COMMITTENTE:



PROGETTAZIONE:



|                                                          |                     | E DELLO STATO ITALIANE                                                    |
|----------------------------------------------------------|---------------------|---------------------------------------------------------------------------|
| DIREZIONE TECNICA                                        |                     |                                                                           |
| U.O. INFRASTRUTTURE CENTRO                               |                     |                                                                           |
| PROGETTO DEFINITIVO                                      |                     |                                                                           |
| RADDOPPIO LINEA FERROVIARIA ROMA-VIT                     | TERBO               |                                                                           |
| TRATTA CESANO VIGNA DI VALLE                             |                     |                                                                           |
|                                                          |                     |                                                                           |
| Tombini idraulici scatolari                              |                     |                                                                           |
| Relazione di calcolo muri ad U – Spessore 30 cm          |                     |                                                                           |
|                                                          |                     |                                                                           |
|                                                          |                     | SCALA:                                                                    |
|                                                          |                     | -                                                                         |
| COMMESSA LOTTO FASE ENTE TIPO DOC. OPERA/DISCIPLINA      | A PROGR. REV        | <i>I</i> .                                                                |
| NR1J 01 D 29 CL IN0000                                   | 0 0 9 A             |                                                                           |
| Rev. Descrizione Redatto Data Verificato Data            | Approvato Data      | Autorizzato Data                                                          |
| A Emissione Definitiva F. Serrau 05-2020 M.Monda 05-2020 | T. Paoletti 05-2020 | F. Angelland                                                              |
| Fish fer HY                                              | 14                  | ITAL FERR S.p.A. Direzione fecnica Anfrastguture Centro Bet. https://dec. |
|                                                          |                     | S.p.A.<br>benica<br>i. Centro<br>zio Arduini<br>la-Provincia di           |
|                                                          |                     | di Roma                                                                   |
| File: NR1J01D29CLIN0000009A.DOC                          |                     | n. Elab.: 279.2                                                           |



# RADDOPPIO CESANO - VIGNA DI VALLE - PROGETTO DEFINITIVO

Relazione di calcolo Muri ad U – Spessore 30 cm

COMMESSA LOTTO CODIFICA DOCUMENTO REV. FOGLIO

NRIJ 01 D 29 CL IN0000 009 A 2 di 57

## **INDICE**

| 1   | PREMESSA                                                                  | 4  |
|-----|---------------------------------------------------------------------------|----|
| 2   | NORMATIVA DI RIFERIMENTO                                                  | 6  |
| 3   | DOCUMENTI DI RIFERIMENTO                                                  | 7  |
| 4   | UNITÀ DI MISURA E SIMBOLOGIA                                              | 8  |
| 5   | CARATTERISTICHE DEI MATERIALI                                             | 9  |
| 5.1 | Dati generali                                                             | 9  |
| 5.2 | CARATTERISTICHE TECNICHE                                                  | 9  |
| 6   | CARATTERIZZAZIONE GEOTECNICA                                              | 11 |
| 6.1 | CRITERI DI PROGETTAZIONE TIPOLOGICA                                       | 11 |
| 7   | CRITERI PROGETTUALI                                                       | 12 |
| 7.1 | VITA NOMINALE                                                             | 12 |
| 7.2 | CLASSE D'USO                                                              | 12 |
| 7.3 | PERIODO DI RIFERIMENTO PER L'AZIONE SISMICA                               | 13 |
| 7.4 | VALUTAZIONE DELL'AZIONE SISMICA                                           | 13 |
| 8   | COMBINAZIONI DI CARICO                                                    | 19 |
| 9   | DIMENSIONAMENTO DELL'OPERA                                                | 23 |
| 9.1 | Geometria                                                                 | 23 |
| 9.2 | MODELLO DI CALCOLO                                                        | 24 |
| 9.3 | VALUTAZIONE DELLA RIGIDEZZA DELLE MOLLE                                   | 25 |
| 9.4 | Analisi dei carichi                                                       | 26 |
|     | 9.4.1 Peso proprio della struttura e carichi permanenti portati           | 26 |
|     | 9.4.2 Spinta sulle pareti dovuta al terreno ed al sovraccarico permanente | 27 |
|     | 9.4.3 Azione Termica                                                      | 28 |
|     | 9.4.4 Azione sismica inerziale                                            | 28 |



# RADDOPPIO CESANO - VIGNA DI VALLE - PROGETTO DEFINITIVO

| 9.5  | DIAGRAMMI DELLE SOLLECITAZIONI         | 31 |
|------|----------------------------------------|----|
| 9.6  | VERIFICA DELLE SEZIONI IN C.A.         | 39 |
|      | 9.6.1 Verifica soletta inferiore       | 40 |
|      | 9.6.2 Verifica piedritti               | 44 |
| 9.7  | TABELLA RIEPILOGATIVA INCIDENZA FERRI  | 48 |
| 9.8  | VERIFICA DEI CEDIMENTI A LUNGO TERMINE | 49 |
| 9.9  | VERIFICA DEI CEDIMENTI A BREVE TERMINE | 50 |
| 9.10 | 0 VERIFICA DI PORTANZA                 | 51 |

| ITALFERR GRUPPO FERROVIE DELLO STATO ITALIANE   | RADDOPP<br>DEFINITI |                  | ANO - VIO | GNA DI VALI          | .Е - Р | ROGETTO           |
|-------------------------------------------------|---------------------|------------------|-----------|----------------------|--------|-------------------|
| Relazione di calcolo Muri ad U – Spessore 30 cm | COMMESSA<br>NR1J    | LOTTO<br>01 D 29 | CODIFICA  | DOCUMENTO IN0000 009 | REV.   | FOGLIO<br>4 di 57 |

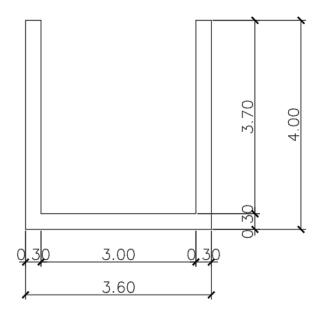
#### 1 **PREMESSA**

Il progetto di raddoppio della tratta Cesano - Vigna di Valle, sulla linea ferroviaria Roma - Viterbo, costituisce la prima fase funzionale del più esteso intervento di raddoppio tra Cesano e Bracciano, previsto dal recente Accordo Quadro tra Regione Lazio e RFI del 22/02/2018.

Complessivamente il progetto prevede la realizzazione dei tombini riassunti schematicamente nella seguente tabella:

Tabella Tombini

|         |        |                  |                |             | I                       |         |               |                |        |          |                     |           |
|---------|--------|------------------|----------------|-------------|-------------------------|---------|---------------|----------------|--------|----------|---------------------|-----------|
| Opera 🔻 |        | Esistente<br>[m] | Sezioni<br>[-] |             | Dimensioni<br>axbxc [m] | h_in ▼  | h_Ou <b>▽</b> | L canna<br>[m] | imed 🔻 | Quota PF | Ricoprimento<br>[m] | Svilupp 🖓 |
| INO1    | 28+441 | 0.9x1.30         | Scatolare      | ferroviario | 2.00x1.50x0.4           | 154.07  | 153.90        | 16.500         | 0.005  | 157.19   | 1.205               |           |
| IN03    | 29+265 | 1.00X2.00        | Scatolare      | ferroviario | 2.00X2.00x0.5           | 154.53  | 154.45        | 16.500         | 0.003  | 158.33   | 1.340               |           |
| INO4    | 29+553 | 0.8x0.5          | Circolare      | ferroviario | DN1500                  | 156.80  | 156.70        | 15.500         | 0.006  | 160.11   | 1.460               |           |
| INO6B   | -      | STRADALE         | Scatolare      | stradali    | 4.00X2.70x0.5           | 164.30  | 164.10        | 28.400         |        | 167.71   | 0.310               |           |
| IN07    | 30+870 | 1.02x0.7         | Scatolare      | ferroviario | 2.50X1.20x0.4           | 163.85  | 163.75        | 15.500         | 0.005  | 166.57   | 1.170               |           |
| IN09    | 31+620 |                  | Scatolare      | ferroviario | 2.00x2.00x0.5           | 172.25  | 172.00        | 18.000         | 0.013  | 176.51   | 1.885               |           |
| IN11    | 32+272 | 1.00x1.10        | Scatolare      | ferroviario | 2.00x1.50x0.4           | 182.55  | 182.50        | 14.200         | 0.005  | 185.71   | 1.185               |           |
| IN12    | 32+685 | 3.00x1.35        | Scatolare      | ferroviario | 4.00x2.00x0.5           | 185.20  | 184.65        | 17.000         | 0.009  | 188.65   | 1.225               |           |
| IN14    | 34+545 | 0.80x1.10        | Scatolare      | ferroviario | 2.00x2.00x0.5           | 208.67  | 208.50        | 17.300         | 0.011  | 212.38   | 1.295               |           |
| IN15    | 34+758 | STRADALE         | Scatolare      | stradali    | 3.00x2.00x0.5           | 210.70  | 210.54        | 15.500         | 0.010  | 213.94   | 0.820               |           |
| IN16    | 35+009 | 0.80x0.80        | Circolare      | ferroviario | DN1500                  | 215.68  | 215.50        | 18.000         | 0.010  | 219.48   | 1.990               |           |
| IN17    | 35+507 | 2.00x1.60        | Scatolare      | ferroviario | 2.00x2.00x0.5           | 223.18  | 223.05        | 18.000         | 0.007  | 226.96   | 1.345               |           |
| IN18    | 35+780 | 1.00x1.93        | Scatolare      | ferroviario | 2.00x1.50x0.4           | 226.33  | 226.28        | 18.000         | 0.006  | 229.41   | 1.105               |           |
| IN19    | 36+016 | STRADALE         | Scatolare      | stradali    | 2.00X2.00x0.5           | 223.84  | 223.70        | 12.000         |        | 226.51   | 0.240               |           |
| IN20    | 36+243 | 1.00x1.46        | Scatolare      | ferroviario | 2.00X2.00x0.5           | 228.20  | 228.00        | 21.200         | 0.011  | 232.18   | 1.580               |           |
| IN23    | 36+835 |                  | Scatolare      | ferroviario | 3.00X4.00x0.5           | 233.53  | 233.32        | 18.400         | 0.012  | 240.65   | 2.725               |           |
| IN24    | 37+054 |                  | Scatolare      | ferroviario | 3.00x3.00x0.5           | 237.05  | 236.71        | 22.600         | 0.015  | 243.93   | 3.550               |           |
| IN25    | 37+767 |                  | Scatolare      | ferroviario | 3.00x3.00x0.5           | 241.95  | 241.55        | 44.900         | 0.009  | 252.27   | 7.020               |           |
| NV06    | 39+015 | STRADALE         | Scatolare      | stradali    | 1.60X1.00x0.4           | 245.100 |               |                |        | 247.020  | 0.520               |           |


Tabella 1: numerazione tombini idraulici

Per la realizzazione dei summenzionati tombini si rende necessaria la relazizzazioni di muri in uscita con sezione ad "U" secondo le caratteristiche geomentriche riportate nella seguente tabella:



| Opera 🐷 | Pk<br>[km] • | Sezioni   | Dimensioni<br>axbxc [m] | h_in + | h_Ou + | (x sviluppati) | spessore<br>paramen<br>to muro<br>ad U | spessore<br>soletta<br>muro ad<br>U | H max esterna<br>(Per tipologici<br>pari altezza<br>totale tombino) |
|---------|--------------|-----------|-------------------------|--------|--------|----------------|----------------------------------------|-------------------------------------|---------------------------------------------------------------------|
| N01     | 28+441       | Scatolare | 2.00x1.50x0.4           | 154.07 | 153.90 | tipo           | 0.3                                    | 0.3                                 | 2.3                                                                 |
| NO2     | 28+862       | Scatolare | 5.00x5.50x0.7           | 150.30 | 150.15 | x              | 0.7                                    | 0.7                                 | 6.9                                                                 |
| N03     | 29+265       | Scatolare | 2.00X2.00x0.5           | 154.53 | 154.45 | tipo           | 0.3                                    | 0.3                                 | 3                                                                   |
| N04     | 29+553       | Circolare | DN1500                  | 156.80 | 156.70 | tipo           | 0.3                                    | 0.3                                 | 2.46                                                                |
| N05     | 29+782       | Scatolare | 7.00x8.53               | 151.40 | 151.26 | ×              | 0.9                                    | 1                                   | 10.53                                                               |
| IN06    | 30+708       | Scatolare | 7.00x2.50               | 162.30 | 162.09 | non modificato |                                        | *                                   |                                                                     |
| N07     | 30+870       | Scatolare | 2.50X1.20x0.4           | 163.85 | 163.75 | tipo           | 0.3                                    | 0.3                                 | 2                                                                   |
| IN09    | 31+620       | Scatolare | 2.00x2.00x0.5           | 172.25 | 172.00 | tipo           | 0.3                                    | 0.3                                 | 3                                                                   |
| N11     | 32+272       | Scatolare | 2.00x1.50x0.4           | 182.55 | 182.50 | tipo           | 0.3                                    | 0.3                                 | 2.3                                                                 |
| IN12    | 32+685       | Scatolare | 4.00x2.00x0.5           | 185.20 | 184.65 | tipo           | 0.3                                    | 0.3                                 | 3                                                                   |
| N13     | 33+934       | Scatolare | 6.00X6.80               | 194.20 | 194.10 | ×              | 0.9                                    | 1                                   | 8.8                                                                 |
| N14     | 34+545       | Scatolare | 2.00x2.00x0.5           | 208.67 | 208.50 | tipo           | 0.3                                    | 0.3                                 | 3                                                                   |
| N15     | 34+758       | Scatolare | 3.00x2.00x0.5           | 209.25 | 209.00 | x              | 0.3                                    | 0.3                                 | 2.8                                                                 |
| N16     | 35+009       | Circolare | DN1500                  | 215.68 | 215.50 | tipo           | 0.3                                    | 0.3                                 | 2.46                                                                |
| IN17    | 35+507       | Scatolare | 2.00x2.00x0.5           | 223.18 | 223.05 | tipo           | 0.3                                    | 0.3                                 | 3                                                                   |
| N18     | 35+780       | Scatolare | 2.00x1.50x0.4           | 226.33 | 226.28 | tipo           | 0.3                                    | 0.3                                 | 2.3                                                                 |
| N19     | 36+016       | Scatolare | 2.00X2.00x0.5           | 226.47 | 226.05 | ×              | 0.3                                    | 0.3                                 | 4 (2.8)                                                             |
| IN20    | 36+243       | Scatolare | 2.00X2.00x0.5           | 228.20 | 228.00 | tipo           | 0.3                                    | 0.3                                 | 3                                                                   |
| N21     | 36+436       | Scatolare | 3.00x3.00x0.5           | 229.55 | 229.40 | ×              | 0.5                                    | 0.3                                 | 4 (2.55)                                                            |
| N22     | 36+614       | Scatolare | 3.00x3.00x0.5           | 231.55 | 231.37 | ×              | 0.3                                    | 0.3                                 | 4 (2.8)                                                             |
| N23     | 36+835       | Scatolare | 3.00X4.00x0.5           | 233.53 | 233.32 | tipo           | 0.3                                    | 0.3                                 | 5                                                                   |
| N24     | 37+054       | Scatolare | 3.00x3.00x0.5           | 237.05 | 236.71 | tipo           | 0.3                                    | 0.3                                 | 4                                                                   |
| N25     | 37+767       | Scatolare | 3.00x3.00x0.5           | 241.95 | 241.55 | tipo           | 0.3                                    | 0.3                                 | 4                                                                   |
| IN26    | 38+627       | Scatolare | 2.00X2.00x0.5           | 245.00 | 244.60 | ×              | 0.3                                    | 0.3                                 | 1.8                                                                 |
| IN27    | 38+705       | Scatolare | 2.00X2.00x0.5           | 245.00 | 244.50 | х              | 0.3                                    | 0.3                                 | 3.9 (2.26)                                                          |
| N28     | 39+015       | Scatolare | 2.00X2.00x0.5           | 245.10 | 244.95 | x              | 0.3                                    | 0.3                                 | 5 (2.4)                                                             |

Nella presente relazione sono illustrati i calcoli e le verifiche di una tipologia di sezione ad "U".



| SITALFERR GRUPPO FERROVIE DELLO STATO ITALIANE  | RADDOPP<br>DEFINITIV |         | ANO - VIO | GNA DI VALI | Æ - P | ROGETTO |
|-------------------------------------------------|----------------------|---------|-----------|-------------|-------|---------|
| Relazione di calcolo Muri ad U – Spessore 30 cm | COMMESSA             | LOTTO   | CODIFICA  | DOCUMENTO   | REV.  | FOGLIO  |
| Thurstone in tunoro triuni un O Spessore 30 cm  | NR1J                 | 01 D 29 | CL        | IN0000 009  | A     | 6 di 57 |

### 2 NORMATIVA DI RIFERIMENTO

Le principali Normative nazionali ed internazionali vigenti alla data di redazione del presente documento e prese a riferimento sono le seguenti:

- ✓ Ministero delle Infrastrutture, DM 17 gennaio 2018, «Aggiornamento delle norme tecniche per le costruzioni»
- ✓ Ministero delle Infrastrutture e Trasporti, circolare 21 gennaio 2019, n. 7 C.S.LL.PP., «Istruzioni per l'applicazione delle Nuove norme tecniche per le costruzioni di cui al decreto ministeriale 17 gennaio 2018»
- ✓ Istruzione RFI DTC SI PS MA IFS 001 B Manuale di Progettazione delle Opere Civili Parte II Sezione 2. Ponti e strutture, e relativi allegati (A, B, C)
- ✓ Istruzione RFI DTC SI CS MA IFS 001 B Manuale di Progettazione delle Opere Civili Parte II Sezione 3. Corpo stradale, e relativi allegati (A, B, C, D, E)
- ✓ Ministero delle Infrastrutture, DM 17 gennaio 2018, «Aggiornamento delle norme tecniche per le costruzioni»
- ✓ Eurocodice 1 Azioni sulle strutture, Parte 1-4: Azioni in generale Azioni del vento (UNI EN 1991-1-4)
- Regolamento (UE) N.1299/2014 della Commissione del 18 Novembre 2014 relativo alle specifiche tecniche di interoperabilità per il sottosistema "infrastruttura" del sistema ferroviario dell'Unione europea
- ✓ UNI EN 1998-1:2013 Strutture in zone sismiche parte 1: generale ed edifici.
- ✓ UNI EN 1998-2:2011 Strutture in zone sismiche –parte 2: ponti.
- ✓ UNI EN 1992-1-1: EUROCODICE 2 Progettazione delle strutture di calcestruzzo Parte 1-1: Regole generali e regole per gli edifici
- ✓ DECRETO 31 luglio 2012 Approvazione delle Appendici nazionali recanti i parametri tecnici per l'applicazione degli Eurocodici.

