

STUDIO DI IMPATTO AMBIENTALE

PERFORAZIONE DEI SONDAGGI IRMINIO 7dir ed IRMINIO 8dir Proponente: Irminio Srl

PROGRAMMA GEOLOGICO

E

DI PERFORAZIONE

POZZO:

Irminio 8 dir / 8 dir-OR

Concessione "IRMINIO"

Titolarità: IRMINIO S.r.l. (80%)

JSB Sicilia S.r.l. (20%)

Data di emissione: 12/12/2020

Revisione: 1

Data

Doc. N°

PROGRAMMA GEOLOGICO E DI PERFORAZIONE POZZO:

IRMINIO 8 dir / 8 dir-OR

Concessione "IRMINIO"

Titolarità: IRMINIO S.r.l. (80%)

JSB Sicilia S.r.l. (20%)

	Data: febbraio 2019	Data: dicembre 2020	Data: dicembre 2020	
Programma Geologico di Perforazione e		30		
Completamento	D. Casciaro	D. Sgaramella	G. Saini	
Pozzo	L. Mattioli	G. Saini		
IRMINIO 8dir/8dir- Or	Wellynx	Irminio S.r.I.	Irminio S.r.I.	
	PREPARATO DA	CONTROLLATO DA	APPROVATO DA	

AGGIORNAMENTI:

SOMMARIO

SEZIONE 1	INFORMAZIONI GENERALI	5
1.1	DATI GENERALI DEL POZZO	
1.1.1		
1.1.2		
1.1.3		
1.1.4		
1.1.5		
1.2	PREVISIONI E PROGRAMMI (INFORMAZIONI GEOLOGICHE)	
1.3	RACCOMANDAZIONI GENERALI	
1.4	PROBLEMATICHE DI PERFORAZIONE E SOLUZIONI	
1.5	CARATTERISTICHE GENERALI IMPIANTO, BOP STACK E DOTAZIONI DI SICUREZZA	
1.6	UNITA' DI MISURA E DIMENSIONI DELL'OBIETTIVO	
SEZIONE 2	PROGRAMMA GEOLOGICO	24
2.1	INTRODUZIONE	
2.2	Generalità	
2.3	GEOLOGIA	
2.4	Source rock	35
2.5	Reservoir	36
2.6	Seal	37
2.7	Analisi del campo di fratturazione	
2.8	IL SONDAGGIO IRMINIO 8 dir/8 dir-OR	
2.9	ELEMENTI DEL PLAY	40
2.10	POZZI DI RIFERIMENTO	40
2.11	PREVISIONE LITOSTRATIGRAFICA	
2.12	GRADIENTI DI PRESSIONE E TEMPERATURA	
2.13	MANIFESTAZIONI	
2.14	ASSORBIMENTI – DIFFICOLTA' DI PERFORAZIONE	43
SEZIONE 3	PROGRAMMA DI GEOLOGIA OPERATIVA	44
3.1	Assistenza geologica alla perforazione	45
3.2	CAROTAGGIO	47
3.3	PROGRAMMA DI LOGGING WIRELINE (MISURE MD DA T.R. = 142.2 M.S.L.M.)	47
3.4	PROGRAMMA DI MEASUREMENT/LOGGING WHILE DRILLING (MWD/LWD)	48
SEZIONE 4	PROGRAMMA DI PERFORAZIONE E COMPLETAMENTO	49
4.1	PROGRAMMA OPERATIVO	50
4.1.1	INFORMAZIONI PRELIMINARI	50
4.1.2	FASE 28" PER CONDUCTOR PIPE 24 1/2" A CIRCA 200 M	54
4.1.3	FASE 23" PER CASING 18 5/8" A CIRCA 856 M	5 <i>6</i>
4.1.4	FASE 16" PER CASING SUPERFICIALE 13 3/8" A CIRCA 1714 M (1711.5 m TVD)	59
4.1.5	FASE 12 1/4" PER CASING 9 5/8" - A ~2368 M MD (2318.6 M TVD)	61
4.1.6	FASE 8 ½" PILOT HOLE A ~ 2804 m MD (2641.35 m TVD)	63
4.1.7	FASE CHIUSURA FORO 8 ½" IRMINIO 8 Dir	65
4.1.8	FASE 8 ½" (LATERAL) PER SLOTTED LINER 7" A ~ 3115m MD (2447.2 m TVD)	66
4.1.9	COMPLETAMENTO POZZO	68
1.	LAVAGGIO CASING E SPIAZZZAMENTO BRINE	
2.	PREPARATIVI PER IL COMPLETAMENTO	
3.	DISCESA COMPLETAMENTO	
4.1.1		
4.1.1	1. PROGRAMMA DI CHIUSURA MINERARIA	71

AGGIORNAMENTI:

4.2 PRO	GETTAZIONE DEL POZZO	73
4.2.1.	PREVISIONE DEI GRADIENTI DI PRESSIONE E TEMPERATU	RA 73
4.2.2.	MARGIN ANALYSIS REPORT	75
4.2.3.	PROBLEMI DI PERFORAZIONE	78
4.2.4.	SCELTA PROFONDITA' DI TUBAGGIO	80
4.2.5.	CASING DESIGN	82
4.2.5.1	PROFILO DI TUBAGGIO	82
4.2.5.2	SAFETY FACTORS	
4.2.5.3	CALCOLI CASING DESIGN	
4.2.6.	PROGRAMMA FANGO	
4.2.7.	PROGRAMMA DI CEMENTAZIONE	
4.2.7.1	CP 24 1/2"	
4.2.7.2	CASING SUPERFICIALE 18 5/8"	
4.2.7.3	CASING INTERMEDIO 13 3/8"	
4.2.7.4	CASING DI PRODUZIONE 9 5/8"	
4.2.7.5	Irminio 8 dir / 8 dir-OR - LINER DI PRODUZIONE 7"	
4.2.8.	SCHEMA BOP	
4.2.9.	SCHEMA DI COMPLETAMENTO	
4.2.10.	SCHEMA TESTA POZZO	
4.2.11.	PROGRAMMA IDRAULICO	
4.2.12.	BATTERIE E STABILIZZAZIONE	
4.2.13.	SELEZIONE SCALPELLI	
4.2.14.	PROGRAMMA DI DEVIAZIONE	
4.2.15.	ANALISI ANTICOLLISION	
4.2.16.	LISTA ACRONIMI / ABBREVIAZIONI	

F	PAG	5	DI	•	122	
AGG	AGGIORNAMENTI:					
0						

SEZIONE 1. INFORMAZIONI GENERALI

-	PAG	6	DI	122	
AGGIORNAMENTI:					
0					

1.1 DATI GENERALI DEL POZZO

1.1.1. TABELLA DATI GENERALI

VOCE	DESCRIZIONE
ANAGRAFICA	
Nome e sigla del pozzo	Irminio 8 dir / 8 dir- OR
Classificazione iniziale	Sviluppo
Obiettivo minerario principale	F.ne Noto – membro Mila (Retico)
Concessione	Irminio
Operatore	Irminio S.r.I.
Quote di titolarità	Irminio s.r.l. (80%) (Op) JSB Sicilia s.r.l. (20%)
Comune	Ragusa
Provincia	Ragusa
Quota P.C. / T.R.	133 m s.l.m. / 142.2 m s.l.m.
	133 111 \$.1.111. 7 142.2 111 \$.1.111.
OBIETTIVI	
Linea sismica di riferimento Irminio 8 dir	Inline 1314 (Rilievo 3D Irminio)
Linea sismica di riferimento Irminio 8 dir/ 8 dir-OR	Inline 1364 (Rilievo 3D Irminio)
Obiettivo minerario	Olio (33°API) in calcari formazione Noto
RIFERIMENTI TOPOGRAFICI	
Irminio 8	3 dir
Latitudine di Partenza (geografica) N	36° 49' 51.502"
Longitudine di Partenza (geografica) E MM	2° 12' 46.184"
Latitudine di Partenza (metrica) N	4 076 240.49
Longitudine di Partenza (metrica) E	2 490 140.24
Latitudine a TD (geografica) N	36° 49' 58.996"
Longitudine a TD (geografica) E MM	2° 13' 01.720"
Latitudine a TD (metrica) N	4 076 470.08
Longitudine a TD (metrica) E	2 490 525.92
Prof. finale prevista Irm 8 dir - TVD/MD PTR	2641.35 TVD / 2804 MD
Irminio 8 dir /	8 dir-OR
Profondità KOP - TVD/MD PTR	2325.99 m TVD (2378 m MD)
Latitudine al KOP (geografica) N	36° 49' 53.502"
Longitudine al KOP (geog.) E MM	2° 12' 52.400"
Latitudine al KOP (metrica) N	4 076 301.58
Longitudine al KOP (metrica) E	2 490 294.46
Latitudine a TD (geografica) N	36° 50' 05.330"
Longitudine a TD (geografica) E MM	2° 13' 16.553"
Latitudine a TD (metrica) N	4 076 664.00
Longitudine a TD (metrica) E	2 490 894.00
Prof. finale prevista Irm 8 dir/8 dir OR-TVD/MD PTR	2447.2 TVD / 3115.3 MD

I	PAG	7	DI	122
AGO	SIOF	R۸	IAMI	ENTI:
0				

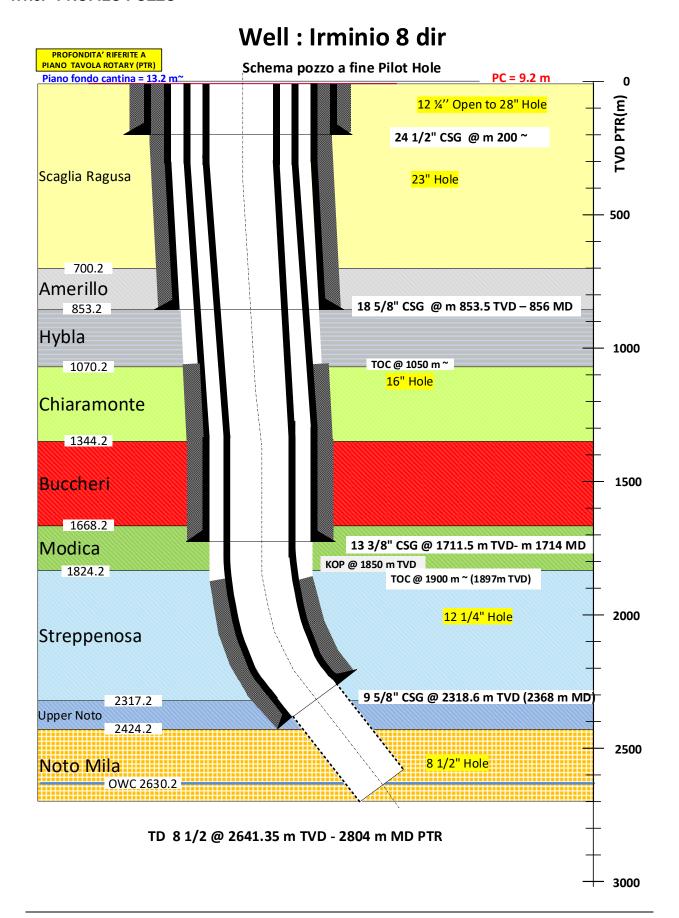
Proiezione	GAUSS-BOAGA
Ellissoide	Hayrford Internazional 1924
Datum	Roma 40
Semiasse maggiore	6.378.388
Eccentricità al quadrato (1/F)	0.00672267002 (297.00)
Central meridian	15° EST GREENWICH
Falso Est	2520000 m
Falso Nord	0
Scale Factor	0.9996
Declinazione magnetica	Da verificare ad inizio perforazione
Foglio IGM scala 1:100 000	F° 276 Ragusa
Tavoletta scala 1: 25 000	F° 276 III° - NE "Donnalucata"
Ufficio competente	U.R.I.G. Palermo

ı	PAG	8 [ol '	122	
AGGIORNAMENTI:					
0					

1.1.2. OBIETTIVO MINERARIO

L'obiettivo del sondaggio Irminio 8 dir/8 dir-OR è di testare le potenzialità produttive del settore Nord-orientale del giacimento Irminio, in un comparto posto più a NE di quello già interessato dal pozzo Irminio 6 dirB e a Sud del sondaggio Irminio 7 dir-OR. La distanza tra i fori orizzontali dei sondaggi Irminio 7 dir-OR e Irminio 8 dir-OR, a TD, sarà di circa 290 m.

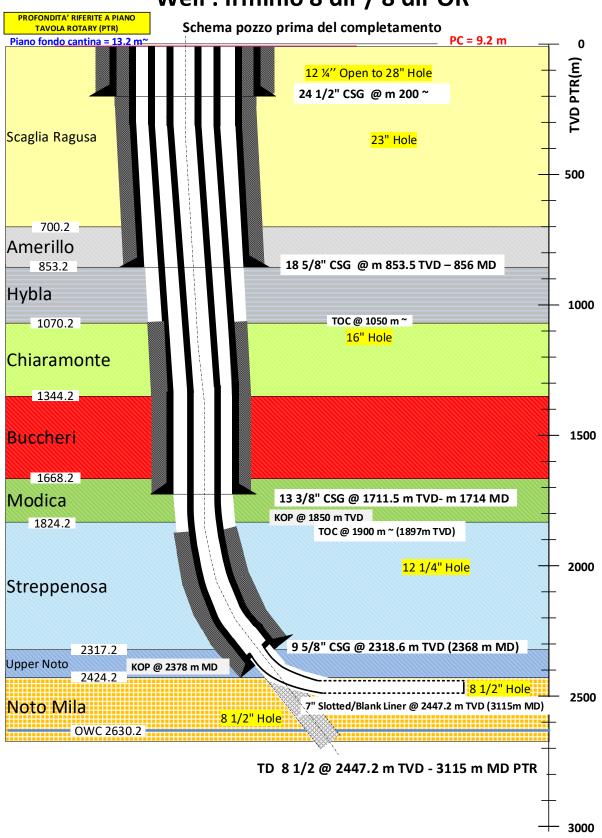
Il sondaggio Irminio 8 dir si propone di perforare un dreno sub orizzontale della lunghezza di circa 450 m all'interno del membro Mila, a NE del sondaggio Irminio 6 dirB e a Sud del sondaggio Irminio 7 dir-OR, per cercare di ottenere una produzione iniziale di circa 1000 bbl/d. Il pozzo sarà perforato dalla esistente postazione sonda di Buglia Sottana e si prevede di acquisire tutte le informazioni utili alla definizione del futuro piano di coltivazione/sviluppo del settore Nord-orientale del campo.


Per determinare con esattezza lo spessore e le quote del *top* e *bottom* del membro Mila della Formazione Noto, obiettivo del sondaggio, oltre che per poter registrare un set completo di *logs*, si propone di perforare un foro pilota subverticale (**Irminio 8 dir**) fino al riconoscimento del contatto olio-acqua e in seguito, stabilite con precisione le quote di *top* e *bottom* del membro Mila, si perforerà quest'ultimo con un dreno sub orizzontale di circa 450 m di lunghezza con un azimuth di circa 60° (**Irminio 8 dir-OR**) nella porzione con le migliori caratteristiche petrofisiche. Il foro orizzontale del sondaggio Irminio 8 dir-OR sarà distante circa 290 m da quello del pozzo Irminio 7 dir-OR

Per i dettagli si rimanda alla "Sezione 2 – Programma Geologico"

I	PAG	9	DI	122	
AGGIORNAMENTI:					
0					

1.1.3. PROFILO POZZO



PAG **10** DI 122

AGGIORNAMENTI:

0

Well: Irminio 8 dir / 8 dir OR

Р	AG	11	D	122	2
AGGIORNAMENTI:					
0					

1.1.4. PROFILO DI DEVIAZIONE PREVISTO E SCHEMA CANTINE

Il pozzo verrà perforato in deviazione da una postazione multipla che al momento prevede l'esecuzione di 3 pozzi con le teste pozzo distanti 4 metri.

- Il pozzo Irminio 6 (fori 6-6A-6B) è stato perforato e completato nel 2016.
- Il pozzo Irminio 7 dir ed il dreno Irminio 7 dir /7 dir-OR verranno perforati dopo aver avuto le necessarie autorizzazioni.
- Il pozzo Irminio 8 dir ed il dreno Irminio 8 dir /8 dir-OR verranno perforati dopo aver avuto le necessarie autorizzazioni.

Il pozzo Irminio 8 dir avrà un profilo "slant" a circa 42.245° con azimuth 53.744°.

Per rispettare le procedure di "anticollision" il pozzo sarà direzionato leggermente ("nudging") per allontanarsi dai pozzi Irminio 6 e 7. Partendo da 250 m, con DLS di 1.2°/30m, si raggiungerà un angolo di circa 6° in direzione 180° a 400m circa. Da tale quota si procederà, mantenendo i 6° con azimuth 180°, fino a circa 780m. Si inizierà il rientro in verticale previsto a circa 852m MD e si proseguirà in verticale fino a circa 1850m TVD.

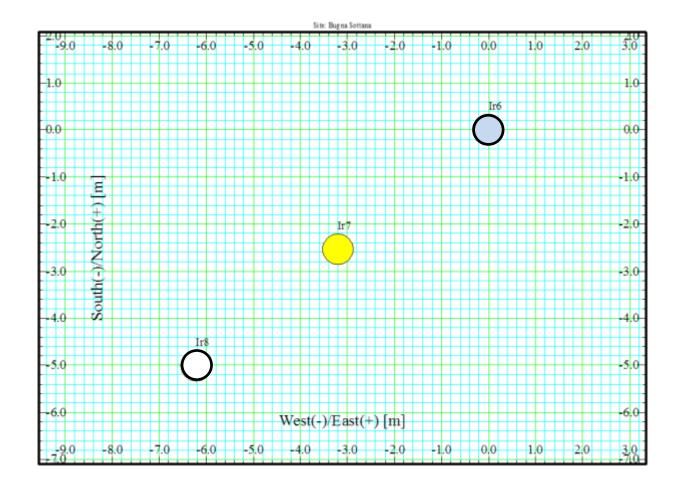
Il KOP vero e proprio è previsto a circa 1850m TVD, con un DLS di 2.5° si incrementerà l'angolo fino a 42.245° con azimuth 53.744°.

La fine della curva si prevede a 2312.24m TVD (2359.43 m MD). Una volta raggiunta l'inclinazione finale si proseguirà con angolo costante fino alla TD prevista a 2641.35 m TVD (2804m MD).

Una volta raggiunta la TD, e determinato lo spessore e le quote di top e bottom del membro Mila, il foro verrà tappato, con tappi di cemento, fino alla scarpa da 9 5/8". Si perforerà quindi un nuovo foro da 8 ½" con KOP a 2378m circa, lungo circa 740m, con un tratto orizzontale di circa 450m di lunghezza con azimuth di circa 60.267° (**Irminio 8dir/8dir-OR**), nella porzione con le migliori caratteristiche petrofisiche. (Vedi relativa sezione "Programma di deviazione").

L'analisi anti-collision è stata eseguita con i fori Irminio 6 -6A-6B reali e con il progetto del pozzo Irminio 7dir/7dir-Or perforati precedentemente. Una attenta analisi di anti-collision verrà eseguita durante la perforazione del pozzo, una volta registrato il Gyro su tutto il profilo del pozzo Irminio 7dir/7di-Or.

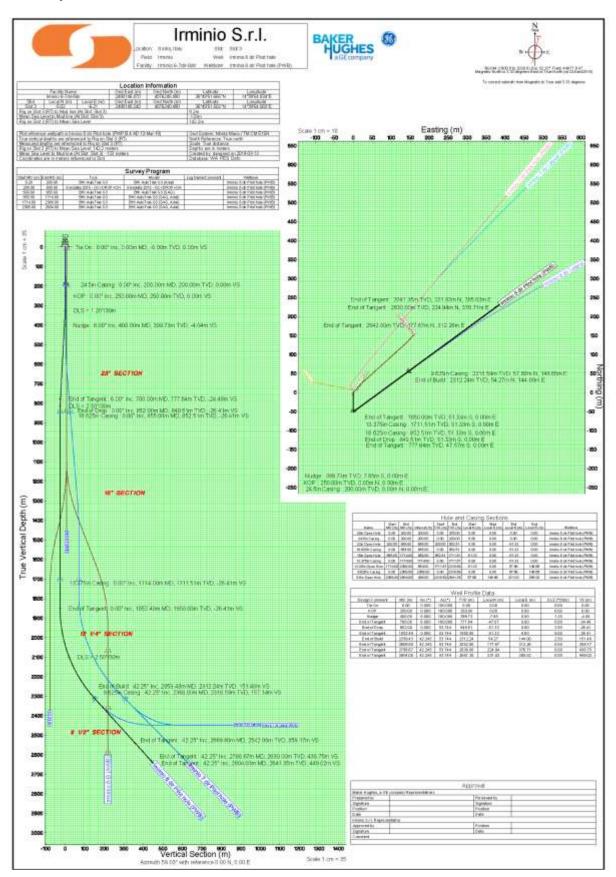
Non si prevedono problemi con gli altri pozzi perforati nell'area (Irminio 3-4-5 e relativi dreni).


Р	AG	12	2	DI	122
AGGIORNAMENTI:					
0					

Dati del Cluster

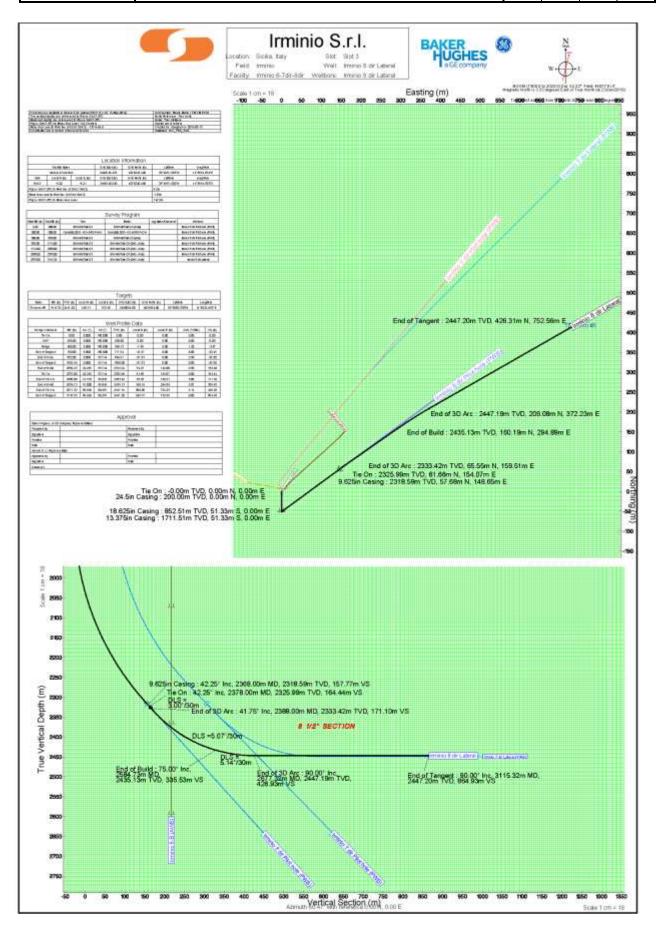
Progetto	Irminio 6-7-8
Map System:	Sistema Italia
Geo Datum:	European 1950 - Mean (International 1924)
Map Zone:	Coord. MM - Central Meridian 15° Greenw.

Coordinate teste pozzo


boordinate teste pozzo								
Pozzo	+N/-S	+E/-W	Northing (m)	Easting (m)				
Irminio 6 – 6A -6B	0.00	0.00	4076245.49	2490146.47				
Irminio 7 dir – 7Or	-2.54	-3.20	4076242.96	2490143.27				
Irminio 8 dir – 8Or	-5.02	-6.21	4076240.49	2490140.25				

F	PAG	13	3	DI	122
AGO	SIO	R۱	IΑ	ME	NTI:
0					

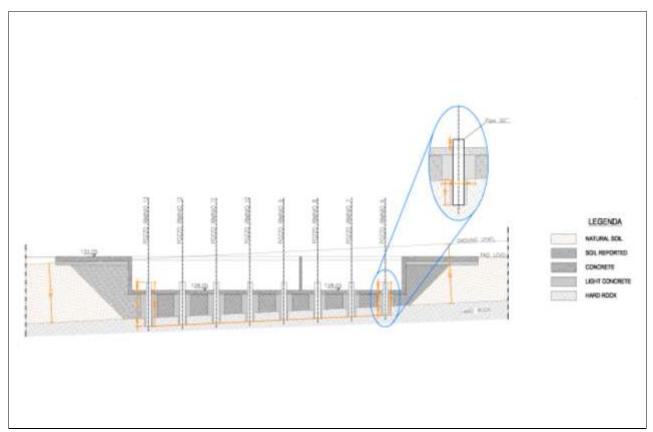
Profilo pozzo:



PAG **14** DI 122

AGGIORNAMENTI:

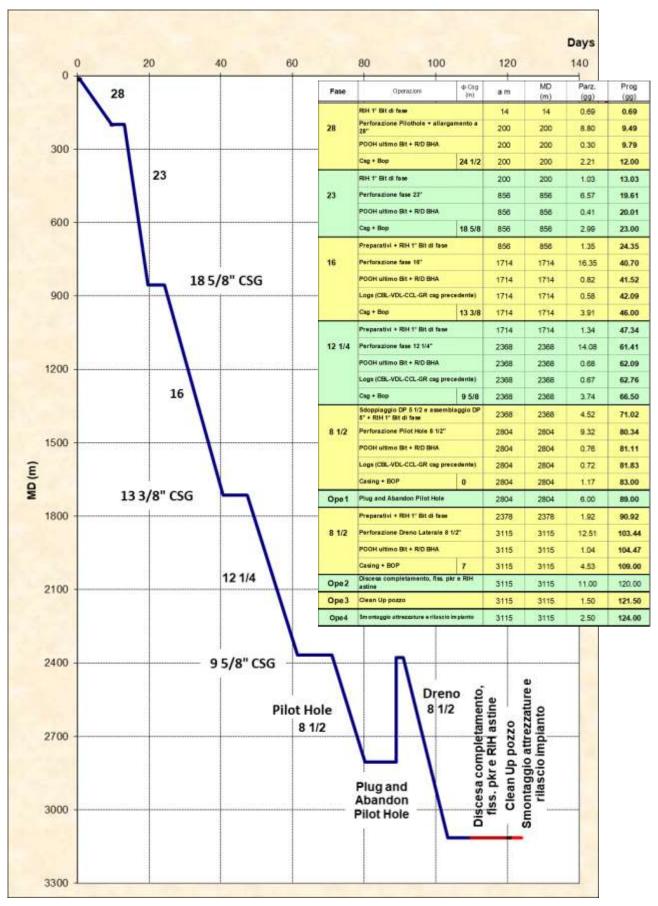
0



PAG **15** DI 122

AGGIORNAMENTI:

schema cantine


Profondità cantina = 4 m

AGGIORNAMENTI:

0 | 122

1.1.5. DIAGRAMMA DI AVANZAMENTO PREVISTO

Р	AG '	17	DI	122
AGG	SIOR	NΑ	MEI	NTI:
0				

1.2 PREVISIONI E PROGRAMMI (INFORMAZIONI GEOLOGICHE)

Geologia		

Р	AG	18	DI	122
AGO	SIOF	RNA	AME	NTI:
0				

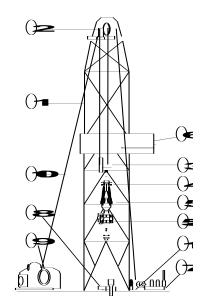
1.3 RACCOMANDAZIONI GENERALI

- Prima dell'inizio della perforazione, alla presenza di tutti i contrattisti, sarà tenuto un incontro (Pre-spud Safety meeting) per trattare i seguenti argomenti:
 - Ruoli e competenze in caso di emergenza;
 - Salute, sicurezza e altri argomenti specifici del sito;
 - Punti sensibili per quanto riguarda le questioni ambientali;
 - Verifica e discussione dettagliata del programma;
 - Sensibilizzazione sulle procedure da adottare in caso di Shallow Gas (su questo pozzo non si prevedono comunque problemi di Shallow Gas).

1.4 PROBLEMATICHE DI PERFORAZIONE E SOLUZIONI

- Assorbimenti nelle fasi superficiali
 - Utilizzo di sola acqua dolce per la prima fase e di acqua dolce e polimeri biocompatibili per la successiva.
- Instabilità specialmente nelle formazioni Streppenosa e Upper Noto.
 - Utilizzo di fanghi Hight Performance (HP Mud).
 - o Si suggerisce l'utilizzo dei "Continuous Circulating Device" per circolare anche durante i cambi asta, in modo da avere sempre la stessa ECD sulla formazione.
 - Nel caso in cui si evidenziano problematiche durante la perforazione prevedere l'utilizzo di un "contingency liner" da 11"3/4 da discendere tra il casing 13 3/8" e quello da 9 5/8" in modo da coprire le zone più problematiche.
- Assorbimenti nella formazione Noto / Mila
 - Utilizzo di intasanti carbonatici nelle formazioni obiettivo.

Р	AG	19)	DI	122
AGGIORNAMENTI:					
0					

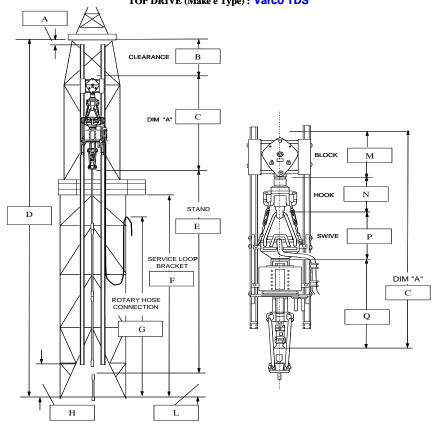

1.5 CARATTERISTICHE GENERALI IMPIANTO, BOP STACK E DOTAZIONI DI SICUREZZA

VOCE	DESCRIZIONE
Contrattista	PERGEMINE S.p.A via Cufra 19 – PARMA
Nome Impianto	NATIONAL 1320
Codice Impianto	Az. 26
Tipo Impianto	Diesel Elettrico con sistema SCR e argano da 2000 Hp
Tavola Rotary / Piano Campagna	m 9,2
Distanza Sotto Rotary Beam	m 7.6
Mast	Massarenti – Branham Lo.Lift (454 ton)
Potenza Totale Installata	4800 Hp
	N° 4 Motori Diesel CAT. D-399 PCTA Silenziati da 1200 Hp cad.
	N° 4 Alternatori CAT. SR4B da 1500 KVA
	N° 1 Gruppo Elettrog. di emergenza composto da: -Motore Diesel VM 1312T con potenza di 360 Hp -Alternatore Leroy Somer TA2800VL da 250 KVA 460V – 60Hz
Potenza Argano	2000 Hp
Tipo di Argano	National 1320 E da 2000 HP con D.L 1"3/8
Potenzialità Impianto con DP 5"	6000 m
Tipo Top Drive System	VARCO TDS-3 - Max torque 30.800 lbs@175 Rpm - Max 230 Rpm - 5K psi
Tavola Rotary	37 1/2" – 584 ton capacity tipo Lanzhou ZP375
Pressione di esercizio Stand Pipe	5000 psi
Pompe Fango	N° 2 IDECO T-1600 + N° 1 BW 1600
Diametro camicie disponibili	6 ½" - 6" - 5 ½"
Vibrovagli	N° 3 Swaco Mongoose PT
Degasser Unit	SWACO D-Gasser Vacum Type
Capacità totale Vasche Fango	330 mc (aspirabile)
Capacità stoccaggio Acqua Industriale	140 mc
Capacità stoccaggio Gasolio	80 mc x 15 gg di autonomia
Capacità stoccaggio Barite	112 mc (n° 4 Silos verticali da 28 mc cadauno)
Capacità stoccaggio Cemento	Service Company

P	AG	20)	DI	122
AGC	SIO	R۱	ĮΑ	ME	NTI:
0					

CARATTERISTICHE ATTREZZATURE DI SOLLEVAMENTO

ITEM	DESCRIPTION	STATIC CAPACITY (t)	Remarks
1	MAST Gross nominal capacity	603	
1a	Hook load capacity	454	
1b	With max. number of lines	12	
2	CROWN BLOCK Rated load capacity	580	
3	TRAVELLING BLOCK Rated load capacity	454	Integrale con Gangio
4	HOOK BLOCK Rated load capacity	454	
5	SWIVEL HEAD Rated load capacity	454	
5 a	TOP DRIVE Rated load capacity	454	
6	RAKING PLATFORM n.° DP, DC	240 stand	
7	RIG FLOOR SET BACK Rated load capacity	272	
8	ROTARY CASING CAPACITY Rated load capacity	454	
9	DRAWWORK: Max fast line pull	43	
10	DRILLING LINE Breaking strength rated load capacity	87	1 3/8" EIPS
11	DEAD LINE ANCHOR Rated load capacity	45	
	Max. load that rig can handle:	270	API RP 9B
11a	In drilling mode	con S F = 3	
	Max. load that rig can handle:	405	API RP 9B
11b	In running csg mode	con SF= 2	


P	AG	21	l D	122	
AGC	SIO	R٨	ΙΑΜ	ENTI:	
0					

DIMENSIONI D'INGOMBRO ED INTERFERENZA CON TOP DRIVE

NOME COMPAGNIA: PERGEMINE

NOME IMPIANTO: National 1320 - Az n 26

TOP DRIVE (Make e Type) : Varco TDS

		E	28,40 m				
Α	Zero	F	25,20 m				
В	5,71 m	G	22,30 m			N	2,37 m
С	12,79 m	Н	2,87 m	С	12,79 m		2,45 m
D	46,90 m	L	0,90 m	M	2,48 m	Q	5,43 m

Р	AG	22	2	DI	122
AGO	OIG	R۱	IΑ	MEI	NTI:
0					

Elenco delle principali attrezzature di controllo pozzo (BOP)

VOCE	DESCRIZIONE
DIVERTER 29 1/2"	Hydril MSP - 29 1/2 " 500 psi
DIVERTER 21 ¼"	NOV T3 Model 7082 - 21 1/4" 2000 psi
B.O.P. (18 ³ / ₄ " 5000)	N° 1 NOV T3 Model 7082 - 21 ¼" 2000 psi
	N° 1 Cameron TL Double Ram 18 ¾" 5000 psi
	N° 1 Cameron TL Single Ram 18 ¾" 5000 psi
B.O.P. (13 5/8" 10000)	N° 1 NOV T3 Model 7022 - 13 5/8" 5000 psi
	N° 1 Double Ram - NOV T3 Model 6012 - 13 5/8" 10k psi
	N° 2 Single Ram - NOV T3 Model 6012 - 13 5/8" 10k psi
Choke Manifold (size & working pressure)	3" / 3 1/16" - 10000 psi
Kill Lines (size & working pressure)	2 " - 10000 psi
Choke Lines (size & working pressure)	3 1/16" - 10000 psi
Pannello Controllo B.O.P. Remoto (type)	Pergemine
Pannello Controllo B.O.P. (ubicazione)	Piano Sonda
Inside B.O.P. (type)	Upper & Lower Kelly Cocks (10000 psi W.P.)
Inside B.O.P. (ubicazione)	Installati su Top Drive
Inside B.O.P. (type)	Drop-In Check Valve
Inside B.O.P. (ubicazione)	Piano Sonda
Inside B.O.P. (type)	Sede per Drop-In Check Valve
Inside B.O.P. (ubicazione)	ВНА
Inside B.O.P. (type)	Gray Valve X DP 5" - 3 1/2" 10000 PSI
Inside B.O.P. (ubicazione)	Piano Sonda
Inside B.O.P. (type)	Drill Pipe Float Valve BAKER "G" or "F"
Inside B.O.P. (ubicazione)	ВНА

Il sistema di BOP verrà provato (test di pressione e funzionamento) nelle seguenti situazioni:

- Dopo l'installazione della testa pozzo e del sistema BOP, dopo la discesa del casing prima di perforare fuori scarpa;
- Ogni 21 giorni (massimo);
- Prima di perforare in zone in cui ci si attende presenza di idrocarburi e di sovrappressioni;
- Prima delle prove di produzione in cui i BOP restano in posizione sopra la testa pozzo;
- In qualsiasi momento in cui si valuta possibile una compromissione dell'integrità dello stack (es. a seguito di riparazioni, ecc)

F	PAG	23	3	DI	122
AGGIORNAMENTI:					
0					

1.6 UNITA' DI MISURA E DIMENSIONI DELL'OBIETTIVO

GRANDEZZA	UNITA' DI MISURA
PROFONDITA'	m (M)
PRESSIONI	Kg/cm² - psi – atm - bar
GRADIENTI DI PRESSIONE	kg/cm ² /10m
TEMPERATURE	°C
PESI SPECIFICI	kg/l oppure g/l - sg
LUNGHEZZE	m
PESI	tons - Ibs
VOLUMI	m³ (mc) oppure I
DIAMETRI BIT & CASING	Inches (in) oppure "
PESO MATERIALE TUBOLARE	lb/ft oppure Kg/m
VOLUME DI GAS	Nmc
PLASTIC VISCOSITY	Centipoise
YELD & GEL	g/100cm ²
SALINITA'	ppm oppure g/l di NaCl Equivalente

Pag. **24** DI **122**

SEZIONE 2. PROGRAMMA GEOLOGICO

CONCESSIONE IRMINIO

Irminio S.r.l. (80%) Operatore

JBL Sicilia S.r.l. (20%)

PROGRAMMA GEOLOGICO DEL SONDAGGIO IRMINIO 8 dir/8 dir-OR

Roma, febbraio 2019

Rev_00

Pag. **25** DI **122**

LISTA DI DISTRIBUZIONE:

	Operazioni - 1 copia	
Irminio S.r.l.	Esplorazione -1 copia	
	Direzione - 1 copia	
JBL Sicilia S <u>.r.l.</u>	2 copie	
U.R.I.G. PA	1 copia	
MATTM	1 copia	
DRILLING SUPERINTENDENT	1 copia	
DRILLING CONTRACTOR	1 copia	
MUD LOGGING CONTRACTOR	1 copia	

Tabella 1 - Lista di distribuzione

RIFERIMENTI:

- 1 Composite log pozzo Irminio 6 dir/6dir A/6 dir B
- 2 Composite log pozzo Irminio 5 dir
- 3 Composite log pozzo Irminio 4 dir
- 4 Composite log pozzo Irminio 3 dir .
- 5 Relazione finale perforazione e completamento pozzo Irminio 6/6 dirA/6 dirB.
- 6 Rapporto geologico finale pozzo Irminio 6/6 dirA/6 dirB.
- 7 Relazione finale perforazione e completamento pozzo Irminio 7 dir/7 dir-OR.
- 8 Rapporto geologico finale pozzo Irminio 7 dir/7 dir-OR.

