COMMITTENTE

SOGGETTO TECNICO

DIREZIONE STAZIONI - INGEGNERIA E INVESTIMENTI

PROGETTAZIONE

MANDATARIA

MANDANTE

CODING

GENERAL ENGINEERING & PLANNING

POLITECNICA BUILDING FOR HUMANS SWS

CODING S.R.L.

POLITECNICA SOC. COOP.

SWS ENGINEERING S.P.A.

HUB DI INTERSCAMBIO FERROVIARIO DI POMPEI

PROGETTO DEFINITIVO STRUTTURE

CAVALCAFERROVIA

Relazione di Calcolo Impalcato

SCALA

3 2 0 5

20

SOTTOPR.

PD

PMCV

R C

SCALA

E 0 1 A

Rev	Descrizione	Redatto	Verificato	Approvato	Data	Autorizzato Il progettista	Data
Α	Emissione	C. Pinti	L.Nardoni	P. Luciani	16/11/20	G. Сорра	16/11/20
			<i>y.</i>				

Controllo Qualità

QA	Verificato	Approvato	Autorizzato
QC	Miltaliano	F.Bordon	R. Vangeli

Soggetto Tecnico	Data	Referente di Progetto	Data
F-Cerrone	16/11/20	A.Martino	

POSIZIONE ARCHIVIO

LIINE	А		
=	П	Ш	=

SEDI	ETEC	CNIC	Α	

NON	/IE D	UC.	

NUMERAZIONE								

Verificato e Trasmesso	Data	Convalidato	Data	Archiviato	Data

Progetto definitivo Relazione di calcolo impalcato Cavalcaferrovia HUB DI INTERSCAMBIO FERROVIARIO DI POMPEI

Rev.	Descrizione revisione	Redatto	Verificato	Approvato	Autorizzato
0	Emissione	C. Pinti	L. Nardoni	P. Luciani	F. Coppa

INDICE

1	PREMESSA	5
2	DESCRIZIONE DELL'OPERA	6
3	NORMATIVA DI RIFERIMENTO	8
1.1	NORME E/O LINEE GUIDA PER LA PROGETTAZIONE E COSTRUZIONE	RELATIVE
	ALL'ACCESSIBILITÀ	8
1.2	NORME E/O LINEE GUIDA PER LA PROGETTAZIONE E COSTRUZIONE	8
1.3	NORME NAZIONALI	10
1.4	MANUALI, SPECIFICHE, ISTRUZIONI, PRESCRIZIONI, ETC. DI RFI, ATTINENTI	LE OPERE
	CIVILI DI RFI	11
	1.4.1 Opere civili	11
	1.4.2 Impianti elettrici — Rete di terra e protezione dalle scariche atmosferiche	14
	1.4.3 Impianti speciali – TVCC	14
	1.4.4 Impianti speciali — IaP informazioni al pubblico	14
	1.4.5 Impianti ascensori e scale mobili	15
	1.4.6 Linea di Contatto	15
1.5	TARIFFE DI RFI	15
4	CARATTERIZZAZIONE GEOTECNICA	16
5	UNITA' DI MISURA	16
6	MATERIALI	17
6.1	CALCESTRUZZO	17
	6.1.1 Predalles	17
	6.1.2 Soletta	18
6.2	ACCIAIO PER CEMENTO ARMATO	18
6.3	ACCIAIO DA CARPENTERIA METALLICA	19
6.4	BULLONI	20
6.5	SALDATURE	20

6.6	PIOLATURE	20
7	PARAMETRI SISMICI	21
8	CRITERI DI MODELLAZIONE	26
9	ANALISI DEI CARICHI	30
9.1	PESI PROPRI (G1)	30
	9.1.1 Elementi in calcestruzzo	30
	9.1.2 Carpenteria metallica	30
9.2	CARICHI PERMANENTI (G2)	30
9.3	RITIRO E VISCOSITÀ (\square 2)	31
9.4	VARIAZIONI TERMICHE (ε3)	33
9.5	CEDIMENTI VINCOLARI (ε4)	34
9.6	CARICHI ACCIDENTALI MOBILI Q1	34
9.7	INCREMENTO DINAMICO IN PRESENZA DI DISCONTINUITA' STRUTTURALI Q2	36
9.8	AZIONE LONGITUDINALE DI FRENAMENTO Q3	36
9.9	AZIONE CENTRIFUGA Q4	37
9.10	AZIONE DEL VENTO (Q5)	38
9.11	AZIONI SISMICHE (Q6)	42
9.12	URTI ACCIDENTALI Q8	44
10	COMBINAZIONI DI CARICO	45
11	ANALISI DEI RISULTATI IMPALCATO	49
11.1	SOLLECITAZIONI AGENTI 1A FASE	49
11.2	SOLLECITAZIONI 2A FASE	50
11.3	MODI DI VIBRARE	57
12	VERIFICHE IMPALCATO	59
12.1	CARATTERISITICHE GEOMETRICHE DELLE SEZIONI	60
	12.1.1 Valutazione della larghezza collaborante della soletta	60
	MANDATARIA MANDANTI	Pag. 3 a 106

	12.1.2 Caratteristiche geometriche delle sezioni d'acciaio	61
	12.1.3 Caratteristiche meccaniche delle travi	63
12.2	VERIFICHE 1A FASE	. 67
12.3	VERIFICHE 2A FASE (TEMPO T0)	. 70
12.4	VERIFICHE 2 ^A FASE (TEMPO T∞)	. 73
12.5	VERIFICHE DI INSTABILITÀ	. 76
12.6	VERIFICHE A FATICA	. 77
12.7	INCIDENZA CARPENTERIA METALLICA	. 79
13	VERIFICHE A DEFORMABILITÀ	80
14	SOLETTA - SOLLECITAZIONI E VERIFICHE	81
14.1	MODELLO DI CALCOLO A PIASTRA	. 81
14.2	ANALISI DEI CARICHI DELLA SOLETTA	. 82
14.3	ANALISI DELLE SOLLECITAZIONI ED ARMATURE DELLA SOLETTA	. 85
14.4	VERIFICA DELLA SOLETTA	. 86
14.5	VERIFICA DELLA SOLETTA IN SENSO LONGITUDINALE	. 90
15	TRASVERSI E NODI	92
15.1	DIMENSIONAMENTO E VERIFICA DEI BULLONI	. 93
16	REAZIONI SUGLI APPOGGI	96
17	RITEGNI SISMICI	104
10	CHINTI	107

1 PREMESSA

Oggetto della presente relazione sono i calcoli e le verifiche strutturali dell'impalcato del Cavalcaferrovia per il nuovo HUB di Pompei. Tale opera è eseguita nell'ambito dei lavori relativi di inserimento di una nuova Stazione RFI sulla linea Napoli-Salerno (via Nocera Inferiore), che dovrà costituire il principale collegamento ferroviario con il sito archeologico di Pompei. L'opera si integra con gli edifici storici dell'antica Stazione Pompei Scavi, il cui ex fabbricato viaggiatori costituisce l'accesso alla nuova fermata.

Le strutture sono state progettate coerentemente con quanto previsto dalla normativa vigente, "Norme Tecniche per le Costruzioni" - DM 17.1.2018 e Circolare n.7 Istruzioni per l'applicazione dell'«Aggiornamento delle "Norme tecniche per le costruzioni"» di cui al DM 17.1.2018.

2 DESCRIZIONE DELL'OPERA

Il cavalcaferrovia ha uno sviluppo di circa 80 m in asse giunto ed è composto da 3 campate: la centrale da 32.0m e le due laterali da 24.0m.

Planimetricamente si sviluppa in curva non costrante nella spalla A ed in rettifilo per la altre sottostrutture

L'impalcato a sezione mista acciaio-calcestruzzo, è costituito da 4 travi in acciaio con sezione a doppio T a sezione costante, con altezza pari a 2.0m. Le travi metalliche sono poste ad un interasse di 2.8m.

Lo schema statico adottato è quello di trave continua. La larghezza trasversale dell'impalcato è pari a 12.95 m, con una fascia centrale pavimentata di larghezza pari a 8.00 m e due cordoli laterali di larghezza pari a 2.50 m e spessore di 0.15 m. La soletta ha uno spessore costante pari a 30cm.

Le sottostrutture sono di tipo tradizionale: in particolare la spalla A poggia su 16 pali di diametro Ø 1500, le due pile centrali su 11 pali di diametro Ø 1200, mentre la spalla B su 11 pali Ø 1200.

Nelle Figure riportate di seguito si forniscono le immagini della carpenteria dell'impalcato in esame. Si rimanda agli elaborati grafici per l'ottenimento di dettagli ulteriori.

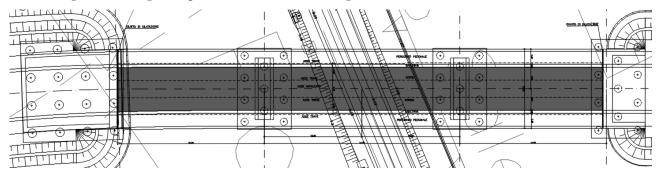


Figura 1: Pianta impalcato

Direzione Stazioni

Ingegneria e Investimenti

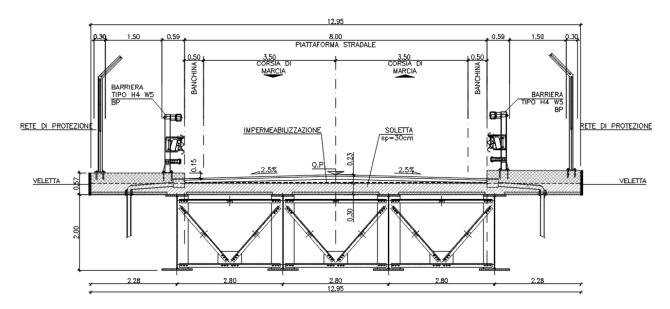


Figura 2: Sezione trasversale dell'impalcato

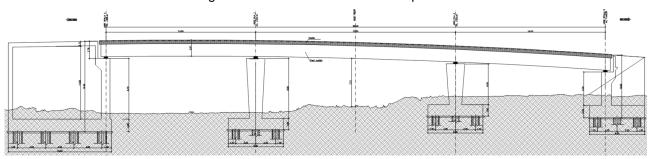


Figura 3: Sezione longitudinale dell'impalcato

3 NORMATIVA DI RIFERIMENTO

La progettazione è conforme alle normative vigenti nonché alle istruzioni dell'Ente FF.SS.

NB: L'elenco riportato ha valore indicativo. L'appaltatore è comunque tenuto all'osservanza di tutte le norme, nazionali ed internazionali, applicabile ed in vigore al momento della realizzazione.

1.1 Norme e/o linee guida per la progettazione e costruzione relative all'accessibilità

- Legge 9.1.1989, n° 13. Disposizioni per favorire il superamento e l'eliminazione delle barriere architettoniche negli edifici privati.
- D.M. (LL.PP.) 14.6.1989, n° 236. Prescrizioni tecniche necessarie a garantire l'accessibilità, l'adattabilità e la visibilità degli edifici privati e di edilizia residenziale pubblica sovvenzionata e agevolata, ai fini del superamento e dell'eliminazione delle barriere architettoniche.
- Legge 5.2.1992, n° 104. Legge quadro per l'assistenza, l'integrazione sociale e i diritti delle persone handicappate.
- D.P.R. 24.7.1996, n° 503. Regolamento recante norme per l'eliminazione delle barriere architettoniche negli edifici, spazi e servizi pubblici.

1.2 Norme e/o linee guida per la progettazione e costruzione

- UIC (Union Internationale Des Chemins de Fer), Fiche UIC OR, Sagoma limite cinematica internazionale, Gabarit C1. (da adottare per la rete fondamentale europea, Piano Regolatore Europeo) Parigi, 1990.
- Linee guida Sagome. Profili minimi degli ostacoli F.S., istruzione S.OC.S./3870, Roma, 1990.
- Linee guida Prescrizioni per la progettazione di marciapiedi alti nelle stazioni a servizio dei viaggiatori, istruzione R/ST.OC.412/4, ASA RETE, Roma, 1996.
- Linee guida Sagome e profili minimi degli ostacoli. 23.07.90 003870.
- Linee guida Pensiline; circolare 50 5.2 (1963).
- Linee guida Gli ambienti per servizi alla clientela ASA Passeggeri 1998.

MANDANTI

• Linee guida per la progettazione – Progettazione di piccole stazioni e fermate – dimensionamento e dotazione degli elementi funzionali" del 28/07/2014.

- Linee guida Metodologia per la riqualificazione dei F.V. Divisione infrastruttura novembre 1999 Direzione Movimento, Terminali Viaggiatori e Merci, Sviluppo e Progettazione stazioni marzo 2002.
- Linee guida Servizi igienici per il pubblico Divisione infrastruttura settembre 1999 Direzione Movimento, Terminali Viaggiatori e Merci marzo 2002.
- UNI EN 1990 Aprile 2006: Eurocodice: Criteri generali di progettazione strutturale.
- UNI EN 1991-1-1 Agosto 2004: Eurocodice 1 Parte 1-1: Azioni in generale Pesi per unità di volume, pesi propri e sovraccarichi variabili.
- UNI EN 1991-1-4 Luglio 2005: Eurocodice 1. Azioni sulle strutture. Parte 1-4: Azioni in generale Azioni del vento.
- UNI EN 206-1-2016 Calcestruzzo. "Specificazione, prestazione, produzione e conformità";
- UNI EN 1992-1-1 Novembre 2005: Eurocodice 2 Progettazione delle strutture di calcestruzzo Parte 1-1: Regole generali e regole per gli edifici.
- UNI EN 1992-2 Gennaio 2006: Eurocodice 2. Progettazione delle strutture di calcestruzzo. Parte 2: Ponti di calcestruzzo Progettazione e dettagli costruttivi.
- UNI-EN 1997-1 Febbraio 2005: Eurocodice 7. Progettazione geotecnica. Parte 1: Regole generali.
- UNI-EN 1998-1 Marzo 2005: Eurocodice 8: Progettazione delle strutture per la resistenza sismica. Parte 1: Regole generali, azioni sismiche e regole per gli edifici.
- UNI-EN 1998-5 Gennaio 2005: Eurocodice 8: Progettazione delle strutture per la resistenza sismica. Parte 5: Fondazioni, strutture di contenimento ed aspetti geotecnici.
- REGOLAMENTO (UE) n° 1300/2014 relativo alle specifiche tecniche di interoperabilità per l'accessibilità del sistema ferroviario dell'Unione per le persone con disabilità e le persone a mobilità ridotta (STI PRM) Unione Europea.
- REGOLAMENTO (UE) N. 1299/2014 relativo alle specifiche tecniche di interoperabilità per il sottosistema «infrastruttura» del sistema ferroviario dell'Unione europea (Unione Europea 18.11.2014).
- REGOLAMENTO (UE) N. 1301/2014 relativo alle specifiche tecniche di interoperabilità per il sottosistema «Energia» del sistema ferroviario dell'Unione europea (Unione Europea 18.11.2014).
- Regolamento (UE) nº 1300/2014 relativo alle specifiche tecniche di interoperabilità per l'accessibilità del sistema ferroviario dell'Unione per le persone con disabilità e le persone a mobilità ridotta (STI PRM) – Unione Europea;

SWS

- REGOLAMENTO (UE) N. 1299/2014 relativo alle specifiche tecniche di interoperabilità per il sottosistema «infrastruttura» del sistema ferroviario dell'Unione europea (Unione Europea 18.11.2014)
- REGOLAMENTO (UE) N. 1301/2014 relativo alle specifiche tecniche di interoperabilità per il sottosistema «Energia» del sistema ferroviario dell'Unione europea (Unione Europea 18.11.2014)

1.3 Norme nazionali

- Decreto Ministeriale del 17/01/2018 "Norme Tecniche per le Costruzioni".
- Circolare M.LL.PP. n. 617 del 21 gennaio 2019 Istruzioni per l'applicazione dell' "Aggiornamento delle "Norme tecniche per le costruzioni" di cui al Decreto Ministeriale del 17/01/2018".
- Legge 1086/71, Norme per la disciplina delle opere di conglomerato cementizio armato.
- Legge 64/74, Provvedimenti per le costruzioni con particolari prescrizioni per le zone sismiche.
- Legge 464/84, Norme per agevolare l'acquisizione da parte del Servizio geologico della Direzione generale delle miniere del Ministero dell'industria, del commercio e dell'artigianato di elementi di conoscenza relativi alla struttura geologica e geofisica del sottosuolo nazionale.
- Legge 46/90, Norme per la sicurezza degli impianti.
- Legge 109/94, La nuova legge quadro in materia di lavori pubblici Legge 11 febbraio 1994, n. 109, e successive modifiche ed integrazioni.
- Legge 415/98, Interpretazione del criterio applicativo dell'articolo 21, comma 1-bis della legge 18 novembre 1998, n. 415.
- Legge. 2 febbraio 1974, n. 64.: "Provvedimenti per le costruzioni con particolari prescrizioni per le zone sismiche".
- D.M. 11/03/88, Norme tecniche riguardanti le indagini sui terreni e sulle rocce, la stabilità dei pendii naturali e delle scarpate, i criteri generali e le prescrizioni per la progettazione, l'esecuzione e il collaudo delle opere di sostegno delle terre e delle opere di fondazione.
- Legge 10/91, Norme per l'attuazione del Piano energetico nazionale.
- D.P.R. 447 06/12/91, Regolamento di attuazione della legge 46/1990, in materia di sicurezza impianti.
- D.M. 20/02/92, Modello di dichiarazione di cui al regolamento di attuazione della legge 46/1990
- D.M. 22/04/92 Formazione degli elenchi dei soggetti abilitati in materia di sicurezza degli impianti.
- D.P.R. 412 26/08/93, Regolamento recante norme in attuazione dell'art. 4 della legge 10/1991.

MANDANTI

Pag. 10 a 106

- CIR 13/12/93, Indicazioni interpretative e di chiarimento all'art. 28 della legge 10/1991.
- D.M. 13/12/93 Modelli tipo per la relazione di cui all'art.28 della legge 10/1991.
- CIR 12/04/94 Indicazioni interpretative e di chiarimento all'art. 11 del DPR 412/93.
- D.P.R. 551 21/12/99 Regolamento recante modifiche al decreto del Presidente della Repubblica 26 agosto 1993, n. 412, in materia di progettazione, installazione, esercizio e manutenzione degli impianti termici degli edifici, ai fini del contenimento dei consumi di energia.
- D.P.R. 34 25/01/00 Regolamento recante istituzione del sistema di qualificazione per gli
 esecutori di lavori pubblici, ai sensi dell'articolo 8 della legge 11 febbraio 1994, n. 109, e successive
 modificazioni.
- D.M. 145 19/04/00 Regolamento recante il Capitolato generale d'appalto dei lavori pubblici, ai sensi dell'articolo 3, comma 5, della legge 11 febbraio 1994, n. 109, e successive modificazioni.
- D.M. 04/08/00 Modificazioni alla tabella relativa alle zone climatiche di appartenenza dei comuni italiani, allegata al regolamento per gli impianti termici degli edifici, emanato con decreto del Presidente della Repubblica 26 agosto 1993, n. 412.
- D.P.R. 380 06/06/01 Testo unico delle disposizioni legislative e regolamentari in materia edilizia.
- D.Lgs. 301 27/12/02 Modifiche ed integrazioni al decreto del Presidente della Repubblica 6 giugno 2001, n. 380, recante testo unico delle disposizioni legislative e regolamentari in materia di edilizia (Decreto Legislativo 27 dicembre 2002, n. 301 GU n. 16 del 21-1-03).
- D.M. 16/02/2007 Classificazione di resistenza dei prodotti ed elementi costruttivi di opere da costruzione.
- D.Lgs.42 del 22/01/2004 Codice dei beni culturali e del paesaggio.
- Decreto 11 ottobre 2017 Criteri ambientali minimi per l'affidamento di servizi di progettazione e lavori per la nuova costruzione, ristrutturazione e manutenzione di edifici pubblici.

1.4 Manuali, Specifiche, Istruzioni, prescrizioni, etc. di RFI, attinenti le opere civili di RFI

1.4.1 Opere civili

- Manuale di progettazione delle opere civili RFI DTC SI MA IFS 001 D, in particolare la sezione
 5, prescrizione per i marciapiedi e le pensiline delle stazioni ferroviarie a servizio dei viaggiatori-RFI.DTC.SI.CS.MA.IFS.002.C.
- Procedura Operativa RFI DPR SIGS POTA 13 1 0 "Gestione dei Rifiuti" nella sua revisione corrente.

SWS

Direzione Stazioni

Ingegneria e Investimenti

- Procedura Operativa Direzionale DPR P SE 10 1 1 del 30/11/2015 "Gestione materiali provenienti da tolto d'opera".
- Procedura Operativa Direzionale RFI DCO PD INF 003 "Valorizzazione economica delle interruzioni della circolazione ferroviaria" emessa con Comunicazione Operativa n.231/AD del 03 ottobre 2006.
- Capitolato Generale tecnico di Appalto delle Opere Civili RFI DTC SI SP IFS 001 D.
- Manuale di Progettazione Prescrizioni tecniche per la Progettazione Esecutiva RFI DINIC MA OC 00 000 B del 20 settembre 2004.
- Specifica per la progettazione e l'esecuzione dei ponti ferroviari e altre opere minori sottobinario RFI DTC INC PO SP IFS 001 del 27 dicembre 2011.
- Specifica per la progettazione e l'esecuzione di cavalcaferrovia e passerelle pedonali sulla sede ferroviaria RFI DTC INC PO SP IFS 002 del 27 dicembre 2011.
- Specifica per la verifica a fatica dei ponti ferroviari RFI DTC INC PO SP IFS 003 del 27 dicembre 2011
- Specifica per la progettazione e l'esecuzione di impalcati ferroviari a travi in ferro a doppio T incorporate nel calcestruzzo RFI DTC INC PO SP IFS 004 del 28 dicembre 2011.
- Specifica per il calcolo, l'esecuzione, il collaudo e la posa in opera dei dispositivi di vincolo e dei coprigiunti negli impalcati ferroviari e nei cavalcavia RFI DTC INC PO SP IFS 005 del 28 dicembre 2011.
- 2011/275/UE Specifica Tecnica di Interoperabilità sottosistema "Infrastruttura" del sistema ferroviario transeuropeo convenzionale.
- Istruzione Tecnica n.44/M DI TC/AR ST PO 002 A del 10 aprile 2000 "Specifica tecnica relativa al collaudo dei materiali ed alla costruzione delle travate metalliche e miste acciaio-calcestruzzo per ponti ferroviari e cavalcaferrovia".
- Istruzione Tecnica n.44/V DI TC/AR ST PO 005 A del 01 marzo 2001 "Cicli di verniciatura per la protezione dalla corrosione di opere metalliche nuove e per la manutenzione di quelle esistenti".
- Procedura RFI DMA PD IFS 002 B del 25 marzo 2009 "Gestione degli attraversamenti e parallelismi dell'infrastruttura ferroviaria con condotte, con cavalcavia o sottovia e con linee elettriche di Telecomunicazione".
- Disposizioni Generali tecniche ed Amministrative (edizione 1957 aggiornamento 1963) per l'esecuzione e gestione dei lavori di manutenzione dell'armamento approvate dal Ministro dei Trasporti con Decreto n. 5360 del 23 giugno 1965, limitatamente alle disposizioni tecniche ed all'art. 27 delle disposizioni amministrative.

- Specifica per la progettazione geotecnica delle opere civili ferroviarie RFI DTC INC CS SP IFS 001 del 29 novembre 2011.
- Linee guida per il collaudo statico delle opere di ingegneria civile dell'Infrastruttura Ferroviaria RFI DTC SICS PO LG IFS 001 del 27 dicembre 2013.
- Disciplinare degli elementi tecnico progettuali RFI DPR MA IFS 001 B del 1 dicembre 2016.
- Manuale DPR MA 007 1 0 del 8 agosto 2017.
- Manuale DPR MA 008 1 0 del 4 agosto 2017.
- Linea guida "Arredi di stazione 1[^] parte indicazioni tecnico-funzionali per l'uniformità tipologica" RFI DPR TES LG IFS 003 B del 23/12/2012.
- Sistema Segnaletico-Revisione 2013 Istruzioni per la progettazione e la realizzazione della segnaletica a messaggio fisso nelle stazioni ferroviarie e successivi aggiornamenti Direzione Produzione DAMCG Servizi per le stazioni Progettazione Stazioni 18.12.2013.
- Linea Guida "Progettazione di piccole stazioni e fermate. Dimensionamento e dotazione degli elementi funzionali (aggiornamento)" RFI DPR DAMCG LG SVI 007 B del 28/07/2014.
- Linee guida "Accessibilità nelle stazioni Elementi per la progettazione" RFI DPR DAMCG LG SVI 009 B del 23/05/2016.
- Lettera RFI Direzione Produzione "Accessibilità stazioni ascensori" del 13/07/2016 RFI DPR\A0011\P\2016\0004531.
- RFI DST MA IFS 001 "Abaco degli apparecchi illuminanti" allegato al disciplinare degli elementi tecnico progettuali - Direzione Stazioni – Ingegneria e Investimenti – Standard Progettazioni (5.11.2019).
- Linea Guida "Illuminazione nelle stazioni e fermate" RFI DPR DAMCG LG SVI 008 B del 24/07/2017.
- Manuale operativo sistema segnaletico nelle stazioni ferroviarie Cap. IV segnaletica a messaggio variabile Direzione Produzione –19.02.2019 DPR MA 004 1 1.
- Manuale operativo per la realizzazione dei percorsi tattili per disabili visivi nelle stazioni ferroviarie" (RFI DPR DAMCG MA SVI 001 A) aprile 2019.
- Percorsi tattili per disabili visivi nelle stazioni ferroviarie Direzione Produzione DAMCG Servizi per le stazioni Progettazione Stazioni gennaio 2016.
- Documento di Sistema III Livello "Messa in servizio dei sottosistemi strutturali": RFI DTC P SE 01 1 2 del 20/12/2017.
- Manuale "Manuale di progettazione per la riqualificazione delle stazioni di media importanza" (1[^] Parte – RFI DPR TES MA IFS 001 A del 19/02/2013.

