

ASSE VIARIO MARCHE – UMBRIA E QUADRILATERO DI PENETRAZIONE INTERNA MAXI LOTTO 2

LAVORI DI COMPLETAMENTO DELLA DIRETTRICE PERUGIA ANCONA: SS. 318 DI "VALFABBRICA". TRATTO PIANELLO – VALFABBRICA SS. 76 "VAL D'ESINO". TRATTI FOSSATO VICO – CANCELLI E ALBACINA – SERRA SAN QUIRICO "PEDEMONTANA DELLE MARCHE", TRATTO FABRIANO – MUCCIA – SFERCIA

PERIZIA DI VARIANTE

DIRPA 2

CONTRAENTE GENERALE:

Il responsabile del Contraente Generale:

Il responsabile Integrazioni delle Prestazioni Specialistiche:

Ing. Federico Montanari

Ing. Salvatore Lieto

PROGETTAZIONE: Associazione Temporanea di Imprese

Mandataria:

RESPONSABILE DELLA PROGETTAZIONE PER l'ATI

Ing. Antonio Grimaldi

GEOLOGO

Dott. Geol. Fabrizio Pontoni

COORDINATORE DELLA SICUREZZA IN FASE DI PROGETTAZIONE Ing. Michele Curiale

IL RESPONSABILE DEL	
PROCEDIMENTO	
Ing. Iginio Farotti	

2.1.2 PEDEMONTANA DELLE MARCHE

Secondo stralcio funzionale: Matelica Nord – Matelica Sud/Castelraimondo Nord

OPERE D'ARTE MINORI

Opere idrauliche

Relazione tecnica e di calcolo scatolare e muri imbocco

SCALA:

DATA:

Febbraio 2020

Codice Unico di Progetto (CUP) F12C03000050021 (Assegnato CIPE 23-12-2015)

	Opera	Tratto	Settore CEE	WBS	Id. doc. N. prog.	Rev
Codice Elaborato:	L 0 7 0 3	2 1 2	E 0 3	0 1 3 8 0 0	R E L 0 1	Α

REV.	DATA	DESCRIZIONE	Redatto		Controllato	Approvato
Α	FEBBRAIO 2020	Emissione per perizia di variante	PROGIN	A. DELLA ROCCA	S. LIETO	A.GRIMALDI

Secondo stralcio funzionale: Matelica Nord – Matelica Sud/Castelraimondo Nord

Opera	Tratto	Settore	CEE	WBS	ld. doc.	N. prog.	Rev.	Pag. di Pag.
L0703	212	Е	38	O13800	REL	01	Α	2 di 168

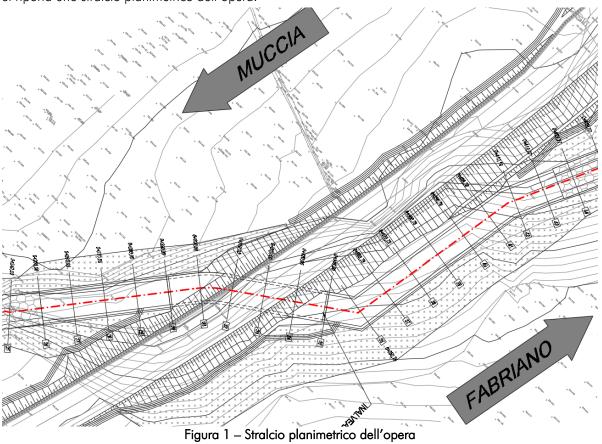
INDICE

	PREMESSA	4
1	1.1 UNITÀ DI MISURA	6
2.	DESCRIZIONE DELLE OPERE IN PROGETTO	
	ERRORE. IL SEGNALIBRO NON È DEFINITO.	
3.	NORMATIVA DI RIFERIMENTO	7
4.	CARATTERISTICHE DEI MATERIALI	
	4.1 CALCESTRUZZO C25/30	
	4.2 ACCIAIO PER ARMATURE	
5 .		
Į	5.1 INTERAZIONE TERRENO-FONDAZIONE	
6.	CARATTERIZZAZIONE SISMICA	14
ć	6.1 Verifiche Strutturali – Criteri Generali	
	6.1.1 Verifica SLE	
	6.1.2 Verifiche delle tensioni	
	6.1.4 Verifiche allo SLU	
	6.1.5 Pressoflessione	
	6.1.6 Taglio	18
7.	CRITERI GENERALI DI ANALISI E VERIFICA SCATOLARI	2 1
-	7.1 ANALISI DEI CARICHI	21
	7.1.1 Peso proprio	
	7.1.2 Permanenti	
	7.1.3 Spinta del terreno	22
	 7.1.3 Spinta del terreno 7.1.4 Spinta in presenza di falda 7.1.5 Variazioni termiche della struttura 	22 23 23
	7.1.3 Spinta del terreno	22 23 23
	7.1.3 Spinta del terreno	22 23 23 23
	7.1.3 Spinta del terreno 7.1.4 Spinta in presenza di falda 7.1.5 Variazioni termiche della struttura 7.1.6 Ritiro e viscosità 7.1.7 Azioni variabili da traffico (Q1) 7.1.8 Azione longitudinale di frenamento (Q3) 7.1.9 Azioni Sismiche	
	7.1.3 Spinta del terreno 7.1.4 Spinta in presenza di falda 7.1.5 Variazioni termiche della struttura 7.1.6 Ritiro e viscosità 7.1.7 Azioni variabili da traffico (Q1) 7.1.8 Azione longitudinale di frenamento (Q3) 7.1.9 Azioni Sismiche 7.1.10 Forze d'inerzia	
_	7.1.3 Spinta del terreno 7.1.4 Spinta in presenza di falda 7.1.5 Variazioni termiche della struttura 7.1.6 Ritiro e viscosità 7.1.7 Azioni variabili da traffico (Q1) 7.1.8 Azione longitudinale di frenamento (Q3) 7.1.9 Azioni Sismiche 7.1.10 Forze d'inerzia 7.1.11 Spinta sismica terreno	
	7.1.3 Spinta del terreno 7.1.4 Spinta in presenza di falda 7.1.5 Variazioni termiche della struttura 7.1.6 Ritiro e viscosità 7.1.7 Azioni variabili da traffico (Q1) 7.1.8 Azione longitudinale di frenamento (Q3) 7.1.9 Azioni Sismiche 7.1.10 Forze d'inerzia 7.1.11 Spinta sismica terreno 7.2 COMBINAZIONI DI CARICO	
7	7.1.3 Spinta del terreno 7.1.4 Spinta in presenza di falda 7.1.5 Variazioni termiche della struttura 7.1.6 Ritiro e viscosità 7.1.7 Azioni variabili da traffico (Q1) 7.1.8 Azione longitudinale di frenamento (Q3) 7.1.9 Azioni Sismiche 7.1.10 Forze d'inerzia 7.1.11 Spinta sismica terreno 7.2 COMBINAZIONI DI CARICO 7.3 VERIFICHE GEOTECNICHE (CARICO LIMITE)	
8.	7.1.3 Spinta del terreno 7.1.4 Spinta in presenza di falda 7.1.5 Variazioni termiche della struttura 7.1.6 Ritiro e viscosità 7.1.7 Azioni variabili da traffico (Q1) 7.1.8 Azione longitudinale di frenamento (Q3) 7.1.9 Azioni Sismiche 7.1.10 Forze d'inerzia 7.1.11 Spinta sismica terreno 7.2 COMBINAZIONI DI CARICO 7.3 VERIFICHE GEOTECNICHE (CARICO LIMITE) ORIGINE E CARATTERISTICHE DEI CODICI DI CALCOLO	
8. 9.	7.1.3 Spinta del terreno 7.1.4 Spinta in presenza di falda 7.1.5 Variazioni termiche della struttura 7.1.6 Ritiro e viscosità 7.1.7 Azioni variabili da traffico (Q1) 7.1.8 Azione longitudinale di frenamento (Q3) 7.1.9 Azioni Sismiche 7.1.10 Forze d'inerzia 7.1.11 Spinta sismica terreno 7.2 COMBINAZIONI DI CARICO 7.3 VERIFICHE GEOTECNICHE (CARICO LIMITE) ORIGINE E CARATTERISTICHE DEI CODICI DI CALCOLO RISULTATI, ANALISI E VERIFICHE SCATOLARE	
8. 9.	7.1.3 Spinta del terreno	
8. 9.	7.1.3 Spinta del terreno 7.1.4 Spinta in presenza di falda 7.1.5 Variazioni termiche della struttura 7.1.6 Ritiro e viscosità 7.1.7 Azioni variabili da traffico (Q1) 7.1.8 Azione longitudinale di frenamento (Q3) 7.1.9 Azioni Sismiche 7.1.10 Forze d'inerzia 7.1.11 Spinta sismica terreno 7.2 COMBINAZIONI DI CARICO 7.3 VERIFICHE GEOTECNICHE (CARICO LIMITE) ORIGINE E CARATTERISTICHE DEI CODICI DI CALCOLO RISULTATI, ANALISI E VERIFICHE SCATOLARE 9.1 MODELLO DI CALCOLO 9.2 SOLLECITAZIONI DI CALCOLO	2223232323262727282833343737
8. 9.	7.1.3 Spinta del terreno 7.1.4 Spinta in presenza di falda 7.1.5 Variazioni termiche della struttura 7.1.6 Ritiro e viscosità 7.1.7 Azioni variabili da traffico (Q1) 7.1.8 Azione longitudinale di frenamento (Q3) 7.1.9 Azioni Sismiche 7.1.10 Forze d'inerzia 7.1.11 Spinta sismica terreno 7.2 COMBINAZIONI DI CARICO 7.3 VERIFICHE GEOTECNICHE (CARICO LIMITE) ORIGINE E CARATTERISTICHE DEI CODICI DI CALCOLO RISULTATI, ANALISI E VERIFICHE SCATOLARE 9.1 MODELLO DI CALCOLO 9.2 SOLLECITAZIONI DI CALCOLO 9.2 SOLLECITAZIONI DI CALCOLO 9.3 ARMATURE DI PROGETTO	
8. 9.	7.1.3 Spinta del terreno 7.1.4 Spinta in presenza di falda 7.1.5 Variazioni termiche della struttura 7.1.6 Ritiro e viscosità 7.1.7 Azioni variabili da traffico (Q1) 7.1.8 Azione longitudinale di frenamento (Q3) 7.1.9 Azioni Sismiche 7.1.10 Forze d'inerzia 7.1.11 Spinta sismica terreno 7.2 COMBINAZIONI DI CARICO 7.3 VERIFICHE GEOTECNICHE (CARICO LIMITE) ORIGINE E CARATTERISTICHE DEI CODICI DI CALCOLO RISULTATI, ANALISI E VERIFICHE SCATOLARE 9.1 MODELLO DI CALCOLO 9.2 SOLLECITAZIONI DI CALCOLO 9.3 ARMATURE DI PROGETTO 9.4 VERIFICHE DI RESISTENZA E FESSURAZIONE	
8. 9.	7.1.3 Spinta del terreno 7.1.4 Spinta in presenza di falda 7.1.5 Variazioni termiche della struttura 7.1.6 Ritiro e viscosità 7.1.7 Azioni variabili da traffico (Q1) 7.1.8 Azione longitudinale di frenamento (Q3) 7.1.9 Azioni Sismiche 7.1.10 Forze d'inerzia 7.1.11 Spinta sismica terreno 7.2 COMBINAZIONI DI CARICO 7.3 VERIFICHE GEOTECNICHE (CARICO LIMITE) ORIGINE E CARATTERISTICHE DEI CODICI DI CALCOLO RISULTATI, ANALISI E VERIFICHE SCATOLARE 9.1 MODELLO DI CALCOLO 9.2 SOLLECITAZIONI DI CALCOLO 9.2 SOLLECITAZIONI DI CALCOLO 9.3 ARMATURE DI PROGETTO	
8. 9.	7.1.3 Spinta del terreno 7.1.4 Spinta in presenza di falda 7.1.5 Variazioni termiche della struttura 7.1.6 Ritiro e viscosità 7.1.7 Azioni variabili da traffico (Q1) 7.1.8 Azione longitudinale di frenamento (Q3) 7.1.9 Azioni Sismiche 7.1.10 Forze d'inerzia 7.1.11 Spinta sismica terreno 7.2 COMBINAZIONI DI CARICO 7.3 VERIFICHE GEOTECNICHE (CARICO LIMITE) ORIGINE E CARATTERISTICHE DEI CODICI DI CALCOLO RISULTATI, ANALISI E VERIFICHE SCATOLARE 9.1 MODELLO DI CALCOLO 9.2 SOLLECITAZIONI DI CALCOLO 9.3 ARMATURE DI PROGETTO 9.4 VERIFICHE DI RESISTENZA E FESSURAZIONE 9.4.1 Verifiche allo SLU	

Secondo stralcio funzionale: Matelica Nord – Matelica Sud/Castelraimondo Nord

Opera	Tratto	Settore	CEE	WBS	ld. doc.	N. prog.	Rev.	Pag. di Pag.
L0703	212	Е	38	O13800	REL	01	Α	3 di 168

9.4.5	Verifiche a fessurazione	45
9.4.6	Verifica delle tensioni	
9.5 VE	RIFICHE GEOTECNICHE	48
10. ANA	ALISI E VERIFICA MURI AD U	49
10.1 AN	NALISI DEI CARICHI	49
10.1.1	Peso proprio	
10.1.2	Spinta del terreno	
10.1.3	Spinta in presenza di falda	
10.1.4	Azioni Sismiche	
10.1.5	Forze d'inerzia	
10.1.6	Spinta sismica terreno	
	TERAZIONE TERRENO-FONDAZIONE	
	OMBINAZIONI DI CARICO	
11. RIS	ULTATI, ANALISI E VERIFICHE SCATOLARE	54
	ODELLO DI CALCOLO	
11.1 SC	DLLECITAZIONI DI CALCOLO	56
11.2 AF	MATURE DI PROGETTO	59
	RIFICHE DI RESISTENZA E FESSURAZIONE	
11.3.1	Verifiche allo SLU	
11.3.2	Verifiche a pressoflessione	60
11.3.3	Verifiche a taglio	61
11.3.4	Verifiche allo SLE	
11.3.5	Verifiche a fessurazione	
11.3.6	Verifica delle tensioni	
	RIFICHE GEOTECNICHE	
ALLEGA	ro 1	65
TABL	JLATI DI CALCOLO SCATOLARE	65
ALLEGA 1	TO 2	133

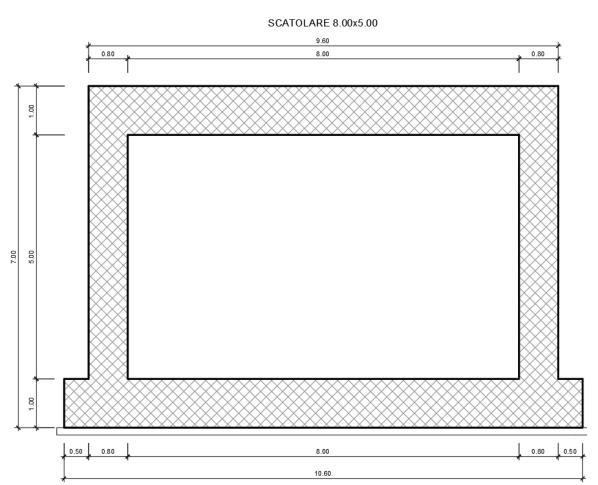

Secondo stralcio funzionale: Matelica Nord – Matelica Sud/Castelraimondo Nord

Opera	Tratto	Settore	CEE	WBS	ld. doc.	N. prog.	Rev.	Pag. di Pag.
L0703	212	Е	38	O13800	REL	01	Α	4 di 168

1. PREMESSA

Nell'ambito dei lavori di completamento della direttrice Perugia – Ancona "Pedemontana delle Marche": Sub Lotto 2.2 Tratto Matelica Nord – Matelica Sud/Castelraimondo Nord, è prevista la realizzazione di una serie di scatolari allo scopo di garantire la continuità delle sedi stradali intercettate al di sotto del tracciato di progetto.

Si riporta uno stralcio planimetrico dell'opera.

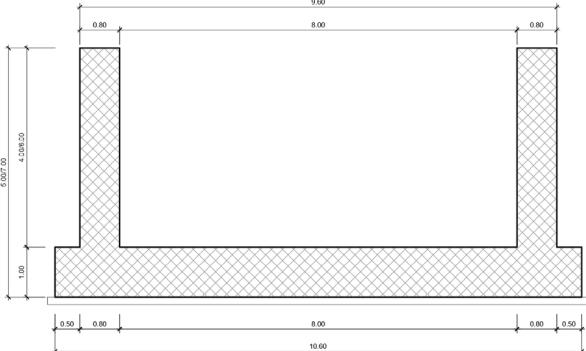


Secondo stralcio funzionale: Matelica Nord – Matelica Sud/Castelraimondo Nord

Opera	Tratto	Settore	CEE	WBS	ld. doc.	N. prog.	Rev.	Pag. di Pag.
L0703	212	Е	38	O13800	REL	01	Α	5 di 168

Oggetto della trattazione nel seguito esposta è in particolare:

• il dimensionamento strutturale e geotecnico dello scatolare in c.a. caratterizzato da una sezione trasversale avente come dimensioni interne 8x5 m ed uno sviluppo inlunghezza di circa 48 m. Esso attraversa l'asse principale con angolo di 43° circa. Gli spessori del traverso e della fondazione sono pari a 100 cm; la fondazione sporge di 50 cm rispetto alle pareti, metre i piedritti hanno uno spessore di 80 cm. La sovrastante copertura di terreno è alta circa 2.5 m. Si riporta una sezione trasversale.



Secondo stralcio funzionale: Matelica Nord – Matelica Sud/Castelraimondo Nord

Opera	Tratto	Settore	CEE	WBS	ld. doc.	N. prog.	Rev.	Pag. di Pag.
L0703	212	Е	38	O13800	REL	01	Α	6 di 168

Il dimensionamento dei muri andatori del tipo ad U caratterizzati da una sezione trasversale avente come dimensioni interne 8x5 m ed uno sviluppo inlunghezza di circa 40 m. Lospessore della fondazione è pari a 100 cm; la fondazione sporge di 50 cm rispetto alle pareti, metre i piedritti hanno uno spessore di 80 cm. Si riporta una sezione trasversale dell'opera.

Da indagini geotecniche, la falda è stata assunta alla quota di 4 m dal piano di posa dell'opera.

Nel seguito, dopo una breve descrizione delle opere cui si riferiscono i calcoli sviluppati, si riportano tutti i criteri generali adottati per le analisi e verifiche

1.1 UNITÀ DI MISURA

Nel seguito si adotteranno le seguenti unità di misura:

per le lunghezze \Rightarrow m, cm,

per i carichi \Rightarrow kN, kN/m², kN/m³

per le azioni di calcolo \Rightarrow kN, kNm

 \Rightarrow kPa per le tensioni

Secondo stralcio funzionale: Matelica Nord – Matelica Sud/Castelra
imondo Nord

Opera	Tratto	Settore	CEE	WBS	ld. doc.	N. prog.	Rev.	Pag. di Pag.
L0703	212	Е	38	O13800	REL	01	Α	7 di 168

2. NORMATIVA DI RIFERIMENTO

Per la redazione del progetto strutturale e geotecnico esposto nel presente documento, si è fatto riferimento alle seguenti normative e specifiche nazionali e comunitarie:

- D.M. 14/01/2008.
 - Norme tecniche per le costruzioni.
- Circolare del 02/02/2009.
 - Istruzioni per l'applicazione delle "Norme tecniche per le costruzioni" di cui al D.M. del 14/01/2008.
- UNI EN 206-1-2001: Calcestruzzo. "Specificazione, prestazione, produzione e conformità".
- UNI 11104-2004: Specificazione, prestazione, produzione e conformità: Istruzioni complementari per l'applicazione della EN 206-1
- Linee Guida sul calcestruzzo strutturale Servizio Tecnico Centarale dei Lavori Pubblici dicembre 1996 (L.G.S.T.C.)

Secondo stralcio funzionale: Matelica Nord – Matelica Sud/Castelra
imondo Nord

Opera	Tratto	Settore	CEE	WBS	ld. doc.	N. prog.	Rev.	Pag. di Pag.
L0703	212	Е	38	O13800	REL	01	Α	8 di 168

3. CARATTERISTICHE DEI MATERIALI

Nei paragrafi seguenti si riportano le caratteristiche dei materiali previsti per la realizzazione dell'opera.

3.1 CALCESTRUZZO C25/30

Per tutte le parti strutturali dei muri in progetto in elevazione (Paramento) è previsto l'impiego di calcestruzzo di classe C25/30, di cui nel seguito si riportan le relative caratteristiche meccaniche valutate in accordo a guanto prescritto ai para. 4.1.2.1 e 11.2.10 del DM 14.01.08:

iii decordo a c	quame proceime	, a. pa.g	1 0 11.2.10 00.2.11 1 1.01.00.						
Classa di	Resistenza	25/30	▼						
<u>Classe ui</u>	<u>Nesistenza</u>	-	 -						
Valore cara	atteristico della	a resistenza a	compressione cubica a 28 gg:						
R _{ck} =	30	MPa							
Valore cara	atteristico della	a resistenza a (compressione cilindrica a 28 gg:						
f _{ck} =	24,9	MPa	(0,83*R _{ck})						
Resistenza	-	ne cilindrica n							
f _{cm} =	32,9	MPa	(fck+8)						
	a trazione ass								
t _{ctm} =	2,56	MPa	Valore medio						
f _{ctk,0,05} =	1,79	MPa	Valore caratteristico frattile 5%						
Resistenza a trazione per flessione:									
f _{cfm} =	3,1	MPa	Valore medio						
	,	•							
f _{cfk,0,05} =	2,1	MPa	Valore caratteristico frattile 5%						
Coefficient	e parziale per	le verifiche ag	li SLU:						
γ c=	1,5								
<u>Per situazioni d</u>	<u>di carico ecceziona</u>	<u>li, tale valore va co</u>	nsiderato pari ad 1,0						
- Resistenza	di calcolo a c	ompressione a	allo SLU:						
	14,1	MPa	(0,85*fck/γs)						
Resistenza	di calcolo a ti	razione diretta	allo SLU:						
f _{ctd} =	1,19	MPa	(f _{ctk 0,05} / γs)						
Resistenza	di calcolo a ti	razione per fles	ssione SLU:						
f _{ctd f} =		MPa	1,2*fctd						
•		•							
Per spessori m	ninori di 50mm e ca	lcestruzzi ordinari,	tale valore va ridotto del 20%						
Modulo di elasticità secante:									
E _{cm} =	31447	MPa							
Modulo di l	Poisson:								

Secondo stralcio funzionale: Matelica Nord – Matelica Sud/Castelraimondo Nord

Opera	Tratto	Settore	CEE	WBS	ld. doc.	N. prog.	Rev.	Pag. di Pag.
L0703	212	Е	38	O13800	REL	01	Α	9 di 168

 $\begin{array}{c|c} v = & \hline 0 \text{-0,2} \\ \hline \hline \\ \text{Coefficiente di dilatazione lineare} \\ \alpha = & \hline 0,00001 & ^{\circ}\text{C}^{\text{-1}} \\ \end{array}$

Tensione di aderenza di calcolo acciaio-calcestruzzo

 $\eta = 1,00$

 f_{bd} = **2,69** MPa (2,25* $f_{ctk*}\eta/\gamma s$)

Nel caso di armature molto addensate, o ancoraggi in zona tesa tale valore va diviso per 1,5

Tensioni massime per la verifica agli SLE

 $\sigma_{cmax QP} = (0,45 f_{cK}) =$ MPa (Combinazione di Carico Quasi Permanente)

 $\sigma_{\text{cmax R}}$ = (0,60 f_{cK}) = 14,94 MPa (Combinazione di Carico Caratteristica - Rara)

Per spessori minori di 50mm e calcestruzzi ordinari, tale valori vanno ridotti del 20%

Secondo stralcio funzionale: Matelica Nord – Matelica Sud/Castelraimondo Nord

Opera	Tratto	Settore	CEE	WBS	ld. doc.	N. prog.	Rev.	Pag. di Pag.
L0703	212	Е	38	O13800	REL	01	Α	10 di 168

3.2 ACCIAIO PER ARMATURE

Per l'armatura delle strutture in calcestruzzo è previsto l'impiego di barre ad aderenza migliorata in acciaio tipo B450C, di cu nel seguito sono riportate le relative caratteristiche meccaniche:

Classe di Resistenza	<u>a</u>							
Tensione caratteristica di ro	· · · · · ·	-						
Tensione caratteristica di rol	tura:	1						
$f_{tk} = $	540	MPa	(frattile al 5%)					
Tensione caratteristica allo s	nervamen	ito:						
$f_{yk} = $	450	MPa	(frattile al 5%)					
Fattore di sovraresistenza (nel caso di impiego di legame costitutivo tipo bilineare con incrudimento) k=f _{tk} f _{yk} = 1.20 MPa								
Allungamento a rottura (nel d	aso di imp	iego di legame d	costitutivo tipo bilineare con incrudimento)					
$(A_{gt})_k =$	ε_{uk} =	7.5	%					
ε _{ud} =	0,9 ε _{uk} =	6.75] %					
Coefficiente parziale per le v	erifiche ag	gli SLU:						
γ_c =	1.15							
Per situazioni di carico eccezio	nali, tale v	alore va conside	erato pari ad 1,0					
Resistenza di calcolo allo SL $\mathbf{f}_{yd} = \begin{bmatrix} \\ \end{bmatrix}$. <i>U:</i> 391.3	МРа	(f_{yk}/γ_s)					
Modulo di elasticità :		1						
E _f =	210000	MPa						

3.3 COPRIFERRI

La scelta del copriferro minimo di progetto \mathbf{c}_{min} inteso come lo spessore minimo del ricoprimento dello strato di calcestruzzo a protezione dei ferri d'armatura è stato determinato in base a quanto indicato nella circolare Esplicativa, tenendo conto della calsse di esposizione ambientale e della classe del Calcestruzzo prevista.

Nello specifico, tenendo conto della classe di esposizione ambientale desunta dalle analisi specifiche condotte nei riguardi dell'attacco chimico, che hanno evidenziato una Classe di Esposizione XA2 e pertanto Condizioni Ambientali "Aggressive" per il solettone di fondazione. Mentre per i piedritti e il solettone superiore si ha una Classe di Esposizione XC2 e pertanto Condizioni Ambientali "Ordinarie".

In relazione a quanto riportato in tabella 4.1.III del DM 14.01.08, per le classi di calcestruzzo previste è prescritto un copriferro minimo $c_{min} \ge 35$ mm per il solettone di fondazione e $c_{min} \ge 25$ mm.

In definitiva ai fini progettuali si è assunto c=40mm così come riportato all'interno della tabella materiali

Secondo stralcio funzionale: Matelica Nord – Matelica Sud/Castelra
imondo Nord

Opera	Tratto	Settore	CEE	WBS	ld. doc.	N. prog.	Rev.	Pag. di Pag.
L0703	212	Е	38	O13800	REL	01	Α	11 di 168

opere minori (strutture a contatto con il terreno).

CONDIZIONI AMBIENTALI	CLASSE DI ESPOSIZIONE					
Ordinarie	X0, XC1, XC2, XC3, XF1					
Aggressive	XC4, XD1, XS1, XA1, XA2, XF2, XF3					
Molto aggressive	XD2, XD3, XS2, XS3, XA3, XF4					

Tab 4.1.III – DM 14.01.08

Tabella C4.1.IV Copriferri minimi in mm

				barre da c.a. barre da c.a. ementi a piastra altri elementi				vi da c.a.p. enti a piastra		cavi da c.a.p.	
C_{min}	Co	ambiente C≥C _o		$C_{min} \le C \le C_o$	C≥C _o	$C_{min} \le C \le C_o$	C≥C _o	$C_0 C_{min} \le C < C_0$		C _o C _{min} ≤C<	<c<sub>o</c<sub>
C25/3	30 C35/4	ordinario	15	20	20	25	25	30	30	35	
C28/3	35 C40/5	0 aggressivo	25	30	30	35	35	40	40	45	
C35/4	15 C45/5	5 molto ag.	35	40	40	45	45	50	50	50	

Tab C4.1.IV – Circolare n° 617/09

Secondo stralcio funzionale: Matelica Nord – Matelica Sud/Castelraimondo Nord

Opera	Tratto	Settore	CEE	WBS	ld. doc.	N. prog.	Rev.	Pag. di Pag.
L0703	212	Е	38	O13800	REL	01	Α	12 di 168

4. INQUADRAMENTO GEOTECNICO

Per la caratterizzazione geotecnica del terreno interagente con le fondazioni delle opere oggetto di dimensionamento nel presente documento, si è fatto riferimento a quanto dettagliatamente indicato nella Relazione Geotecnica e nel Profilo Geotecnico Generale di Progetto, da cui si evince che le formazioni più superficiali che interagiscono con le fondazioni degli scatolari, sono generalmente costituite dalle unità geotecniche Ecla, Ag e Salt, di cui nel seguito si riepilogano i parametri fisico-meccanici attribuiti sulla scorta dei risultati delle indagini effettuate:

Unità Ecla - Depositi eluvio colluviali limoso argillosi

 γ = 18.5÷20.5 kN/m³ peso di volume naturale ϕ ' = 24÷27° angolo di resistenza al taglio

 $c' = 5 \div 15 \text{ kPa}$ coesione drenata

 ϕ_r ' = 19÷21° angolo di resistenza al taglio residuo

c r' = 0 kPa coesione drenata residua

 $cu = 50 \div 160 \text{ kPa}$ resistenza al taglio in condizioni non drenate $Eo = 100 \div 400 \text{ MPa}$ modulo di deformazione elastico iniziale

Unità Ag - Depositi alluvionali ghiaioso-sabbioso

 γ = 19.0 kN/ m³ peso di volume naturale ϕ ' = 38÷42° angolo di resistenza al taglio

 $c' = 0 \div 5 \text{ kPa}$ coesione drenata

Eo = 200÷600 MPa modulo di deformazione elastico iniziale

Unità Salt - Substrato alterato argilloso limoso

 γ = 20.0÷20.5 kN/ m³ peso di volume naturale ϕ ' = 27° peso di resistenza al taglio

c' = 20 kPa coesione drenata

 ϕ_{r} ' = 19° angolo di resistenza al taglio residuo

 $c_r' = 0 \text{ kPa}$ coesione drenata residua

 $cu = 75 \div 430 \text{ kPa}$ resistenza al taglio in condizioni non drenate $Eo = 150 \div 600 \text{ MPa}$ modulo di deformazione elastico iniziale

Unità As - Depositi alluvionali sabbiosi

 γ = 19.0 kN/ m³ peso di volume naturale ϕ ' = 34÷38° angolo di resistenza al taglio

c' = 0 coesione drenata

Eo = 200÷350 MPa modulo di deformazione elastico iniziale

Secondo stralcio funzionale: Matelica Nord – Matelica Sud/Castelra
imondo Nord

Opera	Tratto	Settore	CEE	WBS	ld. doc.	N. prog.	Rev.	Pag. di Pag.
L0703	212	Е	38	O13800	REL	01	Α	13 di 168

4.1 INTERAZIONE TERRENO-FONDAZIONE

Di seguito sono trattati gli aspetti di natura geotecnica riguardanti l'interazione terreno-struttura relativamente all'opera in esame.

Per la determinazione della costante di sottofondo si può fare riferimento alle seguenti formulazioni assimilando il comportamento del terreno a quello di un mezzo elastico omogeneo:

-
$$s = B \cdot c_t \cdot (q - \sigma_{v0}) \cdot (1 - v^2) / E$$

dove:

s = cedimento elastico totale;

B = lato minore della fondazione;

 ct = coefficiente adimensionale di forma ottenuto dalla interpolazione dei valori dei coefficienti proposti dal Bowles, 1960 (L = lato maggiore della fondazione):

 $\begin{array}{ll} ct = 0.853 + 0.534 \; ln(L \, / \, B) & \text{rettangolare con } L \, / \, B \! \leq \! 10 \\ ct = 2 \, + \, 0.0089 \; (L \, / \, B) & \text{rettangolare con } L \, / \, B \! > \! 10 \end{array}$

q = pressione media agente sul terreno;

- σ_{v0} = tensione litostatica verticale alla quota di posa della fondazione;

- v = coefficiente di Poisson del terreno;

E = modulo elastico medio del terreno sottostante.

Il valore della costante di sottofondo k_w è valutato attraverso il rapporto tra il carico applicato ed il corrispondente cedimento pertanto, si ottiene:

-
$$k_w = E / [(1-v^2) \cdot B \cdot ct]$$

Di seguito si riportano, in forma tabellare, i risultati delle valutazioni effettuate per il caso in esame, sulla scorta del valore di progetto di **E** attribuito allo strato di Fondazione, avendo considerato una dimensione longitudinale della fondazione ritenuta potenzialmente collaboranti:

Terreno	Rifianco	Fondazione			
Tipo	Ecla	Ecla			
E (kN/m²)	250000	250000			
v	0,3	0,3			
B (m)	10,6				
L (m)	48				
L/B	4,5	3			
ct	1,66	1,66			
Kw (kN/m²)	15617,40	15617,40			
Kw (kPa/cm)	156,17	156,17			

Secondo stralcio funzionale: Matelica Nord – Matelica Sud/Castelraimondo

Opera	Tratto	Settore	CEE	WBS	ld. doc.	N. prog.	Rev.	Pag. di Pag.
L0703	212	Е	38	O13800	REL	01	Α	14 di 168

5. CARATTERIZZAZIONE SISMICA

Le opere in progetto rientrano nell'ambito dei Lavori di Realizzazione dell'Infrastruttura "Pedemontana delle Marche" progettato per una vita nominale V_N pari a 50 anni. ed una classe d'uso III (Costruzioni il cui uso preveda affollamenti significativi. Industrie con attività pericoloseper l'ambiente. Reti viarie extraurbane non ricadenti in Classe d'uso IV. Ponti e retiferroviarie la cui interruzione provochi situazioni di emergenza. Dighe rilevanti per leconseguenze di un loro eventuale collasso.") ai sensi del D. Min. 17/01/2018, da cui scaturisce un coefficiente d'uso $C_U = 1.5$

L'azione sismica di progetto è valutata a partire dalla pericolosità sismica di base del sito su cui l'opera insiste, descritta in termini geografici e temporali:

- attraverso i valori di accelerazione orizzontale di picco ag (attesa in condizioni di campo libero su sito di riferimento rigido con superficie topografica orizzontale) e le espressioni che definiscono le ordinate del relativo spettro di risposta elastico in accelerazione $S_e(T)$;
- in corrispondenza del punto del reticolo che individua la posizione geografica dell'opera;
- con riferimento a prefissate probabilità di eccedenza PVR.

In particolare, la forma spettrale prevista dalla normativa è definita, su sito di riferimento rigido orizzontale, in funzione di tre parametri:

- a_a, accelerazione orizzontale massima del terreno
- F₀, valore massimo del fattore di amplificazione dello spettro in accelerazione orizzontale
- T_C*, periodo di inizio del tratto a velocità costante dello spettro in accelerazione orizzontale.

I suddetti parametri sono calcolati come media pesata dei valori assunti nei quattro vertici della maglia elementare del reticolo di riferimento che contiene il punto caratterizzante la posizione dell'opera, utilizzando come pesi gli inversi delle distanze tra il punto in questione ed i quattro vertici.

In particolare, si può notare come F₀ descriva la pericolosità sismica locale del sito su cui l'opera insiste. Infatti, da quest'ultimo, attraverso le espressioni fornite dalla normativa, sono valutati i valori d'amplificazione stratigrafica e topografica.

Di seguito sono riassunti i valori dei parametri assunti per l'opera in oggetto.

Vita nominale V_N = 50 anni;

 Classe d'uso = III:

Coefficiente d'uso $C_u = 1.5$; Periodo di riferimento V_R =75 anni;

=712 anni; $T_{R, SLV}$

A partire dai dati di cui in precedenza, si determinano i valori dei parametri di pericolosità sismica riferiti ai diversi stati limite di verifica previsti dalla Normativa nei riguardi delle azioni sismiche:

V_R	Stato	PV_R	T_R	a_{g}	Fo	T_C^*
[anni]	Limite	-	[anni]	[g]	[-]	[s]
75	SLO	81%	45	0.0073	2.450	0.286
	SLD	63%	75	0.0093	2.442	0.300
	SLV	10%	712	0.215	2.518	0.335
	SLC	5%	1462	0.262	2.555	0.339

Tabella di riepilogo Parametri di pericolosità di Progetto

Secondo stralcio funzionale: Matelica Nord – Matelica Sud/Castelraimondo Nord

Opera	Tratto	Settore	CEE	WBS	ld. doc.	N. prog.	Rev.	Pag. di Pag.
L0703	212	Е	38	O13800	REL	01	Α	15 di 168

Secondo stralcio funzionale: Matelica Nord – Matelica Sud/Castelra
imondo Nord

Opera	Tratto	Settore	CEE	WBS	ld. doc.	N. prog.	Rev.	Pag. di Pag.
L0703	212	Е	38	O13800	REL	01	Α	16 di 168

5.1 VERIFICHE STRUTTURALI – CRITERI GENERALI

5.1.1 Verifica SLE

La verifica nei confronti degli Stati limite di esercizio, consiste nel controllare, con riferimento alle Combinazioni di Calcolo allo SLE, il tasso di Lavoro nei Materiali e l'ampiezza delle fessure nel calcestruzzo attesa, secondo quanto di seguito specificato:

5.1.2 Verifiche delle tensioni

La verifica delle tensioni in esercizio consiste nel controllare il rispetto dei limiti tensionali previsti per il calcestruzzo e per l'acciaio per ciascuna delle combinazioni di carico caratteristiche "Rara" e "Quasi Permanente"; i valori tensionali nei materiali sono valutati secondo le note teorie di analisi delle sezioni in c.a. in campo elastico e con calcestruzzo "non reagente" adottando come limiti di riferimento, quelli di seguito indicati, in accordo alle prescrizioni della normativa vigente:

Per il caso in esame risulta in particolare:

CALCESTRUZZO C25/30

$$\sigma_{cmax\,QP} = (0.45 \, f_{cK}) = 11.25$$
 MPa (Combinazione di Carico Quasi Permanente)
$$\sigma_{cmax\,R} = (0.60 \, f_{cK}) = 15$$
 MPa (Combinazione di Carico Caratteristica - Rara)

ACCIAIO

$$\sigma_{\text{fmax}} = (0.80 \text{ f}_{\text{vK}}) = \frac{360}{\text{MPa}}$$
 MPa Combinazione di Carico Caratteristica(Rara)

5.1.3 Verifiche a fessurazione

La verifica di fessurazione consiste nel controllare l'ampiezza dell'apertura delle fessure sotto combinazione di carico frequente e combinazione quasi permanente. Essendo la struttura a contatto col terreno si considerano condizioni ambientali aggressive; le armature di acciaio ordinario sono ritenute poco sensibili [NTC – Tabella 4.1.IV]

In relazione all'aggressività ambientale e alla sensibilità dell'acciaio, l'apertura limite delle fessure è riportato nel prospetto seguente:

Secondo stralcio funzionale: Matelica Nord – Matelica Sud/Castelra
imondo Nord

Opera	Tratto	Settore	CEE	WBS	ld. doc.	N. prog.	Rev.	Pag. di Pag.
L0703	212	Е	38	O13800	REL	01	Α	17 di 168

Tab. 4.1.IV - Criteri di scelta dello stato limite di fessurazione

pi ze	Condizioni	Combinazione di		Arma	tura	
Gruppi di Esigenze	ambientali	azioni	Sensibile		Poco sensibile	
G. Esi			Stato limite	wk	Stato limite	$\mathbf{w}_{\mathbf{k}}$
	Ordinarie	frequente	apertura fessure	≤ w ₂	apertura fessure	≤ W ₃
A	Ordinarie	quasi permanente	apertura fessure	≤ w ₁	apertura fessure	≤ w ₂
В	Aggregative	frequente	apertura fessure	≤ w ₁	apertura fessure	≤ w ₂
ь	Aggressive	quasi permanente	decompressione	-	apertura fessure	≤ w ₁
С	Molto	frequente	formazione fessure	-	apertura fessure	≤ w ₁
C	aggressive	quasi permanente	decompressione	-	apertura fessure	≤ w ₁

Nel caso in esame si ha:

- Per il solettone di fondazione:

Condizioni Ambientali: aggressive

Armature: Poco Sensibili

Conseguentemente dovrà risultare:

Combinazione Quasi permanente: w≤0.2mm

Combinazione Frequente: w≤0.3mm

- <u>Per il solettone superiore e per i piedritti:</u>

Condizioni Ambientali: Ordinarie

Armature: Poco Sensibili

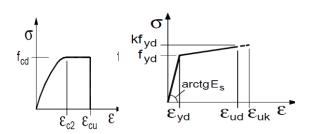
Consequentemente dovrà risultare:

Combinazione Quasi permanente: w≤0.3mm

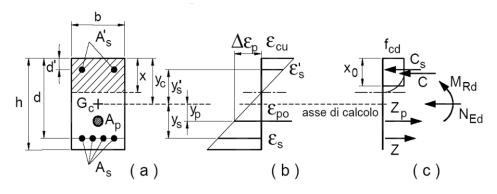
Combinazione Frequente: w≤0.4mm

Riguardo infine il valore di calcolo dell'ampiezza delle fessure da confrontare con i valori limite fissati dalla norma, si è utilizzata la procedura del D.M. 9 gennaio 1996, in accordo a quanto previsto al punto" C4.1.2.2.4.6 Verifica allo stato limite di fessurazione" della Circolare n.617/09.

5.1.4 Verifiche allo SLU


5.1.5 Pressoflessione

La determinazione della capacità resistente a flessione/pressoflessione della generica sezione, viene effettuata con i criteri di cui al punto 4.1.2.1.2.4 delle NTC08, secondo quanto riportato schematicamente nelle figure seguito, tenendo conto dei valori delle resistenze e deformazioni di calcolo riportate al paragrafo dedicato alle caratteristiche dei materiali:



Secondo stralcio funzionale: Matelica Nord – Matelica Sud/Castelraimondo Nord

Opera	Tratto	Settore	CEE	WBS	ld. doc.	N. prog.	Rev.	Pag. di Pag.
L0703	212	Е	38	O13800	REL	01	Α	18 di 168

Legami costitutivi Calcestruzzo ed Acciaio -

Schema di riferimento per la valutazione della capacità resistente a pressoflessione generica sezione -

La verifica consisterà nel controllare il soddisfacimento della seguente condizione:

$$M_{Rd} = M_{Rd}(N_{Ed}) \ge M_{Ed}$$

dove

M_{Rd} è il valore di calcolo del momento resistente corrispondente a N_{Ed};

 N_{Ed} è il valore di calcolo della componente assiale (sforzo normale) dell'azione;

M_{Ed} è il valore di calcolo della componente flettente dell'azione.

5.1.6 Taglio

La resistenza a taglio V_{Rd} della membratura priva di armatura specifica risulta pari a:

$$V_{Rd} = \left\{ 0.18 \cdot k \cdot \frac{\left(100 \cdot \rho_1 \cdot f_{ck}\right)^{1/3}}{\gamma_c + 0.15 \cdot \sigma_{cp}} \right\} \cdot b_w \cdot d \ge v_{\min} + 0.15 \cdot \sigma_{cp} \cdot b_w d$$

Dove:

•
$$v_{\min} = 0.035 \cdot k^{3/2} \cdot f_{ck}^{1/2}$$
;

•
$$k = 1 + (200/d)^{1/2} \le 2$$
;

•
$$\rho_1 = A_{sw}/(b_w * d)$$

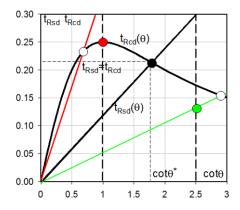
Secondo stralcio funzionale: Matelica Nord – Matelica Sud/Castelraimondo Nord

Opera	Tratto	Settore	CEE	WBS	ld. doc.	N. prog.	Rev.	Pag. di Pag.
L0703	212	Е	38	O13800	REL	01	Α	19 di 168

- d = altezza utile per piedritti soletta superiore ed inferiore;
- b_w= 1000 mm larghezza utile della sezione ai fini del taglio.

In presenza di armatura, invece, la resistenza a taglio V_{Rd} è il minimo tra la resistenza a taglio trazione V_{Rsd} e la resistenza a taglio compressione V_{Rcd} :

$$V_{Rsd} = 0.9 \cdot d \cdot \frac{A_{sw}}{s} \cdot f_{yd} \cdot (ctg\alpha + ctg\theta) \cdot \sin \alpha$$


$$V_{Rcd} = 0.9 \cdot d \cdot b_{w} \cdot \alpha_{c} \cdot f_{cd} \cdot \frac{\left(ctg\alpha + ctg\theta\right)}{\left(1 + ctg^{2}\theta\right)}$$

Essendo:

1 ≤ctg θ \$2,5

Per quanto riguarda in particolare le verifiche a taglio per elementi armati a taglio, si è fatto riferimento al metodo del traliccio ad inclinazione variabile, in accordo a quanto prescritto al punto 4.1.2.3.5.2 delle NTC18, considerando ai fini delle verifiche, un angolo θ di inclinazione delle bielle compresse del traliccio resistente tale da rispettare la condizione.

$$1 \le c t_{\$} \le 2.5$$
 $45 \circ \mathfrak{P} \ge 21.8 \circ$

L'angolo effettivo di inclinazione delle bielle (θ) assunto nelle verifiche è stato in particolare valutato, nell'ambito di un problema di verifica, tenendo conto di quanto di seguito indicato:

$$\cot \theta^* = \sqrt{\frac{v \cdot \alpha_c}{\omega_{sw}} - 1}$$

(θ^* angolo di inclinazione delle bielle cui corrisponde la crisi contemporanea di bielle compresse ed armature)

dove

v = f'cd / fcd = 0.5

f 'cd = resistenza a compressione ridotta del calcestruzzo d'anima

f cd = resistenza a compressione di calcolo del calcestruzzo d'anima

Secondo stralcio funzionale: Matelica Nord – Matelica Sud/Castelraimondo Nord

Opera	Tratto	Settore	CEE	WBS	ld. doc.	N. prog.	Rev.	Pag. di Pag.
L0703	212	Е	38	O13800	REL	01	Α	20 di 168

 α_c coefficiente maggiorativo pari a 1 per membrature non compresse

 $1 + \sigma_{cp}/f_{cd} \qquad \text{per } 0 \le \sigma_{cp} < 0.25 \text{ } f_{cd}$

1,25 per 0,25 $f_{cd} \le \sigma_{cp} \le 0.5 f_{cd}$

 $2,5 (1 - \sigma_{cp}/f_{cd})$ per $0,5 f_{cd} < \sigma_{cp} < f_{cd}$

 ω_{sw} : Percentuale meccanica di armatura trasversale.

$$\omega_{sw} = \frac{A_{SW} f_{yd}}{b s f_{cd}}$$

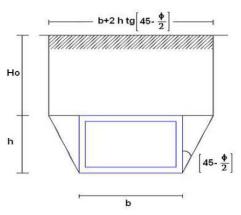
- Se la cotθ* è compresa nell'intervallo (1,0-2,5) è possibile valutare il taglic resistente V_{Rd}(=V_{Rcd}=V_{Rsd})
- Se la $\cot\theta^*$ è maggiore di 2.5 la crisi è da attribuirsi all'armatura trasversale e il taglio resistente $V_{Rd}(=V_{Rsd})$ coincide con il massimo taglio sopportato dalle armature trasversali valutabile per una $\cot\theta=2,5$.
- Se la cotθ* è minore di 1.0 la crisi è da attribuirsi alle bielle compresse e il taglio resistente V_{Rcd}(=V_{Rcd}) coincide con il massimo taglio sopportato dalle bielle di calcestruzzo valutabile per una cotθ=1,0.

Secondo stralcio funzionale: Matelica Nord – Matelica Sud/Castelraimondo Nord

Opera	Tratto	Settore	CEE	WBS	ld. doc.	N. prog.	Rev.	Pag. di Pag.
L0703	212	Е	38	O13800	REL	01	Α	21 di 168

6. CRITERI GENERALI DI ANALISI E VERIFICA SCATOLARI

Nell'ambito del presente paragrafo, si descrivono i criteri generali adottati per l'Analisi e relative verifiche strutturali e geotecniche delle opere oggetto di dimensionamento


6.1 ANALISI DEI CARICHI

6.1.1 Peso proprio

Il peso proprio delle strutture è determinato automaticamente dal programma di calcolo, avendo considerato un peso dell'unita di volume del c.a. γ cls = 25 KN/m³.

6.1.2 Permanenti

Per la valutazione del carico permanente in copertura, si è fatto riferimento al metodo di **Terzagh**i secondo il quale, il il carico sul traverso si manifesta come semplice peso di una massa parabolica o ellittica di distacco.

Più in dettaglio **Terzagh**i fornisce due espressioni differenti della pressione a seconda della maggiore o minore altezza del ricoprimento, H_0 .

Facendo riferimento ai simboli della figura precedente, ed indicando con C la coesione, con ϕ l'angolo di attrito e con γ il peso di volume del terreno di ricoprimento, le due espressioni sono le seguenti:

$$p_{v} = \frac{\gamma B_{1} - C}{K tg\varphi} \left(1 - e^{-K \frac{H_{0}}{B_{1}} tg\varphi} \right)$$

nella quale K è un coefficiente sperimentale, che, secondo misure eseguite dallo stesso **Terzaghi** è circa uguale ad 1, mentre il coefficiente B1, si ricava attraverso la seguente espressione:

$$B_1 = \frac{b}{2} + h \, tg \left(4\Im - \frac{\varphi}{2} \right)$$

nella quale φ è l'angolo di attrito dello strato di rinfianco.

Secondo stralcio funzionale: Matelica Nord – Matelica Sud/Castelraimondo Nord

Opera	Tratto	Settore	CEE	WBS	ld. doc.	N. prog.	Rev.	Pag. di Pag.
L0703	212	Е	38	O13800	REL	01	Α	22 di 168

6.1.3 Spinta del terreno

Per lavalutazione delle Spinte del terreno sui piedritti, si è fatto riferimento alla teoria di Coluomb.

La teoria di Coulomb considera l'ipotesi di un cuneo di spinta a monte della parete che si muove rigidamente lungo una superficie di rottura rettilinea. Dall'equilibrio del cuneo si ricava la spinta che il terreno esercita sull'opera di sostegno. In particolare Coulomb ammette, al contrario della teoria di Rankine, l'esistenza di attrito fra il terreno e la parete, e quindi la retta di spinta risulta inclinata rispetto alla normale alla parete stesso di un angolo di attrito terra-parete.

L'espressione della spinta esercitata da un terrapieno, di peso di volume γ , su una parete di altezza H, risulta espressa secondo la teoria di Coulomb dalla sequente relazione (per terreno incoerente):

$$S = \frac{1}{2} \cdot \gamma \cdot H^2 \cdot K_a$$

Ka rappresenta il coefficiente di spinta attiva di Coulomb nella versione riveduta da Muller-Breslau, espresso come:

$$K_{\alpha} = \frac{\sin^2(\alpha + \phi)}{\sin^2\alpha \cdot \sin(\alpha - \delta) \cdot \left[1 + \frac{\sqrt{\sin(\phi + \delta) \cdot \sin(\phi - \beta)}}{\sqrt{\sin(\alpha - \delta) \cdot \sin(\alpha + \beta)}}\right]^2}$$

dove ϕ è l'angolo d'attrito del terreno, α rappresenta l'angolo che la parete forma con l'orizzontale (α = 90° per parete verticale), δ è l'angolo d'attrito terreno-parete, β è l'inclinazione del terrapieno rispetto all'orizzontale.

La spinta risulta inclinata dell'angolo d'attrito terreno-parete δ rispetto alla normale alla parete.

Il diagramma delle pressioni del terreno sulla parete risulta triangolare con il vertice in alto.

Il punto di applicazione della spinta si trova in corrispondenza del baricentro del diagramma delle pressioni (1/3 H rispetto alla base della parete). L'espressione di Ka perde di significato per $\beta > \varphi$.

Questo coincide con quanto si intuisce fisicamente: la pendenza del terreno a monte della parete non può superare l'angolo di natural declivio del terreno stesso.

Nel caso di terreno dotato di attrito e coesione c l'espressione della pressione del terreno ad una generica profondità z vale:

$$\sigma_{\alpha} = \gamma \cdot z \cdot K_{\alpha} - 2 \cdot c \cdot \sqrt{K_{\alpha}}$$

Nel caso in esame tuttavia, in considerazione della ridotta capacità de formativa dell'opera, si è assunto che sui piedritti agisca la spinta calcolata in condizioni di riposo.

Il coefficiente di spinta a riposo è espresso dalla relazione:

$$K_0 = 1 - \sin \phi$$

dove ϕ rappresenta l'angolo d'attrito interno del terreno di rinfianco.

Quindi la pressione laterale, ad una generica profondità z e la spinta totale sulla parete di altezza H valgono:

Secondo stralcio funzionale: Matelica Nord – Matelica Sud/Castelraimondo Nord

Opera	Tratto	Settore	CEE	WBS	ld. doc.	N. prog.	Rev.	Pag. di Pag.
L0703	212	Е	38	O13800	REL	01	Α	23 di 168

$$\begin{split} & \sigma = \gamma \cdot z \cdot K_0 + p_v \cdot K_0 \\ & S = \frac{1}{2} \cdot \gamma \cdot H^2 \cdot K_0 + p_v \cdot K_0 \cdot H \end{split}$$

dove pv è la pressione verticale agente in corrispondenza della calotta.

Per il rilevato stradale sono stati assunti i seguenti valori dei parametri fisico meccanici geotecnici di progetto:

- peso di volume $\gamma = 20 \text{ KN/mc}$
- angolo di attrito φ ' = 35°
- coesione efficace c' = 0.

6.1.4 Spinta in presenza di falda

Nel caso in cui a monte della parete sia presente la falda il diagramma delle pressioni sulla parete risulta modificato a causa della sottospinta che l'acqua esercita sul terreno. Il peso di volume del terreno al di sopra della linea di falda non subisce variazioni. Viceversa al di sotto del livello di falda va considerato il peso di volume di galleggiamento:

$$\gamma_{a} = \gamma_{sat} - \gamma_{w}$$

dove γ sat è il peso di volume saturo del terreno (dipendente dall'indice dei pori) e γ w è il peso di volume dell'acqua.

Quindi il diagramma delle pressioni al di sotto della linea di falda ha una pendenza minore. Al diagramma così ottenuto va sommato il diagramma triangolare legato alla pressione idrostatica esercitata dall'acqua.

6.1.5 Variazioni termiche della struttura

Si è tenuto conto di eventuali effetti termici dovuti a variazioni di temperatura sull'opera, applicando sul traverso superiore una variazione termica variabile linearmente da - 2.5° C all'estradosso della soletta superiore, a + 2.5° C all'intradosso della soletta superiore;

6.1.6 Ritiro e viscosità

Gli effetti del ritiro del calcestruzzo e della viscosità sono assimilati ad una variazione termica uniforme della soletta superiore.

Nello specifico, si è assunto di modellare la deformazione da ritiro totale comprensiva anche degli effetti da deformazione viscosa, attraverso l'introduzione di un carico termico uniforme nella soletta superiore di - 10°C.

