

PROGETTAZIONE:

File: NR1J01D29CLVI0104002A.DOC

n. Elab.: 311.1

					OKOTT	O I ERROVIE	DELLO SIAIO IIALIANE
DIR	REZIONE TEC	NICA					
U.O	. INFRASTRUT	TURE CENT	'RO				
PRO	OGETTO DEFI	NITIVO					
RAL	DOPPIO LINE	A FERROVIA	RIA ROM	1A-VIT	ERBO		
TRA	ATTA CESANO	VIGNA DI VA	LLE				
VI01 -	- Ponte ferroviario al k	m 38+650					
Relazi	one di calcolo spalle fa	se temporanea					
							SCALA:
							-
COMM	IESSA LOTTO FASE	E ENTE TIPO DO	C. OPERA/D	ISCIPLINA	PROG	R. REV	
N R	1 J 0 1 D	2 9 C L	V I 0	1 0 4	0 0	2 A	
Rev.	Descrizione	Redatto Data	Verificato	Data	Approvato	Data	Autorizzato Data
A	EMISSIONE DEFINITIVA	F. Serrau 05-2020	M. Monda	05-2020	T. Paoletti	05-2020	ITALFERN S.p.A. Direzione Tecnica Direzione Tecnica Direzione Tecnica Arboy Ing-Eablizio Ardui degli Ragegneri Bella Provir n-18902 and A

 $Relazione\ di\ calcolo\ -\ Spalle\ -\ fase\ 1$

COMMESSA LOTTO
NR1J 01 D 29

CODIFICA CL DOCUMENTO
VI0104 001

REV.

FOGLIO 2 di 172

INDICE

1	PREMESSA	4
2	DOCUMENTAZIONE DI RIFERIMENTO	8
2.1	NORMATIVE DI RIFERIMENTO	8
2.2	Elaborati di progetto di riferimento	9
3	UNITÀ DI MISURA E SIMBOLOGIA	10
4	CARATTERISTICHE DEI MATERIALI	12
4.1	Dati generali	
	CARATTERISTICHE TECNICHE	
4.2	4.2.1 Magrone	
	4.2.2 Calcestruzzo Elevazione	
	4.2.3 Calcestruzzo Fondazione	
	4.2.4 Calcestruzzo Pali	
	4.2.5 Acciaio da C.A	
5	INQUADRAMENTO GEOTECNICO	
6	DESCRIZIONE INTERVENTO	
7	ANALISI DEI CARICHI	
7.1	CARICHI IN CONDIZIONI STATICHE	
	7.1.1 Peso proprio degli elementi strutturali	
	7.1.2 Terreno e falda	
	7.1.3 Marciapiedi	
	7.1.4 Azioni trasmesse dall'impalcato	18
7.2	AZIONI VARIABILI DA TRAFFICO (Q1K)	
	7.2.1 Azione longitudinale di frenatura o di avviamento (q3)	
	7.2.2 Azione centrifuga (q4)	24
	7.2.3 Marciapiedi	24
	7.2.4 Urto veicoli	24
7.3	RITIRO DEL CALCESTRUZZO	25
7.4	VARIAZIONI TERMICHE	26
7.5	CARICHI IN CONDIZIONI SISMICHE	27

 $Relazione\ di\ calcolo\ -\ Spalle\ -\ fase\ 1$

COMMESSA LOTTO
NR1J 01 D 29

CODIFICA CL

DOCUMENTO
VI0104 001

REV. B FOGLIO 3 di 172

	7.5.1 Sovraspinta sismica	30
8	COMBINAZIONI DEI CARICHI	32
8.1	COMBINAZIONI ELEMENTARI DI CALCOLO	32
8.2	DEFINIZIONE DELLE COMBINAZIONI DI CARICO	32
8.3	Combinazioni Relative Agli Stati Limite Ultimi	34
8.4	Verifiche in esercizio	34
	8.4.1 Verifica delle tensioni	34
	8.4.2 Verifica a fessurazione	35
8.5	Traffico	35
9	IMPOSTAZIONE DEL MODELLO DI CALCOLO STRUTTURALE	38
9.1	CALCOLO DELLA RIGIDEZZA ORIZZONTALE DELLE MOLLE RAPPRESENTANTI IL TERRENO	38
9.2	APPLICAZIONE DELLE CONDIZIONI ELEMENTARI DI CARICO	40
10	VERIFICHE STRUTTURALI E GEOTECNICHE	41
10.1	Muro frontale	41
	10.1.1 Verifica direzione orizzontale	43
	10.1.2 Verifiche RC-Sec – direzione verticale:	47
10.2	VERIFICA MURO ANDATORE	53
	10.2.1 Verifica a presso-flessione	54
10.3	Muro paraghiaia	62
	10.3.1 Verifica a presso-flessione	62
	10.3.2 Zone critiche del muro paraghiaia	68
10.4	VERIFICA ZATTERA DI FONDAZIONE	74
	10.4.1 Verifiche RC-Sec – direzione orizzontale	75
	10.4.2 Verifiche RC-Sec – direzione orizzontale Asse 2:	81
10.5	Pali	86
	10.5.1 Verifica a presso-flessione e taglio	87
	10.5.2 Calcolo del carico limite orizzontale	92
	10.5.3 Capacità portante	93
	10.5.4 Cedimento della palificata	95
11	TABULATO COMBINAZIONI DI CARICO	96

Relazione di calcolo - Spalle - fase 1

COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
NR1J	01 D 29	CL	VI0104 001	В	4 di 172

1 PREMESSA

Nel presente documento vengono riportati i calcoli relativi al dimensionamento delle spalle del ponte ferroviario VI01 al km 38+650 nella configuarazione di FASE 1.

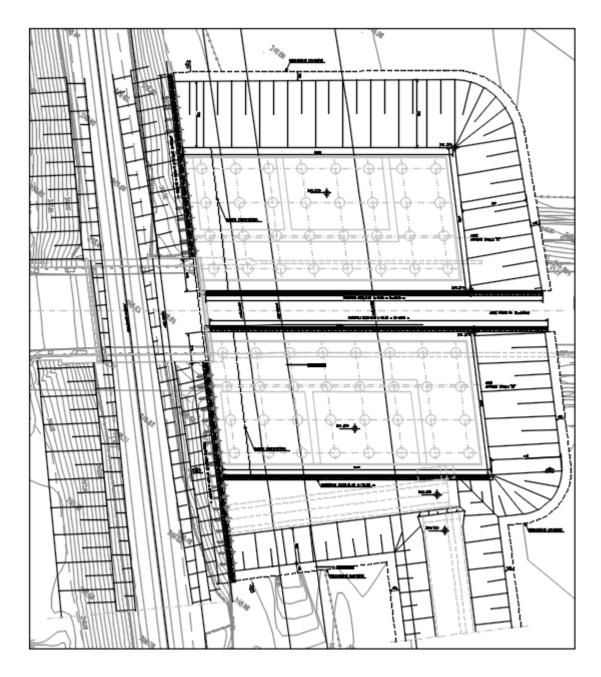
Le calcolazioni svolte nel seguito si riferiscono alla spalla con appoggi fissi in senso longitudinale, che si intendono valide anche per la spalla con appoggi mobili in senso longitudinale.

Il presente documento costituisce la relazione di calcolo delle sottostrutture (spalle) del sottovia VI01 nella configurazione provvisoria di FASE 1. Il ponte ferroviario VI01 si sviluppa tra le progressive 38+640,97 e 38+657,01 ed è costituito nello schema finale da tre impalcati a travi in acciaio incorporate nel cls, di luce, in asse appoggi, di 16m.

Si adottano queste particolari tipologie di impalcato, al fine di minimizzare il pacchetto piano ferro - sottotrave.

La piattaforma ospita 2 vasche portaballast di 8,20m e 4,20m (con 3 binari in totale),.

Per le campate centrale, che è da 16,0 m, si utilizzano n. 18 profili HEB 900, posti ad interasse di 51,0 cm, con una distanza p.f. - sottotrave pari a 1,853 m.


Per la campata est da 16,0 m si utilizzano n. 14 profili HEB 900.

Le spalle presentano medesima altezza di spiccato di circa m. 8,70, le fondazioni sono profonde con plinti su n°32 pali ∅1200.

Data la geometria del manufatto si trascurano gli effetti delle azioni trasversali perchè non dimensionanti.

Di seguito si riporta l'inquadramento planimetrico, il prospetto e le sezioni trasversali rappresentative.

 $Figura\ 1\ Ponte\ ferroviario\ VI01\ al\ km\ 38+650:\ in quadramento\ planimetric of ase\ 2-3$



Figura 2: Ponte ferroviario VIOI al km 38+650: impalcato 2

ON SHAPING

2.80

2.32

2.32

2.32

2.80

VAR.

P.F.

1.92

0.20

10x0.54=5.40

n'11 TRAVI HEB 900

5.80

0.30

1.92

Figura 3: Ponte ferroviario VI01 al km 38+650: impalcato 3

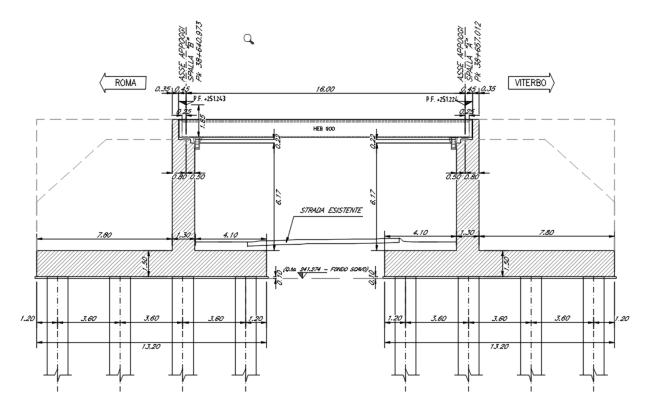


Figura 4: Ponte ferroviario VI01 al km 38+650: prospetti

Relazione di calcolo - Spalle - fase 1

COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
NR1J	01 D 29	CL	VI0104 001	В	8 di 172

2 DOCUMENTAZIONE DI RIFERIMENTO

2.1 Normative di riferimento

Le principali Normative nazionali ed internazionali vigenti alla data di redazione del presente documento e prese a riferimento sono le seguenti:

- [1] Ministero delle Infrastrutture, DM 17 gennaio 2018, «Aggiornamento delle norme tecniche per le costruzioni»
- [2] Circolare n. 7 del 21 gennaio 2019 Istruzioni per l'Applicazione delle Norme Tecniche Costruzioni di cui al Decreto Ministeriale 17 gennaio 2018
- [3] Istruzione RFI DTC INC PO SP IFS 001 B Manuale di Progettazione delle Opere Civili Parte II Sezione 2. Ponti e strutture, e relativi allegati (A, B, C)
- [4] Istruzione RFI DTC INC CS SP IFS 001 B Manuale di Progettazione delle Opere Civili Parte II Sezione 3. Corpo stradale, e relativi allegati (A, B, C, D, E)
- [5] Eurocodice 1 Azioni sulle strutture, Parte 1-4: Azioni in generale Azioni del vento (UNI EN 1991-1-4)
- [6] Regolamento (UE) N.1299/2014 della Commissione del 18 Novembre 2014 relativo alle specifiche tecniche di interoperabilità per il sottosistema "infrastruttura" del sistema ferroviario dell'Unione europea
- [7] UNI EN 1998-1:2013 Strutture in zone sismiche parte 1: generale ed edifici.
- [8] UNI EN 1998-2:2011 Strutture in zone sismiche –parte 2: ponti.
- [9] UNI EN 1992-1-1: EUROCODICE 2 Progettazione delle strutture di calcestruzzo Parte 1-1: Regole generali e regole per gli edifici
- [10] DECRETO 31 luglio 2012 Approvazione delle Appendici nazionali recanti i parametri tecnici per l'applicazione degli Eurocodici.

2.2 Elaborati di progetto di riferimento

Vengono presi a riferimento tutti gli elaborati grafici progettuali di pertinenza.

Titolo	scala																				
Relazione tecnica descrittiva		N	R	1	J	0	1	D	2	9	R	О	V	I	0	1	0	0	0	0	1
Planimetria di progetto	-	N	R	1	J	0	1	D	2	9	P	8	V	I	0	1	0	0	0	0	1
Relazione di calcolo impalcato	1:500	N	R	1	J	0	1	D	2	9	С	L	V	I	0	1	0	7	0	0	1
Relazione di calcolo opere provvisionali	-	N	R	1	J	0	1	D	2	9	С	L	V	I	0	1	0	3	0	0	1
Fasi costruttive	-	N	R	1	J	0	1	D	2	9	В	Z	V	I	0	1	0	0	0	0	1
Scavi, demolizioni e opere provvisionali - Pianta e sezioni Tav. 1/2	Varie	N	R	1	J	0	1	D	2	9	P	Z	V	I	0	1	0	0	0	0	1
Scavi, demolizioni e opere provvisionali - Pianta e sezioni Tav. 2/2	Varie	N	R	1	J	0	1	D	2	9	P	Z	V	I	0	1	0	0	0	0	2
Pianta fondazioni, pianta impalcato, prospetto e sezione longitudinale	Varie	N	R	1	J	0	1	D	2	9	P	z	V	Ι	0	1	0	0	0	0	3
Carpenteria impalcato Tav. 1/2	Varie	N	R	1	J	0	1	D	2	9	В	Z	V	I	0	1	0	7	0	0	1
Carpenteria impalcato Tav. 2/2	Varie	N	R	1	J	0	1	D	2	9	В	Z	V	I	0	1	0	7	0	0	2
Carpenteria Spalla A	Varie	N	R	1	J	0	1	D	2	9	В	Z	V	I	0	1	0	4	0	0	1
Carpenteria Spalla B	Varie	N	R	1	J	0	1	D	2	9	В	Z	V	I	0	1	0	4	0	0	2
Carpenteria muri d'ala Tav. 1/2	Varie	N	R	1	J	0	1	D	2	9	В	Z	V	I	0	1	0	0	0	0	2
Carpenteria muri d'ala Tav. 2/2	Varie	N	R	1	J	0	1	D	2	9	В	z	V	I	0	1	0	0	0	0	3
Apparecchi d'appoggio e giunti	Varie	N	R	1	J	0	1	D	2	9	В	z	V	I	0	1	0	0	0	0	4
Particolari costruttivi	Varie	N	R	1	J	0	1	D	2	9	В	Z	V	I	0	1	0	0	0	0	5

Relazione di calcolo - Spalle - fase 1

COMMESSA LOTTO

NR1J 01 D 29

CODIFICA CL DOCUMENTO VI0104 001

REV. FOGLIO **B** 10 di 172

3 UNITÀ DI MISURA E SIMBOLOGIA

Si utilizza il Sistema Internazionale. Di seguito si riportano le descrizioni delle unità di misura principali:

• unità di misura principali

N (Newton) unità di forza

m (metro) unità di lunghezza

kg (kilogrammo-massa) unità di massa

s (secondo) unità di tempo

• unità di misura derivate

kN (kiloNewton) 10³ N

MN (megaNewton) 10⁶ N

kgf (kilogrammo-forza) 1 kgf = 9.81 N

cm (centimetro) 10^{-2} m

mm (millimetro) 10⁻³ m

Pa (Pascal) 1 N/m^2

kPa (kiloPascal) 10^3 N/m^2

Mpa (megaPascal) $10^6 \,\text{N/m}^2$

N/m³ (peso specifico)

g (accelerazione di gravità) ~9.81 m/s²

• corrispondenze notevoli

 $1 \text{ MPa} = 1 \text{ N/mm}^2$

 $1 \text{ MPa} \sim 10 \text{ kgf/cm}^2$

 $1 \text{ kN/m}^3 \sim 100 \text{ kgf/m}^3$

Si utilizzano i seguenti principali simboli con le relative unità di misura normalmente adottate:

Relazione di calcolo - Spalle - fase 1

COMMESSA LOTTO

NR1J 01 D 29

CODIFICA CL

DOCUMENTO VI0104 001 FOGLIO 11 di 172

REV.

γ (gamma) peso dell'unità di volume (kN/m³)

 σ (sigma) tensione normale (N/mm²)

 τ (tau) tensione tangenziale (N/mm²)

 ε (epsilon) deformazione (m/m - adimensionale)

 ϕ (fi) angolo di resistenza (° sessagesimali)

4 CARATTERISTICHE DEI MATERIALI

4.1 Dati generali

L'opera è in calcestruzzo cementizio armato.

Le caratteristiche dei materiali previsti dal progetto sono le seguenti:

Calcestruzzo

Sono previsti tre tipi di calcestruzzo, rispettivamente per le parti in elevazione, le fondazioni e i pali.

• Armature lente in barre

Si utilizza acciaio tipo B450C.

4.2 Caratteristiche tecniche

4.2.1 Magrone

Classe di resistenza = C12/15

4.2.2 Calcestruzzo Elevazione

CALCESTRUZZO ELEVAZIONE SPALLE

Classe	C32/40		
R _{ck} =	40.00	N/mm²	resistenza caratteristica cubica
$f_{ck} =$	32.00	N/mm²	resistenza caratteristica cilindrica
γ _M =	1.5	-	coefficiente parziale di sicurezza SLU
$f_{cd} =$	18.8	N/mm²	resistenza di progetto
c =	50	mm	copriferro minimo
	XC4	-	Classe di esposizione

4.2.3 Calcestruzzo Fondazione

CALCESTRUZZO FONDAZIONE SPALLE

Classe	C30/37		
$R_{ck} =$	37.00	N/mm²	resistenza caratteristica cubica
$f_{ck} =$	30.00	N/mm²	resistenza caratteristica cilindrica
γ _M =	1.5	-	coefficiente parziale di sicurezza SLU
$f_{cd} =$	17	N/mm²	resistenza di progetto
c =	40	mm	copriferro minimo

Rel	azione	di	calcolo	– Snal	le _ ·	fase	1
IZCI	aliunt	uı	Calculu	– wyai	16 –	Last	1

COMMESSA LOTTO

NR1J 01 D 29

CODIFICA CL DOCUMENTO VI0104 001

REV. FOGLIO **B** 13 di 172

XC2 - Classe di esposizione

4.2.4 Calcestruzzo Pali

CALCESTRUZZO PALI

Classe	C25/30		
R _{ck} =	30.00	N/mm²	resistenza caratteristica cubica
$f_{ck} =$	25.00	N/mm²	resistenza caratteristica cilindrica
γ _M =	1.5	-	coefficiente parziale di sicurezza SLU
$f_{cd} =$	14.17	N/mm²	resistenza di progetto
c =	60	mm	copriferro minimo
	XC2	-	Classe di esposizione

4.2.5 Acciaio da C.A

ACCIAIO PER ARMATURE ORDINARIE

B 450 C			controllato in stabilimento
$f_{yk} \geq$	450.0	N/mm²	tensione caratteristica di snervamento
γ _M =	1.15	-	coefficiente parziale di sicurezza SLU elastico
$f_{yd} =$	391.3	N/mm²	resistenza di progetto
E _s =	210000	N/mm ²	modulo elastico

 $\gamma_a = peso specifico = 78.50 \text{ kN/m}^3$;

 $f_{y \text{ nom}}$ = tensione nominale di snervamento = 450 N/mm²;

 $f_{t \text{ nom}}$ = tensione nominale di rottura = 540 N/mm²;

 $f_{yk min}$ = minima tensione caratteristica di snervamento = 450 N/mm²;

 $f_{tk min} = minima tensione caratteristica di rottura = 540 N/mm²;$

 $(f_t/f_y)_{k \text{ min}}$ = minimo rapporto tra i valori caratteristici = 1.15

 $(f_t/f_y)_{k \text{ max}} = \text{massimo rapporto tra i valori caratteristici} = 1.35$

 $(f_y/f_{y \text{ nom}})_k = \text{massimo rapporto tra i valori nominali} = 1.25$

 $(A_{gt})_k$ = allungamento caratteristico sotto carico massimo = 7.5 %

 ϕ_{min} = minimo diametro consentito delle barre = 10 mm;

 ϕ_{max} = massimo diametro consentito delle barre = 40 mm;

Relazione di calcolo – Spalle – fase 1

COMMESSA	LOTTO
NR1.I	01 D 29

CODIFICA CL DOCUMENTO VI0104 001

REV. FOGLIO **B** 14 di 172

E = modulo di elasticità dell'acciaio = 210000 N/mm².

Diametro del mandrino per prove di piegamento a 90° e successivo raddrizzamento senza cricche:

$$\emptyset$$
 < 12 mm \rightarrow 4 \emptyset ;

$$12 \le \emptyset \le 16 \text{ mm} \rightarrow 5 \emptyset$$
;

$$16 < \emptyset \le 25 \text{ mm} \rightarrow 8 \emptyset;$$

$$25 < \emptyset \le 40 \text{ mm} \rightarrow 10 \text{ }\emptyset.$$

Relazione	di	calcolo -	- Spalle –	fase	1
-----------	----	-----------	------------	------	---

COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
NR1J	01 D 29	CL	VI0104 001	В	15 di 172

5 INQUADRAMENTO GEOTECNICO

Per l'inquadramento geotecnico dell'opera si riporta l'estratto dell'elaborato Relazione Geotecnica [IZ0300D11RBGE0005001] di cui si riporta un estratto per i dati geotecnici di interesse.

Tabella contenente la stratigrafia di progetto per l'opera in esame e i relativi parametri geotecnici di calcolo:

Modello 9a - Da pk 38+000 alla pk 39+150

Unità Geotecnica	Descrizione		z fin (m)	spessore (m)	z media (m da p.c.)	Peso di volume (kN/m³)		Densità relativa (%)	Angolo di resistenza al taglio picco ¢' (°)
P1	Depositi superficiali zona Lago Morto	0	4	4	2	17	GF/GG	30-40	26
U1a	Limo sabbioso debolmente argilloso	4	8	4	2	17	GF/GG	50-60	28
U3b	PVS-Depositi vulcanici -Sabbia limosa addensata con presenza di ghiaia e litici vulcanici	8	30	22	11	17	GG	60-70	32

Angolo di resistenza al taglio a volume ostante ф'cv (°)	C' (kPa)	Cu (kPa)	Modulo elastico Eop,1 (MPa)	Modulo elastico Eop,2 (MPa)	Modulo edometrico M (MPa)	Modulo non drenato Eu (MPa)
25	10	40	18	36	25	36
24.5	10	60	26	52	40	54
27	5	-	35	70	50	-

Dalle misure freatimetriche effettuate, la quota di falda risulta essere ad elevate profondità e non interferente con il volume significativo.

Categoria del suolo B

6 DESCRIZIONE INTERVENTO

Le spalle, con paramento e muri andatori per il contenimento del rilevato ferroviario, sono caratterizzate da un'altezza del fusto 7.70. La parete frontale considerata ha uno spessore di 1.30 m dalla sezione di intradosso baggioli fino alla sezione di estradosso fondazione e uno spessore di 0.35 m dalla sezione di intradosso baggioli fino alla sezione di intradosso soletta. I muri andatori hanno uno spessore pari a 0.80 m. Le fondazioni delle spalle, di tipo indiretto, sono costituite da platea su pali. La platea considerata ha uno spessore di 1.50 m. Le palificate sono costituite da 21 pali aventi diametro 1.20 m disposti allineati nelle due direzioni principali in pianta X e Y ad un interasse minimo di 3.60 m (in direzione trasversale) e 3.60 (in direzione longitudinale). La lunghezza dei pali è pari a 28.0 m.

Lo schema di vincolo dell'impalcato prevede un sistema di semplice appoggio.

E' considerata e modellata la spalla completa supportando i due impalcati.

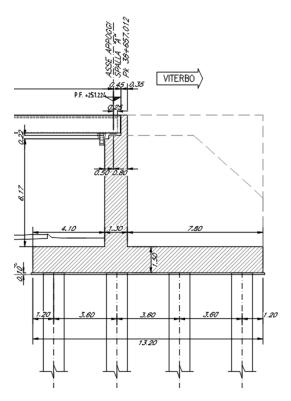


Fig. 1 – Sezione longitudinale e vista in pianta

Relazione	di	calcolo -	– Spalle –	fase	1	L
-----------	----	-----------	------------	------	---	---

NR1J	01 D 29	CL	VI0104
MESSA	LOTTO	CODIFICA	DOCUME

CUMENTO REV. FOGLIO 10104 001 B 17 di 172

7 ANALISI DEI CARICHI

7.1 Carichi in condizioni statiche

7.1.1 Peso proprio degli elementi strutturali

Il peso proprio degli elementi strutturali costituenti la spalla viene calcolato assumendo per il calcestruzzo un peso per unità di volume γ_{cls} = 25 kN/m³.

COV

7.1.2 Terreno e falda

Gli effetti del peso e della spinta del terreno a tergo delle spalle sono valutati assumendo un angolo di attrito $\varphi=38^\circ$ ed un peso per unità di volume $\gamma_t=20$ kN/m³ (rilevato ferroviario)

Nell'ipotesi di spostamenti molto piccoli della struttura rispetto al terreno, la spinta del terreno viene valutata sulla base dello stato di riposo:

 $k_0 = 1 - \sin \Phi = 0.384$ è il coefficiente di spinta a riposo.

La spinta sarà data da $\sigma_{st} = k_0 \cdot \gamma \cdot z$

Spinta statica terreno				
Z	Spinta			
m	kN/m ²			
0	0			
7.7	59.14			

Come specificato nella relazione geologica, la falda non è stata rilevata e perciò, non sta considerata nel calcolo.

È presente anche, sopra l'estradosso del muro paraghiaia ballast con 0.80m di spessore con peso di unità di volume $\gamma_{ball}=18.00~kN/m^3$. Verrà quindi applicato come spinta supplementare massima sui muri a $G_{2, bal}=0.384~x$ $18kN/m^3~x~0.80~m=5.52~kN/m^2$.

7.1.3 Marciapiedi

E' stato applicato un carico permanente in cima alle due muri andatori esterni che rapresenta il peso degli sbalzi.

Questo carico è come segue.

Carico vericale:

Velette prefabbricate: 7.0 kN/ml;

Barriera antirumore: 4.0 kN/ml;

Calcestruzzo marcapiede (soletta a sbalzo): $W = A*\gamma = .915m^2*25kN/m^3 = 23 kN/ml$.

Relazione di calcolo - Spalle - fase 1

COMMESSA LOTTO

NR1J 01 D 29

CODIFICA CL DOCUMENTO VI0104 001

REV. FOGLIO **B** 18 di 172

Momenti fletenti:

Velette prefabbricate: $M_v = 7kN/m1*1.98m = 13.86 kNm/ml$;

Barriera antirumore: $M_p = 4kN/ml*1.98m = 7.92 kNm/ml$;

Calcestruzzo sbalzo (soletta a sbalzo): $M_m = 30.36 \text{ kNm/ml}$.

7.1.4 Azioni trasmesse dall'impalcato

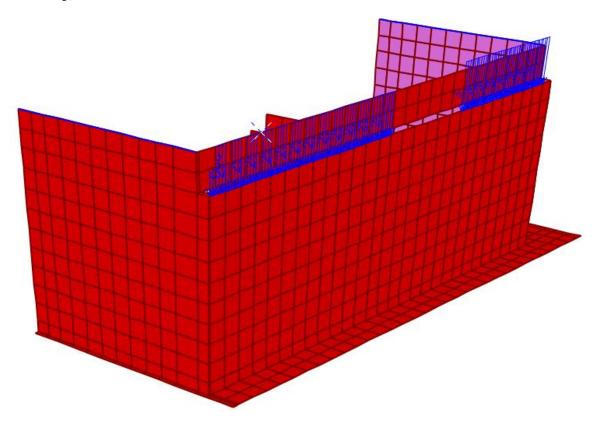
Le azioni trasferite sugli apparecchi di appoggio sono ricavate dall'analisi strutturale dell'impalcato oggetto di relazione di calcolo dedicata. I carichi sono considerati uniformamente distribuiti tra gli appoggi (a causa della grande quantità e distanza ravvicinata degli appoggi). Viene di seguito riportato un riepilogo delle azioni agli appoggi (presi dal 'Relazione di calcolo impalcato doppio binario NR1J01D29CLVI0107001B" e 'Relazione di calcolo impalcato singolo binario NR1J01D29CLVI0107002A" –). Si considera uno sviluppo totale dell'impalcato pari a 16.80m per cui risulta:

	COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
Relazione di calcolo – Spalle – fase 1	NR1J	01 D 29	CL	VI0104 001	В	19 di 172

1) Peso proprio dell'impalcato doppio binario vedi §5.1 pagina 14:

Tot
$$G_1 = 325.5 \text{ kN/m} \Rightarrow 325.5 * 16.8/2 = 2734.2 \text{ kN}$$

Nel modello di calcolo sarà applicato un carico uniforme su una larghezza di 9.35m circa per cui risulta un valore pari a:


$$Q_{G1}=2734.2 \: / \: 9.35 = 292.4 \: kN/m \approx 293 \: kN/m$$
 assunto nel modello

2) Peso proprio dell'impalcato singolo binario vedi §5.1 pagina 14:

Tot
$$G_1 = 238.2 \text{ kN/m} \Rightarrow 238.2 * 16.8/2 = 2000.9 \text{ kN}$$

Nel modello di calcolo sarà applicato un carico uniforme su una larghezza di 5.76m circa per cui risulta un valore pari a:

$$Q_{G1}=2000.9\:/\:5.76=347.4\:kN/m\approx348\:kN/m$$
 assunto nel modello

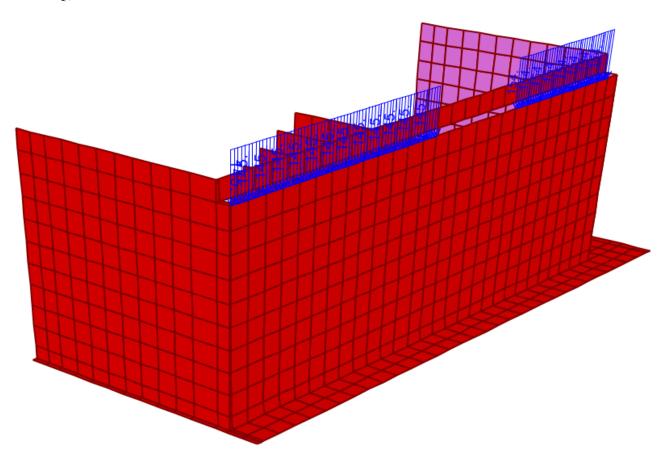
Relazione	дi	calcolo _	Sng	lle _	face	1
Keiazione	uı	carcuio –	. opa	ше –	lase	1

COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
NR1J	01 D 29	CL	VI0104 001	В	20 di 172

3) Pesi permanenti portati dell'impalcato doppio binario vedi §5.1 pagina 14:

Tot
$$G_2 = 161.3 \text{ kN/m} \Rightarrow 161.3 * 16.8/2 = 1354.9 \text{ kN}$$

Nel modello di calcolo sarà applicato un carico uniforme su una larghezza di 9.35m circa per cui risulta un valore pari a:


$$Q_{G2}$$
 = 1354.9 / 9.35 = 144.9 kN/m \approx 145 kN/m assunto nel modello

4) Pesi permanenti portati dell'impalcato singolo binario vedi §5.1 pagina 14:

Tot
$$G_2 = 98.1 \text{ kN/m} \Rightarrow 98.1 * 16.8/2 = 824.0 \text{ kN}$$

Nel modello di calcolo sarà applicato un carico uniforme su una larghezza di 5.36m circa per cui risulta un valore pari a:

$$Q_{G2} = 824.0 \: / \: 5.36 = 153.7 \: kN/m \approx 154 \: kN/m$$
 assunto nel modello

Relazione di	calcolo - S	palle – fase	1
--------------	-------------	--------------	---

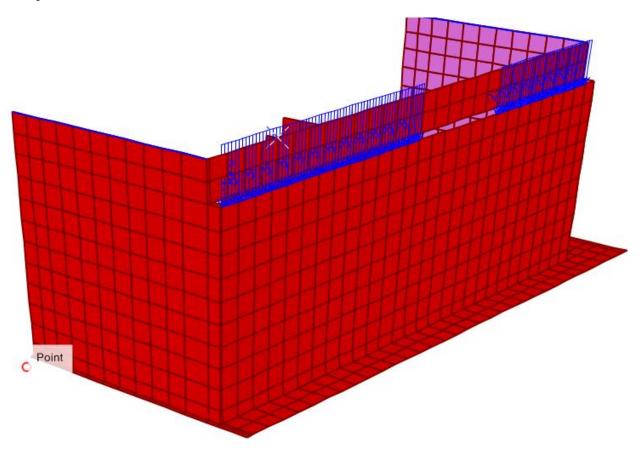
COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
NR1J	01 D 29	CL	VI0104 001	В	21 di 172

5) Sovraccarici verticali da traffico ferroviario dell'impalcato doppio binario vedi §5.2.2 pagina 16:

$$q_{LM71} = V_{max,\; appoggi} = \textbf{1594.6 kN};$$

$$q_{SW/2} = V_{max, appoggi} = 1588.8 \text{ kN};$$

Nel modello di calcolo sarà applicato un carico uniforme su una larghezza di 9.35m circa per cui risulta un valore pari a:


$$q = 3183.4 / 9.35 = 340.5 \text{ kN/m} \approx 341 \text{ kN/m}$$
 assunto nel modello

6) Sovraccarici verticali da traffico ferroviario dell'impalcato singolo binario vedi §5.2.2 pagina 16:

$$q_{LM71} = V_{max, appoggi} = 1594.6 \text{ kN};$$

Nel modello di calcolo sarà applicato un carico uniforme su una larghezza di 5.36m circa per cui risulta un valore pari a:

$$q = 1594.6 / 5.36 = 297.5 \text{ kN/m} \approx 298 \text{ kN/m}$$
 assunto nel modello

Relazione	di	calcolo	– Sna	ille –	fase	1
IXCIALIUIIC	uı	Carcoro	DPa	1110	Last	_

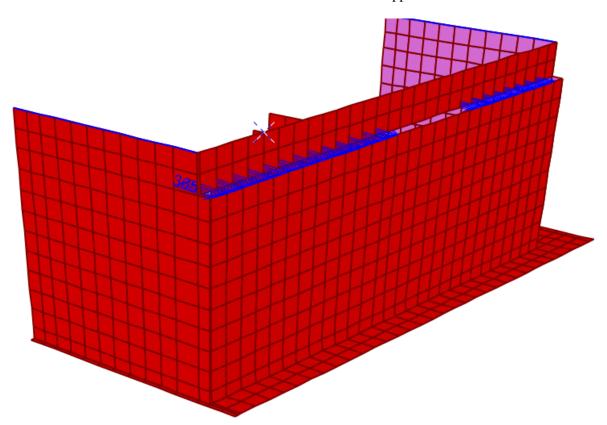
COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
NR1J	01 D 29	CL	VI0104 001	В	22 di 172

7) Carici longitudinali da traffico ferroviario - avviamento e frenatura , il più sfavorevole tra quelli determianti nelle due relazioni impalcato e pari a:

$$q_{avv} = 613kN \\$$

nel modello di calcolo si considera a favore di sicurezza una valore pari a 130 kN/m in direzione tale da determinare la condizione più sfavorevole nella verifica della spalla.

- Incremento dei carichi verticali dovuto all'eccentricità della frenatura e avviamento:


$$q_3' = 138.50 \text{ kN}$$

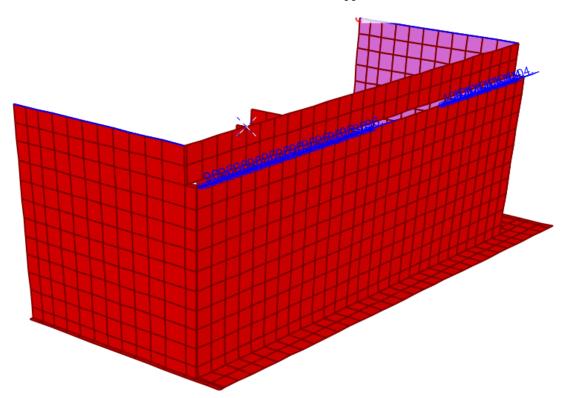
- 8) Azione sismica:
 - Azione longitudinale dell'impalcato doppio binario vedi §5.2.10 pagina 30 (l'azione sismica longitudinale è assunta di essere suportata solo ad una spalla):

Sisma
$$X = 9085 * 0.313 * 1.2 = 3412 \text{ kN} \Rightarrow 365 \text{ kN/m}$$
 applicati al modello di calcolo

- Azione longitudinale dell'impalcato singolo binario vedi §5.2.10 pagina 31 (l'azione sismica longitudinale è assunta di essere suportata solo ad una spalla):

Sisma
$$X = 6152 * 0.313 * 1.2 = 2311 \text{ kN} \Rightarrow 401 \text{ kN/m}$$
 applicati al modello di calcolo

	COMN
Relazione di calcolo – Spalle – fase 1	
Kelaziolie ul Calcolo – Spalle – lase 1	NII


COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
NR1J	01 D 29	CL	VI0104 001	В	23 di 172

- Azione trasversale dell'impalcato doppio binario vedi §5.2.10 pagina 30:

Sisma Y = 4758/2 * 0.313 * 1.2= 894 kN \Rightarrow 96 kN/m applicati al modello di calcolo

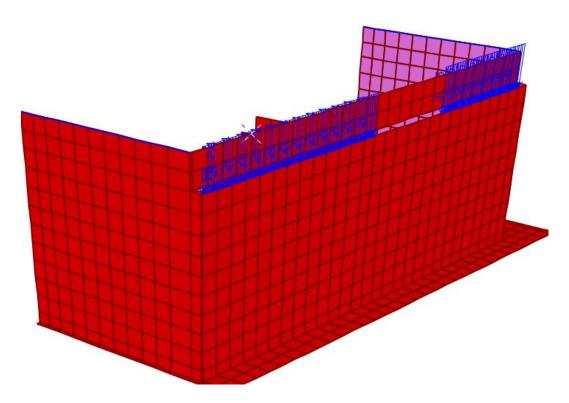
- Azione trasversale dell'impalcato singolo binario vedi §5.2.10 pagina 31:

Sisma $Y = 3175/2 * 0.313 * 1.2 = 596 \text{ kN} \Rightarrow 104 \text{ kN/m}$ applicati al modello di calcolo

- Azione verticale dell'impalcato doppio binario vedi §5.2.10:

Sisma $Z = 4758/2 * 0.103 * 1.2 = 294 \text{ kN} \Rightarrow 32 \text{ kN/m}$ applicati al modello di calcolo

- Azione verticale dell'impalcato singolo binario vedi §5.2.10:


Sisma $Z = 3175/2 * 0.103 * 1.2 = 196 \text{ kN} \Rightarrow 34 \text{ kN/m}$ applicati al modello di calcolo

Relazione di calcolo – Spalle – fase 1

 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 NR1J
 01 D 29
 CL
 VI0104 001
 B
 24 di 172

7.2 Azioni variabili da traffico (q1k)

A monte delle spalle si prende un carico variabile ferroviario in conformità alla normativa di riferimento (N.T.C.2018 §5.2.2.2). Tra i modelli possibili si applica il peggiore, cioè il carico verticale dovuto al treno SW/2 - carico distribuito di 150 kN/m. Il traffico è applicato su entrambi binari. Questo carico risulta in una spinta sui muri.

7.2.1 Azione longitudinale di frenatura o di avviamento (q3)

Per le azioni di frenatura e avviamento, si rimanda alla sezione 7.1.4 del presente documento, pertinenti per il dimensionamento dell'opera.

7.2.2 Azione centrifuga (q4)

L'azione centrifuga non è considerata, non essendo la struttura in curva.

7.2.3 Marciapiedi

E' stato applicato anche un carico di manutenzione sui marciapiedi con valore di 10kN/m².

7.2.4 Urto veicoli

Le azioni da urto hanno direzione parallela a quella del moto del veicolo al momento dell'impatto. Nelle verifiche si possono considerare, non simultaneamente, due azioni nelle direzioni parallela $(F_{d,x})$ e ortogonale $(F_{d,y})$ alla direzione di marcia normale, con

Relazione	di cal	lcolo –	Spalle -	fase	1
-----------	--------	---------	----------	------	---

COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
NR1J	01 D 29	CL	VI0104 001	В	25 di 172

$$F_{d,y} = 0.5 \; F_{d,x}$$

In assenza di determinazioni più accurate e trascurando la capacità dissipativa della struttura, si possono adottare le forze statiche equivalenti riportate in Tab. 3.6.III.

Tab. 3.6.III – Forze statiche equivalenti agli urti di veicoli

Tipo di strada	Tipo di veicolo	Forza F _{d,x} [kN]
Autostrade, strade extraurbane	-	1000
Strade locali	-	750
Strade urbane	-	500
A di	Automobili	50
Aree di parcheggio e autorimesse	Veicoli destinati al trasporto di merci, aventi massa massima superiore a 3,5 t	150

Si considera il carico imposto per la tipologia di strada extraurbana e sarà applicato nel modello di calcolo come forza concentrata nel punto in cui determana le massime sollecitazioni sugli elementi oggetto della veriffica strutturale; nello specifico al centro del paramento verticale in direzione longitudinale all'impalcato e sullo spigolo tra paramento verticale e muro andatore per l'urto in direzione ortogonale a quella dell'impalcato. La quota di applicazione è quello indicato dalla norma.

7.3 Ritiro del calcestruzzo

Il ritiro viene applicato come un carico termico equivalente.

$$\Delta T_{rit}\!=\epsilon_s\,/\,[(1\!+\!\varphi)\times\alpha_T]=\text{--}8.31~^\circ\text{C}.$$

Gli effetti del ritiro vanno valutati a "lungo termine" attraverso il calcolo dei coefficienti di ritiro finale ε_{cs} (t, t₀) e di viscosità ϕ (t, t₀), come definiti nell'EUROCODICE 2- UNI EN 1992-1-1 e D. M. 17-01-2018.

		DAT	A
		Coefficiente o	di viscosità
φ(t,t	c ₀)=φ ₀ +β _c (t,t ₀)	1,6555	creep coefficient
	tH*β(f _{cm})*β(t ₀)=		nominal creep coefficient
		, -	
Фкн	1,1	791	per fcm>35 Mpa
Фкн			per fcms35 Mpa
RH		75 [96]	
β(fcm)	2,6	563	
β(t0)	0,5		
h0		231 [mm]	
Ac		600 [cm2]	
u		940 [cm]	
βc(t,t0)	0,9		
t	10	000 [days]	
t ₀	_	15 [days]	
t-t0 β _H	9: 2400	985 [days] 1,26 FALSE	per fcm>35 Mpa
Рн Вн	2400	,20 FALSE	per fcms35 Mpa
OL ₁	0,9	108	per remass repa
α ₂	0,9		
α ₃	0,9		
f _{cm}		,00 [MPa]	
f _{ck}		,00 [MPa]	
		DEFORMAZIONE TO	DTALE DA RITIRO
8	cs=Scd+Sca=	0,00022071	deformazione totale da ritiro
	s _{cd} =	0,0001848	deformazione da ritiro per essiccamo
	S _{ca} =	3,5913E-05	deformazione da ritiro autogeno
			O PER ESSICCAMENTO
S	_d , =k _h •s _{cd0}	0,00021775	
	ε _{cd0} =	0,00031107	appendix B for s _{cd0}
	α _{ds1} =		CLS class N
	$\alpha_{ds2} = \beta_{RH} =$		CLS class N
	PRH= RH ₀ =	0,8961	0/3
	f _{cm0} =	100 [-
	β _{ds} (t,ts)=	-	MPa]
		0,84870037 000	
t ts	10	15	
ь		15	
	D	EFORMAZIONE DA F	RITIRO AUTOGENO
β _{in} (t)=	0,6529		
β _{in} (t)=			

7.4 Variazioni termiche

Sono state applicate una variazione termica uniforme $\Delta T_u = \pm 15^\circ$ ed un gradiente termico $\Delta T_g = \pm 5^\circ$ alle strutture in elevazione, tenendo conto di un modulo di elasticità del calcestruzzo ridotto per le azioni a lungo termine.

7.5 Carichi in condizioni sismiche

Le forze sismiche agenti sulla struttura sono state determinate con riferimento allo Stato Limite di Salvaguardia della Vita (SLV), avendo considerato per il dimensionamento dei pali di fondazione un fattore di struttura q=1, mentre per il dimensionamento delle strutture in elevazione un fattore q=1; di seguito si illustrano i parametri sismici relativi agli spettri utilizzati:

- Vita nominale $V_N=100$ anni

- Classe d'uso IV $C_u=2$

– Periodo di riferimento per l'azione sismica $V_R = V_N \cdot C_u = 200$

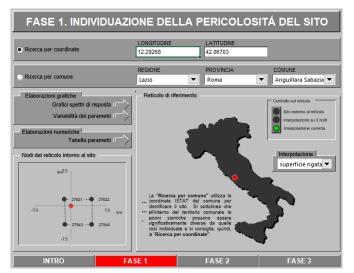


Fig. 2 – Individuazione pericolosità sito e strategia di progettazione, q=1

Relazione di calcolo - Spalle - fase 1

 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 NR1J
 01 D 29
 CL
 VI0104 001
 B
 28 di 172

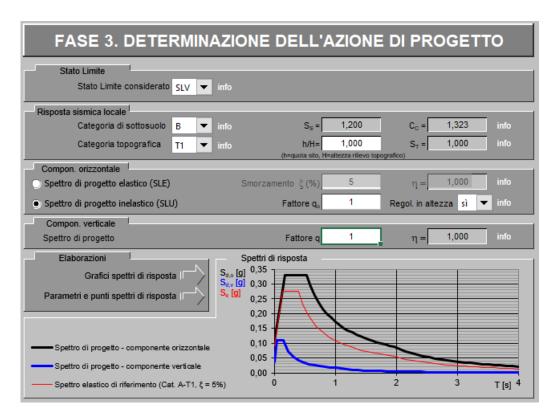


Fig. 3 – Determinazione dell'azione di progetto e parametri azione, q=1

SLATO	T _R	a _g	F _o	T _c *
LIMITE	[anni]	[g]	[-]	[s]
SLO	120	0.050	2.710	0.293
SLD	201	0.056	2.784	0.312
SLV	1898	0.090	3.046	0.398
SLC	2475	0.095	3.072	0.413

Spettri di risposta elastici per i diversi Stati Limite

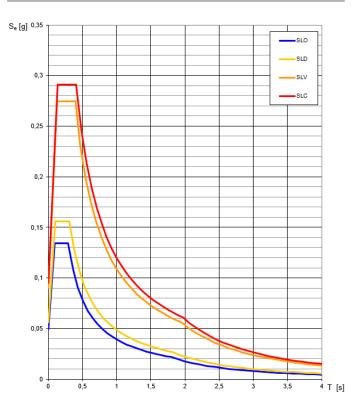


Figura 5: Spettri di risposta elastici Spettri di risposta (componenti orizz. e vert.) per lo stato li SLV

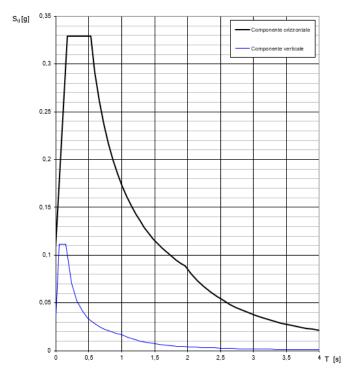


Figura 6: Spettri di risposta SLV

Relazione di calcolo - Spalle - fase 1

COMMESSA LOTTO CODIFICA DOCUMENTO REV. FOGLIO

NRIJ 01 D 29 CL VI0104 001 B 30 di 172

Parametri e punti dello spettro di risposta orizzontale per lo stato \$LV Parametri e punti dello spettro di risposta verticale per lo stato limit&LV

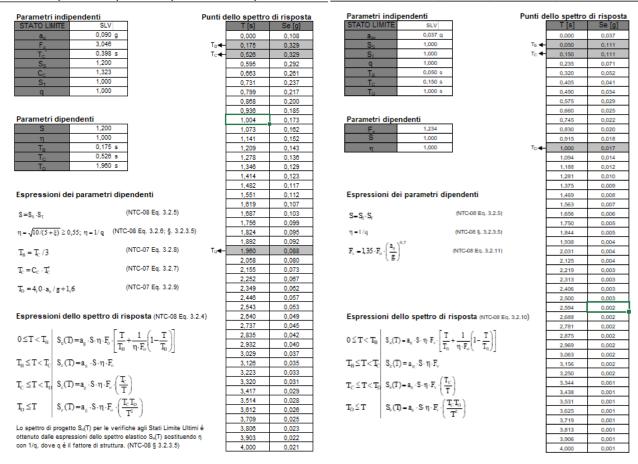


Figura 7: Parametri dei spettri di risposta SLV

Per il calcolo in condizioni sismiche si utilizza il metodo dell'analisi lineare dinamica con spettro di risposta come definito in [7.3.3 NTC 18]. Gli effetti dell'azione sismica sono valutati tenendo conto delle masse associate ai seguenti carichi gravitazionali:

$$G_1 + G_2 + \psi_{2i} Q_{ki}$$

Nel caso specifico per i carichi dovuti al transito del traffico ferroviario si assume $\psi_{2j} = 0.2$

7.5.1 Sovraspinta sismica

La valutazione delle azioni inerziali relative alla massa del terreno a tergo dei muri andatori e del muro frontale è svolta con il metodo pseudostatico e in particolare applicando la teoria di Wood, pertinente per opere "rigide", ossia che esibiscono spostamenti orizzontali di modesta entità se soggette al'azione sismica:

$$\Delta p = \left(\frac{a_g}{g}\right) \times Ss \times St \times \gamma_{terreno} \times H$$

dove H = altezza di ricoprimento del terreno (e ballast) = 8.20 m

Relazione di calcolo – Spalle – fase 1

COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
NR1J	01 D 29	CL	VI0104 001	В	31 di 172

a_g/g - SLV	0,090 g
S_s	1,2
S_t	1
$AnSLV = (a_{-}/\sigma) \cdot St \cdot Ss \cdot v \cdot H =$	17.71 kN/m^2

A tale azioni si è sovrapposto un carico sismico verticale determinato dai carichi permanenti **imposto sulla soletta di fondazione**, indotto dall'accelerazione di picco al suolo verticale allo stato limite-SLV.

a_g/g - SLV	0,037	g
S_s	1,2	
S_{t}	1	
$\Delta pSLV = (a_g/g) \cdot St \cdot Ss \cdot \gamma \cdot H =$	7,28	kN/m ²

Relazione d	i calcolo –	Spalle -	fase 1
-------------	-------------	----------	--------

COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
NR1J	01 D 29	CL	VI0104 001	В	32 di 172

8 COMBINAZIONI DEI CARICHI

8.1 Combinazioni elementari di calcolo

In riferimento alle analisi di carico effettuate sono stati creati i casi di carico elementari impiegati poi nelle combinazioni di verifica ai vari Stati Limite riportati successivamente nella relazione.

Le combinazioni di carico elementari sono state poi combinate secondo i coefficienti dei vari stati limite indicati nel § 2 delle NTC18.

8.2 Definizione delle combinazioni di carico

Le combinazioni di carico sono stabilite, in modo da garantire la sicurezza, secondo quanto prescritto dal D.M. 17 gennaio 2018 (Norme Tecniche per le Costruzioni) e del MdP RFI. In accordo al § 2.5.3 del D.M. 17/01/18 "Combinazioni delle azioni", ai fini delle verifiche degli stati limite si definiscono le seguenti combinazioni delle azioni:

Combinazione fondamentale, generalmente impiegata per gli stati limite ultimi (S.L.U.):

•
$$\gamma G1 \times G1 + \gamma G2 \times G2 + \gamma P \times P + \gamma Q1 \times Qk1 + \gamma Q2 \times \psi 02 \times Qk2 + \gamma Q3 \times \psi 03 \times Qk3 + \dots (2.5.1)$$

Combinazione caratteristica (rara), generalmente impiegata per gli stati limite di esercizio (S.L.E.) irreversibili:

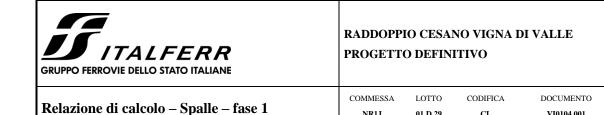
•
$$G1 + G2 + P + Qk1 + \psi 02 \times Qk2 + \psi 03 \times Qk3 + \dots (2.5.2)$$

Combinazione frequente, generalmente impiegata per gli stati limite di esercizio (S.L.E.) reversibili:

• G1 + G2 +P+
$$\psi$$
 11×Qk1 + ψ 22×Qk2 + ψ 23×Qk3 + ... (2.5.3)

Combinazione quasi permanente (S.L.E.), generalmente impiegata per gli effetti a lungo termine:

•
$$G1 + G2 + P + \psi 21 \times Qk1 + \psi 22 \times Qk2 + \psi 23 \times Qk3 + \dots (2.5.4)$$


Combinazione sismica, impiegata per gli stati limite ultimi e di esercizio connessi all'azione sismica E (v. § 3.2 D.M. 14/01/08):

•
$$E + G1 + G2 + P + \psi 21 \times Qk1 + \psi 22 \times Qk2 + \dots (2.5.5)$$

Combinazione eccezionale, impiegata per gli stati limite ultimi connessi alle azioni eccezionali di progetto Ad (v. § 3.6 D.M. 14/01/08):

•
$$G1 + G2 + P + Ad + \psi 21 \times Qk1 + \psi 22 \times Qk2 + ... (2.5.6)$$

Nelle combinazioni per S.L.E., si intende che vengono omessi i carichi Q_{kj} che danno un contributo favorevole ai fini delle verifiche e, se del caso, i carichi G2.

Altre combinazioni sono da considerare in funzione di specifici aspetti (p. es. fatica, ecc.). Nelle formule sopra riportate il simbolo "+" vuol dire "combinato con".

NR1J

01 D 29

 \mathbf{CL}

REV.

В

VI0104 001

FOGLIO

33 di 172

I valori dei coefficienti parziali di sicurezza γ_{Gi} e γ_{Qi} sono dati in § 2.6.1, Tab. 2.6.I D.M. 17/01/18:

Tab. 2.5.I - Valori dei coefficienti di combinazione

Categoria/Azione variabile	Ψ0j	ψ_{1j}	Ψ2j
Categoria A - Ambienti ad uso residenziale	0,7	0,5	0,3
Categoria B - Uffici	0,7	0,5	0,3
Categoria C - Ambienti suscettibili di affollamento	0,7	0,7	0,6
Categoria D - Ambienti ad uso commerciale	0,7	0,7	0,6
Categoria E – Aree per immagazzinamento, uso commerciale e uso industriale Biblioteche, archivi, magazzini e ambienti ad uso industriale	1,0	0,9	0,8
Categoria F - Rimesse , parcheggi ed aree per il traffico di veicoli (per autoveicoli di peso \leq 30 kN)	0,7	0,7	0,6
Categoria G – Rimesse, parcheggi ed aree per il traffico di veicoli (per autoveicoli di peso > 30 kN)	0,7	0,5	0,3
Categoria H - Coperture accessibili per sola manutenzione	0,0	0,0	0,0
Categoria I – Coperture praticabili	da valutarsi caso per		
Categoria K – Coperture per usi speciali (impianti, eliporti,)	caso		
Vento	0,6	0,2	0,0
Neve (a quota ≤ 1000 m s.l.m.)	0,5	0,2	0,0
Neve (a quota > 1000 m s.l.m.)	0,7	0,5	0,2
Variazioni termiche	0,6	0,5	0,0

Tab. 2.6.I – Coefficienti parziali per le azioni o per l'effetto delle azioni nelle verifiche SLU

	Coefficiente	EQU	A1	A2	
		$\gamma_{\scriptscriptstyle F}$			
Carishi narmananti C	Favorevoli	2/	0,9	1,0	1,0
Carichi permanenti G1	Sfavorevoli	γ_{G1}	1,1	1,3	1,0
Carishi namananti nan strutturali (s/1)	Favorevoli	2/	0,8	0,8	0,8
Carichi permanenti non strutturali G2 ⁽¹⁾	Sfavorevoli	γ_{G2}	1,5	1,5	1,3
A giomi vomishili O	Favorevoli	2/	0,0	0,0	0,0
Azioni variabili Q	Sfavorevoli	γ_{Qi}	1,5	1,5	1,3

Nel caso in cui l'intensità dei carichi permanenti non strutturali o di una parte di essi (ad es. carichi permanenti portati) sia ben definita in fase di progetto, per detti carichi o per la parte di essi nota si potranno adottare gli stessi coefficienti parziali validi per le azioni permanenti.