MANDATARIA

- Distanze minime degli ostacoli fissi Prescrizione tecnica CIFI.
- Linee Guida per l'installazione di tornelli e la chiusura delle stazioni RFI PRA LG IFS 002 A (aprile 2017).
- Security biglietterie e freccia club linea guida e requisiti tecnico funzionali per la realizzazione di un sistema integrato di security nelle biglietterie della DPR, della DPLH e del freccia club (Trenitalia).
- Linee Guida "indicazioni tecnico-funzionali per la progettazione della Sala Blu" RFI.DAMCG.LG SVI 001 C.

1.4.2 Impianti elettrici – Rete di terra e protezione dalle scariche atmosferiche

- CEI EN 50122-1 "Applicazioni ferroviarie, tranviarie, filoviarie e metropolitane Impianti fissi –
 Sicurezza elettrica, messa a terra e circuito di ritorno Parte 1: Provvedimenti di protezione contro
 lo Shock elettrico" (2012).
- CEI EN 50122-2 "Applicazioni ferroviarie, tranviarie, filoviarie e metropolitane Impianti fissi Sicurezza elettrica, messa a terra e circuito di ritorno Parte 2: Provvedimenti contro gli effetti delle correnti vaganti causate da sistemi di trazione a corrente continua" (2012)
- RFI DTC ST E SP IFS ES 728 B "Sicurezza elettrica e protezione contro le sovratensioni per gli impianti elettrici ferroviari in bassa tensione" (2020).
- RFI DTC ST E SP IFS TE 101 A "Istruzioni per la realizzazione del circuito di terra e di protezione delle linee a 3 kVcc". (2018).
- RFI DPRIM STF IFS TE 111 "Limitatore di tensione statico per gli impianti di terra e di ritorno TE per il sistema di trazione elettrica a 3 kVcc" (2013).
- RFI DMA IM TE SP IFS 001 B "Limitatore di tensione per circuiti di terra di protezione TE per linee a 3 kVcc" (2008).

1.4.3 Impianti speciali – TVCC

• RFI DPA SP 001 0 "RFI SPECIFICHE TECNICHE PER IMPIANTI DI SECURITY" (2019)

1.4.4 Impianti speciali – IaP informazioni al pubblico

- RFI DPR LG SE 02 1 0 "Linee guida per l'attrezzaggio degli impianti IaP nelle stazioni e fermate aperte al servizio viaggiatori" (2016).
- RFI DPR MA 004 1 1 "Sistema segnaletico nelle stazioni ferroviarie cap IV Segnaletica a messaggio variabile (2019).

• RFI TEC LG IFS 002 A "Linee guida per la realizzazione degli impianti per i sistemi di informazione al pubblico" (2012).

1.4.5 Impianti ascensori e scale mobili

- Impianti traslo elevatori in servizi pubblico DPR MA 007 1 0 (31/07/2017).
- Telegestione degli impianti civili di stazione con piattaforma SEM DPR MA 008 1 1 (20/03/2019).

1.4.6 Linea di Contatto

- Capitolato Tecnico T.E. per la costruzione delle linee aeree di contatto e di alimentazione a 3 kVcc
 Ed. 2014 RFI DTC STS ENE SP IFS TE 210 A.
- Specifica Tecnica Istruzioni per la realizzazione del circuito di terra e di protezione delle linee a 3 kVcc Ed. 2018 RFI DTC ST E SP IFS TE 101 A.
- Disegno E64964b Ed. 2017 Sagome di riferimento per il pantografo da 1600 mm.
- Torri faro a corona mobile con altezza 18 m e 25 m Ed. 2018 RFI DTC ST E SP IFS LF 600 A.

1.5 Tariffe di RFI

- Elenco Tariffe di RFI anno 2020.
- Tariffa Elenco Nuovi Prezzi (Descrizione voci di prezzo non previste nelle tariffe RFI).

4 CARATTERIZZAZIONE GEOTECNICA

Si assumono i seguenti parametri geotecnici dei terreni di fondazione:

	strato	z	peso specifico	peso specifico saturo	angolo di attrito	coesione
	[-]	[m]	γ [kN/m3]	γsat [kN/m3]	φ [°]	c' [kN/m2]
1	Riporto e terreno vegetale	0 - 2.80	13	13	22	0
2	Limo e pomici	2.80 - 7.00	14	14	25	0
3	Sabbia	7.00 - 21.80	16	16	33	0
4	Sabbia	21.80 - 30.00	16	16	36	0

La falda si trova a profondità 4.20m dal p.c..

5 UNITA' DI MISURA

Le unità di misura usate nella presente relazione sono:

lunghezze [m]

• forze [kN]

• momenti [kNm]

• tensioni [MPa]

Direzione Stazioni

Ingegneria e Investimenti

6 MATERIALI

Di seguito si riportano le caratteristiche dei materiali impiegati con le classi di esposizione coerenti con la UNI EN 206.

6.1 CALCESTRUZZO

6.1.1 Predalles

Si prevede l'utilizzo di calcestruzzo avente classe di resistenza $45/55~(R_{ck} \ge 55~N/mm^2)$ che presenta le seguenti caratteristiche:

o Resistenza caratteristica a compressione (cilindrica)

$$f_{ck} = 0.83 \times R_{ck} = 45.65 \text{ N/mm}^2$$

o Resistenza media a compressione

$$f_{cm} = f_{ck} + 8 = 53.65 \text{ N/mm}^2$$

o Modulo elastico

$$E_{cm}$$
=22000 × $(f_{cm}/10)^{0.3}$ = 36416 N/mm²

o Resistenza di calcolo a compressione

$$f_{cd} = a_{cc} \times f_{ck}/\gamma_c = 0.85 * f_{ck}/1.5 = 25.87 \text{ N/mm}^2$$

o Resistenza a trazione media

$$f_{ctm} = 0.30 \times f_{ck}^{-2/3} = 3.83 \; N/mm^2$$

o Resistenza a trazione

$$f_{ctk} = 0.7 \times f_{ctm} = 2.68 \text{ N/mm}^2$$

o Resistenza a trazione di calcolo

$$f_{ctd} = f_{ctk} / \gamma_c = 1.79 \text{ N/mm}^2$$

o Resistenza a compressione (comb. Rara)

$$\sigma_c = 0.55 \times f_{ck} = 25.11 \text{ N/mm}^2$$

o Resistenza a compressione (comb. Quasi permanente)

$$\sigma_c = 0.40 \times f_{ck} = 18.26 \text{ N/mm}^2$$

Classe di esposizione XC3

Classe minima di consistenza S5

Rapporto A/C ≤ 0.45

Cemento CEMIV 32.5R – 42.5R

Dosaggio minimo cemento 420 kg/mc

Diametro massimo inerti 20 mm

6.1.2 Soletta

Per la soletta di impalcato, si adotta un calcestruzzo con le caratteristiche riportate di seguito:

Classe d'esposizione: XC3

C30/37 fck ≥ 30 MPa Rck ≥ 37 MPa

Classe minima di consistenza: S4

In accordo con le norme vigenti, risulta per il materiale in esame:

Resistenza caratteristica cubica a 28 giorni	R _{ck}	37	N/mm ²
Resistenza caratteristica cilindrica a 28 giorni	$f_{ck} = 0.83 \; R_{ck}$	30.71	N/mm ²
Valore medio della resistenza cilindrica	$f_{cm} = f_{ck} + 8$	38.71	N/mm ²
Resistenza di calcolo breve durata	$f_{cd (Breve durata)} = f_{ck} / 1.5$	20.47	N/mm ²
Resistenza di calcolo lunga durata	$f_{cd\;(Lungo\;durata)}=0.85\;f_{cd}$	17.40	N/mm ²
Resistenza media a trazione assiale	$f_{ctm} = 0.3 (f_{ck})^{2/3}$ [Rck<50/60]	2.94	N/mm ²
Resistenza caratteristica a trazione	$f_{ctk \ 0,05} = 0.7 \ f_{ctm}$	2.06	N/mm ²
Resistenza media a trazione per flessione	$f_{cfm} = 1.2 f_{ctm}$	3.53	N/mm ²
Resistenza di calcolo a trazione	$f_{ctd} = f_{ctk \ 0,05} / \ 1.5$	1.37	N/mm ²
Modulo di Young	$E = 22000 (f_{cm}/10)^{0.3}$	33019	N/mm ²

Per la struttura in esame si è adottato un copriferro minimo di 4.0 cm.

6.2 ACCIAIO PER CEMENTO ARMATO

o Tipo B450 (controllato in stabilimento)

o f_{vk} = 450 MPa Tensione caratteristica di snervamento

MANDANTI

o $f_{yd} = f_{yk} / 1.15 = 391.30 \text{ MPa}$ Resistenza di calcolo

MANDATARIA

omb. Rara)
)1

o
$$E_s = 210000 \text{ MPa}$$
 Modulo elastico

6.3 ACCIAIO DA CARPENTERIA METALLICA

La carpenteria metallica sarà realizzata in acciaio conforme alle prescrizioni delle NTC 2018 e della EN 10025.

- Acciaio 5355J2per travi ed elementi saldati
- Acciaio 5355J0per profilati e lamiere

con le seguenti caratteristiche:

tensione caratteristica di rottura	ftk	≥ 510 MPa
tensione di snervamento (t <= 40mm)	fyk	≥ 355 MPa
tensione di snervamento (t > 40mm)	fyk	≥ 335 MPa
allungamento	εt	≥21%
tensione di calcolo (t <= 40mm)	$f_{yd} \\$	$= f_{yk}/\gamma_{M0} = 338 \ \mathrm{MPa} \ (verifiche \ di \ resistenza)$
	$\gamma_{\rm M0} =$	1.05
tensione di calcolo (t > 40mm)	fyd	$= f_{yk}/\gamma_{M0} = 319 \text{ MPa (verifiche di resistenza)}$
	$\gamma_{\rm M0} =$	1.05
tensione di calcolo (t <= 40mm)	fyd	$=\!f_{yk}/\gamma_{M0}=322$ MPa (per le verifiche di stabilità
delle membrature)		$\gamma_{\rm M1}$ = 1.10
tensione di calcolo (t <= 40mm)	fyd	$=\!f_{yk}/\gamma_{M0}=305$ MPa (per le verifiche di stabilità
delle membrature)		$\gamma_{\rm M1}=1.10$

6.4 BULLONI

Le giunzioni bullonate saranno realizzate con bulloni ad alta resistenza aventi le seguenti caratteristiche:

- Viti classe 8.8 UNI EN ISO 898-1, UNI EN 14399-4
- Dadi classe 8 UNI EN 20898-2, UNI EN 14399-4
- Rosette Acciaio C 50 UNI EN 10083-2, temperato e rinvenuto HRC 32÷40, UNI EN 14399-6
- Piastrine Acciaio C 50 UNI EN 10083-2, temperato e rinvenuto HRC 32÷40, UNI EN 14399-6

6.5 Saldature

Le saldature dovranno essere realizzate secondo le indicazioni della normativa vigente, NTC2018, ISO 4063, EN 1011, EN 29692 e EN 12062.

6.6 PIOLATURE

L'acciaio costuituente il piolo deve essere compatibile per la saldatura con il materiale costituente l'elemento strutturale interessato dai pioli; esso dovrà avere le seguenti caratteristiche meccaniche riulstanti dal prodotto secondo UNI EN ISO 13918 qualità S235 J2 G3 + C 450 (ex ST37-3K DIN 20049)

• materiale base Acciaio S235J2G3+C450 (ex ST37-3K)

• tensione caratteristica di snervamento

 $f_{yk}>350 MPa$

tensione di rottura a trazione

 $f_{tk}>510 MPa$

7 PARAMETRI SISMICI

Per la definizione dell'azione sismica occorre definire il periodo di riferimento P_{VR} in funzione dello stato limite considerato. La vita nominale (V_N) dell'opera è stata assunta pari a 50 anni. La classe d'uso assunta è la II. Il periodo di riferimento (V_R) per l'azione sismica, data la vita nominale e la classe d'uso, vale:

$$V_R = V_N \times C_u = 50 \times 1.0 = 50 \text{ anni.}$$

Il valore di probabilità di superamento del periodo di riferimento P_{VR} , cui riferirsi per individuare l'azione sismica agente, è:

$$P_{VR}$$
 (SLV)=10%.

Il periodo di ritorno dell'azione sismica T_R espresso in anni vale:

$$T_R(SLV) = -\frac{Vr}{\ln(1 - Pvr)} = 475 \text{ anni}$$

Dato il valore del periodo di ritorno suddetto, tramite le tabelle riportate nell'Allegato B della norma o tramite la mappatura messa a disposizione in rete dall'Istituto Nazionale di Geofisica e Vulcanologia (INGV), è possibile definire i valori di a_g , F_0 , T^*c :

- a_g → accelerazione orizzontale massima del terreno su suolo di categoria A, espressa come frazione dell'accelerazione di gravità;
- $F_0 \rightarrow$ valore massimo del fattore di amplificazione dello spettro in accelerazione orizzontale;
- T*c → periodo di inizio del tratto a velocità costante dello spettro in accelerazione orizzontale;
- S \rightarrow coefficiente che comprende l'effetto dell'amplificazione stratigrafica (S_s) e dell'amplificazione topografica (S_t);

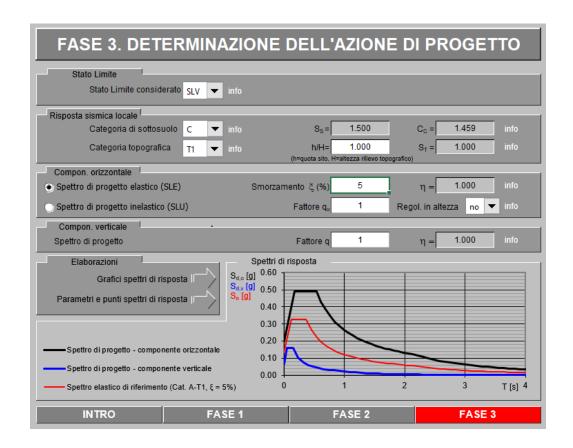
Il calcolo viene eseguito con il metodo pseudostatico (N.T.C. par. 7.11.6). In queste condizioni l'azione sismica è rappresentata da una forza statica equivalente pari al prodotto delle forze di gravità per un opportuno coefficiente sismico.

Le spinte delle terre, considerando una struttura rigida e priva di spostamenti (NTC par. 7.11.6.2.1 e EC8-5 par.7.3.2.1), sono calcolate in regime di spinta a riposo, condizione che comporta il calcolo delle

spinte in condizione sismica con l'incremento dinamico di spinta del terreno calcolato secondo la formula di Wood:

$$\Delta P_d = S a_g/g \gamma h_{tot}^2$$

L'azione sismica è rappresentata da un insieme di forze statiche orizzontali e verticali, date dal prodotto delle forze di gravità per le accelerazioni sismiche massime attese al suolo, considerando la componente verticale agente verso l'alto o verso il basso, in modo da produrre gli effetti più sfavorevoli.


L'opera ricade nel comune di Pompei. I corrispondenti valori delle caratteristiche sismiche per lo SLV sono i seguenti:

Parametri indipendenti

STATO LIMITE	SLV
aq	0.133 g
F _o	2.464
T _c *	0.369 s
Ss	1.500
C _c	1.459
S _T	1.000
q	1.000

Parametri dipendenti

S	1.500
η	1.000
T _B	0.180 s
T _C	0.539 s
T _D	2.132 s

Figura 4: Parametri sismici SLV

Parametri indipendenti

STATO LIMITE	SLD
aq	0.053 g
F _o	2.350
T _c *	0.320 s
Ss	1.500
C _c	1.529
S _T	1.000
q	1.000

Parametri dipendenti

S	1.500
η	1.000
T _B	0.163 s
T _C	0.490 s
T _D	1.814 s

Figura 5: Parametri sismici SLD

Spettri di risposta (componenti orizz. e vert.) per lo stato limite: SLV

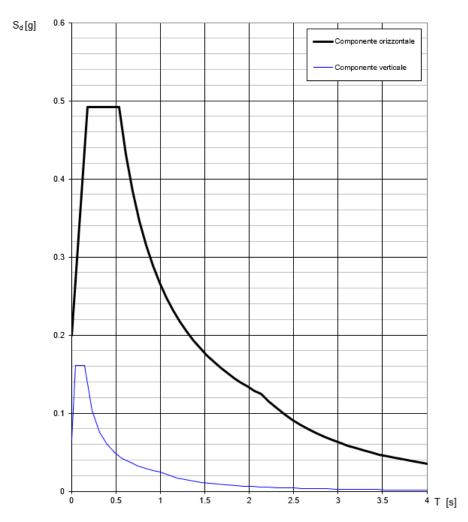


Figura 6: Spettro SLV

Spettri di risposta (componenti orizz. e vert.) per lo stato limite: SLD

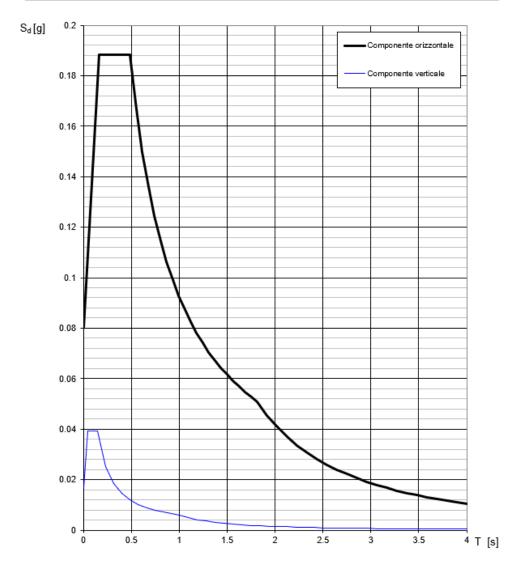


Figura 7: Spettro SLD

8 CRITERI DI MODELLAZIONE

Il calcolo della struttura è stato svolto utilizzando MidasGen ver. 11.12. Il modello di calcolo è costituito da elementi frame, monodimensionali, rappresentativi delle travi a sezione composta acciaiocle e dei traversi. La soletta è stata modellata come elementi beam equivalenti.

Il sistema di isolamento adottato consiste nell'inserimento di dispositivi elastomerici in gomma armata.

Il collegamento dell'impalcato con le sottostrutture è stato modellato attraverso link elastici: le caratteristiche di rigidezza degli elementi inseriti modellano lo schema descritto in precedenza.

La struttura isolata ha un periodo par ad 2.38sec e presenta uno spostamento massimo per lo stato limite di collasso pari a 164mm.

Sono quindi stati utilizzati isolatori elastomerici tipo SI-N 500/126 con una rigidezza orizzontale equivalente padi ad 1.25 kN/mm.

Lo smorzamento viscoso equivalente considerato è pari 16%, ne consegue uno spettro di progetto scalato per periodi maggiori di 0.8 per il primo periodo proprio (T*=1.904s):

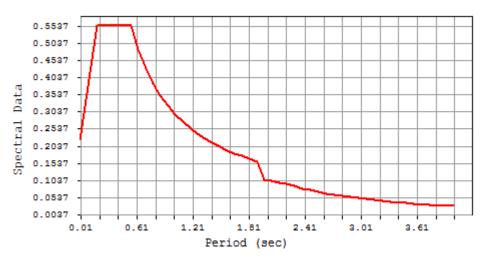


Figura 8: Spettro di progetto SLV

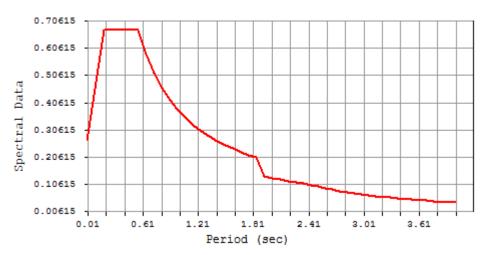
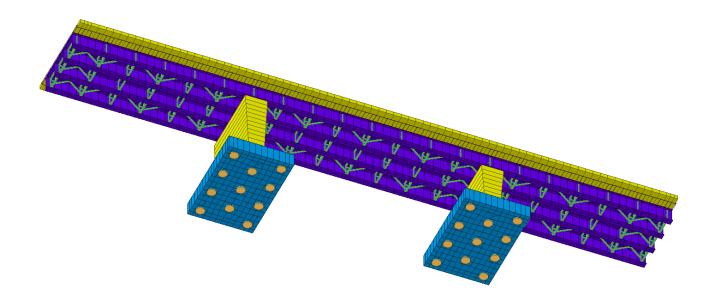



Figura 9: Spettro di progetto SLC

Tutti gli elementi strutturali sono stati descritti come elementi monodimensionali a trave (beam); i plinti di fondazione come elementi bidimensionali a piastra (shell).

I carichi assegnati nei vari punti della struttura sono desunti dall'analisi dei carichi descritta in precedenza.

Il calcolo delle sollecitazioni è stato condotto attraverso il modello tridimensionale agli elementi finiti schematizzato nelle figure seguenti.

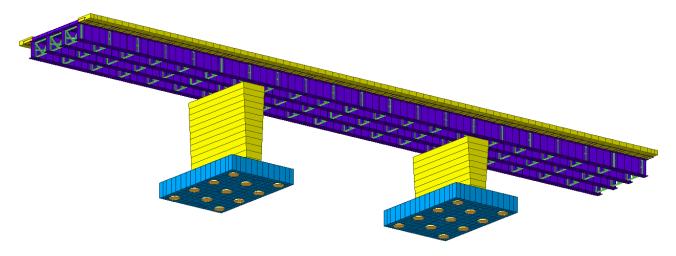


Figura 10: Modellazione tridimensionale Elementi finiti – Vista 3d

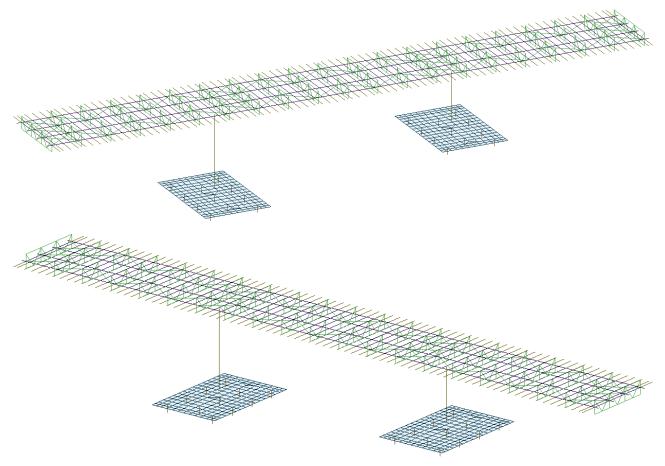


Figura 11: Modellazione tridimensionale Elementi finiti – Vista 3d wireframe

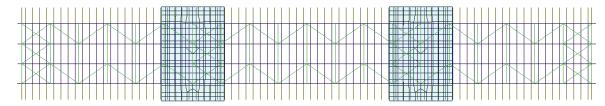


Figura 12: Modellazione tridimensionale Elementi finiti – Vista in pianta

9 ANALISI DEI CARICHI

9.1 Pesi propri (G1)

I carichi permanenti strutturali sono valutati sulla base della geometria degli elementi costituenti la struttura e del peso specifico dei diversi materiali.

9.1.1 Elementi in calcestruzzo

Il peso proprio della struttura è calcolato in base alla geometria degli elementi strutturali e al peso specifico assunto per il cemento armato (γ cls=25kN/m3).

9.1.2 Carpenteria metallica

Il peso proprio della carpenteria metallica è calcolato direttamente dal programma di calcolo in base alla geometria degli elementi strutturali, incrementando il peso specifico dell'acciaio per tenere in conto del peso di elementi quali piastre, bulloni ed irrigidimenti non inseriti nella modellazione. In definitiva il peso per unità di volume dell'acciaio è assunto pari a γ s= $78.5 \times 1.1 = 86.35 \text{ kN/m3}$.

9.2 Carichi permanenti (G2)

Sono considerati carichi permanenti non strutturali i carichi non rimovibili durante il normale esercizio della costruzione. Si riportano di seguito i dati considerati per il calcolo del peso proprio degli elementi non strutturali. Si riportano di seguito i carichi permanenti agenti al metro lineare:

Veletta	2×1.55kN/m	=	3.10	kN/m
Barriera bordo-ponte	2×1.50 kN/m	=	3.00	kN/m
Pavimentazione stradale:	$20 \text{ kN/mc} \times 8.00 \text{m} \times 0.12 \text{m}$	=	19.20	kN/m
Marciapiedi:	25 kN/mc x (2.5 m x 0.15 m + 2.50 m x 0.15 m)	=	18.75	kN/m

Carichi permanenti totali = 44.05 kN/m

9.3 Ritiro e viscosità (□ 2)

In accordo con le NTC 2018 la deformazione totale da ritiro è calcolata attraverso la seguente espressione:

 $\epsilon_{cs} = \!\!\!\! \epsilon_{cd} + \epsilon_{ca}$

 ϵ_{cs} deformazione totale per ritiro

 ϵ_{cd} deformazione per ritiro per essiccamento

 ε_{ca} deformazione per ritiro autogeno

Gli effetti del ritiro sono stati valutati a lungo termine, attraverso il calcolo dei coefficienti di ritiro finale $\varepsilon_{cs}(t, t_0)$ e di viscosità $\phi(t, t_0)$, come definiti dalle NTC2018 al paragrafo 11.2.10.7.

Il valore medio a tempo infinto della deformazione per ritiro da essiccamento $\epsilon_{cd,\infty}=k_h$ ϵ_{c0} risulta dipendente dalla resistenza caratteristica a compressione, dall'umidità relativa, assunta pari a 75% e dal parametro h_0 pari a:

 $h_0 \equiv 2A_c/u$

dove:

 A_c = area della sezione di conglomerato;

u = perimetro della sezione di conglomerato a contatto con l'atmosfera.