Pag. **26** di **122**

2.1 INTRODUZIONE

Il presente documento descrive le caratteristiche geologiche e le indicazioni operative per il sondaggio Irminio 8 dir/8 dir-OR, da realizzarsi nell'ambito del programma di sviluppo della Concessione Irminio.

La concessione Irminio è situata nel settore Sud-orientale della regione Sicilia, nella provincia di Ragusa (*fig. 1*), in corrispondenza delle strutture più interne della piattaforma Iblea. La concessione di coltivazione, che ricade sul territorio dei comuni di Ragusa, Scicli e Modica, ha una superficie di 39,76 km² ed è stata conferita con D. Ass. Ind. della Regione Sicilia del 27/07/1991 e successivamente prorogata con D. Ass. Energia del 20/06/2011. In *figura 2* sono illustrati i titoli minerari confinanti e attualmente vigenti nel settore Sud-orientale della regione Sicilia.

Figura 1 – Ubicazione della concessione Irminio

La concessione è attualmente detenuta da una Joint Venture composta da:

- Irminio S.r.l. (80%) Operatore
- JSB Sicilia S.r.l. (20%)

Il sondaggio Irminio 8 dir/8 dir-OR, come il pozzo Irminio 7 dir/7 dir-OR, intende verificare l'estensione verso NE del giacimento Irminio, scoperto nel 1982 con la perforazione del pozzo Irminio 1 e ubicato nella porzione settentrionale della concessione. Il sondaggio verrà perforato

Pag. **27** DI **122**

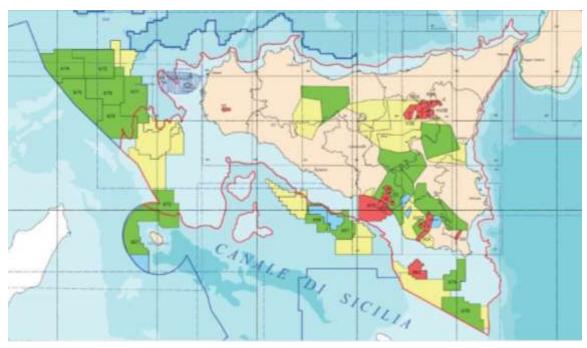


Figura 2 - Titoli minerari nella regione Sicilia

dalla esistente postazione sonda BugliaSottana (*fig. 3*), nella quale nel 2016 è stato eseguito il sondaggio Irminio 6 dir, ubicata nel territorio del comune di Ragusa, circa 5,0 km a NW dell'abitato di Scicli e distante circa 1,2 km a NE del sito San Paolino, dal quale sono stati perforati i pozzi Irminio 3, Irminio 4 e Irminio 5.

Figura 3 – Immagine aerea della postazione Buglia Sottana

La postazione Buglia Sottana, dalla quale si effettuerà la perforazione del sondaggio Irmino 8 dir/8 dir-OR, si trova sulla sponda destra del fiume Irminio, alla quota di 133 m al di

OR:

PROGRAMMA GEOLOGICO E DI PERFORAZIONE POZZO: IRMINIO 8 Dir / 8 Dir - OR

Pag. 28 DI 122

sopra del livello del mare. Il territorio nei dintorni del sondaggio è collinare, impegnato da terreni agricoli e rade abitazioni, con quote comprese tra circa 100 metri (fondovalle del fiume Irminio) e circa 200 metri.

La viabilità nei pressi della postazione di Buglia Sottana è sostenuta da un reticolo molto denso di strade provinciali (*S.P.* n° 37; *S.P.* n° 81; *S.P.* n° 78; *S.P.* n° 54; *S.P.* n° 94 - fig. 4). La postazione sonda si raggiunge percorrendo una strada asfaltata di circa 2,5 km che si diparte dalla S.P. n° 37 sul versante destro del fiume Irminio, a circa 0,5 km dal ponte su quest'ultimo (fig. 5).

Il punto di ubicazione del sondaggio Irminio 8dir/8 dir-OR ricade all'interno delle carte topografiche appresso elencate:

Foglio IGM scala 1:100 000 - F° 276 "Ragusa"

Tavoletta IGM scala 1:25 000 - 276 III° - NE "Donnalucata"

La tabella sottostante sintetizza i dati essenziali del sondaggio Irminio 8 dir/8 dir-

Denominazione	Irminio 8 dir/8 dir-OR
Classificazione	Sviluppo
Obiettivo minerario principale	F.ne Noto – membro Mila (Retico)
Concessione	Irminio
JV	Irminio S.r.l. 80% (Op.); JSB Sicilia S.r.l.
Regione	Sicilia
Provincia	Ragusa
Comune	Ragusa
Quota p.c./T.R.	133,00 m / 142.2 m s.l.m.
Coordinate superficie X (IRM 8 dir/8 dir-OR)	2 490 140,240
Coordinate superficie Y (IRM 8 dir/8 dir-OR)	4 076 240,490
Coordinate TD X (foro pilota) (IRM 8 dir)	2 490 525,92
Coordinate TD Y (foro pilota) (IRM 8 dir)	4 076 470.08
Coordinate TD X (foro orizzontale; IRM 8 dire	-2 490 894,00
Coordinate TD Y (foro orizzontale; IRM 8 dire	4 076 664,00
Linea sismica di riferimento (IRM 8 dir)	Inline 1314 (rilievo 3D Irminio – fig. X)
Linea sismica di riferimento (IRM 8 dir-OR)	Inline 1364 (rilievo 3D Irminio – fig. X)
Obiettivo minerario	Olio (33° API) in calcari Fm. Mila/Noto
TD prevista (da T.R.) (foro pilota; IRM 8 dir)	2641.35 m (TVD) 2 804 m (MD)
TD prevista (da T.R.) (foro orizzont; IRM 8 dir	-2447.2 m (TVD) 3 115.3 m (MD)
Foglio IGM scala 1:100 000	F° 276 Ragusa
Tavoletta scala 1:25 000	276 III° - NE "Donnalucata"
Ufficio competente	U.R.I.G. Palermo

Figura 5 – Viabilità nei pressi della postazione Buglia Sottana

Pag. **30** DI **122**

2.2 GENERALITÀ

L'obiettivo del sondaggio Irminio 8 dir/8 dir-OR è di testare le potenzialità produttive del settore Nord-orientale del giacimento Irminio, in un comparto posto più a NE di quello già interessato dal pozzo Irminio 6 dirB e a Sud del sondaggio Irminio 7 dir-OR. La distanza tra i fori orizzontali dei sondaggi Irminio 7 dir-OR e Irminio 8 dir-OR sarà, a TD, di circa 290 m

2.3 GEOLOGIA

Il giacimento Irmino è ubicato nell'avampaese Ibleo, dove affiora una serie stratigrafica continua dal Triassico superiore al Miocene (fig.6), che costituisce un promontorio della placca africana e che è sede di un sistema petrolifero attivo comprovato da numerose scoperte di idrocarburi.

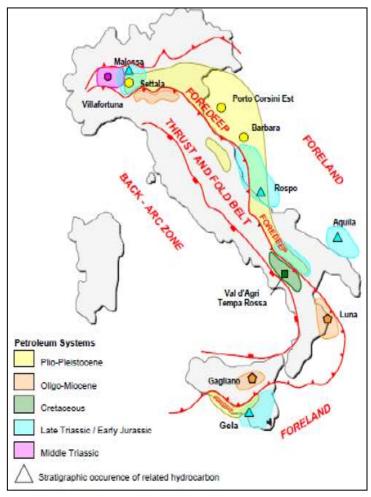


Figura 1 – ubicazione campo Irminio

Pag. **31** DI **122**

In questo settore si sviluppò un dominio pelagico (Bacino Ragusano) in seguito a un evento estensionale di età Triassica (Retico) collegato all'apertura della Neo Tetide e, successivamente, dell'Oceano Atlantico centrale, che interessò il margine passivo Nordafricano sul quale si sviluppavano sequenze di piattaforma carbonatica fin dal Paleozoico superiore (Permiano). Questo evento estensionale tardo triassico, caratterizzato da sistemi di faglie principali trastensive sinistre con orientamento NW-SE, generò una serie di alti strutturali separati da bacini, localmente formati da meccanismi di pull apart.

Le formazioni Sciacca e Noto (con il membro Mila) rappresentano, nell'area iblea, la testimonianza dell'esistenza di un ambiente sedimentario di mare basso, con facies di piattaforma carbonatica. All'interno di queste formazioni possono essere presenti depositi bioermali dolomitizzati che costituiscono serbatoi per l'accumulo di idrocarburi con buone caratteristiche petrofisiche.

La fase estensionale alto triassica genera delle depressioni a differente tasso di subsidenza, anche di ambiente euxinico, nelle quali si deposita la Formazione Streppenosa, che ricoprirà l'intero settore ibleo. La Formazione Streppenosa è formata da argille con sporadici intervalli di calcari e livelli di vulcaniti con uno spessore di quasi 500 m (pozzo Irminio 6 dirB).

In seguito, mentre in altri settori (Sicilia settentrionale, Malta) si ha una sedimentazione persistente di piattaforma carbonatica, nel settore ibleo continua la deposizione di carbonati pelagici con frequenti intercalazioni marnose e, sporadicamente, livelli di vulcaniti (es. Formazione Buccheri). La figura 7 illustra uno schema regionale delle successioni litostratigrafiche dell'area siciliana con dettaglio del settore Ibleo.

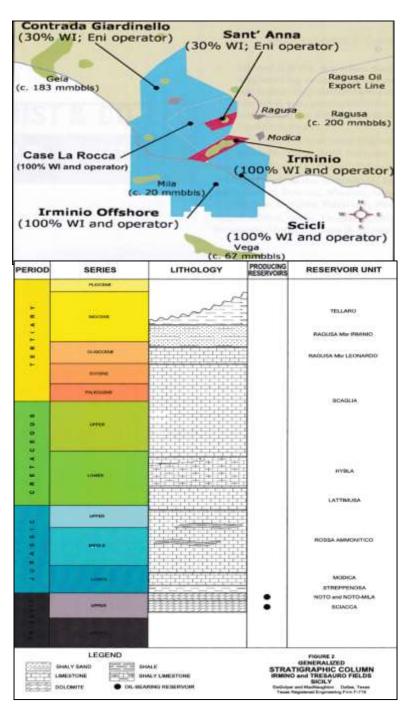


Figura 2 - Stratigrafia dell'area SE della Sicilia e relative manifestazioni di idrocarburi

Alla fine dell'Hettangiano la facies prevalentemente argilloso-marnosa della Formazione Streppenosa è sostituita dalla sedimentazione a maggior componente calcarea della Formazione Modica. Le condizioni di mare profondo permangono fino al Terziario con la deposizione di forti spessori di depositi calcareo-marnosi e intercalazioni di livelli vulcanici (Formazione Buccheri; Formazione Amerillo) a testimonianza di eventi estensionali che hanno interessato questo settore a diverse riprese.

Pag. 33 DI 122

In seguito, a partire dall'Oligocene, il settore diventa sede di una sedimentazione più prossimale, con la deposizione delle calcareniti e marne della Formazione Ragusa, che chiude la serie stratigrafica nel settore dei sondaggi Irminio, e quindi le marne della Formazione Tellaro (Miocene medio) prima della Gessoso solfifera (Messiniano).

All'interno del membro Mila della formazione Noto possono essere presenti strutture biohermali (incontrate in due fori laterali del sondaggio Irminio 4) ricoperte da carbonati di piattaforma (membro Noto superiore) cui seguono le argille della Formazione Streppenosa che si deposero quando la piattaforma fu sommersa. Queste strutture da *reef* possono avere caratteristiche petrofisiche di buona qualità, ulteriormente migliorate dalla fratturazione, e la loro localizzazione lungo il trend strutturale del campo Irminio è un obiettivo primario dell'esplorazione. Il pozzo Irminio 4, che ha attraversato queste strutture biohermali, ha mostrato che questi reservoir hanno la potenzialità per raggiungere portate dell'ordine di 1000 bbl/d.

Il giacimento Irminio si sviluppa in direzione SW-NE, compreso tra 2 faglie subverticali (Fig. 8) con medesimo orientamento e produce olio con densità 30°-33° API in corrispondenza dei livelli della Formazione Noto/Mila (Retico) a profondità comprese tra 2300 m e 2550 m da p.c. (sito San Paolino 107 m.s.l.m. – Buglia Sottana 130 m.s.l.m.).

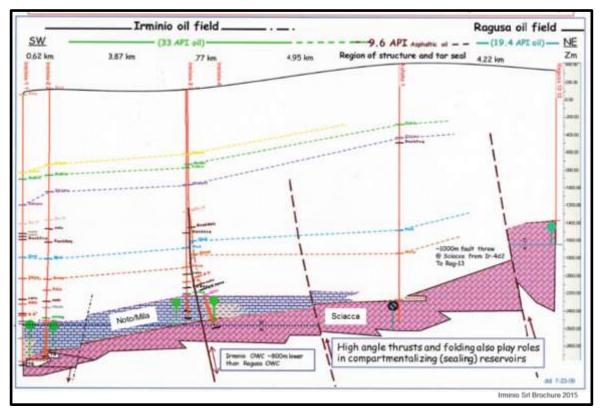


Figura 3 - schema del reservoir

Pag. **34** DI **122**

Si presume che la faglia che limita verso NW il giacimento Irminio debba avere funzione di seal laterale, stante la generale risalita degli strati verso il IV° quadrante e il suo rigetto poco evidente. Queste faglie, con direzione SW-NE hanno una componente trascorrente prevalente con movimento sinistro e si sono generate nel corso delle fasi tettoniche terziarie, assieme a sistemi coniugati N-S meno sviluppati, nel quadro del rifting del Canale di Sicilia (figura 9).

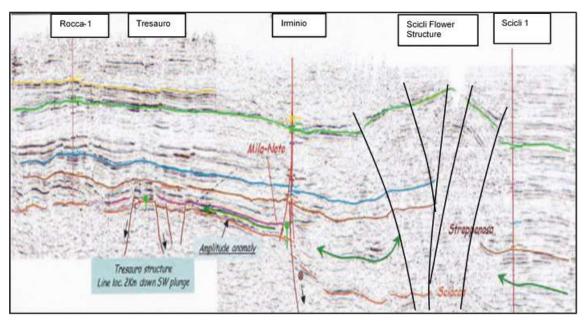


Figura 4 - Sezione sismica di Irminio

Nei vicini campi di Gela, Tresauro e Ragusa, la sottostante Formazione Sciacca produce olio con densità 16°-17° API; tuttavia, nel settore settentrionale del giacimento Irminio, questa formazione rimane prossima o al di sotto del contatto olio-acqua.

Nel giacimento Irminio, la prossimità al contatto olio-acqua della Formazione Sciacca e la fratturazione molto spinta di questi litotipi possono far si che un sondaggio completato in corrispondenza della Formazione Sciacca possa produrre significative quantità di acqua di formazione poco dopo l'inizio della produzione. Per questo motivo, il sondaggio Irminio 8 dir-OR sarà perforato con traiettoria sub-orizzontale all'interno della Formazione Mila, dove si ritiene di mantenere una distanza di circa 200 m tra il foro e il contatto olio-acqua (figura 10).

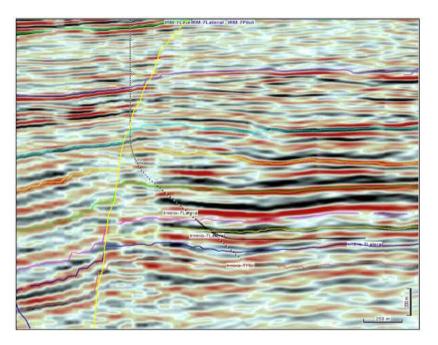


Figura 5 - schema del sondaggio

2.4 SOURCE ROCK

Il sistema petrolifero dell'avampaese ibleo è molto complesso per la presenza di diversi domini deposizionali in un'areale abbastanza ristretto con caratteristiche sedimentarie e tassi di subsidenza molto diversi.

L'evento estensionale triassico interessò il preesistente dominio di piattaforma carbonatica causando la formazione di diversi alti strutturali separati da bacini nei quali si depositò la Formazione Streppenosa. Lo studio della maturità e della deposizione della source rock è complicato dall'esistenza di numerosi bacini con differenti tassi di subsidenza e gradienti termici.

Questi fattori hanno permesso la generazione di due differenti tipologie di olio con diversa densità. Un olio con densità 17° API proveniente dalla Formazione Sciacca (giacimento di Ragusa) e un olio più leggero, con densità 33° API, che si rinviene nei reservoir della Formazione Noto – membro Mila (giacimenti Irminio e Tresauro).

Gli studi geochimici hanno consentito di determinare che le *source rock* presenti nell'avanpaese ibleo sono la Formazione Streppenosa (Retico-Hettangiano) e la Formazione Noto (Retico). Le analisi effettuate nella Formazione Streppenosa mostrano un TOC di circa il 0.3-1% per un kerogene di tipo II (prevalentemente continentale) e un potenziale naftogenico di 3-1.5 Kg HC/ton. Dato il suo notevole spessore la Formazione Streppenosa rappresenta una *source rock* molto importante nell'area iblea.

Pag. **36** DI **122**

La Formazione Noto fu deposta in un piccolo bacino con circolazione limitata e ambiente euxinico ristretto con un significativo apporto di materia organica. La source rock Noto è attualmente ancora attiva nei settori più profondi del bacino ragusano e può tuttora generare idrocarburi. La materia organica è concentrata in livelli argillosi ed è caratterizzata da un kerogene di tipo II, derivante da una miscela di materiale organico marino e continentale. Il TOC della Formazione Noto è circa 1-2% con valori massimi del 10-13% e ha un potenziale naftogenico medio di circa 2-5kg HC/ton. Questi valori del potenziale naftogenico indicano che la Formazione Noto è una delle migliori source rock conosciute nell'area mediterranea.

L'olio presente nella Formazione Sciacca deriva probabilmente dalla Formazione Streppenosa, probabilmente generato fin dal Giurassico e quindi migrato durante il Cretaceo medio. La mineralizzazione ad olio leggero della Formazione Mila è ancora più complessa da definire poiché I reservoir del membro Mila sono formati da biocostruzioni in facies laterali della Formazione Noto.

A causa del suo alto contenuto organico, la source rock della Formazione Noto necessità di un'energia minore per l'attivazione del processo di termogenesi. Questa caratteristica, associata a fenomeni di migrazione secondaria, ha determinato la mineralizzazione a olio leggero nei reservoir del membro Mila.

2.5 RESERVOIR

Il serbatoio principale è il membro Mila della Formazione Noto; dove la mineralizzazione ha uno spessore importante anche la sottostante Formazione Sciacca può essere mineralizzata a olio come dimostrato dal vicino giacimento Tresauro. Tuttavia, la prossimità al contatto olio-acqua della Formazione Sciacca e la fratturazione molto spinta di questi litotipi possono far si che un sondaggio completato in corrispondenza della Formazione Sciacca possa produrre significative quantità di acqua di formazione poco dopo l'inizio della produzione. Per questo motivo, il sondaggio Irminio 8dir-OR sarà perforato con traiettoria sub-orizzontale all'interno della Formazione Mila, dove si ritiene di mantenere una distanza di circa 200 m tra il foro e il contatto olio-acqua.

Gli studi e le analisi nel giacimento Irminio, sebbene caratterizzati da alcune incertezze e problemi suggeriscono quanto segue:

- I test eseguiti in formazione dimostrano che esiste un sistema a doppia porosità, ovvero da matrice e da fratture.
- Esistono dei settori ad alta permeabilità e trasmissività all'interno di settori del giacimento caratterizzati da qualità idrauliche più modeste. I primi sembrano essere controllati tettonicamente.
- Esistono evidenze di una buona connettività sia laterale che verticale (intra formazionale) è ciò è probabilmente dovuto a fratture molto estese e piccole faglie con buone caratteristiche di permeabilità. Tuttavia, in altri casi, le formazioni testate sembrano essere idraulicamente compartimentate da alcune faglie che agiscono come barriere di flusso o seal.

PAG. 37 DI 122

- Queste osservazioni supportano l'ipotesi che la qualità del reservoir e le performances dei pozzi sono strettamente correlate alle strutture tettoniche e alla distribuzione dello stress in situ.
- E' opportuno fare un esame attento del volume sismico corrispondente al membro Mila per identificare la presenza di *build-up* come obiettivi preferenziali della perforazione.
- Perforazione direzionata con un'angolazione atta a ottimizzare le intersezioni con il sistema di fratturazione dominante NW-SE e, contemporaneamente, ridurre i rischi connessi con la stabilità del foro. Si suggerisce di eseguire un foro orizzontale verso NE a una quota determinata in base ai risultati del foro pilota.
- Evitare le faglie maggiori che determinano i compartimenti principali poichè potenzialmente veicolo per venuta di acqua (faglie di orientazione variabile dovrebbero essere presenti nella struttura del giacimento Irminio per la complessità della tettonica trascorrente).

2.6 SEAL

La principale roccia seal dell'area iblea è costituita dalla spessa facies argillosa della Formazione Streppenosa, oltre ad alcune facies argillose nella formazione Noto inferiore e Noto superiore.

2.7 ANALISI DEL CAMPO DI FRATTURAZIONE

Un'analisi del campo di fratturazione regionale è stato condotto recentemente per determinare il migliore azimuth per direzionare i successivi pozzi di sviluppo del giacimento Irminio. Lo studio ha compreso l'analisi delle carote recuperate e i dati da log, in particolare gli image logs (FMI), registrati nei pozzi Irminio.

Le immagini mostrano una direzione di stress massimo orientata NNW-SSE, ciò che è consistente con i dati della World Stress Map. In base ai dati delle carote e specialmente grazie all'analisi dei log di immagine si ritiene che il sistema di fratture nel membro Mila sia molto eterogeneo e discontinuo (domainal), dovuto all'interazione delle facies, delle strutture e dello stress in situ.

L'analisi dell'evoluzione strutturale e del campo di fratturazione suggeriscono le seguenti considerazioni:

- La prossimità alle faglie principali dovrebbe essere correlata con una maggiore intensità della fratturazione e, quindi, della connessione e della permeabilità.
- Le faglie più recenti dovrebbero essere responsabili di questo meccanismo mentre quelle precedenti potrebbero avere attivato un flusso idrotermale a carattere essenzialmente sealing.
- Lo stress in situ è considerato un ulteriore fattore importante aumentando selettivamente le fratture con orientamento sub-parallelo o a basso angolo rispetto alla direzione dello stress orizzontale massimo. Questo fattore induce probabilmente una anisotropia della permeabilità.

Pag. 38 DI 122

E' stata evidenziata una correlazione debole e poco consistente tra la distribuzione delle facies e l'intensità della fratturazione nel membro Mila tuttavia i *build-up* carbonatici sembrano maggiormente soggetti alla fratturazione rispetto alle facies più argillosomarnose.

2.8 IL SONDAGGIO IRMINIO 8 DIR/8 DIR-OR

Il sondaggio Irminio 8 dir si propone di perforare un dreno sub orizzontale della lunghezza di circa 500 m all'interno del membro Mila, a NE del sondaggio Irminio 6 dirB e a Sud del sondaggio Irminio 7 dir-OR, per cercare di ottenere una produzione iniziale di circa 1000 bbl/d. Il pozzo sarà perforato dalla esistente postazione sonda di Buglia Sottana e si prevede di acquisire tutte le informazioni utili alla definizione del futuro piano di coltivazione/sviluppo del settore Nord-orientale del campo.

L'ubicazione del sondaggio è stata determinata in base all'interpretazione sismica effettuata su dati 3D registrati con il rilievo "Irminio", acquisito da Irminio S.r.I. nel 2006 su una superficie di circa 81,6 km². L'interpretazione sismica è stata mirata specificamente alla mappatura del top del membro Mila (figura 11) della Formazione Noto cercando inoltre di identificare le zone di massimo sviluppo delle strutture biohermali come obiettivo preferenziale del foro orizzontale.

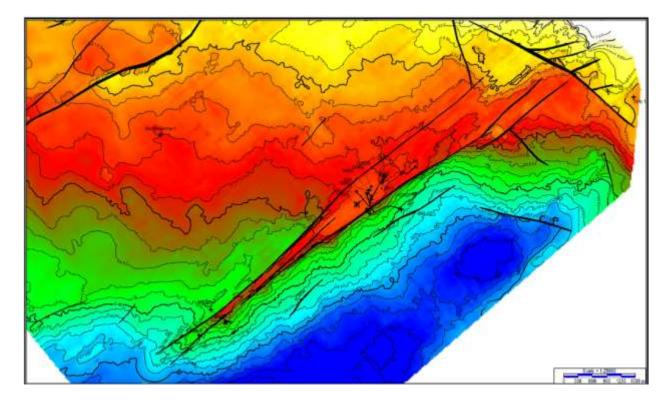


Figura 6 - mappa in profondità del Top Mila

I log registrati nei 6 pozzi perforati nel giacimento sono stati utilizzati per tarare gli orizzonti formazionali sulla sismica. In base agli studi effettuati si prevede di incontrare il top Mila, obiettivo principale del sondaggio, alla quota di 2280 m s.l.m. Si ritiene inoltre che il contatto olio/acqua (OWC), comune a tutto il giacimento, sia posizionato alla profondità di 2488 m TVD m s.l.m., ovvero circa 200 m sotto al top del membro Mila (figura 12).

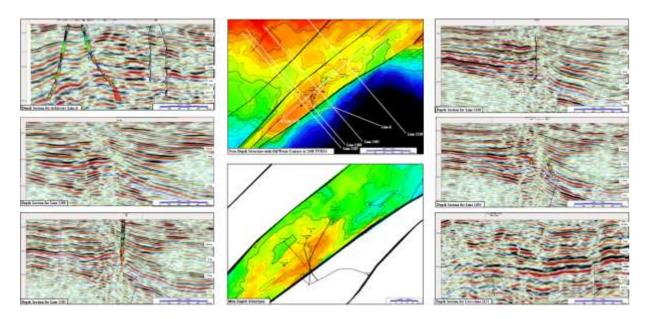


Figura 7 Mappe del reservoir in profondità e stralci delle linee sismiche

Sondaggi orizzontali perforati sia nel giacimento Irminio sia nell'adiacente campo Tresauro hanno dimostrato alta capacità produttiva e, quando diretti all'interno del membro Mila, hanno l'ulteriore vantaggio di aumentare la distanza dal contatto olio/acqua riducendo quindi la possibilità di avere risalita di acqua da fratture. Questa separazione tra il dreno orizzontale e il contatto OWC è particolamente importante poichè l'acquifero del giacimento Irminio si è dimostrato molto attivo. La quota presunta dell'acquifero esclude la possibilità di avere un pay efficace all'interno delle Formazione Sciacca che, di conseguenza, non costituisce un obiettivo di questo sondaggio.

Per determinare con esattezza lo spessore e le quote del *top* e *bottom* del membro Mila della Formazione Noto, obiettivo del sondaggio, oltre che per poter registrare un set completo di *logs*, si propone di perforare un foro pilota subverticale (**Irminio 8 dir**) fino al riconoscimento del contatto olio-acqua e in seguito, stabilite con precisione le quote di *top* e *bottom* del membro Mila, si perforerà quest'ultimo con un dreno sub orizzontale di circa 400/500 m di lunghezza con un azimuth di circa 60° (**Irminio 8 dir-OR**) nella porzione con le migliori caratteristiche petrofisiche. Il foro orizzontale del sondaggio Irminio 8 dir-OR sarà distante circa 300 m da quello del pozzo Irminio 7 dir-OR.

Pag. **40** DI **122**

2.9 ELEMENTI DEL PLAY

Idrocarburi: olio 33° API

Reservoir: calcari organogeni (F. ne Noto – membro Mila)

Source: argille della Formazione Noto (Retico)

Trappola: strutturale

Seal: argille della Formazione Streppenosa (Retico - Hettangiano)

2.10 POZZI DI RIFERIMENTO

I pozzi di riferimento per il sondaggio Irminio 8 dir/8 dir-OR sono:

- pozzo Irminio 6/6 dirA/6 dirB, perforato dalla medesima postazione sonda Buglia Sottana.
- pozzo Irminio 5/5 dirA, perforato dalla postazione sonda San Paolino, situata circa 1,2 km a SW (N 225°).
 - pozzo Irminio 7 dir-OR, perforato dalla medesima postazione sonda Buglia Sottana.

In particolare, i sondaggi Irminio 6 dir B e Irminio 7 dir-OR, perforati dalla stessa postazione sonda, costituiscono il riferimento principale sia per la definizione della successione stratigrafica sia per le condizioni operative di perforazione.

2.11 PREVISIONE LITOSTRATIGRAFICA

(tutte le profondità sono TVD da T.R. – T.R. = 142,2 m s.l.m.)

0 – 700.2 m Formazione RAGUSA (Oligocene – Miocene inf.)

Calcari di tipo mudstone/wackstone variabili a luoghi fino a packstone, localmente argillosi, con fossili e noduli. Spessore 700 m.

700.2 – 853.2 m Formazione AMERILLO (Cretacico sup. - Eocene)

Pag. **41** DI **122**

Calcari di tipo mudstone/wackstone biancastri, fossiliferi, duri con livelli di selce biancastra o marroncina con intercalazione di argille euxiniche (livello Bonarelli) e con sottili intercalazioni di marne e marne calcaree da grigie a scure. Spessore 153 m.

853.2 -1070.2 m Formazione HYBLA (Cretacico inf.)

Marne grigio-verdastre con intercalazioni di mudstone biancastri e calcari argillosi. Livelli di sabbie medio-sottili con intercalazioni di argille grigie. Spessore 217 m.

1070.2 -1344.2 m Formazione CHIARAMONTE (Titonico –Cretacico inf.)

mudstone/limestone grigio-biancastri con livelli fossiliferi rossastri a luoghi fino a wackstone, con intercalazioni di marne e rari noduli di selce. Spessore 274 m.

1344.2 -1712.2 m Formazione BUCCHERI (Toarciano - Kimmeridgiano)

Marne rossastre e verdi intercalate con calcari tipo wackstones/packstones biancastri, fossiliferi, localmente argillosi con presenza di vulcaniti basiche e tufiti grigio scuro. Spessore 368 m.

1712.2 -1824.2 m Formazione MODICA (Pliensbachiano-Sinemuriano)

Fitte intercalazioni di marne fossilifere verdi e rossastre con calcari wackstones/packstones biancastri, fossiliferi, localmente argillosi con la presenza di vulcaniti basiche e tufiti grigie. Spessore 112 m.

1824.2 -2319.2 m Formazione STREPPENOSA (Retico - Hettangiano)

Argille verdastre, grigie, rossastre e nere, più o meno siltose, localmente passanti a marne, con intercalazioni di mudstone e siltstone. Nella parte superiore sono presenti vulcaniti basiche nerastre da compatte ad alterate. Spessore 495 m.

2319.2 – 2422.2 m Formazione NOTO SUPERIORE (Retico)

Fitte alternanze di argille grigio verdastre, localmente siltose, e calcari dolomitici da marroni a grigiastri e calcari mudstones/wackstones. Spessore 103 m.

2422.2 -2544.2 m Formazione NOTO MILA (Retico)

Boundstone calcarei con alghe e stromatoliti, ricristallizzati e più o meno dolomitizzati, localmente brecciati nella parte inferiore. Spessore 122 m.

2544.2-2675.2 m (TD) Formazione NOTO INFERIORE (Norico-Retico)

Limestone dolomitici a grana fine con sottili spalmature argillose. Spessore 131 m.

