COMMITTENTE:



PROGETTAZIONE:



# DIREZIONE TECNICA

# **PROGETTO DEFINITIVO**

**U.O. INFRASTRUTTURE CENTRO** 

# RADDOPPIO LINEA FERROVIARIA ROMA – VITERBO TRATTA CESANO – VIGNA DI VALLE

IN02 - Tombino idraulico al km 28+847

Relazione di calcolo scatolare

SCALA:

 ${\tt COMMESSA} \quad {\tt LOTTO} \quad {\tt FASE} \quad {\tt ENTE} \quad {\tt TIPO} \ {\tt DOC}. \quad {\tt OPERA/DISCIPLINA} \qquad {\tt PROGR}. \quad {\tt REV}.$ 

NR1J 01 D 29 CL IN0200 001 A

| Rev. | Descrizione         | Redatto   | Data    | Verificato | Data    | Approvato   | Data    | Autorizzato Data                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|------|---------------------|-----------|---------|------------|---------|-------------|---------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| A    | EMISSIONE ESECUTIVA | F. Serrau | 05-2020 | M. Monda   | 05-2020 | T. Paoletti | 05-2020 | F. Arduini                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|      |                     |           |         |            |         |             |         | 05-2020                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|      | REVISIONE           | F. Serrau | 05-2020 | M. Monda   | 05-2020 | T. Paoletti | 05-2020 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| В    | REVISIONE           | 910       |         | 44         |         | 1           |         | Ordine                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|      |                     | Pho fer   |         | 100        |         | 14          |         | ITALI<br>Dire<br>Infras<br>Doktor<br>degli ingeg                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|      |                     |           |         |            |         |             |         | FALFE Director frastructural f |
|      |                     |           |         |            |         |             |         | RR S.J. RR S.J. ablizio                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|      |                     |           |         |            |         |             |         | p.A. sica entro Arduin Provincia                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |

File: NR1J01D29CLIN0200001B.docx n. Elab. 307.03



# RADDOPPIO CESANO VIGNA DI VALLE PROGETTO DEFINITIVO

Relazione di calcolo scatolare

COMMESSA NR1J LOTTO 01 D 29 CODIFICA CL DOCUMENTO
IN0200 001

REV.

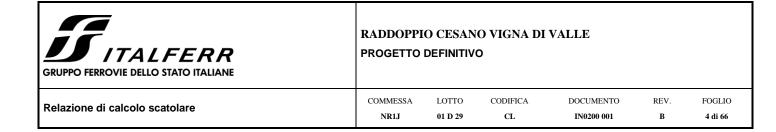
FOGLIO 2 di 66

# **INDICE**

| 1 | F   | PREMESSA                                                 | 4  |
|---|-----|----------------------------------------------------------|----|
| 2 | 1   | NORMATIVA DI RIFERIMENTO                                 | 5  |
| 3 | N   | MATERIALI                                                | 6  |
|   | 3.1 | l Calcestruzzo                                           | 6  |
|   | 3.2 | 2 Acciaio B450C                                          | 7  |
| 4 | Ι   | INQUADRAMENTO GEOTECNICO                                 | 10 |
|   | 4.1 | I TERRENO DI RICOPRIMENTO/RINTERRO                       | 10 |
|   | 4.2 | 2 Interazione terreno-struttura                          | 10 |
| 5 | (   | CARATTERIZZAZIONE SISMICA                                | 12 |
|   | 5.1 | VITA NOMINALE E CLASSE D'USO                             | 12 |
|   | 5.2 | PARAMETRI DI PERICOLOSITÀ SISMICA                        | 12 |
| 6 | S   | SOFTWARE DI CALCOLO                                      | 16 |
|   | 6.1 | ORIGINE E CARATTERISTICHE DEI CODICI DI CALCOLO ADOTTATI | 16 |
|   | 6.2 | 2 Unità di misura                                        | 16 |
|   | 6.3 | GRADO DI AFFIDABILITÀ DEL CODICE                         | 16 |
|   | 6.4 | VALUTAZIONE DELLA CORRETTEZZA DEL MODELLO                | 16 |
|   | 6.5 | 5 CARATTERISTICHE DELL'ELABORAZIONE                      | 17 |
|   | 6.6 | GIUDIZIO FINALE SULLA ACCETTABILITÀ DEI CALCOLI          | 17 |
|   | 6.7 | 7 Programmi di servizio                                  | 17 |
| 7 | 7   | TOMBINO SCATOLARE                                        | 18 |



# RADDOPPIO CESANO VIGNA DI VALLE PROGETTO DEFINITIVO


Relazione di calcolo scatolare

COMMESSA NR1J LOTTO 01 D 29 CODIFICA CL DOCUMENTO
IN0200 001

REV.

FOGLIO
3 di 66

|    | 7.3.2 | Spinta in presenza di falda                     |    |
|----|-------|-------------------------------------------------|----|
|    | 7.3.4 |                                                 |    |
|    | 7.3   | 3.4.1 Treno di carico LM71                      | 23 |
|    | 7.3.5 | Spinta del terreno indotta dai treni di carico  | 25 |
|    | 7.3.6 | Avviamento e frenatura                          | 27 |
|    | 7.3.7 | Serpeggio e centrifuga                          | 28 |
|    | 7.3.8 | Ritiro differenziale della soletta di copertura | 28 |
|    | 7.3.9 | Azione Termica                                  | 31 |
| 9  | DIAC  | GRAMMI DELLE SOLLECITAZIONI                     | 38 |
| 10 | VER   | IFICA DELLE SEZIONI IN C.A                      | 42 |
| 1  | 0.1   | VERIFICA SOLETTA INFERIORE                      | 43 |
| 1  | 0.2   | VERIFICA SOLETTA SUPERIORE                      | 47 |
| 1  | 0.3   | Verifica piedritti                              | 51 |
| 1  | 0.4   | TABELLA RIEPILOGATIVA INCIDENZA FERRI           | 56 |
|    | 10.4. | 1 Soletta inferiore                             | 56 |
|    | 10.4. | 1 Soletta superiore                             | 57 |
|    | 10.4. | 1 Piedritti                                     | 58 |
| 11 | VERI  | FICHE GEOTECNICHE                               | 59 |
| 1  | 1.1   | VERIFICA DEI CEDIMENTI A LUNGO TERMINE          | 59 |
| 1  | 1.2   | VERIFICA DEI CEDIMENTI A BREVE TERMINE          | 60 |
| 1  | 1.3   | VERIFICA DI PORTANZA                            | 62 |



#### 1 PREMESSA

La presente relazione ha per oggetto il dimensionamento e le verifiche di resistenza secondo il metodo semiprobabilistico agli Stati Limite (S.L.) del tombino scatolare ferroviario tipologico.

Le analisi strutturali e le verifiche di sicurezza sono state effettuate secondo il DM 17 gennaio 2018.

L'opera consiste in uno scatolare in c.a. gettato in opera. La sezione trasversale retta ha una larghezza interna di  $L_{int}$  = 5.00 m ed un'altezza netta di  $H_{int}$  = 5.50 m; lo spessore della platea di fondazione è di  $S_f$ = 0.70 m, lo spessore dei piedritti è di  $S_p$ = 0.70 m e lo spessore della soletta di copertura è di  $S_s$ = 0.70 m. Il ricoprimento, compreso tra soletta superiore e il ballast, è pari ad 0.20m.

Nell'immagine seguente si riporta una sezione trasversale dell'opera.

Quanto riportato di seguito consentirà di verificare che il dimensionamento della struttura è stato effettuato nel rispetto dei requisiti di resistenza richiesti all'opera.

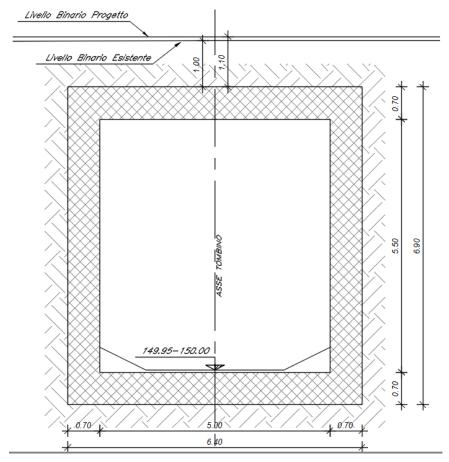



Figure 1: sezione trasversale del tombino



# RADDOPPIO CESANO VIGNA DI VALLE PROGETTO DEFINITIVO

| COMMESSA | LOTTO   | CODIFICA | DOCUMENTO  | REV. | FOGLIO  |
|----------|---------|----------|------------|------|---------|
| NR1J     | 01 D 29 | CL       | IN0200 001 | В    | 5 di 66 |

#### 2 NORMATIVA DI RIFERIMENTO

Relazione di calcolo scatolare

La progettazione è conforme alle normative vigenti nonché alle istruzioni dell'Ente FF.SS.

La normativa cui viene fatto riferimento nelle fasi di calcolo e progettazione è la seguente:

- Norme Tecniche per le Costruzioni, DM del 17/01/2018;
- Legge 05/01/1971 n°1086: Norme per la disciplina delle opere di conglomerato cementizio armato, normale e precompresso, ed a struttura metallica;
- Legge 02/02/1974 n°64: Provvedimenti per le costruzioni con particolari prescrizioni per le zone sismiche;
- C.M. 21/01/2019 n.7: Istruzioni per l'applicazione delle "Norme tecniche per le costruzioni;
- RFI DTC SI PS MA IFS 001 A del 30/12/2016: Manuale di progettazione delle opere civili Parte II Sezione 2
- Ponti e Strutture;
- RFI DTC SI PS SP IFS 001 A del 30/12/2016: Capitolato generale tecnico di appalto delle opere civili Parte II Sezione 6 Opere in conglomerato cementizio e in acciaio;
- UNI EN 1991-1-4:2005: Eurocodice 1 Azioni sulle strutture Parte 1-4: Azioni in generale Azioni del vento;
- UNI EN 1992-1-1:2005: Eurocodice 2 Progettazione delle strutture di calcestruzzo Parte 1-1: Regole generali e regole per gli edifici;
- UNI EN 1992-2:2006: Eurocodice 2 Progettazione delle strutture di calcestruzzo Parte 2: Ponti;
- UNI EN 1993-1-1:2005: Eurocodice 3 Progettazione delle strutture di acciaio Parte 1-1: Regole generali e regole per gli edifici;
- UNI EN 1993-2:2007: Eurocodice 3 Progettazione delle strutture di acciaio Parte 2: Ponti;
- UNI EN 1998-1:2005: Eurocodice 8 Progettazione delle struttura per la resistenza sismica Parte 1: Regole generali, azioni sismiche e regole per gli edifici;
- UNI EN 1998-2:2006: Eurocodice 8 Progettazione delle struttura per la resistenza sismica Parte 2: Ponti;
- STI 2014 –Regolamento (UE) N. 1299/2014 della Commissione del 18 novembre 2014 relativo alle specifiche tecniche di interoperabilità per il sottosistema «infrastruttura» del sistema ferroviario dell'Unione europea, modificato dal Regolamento di esecuzione (UE) N° 2019/776 della Commissione del 16 maggio 2019;



### 3 MATERIALI

Il calcestruzzo adottato corrisponde alla Classe C30/37, mentre l'acciaio in barre ad aderenza migliorata corrisponde alla classe B450C. Di seguito vengono elencate le specifiche.

#### 3.1 Calcestruzzo

Per le strutture in elevazione si adotta un calcestruzzo con le caratteristiche riportate di seguito:

Classe d'esposizione: XA1

**C30/37:** fck  $\geq$  30 MPa Rck  $\geq$  37 MPa

Classe minima di consistenza: S4

Copriferro: 50 mm

In accordo con le norme vigenti, risulta per il materiale in esame:

| Classe di resistenza: Elevazione                      | C30/37                      |       |                   |
|-------------------------------------------------------|-----------------------------|-------|-------------------|
| Resistenza a compressione cubica caratteristica       | R <sub>ck</sub> =           | 37    | $N/mm^2$          |
| Resistenza a compressione cilindrica caratteristica   | $\mathbf{f}_{ck} =$         | 30.71 | $N/mm^2$          |
| Resistenza a compressione cilindrica media            | $\mathbf{f}_{cm} =$         | 38.71 | $N/mm^2$          |
| Resistenza a trazione semplice                        | $f_{ctm} =$                 | 2.94  | $N/mm^2$          |
| Resistenza a trazione per flessione                   | $f_{ctm} =$                 | 3.53  | $N/mm^2$          |
| Modulo elastico secante medio                         | $E_{cm} =$                  | 33019 | $N/mm^2$          |
| Resistenza caratteristica a trazione semplice (5%)    | $\mathbf{f}_{\text{ctk}} =$ | 2.06  | $N/mm^2$          |
| Resistenza caratteristica a trazione semplice (95%)   | $\mathbf{f}_{\text{ctk}} =$ | 3.82  | $N/mm^2$          |
| Coefficiente di sicurezza SLU:                        | $\gamma_c =$                | 1.5   |                   |
| Resistenza di calcolo a compressione cilindrica SLU:  | $f_{cd} =$                  | 17.4  | $N/mm^2$          |
| Resistenza di calcolo a trazione semplice (5%) - SLU: | $f_{ctd} =$                 | 1.37  | $N/mm^2$          |
| Coefficiente di sicurezza SLE:                        | $\gamma_c =$                | 1.0   |                   |
| Resistenza di calcolo a compressione cilindrica SLE:  | $f_{cd} =$                  | 30.7  | $N/mm^2$          |
| Resistenza di calcolo a trazione semplice (5%) - SLE: | $f_{ctd} =$                 | 2.06  | $N/mm^2$          |
| Massime tensioni di compressione in esercizio:        |                             |       |                   |
| Combinazione rara                                     | $\sigma_{c,ad} =$           | 18.43 | $N/mm^2$          |
| Combinazione quasi permanente                         | $\sigma_{c,ad} =$           | 13.82 | N/mm <sup>2</sup> |



# RADDOPPIO CESANO VIGNA DI VALLE

PROGETTO DEFINITIVO

Relazione di calcolo scatolare

COMMESSA LOTTO CODIFICA DOCUMENTO REV. FOGLIO

NRIJ 01 D 29 CL IN0200 001 B 7 di 66

#### 3.2 Acciaio B450C

Tensione caratteristica di snervamento:  $f_{yk} = 450 \text{ MPa};$ 

Tensione di progetto:  $f_{yd} = f_{yk} \, / \, \gamma_m$ 

in cui  $\gamma_m = 1.15$   $f_{yd} = 450 / 1.15 = 391.3 \text{ MPa};$ 

Modulo Elastico  $E_s = 210'000 \text{ MPa}.$ 

# 3.3 Verifica S.L.E.

La verifica nei confronti degli Stati limite di esercizio, consiste nel controllare, con riferimento alle sollecitazioni di calcolo corrispondenti alle Combinazioni di Esercizio il tasso di Lavoro nei Materiali e l'ampiezza delle fessure attesa, secondo quanto di seguito specificato

#### 3.3.1 Verifiche alle tensioni

La verifica delle tensioni in esercizio consiste nel controllare il rispetto dei limiti tensionali previsti per il calcestruzzo e per l'acciaio per ciascuna delle combinazioni di carico caratteristiche "Rara" e "Quasi Permanente"; i valori tensionali nei materiali sono valutati secondo le note teorie di analisi delle sezioni in c.a. in campo elastico e con calcestruzzo "non reagente" adottando come limiti di riferimento, trattandosi nel caso in specie di opere Ferroviarie, quelli indicati nel documento "RFI DTC SI MA IFS 001 B - Manuale di Progettazione delle Opere Civili ", ovvero:

#### Strutture in c.a.

#### Tensioni di compressione del calcestruzzo

Devono essere rispettati i seguenti limiti per le tensioni di compressione nel calcestruzzo:

- per combinazione di carico caratteristica (rara): 0,55 f<sub>ek</sub>;
- per combinazioni di carico quasi permanente: 0,40 fek;
- per spessori minori di 5 cm, le tensioni normali limite di esercizio sono ridotte del 30%.

#### Tensioni di trazione nell'acciaio

Per le armature ordinarie, la massima tensione di trazione sotto la combinazione di carico caratteristica (rara) non deve superare  $0.75~f_{vk}$ .



# 3.3.2 Verifiche a fessurazione

La verifica di fessurazione consiste nel controllare l'ampiezza dell'apertura delle fessure sotto combinazione di carico frequente e combinazione quasi permanente. Essendo la struttura a contatto col terreno si considerano condizioni ambientali aggressive; le armature di acciaio ordinario sono ritenute poco sensibili [NTC – Tabella 4.1.IV]

In relazione all'aggressività ambientale e alla sensibilità dell'acciaio, l'apertura limite delle fessure è riportato nel prospetto seguente:

Tabella 1 – Criteri di scelta dello stato limite di fessurazione e Condizioni Ambientali

| Gruppi di esigenza | Condizioni ambientali | Combinazione di azione | Armatura  Sensibile Poco sensibile |                 |              |                       |  |  |
|--------------------|-----------------------|------------------------|------------------------------------|-----------------|--------------|-----------------------|--|--|
| esigenia           |                       |                        | Stato limite                       | wd              | Stato limite | wd                    |  |  |
| a                  | Ordinarie             | frequente              | ap. fessure                        | ≤w <sub>2</sub> | ap. fessure  | ≤w <sub>3</sub>       |  |  |
|                    |                       | quasi permanente       | ap. fessure                        | ≤w₁             | ap. fessure  | ≤w <sub>2</sub>       |  |  |
| b                  | Aggressive            | frequente              | ap. fessure                        | ≤w₁             | ap. fessure  | ≤w <sub>2</sub>       |  |  |
|                    |                       | quasi permanente       | decompressione                     | -               | ap. fessure  | ≤w₁                   |  |  |
| С                  | Molto Aggressive      | frequente              | formazione fessure                 | -               | ap. fessure  | $\leq$ w <sub>1</sub> |  |  |
|                    |                       | quasi permanente       | decompressione                     | -               | ap. fessure  | $\leq$ w <sub>1</sub> |  |  |

Tabella 4.1.III - Descrizione delle condizioni ambientali

| CONDIZIONI AMBIENTALI | CLASSE DI ESPOSIZIONE             |
|-----------------------|-----------------------------------|
| Ordinarie             | X0, XC1, XC2, XC3, XF1            |
| Aggressive            | XC4, XD1, XS1, XA1, XA2, XF2, XF3 |
| Molto aggressive      | XD2, XD3, XS2, XS3, XA3, XF4      |

### Risultando:

 $w_1 = 0.2 \text{ mm}$ 

 $w_2 = 0.3 \text{ mm}$ 

 $w_3 = 0.4 \text{ mm}$ 

Alle prescrizioni normative presenti in NTC si sostituiscono in tal caso quelle fornite dal "Manuale di Progettazione delle Opere Civili" secondo cui la verifica nei confronti dello stato limite di apertura delle fessure va effettuata utilizzando le sollecitazioni derivanti dalla combinazione caratteristica (rara).



Per strutture in condizioni ambientali aggressive o molto aggressive, qual è il caso delle strutture in esame così come identificate nel par. 4.1.2.2.4.3 del DM 17.1.2018, per tutte le strutture a permanente contatto con il terreno e per le zone non ispezionabili di tutte le strutture, l'apertura convenzionale delle fessure dovrà risultare:

- Combinazione Caratteristica (Rara)  $\delta_f \le w_1 = 0.2 \ mm$ 

Riguardo infine il valore di calcolo delle fessure da confrontare con i valori limite fissati dalla norma, si è utilizzata la procedura del D.M. 17.1.2018, in accordo a quanto previsto al punto "C4.1.2.2.4.6 Verifica allo stato limite di fessurazione" della Circolare n.7/19.



# 4 INQUADRAMENTO GEOTECNICO

# 4.1 Terreno di ricoprimento/rinterro

Per il terreno di ricoprimento dell'opera sono state assunte le seguenti caratteristiche geotecniche :

 $\gamma = 20 \text{ kN/m}^3$  peso di volume naturale

 $\varphi' = 38^{\circ}$  angolo di resistenza al taglio

c' = 0 kPa coesione drenata

#### 4.2 Interazione terreno-struttura

#### Modello 1

| Unità geotecnica | Descrizione                           | z iniz<br>(m) | z fin<br>(m) | spessore<br>(m) | z media (m<br>da b.f.) | volume | l Tino di | relativa | Angolo di<br>resistenza al<br>taglio o' picco (°) | taglio a volume | Coesione<br>efficace c'<br>(kPa) | drenata Cu | Modulo<br>elastico<br>Eop,1 (MPa) |    | Modulo<br>edometrico<br>M (MPa) | Modulo<br>non<br>drenato Eu<br>(MPa) | Coefficiente di<br>permeabilità K<br>media (cm/s) |                    |
|------------------|---------------------------------------|---------------|--------------|-----------------|------------------------|--------|-----------|----------|---------------------------------------------------|-----------------|----------------------------------|------------|-----------------------------------|----|---------------------------------|--------------------------------------|---------------------------------------------------|--------------------|
| U1a              | Limo sabbioso<br>debolmente argilloso | 0             | 9            | 9               | 4.5                    | 16     | GF        | 40       | 26                                                | 23.5            | 5                                | 50         | 10                                | 20 | 13                              | 45                                   | 1*10-4                                            | 5*10 <sup>-3</sup> |
| U2a              | Sabbia limoso<br>argillosa            | 9             | 20           | 11              | 14.5                   | 16     | GG        | 60-70    | 30                                                | 25              | 6.5                              | -          | 30                                | 60 | 40                              | -                                    | 1*10 <sup>-3</sup>                                | -                  |
| U2b              | Sabbia limosa<br>debolmente addensata | 20            | 30           | 10              | 25                     | 16     | GG        | 55       | 26                                                | 22              | 0                                | -          | 20                                | 40 | 25                              | =                                    | -                                                 | -                  |

La falda di progetto si trova alla profondità di 3.86 m dal piano campagna.