Tabella 1 Valori di ϵ_{c0}

Tab. 11.2.Va – Valori di ε_{c0}								
		Deform	azione da ritiro	per essiccamento	o (in ‰)			
fck	Umidità Relativa (in %)							
	20	40	60	80	90	100		
20	-0,62	-0,58	-0,49	-0,30	-0,17	+0,00		
40	-0,48	-0,46	-0,38	-0,24	-0,13	+0,00		
60	-0,38	-0,36	-0,30	-0,19	-0,10	+0,00		
80	-0,30	-0,28	-0,24	-0,15	-0,07	+0,00		

Tabella 2 Valori di kh

Tab. 11.2.Vb = Valori di k_h		
h ₀ (mm)	k _h	
100	1,00	
200	0,85	
300	0,75	
≥ 500	0,70	

La deformazione totale del ritiro si può esprimere come:

$$\epsilon_{cs} =_{\epsilon_{cd}} + \epsilon_{ca}$$

		cs ca ca			
ε _{cs}	deformata per ritiro				
$\epsilon_{\sf cd}$	deformazione per ritiro per essiccamento				
ϵ_{ca}	deformazione per ritiro autogeno				
$\epsilon_{cd,\infty} = k_h * \epsilon_{c0}$	valore m	edio a tempo infinto della deformaz	zione per ritiro da essiccamento		
R_{ck}	=	37 Mpa			
f_{ck}	=	30.71 Mpa			
ϵ_{c0}	=	-2.68E-04	da Tab. 11.2 Va		
A_{c}	=	3.51 m^2	area della sezione di cls		
u	=	11.7 m	perimetro della sezione esposta all'aria		
$h_0 = 2 Ac /u =$	=	0.6 m			
$\mathbf{k_h}$	=	0.7 mm			
$\epsilon_{cd,\infty} = k_h * \epsilon_{c0}$	=	-1.88E-04			
$\epsilon_{cd}(t)$	=	β_{ds} (t-t _s) * $\epsilon_{cd,\infty}$			
β_{ds} (t-t $_{s}$)	=	$(t-t_s) / [(t-t_s)+0.04*h_0^{3/2}]$			
(t-ts)	=	18250 giorni			
β_{ds} (t-t _s)	=	0.99998981			
$\epsilon_{ca,\infty}$ = -2.5 (f _{ck} - 10) 10 ⁻⁶	=	-5.18E-05			
ε _{cs}	=	-2.39E-04			

Il ritiro del calcestruzzo è stato schematizzato attraverso un'azione assiale di trazione che per la trave di bordo risulta pari a $N_r = 2416 \text{ kN}$

applicata alla sola soletta e una presso-flessione retta (Nr - M) applicata alla sezione mista. Nelle medesime condizioni di umidità è stato calcolato il coefficiente di viscosità in accodo con le NTC2018:

Tabella 3 Valori di Φ (∞, t0).

Tab. 11.2.VI – Valori di ϕ (∞ , t_0). Atmosfera con umidità relativa di circa il 75%

t ₀	h ₀ ≤ 75 mm	h ₀ = 150 mm	$h_0 = 300 \text{ mm}$	h0 ≥ 600 mm
3 giorni	3,5	3,2	3,0	2,8
7 giorni	2,9	2,7	2,5	2,3
15 giorni	2,6	2,4	2,2	2,1
30 giorni	2,3	2,1	1,9	1,8
≥ 60 giorni	2,0	1,8	1,7	1,6

Tab. 11.2.VII - Valori di ϕ (∞ , t_0). Atmosfera con umidità relativa di circa il 55%

t ₀	h ₀ ≤ 75 mm	h ₀ = 150 mm	h ₀ = 300 mm	h ₀ ≥ 600 mm
3 giorni	4,5	4,0	3,6	3,3
7 giorni	3,7	3,3	3,0	2,8
15 giorni	3,3	3,0	2,7	2,5
30 giorni	2,9	2,6	2,3	2,2
≥ 60 giorni	2,5	2,3	2,1	1,9

I valori dei coefficienti di omogeneizzazione risultano quidi:

Coefficiente di viscosità	Φ_{∞}	1.6	
Modulo elastico istantaneo	$E_{c0} = 22000 (f_{cm}/10)^{0.3}$	33019	N/mm²
Modulo elastico a tempo infinito	$\mathbf{E}_{\mathbf{c}^{\infty}} = \mathbf{E}_{\mathbf{c}0}/(1+\Phi)$	12700	N/mm²
Coefficiente di omogenizzazione a t=0		6.2	
Coefficiente di omogenizzazione a t=∞		16.2	

9.4 Variazioni termiche (£3)

Relativamente alle variazioni termiche sono state considerate le seguenti distorsioni termiche, in seconda fase:

- variazione termica uniforme per gli elementi strutturali in acciaio +/-25°C (strutture in acciaio esposte)
- gradiente termico tra soletta e trave metallica +/-5°C

9.5 Cedimenti vincolari (£4)

Sono stati considerati cedimenti delle fondazioni pari ad 1/5000 della luce media relativa ad ogni pila: Pile: 0.7cm

9.6 carichi accidentali mobili Q1

Si prendono in esame nel presente paragrafo le azioni variabili da traffico. I carichi accidentali mobili presi in considerazione sono quelli indicati dalla normativa per ponti di prima categoria. Tali azioni, comprensive degli effetti dinamici, sono definite dai seguenti schemi di carico convenzionali e disposte su corsie convenzionali. In particolare, lo Schema di Carico 1 è costituito da carichi concentrati su due assi in tandem, applicati su impronte di pneumatico di forma quadrata e lato 0,40 m, e da carichi uniformemente distribuiti come mostrato nella Figura riportata di seguito. Questo schema si assume a riferimento sia per le verifiche globali, sia per le verifiche locali, considerando un solo carico tandem per corsia, disposto in asse alla corsia stessa. Il carico tandem, se presente, va considerato per intero.

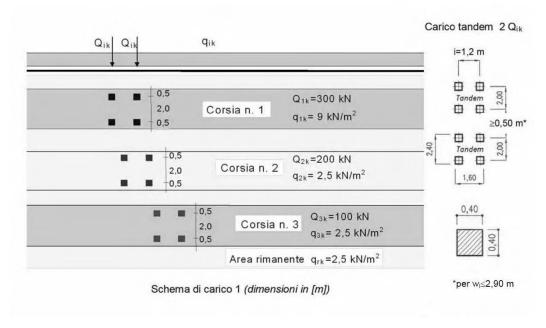


Figura 13: Schema di carico 1 per la definizione delle azioni variabili da traffico - carichi Qik e qik

Posizione	Carico asse Qik [kN]	$q_{ik}[kN/m^2]$	
Corsia Numero 1	300	9,00	
Corsia Numero 2	200	2,50	
Corsia Numero 3	100	2,50	
Altre corsie	0,00	2,50	

Figura 14: Intensità dei carichi Qik e qik per le diverse corsie

Il numero delle colonne di carichi mobili da considerare nel calcolo dei ponti di prima categoria è quello massimo compatibile con la larghezza della carreggiata, comprese le eventuali banchine di rispetto e per sosta di emergenza, nonché gli eventuali marciapiedi non protetti e di altezza inferiore a 20 cm, tenuto conto che la larghezza di ingombro convenzionale è stabilita per ciascuna colonna in 3,00 m.

Larghezza di carreggiata	Numero di corsie	Larghezza di una corsia	Larghezza della zona
"w"	convenzionali	convenzionale [m]	rimanente [m]
w < 5,40 m	$n_l = 1$	3,00	(w-3,00)
5,4 ≤ w < 6,0 m	$n_l = 2$	w/2	0
6,0 m≤ w	$n_{l} = Int(w/3)$	3,00	w - (3,00 x n _i)

Figura 15: Numero e larghezza delle corsie

In accordo con la Tabella sopra riportata, per l'impalcato in esame la larghezza della carreggiata (8,00 m) è compatibile con 2 colonne di carico:

- colonna di carico sulla Corsia n.1 costituita da un mezzo Q_{1k} (600 kN) e carico q_{1k} (9.0 kN/m²).
- colonna di carico sulla Corsia n.2 costituita da un mezzo Q_{2k} (400 kN) e carico q_{2k} (2.50 kN/m²).

Si riporta di seguito lo schema delle colonne di carico sull'impalcato.

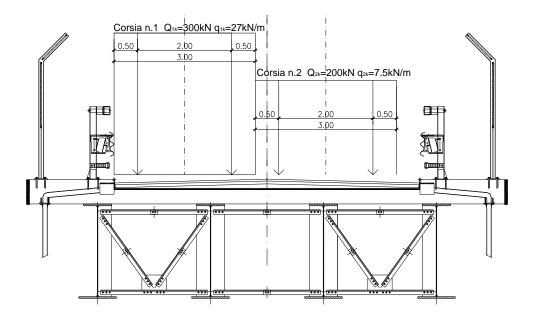


Figura 16: Disposizione delle colonne di carico sull'impalcato

Risulta pertanto:

1. Eccentricità prima colonna: 2,5 m

2. Eccentricità seconda colonna: 0,5 m

9.7 Incremento dinamico in presenza di discontinuita' strutturali Q2

I carichi mobili sopra valutati includono gli effetti dinamici per pavimentazioni di media rugosità. Non si registrano, nel caso in esame, casi particolari che rendano necessario considerare un coefficiente dinamico addizionale Q₂.

9.8 AZIONE LONGITUDINALE DI FRENAMENTO Q3

La forza di frenamento o di accelerazione Q_3 è funzione del carico verticale totale agente sulla corsia convenzionale n. 1 ed è uguale, per i ponti di prima categoria, a:

$$180 \ kN \leq q_3 = 0, 6 \big(2Q_{1k} \, \big) + 0, \\ 10q_{1k} \cdot w_1 \cdot L \leq 900 \ kN$$

essendo w_l la larghezza della corsia e L la lunghezza della zona caricata. Risulta pertanto nel caso in esame:

$$q_{3_1} = 0.6 \cdot 2Q_{1k} + (0.10) \ q_{1k} \cdot w_1 \cdot L = 0.6 \cdot 2 \cdot 300 + (0.1) \cdot 9.00 \cdot 3 \cdot 80 = 603 \ kN$$

La forza, applicata a livello della pavimentazione ed agente lungo l'asse della corsia, è assunta uniformemente distribuita sulla lunghezza caricata e include gli effetti di interazione.

9.9 AZIONE CENTRIFUGA Q4

L'azione centrifuga corrispondente ad ogni colonna di carico risulta funzione dei raggi di curvatura come mostrato nel prospetto seguente:

Raggio di curvatura R (m)	Q ₄ (kN)
R > 200	$0.2 \cdot Q_{\nu}$
$200 \le R < 1500$	$40 \cdot Q_v/R$
$R \ge 1500$	0

 $Q_v = \Sigma 2 \cdot Q_{ik}$ = carico totale degli assi tandem dello schema di carico 1.

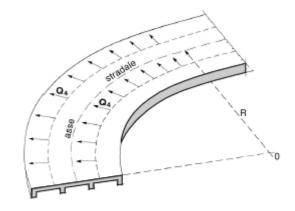


Figura 17: Valori caratteristici delle forze centrifughe - Tabella 5.1.III del D.M. 14 gennaio 2018

Il carico concentrato Q₄, applicato a livello della pavimentazione, agisce in direzione normale all'asse del ponte.

Il cavalcaferrovia in esame si sviluppa quasi interamente in rettifilo (raggio di curvatura tendente all'infinito) e la forza centrifuga risulta pertanto nulla.

9.10 Azione del vento (q5)

A seguire il calcolo dell'azione del vento, eseguito in accordo con quanto prescritto nelle NTC2018. Il vento agente trasversalmente all'opera, oltre ad interessare la stessa, agisce sulla sagoma longitudinale dei carichi transitanti.

DEFINIZIONE DEI DATI

zona:

 Toscana, Marche, Umbria, Lazio, Abruzzo, Molise, Puglia, Campania, Basilicata, Calabria (esclusa la provincia di Reggio Calabria)

Classe di rugosità del terreno:

C) Aree con ostacoli diffusi (alberi, case, muri, recinzioni,....); aree con rugosità non riconducibile alle classi A, B, D. Aree prive di ostacoli o con al più rari ostacoli isolati.

L'assegnazione della classe di rugosità non dipende dalla conformazione orografica e topografica del terreno.

Affinchè una costruzione possa dirsi ubicata in classe A o B è necessario che la situazione che
contraddistingue la classe permanga intorno alla costruzione per non meno di 1 km e comunque non meno di 20
volte l'altezza della costruzione. Laddove sussistano dubbi sulla scelta della classe di rugosità, a meno di analisi
dettagliate, verrà assegnata la classe più sfavorevole.

Nelle fasce entro i 40km dalla costa delle zone 1,2,3,4,5 e 6 la categoria di esposizione è indipendente dall'altitudine del sito.

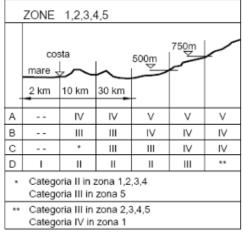
as (altitudine sul livello del mare della costruzione):

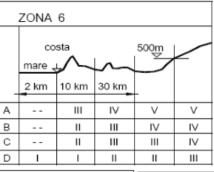
Distanza dalla costa

T_R (Tempo di ritorno):

Categoria di esposizione

0	[m]
2	[km]
50	[anni
II	Ī





Direzione Stazioni

Ingegneria e Investimenti

Categoria di esposizione

- 1							
1		ZONE	7,8			ZONA	9
	_	mare 1.5 km	0.5 km	ata		mare s	costa
	Α			IV	Α		-
	В			IV	В		ı
	С			III	С		- 1
	D	- 1	II	*	D	1	
			II in zon III in zor				

CALCOLO VELOCITA' DI RIFERIMENTO DEL VENTO §3.3.2.

Zona	v _{b,0} [m/s]	a₀ [m]	ks	Ca
3	27	500	0.37	1.000

 $v_b = v_{b,0} * ca$ ca = 1 per as $\le a0$ ca = 1 + ks (as/a0 - 1) per $a_0 < a_s \le 1500$ m

v_b (velocità base di riferimento) 27.00 m/s

V_r = vb * cr Cr coefficiente di ritorno 1.00

PRESSIONE CINETICA DI RIFERIMENTO §3.3.6.

v_r (velocità di riferimento)

 q_r (pressione cinetica di riferimento [N/mq]) $q_r = 1/2 \cdot p \cdot v_r^2$ ($p = 1,25 \text{ kg/m}^3$)

Pressione cinetica di riferimento qr 456.29 [N/m²]

27.02 m/s

CALCOLO DEI COEFFICIENTI

Coefficiente dinamico [§3.3.8]

C_d 1.00

Direzione Stazioni

Ingegneria e Investimenti

Coefficiente Topografico (Orografico)

Il coefficiente topografico si assume di norma uguale ad 1, sia per zone pianeggianti, ondulate, collinose e montane. Nel caso di costruzioni che sorgono presso la sommità di colline o pendii isolati si procede nel modo seguente:

Il coefficiente topografico vale: ct 1.00

Coefficiente di esposizione [§3.3.7]

Il coefficiente di esposizione dipende dall'altezza z sul suolo del punto considerato, dalla topografia del terreno e dalla categoria di esposizione del sito (e quindi dalla classe di rugosità del terreno) ove sorge la costruzione; per altezze non maggiori di z=200m valgono le seguenti espressioni

$C_e(z) = k_r^2 \cdot c_t \cdot \ln(z/z_0) \left[7 + c_t \cdot \ln(z/z_0)\right]$	per z ≥ z _{min}
$C_e(Z) = C_e(Z_{min})$	per z < z _{min}

k _r	z ₀ [m]	z _{min} [m]
0.19	0.05	4.00

Coefficiente di esposizione minimo	C _{e,min}	1.80	z < 4.00
Coefficiente di esposizione alla gronda	C _{e,gronda}	2.62	z = 15.00
Coefficiente di esposizione al colmo	Cacolmo	2.62	z = 15.00

Pressione del vento

$$p = q_b c_d c_t c_e c_p = 456.3 \times 1 \times 1 \times 2.62 \times 1 = 1.196 \text{ kN/m}^2$$

dove

q_b è la pressione cinetica di riferimento;

 $c_d = 1$ è il coefficiente dinamico;

 $c_t = 1$ è il coefficiente topografico;

c_e è il coefficiente di esposizione;

 $c_p = 1$ è il coefficiente di forma.

L'azione del vento viene assimilata a un carico orizzontale statico con direzione perpendicolare all'asse del ponte. Tale azione agisce sulla proiezione nel piano verticale delle superfici degli elementi strutturali del ponte direttamente investite e su una parete rettangolare continua verticale alta 3,00 m, che convenzionalmente rappresenta i carichi che transitano sul ponte, come mostrato nella Figura riportata di seguito.

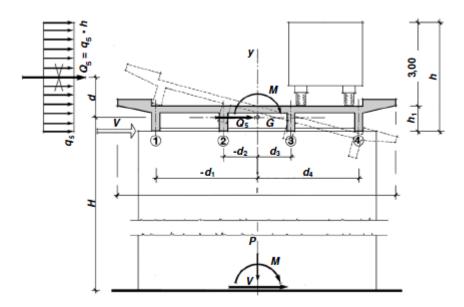


Figura 18: Direzione dell'azione del vento sul ponte

Vento trasmesso dall'impalcato a ponte carico

Il carico trasversale, per unità di lunghezza, è pari a:

$$q_{vento1} = (H_{trave-max} + H_{soletta}) \cdot p = (2.0 + 0.30) \cdot 1.2 = 2.80 \ kN/m$$

$$q_{vento2} = (H_{carico}) \cdot p = (3.00) \cdot 1.2 = 3.60 \text{ kN/m}$$

dove:

- q_{vento1} è il carico trasversale dovuto al vento sull'impalcato;
- q_{vento2} è il carico trasversale dovuto al vento sulla superficie trasversale dei carichi transitanti, che da normativa si assimila ad una parete rettangolare continua dell'altezza di 3m a partire dal piano stradale.

Vento trasmesso dall'impalcato a ponte scarico

Il carico trasversale, per unità di lunghezza, è pari a:

$$q_{vento1} = (H_{trave} + H_{soletta} + H_{barriera}) \cdot p = 5.75 \cdot 1.2 = 6.90 \text{ kN/m}$$

dove:

q_{vento1} è il carico trasversale dovuto al vento sull'impalcato e sulla barriera di protezione

9.11 Azioni sismiche (q6)

Nel seguente paragrafo si riporta la descrizione e la valutazione dell'azione sismica secondo le specifiche delle NTC2018.

L'azione sismica è descritta mediante spettri di risposta elastici e di progetto.

L'espressione analitica dello spettro di risposta elastico in termini di accelerazione orizzontale è la seguente

$$0 \le T \le T_B \longrightarrow S_{\epsilon}(T) = a_{g.} \cdot S \cdot \eta \cdot F_0 \cdot \left[\frac{T}{T_B} + \frac{1}{\eta \cdot F_0} \left(1 - \frac{T}{T_B} \right) \right]$$

$$T_B \leq T \leq T_C \longrightarrow S_{s}(T) = a_{g} \cdot S \cdot \eta \cdot F_0$$

$$T_C \leq T \leq T_D \longrightarrow S_{e}(T) = a_{g.} \cdot S \cdot \eta \cdot F_0 \cdot \left(\frac{T_C}{T}\right)$$

$$T_D \leq T_D \longrightarrow S_{\epsilon}(T) = a_g \cdot S \cdot \eta \cdot F_0 \cdot \left(\frac{T_C \cdot T_D}{T}\right)$$

In cui:

$$S = S_S \cdot S_T$$

 S_s : coefficiente di amplificazione stratigrafico;

 S_T : è il coefficiente di amplificazione topografica.

 η : fattore che tiene conto di un coefficiente di smorzamento viscoso equivalente; ξ , espresso in punti percentuali diverso da 5 (η =1 per ξ =5):

$$\eta = \sqrt{\frac{10}{5 + \xi}} \ge 0,55$$

 F_0 : è il valore massimo del fattore di amplificazione dello spettro in accelerazione orizzontale

 a_g : accelerazione massima al suolo;

T: periodo di vibrazione dell'oscillatore semplice;

TB, TC, TD: periodi che separano i diversi rami dello spettro, e che sono pari a:

$$T_C = C_C \cdot T *_C$$

$$T_B = \frac{T_C}{3}$$

$$T_D = 4.0 + \frac{a_g}{g} + 1.6$$

In cui:

 C_c : è un coefficiente che tiene conto della categoria del terreno;

 $T^*_{\mathcal{C}}$: periodo di inizio del tratto a velocità costante dello spettro in accelerazione orizzontale.

L'espressione analitica dello spettro di risposta elastico in termini di accelerazione verticale è la seguente

$$0 \le T \le T_B \longrightarrow S_{\epsilon}(T) = a_{g.} \cdot S \cdot \eta \cdot F_{v.} \cdot \left[\frac{T}{T_B} + \frac{1}{\eta \cdot F_{v.}} \left(1 - \frac{T}{T_B} \right) \right]$$

$$T_B \le T \le T_C \longrightarrow S (T) = a_{g.} \cdot S \cdot \eta \cdot F_{v.}$$

$$T_C \le T \le T_D \longrightarrow S_{e}(T) = a_{g} \cdot S \cdot \eta \cdot F_{v} \cdot \left(\frac{T_C}{T}\right)$$

$$T_D \leq T_D \longrightarrow S_{e}(T) = a_{g.} \cdot S \cdot \eta \cdot F_{v.} \cdot \left(\frac{T_C \cdot T_D}{T}\right)$$

nelle quali:

S= SS x ST: con SS pari sempre a 1

η: fattore che tiene conto di un coefficiente di smorzamento viscoso equivalente;

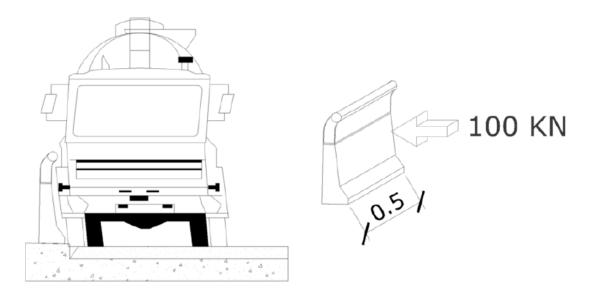
 $\xi,$ espresso in punti percentuali diverso da 5 ($\eta{=}1$ per $\xi{=}5)$:

$$\eta = \sqrt{\frac{10}{5 + \xi}} \ge 0.55$$

T: periodo di vibrazione dell'oscillatore semplice;

TB, TC, TD: periodi che separano i diversi rami dello spettro, e che sono pari a:

$$T_C = 0.05$$
; $T_B = 0.15$; $T_D = 1.0$; $F_V = 1.35 \cdot F_0 \cdot \left(\frac{a_g}{g}\right)^{0.5}$



9.12 URTI ACCIDENTALI Q8

Per tener conto delle forze causate da collisioni accidentali sugli elementi di sicurezza (§ 3.6.3.3.2 – NTC) si è considerata una forza orizzontale equivalente di collisione di 100 KN. Essa è stata considerata agente trasversalmente ed orizzontalmente 1,0 m sopra il livello del piano di marcia e applicata su una linea lunga 0,5 m in corrispondenza dell'inizio dei cordoli.

Ne consegue che sulla soletta viene trasmesso un momento torcente di calcolo pari a $Mt,d = 100 \times 1 \times 0,5 = 50 \text{ KN m}.$

Questo momento torcente è stato associato allo schema 2 dei carichi da traffico e quindi per ogni appoggio è stato disposto il momento in prossimità dell'inizio del cordolo con adiacente il pneumatico.

L'altezza dei parapetti (§ 5.1.3.10 – NTC) non deve essere inferiore a 1,10 m. I parapetti sono calcolati in base ad un'azione orizzontale di 1,5 KN/m applicata al corrimano.

10 COMBINAZIONI DI CARICO

Ai fini delle verifiche degli stati limite si è fatto riferimento alle seguenti combinazioni delle azioni:

- Combinazione fondamentale, generalmente impiegata per gli stati limite ultimi (SLU):

$$\gamma_{G1} \cdot G_1 + \gamma_{G2} \cdot G_2 + \gamma_{P} \cdot P + \gamma_{Q1} \cdot Q_{k1} + \gamma_{Q2} \cdot \psi_{02} \cdot Q_{k2} + \gamma_{Q3} \cdot \psi_{03} \cdot Q_{k3} + \dots$$
 (2.5.1)

- Combinazione caratteristica (rara), generalmente impiegata per gli stati limite di esercizio (SLE) irreversibili, da utilizzarsi nelle verifiche alle tensioni ammissibili di cui al § 2.7:

$$G_1 + G_2 + P + Q_{k1} + \psi_{02} \cdot Q_{k2} + \psi_{03} \cdot Q_{k3} + \dots$$
 (2.5.2)

 Combinazione frequente, generalmente impiegata per gli stati limite di esercizio (SLE) reversibili:

$$G_1 + G_2 + P + \psi_{11} \cdot Q_{k1} + \psi_{22} \cdot Q_{k2} + \psi_{23} \cdot Q_{k3} + \dots$$
 (2.5.3)

 Combinazione quasi permanente (SLE), generalmente impiegata per gli effetti a lungo termine:

$$G_1 + G_2 + P + \psi_{21} \cdot Q_{k1} + \psi_{22} \cdot Q_{k2} + \psi_{23} \cdot Q_{k3} + \dots$$
 (2.5.4)

 Combinazione sismica, impiegata per gli stati limite ultimi e di esercizio connessi all'azione sismica E (v. § 3.2):

$$E + G_1 + G_2 + P + \psi_{21} \cdot Q_{k1} + \psi_{22} \cdot Q_{k2} + \dots$$
 (2.5.5)

- Combinazione eccezionale, impiegata per gli stati limite ultimi connessi alle azioni eccezionali di progetto A_d (v. § 3.6):

$$G_1 + G_2 + P + A_d + \psi_{21} \cdot Q_{k1} + \psi_{22} \cdot Q_{k2} + \dots$$
 (2.5.6)

Per le combinazioni di carico si è fatto riferimento al paragrafo 5.1.3.14 delle NTC18.

Si ripota la Tabella 5.1.V delle NTC18 dei coefficienti parziali di sicurezza per le combinazioni di carico SLU:

		Coefficiente	EQU ⁽¹⁾	A1	A2
Azioni permanenti g ₁ e g ₃	favorevoli sfavorevoli	γ _{G1} e γ _{G3}	0,90 1,10	1,00 1,35	1,00 1,00
Azioni permanenti non strutturali ⁽²⁾ g ₂	favorevoli sfavorevoli	YG2	0,00 1,50	0,00 1,50	0,00 1,30
Azioni variabili da traffico	favorevoli sfavorevoli	ΥQ	0,00 1,35	0,00 1,35	0,00 1,15
Azioni variabili	favorevoli sfavorevoli	ΥQi	0,00 1,50	0,00 1,50	0,00 1,30
Distorsioni e presollecita- zioni di progetto	favorevoli sfavorevoli	Υε1	0,90 1,00 ⁽³⁾	1,00 1,00 ⁽⁴⁾	1,00 1,00
Ritiro e viscosità, Cedimenti vincolari	favorevoli sfavorevoli	YE2, YE3, YE4	0,00 1,20	0,00 1,20	0,00 1,00

⁽I) Equilibrio che non coinvolga i parametri di deformabilità e resistenza del terreno; altrimenti si applicano i valori della colonna A2.