Pag. **42** DI **122**

2.12 GRADIENTI DI PRESSIONE E TEMPERATURA

<u>Si faccia riferimento anche ai dati risultanti dall'esecuzione del sondaggio Irminio 7 dir – dir OR.</u>

Durante la perforazione del sondaggio Irminio 6 dirB si è potuto rilevare quanto segue (si faccia riferimento ai seguenti documenti):

- 1 Relazione finale perforazione e completamento pozzo Irminio 6/6 dirA/6 dirB.
- 2 Rapporto geologico finale pozzo Irminio 6/6 dirA/6 dirB.

L'analisi del Sigma log ha evidenziato un gradiente normale, pari a circa 1,03 kg/cm², fino a circa 1150 m (bottom Formazione Hybla). Da tale profondità si rileva un aumento graduale e continuo del gradiente fino alla profondità di circa 1650 m, in corrispondenza della Formazione Chiaramonte e della Formazione Buccheri (valori in incremento da circa 1,1 kg/cm² a 1,2 kg/cm²).

A tale profondità (circa 1650 m nel pozzo Irminio 6 dir) dopo un break improvviso probabilmente al limite tra la Formazione Buccheri e la Formazione Modica il gradiente continua ad aumentare costantemente fino alla quota – 2100 m circa (Formazione Modica e Formazione Streppenosa) a circa 1,4 kg/cm² per poi diminuire gradualmente tornando a valori attorno a 1,03 kg/cm² a circa 2400 m (Formazione Noto/Mila).

I dati di temperatura registrati nel sondaggio Irminio 6 sono:

- $T_{max} = 86.5^{\circ} \text{ C}$ @ 2387 m (Irm 6 dirA)
- $T_{max} = 89.4^{\circ} \text{ C}$ @ 2466 m (Irm 6 dirB)

Tali valori sono stati registrati con tool MWD, non si riferiscono quindi a dati stabilizzati. Non è stato possibile misurare le temperature statiche. In base ai dati disponibili il gradiente medio è di circa 3,6° C/100 m.

Nel sondaggio Irminio 8 dir si prevedono i medesimi gradienti.

2.13 MANIFESTAZIONI

Durante la perforazione del sondaggio Irminio 6 è stata utilizzata la tecnologia GWD e la gascromatografia a ioni di fiamma (fid) per l'analisi del gas durante la perforazione (si faccia riferimento al Rapporto geologico finale pozzo Irminio 6/6 dirA/6 dirB) rilevando una bassa concentrazione di gas.

Per la presenza di una circolazione sotterranea di acqua molto attiva, favorita dall'esistenza di un circuito carsico ben sviluppato, si deve prevedere la possibilità di venute di acqua, anche importanti, nei primi 200 m.

Pag. **43** DI **122**

2.14 ASSORBIMENTI – DIFFICOLTA' DI PERFORAZIONE

<u>Si faccia riferimento anche ai dati risultanti dall'esecuzione del sondaggio Irminio 7 dir – dir OR</u>.

La perforazione del sondaggio Irminio 6 ha riscontrato numerose difficoltà, al punto da dover rendere necessaria l'esecuzione di 2 side track (Irminio 6 dirA; Irminio 6 dirB).

Oltre a leggere perdite di circolazione nel tratto finale della fase 23" (14-206 m T.R. - Formazione Ragusa) si sono avuti numerosi problemi durante l'esecuzione della fase 12 ^{1/4}". In particolare nell'attraversamento della Formazione Buccheri, caratterizzata dalla presenza di vulcaniti poco consolidate che hanno provocato franamenti del foro con ripetuti *pack off* e prese di batteria.

Frequenti problemi di stabilità del foro si sono riscontrati inoltre anche durante l'attraversamento della Formazione Streppenosa. Nel sondaggio Irminio 6 dirA questi hanno causato la perdita della batteria in pozzo e la necessità di effettuare un secondo side track (sondaggio Irminio 6 dirB).

Per un resoconto dettagliato dei numerosi problemi affrontati durante la perforazione dei sondaggi Irminio 6/6 dirA/6 dirB, si faccia riferimento ai seguenti rapporti:

- 1 Relazione finale perforazione e completamento pozzo Irminio 6/6 dirA/6 dirB.
- 2 Rapporto geologico finale pozzo Irminio 6/6 dirA/6 dirB.

Le problematiche maggiori riscontrate durante la perforazione del sondaggio Irminio 6 dir sono state le seguenti:

- Instabilità e franamenti del foro causati dalle vulcaniti presenti nella Formazione Buccheri.
- Grave instabilità del foro durante l'attraversamento della formazione Streppenosa causata dalla presenza di argille molto reattive che hanno comportato una perdita di batteria e la necessità di un successivo side track. Per tale motivo è stato perso un diametro e la fase finale è stata perforata in 6" invece che in 8" ½.
- Il programma di casing design era definito insufficientemente.
- Non è stato possibile registrare log nella fase finale (da 6").

Р	AG	44	1 [ΟI	122
AGO	Ole	R١	IA۱	ΛEΙ	NTI:
0					

SEZIONE 3. PROGRAMMA DI GEOLOGIA OPERATIVA

PAG	45	DI	122				
AGGIO	AGGIORNAMENTI:						
0							

3.1 ASSISTENZA GEOLOGICA ALLA PERFORAZIONE

- a) Sorveglianza da parte di geologi di cantiere fino a raggiungimento della TD. Eventuale presenza di un supervisore durante operazioni speciali (logging, testing, coring ecc).
- b) Unità standard di *mud logging*, operativa dall'inizio alla fine del sondaggio, inclusa la fase di completamento, equipaggiata per il controllo dei seguenti parametri:
 - o misura di velocità di avanzamento (ROP) e parametri connessi
 - o contacolpi e misuratore di portata delle pompe di circolazione
 - o livelli del fango di perforazione e suoi parametri
 - o pressione del fango allo "stand pipe" e al casing
 - o gas detector continuo e gas cromatografo per H2S e CO2
 - attrezzature per sezioni sottili, lavaggi, determinazione della fluorescenza e altre analisi di cantiere
 - o controllo della "pore pressure"
 - o calcimetria
 - o gas volume costante (CVD) con Gas trap standard come back-up
 - o gas cromatografo DUAL FID ad alta risoluzione
 - Mud flow meter elettromagnetico (Flow in-flow out)

L'unità di *mud logging* sarà inoltre equipaggiata con sensori per il rilevamento di gas e miscele esplosive e sarà preposta al monitoraggio di tali sistemi. I geologi dell'unità *mud logging* produrranno un rapporto giornaliero che sarà inoltrato secondo lista di distribuzione specifica.

Durante la perforazione del sondaggio Irminio 8 dir/8 dir-OR saranno prelevati campioni con la seguente frequenza (campionamento variabile in funzione dell'avanzamento; profondità da T.R.):

La frequenza dei campionamenti potrà variare in caso di aumento della velocità di avanzamento o per la definizione di litologie complesse.

Р	AG	46	6	DI	122
AGO	OI	R١	ĮΑ	ME	NTI:
0					

	Irminio 8 dir/8 dir-OR							
	int	intervalli di campionamento cutting						
	da l.m.	da T.R.	spessore	lavati	non lavati			
T.R. 142.2 m		0						
Ragusa			700.2					
	558	700.2						
Amerillo			153					
	711	853.2		_	_			
Hybla			217	.5 m	.5 π			
	928	1070.2		ni 1	ni 1			
Chiaramonte			274	2 serie ogni 15 m	2 serie ogni 15 m			
	1202	1344.2		erie				
Buccheri			368	2 s(
	1570	1712.2						
Modica			112					
	1682	1824.2						
Streppenosa			495					
	2177	2319.2						
Noto sup.			103	a. E	a. E			
	2280	2422.2		erie i 5 ı	erie i 5 ı			
Mila			122	2 serie ogni 5 m	2 serie ogni 5 m			
	2402	2544.2)	0			
Noto inf./TD				E	. E			
	2533	2675.2		erie i 5 r	erie i 5 r			
Mila 8 dir-OR				2 serie ogni 5 m	2 serie ogni 5 m			
				0				

Inoltre, si preleveranno:

- a) 1 serie di campioni di fango in contenitori di plastica alla fine di ogni fase e di additivi dello stesso qualora impiegati. Si preleveranno campioni di fango anche in caso di manifestazioni di idrocarburi e in caso di perdite di circolazione.
- b) prelievo eventuale di campioni di fluidi di strato, se ritenuto necessario, in contenitori con indicazione della fase, delle caratteristiche del fango, profondità, data e ora.
- c) Prelievo di campioni di gas direttamente dalla linea collegata alla gas trap facendo uso di adeguati contenitori (Vacutainer). Il campionamento sarà eseguito ogni volta che il valore del Drilling Gas sarà pari o maggiore di 3 volte il valore del *background gas*. Su ogni campione si riporterà il numero progressivo, la profondità e i valori del gas detector e cromatografo.

Р	AG	47	7	DI	122	
AGGIORNAMENTI:						
0						

3.2 CAROTAGGIO

Carote di fondo/parete

Non si prevede il prelievo di carote di fondo né di carote di parete.

3.3 PROGRAMMA DI LOGGING WIRELINE (MISURE MD DA T.R. = 142.2 M.S.L.M.)

Le informazioni stratigrafiche, strutturali e geominerarie del sondaggio verranno registrate con il programma di Logging While Drilling (LWD). Il programma di *logging wire line* prevederà unicamente l'esecuzione dei logs CCL-CBL in risalita nei *casing* posizionati al termine della fase precedente.

Fase	da	a	Log	note
28"	0.0 m	200.0 m	Non previsti	
23"	200.0 m	856.0 m	Non previsti	
16"	856.0 m	1714 m	CBL/CCL in 18 ^{5/8}	
12 1⁄4	1714 m	2368 m	CBL/CCL in 13 3/8	
Pilot 8"1/2	2368 m	2804 m	CBL/CCL in 9 ^{5/8}	
Orizz. 8" ^{1/2}	2378 m	3115 m	Non previsti	

Tabella 5 - Programma logging wireline del pozzo Irminio 8 dir

I log saranno forniti, per ogni discesa, in scala 1:200 e 1:1000; in formato cartaceo (file PDF - 3 copie) e su supporto informatico (CD-ROM. Files in formato digitale TIFF, LAS e PDS).

Р	AG	48	3	DI	122
AGG	OIG	R۱	lΑ	ME	NTI:
0					

3.4 PROGRAMMA DI MEASUREMENT/LOGGING WHILE DRILLING (MWD/LWD)

Fase	da	а	Log	note
28"	0.0 m	200.0 m	GR	
23"	200.0 m	856.0 m	GR – Res – Cal	
16"	856.0 m	1714 m	GR – Res – Cal - Acoustic	
12 1⁄4"	1714 m	2368 m	GR – Res – Cal - Acoustic	
Pilot 8 ½"	2368 m	2804 m	GR – Res – Cal – Neu – Den – Imaging tool	
Orizz. 8 ½"	2378 m	3115.3 m	GR - Res	

Tabella 5 - Programma logging while drilling del pozzo Irminio 8 dir

Р	AG	49	DI	122		
AGGIORNAMENTI:						
0						

SEZIONE 4. PROGRAMMA DI PERFORAZIONE E COMPLETAMENTO

Р	AG	50)	DI	122	
AGGIORNAMENTI:						
0						

4.1 PROGRAMMA OPERATIVO

4.1.1. INFORMAZIONI PRELIMINARI

Tutte le profondità, se non diversamente specificato, saranno riferite a PTR (Piano Tavola Rotary) o RT (Rotary Table).

Il pozzo Irminio 8 dir avrà un profilo "slant" a circa 42.245° con azimuth 53.744°.

Per rispettare le procedure di "anticollision" il pozzo sarà direzionato leggermente ("nudging") per allontanarsi dai pozzi Irminio 6 e 7. Partendo da 250 m, con DLS di 1.2°/30m, si raggiungerà un angolo di circa 6° in direzione 180° a 400m circa. Da tale quota si procederà, mantenendo i 6° con azimuth 180°, fino a circa 780m. Si inizierà il rientro in verticale previsto a circa 852m MD e si proseguirà in verticale fino a circa 1850m TVD.

Il KOP è previsto a circa 1850m TVD, con un DLS di 2.5° si incrementerà l'angolo fino a 42.245° con azimuth 53.744°.

La fine della curva si prevede a 2312.24m TVD (2359.43 m MD). Una volta raggiunta l'inclinazione finale si proseguirà con angolo costante fino alla TD prevista a 2641.35 m TVD (2804m MD).

Una volta raggiunta la TD, e determinato lo spessore e le quote di top e bottom del membro Mila, il foro verrà tappato, con tappi di cemento, fino alla scarpa da 9 5/8". Si perforerà quindi un nuovo foro da 8 ½" con KOP a 2378m circa, lungo circa 740m, con un tratto orizzontale di circa 450m di lunghezza con azimuth di circa 60.267° (**Irminio 8dir/8dir-OR**), nella porzione con le migliori caratteristiche petrofisiche. (Vedi relativa sezione "Programma di deviazione").

L'analisi anti-collision è stata eseguita con i fori Irminio 6-6A-6B reali e con il progetto del pozzo Irminio 7dir/7dir-Or perforati precedentemente. Una attenta analisi di anti-collision verrà eseguita prima e durante la perforazione del pozzo, una volta registrato il Gyro su tutto il profilo del pozzo Irminio 7dir/7di-Or.

Non si prevedono problemi con gli altri pozzi perforati nell'area (Irminio 3-4-5 e relativi dreni).

PROGRAMMA GEOLOGICO E DI PERFORAZIONE

POZZO: IRMINIO 8 Dir / 8 Dir OR

Р	AG .	51	DI	122			
AGGIORNAMENTI:							
0							

La sequenza operativa prevista per la perforazione del pozzo Irminio 8 dir/8dir-Or è la seguente:

- 1. Skiddaggio impianto da Irminio 7 dir/7dir-Or (oppure montaggio e collaudo impianto).
- 2. Perforazione pilot hole 12 1/4" ed allargamento a 28" fino a 200 m circa.
- 3. Discesa e cementazione Conductor Pipe 24 1/2".
- 4. Saldatura flangia base temporanea.
- 5. Installazione Diverter 29 1/2"
- 6. Perforazione fase 23", seguendo il programma di deviazione fino a 856 m circa;
- 7. Discesa e cementazione casing superficiale 18 5/8"
- 8. Installazione flangia base.
- 9. Smontaggio Diverter 29 ½" ed installazione BOP stack 18 ¾"* 5000 psi
- 10. Perforazione fase 16", seguendo il programma di deviazione, fino a 1714 m circa
- 11. Registrazione CBL-VDL-CCL casing 18 5/8"
- 12. Discesa e cementazione casing intermedio 13 3/4"
- 13. Installazione 2° elemento inflangiatura.
- 14. Sostituzione BOP stack 18 3/4" con BOP stack 13 5/4"*10000 psi
- 15. Perforazione fase 12 ¼", seguendo il programma di deviazione, fino al top della Noto Superiore previsto a circa ~2368m MD (2318.6 m TVD).
- 16. Registrazione CBL-VDL-CCL casing 13 3/8"
- 17. Discesa e cementazione casing di produzione 9 %"
- 18. Installazione 3° elemento inflangiatura.
- 19. Perforazione fase 8 ½" fino a fondo pozzo a circa 2804 m MD 2641.35 m TVD.
- 20. Registrazione CBL-VDL-CCL casing 9 5/8"
- 21. Esecuzione tappi di cemento per chiusura mineraria pilot-hole.
- 22. Fresaggio cemento fino a quota KOP (circa 2378m) per esecuzione dreno laterale (Irminio 8 dir / 8 dir-OR)

Р	AG	52	2	DI	122	
AGGIORNAMENTI:						
0						

- 23. Perforazione fase 8 ½", seguendo il programma di deviazione, fino alla TD prevista per il dreno laterale a circa 3115m MD (2447.2m TVD).
- 24. Discesa liner 7", slotted nel tratto orizzontale e blank nella zona della curva. Non si esclude l'utilizzo di "swellable packers" per la parzializzazione della zona produttiva. Il liner non verrà cementato.
- 25. Registrazione Gyro, con survey ogni 30 m, su tutto il profilo del pozzo.
- 26. Discesa completamento definitivo e montaggio testa pozzo.
- 27. Test del completamento
- 28. Rilascio impianto.

Raccomandazioni generali

- Prima dell'inizio della perforazione, alla presenza di tutti i contrattisti, sarà tenuto un incontro (Pre-spud Safety meeting) per trattare i seguenti argomenti:
 - Ruoli e competenze in caso di emergenza;
 - Salute, sicurezza e altri argomenti specifici del sito;
 - Punti sensibili per quanto riguarda le questioni ambientali;
 - Verifica e discussione dettagliata del programma.
- assicurarsi che una valvola di sicurezza (per ogni tipo di filetto da discendere nel foro) sia disponibile, in ogni momento, sull'impianto di perforazione.
- controllare fisicamente che tutte le attrezzature da utilizzare siano presenti in loco, in buone condizioni e perfettamente funzionanti;
- numerare, misurare e registrare le misure dei casing, controllare che i casing presenti in loco siano sufficienti per la fase;
- pulire ed effettuare il controllo visivo di tutti i filetti. Tutto il materiale tubolare, casing ed accessori deve essere liberato da detriti interni, calibrati, controllati per verificare eventuali danni strutturali e numerati. Le misurazioni devono essere controllate in modo indipendente;
- i primi giunti di casing saranno bloccati utilizzando un composto tipo Thread-lock sui filetti prima del serraggio;
- assicurarsi che in loco siano disponibili quantità sufficienti di cemento e di additivi per cemento, anche nel caso in cui si dovessero rendere necessari eventuali remedial job;
- essere pronti a preparare cuscini ad alta viscosità (Hi-Vis Pill) per aiutare nella pulizia del foro;
- essere pronti a pompare miscele intasanti (LCM) se si verificano perdite di circolazione; nella zona obiettivo utilizzare LCM carbonatici;

Р	AG	53	3	DI	122
AGG	OI	R١	lΑ	MEI	NTI:
0					

- assicurarsi di avere a disposizione una riserva di acqua sufficiente per confezionamento fango e per proseguire la perforazione anche senza ritorno (in perdita totale);
- assicurarsi che il sistema di monitoraggio del gas e del flusso del fango siano perfettamente funzionanti. Il personale del contrattista di Mud Logging dovrà controllare tali sensori, ogni ora durante la perforazione.

Р	AG	54	4	DI	122
AGO	OI	R١	lΑ	ME	NTI:
0					

4.1.2. FASE 28" PER CONDUCTOR PIPE 24 1/2" A CIRCA 200 M

Prima di iniziare le operazioni confezionare una vasca di kill-mud a 1.4 kg/l (appesantita con carbonato di calcio).

Fango previsto FW (acqua dolce) a d=1.0 Kg/l. Gradiente dei pori max= 0.98-1.03 kg/cm²/10m.

Per ciò che concerne scalpelli, parametri, batterie di perforazione, idraulica, fango e modalità di cementazione, si rimanda ai paragrafi specifici.

1. Eseguire un Pre-Operation Meeting con il personale coinvolto nelle operazioni.

Per questa fase, vista la conoscenza dell'area ed i problemi di assorbimento riscontrati sui pozzi di riferimento, si prevede la perforazione con ritorno della circolazione in cantina.

- ✓ E' previsto l'utilizzo di acqua dolce.
- ✓ Evitare di saldare il tubo pipa sul tubo guida 30" lasciando circa 50-60 cm di tubo guida in modo da evitare il rientro dei detriti in pozzo. *Verificare l'altezza necessaria per il montaggio della testa pozzo, eventualmente lasciare più alto*.
- ✓ Predisporre pompe e mezzi adeguati, con rispettivi back-up, per l'aspirazione del fluido di ritorno, e dei detriti, dalla cantina.
- ✓ Cominciare la perforazione con bassa portata e non superare i 1000 l/min.
- ✓ In caso di assorbimento totale abbassare ulteriormente la portata e continuare la perforazione anche senza ritorno.
 - Sollevare la batteria ogni 4-5 metri, sempre in circolazione, per verificare che non ci sia accumulo di detriti alle spalle.
 - Nel caso in cui si ristabilisce il ritorno di fluido a giorno circolare a bassa portata compatibilmente con gli assorbimenti.
- ✓ Visto la vicinanza con il pozzo Irminio 6, è necessario l'utilizzo di attrezzatura automatica per il controllo della verticalità del foro.
- 2. Assemblare le DP 5 ½" necessarie per la perforazione del foro.
- 3. Perforare un pilot hole 12 ¼", in rotary e con cautela i primi 30 m circa e successivamente utilizzando una attrezzatura automatica per il controllo della verticalità (Autotrak™) proseguire fino a quota tubaggio del casing 24 ½" (Inserire in batteria e registrare il Gr (LWD)). Sospendere la perforazione possibilmente in una zona impermeabile.
- 4. Estrarre ed assemblare Hole Opener. Allargare foro da 12 ¼" a 28". (potrebbe essere necessario allargare in due run, prima da 12 ¼" a 17 ½" e successivamente da 17 ½" a 28").
- 5. Al fondo, circolare aumentando la portata compatibilmente con gli assorbimenti.
- 6. Eseguire una manovra di controllo foro, circolare e condizionare il fango in previsione del tubaggio.

AGGIORNAMENTI:

Durante la perforazione della fase rilevare l'inclinazione del foro, con MWD, massimo ogni 10 metri o più frequentemente se le condizioni di pozzo le richiedono.

Effettuare attente verifiche di anticollision con i pozzi esistenti Irminio 6 (fori 6-6A-6B) ed Irminio 7dir.

- 7. Assemblare e discendere il casing 24 ½" K-55 162# Tenaris ER al fondo, eseguire il test di funzionalità valvola dopo 3-4 giunti. La scarpa dovrà essere di tipo adatto a ricevere lo stinger (verificarne la compatibilità prima della discesa).
- 8. Montare lo stinger, discenderlo con aste da 5 ½", introdurlo nella scarpa e provarne la tenuta circolando con il casing colmatato.
- 9. Cementare la colonna con risalita della malta a giorno (come da programma di cementazione). E' previsto l'uso di 2 malte, una prima più leggera (lead), a d= 1.5 kg/l, che dovrebbe arrivare fino in superficie e limitare il carico idrostatico sulla formazione, ed una seconda (tail) a d= 1.9 kg/l per cementare bene la zona scarpa. Sotto-spiazzare in modo da lasciare del cemento non contaminato nella zona della scarpa.
- 10. Verificare tenuta valvola prima di estrarre lo stinger. Dopo aver sfilato lo stinger, estrarre una lunghezza e circolare bene, ad alta portata, in modo da pulire il cemento all'interno DP.
- 11. Nel caso in cui non si abbia la risalita a giorno, eseguire cementazione dall'alto con due "macaroni string" da 1 $\frac{1}{2}$ ".
- 12. Pulire dalla malta il fondo cantina ed eseguire il W.O.C., da calcolare in funzione del tipo di cemento usato (verificare i campioni in superficie). Durante l'attesa presa cemento (W.O.C.) se possibile, sdoppiare la BHA fase 28" ed assemblare la BHA fase successiva:
- 13. Tagliare il casing 24 ½" ed istallare la flangia base temporanea "weld flange 30" * 300 psi x 24 ½" CSG -162# ". Test saldatura a 300 psi max. il tutto nel rispetto delle procedure di saldatura e test.
- 14. Montare il Diverter 29 1/2" * 500.
- 15. Effettuare il test funzionalità Diverter ed il test delle linee di superficie:
 - Linee di Superficie e Rubinetti Top Drive e Choke Manifold a 210 atm.

	PAG	56) DI	122				
AG	AGGIORNAMENTI:							
0								

4.1.3. FASE 23" PER CASING 18 5/8" A CIRCA 856 M

Fango previsto FW-PO (Biocompatibile) a d=1.08-1.10 Kg/l. Gradiente dei pori max = 1.03 kg/cm²/10m.

Per ciò che concerne scalpelli, parametri, batterie di perforazione, idraulica, fango e modalità di cementazione, si rimanda ai paragrafi specifici.

E' previsto l'utilizzo di un fluido di perforazione (fango) biocompatibile, per il confezionamento si utilizzerà acqua dolce e polimero biocompatibile.

- 1. Eseguire un Pre-Operation Meeting con il personale coinvolto nelle operazioni.
- 2. Assemblare le DP 5 ½" necessarie per la perforazione del foro.
- 3. Inserire in batteria una PBL Valve in modo da poter, eventualmente, pompare intasanti senza interessare le attrezzature in batteria (LWD).
- 4. Assemblare la BHA di deviazione con attrezzatura automatica per il controllo della verticalità e con la possibilità di eseguire il "nudging" del pozzo. Inserire in batteria attrezzatura per LWD (log while drilling) per poter registrare GR Res Cal. Dopo aver perforato con cautela i primi metri, proseguire fino a 250 m circa dove è previsto l'inizio di un "nudging" con DLS di circa 1.2°/30m portando il pozzo ad azimuth 180° con massimo angolo di circa 6°, previsto a circa 400m, da tale quota si continuerà la perforazione con un angolo costante di 6° in direzione 180° fino a circa 780m. Si inizierà quindi a diminuire l'angolo e si tornerà in verticale a circa 849.5m TVD appena prima del top della formazione Hybla, fine fase. Sospendere la perforazione possibilmente in una zona impermeabile.

Durante la perforazione della fase rilevare l'inclinazione del foro con MWD massimo ogni 10 metri o più frequentemente se le condizioni di pozzo le richiedono. Effettuare attente verifiche di anticollision con i pozzi esistenti Irminio 6 (fori 6-6A-6B) ed Irminio 7dir.

- 5. Al fondo, circolare aumentando la portata compatibilmente con gli assorbimenti.
- 6. Eseguire una manovra di controllo foro, circolare e condizionare il fango in previsione del tubaggio.

Р	AG	57	DI	122			
AGG	AGGIORNAMENTI:						
0							

- 7. Assemblare e discendere il casing 18 5/8" K-55 99# Tenaris ER al fondo, eseguire il test di funzionalità valvola dopo 4-5 giunti. Utilizzare scarpa e collare normali distanziati due giunti.
- 8. Al fondo circolare almeno tutto il volume interno casing.
- 9. Cementare la colonna con risalita della malta a giorno (come da programma di cementazione). E' previsto l'uso di 2 malte, una prima più leggera (lead), a d= 1.5 kg/l, per cementare fino in superficie e limitare il carico idrostatico sulla formazione, ed una seconda (tail) a d= 1.9 kg/l per cementare bene la zona scarpa. Pressione di test al Contatto Tappi = 70 kg/cm².
- 10. Nel caso in cui non si abbia la risalita a giorno, eseguire cementazione dall'alto con due "macaroni string" da 1 ½".
- 11. Pulire la cantina ed eseguire il W.O.C., da calcolare in funzione del tipo di cemento usato (verificare i campioni in superficie). Durante l'attesa presa cemento (W.O.C.), se possibile, sdoppiare la BHA fase 23" ed assemblare la BHA fase successiva:
- 12. Sollevare il Diverter, effettuare taglio provvisorio del casing 18 5/8", rimuovere il diverter e la "Weld Flange" dal csg 24 ½" ed installare la "Landing Ring 20 3/4" NOM Type RB Slip Lock x 24 ½" CSG". Tagliare a misura il casing 18 5/8" ed installare il "Casing Head Housing FLG 20 ¾" API 3000 psi x 18 5/8" CSG "RB" Slip Lock". In ogni caso seguire le procedure dettagliate del fornitore della testa pozzo.
- 13. Collaudare l'inflangiatura a 50 atm. x 15 min. (In ogni caso non superare l'80% della resistenza del casing a "collapse").
- 14. Montare il BOP stack 18 3/4" * 5000 psi.

NOTA: Prima del montaggio il BOP Stack deve essere testato, su "test stump", a 21 kg/cm² ed alla massima pressione di esercizio di ogni elemento.

- 15. Discendere il Combination Tool (BOP Test Plug + Wear Bushing R.R. Tool), aprire saracinesca laterale e, con testa pozzo piena di acqua, eseguire i seguenti collaudi:
 - Ganasce cieche/shear a 21 e 70 Atm x 15 min.
 - Ganasce Sagomate/Variabili a 21 e 70 Atm x 15 min
 - Bag Preventer a 21 e 70 Atm x 15 min
 - Linee di Superficie e Rubinetti Top Drive e Choke Manifold a 210 atm.

Р	AG	58	DI	122
AGG	SIOF	RNA	MEI	NTI:
0				

16. Estrarre il B.O.P. Test Plug e discendere il "20 ¾" nom Wear Bushing".

Ripetere il Test dei BOP, con le stesse modalità massimo ogni 21 giorni.

Р	AG	59	•	DI	122		
AGG	AGGIORNAMENTI:						
0							

4.1.4. FASE 16" PER CASING SUPERFICIALE 13 3/8" A CIRCA 1714 M (1711.5 m TVD)

Fango previsto FW-PO a max d= 1.45 Kg/l. Gradiente dei pori max= 1.3 kg/cm²/10m.

Per ciò che concerne scalpelli, parametri, batterie di perforazione, idraulica, fango e modalità di cementazione, si rimanda ai paragrafi specifici.

Nota: Per questa fase si suggerisce l'utilizzo dei "Continuous Circulating Device" (E-CD™) per circolare anche durante i cambi asta, in modo da avere sempre la stessa pressione agente sulla formazione.

- 1. Eseguire un Pre-Operation Meeting con il personale coinvolto nelle operazioni.
- 2. Assemblare le DP 5 ½" necessarie per la perforazione del foro.
- 3. Discendere Bit 16" con nuova BHA, utilizzando attrezzatura automatica per il controllo della verticalità/deviazione del foro, a quota collare.
- 4. Inserire in batteria attrezzatura per LWD (log while drilling) per poter registrare GR Res Cal Acoustic, il più vicino possibile al bit.
- 5. Inserire in batteria una PBL Valve in modo da poter, eventualmente, pompare intasanti senza interessare le attrezzature in batteria (LWD).
- 6. Eseguire il pressure test del casing a 70 atm * 15 minuti.
- 7. Fresare cemento e scarpa e pulire rat hole, perforare 3-4 m di nuova formazione, circolare ed uniformare il fango.
- 8. Ritirare bit in scarpa ed eseguire un L.O.T. (in base alla caratteristica della formazione potrà essere deciso di eseguire un F.I.T. (Formation Integrity Test) @ 1.6 EMW)
- 9. Riprendere la perforazione ed avanzare in verticale, seguendo il programma di deviazione, fino a circa 1714m (1711.5m TVD) dove è previsto la discesa del casing 13 3/8".

Rilevare la deviazione del pozzo, con MWD, max ogni 10 m e prima di ogni manovra.

Effettuare attente verifiche di anticollision con i pozzi esistenti Irminio 6 (fori 6-6A-6B) ed Irminio 7dir.

- 10. A quota tubaggio, circolare fino a completa pulizia foro.
- 11. Eseguire una manovra di controllo foro in scarpa, ridiscendere al fondo, circolare e condizionare il fango in previsione del tubaggio.

AGGIORNAMENTI:

- 12. Estrarre BHA
- 13. Registrare CBL-VDL-CCL-GR del casing 18 5/8".
- 14. Estrarre Wear Bushing.
- 15. Assemblare e discendere casing 13 3/8" N-80 68# Ten ER al fondo, eseguire il test di funzionalità valvole dopo 4-5 giunti.
- 16. Cementare la colonna con risalita della malta a 1050 m circa (come da programma di cementazione). Pressione di test al Contatto Tappi = 140 kg/cm².
- 17. W.O.C., da calcolare in funzione del tipo di cemento usato (verificare i campioni in superficie). Durante l'attesa presa cemento (W.O.C.), se possibile, sdoppiare la BHA fase 16" ed assemblare la BHA fase successiva.
- 18. Sollevare B.O.P. incuneare colonna con il peso residuo a fine cementazione, effettuare taglio provvisorio del casg 13 3/8".
- 19. Rimuovere i B.O.P. 18 3/4" * 5000 psi.
- 20. Eseguire taglio definitivo su Csg 13 3/8", e montare il 2° elemento inflangiatura "Casing Head Spool 20 ¾"*3000 13 5/8"*5000 psi". In ogni caso seguire le procedure dettagliate del fornitore della testa pozzo.
- 21. Eseguire il test dell'inflangiatura a **max** 125 kg/cm2 (~80% della resistenza del casing a collapse)

NOTA: Prima del montaggio il BOP Stack deve essere testato, su "test stump", a 21 kg/cm² ed alla massima pressione di esercizio di ogni elemento.

- 22. Montare BOP Stack 13 5/8" * 10000 psi composto da un doppio (Lower e Upper Pipe Rams) + un singolo (Blind/Shear Rams) + un singolo (Variable Rams) + Hydril 13 5/8" 5000 psi.
- 23. Discendere il Combination Tool (BOP Test Plug + Wear Bushing R.R. Tool), aprire saracinesche intercapedini 13 3/8" 18 5/8" e 18 5/8"- 24 ½" e, con testa pozzo piena di acqua, eseguire i seguenti collaudi:
 - Ganasce cieche/shear a 21 e 270 Atm x 15 min (max 100 atm nel caso non si utilizzi Test Plug).
 - Ganasce Sagomate/Variabili a 21 e 270 Atm x 15 min
 - Bag Preventer a 21 e 270 Atm x 15 min

Р	AG (61	DI	122			
AGG	AGGIORNAMENTI:						
0							

- Linee di superficie Kill e Choke, rubinetti Top drive e choke manifold a 270 Atm x 15'.
- 24. Estrarre il B.O.P. Test Plug e discendere il "13 5/8" Nom Wear Bushing". Ripetere il Test dei BOP, con le stesse modalità massimo ogni 21 giorni.

4.1.5. FASE 12 1/4" PER CASING 9 5/8" - A ~2368 M MD (2318.6 M TVD)

Fango previsto FW-KCL-DEEPDRILL a d= 1.60 Kg/l. Gradiente dei pori previsto max = 1.4-1.43 kg/cm²/10m.

Per ciò che concerne scalpelli, parametri, batterie di perforazione, idraulica, fango e modalità di cementazione, si rimanda ai paragrafi specifici.

Nota: Per questa fase si suggerisce l'utilizzo dei "Continuous Circulating Device" (E-CD™) per circolare anche durante i cambi asta, in modo da avere sempre la stessa pressione agente sulla formazione.

- 1. Eseguire un Pre-Operation Meeting con il personale coinvolto nelle operazioni.
- 2. Assemblare le DP 5 ½" necessarie per la perforazione del foro.
- 3. Assemblare nuova BHA con Bit 12 1/4" discendere fino a quota collare.
- 4. Inserire in batteria attrezzatura per LWD (log while drilling) per poter registrare "GR Res Cal Acoustic" il più vicino possibile al bit.
- 5. Inserire in batteria una PBL Valve in modo da poter, eventualmente, pompare intasanti senza interessare le attrezzature in batteria (LWD).
- 6. Eseguire il pressure test del casing a 140 atm * 15 minuti
- 7. Fresare cemento e scarpa e pulire rat hole, perforare 3-4 m di nuova formazione, circolare ed uniformare il fango.
- 8. Ritirare bit in scarpa ed eseguire un L.O.T. (in base alla caratteristica della formazione potrà essere deciso di eseguire un F.I.T. (Formation Integrity Test) @ almeno 1.8 EMW)
- 9. Riprendere la perforazione ed avanzare, seguendo il programma di deviazione, fino alla quota di tubaggio del casing 9 5/8" previsto a circa 2368 m MD (2318.6 m TVD) registrando i LWD (GR Res Cal Acoustic) per la definizione dei top formazionali.