Nella Tab. 2.6.I il significato dei simboli è il seguente:

coefficiente parziale del peso proprio della struttura, nonché del peso proprio del terreno e γ_{G1} dell'acqua, quando pertinenti;

coefficiente parziale dei pesi propri degli elementi non strutturali; γ_{G2}

coefficiente parziale delle azioni variabili. γ_{Qi}

Relazione	дi	calcolo -	- Sng	ille _	face	1
Kelazione	uı	carcoro -	- opi	me –	lase	T

COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
NR1J	01 D 29	CL	VI0104 001	В	34 di 172

8.3 Combinazioni Relative Agli Stati Limite Ultimi

La verifica di sicurezza agli stati limite ultimi è stata condotta controllando che risultasse, per ciascuna sollecitazione considerata:

$$R_d \ge E_d$$

in cui R_d rappresentano le resistenze di calcolo e E_d le sollecitazioni di calcolo nei vari elementi strutturali valutate per le azioni di calcolo F_d ottenute combinando le azioni caratteristiche nella forma

$$F_{d} = \sum_{j=1}^{m} \gamma_{Gj} \cdot G_{kj} + \gamma_{Q1} \cdot Q_{k1} + \sum_{i=2}^{n} \psi_{0i} \cdot \gamma_{Qki} \cdot Q_{ki}$$

: combinazione statica

$$F_d = E + G_k + \sum\nolimits_i \psi_{2i} \cdot Q_{ki}$$

: combinazione sismica

in cui si sono indicati:

G_{kj}: valore caratteristico della j-esima azione permanente

Qk1: valore caratteristico della azione variabile base per ogni combinazione

Qki: valore caratteristico della i-esima azione variabile

E: valore caratteristico dell'azione sismica

Le azioni di cui ai paragrafi precedenti sono combinate tra loro, al fine di ottenere le sollecitazioni di progetto relative agli elementi strutturali di volta in volta considerati in base a quanto prescritto dalle N.T.C nei § 2.5.3 e §5.1.3.14.

8.4 Verifiche in esercizio

Al fine di verificare la funzionalità della struttura in condizioni d'esercizio, sono state condotte le verifiche agli SLE previste dalle NTC 2018. In particolare sono stati effettuati i seguenti controlli:

- Verifica delle tensioni in esercizio
- Verifica a fessurazione

8.4.1 Verifica delle tensioni

La verifica tensionale in esercizio è stata effettuata controllando che le tensioni di lavoro dei materiali risultassero inferiori alle tensioni massime consentite per ciascuna delle seguenti combinazioni di carico:

Relazione di calcolo – Spalle – fase 1

COMMESSA LOTTO

NR1J 01 D 29

CODIFICA CL DOCUMENTO VI0104 001 REV. FOGLIO **B** 35 di 172

Combinazioni frequenti

$$F_d = G_1 + G_2 + \psi_{11} \cdot Q_{k1} + \sum_{i=2}^n \psi_{2i} \cdot Q_{ki}$$

Combinazioni quasi permanenti

$$F_d = G_1 + G_2 + \sum_{i=1}^{n} \psi_{2i} \cdot Q_{ki}$$

in cui si sono indicati:

G_{kj} valore caratteristico della j-esima azione permanente

Qk1 valore caratteristico della azione variabile base per ogni combinazione

 Q_{ki} valore caratteristico della i-esima azione variabile

Per i valori dei coefficienti Ψ_{11} e Ψ_{22} si rimanda al paragrafo **Errore.** L'origine riferimento non è stata trovata..

8.4.2 Verifica a fessurazione

Per tutte le strutture in cemento armato normale e precompresso, le verifiche a fessurazione saranno eseguite adottando i criteri definiti al p.to 4.1.2.2.4.5 del DM 17.01.2018.

8.5 Traffico

Nel § 5.2.3.1.3 del [1] sono riportati i valori caratteristici delle azioni dovute al carico traffico, per i quali si tengono in considerazioni le combinazioni riportate in seguito.

Tab. 5.2.IV -Valutazione dei carichi da traffico

TIPO DI CARICO	Azioni verticali		1	Azioni orizzont			
Gruppi di carico	Carico verticale (1)	Treno scarico	Frenatura e avviamento	Centrifuga	Serpeggio	Commenti	
Gruppo 1	1,0	-	0,5 (0,0)	1,0 (0,0)	1,0 (0,0)	massima azione verticale e laterale	
Gruppo 2 (2)	-	1,0	0,0	1,0 (0,0)	1,0 (0,0)	stabilità laterale	
Gruppo 3 (2)	1,0 (0,5)	-	1,0	0,5 (0,0)	0,5 (0,0)	massima azione longitudinale	
Gruppo 4	0,8 (0,6;0,4)	-	0,8 (0,6;0,4)	0,8 (0,6;0,4)	0,8 (0,6;0,4)	Fessurazione	

⁽¹⁾ Includendo tutti i valori (F; a; etc..)

Tab. 5.2.V - Coefficienti parziali di sicurezza per le combinazioni di carico agli SLU

Coefficie	EQU(1)	A1	A2		
Azioni permanenti	favorevoli	YG1	0,90	1,00	1,00
	sfavorevoli		1,10	1,35	1,00
Azioni permanenti non	favorevoli	YG2	0,00	0,00	0,00
strutturali ⁽²⁾	sfavorevoli		1,50	1,50	1,30
Ballast ⁽³⁾	favorevoli	YΒ	0,90	1,00	1,00
	sfavorevoli		1,50	1,50	1,30
Azioni variabili da traffi-	favorevoli	γQ	0,00	0,00	0,00
CO ⁽⁴⁾	sfavorevoli	!	1,45	1,45	1,25
Azioni variabili	favorevoli	γQi	0,00	0,00	0,00
	sfavorevoli	~	1,50	1,50	1,30
Precompressione	favorevole	YΡ	0,90	1,00	1,00
	sfavorevo-		1,00(5)	1,00(6)	1,00
	le				
Ritiro, viscosità e cedi-	favorevole	ΥCe	0,00	0,00	0,00
menti non imposti appo-	sfavorevo-	d	1,20	1,20	1,00
sitamente	le				

⁽¹⁾ Equilibrio che non coinvolga i parametri di deformabilità e resistenza del terreno; altrimenti si applicano i valori della colonna A2.

⁽²⁾ La simultaneità di due o tre valori caratteristici interi (assunzione di diversi coefficienti pari ad 1.0), sebbene improbabile, è stata considerata come semplificazione per i gruppi di carico 1,2 e 3 senza che ciò abbia significative conseguenze progettuali

I valori campiti in grigio rappresentano l'azione dominante.

⁽²⁾ Nel caso in cui l'intensità dei carichi permanenti non strutturali, o di una parte di essi (ad esempio carichi permanenti portati), sia ben definita in fase di progetto, per detti carichi o per la parte di essi nota si potranno adottare gli stessi coefficienti validi per le azioni permanenti.

⁽³⁾ Quando si prevedano variazioni significative del carico dovuto al ballast, se ne dovrà tener conto esplicitamente nelle verifiche.

⁽⁴⁾ Le componenti delle azioni da traffico sono introdotte in combinazione considerando uno dei gruppi di carico gr della Tab. 5.2.IV.

^{(5) 1,30} per instabilità in strutture con precompressione esterna

^{6)1,20} per effetti locali

Relazione di calcolo - Spalle - fase 1

COMMESSA LOTTO CODIFICA DOCUMENTO REV. FOGLIO NR1J 01 D 29 CL VI0104 001 B 37 di 172

Tab. 5.2.VI - Coefficienti di combinazione Ψ delle azioni

Azioni		Ψ_0	ψ_1	Ψ2
Azioni singole	Carico sul rilevato a tergo delle	0,80	0,50	0,0
	spalle			
da traffico	Azioni aerodinamiche generate	0,80	0,50	0,0
	dal transito dei convogli			
	gr_1	0,80(2)	0,80(1)	0,0
Gruppi di	gr_2	0,80(2)	0,80(1)	-
carico	gr_3	0,80(2)	0,80(1)	0,0
	gr_4	1,00	1,00(1)	0,0
Azioni del vento	F_{Wk}	0,60	0,50	0,0
Azioni da	in fase di esecuzione	0,80	0,0	0,0
neve	SLU e SLE	0,0	0,0	0,0
Azioni termiche	T_k	0,60	0,60	0,50

⁽¹⁾ 0,80 se è carico solo un binario, 0,60 se sono carichi due binari e 0,40 se sono carichi tre o più binari.

Come scenario più critico si è scelto gruppo di carichi da traffico 3, consistente nella sovrapposizione di:

- azioni verticali con fattore 1,
- azioni della frenatura,
- avviamento con fattore 1,
- il serpeggio con fattore di 0.5.

Si rimanda all 'Errore. L'origine riferimento non è stata trovata.' per una lista completa delle combinazioni di carico adottate.

Quando come azione di base venga assunta quella del vento, i coefficienti ψ₀ relativi ai gruppi di carico delle azioni da traffico vanno assunti pari a 0,0.

Relazione	di	calcolo	$-\mathbf{S}$	palle -	- fase	1
-----------	----	---------	---------------	---------	--------	---

COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
NR1J	01 D 29	CL	VI0104 001	В	38 di 172

9 IMPOSTAZIONE DEL MODELLO DI CALCOLO STRUTTURALE

La struttura viene schematizzata con un modello di calcolo tridimensionale mediante un'analisi elastico-lineare svolta con il programma di calcolo agli elementi finiti SAP2000 v.20.1.0 della Computers and Structures.

Gli elementi costituenti la struttura in elevazione e sono stati modellati nei rispettivi piani medi con elementi bidimensionali di tipo *shell, se del caso* collegati mediante collegamenti rigidi di tipo *link*. La 'mesh' utilizzata per la discretizzazione delle varie pareti è caratterizzata da una geometria poligonale quadrilatera i cui lati hanno mediamente una lungezza compresa tra $30 \div 200$ cm.

9.1 Calcolo della rigidezza orizzontale delle molle rappresentanti il terreno

La rigidezza orizzontale viene stimata tramite la determinazione del modulo di reazione laterale (k_h) . Sono usati due approcci differenti per la determinazione di k_h dependenti dal tipo di strato geologico (coesivo o incoerente). Quelli sono:

$$k_h = \frac{2E_{def}}{3d}$$
- Suolo coesivo -

Suolo incoerente (non coesivo) -

$$k_h = n_h \frac{z}{d}$$

dove:

- E_{def} modulo di deformazione del suolo [MPa]
- d diametro palo [m];
- n_h modulo di compressabilità orizzontale [MN/m³]
- z profondità.

I valori di rigidezza orizzontale degli elementi link utilizzati risultano infine:

$$K_h [kN/m] = k_h [kN/m^3] \times D [m] \times \Delta z [m]$$

dove $\Delta z = passo di discretizzazione dei pali, nel caso è stato considerate <math>\Delta z = 1$ m.

L'estremità inferiore del palo è supportata verticalmente (vincolo cerniera attivo a compressione).

Seguono i valori delle rigidezze k_h considerate nello sviluppo del modello strutturale, essendo z la profondità dal piano campagna. Per lo strato non-coesivo è usato un valore di $n_h = 5.5 \text{ MN/m}^3$.

Tipo di suolo	z [m]	$k_h [kN/m^3]$
	0	0
	1	5500
	2	11000
	3	16500
	4	22000
anic	5	27500
vulc	6	33000
itici	7	38500
ia e l	8	44000
ghiai	9	49500
a di 8	10	55000
senzs	11	60500
rpe:	12	66000
osa addensata con rpe (Suolo non coesivo)	13	71500
nsata	14	77000
ıddeı	15	82500
Ssa a	16	88000
lime	17	93500
bbia	18	99000
- Sa	19	104500
Depositi vulcanici - Sabbia limosa addensata con rpesenza di ghiaia e litici vulcanici (Suolo non coesivo)	20	110000
/ulcɛ	21	115500
siti 1	22	121000
odə	23	126500
	24	132000
	25	137500
	26	143000
	27	148500
	28	154000

Relazione di calcolo - Spalle - fase 1

 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO

 NR1J
 01 D 29
 CL
 VI0104 001

REV.

В

FOGLIO

40 di 172

Il calcolo delle rigidezze orizzontali è riportato in allegato.

Gli scarichi agli appoggi dell'impalcato sono stati applicati in sommità al muro frontale, distributi uniformamente su elementi *beam* (a causa della breve distanza tra gli appoggi individuali).

9.2 Applicazione delle condizioni elementari di carico

Peso proprio

Il peso proprio degli elementi strutturali in c.a. viene calcolato in automatico dal codice di calcolo in base alle dimensioni di carpenteria degli elementi e al peso unitario del materiale calcestruzzo.

Spinta del terreno

La spinta del terreno a tergo dei muri andatori e del muro frontale, è applicata sulle pareti come un carico distribuito linerare dipendente dalla profondità.

Il carico è applicato mediante la sovrapposizione di carichi sugli elementi shell delle pareti e di carichi distribuiti lungo linee di carico disposte ortogonalmente allo spessore delle pareti e della platea di fondazione:

Considerando un angolo di attrito del terreno pari a $\phi = 38^{\circ}$, si adotta un coefficiente di spinta a riposo (approccio cautelativo) $K_0 = 0.384$; da cui, considerando l'asse della soletta di fondazione a 8.45m dalla sommità dei muri, si ottene il valore di spinta seguenti: $59kN/m^2$ al piede della parete e 65 KN/m sulla linea di carico a quota asse soletta di fondazione. Per ottenere gli effetti più gravosi, le spinte sul ciascun faccia delle pareti non sono state applicate simmetricamente, ma con coefficienti 1 e 0.6.

Azioni trasmesse dall'impalcato

Tutti le azioni dall'impalcato sono applicate come carichi lineari sulla testa del muro frontale nelle condizioni di carico rispettivi (peso prop, traffico, ecc.). Esempio di applicazione di carico dall'impalcato sulla spalla è mostrato nella figura seguente.

Sovraspinta sismica del terreno

Distribuzione rettangolare secondo la teoria di Wood, il carico è applicato come omogeneo sul muro andatore e il paraghiaia.

10 VERIFICHE STRUTTURALI E GEOTECNICHE

Si riportano nel presente paragrafo le verifiche relative ai seguenti elementi strutturali.

- Muro frontale:
- Muro andatore:
- Muro paraghiaia:
- Platea di fondazione:
- Pali

Il dimensionamento è stato eseguito nel rispetto delle limitazioni sui quantitativi di armatura riportati nel § 4.1.6 e 7.4.6 del DM Infrastrutture 17 gennaio 2018 e in relazione alle sollecitazioni agenti nella sezione in esame. Le verifiche sono svolte direttamente con SAP2000.

Le sollecitazioni riportate nei paragrafi di verifica hanno i seguenti indicazioni:

F11 e F22 = Azioni assiali;

M11 e M22 = Momenti flettenti;

V13 e V23 = Azioni di taglio.

10.1 Muro frontale

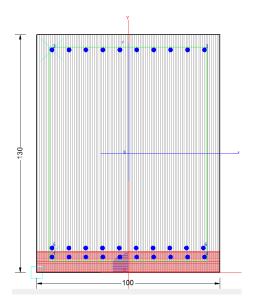
Le sollecitazioni nel muro frontale sono riassunte nella tabella seguente.

TABLE: Eleme	ent Forces - Area	Shells							
Area	OutputCase	StepType	F11	F22	M11	M22	V13	V23	
Text	Text	Text	KN/m	KN/m	KN-m/m	KN-m/m	KN/m	KN/m	
3135	INV SLU e SLV	Min	-1322.8	-1116.3	-1219.25	-108.171	-252.2	-7.73	Min M11
2991	INV SLU e SLV	Max	192.42	1772.52	2199.461	435.2907	1151.4	428.09	Max M11
3056	INV SLU e SLV	Min	-7100.1	-7742.7	-497.884	-1610.66	-696.21	-2729.1	Min M22
3282	INV SLU e SLV	Max	8115.22	2609.59	408.2064	1431.817	539.18	1336.27	Max M22
3180	INV SLU e SLV	Min	-1716.7	-1407.2	-19.1669	-24.3037	-1366.7	-586.25	Min V13
2866	INV SLU e SLV	Max	1640.66	-1396.4	1024.421	803.1286	1882.88	475.39	Max V13
3056	INV SLU e SLV	Min	-853.93	-4767.5	-72.3513	-295.142	-696.21	-2729.1	Min V23
3056	INV SLU e SLV	Max	11054.5	3369.84	436.0616	1379.406	1165.72	1741.07	Max V23

Relazione di calcolo – Spalle – fase 1

COMMESSA LOTTO CODIFICA DOCUMENTO REV. FOGLIO NR1J 01 D 29 CL VI0104 001 B 42 di 172

TARIE: Flome	ent Forces - Area	a Shalls							
Area	OutputCase	StepType	F11	F22	M11	M22	V13	V23	
Text	Text	Text	KN/m	KN/m	KN-m/m	KN-m/m	KN/m	KN/m	
3281	INV SLE Rara	Min	-181.54	-1484.78	-490.21	-839.42	-59.78	-606.94	Min M11
2991	INV SLE Rara	Max	-791.63	1160.69	1007.13	272.92	522.15	347.02	Max M11
3056	INV SLE Rara	Min	-1141.73	-3437.42	-408.89	-1308.36	-82.35	-2265.49	Min M22
2876	INV SLE Rara	Max	474.71	-1353.68	770.92	685.25	734.08	27.34	Max M22
3172	INV SLE Rara	Min	-169.01	-1221.97	-66.54	-42.22	-876.86	-603.90	Min V13
2866	INV SLE Rara	Max	1324.66	-1935.07	821.39	640.38	1548.79	63.84	Max V13
3056	INV SLE Rara	Min	-165.11	-2831.85	-13.69	-141.12	-82.35	-2265.49	Min V23
2982	INV SLE Rara	Max	-427.18	1189.00	698.34	512.71	-6.23	352.12	Max V23
TABLE: Eleme	ent Forces - Area	a Shells							
Area	OutputCase	StepType	F11	F22	M11	M22	V13	V23	
Text	Text	Text	KN/m	KN/m	KN-m/m	KN-m/m	KN/m	KN/m	
3281	INV SLE Freq.	Min	221.47	-1392.75	-437.27	-774.28	-76.72	-561.03	Min M11
2883	INV SLE Freq.	Max	44.16	130.93	924.50	75.87	449.68	206.76	Max M11
3056	INV SLE Freq.	Min	-254.76	-2798.96	-358.23	-1191.43	8.14	-2073.76	Min M22
2876	INV SLE Freq.	Max	440.78	-1142.11	705.76	619.77	677.74	27.39	Max M22
3172	INV SLE Freq.	Min	-264.30	-2814.86	-16.76	-38.67	-825.22	-546.38	Min V13
2866	INV SLE Freq.	Max	1218.80	-1552.33	745.20	581.84	1431.83	17.64	Max V13
3056	INV SLE Freq.	Min	-57.82	-2545.01	-5.32	-121.83	8.14	-2073.76	Min V23
2991	INV SLE Freq.	Max	-362.39	1196.87	640.93	453.43	433.62	343.96	Max V23
TABLE: Eleme	ent Forces - Area	a Shells							
Area	OutputCase	StepType	F11	F22	M11	M22	V13	V23	
Text	Text	Text	KN/m	KN/m	KN-m/m	KN-m/m	KN/m	KN/m	
3281	INV SLE Quasi	Min	232.37	-1086.79	-437.15	-773.27	-77.05	-560.97	Min M11
2866	INV SLE Quasi	Max	1217.61	-1554.70	734.16	549.86	1431.84	19.07	Max M11
3056	INV SLE Quasi	Min	-125.33	-2187.89	-357.30	-1189.11	25.09	-2072.80	Min M22
2876	INV SLE Quasi	Max	439.85	-1142.25	665.85	583.70	671.36	28.40	Max M22
3172	INV SLE Quasi	Min	-209.07	-2384.49	-14.83	-37.98	-825.49	-542.39	Min V13
2866	INV SLE Quasi	Max	1217.61	-1554.70	734.16	549.86	1431.84	19.07	Max V13
3056	INV SLE Quasi	Min	-25.42	-1995.23	-5.29	-120.26	25.09	-2072.80	Min V23
2991	INV SLE Quasi	Max	-372.78	1195.75	358.66	419.24	282.57	343.46	Max V23


Figura 8- muro frontale

Tutte le verifiche sono svolte con l'aiuto del software RC-SEC.

10.1.1 Verifica direzione orizzontale

In direzione orizzontale è stata assunta un'armatura lato interno disposta su due strati primo strato con Φ 24/10 e secondo strato con Φ 24/10, mentre per il lato esterno si è assunta una armatura Φ 24/10 disposta su un unico strato.

DATI GENERALI SEZIONE GENERICA IN C.A.

NOME SEZIONE: front2

(Percorso File: Z:\0179 NET Cesano\LAVORO\Provvisori\04_Verifiche\VI01\front2.sez)

CARATTERISTICHE DI RESISTENZA DEI MATERIALI IMPIEGATI

CALCESTRUZZO -	Classe:	C32/40	
	Resis. compr. di progetto fcd:	18.800	MPa
	Resis. compr. ridotta fcd':	9.400	MPa
	Def.unit. max resistenza ec2:	0.0020	
	Def.unit. ultima ecu:	0.0035	
	Diagramma tensione-deformaz.:	Parabola-Rettangolo	
	Modulo Elastico Normale Ec:	33643.0	MPa
	Resis. media a trazione fctm:	3.100	MPa
	Coeff. Omogen. S.L.E.:	15.00	
	Coeff. Omogen. S.L.E.:	15.00	
	Sc limite S.L.E. comb. Frequenti:	182.60	daN/cm ²
	Ap.Fessure limite S.L.E. comb. Freque	nti: 0.200	mm
	Sc limite S.L.E. comb. Q.Permanenti:	0.00	Мра
	Ap.Fess.limite S.L.E. comb. Q.Perm.:	0.200	mm
ACCIAIO -	Tipo:	B450C	
710017110	Resist. caratt. snervam. fyk:	450.00	MPa
	Resist, caratt, rottura ftk:	450.00	MPa
	Resist. snerv. di progetto fyd:	391.30	MPa
	Resist. ultima di progetto ftd:	391.30	MPa
	Deform. ultima di progetto Epu:	0.068	۵
	Modulo Elastico Ef	2000000	daN/cm²
	Diagramma tensione-deformaz.:	Bilineare finito	
	Coeff. Aderenza istantaneo ß1*ß2:	1.00	
	Coeff. Aderenza differito ß1*ß2:	0.50	
	Sf limite S.L.E. Comb. Rare:	337.50	MPa

CODIFICA REV. COMMESSA LOTTO DOCUMENTO FOGLIO Relazione di calcolo - Spalle - fase 1 NR1J 01 D 29 \mathbf{CL} VI0104 001 В 44 di 172

CARATTERISTICHE DOMINIO CONGLOMERATO

Forma del D Classe Congl		Poligonale C32/40
N°vertice:	X [cm]	Y [cm]
1	-50.0	0.0
2	-50.0	130.0
3	50.0	130.0
4	50.0	0.0

DATI BARRE ISOLATE

N°Barra	X [cm]	Y [cm]	DiamØ[mm]
1	-41.6	8.4	24
2	-41.6	121.6	24
3	41.6	121.6	24
4	41.6	8.4	24
5	-41.6	13.4	24
6	41 0	13.4	24

DATI GENERAZIONI LINEARI DI BARRE

N°Gen.	Numero assegnato alla singola generazione lineare di barre
N°Barra Ini.	Numero della barra iniziale cui si riferisce la generazione
N°Barra Fin.	Numero della barra finale cui si riferisce la generazione

N°Barre Numero di barre generate equidistanti cui si riferisce la generazione Diametro in mm delle barre della generazione

N°Gen.	N°Barra Ini.	N°Barra Fin.	N°Barre	Ø
1	1	4	8	24
2	2	3	8	24
3	5	6	8	24

CALCOLO DI RESISTENZA - SFORZI PER OGNI COMBINAZIONE ASSEGNATA

N Mx Vy		Sforzo normale [kN] applicato nel Baric. (+ se di compressione) Momento flettente [daNm] intorno all'asse X di riferimento delle coord con verso positivo se tale da comprimere il lembo sup. della sez. Componente del Taglio [kN] parallela all'asse Y di riferimento delle co			
N°Comb.	N	Mx	Vy		
1	0.00	-1219.00	0.00		
2	0.00	2199.00	0.00		
3	0.00	0.10	1883.00		

COMB. RARE (S.L.E.) - SFORZI PER OGNI COMBINAZIONE ASSEGNATA

N	Sforzo normale [kN]	applicato nel Baricentro	(+ se di compressione)
IN	SIUIZU HUHHAIE IKINI	applicate rici ballicellile	(T SE UI COITIPLESSIONE)

Momento flettente [kNm] intorno all'asse X di riferimento (tra parentesi Mom.Fessurazione) Mx

con verso positivo se tale da comprimere il lembo superiore della sezione

N°Comb.	N	Mx	Му
1	0.00	-490.00	0.00
2	0.00	1007.00	0.00

COMB. FREQUENTI (S.L.E.) - SFORZI PER OGNI COMBINAZIONE ASSEGNATA

N Sforzo normale [kN] applicato nel Baricentro (+ se di compressione)

Mx Momento flettente [kNm] intorno all'asse X di riferimento (tra parentesi Mom.Fessurazione)

con verso positivo se tale da comprimere il lembo superiore della sezione

 N°Comb.
 N
 Mx
 My

 1
 0.00
 -437.00 (-1122.58)
 0.00 (0.00)

 2
 0.00
 925.00 (1206.01)
 0.00 (0.00)

COMB. QUASI PERMANENTI (S.L.E.) - SFORZI PER OGNI COMBINAZIONE ASSEGNATA

N Sforzo normale [kN] applicato nel Baricentro (+ se di compressione)

Mx Momento flettente [kNm] intorno all'asse X di riferimento (tra parentesi Mom.Fessurazione)

con verso positivo se tale da comprimere il lembo superiore della sezione

 N°Comb.
 N
 Mx
 My

 1
 0.00
 -437.00 (-1122.58)
 0.00 (0.00)

 2
 0.00
 734.00 (1206.01)
 0.00 (0.00)

RISULTATI DEL CALCOLO

Sezione verificata per tutte le combinazioni assegnate

VERIFICHE DI RESISTENZA IN PRESSO-TENSO FLESSIONE ALLO STATO LIMITE ULTIMO

Ver S = combinazione verificata / N = combin. non verificata

N Sforzo normale assegnato [kN] nel baricentro B sezione cls.(positivo se di compressione)

Mx Componente del momento assegnato [kNm] riferito all'asse x princ. d'inerzia N Res Sforzo normale resistente [kN] nel baricentro B sezione cls. (positivo se di compress.)

Mx Res Momento flettente resistente [kNm] riferito all'asse x princ. d^{i'}inerzia
Mis.Sic. Misura sicurezza = rapporto vettoriale tra (N r.Mx Res,My Res) e (N,Mx,My)

Verifica positiva se tale rapporto risulta >=1.000

As Totale Area totale barre longitudinali [cm²]. [Tra parentesi il valore minimo di normativa]

N°Comb	Ver	N	Mx	N Res	Mx Res	Mis.Sic. As Totale
1	S	0.00	-1219.00	0.00	-2101.53	1.72 135.7(39.0)
2	S	0.00	2199.00	0.00	3971.41	1.81 135.7(39.0)
3	S	0.00	0.10	0.00	3971.41	999.00 135.7(39.0)

METODO AGLI STATI LIMITE ULTIMI - DEFORMAZIONI UNITARIE ALLO STATO ULTIMO

ec max	Deform. unit. massima del conglomerato a compressione
	Deform. unit. massima del conglomerato a compressione
Xc max	Ascissa in cm della fibra corrisp. a ec max (sistema rif. X,Y,O sez.)
Yc max	Ordinata in cm della fibra corrisp. a ec max (sistema rif. X,Y,O sez.)
es min	Deform. unit. minima nell'acciaio (negativa se di trazione)
Xs min	Ascissa in cm della barra corrisp. a es min (sistema rif. X,Y,O sez.)
Ys min	Ordinata in cm della barra corrisp. a es min (sistema rif. X,Y,O sez.)
es max	Deform. unit. massima nell'acciaio (positiva se di compress.)
Xs max	Ascissa in cm della barra corrisp. a es max (sistema rif. X,Y,O sez.)
Ys max	Ordinata in cm della barra corrisp. a es max (sistema rif. X,Y,O sez.)

N°Comb	ec max	Xc max	Yc max	es min	Xs min	Ys min	es max	Xs max	Ys max
1	0.00350	-50.0	0.0	0.00084	-41.6	8.4	-0.03501	-41.6	121.6
2	0.00350	-50.0	130.0	0.00147	-41.6	121.6	-0.02584	-41.6	8.4
3	0.00350	-50.0	130.0	0.00147	-41.6	121.6	-0.02584	-41.6	8.4

Relazione di calcolo - Spalle - fase 1

RADDOPPIO CESANO VIGNA DI VALLE PROGETTO DEFINITIVO

LOTTO 01 D 29

COMMESSA

NR1.J

CODIFICA CL DOCUMENTO VI0104 001

REV. B FOGLIO 46 di 172

POSIZIONE ASSE NEUTRO PER OGNI COMB. DI RESISTENZA

a, b, c Coeff. a, b, c nell'eq. dell'asse neutro aX+bY+c=0 nel rif. X,Y,O gen. x/d Rapp. di duttilità (travi e solette)[§ 4.1.2.1.2.1 NTC]: deve essere < 0.45

C.Rid. Coeff. di riduz. momenti per sola flessione in travi continue

N°Comb a b c x/d C.Rid.

 1
 0.000000000
 -0.000316654
 0.003500000

 2
 0.000000000
 0.000241324
 -0.027872061

 3
 0.000000000
 0.000241324
 -0.027872061

VERIFICHE A TAGLIO

hw

Ctg

Acw

Ver S = comb. verificata a taglio / N = comb. non verificata
Ved Taglio di progetto [kN] = Vy ortogonale all'asse neutro

Vcd Taglio compressione resistente [kN] lato conglomerato [formula (4.1.28)NTC]

Vwd Taglio resistente [kN] assorbito dalle staffe [(4.1.18) NTC]

d | z Altezza utile media pesata sezione ortogonale all'asse neutro | Braccio coppia interna [cm]

Vengono prese nella media le strisce con almeno un estremo compresso. I pesi della media sono costituiti dalle stesse lunghezze delle strisce. Larghezza media resistente a taglio [cm] misurate parallel. all'asse neutro E' data dal rapporto tra l'area delle sopradette strisce resistenti e Dmed. Cotangente dell'angolo di inclinazione dei puntoni di conglomerato Coefficiente maggiorativo della resistenza a taglio per compressione

Ast Area staffe+legature strettam. necessarie a taglio per metro di pil.[cm²/m]
A.Eff Area staffe+legature efficaci nella direzione del taglio di combinaz.[cm²/m]
Tra parentesi è indicata la quota dell'area relativa alle sole legature.

L'area della legatura è ridotta col fattore L/d_max con L=lungh.legat.proiettata sulla direz. del taglio e d_max= massima altezza utile nella direz.del taglio.

N°Comb	Ver	Ved	Vcd	Vwd	d z	bw	Ctg	Acw	Ast	A.Eff
1	S	0.00	5507.40	781.28125	5.6 117.2	100.0	1.000	1.000	0.0	17.0(0.0)
2	S	0.00		772.08124						٠,
3	S	1883.00	3753.47	1930.20124	1.2 115.8	100.0	2.500	1.000	16.6	17.0(0.0)

COMBINAZIONI RARE IN ESERCIZIO - MASSIME TENSIONI NORMALI ED APERTURA FESSURE (NTC/EC2)

Ver S = comb. verificata/ N = comb. non verificata

Sc max

Massima tensione (positiva se di compressione) nel conglomerato [Mpa]

Xc max, Yc max

Ascissa, Ordinata [cm] del punto corrisp. a Sc max (sistema rif. X,Y,O)

Sf min Minima tensione (negativa se di trazione) nell'acciaio [Mpa]

Xs min, Ys min

Ascissa, Ordinata [cm] della barra corrisp. a Sf min (sistema rif. X,Y,O)

Ac eff.

As eff.

Ascissa, Ordinata [cm] della barra corrisp. a Sf min (sistema rif. X,Y,O)

Area di calcestruzzo [cm²] in zona tesa considerata aderente alle barre

Area barre [cm²] in zona tesa considerate efficaci per l'apertura delle fessure

N°Comb	Ver	Sc max	Xc max	Yc max	St min	Xs min	Ys min	Ac eff.	As eff.
1	S	1.95	-50.0	0.0	-96.9	32.4	121.6	2100	45.2
2	S	3.65	-50.0	130.0	-107.7	-32.4	8.4	2700	90.5

COMBINAZIONI RARE IN ESERCIZIO - APERTURA FESSURE [§ 7.3.4 EC2]

La sezione viene assunta sempre fessurata anche nel caso in cui la trazione minima del calcestruzzo sia inferiore a fctm

Ver. Esito della verifica

e1 Massima deformazione unitaria di trazione nel calcestruzzo (trazione -) valutata in sezione fessurata e2 Minima deformazione unitaria di trazione nel calcestruzzo (trazione -) valutata in sezione fessurata

k1 = 0.8 per barre ad aderenza migliorata [eq.(7.11)EC2]

kt = 0.4 per comb. quasi permanenti / = 0.6 per comb.frequenti [cfr. eq.(7.9)EC2] k2 = 0.5 per flessione; =(e1 + e2)/(2*e1) per trazione eccentrica [eq.(7.13)EC2]

k3 = 3.400 Coeff. in eq.(7.11) come da annessi nazionali k4 = 0.425 Coeff. in eq.(7.11) come da annessi nazionali

Relazione di calcolo - Spalle - fase 1

COMMESSA LOTTO CODIFICA DOCUMENTO REV. FOGLIO NR1J 01 D 29 CL VI0104 001 B 47 di 172

Ø	Diametro [mm] equivalente delle barre tese comprese nell'area efficace Ac eff [eq.(7.11)EC2]
Cf	Copriferro [mm] netto calcolato con riferimento alla barra più tesa

e sm - e cm Differenza tra le deformazioni medie di acciaio e calcestruzzo [(7.8)EC2 e (C4.1.7)NTC]

Tra parentesi: valore minimo = 0.6 Smax / Es [(7.9)EC2 e (C4.1.8)NTC]

sr max Massima distanza tra le fessure [mm]

wk Apertura fessure in mm calcolata = sr max*(e_sm - e_cm) [(7.8)EC2 e (C4.1.7)NTC]. Valore limite tra parentesi

Mx fess. Componente momento di prima fessurazione intorno all'asse X [kNm]
My fess. Componente momento di prima fessurazione intorno all'asse Y [kNm]

Comb.	Ver	e1	e2	k2	Ø	Cf	e sm - e cm s	e sm - e cm sr max		Mx fess	My fess
1 2	S S	-0.00053 -0.00059	0 0	0.500 0.500		72 72	0.00029 (0.00029) 0.00032 (0.00032)		(,		0.00 0.00

COMBINAZIONI FREQUENTI IN ESERCIZIO - MASSIME TENSIONI NORMALI ED APERTURA FESSURE (NTC/EC2)

N°Comb	Ver	Sc max	Xc max `	Yc max	Sf min	Xs min	Ys min	Ac eff.	As eff.
1	S	1.74	-50.0	0.0	-86.4	32.4	121.6	2100	45.2
2	S	3.35	-50.0	130.0	-99.0	-41.6	8.4	2700	90.5

COMBINAZIONI FREQUENTI IN ESERCIZIO - APERTURA FESSURE [§ 7.3.4 EC2]

Comb.	Ver	e1	e2	k2	Ø	Cf	e sm - e cm s	r max	wk	Mx fess	My fess
1	S	-0.00047	0	0.500	24.0	72	0.00026 (0.00026)	434	0.113 (0.20)	-1122.58	0.00
2	S	-0.00055	0	0.500	24.0	72	0.00030 (0.00030)	367	0.109 (0.20)	1206.01	0.00

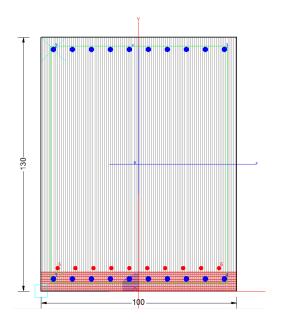
COMBINAZIONI QUASI PERMANENTI IN ESERCIZIO - MASSIME TENSIONI NORMALI ED APERTURA FESSURE (NTC/EC2)

N°Comb	Ver	Sc max	Xc max `	Yc max	Sf min	Xs min	Ys min	Ac eff.	As eff.
1	S	1.74	-50.0	0.0	-86.4	32.4	121.6	2100	45.2
2	S	2.66	-50.0	130.0	-78.5	-23.1	8.4	2700	90.5

COMBINAZIONI QUASI PERMANENTI IN ESERCIZIO - APERTURA FESSURE [§ 7.3.4 EC2]

Comb.	Ver	e1	e2	k2	Ø	Cf	e sm - e cm s	r max	wk	Mx fess	My fess
1	S	-0.00047	0	0.500	24.0	72	0.00026 (0.00026)	434	0.113 (0.20)	-1122.58	0.00
2	S	-0.00043	0	0.500	24.0	72	0.00024 (0.00024)	367	0.086 (0.20)	1206.01	0.00

10.1.2 Verifiche RC-Sec – direzione verticale:


In direzione verticale è stata assunta un'armatura lato interno disposta su due strati - primo strato con $\Phi 26/10$ e secondo strato con $\Phi 20/10$, mentre per il lato esterno si è assunta una armatura $\Phi 26/10$ disposta su un unico strato.

Relazione di calcolo - Spalle - fase 1

COMMESSA LOTTO CODIFICA NR1J 01 D 29 \mathbf{CL} VI0104 001

DOCUMENTO REV. FOGLIO В 48 di 172

DATI GENERALI SEZIONE GENERICA IN C.A.

NOME SEZIONE: front4-

 $(Percorso\ File:\ Z:\ 179\ NET\ Cesano\ LAVORO\ Provvisori\ 04_Verifiche\ VI01\ front 4-.sez)$

CARATTERISTICHE DI RESISTENZA DEI MATERIALI IMPIEGATI

CALCESTRUZZO -	Classe:	C32/40	
	Resis. compr. di progetto fcd:	18.800	MPa
	Resis. compr. ridotta fcd':	9.400	MPa
	Def.unit. max resistenza ec2:	0.0020	
	Def.unit. ultima ecu:	0.0035	
	Diagramma tensione-deformaz.:	Parabola-Rettangolo	
	Modulo Elastico Normale Ec:	33643.0	MPa
	Resis. media a trazione fctm:	3.100	MPa
	Coeff. Omogen. S.L.E.:	15.00	
	Coeff. Omogen. S.L.E.:	15.00	
	Sc limite S.L.E. comb. Frequenti:	182.60	daN/cm ²
	Ap.Fessure limite S.L.E. comb. Frequer	nti: 0.200	mm

Ap.Fess.limite S.L.E. comb. Q.Perm.: ACCIAIO -B450C

Sc limite S.L.E. comb. Q.Permanenti:

Resist. caratt. snervam. fyk: 450.00 MPa Resist. caratt. rottura ftk: MPa 450.00 Resist. snerv. di progetto fyd: 391.30 MPa Resist. ultima di progetto ftd: 391.30 MPa Deform. ultima di progetto Epu: 0.068

0.00 Mpa

0.200 mm

2000000 Modulo Elastico Ef daN/cm²

Diagramma tensione-deformaz.: Bilineare finito Coeff. Aderenza istantaneo ß1*ß2: 1.00 Coeff. Aderenza differito ß1*ß2: 0.50 Sf limite S.L.E. Comb. Rare: 337.50 MPa

CARATTERISTICHE DOMINIO CONGLOMERATO

Forma del Dominio: Poligonale Classe Conglomerato: C32/40

N°vertice: X [cm] Y [cm]

FOGLIO

49 di 172

COMMESSA LOTTO CODIFICA DOCUMENTO REV. Relazione di calcolo - Spalle - fase 1 NR1J 01 D 29 \mathbf{CL} VI0104 001 В

1	-50.0	0.0
2	-50.0	130.0
3	50.0	130.0
4	50.0	0.0

DATI BARRE ISOLATE

N°Barra	X [cm]	Y [cm]	DiamØ[mm]
1	-41.7	8.3	26
2	-41.7	121.7	26
3	41.7	121.7	26
4	41.7	8.3	26
5	-41.6	13.4	20
6	41.0	13.4	20

DATI GENERAZIONI LINEARI DI BARRE

N°Gen.	Numero assegnato alla singola generazione lineare di barre
N°Barra Ini.	Numero della barra iniziale cui si riferisce la generazione
N°Barra Fin.	Numero della barra finale cui si riferisce la generazione

N°Barre Numero di barre generate equidistanti cui si riferisce la generazione

Diametro in mm delle barre della generazione

N°Gen.	N°Barra Ini.	N°Barra Fin.	N°Barre	Ø
1	1	4	8	26
2	2	3	8	26
3	5	6	8	20

CALCOLO DI RESISTENZA - SFORZI PER OGNI COMBINAZIONE ASSEGNATA

N Mx Vy		Sforzo normale [kN] applicato nel Baric. (+ se di compressione) Momento flettente [daNm] intorno all'asse X di riferimento delle coordinate con verso positivo se tale da comprimere il lembo sup. della sez. Componente del Taglio [kN] parallela all'asse Y di riferimento delle coordinate				
N°Comb.	N	Mx	Vy			
1	0.00	-1611.00	0.00			
2	0.00	1432.00	0.00			
3	0.00	0.10	2729.00			

COMB. RARE (S.L.E.) - SFORZI PER OGNI COMBINAZIONE ASSEGNATA

Ν Sforzo normale [kN] applicato nel Baricentro (+ se di compressione) Mx

Momento flettente [kNm] intorno all'asse X di riferimento (tra parentesi Mom.Fessurazione)

con verso positivo se tale da comprimere il lembo superiore della sezione

N°Comb.	N	Mx	Му
1	0.00	1308.00	0.00
2	0.00	685 00	0.00

COMB. FREQUENTI (S.L.E.) - SFORZI PER OGNI COMBINAZIONE ASSEGNATA

Mx

Sforzo normale [kN] applicato nel Baricentro (+ se di compressione) Momento flettente [kNm] intorno all'asse X di riferimento (tra parentesi Mom.Fessurazione)

con verso positivo se tale da comprimere il lembo superiore della sezione

Relazione di calcolo - Spalle - fase 1

COMMESSA LOTTO

NR1J 01 D 29

CODIFICA CL

DOCUMENTO VI0104 001

REV. FOGLIO

B 50 di 172

N°Comb.	N	Mx	My
1	0.00	1191.00 (1205.28)	0.00 (0.00)
2	0.00	620.00 (1205.28)	0.00 (0.00)

COMB. QUASI PERMANENTI (S.L.E.) - SFORZI PER OGNI COMBINAZIONE ASSEGNATA

N Sforzo normale [kN] applicato nel Baricentro (+ se di compressione)

Mx Momento flettente [kNm] intorno all'asse X di riferimento (tra parentesi Mom.Fessurazione)

con verso positivo se tale da comprimere il lembo superiore della sezione

 N°Comb.
 N
 Mx
 My

 1
 0.00
 1189.00 (1205.28)
 0.00 (0.00)

 2
 0.00
 584.00 (1205.28)
 0.00 (0.00)

RISULTATI DEL CALCOLO

Sezione verificata per tutte le combinazioni assegnate

VERIFICHE DI RESISTENZA IN PRESSO-TENSO FLESSIONE ALLO STATO LIMITE ULTIMO

Ver S = combinazione verificata / N = combin. non verificata

N Sforzo normale assegnato [kN] nel baricentro B sezione cls.(positivo se di compressione)

Mx Componente del momento assegnato [kNm] riferito all'asse x princ. d'inerzia N Res Sforzo normale resistente [kN] nel baricentro B sezione cls.(positivo se di compress.)

Mx Res Momento flettente resistente [kNm] riferito all'asse x princ. d'inerzia
Mis.Sic. Misura sicurezza = rapporto vettoriale tra (N r,Mx Res,My Res) e (N,Mx,My)

Verifica positiva se tale rapporto risulta >=1.000

As Totale Area totale barre longitudinali [cm²]. [Tra parentesi il valore minimo di normativa]

N°Comb	Ver	N	Mx	N Res	Mx Res	Mis.Sic. As Totale
1	S	0.00	-1611.00	0.00	-2443.35	1.52 137.6(39.0)
2	S	0.00	1432.00	0.00	3744.58	2.61 137.6(39.0)
3	S	0.00	0.10	0.00	3744.58	999.00 137.6(39.0)

METODO AGLI STATI LIMITE ULTIMI - DEFORMAZIONI UNITARIE ALLO STATO ULTIMO

ec max	Deform. unit. massima del conglomerato a compressione Deform. unit. massima del conglomerato a compressione
	•
Xc max	Ascissa in cm della fibra corrisp. a ec max (sistema rif. X,Y,O sez.)
Yc max	Ordinata in cm della fibra corrisp. a ec max (sistema rif. X,Y,O sez.)
es min	Deform. unit. minima nell'acciaio (negativa se di trazione)
Xs min	Ascissa in cm della barra corrisp. a es min (sistema rif. X,Y,O sez.)
Ys min	Ordinata in cm della barra corrisp. a es min (sistema rif. X,Y,O sez.)
es max	Deform. unit. massima nell'acciaio (positiva se di compress.)
Xs max	Ascissa in cm della barra corrisp. a es max (sistema rif. X,Y,O sez.)
Ys max	Ordinata in cm della barra corrisp. a es max (sistema rif. X,Y,O sez.)

N°Comb	ec max	Xc max	Yc max	es min	Xs min	YS MIN	es max	Xs max	Ys max
1	0.00350	-50.0	0.0	0.00085	-41.7	8.3	-0.03538	-41.7	121.7
2	0.00350	-50.0	130.0	0.00126	-41.7	121.7	-0.02938	-41.7	8.3
3	0.00350	-50.0	130.0	0.00126	-41.7	121.7	-0.02938	-41.7	8.3

POSIZIONE ASSE NEUTRO PER OGNI COMB. DI RESISTENZA

a, b, c	Coeff. a, b, c nell'eq. dell'asse neutro aX+bY+c=0 nel rif. X,Y,O gen.
x/d	Rapp. di duttilità (travi e solette)[§ 4.1.2.1.2.1 NTC]: deve essere < 0.45

C.Rid. Coeff. di riduz. momenti per sola flessione in travi continue

Relazione di calcolo - Spalle - fase 1

COMMESSA LOTTO

NR1J 01 D 29

CODIFICA CL DOCUMENTO
VI0104 001

FOGLIO 51 di 172

REV

В

N°Comb	а	b	С	x/d	C.Rid.
1	0.000000000	-0.000319496	0.003500000		
2	0.000000000	0.000270213	-0.031627651		
3	0.000000000	0.000270213	-0.031627651		

VERIFICHE A TAGLIO

Ver S = comb. verificata a taglio / N = comb. non verificata Ved Taglio di progetto [kN] = Vy ortogonale all'asse neutro Taglio compressione resistente [kN] lato conglomerato [formula (4.1.28)NTC] Vcd Taglio resistente [kN] assorbito dalle staffe [(4.1.18) NTC] Vwd Altezza utile media pesata sezione ortogonale all'asse neutro | Braccio coppia interna [cm] d|z Vengono prese nella media le strisce con almeno un estremo compresso. I pesi della media sono costituiti dalle stesse lunghezze delle strisce. Larghezza media resistente a taglio [cm] misurate parallel. all'asse neutro bw E' data dal rapporto tra l'area delle sopradette strisce resistenti e Dmed. Ctg Cotangente dell'angolo di inclinazione dei puntoni di conglomerato Coefficiente maggiorativo della resistenza a taglio per compressione Acw Area staffe+legature strettam. necessarie a taglio per metro di pil.[cm²/m] Ast A Fff Area staffe+legature efficaci nella direzione del taglio di combinaz.[cm²/m] Tra parentesi è indicata la guota dell'area relativa alle sole legature. L'area della legatura è ridotta col fattore L/d_max con L=lungh.legat.proietta-

ta sulla direz. del taglio e d_max= massima altezza utile nella direz.del taglio.

Ved Vwd d | z bw Ctg Acw As

M-Comb	ver	vea	Vca	vwa	α Z	DW	Ctg	ACW	AST	A.EIT
1	S	0.00	5513.95	1125.62125	5.61 117.3	100.0	1.000	1.000	0.0	24.5(0.0)
	-	0.00		1117.95124						
3	S	2729.00	3776.82	2794.87124	1.8 116.5	100.0	2.500	1.000	23.9	24.5(0.0)

COMBINAZIONI RARE IN ESERCIZIO - MASSIME TENSIONI NORMALI ED APERTURA FESSURE (NTC/EC2)

Ver S = comb. verificata/ N = comb. non verificata

Sc max
Massima tensione (positiva se di compressione) nel conglomerato [Mpa]
Xc max, Yc max
Ascissa, Ordinata [cm] del punto corrisp. a Sc max (sistema rif. X,Y,O)
Sf min
Minima tensione (negativa se di trazione) nell'acciaio [Mpa]
Xs min, Ys min
Ascissa, Ordinata [cm] della barra corrisp. a Sf min (sistema rif. X,Y,O)
Ac eff.
Area di calcestruzzo [cm²] in zona tesa considerata aderente alle barre
As eff.
Area barre [cm²] in zona tesa considerate efficaci per l'apertura delle fessure

N°Comb Ver Sc max Xc max Yc max Sf min Xs min Ys min Ac eff. As eff. S 4.67 -50.0 130.0 -146.8-32.48.3 2549 84.5 1 2549 2.45 -50.0 130.0 -76.9-32.48.3 84.5

COMBINAZIONI RARE IN ESERCIZIO - APERTURA FESSURE [§ 7.3.4 EC2]

La sezione viene assunta sempre fessurata anche nel caso in cui la trazione minima del calcestruzzo sia inferiore a fctm

Ver. Esito della verifica

e1 Massima deformazione unitaria di trazione nel calcestruzzo (trazione -) valutata in sezione fessurata e2 Minima deformazione unitaria di trazione nel calcestruzzo (trazione -) valutata in sezione fessurata

k1 = 0.8 per barre ad aderenza migliorata [eq.(7.11)EC2]

kt = 0.4 per comb. quasi permanenti / = 0.6 per comb.frequenti [cfr. eq.(7.9)EC2] k2 = 0.5 per flessione; =(e1 + e2)/(2*e1) per trazione eccentrica [eq.(7.13)EC2]

k3 = 3.400 Coeff. in eq.(7.11) come da annessi nazionali k4 = 0.425 Coeff. in eq.(7.11) come da annessi nazionali

Ø Diametro [mm] equivalente delle barre tese comprese nell'area efficace Ac eff [eq.(7.11)EC2]

Cf Copriferro [mm] netto calcolato con riferimento alla barra più tesa

e sm - e cm Differenza tra le deformazioni medie di acciaio e calcestruzzo [(7.8)EC2 e (C4.1.7)NTC]

Tra parentesi: valore minimo = 0.6 Smax / Es [(7.9)EC2 e (C4.1.8)NTC]

sr max Massima distanza tra le fessure [mm]

wk Apertura fessure in mm calcolata = sr max*(e_sm - e_cm) [(7.8)EC2 e (C4.1.7)NTC]. Valore limite tra parentesi

Mx fess. Componente momento di prima fessurazione intorno all'asse X [kNm] My fess. Componente momento di prima fessurazione intorno all'asse Y [kNm]

Relazione di calcolo – Spalle – fase 1

COMMESSA LOTTO CODIFICA DOCUMENTO REV. FOGLIO NRIJ 01 D 29 CL VI0104 001 B 52 di 172

Comb.	Ver	e1	e2	k2	Ø	Cf	e sm - e cm s	sr max	wk	Mx fess	My fess
1	S	-0.00081	0	0.500	23.4	70	0.00044 (0.00044)	358	0.158 (0.20)	1205.28	0.00
2	S	-0.00042	0	0.500	23.4	70	0.00023 (0.00023)	358	0.083 (0.20)	1205.28	0.00

COMBINAZIONI FREQUENTI IN ESERCIZIO - MASSIME TENSIONI NORMALI ED APERTURA FESSURE (NTC/EC2)

N°Comb	Ver	Sc max	Xc max	Yc max	Sf min	Xs min	Ys min	Ac eff.	As eff.
	-							2549 2549	

COMBINAZIONI FREQUENTI IN ESERCIZIO - APERTURA FESSURE [§ 7.3.4 EC2]

Comb.	Ver	e1	e2	k2	Ø	Cf	e sm - e cm s	r max	wk	Mx fess	My fess
1 2	S S	-0.00074 -0.00038	0	0.500 0.500		70 70	0.00040 (0.00040) 0.00021 (0.00021)		0.144 (0.20) 0.075 (0.20)		0.00 0.00

COMBINAZIONI QUASI PERMANENTI IN ESERCIZIO - MASSIME TENSIONI NORMALI ED APERTURA FESSURE (NTC/EC2)

N°Comb	Ver	Sc max	Xc max Yo	c max	Sf min	Xs min	Ys min	Ac eff.	As eff.
1	S	4.25	-50.0	130.0	-133.4	-32.4	8.3	2549	84.5
2	S	2.09	-50.0	130.0	-65.5	4.6	8.3	2549	84.5

COMBINAZIONI QUASI PERMANENTI IN ESERCIZIO - APERTURA FESSURE [§ 7.3.4 EC2]

Comb.	Ver	e1	e2	k2	Ø	Cf	e sm - e cm s	r max	wk	Mx fess	My fess
1	S	-0.00073	0	0.500	23.4	70	0.00044 (0.00040)	358	0.159 (0.20)	1205.28	0.00
2	S	-0.00036	0	0.500	23.4	70	0.00020 (0.00020)	358	0.070 (0.20)	1205.28	0.00

10.2 Verifica Muro andatore

Le sollecitazioni critici nel muro andatore sono riassunte nella tabella seguente.

TABELLA: Sollecitazioni nel muro andatore										
Area	ShellType	OutputCase	StepType	F11	F22	M11	M22	V13	V23	
Text	Text	Text	Text	kN/m	kN/m	kN-m/m	kN-m/m	kN/m	kN/m	
Sollecita	Sollecitazioni Critici da combinazioni SLU e SLV									
1761	Shell-Thick	INV SLU e SLV	Min	-2153.71	-1643.61	-249.93	-346.90	-367.19	-530.91	Min M11
1845	Shell-Thick	INV SLU e SLV	Max	923.48	-13.47	903.94	149.36	-98.93	65.19	Max M11
1761	Shell-Thick	INV SLU e SLV	Min	-2153.71	-1643.61	-249.94	-346.9	-367.19	-530.91	Min M22
2439	Shell-Thick	INV SLU e SLV	Max	258.16	1338.96	96.12	1150.74	17.1	625.1	Max M22
1918	Shell-Thick	INV SLU e SLV	Min	123.7	-140.21	0.5371	-88.2302	-521.02	-119.6	Min V13
2538	Shell-Thick	INV SLU e SLV	Max	627.68	203.41	558.15	211.98	467.05	200.83	Max V13
1761	Shell-Thick	INV SLU e SLV	Min	-1098.22	-1425.73	-81.06	-15.87	-367.19	-530.91	Min V23
2439	Shell-Thick	INV SLU e SLV	Max	649.59	739.55	95.62	1076.51	17.1	625.1	Max V23
Sollecita	zioni Critici da	a combinazioni SI	LE Rara							
1761	Shell-Thick	INV SLE Rara	Min	-271.81	-851.75	-202.21	-275.79	-303.35	-431.67	Min M11
1833	Shell-Thick	INV SLE Rara	Max	316.74	-247.57	626.82	163.56	-134.3	33.14	Max M11
1761	Shell-Thick	INV SLE Rara	Min	-271.81	-851.75	-202.21	-275.71	-303.35	-431.67	Min M22
2439	Shell-Thick	INV SLE Rara	Max	214.56	49.41	66.5662	751.52	4.33	429.35	Max M22

Tutte le verifiche sono svolte con l'aiuto del software RC-SEC.