Tabella 4 Coefficienti parziali di sicurezza per le combinazioni di carico agli SLU

Si riporta la Tabella 5.1.VI delle NTC18 in cui sono espressi i coefficienti di combinazione delle azioni:

Azioni	Gruppo di azioni	Coefficiente	Coefficiente	Coefficiente ψ_2
	(Tab. 5.1.IV)	ψ ₀ di combi-	ψ ₁ (valori	(valori quasi
		nazione	frequenti)	permanenti)
	Schema 1 (carichi tandem)	0,75	0,75	0,0
	Schemi 1, 5 e 6 (carichi distribuiti	0,40	0,40	0,0
Azioni da traffico	Schemi 3 e 4 (carichi concentrati)	0,40	0,40	0,0
(Tab. 5.1.IV)	Schema 2	0,0	0,75	0,0
	2	0,0	0,0	0,0
	3	0,0	0,0	0,0
	4 (folla)		0,75	0,0
	5	0,0	0,0	0,0
	a ponte scarico SLU e SLE	0,6	0,2	0,0
Vento	in esecuzione	0,8	0,0	0,0
	a ponte carico SLU e SLE	0,6	0,0	0,0
Neve	SLU e SLE	0,0	0,0	0,0
	in esecuzione	0,8	0,6	0,5
Temperatura	SLU e SLE	0,6	0,6	0,5

Tabella 5 Coefficienti di combinazione per le azioni variabili per ponti stradali e pedonali

[🕮] Nel caso in cui l'intensità dei carichi permanenti non strutturali, o di una parte di essi (ad esempio carichi permanenti portati), sia ben definita in fase di progetto, per detti carichi o per la parte di essi nota si potranno adottare gli stessi coefficienti validi per le azioni permanenti.

 $^{^{(3)}}$ 1,30 per instabilità in strutture con precompressione esterna

^{4) 1,20} per effetti locali

Nella combinazione sismica le azioni indotte dal traffico dei mezzi sono combinate con un coefficiente $\psi_2 = 0.2$ (paragrafo 5.1.3.12 del DM 17/01/2018) coerentemente con l'aliquota di massa afferente ai carichi da traffico. Si riportano di seguito le combinazioni delle azioni maggiormente significative per la determinazione delle sollecitazioni più gravose.

		g1+g2	ε2	ε3	q1	q3	q4	q5	q6	q7
	SLE (QP)	1	1	0.5	0	0	0	0	0	0
	SLE (FR)	1	1	0.5	0.75 Q _{ik} 0.4 q _{ik} 0.75 q _{folla}	0	0	0	0	0
	SLE 1 (FR)	1	1	0.5	$\begin{array}{c} 0.75 \; Q_{ik} \\ \\ 0.4 \; q_{ik} \\ \\ 0.75 \; q_{folla} \end{array}$	0.75	0	0	0	0
SLE	SLE 1 (RARA)	1	1	0.6	$egin{aligned} 1 & Q_{ik} \ & 1 & q_{ik} \ & 1 & q_{folla} \end{aligned}$	0	0	0.6	0	0
	SLE 2 (RARA)	1	1	0.6	1 Q _{ik} 1 q _{ik} 1 q _{folla}	0	0	0.8	0	0
	SLE 3 (RARA)	1	1	0.6	1 Q _{ik} 1 q _{ik} 1 q _{folla}	0.75	0	0.6	0	0
	SLE 4 (RARA)	1	1	0.6	$egin{array}{l} 1 \; \mathrm{Q_{ik}} \ & 1 \; \mathrm{q_{folla}} \end{array}$	0.75	0	0.8	0	0
	STR1	1.35	1.2	1.2.0.6	0	0	0	1.5	0	1.35.0.75
	STR2	1.35	1.2	1.2.0.6	1.35	0	0	0.9	0	1.35.0.75
SLU (STR)	STR3	1.35	1.2	1.2.0.6	$\begin{array}{c} 1.35 \cdot 0.75 \; Q_{ik} \\ \\ 1.35 \cdot 0.40 \; q_{ik} \\ \\ 1.35 \cdot 0.75 \; q_{folla} \end{array}$	1.5	0	0.9	0	1.35·0.75
	STR4	1.35	1.2	1.2.0.6	$\begin{array}{c} 1.35 \cdot 0.75 \; Q_{ik} \\ \\ 1.35 \cdot 0.40 \; q_{ik} \\ \\ 1.35 \cdot 0.75 \; q_{folla} \end{array}$	0	1.5	0.9	0	1.35·0.75
SLV	Sisma (SLV)	1	1	0.5	0.2	0	0	0	±1	0

Tabella 6: Combinazioni di carico.

Per le combinazioni sismiche è stato considerato lo stato limite di salvaguardia "SLV" che comprende tre combinazioni in cui il sisma nelle tre direzioni (longitudinale, trasversale e verticale) è combinato come segue.

El+0.3Et±0.3Ev; 0.3El+Et±0.3Ev; 0.3El+0.3Et±Ev.

Le azioni combinate considerate sono dunque le seguenti:

G₁: peso proprio degli elementi strutturali;

G₂: carichi permanenti portati;

 ε_2 : ritiro e viscosità della soletta;

 ε_3 : variazioni termiche uniformi e differenziali;

Q₁: carichi mobili;

Q₃: azione longitudinale di frenamento;

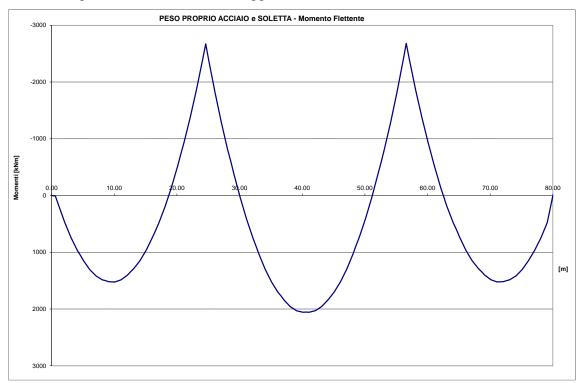
Q₄: azione centrifuga;

Q₅: azione trasversale del vento;

Q₆: azioni sismiche;

Q₇: urti da traffico ferroviario

Q9: resistenze parassite dei vincoli


11 ANALISI DEI RISULTATI IMPALCATO

Si riportano di seguito le sollecitazioni della trave più caricata a causa degli effetti di eccentricità del carico.

11.1 SOLLECITAZIONI AGENTI 1a Fase

Con riferimento ai carichi di 1^a fase, costituiti dal peso proprio delle parti in acciaio e della soletta, sono rappresentate le caratteristiche delle sollecitazioni flettenti e taglianti.

In tali fasi, la sezione reagente è costituita dalle sole travi in acciaio, in quanto l'eventuale soletta non è collaborante ed è presente solo come carico applicato.

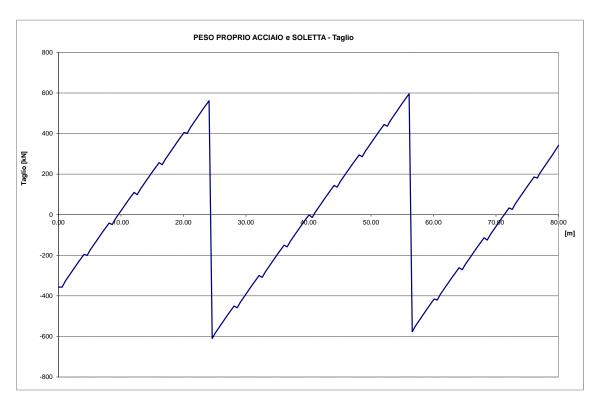


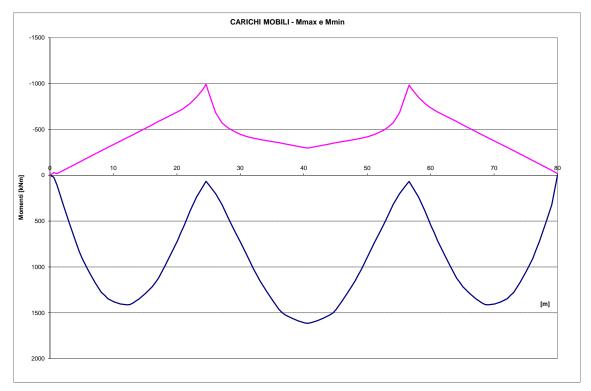
Figura 19 – Peso proprio acciaio e soletta (Momento e Taglio)

11.2 Sollecitazioni 2A Fase

Con riferimento ai carichi di 2^a fase, definiti in precedenza, si considerano a tempo to e too i seguenti contributi:

•	permanenti portati	$(t\infty)$
•	effetti termici uniformi	(t_0)
•	effetti termici differenziali	(t_0)
•	cedimenti fondazioni	$(t\infty)$
•	ritiro	$(t\infty)$
•	spostamenti impressi	$(t\infty)$
•	carico accidentale	$((t_0)$
•	vento	(t_0)

Si riportano a seguire le sollecitazioni principali.



Si riportano di seguito i diagrammi di taglio e momento flettente nel piano verticale dei singoli contributi dei carichi di 2a fase.

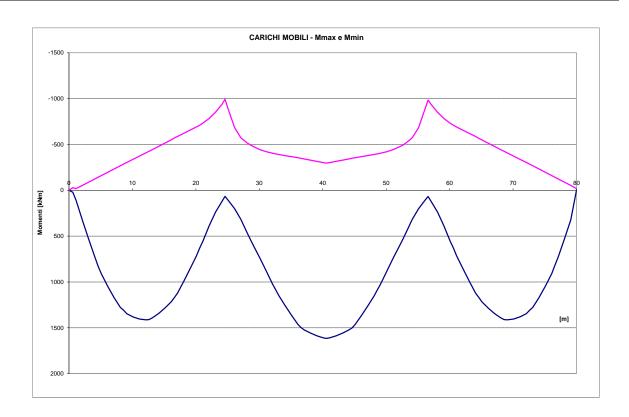
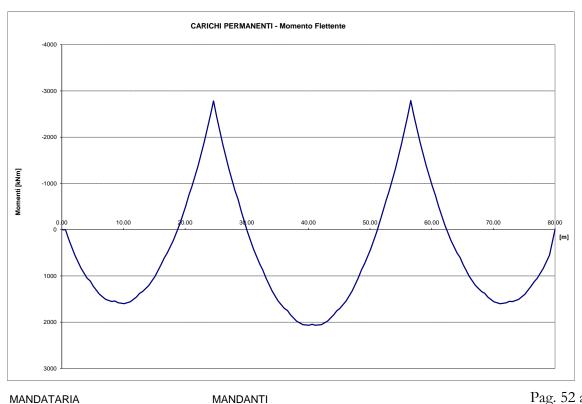



Figura 20 – Carichi accidentali (Momento e Taglio)

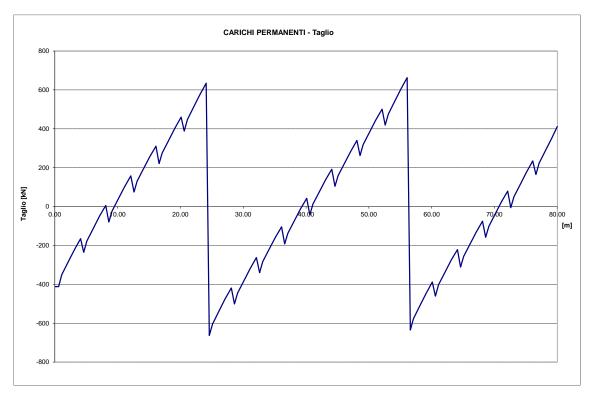
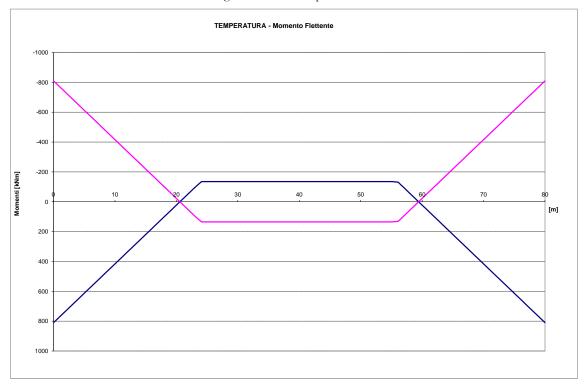



Figura 21 – Carichi permanenti

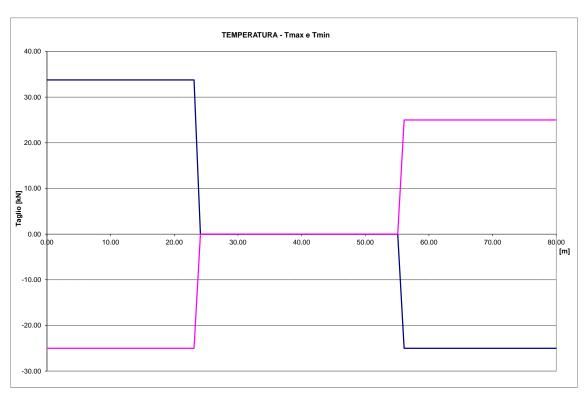
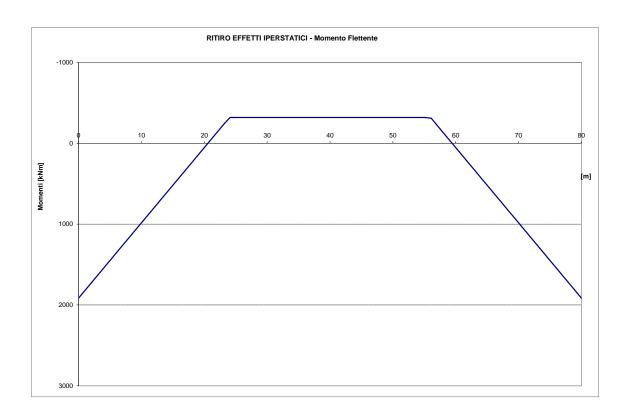



Figura 22 – Temperatura

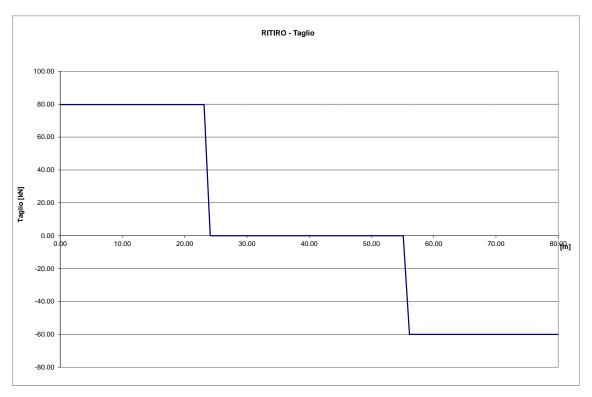


Figura 23 – Ritiro

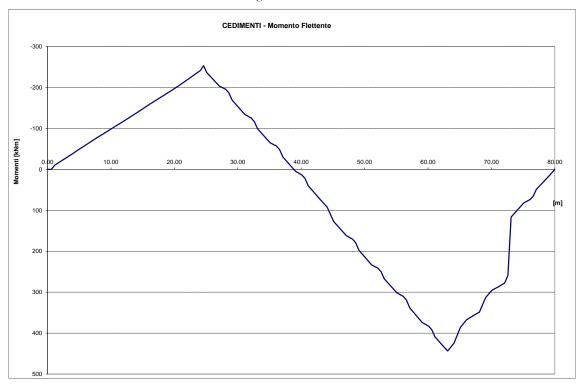


Figura 24 – Cedimento vincolare

11.3 MODI DI VIBRARE

L' analisi è stata condotta con il modello strutturale illustrato in precedenza.

Il modello è tridimensionale e rappresenta in modo puntuale le effettive distribuzioni spaziali di massa, rigidezza e resistenza. Nell'analisi svolta si sono eseguiti i seguenti step:

- determinazione dei modi di vibrare del ponte (analisi modale),
- calcolo degli effetti dell'azione sismica, rappresentata dallo spettro di risposta di progetto per ciascuno dei modi di vibrare;
- combinazione degli effetti.

È stato considerato un numero di modi la cui massa partecipante totale sia superiore all'85%. Per la combinazione degli effetti relativi ai singoli modi è stata utilizzata la combinazione quadratica completa degli effetti relativi a ciascun modo (SRSS).

Si riportano nelle figure seguenti le deformate corrispondenti ai primi modi più significativi in termini di massa partecipante x e y.

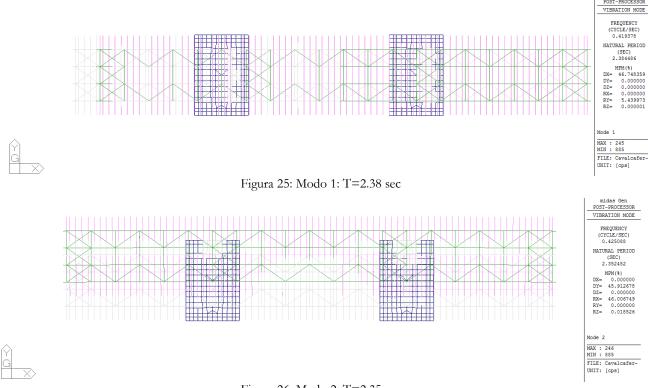


Figura 26: Modo 2: T=2.35 sec

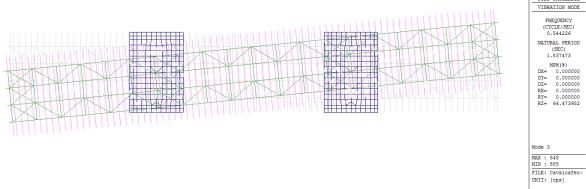


Figura 27: Modo 3: T=1.84 sec

12 VERIFICHE IMPALCATO

Si riportano nei paragrafi seguenti le verifiche di tutte le sezioni dell'impalcato in 1a e 2a fase per le combinazioni di carico di normativa. Nelle verifiche sono state assunte, convenzionalmente, come positive le tensioni di trazione. L'unità di misura utilizzata per le tensioni è il N/mm² (Mpa).

Le caratteristiche inerziali delle sezioni di verifica sono state calcolate per tutti gli elementi del modello tenendo conto della larghezza collaborante B variabile.

Per ciascuna sezione e ciascun elemento strutturale (trave, soletta, armature) si riportano la tensione massima (di trazione) e minima (di compressione) relativa alla combinazione in esame. Tali valori sono stati ricavati come somma dei contributi in termini di tensioni ottenuti utilizzando i moduli di resistenza pertinenti alla fase della sollecitazione:

1ª fase:

- tutti i carichi utilizzano i moduli di resistenza del solo acciaio

2ª fase a tempo T₀:

- il peso proprio delle travi e della soletta utilizzano i moduli di resistenza dell'acciaio - tutti gli altri carichi utilizzano i moduli di resistenza a tempo T_0

2a fase a tempo T_{∞} :

- il peso proprio delle travi e della soletta utilizzano i moduli di resistenza dell'acciaio
- termica differenziale, accidentali e vento utilizzano i moduli di resistenza a T_0
- tutti gli altri carichi utilizzano i moduli di resistenza a T_{∞}

Nel momento in cui la somma delle tensioni sulla soletta di calcestruzzo è di trazione, la verifica viene svolta considerando la soletta non reagente.

Direzione Stazioni

Ingegneria e Investimenti

Per calcolare correttamente lo stato tensionale, in presenza di stati di coazione interni (ritiro, termica differenziale), oltre alle sollecitazioni globali lette dal modello di calcolo agli elementi finiti, è necessario tenere in conto lo sforzo normale interno che ha prodotto la coazione. Questo sforzo normale, in presenza di soletta reagente, è ripartito tra soletta ed armature, in presenza di soletta fessurata verrà assorbito integralmente dalle armature.

12.1 CARATTERISITICHE GEOMETRICHE DELLE SEZIONI

12.1.1 Valutazione della larghezza collaborante della soletta

Con riferimento alle NTC2018, si definisce la larghezza collaborante della soletta attraverso la relazione:

$$b_{eff} = b_o + b_{e1} + b_{e2}$$

dove:

 $b_{ei} = min [Le/8 ; (bi-b0)/2]$

b_o = distanza tra i connettori perpendicolarmente all'asse della trave

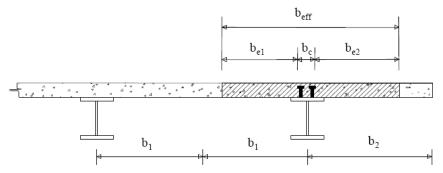


Figura 28: definizione della larghezza efficace beff

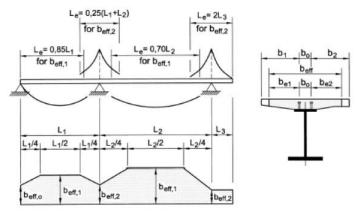


Figura 29 : Larghezza efficace beff e luci equivalenti Le per le travi continue

LARGHEZZA EFFICAC	E MEZZERIA CA	MPATA 32	m	
Distanza tra gli assi dei connettori	b _o	=	420	mm
Luce delle travi (vedi fig. 4.3.2)	L _e	=	25200	mm
Semi interasse travi longitudinali	b ₁	=	1400	mm
Sbalzo della soletta	b ₂	=	1450	mm
Larghezza efficace 1 (vedi C4.3.2.3)	b _{e1}	=	1190	mm
Larghezza efficace 2 (vedi C4.3.2.3)	b _{e2}	=	1240	mm
Larghezza efficace	b _{eff}	=	2850	mm
LARGHEZZA EFFICACE APP	OGGIO CAMPATA	A ESTREM	IITA' 24m	
Distanza tra gli assi dei connettori	b ₀	=	420	mm
Luce delle travi (vedi fig. 4.3.2)	L _e	=	21250	mm
Semi interasse travi longitudinali	b ₁	=	1400	mm
Sbalzo della soletta	b ₂	=	1450	mm
Larghezza efficace 1 (vedi C4.3.2.3)	b _{e1}	=	1190	mm
Larghezza efficace 2 (vedi C4.3.2.3)	b _{e2}	=	1240	mm
	β1	=	0.9964	
	β1	=	0.9784	
Larghezza efficace	b _{eff}	=	2819	mm

12.1.2 Caratteristiche geometriche delle sezioni d'acciaio

Le dimensioni geometriche delle sezioni delle travi d'acciaio, in corrispondenza dei traversi e dei giunti, sono riportate nella tabella seguente:

H_{tot} altezza totale della travet spessore dell'anima

 $\begin{array}{ll} B_{sup} & larghezza \ della \ piattabanda \ superiore \\ s_{sup} & spessore \ della \ piattabanda \ superiore \\ B_{inf} & larghezza \ della \ piattabanda \ inferiore \\ s_{inf} & spessore \ della \ piattabanda \ inferiore \end{array}$

Si riportano le dimensioni delle travi per tutti i conci individuati

				Anima	Piattaba	nda sup.	Piattabanda inf.		
SEZIONE	INIZIO	L-TRATTO	FINE	t _w	B _{sup}	S _{sup}	B _{inf}	S _{inf}	
[m]	[m]	[m]	[m]	[mm]	[mm]	[mm]	[mm]	[mm]	
1	0.00	10.4	10.40	12	500	20	600	20	
2	10.40	7.6	18.00	12	500	20	600	20	
3	18.00	12	30.00	16	500	30	600	30	
4	30.00	6	36.00	12	500	20	600	25	
5	36.00	8	44.00	12	500	20	600	25	
6	44.00	6	50.00	12	500	20	600	25	
7	50.00	12	62.00	16	500	30	600	30	
8	62.00	7.6	69.60	12	500	20	600	20	
9	69.60	10.4	80.00	12	500	20	600	20	

12.1.3 Caratteristiche meccaniche delle travi

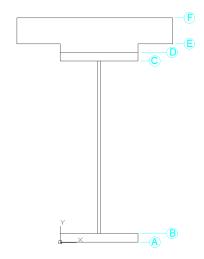
Per ciascuna sezione si riportano omogeneizzate in acciaio:

A [m²] area

Y_G [m] ascissa della sezione

J₃ [m⁴] momento d'inerzia principale

Trave W_A [m³] modulo di resistenza per flessione dell' intradosso della trave d'acciaio


Trave W_D [m³] modulo di resistenza per flessione dell' estradosso della trave d'acciaio

Sol W_{cs} [m³] modulo di resistenza per flessione dell'estradosso della soletta

Sol W_{ci} [m³] modulo di resistenza per flessione dell'intradosso della soletta

Arm $W_{\Phi_{sup}}$ [m³] modulo di resistenza per flessione del 1° strato di armature

Arm $W_{\Phi_{sinf}}$ [m³] modulo di resistenza per flessione del 2° strato di armature