#### Categoria sottosuolo sismica:

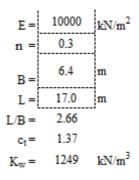
### Categoria tipo B

Di seguito sono trattati gli aspetti di natura geotecnica riguardanti l'interazione terreno-struttura relativamente all'opera in esame.

Per la determinazione della costante di sottofondo si può fare riferimento alle seguenti formulazioni assimilando il comportamento del terreno a quello di un mezzo elastico omogeneo (formula di Vesic)

$$k = \frac{0.65 E}{1 - v^2} * \sqrt[12]{\frac{Eb^4}{(E_c J)_{fond}}}$$

dove:


h = altezza della trave;

- b = dimensione trasversale della trave;

- J = inierzia della trave;



- E<sub>c</sub> = modulo di elasticità del calcestruzzo
- v =coefficiente di Poisson del terreno;
- E = modulo elastico medio del terreno sottostante.



Cautelativamente si limita, ai fini del calcolo, il valore della costante di sottofondo a circa 1000 kN/m<sup>3</sup>.



#### 5 CARATTERIZZAZIONE SISMICA

Nel seguente paragrafo è riportata la valutazione dei parametri di pericolosità sismica utili alla determinazione delle azioni sismiche di progetto dell'opera cui si riferisce il presente documento, in accordo a quanto specificato a riguardo dal D.M. 17gennaio 2018.

#### 5.1 Vita nominale e classe d'uso

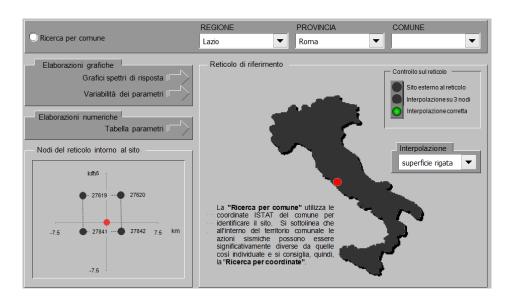
Per la valutazione dei parametri di pericolosità sismica è necessario definire, oltre alla localizzazione geografica del sito, la Vita nominale dell'opera strutturale  $(V_N)$ , intesa come il numero di anni nel quale la struttura, purché soggetta alla manutenzione ordinaria, deve potere essere usata per lo scopo al quale è destinata, e la Classe d'Uso a cui è associato un coefficiente d'uso  $(C_U)$ 

Per l'opera in oggetto si considera una vita nominale:  $V_N = 75$  anni (categoria 2: "Altre opere nuove a velocità V<250 Km/h"). Riguardo invece la Classe d'Uso, all' opera in oggetto corrisponde una Classe II a cui è associato un coefficiente d'uso pari a (NTC – Tabella 2.4.II):  $C_U = 1.0$ .

I parametri di pericolosità sismica vengono quindi valutate in relazione ad un periodo di riferimento  $V_R$  che si ricava per ciascun tipo di costruzione, moltiplicando la vita nominale  $V_N$  per il coefficiente d'uso  $C_U$ , ovvero:

$$V_R = V_N \cdot C_U$$

Pertanto, per l'opera in oggetto, il periodo di riferimento è pari a  $V_R = 75 \times 1.0 = 75$  anni


#### 5.2 Parametri di pericolosità sismica

La valutazione dei parametri di pericolosità sismica, che ai sensi del D.M. 17-01-2018, costituiscono il dato base per la determinazione delle azioni sismiche di progetto su una costruzione (forme spettrali e/o forze inerziali) dipendono, come già in parte anticipato in precedenza, dalla localizzazione geografica del sito, dalle caratteristiche della costruzione (Periodo di riferimento per valutazione azione sismica /  $V_R$ ) oltre che dallo Stato Limite di riferimento/Periodo di ritorno dell'azione sismica.

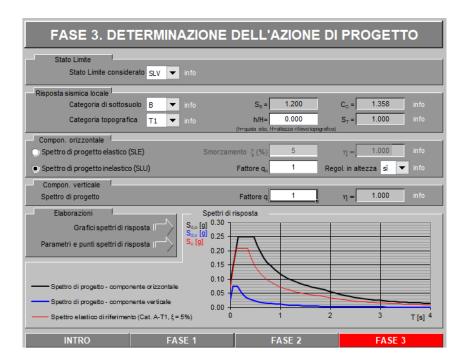
- Categoria sottosuolo B

| TALFERR GRUPPO FERROVIE DELLO STATO ITALIANE | RADDOPPIO        |                  | O VIGNA DI<br>O | VALLE                |      |                    |
|----------------------------------------------|------------------|------------------|-----------------|----------------------|------|--------------------|
| Relazione di calcolo scatolare               | COMMESSA<br>NR1J | LOTTO<br>01 D 29 | CODIFICA<br>CL  | DOCUMENTO IN0200 001 | REV. | FOGLIO<br>13 di 66 |

In accordo a quanto riportato in Allegato A delle Norme Tecniche per le costruzioni DM 17.01.18, si ottiene per il sito in esame:



La pericolosità sismica di base è stata definita sulla base delle coordinate geografiche del sito di realizzazione dell'opera:






| SLATO<br>LIMITE | T <sub>R</sub><br>[anni] | a <sub>g</sub><br>[g] | F <sub>o</sub><br>[-] | T <sub>c</sub> *<br>[s] |
|-----------------|--------------------------|-----------------------|-----------------------|-------------------------|
| SLO             | 45                       | 0.035                 | 2.658                 | 0.245                   |
| SLD             | 75                       | 0.040                 | 2.674                 | 0.273                   |
| SLV             | 712                      | 0.068                 | 2.935                 | 0.349                   |
| SLC             | 1462                     | 0.079                 | 3.011                 | 0.381                   |

Figure 2: Valori dei parametri ag, F0, TC\*per i periodi di ritorno associati a ciascun stato limite

I parametri utilizzati per la definizione dell'azione sismica sono riportati di seguito.





#### Parametri e punti dello spettro di risposta orizzontale per lo stato \$LV

| Parametri ind<br>STATO LIMITE               |                                                                                          | 1                                     |          | llo spettro<br>T [s] | Se [q] |
|---------------------------------------------|------------------------------------------------------------------------------------------|---------------------------------------|----------|----------------------|--------|
|                                             | 0.068 q                                                                                  |                                       |          | 0.000                | 0.082  |
| <u>a.</u>                                   | 2.935                                                                                    |                                       | T.✓      | 0.000                | 0.082  |
| F                                           | 0.349 s                                                                                  |                                       | T.       | 0.474                | 0.241  |
| lo<br>S∈                                    | 1,200                                                                                    |                                       | '°~      | 0.540                | 0.241  |
|                                             | 1.358                                                                                    |                                       | ⊢        | 0.607                | 0.188  |
| C<br>S-                                     | 1.000                                                                                    |                                       | ⊢        | 0.674                | 0.169  |
|                                             | 1.000                                                                                    |                                       | ⊢        | 0.740                | 0.154  |
| - ч                                         |                                                                                          | l                                     |          | 0.807                | 0.141  |
|                                             |                                                                                          |                                       |          | 0.874                | 0.131  |
| arametri di                                 | pendenti                                                                                 |                                       |          | 0.940                | 0.121  |
| S                                           | 1.200                                                                                    | ]                                     | F        | 1.007                | 0.113  |
| η                                           | 1.000                                                                                    |                                       | F        | 1.074                | 0.106  |
| T <sub>o</sub>                              | 0.158 s                                                                                  |                                       |          | 1.140                | 0.100  |
| T <sub>o</sub>                              | 0.474 s                                                                                  | 1                                     |          | 1.207                | 0.095  |
| T <sub>n</sub>                              | 1.874 s                                                                                  | 1                                     |          | 1.274                | 0.090  |
|                                             |                                                                                          | •                                     |          | 1.340                | 0.085  |
|                                             |                                                                                          |                                       |          | 1.407                | 0.081  |
| spressioni                                  | dei parametri dip                                                                        | endenti                               | Г        | 1.474                | 0.077  |
| •                                           |                                                                                          |                                       | Г        | 1.540                | 0.074  |
| S = S <sub>S</sub> ·S <sub>T</sub>          |                                                                                          | (NTC-08 Eq. 3.2.5)                    | Г        | 1.607                | 0.071  |
|                                             |                                                                                          |                                       | Г        | 1.674                | 0.068  |
| $1 = \sqrt{10/(5 + \xi)}$                   | 2 0,55; η = 1/q (NT                                                                      | C-08 Eq. 3.2.6; §. 3.2.3.5)           |          | 1.740                | 0.066  |
|                                             |                                                                                          |                                       |          | 1.807                | 0.063  |
| $T_{\rm R} = T_{\rm C}/3$                   |                                                                                          | (NTC-07 Eq. 3.2.8)                    | T₽◀      | 1.874                | 0.061  |
|                                             |                                                                                          |                                       |          | 1.975                | 0.055  |
| $C_C - C_C \cdot T_C^*$                     |                                                                                          | (NTC-07 Eq. 3.2.7)                    | L        | 2.076                | 0.050  |
|                                             |                                                                                          |                                       |          | 2.177                | 0.045  |
| C = 4,0·a <sub>g</sub> /g -                 | +1,6                                                                                     | (NTC-07 Eq. 3.2.9)                    | L        | 2.279                | 0.041  |
|                                             |                                                                                          |                                       | L        | 2.380                | 0.038  |
|                                             |                                                                                          |                                       | L        | 2.481                | 0.035  |
| spressioni                                  | dello spettro di ri                                                                      | sposta (NTC-08 Eq. 3.2.4)             | L        | 2.582                | 0.032  |
| 1                                           | F-                                                                                       |                                       | L        | 2.684                | 0.030  |
| 2                                           | $_{o}(T) = a_{g} \cdot S \cdot \eta \cdot F_{o} \cdot \left[ \frac{T}{T_{B}} \right]$    | $+\frac{1}{1-T}$                      | L        | 2.785                | 0.028  |
|                                             | ~~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~                                                   | η. F <sub>6</sub> (* T <sub>B</sub> ) | L        | 2.886                | 0.026  |
|                                             | -                                                                                        |                                       |          | 2.987                | 0.024  |
| $_{\rm B} \le 1 < 1_{\rm C} \mid S_{\rm c}$ | $(T) = a_g \cdot S \cdot \eta \cdot F_o$                                                 |                                       | -        | 3.089                | 0.022  |
| 1                                           | /т                                                                                       | \                                     | -        | 3.190                | 0.021  |
| $c \le T < T_D$ S.                          | $a_{g}(T) = a_{g} \cdot \$ \cdot \eta \cdot F_{o} \cdot \left(\frac{T_{c}}{T}\right)$    |                                       | -        | 3.291                | 0.020  |
|                                             | ( -                                                                                      | ,                                     | -        | 3.392                | 0.019  |
| LST S                                       | $a_{g}(T) = a_{g} \cdot S \cdot \eta \cdot F_{o} \cdot \left(\frac{T_{o}}{T_{o}}\right)$ | 2T <sub>D</sub>                       | $\vdash$ | 3,494                | 0.018  |
| J   0.                                      | (-) .mg .ole.                                                                            | Γ° /                                  | -        | 3.595                | 0.017  |
|                                             | astra C (T) par la co-SS-                                                                | ka sali Otsti Limita I Iltimi 2       | $\vdash$ | 3.696                | 0.016  |
|                                             | uecco Sul I I Del le VeliNC                                                              | he agli Stati Limite Ultimi è         |          | 3.797                | 0.015  |
|                                             |                                                                                          | elastico S,(T) sostituendo n          | <b>⊢</b> | 3.899                | 0.014  |

Il calcolo viene eseguito con il metodo pseudo statico, si eseguirà un calcolo elastico assumendo un fattore di struttura unitario. In queste condizioni l'azione sismica è rappresentata da una forza statica equivalente pari al prodotto delle forze di gravità per un opportuno coefficiente sismico.



#### 6 SOFTWARE DI CALCOLO

### 6.1 Origine e caratteristiche dei codici di calcolo adottati

Per le analisi delle strutture è stato utilizzato il Sap 2000 v.14.1 prodotto, distribuito ed assistito da Computers and Structures, Inc.1995 University Ave. Berkeley. Questa procedura è sviluppata in ambiente Windows, permette l'analisi elastica lineare e non di strutture tridimensionali con nodi a sei gradi di libertà utilizzando un solutore ad elementi finiti. Gli elementi considerati sono frame (trave), con eventuali svincoli interni o rotazione attorno al proprio asse. I carichi sono applicati sia ai nodi, come forze o coppie concentrate, sia sulle travi, come forze distribuite, trapezie, concentrate, come coppie e come distorsioni termiche. A supporto del programma è fornito un ampio manuale d'uso contenente fra l'altro una vasta serie di test di validazione sia su esempi classici di Scienza delle Costruzioni, sia su strutture particolarmente impegnative e reperibili nella bibliografia specializzata.

Tale programma fornisce in output, oltre a tutte le caratteristiche geometriche e di carico delle strutture, i risultati relativi alle sollecitazioni indotte nelle sezioni degli elementi presenti.

#### 6.2 Unità di misura

Le unità di misura adottate sono le seguenti:

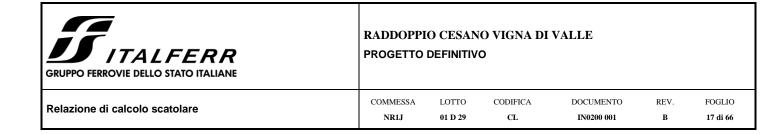
- lunghezze: m

- forze: kN

- masse: kN massa

- temperature: gradi centigradi

- angoli: gradi sessadecimali o radianti


- si assume l'uguaglianza 1 kN = 100 kg

#### 6.3 Grado di affidabilità del codice

L'affidabilità del codice di calcolo e' garantita dall'esistenza di un ampia documentazione di supporto. E' possibile inoltre ottenere rappresentazioni grafiche di deformate e sollecitazioni della struttura.

#### 6.4 Valutazione della correttezza del modello

Il modello di calcolo adottato e' da ritenersi appropriato in quanto non sono state riscontrate labilità, le reazioni vincolari equilibrano i carichi applicati, la simmetria di carichi e struttura dà origine a sollecitazioni simmetriche.



#### 6.5 Caratteristiche dell'elaborazione

Tutte le analisi strutturali sono state eseguite su di una workstation dedicata avente le seguenti caratteristiche tecniche:

- Tipo Intel i7
- Memoria centrale 8 Gb;
- Lunghezza in bit della parola 64 bit;
- Memoria di massa 1 Hard disk da 500 Gb.

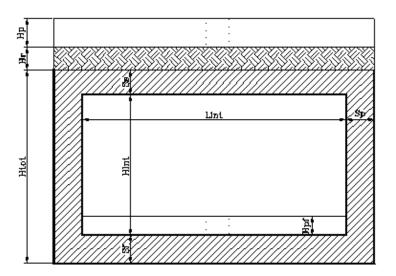
#### 6.6 Giudizio finale sulla accettabilità dei calcoli

Si ritiene che i risultati ottenuti dalla elaborazione siano accettabili e che le ipotesi poste alla base della formulazione del modello matematico siano valide come dimostrato dal comportamento dei materiali.

All'interno del pacchetto Sap 2000 sono inoltre presente una serie di test per il benchmark del solutore, che consentono di comprovare l'affidabilita' del codice di calcolo e paragonare risultati ottenuti con le soluzioni esatte.

#### 6.7 Programmi di servizio

Per le verifiche delle sezioni si adotta il programma: "RC-SEC" – Autore GEOSTRU Software.ANALISI DEI CARICHI E FASI




# 7 TOMBINO SCATOLARE

La sezione trasversale retta ha una larghezza interna di  $L_{int} = 5.00$  m ed un'altezza netta di  $H_{int} = 5.50$  m; lo spessore della platea di fondazione è di  $S_f = 0.70$  m, lo spessore dei piedritti è di  $S_p = 0.70$  m e lo spessore della soletta di copertura è di  $S_s = 0.70$  m.

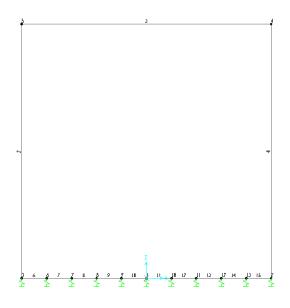
Nel seguito verrà esaminata una striscia di scatolare avente lunghezza di 1.00 m.

### 7.1 Geometria



| DATI GEOMETI                  | RICI               |             |
|-------------------------------|--------------------|-------------|
| Grandezza                     | Simbolo            | Valore U.M. |
| larghezza totale scatolare    | $L_{tot}$          | 6.40 m      |
| larghezza utile scatolare     | $L_{int}$          | 5.00 m      |
| larghezza interasse           | La                 | 5.70 m      |
| spessore soletta superiore    | $S_{\epsilon}$     | 0.70 m      |
| spessore piedritti            | $S_p$              | 0.70 m      |
| spessore fondazione           | $S_{\mathbf{f}}$   | 0.70 m      |
| altezza totale scatolare      | $H_{tot}$          | 6.90 m      |
| altezza libera scatolare      | $\mathbf{H}_{int}$ | 5.50 m      |
|                               |                    | m           |
| spessore ballast              | $H_{Psup}$         | 0.80 m      |
| ricoprimento                  | $H_{Rsup}$         | 0.20 m      |
| spessore pacchetto interno    | $H_{\text{Pinf}}$  | 0.00 m      |
| spessore ricoprimento interno | $H_{Rinf}$         | 0.00 m      |




#### 7.2 Modello di calcolo

Il modello di calcolo attraverso il quale è schematizzata la struttura è quello del telaio chiuso su letto di molle alla Winkler.

Il modello considerato per l'analisi è quello di uno scatolare di profondità unitaria (1.00m) soggetto alle azioni da traffico di norma e quelle permanenti. In corrispondenza dei vertici dello scatolare sono state inserite delle zone rigide pari a metà spessore degli elementi.

Il terreno di fondazione è stato modellato utilizzando la schematizzazione alla Winkler con un opportuno coefficiente di sottofondo.

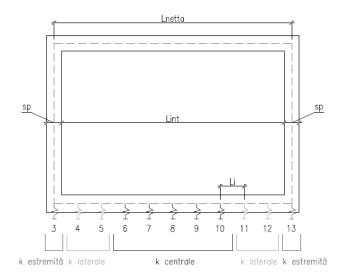
Di seguito si riporta lo schema di calcolo.



Numerazioni aste e nodi

### 7.2.1 Valutazione della rigidezza delle molle

Si considera lo scatolare appoggiato su di un letto di molle (schematizzazione alla Winkler) assegnando alle aste di fondazione del modello un valore di "linear spring" pari a K= 1000 kN/mc in funzione dell'interasse delle molle secondo la seguente formulazione:

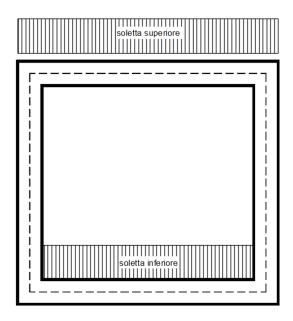

Interasse molle  $i = (S_p/2 + L_{int} + S_p/2)/10$  [m]

Molle centrali  $k_1 = k * i$  [kN/m]



Molle intermedie  $k_2 = 1.5 * k * i$  [kN/m]

Molle laterali  $k_3 = 2 * k *(i/2 + S_p/2)$  [kN/m]






# 7.3 Analisi dei carichi

# 7.3.1 Peso proprio della struttura e carichi permanenti portati

| Soletta superiore | - Peso proprio                      |          | 17.50 kN/m |
|-------------------|-------------------------------------|----------|------------|
|                   |                                     | - Totale | 17.50 kN/m |
|                   |                                     |          |            |
|                   | - Peso Ballast                      |          | 14.40 kN/m |
|                   | - Peso ricoprimento 20 cm           |          | 4.00 kN/m  |
|                   |                                     | - Totale | 18.40 kN/m |
|                   |                                     |          |            |
| Soletta inferiore | - Peso proprio                      |          | 17.50 kN/m |
|                   |                                     | - Totale | 17.50 kN/m |
|                   |                                     |          |            |
|                   | - Peso pacchetto interno 0 cm       |          | 0.00  kN/m |
|                   | - Peso terreno ricoprimento interno | _        | 0.00 kN/m  |
|                   |                                     | - Totale | 0.00 kN/m  |
|                   |                                     |          |            |
| <u>Piedritti</u>  | - Peso proprio                      |          | 17.50 kN/m |
|                   |                                     | - Totale | 17.50 kN/m |





Per tenere in conto dei carichi agenti sul semispessore degli elementi considerati nel modello di calcolo, si applicano delle forze concentrate nei nodi tra soletta superiore e piedritti con valore pari a 6.44 kN.

#### 7.3.2 Spinta in presenza di falda

Nel caso in cui a monte della parete sia presente la falda il diagramma delle pressioni sulla parete risulta modificato a causa della sottospinta che l'acqua esercita sul terreno. Il peso di volume del terreno al di sopra della linea di falda non subisce variazioni. Viceversa al di sotto del livello di falda va considerato il peso di volume di galleggiamento

$$\gamma_a = \gamma_{sat}$$
 -  $\gamma_w$ 

dove  $\gamma_{sat}$  è il peso di volume saturo del terreno (dipendente dall'indice dei pori) e  $\gamma_w$  è il peso di volume dell'acqua. Quindi il diagramma delle pressioni al di sotto della linea di falda ha una pendenza minore. Al diagramma così ottenuto va sommato il diagramma triangolare legato alla pressione idrostatica esercitata dall'acqua.

$$u = \gamma_w \cdot z$$

L'opera non è interessata dalla falda.