Р	AG	62	2	DI	122
AGG	Ol	R۱	IΑ	MEI	NTI:
0					

- 10. Rilevare la deviazione del pozzo con MWD ogni 30 m massimo e prima di ogni manovra. Effettuare attente verifiche di anticollision con i pozzi esistenti Irminio 6 (fori 6-6A-6B) ed Irminio 7dir.
- 11. A quota tubaggio, circolare fino a completa pulizia foro.
- 12. Eseguire una manovra di controllo foro in scarpa, ridiscendere al fondo, circolare e condizionare il fango in previsione del tubaggio.
- 13. Estrarre BHA.
- 14. Registrare il CBL-VDL-CCL-GR del casing 13 3/8" fino a ~300 m sopra il top effettivo del cemento.
- 15. Estrarre Wear Bushing.
- 16. Assemblare e discendere casing 9 5/8" al fondo (~420 m di L80 53.5# -Tenaris Cr13-L80 + ~200m di L80 53.5# -Tenaris BLUE + restante L 80 47# Tenaris BLUE), con Reamer Shoe e collare distanziato di almeno 3 giunti. Eseguire il test di funzionalità valvole dopo 4-5 giunti. Si prevede l'utilizzo di casing al Cromo per i primi 420m nella zona sotto il packer di produzione in modo da evitare gli effetti della corrosione dovuti alla probabile presenza di CO₂ e acqua nell'olio.
- 17. Per la discesa del casing prevedere l'utilizzo di un "Casing Drive System" in modo da poter circolare e ruotare, se necessario.
- 18. Al fondo circolare fino a completa pulizia foro.
- 19. Cementare la colonna con risalita della malta come da programma di cementazione.

 Pressione di test al Contatto Tappi = 210 kg/cm².
- 20. W.O.C., con casing in tensione, da calcolare in funzione del tipo di cemento usato (verificare i campioni in superficie).
- 21. Ultimata l'attesa presa cemento, sollevare il BOP stack, inserire i cunei ed incuneare il casing con peso residuo a fine cementazione.
- 22. Tagliare e recuperare lo spezzone di tubo 9 5/8", inflangiare casing montando 3° elemento inflangiatura Tubing Head Spool 13 5/8" *5000 * 13 5/8" * 5000 psi. In ogni caso seguire le procedure dettagliate del fornitore della testa pozzo.
- 23. Eseguire il test dell'inflangiatura a **max** 250 kg/cm² (~80% della resistenza del casing a collapse)

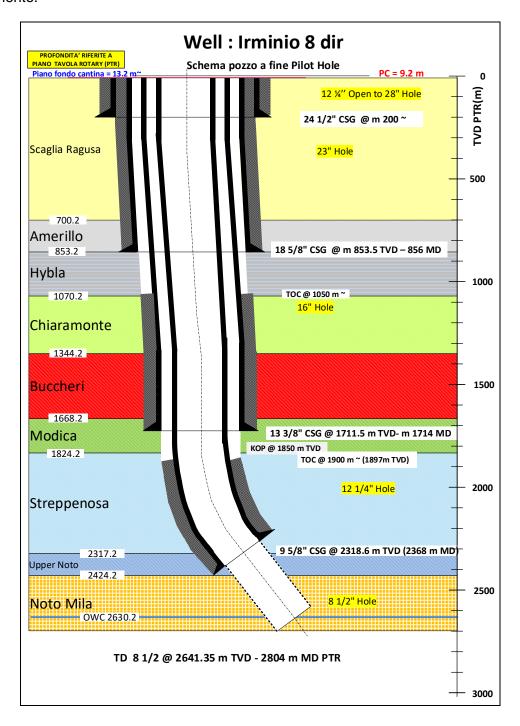
F	PAG	63	3	DI	122		
AGC	AGGIORNAMENTI:						
0							

- 24. Rimontare BOP Stack 13 5/8" * 10000 psi
- 25. Discendere il Combination Tool (BOP Test Plug + Wear Bushing R.R. Tool), aprire saracinesche intercapedini 9 5/8" -13 3/8", e con testa pozzo piena di acqua, eseguire i seguenti collaudi:
 - Ganasce cieche/shear a 21 e 330 Atm x 15 min.
 - Ganasce Sagomate a 21 e 330 Atm x 15 min
 - Bag Preventer a 21 e 330 Atm x 15 min
 - Linee di superficie Kill e Choke, rubinetti Top drive e choke manifold alla loro W.P. x 15'.
- 26. Estrarre il B.O.P. Test Plug e discendere il "11" Nom Wear Bushing". *Ripetere il Test dei* BOP, con le stesse modalità massimo ogni 21 giorni.

4.1.6. FASE 8 ½" PILOT HOLE A ~ 2804 m MD (2641.35 m TVD)

Per ciò che concerne scalpelli, parametri, batterie di perforazione, idraulica, fango e modalità di cementazione, si rimanda ai paragrafi specifici.

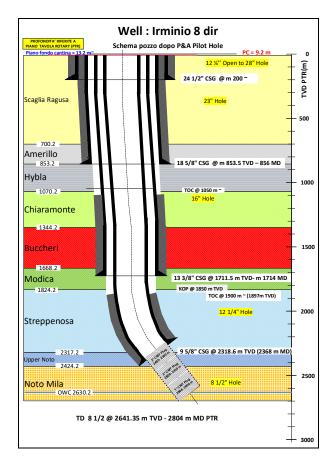
Fango previsto FW-PO a d= 1.08-1.10 Kg/l. Gradiente dei pori max= 1.03 kg/cm²/10m.


Prevedere adeguate scorte di H2O, ed intasanti carbonatici, per far fronte a possibili assorbimenti e/o assorbimenti totali.

- 27. Eseguire un Pre-Operation Meeting con il personale coinvolto nelle operazioni.
- 28. Sdoppiare le DP 5 ½" ed assemblare le DP 5" necessarie per la perforazione della fase.
- 29. Assemblare BHA con Bit 8 1/2" a quota collare. Inserire in batteria attrezzatura per LWD (log while drilling) per poter registrare "GR Res Cal Neu Den Imaging tool".
- 30. Inserire in batteria una PBL Valve in modo da poter, eventualmente, pompare intasanti senza inetresare le attrezzature in batteria (LWD).
- 31. Eseguire il pressure test del casing a 210 atm * 15 minuti.
- 32. Sostituire il fango in pozzo con fango leggero 1.08 1.10 Kg/l, ed uniformare.
- 33. Fresare cemento e scarpa e pulire rat-hole.
- 34. Riprendere la perforazione e, seguendo il programma di deviazione, avanzare fino alla TD del pozzo previsto a circa 2804 m MD (2641.35m TVD).

Р	AG 6	4 DI	122				
AGG	AGGIORNAMENTI:						
0							

- 35. Rilevare la deviazione del pozzo, con MWD, ogni 30 m massimo e prima di ogni manovra. Effettuare attente verifiche di anticollision con i pozzi esistenti Irminio 6 (fori 6-6A-6B) ed Irminio 7dir.
- 36. Circolare fino a completa pulizia foro.
- 37. Registrare CBL-VDL-CCL-GR nel casing 9 5/8" fino ad almeno 300 m sopra il top reale del cemento.



PAG	65	DI	122
AGGIO	RNA	ME	NTI:
0			

4.1.7. FASE CHIUSURA FORO 8 1/2" IRMINIO 8 Dir

- 1. Eseguire un Pre-Operation Meeting con il personale coinvolto nelle operazioni.
- 2. Discendere peduncolo tbg 2 7/8" (circa 250m) con DP's 5" per chiusura mineraria il pilot hole, ed eseguire 1° tappo di cemento da m 2804 a m 2600.
- 3. Estarre peduncolo al top tappo teorico, circolare verificando eventuale ritorno di malta.
- 4. Proseguire con 2° tappo di cemento da m 2600 a m 2450.
- 5. Estarre peduncolo al top tappo teorico, circolare verificando eventuale ritorno di malta.
- 6. Proseguire con 3° tappo di cemento da m 2450a m 2300.
- 7. Estarre peduncolo al top tappo teorico, circolare verificando eventuale ritorno di malta.
- 8. Estrarre a giorno. WOC in relazione alle verifiche dei campioni in superficie.
- 9. Discendere bit 8"1/2 e fresare tappo di cemento fino a circa 10 m sotto scarpa da 9 5/8", (quota KOP = m 2378 MD).
- 10. Estarre bit a giorno.

Р	AG	66	3	DI	122
AGG	Ol	RN	ΙΑΙ	MEI	NTI:
0					

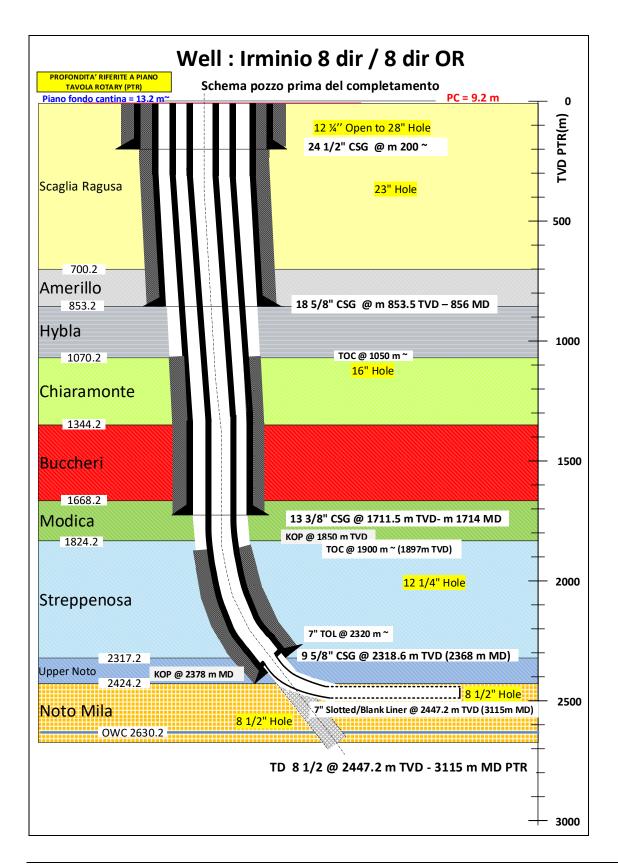
4.1.8. FASE 8 ½" (LATERAL) PER SLOTTED LINER 7" A ~ 3115m MD (2447.2 m TVD)

Per ciò che concerne scalpelli, parametri, batterie di perforazione, idraulica, fango e modalità di cementazione, si rimanda ai paragrafi specifici.

Fango previsto FW-PO a d= 1.08-1.10 Kg/l. Gradiente dei pori max= 1.03-1.0 kg/cm²/10m.

Prevedere adeguate scorte di H2O, ed intasanti carbonatici, per far fronte a possibili assorbimenti e/o assorbimenti totali.

- 1. Eseguire un Pre-Operation Meeting con il personale coinvolto nelle operazioni.
- Assemblare nuova BHA con Bit 8 1/2" per l'esecuzione del dreno laterale (Irminio 8 dir / 8dir-OR) e discendere fino al top del tappo di cemento (KOP). Inserire in batteria GR-Resistivity per log wile drilling (LWD).
- 3. Inserire in batteria una PBL Valve in modo da poter, eventualmente, pompare intasanti senza interessare le attrezzature in batteria (LWD).
- 4. Riprendere la perforazione e, seguendo il profilo di deviazione, avanzare fino alla TD del pozzo previsto a circa 2447.2 m TVD (3115 m MD).
- 5. Rilevare la deviazione del pozzo, con MWD, ogni 30 m massimo e prima di ogni manovra. Effettuare attente verifiche di anticollision con i pozzi esistenti Irminio 6 (fori 6-6A-6B) ed Irminio 7dir/7dir-Or e con il pilot-hole chiuso minerariamente (Irminio 8 dir).
- 6. Circolare fino a completa pulizia foro.
- 7. Eseguire una manovra di controllo foro in scarpa, ridiscendere al fondo, circolare e condizionare il fango in previsione della discesa del liner 7".
- 8. Discendere liner di produzione 7" 29# 13%Cr Tenaris Blue (slotted+blank) con DP 5" con scarpa a circa 3115 m MD (2447.2 m TVD) e liner hanger con packer a m 2320 m MD circa + eventuali Swellable Packer.


N.B. - La posizione delle attrezzature, (Swellable packers e dei csg blank), e la profondità della scarpa saranno confermate dopo la registrazione dei Logs While Drilling.

- 9. Fissare il liner Hanger e settare il packer a testa liner.
- 10. Estrarre a giorno setting tool.
- 11. Assemblare e discendere BHA per pulizia pozzo (bit 6" + scraper per pulizia liner 7" 29# + scraper per csg 9 5/8" 47÷53.5# distanziato adeguatamente per la pulizia del csg 9 5/8").

Р	AG 6	7 DI	122	
AGGIORNAMENTI:				
0				

12. Registrare Gyro su tutto il profilo del pozzo con survey ogni 30 m.

Р	AG	68	3	DI	122
AGGIORNAMENTI:					
0					

4.1.9. COMPLETAMENTO POZZO

1. LAVAGGIO CASING E SPIAZZZAMENTO BRINE

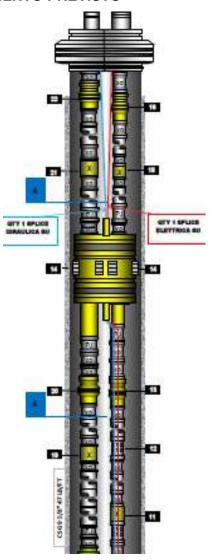
Prima di iniziare la miscelazione dei cuscini di lavaggio o di iniziare la miscelazione dei "brines" entro il sistema vasche di superficie, è importante assicurarsi che tutte le linee ed equipaggiamento che verrà a contatto con questi fluidi, siano stati adeguatamente puliti. Tutte le tracce di fango dovrebbero essere rimosse flussando le linee con acqua e qualora si ritenesse necessario, un cuscino di acqua con Well clean. Nel caso che le vasche e le linee non fossero sufficientemente pulite, si consiglia di ripetere il trattamento.

- 1. Confezionare brine KCL SG 1.05 -1.1 Kg/lt con anticorrosivo e biocida.
- 2. Confezionare 10 mc di cuscino viscoso con XCD polimer 5 Kg per mc.
- 3. Confezionare 10 mc di cuscino con 50 lt per mc di WELL CLEAN per rimuovere eventuale residui di fango presenti nel casing.
- 4. Confezionare 10 mc di brine viscoso a 100 sec.
- 5. Scendere Taper Mill 6" (casing da 29 lb/ft Drift) + DC 4" ¾ + DP 3" ½ (pari alla lunghezza Liner + 20m per sicurezza), inserire X-over per Scraper 9"5/8 e continuare discesa con aste da 5". Continuare la discesa, imboccare Liner e scendere fino a quota LC.
- 6. Eseguire casing clean up, pompando con batteria in movimento vertical, i cuscini e a seguire il brine trattato con anticorrosive e biocida, fino a complete ritorno.
- 7. Screperare due volte il tratto di casing dove si prevede di ancorare il packer idraulico da 9"5/8.
- 8. Prima di entrare nel Liner, circolare con batteria in movimento verticale, pompando in sequenza i seguenti fluidi alla massima portata: 4 mc di cuscino viscoso + 5 mc di WELL CLEAN + 4 mc di brine viscosizzato + brine di completamento. Circolare fino a ritorno dei cuscini a giorno.
- Estrarre batteria sdoppiando eccesso ed allentando le connessioni DP e sdoppiando le DC e BHA.

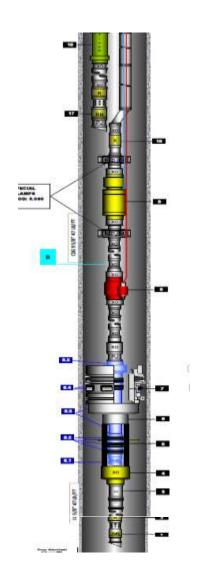
P	AG	69	DI	122
AGGIORNAMENTI:				
0				

2. PREPARATIVI PER IL COMPLETAMENTO

- 1. Assicurarsi che siano eseguite le seguenti operazioni:
 - ✓ verificare che tutto il materiale necessario sia in cantiere.
 - ✓ Iubrificare e proteggere il Tubing Hanger;
 - ✓ calibrare e misurare tutti i preassemblaggi;
 - √ rilevare, e registrare, i diametri esterni ed interni e i Part Number dei componenti
 particolari del completamento;
- 2. Il materiale al cromo deve essere utilizzato secondo le relative procedure.
- 3. Preparare sul parco tubi i tubing da discendere con i numeri chiaramente identificabili, e comporre la tally del completamento.
- 4. Eseguire il pressure test alla S.S.V. per registrare la Opening Pressure e la Closing pressure nonché la tenuta, se non sia stato fatto in sede.
- 5. Predisporre la testina di circolazione/sicurezza sul piano sonda, eseguire rig up attrezzatura della service company per chiave e torque computer.


3. DISCESA COMPLETAMENTO

IL PROGRAMMA DETTAGLIATO DI COMPLETAMENTO VERRA PRIMA DELLA
PERFORAZIONE DEL POZZO


AGGIORNAMENTI:

4.1.10. SCHEMA DI COMPLETAMENTO PREVISTO

AGGIORNAMENTI:

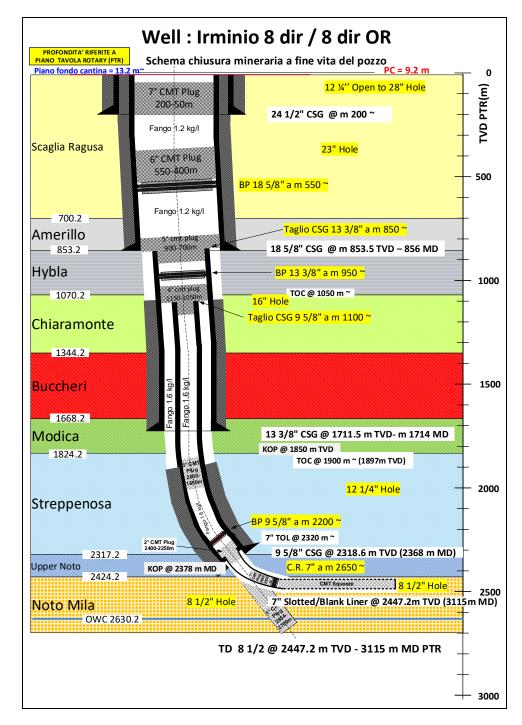
4.1.11. PROGRAMMA DI CHIUSURA MINERARIA

Una volta ultimata la vita produttiva del pozzo si procederà alla chiusura mineraria tramite tappi di cemento e Brige Plug, al taglio ed al recupero delle colonne a fondo cantina ed al recupero della testa pozzo. Seguirà la saldatura della piastra per la chiusura mineraria definitiva.

Un programma dettagliato di chiusura mineraria sarà preparato alla fine della vita produttiva con i dati reali di pozzo e sarà sottoposto alle autorità per le necessarie autorizzazioni.

In linea di massima si prevede:

- Discendere un Cement Retainer (CR) nella zona blank del liner 7" ed eseguire uno squeeze di cemento negli slotted.
- Sfilarsi dal C.R. ed eseguire 1° tappo di cemento sopra C.R. di circa 150 m (2650-2500m).
- Esecuzione 2° tappo da 2400 m a 2250 m circa, a cavallo della testa liner 7".



Р	AG	72	2	DI	122
AGGIORNAMENTI:					
0					

- Discendere bit + scraper per verifica tappo, intestare il tappo e testare con 10 ton e 1000 psi, spiazzare in pozzo fango con peso simile, o leggermente superiore, a quello con cui il casing 9 5/8" è stato disceso (~ 1.6 kg/l.), pulire bene la zona fissaggio BP a circa 2200 m.
- Discesa, fissaggio e test, di un Bridge Plug 9 5/8" a circa 2200m.
- Esecuzione 3° tappo di cemento da m 2050 a m 1900 circa.
- Monitorare l'intercapedine 9 5/8"-13 3/8" ed assicurarsi che le pressioni siano nulle. Verificare che il peso del fango all'interno del casing 9 5/8 sia simile al peso del fango nell'annulus, o leggermente superiore (peso del fango in cui il casing è stato disceso). Tagliare il Csg 9 5/8" a ~1100 m, circolare ed uniformare il fango, assicurarsi che non vi sia presenza di gas intrappolato, e quando le condizioni di sicurezza lo permettono, recuperare il casing.
- Esecuzione 4° tappo di cemento da m 1150 a m 1000 circa con verifica meccanica e idraulica.
- Discendere bit + scraper per verifica tappo, intestare il tappo e testare con 10 ton e 1000 psi, pulire bene la zona fissaggio BP a circa 950m. Alleggerire fango al perso del fango in cui il casing 13 3/8" è stato disceso, o leggermente superiore.
- Discesendere, fissaer e testare, un Bridge Plug 13 3/8" a circa 950m
- Monitorare l'intercapedine 18 5/8"-13 3/8" ed assicurarsi che le pressioni siano nulle. Verificare che il peso del fango all'interno del casing 13 3/8 sia simile al peso del fango nell'annulus, o leggermente superiore (peso del fango in cui il casing è stato disceso). Tagliare il Csg 13 3/8" a ~ 850 m, circolare ed uniformare il fango, assicurarsi che non vi sia presenza di gas intrappolato, e quando le condizioni di sicurezza lo permettono, recuperare il casing.
- Esecuzione 5° tappo di cemento da m 900 a m 750 circa con verifica meccanica e idraulica (10 ton – 1000 psi).
- Discendere bit + scraper per verifica tappo, intestare il tappo e testare con 10 ton e 1000 psi, spiazzare in pozzo fango con peso simile, o leggermente superiore, a quello con cui il casing 18 5/8" è stato disceso, pulire bene la zona fissaggio BP a circa 550 m.
- Discesa, fissaggio e test, di un Bridge Plug 13 3/8" a circa 550m.
- Esecuzione 6° tappo di cemento da m 550 a m 400 circa con verifica meccanica e idraulica (10 ton – 1000 psi).
- Esecuzione 7° tappo di cemento da 200 a 50 m circa.
- Disendere bit per verifica presenza del tappo e test meccanico.
- Taglio Csg 18 5/8" e 24 ½" a fondo cantina e recupero testa pozzo.
- Saldatura flangia di chiusura mineraria su casing 24 1/2".

AGGIORNAMENTI:

4.2 PROGETTAZIONE DEL POZZO

4.2.1. PREVISIONE DEI GRADIENTI DI PRESSIONE E TEMPERATURA

Le previsioni sullo sviluppo dei gradienti e delle temperature sono state ricavate dai dati disponibili relativi ai pozzi vicini.

Р	AG	74	1	DI	122					
AGGIORNAMENTI:										
0		·								

Gradiente Interstiziale

Si prevede un gradiente inferiore al normale fino a circa 100-200 m, si prevedono infatti degli assorbimenti anche rilevanti nei primi metri di perforazione.

Successivamente si prevede un gradiente pressoché normale fino a circa 850 m (Hybla) da dove inizia un leggero sviluppo con massimo di 1.37-1.43 sg nella formazione Streppenosa.

Causa problemi di instabilità foro verificatesi su Irminio 6, è stato ipotizzato l'utilizzo di un peso del fango di 1.6 sg. anche se non si può escludere la necessità di un fango anche più pesante se si verificano gli stessi problemi di stabilità foro.

All'interno della Upper Noto il gradiente diminuisce, per tornare a valori normali al top della Noto Mila.

Nella Noto inferiore si prevede un gradiente ± normale;

Non si possono escludere assorbimenti e/o perdite di circolazione durante la perforazione della fase $8\frac{1}{2}$ ".

Gradiente di Overburden

E' stato ricavato in base ai dati disponibili dei pozzi perforati nell'area.

Gradiente di Fratturazione

Il gradiente di fratturazione è da considerarsi un valore conservativo e si basa sulla relazione:

Gf = Gp + K(Gov - Gp)

Gf = Gradiente di fratturazione

Gp = Gradiente interstiziale dei pori

Gov = Gradiente integrato dei sedimenti (Overburden)

K = Coefficiente di Poissons (costante)

Per il progetto, in base alle conoscenze dell'area ed in particolar modo ai dati dei FIT (Formation Integrity Test) eseguiti su Irminio 6, è stato utilizzato il valore di k=0.667

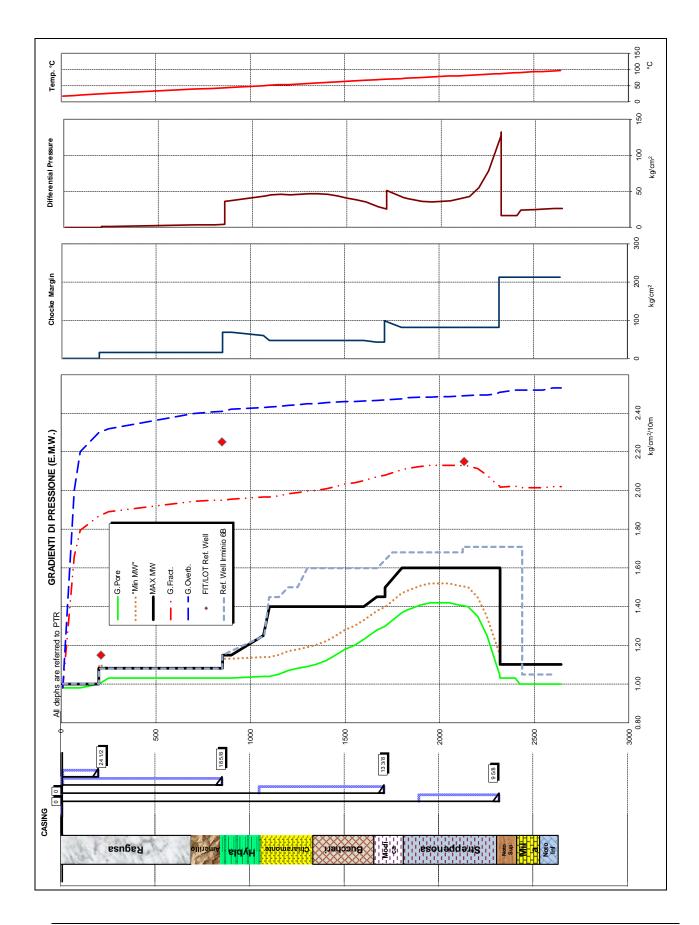
Gradiente di Temperatura:

I gradienti di temperatura non dovrebbero discostarsi dal trend normale di circa 3 °C/100 m.

Р	AG	75	D	۱ ′	122					
AGGIORNAMENTI:										
0										

4.2.2. MARGIN ANALYSIS REPORT

VD m (PTR)	G.Pore kg/cm²/10m	G.Mud kg/l	G.Overb kg/cm²/10m	G.Fracture kg/cm²/10m	Chocke Margin kg/cm²	Diff. Press. kg/cm²	Temp °C	VD ssl m	Livelli / Top Formazioni	
9.20	0.980	1.000	0.980	0.980	0.00	0.00	18.0	-133.0	Scaglia Ragusa	
70.00	0.980	1.000	2.000	1.660	0.00	0.00	19.8	-72.2		
100.00	0.980	1.000	2.200	1.794	0.00	0.00	20.7	-42.2		
200.00	1.000	1.000	2.300	1.867	0.00	0.00	23.7	57.8	CP 24 ½"	
200.10	1.000	1.080	2.300	1.867	15.75	1.60	23.7	57.9		
250.00	1.030	1.080	2.320	1.890	15.75	1.25	25.2	107.8		
700.20	1.030	1.080	2.400	1.944	15.75	3.50	38.7	558.0	Amerillo	
800.00	1.030	1.080	2.408	1.949	15.75	4.00	41.7	657.8		
853.20	1.030	1.080	2.410	1.950	15.75	4.27	43.3	711.0	Hybla	
853.50	1.030	1.080	2.410	1.950	15.75	4.27	43.3	711.3	CSG 18 5/8"	
853.60	1.030	1.150	2.410	1.950	68.33	35.85	43.3	711.4		
900.00	1.030	1.150	2.420	1.957	68.33	37.80	44.7	757.8		
1070.20	1.040	1.250	2.430	1.967	59.79	43.88	49.8	928.0	Chiaramonte	
1100.00	1.040	1.400	2.432	1.968	46.99	45.10	50.7	957.8		
1150.00	1.050	1.400	2.435	1.974	46.99	46.00	52.2	1007.8		
1200.00	1.070	1.400	2.440	1.984	46.99	45.60	53.7	1057.8		
1250.00	1.080	1.400	2.445	1.990	46.99	46.25	55.2	1107.8		
1300.00	1.090	1.400	2.450	1.997	46.99	46.80	56.7	1157.8		
1344.20	1.100	1.400	2.450	2.000	46.99	47.05	58.1	1202.0	Buccheri	
1400.00	1.120	1.400	2.455	2.010	46.99	46.20	59.7	1257.8		
1450.00	1.150	1.400	2.457	2.022	46.99	43.50	61.2	1307.8		
1500.00	1.180	1.400	2.460	2.034	46.99	40.50	62.7	1357.8		
1550.00	1.200	1.400	2.462	2.042	46.99	38.75	64.2	1407.8		
1600.00	1.230	1.400	2.464	2.053	46.99	35.20	65.7	1457.8		
1668.20	1.280	1.450	2.466	2.071	42.72	28.36	67.8	1526.0	Modica	
1711.50	1.300	1.450	2.468	2.079	42.72	25.67	69.1	1569.3	CSG 13 3/8"	
1711.60	1.300	1.500	2.468	2.079	99.11	51.35	69.1	1569.4		
1800.00	1.370	1.600	2.475	2.107	82.00	41.40	71.7	1657.8		
1824.20	1.380	1.600	2.480	2.114	82.00	40.13	72.5	1682.0	Streppenosa	
1900.00	1.410	1.600	2.482	2.125	82.00	36.10	74.7	1757.8		
1950.00	1.420	1.600	2.484	2.130	82.00	35.10	76.2	1807.8		
2000.00	1.420	1.600	2.485	2.130	82.00	36.00	77.7	1857.8		
2050.00	1.420	1.600	2.487	2.132	82.00	36.90	79.2	1907.8		
2100.00	1.410	1.600	2.490	2.130	82.00	39.90	80.7	1957.8		
2150.00	1.400	1.600	2.492	2.128	82.00	43.00	82.2	2007.8		



AGGIORNAMENTI:

2200.00	1.350	1.600	2.494	2.113	82.00	55.00	83.7	2057.8	
2250.00	1.250	1.600	2.495	2.080	82.00	78.75	85.2	2107.8	
2300.00	1.100	1.600	2.500	2.034	82.00	115.00	86.7	2157.8	
2317.20	1.050	1.600	2.510	2.024	82.00	127.45	87.2	2175.0	Noto Sup.
2318.60	1.030	1.600	2.510	2.017	82.00	132.16	87.3	2176.4	CSG 9 5/8"
2318.70	1.030	1.100	2.510	2.017	212.66	16.23	87.3	2176.5	
2400.00	1.030	1.100	2.520	2.024	212.66	16.80	89.7	2257.8	
2422.20	1.000	1.100	2.520	2.014	212.66	24.22	90.4	2280.0	Mila
2500.00	1.000	1.100	2.520	2.014	212.66	25.00	92.7	2357.8	
2544.20	1.000	1.100	2.520	2.014	212.66	25.44	94.1	2402.0	Noto Inf.
2600.00	1.000	1.100	2.530	2.021	212.66	26.00	95.7	2457.8	
2641.35	1.000	1.100	2.530	2.021	212.66	26.41	97.0	2499.2	

AGGIORNAMENTI:

Р	AG	78	DI	122						
AGGIORNAMENTI:										
0										

4.2.3. PROBLEMI DI PERFORAZIONE

Sulla base delle correlazioni con i pozzi ultimamente perforati nell'area (Irminio 6-6A-6B e precedentemente Tresauro 2 e 3) e sulla base della previsione litostratigrafica si segnalano le seguenti possibili problematiche nella realizzazione del pozzo in oggetto:

- Forti assorbimenti e perdita totale di circolazione durante la perforazione dei primi 70-100m con possibilità di assorbimenti fino ai 200m circa (Scaglia Ragusa)
- Nelle sottostanti formazioni Amerillo e Hybla non si sono avuti assorbimenti nel vicino pozzo Irminio 6, mentre su Tresauro 2 si sono avuti assorbimenti di 1–5 mc/h fino al tubaggio a 700 m. e su Tresauro 3 gli assorbimenti sono continuati fino a circa 1200 m con trend di 1-6 mc/h.
- Instabilità foro, con conseguenti problemi di restringimento e/o di scavernamento foro, nelle formazioni Buccheri, Modica ma specialmente nella Streppenosa dove è previsto anche uno sviluppo di gradiente. Durante la perforazione della fase 12 ¼" il controllo delle caratteristiche del fango, il suo potere inibente e di stabilizzazione delle formazioni sono ulteriori fattori che contribuiscono in modo rilevante a ridurre i problemi derivanti dalla instabilità delle formazioni e quindi a produrre una migliore prestazione complessiva (avanzamento e qualità del foro). La pulizia del foro, inoltre, è fattore essenziale per ridurre/limitare le problematiche durante le manovre. Pertanto si suggerisce l'utilizzo dei "Continuous Circulating Device" (E-CD™) per circolare anche durante i cambi asta, in modo da avere sempre la stessa pressione agente sulla formazione
- A fine fase 12 ¼" non si escludono anche assorbimenti dovuti al rientro di gradiente in corrispondenza del top Noto sup.
- Assorbimenti anche totali si prevedono durante la perforazione della fase 8 ½", specialmente nella Noto/Mila e nella Noto Inferiore, fino a fondo pozzo.

Si raccomanda di seguire attentamente lo sviluppo delle sovrappressioni con i vari metodi "while drilling" (es. incremento BGG, PCG, torsione, Sigmalog, ecc.).

CONTINGENCY: Nel caso in cui si incontrano rilevanti problemi nella perforazione del pozzo, specialmente durante l'attraversamento della Streppenosa, che richiede la discesa di un casing prima del previsto, si procederà con un profilo "Lean" "contingency". Si allargherà il foro perforato a circa 13" e si scenderà un liner 11"3/4 (flush joint). Successivamente si perforerà un foro 10 5/8" e si scenderà un liner 9 5/8" (Flush Joint), Il liner verrà successivamente reintegrato fino in superficie con casing 9 5/8".

In caso di impossibilità a realizzare il "contingency" sopra menzionato, si ha a disposizione un altro "contingency". Si perforerà con bit 8 ½" fino al top della Noto ed a tale quota si scenderà il liner 7" (profondità prevista per csg 9 5/8"), proseguendo poi la perforazione il foro pilota 6" fino a TD.