6.1.7 Azioni variabili da traffico (Q1)

Per la determinazione dei carichi accidentali da traffico da considerare sul piano della pavimentazione, si è fatto riferimento agli schemi di carico stabilità al punto 5.1.3.3.3 del DM 14/01/08 di cui nel seguito:

Secondo stralcio funzionale: Matelica Nord – Matelica Sud/Castelraimondo Nord

Opera	Tratto	Settore	CEE	WBS	ld. doc.	N. prog.	Rev.	Pag. di Pag.
L0703	212	E	38	O13800	REL	01	Α	24 di 168

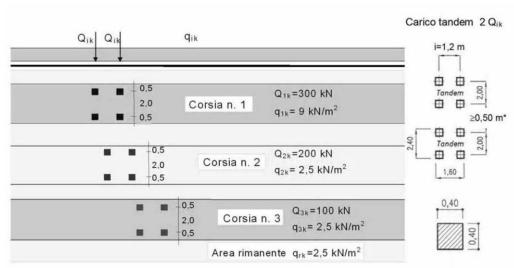
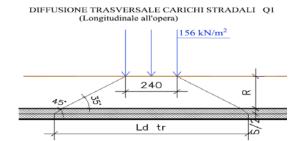


Figura 2 – Schema di carico 1

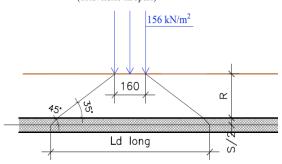
Lo schema di carico di Normativa, è in particolare costituito dalle seguenti colonne di carico:

- una colonna di carichi (ingombro = 3 m) costituita da un automezzo convenzionale Q1k di 600 kN dotato di 2 assi di 2 ruote ciascuno, distanti 1.20 m in senso longitudinale e con interasse ruote in senso trasversale di 2.00 m; un carico ripartito q1k di 9 kN/m² uniformemente distribuito;
- una seconda colonna di carichi (ingombro = 3 m), analoga alla precedente, ma con carichi pari rispettivamente a 400 kN di Q1k e 2.5 kN/m2 di q1k e posta ad interasse di 3.00 m. da essa;
- una terza colonna di carichi (ingombro = 3 m), analoga alla precedente, ma con carichi pari rispettivamente a 200 kN di Q1k e 2.5 kN/m2 di q1k e posta ad interasse di 3.00 m. da essa;
- un carico uniforme qrk = 2.5 kN/m2 nella zona di carreggiata non impegnata dai carichi precedenti.

Ai fini delle analisi, si è assunto di trasformare i carichi concentrati Q1k, in un carico distribuito equivalente, che, con riferimento alla colonna di carico 1, risulta il seguente:


$$Q1k d = 600 / 2.40x1.60 = 156 KN/m^2$$

Si è assunto inoltre di diffondere il carico valutato in precedenza fino al piano medio della soletta, secondo quanto riportato negli schemi grafici di figura seguente:



Secondo stralcio funzionale: Matelica Nord – Matelica Sud/Castelraimondo Nord

Opera	Tratto	Settore	CEE	WBS	ld. doc.	N. prog.	Rev.	Pag. di Pag.
L0703	212	Е	38	O13800	REL	01	Α	25 di 168

DIFFUSIONE LONGITUDINALE CARICHI STRADALI Q1 (Trasversale all'opera)

Schema di diffusione in soletta carichi Q1

In definitiva, sul piano medio della soletta, agirà un carico uniforme distribuito pari a:

$$Q_{1k_d}' = 600 / (L_{dtr} x L_{dlong})$$

Nell'ambito della modellazione effettuata tuttavia, si è fatto riferimento, come di norma, <u>ad un modulo di scatolare di lunghezza unitaria;</u> la diffusione dei carichi in direzione longitudinale all'opera è effettuata in automatico dal programma di Calcolo Utilizzato secondo i criteri definiti in precedenza, mentre per tener conto della diffusione in senso trasversale, il carico inserito nel modello di analisi sul piano limite stradale, è stato già opportunamente ridotto per tener conto di tale effetto; in definitiva, il carico di progetto utile alla simulazione del carico Q1 (assi) è stato valutato come di seguito:

$$Q_{1prog} = \left[\frac{(156 \times 2.40)}{L_{dtr}}\right] \times 1.5$$

dove con il coefficiente amplificativo 1,5 si è tenuto conto degli effetti della 2° colonna di carico eventualmente adiacente, tenendo comunque presente l'effetto della collaborazione strutturale in direzione longitudinale all'opera stessa.

Tale carico è stato infine applicato su una lunghezza complessiva di 1,60m, pari all'impronta del carico Q1k in direzione longitudinale.

In aggiunta, si è considerato agente sul piano stradale l'ulteriore carico uniforme di 9KN/m², trascurando cautelativamente gli effetti di diffusione.

Al fine di massimizzare gli effetti, sono state considerate combinazioni di carico sia con una configurazione del carico stradale "simmetrica", (asse carico Q_{1k} coincidente con l'asse del traverso), sia con una

Secondo stralcio funzionale: Matelica Nord – Matelica Sud/Castelraimondo Nord

Opera	Tratto	Settore	CEE	WBS	ld. doc.	N. prog.	Rev.	Pag. di Pag.
L0703	212	Е	38	O13800	REL	01	Α	26 di 168

configurazione "emisimmetrica", ovvero con bordo del carico Q1k coincidente con filo esterno piedritto e carico q_{1k} (9 KN/m²) assente in soletta.

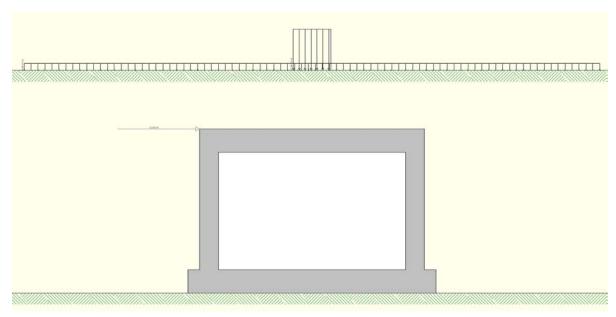


Figura 3 – Condizione di carico simmetrica

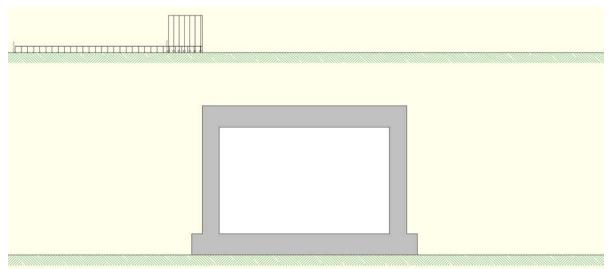


Figura 4 – Condizione di carico emisimmetrica

6.1.8 Azione longitudinale di frenamento (Q3)

L'azione di frenamento, con riferimento al par. 5.1.3.5 delle NTC el 2018, è assunta pari a:

Secondo stralcio funzionale: Matelica Nord – Matelica Sud/Castelraimondo Nord

Opera	Tratto	Settore	CEE	WBS	ld. doc.	N. prog.	Rev.	Pag. di Pag.
L0703	212	Е	38	O13800	REL	01	Α	27 di 168

$$180 \text{ kN} \le q_3 = 0.6 (2Q_{1k}) + 0.10q_{1k} \cdot w_1 \cdot L \le 900 \text{ kN}$$

Essa è, a vantaggio di sicurezza, sempre assunta agente sulla larghezza della sede stradale, pari a m. 38.10.

q₃ (kN)	q _{3,prog} (kN/m)	Q _{1k} (kN)	w ₁ (m)	L (m)	q _{1k} (kN/m ²)
489,6	12,88	300	3	48	9

6.1.9 Azioni Sismiche

Per il calcolo dell'azione sismica si è utilizzato il metodo dell'analisi pseudostatica in cui l'azione sismica è rappresentata da una forza statica equivalente pari al prodotto delle forze di gravità per un opportuno coefficiente sismico k.

6.1.10 Forze d'inerzia

Le forze sismiche sono pertanto le seguenti:

Forza sismica orizzontale $F_h = k_h^*W$ Forza sismica verticale $F_v = k_v^*W$

I valori dei coefficienti sismici orizzontale kh e verticale kv possono essere valutati mediante le espressioni:

$$k_h = \frac{a_{max}}{g} \, S_s \, S_t \, \beta_m$$

$$k_v = \pm 0.5 k_h$$

In assenza di analisi specifiche della risposta sismica locale, l'accelerazione massima può essere valutata con la relazione:

$$a_{max} = S a = S_s S_t a_g$$

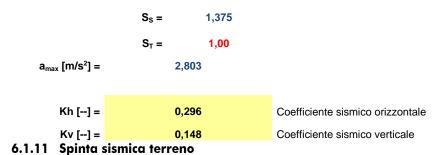
Nel caso specifico, in accordo a quanto già riportato al precedente paragrafo risulta:

• $T_{R, SLV}$ = 712 anni;

• $a_{g, SLV} = 0.215 g;$

• $F_{0, SLV}$ = 2.518; • $T_{c, SLV}^*$ = 0.335 sec.

С


Potendo considerare generalmente sottosuoli di tipo C per l'intero lotto in progetto, risulta nel caso in esame:

Cat Suolo

Secondo stralcio funzionale: Matelica Nord – Matelica Sud/Castelra
imondo Nord

Opera	Tratto	Settore	CEE	WBS	ld. doc.	N. prog.	Rev.	Pag. di Pag.
L0703	212	Е	38	O13800	REL	01	Α	28 di 168

Le spinte del terreno in fase sismica, sono state determinate con la teoria di Wood, secondo la quale la risultante dell'incremento di spinta per effetto del sisma su una parete di altezza H viene determinata con la seguente espressione:

$$\Delta S_E = K_h \gamma H^2$$

6.2 COMBINAZIONI DI CARICO

Per la combinazione dei diversi carichi previsti sulla struttura di cui al precedente paragrafo 7, si è fatto riferimento a quanto specificato in merito al par. 2.5.3 del DM 14.01.18, secondo cui le combinazioni di carico da considerare nei riguardi dei diversi stati limite di verifica SLU, SLE e sisma sono le seguenti:

Combinazione fondamentale, generalmente impiegata per gli stati limite ultimi (SLU):

$$\gamma_{G_1} \cdot G_1 + \gamma_{G_2} \cdot G_2 + \gamma_P \cdot P + \gamma_{G_1} \cdot Q_{k_1} + \gamma_{G_2} \cdot \psi_{02} \cdot Q_{k_2} + \gamma_{G_3} \cdot \psi_{03} \cdot Q_{k_3} + \dots$$

Combinazione caratteristica (rara), generalmente impiegata per gli stati limite di esercizio (SLE) irreversibili:

$$G_1 + G_2 + P + Q_{k1} + \psi_{02} \cdot Q_{k2} + \psi_{03} \cdot Q_{k3} + \dots$$

Combinazione frequente, generalmente impiegata per gli stati limite di esercizio (SLE) reversibili, utilizzata nella verifica a Fessurazione:

$$G_1 + G_2 + P + \psi_{11} \cdot Q_{k1} + \psi_{22} \cdot Q_{k2} + \psi_{23} \cdot Q_{k3} + \dots$$

Combinazione quasi permanente, generalmente impiegata per gli stati limite di esercizio (SLE) a lungo termine;

$$G_1 + G_2 + P + \psi_{21} \cdot Q_{k1} + \psi_{22} \cdot Q_{k2} + \psi_{23} \cdot Q_{k3} + \dots$$

Combinazione sismica, impiegata per gli stati limite ultimi e di esercizio connessi all'azione sismica E:

$$E + G_1 + G_2 + P + \psi_{21} \cdot Q_{k1} + \psi_{22} \cdot Q_{k2} + \dots$$

dove:

$$E = \pm 1.00 x E_{y} \pm 0.3 x E_{7}$$

avendo indicato con E_Y e E_Z rispettivamente le componenti orizzontale e verticale dell'azione sismica.

Secondo stralcio funzionale: Matelica Nord – Matelica Sud/Castelraimondo Nord

Opera	Tratto	Settore	CEE	WBS	ld. doc.	N. prog.	Rev.	Pag. di Pag.
L0703	212	Е	38	O13800	REL	01	Α	29 di 168

I coefficienti di amplificazione dei carichi γ e i coefficienti di combinazione ψ sono riportati nelle tabelle seguenti.

		Coefficiente	EQU ⁽¹⁾	A1 STR	A2 GEO	Combinazione eccezionale	Combinazione Sismica
Carichi permanenti	favorevoli sfavorevoli	γ _{G1}	0,90 1,10	1,00 1,35	1,00 1,00	1,00 1,00	1,00 1,00
Carichi permanenti non strutturali ⁽²⁾	favorevoli sfavorevoli	γ _{G2}	0,00 1,50	0,00 1,50	0,00 1,30	1,00 1,00	1,00 1,00
Ballast ⁽³⁾	favorevoli sfavorevoli	γв	0,90 1,50	1,00 1,50	1,00 1,30	1,00 1,00	1,00 1,00
Carichi variabili da traffico ⁽⁴⁾	favorevoli sfavorevoli	γQ	0,00 1,45	0,00 1,45	0,00 1,25	0,00 0,20 ⁽⁵⁾	0,00 0,20 ⁽⁵⁾
Carichi variabili	favorevoli sfavorevoli	γQi	0,00 1,50	0,00 1,50	0,00 1,30	0,00 1,00	0,00 0,00
Precompressione	favorevole sfavorevole	γP	0,90 1,00 ⁽⁶⁾	1,00 1,00 ⁽⁷⁾	1,00 1,00	1,00 1,00	1,00 1,00

Tabella 5.2.V - Coefficienti parziali di sicurezza per le combinazioni di carico agli SLU,

eccezionali e sismica (da DM 14/01/2008)

- (1) Equilibrio che non coinvolga i parametri di deformabilità e resistenza del terreno; altrimenti si applicano i valori di GEO.
 (2) Nel caso in cui i carichi permanenti non strutturali (ad es. carichi permanenti portati) siano compiutamente definiti si potranno adottare gli stessi coefficienti validi per le azioni permanenti.
- (3) Quando si prevedano variazioni significative del carico dovuto al ballast, se ne dovrà tener conto esplicitamente nelle verifiche.
- (4) Le componenti delle azioni da traffico sono introdotte in combinazione considerando uno dei gruppi di carico gr della Tab. 5. 2. IV. (5) Aliquota di carico da traffico da considerare.
- (6) 1,30 per instabilità in strutture con precompressione esterna
- (7) 1,20 per effetti locali

Tab. 5.1.VI - Coefficienti y per le azioni variabili per ponti stradali e pedonali

Azioni	Gruppo di azioni (Tab. 5.1.IV)	Coefficiente Ψ ₀ di combi- nazione	Coefficiente \$\psi_1\$ (valori frequenti)	Coefficiente Ψ ₂ (valori quasi permanenti)
	Schema 1 (carichi tandem)	0,75	0,75	0,0
	Schemi 1, 5 e 6 (carichi distribuiti	0,40	0,40	0,0
Azioni da traffico	Schemi 3 e 4 (carichi concentrati)	0,40	0,40	0,0
(Tab. 5.1.IV)	Schema 2	0,0	0,75	0,0
	2	0,0	0,0	0,0
	3	0,0	0,0	0,0
	4 (folla)		0,75	0,0
	5	0,0	0,0	0,0
	a ponte scarico SLU e SLE	0,6	0,2	0,0
Vento	in esecuzione	0,8	0,0	0,0
	a ponte carico SLU e SLE	0,6	0,0	0,0
Neve	SLU e SLE	0,0	0,0	0,0
	in esecuzione	0,8	0,6	0,5
Temperatura	SLU e SLE	0,6	0,6	0,5

Secondo stralcio funzionale: Matelica Nord – Matelica Sud/Castelraimondo Nord

Opera	Tratto	Settore	CEE	WBS	ld. doc.	N. prog.	Rev.	Pag. di Pag.
L0703	212	Е	38	O13800	REL	01	Α	30 di 168

Tabella 5.1.VI- Coefficienti di combinazione ψ delle azioni (da DM 14/01/2008)

In definitiva, con riferimento ai carichi di tipo variabile previsti nel caso in esame, sono stati assunti i seguenti coefficienti di partecipazione Ψ :

Carichi stradali (Variabili da traffico)

 $\Psi_0 = 0.75 \ \Psi_1 = 0.75 \ \Psi_2 = 0.00$

Azioni Termiche (Term)

 $\Psi_0 = 0.60 \ \Psi_1 = 0.60 \ \Psi_2 = 0.50$

Si sottolinea che, stante la simmetria e la bidimenalità del problema il numero di combinazioni analizzate è stato significativamente ridotto, considerando il sisma e la forza di frenamento agenti in un'unica direzione e verso.

In definitiva, sono state analizzate un totale di 16 Combinazioni di calcolo di cui 4 riferite al Caso SLU statico, 4 sismiche e 8 di SLE.

Si riportano le combinazioni utilizzate.

Combinazione n° 1 SLU (Approccio 2)				
	Effetto	γ	Ψ	С
Peso Proprio	Sfavorevole	1.30	1.00	1.30
Spinta terreno sinistra	Sfavorevole	1.30	1.00	1.30
Spinta terreno destra	Sfavorevole	1.30	1.00	1.30
Spinta falda	Sfavorevole	1.30	1.00	1.30
Termico	Sfavorevole	1.20	0.60	0.72
Ritiro	Favorevole	1.00	1.00	1.00
Carico stradale centrato	Sfavorevole	1.35	1.00	1.35
Combinazione n° 2 SLU (Approccio 2)				
	Effetto	γ	Ψ	C
Peso Proprio	Sfavorevole	1.30	1.00	1.30
Spinta terreno sinistra	Sfavorevole	1.30	1.00	1.30
Spinta terreno destra	Sfavorevole	1.30	1.00	1.30
Spinta falda	Sfavorevole	1.30	1.00	1.30
Carico stradale centrato	Sfavorevole	1.35	0.75	1.01
Termico	Sfavorevole	1.20	1.00	1.20
Ritiro	Favorevole	1.00	1.00	1.00
Combinazione n° 3 SLU (Approccio 2)				_
	Effetto	γ	Ψ	С
Peso Proprio	Sfavorevole	1.30	1.00	1.30
Spinta terreno sinistra	Sfavorevole	1.30	1.00	1.30
Spinta terreno destra	Sfavorevole	1.30	1.00	1.30
Spinta falda	Sfavorevole	1.30	1.00	1.30
Termico	Sfavorevole	1.20	0.60	0.72

Opera Tratto Settore CEE

Secondo stralcio funzionale: Matelica Nord – Matelica Sud/Castelraimondo Nord

WBS Id. doc. N. prog. Rev.

Pag. di Pag. 31 di 168

	L0703	212	E	38	013800	REL	01 A
Ritiro	Favorev				1.00	1.00	1.00
Carico stradale laterale	Sfavorev	ole .		:	1.35	1.00	1.35
Combinazione n° 4 SLU (Approccio 2)							
Combinazione II + 320 (Approceio 2)	Effett	0			γ	Ψ	С
Peso Proprio	Sfavorev	ole .		:	1.30	1.00	1.30
Spinta terreno sinistra	Sfavorev	ole .		:	1.30	1.00	1.30
Spinta terreno destra	Sfavorev	ole .		;	1.30	1.00	1.30
Spinta falda	Sfavorev				1.30	1.00	1.30
Termico	Sfavorev				1.20	1.00	1.20
Ritiro	Favorev				1.00	1.00	1.00
Carico stradale laterale	Sfavorev	ole			1.35	0.75	1.01
Combinazione n° 5 SLU (Approccio 2) - Sisma	Vert. nosit	ivo					
	Effett				γ	Ψ	С
Peso Proprio	Sfavorev	ole .			1.00	1.00	1.00
Spinta terreno sinistra	Sfavorev	ole .			1.00	1.00	1.00
Spinta terreno destra	Sfavorev	ole .			1.00	1.00	1.00
Sisma da sinistra	Sfavorev	ole .			1.00	1.00	1.00
Spinta falda	Sfavorev	ole .		:	1.00	1.00	1.00
Termico	Sfavorev	ole .		:	1.00	1.00	1.00
Ritiro	Sfavorev	role		;	1.00	1.00	1.00
Cambinations of CILL/Americania 3). Ciance	V	at					
Combinazione n° 6 SLU (Approccio 2) - Sisma	Vert. nega Effett				•	Ψ	С
Peso Proprio	Sfavorev				γ 1.00	1.00	1.00
Spinta terreno sinistra	Sfavore				1.00	1.00	1.00
Spinta terreno destra	Sfavorev				1.00	1.00	1.00
Sisma da sinistra	Sfavorev				1.00	1.00	1.00
Spinta falda	Sfavorev				1.00	1.00	1.00
Termico	Sfavorev				1.00	1.00	1.00
Ritiro	Sfavorev				1.00	1.00	1.00
Combinazione n° 7 SLU (Approccio 2) - Sisma							
	Effett				γ	Ψ	C
Peso Proprio	Sfavorev				1.00	1.00	1.00
Spinta terreno sinistra	Sfavorev				1.00	1.00	1.00
Spinta terreno destra Sisma da destra	Sfavorev Sfavorev				1.00	1.00	1.00
Spinta da destra Spinta falda	Sfavorev				1.00 1.00	1.00 1.00	1.00 1.00
Termico	Sfavorev				1.00	1.00	1.00
Ritiro	Sfavorev				1.00	1.00	1.00
Combinazione n° 8 SLU (Approccio 2) - Sisma							
	Effett				γ	Ψ	С
Peso Proprio	Sfavorev				1.00	1.00	1.00
Spinta terreno sinistra	Sfavorev				1.00	1.00	1.00
Spinta terreno destra	Sfavorev				1.00	1.00	1.00
Sisma da destra	Sfavorev				1.00	1.00	1.00
Spinta falda	Sfavorev				1.00	1.00	1.00
Termico	Sfavorev				1.00	1.00	1.00
Ritiro	Sfavorev	role			1.00	1.00	1.00
Combinazione n° 9 SLE (Rara)							
	Effett	o			γ	Ψ	С
Peso Proprio	Sfavorev	ole .		:	1.00	1.00	1.00

Secondo stralcio funzionale: Matelica Nord – Matelica Sud/Castelraimondo Nord

Pag. di Pag. 32 di 168

Marche Umbria 5.p.A.								
	Opera	Tratto	Settore	CEE	WBS	ld. doc.	N. prog.	Rev.
	L0703	212	E	38	013800	REL	01	A
	10703	212	L	30	O13000	INLL	O1	$\overline{}$
Spinta terreno sinistra	Sfavorev	ole/			1.00	1.00		1.00
Spinta terreno destra	Sfavorev				1.00	1.00		1.00
Spinta falda	Sfavorev				1.00	1.00		1.00
Termico	Sfavorev				1.00	0.60		0.60
Ritiro	Sfavorev				1.00	1.00		1.00
Carico stradale centrato	Sfavorev	/ole			1.00	1.00		1.00
Combinazione n° 10 SLE (Frequente)								
	Effett	0			γ	Ψ		С
Peso Proprio	Sfavorev	ole/			1.00	1.00		1.00
Spinta terreno sinistra	Sfavorev	ole/			1.00	1.00		1.00
Spinta terreno destra	Sfavorev	/ole			1.00	1.00		1.00
Spinta falda	Sfavorev				1.00	1.00		1.00
Ritiro	Sfavorev				1.00	1.00		1.00
Carico stradale centrato	Sfavorev	/oie			1.00	0.75		0.75
Combinazione n° 11 SLE (Quasi Permanente)								
	Effett	0			γ	Ψ		С
Peso Proprio	Sfavorev	ole/			1.00	1.00		1.00
Spinta terreno sinistra	Sfavorev	ole/			1.00	1.00		1.00
Spinta terreno destra	Sfavorev	/ole			1.00	1.00		1.00
Spinta falda	Sfavorev				1.00	1.00		1.00
Ritiro	Sfavorev				1.00	1.00		1.00
NitilO	Siavoiev	/ole			1.00	1.00		1.00
Combinazione n° 12 SLE (Rara)								
	Effett	0			γ	Ψ		С
Peso Proprio	Sfavorev	/ole			1.00	1.00		1.00
Spinta terreno sinistra	Sfavorev	/ole			1.00	1.00		1.00
Spinta terreno destra	Sfavorev	ole/			1.00	1.00		1.00
Spinta falda	Sfavorev	ole/			1.00	1.00		1.00
Carico stradale centrato	Sfavorev				1.00	0.75		0.75
Termico	Sfavorev				1.00	1.00		1.00
Ritiro	Sfavorev				1.00	1.00		1.00
Nitil O	Siavoiev	/OIE			1.00	1.00		1.00
Carabination 28.43 (LE/Farance)								
Combinazione n° 13 SLE (Frequente)								
	Effett	0			γ	Ψ		С
Peso Proprio	Sfavorev	ole/			1.00	1.00		1.00
Spinta terreno sinistra	Sfavorev	/ole			1.00	1.00		1.00
Spinta terreno destra	Sfavorev	/ole			1.00	1.00		1.00
Spinta falda	Sfavorev	ole/			1.00	1.00		1.00
Termico	Sfavorev	/ole			1.00	0.50		0.50
Ritiro	Sfavorev				1.00	1.00		1.00
	0.0.0.0.					2.00		2.00
Combinations no 14 CLE (Dara)								
Combinazione n° 14 SLE (Rara))T(_
	Effett				γ	Ψ		С
Peso Proprio	Sfavorev				1.00	1.00		1.00
Spinta terreno sinistra	Sfavorev				1.00	1.00		1.00
Spinta terreno destra	Sfavorev	/ole			1.00	1.00		1.00
Spinta falda	Sfavorev	/ole			1.00	1.00		1.00
Termico	Sfavorev	/ole			1.00	0.60		0.60
Ritiro	Sfavorev				1.00	1.00		1.00
Carico stradale laterale	Sfavorev				1.00	1.00		1.00
Combinazione n° 15 SLE (Frequente)								
Combinazione II 13 SEE (FIEQUEIILE)	F.C	_				177		•
	Effett				γ	Ψ		C
Peso Proprio	Sfavorev	/ole			1.00	1.00		1.00

Secondo stralcio funzionale: Matelica Nord – Matelica Sud/Castelraimondo Nord

Pag. di Pag. 33 di 168

mai ono ombi la olpira								
	Opera	Tratto	Settore	CEE	WBS	ld. doc.	N. prog.	Rev.
	L0703	212	Е	38	O13800	REL	01	Α
Spinta terreno sinistra	Sfavore				1.00	1.00		1.00
Spinta terreno destra	Sfavore	/ole			1.00	1.00		1.00
Spinta falda	Sfavore	/ole		;	1.00	1.00		1.00
Ritiro	Sfavore	/ole		1.00		1.00	1.00	
Carico stradale laterale	Sfavore	/ole		:	1.00	0.75		0.75
Combinazione n° 16 SLE (Rara)	Effett	•			γ	Ψ		С
Peso Proprio	Sfavore				1.00	1.00		1.00
Spinta terreno sinistra	Sfavore				1.00	1.00		1.00
Spinta terreno destra	Sfavore				1.00	1.00		1.00
Spinta falda	Sfavore			1.00		1.00		1.00
Termico	Sfavorev	ole/		:	1.00	1.00		1.00
Ritiro	Sfavorev	ole/		1.00 1.00				1.00
Carico stradale laterale	Sfavore	ole/			1.00	0.75		0.75

6.3 VERIFICHE GEOTECNICHE (CARICO LIMITE)

Per la verifica della capacità portante delle Fondazioni superficiali, si è fatto ricorso alla teoria di Meyerhof secondo la quale, il carico limite di una fondazione superficiale, è valutabile attraverso le seguenti espressioni:

$$\begin{split} Q_{\text{lim}} &= c \cdot N_c \cdot s_c \cdot d_c + \gamma_1 \cdot D \cdot N_q \cdot s_q \cdot d_q + \frac{1}{2} \gamma_2 \cdot B \cdot N_\gamma \cdot s_\gamma \cdot d_\gamma \quad \text{(Caso di Carico Verticale)} \\ Q_{\text{lim}} &= c \cdot N_c \cdot d_c \cdot i_c + \gamma_1 \cdot D \cdot N_q \cdot d_q \cdot i_q + \frac{1}{2} \gamma_2 \cdot B \cdot N_\gamma \cdot d_\gamma \cdot i_\gamma \quad \text{(Caso di Carico Inclinato)} \end{split}$$

dove:

Il prodotto γ_1 D presente nel 2° termine. corrisponde al valore della pressione efficace sul piano di appoggio della fondazione che quindi nel caso più generale di falda tra piano campagna e piano di posa fondazione, corrisponde a:

$$\gamma_1 h_w + \gamma_1 (D - h_w)$$

con la specifica inoltre che in tal caso, alla formula trinomia va aggiunto l'ulteriore termine $\gamma_w h_w$

Allo stesso modo, per falda presente nel volume di terreno potenzialmente interessato dal meccanismo di rottura, il γ_2 del terzo termine della trinomia corrisponde al peso di volume efficace

Secondo stralcio funzionale: Matelica Nord – Matelica Sud/Castelraimondo Nord

Opera	Tratto	Settore	CEE	WBS	ld. doc.	N. prog.	Rev.	Pag. di Pag.
L0703	212	Е	38	O13800	REL	01	Α	34 di 168

del terreno di fondazione γ_2

γ₂= peso di volume dello strato di fondazione;

 γ w = peso di volume falda

hw = quota falda rispetto al piano di posa della fondazione

e = eccentricità del carico rispetto al baricentro della fondazione

 $\mathbf{B'} = \text{larghezza efficace della fondazione } \mathbf{B'} = \mathbf{B} - 2\mathbf{e}$

 $\mathbf{L'} = \text{lunghezza}$ efficace della fondazione $\mathbf{L'} = \mathbf{L}$ - 2e;

c = coesione efficace dello strato di fondazione;

 N_{c} , N_{q} , N_{y} = fattori di capacità portante;

 $\mathbf{s_{c}}$, $\mathbf{s_{q}}$, $\mathbf{s_{y}}$ = fattori di forma della fondazione;

 d_c , d_q , d_y = fattori di profondità del piano di posa della fondazione.

 i_c , i_q , i_y = fattori di inclinazione del carico;

Per la teoria di Meyerhof i coefficienti sopra definiti assumono le espressioni che seguono:

$$\begin{split} N_c &= \left(N_q - 1 \right) \cdot ctg\phi \, ; \quad N_q = tg^2 \left(45^o + \frac{\phi}{2} \right) \cdot e^{(\pi \cdot tg\phi)} \, ; \quad N_{\gamma} = \left(N_q - 1 \right) \cdot tg \left(1.4 \cdot \phi \right) \\ s_c &= 1 + 0.2 \cdot Kp \cdot \frac{B}{L} \, ; \quad s_q = 1 + 0.1 \cdot tg^2 \left(45^o + \frac{\phi}{2} \right) \cdot \frac{B}{L} \, ; \quad s_{\gamma q} = s_q \end{split}$$

$$\begin{split} \boldsymbol{d}_{c} = & 1 + 0.2 \cdot tg \left(45^{o} + \frac{\phi}{2} \right) \cdot \frac{D}{B_{f}}; \quad \boldsymbol{d}_{q} = 1 + 0.1 \cdot tg \left(45^{o} + \frac{\phi}{2} \right) \cdot \frac{D}{B_{f}}; \quad \boldsymbol{d}_{\gamma} = \boldsymbol{d}_{q} \\ & i_{c} = \left(1 - \frac{\theta^{o}}{90^{o}} \right)^{2}; \quad i_{q} = i_{c}; \quad i_{\gamma} = \left(1 - \frac{\theta^{o}}{\phi^{o}} \right)^{2} \end{split}$$

nelle quali si sono considerati i seguenti dati:

φ= angolo di attrito dello strato di fondazione;

 θ = inclinazione della risultante sulla verticale;

D = profondità della fondazione.

** nel caso di terreno eminentemente coesivo (ϕ = 0) si assume: s_q = 1; s_γ = 1; d_q = 1; d_γ = 1; d_γ = 0.

7. ORIGINE E CARATTERISTICHE DEI CODICI DI CALCOLO

Nell'ambito del presente paragrafo si riporta una descrizione delle caratteristiche dei Software utilizzati per

Secondo stralcio funzionale: Matelica Nord – Matelica Sud/Castelraimondo Nord

Opera	Tratto	Settore	CEE	WBS	ld. doc.	N. prog.	Rev.	Pag. di Pag.
L0703	212	Е	38	O13800	REL	01	Α	35 di 168

l'effettuazione delle Analisi e Verifiche strutturali e geotecniche esposte nel presente documento.

Denominazione ed Estremi di Licenza del Software

Titolo SCAT - Analisi Strutture Scatolari

Versione 14.0

Produttore Aztec Informatica srl, Casole Bruzio (CS)

Utente PROGIN S.P.A. Licenza AIU01054U

Tipo di analisi svolta

L'analisi strutturale e le verifiche sono condotte con l'ausilio di un codice di calcolo automatico. La verifica della sicurezza degli elementi strutturali è stata valutata con i metodi della scienza delle costruzioni.

La struttura viene discretizzata in elementi tipo trave. Per simulare il comportamento del terreno di fondazione e di rinfianco vengono inserite delle molle alla Winkler non reagenti a trazione

L'analisi che viene effettuata è un'analisi al passo per tener conto delle molle che devono essere eliminate (molle in trazione). L'analisi fornisce i risultati in termini di spostamenti. Dagli spostamenti si risale alle sollecitazioni nodali ed alle pressioni sul terreno.

Il calcolo degli scatolari viene eseguito secondo le seguenti fasi:

- Calcolo delle pressioni in calotta (per gli scatolari ricoperti da terreno);
- Calcolo della spinta del terreno;
- Calcolo delle sollecitazioni sugli elementi strutturali (fondazione, piedritti e traverso);
- Progetto delle armature e relative verifiche dei materiali.

L'analisi strutturale sotto le azioni sismiche è condotta con il metodo dell'analisi statica equivalente

La verifica delle sezioni degli elementi strutturali è eseguita con il metodo degli Stati Limite. Le combinazioni di carico adottate sono esaustive relativamente agli scenari di carico più gravosi cui l'opera sarà soggetta.

Affidabilità dei codici di calcolo

Un attento esame preliminare della documentazione a corredo dei software impiegati ha consentito di valutarne l'affidabilità. La documentazione fornita dal produttore dei software contiene un'esauriente descrizione delle basi teoriche, degli algoritmi impiegati e l'individuazione dei campi d'impiego. Le stesse società produttrici hanno verificato l'affidabilità e la robustezza dei codici di calcolo attraverso un numero significativo di casi prova in cui i risultati sono contenuti in apposita documentazione fornita a corredo dell'acquisto del prodotto, che per brevità espositiva si omette di allegare al presente documento.

Giudizio motivato di accettabilità dei risultati

I risultati delle elaborazioni esposte nel documento sono state inoltre sottoposte a controlli dal sottoscritto utente del software.

Secondo stralcio funzionale: Matelica Nord – Matelica Sud/Castelraimondo Nord

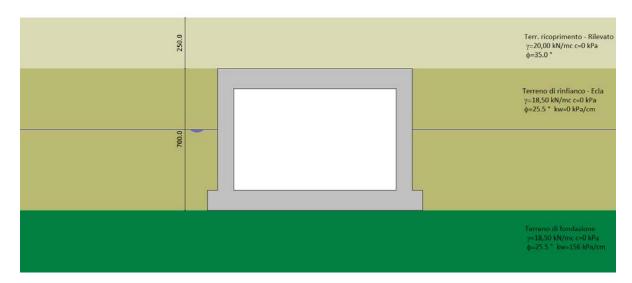
Opera	Tratto	Settore	CEE	WBS	ld. doc.	N. prog.	Rev.	Pag. di Pag.
L0703	212	Е	38	O13800	REL	01	Α	36 di 168

Tale valutazione ha compreso il confronto con i risultati di semplici calcoli, eseguiti con metodi tradizionali, che per brevità espositiva si omette dall'allegare al presente documento.

Inoltre sulla base di considerazioni riguardanti gli stati tensionali e deformativi determinati, si è valutata la validità delle scelte operate in sede di schematizzazione e di modellazione della struttura e delle azioni.

In base a quanto sopra, Il Progettista dichiara pertanto che l'elaborazione è corretta ed idonea al caso specifico, validando conseguentemente i risultati dei calcoli esposti nella presente.

Secondo stralcio funzionale: Matelica Nord – Matelica Sud/Castelraimondo Nord

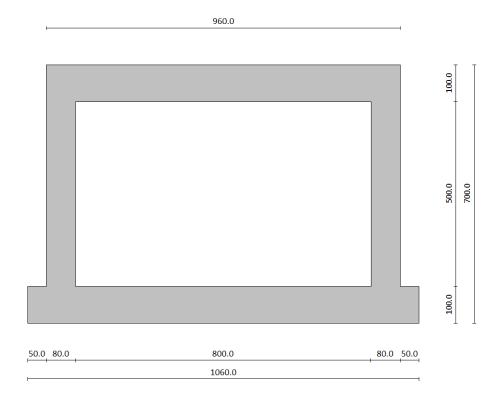

Opera	Tratto	Settore	CEE	WBS	ld. doc.	N. prog.	Rev.	Pag. di Pag.
L0703	212	Е	38	O13800	REL	01	Α	37 di 168

8. RISULTATI, ANALISI E VERIFICHE SCATOLARE

Di seguito di riporta una descrizione della modellazione effettuata mediante ausilio del software di calcolo SCAT v.14 prodotto dalla AZTEC Informativa, con una descrizione del modello strutturale implementato, sollecitazioni di calcolo ottenute e risultati delle verifiche effettuate.

8.1 MODELLO DI CALCOLO

Di seguito di riporta una descrizione del modello geometrico/geotecnico considerato ai fini del dimensionamento. In particolare, si sottolinea che la sezione dimensionata non è quella trasversale, bensì quella ottenuta sezionando il sottovia con un piano verticale avente come direttrice l'asse stradale sovrastante:



Modello Geometrico Geotecnico di Riferimento – 1/2

Secondo stralcio funzionale: Matelica Nord – Matelica Sud/Castelraimondo Nord

Opera	Tratto	Settore	CEE	WBS	ld. doc.	N. prog.	Rev.	Pag. di Pag.
L0703	212	Е	38	O13800	REL	01	Α	38 di 168

Modello Geometrico Geotecnico di Riferimento – 2/2

A partire dal tipo di terreno, dalla geometria e dai sovraccarichi agenti il programma è in grado di conoscere tutti i carichi agenti sulla struttura per ogni combinazione di carico.

La struttura scatolare viene schematizzata come un telaio piano e viene risolta mediante il metodo degli elementi finiti (FEM). Più dettagliatamente il telaio viene discretizzato in una serie di elementi connessi fra di loro nei nodi.

Il terreno di fondazione viene schematizzato con una serie di elementi molle non reagenti a trazione (modello di Winkler). L'area della singola molla è direttamente proporzionale alla costante di Winkler del terreno e all'area di influenza della molla stessa.

A partire dalla matrice di rigidezza del singolo elemento, Ke, si assembla la matrice di rigidezza di tutta la struttura K. Tutti i carichi agenti sulla struttura vengono trasformati in carichi nodali (reazioni di incastro perfetto) ed inseriti nel vettore dei carichi nodali p.

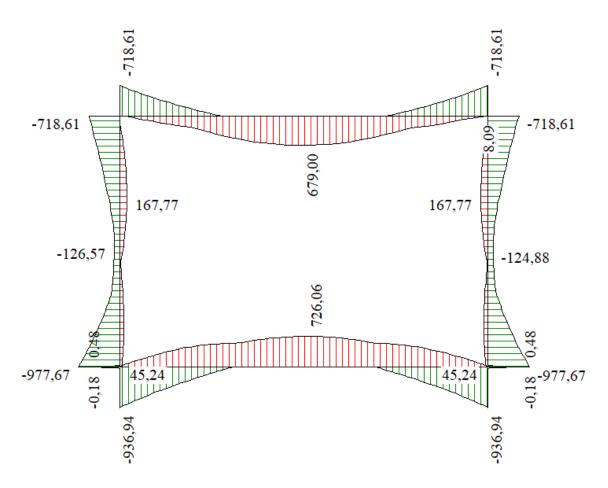
Indicando con u il vettore degli spostamenti nodali (incogniti), la relazione risolutiva può essere scritta nella forma

$$K \cdot u = p$$

Da questa equazione matriciale si ricavano gli spostamenti incogniti u

$$u = K^{-1} p$$

Secondo stralcio funzionale: Matelica Nord – Matelica Sud/Castelra
imondo Nord

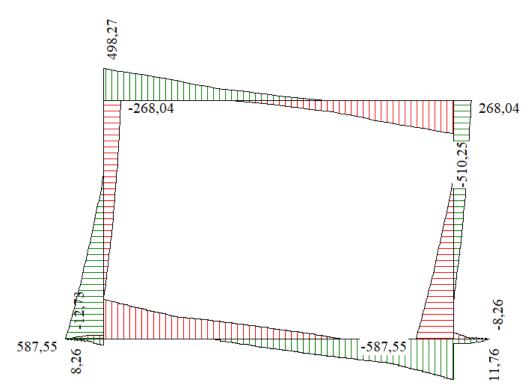

Opera	Tratto	Settore	CEE	WBS	ld. doc.	N. prog.	Rev.	Pag. di Pag.
L0703	212	Е	38	O13800	REL	01	Α	39 di 168

Noti gli spostamenti nodali è possibile risalire alle sollecitazioni nei vari elementi.

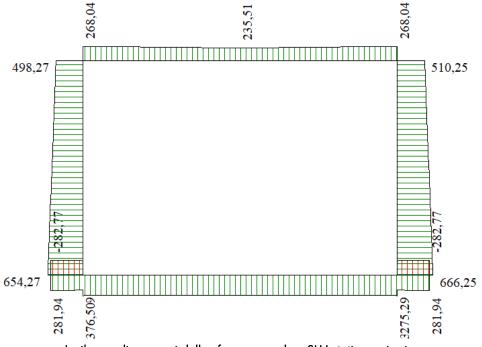
La soluzione del sistema viene fatta per ogni combinazione di carico agente sullo scatolare. Il successivo calcolo delle armature nei vari elementi viene condotto tenendo conto delle condizioni più gravose che si possono verificare nelle sezioni fra tutte le combinazioni di carico.

8.2 SOLLECITAZIONI DI CALCOLO

Si riportano, di seguito, i diagrammi di inviluppo delle caratteristiche delle sollecitazioni di Flessione, Taglio e Sforzo Normale; le unità di misura dei grafici sono i KN e m.



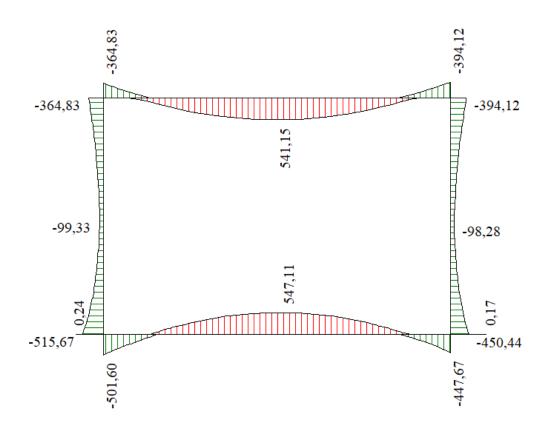
Inviluppo diagrammi del momento flettente – SLU statico e sismico



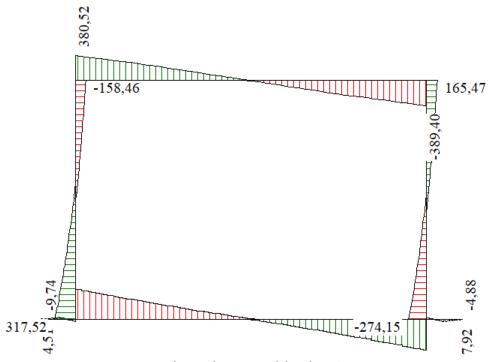
Secondo stralcio funzionale: Matelica Nord – Matelica Sud/Castelra
imondo Nord

Opera	Tratto	Settore	CEE	WBS	ld. doc.	N. prog.	Rev.	Pag. di Pag.
L0703	212	Е	38	O13800	REL	01	Α	40 di 168

Inviluppo diagrammi del taglio – SLU statico e sismico



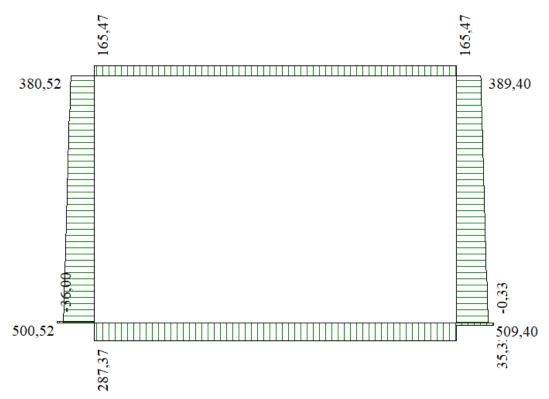
Inviluppo diagrammi dello sforzo normale – SLU statico e sismico



Secondo stralcio funzionale: Matelica Nord – Matelica Sud/Castelra
imondo Nord

Opera	Tratto	Settore	CEE	WBS	ld. doc.	N. prog.	Rev.	Pag. di Pag.
L0703	212	Е	38	O13800	REL	01	Α	41 di 168

Inviluppo diagrammi del momento flettente – SLE



Inviluppo diagrammi del taglio – SLE

Secondo stralcio funzionale: Matelica Nord – Matelica Sud/Castelra
imondo Nord

Opera	Tratto	Settore	CEE	WBS	ld. doc.	N. prog.	Rev.	Pag. di Pag.
L0703	212	Е	38	O13800	REL	01	Α	42 di 168

Inviluppo diagrammi dello sforzo normale – SLE

8.3 ARMATURE DI PROGETTO

Nella tabella seguente si riportano le armature di progetto previste per la sezione di calcolo in questione, come desumibili dagli elaborati grafici di armatura delle opere relative:

	Armatura a flessione		Armatura a taglio
Elemento	Af 1	Af 2	Aft
TRAVERSO	1φ24/20	1φ24/20	Spilli φ10/20x40 (per 2,5 metri alle estremità)
PIEDRITTI	1\phi24/20 (L=6m)+1\phi24/20 (L=2,5m)	1φ24/20	Spilli φ10/20x40 (per 3 metri alla base)
FONDAZIONE	1\psi 24/20 (L=10,50m)+1\psi 24/20 (L=3,50m)	1φ24/20	Spilli φ10/20x40 (per 3 metri alle estremità)

Af1: Armatura lato esterno (terreno)

Af2 : Armatura lato interno Aft: Armatura lato interno

Ai fini delle verifiche si è fatto riferimento ad un copriferro di calcolo (asse armature) pari a 6 cm.

Secondo stralcio funzionale: Matelica Nord – Matelica Sud/Castelraimondo Nord

Opera	Tratto	Settore	CEE	WBS	ld. doc.	N. prog.	Rev.	Pag. di Pag.
L0703	212	Е	38	O13800	REL	01	Α	43 di 168

8.4 VERIFICHE DI RESISTENZA E FESSURAZIONE

Il software esegue in automatico tutte le verifiche strutturali sia allo stato limite ultimo che allo stato limite di esercizio. Per quanto riguarda il taglio il programma prevede sia la verifica per elementi non armati a taglio e sia quella per elementi dotati di apposita armatura a taglio, disponendo tuttavia ferri sagomati resistenti a taglio e non staffe o tiranti. Per questo motivo le verifiche a taglio vengono eseguite manualmente attraverso l'ausilio di fogli di calcolo strutturati ad hoc.

I criteri generali di verifica adottati dal Software, sono quelli esposti al paragrafo 6.

Le verifiche cautelativamente vengono effettuate <u>in asse</u> agli elementi strutturali; come origine del riferimento si sceglie lo spigolo inferiore sinistro dello scatolare:

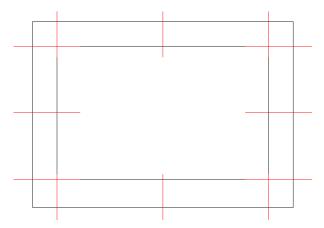


Figura 5 – Sezioni di verifica

8.4.1 Verifiche allo SLU

Si mostrano, nelle seguenti tabelle, le verifiche SLU nei confronti della pressoflessione. Si riportano per semplicità le verifiche più gravose per la struttura.

Si fà presente, che in misura cautelativa è stato assunto nel modello di calcolo anche per la soletta di fondazione, così come per la struttura in elevazione costituita dai piedritti e fondazione superiore, una classe di calcestruzzo C25/30 facendo comunque distinzione tra condizioni ordinarie e aggressive definite nei paragrafi precedenti.

8.4.2 Verifiche a pressoflessione

Verifica sezioni fondazione (Inviluppo)

Altezza sezione	B = 100 cm H = 100,00 cm		
x	\mathbf{A}_{fi}	A_{fs}	cs
0,00	22,62	22,62	5,80
2,67	22,62	22,62	1,87
5,30	22,62	22,62	1,36
8,00	22,62	22,62	1,83
10,60	45,24	22,62	5,84

Secondo stralcio funzionale: Matelica Nord – Matelica Sud/Castelraimondo Nord

Opera	Tratto	Settore	CEE	WBS	ld. doc.	N. prog.	Rev.	Pag. di Pag.
L0703	212	Е	38	O13800	REL	01	Α	44 di 168

Verifica sezioni traverso (Inviluppo)

 $\begin{array}{ll} \text{Base sezione} & \quad \text{B} = 100 \text{ cm} \\ \text{Altezza sezione} & \quad \text{H} = 100,\!00 \text{ cm} \end{array}$

Х	A_{fi}	A_{fs}	CS
0,90	22,62	22,62	1,30
3,14	22,62	22,62	1,48
5,30	22,62	22,62	1,34
7,46	22,62	22,62	1,53
9,70	22,62	22,62	1,30

Verifica sezioni piedritto sinistro (Inviluppo)

 $\begin{array}{ll} \text{Base sezione} & \quad \text{B} = 100 \text{ cm} \\ \text{Altezza sezione} & \quad \text{H} = 80,00 \text{ cm} \end{array}$

Y A_{fi} A_{fs}	CS
0,50 22,62 45,24	1,39
1,95 22,62 22,62	1,47
3,50 22,62 22,62	7,34
4,95 22,62 22,62	1,78
6,50 22,62 22,62	1,05

8.4.3 Verifiche a taglio

I risultati ottenuti dalle verifiche delle sezioni maggiormente sollecitate (a filo pareti) per la struttura in esame sono riepilogati nella seguente tabella. L'armatura a taglio prevista è costituita da spilli, secondo quanto riportato nella tabella sottostrante:

Elemento	Armatura a taglio
Traverso	Spilli Φ10/20x40 (per 2,5 metri alle estremità)
Piedritti	Spilli Φ10/20x40 (per 3 metri alla base)
Fondazione	Spilli Φ10/20x40 (per 3 metri alle estremità)

Nelle restanti parti, la resistenza a taglio è garantita dal solo calcestruzzo.

Sezione	V _{Ed}	b	h	V_{RSd}^*	Verificato
[-]	[kN]	[cm]	[cm]	[kN]	[-]
Fondazione	588	100	90	808	SI
Piedritti	587	100	90	808	SI

Secondo stralcio funzionale: Matelica Nord – Matelica Sud/Castelra
imondo Nord

Opera	Tratto	Settore	CEE	WBS	ld. doc. N. prog.		Rev.	Pag. di Pag.
L0703	212	Е	38	O13800	REL	01	Α	45 di 168

CI
51
8(

^{*} la resistenza a taglio V_{RSd} è stata calcolata utilizzando il traliccio ad inclinazione variabile secondo quanto riportato nelle NTC08.

8.4.4 Verifiche allo SLE

Nel seguente paragrafo si riportano le verifiche allo stato limite di apertura delle fessure e le verifiche delle alle tensioni per il calcestruzzo e per l'acciaio di armatura.

Si fà presente, che in misura cautelativa è stato assunto nel modello di calcolo anche per la soletta di fondazione, così come per la struttura in elevazione costituita dai piedritti e fondazione superiore, una classe di calcestruzzo C25/30 facendo comunque distinzione tra condizioni ordinarie e aggressive definite nei paragrafi precedenti.

Simbologia adottata ed unità di misura

N° Indice sezione

X Ascissa/Ordinata sezione, espresso in m M Momento flettente, espresso in kNm

V Taglio, espresso in kN

N Sforzo normale, espresso in kN

A_{fi} Area armatura inferiore, espressa in cmq A_{fs} Area armatura superiore, espressa in cmq

σ_{ii} Tensione nell'armatura disposta in corrispondenza del lembo inferiore, espresse in MPa
 σ_{is} Tensione nell'armatura disposta in corrispondenza del lembo superiore, espresse in MPa

 σ_{c} Tensione nel calcestruzzo, espresse in MPa

τ_c Tensione tangenziale nel calcestruzzo, espresse in MPa A_{sw} Area armature trasversali nella sezione, espressa in cmq

Simbologia adottata ed unità di misura

N° Indice sezione

Xi Ascissa/Ordinata sezione, espresso in m

Mp Momento di prima fessurazione positivo, espresse in kNm Mn Momento di prima fessurazione negativo, espresse in kNm

wk Ampiezza fessure, espresse in mm
wlim Apertura limite fessure, espresse in mm
s Distanza media tra le fessure, espresse in mm
sm Deformazione nelle fessure, espresse in [%]

8.4.5 Verifiche a fessurazione

L'ampiezza delle fessure è sempre al di sotto dei limiti sopra descritti, pertanto le verifiche si possono ritenere soddisfatte. Nella seguente figura vengono riportati lo schema con indicazione delle zone della struttura ove si innesca il processo di fessurazione. Per i relativi valori di ampiezza delle fessure ricavati per la <u>combinazione frequente</u> e <u>quasi permanente</u> riferirsi al tabulato in allegato:

Secondo stralcio funzionale: Matelica Nord – Matelica Sud/Castelra
imondo Nord

Opera	Tratto	Settore	CEE	WBS	ld. doc. N. prog.		Rev.	Pag. di Pag.
L0703	212	Е	38	O13800	REL	01	Α	46 di 168

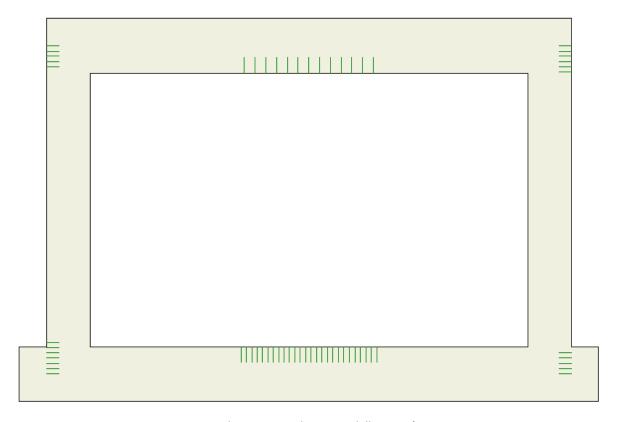


Figura 6 - Schema con indicazione delle zone fessurate

Secondo stralcio funzionale: Matelica Nord – Matelica Sud/Castelraimondo Nord

Opera	Tratto	Settore	CEE	WBS	ld. doc.	N. prog.	Rev.	Pag. di Pag.
L0703	212	Е	38	O13800	REL	01	Α	47 di 168

8.4.6 Verifica delle tensioni

Nella seguente tabella sono riportati i risultati delle verifiche allo SLE dei limiti tensionali di lavoro nel calcestruzzo e nelle barre di armatura.

Tali tensioni risultano sempre al di sotto dei limiti indicati dalla normativa, pertanto le verifiche si possono ritenere soddisfatte. Vengono riportate le verifiche più gravose.