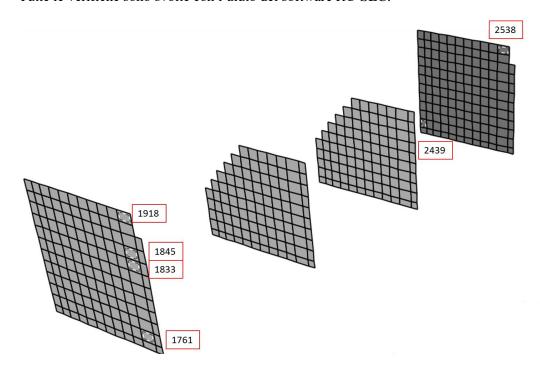


Figura 9 - Elementi di verifica, muri andatori

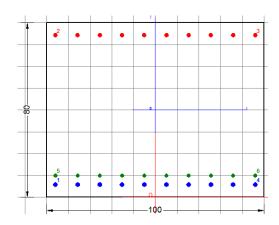
Relazione di calcolo - Spalle - fase 1

COMMESSA LOTTO

NR1J 01 D 29

CODIFICA CL DOCUMENTO VI0104 001

REV. FOGLIO


B 54 di 172

10.2.1 Verifica a presso-flessione

In direzione orizzontale è stata assunta un'armatura lato interno disposta su due strati - primo strato con Φ 20/10 e secondo strato con Φ 16/10, mentre per il lato esterno si è assunta una armatura Φ 18/10 disposta su un unico strato.

In direzione verticale è stata assunta un'armatura lato interno disposta su due strati - primo strato con Φ 24/10 e secondo strato con Φ 20/10, mentre per il lato esterno si è assunta una armatura Φ 20/10 disposta su un unico strato.

Verifiche RC-Sec – direzione orizzontale (Elementi 'Area' No 1761 e 1845):

DATI GENERALI SEZIONE GENERICA IN C.A.

NOME SEZIONE: Muro andatore - oriz

(Percorso File: C:\Users\utente\Desktop\file VI01\file VI01\Muro andatore - oriz.sez)

CARATTERISTICHE DI RESISTENZA DEI MATERIALI IMPIEGATI

CALCESTRUZZO - Classe: C32/40

Resis. compr. di progetto fcd: 18.800 MPa 9.400 Resis. compr. ridotta fcd': MPa 0.0020 Def.unit. max resistenza ec2: Def.unit. ultima ecu: 0.0035 Parabola-Rettangolo Diagramma tensione-deformaz.: Modulo Elastico Normale Ec: 33643.0 MPa Resis. media a trazione fctm: 3.100 MPa Coeff. Omogen. S.L.E.: 15.00 Sc limite S.L.E. comb. Q.Permanenti: 0.00 Мра Ap.Fess.limite S.L.E. comb. Q.Perm.: 0.200 mm

ACCIAIO - Tipo: B450C

Resist. caratt. snervam. fyk:

Resist. caratt. rottura ftk:

Resist. snerv. di progetto fyd:

Resist. ultima di progetto ftd:

Deform. ultima di progetto Epu:

450.00 MPa

391.30 MPa

391.30 MPa

0.068

Deform. ultima di progetto Epu: 0.068

Modulo Elastico Ef 2000000 daN/cm²

Diagramma tensione-deformaz.:

Coeff. Aderenza istantaneo ß1*ß2:

Coeff. Aderenza differito ß1*ß2:

0.50

CARATTERISTICHE DOMINIO CONGLOMERATO

Forma del Dominio: Poligonale Classe Conglomerato: C32/40

Relazione di calcolo - Spalle - fase 1

COMMESSA LOTTO CODIFICA DOCUMENTO REV. FOGLIO NR1J 01 D 29 \mathbf{CL} VI0104 001 В 55 di 172

N°vertice:	X [cm]	Y [cm]
1	-50.0	0.0
2	-50.0	80.0
3	50.0	80.0
4	50.0	0.0

DATI BARRE ISOLATE

N°Barra	X [cm]	Y [cm]	DiamØ[mm]
1	-46.0	5.8	20
2	-46.0	74.3	18
3	46.0	74.3	18
4	46.0	5.8	20
5	-46.0	10.0	16
6	46.0	10.0	16

DATI GENERAZIONI LINEARI DI BARRE

N°Gen. Numero assegnato alla singola generazione lineare di barre N°Barra Ini. Numero della barra iniziale cui si riferisce la generazione N°Barra Fin. Numero della barra finale cui si riferisce la generazione

N°Barre Numero di barre generate equidistanti cui si riferisce la generazione

Diametro in mm delle barre della generazione

N°Gen.	N°Barra Ini.	N°Barra Fin.	N°Barre	Ø
1	1	4	8	20
2	2	3	8	18
3	5	6	8	16

CALCOLO DI RESISTENZA - SFORZI PER OGNI COMBINAZIONE ASSEGNATA

N		Sforzo normale [kN] applicato nel Baric. (+ se di compressione)							
Mx		Momento flettent	e [kNm] intorno all'a	sse x princ. d'inerzia	a				
		con verso positiv	o se tale da comprii	mere il lembo sup. d	ella sez.				
My		Momento flettente [kNm] intorno all'asse y princ. d'inerzia							
			•	nere il lembo destro					
Vy		Componente del Taglio [kN] parallela all'asse princ.d'inerzia y							
Vx		Componente del Taglio [kN] parallela all'asse princ.d'inerzia x							
N°Comb.	N	Mx	My	Vv	Vx				
ii oomb.		WIX	wy	٧,	VX				
		0.40.00							

1	0.00	-249.90	0.00	0.00	0.00
2	0.00	903.01	0.00	0.00	0.00
3	0.00	0.10	0.00	-521.37	0.00
4	0.00	0.10	0.00	466.61	0.00

COMB. QUASI PERMANENTI (S.L.E.) - SFORZI PER OGNI COMBINAZIONE ASSEGNATA

N	Sforzo normale [kN	applicato nel Baricentro	(+ se di compressione)
IN	SIUIZU HUHHAIE IKIN	i applicato nei bancentio i	(T SE UI COITIDIESSIONE)

Mx Momento flettente [kNm] intorno all'asse x princ. d'inerzia (tra parentesi Mom. Fessurazione)

con verso positivo se tale da comprimere il lembo superiore della sezione

Momento flettente [kNm] intorno all'asse y princ. d'inerzia (tra parentesi Mom.Fessurazione) Му

con verso positivo se tale da comprimere il lembo destro della sezione

N°Comb. Ν Mx -203.01 (-414.33) 1 0.00 0.00 (0.00)

Relazione di calcolo - Spalle - fase 1

COMMESSA LOTTO CODIFICA

NR1J 01 D 29 CL

DOCUMENTO VI0104 001 REV. FOGLIO **B** 56 di 172

2

0.00

627.60 (442.58)

0.00 (0.00)

RISULTATI DEL CALCOLO

Sezione verificata per tutte le combinazioni assegnate

VERIFICHE DI RESISTENZA IN PRESSO-TENSO FLESSIONE ALLO STATO LIMITE ULTIMO

Ver S = combinazione verificata / N = combin. non verificata

N Sforzo normale assegnato [kN] nel baricentro B sezione cls.(positivo se di compressione)

Mx Componente del momento assegnato [kNm] riferito all'asse x princ. d'inerzia
My Componente del momento assegnato [kNm] riferito all'asse y princ. d'inerzia
N Res Sforzo normale resistente [kN] nel baricentro B sezione cls.(positivo se di compress.)

Mx Res Momento flettente resistente [kNm] riferito all'asse x princ. d'inerzia
My Res Momento flettente resistente [kNm] riferito all'asse y princ. d'inerzia
Mis.Sic. Misura sicurezza = rapporto vettoriale tra (N r,Mx Res,My Res) e (N,Mx,My)

Verifica positiva se tale rapporto risulta >=1.000

As Tesa Area armature trave [cm²] in zona tesa. [Tra parentesi l'area minima ex (4.1.15)NTC]

N°Comb	Ver	N	Mx	Му	N Res	Mx Res	My Res	Mis.Sic.	As Tesa
1	S	0.00	-249.90	0.00	0.00	-735.45	0.00	2.94	45.6(13.6)
2	S	0.00	903.01	0.00	0.00	1374.76	0.00	1.52	51.5(13.6)
3	S	0.00	0.10	0.00	0.00	1374.76	0.00	999.00	51.5(13.6)
4	S	0.00	0.10	0.00	0.00	1374.76	0.00	999.00	51.5(13.6)

METODO AGLI STATI LIMITE ULTIMI - DEFORMAZIONI UNITARIE ALLO STATO ULTIMO

ec max	Deform, unit, massima del conglomerato a compressione
x/d	Rapporto di duttilità [§ 4.1.2.1.2.1 NTC] deve essere < 0.45
Xc max	Ascissa in cm della fibra corrisp. a ec max (sistema rif. X,Y,O sez.)
Yc max	Ordinata in cm della fibra corrisp. a ec max (sistema rif. X,Y,O sez.)
es min	Deform. unit. minima nell'acciaio (negativa se di trazione)
Xs min	Ascissa in cm della barra corrisp. a es min (sistema rif. X,Y,O sez.)
Ys min	Ordinata in cm della barra corrisp. a es min (sistema rif. X,Y,O sez.)
es max	Deform. unit. massima nell'acciaio (positiva se di compress.)
Xs max	Ascissa in cm della barra corrisp. a es max (sistema rif. X,Y,O sez.)
Ys max	Ordinata in cm della barra corrisp. a es max (sistema rif. X,Y,O sez.)

$N^{\circ}Comb$	ec max	x/d	Xc max	Yc max	es min	Xs min	Ys min	es max	Xs max	Ys max
1	0.00350	0.097	-50.0	0.0	0.00069	-46.0	5.8	-0.03246	-46.0	74.3
2	0.00350	0.121	-50.0	80.0	0.00128	-46.0	74.3	-0.02544	-46.0	5.8
3	0.00350	0.121	-50.0	80.0	0.00128	-46.0	74.3	-0.02544	-46.0	5.8
4	0.00350	0.121	-50.0	80.0	0.00128	-46.0	74.3	-0.02544	-46.0	5.8

POSIZIONE ASSE NEUTRO PER OGNI COMB. DI RESISTENZA

a, b, c	Coeff. a, b, c nell'eq. dell'asse neutro aX+bY+c=0 nel rif. X,Y,O gen.
x/d	Rapp. di duttilità (travi e solette)[§ 4.1.2.1.2.1 NTC]: deve essere < 0.45

C.Rid. Coeff. di riduz. momenti per sola flessione in travi continue

N°Comb	a	b	С	x/d	C.Rid.
1	0.000000000	-0.000483973	0.003500000	0.097	0.700
2	0.000000000	0.000390073	-0.027705802	0.121	0.700
3	0.000000000	0.000390073	-0.027705802	0.121	0.700
4	0.000000000	0.000390073	-0.027705802	0.121	0.700

VERIFICHE A TAGLIO

Ver S = comb. verificata a taglio / N = comb. non verificata

Ved Taglio di progetto [kN] = proiez. di Vx e Vy sulla normale all'asse neutro Vcd Taglio compressione resistente [kN] lato conglomerato [formula (4.1.28)NTC]

Relazione di calcolo - Spalle - fase 1

COMMESSA LOTTO NR1J 01 D 29

CODIFICA CL

DOCUMENTO VI0104 001

REV FOGLIO В 57 di 172

Vwd	Taglio resistente [kN] assorbito dalle staffe [(4.1.18) NTC]
Dmed	Altezza utile media pesata [cm] valutata lungo strisce ortog. all'asse neutro.
	Vengono prese nella media le strisce con almeno un estremo compresso.
	I pesi della media sono costituiti dalle stesse lunghezze delle strisce.
bw	Larghezza media resistente a taglio [cm] misurate parallel. all'asse neutro
	E' data dal rapporto tra l'area delle sopradette strisce resistenti e Dmed.
Ctg	Cotangente dell'angolo di inclinazione dei puntoni di conglomerato
Acw	Coefficiente maggiorativo della resistenza a taglio per compressione
Ast	Area staffe+legature strettam. necessarie a taglio per metro di pil.[cm²/m]
A.Eff	Area staffe+legature efficaci nella direzione del taglio di combinaz.[cm²/m]
	Tra parentesi è indicata la quota dell'area relativa alle sole legature.
	L'area della legatura è ridotta col fattore L/d_max con L=lungh.legat.proietta-
	ta sulla direz. del taglio e d_max= massima altezza utile nella direz.del taglio.

N°Comb	Ver	Ved	Vcd	Vwd	Dmed	bw	Ctg	Acw	Ast	A.Eff
1	S	0.00	3214.80	420.42	76.0	100.0	1.000	1.000	0.0	15.7(0.0)
2	S	0.00	3214.80	420.42	76.0	100.0	1.000	1.000	0.0	15.7(0.0)
3	S	521.37	2217.10	1051.06	76.0	100.0	2.500	1.000	7.8	15.7(0.0)
4	S	466.61	2217.10	1051.06	76.0	100.0	2.500	1.000	7.0	15.7(0.0)

COMBINAZIONI QUASI PERMANENTI IN ESERCIZIO - MASSIME TENSIONI NORMALI ED APERTURA FESSURE (NTC/EC2)

Ver S = comb. verificata/ N = comb. non verificata

Sc max Massima tensione (positiva se di compressione) nel conglomerato [Mpa] Xc max, Yc max Ascissa, Ordinata [cm] del punto corrisp. a Sc max (sistema rif. X,Y,O)

Minima tensione (negativa se di trazione) nell'acciaio [Mpa] Sf min

Xs min, Ys min Ascissa, Ordinata [cm] della barra corrisp. a Sf min (sistema rif. X,Y,O) Area di calcestruzzo [cm²] in zona tesa considerata aderente alle barre Ac eff. Area barre [cm²] in zona tesa considerate efficaci per l'apertura delle fessure As eff.

N°Comb	Ver	Sc max	Xc max \	c max	Sf min	Xs min	Ys min	Ac eff.	As eff.
1	S	2.32	-50.0	0.0	-117.0	35.8	74.3	1450	25.4
2	S	6.37	50.0	80.0	-193.9	35.8	5.8	1850	51.5

COMBINAZIONI QUASI PERMANENTI IN ESERCIZIO - APERTURA FESSURE [§ 7.3.4 EC2]

La sezione viene assunta sempre fessurata anche nel caso in cui la trazione minima del calcestruzzo sia inferiore a fctm

Ver.

Massima deformazione unitaria di trazione nel calcestruzzo (trazione -) valutata in sezione fessurata e1 Minima deformazione unitaria di trazione nel calcestruzzo (trazione -) valutata in sezione fessurata e2

k1 = 0.8 per barre ad aderenza migliorata [eq.(7.11)EC2]

= 0.4 per comb. quasi permanenti / = 0.6 per comb.frequenti [cfr. eq.(7.9)EC2] kt = 0.5 per flessione; =(e1 + e2)/(2*e1) per trazione eccentrica [eq.(7.13)EC2] = 3.400 Coeff. in eq.(7.11) come da annessi nazionali k2

k3

= 0.425 Coeff. in eq.(7.11) come da annessi nazionali Diametro [mm] equivalente delle barre tese comprese nell'area efficace Ac eff [eq.(7.11)EC2] Ø

Copriferro [mm] netto calcolato con riferimento alla barra più tesa Cf

Differenza tra le deformazioni medie di acciaio e calcestruzzo [(7.8)EC2 e (C4.1.7)NTC] e sm - e cm

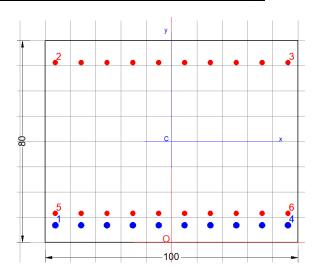
Tra parentesi: valore minimo = 0.6 Smax / Es [(7.9)EC2 e (C4.1.8)NTC] Massima distanza tra le fessure [mm] sr max

Apertura fessure in mm calcolata = sr max*(e_sm - e_cm) [(7.8)EC2 e (C4.1.7)NTC]. Valore limite tra parentesi wk

Mx fess. Componente momento di prima fessurazione intorno all'asse X [kNm] My fess. Componente momento di prima fessurazione intorno all'asse Y [kNm]

Comb.	Ver	e1	e2	k2	Ø	Cf	e sm - e cm s	sr max	wk	Mx fess	My fess
1	S	-0.00064	0	0.500	18.0	48	0.00035 (0.00035)	338	0.118 (0.20)	-414.33	0.00
2	S	-0.00108	0	0.500	18.2	48	0.00071 (0.00058)	274	0.195 (0.20)	442.58	0.00

Relazione di calcolo - Spalle - fase 1


COMMESSA LOTTO CODIFICA DOCUMENTO NR1J 01 D 29 CL VI0104 001 REV.

В

FOGLIO

58 di 172

Verifiche RC-Sec – direzione verticale (Elementi 'Area' No 1761 e 2439):

DATI GENERALI SEZIONE GENERICA IN C.A.

NOME SEZIONE: Muro andatore - vert

(Percorso File: C:\Users\utente\Desktop\file VI01\file VI01\Muro andatore - vert.sez)

CARATTERISTICHE DI RESISTENZA DEI MATERIALI IMPIEGATI

CALCESTRUZZO -	Classe:	C32/40
----------------	---------	--------

Resis. compr. di progetto fcd: 18.800 MPa Resis. compr. ridotta fcd': 9.400 MPa Def.unit. max resistenza ec2: 0.0020 Def.unit. ultima ecu: 0.0035 Diagramma tensione-deformaz.: Parabola-Rettangolo Modulo Elastico Normale Ec: 33643.0 MPa Resis, media a trazione fctm: 3.100 MPa Coeff. Omogen. S.L.E.: 15.00 Sc limite S.L.E. comb. Q.Permanenti: 0.00 Мра Ap.Fess.limite S.L.E. comb. Q.Perm.: 0.200 mm

ACCIAIO - Tipo: B450C

Resist. caratt. snervam. fyk:450.00MPaResist. caratt. rottura ftk:450.00MPaResist. snerv. di progetto fyd:391.30MPaResist. ultima di progetto ftd:391.30MPaDeform. ultima di progetto Epu:0.068

Modulo Elastico Ef 2000000 daN/cm²

Diagramma tensione-deformaz.:

Coeff. Aderenza istantaneo ß1*ß2:

Coeff. Aderenza differito ß1*ß2:

0.50

CARATTERISTICHE DOMINIO CONGLOMERATO

Forma del Do Classe Conglo		Poligonale C32/40
N°vertice:	X [cm]	Y [cm]
1	-50.0	0.0
2	-50.0	80.0
3	50.0	80.0
4	50.0	0.0

DATI BARRE ISOLATE

N°Barra	X [cm]	Y [cm]	DiamØ[mm]
1	-46.0	6.0	22
2	-46.0	74.1	20
3	46.0	74.1	20
4	46.0	6.0	22
5	-46.0	10.0	18
6	46.0	10.0	18

DATI GENERAZIONI LINEARI DI BARRE

N°Gen.	Numero assegnato alla singola generazione lineare di barre
N°Barra Ini.	Numero della barra iniziale cui si riferisce la generazione
N°Barra Fin.	Numero della barra finale cui si riferisce la generazione
NIOD a ma	Normana di banna mananata annidistanti ani ai diferiasa la manana

N°Barre Numero di barre generate equidistanti cui si riferisce la generazione

Ø Diametro in mm delle barre della generazione

N°Gen.	N°Barra Ini.	N°Barra Fin.	N°Barre	Ø
1	1	4	8	22
2	2	3	8	20
3	5	6	8	18

CALCOLO DI RESISTENZA - SFORZI PER OGNI COMBINAZIONE ASSEGNATA

N Mx		Momento flettent	e [kNm] intorno al	Baric. (+ se di compre l'asse x princ. d'inerzi	a ´	
Му		con verso positivo se tale da comprimere il lembo sup. della sez. Momento flettente [kNm] intorno all'asse y princ. d'inerzia con verso positivo se tale da comprimere il lembo destro della sez.				
Vy		•		ela all'asse princ.d'ine		
Vx		Componente del Taglio [kN] parallela all'asse princ.d'inerzia x				
N°Comb.	N	Mx	Му	Vy	Vx	
1	0.00	-346.87	0.00	0.00	0.00	
2	0.00	1151.81	0.00	0.00	0.00	
3	0.00	0.10	0.00	-531.01	0.00	
4	0.00	0.10	0.00	625.22	0.00	

COMB. QUASI PERMANENTI (S.L.E.) - SFORZI PER OGNI COMBINAZIONE ASSEGNATA

N	Sforzo no	rmale [kN] applicato nel Baricent	ro (+ se di compressione)			
Mx	Momento flettente [kNm] intorno all'asse x princ. d'inerzia (tra parentesi Mom.Fessurazione) con verso positivo se tale da comprimere il lembo superiore della sezione					
Му		Momento flettente [kNm] intorno all'asse y princ. d'inerzia (tra parentesi Mom.Fessurazione) con verso positivo se tale da comprimere il lembo destro della sezione				
N°Comb.	N	Mx	Му			
1	0.00	-278.66 (-432.12)	0.00 (0.00)			
2	0.00	752.26 (467.36)	0.00 (0.00)			

RISULTATI DEL CALCOLO

Sezione verificata per tutte le combinazioni assegnate

VERIFICHE DI RESISTENZA IN PRESSO-TENSO FLESSIONE ALLO STATO LIMITE ULTIMO

Relazione di calcolo - Spalle - fase 1

COMMESSA LOTTO CODIFICA DOCUMENTO NR1J 01 D 29 CLVI0104 001

REV.

В

FOGLIO

60 di 172

Ver S = combinazione verificata / N = combin. non verificata

Sforzo normale assegnato [kN] nel baricentro B sezione cls.(positivo se di compressione) Componente del momento assegnato [kNm] riferito all'asse x princ. d'inerzia Ν

Mx Му Componente del momento assegnato [kNm] riferito all'asse y princ. d'inerzia N Res

Sforzo normale resistente [kN] nel baricentro B sezione cls. (positivo se di compress.)

Momento flettente resistente [kNm] riferito all'asse x princ. d'inerzia

Momento flettente resistente [kNm] riferito all'asse x princ. d'inerzia

Misura sicurezza = rapporto vettoriale tra (N r,Mx Res,My Res) e (N,Mx,My) Mx Res My Res Mis.Sic.

Verifica positiva se tale rapporto risulta >=1.000
Area armature trave [cm²] in zona tesa. [Tra parentesi l'area minima ex (4.1.15)NTC] As Tesa

N°Comb	Ver	N	Mx	Му	N Res	Mx Res	My Res	Mis.Sic.	As Tesa
1	S	0.00	-346.87	0.00	0.00	-891.18	0.00	2.57	56.9(13.6)
2	S	0.00	1151.81	0.00	0.00	1676.99	0.00	1.46	63.5(13.6)
3	S	0.00	0.10	0.00	0.00	1676.99	0.00	999.00	63.5(13.6)
4	S	0.00	0.10	0.00	0.00	1676.99	0.00	999.00	63.5(13.6)

METODO AGLI STATI LIMITE ULTIMI - DEFORMAZIONI UNITARIE ALLO STATO ULTIMO

ec max	Deform. unit. massima del conglomerato a compressione
x/d	Rapporto di duttilità [§ 4.1.2.1.2.1 NTC] deve essere < 0.45
Xc max	Ascissa in cm della fibra corrisp. a ec max (sistema rif. X,Y,O sez.)
Yc max	Ordinata in cm della fibra corrisp. a ec max (sistema rif. X,Y,O sez.)
es min	Deform. unit. minima nell'acciaio (negativa se di trazione)
Xs min	Ascissa in cm della barra corrisp. a es min (sistema rif. X,Y,O sez.)
Ys min	Ordinata in cm della barra corrisp. a es min (sistema rif. X,Y,O sez.)
es max	Deform. unit. massima nell'acciaio (positiva se di compress.)
Xs max	Ascissa in cm della barra corrisp. a es max (sistema rif. X,Y,O sez.)
Ys max	Ordinata in cm della barra corrisp. a es max (sistema rif. X,Y,O sez.)

N°Comb	ec max	x/d	Xc max	Yc max	es min	Xs min	Ys min	es max	Xs max	Ys max
1	0.00350	0.104	-50.0	0.0	0.00077	-46.0	6.0	-0.03016	-46.0	74.1
2	0.00350	0.138	-50.0	80.0	0.00148	-46.0	74.1	-0.02185	-46.0	6.0
3	0.00350	0.138	-50.0	80.0	0.00148	-46.0	74.1	-0.02185	-46.0	6.0
4	0.00350	0.138	-50.0	80.0	0.00148	-46.0	74.1	-0.02185	-46.0	6.0

POSIZIONE ASSE NEUTRO PER OGNI COMB. DI RESISTENZA

a, b, c	Coeff. a, b, c nell'eq. dell'asse neutro aX+bY+c=0 nel rif. X,Y,O gen.
x/d	Rapp. di duttilità (travi e solette)[§ 4.1.2.1.2.1 NTC]: deve essere < 0.45
C Rid	Coeff, di riduz, momenti per sola flessione in travi continue

N°Comb	а	b	С	x/d	C.Rid.
1	0.000000000	-0.000454299	0.003500000	0.104	0.700
2	0.000000000	0.000342540	-0.023903236	0.138	0.700
3	0.000000000	0.000342540	-0.023903236	0.138	0.700
4	0.000000000	0.000342540	-0.023903236	0.138	0.700

VERIFICHE A TAGLIO

Ver	S = comb. verificata a taglio / N = comb. non verificata
Ved	Taglio di progetto [kN] = proiez. di Vx e Vy sulla normale all'asse neutro
Vcd	Taglio compressione resistente [kN] lato conglomerato [formula (4.1.28)NTC]
Vwd	Taglio resistente [kN] assorbito dalle staffe [(4.1.18) NTC]
Dmed	Altezza utile media pesata [cm] valutata lungo strisce ortog. all'asse neutro.
	Vengono prese nella media le strisce con almeno un estremo compresso.
	I pesi della media sono costituiti dalle stesse lunghezze delle strisce.
bw	Larghezza media resistente a taglio [cm] misurate parallel. all'asse neutro
	E' data dal rapporto tra l'area delle sopradette strisce resistenti e Dmed.
Ctg	Cotangente dell'angolo di inclinazione dei puntoni di conglomerato
Acw	Coefficiente maggiorativo della resistenza a taglio per compressione
Ast	Area staffe+legature strettam. necessarie a taglio per metro di pil.[cm²/m]

A.Eff

RADDOPPIO CESANO VIGNA DI VALLE PROGETTO DEFINITIVO

REV

В

FOGLIO

61 di 172

COMMESSA LOTTO CODIFICA DOCUMENTO Relazione di calcolo - Spalle - fase 1 NR1J 01 D 29 CLVI0104 001

> Area staffe+legature efficaci nella direzione del taglio di combinaz.[cm²/m] Tra parentesi è indicata la quota dell'area relativa alle sole legature. L'area della legatura è ridotta col fattore L/d_max con L=lungh.legat.proiettata sulla direz. del taglio e d_max= massima altezza utile nella direz.del taglio.

N°Comb	Ver	Ved	Vcd	Vwd	Dmed	bw	Ctg	Acw	Ast	A.Eff
1	S	0.00	3214.80	420.42	76.0	100.0	1.000	1.000	0.0	15.7(0.0)
2	S	0.00	3214.80	420.42	76.0	100.0	1.000	1.000	0.0	15.7(0.0)
3	S	531.01	2217.10	1051.06	76.0	100.0	2.500	1.000	7.9	15.7(0.0)
1	S	625 22	2217 10	1051 06	76 N	100.0	2 500	1 000	03	15 7(n n)

COMBINAZIONI QUASI PERMANENTI IN ESERCIZIO - MASSIME TENSIONI NORMALI ED APERTURA FESSURE (NTC/EC2)

Ver S = comb. verificata/ N = comb. non verificata

Massima tensione (positiva se di compressione) nel conglomerato [Mpa] Sc max Xc max, Yc max Ascissa, Ordinata [cm] del punto corrisp. a Sc max (sistema rif. X,Y,O)

Minima tensione (negativa se di trazione) nell'acciaio [Mpa] Sf min

Xs min, Ys min Ascissa, Ordinata [cm] della barra corrisp. a Sf min (sistema rif. X,Y,O) Area di calcestruzzo [cm²] in zona tesa considerata aderente alle barre Ac eff. As eff. Area barre [cm²] in zona tesa considerate efficaci per l'apertura delle fessure

N°Comb	Ver	Sc max	Xc max \	c max	Sf min	Xs min	Ys min	Ac eff.	As eff.
1	S	2.83	-50.0	0.0	-131.2	35.8	74.1	1450	31.4
2	S	6.97	-50.0	80.0	-190.6	35.8	6.0	1800	63.5

COMBINAZIONI QUASI PERMANENTI IN ESERCIZIO - APERTURA FESSURE [§ 7.3.4 EC2]

La sezione viene assunta sempre fessurata anche nel caso in cui la trazione minima del calcestruzzo sia inferiore a fctm

Esito della verifica Ver.

e1 Massima deformazione unitaria di trazione nel calcestruzzo (trazione -) valutata in sezione fessurata e2 Minima deformazione unitaria di trazione nel calcestruzzo (trazione -) valutata in sezione fessurata

= 0.8 per barre ad aderenza migliorata [eq.(7.11)EC2] k1

= 0.4 per comb. quasi permanenti / = 0.6 per comb.frequenti [cfr. eq.(7.9)EC2] kt k2 = 0.5 per flessione; =(e1 + e2)/(2*e1) per trazione eccentrica [eq.(7.13)EC2]

k3 = 3.400 Coeff. in eq.(7.11) come da annessi nazionali k4

= 0.425 Coeff. in eq.(7.11) come da annessi nazionali
Diametro [mm] equivalente delle barre tese comprese nell'area efficace Ac eff [eq.(7.11)EC2] Ø

Cf Copriferro [mm] netto calcolato con riferimento alla barra più tesa

Differenza tra le deformazioni medie di acciaio e calcestruzzo [(7.8)EC2 e (C4.1.7)NTC] e sm - e cm

Tra parentesi: valore minimo = 0.6 Smax / Es [(7.9)EC2 e (C4.1.8)NTC]

sr max Massima distanza tra le fessure [mm]

Apertura fessure in mm calcolata = sr max*(e_sm - e_cm) [(7.8)EC2 e (C4.1.7)NTC]. Valore limite tra parentesi wk

Mx fess. Componente momento di prima fessurazione intorno all'asse X [kNm] Componente momento di prima fessurazione intorno all'asse Y [kNm] My fess.

Comb.	Ver	e1	e2	k2	Ø	Cf	e sm - e cm s	sr max	wk	Mx fess	My fess
1	S	-0.00073	0	0.500	20.0	49	0.00039 (0.00039)	324	0.127 (0.20)	-432.12	0.00
2	S	-0.00107	0	0.500	20.2	49	0.00074 (0.00057)	264	0.195 (0.20)	467.36	0.00

10.3 Muro paraghiaia

Le sollecitazioni critici nel muro paraghiaia sono riassunte nella tabella seguente.

Area	ShellType	OutputCase	StepType	F11	F22	M11	M22	V13	V23	
Text	Text	Text	Text	kN/m	kN/m	kN-m/m	kN-m/m	kN/m	kN/m	
Sollecita	zioni Critici d	a combinazioni S	LU e SLV							
1881	Shell-Thick	INV SLU e SLV	Min	-293.21	-2.21	-68.19	-7.04	18.99	-7.07	Min M11
3021	Shell-Thick	INV SLU e SLV	Max	714.24	292.97	87.65	58.61	144.04	65.67	Max M11
1880	Shell-Thick	INV SLU e SLV	Min	-425.71	-62.29	-5.65	-14.246	17.13	-14.5	Min M22
3021	Shell-Thick	INV SLU e SLV	Max	714.24	292.97	87.65	58.61	144.04	65.67	Max M22
1900	Shell-Thick	INV SLU e SLV	Min	-174.45	-102.66	-35.871	-6.36	-115.14	-2.86	Min V13
3021	Shell-Thick	INV SLU e SLV	Max	714.24	292.97	87.65	58.61	144.04	65.67	Max V13
3021	Shell-Thick	INV SLU e SLV	Max	253.19	243.87	86.8824	36.59	144.04	65.67	Max V23
3249	Shell-Thick	INV SLU e SLV	Min	-619.26	-16.68	-47.70	-11.56	-55.25	-17.48	Min V23
Sollecita	zioni Critici d	a combinazioni S	LE Rara							
1881	Shell-Thick	INV SLE Rara	Min	-212.37	-3.74	-30.78	-3.92	16.61	-4.18	Min M11
3021	Shell-Thick	INV SLE Rara	Max	278.93	237.06	28.90	18.59	52.26	34.09	Max M11
1880	Shell-Thick	INV SLE Rara	Min	-40.3	-31.51	-5.07	-9.60	15.33	-8.31	Min M22
3021	Shell-Thick	INV SLE Rara	Max	278.93	237.06	28.90	18.59	52.26	34.09	Max M22

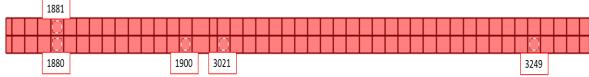
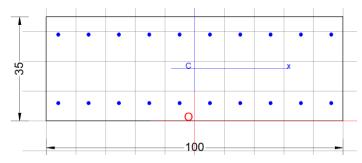


Figura 10 - Elementi di verifica, muri andatori

Tutte le verifiche sono svolte con l'aiuto del software RC-SEC.

10.3.1 Verifica a presso-flessione

In direzione orizzontale è stata assunta un'armatura lato interno disposta su uno strato Φ 12/10, mentre per il lato esterno si è assunta una armatura Φ 12/10 disposta su un unico strato.


In direzione verticale è stata assunta un'armatura lato interno disposta su uno strato $\Phi 12/10$, mentre per il lato esterno si è assunta una armatura $\Phi 12/10$ disposta su un unico strato.

Relazione di calcolo - Spalle - fase 1

COMMESSA LOTTO CODIFICA DOCUMENTO REV. FOGLIO NRIJ 01 D 29 CL VI0104 001 B 63 di 172

Verifiche RC-Sec – direzione orizzontale (Elementi 'Area' No 1881 e 3021):

DATI GENERALI SEZIONE RETTANGOLARE DI PILASTRO IN C.A.

NOME SEZIONE: Paraghiaia - oriz

(Percorso File: C:\Users\utente\Desktop\file VI01\file VI01\Paraghiaia - oriz.sez)

CARATTERISTICHE DI RESISTENZA DEI MATERIALI IMPIEGATI

CALCESTRUZZO - Classe: C32/40

Resistenza compress. di progetto fcd: 18.80 MPa Deform. unitaria max resistenza ec2: 0.0020 Deformazione unitaria ultima ecu: 0.0035 Diagramma tensioni-deformaz.: Parabola-Rettangolo Modulo Elastico Normale Ec: 33643.0 MPa Resis. media a trazione fctm: 3.100 MPa Coeff. Viscosità: 2.50

Coeff. Ritiro: 0.25 1/1000

Coeff. Invecchiamento: 0.800

Sc limite S.L.E. comb. Q.Permanenti: 12.800 MPa Ap.Fess.limite S.L.E. comb. Q.Perm.: 0.200 mm

ACCIAIO - Tipo: B450C

Resist, caratt, a snervamento fvk: 450.00 MPa Resist. caratt. a rottura ftk: 450.00 MPa Resist. a snerv. di progetto fyd: 391.30 MPa Resist. ultima di progetto ftd: 391.30 MPa Deform. ultima di progetto Epu: 0.068 Modulo Elastico Ef: 200000.0 MPa

Diagramma tensioni-deformaz.:

Coeff. Aderenza istant. \(\mathre{\matrie{\matri{\matrie\mathre{\mtrie\mathre{\mtrie\mathre{\mtx}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}

CARATTERISTICHE GEOMETRICHE ED ARMATURE SEZIONE

Base: 100.0 cm Altezza: 35.0 cm Barre inferiori: 10Ø12 (11.3 cm²) Barre superiori: 10Ø12 (11.3 cm²) Coprif.Inf.(dal baric. barre): 4.6 cm Coprif.Sup.(dal baric. barre): 4.6 cm Coprif.Lat. (dal baric.barre): 4.0 cm

CALCOLO DI RESISTENZA - SFORZI PER OGNI COMBINAZIONE ASSEGNATA

N Sforzo normale [kN] applicato nel baricentro (posit. se di compress.)

Mx Momento flettente [kNm] intorno all'asse x baric. della sezione
con verso positivo se tale da comprimere il lembo sup. della sezione
VY Taglio [kN] in direzione parallela all'asse Y del riferim. generale

MT Momento torcente [kN m]

 $N^{\circ}Comb.$ N Mx Vy MT

1	0.00	-67.51	0.00	0.00
2	0.00	87.62	0.00	0.00
3	0.00	0.10	-113.52	0.00
4	0.00	0.10	142.11	0.00

COMB. QUASI PERMANENTI (S.L.E.) - SFORZI PER OGNI COMBINAZIONE ASSEGNATA

N Sforzo normale [kN] applicato nel baricentro (positivo se di compress.)

Mx Coppia [kNm] applicata all'asse x baricentrico (tra parentesi il Momento di fessurazione)

con verso positivo se tale da comprimere il lembo superiore della sezione

N°Comb. N Mx

1 0.00 -30.76 (-432.12)
2 0.00 28.97 (467.36)

RISULTATI DEL CALCOLO

Sezione verificata

VERIFICHE DI RESISTENZA IN PRESSO-TENSO FLESSIONE ALLO STATO LIMITE ULTIMO

Ver S = combinazione verificata / N = combin. non verificata

N Sforzo normale baricentrico assegnato [kN] (positivo se di compressione)

Mx Momento flettente assegnato [kNm] riferito all'asse x baricentrico

N Ult Sforzo normale alla massima resistenza [kN] nella sezione (positivo se di compress.)

Mx rd Momento resistente ultimo [kNm] riferito all'asse x baricentrico
Mis.Sic. Misura sicurezza = rapporto vettoriale tra (N rd,Mx rd) e (N,Mx)

Verifica positiva se tale rapporto risulta >=1.000

Yn Ordinata [cm] dell'asse neutro alla massima resistenza nel sistema di rif. X,Y,O sez.

x/d Rapp. di duttilità (travi e solette)[§ 4.1.2.1.2.1 NTC]: deve essere < 0.45

C.Rid. Coeff. di riduz. momenti in travi continue [formula (4.1.1)NTC]

N°Comb	Ver	N	Mx	N rd	Mx rd	Mis.Sic.	Yn	x/d	C.Rid.	
1	S	0.00	-67.51	-0.15	-131.76	1.952	3.9	0.13	0.70	22.6 (5.4)
2	S	0.00	87.62	-0.15	131.76	1.504	31.1	0.13	0.70	22.6 (5.4)
3	S	0.00	0.10	-0.15	131.76	1317.647	31.1	0.13	0.70	22.6 (5.4)
4	S	0.00	0.10	-0.15	131.76	1317.647	31.1	0.13	0.70	22.6 (5.4)

DEFORMAZIONI UNITARIE ALLO STATO LIMITE ULTIMO

ec max	Deform. unit. massima del conglomerato a compressione
Yc max	Ordinata in cm della fibra corrisp. a ec max (sistema rif. X,Y,O sez.)
es min	Deform. unit. minima nell'acciaio (negativa se di trazione)
Ys min	Ordinata in cm della barra corrisp. a es min (sistema rif. X,Y,O sez.)
es max	Deform. unit. massima nell'acciaio (positiva se di compressione)
Ys max	Ordinata in cm della barra corrisp. a es max (sistema rif. X,Y,O sez.)

N°Comb	ec max	Yc max	es min	Ys min	es max	Ys max
1	0.00350	0.0	-0.00065	4.6	-0.02395	30.4
2	0.00350	35.0	-0.00065	30.4	-0.02395	4.6
3	0.00350	35.0	-0.00065	30.4	-0.02395	4.6
4	0.00350	35.0	-0.00065	30.4	-0.02395	4.6

Relazione di calcolo - Spalle - fase 1

COMMESSA NR1J

LOTTO 01 D 29 CODIFICA \mathbf{CL}

DOCUMENTO VI0104 001

REV. В

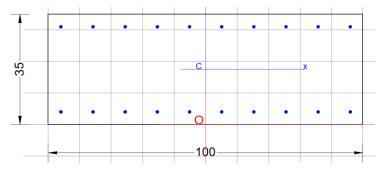
FOGLIO 65 di 172

Ver	S = comb.verificata a taglio/ N = comb. non verificata
Ved	Taglio agente [daN] uguale al taglio Vy di comb. (sollecit. retta)
Vwct	Taglio trazione resistente [kN] in assenza di staffe [formula (4.1.23)NTC]
d	Altezza utile sezione [cm]
bw	Larghezza minima sezione [cm]
Ro	Rapporto geometrico di armatura longitudinale [<0.02]
Scp	Tensione media di compressione nella sezione [Mpa]
•	• • • •

N°Comb	Ver	Ved	Vwct	d	bw	Ro	Scp
1	S	0.00	190.07	30.4	100.0	0.0074	0.00
2	S	0.00	190.07	30.4	100.0	0.0074	0.00
3	S	-113.52	190.07	30.4	100.0	0.0074	0.00
4	S	142.11	190.07	30.4	100.0	0.0074	0.00

COMBINAZIONI QUASI PERMANENTI IN ESERCIZIO - METODO AAEM

Ver	S = combinazione verificata / N = combin. non verificata
Sc max	Massima tensione positiva di compressione nel conglomerato [Mpa]
Yc max	Ordinata in cm della fibra corrisp. a Sc max (sistema rif. X,Y,O)
Sf min	Minima tensione negativa di trazione nell'acciaio [Mpa]
Ys min	Ordinata in cm della barra corrisp. a Sf min (sistema rif. X,Y,O)
Ac eff.	Area di conglomerato [cm²] in zona tesa considerata aderente alle barre
sr max	Distanza calcolata tra le fessure espressa in mm
K3	Coeff. di normativa dipendente dalla forma del diagramma delle tensioni
wk	Apertura fessure in mm. Calcolo secondo Istruz. NTC 2018 / EC2
epB	Deformazione unitaria nel baricentro B (positivo se di accorciamento)
Cx	Curvatura [1/cm] della sez. intomo all'asse x baricentrico


Risultati istantanei (all'applicazione dei carichi): Tensioni-Apertura fessure-Deformazioni

N°Comb	Sc max	Sf min	Ac Eff.	sr max	K3	wk	epB	Cx
1	3.67	-95.8	1249	165	0.135	0.134	-0.00022927	-0.00001934
2	3.46	-90.2	1249	162	0.129	0.124	-0.00021593	0.00001822

Risultati finali (a fenomeni lenti esauriti): Tensioni-Apertura fessure-Deformazioni

N°Comb	Ver	Sc max	Sf min	Ac Eff.	sr max	K3	wk	epB	Cx
1	S	1.52	-101.3	1249	165	0.135	0.142	-0.00010481	-0.00003114
2	S	1.41	-95.5	1249	162	0.129	0.131	-0.00009383	0.00002975

<u>Verifiche RC-Sec – direzione verticale (Elementi 'Area' No 3021 e 1880):</u>

DATI GENERALI SEZIONE RETTANGOLARE DI PILASTRO IN C.A.

NOME SEZIONE: Paraghiaia - vert

(Percorso File: C:\Users\utente\Desktop\file VI01\file VI01\Paraghiaia - vert.sez)

CARATTERISTICHE DI RESISTENZA DEI MATERIALI IMPIEGATI

CALCESTRUZZO -Classe: C32/40

Resistenza compress. di progetto fcd:

18.80 MPa 0.0020

Deform. unitaria max resistenza ec2:

Relazione di calcolo - Spalle - fase 1

COMMESSA LOTTO NR1J 01 D 29

CODIFICA CL

DOCUMENTO VI0104 001

REV. FOGLIO В 66 di 172

Deformazione unitaria ultima ecu: 0.0035 Diagramma tensioni-deformaz.: Parabola-Rettangolo Modulo Elastico Normale Ec: 33643.0 MPa Resis. media a trazione fctm: 3.100 MPa Coeff. Viscosità: 2.50 Coeff. Ritiro: 0.25 1/1000

Coeff. Invecchiamento: 0.800 Sc limite S.L.E. comb. Q.Permanenti: 12.800 MPa Ap.Fess.limite S.L.E. comb. Q.Perm.: 0.200 mm

ACCIAIO -B450C Tipo:

> Resist. caratt. a snervamento fyk: 450.00 MPa 450.00 Resist. caratt. a rottura ftk: MPa Resist. a snerv. di progetto fyd: 391.30 MPa Resist. ultima di progetto ftd: 391.30 MPa Deform. ultima di progetto Epu: 0.068 Modulo Elastico Ef: 200000.0 MPa Diagramma tensioni-deformaz.: Bilineare finito

Coeff. Aderenza istant. ß1*ß2: 1.00 Coeff. Aderenza differito ß1*ß2: 0.50

CARATTERISTICHE GEOMETRICHE ED ARMATURE SEZIONE

Base: 100.0 cm 35.0 Altezza: cm Barre inferiori: 10Ø12 (11.3 cm²) Barre superiori: 10Ø12 (11.3 cm²) Coprif.Inf.(dal baric. barre): 5.8 cm Coprif.Sup.(dal baric. barre): 5.8 cm Coprif.Lat. (dal baric.barre): 4.0 cm

CALCOLO DI RESISTENZA - SFORZI PER OGNI COMBINAZIONE ASSEGNATA

Sforzo normale [kN] applicato nel baricentro (posit. se di compress.) Mx Momento flettente [kNm] intorno all'asse x baric. della sezione con verso positivo se tale da comprimere il lembo sup. della sezione VY Taglio [kN] in direzione parallela all'asse Y del riferim. generale

MT Momento torcente [kN m]

N°Comb.	N	Mx	Vy	MT
1	0.00	-14.25	0.00	0.00
2	0.00	58.19	0.00	0.00
3	0.00	0.10	65.48	0.00
4	0.00	0.10	-16.96	0.00

COMB. QUASI PERMANENTI (S.L.E.) - SFORZI PER OGNI COMBINAZIONE ASSEGNATA

Sforzo normale [kN] applicato nel baricentro (positivo se di compress.) Ν

Coppia [kNm] applicata all'asse x baricentrico (tra parentesi il Momento di fessurazione) Mx

con verso positivo se tale da comprimere il lembo superiore della sezione

N°Comb. Ν Mx 0.00 -9.60 (-432.12) 2 0.00 18.61 (467.36)

RISULTATI DEL CALCOLO

Sezione verificata

VERIFICHE DI RESISTENZA IN PRESSO-TENSO FLESSIONE ALLO STATO LIMITE ULTIMO

Relazione di calcolo - Spalle - fase 1

COMMESSA LOTTO

NR1J 01 D 29

CODIFICA CL DOCUMENTO VI0104 001 FOGLIO 67 di 172

REV.

В

Ver S = combinazione verificata / N = combin. non verificata

N Sforzo normale baricentrico assegnato [kN] (positivo se di compressione)
Mx Momento flettente assegnato [kNm] riferito all'asse x baricentrico

N Ult Sforzo normale alla massima resistenza [kN] nella sezione (positivo se di compress.)

Mx rd Momento resistente ultimo [kNm] riferito all'asse x baricentrico
Mis.Sic. Misura sicurezza = rapporto vettoriale tra (N rd,Mx rd) e (N,Mx)

Verifica positiva se tale rapporto risulta >=1.000

Yn Ordinata [cm] dell'asse neutro alla massima resistenza nel sistema di rif. X,Y,O sez.

x/d Rapp. di duttilità (travi e solette)[§ 4.1.2.1.2.1 NTC]: deve essere < 0.45

C.Rid. Coeff. di riduz. momenti in travi continue [formula (4.1.1)NTC]

N°Comb	Ver	N	Mx	N rd	Mx rd	Mis.Sic.	Yn	x/d	C.Rid.	
1	S	0.00	-14.25	-0.27	-130.30	9.144	4.5	0.15	0.70	22.6 (5.2)
2	S	0.00	58.19	-0.27	130.30	2.239	30.5	0.15	0.70	22.6 (5.2)
3	S	0.00	0.10	-0.27	130.30 1	302.973	30.5	0.15	0.70	22.6 (5.2)
4	S	0.00	0.10	-0.27	130.30 1	302.973	30.5	0.15	0.70	22.6 (5.2)

DEFORMAZIONI UNITARIE ALLO STATO LIMITE ULTIMO

ec max Deform. unit. massima del conglomerato a compressione
Yc max Ordinata in cm della fibra corrisp. a ec max (sistema rif. X,Y,O sez.)

es min Deform. unit. minima nell'acciaio (negativa se di trazione)

Ys min
ordinata in cm della barra corrisp. a es min (sistema rif. X,Y,O sez.)
es max
Deform. unit. massima nell'acciaio (positiva se di compressione)
Ys max
Ordinata in cm della barra corrisp. a es max (sistema rif. X,Y,O sez.)

N°Comb	ec max	Yc max	es min	Ys min	es max	Ys max
1	0.00350	0.0	-0.00105	5.8	-0.01942	29.2
2	0.00350	35.0	-0.00105	29.2	-0.01942	5.8
3	0.00350	35.0	-0.00105	29.2	-0.01942	5.8
4	0.00350	35.0	-0.00105	29.2	-0.01942	5.8

VERIFICHE A TAGLIO SENZA ARMATURE TRASVERSALI (§ 4.1.2.1.3.1 NTC)

Ver S = comb.verificata a taglio/ N = comb. non verificata

Ved Taglio agente [daN] uguale al taglio Vy di comb. (sollecit. retta)

Vwct Taglio trazione resistente [kN] in assenza di staffe [formula (4.1.23)NTC]

d Altezza utile sezione [cm] bw Larghezza minima sezione [cm]

Ro Rapporto geometrico di armatura longitudinale [<0.02] Scp Tensione media di compressione nella sezione [Mpa]

N°Comb	Ver	Ved	Vwct	d	bw	Ro	Scp
1	S	0.00	186.72	29.2	100.0	0.0077	0.00
2	S	0.00	186.72	29.2	100.0	0.0077	0.00
3	S	65.48	186.72	29.2	100.0	0.0077	0.00
4	S	-16.96	186.72	29.2	100.0	0.0077	0.00

COMBINAZIONI QUASI PERMANENTI IN ESERCIZIO - METODO AAEM

Ver S = combinazione verificata / N = combin. non verificata

Sc max
Massima tensione positiva di compressione nel conglomerato [Mpa]
Yc max
Ordinata in cm della fibra corrisp. a Sc max (sistema rif. X,Y,O)
Sf min
Minima tensione negativa di trazione nell'acciaio [Mpa]
Ys min
Ordinata in cm della barra corrisp. a Sf min (sistema rif. X,Y,O)

Ac eff. Area di conglomerato [cm²] in zona tesa considerata aderente alle barre

sr max Distanza calcolata tra le fessure espressa in mm

K3 Coeff. di normativa dipendente dalla forma del diagramma delle tensioni

wk Apertura fessure in mm. Calcolo secondo Istruz. NTC 2018 / EC2 epB Deformazione unitaria nel baricentro B (positivo se di accorciamento) Сх

Curvatura [1/cm] della sez. intorno all'asse x baricentrico

Risultati istantanei (all'applicazione dei carichi): Tensioni-Apertura fessure-Deformazioni

N°Comb		Sc max	Sf min	Ac Eff.	sr max	K3	wk	epB	Cx
1		1.25	-31.0	1363	193	0.127	0.051	-0.00007811	-0.00000659
2		2.43	-60.2	1363	193	0.127	0.099	-0.00015143	0.00001277
Risultati 1	finali (a	a fenomeni l	lenti esauriti): Tensioni- <i>l</i>	Apertura fe	ssure-Defe	ormazioni		
N°Comb	Ver	Sc max	Sf min	Ac Eff.	sr max	K3	wk	epB	Cx
1	S	0.32	-36.0	1363	193	0.127	0.059	0.00001125	-0.00001635
2	S	0.97	-66.6	1363	193	0.127	0.109	-0.00005047	0.00002416

10.3.2 Zone critiche del muro paraghiaia

Sono definiti due zone critiche, cio'è a 2.5m di lunghezza dai muri andatori esterni, in qualli è necessario un potenziamento del muro.

Le sollecitazioni critici nella zona critica del muro paraghiaia sono riassunte nella tabella seguente.

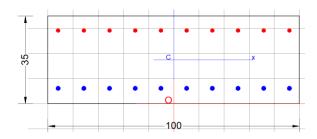
TABELLA: Sollecitazioni nella zona critica del muro paraghiaia										
Area	ShellType	OutputCase	StepType	F11	F22	M11	M22	V13	V23	
Text	Text	Text	Text	kN/m	kN/m	kN-m/m	kN-m/m	kN/m	kN/m	
Sollecita	zioni Critici d	a combinazioni SI	LU e SLV							
1874	Shell-Thick	INV SLU e SLV	Min	299.03	-54.82	-116.80	-148.98	39.6	-216.15	Min M11
1875	Shell-Thick	INV SLU e SLV	Max	566.02	98.82	219.35	68.437	313.44	2.32	Max M11
1874	Shell-Thick	INV SLU e SLV	Min	299.03	-54.82	-116.80	-148.98	39.6	-216.15	Min M22
1875	Shell-Thick	INV SLU e SLV	Max	566.02	98.82	219.35	68.44	313.44	2.32	Max M22
1875	Shell-Thick	INV SLU e SLV	Max	566.02	98.82	219.35	68.437	313.44	2.32	Max V13
3256	Shell-Thick	INV SLU e SLV	Min	-186.95	-36.29	-109.01	-46.71	-285.88	-45.43	Min V13
1874	Shell-Thick	INV SLU e SLV	Min	70.05	-317.27	50.19	-18.05	39.6	-216.15	Min V23
1874	Shell-Thick	INV SLE Rara	Max	670.99	117.78	37.30	24.53	102.87	25.16	Max V23
Sollecita	zioni Critici d	a combinazioni SI	LE Rara							
1874	Shell-Thick	INV SLE Rara	Min	364.7	-0.47	-49.09	-74.85	27.59	-105.41	Min M11
1875	Shell-Thick	INV SLE Rara	Max	293.4	58.1	104.47	27.68	130.01	3.33	Max M11
1874	Shell-Thick	INV SLE Rara	Max	389.06	76.92	62.67	29.39	102.87	25.16	Max M22
1874	Shell-Thick	INV SLE Rara	Min	364.7	-0.47	-49.09	-74.85	27.59	-105.41	Min M22

Tutte le verifiche sono svolte con l'aiuto del software RC-SEC.

Le armature sono assunte come segue:

In direzione orizzontale è stata assunta un'armatura lato interno disposta su uno strato Φ 18/10, mentre per il lato esterno si è assunta una armatura $\Phi 16/10$ disposta su un unico strato.

Relazione di calcolo – Spalle – fase 1


COMMESSA LOTTO CODIFICA DOCUMENTO REV. FOGLIO

NRIJ 01 D 29 CL VI0104 001 B 69 di 172

In direzione verticale è stata assunta un'armatura lato interno disposta su uno strato $\Phi 16/10$, mentre per il lato esterno si è assunta una armatura $\Phi 16/10$ disposta su un unico strato.