SEZIONE SOLO ACCIAIO

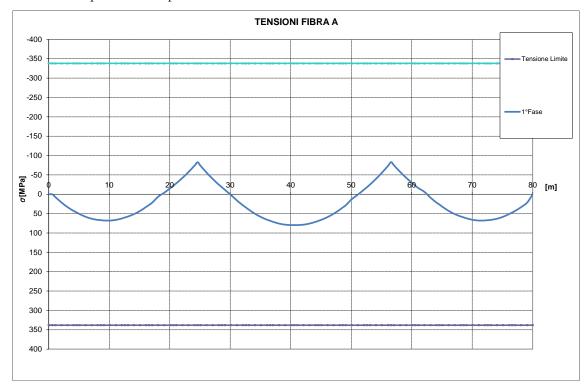
	TRAVE METALLICA											
Progressiva	CARATTERISTICHE INERZIALI											
х	A _{trave}	S _{trave}	Yg	J	W_A	W_B	W _C	W_D				
[m]	[m ²]	[m ³]	[m]	[m ⁴]	[m ³]	[m ³]	[m ³]	[m ³]				
0.00	4.55E-02	4.75E-02	1.043	2.90E-02	3.03E-02	3.10E-02	-2.83E-02	-2.78E-02				
4.60	4.55E-02	4.75E-02	1.043	2.90E-02	3.03E-02	3.10E-02	-2.83E-02	-2.78E-02				
10.10	4.55E-02	4.75E-02	1.043	2.90E-02	3.03E-02	3.10E-02	-2.83E-02	-2.78E-02				
15.10	4.55E-02	4.75E-02	1.043	2.90E-02	3.03E-02	3.10E-02	-2.83E-02	-2.78E-02				
20.10	6.40E-02	6.70E-02	1.046	4.16E-02	4.36E-02	4.50E-02	-4.10E-02	-3.98E-02				
24.60	6.40E-02	6.70E-02	1.046	4.16E-02	4.36E-02	4.50E-02	-4.10E-02	-3.98E-02				
29.10	6.40E-02	6.70E-02	1.046	4.16E-02	4.36E-02	4.50E-02	-4.10E-02	-3.98E-02				
34.10	4.85E-02	5.33E-02	1.100	3.14E-02	3.49E-02	3.59E-02	-2.91E-02	-2.86E-02				
39.10	4.85E-02	5.33E-02	1.100	3.14E-02	3.49E-02	3.59E-02	-2.91E-02	-2.86E-02				
44.10	4.85E-02	5.33E-02	1.100	3.14E-02	3.49E-02	3.59E-02	-2.91E-02	-2.86E-02				
48.10	4.85E-02	5.33E-02	1.100	3.14E-02	3.49E-02	3.59E-02	-2.91E-02	-2.86E-02				
53.10	6.40E-02	6.70E-02	1.046	4.16E-02	4.36E-02	4.50E-02	-4.10E-02	-3.98E-02				
58.10	6.40E-02	6.70E-02	1.046	4.16E-02	4.36E-02	4.50E-02	-4.10E-02	-3.98E-02				
63.10	4.55E-02	4.75E-02	1.043	2.90E-02	3.03E-02	3.10E-02	-2.83E-02	-2.78E-02				
68.10	4.55E-02	4.75E-02	1.043	2.90E-02	3.03E-02	3.10E-02	-2.83E-02	-2.78E-02				
72.60	4.55E-02	4.75E-02	1.043	2.90E-02	3.03E-02	3.10E-02	-2.83E-02	-2.78E-02				
77.10	4.55E-02	4.75E-02	1.043	2.90E-02	3.03E-02	3.10E-02	-2.83E-02	-2.78E-02				
78.10	4.55E-02	4.75E-02	1.043	2.90E-02	3.03E-02	3.10E-02	-2.83E-02	-2.78E-02				
79.10	4.55E-02	4.75E-02	1.043	2.90E-02	3.03E-02	3.10E-02	-2.83E-02	-2.78E-02				
80.00	4.55E-02	4.75E-02	1.043	2.90E-02	3.03E-02	3.10E-02	-2.83E-02	-2.78E-02				

SEZIONE MISTA A TO

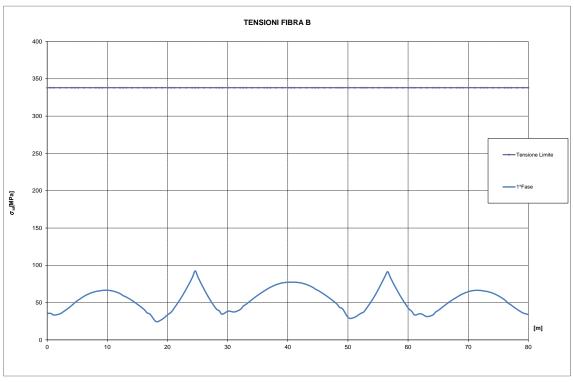
	SEZIONI MISTE t_0 $n(t_0) = 6.2$														
Progressiva	CARATTERISTICHE INERZIALI						TRAVE				SOLETTA		ARMATURA		
х	A _{mista_0}	S _{mista_0}	Yg	J_c	J_{ϕ}	J _a	J	W _A	W _B	W _C	W_D	W _{cs}	W _{ci}	$W_{\phi s}$	$W_{\phi i}$
[m]	[m ²]	[m ³]	[m]	[m ⁴]	[m ⁴]	[m ⁴]	[m ⁴]	[m ³]							
0.00	1.81E-01	0.08151	0.450	1.24E-02	8.32E-04	6.54E-02	7.86E-02	0.04248	0.04294	-0.60547	-0.52464	-1.09069	-3.27482	-0.19659	-0.39336
4.60	1.81E-01	0.08151	0.450	1.24E-02	8.32E-04	6.54E-02	7.86E-02	0.04248	0.04294	-0.60547	-0.52464	-1.09069	-3.27482	-0.19659	-0.39336
10.10	1.81E-01	0.08151	0.450	1.24E-02	8.32E-04	6.54E-02	7.86E-02	0.04248	0.04294	-0.60547	-0.52464	-1.09069	-3.27482	-0.19659	-0.39336
15.10	1.81E-01	0.08151	0.450	1.24E-02	8.32E-04	6.54E-02	7.86E-02	0.04248	0.04294	-0.60547	-0.52464	-1.09069	-3.27482	-0.19659	-0.39336
20.10	2.04E-01	0.10677	0.524	1.87E-02	2.18E-03	8.49E-02	1.06E-01	0.05959	0.06062	-0.54663	-0.47330	-1.26184	-2.95439	-0.22349	-0.38683
24.60	2.08E-01	0.10781	0.518	1.82E-02	2.42E-03	8.55E-02	1.06E-01	0.05958	0.06060	-0.56415	-0.48658	-1.27885	-3.03727	-0.22676	-0.39586
29.10	2.04E-01	0.10677	0.524	1.87E-02	2.18E-03	8.49E-02	1.06E-01	0.05959	0.06062	-0.54663	-0.47330	-1.26184	-2.95439	-0.22349	-0.38683
34.10	1.84E-01	0.08820	0.479	1.47E-02	9.84E-04	7.25E-02	8.83E-02	0.04847	0.04914	-0.55513	-0.49310	-1.15019	-3.07797	-0.20574	-0.38543
39.10	1.84E-01	0.08820	0.479	1.47E-02	9.84E-04	7.25E-02	8.83E-02	0.04847	0.04914	-0.55513	-0.49310	-1.15019	-3.07797	-0.20574	-0.38543
44.10	1.84E-01	0.08820	0.479	1.47E-02	9.84E-04	7.25E-02	8.83E-02	0.04847	0.04914	-0.55513	-0.49310	-1.15019	-3.07797	-0.20574	-0.38543
48.10	1.84E-01	0.08820	0.479	1.47E-02	9.84E-04	7.25E-02	8.83E-02	0.04847	0.04914	-0.55513	-0.49310	-1.15019	-3.07797	-0.20574	-0.38543
53.10	2.04E-01	0.10677	0.524	1.87E-02	2.18E-03	8.49E-02	1.06E-01	0.05959	0.06062	-0.54663	-0.47330	-1.26184	-2.95439	-0.22349	-0.38683
58.10	2.04E-01	0.10677	0.524	1.87E-02	2.18E-03	8.49E-02	1.06E-01	0.05959	0.06062	-0.54663	-0.47330	-1.26184	-2.95439	-0.22349	-0.38683
63.10	1.81E-01	0.08151	0.450	1.24E-02	8.32E-04	6.54E-02	7.86E-02	0.04248	0.04294	-0.60547	-0.52464	-1.09069	-3.27482	-0.19659	-0.39336
68.10	1.81E-01	0.08151	0.450	1.24E-02	8.32E-04	6.54E-02	7.86E-02	0.04248	0.04294	-0.60547	-0.52464	-1.09069	-3.27482	-0.19659	-0.39336
72.60	1.81E-01	0.08151	0.450	1.24E-02	8.32E-04	6.54E-02	7.86E-02	0.04248	0.04294	-0.60547	-0.52464	-1.09069	-3.27482	-0.19659	-0.39336
77.10	1.81E-01	0.08151	0.450	1.24E-02	8.32E-04	6.54E-02	7.86E-02	0.04248	0.04294	-0.60547	-0.52464	-1.09069	-3.27482	-0.19659	-0.39336
78.10	1.81E-01	0.08151	0.450	1.24E-02	8.32E-04	6.54E-02	7.86E-02	0.04248	0.04294	-0.60547	-0.52464	-1.09069	-3.27482	-0.19659	-0.39336
79.10	1.81E-01	0.08151	0.450	1.24E-02	8.32E-04	6.54E-02	7.86E-02	0.04248	0.04294	-0.60547	-0.52464	-1.09069	-3.27482	-0.19659	-0.39336
80.00	1.81E-01	0.08151	0.450	1.24E-02	8.32E-04	6.54E-02	7.86E-02	0.04248	0.04294	-0.60547	-0.52464	-1.09069	-3.27482	-0.19659	-0.39336

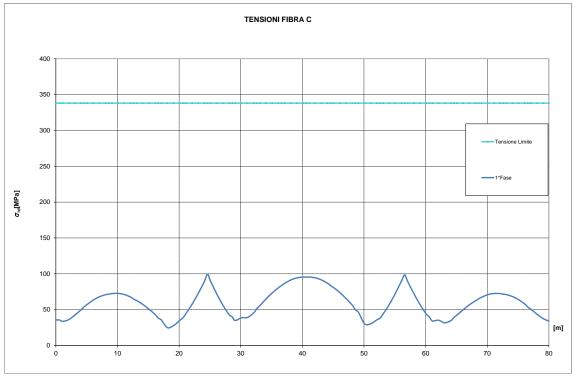
SEZIONE MISTA A T∞

			$n(t_0) =$	18.5						
Progressiva	CARATTERISTICHE INERZIALI			TRA	VE	SOLE	TTA	ARMATURA		
х	A _{mista_∞}	Yg	J	W_A	W_D	W _{cs}	W _{ci}	$W_{\phi s}$	$W_{\phi i}$	
[m]	[m ²]	[m]	[m ⁴]	[m ³]						
0.00	9.68E-02	0.711	6.38E-02	0.04013	-0.15498	-1.65958	-2.86985	-0.09639	-0.13818	
4.60	9.68E-02	0.711	6.38E-02	0.04013	-0.15498	-1.65958	-2.86985	-0.09639	-0.13818	
10.10	9.68E-02	0.711	6.38E-02	0.04013	-0.15498	-1.65958	-2.86985	-0.09639	-0.13818	
15.10	9.68E-02	0.711	6.38E-02	0.04013	-0.15498	-1.65958	-2.86985	-0.09639	-0.13818	
20.10	1.19E-01	0.788	8.51E-02	0.05628	-0.17448	-2.00061	-3.23112	-0.11536	-0.15826	
24.60	1.24E-01	0.770	8.63E-02	0.05637	-0.18369	-2.07566	-3.40156	-0.11988	-0.16601	
29.10	1.19E-01	0.788	8.51E-02	0.05628	-0.17448	-2.00061	-3.23112	-0.11536	-0.15826	
34.10	9.97E-02	0.758	7.08E-02	0.04587	-0.15463	-1.72950	-2.86347	-0.10000	-0.13940	
39.10	9.97E-02	0.758	7.08E-02	0.04587	-0.15463	-1.72950	-2.86347	-0.10000	-0.13940	
44.10	9.97E-02	0.758	7.08E-02	0.04587	-0.15463	-1.72950	-2.86347	-0.10000	-0.13940	
48.10	9.97E-02	0.758	7.08E-02	0.04587	-0.15463	-1.72950	-2.86347	-0.10000	-0.13940	
53.10	1.19E-01	0.788	8.51E-02	0.05628	-0.17448	-2.00061	-3.23112	-0.11536	-0.15826	
58.10	1.19E-01	0.788	8.51E-02	0.05628	-0.17448	-2.00061	-3.23112	-0.11536	-0.15826	
63.10	9.68E-02	0.711	6.38E-02	0.04013	-0.15498	-1.65958	-2.86985	-0.09639	-0.13818	
68.10	9.68E-02	0.711	6.38E-02	0.04013	-0.15498	-1.65958	-2.86985	-0.09639	-0.13818	
72.60	9.68E-02	0.711	6.38E-02	0.04013	-0.15498	-1.65958	-2.86985	-0.09639	-0.13818	
77.10	9.68E-02	0.711	6.38E-02	0.04013	-0.15498	-1.65958	-2.86985	-0.09639	-0.13818	
78.10	9.68E-02	0.711	6.38E-02	0.04013	-0.15498	-1.65958	-2.86985	-0.09639	-0.13818	
79.10	9.68E-02	0.711	6.38E-02	0.04013	-0.15498	-1.65958	-2.86985	-0.09639	-0.13818	
80.00	9.68E-02	0.711	6.38E-02	0.04013	-0.15498	-1.65958	-2.86985	-0.09639	-0.13818	



12.2 Verifiche 1a Fase


In tale fase si riportano le tensioni relative alle travi principali al lembo superiore ed inferiore. La soletta di calcestruzzo in questa fase è presente esclusivamente come carico.



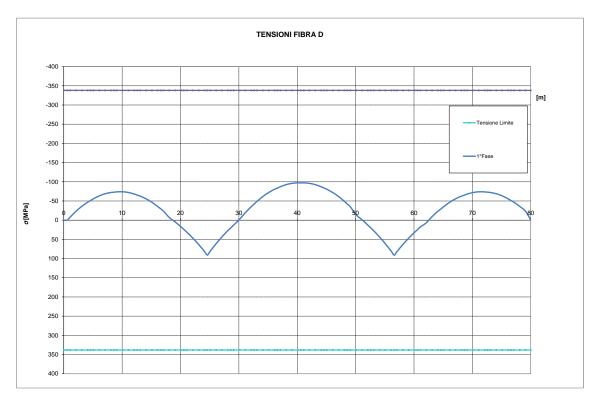
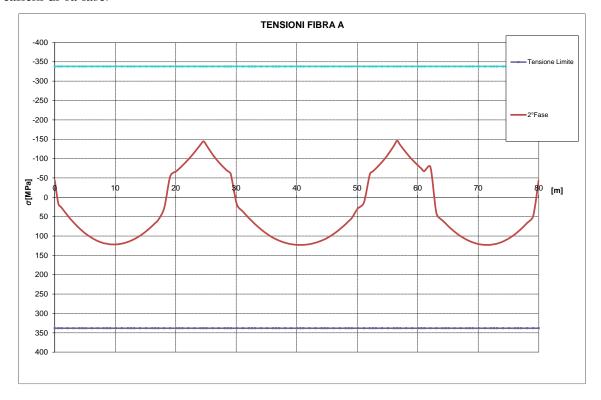
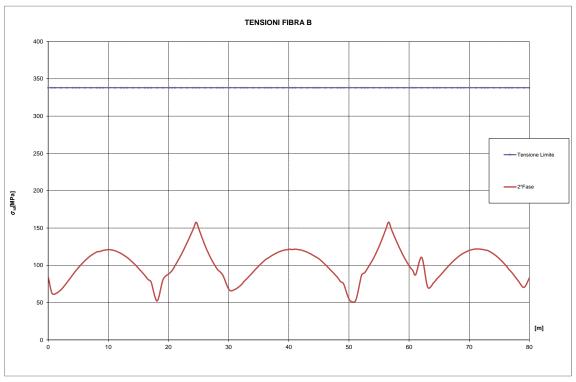
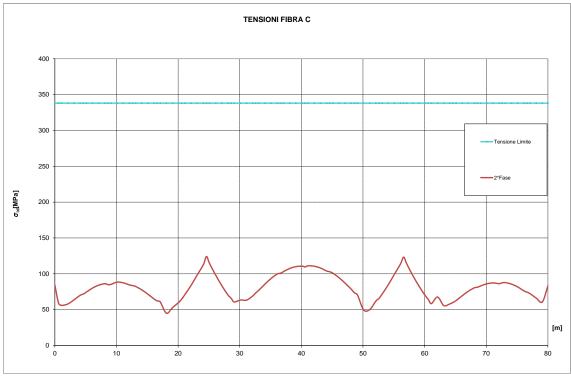


Figura 30 – Peso travi + Peso Soletta (Tensioni normali ed ideali)



Le tensioni indotte sugli elementi strutturali sono inferiori ai rispettivi valori limite.


12.3 Verifiche 2a Fase (tempo T0)


In tale fase si riportano le tensioni relative alle travi principali al lembo superiore ed inferiore con riferimento ai carichi di 2a fase. Si riportano per le travi principali le tensioni normali, tangenziali ed ideali. Alle tensioni, riportate nei diagrammi seguenti, è stato già sommato lo stato tensionale indotto dai carichi di 1a fase.

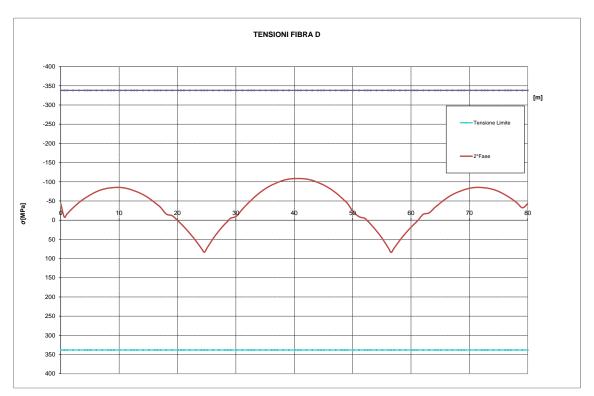
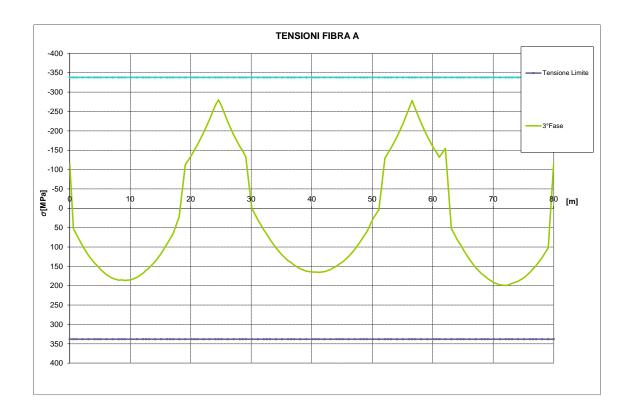
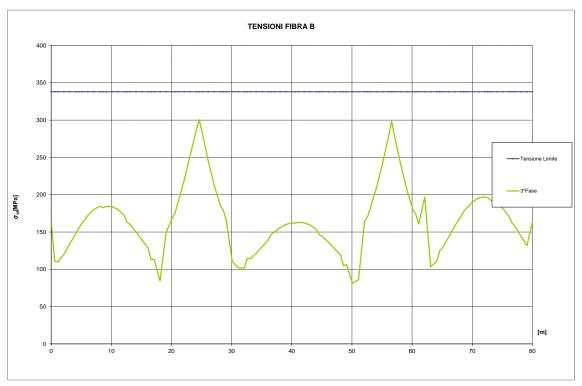
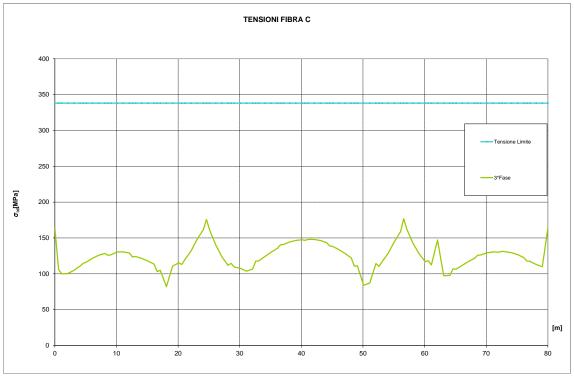


Figura 31 – Inviluppo tensioni normali ed ideali




12.4 VERIFICHE 2^A FASE (TEMPO T∞)


In tale fase si riportano le tensioni relative alle travi principali al lembo superiore ed inferiore. Si riportano per le travi principali le tensioni normali ed ideali. Alle tensioni, riportate nei diagrammi seguenti, è stato già sommato lo stato tensionale indotto dai carichi.

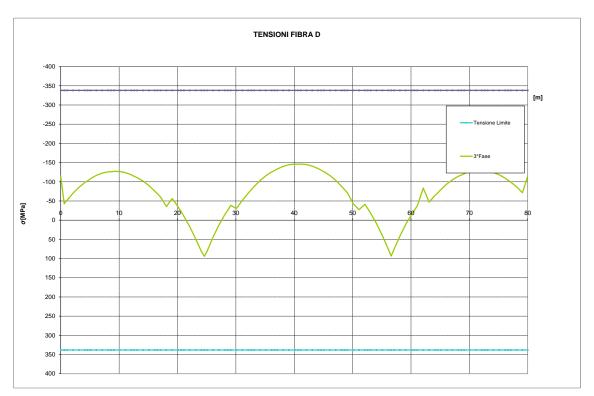


Figura 32 – Inviluppo tensioni normali ed ideali

12.5 Verifiche di instabilità

Al fine di evitare fenomeni di instabilità nelle strutture principali di acciaio sono stati disposti opportuni irrigidimenti trasversali e longitudinali. Questi suddividono l'anima in campi di passo costante ed altezza variabile. Si riporta di seguito la verifica forma tabellare di tutti i pannelli dell'impalcato.

La verifica risulta soddisfatta.

x	а	b	H _{tot}	h _{anima}	σ1	G ₂	$ au_{am}$	σ_{id}	Ψ	α	k _o	k _T	σ _{cr,0}	σ _{cr}	τ _{cr}	σ _{cr,id}	0.8f _d	σ _{cr,red}	VERIFICA
[m]	[m]	[m]	[mm]	[mm]	(N/mm ²)	(N/mm ²)	(N/mm ²)	(N/mm ²)					(N/mm ²)						
4.60	2.00	0.98	1960	12	-100	23	29	111.89	-0.23	2.04	9.65	6.30	27.92	269.29	175.90	270.54	258.2	269.3	2.41
10.10	2.00	0.98	1960	12	-124	29	15	126.34	-0.23	2.04	9.65	6.30	27.92	269.51	175.90	269.70	258.2	269.5	2.13
15.10	2.00	0.98	1960	12	-88	14	42	114.39	-0.15	2.04	8.84	6.30	27.92	246.70	175.90	256.96	258.2	257.0	2.25
20.10	2.00	0.97	1940	16	-135	-86	52	162.63	0.63	2.06	4.84	6.28	50.66	245.30	318.20	275.93	258.2	275.9	1.70
29.10	2.00	0.97	1940	16	-132	-86	9	132.65	0.65	2.06	4.79	6.28	50.66	242.77	318.20	243.98	258.2	244.0	1.84
34.10	2.00	0.98	1955	12	-101	0	38	120.12	0.00	2.05	7.62	6.30	28.06	213.70	176.66	226.27	258.2	226.3	1.88
39.10	2.00	0.98	1955	12	-141	9	11	142.62	-0.06	2.05	8.05	6.30	28.06	226.02	176.66	226.57	258.2	226.6	1.59
44.10	2.00	0.98	1955	12	-131	7	26	139.05	-0.05	2.05	8.01	6.30	28.06	224.72	176.66	228.41	258.2	228.4	1.64
48.60	2.00	0.98	1955	12	-78	-4	43	108.13	0.05	2.05	7.31	6.30	28.06	205.00	176.66	228.86	258.2	228.9	2.12
49.10	2.00	0.98	1955	12	-70	-5	48	109.48	0.08	2.05	7.15	6.30	28.06	200.60	176.66	233.21	258.2	233.2	2.13
53.10	2.00	0.97	1940	16	-153	-87	53	178.36	0.56	2.06	5.05	6.28	50.66	255.69	318.20	280.76	258.2	280.8	1.57
59.10	2.00	0.97	1940	16	-183	-87	10	183.63	0.48	2.06	5.32	6.28	50.66	269.66	318.20	270.41	258.2	269.7	1.47
63.10	2.00	0.98	1960	12	-46	3	48	95.41	-0.06	2.04	8.03	6.30	27.92	224.29	175.90	261.88	258.2	261.9	2.74
68.10	2.00	0.98	1960	12	-111	27	22	117.51	-0.25	2.04	9.79	6.30	27.92	273.32	175.90	273.52	258.2	273.3	2.33
72.60	2.00	0.98	1960	12	-126	34	11	127.32	-0.27	2.04	10.08	6.30	27.92	281.46	175.90	281.33	258.2	255.5	2.01
73.10	2.00	0.98	1960	12	-125	33	11	126.03	-0.27	2.04	10.00	6.30	27.92	279.32	175.90	279.22	258.2	253.0	2.01
74.10	2.00	0.98	1960	12	-121	32	18	125.20	-0.27	2.04	10.01	6.30	27.92	279.32	175.90	279.10	258.2	252.9	2.02
75.10	2.00	0.98	1960	12	-115	30	25	122.99	-0.26	2.04	9.98	6.30	27.92	278.69	175.90	278.39	258.2	251.9	2.05
76.10	2.00	0.98	1960	12	-107	28	31	119.47	-0.26	2.04	9.95	6.30	27.92	277.68	175.90	277.51	258.2	250.5	2.10
76.60	2.00	0.98	1960	12	-102	26	28	112.95	-0.26	2.04	9.89	6.30	27.92	276.12	175.90	276.19	258.2	247.8	2.19
77.10	2.00	0.98	1960	12	-97	24	34	113.19	-0.25	2.04	9.85	6.30	27.92	275.01	175.90	275.57	258.2	246.1	2.17
78.10	2.00	0.98	1960	12	-85	20	41	110.08	-0.24	2.04	9.71	6.30	27.92	271.06	175.90	273.92	258.2	271.1	2.46
79.10	2.00	0.98	1960	12	-70	15	47	107.80	-0.22	2.04	9.49	6.30	27.92	264.83	175.90	273.27	258.2	264.8	2.46
80.00	2.00	0.98	1960	12	-115	-115	54	148.60	1.00	2.04	4.00	6.30	27.92	111.67	175.90	132.99	258.2	133.0	2.46

12.6 Verifiche a fatica

Secondo quanto riportato in precedenza.

