COMMITTENTE: RETE FERROVIARIA ITALIANA **GRUPPO FERROVIE DELLO STATO ITALIANE** PROGETTAZIONE: GRUPPO FERROVIE DELLO STATO ITALIANE **DIREZIONE TECNICA** U.O. INFRASTRUTTURE CENTRO PROGETTO DEFINITIVO RADDOPPIO LINEA FERROVIARIA ROMA-VITERBO TRATTA CESANO – VIGNA DI VALLE Idraulica di piattaforma stradale Relazione idraulica drenaggio delle viabilità NV08 e compatibilità idraulica delle interferenze SCALA: COMMESSA LOTTO FASE ENTE TIPO DOC. OPERA/DISCIPLINA PROGR. REV. 2 1 D 9 R 0 0 0 1 8 N|R1 0 D 0 Rev. Descrizione Redatto Data Verificato Data Approvato Data F./Lasaponara T. Paoletti F. Serrau 05.2020 05.2020 05.2020 Emissione Esecutiva

File: NR1J01D29RIID0002018A

n. Elab.:

Relazione idraulica drenaggio delle viabilità NV08 e compatibilità idraulica delle interferenze
 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 NR1J
 01
 D 29 R I I D
 0 00 02 018
 A
 2 di 32

INDICE

1.	PRE	MESSA	3
	1.1	DOCUMENTI CORRELATI	4
2.	CON	MPATIBILITA' IDRAULICA	5
	2.1	ANALISI DEL TRACCIATO VIARIO	7
3.	ANA	ALISI IDROLOGICA DELLE PIOGGIE INTENSE	8
4.	DRE	ENAGGIO DI PIATTAFORMA	9
	4.1	DESCRIZIONE DEL SISTEMA DI DRENAGGIO	9
	4.2	DIMENSIONAMENTO DEI SINGOLI ELEMENTI DEL SISTEMA DI DRENAGGIO	.11
	4.2.	I Stima delle portate di piena	.11
	4.2	2 Collettori e fossi di guardia	.12
	4.2	3 Embrici	.13
	4.3	INTERASSE DELLE CADITOIE	.16
	4.4	INVARIANZA IDRAULICA	
5.		ERVENTI VIABILITA' DI PROGETTO	
		– Nuova viabilità via di Cocciutella	
6.		BULATI DI DIMENSIONAMENTO IDRAULICO	
	NV08 -	– VIA DI COCCIUTELLA	31

1. PREMESSA

Il presente documento viene emesso nell'ambito della redazione del Progetto Definitivo del corpo stradale ferroviario, planimetrie di tracciato, inquadramento schematico delle opere lungo linea e relative sezioni tipologiche connesso alla realizzazione del raddoppio della ferrovia Roma - Viterbo nella tratta extraurbana tra la stazione di Cesano di Roma e la stazione di Vigna di Valle, da progr. Km 27+811 a progr. Km 39+280, con relativa eliminazione dei passaggi a livello (Figura 1.1).

Figura 1.1 - Inquadramento planimetrico

Il progetto nel suo complesso è volto a dotare la parte nord della Regione Lazio (Province di Roma e Viterbo) di una ferrovia con caratteristiche di linea metropolitana. Il bacino di utenza è caratterizzato dai residenti della parte nord-ovest del Comune di Roma (Località Cesano), e da una serie di comuni quali, Anguillara Sabazia, Bracciano, Manziana.

L'intervento prevede il raddoppio della linea per fasi, realizzando un primo nuovo binario alla distanza iniziale di 5,50 m dal binario attuale, prevedendo lo spostamento dell'esercizio su tale nuovo binario (futuro

Relazione idraulica drenaggio delle viabilità NV08 e compatibilità idraulica delle interferenze

COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
NR1J	01	D 29 R I I D	0 00 02 018	Α	4 di 32

binario dispari), il rifacimento della sede esistente (compreso il sub ballast) e la realizzazione del nuovo binario pari con interasse finale di 4,00 m.

I ponticelli e i tombini al di sotto del binario esistente, verranno demoliti e ricostruiti secondo la normativa ad oggi vigente e secondo il nuovo carico assiale e la velocità di progetto, garantendo lo stesso standard sia per il binario pari sia per il dispari; l'idraulica di piattaforma sarà predisposta anche sul lato binario esistente (futuro pari), attualmente assente.

Si prevede inoltre la soppressione di tutti i Passaggi a Livello ancora in esercizio lungo la tratta, e la realizzazione di opere viarie sostitutive per l'attraversamento della ferrovia mediante sovrappassi della linea ferroviaria (NV01, NV03 e NV04), oltre che l'adeguamento del sottovia già realizzato (NV05) per adeguarlo al raddoppio della linea e una nuova viabilità in località Anguillara Sabazia, a sud della ferrovia (NV08).

Scopo della presente relazione è il dimensionamento idraulico dei manufatti atti al collettamento ed allo smaltimento delle acque di drenaggio delle nuove viabilità in progetto.

La protezione delle viabilità dalle acque meteoriche zenitali e da quelle che nel naturale deflusso superficiale vengono ad interessare il corpo stradale richiede la realizzazione sistematica di manufatti di raccolta e convogliamento verso le canalizzazioni di smaltimento ai lati della viabilità di progetto.

In questa relazione vengono esposti i criteri che portano alla definizione degli eventi pluviometrici critici considerati per il dimensionamento dei manufatti e, successivamente, il dimensionamento idraulico degli stessi.

La progettazione è stata svolta sulla base del metodo di calcolo scelto per il dimensionamento del sistema di drenaggio e delle prescrizioni del Manuale di progettazione RFI in riferimento alla portata di progetto, le quali recano le seguenti disposizioni:

- d) Rete smaltimento acque meteoriche nuova viabilità:
- nuova viabilità Tr= 25 anni.
- Impianti di sollevamento Tr=25 anni.

La Normativa Regionale sull'Invarianza idraulica, rif. DGR n.117 del 24/03/2020 impone la verifica dei volumi di accumulo per invarianza idraulica con tempo di ritorno di 30 anni.

1.1 DOCUMENTI CORRELATI

I documenti associati alla presente Relazione

- Planimetria di drenaggio Viabilità NV08 NR1J00D29P7ID0002008B;
 - Planimetria di drenaggio Viabilità NV08 NR1J00D29P7ID0002009B.

ITALFERR GRUPPO FERROVIE DELLO STATO	PROGETTO DEFINITIVO RADDOPPIO LINEA FERROVIARIA ROMA-VITERBO TRATTA CESANO – VIGNA DI VALLE					
Relazione idraulica drenaggio delle viabilità	COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
NV08 e compatibilità idraulica delle	NR1J	01	D 29 R I I D	0 00 02 018	Α	5 di 32
interferenze						

2. COMPATIBILITA' IDRAULICA

Lo studio della compatibilità idraulica degli interventi in progetto è sviluppata con riferimento alle Norme di Attuazione del Piano Stralcio per l'Assetto Idrogeologico (P.A.I.), Autorità Bacini Regionali del Lazio, Approvato con Deliberazione del Consiglio Regionale n.17 del 04/04/2012 e al D.P.C.M. 29 settembre 1998 ed al Piano di Gestione del Rischio Alluvioni (P.G.R.A.) redatto dal Distretto Idrografico dell'Appennino Centrale, approvato dal Comitato Istituzionale integrato il 03/03/2016.

Oltre a questi Piani è stato considerato lo studio dei Punti di criticità sul territorio del Consorzio di bonifica Tevere e Agro Romano, redatto dal Settore Progettazione ed Esecuzione OO.PP. nel novembre 2014.

Sulla base delle caratteristiche dei fenomeni rilevati o attesi il Piano disciplina l'uso del territorio, nell'ambito delle fasce individuate nella Tavola 2, in funzione di tre classi di pericolosità:

Relazione idraulica drenaggio delle viabilità NV08 e compatibilità idraulica delle interferenze

COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
NR1J	01	D 29 R I I D	0 00 02 018	Α	6 di 32

fasce a pericolosità A: aree ad alta probabilità di inondazione, ovvero che possono essere inondate con frequenza media trentennale.

Le fasce a pericolosità A sono a loro volta suddivise in due sub-fasce:

- sub-fasce a pericolosità A1: aree che possono essere investite dagli eventi alluvionali con dinamiche intense e alti livelli idrici;
- sub-fasce a pericolosità A2: aree, ubicate nelle zone costiere pianeggianti, ovvero ad una congrua distanza dagli argini, tale da poter ritenere che vengano investite dagli eventi alluvionali con dinamiche graduali e con bassi livelli idrici;
- fasce a pericolosità B: aree a moderata probabilità di inondazione, ovvero che possono essere inondate con frequenza media compresa tra la trentennale e la duecentennale.

