30
DM88		0	1.00	1.00	1.00	1.00
definiti dal	definiti dal progettista		1.30	1.50	1.25	1.00

REV.

FOGLIO

n	• 1	ੈ	ೆ	♂	Ć	7	≥∱0	₽A.	P∰g.
ξ ₃	1.70	1.65	1.60	1.55	1.50	1.45	1.40	1.00	1.00
ξ ₄	1.70	1.55	1.48	1.42	1.34	1.28	1.21	1.00	1.00

Palo corto:
$$H = 1.5k_p \gamma d^3 \left(\frac{L}{d}\right)^2$$

Palo intermedio:
$$H = \frac{1}{2} k_p \gamma d^3 \left(\frac{L}{d}\right)^2 + \frac{M_y}{L}$$

$$\begin{split} & \underline{\textit{Palo intermedio:}} & \qquad \qquad H = \frac{1}{2} \, k_p \gamma d^3 \bigg(\frac{L}{d} \bigg)^2 \, + \frac{M_y}{L} \\ & \\ & \underline{\textit{Palo lungo:}} & \qquad \qquad H = k_p \gamma d^3 \, \sqrt[3]{ \left(3.676 \, \frac{M_y}{k_p \gamma d^4} \right)^2} \end{split}$$

SOVRAPP. PEDONALE STAZIONE VIGNA DI VALLE IV04 - RAMPA1 D'ACCESSO ALLA PASSERELLA - Vigna di Valle

 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 NR1J
 00 D 29
 CL
 IV0405 201
 A
 103 di 118

PILE – Relazione di calcolo

DATI DI INPUT:

Lunghezza del palo	L =	21.00	(m)
Diametro del palo	d =	0.60	(m)

Momento di plasticizzazione della sezione My = 428.62 (kN m)

Angolo di attrito del terreno $\phi'_{med} = 26.00$ (°) $\phi'_{min} = 26.00$ (°)

Angolo di attrito di calcolo del terreno $\phi'_{\text{med,d}}=$ 26.00 (°) $\phi'_{\text{min,d}}=$ 26.00 (°) Coeff. di spinta passiva (kp = (1+sin ϕ')/(1-sin ϕ')) kp $_{\text{med}}=$ 2.56 (-) kp $_{\text{min}}=$ 2.56 (-)

Peso di unità di volume (con falda $\gamma = \gamma'$) $\gamma = 17.00 \text{ (kN/m}^3)$ Carico Assiale Permanente (G): G = 145 (kN)

Palo corto:

$$H1_{med}$$
= 17280.31 (kN) $H1_{min}$ = 17280.31 (kN)

Palo intermedio:

$$H2_{med}$$
= 5780.51 (kN) $H2_{min}$ = 5780.51 (kN)

Palo lungo:

$$H3_{med} = 401.77$$
 (kN) $H3_{min} = 401.77$ (kN)

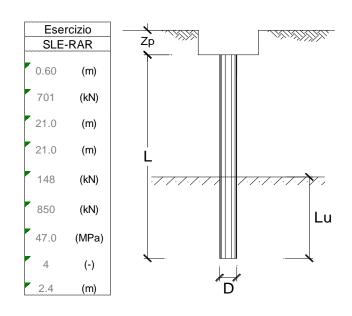
 $H_{med} = 401.77$ (kN) palo lungo $H_{min} = 401.77$ (kN) palo lungo

 $H_k = Min(H_{med}/\xi_3; R_{min}/\xi_4) = 236.33$ (kN)

 $H_d = H_k/\gamma_T = 181.80$ (kN)

 $F_d = G \cdot \gamma_G + Q \cdot \gamma_Q = 145.00$ (kN)

FS = Hd / Fd = 1.25


SOVRAPP. PEDONALE STAZIONE VIGNA DI VALLE IV04 - RAMPA1 D'ACCESSO ALLA PASSERELLA -Vigna di Valle PILE – Relazione di calcolo

LOTTO COMMESSA CODIFICA DOCUMENTO REV. FOGLIO NR1J 00 D 29 CL IV0405 201 Α 104 di 118

CALCOLO DEL PALO SINGOLO E DELLA PALIFICATA

OPERA:

	Fine of	costr.
DATI DI INPUT:	SLE	-QP
Diametro del Palo (D):	0.60	(m)
Carico sul palo (P):	333	(kN)
Lunghezza del Palo (L):	21.0	(m)
Lunghezza Utile del Palo (Lu):	21.0	(m)
Peso del Palo (P _{palo}):	148	(kN)
Carico base palo (P _{base}):	481	(kN)
Modulo di Deformazione (E):	47.0	(MPa)
Numero di pali della Palificata (n):	4	(-)
Spaziatura dei pali (s)	2.4	(m)

