
REGIONE SICILIA PROVINCIA DI TRAPANI COMUNE DI MARSALA

PROGETTO PER LA REALIZZAZIONE DI UN IMPIANTO EOLICO
DI POTENZA PARI A 33,465 MW, SU TERRENO AGRICOLO
NEL COMUNE DI MARSALA (TP) IN C.DA MESSINELLO
IDENTIFICATO AL N.C.T. AL FG. 137 P.LLA 4, 182, FG. 138 P.LLA 109, 112, 115, 160, 161,
173, 174, 175, 207 E ALTRE AFFERENTI ALLE OPERE DI RETE

STUDIO ANEMOLOGICO

				IDENTIFICAZIONE	ELABORATO			
Livello prog.	ID Terna	Tipo Elabor.	N.ro Elabor.	Project ID	NOME FILE	DA	TA	SCALA
PDef	201900883	Relazione	04	MESSINELLO	MESSINELLO Studio anemologico del 20 10 2020.doc	16.12	.2020	-
				REVISIO	DNI			
VERSIONE	DATA			DESCRIZIONE		ESEGUITO	VERIFICATO	APPROVATO
Rev.00	16.12.2020	Prima emissi	one			GR	MTM	VM
					_			

IL PROPONENTE

Messinello Wind S.r.L.

Messinello Wind S.r.L.
Corso di Porta Vittoria n. 9 - 20122 - Milano
P.IVA: 11426630965
PEC: messinellowind@mailcertificata.net

PROGETTO DI

Capital Engineering S.n.c.
Sede legale: Viale Praga, 45 - 90146 - Palermo
e-mail: info@capitalengineering.it

SU INCARICO DI

Coolbine S.r.L.
Sede legale: Viale Praga, 45 - 90146 - Palermo
e-mail: progettazione@coolbine.it

Sommario

Capitolo) 1: Introduzione	1
1.1	Premessa	1
1.2	Inquadramento territoriale e Descrizione del progetto	1
Capitolo	2: Analisi del potenziale eolico	4
2.1	Database dati anemometrici	4
2.2	Implementazione del modello WAsP	7
Capitolo	3: Stima della producibilità attesa	13
3.1	Simulazione WAsP	13
3.2	Conclusioni	18

Data: 20/10/2020 Rev. 01

Capitolo 1: Introduzione

1.1 Premessa

Il presente documento descrive i risultati della valutazione di ventosità e di produzione del sito eolico in oggetto, localizzato nell'entroterra della Sicilia Occidentale, a circa 23 chilometri a Sud-Est di Trapani, nel territorio comunale di Marsala.

Lo studio ha l'obiettivo di illustrare i capisaldi del progetto, l'inquadramento territoriale e l'analisi dei dati di vento con conseguente stima della producibilità sulla base del potenziale anemologico e delle caratteristiche delle turbine eoliche selezionate per il sito.

1.2 Inquadramento territoriale e Descrizione del progetto

Con riferimento alle carte geografiche dell'Istituto Geografico Militare (IGM) in scala 1:50.000, il sito ricade nei fogli n.605 - Paceco e n.606 - Alcamo. La località è caratterizzata da una orografia sub pianeggiante a carattere generalmente collinare priva di affioramenti rocciosi ed è occupata quasi totalmente da coltivazioni seminative. Ne consegue che, anemologicamente parlando, l'area è caratterizzata da un livello di rugosità molto basso, caratteristica favorevole per lo sfruttamento eolico in quanto gli impatti sulla producibilità e sui carichi a fatica delle componenti strutturali della turbina relativi ai fenomeni di turbolenza della vena fluida sono estremamente contenuti.

Topograficamente la quota media è di circa 175 m s.l.m. e, considerando una temperatura media annuale di circa 16 °C, questo si traduce in una densità media dell'aria di circa 1,18 Kg/m³.

Tenendo conto delle caratteristiche geomorfologiche dell'area e delle possibilità di accesso, nel pieno rispetto dei criteri di best practices di progettazione di un impianto eolico il layout ottimale prevede l'installazione di 6 aerogeneratori (di seguito WTG1, ..., WTG6) posizionati ad una distanza di almeno 3 diametri rotore lungo l'asse longitudinale al vento prevalente. La tipologia di aerogeneratore selezionato varia a seconda della posizione della turbina, in particolare il fornitore è sempre la Siemens-Gamesa ma con 2 modelli differenti, ovvero la SG170-6MW e la SG132-3.465MW, con una combinazione di altezze mozzo diverse a seconda della posizione come riportato nella tabella sottostante:

ID	Madella Turbina	Altezza Mozzo [m]	Coordinate	UTM WGS84	Coordinate	Gauss-Boaga
Turbina	Modello Turbina	Aitezza iviozzo [m]	Est	Nord	Est	Nord
WTG1	SG170 - 6 MW	115	295145	4188663	2315138	4188659
WTG2	SG170 - 6 MW	165	295837	4189030	2315830	4189026
WTG3	SG170 - 6 MW	100	294812	4189678	2314805	4189674
WTG4	SG170 - 6 MW	165	295423	4189767	2315416	4189763
WTG5	SG170 - 6 MW	165	294607	4190701	2314600	4190697
WTG6	SG132 - 3,465 MW	84	294013	4190463	2314006	4190459