Le fasce a pericolosità B sono a loro volta suddivise in due sub-fasce:

- sub-fasce a pericolosità B1: aree che possono essere investite dagli eventi alluvionali con dinamiche intense e alti livelli idrici;
- sub-fasce a pericolosità B2: aree, ubicate nelle zone costiere pianeggianti, ovvero ad una congrua distanza dagli argini, tale da poter ritenere che vengano investite dagli eventi alluvionali con dinamiche graduali e con bassi livelli idrici;

fasce a pericolosità C: aree a bassa probabilità di inondazione, ovvero che possono essere inondate con frequenza media compresa tra la duecentennale e la cinquecentennale.

Il rischio idrogeologico viene definito dall'entità attesa delle perdite di vite umane, feriti, danni a proprietà, interruzione di attività economiche, in conseguenza del verificarsi di frane o inondazioni; Il Piano individua il rischio nell'ambito delle aree in frana o che possono essere inondate, caratterizzate dalla contestuale presenza di elementi esposti a rischio. Gli elementi esposti a rischio sono costituiti dall'insieme delle presenze umane e di tutti i beni mobili ed immobili, pubblici e privati, che possono essere interessati e direttamente coinvolti dagli eventi calamitosi. Nelle finalità del Piano, le situazioni di rischio vengono raggruppate, ai fini della programmazione degli interventi (art.12), in due categorie: a) rischio di frana; b) rischio d'inondazione.

Per ciascuna categoria di rischio sono definiti tre livelli:

- rischio molto elevato (R4): quando esistono condizioni che determinano la possibilità di: a) perdita di vite umane o lesioni gravi alle persone; b) danni gravi e collasso di edifici o infrastrutture; c) danni gravi ad attività socio-economiche;
- rischio elevato (R3): quando esiste la possibilità di: a) danni a persone o beni; danni funzionali ad edifici ed infrastrutture che ne comportino l'inagibilità; b) interruzione di attività socioeconomiche;

Relazione idraulica drenaggio delle viabilità NV08 e compatibilità idraulica delle interferenze
 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 NR1J
 01
 D 29 R I I D
 0 00 02 018
 A
 7 di 32

 rischio lieve (R2): quando esistono condizioni che determinano la possibilità di danni agli edifici e alle infrastrutture senza pregiudizio diretto per l'incolumità delle persone e senza comprometterne l'agibilità.

2.1 Analisi del tracciato viario

La sovrapposizione del tracciato viario con le mappe redatte dall'Autorità di Bacino (Mappe del rischio e Mappe di pericolosità) evidenzia che l'area di progetto non interferisce con nessuna regione con probabilità e rischio di alluvioni di qualsiasi grado, come si evince dalla figura ricavata dal Geoportale Cartografico Nazionale sotto riportata.

3. ANALISI IDROLOGICA DELLE PIOGGIE INTENSE

Per la definizione delle portate transitanti nei sistemi di drenaggio si utilizza il metodo cinematico, a partire dalle leggi statistiche di possibilità pluviometrica, relative ad un tempo di ritorno pari a 25 anni per la piattaforma stradale.

I parametri caratteristici di tale curva sono ottenuti seguendo l'analisi riportata nella relazione idrologica annessa (NR1J00D29RIID0001001B), facente parte degli elaborati progettuali relativi al "Progetto definitivo – Raddoppio Cesano – Vigna di Valle".

Nel seguito vengono riportati i risultati dell'analisi idrologica utilizzati per i dimensionamenti e le verifiche riportate nella presente relazione.

Dall'analisi statistica dei parametri che definiscono l'intensità di precipitazione, mediati tra le due zone omogenee (A10 e B42) in cui ricadono gli interventi di progetto, si ottengono i seguenti parametri che definiscono l'intensità di precipitazione come:

$$i_t(T_r) = \frac{a_i(T_r)}{(b+t)^m}$$

Tr – 25 anni				
a	69.554			
b	0.134			
m	0.730			

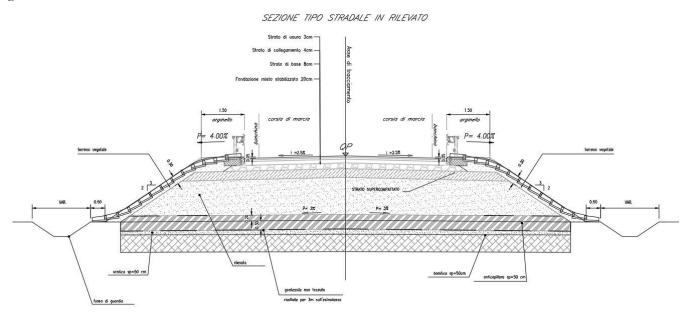
Tr – 30 anni				
a	73.043			
b	0.134			
m	0.730			

Poiché la Normativa Regionale vigente sull'invarianza idraulica si riferisce a curve a due parametri, si è proceduto ad interpolare nel piano logaritmico i risultati prodotti dall'equazione sopra riportata per durate superiori all'ora. Questa interpolazione, che permette di non sovrastimare eccessivamente gli scrosci di pioggia, produce per un tempo di ritorno pari a 30 anni i parametri:

- $a = 66.63 \, mm/h$
- n = 0.457

4. DRENAGGIO DI PIATTAFORMA

4.1 Descrizione del sistema di drenaggio

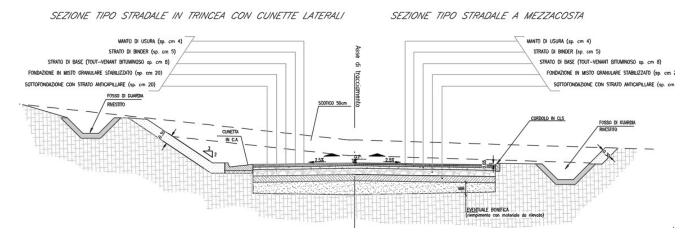

Il sistema di drenaggio deve consentire la raccolta delle acque meteoriche cadute sulla superficie stradale e sulle superfici ad esso afferenti ed il trasferimento di tali deflussi fino al recapito.

La viabilità di progetto è riconducibile alle seguenti tipologie:

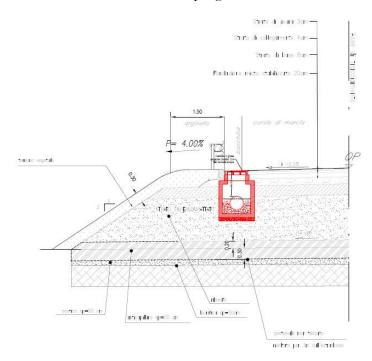
- Viabilità in rilevato;
- Viabilità in trincea:
- Viabilità con drenaggio chiuso.

Viabilità in rilevato

Lo schema di raccolta e smaltimento delle acque defluenti dalla sede stradale prevede la raccolta ai margini della piattaforma sulla banchina; a determinati intervalli l'elemento marginale sarà interrotto e tramite l'utilizzo di embrici in CA le acque saranno convogliate all'interno dei fossi di guardia che si trovano ai piedi del rilevato. I fossi di guardia saranno rivestiti in cls (o in terra) aventi larghezza del fondo minima pari a 0.3 m e scarpa pari a 1:1 (o 3:2). Localmente le dimensioni di tali elementi potranno variare in base alla portata di progetto in arrivo.


Viabilità in trincea

In questa circostanza, dove la trincea è bassa e per sezioni non continuative in maniera significativa, è stato predisposto un fosso rivestito ai lati della piattaforma stradale. Dove il tratto in trincea è caratterizzato da una maggiore continuità, il sistema di drenaggio è stato integrato da caditoie con collettori passanti.


Relazione idraulica drenaggio delle viabilità NV08 e compatibilità idraulica delle interferenze

COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
NR1J	01	D 29 R I I D	0 00 02 018	Α	10 di 32

Viabilità con drenaggio chiuso

In alcuni settori di viabilità e in rotatoria, per limitare gli espropri e le interferenze con l'abitato, si è previsto un drenaggio di tipo chiuso con apposizione di elementi di captazione puntuali a caditoia e condotta principale di smaltimento in PVC sul sedime della viabilità di progetto.