| STALFERR GRUPPO FERROVIE DELLO STATO ITALIANE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | RADDOPP<br>DEFINITI |         | ANO - VIO | GNA DI VALI | .Е - Р | ROGETTO |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------|---------|-----------|-------------|--------|---------|
| Relazione di calcolo Muri ad U – Spessore 30 cm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | COMMESSA            | LOTTO   | CODIFICA  | DOCUMENTO   | REV.   | FOGLIO  |
| The state of the s | NR1J                | 01 D 29 | CL        | IN0000 009  | A      | 7 di 57 |

## 3 DOCUMENTI DI RIFERIMENTO

Vengono presi a riferimento tutti gli elaborati grafici progettuali di pertinenza.

| TOMBINI IDRAULICI                                                              |       |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |
|--------------------------------------------------------------------------------|-------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Tipologico tombino circolare ferroviario                                       | Varie | N | R | 1 | J | 0 | 1 | D | 2 | 9 | В | Z | I | D | 0 | 0 | 0 | 2 | 0 | 0 | 7 |
| Tipologico tombino scatolare ferroviario                                       | Varie | N | R | 1 | J | 0 | 1 | D | 2 | 9 | В | Z | I | D | 0 | 0 | 0 | 2 | 0 | 0 | 8 |
| Tipologico tombino circolare stradale                                          | Varie | N | R | 1 | J | 0 | 1 | D | 2 | 9 | В | Z | I | D | 0 | 0 | 0 | 2 | 0 | 0 | 9 |
| Tombini ferroviari - Fasi costruttive 1/2 - Tombini<br>con ricoprimento < 2.5m | Varie | N | R | 1 | J | 0 | 1 | D | 2 | 9 | В | Z | I | N | 0 | 0 | 0 | 0 | 0 | 0 | 1 |
| Relazione di calcolo tombino circolare ferroviario                             | -     | N | R | 1 | J | 0 | 1 | D | 2 | 9 | С | L | I | N | 0 | 0 | 0 | 0 | 0 | 0 | 3 |
| Relazione di calcolo tombino scatolare ferroviario -<br>Opere definitive       | -     | N | R | 1 | J | 0 | 1 | D | 2 | 9 | С | L | I | N | 0 | 0 | 0 | 0 | 0 | 0 | 4 |

| SITALFERR GRUPPO FERROVIE DELLO STATO ITALIANE  | RADDOPP<br>DEFINITI |         | ANO - VIO | GNA DI VALL | Æ - P | ROGETTO |
|-------------------------------------------------|---------------------|---------|-----------|-------------|-------|---------|
| Relazione di calcolo Muri ad U – Spessore 30 cm | COMMESSA            | LOTTO   | CODIFICA  | DOCUMENTO   | REV.  | FOGLIO  |
|                                                 | NR1J                | 01 D 29 | CL        | IN0000 009  | A     | 8 di 57 |

## 4 UNITÀ DI MISURA E SIMBOLOGIA

Si utilizza il Sistema Internazionale (SI):

## unità di misura principali

N (Newton) unità di forza

m (metro) unità di lunghezza

kg (kilogrammo-massa) unità di massa

s (secondo) unità di tempo

unità di misura derivate

kN (kiloNewton) 10<sup>3</sup> N

MN (megaNewton) 106 N

kgf (kilogrammo-forza) 1 kgf = 9.81 N

**cm** (centimetro) 10-2 m

mm (millimetro) 10-3 m

**Pa** (Pascal)  $1 \text{ N/m}^2$ 

**kPa** (kiloPascal)  $10^3 \text{ N/m}^2$ 

**MPa** (megaPascal)  $10^6 \,\mathrm{N/m^2}$ 

N/m³ (peso specifico)

**g** (accelerazione di gravità) ~9.81 m/s²

### corrispondenze notevoli

 $1 \text{ MPa} = 1 \text{ N/mm}^2$ 

 $1 \text{ MPa} \sim 10 \text{ kgf/cm}^2$ 

 $1 \text{ kN/m}^3 \sim 100 \text{ kgf/m}^3$ 

Si utilizzano i seguenti principali simboli con le relative unità di misura normalmente adottate:

 $\gamma$  (gamma) peso dell'unità di volume (kN/m³)

 $\sigma$  (sigma) tensione normale (N/mm<sup>2</sup>)

 $\tau$  (tau) tensione tangenziale (N/mm<sup>2</sup>)

ε (epsilon) deformazione (m/m - adimensionale)

 $\phi$  (fi) angolo di resistenza (° sessagesimali)

| STALFERR GRUPPO FERROVIE DELLO STATO ITALIANE   | RADDOPPI<br>DEFINITIV |                  | ANO - VIO   | GNA DI VALI          | .Е - Р | ROGETTO           |
|-------------------------------------------------|-----------------------|------------------|-------------|----------------------|--------|-------------------|
| Relazione di calcolo Muri ad U – Spessore 30 cm | COMMESSA<br>NR1J      | LOTTO<br>01 D 29 | CODIFICA CL | DOCUMENTO IN0000 009 | REV.   | FOGLIO<br>9 di 57 |

### 5 CARATTERISTICHE DEI MATERIALI

## 5.1 Dati generali

L'opera è in calcestruzzo cementizio armato.

Le caratteristiche dei materiali previsti dal progetto sono le seguenti:

- Calcestruzzo
  - Si prevede solo l'impiego di calcestruzzo gettato in opera.
- Armature lente in barre
  - Si utilizza acciaio tipo B450C.

#### 5.2 Caratteristiche tecniche

Le caratteristiche dei materiali sono ricavate con riferimento alle indicazioni contenute nei capitoli 4 e 11 del D.M. 17 gennaio 2018. Nelle tabelle che seguono sono indicate le principali caratteristiche e i riferimenti dei paragrafi del D.M. citato.

#### CALCESTRUZZO STRUTTURE C30/37

| $R_{ck}=$                            | 37    | Mpa         | Valore caratteristico della resistenza a compressione cubica del calcestruzzo a 28 gg         |
|--------------------------------------|-------|-------------|-----------------------------------------------------------------------------------------------|
| $f_{ck}=$                            | 30    | Mpa         | Valore caratteristico della resistenza a compressione cilindrica del calcestruzzo a 28 gg     |
| $f_{cm}=$                            | 38    | Mpa         | Valore medio della resistenza a compressione cilindrica del calcestruzzo                      |
| $\mathbf{f}_{\text{ctm}} =$          | 2.9   | Mpa         | Valore medio della resistenza a trazione assiale del calcestruzzo                             |
| $f_{cfm} =$                          | 3.48  | _           | Valore medio della resistenza a trazione per flessione del calcestruzzo                       |
| $f_{ctk,0,05} =$                     | 2.0   | Mpa         | Valore caratteristico della resistenza a trazione assiale del calcestruzzo (frattile del 5%)  |
| $f_{ctk,0,95} =$                     | 3.8   | Mpa         | Valore caratteristico della resistenza a trazione assiale del calcestruzzo (frattile del 95%) |
| $E_{cm,t0}=$                         | 33000 | Mpa         | Modulo di elasticità secante del calcestruzzo                                                 |
| $\mathbf{E}_{\mathrm{cm,t}\infty} =$ |       | Mpa         | Modulo di elasticità secante del calcestruzzo atempo infinito                                 |
| $\varepsilon_{c1}$ =                 | 2.2   | <b>%</b> 0  | Deformazione di contrazione del calcestruzzo alla tensione di picco                           |
| <b>ε</b> <sub>cu1</sub> =            | 3.5   | <b>%</b> 00 | Deformazione ultima di contrazione del calcestruzzo                                           |
| $\epsilon_{c2}$ =                    | 2.0   | <b>%</b> 0  | Deformazione di contrazione del calcestruzzo alla tensione di picco                           |
| ε <sub>cu2</sub> =                   | 3.5   | <b>%</b> 00 | Deformazione ultima di contrazione del calcestruzzo                                           |
| n=                                   | 2.00  |             |                                                                                               |
| ε <sub>c3</sub> =                    | 1.8   | <b>%</b> 00 | Deformazione di contrazione del calcestruzzo alla tensione di picco                           |
| ε <sub>cu3</sub> =                   | 3.5   | <b>%</b> 0  | Deformazione ultima di contrazione del calcestruzzo                                           |

Classe di esposizione XA1



| Acciaio per ca     |        |     |                                                 |
|--------------------|--------|-----|-------------------------------------------------|
| TIPO               | B450 C | Mpa | Tipo di acciaio                                 |
| $f_{yk}$ =         | 450    | Mpa | Tensione Caratteristica di Snervamento          |
| $f_{tk}$ =         | 540    | Mpa | Tensione Caratteristica di Rottura              |
| Verifiche agli SLU |        |     |                                                 |
| $\gamma_{\rm S} =$ | 1.15   |     | Coefficiente parziale di sicurezza dell'acciaio |
| $f_{yd}$ =         | 391.30 | Mpa | Resistenza di calcolo a Trazione dell'Acciaio   |
| Verifiche agli SLE |        |     |                                                 |
| $\sigma_8$ =       | 360    | Mpa | Massima tensione nel l'acciaio in Esercizio     |

| ITALFERR GRUPPO FERROVIE DELLO STATO ITALIANE   | RADDOPP<br>DEFINITI |                  | ANO - VIO   | GNA DI VALI | Æ - P | ROGETTO |
|-------------------------------------------------|---------------------|------------------|-------------|-------------|-------|---------|
| Relazione di calcolo Muri ad U – Spessore 30 cm | COMMESSA  NR1j      | LOTTO<br>01 D 29 | CODIFICA CL | DOCUMENTO   | REV.  | FOGLIO  |

### 6 CARATTERIZZAZIONE GEOTECNICA

## 6.1 Criteri di progettazione tipologica

In accordo alla modellazione geotecnica effettuata lungo la tratta ferroviaria oggetto di studio, il terreno di fondazione su cui poggiano i tombini è classificabile come:

- Limo sabbioso debolmente argilloso (modelli geotecnici 1, 4 e 7);
- Depositi vulcanici debolmente addensato con inclusi litici eterogenei (modello geotecnico 2);
- limo sabbioso (modelli geotecnici 3 e 9);
- Sabbia limosa/limo sabbioso (modelli geotecnici 5 e 6);
- Limo argilloso mediamente addensato con sabbia (modello geotecnico 8).

Le unità geotecniche succitate presentano parametri molto simili per cui, nei calcoli strutturali e geotecnici, sarà possibile far riferimento ad una singola unità di terreno contraddistinta dai valori più sfavorevoli dei parametri geotecnici.

Nella seguente tabella sono riportati i parametri di tale unità e del ricoprimento (rilevato ferroviario):

| Strato | Descrizione                | Peso di<br>volume γ<br>[kN/m3] | Angolo di<br>resistenza al<br>taglio <b>¢'</b> (°) | C' (kPa) | Cu (kPa) | Modulo elastico<br>Eop (MPa) | Modulo<br>Eu (MPa) |
|--------|----------------------------|--------------------------------|----------------------------------------------------|----------|----------|------------------------------|--------------------|
| 1      | Ricoprimento               | 20.00                          | 38.00                                              | 0.00     | 0.00     | -                            | -                  |
| 2      | Fondazione - Limo sabbioso | 16.00                          | 26.00                                              | 0.00     | 50.00    | 15.00                        | 45.00              |

| SITALFERR GRUPPO FERROVIE DELLO STATO ITALIANE  | RADDOPP<br>DEFINITI |         | ANO - VIO | GNA DI VALI | .Е - Р | ROGETTO  |
|-------------------------------------------------|---------------------|---------|-----------|-------------|--------|----------|
| Relazione di calcolo Muri ad U – Spessore 30 cm | COMMESSA            | LOTTO   | CODIFICA  | DOCUMENTO   | REV.   | FOGLIO   |
|                                                 | NR1J                | 01 D 29 | CL        | IN0000 009  | A      | 12 di 57 |

### 7 CRITERI PROGETTUALI

#### 7.1 Vita Nominale

La vita nominale di progetto VN di un'opera è convenzionalmente definita come il numero di anni nel quale è previsto che l'opera, purché soggetta alla necessaria manutenzione, mantenga specifici livelli prestazionali. I valori minimi di VN da adottare per i diversi tipi di costruzione sono riportati nella Tab. 2.4.I.

| TIPO DI COSTRUZIONE (1)                                                                                                                       | Vita Nominale V <sub>N</sub> [Anni] (1) |
|-----------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------|
| OPERE NUOVE SU INFRASTRUTTURE FERROVIARIE PROGETTATE CON LE<br>NORME VIGENTI PRIMA DEL DM 14/01/2008 A VELOCITÀ CONVENZIONALE<br>(V<250 Km/h) | 50                                      |
| ALTRE OPERE NUOVE A VELOCITÀ V<250 Km/h                                                                                                       | 75                                      |
| ALTRE OPERE NUOVE A VELOCITÀ V ≥ 250 km/h                                                                                                     | 100                                     |
| OPERE DI GRANDI DIMENSIONI: PONTI E VIADOTTI CON CAMPATE DI LUCE<br>MAGGIORE DI 150 m                                                         | ≥ 100 (2)                               |

<sup>(1) -</sup> La stessa VN si applica anche ad apparecchi di appoggio, coprigiunti e impermeabilizzazione delle stesse opere.

Tab. 2.5.1.1.1-1 — Vita nominale delle infrastrutture ferroviarie

Nel presente caso l'opera viene inserita nella seguente tipologia di costruzione:

2) Costruzioni con livelli di prestazioni ordinari, per cui si considera vita nominale 75 anni.

#### 7.2 Classe d'uso

Con riferimento alle conseguenze di una interruzione di operatività o di un eventuale collasso, l'opera appartiene alla seguente classe d'uso:

Classe II: Costruzioni il cui uso preveda normali affollamenti, senza contenuti pericolosi per l'ambiente e senza funzioni pubbliche e sociali essenziali. Industrie con attività non pericolose per l'ambiente. Ponti, opere infrastrutturali, reti viarie non ricadenti in Classe d'uso III o in Classe d'uso IV, reti ferroviarie la cui interruzione non provochi situazioni di emergenza. Dighe il cui collasso non provochi conseguenze rilevanti.

<sup>(2) -</sup> Da definirsi per il singolo progetto a cura di FERROVIE.



Tab. 2.4.II – Valori del coefficiente d'uso Cu

| CLASSE D'USO                | I   | II  | III | IV  |
|-----------------------------|-----|-----|-----|-----|
| COEFFICIENTE C <sub>U</sub> | 0,7 | 1,0 | 1,5 | 2,0 |

Il coefficiente d'uso è pari a: 1.00.

#### 7.3 Periodo di riferimento per l'azione sismica

Le azioni sismiche sulle costruzioni vengono valutate in relazione ad un periodo di riferimento VR che si ricava, per ciascun tipo di costruzione, moltiplicandone la vita nominale di progetto VN per il coefficiente d'uso CU. Pertanto:

$$V_R = 75 \times 1.0 = 75 \text{ anni}$$

Il valore di probabilità di superamento del periodo di riferimento  $P_{VR}$ , cui riferirsi per individuare l'azione sismica agente è:

$$P_{VR}(SLV) = 10\%$$

Il periodo di ritorno dell'azione sismica  $T_R = 712$ 

## 7.4 Valutazione dell'azione sismica

Le opere in oggetto sono progettate per una vita nominale  $V_N = 75$  anni ed una classe d'uso II a cui corrisponde un coefficiente d'uso  $C_U = 1.0$ .

L'azione sismica di progetto è definita per lo Stato Limite di Salvaguardia della Vita (SLV). Il periodo di ritorno di quest'ultima - in funzione della vita utile, della classe d'uso, del tipo di costruzione e dello stato limite di riferimento (prima definiti) - è di 712 anni.

Dato il valore del periodo di ritorno suddetto, tramite la mappatura messa a disposizione in rete dall'Istituto Nazionale di Geofisica e Vulcanologia (INGV), è possibile definire i valori di a<sub>g</sub>, F<sub>0</sub>, T\*<sub>c</sub>.

 $a_g \rightarrow$  accelerazione massima al sito;

 $F_0 \rightarrow \text{valore massimo del fattore di amplificazione dello spettro in accelerazione orizzontale;}$ 

 $T^*_c \rightarrow$  periodo di inizio del tratto a velocità costante dello spettro in accelerazione orizzontale;



 $S \rightarrow$  coefficiente che comprende l'effetto dell'amplificazione stratigrafica (Ss) e dell'amplificazione topografica (St).

Il tracciato oggetto di studio ha una lunghezza di circa 12 km. Dal punto di vista della caratterizzazione sismica è stato suddiviso in due tratte:

- Tratto 1: dalla pk 27 +769 alla pk 34+500
- Tratto 2: dalla pk 34+500 alla pk 39+497

All'interno dei tratti sono state individuate tre categorie di sottosuolo:

- Categoria di sottosuolo B a cui corrisponde un valore di S<sub>S</sub> pari a 1.20
- Categoria di sottosuolo C a cui corrisponde un valore di S<sub>s</sub> pari a 1.50
- Categoria di sottosuolo E a cui corrisponde un valore di S<sub>S</sub> pari a 1.60

Per tutti i tipi tombino, a favore di sicurezza si decide di considerare la categoria di sottosuolo la quella E.

In accordo con quanto riportato nella Relazione Geotecnica Generale che specifica la caratterizzazione sismica di tutta la linea, il valore dell'accelerazione a<sub>g</sub> risulta essere molto simile lungo tutta la tratta per cui, a vantaggio di sicurezza si sceglie di considerare nei modelli di calcolo il valore maggiore valutato in corrispondenza del comune di Anguillara Sabazia. E che risulta essere pari a:

$$a_g = 0.074 g$$

Per la categoria di sottosuolo la categoria E a cui è associato un valore di S<sub>s</sub> pari a 1.60.

Utilizzando il foglio di calcolo del ministero si riporta di seguito la procedura per la valutazione dei parametri sismici che come precedentemente spiegato verrà considerata in corrispondenza del comune di Anguillara Sabazia per una categoria di sottosuolo E.