CEDIMENTO DEL PALO SINGOLO:

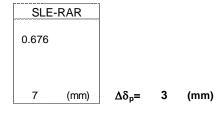
$\delta = \beta * P / E * Lutile$

Coefficiente di forma $\beta =$ 0,5 + Log(Lutile / D): Cedimento del palo $\delta = \beta * P / E * Lutile$

SLE-QP										
2.04	(-)									
1	(mm)									

SLE-	RAR			
2.04	(-)			
2	(mm)	$\Delta\delta$ =	1	(mm)

CEDIMENTO DELLA PALIFICATA:


$$\delta p$$
 = Rs * δ = n *Rg * δ

Coefficiente di Gruppo

$$Rg = 0.5 / R + 0.13 / R^{2}$$

$$R = (n * s / L)^{0.5}$$

$$R = 0.676$$
Cedimento della palificata
$$\delta p = n * Rg * \delta = 4$$
(mm)

I valori dei cedimenti sono compatibili con la destinazione d'uso dell'opera.

SOVRAPP. PEDONALE STAZIONE VIGNA DI VALLE IV04 - RAMPA1 D'ACCESSO ALLA PASSERELLA -Vigna di Valle PILE – Relazione di calcolo

 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

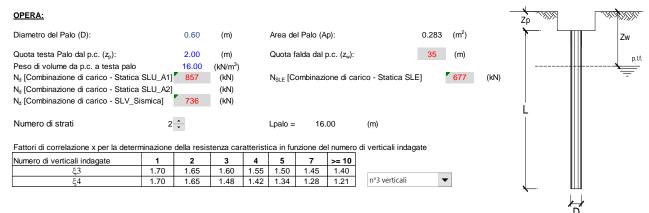
 NR1J
 00 D 29
 CL
 IV0405 201
 A
 105 di 118

19.2 PALI DELLA PILA 1

Sono presenti 4 pali ø600 aventi lunghezza pari a 16m. Si adottano i seguenti parametri geotecnici:

Modello:9¶

Dalla pk 38+000 alla pk 39+497									
Descrizione	z iniz (m)	z fin (m)	spessore (m)	Peso di volume (kN/m³)	Tipo di terreno	Angolo di resistenza al taglio ф' (°)	C' (kPa)	Modulo elastico Eop (MPa)	K media (m/s)
Terreno vegetale sabbioso limoso con frammenti antropici	0	1	1	-	-	-	-	-	-
Limo sabbioso debolemente argilloso	1	3	2	17	GF	26	5	20	-
Sabbia limosa mediamnete addensata con presenza di ghiaia	3	19	16	17	GG	32	0	50	-
Sabbia debolemnete limosa con rarai clasti di litici vulcanici	19	30	11	17	GG	30	0	50	1,71*10-2


SOVRAPP. PEDONALE STAZIONE VIGNA DI VALLE IV04 - RAMPA1 D'ACCESSO ALLA PASSERELLA -Vigna di Valle

 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 NR1J
 00 D 29
 CL
 IV0405 201
 A
 106 di 118

PILE – Relazione di calcolo

CALCOLO DELLA CAPACITA' PORTANTE DI UN PALO TRIVELLATO DI GRANDE DIAMETRO

CARATTERISTICHE GEOTECNICHE DEL TERRENO:

Strata	Spess	'	Pai	Parametri del terreno				Coe	fficienti	di Calco	lo
Strato	opess	Tipo di terreno	γ	c'	φ'	Cu	N _{SPT}	k	μ	а	α
(-)	(m)		(kN/m ³)	(kPa)	(°)	(kPa)	(-)	(-)	(-)	(-)	(-)
1	2.0	Limo sabbioso debolmente argilloso	17.00	5.0	26.0	5.0		0.56	0.49		
2	14.0	Sabbia limosa med addensata con presenza di ghiaia	17.00	0.0	32.0			0.47	0.62		

Ī	Risultati										
τ_{lim}	Qsi	Qsi Nq Nc qb Qbm									
(kPa)	(kN)	(-)	(-)	(kPa)	(kN)						
100.0	0										
7	1434	11.12	0.00	3380.5	955.8						
•											
•											
,											
,											

q_{b_lim} 4000 (kPa)

(n.b.: lo spessore degli strati è computato dalla quota di intradosso del plinto)

CAPACITA' PORTANTE MEDIA

CAPACITA' PORTANTE DI PROGETTO

 $\frac{R_d}{E_d} \ge 1$

alla base R_{bm} = 955.8 (kN) $Q_d = Q_{bm}/(\xi \cdot \gamma b) + Q_{lm}/(\xi \cdot \gamma s)$ laterale R_{sm} = 1434.0 (kN) $Q_d = 2390$ (kN) totale R_{cm} = 2389.9 (kN)