Р	AG	79	DI	122						
AGGIORNAMENTI:										
0										

Il foro 8 ½" o 6" sarà successivamente tappato con tappi di cemento e, dopo aver fresato il cemento fino a circa 10m sotto la scarpa, si imposterà la deviazione per eseguire il dreno (Irminio 8dir / 8dir-Or) all'interno della formazione Mila.

Dopo aver registrato i logs elettrici si scenderà un liner 7" o 4 ½" non cementato parte blank e parte slotted, a copertura del foro perforato, con scarpa a TD.

Nel seguente schema la comparazione tra il profilo normale e i contingency previsti.

Р	AG 8	0 DI	122							
AGGIORNAMENTI:										
0										

4.2.4. SCELTA PROFONDITA' DI TUBAGGIO

Foro 28" per casing superficiale (CP) 24 ½" a circa 200 m

La scarpa del Conductor Pipe 24 1/2" sarà fissato all'interno della formazione Scaglia Ragusa, una volta superato la zona superficiale caratterizzata da forti assorbimenti e/o perdite di circolazione.

Per questa fase, vista la conoscenza dell'area e i problemi di assorbimento riscontrati sui pozzi di riferimento, si prevede la perforazione con ritorno della circolazione in cantina per ridurre l'idrostatica del fango.

Il casing sarà cementato fino a fondo cantina.

Su questo casing verrà installato una flangia base temporanea (Weld flange 30" 500 x 24 $\frac{1}{2}$ " csg) ed il Diverter 29 $\frac{1}{2}$ " * 500 psi per la perforazione della fase successiva.

• Foro 23" per casing superficiale 18 5/8" a circa 856 mMD (853.5 mTVD)

La scarpa del casing superficiale 18 5/8" sarà disceso appena entrati nella formazione Hybla dopo aver attraversato la restante parte della Scaglia Ragusa e la Amerillo dove non si escludono assorbimenti.

Il casing sarà cementato fino a fondo cantina.

Su questo casing verrà installato la flangia base "Casing Head Housing 20 $\frac{3}{4}$ " * 3000 psi x 18 5/8" csg con il Land Ring for Wellhead 20 $\frac{3}{4}$ " NOM per 24 1/2" CSG" e lo stack BOP 18 $\frac{3}{4}$ " * 5000 psi per la perforazione della fase successiva.

• Foro 16" per casing intermedio 13 3/8" a circa 1714 m (1711.5 m TVD)

Il casing intermedio da 13 3/8" sarà disceso, una volta entrati nella formazione Modica, prima dell'inizio della curva.

Il casing sarà cementato con risalita circa 1050m (circa 200 m sotto il csg precedente).

Su questo casing verrà installato il corpo intermedio (Casing Head Spool $20 \frac{3}{4}$ " * 3000 psi - 13 $\frac{5}{8}$ " * 5000 psi) ed il BOP stack 13 $\frac{5}{8}$ * $\frac{5}{10}$ 000 psi.

• Foro 12 1/4" per casing 9 5/8" a circa 2368 mMD ~ (~2318.6 m TVD).

Il casing 9 5/8", di produzione, dovrà essere disceso, dopo aver attraversato la zona in sovrappressione (Streppenosa) appena riconosciuto la formazione Upper Noto.

La fase è caratterizzata da un incremento del gradiente di formazione fino a valori di circa 1.3-1.4 kg/cm²/10m e da un rientro fino a valori ±normali; durante la perforazione si prevedono problemi di instabilità foro nella Streppenosa, Per cercare di ridurre le problematiche si utilizzeranno fanghi ad alte prestazioni (High Performance Mud) come il tipo FW-KCL-DEEPDRILL della società AVA.

La discesa e la cementazione del casing a tale quota permetteranno l'alleggerimento del fango nella sezione successiva e la prosecuzione della perforazione in condizioni di sicurezza.

Il casing sarà equipaggiato con scarpa Reamer Shoe e per la discesa si utilizzerà il Casing Drive System in modo da poter circolare e ruotare, se necessario.

Р	AG	8′	1	DI	122				
AGGIORNAMENTI:									
0									

Il casing verrà cementato con top cemento a circa 1900 m.

La resistenza del casing è stato verificato, con le procedure di calcolo, sia per le fasi di perforazione sia per la fase produzione.

Su questo casing verrà installato il corpo superiore (Tubing Head Spool 13 5/8" * 5000 psi -13 5/8" * 5000 psi) ed il BOP stack 13 5/8 * 5/10 000 psi.

P&A Pilot Hole 8 ½"

Una volta registrato analizzato i logs elettrici registrati fino alla TD programmata e verificato i top formazionali attraversati, il foro verrà tappato con tappi di cemento fino alla scarpa del casing 9 5/8" per poter eseguire un dreno orizzontale al top della formazione Mila.

Pozzo IRMINIO 8 dir / 8 dir - OR

• Foro 8 1/2" per Slotted/Blank Liner 7" a circa 3115 mMD (~2447.2 m TVD)

Il liner di produzione 7", Slotted e Blank con swellable packers, verrà disceso a coprire la zona mineralizzata (F.ne Noto - Membro Mila).

Il liner non verrà cementato.

POZZO: IRMINIO 8 Dir / 8 Dir OR

Р	AG	82	2	DI	122				
AGGIORNAMENTI:									
0									

4.2.5. CASING DESIGN

Le seguenti tabelle riassumono il profilo di tubaggio, i minimi safety factor e le caratteristiche dei casing e delle connessioni scelte per il profilo di tubaggio del pozzo.

4.2.5.1 PROFILO DI TUBAGGIO

Irminio 8 dir

Diametro (in)	Nama	T '	Diametro	Profe	Peso del fango alla		
	Nome	Tipo	foro (in)	Hanger	Scarpa	Top Cemento	scarpa (sg) previsto
24 1/2"	Conductor	Casing	28	9.20	200.0	13.20	1.00
18 5/8"	Surface	Casing	23	9.20	856.0	13.20	1.08
13 3/8"	Intermediate	Casing	16	9.20	1714.0	1050.0	1.45
9 5/8"	Production	Casing	12.25	9.20	2368.0	1900.0	1.60

Irminio 8 dir / 8 DIR-Or

7" Production Liner	8.5 2320.	0 3159.0	1.10
---------------------	-----------	----------	------

Il Liner 7", parte slotted e parte blank, non verrà cementato.

4.2.5.2 SAFETY FACTORS

Irminio 8 dir

	CASING DATA					BURST			COLLAPSE				TENSION			
Diameter	Grade	Weight	from	to	Stress	Yield csg	S.F.	S.F.	Stress	Yield csg	S.F.	S.F.	Stress	Yield csg	S.F.	S.F.
inch		lb/ft	m	m	Kg/cm2	Kg/cm2		request	Kg/cm2	Kg/cm2	Biax.stres.	request	ton	ton		request
18 5/8	K 55	99	0	856	140.0	181.4	1.30	1.05	47.1	67.5	1.34	1.10	332.0	710.3	2.14	1.70
13 3/8	N 80	68	0	1714	183.2	355.2	1.94	1.10	124.3	161.3	1.25	1.10	250.3	708.7	2.83	1.70
9 5/8	N 80	47	0	1750	206.2	483.3	2.34	1.10	278.8	335.4	1.19	1.10	216.5	492.7	2.28	1.70
9 5/8	N 80	53.5	1750	1950	135.0	557.5	4.13	1.10	310.5	465.4	1.19	1.10	125.1	564.3	4.51	1.70
9 5/8	Cr13-L 80	53.5	1950	2368	107.8	557.5	5.17	1.10	369.0	465.4	1.26	1.10	117.3	564.3	4.81	1.70

Il casing 9 5/8" è stato verificato positivamente anche alle condizioni di perforazione

Irminio 8 dir/8 dir - Or

	CASING DATA					BURS	ST		COLLAPSE TENSION					NC		
Diameter	Grade	Weight	from	to	Stress	Yield csg	S.F.	S.F.	Stress	Yield csg	S.F.	S.F.	Stress	Yield csg	S.F.	S.F.
inch		lb/ft	m	m	Kg/cm2	Kg/cm2		request	Kg/cm2	Kg/cm2	Biax.stres.	request	ton	ton		request
7	Cr13-L 80	29	2320	3115	#N/D	577.0	#N/D	1.10	313.2	499.0	1.15	1.10	129.6	308.0	2.38	1.70

POZZO: IRMINIO 8 Dir / 8 Dir OR

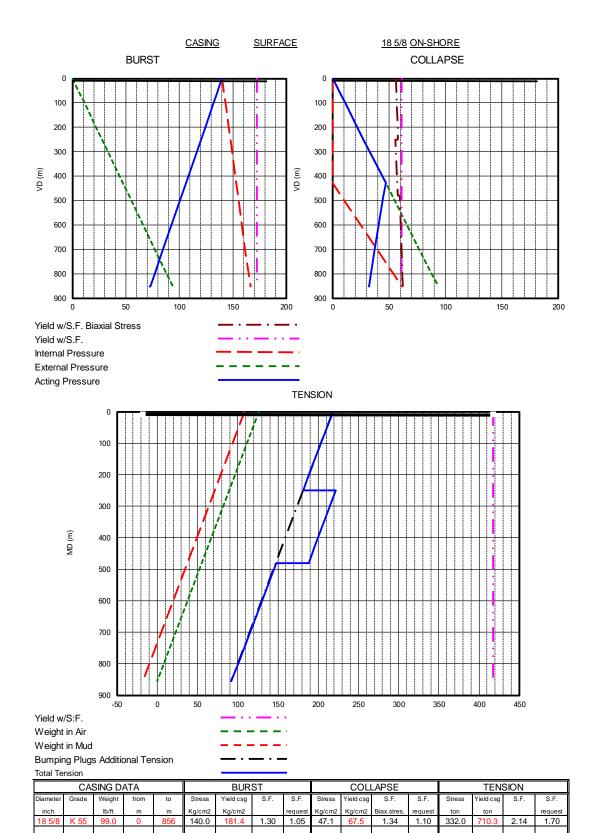
Р	AG	83	3 D	I	122	
AGG	Ole	R٨	IAM	E١	NTI:	
0						

4.2.5.3 CALCOLI CASING DESIGN

CASING SURFACE 18 5/8 ON-SHORE

BURST

Fracture Gradient at Shoe Fracture Pressure at Shoe	Kg/cm ² /10m Kg/cm ²	1.95 166.4
Internal Pressure at Well Head Internal Pressure at Shoe	Kg/cm ² Kg/cm ²	140.0 166.4
External Pressure at Well Head External Pressure at Shoe	Kg/cm ² Kg/cm ²	0.0 93.9
Acting Pressure at Well Head Acting Pressure at Shoe	Kg/cm ² Kg/cm ²	140.0 72.5
COLLAPSE		
Internal Casing S.G. Fluid (Air=0)	Kg/I	0.00
Mud Level Dropped at	m K: //	428
Mud Density During Run Casing	Kg/l Kg/l	1.10 1.45
Maximum Mud Density to Next Phase Internal Pressure at Mud Dropped Level	Kg/cm ²	0.0
Internal Pressure at Well Head	Kg/cm ²	0.0
Internal Pressure at Shoe	Kg/cm ²	61.7
External Pressure at Mud Dropped Level	Kg/cm ²	47.1
External Pressure at Well Head	Kg/cm ²	0.0
External Pressure at Shoe	Kg/cm ²	93.9
Acting Pressure at Well Head	Kg/cm ²	0.0
Acting Pressure at Mud Dropped Level	Kg/cm ²	47.1
Acting Pressure at Shoe	Kg/cm ²	32.2
<u>TENSION</u>		
Weight in Air	ton	126.1
Buoiancy Factor		0.9
Weight in Mud	ton	108.4
Pressure at Bumping Plugs	Kg/cm ²	70.0
Additional Tension + Bumping Plugs	ton	109.9
Well Head Tension	ton	218.3
Maximum Tension	ton	332.0


	CASING DATA					BUR:	ST		COLLAPSE			TENSION				
Diameter	Grade	Weight	from	to	Stress	Yield csg	S.F.	S.F.	Stress	Yield csg	S.F.	S.F.	Stress	Yield csg	S.F.	S.F.
inch		lb/ft	m	m	Kg/cm2	Kg/cm2		request	Kg/cm2	Kg/cm2	Biax.stres.	request	ton	ton		request
18 5/8	K 55	99.0	0	856	140.0	181.4	1.30	1.05	47.1	67.5	1.34	1.10	332.0	710.3	2.14	1.70

POZZO: IRMINIO 8 Dir / 8 Dir OR

PAG 84 DI 122

AGGIORNAMENTI:

							Ī
							Ī
							Ī

POZZO: IRMINIO 8 Dir / 8 Dir OR

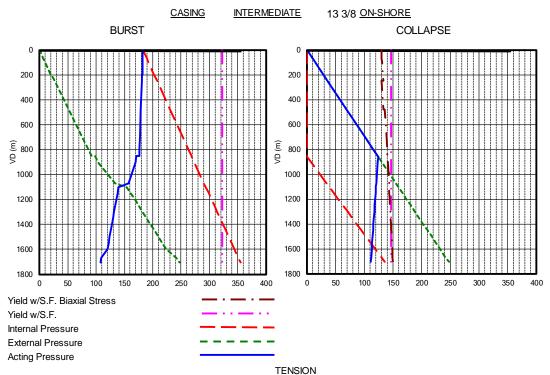
P	AG	8	5 D)I	122
AGC	SIO	R۱	IAN	1E1	NTI:
0					

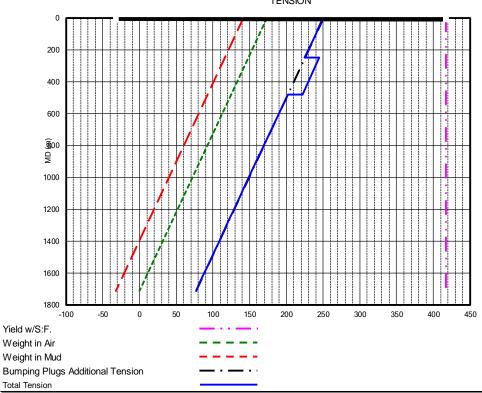
CASING INTERMEDIATE 13 3/8 ON-SHORE

BURST

Formation Fluid Density	Kg/l	0.30
Fracture Gradient at Shoe	Kg/cm ² /10m	2.08
Fracture Pressure at Shoe	Kg/cm ²	355.0
Tradition Tressure at Chief	Ng/cm	000.0
Internal Pressure at Well Head	Kg/cm ²	182.3
Internal Pressure at Shoe	Kg/cm ²	355.0
	rtg/om	
External Pressure at Well Head	Kg/cm ²	0.0
External Pressure at Shoe	Kg/cm ²	247.5
	J	
	_	
Acting Pressure at Well Head	Kg/cm ²	182.3
Acting Pressure at Shoe	Kg/cm ²	107.5
COLLAPSE		
OOLEAI SE		
Mud Dropped Level	m	857
Mud Density During Run Casing	Kg/l	1.45
Maximum Mud Density to Next Phase	Kg/l	1.60
Internal Pressure at Well Head	Kg/cm ²	0.0
Internal Pressure at Shoe	Kg/cm ²	136.0
	ū	
External Pressure at Mud Dropped Level	Kg/cm ²	124.3
External Pressure at Well Head	Kg/cm ²	0.0
External Pressure at Shoe	Kg/cm ²	247.5
Acting Pressure at Well Head	Kg/cm ²	0.0
Acting Pressure at Mud Dropped Level	Kg/cm ²	124.3
Acting Pressure at Shoe	Kg/cm ²	111.5
TENSION		
<u> 121101011</u>		
Weight in Air	ton	173.5
Buoiancy Factor		0.82
Weight in Mud	ton	141.4
Pressure at Bumping Plugs	Kg/cm ²	140.0
Additional Tension + Bumping Plugs	ton	108.9
Well Head Tension	ton	250.3
Maximum Tension	ton	250.3

	CASING DATA					BUF	RST		COLLAPSE			TENSION				
Diameter	Grade	Weight	from	to	Stress	Yield csg	S.F.	S.F.	Stress	Yield csg	S.F.	S.F.	Stress	Yield csg	S.F.	S.F.
inch		lb/ft	m	m	Kg/cm2	Kg/cm2		request	Kg/cm2	Kg/cm2	Biax.stres.	request	ton	ton		request
13 3/8	N 80	68	0	1714	183.2	355.2	1.94	1.10	124.3	161.3	1.25	1.10	250.3	708.7	2.83	1.70




POZZO: IRMINIO 8 Dir / 8 Dir OR

PAG **86** DI 122

AGGIORNAMENTI:

0

	CASING DATA					BUF	RST		COLLAPSE			TENSION				
Diameter	Grade	Weight	from	to	Stress	Yield csg	S.F.	S.F.	Stress	Yield csg	S.F.	S.F.	Stress	Yield csg	S.F.	S.F.
inch		lb/ft	m	m	Kg/cm2	Kg/cm2		request	Kg/cm2	Kg/cm2	Biax.stres.	request	ton	ton		request
13 3/8	N 80	68	673	1714	183.2	355.2	1.94	1.10	124.3	109.0	1.25	1.10	250.3	708.7	2.83	1.70

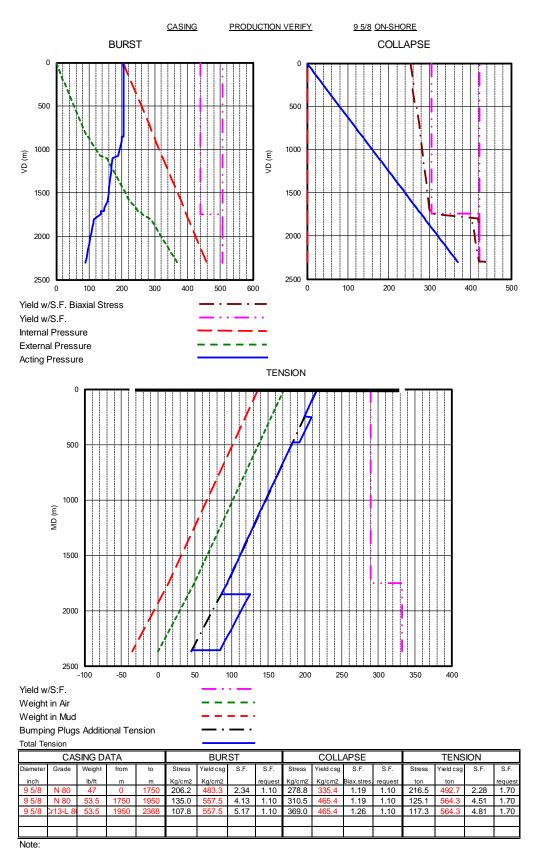
POZZO: IRMINIO 8 Dir / 8 Dir OR

F	PAG	87	7 DI	122
AGC	SIO	R۱	IAM	ENTI:
0				

CASING PRODUCTION VERIFY 9 5/8 ON-SHORE

BURST	
	I
	ı

<u>BUR</u>	<u>51</u>	
Packer Depth	m	1980
Fluid Formation Density	Kg/l	0.30
Pore Gradient at TD	Kg/cm2/10m	1.10
	_	
Pore Pressure at TD	Kg/cm 2	290.5
Internal Pressure at Packer Depth	Kg/cm 2	217.8
Internal Pressure at Well Head	Kg/cm 2	205.1
Internal Pressure at Shoe	Kg/cm 2	#N/D
External Pressure at Well Head	Kg/cm 2	0.0
External Pressure at Shoe	Kg/cm 2	369.0
External Freedom at Shoc	rtg/om 2	000.0
External Pressure at Packer	Kg/cm 2	316.8
External Freedom at Factor	rtg/om 2	010.0
Acting Pressure at Well Head	Kg/cm 2	205.1
Acting Pressure at Shoe	Kg/cm 2	#N/D
Abung Freedore at erioc	rtg/om 2	#1 4 15
Acting Pressure at Packer Depth	Kg/cm 2	-99.0
Abung Freedure at Facilities Deput	rtg/om 2	33.0
COL	LAPSE	
Packer Fluid Density	Kg/l	1.10
Mud Dropped Level	m	2306
Mud Density During Run Casing	Kg/l	1.60
Well Fluid Density During Set Packer	Kg/l	1.10
Well I laid Delisity During Set Facker	Rg/I	1.10
Internal Pressure at Well Head	Kg/cm 2	0.0
Internal Pressure at Shoe	Kg/cm 2	0.0
iliterilai Fressure at Shoe	Rg/cm 2	0.0
External Pressure at Mud Dropped Level	Kg/cm 2	369.0
External Pressure at Well Head	Kg/cm 2	0.0
External Pressure at Shoe	J	369.0
External Fressure at Shoe	Kg/cm 2	309.0
Acting Pressure at Well Head	Kg/cm 2	0.0
•	Kg/cm 2	369.0
Acting Pressure at Mud Dropped Level	_	
Acting Pressure at Shoe	Kg/cm 2	369.0
TEN	SION	
Weight in Air	<u>SION</u> ton	171.6
3	tori	_
Buoiancy Factor		0.8
Weight in Mud	ton	126.6
Weight in Mud	ton	136.6
Pressure at Bumping Plugs	Kg/cm 2	210.0
Additional Tension + Bumping Plugs	ton	79.9
Well Head Tension	ton	216.5
Maximum Tension CASING DATA BURST	ton COLLARSE	216.5
LASINI-LIALA II BIIDCI	II COLLARSE	


	Waximum Tension							ton			210.0					
	CASING DATA BURST						COLLAPSE			TENSION						
Diameter	Grade	Weight	from	to	Stress	Yield csg	S.F.	S.F.	Stress	Yield csg	S.F.	S.F.	Stress	Yield csg	S.F.	S.F.
inch		lb/ft	m	m	Kg/cm2	Kg/cm2		request	Kg/cm2	Kg/cm2	Biax.stres.	request	ton	ton		request
9 5/8	N 80	47	0	1750	206.2	483.3	2.34	1.10	278.8	335.4	1.19	1.10	216.5	492.7	2.28	1.70
9 5/8	N 80	53.5	1750	1950	135.0	557.5	4.13	1.10	310.5	465.4	1.19	1.10	125.1	564.3	4.51	1.70
9 5/8	Cr13-L 80	53.5	1950	2368	107.8	557.5	5.17	1.10	369.0	465.4	1.26	1.10	117.3	564.3	4.81	1.70

POZZO: IRMINIO 8 Dir / 8 Dir OR

PAG 88 DI 122

AGGIORNAMENTI:

Il casing 9 5/8" è stato verificato positivamente anche alle condizioni di casing intermedio per la perforazione delle fasi da 8 $\frac{1}{2}$ "

POZZO: IRMINIO 8 Dir / 8 Dir OR

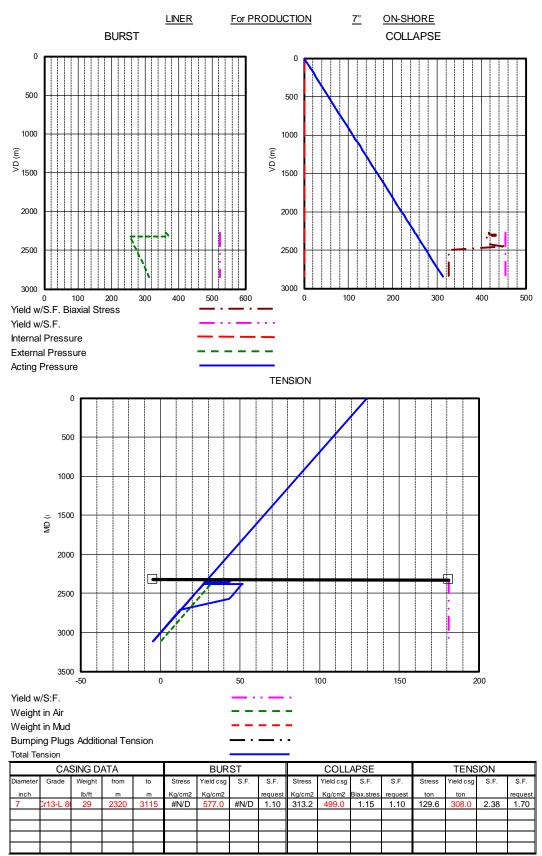
PAG	89	DI	122
AGGIO	RNA	ME	NTI:
0			

LINER For PRODUCTION 7" ON-SHORE

	BURST		
Packer Depth		m	1980
Fluid Formation Density		Kg/l	0.3
Pore Gradient at TD		Kg/cm2/10m	1.10
		3	
Pore Pressure at TD		Kg/cm 2	290.5
Internal Pressure at Packer Depth		Kg/cm 2	217.8
Internal Pressure at Well Head		Kg/cm 2	205.1
Internal Pressure at Shoe		Kg/cm 2	518.3
Internal Pressure at Top Liner		Kg/cm ²	#N/D
External Pressure at Well Head		Kg/cm 2	0.0
External Pressure at Shoe		Kg/cm 2	313.2
External Pressure at Top Liner		Kg/cm ²	363.2
External Pressure at Packer		Kg/cm 2	316.8
Acting Pressure at Well Head		Kg/cm 2	205.1
Acting Pressure at Shoe		Kg/cm 2	205.1
Acting Pressure at Top Liner		Kg/cm ²	#N/D
Acting Pressure at Packer Depth		Kg/cm 2	-99.0
	COLLABSE		
Backer Fluid Density	COLLAPSE	Ka/l	1.10
Packer Fluid Density Mud Dropped Level		Kg/l m	3115
Mud Dropped Level Mud Density During Run Casing		Kg/l	1.10
, ,		Kg/l	1.10
Well Fluid Density During Set Packer		Rg/I	1.10
Internal Pressure at Well Head		Kg/cm 2	0.0
Internal Pressure at Shoe		Kg/cm 2	-29.5
Internal Pressure at Top Liner		Kg/cm ²	0.0
External Pressure at Mud Dropped Level		Kg/cm 2	342.7
External Pressure at Well Head		Kg/cm 2	0.0
External Pressure at Shoe		Kg/cm 2	313.2
External Pressure at Top Liner		Kg/cm ²	249.7
Acting Pressure at Well Head		Kg/cm 2	0.0
Acting Pressure at Mud Dropped Level		Kg/cm 2	342.7
Acting Pressure at Shoe		Kg/cm 2	342.7
Acting Pressure at Top Liner		Kg/cm ²	249.7
	TENSION		
Weight in Air	TENOIOTY	ton	34.3
Buoiancy Factor			0.9
			0.0
Weight in Mud		ton	29.5
Pressure at Bumping Plugs		Kg/cm 2	0.0
Additional Tension + Bumping Plugs		ton	0.0
Well Head Tension		ton	29.5
Maximum Tension		ton	129.6
CACINO DATA	IDCT	COLLADOE	

	CASING DATA BURST			COLLAPSE			TENSION									
Diameter	Grade	Weight	from	to	Stress	Yield csg	S.F.	S.F.	Stress	Yield csg	S.F.	S.F.	Stress	Yield csg	S.F.	S.F.
inch		lb/ft	m	m	Kg/cm2	Kg/cm2		request	Kg/cm2	Kg/cm2	Biax.stres.	request	ton	ton		request
7	Cr13-L 80	29	2320	3115	#N/D	577.0	#N/D	1.10	313.2	499.0	1.15	1.10	129.6	308.0	2.38	1.70
					-											

Note: Il LINER 7", parte blank e parte slotted,non verrà cementato



POZZO: IRMINIO 8 Dir / 8 Dir OR

PAG **90** DI 122

AGGIORNAMENTI:

0

AGGIORNAMENTI:

4.2.6. PROGRAMMA FANGO

Di seguito il programma fango, con le caratteristiche principali, per la perforazione del pozzo oggetto del presente programma.

CARATTERISTICHE E VOLUMI DEL FANGO

FASE	28"	23"	16"	12"1/4	8"1/2 PH	P&A PH	1/2" Dren	Compl
CASING/LINER	24"1/2	18"5/8	13"3/8	9"5/8			7"	_
Profondità MD m	200	856	1714	2368	2804	2378	3115	3115
Tipo di fango	FW	Biocompatibile	FW-KCL-	FW-KCL-	FW-PO	FW-PO	FW-PO	Brine KCI
		FW-PO	DEEPDRILL	DEEPDRILL				
Densità kg/l	1.00	1.08-1.1	1.2-1.45	1.45-1.6	1.08-1.1	1.08-1.1	1.08-1.1	1.05-1.1
Viscosità sec/l		40-50	50-55	50-55	40-45	40-45	40-45	
PV cps		ALAP	22-28	28-35	ALAP	ALAP	ALAP	
YP gr/100cm2		8-12	12-16	12-16	8-10	810	8-10	
Letture a 6/3 giri		>6/>4	>11/>9	>10/>8	>6/>4	>6/>4	>6/>4	
Gel 10 sec gr/100 cm2		2-4	3-5	4-6	3-5	3-5	3-5	
Gel 10 min gr/100 cm2		3-5	6-8	6-10	4-6	4-6	4-6	
pH		9.5-10	9.5-10	10.0-10.5	9.5-10	9.5-10	9.5-10	
Filtrato API @ 100 psi - cmc/30'		<7	<5	<4	<5	<5	<5	
Ca++ mg/l		<300	<200	<300	<200	<200	<200	
MBT Kg/mc		<20	<25	<30	<20	<20	<20	
LGS (Solidi perforazione) %		<4	<5	<5	<3	<3	<3	•

Р	AG	92	2	DI	122
AGG	Ol	R۱	IΑ	MEI	NTI:
0					

SAFETY STOCK ONSITE									
Product	Qua	ntity	Function						
BARITE	120	Ton	Weighting material						
AVACARB	60	Ton	Weighting agent CaCO3(8 1/2" section)						
VISCO XC 84	2	Ton	Xanthan Gum biopolymer – viscosifer						
SODIUM CARBONATE	1	Ton	Calcium treatment						
SODIUM BICARBONATE	1	Ton	Cement contamination treatment						
CAUSTIC SODA	1	Ton	Alkalinity Control						
EVOLUBE DPE	2	Ton	Lubricant						
POLICELL SL	1	Ton	Fluid loss reducer						
VISCO83 XLV	2	Ton	Fluid loss reducer						
SODA ASH	1	Ton	Calcium remover						
INTAFLOW	5	Ton	CaCO3 sized bridging agent (acidificable)						
GRANULAR F/M/C	6	Ton	Nut shell LCM (not acidifcable)						
AVAMICA F/C	4	Ton	MICA LCM (not acidificable)						
AVADEFOAM EV	4	Drums	Defoamer						
AVASIL	0.8	Ton	Defoamer						
PAC SuperLo – VISCO 83 XLV	2	Ton	Fluid loss control						
EVOLUBE DPE	1.794	Ton	Lubricant						
AVATENSIO LT	8	Drums	Stuck pipe pill with density <1.30 sg						
DE BLOCK'S LT	8	Drums	Stuck pipe pill with density > 1,3 sg						
AVAPOLYMER 5050	2	Ton	Encapsulator						
AVA LST MD	1.875	Ton	Sahle stabilizer – Liquid Soltex						
AVAPOLYOIL	20	Drums	Shale stabilizer						
AVAPERM NF	1.6	Ton	clay inhibitor						
AVALIG NE	2,3	Ton	Humalite – Fluid Loss Control						
AVAPERM NF	12	Drums	Ammine – Shale Stabilizer						
AVACID 50	4	Drums	Biocide						
AVAGRAPH	3	Ton	Graphite – bridging agent (not acidifcable)						
DEOXI SS	1	Ton	H2S Scavenger						
NEWSCAV HS	0.8	Ton	H2S Scavenger						
INTASOL F/M/C	3	Ton	CaCO3 LCM						
DRILL BEADS	1	Ton	Solid lubricant						
AVAWASH WBM	8.0	Ton	Casing cleaner						
POTASSIUM CHLORIDE (KCL)	10	Ton	K+ ion source & salt for completion fluid						

POZZO: IRMINIO 8 Dir / 8 Dir OR

F	PAG	93	3	DI	122
AGO	SIO	R۱	IAI	ИΕΙ	NTI:
0					

4.2.7. PROGRAMMA DI CEMENTAZIONE

4.2.7.1 CP 24 1/2"

CEMENTAZIONE CP 24 1/2 a m 200 MD 200 VD RISALITA CEMENTO a m 13 MD 13 VD

m 0 $\underline{\hspace{1cm}}$ P.T.R.

TOC B ~ 150 m

CSG 24 1/2
m 200

C. Dec	k								
	EQUIPAGO	GIAMENT() CAS	SING					
	Tipo Centr.	Spacing		da m	a m	Centraliz	Tipo	Stop Col	Raschiat.
	1C1		12.5	200	150	4	Ion Welde	8	
	1C4		50	150	13	3	on Welde	6	
								0	
					TOTALE	7		14	0

VOLUME	FORO				
	esterno	interno	l/m	m	Volume m ³
Intercap.	28	24 1/2	93.2	185	17.2
Intercap.	30	24 1/2	93.2	2	0.2
Shoe-collar		24 1/2	273.9	0	0.0
Maggiorazio	one su foro scope	rto	100	%	17.2
			VOLUM	IE TOTAI	34.7

VOLUME	TOTALE M	IALTA "A"	m ³	25.4		
malta a dens	ità =	1.50	kg/l	Extend		
CEMENTO	Classe "G"	ton/m ³	0.71	x m ³	25.4 ton	18.0
Extend		4.0	% sul c	emento	ton	0.7
ACQUA	FW	l/ton	1053	x ton	18.0 m ³	19.0
CARATTER Tempo di P	ISTICHE: ompabilità ric	chiesto min	ВІ	HST	SPACER ((kg/l)
	0		(0	1	

Tempo di P	ompabilità 0	richiesto min	BHST 0	SPACER (kg/l)
CARATTER	ISTICHE:				
ACQUA	FW	1/ton	440.0 x ton	12.3 m ³	5.4
		0.0	% sul cemento	ton	0.0
CEMENTO	G	ton/m ³	$1.3 \text{ x} \text{ m}^3$	9.3 ton	12.3
malta a dens	ità =	1.9	kg/l		0
VOLUME T	OTALE M	IALTA "B" m ³	9.3		

NOTE: Cementazione con stinger

Malte, tempo di pompabilità, W.O.C., materiali ed attrezzatura da definire in fase operativa Le due malte saranno a presa differenziata

In caso di mancata risalita di malta a giorno è previsto la ricementazione dall'alto

POZZO: IRMINIO 8 Dir / 8 Dir OR

Р	AG	94	4	DI	122			
AGGIORNAMENTI:								
0								

4.2.7.2 CASING SUPERFICIALE 18 5/8"

CEMENTAZIONE CSG 18 5/8 a m 856 MD 853.5 VD RISALITA CEMENTO a m 13 MD 13 VD

m 0 P.T.R.