#### 7.3.3 Spinta sulle pareti dovuta al terreno ed al sovraccarico permanente

Per il rinterro si prevede un terreno avente angolo di attrito  $\phi = 38^{\circ}$  ed un peso di volume  $\gamma = 20 \text{ kN/m}^3$ , il coefficiente di spinta viene calcolato, considerando l'elevata rigidezza dello scatolare, utilizzando la formula Ko=1-sin $\phi$ ', per cui si ottiene un valore di Ko=0.38. Le spinte in asse soletta superiore ed asse soletta inferiore valgono:

$$p_{ss} = K_o * (H_r + H_{psup} + S_s/2) * \gamma = 10.4 \text{ kN/m}$$
  
 $p_{is} = p_{ss} + K_o * \gamma * (S_s/2 + H_{int} + S_f/2) = 58.0 \text{ kN/m}$ 





Per tenere in conto dei carichi agenti sul semispessore degli elementi considerati nel modello di calcolo, si applicano delle forze concentrate nei nodi tra piedritto e soletta superiore con valore pari a 3.16 kN ed inferiore con valore pari a 20.78 kN.

#### 7.3.4 Treni di carico

#### 7.3.4.1 Treno di carico LM71

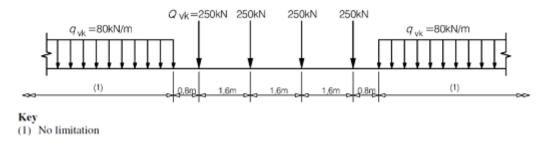
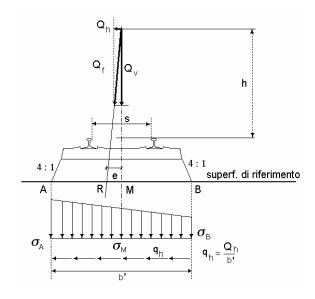



Fig. 1 –Load model 71 (al punto 6.3.2. della norma EN 1991-2:2003)

 $\alpha$  = coefficiente di adattamento = 1.10


Per il calcolo del coefficiente dinamico  $\Phi$  si fa riferimento al "Manuale di Progettazione delle Opere Civili" Considerando un ridotto standard manutentivo si ha:

$$L_{\Phi} = 1.3 * [(1/3) * (2*H_{tot} + L_{tot})] = 8.75 \text{ m}$$
  
 $\Phi_3 = [2.16 / (L_{\Phi}^{0.5} - 0.2)] + 0.73 = 1.51$ 

Il sovraccarico ferroviario si diffonde attraverso il ballast con pendenza 4:1, poi nel ricoprimento con pendenza a 38° (pari all'angolo di attrito del ricoprimento) e con la pendenza a 45° all'interno del cls per cui la lunghezza di diffusione del carico in senso trasversale all'asse binario risulta pari a:

$$L_{trasv}$$
= 2.4 + [0.35/4+ $H_{rsup*}$ tan(38°) +  $S_s$ /2] \*2 = 3.59 m

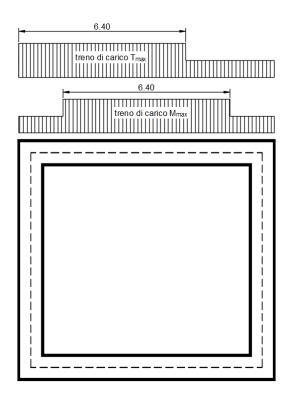




In senso longitudinale si è assunto che il carico si distribuisce su una lunghezza pari a  $L_{long} = 5.99 \text{ m}$ .

Pertanto il carico ripartito dovuto ai treni LM 71 risulta:

Carico ripartito prodotto dalle forze concentrate


= 
$$4*250*1.1*\Phi_3/(L_{trasv}*L_{long})$$
 = 77.48  $kN/m^2$ 

- Carico ripartito prodotto dal carico distribuito (80 kN/m\*2)

$$= 80 * 1.1 * \Phi 3 / L_{trasv} = 37.11 kN/m^2$$

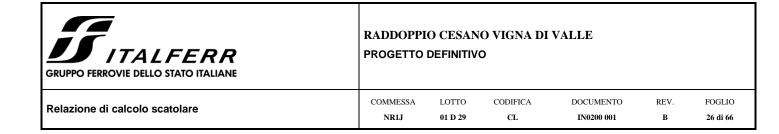
Le distribuzioni del sovraccarico ferroviario considerate al di sopra della copertura, sono quelle in grado di massimizzare le sollecitazioni flettenti e taglianti, per la dimensione dell'opera le due condizioni sono coincidenti.





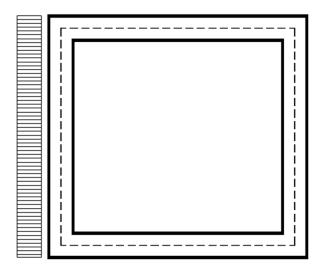
Per tenere in conto i carichi agenti sul semispessore degli elementi considerati nel modello di calcolo, si applicano delle forze concentrate nei nodi tra soletta superiore e piedritti con valore pari a 27.12 kN.

Treni di carico SW/2 
$$Qsw/2=150*1.0*\Phi_3/Ltrasv = 63.26 \quad kN/m^2$$
 Treni di carico SW/0 
$$Qsw/0=133*1.1*\Phi_3/Ltrasv = 61.70 \quad kN/m^2$$


Nelle analisi verrà utilizzato il treno di carico LM71, che risulta essere più gravoso.

### 7.3.5 Spinta del terreno indotta dai treni di carico

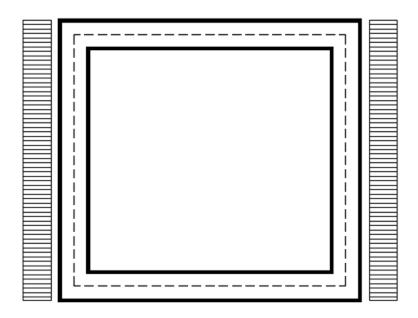
Per il rinterro si prevede un terreno avente angolo di attrito  $\phi=38^\circ$  ed un peso di volume  $\gamma=20$  kN/m³, il coefficiente di spinta viene calcolato, considerando l'elevata rigidezza dello scatolare, utilizzando la formula Ko=1-sin $\phi$ ', per cui si ottiene un valore di  $K_0=0.38$ . La pressione del terreno sui piedritti ed indotta dai treni di carico viaggianti su due linee adiacenti verrà calcolata secondo la formula  $P=q*K_0$ 


Si è considerata la sola spinta prodotta dal carico ripartito equivalente alle forze concentrate (vedi considerazioni di cui al paragrafo precedente)

$$q * K_0 = 29.78 \text{ kN/m}^2$$



La spinta del terreno viene analizzata in due diverse condizioni


# a) Spinta sul piedritto sinistro



Per tenere in conto dei carichi agenti sul semispessore degli elementi considerati nel modello di calcolo, si applicano delle forze concentrate nei nodi tra piedritto sinistro e soletta superiore con valore pari a 10.42 kN ed inferiore con valore pari a 10.42 kN.

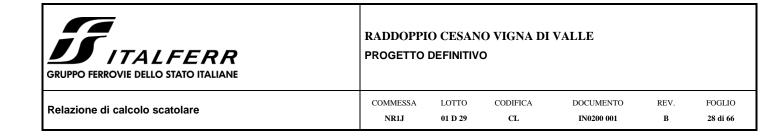
| ITALFERR GRUPPO FERROVIE DELLO STATO ITALIANE | RADDOPPIO CESANO VIGNA DI VALLE PROGETTO DEFINITIVO |                  |          |                      |           |                    |
|-----------------------------------------------|-----------------------------------------------------|------------------|----------|----------------------|-----------|--------------------|
| Relazione di calcolo scatolare                | COMMESSA<br>NR1J                                    | LOTTO<br>01 D 29 | CODIFICA | DOCUMENTO IN0200 001 | REV.<br>B | FOGLIO<br>27 di 66 |

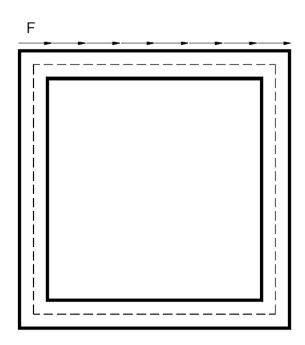
# b) Spinta su entrambi i piedritti



Per tenere in conto dei carichi agenti sul semispessore degli elementi considerati nel modello di calcolo, si applicano delle forze concentrate nei nodi tra piedritti e soletta superiore con valore pari a 10.42 kN ed inferiore con valore pari a 10.42 kN.

# 7.3.6 Avviamento e frenatura


avviamento:  $Q_{lak} = 33 \text{ [kN/m]} * L[m] < 1000 \text{ kN}$  per modelli di carico LM 71 e SW/0 e SW/2


frenatura:  $Q_{lbk} = 20 [kN/m] * L[m] < 6000 kN$  per modelli di carico LM 71 e SW/0

 $Q_{lbk} = 35 \text{ [kN/m]} * L[m]$  per modelli di carico SW/2

La forza di frenatura, per metro lineare, applicata alla soletta di copertura si ritiene uniformemente agente sulla larghezza ottenuta per diffusione dei carichi verticali sino al baricentro della soletta e vale:

$$F = \alpha \cdot Q_{lak} / L_{trasv} = 10.1 \text{ kN/m}$$





Per tenere in conto dei carichi agenti sul semispessore degli elementi considerati nel modello di calcolo, si applicano delle forze concentrate nei nodi tra piedritti e soletta superiore con valore pari a 3.54 kN.

# 7.3.7 Serpeggio e centrifuga

Tali carichi vengono trascurati perché non determinanti per il dimensionamento trasversale dell'opera.

# 7.3.8 Ritiro differenziale della soletta di copertura

Si considera uan variazione termica uniforme equivalente sulla soletta superiore come da calcolo seguente. Il calcolo viene condotto secondo le indicazioni dell'EUROCODICE 2-UNI EN1992-1-1 Novembre 2005 e DM 17-01-2018



# RADDOPPIO CESANO VIGNA DI VALLE PROGETTO DEFINITIVO

Relazione di calcolo scatolare

COMMESSA NR1J LOTTO 01 D 29 CODIFICA CL DOCUMENTO
IN0200 001

REV.

FOGLIO 29 di 66

#### Cls a t=0

| $R_{ck}$                 | = | 37      | N/mm <sup>2</sup> |
|--------------------------|---|---------|-------------------|
| $\mathbf{f}_{\text{ck}}$ | = | 30.71   | N/mm <sup>2</sup> |
| $\mathbf{f}_{\text{cm}}$ | = | 38.71   | $N/mm^2$          |
| α                        | = | 1.0E-05 |                   |
| $E_{cm}$                 | = | 33019   | $N/mm^2$          |

Resistenza a compressione cubica caratterística

Resistenza a compressione cilindrica caratteristica

Resistenza a compressione cilindrica

media

Modulo elastico secante medio

#### Tempo e ambiente

| = | 2      | gg                                             |
|---|--------|------------------------------------------------|
| = | 2      | gg                                             |
| = | 25550  | gg                                             |
| = | 1400   | mm                                             |
| = | 700000 | mm <sup>2</sup>                                |
| = | 1000   | mm                                             |
| = | 75     | %                                              |
|   | = = =  | = 2<br>= 25550<br>= 1400<br>= 700000<br>= 1000 |

età del calcestruzzo in giorni, all'inizio del ritiro per essiccamento

età del calcestruzzo in giorni al momento del carico età del calcestruzzo in giorni

dimensione fittizia dell'elemento di cls

•

sezione dell'elemento

perimetro a contatto con l'atmosfera

umidità relativa percentuale

Coefficiente di viscosità  $\phi$  (t,t0) e modulo elastico ECt a tempo "t"

$$\phi(t,t_0) = \varphi_0 \, \beta_c(t,t_0) =$$

$$\phi_0 = \phi \, RH \, \beta_c(f_{cm}) \, \beta_c(t_0) =$$

$$\varphi_{RH}=1+\left\lfloor\frac{1-RH/100}{0.1\sqrt[3]{h_0}}\,\alpha_1\right\rfloor\,\alpha_2=$$

1.204 coeff che tiene conto dell'umidità

$$\alpha_1 = \begin{cases} (35/f_{cm})^{0.7} & per \, f_{cm} > 35MPa \\ 1 & per \, f_{cm} \leq 35MPa \end{cases} =$$

0.932 coeff per la resistenza del cls

$$\alpha_2 = \begin{cases} (35/f_{cm})^{0.2} & per \, f_{cm} > 35MPa \\ 1 & per \, f_{cm} \leq 35MPa \end{cases} =$$

0.980 coeff per la resistenza del cls

$$\beta_{\mathcal{C}}(f_{cm}) = \frac{16.8}{\sqrt{f_{cm}}} =$$

2.700 coeff che tiene conto della resistenza del cls

$$\beta_c(t_0) = \frac{1}{(0.1 + t_0^{0.20})} =$$

0.649 coeff: per l'evoluzione della viscosità nel tempo

$$t_o = t_0 \left( \frac{9}{2 + t_0^{1.2}} + 1 \right)^{\alpha} \ge 0.5 =$$

6.19 coeff. per la variabilità della viscosità nel tempo

OL.

coeff per il tipo di cemento (-1 per classe S, 0 per classe N, 1 per classe R)



## RADDOPPIO CESANO VIGNA DI VALLE **PROGETTO DEFINITIVO**

Relazione di calcolo scatolare

COMMESSA NR1.I

LOTTO 01 D 29 CODIFICA CL

DOCUMENTO IN0200 001

REV. FOGLIO В 30 di 66

$$\beta_c(t,t_0) = \left[\frac{(t-t_0)}{(\beta_H+t-t_0)}\right]^{0.3} =$$

0.984 coeff per la variabilità della viscosità nel tempo

 $\beta_H = 1.5[1 + (0.012 \, RH)^{18}] h_0 + 250\alpha_3 \le 1500\alpha_3 =$ 

1382.5 coeff che tiene conto dell'umidità

$$\alpha_3 = \begin{cases} (35/f_{cm})^{0.5} & per \ f_{cm} > 35MPa \\ 1 & per \ f_{cm} \leq 35MPa \end{cases} =$$

0.951 coeff per la resistenza del calcestruzzo

Il modulo elastico a tempo "t" è pari a:

$$E_{cm}(t,t_0) = \frac{E_{cm}}{1 + \varphi(t,t_0)} =$$

11072916 kN/m<sup>2</sup>

Deformazioni di ritiro

$$\varepsilon_s(t,t_0) = \varepsilon_{cd}(t) + \varepsilon_{ca}(t) =$$

0.000329 deformazione di ritiro  $\varepsilon$  (t,to)

$$\varepsilon_{cd}(t) = \beta_{ds}(t, t_s) K_b \varepsilon_{cd,0} =$$

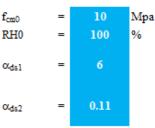
0.000277 deformazione al ritiro per essiccamento

$$\beta_{ds}(t, t_s) = \left[ \frac{(t - t_s)}{(t - t_s) + 0.04 \sqrt{h_0^3}} \right] = 0.$$

 $K_h =$ 

parametro che dipende da h₀ secondo il prospetto seguente

Valori di k


| ħ <sub>0</sub> | 4,   |  |
|----------------|------|--|
| 100            | 1,0  |  |
| 200            | 0,85 |  |
| 300            | 0,75 |  |
| ≥500           | 0,70 |  |

Valori di Kh intermedi a quelli del prospetto vengono calcolati tramite interpolazione lineare

$$\varepsilon_{cd,0} = 0.85 \left[ (200 + 100 \alpha_{ds1}) \exp(-\alpha_{ds2} \frac{f_{cm}}{f_{cm0}}) \right] 10^{-6} \beta_{RH} = 0.000428$$

$$\beta_{RH} = 1.55 \left[ 1 - \left( \frac{RH}{RH} \right)^{3} \right] = 0.896094$$

$$\beta_{RH} = 1.55 \left[ 1 - \left( \frac{RH}{RH0} \right)^3 \right] =$$



coeff per il tipo di cemento (3 per classe S, 4 per classe N, 6 per classe

coeff per il tipo di cemento (0.13 per classe S, 0.12 per classe N, 0.11 per classe R)

$$\varepsilon_{ca}(t) = \beta_{as}(t)\varepsilon_{ca,00} =$$

0.000052 deformazione dovuta al ritiro

$$\beta_{as}(t) = 1 - \exp(-0.2t^{0.5}) =$$

$$\varepsilon_{ca00} = 2.5(f_{ck} - 10)10^{-6}$$

0.000052

Variazione termica uniforme equivalente agli effetti del ritiro:

$$\Delta T_{\text{ritiro}} = -\frac{\varepsilon_s(t, t_0) E_{\text{cm}}}{(1 + \varphi(t, t_0)) E_{\text{cm}} \alpha} = -11.02 \text{ °C}$$



# RADDOPPIO CESANO VIGNA DI VALLE PROGETTO DEFINITIVO

Relazione di calcolo scatolare

COMMESSA NR1J LOTTO 01 D 29 CODIFICA CL DOCUMENTO
IN0200 001

REV. FOGLIO

B 31 di 66

#### 7.3.9 Azione Termica

Si applica ai piedritti ed alla soletta superiore una variazione termica di +/-15°C.

#### 7.4 Azione sismica inerziale

Per il calcolo dell'azione sismica si utilizza il metodo dell'analisi pseudostatica in cui l'azione sismica è rappresentata da una forza statica equivalente pari al prodotto delle forze di gravità per un opportuno coefficiente sismico k. Le forze sismiche sono pertanto le seguenti:

Forza sismica orizzontale  $F_h = k_h * W$ 

Forza sismica verticale  $F_v = k_v * W$ 

I valori dei coefficienti sismici orizzontale  $k_h$  e verticale  $k_v$  possono essere valutati mediante le espressioni:  $k_h$ =  $a_{max}/g$ 

 $k_v = \pm 0.5 * k_h$ 

Con riferimento alla nuova classificazione sismica del territorio nazionale ai fini del calcolo dell'azione sismica secondo il DM 17/01/2018 viene assegnata all'opera una vita nominale  $V_N \ge 75$  anni ed una III classe d'uso  $C_u = 1.5$ ; segue un periodo di riferimento  $V_R = V_N * C_u = 113$  anni

A seguito di tale assunzione si ottiene allo stato limite ultimo SLV in funzione della Latitudine e Longitudine del sito in esame un valore dell'accelerazione pari a  $a_g$ = 0.068 g.

In assenza di analisi specifiche della risposta sismica locale l'accelerazione massima può essere valutata con la relazione:

$$a_{max} = S * a = S_s * S_t * a_g$$

dove assumendo un terreno di tipo C ed in base al fattore di amplificazione del sito F<sub>o</sub> si ottiene:

S<sub>s</sub>= 1.200 Coefficiente di amplificazione stratigrafica

 $S_T=1$  Coefficiente di amplificazione topografica

ne deriva che:

$$a_{max}$$
= 1.200 \* 1 \* 0.068 g = 0.082 g

$$k_h = a_{max}/g = 0.082$$



$$k_v = \pm \ 0.5 \ * \ k_h = 0.041$$

#### Sisma orizzontale

$$F_{sis} = a_{max} * \gamma * (H_{tot}) = 11.26 \text{ kN/m} \quad \text{(carico applicato sulla parete)}$$

$$F_{inp} = \alpha * S_p * \gamma * 1m = 1.43 \text{ kN/m} \quad \text{(inerzia piedritti)}$$

$$Totale = 12.69 \text{ kN/m} \quad \text{(piedritto sx)}$$

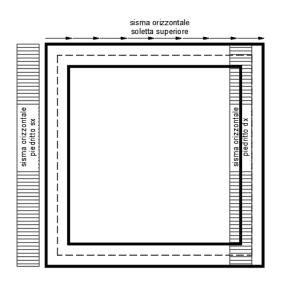
$$Totale = 1.43 \text{ kN/m} \quad \text{(piedritto dx)}$$

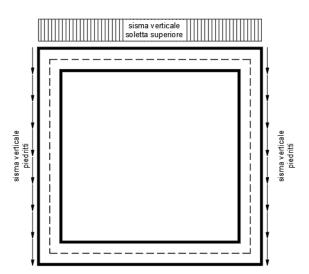
$$F_Q = \alpha * Qv * 0.2 * 1m = 1.26 \text{ kN/m} \quad \text{(inerzia treno)}$$

$$F_{inr} = \alpha * (H_p + H_r) * \gamma_r * 1m = 1.50 \text{ kN/m} \quad \text{(inerzia ballast + ricoprimento)}$$

$$F_{ins} = \alpha * S_s * \gamma_{cls} * 1m = 1.43 \text{ kN/m} \quad \text{(inerzia soletta superiore)}$$

$$Totale = 4.19 \text{ kN/m} \quad \text{(soletta superiore)}$$


Per tenere in conto dei carichi agenti sul semispessore degli elementi considerati nel modello di calcolo, si applicano delle forze concentrate nei nodi tra piedritto sinistro e soletta superiore con valore pari a 4.44 kN. Si applicano delle forze concentrate nei nodi tra piedritto destro e soletta superiore con valore pari a 0.50 kN ed inferiore con valore pari a 0.50 kN.


# Sisma verticale

Per tenere in conto le carichi agenti sul semispessore degli elementi considerati nel modello di calcolo, si applicano delle forze concentrate nei nodi tra soletta superiore e piedritti con valore pari a 0.73 kN.