Per l'armatura di taglio è stata assunta una configurazione di staffe $\Phi 8/10$ (6 bracci in totale) nella direzione orizzontale e $\Phi 8/10$ (6 bracci in totale). nella direzione verticale.

Verifiche RC-Sec – direzione orizzontale

DATI GENERALI SEZIONE RETTANGOLARE DI PILASTRO IN C.A.

NOME SEZIONE: Paraghiaia critica - oriz

(Percorso File: C:\Users\utente\Desktop\file VI01\file VI01\Paraghiaia critica - oriz.sez)

CARATTERISTICHE DI RESISTENZA DEI MATERIALI IMPIEGATI

CALCESTRUZZO -	Classe:	C32/40
CALCESTRUZZO -	Classe:	C32/4

MPa 18.80 Resistenza compress. di progetto fcd: Resistenza compress. ridotta fcd': 9.400 MPa Deform. unitaria max resistenza ec2: 0.0020 Deformazione unitaria ultima ecu: 0.0035 Diagramma tensioni-deformaz.: Parabola-Rettangolo Modulo Elastico Normale Ec: 33643.0 MPa Resis. media a trazione fctm: 3.100 MPa Coeff. Viscosità: 2.50 Coeff. Ritiro: 0.25 1/1000

Coeff. Invecchiamento:

Sc limite S.L.E. comb. Q.Permanenti:

Ap.Fess.limite S.L.E. comb. Q.Perm.:

0.200 mm

ACCIAIO - Tipo: B450C

Resist. caratt. a snervamento fyk: 450.00 MPa Resist. caratt. a rottura ftk: 450.00 MPa Resist. a snerv. di progetto fyd: 391.30 MPa Resist. ultima di progetto ftd: 391.30 MPa Deform. ultima di progetto Epu: 0.068 Modulo Elastico Ef: 200000.0 MPa

Diagramma tensioni-deformaz.:

Coeff. Aderenza istant. \(\mathre{\matrie{\matri{\matrie\mathre{\mathre{\mtrie\matrie{\mathre{\mtrie\mathre{\mtx}}}}}}}}}}}}}}

CARATTERISTICHE GEOMETRICHE ED ARMATURE SEZIONE

Base:	100.0	cm
Altezza:	35.0	cm
Barre inferiori:	10Ø18	(25.4 cm ²)
Barre superiori:	10Ø16	(20.1 cm ²)
Coprif.Inf.(dal baric. barre):	5.6	cm
Coprif.Sup.(dal baric. barre):	5.6	cm
Coprif.Lat. (dal baric.barre):	4.0	cm

Relazione di calcolo - Spalle - fase 1

COMMESSA LOTTO NR1J 01 D 29

CODIFICA CL

DOCUMENTO VI0104 001

REV. FOGLIO В 70 di 172

CALCOLO DI RESISTENZA - SFORZI PER OGNI COMBINAZIONE ASSEGNATA

Sforzo normale [kN] applicato nel baricentro (posit. se di compress.) Mx Momento flettente [kNm] intorno all'asse x baric. della sezione con verso positivo se tale da comprimere il lembo sup. della sezione VY Taglio [kN] in direzione parallela all'asse Y del riferim. generale MT Momento torcente [kN m]

N°Comb.	N	Mx	Vy	MT
1	0.00	-115.43	0.00	0.00
2	0.00	217.57	0.00	0.00
3	0.00	0.10	310.10	0.00
4	0.00	0.10	-282.97	0.00

COMB. QUASI PERMANENTI (S.L.E.) - SFORZI PER OGNI COMBINAZIONE ASSEGNATA

Sforzo normale [kN] applicato nel baricentro (positivo se di compress.) Ν

Coppia [kNm] applicata all'asse x baricentrico (tra parentesi il Momento di fessurazione) Mx

con verso positivo se tale da comprimere il lembo superiore della sezione

N°Comb. Ν Mx 0.00 -48.96 (-432.12) 104.36 (467.36) 2 0.00

RISULTATI DEL CALCOLO

Sezione verificata

VERIFICHE DI RESISTENZA IN PRESSO-TENSO FLESSIONE ALLO STATO LIMITE ULTIMO

Ver S = combinazione verificata / N = combin. non verificata

Sforzo normale baricentrico assegnato [kN] (positivo se di compressione) Momento flettente assegnato [kNm] riferito all'asse x baricentrico Мx

N Ult Sforzo normale alla massima resistenza [kN] nella sezione (positivo se di compress.)

Mx rd Momento resistente ultimo [kNm] riferito all'asse x baricentrico Misura sicurezza = rapporto vettoriale tra (N rd, Mx rd) e (N, Mx) Mis.Sic.

Verifica positiva se tale rapporto risulta >=1.000

Ordinata [cm] dell'asse neutro alla massima resistenza nel sistema di rif. X,Y,O sez. Yn

x/d Rapp. di duttilità (travi e solette)[§ 4.1.2.1.2.1 NTC]: deve essere < 0.45

Coeff. di riduz. momenti in travi continue [formula (4.1.1)NTC] C.Rid.

$N^{\circ}Comb$	Ver	N	Mx	N rd	Mx rd	Mis.Sic.	Yn	x/d	C.Rid.	
1	C	0.00	115 12	0.20	244.02	1 060	E E	0.10	0.70	4E C (E 2)
ı	5	0.00	-115.43	0.30	-214.93	1.862	5.5	0.19	0.70	45.6 (5.3)
2	S	0.00	217.57	-0.16	265.26	1.219	29.0	0.20	0.70	25.4 (5.3)
3	S	0.00	0.10	-0.16	265.26	2652.569	29.0	0.20	0.70	25.4 (5.3)
4	S	0.00	0.10	-0.16	265.26	2652.569	29.0	0.20	0.70	25.4 (5.3)

DEFORMAZIONI UNITARIE ALLO STATO LIMITE ULTIMO

ec max	Deform. unit. massima del conglomerato a compressione

Ordinata in cm della fibra corrisp. a ec max (sistema rif. X,Y,O sez.) Yc max

Deform. unit. minima nell'acciaio (negativa se di trazione) es min

Ordinata in cm della barra corrisp. a es min (sistema rif. X,Y,O sez.) Ys min Deform. unit. massima nell'acciaio (positiva se di compressione) es max Ys max Ordinata in cm della barra corrisp. a es max (sistema rif. X,Y,O sez.)

N°Comb	ec max	Yc max	es min	Ys min	es max	Ys max
1	0.00350	0.0	-0.00009	5.6	-0.01534	29.4

	COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
Relazione di calcolo – Spalle – fase 1	NR1J	01 D 29	CL	VI0104 001	В	71 di 172

2	0.00350	35.0	0.00021	29.4	-0.01375	5.6
3	0.00350	35.0	0.00021	29.4	-0.01375	5.6
4	0.00350	35.0	0.00021	29.4	-0.01375	5.6

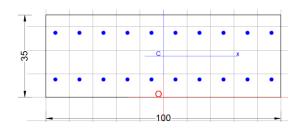
ARMATURE A TAGLIO E/O TORSIONE DI INVILUPPO PER LE COMBINAZIONI ASSEGNATE

VERIFICHE A TAGLIO

Ver Ved Vrd Vcd Vwd bw d Ctg Acw Ast		Taglio a Taglio re Taglio co Taglio tr Larghez Cotange Coefficie	gente [kN] uguale esistente [kN] in as ompressione resis azione resistente [ca minima [cm] se ente dell'angolo di iente maggiorativo o	o-tors./ N = comb. non verificata al taglio Vy di comb. (sollecit. re senza di staffe [formula (4.1.23 tente [kN] lato conglomerato [fo kN] assorbito dalle staffe [formuzione misurata parallelam. all'a nclinazione dei puntoni di cong della resistenza a taglio per corente necessaria per taglio e tore	etta))NTC] rmula (4.1.2 ula (4.1.27)N sse neutro lomerato npressione	NTC] Altezza utile se	zione		
N°Comb	Ver	Ved	Vrd	Vcd	Vwd	bw d	Ctg	Acw	ASt
1 2 3 4	\$ \$ \$ \$	0.00 0.00 310.10 -282.97	236.51 194.78 194.78 194.78	1243.63 1243.63 857.68 857.68	312.26 312.26 780.66 780.66	100.0 29.4 100.0 29.4 100.0 29.4 100.0 29.4	1.000 1.000 2.500 2.500	1.000	0.0 0.0 12.0 10.9

COMBINAZIONI QUASI PERMANENTI IN ESERCIZIO - METODO AAEM

Ver	S = combinazione verificata / N = combin. non verificata
Sc max	Massima tensione positiva di compressione nel conglomerato [Mpa]
Yc max	Ordinata in cm della fibra corrisp. a Sc max (sistema rif. X,Y,O)
Sf min	Minima tensione negativa di trazione nell'acciaio [Mpa]
Ys min	Ordinata in cm della barra corrisp. a Sf min (sistema rif. X,Y,O)
Ac eff.	Area di conglomerato [cm²] in zona tesa considerata aderente alle barre
sr max	Distanza calcolata tra le fessure espressa in mm
K3	Coeff. di normativa dipendente dalla forma del diagramma delle tensioni
wk	Apertura fessure in mm. Calcolo secondo Istruz. NTC 2018 / EC2
ерВ	Deformazione unitaria nel baricentro B (positivo se di accorciamento)
Cx	Curvatura [1/cm] della sez. intorno all'asse x baricentrico


Risultati istantanei (all'applicazione dei carichi): Tensioni-Apertura fessure-Deformazioni

N°Comb	Sc max	Sf min	Ac Eff.	sr max	K3	wk	epB	Cx
1	4.79	-90.9	1400	172	0.137	0.133	-0.00021278	-0.00002030
2	9.32	-154.3	1350	161	0.136	0.163	-0.00018849	0.00002297

Risultati finali (a fenomeni lenti esauriti): Tensioni-Apertura fessure-Deformazioni

N°Comb	Ver	Sc max	Sf min	Ac Eff.	sr max	K3	wk	epB	Cx
1	S	1.64	-98.5	1400	172	0.137	0.144	-0.00010381	-0.00003265
2	S	4.46	-163.4	1350	161	0.136	0.173	-0.00008191	0.00004737

Verifiche RC-Sec – direzione verticale

Relazione di calcolo - Spalle - fase 1

COMMESSA LOTTO NR1J 01 D 29

18.80

MPa

CODIFICA CL

DOCUMENTO VI0104 001

REV FOGLIO В 72 di 172

DATI GENERALI SEZIONE RETTANGOLARE DI PILASTRO IN C.A.

NOME SEZIONE: Paraghiaia critica - vert

(Percorso File: C:\Users\utente\Desktop\file VI01\file VI01\Paraghiaia critica - vert.sez)

CARATTERISTICHE DI RESISTENZA DEI MATERIALI IMPIEGATI

CALCESTRUZZO -C32/40 Classe: Resistenza compress. di progetto fcd:

Resistenza compress. ridotta fcd': 9.400 MPa Deform. unitaria max resistenza ec2: 0.0020 Deformazione unitaria ultima ecu: 0.0035 Diagramma tensioni-deformaz.: Parabola-Rettangolo Modulo Elastico Normale Ec: 33643.0 MPa Resis. media a trazione fctm: 3.100 MPa Coeff. Viscosità: 2.50 Coeff. Ritiro: 0.25 1/1000 Coeff. Invecchiamento: 0.800

Sc limite S.L.E. comb. Q.Permanenti: 13.280 MPa Ap.Fess.limite S.L.E. comb. Q.Perm.: 0.200 mm

B450C ACCIAIO -Tipo:

> Resist. caratt. a snervamento fyk: 450.00 MPa Resist. caratt. a rottura ftk: 450.00 MPa Resist. a snerv. di progetto fyd: 391.30 MPa Resist. ultima di progetto ftd: 391.30 MPa Deform. ultima di progetto Epu: 0.068 200000.0 Modulo Elastico Ef: MPa Diagramma tensioni-deformaz.: Bilineare finito

Coeff. Aderenza istant. §1*§2: 1.00 Coeff. Aderenza differito ß1*ß2: 0.50

CARATTERISTICHE GEOMETRICHE ED ARMATURE SEZIONE

100.0 Base: cm Altezza: 35.0 cm Barre inferiori: 10Ø16 (20.1 cm²) Barre superiori: 10Ø16 (20.1 cm²) Coprif.Inf.(dal baric. barre): 7.0 cm Coprif.Sup.(dal baric. barre): 7.0 cm Coprif.Lat. (dal baric.barre): 4.0

CALCOLO DI RESISTENZA - SFORZI PER OGNI COMBINAZIONE ASSEGNATA

Sforzo normale [kN] applicato nel baricentro (posit. se di compress.) Momento flettente [kNm] intorno all'asse x baric. della sezione Mχ con verso positivo se tale da comprimere il lembo sup. della sezione VY Taglio [kN] in direzione parallela all'asse Y del riferim. generale Momento torcente [kN m] MT

N°Comb.	N	Mx	Vy	MT
1	0.00	-147.49	0.00	0.00
2	0.00	67.65	0.00	0.00
3	0.00	0.10	-213.90	0.00
4	0.00	0.10	25.47	0.00

COMB. QUASI PERMANENTI (S.L.E.) - SFORZI PER OGNI COMBINAZIONE ASSEGNATA

Sforzo normale [kN] applicato nel baricentro (positivo se di compress.) Mx

Coppia [kNm] applicata all'asse x baricentrico (tra parentesi il Momento di fessurazione)

con verso positivo se tale da comprimere il lembo superiore della sezione

Relazione di calcolo - Spalle - fase 1

COMMESSA LOTTO CODIFICA I
NRIJ 01 D 29 CL

DOCUMENTO REV. FOGLIO
VI0104 001 B 73 di 172

N°Comb.	N	Mx
1	0.00	29.35 (-432.12)
2	0.00	-74.86 (467.36)

RISULTATI DEL CALCOLO

Sezione verificata

VERIFICHE DI RESISTENZA IN PRESSO-TENSO FLESSIONE ALLO STATO LIMITE ULTIMO

Ver S = combinazione verificata / N = combin. non verificata

N Sforzo normale baricentrico assegnato [kN] (positivo se di compressione)
Mx Momento flettente assegnato [kNm] riferito all'asse x baricentrico

N Ult Sforzo normale alla massima resistenza [kN] nella sezione (positivo se di compress.)

Mx rd Momento resistente ultimo [kNm] riferito all'asse x baricentrico Mis.Sic. Misura sicurezza = rapporto vettoriale tra (N rd,Mx rd) e (N,Mx)

Verifica positiva se tale rapporto risulta >=1.000

Yn Ordinata [cm] dell'asse neutro alla massima resistenza nel sistema di rif. X,Y,O sez.

x/d Rapp. di duttilità (travi e solette)[§ 4.1.2.1.2.1 NTC]: deve essere < 0.45

C.Rid. Coeff. di riduz. momenti in travi continue [formula (4.1.1)NTC]

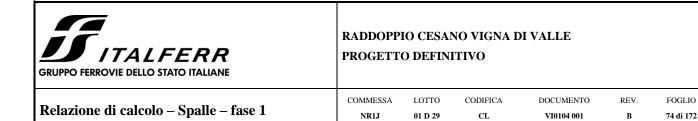
N°Comb	Ver	N	Mx	N rd	Mx rd	Mis.Sic.	Yn	x/d	C.Rid.	
1	S	0.00	-147.49	-0.03	-207.08	1.404	6.3	0.22	0.72	40.2 (5.0)
2	S	0.00	67.65	-0.03	207.08	3.061	28.7	0.22	0.72	40.2 (5.0)
3	S	0.00	0.10	-0.03	207.08 2	2070.798	28.7	0.22	0.72	40.2 (5.0)
4	S	0.00	0.10	-0.03	207.08 2	2070.798	28.7	0.22	0.72	40.2 (5.0)

DEFORMAZIONI UNITARIE ALLO STATO LIMITE ULTIMO

ec max	Deform. unit. massima del conglomerato a compressione
Yc max	Ordinata in cm della fibra corrisp. a ec max (sistema rif. X,Y,O sez.)
es min	Deform. unit. minima nell'acciaio (negativa se di trazione)
Ys min	Ordinata in cm della barra corrisp. a es min (sistema rif. X,Y,O sez.)
es max	Deform. unit. massima nell'acciaio (positiva se di compressione)
Ys max	Ordinata in cm della barra corrisp. a es max (sistema rif. X,Y,O sez.)

N°Comb	ec max	Yc max	es min	Ys min	es max	Ys max
1	0.00350	0.0	-0.00041	7.0	-0.01214	28.0
2	0.00350	35.0	-0.00041	28.0	-0.01214	7.0
3	0.00350	35.0	-0.00041	28.0	-0.01214	7.0
4	0.00350	35.0	-0.00041	28.0	-0.01214	7.0

ARMATURE A TAGLIO E/O TORSIONE DI INVILUPPO PER LE COMBINAZIONI ASSEGNATE


VERIFICHE A TAGLIO

Ver	S = comb.verificata a taglio-tors./ N = comb. non verificata
Ved	Taglio agente [kN] uguale al taglio Vy di comb. (sollecit. retta)
Vrd	Taglio resistente [kN] in assenza di staffe [formula (4.1.23)NTC]
Vcd	Taglio compressione resistente [kN] lato conglomerato [formula (4.1.28)NTC]

Vwd Taglio trazione resistente [kN] assorbito dalle staffe [formula (4.1.27)NTC] bw|d Larghezza minima [cm] sezione misurata parallelam. all'asse neutro | Altezza utile sezione

Ctg Cotangente dell'angolo di inclinazione dei puntoni di conglomerato
Acw Coefficiente maggiorativo della resistenza a taglio per compressione
Ast Area staffe/metro strettamente necessaria per taglio e torsione [cm²/m]

N°Comb	Ver	Ved	Vrd	Vcd	Vwd	bw d	Ctg Acw	ASt
1 2	S S	0.00 0.00	224.81 224.81	1184.41 1184.41			1.000 1.000 1.000 1.000	0.0 0.0

3	S	-213.90	224.81	816.84	743.48 100.0 28.	0 2.500 1.000	8.7
4	S	25.47	224.81	816.84	743.48 100.0 28.	0 2.500 1.000	1.0

COMBINAZIONI QUASI PERMANENTI IN ESERCIZIO - METODO AAEM

ver	5 = combinazione verificata / N = combin. non verificata
Sc max	Massima tensione positiva di compressione nel conglomerato [Mpa]
Yc max	Ordinata in cm della fibra corrisp. a Sc max (sistema rif. X,Y,O)
Sf min	Minima tensione negativa di trazione nell'acciaio [Mpa]
Ys min	Ordinata in cm della barra corrisp. a Sf min (sistema rif. X,Y,O)
Ac eff.	Area di conglomerato [cm²] in zona tesa considerata aderente alle barre
sr max	Distanza calcolata tra le fessure espressa in mm
K3	Coeff. di normativa dipendente dalla forma del diagramma delle tensioni
wk	Apertura fessure in mm. Calcolo secondo Istruz. NTC 2018 / EC2
epB	Deformazione unitaria nel baricentro B (positivo se di accorciamento)
Сх	Curvatura [1/cm] della sez. intorno all'asse x baricentrico

Risultati istantanei (all'applicazione dei carichi): Tensioni-Apertura fessure-Deformazioni

N°Comb	Sc max	Sf min	Ac Eff.	sr max	K3	wk	epB	Cx
1	3.23	-57.0	1400	200	0.132	0.097	-0.00014195	0.00001360
2	8.24	-145.3	1400	200	0.132	0.145	-0.00014482	-0.00001736
Risultati fina	li (a fenomeni l	enti esauriti): Tensioni- <i>l</i>	Apertura fe	ssure-De	formazioni		

N°Comb	Ver	Sc max	Sf min	Ac Eff.	sr max	K3	wk	epB	Cx
1	S	1.31	-64.9	1400	200	0.132	0.110	-0.00004707	0.00002641
2	S	4.03	-159.6	1400	200	0.132	0.160	-0.00004632	-0.00003940

10.4 Verifica Zattera di fondazione

Le sollecitazioni critici nella zattera di fondazione sono riassunte nella tabella seguente.

TABLE: Element Forces - Area Shells									
Area	OutputCase	StepType	F11	F22	M11	M22	V13	V23	
Text	Text	Text	KN/m	KN/m	KN-m/m	KN-m/m	KN/m	KN/m	
471	INV SLU e SLV	Max	2236.76	890.97	2544.22	508.10	2582.72	880.16	M11 Max
1063	INV SLU e SLV	Min	-54.86	-2201.89	-2322.84	-872.19	-1031.97	-1095.94	M11 Min
1557	INV SLU e SLV	Max	710.84	356.28	870.42	4025.46	13.25	156.04	M22 Max
1038	INV SLU e SLV	Min	12.87	-4187.26	-1455.38	-973.66	-821.35	-684.19	M22 Min
471	INV SLU e SLV	Max	3913.71	949.89	2106.30	895.06	2582.72	880.16	V13 Max
1963	INV SLU e SLV	Min	-239.15	-351.32	-68.93	4.86	-1535.35	-132.07	V13 Min
1532	INV SLU e SLV	Max	569.79	1533.07	195.47	752.33	31.18	1164.82	V23 Max
1074	INV SLU e SLV	Min	-701.23	-2033.75	-1163.66	350.33	-575.02	-2809.26	V23 Min
TABLE: E	lement Forces - Area	Shells							
Area	OutputCase	StepType	F11	F22	M11	M22			
Text	Text	Text	KN/m	KN/m	KN-m/m	KN-m/m			
1075	INV SLE Rara	Min	-71.06	-22.83	-1477.42	-188.42	M11 Min		
481	INV SLE Rara	Max	-14.07	48.33	1215.54	258.06	M11 Max		
1063	INV SLE Rara	Min	160.69	-1816.58	-1222.40	-378.86	M22 Min		
1557	INV SLE Rara	Max	559.68	63.16	536.92	2394.97	M22 Max		

Relazione di calcolo – Spalle – fase 1

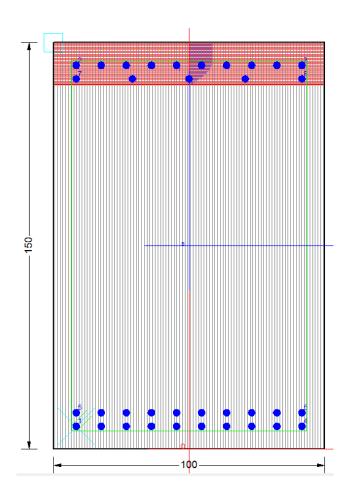
COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
NR1J	01 D 29	CL	VI0104 001	В	75 di 172

TABLE: Element Forces - Area Shells									
Area	OutputCase StepType F11 F22 M11 M22								
Text	Text	Text	KN/m	KN/m	KN-m/m	KN-m/m			
1075	INV SLE Freq.	Min	13.02	-8.74	-1374.34	-175.32	M11 Min		
481	INV SLE Freq.	Max	-110.10	-56.30	1192.15	251.90	M11 Max		
484	INV SLE Freq.	Min	-79.18	2.37	-395.70	-318.27	M22 Min		
1557	INV SLE Freq.	Max	508.03	-33.78	487.61	2259.34	M22 Max		
TABLE: El	ement Forces - Area S	hells							
Area	OutputCase	StepType	F11	F22	M11	M22			
Text	Text	Text	KN/m	KN/m	KN-m/m	KN-m/m			
1075	INV SLE Quasi perm.	Min	10.73	-7.22	-1088.70	-135.17	M11 Min		
481	INV SLE Quasi perm.	Max	-110.60	-57.43	1064.00	218.64	M11 Max		
470	INV SLE Quasi perm.	Min	-97.32	-183.92	-623.36	-294.93	M22 Min		
1557	INV SLE Quasi perm.	Max	501.60	-30.80	360.10	1521.51	M22 Max		

Figura 11 - soletta di fondazione

10.4.1 Verifiche RC-Sec – direzione orizzontale

In direzione Asse 1 (X) è stata assunta un'armatura lato superiore disposta su uno strato Φ 26/10+ Φ 26/20 disposta su un due strati, mentre per il lato inferiore si è assunta una armatura Φ 26/10+ Φ 26/10 disposta su un due strati.


Relazione di calcolo – Spalle – fase 1

COMMESSA LOTTO CODIFICA DOCUM
NRIJ 01 D 29 CL VI010

DOCUMENTO REV.

VI0104 001 B

FOGLIO **76 di 172**

CARATTERISTICHE DI RESISTENZA DEI MATERIALI IMPIEGATI

Classe:	C30/37	
Resis. compr. di progetto fcd:	17.000	MPa
Resis. compr. ridotta fcd':	8.500	MPa
Def.unit. max resistenza ec2:	0.0020	
Def.unit. ultima ecu:	0.0035	
Diagramma tensione-deformaz.:	Parabola-Rettangolo	
Modulo Elastico Normale Ec:	32836.0	MPa
Resis. media a trazione fctm:	2.900	MPa
Coeff. Omogen. S.L.E.:	15.00	
Coeff. Omogen. S.L.E.:	15.00	
Sc limite S.L.E. comb. Frequenti:	165.00	daN/cm²
Ap.Fessure limite S.L.E. comb. Freque	enti: 0.200	mm
Sc limite S.L.E. comb. Q.Permanenti:	0.00	Мра
Ap.Fess.limite S.L.E. comb. Q.Perm.:	0.200	mm
Tipo:	B450C	
Resist. caratt. snervam. fyk:	450.00	MPa
Resist. caratt. rottura ftk:	450.00	MPa
Resist. snerv. di progetto fyd:	391.30	MPa
Resist. ultima di progetto ftd:	391.30	MPa
Deform. ultima di progetto Epu:	0.068	
Modulo Elastico Ef	2000000	daN/cm²
Diagramma tensione-deformaz.:	Bilineare finito	
Coeff. Aderenza istantaneo ß1*ß2:	1.00	
Coeff. Aderenza differito ß1*ß2:	0.50	
	Resis. compr. di progetto fcd: Resis. compr. ridotta fcd': Def.unit. max resistenza ec2: Def.unit. ultima ecu: Diagramma tensione-deformaz.: Modulo Elastico Normale Ec: Resis. media a trazione fctm: Coeff. Omogen. S.L.E.: Coeff. Omogen. S.L.E.: Sc limite S.L.E. comb. Frequenti: Ap.Fessure limite S.L.E. comb. Frequenti: Ap.Fess.limite S.L.E. comb. Q.Permanenti: Ap.Fess.limite S.L.E. comb. Q.Perm.: Tipo: Resist. caratt. snervam. fyk: Resist. caratt. rottura ftk: Resist. snerv. di progetto fyd: Resist. ultima di progetto ftd: Deform. ultima di progetto Epu: Modulo Elastico Ef Diagramma tensione-deformaz.: Coeff. Aderenza istantaneo ß1*ß2:	Resis. compr. di progetto fcd: 17.000 Resis. compr. ridotta fcd': 8.500 Def.unit. max resistenza ec2: 0.0020 Def.unit. ultima ecu: 0.0035 Diagramma tensione-deformaz.: Parabola-Rettangolo Modulo Elastico Normale Ec: 32836.0 Resis. media a trazione fctm: 2.900 Coeff. Omogen. S.L.E.: 15.00 Coeff. Omogen. S.L.E.: 15.00 Sc limite S.L.E. comb. Frequenti: 165.00 Ap.Fessure limite S.L.E. comb. Frequenti: 0.200 Sc limite S.L.E. comb. Q.Permanenti: 0.00 Ap.Fess.limite S.L.E. comb. Q.Perm.: 0.200 Tipo: B450C Resist. caratt. snervam. fyk: 450.00 Resist. caratt. rottura ftk: 450.00 Resist. snerv. di progetto fyd: 391.30 Resist. ultima di progetto Epu: 0.068 Modulo Elastico Ef 2000000 Diagramma tensione-deformaz.: Bilineare finito Coeff. Aderenza istantaneo ß1*ß2: 1.00

 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 NR1J
 01 D 29
 CL
 VI0104 001
 B
 77 di 172

Relazione di calcolo - Spalle - fase 1

Sf limite S.L.E. Comb. Rare: 337.50 MPa

CARATTERISTICHE DOMINIO CONGLOMERATO

Classe Conglo	Poligonale C30/37	
N°vertice:	X [cm]	Y [cm]
1 2	-50.0 -50.0	0.0 150.0
3	50.0	150.0
4	50.0	0.0

DATI BARRE ISOLATE

N°Barra	X [cm]	Y [cm]	DiamØ[mm]
1	-41.6	8.4	26
2	-41.6	141.6	26
3	41.6	141.6	26
4	41.6	8.4	26
5	-41.6	13.4	26
6	41.6	13.4	26
7	-41.6	136.6	26
8	41.6	136.6	26

DATI GENERAZIONI LINEARI DI BARRE

N°Gen.Numero assegnato alla singola generazione lineare di barreN°Barra Ini.Numero della barra iniziale cui si riferisce la generazioneN°Barra Fin.Numero della barra finale cui si riferisce la generazione

N°Barre Numero di barre generate equidistanti cui si riferisce la generazione

Ø Diametro in mm delle barre della generazione

N°Gen.	N°Barra Ini.	N°Barra Fin.	N°Barre	Ø
1	2	3	8	26
2	1	4	8	26
3	5	6	8	26
4	7	8	3	26

CALCOLO DI RESISTENZA - SFORZI PER OGNI COMBINAZIONE ASSEGNATA

N Sforzo normale [kN] applicato nel Baric. (+ se di compressione)
Mx Momento flettente [daNm] intorno all'asse X di riferimento delle coordinate
con verso positivo se tale da comprimere il lembo sup. della sez.
Vy Componente del Taglio [kN] parallela all'asse Y di riferimento delle coordinate

N°Comb.	N	Mx	Vy
1	0.00	2544.22	0.00
2	0.00	-2322.84	0.00
3	0.00	0.10	2583.00

COMB. RARE (S.L.E.) - SFORZI PER OGNI COMBINAZIONE ASSEGNATA

N Sforzo normale [kN] applicato nel Baricentro (+ se di compressione)

Mx Momento flettente [kNm] intorno all'asse X di riferimento (tra parentesi Mom.Fessurazione)

con verso positivo se tale da comprimere il lembo superiore della sezione

 $N^{\circ}Comb.$ N Mx My

COMMESSA LOTTO CODIFICA DOCUMENTO REV FOGLIO Relazione di calcolo - Spalle - fase 1 NR1J 01 D 29 CLVI0104 001 В 78 di 172

1	0.00	1216.00	0.00
2	0.00	-1477.00	0.00

COMB. FREQUENTI (S.L.E.) - SFORZI PER OGNI COMBINAZIONE ASSEGNATA

Sforzo normale [kN] applicato nel Baricentro (+ se di compressione) Mx

Momento flettente [kNm] intorno all'asse X di riferimento (tra parentesi Mom. Fessurazione)

con verso positivo se tale da comprimere il lembo superiore della sezione

N°Comb.	N	Mx	Му
1	0.00	1192.00 (1563.39)	0.00 (0.00)
2	0.00	-1374.00 (-1506.93)	0.00 (0.00)

COMB. QUASI PERMANENTI (S.L.E.) - SFORZI PER OGNI COMBINAZIONE ASSEGNATA

Sforzo normale [kN] applicato nel Baricentro (+ se di compressione) N

Momento flettente [kNm] intorno all'asse X di riferimento (tra parentesi Mom.Fessurazione) Mx

con verso positivo se tale da comprimere il lembo superiore della sezione

N°Comb.	N	Mx	Му
1	0.00	1064.00 (1563.39)	0.00 (0.00)
2	0.00	-1089.00 (-1506.93)	0.00 (0.00)

RISULTATI DEL CALCOLO

Sezione verificata per tutte le combinazioni assegnate

VERIFICHE DI RESISTENZA IN PRESSO-TENSO FLESSIONE ALLO STATO LIMITE ULTIMO

Ver S = combinazione verificata / N = combin. non verificata

Sforzo normale assegnato [kN] nel baricentro B sezione cls.(positivo se di compressione) Ν

Componente del momento assegnato [kNm] riferito all'asse x princ. d'inerzia Mx N Res Sforzo normale resistente [kN] nel baricentro B sezione cls.(positivo se di compress.)

Mx Res Momento flettente resistente [kNm] riferito all'asse x princ. d'inerzia Misura sicurezza = rapporto vettoriale tra (N r,Mx Res,My Res) e (N,Mx,My) Mis.Sic.

Verifica positiva se tale rapporto risulta >=1.000

As Totale Area totale barre longitudinali [cm²]. [Tra parentesi il valore minimo di normativa]

N°Comb	Ver	N	Mx	N Res	Mx Res	Mis.Sic. As Totale
1	S	0.00	2544.22	0.00	5457.48	2.15 185.8(45.0)
2	S	0.00	-2322.84	0.00	-4154.44	1.79 185.8(45.0)
3	S	0.00	0.10	0.00	5457.48	999.00 185.8(45.0)

METODO AGLI STATI LIMITE ULTIMI - DEFORMAZIONI UNITARIE ALLO STATO ULTIMO

ec max	Deform. unit. massima del conglomerato a compressione
	Deform. unit. massima del conglomerato a compressione
Xc max	Ascissa in cm della fibra corrisp. a ec max (sistema rif. X,Y,O sez.)
Yc max	Ordinata in cm della fibra corrisp. a ec max (sistema rif. X,Y,O sez.)
es min	Deform. unit. minima nell'acciaio (negativa se di trazione)
Xs min	Ascissa in cm della barra corrisp. a es min (sistema rif. X,Y,O sez.)
Ys min	Ordinata in cm della barra corrisp. a es min (sistema rif. X,Y,O sez.)
es max	Deform. unit. massima nell'acciaio (positiva se di compress.)
Xs max	Ascissa in cm della barra corrisp. a es max (sistema rif. X,Y,O sez.)
Ys max	Ordinata in cm della barra corrisp. a es max (sistema rif. X,Y,O sez.)

N°Comb	ec max	Xc max	Yc max	es min	Xs min	Ys min	es max	Xs max	Ys max
1	0.00350	-50.0	150.0	0.00163	-41.6	141.6	-0.02810	-41.6	8.4

Relazione di calcolo - Spalle - fase 1

COMMESSA LOTTO CODIFICA DOCUMENTO REV. FOGLIO

NRIJ 01 D 29 CL VI0104 001 B 79 di 172

2	0.00350	-50.0	0.0	0.00127	-41.6	8.4	-0.03402	-41.6	141.6
3	0.00350	-50.0	150.0	0.00163	-41.6	141.6	-0.02810	-41.6	8.4

POSIZIONE ASSE NEUTRO PER OGNI COMB. DI RESISTENZA

a, b, c Coeff. a, b, c nell'eq. dell'asse neutro aX+bY+c=0 nel rif. X,Y,O gen. x/d Rapp. di duttilità (travi e solette)[§ 4.1.2.1.2.1 NTC]: deve essere < 0.45

C.Rid. Coeff. di riduz. momenti per sola flessione in travi continue

N°Comb	a	b	С	x/d	C.Rid.
4	0.00000000	0.000000455	0.000070040		

 1
 0.000000000
 0.000223155
 -0.029973318

 2
 0.000000000
 -0.000264984
 0.003500000

 3
 0.000000000
 0.000223155
 -0.029973318

VERIFICHE A TAGLIO

bw

Ctg

Acw Ast

A.Eff

Ver	S = comb. verificata a taglio / N = comb. non verificata
Ved	Taglio di progetto [kN] = Vy ortogonale all'asse neutro

Vcd Taglio compressione resistente [kN] lato conglomerato [formula (4.1.28)NTC]

Vwd Taglio resistente [kN] assorbito dalle staffe [(4.1.18) NTC]

d | z Altezza utile media pesata sezione ortogonale all'asse neutro | Braccio coppia interna [cm]

Vengono prese nella media le strisce con almeno un estremo compresso. I pesi della media sono costituiti dalle stesse lunghezze delle strisce. Larghezza media resistente a taglio [cm] misurate parallel. all'asse neutro E' data dal rapporto tra l'area delle sopradette strisce resistenti e Dmed. Cotangente dell'angolo di inclinazione dei puntoni di conglomerato Coefficiente maggiorativo della resistenza a taglio per compressione Area staffe+legature strettam. necessarie a taglio per metro di pil. [cm²/m] Area staffe+leqature efficaci nella direzione del taglio di combinaz. [cm²/m]

Tra parentesi è indicata la quota dell'area relativa alle sole legature. L'area della legatura è ridotta col fattore L/d_max con L=lungh.legat.proiettata sulla direz. del taglio e d_max= massima altezza utile nella direz.del taglio.

N°Comb	Ver	Ved	Vcd	Vwd	d z	bw	Ctg	Acw	Ast	A.Eff
1	S	0.00	5751.37	1330.86143	3.7 135.3	100.0	1.000	1.000	0.0	25.1(0.0)
2	S	0.00	5793.46	1340.60144	1.7 136.3	100.0	1.000	1.000	0.0	25.1(0.0)
3	S	2583.00	3966.46	3327.15143	3.7 135.3	100.0	2.500	1.000	19.5	25.1(0.0)

COMBINAZIONI RARE IN ESERCIZIO - MASSIME TENSIONI NORMALI ED APERTURA FESSURE (NTC/EC2)

Ver S = comb. verificata/ N = comb. non verificata

Sc max
Massima tensione (positiva se di compressione) nel conglomerato [Mpa]
Xc max, Yc max
Ascissa, Ordinata [cm] del punto corrisp. a Sc max (sistema rif. X,Y,O)
Sf min
Minima tensione (negativa se di trazione) nell'acciaio [Mpa]

Xs min, Ys min
Ascissa, Ordinata [cm] della barra corrisp. a Sf min (sistema rif. X,Y,O)
Ac eff.
As eff.
Area di calcestruzzo [cm²] in zona tesa considerata aderente alle barre
Area barre [cm²] in zona tesa considerate efficaci per l'apertura delle fessure

N°Comb	Ver	Sc max	Xc max `	Yc max	Sf min	Xs min	Ys min	Ac eff.	As eff.
1	S	3.00	-50.0	150.0	-93.8	4.6	8.4	2700	106.2
2	S	3.73	-50.0	0.0	-147.4	32.4	141.6	2500	79.6

COMBINAZIONI RARE IN ESERCIZIO - APERTURA FESSURE [§ 7.3.4 EC2]

La sezione viene assunta sempre fessurata anche nel caso in cui la trazione minima del calcestruzzo sia inferiore a fctm

Ver. Esito della verifica

e1 Massima deformazione unitaria di trazione nel calcestruzzo (trazione -) valutata in sezione fessurata e2 Minima deformazione unitaria di trazione nel calcestruzzo (trazione -) valutata in sezione fessurata

k1 = 0.8 per barre ad aderenza migliorata [eq.(7.11)EC2]

kt = 0.4 per comb. quasi permanenti / = 0.6 per comb.frequenti [cfr. eq.(7.9)EC2] k2 = 0.5 per flessione; =(e1 + e2)/(2*e1) per trazione eccentrica [eq.(7.13)EC2]

Relazione di calcolo - Spalle - fase 1

 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO

 NRIJ
 01 D 29
 CL
 VI0104 001

REV.

В

FOGLIO

80 di 172

k3 = 3.400 Coeff. in eq.(7.11) come da annessi nazionali k4 = 0.425 Coeff. in eq.(7.11) come da annessi nazionali

Ø Diametro [mm] equivalente delle barre tese comprese nell'area efficace Ac eff [eq.(7.11)EC2]
Cf Copriferro [mm] netto calcolato con riferimento alla barra più tesa
e sm - e cm Differenza tra le deformazioni medie di acciaio e calcestruzzo [(7.8)EC2 e (C4.1.7)NTC]

Tra parentesi: valore minimo = 0.6 Smax / Es [(7.9)EC2 e (C4.1.8)NTC]

sr max Massima distanza tra le fessure [mm]

wk Apertura fessure in mm calcolata = sr max*(e_sm - e_cm) [(7.8)EC2 e (C4.1.7)NTC]. Valore limite tra parentesi

Mx fess. Componente momento di prima fessurazione intorno all'asse X [kNm]
My fess. Componente momento di prima fessurazione intorno all'asse Y [kNm]

Comb.	Ver	e1	e2	k2	Ø	Cf	e sm - e cm s	r max	wk	Mx fess	My fess
1	S	-0.00051	0	0.500	26.0	71	0.00028 (0.00028)	354	0.100 (0.20)	1563.39	0.00
2	S	-0.00080	0	0.500	26.0	71	0.00044 (0.00044)	380	0.168 (0.20)	-1506.93	0.00

COMBINAZIONI FREQUENTI IN ESERCIZIO - MASSIME TENSIONI NORMALI ED APERTURA FESSURE (NTC/EC2)

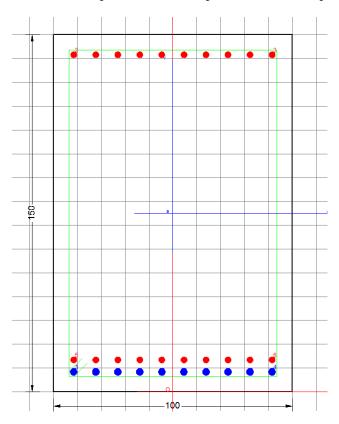
N°Comb	Ver	Sc max	Xc max `	Yc max	Sf min	Xs min	Ys min	Ac eff.	As eff.
1	S	2.94	-50.0	150.0	-91.9	-13.9	8.4	2700	106.2
2	S	3.47	-50.0	0.0	-137.2	32.4	141.6	2500	79.6

COMBINAZIONI FREQUENTI IN ESERCIZIO - APERTURA FESSURE [§ 7.3.4 EC2]

Comb.	Ver	e1	e2	k2	Ø	Cf	e sm - e cm s	sr max	wk	Mx fess	My fess
1	S	-0.00050	0	0.500	26.0	71	0.00028 (0.00028)	354	0.098 (0.20)	1563.39	0.00
2	S	-0.00074	0	0.500	26.0	71	0.00041 (0.00041)	380	0.156 (0.20)	-1506.93	0.00

COMBINAZIONI QUASI PERMANENTI IN ESERCIZIO - MASSIME TENSIONI NORMALI ED APERTURA FESSURE (NTC/EC2)

N°Comb	Ver	Sc max	Xc max `	Yc max	Sf min	Xs min	Ys min	Ac eff.	As eff.
1 2	-								


COMBINAZIONI QUASI PERMANENTI IN ESERCIZIO - APERTURA FESSURE [§ 7.3.4 EC2]

Comb.	Ver	e1	e2	k2	Ø	Cf	e sm - e cm s	r max	wk	Mx fess	My fess
1	S	-0.00045	0	0.500	26.0	71	0.00025 (0.00025)	354	0.087 (0.20)	1563.39	0.00
2	S	-0.00059	0	0.500	26.0	71	0.00033 (0.00033)	380	0.124 (0.20)	-1506.93	0.00

10.4.2 Verifiche RC-Sec - direzione orizzontale Asse 2:

In direzione Asse 2 (Y) è stata assunta un'armatura lato superiore disposta su uno strato Φ 26/10, mentre per il lato inferiore si è assunta una armatura Φ 30/10 disposta su un strato primo e Φ 26/10 disposta su un strato secondo.

CARATTERISTICHE DI RESISTENZA DEI MATERIALI IMPIEGATI

CALCESTRUZZO -	Classe:	C30/37	
	Resis. compr. di progetto fcd:	17.000	MPa
	Resis. compr. ridotta fcd':	8.500	MPa
	Def.unit. max resistenza ec2:	0.0020	
	Def.unit. ultima ecu:	0.0035	
	Diagramma tensione-deformaz.:	Parabola-Rettangolo	
	Modulo Elastico Normale Ec:	32836.0	MPa
	Resis. media a trazione fctm:	2.900	MPa
	Coeff. Omogen. S.L.E.:	15.00	
	Coeff. Omogen. S.L.E.:	15.00	
	Sc limite S.L.E. comb. Frequenti:	165.00	daN/cm²
	Ap.Fessure limite S.L.E. comb. Freque	nti: 0.200	mm
	Sc limite S.L.E. comb. Q.Permanenti:	0.00	Мра
	Ap.Fess.limite S.L.E. comb. Q.Perm.:	0.200	mm
ACCIAIO -	Tipo:	B450C	
	Resist. caratt. snervam. fyk:	450.00	MPa
	Resist. caratt. rottura ftk:	450.00	MPa
	Resist. snerv. di progetto fyd:	391.30	MPa
	Resist. ultima di progetto ftd:	391.30	MPa
	Deform. ultima di progetto Epu:	0.068	
	Modulo Elastico Ef	2000000	daN/cm ²
	Diagramma tensione-deformaz.:	Bilineare finito	

Relazione di calcolo - Spalle - fase 1

CODIFICA REV. COMMESSA LOTTO DOCUMENTO FOGLIO NR1J 01 D 29 CLVI0104 001 В 82 di 172

Coeff. Aderenza istantaneo ß1*ß2: 1.00 Coeff. Aderenza differito ß1*ß2: 0.50 Sf limite S.L.E. Comb. Rare: 337.50 MPa

CARATTERISTICHE DOMINIO CONGLOMERATO

Poligonale C30/37		Forma del Do Classe Conglo
Y [cm]	X [cm]	N°vertice:
0.0	-50.0	1
150.0	-50.0	2
150.0	50.0	3
0.0	50.0	4

DATI BARRE ISOLATE

Ν

N°Barra	X [cm]	Y [cm]	DiamØ[mm]
1	-41.6	8.4	30
2	-41.6	141.6	26
3	41.6	141.6	26
4	41.6	8.4	30
5	-41.6	13.4	26
6	41.6	13.4	26

DATI GENERAZIONI LINEARI DI BARRE

N°Gen.	Numero assegnato alla singola generazione lineare di barre
N°Barra Ini.	Numero della barra iniziale cui si riferisce la generazione
N°Barra Fin.	Numero della barra finale cui si riferisce la generazione
NOD	and the second s

Numero di barre generate equidistanti cui si riferisce la generazione Diametro in mm delle barre della generazione N°Barre

N°Gen.	N°Barra Ini.	N°Barra Fin.	N°Barre	Ø
1	2	3	8	26
2	1	4	8	30
3	5	6	8	26

CALCOLO DI RESISTENZA - SFORZI PER OGNI COMBINAZIONE ASSEGNATA

N Mx Vy		Sforzo normale [kN] applicato nel Baric. (+ se di compressione) Momento flettente [daNm] intorno all'asse X di riferimento delle coordinate con verso positivo se tale da comprimere il lembo sup. della sez. Componente del Taglio [kN] parallela all'asse Y di riferimento delle coordinate			
N°Comb.	N	Mx	Vy		
1	0.00	4025.00	0.00		
2	0.00	-974.00	0.00		
3	0.00	0.10	2809.00		

COMB. RARE (S.L.E.) - SFORZI PER OGNI COMBINAZIONE ASSEGNATA

Sforzo normale [kN] applicato nel Baricentro (+ se di compressione)

Momento flettente [kNm] intorno all'asse X di riferimento (tra parentesi Mom.Fessurazione) Mx

con verso positivo se tale da comprimere il lembo superiore della sezione

Relazione di calcolo - Spalle - fase 1

COMMESSA LOTTO

NR1J 01 D 29

CODIFICA CL DOCUMENTO VI0104 001

FOGLIO 83 di 172

REV.

В

N°Comb.	N	Mx	Му	
1	0.00	2395.00	0.00	
2	0.00	-378.00	0.00	

COMB. FREQUENTI (S.L.E.) - SFORZI PER OGNI COMBINAZIONE ASSEGNATA

N Sforzo normale [kN] applicato nel Baricentro (+ se di compressione)

Mx Momento flettente [kNm] intorno all'asse X di riferimento (tra parentesi Mom.Fessurazione)

con verso positivo se tale da comprimere il lembo superiore della sezione

 N°Comb.
 N
 Mx
 My

 1
 0.00
 2259.00 (1593.25)
 0.00 (0.00)

 2
 0.00
 -318.00 (-1440.56)
 0.00 (0.00)

COMB. QUASI PERMANENTI (S.L.E.) - SFORZI PER OGNI COMBINAZIONE ASSEGNATA

N Sforzo normale [kN] applicato nel Baricentro (+ se di compressione)

Mx Momento flettente [kNm] intorno all'asse X di riferimento (tra parentesi Mom.Fessurazione)

con verso positivo se tale da comprimere il lembo superiore della sezione

 N°Comb.
 N
 Mx
 My

 1
 0.00
 1522.00 (1593.25)
 0.00 (0.00)

 2
 0.00
 -295.00 (-1440.56)
 0.00 (0.00)

RISULTATI DEL CALCOLO

Sezione verificata per tutte le combinazioni assegnate

VERIFICHE DI RESISTENZA IN PRESSO-TENSO FLESSIONE ALLO STATO LIMITE ULTIMO

Ver S = combinazione verificata / N = combin. non verificata

N Sforzo normale assegnato [kN] nel baricentro B sezione cls.(positivo se di compressione)

Mx Componente del momento assegnato [kNm] riferito all'asse x princ. d'inerzia N Res Sforzo normale resistente [kN] nel baricentro B sezione cls.(positivo se di compress.)

Mx Res Momento flettente resistente [kNm] riferito all'asse x princ. d'inerzia

Mis.Sic. Misura sicurezza = rapporto vettoriale tra (N r,Mx Res,My Res) e (N,Mx,My)

Verifica positiva se tale rapporto risulta >=1.000

As Totale Area totale barre longitudinali [cm²]. [Tra parentesi il valore minimo di normativa]

N°Comb	Ver	N	Mx	N Res	Mx Res	Mis.Sic. As Totale
1	S	0.00	4025.00	0.00	6348.87	1.58 176.9(45.0)
2	S	0.00	-974.00	0.00	-2860.77	2.94 176.9(45.0)
3	S	0.00	0.10	0.00	6348.87	999.00 176.9(45.0)

METODO AGLI STATI LIMITE ULTIMI - DEFORMAZIONI UNITARIE ALLO STATO ULTIMO

ec max	Deform. unit. massima del conglomerato a compressione
	Deform. unit. massima del conglomerato a compressione
Xc max	Ascissa in cm della fibra corrisp. a ec max (sistema rif. X,Y,O sez.)
Yc max	Ordinata in cm della fibra corrisp. a ec max (sistema rif. X,Y,O sez.)
es min	Deform. unit. minima nell'acciaio (negativa se di trazione)
Xs min	Ascissa in cm della barra corrisp. a es min (sistema rif. X,Y,O sez.)
Ys min	Ordinata in cm della barra corrisp. a es min (sistema rif. X,Y,O sez.)
es max	Deform. unit. massima nell'acciaio (positiva se di compress.)
Xs max	Ascissa in cm della barra corrisp. a es max (sistema rif. X,Y,O sez.)
Ys max	Ordinata in cm della barra corrisp. a es max (sistema rif. X,Y,O sez.)

N°Comb ec max Xc max Yc max es min Xs min Ys min es max Xs max Ys max

	COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
Relazione di calcolo – Spalle – fase 1	NR1J	01 D 29	CL	VI0104 001	В	84 di 172

1	0.00350	-50.0	150.0	0.00204	-41.6	141.6	-0.02116	-41.6	8.4
2	0.00350	-50.0	0.0	0.00088	-41.6	8.4	-0.04061	-41.6	141.6
3	0.00350	-50.0	150.0	0.00204	-41.6	141.6	-0.02116	-41.6	8.4

POSIZIONE ASSE NEUTRO PER OGNI COMB. DI RESISTENZA

Coeff. a, b, c nell'eq. dell'asse neutro aX+bY+c=0 nel rif. X,Y,O gen. a, b, c Rapp. di duttilità (travi e solette)[§ 4.1.2.1.2.1 NTC]: deve essere < 0.45 Coeff. di riduz. momenti per sola flessione in travi continue x/d

C.Rid.

N°Comb	а	b	С	x/d	C.Rid.
1	0.000000000	0.000174134	-0.022620051		
2	0.000000000	-0.000311526	0.003500000		
3	0.000000000	0.000174134	-0.022620051		

VERIFICHE A TAGLIO

Ver	S = comb. verificata a taglio / N = comb. non verificata
Ved	Taglio di progetto [kN] = Vy ortogonale all'asse neutro
Vcd	Taglio compressione resistente [kN] lato conglomerato [formula (4.1.28)NTC]
Vwd	Taglio resistente [kN] assorbito dalle staffe [(4.1.18) NTC]
d z	Altezza utile media pesata sezione ortogonale all'asse neutro Braccio coppia interna [cm]
	Vengono prese nella media le strisce con almeno un estremo compresso.
	I pesi della media sono costituiti dalle stesse lunghezze delle strisce.
bw	Larghezza media resistente a taglio [cm] misurate parallel. all'asse neutro
	E' data dal rapporto tra l'area delle sopradette strisce resistenti e Dmed.
Ctg	Cotangente dell'angolo di inclinazione dei puntoni di conglomerato
Acw	Coefficiente maggiorativo della resistenza a taglio per compressione
Ast	Area staffe+legature strettam. necessarie a taglio per metro di pil.[cm²/m]
A.Eff	Area staffe+legature efficaci nella direzione del taglio di combinaz.[cm²/m]
	Tra parentesi è indicata la quota dell'area relativa alle sole legature.
	L'area della legatura è ridotta col fattore L/d_max con L=lungh.legat.proietta-
	ta sulla direz. del taglio e d_max= massima altezza utile nella direz.del taglio.