Verifica sezioni fondazione (Inviluppo)

Base sezione Altezza sezione	B = 100 cm H = 100,00 cm						
х	Afi	A_{fs}	σ	$\sigma_{ m fi}$	σ fs		
0,00	22,62	22,62	1	7837	8080		
2,67	22,62	22,62	1753	21499	43257		
5,30	22,62	22,62	5275	58079	223680		
8,00	22,62	22,62	1861	22710	46891		
10,60	45,24	22,62	34	460			
Verifica sezioni traverso (Inviluppo)							
Base sezione	B = 100 cm						
Altezza sezione	H = 100,00 cm						
X	A_{fi}	A_{fs}	σ_{c}	σ _{fi}	σfs		
0,90	22,62	22,62	3512	38450	152076		
3,14	22,62	22,62	3296	144442	35955		
5,30	22,62	22,62	5156	245252	54919		
7,46	22,62	22,62	3160	137156	34574		
9,70	22,62	22,62	3788	41266	166932		

Verifica sezioni piedritto sinistro (Inviluppo)

Base sezione Altezza sezione	B = 100 cm H = 90,00 cm				
Υ	A_{fi}	A_{fs}	σ_{c}	$\sigma_{\rm fi}$	σ_{fs}
0,50	22,62	45,24	5924	69459	130534
1,95	22,62	22,62	2666	32894	40275
3,50	22,62	22,62	1361	18126	5505
4,95	22,62	22,62	2402	29302	40085
6,50	22,62	22,62	5197	56383	165947

Verifica sezioni piedritto destro (Inviluppo)

Base sezione Altezza sezione	B = 100 cm H = 90,00 cm				
Υ	A_{fi}	A_{fs}	σ_{c}	$\sigma_{\rm fi}$	σ_{fs}
0,50	22,62	45,24	5247	62433	105871
1,95	22,62	22,62	2368	29814	29690
3,50	22,62	22,62	1367	18231	5263
4,95	22,62	22,62	2614	31569	47267
6,50	22,62	22,62	5608	60452	183571

Secondo stralcio funzionale: Matelica Nord – Matelica Sud/Castelraimondo Nord

Opera	Tratto	Settore	CEE	WBS	ld. doc.	N. prog.	Rev.	Pag. di Pag.
L0703	212	Е	38	O13800	REL	01	Α	48 di 168

8.5 VERIFICHE GEOTECNICHE

La verifica a carico limite è stata eseguita in automatico dal software di calcolo attraverso l'utilizzo di della formula di Meyerhof, come già specificato in precedenza; nel seguito si riportano i risultati ottenuti per il caso in esame:

Simbologia adottata

IC Indice della combinazione

Nc, Nq, Ng Fattori di capacità portante

Nc, Nq, Ng Fattori di capacità portante corretti per effetto forma, inclinazione del carico, affondamento, etc.

qu Portanza ultima del terreno, espressa in [kPa]
QU Portanza ultima del terreno, espressa in [kN]/m
QY Carico verticale al piano di posa, espressa in [kN]/m

FS Fattore di sicurezza a carico limite

IC	Nc	Nq	Νγ	N'c	N'q	Ν'γ	qu	Q υ	\mathbf{Q}_{Y}	FS
1	21,47	11,24	7,36	27,11	12,63	7,92	2105	22307,71	1338,11	16,67
2	21,47	11,24	7,36	27,21	12,67	8,02	2122	22498,49	1283,97	17,52
3	21,47	11,24	7,36	24,78	11,54	5,61	1860	19714,39	1178,39	16,73
4	21,47	11,24	7,36	25,44	11,84	6,23	1935	20509,72	1164,18	17,62
5	21,47	11,24	7,36	12,17	5,67	0,29	548	5808,47	969,95	5,99
6	21,47	11,24	7,36	9,64	4,49	1,64	414	4388,71	755,52	5,81
7	21,47	11,24	7,36	12,17	5,67	0,29	548	5808,47	969,95	5,99
8	21,47	11,24	7,36	9,64	4,49	1,64	414	4388,71	755,52	5,81

Secondo stralcio funzionale: Matelica Nord – Matelica Sud/Castelraimondo Nord

Opera	Tratto	Settore	CEE	WBS	ld. doc.	N. prog.	Rev.	Pag. di Pag.
L0703	212	Е	38	O13800	REL	01	Α	49 di 168

9. ANALISI E VERIFICA MURI AD U

Nell'ambito del presente paragrafo, si descrivono i criteri generali adottati per l'Analisi e relative verifiche strutturali e geotecniche delle opere oggetto di dimensionamento

9.1 ANALISI DEI CARICHI

9.1.1 Peso proprio

Il peso proprio delle strutture è determinato automaticamente dal programma di calcolo, avendo considerato un peso dell'unita di volume del c.a. γ cls = 25 KN/m³.

9.1.2 Spinta del terreno

Per lavalutazione delle Spinte del terreno sui piedritti, si è fatto riferimento alla teoria di Coluomb.

La teoria di Coulomb considera l'ipotesi di un cuneo di spinta a monte della parete che si muove rigidamente lungo una superficie di rottura rettilinea. Dall'equilibrio del cuneo si ricava la spinta che il terreno esercita sull'opera di sostegno. In particolare Coulomb ammette, al contrario della teoria di Rankine, l'esistenza di attrito fra il terreno e la parete, e quindi la retta di spinta risulta inclinata rispetto alla normale alla parete stesso di un angolo di attrito terra-parete.

L'espressione della spinta esercitata da un terrapieno, di peso di volume γ , su una parete di altezza H, risulta espressa secondo la teoria di Coulomb dalla seguente relazione (per terreno incoerente):

$$S = \frac{1}{2} \cdot \gamma \cdot H^2 \cdot K_a$$

Ka rappresenta il coefficiente di spinta attiva di Coulomb nella versione riveduta da Muller-Breslau, espresso come:

$$K_{\alpha} = \frac{\sin^2(\alpha + \phi)}{\sin^2\alpha \cdot \sin(\alpha - \delta) \cdot \left[1 + \frac{\sqrt{\sin(\phi + \delta) \cdot \sin(\phi - \beta)}}{\sqrt{\sin(\alpha - \delta) \cdot \sin(\alpha + \beta)}}\right]^2}$$

dove ϕ è l'angolo d'attrito del terreno, α rappresenta l'angolo che la parete forma con l'orizzontale ($\alpha = 90^{\circ}$ per parete verticale), δ è l'angolo d'attrito terreno-parete, β è l'inclinazione del terrapieno rispetto all'orizzontale.

La spinta risulta inclinata dell'angolo d'attrito terreno-parete δ rispetto alla normale alla parete.

Il diagramma delle pressioni del terreno sulla parete risulta triangolare con il vertice in alto.

Il punto di applicazione della spinta si trova in corrispondenza del baricentro del diagramma delle pressioni (1/3 H rispetto alla base della parete). L'espressione di Ka perde di significato per $\beta > \varphi$.

Questo coincide con quanto si intuisce fisicamente: la pendenza del terreno a monte della parete non può superare l'angolo di natural declivio del terreno stesso.

Nel caso di terreno dotato di attrito e coesione c l'espressione della pressione del terreno ad una generica profondità z vale:

Secondo stralcio funzionale: Matelica Nord – Matelica Sud/Castelraimondo Nord

Opera	Tratto	Settore	CEE	WBS	ld. doc.	N. prog.	Rev.	Pag. di Pag.
L0703	212	Е	38	O13800	REL	01	Α	50 di 168

$$\sigma_{a} = \gamma \cdot z \cdot K_{a} - 2 \cdot c \cdot \sqrt{K_{a}}$$

Nel caso in esame tuttavia, in considerazione della ridotta capacità de formativa dell'opera, si è assunto che sui piedritti agisca la spinta calcolata in condizioni di riposo.

Il coefficiente di spinta a riposo è espresso dalla relazione:

$$K_0 = 1 - \sin \phi$$

dove prappresenta l'angolo d'attrito interno del terreno di rinfianco.

Quindi la pressione laterale, ad una generica profondità z e la spinta totale sulla parete di altezza H valgono:

$$\begin{split} \sigma &= \gamma \cdot z \cdot K_0 + p_v \cdot K_0 \\ S &= \frac{1}{2} \cdot \gamma \cdot H^2 \cdot K_0 + p_v \cdot K_0 \cdot H \end{split}$$

dove pv è la pressione verticale agente in corrispondenza della calotta.

Per il rilevato stradale sono stati assunti i seguenti valori dei parametri fisico meccanici geotecnici di progetto:

- peso di volume $\gamma = 20 \text{ KN/mc}$
- angolo di attrito φ ' = 35°
- coesione efficace c' = 0.

9.1.3 Spinta in presenza di falda

Nel caso in cui a monte della parete sia presente la falda il diagramma delle pressioni sulla parete risulta modificato a causa della sottospinta che l'acqua esercita sul terreno. Il peso di volume del terreno al di sopra della linea di falda non subisce variazioni. Viceversa al di sotto del livello di falda va considerato il peso di volume di galleggiamento:

$$\gamma_a = \gamma_{sat} - \gamma_w$$

dove γ sat è il peso di volume saturo del terreno (dipendente dall'indice dei pori) e γ w è il peso di volume dell'acqua.

Quindi il diagramma delle pressioni al di sotto della linea di falda ha una pendenza minore. Al diagramma così ottenuto va sommato il diagramma triangolare legato alla pressione idrostatica esercitata dall'acqua.

9.1.4 Azioni Sismiche

Per il calcolo dell'azione sismica si è utilizzato il metodo dell'analisi pseudostatica in cui l'azione sismica è rappresentata da una forza statica equivalente pari al prodotto delle forze di gravità per un opportuno coefficiente sismico k.

9.1.5 Forze d'inerzia

Secondo stralcio funzionale: Matelica Nord – Matelica Sud/Castelraimondo Nord

Opera	Tratto	Settore	CEE	WBS	ld. doc.	N. prog.	Rev.	Pag. di Pag.
L0703	212	Е	38	O13800	REL	01	Α	51 di 168

Le forze sismiche sono pertanto le seguenti:

Forza sismica orizzontale $F_h = k_h^*W$ Forza sismica verticale $F_v = k_v^*W$

I valori dei coefficienti sismici orizzontale kh e verticale kv possono essere valutati mediante le espressioni:

$$k_h = \frac{a_{max}}{g} \, S_s \, S_t \, \beta_m$$

$$k_{\nu} = \pm 0.5 k_{h}$$

In assenza di analisi specifiche della risposta sismica locale, l'accelerazione massima può essere valutata con la relazione:

$$a_{max} = S a = S_s S_t a_g$$

Nel caso specifico, in accordo a quanto già riportato al precedente paragrafo risulta:

 $\bullet \quad T_{R,\,SLV} \qquad \qquad = 712 \; \text{anni;}$

 $a_{g, SLV} = 0.215 g;$

9.1.6 Spinta sismica terreno

Le spinte del terreno in fase sismica, sono state determinate con la teoria di Wood, secondo la quale la risultante dell'incremento di spinta per effetto del sisma su una parete di altezza H viene determinata con la seguente espressione:

$$\Delta S_E = K_h \gamma H^2$$

9.2 INTERAZIONE TERRENO-FONDAZIONE

Di seguito sono trattati gli aspetti di natura geotecnica riguardanti l'interazione terreno-struttura relativamente all'opera in esame.

Per la determinazione della costante di sottofondo si può fare riferimento alle seguenti formulazioni assimilando il comportamento del terreno a quello di un mezzo elastico omogeneo:

-
$$s = B \cdot c_{t} \cdot (q - \sigma_{v0}) \cdot (1 - v^{2}) / E$$

dove:

- s = cedimento elastico totale;
- B = lato minore della fondazione;

Secondo stralcio funzionale: Matelica Nord – Matelica Sud/Castelraimondo Nord

Opera	Tratto	Settore	CEE	WBS	ld. doc.	N. prog.	Rev.	Pag. di Pag.
L0703	212	Е	38	O13800	REL	01	Α	52 di 168

 ct = coefficiente adimensionale di forma ottenuto dalla interpolazione dei valori dei coefficienti proposti dal Bowles, 1960 (L = lato maggiore della fondazione):

$$\begin{array}{ll} ct = 0.853 + 0.534 \; ln(L \, / \, B) & \text{rettangolare con L / B} \leq 10 \\ ct = 2 + 0.0089 \; (L \, / \, B) & \text{rettangolare con L / B} > 10 \end{array}$$

- q = pressione media agente sul terreno;
- σ_{v0} = tensione litostatica verticale alla quota di posa della fondazione;
- -v = coefficiente di Poisson del terreno;
- E = modulo elastico medio del terreno sottostante.

Il valore della costante di sottofondo k_w è valutato attraverso il rapporto tra il carico applicato ed il corrispondente cedimento pertanto, si ottiene:

-
$$k_w = E / [(1-v^2) \cdot B \cdot ct]$$

Di seguito si riportano, in forma tabellare, i risultati delle valutazioni effettuate per il caso in esame, sulla scorta del valore di progetto di **E** attribuito allo strato di Fondazione, avendo considerato una dimensione longitudinale della fondazione ritenuta potenzialmente collaboranti:

Terreno	Rifianco	Fondazione		
Tipo	Ecla	Ecla		
E (kN/m²)	250000	250000		
V	0,3	0,3		
B (m)	10)		
L (m)	40)		
L/B	4			
ct	1,59	1,59		
Kw (kN/m²)	17242,74	17242,74		
Kw (kPa/cm)	172,43	172,43		

9.3 COMBINAZIONI DI CARICO

Nell'ambito dell'analisi sono state analizzate un totale di 8 Combinazioni di calcolo di cui 1 **riferite al Caso** SLU statico, 4 sismiche e 3 di SLE (per l'approccio normativo utilizzato si rimanda al paragrafo 7.2 della presente).

Si riportano le combinazioni utilizzate.

Combinazione n° 1 SLU (Approccio 2)

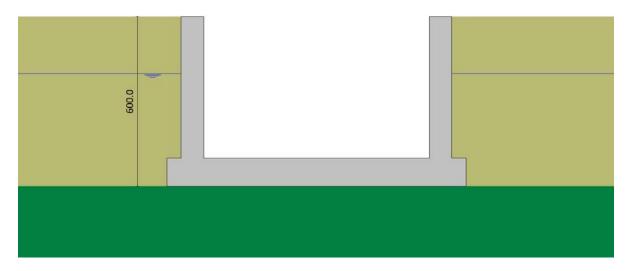
	Effetto	γ	Ψ	С
Peso Proprio	Sfavorevole	1.30	1.00	1.30
Spinta terreno sinistra	Sfavorevole	1.30	1.00	1.30
Spinta terreno destra	Sfavorevole	1.30	1.00	1.30
Spinta falda	Sfavorevole	1.30	1.00	1.30

Secondo stralcio funzionale: Matelica Nord – Matelica Sud/Castelraimondo Nord

Opera	Tratto	Settore	CEE	WBS	ld. doc.	N. prog.	Rev.	Pag. di Pag.
L0703	212	Е	38	O13800	REL	01	Α	53 di 168

Combinazione n° 2 SLU (Approccio	2) - Sisma Vert. negativo			
	Effetto	γ	Ψ	С
Peso Proprio	Sfavorevole	1.00	1.00	1.00
Spinta terreno sinistra	Sfavorevole	1.00	1.00	1.00
Spinta terreno destra	Sfavorevole	1.00	1.00	1.00
Sisma da sinistra	Sfavorevole	1.00	1.00	1.00
Spinta falda	Sfavorevole	1.00	1.00	1.00
•				
Combinazione n° 3 SLU (Approccio	2) - Sisma Vert. negativo			
	Effetto	γ	Ψ	С
Peso Proprio	Sfavorevole	1.00	1.00	1.00
Spinta terreno sinistra	Sfavorevole	1.00	1.00	1.00
Spinta terreno destra	Sfavorevole	1.00	1.00	1.00
Sisma da destra	Sfavorevole	1.00	1.00	1.00
Spinta falda	Sfavorevole	1.00	1.00	1.00
Combinazione n° 4 SLU (Approccio	-			
	Effetto	γ	Ψ	C
Peso Proprio	Sfavorevole	1.00	1.00	1.00
Spinta terreno sinistra	Sfavorevole	1.00	1.00	1.00
Spinta terreno destra	Sfavorevole	1.00	1.00	1.00
Sisma da sinistra	Sfavorevole	1.00	1.00	1.00
Spinta falda	Sfavorevole	1.00	1.00	1.00
Combinazione n° 5 SLU (Approccio	2) - Siema Vort, nocitivo			
COMBINAZIONE II 3 3EO (Approccio	Effetto	۸,	Ψ	С
Peso Proprio	Sfavorevole	γ 1.00	1.00	1.00
Spinta terreno sinistra	Sfavorevole	1.00	1.00	1.00
Spinta terreno destra	Sfavorevole	1.00	1.00	1.00
Sisma da destra	Sfavorevole	1.00	1.00	1.00
Spinta falda	Sfavorevole	1.00	1.00	1.00
Spirita raida	Sidvorcvoic	1.00	1.00	1.00
Combinazione n° 6 SLE (Rara)				
	Effetto	γ	Ψ	С
Peso Proprio	Sfavorevole	1.00	1.00	1.00
Spinta terreno sinistra	Sfavorevole	1.00	1.00	1.00
Spinta terreno destra	Sfavorevole	1.00	1.00	1.00
Spinta falda	Sfavorevole	1.00	1.00	1.00
Combinazione n° 7 SLE (Frequente			\ - -	_
Barra Barraia	Effetto	γ	Ψ	C
Peso Proprio	Sfavorevole	1.00	1.00	1.00
Spinta terreno sinistra	Sfavorevole	1.00	1.00	1.00
Spinta terreno destra	Sfavorevole	1.00	1.00	1.00
Spinta falda	Sfavorevole	1.00	1.00	1.00
Combinazione n° 8 SLE (Quasi Pern	nanente)			
	Effetto	γ	Ψ	С
Peso Proprio	Sfavorevole	1.00	1.00	1.00
Spinta terreno sinistra	Sfavorevole	1.00	1.00	1.00
Spinta terreno destra	Sfavorevole	1.00	1.00	1.00
Spinta falda	Sfavorevole	1.00	1.00	1.00
•				

Secondo stralcio funzionale: Matelica Nord – Matelica Sud/Castelraimondo Nord

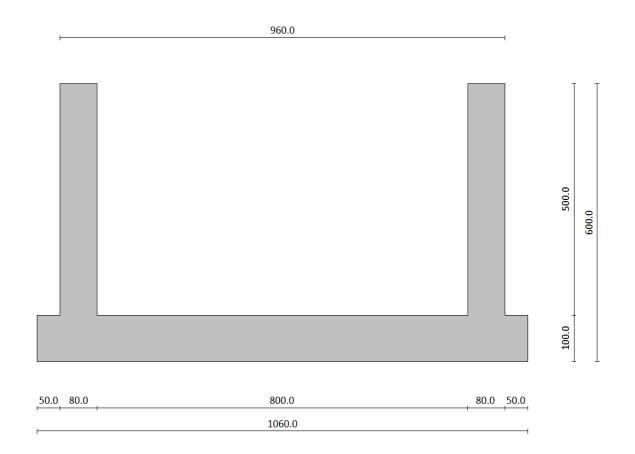

Opera	Tratto	Settore	CEE	WBS	ld. doc.	N. prog.	Rev.	Pag. di Pag.
L0703	212	Е	38	O13800	REL	01	Α	54 di 168

10. RISULTATI, ANALISI E VERIFICHE SCATOLARE

Di seguito di riporta una descrizione della modellazione effettuata mediante ausilio del software di calcolo SCAT v.14 prodotto dalla AZTEC Informativa, con una descrizione del modello strutturale implementato, sollecitazioni di calcolo ottenute e risultati delle verifiche effettuate

10.1 MODELLO DI CALCOLO

Di seguito di riporta una descrizione del modello geometrico/geotecnico considerato ai fini del dimensionamento. In particolare, si sottolinea che la sezione dimensionata non è quella trasversale, bensì quella ottenuta sezionando il sottovia con un piano verticale avente come direttrice l'asse stradale sovrastante:



Modello Geometrico Geotecnico di Riferimento - 1/2

Secondo stralcio funzionale: Matelica Nord – Matelica Sud/Castelraimondo Nord

Opera	Tratto	Settore	CEE	WBS	ld. doc.	N. prog.	Rev.	Pag. di Pag.
L0703	212	Е	38	O13800	REL	01	Α	55 di 168

Modello Geometrico Geotecnico di Riferimento – 2/2

A partire dal tipo di terreno, dalla geometria e dai sovraccarichi agenti il programma è in grado di conoscere tutti i carichi agenti sulla struttura per ogni combinazione di carico.

La struttura scatolare viene schematizzata come un telaio piano e viene risolta mediante il metodo degli elementi finiti (FEM). Più dettagliatamente il telaio viene discretizzato in una serie di elementi connessi fra di loro nei nodi.

Il terreno di fondazione viene schematizzato con una serie di elementi molle non reagenti a trazione (modello di Winkler). L'area della singola molla è direttamente proporzionale alla costante di Winkler del terreno e all'area di influenza della molla stessa.

A partire dalla matrice di rigidezza del singolo elemento, Ke, si assembla la matrice di rigidezza di tutta la struttura K. Tutti i carichi agenti sulla struttura vengono trasformati in carichi nodali (reazioni di incastro perfetto) ed inseriti nel vettore dei carichi nodali p.

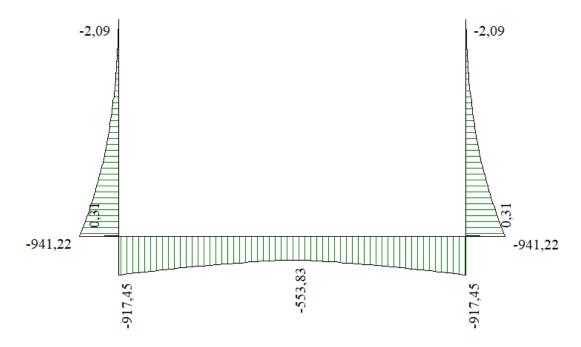
Indicando con u il vettore degli spostamenti nodali (incogniti), la relazione risolutiva può essere scritta nella forma

$$K \cdot u = p$$

Da questa equazione matriciale si ricavano gli spostamenti incogniti u

Secondo stralcio funzionale: Matelica Nord – Matelica Sud/Castelraimondo Nord

Opera	Tratto	Settore	CEE	WBS	ld. doc.	N. prog.	Rev.	Pag. di Pag.
L0703	212	Е	38	O13800	REL	01	Α	56 di 168

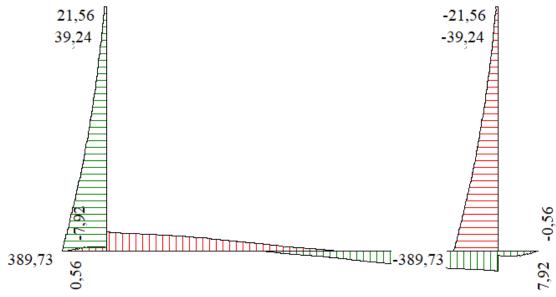

$$u = K^{-1} p$$

Noti gli spostamenti nodali è possibile risalire alle sollecitazioni nei vari elementi.

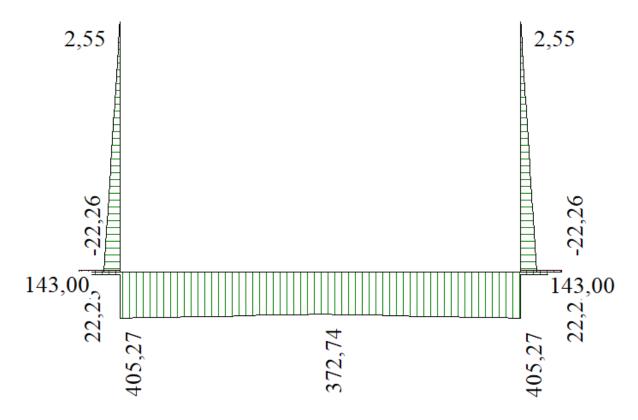
La soluzione del sistema viene fatta per ogni combinazione di carico agente sullo scatolare. Il successivo calcolo delle armature nei vari elementi viene condotto tenendo conto delle condizioni più gravose che si possono verificare nelle sezioni fra tutte le combinazioni di carico.

10.1 SOLLECITAZIONI DI CALCOLO

Si riportano, di seguito, i diagrammi di inviluppo delle caratteristiche delle sollecitazioni di Flessione, Taglio e Sforzo Normale; le unità di misura dei grafici sono i KN e m.



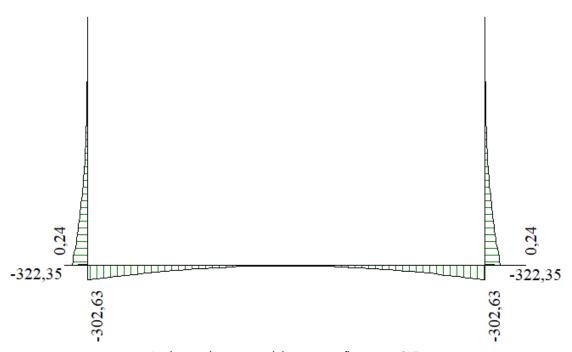
Inviluppo diagrammi del momento flettente – SLU statico e sismico



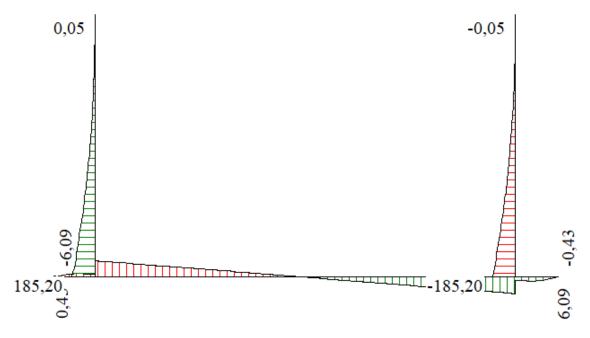
Secondo stralcio funzionale: Matelica Nord – Matelica Sud/Castelra
imondo Nord

Opera	Tratto	Settore	CEE	WBS	ld. doc.	N. prog.	Rev.	Pag. di Pag.
L0703	212	Е	38	O13800	REL	01	Α	57 di 168

Inviluppo diagrammi del taglio – SLU statico e sismico



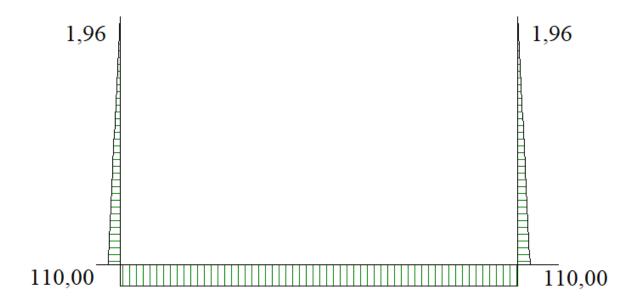
Inviluppo diagrammi dello sforzo normale – SLU statico e sismico



Secondo stralcio funzionale: Matelica Nord – Matelica Sud/Castelra
imondo Nord

Opera	Tratto	Settore	CEE	WBS	ld. doc.	N. prog.	Rev.	Pag. di Pag.
L0703	212	Е	38	O13800	REL	01	Α	58 di 168

Inviluppo diagrammi del momento flettente – SLE



Inviluppo diagrammi del taglio – SLE

Secondo stralcio funzionale: Matelica Nord – Matelica Sud/Castelraimondo Nord

Opera	Tratto	Settore	CEE	WBS	ld. doc.	N. prog.	Rev.	Pag. di Pag.
L0703	212	Е	38	O13800	REL	01	Α	59 di 168

Inviluppo diagrammi dello sforzo normale – SLE

10.2 ARMATURE DI PROGETTO

Nella tabella seguente si riportano le armature di progetto previste per la sezione di calcolo in questione, come desumibili dagli elaborati grafici di armatura delle opere relative:

	Armatura a flessione	Armatura a taglio	
Elemento	Af 1	Af 2	Af t
PIEDRITTI	1\phi24/20 (L=6m)+1\phi24/20 (L=2,50 m)	1φ24/2 0	Spilli φ10/20x40 (per 3 metri alla base)
FONDAZIONE	1φ24/20	1\psi 24/2 0	-

Af1 : Armatura lato esterno (terreno) Af2 : Armatura lato interno

Af2: Armatura lato interno Aft: Armatura lato interno

Ai fini delle verifiche si è fatto riferimento ad un copriferro di calcolo (asse armature) pari a 6 cm.

Secondo stralcio funzionale: Matelica Nord – Matelica Sud/Castelraimondo Nord

Opera	Tratto	Settore	CEE	WBS	ld. doc.	N. prog.	Rev.	Pag. di Pag.
L0703	212	Е	38	O13800	REL	01	Α	60 di 168

10.3 VERIFICHE DI RESISTENZA E FESSURAZIONE

Il software esegue in automatico tutte le verifiche strutturali sia allo stato limite ultimo che allo stato limite di esercizio. Per quanto riguarda il taglio il programma prevede sia la verifica per elementi non armati a taglio e sia quella per elementi dotati di apposita armatura a taglio, disponendo tuttavia ferri sagomati resistenti a taglio e non staffe o tiranti. Per questo motivo le verifiche a taglio vengono eseguite manualmente attraverso l'ausilio di fogli di calcolo strutturati ad hoc.

I criteri generali di verifica adottati dal Software, sono quelli esposti al paragrafo 6.

Le verifiche cautelativamente vengono effettuate <u>in asse</u> agli elementi strutturali; come origine del riferimento si sceglie lo spigolo inferiore sinistro dello scatolare:

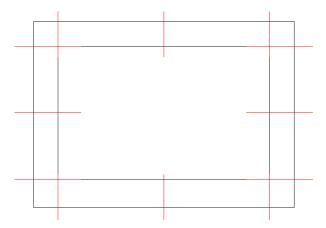


Figura 7 – Sezioni di verifica

10.3.1 Verifiche allo SLU

Si mostrano, nelle seguenti tabelle, le verifiche SLU nei confronti della pressoflessione. Si riportano per semplicità le verifiche più gravose per la struttura.

Si fà presente, che in misura cautelativa è stato assunto nel modello di calcolo anche per la soletta di fondazione, così come per la struttura in elevazione costituita dai piedritti e fondazione superiore, una classe di calcestruzzo C25/30 facendo comunque distinzione tra condizioni ordinarie e aggressive definite nei paragrafi precedenti.

10.3.2 Verifiche a pressoflessione

D _ 100 and

Verifica sezioni fondazione (Inviluppo)

Altezza sezione	H = 100 cm H = 100,00 c	m	
х	A_{fi}	A_{fs}	CS
0,00	22,62	22,62	50,43
2,67	22,62	22,62	1,23
5,30	22,62	22,62	1,86
8,00	22,62	22,62	1,22
10,60	22,62	22,62	50,43

Secondo stralcio funzionale: Matelica Nord – Matelica Sud/Castelraimondo Nord

Opera	Tratto	Settore	CEE	WBS	ld. doc.	N. prog.	Rev.	Pag. di Pag.
L0703	212	Е	38	O13800	REL	01	Α	61 di 168

Verifica sezioni piedritto sinistro (Inviluppo)

Base sezione Altezza sezione	B = 100 cm H = 80,00 cm		
Υ	A_{fi}	A_{fs}	cs
0,50	22,62	45,24	1,32
1,88	22,62	22,62	0,96
3,25	22,62	22,62	2,04
4,63	22,62	22,62	5,91
6,00	22,62	22,62	43,16

10.3.3 Verifiche a taglio

I risultati ottenuti dalle verifiche delle sezioni maggiormente sollecitate (a filo pareti) per la struttura in esame sono riepilogati nella seguente tabella. L'armatura a taglio prevista è costituita da spilli, secondo quanto riportato nella tabella sottostrante:

Elemento	Armatura a taglio
Piedritti	Spilli Φ10/20x40 (per 2 metri alla base)
Fondazione	-

Nelle restanti parti, la resistenza a taglio è garantita dal solo calcestruzzo.

Sezione	V _{Ed}	b	h	V _{RSd} *	Verificato
[-]	[kN]	[cm]	[cm]	[kN]	[-]
Piedritti	390	100	80	808	SI

^{*} la resistenza a taglio V_{RSd} è stata calcolata utilizzando il traliccio ad inclinazione variabile secondo quanto riportato nelle NTC08.

10.3.4 Verifiche allo SLE

Nel seguente paragrafo si riportano le verifiche allo stato limite di apertura delle fessure e le verifiche delle alle tensioni per il calcestruzzo e per l'acciaio di armatura.

Si fà presente, che in misura cautelativa è stato assunto nel modello di calcolo anche per la soletta di fondazione, così come per la struttura in elevazione costituita dai piedritti e fondazione superiore, una classe di calcestruzzo C25/30 facendo comunque distinzione tra condizioni ordinarie e aggressive definite nei paragrafi precedenti.

Secondo stralcio funzionale: Matelica Nord – Matelica Sud/Castelraimondo Nord

Opera	Tratto	Settore	CEE	WBS	ld. doc.	N. prog.	Rev.	Pag. di Pag.
L0703	212	Е	38	O13800	REL	01	Α	62 di 168

Simbologia adottata ed unità di misura

N° Indice sezione

X Ascissa/Ordinata sezione, espresso in m M Momento flettente, espresso in kNm

V Taglio, espresso in kN

N Sforzo normale, espresso in kN

A_{ii} Area armatura inferiore, espressa in cmq A_{ts} Area armatura superiore, espressa in cmq

σ_{ii} Tensione nell'armatura disposta in corrispondenza del lembo inferiore, espresse in MPa
 σ_{is} Tensione nell'armatura disposta in corrispondenza del lembo superiore, espresse in MPa

 σ_{c} Tensione nel calcestruzzo, espresse in MPa

 au_{c} Tensione tangenziale nel calcestruzzo, espresse in MPa A_{sw} Area armature trasversali nella sezione, espressa in cmq

Simbologia adottata ed unità di misura

N° Indice sezione

Xi Ascissa/Ordinata sezione, espresso in m

Mp Momento di prima fessurazione positivo, espresse in kNm Mn Momento di prima fessurazione negativo, espresse in kNm

wk Ampiezza fessure, espresse in mm
wlim Apertura limite fessure, espresse in mm
s Distanza media tra le fessure, espresse in mm
&m Deformazione nelle fessure, espresse in [%]

10.3.5 Verifiche a fessurazione

L'ampiezza delle fessure è sempre al di sotto dei limiti sopra descritti, pertanto le verifiche si possono ritenere soddisfatte. Per i relativi valori di ampiezza delle fessure ricavati per la <u>combinazione frequente</u> e <u>quasi permanente</u> riferirsi al tabulato in allegato.

Secondo stralcio funzionale: Matelica Nord – Matelica Sud/Castelraimondo Nord

Opera	Tratto	Settore	CEE	WBS	ld. doc.	N. prog.	Rev.	Pag. di Pag.
L0703	212	Е	38	O13800	REL	01	Α	63 di 168

10.3.6 Verifica delle tensioni

Nella seguente tabella sono riportati i risultati delle verifiche allo SLE dei limiti tensionali di lavoro nel calcestruzzo e nelle barre di armatura.

Tali tensioni risultano sempre al di sotto dei limiti indicati dalla normativa, pertanto le verifiche si possono ritenere soddisfatte. Vengono riportate le verifiche più gravose.

Verifica sezioni fondazione (Inviluppo)

Base sezione Altezza sezione	B = 100 cm H = 100,00 cm				
x	A _{fi}	Afs	σι	σ fi	σ fs
==	==				
0,00	22,62	22,62	1	7837	8080
2,67	22,62	22,62	1753	21499	43257
5,30	22,62	22,62	5275	58079	223680
8,00	22,62	22,62	1861	22710	46891
10,60	45,24	22,62	34	460	

Verifica sezioni piedritto sinistro (Inviluppo)

Base sezione Altezza sezione	B = 100 cm H = 80 cm				
x	Afi	A_{fs}	σc	σ fi	σfs
0,00	22,62	22,62	2	22	120
2,67	22,62	22,62	1076	23070	13413
5,30	22,62	22,62	203	2220	2983
8,00	22,62	22,62	1132	25544	14021
10,60	22,62	22,62	2	22	120

Verifica sezioni piedritto destro (Inviluppo)

Base sezione Altezza sezione	$\begin{array}{l} B=100\;cm\\ H=80\;cm \end{array}$				
Υ	A_{fi}	A_fs	σ_{c}	σ_{fi}	σ_{fs}
0,50	22,62	45,24	3549	39904	97468
1,88	22,62	22,62	1835	19054	68255
3,25	22,62	22,62	526	6006	13374
4,63	22,62	22,62	68	936	9
6.00	22.62	22.62	0	0	0

10.4 VERIFICHE GEOTECNICHE

La verifica a carico limite è stata eseguita in automatico dal software di calcolo attraverso l'utilizzo di della formula di Meyerhof, come già specificato in precedenza; nel seguito si riportano i risultati ottenuti per il caso in esame:

Simbologia adottata

IC Indice della combinazione

Nc, Nq, Ng Fattori di capacità portante

Nc, Nq, Ng Fattori di capacità portante corretti per effetto forma, inclinazione del carico, affondamento, etc.

qu Portanza ultima del terreno, espressa in [kPa]
QU Portanza ultima del terreno, espressa in [kN]/m
QY Carico verticale al piano di posa, espressa in [kN]/m

FS Fattore di sicurezza a carico limite

ıc	Nc	Na	Nv	N'c	N'a	N'γ	au	Ou	\mathbf{Q}_{Y}	FS

Secondo stralcio funzionale: Matelica Nord – Matelica Sud/Castelraimondo Nord

Opera	Tratto	Settore	CEE	WBS	ld. doc.	N. prog.	Rev.	Pag. di Pag.
L0703	212	Е	38	O13800	REL	01	Α	64 di 168

1	21,47	11,24	7,36	29,02	13,14	8,60	1340	14200,36	210,20	67,56
2	21,47	11,24	7,36	0,98	0,48	26,98	878	9310,96	89,97	103,49
3	21,47	11,24	7,36	0,98	0,48	26,98	878	9310,85	89,97	103,49
4	21,47	11,24	7,36	4,92	2,38	7,60	458	4854,81	233,41	20,80
5	21,47	11,24	7,36	4,92	2,38	7,60	458	4854,81	233,41	20,80

Secondo stralcio funzionale: Matelica Nord – Matelica Sud/Castelraimondo Nord

Opera	Tratto	Settore	CEE	WBS	ld. doc.	N. prog.	Rev.	Pag. di Pag.
L0703	212	Е	38	O13800	REL	01	Α	65 di 168

ALLEGATO 1

TABULATI DI CALCOLO SCATOLARE

Secondo stralcio funzionale: Matelica Nord – Matelica Sud/Castelraimondo Nord

Opera	Tratto	Settore	CEE	WBS	ld. doc.	N. prog.	Rev.	Pag. di Pag.
L0703	212	E	38	O13800	REL	01	Α	66 di 168

Geometria scatolare

Descrizione:	Scatolare semplice	
Altezza esterna	7,00	[m]
Larghezza esterna	9,60	[m]
Lunghezza mensola di fondazione sinistra	0,50	[m]
Lunghezza mensola di fondazione destra	0,50	[m]
Spessore piedritto sinistro	0,80	[m]
Spessore piedritto destro	0,80	[m]
Spessore fondazione	1,00	[m]
Spessore traverso	1,00	[m]

Caratteristiche strati terreno

Strato di ricoprimento Descrizione Spessore dello strato Peso di volume Peso di volume saturo Angolo di attrito Coesione	Terr. ricoprimento - Rilevato 2,50 20,0000 20,0000 35,00	[m] [kN/mc] [kN/mc] [°] [kPa]
cocsione	Ç	[10. 0]
<u>Strato di rinfianco</u>		
Descrizione	Terreno di rinfianco - Ecla	
Peso di volume	18,5000	[kN/mc]
Peso di volume saturo	18,5000	[kN/mc]
Angolo di attrito	25,50	[°]
Angolo di attrito terreno struttura	17,00	[°]
Coesione	0	[kPa]
Costante di Winkler	0	[kPa/cm]
Strato di base		
Descrizione	Terreno di fondazione	
Peso di volume	18,5000	[kN/mc]
Peso di volume saturo	18,5000	[kN/mc]
Angolo di attrito	25,50	[°]
Angolo di attrito terreno struttura	17,00	[°]
Coesione	0	[kPa]
Costante di Winkler	156	[kPa/cm]
Tensione limite	1000	[kPa]

Falda

Quota falda (rispetto al piano di posa) 4,00 [m]

Caratteristiche materiali utilizzati

Materiale calcestruzzo

R _{ck} calcestruzzo	30000	[кРа]
Peso specifico calcestruzzo	25,0000	[kN/mc]
Modulo elastico E	30976850	[kPa]
Tensione di snervamento acciaio	450000	[kPa]

Secondo stralcio funzionale: Matelica Nord – Matelica Sud/Castelraimondo

Opera	Tratto	Settore	CEE	WBS	ld. doc.	N. prog.	Rev.	Pag. di Pag.
L0703	212	E	38	O13800	REL	01	Α	67 di 168

Coeff. omogeneizzazione cls teso/compresso (n') Coeff. omogeneizzazione acciaio/cls (n) Coefficiente dilatazione termica

0.50 15,00 0,0000120

Condizioni di carico

Convenzioni adottate

Origine in corrispondenza dello spigolo inferiore sinistro della struttura Carichi verticali positivi se diretti verso il basso Carichi orizzontali positivi se diretti verso destra Coppie concentrate positive se antiorarie Ascisse X (espresse in m) positive verso destra Ordinate Y (espresse in m) positive verso l'alto Carichi concentrati espressi in kN Coppie concentrate espressi in kNm Carichi distribuiti espressi in kN/m

Simbologia adottata e unità di misura

ascissa del punto di applicazione dei carichi verticali concentrati ordinata del punto di applicazione dei carichi orizzontali concentrati componente Y del carico concentrato

componente X del carico concentrato momento

Forze distribuite

ascisse del punto iniziale e finale per carichi distribuiti verticali ordinate del punto iniziale e finale per carichi distribuiti orizzontali V_{ni} V_{nf} componente normale del carico distribuito nel punto iniziale componente normale del carico distribuito nel punto finale V_{ti} V_{tf} componente tangenziale del carico distribuito nel punto iniziale componente tangenziale del carico distribuito nel punto finale variazione termica lembo esterno espressa in gradi centigradi variazione termica lembo interno espressa in gradi centigradi

Condizione di carico n°1 (Peso Proprio)

Condizione di carico n°2 (Spinta terreno sinistra)

Condizione di carico n°3 (Spinta terreno destra)

Condizione di carico n°4 (Sisma da sinistra)

Condizione di carico n°5 (Sisma da destra)

Condizione di carico n°6 (Spinta falda)

Condizione d	i carico n° 7	<u>(Carico stradale</u>	centrato)

Distr	Terreno	$X_i = 4,50$	$X_f = 6,10$	$V_{ni} = 52,00$	$V_{nf} = 52,00$
Distr	Terreno	$X_i = -7,00$	$X_f = 17,60$	$V_{ni} = 9,00$	$V_{nf} = 9,00$
Conc	Traverso	X = 0,50	$F_y = 0.00$	F _x = 12,88	M = 0.00

Condizione di carico n° 8 (Termico)

Term	Traverso	$D_{te} = -2,50$	$D_{ti} = 2,50$

Condizione di carico n° 9 (Ritiro)

Traverso $D_{te} = -12,00$ $D_{ti} = -12,00$

Condizione di carico n° 10 (Carico stradale laterale)

Distr	Terreno	X _i = -1,10	X _f = 0,50	$V_{ni} = 52,00$	V _{nf} = 52,00
Distr	Terreno	X:= -8 30	$X_{i}=0.50$	$V_{ai} = 9.00$	$V_{\rm nf} = 9.00$

Impostazioni di progetto

Secondo stralcio funzionale: Matelica Nord – Matelica Sud/Castelraimondo Nord

Opera	Tratto	Settore	CEE	WBS	ld. doc.	N. prog.	Rev.	Pag. di Pag.
L0703	212	Е	38	O13800	REL	01	Α	68 di 168

Verifica materiali:

Stato Limite Ultimo

Coefficiente di sicurezza calcestruzzo γ_c	1.50
Fattore riduzione da resistenza cubica a cilindrica	0.83
Fattore di riduzione per carichi di lungo periodo	0.85
Coefficiente di sicurezza acciaio	1.15
Coefficiente di sicurezza per la sezione	1.00

Verifica Taglio - Metodo dell'inclinazione variabile del traliccio

 $V_{Rd} = [0.18*k*(100.0*\rho_{l}*fck)^{1/3}/\gamma_{c} + 0.15*\sigma_{cp}]*bw*d > (vmin+0.15*\sigma_{cp})*b_{w}*d$

 V_{Rsd} =0.9*d* A_{sw} /s*fyd*(ctg α +ctg θ)*sin α

 V_{Rcd} =0.9*d*b_w* α_c *fcd'*(ctg(θ)+ctg(α)/(1.0+ctg θ ²)

con:

d altezza utile sezione [mm] bw larghezza minima sezione [mm]

 $\begin{array}{ll} \sigma_{cp} & \text{tensione media di compressione [N/mmq]} \\ \rho_{l} & \text{rapporto geometrico di armatura} \\ A_{sw} & \text{area armatuta trasversale [mmq]} \end{array}$

s interasse tra due armature trasversali consecutive [mm]

 α_{c} coefficiente maggiorativo, funzione di fcd e σ_{cp}

fcd'=0.5*fcd k=1+(200/d) $^{1/2}$ vmin=0.035* $k^{3/2}$ *fck $^{1/2}$

Stato Limite di Esercizio

Criteri di scelta per verifiche tensioni di esercizio:

Ambiente moderatamente aggressivo

 $\begin{array}{ll} \text{Limite tensioni di compressione nel calcestruzzo (comb. rare)} & 0.60 \ f_{ck} \\ \text{Limite tensioni di compressione nel calcestruzzo (comb. quasi perm.)} & 0.45 \ f_{ck} \\ \text{Limite tensioni di trazione nell'acciaio (comb. rare)} & 0.80 \ f_{yk} \\ \end{array}$

Criteri verifiche a fessurazione:

Armatura poco sensibile

Apertura limite fessure espresse in [mm]

Apertura limite fessure w1=0,20 w2=0,30 w3=0,40

Verifiche secondo:

Norme Tecniche 2008 - Approccio 2

Copriferro sezioni 6,50 [cm]

Secondo stralcio funzionale: Matelica Nord – Matelica Sud/Castelra
imondo Nord

Opera	Tratto	Settore	CEE	WBS	ld. doc.	N. prog.	Rev.	Pag. di Pag.
L0703	212	Е	38	O13800	REL	01	Α	69 di 168

Descrizione combinazioni di carico

Simbologia adottata

 γ Coefficiente di partecipazione della condizione Ψ Coefficiente di combinazione della condizione C Coefficiente totale di partecipazione della condizione

Norme Tecniche 2008

Simbologia adottata

 $\begin{array}{lll} \gamma_{\text{G1sfav}} & \text{Coefficiente parziale sfavorevole sulle azioni permanenti} \\ \gamma_{\text{G1fav}} & \text{Coefficiente parziale favorevole sulle azioni permanenti} \\ \gamma_{\text{G2sfav}} & \text{Coefficiente parziale sfavorevole sulle azioni permanenti non strutturali} \\ \gamma_{\text{G2sfav}} & \text{Coefficiente parziale favorevole sulle azioni permanenti non strutturali} \\ \gamma_{\text{Q}} & \text{Coefficiente parziale favorevole sulle azioni permanenti non strutturali} \\ \gamma_{\text{Lan}\psi} & \text{Coefficiente parziale sulle azioni variabili} \\ \gamma_{\text{Coefficiente parziale di riduzione dell'angolo di attrito drenato} \\ \gamma_{\text{Cu}} & \text{Coefficiente parziale di riduzione della coesione drenata} \\ \gamma_{\text{qu}} & \text{Coefficiente parziale di riduzione del carico ultimo} \\ \end{array}$

Coefficienti di partecipazione combinazioni statiche

Carichi	Effetto		A1	A2
Permanenti	Favorevole	γG1fav	1,00	1,00
Permanenti	Sfavorevole	γG1sfav	1,30	1,00
Permanenti non strutturali	Favorevole	γG2fav	0,00	0,00
Permanenti non strutturali	Sfavorevole	γG2sfav	1,50	1,30
Variabili	Favorevole	γQifav	0,00	0,00
Variabili	Sfavorevole	γQisfav	1,50	1,30
Variabili da traffico	Favorevole	γQfav	0,00	0,00
Variabili da traffico	Sfavorevole	γQsfav	1,35	1,15
Termici	Favorevole	γ_{ϵ} fav	0,00	0,00
Termici	Sfavorevole	γ_{ϵ} sfav	1,20	1,20

Coefficienti parziali per i parametri geotecnici del terreno:

Parametri		M1	M2
Tangente dell'angolo di attrito	$\gamma_{tan_{\phi}}$ '	1,00	1,25
Coesione efficace	γ _{c'}	1,00	1,25
Resistenza non drenata	γcu	1,00	1,40
Resistenza a compressione uniassiale	γ_{qu}	1,00	1,60
Peso dell'unità di volume	γ_{γ}	1,00	1,00

Coefficienti di partecipazione combinazioni sismiche

Coefficienti parziali per le a	zioni o per l'effetto delle azioni:
Coefficienti parzian per le a	zioni o per i enecco dene azioni.

Carichi	Effetto		A1	A2
Permanenti	Favorevole	γG1fav	1,00	1,00
Permanenti	Sfavorevole	γG1sfav	1,00	1,00
Permanenti	Favorevole	γG2fav	0,00	0,00
Permanenti	Sfavorevole	γG2sfav	1,00	1,00
Variabili	Favorevole	γ_{Qifav}	0,00	0,00
Variabili	Sfavorevole	γQisfav	1,00	1,00
Variabili da traffico	Favorevole	γQfav	0,00	0,00
Variabili da traffico	Sfavorevole	γQsfav	1,00	1,00
Termici	Favorevole	γ_{ϵ} fav	0,00	0,00
Termici	Sfavorevole	$\gamma_{\epsilon s fav}$	1,00	1,00

Coefficienti parziali per i parametri geotecnici del terreno:

Secondo stralcio funzionale: Matelica Nord – Matelica Sud/Castelraimondo Nord

Opera	Tratto	Settore	CEE	WBS	ld. doc.	N. prog.	Rev.	Pag. di Pag.
L0703	212	Е	38	O13800	REL	01	Α	70 di 168

Parametri Tangente dell'angolo di attrito Coesione efficace Resistenza non drenata Resistenza a compressione uniassiale Peso dell'unità di volume		Ytang Yc [.] Ycu Yqu Yy	M1 1,00 1,00 1,00 1,00 1,00	M2 1,25 1,25 1,40 1,60 1,00
Combinazione n° 1 SLU (Approccio 2)				
	Effetto	γ	Ψ	С
Peso Proprio	Sfavorevole	1.30	1.00	1.30
Spinta terreno sinistra	Sfavorevole	1.30	1.00	1.30
Spinta terreno destra	Sfavorevole	1.30	1.00	1.30
Spinta falda	Sfavorevole	1.30	1.00	1.30
Termico	Sfavorevole	1.20	0.60	0.72
Ritiro	Favorevole	1.00	1.00	1.00
Carico stradale centrato	Sfavorevole	1.35	1.00	1.35
Combinazione n° 2 SLU (Approccio 2)				
	Effetto	γ	Ψ	С
Peso Proprio	Sfavorevole	1.30	1.00	1.30
Spinta terreno sinistra	Sfavorevole	1.30	1.00	1.30
Spinta terreno destra	Sfavorevole	1.30	1.00	1.30
Spinta falda	Sfavorevole	1.30	1.00	1.30
Carico stradale centrato	Sfavorevole	1.35	0.75	1.01
Termico	Sfavorevole	1.20	1.00	1.20
Ritiro	Favorevole	1.00	1.00	1.00
Combinazione n° 3 SLU (Approccio 2)	-ee		Y	
Dana Duannia	Effetto	γ	Ψ	C 1 20
Peso Proprio	Sfavorevole	1.30	1.00	1.30
Spinta terreno sinistra	Sfavorevole	1.30	1.00	1.30
Spinta terreno destra	Sfavorevole	1.30	1.00	1.30
Spinta falda Termico	Sfavorevole Sfavorevole	1.30 1.20	1.00 0.60	1.30 0.72
Ritiro	Favorevole	1.00	1.00	1.00
Carico stradale laterale	Sfavorevole	1.35	1.00	1.35
Combinazione n° 4 SLU (Approccio 2)				
David Branch	Effetto	γ	Ψ	C
Peso Proprio	Sfavorevole	1.30	1.00	1.30
Spinta terreno sinistra	Sfavorevole	1.30	1.00	1.30
Spinta terreno destra	Sfavorevole	1.30	1.00	1.30
Spinta falda Termico	Sfavorevole Sfavorevole	1.30	1.00	1.30
Ritiro	Favorevole	1.20	1.00	1.20
	Sfavorevole	1.00	1.00	1.00
Carico stradale laterale	Stavorevole	1.35	0.75	1.01
Combinazione n° 5 SLU (Approccio 2)				
	Effetto	γ	Ψ	С
Peso Proprio	Sfavorevole	1.00	1.00	1.00
Spinta terreno sinistra	Sfavorevole	1.00	1.00	1.00
Spinta terreno destra	Sfavorevole	1.00	1.00	1.00
Sisma da sinistra	Sfavorevole	1.00	1.00	1.00
Spinta falda	Sfavorevole	1.00	1.00	1.00
Termico	Sfavorevole	1.00	1.00	1.00

Secondo stralcio funzionale: Matelica Nord – Matelica Sud/Castelraimondo Nord

Opera	Tratto	Settore	CEE	WBS	ld. doc.	N. prog.	Rev.	Pag. di Pag.
L0703	212	Е	38	O13800	REL	01	Α	71 di 168

Ritiro	Sfavorevole	1.00	1.00	1.00
Combinazione n° 6 SLU (App	roccio 2) - Sisma Vert. negativo			
	Effetto	γ	Ψ	С
Peso Proprio	Sfavorevole	1.00	1.00	1.00
Spinta terreno sinistra	Sfavorevole	1.00	1.00	1.00
Spinta terreno destra	Sfavorevole	1.00	1.00	1.00
Sisma da sinistra	Sfavorevole	1.00	1.00	1.00
Spinta falda	Sfavorevole	1.00	1.00	1.00
•				
Termico	Sfavorevole	1.00	1.00	1.00
Ritiro	Sfavorevole	1.00	1.00	1.00
Combinazione n° 7 SLU (App	roccio 2) - Sisma Vert. positivo			
	Effetto	γ	Ψ	С
Peso Proprio	Sfavorevole	1.00	1.00	1.00
Spinta terreno sinistra	Sfavorevole	1.00	1.00	1.00
Spinta terreno destra	Sfavorevole	1.00	1.00	1.00
Sisma da destra	Sfavorevole	1.00	1.00	1.00
Spinta falda	Sfavorevole	1.00	1.00	1.00
Termico	Sfavorevole	1.00	1.00	1.00
Ritiro	Sfavorevole	1.00	1.00	1.00
Kitii O	Stavorevole	1.00	1.00	1.00
Combinazione n° 8 SLU (App	roccio 2) - Sisma Vert. negativo			
	Effetto	γ	Ψ	С
Peso Proprio	Sfavorevole	1.00	1.00	1.00
Spinta terreno sinistra	Sfavorevole	1.00	1.00	1.00
Spinta terreno destra	Sfavorevole	1.00	1.00	1.00
Sisma da destra	Sfavorevole	1.00	1.00	1.00
Spinta falda	Sfavorevole	1.00	1.00	1.00
Termico	Sfavorevole	1.00	1.00	1.00
Ritiro	Sfavorevole	1.00	1.00	1.00
Cambinariana nº O CLE /Dava	1			
Combinazione n° 9 SLE (Rara	="1"		177	_
	Effetto	γ	Ψ	С
Peso Proprio	Sfavorevole	1.00	1.00	1.00
Spinta terreno sinistra	Sfavorevole	1.00	1.00	1.00
Spinta terreno destra	Sfavorevole	1.00	1.00	1.00
Spinta falda	Sfavorevole	1.00	1.00	1.00
Termico	Sfavorevole	1.00	0.60	0.60
Ritiro	Sfavorevole	1.00	1.00	1.00
Carico stradale centrato	Sfavorevole	1.00	1.00	1.00
Combinazione n° 10 SLE (Fre	quente)			
	Effetto	γ	Ψ	С
Peso Proprio	Sfavorevole	1.00	1.00	1.00
Spinta terreno sinistra	Sfavorevole	1.00	1.00	1.00
Spinta terreno destra	Sfavorevole	1.00	1.00	1.00
Spinta falda	Sfavorevole	1.00	1.00	1.00
Ritiro	Sfavorevole	1.00	1.00	1.00
Carico stradale centrato	Sfavorevole	1.00	0.75	0.75
Carico stradale centrato	Stavorevole	1.00	0.75	0.75
Combinazione n° 11 SLE (Qua	asi Permanente)			
	Effetto	γ	Ψ	c
Peso Proprio	Sfavorevole	1.00	1.00	1.00
Spinta terreno sinistra	Sfavorevole	1.00	1.00	1.00
Spinta terreno destra	Sfavorevole	1.00	1.00	1.00

Opera Tratto Settore CEE WBS Id. doc. N. prog. Rev.