	Peso palo	•	113	(kN)
_				

E _d	R_d	Fs	
(kN)	(kN)	(-)	
1009	1222	1.21	ok
			_
849	1222	1.44	ok
	(kN)	(kN) (kN) 1009 1222	(kN) (kN) (-) 1009 1222 1.21

	N _{SLE/SLD}	R _{c,cal,lat}	Fs	
	(kN)	(kN)	(-)	
SLE	791	1434	1.81	ok

 $R_{c,cal,lat}/1.25 > N_{SLE/SLD}$

VERIFICA A TRAZIONE DEL PALO

N_d [Combinazione di carico - Statica SLU_A1]		(kN)
N_d [Combinazione di carico - Statica SLU_A2]		(kN)
N _d [Combinazione di carico - SLV_Sismica]	-144	(kN)

	E _d	R _d (kN)	Fs
SLU - Approccio 2: A1+M1+R3	(KN)	(KN)	(-)
SLV - EQK+M1+R3_sisma	-31	-717	23.29

SOVRAPP. PEDONALE STAZIONE VIGNA DI VALLE IV04 - RAMPA1 D'ACCESSO ALLA PASSERELLA -Vigna di Valle PILE – Relazione di calcolo

 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 NR1J
 00 D 29
 CL
 IV0405 201
 A
 107 di 118

Si considera un fattore Eg di riduzione della capacità portante per della palificata rispetto al palo singolo valutatto secondo la formula di Converse – Labarre:

$$E_g = 1 - \frac{\theta(n-1)m + (m-1)n}{90 \, mn} \tag{15.68}$$

where m = number of columns of piles in a group,

n = number of rows,

 $\theta = \tan^{-1}(d/s)$ in degrees,

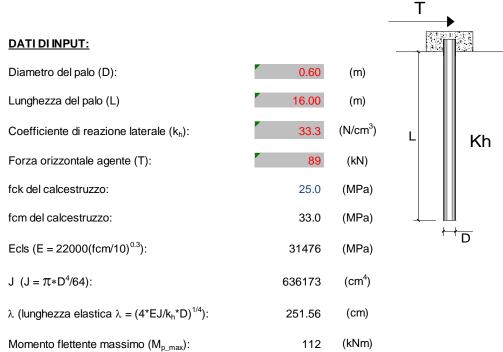
d = diameter of pile,

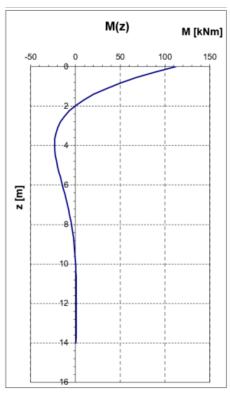
s =spacing of piles center to center.

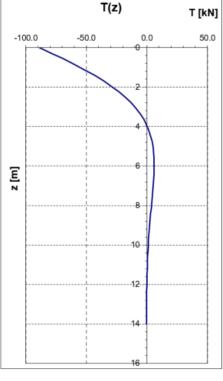
m	2	
n	2	
d	0.6	m
S	2.4	m
θ	14.0	o
Eg	0.92	

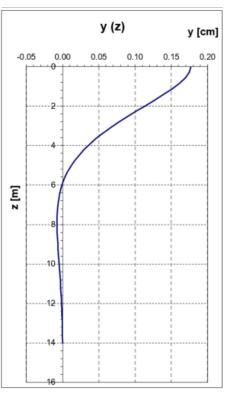
Il minimo fattore di sicurezza della capacità portante del singolo palo si deve quindi ridurre come :

La verifica è soddisfatta.


SOVRAPP. PEDONALE STAZIONE VIGNA DI VALLE IV04 - RAMPA1 D'ACCESSO ALLA PASSERELLA -Vigna di Valle


 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

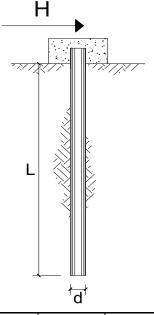

 NR1J
 00 D 29
 CL
 IV0405 201
 A
 108 di 118


PILE - Relazione di calcolo

PALI IMPEDITI DI RUOTARE IN TESTA SOGGETTI A FORZE ORIZZONTALI

SOVRAPP. PEDONALE STAZIONE VIGNA DI VALLE IV04 - RAMPA1 D'ACCESSO ALLA PASSERELLA -Vigna di Valle PILE - Relazione di calcolo

COMMESSA CODIFICA DOCUMENTO REV. FOGLIO LOTTO NR1J 00 D 29 CL IV0405 201 Α 109 di 118


CARICO LIMITE ORIZZONTALE DI UN PALO IN TERRENI INCOERENTI PALI CON ROTAZIONE IN TESTA IMPEDITA

OPERA:

TEORIA DI BASE:

(Broms, 1964)

coefficienti parziali			Α		M	R
N	letodo di calco	nio.	permanenti	variabili	٥,	24
	Metodo di Calcolo		γg	γα	γ_{ϕ}	γт
	A1+M1+R1	0	1.30	1.50	1.00	1.00
SLU	A2+M1+R2	0	1.00	1.30	1.00	1.60
l S	A1+M1+R3	0	1.30	1.50	1.00	1.30
	SISMA	•	1.00	1.00	1.00	1.30
DM88		0	1.00	1.00	1.00	1.00
definiti dal	progettista	0	1.30	1.50	1.25	1.00

n	1 •	2 ○	3	4	5 O	7	≥10 ○	T.A.	prog.
ξ ₃	1.70	1.65	1.60	1.55	1.50	1.45	1.40	1.00	1.00
ξ ₄	1.70	1.55	1.48	1.42	1.34	1.28	1.21	1.00	1.00

Palo corto:
$$H = 1.5k_p \gamma d^3 \left(\frac{L}{d}\right)^2$$

Palo intermedio:
$$H = \frac{1}{2} k_p \gamma d^3 \left(\frac{L}{d}\right)^2 + \frac{M_y}{L}$$

$$\begin{split} & \underline{\textit{Palo intermedio:}} & \qquad & H = \frac{1}{2} \, k_p \gamma d^3 \bigg(\frac{L}{d} \bigg)^2 \, + \frac{M_y}{L} \\ & \\ & \underline{\textit{Palo lungo:}} & \qquad & H = k_p \gamma d^3 \sqrt[3]{ \left(3.676 \, \frac{M_y}{k_p \gamma d^4} \right)^2} \end{split}$$

SOVRAPP. PEDONALE STAZIONE VIGNA DI VALLE IV04 - RAMPA1 D'ACCESSO ALLA PASSERELLA -Vigna di Valle

PILE – Relazione di calcolo

COMMESSA FOGLIO LOTTO CODIFICA DOCUMENTO REV. NR1J 00 D 29 CL IV0405 201 Α 110 di 118

DATI DI INPUT:

Lunghezza del palo	L =	16.00	(m)			
Diametro del palo	d =	0.60	(m)			
Momento di plasticizzazione della sezione	My =	428.62	(kN m)			
Angolo di attrito del terreno	$\phi'_{\text{med}} =$	26.00	(°)	φ' _{min} =	26.00	(°)
Angolo di attrito di calcolo del terreno	$\phi'_{\text{med,d}} =$	26.00	(°)	$\phi'_{min,d} =$	26.00	(°)
Coeff. di spinta passiva (kp = $(1+\sin\varphi')/(1-\sin\varphi')$)	kp _{med} =	2.56	(-)	$kp_{min} =$	2.56	(-)
Peso di unità di volume (con falda $\gamma = \gamma'$)	γ =	17.00	(kN/m ³)			
Carico Assiale Permanente (G):	G =	89	(kN)			

Palo corto:

$H1_{med} =$	10031.20	(kN)	H1 _{min} =	10031.20	(kN)
--------------	----------	------	---------------------	----------	------

Palo intermedio:

H2 med = 3	3370.52	(kN)	H2 _{min} =	3370.52	(kN)
-------------------	---------	------	---------------------	---------	------

Palo lungo:

$$H3_{med} = 401.77$$
 (kN) $H3_{min} = 401.77$ (kN)

$$H_{med} = 401.77$$
 (kN) palo lungo $H_{min} = 401.77$ (kN) palo lungo

$$H_k = Min(H_{med}/\xi_3; R_{min}/\xi_4) = 236.33$$
 (kN)

$$H_d = H_k / \gamma_T = 181.80$$
 (kN)

$$F_d = G \cdot \gamma_G + Q \cdot \gamma_Q = 89.00$$
 (kN)

$$FS = Hd/Fd = 2.04$$

SOVRAPP. PEDONALE STAZIONE VIGNA DI VALLE IV04 - RAMPA1 D'ACCESSO ALLA PASSERELLA -Vigna di Valle PILE – Relazione di calcolo

 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 NR1J
 00 D 29
 CL
 IV0405 201
 A
 111 di 118

CALCOLO DEL PALO SINGOLO E DELLA PALIFICATA

OPERA:

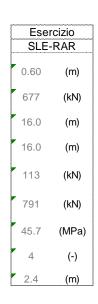
DATI DI INPUT: Diametro del Palo (D):