$N^{\circ}Comb$	Ver	Ved	Vcd	Vwd	d z	bw	Ctg	Acw	Ast	A.Eff
1	S	0.00	5676.31	1142.17142	2.0 133.6	100.0	1.000	1.000	0.0	21.9(0.0)
2	S	0.00	5827.00	1172.4914	5.5 137.1	100.0	1.000	1.000	0.0	21.9(0.0)
3	S	2809.00	3914.70	2855.41142	2.0 133.6	100.0	2.500	1.000	21.5	21.9(0.0)

COMBINAZIONI RARE IN ESERCIZIO - MASSIME TENSIONI NORMALI ED APERTURA FESSURE (NTC/EC2)

Ver S = comb. verificata/ N = comb. non verificata

Massima tensione (positiva se di compressione) nel conglomerato [Mpa] Sc max Xc max, Yc max Ascissa, Ordinata [cm] del punto corrisp. a Sc max (sistema rif. X,Y,O) Minima tensione (negativa se di trazione) nell'acciaio [Mpa] Sf min Ascissa, Ordinata [cm] della barra corrisp. a Sf min (sistema rif. X,Y,O) Xs min, Ys min

Area di calcestruzzo [cm²] in zona tesa considerata aderente alle barre Ac eff. As eff. Area barre [cm²] in zona tesa considerate efficaci per l'apertura delle fessure

N°Comb	Ver	Sc max	Xc max	Yc max	Sf min	Xs min	Ys min	Ac eff.	As eff.
•	-	5.99 1.03					• • • •		

COMBINAZIONI RARE IN ESERCIZIO - APERTURA FESSURE [§ 7.3.4 EC2]

La sezione viene assunta sempre fessurata anche nel caso in cui la trazione minima del calcestruzzo sia inferiore a fctm

Esito della verifica Ver.

e1 Massima deformazione unitaria di trazione nel calcestruzzo (trazione -) valutata in sezione fessurata Minima deformazione unitaria di trazione nel calcestruzzo (trazione -) valutata in sezione fessurata e2 k1

= 0.8 per barre ad aderenza migliorata [eq.(7.11)EC2] = 0.4 per comb. quasi permanenti / = 0.6 per comb.frequenti [cfr. eq.(7.9)EC2] kt

Relazione di calcolo - Spalle - fase 1

COMMESSA LOTTO

NR1J 01 D 29

CODIFICA CL DOCUMENTO VI0104 001

REV. FOGLIO **B** 85 di 172

k2	= 0.5 per flessione; =(e1 + e2)/(2*e1) per trazione eccentrica [eq.(7.13)EC2]
1.2	= 2 400 Coeff in as (7 11) some de annosei notionali

k3 = 3.400 Coeff. in eq.(7.11) come da annessi nazionali k4 = 0.425 Coeff. in eq.(7.11) come da annessi nazionali

Ø Diametro [mm] equivalente delle barre tese comprese nell'area efficace Ac eff [eq.(7.11)EC2]

Cf Copriferro [mm] netto calcolato con riferimento alla barra più tesa

e sm - e cm Differenza tra le deformazioni medie di acciaio e calcestruzzo [(7.8)EC2 e (C4.1.7)NTC]

Tra parentesi: valore minimo = 0.6 Smax / Es [(7.9)EC2 e (C4.1.8)NTC]

sr max Massima distanza tra le fessure [mm]

wk Apertura fessure in mm calcolata = sr max*(e_sm - e_cm) [(7.8)EC2 e (C4.1.7)NTC]. Valore limite tra parentesi

Mx fess. Componente momento di prima fessurazione intorno all'asse X [kNm]
My fess. Componente momento di prima fessurazione intorno all'asse Y [kNm]

Comb.	Ver	e1	e2	k2	Ø	Cf	e sm - e cm s	r max	wk	Mx fess	My fess
1	S	-0.00087	0	0.500	28.1	69	0.00056 (0.00048)	337	0.188 (0.20)	1593.25	0.00
2	S	-0.00029	0	0.500	26.0	71	0.00016 (0.00016)	416	0.068 (0.20)	-1440.56	0.00

COMBINAZIONI FREQUENTI IN ESERCIZIO - MASSIME TENSIONI NORMALI ED APERTURA FESSURE (NTC/EC2)

N°Comb	Ver	Sc max	Xc max	Yc max	Sf min	Xs min	Ys min	Ac eff.	As eff.
1	S	5.65	-50.0	150.0	-150.4	13.9	8.4	2650	123.8
2	S	0.87	-50.0	0.0	-45.6	32.4	141.6	2100	53.1

COMBINAZIONI FREQUENTI IN ESERCIZIO - APERTURA FESSURE [§ 7.3.4 EC2]

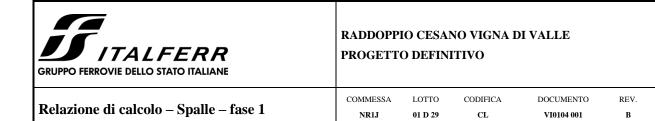
Comb.	Ver	e1	e2	k2	Ø	Cf	e sm - e cm s	sr max	wk	Mx fess	My fess
1	S	-0.00082	0	0.500	28.1	69	0.00051 (0.00045)	337	0.173 (0.20)	1593.25	0.00
2	S	-0.00025	0	0.500	26.0	71	0.00014 (0.00014)	416	0.057 (0.20)	-1440.56	0.00

COMBINAZIONI QUASI PERMANENTI IN ESERCIZIO - MASSIME TENSIONI NORMALI ED APERTURA FESSURE (NTC/EC2)

N°Comb	Ver	Sc max	Xc max	Yc max	Sf min	Xs min	Ys min	Ac eff.	As eff.
1	S	3.81	-50.0	150.0	-101.3	-4.6	8.4	2650	123.8
2	S	0.80	-50.0	0.0	-42.3	32.4	141.6	2100	53.1

COMBINAZIONI QUASI PERMANENTI IN ESERCIZIO - APERTURA FESSURE [§ 7.3.4 EC2]

Comb.	Ver	e1	e2	k2	Ø	Cf	e sm - e cm s	r max	wk	Mx fess	My fess
1	S	-0.00055	0	0.500	28.1	69	0.00035 (0.00030)	337	0.117 (0.20)	1593.25	0.00
2	S	-0.00023	0	0.500	26.0	71	0.00013 (0.00013)	416	0.053 (0.20)	-1440.56	0.00

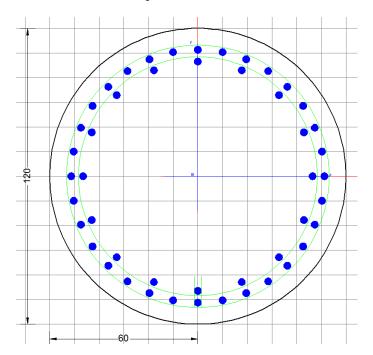


10.5 Pali

I pali sono modellati nel SAP2000 e conseguentemente le azioni agenti nei pali, sono state determinate direttamente attraverso il modello di SAP. Di seguito vengono tabellate le sollecitazioni sul palo più caricato considerando i valori ad intradosso plinto.

TABLE:	Element Forces	s - Frames						
Frame	OutputCase	StepType	P	V2	V3	M2	M3	
Text	Text	Text	KN	KN	KN	KN-m	KN-m	
275	INV SLU e SLV	Min	-4713.62	-254.237	-683.27	198.3914	-775.415	P max
325	INV SLU e SLV	Min	-3861.01	-428.62	-637.671	-120.351	-406.461	V2 max
483	INV SLU e SLV	Min	-4322.42	-244.011	-952.491	394.5691	-1004.29	V3 max
483	INV SLU e SLV	Max	-764.464	337.197	-127.313	2908.233	847.674	M2 max
325	INV SLU e SLV	Max	-1069.62	136.159	7.475	1784.556	1353.025	M3 max
TABLE:	Element Forces	s - Frames						
Frame	OutputCase	StepType	P	M2	M3			
Text	Text	Text	KN	KN-m	KN-m			
275	INV SLE Rara	Min	-3403.46	851.1164	-82.3547	P max		
483	INV SLE Rara	Max	-1372.33	1526.03	143.292	M2 max		
100	INV SLE Rara	Max	-1193	1045.356	463.2877	M3 max		
TABLE:	Element Forces	s - Frames						
Frame	OutputCase	StepType	P	M2	M3			
Text	Text	Text	KN	KN-m	KN-m			
275	INV SLE Freq.	Min	-3315.57	640.742	-114.632	P max		
1424	INV SLE Freq.	Max	-876.542	1502.816	120.6167	M2 max		
175	INV SLE Freq.	Max	-1900.39	901.1788	437.6831	M3 max		
TABLE:	Element Forces	s - Frames						
Frame	OutputCase	StepType	P	M2	M3			
Text	Text	Text	KN	KN-m	KN-m			
300	INV SLE Quasi	Min	-2975.13	425.1894	-34.1267	P max		
483	INV SLE Quasi	Max	-872.889	1044.054	116.8066	M2 max		
603	INV SLE Quasi	Min	-1442.46	593.6202	-353.825	M3 max		

Sono considerati pali di lunghezza L = 28m e diametro $\emptyset = 1,20$ m.


FOGLIO

87 di 172

10.5.1 Verifica a presso-flessione e taglio

Viene adottata per il palo una armatura longitudinale composta da una corona di $32\Phi30 + 16\Phi30$.

Per le verifiche taglianti sono assunti due staffe disposti come $\Phi 12/10$.

CARATTERISTICHE DI RESISTENZA DEI MATERIALI IMPIEGATI

CALCESTRUZZO -	Classe:	C25/30	
	Resis. compr. di progetto fcd:	14.160	MPa
	Resis. compr. ridotta fcd':	7.080	MPa
	Def.unit. max resistenza ec2:	0.0020	
	Def.unit. ultima ecu:	0.0035	
	Diagramma tensione-deformaz.:	Parabola-Rettangolo	
	Modulo Elastico Normale Ec:	31475.0	MPa
	Resis. media a trazione fctm:	2.560	MPa
	Coeff. Omogen. S.L.E.:	15.00	
	Coeff. Omogen. S.L.E.:	15.00	
	Sc limite S.L.E. comb. Frequenti:	137.50	daN/cm ²
	Ap.Fessure limite S.L.E. comb. Freque	enti: 0.200	mm
	Sc limite S.L.E. comb. Q.Permanenti:	0.00	Мра
	Ap.Fess.limite S.L.E. comb. Q.Perm.:	0.200	mm
ACCIAIO -	Tipo:	B450C	
	Resist. caratt. snervam. fyk:	450.00	MPa
	Resist. caratt. rottura ftk:	450.00	MPa
	Resist. snerv. di progetto fyd:	391.30	MPa
	Resist. ultima di progetto ftd:	391.30	MPa
	Deform. ultima di progetto Epu:	0.068	
	Modulo Elastico Ef	2000000	daN/cm ²
	Diagramma tensione-deformaz.:	Bilineare finito	
	Coeff. Aderenza istantaneo ß1*ß2:	1.00	
	Coeff. Aderenza differito ß1*ß2:	0.50	
	Sf limite S.L.E. Comb. Rare:	337.50	MPa

Relazione di calcolo - Spalle - fase 1

COMMESSA NR1J LOTTO 01 D 29 CODIFICA CL DOCUMENTO VI0104 001 REV.

FOGLIO 88 di 172

Forma del Dominio: Circolare Classe Conglomerato: C25/30

Raggio circ.: 60.0 cm X centro circ.: 0.0 cm Y centro circ.: 0.0 cm

DATI GENERAZIONI CIRCOLARI DI BARRE

N°Gen. Numero assegnato alla singola generazione circolare di barre

Xcentro Ascissa [cm] del centro della circonf. lungo cui sono disposte le barre generate Ycentro Ordinata [cm] del centro della circonf. lungo cui sono disposte le barre genrate Raggio Raggio [cm] della circonferenza lungo cui sono disposte le barre generate N°Barre Numero di barre generate equidist. disposte lungo la circonferenza

Diametro [mm] della singola barra generata

N°Gen.	Xcentro	Ycentro	Raggio	N°Barre	Ø
1	0.0	0.0	51.3	32	30
2	0.0	0.0	46.5	16	30

CALCOLO DI RESISTENZA - SFORZI PER OGNI COMBINAZIONE ASSEGNATA

N Sforzo normale [kN] applicato nel Baric. (+ se di compressione)
Mx Momento flettente [kNm] intorno all'asse x princ. d'inerzia
con verso positivo se tale da comprimere il lembo sup. della sez.
My Momento flettente [kNm] intorno all'asse y princ. d'inerzia
con verso positivo se tale da comprimere il lembo destro della sez.
Vy Componente del Taglio [kN] parallela all'asse princ.d'inerzia y
Vx Componente del Taglio [kN] parallela all'asse princ.d'inerzia x

N°Comb.	N	Mx	Му	Vy	Vx
1	4713.62	198.39	-775.41	-254.24	-683.27
2	3861.01	-120.35	-406.46	-428.62	-637.67
3	4322.42	394.57	-1004.29	-244.01	-952.49
4	764.46	2908.23	847.67	337.20	-127.31
5	1069.62	1784.56	1353.03	136.16	7.48

COMB. RARE (S.L.E.) - SFORZI PER OGNI COMBINAZIONE ASSEGNATA

N Sforzo normale [kN] applicato nel Baricentro (+ se di compressione)

Mx Momento flettente [kNm] intorno all'asse x princ. d'inerzia (tra parentesi Mom.Fessurazione)

con verso positivo se tale da comprimere il lembo superiore della sezione

My Momento flettente [kNm] intorno all'asse y princ. d'inerzia (tra parentesi Mom.Fessurazione)

con verso positivo se tale da comprimere il lembo destro della sezione

N°Comb.	N	Mx	Му
1	3403.46	851.12	-82.35
2	1372.33	1526.03	143.29
3	1193.00	1045.36	463.29

COMB. FREQUENTI (S.L.E.) - SFORZI PER OGNI COMBINAZIONE ASSEGNATA

N Sforzo normale [kN] applicato nel Baricentro (+ se di compressione)

Mx Momento flettente [kNm] intorno all'asse x princ. d'inerzia (tra parentesi Mom.Fessurazione)

con verso positivo se tale da comprimere il lembo superiore della sezione

My Momento flettente [kNm] intorno all'asse y princ. d'inerzia (tra parentesi Mom.Fessurazione)

con verso positivo se tale da comprimere il lembo destro della sezione

N°Comb. N Mx My

Relazione di calcolo - Spalle - fase 1

COMMESSA LOTTO NR1J 01 D 29

CODIFICA CL

DOCUMENTO VI0104 001

REV. FOGLIO В

89 di 172

1	3315.57	640.74 (4708.02)	-114.63 (-842.28)
2	876.54	1502.82 (776.37)	120.62 (62.31)
3	1900.39	901.18 (926.80)	437.68 (450.12)

COMB. QUASI PERMANENTI (S.L.E.) - SFORZI PER OGNI COMBINAZIONE ASSEGNATA

Sforzo normale [kN] applicato nel Baricentro (+ se di compressione) N

Mx Momento flettente [kNm] intorno all'asse x princ. d'inerzia (tra parentesi Mom.Fessurazione)

con verso positivo se tale da comprimere il lembo superiore della sezione

Momento flettente [kNm] intorno all'asse y princ. d'inerzia (tra parentesi Mom.Fessurazione)

con verso positivo se tale da comprimere il lembo destro della sezione

N°Comb.	N	Mx	My
1	2975.13	425.19 (11636.21)	-34.13 (-735.97)
2	872.89	1044.05 (811.60)	116.81 (90.80)
3	1442.46	593.62 (928.43)	-353.82 (-553.38)

RISULTATI DEL CALCOLO

Му

Sezione verificata per tutte le combinazioni assegnate

VERIFICHE DI RESISTENZA IN PRESSO-TENSO FLESSIONE ALLO STATO LIMITE ULTIMO

Ver S = combinazione verificata / N = combin. non verificata

Sforzo normale assegnato [kN] nel baricentro B sezione cls.(positivo se di compressione) Ν

Мх Componente del momento assegnato [kNm] riferito all'asse x princ. d'inerzia Componente del momento assegnato [kNm] riferito all'asse y princ. d'inerzia Sforzo normale resistente [kN] nel baricentro B sezione cls. (positivo se di compress.) Momento flettente resistente [kNm] riferito all'asse x princ. d'inerzia My N Res

Mx Res My Res Momento flettente resistente [kNm] riferito all'asse y princ. d'inerzia Mis.Sic. Misura sicurezza = rapporto vettoriale tra (N r,Mx Res,My Res) e (N,Mx,My)

Verifica positiva se tale rapporto risulta >=1.000

As Totale Area totale barre longitudinali [cm²]. [Tra parentesi il valore minimo di normativa]

N°Comb	Ver	N	Mx	My	N Res	Mx Res	My Res	Mis.Sic. As Totale
1	S	4713.62	198.39	-775.41	4713.67	1408.23	-5521.00	7.12 339.3(33.9)
2	S	3861.01	-120.35	-406.46	3860.78	-1592.98	-5413.18	13.31 339.3(33.9)
3	S	4322.42	394.57	-1004.29	4322.48	2073.13	-5277.06	5.25 339.3(33.9)
4	S	764.46	2908.23	847.67	764.29	5031.36	1459.82	1.73 339.3(33.9)
5	S	1069.62	1784.56	1353.03	1069.51	4221.82	3194.44	2.36 339.3(33.9)

METODO AGLI STATI LIMITE ULTIMI - DEFORMAZIONI UNITARIE ALLO STATO ULTIMO

ec max	Deform. unit. massima del conglomerato a compressione
	Deform. unit. massima del conglomerato a compressione
Xc max	Ascissa in cm della fibra corrisp. a ec max (sistema rif. X,Y,O sez.)
Yc max	Ordinata in cm della fibra corrisp. a ec max (sistema rif. X,Y,O sez.)
es min	Deform. unit. minima nell'acciaio (negativa se di trazione)
Xs min	Ascissa in cm della barra corrisp. a es min (sistema rif. X,Y,O sez.)
Ys min	Ordinata in cm della barra corrisp. a es min (sistema rif. X,Y,O sez.)
es max	Deform. unit. massima nell'acciaio (positiva se di compress.)
Xs max	Ascissa in cm della barra corrisp. a es max (sistema rif. X,Y,O sez.)
Ys max	Ordinata in cm della barra corrisp. a es max (sistema rif. X,Y,O sez.)

$N^{\circ}Comb$	ec max	Xc max	Yc max	es min	Xs min	Ys min	es max	Xs max	Ys max
1	0.00350	-58.1	59.8	0.00295	-50.3	10.0	-0.00349	50.3	-10.0
2	0.00350	-57.5	59.6	0.00291	-50.3	-10.0	-0.00384	50.3	10.0
3	0.00350	-55.8	51.5	0.00294	-47.4	19.6	-0.00367	47.4	-19.6
4	0.00350	16.8	57.6	0.00278	10.0	50.3	-0.00554	-10.0	-50.3
5	0.00350	36.3	47.8	0.00280	28.5	42.7	-0.00535	-28.5	-42.7

Relazione di calcolo - Spalle - fase 1

COMMESSA LOTTO NR1J 01 D 29

CODIFICA CL

DOCUMENTO VI0104 001

REV FOGLIO В 90 di 172

POSIZIONE ASSE NEUTRO PER OGNI COMB. DI RESISTENZA

a, b, c Coeff. a, b, c nell'eq. dell'asse neutro aX+bY+c=0 nel rif. X,Y,O gen. Rapp. di duttilità (travi e solette)[§ 4.1.2.1.2.1 NTC]: deve essere < 0.45 x/d

C.Rid. Coeff. di riduz. momenti per sola flessione in travi continue

C.Rid.	x/d	С	b	a	N°Comb
		-0.000270901	0.000015578	-0.000060887	1
		-0.000464414	-0.000018759	-0.000063355	2
		-0.000363971	0.000023549	-0.000059939	3
		-0.001381240	0.000078104	0.000022765	4
		-0 001272749	0.000063387	0.000048059	5

VERIFICHE A TAGLIO

Ver	S=	100	nb. veri	fica	ıta	а	taglio / N =	CO	mb	١.	non	verificata	

Taglio di progetto [kN] = proiez. di Vx e Vy sulla normale all'asse neutro Ved Vcd Taglio compressione resistente [kN] lato conglomerato [formula (4.1.28)NTC]

Taglio resistente [kN] assorbito dalle staffe [(4.1.18) NTC] Vwd

Altezza utile media pesata sezione ortogonale all'asse neutro | Braccio coppia interna [cm] d | z

Vengono prese nella media le strisce con almeno un estremo compresso. I pesi della media sono costituiti dalle stesse lunghezze delle strisce. Larghezza media resistente a taglio [cm] misurate parallel. all'asse neutro

bw E' data dal rapporto tra l'area delle sopradette strisce resistenti e Dmed. Cotangente dell'angolo di inclinazione dei puntoni di conglomerato Ctg Coefficiente maggiorativo della resistenza a taglio per compressione Acw Ast Area staffe+legature strettam. necessarie a taglio per metro di pil.[cm²/m] A.Eff Area staffe+legature efficaci nella direzione del taglio di combinaz.[cm²/m] Tra parentesi è indicata la quota dell'area relativa alle sole legature.

L'area della legatura è ridotta col fattore L/d_max con L=lungh.legat.proiettata sulla direz. del taglio e d_max= massima altezza utile nella direz.del taglio.

N°Comb	Ver	Ved	Vcd	Vwd	d z	bw	Ctg	Acw	Ast	A.Eff
1	S	598.93	2506.33	1532.96	93.1 75.1	109.3	2.500	1.250	8.2	20.9(0.0)
2	S	733.12	2528.00	1557.26	93.1 76.1	109.6	2.500	1.241	9.8	20.9(0.0)
3	S	797.30	2525.97	1540.85	93.1 75.6	109.5	2.500	1.250	10.8	20.8(0.0)
4	S	288.10	2241.02	1639.66	93.7 80.2	109.3	2.500	1.048	3.7	20.9(0.0)
5	S	113.02	2269.96	1628.84	93.7 79.8	109.2	2.500	1.067	1.4	20.9(0.0)

COMBINAZIONI RARE IN ESERCIZIO - MASSIME TENSIONI NORMALI ED APERTURA FESSURE (NTC/EC2)

Ver S = comb. verificata/ N = comb. non verificata

Sc max Massima tensione (positiva se di compressione) nel conglomerato [Mpa] Xc max, Yc max Ascissa, Ordinata [cm] del punto corrisp. a Sc max (sistema rif. X,Y,O) Minima tensione (negativa se di trazione) nell'acciaio [Mpa] Sf min

Xs min, Ys min Ascissa, Ordinata [cm] della barra corrisp. a Sf min (sistema rif. X,Y,O) Ac eff. Area di calcestruzzo [cm²] in zona tesa considerata aderente alle barre Area barre [cm²] in zona tesa considerate efficaci per l'apertura delle fessure As eff.

N°Comb	Ver	Sc max	Xc max \	c max	Sf min	Xs min	Ys min	Ac eff.	As eff.
1	S	5.28	-5.8	0.0	-11.0	0.0	-51.3	402	14.1
2	S	7.92	5.6	0.0	-119.2	0.0	-51.3	1378	77.8
3	S	5.95	24.3	0.0	-84.4	-19.6	-47.4	1324	70.7

COMBINAZIONI RARE IN ESERCIZIO - APERTURA FESSURE [§ 7.3.4 EC2]

La sezione viene assunta sempre fessurata anche nel caso in cui la trazione minima del calcestruzzo sia inferiore a fctm

Ver. Esito della verifica

e1 Massima deformazione unitaria di trazione nel calcestruzzo (trazione -) valutata in sezione fessurata

Relazione di calcolo – Spalle – fase 1

COMMESSA LOTTO CODIFICA DOCUMENTO REV. FOGLIO NRIJ 01 D 29 CL VI0104 001 B 91 di 172

e2 k1 kt k2 k3 k4 Ø Cf e sm sr ma wk Mx fe	ess.	= 0.8 per bar = 0.4 per co = 0.5 per fles = 3.400 Coeff = 0.425 Coef Diametro [mn Copriferro [m Differenza tra Tra parentesi Massima dist	re ad adere mb. quasi p sione; =(e1 f. in eq.(7.1 f. in eq.(7.1 m] equivaler m] netto cal le deforma : valore mir anza tra le fure in mm o momento d	ernza miglio ermanenti + e2)/(2*e ⁻ 1) come da 1) come da te delle ba colato con zioni medie imo = 0.6 s fessure [mr calcolata = i prima fesi	rata [eq.(i / = 0.6 pe 1) per traz annessi annessi rre tese c riferimen e di accia Smax / Es n] sr max*(e surazione	7.11)EC2] In comb.frequeione eccentinazionali nazionali omprese nel to alla barra o e calcestrus [(7.9)EC2] In e. sm - e. cm intorno all'a	uzzo [(7.8)EC2 e (C4.1.7)NTC] e (C4.1.8)NTC]) [(7.8)EC2 e (C4.1.7)NTC]. Valor sse X [kNm]	C2]			
Comb.	Ver	e1	e2	k2	Ø	Cf	e sm - e cm s	r max	wk	Mx fess	My fess
1	S	-0.00009	0	0.500	30.0	72	0.00003 (0.00003)	390	0.013 (0.20)	2098.48	-203.04
2	S	-0.00069	0	0.500	30.0	72	0.00041 (0.00036)	335	0.138 (0.20)	823.42	77.32
3	S	-0.00049	0	0.500	30.0	72	0.00025 (0.00025)	340	0.086 (0.20)	778.82	345.16
COMPIN	I A ZIONII	EDECUENTUN	FOFDOIZ		OOME T	ENGLONIA	IODMALLED ADEDTUDA EI	COLUDI	F (NTO/FOO)		

COMBINAZIONI FREQUENTI IN ESERCIZIO - MASSIME TENSIONI NORMALI ED APERTURA FESSURE (NTC/EC2)

N°Comb	Ver	Sc max	Xc max	Yc max	Sf min	Xs min	Ys min	Ac eff.	As eff.
1	S	4.40	-10.6	0.0	-0.3	10.0	-50.3	313	7.1
2	S	7.64	4.8	0.0	-131.6	0.0	-51.3	1492	77.8
3	S	5.45	26.2	0.0	-51.1	-19.6	-47.4	995	56.5

COMBINAZIONI FREQUENTI IN ESERCIZIO - APERTURA FESSURE [§ 7.3.4 EC2]

Comb.	Ver	e1	e2	k2	Ø	Cf	e sm - e cm s	r max	wk	Mx fess	My fess
1	S	-0.00003	0	0.500	30.0	72	0.00000 (0.00000)	471	0.000 (0.20)	4708.02	-842.28
2	S	-0.00076	0	0.500	30.0	72	0.00046 (0.00039)	343	0.158 (0.20)	776.37	62.31
3	S	-0.00031	0	0.500	30.0	72	0.00015 (0.00015)	335	0.051 (0.20)	926.80	450.12

COMBINAZIONI QUASI PERMANENTI IN ESERCIZIO - MASSIME TENSIONI NORMALI ED APERTURA FESSURE (NTC/EC2)

As eff.	Ac eff.	Ys min	Xs min	Sf min	Yc max	Xc max	Sc max	Ver	N°Comb
		-51.3	0.0	7.4	0.0	-4.8	3.37	S	1
77.8	1402	-50.3	-10.0	-83.8	0.0	6.7	5.41	S	2
56.5	922	-42.7	28.5	-32.1	0.0	-30.7	3.79	S	3

COMBINAZIONI QUASI PERMANENTI IN ESERCIZIO - APERTURA FESSURE [§ 7.3.4 EC2]

Comb.	Ver	e1	e2	k2	Ø	Cf	e sm - e cm sr	max	wk	Mx fess	My fess
1	S	-0.00001	0						0.000 (0.20)	11636.21	-735.97
2	S	-0.00048	0	0.500	30.0	72	0.00029 (0.00025)	337	0.099 (0.20)	811.60	90.80
3	S	-0.00020	0	0.500	30.0	72	0.00010 (0.00010)	328	0.032 (0.20)	928.43	-553.38

10.5.2 Calcolo del carico limite orizzontale

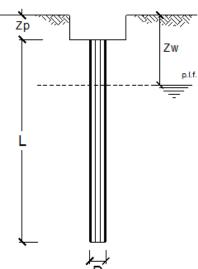
La condizione dimensionante è una condizione sismica considerando l'effetto di gruppo tramite un coefficiente di efficienza pari a 0.8 (in tabella R=1.3/0.8=1.625).

								_	I			1
		nti parziali		permanenti	variabili	M		R	quota	a strato 1		i ////// 1
	Metodo	di calcolo		γG	70	γφ'	You	ŸΤ		q. fal	da	1/: </th
	A1+M1+R		0	1.30	1.50	1.00	1.00	1.00	nunta	strato 2		
SLU	A2+M1+R		0	1.00	1.30	1.00	1.00	1.60	quota	311 410 2	∄ ⊩	
0,	A1+M1+R SISMA	(3	0 0	1.30	1.50 1.00	1.00	1.00	1.30				
DM88	SISIVIA		0	1.00	1.00	1.00	1.00	1.00		:		
	al progettist	a	•	1.00	1.00	1.00	1.00	1.63	quota	strato		
											~	
n	1	2	3	4	5	7	≥10	T.A.	prog.		4	
<u>ځ</u> 3	1.70	1.65	1.60	1.55	1.50	1.45	1.40	1.00	1.00			
53 ξ 4	1.70	1.55	1.48	1.42	1.34	1.43	1.40	1.00	1.00			
54	1.70	1.55	1.40	1.42	1.04	1.20	1.21	1.00	1.00			
		I		1				Parametri m	odi	Pa	יםן rametri minii	mi
strati	terreno	descr	izione	quote	γ	γ'	φ	k _p	Cu	φ	k _p	Cu
				(m)	(kN/m³)	(kN/m³)	(°)	_	(kPa)	(°)		(kPa
o.c.=stra	ito 1			100.00	17	7	32	3.25		32	3.25	
✓ strato	2			72.00	17	7	32	3.25		32	3.25	
strato	3							1.00			1.00	
strato	4							1.00			1.00	
strato	5							1.00			1.00	
strato	6							1.00			1.00	
Quota fa	ılda				82	(m)						
Diametr	o del palo	D			1.20	(m)						
unghez	za del palo	L			28.00	(m)						
Moment	o di plastic	izzazione	palo My		4979.33	(kNm)						
Step di	calcolo				0.01	(m)						
					0.01	()						
	impedito d	i ruotare				alcolo						
ି palo l	libero				(ctrl+r)						
Palo lun	ao.			H medio 2813.4	(kN)				H minimo 2813.4	(kN)		
	ermedio			19695.5	(kN)				19695.5	(kN)		
Palo cor				72220.6	(kN)				72220.6	(kN)		
alo coi	10			12220.0	(1(14)				12220.0	(1(14)		
			H _{med}	2813.4	(kN)	Palo lung	0	H _{min}	2813.4	(kN)	Palo lur	igo
			H _k	= Min(H me	ط/ارع ; R _{min}	اگ _ه)		165	4.91	(kN)		
				$H_d = H_k/\gamma_T$					8.41	(kN)		
			Carina A				G =		85			
				ssiale Perm ssiale varia			Q =	9	00	(kN) (kN)		
			F.=	·G·γ _G +Q·	ν _ο =			QQ	5.00	(kN)		
										(Alt)		
			F	S = Hd / Fd	=			1.	03			

10.5.3 Capacità portante

CALCOLO DELLA CAPACITA' PORTANTE DI UN PALO TRIVELLATO DI GRANDE DIAMETRO

CANTIERE: OPERA:


DATI DI INPUT:

Diametro del Palo (D): 1.20 Area del Palo (Ap): 1.131 (m²)(m) Quota testa Palo dal p.c. (z_o): 3.00 (m) Quota falda dal p.c. (zw): 18.00 (m) Carico Assiale Permanente (G): 5545 (kN) Carico Assiale variabile (Q): (kN)

Numero di strati 1 🛨 Lpalo = 28.00 (m)

	coefficienti parz	enti parziali azioni resistenza laterale e					e di base
	Metodo di calco	ılo	permanenti	variabili	γь	γs	7s traz
	motodo di carco		ΊG	γο	10	18	78 traz
	A1+M1+R1	0	1.30	1.50	1.00	1.00	1.00
SLU	A2+M1+R2	0	1.00	1.30	1.70	1.45	1.60
ഗ	A1+M1+R3	0	1.30	1.50	1.35	1.15	1.25
	SISMA	0	1.00	1.00	1.35	1.15	1.25
DM88		0	1.00	1.00	1.00 1.00		1.00
definit	i dal progettista	•	1.00	1.00	1.35 1.15 1		1.25

n	1	2	3 (40	5 ()	7 O	≥10 ○	T.A.	prog.
ξ3	1.70	1.65	1.60	1.55	1.50	1.45	1.40	1.00	1.00
<u></u> <u> </u>	1.70	1.55	1.48	1.42	1.34	1.28	1.21	1.00	1.00

DΛ	D٨	ME.	TDI	M	FΠ

Strato	Spess		P		del terren	10
Strato	spess	Tipo di terreno	γ	C' med	φ' med	C _{u med}
(-)	(m)		(kN/m³)	(kPa)	(°)	(kPa)
1	28.00		17.00	5.0	32.0	

C	oefficient	i di Calcol	0
k	μ	a	Œ.
(-)	(-)	(-)	(-)
0.47	0.62		

 $Relazione\ di\ calcolo\ -\ Spalle\ -\ fase\ 1$

COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
NR1J	01 D 29	CL	VI0104 001	В	94 di 172

RISULTATI

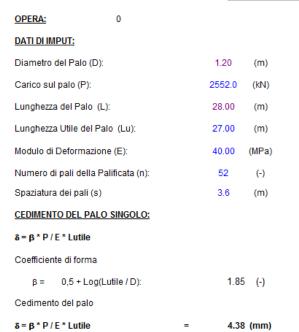
Strato	Spess				media				mini	ma (solo	SLU)	
Strato	Spess	Tipo di terreno	Qsi	Nq	Nc	qb	Qbm	Qsi	Nq	Nc	qb	Qbm
(-)	(m)		(kN)	(-)	(-)	(kPa)	(kN)	(kN)	(-)	(-)	(kPa)	(kN)
1	28.00		8025.1	19.47	29.56	7878.0	8909.8	8025.1	19.47	29.56	7878.0	8909.8

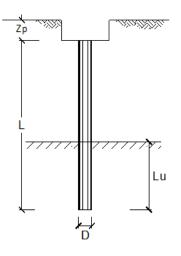
CARICO ASSIALE AGENTE	CAPACIT	A' PORTANTE MED	<u>IA</u>	CAPACIT	A' PORTANTE MINIMA	
$Nd = N_G \cdot \gamma_G + N_Q \cdot \gamma_Q$	base	$R_{b;cal\ med} =$	8909.8 (kN)	base	R _{b;cal min} =	8909.8 (kN)
Nd = 5545.0 (kN)	laterale	$R_{s;cal\ med} =$	8025.1 (kN)	laterale	R _{s;cal min} =	8025.1 (kN)
	totale	$R_{c;cal\ med} =$	16934.9 (kN)	totale	R _{c;cal min} =	16934.9 (kN)

CAPACITA' PORTANTE CARATTERISTICA	CAPACITA' PORTANTE DI PROGETTO		
$R_{b,k} = Min(R_{b,cal\ med}/\xi_3; R_{b,cal\ min}/\xi_4) = 5241.1 (kN)$	$R_{c,d} = R_{bk}/\gamma b + R_{sk}/\gamma s$	Fs = R	c,d / Nd
$R_{s,k} = Min(R_{s,cal\ med}/\xi_3 ; R_{s,cal\ min}/\xi_4) = 4720.7 \text{ (kN)}$	$R_{c,d} = 7987.2 \text{ (kN)}$	Fs =	1.44
$R_{c,k} = R_{b,k} + R_{s,k}$ = 9961.7 (kN)			

Inoltre si è anche verificato che, per la lunghezza palo di progetto, la massima sollecitazione assiale allo SLE RARA sia inferiore alla portata laterale limite del palo (QII):

 $N_{sle\;rara} = 4020\;*1.25 = 5025\;kN < 8025\;kN$


Relazione di calcolo – Spalle – fase 1


COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
NR1J	01 D 29	CL	VI0104 001	В	95 di 172

10.5.4 Cedimento della palificata

Viene calcolato il cedimento, dovuto alle azioni da combinazione SLE rara, del singolo palo e successivamente della palificata, utilizzando la teoria riportata in letteratura (Viggiani, 1999). La verifica è fatta per una combinazione SLE quasi permanente. Si considera il valore medio, sul totale di pali, per la combinazione che fornisce la forza massima ne deriva una forza di $P_{med} = 2552kN$.

CALCOLO DEL CEDIMENTO DELLA PALIFICATA

CEDIMENTO DELLA PALIFICATA: $\delta p = Rs * \delta = n * Rg * \delta$

Coefficiente di Gruppo

 $Rg = 0.5 / R + 0.13 / R^2$ (Viggiani, 1999)

 $R = (n * s / L)^{0.5}$ R = 2.586

Cedimento della palificata

 $\delta p = n * Rg * \delta =$ 52 * 0.21 * 4.38 = 48.43 (mm)

Relazione di calcolo - Spalle - fase 1

COMMESSA LOTTO CODIFICA DO NRIJ 01 D 29 CL V

 DOCUMENTO
 REV.
 FOGLIO

 VI0104 001
 B
 96 di 172

11 TABULATO COMBINAZIONI DI CARICO

Table: Combination Definitions

ComboNam	e CaseType	CaseNa	me Scale	Factor
STR_01	Linear Static	DEAD	1.35	
STR_01	Linear Static	G2	1.5	
STR_01	Linear Static	q1k	0	
STR_01	Linear Static q3-C	Carichi frenat	ura	0
STR_01	Linear Static q -	marciapiedi	0	
STR_01	Linear Static Sp	alla temp F+	0	
STR_01	Linear Static Sp	alla temp F-	0	
STR_01	Linear Static Sp	alla temp U+	- 0	
STR_01	Linear Static Sp	alla temp U-	0	
STR_01	Linear Static	q_ritiro	0	
STR_01 R	esponse Spectrum	Sism SL	λVX	0
STR_01 R	esponse Spectrum	Sism SL	VΥ	0
STR_01 R	esponse Spectrum	Sism SL	νZ	0
STR_01	Linear Static Sisn	na X - da imp	alcato	0
STR_01	Linear Static Sisn	na Y - da imp	alcato	0
STR_01	Linear Static Sisn	na Z - da imp	alcato	0
STR_01	Linear Static Spal	la Spinta X_	SLV	0
STR_01	Linear Static Spal	la Spinta Y_	SLV	0
STR_01	Linear Static Spal	la Spinta Z_S	SLV	0
STR_02	Linear Static	DEAD	1.35	
STR_02	Linear Static	G2	1.5	
STR_02	Linear Static	q1k	1.45	
STR_02	Linear Static q3-0	Carichi frenat	ura	1.45
STR_02	Linear Static q -	marciapiedi	0	
STR_02	Linear Static Sp	alla temp F+	0	
STR_02	Linear Static Sp	alla temp F-	0	
STR_02	Linear Static Sp	alla temp U+	- 0	
STR_02	Linear Static Sp	alla temp U-	0	
STR_02	Linear Static	q_ritiro	0	
STR_02 R	esponse Spectrum	Sism SL	VX	0

 $Relazione\ di\ calcolo\ -\ Spalle\ -\ fase\ 1$

COMMESSA LOTTO CODIFICA DOCUMENTO REV. FOGLIO NR1J 01 D 29 CL VI0104 001 B 97 di 172

STR_02 F	Response Spectrum Sism SLV Y	0
STR_02 F	Response Spectrum Sism SLV Z	0
STR_02	Linear Static Sisma X - da impalcato	0
STR_02	Linear Static Sisma Y - da impalcato	0
STR_02	Linear Static Sisma Z - da impalcato	0
STR_02	Linear Static Spalla Spinta X_SLV	0
STR_02	Linear Static Spalla Spinta Y_SLV	0
STR_02	Linear Static Spalla Spinta Z_SLV	0
STR_03	Linear Static DEAD 1.35	
STR_03	Linear Static G2 1.5	
STR_03	Linear Static q1k 1.45	
STR_03	Linear Static q3-Carichi frenatura 1	.45
STR_03	Linear Static q - marciapiedi 0	
STR_03	Linear Static Spalla temp F+ 0	
STR_03	Linear Static Spalla temp F- 0	
STR_03	Linear Static Spalla temp U+ 0	
STR_03	Linear Static Spalla temp U- 0	
STR_03	Linear Static q_ritiro 0	
STR_03 F	Response Spectrum Sism SLV X	0
STR_03 R	Response Spectrum Sism SLV Y	0
STR_03 F	Response Spectrum Sism SLV Z	0
STR_03	Linear Static Sisma X - da impalcato	0
STR_03	Linear Static Sisma Y - da impalcato	0
STR_03	Linear Static Sisma Z - da impalcato	0
STR_03	Linear Static Spalla Spinta X_SLV	0
STR_03	Linear Static Spalla Spinta Y_SLV	0
STR_03	Linear Static Spalla Spinta Z_SLV	0
STR_04	Linear Static DEAD 1.35	
STR_04	Linear Static G2 1.5	
STR_04	Linear Static q1k 1.45	
STR_04	Linear Static q3-Carichi frenatura 1	.45
STR_04	Linear Static q - marciapiedi 0	
STR_04	Linear Static Spalla temp F+ 0	
STR_04	Linear Static Spalla temp F- 0	
STR_04	Linear Static Spalla temp U+ 0	
STR_04	•	
STR_04	Linear Static q_ritiro 1.2	
_	-	

 $Relazione\ di\ calcolo\ -\ Spalle\ -\ fase\ 1$

STR_04	Response Spectrum Sism SLV X	0
STR_04	Response Spectrum Sism SLV Y	0
STR_04	Response Spectrum Sism SLV Z	0
STR_04	Linear Static Sisma X - da impalcato	0
STR_04	Linear Static Sisma Y - da impalcato	0
STR_04	Linear Static Sisma Z - da impalcato	0
STR_04	Linear Static Spalla Spinta X_SLV	0
STR_04	Linear Static Spalla Spinta Y_SLV	0
STR_04	Linear Static Spalla Spinta Z_SLV	0
STR_05	Linear Static DEAD 1.35	
STR_05	Linear Static G2 1.5	
STR_05	Linear Static q1k 1.45	
STR_05	Linear Static q3-Carichi frenatura	1.45
STR_05	Linear Static q - marciapiedi 0	ı
STR_05	Linear Static Spalla temp F+	O
STR_05	Linear Static Spalla temp F-)
STR_05	Linear Static Spalla temp U+	0
STR_05	Linear Static Spalla temp U-)
STR_05	Linear Static q_ritiro 1.2	
STR_05	Response Spectrum Sism SLV X	0
STR_05	Response Spectrum Sism SLV Y	0
STR_05	Response Spectrum Sism SLV Z	0
STR_05	Linear Static Sisma X - da impalcato	0
STR_05	Linear Static Sisma Y - da impalcato	0
STR_05	Linear Static Sisma Z - da impalcato	0
STR_05	Linear Static Spalla Spinta X_SLV	0
STR_05	Linear Static Spalla Spinta Y_SLV	0
STR_05	Linear Static Spalla Spinta Z_SLV	0
STR_06	Linear Static DEAD 1.35	
STR_06	Linear Static G2 1.5	
STR_06	Linear Static q1k 1.45	
STR_06	Linear Static q3-Carichi frenatura	1.45
STR_06	Linear Static q - marciapiedi 0	ı
STR_06	Linear Static Spalla temp F+ 0.7	72
STR_06	Linear Static Spalla temp F-)
STR_06	Linear Static Spalla temp U+	0
STR_06	Linear Static Spalla temp U-)

 $Relazione\ di\ calcolo\ -\ Spalle\ -\ fase\ 1$

COMMESSA LOTTO CODIFICA DOCUMENTO REV. FOGLIO NR1J 01 D 29 CL VI0104 001 B 99 di 172

STR_06	Linear Static q_ritiro 0	
STR_06 F	Response Spectrum Sism SLV X	0
STR_06 F	Response Spectrum Sism SLV Y	0
STR_06 F	Response Spectrum Sism SLV Z	0
STR_06	Linear Static Sisma X - da impalcato	0
STR_06	Linear Static Sisma Y - da impalcato	0
STR_06	Linear Static Sisma Z - da impalcato	0
STR_06	Linear Static Spalla Spinta X_SLV	0
STR_06	Linear Static Spalla Spinta Y_SLV	0
STR_06	Linear Static Spalla Spinta Z_SLV	0
STR_07	Linear Static DEAD 1.35	
STR_07	Linear Static G2 1.5	
STR_07	Linear Static q1k 1.45	
STR_07	Linear Static q3-Carichi frenatura 1	.45
STR_07	Linear Static q - marciapiedi 0	
STR_07	Linear Static Spalla temp F+ 0.72	
STR_07	Linear Static Spalla temp F- 0	
STR_07	Linear Static Spalla temp U+ 0	
STR_07	Linear Static Spalla temp U- 0	
STR_07	Linear Static q_ritiro 0	
STR_07 F	Response Spectrum Sism SLV X	0
STR_07 F	Response Spectrum Sism SLV Y	0
STR_07 F	Response Spectrum Sism SLV Z	0
STR_07	Linear Static Sisma X - da impalcato	0
STR_07	Linear Static Sisma Y - da impalcato	0
STR_07	Linear Static Sisma Z - da impalcato	0
STR_07	Linear Static Spalla Spinta X_SLV	0
STR_07	Linear Static Spalla Spinta Y_SLV	0
STR_07	Linear Static Spalla Spinta Z_SLV	0
STR_08	Linear Static DEAD 1.35	
STR_08	Linear Static G2 1.5	
STR_08	Linear Static q1k 1.45	
STR_08	Linear Static q3-Carichi frenatura 1	.45
STR_08	Linear Static q - marciapiedi 0	
STR_08	Linear Static Spalla temp F+ 0.72	
STR_08	Linear Static Spalla temp F- 0	
STR_08	Linear Static Spalla temp U+ 0	

 $Relazione\ di\ calcolo\ -\ Spalle\ -\ fase\ 1$

COMMESSA LOTTO CODIFICA DOCUMENTO REV. FOGLIO

NR1J 01 D 29 CL VI0104 001 B 100 di 172

STR_08	Linear Static Spalla temp U- 0	
STR_08	Linear Static q_ritiro 1.2	
STR_08 R	Response Spectrum Sism SLV X	0
STR_08 R	Response Spectrum Sism SLV Y	0
STR_08 R	Response Spectrum Sism SLV Z	0
STR_08	Linear Static Sisma X - da impalcato	0
STR_08	Linear Static Sisma Y - da impalcato	0
STR_08	Linear Static Sisma Z - da impalcato	0
STR_08	Linear Static Spalla Spinta X_SLV	0
STR_08	Linear Static Spalla Spinta Y_SLV	0
STR_08	Linear Static Spalla Spinta Z_SLV	0
STR_09	Linear Static DEAD 1.35	
STR_09	Linear Static G2 1.5	
STR_09	Linear Static q1k 1.45	
STR_09	Linear Static q3-Carichi frenatura	1.45
STR_09	Linear Static q - marciapiedi 0	
STR_09	Linear Static Spalla temp F+ 0.77	2
STR_09	Linear Static Spalla temp F- 0	
STR_09	Linear Static Spalla temp U+ 0	
STR_09	Linear Static Spalla temp U- 0	
STR_09	Linear Static q_ritiro 1.2	
STR_09 R	Response Spectrum Sism SLV X	0
STR_09 R	Response Spectrum Sism SLV Y	0
STR_09 R	Response Spectrum Sism SLV Z	0
STR_09	Linear Static Sisma X - da impalcato	0
STR_09	Linear Static Sisma Y - da impalcato	0
STR_09	Linear Static Sisma Z - da impalcato	0
STR_09	Linear Static Spalla Spinta X_SLV	0
STR_09	Linear Static Spalla Spinta Y_SLV	0
STR_09	Linear Static Spalla Spinta Z_SLV	0
STR_10	Linear Static DEAD 1.35	
STR_10	Linear Static G2 1.5	
STR_10	Linear Static q1k 1.45	
STR_10	Linear Static q3-Carichi frenatura	1.45
STR_10	Linear Static q - marciapiedi 0	
STR_10	Linear Static Spalla temp F+ 0	
STR_10	Linear Static Spalla temp F- 0.72	!

 $Relazione\ di\ calcolo\ -\ Spalle\ -\ fase\ 1$

COMMESSA LOTTO CODIFICA DOCUMENTO REV. FOGLIO NRIJ 01 D 29 CL VI0104 001 B 101 di 172

STR_10	Linear Static	Spalla temp U+	0
STR_10	Linear Static	Spalla temp U-	0
STR_10	Linear Static	q_ritiro	0
STR_10 R	esponse Spectr	um Sism SLV	X 0
STR_10 R	esponse Spectr	um Sism SLV	Y 0
STR_10 R	esponse Spectr	um Sism SLV	Z 0
STR_10	Linear Static S	Sisma X - da impal	cato 0
STR_10	Linear Static S	Sisma Y - da impal	cato 0
STR_10	Linear Static S	Sisma Z - da impal	cato 0
STR_10	Linear Static S	Spalla Spinta X_SI	LV 0
STR_10	Linear Static S	Spalla Spinta Y_SI	_V 0
STR_10	Linear Static S	Spalla Spinta Z_SL	.V 0
STR_11	Linear Static	DEAD	1.35
STR_11	Linear Static	G2 1	.5
STR_11	Linear Static	q1k 1.	.45
STR_11	Linear Static o	₁ 3-Carichi frenatur	ra 1.45
STR_11	Linear Static	q - marciapiedi	0
STR_11	Linear Static	Spalla temp F+	0
STR_11	Linear Static	Spalla temp F-	0.72
STR_11	Linear Static	Spalla temp U+	0
STR_11	Linear Static	Spalla temp U-	0
STR_11	Linear Static	q_ritiro	0
STR_11 R	esponse Spectr	um Sism SLV	X 0
STR_11 R	esponse Spectr	um Sism SLV	Y 0
STR_11 R	esponse Spectr	um Sism SLV	\mathbf{Z} 0
STR_11	Linear Static S	Sisma X - da impal	cato 0
STR_11	Linear Static S	Sisma Y - da impal	cato 0
STR_11	Linear Static S	Sisma Z - da impal	cato 0
STR_11	Linear Static S	Spalla Spinta X_SI	LV 0
STR_11	Linear Static S	Spalla Spinta Y_SI	_V 0
STR_11	Linear Static S	Spalla Spinta Z_SL	LV 0
STR_12	Linear Static	DEAD	1.35
STR_12	Linear Static	G2 1	.5
STR_12	Linear Static	q1k 1.	.45
STR_12	Linear Static o	₁ 3-Carichi frenatur	ra 1.45
STR_12	Linear Static	q - marciapiedi	0
STR_12	Linear Static	Spalla temp F+	0

 $Relazione\ di\ calcolo\ -\ Spalle\ -\ fase\ 1$

COMMESSA CODIFICA DOCUMENTO REV. FOGLIO LOTTO NR1J 01 D 29 \mathbf{CL} VI0104 001 В 102 di 172

STR_12	Linear Static Spalla temp F- 0.72	
STR_12	Linear Static Spalla temp U+ 0	
STR_12	Linear Static Spalla temp U- 0	
STR_12	Linear Static q_ritiro 1.2	
STR_12 R	Response Spectrum Sism SLV X	0
STR_12 R	Response Spectrum Sism SLV Y	0
STR_12 R	Response Spectrum Sism SLV Z	0
STR_12	Linear Static Sisma X - da impalcato	0
STR_12	Linear Static Sisma Y - da impalcato	0
STR_12	Linear Static Sisma Z - da impalcato	0
STR_12	Linear Static Spalla Spinta X_SLV	0
STR_12	Linear Static Spalla Spinta Y_SLV	0
STR_12	Linear Static Spalla Spinta Z_SLV	0
STR_13	Linear Static DEAD 1.35	
STR_13	Linear Static G2 1.5	
STR_13	Linear Static q1k 1.45	
STR_13	Linear Static q3-Carichi frenatura 1.	45
STR_13	Linear Static q - marciapiedi 0	
STR_13	Linear Static Spalla temp F+ 0	
STR_13	Linear Static Spalla temp F- 0.72	
STR_13	Linear Static Spalla temp U+ 0	
STR_13	Linear Static Spalla temp U- 0	
STR_13	Linear Static q_ritiro 1.2	
STR_13 R	Response Spectrum Sism SLV X	0
STR_13 R	Response Spectrum Sism SLV Y	0
STR_13 R	Response Spectrum Sism SLV Z	0
~		
STR_13	Linear Static Sisma X - da impalcato	0
STR_13 STR_13	Linear Static Sisma X - da impalcato Linear Static Sisma Y - da impalcato	0
		_
STR_13	Linear Static Sisma Y - da impalcato	0
STR_13 STR_13	Linear Static Sisma Y - da impalcato Linear Static Sisma Z - da impalcato	0
STR_13 STR_13 STR_13	Linear Static Sisma Y - da impalcato Linear Static Sisma Z - da impalcato Linear Static Spalla Spinta X_SLV	0 0 0
STR_13 STR_13 STR_13 STR_13	Linear Static Sisma Y - da impalcato Linear Static Sisma Z - da impalcato Linear Static Spalla Spinta X_SLV Linear Static Spalla Spinta Y_SLV	0 0 0 0
STR_13 STR_13 STR_13 STR_13	Linear Static Sisma Y - da impalcato Linear Static Sisma Z - da impalcato Linear Static Spalla Spinta X_SLV Linear Static Spalla Spinta Y_SLV Linear Static Spalla Spinta Z_SLV	0 0 0 0
STR_13 STR_13 STR_13 STR_13 STR_14	Linear Static Sisma Y - da impalcato Linear Static Sisma Z - da impalcato Linear Static Spalla Spinta X_SLV Linear Static Spalla Spinta Y_SLV Linear Static Spalla Spinta Z_SLV Linear Static DEAD 1.35	0 0 0 0
STR_13 STR_13 STR_13 STR_13 STR_14 STR_14	Linear Static Sisma Y - da impalcato Linear Static Sisma Z - da impalcato Linear Static Spalla Spinta X_SLV Linear Static Spalla Spinta Y_SLV Linear Static Spalla Spinta Z_SLV Linear Static DEAD 1.35 Linear Static G2 1.5 Linear Static q1k 1.45	0 0 0 0

 $Relazione\ di\ calcolo\ -\ Spalle\ -\ fase\ 1$

COMMESSA LOTTO CODIFICA DOCUMENTO REV. FOGLIO NRIJ 01 D 29 CL VI0104 001 B 103 di 172

STR_14	Linear Static Spalla temp F+ 0.7	2
STR_14	Linear Static Spalla temp F- 0	
STR_14	Linear Static Spalla temp U+ 0.7	2
STR_14	Linear Static Spalla temp U- 0	
STR_14	Linear Static q_ritiro 0	
STR_14 R	Response Spectrum Sism SLV X	0
STR_14 R	Response Spectrum Sism SLV Y	0
STR_14 R	Response Spectrum Sism SLV Z	0
STR_14	Linear Static Sisma X - da impalcato	0
STR_14	Linear Static Sisma Y - da impalcato	0
STR_14	Linear Static Sisma Z - da impalcato	0
STR_14	Linear Static Spalla Spinta X_SLV	0
STR_14	Linear Static Spalla Spinta Y_SLV	0
STR_14	Linear Static Spalla Spinta Z_SLV	0
STR_15	Linear Static DEAD 1.35	
STR_15	Linear Static G2 1.5	
STR_15	Linear Static q1k 1.45	
STR_15	Linear Static q3-Carichi frenatura	1.45
STR_15	Linear Static q - marciapiedi 0	
STR_15	Linear Static Spalla temp F+ 0.7	2
STR_15	Linear Static Spalla temp F- 0	
STR_15	Linear Static Spalla temp U+ 0.7	2
STR_15	Linear Static Spalla temp U- 0	
STR_15	Linear Static q_ritiro 0	
STR_15 R	Response Spectrum Sism SLV X	0
STR_15 R	Response Spectrum Sism SLV Y	0
STR_15 R	Response Spectrum Sism SLV Z	0
STR_15	Linear Static Sisma X - da impalcato	0
STR_15	Linear Static Sisma Y - da impalcato	0
STR_15	Linear Static Sisma Z - da impalcato	0
STR_15	Linear Static Spalla Spinta X_SLV	0
STR_15	Linear Static Spalla Spinta Y_SLV	0
STR_15	Linear Static Spalla Spinta Z_SLV	0
STR_16	Linear Static DEAD 1.35	
STR_16	Linear Static G2 1.5	
STR_16	Linear Static q1k 1.45	
STR_16	Linear Static q3-Carichi frenatura	1.45

 $Relazione\ di\ calcolo\ -\ Spalle\ -\ fase\ 1$

COMMESSA LOTTO CODIFICA DOCUMENTO REV. FOGLIO NRIJ 01 D 29 CL VI0104 001 B 104 di 172

STR_16	Linear Static q - marciapiedi 0	
STR_16	Linear Static Spalla temp F+ 0.72	
STR_16	Linear Static Spalla temp F- 0	
STR_16	Linear Static Spalla temp U+ 0.72	
STR_16	Linear Static Spalla temp U- 0	
STR_16	Linear Static q_ritiro 1.2	
STR_16 R	Response Spectrum Sism SLV X	0
STR_16 R	Response Spectrum Sism SLV Y	0
STR_16 R	Response Spectrum Sism SLV Z	0
STR_16	Linear Static Sisma X - da impalcato	0
STR_16	Linear Static Sisma Y - da impalcato	0
STR_16	Linear Static Sisma Z - da impalcato	0
STR_16	Linear Static Spalla Spinta X_SLV	0
STR_16	Linear Static Spalla Spinta Y_SLV	0
STR_16	Linear Static Spalla Spinta Z_SLV	0
STR_17	Linear Static DEAD 1.35	
STR_17	Linear Static G2 1.5	
STR_17	Linear Static q1k 1.45	
STR_17	Linear Static q3-Carichi frenatura 1.	.45
STR_17	Linear Static q - marciapiedi 0	
STR_17	Linear Static Spalla temp F+ 0.72	
STR_17	Linear Static Spalla temp F- 0	
STR_17	Linear Static Spalla temp U+ 0.72	
STR_17	Linear Static Spalla temp U- 0	
STR_17	Linear Static q_ritiro 1.2	
STR_17 R	Response Spectrum Sism SLV X	0
STR_17 R	Response Spectrum Sism SLV Y	0
STR_17 R	Response Spectrum Sism SLV Z	0
STR_17	Linear Static Sisma X - da impalcato	0
STR_17	Linear Static Sisma Y - da impalcato	0
STR_17	Linear Static Sisma Z - da impalcato	0
STR_17	Linear Static Spalla Spinta X_SLV	0
STR_17	Linear Static Spalla Spinta Y_SLV	0
STR_17	Linear Static Spalla Spinta Z_SLV	0
STR_18	Linear Static DEAD 1.35	
STR_18	Linear Static G2 1.5	
STR_18	Linear Static q1k 1.45	