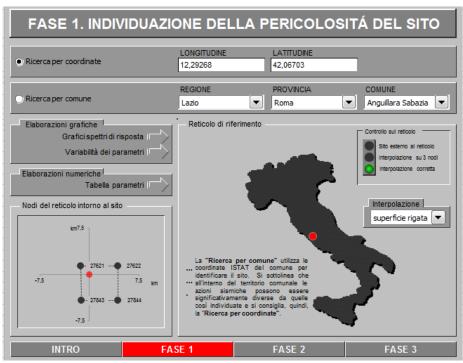



Figura 1: Fase 1, individuazione della pericolosità del sito

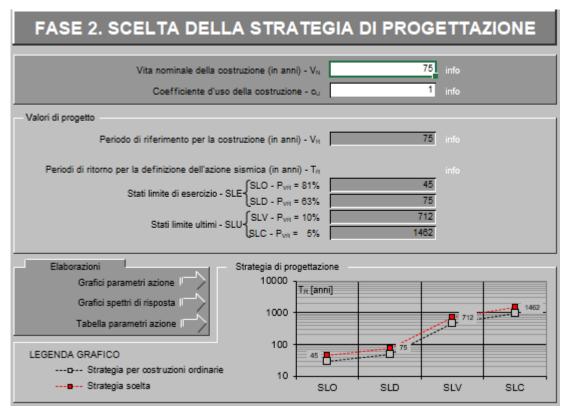



Figura 2: Fase 2, scelta della strategia di progettazione

| SLATO  | T <sub>R</sub> | a <sub>g</sub> | F。    | T <sub>c</sub> * |
|--------|----------------|----------------|-------|------------------|
| LIMITE | [anni]         | [g]            | [-]   | [s]              |
| SLO    | 45             | 0,038          | 2,654 | 0,252            |
| SLD    | 75             | 0,044          | 2,669 | 0,276            |
| SLV    | 712            | 0,074          | 2,941 | 0,351            |
| SLC    | 1462           | 0,086          | 3,020 | 0,384            |

Figura 3: Valori dei parametri ag, F0, TC\*per i periodi di ritorno associati a ciascun stato limite

| STALFERR GRUPPO FERROVIE DELLO STATO ITALIANE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | RADDOPP<br>DEFINITI |         | ANO - VIO | GNA DI VALI | .Е - Р | ROGETTO  |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------|---------|-----------|-------------|--------|----------|
| Relazione di calcolo Muri ad U – Spessore 30 cm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | COMMESSA            | LOTTO   | CODIFICA  | DOCUMENTO   | REV.   | FOGLIO   |
| The state of the s | NR1J                | 01 D 29 | CL        | IN0000 009  | A      | 17 di 57 |

### Parametri e punti dello spettro di risposta orizzontale per lo stato \$LV

| STATO LIMITE                                               | nti<br>SLV                                                                                                              |          | llo spettro<br>T [s] | Se [g] |
|------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------|----------|----------------------|--------|
| a <sub>o</sub>                                             | 0,074 g                                                                                                                 |          | 0.000                | 0,119  |
| F <sub>o</sub>                                             | 2,941                                                                                                                   | Tв◀      | 0,205                | 0,350  |
| T <sub>C</sub> .                                           | 0,351 s                                                                                                                 | Tc◀      | 0,814                | 0,350  |
| Ss                                                         | 1,600                                                                                                                   |          | 0,675                | 0,319  |
| C <sub>c</sub>                                             | 1,747                                                                                                                   |          | 0,738                | 0,313  |
| S <sub>T</sub>                                             | 1,000                                                                                                                   |          | 0,797                | 0,270  |
| a                                                          | 1,000                                                                                                                   |          | 0,859                | 0.250  |
| 1                                                          |                                                                                                                         |          | 0,920                | 0,234  |
|                                                            |                                                                                                                         |          | 0,981                | 0,219  |
| Parametri dipendent                                        | i                                                                                                                       | Г        | 1,042                | 0,206  |
| S                                                          | 1,600                                                                                                                   |          | 1,103                | 0.195  |
| η                                                          | 1,000                                                                                                                   |          | 1,164                | 0,185  |
| T <sub>R</sub>                                             | 0,205 s                                                                                                                 |          | 1,225                | 0,176  |
| T <sub>C</sub>                                             | 0,614 s                                                                                                                 |          | 1,286                | 0,167  |
| T <sub>D</sub>                                             | 1,898 s                                                                                                                 |          | 1,348                | 0,160  |
|                                                            |                                                                                                                         |          | 1,409                | 0,153  |
|                                                            |                                                                                                                         | Γ        | 1,470                | 0,148  |
| espressioni dei para                                       | metri dipendenti                                                                                                        | Γ        | 1,531                | 0,140  |
| •                                                          | -                                                                                                                       | Γ        | 1,592                | 0,135  |
| $S = S_S \cdot S_T$                                        | (NTC-08 Eq. 3.2.5)                                                                                                      |          | 1,653                | 0,130  |
|                                                            |                                                                                                                         |          | 1,714                | 0,125  |
| $\eta = \sqrt{10/(5+\xi)} \ge 0,55; \ \eta =$              | 1/q (NTC-08 Eq. 3.2.6; §. 3.2.3                                                                                         | .5)      | 1,775                | 0,121  |
|                                                            |                                                                                                                         |          | 1,837                | 0,117  |
| $T_B = T_C/3$                                              | (NTC-07 Eq. 3.2.8)                                                                                                      | To◀      | 1,898                | 0,113  |
| -                                                          |                                                                                                                         |          | 1,998                | 0,102  |
| $\mathbf{T}_{C} = \mathbf{C}_{C} \cdot \mathbf{T}_{C}^{t}$ | (NTC-07 Eq. 3.2.7)                                                                                                      |          | 2,098                | 0,093  |
|                                                            |                                                                                                                         |          | 2,198                | 0,084  |
| $T_D = 4.0 \cdot a_x / g + 1.6$                            | (NTC-07 Eq. 3.2.9)                                                                                                      | L        | 2,298                | 0,077  |
|                                                            |                                                                                                                         | L        | 2,398                | 0,071  |
|                                                            |                                                                                                                         |          | 2,498                | 0,065  |
| spressioni dello sp                                        | ettro di risposta (NTC-08 Eq.                                                                                           | 3.2.4)   | 2,599                | 0,080  |
| 1                                                          | Γ <b>-</b>                                                                                                              | $\vdash$ | 2,699                | 0,056  |
| $0 \le T < T_0 \mid S(T) = a \le S$                        | $i \cdot \eta \cdot F_o \cdot \left[ \frac{T}{T_B} + \frac{1}{\eta \cdot F_o} \left( 1 - \frac{T}{T_B} \right) \right]$ | <br>     | 2,799                | 0,052  |
|                                                            | T <sub>B</sub> η·F <sub>o</sub> T <sub>B</sub>                                                                          | _ ⊢      | 2,899                | 0,049  |
| T < T - T   C < T                                          |                                                                                                                         | - ⊢      | 2,999                | 0,045  |
| $T_B \le T < T_C \mid S_c(T) = a_g$                        | 5·η·F <sub>o</sub>                                                                                                      | _ ⊢      | 3,099                | 0,042  |
|                                                            | (T)                                                                                                                     | ⊢        | 3,199                | 0,040  |
| $T_C \le T < T_D$ $S_c(T) = a_g \cdot S$                   | S-η-F <sub>o</sub> ( <del>*</del>                                                                                       | ⊢        | 3,299                | 0,037  |
|                                                            | ` /                                                                                                                     | ⊢        | 3,399                | 0,035  |
| $S_c(T) = a_g$                                             | S.n.F. $\left(\frac{T_c T_D}{T_c}\right)$                                                                               | ⊢        | 3,499                | 0,033  |
| D = 1 D <sub>c</sub> (1)-a <sub>g</sub>                    | T2                                                                                                                      | ⊢        | 3,600                | 0,031  |
|                                                            |                                                                                                                         |          | 3,700                | 0,030  |
|                                                            | per le verifiche agli Stati Limite Ul                                                                                   |          | 3,800                | 0,028  |
| •                                                          | ello spettro elastico S <sub>v</sub> (T) sostituen<br>di struttura. (NTC-08 § 3.2.3.5)                                  | μο η     | 3,900                | 0,027  |
| zon 174, dove q e il fattore                               | ui siiuttula. (N10-00 g 3.2.3.3)                                                                                        | 1        | 4,000                | 0,026  |

La verifica dell'idoneità del programma, l'utilizzo dei risultati da esso ottenuti sono onere e responsabilità esclusiva dell'utente. Il Consiglio Superiore dei Lavori Pubblici non potrà essere ritenuto responsabile dei danni risultanti dall'utilizzo dell

Figura 4: Parametri e punti dello spettro di risposta orizzontale per lo SLV

I suddetti parametri sono calcolati come media pesata dei valori assunti nei quattro vertici della maglia elementare del reticolo di riferimento che contiene il punto caratterizzante la posizione dell'opera

| ITALFERR GRUPPO FERROVIE DELLO STATO ITALIANE   | RADDOPPI<br>DEFINITIV |         | ANO - VIO | GNA DI VALI | .Е - Р | ROGETTO  |
|-------------------------------------------------|-----------------------|---------|-----------|-------------|--------|----------|
| Relazione di calcolo Muri ad U – Spessore 30 cm | COMMESSA              | LOTTO   | CODIFICA  | DOCUMENTO   | REV.   | FOGLIO   |
|                                                 | NR1J                  | 01 D 29 | CL        | IN0000 009  | A      | 18 di 57 |

utilizzando come pesi gli inversi delle distanze tra il punto in questione ed i quattro vertici. Si assume un fattore di struttura q=1.

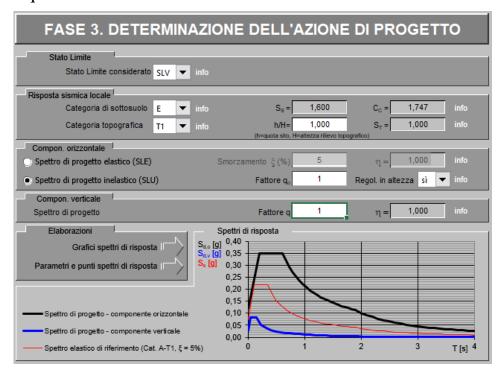



Figura 5: Determinazione dell'azione di progetto

In condizione sismica si considera un incremento della spinta del terreno rispetto alla condizione statica in esercizio. La sovraspinta sismica è calcolata con la teoria di **Wood**, risultando in un valore di spinta al metro, distribuito uniformemente sull'intera altezza del piedritto, da applicare ad una quota pari ad H/2.

$$\Delta P_d = a_{\text{max (\%g)}} \gamma H^2$$

Nelle analisi sismiche si assume il convoglio di progetto relativo ai carri con assi da 250 kN ed interasse costante ripartito al livello dell'asse della soletta superiore e incrementato del coefficiente di adattamento e del coefficiente dinamico.

Non si considerano associate al convoglio azioni di frenatura in quanto l'azione sismica è in direzione ortogonale alla canna del sottopasso. Si considera quindi il carico **LM71** con un **coefficiente di partecipazione 0.20.** 



### 8 COMBINAZIONI DI CARICO

Ai fini delle verifiche degli stati limite si è fatto riferimento alle seguenti combinazioni delle azioni.

Combinazione fondamentale, generalmente impiegata per gli stati limite ultimi (SLU):

$$\gamma_{G1} \cdot G_1 + \gamma_{G2} \cdot G_2 + \gamma_P \cdot P + \gamma_{O1} \cdot Q_{k1} + \gamma_{O2} \cdot \psi_{O2} \cdot Q_{k2} + \gamma_{O3} \cdot \psi_{O3} \cdot Q_{k3} + \dots$$

Combinazione caratteristica (rara), generalmente impiegata per gli stati limite di esercizio (SLE) irreversibili:

$$G_1 + G_2 + P + Q_{k1} + \psi_{02} \cdot Q_{k2} + \psi_{03} \cdot Q_{k3} + \dots$$

Combinazione frequente, generalmente impiegata per gli stati limite di esercizio (SLE) reversibili, utilizzata nella verifica a Fessurazione:

$$G_1 + G_2 + P + \psi_{11} \cdot Q_{k1} + \psi_{22} \cdot Q_{k2} + \psi_{23} \cdot Q_{k3} + \dots$$

Combinazione quasi permanente, generalmente impiegata per gli stati limite di esercizio (SLE) a lungo termine;

$$G_1 + G_2 + P + \psi_{21} \cdot Q_{k1} + \psi_{22} \cdot Q_{k2} + \psi_{23} \cdot Q_{k3} + \dots$$

Combinazione sismica, impiegata per gli stati limite ultimi e di esercizio connessi all'azione sismica E:

$$E + G_1 + G_2 + P + \psi_{21} \cdot Q_{k1} + \psi_{22} \cdot Q_{k2} + \dots$$

dove:

$$E = \pm 1.00 \text{ x } E_{Y} \pm 0.3 \text{ x } E_{Z}$$

avendo indicato con E<sub>Y</sub> e E<sub>Z</sub> rispettivamente le componenti orizzontale e verticale dell'azione sismica.

I coefficienti di amplificazione dei carichi  $\gamma$  e i coefficienti di combinazione  $\psi$  sono riportati nelle tabelle seguenti.

In particolare nel calcolo della struttura si è fatto riferimento alla combinazione A1 STR (Approccio 1 – Combinazione 1) per le verifiche strutturali ed A1 GEO (Approccio 1 – Combinazione 2) per le verifiche geotecniche.

**Tabella 5.2.V** – Coefficienti parziali di sicurezza per le combinazioni di carico agli SLU, eccezionali e sismica (da DM 17/01/2018)



|                                                      |                           | Coefficiente    | EQU <sup>(1)</sup>          | A1<br>STR                   | A2<br>GEO    | Combinazione<br>eccezionale | Combinazione<br>Sismica     |
|------------------------------------------------------|---------------------------|-----------------|-----------------------------|-----------------------------|--------------|-----------------------------|-----------------------------|
| Carichi permanenti                                   | favorevoli<br>sfavorevoli | γ <sub>G1</sub> | 0,90<br>1,10                | 1,00<br>1,35                | 1,00<br>1,00 | 1,00<br>1,00                | 1,00<br>1,00                |
| Carichi permanenti non<br>strutturali <sup>(2)</sup> | favorevoli<br>sfavorevoli | γ <sub>G2</sub> | 0,00<br>1,50                | 0,00<br>1,50                | 0,00<br>1,30 | 1,00<br>1,00                | 1,00<br>1,00                |
| Ballast <sup>(3)</sup>                               | favorevoli<br>sfavorevoli | γв              | 0,90<br>1,50                | 1,00<br>1,50                | 1,00<br>1,30 | 1,00<br>1,00                | 1,00<br>1,00                |
| Carichi variabili da<br>traffico <sup>(4)</sup>      | favorevoli<br>sfavorevoli | γQ              | 0,00<br>1,45                | 0,00<br>1,45                | 0,00<br>1,25 | 0,00<br>0,20 <sup>(5)</sup> | 0,00<br>0,20 <sup>(5)</sup> |
| Carichi variabili                                    | favorevoli<br>sfavorevoli | γQi             | 0,00<br>1,50                | 0,00<br>1,50                | 0,00<br>1,30 | 0,00<br>1,00                | 0,00<br>0,00                |
| Precompressione                                      | favorevole<br>sfavorevole | γP              | 0,90<br>1,00 <sup>(6)</sup> | 1,00<br>1,00 <sup>(7)</sup> | 1,00<br>1,00 | 1,00<br>1,00                | 1,00<br>1,00                |

- (1) Equilibrio che non coinvolga i parametri di deformabilità e resistenza del terreno; altrimenti si applicano i valori di GEO.
- (2) Nel caso in cui i carichi permanenti non strutturali (ad es. carichi permanenti portati) siano compiutamente definiti si potranno adottare gli stessi coefficienti validi per le azioni permanenti.
- (3) Quando si prevedano variazioni significative del carico dovuto al ballast, se ne dovrà tener conto esplicitamente nelle verifiche.
- (4) Le componenti delle azioni da traffico sono introdotte in combinazione considerando uno dei gruppi di carico gr della Tab. 5.2.IV.
- (5) Aliquota di carico da traffico da considerare.
- (6) 1,30 per instabilità in strutture con precompressione esterna
- (7) 1,20 per effetti locali

Tabella 5.2.VI - Coefficienti di combinazione ₩ delle azioni (da DM 17/01/2018)

| Azioni              |                                                            | Ψο                  | Ψ1      | Ψ2   |
|---------------------|------------------------------------------------------------|---------------------|---------|------|
| Azioni<br>singole   | Carico sul rilevato a tergo delle spalle                   | 0,80                | 0,50    | 0,0  |
| da traffico         | Azioni aerodinamiche generate dal transito<br>dei convogli | 0,80                | 0,50    | 0,0  |
|                     | gr <sub>1</sub>                                            | 0,80 <sup>(2)</sup> | 0,80(1) | 0,0  |
| Gruppi di           | gr <sub>2</sub>                                            | 0,80 <sup>(2)</sup> | 0,80    | -    |
| carico              | gr <sub>3</sub>                                            | 0,80 <sup>(2)</sup> | 0,80    | 0,0  |
|                     | gr <sub>4</sub>                                            | 1,00                | 1,00(1) | 0,0  |
| Azioni del<br>vento | F <sub>Wk</sub>                                            | 0,60                | 0,50    | 0,0  |
| Azioni da           | in fase di esecuzione                                      | 0,80                | 0,0     | 0,0  |
| neve                | SLU e SLE                                                  | 0,0                 | 0,0     | 0,0  |
| Azioni<br>termiche  | T <sub>k</sub>                                             | 0,60                | 0,60    | 0,50 |

| GRUPPO FERROVIE DELLO STATO ITALIANE            | RADDOPP<br>DEFINITI |         | ANO - VIO | GNA DI VALI | .Е - Р | ROGETTO  |
|-------------------------------------------------|---------------------|---------|-----------|-------------|--------|----------|
| Relazione di calcolo Muri ad U – Spessore 30 cm | COMMESSA            | LOTTO   | CODIFICA  | DOCUMENTO   | REV.   | FOGLIO   |
| Spessore of the control of the control of the   | NR1J                | 01 D 29 | CL        | IN0000 009  | A      | 21 di 57 |

Le azioni descritte nel paragrafo precedente ed utilizzate nelle combinazioni di carico vengono di seguito riassunte:

Tabella 1 – Riepilogo condizioni di carico

| Tipo Carico                       | Abbreviazione  |
|-----------------------------------|----------------|
| Peso proprio                      | DEAD           |
| Carichi permanenti                | PERM           |
| Falda                             | FALDA          |
| Spinta terreno sinistra           | STS            |
| Spinta terrenno destra            | STD            |
| Carico Ferroviario Centrato       | TRM            |
| Carico Ferroviario Laterale       | TRV            |
| Sovraccarico accidentale sinistra | SAS            |
| Sovraccarico accidentale destra   | SAD            |
| Traffico Stradale                 | TRAF           |
| Ritiro                            | RIT            |
| Variazione termica                | ΔΤ             |
| Avviamento e frenatura            | AVV            |
| Azione sismica orizzontale        | E <sub>H</sub> |
| Azione sismica verticale          | E <sub>V</sub> |

Si riportano di seguito le combinazioni di carico ritenute più significative con i coefficienti di combinazione  $\gamma \cdot \psi$ . Essendo la struttura simmetrica, si adottano tipologie di combinazione asimmetriche in modo da massimizzare le sollecitazioni. Il dimensionamento delle armature e le verifiche strutturali verrano poi eseguite tenendo conto della simmetria e verificando le condizioni peggiori per ogni lato della struttura.

