COMMITTENTE

PROGETTAZIONE:

U.O. INFRASTRUTTURE CENTRO

PROGETTO DEFINITIVO

RADDOPPIO LINEA FERROVIARIA ROMA - VITERBO TRATTA CESANO – VIGNA DI VALLE

FV02 - Fermata Vigna di Valle - Lato Nord

FV02 – Fabbricato viaggiatori – Relazione di calcolo

SCALA:

COMMESSA LOTTO FASE ENTE TIPO DOC. OPERA/DISCIPLINA PROGR. REV.

NR 1 J 0 1 D 2 9 C L F V 0 2 0 0 1 0 1 C

Rev.	Descrizione	Redatto	Data	Verificato	Data	Approvato	Data	Autorizzato Data
		Usai	40.0040	Passaro	10.0010	Paoletti	10.0010	
Α		Que de la	10.2018	A	10.2018	/>	10.2018	Arduini
	6	Usai	44.0040	Passaro	44.0040	Paoletti	44.0040	11.2019
В	Revisione	Pots III	11.2019	A	11.2019	<i>/</i> >	11.2019	ITALFERN S.p.A.
0		Serrau	05 2020	Monda	05 2020	Paoletti	0F 2020	Direzione Yecnica Infrastrutture Centro
С	Revisione	0-10	05.2020		05.2020		05.2020	Dott. Ing. Eablizio Arduini Ordine degli Ingegneri Bella Rzovincia di Roma nº 18392 pol. A
		the fer		44		1		11. 12.205 SOFT
				100		14		0

File: NR1J00D29CLFV0200101C.doc		n. Elab.: 461.04
TI IIE. INICIDODESCEI VOZOOTOTO.GOC	<u> </u>	11. LIAD 401.04

FV02 – Fermata Vigna di Valle – Lato Nord FV02 – Fabbricato viaggiatori – Relazione di calcolo
 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 NR1J
 01
 D29CL
 FV 02 00 001
 C
 2 di 97

INDICE

1	PI	REMESSA	4
	1.1	SCOPO DEL DOCUMENTO	4
	1.2	DESCRIZIONE DELLE STRUTTURE	4
2	N	IORMATIVA DI RIFERIMENTO	
3		IATERIALI	
	3.1	ACCIAIO DA CARPENTERIA METALLICA	
	3.2	CALCESTRUZZO PER FONDAZIONI	
4		ARATTERIZZAZIONE GEOTECNICA	
5		NALISI DEI CARICHI	
	5.1	Peso proprio strutture	
	5.2	CARICHI PERMANENTI NON STRUTTURALI	
	5.3	SOVRACCARICO ACCIDENTALE	
	5.4	SOVRACCARICO DI MANUTENZIONE	
	5.5	AZIONE DELLA NEVE	
	5.6	AZIONE DEL VENTO	
	5.7	AZIONE DEL VENTO CON AZIONE AERODINAMICA PER TRAFFICO FERROVIARIO	
	5.8	AZIONE TERMICA	
	5.9	AZIONE SISMICA	
	5.10		
6		MODELLO STRUTTURALE	
7		ERIFICA DELLA STRUTTURA	
′	7.1	Analisi modale	
	7.1	DIAGRAMMI DELLE SOLLECITAZIONI	
	7.2	VERIFICHE STRUTTURALI DI RESISTENZA DELLE MEMBRATURE	
		VERIFICHE STRUTTURALI DI RESISTENZA DELLE MEMBRATURE	
	7.4	VENIFICHE STRUTTUKALI DI DEFORMABILITA DELLE MEMBRATURE IN ACCIAIO	

PROGETTO DEFINITIVO

RELAZIONI DI CALCOLO STRUTTURE

RADDOPPIO CESANO – VIGNA DI VALLE

STAZIONE DI VIGNA DI VALLE

FV02 – Fermata Vigna di Valle – Lato Nord
FV02 – Fabbricato viaggiatori – Relazione di calcolo

COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
NR1J	01	D29CL	FV 02 00 001	С	3 di 97

	7.5	VERIFICA DEGLI SPOSTAMENTI DI PIANO (DRIFT) PER CONDIZIONI DI CARICO NON SISMICHE	55
	7.6	VERIFICA DEGLI SPOSTAMENTI DI PIANO PER CONDIZIONI DI CARICO SISMICHE	57
	7.7	VERIFICA PIASTRA DI BASE PILASTRO	58
	Ver	ifica a taglio-trazione del tirafondo	60
8	VEF	RIFICA FONDAZIONI	64
	8.1	DESCRIZIONE	64
	8.2	MODELLO STRUTTURALE	64
	8.3	Travi di fondazione	67
	8.4	SOLLECITAZIONI	68
	8.5	VERIFICA DI RESISTENZA ALLO SLU	71
	Ver	ifica a Presso-flessione	71
	Ver	ifica a Taglio	77
	8.6	VERIFICHE AGLI STATI LIMITE DI ESERCIZIO - SLE	79
	Ver	ifiche di fessurazione e tensioni di esercizio	79
	8.7	VERIFICA CAPACITÀ PORTANTE	88

1 PREMESSA

1.1 SCOPO DEL DOCUMENTO

1.2 DESCRIZIONE DELLE STRUTTURE

La presente relazione di calcolo ha per oggetto l'analisi e le verifiche strutturali del Fabbricatoi Viaggiatori della stazione di Vigna di Valle.

La struttura portante realizzata in carpenteria metallica, è costituita dai seguenti profili:

- Colonne costituite da HEB 400;
- Travi longitudinali costituita da IPE 400;
- Tiranti trasversali costituite da IPE 360;
- Travi di chiusura costituite da IPE220 su bordo lato strada e UPN220 su bordo lato binario;
- Arcarecci HEA160.

A completare la struttura sono poi presenti dei portali metallici costituiti da profili tubolari di sezione 300x150x5.

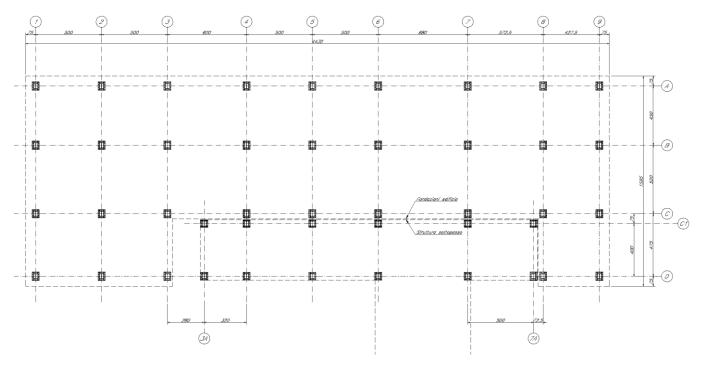


Figura 1. Pianta fili fissi

FV02 – Fermata Vigna di Valle – Lato Nord FV02 – Fabbricato viaggiatori – Relazione di calcolo

COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
NR1J	01	D29CL	FV 02 00 001	С	5 di 97

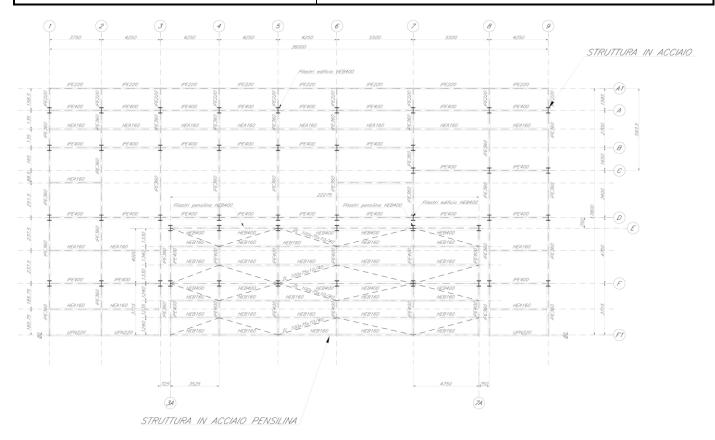


Figura 2. Pianta copertura

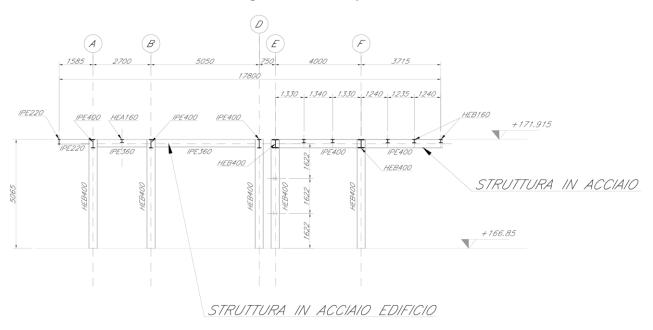


Figura 3. Sezione all. 5

STAZIONE DI VIGNA DI VALLE

FV02 – Fermata Vigna di Valle – Lato Nord FV02 – Fabbricato viaggiatori – Relazione di calcolo

COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
NR1J	01	D29CL	FV 02 00 001	С	6 di 97

2 NORMATIVA DI RIFERIMENTO

La progettazione è stata svolta in conformità alle normative vigenti nonché alle istruzioni dell'Ente FF.SS.. La normativa cui viene fatto riferimento nelle fasi di calcolo e progettazione è la seguente:

- Legge 5 novembre 1971 n. 1086 Norme per la disciplina delle opere di conglomerato cementizio armato normale e precompresso ed a struttura metallica
- Legge 2 febbraio 1974 n. 64 Provvedimenti per le costruzioni con particolari prescrizioni per le zone sismiche
- D.M. 17 gennaio 2018 Norme Tecniche per le Costruzioni
- Circolare 21 gennaio 2019 Istruzioni per l'applicazione dell' "Aggiornamento delle Nuove norme tecniche per le costruzioni" di cui al D.M. 17 gennaio 2018
- Eurocodice 2: Progettazione delle strutture in calcestruzzo Parte 1.1: Regole generali e regole per gli edifici.
- UNI ENV 1992-1-1 Parte 1-1: Regole generali e regole per gli edifici;
- UNI EN 206-1-2016: Calcestruzzo. "Specificazione, prestazione, produzione e conformità".
- RFI DTC SI MA IFS 001 C
 Manuale di progettazione delle opere civili Parte I
- RFI DTC SI AM MA IFS 001 B Manuale di progettazione delle opere civili Parte II Sezione 1 –
 Ambiente
- RFI DTC SI PS MA IFS 001 C
 Manuale di progettazione delle opere civili Parte II Sezione 2
 - Ponti e Strutture
- RFI DTC SI CS MA IFS 001 C Manuale di progettazione delle opere civili Parte II Sezione 3
 Corpo Stradale
- RFI DTC SI CS MA IFS 001 C del 21.12.2018 "Capitolato generale tecnico di appalto delle opere civili".
- Regolamento (UE) N. 1299/2014 della Commissione del 18/11/2014 relativo alle specifiche tecniche di interoperabilità per il sottosistema "infrastruttura" del sistema ferroviario dell'Unione Europea.

RELAZIONI DI CALCOLO STRUTTURE

RADDOPPIO CESANO – VIGNA DI VALLE

STAZIONE DI VIGNA DI VALLE

FV02 – Fermata Vigna di Valle – Lato Nord

FV02 – Fabbricato viaggiatori – Relazione di calcolo

COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
NR1J	01	D29CL	FV 02 00 001	С	7 di 97

3 MATERIALI

3.1 ACCIAIO DA CARPENTERIA METALLICA

S275 UNI EN 10025:

- · Tipologia laminati: Laminati a caldo con profili a sezione aperta
- Spessore nominale elemento: t ≤ 40mm
- Dimensioni secondo UNI 5397
- Saldature con elettrodi secondo UNI 5132
- Struttura non protetta
- Temperatura minima del sito T_{md} = -25 °C
- Temperatura di riferimento T_{F,d} = -25 °C

 $\frac{\text{Classe acciaio}}{\text{Classe acciaio}} \quad \frac{f_{tk}}{\text{Subgrade}} = \frac{f_{tk}}{f_{tk}} \quad \frac{E_s}{v} \quad \frac{v}{G_s} \quad \frac{f_{yk}}{f_{yk}} \quad \frac{\gamma_{Rd}}{\gamma_{Rd}} \quad \frac{\gamma_{M0}}{\gamma_{M1}} \quad \frac{\gamma_{M2}}{\gamma_{M2}} \quad \beta \quad \beta_1 \quad \beta_2 \\ \frac{[MPa]}{[MPa]} \quad \frac{[MPa]}{[MPa]} \quad \frac{[MPa]}{[MPa]} \quad \frac{[MPa]}{[MPa]} \quad \frac{\gamma_{Rd}}{[MPa]} \quad \frac{\gamma_{M1}}{\gamma_{M2}} \quad \frac{\gamma_{M2}}{\gamma_{M1}} \quad \frac{\gamma_{M2}}{\gamma_{M2}} \quad \frac{\gamma_{$

BULLONI CL. 8.8:

- Caratteristiche dimensionali conformi alle norme UNI EN ISO 4016:2011
- Viti conformi alla norma UNI EN ISO 898-1:2009
- Dadi conformi alla norma UNI EN 898-2:2012
- Rosette in acciaio C 50 UNI EN 10083-2:2006 temperato e rinvenuto HRC 32-40
- Piastrine in acciaio C 50 UNI EN 10083-2:2006 temperato e rinvenuto HRC 32-40

SALDATURE

Per le caratteristiche delle saldature e le modalità di esecuzione vale quanto indicato ai paragrafi §4.2.8.2 e §11.3.4.5 delle NTC/08.

PROGETTO DEFINITIVO

RELAZIONI DI CALCOLO STRUTTURE

RADDOPPIO CESANO – VIGNA DI VALLE

STAZIONE DI VIGNA DI VALLE

FV02 - Fermata Vigna di Valle - Lato Nord

FV02 – Fabbricato viaggiatori – Relazione di calcolo

 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 NR1J
 01
 D29CL
 FV 02 00 001
 C
 8 di 97

3.2 CALCESTRUZZO PER FONDAZIONI

Classe C28/35

R _{ck} =	35.00	MPa	Resistenza caratteristica cubica
$f_{ck} = 0.83 R_{ck} =$	29.05	MPa	Resistenza caratteristica cilindrica
$f_{cm} = f_{ck} + 8 =$	37.05	MPa	Valore medio resistenza cilindrica
$\alpha_{cc} =$	0.85		Coeff. rid. per carichi di lunga durata
γ _M =	1.50	-	Coefficiente parziale di sicurezza SLU
$f_{cd} = \alpha_{cc} f_{ck}/\gamma_M =$	16.46	MPa	Resistenza di progetto
$f_{ctm} = 0.3 f_{ck}^{(2/3)} =$	2.84	MPa	Resistenza media a trazione semplice
$f_{cfm} = 1.2 f_{ctm} =$	3.40	MPa	Resistenza media a trazione per flessione
$f_{ctk} = 0.7 f_{ctm} =$	1.98	MPa	Valore caratteristico resistenza a trazione (frattile 5%)
$\sigma_c = 0,60 \; f_{ck} =$	17.43	MPa	Tensione in esercizio in comb. rara (rif. §4.1.2.2.5.1 [1])
$\sigma_c = 0.45 \; f_{ck} =$	13.07	MPa	Tensione in esercizio in comb. quasi perm. (rif. §4.1.2.2.5.1 [1])
$E_{cm} = 22000 (f_{cm}/10)^{(0,3)} =$	32588	MPa	Modulo elastico di progetto
v =	0.20		Coefficiente di Poisson
$G_c = E_{cm} / (2(1+v)) =$	13578	MPa	Modulo elastico tangenziale di progetto
Condizioni ambientali =	Ordinarie		
Classe di esposizione =	XC2		

STAZIONE DI VIGNA DI VALLE

FV02 – Fermata Vigna di Valle – Lato Nord FV02 – Fabbricato viaggiatori – Relazione di calcolo

COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
NR1J	01	D29CL	FV 02 00 001	С	9 di 97

4 CARATTERIZZAZIONE GEOTECNICA

Di seguito si riportano i modelli geotecnici considerati riportati nella relazione geotecnica generale allegata NR1J00D29GEGE0005001A.

9° Modello – Stazione di Vigna di Valle

Modello 9a - Da pk 38+000 alla pk 39+150

Unità Geotecnica	Descrizione	z iniz (m)	z fin (m)	spessore (m)	z media (m da p.c.)	Peso di volume (kN/m³)		Densità relativa (%)	al taglio	Angolo di resistenza al taglio a volume costante ф'cv (°)	C' (kPa)
P1	Depositi superficiali zona Lago Morto	0	4	4	2	17	GF/GG	30-40	26	25	10
U1a	Limo sabbioso debolmente argilloso	4	8	4	2	17	GF/GG	50-60	28	24.5	10
U3b	PVS-Depositi vulcanici -Sabbia limosa addensata con presenza di ghiaia e litici vulcanici	8	30	22	11	17	GG	60-70	32	27	5

Cu (kPa)	Modulo elastico Eop,1 (MPa)	Modulo elastico Eop,2 (MPa)	Modulo edometrico M (MPa)	Modulo non drenato Eu (MPa)	Coeffciente di consolidazion e cv (m²/s)	K rilevata (cm/s)	K media (cm/s)
40	18	36	25	36	5 * 10 ⁻³	-	-
60	26	52	40	54	5 * 10 ⁻²	2,16*10-3	-
-	35	70	50	-		2,80*10-4/3,76*10-5	2,02*10-5

Modello sismico, dalla pk 34+500 alla pk 39+497

L'accelerazione di picco assunta riferimento è il valore massimo ottenuto da NTC2018 e DGR 22 maggio 2009 n.387 - Linee Guida Regione Lazio n. 545 del 26/11/2010 vigenti (Nuova classificazione sismica del territorio della Regione Lazio in applicazione dell'ordinanza del Presidente del Consiglio dei Ministri n. 3519 del 28 aprile 2006 e della deliberazione Giunta regionale Lazio 766/2003):

PGANTC2018 = 0.073

PGADGR Lazio = Non discretizzata

Accelerazione di picco al suolo: si sono presi i valori dati da NTC2018 per la stazione di Vigna di Valle:

Periodo di rif_da pk 34+500 alla pk 39+497,781	Vn	VR	TR	NTC2018
Stazione di Vigna di Valle	(anni)	(anni)	(anni)	ag/g
	50	50	475	0,065
	75	75	712	0.071
	100	200	949	0,086

Per la stazione sopra riportata ricadente nell'omonimo comune, la DGR Lazio n. 545 del 26/11/2010 non discretizza tale comune, pertanto si utilizzeranno i valori di ag/g da NTC2018.

STAZIONE DI VIGNA DI VALLE

FV02 – Fermata Vigna di Valle – Lato Nord FV02 – Fabbricato viaggiatori – Relazione di calcolo

COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
NR1J	01	D29CL	FV 02 00 001	С	10 di 97

5 ANALISI DEI CARICHI

Come prescritto dalle NTC 2018, sono state considerate agenti sulla struttura le seguenti condizioni di carico elementari, combinate tra loro in modo da determinare gli effetti più sfavorevoli ai fini delle verifiche dei singoli elementi strutturali:

- peso proprio strutture;
- carichi permanenti non strutturali dovuti alla schermatura di rivestimento;
- sovraccarico variabile da manutenzione;
- azione del vento con effetto aerodinamico da passaggio treno;
- azione della neve;
- azione termica;
- azione sismica.

5.1 PESO PROPRIO STRUTTURE

Il peso proprio degli elementi strutturali in elevazione viene calcolato considerando il peso specifico dell'acciaio:

$$\gamma = 78,50 \text{ kN/m}^3$$

Il peso proprio degli elementi strutturali in fondazione viene calcolato considerando il peso specifico del cemento armato:

 $\gamma = 25,00 \text{ kN/m}^3$

STAZIONE DI VIGNA DI VALLE

FV02 – Fermata Vigna di Valle – Lato Nord FV02 – Fabbricato viaggiatori – Relazione di calcolo

COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
NR1J	01	D29CL	FV 02 00 001	С	11 di 97

5.2 CARICHI PERMANENTI NON STRUTTURALI

Il carico permanente non strutturale corrisponde al carico associato al rivestimento orizzontale, compresa sottostruttura è pari a:

 $g_{2k}=1,5 \text{ kN/m}^2$

5.3 SOVRACCARICO ACCIDENTALE

Il fabbricato rientra nella cat. C3 - Aree d'accesso ad atri di stazione ferroviarie secondo Tab.3.1.Il delle NTC2018:

 $q_{5k}=5 \text{ kN/m}^2$

5.4 SOVRACCARICO DI MANUTENZIONE

Si adotta il carico distribuito di cat. H, tipico delle coperture accessibili per sola manutenzione e riparazione, definito secondo la Tab.3.1.II delle NTC2018:

 $q_{3k}=0.5 \text{ kN/m}^2$

STAZIONE DI VIGNA DI VALLE

FV02 – Fermata Vigna di Valle – Lato Nord FV02 – Fabbricato viaggiatori – Relazione di calcolo
 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 NR1J
 01
 D29CL
 FV 02 00 001
 C
 12 di 97

5.5 AZIONE DELLA NEVE

NEVE (Q4)				
zona	=	III		
as	=	250.00	m	altitudine del sito

	I-Alpina	I-Med	II	Ш
a _s <200	1.50	1.50	1.00	0.60
a _s >200	1.55	1.58	1.08	0.65

q _{sk}	=	0.65	kN/mq	valore caratteristico di riferimento
Ct	=	1.00	-	coefficiente termico
classi		Normale	-	classe di topografia
n°		1.00		numero falde
CE	=	1.00		coefficiente di esposizione
α_1	=	0.00	0	angolo inclinazione falda sx
μ1	=	0.80	-	coeff. di forma falda sx
q _{sk4.1}	=	0.52	kN/mq	carico da neve falda 1

STAZIONE DI VIGNA DI VALLE

FV02 – Fermata Vigna di Valle – Lato Nord FV02 – Fabbricato viaggiatori – Relazione di calcolo
 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 NR1J
 01
 D29CL
 FV 02 00 001
 C
 13 di 97

5.6 AZIONE DEL VENTO

14 1 0 201	U - CAL	.COLO (CARICO	DA VEIV	110				
VELOCITA	A' BASE	DI RIFER	IMENTO				=	27	m/s
V _b	=	V _{b0}	Х	Ca					
V _{b0}	=	velocità ba	se di riferime	ento al livello	del mare -	tab. 3.3.1			
Ca	=	coefficiente	e di altitudine						
	Ca	=	1		per	a _s	≤	a ₀	
	Ca	=	1 + k _r (a _s /a ₀	₀ -1)	per	a ₀	<	a _s	≤ 1500m
Altitudine z	ona di ins	tallazione					=	250	m.s.m.
Valori dei pa	rametri								
Toscana, March	ne, Umbria, La	zio, Abruzzo, N	Molise, Puglia, (Campania, Bas	ilicata, Calab	oria (esclusa l	a provinci	a di Reggio Calabria)
vb0 [m/] 27		a0 [m] 500		ks 0.37					
Coefficiente	di altitudine			1					
VELOCITA	A' DI RIF	ERIMENT	<u></u> 0				=	27	m/s
V _r	=	V _b	Х	C _r					
V _b	=	velocità base di riferimento							
C _r	=	coefficiente	e di ritorno, fu	unzione del	periodo di	ritornodi pr	ogetto T		
COEFFICIE	NTE DI RIT	ORNO							
C _r	=	0,75 X RAI	DQ (1-0,2xL1	N(-LN(1-1/T	r)))		=	1	
	RITORNO						=	50	anni

per fasi di costruzione con durata prevista in sede di progetto superiore a un anno si assumerà TR ≥50 anni;

FV02 – Fermata Vigna di Valle – Lato Nord FV02 – Fabbricato viaggiatori – Relazione di calcolo
 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 NR1J
 01
 D29CL
 FV 02 00 001
 C
 14 di 97

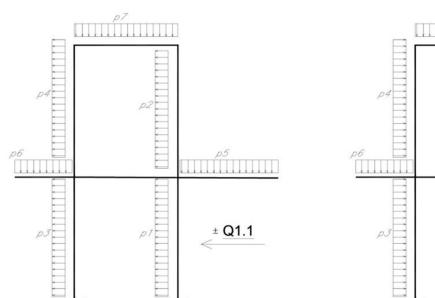
PRESSIC	NE CINE	TICA DI F	RIFERIME	NTO		=	455.625	N/mq
q _r	=	0,5 x ρ x v _r	2					
Чr		0,5 x β x v ₁						
\mathbf{v}_{r}	=	velocità di	riferimento					
ρ	=	1.25	kg/mc	densità d	ell'aria			
COEFFIC	IENTE DI	ESPOSIZ	ZIONE			=	2.033	
CLASSE DI	RUGOSITA	A' DEL TERI	RENO					
Aree urbane (n	on di classe A),	suburbane, inc	lustriali e bosc	hive				
DISTANZA	DALLA COS	STA / ALTIT	UDINE					
terra da 10 a 3	0 km dalla cost	a						
CATEGORI	A DI ESPO	SIZIONE AL	SITO			=	III	
ALTEZZA S	TRUTTURA					=	8.5	m
COEFFIC	IENTE DI	PRESSI	ONE			=	1	
COEFFIC	IENTE DI	NAMICO				=	1	
DDESSI	ONE DE	L VENT	·O			=	0.93	kN/mg

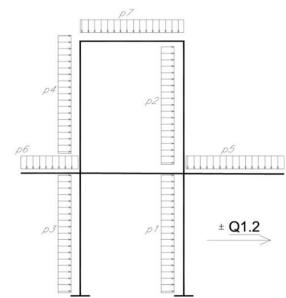
La pressione del vento a meno del coefficiente C_p vale 0,93 kN/m². I coefficienti di forma per vento sui pannelli di copertura sono stati determinati in accordo con le indicazione della Circolare 617/2019 delle NTC 2018.