Secondo stralcio funzionale: Matelica Nord – Matelica Sud/Castelra
imondo Nord

Pag. di Pag. 72 di 168

	L0703	212	E	38	013800	REL	14. prog. 01	A
	20700	212	_		010000	IVEE	01	/ \
Spinta falda	Sfavorev	/ole			1.00	1.00		1.00
Ritiro	Sfavorev	/ole			1.00	1.00		1.00
Combinazione n° 12 SLE (Rara)								С
	Effetto				γ Ψ			
Peso Proprio	Sfavore\ Sfavore\				1.00 1.00 1.00 1.00			1.00 1.00
Spinta terreno sinistra Spinta terreno destra	Sfavorev				1.00 1.00			
Spinta falda	Sfavorev				1.00 1.00			
Carico stradale centrato	Sfavorev				1.00	0.75		1.00 0.75
Termico	Sfavorevole				1.00	1.00		1.00
Ritiro	Sfavorevole				1.00	1.00		1.00
Caultinain and 42 CLE (Francisco)								
Combinazione n° 13 SLE (Frequente)	Effett	•			•	Ψ		С
Peso Proprio	Sfavorev				γ 1.00	1.00		1.00
Spinta terreno sinistra	Sfavorev				1.00	1.00		1.00
Spinta terreno destra	Sfavorev				1.00	1.00		1.00
Spinta falda	Sfavorev				1.00	1.00		1.00
Termico	Sfavorev	/ole			1.00	0.50		0.50
Ritiro	Sfavorevole				1.00	1.00		1.00
Combinations no 14 CLE (Para)								
Combinazione n° 14 SLE (Rara)	Effett	•			•	Ψ		С
Peso Proprio		Sfavorevole			γ 1.00	1.00		1.00
Spinta terreno sinistra	Sfavorev				1.00	1.00		1.00
Spinta terreno destra	Sfavorevole				1.00	1.00		1.00
Spinta falda	Sfavorevole				1.00	1.00		1.00
Termico	Sfavorev	/ole			1.00	0.60		0.60
Ritiro	Sfavorev				1.00	1.00		1.00
Carico stradale laterale	Sfavorevole				1.00	1.00		1.00
Combinazione n° 15 SLE (Frequente)								
<u> </u>	Effett	0			γ	Ψ		С
Peso Proprio	Sfavorev	/ole			1.00	1.00		1.00
Spinta terreno sinistra	Sfavorev	/ole			1.00	1.00		1.00
Spinta terreno destra	Sfavorev				1.00	1.00		1.00
Spinta falda	Sfavorev				1.00	1.00		1.00
Ritiro	Sfavorevole				1.00	1.00		1.00
Carico stradale laterale	Sfavorevole				1.00	0.75		0.75
Combinazione n° 16 SLE (Rara)								
	Effett	o			γ	Ψ		С
Peso Proprio	Sfavorev				1.00	1.00		1.00
Spinta terreno sinistra	Sfavorevole				1.00	1.00		1.00
Spinta terreno destra	Sfavorevole				1.00	1.00		1.00
Spinta falda	Sfavorevole				1.00	1.00		1.00
Termico	Sfavorevole				1.00	1.00		1.00
Ritiro	Sfavorevole Sfavorevole				1.00	1.00		1.00
Carico stradale laterale	Stavorev	roie			1.00	0.75		0.75

Secondo stralcio funzionale: Matelica Nord – Matelica Sud/Castelraimondo Nord

Opera	Tratto	Settore	CEE	WBS	ld. doc.	N. prog.	Rev.	Pag. di Pag.
L0703	212	Е	38	O13800	REL	01	Α	73 di 168

Analisi della spinta e verifiche

Simbologia adottata ed unità di misura

Origine in corrispondenza dello spigolo inferiore sinistro della struttura Le forze orizzontali sono considerate positive se agenti verso destra

Le forze verticali sono considerate positive se agenti verso il basso $\it X$ ascisse (espresse in m) positive verso destra

Y ordinate (espresse in m) positive verso l'alto

M momento espresso in kNm
V taglio espresso in kN

SN sforzo normale espresso in kN

 ux
 spostamento direzione X espresso in cm

 uy
 spostamento direzione Y espresso in cm

 $\sigma_{\rm t}$ spostamento direzione Y espresso in cm pressione sul terreno espressa in kPa

Tipo di analisi

Pressione in calotta

I carichi applicati sul terreno sono stati diffusi secondo angolo di attrito

Metodo di calcolo della portanza

Spinta sui piedritti

Teoria di Terzaghi

Meyerhof

a Riposo [combinazione 1]

a Riposo [combinazione 2]

a Riposo [combinazione 3]

a Riposo [combinazione 4]

a Riposo [combinazione 5]

a Riposo [combinazione 6]

a Riposo [combinazione 7]

a Riposo [combinazione 8]

a Riposo [combinazione 9]

a Riposo [combinazione 10] a Riposo [combinazione 11]

a Riposo [combinazione 12]

a Riposo [combinazione 13]

a Riposo [combinazione 14] a Riposo [combinazione 15]

a Riposo [combinazione 16]

Sisma

Identificazione del sito

Latitudine43.255000Longitudine13.011574ComuneMatelicaProvinciaMacerataRegioneMarche

Punti di interpolazione del reticolo 22526 - 22527 - 22305 - 22304

Tipo di opera

Tipo di costruzione Opera ordinaria

Vita nominale 75 ann

Classe d'uso III - Affollamenti significativi e industrie non

pericolose

Vita di riferimento 113 anni

Combinazioni SLU

Accelerazione al suolo ag = 2.11 [m/s^2]

Coefficiente di amplificazione per tipo di sottosuolo (S) 1.38
Coefficiente di amplificazione topografica (St) 1.00

Coefficiente riduzione (β_m) 1.00 Rapporto intensità sismica verticale/orizzontale 0.50

 $\label{eq:coefficiente} Coefficiente di intensità sismica orizzontale (percento) \\ k_h = (a_g/g^*\beta_m^*St^*Ss) = 29.58$

Secondo stralcio funzionale: Matelica Nord – Matelica Sud/Castelraimondo Nord

Opera	Tratto	Settore	CEE	WBS	ld. doc.	N. prog.	Rev.	Pag. di Pag.
L0703	212	Е	38	O13800	REL	01	Α	74 di 168

Coefficiente di intensità sismica verticale (percento)

 k_v =0.50 * k_h = 14.79

Combinazioni SLE

Accelerazione al suolo a_g = 0.09 [m/s^2] Coefficiente di amplificazione per tipo di sottosuolo (S) 1.50 Coefficiente di amplificazione topografica (St) 1.00 Coefficiente riduzione (β_m) 1.00 Rapporto intensità sismica verticale/orizzontale 0.50

 $\begin{array}{ll} \text{Coefficiente di intensità sismica orizzontale (percento)} & k_h = (a_g/g^*\beta_m^*St^*Ss) = 1.42 \\ \text{Coefficiente di intensità sismica verticale (percento)} & k_v = 0.50 * k_h = 0.71 \\ \text{Forma diagramma incremento sismico} & \text{Rettangolare} \\ \end{array}$

Spinta sismica Wood

Angolo diffusione sovraccarico

35,00 [°]

Coefficienti di spinta

N°combinazione	Statico	Sismico
1	0,569	0,000
2	0,569	0,000
3	0,569	0,000
4	0,569	0,000
5	0,569	0,990
6	0,569	0,990
7	0,569	0,990
8	0,569	0,990
9	0,569	0,000
10	0,569	0,000
11	0,569	0,000
12	0,569	0,000
13	0,569	0,000
14	0,569	0,000
15	0,569	0,000
16	0,569	0,000

Discretizzazione strutturale

Numero elementi fondazione	113
Numero elementi traverso	47
Numero elementi piedritto sinistro	62
Numero elementi piedritto destro	62
Numero molle fondazione	114
Numero molle piedritto sinistro	63
Numero molle piedritto destro	63

Secondo stralcio funzionale: Matelica Nord – Matelica Sud/Castelra
imondo Nord

Opera	Tratto	Settore	CEE	WBS	ld. doc.	N. prog.	Rev.	Pag. di Pag.
L0703	212	Е	38	O13800	REL	01	Α	75 di 168

Analisi della combinazione nº 1

Pressione in calotta(solo peso terreno) 58,7049 [kPa]

Carichi verticali in calotta

Xi	Xj	Q[kPa]
-20,05	-8,75	58,7049
-8,75	2,75	69,3411
2,75	7,85	91,3602
7,85	19,35	69,3411
19,35	29,35	58,7049

Spinte sui piedritti

Piedritto sinistro Pressione sup. 39,4890 [kPa] Pressione inf. 106,3211 [kPa] Piedritto destro Pressione sup. 39,4890 [kPa] Pressione inf. 106,3211 [kPa]

<u>Falda</u>

 Spinta
 101,99[kN]

 Sottospinta
 51,00[kPa]

Analisi della combinazione n° 2

Pressione in calotta(solo peso terreno) 58,7049 [kPa]

Carichi verticali in calotta

Xi	Xj	Q[kPa]
-20,05	-8,75	58,7049
-8,75	2,75	66,6820
2,75	7,85	83,1963
7,85	19,35	66,6820
19.35	29.35	58.7049

Spinte sui piedritti

Piedritto sinistro Pressione sup. 37,9747 [kPa] Pressione inf. 104,8068 [kPa]
Piedritto destro Pressione sup. 37,9747 [kPa] Pressione inf. 104,8068 [kPa]

<u>Falda</u>

 Spinta
 101,99[kN]

 Sottospinta
 51,00[kPa]

Analisi della combinazione n° 3

Pressione in calotta(solo peso terreno) 58,7049 [kPa]

Carichi verticali in calotta

Secondo stralcio funzionale: Matelica Nord – Matelica Sud/Castelra
imondo Nord

Opera	Tratto	Settore	CEE	WBS	ld. doc.	N. prog.	Rev.	Pag. di Pag.
L0703	212	E	38	O13800	REL	01	Α	76 di 168

Xi	Xj	Q[kPa]
-20,05	-10,05	58,7049
-10,05	-2,85	67,3968
-2,85	2,25	89,4159
2,25	29,35	58,7049

Spinte sui piedritti

Piedritto sinistroPressione sup. 49,4798 [kPa]Pressione inf. 116,3120 [kPa]Piedritto destroPressione sup. 33,4318 [kPa]Pressione inf. 100,2639 [kPa]

<u>Falda</u>

 Spinta
 101,99[kN]

 Sottospinta
 51,00[kPa]

Analisi della combinazione n° 4

Pressione in calotta(solo peso terreno) 58,7049 [kPa]

Carichi verticali in calotta

Xi	Xj	Q[kPa]
-20,05	-10,05	58,7049
-10,05	-2,85	65,2238
-2,85	2,25	81,7381
2,25	29,35	58,7049

Spinte sui piedritti

Piedritto sinistroPressione sup. 45,4678 [kPa]Pressione inf. 112,2999 [kPa]Piedritto destroPressione sup. 33,4318 [kPa]Pressione inf. 100,2639 [kPa]

<u>Falda</u>

 Spinta
 101,99[kN]

 Sottospinta
 51,00[kPa]

Analisi della combinazione n° 5

Pressione in calotta(solo peso terreno) 45,1576 [kPa]

<u>Carichi verticali in calotta</u>

Xi Xj Q[kPa] -20,05 29,35 45,1576

Spinte sui piedritti

Piedritto sinistro Pressione sup. 25,7167 [kPa] Pressione inf. 77,1261 [kPa] Pressione sup. 25,7167 [kPa] Pressione inf. 77,1261 [kPa]

Secondo stralcio funzionale: Matelica Nord – Matelica Sud/Castelra
imondo Nord

Opera	Tratto	Settore	CEE	WBS	ld. doc.	N. prog.	Rev.	Pag. di Pag.
L0703	212	Е	38	O13800	REL	01	Α	77 di 168

Spinte sismiche sui piedritti

Piedritto sinistro Pressione sup. 58,3811 [kPa] Pressione inf. 58,3811 [kPa]

<u>Falda</u>

 Spinta
 78,45[kN]

 Sottospinta
 39,23[kPa]

Analisi della combinazione nº 6

Pressione in calotta(solo peso terreno) 45,1576 [kPa]

Carichi verticali in calotta

Xi Xj Q[kPa] -20,05 29,35 45,1576

Spinte sui piedritti

Piedritto sinistroPressione sup. 25,7167 [kPa]Pressione inf. 77,1261 [kPa]Piedritto destroPressione sup. 25,7167 [kPa]Pressione inf. 77,1261 [kPa]

Spinte sismiche sui piedritti

Piedritto sinistro Pressione sup. 58,3811 [kPa] Pressione inf. 58,3811 [kPa]

<u>Falda</u>

 Spinta
 78,45[kN]

 Sottospinta
 39,23[kPa]

Analisi della combinazione n° 7

Pressione in calotta(solo peso terreno) 45,1576 [kPa]

<u>Carichi verticali in calotta</u>

Xi Xj Q[kPa] -20,05 29,35 45,1576

Spinte sui piedritti

Piedritto sinistro Pressione sup. 25,7167 [kPa] Pressione inf. 77,1261 [kPa] Piedritto destro Pressione sup. 25,7167 [kPa] Pressione inf. 77,1261 [kPa]

Spinte sismiche sui piedritti

Piedritto destro Pressione sup. 58,3811 [kPa] Pressione inf. 58,3811 [kPa]

Secondo stralcio funzionale: Matelica Nord – Matelica Sud/Castelraimondo Nord

Opera	Tratto	Settore	CEE	WBS	ld. doc.	N. prog.	Rev.	Pag. di Pag.
L0703	212	Е	38	O13800	REL	01	Α	78 di 168

<u>Falda</u>

 Spinta
 78,45[kN]

 Sottospinta
 39,23[kPa]

Analisi della combinazione n° 8

Pressione in calotta(solo peso terreno) 45,1576 [kPa]

Carichi verticali in calotta

Xi Xj Q[kPa] -20,05 29,35 45,1576

Spinte sui piedritti

Piedritto sinistro Pressione sup. 25,7167 [kPa] Pressione inf. 77,1261 [kPa] Piedritto destro Pressione sup. 25,7167 [kPa] Pressione inf. 77,1261 [kPa]

Spinte sismiche sui piedritti

Piedritto destro Pressione sup. 58,3811 [kPa] Pressione inf. 58,3811 [kPa]

<u>Falda</u>

 Spinta
 78,45[kN]

 Sottospinta
 39,23[kPa]

Analisi della combinazione n° 9

Pressione in calotta(solo peso terreno) 45,1576 [kPa]

Carichi verticali in calotta

Xi Q[kPa] -20,05 -8,75 45,1576 -8,75 2,75 53,0363 2,75 7,85 69,3467 7,85 19,35 53,0363 19,35 45,1576 29,35

Spinte sui piedritti

Piedritto sinistro Pressione sup. 30,2036 [kPa] Pressione inf. 81,6129 [kPa] Piedritto destro Pressione sup. 30,2036 [kPa] Pressione inf. 81,6129 [kPa]

<u>Falda</u>

 Spinta
 78,45[kN]

 Sottospinta
 39,23[kPa]

Secondo stralcio funzionale: Matelica Nord – Matelica Sud/Castelra
imondo Nord

Opera	Tratto	Settore	CEE	WBS	ld. doc.	N. prog.	Rev.	Pag. di Pag.
L0703	212	Е	38	O13800	REL	01	Α	79 di 168

Analisi della combinazione n° 10

Pressione in calotta(solo peso terreno) 45,1576 [kPa]

Carichi verticali in calotta

Xi	Xj	Q[kPa]
-20,05	-8,75	45,1576
-8,75	2,75	51,0666
2,75	7,85	63,2994
7,85	19,35	51,0666
19,35	29,35	45,1576

Spinte sui piedritti

Piedritto sinistro Pressione sup. 29,0819 [kPa] Pressione inf. 80,4912 [kPa] Piedritto destro Pressione sup. 29,0819 [kPa] Pressione inf. 80,4912 [kPa]

<u>Falda</u>

 Spinta
 78,45[kN]

 Sottospinta
 39,23[kPa]

Analisi della combinazione n° 11

Pressione in calotta(solo peso terreno) 45,1576 [kPa]

Carichi verticali in calotta

Xi Xj Q[kPa] -20,05 29,35 45,1576

Spinte sui piedritti

Piedritto sinistro Pressione sup. 25,7167 [kPa] Pressione inf. 77,1261 [kPa] Piedritto destro Pressione sup. 25,7167 [kPa] Pressione inf. 77,1261 [kPa]

<u>Falda</u>

 Spinta
 78,45[kN]

 Sottospinta
 39,23[kPa]

Analisi della combinazione n° 12

Pressione in calotta(solo peso terreno) 45,1576 [kPa]

Carichi verticali in calotta

Xi Xj Q[kPa]
-20,05 -8,75 45,1576
-8,75 2,75 51,0666

Secondo stralcio funzionale: Matelica Nord – Matelica Sud/Castelra
imondo Nord

Opera	Tratto	Settore	CEE	WBS	ld. doc.	N. prog.	Rev.	Pag. di Pag.
L0703	212	E	38	O13800	REL	01	Α	80 di 168

 2,75
 7,85
 63,2994

 7,85
 19,35
 51,0666

 19,35
 29,35
 45,1576

Spinte sui piedritti

Piedritto sinistro Pressione sup. 29,0819 [kPa] Pressione inf. 80,4912 [kPa] Piedritto destro Pressione sup. 29,0819 [kPa] Pressione inf. 80,4912 [kPa]

<u>Falda</u>

 Spinta
 78,45[kN]

 Sottospinta
 39,23[kPa]

Analisi della combinazione n° 13

Pressione in calotta(solo peso terreno) 45,1576 [kPa]

Carichi verticali in calotta

Xi Xj Q[kPa] -20,05 29,35 45,1576

Spinte sui piedritti

Piedritto sinistro Pressione sup. 25,7167 [kPa] Pressione inf. 77,1261 [kPa] Piedritto destro Pressione sup. 25,7167 [kPa] Pressione inf. 77,1261 [kPa]

<u>Falda</u>

 Spinta
 78,45[kN]

 Sottospinta
 39,23[kPa]

Analisi della combinazione n° 14

Pressione in calotta(solo peso terreno) 45,1576 [kPa]

Carichi verticali in calotta

Xi Xj Q[kPa]
-20,05 -10,05 45,1576
-10,05 -2,85 51,5961
-2,85 2,25 67,9065
2,25 29,35 45,1576

Spinte sui piedritti

Piedritto sinistro Pressione sup. 37,6042 [kPa] Pressione inf. 89,0135 [kPa] Pressione sup. 25,7167 [kPa] Pressione inf. 77,1261 [kPa]

<u>Falda</u>

 Spinta
 78,45[kN]

 Sottospinta
 39,23[kPa]

Secondo stralcio funzionale: Matelica Nord – Matelica Sud/Castelraimondo Nord

Opera	Tratto	Settore	CEE	WBS	ld. doc.	N. prog.	Rev.	Pag. di Pag.
L0703	212	Е	38	O13800	REL	01	Α	81 di 168

Analisi della combinazione n° 15

Pressione in calotta(solo peso terreno) 45,1576 [kPa]

Carichi verticali in calotta

Xi	Xj	Q[kPa]
-20,05	-10,05	45,1576
-10,05	-2,85	49,9864
-2,85	2,25	62,2192
2,25	29,35	45,1576

Spinte sui piedritti

Piedritto sinistro Pressione sup. 34,6323 [kPa] Pressione inf. 86,0417 [kPa] Piedritto destro Pressione sup. 25,7167 [kPa] Pressione inf. 77,1261 [kPa]

<u>Falda</u>

 Spinta
 78,45[kN]

 Sottospinta
 39,23[kPa]

Analisi della combinazione nº 16

Pressione in calotta(solo peso terreno) 45,1576 [kPa]

Carichi verticali in calotta

Xi	Xj	Q[kPa]
-20,05	-10,05	45,1576
-10,05	-2,85	49,9864
-2,85	2,25	62,2192
2,25	29,35	45,1576

Spinte sui piedritti

Piedritto sinistro Pressione sup. 34,6323 [kPa] Pressione inf. 86,0417 [kPa] Piedritto destro Pressione sup. 25,7167 [kPa] Pressione inf. 77,1261 [kPa]

<u>Falda</u>

 Spinta
 78,45[kN]

 Sottospinta
 39,23[kPa]

Secondo stralcio funzionale: Matelica Nord – Matelica Sud/Castelraimondo Nord

Opera	Tratto	Settore	CEE	WBS	ld. doc.	N. prog.	Rev.	Pag. di Pag.
L0703	212	Е	38	O13800	REL	01	Α	82 di 168

Sollecitazioni

Sollecitazioni fondazione (Combinazione n° 1)

X [m]	M [kNm]	V [kN]	N [kN]
0,00	0,0000	5,9177	-9,1166
2,67	249,1974	-352,4812	347,9038
5,30	725,8575	-2,9480	347,9038
8,00	264,9583	364,0611	347,9038
10.60	0.0000	-6.4106	8.2714

Sollecitazioni traverso (Combinazione n° 1)

X [m]	M [kNm]	V [kN]	N [kN]
0,90	-455,9456	498,2693	218,5315
3,14	403,4881	261,3149	218,5315
5,30	678,9987	-5,9916	218,5315
7,46	377,6267	-273,2981	218,5315
9,70	-508,6719	-510,2525	218,5315

Sollecitazioni piedritto sinistro (Combinazione nº 1)

Y [m]	M [kNm]	V [kN]	N [kN]
0,50	-615,4691	357,0205	654,2693
1,95	-243,0548	162,7875	616,5273
3,50	-122,7963	0,1792	576,2693
4,95	-208,5275	-112,9935	538,5273
6,50	-455,9456	-201,1435	498,2693

Sollecitazioni piedritto destro (Combinazione n° 1)

Y [m]	M [kNm]	V [kN]	N [kN]
0,50	-563,8674	-339,6325	666,2525
1,95	-216,6938	-145,3995	628,5106
3,50	-123,3586	17,2088	588,2525
4,95	-234,3305	130,3815	550,5106
6,50	-508,6719	218,5315	510,2525

Sollecitazioni fondazione (Combinazione n° 2)

X [m]	M [kNm]	V [kN]	N [kN]
0,00	0,0000	5,7428	-6,9293
2,67	248,2594	-338,7399	336,5021
5,30	703,6123	-1,0585	336,5021
8,00	255,0319	352,0290	336,5021
10,60	0,0000	-6,1124	6,1117

Sollecitazioni traverso (Combinazione n° 2)

X [m]	M [kNm]	V [kN]	N [kN]
0,90	-480,4850	474,0273	218,6878
3,14	331,7074	245,1942	218,6878
5,30	591,4390	-4,4937	218,6878
7,46	312,3113	-254,1816	218,6878
9,70	-520,0296	-483,0147	218,6878

Secondo stralcio funzionale: Matelica Nord – Matelica Sud/Castelraimondo Nord

Opera	Tratto	Settore	CEE	WBS	ld. doc.	N. prog.	Rev.	Pag. di Pag.
L0703	212	E	38	O13800	REL	01	Α	83 di 168

Sollecitazioni	niedritto	sinistro	(Combinazione	n° 21
Soliecitazioili	DIEGITLO	SILLISTIO	(COMBINAZIONE	11 41

Y [m]	M [kNm]	V [kN]	N [kN]
0,50	-585,7315	343,4314	630,0273
1,95	-231,4479	151,3966	592,2854
3,50	-127,0116	-8,8669	552,0273
4,95	-224,2789	-119,8414	514,2854
6,50	-480,4850	-205,6468	474,0273

Sollecitazioni piedritto destro (Combinazione n° 2)

Y [m]	M [kNm]	V [kN]	N [kN]
0,50	-547,0302	-330,3904	639,0147
1,95	-211,6770	-138,3556	601,2728
3,50	-127,4332	21,9079	561,0147
4,95	-243,6310	132,8824	523,2728
6.50	-520.0296	218.6878	483.0147

Sollecitazioni fondazione (Combinazione n° 3)

X [m]	M [kNm]	V [kN]	N [kN]
0,00	0,0000	5,2089	-48,5859
2,67	157,2305	-332,4517	363,6103
5,30	623,0797	-15,8595	363,6103
8,00	245,0418	312,4377	363,6103
10,60	0,0000	-5,5461	47,7024

Sollecitazioni traverso (Combinazione n° 3)

X [m]	M [kNm]	V [kN]	N [kN]
0,90	-351,9263	427,8677	205,9127
3,14	313,1239	181,9226	205,9127
5,30	493,3420	-14,9095	205,9127
7,46	248,7708	-211,7415	205,9127
9,70	-455,1225	-416,2108	205,9127

Sollecitazioni piedritto sinistro (Combinazione n° 3)

Y [m]	M [kNm]	V [kN]	N [kN]
0,50	-662,6694	412,1962	583,8677
1,95	-220,6876	203,4604	546,1257
3,50	-49,4281	25,3825	505,8677
4,95	-109,1002	-102,2930	468,1257
6.50	-351.9263	-205.9127	427.8677

Sollecitazioni piedritto destro (Combinazione n° 3)

Y [m]	M [kNm]	V [kN]	N [kN]
0,50	-477,0009	-315,9079	572,2108
1,95	-157,8842	-130,4677	534,4689
3,50	-80,4082	22,7616	494,2108
4,95	-193,0588	127,1416	456,4689
6.50	-455.1225	205.9127	416.2108

Sollecitazioni fondazione (Combinazione n° 4)

X [m]	M [kNm]	V [kN]	N [kN]
0,00	0,0000	5,2112	-36,5312

Secondo stralcio funzionale: Matelica Nord – Matelica Sud/Castelraimondo Nord

Opera	Tratto	Settore	CEE	WBS	ld. doc.	N. prog.	Rev.	Pag. di Pag.
L0703	212	Е	38	O13800	REL	01	Α	84 di 168

2,67	179,2843	-323,7177	348,2820
5,30	626,5289	-10,7422	348,2820
8,00	240,0946	313,3115	348,2820
10,60	0,000	-5,4640	35,6850

Sollecitazioni traverso (Combinazione n° 4)

X [m]	M [kNm]	V [kN]	N [kN]
0,90	-402,4705	421,2261	209,2237
3,14	263,9342	185,6500	209,2237
5,30	452,1965	-11,1821	209,2237
7,46	215,6694	-208,0141	209,2237
9.70	-479.8676	-412.4834	209.2237

Sollecitazioni piedritto sinistro (Combinazione n° 4)

Y [m]	M [kNm]	V [kN]	N [kN]
0,50	-621,1318	384,8132	577,2261
1,95	-214,6724	181,9012	539,4842
3,50	-71,9855	10,0355	499,2261
4,95	-149,7084	-111,8161	461,4842
6,50	-402,4705	-209,2237	421,2261

Sollecitazioni piedritto destro (Combinazione n° 4)

Y [m]	M [kNm]	V [kN]	N [kN]
0,50	-481,8802	-312,5970	568,4834
1,95	-167,5698	-127,1567	530,7415
3,50	-95,2204	26,0726	490,4834
4,95	-212,6773	130,4525	452,7415
6,50	-479,8676	209,2237	412,4834

Sollecitazioni fondazione (Combinazione n° 5)

X [m]	M [kNm]	V [kN]	N [kN]
0,00	0,0000	0,3706	-282,7721
2,67	-229,4837	-351,2300	324,4889
5,30	456,2280	-148,9199	343,9654
8,00	477,2545	166,8654	363,9288
10.60	0.000	-8.2643	281.9364

Sollecitazioni traverso (Combinazione n° 5)

X [m]	M [kNm]	V [kN]	N [kN]
0,90	-50,9081	249,0852	199,6275
3,14	321,9127	83,5131	216,2036
5,30	330,1550	-75,8747	232,1605
7,46	-5,5823	-235,2624	248,1174
9.70	-718.6051	-400.8345	264.6935

Sollecitazioni piedritto sinistro (Combinazione n° 5)

Y [m]	M [kNm]	V [kN]	N [kN]
0,50	-977,6702	587,5501	386,8304
1,95	-299,7931	351,5706	353,5050
3,50	71,7003	134,1465	317,9578
4.95	137.4491	-39.4790	284.6323

Secondo stralcio funzionale: Matelica Nord – Matelica Sud/Castelra
imondo Nord

Opera	Tratto	Settore	CEE	WBS	ld. doc.	N. prog.	Rev.	Pag. di Pag.
L0703	212	E	38	O13800	REL	01	Α	85 di 168

6,50	-50,9081	-199,6275	249,0852
Sollecitazion	i piedritto destro (Comb	oinazione n° 5)	
Y [m]	M [kNm]	V [kN]	N [kN]
0,50	8,8314	-101,2165	538,5798
1,95	54,7142	32,8434	505,2543
-	•		
3,50	-84,8482	141,5533	469,7071
4,95	-345,3348	213,2591	436,3817
6,50	-718,6051	264,6935	400,8345
Sollecitazion	i fondazione (Combinaz	ione n° 6)	
X [m]	M [kNm]	V [kN]	N [kN]
0,00	0,0000	-0,0001	-282,7680
2,67	-269,8594	-320,1481	321,1464
5,30	376,8047	-151,2708	340,6229
8,00	444,2640	132,5773	360,5863
10,60	0,000	-7,3632	281,9404
Sollecitazion	i traverso (Combinazion	<u>ie n° 6)</u>	
V [m]	M [kNm]	V [FN]	NI [LNI]
X [m]	M [kNm]	V [kN]	N [kN]
0,90	-33,8788	216,4730	202,9741
3,14	284,4106	67,4770	219,5502
5,30	275,2635	-75,9538	235,5071
7,46 9,70	-43,4261 -702,2724	-219,3846 -368,3807	251,4640 268,0401
Sallacitazion	i niodritta sinistra (Com	hinaziono nº 6\	
Sollecitazion	i piedritto sinistro (Com	binazione n 6)	
Y [m]	M [kNm]	V [kN]	N [kN]
0,50	-940,5612	584,2035	318,7278
1,95	-267,5422	348,2240	293,9887
3,50	98,7694	130,7999	267,6004
4,95	159,6602	-42,8256	242,8614
6,50	-33,8788	-202,9741	216,4730
Sollecitazion	i piedritto destro (Comb	oinazione n° 6)	
Y [m]	M [kNm]	V [kN]	N [kN]
0,50	45,2438	-97,8699	470,6354
1,95	86,2686	36,1901	445,8964
3,50	-58,4756	144,8999	419,5081
4,95	-323,8202	216,6057	394,7690
6,50	-702,2724	268,0401	368,3807
<u>Sollecitazion</u>	i fondazione (Combinaz	ione n° 7)	
X [m]	M [kNm]	V [kN]	N [kN]
0,00	0,0000	8,2643	281,9364
2,67	487,4937	-144,4396	363,4423
5,30	456,2310	157,1471	343,9658
8,00	-252,9069	360,1179	324,0024
10,60	0,000	-0,3706	-282,7721
•	,	,	- ,

Sollecitazioni traverso (Combinazione n° 7)

Y [m]

0,50

1,95

M [kNm]

-940,5628

-267,5432

V [kN]

-584,2039

-348,2244

N [kN]

318,7277

293,9887

2.1.2 PEDEMONTANA DELLE MARCHE

Secondo stralcio funzionale: Matelica Nord – Matelica Sud/Castelraimondo Nord

Opera	Tratto	Settore	CEE	WBS	ld. doc.	N. prog.	Rev.	Pag. di Pag.
L0703	212	Е	38	O13800	REL	01	Α	86 di 168

X [m]	M [kNm]	V [kN]	N [kN]
0,90	-718,6051	400,8346	264,6931
3,14	-5,5821	235,2625	248,1170
5,30	330,1555	75,8748	232,1601
7,46	321,9134	-83,5130	216,2032
9,70	-50,9072	-249,0851	199,6271
3,70	-30,3072	-249,0091	133,0271
Sollecitazion	i piedritto sinistro (Com	binazione n° 7)	
Y [m]	M [kNm]	V [kN]	N [kN]
0,50	8,8290	101,2169	538,5799
1,95	54,7124	-32,8430	505,2544
3,50	-84,8494	-141,5529	469,7072
4,95	-345,3355	-213,2587	436,3818
6,50	-718,6051	-264,6931	400,8346
Sollecitazion	i piedritto destro (Comb	oinazione n° 7)	
Y [m]	M [kNm]	V [kN]	N [kN]
0,50	-977,6716	-587,5505	386,8303
1,95	-299,7940	-351,5710	353,5049
3,50	71,7000	-134,1469	317,9577
4,95	137,4494	39,4786	284,6322
6,50	-50,9072	199,6271	249,0851
0,30	-30,3072	155,0271	243,0631
Sollecitazion	i fondazione (Combinaz	ione n° 8)	
X [m]	M [kNm]	V [kN]	N [kN]
0,00	0,0000	7,3632	281,9404
2,67	452,3371	-112,9147	360,0998
5,30	376,8077	157,5846	340,6233
8,00	-291,1358	325,9605	320,6599
10,60	0,0000	0,0001	-282,7680
Sollecitazion	i traverso (Combinazion	<u>ne n° 8)</u>	
X [m]	M [kNm]	V [kN]	N [kN]
0,90	-702,2723	368,3808	268,0397
3,14	-43,4258	219,3847	251,4636
5,30	275,2640	75,9539	235,5067
7,46	284,4112	-67,4769	219,5498
9,70	-33,8780	-216,4730	202,9737
Sollecitazion	i piedritto sinistro (Com	binazione n° 8\	
Y [m]	M [kNm]	V [kN]	N [kN]
0,50	45,2415	97,8703	470,6355
1,95	86,2669	-36,1897	445,8965
3,50	-58,4767	-144,8995	419,5081
4,95	-323,8208	-216,6053	394,7691
6,50	-702,2723	-268,0397	368,3808
Sollecitazion	i piedritto destro (Comb	oinazione n° 8)	

Secondo stralcio funzionale: Matelica Nord – Matelica Sud/Castelraimondo Nord

Opera	Tratto	Settore	CEE	WBS	ld. doc.	N. prog.	Rev.	Pag. di Pag.	
L0703	212	Е	38	O13800	REL	01	Α	87 di 168	

3,50	98,7690	-130,8003	267,6003
4,95	159,6604	42,8252	242,8613
6,50	-33,8780	202,9737	216,4730

Sollecitazioni fondazione (Combinazione n° 9)

X [m]	M [kNm]	V [kN]	N [kN]
0,00	0,0000	4,5110	-6,7679
2,67	181,9603	-270,0837	269,8787
5,30	546,9791	-2,0395	269,8787
8,00	193,0258	279,1966	269,8787
10,60	0,000	-4,8761	6,1121

Sollecitazioni traverso (Combinazione n° 9)

X [m]	M [kNm]	V [kN]	N [kN]
0,90	-342,7959	380,5214	164,5549
3,14	312,9233	199,1743	164,5549
5,30	523,0564	-4,4382	164,5549
7,46	293,7667	-208,0508	164,5549
9,70	-381,8524	-389,3979	164,5549

Sollecitazioni piedritto sinistro (Combinazione nº 9)

Y [m]	M [kNm]	V [kN]	N [kN]
0,50	-480,7052	276,6466	500,5214
1,95	-191,1252	127,4871	471,4892
3,50	-94,9032	2,6710	440,5214
4,95	-156,9914	-84,1344	411,4892
6,50	-342,7959	-151,6749	380,5214

Sollecitazioni piedritto destro (Combinazione nº 9)

Y [m]	M [kNm]	V [kN]	N [kN]
0,50	-442,4818	-263,7666	509,3979
1,95	-171,5985	-114,6071	480,3657
3,50	-95,3198	10,2090	449,3979
4,95	-176,1047	97,0144	420,3657
6,50	-381,8524	164,5549	389,3979

Sollecitazioni fondazione (Combinazione nº 10)

X [m]	M [kNm]	V [kN]	N [kN]
0,00	0,0000	4,3409	-5,1685
2,67	162,8205	-260,8830	278,6411
5,30	513,5613	-0,6152	278,6411
8,00	167,1627	271,2823	278,6411
10,60	0,0000	-4,6147	4,4915

Sollecitazioni traverso (Combinazione nº 10)

X [m]	M [kNm]	V [kN]	N [kN]
0,90	-278,0247	362,5644	147,4416
3,14	342,7010	187,2331	147,4416
5,30	541,1459	-3,3287	147,4416
7,46	328,3336	-193,8904	147,4416
9,70	-307,3170	-369,2218	147,4416

308,6933

Secondo stralcio funzionale: Matelica Nord – Matelica Sud/Castelra
imondo Nord

Opera	Tratto	Settore	CEE	WBS	ld. doc.	N. prog.	Rev.	Pag. di Pag.
L0703	212	Е	38	O13800	REL	01	Α	88 di 168

Sollecitazion	i piedritto sinistro (Com	ibinazione n° 10)	
Y [m]	M [kNm]	V [kN]	N [kN]
0,50	-479,1030	283,8096	482,5644
1,95	-177,9433	136,2784	453,5322
3,50	-66,7642	13,1992	422,5644
4,95	-112,3877	-71,9779	393,5322
6,50	-278,0247	-137,7816	362,5644
Sollecitazion	i piedritto destro (Comb	oinazione n° 10)	
Y [m]	M [kNm]	V [kN]	N [kN]
0,50	-450,4354	-274,1496	489,2218
1,95	-163,2981	-126,6184	460,1895
3,50	-67,0765	-3,5392	429,2218
4,95	-126,7226	81,6379	400,1895
6,50	-307,3170	147,4416	369,2218
Sollecitazion	i fondazione (Combinaz	ione n° 11)	
X [m]	M [kNm]	V [kN]	N [kN]
0,00	0,0000	3,9068	-0,3311
2,67	140,1462	-231,4384	272,5130
5,30	445,2179	3,6111	272,5130
8,00	124,4416	245,6587	272,5130
10,60	0,0000	-3,9068	-0,3311
Sollecitazion	i traverso (Combinazior	<u>ne n° 11)</u>	
X [m]	M [kNm]	V [kN]	N [kN]
0,90	-239,9630	308,6934	128,5564
3,14	275,7819	151,4093	128,5564
5,30	439,1626	0,0000	128,5564
7,46	275,7821	-151,4092	128,5564
9,70	-239,9626	-308,6933	128,5564
Sollecitazion	i piedritto sinistro (Com	ıbinazione n° 11)	
Y [m]	M [kNm]		N [kN]
	-435,8203	V [kN] 272 8441	
0,50 1.05	-435,8203 -147,0328	272,8441 130,1977	428,6934
1,95	•	,	399,6611
3,50 4.05	-41,2351 -84,5762	12,3290	368,6934
4,95 6,50	-84,5763 -239,9630	-67,9632 -128,5564	339,6611
•	•	•	308,6934
<u>sollecitazion</u>	i piedritto destro (Comb	oinazione nº 11)	
Y [m]	M [kNm]	V [kN]	N [kN]
0,50	-435,8199	-272,8441	428,6933
1,95	-147,0324	-130,1977	399,6610
3,50	-41,2347	-12,3290	368,6933
4,95	-84,5759	67,9632	339,6610
6 50	220.0626	120 EEG/	200 6022

128,5564

Sollecitazioni fondazione (Combinazione n° 12)

-239,9626

Secondo stralcio funzionale: Matelica Nord – Matelica Sud/Castelraimondo Nord

Opera	Tratto	Settore	CEE	WBS	ld. doc.	N. prog.	Rev.	Pag. di Pag.
L0703	212	E	38	O13800	REL	01	Α	89 di 168

X [m]	M [kNm]	V [kN]	N [kN]
0,00	0,0000	4,3833	-5,1466
2,67	182,1235	-259,8594	260,6326
5,30	531,2890	-0,6410	260,6326
8,00	186,5339	270,2375	260,6326
10,60	0,0000	-4,6571	4,5134
10,00	0,0000	4,0371	7,3134
Sollecitazioni	traverso (Combinazion	<u>e n° 12)</u>	
X [m]	M [kNm]	V [kN]	N [kN]
0,90	-364,8313	362,5644	165,4720
3,14	255,8943	187,2331	165,4720
5,30	454,3393	-3,3287	165,4720
7,46	241,5269	-193,8904	165,4720
9,70	-394,1236	-369,2218	165,4720
Sollecitazioni	<u>piedritto sinistro (Com</u>	<u>binazione n° 12)</u>	
Y [m]	M [kNm]	V [kN]	N [kN]
0,50	-457,7274	265,7792	482,5644
1,95	-182,7407	118,2480	453,5322
3,50	-99,4797	-4,8312	422,5644
4,95	-171,2763	-90,0083	393,5322
6,50	-364,8313	-155,8120	362,5644
.,	, , , , ,		, , , , ,
Sollecitazioni	piedritto destro (Comb	inazione n° 12)	
Y [m]	M [kNm]	V [kN]	N [kN]
0,50	-429,0597	-256,1192	489,2218
1,95	-168,0956	-108,5880	460,1895
3,50	-99,7920	14,4912	429,2218
4,95	-185,6112	99,6683	400,1895
6,50	-394,1236	165,4720	369,2218
-,			
		0.40	
Sollecitazioni	fondazione (Combinazi	ione n° 13)	
X [m]	M [kNm]	V [kN]	N [kN]
0,00	0,0000	3,9280	-0,3201
2,67	149,7977	-230,9266	263,5087
5,30	454,0817	3,5982	263,5087
8,00	134,1272	245,1363	263,5087
10,60	0,0000	-3,9280	-0,3201
Calle dia ataut		0 42)	
Sollecitazioni	traverso (Combinazion	<u>en 13)</u>	
X [m]	M [kNm]	V [kN]	N [kN]
0,90	-283,3663	308,6934	137,5716
3,14	232,3786	151,4093	137,5716
5,30	395,7593	0,0000	137,5716
7,46	232,3788	-151,4092	137,5716
9,70	-283,3659	-308,6933	137,5716
Sollecitazioni	piedritto sinistro (Com	<u>binazione n° 13)</u>	
V [m]	NA [Ichloss]	\/ [Lai]	AI FLAIT
Y [m] 0,50	M [kNm] -425,1325	V [kN] 263,8289	N [kN] 428,6934
1.05	-425,1325 -140,4215	203,8289 121 1925	428,0934 200 6611

-149,4315

1,95

121,1825

 $Secondo\ stralcio\ funzionale:\ Matelica\ Nord-Matelica\ Sud/Castelraimondo$ Nord

Opera	Tratto	Settore	CEE	WBS	ld. doc.	N. prog.	Rev.	Pag. di Pag.
L0703	212	Е	38	O13800	REL	01	Α	90 di 168

2.50	57.5000	2 2422	252 5224
3,50	-57,5928	3,3138	368,6934
4,95	-114,0206	-76,9784	339,6611
6,50	-283,3663	-137,5716	308,6934
Sollecitazioni	piedritto destro (Comb	oinazione n° 13)	
Y [m]	M [kNm]	V [kN]	N [kN]
0,50	-425,1321	-263,8289	428,6933
1,95	-149,4311	-121,1825	399,6610
3,50	-57,5924	-3,3138	368,6933
4,95	-114,0202	76,9784	339,6610
6,50	-283,3659	137,5716	308,6933
Sollecitazioni	fondazione (Combinaz	<u>ione n° 14)</u>	
X [m]	M [kNm]	V [kN]	N [kN]
0,00	0,0000	3,9860	-36,0043
2,67	113,8367	-255,2470	281,5132
5,30	470,8474	-11,6036	281,5132
8,00	178,2728	240,9571	281,5132
10,60	0,0000	-4,2357	35,3203
Sollecitazioni	traverso (Combinazion	e n° 14)	
		<u> </u>	
X [m]	M [kNm]	V [kN]	N [kN]
0,90	-265,7446	328,3721	155,2076
3,14	245,9868	140,3652	155,2076
5,30	385,5329	-11,0440	155,2076
7,46	198,3179	-162,4533	155,2076
9,70	-342,1862	-319,7374	155,2076
Sollecitazioni	piedritto sinistro (Com	binazione n° 14)	
	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	<u></u>	
Y [m]	M [kNm]	V [kN]	N [kN]
0,50	-515,6684	317,5175	448,3721
1,95	-174,5569	157,6152	419,3399
3,50	-40,5565	21,3401	388,3721
4,95	-83,3415	-76,2081	359,3399
6,50	-265,7446	-155,2076	328,3721
Sollecitazioni	piedritto destro (Comb	oinazione n° 14)	
Y [m]	M [kNm]	V [kN]	N [kN]
0,50	-378,1362	-246,1928	439,7374
1,95	-128,0359	-103,5465	410,7051
3,50	-63,5046	14,3222	379,7374
4,95	-145,5331	94,6145	350,7051
6,50	-342,1862	155,2076	319,7374
0,00	3 .2,2332	100,2070	013,707
Sollecitazioni	fondazione (Combinaz	ione n° 15)	
X [m]	M [kNm]	V [kN]	N [kN]
0,00	0,000	3,9471	-27,0958
2,67	111,7277	-249,7554	287,3669
5,30	456,4626	-7,7883	287,3669
8,00	156,0980	242,6026	287,3669
10.60	0.000	-4 1344	267,3009

0,0000

10,60

-4,1344

Secondo stralcio funzionale: Matelica Nord – Matelica Sud/Castelraimondo Nord

Opera	Tratto	Settore	CEE	WBS	ld. doc.	N. prog.	Rev.	Pag. di Pag.
L0703	212	Е	38	O13800	REL	01	Α	91 di 168

Sollecitazioni traverso (Combinazione n° 15)

X [m]	M [kNm]	V [kN]	N [kN]
0,90	-220,2362	323,4524	140,4312
3,14	292,4986	143,1263	140,4312
5,30	438,0033	-8,2830	140,4312
7,46	256,7469	-159,6923	140,4312
9,70	-277,5673	-316,9764	140,4312

Sollecitazioni piedritto sinistro (Combinazione nº 15)

Y [m]	M [kNm]	V [kN]	N [kN]
0,50	-505,3254	314,4628	443,4524
1,95	-165,5170	158,8745	414,4202
3,50	-26,0041	27,2010	383,4524
4,95	-57,1503	-66,0332	354,4202
6,50	-220,2362	-140,4312	323,4524

Sollecitazioni piedritto destro (Combinazione nº 15)

Y [m]	M [kNm]	V [kN]	N [kN]
0,50	-402,1761	-260,9693	436,9764
1,95	-130,6262	-118,3230	407,9441
3,50	-43,2152	-0,4543	376,9764
4,95	-103,7939	79,8380	347,9441
6,50	-277,5673	140,4312	316,9764

Sollecitazioni fondazione (Combinazione nº 16)

X [m]	M [kNm]	V [kN]	N [kN]
0,00	0,0000	3,9895	-27,0740
2,67	131,0307	-248,7319	269,3584
5,30	474,1903	-7,8141	269,3584
8,00	175,4692	241,5579	269,3584
10,60	0,0000	-4,1768	26,4195

Sollecitazioni traverso (Combinazione n° 16)

X [m]	M [kNm]	V [kN]	N [kN]
0,90	-307,0428	323,4524	158,4615
3,14	205,6920	143,1263	158,4615
5,30	351,1967	-8,2830	158,4615
7,46	169,9403	-159,6923	158,4615
9.70	-364.3740	-316.9764	158,4615

Sollecitazioni piedritto sinistro (Combinazione n° 16)

Y [m]	M [kNm]	V [kN]	N [kN]
0,50	-483,9498	296,4324	443,4524
1,95	-170,3145	140,8441	414,4202
3,50	-58,7196	9,1706	383,4524
4,95	-116,0389	-84,0636	354,4202
6,50	-307,0428	-158,4615	323,4524

Sollecitazioni piedritto destro (Combinazione nº 16)

Y [m] M [kNm] V [kN] N	l [kN]
------------------------	--------

Secondo stralcio funzionale: Matelica Nord – Matelica Sud/Castelraimondo Nord

Opera	Tratto	Settore	CEE	WBS	ld. doc.	N. prog.	Rev.	Pag. di Pag.
L0703	212	Е	38	O13800	REL	01	Α	92 di 168

0,50	-380,8005	-242,9389	436,9764
1,95	-135,4236	-100,2926	407,9441
3,50	-75,9307	17,5761	376,9764
4,95	-162,6825	97,8684	347,9441
6,50	-364,3740	158,4615	316,9764

Secondo stralcio funzionale: Matelica Nord – Matelica Sud/Castelraimondo Nord

Opera	Tratto	Settore	CEE	WBS	ld. doc.	N. prog.	Rev.	Pag. di Pag.
L0703	212	Е	38	O13800	REL	01	Α	93 di 168

Pressioni terreno

Pressioni sul terreno di fondazione (Combinazione n° 1)

X [m]	σt [kPa]
0,00	142
2,67	122
5,30	111
8,00	128
10,60	154

Pressioni sul terreno di fondazione (Combinazione n° 2)

X [m]	σt [kPa]
0,00	138
2,67	117
5,30	106
8,00	122
10,60	147

Pressioni sul terreno di fondazione (Combinazione n° 3)

σŧ [kPa]	X [m]
125	0,00
109	2,67
98	5,30
111	8,00
133	10,60

Pressioni sul terreno di fondazione (Combinazione n° 4)

X [m]	σt [kPa]
0,00	125
2,67	108
5,30	97
8,00	110
10,60	131

Pressioni sul terreno di fondazione (Combinazione n° 5)

X [m]	σ _t [kPa]
0,00	9
2,67	50
5,30	82
8,00	133
10.60	198

Pressioni sul terreno di fondazione (Combinazione n° 6)

X [m]	σt [kPa]
0,00	0
2,67	29
5,30	63
8,00	113
10.60	177

Pressioni sul terreno di fondazione (Combinazione n° 7)

X [m]	σ _t [kPa]
0,00	198
2,67	131
5,30	82

Secondo stralcio funzionale: Matelica Nord – Matelica Sud/Castelraimondo Nord

Opera	Tratto	Settore	CEE	WBS	ld. doc.	N. prog.	Rev.	Pag. di Pag.	
L0703	212	Е	38	O13800	REL	01	Α	94 di 168	

8,00	49
10.60	9

Pressioni sul terreno di fondazione (Combinazione n° 8)

X [m]	σ _t [kPa]
0,00	177
2,67	112
5,30	63
8,00	28
10.60	0

Pressioni sul terreno di fondazione (Combinazione n° 9)

X [m]	σt [kPa]
0,00	108
2,67	93
5,30	85
8,00	98
10,60	117

Pressioni sul terreno di fondazione (Combinazione n° 10)

X [m]	σ _t [kPa]
0,00	104
2,67	90
5,30	82
8,00	94
10,60	111

Pressioni sul terreno di fondazione (Combinazione n° 11)

X [m]	σt [kPa]
0,00	94
2,67	81
5,30	72
8,00	81
10.60	94

Pressioni sul terreno di fondazione (Combinazione n° 12)

X [m]	σ _t [kPa]
0,00	105
2,67	90
5,30	82
8,00	93
10,60	112

Pressioni sul terreno di fondazione (Combinazione n° 13)

X [m]	σ _t [kPa]
0,00	94
2,67	80
5,30	72
8,00	81
10.60	0.4

Pressioni sul terreno di fondazione (Combinazione n° 14)

X [m]	σt [kPa]
0,00	96
2.67	84

Secondo stralcio funzionale: Matelica Nord – Matelica Sud/Castelraimondo Nord

Opera	Tratto	Settore	CEE	WBS	ld. doc.	N. prog.	Rev.	Pag. di Pag.
L0703	212	Е	38	O13800	REL	01	Α	95 di 168

5,30	76
8,00	86
10.60	102

Pressioni sul terreno di fondazione (Combinazione n° 15)

X [m]	σ _t [kPa]
0,00	95
2,67	83
5,30	75
8,00	84
10.60	99

Pressioni sul terreno di fondazione (Combinazione n° 16)

X [m]	σ _t [kPa]
0,00	96
2,67	83
5,30	74
8,00	84
10,60	100

Secondo stralcio funzionale: Matelica Nord – Matelica Sud/Castelraimondo

Opera	Tratto	Settore	CEE	WBS	ld. doc.	N. prog.	Rev.	Pag. di Pag.
L0703	212	E	38	O13800	REL	01	Α	96 di 168

Verifiche combinazioni SLU

Simbologia adottata ed unità di misura

Indice sezione

Ascissa/Ordinata sezione, espresso in cm Momento flettente, espresso in kNm Taglio, espresso in kN

M V N N_u A_{fi} A_{fs} CS V_{Rd} V_{Rcd} Sforzo normale, espresso in kN Sforzo normale ultimo, espressa in kN Momento ultimo, espressa in kNm

Area armatura inferiore, espresse in cmq Area armatura superiore, espresse in cmq

Coeff. di sicurezza sezione

Aliquota taglio assorbita dal calcestruzzo in elementi senza armature trasversali, espressa in kN Aliquota taglio assorbita dal calcestruzzo in elementi con armature trasversali, espressa in kN

Aliquota taglio assorbita armature trasversali, espressa in kN Area armature trasversali nella sezione, espressa in cmq

Verifica sezioni fondazione [Combinazione n° 1 - SLU (Approccio 2)]

B = 100 cm Base sezione Altezza sezione H = 100,00 cm

N°	Х	M	N	N_u	M_u	A_{fi}	A_{fs}	CS
1	0,00	0,00 (-4,98)	-9,12	-555,88	-542,02	22,62	22,62	60,97
2	2,67	-249,20 (-545,81)	347,90	685,55	-1075,52	22,62	22,62	1,97
3	5,30	-725,86 (-726,06)	347,90	472,95	-987,02	22,62	22,62	1,36
4	8,00	-264,96 (-571,32)	347,90	644,55	-1058,46	22,62	22,62	1,85
5	10,60	0,00 (-5,39)	8,27	1333,11	-1359,24	45,24	22,62	161,17

|--|

N°	X	A_{sw}	V	V_{Rd}	V_{Rsd}	V_{Rcd}	FS
1	0,00	0,00	5,92	299,45	0,00	0,00	50.602
2	2,67	0,00	-352,48	349,52	0,00	0,00	0.992
3	5,30	0,00	-2,95	349,52	0,00	0,00	118.563
4	8,00	0,00	364,06	349,52	0,00	0,00	0.960
5	10.60	0.00	-6.41	301.89	0.00	0.00	47.092

Verifica sezioni traverso [Combinazione n° 1 - SLU (Approccio 2)]

Base sezione B = 100 cmH = 100,00 cm Altezza sezione

Verifiche	presso-flessione
VEHILLIE	DI COOUTICOOIDITE

N°	Х	M	N	Nu	M_u	A_{fi}	A_{fs}	CS
1	0,90	-455,95 (-508,67)	218,53	413,38	-962,22	22,62	22,62	1,89
2	3,14	403,49 (623,38)	218,53	324,32	925,14	22,62	22,62	1,48
3	5,30	679,00 (679,00)	218,53	293,64	912,37	22,62	22,62	1,34
4	7,46	377,63 (607,61)	218,53	334,22	929,27	22,62	22,62	1,53
5	9,70	-508,67 (-508,67)	218,53	413,38	-962,22	22,62	22,62	1,89