Tabella 2 - Combinazioni di carico

| COMB          | DEAD | STS  | STD  | RIT  | ΔΤ   | PERM | FALDA | TRM  | TRV | SAS  | SAD  | TRAF | AVV  | Ен | Ev |
|---------------|------|------|------|------|------|------|-------|------|-----|------|------|------|------|----|----|
| n° 1 SLU-STR  | 1.35 | 1.35 | 1.35 | 1.20 | 1.50 | 1.50 | -     | -    | -   | -    | -    | -    |      | 1  | -  |
| n° 2 SLU-STR  | 1.35 | 1.35 | 1.00 | 1.20 | 1.50 | 1.50 | -     |      |     |      |      |      |      |    |    |
| n° 3 SLU-STR  | 1.35 | 1.00 | 1.35 | 1.20 | 1.50 | 1.50 |       |      |     |      |      |      |      |    |    |
| n° 04 SLU-STR | 1.35 | 1.35 | 1.35 | 1.20 | 1.50 | 1.50 | 1.35  | -    | -   | -    | -    | -    |      | -  | -  |
| n° 05 SLU-STR | 1.35 | 1.35 | 1.00 | 1.20 | 1.50 | 1.50 | 1.35  |      |     |      |      |      |      |    |    |
| n° 06 SLU-STR | 1.35 | 1.00 | 1.35 | 1.20 | 1.50 | 1.50 | 1.35  |      |     |      |      |      |      |    |    |
| n° 07 SLU-STR | 1.35 | 1.35 | 1.35 | 1.20 | 0.90 | 1.50 | 1.35  | 1.45 | -   | 1.45 | 1.45 | -    | 1.45 | -  | -  |



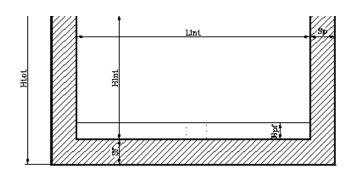
# RADDOPPIO CESANO - VIGNA DI VALLE - PROGETTO DEFINITIVO

Relazione di calcolo Muri ad U – Spessore 30 cm

COMMESSA LOTTO CODIFICA DOCUMENTO REV. FOGLIO

NR1J 01 D 29 CL IN0000 009 A 22 di 57

| COMB                | DEAD | STS  | STD  | RIT  | ΔΤ   | PERM | FALDA | TRM  | TRV  | SAS  | SAD  | TRAF | AVV  | Ен   | Ev    |
|---------------------|------|------|------|------|------|------|-------|------|------|------|------|------|------|------|-------|
| n° 08 SLU-STR       | 1.35 | 1.35 | 1.00 | 1.20 | 0.90 | 1.50 | 1.35  | 1.45 | -    | 1.45 | 1.45 |      | 1.45 |      |       |
| n° 09 SLU-STR       | 1.35 | 1.00 | 1.35 | 1.20 | 0.90 | 1.50 | 1.35  | 1.45 | -    | 1.45 | 1.45 |      | 1.45 |      |       |
| n° 10 SLU-STR       | 1.35 | 1.35 | 1.35 | 1.20 | 0.90 | 1.50 | 1.35  | -    | 1.45 | 1.45 | 1.45 | 1.01 | 1.45 | -    | -     |
| n° 11 SLU-STR       | 1.35 | 1.35 | 1.00 | 1.20 | 0.90 | 1.50 | 1.35  | -    | 1.45 | 1.45 | 1.45 | 1.01 | 1.45 |      |       |
| n° 12 SLU-STR       | 1.35 | 1.00 | 1.35 | 1.20 | 0.90 | 1.50 | 1.35  | -    | 1.45 | 1.45 | 1.45 | 1.01 | 1.45 |      |       |
| n° 13 SLU-STR       | 1.35 | 1.35 | 1.35 | 1.20 | 0.90 | 1.50 | 1.35  | 1.45 | -    | 1.45 | -    | 1.01 | 1.45 | -    | -     |
| n° 14 SLU-STR       | 1.35 | 1.35 | 1.00 | 1.20 | 0.90 | 1.50 | 1.35  | 1.45 | -    | 1.45 | -    | 1.01 | 1.45 | -    | -     |
| n° 15 SLU-STR       | 1.35 | 1.00 | 1.35 | 1.20 | 0.90 | 1.50 | 1.35  | 1.45 | -    | 1.45 | -    | 1.01 | 1.45 | -    | -     |
| n° 16 SLU - SISMICA | 1.00 | 1.00 | 1.00 | 1.00 | 0.50 | 1.00 | 1.00  | 0.20 | -    | 0.20 | -    | -    | 0.20 | 1.00 | 0.30  |
| n° 17 SLU - SISMICA | 1.00 | 1.00 | 1.00 | 1.00 | 0.50 | 1.00 | 1.00  | 0.20 | -    | 0.20 | -    | -    | 0.20 | 1.00 | -0.30 |
| n° 18 SLU - SISMICA | 1.00 | 1.00 | 1.00 | 1.00 | 0.50 | 1.00 | -     | 0.20 | -    | 0.20 | -    | -    | 0.20 | 1.00 | 0.30  |
| n° 19 SLU - SISMICA | 1.00 | 1.00 | 1.00 | 1.00 | 0.50 | 1.00 | -     | 0.20 | -    | 0.20 | -    | -    | 0.20 | 1.00 | -0.30 |
| GEO                 | 1.00 | 1.30 | 1.00 | 1.00 | 0.60 | 1.30 | 1.00  | 1.25 | -    | 1.25 | -    | -    | 1.25 | -    | -     |
| GEO - SISMICA       | 1.00 | 1.00 | 1.00 | 1.00 | 0.50 | 1.00 | 1.00  | 0.20 |      | 0.20 |      |      | 0.20 | 1.00 | 0.30  |
| SLE - Q.P.          | 1.00 | 1.00 | 1.00 | 1.00 | 0.50 | 1.00 | 1.00  | 0.00 | -    | 0.00 | -    | -    | 0.00 | -    | -     |
| SLE - Frequente     | 1.00 | 1.00 | 1.00 | 1.00 | 0.50 | 1.00 | 1.00  | 0.80 | -    | 0.80 | -    | -    | 0.80 | -    | -     |
| SLE - Rara          | 1.00 | 1.00 | 1.00 | 1.00 | 0.60 | 1.00 | 1.00  | 1.00 | -    | 1.00 | -    | -    | 1.00 | -    | -     |




### 9 DIMENSIONAMENTO DELL'OPERA

La sezione trasversale retta ha una larghezza interna di  $L_{int}=3.00$  m ed un'altezza netta di  $H_{int}=3.70$  m; lo spessore della platea di fondazione è di  $S_f=0.30$  m, lo spessore dei piedritti è di  $S_p=0.30$  m.

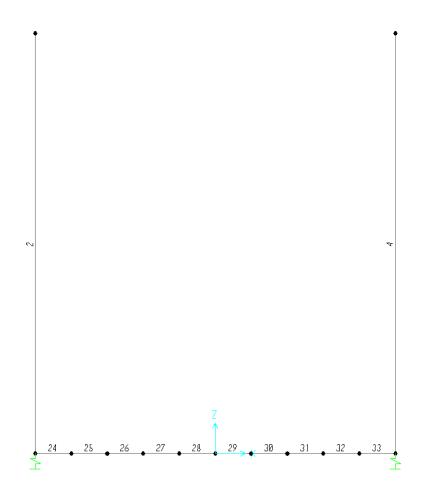
Nel seguito verrà esaminata una striscia avente lunghezza di 1.00 m.

#### 9.1 Geometria



| DATI GEOMETI                  | RICI               |        |      |
|-------------------------------|--------------------|--------|------|
| Grandezza                     | Simbolo            | Valore | U.M. |
| larghezza totale scatolare    | $L_{tot}$          | 3.60   | m    |
| larghezza utile scatolare     | Lint               | 3.00   | m    |
| larghezza interasse           | La                 | 3.30   | m    |
| spessore soletta superiore    | Ss                 | 0.00   | m    |
| spessore piedritti            | $S_p$              | 0.30   | m    |
| spessore fondazione           | $S_{f}$            | 0.30   | m    |
| altezza totale scatolare      | $H_{tot}$          | 4.00   | m    |
| altezza libera scatolare      | $\mathbf{H}_{int}$ | 3.70   | m    |
|                               |                    |        | m    |
| spessore ballast              | $H_{Psup}$         | 0.00   | m    |
| ricoprimento                  | $H_{Rsup}$         | 0.00   | m    |
| spessore pacchetto interno    | $H_{\text{Pinf}}$  | 0.00   | m    |
| spessore ricoprimento interno | $H_{Rinf}$         | 0.50   | m    |




#### 9.2 Modello di calcolo

Il modello di calcolo attraverso il quale è schematizzata la struttura è quello del telaio chiuso su letto di molle alla Winkler.

Il modello considerato per l'analisi è quello di un telaio aperto di profondità unitaria (1.00m) soggetto alle azioni da traffico di norma e quelle permanenti. In corrispondenza dei vertici sono state inserite delle zone rigide pari a metà spessore degli elementi.

Il terreno di fondazione è stato modellato utilizzando la schematizzazione alla Winkler con un opportuno coefficiente di sottofondo.

Di seguito si riporta lo schema di calcolo.



Numerazioni aste



### 9.3 Valutazione della rigidezza delle molle

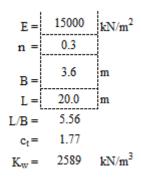
Di seguito sono trattati gli aspetti di natura geotecnica riguardanti l'interazione terreno-struttura relativamente all'opera in esame.

Per la determinazione della costante di sottofondo si può fare riferimento alle seguenti formulazioni assimilando il comportamento del terreno a quello di un mezzo elastico omogeneo (formula di Vesic)

$$k = \frac{0.65 \, E}{1 - v^2} * \sqrt[12]{\frac{Eb^4}{(E_c J)_{fond}}}$$

dove:

- h = altezza della trave;


b = dimensione trasversale della trave;

J = inierzia della trave;

E<sub>c</sub> = modulo di elasticità del calcestruzzo

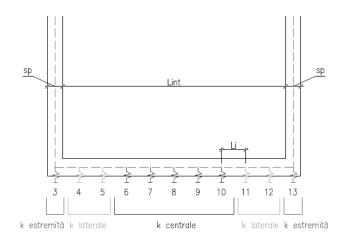
v = coefficiente di Poisson del terreno;

- E = modulo elastico medio del terreno sottostante.



Cautelativamente si limita, ai fini del calcolo, il valore della costante di sottofondo a circa 2500 kN/m<sup>3</sup>.

Si considera la sezione appoggiata su di un letto di molle (schematizzazione alla Winkler) assegnando alle aste di fondazione del modello un valore di "linear spring" pari a K= 2500 kN/mc in funzione dell'interasse delle molle secondo la seguente formulazione:

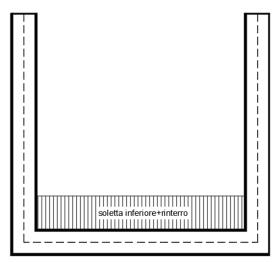

Interasse molle 
$$i = (S_p/2 + L_{int} + S_p/2)/10$$
 [m]

| TALFERR GRUPPO FERROVIE DELLO STATO ITALIANE    | RADDOPP<br>DEFINITI |         | ANO - VI | GNA DI VALI | LE - P | ROGETTO  |
|-------------------------------------------------|---------------------|---------|----------|-------------|--------|----------|
| Relazione di calcolo Muri ad U – Spessore 30 cm | COMMESSA            | LOTTO   | CODIFICA | DOCUMENTO   | REV.   | FOGLIO   |
| 11000 to the value of 11000 to 5000 50 tm       | NR1I                | 01 D 29 | CL       | IN0000 009  | Α      | 26 di 57 |

Molle centrali  $k_1 = k * i$  [kN/m]

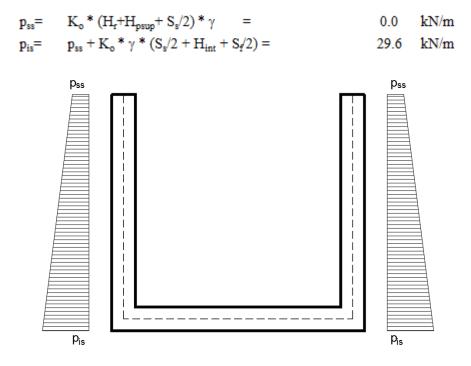
Molle intermedie  $k_2 = 1.5 * k * i$  [kN/m]

Molle laterali  $k_3 = 2 * k *(i/2 + S_p/2)$  [kN/m]




### 9.4 Analisi dei carichi

## 9.4.1 Peso proprio della struttura e carichi permanenti portati


| <u>Soletta inferiore</u> | - Peso proprio                      | _        | 7.50 kN/m  |
|--------------------------|-------------------------------------|----------|------------|
|                          |                                     | - Totale | 7.50 kN/m  |
|                          | - Peso pacchetto interno 0 cm       |          | 0.00 kN/m  |
|                          | - Peso terreno ricoprimento interno |          | 12.00 kN/m |
|                          |                                     | - Totale | 12.00 kN/m |
| <u>Piedritti</u>         | - Peso proprio                      |          | 7.50 kN/m  |
|                          |                                     | - Totale | 7.50 kN/m  |





#### 9.4.2 Spinta sulle pareti dovuta al terreno ed al sovraccarico permanente

Per il rinterro si prevede un terreno avente angolo di attrito  $\phi = 38^{\circ}$  ed un peso di volume  $\gamma = 20$  kN/m³, il coefficiente di spinta viene calcolato, considerando l'elevata rigidezza della struttura, utilizzando la formula Ko=1-sin $\phi$ ', per cui si ottiene un valore di Ko=0.38. Le spinte in asse soletta superiore ed asse soletta inferiore valgono:



Per tenere in conto dei carichi agenti sul semispessore degli elementi considerati nel modello di calcolo, si applicano delle forze concentrate nei nodi tra piedritto e soletta inferiore con valore pari a 4.53 kN.



#### 9.4.3 Azione Termica

Si applica ai piedritti una variazione termica di +/-15°C.

#### 9.4.4 Azione sismica inerziale

Per il calcolo dell'azione sismica si utilizza il metodo dell'analisi pseudostatica in cui l'azione sismica è rappresentata da una forza statica equivalente pari al prodotto delle forze di gravità per un opportuno coefficiente sismico k. Le forze sismiche sono pertanto le seguenti:

Forza sismica orizzontale  $F_h = k_h * W$ 

Forza sismica verticale  $F_v = k_v * W$ 

I valori dei coefficienti sismici orizzontale  $k_h$  e verticale  $k_v$  possono essere valutati mediante le espressioni:  $k_h$ =  $a_{max}/g$ 

 $k_v = \pm 0.5 * k_h$ 

Con riferimento alla nuova classificazione sismica del territorio nazionale ai fini del calcolo dell'azione sismica secondo il DM 17/01/2018 viene assegnata all'opera una vita nominale  $V_N \ge 75$  anni ed una II classe d'uso  $C_u = 1$ ; segue un periodo di riferimento  $V_R = V_N * C_u = 75$  anni

A seguito di tale assunzione si ottiene allo stato limite ultimo SLV in funzione della Latitudine e Longitudine del sito in esame un valore dell'accelerazione pari a  $a_g$ = 0.074 g.

In assenza di analisi specifiche della risposta sismica locale l'accelerazione massima può essere valutata con la relazione:

$$a_{max} = S * a = S_s * S_t * a_g$$

dove assumendo un terreno di tipo C ed in base al fattore di amplificazione del sito F<sub>0</sub> si ottiene:

S<sub>s</sub>= 1.600 Coefficiente di amplificazione stratigrafica

 $S_T=1$  Coefficiente di amplificazione topografica

ne deriva che:

$$a_{max}$$
= 1.600 \* 1 \* 0.074 g = 0.118 g

| ITALFERR GRUPPO FERROVIE DELLO STATO ITALIANE   | RADDOPP.<br>DEFINITIV |         | ANO - VIO | GNA DI VALI | .Е - Р | ROGETTO  |
|-------------------------------------------------|-----------------------|---------|-----------|-------------|--------|----------|
| Relazione di calcolo Muri ad U – Spessore 30 cm | COMMESSA              | LOTTO   | CODIFICA  | DOCUMENTO   | REV.   | FOGLIO   |
| The state of the control of the Control of the  | NR1J                  | 01 D 29 | CL        | IN0000 009  | A      | 29 di 57 |

$$k_\text{h}\!\!=a_\text{max}\!/g=0.118$$

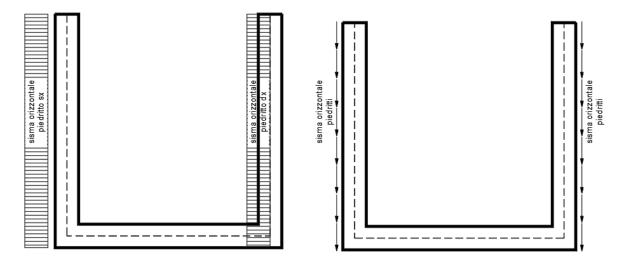
$$k_v = \pm \ 0.5 \ * \ k_h = 0.059$$

## Sisma orizzontale

$$F_{sis} = a_{max} * \gamma * (H_{tot}) = 9.47 \text{ kN/m} \quad \text{(carico applicato sulla parete)}$$

$$F_{inp} = \alpha * S_p * \gamma * 1m = 0.89 \text{ kN/m} \quad \text{(inerzia piedritti)}$$

$$Totale = 10.36 \text{ kN/m} \quad \text{(piedritto sx)}$$


$$Totale = 0.89 \text{ kN/m} \quad \text{(piedritto dx)}$$

Per tenere in conto dei carichi agenti sul semispessore degli elementi considerati nel modello di calcolo, si applicano delle forze concentrate nei nodi tra piedritto sinistro e soletta inferiore con valore pari a 1.55 kN. Si applicano delle forze concentrate nei nodi tra piedritto destro e soletta inferiore con valore pari a 0.13 kN.