PROGETTO DEFINITIVO
RELAZIONI DI CALCOLO STRUTTURE

RADDOPPIO CESANO – VIGNA DI VALLE

STAZIONE DI VIGNA DI VALLE


FV02 – Fermata Vigna di Valle – Lato Nord


FV02 – Fabbricato viaggiatori – Relazione di calcolo

 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 NR1J
 01
 D29CL
 FV 02 00 001
 C
 15 di 97

Scenari di carico da vento:

Coefficiente di forma

		Q1.1	Q1.2		
C _p 1	=	1.00	0.60		coefficiente di forma pareti laterali sopravento (Q1.1)/sottovento (Q1.2)
C _{p2}	=	1.00	0.60		coefficiente di forma pareti laterali sopravento (Q1.1)/sottovento (Q1.2)
C _{p3}	=	0.60	1.00		coefficiente di forma pareti laterali sottovento (Q1.1)/sopravento (Q1.2)
C _{p4}	=	0.60	1.00		coefficiente di forma pareti laterali sottovento (Q1.1)/sopravento (Q1.2)
C _p 5	=	1.20	1.20		coefficiente di forma per carico in copertura
C _{p6}	=	1.20	1.20		coefficiente di forma per carico in copertura
C _{p7}	=	1.20	1.20		coefficiente di forma per carico in copertura
p1	=	0.93	0.56	kN/mq	coefficiente di forma pareti laterali
p2	=	0.93	0.56	kN/mq	coefficiente di forma pareti laterali
р3	=	0.56	0.93	kN/mq	coefficiente di forma pareti laterali
p4	=	0.56	0.93	kN/mq	coefficiente di forma pareti laterali
p5	=	1.11	1.11	kN/mq	pressione in copertura
p6	=	1.11	1.11	kN/mq	pressione in copertura
p7	=	1.11	1.11	kN/mq	pressione in copertura

PROGETTO DEFINITIVO

RELAZIONI DI CALCOLO STRUTTURE

RADDOPPIO CESANO - VIGNA DI VALLE

STAZIONE DI VIGNA DI VALLE

FV02 – Fermata Vigna di Valle – Lato Nord

FV02 – Fabbricato viaggiatori – Relazione di calcolo

 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 NR1J
 01
 D29CL
 FV 02 00 001
 C
 16 di 97

5.7 AZIONE DEL VENTO CON AZIONE AERODINAMICA PER TRAFFICO FERROVIARIO

In accordo al 5.2.2.7 delle NTC 2018 si prevede un carico addizionale dovuto all'effetto aerodinamico causato dal passaggio del treno in base alla distanza dall'asse del binario. In accordo con quanto previsto in RFI DTC-SI-PS MA IFS 001 C, si considera l'effetto aerodinamico associato al passaggio dei treni. Tali prescrizioni si riscontrano anche al punto 5.2.2.7 delle NTC 2018 relativo ai ponti ferroviari. Le azioni possono essere schematizzate mediante carichi equivalenti agenti nelle zone prossime alla testa ed alla coda del treno. Nel determinare l'intesità della pressione generata dal passaggio del convoglio sono stati considerati diversi scenari, quali:

- Caso con superfici orizzontali adiacenti il binario;
- Caso con superfici verticali parallele al binario;
- Caso con strutture con superfici multiple a fianco del binario sia verticali che orizzontali o inclinate.

AERODINAMICA (Q2) - \$5.2.2.7.3 NTC18

Superfici orizzontali adiacenti il binario

ag,min = 1,50 m distanza minima

ag,max0 = 5,30 m distanza massima reale

V = 200,00 Km/h velocità treno

 $q_{3k,(max)}$ = 0,60 kN/mq caratteristica fig. 5.2.10 \$5.2.2.7.3 NTC18

 $q_{3k,(min)}$ = 0,15 kN/mq caratteristica fig. 5.2.10 \$5.2.2.7.3 NTC18

hg = 4,95 m distanza P.F. intradosso pensilina

 $K_3 = 0,69$ coef riduttivo

 $q2_{(max)} = 0,41 \text{ kN/mq}$

 $q2_{(min)} = 0.10 \text{ kN/mq}$

 $q2_{(med)} = 0.26$ kN/mq valore medio

 $q2_{Ed} = 0.41 \text{ kN/mq valore di calcolo}$

PROGETTO DEFINITIVO

RELAZIONI DI CALCOLO STRUTTURE

RADDOPPIO CESANO – VIGNA DI VALLE

STAZIONE DI VIGNA DI VALLE

FV02 - Fermata Vigna di Valle - Lato Nord

FV02 – Fabbricato viaggiatori – Relazione di calcolo

 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO

 NR1J
 01
 D29CL
 FV 02 00 001

REV.

С

FOGLIO

17 di 97

AERODINAMICA (Q2) - \$5.2.2.7.1 NTC18

Superfici verticali parallele al binario

ag,max0 = 5,30 m distanza asse binario struttura

V = 200,00 Km/h velocità treno

 q_{1k} = 0,25 kN/mq caratteristica fig. 5.2.8 \$5.2.2.7.1 NTC18

 $k_1 = 1,00$ coef riduttivo forma treno

K₂ = 1,00 coef amplificativo geometria ostacolo

q2 = 0.25 kN/mq di calcolo

AERODINAMICA (Q2) - \$5.2.2.7.4 NTC18

Azione sulle superfici multiple a fianco del binario sia verticali che orizzontali o inclinate

$a_{g,min}$	=	1,50	m	distanza minima
a _{g,max0}	=	5,30	m	distanza massima reale
$a_{\text{g,max}}$	=	5,30	m	distanza massima da considerare
a' _{g,max}	=	3,02	m	distanza fittizia
V	=	200,00	Km/h	velocità treno
Q _{4k}	=	0,41	kN/mq	caratteristica fig. 5.2.8 \$5.2.2.7.1 NTC18
k_1	=	1,00		coef riduttivo forma treno
K_2	=	1,00	_	coef amplificativo geometria ostacolo
q2	=	0,41	kN/mg	di calcolo

In accordo alle Istruzioni FS (RFI DTC-SI-PS MA IFS 001 C Parte II sezione 1 cap. 1.5.4.3) si assume un minimo carico da vento con effetto aerodinamico pari a:

 $q_{v,tot,k}=\pm 1.50 \text{ kN/m}^2$

5.8 AZIONE TERMICA

In accordo con il paragrafo 3.5.5 delle NTC 2018, relativamente al caso di strutture in acciaio esposte, è stata considerata un'azione termica uniforme pari a:

 $\Delta T = \pm 25^{\circ}C$

Tale azione è stata applicata in combinazione alle altre azioni.

5.9 AZIONE SISMICA

In ottemperanza al D.M. del 17.01.2018 (Norme tecniche per le costruzioni) per la definizione dell'azione sismica occorre definire il periodo di riferimento V_R in funzione dello stato limite, considerato:

- la vita nominale (V_N) dell'opera;
- la classe d'uso;
- il periodo di riferimento (V_R) per l'azione sismica, data la vita nominale e la classe d'uso.

Per l'opera in esame si considera:

V_N
C_U
1.0 coefficiente d'uso (classe II)
V_R
75 periodo di riferimento (anni)

Di seguito i parametri dell'azione simica differenziata per i vari Stati Limite.

STAZIONE DI VIGNA DI VALLE

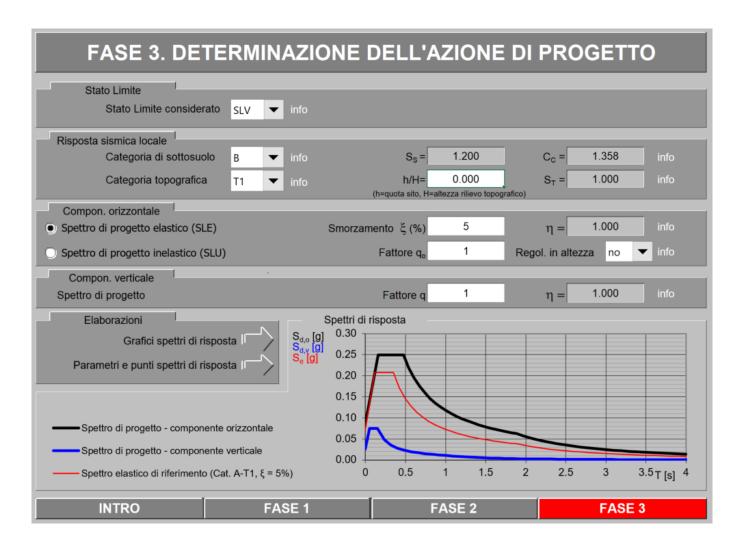
FV02 – Fermata Vigna di Valle – Lato Nord FV02 – Fabbricato viaggiatori – Relazione di calcolo
 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 NR1J
 01
 D29CL
 FV 02 00 001
 C
 19 di 97

SLATO LIMITE	T _R [anni]	a _g [g]	F。 [-]	T _C * [s]
SLO	45	0.036	2.660	0.248
SLD	75	0.041	2.674	0.274
SLV	712	0.071	2.929	0.349
SLC	1462	0.082	3.004	0.381

I parametri di risposta sismica locale sono:

- Categoria del sottosuolo B
- Categoria topografica T₁

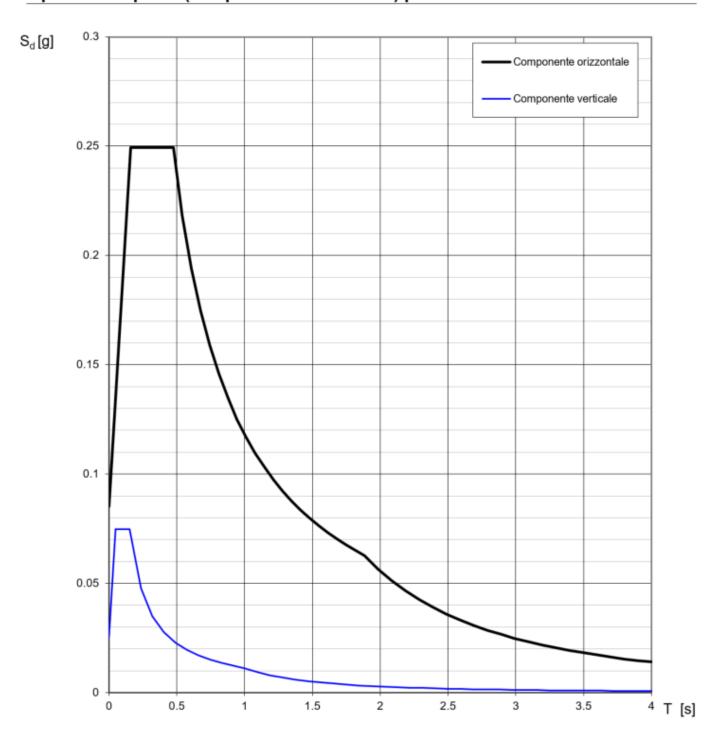

In relazione allo schema statico della struttura in esame il fattore di struttura q considerato nel calcolo delle azioni sismiche è pari a 1 per lo SLV è pari a 1.0 per lo SLD.

La valutazione degli effetti del sisma sulla struttura è effettuata tramite un'analisi dinamica lineare con spettro di risposta.

Si riportano di seguito gli spettri considerati, in relazione al sito, alle caratteristiche del sottosuolo e alle proprietà dissipative della struttura. Coefficiente di smorzamento strutturale canonico pari al 5%.

ITALFERR GRUPPO FERROVIE DELLO STATO	PROGETTO DEFINITIVO RELAZIONI DI CALCOLO STRUTTURE RADDOPPIO CESANO – VIGNA DI VALLE STAZIONE DI VIGNA DI VALLE					
FV02 – Fermata Vigna di Valle – Lato Nord	COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
FV02 – Fabbricato viaggiatori – Relazione di calcolo	NR1J	01	D29CL	FV 02 00 001		20 di 97

Spettri di risposta (componenti orrizontali e verticali) per lo stato limite: SLV



FV02 – Fermata Vigna di Valle – Lato Nord FV02 – Fabbricato viaggiatori – Relazione di calcolo
 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 NR1J
 01
 D29CL
 FV 02 00 001
 C
 21 di 97

Spettri di risposta (componenti orizz. e vert.) per lo stato limite: SLV

PROGETTO DEFINITIVO

RELAZIONI DI CALCOLO STRUTTURE

RADDOPPIO CESANO – VIGNA DI VALLE

STAZIONE DI VIGNA DI VALLE

T_B

T_D

FV02 - Fermata Vigna di Valle - Lato Nord

FV02 – Fabbricato viaggiatori – Relazione di calcolo

COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
NR1J	01	D29CL	FV 02 00 001	С	22 di 97

Parametri e punti dello spettro di risposta orizzontale per lo stato limite: SLV

Parametri indipendenti

STATO LIMITE	SLV
a _q	0.071 g
F _o	2.929
T _c *	0.349 s
Ss	1.200
Cc	1.358
S _T	1.000
q	1.000

Parametri dipendenti

S	1.200
η	1.000
T _B	0.158 s
T _C	0.474 s
T _D	1.884 s

Espressioni dei parametri dipendenti

$$S = S_S \cdot S_T \tag{NTC-08 Eq. 3.2.5}$$

$$\eta = \sqrt{10/(5+\xi)} \ge 0.55$$
; $\eta = 1/q$ (NTC-08 Eq. 3.2.6; §. 3.2.3.5)

$$T_{\rm B} = T_{\rm C} / 3$$
 (NTC-07 Eq. 3.2.8)

$$T_C = C_C \cdot T_C^* \qquad \qquad \text{(NTC-07 Eq. 3.2.7)}$$

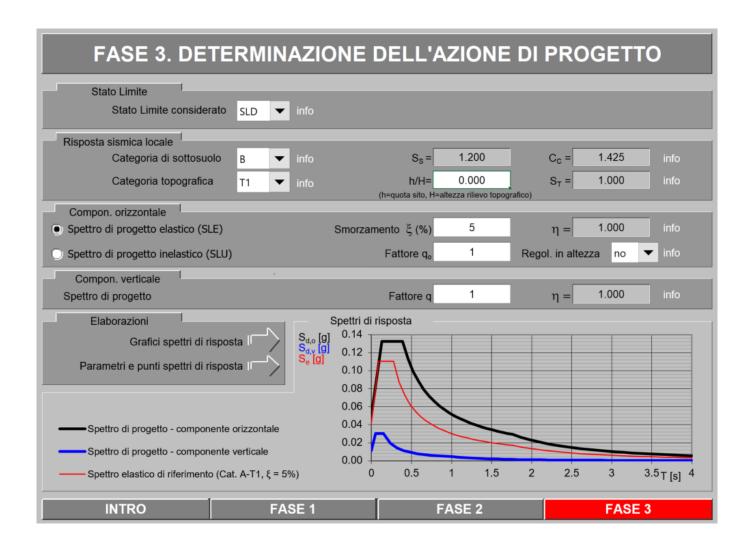
$$T_D = 4.0 \cdot a_g / g + 1.6$$
 (NTC-07 Eq. 3.2.9)

Espressioni dello spettro di risposta (NTC-08 Eq. 3.2.4)

$$\begin{split} 0 &\leq T < T_B & S_e(T) = a_g \cdot S \cdot \eta \cdot F_o \cdot \left[\frac{T}{T_B} + \frac{1}{\eta \cdot F_o} \left(1 - \frac{T}{T_B} \right) \right] \\ T_B &\leq T < T_C & S_e(T) = a_g \cdot S \cdot \eta \cdot F_o \\ T_C &\leq T < T_D & S_e(T) = a_g \cdot S \cdot \eta \cdot F_o \cdot \left(\frac{T_C}{T} \right) \\ T_D &\leq T & S_e(T) = a_g \cdot S \cdot \eta \cdot F_o \cdot \left(\frac{T_C T_D}{T^2} \right) \end{split}$$

Lo spettro di progetto $S_d(T)$ per le verifiche agli Stati Limite Ultimi è ottenuto dalle espressioni dello spettro elastico $S_o(T)$ sostituendo η con 1/q, dove q è il fattore di struttura. (NTC-08 § 3.2.3.5)

Punti dello spettro di risposta

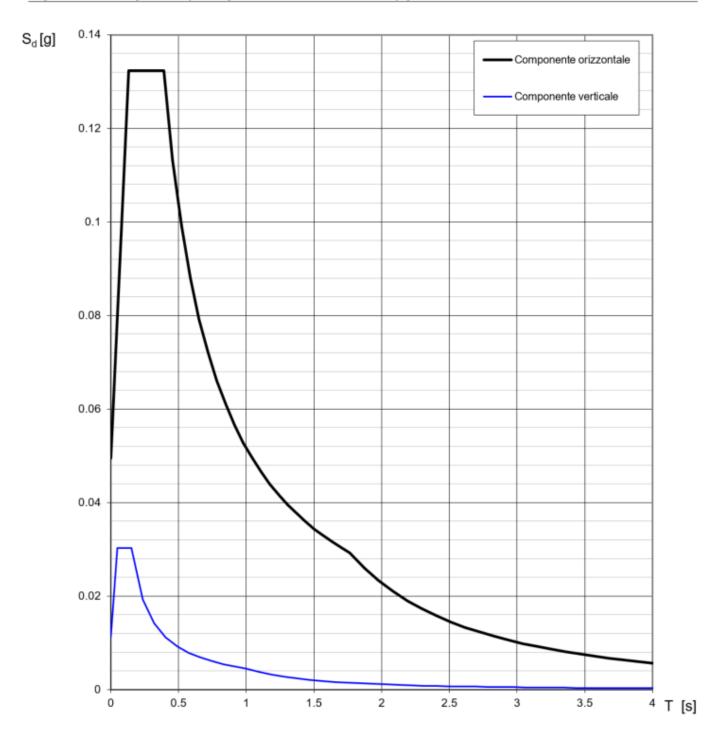

unt	i dello spettr	o ai risposta
	T [s]	Se [g]
	0.000	0.085
•	0.158	0.249
•	0.474	0.249
	0.541	0.218
	0.608	0.194
	0.675	0.175
	0.742	0.159
	0.809	0.146
	0.877	0.135
	0.944	0.125
	1.011	0.117
	1.078	0.110
	1.145	0.103
	1.212	0.097
	1.279	0.092
	1.347	0.088
	1.414	0.084
	1.481	0.080
	1.548	0.076
	1.615	0.073
	1.682	0.070
	1.749	0.068
	1.817	0.065
•	1.884	0.063
	1.984	0.056
	2.085	0.051
	2.186	0.047
	2.287	0.043
	2.388	0.039
	2.488	0.036
	2.589	0.033
	2.690	0.031
	2.791	0.029
	2.891	0.027
	2.992	0.025
	3.093	0.023
	3.194	0.022
	3.295	0.020
	3.395	0.019
	3.496	0.018
	3.597	0.017
	3.698	0.016
	3.798	0.015
	3.899	0.015
	4 000	0.044

4.000

0.014

TALFERR GRUPPO FERROVIE DELLO STATO	PROGETTO DEFINITIVO RELAZIONI DI CALCOLO STRUTTURE RADDOPPIO CESANO – VIGNA DI VALLE STAZIONE DI VIGNA DI VALLE					
FV02 – Fermata Vigna di Valle – Lato Nord	COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
FV02 – Fabbricato viaggiatori – Relazione di calcolo	NR1J	01	D29CL	FV 02 00 001		23 di 97

Spettri di risposta (componenti orizzontali e verticali) per lo stato limite: SLD



STAZIONE DI VIGNA DI VALLE

FV02 – Fermata Vigna di Valle – Lato Nord FV02 – Fabbricato viaggiatori – Relazione di calcolo
 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 NR1J
 01
 D29CL
 FV 02 00 001
 C
 24 di 97

Spettri di risposta (componenti orizz. e vert.) per lo stato limite: SLD

PROGETTO DEFINITIVO

RELAZIONI DI CALCOLO STRUTTURE

RADDOPPIO CESANO – VIGNA DI VALLE

STAZIONE DI VIGNA DI VALLE

FV02 - Fermata Vigna di Valle - Lato Nord

FV02 – Fabbricato viaggiatori – Relazione di calcolo

COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
NR1J	01	D29CL	FV 02 00 001	С	25 di 97

Parametri e punti dello spettro di risposta orizzontale per lo stato limite: SLD

Parametri indipendenti

STATO LIMITE	SLD				
a _q	0.041 g				
F _o	2.674				
T _C *	0.274 s				
Ss	1.200				
C _C	1.425				
S _T	1.000				
q	1.000				

Parametri dipendenti

S	1.200
η	1.000
T _B	0.130 s
T _C	0.390 s
T _D	1.765 s

Espressioni dei parametri dipendenti

$$S = S_S \cdot S_T \tag{NTC-08 Eq. 3.2.5} \label{eq:states}$$

$$\eta = \sqrt{10/(5+\xi)} \ge 0.55$$
; $\eta = 1/q$ (NTC-08 Eq. 3.2.6; §. 3.2.3.5)

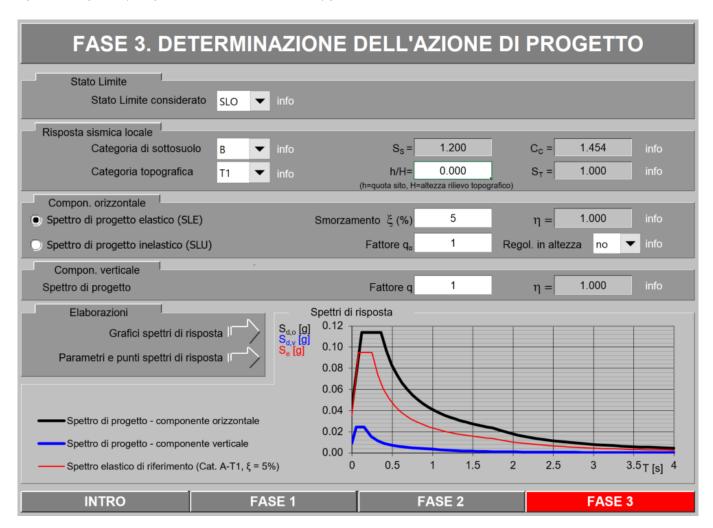
$$T_{\text{B}} = T_{\text{C}} / 3 \qquad \qquad \text{(NTC-07 Eq. 3.2.8)} \qquad \qquad T_{\text{D}}$$

$$T_C = C_C \cdot T_C^*$$
 (NTC-07 Eq. 3.2.7)

$$T_D = 4.0 \cdot a_g / g + 1.6$$
 (NTC-07 Eq. 3.2.9)

Espressioni dello spettro di risposta (NTC-08 Eq. 3.2.4)

$$\begin{split} 0 &\leq T < T_B \\ & S_e(T) = a_g \cdot S \cdot \eta \cdot F_o \cdot \left[\frac{T}{T_B} + \frac{1}{\eta \cdot F_o} \left(1 - \frac{T}{T_B} \right) \right] \\ & T_B \leq T < T_C \\ & S_e(T) = a_g \cdot S \cdot \eta \cdot F_o \\ & T_C \leq T < T_D \\ & S_e(T) = a_g \cdot S \cdot \eta \cdot F_o \cdot \left(\frac{T_C}{T} \right) \\ & T_D \leq T \\ & S_e(T) = a_g \cdot S \cdot \eta \cdot F_o \cdot \left(\frac{T_C T_D}{T^2} \right) \end{split}$$