Tabella 1. Tipologia aerogeneratori e Coordinate geografiche

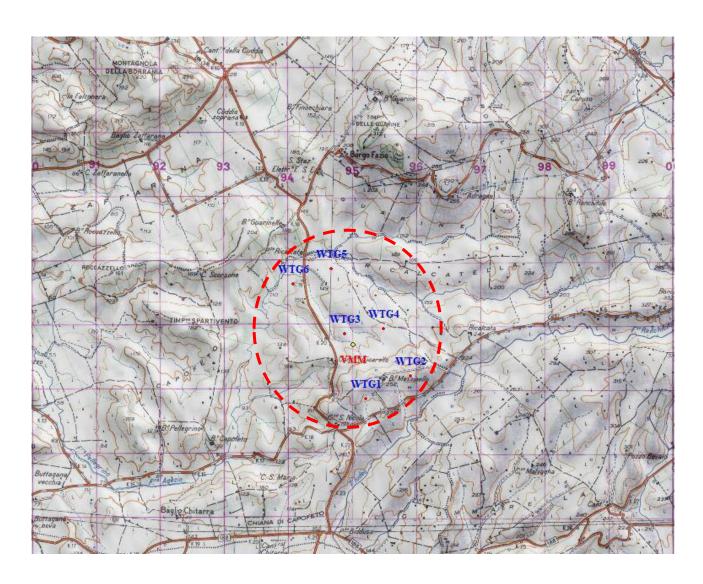


Figura 1. Inquadramento su IGM 1:50.000

Data: 20/10/2020 Rev. 01

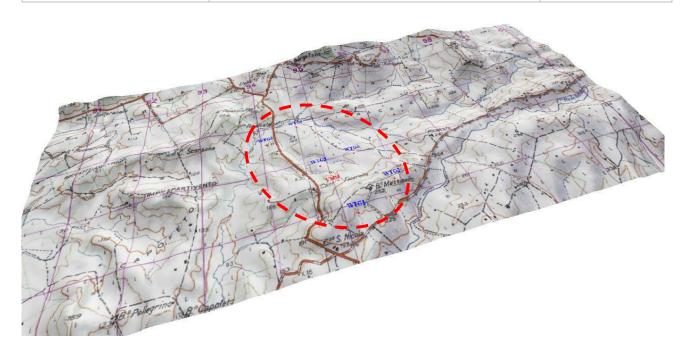


Figura 2. Inquadramento 3D su IGM 1:50.000

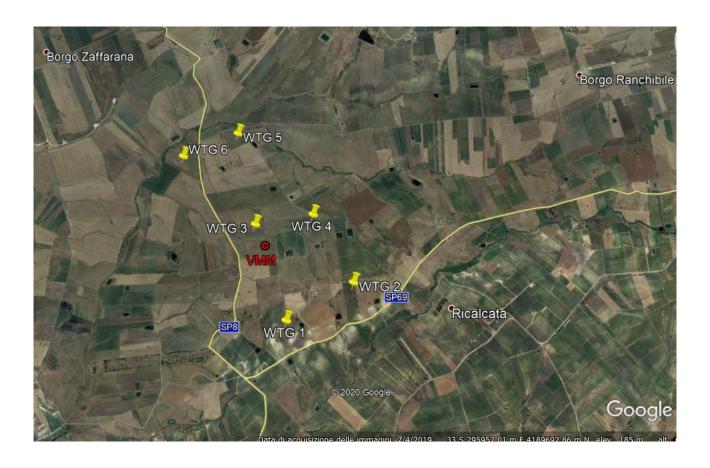


Figura 3. Inquadramento su Google Earth

Capitolo 2: Analisi del potenziale eolico

2.1 Database dati anemometrici

Il primo passo per la valutazione preliminare della ventosità consiste nell'analisi dei dati a mesoscala dell'area in esame. La fonte più consistente ed affidabile è sicuramente quella della NASA, che attraverso il progetto "Modern-Era Retrospective analysis for Research and Applications, Version 2", più comunemente noto come MERRA-2, ha messo a disposizione della comunità scientifica un database di dati climatologici opportunamente rianalizzati e corretti utilizzando svariate fonti di misura a livello mondiale (dati satellitari, palloni sonda, stazioni meteo terrestri, etc.) con una maglia di 0.625° in latitudine e 0.5° in longitudine, ovvero circa 50km.