4.2 Dimensionamento dei singoli elementi del sistema di drenaggio

4.2.1 Stima delle portate di piena

Le portate afferenti ai drenaggi di piattaforma sono state valutate con il metodo Razionale, che tiene conto dei fattori morfologici, pluviometrici e del tempo di corrivazione del bacino (Tc), tramite la formula: nella quale:

$$0 = i \cdot S \cdot \bar{\varphi}$$

Q = portata di massima piena [1/s]

i = intensità di pioggia [mm/h] calcolata per Tr = 25 anni in funzione del tempo di corrivazione caratteristico del tratto;

Per le opere di drenaggio a corredo del corpo stradale sono stati assunti cautelativamente i seguenti coefficienti di deflusso:

Ubicazione	Coefficiente C
Piattaforma ferroviaria	0.90
Scarpata in scavo	0.60
Rilevato ferroviario	0.60
Area esterna a verde	0.40

Il coefficiente di deflusso medio è stato definito con media pesata sulle aree coinvolte nel calcolo, secondo la seguente relazione:

$$\bar{\varphi} = \frac{\sum_{i} \varphi_{i} \cdot S_{i}}{S_{tot}}$$

Usufruendo di un rilievo topografico è stato possibile definire le aree sottese ai vari punti di chiusura, quantificate le relative aree e calcolati i valori delle portate massime.

Negli elaborati specifici (Planimetria idraulica in scala l : 1'000) sono indicate le tipologie idrauliche con la loro ubicazione e dimensione.

Tempo di corrivazione

Il tempo minimo di accesso alla rete drenante viene assunto pari a 5 minuti (0.083 ore), ad esso si aggiunge il tempo di percorrenza del flusso d'acqua di tutto il tratto a monte della zona considerata, in funzione della lunghezza (L) e della velocità media del flusso d'acqua (v) all'interno dell'opera di smaltimento in esame.

Il tempo totale di corrivazione è stato stimato mediante la seguente formulazione:

$$T_c = t_a + t_r = t_a + \frac{L}{v}$$

Relazione		idraulica	drenag	gio	delle	viabilità
NV08	e	compa	tibilità	ic	lraulica	a delle
interferen	76	4				

COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
NR1J	R1J 01 D 29 R I I D		0 00 02 018	Α	12 di 32

dove.

Tc= tempo di corrivazione in secondi;

Ta = tempo di accesso posto pari a 300 s (5');

L = lunghezza del tratto in esame in (m);

v = velocità (m/s) di percorrenza all'interno dell'elemento di smaltimento preso in esame.

4.2.2 Collettori e fossi di guardia

I fossi di guardia posti ai piedi del rilevato o a monte della trincea (vedi Paragrafo 4.1) e le tubazioni di collettamento hanno funzione di intercettare le acque meteoriche e convogliarle al recapito prescelto, definito da incisioni della rete idrografica naturale o da opere idrauliche in progetto (ponti, viadotti e tombini).

I fossi di guardia previsti nel drenaggio delle viabilità in progetto sono rivestiti e non rivestiti, con pendenza delle sponde pari a 3/2 in entrambi i casi.

Per la verifica delle opere di drenaggio proposte sono stati calcolati i massimi livelli idrici in funzione delle portate afferenti, avvalendosi della formula di Manning-Strickler, secondo la quale, il flusso di moto uniforme in condizione di deflusso libero avviene correlando i seguenti elementi:

$$V = K_s \cdot R_i^{2/3} \cdot i^{1/2}$$

dove:

V velocità media del flusso in [m/s];

 K_s coefficiente di scabrezza [m^{1/3}s⁻¹];

R_i raggio idraulico (rapporto tra luce idraulica (m²) e perimetro bagnato (m);

i pendenza longitudinale del tratto (m/m).

Sono stati assunti coefficienti di scabrezza variabili in funzione del materiale di rivestimento. In particolare, per il calcestruzzo si è assunto $K_s = 66.67 \text{ m}^{1/3}/\text{s}$, 30 per i fossi inerbiti, 80 per le condotte in PVC ed in acciaio.

Portata e velocità sono poi legate dalla seguente equazione di continuità:

$$Q = V \cdot A$$

dove:

Q = portata in [m³/s];

A = area liquida in [m²].

Per la verifica idraulica delle canalizzazioni si confronterà il massimo afflusso con la capacità di portata valutabile, con approssimazione accettabile, mediante la formula di Gauckler-Strickler sopra esposta.

4.2.3 Embrici

Le acque di piattaforma vengono convogliate, attraverso la pendenza trasversale attribuita alla piattaforma stradale, ai margini della carreggiata, dove trovano collocazione le opere di intercettazione, raccolta e scarico.

Per definire gli interassi massimi degli embrici per le viabilità in progetto, si è seguita la seguente metodologia:

L'interasse degli embrici è stato determinato verificando che l'acqua che si accumula lungo il ciglio stradale non debordi mai dalla banchina, fissata la larghezza di allagamento pari ad 1 m. La variabile che influenza il transito e l'evacuazione delle acque dalla banchina, e di conseguenza l'interasse degli embrici e degli eventuali pozzetti associati a ciascuno di essi, è principalmente la pendenza longitudinale dell'asse stradale in quanto tutte le altre caratteristiche geometriche rimangono identiche.

Le ipotesi poste a base del calcolo dell'interasse degli embrici dell'asse principale sono le seguenti:

- la superficie contribuente è costituita dalla piattaforma stradale;
- banchina asfaltata (Ks=50 m^{1/3}/s) che funge da cunetta di sezione triangolare;
- la pendenza trasversale della piattaforma stradale è 2.5%;
- embrici con larghezza di sfioro pari a 60 cm.

Con i dati sopra esposti è stata calcolata la lunghezza massima della banchina asfaltata in funzione della pendenza longitudinale dell'asse stradale ed è stata confrontata con la lunghezza di nastro asfaltato che genera la portata massima smaltibile da ciascun embrice.

La portata di deflusso è stata dapprima stimata applicando le medesime modalità già esplicate precedentemente.

Per determinare la portata che gli embrici le singole opere di intercettazione sono in grado di intercettare, è necessario determinare l'altezza della corrente in cunetta. Partendo dalla relazione di Gauckler-Strickler, per cunette che presentano la sponda esterna praticamente verticale, nell'ipotesi che il raggio idraulico si confonda con il tirante, la relazione base di Strickler può essere modificata ed invertita per determinare il tirante:

$$y = \left\{ \frac{S_c}{0.375 \cdot S_L^{0.50} K_s} \cdot Q_d \right\}^{3/8}$$

S_c, pendenza trasversale della cunetta posta pari alla pendenza trasversale della strada (0.025); S_L, pendenza longitudinale della cunetta pari alla pendenza media longitudinale del piano stradale; K_s, coefficiente di scabrezza.

Relazione idraulica drenaggio delle viabilità NV08 e compatibilità idraulica delle interferenze

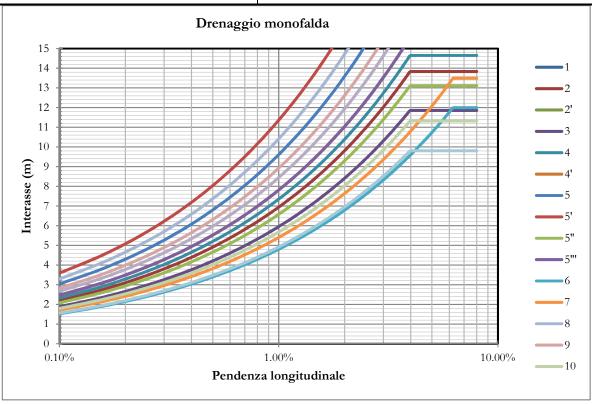
COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
NR1J	01	D 29 R I I D	0 00 02 018	Α	14 di 32

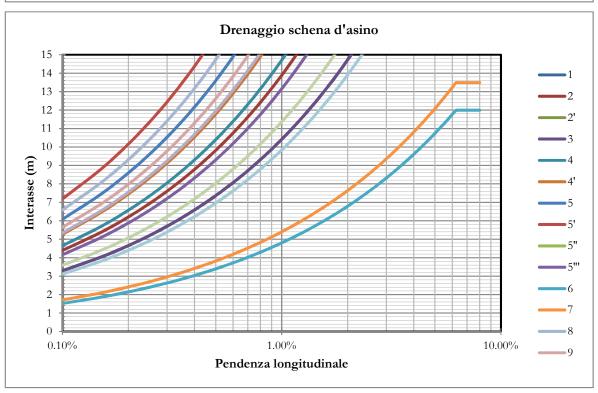
Il funzionamento idraulico di un embrice può essere assimilato a quello di una soglia sfiorante.

Per quanto riguarda la capacità di evacuazione degli embrici può essere stimata ipotizzando un funzionamento a soglia sfiorante di larghezza L e altezza d'acqua y secondo la relazione:

$$Q = c_q \cdot L \cdot y \cdot \sqrt{2 \cdot g \cdot y}$$

dove g è l'accelerazione di gravità e il coefficiente c_q assume il valore 0.385 tipico dello stramazzo tipo Belanger.