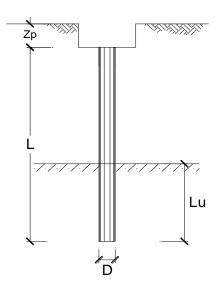
Carico sul palo (P):

Lunghezza del Palo (L):

Lunghezza Utile del Palo (Lu):

Peso del Palo (Ppalo):


Carico base palo (P_{base}):


Modulo di Deformazione (E):

Numero di pali della Palificata (n):

Spaziatura dei pali (s)

	costr.
SLE	-QP
0.60	(m)
308	(kN)
16.0	(m)
16.0	(m)
113	(kN)
421	(kN)
45.7	(MPa)
4	(-)
2.4	(m)

CEDIMENTO DEL PALO SINGOLO:

δ = β * P / E * Lutile

Coefficiente di forma

 $\beta = 0.5 + \text{Log(Lutile / D)}$:

Cedimento del palo

 $\delta = \beta * P / E * Lutile$

SLE-QP				
1.93	(-)			
1	(mm)			

SLE-	RAR
1.93	(-)
2	(mm)

CEDIMENTO DELLA PALIFICATA:

 $\delta p = Rs * \delta = n *Rg * \delta$

Coefficiente di Gruppo

 $Rg = 0.5 / R + 0.13 / R^{2}$

 $R = (n * s / L)^{0,5}$

Cedimento della palificata

 $\delta p = n * Rg * \delta =$

SLE-QP 0.775 4 (mm) SLE-RAR
0.775
7 (mm)

 $\Delta \delta_{p} = 3$ (mm)

I valori dei cedimenti sono compatibili con la destinazione d'uso dell'opera.

R

SOVRAPP. PEDONALE STAZIONE VIGNA DI VALLE IV04 - RAMPA1 D'ACCESSO ALLA PASSERELLA -Vigna di Valle PILE – Relazione di calcolo

COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
NR1J	00 D 29	CL	IV0405 201	Α	112 di 118

20 VERIFICA DEI PILASTRI DI SUPPORTO ALLE RAMPE

Scarichi elementari dall'impalcato delle rampe:

OutputCase	Nvert
Text	KN
g1	-85
g2	-55
q1_Nmax	-90
q5	-40

In condizioni SLU:

Forza assiale agente alla base del pilastro a sostegno esterno di due rampe (si trascura il peso proprio del pilastro stesso):

$$P_{SLU} = 2 * (1.35 * 85 kN + 1.5 * 55 kN + 1.5 * 90 kN + 0.72 * 40 kN) = 722 kN$$

Verifica a compressione assiale del pilastro (HEB300)

A = 14910 mm2 area della sezione

ρmin = 75.8 mm raggio di inerzia minimo della sezione

H = 2.75 m altezza pilastro

L0 = 2.75 m lunghezza libera di inflessione

(cautelativamente si ipotizza il pilastro doppiamente incernierato)

L = $L0 / \rho min$ snellezza del profilo

= 2750 mm / 75.8 mm = 36.2

 ω = 1.19 coefficiente omega (Fe430, curva d)

 $\sigma(P) = 722000 \text{ N} / 14910 \text{ mm2} = 48 \text{ Mpa}$

 $\omega \sigma(P) = 1.19 * 48 \text{ Mpa} = 58 \text{ Mpa}$ < fyd

La sezione è verificata.

Forza assiale agente alla base del plinto di base del pilastro a sostegno esterno di due rampe (si trascura il peso proprio del pilastro stesso):

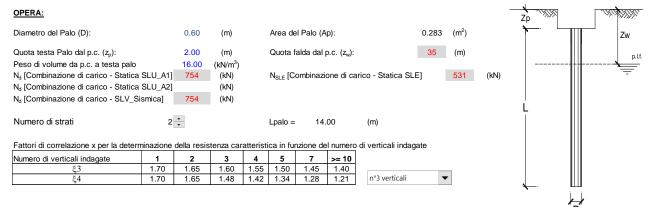
 $G1_pl = (1.2m \times 1.2m \times 0.5m + 0.6m \times 0.6m \times 0.6m) \times 25 \text{ kN/m3} = 23.4 \text{ kN}$

peso del plinto

SOVRAPP. PEDONALE STAZIONE VIGNA DI VALLE IV04 - RAMPA1 D'ACCESSO ALLA PASSERELLA -Vigna di Valle PILE – Relazione di calcolo

COMMESSA LOTTO CODIFICA DOCUMENTO RFV **FOGLIO** NR1J 00 D 29 CL IV0405 201 Α 113 di 118

= 2 * (1.0 * 85 kN + 1.0 * 55 kN + 1.0 *90 kN + 0.6 * 40 kN) = 508 kNPSLE


= 2 * (1.35 * 85 kN + 1.5 * 55 kN + 1.5 *90 kN + 0.72 * 40 kN) = 722 kN**P**SLU

= 508 kN + 1.00 x 23.4 kN = 531 kNNSLE forza assiale SLU alla testa del palo

 N_{SLU} = 722 kN + 1.35 x 23.4 kN = 754 kNforza assiale SLU alla testa del palo

Ogni plinto è fondato su 1 palo ø600mm avente lunghezza pari a 14m.