Nel nostro caso specifico, abbiamo provveduto ad analizzare i dati orari di velocità e direzione del vento a 10m sls disponibili per l'area d'interesse per un periodo di tempo di 10 anni (2010-2019):

Anno	Velocità Media [m/s]
2010	5,20
2011	4,49
2012	4,88
2013	4,89
2014	4,83
2015	4,56
2016	4,84
2017	4,60
2018	4,70
2019	4,93
Totale	4,79

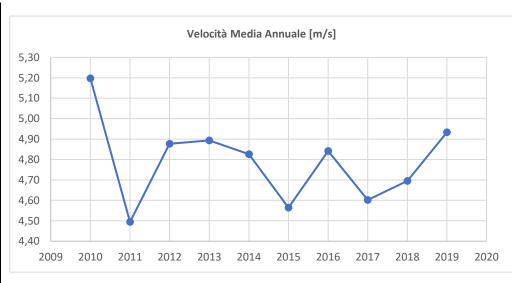


Tabella 2. Dati MERRA-2 (2010-2019), Statistiche annuali

Come si evince dal grafico, l'andamento della velocità media annuale nella decade 2010-2019 evidenzia un trend abbastanza regolare attorno alla velocità media totale che si attesta sui 4,8 m/s, sempre a 10m sls.

Analizzando i dati nel dettaglio, possiamo apprezzare la consistenza della distribuzione e la rosa dei venti che conferma una ventosità prevalente dai settori Nord-Ovest e Sud-Est:

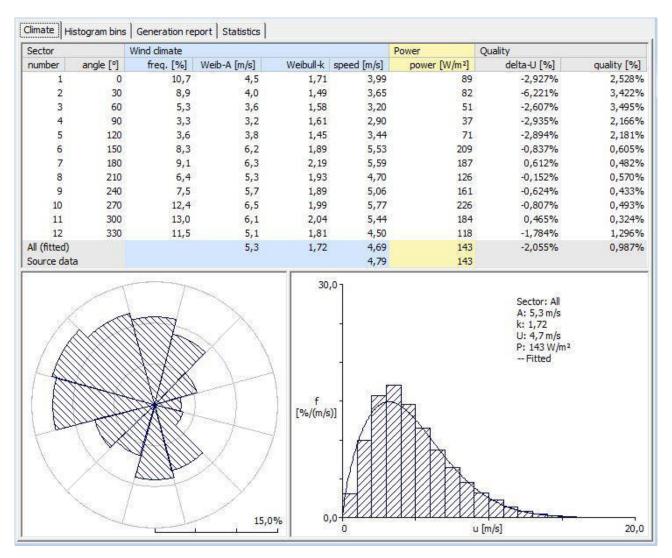


Figura 4. Dati MERRA-2 (2010-2019), Rosa dei venti e Distribuzione di Weibull

Partendo da questi presupposti, per affinare l'analisi il passo successivo è ricorrere ad un database più puntuale che vada a restringere la griglia geografica. A tal fine ci si è rivolti alla AWS Truepower (https://dashboards.awstruepower.com/), una Società riconosciuta a livello internazionale come provider di modelli di simulazione e analisi di dati climatologici.

In particolare, AWS Truepower ha sviluppato un modello a mesoscala denominato MASS (Mesoscale Atmospheric Simulation System) che utilizza una varietà di database online globali, geofisici e meteorologici. I principali input meteorologici sono i dati di rianalisi, i dati grezzi delle sonde e le misurazioni della superficie terrestre. Il database di rianalisi più importante è un set di dati meteorologici storici a griglia prodotto dai Centri Nazionali Statunitensi per la Previsione Ambientale (NCEP) e dal Centro Nazionale per la Ricerca

Data: 20/10/2020 Rev. 01

Atmosferica (NCAR). I dati forniscono un'istantanea delle condizioni atmosferiche nel mondo a tutti i livelli dell'atmosfera ad intervalli di sei ore. Insieme ai dati grezzi e superficiali, i dati di rianalisi stabiliscono le condizioni iniziali e le condizioni al contorno laterali aggiornate per le simulazioni MASS. Il modello MASS stesso determina l'evoluzione delle condizioni atmosferiche all'interno della regione in base alle interazioni tra i diversi elementi nell'atmosfera e tra l'atmosfera e la superficie. Poiché i dati di rianalisi sono su una griglia di 200 km relativamente grossolana, MASS viene eseguito in diverse griglie annidate di dimensioni di maglia più fini, ciascuna prendendo come input l'output della griglia precedente, fino a raggiungere la scala della griglia desiderata per evitare di generare errori ai margini che possono derivare da grandi salti nella dimensione delle celle della griglia.

Partendo dal modello MASS con simulazioni su griglie di 10km inizializzate dai dati rianalizzati da NCEP/NCAR, AWS Truepower è in grado di scalare i dati fino a una risoluzione di 200m andando a restringere l'area di interesse e definire quello che prende il nome di Virtual Met Mast (VMM), ovvero un vero e proprio anemometro virtuale che fornisce in maniera puntuale i dati di velocità e direzione del vento a diverse altezze sul livello del suolo (da 10m a 140m) su base oraria di un anno tipico mediato su un database di 15 anni (1997-2012).