Verifiche tag	lio
N°	v

N°	Х	A_{sw}	V	V_{Rd}	V_{Rsd}	V_{Rcd}	FS
1	0,90	0,00	498,27	331,37	0,00	0,00	0.665
2	3,14	0,00	261,31	331,37	0,00	0,00	1.268
3	5,30	0,00	-5,99	331,37	0,00	0,00	55.306
4	7,46	0,00	-273,30	331,37	0,00	0,00	1.213
5	9,70	0,00	-510,25	331,37	0,00	0,00	0.649

Secondo stralcio funzionale: Matelica Nord – Matelica Sud/Castelraimondo Nord

Opera	Tratto	Settore	CEE	WBS	ld. doc.	N. prog.	Rev.	Pag. di Pag.
L0703	212	Е	38	O13800	REL	01	Α	97 di 168

Verifica sezioni piedritto sinistro [Combinazione n° 1 - SLU (Approccio 2)]

Base sezione B = 100 cm Altezza sezione H = 80,00 cm

Verifich	e presso-fle	<u>ssione</u>						
N°	X	M	N	N_u	Mu	A_{fi}	A_{fs}	CS
1	0,50	-615,47 (-615,47)	654,27	1804,06	-1697,08	22,62	45,24	2,76
2	1,95	-243,05 (-350,74)	616,53	2325,25	-1322,82	22,62	22,62	3,77
3	3,50	-122,80 (-122,91)	576,27	7028,69	-1499,18	22,62	22,62	12,20
4	4,95	-208,53 (-283,27)	538,53	2647,47	-1392,60	22,62	22,62	4,92
5	6,50	-455,95 (-589,00)	498,27	717,56	-848,23	22,62	22,62	1,44

Verifich	e taglio						
N°	X	A_{sw}	V	V_{Rd}	V_{Rsd}	V_{Rcd}	FS
1	0,50	0,00	357,02	425,94	0,00	0,00	1.193
2	1,95	0,00	162,79	351,47	0,00	0,00	2.159
3	3,50	0,00	0,18	345,92	0,00	0,00	1929.894
4	4,95	0,00	-112,99	340,72	0,00	0,00	3.015
5	6,50	0,00	-201,14	335,17	0,00	0,00	1.666

Verifica sezioni piedritto destro [Combinazione n° 1 - SLU (Approccio 2)]

Base sezione B = 100 cm Altezza sezione H = 80,00 cm

N°	Х	M	N	N_u	M_u	A_{fi}	A_{fs}	CS
1	0,50	-563,87 (-563,87)	666,25	2064,92	-1747,60	22,62	45,24	3,10
2	1,95	-216,69 (-312,88)	628,51	2907,85	-1447,54	22,62	22,62	4,63
3	3,50	-123,36 (-134,74)	588,25	6724,86	-1540,36	22,62	22,62	11,43
4	4,95	-234,33 (-320,58)	550,51	2239,84	-1304,32	22,62	22,62	4,07
5	6,50	-508,67 (-563,87)	510,25	788,35	-871,19	22,62	22,62	1,55
Verifich	e taglio							
N°	Х	A_{sw}	V	V_{Rd}	V_{Rsd}	V_{Rcd}		FS

N°	x	A_{sw}	V	V_{Rd}	V_{Rsd}	V_{Rcd}	FS
1	0,50	0,00	-339,63	427,59	0,00	0,00	1.259
2	1,95	0,00	-145,40	353,12	0,00	0,00	2.429
3	3,50	0,00	17,21	347,57	0,00	0,00	20.197
4	4,95	0,00	130,38	342,37	0,00	0,00	2.626
5	6.50	0.00	218.53	336.82	0.00	0.00	1.541

Verifica sezioni fondazione [Combinazione n° 2 - SLU (Approccio 2)]

Base sezione B = 100 cmAltezza sezione H = 100,00 cm

Verifich	e presso-fle	<u>ssione</u>						
N°	х	M	N	Nu	Mu	A_{fi}	A_{fs}	cs
1	0,00	0,00 (-4,83)	-6,93	-458,23	-585,60	22,62	22,62	66,13
2	2,67	-248,26 (-533,31)	336,50	676,16	-1071,61	22,62	22,62	2,01
3	5,30	-703,61 (-703,63)	336,50	471,80	-986,54	22,62	22,62	1,40
4	8,00	-255,03 (-551,26)	336,50	646,63	-1059,32	22,62	22,62	1,92
5	10,60	0,00 (5,14)	6,11	817,42	-1138,65	45,24	22,62	133,75

Secondo stralcio funzionale: Matelica Nord – Matelica Sud/Castelra
imondo Nord

Opera	Tratto	Settore	CEE	WBS	ld. doc.	N. prog.	Rev.	Pag. di Pag.
L0703	212	Е	38	O13800	REL	01	Α	98 di 168

NI°	e taglio	Δ.	V	V	V	.,		
N°	Х	A _{sw}	V	V _{Rd}	V _{Rsd}	V _{Rcd}		FS
1	0,00	0,00	5,74	299,75	0,00	0,00		52.197
2	2,67	•	-338,74	347,92	0,00	0,00		1.027
3	5,30	0,00	-1,06	347,92	0,00	0,00		328.696
4	8,00	0,00	352,03	347,92	0,00	0,00		0.988
5	10,60	0,00	-6,11	301,58	0,00	0,00		49.339
		verso [Combinazione	n° 2 - SLU (Appr	occio 2)]				
Base sea		B = 100 cm						
Altezza	sezione	H = 100,00 cm						
Verifich	e presso-fle	<u>essione</u>						
N°	Х	M		Nu	Mu	A_{fi}	A_{fs}	CS
1	0,90	-480,49 (-520,03)	218,69	402,79	-957,81	22,62	22,62	1,84
2	3,14	331,71 (538,04)	218,69	386,56	951,06	22,62	22,62	1,77
3	5,30	591,44 (591,44)	•	345,31	933,88	22,62	22,62	1,58
4	7,46	312,31 (526,21)	218,69	397,07	955,43	22,62	22,62	1,82
5	9,70	-520,03 (-520,03)	218,69	402,79	-957,81	22,62	22,62	1,84
Verifich	e taglio							
N°	Х	A_{sw}	V	V_{Rd}	V_{Rsd}	V_{Rcd}		FS
1	0,90	0,00	474,03	331,40	0,00	0,00		0.699
2	3,14	0,00	245,19	331,40	0,00	0,00		1.352
	5,30	0,00	-4,49	331,40	0,00	0,00		73.747
3	•							
4	7,46	0,00	-254,18	331,40	0,00	0,00		1.304
	•	0,00	-254,18 -483,01	331,40 331,40	0,00 0,00	0,00 0,00		1.304 0.686
4 5	7,46 9,70	0,00	-483,01	331,40				
4 5 Verifica	7,46 9,70 sezioni pie	0,00 0,00 edritto sinistro [Combi	-483,01	331,40				
4 5 Verifica Base sea	7,46 9,70 sezioni pie	0,00 0,00	-483,01	331,40				
4 5 Verifica Base sez Altezza	7,46 9,70 sezioni pie zione sezione	0,00 0,00 edritto sinistro [Combi B = 100 cm H = 80,00 cm	-483,01	331,40				
4 5 Verifica Base sez Altezza	7,46 9,70 sezioni pie zione sezione e presso-fle	0,00 0,00 edritto sinistro [Combi B = 100 cm H = 80,00 cm	-483,01 nazione n° 2 - SI	331,40 LU (Approccio 2)]	0,00	0,00	Arc	0.686
4 5 Verifica Base sez Altezza : Verifich N°	7,46 9,70 sezioni pie zione sezione e presso-fle X	0,00 0,00 edritto sinistro [Combi B = 100 cm H = 80,00 cm	-483,01 nazione n° 2 - Si	331,40 LU (Approccio 2)] Nu	0,00	0,00 A fi	A fs 45.24	0.686 CS
4 5 Verifica Base sea Altezza : Verifich N° 1	7,46 9,70 sezioni pie zione sezione e presso-fle X 0,50	0,00 0,00 edritto sinistro [Combi B = 100 cm H = 80,00 cm essione M -585,73 (-585,73)	-483,01 nazione n° 2 - Sl N 630,03	331,40 LU (Approccio 2)] Nu 1831,04	0,00 Mu -1702,30	0,00 A fi 22,62	45,24	0.686 CS 2,91
4 5 Verifica Base sea Altezza : Verifich: N° 1 2	sezioni pie zione sezione e presso-fle X 0,50 1,95	0,00 0,00 edritto sinistro [Combi B = 100 cm H = 80,00 cm essione M -585,73 (-585,73) -231,45 (-331,60)	-483,01 nazione n° 2 - Sl N 630,03 592,29	331,40 LU (Approccio 2)] Nu 1831,04 2386,44	0,00 M _u -1702,30 -1336,07	0,00 A _{fi} 22,62 22,62	45,24 22,62	0.686 Cs 2,91 4,03
4 5 Verifica Base sea Altezza: Verifich N° 1 2 3	sezioni pie zione sezione e presso-fle X 0,50 1,95 3,50	0,00 0,00 edritto sinistro [Combi B = 100 cm H = 80,00 cm essione M -585,73 (-585,73) -231,45 (-331,60) -127,01 (-132,88)	-483,01 nazione n° 2 - Sl N 630,03 592,29 552,03	331,40 LU (Approccio 2)] Nu 1831,04 2386,44 6516,59	M _u -1702,30 -1336,07 -1568,59	0,00 A fi 22,62 22,62 22,62	45,24 22,62 22,62	0.686 CS 2,91 4,03 11,80
4 5 Verifica Base sea Altezza : Verifich: N° 1 2	sezioni pie zione sezione e presso-fle X 0,50 1,95	0,00 0,00 edritto sinistro [Combi B = 100 cm H = 80,00 cm essione M -585,73 (-585,73) -231,45 (-331,60)	-483,01 nazione n° 2 - Sl N 630,03 592,29 552,03 514,29	331,40 LU (Approccio 2)] Nu 1831,04 2386,44	0,00 M _u -1702,30 -1336,07	0,00 A _{fi} 22,62 22,62	45,24 22,62	0.686 CS 2,91 4,03 11,80 4,26
4 5 Serifica	7,46 9,70 sezioni pie zione sezione e presso-fle X 0,50 1,95 3,50 4,95 6,50	0,00 0,00 edritto sinistro [Combi B = 100 cm H = 80,00 cm essione M -585,73 (-585,73) -231,45 (-331,60) -127,01 (-132,88) -224,28 (-303,55)	-483,01 nazione n° 2 - Sl N 630,03 592,29 552,03 514,29	331,40 LU (Approccio 2)] Nu 1831,04 2386,44 6516,59 2192,39	M _u -1702,30 -1336,07 -1568,59 -1294,05	0,00 A _{fi} 22,62 22,62 22,62 22,62	45,24 22,62 22,62 22,62	0.686 CS 2,91 4,03 11,80 4,26
4 5 Verifica Base sea Altezza : Verifich N° 1 2 3 4 5	7,46 9,70 sezioni pie zione sezione e presso-fle X 0,50 1,95 3,50 4,95 6,50	0,00 0,00 edritto sinistro [Combi B = 100 cm H = 80,00 cm -585,73 (-585,73) -231,45 (-331,60) -127,01 (-132,88) -224,28 (-303,55) -480,49 (-585,73)	-483,01 nazione n° 2 - Sl N 630,03 592,29 552,03 514,29	331,40 LU (Approccio 2)] Nu 1831,04 2386,44 6516,59 2192,39	M _u -1702,30 -1336,07 -1568,59 -1294,05	0,00 A _{fi} 22,62 22,62 22,62 22,62	45,24 22,62 22,62 22,62	0.686 CS 2,91 4,03 11,80 4,26
4 5 Verifica Base sea Altezza : Verifich N° 1 2 3 4 5	sezioni pie zione sezione e presso-fle X 0,50 1,95 3,50 4,95 6,50	0,00 0,00 edritto sinistro [Combi B = 100 cm H = 80,00 cm essione M -585,73 (-585,73) -231,45 (-331,60) -127,01 (-132,88) -224,28 (-303,55)	-483,01 nazione n° 2 - Si N 630,03 592,29 552,03 514,29 474,03	Nu 1831,04 2386,44 6516,59 2192,39 675,39	Mu -1702,30 -1336,07 -1568,59 -1294,05 -834,55	0,00 A _{fi} 22,62 22,62 22,62 22,62 V _{Rcd}	45,24 22,62 22,62 22,62	CS 2,91 4,03 11,80 4,26 1,42
4 5 Verifica Base sea Altezza : Verifich N° 1 2 3 4 5 Verifich N°	sezioni pie zione sezione e presso-fle X 0,50 1,95 3,50 4,95 6,50	0,00 0,00 edritto sinistro [Combi B = 100 cm H = 80,00 cm essione M -585,73 (-585,73) -231,45 (-331,60) -127,01 (-132,88) -224,28 (-303,55) -480,49 (-585,73)	-483,01 nazione n° 2 - Sl N 630,03 592,29 552,03 514,29 474,03	Nu 1831,04 2386,44 6516,59 2192,39 675,39	Mu -1702,30 -1336,07 -1568,59 -1294,05 -834,55	0,00 A _{fi} 22,62 22,62 22,62 22,62 22,62	45,24 22,62 22,62 22,62	CS 2,91 4,03 11,80 4,26 1,42
4 5 Verifica Base sea Altezza : Verifich N° 1 2 3 4 5 Verifich N°	sezioni pie zione sezione e presso-fle X 0,50 1,95 3,50 4,95 6,50 e taglio X 0,50	0,00 0,00 0,00 edritto sinistro [Combi B = 100 cm H = 80,00 cm -585,73 (-585,73) -231,45 (-331,60) -127,01 (-132,88) -224,28 (-303,55) -480,49 (-585,73) Asw 0,00	-483,01 nazione n° 2 - Sl N 630,03 592,29 552,03 514,29 474,03 V 343,43	Nu 1831,04 2386,44 6516,59 2192,39 675,39 VRd 422,60	Mu -1702,30 -1336,07 -1568,59 -1294,05 -834,55	0,00 A _{fi} 22,62 22,62 22,62 22,62 V _{Rcd} 0,00	45,24 22,62 22,62 22,62	CS 2,91 4,03 11,80 4,26 1,42 FS 1.231
4 5 Verifica Base sea Altezza : Verifich: N° 1 2 3 4 5 Verifich: N° 1 2 3 4 5	7,46 9,70 sezioni pie zione sezione e presso-fle X 0,50 1,95 3,50 4,95 6,50 e taglio X 0,50 1,95	0,00 0,00 0,00 Redritto sinistro [Combi B = 100 cm H = 80,00 cm -585,73 (-585,73) -231,45 (-331,60) -127,01 (-132,88) -224,28 (-303,55) -480,49 (-585,73) Asw 0,00 0,00 0,00 0,00	-483,01 nazione n° 2 - Sl N 630,03 592,29 552,03 514,29 474,03 V 343,43 151,40	Nu 1831,04 2386,44 6516,59 2192,39 675,39 VRd 422,60 348,13	Mu -1702,30 -1336,07 -1568,59 -1294,05 -834,55 V _{Rsd} 0,00 0,00	O,00 A _{fi} 22,62 22,62 22,62 V _{Rcd} 0,00 0,00	45,24 22,62 22,62 22,62	CS 2,91 4,03 11,80 4,26 1,42 FS 1.231 2.299

Verifiche taglio X

2.1.2 PEDEMONTANA DELLE MARCHE

Secondo stralcio funzionale: Matelica Nord – Matelica Sud/Castelraimondo Nord

Opera	Tratto	Settore	CEE	WBS	ld. doc.	N. prog.	Rev.	Pag. di Pag.	
L0703	212	Е	38	O13800	REL	01	Α	99 di 168	

 \textbf{V}_{Rcd}

FS

	zione sezione	B = 100 cm H = 80,00 cm						
	e presso-fle	·						
N°	Х	M	N	Nu	M_u	Afi	A_{fs}	CS
1	0,50	-547,03 (-547,03)	639,01	2034,60	-1741,73	22,62	45,24	3,18
2	1,95	-211,68 (-303,20)	601,27	2847,63	-1435,95	22,62	22,62	4,74
3	3,50	-127,43 (-141,93)	561,01	6302,09	-1594,30	22,62	22,62	11,23
4	4,95	-243,63 (-331,53)	523,27	1926,88	-1220,82	22,62	22,62	3,68
5	6,50	-520,03 (-547,03)	483,01	761,57	-862,50	22,62	22,62	1,58
Verifiche	e taglio							
N°	<u>с tugпо</u> Х	Asw	V	V_{Rd}	V_{Rsd}	V_{Rcd}		FS
1	0,50		-330,39	423,84	0,00	0,00		1.283
2	1,95	•	-138,36	349,37	0,00	0,00		2.525
3	3,50	0,00	21,91	343,82	0,00	0,00		15.694
4	4,95	0,00	132,88	338,62	0,00	0,00		2.548
5	6,50	0,00	218,69	333,07	0,00	0,00		1.523
Verifica Base sez Altezza s	zione	dazione [Combinazio B = 100 cm H = 100,00 cm	ne n° 3 - SLU (Aj	oproccio 2)]				
		,						
Verifiche N°	e presso-fle X	<u>ssione</u> M	N.	N	N4	Δ.	Α.	cc
			N 48.50	N _u	M _u	A _{fi}	A _{fs}	CS 24.16
1 2	0,00	0,00 (4,38)	-48,59	-1173,68	-266,26	22,62	22,62	24,16
3	2,67 5,30	-157,23 (-436,99) -623,08 (-624,90)	363,61 363,61	1005,89 606,72	-1208,88 -1042,71	22,62 22,62	22,62 22,62	2,77 1,67
4	8,00	-245,04 (-507,96)	363,61	805,69	-1042,71	22,62	22,62	2,22
5	10,60	0,00 (4,67)	47,70	11903,47	-2108,63	45,24	22,62	249,54
	e taglio							
				1/				FC
N°	x	A _{sw}	V 5.24	V _{Rd}	V _{Rsd}	V _{Rcd}		FS 50 424
N° 1	X 0,00	0,00	5,21	293,91	0,00	0,00		56.424
1 2	X 0,00 2,67	0,00 0,00	5,21 -332,45	293,91 351,72	0,00 0,00	0,00 0,00		56.424 1.058
N° 1 2 3	X 0,00 2,67 5,30	0,00 0,00 0,00	5,21 -332,45 -15,86	293,91 351,72 351,72	0,00 0,00 0,00	0,00 0,00 0,00		56.424 1.058 22.177
N° 1 2 3 4	X 0,00 2,67 5,30 8,00	0,00 0,00 0,00 0,00	5,21 -332,45 -15,86 312,44	293,91 351,72 351,72 351,72	0,00 0,00 0,00 0,00	0,00 0,00 0,00 0,00		56.424 1.058 22.177 1.126
N° 1 2 3	X 0,00 2,67 5,30	0,00 0,00 0,00	5,21 -332,45 -15,86	293,91 351,72 351,72	0,00 0,00 0,00	0,00 0,00 0,00		56.424 1.058 22.177
N° 1 2 3 4 5	x 0,00 2,67 5,30 8,00 10,60	0,00 0,00 0,00 0,00	5,21 -332,45 -15,86 312,44 -5,55	293,91 351,72 351,72 351,72 307,42	0,00 0,00 0,00 0,00	0,00 0,00 0,00 0,00		56.424 1.058 22.177 1.126
N° 1 2 3 4 5	x 0,00 2,67 5,30 8,00 10,60 sezioni tra	0,00 0,00 0,00 0,00 0,00	5,21 -332,45 -15,86 312,44 -5,55	293,91 351,72 351,72 351,72 307,42	0,00 0,00 0,00 0,00	0,00 0,00 0,00 0,00		56.424 1.058 22.177 1.126
N°	x 0,00 2,67 5,30 8,00 10,60 sezioni tra	0,00 0,00 0,00 0,00 0,00 0,00	5,21 -332,45 -15,86 312,44 -5,55	293,91 351,72 351,72 351,72 307,42	0,00 0,00 0,00 0,00	0,00 0,00 0,00 0,00		56.424 1.058 22.177 1.126
N° 1 2 3 4 5	x 0,00 2,67 5,30 8,00 10,60 sezioni tra	0,00 0,00 0,00 0,00 0,00 0,00 verso [Combinazione B = 100 cm H = 100,00 cm	5,21 -332,45 -15,86 312,44 -5,55	293,91 351,72 351,72 351,72 307,42	0,00 0,00 0,00 0,00	0,00 0,00 0,00 0,00		56.424 1.058 22.177 1.126
N° 1 2 3 4 5	x 0,00 2,67 5,30 8,00 10,60 sezioni tra	0,00 0,00 0,00 0,00 0,00 0,00 verso [Combinazione B = 100 cm H = 100,00 cm	5,21 -332,45 -15,86 312,44 -5,55	293,91 351,72 351,72 351,72 307,42	0,00 0,00 0,00 0,00	0,00 0,00 0,00 0,00	Afs	56.424 1.058 22.177 1.126 55.429
N° 1 2 3 4 5 Verifica Base sez Altezza s	X 0,00 2,67 5,30 8,00 10,60 sezioni tra zione sezione e presso-fle X	0,00 0,00 0,00 0,00 0,00 0,00 verso [Combinazione B = 100 cm H = 100,00 cm	5,21 -332,45 -15,86 312,44 -5,55 n° 3 - SLU (Appr	293,91 351,72 351,72 351,72 307,42	0,00 0,00 0,00 0,00 0,00	0,00 0,00 0,00 0,00 0,00	A fs 22,62	56.424 1.058 22.177 1.126 55.429
N° 1 2 3 4 5 Verifica Base sez Altezza s Verifiche N°	x 0,00 2,67 5,30 8,00 10,60 sezioni tra	0,00 0,00 0,00 0,00 0,00 0,00 verso [Combinazione B = 100 cm H = 100,00 cm	5,21 -332,45 -15,86 312,44 -5,55 n° 3 - SLU (Appr	293,91 351,72 351,72 351,72 307,42 occio 2]]	0,00 0,00 0,00 0,00 0,00	0,00 0,00 0,00 0,00 0,00		56.424 1.058 22.177 1.126 55.429 CS 2,14
N° 1 2 3 4 5 Verifica Base sez Altezza s Verifiche N° 1	x 0,00 2,67 5,30 8,00 10,60 sezioni tra zione sezione e presso-fle X 0,90 3,14	0,00 0,00 0,00 0,00 0,00 0,00 verso [Combinazione B = 100 cm H = 100,00 cm ssione M -351,93 (-455,12) 313,12 (466,21)	5,21 -332,45 -15,86 312,44 -5,55 n° 3 - SLU (Appr N 205,91 205,91	293,91 351,72 351,72 351,72 307,42 occio 2)]	0,00 0,00 0,00 0,00 0,00 M u -973,48	0,00 0,00 0,00 0,00 0,00 0,00	22,62 22,62	56.424 1.058 22.177 1.126 55.429 CS 2,14 2,08
N° 1 2 3 4 5 Verifica Base sez Altezza s Verifiche N° 1 2	x 0,00 2,67 5,30 8,00 10,60 sezioni tra zione sezione e presso-fle X 0,90	0,00 0,00 0,00 0,00 0,00 0,00 verso [Combinazione B = 100 cm H = 100,00 cm ssione M -351,93 (-455,12)	5,21 -332,45 -15,86 312,44 -5,55 n° 3 - SLU (Appr N 205,91	293,91 351,72 351,72 351,72 307,42 occio 2)]	0,00 0,00 0,00 0,00 0,00 0,00 M _u -973,48 968,14	0,00 0,00 0,00 0,00 0,00 0,00	22,62	56.424 1.058 22.177 1.126 55.429

 V_{Rd}

Secondo stralcio funzionale: Matelica Nord – Matelica Sud/Castelraimondo Nord

\ ma	lanaha IIm	bria S.p.A.									
	iarche em	pria a.p.A.	0	Т	C-#	CEE	WBS		N1	D	Pag. di Pag.
•			Opera	Tratto	Settore	CEE		ld. doc.	N. prog.	Rev.	100 di
			L0703	212	E	38	O13800	REL	01	Α	168
			•	•	•		•		•		
	0.00		407.07	222.50				0.00			70
1	0,90	0,00	427,87	329,60		0,0		0,00		0.7	
2 3	3,14	0,00	181,92	329,60		0,0		0,00 0,00		1.8 22.1	
3 4	5,30 7,46	0,00 0,00	-14,91 -211,74	329,60 329,60		0,0 0,0		0,00		1.5	
5	9,70	0,00	-211,74 -416,21	329,60		0,0		0,00		0.7	
3	3,70	0,00	-410,21	323,00	,	0,0	50	0,00		0.7	<i>32</i>
Vorific	o cozioni nic	dritto sinistro [Comb	ninaziono nº 2	SIII / Appr	ossio 2\1						
vernica	a sezioni pie	aritto sinistro (Comi	<u>inazione n 3 - </u>	SLU (Appri	<u> </u>						
Base se	zione	B = 100 cm									
Altezza	sezione	H = 80,00 cm									
Verifich	ne presso-fle	essione essione									
N°	Х	N	n N		N_{u}		M_{u}	A_{fi}	A_{fs}		CS
1	0,50	-662,67 (-662,67			418,19	-1609	-	22,62	45,24		2,43
2	1,95	-220,69 (-355,28			837,71	-1195	-	22,62	22,62		3,36
3	3,50	-49,43 (-66,22	•		913,93	-1166	-	22,62	22,62		7,62
4	4,95	-109,10 (-176,77			351,86	-1643	-	22,62	22,62		9,30
5	6,50	-351,93 (-488,14	.) 427,87		753,80	-859	9,98 2	22,62	22,62		1,76
Verifich	ne taglio										
N°	Х	A_{sw}	V	V_{R}	d	V	Rsd	V_{Rcd}			FS
1	0,50	0,00	412,20	416,24	1	0,0	00	0,00		1.0	10
2	1,95	0,00	203,46	341,77	7	0,0	00	0,00		1.6	80
3	3,50	0,00	25,38	336,22	2	0,0	00	0,00		13.2	46
4	4,95	0,00	-102,29	331,02		0,0		0,00		3.2	
5	6,50	0,00	-205,91	325,47	7	0,0	00	0,00		1.5	81
Verifica	a sezioni pie	dritto destro [Comb	inazione n° 3 - S	LU (Appro	ccio 2)]						
Base se		B = 100 cm									
Altezza	sezione	H = 80,00 cm									
	ne presso-fle										
N°	Х	Ν			Nu		Mu	Afi	Afs		CS
1	0,50	-477,00 (-477,00			105,96	-1755		22,62	45,24		3,68
2	1,95	-157,88 (-244,19			314,16	-1514		22,62	22,62		6,20
3	3,50	-80,41 (-95,46			441,71	-1437	-	22,62	22,62		5,06
4	4,95 6.50	-193,06 (-277,16			084,18	-1265	-	22,62	22,62		4,57 1.80

749,03

 $\boldsymbol{V}_{\text{Rd}}$

414,63

340,16

334,61

329,41

323,86

-858,43

 \textbf{V}_{Rsd}

0,00

0,00

0,00

0,00

0,00

22,62

 \textbf{V}_{Rcd}

0,00

0,00

0,00

0,00

0,00

22,62

1,80

FS

1.313

2.607

14.701

2.591

1.573

Verifica sezioni	fondaziona [(°omhinazione n°	1 - SIII	(Approccio 2)1

-455,12 (-477,00)

 \mathbf{A}_{sw}

0,00

0,00

0,00

0,00

0,00

416,21

٧

-315,91

-130,47

22,76

127,14

205,91

Base sezione B = 100 cm Altezza sezione H = 100,00 cm

Verifiche presso-flessione

5

1 2

3

4

5

Verifiche taglio N°

6,50

Х

0,50

1,95

3,50

4,95

Secondo stralcio funzionale: Matelica Nord – Matelica Sud/Castelra
imondo Nord

W -	SUABL	iisaisky									
	Varche Um	bria 8.p.A.									Deve eli Deve
		-	Opera	Tratto	Settore	CEE	WBS	ld. doc.	N. prog.	Rev.	Pag. di Pag. 101 di
			L0703	212	Е	38	O13800	REL	01	Α	
											168
N°	Х	M	N		N_u		Mu	A_{fi}	A_{fs}		CS
1	0,00	0,00 (-4,39)	-36,53	-1	078,61	-308	3,70	22,62	22,62	29	9,53
2	2,67	-179,28 (-451,69)	348,28		897,25	-1163	3,65	22,62	22,62	:	2,58
3	5,30	-626,53 (-627,51)	348,28		570,31	-1027	,55 2	22,62	22,62	:	1,64
4	8,00	-240,09 (-503,75)	348,28		767,06	-1109		22,62	22,62		2,20
5	10,60	0,00 (4,60)	35,68		352,47	-2473	-	15,24	22,62		0,11
3	10,00	0,00 (4,00)	33,00	10	332,47	-24/3	-	+3,24	22,02	250	5,11
Vorific	he taglio										
N°			.,	.,		.,		.,			FC
	Х	Asw	V	VR		VR		V _{Rcd}			FS
1	0,00		5,21	295,60		0,0		0,00		56.7	
2	2,67	·	3,72	349,57		0,0		0,00		1.0	
3	5,30		0,74	349,57	7	0,0	00	0,00		32.5	42
4	8,00	0,00 31	3,31	349,57	7	0,0	00	0,00		1.1	16
5	10,60	0,00 -	5,46	305,73	3	0,0	00	0,00		55.9	53
Verific	a sezioni tra	verso [Combinazione n° 4	1 - SLU (App	roccio 2)1							
			. 0-0 (
Base s	oziono	B = 100 cm									
Aitezza	a sezione	H = 100,00 cm									
	he presso-fle										
N°	Х	M	N		N_u		Mu	A_{fi}	A_{fs}		CS
1	0,90	-402,47 (-479,87)	209,22		420,90	-965	5,35 2	22,62	22,62	:	2,01
2	3,14	263,93 (420,16)	209,22		496,35	996		22,62	22,62		2,37
3	5,30	452,20 (452,64)	209,22		452,25	978		22,62	22,62		2,16
4	7,46	215,67 (390,71)	209,22		544,49	1016		22,62	22,62		2,60
5											
5	9,70	-479,87 (-479,87)	209,22		420,90	-965	,,55 2	22,62	22,62	•	2,01
	he taglio										
N°	Х	A_{sw}	V	V_{Ro}		VR		V_{Rcd}			FS
1	0,90	0,00 42	1,23	330,07	7	0,0	00	0,00		0.7	84
2	3,14	0,00 18	5,65	330,07	7	0,0	00	0,00		1.7	78
3	5,30		1,18	330,07	7	0,0	00	0,00		29.5	18
4	7,46		8,01	330,07		0,0		0,00		1.5	
5	9,70	•	2,48	330,07		0,0		0,00		0.8	
,	3,70	0,00	2,40	330,07	'	0,0	,,	0,00		0.0	50
verific	ca sezioni pie	dritto sinistro [Combinaz	ione n° 4 - S	LU (Appro	occio 2)]						
Base s	ezione	B = 100 cm									
Altezza	a sezione	H = 80,00 cm									
Verific	he presso-fle	essione									
N°	Х	M	N		Nu		Mu	Afi	A_{fs}		cs
1	0,50	-621,13 (-621,13)	577,23	1	523,76	-1639		22,62	45,24		2,64
2	1,95	-214,67 (-335,00)	539,48		998,99	-1039		22,62 22,62	22,62		2,0 4 3,71
			-		-			-			
3	3,50	-71,99 (-78,62)	499,23		250,97	-1299	-	22,62	22,62		6,53
4	4,95	-149,71 (-223,67)	461,48		026,81	-1467	-	22,62	22,62		6,56
5	6,50	-402,47 (-540,87)	421,23		641,33	-823	3,50	22,62	22,62	:	1,52
Verific	he taglio										
N°	Х	Asw	V	VR	4	VR	led.	V_{Rcd}			FS
1	0,50		4,81	415,32		0,0		0,00		1.0	
2	1,95	•	4,81 1,90	340,85		0,0		0,00		1.8	
		•	-	-		-		-			
3	3,50	•	0,04	335,30		0,0		0,00		33.4	
4	4,95	0,00 -11	1,82	330,10	J	0,0	JU	0,00		2.9	52

Secondo stralcio funzionale: Matelica Nord – Matelica Sud/Castelraimondo Nord

Opera L0703	Tratto 212	Settore E	CEE 38	WBS O13800	ld. doc. REL	N. prog. 01	Rev. A	Pag. di Pag. 102 di 168
----------------	---------------	--------------	-----------	---------------	-----------------	----------------	-----------	-------------------------------

5 6,50 0,00 -209,22 324,55 0,00 0,00 1.551

Verifica sezioni piedritto destro [Combinazione n° 4 - SLU (Approccio 2)]

Base sezione B = 100 cm Altezza sezione H = 80,00 cm

Verifiche presso-flessione

N°	Х	M	N	N_u	M_u	A_{fi}	A_{fs}	CS
1	0,50	-481,88 (-481,88)	568,48	2060,72	-1746,79	22,62	45,24	3,62
2	1,95	-167,57 (-251,68)	530,74	3129,00	-1483,81	22,62	22,62	5,90
3	3,50	-95,22 (-112,47)	490,48	6720,36	-1540,97	22,62	22,62	13,70
4	4,95	-212,68 (-298,97)	452,74	1789,77	-1181,89	22,62	22,62	3,95
5	6,50	-479,87 (-481,88)	412,48	729,34	-852,05	22,62	22,62	1,77

Verifiche taglio

N°	X	A_{sw}	V	V_{Rd}	V_{Rsd}	V_{Rcd}	FS
1	0,50	0,00	-312,60	414,12	0,00	0,00	1.325
2	1,95	0,00	-127,16	339,65	0,00	0,00	2.671
3	3,50	0,00	26,07	334,10	0,00	0,00	12.814
4	4,95	0,00	130,45	328,90	0,00	0,00	2.521
5	6,50	0,00	209,22	323,35	0,00	0,00	1.545

<u>Verifica sezioni fondazione [Combinazione n° 5 - SLU (Approccio 2) - Sisma Vert. positivo]</u>

Base sezione B = 100 cm Altezza sezione H = 100,00 cm

Verifiche	presso-flessione

N°	Х	M	N	Nu	Mu	A_{fi}	A_{fs}	CS
1	0,00	0,00 (-0,31)	-282,77	-1635,49	-60,14	22,62	22,62	5,80
2	2,67	229,48 (525,04)	324,49	657,48	1063,84	22,62	22,62	2,03
3	5,30	-456,23 (-572,71)	343,97	632,75	-1053,54	22,62	22,62	1,84
4	8,00	-477,25 (-572,71)	363,93	682,68	-1074,33	22,62	22,62	1,88
5	10,60	0,00 (6,95)	281,94	13797,65	168,76	45,24	22,62	49,05

Verifiche taglio

N°	x	A_{sw}	V	V_{Rd}	V_{Rsd}	V_{Rcd}	FS
1	0,00	0,00	0,37	261,15	0,00	0,00	704.656
2	2,67	0,00	-351,23	346,24	0,00	0,00	0.986
3	5,30	0,00	-148,92	348,97	0,00	0,00	2.343
4	8,00	0,00	166,87	351,77	0,00	0,00	2.108
5	10.60	0.00	-8 26	418 35	0.00	0.00	50 621

<u>Verifica sezioni traverso [Combinazione n° 5 - SLU (Approccio 2) - Sisma Vert. positivo]</u>

Base sezione B = 100 cmAltezza sezione H = 100,00 cm

N°	X	M	N	Nu	Mu	A_{fi}	A_{fs}	CS
1	0,90	-50,91 (-260,51)	199,63	889,09	-1160,26	22,62	22,62	4,45
2	3,14	321,91 (369,05)	216,20	612,19	1044,99	22,62	22,62	2,83
3	5,30	330,16 (369,05)	232,16	673,40	1070,47	22,62	22,62	2,90

Secondo stralcio funzionale: Matelica Nord – Matelica Sud/Castelraimondo

	Marche Umbria S.p.A.										
	arche Umi	oria 8.p.A.	Opera L0703	Tratto 212	Settore E	CEE 38	WBS () 13800	ld. doc. REL	N. prog. 01	Rev. A	Pag. di Pag. 103 di 168
4	7,46	-5,58 (-203,56) 248,12	1	928,19	-1581	.,88 2	2,62	22,62		7,77
5	9,70	-718,61 (-718,61	264,69		343,75	-933	,23 2	2,62	22,62		1,30
Verifich	e taglio										
N°	Х	A_{sw}	V	V_{R}	d	V	tsd	V_{Rcd}			FS
1	0,90	0,00	249,09	328,72	2	0,0	00	0,00		1.3	20
2	3,14	0,00	83,51	331,05	5	0,0	00	0,00		3.9	64
3	5,30	0,00	-75,87	333,29	9	0,0	00	0,00		4.3	93
4	7,46	0,00	-235,26	335,52	2	0,0	00	0,00		1.4	26
5	9,70	0,00	-400,83	337,85	5	0,0	00	0,00		0.8	43

<u>Verifica sezioni piedritto sinistro [Combinazione nº 5 - SLU (Approccio 2) - Sisma Vert. positivo]</u>

Base sezione B = 100 cm H = 80,00 cmAltezza sezione

Verifich	e presso-fle	<u>ssione</u>						
N°	X	M	N	N_u	M_{u}	A_{fi}	A_{fs}	CS
1	0,50	-977,67 (-977,67)	386,83	537,65	-1358,86	22,62	45,24	1,39
2	1,95	-299,79 (-532,36)	353,50	520,89	-784,43	22,62	22,62	1,47
3	3,50	71,70 (144,26)	317,96	3350,32	1520,11	22,62	22,62	10,54
4	4,95	137,45 (144,26)	284,63	2822,32	1430,47	22,62	22,62	9,92
5	6,50	-50,91 (-182,96)	249,09	1495,12	-1098,22	22,62	22,62	6,00
<u>Verifich</u>	e taglio							
N°	Х	A_{sw}	V	V_{Rd}	V_{Rsd}	V_{Rcd}		FS
1	0,50	0,00	587,55	389,08	0,00	0,00		0.662
2	1,95	0,00	351,57	315,22	0,00	0,00		0.897
3	3,50	0,00	134,15	310,32	0,00	0,00		2.313

305,73

300,83

0,00

0,00

0,00

0,00

7.744

1.507

<u>Verifica sezioni piedritto destro [Combinazione nº 5 - SLU (Approccio 2) - Sisma Vert. positivo]</u>

-39,48

-199,63

B = 100 cm Base sezione

4,95

6,50

0,00

0,00

4

5

Altezza	sezione	H = 80,00 cm						
Verifich	e presso-fle	<u>essione</u>						
N°	Х	N	1 N	N_{u}	M_u	A_{fi}	A_{fs}	CS
1	0,50	8,83 (61,16) 538,58	10798,37	1226,31	22,62	45,24	20,05
2	1,95	54,71 (61,16) 505,25	9172,37	1110,36	22,62	22,62	18,15
3	3,50	-84,85 (-178,49) 469,71	4319,33	-1641,32	22,62	22,62	9,20
4	4,95	-345,33 (-486,41) 436,38	778,82	-868,09	22,62	22,62	1,78
5	6,50	-718,61 (-718,61) 400,83	419,14	-751,43	22,62	22,62	1,05
Verifich	e taglio							
N°	Х	A_{sw}	V	V_{Rd}	V_{Rsd}	V_{Rcd}		FS
1	0,50	0,00	-101,22	340,73	0,00	0,00		3.366
2	1,95	0,00	32,84	336,13	0,00	0,00		10.234
3	3,50	0,00	141,55	331,24	0,00	0,00		2.340
4	4,95	0,00	213,26	326,64	0,00	0,00		1.532
5	6,50	0,00	264,69	321,74	0,00	0,00		1.216

Secondo stralcio funzionale: Matelica Nord – Matelica Sud/Castelraimondo Nord

Opera L0703	Tratto 212	Settore E	CEE 38	WBS 013800	ld. doc. REL	N. prog. 01	Rev. A	Pag. di Pag. 104 di 168
----------------	---------------	--------------	-----------	---------------	-----------------	----------------	-----------	-------------------------------

<u>Verifica sezioni fondazione [Combinazione n° 6 - SLU (Approccio 2) - Sisma Vert. negativo]</u>

Base sezione B = 100 cmAltezza sezione H = 100,00 cm

Verifich	e presso-fle	ssione						
N°	X	M	N	Nu	Mu	A_{fi}	A_{fs}	CS
1	0,00	0,00 (0,00)	-282,77	-1637,90	-59,06	22,62	22,62	5,81
2	2,67	269,86 (539,26)	321,15	625,66	1050,59	22,62	22,62	1,95
3	5,30	-376,80 (-504,10)	340,62	742,86	-1099,38	22,62	22,62	2,18
4	8,00	-444,26 (-509,44)	360,59	792,89	-1120,21	22,62	22,62	2,20
5	10,60	0,00 (-6,20)	281,94	13789,68	177,99	45,24	22,62	49,02

Verifich	e taglio						
N°	X	A_{sw}	V	V_{Rd}	V_{Rsd}	V_{Rcd}	FS
1	0,00	0,00	0,00	261,15	0,00	0,00	4176342.071
2	2,67	0,00	-320,15	345,77	0,00	0,00	1.080
3	5,30	0,00	-151,27	348,50	0,00	0,00	2.304
4	8,00	0,00	132,58	351,30	0,00	0,00	2.650
5	10,60	0,00	-7,36	418,35	0,00	0,00	56.816

Verifica sezioni traverso [Combinazione n° 6 - SLU (Approccio 2) - Sisma Vert. negativo]

Base sezione B = 100 cmAltezza sezione H = 100,00 cm

Verifich	e presso-fle	ssione						
N°	X	<u> </u>	N	Nu	Mu	Afi	A_{fs}	CS
1	0,90	-33,88 (-216,04)	202,97	1219,19	-1297,68	22,62	22,62	6,01
2	3,14	284,41 (318,63)	219,55	763,44	1107,95	22,62	22,62	3,48
3	5,30	275,26 (318,63)	235,51	843,58	1141,31	22,62	22,62	3,58
4	7,46	-43,43 (-228,04)	251,46	1610,72	-1460,67	22,62	22,62	6,41
5	9,70	-702,27 (-702,27)	268,04	358,54	-939,39	22,62	22,62	1,34
Verifich	e taglio							
N°	X	A_{sw}	V	V_{Rd}	V_{Rsd}	V_{Rcd}		FS
1	0,90	0,00	216,47	329,19	0,00	0,00		1.521
2	3,14	0,00	67,48	331,52	0,00	0,00		4.913
3	5.30	0.00	-75.95	333.76	0.00	0.00		4.394

335,99

338,32

0,00

0,00

0,00

0,00

1.532

0.918

<u>Verifica sezioni piedritto sinistro [Combinazione nº 6 - SLU (Approccio 2) - Sisma Vert. negativo]</u>

-219,38

-368,38

Base sezione B = 100 cmAltezza sezione H = 80,00 cm

7,46

9,70

0,00

0,00

4

5

Verifiche	e presso-fle	<u>ssione</u>						
N°	X	M	N	Nu	Mu	A_{fi}	A_{fs}	CS
1	0,50	-940,56 (-940,56)	318,73	452,23	-1334,53	22,62	45,24	1,42
2	1,95	-267,54 (-497,89)	293,99	449,51	-761,28	22,62	22,62	1,53
3	3,50	98,77 (167,77)	267,60	1964,14	1231,40	22,62	22,62	7,34
4	4,95	159,66 (167,77)	242,86	1655,81	1143,85	22,62	22,62	6,82
5	6,50	-33,88 (-168,15)	216,47	1360,50	-1056,77	22,62	22,62	6,28

Secondo stralcio funzionale: Matelica Nord – Matelica Sud/Castelraimondo Nord

	Opera L0703	Tratto 212	Settore E	CEE 38	WBS 013800	ld. doc. REL	N. prog. 01	Rev. A	Pag. di Pag. 105 di 168
--	----------------	---------------	--------------	-----------	---------------	-----------------	----------------	-----------	-------------------------------

Verifich	<u>e taglio</u>						
N°	X	A_{sw}	V	V_{Rd}	V_{Rsd}	V_{Rcd}	FS
1	0,50	0,00	584,20	379,70	0,00	0,00	0.650
2	1,95	0,00	348,22	307,02	0,00	0,00	0.882
3	3,50	0,00	130,80	303,38	0,00	0,00	2.319
4	4,95	0,00	-42,83	299,97	0,00	0,00	7.005
5	6,50	0,00	-202,97	296,34	0,00	0,00	1.460

<u>Verifica sezioni piedritto destro [Combinazione nº 6 - SLU (Approccio 2) - Sisma Vert. negativo]</u>

B = 100 cm Base sezione H = 80,00 cm Altezza sezione

Verifich	e presso-fle	ssione						
N°	Х	M	N	Nu	Mu	A_{fi}	A_{fs}	CS
1	0,50	45,24 (94,01)	470,64	8528,35	1703,61	22,62	45,24	18,12
2	1,95	86,27 (94,01)	445,90	7078,46	1492,43	22,62	22,62	15,87
3	3,50	-58,48 (-154,33)	419,51	4489,00	-1651,40	22,62	22,62	10,70
4	4,95	-323,82 (-467,10)	394,77	716,61	-847,92	22,62	22,62	1,82
5	6,50	-702,27 (-702,27)	368,38	389,04	-741,67	22,62	22,62	1,06
<u>Verifich</u>	e taglio							
N°	Х	A_{sw}	V	V_{Rd}	V_{Rsd}	V_{Rcd}		FS
1	0,50	0,00	-97,87	331,36	0,00	0,00		3.386
2	1,95	0,00	36,19	327,95	0,00	0,00		9.062
3	3,50	0,00	144,90	324,32	0,00	0,00		2.238

320,91

317,27

0,00

0,00

0,00

0,00

0,00

0,00

0,00

0,00

0,00

0,00

1.482

1.184

2.221

0.961

704.661

<u>Verifica sezioni fondazione [Combinazione n° 7 - SLU (Approccio 2) - Sisma Vert. positivo]</u>

216,61

268,04

B = 100 cm Base sezione Altezza sezione H = 100,00 cm

4,95

6,50

0,00

0,00

0,00

0,00

0,00

4

5

Verifich	e presso-fle	<u>ssione</u>						
N°	Х	M	N	Nu	Mu	A_{fi}	A_{fs}	CS
1	0,00	0,00 (6,95)	281,94	12957,88	158,48	22,62	22,62	46,06
2	2,67	-487,49 (-572,78)	363,44	681,33	-1073,77	22,62	22,62	1,87
3	5,30	-456,23 (-572,78)	343,97	632,65	-1053,50	22,62	22,62	1,84
4	8,00	252,91 (555,95)	324,00	607,99	1043,24	22,62	22,62	1,88
5	10,60	0,00 (0,31)	-282,77	-1647,50	-60,58	45,24	22,62	5,84
	ne taglio							
N°	Х	A_{sw}	V	V_{Rd}	V_{Rsd}	V_{Rcd}		FS
1	0,00	0,00	8,26	340,18	0,00	0,00		41.163
2	2,67	0,00	-144,44	351,70	0,00	0,00		2.435

348,97

346,17

261,15

<u>Verifica sezioni traverso [Combinazione nº 7 - SLU (Approccio 2) - Sisma Vert. positivo]</u>

157,15

360,12

-0,37

Base sezione B = 100 cm H = 100,00 cm Altezza sezione

5,30

8,00

10,60

3

4 5

Secondo stralcio funzionale: Matelica Nord – Matelica Sud/Castelraimondo Nord

Opera L0703	Tratto 212	Settore E	CEE 38	WBS 013800	ld. doc. REL	N. prog. 01	Rev. A	Pag. di Pag. 106 di 168
----------------	---------------	--------------	-----------	---------------	-----------------	----------------	-----------	-------------------------------

Verifiche	e presso-fle	ssione						
N°	X	M	N	N_u	M_{u}	A_{fi}	A_{fs}	CS
1	0,90	-718,61 (-718,61)	264,69	343,75	-933,23	22,62	22,62	1,30
2	3,14	-5,58 (-203,56)	248,12	1928,18	-1581,88	22,62	22,62	7,77
3	5,30	330,16 (369,05)	232,16	673,40	1070,47	22,62	22,62	2,90
4	7,46	321,91 (369,05)	216,20	612,19	1044,98	22,62	22,62	2,83
5	9,70	-50,91 (-260,51)	199,63	889,09	-1160,26	22,62	22,62	4,45
<u>Verifich</u>								
N°	Х	A_{sw}	V	V_{Rd}	V_{Rsd}	V_{Rcd}		FS
1	0,90	0,00	400,83	337,85	0,00	0,00		0.843
2	3,14	0,00	235,26	335,52	0,00	0,00		1.426
3	5,30	0,00	75,87	333,29	0,00	0,00		4.393
4	7,46	0,00	-83,51	331,05	0,00	0,00		3.964
5	9,70	0,00	-249,09	328,72	0,00	0,00		1.320

<u>Verifica sezioni piedritto sinistro [Combinazione nº 7 - SLU (Approccio 2) - Sisma Vert. positivo]</u>

Base sezione B = 100 cmAltezza sezione H = 80,00 cm

Verifich	e presso-fle	<u>ssione</u>						
N°	Х	M	N	N_u	M_u	A_{fi}	A_{fs}	CS
1	0,50	8,83 (61,16)	538,58	10798,48	1226,28	22,62	45,24	20,05
2	1,95	54,71 (61,16)	505,25	9172,47	1110,34	22,62	22,62	18,15
3	3,50	-84,85 (-178,49)	469,71	4319,30	-1641,31	22,62	22,62	9,20
4	4,95	-345,34 (-486,41)	436,38	778,82	-868,09	22,62	22,62	1,78
5	6,50	-718,61 (-718,61)	400,83	419,14	-751,43	22,62	22,62	1,05
<u>Verifich</u>	e taglio							
N°	Х	A_{sw}	V	V_{Rd}	V_{Rsd}	V_{Rcd}		FS
1	0,50	0,00	101,22	340,73	0,00	0,00		3.366
2	1,95	0,00	-32,84	336,13	0,00	0,00		10.235
3	3,50	0,00	-141,55	331,24	0,00	0,00		2.340

4 4,95 0,00 -213,26 326,64 0,00 0,00 1.532 -264,69 0,00 1.216 5 6,50 0,00 321,74 0,00

Verifica sezioni piedritto destro [Combinazione n° 7 - SLU (Approccio 2) - Sisma Vert. positivo]

Base sezione B = 100 cm Altezza sezione H = 80,00 cm

٧°	Х	M	N	N_u	Mu	A_{fi}	A_{fs}	CS
1	0,50	-977,67 (-977,67)	386,83	537,65	-1358,86	22,62	45,24	1,39
2	1,95	-299,79 (-532,36)	353,50	520,89	-784,43	22,62	22,62	1,47
3	3,50	71,70 (144,26)	317,96	3350,31	1520,11	22,62	22,62	10,54
4	4,95	137,45 (144,26)	284,63	2822,31	1430,47	22,62	22,62	9,92
5	6,50	-50,91 (-182,96)	249,09	1495,13	-1098,22	22,62	22,62	6,00

Verifich	<u>e taglio</u>						
N°	X	A_{sw}	V	V_{Rd}	V_{Rsd}	V_{Rcd}	FS
1	0,50	0,00	-587,55	389,08	0,00	0,00	0.662
2	1,95	0,00	-351,57	315,22	0,00	0,00	0.897

3,50

4,95

6,50

0,00

0,00

0,00

3

4

5

2.1.2 PEDEMONTANA DELLE MARCHE

Secondo stralcio funzionale: Matelica Nord – Matelica Sud/Castelraimondo Nord

Opera Lo703										
39,48 305,73 0,00 0,00 7.744	4.	' '			_			, 0		107 di
	3	9,48	305,73	3	0,0	0	0,00		7.7	44

<u>Verifica sezioni fondazione [Combinazione n° 8 - SLU (Approccio 2) - Sisma Vert. negativo]</u>

Base sezione B = 100 cmAltezza sezione H = 100,00 cm

N°	х	M	N	N_u	Mu	A_{fi}	A_{fs}	CS
1	0,00	0,00 (6,20)	281,94	12952,38	167,18	22,62	22,62	46,04
2	2,67	-452,34 (-509,50)	360,10	791,24	-1119,52	22,62	22,62	2,20
3	5,30	-376,81 (-509,42)	340,62	732,12	-1094,91	22,62	22,62	2,15
4	8,00	291,14 (565,43)	320,66	586,57	1034,32	22,62	22,62	1,83
5	10,60	0,00 (0,00)	-282,77	-1649,96	-59,49	45,24	22,62	5,85
<u>Verifich</u>	ne taglio							
N°	Х	A_{sw}	V	V_{Rd}	V_{Rsd}	V_{Rcd}		FS
1	0,00	0,00	7,36	340,18	0,00	0,00		46.200
2	2.67	0.00	112.01	254 22	0.00	0.00		2 111

2	2,67	0,00	-112,91	351,23	0,00	0,00	3.111
3	5,30	0,00	157,58	348,50	0,00	0,00	2.211
4	8,00	0,00	325,96	345,70	0,00	0,00	1.061
5	10,60	0,00	0,00	261,15	0,00	0,00	4176867.131

<u>Verifica sezioni traverso [Combinazione nº 8 - SLU (Approccio 2) - Sisma Vert. negativo]</u>

Base sezione B = 100 cmAltezza sezione H = 100,00 cm

Verifich	e presso-fle	ssione						
N°	X	M	N	Nu	Mu	A_{fi}	A_{fs}	CS
1	0,90	-702,27 (-702,27)	268,04	358,54	-939,39	22,62	22,62	1,34
2	3,14	-43,43 (-228,04)	251,46	1610,72	-1460,67	22,62	22,62	6,41
3	5,30	275,26 (318,63)	235,51	843,58	1141,31	22,62	22,62	3,58
4	7,46	284,41 (318,63)	219,55	763,43	1107,95	22,62	22,62	3,48
5	9,70	-33,88 (-216,04)	202,97	1219,19	-1297,68	22,62	22,62	6,01
Verifich	e taglio							

verilleri	e tagiio						
N°	Х	A_{sw}	V	V_{Rd}	V_{Rsd}	V_{Rcd}	FS
1	0,90	0,00	368,38	338,32	0,00	0,00	0.918
2	3,14	0,00	219,38	335,99	0,00	0,00	1.532
3	5,30	0,00	75,95	333,76	0,00	0,00	4.394
4	7,46	0,00	-67,48	331,52	0,00	0,00	4.913
5	9,70	0,00	-216,47	329,19	0,00	0,00	1.521

<u>Verifica sezioni piedritto sinistro [Combinazione nº 8 - SLU (Approccio 2) - Sisma Vert. negativo]</u>

Base sezione B = 100 cmAltezza sezione H = 80,00 cm

Verifiche presso-flessione

N°	X	M	N	N_u	Mu	A_{fi}	A_{fs}	CS
1	0,50	45,24 (94,01)	470,64	8528,45	1703,59	22,62	45,24	18,12

Secondo stralcio funzionale: Matelica Nord – Matelica Sud/Castelraimondo Nord

Marche Umbria 8.p.A.											
	archa Umi	oria S.p.A.	Opera L0703	Tratto 212	Settore E	CEE 38	WBS O13800	ld. doc. REL	N. prog. 01	Rev. A	Pag. di Pag. 108 di 168
2	1,95	86,27 (94,01)	445,90	7	078,55	1492	2,42 2	2,62	22,62	1	5,87
3	3,50	-58,48 (-154,33)	-	4	488,98	-1651	•	2,62	22,62		0,70
4	4,95	-323,82 (-467,11)	394,77		716,61	-847	7,92 2	2,62	22,62		1,82
5	6,50	-702,27 (-702,27)	368,38		389,04	-742	1,67 2	22,62	22,62		1,06
Verifiche	e taglio										
N°	Х	Asw	V	V_{R}	d	V	Rsd	V_{Rcd}			FS
1	0,50	0,00	97,87	331,36	5	0,0	00	0,00		3.3	86
2	1,95	0,00	-36,19	327,95	5	0,0	00	0,00		9.0	62
3	3,50	0,00	-144,90	324,32	2	0,0	00	0,00		2.2	38
4	4,95	0,00	-216,61	320,91	1	0,0	00	0,00		1.4	82
5	6,50	0,00	-268,04	317,27	7	0,0	00	0,00		1.1	84