13 C. Deck

CSG 24 1/2
m 200

TOC malta "B"
m 750

csg 18 5/8
m 856

EQUIPAGGIAMENTO CASING								
Tipo Centr.	Spacing	da m	a m	Centralizz.	Tipo	Stop Collar	Raschiat.	
1C1	12.50	856	750	8	Ion Welde	17		
1C2	25.00	750	200	22	Ion Welde	44		
1C4	50.00	100	13	2	Positive	4		
			TOTALE	32		65	0	

VOLUME FO	RO				
	esterno	interno	l/m	m	Volume m ³
Intercap.	23	18 5/8	92.2	656	60.5
Intercap.	24 1/2	18 5/8	98.1	187	18.3
Shoe-collar		18 5/8	175.8	12.5	2.2
Maggiorazione	su foro scope	rto	100	%	60.5
VOLUME TOTALE					

VOLUME 1	VOLUME TOTALE MALTA "A" m ³			122				
malta a dens	sità =	1.50	kg/l	Exte	nder			
CEMENTO	Classe G	ton/m ³	0.7	х	m ³	122.0	ton	86.8
extender		5.0	% sul cemento				ton	0.4
ACQUA	FW	l/ton	1076.0	X	ton	86.8	m ³	93.4
CARATTER	ISTICHE:							
Tempo di Pompabilità richiesto min		BHST			SPACER (kg/l)			
300		50			1.4			

VOLUME T	VOLUME TOTALE MALTA "B" m ³			19.5				
malta a dens	sità =	1	.9 kg/l					0
CEMENTO	Classe G	ton/m ³	1.32	x m ³	20		ton	26
		0 0	.0 % sul cen	ento		ton		0.0
ACQUA	FW	l/ton	ton 440.0 x ton		26		m ³	11
CARATTER	ISTICHE:							
Tempo di Pompabilità richiesto min		BH	BHST			SPACER (kg/l)		
200		5	0	1.4				

NOTE: Malte confezionate e pompate in diretta.

Malte, tempo di pompabilità, W.O.C., materiali ed attrezzatura da definire in fase operativa Le due malte saranno a presa differenziata

POZZO: IRMINIO 8 Dir / 8 Dir OR

P	PAG	95	DI	122				
AGGIORNAMENTI:								
0								

4.2.7.3 CASING INTERMEDIO 13 3/8"

CEMENTAZIONE CSG 13 3/8 a m 1714 MD 1711.5 VD RISALITA CEMENTO a m 1050 MD 1047 VD

m 0 <u>P.T.R</u>.

CSG 24 1/2 m 200 csg 18 5/8 m 856 TOC 13 3/8 m 1050

TOC malta "B" m 1600 csg 13 3/8 m 1714

C. Decl	k									
	EQUIPAGGIAMENTO CASING									
	Tipo Centr.	Spacing	da m	a m	Centralizz.	Tipo	Stop Collar	Raschiat.		
	1C1	12.50	1714	1614	8	Non Weld	16			
	1C2	25.00	1614	814	32	Non Weld	64			
	0		0				0			
				TOTALE	40		80	0		

VOLUME FOI	RO				
	esterno	interno	l/m	m	Volume m ³
Intercap.	16	13 3/8	38.92	664	25.8
Intercap.	18 5/8	13 3/8	66.6	0	0.0
Shoe-collar		13 3/8	78.08	25	2.0
Maggiorazione	%	12.9			
VOLUME TOTALE					

VOLUME T	OTALE MALT	'A "A" m ³		34			
malta a densi	ità =	1.50	kg/l	Extender			
CEMENTO	Classe G	ton/m ³	0.7	x m ³	34.1	ton	24.3
extender		5.0	% sul ce	mento		ton	0.1
ACQUA	FW	l/ton	1076.0	x ton	24.3	m ³	26.1
CARATTER	ISTICHE:						
Tempo di Pompabilità richiesto min		B	HST	SPACER (kg/l)			
300				72 .	1 75		

VOLUME T	VOLUME TOTALE MALTA "B" m ³			6.7				
malta a densi	tà =	1.9	kg/l					0
CEMENTO	Classe G	ton/m ³	1.32	x m ³	7		ton	9
		0.0	% sul cen	ento		ton		0.0
ACQUA	FW	l/ton	440.0	x ton	9		m ³	4
CARATTERI	STICHE:							
Tempo di Pompabilità richiesto min		BH	SPACER (kg/l)					
200			7:	1.75				

P. fratturazione	kg/cm ² /10r	2.08 x m	1712	kg/cm ²	355.8
P. idr. a fine spiazz.	somma caric	hi idrostatici	kg/cm ²	260.6	
P. Risultante	P.fratt P.ic	lr. a fine spiazz.	kg/cm ²	95.2	
P. formazione	kg/cm ² /10r	1.30 x m	1712	kg/cm ²	222.5
P. idr. durante WOC	Somma carich	i idr. con malta a 1kg/c	$m^2/10m$	kg/cm ²	222.8

Situazione di OVERBALANCE di 0.3 kg/cm²

Margine alla fratturazione 95.2 atm al fondo

Margine alla fratturazione 39.3 atm a m 856 VD - Gfr 1.95 atm/10m

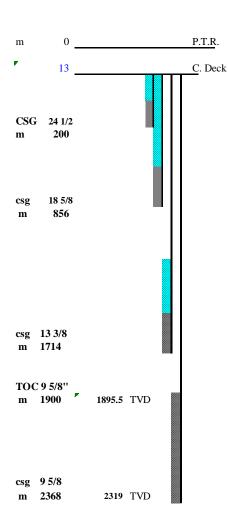
Margine alla fratturazione atm a m VD - Gfr atm/10m

- Gradiente di fratturazione al fondo 2.08 atm/10m

- Gradiente con malta all'annulus 1.52 atm/10m
- Gradiente durante WOC 1^ malta in presa 1.30 atm/10m
- Gradienti dei pori previsto 1.30 atm/10m
- Gradiente durante WOC 2^ malta in presa 1.32 atm/10m

NOTE: Malte confezionate e pompate in diretta.

 $Malte, tempo \ di \ pompabilit\`a, \ W.O.C., \ materiali \ ed \ attrezzatura \ da \ definire \ in \ fase \ operativa$



POZZO: IRMINIO 8 Dir / 8 Dir OR

Р	AG	96	ĵ	DI	122			
AGGIORNAMENTI:								
0								

4.2.7.4 CASING DI PRODUZIONE 9 5/8"

CEMENTAZIONE CS 9 5/8 a m 2368.0 MD 2319.0 VD RISALITA CEMENTO a m 1900.0 MD 1895.5 VD

EQUIPAGGIAMENTO CASING										
Tipo Centr.	Γipo Centr. Spacing da		a m	Centralizz. Tipo		Stop Collar	Raschiat			
1C1	12.5	2368	2268	8	SpiraGliders	16				
1C4	50	2268	1918	7	SpiraGlider	14				
					0	0				
			TOTALE	15		30	0			

VOLUM	esterno	interno	l/m	m	Volume m ³		
Intercap.	12 1/4	9 5/8	28.94	468	13.5		
Intercap.	13 3/8	9 5/8	30.98	0.0	0.0		
Shoe-coll	ar	9 5/8	38.19	38	1.5		
Maggiora	zione su foro so	coperto	30	30 %			
		VO	VOLUME TOTALE				

VOLUME TOTALE	MALTA "A" m	³ 19.1			
malta a densità =	1.9	kg/l			
CEMENTO G	ton/m ³	1.3 x m ³	19.1	ton	25.2
	0.0	% sul cemento		ton	0.0
ACQUA FW	l/ton	440.0 x ton	25.2	m ³	11.1
CARATTERISTICHE Tempo di Pompabilit 300		BHST 92	SPA)	

Tempo di Pompabilità richiesto min			BHS 92.		SI	PACER (kg 1.70	/l)	
CARATTERISTICHE								
ACQUA	0 l/ton		0.0	x ton	0.00	1	m ³	0.00
	0	0.0 %	sul ceme	ento		ton		0.00
CEMENTO	0 ton/m ³		0.00	x m ³	0.00	te	on	0.00
malta a densità =		0 kg	/1					(
VOLUME TOTALE	MALTA "B"	m ³		0.0				

P. fratturazione	$kg/cm^2/10m$ 2.02 x m	2319 kg/cm ²	467.7
P. idr. a fine spiazz.	somma carichi idrostatici	kg/cm ²	385.2
P. Risultante	P.fratt P.idr. a fine spiazz.	kg/cm ²	82.5
P. formazione	$kg/cm^2/10m$ 1.03 x m	2319 kg/cm ²	238.9
P. idr. durante WOC	Somma carichi idr. con malta a 1kg/cm²/10m	kg/cm ²	347.1

P. Idr. durante WOC	Somma carichi idr. con malta a 1kg/cm²/10m kg/cm²					
Situazione di	OVERBALANCE di			108 kg/cm ²		
Margine alla fratturazione	82 atm al fondo					
Margine alla fratturazione	86 atm a m	1714	VD - Gfr	2.079	atm/10m	
Margine alla fratturazione	atm a m		VD - Gfr		atm/10m	
- Gradiente di fratturazione	al fondo			2.02 atm/10m		
- Gradiente con malta all'ann	nulus			1.66 atm/10m		

- Gradiente durante WOC
- Gradienti dei pori previsto

1.50 atm/10m
1.03 atm/10m
atm/10m

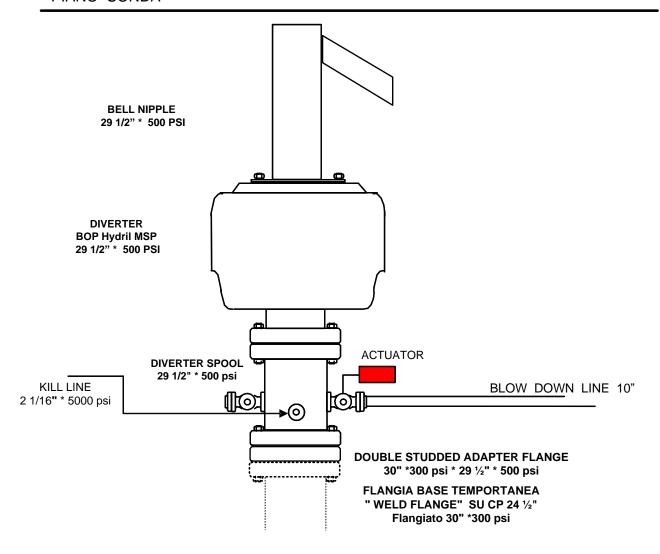
NOTE: Malte, tempo di pompabilità, W.O.C., materiali ed attrezzatura da definire in fase operativa

Р	AG	97	7	DI	122
AGG	OIG	R۱	lΑ	MEI	NTI:
0					

1275	IRMINIO 8 DIR / 8 DIR-OR	- I INFR DI PRODITIONE	7"
4.2.7.3		- LINEN DI FNODUZIONE	- /

Il liner, parte blank e parte slotted, non sarà cementato.

Non si esclude l'installazione di swellable packers per parzializzare le zone produttive.

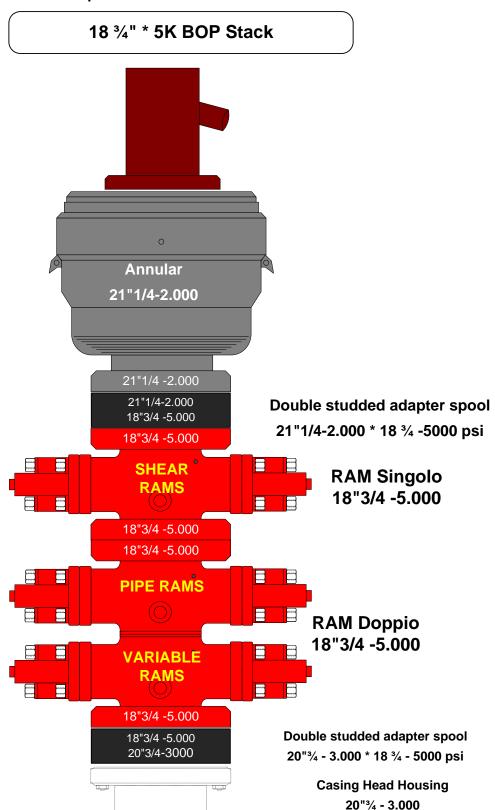


AGGIORNAMENTI:

4.2.8. SCHEMA BOP

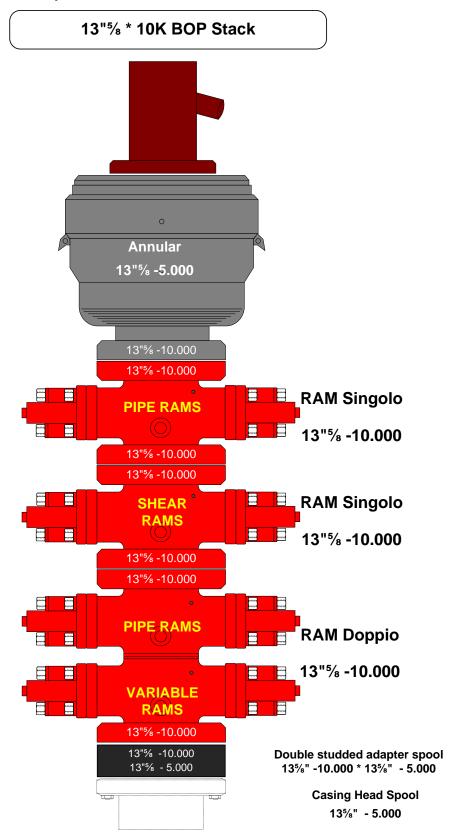
Schema diverter stack per fase 23"

PIANO SONDA



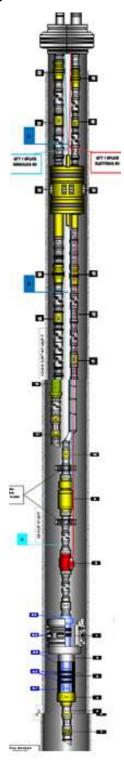
POZZO: IRMINIO 8 Dir / 8 Dir OR

Р	AG	99) D	I	122
AGO	OIG	R١	IAN	ΙΕΙ	NTI:
0					


Schema BOP stack per fase 16"

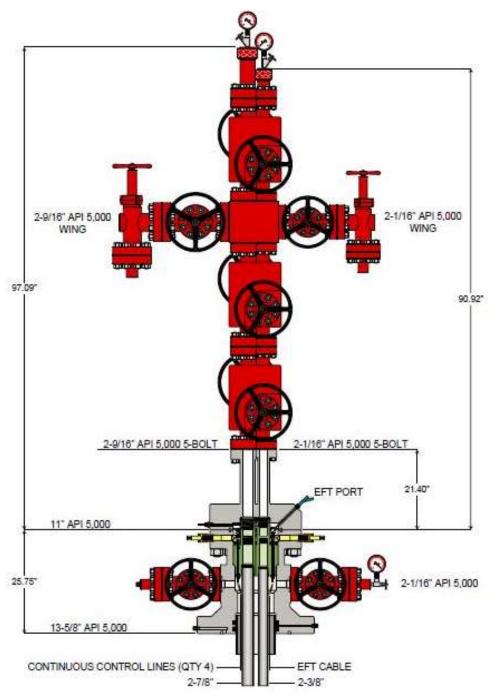
AGGIORNAMENTI:

Schema BOP stack per le fasi 12 1/4" e 8 1/2"

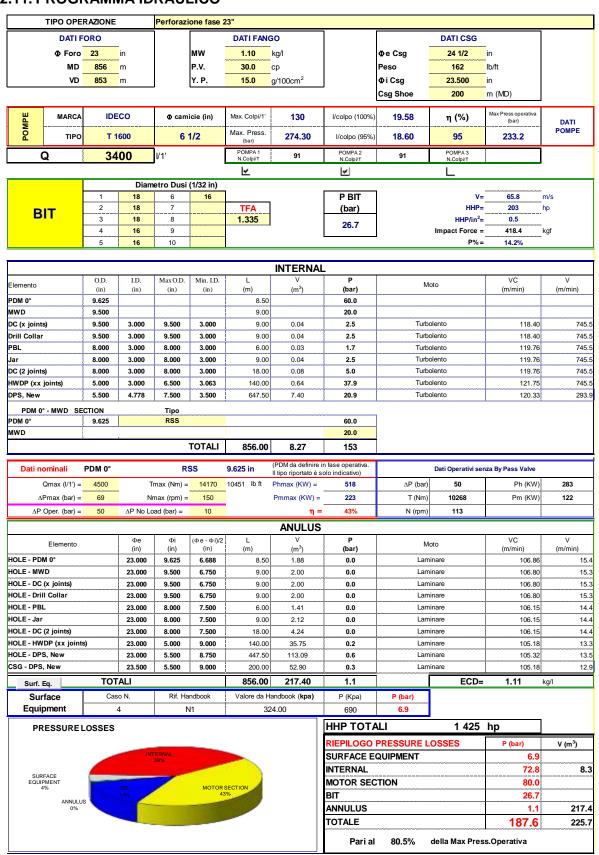


PAG **101** DI 122

AGGIORNAMENTI:

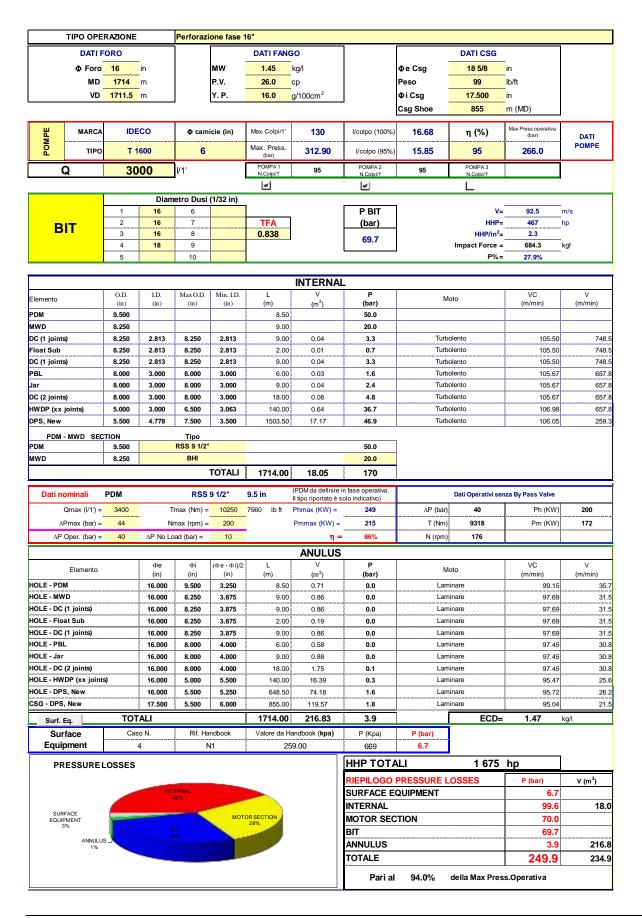

4.2.9. SCHEMA DI COMPLETAMENTO

P.A	AG	10	2	DI	122
AGG	SIC	۱R	ΙΑΙ	MEI	NTI:
0					


4.2.10. SCHEMA TESTA POZZO

AGGIORNAMENTI:

4.2.11. PROGRAMMA IDRAULICO



PAG **104** DI 122

AGGIORNAMENTI:

0

PAG **105** DI 122

AGGIORNAMENTI:

	TIPO OPE	RAZIONE		Perforaz	ione fase 1	12 1/4"						
	DATI F	ORO				DATI FANO	30			DATI CSG		
	Φ Foro	12 1/4	in		MW	1.60	kg/l		Φe Csg	13 3/8	in	
	MD	2368	m		P.V.	30.0	ср		Peso	68	lb/ft	
	VD	2318.6	m		Y. P.	15.0	g/100cm ²		Φi Csg	12.260	in	
									Csg Shoe	1714	m (MD)	
뷥	MARCA	IDE	со	Φ cam	icie (in)	Max. Colpi/1'	130	l/colpo (100%)	16.68	η (%)	Max Press operativa (bar)	DATI
POMPE	TIPO	T 1	600	6		Max. Press.	312.90	l/colpo (95%)	15.85	95	266.0	POMPE
(Q	26	00	l/1'		POMPA 1 N.Colpi/1'	82	POMPA 2 N.Colpi/1'	82	POMPA 3 N.Colpi/1'		
						~		✓				
		- 1		etro Dusi		1		D DIT	7	V=	64.6	
_		2	16 16	6 7	14	TFA		P BIT (bar)		v= HHP=		m/s hp
В	IT	3	16	8		1.040		, ,		HHP/in ² =	1.8	
		4	14	9			!	37.4		Impact Force =	456.7	kgf
		5	14	10						P%=	16.6%	
							INTERNA					
Elemento		O.D.	I.D.	Max O.D.	Min. I.D.	L	V	Р	N	1oto	VC	V
PDM		(in) 9.500	(in)	(in)	(in)	(m) 8.50	(m ³)	(bar) 50.0			(m/min)	(m/min)
MWD		8.250			 	9.00		20.0				
DC (1 joints	:s)	8.250	2.813	8.250	2.813	9.00	0.04	2.8	Turk	oolento	97.90	648.7
Float Sub		8.250	2.813	8.250	2.813	2.00	0.01	0.6	Turt	oolento	97.90	648.7
DC (1 joints	:s)	8.250	2.813	8.250	2.813	9.00	0.04	2.8		oolento	97.90	648.7
PBL		8.000	3.000	8.000	3.000	6.00	0.03	1.4		oolento	98.08	570.1
Jar	-1	8.000	3.000	8.000	3.000	9.00	0.04	2.1		oolento	98.08	570.1
DC (2 joints HWDP (xx		8.000 5.000	3.000 3.000	8.000 6.500	3.000 3.063	18.00 140.00	0.08 0.64	4.1 31.6		oolento oolento	98.08 99.44	570.1 570.1
DPS, New	Jonnes	5.500	4.778	7.500	3.500	2157.50	24.65	57.9	·	oolento	98.47	224.8
	- MWD SEC	<u> </u>			1							
PDM	- WIVVD SEC	9.500		Tipo 9 1/2" RSS	3			50.0	1			
MWD		8.250		BHI		MWD+LWD		20.0				
					TOTALI	2368.00	25.52	173				
Dati no	ominali	PDM		9 1/2	' RSS	9.5 in	(PDM da definire Il tipo riportato è s			Dati Operativi se	nza By Pass Valve	
	Qmax (I/1') =	3400	Т	max (Nm) =	10250	7560 lb ft	Phmax (KW) =	249	ΔP (bar)	40	Ph (KW)	173
Δ.					200	T .	Pmmax (KW) =		•	·		
	Pmax (bar) =	44	Nı	max (rpm) =	200			215	T (Nm)	9318	Pm (KW)	149
	Pmax (bar) = Oper. (bar) =	44 40		max (rpm) = oad (bar) =	10		η =		T (Nm)	9318	Pm (KW)	149
							η = ANULUS				Pm (KW)	149
			ΔP No Lo	oad (bar) =	10 (Φe - Φi)/2	L	ANULUS	86% P	N (rpm)		VC	V
ΔΡ	Oper. (bar) =		ΔP No Lo	oad (bar) = Φi (in)	10 (Φe - Φi)/2 (in)	(m)	ANULUS (m³)	P (bar)	N (rpm)	153	VC (m/min)	V (m/min)
	Oper. (bar) = Elemento		ΔP No Lo	oad (bar) =	10 (Φe - Φi)/2		V (m³) 0.26	86% P	N (rpm)	153	VC	V (m/min) 85.8
ΔP	Oper. (bar) = Elemento M VD		ΔΡ No Lo Φe (in) 12.250	Φi (in) 9.500	10 (Φe - Φi)/2 (in) 1.375	(m) 8.50	V (m³) 0.26	P (bar)	N (rpm) N Lar Lar	153 Noto	VC (m/min) 106.57	V
HOLE - PDI HOLE - MW HOLE - DC HOLE - Flo	Oper. (bar) = Elemento M VD (1 joints) vat Sub		Φe (in) 12.250	Φi (in) 9.500 8.250	10 (Φe - Φi)/2 (in) 1.375 2.000	(m) 8.50 9.00	V (m³) 0.26 0.37	P (bar) 0.1 0.1	N (rpm) N Lar Lar Lar	153 Noto ninare ninare	VC (m/min) 106.57 98.77	V (m/min) 85.8 62.6
HOLE - PDI HOLE - MW HOLE - DC HOLE - FIO HOLE - DC	Oper. (bar) = Elemento M VD (1 joints) part Sub (1 joints)		Φe (in) 12.250 12.250 12.250 12.250 12.250	Φi (in) 9.500 8.250 8.250 8.250 8.250	10 (Φe - Φi)/2 (in) 1.375 2.000 2.000 2.000	(m) 8.50 9.00 9.00 2.00 9.00	ANULUS V (m³) 0.26 0.37 0.37 0.08	P (bar) 0.1 0.1 0.1 0.0 0.1	N (rpm) N Lar Lar Lar Lar Lar	153 Moto ninare ninare ninare ninare ninare ninare	VC (m/min) 106.57 98.77 98.77 98.77	V (m/min) 85.8 62.6 62.6 62.6
HOLE - PDI HOLE - MW HOLE - DC HOLE - FIO HOLE - DC	Oper. (bar) = Elemento M VD (1 joints) oat Sub (1 joints)		Φe (in) 12.250 12.250 12.250 12.250 12.250 12.250	Φi (in) 9.500 8.250 8.250 8.250 8.250 8.250 8.250	10 (Φe - Φi)/2 (in) 1.375 2.000 2.000 2.000 2.000 2.125	(m) 8.50 9.00 9.00 2.00 9.00 6.00	ANULUS (m³) 0.26 0.37 0.37 0.08 0.37 0.26	P (bar) 0.1 0.1 0.1 0.0 0.1 0.0 0.0 0.1	N (rpm) N Lar Lar Lar Lar Lar Lar Lar	153 Moto Ininare Ininare Ininare Ininare Ininare Ininare Ininare Ininare	VC (m/min) 106.57 98.77 98.77 98.77 97.79	V (m/min) 85.8 62.6 62.6 62.6 62.6
HOLE - PDI HOLE - MW HOLE - DC HOLE - FIO HOLE - DC	Elemento M VD (1 joints) out Sub (1 joints)		Φe (in) 12.250 12.250 12.250 12.250 12.250 12.250 12.250 12.250	oad (bar) = Oi (in) 9.500 8.250 8.250 8.250 8.250 8.000 8.000	10 (Φe - Φi)/2 (in) 1.375 2.000 2.000 2.000 2.000 2.125 2.125	(m) 8.50 9.00 9.00 2.00 9.00 6.00 9.00	ANULUS V (m³) 0.26 0.37 0.37 0.08 0.37 0.26 0.39	P (bar) 0.1 0.1 0.1 0.0 0.1 0.0 0.1 0.0 0.1	N (rpm) N Lar Lar Lar Lar Lar Lar Lar	153 Moto Ininare	VC (m/min) 106.57 98.77 98.77 98.77 98.77 97.79	V (m/min) 85.8 62.6 62.6 62.6 59.6
HOLE - PDI HOLE - MW HOLE - DC HOLE - FIO HOLE - DC HOLE - DAT HOLE - DAT HOLE - DC	Elemento M VD (1 joints) pat Sub (1 joints) L (2 joints)	40	Φe (in) 12.250 12.250 12.250 12.250 12.250 12.250 12.250 12.250 12.250 12.250	oad (bar) = 0	10 (Φe-Φi)/2 (in) 1.375 2.000 2.000 2.000 2.000 2.125 2.125	(m) 8.50 9.00 9.00 2.00 9.00 6.00 9.00	ANULUS V (m³) 0.26 0.37 0.08 0.37 0.08 0.37 0.26	P (bar) 0.1 0.1 0.1 0.0 0.1 0.0 0.1 0.0 0.1 0.0 0.1	N (rpm) N Lar Lar Lar Lar Lar Lar Lar	153 foto ninare ninare ninare ninare ninare ninare ninare ninare ninare	VC (m/min) 106.57 98.77 98.77 98.77 97.79 97.79	V (m/min) 85.8 62.6 62.6 62.6 59.6 59.6
HOLE - PDI HOLE - MW HOLE - DC HOLE - FIO HOLE - DC HOLE - DAT HOLE - DAT HOLE - DC	Elemento M VD (1 joints) at Sub (1 joints) L (2 joints) VDP (xx joints)	40	Φe (in) 12.250 12.250 12.250 12.250 12.250 12.250 12.250 12.250	oad (bar) = Oi (in) 9.500 8.250 8.250 8.250 8.250 8.000 8.000	10 (Φe - Φi)/2 (in) 1.375 2.000 2.000 2.000 2.000 2.125 2.125	(m) 8.50 9.00 9.00 2.00 9.00 6.00 9.00	ANULUS V (m³) 0.26 0.37 0.37 0.08 0.37 0.26 0.39	P (bar) 0.1 0.1 0.1 0.0 0.1 0.0 0.1 0.0 0.1	N (rpm) Lar Lar Lar Lar Lar Lar Lar La	153 Moto Ininare	VC (m/min) 106.57 98.77 98.77 98.77 98.77 97.79	V (m/min) 85.8 62.6 62.6 62.6 59.6
HOLE - PDI HOLE - MW HOLE - DC HOLE - FIO HOLE - DC	Oper. (bar) = Elemento M VD (1 joints) cat Sub (1 joints) L r (2 joints) VDP (xx joints) S, New	40	Фе (in) 12.250 12.250 12.250 12.250 12.250 12.250 12.250 12.250 12.250	oad (bar) = Diamond (bar) = Diamond (in) 9.500 8.250 8.250 8.250 8.250 8.000 8.000 5.000	10 (Φe-Φi)/2 (in) 1.375 2.000 2.000 2.000 2.000 2.125 2.125 2.125 3.625	(m) 8.50 9.00 9.00 2.00 9.00 6.00 9.00 18.00	ANULUS V (m³) 0.26 0.37 0.08 0.37 0.08 0.37 0.26 0.39 0.78	P (bar) 0.1 0.1 0.1 0.0 0.1 0.0 0.1 0.0 0.1 0.0 0.1 0.5	N (rpm) Lar Lar Lar Lar Lar Lar Lar La	153 foto ninare	VC (m/min) 106.57 98.77 98.77 98.77 98.77 97.79 97.79 97.79	V (m/min) 85.8 62.6 62.6 62.6 59.6 59.6
HOLE - PDI HOLE - MW HOLE - DC HOLE - FIo HOLE - DC HOLE - DR HOLE - DR HOLE - DR HOLE - DR	Oper. (bar) = Elemento M VD (1 joints) at Sub (1 joints) L r (2 joints) JDP (xx joints) S, New b, New	40	Φe (in) 12.250 12.250 12.250 12.250 12.250 12.250 12.250 12.250 12.250 12.250 12.250 12.250 12.250	oad (bar) = Di (in) 9.500 8.250 8.250 8.250 8.250 8.000 8.000 5.000 5.500	10 (Φe-Φ1)/2 (in) 1.375 2.000 2.000 2.000 2.000 2.125 2.125 2.125 3.625 3.375	(m) 8.50 9.00 9.00 2.00 9.00 6.00 9.00 18.00 140.00	ANULUS V (m³) 0.26 0.37 0.37 0.08 0.37 0.26 0.39 0.78 8.87 26.92	P (bar) 0.1 0.1 0.1 0.0 0.1 0.0 0.1 0.0 0.1 0.0 1 0.1 0.	N (rpm) Lar Lar Lar Lar Lar Lar Lar La	153 foto ninare	VC (m/min) 106.57 98.77 98.77 98.77 98.77 97.79 97.79 97.79 91.54 92.18	V (m/min) 85.8 62.6 62.6 62.6 59.6 59.6 41.0
HOLE - PDI HOLE - MW HOLE - FIO HOLE - FIO HOLE - DC HOLE - DC HOLE - DC SG - DPS Surf. I	Oper. (bar) = Elemento M VD (1 joints) aut Sub (1 joints) L (2 joints) //DP (xx joints) S, New Eq	40	Φe (in) 12.250 12.250 12.250 12.250 12.250 12.250 12.250 12.250 12.250 12.250 12.250 12.250 12.250	oad (bar) = Oi (in) 9.500 8.250 8.250 8.250 8.250 8.000 8.000 5.000 5.500	10 (Φe-Φ1)/2 (in) 1.375 2.000 2.000 2.000 2.000 2.125 2.125 2.125 3.625 3.375	(m) 8.50 9.00 9.00 9.00 6.00 9.00 18.00 140.00 443.50 1714.00	ANULUS V (m³) 0.26 0.37 0.08 0.37 0.08 0.37 0.26 0.39 0.78 8.87 26.92 104.27	P (bar) 0.1 0.1 0.1 0.0 0.1 0.0 0.1 0.0 0.1 0.0 0.1 0.5 1.7 6.5	N (rpm) Lar Lar Lar Lar Lar Lar Lar La	153 foto ninare	VC (m/min) 106.57 98.77 98.77 98.77 98.77 97.79 97.79 97.79 91.54 92.18	V (m/min) 85.8 62.6 62.6 62.6 59.6 59.6 41.0 42.8
HOLE - PDI HOLE - MW HOLE - FIO HOLE - FIO HOLE - DC HOLE - DC HOLE - DC SG - DPS Surf. I	Oper. (bar) = Elemento M VD (1 joints) (1 joints) (1 joints) L (2 joints) //DP (xx joints, New joints, New joints, New joints, New joints)	40 ss) TOT Cass	Φe (in) 12.250 12.250 12.250 12.250 12.250 12.250 12.250 12.250 12.250 12.250 12.250 12.250 12.250 12.250	oad (bar) = Oit (in) 9.500 8.250 8.250 8.250 8.000 8.000 5.000 5.500 Rif. He	(0 e · 0 i)/2 (in) 1.375 2.000 2.000 2.000 2.000 2.125 2.125 2.125 3.625 3.375 3.380	(m) 8.50 9.00 9.00 2.00 9.00 6.00 9.00 18.00 140.00 443.50 1714.00 Valore da H	ANULUS V (m³) 0.26 0.37 0.08 0.37 0.26 0.39 0.78 8.87 26.92 104.27	P (bar) 0.1 0.1 0.1 0.0 0.1 0.0 0.1 0.0 0.1 0.1	N (rpm) Lar Lar Lar Lar Lar Lar Lar La	153 foto ninare	VC (m/min) 106.57 98.77 98.77 98.77 98.77 97.79 97.79 97.79 91.54 92.18 92.16	V (m/min) 85.8 62.6 62.6 62.6 59.6 59.6 41.0 42.8
HOLE - PDI HOLE - MW HOLE - DC HOLE - FIO HOLE - DC HOLE - DC HOLE - DC GC HOLE - DC Surf. Surf. Equi	Oper. (bar) = Elemento M VD (1 joints) aut Sub (1 joints) L (2 joints) //DP (xx joints) S, New Eq	s) TOT Cas	Φe (in) 12.250 12.250 12.250 12.250 12.250 12.250 12.250 12.250 12.250 12.250 12.250 12.250 12.250 12.250 12.250 12.250 12.250 12.250	oad (bar) = Oit (in) 9.500 8.250 8.250 8.250 8.000 8.000 5.000 5.500 Rif. He	(0 e · 0 i)/2 (in) 1.375 2.000 2.000 2.000 2.000 2.125 2.125 2.125 3.625 3.375 3.380	(m) 8.50 9.00 9.00 2.00 9.00 6.00 9.00 18.00 140.00 443.50 1714.00 Valore da H	ANULUS V (m³) 0.26 0.37 0.08 0.37 0.26 0.39 0.78 8.87 26.92 104.27 142.97 andbook (kpa)	P (bar) 0.1 0.1 0.1 0.0 0.1 0.0 0.1 0.0 0.1 0.5 1.7 6.5 9.3	N (rpm) Lar Lar Lar Lar Lar Lar Lar La	153 foto ninare	VC (m/min) 106.57 98.77 98.77 98.77 98.77 97.79 97.79 97.79 91.54 92.18 92.16	V (m/min) 85.8 62.6 62.6 62.6 59.6 59.6 41.0 42.8
HOLE - PDI HOLE - MW HOLE - DC HOLE - FIO HOLE - DC HOLE - DC HOLE - DC GC HOLE - DC Surf. Surf. Equi	Oper. (bar) = Elemento M VD (1 joints) at Sub (1 joints) L r (2 joints) //DP (xx joint S, New B, New Eq	s) TOT Cas	Φe (in) 12.250	oad (bar) = oad ((0 e · 0 i)/2 (in) 1.375 2.000 2.000 2.000 2.000 2.125 2.125 2.125 3.625 3.375 3.380	(m) 8.50 9.00 9.00 2.00 9.00 6.00 9.00 18.00 140.00 443.50 1714.00 Valore da H	ANULUS V (m³) 0.26 0.37 0.08 0.37 0.26 0.39 0.78 8.87 26.92 104.27 142.97 andbook (kpa)	P (bar) 0.1 0.1 0.1 0.0 0.1 0.0 0.1 0.1 0.5 1.7 6.5 9.3 P (Kpa) 575	N (rpm) Lar Lar Lar Lar Lar Lar Lar La	153 Intoto ninare	VC (m/min) 106.57 98.77 98.77 98.77 98.77 97.79 97.79 97.79 91.54 92.18 92.16	V (m/min) 85.8 62.6 62.6 62.6 59.6 59.6 41.0 42.8
HOLE - PDI HOLE - MW HOLE - DC HOLE - FIO HOLE - DC HOLE - DC HOLE - DC GC HOLE - DC Surf. Surf. Equi	Oper. (bar) = Elemento M VD (1 joints) at Sub (1 joints) L r (2 joints) //DP (xx joint S, New B, New Eq	s) TOT Cas	Φe (in) 12.250	oad (bar) = Oit (in) 9.500 8.250 8.250 8.250 8.000 8.000 5.000 5.500 Rif. He	(0 e · 0 i)/2 (in) 1.375 2.000 2.000 2.000 2.000 2.125 2.125 2.125 3.625 3.375 3.380	(m) 8.50 9.00 9.00 2.00 9.00 6.00 9.00 18.00 140.00 443.50 1714.00 Valore da H	ANULUS V (m³) 0.26 0.37 0.08 0.37 0.26 0.39 0.78 8.87 26.92 104.27 142.97 andbook (kpa)	P (bar) 0.1 0.1 0.1 0.0 0.1 0.0 0.1 0.1 0.5 1.7 6.5 9.3 P (Kpa) 575 HHP TOT/ RIEPILOGO SURFACE E	N (rpm) Lar Lar Lar Lar Lar Lar Lar La	153 Intoto ninare	VC (m/min) 106.57 98.77 98.77 98.77 97.79 97.79 97.79 91.54 92.18 92.16 1.64	V (m/min) 85.8 62.6 62.6 62.6 59.6 59.6 41.0 42.7 kg/l
HOLE - PDI HOLE - MW HOLE - FIO HOLE - FIO HOLE - DC HOLE - DC HOLE - DC SG - DPS Surf Equi	Oper. (bar) = Elemento M VD (1 joints) (2 joints) L (2 joints) VDP (xx joints, New b, New Eq	s) TOT Cas	Φe (in) 12.250	oad (bar) =	(0 e · 0 i)/2 (in) 1.375 2.000 2.000 2.000 2.000 2.125 2.125 2.125 3.625 3.375 3.380	(m) 8.50 9.00 9.00 2.00 9.00 6.00 9.00 18.00 140.00 443.50 1714.00 Valore da H	ANULUS V (m³) 0.26 0.37 0.08 0.37 0.26 0.39 0.78 8.87 26.92 104.27 142.97 andbook (kpa)	P (bar) 0.1 0.1 0.1 0.0 0.1 0.0 0.1 0.1 0.5 1.7 6.5 9.3 P (Kpa) 575 HHP TOT/ RIEPILOGO SURFACE E INTERNAL	N (rpm) Lar Lar Lar Lar Lar Lar Lar La	153 Intoto ninare	VC (m/min) 106.57 98.77 98.77 98.77 98.77 97.79 97.79 97.79 91.54 92.18 92.16 1.64	V (m/min) 85.8 62.6 62.6 62.6 59.6 59.6 41.0 42.7 kg/l
HOLE - PDI HOLE - MW HOLE - DC HOLE - FIO HOLE - DC HOLE - DC HOLE - DC GC HOLE - DC Surf. Surf. Equi	Oper. (bar) = Elemento M VD (1 joints) L (2 joints) //DP (xx joints) N, New Eq. Frace pment RESSURE I	s) TOT Cas	Φe (in) 12.250 12.250 12.250 12.250 12.250 12.250 12.250 12.250 12.250 12.250 12.250 12.250 14.250 14.250 14.250 14.250 14.250 14.250 14.250 14.250 14.250 14.250 14.250	oad (bar) =	(Φe · Φi)/2 (in) 1.375 2.000 2.000 2.000 2.125 2.125 2.125 3.625 3.375 3.380	(m) 8.50 9.00 9.00 2.00 9.00 6.00 9.00 18.00 140.00 443.50 1714.00 Valore da H	ANULUS V (m³) 0.26 0.37 0.08 0.37 0.26 0.39 0.78 8.87 26.92 104.27 142.97 andbook (kpa)	P (bar) 0.1 0.1 0.1 0.0 0.1 0.0 0.1 0.1 0.5 1.7 6.5 9.3 P (Kpa) 575 HHP TOT/ RIEPILOGO SURFACE E INTERNAL MOTOR SEC	N (rpm) Lar Lar Lar Lar Lar Lar Lar La	153 Intoto ninare	VC (m/min) 106.57 98.77 98.77 98.77 98.77 97.79 97.79 97.79 91.54 92.18 92.16 1.64	V (m/min) 85.8 62.6 62.6 62.6 59.6 59.6 41.0 42.7 kg/l
HOLE - PDI HOLE - MW HOLE - DC HOLE - FIO HOLE - DC HOLE - DC HOLE - DC SG - DPS Surf Equip	Coper. (bar) = Elemento M VD (1 joints) Aut Sub (1 joints) L (2 joints) L (2 joints) K, New S, New Eq Fface pment RESSURE I	s) TOT Cas LOSSES	Φe (in) 12.250	oad (bar) =	(Φe · Φi)/2 (in) 1.375 2.000 2.000 2.000 2.125 2.125 2.125 3.625 3.375 3.380	(m) 8.50 9.00 9.00 9.00 6.00 9.00 18.00 140.00 443.50 1714.00 Valore da H	ANULUS V (m³) 0.26 0.37 0.08 0.37 0.26 0.39 0.78 8.87 26.92 104.27 142.97 andbook (kpa)	P (bar) 0.1 0.1 0.1 0.0 0.1 0.0 0.1 0.1 0.5 1.7 6.5 9.3 P (Kpa) 575 HHP TOT/ RIEPILOGO SURFACE E INTERNAL MOTOR SEC	N (rpm) Lar Lar Lar Lar Lar Lar Lar La	153 Intoto ninare	VC (m/min) 106.57 98.77 98.77 98.77 98.77 97.79 97.79 97.79 91.54 92.18 92.16 1.64 hp P (bar) 5.8 103.3 70.0	V (m/min) 85.8 62.6 62.6 62.6 59.6 59.6 41.0 42.8 42.7 kg/l
HOLE - PDI HOLE - MW HOLE - DC HOLE - FIO HOLE - DC HOLE - DC HOLE - DC SG - DPS Surf Equip	Oper. (bar) = Elemento M VD (1 joints) L (2 joints) //DP (xx joints) N, New Eq. Frace pment RESSURE I	s) TOT Cas LOSSES	Φe (in) 12.250 12.250 12.250 12.250 12.250 12.250 12.250 12.250 12.250 12.250 12.250 12.250 14.250 14.250 14.250 14.250 14.250 14.250 14.250 14.250 14.250 14.250 14.250	oad (bar) =	(Φe · Φi)/2 (in) 1.375 2.000 2.000 2.000 2.125 2.125 2.125 3.625 3.375 3.380	(m) 8.50 9.00 9.00 2.00 9.00 6.00 9.00 18.00 140.00 443.50 1714.00 Valore da H	ANULUS V (m³) 0.26 0.37 0.08 0.37 0.26 0.39 0.78 8.87 26.92 104.27 142.97 andbook (kpa)	P (bar) 0.1 0.1 0.1 0.0 0.1 0.0 0.1 0.1 0.5 1.7 6.5 9.3 P (Kpa) 575 HHP TOT/ RIEPILOGO SURFACE E INTERNAL MOTOR SEC	N (rpm) Lar Lar Lar Lar Lar Lar Lar La	153 Intoto ninare	VC (m/min) 106.57 98.77 98.77 98.77 98.77 98.77 97.79 97.79 91.54 92.18 92.16 1.64 hp P (bar) 5.8 103.3 70.0 37.4 9.3	V (m/min) 85.8 62.6 62.6 62.6 59.6 59.6 41.0 42.8 42.7 kg/l
HOLE - PDI HOLE - MW HOLE - DC HOLE - FIO HOLE - DC HOLE - DC HOLE - DC SG - DPS Surf Equip	Oper. (bar) = Elemento M VD (1 joints) and Sub (1 joints) (2 joints) //DP (xx joints) S, New Eq. Eq. Eq. EACE PMENT %	s) TOT Cas LOSSES	Φe (in) 12.250 12.250 12.250 12.250 12.250 12.250 12.250 12.250 12.250 12.250 12.250 12.250 14.250 14.250 14.250 14.250 14.250 14.250 14.250 14.250 14.250 14.250 14.250	oad (bar) =	(Φe · Φi)/2 (in) 1.375 2.000 2.000 2.000 2.125 2.125 2.125 3.625 3.375 3.380	(m) 8.50 9.00 9.00 2.00 9.00 6.00 9.00 18.00 140.00 443.50 1714.00 Valore da H	ANULUS V (m³) 0.26 0.37 0.08 0.37 0.26 0.39 0.78 8.87 26.92 104.27 142.97 andbook (kpa)	P (bar) 0.1 0.1 0.1 0.0 0.1 0.0 0.1 0.1 0.5 1.7 6.5 9.3 P (Kpa) 575 HHP TOT/ RIEPILOGO SURFACE E INTERNAL MOTOR SEC	N (rpm) Lar Lar Lar Lar Lar Lar Lar La	153 Intoto ninare	VC (m/min) 106.57 98.77 98.77 98.77 98.77 97.79 97.79 97.79 91.54 92.18 92.16 1.64 hp P (bar) 5.8 103.3 70.0	V (m/min) 85.8 62.6 62.6 62.6 59.6 59.6 41.0 42.8 42.7 kg/l