Si riportano di seguito le tabelle ed i grafici risultanti dal dimensionamento degli embrici al variare delle sezioni tipologiche:


Numero	Categoria	Pendenza trasversale	Larghezza corsia di marcia [m]	Larghezza banchina [m]	Larghezza marciapiede [m]	Larghezza totale [m]
1	F1	2.50%	3.5	1	1.5	9
2	F1	2.50%	3.5	1	0	9
2'	F1	2.50%	3.5	1	1.5	10.5
3	F1	2.50%	3.5	1	1.5	10.5
4	F2	2.50%	3.25	1	0	8.5
4'	F2	2.50%	3.25	0.5	0	8
5	particolare	2.50%	2.75	0.5	0	6.5
5'	particolare	2.50%	2.75	0	0	5.5
5"	particolare	2.50%	2.75	0.5	1.5	9.5
5"'	particolare	2.50%	2.75	0.5	1.5	8
6	rotatoria	2.00%	8	1	0	9
7	rotatoria	2.00%	7	1	0	8
8	particolare	2.50%	2.5	0.5	0	6
9	particolare	2.50%	3	0.5	0	7
10	Е	2.50%	3.5	0.5	1.5	11
11	particolare	2.50%	3.2	0.5		7.4
12	viadotto	2.50%	3.5	1	1.85	12.7

Relazione idraulica drenaggio delle viabilità NV08 e compatibilità idraulica delle interferenze
 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 NR1J
 01
 D 29 R I I D
 0 00 02 018
 A
 15 di 32

Relazione idraulica drenaggio delle viabilità NV08 e compatibilità idraulica delle interferenze

COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
NR1J	01	D 29 R I I D	0 00 02 018	Α	16 di 32

VIABILITA'	DRENAGGIO	ASSE	INTERASSE EMBRICI
	Monofalda	1,3 (i min 1%)	7
NV08	Schiena d'asino	1,3 (i min 1%)	14
	Monofalda	5 (i min 3%)	12
	Schiena d'asino	5(i min 3%)	15

4.3 Interasse delle caditoie

Il dimensionamento che occorre effettuare per determinare il passo degli scarichi dalla banchina o dalla cunetta dove presente deve innanzitutto passare del calcolo della portata che si riesce a trasportare sul ciglio della piattaforma senza rischiare che vi sia invasione della sede stradale da parte della linea d'acqua (larghezza d'allagamento).

Il calcolo idraulico del moto in banchina o cunetta si può svolgere utilizzando le formule di moto uniforme con riferimento alla portata Q che compete alla sezione terminale del tratto compreso tra due punti di scarico della portata.

La portata massima Qc transitante potrà essere calcolata con la formula di Gauckler-Strickler, assumendo:

 $A = \frac{b^2 j}{2}$: area liquida

 $R_h = \frac{b j}{2}$ raggio idraulico

i pendenza longitudinale media della strada

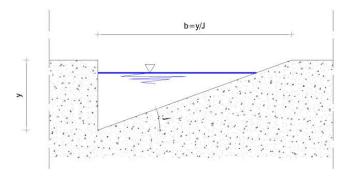
 $Q = Ks \cdot Rh^{2/3} \cdot i^{1/2} \cdot A$ portata transitabile a moto uniforme secondo Gauckler - Strickler

dove "b" è la larghezza allagabile e "j" la sua pendenza trasversale, come mostrato nella figura sottostante.

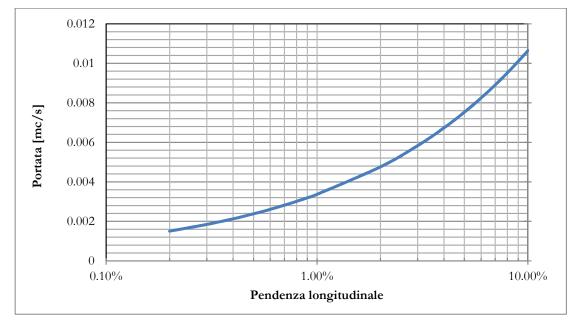
La portata Q_c calcolata in questo modo dovrà essere maggiore o uguale alla portata Q₂₅ che defluisce dalla carreggiata.

Con qualche tentativo, assumendo

$$Ks = 50 \text{ m}^{1/3} \text{ s}^{-1}$$
;


$$J = 0.025;$$

b_{all}=1.00 m (larghezza di allagamento).


Relazione idraulica drenaggio delle viabilità NV08 e compatibilità idraulica delle interferenze

COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
NR1J	01	D 29 R I I D	0 00 02 018	Α	17 di 32

Con questi dati, nell'ipotesi di moto uniforme, la portata transitabile secondo la formulazione di Gauckler-Strickler riportata qui sopra si riduce ad un'equazione a due variabili, in cui la portata è funzione della pendenza longitudinale della strada.

Si riporta in seguito il grafico dell'andamento della portata Q in funzione della pendenza longitudinale i, a parità di larghezza allagabile.

Le portate provenienti dal moto a lato strada vengono captate tramite delle caditoie a griglia di dimensione 40x40 cm con una classe di resistenza D400, concorde alla normativa UNI EN 124.

Le caditoie vengono poi collegate ad una tubazione principale di smaltimento atta a convogliare la totalità delle acque nei recapiti finali. Per collettare le acque dalle caditoie alla rete principale, vengono utilizzate delle tubazioni in PVC o tubazioni in calcestruzzo nelle sezioni in trincea.

Nelle tabella in seguito si mostrano le scale delle portate di una caditoia a griglia posta in un avvallamento:

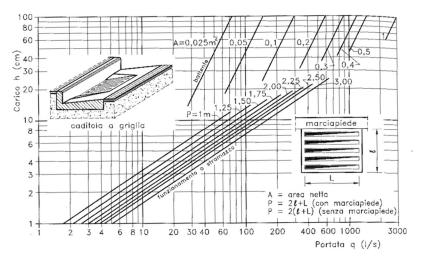
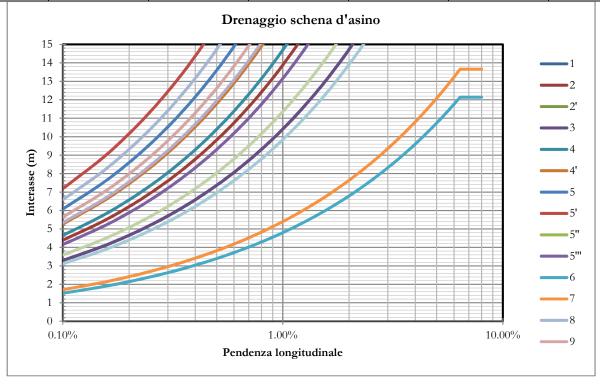
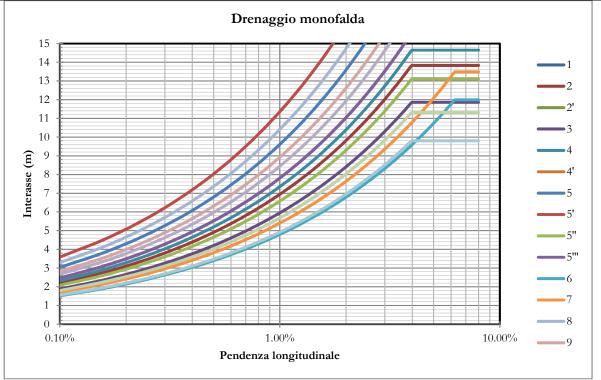


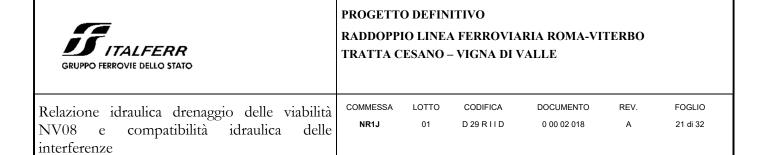
Figura 4.1: Scala delle portate di una caditoia a griglia in avvallamento.