Gli effetti dell'azione sismica saranno valutati tenendo conto delle masse associate ai seguenti carichi gravitazionali:  $G_1 + G_2 + \psi_{2j} \ Q_{kj}$ 







# 7.5 Spinta sismica terreno

Le spinte delle terre potranno essere determinate secondo la teoria di Wood. secondo la quale la risultante dell'incremento di spinta per effetto del sisma su una parete di altezza H viene determinato con la seguente espressione:

$$\Delta S_E = (a_{max}/g) * \gamma * H_{tot}^2 = 77.70 \text{ kN/m}$$

 $Tale\ risultante\ applicata\ ad\ un'altezza\ pari\ ad\ H_{tot}/2.sar\`{a}\ considerata\ agente\ su\ uno\ solo\ dei\ piedritti\ dell'opera.$ 



# RADDOPPIO CESANO VIGNA DI VALLE PROGETTO DEFINITIVO

| Relazione di calcolo scatolare | COMMESSA | LOTTO   | CODIFICA | DOCUMENTO  | REV. | FOGLIO   |
|--------------------------------|----------|---------|----------|------------|------|----------|
| Relazione di Calcolo Scalolare | NR1J     | 01 D 29 | CL       | IN0200 001 | В    | 34 di 66 |

#### 8 COMBINAZIONI DI CARICO

Ai fini delle verifiche degli stati limite si è fatto riferimento alle seguenti combinazioni delle azioni.

Combinazione fondamentale, generalmente impiegata per gli stati limite ultimi (SLU):

$$\gamma_{G1} \cdot G_1 + \gamma_{G2} \cdot G_2 + \gamma_{P} \cdot P + \gamma_{Q1} \cdot Q_{k1} + \gamma_{Q2} \cdot \psi_{02} \cdot Q_{k2} + \gamma_{Q3} \cdot \psi_{03} \cdot Q_{k3} + \dots$$

Combinazione caratteristica (rara), generalmente impiegata per gli stati limite di esercizio (SLE) irreversibili:

$$G_1 + G_2 + P + Q_{k1} + \psi_{02} \cdot Q_{k2} + \psi_{03} \cdot Q_{k3} + \dots$$

Combinazione frequente, generalmente impiegata per gli stati limite di esercizio (SLE) reversibili, utilizzata nella verifica a Fessurazione:

$$G_1 + G_2 + P + \psi_{11} \cdot Q_{k1} + \psi_{22} \cdot Q_{k2} + \psi_{23} \cdot Q_{k3} + \dots$$

Combinazione quasi permanente, generalmente impiegata per gli stati limite di esercizio (SLE) a lungo termine;

$$G_1 + G_2 + P + \psi_{21} \cdot Q_{k1} + \psi_{22} \cdot Q_{k2} + \psi_{23} \cdot Q_{k3} + \dots$$

Combinazione sismica, impiegata per gli stati limite ultimi e di esercizio connessi all'azione sismica E:

$$E + G_1 + G_2 + P + \psi_{21} {\cdot} Q_{k1} + \psi_{22} {\cdot} Q_{k2} + \dots$$

dove:

$$E = \pm 1.00 \ x \ E_Y \pm 0.3 \ x \ E_Z$$

avendo indicato con E<sub>Y</sub> e E<sub>Z</sub> rispettivamente le componenti orizzontale e verticale dell'azione sismica.

I coefficienti di amplificazione dei carichi  $\gamma$  e i coefficienti di combinazione  $\psi$  sono riportati nelle tabelle seguenti.

In particolare nel calcolo della struttura scatolare si è fatto riferimento alla combinazione A1 STR (Approccio 1 – Combinazione 1) per le verifiche strutturali ed A1 GEO (Approccio 1 – Combinazione 2) per le verifiche geotecniche.



**Tabella 5.2.V** – Coefficienti parziali di sicurezza per le combinazioni di carico agli SLU, eccezionali e sismica (da DM 17/01/2018)

|                                                      |                           | Coefficiente    | EQU <sup>(1)</sup>          | A1<br>STR                   | A2<br>GEO    | Combinazione<br>eccezionale | Combinazione<br>Sismica     |
|------------------------------------------------------|---------------------------|-----------------|-----------------------------|-----------------------------|--------------|-----------------------------|-----------------------------|
| Carichi permanenti                                   | favorevoli<br>sfavorevoli | γ <sub>G1</sub> | 0,90<br>1,10                | 1,00<br>1,35                | 1,00<br>1,00 | 1,00<br>1,00                | 1,00<br>1,00                |
| Carichi permanenti non<br>strutturali <sup>(2)</sup> | favorevoli<br>sfavorevoli | γ <sub>G2</sub> | 0,00<br>1,50                | 0,00<br>1,50                | 0,00<br>1,30 | 1,00<br>1,00                | 1,00<br>1,00                |
| Ballast <sup>(3)</sup>                               | favorevoli<br>sfavorevoli | γв              | 0,90<br>1,50                | 1,00<br>1,50                | 1,00<br>1,30 | 1,00<br>1,00                | 1,00<br>1,00                |
| Carichi variabili da<br>traffico <sup>(4)</sup>      | favorevoli<br>sfavorevoli | γo              | 0,00<br>1,45                | 0,00<br>1,45                | 0,00<br>1,25 | 0,00<br>0,20 <sup>(5)</sup> | 0,00<br>0,20 <sup>(5)</sup> |
| Carichi variabili                                    | favorevoli<br>sfavorevoli | γQi             | 0,00<br>1,50                | 0,00<br>1,50                | 0,00<br>1,30 | 0,00<br>1,00                | 0,00<br>0,00                |
| Precompressione                                      | favorevole<br>sfavorevole | γP              | 0,90<br>1,00 <sup>(6)</sup> | 1,00<br>1,00 <sup>(7)</sup> | 1,00<br>1,00 | 1,00<br>1,00                | 1,00<br>1,00                |

- (1) Equilibrio che non coinvolga i parametri di deformabilità e resistenza del terreno; altrimenti si applicano i valori di GEO.
- (2) Nel caso in cui i carichi permanenti non strutturali (ad es. carichi permanenti portati) siano compiutamente definiti si potranno adottare gli stessi coefficienti validi per le azioni permanenti.
- (3) Quando si prevedano variazioni significative del carico dovuto al ballast, se ne dovrà tener conto esplicitamente nelle verifiche.
- (4) Le componenti delle azioni da traffico sono introdotte in combinazione considerando uno dei gruppi di carico gr della Tab. 5.2.IV.
- (5) Aliquota di carico da traffico da considerare.
- (6) 1,30 per instabilità in strutture con precompressione esterna
- (7) 1,20 per effetti locali



**Tabella 5.2.VI** - Coefficienti di combinazione ₩ delle azioni (da DM 17/01/2018)

| Azioni              |                                                            | Ψο                  | Ψ1      | Ψ2   |
|---------------------|------------------------------------------------------------|---------------------|---------|------|
| Azioni<br>singole   | Carico sul rilevato a tergo delle spalle                   | 0,80                | 0,50    | 0,0  |
| da traffico         | Azioni aerodinamiche generate dal transito<br>dei convogli | 0,80                | 0,50    | 0,0  |
|                     | gr <sub>1</sub>                                            | 0,80(2)             | 0,80(1) | 0,0  |
| Gruppi di           | gr <sub>2</sub>                                            | 0,80 <sup>(2)</sup> | 0,80(1) | -    |
| carico              | gr <sub>3</sub>                                            | 0,80 <sup>(2)</sup> | 0,80(1) | 0,0  |
|                     | gr <sub>4</sub>                                            | 1,00                | 1,00(1) | 0,0  |
| Azioni del<br>vento | F <sub>Wk</sub>                                            | 0,60                | 0,50    | 0,0  |
| Azioni da           | in fase di esecuzione                                      | 0,80                | 0,0     | 0,0  |
| neve                | SLU e SLE                                                  | 0,0                 | 0,0     | 0,0  |
| Azioni<br>termiche  | T <sub>k</sub>                                             | 0,60                | 0,60    | 0,50 |

Nella combinazione sismica le azioni indotte dal traffico ferroviario sono combinate con un coefficiente  $\psi_2 = 0.2$  (punto 3.2.4 del DM 17/01/2018) coerentemente con l'aliquota di massa afferente ai carichi da traffico.

Le azioni descritte nel paragrafo precedente ed utilizzate nelle combinazioni di carico vengono di seguito riassunte:

Tabella 2 – Riepilogo condizioni di carico

| Tipo Carico                       | Abbreviazione  |
|-----------------------------------|----------------|
| Peso proprio                      | DEAD           |
| Carichi permanenti                | PERM           |
| Falda                             | FALDA          |
| Spinta terreno sinistra           | STS            |
| Spinta terrenno destra            | STD            |
| Carico Ferroviario Centrato       | TRM            |
| Carico Ferroviario Laterale       | TRV            |
| Sovraccarico accidentale sinistra | SAS            |
| Sovraccarico accidentale destra   | SAD            |
| Traffico Stradale                 | TRAF           |
| Ritiro                            | RIT            |
| Variazione termica                | ΔΤ             |
| Avviamento e frenatura            | AVV            |
| Azione sismica orizzontale        | E <sub>H</sub> |
| Azione sismica verticale          | E <sub>V</sub> |



Si riportano di seguito le combinazioni di carico ritenute più significative con i coefficienti di combinazione  $\gamma \cdot \psi$ . Essendo la struttura simmetrica, si adottano tipologie di combinazione asimmetriche in modo da massimizzare le sollecitazioni. Il dimensionamento delle armature e le verifiche strutturali verrano poi eseguite tenendo conto della simmetria e verificando le condizioni peggiori per ogni lato della struttura.

Tabella 3 - Combinazioni di carico

| COMB                | DEAD | STS  | STD  | RIT  | ΔΤ   | PERM | FALDA | TRM  | TRV  | SAS  | SAD  | TRAF | AVV  | Ен   | Ev    |
|---------------------|------|------|------|------|------|------|-------|------|------|------|------|------|------|------|-------|
| n° 1 SLU-STR        | 1.35 | 1.35 | 1.35 | 1.20 | 1.50 | 1.50 | -     | -    | -    | -    | -    | -    |      | -    | -     |
| n° 2 SLU-STR        | 1.35 | 1.35 | 1.00 | 1.20 | 1.50 | 1.50 | -     |      |      |      |      |      |      |      |       |
| n° 3 SLU-STR        | 1.35 | 1.00 | 1.35 | 1.20 | 1.50 | 1.50 |       |      |      |      |      |      |      |      |       |
| n° 04 SLU-STR       | 1.35 | 1.35 | 1.35 | 1.20 | 1.50 | 1.50 | 1.35  | -    | -    | -    | -    | -    |      | -    | -     |
| n° 05 SLU-STR       | 1.35 | 1.35 | 1.00 | 1.20 | 1.50 | 1.50 | 1.35  |      |      |      |      |      |      |      |       |
| n° 06 SLU-STR       | 1.35 | 1.00 | 1.35 | 1.20 | 1.50 | 1.50 | 1.35  |      |      |      |      |      |      |      |       |
| n° 07 SLU-STR       | 1.35 | 1.35 | 1.35 | 1.20 | 0.90 | 1.50 | 1.35  | 1.45 | -    | 1.45 | 1.45 | -    | 1.45 | -    | -     |
| n° 08 SLU-STR       | 1.35 | 1.35 | 1.00 | 1.20 | 0.90 | 1.50 | 1.35  | 1.45 | -    | 1.45 | 1.45 |      | 1.45 |      |       |
| n° 09 SLU-STR       | 1.35 | 1.00 | 1.35 | 1.20 | 0.90 | 1.50 | 1.35  | 1.45 | -    | 1.45 | 1.45 |      | 1.45 |      |       |
| n° 10 SLU-STR       | 1.35 | 1.35 | 1.35 | 1.20 | 0.90 | 1.50 | 1.35  | -    | 1.45 | 1.45 | 1.45 | 1.01 | 1.45 | -    | -     |
| n° 11 SLU-STR       | 1.35 | 1.35 | 1.00 | 1.20 | 0.90 | 1.50 | 1.35  | -    | 1.45 | 1.45 | 1.45 | 1.01 | 1.45 |      |       |
| n° 12 SLU-STR       | 1.35 | 1.00 | 1.35 | 1.20 | 0.90 | 1.50 | 1.35  | -    | 1.45 | 1.45 | 1.45 | 1.01 | 1.45 |      |       |
| n° 13 SLU-STR       | 1.35 | 1.35 | 1.35 | 1.20 | 0.90 | 1.50 | 1.35  | 1.45 | -    | 1.45 | -    | 1.01 | 1.45 | -    | -     |
| n° 14 SLU-STR       | 1.35 | 1.35 | 1.00 | 1.20 | 0.90 | 1.50 | 1.35  | 1.45 | -    | 1.45 | -    | 1.01 | 1.45 | -    | -     |
| n° 15 SLU-STR       | 1.35 | 1.00 | 1.35 | 1.20 | 0.90 | 1.50 | 1.35  | 1.45 | -    | 1.45 | -    | 1.01 | 1.45 | -    | -     |
| n° 16 SLU - SISMICA | 1.00 | 1.00 | 1.00 | 1.00 | 0.50 | 1.00 | 1.00  | 0.20 | -    | 0.20 | -    | -    | 0.20 | 1.00 | 0.30  |
| n° 17 SLU - SISMICA | 1.00 | 1.00 | 1.00 | 1.00 | 0.50 | 1.00 | 1.00  | 0.20 | -    | 0.20 | -    | -    | 0.20 | 1.00 | -0.30 |
| n° 18 SLU - SISMICA | 1.00 | 1.00 | 1.00 | 1.00 | 0.50 | 1.00 | -     | 0.20 | -    | 0.20 | -    | -    | 0.20 | 1.00 | 0.30  |
| n° 19 SLU - SISMICA | 1.00 | 1.00 | 1.00 | 1.00 | 0.50 | 1.00 | -     | 0.20 | -    | 0.20 | -    | -    | 0.20 | 1.00 | -0.30 |
| GEO                 | 1.00 | 1.30 | 1.00 | 1.00 | 0.60 | 1.30 | 1.00  | 1.25 | -    | 1.25 | -    | -    | 1.25 | -    | -     |
| GEO - SISMICA       | 1.00 | 1.00 | 1.00 | 1.00 | 0.50 | 1.00 | 1.00  | 0.20 |      | 0.20 |      |      | 0.20 | 1.00 | 0.30  |
| SLE - Q.P.          | 1.00 | 1.00 | 1.00 | 1.00 | 0.50 | 1.00 | 1.00  | 0.00 | -    | 0.00 | -    | -    | 0.00 | -    | -     |
| SLE - Frequente     | 1.00 | 1.00 | 1.00 | 1.00 | 0.50 | 1.00 | 1.00  | 0.80 | -    | 0.80 | -    | -    | 0.80 | -    | -     |
| SLE - Rara          | 1.00 | 1.00 | 1.00 | 1.00 | 0.60 | 1.00 | 1.00  | 1.00 | -    | 1.00 | -    | -    | 1.00 | -    | -     |



## 9 DIAGRAMMI DELLE SOLLECITAZIONI

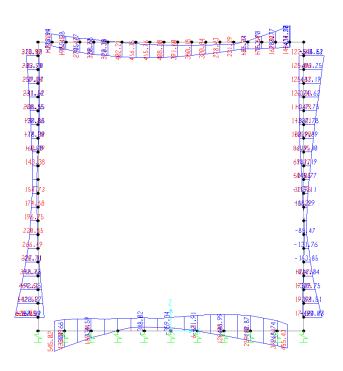



Fig. 2 – Inviluppo momenti flettenti SLU

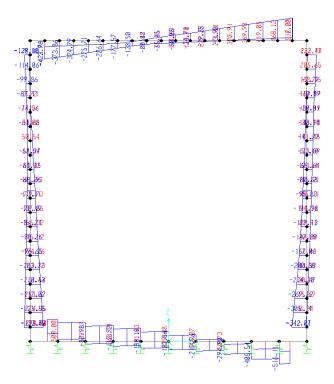
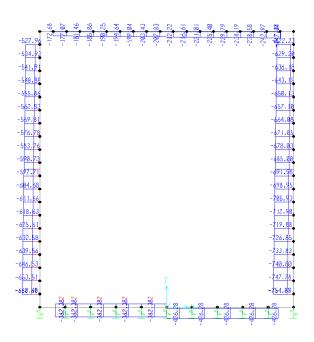




Fig. 3 – Inviluppo sforzi taglianti SLU





 $Fig.\ 4-Inviluppo\ azioni\ assiali\ SLU$ 

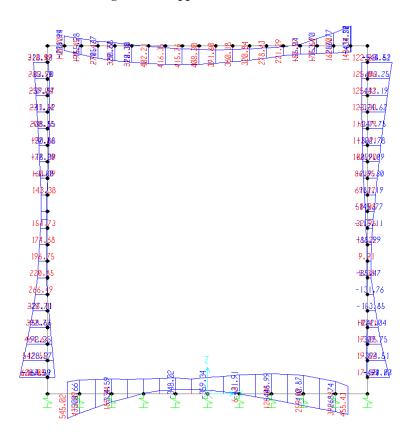
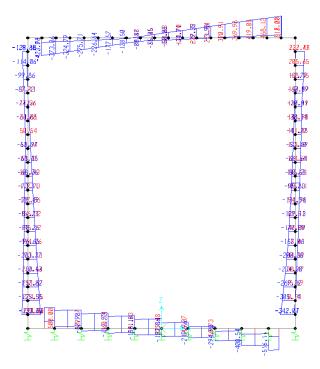




Fig. 5 –Inviluppo momenti flettenti SLV





 $Fig.\ 6-Inviluppo\ sforzi\ taglianti\ SLV$ 

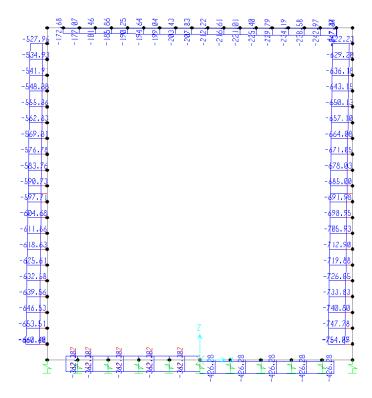



Fig. 7 – Inviluppo azioni assiali SLV



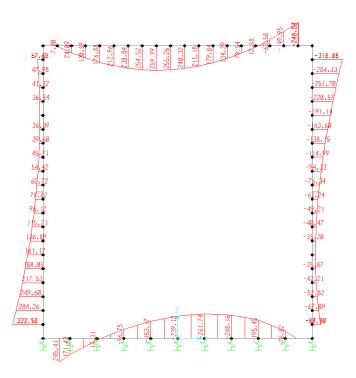



Fig. 8 – Inviluppo momenti flettenti SLE rara

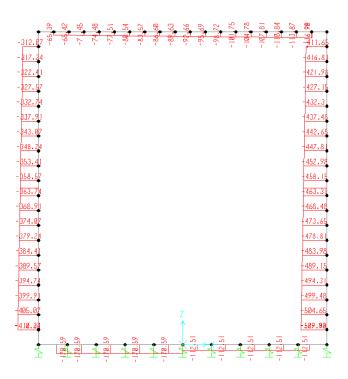




Fig. 9 – Inviluppo azioni assiali SLE rara



## 10 VERIFICA DELLE SEZIONI IN C.A.

Nelle tabelle seguenti sono indicati i valori delle sollecitazioni massime e i valori delle sollecitazioni per la verifica a fessurazione risultanti dalle combinazioni di cui al capitolo precedente.