Nel nostro caso, il *Virtual Met Mast* (VMM) è localizzato in posizione baricentrica rispetto alle sei turbine in modo da essere il più possibile rappresentativo delle condizione orografiche del layout d'impianto:

	Coordinate	Geografiche	Coordinate	UTM WGS84	Coordinate Gauss-Boaga		
	Est	Nord	Est	Nord	Est	Nord	
VMM	12° 40' 12.00"	37° 49' 48.00"	294947	4189511	2314940	4189507	



Figura 5. Inquadramento del VMM su IGM 1:50.000

2.2 Implementazione del modello WAsP

I dati anemometrici relativi al *Virtuali Met Mast* (VMM) costituiscono l'input per il software *WAsP* sviluppato dal *Risoe National Laboratory* (Roskilde, Denmark) riconosciuto a livello internazionale come il modello di simulazione per eccellenza per il calcolo della producibilità degli impianti eolici.

Premesso che le sei turbine dell'impianto hanno altezze mozzo diverse, dagli 84m sls ai 165m sls, abbiamo considerato due diversi database per i dati del VMM, ovvero a 84m sls e a 140m sls (quest'ultimo è il valore massimo disponibile), per minimizzare le incertezze legate all'estrapolazione verticale:

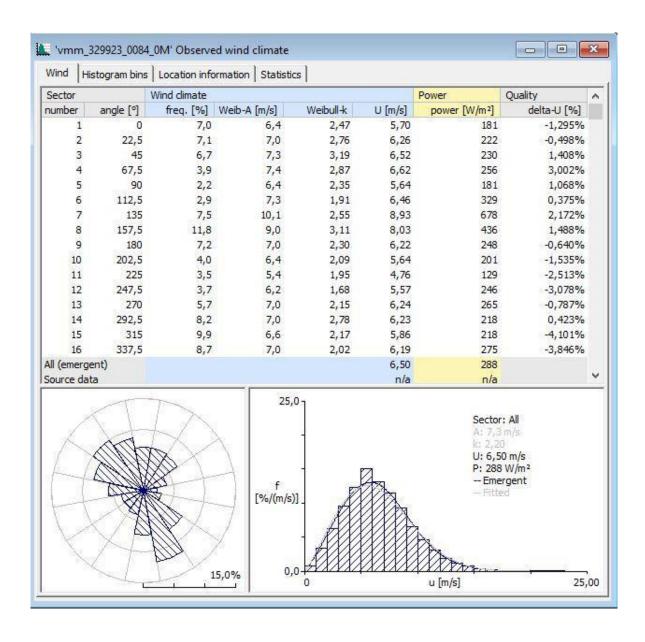


Figura 6. VMM a 84m sls: Rosa dei Venti e Distribuzione di Weibull

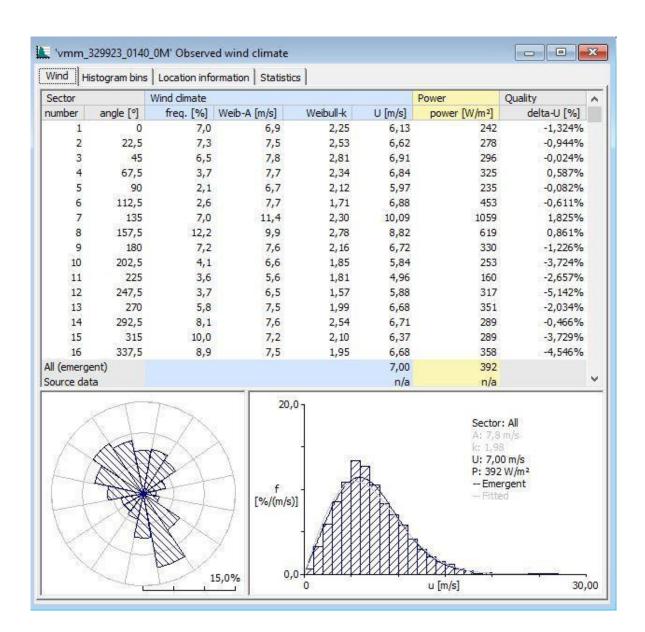


Figure 7. VMM a 140m sls: Rosa dei Venti e Distribuzione di Weibull

Le statistiche di cui sopra costituiscono la base di calcolo unitamente al modello orografico dell'area in esame a cui si aggiungono le caratteristiche di rugosità del terreno.

Nel caso in oggetto è stata utilizzata una mappa vettorializzata in coordinate UTM WGS84 di dimensioni 20kmx20km con curve di livello a 5m, ampiamente rispondente ai requisiti minimi per un calcolo ottimale, a cui sono state sovrapposte le informazioni relative alla vegetazione e alle aree antropizzate per la stima dei cambi di rugosità, con particolare attenzione alle linee di interfaccia terra-mare che costituiscono una singolarità importante nel calcolo del modello.