#### Sisma verticale

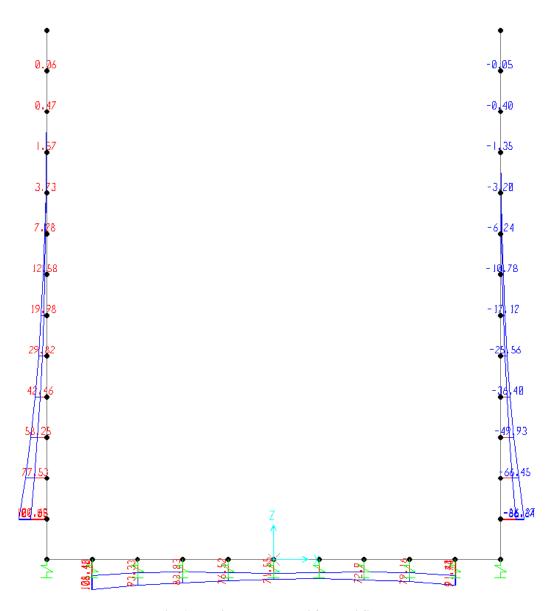
$$F_{inp} = 0.5 * \alpha * S_p * \gamma * 1m = 0.44 kN/m$$
 (inerzia piedritti)

Gli effetti dell'azione sismica saranno valutati tenendo conto delle masse associate ai seguenti carichi gravitazionali:  $G_1 + G_2 + \psi_{2j} Q_{kj}$ 



#### Spinta sismica terreno

Le spinte delle terre potranno essere determinate secondo la teoria di Wood. secondo la quale la risultante dell'incremento di spinta per effetto del sisma su una parete di altezza H viene determinato con la seguente espressione:


| ITALFERR GRUPPO FERROVIE DELLO STATO ITALIANE    | RADDOPP<br>DEFINITI |         | ANO - VIO | GNA DI VALI | .Е - Р | ROGETTO  |
|--------------------------------------------------|---------------------|---------|-----------|-------------|--------|----------|
| Relazione di calcolo Muri ad U – Spessore 30 cm  | COMMESSA            | LOTTO   | CODIFICA  | DOCUMENTO   | REV.   | FOGLIO   |
| The special of the control of the control of the | NR1J                | 01 D 29 | CL        | IN0000 009  | A      | 30 di 57 |

 $\Delta S_E = (a_{max}/g) * \gamma * H_{tot}{}^2 = 37.89 \ kN/m$ 

 $Tale\ risultante\ applicata\ ad\ un'altezza\ pari\ ad\ H_{tot}/2. sar\`a\ considerata\ agente\ su\ uno\ solo\ dei\ piedritti\ dell'opera.$ 

| SITALFERR GRUPPO FERROVIE DELLO STATO ITALIANE  | RADDOPP<br>DEFINITI |         | ANO - VIO | GNA DI VALI | .Е - Р | ROGETTO  |
|-------------------------------------------------|---------------------|---------|-----------|-------------|--------|----------|
| Relazione di calcolo Muri ad U – Spessore 30 cm | COMMESSA            | LOTTO   | CODIFICA  | DOCUMENTO   | REV.   | FOGLIO   |
|                                                 | NR1J                | 01 D 29 | CL        | IN0000 009  | A      | 31 di 57 |

## 9.5 Diagrammi delle sollecitazioni



 $Fig. \ 1-Inviluppo\ momenti\ flettenti\ SLU$ 

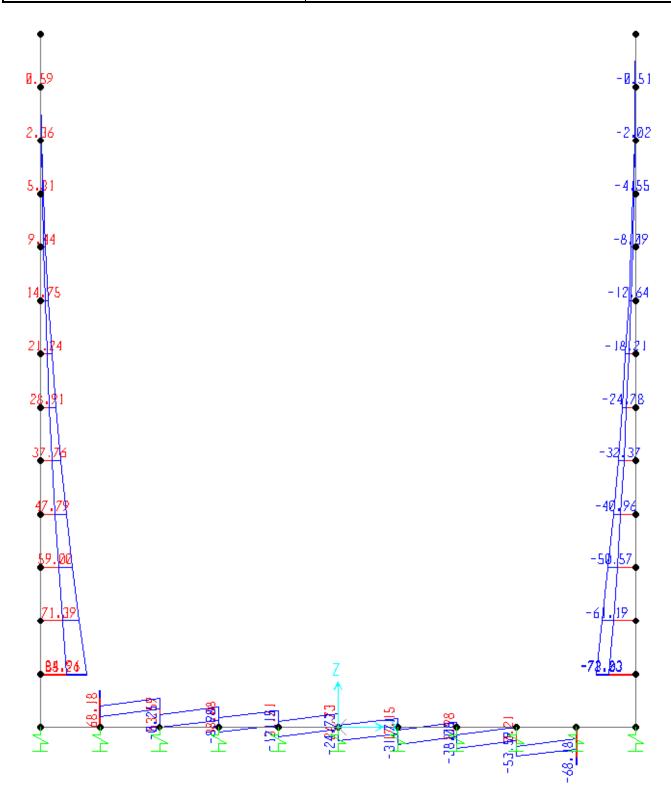



Fig. 2 – Inviluppo sforzi taglianti SLU

| ITALFERR GRUPPO FERROVIE DELLO STATO ITALIANE   | RADDOPP<br>DEFINITI |         | ANO - VIO | GNA DI VALI | .E - P | ROGETTO  |
|-------------------------------------------------|---------------------|---------|-----------|-------------|--------|----------|
| Relazione di calcolo Muri ad U – Spessore 30 cm | COMMESSA            | LOTTO   | CODIFICA  | DOCUMENTO   | REV.   | FOGLIO   |
|                                                 | NR1J                | 01 D 29 | CL        | IN0000 009  | Α      | 33 di 57 |

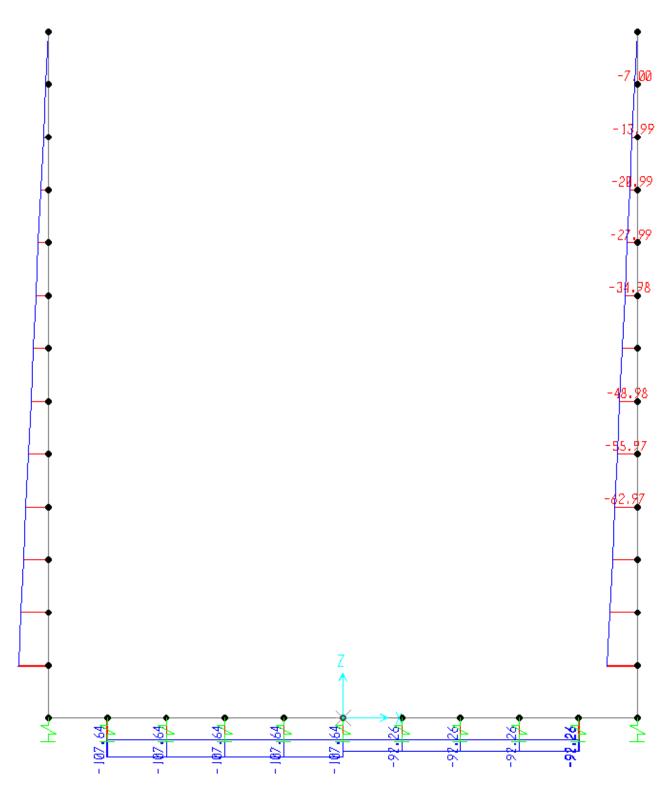



Fig. 3 – Inviluppo azioni assiali SLU

| ITALFERR GRUPPO FERROVIE DELLO STATO ITALIANE   | RADDOPPI<br>DEFINITIV |                  | ANO - VIC | GNA DI VALI          | LE - P | ROGETTO            |
|-------------------------------------------------|-----------------------|------------------|-----------|----------------------|--------|--------------------|
| Relazione di calcolo Muri ad U – Spessore 30 cm | COMMESSA<br>NR1J      | LOTTO<br>01 D 29 | CODIFICA  | DOCUMENTO IN0000 009 | REV.   | FOGLIO<br>34 di 57 |

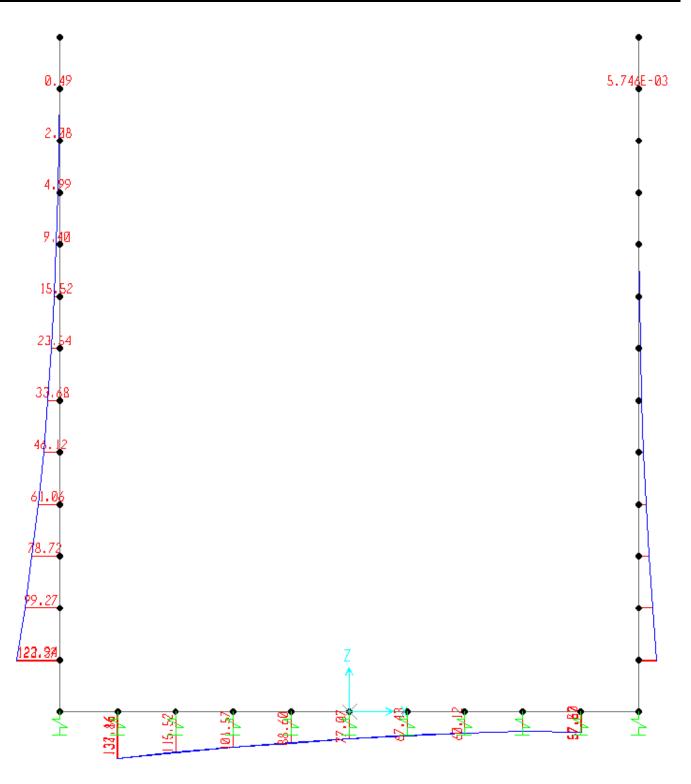



Fig. 4 –Inviluppo momenti flettenti SLV

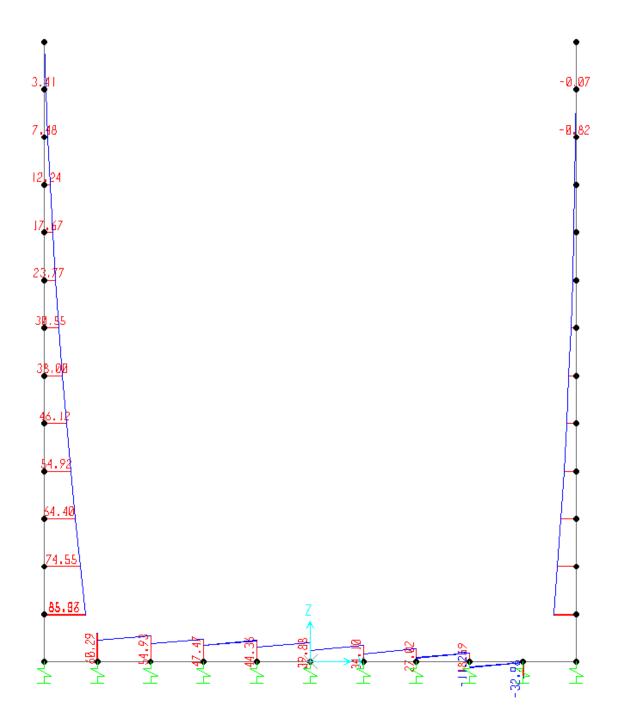



Fig. 5 – Inviluppo sforzi taglianti SLV

| SITALFERR GRUPPO FERROVIE DELLO STATO ITALIANE  | RADDOPP<br>DEFINITI |         | ANO - VIO | GNA DI VALI | .Е - Р | ROGETTO  |
|-------------------------------------------------|---------------------|---------|-----------|-------------|--------|----------|
| Relazione di calcolo Muri ad U – Spessore 30 cm | COMMESSA            | LOTTO   | CODIFICA  | DOCUMENTO   | REV.   | FOGLIO   |
|                                                 | NR1J                | 01 D 29 | CL        | IN0000 009  | A      | 36 di 57 |

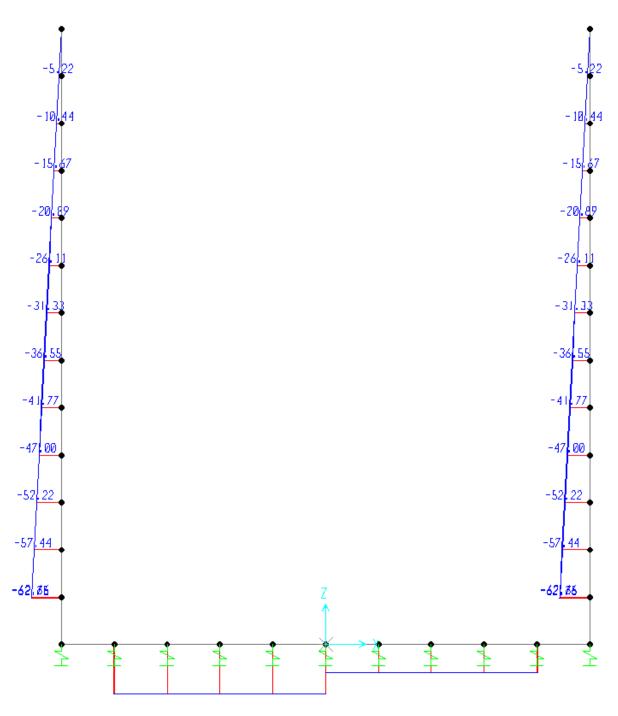



Fig. 6 – Inviluppo azioni assiali SLV

| STALFERR GRUPPO FERROVIE DELLO STATO ITALIANE   | RADDOPPIO CESANO<br>DEFINITIVO |         | ANO - VIO | GNA DI VALI | .Е - Р | ROGETTO  |
|-------------------------------------------------|--------------------------------|---------|-----------|-------------|--------|----------|
| Relazione di calcolo Muri ad U – Spessore 30 cm | COMMESSA                       | LOTTO   | CODIFICA  | DOCUMENTO   | REV.   | FOGLIO   |
| Them. to the thirt and Spessore 50 cm           | NR1J                           | 01 D 29 | CL        | IN0000 009  | A      | 37 di 57 |

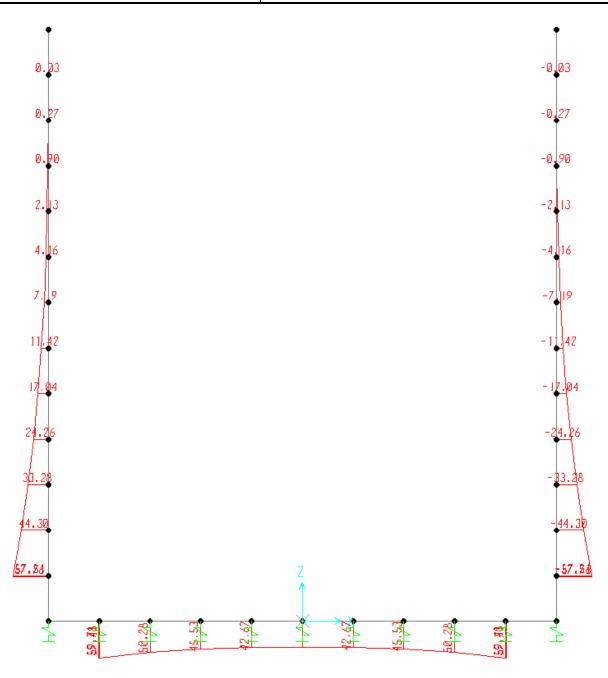



Fig. 7 – Inviluppo momenti flettenti SLE rara

| ITALFERR GRUPPO FERROVIE DELLO STATO ITALIANE   | RADDOPPIO CESANO - VIO<br>DEFINITIVO |         | GNA DI VALI | .Е - Р     | ROGETTO |          |
|-------------------------------------------------|--------------------------------------|---------|-------------|------------|---------|----------|
| Relazione di calcolo Muri ad U – Spessore 30 cm | COMMESSA                             | LOTTO   | CODIFICA    | DOCUMENTO  | REV.    | FOGLIO   |
| Them. to the thirt and Spessore 50 cm           | NR1J                                 | 01 D 29 | CL          | IN0000 009 | A       | 38 di 57 |

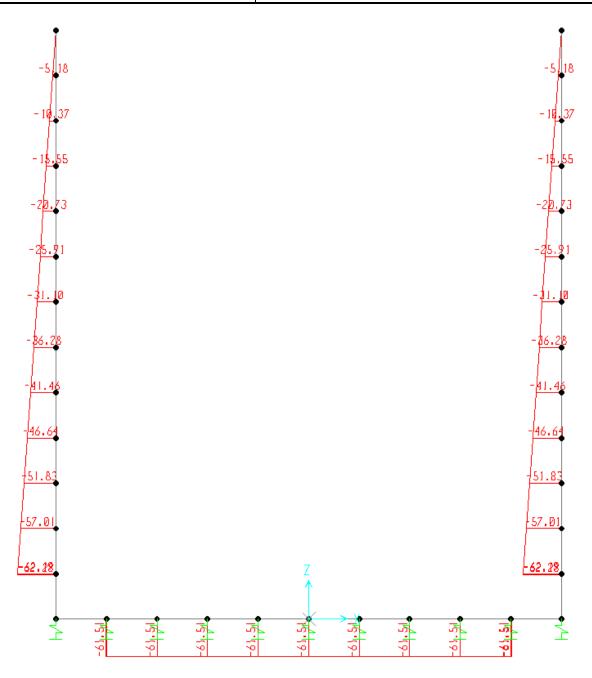



Fig. 8 – Inviluppo azioni assiali SLE rara

| ITALFERR GRUPPO FERROVIE DELLO STATO ITALIANE   | RADDOPPIO CESANO - VIGNA DI VALLE -<br>DEFINITIVO |                  |          | .Е - Р               | ROGETTO |                    |
|-------------------------------------------------|---------------------------------------------------|------------------|----------|----------------------|---------|--------------------|
| Relazione di calcolo Muri ad U – Spessore 30 cm | COMMESSA<br>NR1J                                  | LOTTO<br>01 D 29 | CODIFICA | DOCUMENTO IN0000 009 | REV.    | FOGLIO<br>39 di 57 |

## 9.6 Verifica delle sezioni in c.a.

Nelle tabelle seguenti sono indicati i valori delle sollecitazioni massime e i valori delle sollecitazioni per la verifica a fessurazione risultanti dalle combinazioni di cui al capitolo precedente.