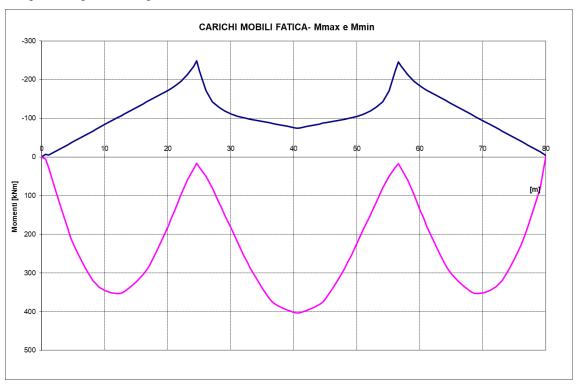


Figura 33 : inviluppo dei momenti flettenti (schema di fatica 3)

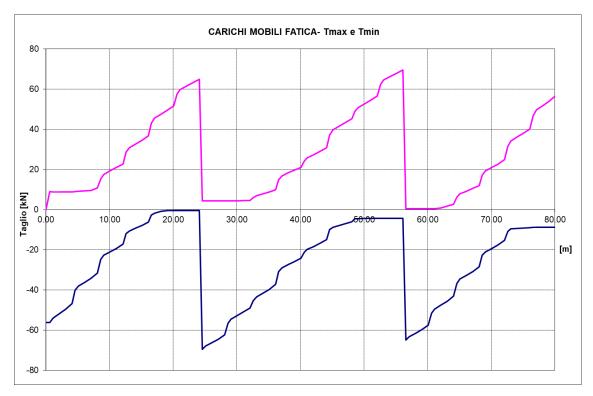


Figura 34 : inviluppo dei tagli (schema di fatica 3)

Si riportano le verifiche relative al dettaglio di saldatura a cordone d'angolo degli irrigidimenti trasversali a cui corrisponde $\Delta \sigma_C$ pari ad 71 MPa.

Si riporta di seguito il dettaglio della verifica.

			FATICA									
Progressiva	Piattabanda sup.	Piattabanda inf.		S	OLECITAZIO	VI .				OLECITAZIO	NI	
х	S _{sup}	S _{inf}	M _{MAX}	T _{MAX}	$\Delta\sigma_{BMax}$	$\Delta\sigma_{\text{C Max}}$	Δτ _{Max}	M _{MIN}	T _{MIN}	$\Delta\sigma_{\rm BMin}$	Δσ _{C Min}	Δτ _{Min}
[m]	[mm]	[mm]	[kNm]	[kN]	(N/mm2)	(N/mm2)	(N/mm2)	[kNm]	[kN]	(N/mm ²)	(N/mm ²)	(N/mm ²)
0.00	20	20	0	0	0.0	0.00	0.00	0	-56	0.0	0.00	2.39
4.60	20	20	208	9	4.8	-0.34	0.38	-36	-40	-1.0	0.77	1.70
10.10	20	20	345	19	8.0	-0.57	0.82	-84	-21	-2.4	1.81	0.89
15.10	20	20	321	35	7.5	-0.53	1.47	-128	-8	-3.7	2.75	0.33
20.10	30	30	178	52	2.9	-0.33	1.66	-173	0	-3.4	2.45	0.02
24.60	30	30	16	4	0.3	-0.03	0.14	-248	-70	-4.8	3.14	2.24
29.10	30	30	152	4	2.5	-0.28	0.14	-119	-55	-2.3	1.69	1.76
34.10	20	25	315	8	6.4	-0.57	0.33	-95	-42	-2.3	1.99	1.77
39.10	20	25	397	20	8.1	-0.71	0.84	-79	-26	-2.0	1.66	1.10
44.10	20	25	381	31	7.8	-0.69	1.31	-85	-15	-2.1	1.80	0.64
48.10	20	25	288	45	5.9	-0.52	1.93	-98	-6	-2.4	2.06	0.25
53.10	30	30	117	64	1.9	-0.21	2.08	-129	-4	-2.5	1.82	0.14
58.10	30	30	60	1	1.0	-0.11	0.02	-213	-61	-4.2	3.01	1.98
63.10	20	20	248	2	5.8	-0.41	0.07	-155	-46	-4.4	3.33	1.94
68.10	20	20	348	12	8.1	-0.58	0.51	-110	-29	-3.2	2.37	1.21
72.60	20	20	327	32	7.6	-0.54	1.34	-71	-11	-2.0	1.53	0.46
73.10	20	20	319	34	7.4	-0.53	1.45	-67	-10	-1.9	1.43	0.40
74.10	20	20	292	36	6.8	-0.48	1.54	-58	-9	-1.7	1.24	0.40
75.10	20	20	261	38	6.1	-0.43	1.62	-49	-9	-1.4	1.05	0.39
76.10	20	20	228	40	5.3	-0.38	1.70	-40	-9	-1.2	0.86	0.38
76.60	20	20	205	47	4.8	-0.34	1.99	-35	-9	-1.0	0.76	0.38
77.10	20	20	183	50	4.3	-0.30	2.11	-31	-9	-0.9	0.67	0.38
78.10	20	20	133	52	3.1	-0.22	2.20	-22	-9	-0.6	0.47	0.38
79.10	20	20	81	54	1.9	-0.13	2.30	-13	-9	-0.4	0.28	0.38
80.00	20	20	0	56	0.0	0.00	2.39	-4	-9	-0.1	0.09	0.38

GEOMETRIA																			IRRIGIDITO	ORI SALDATI	
																			Clas	se 80	
Progressiva																		Piattabar	da Inf.	Piattab	anda Sup.
x			λ ₁		λflessione	λ _{taglio}	Δσ _{B Max}	Δσ _{C Max}	$\Delta \sigma_{\text{BMin}}$	Δσ _{C Min}	Δσ _{p Inf}	Δσ _{p Sup}	λΔσ _{inf}	λΔσ _{Sup}	λΔτ	k _{s superiore}	k _{s inferiore}	k _σ Δσ _C /γ _{mi}		$k_{\sigma}\Delta\sigma_{C}/\gamma_{mf}$	
[m]	L flessione	L taglio	λ _{1 flessione}	λ _{1 taglio}	$\lambda_1 * \lambda_2 * \lambda_3$	*λ₄	(N/mm ²)	(N/mm²)	(N/mm ²)	(N/mm ²)	(N/mm ²)	(N/mm ²)	(N/mm ²)	(N/mm ²)	(N/mm ²)			(N/mm²)	VERIFICA	(N/mm²)	VERIFICA
0.00	24	9.6	2.41	2.554	1.62	1.72	0.0	0.00	0.0	0.00	0.00	0.00	0.00	0.00	4.11	1.00	1.00	52.59	OK	52.59	ок
4.60	24	9.6	2.41	2.554	1.62	1.72	4.8	-0.34	-1.0	0.77	5.86	1.11	9.50	1.80	3.58	1.00	1.00	52.59	ок	52.59	ок
10.10	24	9.6	2.41	2.554	1.62	1.72	8.0	-0.57	-2.4	1.81	10.46	2.38	16.96	3.86	2.95	1.00	1.00	52.59	ок	52.59	ок
15.10	28	11.2	2.37	2.538	1.59	1.71	7.5	-0.53	-3.7	2.75	11.16	3.28	17.80	5.24	3.08	1.00	1.00	52.59	ок	52.59	ок
20.10	28	11.2	2.37	2.538	1.59	1.71	2.9	-0.33	-3.4	2.45	6.32	2.78	10.08	4.43	2.86	0.96	0.96	50.25	OK	50.25	OK
24.60	28	11.2	2.37	2.538	1.59	1.71	0.3	-0.03	-4.8	3.14	5.06	3.17	8.06	5.06	4.06	0.96	0.96	50.25	OK	50.25	ок
29.10	28	11.2	2.37	2.538	1.59	1.71	2.5	-0.28	-2.3	1.69	4.83	1.96	7.70	3.13	3.24	0.96	0.96	50.25	OK	50.25	ок
34.10	32	12.8	2.33	2.522	1.57	1.70	6.4	-0.57	-2.3	1.99	8.76	2.56	13.73	4.01	3.57	1.00	1.00	52.59	ок	52.59	OK
39.10	32	12.8	2.33	2.522	1.57	1.70	8.1	-0.71	-2.0	1.66	10.03	2.37	15.72	3.72	3.29	1.00	1.00	52.59	ок	52.59	ок
44.10	28	11.2	2.37	2.538	1.59	1.71	7.8	-0.69	-2.1	1.80	9.87	2.48	15.74	3.96	3.33	1.00	1.00	52.59	ок	52.59	ок
48.10	28	11.2	2.37	2.538	1.59	1.71	5.9	-0.52	-2.4	2.06	8.29	2.57	13.21	4.10	3.73	1.00	1.00	52.59	ок	52.59	ок
53.10	24	9.6	2.41	2.554	1.62	1.72	1.9	-0.21	-2.5	1.82	4.44	2.04	7.20	3.30	3.81	0.96	0.96	50.25	OK	50.25	OK
58.10	24	9.6	2.41	2.554	1.62	1.72	1.0	-0.11	-4.2	3.01	5.14	3.12	8.33	5.06	3.43	0.96	0.96	50.25	OK	50.25	OK
63.10	28	11.2	2.37	2.538	1.59	1.71	5.8	-0.41	-4.4	3.33	10.22	3.74	16.30	5.96	3.43	1.00	1.00	52.59	ОК	52.59	OK
68.10	28	11.2	2.37	2.538	1.59	1.71	8.1	-0.58	-3.2	2.37	11.27	2.94	17.98	4.69	2.94	1.00	1.00	52.59	ОК	52.59	OK
72.60	24	9.6	2.41	2.554	1.62	1.72	7.6	-0.54	-2.0	1.53	9.67	2.07	15.67	3.36	3.09	1.00	1.00	52.59	ок	52.59	ок
73.10	24	9.6	2.41	2.554	1.62	1.72	7.4	-0.53	-1.9	1.43	9.35	1.96	15.16	3.18	3.19	1.00	1.00	52.59	ок	52.59	OK
74.10	24	9.6	2.41	2.554	1.62	1.72	6.8	-0.48	-1.7	1.24	8.47	1.73	13.73	2.80	3.32	1.00	1.00	52.59	ок	52.59	OK
75.10	24	9.6	2.41	2.554	1.62	1.72	6.1	-0.43	-1.4	1.05	7.49	1.48	12.15	2.41	3.45	1.00	1.00	52.59	ОК	52.59	OK
76.10	24	9.6	2.41	2.554	1.62	1.72	5.3	-0.38	-1.2	0.86	6.45	1.24	10.45	2.01	3.58	1.00	1.00	52.59	ОК	52.59	OK
76.60	24	9.6	2.41	2.554	1.62	1.72	4.8	-0.34	-1.0	0.76	5.78	1.10	9.37	1.78	4.07	1.00	1.00	52.59	ок	52.59	OK
77.10	24	9.6	2.41	2.554	1.62	1.72	4.3	-0.30	-0.9	0.67	5.14	0.97	8.33	1.57	4.27	1.00	1.00	52.59	ок	52.59	ок
78.10	24	9.6	2.41	2.554	1.62	1.72	3.1	-0.22	-0.6	0.47	3.73	0.69	6.04	1.13	4.43	1.00	1.00	52.59	ок	52.59	OK
79.10	24	9.6	2.41	2.554	1.62	1.72	1.9	-0.13	-0.4	0.28	2.26	0.42	3.66	0.68	4.59	1.00	1.00	52.59	ок	52.59	OK
80.00	24	9.6	2.41	2.554	1.62	1.72	0.0	0.00	-0.1	0.09	0.13	0.09	0.21	0.15	4.76	1.00	1.00	52.59	ок	52.59	OK

12.7 INCIDENZA CARPENTERIA METALLICA

In accordo con gli elaborati grafici l'incidenza della carpenteria metallica rispetto all'impalcato è pari ad 240 kg/mq.

13 VERIFICHE A DEFORMABILITÀ

Si riporta a seguire l'andamento degli spostamenti per la combinazione di carico caratteristica:

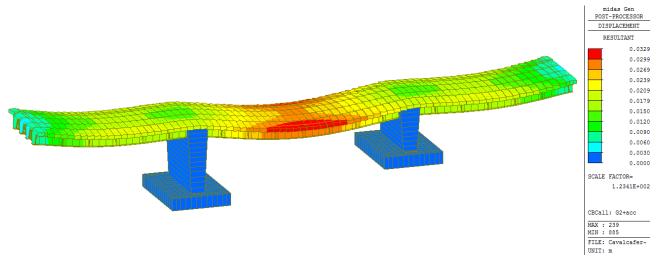


Figura 35: Stato limite d'esercizio – Abbassamenti

Il massimo valore di abbassamento, depurato della monta iniziale, è pari a: dzmax=0.0329 m < 1/700 L = 0.046 m

Di seguito si riporta l'andamento dell'abbassamento per effetto dei soli pesi propri.

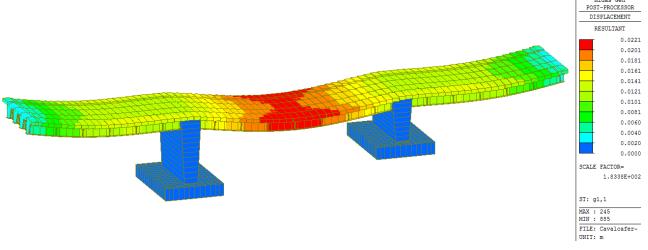


Figura 36: Peso proprio - Abbassamenti

Il massimo valore di abbassamento è pari a : d_{zmax} =0.022 m < 1/300 L = 0.106m

14 SOLETTA - SOLLECITAZIONI E VERIFICHE

L'impalcato in esame è costituito da 4 travi in acciaio poste ad interasse di 2.80 m, con sbalzi di 2.28m, per una larghezza complessiva di impalcato pari a 12.95 m. La soletta in c.a. gettata in opera ha spessore 30 cm (soletta relativa alla parte pavimentata dell'impalcato larga 8.00m); i cordoli laterali d'impalcato (larghezza 2.5m) presentano uno spessore complessivo di 63cm.

Si procede al calcolo di una tratta di soletta assumendo le dimensioni visibili nella sezione di seguito. La ricerca delle sollecitazioni prodotte nella soletta è effettuata mediante apposito modello spaziale a piastre, eseguito utilizzando il software di modellazione agli elementi finiti MidasGen - ver. 11.12., come descritto di seguito.

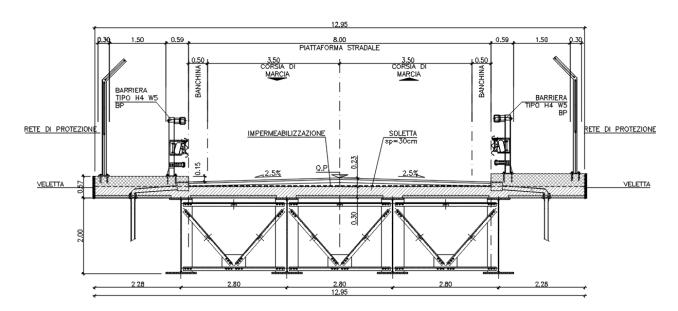


Figura 37: Sezione impalcato

14.1 MODELLO DI CALCOLO A PIASTRA

Per il computo delle sollecitazioni flessionali dovute ad effetti locali sulla soletta d'impalcato, si è ricorsi all'impiego di un modello agli elementi finiti, che schematizza un tratto del cavalcaferrovia in cui le sollecitazioni dovute ad effetti locali assumono la massima entità; il dimensionamento della soletta così ottenuto, pertanto, può essere cautelativamente ritenuto valido anche per tutte le altre diverse configurazioni d'impalcato.

Nel modello, la soletta d'impalcato è schematizzata mediante una mesh di elementi piastra, vincolati tramite appoggi in corrispondenza degli assi delle travi longitudinali d'impalcato. Il modello rappresenta la sezione trasversale di 12.95 m e 20 m di quella longitudinale (dimensione sufficiente per rendere trascurabili gli effetti di bordo). La soletta è di spessore pari a 30 cm in corrispondenza della zona centrale pavimentata d'impalcato; pari a 63 cm in corrispondenza dei cordoli laterali.

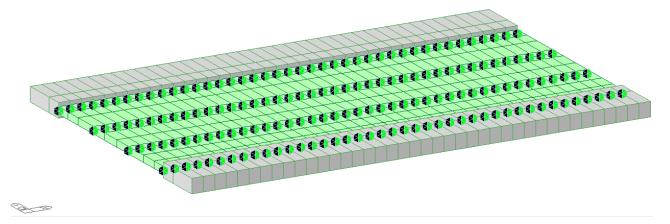


Figura 38: Vista assonometrica del modello di calcolo

14.2 ANALISI DEI CARICHI DELLA SOLETTA

Per quanto concerne i sovraccarichi accidentali indotti dal traffico, relativamente agli effetti locali, si utilizzano gli schemi di carico convenzionali 1 e 2 come indicato nella normativa vigente per ponti di prima categoria.

In particolare, lo Schema di Carico 1 è costituito da carichi concentrati su due assi in tandem, applicati su impronte di pneumatico di forma quadrata e lato 0,40 m, e da carichi uniformemente distribuiti come già mostrato nel paragrafo della presente relazione relativo all'analisi dei carichi mobili accidentali. Questo schema si assume a riferimento sia per le verifiche globali, sia per le verifiche locali, considerando un solo carico tandem per corsia, disposto in asse alla corsia stessa. Il carico tandem, se presente, va considerato per intero.

Ingegneria e Investimenti

Posizione	Carico asse Qik [kN]	$q_{ik}[kN/m^2]$
Corsia Numero 1	300	9,00
Corsia Numero 2	200	2,50
Corsia Numero 3	100	2,50
Altre corsie	0,00	2,50

Figura 39: Intensità dei carichi Q_{ik} e q_{ik} per le diverse corsie

Figura 42: Disposizione dei carichi concentrati (Schema di carico 1) per massimizzazione del momento sull'appoggio

Figura 43: Disposizione dei carichi concentrati (Schema di carico 1) per massimizzazione del momento sulla campata 1

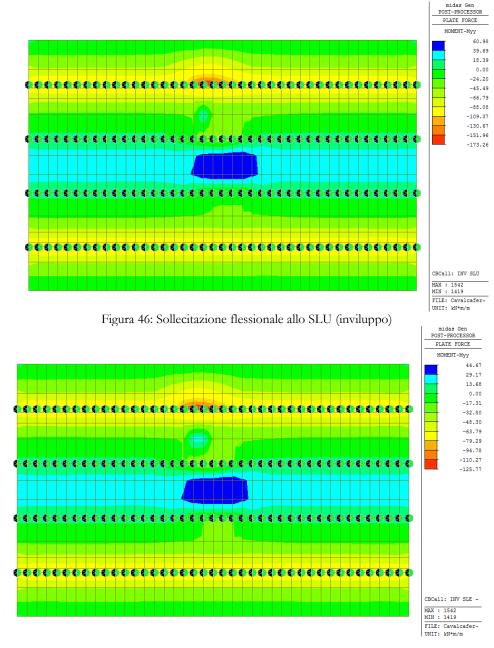
I valori delle sollecitazioni agenti considerano l'effettiva dimensione della mesh del modello implementato.

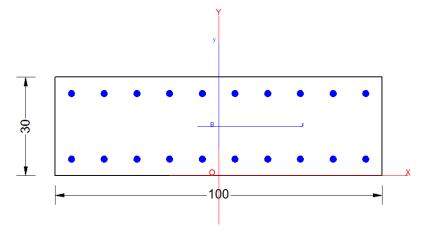
Relativamente allo Schema di carico 2, questo è costituito da un singolo asse applicato su specifiche impronte di pneumatico di forma rettangolare, di larghezza 0,60 m ed altezza 0,35 m. Questo schema va considerato autonomamente con asse longitudinale nella posizione più gravosa ed è da assumere a riferimento solo per verifiche locali. Qualora sia più gravoso si considererà il peso di una singola ruota di 200 kN.

Figura 45: Disposizione dei carichi concentrati (Schema di carico 2) per massimizzazione del momento sulla campata 1

14.3 ANALISI DELLE SOLLECITAZIONI ED ARMATURE DELLA SOLETTA

Definiti gli schemi di carico, sopra citati, si procede alla definizione delle combinazioni allo SLU e allo SLE, applicando i coefficienti conformi alla normativa vigente. Di seguito i diagrammi dei momenti massimi in campata e all'appoggio, relativi alle varie combinazioni di carico citate.




Figura 47: Sollecitazione flessionale allo SLE RARA (inviluppo)

14.4 VERIFICA DELLA SOLETTA

Si riportano di seguito le verifiche strutturali eseguite sulla sezione di appoggio/campata della soletta di impalcato, di cui se ne riporta la geometria:

Si impiega:

Armatura superiore $1\Phi 20/10$

Armatura inferiore $1\Phi 20/10$

Verifiche strutturali:

CARATTERISTICHE DI RESISTENZA DEI MATERIALI IMPIEGATI

CALCESTRUZZO -	Classe:	C30/37
ACCIAIO -	Tipo:	B450C

CARATTERISTICHE DOMINIO CONGLOMERATO

Forma del Do Classe Conglo		Poligonale C30/37
N°vertice:	X [cm]	Y [cm]
1 2 3 4	-50.0 -50.0 50.0 50.0	0.0 30.0 30.0

DATI BARRE ISOLATE

N°Barra	X [cm]	Y [cm]	DiamØ[mm]
1	-45.0	5.0	20
2	-45.0	25.0	20
3	45.0	25.0	20
4	45.0	5.0	20
MANDA	TARIA		MANDANTI

DATI GENERAZIONI LINEARI DI BARRE

N°Gen.	Numero assegnato alla singola generazione lineare di barre
N°Barra Ini.	Numero della barra iniziale cui si riferisce la generazione
N°Barra Fin.	Numero della barra finale cui si riferisce la generazione

N°Barre Numero di barre generate equidistanti cui si riferisce la generazione

Ø Diametro in mm delle barre della generazione

N°Gen.	N°Barra Ini.	N°Barra Fin.	N°Barre	Ø
1	1	4	8	20
2	2	3	8	20

CALCOLO DI RESISTENZA - SFORZI PER OGNI COMBINAZIONE ASSEGNATA

N Mx		Sforzo normale [kN] applicato nel Baric. (+ se di compressione) Momento flettente [kNm] intorno all'asse x princ. d'inerzia con verso positivo se tale da comprimere il lembo sup. della sez.								
Му		Momento flettente [kNm] intorno all'asse y princ. d'inerzia con verso positivo se tale da comprimere il lembo destro della sez.								
Vy Vx		Componente del	Taglio [kN] parallela	a all'asse princ.d'ine a all'asse princ.d'ine	rzia y					
N°Comb.	N	Mx	My	Vy	Vx					
1	0.00	175.00	0.00	0.00	0.00					

COMB. RARE/FREQUENTI (S.L.E.) - SFORZI PER OGNI COMBINAZIONE ASSEGNATA

N Sforzo normale [kN] applicato nel Baricentro (+ se di compressione)

Mx Momento flettente [kNm] intorno all'asse x princ. d'inerzia (tra parentesi Mom.Fessurazione)

con verso positivo se tale da comprimere il lembo superiore della sezione

My Momento flettente [kNm] intorno all'asse y princ. d'inerzia (tra parentesi Mom.Fessurazione)

con verso positivo se tale da comprimere il lembo destro della sezione

N°Comb. N Mx My 1 0.00 126.00 (61.72) 0.00 (0.00)

RISULTATI DEL CALCOLO

Sezione verificata per tutte le combinazioni assegnate

Copriferro netto minimo barre longitudinali: 4.0 cm

VERIFICHE DI RESISTENZA IN PRESSO-TENSO FLESSIONE ALLO STATO LIMITE ULTIMO

Ver S = combinazione verificata / N = combin. non verificata

N Sforzo normale assegnato [kN] nel baricentro B sezione cls.(positivo se di compressione)

Mx Componente del momento assegnato [kNm] riferito all'asse x princ. d'inerzia
My Componente del momento assegnato [kNm] riferito all'asse y princ. d'inerzia
N Res Sforzo normale resistente [kN] nel baricentro B sezione cls.(positivo se di compress.)

Mx Res Momento flettente resistente [kNm] riferito all'asse x princ. d'inerzia
My Res Momento flettente resistente [kNm] riferito all'asse y princ. d'inerzia
Mis.Sic. Misura sicurezza = rapporto vettoriale tra (N r,Mx Res,My Res) e (N,Mx,My)

Verifica positiva se tale rapporto risulta >=1.000

As Tesa Area armature trave [cm²] in zona tesa. [Tra parentesi l'area minima ex (4.1.15)NTC]

MANDATARIA

Ingegneria e Investimenti

N°Comb	Ver	N	Mx	My	N Res	Mx Res	My Res	Mis.Sic.	As Tesa
1	S	0.00	175.00	0.00	0.00	266.49	0.00	1.52	31.4(4.2)

METODO AGLI STATI LIMITE ULTIMI - DEFORMAZIONI UNITARIE ALLO STATO ULTIMO

ec max	Deform. unit. massima del conglomerato a compressione
x/d	Rapporto di duttilità [§ 4.1.2.1.2.1 NTC] deve essere < 0.45
Xc max	Ascissa in cm della fibra corrisp. a ec max (sistema rif. X,Y,O sez.)
Yc max	Ordinata in cm della fibra corrisp. a ec max (sistema rif. X,Y,O sez.)
es min	Deform. unit. minima nell'acciaio (negativa se di trazione)
Xs min	Ascissa in cm della barra corrisp. a es min (sistema rif. X,Y,O sez.)
Ys min	Ordinata in cm della barra corrisp. a es min (sistema rif. X,Y,O sez.)
es max	Deform. unit. massima nell'acciaio (positiva se di compress.)
Xs max	Ascissa in cm della barra corrisp. a es max (sistema rif. X,Y,O sez.)
Ys max	Ordinata in cm della barra corrisp. a es max (sistema rif. X,Y,O sez.)