PAG **106** DI **122** AGGIORNAMENTI: POZZO: IRMINIO 8 Dir / 8 Dir OR 0

	TIPO OPE	RAZIONE		Perforazi	one fase	8 1/2" (Pilot H	lole)					
	DATI F	ORO				DATI FANG	30			DATI CSG		
	Φ Foro	8 1/2	in		MW	1.10	kg/l		Φe Csg	9 5/8	in	
	MD		m		P.V.		ср		Peso	47 - 53.5	lb/ft	
	VD	2641.35	m		Y. P.		g/100cm ²		Φi Csg	8.500	in	
				_					Csg Shoe	2399	m (MD)	
ш	MARCA	IDE	co	Φ cam	icie (in)	Max. Colpi/1'	130	l/colpo (100%)	16.68	n (%)	Max Press operativa	
POMPE						Max. Press.				η (%)	(bar)	DATI POMPE
P.	TIPO	T 1	600	6		(bar)	312.90	l/colpo (95%)	15.85	95	266.0	-
	Q	17	00	l/1'		POMPA 1 N.Colpi/1'	107	POMPA 2 N.Colpi/1'		POMPA 3 N.Colpi/1'		
						~		Ш		⊔		
				etro Dusi	(1/32 in)	1		D DIT	1			
_	_	2	18 18	6 7		TFA		P BIT (bar)		V= HHP=		m/s hp
В	IT	3	18	8	+	0.994		12.0		HHP/in²=	0.8	
		4	18	9				12.0		Impact Force =		kgf
		5		10						P%=	7.8%	
							INTERNA	L				
Elemento		O.D.	I.D.	Max O.D.	Min. I.D.	L (m)	V	Р	М	oto	VC (m/min)	V (m/min)
PDM		(in) 6.750	(in)	(in)	(in)	(m) 8.50	(m ³)	(bar) 50.0			(m/min)	(m/min)
MWD		6.750			 	9.00		20.0				
DC (x joints	s)	6.500	2.813	6.500	2.813	9.00	0.04	0.8	Turb	olento	91.41	424.1
Float Sub		6.500	2.813	6.500	2.813	2.00	0.01	0.2		olento	91.41	424.1
Drill Collar PBL	·	6.500 6.500	2.813 2.813	6.500 6.500	2.813 2.813	9.00 6.00	0.04	0.8		olento olento	91.41 91.41	424.1 424.1
Jar		6.500	2.813	6.500	2.813	9.00	0.04	0.8		olento	91.41	424.1
DC (x joints	s)	6.500	2.813	6.500	2.813	18.00	0.07	1.7	Turb	olento	91.41	424.1
HWDP (xx	joints)	5.000	3.000	6.500	3.063	140.00	0.64	9.5		olento	91.41	372.8
DPS, New		5.000	4.276	7.250	3.500	2593.50	23.81	34.0	Turb	olento	90.86	183.5
PDM · PDM	- MWD SEC	6.750		Tipo 6 3/4" RSS				50.0				
MWD		6.750		BHI				20.0				
					TOTALI	2804.00	24.67	118				
Dati no	ominali	PDM		6.3/4	' RSS	6.75 in		in fase operativa.		Dati Operativi ser	nza By Pass Valve	
	Qmax (I/1') =		Т	max (Nm) =			Il tipo riportato è s Phmax (KW) =	solo indicativo) 219	ΔP (bar)	40	Ph (KW)	113
	Pmax (bar) =	58	•	max (rpm) =	************************		Pmmax (KW) =		T (Nm)	4769	Pm (KW)	95
ΔΡ	Oper. (bar) =	40		ad (bar) =	10		η =	84%	N (rpm)	191		
							ANULUS	1		•		
	Elemento		Фе	Фі	(Фе-Фі)/2		V	P	м	oto	VC	٧
HOLE - PDI			(in) 8.500	(in) 6.750	(in) 0.875	(m) 8.50	(m ³) 0.11	(bar) 0.2		olento	(m/min) 105.04	(m/min) 125.7
HOLE - MW			8.500	6.750	0.875	9.00	0.12	0.2		olento	105.04	125.7
HOLE - DC	(x joints)		8.500	6.500	1.000	9.00	0.14	0.1	Turb	olento	101.26	111.8
HOLE - Flo			8.500	6.500	1.000	2.00	0.03	0.0		olento	101.26	111.8
HOLE - Dril HOLE - PBI			8.500 8.500	6.500 6.500	1.000	9.00	0.14	0.1		olento olento	101.26 101.26	111.8 111.8
HOLE - Jar			8.500	6.500	1.000	9.00	0.14	0.1		olento	101.26	111.8
HOLE - DC			8.500	6.500	1.000	18.00	0.27	0.3		olento	101.26	111.8
	DP (xx joints	s)	8.500	5.000	1.750	140.00	3.35	1.3		ninare	90.56	71.0
HOLE - DPS			8.500 8.500	5.000 5.000	1.750 1.750	194.50 2399.00	4.66 57.44	1.4		ninare ninare	90.56 90.56	71.0 71.0
		ТОТ		3.000	1.700	2804.00	66.49	21.5		ECD=		kg/l
Surf. I	rface	Cas		Rif. Ha	ındbook		andbook (kpa)	P (Kpa)	P (bar)			J
	pment		4	ļ	N1	 	3.00	173	1.7			
⊏qui		•		•				HHP TOTA	\LI	584	qd	
	RESSURFI	LOSSES										
	RESSURE	LOSSES						RIEPILOGO	PRESSURE L	.OSSES	P (bar)	V (m³)
	RESSURE	LOSSES	INTERNAL					RIEPILOGO SURFACE E	PRESSURE L QUIPMENT	OSSES.		V (m³)
PR		LOSSES	INTERNAL 31%							OSSES	P (bar)	V (m³) 24.7
PR SUR EQUIF	IFACE PMENT		31%		мот	OR SECTION 46%		SURFACE E	QUIPMENT	OSSES	P (bar)	
PR SUR EQUIF	:FACE	ANI		BIT 8%	мот	OR SECTION 46%		SURFACE EINTERNAL MOTOR SEC BIT	QUIPMENT	OSSES	P (bar) 1.7 48.5 70.0 12.0	24.7
PR SUR EQUIF	IFACE PMENT	ANI	31% NULUS		мот			SURFACE EDINTERNAL MOTOR SECULITION SECULITION SECULITION SECULITION SECULITIES SUBJECT SUBJEC	QUIPMENT	OSSES	P (bar) 1.7 48.5 70.0 12.0 21.5	24.7 66.5
PR SUR EQUIF	IFACE PMENT	ANI	31% NULUS		мот			SURFACE EINTERNAL MOTOR SEC BIT	QUIPMENT	OSSES	P (bar) 1.7 48.5 70.0 12.0	24.7

PAG 107 DI 122
AGGIORNAMENTI:

TIPO OPERAZIONE				Perforazione fase 8 1/2" (Lateral)								
DATI FORO					DATI FANO	TFANGO			DATI CSG		1	
	Φ Foro	8 1/2	in		MW	1.10	kg/l		Φe Csg	9 5/8	in	1
	MD	3115	m		P.V.	15.0 cp			Peso	47 - 53.5	lb/ft	1
	VD	2447.2	m		Y. P.	9.0	g/100cm ²	1	Φi Csg	8.500	in	1
				1			<u> </u>	.	Csg Shoe	2368	m (MD)]
E E	MARCA	IDE	со	Φ cami	icie (in)	Max. Colpi/1'	130	l/colpo (100%)	16.68	η (%)	Max Press operativa (bar)	DATI
POMPE	TIPO	T 1	600	6		Max. Press.	312.90	l/colpo (95%)	15.85	95	266.0	POMPE
Q		17	1700			POMPA 1 N.Colpi/1	107	POMPA 2 N.Colpi/f		POMPA 3 N.Colpi/1'		ſ <u></u>
E □												
				etro Dusi	(1/32 in)							
		1	18	6		L	1	P BIT	1	V=		m/s
В	IT	2	18 18	7		TFA 0.994	1	(bar)	4	HHP=		hp
		3 4	18 18	8		0.994	i	12.0		HHP/in ² = Impact Force =		 kgf
		5		10					J	P%=		, Ngi
							INTERNAL					
Elemento	_	O.D. (in)	I.D. (in)	Max O.D. (in)	Min. I.D. (in)	L (m)	V (m ³)	P (bar)	Mr	oto	VC (m/min)	V (m/min)
PDM		6.750	(11.7	(1)	(11.)	(III) 8.50		50.0			(IIIIIIII)	(11911,
MWD		6.750				9.00		20.0				
DC (x joints	is)	6.500	2.813	6.500	2.813	9.00		0.8	Turbo	olento	91.41	424.1
Float Sub		6.500	2.813	6.500	2.813	2.00		0.2		olento	91.41 91.41	
Drill Collar	r	6.500	2.813	6.500	2.813	9.00		0.8	-	Turbolento		-
PBL		6.500	2.813	6.500	2.813	6.00		0.6		olento	91.41	
Jar		6.500	2.813	6.500	2.813	9.00		0.8		olento	91.41	
DC (x joints		6.500 5.000	2.813	6.500	2.813	18.00		1.7		olento olento	91.41	
HWDP (xx) DPS, New	joints	5.000 5.000	3.000 4.276	6.500 7.250	3.063 3.500	140.00 2904.50		9.5 38.1	-	olento	91.41 90.86	
	- MWD SEC		4.4.			200	2904.50 26.67 36.1			lento		
PDM -	- MWD GEC	6.750		Tipo 6 3/4" RSS				50.0	1			
MWD		6.750		ВНІ				20.0				
				TOTALI		3115.00	27.53	123				
Dati no	ominali	PDM		6 3/4"	nee	6.75 in	(PDM da definire i			Dati Operativi se	nza By Pass Valve	
	Qmax (I/1') =	2270	Т	max (Nm) =			Il tipo riportato è s Phmax (KW) =		ΔP (bar)	Dati Operativi ser	Ph (KW)	113
	Qmax (l/1) = APmax (bar) =	58	•	max (mm) = max (mm) =	255	2100 101	Pnmax (KW) = Pmmax (KW) =		ΔP (bar)	4769	Pm (KW)	
	Oper. (bar) =	40		max (rpm) = oad (bar) =	10	ł			N (rpm)	191	1111 (1500)	
Δ1 -	Oper. (par) =	40	AP NO LO	180 (Dai) =	10		η = ΔΝΙΙΙΙ ΙΙΟ		ta (ibui)	191	<u></u>	
			Фе	Фі	(Φe-Φi)/2	! L	ANULUS	P	1		VC	V
	Elemento		Φe (in)	Фі (in)	(Φe - Φi)/2 (in)	(m)	(m ³)	P (bar)	Mc	oto	VC (m/min)	(m/min)
HOLE - PDN	M		8.500	6.750	0.875	8.50	afanoanaanaanaanaanaanaanaanaana	0.2	Turbo	olento	105.04	
HOLE - MW			8.500	6.750	0.875	9.00	- 	0.2	~ ~~~~~	olento	105.04	·
HOLE - DC			8.500	6.500	1.000	9.00	 	0.1		olento	101.26	
HOLE - Floa			8.500	6.500	1.000	2.00		0.0		olento	101.26	
HOLE - Dril			8.500	6.500	1.000	9.00		0.1	- 	olento	101.26	·
HOLE - PBL HOLE - Jar	~~~~		8.500 8.500	6.500	1.000	6.00	- 	0.1	·	olento olento	101.26	
HOLE - Jar			8.500 8.500	6.500 6.500	1.000	9.00 18.00	}	0.1	- 	olento	101.26 101.26	·
	/DP (xx joints	s)	8.500	5.000	1.750	140.00		1.3	Laminare		90.56	
HOLE - DPS		-7	8.500	5.000	1.750	536.50		3.9	Laminare		90.56	
CSG - DPS,			8.500	5.000	1.750	2368.00	- 	17.3	Lam	ninare	90.56	·
Surf. E	Eq.	тот	ALI			3115.00	73.93	23.8	1	ECD=	1.20	kg/l
1	rface	Cas	o N.	Rif. Ha	ındbook	Valore da H	Handbook (kpa)	P (Kpa)	P (bar)			
Equip	pment	4	4	N	Į1	9:	93.00	173	1.7	ı		
PR	RESSUREL	LOSSES						HHP TOTA	ALI	608	hp	1
	-							RIFPILOGO	PRESSURE LO	OSSES	P (bar)	V (m ³)
	INTERNAL							SURFACE EQUIPMENT			1.7	,

INTERNAL

ANNULUS TOTALE

BIT

MOTOR SECTION

Pari al

60.2%

52.5

70.0

12.0

160.1

della Max Press.Operativa

27.5

73.9

101.5

	P.A	G 10	8	DI	122
	NTI:				
	0				

4.2.12. BATTERIE E STABILIZZAZIONE

FASE 28"

Vista la vicinanza dei pozzi Irminio 6 e 7, è indispensabile l'utilizzo di attrezzatura automatica per mantenere la verticalità del foro; una tipica BHA potrebbe essere:

Pilot Hole

BIT 12 1/4" + RSS 9 $\frac{1}{2}$ " + Modular STAB + MWD +LWD + PBL + 6 DC 9 $\frac{1}{2}$ " + 3 DC 8 $\frac{1}{4}$ " + HWDP + 5 $\frac{1}{2}$ "DP

Allargamento a 28"

L'allargamento da 12 1/4" a 28" potrebbe essere eseguito in due run:

1° - Bit 12 ¼" + NB+ H.O. 17 1/2" + NB +SHOCK SUB + 3 DC 9 ½" + 3 DC 8 ¼" + HWDP + 5 ½" DP

2° - Bit 17 1/2" + NB+ H.O. 28" + NB +SHOCK SUB + 3 DC 9 1/2" + 3 DC 8 1/4" + HWDP + 5 1/2" DP

FASE 23"

Si prevede l'utilizzo di attrezzatura automatica per mantenere la verticalità/direzionalità del foro. Una tipica BHA potrebbe essere:

BIT 23" + RSS 9 $\frac{1}{2}$ " + MWD/LWD + Modular STAB + PBL + 6 DC 9 $\frac{1}{2}$ " + 3 DC 8 $\frac{1}{4}$ " + 8 HWDP + 5 $\frac{1}{2}$ "DP

FASE 16"

Si prevede l'utilizzo di attrezzatura automatica per mantenere la direzionalità del foro. Una tipica BHA potrebbe essere:

BIT 16" + RSS 9 $\frac{1}{2}$ " + MWD/LWD + Modular STAB + PBL + 3 DC 9 $\frac{1}{2}$ " + 5 DC 8 $\frac{1}{4}$ " + JAR + 6 DC 8 $\frac{1}{4}$ " + 12 HWDP + 5 $\frac{1}{2}$ "DP

FASE 12"1/4

Si prevede l'utilizzo di attrezzatura automatica per mantenere la direzionalità del foro. Una tipica BHA potrebbe essere:

BIT + RSS 9 $\frac{1}{2}$ " + MWD/LWD+ Modular STAB + PBL + 5 DC 8 $\frac{1}{4}$ " + JAR 8" + 6 DC 8 $\frac{1}{4}$ " + 15 HWDP + 5 $\frac{1}{2}$ "DP

FASI 8"1/2 (Pilot e Lateral)

Si prevede l'utilizzo di attrezzatura automatica per mantenere la direzionalità del foro. Una tipica BHA potrebbe essere:

POZZO: IRMINIO 8 Dir / 8 Dir OR

P.A	AG	10	9	DI	122
AGO	OI	RN	ΙΑΝ	ИΕΙ	NTI:
0					

BIT + RSS 6 3/4" + MWD/LWD + Modular STAB + STAB + PBL + 5 DC 6 1/2" + JAR 6 $\frac{1}{2}$ " + 6 DC 6 1/2" + 15 HWDP + 5" DP

4.2.13. SELEZIONE SCALPELLI

Di seguito i codici I.A.D.C. ed i parametri consigliati per la perforazione del pozzo.

Fase 28" a m 200

I.A.D.C. Code 4.1.5 – 4.3.5

W.O.B. 2-12 Ton

R.P.M. 50-120

FLOW RATE 1000-3000 lpm

Fase 23" a m 856

I.A.D.C. Code 4.1.5 – 4.3.5 – 5.3.5

W.O.B. 2-12 Ton

R.P.M. 50-120

FLOW RATE 2000-3500 lpm

Fase 16" a m 1714

I.A.D.C. Code 4.3.5 - 4.4.7 - 5.1.7 - 5.3.7 - Hybrid Bit

W.O.B. 8-15 Ton

R.P.M. 60-150

FLOW RATE 2500-3500 lpm

POZZO: IRMINIO 8 Dir / 8 Dir OR

P.A	AG	11	0	DI	122
AGO	OIG	RN	ΙΑI	MEI	NTI:
0					

Fase 12 1/4" a m 2368

I.A.D.C. Code 4.3.5 - 4.4.7 - 5.1.7 – Hybrid Bit - PDC bit (M3.2.3)

W.O.B. 15-20 Ton 6-10 ton per PDC

R.P.M. 80-160

FLOW RATE 2500-3500 lpm

Fasi 8 1/2" (Pilot) a m 2804

I.A.D.C. Code 4.3.5 - 4.4.7 - 5.1.7 - PDC bit (M4.3.3)

W.O.B. 10-15 Ton 5-10 ton per PDC

R.P.M. 80-360

FLOW RATE 1000-2000 lpm

Pozzo IRMINIO 8dir / 8dir - Or

Fase 8 1/2" da m 2378 a m 3115

I.A.D.C. Code 4.3.5 - 4.4.7 - 5.1.7 - PDC bit (M4.3.3)

W.O.B. 10-15 Ton 5-10 ton per PDC

R.P.M. 80-360

FLOW RATE 1000-2000 lpm

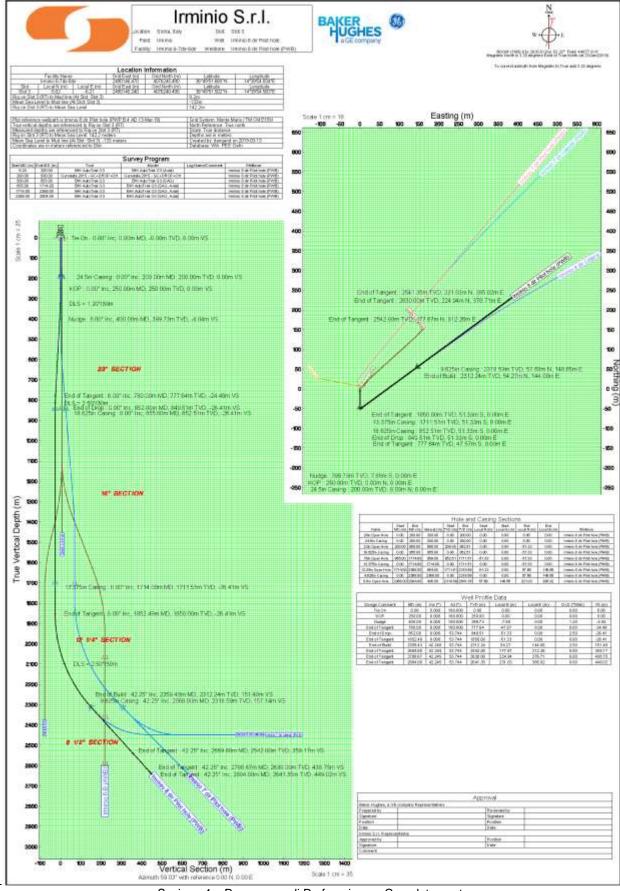
P	AG	11	1	DI	122					
AGO	AGGIORNAMENTI:									
0										

4.2.14. PROGRAMMA DI DEVIAZIONE

Per rispettare le procedure di "anticollision" il pozzo sarà direzionato leggermente ("nudging") per allontanarsi dai pozzi Irminio 6 e 7. Partendo da 250 m, con DLS di 1.2°/30m, si raggiungerà un angolo di circa 6° in direzione 180° a 400m circa. Da tale quota si procederà mantenendo i 6° con azimuth 180° fino a circa 780m. Si inizierà il rientro in verticale previsto a circa 852m MD e si proseguirà in verticale fino a circa 1850m TVD.

Il KOP è previsto a circa 1850m TVD, con un DLS di 2.5° si incrementerà l'angolo fino a 42.245° con azimuth 53.744°.

La fine della curva si prevede a 2312.24m TVD (2359.43 m MD). Una volta raggiunta l'inclinazione finale si proseguirà con angolo costante fino alla TD prevista a 2641.35 m TVD (2804m MD).


Una volta raggiunta la TD, e determinato lo spessore e le quote di top e bottom del membro Mila, il foro verrà tappato, con tappi di cemento, fino alla scarpa da 9 5/8". Si perforerà quindi un nuovo foro da 8 ½" con KOP a 2378m circa, lungo circa 740m, con un tratto orizzontale di circa 450m di lunghezza con un azimuth di circa 60.267° (Irminio 8dir/8dir-OR), nella porzione con le migliori caratteristiche petrofisiche.

Di seguito il profilo previsto per il Pilot Hole e per il Dreno (Lateral).