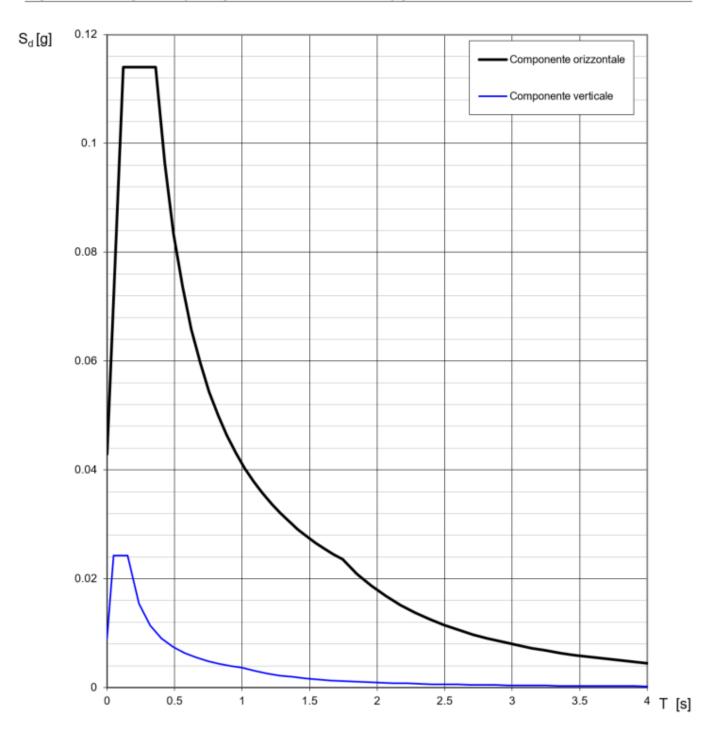

Lo spettro di progetto $S_d(T)$ per le verifiche agli Stati Limite Ultimi è ottenuto dalle espressioni dello spettro elastico $S_e(T)$ sostituendo η con 1/q, dove q è il fattore di struttura. (NTC-08 § 3.2.3.5)

Punti dello spettro di risposta

	Tra	
	T [s]	Se [g]
_	0.000	0.049
T _B ◀	0.130	0.132
T _C ◀	0.390	0.132
	0.456	0.113
	0.521	0.099
	0.587	0.088
	0.652	0.079
	0.718	0.072
	0.783	0.066
	0.849	0.061
	0.914	0.057
	0.980	0.053
	1.045	0.049
	1.110	0.047
	1.176	0.044
	1.241	0.042
	1.307	0.040
	1.372	0.038
	1.438	0.036
	1.503	0.034
	1.569	0.033
	1.634	0.032
	1.699	0.030
T _D ◆	1.765	0.029
	1.871	0.026
	1.978	0.023
	2.084	0.021
	2.191	0.019
	2.297	0.017
	2.403	0.016
	2.510	0.014
	2.616	0.013
	2.723	0.012
	2.829	0.011
	2.936	0.011
	3.042	0.010
	3.149	0.009
	3.255	0.009
	3.361	0.008
	3.468	0.008
	3.574	0.007
	3.681	0.007
	3.787	0.006
	3.894	0.006
	4.000	0.006

ITALFERR GRUPPO FERROVIE DELLO STATO	PROGETTO DEFINITIVO RELAZIONI DI CALCOLO STRUTTURE RADDOPPIO CESANO – VIGNA DI VALLE STAZIONE DI VIGNA DI VALLE					
FV02 – Fermata Vigna di Valle – Lato Nord	COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
FV02 – Fabbricato viaggiatori – Relazione di calcolo	NR1J	01	D29CL	FV 02 00 001		26 di 97

Spettri di risposta (componenti orizzontali e verticali) per lo stato limite: SLO



FV02 – Fermata Vigna di Valle – Lato Nord FV02 – Fabbricato viaggiatori – Relazione di calcolo
 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 NR1J
 01
 D29CL
 FV 02 00 001
 C
 27 di 97

Spettri di risposta (componenti orizz. e vert.) per lo stato limite: SLO

PROGETTO DEFINITIVO

RELAZIONI DI CALCOLO STRUTTURE

RADDOPPIO CESANO – VIGNA DI VALLE

STAZIONE DI VIGNA DI VALLE

FV02 – Fermata Vigna di Valle – Lato Nord

FV02 – Fabbricato viaggiatori – Relazione di calcolo

COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
NR1J	01	D29CL	FV 02 00 001	С	28 di 97

Parametri e punti dello spettro di risposta orizzontale per lo stato limite: SLO

Parametri indipendenti

STATO LIMITE	SLO
a _q	0.036 g
F _o	2.660
T _C *	0.248 s
Ss	1.200
C _C	1.454
S _T	1.000
q	1.000

Parametri dipendenti

S	1.200
η	1.000
T _B	0.120 s
T _C	0.360 s
T _D	1.743 s

Espressioni dei parametri dipendenti

$$S = S_s \cdot S_T \tag{NTC-08 Eq. 3.2.5}$$

$$\eta = \sqrt{10/(5+\xi)} \ge 0.55$$
; $\eta = 1/q$ (NTC-08 Eq. 3.2.6; §. 3.2.3.5)

$$T_{B}=T_{C}\,/\,3 \tag{NTC-07 Eq. 3.2.8}$$

$$T_C = C_C \cdot T_C^* \tag{NTC-07 Eq. 3.2.7} \label{eq:ntc-07}$$

$$T_D = 4.0 \cdot a_g / g + 1.6$$
 (NTC-07 Eq. 3.2.9)

Espressioni dello spettro di risposta (NTC-08 Eq. 3.2.4)

$$\begin{split} 0 &\leq T < T_B \\ S_e(T) &= a_g \cdot S \cdot \eta \cdot F_o \cdot \left[\frac{T}{T_B} + \frac{1}{\eta \cdot F_o} \left(1 - \frac{T}{T_B} \right) \right] \\ T_B &\leq T < T_C \\ S_e(T) &= a_g \cdot S \cdot \eta \cdot F_o \\ T_C &\leq T < T_D \\ S_e(T) &= a_g \cdot S \cdot \eta \cdot F_o \cdot \left(\frac{T_C}{T} \right) \\ T_D &\leq T \end{split}$$

Lo spettro di progetto $S_d(T)$ per le verifiche agli Stati Limite Ultimi è ottenuto dalle espressioni dello spettro elastico $S_e(T)$ sostituendo η con 1/q, dove q è il fattore di struttura. (NTC-08 § 3.2.3.5)

Punti dello spettro di risposta

	T [s]	Se [g]
	0.000	0.043
T _B ←	0.120	0.114
T _C ←	0.360	0.114
	0.426	0.096
	0.492	0.084
	0.558	0.074
	0.624	0.066
	0.689	0.060
	0.755	0.054
	0.821	0.050
	0.887	0.046
	0.953	0.043
	1.019	0.040
	1.084	0.038
	1.150	0.036
	1.216	0.034
	1.282	0.032
	1.348	0.030
	1.414	0.029
	1.480	0.028
	1.545	0.027
	1.611	0.025
	1.677	0.024
T _D ←	1.743	0.024
	1.850	0.021
	1.958	0.019
	2.065	0.017
	2.173	0.015
	2.280	0.014
	2.388	0.013
	2.495	0.011
	2.603	0.011
	2.710	0.010
	2.818	0.009
	2.925	0.008
	3.033	0.008
	3.140	0.007
	3.248	0.007
	3.355	0.006
	3.463	0.006
	3.570	0.006
	3.678	0.005
	3.785	0.005
	3.893	0.005
	4.000	0.004

PROGETTO DEFINITIVO
RELAZIONI DI CALCOLO STRUTTURE
RADDOPPIO CESANO – VIGNA DI VALLE

STAZIONE DI VIGNA DI VALLE

FV02 – Fermata Vigna di Valle – Lato Nord FV02 – Fabbricato viaggiatori – Relazione di calcolo

COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
NR1J	01	D29CL	FV 02 00 001	С	29 di 97

Come metodo di analisi per determinare gli effetti dell'azione sismica si è scelto di utilizzare l'analisi dinamica lineare o analisi modale con spettro di risposta, nella quale l'equilibrio è trattato dinamicamente e l'azione sismica è modellata direttamente attraverso lo spettro di progetto.

L'analisi dinamica lineare consiste:

- nella determinazione dei modi di vibrare della costruzione (analisi modale);
- nel calcolo degli effetti dell'azione sismica, rappresentata dallo spettro di risposta di progetto, per ciascuno dei modi di vibrare individuati;
- nella combinazione di questi effetti.

Come prescritto dalle NTC 2018 al paragrafo 7.3.3.1, devono essere considerati tutti i modi di vibrare con massa partecipante significativa. E' opportuno a tal riguardo considerare tutti i modi con massa partecipante superiore al 5% e comunque un numero di modi la cui massa partecipante totale sia superiore all'85%. Per la combinazione degli effetti relativi ai singoli modi, deve essere utilizzata una combinazione quadratica completa (CQC) degli effetti relativi a ciascun modo, secondo quanto definito al punto 7.3.3.1 delle NTC2018.

La risposta della struttura viene calcolata separatamente per ciascuna delle tre componenti dell'azione sismica orizzontale; gli effetti sulla struttura, in termini di sollecitazioni e spostamenti, sono poi combinati applicando le seguenti espressioni:

 $1.00 \cdot E_x + 0.30 \cdot E_y + 0.3 \cdot E_z$

 $1.00 \cdot E_y + 0.30 \cdot E_x + 0.3 \cdot E_z$

 $1.00 \cdot E_z + 0.30 \cdot E_x + 0.3 \cdot E_v$

5.10 COMBINAZIONI DELLE AZIONI

Le azioni caratteristiche (carichi, distorsioni, variazioni termiche, ecc.) devono essere definite in accordo con quanto indicato nel capitolo 2 delle NTC 2018. Per costruzioni civili o industriali di tipo corrente e per le quali non esistano regolamentazioni specifiche, le azioni di calcolo si ottengono combinando le azioni caratteristiche secondo le seguenti formule di correlazione.

• Combinazione fondamentale, utilizzata per gli stati limite ultimi (SLU):

$$\gamma_{G1} \cdot G_1 + \gamma_{G2} \cdot G_2 + \gamma_{P} \cdot P + \gamma_{Q1} \cdot Q_{k1} + \gamma_{Q2} \cdot \psi_{02} \cdot Q_{k2} + \gamma_{Q3} \cdot \psi_{03} \cdot Q_{k3} + \dots$$

• Combinazione caratteristica, impiegata per gli stati limite di esercizio irreversibili (SLE Rara):

$$G_1 + G_2 + P + Q_{k1} + \psi_{02} \cdot Q_{k2} + \psi_{03} \cdot Q_{k3} + \dots$$

• Combinazione quasi permanente, impiegata per gli effetti a lungo termine (SLE Quasi permanente):

$$G_1 + G_2 + P + \psi_{21} \cdot Q_{k1} + \psi_{22} \cdot Q_{k2} + \psi_{23} \cdot Q_{k3} + \dots$$

• Combinazione sismica, impiegata per gli stati limite ultimi di salvaguardia per la vita (SLV) e di esercizio (SLO) connessi con l'azione sismica E:

$$E + G_1 + G_2 + P + \psi_{21} \cdot Q_{k1} + \psi_{22} \cdot Q_{k2} + \dots$$

Combinazione eccezionale, impiegata per gli stati limite ultimi connessi alle azioni eccezionali di progetto A_d:

$$G_1 + G_2 + P + A_d + \psi_{21} \cdot Q_{k1} + \psi_{22} \cdot Q_{k2} + ...$$

Si riportano le tabelle con i coefficienti di combinazione delle azioni previste dalle NTC 2018.

 $\textbf{Tabella 2.6.I} - \textit{Coefficienti parziali per le azioni o per l'effetto delle azioni nelle verifiche SLU$

		Coefficiente γ _F	EQU	A1 STR	A2 GEO
Carichi permanenti	favorevoli sfavorevoli	γ _{G1}	0,9 1,1	1,0 1,3	1,0 1,0
Carichi permanenti non strutturali ⁽¹⁾	favorevoli sfavorevoli	γ _{G2}	0,0 1,5	0,0 1,5	0,0 1,3
Carichi variabili	favorevoli sfavorevoli	γQi	0,0 1,5	0,0 1,5	0,0 1,3
(I)Nel caso in cui i carichi permane compiutamente definiti si potranno permanenti.					

Figura 4. Tabella 2.6.I estratta dalle NTC 2018.

Tabella 2.5.I – Valori dei coefficienti di combinazione

Categoria/Azione variabile	Ψ 0j	Ψıj	Ψ2j
Categoria A Ambienti ad uso residenziale	0,7	0,5	0,3
Categoria B Uffici	0,7	0,5	0,3
Categoria C Ambienti suscettibili di affollamento	0,7	0,7	0,6
Categoria D Ambienti ad uso commerciale	0,7	0,7	0,6
Categoria E Biblioteche, archivi, magazzini e ambienti ad uso industriale	1,0	0,9	0,8
Categoria F Rimesse e parcheggi (per autoveicoli di peso ≤ 30 kN)	0,7	0,7	0,6
Categoria G Rimesse e parcheggi (per autoveicoli di peso > 30 kN)	0,7	0,5	0,3
Categoria H Coperture	0,0	0,0	0,0
Vento	0,6	0,2	0,0
Neve (a quota $\leq 1000 \text{ m s.l.m.}$)	0,5	0,2	0,0
Neve (a quota > 1000 m s.l.m.)	0,7	0,5	0,2
Variazioni termiche	0,6	0,5	0,0

Figura 5. Tabelle 2.5.I e 2.6.I estratte dalle NTC 2018.

FV02 – Fermata Vigna di Valle – Lato Nord FV02 – Fabbricato viaggiatori – Relazione di calcolo
 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 NR1J
 01
 D29CL
 FV 02 00 001
 C
 31 di 97

Nella tabella a seguire si riportano le combinazioni di carico definite.

		SLU														LU																	
								q1	(vento pr	edominar	ite)								q3 (manu	t. predom	ı.)					q4	(neve pre	edominar	ite)				
		U1	U2	U3	U4	U5	U6	U7	U8	U9	U10	U11	U12	U13	U14	U15	U16	U17	U18	U19	U20	U21	U22	U23	U24	U25	U26	U27	U28	U29	U30	U31	U32
pp	DEAD	1.30	1.30	1.30	1.30	1.30	1.30	1.30	1.30	1.30	1.30	1.30	1.30	1.30	1.30	1.30	1.30	1.30	1.30	1.30	1.30	1.30	1.30	1.30	1.30	1.30	1.30	1.30	1.30	1.30	1.30	1.30	1.30
perm	G2	1.50	1.50	1.50	1.50	1.50	1.50	1.50	1.50	1.50	1.50	1.50	1.50	1.50	1.50	1.50	1.50	1.50	1.50	1.50	1.50	1.50	1.50	1.50	1.50	1.50	1.50	1.50	1.50	1.50	1.50	1.50	1.50
vento1	Q1.1	1.50	1.50	1.50	1.50	-1.50	-1.50	-1.50	-1.50	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.90	0.90	0.00	0.00	0.00	0.00	0.00	0.00	0.90	-0.90	0.90	-0.90	0.00	0.00	0.00	0.00
vento2	Q1.2	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	1.50	1.50	1.50	1.50	-1.50	-1.50	-1.50	-1.50	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.90	-0.90	0.90	-0.90
manutenzione	Q3	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	1.50	1.50	1.50	1.50	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
neve	Q4	0.75	0.75	0.75	0.75	0.75	0.75	0.75	0.75	0.75	0.75	0.75	0.75	0.75	0.75	0.75	0.75	0.75	0.75	0.75	0.75	1.50	1.50	1.50	1.50	1.50	1.50	1.50	1.50	1.50	1.50	1.50	1.50
folla	Q5	1.05	1.05	1.05	1.05	1.05	1.05	1.05	1.05	1.05	1.05	1.05	1.05	1.05	1.05	1.05	1.05	1.05	1.05	1.05	1.05	1.05	1.05	1.05	1.05	1.05	1.05	1.05	1.05	1.05	1.05	1.05	1.05
temp	Dt	0.90	0.90	-0.90	-0.90	0.90	0.90	-0.90	-0.90	0.90	0.90	-0.90	-0.90	0.90	0.90	-0.90	-0.90	0.90	0.90	-0.90	-0.90	0.90	0.90	-0.90	-0.90	0.90	0.90	-0.90	-0.90	0.90	0.90	-0.90	-0.90
sisma slv_ x	SLV_X	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
sisma slv_y	SLV_Y	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
sisma slv_z	SLV_Z	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
sisma slo_x	SLO_X	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
sisma slo_y	SLO_Y	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
sisma slo_z	SLO_Z	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
sisma sld_x	SLD_X	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
sisma sld_y	SLD_Y	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
sisma sld_z	SLD_Z	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00

											SI	LU									
				ΔΤ	(variaz, p	redomin	ate)							q5	(folla pre	dominan	te)				
		U33	U34	U35	U36	U37	U38	U39	U40	U41	U42	U43	U44	U45	U46	U47	U48	U49	U50	U51	U52
pp	DEAD	1.30	1.30	1.30	1.30	1.30	1.30	1.30	1.30	1.30	1.30	1.30	1.30	1.30	1.30	1.30	1.30	1.30	1.30	1.30	1.30
perm	G2	1.50	1.50	1.50	1.50	1.50	1.50	1.50	1.50	1.50	1.50	1.50	1.50	1.50	1.50	1.50	1.50	1.50	1.50	1.50	1.50
vento1	Q1.1	0.90	0.90	-0.90	-0.90	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.90	-0.90	0.90	-0.90	0.00	0.00	0.00	0.00
vento2	Q1.2	0.00	0.00	0.00	0.00	0.90	0.90	-0.90	-0.90	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.90	-0.90	0.90	-0.90
manutenzione	Q3	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
neve	Q4	0.75	0.75	0.75	0.75	0.00	0.00	0.75	0.75	0.75	0.75	0.75	0.75	0.75	0.75	0.75	0.75	0.75	0.75	0.75	0.75
folla	Q5	1.05	1.05	1.05	1.05	1.05	1.05	1.05	1.05	1.50	1.50	1.50	1.50	1.50	1.50	1.50	1.50	1.50	1.50	1.50	1.50
temp	Dt	1.50	-1.50	1.50	-1.50	1.50	-1.50	1.50	-1.50	0.90	0.90	-0.90	-0.90	0.90	0.90	-0.90	-0.90	0.90	0.90	-0.90	-0.90
sisma slv_ x	SLV_X	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
sisma slv_y	SLV_Y	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
sisma slv_z	SLV_Z	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
sisma slo_x	SLO_X	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
sisma slo_y	SLO_Y	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
sisma slo_z	SLO_Z	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
sisma sld_x	SLD_X	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
sisma sld_y	SLD_Y	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
sisma sld_z	SLD_Z	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00

		S.L.E.																															
																	SLE-	K-q1															
		K1	K2	КЗ	K4	K5	K6	K7	K8	K9	K10	K11	K12	K13	K14	K15	K16	K17	K18	K19	K20	K21	K22	K23	K24	K25	K26	K27	K28	K29	K30	K31	K32
рр	DEAD	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
perm	G2	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
vento1	Q1.1	1.00	1.00	-1.00	-1.00	0.00	0.00	0.00	0.00	1.00	1.00	-1.00	-1.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
vento2	Q1.2	0.00	0.00	0.00	0.00	1.00	1.00	-1.00	-1.00	0.00	0.00	0.00	0.00	1.00	1.00	-1.00	-1.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
manutenzione	Q3	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
neve	Q4	0.50	0.50	0.50	0.50	0.50	0.50	0.50	0.50	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
folla	Q5	0.70	0.70	0.70	0.70	0.70	0.70	0.70	0.70	0.70	0.70	0.70	0.70	0.70	0.70	0.70	0.70	0.70	0.70	0.70	0.70	0.70	0.70	0.70	0.70	0.70	0.70	0.70	0.70	0.70	0.70	0.70	0.70
temp	Dt	0.60	-0.60	0.60	-0.60	0.60	-0.60	0.60	-0.60	0.60	-0.60	0.60	-0.60	0.60	-0.60	0.60	-0.60	0.60	-0.60	0.60	-0.60	0.60	-0.60	0.60	-0.60	0.60	-0.60	0.60	-0.60	0.60	-0.60	0.60	-0.60
sisma slv_ x	SLV_X	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
sisma slv_y	SLV_Y	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
sisma slv_z	SLV_Z	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
sisma slo_x	SLO_X	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
sisma slo_y	SLO_Y	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
sisma slo_z	SLO_Z	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
sisma sld_x	SLD_X	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
sisma sld_y	SLD_Y	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
sisma sld_z	SLD_Z	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00

			SLE																								
			SLE-	K-q3							SLE-	K-q4										SLE-	K-DT				
		K33	K34	K35	K36	K37	K38	K39	K40	K41	K42	K43	K44	K45	K46	K47	K48	K49	K50	K51	K52	K53	K54	K55	K56	K57	K58
рр	DEAD	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
perm	G2	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
vento1	Q1.1	0.60	-0.60	0.00	0.00	0.00	0.00	0.00	0.00	0.60	0.60	-0.60	-0.60	0.00	0.00	0.00	0.00	0.00	0.00	0.60	0.60	-0.60	-0.60	0.00	0.00	0.00	0.00
vento2	Q1.2	0.00	0.00	0.60	-0.60	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.60	0.60	-0.60	-0.60	0.00	0.00	0.00	0.00	0.00	0.00	0.60	0.60	-0.60	-0.60
manutenzione	Q3	1.00	1.00	1.00	1.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
neve	Q4	0.50	0.50	0.50	0.50	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	0.50	0.50	0.50	0.50	0.00	0.00	0.50	0.50	0.50	0.50	0.50	0.50	0.50	0.50
folla	Q5	0.70	0.70	0.70	0.70	0.70	0.70	0.70	0.70	0.70	0.70	0.70	0.70	0.70	0.70	0.70	0.70	0.70	0.70	0.70	0.70	0.70	0.70	0.70	0.70	0.70	0.70
temp	Dt	0.60	-0.60	0.60	-0.60	0.60	-0.60	0.60	-0.60	0.60	-0.60	0.60	-0.60	0.60	-0.60	0.60	-0.60	1.00	-1.00	1.00	-1.00	1.00	-1.00	1.00	-1.00	1.00	-1.00
sisma slv_ x	SLV_X	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
sisma slv_y	SLV_Y	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
sisma slv_z	SLV_Z	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
sisma slo_x	SLO_X	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
sisma slo_y	SLO_Y	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
sisma slo_z	SLO_Z	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
sisma sld_x	SLD_X	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
sisma sld_y	SLD_Y	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
sisma sld_z	SLD_Z	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00

FV02 – Fermata Vigna di Valle – Lato Nord FV02 – Fabbricato viaggiatori – Relazione di calcolo
 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 NR1J
 01
 D29CL
 FV 02 00 001
 C
 32 di 97

			SLE								SISMICA															
		SLE-K-q5						SLE-QP SLV			SLO		SLD													
		K59	K60	K61	K62	K63	K64	K65	K66	K67	K68	K69	K70	QP1	QP2	QP3	QP4	EX	EY	EZ	01	02	03	DX	DY	DZ
рр	DEAD	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
perm	G2	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
vento1	Q1.1	0.00	0.00	0.00	0.00	0.60	0.60	-0.60	-0.60	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
vento2	Q1.2	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.60	0.60	-0.60	-0.60	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
manutenzione	Q3	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
neve	Q4	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
folla	Q5	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	0.70	0.70	0.70	0.70	0.60	0.60	0.60	0.60	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
temp	Dt	0.60	-0.60	0.60	-0.60	0.60	-0.60	0.60	-0.60	0.60	-0.60	0.60	-0.60	0.00	0.00	0.50	-0.50	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
sisma slv_ x	SLV_X	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	1.00	0.30	0.30	0.00	0.00	0.00	0.00	0.00	0.00
sisma slv_y	SLV_Y	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.30	1.00	0.30	0.00	0.00	0.00	0.00	0.00	0.00
sisma slv_z	SLV_Z	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.30	0.30	1.00	0.00	0.00	0.00	0.00	0.00	0.00
sisma slo_x	SLO_X	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	1.00	0.30	0.30	0.00	0.00	0.00
sisma slo_y	SLO_Y	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.30	1.00	0.30	0.00	0.00	0.00
sisma slo_z	SLO_Z	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.30	0.30	1.00	0.00	0.00	0.00
sisma sld_x	SLD_X	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	1.00	0.30	0.30
sisma sld_y	SLD_Y	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.30	1.00	0.30
sisma sld_z	SLD_Z	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.30	0.30	1.00

6 MODELLO STRUTTURALE

L'analisi della struttura in esame è stata effettuata mediante una modellazione agli elementi finiti tramite l'utilizzo del software SAP2000. La struttura è stata modellata con un modello numerico tridimensionale il cui sistema di riferimento globale prevede una terna destrorsa il cui l'asse X è orientato in direzione longitudinale e l'asse Z verticale positivo verso l'alto.