<u>Verifica sezioni piedritto destro [Combinazione nº 8 - SLU (Approccio 2) - Sisma Vert. negativo]</u>

Base sezione B = 100 cm Altezza sezione H = 80,00 cm

N°	Х	M	N	N_u	M_u	A_{fi}	A_{fs}	CS
1	0,50	-940,56 (-940,56)	318,73	452,23	-1334,53	22,62	45,24	1,42
2	1,95	-267,54 (-497,89)	293,99	449,51	-761,28	22,62	22,62	1,53
3	3,50	98,77 (167,77)	267,60	1964,14	1231,40	22,62	22,62	7,34
4	4,95	159,66 (167,77)	242,86	1655,81	1143,85	22,62	22,62	6,82
5	6,50	-33,88 (-168,15)	216,47	1360,51	-1056,78	22,62	22,62	6,28

5	6,50	-33,88 (-16	8,15) 216,47	1360,51	-1056,78	22,62	22,62	6,28
<u>Verifich</u>	e taglio							
N°	х	A_{sw}	V	V_{Rd}	V_{Rsd}	V_{Rcd}		FS
1	0,50	0,00	-584,20	379,70	0,00	0,00		0.650
2	1,95	0,00	-348,22	307,02	0,00	0,00		0.882
3	3,50	0,00	-130,80	303,38	0,00	0,00		2.319
4	4,95	0,00	42,83	299,97	0,00	0,00		7.005
5	6,50	0,00	202,97	296,34	0,00	0,00		1.460

Secondo stralcio funzionale: Matelica Nord – Matelica Sud/Castelraimondo

Opera L0703	Tratto 212	Settore E	CEE 38	WBS 013800	ld. doc. REL	N. prog. 01	Rev. A	Pag. di Pag. 109 di 168
----------------	---------------	--------------	-----------	---------------	-----------------	----------------	-----------	-------------------------------

Verifiche combinazioni SLE

Simbologia adottata ed unità di misura

Indice sezione

Ascissa/Ordinata sezione, espresso in m

Momento flettente, espresso in kNm Taglio, espresso in kN

Sforzo normale, espresso in kN

N Afi Afs Area armatura inferiore, espressa in cmq Area armatura superiore, espressa in cmq

Tensione nell'armatura disposta in corrispondenza del lembo inferiore, espresse in kPa

Tensione nell'armatura disposta in corrispondenza del lembo superiore, espresse in kPa Tensione nel calcestruzzo, espresse in kPa

Tensione tangenziale nel calcestruzzo, espresse in kPa

Area armature trasversali nella sezione, espressa in cmq

Verifica sezioni fondazione [Combinazione n° 9 - SLE (Rara)]

B = 100 cm Base sezione Altezza sezione H = 100,00 cm

Verifiche presso-flessione

N°	Х	M	N	A_{fi}	A_{fs}	σ_{fs}	σ_{fi}	σ_{c}
1	0,00	0,00	-6,77	22,62	22,62	1569	1423	0
2	2,67	-181,96	269,88	22,62	22,62	41682	21499	1748
3	5,30	-546,98	269,88	22,62	22,62	223680	58079	5275
4	8,00	-193,03	269,88	22,62	22,62	46891	22710	1861
5	10.60	0.00	6 11	15 21	22.62	21	25	6

Verifiche taglio

IN -	Х	Asw	V	το
1	0,00	0,00	4,51	-10
2	2,67	0,00	-270,08	-340
3	5,30	0,00	-2,04	-3
4	8,00	0,00	279,20	351
5	10,60	0,00	-4,88	10

Verifica sezioni traverso [Combinazione n° 9 - SLE (Rara)]

B = 100 cm Base sezione Altezza sezione H = 100,00 cm

Verifiche presso-flessione

N°	Х	M	N	A_{fi}	A_{fs}	σ_{fs}	$\sigma_{\rm fi}$	σ_{c}
1	0,90	-342,80	164,55	22,62	22,62	141089	36308	3304
2	3,14	312,92	164,55	22,62	22,62	33422	125960	3022
3	5,30	523,06	164,55	22,62	22,62	53583	232594	4998
4	7,46	293,77	164,55	22,62	22,62	31564	116269	2841
5	9,70	-381,85	164,55	22,62	22,62	160890	40069	3672

Verifiche taglio

N°	Х	A_{sw}	V	το
1	0,90	0,00	380,52	479
2	3,14	0,00	199,17	251
3	5,30	0,00	-4,44	-6
4	7,46	0,00	-208,05	-262
5	9,70	0,00	-389,40	-490

Secondo stralcio funzionale: Matelica Nord – Matelica Sud/Castelraimondo Nord

Opera L0703	Tratto 212	Settore E	CEE 38	WBS 013800	ld. doc. REL	N. prog. 01	Rev. A	Pag. di Pag. 110 di 168
----------------	---------------	--------------	-----------	---------------	-----------------	----------------	-----------	-------------------------------

Verifica sezioni piedritto sinistro [Combinazione nº 9 - SLE (Rara)]

Base sezione B = 100 cm Altezza sezione H = 80,00 cm

Verifiche presso-flessione

N°	Х	M	N	A_{fi}	A_{fs}	σ_{fs}	σ_{fi}	σ_{c}
1	0,50	-480,71	500,52	22,62	45,24	114329	66251	5585
2	1,95	-191,13	471,49	22,62	22,62	40275	32894	2666
3	3,50	-94,90	440,52	22,62	22,62	3597	17662	1315
4	4,95	-156,99	411,49	22,62	22,62	29956	27146	2179
5	6.50	-342.80	380.52	22.62	22.62	148377	53747	4890

Verifiche taglio N° Χ ٧ Asw τc 276,65 1 0,50 0,00 443 1,95 0,00 127,49 2 204 3 3,50 0,00 2,67 4 4 4,95 0,00 -84,13 -135 5 6,50 0,00 -151,67 -243

Verifica sezioni piedritto destro [Combinazione nº 9 - SLE (Rara)]

Base sezione B = 100 cm Altezza sezione H = 80,00 cm

Verifiche presso-flessione

N°	Х	M	N	A_{fi}	A_{fs}	σ fs	σ fi	σ_{c}
1	0,50	-442,48	509,40	22,62	45,24	100992	61825	5175
2	1,95	-171,60	480,37	22,62	22,62	29073	29814	2368
3	3,50	-95,32	449,40	22,62	22,62	3343	17816	1325
4	4,95	-176,10	420,37	22,62	22,62	39014	30227	2463
5	6.50	-381 85	389 40	22.62	22.62	171799	59210	5441

Verifiche taglio N° Х A_{sw} ٧ το 0,00 -263,77 -422 1 0,50 2 1,95 0,00 -114,61 -183 3 3,50 0,00 10,21 16 4 4,95 0,00 97,01 155 5 6,50 0,00 164,55 263

Verifica sezioni fondazione [Combinazione n° 10 - SLE (Frequente)]

Base sezione B = 100 cmAltezza sezione H = 100,00 cm

Verifiche presso-flessione

N°	х	M	N	A_{fi}	A_{fs}	σ_{fs}	$\sigma_{\rm fi}$	σ_{c}
1	0,00	0,00	-5,17	22,62	22,62	1220	1065	0
2	2,67	-162,82	278,64	22,62	22,62	31571	19389	1546
3	5,30	-513,56	278,64	22,62	22,62	205034	55013	4963
4	8,00	-167,16	278,64	22,62	22,62	33518	19882	1591
5	10,60	0,00	4,49	45,24	22,62	57	65	4

Secondo stralcio funzionale: Matelica Nord – Matelica Sud/Castelraimondo Nord

Opera L0703	Tratto 212	Settore E	CEE 38	WBS O13800	ld. doc. REL	N. prog. 01	Rev. A	Pag. di Pag. 111 di 168
----------------	---------------	--------------	-----------	---------------	-----------------	----------------	-----------	-------------------------------

Verifich	ne taglio			
N°	X	A_{sw}	V	$ au_c$
1	0,00	0,00	4,34	-10
2	2,67	0,00	-260,88	-328
3	5,30	0,00	-0,62	-1
4	8,00	0,00	271,28	341
5	10,60	0,00	-4,61	10

Verifica sezioni traverso [Combinazione n° 10 - SLE (Frequente)]

Base sezione B = 100 cm Altezza sezione H = 100,00 cm

Verifich	e presso-fle	<u>essione</u>						
N°	Х	M	N	Afi	A_{fs}	σ fs	σ fi	σα
1	0,90	-278,02	147,44	22,62	22,62	111669	29718	2685
2	3,14	342,70	147,44	22,62	22,62	35955	144442	3296
3	5,30	541,15	147,44	22,62	22,62	54919	245252	5156
4	7,46	328,33	147,44	22,62	22,62	34574	137156	3160
5	9 70	-307 32	147 44	22.62	22.62	126503	32549	2962

Verifich	e taglio			
N°	X	A_{sw}	V	$ au_{c}$
1	0,90	0,00	362,56	456
2	3,14	0,00	187,23	236
3	5,30	0,00	-3,33	-4
4	7,46	0,00	-193,89	-244
5	9,70	0,00	-369,22	-465

<u>Verifica sezioni piedritto sinistro [Combinazione nº 10 - SLE (Frequente)]</u>

Base sezione B = 100 cmAltezza sezione H = 80,00 cm

Verifiche presso-flessione N° М Х Ν \mathbf{A}_{fi} $\boldsymbol{A}_{\text{fs}}$ σ_{fs} σ_{fi} σ_{c} 1 0,50 -479,10 482,56 22,62 45,24 115385 65741 5554 1,95 2476 2 -177,94 453,53 22,62 22,62 35588 30704 3 3,50 -66,76 422,56 22,62 22,62 583 13994 1020 4 4,95 -112,39 393,53 22,62 22,62 11466 19887 1529 6,50 -278,02 362,56 22,62 22,62 110355 44531 3970 Verifiche taglio

<u>verniche tagno</u>							
N°	х	A_{sw}	V	τα			
1	0,50	0,00	283,81	454			
2	1,95	0,00	136,28	218			
3	3,50	0,00	13,20	21			
4	4,95	0,00	-71,98	-115			
5	6.50	0.00	-137.78	-221			

Verifica sezioni piedritto destro [Combinazione nº 10 - SLE (Frequente)]

Base sezione B = 100 cm

Secondo stralcio funzionale: Matelica Nord – Matelica Sud/Castelraimondo Nord

Opera L0703	Tratto 212	Settore E	CEE 38	WBS 013800	ld. doc. REL	N. prog. 01	Rev. A	Pag. di Pag. 112 di 168
----------------	---------------	--------------	-----------	---------------	-----------------	----------------	-----------	-------------------------------

Altezza sezione	H = 80,00 cm
-----------------	---------------

N°	Х	М	N	A_{fi}	A_{fs}	σ_{fs}	$\sigma_{\rm fi}$	σ_{c}
1	0,50	-450,44	489,22	22,62	45,24	105357	62433	5247
2	1,95	-163,30	460,19	22,62	22,62	27316	28385	2253
3	3,50	-67,08	429,22	22,62	22,62	679	14136	1029
4	4,95	-126,72	400,19	22,62	22,62	16692	22214	1733
5	6.50	-307.32	369.22	22.62	22.62	127780	48690	4387

Verifiche taglio

τς	V	A_{sw}	х	N°
-439	-274,15	0,00	0,50	1
-203	-126,62	0,00	1,95	2
-6	-3,54	0,00	3,50	3
131	81,64	0,00	4,95	4
236	147,44	0,00	6,50	5

Verifica sezioni fondazione [Combinazione n° 11 - SLE (Quasi Permanente)]

Base sezione B = 100 cm Altezza sezione H = 100,00 cm

Verifiche presso-flessione

N°	v	М	N	Afi	Afs	G .	G **	σα
14	^	141	14	Atı	Ats	σ_{fs}	σ fi	Oc
1	0,00	0,00	-0,33	22,62	22,62	158	0	1
2	2,67	-140,15	272,51	22,62	22,62	22609	16753	1313
3	5,30	-445,22	272,51	22,62	22,62	171691	48254	4312
4	8,00	-124,44	272,51	22,62	22,62	16317	14895	1148
5	10.60	0.00	-0.33	45.24	22.62	158	0	1

Verifiche taglio

N°	X	A_{sw}	V	$ au_{c}$
1	0,00	0,00	3,91	-10
2	2,67	0,00	-231,44	-291
3	5,30	0,00	3,61	5
4	8,00	0,00	245,66	309
5	10.60	0.00	-3.91	10

Verifica sezioni traverso [Combinazione n° 11 - SLE (Quasi Permanente)]

Base sezione B = 100 cmAltezza sezione H = 100,00 cm

Verifiche presso-flessione

N°	Х	M	N	$A_{\rm fi}$	A_{fs}	σ_{fs}	$\sigma_{\rm fi}$	σ_{c}
1	0,90	-239,96	128,56	22,62	22,62	96125	25674	2318
2	3,14	275,78	128,56	22,62	22,62	29135	114267	2657
3	5,30	439,16	128,56	22,62	22,62	44772	197229	4190
4	7,46	275,78	128,56	22,62	22,62	29135	114267	2657
5	9,70	-239,96	128,56	22,62	22,62	96125	25674	2318

Verifiche taglio

N°	Х	A_{sw}	V	$ au_{c}$
1	0,90	0,00	308,69	388

Secondo stralcio funzionale: Matelica Nord – Matelica Sud/Castelra
imondo Nord

Opera L0703	Tratto 212	Settore E	CEE 38	WBS O13800	ld. doc. REL	N. prog. 01	Rev. A	Pag. di Pag. 113 di 168
----------------	---------------	--------------	-----------	---------------	-----------------	----------------	-----------	-------------------------------

2	3.14	0.00	151,41	191
3	5.30	0.00	0.00	0
4	7,46	0,00	-151,41	-191
5	9.70	0.00	-308.69	-388

Verifica sezioni piedritto sinistro [Combinazione n° 11 - SLE (Quasi Permanente)]

Base sezione B = 100 cm Altezza sezione H = 80,00 cm

Verifiche presso-flessione

N°	Х	M	N	A_{fi}	A_{fs}	σ_{fs}	σ_{fi}	σ_{c}
1	0,50	-435,82	428,69	22,62	45,24	105871	59618	5045
2	1,95	-147,03	399,66	22,62	22,62	26311	25492	2035
3	3,50	-41,24	368,69	22,62	22,62	2252	10493	753
4	4,95	-84,58	339,66	22,62	22,62	5720	15247	1152
5	6,50	-239,96	308,69	22,62	22,62	96021	38365	3427

Verifiche taglio 1 0,50 0,00 272,84 437 2 1,95 0,00 130,20 208 3,50 0,00 12,33 3 20 4 4,95 0,00 -67,96 -109 5 6,50 0,00 -206 -128,56

Verifica sezioni piedritto destro [Combinazione n° 11 - SLE (Quasi Permanente)]

Base sezione B = 100 cmAltezza sezione H = 80,00 cm

Verifiche presso-flessione

N°	X	M	N	A_{fi}	A_{fs}	σ fs	σ_{fi}	σα
1	0,50	-435,82	428,69	22,62	45,24	105871	59618	5045
2	1,95	-147,03	399,66	22,62	22,62	26311	25492	2034
3	3,50	-41,23	368,69	22,62	22,62	2252	10493	753
4	4,95	-84,58	339,66	22,62	22,62	5720	15247	1152
5	6,50	-239,96	308,69	22,62	22,62	96020	38365	3427

Verifiche taglio 0,50 0,00 -272,84 -437 1 2 1,95 0,00 -130,20 -208 -20 3 3,50 0,00 -12,33 4 4,95 0,00 67,96 109 0,00 5 6,50 128,56 206

Verifica sezioni fondazione [Combinazione n° 12 - SLE (Rara)]

Base sezione B = 100 cmAltezza sezione H = 100,00 cm

Verifiche presso-flessione

 $N^{\circ} \hspace{0.5cm} X \hspace{0.5cm} M \hspace{0.5cm} N \hspace{0.5cm} A_{fi} \hspace{0.5cm} A_{fs} \hspace{0.5cm} \sigma_{fs} \hspace{0.5cm} \sigma_{fi} \hspace{0.5cm} \sigma_{c}$

Secondo stralcio funzionale: Matelica Nord – Matelica Sud/Castelraimondo Nord

N .	Marche Umbria 8.p.A.											
	marche um	IDNI BIPIAI		Opera L0703	Tratto 212	Settore E	CEE 38	WBS O13800	ld. doc. REL	N. prog. 01	Rev. A	Pag. di Pag. 114 di 168
1	0,00	0,00	-5,15	22	,62	22,62	1213	1062		0		
2	2,67	-182,12	260,63	22	,62	22,62	43257	21464	1	.753		
3	5,30	-531,29	260,63	22	,62	22,62	217562	56383	5	123		
4	8,00	-186,53	260,63	22	,62	22,62	45342	21945	1	.798		
5	10,60	0,00	4,51	45	,24	22,62	57	65		4		
<u>Verifi</u>	che taglio											
N°	Х	A_{sw}		V	τ	c						
1	0,00	0,00	4	1,38	-10)						
2	2,67	0,00	-259	9,86	-327	7						
3	5,30	0,00	-(),64	-1	l						
4	8,00	0,00	270),24	340							
5	10,60	0,00	-4	1,66	10)						

Verifica sezioni traverso [Combinazione n° 12 - SLE (Rara)]

Base sezione B = 100 cm Altezza sezione H = 100,00 cm

erifiche presso-flessione

N°	Х	M	N	A_{fi}	A_{fs}	σ_{fs}	σ fi	σ_{c}
1	0,90	-364,83	165,47	22,62	22,62	152076	38450	3512
2	3,14	255,89	165,47	22,62	22,62	27888	96963	2481
3	5,30	454,34	165,47	22,62	22,62	47038	197498	4354
4	7,46	241,53	165,47	22,62	22,62	26479	89723	2344
5	9.70	-394.12	165.47	22.62	22.62	166932	41266	3788

<u>Verifiche taglio</u>								
N°	X	A_{sw}	V	το				
1	0,90	0,00	362,56	456				
2	3,14	0,00	187,23	236				
3	5,30	0,00	-3,33	-4				
4	7,46	0,00	-193,89	-244				
5	9,70	0,00	-369,22	-465				

Verifica sezioni piedritto sinistro [Combinazione n° 12 - SLE (Rara)]

Base sezione B = 100 cmAltezza sezione H = 80,00 cm

Verifiche	presso-flessione

N°	Х	M	N	A_{fi}	A_{fs}	σ fs	σ_{fi}	σα
1	0,50	-457,73	482,56	22,62	45,24	108340	63189	5322
2	1,95	-182,74	453,53	22,62	22,62	38146	31466	2548
3	3,50	-99,48	422,56	22,62	22,62	5505	18126	1361
4	4,95	-171,28	393,53	22,62	22,62	40085	29302	2402
5	6,50	-364,83	362,56	22,62	22,62	165947	56383	5197

٧	er	<u>ifi</u>	ch	ıe	ta	gΙ	io

N°	X	A_{sw}	V	$ au_{c}$
1	0,50	0,00	265,78	425
2	1,95	0,00	118,25	189
3	3,50	0,00	-4,83	-8
4	4,95	0,00	-90,01	-144
5	6,50	0,00	-155,81	-249

Secondo stralcio funzionale: Matelica Nord – Matelica Sud/Castelraimondo Nord

Opera L0703	Tratto 212	Settore E	CEE 38	WBS O13800	ld. doc. REL	N. prog. 01	Rev. A	Pag. di Pag. 115 di 168
----------------	---------------	--------------	-----------	---------------	-----------------	----------------	-----------	-------------------------------

Verifica sezioni piedritto destro [Combinazione n° 12 - SLE (Rara)]

Base sezione B = 100 cm Altezza sezione H = 80,00 cm

Verifiche presso-flessione

N°	Х	M	N	A_{fi}	A_{fs}	σ_{fs}	σ_{fi}	σ_{c}
1	0,50	-429,06	489,22	22,62	45,24	98337	59869	5014
2	1,95	-168,10	460,19	22,62	22,62	29690	29159	2325
3	3,50	-99,79	429,22	22,62	22,62	5263	18231	1367
4	4,95	-185,61	400,19	22,62	22,62	47267	31569	2614
5	6.50	-394.12	369.22	22.62	22.62	183571	60452	5608

Verifiche taglio

N°	Х	A_{sw}	V	$ au_{c}$
1	0,50	0,00	-256,12	-410
2	1,95	0,00	-108,59	-174
3	3,50	0,00	14,49	23
4	4,95	0,00	99,67	160
5	6,50	0,00	165,47	265

Verifica sezioni fondazione [Combinazione n° 13 - SLE (Frequente)]

Base sezione B = 100 cmAltezza sezione H = 100,00 cm

Verifiche presso-flessione

N°	Х	M	N	Afi	A_{fs}	σ fs	σ_{fi}	σα
1	0,00	0,00	-0,32	22,62	22,62	154	1	1
2	2,67	-149,80	263,51	22,62	22,62	28002	17857	1419
3	5,30	-454,08	263,51	22,62	22,62	177926	48957	4394
4	8,00	-134,13	263,51	22,62	22,62	21284	16037	1255
5	10,60	0,00	-0,32	45,24	22,62	154	0	1

Verifiche taglio

N°	X	A_{sw}	V	$ au_{c}$
1	0,00	0,00	3,93	-10
2	2,67	0,00	-230,93	-291
3	5,30	0,00	3,60	5
4	8,00	0,00	245,14	308
5	10,60	0,00	-3,93	10

Verifica sezioni traverso [Combinazione n° 13 - SLE (Frequente)]

Base sezione B = 100 cmAltezza sezione H = 100,00 cm

Verifiche presso-flessione

N°	Х	M	N	A_{fi}	A_{fs}	σ_{fs}	$\sigma_{\rm fi}$	σ_{c}
1	0,90	-283,37	137,57	22,62	22,62	116323	30044	2732
2	3,14	232,38	137,57	22,62	22,62	25103	90523	2249
3	5,30	395,76	137,57	22,62	22,62	40831	173354	3789
4	7.46	232.38	137.57	22.62	22.62	25103	90523	2249

Secondo stralcio funzionale: Matelica Nord – Matelica Sud/Castelraimondo Nord

Opera L0703	Tratto 212	Settore E	CEE 38	WBS 013800	ld. doc. REL	N. prog. 01	Rev. A	Pag. di Pag. 116 di 168
----------------	---------------	--------------	-----------	---------------	-----------------	----------------	-----------	-------------------------------

_	0.70	202 27	127 57	22.62	22.62	116222	20044	2722
5	9,70	-283,37	137,57	22,62	22,02	116323	30044	2732

Verifich	e taglio			
N°	х	A_{sw}	V	$ au_{c}$
1	0,90	0,00	308,69	388
2	3,14	0,00	151,41	191
3	5,30	0,00	0,00	0
4	7,46	0,00	-151,41	-191
5	9.70	0.00	-308.69	-388

Verifica sezioni piedritto sinistro [Combinazione n° 13 - SLE (Frequente)]

Base sezione B = 100 cm Altezza sezione H = 80,00 cm

Verifiche i	oresso-flessione

N°	Х	M	N	A_{fi}	A_{fs}	σ_{fs}	σ_{fi}	σc
1	0,50	-425,13	428,69	22,62	45,24	102344	58344	4929
2	1,95	-149,43	399,66	22,62	22,62	27528	25877	2071
3	3,50	-57,59	368,69	22,62	22,62	586	12140	884
4	4,95	-114,02	339,66	22,62	22,62	17064	19899	1566
5	6,50	-283,37	308,69	22,62	22,62	123755	44319	4042

Verifiche tag	glio

N°	Х	A_{sw}	V	τ _c
1	0,50	0,00	263,83	422
2	1,95	0,00	121,18	194
3	3,50	0,00	3,31	5
4	4,95	0,00	-76,98	-123
5	6,50	0,00	-137,57	-220

Verifica sezioni piedritto destro [Combinazione n° 13 - SLE (Frequente)]

Base sezione B = 100 cm Altezza sezione H = 80,00 cm

Verifiche	presso-flessione

N°	Х	M	N	A_{fi}	A_{fs}	σ_{fs}	σ_{fi}	σ_c
1	0,50	-425,13	428,69	22,62	45,24	102344	58344	4929
2	1,95	-149,43	399,66	22,62	22,62	27527	25877	2071
3	3,50	-57,59	368,69	22,62	22,62	586	12140	884
4	4,95	-114,02	339,66	22,62	22,62	17064	19899	1566
5	6,50	-283,37	308,69	22,62	22,62	123755	44319	4042

Verifiche taglio

N°	Х	A_{sw}	V	τς
1	0,50	0,00	-263,83	-422
2	1,95	0,00	-121,18	-194
3	3,50	0,00	-3,31	-5
4	4,95	0,00	76,98	123
5	6,50	0,00	137,57	220

Verifica sezioni fondazione [Combinazione n° 14 - SLE (Rara)]

Secondo stralcio funzionale: Matelica Nord – Matelica Sud/Castelraimondo Nord

Opera L0703	Tratto 212	Settore E	CEE 38	WBS O13800	ld. doc. REL	N. prog. 01	Rev. A	Pag. di Pag. 117 di 168
----------------	---------------	--------------	-----------	---------------	-----------------	----------------	-----------	-------------------------------

Base sezione B = 100 cm Altezza sezione H = 100,00 cm

N°	X	M	N	A_{fi}	A_{fs}	σ_{fs}	σ_{fi}	σ_{c}
1	0,00	0,00	-36,00	22,62	22,62	8080	7837	0
2	2,67	-113,84	281,51	22,62	22,62	11582	13631	1034
3	5,30	-470,85	281,51	22,62	22,62	182879	50914	4559
4	8,00	-178,27	281,51	22,62	22,62	38135	21145	1705
5	10,60	0,00	35,32	45,24	22,62	503	460	34

Verifiche taglio

N°	x	A_{sw}	V	τα
1	0,00	0,00	3,99	-12
2	2,67	0,00	-255,25	-321
3	5,30	0,00	-11,60	-15
4	8,00	0,00	240,96	303
5	10,60	0,00	-4,24	10

Verifica sezioni traverso [Combinazione n° 14 - SLE (Rara)]

Base sezione B = 100 cm Altezza sezione H = 100,00 cm

Verifiche presso-flessione

N°	Х	M	N	A_{fi}	A_{fs}	σ_{fs}	σ fi	σ_{c}
1	0,90	-265,74	155,21	22,62	22,62	103934	28669	2572
2	3,14	245,99	155,21	22,62	22,62	26742	93958	2384
3	5,30	385,53	155,21	22,62	22,62	40228	164624	3702
4	7,46	198,32	155,21	22,62	22,62	22046	69971	1928
5	9.70	-342.19	155.21	22.62	22.62	142635	36064	3294

Verifiche taglio

N°	X	A_{sw}	V	$ au_{c}$
1	0,90	0,00	328,37	413
2	3,14	0,00	140,37	177
3	5,30	0,00	-11,04	-14
4	7,46	0,00	-162,45	-204
5	9.70	0.00	-319.74	-402

Verifica sezioni piedritto sinistro [Combinazione nº 14 - SLE (Rara)]

Base sezione B = 100 cm Altezza sezione H = 80,00 cm

Verifiche presso-flessione

N°	Х	M	N	A_{fi}	A_{fs}	σ_{fs}	σ_{fi}	σ_{c}
1	0,50	-515,67	448,37	22,62	45,24	130534	69459	5924
2	1,95	-174,56	419,34	22,62	22,62	38306	29978	2440
3	3,50	-40,56	388,37	22,62	22,62	2660	10766	770
4	4,95	-83,34	359,34	22,62	22,62	4354	15234	1142
5	6,50	-265,74	328,37	22,62	22,62	108813	42261	3794

Verifiche taglio

Secondo stralcio funzionale: Matelica Nord – Matelica Sud/Castelraimondo Nord

Opera L0703	Tratto 212	Settore E	CEE 38	WBS 013800	ld. doc. REL	N. prog. 01	Rev. A	Pag. di Pag. 118 di 168
----------------	---------------	--------------	-----------	---------------	-----------------	----------------	-----------	-------------------------------

N°	x	A_{sw}	V	τα
1	0,50	0,00	317,52	508
2	1,95	0,00	157,62	252
3	3,50	0,00	21,34	34
4	4,95	0,00	-76,21	-122
5	6.50	0.00	-155.21	-248

Verifica sezioni piedritto destro [Combinazione n° 14 - SLE (Rara)]

Base sezione B = 100 cm Altezza sezione H = 80,00 cm

Verifiche presso-flessione

N°	Х	M	N	A_{fi}	A_{fs}	σ_{fs}	$\sigma_{\rm fi}$	σ_{c}
1	0,50	-378,14	439,74	22,62	45,24	85924	52909	4425
2	1,95	-128,04	410,71	22,62	22,62	16266	22472	1749
3	3,50	-63,50	379,74	22,62	22,62	88	12958	947
4	4,95	-145,53	350,71	22,62	22,62	31788	25000	2034
5	6,50	-342,19	319,74	22,62	22,62	159539	52468	4869

<u>Verifich</u>	e taglio			
N°	X	A_{sw}	V	$ au_{c}$
1	0,50	0,00	-246,19	-394
2	1,95	0,00	-103,55	-166
3	3,50	0,00	14,32	23
4	4,95	0,00	94,61	151
5	6,50	0,00	155,21	248

Verifica sezioni fondazione [Combinazione n° 15 - SLE (Frequente)]

Base sezione B = 100 cm Altezza sezione H = 100,00 cm

Verifiche presso-flessione

N°	Х	М	N	Afi	A_{fs}	σ_{fs}	σ_{fi}	σ_{c}
1	0,00	0,00	-27,10	22,62	22,62	6103	5876	0
2	2,67	-111,73	287,37	22,62	22,62	10370	13385	1011
3	5,30	-456,46	287,37	22,62	22,62	174476	49613	4424
4	8,00	-156,10	287,37	22,62	22,62	27371	18636	1472
5	10,60	0,00	26,40	45,24	22,62	373	347	25

Verifiche taglio N° A_{sw} το 1 0,00 0,00 3,95 -12 2,67 0,00 -249,76 -314 3 5,30 0,00 -10 -7,79 4 8,00 0,00 242,60 305 5 10,60 0,00 -4,13 10

Verifica sezioni traverso [Combinazione n° 15 - SLE (Frequente)]

Base sezione B = 100 cm Altezza sezione H = 100,00 cm

Secondo stralcio funzionale: Matelica Nord – Matelica Sud/Castelra
imondo Nord

Opera L0703	Tratto 212	Settore E	CEE 38	WBS O13800	ld. doc. REL	N. prog. 01	Rev. A	Pag. di Pag. 119 di 168
----------------	---------------	--------------	-----------	---------------	-----------------	----------------	-----------	-------------------------------

Verifich	<u>Verifiche presso-flessione</u>											
N°	Х	M	N	A_{fi}	A_{fs}	σ_{fs}	$\sigma_{\rm fi}$	σ_{c}				
1	0,90	-220,24	140,43	22,62	22,62	83836	23968	2135				
2	3,14	292,50	140,43	22,62	22,62	30981	120383	2819				
3	5,30	438,00	140,43	22,62	22,62	44929	194240	4187				
4	7,46	256,75	140,43	22,62	22,62	27524	102282	2481				
5	9,70	-277,57	140,43	22,62	22,62	112820	29540	2678				

Verifich	e taglio			
N°	X	A_{sw}	V	τ_{c}
1	0,90	0,00	323,45	407
2	3,14	0,00	143,13	180
3	5,30	0,00	-8,28	-10
4	7,46	0,00	-159,69	-201
5	9,70	0,00	-316,98	-399

Verifica sezioni piedritto sinistro [Combinazione n° 15 - SLE (Frequente)]

323,45

Base sezione B = 100 cm Altezza sezione H = 80,00 cm

6,50

Verifich	<u>Verifiche presso-flessione</u>										
N°	Х	M	N	A_{fi}	A_{fs}	σ_{fs}	σ_{fi}	σ_{c}			
1	0,50	-505,33	443,45	22,62	45,24	127548	68142	5808			
2	1,95	-165,52	414,42	22,62	22,62	34071	28520	2306			
3	3,50	-26,00	383,45	22,62	22,62	4029	9226	649			
4	4,95	-57,15	354,42	22,62	22,62	351	11861	865			

22,62

22,62

80902

35829

3144

Verifich	e taglio			
N°	X	A_{sw}	V	$ au_c$
1	0,50	0,00	314,46	503
2	1,95	0,00	158,87	254
3	3,50	0,00	27,20	44
4	4,95	0,00	-66,03	-106
5	6,50	0,00	-140,43	-225
4	4,95	0,00	-66,03	-106

-220,24

Verifica sezioni piedritto destro [Combinazione nº 15 - SLE (Frequente)]

Base sezione B = 100 cm Altezza sezione H = 80,00 cm

N°	Х	M	N	A_{fi}	A_{fs}	σ fs	σ fi	σc
1	0,50	-402,18	436,98	22,62	45,24	94055	55747	4685
2	1,95	-130,63	407,94	22,62	22,62	17646	22878	1787
3	3,50	-43,22	376,98	22,62	22,62	2197	10834	778
4	4,95	-103,79	347,94	22,62	22,62	11852	18287	1414
5	6,50	-277,57	316,98	22,62	22,62	118482	43683	3961

VEHILLI	e tagiio			
N°	X	A_{sw}	V	$ au_{c}$
1	0,50	0,00	-260,97	-418
2	1,95	0,00	-118,32	-189
3	3,50	0,00	-0.45	-1

Secondo stralcio funzionale: Matelica Nord – Matelica Sud/Castelraimondo Nord

Opera L0703	Tratto 212	Settore E	CEE 38	WBS 013800	ld. doc. REL	N. prog. 01	Rev. A	Pag. di Pag. 120 di 168
----------------	---------------	--------------	-----------	---------------	-----------------	----------------	-----------	-------------------------------

4 4,95 0,00 79,84 128 5 6,50 0,00 140,43 225

Verifica sezioni fondazione [Combinazione n° 16 - SLE (Rara)]

Base sezione B = 100 cm Altezza sezione H = 100,00 cm

Verifiche presso-flessione

N°	Х	M	N	A_{fi}	A_{fs}	σ_{fs}	σ_{fi}	σ_{c}
1	0,00	0,00	-27,07	22,62	22,62	6096	5873	0
2	2,67	-131,03	269,36	22,62	22,62	19274	15676	1219
3	5,30	-474,19	269,36	22,62	22,62	186945	51019	4587
4	8,00	-175,47	269,36	22,62	22,62	38745	20777	1682
5	10,60	0,00	26,42	45,24	22,62	373	347	25

Verifiche taglio N° A_{sw} τc 0,00 3,99 -12 1 0,00 2,67 0,00 -313 2 -248,73 0,00 -7,81 3 5,30 -10 4 8,00 0,00 241,56 304 5 0,00 -4,18 10,60 10

Verifica sezioni traverso [Combinazione n° 16 - SLE (Rara)]

Base sezione B = 100 cmAltezza sezione H = 100,00 cm

Verifiche presso-flessione

N°	Х	M	N	A_{fi}	A_{fs}	σ_{fs}	$\sigma_{\rm fi}$	σc
1	0,90	-307,04	158,46	22,62	22,62	124185	32737	2964
2	3,14	205,69	158,46	22,62	22,62	22828	73051	1999
3	5,30	351,20	158,46	22,62	22,62	36996	146557	3381
4	7,46	169,94	158,46	22,62	22,62	19245	55185	1654
5	9.70	-364.37	158.46	22.62	22.62	153239	38264	3505

Verifiche taglio N° A_{sw} τ_{c} 1 0,90 0,00 323,45 407 3,14 0,00 143,13 180 3 5,30 0,00 -8,28 -10 4 7,46 0,00 -159,69 -201 9,70 5 0,00 -316,98 -399

Verifica sezioni piedritto sinistro [Combinazione nº 16 - SLE (Rara)]

Base sezione B = 100 cm Altezza sezione H = 80,00 cm

Verifiche presso-flessione

N°	Х	M	N	Afi	A_{fs}	σ_{fs}	σ_{fi}	σ_{c}
1	0,50	-483,95	443,45	22,62	45,24	120468	65608	5577
2	1,95	-170,31	414,42	22,62	22,62	36658	29280	2378

Secondo stralcio funzionale: Matelica Nord – Matelica Sud/Castelraimondo Nord

Opera L0703	Tratto 212	Settore E	CEE 38	WBS 013800	ld. doc. REL	N. prog. 01	Rev. A	Pag. di Pag. 121 di 168
----------------	---------------	--------------	-----------	---------------	-----------------	----------------	-----------	-------------------------------

3	3,50	-58,72	383,45	22,62	22,62	742	12502	910
4	4,95	-116,04	354,42	22,62	22,62	16465	20289	1590
5	6.50	-207.04	222 45	22.62	22.62	126170	17912	/1377

Verifiche taglio

N°	x	A_{sw}	V	$ au_{c}$
1	0,50	0,00	296,43	474
2	1,95	0,00	140,84	225
3	3,50	0,00	9,17	15
4	4,95	0,00	-84,06	-135
5	6.50	0.00	-158.46	-254

Verifica sezioni piedritto destro [Combinazione n° 16 - SLE (Rara)]

Base sezione B = 100 cm Altezza sezione H = 80,00 cm

Verifiche presso-flessione

N°	Х	M	N	A_{fi}	A_{fs}	σ_{fs}	σ_{fi}	σ_{c}
1	0,50	-380,80	436,98	22,62	45,24	87036	53182	4452
2	1,95	-135,42	407,94	22,62	22,62	19796	23654	1858
3	3,50	-75,93	376,98	22,62	22,62	1985	14414	1067
4	4,95	-162,68	347,94	22,62	22,62	41848	27648	2293
5	6,50	-364,37	316,98	22,62	22,62	174419	55373	5178

Verifiche taglio

N°	Х	A_{sw}	V	το
1	0,50	0,00	-242,94	-389
2	1,95	0,00	-100,29	-161
3	3,50	0,00	17,58	28
4	4,95	0,00	97,87	157
5	6,50	0,00	158,46	254

Secondo stralcio funzionale: Matelica Nord – Matelica Sud/Castelraimondo Nord

Opera L0703	Tratto 212	Settore E	CEE 38	WBS 013800	ld. doc. REL	N. prog. 01	Rev. A	Pag. di Pag. 122 di 168
----------------	---------------	--------------	-----------	---------------	-----------------	----------------	-----------	-------------------------------

Verifiche fessurazione

Simbol	logia adottata e	d unità di misura								
N°	Indice se									
X_i	Ascissa/	Ordinata sezione,	espresso in m							
M _p		to, espresse in kNi								
M_n W_k		to, espresse in kNi za fessure, espress								
Wlim		a limite fessure, es								
S		a media tra le fess								
Esm	Deform	azione nelle fessui	re, espresse in [% _]							
<u>Verif</u>	ica fessuraz	ione fondazio	one [Combin	azione n° 9 - SL	E (Rara)]					
N°	х	\mathbf{A}_{fi}	A_{fs}	Мр	Mn	М	w	W _{lim}	S _m	€sm
1	0,07	22,62	22,62	470,24	-470,24	-0,14	0,00	100,00	0,00	0,000
2	2,67	22,62	22,62	470,24	-470,24	-181,96	0,00	100,00	0,00	0,000
3	5,30	22,62	22,62	470,24	-470,24	-546,98	0,23	100,00	273,48	0,048
4	8,00	22,62	22,62	470,24	-470,24	-193,03	0,00	100,00	0,00	0,000
5	10,54	45,24	22,62	508,73	-478,14	-0,11	0,00	100,00	0,00	0,000
<u>Verif</u>	ica fessuraz	ione traverso	(Combinazio	one n° 9 - SLE (I	Rara)]					
N°	х	Afi	A_{fs}	Мр	Mn	M	w	Wlim	Sm	€ sm
1	0,90	22,62	22,62	470,24	-470,24	-342,80	0,00	100,00	0,00	0,000
2	3,14	22,62	22,62	470,24	-470,24	312,92	0,00	100,00	0,00	0,000
3		-	· ·		•	•	· ·			· ·
	5,30	22,62	22,62	470,24	-470,24	523,06	0,26	100,00	273,48	0,054
4 5	7,46 9,70	22,62 22,62	22,62 22,62	470,24 470,24	-470,24 -470,24	293,77 -381,85	0,00 0,00	100,00 100,00	0,00 0,00	0,000 0,000
	ica fessuraz	ione piedritto	o sinistro [Co	mbinazione n°	9 - SLE (Rara)]					
N°	v									
	Х	A_{fi}	A_{fs}	Mp	Mn	M	w	Wlim	Sm	€ sm
1	0,50	A fi 22,62	A fs 45,24	Mp 311,48	Mn -334,99	M -480,71	w 0,09	W lim 100,00	s m 184,99	€ sm 0,029
1 2				311,48 305,94						
1	0,50	22,62	45,24	311,48	-334,99	-480,71	0,09	100,00	184,99	0,029
1 2	0,50 1,95	22,62 22,62	45,24 22,62	311,48 305,94	-334,99 -305,94	-480,71 -191,13	0,09 0,00	100,00 100,00	184,99 0,00	0,029 0,000
1 2 3	0,50 1,95 3,50	22,62 22,62 22,62	45,24 22,62 22,62	311,48 305,94 305,94	-334,99 -305,94 -305,94	-480,71 -191,13 -94,90	0,09 0,00 0,00	100,00 100,00 100,00	184,99 0,00 0,00	0,029 0,000 0,000
1 2 3 4 5	0,50 1,95 3,50 4,95 6,50	22,62 22,62 22,62 22,62 22,62	45,24 22,62 22,62 22,62 22,62	311,48 305,94 305,94 305,94	-334,99 -305,94 -305,94 -305,94 -305,94	-480,71 -191,13 -94,90 -156,99	0,09 0,00 0,00 0,00	100,00 100,00 100,00 100,00	184,99 0,00 0,00 0,00	0,029 0,000 0,000 0,000
1 2 3 4 5	0,50 1,95 3,50 4,95 6,50	22,62 22,62 22,62 22,62 22,62 22,62 ione piedritto	45,24 22,62 22,62 22,62 22,62 22,62	311,48 305,94 305,94 305,94 305,94 mbinazione n° 9	-334,99 -305,94 -305,94 -305,94 -305,94	-480,71 -191,13 -94,90 -156,99 -342,80	0,09 0,00 0,00 0,00 0,00 0,13	100,00 100,00 100,00 100,00 100,00	184,99 0,00 0,00 0,00 273,48	0,029 0,000 0,000 0,000 0,028
1 2 3 4 5 <u>Verif</u>	0,50 1,95 3,50 4,95 6,50 Fica fessuraz	22,62 22,62 22,62 22,62 22,62 22,62 ione piedritto	45,24 22,62 22,62 22,62 22,62 22,62 o destro [Cor	311,48 305,94 305,94 305,94 305,94 mbinazione n° 9	-334,99 -305,94 -305,94 -305,94 -305,94 	-480,71 -191,13 -94,90 -156,99 -342,80	0,09 0,00 0,00 0,00 0,00 0,13	100,00 100,00 100,00 100,00 100,00	184,99 0,00 0,00 0,00 273,48	0,029 0,000 0,000 0,000 0,028
1 2 3 4 5 Verif N° 1	0,50 1,95 3,50 4,95 6,50 Fica fessuraz X 0,50	22,62 22,62 22,62 22,62 22,62 22,62 ione piedritto A _{fi} 22,62	45,24 22,62 22,62 22,62 22,62 22,62 o destro [Cor A _{fs} 45,24	311,48 305,94 305,94 305,94 305,94 mbinazione n° 9 Mp 311,48	-334,99 -305,94 -305,94 -305,94 -305,94 -305,94 	-480,71 -191,13 -94,90 -156,99 -342,80 M -442,48	0,09 0,00 0,00 0,00 0,13 w 0,06	100,00 100,00 100,00 100,00 100,00 W lim 100,00	184,99 0,00 0,00 0,00 273,48 s _m 184,99	0,029 0,000 0,000 0,000 0,028 \$\mathcal{\epsilon}\$\$\epsilon_{sm}\$\$ 0,020
1 2 3 4 5 Verif N° 1 2	0,50 1,95 3,50 4,95 6,50 fica fessuraz X 0,50 1,95	22,62 22,62 22,62 22,62 22,62 ione piedritto A _{fi} 22,62 22,62	45,24 22,62 22,62 22,62 22,62 20 destro [Cor A _{fs} 45,24 22,62	311,48 305,94 305,94 305,94 305,94 mbinazione n° 9 Mp 311,48 305,94	-334,99 -305,94 -305,94 -305,94 -305,94 -3-SLE (Rara)] Mn -334,99 -305,94	-480,71 -191,13 -94,90 -156,99 -342,80 M -442,48 -171,60	0,09 0,00 0,00 0,00 0,13 w 0,06 0,00	100,00 100,00 100,00 100,00 100,00 W lim 100,00 100,00	184,99 0,00 0,00 0,00 273,48 s _m 184,99 0,00	0,029 0,000 0,000 0,000 0,028 \$\mathcal{\varepsilon}\$\$\epsilon_{\varepsilon}\$\$\epsilon_{\varepsilon}\$\$\$0,020 0,000
1 2 3 4 5 Verif N° 1 2 3	0,50 1,95 3,50 4,95 6,50 Fica fessuraz X 0,50 1,95 3,50	22,62 22,62 22,62 22,62 22,62 22,62 ione piedritto A _{fi} 22,62 22,62 22,62	45,24 22,62 22,62 22,62 22,62 20 destro [Cor A _{fs} 45,24 22,62 22,62	311,48 305,94 305,94 305,94 305,94 Mp 311,48 305,94 305,94	-334,99 -305,94 -305,94 -305,94 -305,94 -3105,94 -334,99 -305,94 -305,94	-480,71 -191,13 -94,90 -156,99 -342,80 M -442,48 -171,60 -95,32	0,09 0,00 0,00 0,00 0,13 w 0,06 0,00 0,00	100,00 100,00 100,00 100,00 100,00 100,00 100,00 100,00	184,99 0,00 0,00 0,00 273,48 s _m 184,99 0,00 0,00	0,029 0,000 0,000 0,000 0,028 E sm 0,020 0,000 0,000
1 2 3 4 5 Verif N° 1 2 3 4	0,50 1,95 3,50 4,95 6,50 fica fessuraz X 0,50 1,95 3,50 4,95	22,62 22,62 22,62 22,62 22,62 22,62 ione piedritto A _{fi} 22,62 22,62 22,62 22,62 22,62	45,24 22,62 22,62 22,62 22,62 20 destro [Corr A _{fs} 45,24 22,62 22,62 22,62	311,48 305,94 305,94 305,94 305,94 305,94 Mp 311,48 305,94 305,94 305,94	-334,99 -305,94 -305,94 -305,94 -305,94 -305,94 -305,94 -305,94 -305,94	-480,71 -191,13 -94,90 -156,99 -342,80 M -442,48 -171,60 -95,32 -176,10	0,09 0,00 0,00 0,00 0,13 w 0,06 0,00 0,00 0,00	100,00 100,00 100,00 100,00 100,00 100,00 100,00 100,00 100,00	184,99 0,00 0,00 0,00 273,48 s _m 184,99 0,00 0,00 0,00	0,029 0,000 0,000 0,000 0,028 E sm 0,020 0,000 0,000
1 2 3 4 5 Verif N° 1 2 3	0,50 1,95 3,50 4,95 6,50 Fica fessuraz X 0,50 1,95 3,50	22,62 22,62 22,62 22,62 22,62 22,62 ione piedritto A _{fi} 22,62 22,62 22,62	45,24 22,62 22,62 22,62 22,62 20 destro [Cor A _{fs} 45,24 22,62 22,62	311,48 305,94 305,94 305,94 305,94 Mp 311,48 305,94 305,94	-334,99 -305,94 -305,94 -305,94 -305,94 -3105,94 -334,99 -305,94 -305,94	-480,71 -191,13 -94,90 -156,99 -342,80 M -442,48 -171,60 -95,32	0,09 0,00 0,00 0,00 0,13 w 0,06 0,00 0,00	100,00 100,00 100,00 100,00 100,00 100,00 100,00 100,00	184,99 0,00 0,00 0,00 273,48 s _m 184,99 0,00 0,00	0,029 0,000 0,000 0,000 0,028 E sm 0,020 0,000 0,000
1 2 3 4 5 5 Verif N° 1 2 3 4 5 5	0,50 1,95 3,50 4,95 6,50 fica fessuraz X 0,50 1,95 3,50 4,95 6,50	22,62 22,62 22,62 22,62 22,62 22,62 22,62 22,62 22,62 22,62 22,62	45,24 22,62 22,62 22,62 22,62 22,62 24,62 25,62 22,62 22,62 22,62 22,62 22,62	311,48 305,94 305,94 305,94 305,94 305,94 311,48 305,94 305,94 305,94 305,94	-334,99 -305,94 -305,94 -305,94 -305,94 -305,94 -305,94 -305,94 -305,94	-480,71 -191,13 -94,90 -156,99 -342,80 M -442,48 -171,60 -95,32 -176,10	0,09 0,00 0,00 0,00 0,13 w 0,06 0,00 0,00 0,00	100,00 100,00 100,00 100,00 100,00 100,00 100,00 100,00 100,00	184,99 0,00 0,00 0,00 273,48 s _m 184,99 0,00 0,00 0,00	0,029 0,000 0,000 0,000 0,028 E _{sm} 0,020 0,000 0,000
1 2 3 4 5 5 Veriff N° 1 2 3 4 4 5 5 Veriff	0,50 1,95 3,50 4,95 6,50 fica fessuraz X 0,50 1,95 3,50 4,95 6,50	22,62 22,62 22,62 22,62 22,62 22,62 22,62 22,62 22,62 22,62 22,62 ione fondazio	45,24 22,62 22,62 22,62 22,62 22,62 24,62 22,62 22,62 22,62 22,62 22,62 22,62	311,48 305,94 305,94 305,94 305,94 305,94 305,94 305,94 305,94 305,94 305,94	-334,99 -305,94 -305,94 -305,94 -305,94 -305,94 -305,94 -305,94 -305,94 -305,94 -305,94 -305,94	-480,71 -191,13 -94,90 -156,99 -342,80 M -442,48 -171,60 -95,32 -176,10 -381,85	0,09 0,00 0,00 0,00 0,13 w 0,06 0,00 0,00 0,00 0,16	100,00 100,00 100,00 100,00 100,00 100,00 100,00 100,00 100,00	184,99 0,00 0,00 0,00 273,48 s _m 184,99 0,00 0,00 0,00 273,48	0,029 0,000 0,000 0,000 0,028 \$\mathbb{\epsilon}\$ 0,020 0,000 0,000 0,000 0,003
1 2 3 4 5 5 Veriff N° 1 2 3 4 4 5 5 Veriff N° 0 1 5 5 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	0,50 1,95 3,50 4,95 6,50 rica fessuraz X 0,50 1,95 3,50 4,95 6,50	22,62 22,62 22,62 22,62 22,62 22,62 22,62 22,62 22,62 22,62 22,62 22,62	45,24 22,62 22,62 22,62 22,62 22,62 22,62 45,24 22,62 22,62 22,62 22,62 22,62	311,48 305,94 305,94 305,94 305,94 305,94 301,48 305,94 305,94 305,94 305,94 305,94	-334,99 -305,94 -305,94 -305,94 -305,94 -334,99 -305,94 -305,94 -305,94 -305,94 -Mn LE (Frequente)] Mn	-480,71 -191,13 -94,90 -156,99 -342,80 M -442,48 -171,60 -95,32 -176,10 -381,85	0,09 0,00 0,00 0,00 0,13 w 0,06 0,00 0,00 0,00 0,16	100,00 100,00 100,00 100,00 100,00 100,00 100,00 100,00 100,00	184,99 0,00 0,00 0,00 273,48 \$m 184,99 0,00 0,00 0,00 273,48	0,029 0,000 0,000 0,000 0,028 €sm 0,020 0,000 0,000 0,000 0,033
1 2 3 4 5 5 Veriff N° 1 2 5 Veriff N° 1	0,50 1,95 3,50 4,95 6,50 fica fessuraz X 0,50 1,95 3,50 4,95 6,50 fica fessuraz X 0,07	22,62 22,62 22,62 22,62 22,62 22,62 22,62 22,62 22,62 22,62 22,62 22,62	45,24 22,62 22,62 22,62 22,62 22,62 22,62 22,62 22,62 22,62 22,62 22,62 22,62 22,62	311,48 305,94 305,94 305,94 305,94 305,94 301,48 305,94 305,94 305,94 305,94 305,94 305,94	-334,99 -305,94 -305,94 -305,94 -305,94 -3- SLE (Rara)] Mn -334,99 -305,94 -305,94 -305,94 -305,94 -Mn -470,24	-480,71 -191,13 -94,90 -156,99 -342,80 M -442,48 -171,60 -95,32 -176,10 -381,85	0,09 0,00 0,00 0,00 0,13 w 0,06 0,00 0,00 0,16	100,00 100,00 100,00 100,00 100,00 100,00 100,00 100,00 100,00 100,00	\$\begin{align*} 184,99 & 0,00 & 0,00 & 0,00 & 273,48 & \end{align*} \$\begin{align*} \sum_{m} & 184,99 & 0,00 & 0,00 & 0,00 & 273,48 & \end{align*} \$\sum_{m} & 0,00	0,029 0,000 0,000 0,000 0,028 Esm 0,020 0,000 0,000 0,000 0,033
1 2 3 4 5 5 Veriff N° 1 2 3 4 4 5 5 Veriff N° 0 1 5 5 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	0,50 1,95 3,50 4,95 6,50 rica fessuraz X 0,50 1,95 3,50 4,95 6,50	22,62 22,62 22,62 22,62 22,62 22,62 22,62 22,62 22,62 22,62 22,62 22,62	45,24 22,62 22,62 22,62 22,62 22,62 22,62 45,24 22,62 22,62 22,62 22,62 22,62	311,48 305,94 305,94 305,94 305,94 305,94 301,48 305,94 305,94 305,94 305,94 305,94	-334,99 -305,94 -305,94 -305,94 -305,94 -334,99 -305,94 -305,94 -305,94 -305,94 -Mn LE (Frequente)] Mn	-480,71 -191,13 -94,90 -156,99 -342,80 M -442,48 -171,60 -95,32 -176,10 -381,85	0,09 0,00 0,00 0,00 0,13 w 0,06 0,00 0,00 0,00 0,16	100,00 100,00 100,00 100,00 100,00 100,00 100,00 100,00 100,00	184,99 0,00 0,00 0,00 273,48 \$m 184,99 0,00 0,00 0,00 273,48	0,029 0,000 0,000 0,000 0,028 €sm 0,020 0,000 0,000 0,000 0,033

2.1.2 PEDEMONTANA DELLE MARCHE Secondo stralcio funzionale: Matelica Nord – Matelica Sud/Castelraimondo Nord Opera L0703 Settore CEE WBS ld. doc. Tratto O13800 212 Е 38 REL

										. 0 0
4	8,00	22,62	22,62	470,24	-470,24	-167,16	0,00	0,30	0,00	0,000
5	10,54	45,24	22,62	470,24 508,73	-470,24 -478,14	-167,16	0,00	0,30	0,00	0,000
Э	10,54	45,24	22,02	508,73	-478,14	-0,13	0,00	0,30	0,00	0,000
	·	•			/F					
verii	ica fessuraz	ione traverso	Combinazi	one n° 10 - SLE	(Frequente)]					
N°	х	A_{fi}	A_{fs}	Мр	Mn	М	w	Wlim	Sm	€ sm
1	0,90	22,62	22,62	470,24	-470,24	-278,02	0,00	0,30	0,00	0,000
2	3,14	22,62	22,62	470,24	-470,24	342,70	0,00	0,30	0,00	0,000
3	5,30	22,62	22,62	470,24	-470,24	541,15	0,30	0,30	273,48	0,063
4	7,46	22,62	22,62	470,24	-470,24	328,33	0,00	0,30	0,00	0,000
5	9,70	22,62	22,62	470,24	-470,24	-307,32	0,00	0,30	0,00	0,000
Verif	fica fessuraz	ione piedritt	o sinistro [Co	mbinazione n°	10 - SLE (Frequen	te)]				
		-	-							
N°	Х	A_{fi}	A_{fs}	Mp	Mn	M	w	\mathbf{W}_{lim}	S _m	€sm
1	0,50	22,62	45,24	311,48	-334,99	-479,10	0,10	0,30	184,99	0,030
2	1,95	22,62	22,62	305,94	-305,94	-177,94	0,00	0,30	0,00	0,000
3	3,50	22,62	22,62	305,94	-305,94	-66,76	0,00	0,30	0,00	0,000
4	4,95	22,62	22,62	305,94	-305,94	-112,39	0,00	0,30	0,00	0,000
5	6,50	22,62	22,62	305,94	-305,94	-278,02	0,00	0,30	0,00	0,000
Verif	fica fessuraz	ione niedritt	n destro [Cor	nhinazione nº 1	0 - SLE (Frequent	e)]				
	100 10000102	ione picaries	<u> </u>	THE STATE OF THE S	o ozz (rrequent	<u>511</u>				
N°	Х	A_{fi}	A_{fs}	Mp	Mn	M	w	Wlim	Sm	€ sm
1	0,50	22,62	45,24	311,48	-334,99	-450,44	0,07	0,30	184,99	0,023
2	1,95	22,62	22,62	305,94	-305,94	-163,30	0,00	0,30	0,00	0,000
3	3,50	22,62	22,62	305,94	-305,94	-67,08	0,00	0,30	0,00	0,000
4	4,95	22,62	22,62	305,94	-305,94	-126,72	0,00	0,30	0,00	0,000
5	6,50	22,62	22,62	305,94	-305,94	-307,32	0,12	0,30	273,48	0,024
Verif	fica fessuraz	ione fondazio	one [Combin	azione n° 11 - S	LE (Quasi Perman	ente)]				
N°	х	A_{fi}	${\sf A}_{\sf fs}$	Мр	Mn	М	w	Wlim	Sm	€sm
1	0,07	22,62	22,62	470,24	-470,24	-0,17	0,00	0,20	0,00	0,000
2	2,67	22,62	22,62	470,24	-470,24	-140,15	0,00	0,20	0,00	0,000
3	5,30	22,62	22,62	470,24	-470,24	-445,22	0,00	0,20	0,00	0,000
4	8,00	22,62	22,62	470,24	-470,24	-124,44	0,00	0,20	0,00	0,000
5	10,54	45,24	22,62	508,73	-478,14	-0,17	0,00	0,20	0,00	0,000
Verif	fica fessuraz	ione traverso	Combinazi	one n° 11 - SLE	(Quasi Permanen	<u>te)]</u>				
N°	Х	$A_{\rm fi}$	${\sf A}_{\sf fs}$	Мр	Mn	М	w	W _{lim}	S _m	€ sm
1	0,90	22,62	22,62	470,24	-470,24	-239,96	0,00	0,20	0,00	0,000
2	3,14	22,62	22,62	470,24 470,24	-470,24 -470,24	-239,96 275,78	0,00	0,20	0,00	0,000
3										
	5,30	22,62	22,62	470,24 470,24	-470,24 470,24	439,16	0,00	0,20	0,00	0,000
4	7,46	22,62	22,62	•	-470,24	275,78	0,00	0,20	0,00	0,000
5	9,70	22,62	22,62	470,24	-470,24	-239,96	0,00	0,20	0,00	0,000

Pag. di Pag.