CALCOLO DELLA CAPACITA' PORTANTE DI UN PALO TRIVELLATO DI GRANDE DIAMETRO

CARATTERISTICHE GEOTECNICHE DEL TERRENO:

Strata	Spess		Parametri del terreno			Coefficienti di Calcolo					
Strato	opess	Tipo di terreno	γ	c'	φ'	Cu	N _{SPT}	k	μ	а	α
(-)	(m)		(kN/m ³)	(kPa)	(°)	(kPa)	(-)	(-)	(-)	(-)	(-)
1	2.0	Limo sabbioso debolmente argilloso	17.00	5.0	26.0	5.0		0.56	0.49		
2	12.0	Sabbia limosa med addensata con presenza di ghiaia	17.00	0.0	32.0			0.47	0.62		
(n.b.: lo st	(n.b.: lo spessore deali strati è computato dalla quota di intradosso del plinto)										

	Risultati						
τ_{lim}	Qsi	Nq	Nc	qb	Qbm		
(kPa)	(kN)	(-)	(-)	(kPa)	(kN)		
100.0	0						
	1116	11.38	0.00	3073.9	869.1		
7							

(kN)

q_{b_lim} 4000 (kPa)

totale

CAPACITA' PORTANTE MEDIA CAPACITA' PORTANTE DI PROGETTO

alla base 869.1 (kN) $Q_d = Q_{bm}/(\xi \cdot \gamma b) + Q_{lm}/(\xi \cdot \gamma s)$ Peso palo Qd = 1985 (kN) laterale 1116.2 (kN)

 $\frac{R_d}{E_d} \ge 1$

	Ed	R _d	Fs	
	(kN)	(kN)	(-)	
SLU - Approccio 2: A1+M1+R3	888	1009	1.14	ok

1985.4 (kN)

SLV - EQK+M1+R3_sisma	853	1009	1.18	ok
	N _{SLE/SLD}	R _{c,cal,lat}	Fs	
SLE	630	1116	1.77	ok R _{c,cal,lat}

 $R_{c,cal,lat}/1.25 > N_{SLE/SLD}$

SOVRAPP. PEDONALE STAZIONE VIGNA DI VALLE IV04 - RAMPA1 D'ACCESSO ALLA PASSERELLA -Vigna di Valle PILE – Relazione di calcolo

 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 NR1J
 00 D 29
 CL
 IV0405 201
 A
 114 di 118

CALCOLO DEL PALO SINGOLO E DELLA PALIFICATA

OPERA:

DATI DI INPUT:

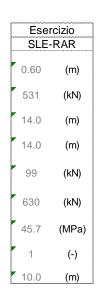
Diametro del Palo (D):

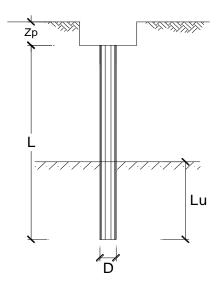
Carico sul palo (P):

Lunghezza del Palo (L):

Lunghezza Utile del Palo (Lu):

Peso del Palo (Ppalo):


Carico base palo (P_{base}):


Modulo di Deformazione (E):

Numero di pali della Palificata (n):

Spaziatura dei pali (s)

	costr.				
SLE	-QP				
0.60 (m)					
328	(kN)				
14.0	(m)				
14.0	(m)				
99	(kN)				
427	(kN)				
45.7	(MPa)				
1	(-)				
10.0	(m)				

(mm)

CEDIMENTO DEL PALO SINGOLO:

δ = β * P / E * Lutile

Coefficiente di forma

 $\beta = 0.5 + \text{Log(Lutile / D)}$:

Cedimento del palo

 $\delta = \beta * P / E * Lutile$

SLE-QP						
1.87	(-)					
11	(mm)					

	RAR	
1.87	(-)	
2	(mm)	Δδ =

CEDIMENTO DELLA PALIFICATA:

 δp = Rs * δ = n *Rg * δ

Coefficiente di Gruppo

 $Rg = 0.5 / R + 0.13 / R^{2}$

3 -7-- -7 --

Cedimento della palificata

 $\delta p = n * Rg * \delta =$

 $R = (n * s / L)^{0,5}$

R

 $\Delta \delta_p =$

0

(mm)