Per le verifiche in corrispondenza dei nodi si considerano le sollecitazioni a filo elemento rigido.

|                         |                       | SLU STR-SLV |                        |                          |  |  |  |
|-------------------------|-----------------------|-------------|------------------------|--------------------------|--|--|--|
| Elemento<br>strutturale | C.C. M <sub>max</sub> | N (kN)      | M <sub>max</sub> (kNm) | T <sub>max</sub><br>(kN) |  |  |  |
| soletta                 | SLU17-SIS             | 102.95      | 132.16                 | 68.18                    |  |  |  |
| inferiore               | SLU15-STR             | 61.51       | 45.56                  | -                        |  |  |  |
| piedritti               | SLU16-SIS             | 62.75       | 123.37                 | 85.56                    |  |  |  |

|                      | SLE RARA |                        |           | SLE FREQUENTE |                        |           | UASI PERMA | NENTE                  |
|----------------------|----------|------------------------|-----------|---------------|------------------------|-----------|------------|------------------------|
| Elemento strutturale | N (kN)   | M <sub>max</sub> (kNm) | ID Asta   | N (kN)        | M <sub>max</sub> (kNm) | ID Asta   | N (kN)     | M <sub>max</sub> (kNm) |
| soletta              | 61.51    | 59.71                  | soletta   | 61.51         | 59.71                  | soletta   | 61.51      | 59.71                  |
| inferiore            | 61.51    | 41.72                  | inferiore | 61.51         | 41.72                  | inferiore | 61.51      | 41.72                  |
| piedritti            | 62.28    | 57.76                  | piedritti | 62.28         | 57.76                  | piedritti | 62.28      | 57.76                  |



#### 9.6.1 Verifica soletta inferiore

#### CARATTERISTICHE DI RESISTENZA DEI MATERIALI IMPIEGATI

CALCESTRUZZO -C30/37 Classe: Resis. compr. di progetto fcd: 17.000 MPa Def.unit. max resistenza ec2: 0.0020 Def.unit. ultima ecu: 0.0035 Diagramma tensione-deformaz.: Parabola-Rettangolo Modulo Elastico Normale Ec: 32836.0 MPa MPa

Resis. media a trazione fctm: 2.900
Coeff. Omogen. S.L.E.: 15.00
Coeff. Omogen. S.L.E.: 15.00

Sc limite S.L.E. comb. Frequenti:

Ap.Fessure limite S.L.E. comb. Frequenti:

Sc limite S.L.E. comb. Q.Permanenti:

Ap.Fess.limite S.L.E. comb. Q.Permanenti:

0.00 Mpa

Ap.Fess.limite S.L.E. comb. Q.Perm.:

0.200 mm

ACCIAIO - Tipo: B450C

Resist. caratt. snervam. fyk:450.00MPaResist. caratt. rottura ftk:450.00MPaResist. snerv. di progetto fyd:391.30MPaResist. ultima di progetto ftd:391.30MPaDeform. ultima di progetto Epu:0.068

Modulo Elastico Ef 2000000 daN/cm²

Diagramma tensione-deformaz.:

Coeff. Aderenza istantaneo ß1\*ß2:

Coeff. Aderenza differito ß1\*ß2:

Sf limite S.L.E. Comb. Rare:

Bilineare finito

1.00

0.50

MPa

#### **CARATTERISTICHE DOMINIO CONGLOMERATO**

| Forma del Do<br>Classe Conglo |                        | Poligonale<br>C30/37 |
|-------------------------------|------------------------|----------------------|
| N°vertice:                    | X [cm]                 | Y [cm]               |
| 1<br>2<br>3                   | -50.0<br>-50.0<br>50.0 | 0.0<br>30.0<br>30.0  |
| 1                             | 50.0                   | 0.0                  |

## **DATI BARRE ISOLATE**

| N°Barra | X [cm] | Y [cm] | DiamØ[mm] |
|---------|--------|--------|-----------|
| 1       | -43.6  | 6.4    | 20        |
| 2       | -43.6  | 23.6   | 20        |
| 3       | 43.6   | 23.6   | 20        |
| 4       | 43.6   | 6.4    | 20        |

## **DATI GENERAZIONI LINEARI DI BARRE**

N°Gen.Numero assegnato alla singola generazione lineare di barreN°Barra Ini.Numero della barra iniziale cui si riferisce la generazioneN°Barra Fin.Numero della barra finale cui si riferisce la generazione

| STALFERR GRUPPO FERROVIE DELLO STATO ITALIANE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | RADDOPPIO CESANO - VIGNA DI VALLE - DEFINITIVO |         |          | .Е - Р     | ROGETTO |          |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------|---------|----------|------------|---------|----------|
| Relazione di calcolo Muri ad U – Spessore 30 cm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | COMMESSA                                       | LOTTO   | CODIFICA | DOCUMENTO  | REV.    | FOGLIO   |
| Them. to the total of the total | NR1J                                           | 01 D 29 | CL       | IN0000 009 | A       | 41 di 57 |

| N°Barre | Numero di barre generate equidistanti cui si riferisce la genera |              |         |    |  |
|---------|------------------------------------------------------------------|--------------|---------|----|--|
| Ø       | Diametro in mm delle barre della generazione                     |              |         |    |  |
| N°Gen.  | N°Barra Ini.                                                     | N°Barra Fin. | N°Barre | Ø  |  |
| 1       | 1                                                                | 4            | 3       | 20 |  |
| 2       | 2                                                                | 3            | 3       | 20 |  |

## CALCOLO DI RESISTENZA - SFORZI PER OGNI COMBINAZIONE ASSEGNATA

| N<br>Mx<br>Vy |        | Sforzo normale [kN] applicato nel Baric. (+ se di compressione) Momento flettente [daNm] intorno all'asse X di riferimento delle coord con verso positivo se tale da comprimere il lembo sup. della sez. Componente del Taglio [kN] parallela all'asse Y di riferimento delle co |       |  |
|---------------|--------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|--|
| N°Comb.       | N      | Mx                                                                                                                                                                                                                                                                               | Vy    |  |
| 1             | 102.95 | 132.16                                                                                                                                                                                                                                                                           | 68.18 |  |
| 2             | 61.51  | 45.56                                                                                                                                                                                                                                                                            | 0.00  |  |

## COMB. RARE (S.L.E.) - SFORZI PER OGNI COMBINAZIONE ASSEGNATA

| N<br>Mx | Momento flettent | Sforzo normale [kN] applicato nel Baricentro (+ se di compressione)<br>Momento flettente [kNm] intorno all'asse X di riferimento (tra parentesi Mom.Fess<br>con verso positivo se tale da comprimere il lembo superiore della sezione |              |  |  |  |
|---------|------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|--|--|--|
| N°Comb. | N                | Mx                                                                                                                                                                                                                                    | Му           |  |  |  |
| 1<br>2  | 61.51<br>61.51   | 59.71<br>41.72                                                                                                                                                                                                                        | 0.00<br>0.00 |  |  |  |

# COMB. FREQUENTI (S.L.E.) - SFORZI PER OGNI COMBINAZIONE ASSEGNATA

| N<br>Mx | Sforzo normale [kN] applicato nel Baricentro (+ se di compressione)<br>Momento flettente [kNm] intorno all'asse X di riferimento (tra parentesi Mom.Fessura<br>con verso positivo se tale da comprimere il lembo superiore della sezione |                                |                            |  |  |  |
|---------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------|----------------------------|--|--|--|
| N°Comb. | N                                                                                                                                                                                                                                        | Mx                             | Му                         |  |  |  |
| 1<br>2  | 61.51<br>61.51                                                                                                                                                                                                                           | 59.71 (52.96)<br>41.72 (54.23) | 0.00 (0.00)<br>0.00 (0.00) |  |  |  |

# COMB. QUASI PERMANENTI (S.L.E.) - SFORZI PER OGNI COMBINAZIONE ASSEGNATA

| N<br>Mx | Sforzo normale [kN] applicato nel Baricentro (+ se di compressione)<br>Momento flettente [kNm] intorno all'asse X di riferimento (tra parentesi Mom.Fessurazione<br>con verso positivo se tale da comprimere il lembo superiore della sezione |               |             |  |  |  |  |
|---------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------|-------------|--|--|--|--|
| N°Comb. | N                                                                                                                                                                                                                                             | Mx            | Му          |  |  |  |  |
| 1       | 61.51                                                                                                                                                                                                                                         | 59.71 (52.96) | 0.00 (0.00) |  |  |  |  |
| 2       | 61.51                                                                                                                                                                                                                                         | 41.72 (54.23) | 0.00 (0.00) |  |  |  |  |

## **RISULTATI DEL CALCOLO**

Sezione verificata per tutte le combinazioni assegnate



Copriferro netto minimo barre longitudinali: 5.4 cm Interferro netto minimo barre longitudinali: 15.2 cm

#### VERIFICHE DI RESISTENZA IN PRESSO-TENSO FLESSIONE ALLO STATO LIMITE ULTIMO

Ver S = combinazione verificata / N = combin. non verificata

Sforzo normale assegnato [kN] nel baricentro B sezione cls.(positivo se di compressione) Ν

Mx Componente del momento assegnato [kNm] riferito all'asse x princ. d'inerzia

N Res Sforzo normale resistente [kN] nel baricentro B sezione cls.(positivo se di compress.)

Mx Res Momento flettente resistente [kNm] riferito all'asse x princ. d'inerzia Misura sicurezza = rapporto vettoriale tra (N r,Mx Res,My Res) e (N,Mx,My) Mis.Sic.

Verifica positiva se tale rapporto risulta >=1.000

Area armature trave [cm²] in zona tesa. [Tra parentesi l'area minima ex (4.1.15)NTC] As Tesa

| N°Comb | Ver | N      | Mx     | N Res  | Mx Res | Mis.Sic. | As Tesa   |
|--------|-----|--------|--------|--------|--------|----------|-----------|
| 1      | S   | 102.95 | 132.16 | 102.85 | 146.58 | 1.11     | 15.7(5.0) |
| 2      | S   | 61.51  | 45.56  | 61.29  | 142.75 | 3.13     | 15.7(5.0) |

#### METODO AGLI STATI LIMITE ULTIMI - DEFORMAZIONI UNITARIE ALLO STATO ULTIMO

| ec max | Deform. unit. massima del conglomerato a compressione                  |
|--------|------------------------------------------------------------------------|
| x/d    | Rapporto di duttilità [§ 4.1.2.1.2.1 NTC] deve essere < 0.45           |
| Xc max | Ascissa in cm della fibra corrisp. a ec max (sistema rif. X,Y,O sez.)  |
| Yc max | Ordinata in cm della fibra corrisp. a ec max (sistema rif. X,Y,O sez.) |
| es min | Deform. unit. minima nell'acciaio (negativa se di trazione)            |
| Xs min | Ascissa in cm della barra corrisp. a es min (sistema rif. X,Y,O sez.)  |
| Ys min | Ordinata in cm della barra corrisp. a es min (sistema rif. X,Y,O sez.) |
| es max | Deform. unit. massima nell'acciaio (positiva se di compress.)          |
| Xs max | Ascissa in cm della barra corrisp. a es max (sistema rif. X,Y,O sez.)  |
| Ys max | Ordinata in cm della barra corrisp. a es max (sistema rif. X,Y,O sez.) |

| N°Comb | ec max  | x/d   | Xc max | Yc max | es min   | Xs min | Ys min | es max   | Xs max | Ys max |
|--------|---------|-------|--------|--------|----------|--------|--------|----------|--------|--------|
| 1      | 0.00350 | 0.250 | -50.0  | 30.0   | -0.00030 | 43.6   | 23.6   | -0.01051 | -43.6  | 6.4    |
| 2      | 0.00350 | 0.245 | -50.0  | 30.0   | -0.00038 | 43.6   | 23.6   | -0.01079 | -43.6  | 6.4    |

#### POSIZIONE ASSE NEUTRO PER OGNI COMB. DI RESISTENZA

Coeff. a, b, c nell'eq. dell'asse neutro aX+bY+c=0 nel rif. X,Y,O gen. a, b, c Rapp. di duttilità (travi e solette)[§ 4.1.2.1.2.1 NTC]: deve essere < 0.45 x/d

C.Rid. Coeff. di riduz. momenti per sola flessione in travi continue

| N°Comb | а           | b           | С            | x/d   | C.Rid. |
|--------|-------------|-------------|--------------|-------|--------|
| 1      | 0.000000000 | 0.000593751 | -0.014312543 | 0.250 | 0.752  |
| 2      | 0.000000000 | 0.000605577 | -0.014667312 | 0.245 | 0.746  |

#### METODO SLU - VERIFICHE A TAGLIO SENZA ARMATURE TRASVERSALI (\$ 4.1.2.1.3.1 NTC)

Ver S = comb.verificata a taglio/ N = comb. non verificata Taglio agente [daN] uguale al taglio Vy di comb. (sollecit. retta) Ved

Vwct Taglio trazione resistente [kN] in assenza di staffe [formula (4.1.23)NTC]

Altezza utile sezione [cm] Larghezza minima sezione [cm] bw

Rapporto geometrico di armatura longitudinale [<0.02] Ro Tensione media di compressione nella sezione [Mpa] Scp

N°Comb Ver Ved d Ro Vwct bw Scp

| SITALFERR GRUPPO FERROVIE DELLO STATO ITALIANE  | RADDOPP<br>DEFINITI |                  | ANO - VIO | GNA DI VALI          | .Е - Р | ROGETTO            |
|-------------------------------------------------|---------------------|------------------|-----------|----------------------|--------|--------------------|
| Relazione di calcolo Muri ad U – Spessore 30 cm | COMMESSA<br>NR1J    | LOTTO<br>01 D 29 | CODIFICA  | DOCUMENTO IN0000 009 | REV.   | FOGLIO<br>43 di 57 |

| 1 | S | 68.18 | 198.06 | 23.6 | 100.0 0.0133 | 0.34 |
|---|---|-------|--------|------|--------------|------|
| 2 | S | 0.00  | 193.17 | 23.6 | 100.0 0.0133 | 0.21 |

#### COMBINAZIONI RARE IN ESERCIZIO - MASSIME TENSIONI NORMALI ED APERTURA FESSURE (NTC/EC2)

Ver S = comb. verificata/ N = comb. non verificata

Sc max

Massima tensione (positiva se di compressione) nel conglomerato [Mpa]
Xc max, Yc max

Ascissa, Ordinata [cm] del punto corrisp. a Sc max (sistema rif. X,Y,O)

Minima tensione (negativa se di trazione) nell'acciaio [Mpa]

Xs min, Ys min

Ascissa, Ordinata [cm] della barra corrisp. a Sf min (sistema rif. X,Y,O)

Ac eff.

Area di calcestruzzo [cm²] in zona tesa considerata aderente alle barre

As eff.

Area barre [cm²] in zona tesa considerate efficaci per l'apertura delle fessure

N°Comb Ver Sf min Xs min Ys min Ac eff. As eff. Sc max Xc max Yc max S 700 6.44 -50.0 30.0 -165.1 -43.6 6.4 15.7 2 S 4.50 -50.0 30.0 -109.4 -43.6 6.4 700 15.7

#### COMBINAZIONI RARE IN ESERCIZIO - APERTURA FESSURE [§ 7.3.4 EC2]

La sezione viene assunta sempre fessurata anche nel caso in cui la trazione minima del calcestruzzo sia inferiore a fctm

Ver. Esito della verifica
e1 Massima deformazione unitaria di trazione nel calcestruzzo (trazione -) valutata in sezione fessurata

e2 Minima deformazione unitaria di trazione nel calcestruzzo (trazione -) valutata in sezione fessurata

k1 = 0.8 per barre ad aderenza migliorata [eq.(7.11)EC2]

kt = 0.4 per comb. quasi permanenti / = 0.6 per comb.frequenti [cfr. eq.(7.9)EC2] k2 = 0.5 per flessione; =(e1 + e2)/(2\*e1) per trazione eccentrica [eq.(7.13)EC2]

k3 = 3.400 Coeff. in eq.(7.11) come da annessi nazionali k4 = 0.425 Coeff. in eq.(7.11) come da annessi nazionali

Ø Diametro [mm] equivalente delle barre tese comprese nell'area efficace Ac eff [eq.(7.11)EC2]

Cf Copriferro [mm] netto calcolato con riferimento alla barra più tesa

e sm - e cm Differenza tra le deformazioni medie di acciaio e calcestruzzo [(7.8)EC2 e (C4.1.7)NTC]

Tra parentesi: valore minimo = 0.6 Smax / Es [(7.9)EC2 e (C4.1.8)NTC]

sr max Massima distanza tra le fessure [mm]

wk Apertura fessure in mm calcolata = sr max\*(e\_sm - e\_cm) [(7.8)EC2 e (C4.1.7)NTC]. Valore limite tra parentesi

Mx fess. Componente momento di prima fessurazione intorno all'asse X [kNm] My fess. Componente momento di prima fessurazione intorno all'asse Y [kNm]

| Comb.  | Ver    | e1                   | e2     | k2             | Ø | Cf       | e sm - e cm s                          | sr max | wk  | Mx fess        | My fess      |
|--------|--------|----------------------|--------|----------------|---|----------|----------------------------------------|--------|-----|----------------|--------------|
| 1<br>2 | S<br>S | -0.00118<br>-0.00079 | 0<br>0 | 0.500<br>0.500 |   | 54<br>54 | 0.00050 (0.00050)<br>0.00033 (0.00033) |        | ` , | 52.96<br>54.23 | 0.00<br>0.00 |

#### COMBINAZIONI FREQUENTI IN ESERCIZIO - MASSIME TENSIONI NORMALI ED APERTURA FESSURE (NTC/EC2)

| N°Comb | Ver | Sc max | Xc max | Yc max | Sf min | Xs min | Ys min | Ac eff. | As eff. |
|--------|-----|--------|--------|--------|--------|--------|--------|---------|---------|
| 1      | S   | 6.44   | -50.0  | 30.0   | -165.1 | -43.6  | 6.4    | 700     | 15.7    |
| 2      | S   | 4.50   | -50.0  | 30.0   | -109.4 | -43.6  | 6.4    | 700     | 15.7    |