Impostando come carico massimo h=2cm ed utilizzando delle caditoie di dimensioni 40x40cm la portata che ciascuna riesce a sopperire risulta 8 l/s con pendenza trasversale pari a 2.5%. Dove le portate calcolate risultano inferiori a 8 l/s per caditoia si è impostato un interasse massimo tra le stesse di 15 m. Per l'ispezione ed eventuale manutenzione dei collettori, sono stati inseriti pozzetti di dimensione 80x80 cm nelle deviazioni planimetriche e ad interasse massimo di 25 m. Accoppiando il dimensionamento del moto a cunetta e della portata evacuabile dalla caditoia, si riportano di seguito le tabelle ed i grafici risultanti dal dimensionamento dell'interasse delle caditoie in funzione della sezione tipologica e quindi della portata transitabile in cunetta:


Relazione idraulica drenaggio delle viabilità NV08 e compatibilità idraulica delle interferenze
 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 NR1J
 01
 D 29 R I I D
 0 00 02 018
 A
 19 di 32

Numero	Categoria	Pendenza trasversale strada	Larghezza corsia di marcia	Larghezza banchina	Larghezza marciapiede	Larghezza totale
1	F1	2.50%	3.5	1	1.5	9
2	F1	2.50%	3.5	1	0	9
2'	F1	2.50%	3.5	1	1.5	10.5
3	F1	2.50%	3.5	1	1.5	10.5
4	F2	2.50%	3.25	1	0	8.5
4'	F2	2.50%	3.25	0.5	0	8
5	particolare	2.50%	2.75	0.5	0	6.5
5'	particolare	2.50%	2.75	0	0	5.5
5"	particolare	2.50%	2.75	0.5	1.5	9.5
5"'	particolare	2.50%	2.75	0.5	1.5	8
6	rotatoria	2.00%	8	1	0	9
7	rotatoria	2.00%	7	1	0	8
8	particolare	2.50%	2.5	0.5	0	6
9	particolare	2.50%	3	0.5	0	7
10	Е	2.50%	3.5	0.5	1.5	11
11	particolare	2.50%	3.2	0.5		7.4
12	viadotto	2.50%	3.5	1	1.85	12.7



Gli interassi delle caditoie riportati sotto forma di abaco nelle immagini soprastanti, sono stati definiti per ogni singola viabilità (Tabella 4.1).

VIABILITA	DRENAGGIO	ASSE	INTERASSE MINIMO CADITOIE
NV08	Schiena d'asino i=3%	5	15.00
	Monofalda i=1%	3	8.00

Tabella 4.1: Associazione interassi caditoie - viabilità di progetto.

4.4 Invarianza idraulica

Il dimensionamento della rete di drenaggio è stato effettuato nell'ottica di contenere il più possibile l'incremento dei deflussi meteorici superficiali dovuto all'impermeabilizzazione di ampie aree, ad oggi destinate a verde e/o coltivazione. Tale scelta, oltre ad essere in linea con le più recenti indicazioni locali e nazionali per la gestione del territorio e la il contenimento del rischio idro-geologico, risulta necessaria per l'incertezza legata alla capacità ricettiva dei recapiti disponibili nella aree adiacenti gli interventi.

Per garantire quindi una riduzione delle portate meteoriche, le reti di drenaggio saranno caratterizzate da una parta o dalla totalità dei collettori dimensionati non già per la capacità di convogliare le portate, ma quanto per la necessità di accumulare temporaneamente determinati volumi di acqua così da laminare i colmi di portata. In questa configurazione, i livelli nelle condotte saranno sostenuti da un apposito petto sfiorante dotato di una bocca tarata alla base.

La Normativa Regionale che disciplina quanto riportato fa riferimento all'allegato A alla Dgr. 37/2020.

Le trasformazioni dell'uso del suolo, a cui si farà esplicito riferimento, saranno quelle alle quali sarà imputabile una "non trascurabile" riduzione di permeabilità superficiale (classi di intervento), ovvero "un'apprezzabile" impermeabilizzazione potenziale, delle superfici interessate dalle trasformazioni medesime.

Le "soglie dimensionali", in ordine alle quali differenziare le varie classi di intervento a cui è eventualmente associabile un determinato grado di impermeabilizzazione delle superfici da esso interessate, sono definite, nella tabella seguente:

CLASSI DI INTERVENTO	SOGLIE DIMENSIONALI
Trascurabile impermeabilizzazione potenziale	Intervento su superfici di estensione inferiore a 0,1 ha (1.000 m²)
Modesta impermeabilizzazione potenziale	Intervento su superfici di estensione maggiore di 0,1 ha (1.000 m²) ed inferiore ad 1 ha (10.000 m²)
Significativa impermeabilizzazione potenziale	 Intervento su superfici di estensione maggiore di 1 ha (10.000 m²) ed inferiore a 10 ha (100.000 m²); Interventi su superfici di estensione superiore a 10 ha (100.000 m²) con Imp(*) < 0,3
Marcata impermeabilizzazione potenziale	Interventi su superfici di estensione superiore a 10 ha (100.000 m²) con Imp(*) > 0,3

PROGETTO DEFINITIVO

RADDOPPIO LINEA FERROVIARIA ROMA-VITERBO TRATTA CESANO – VIGNA DI VALLE

Relazione idraulica drenaggio delle viabilità NV08 e compatibilità idraulica delle interferenze

COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
NR1J	01	D 29 R I I D	0 00 02 018	Α	22 di 32

Il volume minimo d'invaso atto a garantire l'invarianza idraulica, in termini di portate di deflusso meteorico, provenienti dalle aree oggetto di trasformazioni dell'uso del suolo (urbanistiche o di singolo intervento) e recapitate nei corpi idrici ricettori di valle, è stabilito dalla seguente espressione, ricavata dal "metodo dell'invaso":

$$w = w^{\circ} \times \left(\frac{\varphi}{\varphi^{\circ}}\right)^{\frac{1}{1-n}} - (15 \times I) - (w^{\circ} \times P)$$
 [1]

nella quale:

P

w° = 100 ÷ 150 mc/ha : volume di riferimento da assumersi nei territori di "bonifica";

w° = 50 mc/ha: : volume di riferimento da assumersi nei territori <u>"non impermeabilizzati in ambito urbano"</u>;

w° = 15 mc/ha: : volume di riferimento da assumersi nei territori <u>"impermeabilizzati</u> in ambito urbano";

φ : coefficiente di deflusso post trasformazione;

φ° : coefficiente di deflusso ante trasformazione;

n = 0,48
 : esponente delle curve di probabilità pluviometrica [h = a × tⁿ] di durata inferiore all'ora, assunto nell'ipotesi che le percentuali di pioggia oraria, precipitata nei 5, 15 e 30 minuti, siano rispettivamente il 30%, il 60% e il 75% come risulta, orientativamente, da vari studi sperimentali ²;

 I : quota (%) dell'area oggetto d'intervento, interessata dalla trasformazione (*).

(*) <u>Tale quota è comprensiva anche delle aree che seppur non pavimentate (impermeabilizzate), a seguito della trasformazione, vengono, eventualmente, sistemate e/o regolarizzate;</u>

: quota (%) dell'area oggetto d'intervento, non interessata dalla trasformazione (°), tale che [I + P = 100%].

 <u>Tale quota è rappresentata solo da quelle aree che non vengono</u> sistemate e/o regolarizzate né sottoposte a qualsivoglia altro tipo di intervento, anche non impermeabilizzate;

Relazione idraulica drenaggio delle viabilità NV08 e compatibilità idraulica delle interferenze
 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 NR1J
 01
 D 29 R I I D
 0 00 02 018
 A
 23 di 32

Il volume [w] misurato in [mc/ha]e ricavato applicando l'espressione [LH], dovrà essere moltiplicato per 'area totale d'intervento [St] (superficie territoriale); questo a prescindere dalla quota [P] dell'area oggetto dell'intervento stesso, non interessata dalla trasformazione.

Per determinare i coefficienti \emptyset° e \emptyset che compaiono all'interno dell'espressione[EH], si dovrà far riferimento alle seguenti relazioni:

$$\phi^{\circ} = 0.9 \times \text{Imp}^{\circ} + 0.2 \times \text{Per}^{\circ}$$

$$\varphi = 0.9 \times Imp + 0.2 \times Per$$

nelle quali:

 Imp° : quota parte dell'area totale da ritenersi impermeabile, <u>prima</u> della trasformazione;

 Per° : quota parte dell'area totale da ritenersi permeabile, <u>prima</u> della trasformazione;

 Imp : quota parte dell'area totale da ritenersi impermeabile, <u>dopo</u> la trasformazione;

 Per : quota parte dell'area totale da ritenersi permeabile, <u>dopo</u> la trasformazione.

Infine, richiamando quanto elencato nella Tabella 1, si stabilisce che, relativamente alle classi di intervento denominate "Significativa" e "Marcata", è consentita l'adozione di un valore del parametro [n] anche diverso da quello indicato dalla normativa regionale, a condizione che tale valore derivi da uno specifico studio idrologico riferito al sito interessato dalla trasformazione dell'uso del suolo.