N°Comb	ec max	x/d	Xc max	Yc max	es min	Xs min	Ys min	es max	Xs max	Ys max
1	0.00350	0.243	-50.0	30.0	0.00062	45.0	25.0	-0.01089	-45.0	5.0

POSIZIONE ASSE NEUTRO PER OGNI COMB. DI RESISTENZA

a, b, c	Coeff. a, b, c nell'eq. dell'asse neutro aX+bY+c=0 nel rif. X,Y,O gen.
x/d	Rapp. di duttilità (travi e solette)[§ 4.1.2.1.2.1 NTC]: deve essere < 0.45

C.Rid. Coeff. di riduz. momenti per sola flessione in travi continue

N°Comb a b c x/d C.Rid.
1 0.00000000 0.000575431 -0.013762939 0.243 0.744

COMBINAZIONI RARE/FREQUENTI IN ESERCIZIO - MASSIME TENSIONI NORMALI ED APERTURA FESSURE (NTC/EC2)

Ver S = comb. verificata/ N = comb. non verificata

Sc max
Massima tensione (positiva se di compressione) nel conglomerato [Mpa]
Xc max, Yc max
Ascissa, Ordinata [cm] del punto corrisp. a Sc max (sistema rif. X,Y,O)

Sf min Minima tensione (negativa se di trazione) nell'acciaio [Mpa]

Xs min, Ys min
Ascissa, Ordinata [cm] della barra corrisp. a Sf min (sistema rif. X,Y,O)
Ac eff.
As eff.
As eff.
As eff.
Ascissa, Ordinata [cm] della barra corrisp. a Sf min (sistema rif. X,Y,O)
Area di calcestruzzo [cm²] in zona tesa considerata aderente alle barre
Area barre [cm²] in zona tesa considerate efficaci per l'apertura delle fessure

 $\label{eq:comb_scale} \mbox{N°Comb} \quad \mbox{Ver} \quad \mbox{Sc max} \quad \mbox{Xc max} \quad \mbox{Yc max} \quad \mbox{Sf min} \quad \mbox{Xs min} \quad \mbox{Ys min} \quad \mbox{Ac eff.} \quad \mbox{As eff.}$

1 S 8.21 -50.0 30.0 -189.5 -45.0 5.0 650 31.4

COMBINAZIONI RARE/FREQUENTI IN ESERCIZIO - APERTURA FESSURE [§ 7.3.4 EC2]

La sezione viene assunta sempre fessurata anche nel caso in cui la trazione minima del calcestruzzo sia inferiore a fctm

Ver. Esito della verifica

e1 Massima deformazione unitaria di trazione nel calcestruzzo (trazione -) valutata in sezione fessurata e2 Minima deformazione unitaria di trazione nel calcestruzzo (trazione -) valutata in sezione fessurata

k1 = 0.8 per barre ad aderenza migliorata [eq.(7.11)EC2]

kt = 0.4 per comb. quasi permanenti / = 0.6 per comb.frequenti [cfr. eq.(7.9)EC2] k2 = 0.5 per flessione; =(e1 + e2)/(2*e1) per trazione eccentrica [eq.(7.13)EC2]

k3 = 3.400 Coeff. in eq.(7.11) come da annessi nazionali k4 = 0.425 Coeff. in eq.(7.11) come da annessi nazionali

Ø Diametro [mm] equivalente delle barre tese comprese nell'area efficace Ac eff [eq.(7.11)EC2]
Cf Copriferro [mm] netto calcolato con riferimento alla barra più tesa

MANDANTI

e sm - e cm Differenza tra le deformazioni medie di acciaio e calcestruzzo [(7.8)EC2 e (C4.1.7)NTC]

Tra parentesi: valore minimo = 0.6 Smax / Es [(7.9)EC2 e (C4.1.8)NTC]

sr max Massima distanza tra le fessure [mm]

CODING

♥POLITECNICA

Apertura fessure in mm calcolata = sr $\max^*(e_sm - e_cm)$ [(7.8)EC2 e (C4.1.7)NTC]. Valore limite tra parentesi Componente momento di prima fessurazione intorno all'asse X [kNm]

wk Mx fess. Componente momento di prima fessurazione intorno all'asse Y [kNm] My fess.

Ø Cf Comb. Ver e1 e2 k2 Mx fess My fess e sm - e cm sr max -0.00126 0 0.500 20.0 0.00071 (0.00057) S 40 206 0.147 (0.20) 61.72 0.00

14.5 VERIFICA DELLA SOLETTA IN SENSO LONGITUDINALE

Si riporta a aseguire la verifica della soletta in senso longitudinale per effetto di una sollecitazione di trazione pura. I valori delle sollecitazioni agenti sono ottenuti dall'integrazione delle tensioni al lembo superiore della soletta (considerata non reagente).

Si dispongono armature $1+1\Phi 24/10$ superiormente agli appoggi intermedi.

CARATTERISTICHE GEOMETRICHE ED ARMATURE SEZIONE

100.0 Base: 30.0 Altezza: cm 10Ø24 (45.2 cm²) Barre inferiori: Barre superiori: 10Ø24 (45.2 cm²) Coprif.Inf.(dal baric. barre): 5.0 cm Coprif.Sup.(dal baric. barre): cm

ST.LIM.ULTIMI - SFORZI PER OGNI COMBINAZIONE ASSEGNATA

Sforzo normale [kN] applicato nel baricentro (posit. se di compress.) Mx Momento flettente [kNm] intorno all'asse x baric. della sezione con verso positivo se tale da comprimere il lembo sup, della sezione ۷Y Taglio [kN] in direzione parallela all'asse Y del riferim. generale MT Momento torcente [kN m]

N°Comb. Ν MT Mx Vy 0.01 1 1.00 0.00 0.00

COMB. QUASI PERMANENTI (S.L.E.) - SFORZI PER OGNI COMBINAZIONE ASSEGNATA

Ν Sforzo normale [kN] applicato nel baricentro (positivo se di compress.) Coppia [kNm] applicata all'asse x baricentrico (tra parentesi il Momento di fessurazione)

con verso positivo se tale da comprimere il lembo superiore della sezione

N°Comb. Мx -873.00 0.00(0.00)

RISULTATI DEL CALCOLO

Sezione verificata per tutte le combinazioni assegnate

Copriferro netto minimo barre longitudinali: 2.8 cm Interferro netto minimo barre longitudinali: 7.6 cm

METODO AGLI STATI LIMITE ULTIMI - RISULTATI PRESSO-TENSO FLESSIONE

Ver S = combinazione verificata / N = combin. non verificata

Ν Sforzo normale baricentrico assegnato [kN] (positivo se di compressione) Mx Momento flettente assegnato [kNm] riferito all'asse x baricentrico Sforzo normale ultimo [kN] nella sezione (positivo se di compress.) N ult Momento flettente ultimo [kNm] riferito all'asse x baricentrico Mx ult Misura sicurezza = rapporto vettoriale tra (N ult, Mx ult) e (N, Mx) Mis.Sic.

MANDANTI

Verifica positiva se tale rapporto risulta >=1.000

Yneutro Ordinata [cm] dell'asse neutro a rottura nel sistema di rif. X,Y,O sez.

Mx sn. Momento flettente allo snervamento [kNm] x/d Rapp. di duttilità a rottura solo se N = 0 (travi)

-		C.Rid.	Coeff. di ric	duz. momenti ir	n travi continue	e [formula (4.1.1)	NTC]					
-	N°Comb	Ver	N	Mx	N ult	Mx ult Mis	.Sic. Yn	M sn	x/d	C.Rid.	As Tesa	
-	1	S	0.01	1.00	0.01	384.44 384	.446 24.2	373.82	0.23	0.73	45.2 (4.2)	
-	WETODO 10					UTADIE ALLO	07470 71140					
-	METODO AG	LISIAIII	LIMITE ULTI	IMI - DEFORI	WAZIONI UN	III ARIE ALLO	STATO ULTIMO					
-		ec max				erato a compre						
-		ec 3/7	Deform. u	init. del congle	omerato nell	a fibra a 3/7 de	ll'altezza efficace					
-		Yc max es min				ec max (sister egativa se di tr	na rif. X,Y,O sez.)					
-		Ys min					na rif. X,Y,O sez.)	,				
-		es max				(positiva se di d						
-		Ys max	Ordinata i	in cm della ba	ırra corrisp. a	a es max (siste	ma rif. X,Y,O sez	.)				
-	N°Con	nb	ec max	ec 3/7	Yc ma	ax es min	Ys min	es	max	Ys max		
-		1	0.00350	-0.00428	30	.0 0.00108	26.0	-0.01	163	5.0		
-												
-												
-	COMBINAZIO	NI OLIASI	PERMANE	NTI IN ESER	CIZIO - VE	RIFICA MASS	IME TENSIONI N	ORMAI I				
_	OOM DITO LIC	THE GOTTO	T LIGHT UTL	THE LOCK	OILIO VL	1411 1071 1117100	IIIL TENOIONIN	OT COMPANY				
-		Ver				in. non verificata	(Th.A 1					
-		Sc max Yc max				conglom. in fase t max (sistema rif.						
-		Sc min	Minima ten	sione di compr	ess.(+) nel co	nglom. in fase fe	ssurata ([Mpa]					
-		Yc min Sf min		ı cm della fibra ısione di trazior		min (sistema rif.)	(,Y,O)					
-		Ys min	Ordinata in	cm della barra	corrisp. a Sf	min (sistema rif.	X,Y,O)					
-		Dw Eff.	Spessore of	di conglomerato	[cm] in zona	tesa considerata	aderente alle barre					
-		Ac eff. As eff.				nte alle barre (ver	itica tess.) ice(verifica fess.)					
-		D barre	Distanza m	nedia in cm tra	le barre tese e	efficaci utilizzata ı	nel calcolo di fessur					
-			(se Dbarre	>14Ø viene po	osto Dbarre=1	4Ø nel calcolo di	fess. [B.6.6.3 Circ.	252/'96])				
-	N°Comb	Ver	Sc max	Yc max	Sc min	Yc min	Sf min Ys	min	Dw Eff.	Ac Eff.	As Eff.	D
barre	9											
-	1	S	0.00	30.0	0.00	0.0	-101.1	26.0	30.0	3000	90.5	
10.0		0	0.00	30.0	0.00	0.0	-101.1	20.0	30.0	3000	30.3	
-	COMBINAZIO	ONI QUAS	I PERMANE	NTI IN ESER	CIZIO - VE	RIFICA APER	TURA FESSURE					
-		Ver	S = combir	nazione verifica	ta / N = combi	in. non verificata						
-		Sclmax				llo STATO I non	fessurato [Mpa]					
-		Sclmin				o STATO I non fe						
-		K3 Beta12		i îlessione; = 0,2 ei Coeff. di ade			n) per trazione ecce	entrica				
-		Psi	= 1-Beta12	2*(Ssr/Ss)2 = 1-	Beta12*(fctm/	ScImin) ² = 1-Beta	a12*(Mfess/M) ² [B.6					
-		e sm		one unitaria me nedia in mm tra		ure . Tra parente	si il valore minimo =	0.4 Ss/Es	3			
-		srm wk				*Srm. Tra parent	esi è indicato il valo	re limite.				
-		M fess.		di prima fessura		•						
-	N°Comb	Ver	ScImax	Sclmin	Sc Eff	K3 Beta12		Psi	e sm	srm	wk	
M Fe		V 01	Jonnax	Commi	OU LII	NO DOME		1 31	0 0/11	Jiiii	AAIC	
-	1	S	-1.95	-2.06		0.243 0.50		0.4000.	000202 (0	.000202)163	30.056 (0.20))

MANDATARIA

CODING

GENERAL ENGINEERING & PLANNING

Ingegneria e Investimenti

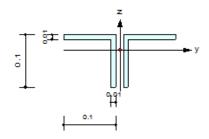
15 TRASVERSI E NODI

Si riporta a seguire la verifica del profilato 2L 100x10 del diaframma.

Design Information

Design Code : Eurocode3:05

Unit System : kN, m Member No : 883


Material : S355+10% (No:2)

(Fy = 235000, Es = 210000000)

Section Name : L-100x10 (No:9)

(Built-up Section).

Member Length : 5.10000

Member Forces

Shear Forces

Axial Force Fxx = -193.82 (LCB: 13, POS:I) My = -1.2005, Mz = -0.1917 Bending Moments

Myi = -1.2005, Myj = -0.6403 (for Lb) End Moments

Myi = -1.2005, Myj = -0.6403 (for Ly) Mzi = -0.1917, Mzj = -0.2027 (for Lz) Fyy = 0.12346 (LCB: 5, POS:I)

Fzz = -1.2919 (LCB: 44-, POS:I)

Depth	0.10000	Web Thick 0.01000					
Fig Width 0.10000		Fig Thick 0.01000					
BTB 8	pading 0.01500						
Area	0.00380	Asz 0.00167					
Qyb	0.00254	Qzb 0.00500					
lyy	0.00000	izz 0.00001					
Yber	0.10750	Zber 0.07132					
Wely	0.00005	Welz 0.00008					
ry	0.03078	rz 0.04750					

Design Parameters

Unbraced Lengths Ly = 5.10000, Lz = 5.10000, Lb = 0.00000

Ky = 1.00, Kz = 1.00Effective Length Factors

Cmy = 1.00, Cmz = 1.00, CmLT = 1.00 Equivalent Uniform Moment Factors

Checking Results

Axial Resistance

N_Ed/Nc_Rd = 193.816/233.007 = 0.832 < 1.000 O.K

Bending Resistance

M_Edy/M_Rdy = 1.2005/21.3733 = 0.056 < 1.000 O.K M_Edz/M_Rdz = 0.1917/32.3125 = 0.006 < 1.000 O.K

Combined Resistance

RNRd = MAX[M_Edy/Mny_Rd, M_Edz/Mnz_Rd]

Rmax1 = (M_Edy/Mny_Rd)^Alpha + (M_Edz/Mnz_Rd)^Beta

Room = $N_Ed/(A*fy/Gamma_M0)$, Rbend = $M_Edy/My_Rd + M_Edz/Mz_Rd$

Rc_LT1 = N_Ed/(Xiy*A*fy/Gamma_M1)

 $Rb_LT1 = (kyy*M_Edy)/(Xi_LT*Wply*fy/Gamma_M1) + (kyz*Msdz)/(Wplz*fy/Gamma_M1)$

Rc_LT2 = N_Ed/(Xiz*A*fy/Gamma_M1)

 $Rb_LT2 = (Kzy*M_Edy)/(Xi_LT*Wply*fy/Gamma_M1) + (Kzz*Msdz)/(Wplz*fy/Gamma_M1) + (Kzz*Msdz)/(Wplz*fy/Gamma_M1) + (Kzz*Msdz)/(Wplz*fy/Gamma_M1) + (Kzz*Msdz)/($

Rmax = MAX[RNRd, Rmax1, (Room+Rbend), MAX(Rc_LT1+Rb_LT1, Rc_LT2+Rb_LT2)] = 0.940 < 1.000 .. O.K

15.1 Dimensionamento e Verifica dei Bulloni

Sono stati scelti bulloni M20 di classe 10.9 con le seguenti caratteristiche:

 $A_{res} = 245 \text{ mm}$

 $f_{yb} = 649 MPa$

 $f_{tb} = 800 \text{ MPa}.$

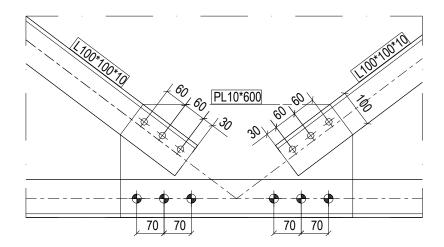


Figura 48: Dettaglio Bulloni e Piatti

Il progetto dei bulloni viene effettuato in base alle prescrizioni della tabella 4.2.XIII-NTC in cui vengono indicati i valori minimi e massimi per gli interassi dei fori (p_i) e per le distanze tra l'ultimo foro e il bordo della lastra (e_i):

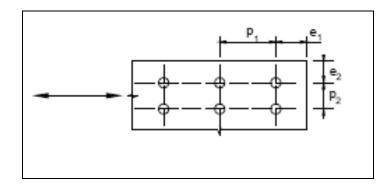


Tabella 4.2.XIII Posizione dei fori per unioni bullonate e chiodate.

Distanze e interassi			Massimo	
(Fig. 4.2.3)	Minimo	Unioni esposte a fenomeni corrosivi o ambientali	Unioni non esposte a fenomeni corrosivi o ambientali	Unioni di elementi in acciaio resistente alla corrosione (EN10025-5)
e ₁	1,2 d ₀	4t+40mm	-	max(8t;125mm)
e ₂	1,2 d ₀	4t+40mm	-	max(8t;125mm)
p_1	2,2 d ₀	min(14t;200mm)	min(14t;200mm)	min(14t;175mm)
P1,0	-	min(14t;200mm)	-	-
$\mathbf{p}_{1,i}$	-	min(28t;400mm)	-	-
\mathbf{p}_2	2,4 d ₀	min(14t;200mm)	min(14t;200mm)	min(14t;175mm)

L'instabilità locale del piatto posto tra i bulloni/chiodi non deve essere considerata se $(p_1/t) < [9(235/fy)^{0.5}]$: in caso contrario si assumerà una lunghezza di libera inflessione pari a $0.6 \cdot p_1$. t è lo spessore minimo degli elementi esterni collegati.

La sollecitazione di taglio nei bulloni, che è sforzo normale per l'asta, si distribuisce uniformemente come:

$$F_{\mathit{Vb}} = \frac{V}{n_{\mathit{bulloni}} \cdot n_{\mathit{superfici}}}$$

Tranciamento della vite

Per bulloni di classe 10.9

$$F_{v,Rd} = \frac{0.5 \cdot f_{tb} \cdot A_{res}}{\gamma_{m2}} = 0.5 \cdot 1000 \cdot 245 / 1.25 = 98 \, \text{KN} > F_{v,Ed} = 32 \, \text{KN}$$

Verifica a rifollamento dei piatto centrale

Come già detto precedentemente il piatto centrale ha dimensioni:

t = 10 mm

e1 = 30 mm

e2 = 40 mm

d0 = 21 mm

Si è verificato il piatto cui sono imbullonati i profilati a doppia L, con la seguente formula:

$$F_{b,Rd} = K \cdot \alpha \cdot \frac{f_{tk}}{\gamma_{m2}} d \cdot t = 0,47 \cdot 2,5 \cdot 510 \cdot 21 \cdot 10 / 1,25 = 100 \text{ KN} > 2 \cdot F_{V,Ed} = 64 \text{ KN}$$

dove:

d è il diametro nominale del gambo del bullone,

t è lo spessore della piastra collegata,

ftk è la resistenza a rottura del materiale della piastra collegata,

$$k = \min \left\{ \frac{e_1}{3d} = \frac{30}{3 \cdot 21} = 0,47; \frac{f_{tb}}{f_{tk}} = \frac{600}{510} = 1,17;1 \right\}$$

$$\alpha = \min \left\{ 2.8; \frac{e_2}{d} - 1.7 = 3.6; 2.5 \right\}$$

REAZIONI SUGLI APPOGGI

Si riportano a seguire le reazioni espletate dagli appoggi per i diversi inviluppi di combinazione:

Comb.di carico	Id.nodo	FZ (kN)	FY (kN)	FX (kN)
SLE_Rara_26(all)	886	-929.1	14.63	-3.26
SLE_Rara_26(all)	888	-917.77	15.26	-3.2
SLE_Rara_26(all)	890	-2511.31	14.95	-1.76
SLE_Rara_26(all)	892	-2491.29	15.77	-1.73
SLE_Rara_26(all)	894	-2510.45	15	1.78
SLE_Rara_26(all)	896	-2490.29	15.82	1.75
SLE_Rara_26(all)	898	-929.52	14.76	3.24
SLE_Rara_26(all)	900	-918.11	15.4	3.19
SLE_Rara_26(all)	897	-1051.36	14.19	3.50
SLE_Rara_26(all)	899	-1009.08	15.94	3.34
SLE_Rara_26(all)	893	-2748.75	14.46	1.79
SLE_Rara_26(all)	895	-2680.51	16.3	1.77
SLE_Rara_26(all)	889	-2749.47	14.41	-1.79
SLE_Rara_26(all)	891	-2681.89	16.25	-1.74
SLE_Rara_26(all)	885	-1050.84	14.06	-3.53
SLE_Rara_26(all)	887	-1008.83	15.81	-3.35
SLE(max)		-2749.47	16.3	-3.53
SLU_Inviluppo_No Sis(all)	886	-1260.28	36.05	-62.1
SLU_Inviluppo_No Sis(all)	888	-1246.6	37.03	-61.75
SLU_Inviluppo_No Sis(all)	890	-3392.08	36.68	-60.01
SLU_Inviluppo_No Sis(all)	892	-3365.2	37.89	-59.7
SLU_Inviluppo_No Sis(all)	894	-3394.7	36.79	-56.47
SLU_Inviluppo_No Sis(all)	896	-3366.9	37.99	-56.24
SLU_Inviluppo_No Sis(all)	898	-1255.81	36.37	-54.33
SLU_Inviluppo_No Sis(all)	900	-1240.14	37.35	-54.14
SLU_Inviluppo_No Sis(all)	897	-1422.16	35.56	-54.13
SLU_Inviluppo_No Sis(all)	899	-1366.73	38.04	-53.6
SLU_Inviluppo_No Sis(all)	893	-3720.55	36.04	-56.74
SLU_Inviluppo_No Sis(all)	895	-3630.53	38.65	-56.03
SLU_Inviluppo_No Sis(all)	889	-3716.78	35.93	-60.29
SLU_Inviluppo_No Sis(all)	891	-3629.98	38.55	-59.46
SLU_Inviluppo_No Sis(all)	885	-1424.61	35.23	-62.7
SLU_Inviluppo_No Sis(all)	887	-1374.97	37.72	-61.7
SLU(max)		-3720.55	38.65	-62.7

SLU_Inviluppo_SISMA(all)	886	-682.84	-113.16	-116.9
SLU_Inviluppo_SISMA(all)	888	-660.34	113.07	-116.9
SLU_Inviluppo_SISMA(all)	890	-2203.84	-115.54	-115.43
SLU_Inviluppo_SISMA(all)	892	-2203.93	115.62	-115.43
SLU_Inviluppo_SISMA(all)	894	-2202.55	-115.51	114.91
SLU_Inviluppo_SISMA(all)	896	-2190.63	115.6	114.9
SLU_Inviluppo_SISMA(all)	898	-683.13	-113.19	117.03
SLU_Inviluppo_SISMA(all)	900	-676.43	113.1	117.03
SLU_Inviluppo_SISMA(all)	897	-881.45	-113.67	117.32
SLU_Inviluppo_SISMA(all)	899	-846.94	113.58	117.31
SLU_Inviluppo_SISMA(all)	893	-2436.87	-115.98	114.92
SLU_Inviluppo_SISMA(all)	895	-2415.02	116.07	114.95
SLU_Inviluppo_SISMA(all)	889	-2438.14	-116.01	-115.44
SLU_Inviluppo_SISMA(all)	891	-2429.23	116.09	-115.47
SLU_Inviluppo_SISMA(all)	885	-881.09	-113.64	-117.19
SLU_Inviluppo_SISMA(all)	887	-846.34	113.55	-117.19
SLV(max)		-2438.14	116.09	117.32
ENV.SLUsisma SLC(all)	886	-672.71	-149.96	-157.91
ENV.SLUsisma SLC(all)	888	-672.6	149.87	-157.91
ENV.SLUsisma SLC(all)	890	-2178.36	-153.12	-156.25
ENV.SLUsisma SLC(all)	892	-2178.4	153.2	-156.24
ENV.SLUsisma SLC(all)	894	-2177.36	-153.08	155.74
ENV.SLUsisma SLC(all)	896	-2177.41	153.17	155.74
ENV.SLUsisma SLC(all)	898	-673.56	-150	157.92
ENV.SLUsisma SLC(all)	900	-672.57	149.91	157.91
ENV.SLUsisma SLC(all)	897	-886.63	-150.45	158.23
ENV.SLUsisma SLC(all)	899	-883.51	150.36	158.22
ENV.SLUsisma SLC(all)	893	-2416.54	-153.52	155.76
ENV.SLUsisma SLC(all)	895	-2419.99	153.61	155.79
ENV.SLUsisma SLC(all)	889	-2418.16	-153.56	-156.27
ENV.SLUsisma SLC(all)	891	-2420.86	153.64	-156.3
ENV.SLUsisma SLC(all)	885	-885.74	-150.41	-158.22
ENV.SLUsisma SLC(all)	887	-883.39	150.32	-158.22
SLC(max)		-2420.86	153.64	158.23

Si riportano a seguire le reazioni espletate dagli appoggi per i casi di carico dimensionanti:

Caso di carico			FZ (kN)	FY (kN)	FX (kN)
Pesi propri	g1,1	886	-338.98	-0.11	-1.33
Pesi propri	g1,1	888	-338.62	0.08	-1.33
Pesi propri	g1,1	890	-1112.61	-0.1	-0.59
Pesi propri	g1,1	892	-1112.66	0.13	-0.59
Pesi propri	g1,1	894	-1111.9	-0.1	0.59
Pesi propri	g1,1	896	-1111.96	0.13	0.59
Pesi propri	g1,1	898	-339.26	-0.11	1.34
Pesi propri	g1,1	900	-338.9	0.08	1.34
Pesi propri	g1,1	897	-376.53	-0.27	1.39
Pesi propri	g1,1	899	-375.75	0.23	1.39
Pesi propri	g1,1	893	-1163.78	-0.22	0.57
Pesi propri	g1,1	895	-1164.66	0.26	0.59
Pesi propri	g1,1	889	-1164.48	-0.22	-0.58
Pesi propri	g1,1	891	-1165.35	0.26	-0.59
Pesi propri	g1,1	885	-376.25	-0.27	-1.39
Pesi propri	g1,1	887	-375.47	0.23	-1.38
Carichi permanenti	g2	886	-309.17	-0.31	-1.29
Carichi permanenti	g2	888	-308.76	0.25	-1.29
Carichi permanenti	g2	890	-1054.35	-0.32	-0.59
Carichi permanenti	g2	892	-1054.57	0.38	-0.59
Carichi permanenti	g2	894	-1054.09	-0.32	0.59
Carichi permanenti	g2	896	-1054.31	0.38	0.59
Carichi permanenti	g2	898	-309.27	-0.31	1.3
Carichi permanenti	g2	900	-308.86	0.25	1.29
Carichi permanenti	g2	897	-424.62	-0.73	1.45
Carichi permanenti	g2	899	-422.7	0.67	1.45
Carichi permanenti	g2	893	-1219.69	-0.74	0.57
Carichi permanenti	g2	895	-1221.67	0.81	0.58
Carichi permanenti	g2	889	-1219.94	-0.74	-0.57
Carichi permanenti	g2	891	-1221.93	0.81	-0.59
Carichi permanenti	g2	885	-424.51	-0.73	-1.45
Carichi permanenti	g2	887	-422.6	0.67	-1.45
Azione longitudinale frenamento	q3	886	-3.36	-2.29	-38.46
Azione longitudinale frenamento	q3	888	-4.62	-2.29	-38.29
Azione longitudinale frenamento	q3	890	2.52	-0.91	-38.42
Azione longitudinale frenamento	q3	892	2.04	-0.91	-38.24
Azione longitudinale frenamento	q3	894	-2.51	0.91	-38.29
Azione longitudinale frenamento	q3	896	-2.04	0.91	-38.11
Azione longitudinale frenamento	q3	898	3.35	2.29	-38.46
Azione longitudinale frenamento	q3	900	4.61	2.29	-38.29
Azione longitudinale frenamento	q3	897	2.11	2.28	-38.61
Azione longitudinale frenamento	q3	899	5.73	2.29	-38.12