#### COMBINAZIONI FREQUENTI IN ESERCIZIO - APERTURA FESSURE [§ 7.3.4 EC2]

| Comb. | Ver | e1       | e2 | k2    | Ø    | Cf | e sm - e cm s     | r max | wk           | Mx fess | My fess |
|-------|-----|----------|----|-------|------|----|-------------------|-------|--------------|---------|---------|
| 1     | S   | -0.00118 | 0  | 0.500 | 20.0 | 54 | 0.00050 (0.00050) | 335   | 0.166 (0.20) | 52.96   | 0.00    |
| 2     | S   | -0.00079 | 0  | 0.500 | 20.0 | 54 | 0.00033 (0.00033) | 335   | 0.110 (0.20) | 54.23   | 0.00    |

#### COMBINAZIONI QUASI PERMANENTI IN ESERCIZIO - MASSIME TENSIONI NORMALI ED APERTURA FESSURE (NTC/EC2)

N°Comb Ver Sc max Xc max Yc max Sf min Xs min Ys min Ac eff. As eff.

| SITALFERR GRUPPO FERROVIE DELLO STATO ITALIANE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | RADDOPP<br>DEFINITI |         | ANO - VIO | GNA DI VALI | .Е - Р | ROGETTO  |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------|---------|-----------|-------------|--------|----------|
| Relazione di calcolo Muri ad U – Spessore 30 cm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | COMMESSA            | LOTTO   | CODIFICA  | DOCUMENTO   | REV.   | FOGLIO   |
| $1$ $\times$ $1$ | NR1J                | 01 D 29 | CL        | IN0000 009  | A      | 44 di 57 |

| 1 | S | 6.44 | -50.0 | 30.0 | -165.1 | -43.6 | 6.4 | 700 | 15.7 |
|---|---|------|-------|------|--------|-------|-----|-----|------|
| 2 | S | 4.50 | -50.0 | 30.0 | -109.4 | -43.6 | 6.4 | 700 | 15.7 |

# COMBINAZIONI QUASI PERMANENTI IN ESERCIZIO - APERTURA FESSURE [§ 7.3.4 EC2]

| Comb.  | Ver    | e1                   | e2 | k2             | Ø | Cf       | e sm - e cm s                          | r max | wk  | Mx fess        | My fess      |
|--------|--------|----------------------|----|----------------|---|----------|----------------------------------------|-------|-----|----------------|--------------|
| 1<br>2 | S<br>S | -0.00118<br>-0.00079 | 0  | 0.500<br>0.500 |   | 54<br>54 | 0.00053 (0.00050)<br>0.00033 (0.00033) |       | , , | 52.96<br>54.23 | 0.00<br>0.00 |

# 9.6.2 Verifica piedritti

## CARATTERISTICHE DI RESISTENZA DEI MATERIALI IMPIEGATI

| CALCESTRUZZO - | Classe:                                | C30/37              |                     |
|----------------|----------------------------------------|---------------------|---------------------|
|                | Resis. compr. di progetto fcd:         | 17.000              | MPa                 |
|                | Def.unit. max resistenza ec2:          | 0.0020              |                     |
|                | Def.unit. ultima ecu:                  | 0.0035              |                     |
|                | Diagramma tensione-deformaz.:          | Parabola-Rettangolo |                     |
|                | Modulo Elastico Normale Ec:            | 32836.0             | MPa                 |
|                | Resis. media a trazione fctm:          | 2.900               | MPa                 |
|                | Coeff. Omogen. S.L.E.:                 | 15.00               |                     |
|                | Coeff. Omogen. S.L.E.:                 | 15.00               |                     |
|                | Sc limite S.L.E. comb. Frequenti:      | 165.00              | daN/cm <sup>2</sup> |
|                | Ap.Fessure limite S.L.E. comb. Frequer | nti: 0.200          | mm                  |
|                | Sc limite S.L.E. comb. Q.Permanenti:   | 0.00                | Мра                 |
|                | Ap.Fess.limite S.L.E. comb. Q.Perm.:   | 0.200               | mm                  |
| ACCIAIO -      | Tipo:                                  | B450C               |                     |
|                | Resist. caratt. snervam. fyk:          | 450.00              | MPa                 |
|                | Resist. caratt. rottura ftk:           | 450.00              | MPa                 |
|                | Resist. snerv. di progetto fyd:        | 391.30              | MPa                 |
|                | Resist. ultima di progetto ftd:        | 391.30              | MPa                 |
|                | Deform. ultima di progetto Epu:        | 0.068               |                     |
|                | Modulo Elastico Ef                     | 2000000             | daN/cm <sup>2</sup> |
|                | Diagramma tensione-deformaz.:          | Bilineare finito    |                     |
|                | Coeff. Aderenza istantaneo ß1*ß2:      | 1.00                |                     |
|                | Coeff. Aderenza differito ß1*ß2:       | 0.50                |                     |
|                | Sf limite S.L.E. Comb. Rare:           | 337.50              | MPa                 |
|                |                                        |                     |                     |

## CARATTERISTICHE DOMINIO CONGLOMERATO

| Forma del Do<br>Classe Conglo |                        | Poligonale<br>C30/37 |
|-------------------------------|------------------------|----------------------|
| N°vertice:                    | X [cm]                 | Y [cm]               |
| 1<br>2<br>3                   | -50.0<br>-50.0<br>50.0 | 0.0<br>30.0<br>30.0  |
| 4                             | 50.0                   | 0.0                  |

## DATI BARRE ISOLATE

| N°Barra | X [cm] | Y [cm] | DiamØ[mm] |
|---------|--------|--------|-----------|
| 1       | -43.6  | 6.4    | 20        |

| GRUPPO FERRO                                    |                    | RADDOPPIO CESANO - VIGNA DI VALLE - PROGETTO<br>DEFINITIVO |    |          |         |          |            |      |          |
|-------------------------------------------------|--------------------|------------------------------------------------------------|----|----------|---------|----------|------------|------|----------|
| Relazione di c                                  | alcolo Muri ad U – | - Spessore 30 cm                                           |    | COMMESSA | LOTTO   | CODIFICA | DOCUMENTO  | REV. | FOGLIO   |
| Relazione di calcolo Muri ad U – Spessore 30 cm |                    |                                                            |    | NR1J     | 01 D 29 | CL       | IN0000 009 | A    | 45 di 57 |
| 2                                               | -43.6              | 23.6                                                       | 20 |          |         |          |            |      |          |
| 3                                               | 43.6               | 23.6                                                       | 20 |          |         |          |            |      |          |

## DATI GENERAZIONI LINEARI DI BARRE

Vy

43.6

N°Gen.Numero assegnato alla singola generazione lineare di barreN°Barra Ini.Numero della barra iniziale cui si riferisce la generazioneN°Barra Fin.Numero della barra finale cui si riferisce la generazione

N°Barre Numero di barre generate equidistanti cui si riferisce la generazione

6.4

Ø Diametro in mm delle barre della generazione

| N°Gen. | N°Barra Ini. | N°Barra Fin. | N°Barre | Ø  |
|--------|--------------|--------------|---------|----|
| 1      | 2            | 3            | 3       | 20 |
| 2      | 1            | 4            | 3       | 20 |

#### CALCOLO DI RESISTENZA - SFORZI PER OGNI COMBINAZIONE ASSEGNATA

N Sforzo normale [kN] applicato nel Baric. (+ se di compressione)
Mx Momento flettente [daNm] intorno all'asse X di riferimento delle coordinate

con verso positivo se tale da comprimere il lembo sup. della sez. Componente del Taglio [kN] parallela all'asse Y di riferimento delle coordinate

20

N°Comb. N Mx Vy 1 62.75 123.37 85.56

## COMB. RARE (S.L.E.) - SFORZI PER OGNI COMBINAZIONE ASSEGNATA

N Sforzo normale [kN] applicato nel Baricentro (+ se di compressione)

Mx Momento flettente [kNm] intorno all'asse X di riferimento (tra parentesi Mom.Fessurazione)

con verso positivo se tale da comprimere il lembo superiore della sezione

N°Comb. N Mx My 1 62.28 57.76 0.00

## COMB. FREQUENTI (S.L.E.) - SFORZI PER OGNI COMBINAZIONE ASSEGNATA

N Sforzo normale [kN] applicato nel Baricentro (+ se di compressione)

Mx Momento flettente [kNm] intorno all'asse X di riferimento (tra parentesi Mom.Fessurazione)

con verso positivo se tale da comprimere il lembo superiore della sezione

N°Comb. N Mx My 1 62.28 57.76 (53.10) 0.00 (0.00)

## COMB. QUASI PERMANENTI (S.L.E.) - SFORZI PER OGNI COMBINAZIONE ASSEGNATA

N Sforzo normale [kN] applicato nel Baricentro (+ se di compressione)

Mx Momento flettente [kNm] intorno all'asse X di riferimento (tra parentesi Mom.Fessurazione)

con verso positivo se tale da comprimere il lembo superiore della sezione

 $N^{\circ}$ Comb. N Mx My



1 62.28 57.76 (53.10) 0.00 (0.00)

#### **RISULTATI DEL CALCOLO**

#### Sezione verificata per tutte le combinazioni assegnate

Copriferro netto minimo barre longitudinali: 5.4 cm Interferro netto minimo barre longitudinali: 15.2 cm

#### VERIFICHE DI RESISTENZA IN PRESSO-TENSO FLESSIONE ALLO STATO LIMITE ULTIMO

Ver S = combinazione verificata / N = combin. non verificata

N Sforzo normale assegnato [kN] nel baricentro B sezione cls.(positivo se di compressione)

Mx Componente del momento assegnato [kNm] riferito all'asse x princ. d'inerzia
N Res Sforzo normale resistente [kN] nel baricentro B sezione cls.(positivo se di compress.)

Mx Res Momento flettente resistente [kNm] riferito all'asse x princ. d'inerzia

Mis.Sic. Misura sicurezza = rapporto vettoriale tra (N r,Mx Res,My Res) e (N,Mx,My)

Verifica positiva se tale rapporto risulta >=1.000

As Tesa Area armature trave [cm²] in zona tesa. [Tra parentesi l'area minima ex (4.1.15)NTC]

 N°Comb
 Ver
 N
 Mx
 N Res
 Mx Res
 Mis.Sic.
 As Tesa

 1
 S
 62.75
 123.37
 62.54
 142.86
 1.16
 15.7(5.0)

#### METODO AGLI STATI LIMITE ULTIMI - DEFORMAZIONI UNITARIE ALLO STATO ULTIMO

ec max Deform. unit. massima del conglomerato a compressione Rapporto di duttilità [§ 4.1.2.1.2.1 NTC] deve essere < 0.45 x/d Ascissa in cm della fibra corrisp. a ec max (sistema rif. X,Y,O sez.) Xc max Ordinata in cm della fibra corrisp. a ec max (sistema rif. X,Y,O sez.) Yc max es min Deform. unit. minima nell'acciaio (negativa se di trazione) Ascissa in cm della barra corrisp. a es min (sistema rif. X,Y,O sez.) Xs min Ordinata in cm della barra corrisp. a es min (sistema rif. X,Y,O sez.) Ys min es max Deform. unit. massima nell'acciaio (positiva se di compress.) Ascissa in cm della barra corrisp. a es max (sistema rif. X,Y,O sez.) Xs max Ordinata in cm della barra corrisp. a es max (sistema rif. X,Y,O sez.) Ys max

 $N^{\circ}Comb$ Xs min Ys min Ys max ec max x/d Xc max Yc max es min es max Xs max 0.00350 1 0.245 -50.030.0 -0.0003743.6 23.6 -0.01078 -43.6 6.4

#### POSIZIONE ASSE NEUTRO PER OGNI COMB. DI RESISTENZA

a, b, c Coeff. a, b, c nell'eq. dell'asse neutro aX+bY+c=0 nel rif. X,Y,O gen. x/d Rapp. di duttilità (travi e solette)[§ 4.1.2.1.2.1 NTC]: deve essere < 0.45

C.Rid. Coeff. di riduz. momenti per sola flessione in travi continue

N°Comb a b c x/d C.Rid.
1 0.00000000 0.000605224 -0.014656722 0.245 0.746

# METODO SLU - VERIFICHE A TAGLIO SENZA ARMATURE TRASVERSALI (\$ 4.1.2.1.3.1 NTC)

Ver S = comb.verificata a taglio/ N = comb. non verificata
Ved Taglio agente [daN] uguale al taglio Vy di comb. (sollecit. retta)

Vwct Taglio trazione resistente [kN] in assenza di staffe [formula (4.1.23)NTC]

d Altezza utile sezione [cm] bw Larghezza minima sezione [cm]

Ro Rapporto geometrico di armatura longitudinale [<0.02] Scp Tensione media di compressione nella sezione [Mpa]



N°Comb Ver Ved Vwct d bw Ro Scp 1 S 85.56 193.32 23.6 100.0 0.0133 0.21

#### COMBINAZIONI RARE IN ESERCIZIO - MASSIME TENSIONI NORMALI ED APERTURA FESSURE (NTC/EC2)

Ver S = comb. verificata/ N = comb. non verificata

Sc max
Massima tensione (positiva se di compressione) nel conglomerato [Mpa]
Xc max, Yc max
Ascissa, Ordinata [cm] del punto corrisp. a Sc max (sistema rif. X,Y,O)
Sf min
Minima tensione (negativa se di trazione) nell'acciaio [Mpa]
Xs min, Ys min
Ascissa, Ordinata [cm] della barra corrisp. a Sf min (sistema rif. X,Y,O)
Ac eff.
Area di calcestruzzo [cm²] in zona tesa considerata aderente alle barre
Area barre [cm²] in zona tesa considerate efficaci per l'apertura delle fessure

N°Comb Sf min Xs min Ys min Ac eff. Ver Sc max Xc max Yc max As eff. 1 S 6.23 -50.0 30.0 -158.8 -43.6 6.4 700 15.7

#### COMBINAZIONI RARE IN ESERCIZIO - APERTURA FESSURE [§ 7.3.4 EC2]

La sezione viene assunta sempre fessurata anche nel caso in cui la trazione minima del calcestruzzo sia inferiore a fctm
Ver. Esito della verifica
e1 Massima deformazione unitaria di trazione nel calcestruzzo (trazione -) valutata in sezione fessurata
e2 Minima deformazione unitaria di trazione nel calcestruzzo (trazione -) valutata in sezione fessurata
k1 = 0.8 per barre ad aderenza migliorata [eq.(7.11)EC2]
kt = 0.4 per comb. quasi permanenti / = 0.6 per comb.frequenti [cfr. eq.(7.9)EC2]
k2 = 0.5 per flessione; =(e1 + e2)/(2\*e1) per trazione eccentrica [eq.(7.13)EC2]
k3 = 3.400 Coeff. in eq.(7.11) come da annessi nazionali

k3 = 3.400 Coeff. in eq.(7.11) come da annessi nazionali k4 = 0.425 Coeff. in eq.(7.11) come da annessi nazionali

Ø Diametro [mm] equivalente delle barre tese comprese nell'area efficace Ac eff [eq.(7.11)EC2]

Cf Copriferro [mm] netto calcolato con riferimento alla barra più tesa

e sm - e cm Differenza tra le deformazioni medie di acciaio e calcestruzzo [(7.8)EC2 e (C4.1.7)NTC]

Tra parentesi: valore minimo = 0.6 Smax / Es [(7.9)EC2 e (C4.1.8)NTC]

sr max Massima distanza tra le fessure [mm]

wk Apertura fessure in mm calcolata = sr max\*(e\_sm - e\_cm) [(7.8)EC2 e (C4.1.7)NTC]. Valore limite tra parentesi

Mx fess. Componente momento di prima fessurazione intorno all'asse X [kNm] My fess. Componente momento di prima fessurazione intorno all'asse Y [kNm]

e2 k2 Ø Cf Comb. Ver e1 e sm - e cm sr max Mx fess My fess wk 1 S -0.00114 0 0.500 20.0 0.00048 (0.00048) 54 335 0.160 (0.20) 53.10 0.00

### COMBINAZIONI FREQUENTI IN ESERCIZIO - MASSIME TENSIONI NORMALI ED APERTURA FESSURE (NTC/EC2)

N°Comb Ver Sc max Xc max Yc max Sf min Xs min Ys min Ac eff. As eff.