Alla luce di quanto sopra rappresentato e sempre richiamando quanto elencato nella Tabella del paragrafo precedente, si riportano i seguenti criteri:

a)nel caso di classe di intervento denominata: "Modesta impermeabilizzazione potenziale", i volumi disponibili per la laminazione dovranno soddisfarei requisiti dimensionali di cui all'espressione [1]del paragrafo precedente.,le luci di scarico dell'invaso (condotti o stramazzi) nel corpo idrico recettore di valle non dovranno superare le dimensioni di un tubo avente un diametro pari a 200 mm e i tiranti idrici consentiti nell'invaso dovranno esser tali da non risultare maggiori di 1,00 metro;

Relazione	;	idraulica	drenage	gio	delle	viabilità
NV08	e	compa	ıtibilità	id	raulica	delle
interferen	zε	2				

COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
NR1J	01	D 29 R I I D	0 00 02 018	Α	24 di 32

b)nel caso di classe di intervento denominata "Significativa impermeabilizzazione potenziale", le luci di scarico e i tiranti idrici consentiti nell'invaso, dovranno esser tali da garantire che il valore della portata massima, defluente dall'area oggetto di trasformazione dell'uso del suolo, sia pari al valore assunto dalla stessa precedentemente all'impermeabilizzazione dell'area medesima, almeno per una durata di pioggia di 2 ore e un tempo di ritorno di 30 anni.

Dunque nel caso di "Significativa impermeabilizzazione potenziale" i valori di portata massima scaricata anteoperam e post-operam sono stati calcolati con il metodo razionale. La stessa procedura di calcolo viene utilizzata per determinare i limiti di portata allo scarico per il dimensionamento del manufatto limitatore anche per le classi di intervento di "Modesta impermeabilizzazione potenziale".

La massima portata defluente nella sezione di recapito nella configurazione ante-operam è pari a:

$$Q_{A.O} = \frac{\varphi_{A.O.} S h 10^4}{t 3600}$$

Dove:

- $Q_{A.O.}$ è la massima portata scaricata nella configurazione ante-operam in 1/s;
- $\varphi_{A.O.}$ il coefficiente di deflusso ante-operam calcolato come da linee guida;
- S la superficie di trasformazione in ha;
- H l'altezza di precipitazione in mm calcolata per un tempo di ritorno di 30 anni e durata pari a 2 ore;
- t la durata della precipitazione pari a 2 ore come da indicazione delle linee guida.

da cui si ricava il coefficiente udometrico ante-operam:

$$u_{A.O.} = \frac{Q_{A.O.}}{S} \quad \left[\frac{l}{s \ ha}\right]$$

Tali valori definiscono i limiti allo scarico nella configurazione post-operam.

Successivamente viene calcolato il volume massimo We generato dalla superficie di trasformazione nella configurazione di progetto:

$$W_e = \frac{h \, \varphi_{P.O.} \, S \, 10^4}{1000} \quad [m^3]$$

Dove $\varphi_{P.O.}$ rappresenta il coefficiente di deflusso nella configurazione post-operam calcolato come da linee guida.

Relazione idraulica drenaggio delle viabilità NV08 e compatibilità idraulica delle interferenze

COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
NR1J	01	D 29 R I I D	0 00 02 018	Α	25 di 32

Imponendo come condizione limite che il coefficiente udometrico allo scarico nella configurazione di progetto sia minore-uguale all'ante-operam: $u_{P.O.} \le u_{A.O.}$, è possibile stimare il massimo volume scaricato al ricettore come:

$$W_u = \frac{u_{P.O.}S}{1000 \ t \ 3600} \quad [m^3]$$

Infine è possibile stimare il volume da invasare come differenza:

$$W_i = W_e - W_u \ [m^3]$$

Per garantire l'invaso dei volumi previsti da normativa ed assicurare contemporaneamente che la portata allo scarico nel corpo ricettore sia inferiore (o al massimo uguale) alla configurazione ante-operam si prevede la realizzazione di un manufatto limitatore di portata costituito da un setto di sfioro con luce tarata; il cui dimensionamento viene rimandato ai successivi paragrafi.

Nelle configurazioni di progetto verrà dimostrata l'assenza interventi classificati come Marcata impermeabilizzazione potenziale.

PROGETTO DEFINITIVO
RADDOPPIO LINEA FERROVIARIA ROMA-VITERBO
TRATTA CESANO – VIGNA DI VALLE

Relazione idraulica drenaggio delle viabilità NV08 e compatibilità idraulica delle interferenze

COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
NR1J	01	D 29 R I I D	0 00 02 018	Α	26 di 32

5. INTERVENTI VIABILITA' DI PROGETTO

In questo capitolo vengono descritte le viabilità in ogni singolo asse, sottolineando per ognuno di essi la tipologia di drenaggio utilizzata.

NV08 - Nuova viabilità via di Cocciutella

L'intervento NV08 si compone di 6 assi stradali e due rotatorie:

- L'asse 1 si sviluppa su nuova sede e partendo via Anguuillarese si collega alla nuova rotatoria 1 di allaccio con via della Sorgente Claudia. Si sviluppa principalmente in rilevato rispetto al piano campagna, si prevedono inoltre dei fossi rivestiti a lato della strada che si connettono alla rete esistente.
- 2. Gli assi 2,3,4,6 costituiscono i collegamenti tra le rotatorie di progetto 1 e 2 localizzate sulle intersezioni tra la nuova viabilità e via della sorgente Claudia. Si sviluppano prevalentemente in rilevato, il drenaggio stradale lato campagna è asservito da fossi di guardia rivestiti, mentre lato abitato si prevede l'apposizione di elementi puntuali di captazione a caditoia.
- 3. L'asse 5 costituisce il collegamento tra la rotatoria 2 di progetto e via di Cocciutella. Si sviluppa parte in nuova sede prevalentemente in rilevato, parte sul sedime di via di Cocciutella. Il drenaggio stradale lato campagna è asservito da fossi di guardia rivestiti, mentre lato abitato si prevede l'apposizione di elementi puntuali di captazione a caditoia.

Riguardo lo smaltimento delle portate meteoriche di questa viabilità, i recapiti dei sistemi di drenaggio consistono:

- nel tombino esistente ubicato su via di Cocciutella;
- nel fosso di drenaggio delle aree agricole in corrispondenza della PK0+550 dell'asse 1;
- nel fosso della Casaccia, a valle del tombino stradale esistente, quest'ultimo non oggetto di intervento.

Individuazione dei volumi di laminazione richiesti

Sulla base degli strumenti normativi precedentemente citati, è stato possibile ricavare il volume di laminazione richiesto per l'area in oggetto, suddivisa per recapito (rif. elaborato grafico drenaggio della viabilità).

Relazione idraulica drenaggio delle viabilità NV08 e compatibilità idraulica delle interferenze
 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 NR1J
 01
 D 29 R I I D
 0 00 02 018
 A
 27 di 32

Bilancio superfici

CODICE	RECAPITO	PK _{in}	PK _{fin}	Simp AO	Sperm AO	Simp PO	Sperm PO
				ha	ha	ha	ha
NV08 - MC6	NV08 - R1	0+000	0+350	0.194	0.453	0.392	0.254
NV08 - MC3	NV08 - R2 (sxN)	0+350	0+550	0.000	0.203	0.103	0.100
NV08 - MC2	NV08 - R2 (sx\$)	0+725	0+550	0.000	0.164	0.082	0.082
NV08 - MC5	NV08 - R2 (dxN)	0+350	0+550	0.000	0.222	0.098	0.124
NV08 - MC4	NV08 - R2 (dxS)	0+660	0+550	0.000	0.109	0.055	0.054
NV08 - MC1	NV08 - R3	0+725	0+240	0.170	1.067	0.758	0.480
-	NV08 - R4	0+240	0+313	0.000	0.066	0.047	0.020

Calcolo classe di intervento e volumi richiesti

CODICE	RECAPITO	Strasformazion	Imp AO	Per AO	φ	Imp PO	Per PO	φ	CLASSI DI INTERVENTO	ω	Vmin INVARIANZA
		ha	%	%	%	%	%	%		m³ ha-1	m ³
NV08 - MC6	NV08 - R1	0.646	30%	70.02%	0.41	60.68%	39.32%	0.62	2-MODESTA	83.72	54.10
NV08 - MC3	NV08 - R2 (sxN)	0.203	0%	100.00%	0.20	50.86%	49.14%	0.56	2-MODESTA	325.03	65.86
NV08 - MC2	NV08 - R2 (sxS)	0.164	0%	100.00%	0.20	50.13%	49.87%	0.55	2-MODESTA	318.48	52.37
NV08 - MC5	NV08 - R2 (dxN)	0.222	0%	100.00%	0.20	44.12%	55.88%	0.51	2-MODESTA	266.67	59.11
NV08 - MC4	NV08 - R2 (dxS)	0.109	0%	100.00%	0.20	50.35%	49.65%	0.55	2-MODESTA	320.43	34.98
NV08 - MC1	NV08 - R3	1.238	14%	86.25%	0.30	61.26%	38.74%	0.63	3-SIGNIFICATIVA		
(4)	NV08 - R4	0.066	0%	100.00%	0.20	70.55%	29.45%	0.69	1-TRASCURABILE	521.55	34.59

Calcolo volumi col metodo cinematico delle aree ad impermeabilizzazione significativa

	CODICE MANUFATTO	RECAPITO	Q AO	u A.O.	We	u max P.O.	Wu	Q PO	Wi
			I s ⁻¹	I s ⁻¹ ha ⁻¹	m ³	I s ⁻¹ ha ⁻¹	m ³	I s ⁻¹	m ³
	NV08 - MC1	NV08 - R3	46.604	37.656	712.175	37.60	335.057	46.536	377.12

ITALFERR GRUPPO FERROVIE DELLO STATO	_	O LINE		RIA ROMA-VI /ALLE	TERBO	
Relazione idraulica drenaggio delle viabilità	COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
NV08 e compatibilità idraulica delle	NR1J	01	D 29 R I I D	0 00 02 018	Α	28 di 32
interferenze						

Verifica del manufatto di laminazione

Al fine di invasare volume all'interno delle depressioni verdi di progetto e mantenere alto il livello idrico, risulta necessario prevedere l'utilizzo di sistemi in grado di regolare le portate in uscita.