Travi e colonne sono stati modellati con elementi *frame*, mentre i pannelli di rivestimento mediante elementi *shell none*. Questi ultimi, in accordo con le orditure dei pannelli di copertura, sono stati utilizzati per la ripartizione dei carichi sulle travi mediante l'opzione *uniform loads to frame* nel verso dell'asse 1 degli elementi shell.

Le travi secondarie sono state svincolate a momento flettente M2-M3 mediante inserimento di *release* alle estremità, mentre i pilastri sono vincolati al suolo con dei vincoli di incastro.

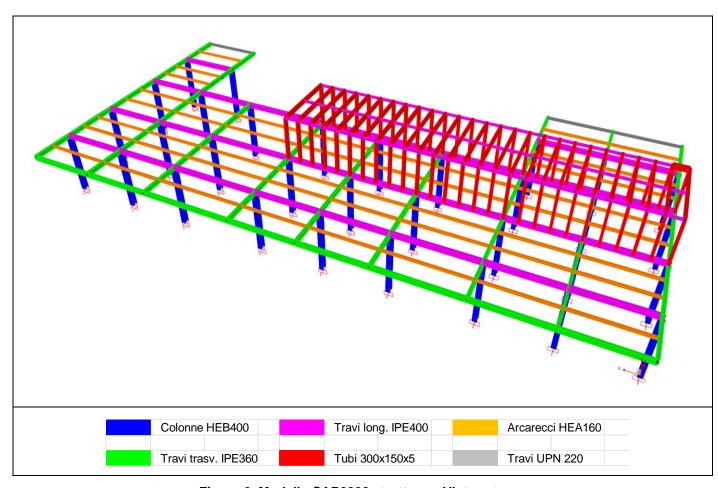


Figura 6. Modello SAP2000 struttura – Vista estrusa

FV02 – Fermata Vigna di Valle – Lato Nord FV02 – Fabbricato viaggiatori – Relazione di calcolo
 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 NR1J
 01
 D29CL
 FV 02 00 001
 C
 34 di 97

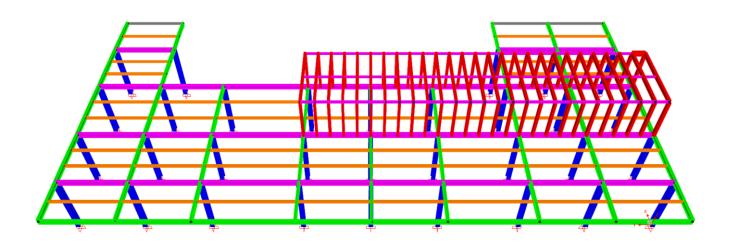


Figura 7. Modello SAP2000 struttura – Vista estrusa

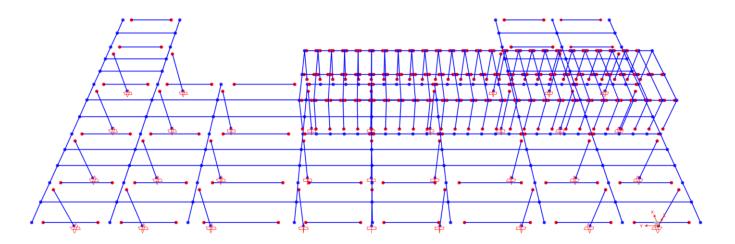


Figura 8. Vista - svincoli assegnati

Per chiarezza espositiva, nelle figure seguenti non sono visualizzati gli arcarecci.

STAZIONE DI VIGNA DI VALLE

FV02 – Fermata Vigna di Valle – Lato Nord FV02 – Fabbricato viaggiatori – Relazione di calcolo

COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
NR1J	01	D29CL	FV 02 00 001	С	35 di 97

Unità di misura: forze [kN]; lunghezze [m]; temperatura [°C].

Metodo di assegnazione dei carichi sul modello di calcolo

I carichi sono stati assegnati come segue:

- 1. Definizione dello schema di carico (load pattern);
- 2. Definizione del caso di carico con intensità pari al valore caratteristico (load case);
- 3. Assegnazione dello schema di carico con intensità unitaria (entità del load pattern pari a 1), eccetto per:
- 4. L'entità del carico risultante è data dal prodotto dell'entità del caso di carico per l'entità dello schema di carico:

Load = Load pattern x Load case

- 5. I carichi distribuiti di superficie sono stati assegnati mediante l'opzione *Area loads -> Uniform to frame*, che distribuisce il carico secondo l'orditura dei pannelli per aree di influenza;
- 6. I carichi distribuiti lineari sono stati assegnati mediante l'opzione *Frame loads -> Distributed*, che distribuisce il carico in maniera uniforme lungo l'estensione dell'elemento frame;
- 7. I fattori parziali per ottenere il valore di calcolo dei carichi sono stati assegnati nelle rispettive combinazioni come fattori di scala.

STAZIONE DI VIGNA DI VALLE

FV02 – Fermata Vigna di Valle – Lato Nord FV02 – Fabbricato viaggiatori – Relazione di calcolo

COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
NR1J	01	D29CL	FV 02 00 001	С	36 di 97

7 VERIFICA DELLA STRUTTURA

7.1 ANALISI MODALE

Per il calcolo delle sollecitazioni strutturali è stato impiegato il programma di calcolo agli elementi finiti SAP2000 v.15.1.0 Stante il tipo di analisi condotta, ossia dinamica lineare con spettro di risposta, è stato necessario svolgere dapprima un'analisi modale per determinare i periodi e le frequenze associate ai differenti modi. Questi ultimi sono stati considerati in numero tale da rispettare le prescrizioni previste dalle NTC 2018 al paragrafo § 7.3.3.1 in cui è riportato: "Devono essere considerati tutti i modi con massa partecipante significativa. È opportuno a tal riguardo considerare tutti i modi con massa partecipante superiore al 5% e comunque un numero di modi la cui massa partecipante totale sia superiore all'85%. Per la combinazione degli effetti relativi ai singoli modi deve essere utilizzata una combinazione quadratica completa degli effetti relativi a ciascun modo".

Si riporta di seguito una tabella riepilogativa contenente i risultati dell'analisi modale svolta.

OutputCase	StepNum	Period	UX	UY	UZ	SumUX	SumUY	SumUZ
Text	Unitless	Sec	Unitless	Unitless	Unitless	Unitless	Unitless	Unitless
MODAL	1	1.24	0%	12%	0%	0%	12%	0%
MODAL	4	0.68	0%	77%	0%	0%	94%	0%
MODAL	14	0.39	13%	0%	0%	42%	98%	0%
MODAL	17	0.36	12%	0%	0%	59%	98%	0%

Con 20 modi si soddisfano le specifiche richieste dalla normativa cogente in termini di massa partecipante complessiva.

	PROGETTO	PROGETTO DEFINITIVO							
ITALFERR	RELAZIONI	RELAZIONI DI CALCOLO STRUTTURE							
	RADDOPPI	RADDOPPIO CESANO – VIGNA DI VALLE							
GRUPPO FERROVIE DELLO STATO	STAZIONE DI VIGNA DI VALLE								
FV02 – Fermata Vigna di Valle – Lato Nord	COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO			
FV02 – Fabbricato viaggiatori – Relazione di calcolo	NR1J	01	D29CL	FV 02 00 001	С	37 di 97			

Seguono alcune immagini rappresentative delle principali deformate modali della struttura in esame:

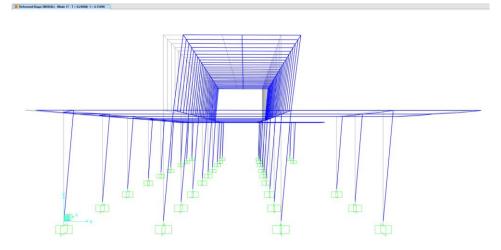


Figura 9. Deformata modale associata al 17° modo.

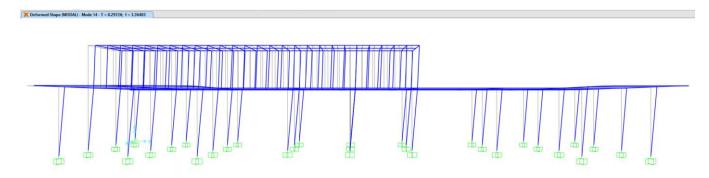


Figura 10. Deformata modale associata all 14° modo.

TABLE: Ma Source	sses 1 - Mass	
MassFrom	LoadPat	Multiplier
Text	Text	Unitless
Loads	DEAD	1
Loads	g2.1_scatolari	1
Loads	g2.2_pannelli	1
Loads	g2.3_cop_pensilina	1
Loads	g2.4_solaio	1

TABLE: Base Reactions								
OutputCase	CaseType	GlobalFX	GlobalFY	GlobalFZ				
Text	Text	KN	KN	KN				
DEAD	LinStatic	0	0	614				
G2	LinStatic	0	0	1360				

La massa eccitata dall'accelerazione spettrale è pari a **197.3 ton**.

ITALFERR GRUPPO FERROVIE DELLO STATO	PROGETTO DEFINITIVO							
	RELAZIONI DI CALCOLO STRUTTURE							
	RADDOPPIO CESANO – VIGNA DI VALLE							
	STAZIONE I	DI VIGNA I	OI VALLE					
FV02 – Fermata Vigna di Valle – Lato Nord	COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO		
FV02 – Fabbricato viaggiatori – Relazione di calcolo	NR1J	01	D29CL	FV 02 00 001	С	38 di 97		

7.2 DIAGRAMMI DELLE SOLLECITAZIONI

Si riportano di seguito i diagrami qualitativi delle sollecitazioni di momento, taglio e sforzo normale nella combinazione di inviluppo SLU.

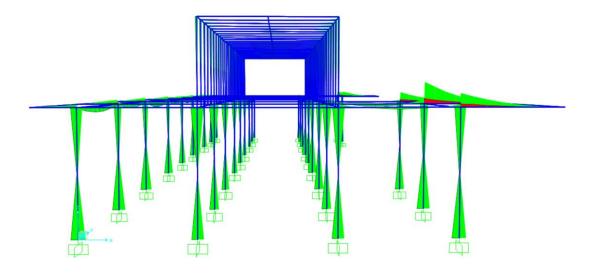


Figura 11. Diagramma del momento flettente M3-3 in combinazione inviluppo SLU.

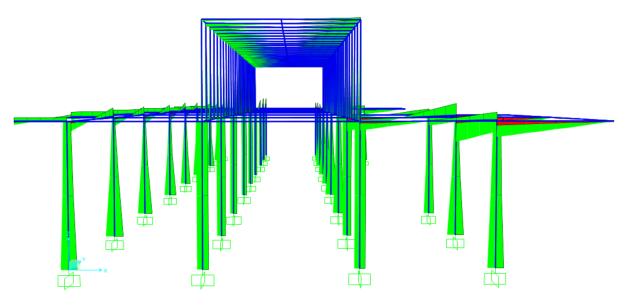


Figura 12. Diagramma del taglio V2-2 in combinazione inviluppo SLU.

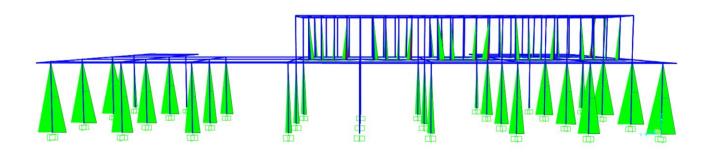


Figura 13. Diagramma del momento flettente M2-2 in combinazione di inviluppo SLU

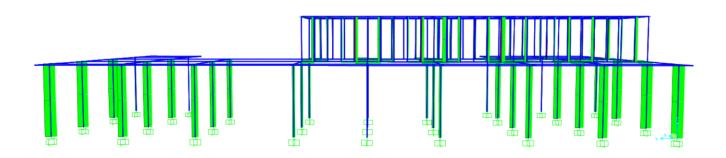
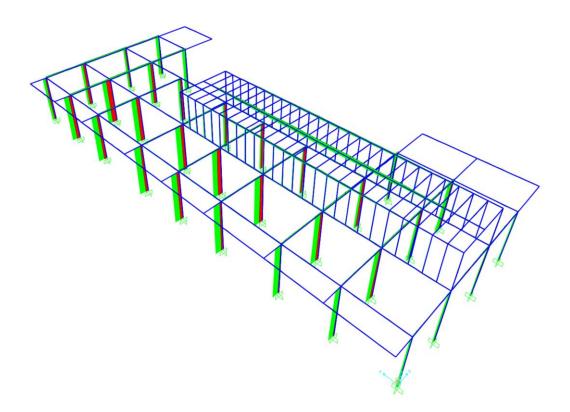


Figura 14. Diagramma del taglio V3-3 in combinazione di inviluppo SLU



NR1J

01

D29CL

FV 02 00 001

FOGLIO

40 di 97

С

Figura 15 Diagramma dello sforzo normale in combinazione di inviluppo SLU.

7.3 VERIFICHE STRUTTURALI DI RESISTENZA DELLE MEMBRATURE

Si riportano di seguito le verifiche delle membrature in acciaio eseguite in accordo alla normative cogente, i cui parametri di progetto sono stati impostati come mostrato in figura.

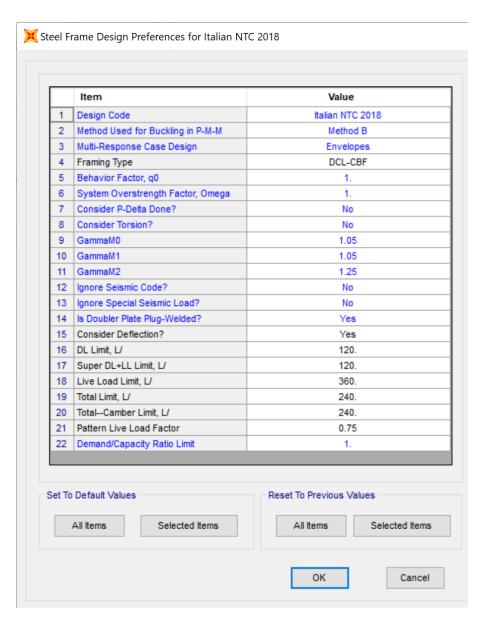


Figura 16. Parametri di progetto delle membrature

Si riportano di seguito i grafici dello sfruttamento degli elementi orizzontali e verticali, estratti dal modello di calcolo dopo aver impostato i parametri per la progettazione in accordo alla Normativa attuale sulle costruzioni.

Il grado di colore indica lo stato di verifica nei riguardi di una sollecitazione di pressoflessione deviata. I numeri rappresentano il tasso di lavoro degli elementi strutturali per le combinazioni di carico allo SLU (condizione statica e sismica).

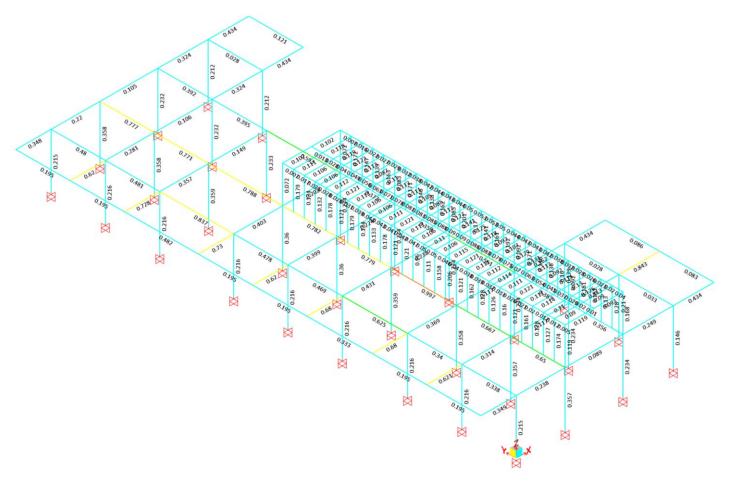
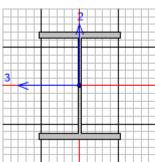


Figura 17. Sfruttamento delle membrature in acciaio.

A seguire si riportano i report delle verifiche effettuate per il frame più sollecitato degli elemeti principali della strutturale.



STAZIONE DI VIGNA DI VALLE

FV02 – Fermata Vigna di Valle – Lato Nord FV02 – Fabbricato viaggiatori – Relazione di calcolo
 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 NR1J
 01
 D29CL
 FV 02 00 001
 C
 43 di 97

COLONNE HEB 400

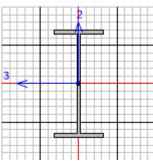
			111111111	11111111111			
Italian NTC 2018 Units : KN, m,		CHECK (S	Summary for	Combo and Sta	tion)		
Frame: 49 Length: 5. Loc: 0.	X Mid: 4.5 Y Mid: 21. Z Mid: 2.5	-	EY HE400B Class 1		Type: Colu Type: DCL-C : Yes		
Interaction=Metho		Multi	Response=Env	relopes	P-De	lta Done? No	
Consider Torsion Ignore Seismic Co		Ignore	e Special EQ	Load? No	D/P	Plug Welded?	Yes
GammaM0=1.05 q0=1. An/Ag=1.	GammaM1=1.05 Omega=1. RLLF=1.		M2=1.25 Rd=1.15).75	D/C Lim=1.			
Aeff=0.02 A=0.02 It=3.610E-06 Iw=3.824E-06 E=210000000.	eNy=0. Iyy=5.768E-0 Izz=1.082E-0 Iyz=0. fy=275000.		.171 .074	Wel, yy=0.003 Wel, zz=7.213 Wpl, yy=0.003 Wpl, zz=0.001	E-04 Weff Av,y	,yy=0.003 ,zz=7.213E-04 =0.015 =0.007	
STRESS CHECK FORG	CES & MOMENTS Ned -100.165	Med, yy -36.599	Med,zz 103.437	Ved,z 1.654	Ved, y -20.683	Ted -0.05	
PMM DEMAND/CAPAC D/C Ratio:	0.36 = (0.0)	overning Equ 43)^2. + (0. d/Mn,y,Rd)^ <i>I</i>	.358)^1. <	1. Ed/Mn,z,Rd)^B	OK eta (N	TC Eq 4.2.38)	
AXIAL FORCE DESIG	GN .						
Axial	Ned Force -101.602	Nc,Rd Capacity 5185.714	Nt,Rd Capacity 5185.714				
	Npl,Rd 5185.714	Nu,Rd 6130.08	Ncr,T 17592.306	Ncr,TF 17592.306	An/Ag 1.		
Major (y-y) MajorB(y-y) Minor (z-z) MinorB(z-z) Torsional TF	a 0.21 a 0.21 b 0.34 b 0.34 b 0.34	Ncr 23851.061 73600.333 8970.286 8970.286 17592.306	LambdaBar 0.478 0.272 0.779 0.779 0.556	Phi 0.643 0.545 0.902 0.902 0.715	Chi 0.931 0.984 0.737 0.737 0.858	Nb, Rd 4828.034 5102.514 3823.194 3823.194 4451.303	

STAZIONE DI VIGNA DI VALLE

FV02 – Fermata Vigna di Valle – Lato Nord FV02 – Fabbricato viaggiatori – Relazione di calcolo
 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 NR1J
 01
 D29CL
 FV 02 00 001
 C
 44 di 97

MOMENT DESIGN						
	Med	Med, span	Mm, Ed	Meg, Ed		
	Moment		Moment			
Major (y-y						
Minor (z-z	*			62.062		
	Mc, Rd	Mv,Rd	Mn,Rd	Mb, Rd		
	Capacity	Capacity	Capacity	Capacity		
Major (y-y	846.476	846.476	846.476	837.584		
Minor (z-z	289.143	289.143	289.143			
	Curve AlphaLT				psi	Mcr
LTB	b 0.34	0.472	0.658	0.989	1.705	3984.009
	1	1	1	1		
	kyy					
Factors	0.618	0.369	0.994	0.615		
SHEAR DESIGN						
01121111 2201011	Ved	Ted	Vc, Rd	Stress	Status	
	Force		•	Ratio		
Major (z)					OK	
Minor (y)	20.687			0.009	OK	
(1)		3.301			240	
	Vpl,Rd	Eta	LambdabarW			
Reduction	1061.499	1.	0.318			



STAZIONE DI VIGNA DI VALLE

FV02 – Fermata Vigna di Valle – Lato Nord FV02 – Fabbricato viaggiatori – Relazione di calcolo
 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 NR1J
 01
 D29CL
 FV 02 00 001
 C
 45 di 97

TRAVE IPE 400

			111111111	 		
Italian NTC 2018 Units : KN, m,		HECK (Su	mmary for	Combo and Stati	on)	
Frame: 73 Length: 6. Loc: 6.	X Mid: 4.5 Y Mid: 13. Z Mid: 5.	-	U10 IPE400 Class 1		ype: Beam pe: DCL-CI Yes	
Interaction=Metho		MultiRe	sponse=Env	elopes	P-De:	lta Done? No
Consider Torsion Ignore Seismic Co		Ignore	Special EQ	Load? No	D/P	Plug Welded? Yes
GammaM0=1.05 q0=1. An/Ag=1.	GammaM1=1.05 Omega=1. RLLF=1.	GammaM2 GammaRd PLLF=0.	=1.15	D/C Lim=1.		
Aeff=0.008 A=0.008 It=0. Iw=0. E=210000000.	eNy=0. Iyy=2.313E-04 Izz=1.318E-05 Iyz=0. fy=275000.	eNz=0. iyy=0.1 izz=0.0 h=0.4 fu=4300	39	Wel, yy=0.001 Wel, zz=1.464E- Wpl, yy=0.001 Wpl, zz=2.290E-	04 Weff Av,y	yy=0.001 ,zz=1.464E-04 =0.005 =0.004
STRESS CHECK FOR Location 6.	CES & MOMENTS Ned -6.806	Med,yy	Med,zz	Ved,z 83.582	Ved, y 13.525	Ted 0.
PMM DEMAND/CAPAC D/C Ratio:	0.997 = 0.012 = NEd/(Ch	+ 0.759 + 0	.226 < maM1) + kz	q C4.2.38) 1. y (My,Ed+NEd eN Rk/GammaM1)		My,Rk/GammaM1) C4.2.38)
AXIAL FORCE DESI	GN					
Axial		Nc,Rd Capacity 2213.095	Nt,Rd Capacity 2213.095			
	Npl,Rd 2213.095	Nu,Rd 2616.12	Ncr,T 2411.566	Ncr,TF 2411.566	An/Ag 1.	
C: Major (y-y) MajorB(y-y) Minor (z-z) MinorB(z-z)		Ncr 9396.295 9396.295 758.808 758.808	LambdaBar 0.07 0.07 1.75 1.75	Phi 0.489 0.489 2.295 2.295	Chi 1. 1. 0.265 0.265	Nb,Rd 2213.095 2213.095 585.632 585.632

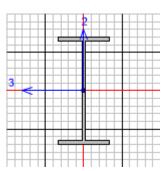
STAZIONE DI VIGNA DI VALLE

FV02 – Fermata Vigna di Valle – Lato Nord	COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
FV02 – Fabbricato viaggiatori – Relazione di calcolo	NR1J	01	D29CL	FV 02 00 001	С	46 di 97

Torsional :	rr b 0.34	2411.566	0.982	1.115	0.609	1347.165	
MOMENT DESIGN							
	Med	Med, span	Mm, Ed	Meg, Ed			
	Moment	Moment	Moment	Moment			
Major (y-y)	0.	119.034	0.	89.275			
Minor (z-z)		14.827	0.	11.12			
	Mc, Rd	Mv, Rd	Mn,Rd	Mb, Rd			
	Capacity	Capacity	Capacity	Capacity			
Major (y-y)	342.31	342.31	342.31	156.572			
Minor (z-z)	59.976	59.976	59.976				
	Curve AlphaLT	LambdaBarLT	PhiLT	ChiLT	psi	Mcr	
LTB	c 0.49	1.172	1.425	0.457	1.138	261.779	
	kyy	kyz	kzy	kzz			
Factors	0.994	0.549	0.998	0.915			
SHEAR DESIGN							
	Ved	Ted	Vc,Rd	Stress	Status		
	Force	Torsion	Capacity	Ratio	Check		
Major (z)	83.582	0.	646.139	0.129	OK		
Minor (y)	13.525	0.	792.677	0.017	OK		
_							
	Vpl,Rd	Eta	LambdabarW				
Reduction	646.139	1.	0.53				