1 S 6.23 -50.0 30.0 -158.8 -43.6 6.4 700 15.7

## COMBINAZIONI FREQUENTI IN ESERCIZIO - APERTURA FESSURE [§ 7.3.4 EC2]

Ver e2 k2 Ø Cf Comb. e1 e sm - e cm sr max Mx fess My fess S -0.00114 0 0.500 20.0 54 0.00048 (0.00048) 335 0.160 (0.20) 53.10 0.00

## COMBINAZIONI QUASI PERMANENTI IN ESERCIZIO - MASSIME TENSIONI NORMALI ED APERTURA FESSURE (NTC/EC2)

N°Comb Ver Sc max Xc max Yc max Sf min Xs min Ys min Ac eff. As eff. S 6.23 -50.0 30.0 -158.8 -43.6 6.4 700 15.7

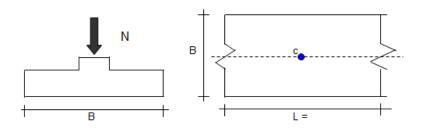
| ITALFERR GRUPPO FERROVIE DELLO STATO ITALIANE    | RADDOPP<br>DEFINITI |         | ANO - VIO | GNA DI VALI | .E - P | ROGETTO  |
|--------------------------------------------------|---------------------|---------|-----------|-------------|--------|----------|
| Relazione di calcolo Muri ad U – Spessore 30 cm  | COMMESSA            | LOTTO   | CODIFICA  | DOCUMENTO   | REV.   | FOGLIO   |
| The special of the control of the control of the | NR1J                | 01 D 29 | CL        | IN0000 009  | A      | 48 di 57 |

## COMBINAZIONI QUASI PERMANENTI IN ESERCIZIO - APERTURA FESSURE [§ 7.3.4 EC2]

| Comb. | Ver | e1       | e2 | k2    | Ø    | Cf | e sm - e cm sr max    | wk           | Mx fess | My fess |
|-------|-----|----------|----|-------|------|----|-----------------------|--------------|---------|---------|
| 1     | S   | -0.00114 | 0  | 0.500 | 20.0 | 54 | 0.00050 (0.00048) 335 | 0.168 (0.20) | 53.10   | 0.00    |

Si adottano spille 9Ø8/mq

# 9.7 Tabella riepilogativa incidenza ferri


|              | Inc. Armature [kg/mc] |
|--------------|-----------------------|
| Soletta inf. | 130                   |
|              |                       |
| Piedritto    | 130                   |

(per il quantitativo di armatura secondaria si assume il 20% di quella principale; si aggiunge al quantitativo di armatura principale e secondaria un 15% per sovrapposizioni/legature)

## 9.8 Verifica dei cedimenti a lungo termine

#### CEDIMENTI DI UNA FONDAZIONE NASTRIFORME

#### LAVORO:



#### Formulazione Teorica (H.G. Poulos, E.H. Davis; 1974)

 $\Delta \sigma z i = (2q/\pi)^*(\alpha + senacos\alpha)$ 

 $\Delta \sigma xi = (2q/\pi)^*(\alpha - sen\alpha cos\alpha)$ 

 $\Delta \sigma yi = (4q/\pi)^*(\nu\alpha)$ 

 $\alpha = \tan^{-1}((B/2)/z)$ 

 $\delta_{tot} = \Sigma \delta \iota = \Sigma (((\Delta \sigma z i - \nu i (\Delta \sigma x i + \Delta \sigma y i)) \Delta z i / E i)$ 

## **DATI DI INPUT:**

B = 3.60 (m) (Larghezza della Fondazione)

N = 232.00 (kN) (Carico Verticale Agente)

q = 64.44 (kN/mq) (Pressione Agente (q = N/B)

ns = 3 (-) (numero strati) (massimo 6)

| Strato | Litologia | Spessore | da z <sub>i</sub> | a Z <sub>I+1</sub> | Δzi | E       | ν    | δci  |
|--------|-----------|----------|-------------------|--------------------|-----|---------|------|------|
| (-)    | (-)       | (m)      | (m)               | (m)                | (m) | (kN/m²) | (-)  | (cm) |
| 1      |           | 30.00    | 0.0               | 30.0               | 0.1 | 15000   | 0.30 | 1.79 |
| 2      |           |          | 30.0              | 30.0               | 1.0 |         | 0.30 | 0.00 |
| 3      |           |          | 30.0              | 30.0               | 1.0 |         | 0.30 | 0.00 |
| -      |           |          | 0.0               | 0.0                | 1.0 |         | 0.30 | _    |
| -      |           |          | 0.0               | 0.0                | 1.0 | 0       | 0.00 |      |
| -      |           |          | 0.0               | 0.0                | 1.0 | 0       | 0.00 | -    |



## 9.9 Verifica dei cedimenti a breve termine

## **DATI DI INPUT:**

B = 3.60 (m) (Larghezza della Fondazione)

N = 232.00 (kN) (Carico Verticale Agente)

q = 64.44 (kN/mq) (Pressione Agente (q = N/B)

ns = 3 (-) (numero strati) (massimo 6)

| Strato | Litologia | Spessore | da z <sub>i</sub> | a Z <sub>I+1</sub> | Δzi | E       | ν    | δci  |
|--------|-----------|----------|-------------------|--------------------|-----|---------|------|------|
| (-)    | (-)       | (m)      | (m)               | (m)                | (m) | (kN/m²) | (-)  | (cm) |
| 1      |           | 30.00    | 0.0               | 30.0               | 0.1 | 45000   | 0.30 | 0.60 |
| 2      |           |          | 30.0              | 30.0               | 1.0 |         | 0.30 | 0.00 |
| 3      |           |          | 30.0              | 30.0               | 1.0 |         | 0.30 | 0.00 |
| -      |           |          | 0.0               | 0.0                | 1.0 |         | 0.30 | -    |
| -      |           |          | 0.0               | 0.0                | 1.0 | 0       | 0.00 | -    |
| -      |           |          | 0.0               | 0.0                | 1.0 | 0       | 0.00 | _    |

 $\delta_{ctot} = 0.60$  (cm)



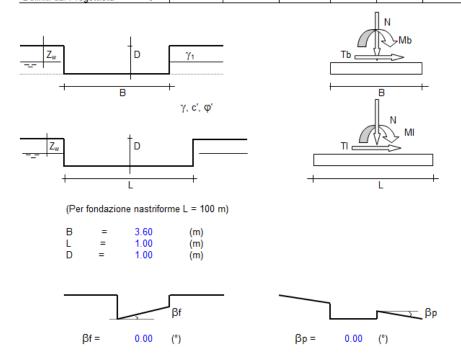
## 9.10 Verifica di portanza

#### <u>Fondazioni Dirette</u> <u>Verifica in tensioni efficaci</u>

 $qlim = c' \cdot Nc \cdot sc \cdot dc \cdot ic \cdot bc \cdot gc + q \cdot Nq \cdot sq \cdot dq \cdot iq \cdot bq \cdot gq + 0, 5 \cdot \gamma \cdot B \cdot N\gamma \cdot s\gamma \cdot d\gamma \cdot i\gamma \cdot b\gamma \cdot g\gamma$ 

D = Profondità del piano di appoggio

e<sub>B</sub> = Eccentricità in direzione B (e<sub>B</sub> = Mb/N)


 $e_L$  = Eccentricità in direzione L ( $e_L$  = MI/N) (per fondazione nastriforme  $e_L$  = 0; L\* = L)

 $B^*$  = Larghezza fittizia della fondazione ( $B^*$  = B -  $2^*e_B$ )

L\* = Lunghezza fittizia della fondazione (L\* = L - 2\*e<sub>L</sub>)

(per fondazione nastriforme le sollecitazioni agenti sono riferite all'unità di lunghezza)

|                          |          |            | coefficienti parziali   |        |             |            |        |            |  |  |
|--------------------------|----------|------------|-------------------------|--------|-------------|------------|--------|------------|--|--|
|                          |          |            | az                      | ioni   | proprietà d | el terreno | resist | resistenze |  |  |
| Metodo di calcolo        |          | permanenti | temporanee<br>variabili | tan φ' | c'          | qlim       | scorr  |            |  |  |
| Stato Limite<br>Ultimo   | A1+M1+R1 | 0          | 1.30                    | 1.50   | 1.00        | 1.00       | 1.00   | 1.00       |  |  |
|                          | A2+M2+R2 | 0          | 1.00                    | 1.30   | 1.25        | 1.25       | 1.80   | 1.00       |  |  |
| ë Ë                      | SISMA    | 0          | 1.00                    | 1.00   | 1.25        | 1.25       | 1.80   | 1.00       |  |  |
| Stat<br>U                | A1+M1+R3 | 0          | 1.30                    | 1.50   | 1.00        | 1.00       | 2.30   | 1.10       |  |  |
| •                        | SISMA    | 0          | 1.00                    | 1.00   | 1.00        | 1.00       | 2.30   | 1.10       |  |  |
| Tensioni Ammissibili     |          | 1.00       | 1.00                    | 1.00   | 1.00        | 3.00       | 3.00   |            |  |  |
| Definiti dal Progettista |          | 1.00       | 1.00                    | 1.00   | 1.00        | 2.30       | 1.10   |            |  |  |





Relazione di calcolo Muri ad U – Spessore 30 cm

| NR1J     | 01 D 29 | CI       | IN0000 009 | <b>A</b> | 52 di 57 |  |
|----------|---------|----------|------------|----------|----------|--|
| COMMESSA | LOTTO   | CODIFICA | DOCUMENTO  | REV.     | FOGLIO   |  |

#### **AZIONI**

|    |       | valori o   | Valori di  |         |
|----|-------|------------|------------|---------|
|    |       | permanenti | temporanee | calcolo |
| N  | [kN]  | 319.00     |            | 319.00  |
| Mb | [kNm] | 0.00       |            | 0.00    |
| MI | [kNm] | 0.00       |            | 0.00    |
| Tb | [kN]  | 0.00       |            | 0.00    |
| TI | [kN]  | 0.00       |            | 0.00    |
| Н  | [kN]  | 0.00       | 0.00       | 0.00    |

#### Peso unità di volume del terreno

= 16.00 (kN/mc) 71 16.00 (kN/mc)

#### Valori caratteristici di resistenza del terreno

= 0.00 (kN/mq) 26.00 (°)

#### Valori di progetto

L\* =

0.00 (kN/mq) = 26.00 (°)

#### Profondità della falda

25.00 (m)

e<sub>B</sub> = 0.00 (m) e<sub>L</sub> = 0.00 (m) B\* = 3.60 (m) 1.00

(m)

# q : sovraccarico alla profondità D

16.00 (kN/mq) q =

## $\gamma$ : peso di volume del terreno di fondazione

16.00 (kN/mc)

## Nc, Nq, Nγ: coefficienti di capacità portante

 $Nq = tan^2(45 + \phi'/2)^*e^{(\pi^*tg\phi')}$ 

Ng = 11.85

 $Nc = (Nq - 1)/tan\phi'$ 

Nc = 22.25

 $N\gamma = 2*(Nq + 1)*tan\phi'$ 

Νγ = 12.54

## s<sub>c</sub>, s<sub>q</sub>, s<sub>γ</sub> : <u>fattori di forma</u>

 $s_c = 1 + B*Nq / (L*Nc)$ 

s<sub>c</sub> = 1.15

 $s_q = 1 + B*tan\phi' / L*$ 

1.14

 $s_{y} = 1 - 0.4*B* / L*$ 



Relazione di calcolo Muri ad U – Spessore 30 cm

| COMMESSA | LOTTO   | CODIFICA | DOCUMENTO  | REV. | FOGLIO   |  |
|----------|---------|----------|------------|------|----------|--|
| NR1J     | 01 D 29 | CL       | IN0000 009 | A    | 53 di 57 |  |

$$s_v = 0.89$$

## ic, iq, i<sub>y</sub> : fattori di inclinazione del carico

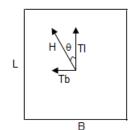
$$m_b = (2 + B^* / L^*) / (1 + B^* / L^*) =$$

1.22

(-)

$$m_1 = (2 + L^* / B^*) / (1 + L^* / B^*)$$

$$i_q = (1 - H/(N + B*L*c' \cot g\phi'))^m$$


(m=2 nel caso di fondazione nastriforme e

$$m=(m_b sin^2 \theta + m_l cos^2 \theta)$$
 in tutti gli altri casi)

$$i_c = i_q - (1 - i_q)/(Nq - 1)$$

$$i_{\gamma} = (1 - H/(N + B*L* c' \cot g\phi'))^{(m+1)}$$

i<sub>c</sub> =



## d<sub>c</sub>, d<sub>q</sub>, d<sub>y</sub> : fattori di profondità del piano di appoggio

$$\begin{split} \text{per D/B*} &\leq 1; \ d_q = 1 \ + 2 \ D \ tan\phi' \ (1 \ - \ sen\phi')^2 \ / \ B^* \\ \text{per D/B*} &> 1; \ d_q = 1 \ + (2 \ tan\phi' \ (1 \ - \ sen\phi')^2) \ ^* \ arctan \ (D \ / \ B^*) \end{split}$$

$$d_q = 1.31$$

$$d_c = d_q - (1 - d_q) / (N_c \tan \varphi')$$

$$d_c = 1.34$$

$$d_{y} = 1$$

$$d_v = 1.00$$

# $b_c,\,b_q,\,b_\gamma$ : $\underline{fattori\ di\ inclinazione\ base\ della\ fondazione}$

$$b_q = (1 - \beta_f \tan \varphi')^2$$

$$\beta_f + \beta_p =$$

$$\beta_f + \beta_p < 45^\circ$$

$$b_c = b_q - (1 - b_q) / (N_c tan\phi')$$

$$b_y = b_q$$

$$b_y = 1.00$$



Relazione di calcolo Muri ad U – Spessore 30 cm

| COMMESSA | LOTTO   | CODIFICA | DOCUMENTO  | REV. | FOGLIO   |
|----------|---------|----------|------------|------|----------|
| NR1J     | 01 D 29 | CL       | IN0000 009 | A    | 54 di 57 |

# gc, gq, gz : fattori di inclinazione piano di campagna

$$g_q = (1 - tan\beta_p)^2$$

$$\beta_f + \beta_p =$$

$$\beta_f + \beta_p < 4$$

$$g_q = 1.00$$

$$g_c = g_q - (1 - g_q) / (N_c \tan \varphi')$$

$$g_c = 1.00$$

$$g_y = g_q$$

$$g_y = 1.00$$

## Carico limite unitario

$$q_{lim} = 370.79$$
 (kN/m<sup>2</sup>)

## Pressione massima agente

$$q = 88.61 \text{ (kN/m}^2\text{)}$$

## Verifica di sicurezza capacità portante

$$q_{lim} / \gamma_R = 161.21$$

$$\geq$$
 q = 88.61 (kN/m<sup>2</sup>)

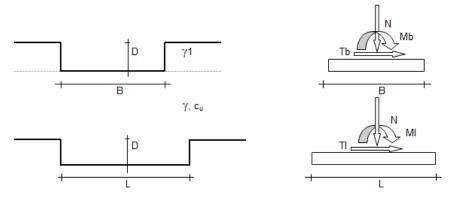


#### <u>Fondazioni Dirette</u> <u>Verifica in tensioni totali</u>

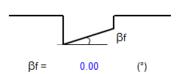
 $qlim = c_u \cdot Nc \cdot sc \cdot dc \cdot ic \cdot bc \cdot gc + q \cdot Nq$ 

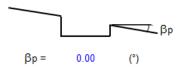
D = Profondità del piano di appoggio

e<sub>B</sub> = Eccentricità in direzione B (e<sub>B</sub> = Mb/N)


 $e_L$  = Eccentricità in direzione L ( $e_L$  = MI/N) (per fondazione nastriforme  $e_L$  = 0; L\* = L)

 $B^*$  = Larghezza fittizia della fondazione ( $B^*$  = B -  $2^*e_B$ )


 $L^*$  = Lunghezza fittizia della fondazione ( $L^*$  = L -  $2^*e_L$ )


coefficienti parziali

|                        |                |            | azioni                  |      | proprietà del terreno | resistenze |      |
|------------------------|----------------|------------|-------------------------|------|-----------------------|------------|------|
| Metodo di calcolo      |                | permanenti | temporanee<br>variabili | Cu   | qlim                  | scorr      |      |
| _                      | A1+M1+R1       | 0          | 1.30                    | 1.50 | 1.00                  | 1.00       | 1.00 |
| o mite                 | A2+M2+R2       | 0          | 1.00                    | 1.30 | 1.40                  | 1.80       | 1.00 |
| Stato Limite<br>Ultimo | SISMA          | 0          | 1.00                    | 1.00 | 1.40                  | 1.80       | 1.00 |
| Stat<br>U              | A1+M1+R3       | 0          | 1.30                    | 1.50 | 1.00                  | 2.30       | 1.10 |
|                        | SISMA          | 0          | 1.00                    | 1.00 | 1.00                  | 2.30       | 1.10 |
| Tensioni               | Ammissibili    | 0          | 1.00                    | 1.00 | 1.00                  | 3.00       | 3.00 |
| Definiti da            | al Progettista | •          | 1.00                    | 1.00 | 1.00                  | 2.30       | 1.10 |



(Per fondazioni nastriformi L=100 m)







Relazione di calcolo Muri ad U – Spessore 30 cm

| COMMESSA | LOTTO   | CODIFICA | DOCUMENTO  | REV. | FOGLIO   |
|----------|---------|----------|------------|------|----------|
| NR1J     | 01 D 29 | CL       | IN0000 009 | A    | 56 di 57 |

#### AZIONI

|    |       | valori     | Valori di  |         |
|----|-------|------------|------------|---------|
|    |       | permanenti | temporanee | calcolo |
| N  | [kN]  | 319.00     | 0.00       | 319.00  |
| Mb | [kNm] | 0.00       | 0.00       | 0.00    |
| MI | [kNm] | 0.00       | 0.00       | 0.00    |
| Tb | [kN]  | 0.00       | 0.00       | 0.00    |
| TI | [kN]  | 0.00       | 0.00       | 0.00    |
| Н  | [kN]  | 0.00       | 0.00       | 0.00    |

#### Peso unità di volume del terreno

17.00 (kN/mc) 71 17.00 (kN/mc) 7

#### Valore caratteristico di resistenza del terreno

40.00 (kN/mq)

0.00

(m) 0.00 (m)

#### Valore di progetto

40.00

3.60 В\* L\* 1.00

(m) (m)

(kN/mq)

## q : sovraccarico alla profondità D

17.00 (kN/mq)

## γ: peso di volume del terreno di fondazione

17.00 (kN/mc)  $\gamma =$ 

## Nc : coefficiente di capacità portante

 $Nc = 2 + \pi$ 

5.14 Nc =

## s<sub>c</sub>: fattori di forma

 $s_c = 1 + 0.2 B^* / L^*$ 

s<sub>c</sub> = 1.06

#### i<sub>c</sub>: fattore di inclinazione del carico

 $m_b = (2 + B^* / L^*) / (1 + B^* / L^*)$ 

 $m_1 = (2 + L^* / B^*) / (1 + L^* / B^*)$ 1.22

1.78

 $\theta = arctg(Tb/TI) =$ 90.00 (°)

m = 1.78





Relazione di calcolo Muri ad U – Spessore 30 cm

COMMESSA LOTTO CODIFICA DOCUMENTO FOGLIO REV. NR1J 01 D 29 CLIN0000 009 A 57 di 57

(m=2 nel caso di fondazione nastriforme e m=(m<sub>b</sub>sin<sup>2</sup>θ+m<sub>l</sub>cos<sup>2</sup>θ) in tutti gli altri casi)

$$i_c = (1 - m H / (B*L* c_u*Nc))$$

$$i_c = 1.00$$

# d<sub>c</sub>: fattore di profondità del piano di appoggio

$$d_c = 1.40$$

## bc: fattore di inclinazione base della fondazione

$$b_c = (1 - 2 \beta_f / (\pi + 2))$$

$$\beta_f + \beta_D = 0.00$$

$$\beta_f + \beta_p < 45^\circ$$

$$b_c = 1.00$$

## gc: fattore di inclinazione piano di campagna

$$g_c = (1 - 2 \beta_f / (\pi + 2))$$

$$\beta_f + \beta_p = 0.00$$

$$\beta_f + \beta_D < 45^\circ$$

$$g_c = 1.00$$

## Carico limite unitario

$$q_{lim} = 320.83$$
 (kN/m<sup>2</sup>)

#### Pressione massima agente

$$q = N / B^* L^*$$

$$q = 88.61 \text{ (kN/m}^2\text{)}$$

## Verifica di sicurezza capacità portante

$$q_{lim}/\gamma_R =$$

≥

$$q = 88.61 (kN/m^2)$$