A tale scopo, prima del recapito è stato inserito, un manufatto dotato di una bocca tarata per il controllo delle portate. Il manufatto è composto da un muretto tracimabile con un setto centrale fatto con panconcelli amovibili e dotato di bocca tarata sul fondo.

Per il dimensionamento del foro si è considerato lo scarico funzionante come luce a battente, la portata effluente (espressa in m³/s) è data dalla relazione:

$$Q = C_{q} \cdot A \cdot \sqrt{2g \cdot h_{0}} \tag{1}$$

dove C_q è il coefficiente di portata, dipendente dalla contrazione che la vena effluente subisce nell'attraversamento della bocca, A (m²) è l'area della luce, h_0 (m) è il carico idraulico sulla bocca d'efflusso. Il valore del coefficiente di portata dipende dal valore del coefficiente di contrazione (nel caso specifico pari a 0,6), dalle dimensioni della luce (di altezza "a" e larghezza "b"), dal carico idraulico e dal tirante di valle (quindi dalle caratteristiche dello stesso efflusso, libero o rigurgitato), e può essere desunto dalla seguente figura.

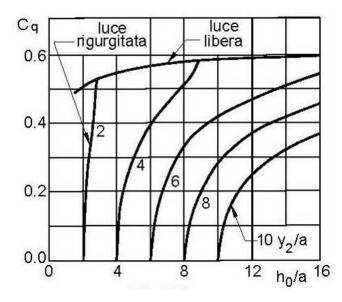


Figura 8 Coefficiente di portata per luce di fondo (Carlo Gregoretti – Idraulica –2008).

In caso di ostruzione del foro la portata in arrivo attraverserà il manufatto sfiorando la soglia. Per valutare la tracimazione dell'acqua in corrispondenza della soglia di sfioro si calcola l'efflusso a stramazzo con la formula

$$Q = L \cdot C_e \cdot h \cdot \sqrt{2g \cdot h} \tag{2}$$

Relazione idraulica drenaggio delle viabilità NV08 e compatibilità idraulica delle interferenze
 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 NR1J
 01
 D 29 R I I D
 0 00 02 018
 A
 29 di 32

dove la portata Q (m³/s) ricavata dalle verifiche a moto permanente con il metodo razionale per TR=25 anni, dipendente dalla lunghezza L (m) della soglia sfiorante, dal coefficiente di deflusso C_e , che si approssima a 0.38, e dall'altezza idrometrica h (m) sulla soglia di sfioro essendo g (m/s²) l'accelerazione di gravità.

Considerate le ridotte dimensioni della luce di fondo, per evitare l'intasamento della stessa, è stato previsto il posizionamento di una griglia immediatamente a monte; tuttavia, si ritiene comunque indispensabile programmare un'opportuna attività di manutenzione periodica (ogni sei mesi o in concomitanza di eventi eccezionali) per rimuovere l'eventuale materiale depositato che potrebbe ostruire il foro o la stessa griglia. Nel caso in cui la bocca tarata dovesse risultare occlusa, il petto sfiorante dovrà essere in grado di lasciar transitare la massima portata in arrivo dalla rete di drenaggio.

			Dimensionament	to luce di fondo)	Verifica dello sfioro in caso di occlusione della luce di fondo									
CODICE MANUFATTO	RECAPITO	Q AO	petto sfioro	luce d	i fondo	Hmax,fosso	Lsfioro	Qsfioro	hsfioro	franco					
MANUFATTO		Vs	m	cm:	x cm	m	m	Vs	m	m					
NV08 - MC6	NV08 - R1	33.66	0.300	15.00	15.00	0.600	2.00	529.853	0.28	0.02					
NV08 - MC3	NV08 - R2 (sxN)	5.15	0.300	10.00	5.00	0.600	1.10	188.005	0.21	0.09					
NV08 - MC2	NV08 - R2 (sxS)	4.18	0.300	10.00	5.00	0.700	3.00	864.975	0.30	0.10					
NV08 - MC5	NV08 - R2 (dxN)	5.63	0.400	10.00	5.00	0.500	1.30	24.924	0.05	0.05					
NV08 - MC4	NV08 - R2 (dxS)	2.77	0.400	10.00	5.00	0.500	1.30	28.148	0.05	0.05					
NV08 - MC1	NV08 - R3	46.60	0.600	0.600 15.00		1.100	2.00	1053.010	0.45	0.05					
12	NV08 - R4	8	3	ž.		1120		2	- 120	1926					

Considerando i tiranti sostenuti dal manufatto e i volumi da ricavare, le depressioni verdi di progetto avranno un'area minima di:

Relazione idraulica drenaggio delle viabilità NV08 e compatibilità idraulica delle interferenze
 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 NR1J
 01
 D 29 R I I D
 0 00 02 018
 A
 30 di 32

CODICE MANUFATTO	RECAPITO	A minima	Note
		m ²	
NV08 - MC6	NV08 - R1	180.338	pendenza media bacino al 1.8% con setto a 35cm, rigurgito 20m.
NV08 - MC3	NV08 - R2	219.535	bacino con setto a 0.30m e fondo pseudo orizzontale
NV08 - MC2	NV08 - R2	174.560	bacino con setto a 0.30m e fondo pseudo orizzontale
NV08 - MC5	NV08 - R2	147.775	bacino con setto a 0.40m e fondo pseudo orizzontale
NV08 - MC4	NV08 - R2	87.444	bacino con setto a 0.40m e fondo pseudo orizzontale
NV08 - MC1	NV08 - R3	628.531	bacino con setto a 0.60m e fondo pseudo orizzontale
-	NV08 - R4		Non possibile per interferenza con fosso ferroviario e salvaguardia sicurezza dell'infrastruttura

^{*}fondo pseudo-orizzontale: pendenza minima del bacino pari a 0.2%

GRUPPO FERROVIE DELLO STATO		IO LINE		RIA ROMA-VI VALLE	ГЕКВО	
Relazione idraulica drenaggio delle viabilità NV08 e compatibilità idraulica delle	COMMESSA NR1J	LOTTO 01	CODIFICA D 29 R I I D	DOCUMENTO 0 00 02 018	REV.	FOGLIO 31 di 32
interferenze						