21 VERIFICA MENSOLE TOZZE DI SUPPORTO ALLE RAMPE

La verifica strutturale della mensola viene condotta a seguire impiegando un modello tirante-puntone, come quello rappresentato nella figura seguente:

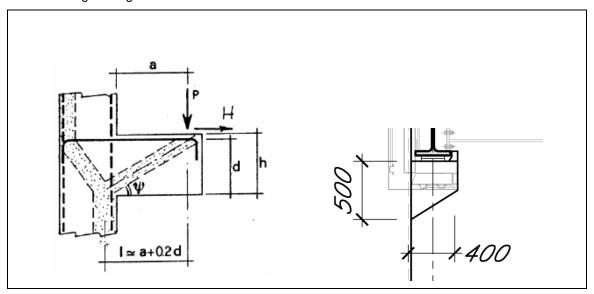


Figura 17 - Meccanismo tirante puntone della mensola tozza

Scarichi elementari dall'impalcato delle rampe:

OutputCase	Ftrasv	Nvert
Text	KN	KN
g1	0	-85
g2	0	-55
q1_Nmax	0	-90
q5	112	-40

Geometria del tirante-puntone:

а	0.40 m	tan psi	0.75
h	0.50 m	psi	36.9 °
d = h-cferro	0.40 m	1/tan psi	1.33
1	0.48 m	С	1

In condizioni SLU:

P = 1.35 * 85 kN + 1.5 * 55 kN + 1.5 *90 kN + 0.72 * 40 kN = 361 kN

H = 0.72 * 112 kN = 81 kN

SOVRAPP. PEDONALE STAZIONE VIGNA DI VALLE IV04 - RAMPA1 D'ACCESSO ALLA PASSERELLA -Vigna di Valle PILE – Relazione di calcolo

NR1J	00 D 29	CL	IV0405 201	Α	116 di 118

DOCUMENTO

REV.

FOGLIO

CODIFICA

TIEL TOTALIONE OF CALCO	-	
Н	81	kN
Р	361	kN
Т	481	kN
С	602	kN
Ver. tirante acciaio		
B eff	0.60	m
fi barre	2.60	cm
passo b	0.15	m
n strati	1.00	
num barre	4	
A1b	5.3	cm2
Atot	21	cm2
sigma_s(P)	227	Мра
sigma_s(H)	38	Мра
sigma_s_tot	265	Мра
Ver. puntone cls		
Вс	0.600	m
hc	0.15	m
Ac	0.09	m2
sigma_c	6.7	Мра

In condizioni SLV:

Si considera l'azione sismica associata alla massa di una rampa (+20% folla compatta gravante su essa), collegata alla mensola tozza mediante un vincolo fisso sia in direzione longitudinale che trasversale.

COMMESSA

LOTTO

Peso Rampa

= 562 kN;

Peso Folla compatta = 365 kN

Le azioni sismiche agenti sulla singola mensola sono quindi pari a:

SLV-hor			SLV-vert		
Tr	1068	anni	Tr	1068	anni
ag_h	0.077	g	ag_v	0.029	g
Fo	2.978		Fv	2.978	
S	1.500		S	1.000	

E_hor = (562 kN + 0.2 * 365 kN) * 0.077 g * 2.978 * 1.5 = 218 kNE_vert = (562 kN + 0.2 * 365 kN) * 0.029 g * 2.978 * 1.0 = 55 kN

SOVRAPP. PEDONALE STAZIONE VIGNA DI VALLE IV04 - RAMPA1 D'ACCESSO ALLA PASSERELLA -Vigna di Valle PILE – Relazione di calcolo

 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 NR1J
 00 D 29
 CL
 IV0405 201
 A
 117 di 118