CONNECTION SHEAR FORCES FOR BEAMS

VMajor
Left Right Major (V2) 83.412 83.582



STAZIONE DI VIGNA DI VALLE

FV02 – Fermata Vigna di Valle – Lato Nord FV02 – Fabbricato viaggiatori – Relazione di calcolo
 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 NR1J
 01
 D29CL
 FV 02 00 001
 C
 47 di 97

TRAVE IPE360

Italian NTC 2018 STEEL SECTION CHECK (Summary for Combo and Station) Units : KN, m, C Frame: 135 Length: 3.75 Loc: 3.75 X Mid: 16.325 Combo: U18
Y Mid: 5. Shape: IPE360
Z Mid: 5. Class: Class 1 Design Type: Beam Frame Type: DCL-CBF Rolled : Yes Interaction=Method B MultiResponse=Envelopes P-Delta Done? No Consider Torsion? No Ignore Seismic Code? No Ignore Special EQ Load? No D/P Plug Welded? Yes GammaM0=1.05 GammaM1=1.05 GammaM2=1.25 q0=1.Omega=1. GammaRd=1.15 An/Ag=1. RLLF=1. PLLF=0.75 D/C Lim=1. Aeff=0.007 eNy=0. enz=0. Iyy=1.627E-04 iyy=0.15 Izz=1.043E-05 izz=0.038 Tvz=0. h=0.36 eNy=0. eNz=0. Wel,yy=9.039E-04 Weff,yy=9.039E-04 A=0.007 Wel, zz=1.227E-04 Weff, zz=1.227E-04 Wpl, yy=0.001 Av, y=0.005 T + = 0. Tw=0. E=210000000. fy=275000. fu=430000. Wpl, zz=1.910E-04 Av, z=0.004 STRESS CHECK FORCES & MOMENTS Med,zz Ved, z Ved, y Ted Location Ned Med, yy 3.75 0. 0. -2.061 0.009 0. PMM DEMAND/CAPACITY RATIO (Governing Equation NTC Eq C4.2.38) D/C Ratio: 0.843 = 0. + 0.842 + 0. < 1. = NEd/(Chi z NRk/GammaM1) + kzy (My,Ed+NEd eNy)/(Chi_LT My,Rk/GammaM1) + kzz (Mz, Ed+NEd eNz) / (Mz, Rk/GammaM1) (NTC Eq C4.2.38) AXIAL FORCE DESIGN Ned Nc,Rd Nt,Rd Capacity Capacity Force 1904.048 Axial 0. 1904.048 Nu,Rd Ncr,T 2250.792 3214.96 Ncr,TF 3214.96 An/Ag Npl,Rd 1904.048 0.289 0.551 0.289 0.551 1.14 1.31 1.14 1.31 Curve Alpha Ncr LambdaBar Chi Nb,Rd Phi Chi Nb,Rd 0.551 0.98 1866.175 0.551 0.98 1866.175 1.31 0.511 973.902 1.31 0.511 973.902 Major (y-y) a 0.21 23979.717 MajorB(y-y) a 0.21 23979.717 Minor (z-z) b 0.34 1537.237 MinorB(z-z) b 0.34 1537.237

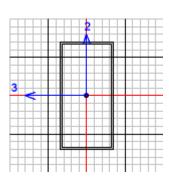
STAZIONE DI VIGNA DI VALLE

FV02 – Fermata Vigna di Valle – Lato Nord	COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
FV02 – Fabbricato viaggiatori – Relazione di calcolo	NR1J	01	D29CL	FV 02 00 001	С	48 di 97

Torsional TF	b 0.34	3214.96	0.789	0.911	0.731	1392.762	
MOMENT DESIGN							
	Med	Med, span	Mm, Ed	Meq, Ed			
	Moment	Moment	Moment	Moment			
Major (y-y)	0.	-184.529	0.	138.397			
Minor (z-z)	0.	0.034	0.017	0.021			
	Mc, Rd	Mv,Rd	Mn,Rd	Mb,Rd			
	Capacity	Capacity	Capacity	Capacity			
Major (y-y)	266.881	266.881	266.881	219.042			
Minor (z-z)	50.024	50.024	50.024				
C	urve AlphaLT	LambdaBarLT	PhiLT	ChiLT	psi	Mcr	
LTB	c 0.49	0.598	0.776	0.821	2.288	784.834	
		1	1	1			
	kyy	kyz	kzy	kzz			
Factors	0.408	0.36	1.	0.6			
SHEAR DESIGN							
	Ved	Ted	Vc, Rd	Stress	Status		
	Force	Torsion	Capacity	Ratio	Check		
Major (z)	2.061	0.	530.871	0.004	OK		
Minor (y)	0.009	0.	694.541	1.324E-05	OK		
J- (1)							
	Vpl,Rd	Eta	LambdabarW				
Reduction	530.871	1.	0.507				

CONNECTION SHEAR FORCES FOR BEAMS

VMajor
Left Right Major (V2) 96.355 2.061



PROGETTO DEFINITIVO
RELAZIONI DI CALCOLO STRUTTURE
RADDOPPIO CESANO – VIGNA DI VALLE
STAZIONE DI VIGNA DI VALLE

FV02 – Fermata Vigna di Valle – Lato Nord FV02 – Fabbricato viaggiatori – Relazione di calcolo
 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 NR1J
 01
 D29CL
 FV 02 00 001
 C
 49 di 97

TUBOLARI RETTANGOLARI 300x150x5

Italian NTC 2018 Units : KN, m,		CHECK (Summary for	Combo and Station	1)		
Frame: 363 Length: 3.4 Loc: 0.	X Mid: 4.5 Y Mid: 15. Z Mid: 6.7	Shape	: U18 : 300x150x5 : Class 1	Design Typ Frame Type Rolled : N	: DCL-C		
Interaction=Metho		Multi	Response=Env	elopes	P-De	lta Done? No	
Ignore Seismic Co		Ignor	e Special EQ	Load? No	D/P	Plug Welded?	Yes
GammaM0=1.05 q0=1. An/Ag=1.	GammaM1=1.05 Omega=1. RLLF=1.		M2=1.25 Rd=1.15 0.75	D/C Lim=1.			
Aeff=0.004 A=0.004 It=4.158E-05 Iw=0. E=210000000.	eNy=0. Iyy=5.296E-05 Izz=1.806E-05 Iyz=0. fy=275000.	eNz=0 iyy=0 izz=0 h=0.3 fu=43	.11	Wel,yy=3.531E-04 Wel,zz=2.408E-04 Wpl,yy=4.315E-04 Wpl,zz=2.665E-04	Weff Av,y	yy=3.531E-04 ,zz=2.408E-04 =0.002 =0.003	
STRESS CHECK FORCE Location 0.	CES & MOMENTS Ned -20.827	Med, yy	Med,zz 14.664	Ved,z -3.801	Ved, y 4.418	Ted 4.283	
PMM DEMAND/CAPACI D/C Ratio:	0.21 = 0.21	verning Eq < /Mn,z,Rd)	uation EC3 6 1. (EC3 6	.2.9.1(6z)) OK .2.9.1(6z))			
AXIAL FORCE DESIG							
Axial	Ned Force -20.827	Nc,Rd Capacity 1152.381	Nt,Rd Capacity 1152.381				
	Npl,Rd 1152.381	Nu,Rd 1362.24	Ncr,T 208077.409	Ncr,TF 1673.456	An/Ag 1.		
Major (y-y) MajorB(y-y) Minor (z-z) MinorB(z-z) Torsional TF	b 0.34 b 0.34 b 0.34 b 0.34 b 0.34 b 0.34	Ner 1673.456 12072.676 3238.315 3238.315 1673.456	LambdaBar 0.85 0.317 0.611 0.611 0.85	Phi 0.972 0.57 0.757 0.757 0.972	Chi 0.693 0.958 0.831 0.831 0.693	Nb,Rd 798.526 1103.973 958.048 958.048 798.526	

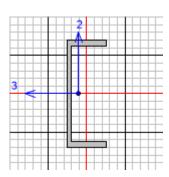
STAZIONE DI VIGNA DI VALLE

FV02 – Fermata Vigna di Valle – Lato Nord FV02 – Fabbricato viaggiatori – Relazione di calcolo
 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 NR1J
 01
 D29CL
 FV 02 00 001
 C
 50 di 97

MOMENT DESIGN						
	Med	Med, span	Mm, Ed	Meq, Ed		
	Moment	Moment	Moment	Moment		
Major (y-y)	0.	9.906	0.	7.43		
Minor (z-z)		14.664	7.152	8.655		
	Mc, Rd	Mv,Rd	Mn, Rd	Mb,Rd		
	Capacity	Capacity	Capacity	Capacity		
Major (y-y)	113.012	113.012	113.012	113.012		
Minor (z-z)	69.798	69.798	69.798			
	Curve AlphaLT	LambdaBarLT	PhiLT	ChiLT	psi	Mcr
LTB	d 0.76	0.152	0.493	1.	1.556	5131.907
	kуу	kyz	kzy	kzz		
Factors	0.662	0.357	0.397	0.595		
SHEAR DESIGN						
	Ved	Ted	Vc, Rd	Stress	Status	
	Force	Torsion	Capacity	Ratio	Check	
Major (z)	3.801	4.283	438.511	0.009	OK	
Minor (y)	4.418	4.283	226.816	0.019	OK	
	Vpl,Rd	Eta	LambdabarW			
Reduction	438.511	1.	0.704			

PROGETTO DEFINITIVO
RELAZIONI DI CALCOLO STRUTTURE


RADDOPPIO CESANO – VIGNA DI VALLE

STAZIONE DI VIGNA DI VALLE

FV02 – Fermata Vigna di Valle – Lato Nord FV02 – Fabbricato viaggiatori – Relazione di calcolo

COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
NR1J	01	D29CL	FV 02 00 001	С	51 di 97

TRAVE UPN220

Italian NTC 2018 STEEL SECTION CHECK (Summary for Combo and Station) Units : KN, m, C Frame : 335
Length: 5.
Loc : 2.5 X Mid: 18.2 Combo: EX
Y Mid: 40.3 Shape: UPN220
Z Mid: 5. Class: Class 1 Design Type: Beam Frame Type: DCL-CBF Rolled : Yes Interaction=Method B MultiResponse=Envelopes P-Delta Done? No Consider Torsion? No Ignore Seismic Code? No Ignore Special EQ Load? No D/P Plug Welded? Yes GammaM0=1.05 GammaM1=1.05 GammaM2=1.25 q0=1. Omega=1. GammaRd=1.15 An/Ag=1. RLLF=1. PLLF=0.75 D/C Lim=1. eNy=0. eNz=0. Iyy=2.691E-05 iyy=0.085 Izz=1.966E-06 izz=0.023 Iyz=0. h=0.22 fy=275000. fu=430000. Aeff=0.004 Wel, yy=2.446E-04 Weff, yy=2.446E-04 A=0.004 Wel, yy-2.440E-04 Wel, zz=3.353E-05 Wpl, yy=2.988E-04 Wpl, zz=7.187E-05 Welf, yy-2.440E-04 Weff, zz=3.353E-05 Av, y=0.002 Av, z=0.002 Tt=0.Tw=0. E=210000000. STRESS CHECK FORCES & MOMENTS Med, yy Med, zz Ved, z 1.724 -1.168 -0.293 Ved, y 0.467 Ted Location Ned -0.119 0. PMM DEMAND/CAPACITY RATIO (Governing Equation NTC Eq C4.2.38)

D/C Ratio: 0.121 = 0.001 + 0.057 + 0.062 < 1. OK

= NEd/(Chi_z NRk/GammaM1) + kzy (My, Ed+NEd eNy)/(Chi_LT My, Rk/GammaM1) + kzz (Mz, Ed+NEd eNz) / (Mz, Rk/GammaM1) (NTC Eq C4.2.38) AXIAL FORCE DESIGN Ned Nc, Rd Nt,Rd Force Capacity Capacity Axial -0.151 980.571 980.571 Npl,Rd Nu,Rd Ncr,T Ncr,TF 980.571 1159.142 1367.998 1115.682 An/Ag Ncr, TF 980.571 Curve Alpha Ncr LambdaBar Phi Chi Nb, Rd Major (y-y) c 0.49 2230.965 0.679 0.848 0.737 MajorB(y-y) c 0.49 2230.965 0.679 0.848 0.737 Minor (z-z) c 0.49 162.991 2.513 4.225 0.131 MinorB(z-z) c 0.49 162.991 2.513 4.225 0.131 723.107 723.107 128.656 128,656

PROGETTO DEFINITIVO
RELAZIONI DI CALCOLO STRUTTURE

RADDOPPIO CESANO – VIGNA DI VALLE

STAZIONE DI VIGNA DI VALLE

FV02 – Fermata Vigna di Valle – Lato Nord	COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
FV02 – Fabbricato viaggiatori – Relazione di calcolo	NR1J	01	D29CL	FV 02 00 001	С	52 di 97

Torsional TE	c 0.49	1115.682	0.961	1.148	0.563	552.149	
MOMENT DESIGN							
	Med	Med, span	Mm, Ed	Meq, Ed			
	Moment	Moment	Moment	Moment			
Major (y-y)	1.724	1.724	1.724	1.724			
Minor (z-z)	-1.168	-1.168	0.	0.			
	Mc,Rd	Mv,Rd	Mn, Rd	Mb,Rd			
	Capacity	•	Capacity	Capacity			
Major (y-y)	78.257		78.257	30.049			
Minor (z-z)	18.823	18.823	18.823				
	Curve AlphaLT	LambdaBarI.T	PhiLT	ChiLT	psi	Mcr	
LTB	d 0.76		1.6	0.384	1.21	57.055	
110	a 0.70	1.2	1.0	0.301	1.21	37.033	
	,	,	1	1			
	kyy		kzy	kzz			
Factors	0.95	0.601	1.	1.001			
SHEAR DESIGN							
	Ved		Vc,Rd	Stress	Status		
	Force		Capacity	Ratio	Check		
Major (z)	0.293		304.349	0.001	OK		
Minor (y)	0.467	0.	300.758	0.002	OK		
	Vpl,Rd	Eta	LambdabarW				
Reduction	304.349	1.	0.267				

CONNECTION SHEAR FORCES FOR BEAMS

		VMajor	VMajor	
		Left	Right	
Major	(V2)	1.086	1.086	

7.4 VERIFICHE STRUTTURALI DI DEFORMABILITÀ DELLE MEMBRATURE IN ACCIAIO

Le verifiche di deformabilità vengono condotte con riferimento alle prescrizioni riportate al paragrafo §4.2.4.2.1 delle NTC 2018 che pone dei limiti sia agli abbassamenti generati dalla combinazione di carico caratteristica sia a quelli generati dai soli carichi variabili. Tali valori limite sono espressi come funzione della luce L dell'elemento che nel caso di elementi a sbalzo è pari al doppio della luce dello stesso.

Tabella 4.2.X Limiti di deformabilità per gli elementi di impalcato delle costruzioni ordinarie Elementi strutturali Limiti superiori per gli spostamenti δ_2 L 1 Coperture in generale 200 250 Coperture praticabili 250 300 250 300 Solai o coperture che reggono intonaco o altro materiale di finitura fragile o tramezzi non flessibili 250 350 Solai che supportano colonne 400 500 Nei casi in cui lo spostamento può compromettere l'aspetto dell'edificio 250 In caso di specifiche esigenze tecniche e/o funzionali tali limiti devono essere opportu amente ridotti.

Figura 18. Limiti di deformabilità

Nel caso in esame si considera come limite superiore quello relativo alle coperture in generale che la norma fissa pari a L/200.

Si riporta in particolare la verifca dello sbalzo trasversale lato binario.

Spostamenti Verticali in Copertura (4.2.4.2.1 NTC18)

sbalzo trasversale lato binario

Da Normativa

L	=	3750.00	mm	luce di calcolo
Lrif	=	7500.00	mm	luce di riferimento
1/Lrif	=	200.00	-	limite inferiore
δ	=	37.50	mm	freccia ammissibile

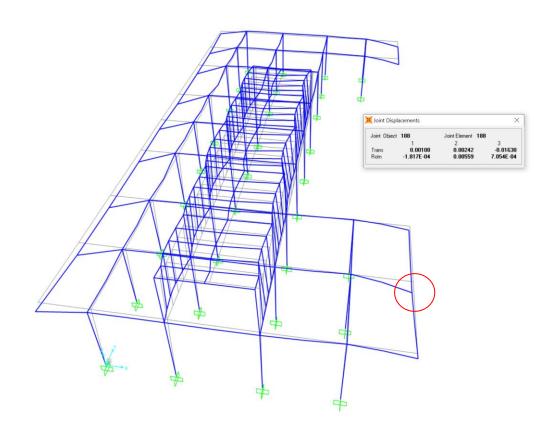
Da Calcolo

L	=	3750.00	mm	luce di calcolo
Lrif	=	7500.00	mm	luce di riferimento
δ	=	17.00	mm	freccia da calcolo
1/L	=	441.18		
check		ok		

PROGETTO DEFINITIVO

RELAZIONI DI CALCOLO STRUTTURE

RADDOPPIO CESANO – VIGNA DI VALLE


STAZIONE DI VIGNA DI VALLE

FV02 – Fermata Vigna di Valle – Lato Nord

FV02 – Fabbricato viaggiatori – Relazione di calcolo

 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 NR1J
 01
 D29CL
 FV 02 00 001
 C
 54 di 97

PROGETTO DEFINITIVO
RELAZIONI DI CALCOLO STRUTTURE
RADDOPPIO CESANO – VIGNA DI VALLE
STAZIONE DI VIGNA DI VALLE

FV02 – Fermata Vigna di Valle – Lato Nord FV02 – Fabbricato viaggiatori – Relazione di calcolo

COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
NR1J	01	D29CL	FV 02 00 001	С	55 di 97

7.5 VERIFICA DEGLI SPOSTAMENTI DI PIANO (DRIFT) PER CONDIZIONI DI CARICO NON SISMICHE

La valutazione degli spostamenti di piano, oltre che per le condizioni di carico sismiche, va effettuata anche con riferimento alla combinazione caratteristica. I valori limite degli spostamenti laterali massimi ammissibili sono riportati nella tabella di seguito riportata che fa riferimento alle prescrizioni del paragrafo 4.2.4.2.2 delle NTC2018.

4.2.4.2.2 Spostamenti laterali

Negli edifici gli spostamenti laterali alla sommità delle colonne per le combinazioni caratteristiche delle azioni devono generalmente limitarsi ad una frazione dell'altezza della colonna e dell'altezza complessiva dell'edificio da valutarsi in funzione degli effetti sugli elementi portati, della qualità del comfort richiesto alla costruzione, delle eventuali implicazioni di una eccessiva deformabilità sul valore dei carichi agenti.

In assenza di più precise indicazioni si possono adottare i limiti per gli spostamenti orizzontali indicati in Tab. 4.2.XI (Δ spostamento in sommità; δ spostamento relativo di piano – Fig. 4.2.2).

Tabella 4.2.XI Limiti di deformabilità per costruzioni ordinarie soggette ad azioni orizzontali

	Limiti superiori per gli spostamenti orizzontali			
Tipologia dell'edificio	$\frac{\delta}{h}$	$\frac{\Delta}{H}$		
Edifici industriali monopiano senza carroponte	1 150	/		
Altri edifici monopiano	1 300	/		
Edifici multipiano	1 300	1 500		
In caso di specifiche esigenze tecniche	e/o funzionali tali limiti devono essere op	pportunamente ridotti.		

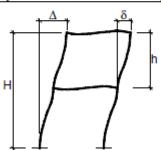


Figura 4.2.2 - Definizione degli spostamenti orizzontali per le verifiche in esercizio

In fase di verifica si prendono a riferimento i limiti associati al caso di edifici multipiano.

PROGETTO DEFINITIVO
RELAZIONI DI CALCOLO STRUTTURE
RADDOPPIO CESANO – VIGNA DI VALLE
STAZIONE DI VIGNA DI VALLE

FV02 – Fermata Vigna di Valle – Lato Nord FV02 – Fabbricato viaggiatori – Relazione di calcolo

COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
NR1J	01	D29CL	FV 02 00 001	С	56 di 97

Nelle immagini a seguire si riportano gli spostamenti orizzontali massimi, prima in direzione trasversale e poi in longitudinale, per la combinazione SLE rara.

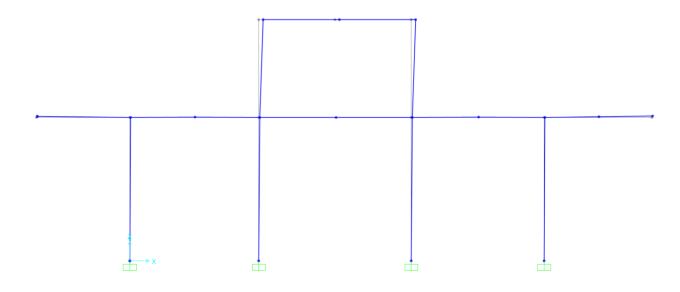


Figura 19. Spostamenti in direzione X

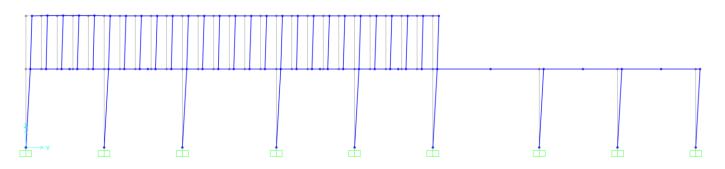


Figura 20. Spostamenti in direzione Y

	Limiti sommità e interpiano						
		δ0 relativo	δ1 relativo	Δ assoluto		max tra dx e dy	
Н	=	5000	8400	3400	mm	altezza totale	
1/L	Ш	300	500	300	mm		
Δ (δ)	=	16.67	16.80	11.33	mm	spostamento laterale ammissibile	
Δ (δ)	=	1.20	4.60	3.40	mm	spostamento laterale di calcolo	
		ok	ok	ok			

PROGETTO DEFINITIVO
RELAZIONI DI CALCOLO STRUTTURE
RADDOPPIO CESANO – VIGNA DI VALLE
STAZIONE DI VIGNA DI VALLE

FV02 – Fermata Vigna di Valle – Lato Nord FV02 – Fabbricato viaggiatori – Relazione di calcolo
 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 NR1J
 01
 D29CL
 FV 02 00 001
 C
 57 di 97

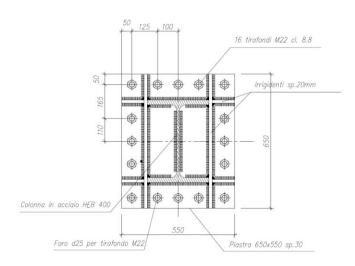
7.6 VERIFICA DEGLI SPOSTAMENTI DI PIANO PER CONDIZIONI DI CARICO SISMICHE

La valutazione degli spostamenti di piano in condizioni di carico sismiche, va effettuata rispettando le prescrizioni previste dalle NTC 2018 al paragrafo § 7.3.7.2.. Trattandosi di costruzione in classe d'uso III, il valore limite di spostamento orizzontale per tamponamenti collegati rigidamente alla struttura che interferiscono con la deformabilità della stessa è pari a:

$$d_r < \frac{2}{3} \cdot (0,005 \, h) = \frac{2}{3} 0,005 \cdot 6010 = 20,03 \, mm$$

Nella formula sopra riportata, con d_r si indica lo spostamento interpiano ottenuto dall'analisi in presenza dell'azione sismica di progetto relativa allo SLO.

Conte	nimen	to del Danno SLO_drift(7.3.7	.2 NTC18)		_
		δ0 relativo	δ1 relativo		max tra dx e dy
Н	=	5000	3400	mm	altezza colonna
d	=	25.00	17.00	mm	0,005H agli SLD
dr		16.67	11.33	mm	drift ammissibile SLO
δh	II	4.00	9.00	mm	drift di calcolo
		ok	ok		


STAZIONE DI VIGNA DI VALLE

FV02 – Fermata Vigna di Valle – Lato Nord FV02 – Fabbricato viaggiatori – Relazione di calcolo

COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
NR1J	01	D29CL	FV 02 00 001	С	58 di 97

7.7 VERIFICA PIASTRA DI BASE PILASTRO

Verifica nodo di base e colonna HEB400.