Per le verifiche in corrispondenza dei nodi si considerano le sollecitazioni a filo elemento rigido.

|           | SLU STR-SLV           |        |                        |                  |  |  |  |  |  |  |
|-----------|-----------------------|--------|------------------------|------------------|--|--|--|--|--|--|
| Elemento  | C.C. M <sub>max</sub> | N (kN) | M <sub>max</sub> (kNm) | T <sub>max</sub> |  |  |  |  |  |  |
| soletta   | SLU14-STR2            | 362.38 | 545.02                 | 516.11           |  |  |  |  |  |  |
| inferiore | SLU14-STR             | 53.45  | -446.99                | -                |  |  |  |  |  |  |
| soletta   | SLU14-STR             | 173.08 | -437.20                | 518.03           |  |  |  |  |  |  |
| superiore | SLU14-STR2            | 113.38 | 416.35                 | -                |  |  |  |  |  |  |
|           | SLU06-STR             | 353.04 | -167.19                | 295.32           |  |  |  |  |  |  |
| piedritti | SLU14-STR2            | 554.69 | 628.05                 | 295.32           |  |  |  |  |  |  |
|           | SLU14-STR             | 622.11 | 545.51                 | 342.71           |  |  |  |  |  |  |
|           | SLU03-STR2            | 118.81 | -125.32                | 342.71           |  |  |  |  |  |  |

| SLE RARA  |        |                        | SI          | LE FREQUEN | TE                     | SLE QUASI PERMANENTE |        |                        |  |
|-----------|--------|------------------------|-------------|------------|------------------------|----------------------|--------|------------------------|--|
| Elemento  | N (kN) | M <sub>max</sub> (kNm) | ID Asta     | N (kN)     | M <sub>max</sub> (kNm) | ID Asta              | N (kN) | M <sub>max</sub> (kNm) |  |
| soletta   | 178.13 | 268.89                 | soletta     | 141.02     | 198.56                 | soletta              | 189.59 | 206.96                 |  |
| inferiore | 112.51 | -261.74                | inferiore   | 130.68     | -214.93                | inferiore            | 25.30  | -142.57                |  |
| soletta   | 116.95 | -248.24                | soletta     | 100.09     | -190.37                | soletta              | 41.04  | -87.96                 |  |
| superiore | 79.07  | 283.20                 | superiore   | 69.53      | 241.17                 | superiore            | 40.23  | 133.19                 |  |
|           | 327.57 | 22.53                  |             | 298.80     | 37.61                  |                      | 274.48 | 32.85                  |  |
| i. duissi | 410.33 | 343.49                 | i a dinissi | 376.39     | 268.94                 | i. duissi            | 176.22 | 122.94                 |  |
| piedritti | 411.56 | 318.85                 | piedritti   | 346.32     | 249.29                 | piedritti            | 248.97 | 230.65                 |  |
|           | 483.98 | 33.60                  |             | 408.41     | 35.38                  |                      | 186.88 | -15.83                 |  |



PROGETTO DEFINITIVO

Relazione di calcolo scatolare

COMMESSA LOTTO CODIFICA DOCUMENTO REV. FOGLIO

NRIJ 01 D 29 CL IN0200 001 B 43 di 66

## 10.1 Verifica soletta inferiore

#### CARATTERISTICHE DI RESISTENZA DEI MATERIALI IMPIEGATI

CALCESTRUZZO - Classe: C30/37

Resis. compr. di progetto fcd: 17.000 MPa
Resis. compr. ridotta fcd': 8.500 MPa
Def.unit. max resistenza ec2: 0.0020
Def.unit. ultima ecu: 0.0035
Diagramma tensione-deformaz.: Parabola-Rettangolo

Modulo Elastico Normale Ec:32836.0MPaResis. media a trazione fctm:2.900MPaCoeff. Omogen. S.L.E.:15.00

Coeff. Omogen. S.L.E.: 15.00
Sc limite S.L.E. comb. Frequenti: 165.00 daN/cm²

Ap.Fessure limite S.L.E. comb. Frequenti:

Sc limite S.L.E. comb. Prequenti:

Sc limite S.L.E. comb. Q.Permanenti:

O.00 Mpa

Ap.Fess.limite S.L.E. comb. Q.Perm.:

0.200 mm

ACCIAIO - Tipo: B450C

Resist. caratt. snervam. fyk:

Resist. caratt. rottura ftk:

Resist. snerv. di progetto fyd:

Resist. ultima di progetto ftd:

Deform. ultima di progetto Epu:

450.00

MPa
391.30

MPa
391.30

MPa
0.068

Modulo Elastico Ef 2000000 daN/cm²

Diagramma tensione-deformaz.: Bilineare finito Coeff. Aderenza istantaneo ß1\*ß2: 1.00 Coeff. Aderenza differito ß1\*ß2: 0.50

Sf limite S.L.E. Comb. Rare: 337.50 MPa

#### **CARATTERISTICHE DOMINIO CONGLOMERATO**

| Forma del Do<br>Classe Conglo | Poligonale<br>C30/37 |        |
|-------------------------------|----------------------|--------|
| N°vertice:                    | X [cm]               | Y [cm] |
| 1                             | -50.0                | 0.0    |
| 2                             | -50.0                | 70.0   |
| 3                             | 50.0                 | 70.0   |
| 4                             | 50.0                 | 0.0    |

#### **DATI BARRE ISOLATE**

| N°Barra | X [cm] | Y [cm] | DiamØ[mm] |
|---------|--------|--------|-----------|
| 1       | -42.0  | 8.0    | 20        |
| 2       | -42.0  | 62.0   | 20        |
| 3       | 42.0   | 62.0   | 20        |
| 4       | 42 0   | 8.0    | 20        |

## **DATI GENERAZIONI LINEARI DI BARRE**

 N°Gen.
 Numero assegnato alla singola generazione lineare di barre

 N°Barra Ini.
 Numero della barra iniziale cui si riferisce la generazione

 N°Barra Fin.
 Numero della barra finale cui si riferisce la generazione

N°Barre Numero di barre generate equidistanti cui si riferisce la generazione

Ø Diametro in mm delle barre della generazione



# RADDOPPIO CESANO VIGNA DI VALLE PROGETTO DEFINITIVO

Relazione di calcolo scatolare

COMMESSA LOTTO CODIFICA DOCUMENTO REV. FOGLIO

NRIJ 01 D 29 CL. IN0200 001 B 44 di 66

| N°Gen. | N°Barra Ini. | N°Barra Fin. | N°Barre | Ø  |
|--------|--------------|--------------|---------|----|
| 1      | 1            | 4            | 8       | 20 |
| 2      | 2            | 3            | 8       | 20 |

## CALCOLO DI RESISTENZA - SFORZI PER OGNI COMBINAZIONE ASSEGNATA

N Sforzo normale [kN] applicato nel Baric. (+ se di compressione)
Mx Momento flettente [daNm] intorno all'asse X di riferimento delle coordinate con verso positivo se tale da comprimere il lembo sup. della sez.
Vy Componente del Taglio [kN] parallela all'asse Y di riferimento delle coordinate

Comb. N Mx Vy

| N°Comb. | N      | IVIX    | Vy     |
|---------|--------|---------|--------|
| 1       | 362.38 | 545.02  | 516.11 |
| 2       | 53.45  | -446.99 | 0.00   |

#### COMB. RARE (S.L.E.) - SFORZI PER OGNI COMBINAZIONE ASSEGNATA

N Sforzo normale [kN] applicato nel Baricentro (+ se di compressione)

Mx Momento flettente [kNm] intorno all'asse X di riferimento (tra parentesi Mom.Fessurazione)

con verso positivo se tale da comprimere il lembo superiore della sezione

 N°Comb.
 N
 Mx
 My

 1
 178.13
 268.89
 0.00

 2
 112.51
 -261.74
 0.00

## COMB. FREQUENTI (S.L.E.) - SFORZI PER OGNI COMBINAZIONE ASSEGNATA

N Sforzo normale [kN] applicato nel Baricentro (+ se di compressione)

Mx Momento flettente [kNm] intorno all'asse X di riferimento (tra parentesi Mom.Fessurazione)

con verso positivo se tale da comprimere il lembo superiore della sezione

 N°Comb.
 N
 Mx
 My

 1
 141.02
 198.56 (323.02)
 0.00 (0.00)

 2
 130.68
 -214.93 (-318.46)
 0.00 (0.00)

#### COMB. QUASI PERMANENTI (S.L.E.) - SFORZI PER OGNI COMBINAZIONE ASSEGNATA

N Sforzo normale [kN] applicato nel Baricentro (+ se di compressione)

Mx Momento flettente [kNm] intorno all'asse X di riferimento (tra parentesi Mom.Fessurazione)

con verso positivo se tale da comprimere il lembo superiore della sezione

 N°Comb.
 N
 Mx
 My

 1
 189.59
 206.96 (332.62)
 0.00 (0.00)

 2
 25.30
 -142.57 (-300.56)
 0.00 (0.00)

## **RISULTATI DEL CALCOLO**

## Sezione verificata per tutte le combinazioni assegnate

Copriferro netto minimo barre longitudinali: 7.0 cm Interferro netto minimo barre longitudinali: 7.3 cm Copriferro netto minimo staffe: 6.2 cm

VERIFICHE DI RESISTENZA IN PRESSO-TENSO FLESSIONE ALLO STATO LIMITE ULTIMO



PROGETTO DEFINITIVO

COMMESSA CODIFICA FOGLIO LOTTO DOCUMENTO REV. Relazione di calcolo scatolare NR1J 01 D 29 CL IN0200 001 В 45 di 66

S = combinazione verificata / N = combin. non verificata Ver

Sforzo normale assegnato [kN] nel baricentro B sezione cls.(positivo se di compressione) N

Componente del momento assegnato [kNm] riferito all'asse x princ. d'inerzia Mx N Res Sforzo normale resistente [kN] nel baricentro B sezione cls.(positivo se di compress.)

Mx Res

Momento flettente resistente [kNm] riferito all'asse x princ. d'inerzia Misura sicurezza = rapporto vettoriale tra (N r,Mx Res,My Res) e (N,Mx,My) Mis.Sic.

Verifica positiva se tale rapporto risulta >=1.000

As Totale Area totale barre longitudinali [cm²]. [Tra parentesi il valore minimo di normativa]

| N°Comb | Ver | N      | Mx      | N Res  | Mx Res  | Mis.Sic. | As Totale  |
|--------|-----|--------|---------|--------|---------|----------|------------|
| 1      | S   | 362.38 | 545.02  | 362.15 | 814.48  | 1.49     | 62.8(21.0) |
| 2      | S   | 53.45  | -446.99 | 53.24  | -730.34 | 1.63     | 62.8(21.0) |

#### METODO AGLI STATI LIMITE ULTIMI - DEFORMAZIONI UNITARIE ALLO STATO ULTIMO

| ec max | Deform. unit. massima del conglomerato a compressione                  |
|--------|------------------------------------------------------------------------|
|        | Deform. unit. massima del conglomerato a compressione                  |
| Xc max | Ascissa in cm della fibra corrisp. a ec max (sistema rif. X,Y,O sez.)  |
| Yc max | Ordinata in cm della fibra corrisp. a ec max (sistema rif. X,Y,O sez.) |
| es min | Deform. unit. minima nell'acciaio (negativa se di trazione)            |
| Xs min | Ascissa in cm della barra corrisp. a es min (sistema rif. X,Y,O sez.)  |
| Ys min | Ordinata in cm della barra corrisp. a es min (sistema rif. X,Y,O sez.) |
| es max | Deform. unit. massima nell'acciaio (positiva se di compress.)          |
| Xs max | Ascissa in cm della barra corrisp. a es max (sistema rif. X,Y,O sez.)  |
| Ys max | Ordinata in cm della barra corrisp, a es max (sistema rif, X.Y.O sez.) |

| N°Comb | ec max  | Xc max | Yc max | es min  | Xs min | Ys min | es max   | Xs max | Ys max |
|--------|---------|--------|--------|---------|--------|--------|----------|--------|--------|
| 1      | 0.00350 | -50.0  | 70.0   | 0.00049 | -42.0  | 62.0   | -0.01980 | -42.0  | 8.0    |
| 2      | 0.00350 | -50.0  | 0.0    | 0.00019 | -42.0  | 8.0    | -0.02217 | 42.0   | 62.0   |

## POSIZIONE ASSE NEUTRO PER OGNI COMB. DI RESISTENZA

| a, b, c | Coeff. a, b, c nell'eq. dell'asse neutro aX+bY+c=0 nel rif. X,Y,O gen.      |
|---------|-----------------------------------------------------------------------------|
| x/d     | Rapp. di duttilità (travi e solette)[§ 4.1.2.1.2.1 NTC]: deve essere < 0.45 |
| C.Rid.  | Coeff. di riduz. momenti per sola flessione in travi continue               |

| N°Comb | а           | b            | С            | x/d | C.Rid. |
|--------|-------------|--------------|--------------|-----|--------|
| 1      | 0.000000000 | 0.000375794  | -0.022805611 |     |        |
| 2      | 0.000000000 | -0.000413962 | 0.003500000  |     |        |

## **VERIFICHE A TAGLIO**

| Ver   | S = comb. verificata a taglio / N = comb. non verificata                                    |
|-------|---------------------------------------------------------------------------------------------|
| Ved   | Taglio di progetto [kN] = Vy ortogonale all'asse neutro                                     |
| Vcd   | Taglio compressione resistente [kN] lato conglomerato [formula (4.1.28)NTC]                 |
| Vwd   | Taglio resistente [kN] assorbito dalle staffe [(4.1.18) NTC]                                |
| d   z | Altezza utile media pesata sezione ortogonale all'asse neutro   Braccio coppia interna [cm] |
|       | Vengono prese nella media le strisce con almeno un estremo compresso.                       |
|       | I pesi della media sono costituiti dalle stesse lunghezze delle strisce.                    |
| bw    | Larghezza media resistente a taglio [cm] misurate parallel. all'asse neutro                 |
|       | E' data dal rapporto tra l'area delle sopradette strisce resistenti e Dmed.                 |
| Ctg   | Cotangente dell'angolo di inclinazione dei puntoni di conglomerato                          |
| Acw   | Coefficiente maggiorativo della resistenza a taglio per compressione                        |
| Ast   | Area staffe+legature strettam. necessarie a taglio per metro di pil.[cm²/m]                 |
| A.Eff | Area staffe+legature efficaci nella direzione del taglio di combinaz.[cm²/m]                |
|       | Tra parentesi è indicata la quota dell'area relativa alle sole legature.                    |
|       | L'area della legatura è ridotta col fattore L/d_max con L=lungh.legat.proietta-             |

ta sulla direz. del taglio e d\_max= massima altezza utile nella direz.del taglio.



PROGETTO DEFINITIVO

Relazione di calcolo scatolare

COMMESSA LOTTO CODIFICA DOCUMENTO REV. FOGLIO

NRIJ 01 D 29 CL IN0200 001 B 46 di 66

| N°Comb | Ver | Ved | Vcd | Vwd | d   z                    | bw | Ctg | Acw | Ast | A.Eff |
|--------|-----|-----|-----|-----|--------------------------|----|-----|-----|-----|-------|
| 1<br>2 |     |     |     |     | 66.3  58.3<br>66.6  58.6 |    |     |     |     |       |

#### COMBINAZIONI RARE IN ESERCIZIO - MASSIME TENSIONI NORMALI ED APERTURA FESSURE (NTC/EC2)

Ver S = comb. verificata/ N = comb. non verificata

Sc max
Massima tensione (positiva se di compressione) nel conglomerato [Mpa]
Xc max, Yc max
Ascissa, Ordinata [cm] del punto corrisp. a Sc max (sistema rif. X,Y,O)
Sf min
Minima tensione (negativa se di trazione) nell'acciaio [Mpa]
Xs min, Ys min
Ascissa, Ordinata [cm] della barra corrisp. a Sf min (sistema rif. X,Y,O)
Ac eff.
Area di calcestruzzo [cm²] in zona tesa considerata aderente alle barre
As eff.
Area barre [cm²] in zona tesa considerate efficaci per l'apertura delle fessure

| N°Comb | Ver | Sc max | Xc max \ | c max | Sf min | Xs min | Ys min | Ac eff. | As eff. |
|--------|-----|--------|----------|-------|--------|--------|--------|---------|---------|
| 1      | S   | 4.33   | -50.0    | 70.0  | -127.4 | -42.0  | 8.0    | 1650    | 31.4    |
| 2      | S   | 4.17   | -50.0    | 0.0   | -133.0 | 32.7   | 62.0   | 1650    | 31.4    |

#### COMBINAZIONI RARE IN ESERCIZIO - APERTURA FESSURE [§ 7.3.4 EC2]

La sezione viene assunta sempre fessurata anche nel caso in cui la trazione minima del calcestruzzo sia inferiore a fctm

Ver. Esito della verifica

e1 Massima deformazione unitaria di trazione nel calcestruzzo (trazione -) valutata in sezione fessurata e2 Minima deformazione unitaria di trazione nel calcestruzzo (trazione -) valutata in sezione fessurata

k1 = 0.8 per barre ad aderenza migliorata [eq.(7.11)EC2]

kt = 0.4 per comb. quasi permanenti / = 0.6 per comb.frequenti [cfr. eq.(7.9)EC2] k2 = 0.5 per flessione; =(e1 + e2)/(2\*e1) per trazione eccentrica [eq.(7.13)EC2]

k3 = 3.400 Coeff. in eq.(7.11) come da annessi nazionali k4 = 0.425 Coeff. in eq.(7.11) come da annessi nazionali

Ø Diametro [mm] equivalente delle barre tese comprese nell'area efficace Ac eff [eq.(7.11)EC2]

Cf Copriferro [mm] netto calcolato con riferimento alla barra più tesa

e sm - e cm Differenza tra le deformazioni medie di acciaio e calcestruzzo [(7.8)EC2 e (C4.1.7)NTC]

Tra parentesi: valore minimo = 0.6 Smax / Es [(7.9)EC2 e (C4.1.8)NTC]

sr max Massima distanza tra le fessure [mm]

wk Apertura fessure in mm calcolata = sr max\*(e\_sm - e\_cm) [(7.8)EC2 e (C4.1.7)NTC]. Valore limite tra parentesi

Mx fess. Componente momento di prima fessurazione intorno all'asse X [kNm] My fess. Componente momento di prima fessurazione intorno all'asse Y [kNm]

| Comb. | Ver | e1       | e2 | k2    | Ø    | Ct | e sm - e cm s     | er max | wk           | Mx tess | My tess |
|-------|-----|----------|----|-------|------|----|-------------------|--------|--------------|---------|---------|
| 1     | S   | -0.00076 | 0  | 0.500 | 20.0 | 70 | 0.00038 (0.00038) | 417    | 0.159 (0.20) | 320.87  | 0.00    |
| 2     | S   | -0.00079 | 0  | 0.500 | 20.0 | 70 | 0.00040 (0.00040) | 417    | 0.166 (0.20) | -310.80 | 0.00    |

#### COMBINAZIONI FREQUENTI IN ESERCIZIO - MASSIME TENSIONI NORMALI ED APERTURA FESSURE (NTC/EC2)

| N°Comb | Ver | Sc max | Xc max ` | Yc max | Sf min | Xs min | Ys min | Ac eff. | As eff. |
|--------|-----|--------|----------|--------|--------|--------|--------|---------|---------|
| 1      | S   | 3.20   | -50.0    | 70.0   | -92.7  | -32.7  | 8.0    | 1650    | 31.4    |
| 2      | S   | 3.45   | -50.0    | 0.0    | -103.6 | 32.7   | 62.0   | 1650    | 31.4    |

## COMBINAZIONI FREQUENTI IN ESERCIZIO - APERTURA FESSURE [§ 7.3.4 EC2]

| Comb. | Ver | e1       | e2 | k2    | Ø    | Cf | e sm - e cm s     | sr max | wk           | Mx fess | My fess |
|-------|-----|----------|----|-------|------|----|-------------------|--------|--------------|---------|---------|
| 1     | S   | -0.00055 | 0  | 0.500 | 20.0 | 70 | 0.00028 (0.00028) | 417    | 0.116 (0.20) | 323.02  | 0.00    |
| 2     | S   | -0.00062 | 0  | 0.500 | 20.0 | 70 | 0.00031 (0.00031) | 417    | 0.129 (0.20) | -318.46 | 0.00    |

COMBINAZIONI QUASI PERMANENTI IN ESERCIZIO - MASSIME TENSIONI NORMALI ED APERTURA FESSURE (NTC/EC2)



PROGETTO DEFINITIVO

Relazione di calcolo scatolare

COMMESSA LOTTO CODIFICA DOCUMENTO REV. FOGLIO

NRIJ 01 D 29 CL IN0200 001 B 47 di 66

| N°Comb | Ver | Sc max | Xc max | Yc max | Sf min | Xs min | Ys min | Ac eff. | As eff. |
|--------|-----|--------|--------|--------|--------|--------|--------|---------|---------|
| 1      | S   | 3.36   | -50.0  | 70.0   | -90.5  | -42.0  | 8.0    | 1600    | 31.4    |
| 2      | S   | 2.24   | -50.0  | 0.0    | -77.8  | 32.7   | 62.0   | 1700    | 31.4    |

## COMBINAZIONI QUASI PERMANENTI IN ESERCIZIO - APERTURA FESSURE [§ 7.3.4 EC2]

| Comb. | Ver | e1       | e2 | k2    | Ø    | Cf | e sm - e cm s     | sr max | wk           | Mx fess | My fess |
|-------|-----|----------|----|-------|------|----|-------------------|--------|--------------|---------|---------|
| 1     | S   | -0.00054 | 0  | 0.500 | 20.0 | 70 | 0.00027 (0.00027) | 411    | 0.112 (0.20) | 332.62  | 0.00    |
| 2     | S   | -0.00046 | 0  | 0.500 | 20.0 | 70 | 0.00023 (0.00023) | 422    | 0.099 (0.20) | -300.56 | 0.00    |

Si adottano spille  $9\emptyset12/m^2$ 

## 10.2 Verifica soletta superiore

## CARATTERISTICHE DI RESISTENZA DEI MATERIALI IMPIEGATI

| CALCESTRUZZO - | Classe:                               | C30/37              |                     |
|----------------|---------------------------------------|---------------------|---------------------|
|                | Resis. compr. di progetto fcd:        | 17.000              | MPa                 |
|                | Resis. compr. ridotta fcd':           | 8.500               | MPa                 |
|                | Def.unit. max resistenza ec2:         | 0.0020              |                     |
|                | Def.unit. ultima ecu:                 | 0.0035              |                     |
|                | Diagramma tensione-deformaz.:         | Parabola-Rettangolo |                     |
|                | Modulo Elastico Normale Ec:           | 32836.0             | MPa                 |
|                | Resis. media a trazione fctm:         | 2.900               | MPa                 |
|                | Coeff. Omogen. S.L.E.:                | 15.00               |                     |
|                | Coeff. Omogen. S.L.E.:                | 15.00               |                     |
|                | Sc limite S.L.E. comb. Frequenti:     | 165.00              | daN/cm <sup>2</sup> |
|                | Ap.Fessure limite S.L.E. comb. Freque | enti: 0.200         | mm                  |
|                | Sc limite S.L.E. comb. Q.Permanenti:  | 0.00                | Мра                 |
|                | Ap.Fess.limite S.L.E. comb. Q.Perm.:  | 0.200               | mm                  |
| ACCIAIO -      | Tipo:                                 | B450C               |                     |
|                | Resist. caratt. snervam. fyk:         | 450.00              | MPa                 |
|                | Resist. caratt. rottura ftk:          | 450.00              | MPa                 |
|                | Resist. snerv. di progetto fyd:       | 391.30              | MPa                 |
|                | Resist. ultima di progetto ftd:       | 391.30              | MPa                 |
|                | Deform. ultima di progetto Epu:       | 0.068               |                     |
|                | Modulo Elastico Ef                    | 2000000             | daN/cm <sup>2</sup> |
|                | Diagramma tensione-deformaz.:         | Bilineare finito    |                     |
|                | Coeff. Aderenza istantaneo ß1*ß2:     | 1.00                |                     |
|                | Coeff. Aderenza differito ß1*ß2:      | 0.50                |                     |
|                | Sf limite S.L.E. Comb. Rare:          | 337.50              | MPa                 |
|                |                                       |                     |                     |

## **CARATTERISTICHE DOMINIO CONGLOMERATO**

| Forma del Do<br>Classe Conglo |                                | Poligonale<br>C30/37       |
|-------------------------------|--------------------------------|----------------------------|
| N°vertice:                    | X [cm]                         | Y [cm]                     |
| 1<br>2<br>3<br>4              | -50.0<br>-50.0<br>50.0<br>50.0 | 0.0<br>70.0<br>70.0<br>0.0 |



#### PROGETTO DEFINITIVO

| Relazione di calcolo scatolare | COMMESSA | LOTTO   | CODIFICA | DOCUMENTO  | REV. | FOGLIO   |
|--------------------------------|----------|---------|----------|------------|------|----------|
| Relazione di Calcolo Scatolale | NR1J     | 01 D 29 | CL       | IN0200 001 | В    | 48 di 66 |

#### **DATI BARRE ISOLATE**

| N°Barra | X [cm] | Y [cm] | DiamØ[mm] |
|---------|--------|--------|-----------|
| 1       | -42.0  | 8.0    | 20        |
| 2       | -42.0  | 62.0   | 20        |
| 3       | 42.0   | 62.0   | 20        |
| 4       | 42.0   | 8.0    | 20        |

#### **DATI GENERAZIONI LINEARI DI BARRE**

N°Gen. Numero assegnato alla singola generazione lineare di barre N°Barra Ini. Numero della barra iniziale cui si riferisce la generazione Numero della barra finale cui si riferisce la generazione N°Barra Fin.