MANDATARIA

CODING

GENERAL ENGINEERING & PLANNING

Ingegneria e Investimenti

Azione longitudinale frenamento	q3	893	-3.14	0.91	-38.44
Azione longitudinale frenamento	q3	895	-1.53	0.91	-37.95
Azione longitudinale frenamento	q3	889	3.15	-0.91	-38.57
Azione longitudinale frenamento	q3	891	1.53	-0.91	-38.08
Azione longitudinale frenamento	q3	885	-2.11	-2.28	-38.61
Azione longitudinale frenamento	q3	887	-5.73	-2.29	-38.12
Azione del vento	q5,pontecarico	886	-10.62	24.41	-0.07
Azione del vento	q5,pontecarico	888	6.79	24.39	0.02
Azione del vento	q5,pontecarico	890	-20.03	24.83	-0.03
Azione del vento	q5,pontecarico	892	14.03	24.8	0.02
Azione del vento	q5,pontecarico	894	-20.25	24.91	0.06
Azione del vento	q5,pontecarico	896	14.04	24.87	0.02
Azione del vento	q5,pontecarico	898	-10.68	24.62	0.02
Azione del vento	q5,pontecarico	900	6.86	24.6	-0.06
Azione del vento	q5,pontecarico	897	-31.44	24.6	0.1
Azione del vento	q5,pontecarico	899	35.13	24.54	-0.14
Azione del vento	q5,pontecarico	893	-55.96	24.9	0.09
Azione del vento	q5,pontecarico	895	62.3	24.81	-0.01
Azione del vento	q5,pontecarico	889	-55.52	24.82	-0.08
Azione del vento	q5,pontecarico	891	61.66	24.74	0.07
Azione del vento	q5,pontecarico	885	-31.2	24.39	-0.16
Azione del vento	q5,pontecarico	887	34.9	24.33	0.13
Azione del vento	q5,pontescarico	886	-7.95	19.98	-0.04
Azione del vento	q5,pontescarico	888	5.36	19.97	0.03
Azione del vento	q5,pontescarico	890	-14.54	20.34	-0.02
Azione del vento	q5,pontescarico	892	10.45	20.32	0.02
Azione del vento	q5,pontescarico	894	-14.68	20.41	0.02
Azione del vento	q5,pontescarico	896	10.46	20.38	-0.01
Azione del vento	q5,pontescarico	898	-8	20.16	0.03
Azione del vento	q5,pontescarico	900	5.41	20.15	-0.03
	q5,pontescarico	897	-24.13	20.13	0.09
Azione del vento Azione del vento	1 1	899	26.64	20.14	-0.1
Azione del vento	q5,pontescarico q5,pontescarico	893	-41.16	20.1	0.04
	* *				
Azione del vento	q5,pontescarico	895	45.46 -40.85	20.34	-0.04
Azione del vento	q5,pontescarico	889	45.02	20.33	-0.06 0.06
Azione del vento	q5,pontescarico	891			
Azione del vento	q5,pontescarico	885	-23.95	19.97	-0.11
Azione del vento	q5,pontescarico	887	26.46	19.93	0.11
Carichi accidentali mobili	Traffico(max)	886	27.13	0.41	0.16
Carichi accidentali mobili	Traffico(max)	888	27.2	0.3	0.16
Carichi accidentali mobili	Traffico(max)	890	14.86	0.47	0.48
Carichi accidentali mobili	Traffico(max)	892	14.88	0.39	0.48
Carichi accidentali mobili	Traffico(max)	894	14.88	0.48	0.56
Carichi accidentali mobili	Traffico(max)	896	14.9	0.39	0.56
Carichi accidentali mobili	Traffico(max)	898	27.12	0.41	0.59
Carichi accidentali mobili	Traffico(max)	900	27.18	0.3	0.59

MANDATARIA CODING GENERAL ENGINEERING & PLANNING

Ingegneria e Investimenti

Carichi accidentali mobili Carichi accidentali mobili Traffico(max) Traffico(max) September 16.06 Carichi accidentali mobili Traffico(max) Traffico(max) Traffico(max) September 16.06 Carichi accidentali mobili Traffico(max) Traffico(min) September 16.05 September 16.06 September 16.07 September 16.08 September 16.09 Septem	0.59
Carichi accidentali mobiliTraffico(max)89316.010.49Carichi accidentali mobiliTraffico(max)89516.060.35Carichi accidentali mobiliTraffico(max)889160.49Carichi accidentali mobiliTraffico(max)89116.050.34Carichi accidentali mobiliTraffico(max)88529.60.43Carichi accidentali mobiliTraffico(max)88729.920.3Carichi accidentali mobiliTraffico(min)886-274.57-0.3-Carichi accidentali mobiliTraffico(min)888-274.45-0.41-Carichi accidentali mobiliTraffico(min)890-332.36-0.39-Carichi accidentali mobiliTraffico(min)892-332.5-0.47-Carichi accidentali mobiliTraffico(min)894-332.3-0.39-Carichi accidentali mobiliTraffico(min)896-332.45-0.48-Carichi accidentali mobiliTraffico(min)898-274.57-0.31-	
Carichi accidentali mobili Carichi accidentali mobili Traffico(max) Carichi accidentali mobili Traffico(max) Carichi accidentali mobili Traffico(max) Traffico(max) September 16 0.49 Carichi accidentali mobili Traffico(max) Carichi accidentali mobili Traffico(max) Carichi accidentali mobili Traffico(max) Carichi accidentali mobili Traffico(min) Traffico(min) Traffico(min) Carichi accidentali mobili Traffico(min)	
Carichi accidentali mobiliTraffico(max)889160.49Carichi accidentali mobiliTraffico(max)89116.050.34Carichi accidentali mobiliTraffico(max)88529.60.43Carichi accidentali mobiliTraffico(max)88729.920.3Carichi accidentali mobiliTraffico(min)886-274.57-0.3Carichi accidentali mobiliTraffico(min)888-274.45-0.41Carichi accidentali mobiliTraffico(min)890-332.36-0.39Carichi accidentali mobiliTraffico(min)892-332.5-0.47Carichi accidentali mobiliTraffico(min)894-332.3-0.39Carichi accidentali mobiliTraffico(min)896-332.45-0.48Carichi accidentali mobiliTraffico(min)898-274.57-0.31	0.6
Carichi accidentali mobili Carichi accidentali mobili Traffico(max) Carichi accidentali mobili Traffico(max) Carichi accidentali mobili Traffico(max) Carichi accidentali mobili Traffico(min) Carichi accidentali mobili Traffico(min) Carichi accidentali mobili Traffico(min) Traffico(min) Traffico(min) Carichi accidentali mobili Traffico(min) Traffico(min) Traffico(min) Traffico(min) Traffico(min) Traffico(min) Traffico(min) Traffico(min) Septembro 16.05 0.34 0.34 0.34 0.33 0.34 0.35 0.39 0.39 0.37 0.39 0	0.49
Carichi accidentali mobiliTraffico(max)88529.60.43Carichi accidentali mobiliTraffico(max)88729.920.3Carichi accidentali mobiliTraffico(min)886-274.57-0.3Carichi accidentali mobiliTraffico(min)888-274.45-0.41Carichi accidentali mobiliTraffico(min)890-332.36-0.39Carichi accidentali mobiliTraffico(min)892-332.5-0.47Carichi accidentali mobiliTraffico(min)894-332.3-0.39Carichi accidentali mobiliTraffico(min)896-332.45-0.48Carichi accidentali mobiliTraffico(min)898-274.57-0.31	0.49
Carichi accidentali mobiliTraffico(max)88729.920.3Carichi accidentali mobiliTraffico(min)886-274.57-0.3-Carichi accidentali mobiliTraffico(min)888-274.45-0.41-Carichi accidentali mobiliTraffico(min)890-332.36-0.39-Carichi accidentali mobiliTraffico(min)892-332.5-0.47-Carichi accidentali mobiliTraffico(min)894-332.3-0.39-Carichi accidentali mobiliTraffico(min)896-332.45-0.48-Carichi accidentali mobiliTraffico(min)898-274.57-0.31-	0.1
Carichi accidentali mobili Carichi accidentali mobili Traffico(min) Rese -274.57 -0.3 Carichi accidentali mobili Traffico(min) Carichi accidentali mobili Traffico(min) Traffico(min) Carichi accidentali mobili Traffico(min)	0.1
Carichi accidentali mobiliTraffico(min)888-274.45-0.41Carichi accidentali mobiliTraffico(min)890-332.36-0.39Carichi accidentali mobiliTraffico(min)892-332.5-0.47Carichi accidentali mobiliTraffico(min)894-332.3-0.39Carichi accidentali mobiliTraffico(min)896-332.45-0.48Carichi accidentali mobiliTraffico(min)898-274.57-0.31	-0.59
Carichi accidentali mobili Traffico(min) 890 -332.36 -0.39 - Carichi accidentali mobili Traffico(min) 892 -332.5 -0.47 - Carichi accidentali mobili Traffico(min) 894 -332.3 -0.39 - Carichi accidentali mobili Traffico(min) 896 -332.45 -0.48 - Carichi accidentali mobili Traffico(min) 898 -274.57 -0.31 -	-0.59
Carichi accidentali mobiliTraffico(min)892-332.5-0.47-Carichi accidentali mobiliTraffico(min)894-332.3-0.39-Carichi accidentali mobiliTraffico(min)896-332.45-0.48-Carichi accidentali mobiliTraffico(min)898-274.57-0.31-	-0.56
Carichi accidentali mobili Traffico(min) 894 -332.3 -0.39 - Carichi accidentali mobili Traffico(min) 896 -332.45 -0.48 - Carichi accidentali mobili Traffico(min) 898 -274.57 -0.31 -	-0.56
Carichi accidentali mobili Traffico(min) 896 -332.45 -0.48 - Carichi accidentali mobili Traffico(min) 898 -274.57 -0.31 -	-0.48
Carichi accidentali mobili Traffico(min) 898 -274.57 -0.31 -	-0.48
	-0.46
1	-0.16
Gillian model	-0.1
()	-0.1
	-0.49
	-0.48
	-0.6
	-0.6
()	-0.59
	-0.59
()	-0.59
	-0.59
Carichi accidentali mobili Traffico(all) 890 -332.36 0.47 -	-0.56
()	-0.56
()	0.56
Carichi accidentali mobili Traffico(all) 896 -332.45 -0.48	0.56
Carichi accidentali mobili Traffico(all) 898 -274.57 0.41	0.59
Carichi accidentali mobili Traffico(all) 900 -274.45 -0.41	0.59
Carichi accidentali mobili Traffico(all) 897 -231.35 0.43	0.59
Carichi accidentali mobili Traffico(all) 899 -231.7 -0.43	0.59
Carichi accidentali mobili Traffico(all) 893 -331.7 0.49	0.6
Carichi accidentali mobili Traffico(all) 895 -331.56 -0.5	0.6
Carichi accidentali mobili Traffico(all) 889 -331.76 0.49	-0.6
Carichi accidentali mobili Traffico(all) 891 -331.62 -0.49	-0.6
Carichi accidentali mobili Traffico(all) 885 -231.34 0.43 -	-0.59
Carichi accidentali mobili Traffico(all) 887 -231.69 -0.43 -	-0.59
Azione sisimica orizzontale SLV-X_Orizzontale(RS) 886 -7.91 0 -1	114.31
	114.31
` '	
` '	114.16
	114.16 114.16
Azione sisimica orizzontale SLV-X_Orizzontale(RS) 896 -6.48 0 -1	

MANDATARIA

CODING

GENERAL ENGINEERING & PLANNING

Ingegneria e Investimenti

Azione sisimica orizzontale	SLV-X_Orizzontale(RS)	898	7.9	0	-114.31
Azione sisimica orizzontale	SLV-X_Orizzontale(RS)	900	7.91	0	-114.31
Azione sisimica orizzontale	SLV-X Orizzontale(RS)	897	6.96	0	-114.31
Azione sisimica orizzontale	SLV-X Orizzontale(RS)	899	6.89	0	-114.32
Azione sisimica orizzontale	SLV-X Orizzontale(RS)	893	-6.74	0	-113.79
Azione sisimica orizzontale	SLV-X_Orizzontale(RS)	895	-6.54	0	-113.79
Azione sisimica orizzontale	SLV-X_Orizzontale(RS)	889	6.75	0	-114.16
Azione sisimica orizzontale	SLV-X Orizzontale(RS)	891	6.56	0	-114.16
Azione sisimica orizzontale	SLV-X_Orizzontale(RS)	885	-6.97	0	-114.31
Azione sisimica orizzontale	SLV-X_Orizzontale(RS)	887	-6.91	0	-114.32
	SLV-Y Orizzontale(RS)	886	16.29	-112.74	0.11
Azione sisimica orizzontale	SLV-Y_Orizzontale(RS)	888	-16.46	-112.74	-0.11
Azione sisimica orizzontale	SLV-Y Orizzontale(RS)	890	6.32	-115.12	0.06
Azione sisimica orizzontale	-	892	-5.98	-115.12	
Azione sisimica orizzontale	SLV-Y_Orizzontale(RS)				-0.06
Azione sisimica orizzontale	SLV-Y_Orizzontale(RS)	894	6.25	-115.09	-0.06
Azione sisimica orizzontale	SLV-Y_Orizzontale(RS)	896	-5.9	-115.09	0.06
Azione sisimica orizzontale	SLV-Y_Orizzontale(RS)	898	16.32	-112.77	-0.11
Azione sisimica orizzontale	SLV-Y_Orizzontale(RS)	900	-16.49	-112.77	0.11
Azione sisimica orizzontale	SLV-Y_Orizzontale(RS)	897	62.21	-112.67	-0.32
Azione sisimica orizzontale	SLV-Y_Orizzontale(RS)	899	-62.2	-112.67	0.32
Azione sisimica orizzontale	SLV-Y_Orizzontale(RS)	893	23.12	-115.01	-0.19
Azione sisimica orizzontale	SLV-Y_Orizzontale(RS)	895	-23.34	-115	0.19
Azione sisimica orizzontale	SLV-Y_Orizzontale(RS)	889	23.35	-115.04	0.19
Azione sisimica orizzontale	SLV-Y_Orizzontale(RS)	891	-23.57	-115.03	-0.19
Azione sisimica orizzontale	SLV-Y_Orizzontale(RS)	885	62.11	-112.64	0.33
Azione sisimica orizzontale	SLV-Y_Orizzontale(RS)	887	-62.1	-112.64	-0.33
Azione sisimica verticale	SLV-Verticale(RS)	886	53.38	-0.01	0.2
Azione sisimica verticale	SLV-Verticale(RS)	888	53.09	-0.01	0.2
Azione sisimica verticale	SLV-Verticale(RS)	890	94.81	0	-0.24
Azione sisimica verticale	SLV-Verticale(RS)	892	94.78	0	-0.24
Azione sisimica verticale	SLV-Verticale(RS)	894	94.45	0	0.23
Azione sisimica verticale	SLV-Verticale(RS)	896	94.41	0	0.23
Azione sisimica verticale	SLV-Verticale(RS)	898	53	-0.01	-0.2
Azione sisimica verticale	SLV-Verticale(RS)	900	52.7	-0.01	-0.2
Azione sisimica verticale	SLV-Verticale(RS)	897	53.35	-0.01	-0.2
Azione sisimica verticale	SLV-Verticale(RS)	899	52.62	-0.01	-0.2
Azione sisimica verticale	SLV-Verticale(RS)	893	94.19	-0.01	0.23
Azione sisimica verticale	SLV-Verticale(RS)	895	94.08	0.01	0.23
Azione sisimica verticale	SLV-Verticale(RS)	889	94.53	-0.01	-0.24
Azione sisimica verticale	SLV-Verticale(RS)	891	94.46	0.01	-0.24
Azione sisimica verticale	SLV-Verticale(RS)	885	53.72	-0.01	0.21
Azione sisimica verticale	SLV-Verticale(RS)	887	53.02	-0.01	0.2
Azione sisimica orizzontale	SLC-X_Orizzontale(RS)	886	-10.53	0	-152.17
Azione sisimica orizzontale	SLC-X_Orizzontale(RS)	888	-10.54	0	-152.17
Azione sisimica orizzontale	SLC-X_Orizzontale(RS)	890	8.73	0	-151.97
Azione sisimica orizzontale	SLC-X_Orizzontale(RS)	892	8.65	0	-151.97
1121011C SISHIHCA UHZZUHTAIC	one r_onzeniaic(No)	074	0.03	J.	131.71

MANDATARIA

CODING

GENERAL ENGINEERING & PLANNING

Ingegneria e Investimenti

Azione sisimica orizzontale	SLC-X_Orizzontale(RS)	894	-8.71	0	-151.47
Azione sisimica orizzontale	SLC-X_Orizzontale(RS)	896	-8.63	0	-151.47
Azione sisimica orizzontale	SLC-X_Orizzontale(RS)	898	10.51	0	-152.17
Azione sisimica orizzontale	SLC-X_Orizzontale(RS)	900	10.53	0	-152.17
Azione sisimica orizzontale	SLC-X_Orizzontale(RS)	897	9.26	-0.01	-152.18
Azione sisimica orizzontale	SLC-X_Orizzontale(RS)	899	9.17	0	-152.18
Azione sisimica orizzontale	SLC-X_Orizzontale(RS)	893	-8.97	0	-151.48
Azione sisimica orizzontale	SLC-X_Orizzontale(RS)	895	-8.7	0	-151.48
Azione sisimica orizzontale	SLC-X_Orizzontale(RS)	889	8.99	0	-151.98
Azione sisimica orizzontale	SLC-X_Orizzontale(RS)	891	8.73	0	-151.98
Azione sisimica orizzontale	SLC-X_Orizzontale(RS)	885	-9.28	0.01	-152.18
Azione sisimica orizzontale	SLC-X_Orizzontale(RS)	887	-9.19	0	-152.18
Azione sisimica orizzontale	SLC-Y_Orizzontale(RS)	886	21.6	-149.54	0.14
Azione sisimica orizzontale	SLC-Y_Orizzontale(RS)	888	-21.83	-149.54	-0.15
Azione sisimica orizzontale	SLC-Y_Orizzontale(RS)	890	8.35	-152.7	0.08
Azione sisimica orizzontale	SLC-Y_Orizzontale(RS)	892	-7.89	-152.7	-0.08
Azione sisimica orizzontale	SLC-Y_Orizzontale(RS)	894	8.25	-152.66	-0.08
Azione sisimica orizzontale	SLC-Y_Orizzontale(RS)	896	-7.79	-152.66	0.07
Azione sisimica orizzontale	SLC-Y_Orizzontale(RS)	898	21.64	-149.58	-0.14
Azione sisimica orizzontale	SLC-Y_Orizzontale(RS)	900	-21.87	-149.58	0.14
Azione sisimica orizzontale	SLC-Y_Orizzontale(RS)	897	82.51	-149.45	-0.43
Azione sisimica orizzontale	SLC-Y_Orizzontale(RS)	899	-82.5	-149.45	0.43
Azione sisimica orizzontale	SLC-Y_Orizzontale(RS)	893	30.57	-152.56	-0.25
Azione sisimica orizzontale	SLC-Y_Orizzontale(RS)	895	-30.86	-152.54	0.25
Azione sisimica orizzontale	SLC-Y_Orizzontale(RS)	889	30.87	-152.59	0.25
Azione sisimica orizzontale	SLC-Y_Orizzontale(RS)	891	-31.17	-152.58	-0.25
Azione sisimica orizzontale	SLC-Y_Orizzontale(RS)	885	82.37	-149.4	0.43
Azione sisimica orizzontale	SLC-Y_Orizzontale(RS)	887	-82.36	-149.41	-0.43
Azione sisimica verticale	SLC-Verticale(RS)	886	-0.73	0	-10.23
Azione sisimica verticale	SLC-Verticale(RS)	888	-0.73	0	-10.23
Azione sisimica verticale	SLC-Verticale(RS)	890	0.61	0	-10.22
Azione sisimica verticale	SLC-Verticale(RS)	892	0.6	0	-10.22
Azione sisimica verticale	SLC-Verticale(RS)	894	-0.61	0	-10.23
Azione sisimica verticale	SLC-Verticale(RS)	896	-0.61	0	-10.23
Azione sisimica verticale	SLC-Verticale(RS)	898	0.73	0	-10.23
Azione sisimica verticale	SLC-Verticale(RS)	900	0.73	0	-10.23
Azione sisimica verticale	SLC-Verticale(RS)	897	0.65	0	-10.23
Azione sisimica verticale	SLC-Verticale(RS)	899	0.65	0	-10.23
Azione sisimica verticale	SLC-Verticale(RS)	893	-0.63	0	-10.23
Azione sisimica verticale	SLC-Verticale(RS)	895	-0.61	0	-10.23
Azione sisimica verticale	SLC-Verticale(RS)	889	0.63	0	-10.22
Azione sisimica verticale	SLC-Verticale(RS)	891	0.61	0	-10.22
Azione sisimica verticale	SLC-Verticale(RS)	885	-0.64	0	-10.23
Azione sisimica verticale	SLC-Verticale(RS)	887	-0.64	0	-10.23

La nomenclatura dei vincoli è riportata in seguito.

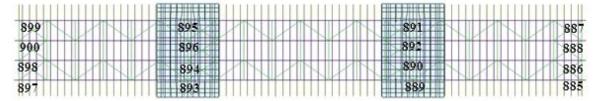


Figura 49: Nomenclatura nodi

17 RITEGNI SISMICI

Si riportano di seguito le verifiche relative ai ritegni sismici trasversali.

Si sintetizzano nel prospetto di seguito le azioni che interessano i ritegni sismici trasversali.

RITEGNO SISMICO TRASVERSALE			
	Combinazioni SLU sismiche		
Htrasv (kN)	310		

Attraverso una modellazione tirante-puntone, che schematizza il ritegno con una mensola tozza, si ottengono i risultati riportati di seguito.

Il meccanismo resistente è costituito da un tirante orizzontale corrispondente all'armatura tesa e da un puntone di calcestruzzo inclintato che riporta il carico P entro il bordo della mensola. Con le dimensioni geometriche indicate nella Figura di seguito, attraverso l'equilibrio del nodo caricato si ottiene la portanza della mensola in termini di resistenza dell'armatura e di resistenza del puntone di calcestruzzo.

Il calcolo è sintetizzato nel prospetto di seguito.

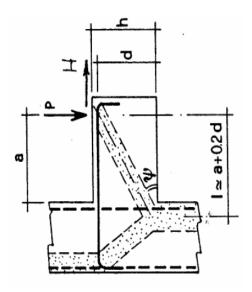


Figura 50: Meccanismo resistente di riferimento

Larghezza mensola		b	400	mm
Altezza mensola		h	1100	mm
Copriferro tirante principale all'asse		С	48	mm
Altezza utile		d=h-c	1052	mm
Distanza di applicazione carico		a	430	mm
MANDATARIA	MANDANTI		Pag. 1	04 a 106

Materiali			
Resistenza di calcolo snervamento acciaio	f_{ywd}	391.3	MPa
Resistenza caratteristica Cubica Cls	R _{ck}	40.00	MPa
Fattore parziale materiale Cls	γс	1.5	
Resistenza caratteristica Cilindrica Cls	f_{ck} =0.83x R_{ck}	33.2	MPa
Resistenza di calcolo Cilindrica Cls	f_{cd} =0.85x f_{ck}/γ_c	18.81	MPa
Sollecitazioni agenti			
Sollecitazione verticale agente di calcolo	P_{Ed}	310	kN
Sollecitazione orizzontale agente di calcolo	H _{Ed}	0	kN
Sollecitazione assiale	N _{ed}	0	kN
Armatura tirante principale			
Numero di barre di armatura	n	8	
Diametro armatura corrente prinicpale	ØI	16	mm
Area totale di acciaio tirante principale	A _{sI}	1608	mm ²
Verifiche di resistenza			
Lunghezza teorica tirante principale	I	640	mm
Parametro inclinazione	λ=I/(0.9d)≈ctgψ	0.676	
Parametro che tiene conto della staffatura dell'elemento di attacco della mensola (c=1 per sbalzi non provvisti di staffatura e c=1.5 per sbalzi provvisti di staffatura)	С	1	
Resistenza del tirante costituito dall'armatura tesa	P _{rs}	931	kN
Resistenza del puntone di cls compresso	P _{rc}	2173	kN
Verifica gerarchia di resistenza (P _{RS} <p<sub>RC)</p<sub>	Esito	Verifica po	ositiva
Fattore di sicurezza tirante teso	FS _{acc}	3.00	
Fattore di sicurezza puntone compresso	FS _{CLS}	7.01	

18 GIUNTI

L'impalcato subisce sotto l'azione sismica uno spostamento massimo al collasso pari a 0.164m. Per effetto della temperatura, considerando una variazione termica uniforme di $\pm 37.5^{\circ}$, ottenuta incrementando del 50% la variazione di temperatura prevista per le strutture in acciaio esposte, e considerando che gli spostamenti sono consentiti da entrambe le estremità del ponte, si ottiene uno spostamento pari a:

$$\eta = \alpha \Delta t L$$
 = 36 mm

Poiché nella combinazione sismica gli effetti della temperatura sono valutati con un coefficiente pari a 0.5, lo spostamento totale risulta pari ±18cm.

Sono stati previsti isolatori che consentono spostamenti massimi pari a ±20cm.

Sono stati previsti giunti in corrispondenza delle spalle che consentono spostamenti da ±20cm.