6. TABULATI DI DIMENSIONAMENTO IDRAULICO

NV08 – Via di Cocciutella

	Dati di calcolo								Verifica tubazione							Verifica fosso										
Elemento di drenaggio	Prog	ressiva		S (m ²)		∑ Stot	Ø _{m,tot}	L	$\sum \mathbf{L}$	Тс	Deflusso unitario	Q	D	i	Ks	Y/D	Y	velocità	В	Н	Scarpa sponde	i	Ks	tirante h	Riempimento	v
	monte	valle	ø = 0,40	ø = 0,60	ø = 0,90	(m ²)		m	m	min	mm/ora	1/s	(m)	-	m1/3/s	%	m	v	m	m		%	m1/3/s	m	0/0	m/s
Asse 1-F1-SX	0+025	0+065	360.0	80.0	300.0	740.0	0.665	40.0	40.0	5.7	204.0	27.9							0.5	0.5	1	1.28%	66.67	0.053	11%	0.953
Asse 1-F2-SX	0+345	0+305	360	80	2533	2973	0.466	40.0	40.0	5.7	204.2	78.6							0.5	0.5	1	0.50%	66.67	0.129	26%	0.972
Asse 1-T2	0+305	0+305	0	120	2500	2620	0.409	20.0	20.0	5.0	211.9	63.1	0.60	0.40%	66.67	29%	0.176	0.913								
Asse 1-F2-SX	0+305	0+180	1485	450	9294	11229	0.474	125.0	165.0	7.1	189.9	280.9							0.5	0.5	1	0.56%	66.67	0.255	51%	1.457
Asse 1-C1-SX	0+180	0+170	1485	450	9294	11229	0.474	10.0	175.0	7.2	189.3	279.9	0.60	2.00%	66.67	42%	0.253	2.466								
Asse 1-F2-SX	0+170	0+065	2430	660	18561	21651	0.462	105.0	280.0	7.7	184.3	512.4							0.5	0.5	1	2.10%	66.67	0.247	49%	2.773
Asse 1-T1	0+065	0+065	2790	740	18861	22391	0.469	16.5	296.5	7.9	183.1	534.0	0.80	0.60%	66.67	56%	0.451	1.852								
Asse 1-F1-DX	0+025	0+065	0	120	0	120	0.600	40.0	40.0	6.2	198.6	4.0							0.3	0.3	1	1.25%	66.67	0.022	7%	0.548
Asse 1-F2-DX	0+065	0+125	0	120	0	120	0.600	60.0	60.0	6.6	194.5	3.9							0.3	0.3	1	1.83%	66.67	0.020	7%	0.615
Asse 1-Recapito	0+065	0+065	2790	980	18861	22631	0.470	47.0	343.5	8.4	179.2	529.9							0.6	0.6	1	0.50%	66.67	0.349	58%	1.658
Asse 1-F3-SX		0+450	945	210	3150	4305	0.520	105.0	105.0	6.1	199.8	124.1							0.5	0.5	1	1.40%	66.67	0.124	25%	1.598
Asse 1-F3-SX	0+450	0+525	1283	360	5400	7043	0.501	75.0	180.0	6.7	194.0	190.3							0.5	0.5	1	2.24%	66.67	0.139	28%	2.142
Asse 1-C2-SX	0+525	0+545	1283	360	5400	7043	0.501	20.0	200.0	6.9	191.7	188.0	0.60	0.55%	66.67	49%	0.292	1.379								
Asse 1-F4-SX	0+725	0+550	875	350	36307	37532	0.414	175.0	175.0	6.0	200.6	865.0	<u> </u>						0.6	0.6	1	1.60%	66.67	0.326	54%	2.867
													<u> </u>						<u> </u>							
Asse 1-T3	0+550	0+550	2158	710	41707	44575	0.427	16.0	216.0	7.0	191.0	1010.6	0.80	1.88%	66.67	58%	0.467	3.317	↓							
																			<u> </u>							
Asse 1-F3-DX		0+450	0	210	0	210	0.600	105.0	105.0	7.9	183.2	6.4	<u> </u>						_	0.5	1	1.64%	66.67	0.020	4%	0.607
Asse 1-F3-DX	0+450	0+550	450	200	0	650	0.808	100.0	205.0	9.5	170.9	24.9	<u> </u>						0.5	0.5	1	1.52%	66.67	0.054	11%	1.051
													<u> </u>													
Asse 1-F4-DX	0+650	0+550	450	200	0	650	0.808	100.0	100.0	6.8	193.0	28.1							0.5	0.5	1	1.19%	66.67	0.054	11%	0.935
													<u> </u>													
Asse 1-F5-DX	0+708	0+836	576	384	0	960	0.780	128.0	128.0	6.7	193.4	40.2							0.5	0.5	1	1.88%	66.67	0.059	12%	1.227
																			_							
Asse 1-F5-SX	0+725	0+836	555	133	4825	5513	0.455	111.0	111.0	6.0	201.2	140.3							0.5	0.5	1	2.15%	66.67	0.118	24%	1.926
Asse 1-T4	0+835	0+835	1485	329	9879	11693	0.469	16.0	127.0	7.0	191.0	291.0	0.80	1.88%	66.67	29%	0.233	2.386								

PROGETTO DEFINITIVO

RADDOPPIO LINEA FERROVIARIA ROMA-VITERBO TRATTA CESANO – VIGNA DI VALLE

Relazione idraulica drenaggio delle viabilità NV08 e compatibilità idraulica delle interferenze

COMMESSA LOTTO CODIFICA DOCUMENTO REV.

FOGLIO 01 D 29 R I I D 0 00 02 018 32 di 32

Interreteize			Dati di calcolo										Verifica tubazione						Verifica fosso							
Elemento di drenaggio	Progr	essiva		S (m ²)		∑ Stot		L	<u>Σ</u> L	Тс	Deflusso unitario	Q	D	i	Ks	Y/D	Y	velocità	В	Н	Scarpa sponde	i	Ks	tirante h	Riempimento	v
	monte	valle	ø = 0,40	ø = 0,60	ø = 0,90	(m ²)		m	m	min	mm/ora	1/s	(m)	-	m1/3/s	%	m	v	m	m		%	m1/3/s	m	0/0	m/s
Asse 1-DX-1	0+835	0+845	2261	713	9879	12853	0.499	17.0	144.0	7.1	190.1	338.7	0.80	2.94%	66.67	28%	0.225	2.927								
Rotatoria 1-DX-1	0+000	0+025	2461	713	9929	13103	0.505	17.0	161.0	7.2	189.2	347.7	0.80	2.94%	66.67	28%	0.228	2.948								
Asse 2-DX-1	0+015	0+030	6325	1158	18332	25814	0.531	13.0	487.0	7.3	188.5	718.2	0.80	1.15%	66.67	55%	0.439	2.543								
Asse 3-F3-SX	0+085	0+000	930	196	5054	6180	0.482	109.0	109.0	6.9	192.0	158.8							0.5	0.5	1	0.28%	66.67	0.227	45%	0.963
Asse 3-F1-SX			1586	319	7473	9377	0.491	19.0	273.0	6.8	193.2	247.2							0.5	0.5	1	1.58%	66.67	0.178	36%	2.043
Asse 3-F2-SX	-	0+155	455	126	779	1360	0.586	70.0	70.0	6.4	197.0	43.6							0.5	0.5	1	0.57%	66.67	0.088	18%	0.847
Asse 3-T1	 	0+155	2041	445	8252		0.503		281.0	6.8	192.8	289.4	_	5.00%	66.67		0.219	3.509								
Asse 3-C2	0+155	0+100	3334	445	8353		0.545		336.0	8.4	179.0	328.5	_	0.54%	66.67		0.421	1.550								
Asse 3-C3	0+100		3604	445	8353		0.552		436.0	9.4	171.1	325.7	_	0.59%	66.67		0.405	1.602								
Rotatoria1-C1	0+040		3804	445	8403		0.557		454.0	9.6	170.2	333.3	_	1.39%	66.67		0.311	2.252								
Asse 2-C1	0+000	0+015	3864	445	8403		0.559		469.0	9.7	169.5	334.5	_	2.00%	66.67		0.280	2.583								
Asse 2-T1	0+015	0+015	3884	445	8403	12731	0.560	5.0	474.0	9.7	169.2	334.8	0.60	1.00%	66.67	58%	0.345	1.989								
													<u> </u>													
Asse 5-C1	 	0+000	325	0	0		0.900		100.0	6.3	197.8	16.1	_	2.90%	66.67		0.062	1.292								
Rotatoria 2-C1		0+040	525	0	50		0.856		120.0	6.9	192.2	26.3	_	0.20%	66.67		0.157	0.574								
Asse 4-C1	 	0+000	264	0	0	264	0.900	20.0	140.0	5.6	204.8	13.5	_	0.25%	66.67		0.117	0.529								
Rotatoria 2-C2	1		989	0	101		0.854		159.0	7.3	187.9	48.5	_	0.20%	66.67		0.198	0.670								
Asse 3-C1	0+174	0+155	1084	0	101	1185	0.858	19.0	178.0	7.8	183.8	51.9	0.50	0.20%	66.67	41%	0.206	0.682								
													<u> </u>													
Asse 5-F1-SX	0+240	0+000	1211	240	4621	6072	0.508	240.0	240.0	6.6	194.7	166.6	<u> </u>						0.3	0.3	1	3.29%	66.67	0.149	50%	2.482
	0.055	0.000																								
Asse 6-F1-DX		0+000	280	56	1595		0.478		56.0	5.8	202.6	52.0		/		/			0.3	0.3	1	0.89%	66.67	0.112	37%	1.121
Asse 6-T1	0+005	0+005	1491	296	6216	8003	0.501	14.0	254.0	6.8	192.8	214.5	0.60	0.36%	66.67	60%	0.361	1.207								
4 5.00	0.200	0.350	400			400	0.000	20.2	20.0		407.6		0.00	0.0554		2221	0.000	0.400								
Asse 5-C2	1	0+250	190	0	0		0.900		38.0	6.3	197.6	9.4	1	0.26%	66.67		0.096	0.483								
Asse 5-C2	0+250	0+250	253	0	0	253	0.900	12.0	12.0	6.7	193.9	12.2	0.30	0.27%	66.67	36%	0.109	0.527								