 $Relazione\ di\ calcolo\ -\ Spalle\ -\ fase\ 1$

COMMESSA LOTTO CODIFICA DOCUMENTO REV. FOGLIO

NR1J 01 D 29 CL VI0104 001 B 105 di 172

STR_18	Linear Static q3-Carichi frenatura 1.	45
STR_18	Linear Static q - marciapiedi 0	
STR_18	Linear Static Spalla temp F+ 0.72	
STR_18	Linear Static Spalla temp F- 0	
STR_18	Linear Static Spalla temp U+ 0	
STR_18	Linear Static Spalla temp U- 0.72	
STR_18	Linear Static q_ritiro 0	
STR_18 R	Response Spectrum Sism SLV X	0
STR_18 R	Response Spectrum Sism SLV Y	0
STR_18 R	Response Spectrum Sism SLV Z	0
STR_18	Linear Static Sisma X - da impalcato	0
STR_18	Linear Static Sisma Y - da impalcato	0
STR_18	Linear Static Sisma Z - da impalcato	0
STR_18	Linear Static Spalla Spinta X_SLV	0
STR_18	Linear Static Spalla Spinta Y_SLV	0
STR_18	Linear Static Spalla Spinta Z_SLV	0
STR_19	Linear Static DEAD 1.35	
STR_19	Linear Static G2 1.5	
STR_19	Linear Static q1k 1.45	
STR_19	Linear Static q3-Carichi frenatura 1.	45
STR_19	Linear Static q - marciapiedi 0	
STR_19	Linear Static Spalla temp F+ 0.72	
STR_19	Linear Static Spalla temp F- 0	
STR_19	Linear Static Spalla temp U+ 0	
STR_19	Linear Static Spalla temp U- 0.72	
STR_19	Linear Static q_ritiro 0	
STR_19 R	Response Spectrum Sism SLV X	0
STR_19 R	Response Spectrum Sism SLV Y	0
STR_19 R	Response Spectrum Sism SLV Z	0
STR_19	Linear Static Sisma X - da impalcato	0
STR_19	Linear Static Sisma Y - da impalcato	0
STR_19	Linear Static Sisma Z - da impalcato	0
STR_19	Linear Static Spalla Spinta X_SLV	0
STR_19	Linear Static Spalla Spinta Y_SLV	0
STR_19	Linear Static Spalla Spinta Z_SLV	0
STR_20	Linear Static DEAD 1.35	
STR_20	Linear Static G2 1.5	

 $Relazione\ di\ calcolo\ -\ Spalle\ -\ fase\ 1$

COMMESSA LOTTO CODIFICA DOCUMENTO REV. FOGLIO

NR1J 01 D 29 CL VI0104 001 B 106 di 172

STR_20	Linear Static q1k 1.45	
STR_20	Linear Static q3-Carichi frenatura 1.	45
STR_20	Linear Static q - marciapiedi 0	
STR_20	Linear Static Spalla temp F+ 0.72	
STR_20	Linear Static Spalla temp F- 0	
STR_20	Linear Static Spalla temp U+ 0	
STR_20	Linear Static Spalla temp U- 0.72	
STR_20	Linear Static q_ritiro 1.2	
STR_20 R	tesponse Spectrum Sism SLV X	0
STR_20 R	tesponse Spectrum Sism SLV Y	0
STR_20 R	tesponse Spectrum Sism SLV Z	0
STR_20	Linear Static Sisma X - da impalcato	0
STR_20	Linear Static Sisma Y - da impalcato	0
STR_20	Linear Static Sisma Z - da impalcato	0
STR_20	Linear Static Spalla Spinta X_SLV	0
STR_20	Linear Static Spalla Spinta Y_SLV	0
STR_20	Linear Static Spalla Spinta Z_SLV	0
STR_21	Linear Static DEAD 1.35	
STR_21	Linear Static G2 1.5	
STR_21	Linear Static q1k 1.45	
STR_21	Linear Static q3-Carichi frenatura 1.	45
STR_21	Linear Static q - marciapiedi 0	
STR_21	Linear Static Spalla temp F+ 0.72	
STR_21	Linear Static Spalla temp F- 0	
STR_21	Linear Static Spalla temp U+ 0	
STR_21	Linear Static Spalla temp U- 0.72	
STR_21	Linear Static q_ritiro 1.2	
STR_21 R	tesponse Spectrum Sism SLV X	0
STR_21 R	tesponse Spectrum Sism SLV Y	0
STR_21 R	tesponse Spectrum Sism SLV Z	0
STR_21	Linear Static Sisma X - da impalcato	0
STR_21	Linear Static Sisma Y - da impalcato	0
STR_21	Linear Static Sisma Z - da impalcato	0
STR_21	Linear Static Spalla Spinta X_SLV	0
STR_21	Linear Static Spalla Spinta Y_SLV	0
STR_21	Linear Static Spalla Spinta Z_SLV	0
STR_22	Linear Static DEAD 1.35	

 $Relazione\ di\ calcolo\ -\ Spalle\ -\ fase\ 1$

COMMESSA LOTTO CODIFICA DOCUMENTO REV. FOGLIO NRIJ 01 D 29 CL VI0104 001 B 107 di 172

STR_22	Linear Static G2 1.5		
STR_22	Linear Static q1k 1.45		
STR_22	Linear Static q3-Carichi frenatura	1.45	
STR_22	Linear Static q - marciapiedi 0	ı	
STR_22	Linear Static Spalla temp F+	0	
STR_22	Linear Static Spalla temp F- 0.7	'2	
STR_22	Linear Static Spalla temp U+ 0.	72	
STR_22	Linear Static Spalla temp U-	C	
STR_22	Linear Static q_ritiro 0		
STR_22 F	Response Spectrum Sism SLV X	0	
STR_22 F	Response Spectrum Sism SLV Y	0	
STR_22 F	Response Spectrum Sism SLV Z	0	
STR_22	Linear Static Sisma X - da impalcato	0	
STR_22	Linear Static Sisma Y - da impalcato	0	
STR_22	Linear Static Sisma Z - da impalcato	0	
STR_22	Linear Static Spalla Spinta X_SLV	0	
STR_22	Linear Static Spalla Spinta Y_SLV	0	
STR_22	Linear Static Spalla Spinta Z_SLV	0	
STR_23	Linear Static DEAD 1.35		
STR_23	Linear Static G2 1.5		
STR_23	Linear Static q1k 1.45		
STR_23	Linear Static q3-Carichi frenatura	1.45	
STR_23	Linear Static q - marciapiedi 0	1	
STR_23	Linear Static Spalla temp F+	0	
STR_23	Linear Static Spalla temp F- 0.7	'2	
STR_23	Linear Static Spalla temp U+ 0.	72	
STR_23	Linear Static Spalla temp U-	O	
STR_23	Linear Static q_ritiro 0		
STR_23 F	Response Spectrum Sism SLV X	0	
STR_23 F	Response Spectrum Sism SLV Y	0	
STR_23 F	Response Spectrum Sism SLV Z	0	
STR_23	Linear Static Sisma X - da impalcato	0	
STR_23	Linear Static Sisma Y - da impalcato	0	
STR_23 Linear Static Sisma Z - da impalcato 0			
STR_23	Linear Static Spalla Spinta X_SLV	0	
STR_23	Linear Static Spalla Spinta Y_SLV	0	
STR_23	Linear Static Spalla Spinta Z_SLV	0	

 $Relazione\ di\ calcolo\ -\ Spalle\ -\ fase\ 1$

 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 NR1J
 01 D 29
 CL
 VI0104 001
 B
 108 di 172

STR_24	Linear Static DEAD	1.35
STR_24	Linear Static G2	1.5
STR_24	Linear Static q1k 1	.45
STR_24	Linear Static q3-Carichi frenatu	ra 1.45
STR_24	Linear Static q - marciapiedi	0
STR_24	Linear Static Spalla temp F+	0
STR_24	Linear Static Spalla temp F-	0.72
STR_24	Linear Static Spalla temp U+	0.72
STR_24	Linear Static Spalla temp U-	0
STR_24	Linear Static q_ritiro	1.2
STR_24 F	Response Spectrum Sism SLV	/ X 0
STR_24 F	Response Spectrum Sism SLV	/ Y 0
STR_24 F	Response Spectrum Sism SLV	/ Z 0
STR_24	Linear Static Sisma X - da impa	alcato 0
STR_24	Linear Static Sisma Y - da impa	alcato 0
STR_24	Linear Static Sisma Z - da impa	lcato 0
STR_24	Linear Static Spalla Spinta X_S	LV 0
STR_24	Linear Static Spalla Spinta Y_S	LV 0
STR_24	Linear Static Spalla Spinta Z_S	LV 0
STR_25	Linear Static DEAD	1.35
STR_25	Linear Static G2	1.5
STR_25	Linear Static q1k 1	.45
STR_25	Linear Static q3-Carichi frenatu	ra 1.45
STR_25	Linear Static q - marciapiedi	0
STR_25	Linear Static Spalla temp F+	0
STR_25	Linear Static Spalla temp F-	0.72
STR_25	Linear Static Spalla temp U+	0.72
STR_25	Linear Static Spalla temp U-	0
STR_25	Linear Static q_ritiro	1.2
STR_25 F	Response Spectrum Sism SLV	/ X 0
STR_25 F	Response Spectrum Sism SLV	/ Y 0
STR_25 F	Response Spectrum Sism SLV	/ Z 0
STR_25	Linear Static Sisma X - da impa	alcato 0
STR_25	Linear Static Sisma Y - da impa	alcato 0
STR_25	Linear Static Sisma Z - da impa	lcato 0
STR_25	Linear Static Spalla Spinta X_S	LV 0
STR_25	Linear Static Spalla Spinta Y_S	LV 0

 $Relazione\ di\ calcolo\ -\ Spalle\ -\ fase\ 1$

COMMESSA LOTTO CODIFICA DOCUMENTO REV. FOGLIO

NR1J 01 D 29 CL VI0104 001 B 109 di 172

STR_25	Linear Static Spalla Spinta Z_SLV	0
STR_26	Linear Static DEAD 1.35	
STR_26	Linear Static G2 1.5	
STR_26	Linear Static q1k 1.45	
STR_26	Linear Static q3-Carichi frenatura 1.	45
STR_26	Linear Static q - marciapiedi 0	
STR_26	Linear Static Spalla temp F+ 0	
STR_26	Linear Static Spalla temp F- 0.72	
STR_26	Linear Static Spalla temp U+ 0	
STR_26	Linear Static Spalla temp U- 0.72	
STR_26	Linear Static q_ritiro 0	
STR_26 R	Response Spectrum Sism SLV X	0
STR_26 R	Response Spectrum Sism SLV Y	0
STR_26 F	Response Spectrum Sism SLV Z	0
STR_26	Linear Static Sisma X - da impalcato	0
STR_26	Linear Static Sisma Y - da impalcato	0
STR_26	Linear Static Sisma Z - da impalcato	0
STR_26	Linear Static Spalla Spinta X_SLV	0
STR_26	Linear Static Spalla Spinta Y_SLV	0
STR_26	Linear Static Spalla Spinta Z_SLV	0
STR_27	Linear Static DEAD 1.35	
STR_27	Linear Static G2 1.5	
STR_27	Linear Static q1k 1.45	
STR_27	Linear Static q3-Carichi frenatura 1.	45
STR_27	Linear Static q - marciapiedi 0	
STR_27	Linear Static Spalla temp F+ 0	
STR_27	Linear Static Spalla temp F- 0.72	
STR_27	Linear Static Spalla temp U+ 0	
STR_27	Linear Static Spalla temp U- 0.72	
STR_27	Linear Static q_ritiro 0	
STR_27 F	Response Spectrum Sism SLV X	0
STR_27 F	Response Spectrum Sism SLV Y	0
STR_27 F	Response Spectrum Sism SLV Z	0
STR_27	Linear Static Sisma X - da impalcato	0
STR_27	Linear Static Sisma Y - da impalcato	0
STR_27	• • • • • • • • • • • • • • • • • • •	0
STR_27	_	0

 $Relazione\ di\ calcolo\ -\ Spalle\ -\ fase\ 1$

COMMESSA LOTTO CODIFICA DOCUMENTO REV. FOGLIO

NR1J 01 D 29 CL VI0104 001 B 110 di 172

STR_27	Linear Static Spalla Spinta Y_SLV	0
STR_27	Linear Static Spalla Spinta Z_SLV	\mathbf{C}
STR_28	Linear Static DEAD 1.35	
STR_28	Linear Static G2 1.5	
STR_28	Linear Static q1k 1.45	
STR_28	Linear Static q3-Carichi frenatura 1.4	5
STR_28	Linear Static q - marciapiedi 0	
STR_28	Linear Static Spalla temp F+ 0	
STR_28	Linear Static Spalla temp F- 0.72	
STR_28	Linear Static Spalla temp U+ 0	
STR_28	Linear Static Spalla temp U- 0.72	
STR_28	Linear Static q_ritiro 1.2	
STR_28 F	Response Spectrum Sism SLV X	0
STR_28 F	Response Spectrum Sism SLV Y	0
STR_28 F	Response Spectrum Sism SLV Z)
STR_28	Linear Static Sisma X - da impalcato	0
STR_28	Linear Static Sisma Y - da impalcato	0
STR_28	Linear Static Sisma Z - da impalcato	0
STR_28	Linear Static Spalla Spinta X_SLV	0
STR_28	Linear Static Spalla Spinta Y_SLV	0
STR_28	Linear Static Spalla Spinta Z_SLV)
STR_29	Linear Static DEAD 1.35	
STR_29	Linear Static G2 1.5	
STR_29	Linear Static q1k 1.45	
STR_29	Linear Static q3-Carichi frenatura 1.4	5
STR_29	Linear Static q - marciapiedi 0	
STR_29	Linear Static Spalla temp F+ 0	
STR_29	Linear Static Spalla temp F- 0.72	
STR_29	Linear Static Spalla temp U+ 0	
STR_29	Linear Static Spalla temp U- 0.72	
STR_29	Linear Static q_ritiro 1.2	
STR_29 F	Response Spectrum Sism SLV X	0
STR_29 F	Response Spectrum Sism SLV Y	0
STR_29 F	Response Spectrum Sism SLV Z)
STR_29	Linear Static Sisma X - da impalcato	0
STR_29	Linear Static Sisma Y - da impalcato	0
STR_29	Linear Static Sisma Z - da impalcato	0

 $Relazione\ di\ calcolo\ -\ Spalle\ -\ fase\ 1$

COMMESSA LOTTO CODIFICA DOCUMENTO REV. FOGLIO

NR1J 01 D 29 CL VI0104 001 B 111 di 172

STR_29	Linear Static Spalla Spinta X_SLV	0
STR_29	Linear Static Spalla Spinta Y_SLV	0
STR_29	Linear Static Spalla Spinta Z_SLV	0
SLV_01	Linear Static DEAD 1	
SLV_01	Linear Static G2 1	
SLV_01	Linear Static q1k 0.2	
SLV_01	Linear Static q3-Carichi frenatura	0
SLV_01	Linear Static q - marciapiedi 0	
SLV_01	Linear Static Spalla temp F+ 0.5	
SLV_01	Linear Static Spalla temp F- 0	
SLV_01	Linear Static Spalla temp U+ 0.5	
SLV_01	Linear Static Spalla temp U- 0	
SLV_01	Linear Static q_ritiro 1	
SLV_01 R	Response Spectrum Sism SLV X	1
SLV_01 R	Response Spectrum Sism SLV Y	0.3
SLV_01 R	Response Spectrum Sism SLV Z	0.3
SLV_01	Linear Static Sisma X - da impalcato	1
SLV_01	Linear Static Sisma Y - da impalcato	0.3
SLV_01	Linear Static Sisma Z - da impalcato	0.3
SLV_01	Linear Static Spalla Spinta X_SLV	1
SLV_01	Linear Static Spalla Spinta Y_SLV	0.3
SLV_01	Linear Static Spalla Spinta Z_SLV	0.3
SLV_02	Linear Static DEAD 1	
SLV_02	Linear Static G2 1	
SLV_02	Linear Static q1k 0	
SLV_02	Linear Static q3-Carichi frenatura	0
SLV_02	Linear Static q - marciapiedi 0	
SLV_02	Linear Static Spalla temp F+ 0.5	
SLV_02	Linear Static Spalla temp F- 0	
SLV_02	Linear Static Spalla temp U+ 0.5	
SLV_02	Linear Static Spalla temp U- 0	
SLV_02	Linear Static q_ritiro 1	
SLV_02 R	Response Spectrum Sism SLV X	1
SLV_02 R	Response Spectrum Sism SLV Y	0.3
SLV_02 R	Response Spectrum Sism SLV Z	0.3
SLV_02	Linear Static Sisma X - da impalcato	1
SLV_02	Linear Static Sisma Y - da impalcato	0.3

 $Relazione\ di\ calcolo\ -\ Spalle\ -\ fase\ 1$

COMMESSA LOTTO CODIFICA DOCUMENTO REV. FOGLIO

NR1J 01 D 29 CL VI0104 001 B 112 di 172

SLV_02	Linear Static Sisma Z - da impalcato	0.3
SLV_02	Linear Static Spalla Spinta X_SLV	1
SLV_02	Linear Static Spalla Spinta Y_SLV	0.3
SLV_02	Linear Static Spalla Spinta Z_SLV	0.3
SLV_03	Linear Static DEAD 1	
SLV_03	Linear Static G2 1	
SLV_03	Linear Static q1k 0.2	
SLV_03	Linear Static q3-Carichi frenatura	0
SLV_03	Linear Static q - marciapiedi 0	ı
SLV_03	Linear Static Spalla temp F+ 0.	5
SLV_03	Linear Static Spalla temp F-)
SLV_03		0
SLV_03	Linear Static Spalla temp U- 0.	5
SLV_03	Linear Static q_ritiro 1	
SLV_03 R	Response Spectrum Sism SLV X	1
SLV_03 R	Response Spectrum Sism SLV Y	0.3
SLV_03 R	Response Spectrum Sism SLV Z	0.3
SLV_03	Linear Static Sisma X - da impalcato	1
SLV_03	Linear Static Sisma Y - da impalcato	0.3
SLV_03	Linear Static Sisma Z - da impalcato	0.3
SLV_03	Linear Static Spalla Spinta X_SLV	1
SLV_03	Linear Static Spalla Spinta Y_SLV	0.3
SLV_03	Linear Static Spalla Spinta Z_SLV	0.3
SLV_04	Linear Static DEAD 1	
SLV_04	Linear Static G2 1	
SLV_04	Linear Static q1k 0	
SLV_04	Linear Static q3-Carichi frenatura	0
SLV_04	Linear Static q - marciapiedi 0	
SLV_04	Linear Static Spalla temp F+ 0.	5
SLV_04	Linear Static Spalla temp F-)
SLV_04	Linear Static Spalla temp U+	0
SLV_04	Linear Static Spalla temp U- 0.	5
SLV_04	Linear Static q_ritiro 1	
SLV_04 R	Response Spectrum Sism SLV X	1
SLV_04 R	Response Spectrum Sism SLV Y	0.3
SLV_04 R	Response Spectrum Sism SLV Z	0.3
SLV_04	Linear Static Sisma X - da impalcato	1

 $Relazione\ di\ calcolo\ -\ Spalle\ -\ fase\ 1$

COMMESSA LOTTO CODIFICA DOCUMENTO REV. FOGLIO

NRIJ 01 D 29 CL VI0104 001 B 113 di 172

SLV_04	Linear Static Sisma Y - da impalca	to 0.3
SLV_04	Linear Static Sisma Z - da impalcat	to 0.3
SLV_04	Linear Static Spalla Spinta X_SLV	1
SLV_04	Linear Static Spalla Spinta Y_SLV	0.3
SLV_04	Linear Static Spalla Spinta Z_SLV	0.3
SLV_05	Linear Static DEAD	1
SLV_05	Linear Static G2 1	
SLV_05	Linear Static q1k 0.2	
SLV_05	Linear Static q3-Carichi frenatura	0
SLV_05	Linear Static q - marciapiedi	0
SLV_05	Linear Static Spalla temp F+	0
SLV_05	Linear Static Spalla temp F-	0.5
SLV_05	Linear Static Spalla temp U+	0.5
SLV_05	Linear Static Spalla temp U-	0
SLV_05	Linear Static q_ritiro 1	
SLV_05 R	Response Spectrum Sism SLV X	1
SLV_05 R	Response Spectrum Sism SLV Y	0.3
SLV_05 R	Response Spectrum Sism SLV Z	0.3
SLV_05	Linear Static Sisma X - da impalca	to 1
SLV_05	Linear Static Sisma Y - da impalca	to 0.3
SLV_05	Linear Static Sisma Z - da impalcat	to 0.3
SLV_05	Linear Static Spalla Spinta X_SLV	1
SLV_05	Linear Static Spalla Spinta Y_SLV	0.3
SLV_05	Linear Static Spalla Spinta Z_SLV	0.3
SLV_06	Linear Static DEAD	1
SLV_06	Linear Static G2 1	
SLV_06	Linear Static q1k 0	
SLV_06	Linear Static q3-Carichi frenatura	0
SLV_06	Linear Static q - marciapiedi	0
SLV_06	Linear Static Spalla temp F+	0
SLV_06	Linear Static Spalla temp F-	0.5
SLV_06	Linear Static Spalla temp U+	0.5
SLV_06	Linear Static Spalla temp U-	0
SLV_06	Linear Static q_ritiro 1	
SLV_06 R	Response Spectrum Sism SLV X	1
SLV_06 R	Response Spectrum Sism SLV Y	0.3
SLV_06 R	Response Spectrum Sism SLV Z	0.3

 $Relazione\ di\ calcolo\ -\ Spalle\ -\ fase\ 1$

COMMESSA LOTTO CODIFICA DOCUMENTO REV. FOGLIO

NR1J 01 D 29 CL VI0104 001 B 114 di 172

SLV_06	Linear Static Sisma X - da impalcato	1
SLV_06	Linear Static Sisma Y - da impalcato	0.3
SLV_06	Linear Static Sisma Z - da impalcato	0.3
SLV_06	Linear Static Spalla Spinta X_SLV	1
SLV_06	Linear Static Spalla Spinta Y_SLV	0.3
SLV_06	Linear Static Spalla Spinta Z_SLV	0.3
SLV_07	Linear Static DEAD 1	
SLV_07	Linear Static G2 1	
SLV_07	Linear Static q1k 0.2	
SLV_07	Linear Static q3-Carichi frenatura	0
SLV_07	Linear Static q - marciapiedi)
SLV_07	Linear Static Spalla temp F+	0
SLV_07	Linear Static Spalla temp F- 0.	5
SLV_07	Linear Static Spalla temp U+	0
SLV_07	Linear Static Spalla temp U- 0	.5
SLV_07	Linear Static q_ritiro 1	
SLV_07 R	Response Spectrum Sism SLV X	1
SLV_07 R	Response Spectrum Sism SLV Y	0.3
SLV_07 R	Response Spectrum Sism SLV Z	0.3
SLV_07	Linear Static Sisma X - da impalcato	1
SLV_07	Linear Static Sisma Y - da impalcato	0.3
SLV_07	Linear Static Sisma Z - da impalcato	0.3
SLV_07	Linear Static Spalla Spinta X_SLV	1
SLV_07	Linear Static Spalla Spinta Y_SLV	0.3
SLV_07	Linear Static Spalla Spinta Z_SLV	0.3
SLV_08	Linear Static DEAD 1	
SLV_08	Linear Static G2 1	
SLV_08	Linear Static q1k 0	
SLV_08	Linear Static q3-Carichi frenatura	0
SLV_08	Linear Static q - marciapiedi)
SLV_08	Linear Static Spalla temp F+	0
SLV_08	Linear Static Spalla temp F- 0.	5
SLV_08	Linear Static Spalla temp U+	0
SLV_08	Linear Static Spalla temp U- 0	.5
SLV_08	Linear Static q_ritiro 1	
SLV_08 R	Response Spectrum Sism SLV X	1
SLV_08 R	Response Spectrum Sism SLV Y	0.3

 $Relazione\ di\ calcolo\ -\ Spalle\ -\ fase\ 1$

SLV_08 R	Response Spectrum	Sism SLV Z	Z	0.3
SLV_08	Linear Static Sisma	a X - da impalc	ato	1
SLV_08	Linear Static Sisma	a Y - da impalca	ato	0.3
SLV_08	Linear Static Sisma	a Z - da impalca	ato	0.3
SLV_08	Linear Static Spalls	a Spinta X_SLV	V	1
SLV_08	Linear Static Spalls	a Spinta Y_SLV	V	0.3
SLV_08	Linear Static Spall	a Spinta Z_SLV	7	0.3
SLV_09	Linear Static	DEAD	1	
SLV_09	Linear Static	G2 1		
SLV_09	Linear Static	q1k 0.2	2	
SLV_09	Linear Static q3-Ca	arichi frenatura		0
SLV_09	Linear Static q - r	narciapiedi	0	
SLV_09	Linear Static Spa	ılla temp F+	0	
SLV_09	Linear Static Spa	ılla temp F-	0	
SLV_09	Linear Static Spa	ılla temp U+	0.5	
SLV_09	Linear Static Spa	ılla temp U-	0	
SLV_09	Linear Static	q_ritiro	1	
SLV_09 R	Response Spectrum	Sism SLV X	K	1
SLV_09 R	Response Spectrum	Sism SLV Y	Y	0.3
SLV_09 R	Response Spectrum	Sism SLV Z	Z	0.3
SLV_09	Linear Static Sisma	a X - da impalc	ato	1
SLV_09	Linear Static Sisma	a Y - da impalc	ato	0.3
SLV_09	Linear Static Sisma	a Z - da impalca	ato	0.3
SLV_09	Linear Static Spalls	a Spinta X_SLV	V	1
SLV_09	Linear Static Spalls	a Spinta Y_SLV	V	0.3
SLV_09	Linear Static Spalls	a Spinta Z_SLV	7	0.3
SLV_10	Linear Static	DEAD	1	
SLV_10	Linear Static	G2 1		
SLV_10	Linear Static	q1k 0		
SLV_10	Linear Static q3-Ca	arichi frenatura		0
SLV_10	Linear Static q - r	narciapiedi	0	
SLV_10	Linear Static Spa	ılla temp F+	0	
SLV_10	Linear Static Spa	ılla temp F-	0	
SLV_10	Linear Static Spa	ılla temp U+	0.5	
SLV_10	Linear Static Spa	ılla temp U-	0	
SLV_10	Linear Static	q_ritiro 1	l	
SLV_10 R	desponse Spectrum	Sism SLV X	ζ.	1

 $Relazione\ di\ calcolo\ -\ Spalle\ -\ fase\ 1$

COMMESSA LOTTO CODIFICA DOCUMENTO REV. FOGLIO

NRIJ 01 D 29 CL VI0104 001 B 116 di 172

CLV 10 E	Response Spectrum	Sism SLV Y		0.3
	Response Spectrum			
		Sism SLV Z		0.3
SLV_10	Linear Static Sisma Linear Static Sisma	•		0.3
SLV_10		1		
SLV_10	Linear Static Sisma	•	Ю.	0.3
SLV_10	Linear Static Spalla	•		1
SLV_10	Linear Static Spalla	•		0.3
SLV_10	Linear Static Spalla	=	_	0.3
SLV_11	Linear Static		1	
SLV_11	Linear Static	G2 1		
SLV_11	Linear Static	q1k 0.2		
SLV_11	Linear Static q3-Car	richi frenatura		0
SLV_11	Linear Static q - m	arciapiedi	0	
SLV_11	Linear Static Spal	la temp F+	0	
SLV_11	Linear Static Spal	la temp F-	0	
SLV_11	Linear Static Spal	la temp U+	0	
SLV_11	Linear Static Spal	la temp U-	0.5	
SLV_11	Linear Static c	_ritiro 1		
SLV_11 R	Response Spectrum	Sism SLV X		1
SLV_11 R	Response Spectrum	Sism SLV Y		0.3
SLV_11 R	Response Spectrum	Sism SLV Z		0.3
SLV_11	Linear Static Sisma	X - da impalcat	to	1
SLV_11	Linear Static Sisma	Y - da impalcat	to	0.3
SLV_11	Linear Static Sisma	Z - da impalcat	Ю.	0.3
SLV_11	Linear Static Spalla	Spinta X_SLV		1
SLV_11	Linear Static Spalla	Spinta Y_SLV		0.3
SLV_11	Linear Static Spalla	Spinta Z_SLV		0.3
SLV_12	Linear Static	DEAD	1	
SLV_12	Linear Static	G2 1		
SLV_12	Linear Static	q1k 0		
SLV_12	Linear Static q3-Car	_		0
SLV_12	Linear Static q - m		0	
SLV_12	_	_	0	
SLV_12	_	la temp F-	0	
SLV_12	•	la temp U+	0	
SLV_12	•	la temp U-	0.5	
SLV_12	-	_ritiro 1	0.5	
DL V_12	Linear State C	1_11110 1		

 $Relazione\ di\ calcolo\ -\ Spalle\ -\ fase\ 1$

COMMESSA LOTTO CODIFICA DOCUMENTO REV. FOGLIO NR1J 01 D 29 CL VI0104 001 B 117 di 172

SLV_12	Response Spectrum	Sism SLV X	1
SLV_12	Response Spectrum	Sism SLV Y	0.3
SLV_12	Response Spectrum	Sism SLV Z	0.3
SLV_12	Linear Static Sisma	X - da impalca	to 1
SLV_12	Linear Static Sisma	Y - da impalca	to 0.3
SLV_12	Linear Static Sisma	Z - da impalcat	o 0.3
SLV_12	Linear Static Spalla	Spinta X_SLV	1
SLV_12	Linear Static Spalla	Spinta Y_SLV	0.3
SLV_12	Linear Static Spalla	Spinta Z_SLV	0.3
SLV_13	Linear Static	DEAD	1
SLV_13	Linear Static	G2 1	
SLV_13	Linear Static	q1k 0.2	
SLV_13	Linear Static q3-Car	richi frenatura	0
SLV_13	Linear Static q - m	arciapiedi	0
SLV_13	Linear Static Spal	la temp F+	0
SLV_13	Linear Static Spal	la temp F-	0
SLV_13	Linear Static Spal	la temp U+	0
SLV_13	Linear Static Spal	la temp U-	0
SLV_13	Linear Static c	_ritiro 1	
SLV_13	Response Spectrum	Sism SLV X	1
SLV_13	Response Spectrum	Sism SLV Y	0.3
SLV_13	Response Spectrum	Sism SLV Z	0.3
SLV_13	Linear Static Sisma	X - da impalca	to 1
SLV_13	Linear Static Sisma	Y - da impalca	to 0.3
SLV_13	Linear Static Sisma	Z - da impalcat	o 0.3
SLV_13	Linear Static Spalla	Spinta X_SLV	1
SLV_13	Linear Static Spalla	Spinta Y_SLV	0.3
SLV_13	Linear Static Spalla	Spinta Z_SLV	0.3
SLV_14	Linear Static	DEAD	1
SLV_14	Linear Static	G2 1	
SLV_14	Linear Static	q1k 0	
SLV_14	Linear Static q3-Car	richi frenatura	0
SLV_14	Linear Static q - m	arciapiedi	0
SLV_14	Linear Static Spal	la temp F+	0
SLV_14	Linear Static Spal	la temp F-	0
SLV_14	Linear Static Spal	la temp U+	0
SLV_14	Linear Static Spal	la temp U-	0

 $Relazione\ di\ calcolo\ -\ Spalle\ -\ fase\ 1$

COMMESSA LOTTO CODIFICA DOCUMENTO REV. FOGLIO NR1J 01 D 29 CL VI0104 001 B 118 di 172

SLV_14	Linear Static q_ritiro 1	
SLV_14 R	Response Spectrum Sism SLV X	1
SLV_14 R	Response Spectrum Sism SLV Y	0.3
SLV_14 R	Response Spectrum Sism SLV Z	0.3
SLV_14	Linear Static Sisma X - da impalcato	1
SLV_14	Linear Static Sisma Y - da impalcato	0.3
SLV_14	Linear Static Sisma Z - da impalcato	0.3
SLV_14	Linear Static Spalla Spinta X_SLV	1
SLV_14	Linear Static Spalla Spinta Y_SLV	0.3
SLV_14	Linear Static Spalla Spinta Z_SLV	0.3
SLV_15	Linear Static DEAD 1	
SLV_15	Linear Static G2 1	
SLV_15	Linear Static q1k 0.2	
SLV_15	Linear Static q3-Carichi frenatura	0
SLV_15	Linear Static q - marciapiedi 0	
SLV_15	Linear Static Spalla temp F+ 0.5	
SLV_15	Linear Static Spalla temp F- 0	
SLV_15	Linear Static Spalla temp U+ 0.5	
SLV_15	Linear Static Spalla temp U- 0	
SLV_15	Linear Static q_ritiro 1	
SLV_15 R	Response Spectrum Sism SLV X	0.3
SLV_15 R	Response Spectrum Sism SLV Y	1
SLV_15 R	Response Spectrum Sism SLV Z	0.3
SLV_15	Linear Static Sisma X - da impalcato	0.3
SLV_15	Linear Static Sisma Y - da impalcato	1
SLV_15	Linear Static Sisma Z - da impalcato	0.3
SLV_15	Linear Static Spalla Spinta X_SLV	0.3
SLV_15	Linear Static Spalla Spinta Y_SLV	1
SLV_15	Linear Static Spalla Spinta Z_SLV	0.3
SLV_16	Linear Static DEAD 1	
SLV_16	Linear Static G2 1	
SLV_16	Linear Static q1k 0	
SLV_16	Linear Static q3-Carichi frenatura	0
SLV_16	Linear Static q - marciapiedi 0	
SLV_16	Linear Static Spalla temp F+ 0.5	
SLV_16	Linear Static Spalla temp F- 0	
SLV_16	Linear Static Spalla temp U+ 0.5	

 $Relazione\ di\ calcolo\ -\ Spalle\ -\ fase\ 1$

COMMESSA LOTTO CODIFICA DOCUMENTO REV. FOGLIO NRIJ 01 D 29 CL VI0104 001 B 119 di 172

SLV_16	Linear Static Spalla t	emn II-	0	
SLV_16	_	itiro	1	
		Sism SLV	_	0.3
		Sism SLV		1
	-	Sism SLV		0.3
SLV_16	Linear Static Sisma X			0.3
SLV_16	Linear Static Sisma Y	-		1
SLV_16	Linear Static Sisma Z -	-		0.3
SLV_16	Linear Static Spalla Sp			0.3
SLV_16	Linear Static Spalla Sp			1
SLV_16	Linear Static Spalla Sp			0.3
SLV_17		DEAD	1	0.5
SLV_17		G2	1	
SLV_17			0.2	
SLV_17	Linear Static q3-Carich	-		0
SLV_17	Linear Static q - marc		0	
SLV_17	Linear Static Spalla t	_	0.5	
SLV_17	Linear Static Spalla t	_	0	
SLV_17	Linear Static Spalla t	-	0	
SLV_17	•	temp U-	0.5	
SLV_17	•	itiro	1	
SLV_17 R	Response Spectrum S	Sism SLV	/ X	0.3
SLV_17 R	Response Spectrum S	Sism SLV	/ Y	1
SLV_17 R	Response Spectrum S	Sism SLV	ΙZ	0.3
SLV_17	Linear Static Sisma X	- da impa	lcato	0.3
SLV_17	Linear Static Sisma Y	- da impa	lcato	1
SLV_17	Linear Static Sisma Z -	- da impa	lcato	0.3
SLV_17	Linear Static Spalla Sp	ointa X_S	LV	0.3
SLV_17	Linear Static Spalla Sp	ointa Y_S	LV	1
SLV_17	Linear Static Spalla Sp	inta Z_S	LV	0.3
SLV_18	Linear Static D	DEAD	1	
SLV_18	Linear Static	G2	1	
SLV_18	Linear Static	q1k	0	
SLV_18	Linear Static q3-Carich	ni frenatu	ra	0
SLV_18	Linear Static q - marc	iapiedi	0	
SLV_18	Linear Static Spalla t	temp F+	0.5	
SLV_18	Linear Static Spalla t	emp F-	0	

 $Relazione\ di\ calcolo\ -\ Spalle\ -\ fase\ 1$

COMMESSA LOTTO CODIFICA DOCUMENTO REV. FOGLIO
NRIJ 01 D 29 CL VI0104 001 B 120 di 172

SLV_18	Linear Static	Spalla temp U+	0	
SLV_18	Linear Static	Spalla temp U-	0.5	
SLV_18	Linear Static	q_ritiro	1	
SLV_18 R	esponse Spectr	um Sism SL	VX	0.3
SLV_18 R	esponse Spectr	um Sism SL	VY	1
SLV_18 R	esponse Spectr	um Sism SL	VΖ	0.3
SLV_18	Linear Static S	Sisma X - da imp	alcato	0.3
SLV_18	Linear Static S	Sisma Y - da imp	alcato	1
SLV_18	Linear Static S	Sisma Z - da impa	alcato	0.3
SLV_18	Linear Static S	Spalla Spinta X_S	SLV	0.3
SLV_18	Linear Static S	Spalla Spinta Y_S	SLV	1
SLV_18	Linear Static S	Spalla Spinta Z_S	SLV	0.3
SLV_19	Linear Static	DEAD	1	
SLV_19	Linear Static	G2	1	
SLV_19	Linear Static	q1k	0.2	
SLV_19	Linear Static o	3-Carichi frenati	ura	0
SLV_19	Linear Static	q - marciapiedi	0	
SLV_19	Linear Static	Spalla temp F+	0	
SLV_19	Linear Static	Spalla temp F-	0.5	
SLV_19	Linear Static	Spalla temp U+	0.5	
SLV_19	Linear Static	Spalla temp U-	0	
SLV_19	Linear Static	q_ritiro	1	
SLV_19 R	esponse Spectr	um Sism SL	VX	0.3
SLV_19 R	esponse Spectr	um Sism SL	VY	1
SLV_19 R	esponse Spectr	um Sism SL	VΖ	0.3
SLV_19	Linear Static S	Sisma X - da imp	alcato	0.3
SLV_19	Linear Static S	Sisma Y - da imp	alcato	1
SLV_19	Linear Static S	Sisma Z - da impa	alcato	0.3
SLV_19	Linear Static S	Spalla Spinta X_S	SLV	0.3
SLV_19	Linear Static S	Spalla Spinta Y_S	SLV	1
SLV_19	Linear Static S	Spalla Spinta Z_S	SLV	0.3
SLV_20	Linear Static	DEAD	1	
SLV_20	Linear Static	G2	1	
SLV_20	Linear Static	q1k	0	
SLV_20	Linear Static o	3-Carichi frenati	ura	0
SLV_20	Linear Static	q - marciapiedi	0	
SLV_20	Linear Static	Spalla temp F+	0	

 $Relazione\ di\ calcolo\ -\ Spalle\ -\ fase\ 1$

COMMESSA LOTTO CODIFICA DOCUMENTO REV. FOGLIO

NRIJ 01 D 29 CL VI0104 001 B 121 di 172

SLV_20	Linear Static Spalla temp F- 0.5	
SLV_20	Linear Static Spalla temp U+ 0.5	;
SLV_20	Linear Static Spalla temp U- 0	
SLV_20	Linear Static q_ritiro 1	
SLV_20 R	tesponse Spectrum Sism SLV X	0.3
SLV_20 R	Response Spectrum Sism SLV Y	1
SLV_20 R	Response Spectrum Sism SLV Z	0.3
SLV_20	Linear Static Sisma X - da impalcato	0.3
SLV_20	Linear Static Sisma Y - da impalcato	1
SLV_20	Linear Static Sisma Z - da impalcato	0.3
SLV_20	Linear Static Spalla Spinta X_SLV	0.3
SLV_20	Linear Static Spalla Spinta Y_SLV	1
SLV_20	Linear Static Spalla Spinta Z_SLV	0.3
SLV_21	Linear Static DEAD 1	
SLV_21	Linear Static G2 1	
SLV_21	Linear Static q1k 0.2	
SLV_21	Linear Static q3-Carichi frenatura	0
SLV_21	Linear Static q - marciapiedi 0	
SLV_21	Linear Static Spalla temp F+ 0	
SLV_21	Linear Static Spalla temp F- 0.5	
SLV_21	Linear Static Spalla temp U+ 0	
SLV_21	Linear Static Spalla temp U- 0.5	
SLV_21	Linear Static q_ritiro 1	
SLV_21 R	desponse Spectrum Sism SLV X	0.3
SLV_21 R	desponse Spectrum Sism SLV Y	1
SLV_21 R	Response Spectrum Sism SLV Z	0.3
SLV_21	Linear Static Sisma X - da impalcato	0.3
SLV_21	Linear Static Sisma Y - da impalcato	1
SLV_21	Linear Static Sisma Z - da impalcato	0.3
SLV_21	Linear Static Spalla Spinta X_SLV	0.3
SLV_21	Linear Static Spalla Spinta Y_SLV	1
SLV_21	Linear Static Spalla Spinta Z_SLV	0.3
SLV_22	Linear Static DEAD 1	
SLV_22	Linear Static G2 1	
SLV_22	Linear Static q1k 0	
SLV_22	Linear Static q3-Carichi frenatura	0
SLV_22	Linear Static q - marciapiedi 0	

Relazione di calcolo – Spalle – fase 1

COMMESSA LOTTO CODIFICA DOCUMENTO REV. FOGLIO

NR1J 01 D 29 CL VI0104 001 B 122 di 172

SLV_22	Linear Static	Spalla temp F	+ 0	
SLV_22	Linear Static	Spalla temp F	- 0.5	
SLV_22	Linear Static	Spalla temp U	+ 0)
SLV_22	Linear Static	Spalla temp U	- 0.5	i
SLV_22	Linear Static	q_ritiro	1	
SLV_22 R	esponse Spectr	um Sism S	LV X	0.3
SLV_22 R	esponse Spectr	um Sism S	LV Y	1
SLV_22 R	esponse Spectr	um Sism S	LV Z	0.3
SLV_22	Linear Static S	Sisma X - da im	palcato	0.3
SLV_22	Linear Static S	Sisma Y - da im	palcato	1
SLV_22	Linear Static S	Sisma Z - da im	palcato	0.3
SLV_22	Linear Static S	Spalla Spinta X	_SLV	0.3
SLV_22	Linear Static S	Spalla Spinta Y	_SLV	1
SLV_22	Linear Static S	Spalla Spinta Z_	SLV	0.3
SLV_23	Linear Static	DEAD	1	
SLV_23	Linear Static	G2	1	
SLV_23	Linear Static	q1k	0.2	
SLV_23	Linear Static c	3-Carichi frena	ıtura	0
SLV_23	Linear Static	q - marciapied	i 0	
SLV_23	Linear Static	Spalla temp F	+ 0	
SLV_23	Linear Static	Spalla temp F	- 0	
SLV_23	Linear Static	Spalla temp U	+ 0.3	5
SLV_23	Linear Static	Spalla temp U	- 0	
SLV_23	Linear Static	q_ritiro	1	
SLV_23 R	esponse Spectr	um Sism S	LV X	0.3
SLV_23 R	esponse Spectr	um Sism S	LV Y	1
SLV_23 R	esponse Spectr	um Sism S	LV Z	0.3
SLV_23	Linear Static S	Sisma X - da im	palcato	0.3
SLV_23	Linear Static S	Sisma Y - da im	palcato	1
SLV_23	Linear Static S	Sisma Z - da im	palcato	0.3
SLV_23	Linear Static S	Spalla Spinta X	_SLV	0.3
SLV_23	Linear Static S	Spalla Spinta Y	_SLV	1
SLV_23	Linear Static S	Spalla Spinta Z_	_SLV	0.3
SLV_24	Linear Static	DEAD	1	
SLV_24	Linear Static	G2	1	
SLV_24	Linear Static	q1k	0	
SLV_24	Linear Static o	3-Carichi frena	ıtura	0

 $Relazione\ di\ calcolo\ -\ Spalle\ -\ fase\ 1$

COMMESSA LOTTO CODIFICA DOCUMENTO REV. FOGLIO

NRIJ 01 D 29 CL VI0104 001 B 123 di 172

SLV_24	Linear Static	q - marciapiedi	0	
SLV_24	Linear Static	Spalla temp F+	0	
SLV_24	Linear Static	Spalla temp F-	0	
SLV_24	Linear Static	Spalla temp U+	0.5	5
SLV_24	Linear Static	Spalla temp U-	0	
SLV_24	Linear Static	q_ritiro	1	
SLV_24 R	Response Spectr	um Sism SL	VX	0.3
SLV_24 R	Response Spectr	um Sism SL	VY	1
SLV_24 R	Response Spectr	rum Sism SL	VZ	0.3
SLV_24	Linear Static S	Sisma X - da imp	alcato	0.3
SLV_24	Linear Static S	Sisma Y - da imp	alcato	1
SLV_24	Linear Static S	Sisma Z - da imp	alcato	0.3
SLV_24	Linear Static S	Spalla Spinta X_	SLV	0.3
SLV_24	Linear Static S	Spalla Spinta Y_	SLV	1
SLV_24	Linear Static S	Spalla Spinta Z_S	SLV	0.3
SLV_25	Linear Static	DEAD	1	
SLV_25	Linear Static	G2	1	
SLV_25	Linear Static	q1k	0.2	
SLV_25	Linear Static o	q3-Carichi frenat	ura	0
SLV_25	Linear Static	q - marciapiedi	0	
SLV_25	Linear Static	Spalla temp F+	0	
SLV_25	Linear Static	Spalla temp F-	0	
SLV_25	Linear Static	Spalla temp U+	0	
SLV_25	Linear Static	Spalla temp U-	0.5	
SLV_25	Linear Static	q_ritiro	1	
SLV_25 R	Response Spectr	um Sism SL	VX	0.3
SLV_25 R	Response Spectr	um Sism SL	VY	1
SLV_25 R	Response Spectr	um Sism SL	VΖ	0.3
SLV_25	Linear Static S	Sisma X - da imp	alcato	0.3
SLV_25	Linear Static S	Sisma Y - da imp	alcato	1
SLV_25	Linear Static S	Sisma Z - da imp	alcato	0.3
SLV_25	Linear Static S	Spalla Spinta X_	SLV	0.3
SLV_25	Linear Static S	Spalla Spinta Y_	SLV	1
SLV_25	Linear Static S	Spalla Spinta Z_S	SLV	0.3
SLV_26	Linear Static	DEAD	1	
SLV_26	Linear Static	G2	1	
SLV_26	Linear Static	q1k	0	

 $Relazione\ di\ calcolo\ -\ Spalle\ -\ fase\ 1$

COMMESSA LOTTO CODIFICA DOCUMENTO REV. FOGLIO

NRIJ 01 D 29 CL VI0104 001 B 124 di 172

SLV_26	Linear Static q3-Carichi frenatura	0
SLV_26	Linear Static q - marciapiedi 0	
SLV_26	Linear Static Spalla temp F+ 0)
SLV_26	Linear Static Spalla temp F- 0	
SLV_26	Linear Static Spalla temp U+	0
SLV_26	Linear Static Spalla temp U- 0.5	5
SLV_26	Linear Static q_ritiro 1	
SLV_26 F	Response Spectrum Sism SLV X	0.3
SLV_26 F	Response Spectrum Sism SLV Y	1
SLV_26 F	Response Spectrum Sism SLV Z	0.3
SLV_26	Linear Static Sisma X - da impalcato	0.3
SLV_26	Linear Static Sisma Y - da impalcato	1
SLV_26	Linear Static Sisma Z - da impalcato	0.3
SLV_26	Linear Static Spalla Spinta X_SLV	0.3
SLV_26	Linear Static Spalla Spinta Y_SLV	1
SLV_26	Linear Static Spalla Spinta Z_SLV	0.3
SLV_27	Linear Static DEAD 1	
SLV_27	Linear Static G2 1	
SLV_27	Linear Static q1k 0.2	
SLV_27	Linear Static q3-Carichi frenatura	0
SLV_27	Linear Static q - marciapiedi 0	
SLV_27	Linear Static Spalla temp F+)
SLV_27	Linear Static Spalla temp F- 0	
SLV_27	Linear Static Spalla temp U+	0
SLV_27	Linear Static Spalla temp U-)
SLV_27	Linear Static q_ritiro 1	
SLV_27 F	Response Spectrum Sism SLV X	0.3
SLV_27 F	Response Spectrum Sism SLV Y	1
SLV_27 F	Response Spectrum Sism SLV Z	0.3
SLV_27	Linear Static Sisma X - da impalcato	0.3
SLV_27	Linear Static Sisma Y - da impalcato	1
SLV_27	Linear Static Sisma Z - da impalcato	0.3
SLV_27	Linear Static Spalla Spinta X_SLV	0.3
SLV_27	Linear Static Spalla Spinta Y_SLV	1
SLV_27	Linear Static Spalla Spinta Z_SLV	0.3
SLV_28	Linear Static DEAD 1	
SLV_28	Linear Static G2 1	

 $Relazione\ di\ calcolo\ -\ Spalle\ -\ fase\ 1$

COMMESSA LOTTO CODIFICA DOCUMENTO REV. FOGLIO

NRIJ 01 D 29 CL VI0104 001 B 125 di 172

SLV_28	Linear Static q1k 0	
SLV_28	Linear Static q3-Carichi frenatura	0
SLV_28	Linear Static q - marciapiedi 0	
SLV_28	Linear Static Spalla temp F+ 0)
SLV_28	Linear Static Spalla temp F- 0	
SLV_28	Linear Static Spalla temp U+)
SLV_28	Linear Static Spalla temp U- 0	
SLV_28	Linear Static q_ritiro 1	
SLV_28 R	Response Spectrum Sism SLV X	0.3
SLV_28 R	Response Spectrum Sism SLV Y	1
SLV_28 R	Response Spectrum Sism SLV Z	0.3
SLV_28	Linear Static Sisma X - da impalcato	0.3
SLV_28	Linear Static Sisma Y - da impalcato	1
SLV_28	Linear Static Sisma Z - da impalcato	0.3
SLV_28	Linear Static Spalla Spinta X_SLV	0.3
SLV_28	Linear Static Spalla Spinta Y_SLV	1
SLV_28	Linear Static Spalla Spinta Z_SLV	0.3
SLV_29	Linear Static DEAD 1	
SLV_29	Linear Static G2 1	
SLV_29	Linear Static q1k 0.2	
SLV_29	Linear Static q3-Carichi frenatura	0
SLV_29	Linear Static q - marciapiedi 0	
SLV_29	Linear Static Spalla temp F+ 0.5	5
SLV_29	Linear Static Spalla temp F- 0	
SLV_29	Linear Static Spalla temp U+ 0.	5
SLV_29	Linear Static Spalla temp U- 0	
SLV_29	Linear Static q_ritiro 1	
SLV_29 R	Response Spectrum Sism SLV X	0.3
SLV_29 R	Response Spectrum Sism SLV Y	0.3
SLV_29 R	Response Spectrum Sism SLV Z	1
SLV_29	Linear Static Sisma X - da impalcato	0.3
SLV_29	Linear Static Sisma Y - da impalcato	0.3
SLV_29	Linear Static Sisma Z - da impalcato	1
SLV_29	Linear Static Spalla Spinta X_SLV	0.3
SLV_29	Linear Static Spalla Spinta Y_SLV	0.3
SLV_29	Linear Static Spalla Spinta Z_SLV	1
SLV_30	Linear Static DEAD 1	

 $Relazione\ di\ calcolo\ -\ Spalle\ -\ fase\ 1$

COMMESSA LOTTO CODIFICA DOCUMENTO REV. FOGLIO

NRIJ 01 D 29 CL VI0104 001 B 126 di 172

SLV_30	Linear Static G2 1	
SLV_30	Linear Static q1k 0	
SLV_30	Linear Static q3-Carichi frenatura	0
SLV_30	Linear Static q - marciapiedi 0	
SLV_30	Linear Static Spalla temp F+ 0.5	5
SLV_30	Linear Static Spalla temp F- 0	
SLV_30	Linear Static Spalla temp U+ 0.	5
SLV_30	Linear Static Spalla temp U- 0	
SLV_30	Linear Static q_ritiro 1	
SLV_30 R	Response Spectrum Sism SLV X	0.3
SLV_30 R	Response Spectrum Sism SLV Y	0.3
SLV_30 R	Response Spectrum Sism SLV Z	1
SLV_30	Linear Static Sisma X - da impalcato	0.3
SLV_30	Linear Static Sisma Y - da impalcato	0.3
SLV_30	Linear Static Sisma Z - da impalcato	1
SLV_30	Linear Static Spalla Spinta X_SLV	0.3
SLV_30	Linear Static Spalla Spinta Y_SLV	0.3
SLV_30	Linear Static Spalla Spinta Z_SLV	1
SLV_31	Linear Static DEAD 1	
SLV_31	Linear Static G2 1	
SLV_31	Linear Static q1k 0.2	
SLV_31	Linear Static q3-Carichi frenatura	0
SLV_31	Linear Static q - marciapiedi 0	
SLV_31	Linear Static Spalla temp F+ 0.5	5
SLV_31	Linear Static Spalla temp F- 0	
SLV_31	Linear Static Spalla temp U+)
SLV_31	Linear Static Spalla temp U- 0.5	5
SLV_31	Linear Static q_ritiro 1	
SLV_31 R	Response Spectrum Sism SLV X	0.3
SLV_31 R	Response Spectrum Sism SLV Y	0.3
SLV_31 R	Response Spectrum Sism SLV Z	1
SLV_31	Linear Static Sisma X - da impalcato	0.3
SLV_31	Linear Static Sisma Y - da impalcato	0.3
SLV_31	Linear Static Sisma Z - da impalcato	1
SLV_31	Linear Static Spalla Spinta X_SLV	0.3
SLV_31	Linear Static Spalla Spinta Y_SLV	0.3
SLV_31	Linear Static Spalla Spinta Z_SLV	1

 $Relazione\ di\ calcolo\ -\ Spalle\ -\ fase\ 1$

COMMESSA LOTTO CODIFICA DOCUMENTO REV. FOGLIO

NRIJ 01 D 29 CL VI0104 001 B 127 di 172

SLV_32	Linear Static	DEAD	1	
SLV_32	Linear Static	G2	1	
SLV_32	Linear Static	q1k	0	
SLV_32	Linear Static	q3-Carichi frenat	ura	0
SLV_32	Linear Static	q - marciapiedi	0	
SLV_32	Linear Static	Spalla temp F+	0.5	
SLV_32	Linear Static	Spalla temp F-	0	
SLV_32	Linear Static	Spalla temp U+	0	
SLV_32	Linear Static	Spalla temp U-	0.5	
SLV_32	Linear Static	q_ritiro	1	
SLV_32 R	desponse Spectr	rum Sism SL	VX	0.3
SLV_32 R	esponse Spectr	rum Sism SL	VY	0.3
SLV_32 R	esponse Spectr	rum Sism SL	VΖ	1
SLV_32	Linear Static S	Sisma X - da imp	alcato	0.3
SLV_32	Linear Static S	Sisma Y - da imp	alcato	0.3
SLV_32	Linear Static S	Sisma Z - da imp	alcato	1
SLV_32	Linear Static S	Spalla Spinta X_S	SLV	0.3
SLV_32	Linear Static S	Spalla Spinta Y_S	SLV	0.3
SLV_32	Linear Static S	Spalla Spinta Z_S	SLV	1
SLV_33	Linear Static	DEAD	1	
SLV_33	Linear Static	G2	1	
SLV_33	Linear Static	q1k	0.2	
SLV_33	Linear Static	q3-Carichi frenat	ura	0
SLV_33	Linear Static	q - marciapiedi	0	
SLV_33	Linear Static	Spalla temp F+	0	
SLV_33	Linear Static	Spalla temp F-	0.5	
SLV_33	Linear Static	Spalla temp U+	0.5	
SLV_33	Linear Static	Spalla temp U-	0	
SLV_33	Linear Static	q_ritiro	1	
SLV_33 R	esponse Spectr	rum Sism SL	VX	0.3
SLV_33 R	esponse Spectr	rum Sism SL	VY	0.3
SLV_33 R	esponse Spectr	rum Sism SL	VZ	1
SLV_33	Linear Static S	Sisma X - da imp	alcato	0.3
SLV_33	Linear Static S	Sisma Y - da imp	alcato	0.3
SLV_33	Linear Static S	Sisma Z - da imp	alcato	1
SLV_33	Linear Static S	Spalla Spinta X_S	SLV	0.3
SLV_33	Linear Static S	Spalla Spinta Y_S	SLV	0.3