Si riportano a seguire le sollecitazioni agenti alla base delle colonne metalliche, calcolate nelle combinazioni di carico più gravose, sia in condizioni statiche che sismiche (F1: taglio longitudinale (parallele al binario); F2: taglio trasversale; F3: forza verticale; M1: momento intorno asse longitudinale; M2: momento intorno asse trasversale):

Condizioni statiche:

SLU	max	Joint	Combo.	F1	F2	F3	M1	M2
				kN	kN	kN	kNm	kNm
max	F1	115	U3	70	0	155	1	137
max	F2	183	U36	6	5	64	-26	16
max	F3	161	U17	-3	-1	229	3	40
max	M1	183	U33	-5	-5	73	26	-16
max	M2	153	U3	58	-1	88	4	147
max	М3	210	U33	9	0	84	-1	-11

SLU	SLU min		Combo.	F1	F2	F3	M1	M2
				kN	kN	kN	kNm	kNm
min	F1	149	U15	-57	-1	60	4	-122
min	F2	183	U33	-5	-5	73	26	-16

PROGETTO DEFINITIVO

RELAZIONI DI CALCOLO STRUTTURE

RADDOPPIO CESANO – VIGNA DI VALLE

STAZIONE DI VIGNA DI VALLE

FV02 – Fermata Vigna di Valle – Lato Nord

FV02 – Fabbricato viaggiatori – Relazione di calcolo

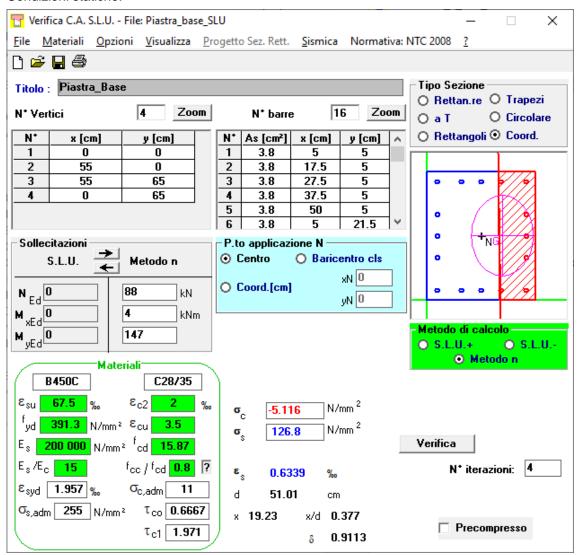
COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
NR1J	01	D29CL	FV 02 00 001	С	59 di 97

min	F3	5	U7	-27	-3	24	15	-70
min	M1	183	U40	6	5	64	-26	16
min	M2	149	U15	-57	-1	60	4	-122
min	М3	210	U36	12	0	39	1	48

Condizioni sismiche:

SLV	max	Joint	Combo.	F1	F2	F3	M1	M2
				kN	kN	kN	kNm	kNm
max	F1	157	EX	28	6	109	32	84
max	F2	143	EY	11	21	82	103	31
max	F3	157	EX	28	6	109	32	84
max	M1	163	EY	12	21	88	103	36
max	M2	157	EX	28	6	109	32	84
max	М3	208	EY	7	12	42	61	13

SLV	min	Joint	Combo.	F1	F2	F3	M1	M2
				kN	kN	kN	kNm	kNm
min	F1	155	EX	-25	-4	76	-19	-65
min	F2	143	EY	2	-21	79	-103	4
min	F3	9	EY	-3	-14	30	-68	-10
min	M1	163	EY	0	-21	70	-103	-1
min	M2	155	EX	-25	-4	76	-19	-65
min	М3	208	EY	4	-12	38	-61	2

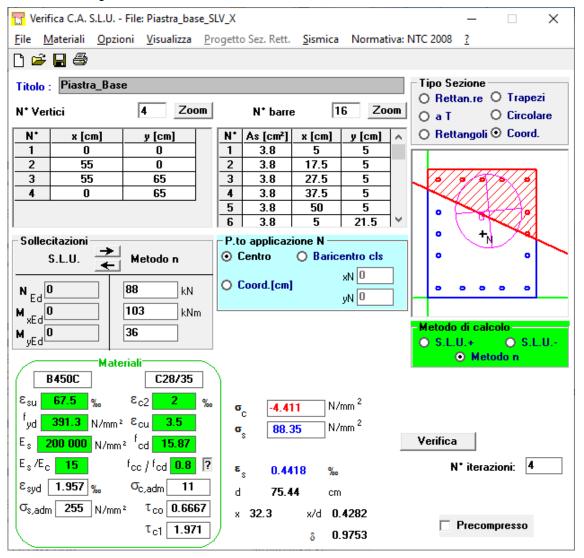

La sezione è soggetta a pressoflessione deviata e taglio; la compressione verrà trasferita per semplice contatto, quindi i tirafondi saranno soggetti a forza di trazione e taglio.

Verifica a taglio-trazione del tirafondo

Il calcolo della tensione agente nei tirafondi viene eseguito mediante il il programma VcaSLU del Prof. Piero Gelfi, del quale di riportano le schermate a seguire, con riferimento alle tre condizioni di carico più gravose.

Condizioni statiche:

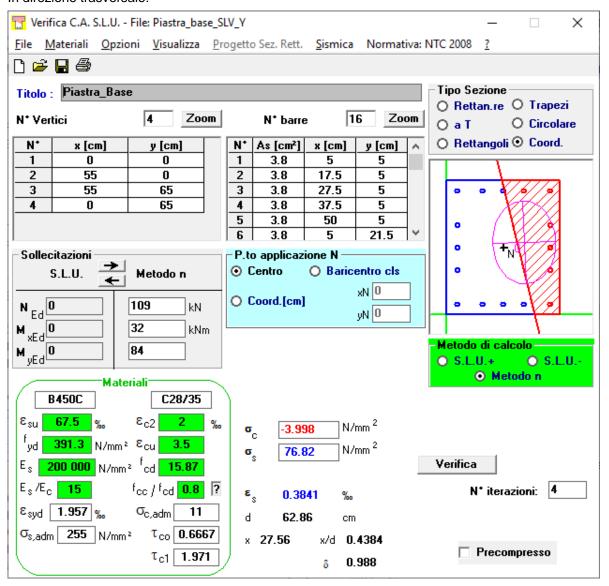
F_{Ed} = 126.8 MPa * 380 mm² = 48.3 kN forza assiale di trazione nel tirafondo più sollecitato


La tensione di compressione sul calcestruzzo è inferiore al limite di normativa, pari a:

$$f_{cd} = 0.85 f_{ck} / \gamma_m = 0.85 * 28 MPa / 1.5 = 15.9 MPa$$
 (calcestruzzo plinto C28/35).

Condizioni sismiche:

In direzione longitudinale:


 F_{Ed} = 88.4 MPa * 380 mm² = 33.4 kN forza assiale di trazione nel tirafondo più sollecitato

La tensione di compressione sul calcestruzzo è inferiore al limite di normativa, pari a:

 $f_{cd} = 0.85 f_{ck} / \gamma_m = 0.85 * 28 MPa / 1.5 = 15.9 MPa$ (calcestruzzo plinto C28/35).

In direzione trasversale:

 $F_{Ed} = 76.8 \text{ MPa} * 380 \text{ mm}^2 = 29.3 \text{ kN}$ forza assiale di trazione nel tirafondo più sollecitato

La tensione di compressione sul calcestruzzo è inferiore al limite di normativa, pari a:

 $f_{cd} = 0.85 f_{ck} / \gamma_m = 0.85 * 28 MPa / 1.5 = 15.9 MPa$ (calcestruzzo plinto C28/35).

PROGETTO DEFINITIVO

RELAZIONI DI CALCOLO STRUTTURE

RADDOPPIO CESANO - VIGNA DI VALLE

STAZIONE DI VIGNA DI VALLE

FV02 - Fermata Vigna di Valle - Lato Nord

FV02 - Fabbricato viaggiatori - Relazione di calcolo

COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
NR1J	01	D29CL	FV 02 00 001	С	63 di 97

Con riferimento alla condizione di più gravosa, si svolge a seguire la verifica del tirafondo più sollecitato, considerando l'azione contemporanea delle forze di trazione e taglio.

Nel caso di presenza combinata di forza di trazione e taglio si può adottare la seguente formula di interazione lineare per la verifica del tirafondo:

$$F_{v,Ed} / F_{v,Rd} + F_{t,Ed} / (1.4 F_{t,Rd}) \le 1$$

in cui:

 $F_{v,Ed}$ forza di taglio sul tirafondo [kN]

forza assiale sul tirafondo [kN] $F_{t,Ed}$

 $F_{v,Rd}$ resistenza a taglio del tirafondo [kN]

 $F_{t,Rd}$ resistenza a forza assiale del tirafondo [kN]

Nel caso in esame:

$$F_{v,Ed}$$
 = (58 kN)² + (-1 kN)² = 58 kN(combinazione U3)

$$F_{t,Ed} = 48.3 \text{ kN}$$
 (combinazione U3)

$$F_{v,Rd} = 0.6 \text{ ftb Ares} / \gamma_{M2} = 0.6 * 800 \text{ MPa} * 303 \text{ mm}^2 / 1.25 = 116.4 \text{ kN}$$

$$F_{t,Rd} = 0.9 \; f_{tb} \; A_{res} \, / \, \gamma_{M2} = 0.9 \; * \; 800 \; MPa \; * \; 303 \; mm^2 \, / \; 1.25 = 174.5 \; kN$$

$$F_{v,Ed} \, / \, F_{v,Rd} \, + \, F_{t,Ed} \, / \, (1.4 \, F_{t,Rd}) = 58 \, kN \, / \, 116.4 \, kN \, + \, 48.3 \, kN \, / \, (1.4 \, ^* \, 174.5 \, kN) = 0.5 \, + \, 0.19 = 0.69 < 10.00 < 10.00 < 10.00 < 10.00 < 10.00 < 10.00 < 10.00 < 10.00 < 10.00 < 10.00 < 10.00 < 10.00 < 10.00 < 10.00 < 10.00 < 10.00 < 10.00 < 10.00 < 10.00 < 10.00 < 10.00 < 10.00 < 10.00 < 10.00 < 10.00 < 10.00 < 10.00 < 10.00 < 10.00 < 10.00 < 10.00 < 10.00 < 10.00 < 10.00 < 10.00 < 10.00 < 10.00 < 10.00 < 10.00 < 10.00 < 10.00 < 10.00 < 10.00 < 10.00 < 10.00 < 10.00 < 10.00 < 10.00 < 10.00 < 10.00 < 10.00 < 10.00 < 10.00 < 10.00 < 10.00 < 10.00 < 10.00 < 10.00 < 10.00 < 10.00 < 10.00 < 10.00 < 10.00 < 10.00 < 10.00 < 10.00 < 10.00 < 10.00 < 10.00 < 10.00 < 10.00 < 10.00 < 10.00 < 10.00 < 10.00 < 10.00 < 10.00 < 10.00 < 10.00 < 10.00 < 10.00 < 10.00 < 10.00 < 10.00 < 10.00 < 10.00 < 10.00 < 10.00 < 10.00 < 10.00 < 10.00 < 10.00 < 10.00 < 10.00 < 10.00 < 10.00 < 10.00 < 10.00 < 10.00 < 10.00 < 10.00 < 10.00 < 10.00 < 10.00 < 10.00 < 10.00 < 10.00 < 10.00 < 10.00 < 10.00 < 10.00 < 10.00 < 10.00 < 10.00 < 10.00 < 10.00 < 10.00 < 10.00 < 10.00 < 10.00 < 10.00 < 10.00 < 10.00 < 10.00 < 10.00 < 10.00 < 10.00 < 10.00 < 10.00 < 10.00 < 10.00 < 10.00 < 10.00 < 10.00 < 10.00 < 10.00 < 10.00 < 10.00 < 10.00 < 10.00 < 10.00 < 10.00 < 10.00 < 10.00 < 10.00 < 10.00 < 10.00 < 10.00 < 10.00 < 10.00 < 10.00 < 10.00 < 10.00 < 10.00 < 10.00 < 10.00 < 10.00 < 10.00 < 10.00 < 10.00 < 10.00 < 10.00 < 10.00 < 10.00 < 10.00 < 10.00 < 10.00 < 10.00 < 10.00 < 10.00 < 10.00 < 10.00 < 10.00 < 10.00 < 10.00 < 10.00 < 10.00 < 10.00 < 10.00 < 10.00 < 10.00 < 10.00 < 10.00 < 10.00 < 10.00 < 10.00 < 10.00 < 10.00 < 10.00 < 10.00 < 10.00 < 10.00 < 10.00 < 10.00 < 10.00 < 10.00 < 10.00 < 10.00 < 10.00 < 10.00 < 10.00 < 10.00 < 10.00 < 10.00 < 10.00 < 10.00 < 10.00 < 10.00 < 10.00 < 10.00 < 10.00 < 10.00 < 10.00 < 10.00 < 10.00 < 10.00 < 10.00 < 10.00 < 10.00 < 10.00 < 10.00 < 10.00 < 10.00 < 10.00 < 10.00 < 10.00 < 10.00 < 10.00 < 10.00 < 10.00 < 10.00 < 10.00 < 10.00 < 10.00 < 10.00 < 10.$$

quindi la verifica è soddisfatta.

Si calcola a seguire la resistenza a sfilamento del singolo tirafondo, assumendo una lunghezza di ancoraggio nel cls semplice (C28/35) pari a 600mm e trascurando la presenza dei bolzoni di ancoraggio (a vantaggio di sicurezza).

$$f_{ctk0.05} = 0.7 * f_{ctm} = 0.7 (0.3 f_{ck}^2/3) = 0.7 * (0.3 * 28 MPa^2/3) = 1.94 MPa$$

 $f_{bd} = 2.25 f_{ctk0.05} / \gamma_c = 2.25 * 1.94 MPa / 1.5 = 2.90 MPa$

La resistenza allo sfilamento del singolo tassello è quindi pari a:

$$F_{t,Rd} = I_b * 3.14 * diam * f_{bd} = 600 mm * 3.14 * 22 mm * 2.90 MPa = 120 kN > F_{t,Ed} = 48 kN (F.S. = 2.5)$$

quindi la verifica è soddisfatta.

STAZIONE DI VIGNA DI VALLE

FV02 – Fermata Vigna di Valle – Lato Nord FV02 – Fabbricato viaggiatori – Relazione di calcolo

COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
NR1J	01	D29CL	FV 02 00 001	С	64 di 97

8 VERIFICA FONDAZIONI

8.1 DESCRIZIONE

Le fondazioni dell'edificio sono di tipo diretto, costituite da un grigliato di travi rovesce. Le travi hanno sezione a "T" rovescia con altezza 1.00 m e larghezza 1.50 m all'eccezione delle travi adiacente al sottopasso che hanno sezione a "L" con altezza 1.00 m e larghezza 1.10m. Al di sotto delle fondazioni è previsto uno strato di magrone di spessore 0.15 m debordante l'impronta delle fondazioni di 0.15 m.

8.2 MODELLO STRUTTURALE

L'analisi della struttura di fondazione è stata effettuata mediante una modellazione agli elementi finiti tramite l'utilizzo del software SAP2000. La struttura è stata modellata con un modello numerico tridimensionale il cui sistema di riferimento globale prevede una terna destrorsa il cui l'asse X è orientato in direzione longitudinale e l'asse Z verticale positivo verso l'alto.

Travi e colonne sono stati modellati con elementi *frame*, mentre i pannelli di rivestimento mediante elementi *shell none*. Questi ultimi, in accordo con le orditure dei pannelli di copertura, sono stati utilizzati per la ripartizione dei carichi sulle travi mediante l'opzione *uniform loads to frame* nel verso dell'asse 1 degli elementi shell.

Le travi secondarie sono state svincolate a momento flettente M2-M3 mediante inserimento di release alle estremità.

L'interazione tra terreno e struttura è stata studiata ipotizzando un comportamento elastico del terreno. L'intera struttura è poggiata a terra su un letto di molle alla Winkler la cui rigidezza viene assegnata per unità di lunghezza di elemento.

$$\begin{split} \text{Fondazione B=1.50m} \\ E &= \begin{array}{ccc} 18000 & \text{kN/m}^2 \\ n &= & 0.3 \\ \\ B &= & 1.5 & \text{m} \\ L &= & 44.00 & \text{m} \\ \\ L/B &= & 29.33 \\ c_t &= & 2.26 \\ \\ K_w &= & 5832 & \text{kN/m}^3 \\ \end{split}$$

Fondazione B=1.10m
$$E = \begin{bmatrix} 18000 & kN/m^2 \\ n = 0.3 \end{bmatrix}$$

$$B = 1.1 & m$$

$$L = \begin{bmatrix} 5.00 & m \end{bmatrix}$$

$$L/B = 4.55$$

$$c_t = 1.66$$

$$K_w = 10822 & kN/m^3$$

PROGETTO DEFINITIVO
RELAZIONI DI CALCOLO STRUTTURE
RADDOPPIO CESANO – VIGNA DI VALLE
STAZIONE DI VIGNA DI VALLE

FV02 – Fermata Vigna di Valle – Lato Nord FV02 – Fabbricato viaggiatori – Relazione di calcolo
 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 NR1J
 01
 D29CL
 FV 02 00 001
 C
 65 di 97

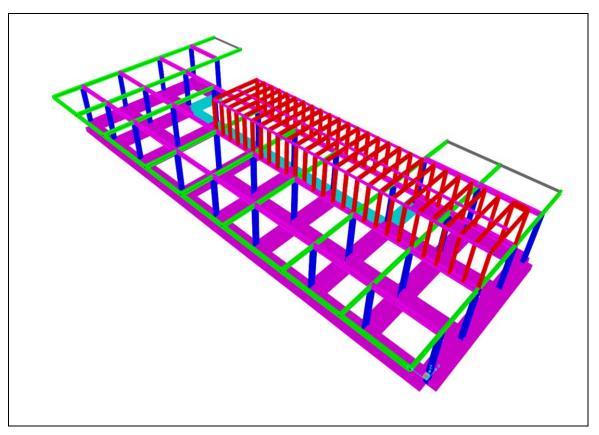


Figura 21- Modello SAP2000 struttura – Vista estrusa

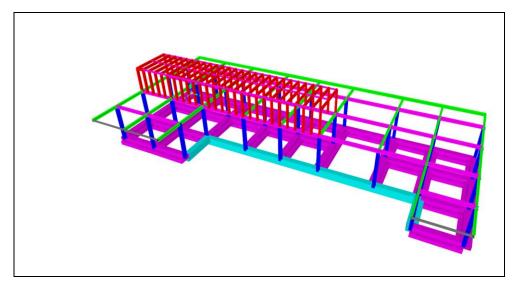


Figura 22- Modello SAP2000 struttura – Vista estrusa

PROGETTO DEFINITIVO
RELAZIONI DI CALCOLO STRUTTURE
RADDOPPIO CESANO – VIGNA DI VALLE
STAZIONE DI VIGNA DI VALLE

FV02 – Fermata Vigna di Valle – Lato Nord FV02 – Fabbricato viaggiatori – Relazione di calcolo
 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 NR1J
 01
 D29CL
 FV 02 00 001
 C
 66 di 97

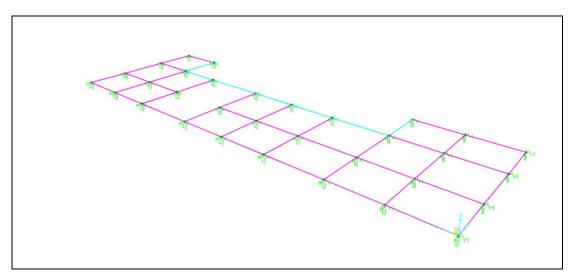


Figura 23- Letto di molle di Winkler

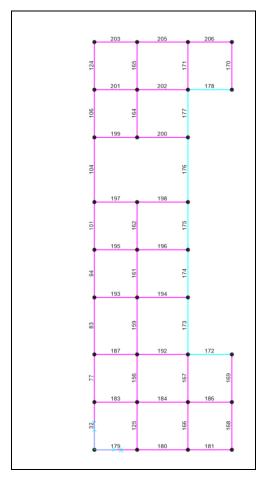


Figura 24- Nomenclatura travi di fondazione

STAZIONE DI VIGNA DI VALLE

FV02 – Fermata Vigna di Valle – Lato Nord FV02 – Fabbricato viaggiatori – Relazione di calcolo

COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
NR1J	01	D29CL	FV 02 00 001	С	67 di 97

8.3 TRAVI DI FONDAZIONE

Le verifiche di resistenza delle travi di fondazione sono state eseguite con riferimento alle travi rovesce correnti e di bordo.

Nelle verifiche agli stati limite ultimi finalizzate al dimensionamento strutturale (STR), si considerano gli stati limite ultimi per raggiungimento della resistenza negli elementi che costituiscono la fondazione. Le azioni trasmesse in fondazione derivano dall'analisi del comportamento dell'intera opera alla quale sono applicate le azioni statiche e sismiche.

Le fondazioni superficiali sono verificate in condizioni sismiche e in condizioni statiche:

In condizioni sismiche utilizzando le sollecitazioni ottenute amplificando i valori nelle SLV mediante il coefficiente 1,1. (combinazione di carico 1,1 x SLV) ed utilizzando le sollecitazioni ottenute amplificando i valori nelle SLD mediante il coefficiente 1,1 (combinazione di carico 1,1 x SLD), secondo quanto prescritto nel paragrafo 7.2.5 delle NTC 2018.

In condizioni statiche utilizzando le sollecitazioni non amplificate della combinazione non sismica SLU.

Inoltre sono state eseguite le verifiche a fessurazione e delle tensioni di esercizio per le combinazioni relative allo SLE.

Seguono le verifiche di resistenza delle travi di fondazione.