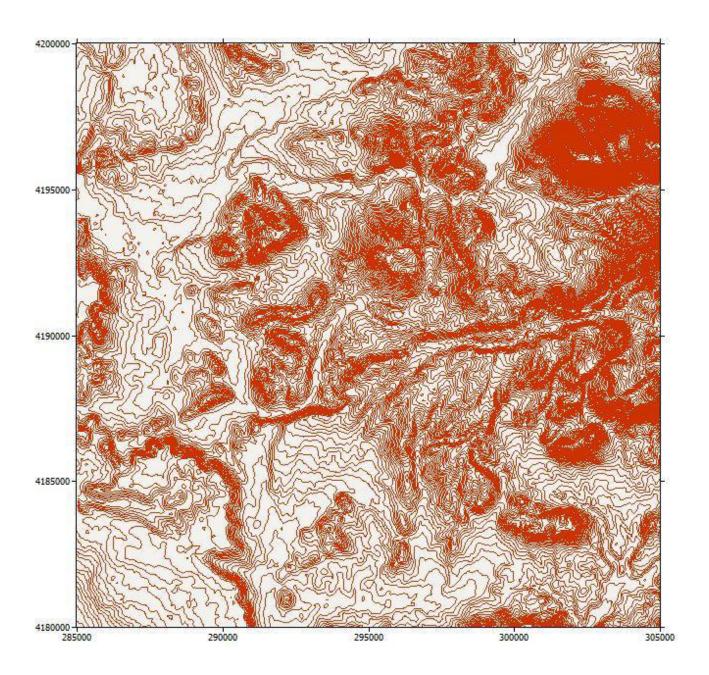


Figura 8. Mappa digitalizzata in coordinate UTM WGS84

L'ultimo input è relativo alle caratteristiche della turbina con particolare riferimento alla curva di potenza del modello scelto.

Come già detto in precedenza, abbiamo 2 modelli differenti di aerogeneratore selezionati per il progetto, ovvero la *Siemens-Gamesa SG170 – 6MW* e la *Siemens-Gamesa SG132 – 3.465MW* in diverse configurazioni di altezza mozzo (84m, 100m, 115m, 165m), entrambe certificate in classe Ila secondo la IEC61400-22 e quindi compatibili con le caratteristiche di ventosità del sito in esame.

Data: 20/10/2020 Rev. 01

In entrambi i casi la curva di potenza prevede una velocità di cut-in di soli 3 m/s mentre il cut-out è previsto al raggiungimento dei 25 m/s, come evidenziato dalle tabelle sottostanti che riportano le diverse curve alle varie densità dell'aria ad altezza mozzo:

				Air de	ensity [k	g/m³]									
Ws hub [m/s]	1.225	1.06	1.09	1.12	1.15	1.18	1.21	1.24	1.27						
3.0	89	75	77	80	82	85	88	90	93						
3.5	178	145	151	157	163	169	175	181	187						
4.0	328	272	282	292	302	312	323	333	343						
4.5	522	439	454	470	485	500	515	530	545						
5.0	758	644	665	686	706	727	748	769	789						
5.5	1040	888	916	944	971	999	1027	1054	108						
6.0	1376	1179	1215	1250	1286	1322	1358	1394	143						
6.5	1771	1521	1566	1612	1657	1703	1748	1794	183						
7.0	2230	1919	1976	2032	2089	2146	2202	2259	231						
7.5	2758	2377	2446	2516	2585	2654	2723	2793	286						
8.0	3351	2893	2977	3060	3144	3227	3310	3392	347						
8.5	3988	3455	3553	3652	3749	3846	3941	4035	412						
9.0	4617	4033	4145	4255	4363	4467	4568	4664	475						
9.5	5166	4586	4706	4820	4928	5029	5122	5208	528						
10.0	5584	5074	5191	5296	5390	5475	5549	5616	567						
10.5	5862	5466	5567	5652	5725	5786	5839	5884	592						
11.0	6028	5753	5830	5891	5940	5981	6013	6040	606						
11.5	6117	5944	5997	6036	6067	6090	6109	6124	613						
12.0	6161	6061	6094	6117	6135	6148	6157	6165	617						
12.5	6183	6128	8147	6160	6169	6176	6181	6184	618						
13.0	6192	6164	6174	6181	6186	6189	6191	6193	619						
13.5	6197	6182	6188	6191	6194	6195	6196	6197	619						
14.0	6199	6192	6194	6196	6197	6198	6198	6199	619						
14.5	6199	6196	6197	6198	6199	6199	6199	6199	620						
15.0	6200	6198	6199	6199	6199	6200	6200	6200	620						
15.5	6200	6199	6199	6200	6200	6200	6200	6200	620						
16.0	8200	6200	6200	6200	6200	6200	6200	6200	620						
16.5	6200	6200	6200	6200	6200	6200	6200	6200	620						
17.0	6200	6200	6200	6200	6200	6200	6200	6200	620						
17.5	6200	6200	6200	6200	6200	6200	6200	6200	620						
18.0	6200	6200	6200	6200	6200	6200	6200	6200	620						
18.5	6200	6200	6200	6200	6200	6200	6200	6200	620						
19.0	6200	6200	6200	6200	6200	6200	6200	6200	620						
19.5	6200	6200	6200	6200	6200	6200	6200	6200	620						
20.0	6200	6200	6200	6200	6200	6200	6200	6200	620						
20.5	6080	6080	6080	6080	6080	6080	6080	6080	608						
21.0	5956	5956	5956	5956	5956	5956	5956	5956	595						
21.5	5832	5832	5832	5832	5832	5832	5832	5832	583						
22.0	5708	5708	5708	5708	5708	5708	5708	5708	570						
22.5	5584	5584	5584	5584	5584	5584	5584	5584	558						
23.0	5460	5460	5460	5460	5460	5460	5460	5460	546						
23.5	5336	5336	5338	5336	5336	5336	5338	5336	533						
24.0	5212	5212	5212	5212	5212	5212	5212	5212	521						
24.5	5088	5088	5088	5088	5088	5088	5088	5088	508						
25.0	4964	4964	4964	4964	4964	4964	4964	4964	496						