123 di

168

N. prog.

01

Rev.

Secondo stralcio funzionale: Matelica Nord – Matelica Sud/Castelra
imondo Nord

Marche Umbria S.p.A.					ı	1	,			1	1	1
			-0.0	Opera	Tratto	Settore	CEE	WBS	ld. doc.	N. prog.	Rev.	Pag. di Pag.
				L0703	212	E	38	013800	REL.	01	A	124 di
												168
N°	Х	\mathbf{A}_{fi}	\mathbf{A}_{fs}	Мр		Mn			w	Wlim	Sm	€ sm
1	0,50	22,62	45,24	311,48	-334,99		-435,8	-		0,20	184,99	0,023
2	1,95	22,62	22,62	305,94	-30	05,94	-147,0			0,20	0,00	0,000
3	3,50	22,62	22,62	305,94		05,94	-41,2			0,20	0,00	0,000
4	4,95	22,62	22,62	305,94	-30	05,94	-84,5	8 0,0	0	0,20	0,00	0,000
5	6,50	22,62	22,62	305,94	-30	05,94	-239,9	6 0,0	00	0,20	0,00	0,000
\/:£	: f			h:	.°44 CIE	/O: D						
verii	ica ressurazi	one plearitto	destro [Com	<u>binazione n</u>	11-3LE	Quasi Perr	<u>nanente)j</u>					
N°	X	A_{fi}	A_{fs}	Mp		Mn	N	/	w	Wlim	Sm	€ sm
1	0,50	22,62	45,24	311,48	-33	34,99	-435,8	2 0,0	18	0,20	184,99	0,023
2	1,95	22,62	22,62	305,94	-30	05,94	-147,0	3 0,0	0	0,20	0,00	0,000
3	3,50	22,62	22,62	305,94	-30	05,94	-41,2	3 0,0	0	0,20	0,00	0,000
4	4,95	22,62	22,62	305,94	-30	05,94	-84,5	8 0,0	0	0,20	0,00	0,000
5	6,50	22,62	22,62	305,94	-30	05,94	-239,9			0,20	0,00	0,000
<u>Verif</u>	fica fessurazi	one fondazio	one [Combina:	zione n° 12	- SLE (Rara	<u>))</u>						
N°	х	Afi	Afs	Мр		Mn		и ,		14/		c
	7 0,07			-	4-		-0,1		W	W lim 00,00	S _m	€ sm
1	•	22,62	22,62	470,24		70,24				-	0,00	0,000
2	2,67	22,62	22,62	470,24		70,24	-182,1			00,00	0,00	0,000
3	5,30	22,62	22,62	470,24		70,24	-531,2			00,00	273,48	0,043
4	8,00	22,62	22,62	470,24		70,24	-186,5			00,00	0,00	0,000
5	10,54	45,24	22,62	508,73	-47	78,14	-0,1	3 0,0	00 10	00,00	0,00	0,000
<u>Verif</u>	fica fessurazi	one traverso	[Combinazio	ne n° 12 - Si	LE (Rara)]							
N°	х	Afi	Afs	Мр		Mn		и ,	w	Wlim	Sm	€ sm
1	0,90	22,62	22,62	470,24	-47	70,24	-364,8			00,00	0,00	0,000
						· ·						-
2	3,14	22,62	22,62	470,24		70,24	255,8			00,00	0,00	0,000
3	5,30	22,62	22,62	470,24		70,24	454,3			00,00	0,00	0,000
4	7,46	22,62	22,62	470,24		70,24	241,5			00,00	0,00	0,000
5	9,70	22,62	22,62	470,24	-47	70,24	-394,1	2 0,0	00 10	00,00	0,00	0,000
<u>Verif</u>	fica fessurazi	one piedritto	o sinistro [Con	nbinazione	n° 12 - SLE	(Rara)]						
N°	х	Λ.,	۸.	Mn		Mn		и ,		146		
		A _{fi}	A fs 45 24	Mp	2.2				W 10 10	W _{lim}	S _m	E sm
1	0,50	22,62	45,24	311,48		34,99	-457,7	-		00,00	184,99	0,025
2	1,95	22,62	22,62	305,94		05,94	-182,7			00,00	0,00	0,000
3	3,50	22,62	22,62	305,94		05,94	-99,4	-		00,00	0,00	0,000
4	4,95	22,62	22,62	305,94		05,94	-171,2			00,00	0,00	0,000
5	6,50	22,62	22,62	305,94	-30	05,94	-364,8	3 0,1	.5 10	00,00	273,48	0,032
<u>Verif</u>	fica fessurazi	one piedritto	o destro [Com	binazione n	ı° 12 - SLE ((Rara)]						
810	v			8.6		Mar	_				-	_
N°	X	A _{fi}	A fs	Mp		Mn			W	Wlim	S _m	€ sm
1	0,50	22,62	45,24	311,48		34,99	-429,0	-		00,00	184,99	0,019
2	1,95	22,62	22,62	305,94		05,94	-168,1			00,00	0,00	0,000
3	3,50	22,62	22,62	305,94		05,94	-99,7	-		00,00	0,00	0,000
4	4,95	22,62	22,62	305,94		05,94	-185,6			00,00	0,00	0,000
5	6,50	22,62	22,62	305,94	-30	05,94	-394,1	2 0,1	.ა 10	00,00	273,48	0,038

Secondo stralcio funzionale: Matelica Nord – Matelica Sud/Castelraimondo Nord

Opera L0703	Tratto 212	Settore E	CEE 38	WBS O13800	ld. doc. REL	N. prog. 01	Rev. A	Pag. di Pag. 125 di 168
----------------	---------------	--------------	-----------	---------------	-----------------	----------------	-----------	-------------------------------

N°	X	A_{fi}	\mathbf{A}_{fs}	Мр	Mn	M	w	\mathbf{w}_{lim}	S _m	€ sm
1	0,07	22,62	22,62	470,24	-470,24	-0,17	0,00	0,30	0,00	0,000
2	2,67	22,62	22,62	470,24	-470,24	-149,80	0,00	0,30	0,00	0,000
3	5,30	22,62	22,62	470,24	-470,24	-454,08	0,00	0,30	0,00	0,000
4 5	8,00 10,54	22,62 45,24	22,62 22,62	470,24 508,73	-470,24 -478,14	-134,13 -0,17	0,00 0,00	0,30 0,30	0,00 0,00	0,000 0,000
3	10,54	43,24	22,02	506,75	-470,14	-0,17	0,00	0,30	0,00	0,000
<u>Veri</u>	fica fessuraz	ione traverso	[Combinazio	one n° 13 - SLE	Frequente)]					
N°	x	A_{fi}	A_{fs}	Мр	Mn	М	w	W _{lim}	S _m	€sm
1	0,90	22,62	22,62	470,24	-470,24	-283,37	0,00	0,30	0,00	0,000
2	3,14	22,62	22,62	470,24	-470,24	232,38	0,00	0,30	0,00	0,000
3	5,30	22,62	22,62	470,24	-470,24	395,76	0,00	0,30	0,00	0,000
4	7,46	22,62	22,62	470,24	-470,24	232,38	0,00	0,30	0,00	0,000
5	9,70	22,62	22,62	470,24	-470,24	-283,37	0,00	0,30	0,00	0,000
Vori	fica fassuraz	ione niedrittr	sinistro [Co	mhinazione nº	13 - SLE (Frequen	to)]				
	1100 10330102	ione picuritte) 31113010 [CO	IIIDIIIUZIOIIC II	13 SEE (Frequen	<u>.c/j</u>				
N°	х	Afi	A_{fs}	Mp	Mn	M	w	Wlim	Sm	€ sm
1	0,50	22,62	45,24	311,48	-334,99	-425,13	0,07	0,30	184,99	0,021
2	1,95	22,62	22,62	305,94	-305,94	-149,43	0,00	0,30	0,00	0,000
3	3,50	22,62	22,62	305,94	-305,94	-57,59	0,00	0,30	0,00	0,000
4	4,95	22,62	22,62	305,94	-305,94	-114,02	0,00	0,30	0,00	0,000
5	6,50	22,62	22,62	305,94	-305,94	-283,37	0,00	0,30	0,00	0,000
			·		, .		,,,,,,	-,	7,55	0,000
<u>Veri</u>	fica fessuraz	ione piedritto	o destro [Con	nbinazione n° 1	3 - SLE (Frequent	·	7	7, 1	,,,,,,	3,000
					3 - SLE (Frequent	e)]				·
N°	х	A_{fi}	${\sf A}_{\sf fs}$	Мр	<u>3 - SLE (Frequent</u>	e <u>)]</u> M	w	W _{lim}	S _m	E _{sm}
N° 1	X 0,50	A fi 22,62	A fs 45,24	Mp 311,48	3 - SLE (Frequent Mn -334,99	e]] M -425,13	w 0,07	W lim 0,30	s _m 184,99	€ sm 0,021
N° 1 2	X 0,50 1,95	A fi 22,62 22,62	A fs 45,24 22,62	Mp 311,48 305,94	3 - SLE (Frequent) Mn -334,99 -305,94	M -425,13 -149,43	w 0,07 0,00	W lim 0,30 0,30	s _m 184,99 0,00	ε _{sm} 0,021 0,000
N° 1	X 0,50 1,95 3,50	A fi 22,62 22,62 22,62	A fs 45,24 22,62 22,62	Mp 311,48 305,94 305,94	3 - SLE (Frequent Mn -334,99	e]] M -425,13	w 0,07 0,00 0,00	W lim 0,30 0,30 0,30	s _m 184,99	€ sm 0,021
N° 1 2 3	X 0,50 1,95	A fi 22,62 22,62	A fs 45,24 22,62	Mp 311,48 305,94	3 - SLE (Frequents) Mn -334,99 -305,94 -305,94	M -425,13 -149,43 -57,59	w 0,07 0,00	W lim 0,30 0,30	s _m 184,99 0,00 0,00	€ _{sm} 0,021 0,000 0,000
N° 1 2 3 4 5	X 0,50 1,95 3,50 4,95 6,50	A _{fi} 22,62 22,62 22,62 22,62 22,62 22,62	A _{fs} 45,24 22,62 22,62 22,62 22,62 22,62	Mp 311,48 305,94 305,94 305,94	Mn -334,99 -305,94 -305,94 -305,94 -305,94	M -425,13 -149,43 -57,59 -114,02	w 0,07 0,00 0,00 0,00 0,00	W lim 0,30 0,30 0,30 0,30	s _m 184,99 0,00 0,00 0,00	E _{sm} 0,021 0,000 0,000 0,000
N° 1 2 3 4 5	X 0,50 1,95 3,50 4,95 6,50	A _{fi} 22,62 22,62 22,62 22,62 22,62 22,62	A _{fs} 45,24 22,62 22,62 22,62 22,62 22,62	Mp 311,48 305,94 305,94 305,94 305,94	Mn -334,99 -305,94 -305,94 -305,94 -305,94	M -425,13 -149,43 -57,59 -114,02 -283,37	w 0,07 0,00 0,00 0,00 0,00	W _{lim} 0,30 0,30 0,30 0,30 0,30 0,30	s _m 184,99 0,00 0,00 0,00 0,00	E _{sm} 0,021 0,000 0,000 0,000 0,000
N° 1 2 3 4 5	X 0,50 1,95 3,50 4,95 6,50 fica fessuraz X	A _{fi} 22,62 22,62 22,62 22,62 22,62 22,62	A _{fs} 45,24 22,62 22,62 22,62 22,62 22,62 Anne [Combination of the combination of the com	Mp 311,48 305,94 305,94 305,94 305,94 azione n° 14 - S	3 - SLE (Frequente Mn -334,99 -305,94 -305,94 -305,94 -305,94 -305,94	M -425,13 -149,43 -57,59 -114,02 -283,37	w 0,07 0,00 0,00 0,00 0,00	W _{lim} 0,30 0,30 0,30 0,30 0,30	\$ _m 184,99 0,00 0,00 0,00 0,00	E _{sm} 0,021 0,000 0,000 0,000 0,000
N° 1 2 3 4 5 Veri N° 1	X 0,50 1,95 3,50 4,95 6,50 fica fessuraz X 0,07	A _{fi} 22,62 22,62 22,62 22,62 22,62 ione fondazio	A _{fs} 45,24 22,62 22,62 22,62 22,62 22,62 Done [Combineted] A _{fs} 22,62	Mp 311,48 305,94 305,94 305,94 305,94 azione n° 14 - S Mp 470,24	3 - SLE (Frequente Mn -334,99 -305,94 -305,94 -305,94 -305,94 -Mn -470,24	M -425,13 -149,43 -57,59 -114,02 -283,37 M -0,24	w 0,07 0,00 0,00 0,00 0,00 0,00	W _{lim} 0,30 0,30 0,30 0,30 0,30 0,30	s _m 184,99 0,00 0,00 0,00 0,00 0,00	E _{sm} 0,021 0,000 0,000 0,000 0,000
N° 1 2 3 4 5	X 0,50 1,95 3,50 4,95 6,50 fica fessuraz X 0,07 2,67	A _{fi} 22,62 22,62 22,62 22,62 22,62 ione fondazio A _{fi} 22,62 22,62	A _{fs} 45,24 22,62 22,62 22,62 22,62 22,62 Dene [Combine	Mp 311,48 305,94 305,94 305,94 305,94 azione n° 14 - S Mp 470,24 470,24	Mn -334,99 -305,94 -305,94 -305,94 -305,94 -305,94 -Mn -470,24 -470,24	M -425,13 -149,43 -57,59 -114,02 -283,37 M -0,24 -113,84	w 0,07 0,00 0,00 0,00 0,00 0,00	W _{lim} 0,30 0,30 0,30 0,30 0,30 0,30	\$m 184,99 0,00 0,00 0,00 0,00 0,00	E _{sm} 0,021 0,000 0,000 0,000 0,000
N° 1 2 3 4 5 5 Veri	X 0,50 1,95 3,50 4,95 6,50 fica fessuraz X 0,07 2,67 5,30	A _{fi} 22,62 22,62 22,62 22,62 22,62 ione fondazio A _{fi} 22,62 22,62 22,62	A _{fs} 45,24 22,62 22,62 22,62 22,62 22,62 22,62 22,62 22,62 22,62 22,62	Mp 311,48 305,94 305,94 305,94 305,94 azione n° 14 - S Mp 470,24 470,24 470,24	Mn -334,99 -305,94 -305,94 -305,94 -305,94 -307,94 -307,94 -470,24 -470,24 -470,24	M -425,13 -149,43 -57,59 -114,02 -283,37 M -0,24 -113,84 -470,85	w 0,07 0,00 0,00 0,00 0,00 0,00 0,00 0,0	W _{lim} 0,30 0,30 0,30 0,30 0,30 0,30 100,00	s _m 184,99 0,00 0,00 0,00 0,00 0,00 0,00 0,00	E _{sm} 0,021 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000
N° 1 2 3 4 5 5 Verit N° 1 2 3 4	x 0,50 1,95 3,50 4,95 6,50 fica fessuraz x 0,07 2,67 5,30 8,00	A _{fi} 22,62 22,62 22,62 22,62 22,62 ione fondazio A _{fi} 22,62 22,62 22,62 22,62	A _{fs} 45,24 22,62 22,62 22,62 22,62 22,62 22,62 22,62 22,62 22,62 22,62 22,62	Mp 311,48 305,94 305,94 305,94 305,94 azione n° 14 - S Mp 470,24 470,24 470,24 470,24	Mn -334,99 -305,94 -305,94 -305,94 -305,94 -307,94 -307,94 -470,24 -470,24 -470,24 -470,24	M -425,13 -149,43 -57,59 -114,02 -283,37 M -0,24 -113,84 -470,85 -178,27	w 0,07 0,00 0,00 0,00 0,00 0,00 0,00 0,0	W _{lim} 0,30 0,30 0,30 0,30 0,30 0,30 0,30 100,00 100,00 100,00	s _m 184,99 0,00 0,00 0,00 0,00 0,00 0,00 0,00	E _{sm} 0,021 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,005 0,000
N° 1 2 3 4 5 5 Veri	X 0,50 1,95 3,50 4,95 6,50 fica fessuraz X 0,07 2,67 5,30	A _{fi} 22,62 22,62 22,62 22,62 22,62 ione fondazio A _{fi} 22,62 22,62 22,62	A _{fs} 45,24 22,62 22,62 22,62 22,62 22,62 22,62 22,62 22,62 22,62 22,62	Mp 311,48 305,94 305,94 305,94 305,94 azione n° 14 - S Mp 470,24 470,24 470,24	Mn -334,99 -305,94 -305,94 -305,94 -305,94 -307,94 -307,94 -470,24 -470,24 -470,24	M -425,13 -149,43 -57,59 -114,02 -283,37 M -0,24 -113,84 -470,85	w 0,07 0,00 0,00 0,00 0,00 0,00 0,00 0,0	W _{lim} 0,30 0,30 0,30 0,30 0,30 0,30 100,00	s _m 184,99 0,00 0,00 0,00 0,00 0,00 0,00 0,00	Esm 0,021 0,000 0,000 0,000 0,000 0,000 0,000 0,035
N° 1 2 3 4 5 5 Verir N° 1 2 3 4 5 5	x 0,50 1,95 3,50 4,95 6,50 fica fessuraz x 0,07 2,67 5,30 8,00 10,54	A _{fi} 22,62 22,62 22,62 22,62 22,62 ione fondazio A _{fi} 22,62 22,62 22,62 22,62 45,24	A _{fs} 45,24 22,62 22,62 22,62 22,62 22,62 22,62 22,62 22,62 22,62 22,62 22,62	Mp 311,48 305,94 305,94 305,94 305,94 azione n° 14 - S Mp 470,24 470,24 470,24 470,24	Mn -334,99 -305,94 -305,94 -305,94 -305,94 -307,94 LE (Rara)] Mn -470,24 -470,24 -470,24 -470,24 -470,24 -470,24 -470,24 -470,24 -470,24	M -425,13 -149,43 -57,59 -114,02 -283,37 M -0,24 -113,84 -470,85 -178,27	w 0,07 0,00 0,00 0,00 0,00 0,00 0,00 0,0	W _{lim} 0,30 0,30 0,30 0,30 0,30 0,30 0,30 100,00 100,00 100,00	s _m 184,99 0,00 0,00 0,00 0,00 0,00 0,00 0,00	Esm 0,021 0,000 0,000 0,000 0,000 0,000 0,000 0,035 0,000
N° 1 2 3 4 5 5 Verir N° 1 2 3 4 5 5	x 0,50 1,95 3,50 4,95 6,50 fica fessuraz x 0,07 2,67 5,30 8,00 10,54	A _{fi} 22,62 22,62 22,62 22,62 22,62 ione fondazio A _{fi} 22,62 22,62 22,62 22,62 45,24	A _{fs} 45,24 22,62 22,62 22,62 22,62 22,62 22,62 22,62 22,62 22,62 22,62 22,62	Mp 311,48 305,94 305,94 305,94 305,94 azione n° 14 - S Mp 470,24 470,24 470,24 470,24 508,73	Mn -334,99 -305,94 -305,94 -305,94 -305,94 -307,94 LE (Rara)] Mn -470,24 -470,24 -470,24 -470,24 -470,24 -470,24 -470,24 -470,24 -470,24	M -425,13 -149,43 -57,59 -114,02 -283,37 M -0,24 -113,84 -470,85 -178,27	w 0,07 0,00 0,00 0,00 0,00 0,00 0,00 0,0	W _{lim} 0,30 0,30 0,30 0,30 0,30 0,30 0,30 100,00 100,00 100,00	s _m 184,99 0,00 0,00 0,00 0,00 0,00 0,00 0,00	E _{sm} 0,021 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000
N° 1 2 3 4 5 5 Veri	x 0,50 1,95 3,50 4,95 6,50 fica fessuraz X 0,07 2,67 5,30 8,00 10,54	A _{fi} 22,62 22,62 22,62 22,62 22,62 ione fondazio A _{fi} 22,62 22,62 22,62 245,24	A _{fs} 45,24 22,62 22,62 22,62 22,62 22,62 22,62 22,62 22,62 22,62 22,62 22,62	Mp 311,48 305,94 305,94 305,94 305,94 azione n° 14 - S Mp 470,24 470,24 470,24 470,24 508,73	Mn -334,99 -305,94 -305,94 -305,94 -305,94 -307,94 LE (Rara)] Mn -470,24 -470,24 -470,24 -470,24 -470,24 -470,24 -478,14	M -425,13 -149,43 -57,59 -114,02 -283,37 M -0,24 -113,84 -470,85 -178,27 -0,14	w 0,07 0,00 0,00 0,00 0,00 0,00 0,00 0,17 0,00 0,00	W _{lim} 0,30 0,30 0,30 0,30 0,30 0,30 100,00 100,00 100,00 100,00 100,00	\$m 184,99 0,00 0,00 0,00 0,00 0,00 273,48 0,00 0,00	E _{sm} 0,021 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000

2.1.2 PEDEMONTANA DELLE MARCHE Secondo stralcio funzionale: Matelica Nord – Matelica Sud/Castelraimondo Marche Umbria S.p.A. Pag. di Pag. **WBS** Opera Tratto Settore CEE ld. doc. Rev. N. prog. 126 di L0703 212 Ε 38 O13800 REL 01 Α 168 3 5,30 22,62 470,24 -470,24 385,53 0,00 100,00 0,00 0,000 22.62 4 7,46 22,62 22,62 470,24 -470,24 198,32 0,00 100,00 0,00 0,000 5 9,70 22,62 22,62 470,24 -470,24 -342,19 0,00 100,00 0,00 0,000 Verifica fessurazione piedritto sinistro [Combinazione n° 14 - SLE (Rara)] N° Х М Afi Afs αM Mn w Wlim Sm Esm. 1 0,50 22,62 45,24 311,48 -334,99 -515,67 0,13 100,00 184,99 0,040 2 1,95 22,62 22,62 305,94 -305,94 -174,56 0,00 100,00 0,00 0,000 3 3,50 22,62 22,62 305,94 -305,94 -40,56 0,00 100,00 0,00 0,000 4 4,95 22,62 22,62 305,94 -305,94 -83,34 0,00 100,00 0,00 0,000 5 6.50 22,62 22,62 305,94 -305,94 -265.74 0.00 100.00 0.00 0.000 Verifica fessurazione piedritto destro [Combinazione nº 14 - SLE (Rara)] N Х \mathbf{A}_{fi} \mathbf{A}_{fs} Мр Mn М w \mathbf{W}_{lim} ϵ_{sm} 1 0,50 22,62 45,24 311,48 -334,99 -378,14 0,05 100,00 184,99 0,016 2 1,95 22,62 22,62 305,94 -305,94 -128,04 0,00 100,00 0,00 0,000 3 3,50 22,62 22,62 305,94 -305,94 -63,50 0,00 100,00 0,00 0,000 4 4,95 22,62 22.62 305,94 -305,94 -145,53 0,00 100,00 0,00 0.000 5 6,50 22,62 22,62 305,94 -305,94 -342,19 0,14 100,00 273,48 0,030 Verifica fessurazione fondazione [Combinazione n° 15 - SLE (Frequente)] N° Х Afi Afs Мр Mn М w Wlim **€**sm Sm 0,07 22,62 22,62 470,24 -470,24 -0,22 0,00 0,00 0,000 1 0,30 2 2,67 22,62 22,62 470,24 -470,24 -111,73 0,00 0,30 0,00 0,000 3 470,24 -470,24 -456,46 0,00 0,00 0,000 5,30 22,62 22,62 0,30 4 470,24 -470,24 -156,10 0,00 0,30 0,00 0,000 8,00 22,62 22,62 5 0,00 0,000 10.54 45,24 22,62 508,73 -478,14 -0.150,00 0,30 Verifica fessurazione traverso [Combinazione n° 15 - SLE (Frequente)] N \textbf{A}_{fs} X αM Mn м A_{fi} w \mathbf{W}_{lim} 470,24 -470,24 -220,24 1 0,90 22,62 22,62 0,00 0,30 0,00 0,000 22,62 22,62 0,30 2 3,14 470,24 -470,24 292,50 0,00 0,00 0,000 3 5,30 470,24 -470,24 438,00 0,00 0,000 22,62 22,62 0,00 0,30 4 7.46 22.62 22.62 470.24 -470.24 256.75 0.00 0.30 0,00 0.000 5 9,70 22,62 470,24 -470,24 -277,57 0,00 0,30 0,00 0,000 22,62

М

0.12

0,00

0.00

0,00

0,00

-505,33

-165,52

-26,00

-57,15

-220,24

Wlim

0.30

0,30

0,30

0,30

0,30

Sm

184.99

0,00

0,00

0,00

0,00

€sm

0.038

0,000

0.000

0,000

0,000

Verifica fessurazione	niedritto destro	[Combinazione nº	15 - SIF	(Frequente)]
v et titlea tessui azione	piculitto acstro	[COIIIDIIIazione ii	IJ - JLL	(irequente)

Verifica fessurazione piedritto sinistro [Combinazione n° 15 - SLE (Frequente)]

 \mathbf{A}_{fs}

45,24

22,62

22.62

22,62

22,62

Mp

311,48

305,94

305,94

305,94

305,94

Mn

-334,99

-305,94

-305,94

-305,94

-305,94

N°

1

2

3

4

5

Х

0.50

1,95

3.50

4,95

6,50

 \mathbf{A}_{fi}

22,62

22,62

22.62

22,62

22,62

2.1.2 PEDEMONTANA DELLE MARCHE Secondo stralcio funzionale: Matelica Nord – Matelica Sud/Castelraimondo Nord

	Marche Umbria S.p.A.											
		insi ia eipiz	-4.1	Opera	Tratto	Settore	CEE	WBS	ld. doc.	N. prog.	Rev.	Pag. di Pag.
				L0703	212	Е	38	O13800	REL	01	Α	127 di
												168
٧°	Х	A_{fi}	A_{fs}	Mp		Mn	r		w	W _{lim}	Sm	€ sm
	0,50	22,62	45,24	311,48		34,99	-402,1				184,99	0,018
2	1,95	22,62	22,62	305,94)5,94	-130,6			0,30	0,00	0,000
3	3,50	22,62	22,62	305,94)5,94	-43,2 -103,7			0,30	0,00 0,00	0,000
4 5	4,95 6,50	22,62 22,62	22,62 22,62	305,94 305,94)5,94)5,94	-103,7 -277,5			0,30 0,30	0,00	0,000 0,000
Verifi	ica fessurazi	ione fondazio	one [Combina	zione n° 16	SLE (Rara	n						
N°	x	\mathbf{A}_{fi}	A_{fs}	Мр		Mn			w	Wlim	Sm	€ sm
1	0,07	22,62	22,62	470,24		70,24	-0,2			0,00	0,00	0,000
2	2,67	22,62	22,62	470,24		70,24	-131,0			0,00	0,00	0,000
3	5,30 8,00	22,62 22,62	22,62 22,62	470,24 470,24		70,24 70,24	-474,1 -175,4			0,00 0,00	273,48 0,00	0,036 0,000
4 5	10,54	45,24	22,62	508,73		70,24 78,14	-175,4 -0,1			0,00	0,00	0,000
,	10,54	43,24	22,02	308,73	-47	0,14	-0,1	4 0,0	10	0,00	0,00	0,000
<u>Verifi</u>	ica fessurazi	ione traverso	[Combinazio	ne n° 16 - SI	.E (Rara)]							
N°	x	Afi	A_{fs}	Мр		Mn		vi ,	w	147	_	
	^	All	⊢ IS					••	••	Wlim	Sm	€sm
1	0,90	22,62	22,62	470,24	-47	70,24	-307,0	4 0,0		0,00	0,00	0,000
1 2	0,90 3,14	22,62 22,62	22,62 22,62	470,24 470,24	-47	70,24 70,24	-307,0 205,6	4 0,0 9 0,0	00 10 00 10	0,00 0,00	0,00 0,00	0,000 0,000
1 2 3	0,90 3,14 5,30	22,62 22,62 22,62	22,62 22,62 22,62	470,24 470,24 470,24	-47 -47	70,24 70,24 70,24	-307,0 205,6 351,2	4 0,0 9 0,0 0 0,0	00 10 00 10 00 10	0,00 0,00 0,00	0,00 0,00 0,00	0,000 0,000 0,000
1 2 3 4	0,90 3,14 5,30 7,46	22,62 22,62 22,62 22,62	22,62 22,62 22,62 22,62	470,24 470,24 470,24 470,24	-47 -47 -47	70,24 70,24 70,24 70,24	-307,0 205,6 351,2 169,9	4 0,0 9 0,0 0 0,0 4 0,0	00 10 00 10 00 10 00 10	0,00 0,00 0,00 0,00	0,00 0,00 0,00 0,00	0,000 0,000 0,000 0,000
1 2 3 4 5	0,90 3,14 5,30	22,62 22,62 22,62	22,62 22,62 22,62	470,24 470,24 470,24	-47 -47 -47	70,24 70,24 70,24	-307,0 205,6 351,2	4 0,0 9 0,0 0 0,0 4 0,0	00 10 00 10 00 10 00 10	0,00 0,00 0,00	0,00 0,00 0,00	0,000 0,000 0,000
1 2 3 4 5	0,90 3,14 5,30 7,46 9,70	22,62 22,62 22,62 22,62	22,62 22,62 22,62 22,62 22,62	470,24 470,24 470,24 470,24 470,24	-47 -47 -47	70,24 70,24 70,24 70,24 70,24	-307,0 205,6 351,2 169,9	4 0,0 9 0,0 0 0,0 4 0,0	00 10 00 10 00 10 00 10	0,00 0,00 0,00 0,00	0,00 0,00 0,00 0,00	0,000 0,000 0,000 0,000
1 2 3 4 5 Verif i	0,90 3,14 5,30 7,46 9,70	22,62 22,62 22,62 22,62 22,62	22,62 22,62 22,62 22,62 22,62	470,24 470,24 470,24 470,24 470,24	-47 -47 -47	70,24 70,24 70,24 70,24 70,24	-307,0 205,6 351,2 169,9 -364,3	4 0,0 9 0,0 0 0,0 4 0,0 7 0,0	00 10 00 10 00 10 00 10	0,00 0,00 0,00 0,00	0,00 0,00 0,00 0,00	0,000 0,000 0,000 0,000
1 2 3 4 5 <u>Verifi</u> N°	0,90 3,14 5,30 7,46 9,70	22,62 22,62 22,62 22,62 22,62 22,62	22,62 22,62 22,62 22,62 22,62 22,62	470,24 470,24 470,24 470,24 470,24 470,24	-47 -47 -47 -47	(70,24 (70,24 (70,24 (70,24 (70,24 (Rara))	-307,0 205,6 351,2 169,9 -364,3	4 0,0 9 0,0 0 0,0 4 0,0 7 0,0	00 10 00 10 00 10 00 10 00 10	0,00 0,00 0,00 0,00 0,00 0,00	0,00 0,00 0,00 0,00 0,00	0,000 0,000 0,000 0,000 0,000
1 2 3 4 5 Verifi N°	0,90 3,14 5,30 7,46 9,70 ica fessurazi	22,62 22,62 22,62 22,62 22,62 22,62 ione piedritto	22,62 22,62 22,62 22,62 22,62 22,62 2 sinistro [Col	470,24 470,24 470,24 470,24 470,24 470,24 Mp	-47 -47 -47 -47 1° 16 - SLE	70,24 70,24 70,24 70,24 70,24 70,24 (Rara)]	-307,0 205,6 351,2 169,9 -364,3	4 0,0 9 0,0 0 0,0 4 0,0 7 0,0	00 10 00 10 00 10 00 10 00 10 00 10	0,00 0,00 0,00 0,00 0,00 0,00	0,00 0,00 0,00 0,00 0,00 0,00	0,000 0,000 0,000 0,000 0,000
1 2 3 4 5 Verifi N° 1 2 3	0,90 3,14 5,30 7,46 9,70 ica fessurazi X 0,50 1,95 3,50	22,62 22,62 22,62 22,62 22,62 22,62 A _{fi} 22,62 22,62 22,62	22,62 22,62 22,62 22,62 22,62 2 sinistro [Col A _{fs} 45,24 22,62 22,62	470,24 470,24 470,24 470,24 470,24 470,24 mbinazione Mp 311,48 305,94 305,94	-47 -47 -47 1° 16 - SLE -33 -30	(Rara)] Mn 84,99 95,94	-307,0 205,6 351,2 169,9 -364,3 - -483,9 -170,3 -58,7	4 0,0 9 0,0 0 0,0 4 0,0 7 0,0 5 0,1 1 0,0 2 0,0	00 10 00 10 00 10 00 10 00 10 00 10	0,00 0,00 0,00 0,00 0,00 0,00 W tim 0,00 0,00 0,00	0,00 0,00 0,00 0,00 0,00 0,00 s _m 184,99 0,00 0,00	0,000 0,000 0,000 0,000 0,000 0,000
1 2 3 4 5 5 Verifi 1 2 2 3 4	0,90 3,14 5,30 7,46 9,70 ica fessurazi X 0,50 1,95 3,50 4,95	22,62 22,62 22,62 22,62 22,62 22,62 A _{fi} 22,62 22,62 22,62 22,62 22,62	22,62 22,62 22,62 22,62 22,62 22,62 2 sinistro [Col A _{fs} 45,24 22,62 22,62 22,62	470,24 470,24 470,24 470,24 470,24 470,24 mbinazione 1 Mp 311,48 305,94 305,94 305,94	-47 -47 -47 1° 16 - SLE -33 -30 -30	(Rara)] Mn 84,99 95,94 95,94	-307,0 205,6 351,2 169,9 -364,3 - 170,3 -58,7 -116,0	4 0,0 9 0,0 0 0,0 4 0,0 7 0,0 5 0,1 1 0,0 2 0,0 4 0,0	w .1 10 10 10 10 10 10 10 10 10 10 10 10 10	0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,0	0,00 0,00 0,00 0,00 0,00 0,00 s _m 184,99 0,00 0,00 0,00	0,000 0,000 0,000 0,000 0,000 0,000 ε _{sm} 0,034 0,000 0,000 0,000
1 2 3 4 5	0,90 3,14 5,30 7,46 9,70 ica fessurazi X 0,50 1,95 3,50	22,62 22,62 22,62 22,62 22,62 22,62 A _{fi} 22,62 22,62 22,62	22,62 22,62 22,62 22,62 22,62 2 sinistro [Col A _{fs} 45,24 22,62 22,62	470,24 470,24 470,24 470,24 470,24 470,24 mbinazione Mp 311,48 305,94 305,94	-47 -47 -47 1° 16 - SLE -33 -30 -30	(Rara)] Mn 84,99 95,94	-307,0 205,6 351,2 169,9 -364,3 - -483,9 -170,3 -58,7	4 0,0 9 0,0 0 0,0 4 0,0 7 0,0 5 0,1 1 0,0 2 0,0 4 0,0	w .1 10 10 10 10 10 10 10 10 10 10 10 10 10	0,00 0,00 0,00 0,00 0,00 0,00 W tim 0,00 0,00 0,00	0,00 0,00 0,00 0,00 0,00 0,00 s _m 184,99 0,00 0,00	0,000 0,000 0,000 0,000 0,000 0,000
1 2 3 4 5 Verifi N° 1 2 3 4 5	0,90 3,14 5,30 7,46 9,70 ica fessurazi X 0,50 1,95 3,50 4,95 6,50	22,62 22,62 22,62 22,62 22,62 22,62 A _{fi} 22,62 22,62 22,62 22,62 22,62	22,62 22,62 22,62 22,62 22,62 22,62 2 sinistro [Con A _{fs} 45,24 22,62 22,62 22,62 22,62	470,24 470,24 470,24 470,24 470,24 470,24 mbinazione (Mp 311,48 305,94 305,94 305,94 305,94	-47 -47 -47 -47 16 - SLE -33 -30 -30 -30	(Rara)] Mn 84,99 95,94 95,94 95,94	-307,0 205,6 351,2 169,9 -364,3 - 170,3 -58,7 -116,0	4 0,0 9 0,0 0 0,0 4 0,0 7 0,0 5 0,1 1 0,0 2 0,0 4 0,0	w .1 10 10 10 10 10 10 10 10 10 10 10 10 10	0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,0	0,00 0,00 0,00 0,00 0,00 0,00 s _m 184,99 0,00 0,00 0,00	0,000 0,000 0,000 0,000 0,000 0,000 ε _{sm} 0,034 0,000 0,000 0,000
1 2 3 4 5 Verifi 1 2 3 4 5 Verifi	0,90 3,14 5,30 7,46 9,70 ica fessurazi X 0,50 1,95 3,50 4,95 6,50	22,62 22,62 22,62 22,62 22,62 22,62 22,62 22,62 22,62 22,62 22,62 22,62	22,62 22,62 22,62 22,62 22,62 22,62 22,62 22,62 22,62 22,62 22,62	470,24 470,24 470,24 470,24 470,24 470,24 mbinazione Mp 311,48 305,94 305,94 305,94 305,94	-47 -47 -47 -47 16 - SLE -33 -30 -30 -30	(Rara)] Mn 84,99 95,94 95,94 95,94 95,94	-307,0 205,6 351,2 169,9 -364,3 -170,3 -58,7 -116,0 -307,0	4 0,0 9 0,0 0 0,0 4 0,0 7 0,0 5 0,1 1 0,0 2 0,0 4 0,0 4 0,1	w .1 10 10 10 10 10 10 10 10 10 10 10 10 10	0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,0	0,00 0,00 0,00 0,00 0,00 0,00 \$ \$m\$ 184,99 0,00 0,00 0,00 273,48	0,000 0,000 0,000 0,000 0,000 0,000 0,034 0,000 0,000 0,000 0,000 0,026
1 2 3 3 4 5 5 Verifi 2 3 4 5 Verifi	0,90 3,14 5,30 7,46 9,70 ica fessurazi X 0,50 1,95 3,50 4,95 6,50	22,62 22,62 22,62 22,62 22,62 22,62 22,62 22,62 22,62 22,62 22,62 22,62	22,62 22,62 22,62 22,62 22,62 22,62 45,24 22,62 22,62 22,62 22,62 22,62	470,24 470,24 470,24 470,24 470,24 470,24 mbinazione Mp 311,48 305,94 305,94 305,94 305,94 Mp	-47 -47 -47 -47 -33 -30 -30 -30 -30	(Rara)] Mn 84,99 95,94 95,94 95,94 Mn Rara)]	-307,0 205,6 351,2 169,9 -364,3 -364,3 -483,9 -170,3 -58,7 -116,0 -307,0	4 0,0 9 0,0 0 0,0 4 0,0 7 0,0 5 0,1 1 0,0 2 0,0 4 0,1	w	0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,0	0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,0	0,000 0,000 0,000 0,000 0,000 0,000 0,034 0,000 0,000 0,000 0,026
1 2 3 3 4 5 5 Verifi 1 2 3 4 4 5 5 Verifi	0,90 3,14 5,30 7,46 9,70 ica fessurazi X 0,50 1,95 3,50 4,95 6,50 ica fessurazi X 0,50	22,62 22,62 22,62 22,62 22,62 22,62 22,62 22,62 22,62 22,62 22,62 22,62	22,62 22,62 22,62 22,62 22,62 22,62 45,24 22,62 22,62 22,62 22,62 22,62 22,62	470,24 470,24 470,24 470,24 470,24 470,24 470,24 Mp 311,48 305,94 305,94 305,94 305,94 Mp 311,48	-47 -47 -47 -47 -33 -30 -30 -30 -30 -30	(Rara)] Mn 84,99 95,94 95,94 95,94 95,94	-307,0 205,6 351,2 169,9 -364,3 -364,3 -483,9 -170,3 -58,7 -116,0 -307,0	4 0,0 9 0,0 0 0,0 4 0,0 7 0,0 5 0,1 1 0,0 2 0,0 4 0,0 4 0,1	w 100 100 100 100 100 100 100 100 100 10	0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,0	0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,0	6,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,026
1 2 3 4 5 Verifi 1 2 3 4 5 Verifi N° 1 2	0,90 3,14 5,30 7,46 9,70 ica fessurazi X 0,50 1,95 3,50 4,95 6,50	22,62 22,62 22,62 22,62 22,62 22,62 22,62 22,62 22,62 22,62 22,62 22,62 24,62 262 262 27,62	22,62 22,62 22,62 22,62 22,62 22,62 45,24 22,62 22,62 22,62 22,62 22,62	470,24 470,24 470,24 470,24 470,24 470,24 mbinazione Mp 311,48 305,94 305,94 305,94 305,94 Mp	-47 -47 -47 -47 -33 -30 -30 -30 -30 -30 -30	(Rara)] Mn (S),94	-307,0 205,6 351,2 169,9 -364,3 -364,3 -483,9 -170,3 -58,7 -116,0 -307,0	4 0,0 9 0,0 0 0,0 4 0,0 7 0,0 5 0,1 1 0,0 2 0,0 4 0,1 4 0,1	w 100 100 100 100 100 100 100 100 100 10	0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,0	0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,0	0,000 0,000 0,000 0,000 0,000 0,000 0,034 0,000 0,000 0,000 0,026
1 2 3 4 5 5 Verifi 1 2 3 4 5	0,90 3,14 5,30 7,46 9,70 ica fessurazi X 0,50 1,95 3,50 4,95 6,50 ica fessurazi X 0,50 1,95	22,62 22,62 22,62 22,62 22,62 22,62 22,62 22,62 22,62 22,62 22,62 22,62 22,62	22,62 22,62 22,62 22,62 22,62 22,62 25,62 22,62 22,62 22,62 22,62 22,62 24,62 25,62 26,62 27,62	470,24 470,24 470,24 470,24 470,24 470,24 470,24 Mp 311,48 305,94 305,94 305,94 Mp 311,48 305,94	-47 -47 -47 -47 -33 -30 -30 -30 -30 -30 -30 -30 -30 -30	(Rara)] Mn (S,94	-307,0 205,6 351,2 169,9 -364,3 -364,3 -483,9 -170,3 -58,7 -116,0 -307,0	4 0,0 9 0,0 0 0,0 4 0,0 7 0,0 1 0,0 2 0,0 4 0,1 4 0,1	00 10 00 10	0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,0	0,00 0,00 0,00 0,00 0,00 0,00 \$ \$m\$ 184,99 0,00 273,48 \$ \$m\$ 184,99 0,00	Esm 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,001 0,001 0,001 0,001 0,001

Secondo stralcio funzionale: Matelica Nord – Matelica Sud/Castelra
imondo Nord

Opera L0703	Tratto 212	Settore E	CEE 38	WBS 013800	ld. doc. REL	N. prog. 01	Rev. A	Pag. di Pag. 128 di 168
----------------	---------------	--------------	-----------	---------------	-----------------	----------------	-----------	-------------------------------

Inviluppo sollecitazioni nodali

X [m]	M _{min} [kNm]	M _{max} [kNm]	V _{min} [kN]	V _{max} [kN]	N _{min} [kN]	N _{max} [kN]
0,00	0,00	0,00	0,00	8,26	-282,77	281,94
2,67	-269,86	487,49	-352,48	-112,91	260,63	363,61
5,30	376,80	725,86	-151,27	157,58	260,63	363,63
8,00	-291,14	477,25	132,58	364,06	260,63	363,93
10,60	0,00	0,00	-8,26	0,00	-282,77	281,94
Inviluppo	sollecitazioni traverso					
X [m]	M _{min} [kNm]	M _{max} [kNm]	V _{min} [kN]	V _{max} [kN]	N _{min} [kN]	N _{max} [kN
0,90	-718,61	-33,88	216,47	498,27	128,56	268,04
3,14	-43,43	403,49	67,48	261,31	128,56	251,46
5,30	275,26	679,00	-75,95	75,95	128,56	235,53
7,46	-43,43	377,63	-273,30	-67,48	128,56	251,46
9,70	-718,61	-33,88	-510,25	-216,47	128,56	268,04
Inviluppo	sollecitazioni piedritto sir	nistro				
<u>Inviluppo</u> Y [m]	o sollecitazioni piedritto sir M _{min} [kNm]	nistro M _{max} [kNm]	V _{min} [kN]	V _{max} [kN]	N _{min} [kN]	N _{max} [kN]
	•		V _{min} [kN] 97,87	V _{max} [kN] 587,55	N _{min} [kN] 318,73	N _{max} [kN] 654,27
Y [m] 0,50 1,95	M _{min} [kNm] -977,67 -299,79	M _{max} [kNm] 45,24 86,27	97,87 -36,19	587,55 351,57	318,73 293,99	654,27 616,53
Y [m] 0,50	M _{min} [kNm] -977,67	M _{max} [kNm] 45,24	97,87	587,55	318,73	654,27
Y [m] 0,50 1,95	M _{min} [kNm] -977,67 -299,79	M _{max} [kNm] 45,24 86,27	97,87 -36,19	587,55 351,57	318,73 293,99	654,27 616,53
Y [m] 0,50 1,95 3,50	M _{min} [kNm] -977,67 -299,79 -127,01	M _{max} [kNm] 45,24 86,27 98,77	97,87 -36,19 -144,90	587,55 351,57 134,15	318,73 293,99 267,60	654,27 616,53 576,27
Y [m] 0,50 1,95 3,50 4,95 6,50	M _{min} [kNm] -977,67 -299,79 -127,01 -345,34	M _{max} [kNm] 45,24 86,27 98,77 159,66 -33,88	97,87 -36,19 -144,90 -216,61	587,55 351,57 134,15 -39,48	318,73 293,99 267,60 242,86	654,27 616,53 576,27 538,53
Y [m] 0,50 1,95 3,50 4,95 6,50	M _{min} [kNm] -977,67 -299,79 -127,01 -345,34 -718,61	M _{max} [kNm] 45,24 86,27 98,77 159,66 -33,88	97,87 -36,19 -144,90 -216,61	587,55 351,57 134,15 -39,48	318,73 293,99 267,60 242,86	654,27 616,53 576,27 538,53
Y [m] 0,50 1,95 3,50 4,95 6,50 Inviluppo	M _{min} [kNm] -977,67 -299,79 -127,01 -345,34 -718,61 • sollecitazioni piedritto de	M _{max} [kNm] 45,24 86,27 98,77 159,66 -33,88	97,87 -36,19 -144,90 -216,61 -268,04	587,55 351,57 134,15 -39,48 -128,56	318,73 293,99 267,60 242,86 216,47	654,27 616,53 576,27 538,53 498,27
Y [m] 0,50 1,95 3,50 4,95 6,50 Inviluppo Y [m] 0,50 1,95	M _{min} [kNm] -977,67 -299,79 -127,01 -345,34 -718,61 sollecitazioni piedritto de M _{min} [kNm] -977,67 -299,79	M _{max} [kNm] 45,24 86,27 98,77 159,66 -33,88 estro M _{max} [kNm] 45,24 86,27	97,87 -36,19 -144,90 -216,61 -268,04 V _{min} [kN] -587,55 -351,57	587,55 351,57 134,15 -39,48 -128,56 V _{max} [kN] -97,87 36,19	318,73 293,99 267,60 242,86 216,47 N _{min} [kN] 318,73 293,99	654,27 616,53 576,27 538,53 498,27 N _{max} [kN] 666,25 628,51
Y [m] 0,50 1,95 3,50 4,95 6,50 Inviluppo Y [m] 0,50 1,95 3,50	M _{min} [kNm] -977,67 -299,79 -127,01 -345,34 -718,61 sollecitazioni piedritto de M _{min} [kNm] -977,67 -299,79 -127,43	M _{max} [kNm] 45,24 86,27 98,77 159,66 -33,88 estro M _{max} [kNm] 45,24 86,27 98,77	97,87 -36,19 -144,90 -216,61 -268,04 V _{min} [kN] -587,55 -351,57 -134,15	587,55 351,57 134,15 -39,48 -128,56 V _{max} [kN] -97,87 36,19 144,90	318,73 293,99 267,60 242,86 216,47 N _{min} [kN] 318,73 293,99 267,60	654,27 616,53 576,27 538,53 498,27 N _{max} [kN] 666,25 628,51 588,25
Y [m] 0,50 1,95 3,50 4,95 6,50 Inviluppo Y [m] 0,50 1,95	M _{min} [kNm] -977,67 -299,79 -127,01 -345,34 -718,61 sollecitazioni piedritto de M _{min} [kNm] -977,67 -299,79	M _{max} [kNm] 45,24 86,27 98,77 159,66 -33,88 estro M _{max} [kNm] 45,24 86,27	97,87 -36,19 -144,90 -216,61 -268,04 V _{min} [kN] -587,55 -351,57	587,55 351,57 134,15 -39,48 -128,56 V _{max} [kN] -97,87 36,19	318,73 293,99 267,60 242,86 216,47 N _{min} [kN] 318,73 293,99	654,27 616,53 576,27 538,53 498,27 N _{max} [kN] 666,25 628,51

Inviluppo pressioni terreno

128,56

268,04

216,47

510,25

Inviluppo pressioni sul terreno di fondazione

-718,61

6,50

X [m]	σ _{tmin} [kPa]	σ_{tmax} [kPa]
0,00	0	198
2,67	29	131
5,30	63	111
8,00	28	133
10,60	0	198

-33,88

Inviluppo verifiche stato limite ultimo (SLU)

Verifica sezioni fondazione (Inviluppo)

1,95

3,50

4,95

6,50

351,47

345,92

340,72

335,17

2.1.2 PEDEMONTANA DELLE MARCHE

Secondo stralcio funzionale: Matelica Nord – Matelica Sud/Castelraimondo Nord

Opera L0703	Tratto 212	Settore E	CEE 38	WBS 013800	ld. doc. REL	N. prog. 01	Rev. A	Pag. di Pag. 129 di 168
----------------	---------------	--------------	-----------	---------------	-----------------	----------------	-----------	-------------------------------

0,00

0,00

0,00

0,00

0,00

0,00

0,00

0,00

Daca cariona	B = 100 cm				
Base sezione Altezza sezione	H = 100,00 cm				
AITEZZA SEZIONE	11 - 100,00 cm				
х	\mathbf{A}_{fi}	A_{fs}	cs		
0,00	22,62	22,62	5,80		
2,67	22,62	22,62	1,87		
5,30	22,62	22,62	1,36		
8,00	22,62	22,62	1,83		
10,60	45,24	22,62	5,84		
,	,	,	,		
Х	V_{Rd}		V_{Rsd}	V_{Rcd}	A_{sw}
0,00	299,45		0,00	0,00	0,00
2,67	349,52		0,00	0,00	0,00
5,30	349,52		0,00	0,00	0,00
8,00	349,52		0,00	0,00	0,00
10,60	301,89		0,00	0,00	0,00
Verifica sezioni tra	averso (Inviluppo)				
Base sezione	B = 100 cm				
Altezza sezione	H = 100,00 cm				
х	$A_{\rm fi}$	A_{fs}	cs		
0,90	22,62				
3,14	22,62	22,62 22,62	1,30 1,48		
5,30	22,62	22,62	1,34		
7,46	22,62	22,62	1,53		
9,70	22,62	22,62	1,30		
3,70	22,02	22,02	1,30		
х	V_{Rd}		V_{Rsd}	V_{Rcd}	A_{sw}
0,90	331,37		0,00	0,00	0,00
3,14	331,37		0,00	0,00	0,00
5,30	331,37		0,00	0,00	0,00
7,46	331,37		0,00	0,00	0,00
9,70	331,37		0,00	0,00	0,00
Maulfina and and ad-	- duitte - ciuintus /1il.				
verifica sezioni pie	edritto sinistro (Invilu	<u>ippo)</u>			
Base sezione	B = 100 cm				
Altezza sezione	H = 80,00 cm				
AITCZZU SCZIOTIC	11 - 00,00 cm				
Υ	A_{fi}	A_{fs}	CS		
0,50	22,62	45,24	1,39		
1,95	22,62	22,62	1,47		
3,50	22,62	22,62	7,34		
4,95	22,62	22,62	1,78		
6,50	22,62	22,62	1,05		
-,	• -	•	•		
Υ	V_{Rd}		V_{Rsd}	V_{Rcd}	A_{sw}
0,50	425,94		0,00	0,00	0,00

0,00

0,00

0,00

0,00

Secondo stralcio funzionale: Matelica Nord – Matelica Sud/Castelraimondo Nord

Opera L0703	Tratto 212	Settore E	CEE 38	WBS 013800	ld. doc. REL	N. prog. 01	Rev. A	Pag. di Pag. 130 di 168
----------------	---------------	--------------	-----------	---------------	-----------------	----------------	-----------	-------------------------------