PROGETTO DEFINITIVO
RELAZIONI DI CALCOLO STRUTTURE

RADDOPPIO CESANO – VIGNA DI VALLE

STAZIONE DI VIGNA DI VALLE

FV02 – Fermata Vigna di Valle – Lato Nord

FV02 – Fabbricato viaggiatori – Relazione di calcolo

 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 NR1J
 01
 D29CL
 FV 02 00 001
 C
 68 di 97

8.4 SOLLECITAZIONI

Sollecitazioni SLU

SLU	max	Frame	Station	Combo.	Р	V2	V3	Т	M2	M3
			m		kN	kN	kN	kNm	kNm	kNm
max	Р	101	0.0	U1	40	-128	-1	2	6	-70
max	V2	159	6.0	U48	-3	276	5	-2	-17	-234
max	V3	164	0.0	U3	2	-200	15	14	40	-58
max	Т	197	0.0	U48	-2	-73	4	46	15	64
max	M2	199	0.0	U7	-10	-74	14	-34	41	63
max	M3	171	2.5	U47	-5	-3	3	17	-1	279

SLU	min	Frame	Station	Combo.	Р	V2	V3	Т	M2	М3
			m		kN	kN	kN	kNm	kNm	kNm
min	Р	197	0.0	U3	-42	-108	-9	29	-30	-32
min	V2	159	0.0	U45	5	-281	-5	-8	-16	-250
min	V3	164	0.0	U5	-1	-198	-15	-4	-39	-60
min	Т	199	0.0	U51	-16	-98	-6	-44	-21	-5
min	M2	199	0.0	U1	-16	-101	-14	-39	-42	-54
min	М3	159	0.0	U50	7	-281	5	3	15	-251

Sollecitazioni SLVx1.1

SLVx1.	max	Frame	Station	Combo.	P	V2	V3	Т	M2	M3
			m		kN	kN	kN	kNm	kNm	kNm
max	Р	94	0.0	EX	104	-91	13	11	38	-61
max	V2	159	6.0	EY	11	155	18	1	56	-46
max	V3	199	0.0	EX	39	-44	43	-9	131	72
max	Т	197	0.0	EY	10	-51	36	43	102	36
max	M2	104	0.0	EX	73	-105	41	15	142	-100
max	М3	171	3.0	EY	52	40	12	18	8	165

SLVx1.	min	Frame	Station	Combo.	Р	V2	V3	Т	M2	M3
			m		kN	kN	kN	kNm	kNm	kNm
min	Р	94	0.0	EX	-103	-115	-13	-10	-38	-128
min	V2	159	0.0	EY	-10	-159	-18	-6	-53	-190

STAZIONE DI VIGNA DI VALLE

FV02 – Fermata Vigna di Valle – Lato Nord

FV02 – Fabbricato viaggiatori – Relazione di calcolo

COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
NR1J	01	D29CL	FV 02 00 001	С	69 di 97

min	V3	199	0.0	EX	-56	-91	-43	-32	-132	-66
min	Т	199	0.0	EY	-31	-84	-42	-40	-113	-33
min	M2	104	0.0	EX	-71	-122	-41	-13	-142	-164
min	M3	104	0.0	EY	-40	-132	-29	-12	-96	-196

Sollecitazioni SLDx1.1

SLDx1.1	max	Frame	Station	Combo.	Р	V2	V3	Т	M2	M3
			m		kN	kN	kN	kNm	kNm	kNm
max	Р	94	0.0	DX	57	-97	7	6	21	-77
max	V2	159	6.0	DY	6	144	10	-1	30	-82
max	V3	199	0.0	DX	17	-55	23	-15	72	40
max	Т	197	0.0	DY	2	-59	19	31	55	20
max	M2	104	0.0	DX	40	-109	23	8	78	-116
max	M3	171	3.0	DY	28	28	6	12	4	142

SLDx1.1	min	Frame	Station	Combo.	Р	V2	V3	T	M2	M3
			m		kN	kN	kN	kNm	kNm	kNm
min	Р	94	0.0	DX	-56	-109	-7	-5	-21	-112
min	V2	159	0.0	DY	-5	-147	-10	-5	-28	-155
min	V3	199	0.0	DX	-35	-80	-23	-27	-72	-34
min	Т	199	0.0	DY	-21	-76	-23	-30	-61	-16
min	M2	104	0.0	DX	-39	-118	-23	-7	-78	-148
min	M3	104	0.0	DY	-21	-122	-16	-6	-52	-162

Sollecitazioni SLE (rar)

SLE	max	Frame	Station	Combo.	P	V2	V3	T	M2	M3
					kN	kN	kN	kNm	kNm	kNm
max	Р	101	0.0	K1	26	-78	-1	3	4	-52
max	V2	159	6.0	K66	-2	196	4	-1	-11	-166
max	V3	164	0.0	K2	1	-98	10	8	27	-29
max	T	197	0.0	K66	0	-56	3	33	10	42
max	M2	199	0.0	K12	-6	-52	9	-17	27	42
max	M3	171	2.5	K64	-3	-3	2	11	-1	196

SLE min	Frame	Station	Combo.	Р	V2	V3	Т	M2	M3
				kN	kN	kN	kNm	kNm	kNm

PROGETTO DEFINITIVO

RELAZIONI DI CALCOLO STRUTTURE

RADDOPPIO CESANO – VIGNA DI VALLE

STAZIONE DI VIGNA DI VALLE

FV02 - Fermata Vigna di Valle - Lato Nord

FV02 – Fabbricato viaggiatori – Relazione di calcolo

COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
NR1J	01	D29CL	FV 02 00 001	С	70 di 97

min	Р	197	0.0	K2	-29	-76	-6	14	-20	-23
min	V2	159	0.0	K63	3	-200	-4	-5	-10	-178
min	V3	164	0.0	K11	-1	-97	-10	-4	-26	-31
min	Т	199	0.0	K64	-13	-72	-4	-31	-14	0
min	M2	199	0.0	K1	-11	-71	-9	-21	-28	-36
min	М3	159	0.0	K65	4	-200	4	2	10	-178

Sollecitazioni SLE-QP

QP	max	Frame	Station	Combo.	Р	V2	V3	Т	M2	М3
					kN	kN	kN	kNm	kNm	kNm
max	Р	104	0.0	QP3	6	-102	0	0	0	-119
max	V2	159	6.0	QP4	-2	122	0	-4	0	-105
max	V3	197	0.0	QP3	-5	-62	1	19	1	-7
max	Т	197	0.0	QP4	-10	-61	-1	19	-1	14
max	M2	199	4.5	QP3	-5	74	-1	-18	2	-35
max	M3	171	2.5	QP4	-2	-6	0	7	0	118

QP	min	Frame	Station	Combo.	Р	V2	V3	Т	M2	M3
					kN	kN	kN	kNm	kNm	kNm
min	Р	184	0.0	QP4	-14	-81	0	1	0	-41
min	V2	159	0.0	QP3	3	-126	0	-1	0	-116
min	V3	199	0.0	QP3	-5	-62	-1	-18	-2	-8
min	Т	199	0.0	QP4	-10	-61	1	-19	1	13
min	M2	200	0.0	QP4	-4	-88	0	9	-2	-33
min	M3	104	6.8	QP3	6	103	0	0	-1	-121

STAZIONE DI VIGNA DI VALLE

FV02 – Fermata Vigna di Valle – Lato Nord FV02 – Fabbricato viaggiatori – Relazione di calcolo

COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
NR1J	01	D29CL	FV 02 00 001	С	71 di 97

8.5 VERIFICA DI RESISTENZA ALLO SLU

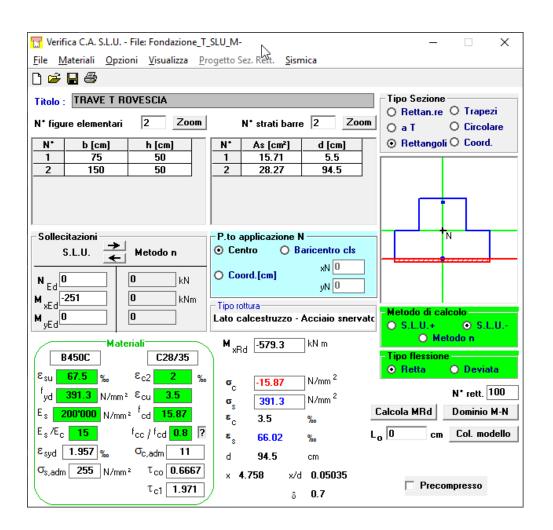
Si riportano di seguito le sollecitazioni di calcolo, per l'elemento maggiormente sollecitato, in corrispondenza della sezione d'appoggio e della sezione di campata (convenzione sui segni: compressione negativa (-), momento flettente che tende le fibre superiori negativo (-)):

Come prescritto dalle NTC2018 nel paragrafo 7.2.5, poiché le sollecitazioni di calcolo più gravose si rilevano in corrispondenza della combinazione sismica SLV, andranno amplificate del fattore 1,1 per CDB.

Verifica a Presso-flessione

Le verifiche di resistenza a flessione e pressoflessione allo SLU (NTC2018 – 4.1.2.1.2.4) per le sezioni di appoggio e di campata sono state condotte con il supporto del software VcaSLU considerando le sollecitazioni riportate nel prospetto precedente:

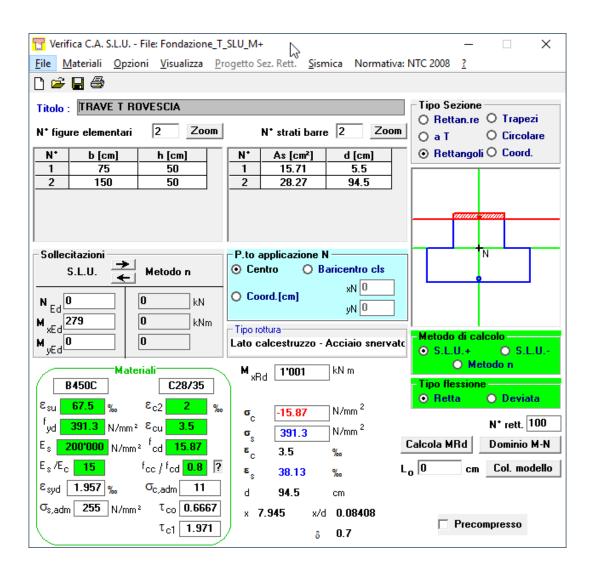
Trave a T rovescia


Armatura

	numero barre	diametro barre	larghezza	passo	Area
	n	fi	b	S	As
	ı	mm	mm	mm	mm2
Armatura sup	5	20	750	150	1570
Armatura inf	9	20	1500	166.67	2826

Momento flettente massimo negativo (fibre superiori tese):

	SLU	min	Frame	Station	Combo.	Р	V2	V3	T	M2	M3
				m		kN	kN	kN	kNm	kNm	kNm
Ī	min	M3	159	0.0	U50	7	-281	5	3	15	-251


MEd -251 kNm MRd -579 kNm FS 2.31

La verifica risulta soddisfatta.

Momento flettente massimo positivo (fibre inferiori tese):

SLU	max	Frame	Station	Combo.	Р	V2	V3	Т	M2	M3
			m		kN	kN	kN	kNm	kNm	kNm
max	М3	171	2.5	U47	-5	-3	3	17	-1	279

MEd 279 kNm MRd 1000 kNm FS 3.58

La verifica risulta soddisfatta.

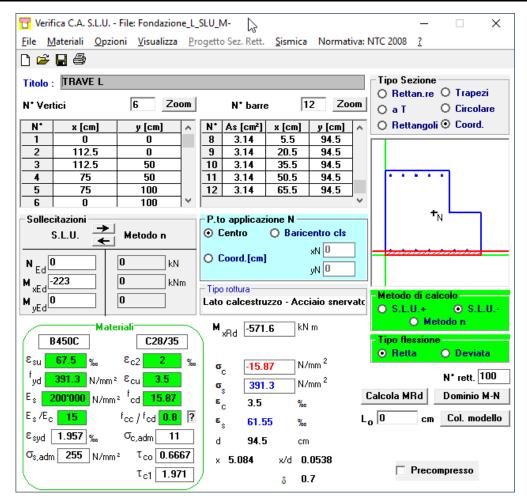
STAZIONE DI VIGNA DI VALLE

FV02 – Fermata Vigna di Valle – Lato Nord FV02 – Fabbricato viaggiatori – Relazione di calcolo

 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 NR1J
 01
 D29CL
 FV 02 00 001
 C
 74 di 97

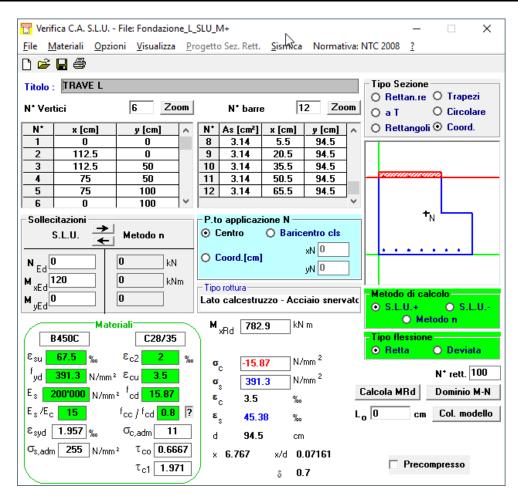
Trave a L


Armatura

	numero barre	diametro barre	larghezza	passo	Area
	n	fi	b	S	As
	-	mm	mm	mm	mm2
Armatura sup	5	20	750	150	1570
Armatura inf	7	20	1100	157.14	8

Momento flettente massimo negativo (fibre superiori tese):

SLU	min	Frame	Station	Combo.	Р	V2	V3	T	M2	M3
					kN	kN	kN	kNm	kNm	kNm
min	M3	173	0.0	U46	19	-201	3	3	7	-223


MEd -223 kNm MRd -572 kNm FS 2.56

La verifica risulta soddisfatta.

Momento flettente massimo positivo (fibre inferiori tese):

SLU	max	Frame	Station	Combo.	Р	V2	V3	T	M2	M3
					kN	kN	kN	kNm	kNm	kNm
max	M3	177	3.0	U47	-12	-9	3	25	-3	120

MEd 120 kNm MRd 783 kNm FS 6.53

La verifica risulta soddisfatta.

RELAZIONI DI CALCOLO STRUTTURE

RADDOPPIO CESANO – VIGNA DI VALLE

STAZIONE DI VIGNA DI VALLE

FV02 – Fermata Vigna di Valle – Lato Nord

FV02 – Fabbricato viaggiatori – Relazione di calcolo

 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 NR1J
 01
 D29CL
 FV 02 00 001
 C
 77 di 97

Verifica a Taglio

Trave a T rovescia

SLU	max	Frame	Station	Combo.	Р	V2	V3	Т	M2	M3
			m		kN	kN	kN	kNm	kNm	kNm
min	V2	159	0.0	U45	5	-281	-5	-8	-16	-250

Verifca a taglio per sezioni rettangolari armate a taglio (D.M. 17/01/2018)

erifca a taglio per sezioni rettangolari armate a	tagiio (D.ivi	. 17/01/2018)	
classe cls	Rck	35	N/mm²
resist. Caratteristica cilindrica	f_{ck}	29	N/mm ²
	f_{cd}	16	
coeff. parziale	Уc	1.5	
larghezza membratura resistene a V	bw	750	mm
altezza membratura resistene a V	Н	1000	mm
altezza utille	d	900	mm
area della sezione	A_TOT	7E+05	mm2
sforzo assiale dovuto ai carichi o precompressione	N	0	N
ok	$\sigma_{\sf cp}$	0.00	N/mm ²
	α_{c}	1.00	
Acciaio	f _{yk}	450	N/mm²
Feb44k	f_{yd}	391	N/mm²
diametro staffe (spille)	Øw	12	mm
Area staffa (spilla)	$Aø_w$	113	$\rm mm^2$
0.9 d	Z	810	mm
passo delle staffe (spille)	Sw	400	mm
	n° bracci	2	
angolo di inclinazione	θ	21.8	0
deve essere compreso tra 1 e 2.5	$cot(\theta)$	2.50	
angolo di inclinazione armatura rispetto asse palo	α	90	o
	$\cot(\alpha)$	0.00	
	Asw/sw	0.57	mm²/mm
Taglio resistente per "taglio trazione"	V_{Rsd}	448	kN
Taglio resistente per "taglio compressione"	V_{Rcd}	1724	kN
taglio sollecitante	V_{Ed}	281	kN
fattore di sicurezza per GR (par. 7.9.5.2.2)	γRd	1	
taglio resistente	V_{Rd}	448	kN
	V_{Ed}	<	V_{Rd}

verifica

FS 1.59

RELAZIONI DI CALCOLO STRUTTURE

RADDOPPIO CESANO – VIGNA DI VALLE

STAZIONE DI VIGNA DI VALLE

FV02 – Fermata Vigna di Valle – Lato Nord

FV02 – Fabbricato viaggiatori – Relazione di calcolo

 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 NR1J
 01
 D29CL
 FV 02 00 001
 C
 78 di 97

Trave a L

SLU	min	Frame	Station	Combo.	Р	V2	V3	Т	M2	M3
					kN	kN	kN	kNm	kNm	kNm
min	V2	173	0.0	U46	19	-201	3	3	7	-223

Verifca a taglio per sezioni rettangolari armate a taglio (D.M. 17/01/2018)

<u> </u>	101. 17/01/2	,	
classe cls	Rck	35	N/mm ²
resist. Caratteristica cilindrica	f_{ck}	29	N/mm ²
	f_{cd}	16	
coeff. parziale	Уc	1.5	
larghezza membratura resistene a V	bw	750	mm
altezza membratura resistene a V	Н	1000	mm
altezza utille	d	900	mm
area della sezione	Атот	675000	mm2
sforzo assiale dovuto ai carichi o precompressione	N	0	N
ok	$\sigma_{\sf cp}$	0.00	N/mm ²
	α_{c}	1.00	
Acciaio	f _{yk}	450	N/mm ²
Feb44k	\mathbf{f}_{yd}	391	N/mm ²
diametro staffe (spille)	\emptyset_{W}	12	mm
Area staffa (spilla)	$Aø_w$	113	mm^2
0.9 d	Z	810	mm
passo delle staffe (spille)	S_{W}	400	mm
	n° bracci	2	
angolo di inclinazione	θ	21.8	0
deve essere compreso tra 1 e 2.5	$\cot(\theta)$	2.50	
angolo di inclinazione armatura rispetto asse palo	α	90	0
	$\cot(\alpha)$	0.00	
	As_w / s_w	0.57	mm²/mm
Taglio resistente per "taglio trazione"	V_{Rsd}	448	kN
Taglio resistente per "taglio compressione"	V_{Rcd}	1724	kN
taglio sollecitante	V _{Ed}	201	kN
fattore di sicurezza per GR (par. 7.9.5.2.2)	γRd	1	
taglio resistente	V _{Rd}	448	kN
	V _{Ed}	<	V_{Rd}

ed < V_{Rd}

verifica

FS 2.23

STAZIONE DI VIGNA DI VALLE

FV02 – Fermata Vigna di Valle – Lato Nord FV02 – Fabbricato viaggiatori – Relazione di calcolo

COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
NR1J	01	D29CL	FV 02 00 001	С	79 di 97

8.6 VERIFICHE AGLI STATI LIMITE DI ESERCIZIO - SLE

Le verifiche nei confronti degli stati limite di esercizio degli elementi strutturali si effettuano in termini di:

- verifica di fessurazione;
- verifica delle tensioni di esercizio.

Verifiche di fessurazione e tensioni di esercizio

Per assicurare la funzionalità e la durata della struttura è necessario:

- realizzare un sufficiente ricoprimento delle armature con calcestruzzo di buona qualità e compattezza, bassa porosità e bassa permeabilità;
- non superare uno stato limite di fessurazione adeguato alle condizioni ambientali, alle sollecitazioni ed alla sensibilità delle armature alla corrosione;
- tener conto delle esigenze estetiche.

Avendo adottato acciai ordinari si rientra nel gruppo di armature poco sensibili alla corrosione. Pertanto sulla base della tabella 4.1.IV – NTC2018 è possibile definire lo stato limite di fessurazione in funzione delle condizioni ambientali (ordinarie) e dell'armatura (poco sensibile), prendendo in considerazione le combinazioni quasi permanenti e frequenti. Nel caso in esame lo stato limite di fessurazione da considerare è lo stato limite di apertura delle fessure. La verifica consiste nell'accertarsi che il valore di calcolo di apertura delle fessure (wd) non supera il valore limite fissato per la combinazione considerata. In particolare:

• per la combinazione di carico quasi permanente bisogna accertarsi che risulti: wd < w2 = 0.3 mm.

Per rapidità di calcolo si verifica che nella combinazione SLE rara l'apertura delle lesioni sia inferiore al valore limite (più severo) riferito alla combinazione quasi permanente.

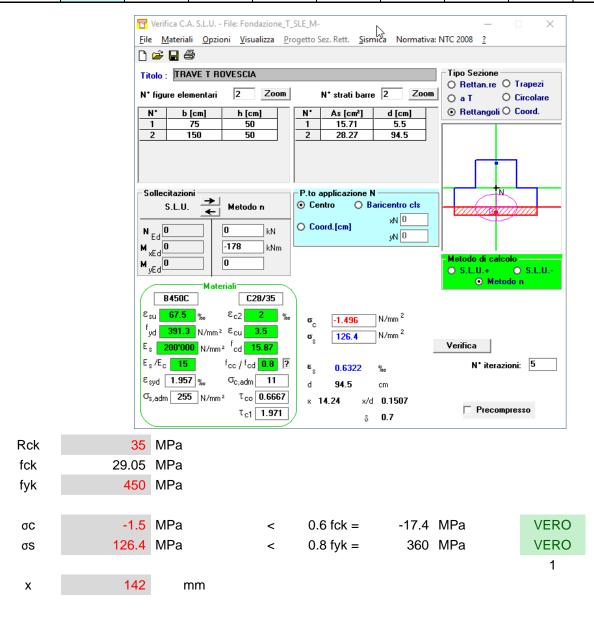
Per completare il quadro delle verifiche agli stati limite di esercizio (SLE) è necessario controllare le tensioni di esercizio, in accordo con quanto riportato al punto 4.1.2.2.5 delle NTC2018. In particolare bisogna verificare che:

• Per il calcestruzzo compresso:

 $\sigma_c < 0.60$ fck (per combinazione caratteristica rara); $\sigma_c < 0.45$ fck (per combinazione quasi permanente);

Per l'acciaio:

 σ_s < 0.80 fyk (per combinazione caratteristica rara).


Di seguito si riportano le tensioni di esercizio determinante in corrispondenza della combinazione che produce il valore di tensione più gravoso ottenuto tra le combinazioni rare e quasi permanenti.

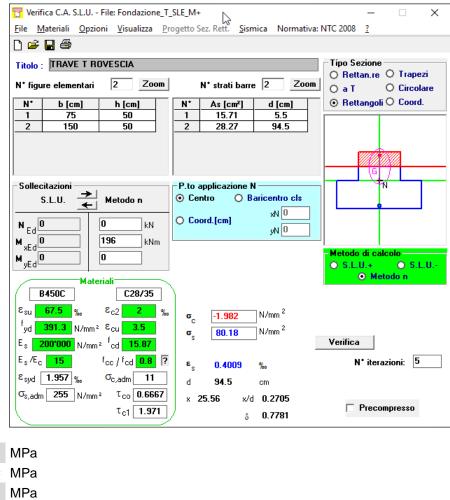
Trave a T rovescia

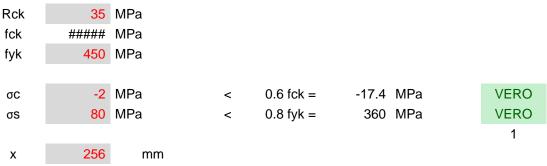
Momento flettente massimo negativo (fibre superiori tese):

ſ	SLE	min	Frame	Station	Combo.	Р	V2	V3	Т	M2	M3
						kN	kN	kN	kNm	kNm	kNm
Ī	min	M3	159	0.0	K65	4	-200	4	2	10	-178

Le verifiche sono soddisfatte.

Armatura longitudinale superiore


	INPUT	
R _{ck}	35	Мра
h	1000	mm
C ₁	50	mm
$oldsymbol{\phi}_1$	20	mm
n ₁	6.667	
C2	80	mm
φ ₂	0	mm
n ₂	6.667	1/m
d	950	mm
b _{eff}	150	mm
х	142	mm
σ _{s_max1}	126	Mpa
σ_{s_max2}		Mpa
$\mathbf{h}_{c,eff}$	125.0	mm
$A_{c,eff}$	18750	mm²
$ ho_{ m p,eff}$	0.017	
\mathbf{k}_{t}	0.4	
$\mathbf{k_1}$	0.8	
k_2	0.5	
k ₃	3.4	
k_4	0.425	


	OUTPUT	
diff. def. a	rmature-cls	
ε _{sm} - ε _{cm}	3.68E-04	-
distanza n	nax fessure	
S _{r,max}	339	mm
ampiezza	fessure:	
Wk	0.125	mm
W _{lim}	0.300	mm
La verifica	è soddisfatta	1.

Momento flettente massimo positivo (fibre inferiori tese):

SLE	max	Frame	Station	Combo.	Р	V2	V3	Т	M2	М3
					kN	kN	kN	kNm	kNm	kNm
max	М3	171	2.5	K64	-3	-3	2	11	-1	196

Le verifiche sono soddisfatte.

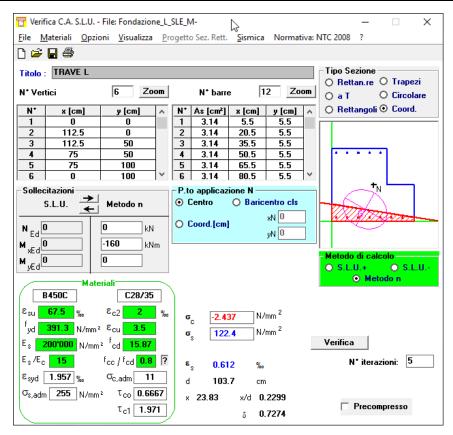
STAZIONE DI VIGNA DI VALLE

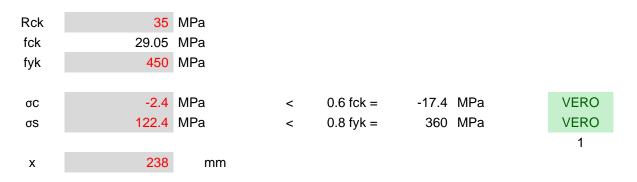
FV02 – Fermata Vigna di Valle – Lato Nord FV02 – Fabbricato viaggiatori – Relazione di calcolo
 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 NR1J
 01
 D29CL
 FV 02 00 001
 C
 83 di 97

Armatura longitudinale inferiore

		INPUT	
	R _{ck}	35	Мра
dimensione	h	1000	mm
pos. baric. 1° strato	C 1	50	mm
diametro barre 1° strato	φ1	20	mm
numero barre 1° strato	n ₁	6.667	
pos. baric. 2° strato	C ₂	80	mm
diametro barre 2° strato	φ2	0	mm
numero barre 2° strato	n ₂	6.667	1/m
distanza lembo compresso-lembo teso della sezione	d	950	mm
	\mathbf{b}_{eff}	150	mm
posizione asse neutro da lembo comrpesso	x	256	mm
Tensione massima barre 1° strato	σ _{s_max1}	80	Мра
Tensione massima barre 2° strato	σ _{s_max2}		Мра
altezza efficace	$\mathbf{h}_{c,eff}$	125.0	mm
area efficace relativamente ad una singola barre	$\mathbf{A}_{c,eff}$	18750	mm²
percentuale di armatura relativa a Ac,eff	$ ho_{ m p,eff}$	0.017	
(0.6 carichi brevi; 0.4 lunga durata)	k t	0.4	
(0.8 barre ad. migliorata; 1.6 liscie)	$\mathbf{k_1}$	0.8	
(0.5 per flessione; 1 trazione)	k ₂	0.5	
	k ₃	3.4	
	k 4	0.425	


(OUTPUT							
diff. def. arm	diff. def. armature-cls							
ε _{sm} - ε _{cm}	2.33E-04	-						
distanza max	distanza max fessure							
S _{r,max}	339	mm						
ampiezza fes	sure:							
$\mathbf{w}_{\mathbf{k}}$	0.079	mm						
Wlim	0.300	mm						
La verifica è soddisfatta.								