Figura 9. Siemens-Gamesa SG170-6MW: Curve di potenza

Data: 20/10/2020 Rev. 01

P [kW] Ws				Air De	ensity	[kg/m3]		
[m/s]	1.225	1.06	1.09	1.12	1.15	1.18	1.21	1.24	1.27
3	37	29	30	32	33	35	36	38	39
4	169	139	144	150	155	161	167	172	178
5	434	363	376	389	402	415	428	441	454
6	816	697	719	740	762	784	805	826	848
7	1327	1142	1176	1209	1243	1277	1311	1344	1378
8	1994	1724	1774	1823	1873	1922	1970	2019	2067
9	2718	2410	2471	2530	2586	2641	2693	2742	2789
10	3208	3004	3050	3092	3129	3164	3194	3222	3247
11	3402	3321	3341	3359	3373	3386	3397	3406	3414
12	3452	3430	3436	3441	3445	3448	3451	3453	3455
13	3463	3458	3459	3460	3461	3462	3462	3463	3463
14	3465	3464	3464	3464	3464	3464	3465	3465	3465
15	3465	3465	3465	3465	3465	3465	3465	3465	3465
16	3465	3465	3465	3465	3465	3465	3465	3465	3465
17	3463	3463	3463	3463	3463	3463	3463	3463	3463
18	3452	3452	3452	3452	3452	3452	3452	3452	3452
19	3413	3413	3413	3413	3413	3413	3413	3413	3413
20	3325	3325	3325	3325	3325	3325	3325	3325	3325
21	3176	3176	3176	3176	3176	3176	3176	3176	3176
22	2982	2982	2982	2982	2982	2982	2982	2982	2982
23	2771	2771	2771	2771	2771	2771	2771	2771	2771
24	2576	2576	2576	2576	2576	2576	2576	2576	2576
25	2418	2418	2418	2418	2418	2418	2418	2418	2418

Figura 10. Siemens-Gamesa SG132-3.465MW: Curve di potenza

In base alle caratteristiche altimetriche e alle misure storiche di temperatura e pressione registrate in sito, la densità media dell'aria di circa 1,18 Kg/m³, di conseguenza i valori di curva di potenza utilizzati per simulare la producibilità attesa sono quelli relativi alla densità 1,18 Kg/m³, come si evince dalle figure sottostanti:

Data: 20/10/2020 Rev. 01

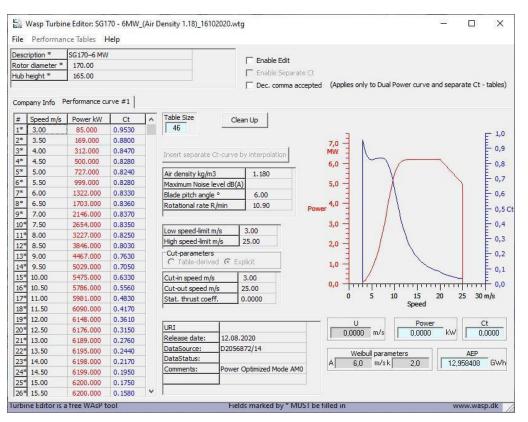


Figura 11. Siemens-Gamesa SG170-6MW: Curva di Potenza a densità 1,18 Kg/m³

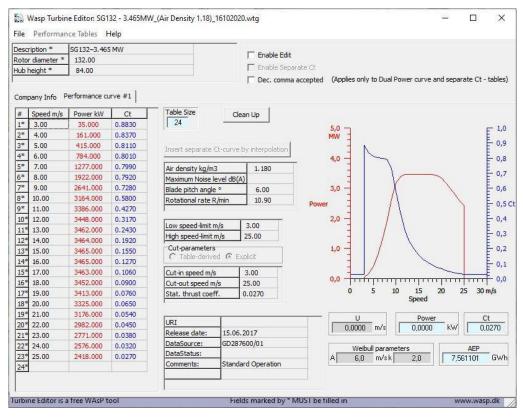


Figura 12. Siemens-Gamesa SG132-3.465MW: Curva di Potenza a densità 1,18 Kg/m³

Capitolo 3: Stima della producibilità attesa

3.1 Simulazione WAsP

Una volta inseriti gli input in WAsP, il software procede al calcolo di tutte le caratteristiche climatologiche dell'area in esame e simula il comportamento degli aerogeneratori con conseguente stima della producibilità attesa dell'impianto al netto delle perdite di scia dovute all'interferenza aerodinamica tra gli aerogeneratori. Le condizioni di riferimento, ovvero le stime dei parametri di ventosità (parametri di Weibull, velocità media e densità di potenza) a diverse altezze mozzo sul livello del suolo e classi di rugosità del terreno sono sintetizzate nella tabella sottostante:

Height	Parameter	0,00 m	0,05 m	0,10 m	0,40 m	1,50 m
84,0 m	Weibull A [m/s]	7,80	6,80	6,45	5,68	4,77
	Weibull k	1,88	2,06	2,05	2,03	1,97
	Mean speed U [m/s]	6,92	6,03	5,71	5,03	4,23
	Power density E [W/m²]	398	240	205	142	86
100,0 m	Weibull A [m/s]	7,96	7,11	6,74	5,96	5,04
	Weibull k	1,87	2,06	2,06	2,07	2,04
	Mean speed U [m/s]	7,07	6,30	5,97	5,28	4,47
	Power density E [W/m²]	426	273	233	160	99
115,0 m	Weibull A [m/s]	8,10	7,37	6,99	6,19	5,27
	Weibull k	1,87	2,06	2,05	2,07	2,07
	Mean speed U [m/s]	7,19	6,53	6,20	5,48	4,67
	Power density E [W/m²]	451	305	261	180	111
140,0 m	Weibull A [m/s]	8,30	7,77	7,37	6,54	5,61
	Weibull k	1,85	2,05	2,04	2,06	2,07
	Mean speed U [m/s]	7,37	6,88	6,53	5,80	4,97
	Power density E [W/m²]	491	359	307	213	133
165,0 m	Weibull A [m/s]	8,49	8,14	7,72	6,86	5,90
	Weibull k	1,84	2,04	2,04	2,06	2,06
	Mean speed U [m/s]	7,54	7,21	6,84	6,08	5,23
	Power density E [W/m²]	528	414	354	246	156

Figura 13. Parametri ventosità a diverse altezze mozzo e classi di rugosità

In base a questi parametri è possibile avere una mappatura delle grandezze di riferimento per l'area, come si evince dalle figure sottostanti:

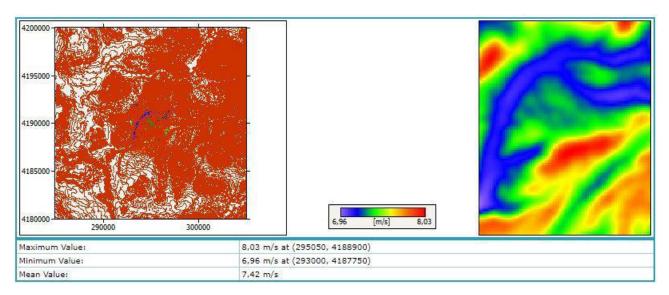


Figura 14. Mappa della Velocità del vento

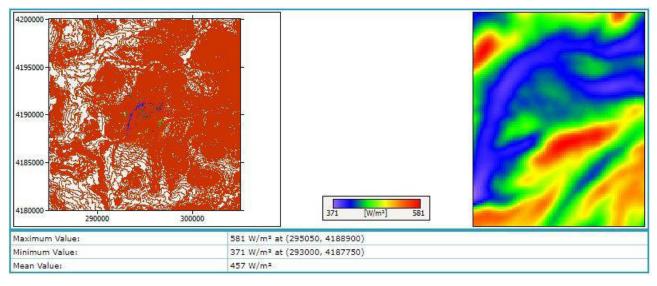


Figura 15. Mappa della Densità di potenza

A livello puntuale, la figura sottostante evidenzia ovvero la griglia di ventosità e gli effetti scia per il layout oggetto dell'analisi e le tabelle riportano i risultati relativi alla climatologia e alla producibilità:

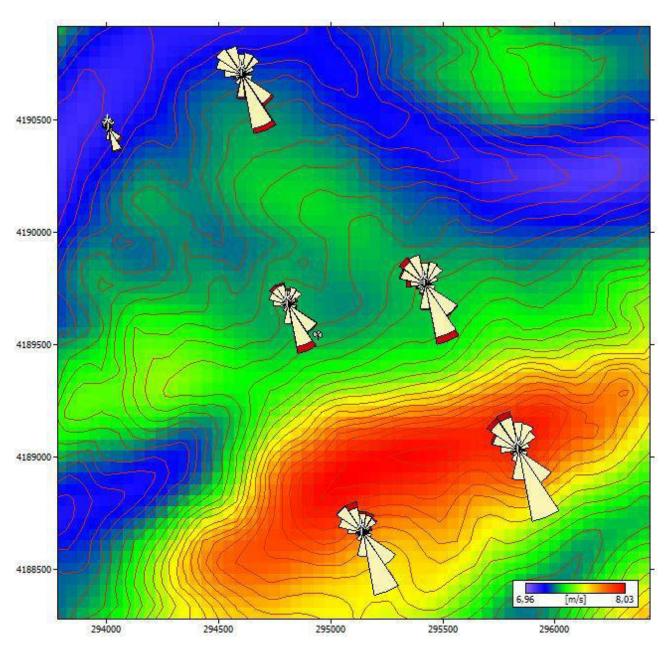


Figura 16. Griglia di ventosità ed effetti scia

Data: 20/10/2020 Rev. 01

Site wind climates

Site	Location [m]	H [m]	A [m/s]	k	U [m/s]	E [W/m²]	RIX [%]	dRIX [%]
WTG1	(295145, 4188663)	115	8,0	2,03	7,10	398	0,0	0,0
WTG2	(295837, 4189030)	165	9,0	2,01	7,97	567	0,0	0,0
WTG3	(294812, 4189678)	100	7,2	2,07	6,37	282	0,0	0,0
WTG4	(295423, 4189767)	165	8,3	2,04	7,34	437	0,0	0,0
WTG5	(294607, 4190701)	165	8,2	2,04	7,23	418	0,0	0,0
WTG6	(294013, 4190463)	84	6,6	2,10	5,83	213	0,0	0,0

Site results

Site	Location [m]	Turbine	Elevation [m] a.s.l.	Height [m] a.g.l.	Net AEP [GWh]	Wake loss [%]
WTG1	(295145, 4188663)	SG170-6 MW	215,6397	115	21,417	4,21
WTG2	(295837, 4189030)	SG170-6 MW	244,6199	165	25,531	3,67
WTG3	(294812, 4189678)	SG170-6 MW	161,3867	100	17,339	6,45
WTG4	(295423, 4189767)	SG170-6 MW	175,5028	165	22,358	5,69
WTG5	(294607, 4190701)	SG170-6 MW	137,2955	165	22,364	3,36
WTG6	(294013, 4190463)	SG132-3.465 MW	117,4964	84	8,645	3,96

Tabella 3. Climatologia e Producibilità delle turbine

In sintesi, i risultati della simulazione per il progetto sono riportati nella tabella sottostante:

Summary results

Parameter:	Total	Average	Minimum	Maximum
Net AEP [GWh]	117,655	19,609	8,645	25,531
Gross AEP [GWh]	123,246	20,541	9,002	26,505
Wake loss [%]	4,54	-6	19	Ŷ.

Tabella 4. Producibiltà dell'impianto

In realtà la produzione annua stimata dal software è una producibilità lorda al netto delle sole scie di interferenza aerodinamica (Wake loss) che non tiene conto di ulteriori fattori di perdita che impattano sulla generazione effettivamente immessa in rete.

A tal proposito, è prassi comune andare ad identificare alcune fonti di perdita standard come, ad esempio, l'indisponibilità delle turbine (availability) o le perdite elettriche dai morsetti del generatore al punto di consegna (electrical losses) e determinare delle percentuali di perdita basate sulle specificità del progetto in esame o su valori noti in letteratura e basati su dati storici di impianti similari attualmente in esercizio.

Nel nostro caso andremo a considerare le seguenti perdite d'impianto:

Data: 20/10/2020 Rev. 01

Disponibilità [A]	0,97
Perdite elettriche [B]	0,98
Efficienza delle pale [C]	0,99
Manutenzione della sottostazione [D]	0,99
Coefficiente di riduzione [AxBxCxD]	0,932

Tabella 5. Coefficienti di perdita

Applicando questa riduzione alla Net AEP determinata dal software WAsP abbiamo che la producibilità annua attesa al netto di tutte le perdite risulta essere **109654 MWh/anno** corrispondente a circa **3277 ore equivalenti/anno**.

3.2 Conclusioni

Dalle simulazioni effettuate, da un punto di vista anemologico il sito nel territorio comunale di Marsala risulta essere particolarmente indicato per lo sfruttamento della risorsa eolica.

La tabella seguente riassume i risultati ottenuti:

Numero di aerogeneratori	6
Trainers ar acrogeneration	
Modello turbina	SG170-6MW (x5) SG132-3.465MW (x1)
Potenza di targa turbina	6 MW (x5)
	3.465MW (x1)
Potenza totale impianto	33.465 MW
Velocità media del vento	6.97 m/s
Producibilità Lorda	123246 MWh/anno
Perdite di scia	4.54%
Producibilità al netto delle perdite di scia	117655 MWh/year
Coefficiente di riduzione per perdite	6.8%
Producibilità Netta	109654 MWh/year
Ore Equivalenti	3277