N°Barre Numero di barre generate equidistanti cui si riferisce la generazione

Diametro in mm delle barre della generazione

| N°Gen. | N°Barra Ini. | N°Barra Fin. | N°Barre | Ø  |
|--------|--------------|--------------|---------|----|
| 1      | 1            | 4            | 8       | 20 |
| 2      | 2            | 3            | 8       | 20 |

#### CALCOLO DI RESISTENZA - SFORZI PER OGNI COMBINAZIONE ASSEGNATA

Sforzo normale [kN] applicato nel Baric. (+ se di compressione) Mx Momento flettente [daNm] intorno all'asse X di riferimento delle coordinate con verso positivo se tale da comprimere il lembo sup. della sez. Vy Componente del Taglio [kN] parallela all'asse Y di riferimento delle coordinate N°Comb. Ν Mx Vy

173.08 -437.20518.03 2 113.38 416.35 0.00

#### COMB. RARE (S.L.E.) - SFORZI PER OGNI COMBINAZIONE ASSEGNATA

Sforzo normale [kN] applicato nel Baricentro (+ se di compressione) Mx

Momento flettente [kNm] intorno all'asse X di riferimento (tra parentesi Mom.Fessurazione)

con verso positivo se tale da comprimere il lembo superiore della sezione

N°Comb. Mx My 116.95 -248.24 0.00 1 79.07 283.20 0.00

## COMB. FREQUENTI (S.L.E.) - SFORZI PER OGNI COMBINAZIONE ASSEGNATA

Sforzo normale [kN] applicato nel Baricentro (+ se di compressione) Ν

Mx Momento flettente [kNm] intorno all'asse X di riferimento (tra parentesi Mom.Fessurazione)

con verso positivo se tale da comprimere il lembo superiore della sezione

N°Comb. Ν Mx Му 100.09 -190.37 (-314.88) 0.00 (0.00) 2 241.17 (304.98) 0.00 (0.00) 69.53

COMB. QUASI PERMANENTI (S.L.E.) - SFORZI PER OGNI COMBINAZIONE ASSEGNATA



# RADDOPPIO CESANO VIGNA DI VALLE PROGETTO DEFINITIVO

ROGETTO DEFINITIVO

Relazione di calcolo scatolare COMMESSA LOTTO CODIFICA DOCUMENTO REV. FOGLIO NRIJ 01 D 29 CL IN0200 001 B 49 di 66

N Sforzo normale [kN] applicato nel Baricentro (+ se di compressione)

Mx Momento flettente [kNm] intorno all'asse X di riferimento (tra parentesi Mom.Fessurazione)

con verso positivo se tale da comprimere il lembo superiore della sezione

 N°Comb.
 N
 Mx
 My

 1
 41.04
 -87.96 (-312.35)
 0.00 (0.00)

 2
 40.23
 133.19 (305.53)
 0.00 (0.00)

#### **RISULTATI DEL CALCOLO**

## Sezione verificata per tutte le combinazioni assegnate

Copriferro netto minimo barre longitudinali: 7.0 cm Interferro netto minimo barre longitudinali: 7.3 cm Copriferro netto minimo staffe: 6.2 cm

## VERIFICHE DI RESISTENZA IN PRESSO-TENSO FLESSIONE ALLO STATO LIMITE ULTIMO

Ver S = combinazione verificata / N = combin. non verificata

N Sforzo normale assegnato [kN] nel baricentro B sezione cls.(positivo se di compressione)

Mx Componente del momento assegnato [kNm] riferito all'asse x princ. d'inerzia N Res Sforzo normale resistente [kN] nel baricentro B sezione cls.(positivo se di compress.)

Mx Res Momento flettente resistente [kNm] riferito all'asse x princ. d<sup>i</sup>inerzia
Mis.Sic. Misura sicurezza = rapporto vettoriale tra (N r,Mx Res,My Res) e (N,Mx,My)

Verifica positiva se tale rapporto risulta >=1.000

As Totale Area totale barre longitudinali [cm²]. [Tra parentesi il valore minimo di normativa]

| N°Comb | Ver | N      | Mx      | N Res  | Mx Res  | Mis.Sic. As Totale |
|--------|-----|--------|---------|--------|---------|--------------------|
| 1      | S   | 173.08 | -437.20 | 173.24 | -763.12 | 1.75 62.8(21.0)    |
| 2      | S   | 113.38 | 416.35  | 113.48 | 746.81  | 1.79 62.8(21.0)    |

## METODO AGLI STATI LIMITE ULTIMI - DEFORMAZIONI UNITARIE ALLO STATO ULTIMO

| ec max | Deform, unit, massima del conglomerato a compressione                  |
|--------|------------------------------------------------------------------------|
|        | Deform. unit. massima del conglomerato a compressione                  |
| Xc max | Ascissa in cm della fibra corrisp. a ec max (sistema rif. X,Y,O sez.)  |
| Yc max | Ordinata in cm della fibra corrisp. a ec max (sistema rif. X,Y,O sez.) |
| es min | Deform. unit. minima nell'acciaio (negativa se di trazione)            |
| Xs min | Ascissa in cm della barra corrisp. a es min (sistema rif. X,Y,O sez.)  |
| Ys min | Ordinata in cm della barra corrisp. a es min (sistema rif. X,Y,O sez.) |
| es max | Deform. unit. massima nell'acciaio (positiva se di compress.)          |
| Xs max | Ascissa in cm della barra corrisp. a es max (sistema rif. X,Y,O sez.)  |
| Ys max | Ordinata in cm della barra corrisp. a es max (sistema rif. X,Y,O sez.) |
|        |                                                                        |

| N°Comb | ec max  | Xc max | Yc max | es min  | Xs min | Ys min | es max   | Xs max | Ys max |
|--------|---------|--------|--------|---------|--------|--------|----------|--------|--------|
| 1      | 0.00350 | -50.0  | 0.0    | 0.00031 | -42.0  | 8.0    | -0.02122 | 42.0   | 62.0   |
| 2      | 0.00350 | -50.0  | 70.0   | 0.00025 | -42.0  | 62.0   | -0.02169 | -42.0  | 8.0    |

#### POSIZIONE ASSE NEUTRO PER OGNI COMB. DI RESISTENZA

| a, b, c | Coeff. a, b, c nell'eq. dell'asse neutro aX+bY+c=0 nel rif. X,Y,O gen.      |
|---------|-----------------------------------------------------------------------------|
| x/d     | Rapp. di duttilità (travi e solette)[§ 4.1.2.1.2.1 NTC]: deve essere < 0.45 |
| O D: I  | One first the management and a first transfer to the first                  |

C.Rid. Coeff. di riduz. momenti per sola flessione in travi continue

| N°Comb | а           | b            | С            | x/d | C.Rid. |
|--------|-------------|--------------|--------------|-----|--------|
| 1      | 0.000000000 | -0.000398655 | 0.003500000  |     |        |
| 2      | 0.000000000 | 0.000406275  | -0.024939250 |     |        |



PROGETTO DEFINITIVO

COMMESSA LOTTO CODIFICA DOCUMENTO REV. FOGLIO Relazione di calcolo scatolare NR1.I 01 D 29 CL. IN0200 001 R 50 di 66

#### **VERIFICHE A TAGLIO**

S = comb. verificata a taglio / N = comb. non verificata Ver Taglio di progetto [kN] = Vy ortogonale all'asse neutro Ved

Taglio compressione resistente [kN] lato conglomerato [formula (4.1.28)NTC] Vcd

Taglio resistente [kN] assorbito dalle staffe [(4.1.18) NTC] Vwd

Altezza utile media pesata sezione ortogonale all'asse neutro | Braccio coppia interna [cm]

Vengono prese nella media le strisce con almeno un estremo compresso. I pesi della media sono costituiti dalle stesse lunghezze delle strisce.

Larghezza media resistente a taglio [cm] misurate parallel. all'asse neutro bw E' data dal rapporto tra l'area delle sopradette strisce resistenti e Dmed. Ctq Cotangente dell'angolo di inclinazione dei puntoni di conglomerato Coefficiente maggiorativo della resistenza a taglio per compressione

Acw Ast Area staffe+legature strettam. necessarie a taglio per metro di pil.[cm²/m] A.Eff Area staffe+legature efficaci nella direzione del taglio di combinaz.[cm²/m] Tra parentesi è indicata la guota dell'area relativa alle sole legature. L'area della legatura è ridotta col fattore L/d\_max con L=lungh.legat.proietta-

N°Comb Ved Vcd A.Eff Ver Vwd  $d \mid z$ bw Ctg Acw Ast S 518.03 1739.24 605.47 66.5 58.5 100.0 2.500 1.015 9.1 10.6(0.0) 2 S 0.00 2512.26 242.46 66.6 58.6 100.0 1.000 1.010 0.0 10.6(0.0)

ta sulla direz. del taglio e d\_max= massima altezza utile nella direz.del taglio.

#### COMBINAZIONI RARE IN ESERCIZIO - MASSIME TENSIONI NORMALI ED APERTURA FESSURE (NTC/EC2)

Ver S = comb. verificata/ N = comb. non verificata

Sc max Massima tensione (positiva se di compressione) nel conglomerato [Mpa] Ascissa, Ordinata [cm] del punto corrisp. a Sc max (sistema rif. X,Y,O) Xc max, Yc max Minima tensione (negativa se di trazione) nell'acciaio [Mpa] Sf min

Xs min, Ys min Ascissa, Ordinata [cm] della barra corrisp. a Sf min (sistema rif. X,Y,O) Area di calcestruzzo [cm²] in zona tesa considerata aderente alle barre

Ac eff. Area barre [cm²] in zona tesa considerate efficaci per l'apertura delle fessure As eff.

| N°Comb | Ver | Sc max | Xc max \ | ∕c max | Sf min | Xs min | Ys min | Ac eff.      | As eff. |
|--------|-----|--------|----------|--------|--------|--------|--------|--------------|---------|
|        |     |        |          |        |        |        |        | 1650<br>1700 |         |

## COMBINAZIONI RARE IN ESERCIZIO - APERTURA FESSURE [§ 7.3.4 EC2]

La sezione viene assunta sempre fessurata anche nel caso in cui la trazione minima del calcestruzzo sia inferiore a fctm

Ver. Esito della verifica

Cf

Massima deformazione unitaria di trazione nel calcestruzzo (trazione -) valutata in sezione fessurata e1 Minima deformazione unitaria di trazione nel calcestruzzo (trazione -) valutata in sezione fessurata e2

= 0.8 per barre ad aderenza migliorata [eq.(7.11)EC2] k1

= 0.4 per comb. quasi permanenti / = 0.6 per comb.frequenti [cfr. eq.(7.9)EC2] kt = 0.5 per flessione; =(e1 + e2)/(2\*e1) per trazione eccentrica [eq.(7.13)EC2] k2

= 3.400 Coeff. in eq.(7.11) come da annessi nazionali k3 k4 = 0.425 Coeff. in eq.(7.11) come da annessi nazionali

Diametro [mm] equivalente delle barre tese comprese nell'area efficace Ac eff [eq.(7.11)EC2] Ø

Copriferro [mm] netto calcolato con riferimento alla barra più tesa

Differenza tra le deformazioni medie di acciaio e calcestruzzo [(7.8)EC2 e (C4.1.7)NTC] e sm - e cm

Tra parentesi: valore minimo = 0.6 Smax / Es [(7.9)EC2 e (C4.1.8)NTC]

Massima distanza tra le fessure [mm] sr max

Apertura fessure in mm calcolata = sr max\*(e\_sm - e\_cm) [(7.8)EC2 e (C4.1.7)NTC]. Valore limite tra parentesi

Componente momento di prima fessurazione intorno all'asse X [kNm] Mx fess. Componente momento di prima fessurazione intorno all'asse Y [kNm] My fess.

| Comb. | Ver | e1       | e2 | k2    | Ø    | Cf | e sm - e cm s     | r max | wk           | Mx fess | My fess |
|-------|-----|----------|----|-------|------|----|-------------------|-------|--------------|---------|---------|
| 1     | S   | -0.00074 | 0  | 0.500 | 20.0 | 70 | 0.00037 (0.00037) | 417   | 0.156 (0.20) | -312.54 | 0.00    |
| 2     | S   | -0.00089 | 0  | 0.500 | 20.0 | 70 | 0.00045 (0.00045) | 422   | 0.190 (0.20) | 304.61  | 0.00    |



PROGETTO DEFINITIVO

Relazione di calcolo scatolare

COMMESSA LOTTO CODIFICA DOCUMENTO REV. FOGLIO

NRIJ 01 D 29 CL IN0200 001 B 51 di 66

## COMBINAZIONI FREQUENTI IN ESERCIZIO - MASSIME TENSIONI NORMALI ED APERTURA FESSURE (NTC/EC2)

| N°Comb | Ver | Sc max | Xc max | Yc max | Sf min | Xs min | Ys min | Ac eff. | As eff. |
|--------|-----|--------|--------|--------|--------|--------|--------|---------|---------|
| 1      | S   | 3.04   | -50.0  | 0.0    | -94.0  | 32.7   | 62.0   | 1650    | 31.4    |
| 2      | S   | 3.81   | -50.0  | 70.0   | -127.6 | -42.0  | 8.0    | 1700    | 31.4    |

## COMBINAZIONI FREQUENTI IN ESERCIZIO - APERTURA FESSURE [§ 7.3.4 EC2]

| Comb. | Ver | e1       | e2 | k2    | Ø    | Cf | e sm - e cm sr max |     | wk           | Mx fess | My fess |
|-------|-----|----------|----|-------|------|----|--------------------|-----|--------------|---------|---------|
| 1     | S   | -0.00056 | 0  | 0.500 | 20.0 | 70 | 0.00028 (0.00028)  | 417 | 0.118 (0.20) | -314.88 | 0.00    |
| 2     | S   | -0.00076 | 0  | 0.500 | 20.0 | 70 | 0.00038 (0.00038)  | 422 | 0.162 (0.20) | 304.98  | 0.00    |

## COMBINAZIONI QUASI PERMANENTI IN ESERCIZIO - MASSIME TENSIONI NORMALI ED APERTURA FESSURE (NTC/EC2)

| N°Comb | Ver | Sc max | Xc max \ | rc max | Sf min | Xs min | Ys min | Ac eff. | As eff. |
|--------|-----|--------|----------|--------|--------|--------|--------|---------|---------|
| 1      | S   | 1.40   | -50.0    | 0.0    | -44.2  | 32.7   | 62.0   | 1650    | 31.4    |
| 2      | S   | 2.11   | -50.0    | 70.0   | -70.2  | -42.0  | 8.0    | 1700    | 31.4    |

## COMBINAZIONI QUASI PERMANENTI IN ESERCIZIO - APERTURA FESSURE [§ 7.3.4 EC2]

| Comb. | Ver | e1       | e2 | k2    | Ø    | Cf | e sm - e cm s     | sr max | wk           | Mx fess | My fess |
|-------|-----|----------|----|-------|------|----|-------------------|--------|--------------|---------|---------|
| 1     | S   | -0.00026 | 0  | 0.500 | 20.0 | 70 | 0.00013 (0.00013) | 417    | 0.055 (0.20) | -312.35 | 0.00    |
| 2     | S   | -0.00042 | 0  | 0.500 | 20.0 | 70 | 0.00021 (0.00021) | 422    | 0.089 (0.20) | 305.53  | 0.00    |

Si adottano spille 10Ø12/mq

## 10.3 Verifica piedritti

## CARATTERISTICHE DI RESISTENZA DEI MATERIALI IMPIEGATI

| CALCESTRUZZO - | Classe:                                | C30/37              |                     |
|----------------|----------------------------------------|---------------------|---------------------|
|                | Resis. compr. di progetto fcd:         | 17.000              | MPa                 |
|                | Resis. compr. ridotta fcd':            | 8.500               | MPa                 |
|                | Def.unit. max resistenza ec2:          | 0.0020              |                     |
|                | Def.unit. ultima ecu:                  | 0.0035              |                     |
|                | Diagramma tensione-deformaz.:          | Parabola-Rettangolo |                     |
|                | Modulo Elastico Normale Ec:            | 32836.0             | MPa                 |
|                | Resis. media a trazione fctm:          | 2.900               | MPa                 |
|                | Coeff. Omogen. S.L.E.:                 | 15.00               |                     |
|                | Coeff. Omogen. S.L.E.:                 | 15.00               |                     |
|                | Sc limite S.L.E. comb. Frequenti:      | 165.00              | daN/cm <sup>2</sup> |
|                | Ap.Fessure limite S.L.E. comb. Frequer | nti: 0.200          | mm                  |
|                | Sc limite S.L.E. comb. Q.Permanenti:   | 0.00                | Мра                 |
|                | Ap.Fess.limite S.L.E. comb. Q.Perm.:   | 0.200               | mm                  |
| ACCIAIO -      | Tipo:                                  | B450C               |                     |
|                | Resist. caratt. snervam. fyk:          | 450.00              | MPa                 |
|                | Resist. caratt. rottura ftk:           | 450.00              | MPa                 |
|                | Resist. snerv. di progetto fyd:        | 391.30              | MPa                 |
|                | Resist. ultima di progetto ftd:        | 391.30              | MPa                 |
|                | Deform. ultima di progetto Epu:        | 0.068               |                     |
|                |                                        |                     |                     |



PROGETTO DEFINITIVO

Relazione di calcolo scatolare

COMMESSA LOTTO CODIFICA DOCUMENTO REV. FOGLIO

NRIJ 01 D 29 CL IN0200 001 B 52 di 66

Modulo Elastico Ef 2000000 daN/cm²

Diagramma tensione-deformaz.:

Coeff. Aderenza istantaneo ß1\*ß2:

Coeff. Aderenza differito ß1\*ß2:

Sf limite S.L.E. Comb. Rare:

Bilineare finito

1.00

0.50

MPa

#### **CARATTERISTICHE DOMINIO CONGLOMERATO**

| Forma del De<br>Classe Congle | Poligonale<br>C30/37 |        |
|-------------------------------|----------------------|--------|
| N°vertice:                    | X [cm]               | Y [cm] |
| 1                             | -50.0                | 0.0    |
| 2                             | -50.0                | 70.0   |
| 3                             | 50.0                 | 70.0   |
| 4                             | 50.0                 | 0.0    |

#### **DATI BARRE ISOLATE**

Ν

Mx

| N°Barra | X [cm] | Y [cm] | DiamØ[mm] |
|---------|--------|--------|-----------|
| 1       | -42.0  | 8.0    | 20        |
| 2       | -42.0  | 62.0   | 20        |
| 3       | 42.0   | 62.0   | 20        |
| 4       | 42.0   | 8.0    | 20        |

## DATI GENERAZIONI LINEARI DI BARRE

N°Gen.Numero assegnato alla singola generazione lineare di barreN°Barra Ini.Numero della barra iniziale cui si riferisce la generazioneN°Barra Fin.Numero della barra finale cui si riferisce la generazione

N°Barre Numero di barre generate equidistanti cui si riferisce la generazione

Ø Diametro in mm delle barre della generazione

| N°Gen. | N°Barra Ini. | N°Barra Fin. | N°Barre | Ø  |
|--------|--------------|--------------|---------|----|
| 1      | 2            | 3            | 3       | 20 |
| 2      | 1            | 4            | 8       | 20 |

## CALCOLO DI RESISTENZA - SFORZI PER OGNI COMBINAZIONE ASSEGNATA

| N<br>Mx<br>Vy |        | Sforzo normale [kN] applicato nel Baric. (+ se di compressione) Momento flettente [daNm] intorno all'asse X di riferimento delle coordinate con verso positivo se tale da comprimere il lembo sup. della sez. Componente del Taglio [kN] parallela all'asse Y di riferimento delle coordina |        |  |  |  |
|---------------|--------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|--|--|--|
| N°Comb.       | N      | Mx                                                                                                                                                                                                                                                                                          | Vy     |  |  |  |
| 1             | 353.04 | -167.19                                                                                                                                                                                                                                                                                     | 295.32 |  |  |  |
| 2             | 554.69 | 628.05                                                                                                                                                                                                                                                                                      | 295.32 |  |  |  |
| 3             | 622.11 | 545.51                                                                                                                                                                                                                                                                                      | 342.71 |  |  |  |
| 4             | 118.81 | -125.32                                                                                                                                                                                                                                                                                     | 342.71 |  |  |  |