PAG **112** DI 122

AGGIORNAMENTI:

Sezione 4 – Programma di Perforazione e Completamento

PAG 113 DI 122
AGGIORNAMENTI:

	Irminio S.r.I. Location Scrip, tally Stat Sket 3 Field Imminio Well Imminio 3 dr Laberal Eposity Imminio 6-7 de-Bate Wellboro Imminio 5 dr Laberal	BAKER W HUGHES a GE company	W-F-1
Total Control of the	Scale 1 cm = 10 -100 -54 0 50 100 160 200 080	Easing (m)	900 700 1700 900 950 90
Location Information Location Information Location Loc			
During Summer S			70 65 60 55
I grade		nd of Tangers : 2447 20m TVD, 426.31m N.	752.56m E 752.56m
Properties Pro			
Approximate		End of 30 Are : 2447.19m TVD, 20 End of Build : 2436,13m TVD, 160.19m N D Are : 2333.42m TVD, 65.55m N, 159.51m E 99m TVD, 61.66m N, 154.07m E	294,99m É 10
24.5in Casing : -8.00m TVD, 0.00 24.5in Casing : 200.00m TVD, 0.00 18.625in Casing : 652.51m TVD, 51.3 13.375in Casing : 1711.51m TVD, 51.3	9.620m Casing: 23 m N, 0.00m E	18.59m TVD, 57.69m N, 148.05m E	0 0 40 40
E 2500 The On \$2.55 me of \$2.5	nc. 2308-00m MD, 2318-59m TVD, 157,77m V5 2378-00m MD, 2335-95m TVD, 164-44m V5 Are: 41.75° Inc. 2389-00m MD, 2333-42m TVD, 171,13m 8 1/2° SECTION 14.730m 14.730m 14.730m 14.730m 14.730m 14.730m 14.730m 14.730m 14.730m 14.730m 14.730m 14.730m 14.730m 14.730m	For of Tomograph 20 30 hors 3116 32m M	O.
9790 -64 0 60 100 150 200 260 500 51	50 400 450 500 550 800 800 700 750 Automato Mertinical Section (m), 0.00	809 850 900 960 1000 1050 1100 E	1150 1285 1250 1500 1550 Scale 1 (0) + 18

Sezione 4 – Programma di Perforazione e Completamento

PAG **114** DI **122** AGGIORNAMENTI: 0

Planned Wellpath Report Irminio 8 dir Pilot hole (PWP B.4 AD 13-Mar-19) Page 1 of 3

REFERE	REFERENCE WELLPATH IDENTIFICATION							
Operator	Irminio S.r.L.	Slot	Slot 3					
Area	Sicilia, Italy	Well	Irminio 8 dir Pilot hole					
Field Facility	Irminio	Welbore	Irminio 8 dir Pilot hole (PWB)					
Facility	Irminio 6-7dir-8dir		// Interview interview in the control of the contro					

REPORT SETUP INFORMATION							
Projection System	Monte Mario / TM CM E15N	Software System	WellArchitect® 5.1				
North Reference	True	User	Dangand				
Scale	0.999611	Report Generated	08/Apr/2019 at 17:12				
Convergence at slot	8.20" West	Database	WA_PES_Defn				

WELLPATH LOCATION										
	Local coo	edinates	Grid co	ordinates	Geographic coordinates					
	North[m]	East[m]	Easting[m]	Northing[m]	Latitude	Longitude				
Slot Location	-5.02	-6.21	2490140.24	4076240.49	36"49'51.502"N	14"39"54.583"E				
Facility Reference Pt			2490146.47	4076245.49	36'49'51.665'N	14"39"54.834"E				
Field Reference Pt			2489373.41	4075393.56	36"49"23.930"N	14"39"23.750"E				

WELLPATH DATUM			
Calculation method	Minimum curvature	Rig on Slot 3 (RT) to Facility Vertical Datum	0.00m
Horizontal Reference Pt	Slot	Rig on Slot 3 (RT) to Mean Sea Level	142.20m
Vertical Reference Pt.	Rig on Slot 3 (RT)	Rig on Slat 3 (RT) to Mud Line at Slat (Slat 3)	9.20m
MD Reference Pt	Rig on Slot 3 (RT)	Section Origin	N 0.00, E 0.00 m
Field Vertical Reference	Mean Sea Level	Section Azimuth	59.03°

MO	Incitation	Azimuth	TVO	TVDSS	Vert Sect	North	East	Grid East	Grad North	Lattrade	Longitude	DLS [7/30m]	Toolface Commanie
0.00	0.000	180,000	0.001	- 42.20	0.001	0.001	0.001	2480140.241	कारिक का	38°49'51.502'N	14°30'54.583'E	0.00	0.00 frie On
250.00	0.000	180,000	250.00	107.80	0.00	0.00	0.00	2490140.24	4076240.49	36°49'51.502'N	14°30′54 583′E	0.00	180:00 KCP
400.00	6.000	180,000	386.73	257.53	-4.04	-7.60	0.00	2490140.21	4076232.66	36*49/51 247*N	14°39'54.563'E	1.20	0.00 Nudge
780.00	6.000	180,000	777.64	835.44	-24.48	-47.57	0.00	2490140.07	4076192.94	36*49/49.959*N	14°39'54.583'E	0.00	180,00 End of Tangent
852.80	0.000	53.744	540.51	707.31	-26.41	-51.33	0.00	2490143.06	4076180.163	36"46'46'8W"N	14°39'54,583'E	2.50	0.00 End of Drop.
1852.49	0.000	53,744	1850.00	1707.60	-26.41	-51.33	0.00	2490140.06	4076189.18	36"49/49 836"N	14°39'54 583'E	0.00	53.74 End of Tangers
2359.43	42,245	53.744	2312 24	2170.04	151.40	54.27	144.00	2490284.37	4078294.24	36°49'53 262"N	14°40'00 394°E	2.50	0.00 End of Build
2669.60	42.345	53.744	2542.00	2399.90	359.17	177.67	312.26	2490453.00	4076417.00	36*49'57.295"N	.14140'07,184'E	0.00	0.00 End of Tangent
2788.67	42,245	53.744	2630.00	2487.80	438.75	224.94	376.71	2490517.59	4076464.02	36°49'58.796'N	14"40'09.785'E	0.00	0.00 End of Tangen
2904.00	42:245	53.744	2541.35	2490.15	446-02	231.00	305.02	3480525.62	4076470.08	36°40'58.996'N	14°40'10 120'E	0.00	End of Tangen

HOLE & CASING SE	THE RESERVE OF THE PARTY OF THE	The second second	a many manage far an	The second secon	ith: irminio 8 di	THE PERSON NAMED IN	The second second	COLUMN TO SERVICE STREET	
String/Diameter	Start MD (m)	End MD [m]	interval (m)	Start TVD	End TVD [m]	Start N/S [m]	Start E/W	End N/S (m)	End E/W [m]
25in Open Hole	0.00	200.00	200.00	0.00	200.00	0.00	0.00	0.00	0.0
24.5in Casing	0.00	200.00	200,00	0.00	200.00	0.00	0.00	0.00	0.0
23in Open Hole	200.00	865.00	668.00	200.00	852.51	0.00	0.00	-61.33	0.00
18.625in Casing	0.00	655.00	865.00	0.00	852.51	0.00	0.00	-61.33	0.0
16in Open Hole	855.00	1714.00	869.00	852.51	1711.51	-51.33	0.00	-61.33	0.00
13.375in Casing	0.00	1714.00	1714.00	0.00	1711.51	0.00	0.00	-61,33	0.0
12.25in Open Hote	1714.00	2368.00	654.00	1711.51	2318.50	-51.33	0.00	57.68	148.6
9.62ffet Casing	0.00	2368.00	2368.00	0.00	2318.59	0.00	0.00	57.68	148.6
Biffin Open Hale	2368.00	2804.00	436.00	2318.59	2641.35	57.68	140.65	231.03	366.0

TARGETS									
Name	MD [m]	TVD [m]	North [m]	East	Grid East [m]	Grid North [m]	Latitude	Longitude	Shape
1) TD Pilot hole #8		2641.36	231.03	385.02	2400625.92	4076470.08	36749750.99674	1416010.12016	point

SURVEY PROGRAM - Ref Wellbore: Irminio 8 dir Pilot hole (PWB) Ref Wellpath: Irminio 8 dir Pilot hole (PWP B.4 AD 13-Mar-19)											
Start MD [m]	End MD (m)	Positional Uncertainty Model	Log Name/Comment	Wellbore							
9.20	200.00	BHI AutoTrak G3 (Axial)		irminio 5 dir Pliot hole (PWB)							
200,00	500.00	Gyrodata 2015 - GC+DROP+OH	T(imunio 6 dir Pliot hole (PWB)							
500.00	855.00	BHI AutoTrak G3 (SAG)		Immirrio 6 dir Ptlot hote (PNB)							
855.00	1714.00	BHI AutoTrak G3 (SAG, Axial)	<u> </u>	Imurio 6 dir Pliot hole (PAVB)							
1714.00	2368.00	BHI AutoTrak G3 (SAG, Axial)		Irminio 8 dir Pllot hole (PVB)							
2366.00	2804.00	BHI AutoTrak G3 (BAG, Axial)	-	Imminio 6 dir Filot hole (PWG)							

POZZO: IRMINIO 8 Dir / 8 Dir OR

PA	AG	11	5	DI	122
AGG	Olé	R۱	IΑ	MEI	NTI:
0					

Planned Wellpath Report Irminio 8 dir Lateral (PWP B.4 AD 13-Mar-2019) Page 1 of 3

REPORT SETUP	REPORT SETUP INFORMATION							
Projection System	Monte Mario / TM CM E15N	Software System	WellArchitect® 8.1					
vorth Reference	True	User	Dangand					
icale:	0.99611	Report Generated	13/Mar/2019 at 12:36					
Convergence at slot	0.20" West	Database	WA_PES_Defn					

WELLPATH LOCATION										
	Local cod	rdinates	Grid co	ordinates	Geographic	coordinates				
	North[m]	East[m]	Easting[m]	Northing [m]	Latitude	Longitude				
Sket Location	-6.02	-6.21	2490140.24	4076240.49	36°49'51.502'N	14"39"54.583"E				
acility Reference Pt			2490146.47	4076245.49	39°49'51.665'TV	14'30'54.834'E				
Field Reference Pt.			2489373.41	4075393.58	36°49°23.930"N	14'39'23.750"E				

WELLPATH DATUM			
Calculation method	Minimum curvature	Rig on Slot 3 (RT) to Facility Vertical Datum	0.00m
fonzontal Reference Pt	Siot	Rig on Slot 3 (RT) to Mean Sea Level	142.20m
Vertical Reference Pt	Rig on Slot 3 (RT)	Rig on Slot 3 (RT) to Mud Line at Slot (Slot 3)	9.20m
MD Reference Pt	Rig on Slot 3 (RT)	Section Origin	N 0.00, E 0.00 m
Carlot Martina Reference	Mana San Launi	Earthon Etimoth	60 471

WELLPA	VELLPATH DATA (5 stations)												
MD (m)	Inclination:	Azimuth	TVO Int	TVDSS	Vert Bect	North [m]	East	Orid East [m]	Orid North [m]	Latitude	Longitude	DL6 [7/30ml	Toolface Comments
2378.00	42.245	53.744	2325.99	2183,79	164.44	61.66	154,07	2490294.46	4079301.58	36'49'53.502'14	14"40'00.800'E	0.00	120.00 The On
2388.00	41.753	55,045	2333.42	2101.22	171.10	65.55	159.51	2490299.91	4076305.46	39'49'53.628'N	14"40"01.020"E	3,00	0.00 End of 3D Arc
2584.73	75,000	55.045	2435,13	2292.93	335.53	160.19	294,89	2490435.57	4076399.58	39"49"56.666"N	14°40'06.483'E	5.07	19:45 End of Build
2677,32	89.999	60.267	2447.19	2304.99	426.93	209:08	372.23	2490513.06	4076448.19	36'49'58.264'N	14"40"09:604"E	5.14	0.00 End of 3D Arc
3115.32	89 990	60.257	2447.20	2305.00	884.93	435.31	752.50	2490864.00	4076664.00	36°50'05 330'N	14"40'24.953"E	0.00	End of Tangers

String/Diameter	Start MD [m]	End MD [m]	Interval [m]	Start TVD [m]	End TVD [m]	Start N/S [m]	Start E/W [m]	End N/S [m]	End E/W (m)
26in Open Hole	0.00	200.00	200.00	0.00	200.00	0.00	0.00	0.00	0.00
24 Sin Caeing	0.00	200.00	200.00	0.00	200.00	0.00	0.00	0.00	0.00
Z3in Open Hole	200.00	855.00	655.00	200.00	852,51	0.00	0.00	-61.33	0.00
15.625in Ceeing	0.00	855.00	855.00	0.00	852.51	0.00	0.00	-61.33	0.00
15in Open Hole	895.00	1714.00	859.00	852,51	1711.51	-51.33	9.00	-51.33	0.00
13.375in Ceeing	0.00	1714.00	1714.00	0.00	1711.51	0:00	0.00	-51.33	0.00
12.25in Open Hole	1714.00	2368.00	654.00	1711.51	2318.50	-51.33	0.00	57.68	148.65
B 625in Casing	0.00	2366.00	2368.00	0.00	2318.58	0.00	0.00	57.68	148.60
8.5n Open Hole	2368.00	2370.00	2.00	2318.50	2320.07	57.68	148.65	58,48	149.73
8.5in Open Hale	2370.00	3115.32	745,32	2300.07	N/A	58.48	.149.73	14/0	N/A

TARGETS									
Name	MD [m]	TVD [m]	North (m)	East (m)	Grid East (m)	Grid North	Latitude	Longitude	Shape
t) TD drano #8	3115.32	2447.20	425.31	792.56	2490984.00	4079664.00	36'50'05 330'N	14"40"24 953"E	point

URVEY PROG	RAM - Ref	Wellbore: Irminio 8 dir Lateral	Ref Wellpath: Irminio 8 dir Lateral (PWP B.4 AD 13-Mor-2019)					
Start MD [m]	End MD	Positional Uncertainty Model	Log Name/Comment	Welbore				
9.20	200.00	BHI AutoTrak G3 (Axial)		Imminio 8 dir Pilut hole (PWB)				
200.00	500.00	Gyrodata 2015 - GC+DROP+OH		Imminio B.dir Pikut hole (PWB)				
500.00	855.00	BHI AutoTrak Q3 (SAQ)		Irmario 8 dir Pilot hole (PVIS)				
885.00	1714.00	BHI AutoTrak G3 (SAG, Aviat)		Inminio 8 dir Pilut hole (PWB)				
1714.00	2368.00	SHI AutoTrak G3 (SAG, Axial)		Immireo 8 dir Pitot hole (PWB)				
2369.00	2379.00	SHI AutoTrak G3 (SAG, Axial)		Irminio II dir Plut hole (PVIII)				
2378.00	3115.32	BHI AutoTrak G3 (SAG, Avail)		Inminio 8 dir Laterali				

P.A	١G	11	6	DI	122
AGG	OIG	RN	ΙĀΙ	ΜĒΙ	NTI:
0					

4.2.15. ANALISI ANTICOLLISION

L'analisi anticollision è stata eseguita sia con il pozzo Irminio 6 (fori 6 -6A-6B), perforato come primo pozzo del cluster, che con il progetto Irminio 7 dir (Pilot) e 7dir-OR (Lateral) che verranno perforati successivamente.

Non si prevedono problemi con gli altri pozzi perforati nell'area (Irminio 3 - 4 e 5 e relativi dreni). La distanza da questi fori è superiore a 700 metri (Separation Factor >35)

POZZO: IRMINIO 8 Dir / 8 Dir OR

PA	ιG	11	7	DI	122
AGG	SIC	RN	ΙΑΙ	MEI	NTI:
0					

Anticollision Irminio 8 dir e 8 dir- OR Vs. pozzi del cluster (Irminio 6-6A-6B - Irminio 7dir/7dir -OR)

Clearance Report

Irminio 8 dir Pilot hole (PWP B.4 AD 13-Mar-19) Closest Approach Page 1 of 39

REFERENCE WELLPATH IDENTIFICATION Operator Area Irminio S.r.l. Slot 3 Stot rminio 8 dir Pliot hole rminio 8 dir Pliot hole (PWB) Sicilia, Italy Irminio 6-7dir-8dir

REPORT SETUP I	NFORMATION		
Projection System	Monte Mario / TM CM E15N	Software System	WellArchitect® 5.1
North Reference	True	User	Dangand
Scale	0.999611	Report Generated	13/Mar/2019 at 12:18
Convergence at slot	0.20° West	Database	WA_PES_Defn

WELLPATH LOCATION									
	Local coo	rdinates	Grid co	ordinates	Geographic coordinates				
	North[m]	East[m]	Easting[m]	Northing(m)	Latitude	Longitude			
Stat Location	-5.02	-6.21	2490140.24	4076240,49	36"49'51.502"N	14"39'54.583"E			
Facility Reference Pt			2490146.47	4076245.49	38"49'51.665"N	14°39'54.834"E			
Field Rafarence Pt			2489373.41	4075393.58	36"49"23.930"N	14"39"23.750"E			

WELLPATH DATUM			
Calculation method	Minimum Curvature	Rig on Slot 3 (RT) to Facility Vertical Datum	0.00m
Horizontal Reference Pt	Slot	Rig on Slot 3 (RT) to Mean Sea Level	142.20m
Vertical Reference Pt	Rig on Slot 3 (RT)	Rig on Slot 3 (RT) to Mud Line at Slot (Slot 3)	9.20m
MD Reference Pt	Rig on Slot 3 (RT)	**************************************	
Field Vertical Reference	Mean Sea Level		

TY CALCULATION SET	TINGS			
3.00 Std Dev	Ellipse Start MD	9.20m	Surface Position Uncertainty	Included
3.33° East of TN	Dip Angle	52.32"	Mag Field Strength	44878 nT
***************************************	Horizontal	0.050m	Vertical	0.050m
	Horizontal	0.500m	Vertical	0.200m
	3.00 Std Dev 3.33° East of TN	3.33° East of TN Dip Angle Horizontal	3.00 Std Dev Elipse Start MD 9.20m 3.33° East of TN Dip Angle 52.32°	3.00 Std Dev

NTI-COLLISION RULE				
Rule Name	Baker Hughes Stop Drilling (offset is HSE risk)	Rule Based On	Ratio	
Plane of Rule	Closest Approach	Threshold Value	1.00	
Include Casing & Hole Size	yes	Apply Cone of Safety	no	

String/Diameter	Start MD	End MD	Interval	Start TVD	End TVD	Start N/S	Start EW	End N/S	End EW
String-Diameter	[m]	[m]	Int	Ini.	Int.	Drd.	Im)	100	[m]
26in Open Hote	0.00	200.00	200 00	0.00	200.00	0.00	0.00	0.00	0.00
24.5in Ceeing	0.00	200.00	200.00	0.00	200.00	0.00	0.00	0.00	0.00
23in Open Hole	200.00	805.00	655.00	200.00	862.51	0.00	0.00	-01.33	0.00
18.625in Ceeing	0.00	855.00	855.00	0.00	652.91	0.00	0.00	-55.33	0.00
16in Open Hole	856.00	1714.00	859.00	862.51	1711.51	-51.33	0.00	-51.33	0.00
13-375in Casing	0.00	1714.00	1714.00	0.00	1711.01	0.00	0.00	-51.33	0.00
12.25in Open Hole	1714.00	2368,00	654.00	1711.51	2318.59	-61.33	0.00	57.68	148.65
9.675in Casing	0.00	2366.00	2368 00	0.00	2318.59	0.00	0.00	57.66	148.65
8.5in Open Hole	2366.00	2804.00	436.00	2318.50	2641.25	57.68	148:85	231.03	385.02

OM trub	End MD (m)	Positional Uncertainty Model	Log Name/Comment	Welbore
9:20	200.00	EHI AutoTrak G3 (Avial)		imino 8 dr Plut hole (PVB)
200.00	500.00	Gyrodela 2015 - GC+DROF+CH		Imminio 8 dir Pitot hole (PVVB)
500.00	855.00	BHI AutoTrak G3 (SAG)		Imminio 8 dir Plint hale (PWB)
855.00	1714.00	EHI AutoTrek G3 (SAG, Aviel)		Imminio 6 dir Pliut hole (PWB)
1714.00	2366 00	BHI AutoTrak G3 (SAG, Axial)		Irminio II dir Pilot hole (PWE)
2366.00	2804.00	BHI AutoTrak G3 (SAG, Asial)		Irminio 8 dir Fflet hale (PWB)

CALCULATION RANGE & CUTOF	10		
From: 0.00m MD	To: 2804,00m MD	C-C Cutoff (none)	

					C-C Clearance Sistance ACR Separation Rati		ie .				
Offset Facility	CREAM	Offset	Offset	Officed Wedgesth	MED DES	Min-C-C Clear Clint [m]	Diverging from MD (m)	Ref MO of Min Ratio (m)	Min Ratio	Min Ratio Dung from (m)	ACR Status
rssni 67(6-8)k	Day 3	Irrovac R de Lateral	Introduct E-dir Caterral	1000401-8-09 Laboral (PWP E. 4.AD 13-48ar-2018)	2400.00	0.21	2400 00	3400.00	6.68	2400.00	FAL
minio 6-7sh-8sh	Skd 2	Imminio 7 de Lateral	Inmeso 7 de Lateral (PARI)	Imero 7 de Lateral (PMP 8.4.4D 134Av-2019)	0.00	3.91	1779.00	200.00	-1.78	2980.00	PASS
ressio 6-7dri-6de	Skx 2	Jennie 7 de Plus hole	timinio 7 de Plist tolo (PMB)	Interio T de Pilot tolo (PVP B 4 AC) 134Au-16:	0.00	3.91	1776.00	200.00	1.78	2904.50	PASS
mara: 6-7sh-8dr	Shirt 1	Irenius 6	Inneres 6 (AAAB)	Irmano-6-platePs	340.00	7.60	1440.00	279.58	4.98	1440.00	PASS
mino 6-749-8de	(SMIX)	Imink) 6-A	Senioral S-A	Impo 6-A (AUF)	240.00	7.68	1002 46	279.58	4.08	2370-00	PAGG
minist 6-756-6-0r	She 1	brooms 6-8	Irmaio S-8 (AIAR)	Imitia: 6-8 (AMP)	340.00	7.66	3480.00	-279.50	4.01	2490.00	PASS

POZZO: IRMINIO 8 Dir / 8 Dir OR

PA	AG	11	8	DI	122
AGG	SIC	RN	IΑ	MEI	NTI:
0					

Clearance Report Irminio 8 dir Lateral (PWP B.4 AD 13-Mar-2019) Closest Approach Page 1 of 25

REFERE	NCE WELLPATH IDENTIFICATION		
Operator	Irminio S.t.I.	Slot	Slot 3
Area	Sicilia, Italy	Well	irminio 8 dir Lateral
Field	Irminio	Wellbore	Irminio 8 dir Lateral
Facility	irminio 6-7 dir-8dir	Sidetrack from	Irminio 8 dir Pilot hole (PWP B.4 AD 13-Mar-19) at 2378.00 MD

EPORT SETUP INFORMATION				
Projection System	Monte Mario / TM CM E15N	Software System	WellArchitect® 5.1	
forth Reference	True	User	Dangand	
icale	0.999611	Report Generated	13/Mar/2019 at 12:21	
Convergence at slot	0.20" West	Database	WA_PES_Defn	

WELLPATH LOCATION	TH LOCATION					
	Local cod	ordinates Grid coordinates			Geographic coordinates	
	North[m]	East[m]	Easting[m]	Northing(m)	Latitude	Longitude
Slot Location	-5.02	-6.21	2490140,24	4076240.49	36°49'51.502'TV	14"39"54.583"E
actity Reference Pt			2490146.47	4076245.49	38°49'51.665'N	14°39′54.834°E
Field Retarence Pt			2489373.41	4075393.58	36"49'23.930"N	14"39"23.750"E

Calculation method	Minimum Curvature	Rig on Slot 3 (RT) to Facility Verboal Datum	0.00m
Horizontal Reference Pt	Slot	Rig on Slot 3 (RT) to Mean Sea Level	142.20m
Vertical Reference Pt	Rig on Slot 3 (RT)	Rig on Slot 3 (RT) to Mud Line at Slot (Slot 3)	9.20m
MD Reference Pt	Rig on Slot 3 (RT)		
Field Vertical Reference	Mean Sea Level		

POSITIONAL UNCERTAIN		1.7.7.7.7.7.			
Sipee Confidence Limit	p.00 Std Dev	Ellipse Start MD	9.20m	Surface Position Uncertainty	included
Declination	D.33" East of TN	Dip Angle	52.32"	Mag Field Strength	44878 nT
Stat Surface Uncertainty @1SD	Marie Indian South	Horizontal	0.050m	Vertical	0.050m
acility Surface Uncertainty @150)	Horizontal	0.500m	Vertical	0.200m

ANTI-COLLISION RULE						
Rule Name	Baker Hughes Stop Drilling (offset is HSE risk)	Rule Based On	Ratio			
Plane of Rule	Closest Approach	Threshold Value	1.00			
Include Casing & Hole Size	yes	Apply Cone of Safety	no			

HOLE & CASING SECTIO	NS - Ref Wellbore	o: Irminio 8 dir L	ateral Ref W	elipath: Irminio 8	dir Lateral (F	WP 8.4 AD 13			
String/Diameter	Start MD (m)	End MD [m]	Interval Ind	Start TVD [m]	End TVD [m]	Start N/S [m]	Start E/W	End N/S [m]	End E/W
6.5h Osen Prote	3170.00	311532	745.32	2300.07	N/A	58.48	149.73	N/A	No

Start MD [m]	End MD	Positional Uncertainty Model	Log Name/Comment	Welbore		
9.20	200.00	BHI AutoTrak G3 (Axial)		Irminio 8 dir Plot hole (PWB)		
200.00	500.00	Gyrodata 2015 - GC+DRCP+OH	rodata 2015 - GC+CRCP+CH Irminio 8 dir Pilot finite (PWB			
900.00	855.00	BHI AutoTinia G3 (SAG) Immino 8 dir Pilot Nole (PV		Imminio 8 dir Pliot hole (PWB)		
855.00	1714.00	BH AutoTrais G3 (SAG, Acos) Immiss 8 de Plot hole (PW		Irminio 8 dir Plot hole (PWB)		
1714.00	2366.00	HI AutoTrak G3 (SAG, Axia) Immino 8 dir Pitot frote (PWS		Irminio 8 dir Pilot hole (PWB)		
2300.00	2378.00	H AutoTriak G3 (SAG, Axial) Internsio 8 dir Pilot hole (PAR)				
2378.00	3115.32	E BHI Audo Trais G3 (SAG, Axial) Immino 8 dir Lateral				

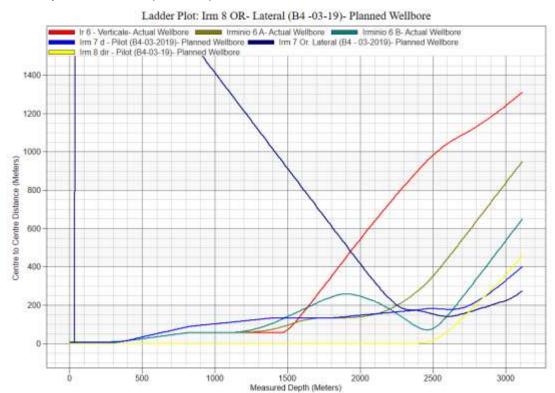
CALCULATION RANGE & CU	TOFF	
From: 0.00m MD	Yo: 3115.32m MD	C-C Cutoff (none)

	17 57 //				C-C Clearance Distance			ACR Separation Ratio			
Offset	Offset	Offset West	Offsel Wellbore	Offset Weigneth	Ref MD [m]	Min-C-C Clear Dist 3rd	Diverging from MD [m]	MeTMO of Min Ratio (M)	Min Ratte	Min Ratio Dvrp from \$m\$	ACR Stylus
rrenes 6-7der-8-de	Skit 3	Irreseau-5 day Pikut Iyole	irretes 2 de Pául hois (FYAE)	Irreso II de Pike tuto (PVP B.4 AC 13-Mo-10)	2378.00	0.85	2578.00	2378.63	0.83	2378.03	THE
men 6-7de-8de	Ski# 1	Imminio 6-B	Immino 6-B (AWB)	Irminio 6-8 (AIAP)	2460.00	70.62	2460.00	2462.40	4.50	2462.40	PASS.
minio 6-7de-8de	Sket 2	tressio 7 dk Lateral	trottelo 7 dir Lateral (PVIII)	tomento 7 dir Laterat (PWP B 4 AD 13-Mar-2018)	2378.00	173.04	2618.00	3115.33	5.34	3115.32	PASS
renin 6-7di-Bde	Skit 2	breining 7 die Piket belie	Innersis 7 dir Pikel holio (PVM)	Irminiu 7 de Pilos hole (PMP B.4 AD 15-Mur-10)	2378.00	172.04	2618.00	2730.00	9.34	2730.00	PASS
man 6-761-8:de	Skill	Historia S.A.	Breata 6-A	Irmenie S-A (AUAP)	2378 GO	263.74	2379.00	2376.00	17.80	2379 00	PARK
rrenio 6-7de-8de	Skot 1	Irmanio 6	Tryphia 6 (AVAID)	Irminio E (AWP)	7374-00	808.30	2379.00	2378.00	102.48	2670.00	PASS

AGGIORNAMENTI:

Separation factor Irminio 8 dir Vs Irminio 6 (6-6A-6B) e Irminio 7dir /7dir-OR

Separation Factor Plot: Irm 8 OR- Lateral (B4 -03-19)- Planned Wellbore Irm 6 - Verticale- Actual Wellbore Irm 7 or - Pilot (B4 -03-2019)- Planned Wellbore Irm 7 Or Lateral (B4 - 03-2019)- Planned Wellbore Irm 8 or - Pilot (B4 -03-19)- Planned Wellbore Irm 8 or - Pilot (B4 -03-19)- Planned Wellbore Irm 8 or - Pilot (B4 -03-19)- Planned Wellbore Irm 8 or - Pilot (B4 -03-19)- Planned Wellbore Irm 8 or - Pilot (B4 -03-19)- Planned Wellbore Irm 8 or - Pilot (B4 -03-19)- Planned Wellbore Irm 8 or - Pilot (B4 -03-19)- Planned Wellbore Irm 7 or Lateral (B4 - 03-2019)- Planned Wellbore Irm 8 or - Pilot (B4 -03-19)- Planned Wellbore Irm 7 or Lateral (B4 - 03-2019)- Planned Wellbore Irm 8 or - Pilot (B4 -03-19)- Planned Wellbore Irm 7 or Lateral (B4 - 03-2019)- Planned Wellbore Irm 8 or - Pilot (B4 -03-2019)- Planned Wellbore Irm 7 or Lateral (B4 - 03-2019)- Planned Wellbore Irm 8 or - Pilot (B4 -03-2019)- Planned Wellbore Irm 7 or Lateral (B4 - 03-2019)- Planned Wellbore Irm 8 or - Pilot (B4 -03-2019)- Planned Wellbore Irm 7 or Lateral (B4 - 03-2019)- Planned Wellbore Irm 8 or - Pilot (B4 - 03-2019)- Planned Wellbore Irm 8 or - Pilot (B4 - 03-2019)- Planned Wellbore Irm 8 or - Pilot (B4 - 03-2019)- Planned Wellbore Irm 8 or - Pilot (B4 - 03-2019)- Planned Wellbore Irm 7 or Lateral (B4 - 03-2019)- Planned Wellbore Irm 8 or - Pilot (B4 - 03-2019)- Planned Wellbore Irm 8 or - Pilot (B4 - 03-2019)- Planned Wellbore Irm 8 or - Pilot (B4 - 03-2019)- Planned Wellbore Irm 8 or - Pilot (B4 - 03-2019)- Planned Wellbore Irm 8 or - Pilot (B4 - 03-2019)- Planned Wellbore Irm 8 or - Pilot (B4 - 03-2019)- Planned Wellbore Irm 8 or - Pilot (B4 - 03-2019)- Planned Wellbore Irm 8 or - Pilot (B4 - 03-2019)- Planned Wellbore Irm 8 or - Pilot (B4 - 03-2019)- Planned Wellbore Irm 8 or - Pilot (B4 - 03-2019)- Planned Wellbore Irm 8 or - Pilot (B4 - 03-2019)- Planned Wellbore Irm 8 or - Pilot (B4 - 03-2019)- Planned Wellbore Irm 8 or - Pilot (B4 - 03-2019)- Planned Wellbore Irm 8 or - Pilot (B4 - 03-2019)- Planned Wellbore Irm 8 or - Pilot (B4


1500 Measured Depth (Meters) 2000

2500

3000

Distanza dai pozzi Irminio 6 (6-6A-6B) e Irminio 7dir /7dir-OR

1000

PA	٩G	12	0	DI	122
AGC	ЭIC	۱R	ΙAΙ	MEI	NTI:
0					

4.2.16. LISTA ACRONIMI / ABBREVIAZIONI

API	American Petroleum Institute
BG	Background gas
ВНА	Bottom Hole Assembly
ВНР	Bottom Hole Pressure
ВНТ	Bottom Hole Temperature
BJ	Blast Joint
ВО	Back Off
ВОР	
	Blow Out Preventer
BP	Bridge Plug
BPD	Barrel Per Day
BPM	Barrels Per Minute
BPV	Back Pressure Valve
BPVP	Back Pressure Valve Plug
BSW	Base Sediment & Water
CBL	Cement Bond Log
CCL	Casing Collar Locator
CET	Cement Evaluation Tool
CGR	Condensate Gas Ratio
CHP	Casing Head Pressure
CL	Control Line
CMT	Cement
CR	Cement Retainer
CRA	Corrosion Resistant Alloy
CSG	Casing
СТ	Coiled Tubing
DC	Drill Collar
DHPTT	Down Hole Pressure and Temperature Transducer
DHSV	Down Hole Safety Valve
DP	Drill Pipe

DST	Drill Stem Test
ECD	Equivalent Circulation Density
ECP	External Casing Packer
EL	Electric Line
EMW	Equivalent Mud Weight
ESD	Emergency Shut-Down System
ESP	Electrical Submersible Pump
ETU	Endless Tubing Unit
EWL	Electric Wire Line
FBHP	Flowing Bottom Hole Pressure
FBHT	Flowing Bottom Hole Temperature
FC	Flow Coupling
FP	Fondo Pozzo
FPP	Fondo Pozzo Precedente
FPI	Free Point Indicator
FTHP	Flowing Tubing Head Pressure
FTHT	Flowing Tubing Head Temperature
GLR	Gas Liquid Ratio
GOC	Gas Oil Contact
GOR	Gas Oil Ratio
GP	Gravel Pack
GPM	Gallon (US) per Minute
GR	Gamma Ray
HP/HT	High Pressure - High Temperature
HW	Heavy Weight
HWDP	Hewi Wall Drill Pipe

P.	AG	121		DI	122		
AGO	SIC	۱R	ΙAΙ	MEI	NTI:		
0							

IADC	International Drilling Contractor
ICGP	Inside Casing Gravel Packing
ID	Inside Diameter
IP	Internal Pressure
IPR	Inflow Performance Relationship
JAM	Joint Make-up Torque Analyzer
LD	Lay-Down
LN	Landing Nipple
LOT	Leak Off Test
LS	Long String
MAASP	Max Allowable Annular Surface Pressure
M/D	Martin Decker
MD	Measured Depth
MMCF	Million Cubit Feet
MMCFPD	Million Cubit Feet Per Day
MUT	Make Up Torque
MW	Mud Weight
MWD	Measurement While Drilling
NACE	National Association of Corrosion Engineers
NTU	Nephelometric Turbidinity Unit
NU	Nipple-Up
ОВМ	Oil Base Mud
OD	Outside Diameter
ОН	Open Hole
OHGP	Open Hole Gravel Packing
OWC	Oil Water Contact
PI	Productivity Index
PKR	Packer
PLT	Production Logging Tool
РООН	Pull Out Of Hole

PPB	Pounds per Barrel
PPG	Pounds per Gallon
ppm	Part Per Million
PTR	Piano Tavola Rotary
PV	Plastic Viscosity
PVT	Pressure Volume Temperature
Q	Flow Rate
RBP	Retrievable Bridge Plug
RD	Rig Down
RFT	Repeat Formation Test
RIH	Run In Hole
RJ	Ring Joint
RPM	Revolutions Per Minute
RPSP	Reduced Pump Strokes Pressure
RT	Running Tool
RT	Rotary Table
RU	Rig Up
S/N	Serial Number
SBHP	Static Bottom Hole Pressure
SBHT	Static Bottom Hole Temperature
SC	String Corta
scssv	Surface Controlled Subsurface Safety Valve
SF	Safety Factor
SG	Specific Gravity
SICP	Shut-in Casing Pressure
SIDPP	Shut-in Drill Pipe Pressure
SL	String Lunga
SN	Seating Nipple
SPF	Shots Per Foot
SPM	Stroke per Minute
SPV	Supervisor
	1

P.	AG	12	2	DI	122
AGO	SIC)RN	ΙAΙ	MEI	NTI:
0					

Separation Ratio		
Surface Readout		
Short String		
Sliding Side Door Valve		
Sub Surface Lubricator Valve		
Sub Surface Safety Valve		
Stand		
Static Tubing Head Pressure		
Static Tubing Head Temperature		
Tubing		
Tubing Conveyed Perforations		
Total Depth		
Total Flow Area		
Trip Gas		
Tubing Hanger		
Tubing Head Pressure		
Tubing Head Temperature		

TRSV	Tubing Retrievable Safety		
11.54	Valve		
TTBP	Through Tubing Bridge Plug		
TVD	True Vertical Depth		
VDL	Variable Density Log		
WBM	Water Base Mud		
WC	Water Cut		
WH	Well Head		
WHP	Well Head Pressure		
WHSIP	Well Head Shut-in Pressure		
WHT	Well Head Temperature		
WL	Wire Line		
WL	Water Loss		
WO	Workover		
WP	Working Pressure		
ХО	Cross Over		
YP	Yield Point		