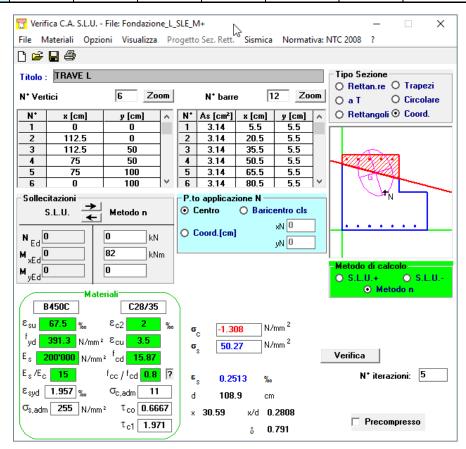
Trave a L

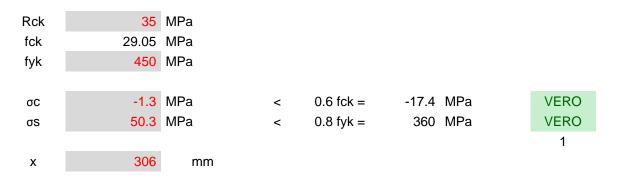
Momento flettente massimo negativo (fibre superiori tese):

SLE	min	Frame	Station	Combo.	P	V2	V3	T	M2	M3
					kN	kN	kN	kNm	kNm	kNm
min	M3	173	0.0	K65	13	-145	2	2	5	-160

Le verifiche sono soddisfatte.

Armatura longitudinale superiore


INPUT							
R _{ck}	35	Мра					
h	1000	mm					
C ₁	50	mm					
ϕ_1	20	mm					
n ₁	6.667						
C ₂	80	mm					
φ2	0	mm					
n ₂	6.667	1/m					
d	950	mm					
\mathbf{b}_{eff}	150	mm					
x	238	mm					
σ _{s_max1}	122	Mpa					
σ_{s_max2}		Mpa					
$\mathbf{h}_{c,eff}$	125.0	mm					
$A_{c,eff}$	18750	mm²					
$ ho_{ m p,eff}$	0.017						
$\mathbf{k_t}$	0.4						
k ₁	0.8						
k ₂	0.5						
k₃	3.4						
k ₄	0.425						


ОИТРИТ								
diff. def. ar	diff. def. armature-cls							
ε _{sm} - ε _{cm}	3.57E-04	-						
distanza max fessure								
S _{r,max}	339	mm						
ampiezza f	essure:							
Wk	0.121	mm						
W _{lim}	0.300	mm						
La verifica è soddisfatta.								

Momento flettente massimo negativo (fibre superiori tese):

SLE	max	Frame	Station	Combo.	Р	V2	V3	Т	M2	M3
					kN	kN	kN	kNm	kNm	kNm
max	M3	172	1.4	K52	-20	1	0	17	1	82

Le verifiche sono soddisfatte.

STAZIONE DI VIGNA DI VALLE

FV02 – Fermata Vigna di Valle – Lato Nord FV02 – Fabbricato viaggiatori – Relazione di calcolo
 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 NR1J
 01
 D29CL
 FV 02 00 001
 C
 87 di 97

Armatura longitudinale inferiore

<u>.</u>			
		INPUT	
	R_{ck}	35	Мра
dimensione	h	1000	mm
pos. baric. 1° strato	C ₁	50	mm
diametro barre 1° strato	ϕ_1	20	mm
numero barre 1° strato	n ₁	6.667	
pos. baric. 2° strato	C ₂	80	mm
diametro barre 2° strato	φ2	0	mm
numero barre 2° strato	n ₂	6.667	1/m
distanza lembo compresso-lembo teso della sezione	d	950	mm
	\mathbf{b}_{eff}	150	mm
posizione asse neutro da lembo comrpesso	x	306	mm
Tensione massima barre 1° strato	σ_{s_max1}	50	Мра
Tensione massima barre 2° strato	σ_{s_max2}		Мра
altezza efficace	$\mathbf{h}_{c,eff}$	125.0	mm
area efficace relativamente ad una singola barre	$\mathbf{A}_{c,eff}$	18750	mm²
percentuale di armatura relativa a A _{c,eff}	$ ho_{ m p,eff}$	0.017	
(0.6 carichi brevi; 0.4 lunga durata)	k t	0.4	
(0.8 barre ad. migliorata; 1.6 liscie)	k ₁	0.8	
(0.5 per flessione; 1 trazione)	k ₂	0.5	
	k ₃	3.4	
	k 4	0.425	

OUTPUT								
diff. def	diff. def. armature-cls							
ε _{sm} - ε _{cm}	1.47E-04	-						
distanza	distanza max fessure							
S _{r,max}	339	mm						
ampiezz	za fessure:							
Wk	0.050	mm						
W _{lim}	0.300	mm						
La verifi	La verifica è soddisfatta.							

STAZIONE DI VIGNA DI VALLE

FV02 – Fermata Vigna di Valle – Lato Nord FV02 – Fabbricato viaggiatori – Relazione di calcolo

COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
NR1J	01	D29CL	FV 02 00 001	С	88 di 97

8.7 VERIFICA CAPACITÀ PORTANTE

Si riportano qui di seguito si riportano le reazioni delle molle alla Winkler ottenute dal modello di calcolo, nelle combinazioni SLV e SLU (per le verifiche a breve termine) e SLE q.perm. per le verifiche a lungo termine.

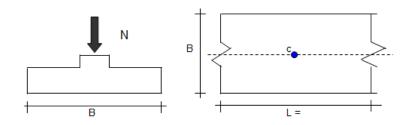
Stato limite	Joint	Combo.	F3
			kN
SLU	151	U47	77.15
SLV	151	EZ	44.99
SLE	151	K64	54.97

RELAZIONI DI CALCOLO STRUTTURE

RADDOPPIO CESANO – VIGNA DI VALLE

STAZIONE DI VIGNA DI VALLE

FV02 – Fermata Vigna di Valle – Lato Nord


FV02 – Fabbricato viaggiatori – Relazione di calcolo

COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
NR1J	01	D29CL	FV 02 00 001	С	89 di 97

Cedimenti a lungo termine

CEDIMENTI DI UNA FONDAZIONE NASTRIFORME

LAVORO:

Formulazione Teorica (H.G. Poulos, E.H. Davis; 1974)

 $\Delta \sigma z i = (2q/\pi)^*(\alpha + sen\alpha cos\alpha)$

 $\Delta \sigma xi = (2q/\pi)^*(\alpha - sen\alpha cos\alpha)$

 $\Delta \sigma yi = (4q/\pi)^*(v\alpha)$

 $\alpha = \tan^{-1}((B/2)/z)$

 $\delta_{tot} = \Sigma \delta \iota = \Sigma (((\Delta \sigma z i - \nu i (\Delta \sigma x i + \Delta \sigma y i)) \Delta z i / E i)$

DATI DI INPUT:

B = 1.50 (m) (Larghezza della Fondazione)

N = 44.99 (kN) (Carico Verticale Agente)

q = 29.99 (kN/mq) (Pressione Agente (q = N/B)

ns = 3 (-) (numero strati) (massimo 6)

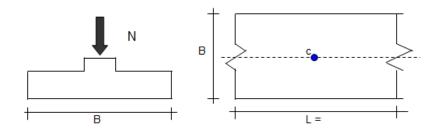
Strato	Litologia	Spessore	da z _i	a Z _{I+1}	Δzi	E	ν	δci
(-)	(-)	(m)	(m)	(m)	(m)	(kN/m²)	(-)	(cm)
1	P1	5.00	0.0	5.0	1.0	18000	0.30	0.32
2	U1a	9.50	5.0	14.5	1.0	26000	0.30	0.10
3	U3b	20.00	14.5	34.5	1.0	35000	0.30	0.07
-			0.0	0.0	1.0		0.30	-
-		0.00	0.0	0.0	1.0	0	0.00	-
-		0.00	0.0	0.0	1.0	0	0.00	-

RELAZIONI DI CALCOLO STRUTTURE

RADDOPPIO CESANO – VIGNA DI VALLE

STAZIONE DI VIGNA DI VALLE

FV02 – Fermata Vigna di Valle – Lato Nord


FV02 – Fabbricato viaggiatori – Relazione di calcolo

COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
NR1J	01	D29CL	FV 02 00 001	С	90 di 97

Cedimenti a breve termine

CEDIMENTI DI UNA FONDAZIONE NASTRIFORME

LAVORO:

Formulazione Teorica (H.G. Poulos, E.H. Davis; 1974)

 $\Delta \sigma z i = (2q/\pi)^*(\alpha + sen\alpha cos\alpha)$

 $\Delta \sigma xi = (2q/\pi)^*(\alpha - sen\alpha cos\alpha)$

 $\Delta \sigma yi = (4q/\pi)^*(\nu\alpha)$

 $\alpha = \tan^{-1}((B/2)/z)$

 $\delta_{tot} = \Sigma \delta\iota = \Sigma (((\Delta \sigma z i - \nu i (\Delta \sigma x i + \Delta \sigma y i)) \Delta z i / E i)$

DATI DI INPUT:

B = 1.50 (m) (Larghezza della Fondazione)

N = 44.99 (kN) (Carico Verticale Agente)

q = 29.99 (kN/mq) (Pressione Agente (q = N/B)

ns = 3 (-) (numero strati) (massimo 6)

Strato	Litologia	Spessore	da z _i	a Z _{I+1}	Δzi	E	ν	δci
(-)	(-)	(m)	(m)	(m)	(m)	(kN/m²)	(-)	(cm)
1	P1	5.00	0.0	5.0	1.0	36000	0.30	0.16
2	U1a	9.50	5.0	14.5	1.0	54000	0.30	0.05
3	U3b	20.00	14.5	34.5	1.0	35000	0.30	0.07
-			0.0	0.0	1.0		0.30	-
-		0.00	0.0	0.0	1.0	0	0.00	-
-		0.00	0.0	0.0	1.0	0	0.00	-

RELAZIONI DI CALCOLO STRUTTURE

RADDOPPIO CESANO – VIGNA DI VALLE

STAZIONE DI VIGNA DI VALLE

FV02 – Fermata Vigna di Valle – Lato Nord

FV02 – Fabbricato viaggiatori – Relazione di calcolo

COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
NR1J	01	D29CL	FV 02 00 001	С	91 di 97

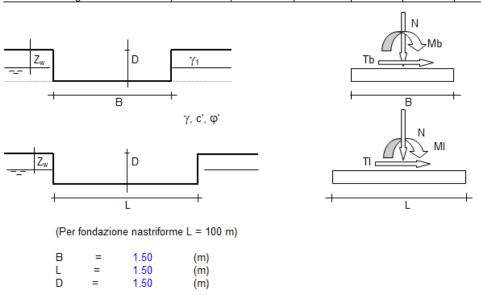
<u>Fondazioni Dirette</u> <u>Verifica in tensioni efficaci</u>

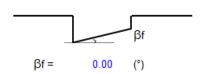
qlim = c'-Nc-sc-dc-ic-bc-gc + q-Nq-sq-dq-iq-bq-gq + 0,5-y-B-Ny-sy-dy-iy-by-gy

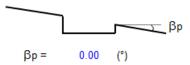
D = Profondità del piano di appoggio

e_B = Eccentricità in direzione B (e_B = Mb/N)

 e_L = Eccentricità in direzione L (e_L = MI/N) (per fondazione nastriforme e_L = 0; L* = L)


B* = Larghezza fittizia della fondazione (B* = B - 2*e_B)


L* = Lunghezza fittizia della fondazione (L* = L - 2*e_L)


(per fondazione nastriforme le sollecitazioni agenti sono riferite all'unità di lunghezza)

coefficienti parziali

			azioni		proprietà d	proprietà del terreno		resistenze	
Metodo di calcolo		permanenti	temporanee variabili	tan φ'	c'	qlim	scorr		
Stato Limite Ultimo	A1+M1+R1	0	1.30	1.50	1.00	1.00	1.00	1.00	
	A2+M2+R2	0	1.00	1.30	1.25	1.25	1.80	1.00	
	SISMA	0	1.00	1.00	1.25	1.25	1.80	1.00	
Stat C	A1+M1+R3	0	1.30	1.50	1.00	1.00	2.30	1.10	
0,	SISMA	0	1.00	1.00	1.00	1.00	2.30	1.10	
Tensioni Ammissibili		1.00	1.00	1.00	1.00	3.00	3.00		
Definiti dal Progettista		1.00	1.00	1.00	1.00	2.30	1.10		

RELAZIONI DI CALCOLO STRUTTURE

RADDOPPIO CESANO – VIGNA DI VALLE

STAZIONE DI VIGNA DI VALLE

FV02 - Fermata Vigna di Valle - Lato Nord

FV02 – Fabbricato viaggiatori – Relazione di calcolo

COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
NR1J	01	D29CL	FV 02 00 001	С	92 di 97

AZIONI

		valori o	Valori di	
		permanenti	temporanee	calcolo
N	[kN]	77.15		77.15
Mb	[kNm]	0.00		0.00
MI	[kNm]	0.00		0.00
Tb	[kN]	0.00		0.00
TI	[kN]	0.00		0.00
Н	[kN]	0.00	0.00	0.00

Peso unità di volume del terreno

26.00

25.00

0.00

17.00

(kN/mc)

17.00

(kN/mc)

Valori caratteristici di resistenza del terreno

c' 0.00 =

(kN/mq)

(°)

Valori di progetto

c' 0.00

26.00

1.50

1.50

(kN/mq) (°)

Profondità della falda

=

e_L =

(m)

0.00 e_B =

(m)

(m)

B* =

(m)

L* =

(m)

q : sovraccarico alla profondità D

q = 25.50 (kN/mq)

γ: peso di volume del terreno di fondazione

γ =

17.00

(kN/mc)

Nc, Nq, Nγ: coefficienti di capacità portante

Nq =
$$tan^2(45 + \phi'/2)^*e^{(\pi^*tg\phi')}$$

Nq =

11.85

 $Nc = (Nq - 1)/tan\phi'$

Nc =

22.25

 $N\gamma = 2*(Nq + 1)*tan\phi'$

Nγ =

12.54

RELAZIONI DI CALCOLO STRUTTURE

RADDOPPIO CESANO - VIGNA DI VALLE

STAZIONE DI VIGNA DI VALLE

FV02 - Fermata Vigna di Valle - Lato Nord

FV02 – Fabbricato viaggiatori – Relazione di calcolo

COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
NR1J	01	D29CL	FV 02 00 001	С	93 di 97

s_c, s_q, s_y : fattori di forma

$$s_c = 1 + B*Nq / (L*Nc)$$

$$s_0 = 1 + B*tan\phi' / L*$$

$$s_v = 0.60$$

i_c , i_q , i_γ : fattori di inclinazione del carico

$$m_b = (2 + B^* / L^*) / (1 + B^* / L^*) =$$

 $\theta = arctg(Tb/TI) =$

90.00 (°)

(-)

$$m_1 = (2 + L^* / B^*) / (1 + L^* / B^*) =$$

1.50

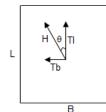
m =

$$i_q = (1 - H/(N + B*L*c' \cot g\phi'))^m$$

1.50

1.50

(m=2 nel caso di fondazione nastriforme e m=(m_bsin²θ+m_Icos²θ) in tutti gli altri casi)


1.00

$$i_c = i_q - (1 - i_q)/(Nq - 1)$$

1.00

$$i_{\gamma} = (1 - H/(N + B^*L^* c' \cot g\phi'))^{(m+1)}$$

1.00

d_c, d_q, d_y : fattori di profondità del piano di appoggio

per D/B*
$$\leq$$
 1; d_q = 1 +2 D tan ϕ ' (1 - sen ϕ ')² / B*

per D/B*> 1;
$$d_q = 1 + (2 \tan \varphi' (1 - \sin \varphi')^2) * \arctan (D / B*)$$

$$d_0 = 1.31$$

$$d_c = d_q - (1 - d_q) / (N_c \tan \varphi')$$

 $d_{y} = 1$

$$d_v = 1.00$$

$b_c,\, b_q,\, b_\gamma$: fattori di inclinazione base della fondazione

$$b_q = (1 - \beta_f \tan \phi')^2$$

$$\beta_f + \beta_p = 0.00$$

$$\beta_f + \beta_p < 45^\circ$$

$$b_c = b_q - (1 - b_q) / (N_c \tan \varphi')$$

$$b_y = b_q$$

$$b_y = 1.00$$

RELAZIONI DI CALCOLO STRUTTURE

RADDOPPIO CESANO – VIGNA DI VALLE

STAZIONE DI VIGNA DI VALLE

FV02 – Fermata Vigna di Valle – Lato Nord

FV02 – Fabbricato viaggiatori – Relazione di calcolo

COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
NR1J	01	D29CL	FV 02 00 001	С	94 di 97

gc, gq, gy: fattori di inclinazione piano di campagna

$$g_q = (1 - tan\beta_p)^2$$

$$\beta_f + \beta_p = 0.00$$

$$\beta_f + \beta_p < 4$$

$$g_q = 1.00$$

$$g_c = g_q - (1 - g_q) / (N_c \tan \varphi')$$

$$g_c = 1.00$$

$$g_y = g_q$$

$$g_y = 1.00$$

Carico limite unitario

$$q_{lim} = 684.01 \text{ (kN/m}^2\text{)}$$

Pressione massima agente

$$q = N / B^* L^*$$

$$q = 34.29 \text{ (kN/m}^2\text{)}$$

Verifica di sicurezza capacità portante

$$q_{lim}/\gamma_R = 297.4$$

RELAZIONI DI CALCOLO STRUTTURE

RADDOPPIO CESANO – VIGNA DI VALLE

STAZIONE DI VIGNA DI VALLE

FV02 - Fermata Vigna di Valle - Lato Nord

FV02 – Fabbricato viaggiatori – Relazione di calcolo

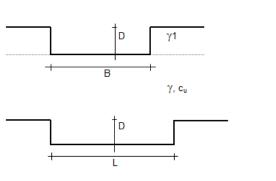
COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
NR1J	01	D29CL	FV 02 00 001	С	95 di 97

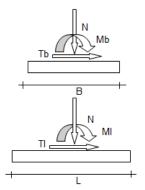
<u>Fondazioni Dirette</u> <u>Verifica in tensioni totali</u>

 $qlim = c_u \cdot Nc \cdot sc \cdot dc \cdot ic \cdot bc \cdot gc + q \cdot Nq$

D = Profondità del piano di appoggio

e_B = Eccentricità in direzione B (e_B = Mb/N)

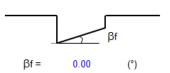

e_L = Eccentricità in direzione L (e_L = MI/N) (per fondazione nastriforme $e_L = 0$; $L^* = L$)

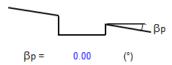

 B^* = Larghezza fittizia della fondazione (B^* = B - 2^*e_B)

L* = Lunghezza fittizia della fondazione (L* = L - 2*e_L)

coefficienti parziali

			azioni		proprietà del terreno	resist	enze
					proprieta del terreno	163131	01120
Metodo di calcolo		permanenti	temporanee variabili	Cu	qlim	scorr	
	A1+M1+R1	0	1.30	1.50	1.00	1.00	1.00
Stato Limite Ultimo	A2+M2+R2	0	1.00	1.30	1.40	1.80	1.00
	SISMA	0	1.00	1.00	1.40	1.80	1.00
Stat C	A1+M1+R3	0	1.30	1.50	1.00	2.30	1.10
0,	SISMA	0	1.00	1.00	1.00	2.30	1.10
Tensioni Ammissibili		1.00	1.00	1.00	3.00	3.00	
Definiti dal Progettista		1.00	1.00	1.00	2.30	1.10	





(Per fondazioni nastriformi L=100 m)

1.50 (m) 1.50

L D (m) 1.50 (m)

RELAZIONI DI CALCOLO STRUTTURE

RADDOPPIO CESANO - VIGNA DI VALLE

STAZIONE DI VIGNA DI VALLE

FV02 - Fermata Vigna di Valle - Lato Nord

FV02 – Fabbricato viaggiatori – Relazione di calcolo

COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
NR1J	01	D29CL	FV 02 00 001	С	96 di 97

AZIONI

		valori di input		Valori di
		permanenti	temporanee	calcolo
N	[kN]	77.15	0.00	77.15
Mb	[kNm]	0.00	0.00	0.00
MI	[kNm]	0.00	0.00	0.00
Tb	[kN]	0.00	0.00	0.00
TI	[kN]	0.00	0.00	0.00
Н	[kN]	0.00	0.00	0.00

Peso unità di volume del terreno

17.00 (kN/mc)

17.00 (kN/mc) 7

Valore caratteristico di resistenza del terreno

40.00 (kN/mq)

ев 0.00 (m)

0.00 (m)

Valore di progetto

40.00 (kN/mq)

1.50

(m)

L* 1.50 (m)

q : sovraccarico alla profondità D

25.50 (kN/mq)

γ: peso di volume del terreno di fondazione

17.00 (kN/mc)

Nc : coefficiente di capacità portante

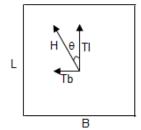
 $Nc = 2 + \pi$

Nc = 5.14

s_c: fattori di forma

 $s_c = 1 + 0.2 B^* / L^*$

s_c = 1.20


i_c: fattore di inclinazione del carico

 $m_b = (2 + B^* / L^*) / (1 + B^* / L^*)$ 1.50

 $m_1 = (2 + L^* / B^*) / (1 + L^* / B^*)$ 1.50

 $\theta = arctg(Tb/TI) =$ 90.00 (°)

m = 1.50

RELAZIONI DI CALCOLO STRUTTURE

RADDOPPIO CESANO – VIGNA DI VALLE

STAZIONE DI VIGNA DI VALLE

FV02 - Fermata Vigna di Valle - Lato Nord

FV02 – Fabbricato viaggiatori – Relazione di calcolo

LOTTO CODIFICA REV. COMMESSA DOCUMENTO **FOGLIO** NR1J D29CL С 97 di 97 01 FV 02 00 001

(m=2 nel caso di fondazione nastriforme e m=(m_bsin²θ+m_lcos²θ) in tutti gli altri casi)

$$i_c = (1 - m H / (B*L* c_u*Nc))$$

d_c: fattore di profondità del piano di appoggio

per D/B*> 1;
$$d_c = 1 + 0.4$$
 arctan (D / B*)

$$d_c = 1.40$$

bc: fattore di inclinazione base della fondazione

$$b_c = (1 - 2 \beta_f / (\pi + 2))$$

$$\beta_f + \beta_p = 0.00$$

$$\beta_f + \beta_p < 4$$

gc: fattore di inclinazione piano di campagna

$$g_c = (1 - 2 \beta_f / (\pi + 2))$$

$$\beta_f + \beta_p = 0.00$$

$$\beta_f + \beta_p < 4$$

$$g_c = 1.00$$

Carico limite unitario

$$q_{lim} = 370.91 \text{ (kN/m}^2\text{)}$$

Pressione massima agente

$$q = N / B^* L^*$$

$$q = 34.29 \text{ (kN/m}^2\text{)}$$

Verifica di sicurezza capacità portante

$$q_{lim}/\gamma_R = 161.26 \ge q = 34.29 (kN/m^2)$$