## COMB. RARE (S.L.E.) - SFORZI PER OGNI COMBINAZIONE ASSEGNATA

Sforzo normale [kN] applicato nel Baricentro (+ se di compressione) Momento flettente [kNm] intorno all'asse X di riferimento (tra parentesi Mom.Fessurazione)



PROGETTO DEFINITIVO

Relazione di calcolo scatolare

COMMESSA LOTTO CODIFICA DOCUMENTO REV. FOGLIO

NRIJ 01 D 29 CL IN0200 001 B 53 di 66

con verso positivo se tale da comprimere il lembo superiore della sezione

| N°Comb. | N      | Mx     | Му   |
|---------|--------|--------|------|
| 1       | 327.57 | 22.53  | 0.00 |
| 2       | 410.33 | 343.49 | 0.00 |
| 3       | 411.56 | 318.85 | 0.00 |
| 4       | 483.98 | 33.60  | 0.00 |

## COMB. FREQUENTI (S.L.E.) - SFORZI PER OGNI COMBINAZIONE ASSEGNATA

N Sforzo normale [kN] applicato nel Baricentro (+ se di compressione)

Mx Momento flettente [kNm] intorno all'asse X di riferimento (tra parentesi Mom.Fessurazione)

con verso positivo se tale da comprimere il lembo superiore della sezione

| N°Comb. | N      | Mx              | Му          |
|---------|--------|-----------------|-------------|
| 1       | 298.80 | 37.61 (5771.85) | 0.00 (0.00) |
| 2       | 376.39 | 268.94 (343.32) | 0.00 (0.00) |
| 3       | 346.32 | 249.29 (342.81) | 0.00 (0.00) |
| 4       | 408.41 | 35.38 (0.00)    | 0.00 (0.00) |

## COMB. QUASI PERMANENTI (S.L.E.) - SFORZI PER OGNI COMBINAZIONE ASSEGNATA

N Sforzo normale [kN] applicato nel Baricentro (+ se di compressione)

Mx Momento flettente [kNm] intorno all'asse X di riferimento (tra parentesi Mom.Fessurazione)

con verso positivo se tale da comprimere il lembo superiore della sezione

| N°Comb. | N      | Mx                | Му          |
|---------|--------|-------------------|-------------|
| 1       | 274.48 | 32.85 (775765.45) | 0.00 (0.00) |
| 2       | 176.22 | 122.94 (345.00)   | 0.00 (0.00) |
| 3       | 248.97 | 230.65 (328.22)   | 0.00 (0.00) |
| 4       | 186.88 | -15.83 (1052.65)  | 0.00 (0.00) |

#### **RISULTATI DEL CALCOLO**

## Sezione verificata per tutte le combinazioni assegnate

Copriferro netto minimo barre longitudinali: 7.0 cm Interferro netto minimo barre longitudinali: 7.3 cm Copriferro netto minimo staffe: 6.2 cm

## VERIFICHE DI RESISTENZA IN PRESSO-TENSO FLESSIONE ALLO STATO LIMITE ULTIMO

Ver S = combinazione verificata / N = combin. non verificata

N Sforzo normale assegnato [kN] nel baricentro B sezione cls.(positivo se di compressione)

Mx Componente del momento assegnato [kNm] riferito all'asse x princ. d'inerzia N Res Sforzo normale resistente [kN] nel baricentro B sezione cls.(positivo se di compress.)

Mx Res Momento flettente resistente [kNm] riferito all'asse x princ. d'inerzia

Mis.Sic. Misura sicurezza = rapporto vettoriale tra (N r,Mx Res,My Res) e (N,Mx,My)

Verifica positiva se tale rapporto risulta >=1.000

As Totale Area totale barre longitudinali [cm²]. [Tra parentesi il valore minimo di normativa]

| N°Comb | Ver | N      | Mx      | N Res  | Mx Res  | Mis.Sic. As Totale |
|--------|-----|--------|---------|--------|---------|--------------------|
| 1      | S   | 353.04 | -167.19 | 352.94 | -477.99 | 2.91 47.1(21.0)    |
| 2      | S   | 554.69 | 628.05  | 554.59 | 865.60  | 1.37 47.1(21.0)    |
| 3      | S   | 622.11 | 545.51  | 622.40 | 883.40  | 1.61 47.1(21.0)    |
| 4      | S   | 118.81 | -125.32 | 118.91 | -413.52 | 3.33 47.1(21.0)    |



PROGETTO DEFINITIVO

 Relazione di calcolo scatolare
 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 NRIJ
 01 D 29
 CL
 IN0200 001
 B
 54 di 66

## METODO AGLI STATI LIMITE ULTIMI - DEFORMAZIONI UNITARIE ALLO STATO ULTIMO

| ec max | Deform. unit. massima del conglomerato a compressione                  |
|--------|------------------------------------------------------------------------|
|        | Deform. unit. massima del conglomerato a compressione                  |
| Xc max | Ascissa in cm della fibra corrisp. a ec max (sistema rif. X,Y,O sez.)  |
| Yc max | Ordinata in cm della fibra corrisp. a ec max (sistema rif. X,Y,O sez.) |
| es min | Deform. unit. minima nell'acciaio (negativa se di trazione)            |
| Xs min | Ascissa in cm della barra corrisp. a es min (sistema rif. X,Y,O sez.)  |
| Ys min | Ordinata in cm della barra corrisp. a es min (sistema rif. X,Y,O sez.) |
| es max | Deform. unit. massima nell'acciaio (positiva se di compress.)          |
| Xs max | Ascissa in cm della barra corrisp. a es max (sistema rif. X,Y,O sez.)  |
| Ys max | Ordinata in cm della barra corrisp. a es max (sistema rif. X,Y,O sez.) |

| N°Comb | ec max  | Xc max | Yc max | es min   | Xs min | Ys min | es max   | Xs max | Ys max |
|--------|---------|--------|--------|----------|--------|--------|----------|--------|--------|
| 1      | 0.00350 | -50.0  | 0.0    | -0.00014 | -42.0  | 8.0    | -0.02473 | 42.0   | 62.0   |
| 2      | 0.00350 | -50.0  | 70.0   | 0.00092  | -42.0  | 62.0   | -0.01648 | -42.0  | 8.0    |
| 3      | 0.00350 | -50.0  | 70.0   | 0.00100  | -42.0  | 62.0   | -0.01590 | -42.0  | 8.0    |
| 4      | 0.00350 | -50.0  | 0.0    | -0.00040 | -42.0  | 8.0    | -0.02675 | 42.0   | 62.0   |

## POSIZIONE ASSE NEUTRO PER OGNI COMB. DI RESISTENZA

| a, b, c | Coeff. a, b, c nell'eq. dell'asse neutro aX+bY+c=0 nel rif. X,Y,O gen.      |
|---------|-----------------------------------------------------------------------------|
| x/d     | Rapp. di duttilità (travi e solette)[§ 4.1.2.1.2.1 NTC]: deve essere < 0.45 |
| C.Rid.  | Coeff. di riduz. momenti per sola flessione in travi continue               |

| C.Rid. | x/d | С            | b            | b a         | N°Comb |
|--------|-----|--------------|--------------|-------------|--------|
|        |     | 0.003500000  | -0.000455338 | 0.000000000 | 1      |
|        |     | -0.019062384 | 0.000322320  | 0.000000000 | 2      |
|        |     | -0.018407319 | 0.000312962  | 0.000000000 | 3      |
|        |     | 0.003500000  | -0.000487891 | 0.000000000 | 4      |
|        |     |              |              |             |        |

## **VERIFICHE A TAGLIO**

| Ver   | S = comb. verificata a taglio / N = comb. non verificata                                    |
|-------|---------------------------------------------------------------------------------------------|
| Ved   | Taglio di progetto [kN] = Vy ortogonale all'asse neutro                                     |
| Vcd   | Taglio compressione resistente [kN] lato conglomerato [formula (4.1.28)NTC]                 |
| Vwd   | Taglio resistente [kN] assorbito dalle staffe [(4.1.18) NTC]                                |
| d z   | Altezza utile media pesata sezione ortogonale all'asse neutro   Braccio coppia interna [cm] |
| ·     | Vengono prese nella media le strisce con almeno un estremo compresso.                       |
|       | I pesi della media sono costituiti dalle stesse lunghezze delle strisce.                    |
| bw    | Larghezza media resistente a taglio [cm] misurate parallel. all'asse neutro                 |
|       | E' data dal rapporto tra l'area delle sopradette strisce resistenti e Dmed.                 |
| Ctg   | Cotangente dell'angolo di inclinazione dei puntoni di conglomerato                          |
| Acw   | Coefficiente maggiorativo della resistenza a taglio per compressione                        |
| Ast   | Area staffe+legature strettam. necessarie a taglio per metro di pil.[cm²/m]                 |
| A.Eff | Area staffe+legature efficaci nella direzione del taglio di combinaz.[cm²/m]                |
|       | Tra parentesi è indicata la quota dell'area relativa alle sole legature.                    |
|       | L'area della legatura è ridotta col fattore L/d_max con L=lungh legat.proietta-             |
|       | ta sulla direz. del taglio e d_max= massima altezza utile nella direz.del taglio.           |
|       | •                                                                                           |

| N°Comb | Ver | Ved    | Vcd     | Vwd    | d   z      | bw    | Ctg   | Acw   | Ast | A.Eff    |
|--------|-----|--------|---------|--------|------------|-------|-------|-------|-----|----------|
| 1      | S   | 295.32 | 1778.36 | 353.35 | 66.9  58.9 | 100.0 | 2.500 | 1.030 | 5.1 | 6.1(0.0) |
| 2      | S   | 295.32 | 1768.70 | 345.74 | 65.7 57.7  | 100.0 | 2.500 | 1.047 | 5.2 | 6.1(0.0) |
| 3      | S   | 342.71 | 1774.27 | 344.96 | 65.5 57.5  | 100.0 | 2.500 | 1.052 | 6.1 | 6.1(0.0) |
| 4      | S   | 342.71 | 1750.44 | 354.58 | 67.1 59.1  | 100.0 | 2.500 | 1.010 | 5.9 | 6.1(0.0) |



# RADDOPPIO CESANO VIGNA DI VALLE PROGETTO DEFINITIVO

Relazione di calcolo scatolare

COMMESSA LOTTO CODIFICA DOCUMENTO REV. FOGLIO

NRIJ 01 D 29 CL IN0200 001 B 55 di 66

#### COMBINAZIONI RARE IN ESERCIZIO - MASSIME TENSIONI NORMALI ED APERTURA FESSURE (NTC/EC2)

| Ver | S = comb. verificata/ N = comb. non verificata |
|-----|------------------------------------------------|
|     |                                                |

Sc max
Massima tensione (positiva se di compressione) nel conglomerato [Mpa]
Xc max, Yc max
Ascissa, Ordinata [cm] del punto corrisp. a Sc max (sistema rif. X,Y,O)
Sf min
Minima tensione (negativa se di trazione) nell'acciaio [Mpa]
Xs min, Ys min
Ascissa, Ordinata [cm] della barra corrisp. a Sf min (sistema rif. X,Y,O)
Ac eff.
Area di calcestruzzo [cm²] in zona tesa considerata aderente alle barre
Area barre [cm²] in zona tesa considerate efficaci per l'apertura delle fessure

| N°Comb | Ver | Sc max | Xc max | Yc max | Sf min | Xs min | Ys min | Ac eff. | As eff. |
|--------|-----|--------|--------|--------|--------|--------|--------|---------|---------|
| 1      | S   | 0.69   | -50.0  | 70.0   | 3.4    | -32.7  | 8.0    |         |         |
| 2      | S   | 6.07   | -50.0  | 70.0   | -138.1 | -23.3  | 8.0    | 1500    | 31.4    |
| 3      | S   | 5.65   | -50.0  | 70.0   | -124.1 | -42.0  | 8.0    | 1500    | 31.4    |
| 4      | S   | 1.03   | -50.0  | 70.0   | 5.0    | -42.0  | 8.0    |         |         |

#### COMBINAZIONI RARE IN ESERCIZIO - APERTURA FESSURE [§ 7.3.4 EC2]

La sezione viene assunta sempre fessurata anche nel caso in cui la trazione minima del calcestruzzo sia inferiore a fctm

Ver. Esito della verifica

e1 Massima deformazione unitaria di trazione nel calcestruzzo (trazione -) valutata in sezione fessurata e2 Minima deformazione unitaria di trazione nel calcestruzzo (trazione -) valutata in sezione fessurata

k1 = 0.8 per barre ad aderenza migliorata [eq.(7.11)EC2]

kt = 0.4 per comb. quasi permanenti / = 0.6 per comb.frequenti [cfr. eq.(7.9)EC2] k2 = 0.5 per flessione; =(e1 + e2)/(2\*e1) per trazione eccentrica [eq.(7.13)EC2]

k3 = 3.400 Coeff. in eq.(7.11) come da annessi nazionali k4 = 0.425 Coeff. in eq.(7.11) come da annessi nazionali

Ø Diametro [mm] equivalente delle barre tese comprese nell'area efficace Ac eff [eq.(7.11)EC2]

f Copriferro [mm] netto calcolato con riferimento alla barra più tesa

e sm - e cm Differenza tra le deformazioni medie di acciaio e calcestruzzo [(7.8)EC2 e (C4.1.7)NTC]

Tra parentesi: valore minimo = 0.6 Smax / Es [(7.9)EC2 e (C4.1.8)NTC]

sr max Massima distanza tra le fessure [mm]

wk Apertura fessure in mm calcolata = sr max\*(e\_sm - e\_cm) [(7.8)EC2 e (C4.1.7)NTC]. Valore limite tra parentesi

Mx fess. Componente momento di prima fessurazione intorno all'asse X [kNm] My fess. Componente momento di prima fessurazione intorno all'asse Y [kNm]

| Comb. | Ver | e1       | e2 | k2    | Ø    | Cf | e sm - e cm s     | r max | wk           | Mx fess | My fess |
|-------|-----|----------|----|-------|------|----|-------------------|-------|--------------|---------|---------|
| 1     | S   | -0.00074 | 0  |       |      |    |                   |       | 0.000 (0.20) | -312.54 | 0.00    |
| 2     | S   | -0.00084 | 0  | 0.500 | 20.0 | 70 | 0.00041 (0.00041) | 400   | 0.166 (0.20) | 333.50  | 0.00    |
| 3     | S   | -0.00076 | 0  | 0.500 | 20.0 | 70 | 0.00037 (0.00037) | 400   | 0.149 (0.20) | 338.04  | 0.00    |
| 4     | S   | -0.00001 | 0  |       |      |    | ` <u></u>         |       | 0.000 (0.20) | 2085.34 | 0.00    |

#### COMBINAZIONI FREQUENTI IN ESERCIZIO - MASSIME TENSIONI NORMALI ED APERTURA FESSURE (NTC/EC2)

| N°Comb | Ver | Sc max | Xc max | Yc max | Sf min | Xs min | Ys min | Ac eff. | As eff. |
|--------|-----|--------|--------|--------|--------|--------|--------|---------|---------|
| 1      | S   | 0.81   | -50.0  | 70.0   | 1.1    | -42.0  | 8.0    | 0       | 0.0     |
| 2      | S   | 4.78   | -50.0  | 70.0   | -100.8 | -32.7  | 8.0    | 1450    | 31.4    |
| 3      | S   | 4.43   | -50.0  | 70.0   | -93.7  | -32.7  | 8.0    | 1500    | 31.4    |
| 4      | S   | 0.94   | -50.0  | 70.0   | 3.4    | -42.0  | 8.0    |         |         |

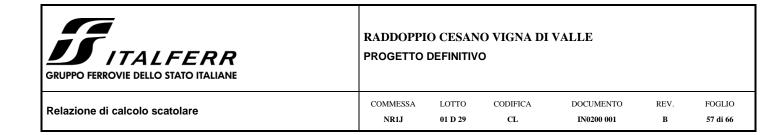
#### COMBINAZIONI FREQUENTI IN ESERCIZIO - APERTURA FESSURE [§ 7.3.4 EC2]

| Comb. | Ver | e1       | e2      | k2    | Ø    | Cf | e sm - e cm s     | r max | wk           | Mx fess | My fess |
|-------|-----|----------|---------|-------|------|----|-------------------|-------|--------------|---------|---------|
| 1     | S   | 0.00000  | 0       | 0.500 | 20.0 | 70 | 0.00037 (0.00037) | 0     | 0.001 (0.20) | 5771.85 | 0.00    |
| 2     | S   | -0.00062 | 0       | 0.500 | 20.0 | 70 | 0.00030 (0.00030) | 395   | 0.119 (0.20) | 343.32  | 0.00    |
| 3     | S   | -0.00057 | 0       | 0.500 | 20.0 | 70 | 0.00028 (0.00028) | 400   | 0.113 (0.20) | 342.81  | 0.00    |
| 4     | S   | 0.00000  | 0.00000 |       |      |    | ` <u></u> -       |       | 0.000 (0.20) | 0.00    | 0.00    |



| N°Comb | Ver | Sc max | Xc max | Yc max | Sf min | Xs min | Ys min | Ac eff. | As eff. |
|--------|-----|--------|--------|--------|--------|--------|--------|---------|---------|
|        |     |        |        |        |        |        |        |         |         |
| 1      | S   | 0.73   | -50.0  | 70.0   | 1.2    | -42.0  | 8.0    | 0       | 0.0     |
| 2      | S   | 2.19   | -50.0  | 70.0   | -45.5  | -42.0  | 8.0    | 1450    | 31.4    |
| 3      | S   | 4.06   | -50.0  | 70.0   | -96.4  | -42.0  | 8.0    | 1550    | 31.4    |
| 4      | S   | 0.39   | -50.0  | 0.0    | 1.9    | 21.0   | 62.0   |         |         |

## COMBINAZIONI QUASI PERMANENTI IN ESERCIZIO - APERTURA FESSURE [§ 7.3.4 EC2]


| Comb. | Ver | e1       | e2 | k2    | Ø    | Cf | e sm - e cm s     | r max | wk               | Mx fess | My fess |
|-------|-----|----------|----|-------|------|----|-------------------|-------|------------------|---------|---------|
| 1     | S   | 0.00000  | 0  | 0.500 | 20.0 | 70 | 0.00028 (0.00028) | 0     | 0.001 (0.20) 775 | 5765.45 | 0.00    |
| 2     | S   | -0.00028 | 0  | 0.500 | 20.0 | 70 | 0.00014 (0.00014) | 395   | 0.054 (0.20)     | 345.00  | 0.00    |
| 3     | S   | -0.00058 | 0  | 0.500 | 20.0 | 70 | 0.00029 (0.00029) | 406   | 0.117 (0.20)     | 328.22  | 0.00    |
| 4     | S   | -0.00001 | 0  |       |      |    | ·                 |       | 0.000 (0.20)     | 1052.65 | 0.00    |

Si adottano spille 8Ø10/mq

## 10.4 Tabella riepilogativa incidenza ferri

## 10.4.1 Soletta inferiore

| Sezione Calcestruzzo             |                  |      |       |
|----------------------------------|------------------|------|-------|
| b1                               | base 1           | 100  | cm    |
| h1                               | altezza1         | 70   | cm    |
| b2                               | base 2           | 0    | cm    |
| h2                               | altezza2         | 0    | cm    |
| Armatura Longitudinale           |                  |      |       |
| n1                               |                  | 20   |       |
| ø1                               |                  | 20   | mm    |
| n2                               |                  | 0    |       |
| ø2                               |                  | 0    | mm    |
| Armatura Trasversale             |                  |      |       |
| Area staffe                      | AT               | 10.2 | cmq/m |
| Incrementi                       |                  |      |       |
| Armatura Longit. Secondaria      | AL1%             | 20   | %     |
| Armatura Longit. Sovrapposizioni | AL1%             | 15   | %     |
| Armatura Trasv. Legature         | AT%              | 15   | %     |
| Totali                           |                  |      |       |
| A CLS                            | b1*h1+b2*h2      | 7000 | cmq   |
| Armatura Long.                   | AL               | 62.8 | cmq   |
| Armatura Long. Incrementata      | AL*(1+AL1%+AL1%) | 84.8 | cmq   |
| Armatura Trasv. Incrementata     | AT*(1+AT%)       | 11.7 | cmq   |
| Armatura Totale                  | AL+AT            | 96.6 | cmq   |
| Peso Armatura Totale             |                  | 76   | kg    |
| Incidenza Armature               |                  | 108  | kg/mc |



## 10.4.1 Soletta superiore

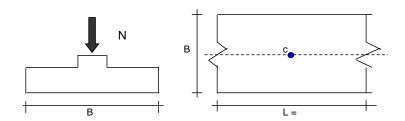
| Sezione Calcestruzzo             |                  |      |       |
|----------------------------------|------------------|------|-------|
| b1                               | base 1           | 100  | cm    |
| h1                               | altezza1         | 70   | cm    |
| b2                               | base 2           | 0    | cm    |
| h2                               | altezza2         | 0    | cm    |
| Armatura Longitudinale           |                  |      |       |
| n1                               |                  | 20   |       |
| ø1                               |                  | 20   | mm    |
| n2                               |                  | 0    |       |
| ø2                               |                  | 0    | mm    |
| Armatura Trasversale             |                  |      |       |
| Area staffe                      | AT               | 11.4 | cmq/m |
| Incrementi                       |                  |      |       |
| Armatura Longit. Secondaria      | AL1%             | 20   | %     |
| Armatura Longit. Sovrapposizioni | AL1%             | 15   | %     |
| Armatura Trasv. Legature         | AT%              | 15   | %     |
| Totali                           |                  |      |       |
| A CLS                            | b1*h1+b2*h2      | 7000 | cmq   |
| Armatura Long.                   | AL               | 62.8 | cmq   |
| Armatura Long. Incrementata      | AL*(1+AL1%+AL1%) | 84.8 | cmq   |
| Armatura Trasv. Incrementata     | AT*(1+AT%)       | 13.1 | cmq   |
| Armatura Totale                  | AL+AT            | 97.9 | cmq   |
| Peso Armatura Totale             |                  | 77   | kg    |
| Incidenza Armature               |                  | 110  | kg/mc |