P = 1. 0 * 85 kN + 1.0 * 55 kN + 0.2 * 90 kN +0.3 * 55 kN = 175 kN

 $H = E_{trasv} = 218 \text{ kN}$

H 218 kN P 175 kN T 233 kN C 292 kN Ver. tirante acciaio B eff 0.60 m fi barre 2.60 cm passo b 0.15 m n strati 1.00 num barre 4 A1b 5.3 cm2 Atot 21 cm2 sigma_s(P) 110 Mpa sigma_s(H) 103 Mpa sigma_s_tot 213 Mpa Ver. puntone cls BC 0.600 m hc 0.15 m Ac 0.09 m2 sigma_c 3.2 Mpa			
T 233 kN C 292 kN Ver. tirante acciaio B eff 0.60 m fi barre 2.60 cm passo b 0.15 m n strati 1.00 num barre 4 A1b 5.3 cm2 Atot 21 cm2 sigma_s(P) 110 Mpa sigma_s(H) 103 Mpa sigma_s_tot 213 Mpa Ver. puntone cls BC 0.600 m hc 0.15 m Ac 0.09 m2	Н	218	kN
C 292 kN Ver. tirante acciaio B eff 0.60 m fi barre 2.60 cm passo b 0.15 m n strati 1.00 num barre 4 A1b 5.3 cm2 Atot 21 cm2 sigma_s(P) 110 Mpa sigma_s(H) 103 Mpa sigma_s_tot 213 Mpa Ver. puntone cls Bc 0.600 m hc 0.15 m Ac 0.09 m2	Р	175	kN
Ver. tirante acciaio B eff 0.60 m fi barre 2.60 cm passo b 0.15 m n strati 1.00 m num barre 4 A1b 5.3 cm2 Atot 21 cm2 sigma_s(P) 110 Mpa sigma_s(H) 103 Mpa sigma_s_tot 213 Mpa Ver. puntone cls Bc 0.600 m hc 0.15 m Ac 0.09 m2	Т	233	kN
B eff 0.60 m fi barre 2.60 cm passo b 0.15 m n strati 1.00 num barre 4 A1b 5.3 cm2 Atot 21 cm2 sigma_s(P) 110 Mpa sigma_s(H) 103 Mpa sigma_s_tot 213 Mpa Ver. puntone cls Bc 0.600 m hc 0.15 m Ac 0.09 m2	С	292	kN
fi barre	Ver. tirante acciaio		
passo b 0.15 m n strati 1.00 m num barre 4 4 A1b 5.3 cm2 Atot 21 cm2 sigma_s(P) 110 Mpa sigma_s(H) 103 Mpa sigma_s_tot 213 Mpa Ver. puntone cls Bc 0.600 m hc 0.15 m Ac 0.09 m2	B eff	0.60	m
n strati num barre A1b 5.3 cm2 Atot 21 cm2 sigma_s(P) sigma_s(H) sigma_s_tot Ver. puntone cls Bc 0.600 hc 0.15 M 0.09 m2	fi barre	2.60	cm
num barre 4 A1b 5.3 cm2 Atot 21 cm2 sigma_s(P) 110 Mpa sigma_s(H) 103 Mpa sigma_s_tot 213 Mpa Ver. puntone cls Bc Bc 0.600 m hc 0.15 m Ac 0.09 m2	passo b	0.15	m
A1b 5.3 cm2 Atot 21 cm2 sigma_s(P) 110 Mpa sigma_s(H) 103 Mpa sigma_s_tot 213 Mpa Ver. puntone cls Bc 0.600 m hc 0.15 m Ac 0.09 m2	n strati	1.00	
Atot 21 cm2 sigma_s(P) 110 Mpa sigma_s(H) 103 Mpa sigma_s_tot 213 Mpa Ver. puntone cls Bc 0.600 m hc 0.15 m Ac 0.09 m2	num barre	4	
sigma_s(P) 110 Mpa sigma_s(H) 103 Mpa sigma_s_tot 213 Mpa Ver. puntone cls 0.600 m hc 0.15 m Ac 0.09 m2	A1b	5.3	cm2
sigma_s(H) 103 Mpa sigma_s_tot 213 Mpa Ver. puntone cls 0.600 m bc 0.15 m Ac 0.09 m2	Atot	21	cm2
sigma_s_tot 213 Mpa Ver. puntone cls 0.600 m bc 0.15 m Ac 0.09 m2	sigma_s(P)	110	Мра
Ver. puntone cls Bc 0.600 m hc 0.15 m Ac 0.09 m2	sigma_s(H)	103	Мра
Bc 0.600 m hc 0.15 m Ac 0.09 m2	sigma_s_tot	213	Мра
hc	Ver. puntone cls		
Ac 0.09 m2	Вс	0.600	m
	hc	0.15	m
sigma_c 3.2 Mpa	Ac	0.09	m2
	sigma_c	3.2	Мра

Le verifiche risultano soddisfatte.

SOVRAPP. PEDONALE STAZIONE VIGNA DI VALLE IV04 - RAMPA1 D'ACCESSO ALLA PASSERELLA -Vigna di Valle PILE – Relazione di calcolo

 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 NR1J
 00 D 29
 CL
 IV0405 201
 A
 118 di 118

22 INCIDENZA ARMATURA

22.1 Pila 1

Incidenza pali (ø600, L=14m) 215 kg/m3 Incidenza plinto di fondazione 120 kg/m3 Incidenza fusto in elevazione 205 kg/m3

22.2 Pila 2

Incidenza pali (ø600, L=20m)	205 kg/m3
Incidenza plinto di fondazione	130 kg/m3
Incidenza fusto in elevazione	160 kg/m3