 $Relazione\ di\ calcolo\ -\ Spalle\ -\ fase\ 1$

COMMESSA LOTTO CODIFICA DOCUMENTO REV. FOGLIO

NR1J 01 D 29 CL VI0104 001 B 128 di 172

SLV_33	Linear Static Spalla Spinta Z_SLV	1
SLV_34	Linear Static DEAD 1	
SLV_34	Linear Static G2 1	
SLV_34	Linear Static q1k 0	
SLV_34	Linear Static q3-Carichi frenatura	0
SLV_34	Linear Static q - marciapiedi 0	
SLV_34	Linear Static Spalla temp F+ 0	
SLV_34	Linear Static Spalla temp F- 0.5	
SLV_34	Linear Static Spalla temp U+ 0.5	
SLV_34	Linear Static Spalla temp U- 0	
SLV_34	Linear Static q_ritiro 1	
SLV_34 R	Response Spectrum Sism SLV X	0.3
SLV_34 R	Response Spectrum Sism SLV Y	0.3
SLV_34 R	Response Spectrum Sism SLV Z	1
SLV_34	Linear Static Sisma X - da impalcato	0.3
SLV_34	Linear Static Sisma Y - da impalcato	0.3
SLV_34	Linear Static Sisma Z - da impalcato	1
SLV_34	Linear Static Spalla Spinta X_SLV	0.3
SLV_34	Linear Static Spalla Spinta Y_SLV	0.3
SLV_34	Linear Static Spalla Spinta Z_SLV	1
SLV_35	Linear Static DEAD 1	
SLV_35	Linear Static G2 1	
SLV_35	Linear Static q1k 0.2	
SLV_35	Linear Static q3-Carichi frenatura	0
SLV_35	Linear Static q - marciapiedi 0	
SLV_35	Linear Static Spalla temp F+ 0	
SLV_35	Linear Static Spalla temp F- 0.5	
SLV_35	Linear Static Spalla temp U+ 0	
SLV_35	Linear Static Spalla temp U- 0.5	
SLV_35	Linear Static q_ritiro 1	
SLV_35 R	Response Spectrum Sism SLV X	0.3
SLV_35 R	Response Spectrum Sism SLV Y	0.3
SLV_35 R	Response Spectrum Sism SLV Z	1
SLV_35	Linear Static Sisma X - da impalcato	0.3
SLV_35	Linear Static Sisma Y - da impalcato	0.3
SLV_35	Linear Static Sisma Z - da impalcato	1
SLV_35	Linear Static Spalla Spinta X_SLV	0.3

 $Relazione\ di\ calcolo\ -\ Spalle\ -\ fase\ 1$

COMMESSA LOTTO CODIFICA DOCUMENTO REV. FOGLIO NR1J 01 D 29 CL VI0104 001 B 129 di 172

SLV_35	Linear Static Spalla Spinta Y_SLV	0.3
SLV_35	Linear Static Spalla Spinta Z_SLV	1
SLV_36	Linear Static DEAD 1	
SLV_36	Linear Static G2 1	
SLV_36	Linear Static q1k 0	
SLV_36	Linear Static q3-Carichi frenatura	0
SLV_36	Linear Static q - marciapiedi 0	
SLV_36	Linear Static Spalla temp F+ 0	
SLV_36	Linear Static Spalla temp F- 0.5	
SLV_36	Linear Static Spalla temp U+ 0	
SLV_36	Linear Static Spalla temp U- 0.5	
SLV_36	Linear Static q_ritiro 1	
SLV_36 F	Response Spectrum Sism SLV X	0.3
SLV_36 F	Response Spectrum Sism SLV Y	0.3
SLV_36 F	Response Spectrum Sism SLV Z	1
SLV_36	Linear Static Sisma X - da impalcato	0.3
SLV_36	Linear Static Sisma Y - da impalcato	0.3
SLV_36	Linear Static Sisma Z - da impalcato	1
SLV_36	Linear Static Spalla Spinta X_SLV	0.3
SLV_36	Linear Static Spalla Spinta Y_SLV	0.3
SLV_36	Linear Static Spalla Spinta Z_SLV	1
SLV_37	Linear Static DEAD 1	
SLV_37	Linear Static G2 1	
SLV_37	Linear Static q1k 0.2	
SLV_37	Linear Static q3-Carichi frenatura	0
SLV_37	Linear Static q - marciapiedi 0	
SLV_37	Linear Static Spalla temp F+ 0	
SLV_37	Linear Static Spalla temp F- 0	
SLV_37	Linear Static Spalla temp U+ 0.5	i
SLV_37	Linear Static Spalla temp U- 0	
SLV_37	Linear Static q_ritiro 1	
SLV_37 F	Response Spectrum Sism SLV X	0.3
SLV_37 F	Response Spectrum Sism SLV Y	0.3
SLV_37 F	Response Spectrum Sism SLV Z	1
SLV_37	Linear Static Sisma X - da impalcato	0.3
SLV_37	Linear Static Sisma Y - da impalcato	0.3
SLV_37	Linear Static Sisma Z - da impalcato	1

 $Relazione\ di\ calcolo\ -\ Spalle\ -\ fase\ 1$

COMMESSA LOTTO CODIFICA DOCUMENTO REV. FOGLIO
NR1J 01 D 29 CL VI0104 001 B 130 di 172

SLV_37	Linear Static Spalla Spinta X_SLV	0.3
SLV_37	Linear Static Spalla Spinta Y_SLV	0.3
SLV_37	Linear Static Spalla Spinta Z_SLV	1
SLV_38	Linear Static DEAD 1	
SLV_38	Linear Static G2 1	
SLV_38	Linear Static q1k 0	
SLV_38	Linear Static q3-Carichi frenatura	0
SLV_38	Linear Static q - marciapiedi 0	
SLV_38	Linear Static Spalla temp F+ 0	
SLV_38	Linear Static Spalla temp F- 0	
SLV_38	Linear Static Spalla temp U+ 0.5	
SLV_38	Linear Static Spalla temp U- 0	
SLV_38	Linear Static q_ritiro 1	
SLV_38 R	tesponse Spectrum Sism SLV X	0.3
SLV_38 R	tesponse Spectrum Sism SLV Y	0.3
SLV_38 R	tesponse Spectrum Sism SLV Z	1
SLV_38	Linear Static Sisma X - da impalcato	0.3
SLV_38	Linear Static Sisma Y - da impalcato	0.3
SLV_38	Linear Static Sisma Z - da impalcato	1
SLV_38	Linear Static Spalla Spinta X_SLV	0.3
SLV_38	Linear Static Spalla Spinta Y_SLV	0.3
SLV_38	Linear Static Spalla Spinta Z_SLV	1
SLV_39	Linear Static DEAD 1	
SLV_39	Linear Static G2 1	
SLV_39	Linear Static q1k 0.2	
SLV_39	Linear Static q3-Carichi frenatura	0
SLV_39	Linear Static q - marciapiedi 0	
SLV_39	Linear Static Spalla temp F+ 0	
SLV_39	Linear Static Spalla temp F- 0	
SLV_39	Linear Static Spalla temp U+ 0	
SLV_39	Linear Static Spalla temp U- 0.5	
SLV_39	Linear Static q_ritiro 1	
SLV_39 R	esponse Spectrum Sism SLV X	0.3
SLV_39 R	tesponse Spectrum Sism SLV Y	0.3
SLV_39 R	esponse Spectrum Sism SLV Z	1
SLV_39	Linear Static Sisma X - da impalcato	0.3
SLV_39	Linear Static Sisma Y - da impalcato	0.3

 $Relazione\ di\ calcolo\ -\ Spalle\ -\ fase\ 1$

COMMESSA LOTTO CODIFICA DOCUMENTO REV. FOGLIO NRIJ 01 D 29 CL VI0104 001 B 131 di 172

SLV_39	Linear Static Sisma Z - da impalcato	1
SLV_39	Linear Static Spalla Spinta X_SLV	0.3
SLV_39	Linear Static Spalla Spinta Y_SLV	0.3
SLV_39	Linear Static Spalla Spinta Z_SLV	1
SLV_40	Linear Static DEAD 1	
SLV_40	Linear Static G2 1	
SLV_40	Linear Static q1k 0	
SLV_40	Linear Static q3-Carichi frenatura	0
SLV_40	Linear Static q - marciapiedi ()
SLV_40	Linear Static Spalla temp F+	0
SLV_40	Linear Static Spalla temp F-	0
SLV_40	Linear Static Spalla temp U+	0
SLV_40	Linear Static Spalla temp U- 0	.5
SLV_40	Linear Static q_ritiro 1	
SLV_40 F	Response Spectrum Sism SLV X	0.3
SLV_40 F	Response Spectrum Sism SLV Y	0.3
SLV_40 F	Response Spectrum Sism SLV Z	1
SLV_40	Linear Static Sisma X - da impalcato	0.3
SLV_40	Linear Static Sisma Y - da impalcato	0.3
SLV_40	Linear Static Sisma Z - da impalcato	1
SLV_40	Linear Static Spalla Spinta X_SLV	0.3
SLV_40	Linear Static Spalla Spinta Y_SLV	0.3
SLV_40	Linear Static Spalla Spinta Z_SLV	1
SLV_41	Linear Static DEAD 1	
SLV_41	Linear Static G2 1	
SLV_41	Linear Static q1k 0.2	
SLV_41	Linear Static q3-Carichi frenatura	0
SLV_41	Linear Static q - marciapiedi ()
SLV_41	Linear Static Spalla temp F+	0
SLV_41	Linear Static Spalla temp F-	0
SLV_41	Linear Static Spalla temp U+	0
SLV_41	Linear Static Spalla temp U-	0
SLV_41	Linear Static q_ritiro 1	
SLV_41 F	Response Spectrum Sism SLV X	0.3
	Response Spectrum Sism SLV Y	0.3
	Response Spectrum Sism SLV Z	1
SLV_41	Linear Static Sisma X - da impalcato	0.3
_		

 $Relazione\ di\ calcolo\ -\ Spalle\ -\ fase\ 1$

COMMESSA LOTTO CODIFICA DOCUMENTO REV. FOGLIO

NRIJ 01 D 29 CL VI0104 001 B 132 di 172

SLV_41	Linear Static Sisma Y - da impalcato	0.3
SLV_41	Linear Static Sisma Z - da impalcato	1
SLV_41	Linear Static Spalla Spinta X_SLV 0	.3
SLV_41	Linear Static Spalla Spinta Y_SLV 0	.3
SLV_41	Linear Static Spalla Spinta Z_SLV	1
SLV_42	Linear Static DEAD 1	
SLV_42	Linear Static G2 1	
SLV_42	Linear Static q1k 0	
SLV_42	Linear Static q3-Carichi frenatura 0	
SLV_42	Linear Static q - marciapiedi 0	
SLV_42	Linear Static Spalla temp F+ 0	
SLV_42	Linear Static Spalla temp F- 0	
SLV_42	Linear Static Spalla temp U+ 0	
SLV_42	Linear Static Spalla temp U- 0	
SLV_42	Linear Static q_ritiro 1	
SLV_42 R	Response Spectrum Sism SLV X 0	.3
SLV_42 R	Response Spectrum Sism SLV Y 0	.3
SLV_42 R	Response Spectrum Sism SLV Z	1
SLV_42	Linear Static Sisma X - da impalcato	0.3
SLV_42	Linear Static Sisma Y - da impalcato	0.3
SLV_42	Linear Static Sisma Z - da impalcato	1
SLV_42	Linear Static Spalla Spinta X_SLV 0	.3
SLV_42	Linear Static Spalla Spinta Y_SLV 0	.3
SLV_42	Linear Static Spalla Spinta Z_SLV	1
RARA_1	Linear Static DEAD 1	
RARA_1	Linear Static G2 1	
RARA_1	Linear Static q1k 1	
RARA_1	Linear Static q3-Carichi frenatura	1
RARA_1	Linear Static q - marciapiedi 0	
RARA_1	Linear Static Spalla temp F+ 0	
RARA_1	Linear Static Spalla temp F- 0	
RARA_1	Linear Static Spalla temp U+ 0	
RARA_1	Linear Static Spalla temp U- 0	
RARA_1	Linear Static q_ritiro 1	
RARA_1 l	Response Spectrum Sism SLV X	0
RARA_1	Response Spectrum Sism SLV Y	0
RARA_1	Response Spectrum Sism SLV Z	0

 $Relazione\ di\ calcolo\ -\ Spalle\ -\ fase\ 1$

COMMESSA LOTTO CODIFICA DOCUMENTO REV. FOGLIO

NRIJ 01 D 29 CL VI0104 001 B 133 di 172

RARA_1	Linear Static Sisma X - da impalcato	0
RARA_1	Linear Static Sisma Y - da impalcato	0
RARA_1	Linear Static Sisma Z - da impalcato	0
RARA_1	Linear Static Spalla Spinta X_SLV	0
RARA_1	Linear Static Spalla Spinta Y_SLV	0
RARA_1	Linear Static Spalla Spinta Z_SLV	0
RARA_2	Linear Static DEAD 1	
RARA_2	Linear Static G2 1	
RARA_2	Linear Static q1k 1	
RARA_2	Linear Static q3-Carichi frenatura	1
RARA_2	Linear Static q - marciapiedi ()
RARA_2	Linear Static Spalla temp F+ 0	0.6
RARA_2	Linear Static Spalla temp F-	0
RARA_2	Linear Static Spalla temp U+	0
RARA_2	Linear Static Spalla temp U-	0
RARA_2	Linear Static q_ritiro 1	
RARA_2 R	esponse Spectrum Sism SLV X	0
RARA_2 R	esponse Spectrum Sism SLV Y	0
RARA_2 R	esponse Spectrum Sism SLV Z	0
RARA_2	Linear Static Sisma X - da impalcato	0
RARA_2	Linear Static Sisma Y - da impalcato	0
RARA_2	Linear Static Sisma Z - da impalcato	0
RARA_2	Linear Static Spalla Spinta X_SLV	0
RARA_2	Linear Static Spalla Spinta Y_SLV	0
RARA_2	Linear Static Spalla Spinta Z_SLV	0
RARA_3	Linear Static DEAD 1	
RARA_3	Linear Static G2 1	
RARA_3	Linear Static q1k 1	
RARA_3	Linear Static q3-Carichi frenatura	1
RARA_3	Linear Static q - marciapiedi ()
RARA_3	Linear Static Spalla temp F+ 0).6
RARA_3		0
RARA_3	Linear Static Spalla temp U+ ().6
RARA_3		0
RARA_3	Linear Static q_ritiro 1	
	esponse Spectrum Sism SLV X	0
	esponse Spectrum Sism SLV Y	0
_		

 $Relazione\ di\ calcolo\ -\ Spalle\ -\ fase\ 1$

COMMESSA LOTTO CODIFICA DOCUMENTO REV. FOGLIO

NR1J 01 D 29 CL VI0104 001 B 134 di 172

RARA_3 R	Response Spectrum Sism SLV Z	0
RARA_3	Linear Static Sisma X - da impalcato	0
RARA_3	Linear Static Sisma Y - da impalcato	0
RARA_3	Linear Static Sisma Z - da impalcato	0
RARA_3	Linear Static Spalla Spinta X_SLV	0
RARA_3	Linear Static Spalla Spinta Y_SLV	0
RARA_3	Linear Static Spalla Spinta Z_SLV	0
RARA_4	Linear Static DEAD 1	
RARA_4	Linear Static G2 1	
RARA_4	Linear Static q1k 1	
RARA_4	Linear Static q3-Carichi frenatura	1
RARA_4	Linear Static q - marciapiedi 0	
RARA_4	Linear Static Spalla temp F+ 0	
RARA_4	Linear Static Spalla temp F- 0	
RARA_4	Linear Static Spalla temp U+ 0.6	
RARA_4	Linear Static Spalla temp U- 0	
RARA_4	Linear Static q_ritiro 1	
RARA_4 R	Response Spectrum Sism SLV X	0
RARA_4 R	Response Spectrum Sism SLV Y	0
RARA_4 R	Response Spectrum Sism SLV Z	0
RARA_4	Linear Static Sisma X - da impalcato	0
RARA_4	Linear Static Sisma Y - da impalcato	0
RARA_4	Linear Static Sisma Z - da impalcato	0
RARA_4	Linear Static Spalla Spinta X_SLV	0
RARA_4	Linear Static Spalla Spinta Y_SLV	0
RARA_4	Linear Static Spalla Spinta Z_SLV	0
RARA_5	Linear Static DEAD 1	
RARA_5	Linear Static G2 1	
RARA_5	Linear Static q1k 1	
RARA_5	Linear Static q3-Carichi frenatura	1
RARA_5	Linear Static q - marciapiedi 0	
RARA_5	Linear Static Spalla temp F+ 0.6	
RARA_5	Linear Static Spalla temp F- 0	
RARA_5	Linear Static Spalla temp U+ 0	
RARA_5	Linear Static Spalla temp U- 0.6	
RARA_5	Linear Static q_ritiro 1	
RARA_5 R	Response Spectrum Sism SLV X	0

 $Relazione\ di\ calcolo\ -\ Spalle\ -\ fase\ 1$

COMMESSA LOTTO CODIFICA DOCUMENTO REV. FOGLIO

NRIJ 01 D 29 CL VI0104 001 B 135 di 172

RARA_5 R	tesponse Spectrum Sism SLV Y	0
RARA_5 R	tesponse Spectrum Sism SLV Z	0
RARA_5	Linear Static Sisma X - da impalcato	0
RARA_5	Linear Static Sisma Y - da impalcato	0
RARA_5	Linear Static Sisma Z - da impalcato	0
RARA_5	Linear Static Spalla Spinta X_SLV	0
RARA_5	Linear Static Spalla Spinta Y_SLV	0
RARA_5	Linear Static Spalla Spinta Z_SLV	0
RARA_6	Linear Static DEAD 1	
RARA_6	Linear Static G2 1	
RARA_6	Linear Static q1k 1	
RARA_6	Linear Static q3-Carichi frenatura	1
RARA_6	Linear Static q - marciapiedi 0	
RARA_6	Linear Static Spalla temp F+ 0	
RARA_6	Linear Static Spalla temp F- 0	
RARA_6	Linear Static Spalla temp U+ 0	
RARA_6	Linear Static Spalla temp U- 0.6	
RARA_6	Linear Static q_ritiro 1	
RARA_6 R	tesponse Spectrum Sism SLV X	0
RARA_6 R	tesponse Spectrum Sism SLV Y	0
RARA_6 R	tesponse Spectrum Sism SLV Z	0
RARA_6	Linear Static Sisma X - da impalcato	0
RARA_6	Linear Static Sisma Y - da impalcato	0
RARA_6	Linear Static Sisma Z - da impalcato	0
RARA_6	Linear Static Spalla Spinta X_SLV	0
RARA_6	Linear Static Spalla Spinta Y_SLV	0
RARA_6	Linear Static Spalla Spinta Z_SLV	0
RARA_7	Linear Static DEAD 1	
RARA_7	Linear Static G2 1	
RARA_7	Linear Static q1k 1	
RARA_7	Linear Static q3-Carichi frenatura	1
RARA_7	Linear Static q - marciapiedi 0	
RARA_7	Linear Static Spalla temp F+ 0	
RARA_7	Linear Static Spalla temp F- 0.6	
RARA_7	Linear Static Spalla temp U+ 0	
RARA_7	Linear Static Spalla temp U- 0	
RARA_7	Linear Static q_ritiro 1	

 $Relazione\ di\ calcolo\ -\ Spalle\ -\ fase\ 1$

COMMESSA LOTTO CODIFICA DOCUMENTO REV. FOGLIO

NR1J 01 D 29 CL VI0104 001 B 136 di 172

RARA_7	Response Spectrui	m Sism SL	VX	0
RARA_7	Response Spectrui	m Sism SL	VY	0
RARA_7	Response Spectru	m Sism SL	VZ	0
RARA_7	Linear Static Si	sma X - da imp	alcato	0
RARA_7	Linear Static Si	sma Y - da imp	alcato	0
RARA_7	Linear Static Si	sma Z - da imp	alcato	0
RARA_7	Linear Static Sp	oalla Spinta X_S	SLV	0
RARA_7	Linear Static Sp	oalla Spinta Y_S	SLV	0
RARA_7	Linear Static Sp	oalla Spinta Z_S	SLV	0
RARA_8	Linear Static	DEAD	1	
RARA_8	Linear Static	G2	1	
RARA_8	Linear Static	q1k	1	
RARA_8	Linear Static q3	-Carichi frenat	ura	1
RARA_8	Linear Static q	- marciapiedi	0	
RARA_8	Linear Static	Spalla temp F+	0	
RARA_8	Linear Static	Spalla temp F-	0.6	
RARA_8	Linear Static	Spalla temp U+	0.6	
RARA_8	Linear Static	Spalla temp U-	0	
RARA_8	Linear Static	q_ritiro	1	
RARA_8	Response Spectrui	m Sism SL	VX	0
RARA_8	Response Spectru	m Sism SL	VY	0
RARA_8	Response Spectrui	m Sism SL	VZ	0
RARA_8	Linear Static Si	sma X - da imp	alcato	0
RARA_8	Linear Static Si	sma Y - da imp	alcato	0
RARA_8	Linear Static Si	sma Z - da imp	alcato	0
RARA_8	Linear Static Sp	oalla Spinta X_S	SLV	0
RARA_8	Linear Static Sp	oalla Spinta Y_S	SLV	0
RARA_8	Linear Static Sp	oalla Spinta Z_S	SLV	0
RARA_9	Linear Static	DEAD	1	
RARA_9	Linear Static	G2	1	
RARA_9	Linear Static	q1k	1	
RARA_9	Linear Static q3	-Carichi frenat	ura	1
RARA_9	Linear Static q	- marciapiedi	0	
RARA_9	Linear Static	Spalla temp F+	0	
RARA_9	Linear Static	Spalla temp F-	0.6	
RARA_9	Linear Static	Spalla temp U+	- 0	
RARA_9	Linear Static	Spalla temp U-	0.6	

Relazione di calcolo – Spalle – fase 1

COMMESSA LOTTO CODIFICA DOCUMENTO REV. FOGLIO

NRIJ 01 D 29 CL VI0104 001 B 137 di 172

RARA_9	Linear Static q_ritiro 1	
RARA_9 R	Response Spectrum Sism SLV X 0	
RARA_9 R	Response Spectrum Sism SLV Y 0	
RARA_9 R	Response Spectrum Sism SLV Z 0	
RARA_9	Linear Static Sisma X - da impalcato	0
RARA_9	Linear Static Sisma Y - da impalcato	0
RARA_9	Linear Static Sisma Z - da impalcato	0
RARA_9	Linear Static Spalla Spinta X_SLV 0	
RARA_9	Linear Static Spalla Spinta Y_SLV 0	
RARA_9	Linear Static Spalla Spinta Z_SLV 0	
RARA_10	Linear Static DEAD 1	
RARA_10	Linear Static G2 1	
RARA_10	Linear Static q1k 0.8	
RARA_10	Linear Static q3-Carichi frenatura 0.8	
RARA_10	Linear Static q - marciapiedi 1	
RARA_10	Linear Static Spalla temp F+ 0	
RARA_10	Linear Static Spalla temp F- 0	
RARA_10	Linear Static Spalla temp U+ 0	
RARA_10	Linear Static Spalla temp U- 0	
RARA_10	Linear Static q_ritiro 1	
RARA_10 I	Response Spectrum Sism SLV X)
RARA_10 I	Response Spectrum Sism SLV Y)
RARA_10 I	Response Spectrum Sism SLV Z 0)
RARA_10	Linear Static Sisma X - da impalcato	0
RARA_10	Linear Static Sisma Y - da impalcato	0
RARA_10	Linear Static Sisma Z - da impalcato	0
RARA_10	Linear Static Spalla Spinta X_SLV)
RARA_10	Linear Static Spalla Spinta Y_SLV)
RARA_10	Linear Static Spalla Spinta Z_SLV)
RARA_11	Linear Static DEAD 1	
RARA_11	Linear Static G2 1	
RARA_11	Linear Static q1k 0.8	
RARA_11	Linear Static q3-Carichi frenatura 0.8	
RARA_11	Linear Static q - marciapiedi 1	
RARA_11	Linear Static Spalla temp F+ 0.6	
RARA_11	Linear Static Spalla temp F- 0	
RARA_11	Linear Static Spalla temp U+ 0	

 $Relazione\ di\ calcolo\ -\ Spalle\ -\ fase\ 1$

COMMESSA LOTTO CODIFICA DOCUMENTO REV. FOGLIO

NR1J 01 D 29 CL VI0104 001 B 138 di 172

RARA_11	Linear Static Spalla	temp U-	0
RARA_11	Linear Static q_	ritiro	1
RARA_11 R	esponse Spectrum	Sism SLV 2	X 0
RARA_11 R	esponse Spectrum	Sism SLV	Y 0
RARA_11 R	esponse Spectrum	Sism SLV 2	Z 0
RARA_11	Linear Static Sisma X	K - da impalc	ato 0
RARA_11	Linear Static Sisma Y	/ - da impalc	ato 0
RARA_11	Linear Static Sisma Z	Z - da impalc	ato 0
RARA_11	Linear Static Spalla S	Spinta X_SL	V 0
RARA_11	Linear Static Spalla S	Spinta Y_SL	V 0
RARA_11	Linear Static Spalla S	Spinta Z_SLV	V 0
RARA_12	Linear Static	DEAD	1
RARA_12	Linear Static	G2 1	
RARA_12	Linear Static	q1k 0.8	8
RARA_12	Linear Static q3-Cari	chi frenatura	0.8
RARA_12	Linear Static q - mar	rciapiedi	1
RARA_12	Linear Static Spalla	temp F+	0
RARA_12	Linear Static Spalla	temp F-	0.6
RARA_12	Linear Static Spalla	temp U+	0
RARA_12	Linear Static Spalla	temp U-	0
RARA_12	Linear Static q_	ritiro	1
RARA_12 R	esponse Spectrum	Sism SLV 2	X 0
RARA_12 R	esponse Spectrum	Sism SLV	Y 0
RARA_12 R	esponse Spectrum	Sism SLV 2	Z 0
RARA_12	Linear Static Sisma X	K - da impalc	ato 0
RARA_12	Linear Static Sisma Y	7 - da impalc	ato 0
RARA_12	Linear Static Sisma Z	Z - da impalc	ato 0
RARA_12	Linear Static Spalla S	Spinta X_SL	V 0
RARA_12	Linear Static Spalla S	Spinta Y_SL	V 0
RARA_12	Linear Static Spalla S	Spinta Z_SLV	V 0
RARA_13	Linear Static	DEAD	1
RARA_13	Linear Static	G2 1	
RARA_13	Linear Static	q1k 0.8	8
RARA_13	Linear Static q3-Cario	chi frenatura	0.8
RARA_13	Linear Static q - mar	rciapiedi	1
RARA_13	Linear Static Spalla	temp F+	0.6
RARA_13	Linear Static Spalla	temp F-	0

 $Relazione\ di\ calcolo\ -\ Spalle\ -\ fase\ 1$

COMMESSA LOTTO CODIFICA DOCUMENTO REV. FOGLIO

NRIJ 01 D 29 CL VI0104 001 B 139 di 172

RARA_13	Linear Static	Spalla temp U-	+ 0.6	ó
RARA_13	Linear Static	Spalla temp U-	- 0	
RARA_13	Linear Static	q_ritiro	1	
RARA_13 R	esponse Spectr	um Sism SI	LV X	0
RARA_13 R	esponse Spectr	um Sism SI	LV Y	0
RARA_13 R	esponse Spectr	um Sism SI	LV Z	0
RARA_13	Linear Static S	Sisma X - da im _l	palcato	0
RARA_13	Linear Static S	Sisma Y - da im _l	palcato	0
RARA_13	Linear Static S	Sisma Z - da imp	palcato	0
RARA_13	Linear Static S	Spalla Spinta X_	SLV	0
RARA_13	Linear Static S	Spalla Spinta Y_	SLV	0
RARA_13	Linear Static S	Spalla Spinta Z_	SLV	0
RARA_14	Linear Static	DEAD	1	
RARA_14	Linear Static	G2	1	
RARA_14	Linear Static	q1k	0.8	
RARA_14	Linear Static c	3-Carichi frena	tura	0.8
RARA_14	Linear Static	q - marciapiedi	1	
RARA_14	Linear Static	Spalla temp F+	- 0.6	
RARA_14	Linear Static	Spalla temp F-	0	
RARA_14	Linear Static	Spalla temp U-	+ 0	
RARA_14	Linear Static	Spalla temp U-	- 0.6	
RARA_14	Linear Static	q_ritiro	1	
RARA_14 R	esponse Spectr	um Sism SI	LV X	0
RARA_14 R	esponse Spectr	um Sism SI	LV Y	0
RARA_14 R	esponse Spectr	um Sism SI	LV Z	0
RARA_14	Linear Static S	Sisma X - da im _l	palcato	0
RARA_14	Linear Static S	Sisma Y - da im _l	palcato	0
RARA_14	Linear Static S	Sisma Z - da imp	palcato	0
RARA_14	Linear Static S	Spalla Spinta X_	SLV	0
RARA_14	Linear Static S	Spalla Spinta Y_	SLV	0
RARA_14	Linear Static S	Spalla Spinta Z_	SLV	0
RARA_15	Linear Static	DEAD	1	
RARA_15	Linear Static	G2	1	
RARA_15	Linear Static	q1k	0.8	
RARA_15	Linear Static o	3-Carichi frena	tura	0.8
RARA_15	Linear Static	q - marciapiedi	1	
RARA_15	Linear Static	Spalla temp F+	- 0	

 $Relazione\ di\ calcolo\ -\ Spalle\ -\ fase\ 1$

COMMESSA LOTTO CODIFICA DOCUMENTO REV. FOGLIO

NR1J 01 D 29 CL VI0104 001 B 140 di 172

RARA_15	Linear Static Spalla temp F- 0	
RARA_15	Linear Static Spalla temp U+ 0.6	
RARA_15	Linear Static Spalla temp U- 0	
RARA_15	Linear Static q_ritiro 1	
RARA_15 R	Response Spectrum Sism SLV X	0
RARA_15 R	desponse Spectrum Sism SLV Y	0
RARA_15 R	Response Spectrum Sism SLV Z	0
RARA_15	Linear Static Sisma X - da impalcato	0
RARA_15	Linear Static Sisma Y - da impalcato	0
RARA_15	Linear Static Sisma Z - da impalcato	0
RARA_15	Linear Static Spalla Spinta X_SLV	0
RARA_15	Linear Static Spalla Spinta Y_SLV	0
RARA_15	Linear Static Spalla Spinta Z_SLV	0
RARA_16	Linear Static DEAD 1	
RARA_16	Linear Static G2 1	
RARA_16	Linear Static q1k 0.8	
RARA_16	Linear Static q3-Carichi frenatura 0.	.8
RARA_16	Linear Static q - marciapiedi 1	
RARA_16	Linear Static Spalla temp F+ 0	
RARA_16	Linear Static Spalla temp F- 0	
RARA_16	Linear Static Spalla temp U+ 0	
RARA_16	Linear Static Spalla temp U- 0.6	
RARA_16	Linear Static q_ritiro 1	
RARA_16 R	desponse Spectrum Sism SLV X	0
RARA_16 R	desponse Spectrum Sism SLV Y	0
RARA_16 R	Response Spectrum Sism SLV Z	0
RARA_16	Linear Static Sisma X - da impalcato	0
RARA_16	Linear Static Sisma Y - da impalcato	0
RARA_16	Linear Static Sisma Z - da impalcato	0
RARA_16	Linear Static Spalla Spinta X_SLV	0
RARA_16	Linear Static Spalla Spinta Y_SLV	0
RARA_16	Linear Static Spalla Spinta Z_SLV	0
RARA_17	Linear Static DEAD 1	
RARA_17	Linear Static G2 1	
RARA_17	Linear Static q1k 0.8	
RARA_17	Linear Static q3-Carichi frenatura 0.	.8
RARA_17	Linear Static q - marciapiedi 1	

Relazione di calcolo – Spalle – fase 1

COMMESSA LOTTO CODIFICA DOCUMENTO REV. FOGLIO

NR1J 01 D 29 CL VI0104 001 B 141 di 172

RARA_17	Linear Static	Spalla temp F-	+ 0
RARA_17	Linear Static	Spalla temp F-	0.6
RARA_17	Linear Static	Spalla temp U	+ 0.6
RARA_17	Linear Static	Spalla temp U	- 0
RARA_17	Linear Static	q_ritiro	1
RARA_17	Response Spectr	um Sism SI	LVX 0
RARA_17	Response Spectr	um Sism SI	LVY 0
RARA_17	Response Spectr	um Sism SI	LVZ 0
RARA_17	Linear Static S	Sisma X - da im	palcato 0
RARA_17	Linear Static S	Sisma Y - da im	palcato 0
RARA_17	Linear Static S	Sisma Z - da im _l	palcato 0
RARA_17	Linear Static S	Spalla Spinta X_	_SLV 0
RARA_17	Linear Static S	Spalla Spinta Y_	_SLV 0
RARA_17	Linear Static S	Spalla Spinta Z_	SLV 0
RARA_18	Linear Static	DEAD	1
RARA_18	Linear Static	G2	1
RARA_18	Linear Static	q1k	0.8
RARA_18	Linear Static o	₁ 3-Carichi frena	tura 0.8
RARA_18	Linear Static	q - marciapiedi	1
RARA_18	Linear Static	Spalla temp F-	+ 0
RARA_18	Linear Static	Spalla temp F-	0.6
RARA_18	Linear Static	Spalla temp U	+ 0
RARA_18	Linear Static	Spalla temp U	- 0.6
RARA_18	Linear Static	q_ritiro	1
RARA_18	Response Spectr	um Sism SI	LVX 0
RARA_18	Response Spectr	um Sism SI	LVY 0
RARA_18	Response Spectr	um Sism Sl	LVZ 0
RARA_18	Linear Static S	Sisma X - da im	palcato 0
RARA_18	Linear Static S	Sisma Y - da im	palcato 0
RARA_18	Linear Static S	Sisma Z - da im _l	palcato 0
RARA_18	Linear Static S	Spalla Spinta X_	_SLV 0
RARA_18	Linear Static S	Spalla Spinta Y_	_SLV 0
RARA_18	Linear Static S	Spalla Spinta Z_	SLV 0
FREQ_1	Linear Static	DEAD	1
FREQ_1	Linear Static	G2	1
FREQ_1	Linear Static	q1k	0.8
FREQ_1	Linear Static q3	3-Carichi frenati	ura 0.8

 $Relazione\ di\ calcolo\ -\ Spalle\ -\ fase\ 1$

COMMESSA LOTTO CODIFICA DOCUMENTO REV. FOGLIO

NRIJ 01 D 29 CL VI0104 001 B 142 di 172

FREQ_1	Linear Static	q - marciapiedi	0	
FREQ_1	Linear Static	Spalla temp F+	0	
FREQ_1	Linear Static	Spalla temp F-	0	
FREQ_1	Linear Static	Spalla temp U+	- 0	
FREQ_1	Linear Static	Spalla temp U-	0	
FREQ_1	Linear Static	q_ritiro	1	
FREQ_1 R	esponse Spectr	um Sism SL	VX	0
FREQ_1 R	esponse Spectr	um Sism SL	VY	0
FREQ_1 R	esponse Spectr	um Sism SL	VZ	0
FREQ_1	Linear Static S	Sisma X - da imp	alcato	0
FREQ_1	Linear Static S	Sisma Y - da imp	alcato	0
FREQ_1	Linear Static S	Sisma Z - da imp	alcato	0
FREQ_1	Linear Static S	Spalla Spinta X_	SLV	0
FREQ_1	Linear Static S	Spalla Spinta Y_	SLV	0
FREQ_1	Linear Static S	Spalla Spinta Z_S	SLV	0
FREQ_2	Linear Static	DEAD	1	
FREQ_2	Linear Static	G2	1	
FREQ_2	Linear Static	q1k	0.8	
FREQ_2	Linear Static o	₁ 3-Carichi frenat	ura 0	.8
FREQ_2	Linear Static	q - marciapiedi	0	
FREQ_2	Linear Static	Spalla temp F+	0.5	
FREQ_2	Linear Static	Spalla temp F-	0	
FREQ_2	Linear Static	Spalla temp U+	- 0	
FREQ_2	Linear Static	Spalla temp U-	0	
FREQ_2	Linear Static	q_ritiro	1	
FREQ_2 R	esponse Spectr	um Sism SL	VX	0
FREQ_2 R	esponse Spectr	um Sism SL	VY	0
FREQ_2 R	esponse Spectr	um Sism SL	VZ	0
FREQ_2	Linear Static S	Sisma X - da imp	alcato	0
FREQ_2	Linear Static S	Sisma Y - da imp	alcato	0
FREQ_2	Linear Static S	Sisma Z - da imp	alcato	0
FREQ_2	Linear Static S	Spalla Spinta X_	SLV	0
FREQ_2	Linear Static S	Spalla Spinta Y_	SLV	0
FREQ_2	Linear Static S	Spalla Spinta Z_S	SLV	0
FREQ_3	Linear Static	DEAD	1	
FREQ_3	Linear Static	G2	1	
FREQ_3	Linear Static	q1k	0.8	

 $Relazione\ di\ calcolo\ -\ Spalle\ -\ fase\ 1$

COMMESSA LOTTO CODIFICA DOCUMENTO REV. FOGLIO

NRIJ 01 D 29 CL VI0104 001 B 143 di 172

FREQ_3	Linear Static q3-Carichi frenatura	0.8
FREQ_3	Linear Static q - marciapiedi)
FREQ_3	Linear Static Spalla temp F+ 0	.5
FREQ_3	Linear Static Spalla temp F-)
FREQ_3	Linear Static Spalla temp U+ 0).5
FREQ_3	Linear Static Spalla temp U-	0
FREQ_3	Linear Static q_ritiro 1	
FREQ_3 R	Response Spectrum Sism SLV X	0
FREQ_3 R	Response Spectrum Sism SLV Y	0
FREQ_3 R	Response Spectrum Sism SLV Z	0
FREQ_3	Linear Static Sisma X - da impalcato	0
FREQ_3	Linear Static Sisma Y - da impalcato	0
FREQ_3	Linear Static Sisma Z - da impalcato	0
FREQ_3	Linear Static Spalla Spinta X_SLV	0
FREQ_3	Linear Static Spalla Spinta Y_SLV	0
FREQ_3	Linear Static Spalla Spinta Z_SLV	0
FREQ_4	Linear Static DEAD 1	
FREQ_4	Linear Static G2 1	
FREQ_4	Linear Static q1k 1	
FREQ_4	Linear Static q3-Carichi frenatura	1
FREQ_4	Linear Static q - marciapiedi)
FREQ_4	Linear Static Spalla temp F+	0
FREQ_4	Linear Static Spalla temp F-)
FREQ_4	Linear Static Spalla temp U+).5
FREQ_4	Linear Static Spalla temp U-	0
FREQ_4	Linear Static q_ritiro 1	
FREQ_4 R	Response Spectrum Sism SLV X	0
FREQ_4 R	Response Spectrum Sism SLV Y	0
FREQ_4 R	Response Spectrum Sism SLV Z	0
FREQ_4	Linear Static Sisma X - da impalcato	0
FREQ_4	Linear Static Sisma Y - da impalcato	0
FREQ_4	Linear Static Sisma Z - da impalcato	0
FREQ_4	Linear Static Spalla Spinta X_SLV	0
FREQ_4	Linear Static Spalla Spinta Y_SLV	0
FREQ_4	Linear Static Spalla Spinta Z_SLV	0
FREQ_5	Linear Static DEAD 1	
FREQ_5	Linear Static G2 1	

 $Relazione\ di\ calcolo\ -\ Spalle\ -\ fase\ 1$

COMMESSA LOTTO CODIFICA DOCUMENTO REV. FOGLIO NRIJ 01 D 29 CL VI0104 001 B 144 di 172

FREQ_5	Linear Static q1k 1	
FREQ_5	Linear Static q3-Carichi frenatura	1
FREQ_5	Linear Static q - marciapiedi)
FREQ_5	Linear Static Spalla temp F+ 0	0.5
FREQ_5	Linear Static Spalla temp F-	0
FREQ_5	Linear Static Spalla temp U+	0
FREQ_5	Linear Static Spalla temp U- 0	.5
FREQ_5	Linear Static q_ritiro 1	
FREQ_5 R	Response Spectrum Sism SLV X	0
FREQ_5 R	Response Spectrum Sism SLV Y	0
FREQ_5 R	Response Spectrum Sism SLV Z	0
FREQ_5	Linear Static Sisma X - da impalcato	0
FREQ_5	Linear Static Sisma Y - da impalcato	0
FREQ_5	Linear Static Sisma Z - da impalcato	0
FREQ_5	Linear Static Spalla Spinta X_SLV	0
FREQ_5	Linear Static Spalla Spinta Y_SLV	0
FREQ_5	Linear Static Spalla Spinta Z_SLV	0
FREQ_6	Linear Static DEAD 1	
FREQ_6	Linear Static G2 1	
FREQ_6	Linear Static q1k 0.8	
FREQ_6	Linear Static q3-Carichi frenatura	0.8
FREQ_6	Linear Static q - marciapiedi)
FREQ_6	Linear Static Spalla temp F+	0
FREQ_6	Linear Static Spalla temp F-	0
FREQ_6	Linear Static Spalla temp U+	0
FREQ_6	Linear Static Spalla temp U- 0	.5
FREQ_6	Linear Static q_ritiro 1	
FREQ_6 R	Response Spectrum Sism SLV X	0
FREQ_6 R	Response Spectrum Sism SLV Y	0
FREQ_6 R	Response Spectrum Sism SLV Z	0
FREQ_6	Linear Static Sisma X - da impalcato	0
FREQ_6	Linear Static Sisma Y - da impalcato	0
FREQ_6	Linear Static Sisma Z - da impalcato	0
FREQ_6	Linear Static Spalla Spinta X_SLV	0
FREQ_6	Linear Static Spalla Spinta Y_SLV	0
FREQ_6	Linear Static Spalla Spinta Z_SLV	0
FREQ_7	Linear Static DEAD 1	

 $Relazione\ di\ calcolo\ -\ Spalle\ -\ fase\ 1$

COMMESSA LOTTO CODIFICA DOCUMENTO REV. FOGLIO

NRIJ 01 D 29 CL VI0104 001 B 145 di 172

FREQ_7	Linear Static G	2 1		
FREQ_7	Linear Static q1	k 0.8	3	
FREQ_7	Linear Static q3-Carichi	frenatura	0.8	
FREQ_7	Linear Static q - marcia	piedi	0	
FREQ_7	Linear Static Spalla ter	np F+	0	
FREQ_7	Linear Static Spalla ter	np F-	0.5	
FREQ_7	Linear Static Spalla ter	np U+	0	
FREQ_7	Linear Static Spalla ter	np U-	0	
FREQ_7	Linear Static q_ritin	ro 1		
FREQ_7 F	Response Spectrum Sis	sm SLV X	0	
FREQ_7 F	Response Spectrum Sig	sm SLV Y	7 0	
FREQ_7 F	Response Spectrum Sis	sm SLV Z	2 0	
FREQ_7	Linear Static Sisma X - o	la impalca	ato ()
FREQ_7	Linear Static Sisma Y - o	la impalca	ato ()
FREQ_7	Linear Static Sisma Z - d	a impalca	ito 0)
FREQ_7	Linear Static Spalla Spin	ta X_SLV	7 0	
FREQ_7	Linear Static Spalla Spin	ta Y_SLV	7 0	
FREQ_7	Linear Static Spalla Spin	ta Z_SLV	0	
FREQ_8	Linear Static DE	AD	1	
FREQ_8	Linear Static G	2 1		
FREQ_8	Linear Static q1	k 0.8	3	
FREQ_8	Linear Static q3-Carichi	frenatura	0.8	
FREQ_8	Linear Static q - marcia	piedi	0	
FREQ_8	Linear Static Spalla ter	np F+	0	
FREQ_8	Linear Static Spalla ter	np F-	0.5	
FREQ_8	Linear Static Spalla ter	np U+	0.5	
FREQ_8	Linear Static Spalla ter	np U-	0	
FREQ_8	Linear Static q_riting	ro 1		
FREQ_8 F	Response Spectrum Sis	sm SLV X	0	
FREQ_8 F	Response Spectrum Sis	sm SLV Y	0	
FREQ_8 F	Response Spectrum Sis	sm SLV Z	0	
FREQ_8	Linear Static Sisma X - o	la impalca	ato ()
FREQ_8	Linear Static Sisma Y - o	la impalca	ato ()
FREQ_8	Linear Static Sisma Z - d	a impalca	ito 0)
FREQ_8	Linear Static Spalla Spin	ta X_SLV	0	
FREQ_8	Linear Static Spalla Spin	ta Y_SLV	0	
FREQ_8	Linear Static Spalla Spin	ta Z_SLV	0	

 $Relazione\ di\ calcolo\ -\ Spalle\ -\ fase\ 1$

COMMESSA LOTTO CODIFICA DOCUMENTO REV. FOGLIO

NRIJ 01 D 29 CL VI0104 001 B 146 di 172

FREQ_9	Linear Static	DEAD	1	
FREQ_9	Linear Static	G2	1	
FREQ_9	Linear Static	q1k	0.8	
FREQ_9	Linear Static o	₁ 3-Carichi frenatu	ıra (0.8
FREQ_9	Linear Static	q - marciapiedi	0	
FREQ_9	Linear Static	Spalla temp F+	0	
FREQ_9	Linear Static	Spalla temp F-	0.5	
FREQ_9	Linear Static	Spalla temp U+	0	
FREQ_9	Linear Static	Spalla temp U-	0.5	
FREQ_9	Linear Static	q_ritiro	1	
FREQ_9 R	esponse Spectr	um Sism SL	VX	0
FREQ_9 R	esponse Spectr	um Sism SL	VY	0
FREQ_9 R	esponse Spectr	um Sism SL	VΖ	0
FREQ_9	Linear Static S	Sisma X - da imp	alcato	0
FREQ_9	Linear Static S	Sisma Y - da imp	alcato	0
FREQ_9	Linear Static S	Sisma Z - da impa	alcato	0
FREQ_9	Linear Static S	Spalla Spinta X_S	SLV	0
FREQ_9	Linear Static S	Spalla Spinta Y_S	SLV	0
FREQ_9	Linear Static S	Spalla Spinta Z_S	SLV	0
FREQ_10	Linear Static	DEAD	1	
FREQ_10	Linear Static	G2	1	
FREQ_10	Linear Static	q1k	0	
FREQ_10	Linear Static	q3-Carichi frenat	ura	0
FREQ_10	Linear Static	q - marciapiedi	0.8	
FREQ_10	Linear Static	Spalla temp F+	0	
FREQ_10	Linear Static	Spalla temp F-	0	
FREQ_10	Linear Static	Spalla temp U+	- 0	
FREQ_10	Linear Static	Spalla temp U-	0	
FREQ_10	Linear Static	q_ritiro	1	
FREQ_10 F	Response Specti	rum Sism SL	VX	0
FREQ_10 F	Response Specti	rum Sism SL	VΥ	0
FREQ_10 F	Response Specti	rum Sism SL	VΖ	0
FREQ_10	Linear Static	Sisma X - da imp	alcato	0
FREQ_10	Linear Static	Sisma Y - da imp	alcato	0
FREQ_10	Linear Static	Sisma Z - da imp	alcato	0
FREQ_10	Linear Static	Spalla Spinta X_	SLV	0
FREQ_10	Linear Static	Spalla Spinta Y_	SLV	0

 $Relazione\ di\ calcolo\ -\ Spalle\ -\ fase\ 1$

COMMESSA LOTTO CODIFICA DOCUMENTO REV. FOGLIO

NRIJ 01 D 29 CL VI0104 001 B 147 di 172

FREQ_10	Linear Static	Spalla Spinta Z_S	LV	0
FREQ_11	Linear Static	DEAD	1	
FREQ_11	Linear Static	G2	1	
FREQ_11	Linear Static	q1k	0	
FREQ_11	Linear Static	q3-Carichi frenatu	ıra	0
FREQ_11	Linear Static	q - marciapiedi	0.8	
FREQ_11	Linear Static	Spalla temp F+	0.5	
FREQ_11	Linear Static	Spalla temp F-	0	
FREQ_11	Linear Static	Spalla temp U+	0	
FREQ_11	Linear Static	Spalla temp U-	0	
FREQ_11	Linear Static	q_ritiro	1	
FREQ_11 F	Response Spect	rum Sism SL	VX	0
FREQ_11 F	Response Spect	rum Sism SL	VY	0
FREQ_11 F	Response Spect	rum Sism SL	VΖ	0
FREQ_11	Linear Static	Sisma X - da impa	alcato	0
FREQ_11	Linear Static	Sisma Y - da impa	alcato	0
FREQ_11	Linear Static	Sisma Z - da impa	alcato	0
FREQ_11	Linear Static	Spalla Spinta X_S	SLV	0
FREQ_11	Linear Static	Spalla Spinta Y_S	SLV	0
FREQ_11	Linear Static	Spalla Spinta Z_S	LV	0
FREQ_12	Linear Static	DEAD	1	
FREQ_12	Linear Static	G2	1	
FREQ_12	Linear Static	q1k	0	
FREQ_12	Linear Static	q3-Carichi frenatu	ıra	0
FREQ_12	Linear Static	q - marciapiedi	0.8	
FREQ_12	Linear Static	Spalla temp F+	0	
FREQ_12	Linear Static	Spalla temp F-	0.5	
FREQ_12	Linear Static	Spalla temp U+	0	
FREQ_12	Linear Static	Spalla temp U-	0	
FREQ_12	Linear Static	q_ritiro	1	
FREQ_12 F	Response Spect	rum Sism SL	VX	0
FREQ_12 F	Response Spect	rum Sism SL	VY	0
FREQ_12 F	Response Spect	rum Sism SL	VΖ	0
FREQ_12	Linear Static	Sisma X - da impa	alcato	0
FREQ_12	Linear Static	Sisma Y - da impa	alcato	0
FREQ_12	Linear Static	Sisma Z - da impa	alcato	0
FREQ_12	Linear Static	Spalla Spinta X_S	SLV	0

 $Relazione\ di\ calcolo\ -\ Spalle\ -\ fase\ 1$

COMMESSA LOTTO CODIFICA DOCUMENTO REV. FOGLIO

NR1J 01 D 29 CL VI0104 001 B 148 di 172

FREQ_12	Linear Static Spalla Spinta Y_SLV	0
FREQ_12	Linear Static Spalla Spinta Z_SLV	0
FREQ_13	Linear Static DEAD 1	
FREQ_13	Linear Static G2 1	
FREQ_13	Linear Static q1k 0	
FREQ_13	Linear Static q3-Carichi frenatura	0
FREQ_13	Linear Static q - marciapiedi 0.8	
FREQ_13	Linear Static Spalla temp F+ 0.5	
FREQ_13	Linear Static Spalla temp F- 0	
FREQ_13	Linear Static Spalla temp U+ 0.5	i
FREQ_13	Linear Static Spalla temp U- 0	
FREQ_13	Linear Static q_ritiro 1	
FREQ_13 R	Response Spectrum Sism SLV X	0
FREQ_13 R	Response Spectrum Sism SLV Y	0
FREQ_13 R	Response Spectrum Sism SLV Z	0
FREQ_13	Linear Static Sisma X - da impalcato	0
FREQ_13	Linear Static Sisma Y - da impalcato	0
FREQ_13	Linear Static Sisma Z - da impalcato	0
FREQ_13	Linear Static Spalla Spinta X_SLV	0
FREQ_13	Linear Static Spalla Spinta Y_SLV	0
FREQ_13	Linear Static Spalla Spinta Z_SLV	0
FREQ_14	Linear Static DEAD 1	
FREQ_14	Linear Static G2 1	
FREQ_14	Linear Static q1k 0	
FREQ_14	Linear Static q3-Carichi frenatura	0
FREQ_14	Linear Static q - marciapiedi 0.8	
FREQ_14	Linear Static Spalla temp F+ 0.5	
FREQ_14	Linear Static Spalla temp F- 0	
FREQ_14	Linear Static Spalla temp U+ 0	
FREQ_14	Linear Static Spalla temp U- 0.5	
FREQ_14	Linear Static q_ritiro 1	
FREQ_14 R	Response Spectrum Sism SLV X	0
FREQ_14 R	Response Spectrum Sism SLV Y	0
FREQ_14 R	Response Spectrum Sism SLV Z	0
FREQ_14	Linear Static Sisma X - da impalcato	0
FREQ_14	Linear Static Sisma Y - da impalcato	0
FREQ_14	Linear Static Sisma Z - da impalcato	0

 $Relazione\ di\ calcolo\ -\ Spalle\ -\ fase\ 1$

COMMESSA LOTTO CODIFICA DOCUMENTO REV. FOGLIO

NRIJ 01 D 29 CL VI0104 001 B 149 di 172

FREQ_14	Linear Static Spalla Spinta X_SLV	0
FREQ_14	Linear Static Spalla Spinta Y_SLV	0
FREQ_14	Linear Static Spalla Spinta Z_SLV	0
FREQ_15	Linear Static DEAD 1	
FREQ_15	Linear Static G2 1	
FREQ_15	Linear Static q1k 0	
FREQ_15	Linear Static q3-Carichi frenatura	0
FREQ_15	Linear Static q - marciapiedi 0.8	
FREQ_15	Linear Static Spalla temp F+ 0	
FREQ_15	Linear Static Spalla temp F- 0	
FREQ_15	Linear Static Spalla temp U+ 0.5	
FREQ_15	Linear Static Spalla temp U- 0	
FREQ_15	Linear Static q_ritiro 1	
FREQ_15 R	Response Spectrum Sism SLV X	0
FREQ_15 R	Response Spectrum Sism SLV Y	0
FREQ_15 R	Response Spectrum Sism SLV Z	0
FREQ_15	Linear Static Sisma X - da impalcato	0
FREQ_15	Linear Static Sisma Y - da impalcato	0
FREQ_15	Linear Static Sisma Z - da impalcato	0
FREQ_15	Linear Static Spalla Spinta X_SLV	0
FREQ_15	Linear Static Spalla Spinta Y_SLV	0
FREQ_15	Linear Static Spalla Spinta Z_SLV	0
FREQ_16	Linear Static DEAD 1	
FREQ_16	Linear Static G2 1	
FREQ_16	Linear Static q1k 0	
FREQ_16	Linear Static q3-Carichi frenatura	0
FREQ_16	Linear Static q - marciapiedi 0.8	
FREQ_16	Linear Static Spalla temp F+ 0	
FREQ_16	Linear Static Spalla temp F- 0	
FREQ_16	Linear Static Spalla temp U+ 0	
FREQ_16	Linear Static Spalla temp U- 0.5	
FREQ_16	Linear Static q_ritiro 1	
FREQ_16 R	Response Spectrum Sism SLV X	0
FREQ_16 R	Response Spectrum Sism SLV Y	0
FREQ_16 R	Response Spectrum Sism SLV Z	0
FREQ_16	Linear Static Sisma X - da impalcato	0
FREQ_16	Linear Static Sisma Y - da impalcato	0