## 10.4.1 Piedritti

| Sezione Calcestruzzo             |                  |      |       |
|----------------------------------|------------------|------|-------|
| b1                               | base 1           | 100  | cm    |
| h1                               | altezza1         | 70   | cm    |
| b2                               | base 2           | 0    | cm    |
| h2                               | altezza2         | 0    | cm    |
| Armatura Longitudinale           |                  |      |       |
| n1                               |                  | 15   |       |
| ø1                               |                  | 20   | mm    |
| n2                               |                  | 0    |       |
| ø2                               |                  | 0    | mm    |
| Armatura Trasversale             |                  |      |       |
| Area staffe                      | AT               | 6.3  | cmq/m |
| Incrementi                       |                  |      |       |
| Armatura Longit. Secondaria      | AL1%             | 20   | %     |
| Armatura Longit. Sovrapposizioni | AL1%             | 15   | %     |
| Armatura Trasv. Legature         | AT%              | 15   | %     |
| Totali                           |                  |      |       |
| A CLS                            | b1*h1+b2*h2      | 7000 | cmq   |
| Armatura Long.                   | AL               | 47.1 | cmq   |
| Armatura Long. Incrementata      | AL*(1+AL1%+AL1%) | 63.6 | cmq   |
| Armatura Trasv. Incrementata     | AT*(1+AT%)       | 7.2  | cmq   |
| Armatura Totale                  | AL+AT            | 70.9 | cmq   |
| Peso Armatura Totale             |                  | 56   | kg    |
| Incidenza Armature               |                  | 79   | kg/mc |




## 11 VERFICHE GEOTECNICHE

Dall'azione agente è stata decurtato per peso del terreno scavato pari a q<sub>1</sub>=40 kN/m<sup>2</sup>

## 11.1 Verifica dei cedimenti a lungo termine

## CEDIMENTI DI UNA FONDAZIONE NASTRIFORME

#### LAVORO:



## Formulazione Teorica (H.G. Poulos, E.H. Davis; 1974)

$$\begin{split} \Delta \sigma z i &= (2q/\pi)^*(\alpha + sen\alpha cos\alpha) \\ \Delta \sigma x i &= (2q/\pi)^*(\alpha - sen\alpha cos\alpha) \\ \Delta \sigma y i &= (4q/\pi)^*(v\alpha) \\ \\ \alpha &= tan^{-1}((B/2)/z) \\ \\ \delta_{ot} &= \Sigma \delta_i = \Sigma(((\Delta \sigma z i - vi(\Delta \sigma x i + \Delta \sigma y i))\Delta z i/Ei) \end{split}$$

401 201 2(((2021 1.(201120).)))221/21/21

## DATI DI INPUT:

| Strato | Litologia | Spessore | da z <sub>i</sub> | a z <sub>i+1</sub> | ∆zi | E                    | ν    | δci  |
|--------|-----------|----------|-------------------|--------------------|-----|----------------------|------|------|
| (-)    | (-)       | (m)      | (m)               | (m)                | (m) | (kN/m <sup>2</sup> ) | (-)  | (cm) |
| 1      |           | 4.00     | 0.0               | 4.0                | 1.0 | 10000                | 0.30 | 2.21 |
| 2      |           | 13.50    | 4.0               | 17.5               | 1.0 | 30000                | 0.30 | 1.30 |
| 3      |           | 6.50     | 17.5              | 24.0               | 1.0 | 20000                | 0.30 | 0.52 |
| -      |           | 0.00     | 0.0               | 0.0                | 1.0 | 0                    | 0.25 | -    |
| -      |           | 0.00     | 0.0               | 0.0                | 1.0 | 0                    | 0.00 | -    |
| -      |           | 0.00     | 0.0               | 0.0                | 1.0 | 0                    | 0.00 | -    |



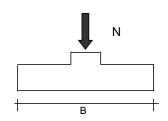
## PROGETTO DEFINITIVO

Relazione di calcolo scatolare

COMMESSA LOTTO NR1J 01 D 29

CODIFICA  $\mathbf{CL}$ 

DOCUMENTO IN0200 001


REV. FOGLIO В

60 di 66

## 11.2 Verifica dei cedimenti a breve termine

## CEDIMENTI DI UNA FONDAZIONE NASTRIFORME

## LAVORO:





## Formulazione Teorica (H.G. Poulos, E.H. Davis; 1974)

 $\Delta \sigma z i = (2q/\pi)^*(\alpha + sen\alpha cos\alpha)$ 

 $\Delta \sigma xi = (2q/\pi)^*(\alpha - sen\alpha cos\alpha)$ 

 $\Delta \sigma y i = (4q/\pi)^*(v\alpha)$ 

 $\alpha = tan^{-1}((B/2)/z)$ 

 $\delta_{tot} = \Sigma \delta\iota = \Sigma (((\Delta \sigma z i - \nu i (\Delta \sigma x i + \Delta \sigma y i)) \Delta z i / E i)$ 

## **DATI DI INPUT:**

B= 6.40 (m) (Larghezza della Fondazione)

(kN) (Carico Verticale Agente) 534.26

83.48 (kN/mq) (Pressione Agente (q = N/B)

1 (numero strati) (massimo 6) (-) ns =

| Strato | Litologia | Spessore | da z <sub>i</sub> | a z <sub>i+1</sub> | ∆zi | E                    | ν    | δci  |
|--------|-----------|----------|-------------------|--------------------|-----|----------------------|------|------|
| (-)    | (-)       | (m)      | (m)               | (m)                | (m) | (kN/m <sup>2</sup> ) | (-)  | (cm) |
| 1      |           | 4.00     | 0.0               | 4.0                | 1.0 | 45000                | 0.30 | 0.49 |
| -      |           | 0.00     | 0.0               | 0.0                | 1.0 | 0                    | 0.30 | -    |
| 1      |           | 0.00     | 0.0               | 0.0                | 1.0 | 0                    | 0.30 | -    |
| -      |           | 0.00     | 0.0               | 0.0                | 1.0 | 0                    | 0.25 | -    |
| -      |           | 0.00     | 0.0               | 0.0                | 1.0 | 0                    | 0.00 | -    |
| -      |           | 0.00     | 0.0               | 0.0                | 1.0 | 0                    | 0.00 | -    |

 $\delta_{ctot} = 0.49$ (cm)



Per l'andamento dei cedimenti nel tempo vedasi "Relazione di Calcolo Rilevati ferroviari" NR1J01D29CLGE0005001B.



PROGETTO DEFINITIVO

COMMESSA LOTTO Relazione di calcolo scatolare NR1J 01 D 29 CODIFICA DOCUMENTO REV. FOGLIO IN0200 001 CLВ 62 di 66

## 11.3 Verifica di portanza

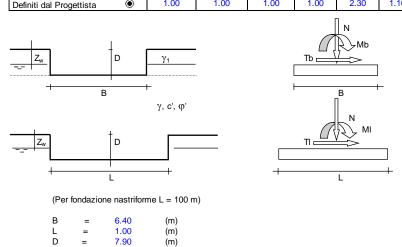
# <u>Fondazioni Dirette</u> <u>Verifica in tensioni efficaci</u>

 $qlim = c' \cdot Nc \cdot sc \cdot dc \cdot ic \cdot bc \cdot gc + q \cdot Nq \cdot sq \cdot dq \cdot iq \cdot bq \cdot gq + 0, 5 \cdot \gamma \cdot B \cdot N\gamma \cdot s\gamma \cdot d\gamma \cdot i\gamma \cdot b\gamma \cdot g\gamma$ 

D = Profondità del piano di appoggio

 $e_B$  = Eccentricità in direzione B ( $e_B$  = Mb/N)

 $e_L$  = Eccentricità in direzione L ( $e_L$  = MI/N) (per fondazione nastriforme  $e_L = 0$ ;  $L^* = L$ )


 $B^*$  = Larghezza fittizia della fondazione ( $B^*$  = B -  $2^*e_B$ )


 $L^*$  = Lunghezza fittizia della fondazione ( $L^*$  = L -  $2^*e_L$ )

(per fondazione nastriforme le sollecitazioni agenti sono riferite all'unità di lunghezza)

coefficienti parziali

|                          |                   |      | azioni     |                         | proprietà del terreno |      | resistenze |       |
|--------------------------|-------------------|------|------------|-------------------------|-----------------------|------|------------|-------|
| Metodo                   | Metodo di calcolo |      | permanenti | temporanee<br>variabili | tan φ'                | c'   | qlim       | scorr |
| -                        | A1+M1+R1          | 0    | 1.30       | 1.50                    | 1.00                  | 1.00 | 1.00       | 1.00  |
| VIII Offing Lin          | A2+M2+R2          | 0    | 1.00       | 1.30                    | 1.25                  | 1.25 | 1.80       | 1.00  |
|                          | SISMA             | 0    | 1.00       | 1.00                    | 1.25                  | 1.25 | 1.80       | 1.00  |
|                          | A1+M1+R3          | 0    | 1.30       | 1.50                    | 1.00                  | 1.00 | 2.30       | 1.10  |
|                          | SISMA             | 0    | 1.00       | 1.00                    | 1.00                  | 1.00 | 2.30       | 1.10  |
| Tensioni Ammissibili     |                   | 1.00 | 1.00       | 1.00                    | 1.00                  | 3.00 | 3.00       |       |
| Definiti del Progettiata |                   | 1.00 | 1.00       | 1.00                    | 1.00                  | 2.30 | 1 10       |       |







|          | AZIONI     |                 |         |  |  |  |  |
|----------|------------|-----------------|---------|--|--|--|--|
|          | valori o   | valori di input |         |  |  |  |  |
|          | permanenti | temporanee      | calcolo |  |  |  |  |
| N [kN]   | 1454.28    |                 | 1454.28 |  |  |  |  |
| Mb [kNm] | 0.00       |                 | 0.00    |  |  |  |  |
| MI [kNm] | 0.00       |                 | 0.00    |  |  |  |  |
| Tb [kN]  | 0.00       |                 | 0.00    |  |  |  |  |
| TI [kN]  | 0.00       |                 | 0.00    |  |  |  |  |
| H [kN]   | 0.00       | 0.00            | 0.00    |  |  |  |  |

(m)



## RADDOPPIO CESANO VIGNA DI VALLE PROGETTO DEFINITIVO

#### Relazione di calcolo scatolare

COMMESSA NR1J

LOTTO 01 D 29

CODIFICA CL

DOCUMENTO IN0200 001

REV. В

FOGLIO 63 di 66

#### Peso unità di volume del terreno

 $\gamma_1 = 16.00$ 16.00 (kN/mc)

#### Valori caratteristici di resistenza del terreno

= 5.00 (kN/mq) 26.00 (°)

Valori di progetto c' = 5.00 (kN/mq) 26.00 (°)

## Profondità della falda

0.00  $e_B =$ (m)  $e_L =$ 0.00 (m)

B\* = 6.40 (m) L\* = 1.00 (m)

## q : sovraccarico alla profondità D

47.40 q = (kN/mq)

#### γ : peso di volume del terreno di fondazione

6.00 (kN/mc)  $\gamma =$ 

## Nc, Nq, Nγ : coefficienti di capacità portante

 $Nq = tan^2(45 + \phi'/2)^* e^{(\pi^* tg\phi')}$ 

Nq = 11.85

 $Nc = (Nq - 1)/tan\phi'$ 

Nc = 22.25

 $N\gamma = 2*(Nq + 1)*tan\phi'$ 

Nγ = 12.54

#### sc, sq, sr : fattori di forma

 $s_c = 1 + B*Nq / (L*Nc)$ 

s<sub>c</sub> = 1.08

 $s_q = 1 + B*tan\phi' / L*$ 

 $s_q = 1.08$ 

 $s_v = 1 - 0.4*B* / L*$ 

 $s_{\gamma} = 0.94$ 

#### $i_c,\,i_q,\,i_\gamma$ : fattori di inclinazione del carico

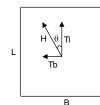
 $m_b = (2 + B^* / L^*) / (1 + B^* / L^*) =$ 

1.86  $\theta = arctg(Tb/TI) =$ 90.00 (°)

 $m_I = \left(2 + \, L^* \, / \, B^*\right) \, / \, \left(1 \, + \, L^* \, / \, B^*\right) \qquad = \qquad$ 1.14 m = 1.86

 $i_q = (1 - H/(N + B^*L^* c' \cot g\phi'))^m$ 

 $i_{\alpha} = 1.00$ 


 $i_c = i_q - (1 - i_q)/(Nq - 1)$ 

i<sub>c</sub> = 1.00

 $i_v = (1 - H/(N + B^*L^* c' \cot g\phi'))^{(m+1)}$ 

 $i_{y} = 1.00$ 

(m=2 nel caso di fondazione nastriforme e  $m=(m_b sin^2 \theta + m_l cos^2 \theta)$  in tutti gli altri casi)



LOTTO 01 D 29 CODIFICA CL DOCUMENTO
IN0200 001

REV. FOGLIO

B 64 di 66

## $d_c,\,d_q,\,d_\gamma$ : fattori di profondità del piano di appoggio

$$\begin{split} \text{per D/B*} &\leq 1; \ d_q = 1 \ + 2 \ D \ tan\phi' \ (1 \ - \ sen\phi')^2 \ / \ B^* \\ \text{per D/B*} &> 1; \ d_q = 1 \ + (2 \ tan\phi' \ (1 \ - \ sen\phi')^2) \ ^* \ arctan \ (D \ / \ B^*) \end{split}$$

$$d_{q} = 1.44$$

$$d_c = d_q - (1 - d_q) / (N_c tan\phi')$$

$$d_c = 1.49$$

$$d_{y} = 1$$

$$d_{\gamma} = 1.00$$

#### bc, bq, by: fattori di inclinazione base della fondazione

$$b_q = (1 - \beta_f \tan \phi')^2$$

 $\beta_f + \beta_p = 0.00$ 

 $\beta_f + \beta_p < 45^\circ$ 

$$b_{q} = 1.00$$

$$b_c = b_q - (1 - b_q) / (N_c \tan \varphi)$$

$$b_c = 1.00$$

$$b_{\gamma} = b_{q}$$

$$b_{\gamma} = 1.00$$

#### g<sub>c</sub>, g<sub>q</sub>, g<sub>γ</sub> : fattori di inclinazione piano di campagna

$$g_q = (1 - \tan \beta_p)^2$$

 $\beta_f + \beta_p = 0.00$ 

$$\beta_f + \beta_p < 45^\circ$$

$$g_q = 1.00$$

$$g_c = g_q - (1 - g_q) / (N_c \tan \varphi)$$

$$g_c = 1.00$$

$$g_{\gamma} = g_{q}$$

$$g_{y} = 1.00$$

## Carico limite unitario

$$q_{lim} = 1087.87$$
 (kN/m<sup>2</sup>)

## Pressione massima agente

$$q = N / B^* L^*$$

$$q = 227.23 (kN/m^2)$$

## Verifica di sicurezza capacità portante

$$q_{lim}/\gamma_R =$$

≥



## RADDOPPIO CESANO VIGNA DI VALLE PROGETTO DEFINITIVO

Relazione di calcolo scatolare

COMMESSA NR1J

LOTTO 01 D 29

CODIFICA CL

DOCUMENTO IN0200 001

REV. В

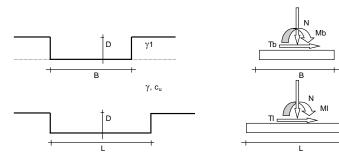
FOGLIO 65 di 66

## <u>Fondazioni Dirette</u> <u>Verifica in tensioni totali</u>

#### $qlim = c_u \cdot Nc \cdot sc \cdot dc \cdot ic \cdot bc \cdot gc + q \cdot Nq$

D = Profondità del piano di appoggio

 $e_B$  = Eccentricità in direzione B ( $e_B$  = Mb/N)


 $e_{L} = \text{Eccentricità in direzione L } (e_{L} = \text{MI/N}) \qquad \text{(per fondazione nastriforme } e_{L} = 0; \ L^{\star} = L)$ 

 $B^*$  = Larghezza fittizia della fondazione ( $B^*$  = B -  $2^*e_B$ )

 $L^*$  = Lunghezza fittizia della fondazione ( $L^*$  = L -  $2^*e_L$ )

#### coefficienti parziali

|                        |                |            | azioni                  |      | proprietà del terreno | resistenze |      |
|------------------------|----------------|------------|-------------------------|------|-----------------------|------------|------|
| Metodo di calcolo      |                | permanenti | temporanee<br>variabili | Cu   | qlim                  | scorr      |      |
|                        | A1+M1+R1       | 0          | 1.30                    | 1.50 | 1.00                  | 1.00       | 1.00 |
| Stato Limite<br>Ultimo | A2+M2+R2       | 0          | 1.00                    | 1.30 | 1.40                  | 1.80       | 1.00 |
| o Li                   | SISMA          | 0          | 1.00                    | 1.00 | 1.40                  | 1.80       | 1.00 |
| Stat                   | A1+M1+R3       | 0          | 1.30                    | 1.50 | 1.00                  | 2.30       | 1.10 |
|                        | SISMA          | 0          | 1.00                    | 1.00 | 1.00                  | 2.30       | 1.10 |
| Tensioni               | Ammissibili    | 0          | 1.00                    | 1.00 | 1.00                  | 3.00       | 3.00 |
| Definiti da            | al Progettista | •          | 1.00                    | 1.00 | 1.00                  | 2.30       | 1.10 |



(Per fondazioni nastriformi L=100 m)

6.40 (m) (m) L D 1.00 7.90



0.00

0.00

#### Valori di valori di input permanenti temporane calcolo 1454.28 1454.28 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

AZIONI

0.00

#### TI [kN] H [kN] Peso unità di volume del terreno (kN/mc) 16.00 16.00

(kN/mc)

N [kN]

Mb [kNm] Ml [kNm]

Tb [kN]

| Valore caratteristico di resistenza del terreno |   |       | Valore di progetto |    |   |       |         |
|-------------------------------------------------|---|-------|--------------------|----|---|-------|---------|
| $C_{u}$                                         | = | 50.00 | (kN/mq)            | Cu | = | 50.00 | (kN/mq) |
|                                                 |   |       |                    |    |   |       |         |
| e <sub>B</sub>                                  | = | 0.00  | (m)                | B* | = | 6.40  | (m)     |
| $e_{L}$                                         | = | 0.00  | (m)                | L* | = | 1.00  | (m)     |



## RADDOPPIO CESANO VIGNA DI VALLE PROGETTO DEFINITIVO

#### Relazione di calcolo scatolare

COMMESSA

LOTTO

CODIFICA

DOCUMENTO

REV. FOGLIO В

NR1J

01 D 29

CL

IN0200 001

66 di 66

#### q : sovraccarico alla profondità D

q = 126.40 (kN/mq)

#### $\gamma$ : peso di volume del terreno di fondazione

 $\gamma = 16.00 \, (kN/mc)$ 

#### Nc : coefficiente di capacità portante

 $Nc = 2 + \pi$ 

Nc = 5.14

#### s<sub>c</sub> : fattori di forma

s<sub>c</sub> = 1 + 0,2 B\* / L\*

s<sub>c</sub> = 1.03

#### ic: fattore di inclinazione del carico

 $m_b = (2 + B^* / L^*) / (1 + B^* / L^*) =$ 1.86

 $m_1 = (2 + L^* / B^*) / (1 + L^* / B^*) =$ 1.14

 $\theta = \operatorname{arctg}(Tb/TI) = 90.00$  (°)

m = 1.86

(m=2 nel caso di fondazione nastriforme e

 $m = (m_b sin^2 \theta + m_l cos^2 \theta)$  in tutti gli altri casi)

 $i_c = (1 - m H / (B^*L^* c_u^*Nc))$ 

i<sub>c</sub> = 1.00

#### d<sub>c</sub>: fattore di profondità del piano di appoggio

per D/B\* $\leq$  1; d<sub>c</sub> = 1 + 0,4 D / B\*

per D/B\*> 1;  $d_c = 1 + 0.4$  arctan (D / B\*)

 $d_c = 1.58$ 

## b<sub>c</sub> : fattore di inclinazione base della fondazione

 $b_c = (1 - 2 \beta_f / (\pi + 2))$ 

0.00

L

 $\beta_f + \beta_p < 45^\circ$ 

b<sub>c</sub> = 1.00

## gc: fattore di inclinazione piano di campagna

 $g_c = (1 - 2 \beta_f / (\pi + 2))$ 

 $\beta_f + \beta_p = 0.00$ 

 $\beta_f + \beta_p < 45^\circ$ 

g<sub>c</sub> = 1.00

## Carico limite unitario

 $q_{lim} = 544.61 \text{ (kN/m}^2)$ 

#### Pressione massima agente

q = N / B\* L\*

 $q = 227.23 (kN/m^2)$ 

#### Verifica di sicurezza capacità portante

 $q_{lim}/\gamma_R =$ 

236.79  $\geq$  q = 227.23 (kN/m<sup>2</sup>)