 $Relazione\ di\ calcolo\ -\ Spalle\ -\ fase\ 1$

COMMESSA LOTTO CODIFICA DOCUMENTO REV. FOGLIO

NR1J 01 D 29 CL VI0104 001 B 150 di 172

FREQ_16	Linear Static Sisma Z - o	da impalca	to	0
FREQ_16	Linear Static Spalla Spir	nta X_SLV	r	0
FREQ_16	Linear Static Spalla Spir	nta Y_SLV	,	0
FREQ_16	Linear Static Spalla Spir	nta Z_SLV		0
FREQ_17	Linear Static DE	EAD	1	
FREQ_17	Linear Static G	1		
FREQ_17	Linear Static q1	k 0		
FREQ_17	Linear Static q3-Carichi	frenatura		0
FREQ_17	Linear Static q - marcia	apiedi	0.8	
FREQ_17	Linear Static Spalla ter	mp F+	0	
FREQ_17	Linear Static Spalla ter	mp F-	0.5	
FREQ_17	Linear Static Spalla ter	mp U+	0.5	
FREQ_17	Linear Static Spalla ter	mp U-	0	
FREQ_17	Linear Static q_riti	ro 1		
FREQ_17 F	Response Spectrum Si	sm SLV X		0
FREQ_17 F	Response Spectrum Si	sm SLV Y	•	0
FREQ_17 F	Response Spectrum Si	sm SLV Z		0
FREQ_17	Linear Static Sisma X -	da impalca	ito	0
FREQ_17	Linear Static Sisma Y -	da impalca	ito	0
FREQ_17	Linear Static Sisma Z - o	da impalca	to	0
FREQ_17	Linear Static Spalla Spir	ıta X_SLV	r	0
FREQ_17	Linear Static Spalla Spir	ıta Y_SLV	r	0
FREQ_17	Linear Static Spalla Spir	ıta Z_SLV		0
FREQ_18	Linear Static DE	EAD	1	
FREQ_18	Linear Static G	2 1		
FREQ_18	Linear Static q1	k 0		
FREQ_18	Linear Static q3-Carichi	frenatura		0
FREQ_18	Linear Static q - marcia	apiedi	0.8	
FREQ_18	Linear Static Spalla ter	mp F+	0	
FREQ_18	Linear Static Spalla ter	mp F-	0.5	
FREQ_18	Linear Static Spalla ter	mp U+	0	
FREQ_18	Linear Static Spalla ter	mp U-	0.5	
FREQ_18	Linear Static q_riti	ro 1		
FREQ_18 F	Response Spectrum Si	sm SLV X		0
FREQ_18 F	Response Spectrum Si	sm SLV Y	•	0
FREQ_18 F	Response Spectrum Si	sm SLV Z		0
FREQ_18	Linear Static Sisma X -	da impalca	ito	0

0 0 0

 $Relazione\ di\ calcolo\ -\ Spalle\ -\ fase\ 1$

COMMESSA LOTTO CODIFICA DOCUMENTO REV. FOGLIO

NR1J 01 D 29 CL VI0104 001 B 151 di 172

FREQ_18 Line	ear Static Sism	a Y - da	impalcate)	()
FREQ_18 Line	ear Static Sism	a Z - da	impalcato)	0	1
FREQ_18 Line	ear Static Spall	la Spinta	X_SLV		0	
FREQ_18 Line	ear Static Spall	la Spinta	Y_SLV		0	
FREQ_18 Line	ear Static Spall	la Spinta	Z_SLV		0	
QUASI-PERM_1	Linear Static]	DEAD		1	
QUASI-PERM_1	Linear Static		G2	1		
QUASI-PERM_1	Linear Static		q1k	0		
QUASI-PERM_1	Linear Static	q3-Cario	hi frenatu	ra		0
QUASI-PERM_1	Linear Static	q - mar	ciapiedi		0	
QUASI-PERM_1	Linear Static	Spalla	temp F+		0.5	
QUASI-PERM_1	Linear Static	Spalla	temp F-		0	
QUASI-PERM_1	Linear Static	Spalla	temp U+		0	
QUASI-PERM_1	Linear Static	Spalla	temp U-		0	
QUASI-PERM_1	Linear Static	q_ 1	ritiro	1		
QUASI-PERM_1 R	esponse Specti	rum	Sism SLV	V X		0
QUASI-PERM_1 R	esponse Specti	rum	Sism SLV	V Y		0
QUASI-PERM_1 R	esponse Specti	rum	Sism SLV	VΖ		0
QUASI-PERM_1	Linear Static	Sisma X	- da impa	ılca	to	
QUASI-PERM_1	Linear Static	Sisma Y	- da impa	alca	to	
QUASI-PERM_1	Linear Static	Sisma Z	- da impa	lcat	0	
QUASI-PERM_1	Linear Static	Spalla S	pinta X_S	LV		0
QUASI-PERM_1	Linear Static	Spalla S	pinta Y_S	LV		0
QUASI-PERM_1	Linear Static	Spalla S	pinta Z_S	LV		0
QUASI-PERM_2	Linear Static		DEAD		1	
QUASI-PERM_2	Linear Static		G2	1		
QUASI-PERM_2	Linear Static		q1k	0		
QUASI-PERM_2	Linear Static	q3-Cario	hi frenatu	ra		0
QUASI-PERM_2	Linear Static	q - mar	ciapiedi		0	
QUASI-PERM_2	Linear Static	Spalla	temp F+		0.5	
QUASI-PERM_2	Linear Static	Spalla	temp F-		0	
QUASI-PERM_2	Linear Static	Spalla	temp U+		0.5	
QUASI-PERM_2	Linear Static	Spalla	temp U-		0	
QUASI-PERM_2	Linear Static	q_ :	ritiro	1		
QUASI-PERM_2 R	esponse Specti	rum	Sism SLV	V X		0
QUASI-PERM_2 R	esponse Specti	rum	Sism SLV	V Y		0
QUASI-PERM_2 R	esponse Specti	rum	Sism SLV	ΙZ		0

 $Relazione\ di\ calcolo\ -\ Spalle\ -\ fase\ 1$

 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 NR1J
 01 D 29
 CL
 VI0104 001
 B
 152 di 172

QUASI-PERM_2	Linear Static Sisma X - da impalcato	0
QUASI-PERM_2	Linear Static Sisma Y - da impalcato	0
QUASI-PERM_2	Linear Static Sisma Z - da impalcato	0
QUASI-PERM_2	Linear Static Spalla Spinta X_SLV	0
QUASI-PERM_2	Linear Static Spalla Spinta Y_SLV	0
QUASI-PERM_2	Linear Static Spalla Spinta Z_SLV	0
QUASI-PERM_3	Linear Static DEAD 1	
QUASI-PERM_3	Linear Static G2 1	
QUASI-PERM_3	Linear Static q1k 0	
QUASI-PERM_3	Linear Static q3-Carichi frenatura	0
QUASI-PERM_3	Linear Static q - marciapiedi 0	
QUASI-PERM_3	Linear Static Spalla temp F+ 0	
QUASI-PERM_3	Linear Static Spalla temp F- 0	
QUASI-PERM_3	Linear Static Spalla temp U+ 0.5	i
QUASI-PERM_3	Linear Static Spalla temp U- 0	
QUASI-PERM_3	Linear Static q_ritiro 1	
QUASI-PERM_3 R	esponse Spectrum Sism SLV X	0
QUASI-PERM_3 R	esponse Spectrum Sism SLV Y	0
QUASI-PERM_3 R	esponse Spectrum Sism SLV Z	0
QUASI-PERM_3	Linear Static Sisma X - da impalcato	0
QUASI-PERM_3	Linear Static Sisma Y - da impalcato	0
QUASI-PERM_3	Linear Static Sisma Z - da impalcato	0
QUASI-PERM_3	Linear Static Spalla Spinta X_SLV	0
QUASI-PERM_3	Linear Static Spalla Spinta Y_SLV	0
QUASI-PERM_3	Linear Static Spalla Spinta Z_SLV	0
QUASI-PERM_4	Linear Static DEAD 1	
QUASI-PERM_4	Linear Static G2 1	
QUASI-PERM_4	Linear Static q1k 0	
QUASI-PERM_4	Linear Static q3-Carichi frenatura	0
QUASI-PERM_4	Linear Static $ q$ - marciapiedi $ 0$	
QUASI-PERM_4	Linear Static Spalla temp F+ 0.5	
QUASI-PERM_4	Linear Static Spalla temp F- 0	
QUASI-PERM_4	Linear Static Spalla temp U+ 0	
QUASI-PERM_4	Linear Static Spalla temp U- 0.5	
QUASI-PERM_4	Linear Static q_ritiro 1	
QUASI-PERM_4 R	esponse Spectrum Sism SLV X	0
QUASI-PERM_4 R	esponse Spectrum Sism SLV Y	0

 $Relazione\ di\ calcolo\ -\ Spalle\ -\ fase\ 1$

COMMESSA LOTTO CODIFICA DOCUMENTO REV. FOGLIO

NR1J 01 D 29 CL VI0104 001 B 153 di 172

QUASI-PERM_4 R	esponse Spectrum Sism SLV Z	0
QUASI-PERM_4	Linear Static Sisma X - da impalcato	0
QUASI-PERM_4	Linear Static Sisma Y - da impalcato	0
QUASI-PERM_4	Linear Static Sisma Z - da impalcato	0
QUASI-PERM_4	Linear Static Spalla Spinta X_SLV	0
QUASI-PERM_4	Linear Static Spalla Spinta Y_SLV	0
QUASI-PERM_4	Linear Static Spalla Spinta Z_SLV	0
QUASI-PERM_5	Linear Static DEAD 1	
QUASI-PERM_5	Linear Static G2 1	
QUASI-PERM_5	Linear Static q1k 0	
QUASI-PERM_5	Linear Static q3-Carichi frenatura	0
QUASI-PERM_5	Linear Static q - marciapiedi 0	
QUASI-PERM_5	Linear Static Spalla temp F+ 0)
QUASI-PERM_5	Linear Static Spalla temp F- 0	
QUASI-PERM_5	Linear Static Spalla temp U+)
QUASI-PERM_5	Linear Static Spalla temp U- 0.3	5
QUASI-PERM_5	Linear Static q_ritiro 1	
QUASI-PERM_5 R	esponse Spectrum Sism SLV X	0
QUASI-PERM_5 R	esponse Spectrum Sism SLV Y	0
QUASI-PERM_5 R	esponse Spectrum Sism SLV Z	0
QUASI-PERM_5	Linear Static Sisma X - da impalcato	0
QUASI-PERM_5	Linear Static Sisma Y - da impalcato	0
QUASI-PERM_5	Linear Static Sisma Z - da impalcato	0
QUASI-PERM_5	Linear Static Spalla Spinta X_SLV	0
QUASI-PERM_5	Linear Static Spalla Spinta Y_SLV	0
QUASI-PERM_5	Linear Static Spalla Spinta Z_SLV	0
QUASI-PERM_6	Linear Static DEAD 1	
QUASI-PERM_6	Linear Static G2 1	
QUASI-PERM_6	Linear Static q1k 0	
QUASI-PERM_6	Linear Static q3-Carichi frenatura	0
QUASI-PERM_6	Linear Static q - marciapiedi 0	
QUASI-PERM_6	Linear Static Spalla temp F+)
QUASI-PERM_6	Linear Static Spalla temp F- 0.5	i
QUASI-PERM_6	Linear Static Spalla temp U+)
QUASI-PERM_6	Linear Static Spalla temp U- 0	
QUASI-PERM_6	Linear Static q_ritiro 1	
QUASI-PERM_6 R	desponse Spectrum Sism SLV X	0

 $Relazione\ di\ calcolo\ -\ Spalle\ -\ fase\ 1$

COMMESSA LOTTO CODIFICA DOCUMENTO REV. FOGLIO

NR1J 01 D 29 CL VI0104 001 B 154 di 172

QUASI-PERM_6 R	esponse Specti	rum Sism SLV	VY	0
QUASI-PERM_6 R	esponse Specti	rum Sism SLV	VΖ	0
QUASI-PERM_6	Linear Static	Sisma X - da impa	alcato	0
QUASI-PERM_6	Linear Static	Sisma Y - da impa	alcato	0
QUASI-PERM_6	Linear Static	Sisma Z - da impa	lcato	0
QUASI-PERM_6	Linear Static	Spalla Spinta X_S	LV	0
QUASI-PERM_6	Linear Static	Spalla Spinta Y_S	LV	0
QUASI-PERM_6	Linear Static	Spalla Spinta Z_S	LV	0
QUASI-PERM_7	Linear Static	DEAD	1	
QUASI-PERM_7	Linear Static	G2	1	
QUASI-PERM_7	Linear Static	q1k	0	
QUASI-PERM_7	Linear Static	q3-Carichi frenatu	ıra	0
QUASI-PERM_7	Linear Static	q - marciapiedi	0	
QUASI-PERM_7	Linear Static	Spalla temp F+	0	
QUASI-PERM_7	Linear Static	Spalla temp F-	0.5	
QUASI-PERM_7	Linear Static	Spalla temp U+	0.5	
QUASI-PERM_7	Linear Static	Spalla temp U-	0	
QUASI-PERM_7	Linear Static	q_ritiro	1	
QUASI-PERM_7 R	esponse Specti	rum Sism SLV	V X	0
QUASI-PERM_7 R	esponse Specti	rum Sism SLV	VY	0
QUASI-PERM_7 R	esponse Specti	rum Sism SLV	VΖ	0
QUASI-PERM_7	Linear Static	Sisma X - da impa	alcato	0
QUASI-PERM_7	Linear Static	Sisma Y - da impa	alcato	0
QUASI-PERM_7	Linear Static	Sisma Z - da impa	lcato	0
QUASI-PERM_7	Linear Static	Spalla Spinta X_S	LV	0
QUASI-PERM_7	Linear Static	Spalla Spinta Y_S	LV	0
QUASI-PERM_7	Linear Static	Spalla Spinta Z_S	LV	0
QUASI-PERM_8	Linear Static	DEAD	1	
QUASI-PERM_8	Linear Static	G2	1	
QUASI-PERM_8	Linear Static	q1k	0	
QUASI-PERM_8	Linear Static	q3-Carichi frenatu	ıra	0
QUASI-PERM_8	Linear Static	q - marciapiedi	0	
QUASI-PERM_8	Linear Static	Spalla temp F+	0	
QUASI-PERM_8	Linear Static	Spalla temp F-	0.5	
QUASI-PERM_8	Linear Static	Spalla temp U+	0	
QUASI-PERM_8	Linear Static	Spalla temp U-	0.5	
QUASI-PERM_8	Linear Static	q_ritiro	1	

 $Relazione\ di\ calcolo\ -\ Spalle\ -\ fase\ 1$

 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 NRIJ
 01 D 29
 CL
 VI0104 001
 B
 155 di 172

QUASI-PERM	I_8 Response Spectrum S	Sism SLV X
QUASI-PERM	I_8 Response Spectrum S	Sism SLV Y
QUASI-PERM	I_8 Response Spectrum S	Sism SLV Z
QUASI-PERM	1_8 Linear Static Sisma X	da impalcato
QUASI-PERM	1_8 Linear Static Sisma Y	da impalcato
QUASI-PERM	1_8 Linear Static Sisma Z -	da impalcato
QUASI-PERM	1_8 Linear Static Spalla Sp	inta X_SLV
QUASI-PERM	1_8 Linear Static Spalla Sp	inta Y_SLV
QUASI-PERM	1_8 Linear Static Spalla Sp	inta Z_SLV
STR_30	Linear Static DEAD	1.35
STR_30	Linear Static G2	1.5
STR_30	Linear Static q1k	0
STR_30	Linear Static q3-Carichi fren	atura 0
STR_30	Linear Static q - marciapied	li 1.5
STR_30	Linear Static Spalla temp F	7+ 0
STR_30	Linear Static Spalla temp F	7- 0
STR_30	Linear Static Spalla temp U	J+ 0
STR_30	Linear Static Spalla temp U	J- 0
STR_30	Linear Static q_ritiro	0
STR_30 R	esponse Spectrum Sism S	SLV X 1
STR_30 R	esponse Spectrum Sism S	SLV Y 0.3
STR_30 R	esponse Spectrum Sism S	SLV Z 0.3
STR_30	Linear Static Sisma X - da in	npalcato 1
STR_30	Linear Static Sisma Y - da in	npalcato 0.3
STR_30	Linear Static Sisma Z - da in	npalcato 0.3
STR_30	Linear Static Spalla Spinta X	_SLV 1
STR_30	Linear Static Spalla Spinta Y	_SLV 0.3
STR_30	Linear Static Spalla Spinta Z	_SLV 0.3
STR_31	Linear Static DEAD	1.35
STR_31	Linear Static G2	1.5
STR_31	Linear Static q1k	0
STR_31	Linear Static q3-Carichi fren	atura 0
STR_31	Linear Static q - marciapied	li 1.5
STR_31	Linear Static Spalla temp F	7+ 0
STR_31	Linear Static Spalla temp F	7- 0
STR_31	Linear Static Spalla temp U	J+ 0
STR_31	Linear Static Spalla temp U	J- 0

 $Relazione\ di\ calcolo\ -\ Spalle\ -\ fase\ 1$

COMMESSA LOTTO CODIFICA DOCUMENTO REV. FOGLIO
NR1J 01 D 29 CL VI0104 001 B 156 di 172

STR_31	Linear Static q_ritiro 0	
STR_31 R	Response Spectrum Sism SLV X	1
STR_31 R	Response Spectrum Sism SLV Y	0.3
STR_31 R	Response Spectrum Sism SLV Z	0.3
STR_31	Linear Static Sisma X - da impalcato	1
STR_31	Linear Static Sisma Y - da impalcato	0.3
STR_31	Linear Static Sisma Z - da impalcato	0.3
STR_31	Linear Static Spalla Spinta X_SLV	1
STR_31	Linear Static Spalla Spinta Y_SLV	0.3
STR_31	Linear Static Spalla Spinta Z_SLV	0.3
STR_32	Linear Static DEAD 1.35	
STR_32	Linear Static G2 1.5	
STR_32	Linear Static q1k 0	
STR_32	Linear Static q3-Carichi frenatura	0
STR_32	Linear Static q - marciapiedi 1.5	
STR_32	Linear Static Spalla temp F+ 0)
STR_32	Linear Static Spalla temp F- 0	
STR_32	Linear Static Spalla temp U+)
STR_32	Linear Static Spalla temp U- 0	
STR_32	Linear Static q_ritiro 1.2	
STR_32 R	Response Spectrum Sism SLV X	1
STR_32 R	Response Spectrum Sism SLV Y	0.3
STR_32 R	Response Spectrum Sism SLV Z	0.3
STR_32	Linear Static Sisma X - da impalcato	1
STR_32	Linear Static Sisma Y - da impalcato	0.3
STR_32	Linear Static Sisma Z - da impalcato	0.3
STR_32	Linear Static Spalla Spinta X_SLV	1
STR_32	Linear Static Spalla Spinta Y_SLV	0.3
STR_32	Linear Static Spalla Spinta Z_SLV	0.3
STR_33	Linear Static DEAD 1.35	
STR_33	Linear Static G2 1.5	
STR_33	Linear Static q1k 0	
STR_33	Linear Static q3-Carichi frenatura	0
STR_33	Linear Static q - marciapiedi 1.5	
STR_33	Linear Static Spalla temp F+ 0)
STR_33	Linear Static Spalla temp F- 0	
STR_33	Linear Static Spalla temp U+)

 $Relazione\ di\ calcolo\ -\ Spalle\ -\ fase\ 1$

COMMESSA LOTTO CODIFICA DOCUMENTO REV. FOGLIO

NR1J 01 D 29 CL VI0104 001 B 157 di 172

STR_33	Linear Static	Spalla temp U-	- 0	
STR_33	Linear Static	q_ritiro	1.2	
STR_33 R	esponse Spectr	um Sism SI	LV X	1
STR_33 R	esponse Spectr	um Sism SI	LV Y	0.3
STR_33 R	esponse Spectr	um Sism SI	LV Z	0.3
STR_33	Linear Static S	Sisma X - da imj	palcato	1
STR_33	Linear Static S	Sisma Y - da im _l	palcato	0.3
STR_33	Linear Static S	Sisma Z - da imp	palcato	0.3
STR_33	Linear Static S	Spalla Spinta X_	SLV	1
STR_33	Linear Static S	Spalla Spinta Y_	SLV	0.3
STR_33	Linear Static S	Spalla Spinta Z_	SLV	0.3
STR_34	Linear Static	DEAD	1.35	
STR_34	Linear Static	G2	1.5	
STR_34	Linear Static	q1k	0	
STR_34	Linear Static c	3-Carichi frena	tura	0
STR_34	Linear Static	q - marciapiedi	1.5	
STR_34	Linear Static	Spalla temp F-	0.72	2
STR_34	Linear Static	Spalla temp F-	0	
STR_34	Linear Static	Spalla temp U-	+ 0	
STR_34	Linear Static	Spalla temp U-	- 0	
STR_34	Linear Static	q_ritiro	0	
STR_34 R	esponse Spectr	um Sism SI	LV X	1
STR_34 R	esponse Spectr	um Sism SI	LV Y	0.3
STR_34 R	esponse Spectr	um Sism SI	LV Z	0.3
STR_34	Linear Static S	Sisma X - da im _l	palcato	1
STR_34	Linear Static S	Sisma Y - da im _l	palcato	0.3
STR_34	Linear Static S	Sisma Z - da imp	palcato	0.3
STR_34	Linear Static S	Spalla Spinta X_	SLV	1
STR_34	Linear Static S	Spalla Spinta Y_	SLV	0.3
STR_34	Linear Static S	Spalla Spinta Z_	SLV	0.3
STR_35	Linear Static	DEAD	1.35	
STR_35	Linear Static	G2	1.5	
STR_35	Linear Static	q1k	0	
STR_35	Linear Static o	3-Carichi frena	tura	0
STR_35	Linear Static	q - marciapiedi	1.5	
STR_35	Linear Static	Spalla temp F-	0.72	2
STR_35	Linear Static	Spalla temp F-	0	

 $Relazione\ di\ calcolo\ -\ Spalle\ -\ fase\ 1$

COMMESSA LOTTO CODIFICA DOCUMENTO REV. FOGLIO

NR1J 01 D 29 CL VI0104 001 B 158 di 172

STR_35	Linear Static	Spalla temp U+	0	
STR_35	Linear Static	Spalla temp U-	0	
STR_35	Linear Static	q_ritiro	0	
STR_35 R	esponse Spectr	um Sism SLV	V X	1
STR_35 R	esponse Spectr	um Sism SL	VΥ	0.3
STR_35 R	esponse Spectr	um Sism SLV	VΖ	0.3
STR_35	Linear Static S	Sisma X - da impa	alcato	1
STR_35	Linear Static S	Sisma Y - da impa	alcato	0.3
STR_35	Linear Static S	Sisma Z - da impa	lcato	0.3
STR_35	Linear Static S	Spalla Spinta X_S	LV	1
STR_35	Linear Static S	Spalla Spinta Y_S	LV	0.3
STR_35	Linear Static S	Spalla Spinta Z_S	LV	0.3
STR_36	Linear Static	DEAD	1.35	
STR_36	Linear Static	G2	1.5	
STR_36	Linear Static	q1k	0	
STR_36	Linear Static o	₁ 3-Carichi frenatu	ıra	0
STR_36	Linear Static	q - marciapiedi	1.5	
STR_36	Linear Static	Spalla temp F+	0.72	
STR_36	Linear Static	Spalla temp F-	0	
STR_36	Linear Static	Spalla temp U+	0	
STR_36	Linear Static	Spalla temp U-	0	
STR_36	Linear Static	q_ritiro	1.2	
STR_36 R	esponse Spectr	um Sism SLV	V X	1
STR_36 R	esponse Spectr	um Sism SLV	V Y	0.3
STR_36 R	esponse Spectr	um Sism SL	√Z	0.3
STR_36	Linear Static S	Sisma X - da impa	alcato	1
STR_36	Linear Static S	Sisma Y - da impa	alcato	0.3
STR_36	Linear Static S	Sisma Z - da impa	ılcato	0.3
STR_36	Linear Static S	Spalla Spinta X_S	LV	1
STR_36	Linear Static S	Spalla Spinta Y_S	LV	0.3
STR_36	Linear Static S	Spalla Spinta Z_S	LV	0.3
STR_37	Linear Static	DEAD	1.35	
STR_37	Linear Static	G2	1.5	
STR_37	Linear Static	q1k	0	
STR_37	Linear Static o	₁ 3-Carichi frenatu	ıra	0
STR_37	Linear Static	q - marciapiedi	1.5	
STR_37	Linear Static	Spalla temp F+	0.72	,

 $Relazione\ di\ calcolo\ -\ Spalle\ -\ fase\ 1$

COMMESSA LOTTO CODIFICA DOCUMENTO REV. FOGLIO

NR1J 01 D 29 CL VI0104 001 B 159 di 172

STR_37	Linear Static S	Spalla temp F-	0	
STR_37	Linear Static S	Spalla temp U+	0	
STR_37	Linear Static S	Spalla temp U-	0	
STR_37	Linear Static	q_ritiro	1.2	
STR_37 R	esponse Spectrun	n Sism SLV	VX	1
STR_37 R	esponse Spectrun	n Sism SL	VY	0.3
STR_37 R	esponse Spectrum	n Sism SL	VΖ	0.3
STR_37	Linear Static Sis	ma X - da impa	alcato	1
STR_37	Linear Static Sis	ma Y - da impa	alcato	0.3
STR_37	Linear Static Sis	ma Z - da impa	ılcato	0.3
STR_37	Linear Static Spa	alla Spinta X_S	LV	1
STR_37	Linear Static Spa	alla Spinta Y_S	LV	0.3
STR_37	Linear Static Spa	alla Spinta Z_S	LV	0.3
STR_38	Linear Static	DEAD	1.35	
STR_38	Linear Static	G2	1.5	
STR_38	Linear Static	q1k	0	
STR_38	Linear Static q3	-Carichi frenatu	ıra	0
STR_38	Linear Static q	- marciapiedi	1.5	
STR_38	Linear Static S	spalla temp F+	0	
STR_38	Linear Static S	spalla temp F-	0.72	
STR_38	Linear Static S	Spalla temp U+	0	
STR_38	Linear Static S	Spalla temp U-	0	
STR_38	Linear Static	q_ritiro	0	
STR_38 R	esponse Spectrun	n Sism SLV	VΧ	1
STR_38 R	esponse Spectrum	n Sism SLV	VY	0.3
STR_38 R	esponse Spectrum	n Sism SLV	VΖ	0.3
STR_38	Linear Static Sis	ma X - da impa	alcato	1
STR_38	Linear Static Sis	ma Y - da impa	alcato	0.3
STR_38	Linear Static Sis	ma Z - da impa	ılcato	0.3
STR_38	Linear Static Spa	alla Spinta X_S	LV	1
STR_38	Linear Static Spa	alla Spinta Y_S	LV	0.3
STR_38	Linear Static Spa	alla Spinta Z_S	LV	0.3
STR_39	Linear Static	DEAD	1.35	
STR_39	Linear Static	G2	1.5	
STR_39	Linear Static	q1k	0	
STR_39	Linear Static q3-	-Carichi frenatu	ıra	0
STR_39	Linear Static q	- marciapiedi	1.5	

 $Relazione\ di\ calcolo\ -\ Spalle\ -\ fase\ 1$

COMMESSA LOTTO CODIFICA DOCUMENTO REV. FOGLIO

NR1J 01 D 29 CL VI0104 001 B 160 di 172

STR_39	Linear Static Spalla temp F+ 0	
STR_39	Linear Static Spalla temp F- 0.72	
STR_39	Linear Static Spalla temp U+ 0	
STR_39	Linear Static Spalla temp U- 0	
STR_39	Linear Static q_ritiro 0	
STR_39 F	Response Spectrum Sism SLV X	1
STR_39 F	Response Spectrum Sism SLV Y	0.3
STR_39 F	Response Spectrum Sism SLV Z	0.3
STR_39	Linear Static Sisma X - da impalcato	1
STR_39	Linear Static Sisma Y - da impalcato	0.3
STR_39	Linear Static Sisma Z - da impalcato	0.3
STR_39	Linear Static Spalla Spinta X_SLV	1
STR_39	Linear Static Spalla Spinta Y_SLV	0.3
STR_39	Linear Static Spalla Spinta Z_SLV	0.3
STR_40	Linear Static DEAD 1.35	
STR_40	Linear Static G2 1.5	
STR_40	Linear Static q1k 0	
STR_40	Linear Static q3-Carichi frenatura	0
STR_40	Linear Static q - marciapiedi 1.5	
STR_40	Linear Static Spalla temp F+ 0	
STR_40	Linear Static Spalla temp F- 0.72	ļ
STR_40	Linear Static Spalla temp U+ 0	
STR_40	Linear Static Spalla temp U- 0	
STR_40	Linear Static q_ritiro 1.2	
STR_40 F	Response Spectrum Sism SLV X	1
STR_40 F	Response Spectrum Sism SLV Y	0.3
STR_40 F	Response Spectrum Sism SLV Z	0.3
STR_40	Linear Static Sisma X - da impalcato	1
STR_40	Linear Static Sisma Y - da impalcato	0.3
STR_40	Linear Static Sisma Z - da impalcato	0.3
STR_40	Linear Static Spalla Spinta X_SLV	1
STR_40	Linear Static Spalla Spinta Y_SLV	0.3
STR_40	Linear Static Spalla Spinta Z_SLV	0.3
STR_41	Linear Static DEAD 1.35	
STR_41	Linear Static G2 1.5	
STR_41	Linear Static q1k 0	
STR_41	Linear Static q3-Carichi frenatura	0

 $Relazione\ di\ calcolo\ -\ Spalle\ -\ fase\ 1$

COMMESSA LOTTO CODIFICA DOCUMENTO REV. FOGLIO

NRIJ 01 D 29 CL VI0104 001 B 161 di 172

STR_41	Linear Static	q - marciapiedi	1.5	
STR_41	Linear Static	Spalla temp F+	. 0	
STR_41	Linear Static	Spalla temp F-	0.72	
STR_41	Linear Static	Spalla temp U-	- 0	
STR_41	Linear Static	Spalla temp U-	0	
STR_41	Linear Static	q_ritiro	1.2	
STR_41 R	Response Spectr	rum Sism SL	V X	1
STR_41 R	Response Spectr	rum Sism SL	NΥ	0.3
STR_41 R	Response Spectr	rum Sism SL	ΝZ	0.3
STR_41	Linear Static S	Sisma X - da imp	oalcato	1
STR_41	Linear Static S	Sisma Y - da imp	oalcato	0.3
STR_41	Linear Static S	Sisma Z - da imp	alcato	0.3
STR_41	Linear Static S	Spalla Spinta X_	SLV	1
STR_41	Linear Static S	Spalla Spinta Y_	SLV	0.3
STR_41	Linear Static S	Spalla Spinta Z_	SLV	0.3
STR_42	Linear Static	DEAD	1.35	
STR_42	Linear Static	G2	1.5	
STR_42	Linear Static	q1k	0	
STR_42	Linear Static	q3-Carichi frenat	ura	0
STR_42	Linear Static	q - marciapiedi	1.5	
STR_42	Linear Static	Spalla temp F+	0.72	2
STR_42	Linear Static	Spalla temp F-	0	
STR_42	Linear Static	Spalla temp U-	0.7	2
STR_42	Linear Static	Spalla temp U-	0	
STR_42	Linear Static	q_ritiro	0	
STR_42 R	Response Spectr	rum Sism SL	.V X	1
STR_42 R	Response Spectr	rum Sism SL	NΥ	0.3
STR_42 R	Response Spectr	rum Sism SL	ΝZ	0.3
STR_42	Linear Static S	Sisma X - da imp	alcato	1
STR_42	Linear Static S	Sisma Y - da imp	alcato	0.3
STR_42	Linear Static S	Sisma Z - da imp	alcato	0.3
STR_42	Linear Static S	Spalla Spinta X_	SLV	1
STR_42	Linear Static S	Spalla Spinta Y_	SLV	0.3
STR_42	Linear Static S	Spalla Spinta Z_	SLV	0.3
STR_43	Linear Static	DEAD	1.35	
STR_43	Linear Static	G2	1.5	
STR_43	Linear Static	q1k	0	

 $Relazione\ di\ calcolo\ -\ Spalle\ -\ fase\ 1$

COMMESSA LOTTO CODIFICA DOCUMENTO REV. FOGLIO

NRIJ 01 D 29 CL VI0104 001 B 162 di 172

STR_43	Linear Static q3-Carichi frenatura	0
STR_43	Linear Static q - marciapiedi 1.5	
STR_43	Linear Static Spalla temp F+ 0.72	2
STR_43	Linear Static Spalla temp F- 0	
STR_43	Linear Static Spalla temp U+ 0.77	2
STR_43	Linear Static Spalla temp U- 0	
STR_43	Linear Static q_ritiro 0	
STR_43 F	Response Spectrum Sism SLV X	0.3
STR_43 F	Response Spectrum Sism SLV Y	1
STR_43 F	Response Spectrum Sism SLV Z	0.3
STR_43	Linear Static Sisma X - da impalcato	0.3
STR_43	Linear Static Sisma Y - da impalcato	1
STR_43	Linear Static Sisma Z - da impalcato	0.3
STR_43	Linear Static Spalla Spinta X_SLV	0.3
STR_43	Linear Static Spalla Spinta Y_SLV	1
STR_43	Linear Static Spalla Spinta Z_SLV	0.3
STR_44	Linear Static DEAD 1.35	
STR_44	Linear Static G2 1.5	
STR_44	Linear Static q1k 0	
STR_44	Linear Static q3-Carichi frenatura	0
STR_44	Linear Static q - marciapiedi 1.5	
STR_44	Linear Static Spalla temp F+ 0.72	2
STR_44	Linear Static Spalla temp F- 0	
STR_44	Linear Static Spalla temp U+ 0.77	2
STR_44	Linear Static Spalla temp U- 0	
STR_44	Linear Static q_ritiro 1.2	
STR_44 F	Response Spectrum Sism SLV X	0.3
STR_44 F	Response Spectrum Sism SLV Y	1
STR_44 F	Response Spectrum Sism SLV Z	0.3
STR_44	Linear Static Sisma X - da impalcato	0.3
STR_44	Linear Static Sisma Y - da impalcato	1
STR_44	Linear Static Sisma Z - da impalcato	0.3
STR_44	Linear Static Spalla Spinta X_SLV	0.3
STR_44	Linear Static Spalla Spinta Y_SLV	1
STR_44	Linear Static Spalla Spinta Z_SLV	0.3
STR_45	Linear Static DEAD 1.35	
STR_45	Linear Static G2 1.5	

 $Relazione\ di\ calcolo\ -\ Spalle\ -\ fase\ 1$

COMMESSA LOTTO CODIFICA DOCUMENTO REV. FOGLIO

NR1J 01 D 29 CL VI0104 001 B 163 di 172

STR_45	Linear Static q1k 0	
STR_45	Linear Static q3-Carichi frenatura 0	
STR_45	Linear Static q - marciapiedi 1.5	
STR_45	Linear Static Spalla temp F+ 0.72	
STR_45	Linear Static Spalla temp F- 0	
STR_45	Linear Static Spalla temp U+ 0.72	
STR_45	Linear Static Spalla temp U- 0	
STR_45	Linear Static q_ritiro 1.2	
STR_45 R	Response Spectrum Sism SLV X 0.3	
STR_45 R	Response Spectrum Sism SLV Y 1	
STR_45 R	Response Spectrum Sism SLV Z 0.3	
STR_45	Linear Static Sisma X - da impalcato 0.3	3
STR_45	Linear Static Sisma Y - da impalcato 1	
STR_45	Linear Static Sisma Z - da impalcato 0.3	,
STR_45	Linear Static Spalla Spinta X_SLV 0.3	
STR_45	Linear Static Spalla Spinta Y_SLV 1	
STR_45	Linear Static Spalla Spinta Z_SLV 0.3	
STR_46	Linear Static DEAD 1.35	
STR_46	Linear Static G2 1.5	
STR_46	Linear Static q1k 0	
STR_46	Linear Static q3-Carichi frenatura 0	
STR_46	Linear Static q - marciapiedi 1.5	
STR_46	Linear Static Spalla temp F+ 0.72	
STR_46	Linear Static Spalla temp F- 0	
STR_46	Linear Static Spalla temp U+ 0	
STR_46	Linear Static Spalla temp U- 0.72	
STR_46	Linear Static q_ritiro 0	
STR_46 R	Response Spectrum Sism SLV X 0.3	
STR_46 R	Response Spectrum Sism SLV Y 1	
STR_46 R	Response Spectrum Sism SLV Z 0.3	
STR_46	Linear Static Sisma X - da impalcato 0.3	3
STR_46	Linear Static Sisma Y - da impalcato 1	
STR_46	Linear Static Sisma Z - da impalcato 0.3	
STR_46	Linear Static Spalla Spinta X_SLV 0.3	
STR_46	Linear Static Spalla Spinta Y_SLV 1	
STR_46	Linear Static Spalla Spinta Z_SLV 0.3	
STR_47	Linear Static DEAD 1.35	

 $Relazione\ di\ calcolo\ -\ Spalle\ -\ fase\ 1$

COMMESSA LOTTO CODIFICA DOCUMENTO REV. FOGLIO NRIJ 01 D 29 CL VI0104 001 B 164 di 172

STR_47	Linear Static	G2	1.5	
STR_47	Linear Static	q1k	0	
STR_47	Linear Static	3-Carichi fren	atura	0
STR_47	Linear Static	q - marciapied	di 1.5	
STR_47	Linear Static	Spalla temp I	F+ 0.7	2
STR_47	Linear Static	Spalla temp I	F- 0	
STR_47	Linear Static	Spalla temp U	J+ ()
STR_47	Linear Static	Spalla temp U	IJ- 0.7	2
STR_47	Linear Static	q_ritiro	0	
STR_47 R	Response Spectr	um Sism S	SLV X	0.3
STR_47 R	Response Spectr	um Sism S	SLV Y	1
STR_47 R	Response Spectr	um Sism S	SLV Z	0.3
STR_47	Linear Static S	Sisma X - da ir	npalcato	0.3
STR_47	Linear Static S	Sisma Y - da ir	npalcato	1
STR_47	Linear Static S	Sisma Z - da in	npalcato	0.3
STR_47	Linear Static S	Spalla Spinta X	_SLV	0.3
STR_47	Linear Static S	Spalla Spinta Y	_SLV	1
STR_47	Linear Static S	Spalla Spinta Z	_SLV	0.3
STR_48	Linear Static	DEAD	1.35	
STR_48	Linear Static	G2	1.5	
STR_48	Linear Static	q1k	0	
STR_48	Linear Static o	3-Carichi fren	atura	0
STR_48	Linear Static	q - marciapied	di 1.5	
STR_48	Linear Static	Spalla temp I	7+ 0.7	2
STR_48	Linear Static	Spalla temp I	F- 0	
STR_48	Linear Static	Spalla temp U	J+ 0)
STR_48	Linear Static	Spalla temp U	J- 0.7	2
STR_48	Linear Static	q_ritiro	1.2	
STR_48 R	Response Spectr	um Sism S	SLV X	0.3
STR_48 R	Response Spectr	um Sism S	SLV Y	1
STR_48 R	Response Spectr	um Sism S	SLV Z	0.3
STR_48	Linear Static S	Sisma X - da ir	npalcato	0.3
STR_48	Linear Static S	Sisma Y - da ir	npalcato	1
STR_48	Linear Static S	Sisma Z - da in	npalcato	0.3
STR_48	Linear Static S	Spalla Spinta X	K_SLV	0.3
STR_48	Linear Static S	Spalla Spinta Y	_SLV	1
STR_48	Linear Static S	Spalla Spinta Z	_SLV	0.3

 $Relazione\ di\ calcolo\ -\ Spalle\ -\ fase\ 1$

 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 NR1J
 01 D 29
 CL
 VI0104 001
 B
 165 di 172

STR_49	Linear Static	DEAD	1.35	
STR_49	Linear Static	G2	1.5	
STR_49	Linear Static	q1k	0	
STR_49	Linear Static	q3-Carichi frenat	ura	0
STR_49	Linear Static	q - marciapiedi	1.5	
STR_49	Linear Static	Spalla temp F+	0.72	2
STR_49	Linear Static	Spalla temp F-	0	
STR_49	Linear Static	Spalla temp U+	- 0	
STR_49	Linear Static	Spalla temp U-	0.72	,
STR_49	Linear Static	q_ritiro	1.2	
STR_49 R	esponse Specti	rum Sism SL	VX	0.3
STR_49 R	esponse Specti	rum Sism SL	VY	1
STR_49 R	esponse Specti	rum Sism SL	VZ	0.3
STR_49	Linear Static	Sisma X - da imp	alcato	0.3
STR_49	Linear Static	Sisma Y - da imp	alcato	1
STR_49	Linear Static	Sisma Z - da imp	alcato	0.3
STR_49	Linear Static	Spalla Spinta X_	SLV	0.3
STR_49	Linear Static	Spalla Spinta Y_	SLV	1
STR_49	Linear Static	Spalla Spinta Z_S	SLV	0.3
STR_50	Linear Static	DEAD	1.35	
STR_50	Linear Static	G2	1.5	
STR_50	Linear Static	q1k	0	
STR_50	Linear Static	q3-Carichi frenat	ura	0
STR_50	Linear Static	q - marciapiedi	1.5	
STR_50	Linear Static	Spalla temp F+	0	
STR_50	Linear Static	Spalla temp F-	0.72	
STR_50	Linear Static	Spalla temp U+	- 0.72	2
STR_50	Linear Static	Spalla temp U-	0	
STR_50	Linear Static	q_ritiro	0	
STR_50 R	esponse Specti	rum Sism SL	VX	0.3
STR_50 R	esponse Specti	rum Sism SL	VY	1
STR_50 R	esponse Specti	rum Sism SL	VZ	0.3
STR_50	Linear Static	Sisma X - da imp	alcato	0.3
STR_50	Linear Static	Sisma Y - da imp	alcato	1
STR_50	Linear Static	Sisma Z - da imp	alcato	0.3
STR_50	Linear Static	Spalla Spinta X_	SLV	0.3
STR_50	Linear Static	Spalla Spinta Y_	SLV	1

 $Relazione\ di\ calcolo\ -\ Spalle\ -\ fase\ 1$

 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 NR1J
 01 D 29
 CL
 VI0104 001
 B
 166 di 172

STR_50	Linear Static Sp.	alla Spinta Z_S	LV	0.3
STR_51	Linear Static	DEAD	1.35	
STR_51	Linear Static	G2	1.5	
STR_51	Linear Static	q1k	0	
STR_51	Linear Static q3	-Carichi frenati	ıra	0
STR_51	Linear Static q	- marciapiedi	1.5	
STR_51	Linear Static S	Spalla temp F+	0	
STR_51	Linear Static S	Spalla temp F-	0.72	
STR_51	Linear Static S	Spalla temp U+	0.72	2
STR_51	Linear Static S	Spalla temp U-	0	
STR_51	Linear Static	q_ritiro	0	
STR_51 R	desponse Spectrur	n Sism SL	VX	0.3
STR_51 R	desponse Spectrur	n Sism SL	VY	1
STR_51 R	desponse Spectrur	n Sism SL	VΖ	0.3
STR_51	Linear Static Sis	sma X - da imp	alcato	0.3
STR_51	Linear Static Sis	sma Y - da imp	alcato	1
STR_51	Linear Static Sis	sma Z - da impa	alcato	0.3
STR_51	Linear Static Sp	alla Spinta X_S	SLV	0.3
STR_51	Linear Static Sp	alla Spinta Y_S	SLV	1
STR_51	Linear Static Sp	alla Spinta Z_S	SLV	0.3
STR_52	Linear Static	DEAD	1.35	
STR_52	Linear Static	G2	1.5	
STR_52	Linear Static	q1k	0	
STR_52	Linear Static q3	-Carichi frenati	ura	0
STR_52	Linear Static q	- marciapiedi	1.5	
STR_52	Linear Static S	Spalla temp F+	0	
STR_52	Linear Static S	Spalla temp F-	0.72	
STR_52	Linear Static S	Spalla temp U+	0.7	2
STR_52	Linear Static S	Spalla temp U-	0	
STR_52	Linear Static	q_ritiro	1.2	
STR_52 R	desponse Spectrur	n Sism SL	VX	0.3
STR_52 R	desponse Spectrur	n Sism SL	VY	1
STR_52 R	desponse Spectrur	n Sism SL	VΖ	0.3
STR_52	Linear Static Sis	sma X - da imp	alcato	0.3
STR_52	Linear Static Sis	sma Y - da imp	alcato	1
STR_52	Linear Static Sis	sma Z - da impa	alcato	0.3
STR_52	Linear Static Sp	alla Spinta X_S	SLV	0.3

 $Relazione\ di\ calcolo\ -\ Spalle\ -\ fase\ 1$

COMMESSA LOTTO CODIFICA DOCUMENTO REV. FOGLIO

NRIJ 01 D 29 CL VI0104 001 B 167 di 172

STR_52	Linear Static Spalla Spinta Y_SLV	1
STR_52	Linear Static Spalla Spinta Z_SLV	0.3
STR_53	Linear Static DEAD 1.35	
STR_53	Linear Static G2 1.5	
STR_53	Linear Static q1k 0	
STR_53	Linear Static q3-Carichi frenatura	0
STR_53	Linear Static q - marciapiedi 1.5	
STR_53	Linear Static Spalla temp F+ 0	
STR_53	Linear Static Spalla temp F- 0.72	2
STR_53	Linear Static Spalla temp U+ 0.7	'2
STR_53	Linear Static Spalla temp U- 0	
STR_53	Linear Static q_ritiro 1.2	
STR_53 R	Response Spectrum Sism SLV X	0.3
STR_53 R	Response Spectrum Sism SLV Y	1
STR_53 R	Response Spectrum Sism SLV Z	0.3
STR_53	Linear Static Sisma X - da impalcato	0.3
STR_53	Linear Static Sisma Y - da impalcato	1
STR_53	Linear Static Sisma Z - da impalcato	0.3
STR_53	Linear Static Spalla Spinta X_SLV	0.3
STR_53	Linear Static Spalla Spinta Y_SLV	1
STR_53	Linear Static Spalla Spinta Z_SLV	0.3
STR_54	Linear Static DEAD 1.35	
STR_54	Linear Static G2 1.5	
STR_54	Linear Static q1k 0	
STR_54	Linear Static q3-Carichi frenatura	0
STR_54	Linear Static q - marciapiedi 1.5	
STR_54	Linear Static Spalla temp F+ 0	
STR_54	Linear Static Spalla temp F- 0.72	2
STR_54	Linear Static Spalla temp U+)
STR_54	Linear Static Spalla temp U- 0.7	2
STR_54	Linear Static q_ritiro 0	
STR_54 R	Response Spectrum Sism SLV X	0.3
STR_54 R	Response Spectrum Sism SLV Y	1
STR_54 R	Response Spectrum Sism SLV Z	0.3
STR_54	Linear Static Sisma X - da impalcato	0.3
STR_54	Linear Static Sisma Y - da impalcato	1
STR_54	Linear Static Sisma Z - da impalcato	0.3

 $Relazione\ di\ calcolo\ -\ Spalle\ -\ fase\ 1$

COMMESSA LOTTO CODIFICA DOCUMENTO REV. FOGLIO

NR1J 01 D 29 CL VI0104 001 B 168 di 172

STR_54	Linear Static Spalla Spinta X_SLV	0.3
STR_54	Linear Static Spalla Spinta Y_SLV	1
STR_54	Linear Static Spalla Spinta Z_SLV	0.3
STR_55	Linear Static DEAD 1.35	
STR_55	Linear Static G2 1.5	
STR_55	Linear Static q1k 0	
STR_55	Linear Static q3-Carichi frenatura	0
STR_55	Linear Static q - marciapiedi 1.5	
STR_55	Linear Static Spalla temp F+ 0	
STR_55	Linear Static Spalla temp F- 0.72	
STR_55	Linear Static Spalla temp U+ 0	
STR_55	Linear Static Spalla temp U- 0.72	
STR_55	Linear Static q_ritiro 0	
STR_55 F	Response Spectrum Sism SLV X	0.3
STR_55 F	Response Spectrum Sism SLV Y	1
STR_55 F	Response Spectrum Sism SLV Z	0.3
STR_55	Linear Static Sisma X - da impalcato	0.3
STR_55	Linear Static Sisma Y - da impalcato	1
STR_55	Linear Static Sisma Z - da impalcato	0.3
STR_55	Linear Static Spalla Spinta X_SLV	0.3
STR_55	Linear Static Spalla Spinta Y_SLV	1
STR_55	Linear Static Spalla Spinta Z_SLV	0.3
STR_56	Linear Static DEAD 1.35	
STR_56	Linear Static G2 1.5	
STR_56	Linear Static q1k 0	
STR_56	Linear Static q3-Carichi frenatura	0
STR_56	Linear Static q - marciapiedi 1.5	
STR_56	Linear Static Spalla temp F+ 0	
STR_56	Linear Static Spalla temp F- 0.72	
STR_56	Linear Static Spalla temp U+ 0	
STR_56	Linear Static Spalla temp U- 0.72	
STR_56	Linear Static q_ritiro 1.2	
STR_56 F	Response Spectrum Sism SLV X	0.3
STR_56 F	Response Spectrum Sism SLV Y	1
STR_56 F	Response Spectrum Sism SLV Z	0.3
STR_56	Linear Static Sisma X - da impalcato	0.3
STR_56	Linear Static Sisma Y - da impalcato	1

 $Relazione\ di\ calcolo\ -\ Spalle\ -\ fase\ 1$

COMMESSA LOTTO CODIFICA DOCUMENTO REV. FOGLIO

NR1J 01 D 29 CL VI0104 001 B 169 di 172

STR_56	Linear Static	Sisma Z - da imp	alanto	0.3
STR_56		Spalla Spinta X_		0.3
		Spalla Spinta Y_		1
STR_56 STR_56		-		0.3
		Spalla Spinta Z_S		0.5
STR_57	Linear Static	DEAD	1.35	
STR_57	Linear Static		1.5	
STR_57	Linear Static	1	0	0
STR_57		q3-Carichi frenat		0
STR_57		q - marciapiedi	1.5	
STR_57		Spalla temp F+		
STR_57		Spalla temp F-		
STR_57		Spalla temp U+		
STR_57	Linear Static	Spalla temp U-	0.72	,
STR_57	Linear Static	q_ritiro	1.2	
STR_57	Response Spect	rum Sism SL	VX	0.3
STR_57	Response Spect	rum Sism SL	VY	0.3
STR_57	Response Spect	rum Sism SL	VΖ	1
STR_57	Linear Static	Sisma X - da imp	alcato	0.3
STR_57	Linear Static	Sisma Y - da imp	alcato	0.3
STR_57	Linear Static	Sisma Z - da imp	alcato	1
STR_57	Linear Static	Spalla Spinta X_	SLV	0.3
STR_57	Linear Static	Spalla Spinta Y_	SLV	0.3
STR_57	Linear Static	Spalla Spinta Z_S	SLV	1
urto1x	Linear Static	DEAD	1	
urto1x	Linear Static	G2	1	
urto1x	Linear Static	Spalla temp F+	0.5	
urto1x	Linear Static	Spalla temp F-	0	
urto1x	Linear Static	Spalla temp U+	0.5	
urto1x	Linear Static	Spalla temp U-	0	
urto1x	Linear Static	q_ritiro	1	
urto1x	Linear Static	urtoX	1	
Urto1y	Linear Static	DEAD	1	
Urtoly	Linear Static	G2	1	
Urtoly	Linear Static	Spalla temp F+	0.5	
Urtoly	Linear Static	Spalla temp F-	0	
Urtoly	Linear Static	Spalla temp U+	0.5	
Urtoly	Linear Static	Spalla temp U-	0.5	
511013	Zineai Statie	Zpana temp 0	O	

 $Relazione\ di\ calcolo\ -\ Spalle\ -\ fase\ 1$

COMMESSA LOTTO CODIFICA DOCUMENTO REV.

NR1J 01 D 29 CL VI0104 001 B

FOGLIO

170 di 172

Urto1y	Linear Static	q_ritiro	1	
Urto1y	Linear Static	urtoY	1	
Urto2x	Linear Static	DEAD	1	
Urto2x	Linear Static	G2	1	
Urto2x	Linear Static	Spalla temp F+	-0.5	
Urto2x	Linear Static	Spalla temp F-	0	
Urto2x	Linear Static	Spalla temp U+	0.5	
Urto2x	Linear Static	Spalla temp U-	0	
Urto2x	Linear Static	q_ritiro	1	
Urto2x	Linear Static	urtoX	1	
Urto2y	Linear Static	DEAD	1	
Urto2y	Linear Static	G2	1	
Urto2y	Linear Static	Spalla temp F+	-0.5	
Urto2y	Linear Static	Spalla temp F-	0	
Urto2y	Linear Static	Spalla temp U+	0.5	
Urto2y	Linear Static	Spalla temp U-	0	
Urto2y	Linear Static	q_ritiro	1	
Urto2y	Linear Static	urtoY	1	
Urto3x	Linear Static	DEAD	1	
Urto3x	Linear Static	G2	1	
Urto3x	Linear Static	Spalla temp F+	0.5	
Urto3x	Linear Static	Spalla temp F-	0	
Urto3x	Linear Static	Spalla temp U+	-0.5	
Urto3x	Linear Static	Spalla temp U-	0	
Urto3x	Linear Static	q_ritiro	1	
Urto3x	Linear Static	urtoX	1	
Urto3y	Linear Static	DEAD	1	
Urto3y	Linear Static	G2	1	
Urto3y	Linear Static	Spalla temp F+	0.5	
Urto3y	Linear Static	Spalla temp F-	0	
Urto3y	Linear Static	Spalla temp U+	-0.5	
Urto3y	Linear Static	Spalla temp U-	0	
Urto3y	Linear Static	q_ritiro	1	
Urto3y	Linear Static	urtoY	1	
Urto4x	Linear Static	DEAD	1	
Urto4x	Linear Static	G2	1	
Urto4x	Linear Static	Spalla temp F+	-0.5	

 $Relazione\ di\ calcolo\ -\ Spalle\ -\ fase\ 1$

COMMESSA LOTTO CODIFICA DOCUMENTO REV. FOGLIO

NR1J 01 D 29 CL VI0104 001 B 171 di 172

Urto4x	Linear Static	Spalla temp F-	0	
Urto4x	Linear Static	Spalla temp U+	-0.5	
Urto4x	Linear Static	Spalla temp U-	0	
Urto4x	Linear Static	q_ritiro	1	
Urto4x	Linear Static	urtoX	1	
Urto4y	Linear Static	DEAD	1	
Urto4y	Linear Static	G2	1	
Urto4y	Linear Static	Spalla temp F+	-0.5	
Urto4y	Linear Static	Spalla temp F-	0	
Urto4y	Linear Static	Spalla temp U+	-0.5	
Urto4y	Linear Static	Spalla temp U-	0	
Urto4y	Linear Static	q_ritiro	1	
Urto4y	Linear Static	urtoY	1	

SITALFERR GRUPPO FERROVIE DELLO STATO ITALIANE	RADDOPPIO CESANO VIGNA DI VALLE PROGETTO DEFINITIVO					
Relazione di calcolo – Spalle – fase 1	COMMESSA NR1J	LOTTO 01 D 29	CODIFICA CL	DOCUMENTO VI0104 001	REV. B	FOGLIO 172 di 172