Verifica sezioni piedritto destro (Inviluppo)

Base sezione Altezza sezione	B = 100 cm H = 80,00 cm				
Υ	${\sf A}_{\sf fi}$	A_{fs}	cs		
0,50	22,62	45,24	1,39		
1,95	22,62	22,62	1,47		
3,50	22,62	22,62	7,34		
4,95	22,62	22,62	1,78		
6,50	22,62	22,62	1,05		
Υ	\mathbf{V}_{Rd}		${f V}_{\sf Rsd}$	$oldsymbol{V}_Rcd$	Asw
0,50	427,59		0,00	0,00	0,00
1,95	353,12		0,00	0,00	0,00
3,50	347,57		0,00	0,00	0,00
4,95	342,37		0,00	0,00	0,00
6,50	336,82		0,00	0,00	0,00

Inviluppo verifiche stato limite esercizio (SLE)

Verifica sezioni fondazione (Inviluppo)

Base sezione Altezza sezione	B = 100 cm H = 100,00 cm				
x	${\sf A}_{\sf fi}$	A_{fs}	σ_{c}	σ_{fi}	σ_{fs}
0,00	22,62	22,62	1	7837	8080
2,67	22,62	22,62	1753	21499	43257
5,30	22,62	22,62	5275	58079	223680
8,00	22,62	22,62	1861	22710	46891
10,60	45,24	22,62	34	460	503
X	τι		$A_{\sf sw}$		
0,00	-12		0,00		
2,67	-340		0,00		
5,30	-15		0,00		
8,00	351		0,00		
10,60	10		0,00		

Verifica sezioni traverso (Inviluppo)

Base sezione Altezza sezione	B = 100 cm H = 100,00 cm				
х	A_{fi}	A _{fs}	σα	σ fi	σfs
0,90	22,62	22,62	3512	38450	152076
3,14	22,62	22,62	3296	144442	35955
5,30	22,62	22,62	5156	245252	54919
7,46	22,62	22,62	3160	137156	34574
9,70	22,62	22,62	3788	41266	166932

Secondo stralcio funzionale: Matelica Nord – Matelica Sud/Castelra
imondo Nord

Opera L0703	Tratto 212	Settore E	CEE 38	WBS O13800	ld. doc. REL	N. prog. 01	Rev. A	Pag. di Pag. 131 di 168
----------------	---------------	--------------	-----------	---------------	-----------------	----------------	-----------	-------------------------------

X	$ au_{ m c}$	Asw
0,90	479	0,00
3,14	251	0,00
5,30	-14	0,00
7,46	-262	0,00
9,70	-490	0,00

Verifica sezioni piedritto sinistro (Inviluppo)

Base sezione	B = 100 cm				
Altezza sezione	H = 80,00 cm				
.,					
Υ	A_{fi}	A_{fs}	σ_{c}	$\sigma_{\rm fi}$	σ_{fs}
0,50	22,62	45,24	5924	69459	130534
1,95	22,62	22,62	2666	32894	40275
3,50	22,62	22,62	1361	18126	5505
4,95	22,62	22,62	2402	29302	40085
6,50	22,62	22,62	5197	56383	165947
Υ	τ _c		A_{sw}		
0,50	508		0,00		
1,95	254		0,00		
3,50	44		0,00		
4,95	-144		0,00		
6.50	-254		0.00		

Verifica sezioni piedritto destro (Inviluppo)

Base sezione Altezza sezione	B = 100 cm H = 80,00 cm				
Υ	${\sf A_{fi}}$	A_{fs}	σ_{c}	$\sigma_{\rm fi}$	σ_{fs}
0,50	22,62	45,24	5247	62433	105871
1,95	22,62	22,62	2368	29814	29690
3,50	22,62	22,62	1367	18231	5263
4,95	22,62	22,62	2614	31569	47267
6,50	22,62	22,62	5608	60452	183571
Υ	τ _c		Asw		
0,50	-439		0,00		
1,95	-208		0,00		
3,50	28		0,00		
4,95	160		0,00		
6,50	265		0,00		

Secondo stralcio funzionale: Matelica Nord – Matelica Sud/Castelraimondo

Opera L0703	Tratto 212	Settore E	CEE 38	WBS O13800	ld. doc. REL	N. prog. 01	Rev. A	Pag. di Pag. 132 di 168
----------------	---------------	--------------	-----------	---------------	-----------------	----------------	-----------	-------------------------------

Verifiche geotecniche

Simbologia adottata

Indice della combinazione

IC Nc, Nq, N_g Nc, Nq, N_g qu Q_U Q_Y FSFattori di capacità portante
Fattori di capacità portante corretti per effetto forma, inclinazione del carico, affondamento, etc.
Portanza ultima del terreno, espressa in [kPa]
Portanza ultima del terreno, espressa in [kN]/m
Carico verticale al piano di posa, espressa in [kN]/m

Fattore di sicurezza a carico limite

IC	Nc	Nq	Nγ	N'c	N'q	Ν'γ	qu	Q υ	$\mathbf{Q}_{\mathtt{Y}}$	FS
1	21,47	11,24	7,36	27,11	12,63	7,92	2105	22307,71	1338,11	16,67
2	21,47	11,24	7,36	27,21	12,67	8,02	2122	22498,49	1283,97	17,52
3	21,47	11,24	7,36	24,78	11,54	5,61	1860	19714,39	1178,39	16,73
4	21,47	11,24	7,36	25,44	11,84	6,23	1935	20509,72	1164,18	17,62
5	21,47	11,24	7,36	12,17	5,67	0,29	548	5808,47	969,95	5,99
6	21,47	11,24	7,36	9,64	4,49	1,64	414	4388,71	755,52	5,81
7	21,47	11,24	7,36	12,17	5,67	0,29	548	5808,47	969,95	5,99
8	21,47	11,24	7,36	9,64	4,49	1,64	414	4388,71	755,52	5,81

Secondo stralcio funzionale: Matelica Nord – Matelica Sud/Castelraimondo Nord

Opera L0703	Tratto 212	Settore E	CEE 38	WBS 013800	ld. doc. REL	N. prog. 01	Rev. A	Pag. di Pag. 133 di 168
----------------	---------------	--------------	-----------	---------------	-----------------	----------------	-----------	-------------------------------

ALLEGATO 2

TABULATI DI CALCOLO MURO AD U

Secondo stralcio funzionale: Matelica Nord – Matelica Sud/Castelra
imondo Nord

Opera L0703	Tratto 212	Settore E	CEE 38	WBS O13800	ld. doc. REL	N. prog. 01	Rev. A	Pag. di Pag. 134 di 168
----------------	---------------	--------------	-----------	---------------	-----------------	----------------	-----------	-------------------------------

Geometria scatolare

Scatolare tipo vasca	
6,00	[m]
9,60	[m]
0,50	[m]
0,50	[m]
0,80	[m]
0,80	[m]
1,00	[m]
	6,00 9,60 0,50 0,50 0,80 0,80

Caratteristiche strati terreno

<u>Strato di rinfianco</u> Descrizione	Terreno di rinfianco - Ecla	
Peso di volume	18,5000	[kN/mc]
Peso di volume saturo	18,5000	[kN/mc]
Angolo di attrito	25,50	[°]
Angolo di attrito terreno struttura	17,00	[°]
Coesione	0	[kPa]
Costante di Winkler	1	[kPa/cm]
<u>Strato di base</u> Descrizione	Terreno di fondazione	
Peso di volume	18,5000	[kN/mc]
Peso di volume saturo	18,5000	[kN/mc]
Angolo di attrito	25,50	[°]
Angolo di attrito terreno struttura	25,50	[°]
Coesione	0	[kPa]
Costante di Winkler	172	[kPa/cm]
Tensione limite	2000	[kPa]

Falda

Quota falda (rispetto al piano di posa) 4,00 [m]

Caratteristiche materiali utilizzati

Materiale calcestruzzo		
R _{ck} calcestruzzo	30000	[kPa]
Peso specifico calcestruzzo	25,0000	[kN/mc]
Modulo elastico E	30976850	[kPa]
Tensione di snervamento acciaio	450000	[kPa]
Coeff. omogeneizzazione cls teso/compresso (n')	0,50	
Coeff. omogeneizzazione acciaio/cls (n)	15,00	
Coefficiente dilatazione termica	0,0000120	

Condizioni di carico

Secondo stralcio funzionale: Matelica Nord – Matelica Sud/Castelra
imondo Nord

Opera L0703	Tratto 212	Settore E	CEE 38	WBS 013800	ld. doc. REL	N. prog. 01	Rev. A	Pag. di Pag. 135 di 168
----------------	---------------	--------------	-----------	---------------	-----------------	----------------	-----------	-------------------------------

Convenzioni adottate

Origine in corrispondenza dello spigolo inferiore sinistro della struttura Carichi verticali positivi se diretti verso il basso Carichi orizzontali positivi se diretti verso destra Coppie concentrate positive se antiorarie Ascisse X (espresse in m) positive verso destra Ordinate Y (espresse in m) positive verso l'alto Carichi concentrati espressi in kN Coppie concentrate espressi in kNm Carichi distribuiti espressi in kN/m

Simbologia adottata e unità di misura

Forze concentrate

X ascissa del punto di applicazione dei carichi verticali concentrati Y ordinata del punto di applicazione dei carichi orizzontali concentrati

F_Y componente Y del carico concentrato F_x componente X del carico concentrato

M momento

Forze distribuite

 $\begin{array}{lll} X_i,\, X_f & \text{ascisse del punto iniziale e finale per carichi distribuiti verticali} \\ Y_i,\, Y_f & \text{ordinate del punto iniziale e finale per carichi distribuiti orizzontali} \\ V_{ni} & \text{componente normale del carico distribuito nel punto iniziale} \\ V_{tf} & \text{componente tangenziale del carico distribuito nel punto finale} \\ V_{tf} & \text{componente tangenziale del carico distribuito nel punto finale} \\ V_{tf} & \text{componente tangenziale del carico distribuito nel punto finale} \\ D_{te} & \text{variazione termica lembo esterno espressa in gradi centigradi} \\ \end{array}$

Condizione di carico n°1 (Peso Proprio)

Condizione di carico n°2 (Spinta terreno sinistra)

Condizione di carico n°3 (Spinta terreno destra)

Condizione di carico n°4 (Sisma da sinistra)

Condizione di carico n°5 (Sisma da destra)

Condizione di carico n°6 (Spinta falda)

Impostazioni di progetto

Verifica materiali:

Stato Limite Ultimo

Coefficiente di sicurezza calcestruzzo γ _c	1.50
Fattore riduzione da resistenza cubica a cilindrica	0.83
Fattore di riduzione per carichi di lungo periodo	0.85
Coefficiente di sicurezza acciaio	1.15
Coefficiente di sicurezza per la sezione	1.00

Verifica Taglio - Metodo dell'inclinazione variabile del traliccio

 $V_{Rd} = [0.18*k*(100.0*\rho_l*fck)^{1/3}/\gamma_c + 0.15*\sigma_{cp}]*bw*d > (vmin+0.15*\sigma_{cp})*b_w*d$

 $\textit{V}_{\textit{Rsd}} \texttt{=} 0.9 \texttt{*d*A}_{\textit{sw}} / \texttt{s*fyd*(ctg}\alpha \texttt{+ctg}\theta) \texttt{*sin}\alpha$

 V_{Rcd} =0.9*d*b_w* α_c *fcd'*(ctg(θ)+ctg(α)/(1.0+ctg θ ²)

con:

d altezza utile sezione [mm] b_w larghezza minima sezione [mm]

 $\sigma_{cp} \hspace{1cm} \text{tensione media di compressione [N/mmq]} \\$

 $\begin{array}{ll} \rho_l & \text{rapporto geometrico di armatura} \\ A_{sw} & \text{area armatuta trasversale [mmq]} \end{array}$

s interasse tra due armature trasversali consecutive [mm]

Secondo stralcio funzionale: Matelica Nord – Matelica Sud/Castelraimondo Nord

Opera L0703	Tratto 212	Settore E	CEE 38	WBS 013800	ld. doc. REL	N. prog. 01	Rev. A	Pag. di Pag. 136 di 168
----------------	---------------	--------------	-----------	---------------	-----------------	----------------	-----------	-------------------------------

 α_{c}

coefficiente maggiorativo, funzione di fcd e σ_{cp}

fcd'=0.5*fcd k=1+(200/d) $^{1/2}$ vmin=0.035* $k^{3/2}$ *fck $^{1/2}$

Stato Limite di Esercizio

Criteri di scelta per verifiche tensioni di esercizio:

Ambiente moderatamente aggressivo Limite tensioni di compressione nel calcestruzzo (comb. rare) Limite tensioni di compressione nel calcestruzzo (comb. quasi perm.) Limite tensioni di trazione nell'acciaio (comb. rare)

 $0.60 \; f_{ck} \ 0.45 \; f_{ck} \ 0.80 \; f_{yk}$

Criteri verifiche a fessurazione:

Armatura poco sensibile

Apertura limite fessure espresse in [mm]

Apertura limite fessure w1=0,20 w2=0,30 w3=0,40

Verifiche secondo:

Norme Tecniche 2008 - Approccio 2

Copriferro sezioni 6,50 [cm]

Secondo stralcio funzionale: Matelica Nord – Matelica Sud/Castelraimondo Nord

Opera L0703	Tratto 212	Settore E	CEE 38	WBS 013800	ld. doc. REL	N. prog. 01	Rev. A	Pag. di Pag. 137 di 168
----------------	---------------	--------------	-----------	---------------	-----------------	----------------	-----------	-------------------------------

Descrizione combinazioni di carico

Simbologia adottata

 γ Coefficiente di partecipazione della condizione Ψ Coefficiente di combinazione della condizione C Coefficiente totale di partecipazione della condizione

Norme Tecniche 2008

Simbologia adottata

 $\begin{array}{lll} \gamma_{\text{G1sfav}} & \text{Coefficiente parziale sfavorevole sulle azioni permanenti} \\ \gamma_{\text{G1fav}} & \text{Coefficiente parziale favorevole sulle azioni permanenti} \\ \gamma_{\text{G2sfav}} & \text{Coefficiente parziale sfavorevole sulle azioni permanenti non strutturali} \\ \gamma_{\text{G2sfav}} & \text{Coefficiente parziale favorevole sulle azioni permanenti non strutturali} \\ \gamma_{\text{Q}} & \text{Coefficiente parziale favorevole sulle azioni permanenti non strutturali} \\ \gamma_{\text{Lan}\psi} & \text{Coefficiente parziale sulle azioni variabili} \\ \gamma_{\text{Coefficiente parziale di riduzione dell'angolo di attrito drenato} \\ \gamma_{\text{Cu}} & \text{Coefficiente parziale di riduzione della coesione drenata} \\ \gamma_{\text{qu}} & \text{Coefficiente parziale di riduzione del carico ultimo} \\ \end{array}$

Coefficienti di partecipazione combinazioni statiche

Coefficienti	narziali ner le	azioni o ner	l'effetto delle azioni:

Carichi	Effetto		A1	A2
Permanenti	Favorevole	γ _{G1fav}	1,00	1,00
Permanenti	Sfavorevole	γG1sfav	1,30	1,00
Permanenti non strutturali	Favorevole	γG2fav	0,00	0,00
Permanenti non strutturali	Sfavorevole	γG2sfav	1,50	1,30
Variabili	Favorevole	γ_{Qifav}	0,00	0,00
Variabili	Sfavorevole	γQisfav	1,50	1,30
Variabili da traffico	Favorevole	γ_{Qfav}	0,00	0,00
Variabili da traffico	Sfavorevole	γQsfav	1,35	1,15
Termici	Favorevole	γ_{ϵ} fav	0,00	0,00
Termici	Sfavorevole	γ_{ϵ} sfav	1,20	1,20

Coefficienti parziali per i parametri geotecnici del terreno:

Parametri		M1	M2
Tangente dell'angolo di attrito	$\gamma_{tan_{\phi}}$ '	1,00	1,25
Coesione efficace	γ _{c'}	1,00	1,25
Resistenza non drenata	γcu	1,00	1,40
Resistenza a compressione uniassiale	γ_{qu}	1,00	1,60
Peso dell'unità di volume	γ_{γ}	1,00	1,00

Coefficienti di partecipazione combinazioni sismiche

Coofficienti narziali ne	ar la azioni o nar	· l'effetto delle azioni:

Carichi	Effetto		A1	A2
Permanenti	Favorevole	γG1fav	1,00	1,00
Permanenti	Sfavorevole	γG1sfav	1,00	1,00
Permanenti	Favorevole	γG2fav	0,00	0,00
Permanenti	Sfavorevole	γG2sfav	1,00	1,00
Variabili	Favorevole	γQifav	0,00	0,00
Variabili	Sfavorevole	γQisfav	1,00	1,00
Variabili da traffico	Favorevole	γQfav	0,00	0,00
Variabili da traffico	Sfavorevole	γQsfav	1,00	1,00
Termici	Favorevole	γ_{ϵ} fav	0,00	0,00
Termici	Sfavorevole	$\gamma_{\epsilon sfav}$	1,00	1,00

Coefficienti parziali per i parametri geotecnici del terreno:

Secondo stralcio funzionale: Matelica Nord – Matelica Sud/Castelraimondo Nord

Pag. di Pag. 138 di 168

Marche Umbria S.p.A.								
marone embria espixi	Opera L0703	Tratto 212	Settore E	CEE 38	WBS 013800	ld. doc. REL	N. prog. 01	Rev. A
Parametri					M	1	M2	
Tangente dell'angolo di attrito				$\gamma_{tan\phi}$	1,0	00	1,25	
Coesione efficace				γ _{c'}	1,0	00	1,25	
Resistenza non drenata				γ_{cu}	1,0	00	1,40	
Resistenza a compressione uniassiale				γ_{qu}	1,0	00	1,60	
Peso dell'unità di volume				γ_{γ}	1,0		1,00	
Combinazione n° 1 SLU (Approccio 2)	Lttore	_				Ψ		•
Dana Duannia	Effett				γ	_		C 1 20
Peso Proprio	Sfavore Sfavore				1.30	1.00		1.30
Spinta terreno sinistra					1.30	1.00		1.30
Spinta terreno destra	Sfavore				1.30	1.00		1.30
Spinta falda	Sfavore	/oie			1.30	1.00		1.30
Combinazione n° 2 SLU (Approccio 2) - Sisma	Vert. nega				v	Ψ		С
Peso Proprio	Sfavore				γ 1.00	1.00		1.00
Spinta terreno sinistra	Sfavore				1.00	1.00		1.00
Spinta terreno destra	Sfavore				1.00	1.00		1.00
Sisma da sinistra	Sfavore				1.00	1.00		1.00
Spinta falda	Sfavore				1.00	1.00		1.00
Spirita falua	Siavoie	voie			1.00	1.00		1.00
Combinazione n° 3 SLU (Approccio 2) - Sisma	Vert. nega				W	Ψ		С
Peso Proprio	Sfavore				γ 1.00	1.00		1.00
Spinta terreno sinistra	Sfavore				1.00	1.00		1.00
Spinta terreno destra	Sfavore				1.00	1.00		1.00
Sisma da destra	Sfavore				1.00	1.00		1.00
Spinta falda	Sfavore				1.00	1.00		1.00
Combinazione n° 4 SLU (Approccio 2) - Sisma	Vort posit	tivo						
COMBINAZIONE II 4 SEO (Approccio 2) - Sisma	Effett				ov.	Ψ		С
Peso Proprio	Sfavore				γ 1.00	1.00		1.00
	Sfavore				1.00	1.00		1.00
Spinta terreno sinistra Spinta terreno destra	Sfavore				1.00	1.00		1.00
Sisma da sinistra	Sfavore				1.00	1.00		1.00
Spinta falda	Sfavore				1.00	1.00		1.00
Combinazione n° 5 SLU (Approccio 2) - Sisma	Vert. posit	tivo						
	Effett	0			γ	Ψ		С
Peso Proprio	Sfavore	vole			1.00	1.00		1.00
Spinta terreno sinistra	Sfavore	vole			1.00	1.00		1.00
Spinta terreno destra	Sfavore	vole			1.00	1.00		1.00
Sisma da destra	Sfavore	vole			1.00	1.00		1.00
Spinta falda	Sfavore	vole .			1.00	1.00		1.00
Combinazione n° 6 SLE (Rara)								
	Effett	0			γ	Ψ		С
Peso Proprio	Sfavore	vole			1.00	1.00		1.00
Spinta terreno sinistra	Sfavore	vole			1.00	1.00		1.00
Spinta terreno destra	Sfavore	vole			1.00	1.00		1.00
Spinta falda	Sfavore	vole			1.00	1.00		1.00

Secondo stralcio funzionale: Matelica Nord – Matelica Sud/Castelra
imondo Nord

Opera L0703	Tratto 212	Settore E	CEE 38	WBS O13800	ld. doc. REL	N. prog. 01	Rev. A	Pag. di Pag. 139 di 168
----------------	---------------	--------------	-----------	---------------	-----------------	----------------	-----------	-------------------------------

	Effetto	γ	Ψ	С
Peso Proprio	Sfavorevole	1.00	1.00	1.00
Spinta terreno sinistra	Sfavorevole	1.00	1.00	1.00
Spinta terreno destra	Sfavorevole	1.00	1.00	1.00
Spinta falda	Sfavorevole	1.00	1.00	1.00
Combinazione n° 8 SLE (Quasi Peri	manente)			
Combinazione n° 8 SLE (Quasi Peri	<u>manente)</u> Effetto	γ	Ψ	С
Combinazione n° 8 SLE (Quasi Peri Peso Proprio		γ 1.00	Ψ 1.00	C 1.00
· ·	Effetto	•	_	-
Peso Proprio	Effetto Sfavorevole	1.00	1.00	1.00

Secondo stralcio funzionale: Matelica Nord – Matelica Sud/Castelraimondo

Opera L0703	Tratto 212	Settore E	CEE 38	WBS 013800	ld. doc. REL	N. prog. 01	Rev. A	Pag. di Pag. 140 di 168
----------------	---------------	--------------	-----------	---------------	-----------------	----------------	-----------	-------------------------------

Analisi della spinta e verifiche

Simbologia adottata ed unità di misura

Origine in corrispondenza dello spigolo inferiore sinistro della struttura Le forze orizzontali sono considerate positive se agenti verso destra Le forze verticali sono considerate positive se agenti verso il basso

ascisse (espresse in m) positive verso destra ordinate (espresse in m) positive verso l'alto

momento espresso in kNm taglio espresso in kN

SN sforzo normale espresso in kN

ux

spostamento direzione X espresso in cm spostamento direzione Y espresso in cm

pressione sul terreno espressa in kPa

Tipo di analisi

Pressione in calotta

I carichi applicati sul terreno sono stati diffusi secondo angolo di attrito

Metodo di calcolo della portanza

Spinta sui piedritti

Teoria di Terzaghi

Meyerhof

a Riposo [combinazione 1]

a Riposo [combinazione 2]

a Riposo [combinazione 3]

a Riposo [combinazione 4]

a Riposo [combinazione 5]

a Riposo [combinazione 6]

a Riposo [combinazione 7] a Riposo [combinazione 8]

Sisma

Identificazione del sito

Latitudine 43.255000 13.011574 Longitudine Comune Matelica Provincia Macerata Regione Marche

Punti di interpolazione del reticolo 22526 - 22527 - 22305 - 22304

Tipo di opera

Tipo di costruzione Opera ordinaria

Vita nominale

Classe d'uso III - Affollamenti significativi e industrie non

pericolose Vita di riferimento 113 anni

Combinazioni SLU

2.11 [m/s^2] Accelerazione al suolo ag =

Coefficiente di amplificazione per tipo di sottosuolo (S) 1.38 Coefficiente di amplificazione topografica (St) 1.00 Coefficiente riduzione (β_m) 1.00 Rapporto intensità sismica verticale/orizzontale

Coefficiente di intensità sismica orizzontale (percento) $k_h = (a_g/g * \beta_m * St * Ss) = 29.58$ $k_v = 0.50 * k_h = 14.79$ Coefficiente di intensità sismica verticale (percento)

Combinazioni SLE

Accelerazione al suolo ag = 0.09 [m/s^2] Coefficiente di amplificazione per tipo di sottosuolo (S) 1.50

Coefficiente di amplificazione topografica (St) 1.00 Coefficiente riduzione (β_m) 1.00

Rapporto intensità sismica verticale/orizzontale 0.50

Secondo stralcio funzionale: Matelica Nord – Matelica Sud/Castelraimondo Nord

Opera L0703	Tratto 212	Settore E	CEE 38	WBS 013800	ld. doc. REL	N. prog. 01	Rev. A	Pag. di Pag. 141 di 168
----------------	---------------	--------------	-----------	---------------	-----------------	----------------	-----------	-------------------------------

Coefficiente di intensità sismica orizzontale (percento) Coefficiente di intensità sismica verticale (percento) Forma diagramma incremento sismico

 $\begin{aligned} k_\text{h} &= (a_\text{g}/g^*\beta_\text{m}^*\text{St*Ss}) = 1.42 \\ k_\text{v} &= 0.50 * k_\text{h} = 0.71 \end{aligned}$ Rettangolare

Wood

Angolo diffusione sovraccarico

35,00 [°]

Coefficienti di spinta

Spinta sismica

N°combinazione	Statico	Sismico	
1	0,569	0,000	
2	0,569	0,990	
3	0,569	0,990	
4	0,569	0,990	
5	0,569	0,990	
6	0,569	0,000	
7	0,569	0,000	
8	0,569	0,000	

Discretizzazione strutturale

Numero elementi fondazione	11:
Numero elementi piedritto sinistro	56
Numero elementi piedritto destro	56
Numero molle piedritto sinistro	57
Numero molle piedritto destro	57

Secondo stralcio funzionale: Matelica Nord – Matelica Sud/Castelraimondo Nord

Opera L0703	Tratto 212	Settore E	CEE 38	WBS 013800	ld. doc. REL	N. prog. 01	Rev. A	Pag. di Pag. 142 di 168
----------------	---------------	--------------	-----------	---------------	-----------------	----------------	-----------	-------------------------------

Analisi della combinazione nº 1

Pressione in calotta(solo peso terreno) 0,0000 [kPa]

Carichi verticali in calotta

Xi Xj Q[kPa] -12,65 23,25 0,0000

Spinte sui piedritti

Piedritto sinistro Pressione sup. 0,0000 [kPa] Pressione inf. 53,1359 [kPa] Piedritto destro Pressione sup. 0,0000 [kPa] Pressione inf. 53,1359 [kPa]

<u>Falda</u>

 Spinta
 101,99[kN]

 Sottospinta
 51,00[kPa]

Analisi della combinazione n° 2

Pressione in calotta(solo peso terreno) 0,0000 [kPa]

Carichi verticali in calotta

Xi Xj Q[kPa] -12,65 23,25 0,0000

Spinte sui piedritti

Piedritto sinistroPressione sup. 0,0000 [kPa]Pressione inf. 40,8738 [kPa]Piedritto destroPressione sup. 0,0000 [kPa]Pressione inf. 40,8738 [kPa]

Spinte sismiche sui piedritti

Piedritto sinistro Pressione sup. 25,0945 [kPa] Pressione inf. 25,0945 [kPa]

<u>Falda</u>

 Spinta
 78,45[kN]

 Sottospinta
 39,23[kPa]

Analisi della combinazione n° 3

Pressione in calotta(solo peso terreno) 0,0000 [kPa]

Carichi verticali in calotta

 $Xi \hspace{1cm} Xj \hspace{1cm} Q[kPa] \\$

Secondo stralcio funzionale: Matelica Nord – Matelica Sud/Castelra
imondo Nord

Opera L0703	Tratto 212	Settore E	CEE 38	WBS 013800	ld. doc. REL	N. prog. 01	Rev. A	Pag. di Pag. 143 di 168
----------------	---------------	--------------	-----------	---------------	-----------------	----------------	-----------	-------------------------------

-12,65 23,25 0,0000

Spinte sui piedritti

Piedritto sinistro Pressione sup. 0,0000 [kPa] Pressione inf. 40,8738 [kPa] Piedritto destro Pressione sup. 0,0000 [kPa] Pressione inf. 40,8738 [kPa]

Spinte sismiche sui piedritti

Piedritto destro Pressione sup. 25,0945 [kPa] Pressione inf. 25,0945 [kPa]

<u>Falda</u>

 Spinta
 78,45[kN]

 Sottospinta
 39,23[kPa]

Analisi della combinazione nº 4

Pressione in calotta(solo peso terreno) 0,0000 [kPa]

Carichi verticali in calotta

Xi Xj Q[kPa] -12,65 23,25 0,0000

Spinte sui piedritti

Piedritto sinistro Pressione sup. 0,0000 [kPa] Pressione inf. 40,8738 [kPa] Piedritto destro Pressione sup. 0,0000 [kPa] Pressione inf. 40,8738 [kPa]

Spinte sismiche sui piedritti

Piedritto sinistro Pressione sup. 25,0945 [kPa] Pressione inf. 25,0945 [kPa]

<u>Falda</u>

 Spinta
 78,45[kN]

 Sottospinta
 39,23[kPa]

Analisi della combinazione n° 5

Pressione in calotta(solo peso terreno) 0,0000 [kPa]

Carichi verticali in calotta

Xi Xj Q[kPa] -12,65 23,25 0,0000

Spinte sui piedritti

Secondo stralcio funzionale: Matelica Nord – Matelica Sud/Castelra
imondo Nord

Opera L0703	Tratto 212	Settore E	CEE 38	WBS 013800	ld. doc. REL	N. prog. 01	Rev. A	Pag. di Pag. 144 di 168
----------------	---------------	--------------	-----------	---------------	-----------------	----------------	-----------	-------------------------------

Piedritto sinistroPressione sup. 0,0000 [kPa]Pressione inf. 40,8738 [kPa]Piedritto destroPressione sup. 0,0000 [kPa]Pressione inf. 40,8738 [kPa]

Spinte sismiche sui piedritti

Piedritto destro Pressione sup. 25,0945 [kPa] Pressione inf. 25,0945 [kPa]

<u>Falda</u>

 Spinta
 78,45[kN]

 Sottospinta
 39,23[kPa]

Analisi della combinazione n° 6

Pressione in calotta(solo peso terreno) 0,0000 [kPa]

Carichi verticali in calotta

Xi Xj Q[kPa] -12,65 23,25 0,0000

Spinte sui piedritti

Piedritto sinistro Pressione sup. 0,0000 [kPa] Pressione inf. 40,8738 [kPa] Piedritto destro Pressione sup. 0,0000 [kPa] Pressione inf. 40,8738 [kPa]

<u>Falda</u>

 Spinta
 78,45[kN]

 Sottospinta
 39,23[kPa]

Analisi della combinazione n° 7

Pressione in calotta(solo peso terreno) 0,0000 [kPa]

Carichi verticali in calotta

Xi Xj Q[kPa] -12,65 23,25 0,0000

Spinte sui piedritti

Piedritto sinistro Pressione sup. 0,0000 [kPa] Pressione inf. 40,8738 [kPa] Piedritto destro Pressione sup. 0,0000 [kPa] Pressione inf. 40,8738 [kPa]

<u>Falda</u>

 Spinta
 78,45[kN]

 Sottospinta
 39,23[kPa]

Analisi della combinazione n° 8

Secondo stralcio funzionale: Matelica Nord – Matelica Sud/Castelraimondo Nord

Opera L0703	Tratto 212	Settore E	CEE 38	WBS O13800	ld. doc. REL	N. prog. 01	Rev. A	Pag. di Pag. 145 di 168
----------------	---------------	--------------	-----------	---------------	-----------------	----------------	-----------	-------------------------------

Pressione in calotta(solo peso terreno) 0,0000 [kPa]

Carichi verticali in calotta

Xi Xj Q[kPa] -12,65 23,25 0,0000

Spinte sui piedritti

Piedritto sinistro Pressione sup. 0,0000 [kPa] Pressione inf. 40,8738 [kPa] Piedritto destro Pressione sup. 0,0000 [kPa] Pressione inf. 40,8738 [kPa]

<u>Falda</u>

 Spinta
 78,45[kN]

 Sottospinta
 39,23[kPa]

Secondo stralcio funzionale: Matelica Nord – Matelica Sud/Castelraimondo Nord

Opera L0703	Tratto 212	Settore E	CEE 38	WBS 013800	ld. doc. REL	N. prog. 01	Rev. A	Pag. di Pag. 146 di 168
								100

Sollecitazioni

Sollecitazioni fondazione (Combinazione n° 1)

X [m]	M [kNm]	V [kN]	N [kN]
0,00	0,0000	0,5639	-0,0019
2,67	-146,7170	-104,5506	240,7641
5,30	-7,3159	1,0874	240,7641
8,00	-153,7554	109,2274	240,7641
10,60	0,0000	-0,5639	-0,0019

Sollecitazioni piedritto sinistro (Combinazione n° 1)

Y [m]	M [kNm]	V [kN]	N [kN]
0,50	-419,0570	240,7660	143,0000
1,88	-169,0392	128,9105	107,2500
3,25	-47,8905	53,3229	71,5000
4,63	-5,9498	12,9539	35,7500
6,00	0,000	0,000	0,0000

Sollecitazioni piedritto destro (Combinazione n° 1)

Y [m]	M [kNm]	V [kN]	N [kN]
0,50	-419,0570	-240,7660	143,0000
1,88	-169,0392	-128,9105	107,2500
3,25	-47,8905	-53,3229	71,5000
4,63	-5,9498	-12,9539	35,7500
6,00	0,0000	0,0000	0,0000

Sollecitazioni fondazione (Combinazione n° 2)

X [m]	M [kNm]	V [kN]	N [kN]
0,00	0,0000	0,0000	-22,2568
2,67	-598,2944	-65,7337	353,2117
5,30	-553,8283	31,9751	372,6882
8,00	-732,7991	93,3807	392,6516
10,60	0,0000	0,0000	22,2510

Sollecitazioni piedritto sinistro (Combinazione n° 2)

Y [m]	M [kNm]	V [kN]	N [kN]
0,50	-791,3722	355,7576	93,7335
1,88	-393,8543	227,0766	70,3001
3,25	-154,0940	126,2941	46,8668
4,63	-33,8905	52,6028	23,4334
6,00	0,000	0,000	0,0000

Sollecitazioni piedritto destro (Combinazione n° 2)

Y [m]	M [kNm]	V [kN]	N [kN]
0,50	-940,2500	-389,6246	93,7335
1,88	-496,7528	-256,1847	70,3001
3,25	-217,2925	-151,0747	46,8668
4,63	-63,0253	-73,5555	23,4334
6,00	0,000	-21,4956	0,0000

Secondo stralcio funzionale: Matelica Nord – Matelica Sud/Castelraimondo Nord

Opera L0703	Tratto 212	Settore E	CEE 38	WBS O13800	ld. doc. REL	N. prog. 01	Rev. A	Pag. di Pag. 147 di 168
----------------	---------------	--------------	-----------	---------------	-----------------	----------------	-----------	-------------------------------

Sollecitazioni fondazione (Combinazione n° 3)

X [m]	M [kNm]	V [kN]	N [kN]
0,00	0,0000	0,000	22,2510
2,67	-726,6884	-92,2003	392,1647
5,30	-553,8330	-30,4529	372,6882
8,00	-602,7662	70,0229	352,7248
10.60	0.0000	0.0000	-22.2569

Sollecitazioni piedritto sinistro (Combinazione n° 3)

Y [m]	M [kNm]	V [kN]	N [kN]
0,50	-940,2499	389,6246	93,7335
1,88	-496,7527	256,1847	70,3001
3,25	-217,2925	151,0747	46,8668
4,63	-63,0253	73,5555	23,4334
6,00	0,000	21,4956	0,0000

Sollecitazioni piedritto destro (Combinazione n° 3)

Y [m]	M [kNm]	V [kN]	N [kN]
0,50	-791,3722	-355,7576	93,7335
1,88	-393,8543	-227,0766	70,3001
3,25	-154,0940	-126,2941	46,8668
4,63	-33,8905	-52,6028	23,4334
6,00	0,0000	0,000	0,0000

Sollecitazioni fondazione (Combinazione n° 4)

X [m]	M [kNm]	V [kN]	N [kN]
0,00	0,0000	0,0000	-22,2033
2,67	-539,4189	-95,3868	353,2652
5,30	-439,6670	25,2320	372,7417
8,00	-659,4756	132,7335	392,7052
10,60	0,0000	0,0000	22,1975

Sollecitazioni piedritto sinistro (Combinazione n° 4)

Y [m]	M [kNm]	V [kN]	N [kN]
0,50	-791,3722	355,7576	126,2665
1,88	-393,8543	227,0766	94,6999
3,25	-154,0940	126,2941	63,1332
4,63	-33,8905	52,6028	31,5666
6,00	0,000	0,0000	0,000

Sollecitazioni piedritto destro (Combinazione n° 4)

Y [m]	M [kNm]	V [kN]	N [kN]
0,50	-941,2211	-389,7317	126,2665
1,88	-497,5076	-256,3869	94,6999
3,25	-217,7468	-151,2992	63,1332
4,63	-63,1947	-73,7297	31,5666
6,00	0,000	-21,5581	0,0000

Sollecitazioni fondazione (Combinazione n° 5)

Secondo stralcio funzionale: Matelica Nord – Matelica Sud/Castelraimondo Nord

Opera L0703	Tratto 212	Settore E	CEE 38	WBS O13800	ld. doc. REL	N. prog. 01	Rev. A	Pag. di Pag. 148 di 168
----------------	---------------	--------------	-----------	---------------	-----------------	----------------	-----------	-------------------------------

X [m]	M [kNm]	V [kN]	N [kN]
0,00	0,0000	0,0000	22,1975
2,67	-650,8617	-128,8551	392,2182
5,30	-439,6683	-21,6310	372,7417
8,00	-545,8892	101,1084	352,7783
10,60	0,0000	0,0000	-22,2033
C - II '1 ' '		L'	

Sollecitazioni piedritto sinistro (Combinazione n° 5)

Y [m]	M [kNm]	V [kN]	N [kN]
0,50	-941,2210	389,7317	126,2665
1,88	-497,5076	256,3869	94,6999
3,25	-217,7468	151,2992	63,1332
4,63	-63,1947	73,7297	31,5666
6,00	0,0000	21,5581	0,0000

Sollecitazioni piedritto destro (Combinazione n° 5)

Y [m]	M [kNm]	V [kN]	N [kN]
0,50	-791,3722	-355,7576	126,2665
1,88	-393,8543	-227,0766	94,6999
3,25	-154,0940	-126,2941	63,1332
4,63	-33,8905	-52,6028	31,5666
6.00	0.0000	0.0000	0.0000

Sollecitazioni fondazione (Combinazione n° 6)

X [m]	M [kNm]	V [kN]	N [kN]
0,00	0,0000	0,4338	-0,0014
2,67	-112,8593	-80,4236	185,2032
5,30	-5,6276	0,8365	185,2032
8,00	-118,2734	84,0211	185,2032
10,60	0,0000	-0,4338	-0,0014

Sollecitazioni piedritto sinistro (Combinazione n° 6)

Y [m]	M [kNm]	V [kN]	N [kN]
0,50	-322,3515	185,2046	110,0000
1,88	-130,0301	99,1619	82,5000
3,25	-36,8389	41,0176	55,0000
4,63	-4,5767	9,9646	27,5000
6,00	0,0000	0,0000	0,0000

Sollecitazioni piedritto destro (Combinazione n° 6)

Y [m]	M [kNm]	V [kN]	N [kN]
0,50	-322,3515	-185,2046	110,0000
1,88	-130,0301	-99,1619	82,5000
3,25	-36,8389	-41,0176	55,0000
4,63	-4,5767	-9,9646	27,5000
6.00	0.0000	0.0000	0.0000

Sollecitazioni fondazione (Combinazione n° 7)

X [m]	M [kNm]	V [kN]	N [kN]

Secondo stralcio funzionale: Matelica Nord – Matelica Sud/Castelraimondo Nord

Opera L0703	Tratto 212	Settore E	CEE 38	WBS 013800	ld. doc. REL	N. prog. 01	Rev. A	Pag. di Pag. 149 di 168
----------------	---------------	--------------	-----------	---------------	-----------------	----------------	-----------	-------------------------------

0,00	0,000	0,4338	-0,0014
2,67	-112,8593	-80,4236	185,2032
5,30	-5,6276	0,8365	185,2032
8,00	-118,2734	84,0211	185,2032
10.60	0.0000	-0.4338	-0.0014

Sollecitazioni piedritto sinistro (Combinazione n° 7)

Y [m]	M [kNm]	V [kN]	N [kN]
0,50	-322,3515	185,2046	110,0000
1,88	-130,0301	99,1619	82,5000
3,25	-36,8389	41,0176	55,0000
4,63	-4,5767	9,9646	27,5000
6,00	0,0000	0,0000	0,0000

Sollecitazioni piedritto destro (Combinazione n° 7)

Y [m]	M [kNm]	V [kN]	N [kN]
0,50	-322,3515	-185,2046	110,0000
1,88	-130,0301	-99,1619	82,5000
3,25	-36,8389	-41,0176	55,0000
4,63	-4,5767	-9,9646	27,5000
6,00	0,0000	0,0000	0,0000

Sollecitazioni fondazione (Combinazione n° 8)

X [m]	M [kNm]	V [kN]	N [kN]
0,00	0,0000	0,4338	-0,0014
2,67	-112,8593	-80,4236	185,2032
5,30	-5,6276	0,8365	185,2032
8,00	-118,2734	84,0211	185,2032
10,60	0,0000	-0,4338	-0,0014

Sollecitazioni piedritto sinistro (Combinazione n° 8)

Y [m]	M [kNm]	V [kN]	N [kN]
0,50	-322,3515	185,2046	110,0000
1,88	-130,0301	99,1619	82,5000
3,25	-36,8389	41,0176	55,0000
4,63	-4,5767	9,9646	27,5000
6,00	0,000	0,0000	0,0000

Sollecitazioni piedritto destro (Combinazione nº 8)

M [kNm]	V [kN]	N [kN]
-322,3515	-185,2046	110,0000
-130,0301	-99,1619	82,5000
-36,8389	-41,0176	55,0000
-4,5767	-9,9646	27,5000
0,0000	0,0000	0,0000
	-322,3515 -130,0301 -36,8389 -4,5767	-322,3515 -185,2046 -130,0301 -99,1619 -36,8389 -41,0176 -4,5767 -9,9646

Secondo stralcio funzionale: Matelica Nord – Matelica Sud/Castelraimondo Nord

Opera L0703	Tratto 212	Settore E	CEE 38	WBS 013800	ld. doc. REL	N. prog. 01	Rev. A	Pag. di Pag. 150 di 168
----------------	---------------	--------------	-----------	---------------	-----------------	----------------	-----------	-------------------------------

Pressioni terreno

Pressioni sul terreno di fondazione (Combinazione n° 1)

X [m]	σt [kPa]
0,00	14
2,67	21
5,30	22
8,00	21
10,60	14

Pressioni sul terreno di fondazione (Combinazione n° 2)

X [m]	σt [kPa]
0,00	0
2,67	19
5,30	15
8,00	0
10,60	0

Pressioni sul terreno di fondazione (Combinazione n° 3)

X [m]	σt [kPa]
0,00	0
2,67	0
5,30	15
8,00	19
10.60	0

Pressioni sul terreno di fondazione (Combinazione n° 4)

X [m]	σ _t [kPa]
0,00	1
2,67	31
5,30	36
8,00	19
10,60	0

Pressioni sul terreno di fondazione (Combinazione n° 5)

X [m]	σ _t [kPa]
0,00	0
2,67	20
5,30	36
8,00	30
10.60	1

Pressioni sul terreno di fondazione (Combinazione n° 6)

X [m]	σt [kPa]
0,00	10
2,67	16
5,30	17
8,00	16
10.60	10

Pressioni sul terreno di fondazione (Combinazione n° 7)

X [m]	σ _t [kPa]
0,00	10
2,67	16
5,30	17

Secondo stralcio funzionale: Matelica Nord – Matelica Sud/Castelraimondo Nord

Opera L0703	Tratto 212	Settore E	CEE 38	WBS O13800	ld. doc. REL	N. prog. 01	Rev. A	Pag. di Pag. 151 di 168
----------------	---------------	--------------	-----------	---------------	-----------------	----------------	-----------	-------------------------------

8,00 16 10,60 10

Pressioni sul terreno di fondazione (Combinazione n° 8)

X [m]	σ _t [kPa]
0,00	10
2,67	16
5,30	17
8,00	16
10,60	10

Secondo stralcio funzionale: Matelica Nord – Matelica Sud/Castelraimondo

Opera L0703	Tratto 212	Settore E	CEE 38	WBS O13800	ld. doc. REL	N. prog. 01	Rev. A	Pag. di Pag. 152 di 168
----------------	---------------	--------------	-----------	---------------	-----------------	----------------	-----------	-------------------------------

Verifiche combinazioni SLU

Simbologia adottata ed unità di misura

Indice sezione

Ascissa/Ordinata sezione, espresso in cm

Momento flettente, espresso in kNm Taglio, espresso in kN

Sforzo normale, espresso in kN

Sforzo normale ultimo, espressa in kN Momento ultimo, espressa in kNm

N Nu Mu Afi Afs CS VRd VRcd Area armatura inferiore, espresse in cmq

Area armatura superiore, espresse in cmq Coeff. di sicurezza sezione

Aliquota taglio assorbita dal calcestruzzo in elementi senza armature trasversali, espressa in kN Aliquota taglio assorbita dal calcestruzzo in elementi con armature trasversali, espressa in kN

Aliquota taglio assorbita armature trasversali, espressa in kN Area armature trasversali nella sezione, espressa in cmq

Verifica sezioni fondazione [Combinazione n° 1 - SLU (Approccio 2)]

B = 100 cm Base sezione Altezza sezione H = 100,00 cm

Verifiche	presso-flessione

N°	Х	М	N	Nu	M_u	A_{fi}	A_{fs}	CS
1	0,00	0,00 (0,47)	0,00	-0,21	-790,04	22,62	22,62	113,39
2	2,67	146,72 (234,70)	240,76	1414,74	1379,08	22,62	22,62	5,88
3	5,30	7,32 (8,23)	240,76	12781,58	436,96	22,62	22,62	53,09
4	8,00	153,76 (245,67)	240,76	1307,99	1334,64	22,62	22,62	5,43
5	10,60	0,00 (0,47)	0,00	-0,21	-790,04	22,62	22,62	113,39

Verifiche taglio

N°	X	A_{sw}	V	V_{Rd}	V_{Rsd}	V_{Rcd}	FS
1	0,00	0,00	0,56	300,73	0,00	0,00	533.314
2	2,67	0,00	-104,55	334,49	0,00	0,00	3.199
3	5,30	0,00	1,09	334,49	0,00	0,00	307.601
4	8,00	0,00	109,23	334,49	0,00	0,00	3.062
5	10,60	0,00	-0,56	300,73	0,00	0,00	533.312

Verifica sezioni piedritto sinistro [Combinazione nº 1 - SLU (Approccio 2)]

B = 100 cmH = 80,00 cmAltezza sezione

Verifiche presso-flessione

N°	Х	M	N	N_u	Mu	A_{fi}	A_{fs}	CS
1	0,50	-419,06 (-419,06)	143,00	455,74	-1335,53	22,62	45,24	3,19
2	1,88	-169,04 (-254,31)	107,25	300,69	-713,01	22,62	22,62	2,80
3	3,25	-47,89 (-83,16)	71,50	733,79	-853,49	22,62	22,62	10,26
4	4,63	-5,95 (-14,52)	35,75	3936,22	-1598,58	22,62	22,62	110,10
5	6,00	0,00 (0,00)	0,00	0,00	0,00	22,62	22,62	1000,00

Verifiche taglio

IN	Λ.	Asw	V	V Rd	V Rsd	V Rcd	ro
1	0,50	0,00	240,77	355,48	0,00	0,00	1.476
2	1,88	0,00	128,91	281,28	0,00	0,00	2.182
3	3,25	0,00	53,32	276,36	0,00	0,00	5.183
4	4,63	0,00	12,95	271,43	0,00	0,00	20.954
5	6,00	0,00	0,00	266,50	0,00	0,00	100.000

Secondo stralcio funzionale: Matelica Nord – Matelica Sud/Castelraimondo Nord

Opera L0703	Tratto 212	Settore E	CEE 38	WBS O13800	ld. doc. REL	N. prog. 01	Rev. A	Pag. di Pag. 153 di 168
----------------	---------------	--------------	-----------	---------------	-----------------	----------------	-----------	-------------------------------

Verifica sezioni piedritto destro [Combinazione n° 1 - SLU (Approccio 2)]

Base sezione	B = 100 cm
Altezza sezione	H = 80,00 cm

		•						
Verifich	e presso-fle	ssione						
N°	X	M	N	N_u	Mu	A_{fi}	A_{fs}	CS
1	0,50	-419,06 (-419,06)	143,00	455,74	-1335,53	22,62	45,24	3,19
2	1,88	-169,04 (-254,31)	107,25	300,69	-713,01	22,62	22,62	2,80
3	3,25	-47,89 (-83,16)	71,50	733,79	-853,49	22,62	22,62	10,26
4	4,63	-5,95 (-14,52)	35,75	3936,22	-1598,58	22,62	22,62	110,10
5	6,00	0,00 (0,00)	0,00	0,00	0,00	22,62	22,62	1000,00
Verifich								
N°	Х	A_{sw}	V	V_{Rd}	V_{Rsd}	V_{Rcd}		FS
1	0,50	0,00	-240,77	355,48	0,00	0,00		1.476
2	1,88	0,00	-128,91	281,28	0,00	0,00		2.182
3	3,25	0,00	-53,32	276,36	0,00	0,00		5.183
4	4,63	0,00	-12,95	271,43	0,00	0,00		20.954
5	6,00	0,00	0,00	266,50	0,00	0,00		100.000

Verifica sezioni fondazione [Combinazione n° 2 - SLU (Approccio 2) - Sisma Vert. negativo]

Base sezione B = 100 cmAltezza sezione H = 100,00 cm

		,						
Verifich N°	ne presso-fles X	<u>sione</u> M	N	Nu	Mu	A_{fi}	A_{fs}	cs
1	0,00	0,00 (0,00)	-22,26	-1128,81	-286,29	22,62	22,62	52,16
2	2,67	598,29 (653,61)	353,21	550,93	1019,48	22,62	22,62	1,56
3	5,30	553,83 (580,74)	372,69	691,92	1078,18	22,62	22,62	1,86
4	8,00	732,80 (811,38)	392,65	478,84	989,47	22,62	22,62	1,22
5	10,60	0,00 (0,00)	22,25	8758,10	-2221,85	22,62	22,62	404,81
Verifich	ne taglio							
N°	Х	A_{sw}	V	V_{Rd}	V_{Rsd}	V_{Rcd}		FS
1	0,00	0,00	0,00	297,69	0,00	0,00		100.000
2	2,67	0,00	-65,73	350,26	0,00	0,00		5.329
3	5,30	0,00	31,98	353,00	0,00	0,00		11.040

355,79

303,76

0,00

0,00

0,00

0,00

3.810 100.000

<u>Verifica sezioni piedritto sinistro [Combinazione nº 2 - SLU (Approccio 2) - Sisma Vert. negativo]</u>

93,38

0,00

Base sezione B = 100 cm Altezza sezione H = 80,00 cm

8,00

10,60

4

5

0,00

0,00

Verifich	e presso-fle	<u>ssione</u>						
N°	X	M	N	Nu	Mu	A_{fi}	A_{fs}	CS
1	0,50	-791,37 (-791,37)	93,73	147,80	-1247,84	22,62	45,24	1,58
2	1,88	-393,85 (-544,07)	70,30	83,01	-642,40	22,62	22,62	1,18
3	3,25	-154,09 (-237,64)	46,87	129,68	-657,54	22,62	22,62	2,77
4	4,63	-33,89 (-68,69)	23,43	236,10	-692,06	22,62	22,62	10,08
5	6,00	0,00 (0,00)	0,00	0,00	0,00	22,62	22,62	1000,00

Secondo stralcio funzionale: Matelica Nord – Matelica Sud/Castelra
imondo Nord

L0703 212 E 38 O13800 REL 01 A 154	Opera L0703	Tratto 212	Settore E	CEE 38	WBS 013800		N. prog. 01	Rev. A	Pag. di Pag. 154 di 168
--	----------------	---------------	--------------	-----------	---------------	--	----------------	-----------	-------------------------------

N°	Х	A_{sw}	V	V_{Rd}	V_{Rsd}	V_{Rcd}	FS
1	0,50	0,00	355,76	348,69	0,00	0,00	0.980
2	1,88	0,00	227,08	276,19	0,00	0,00	1.216
3	3,25	0,00	126,29	272,96	0,00	0,00	2.161
4	4,63	0,00	52,60	269,73	0,00	0,00	5.128
5	6,00	0,00	0,00	266,50	0,00	0,00	100.000

<u>Verifica sezioni piedritto destro [Combinazione nº 2 - SLU (Approccio 2) - Sisma Vert. negativo]</u>

Base sezione B = 100 cm Altezza sezione H = 80,00 cm

Verifich	e presso-fle	<u>ssione</u>						
N°	Х	M	l N	N_u	Mu	A_{fi}	A_{fs}	cs
1	0,50	-940,25 (-940,25)	93,73	123,71	-1240,99	22,62	45,24	1,32
2	1,88	-496,75 (-666,22)	70,30	67,25	-637,29	22,62	22,62	0,96
3	3,25	-217,29 (-317,23)	46,87	95,51	-646,45	22,62	22,62	2,04
4	4,63	-63,03 (-111,68)	23,43	138,57	-660,42	22,62	22,62	5,91
5	6,00	0,00 (-14,22)	0,00	0,00	-615,47	22,62	22,62	43,28
Verifich	e taglio							
N°	Х	A_{sw}	V	V_{Rd}	V_{Rsd}	V_{Rcd}		FS
1	0,50	0,00	-389,62	348,69	0,00	0,00		0.895
2	1,88	0,00	-256,18	276,19	0,00	0,00		1.078
3	3,25	0,00	-151,07	272,96	0,00	0,00		1.807
4	4,63	0,00	-73,56	269,73	0,00	0,00		3.667
5	6,00	0,00	-21,50	266,50	0,00	0,00		12.398

<u>Verifica sezioni fondazione [Combinazione n° 3 - SLU (Approccio 2) - Sisma Vert. negativo]</u>

Base sezione B = 100 cmAltezza sezione H = 100,00 cm

71110220	SCEIOTIC	11 100,00 cm						
Verifich	ne presso-fles	sione						
N°	Х	M	N	Nu	M_u	A_{fi}	A_{fs}	cs
1	0,00	0,00 (0,00)	22,25	8758,10	-2221,85	22,62	22,62	404,81
2	2,67	726,69 (804,28)	392,16	483,39	991,37	22,62	22,62	1,23
3	5,30	553,83 (579,46)	372,69	694,00	1079,04	22,62	22,62	1,86
4	8,00	602,77 (661,69)	352,72	541,32	1015,48	22,62	22,62	1,53
5	10,60	0,00 (0,00)	-22,26	-1128,81	-286,29	22,62	22,62	52,16
	ne taglio							
N°	Х	A_{sw}	V	V_{Rd}	V_{Rsd}	V_{Rcd}		FS
1	0,00	0,00	0,00	303,76	0,00	0,00		100.000
2	2,67	0,00	-92,20	355,73	0,00	0,00		3.858
3	5,30	0,00	-30,45	353,00	0,00	0,00		11.592
4	8,00	0,00	70,02	350,20	0,00	0,00		5.001
5	10,60	0,00	0,00	297,69	0,00	0,00		100.000

Secondo stralcio funzionale: Matelica Nord – Matelica Sud/Castelraimondo Nord

Opera L0703	Tratto 212	Settore E	CEE 38	WBS 013800	ld. doc. REL	N. prog. 01	Rev. A	Pag. di Pag. 155 di 168
----------------	---------------	--------------	-----------	---------------	-----------------	----------------	-----------	-------------------------------

Base sezione	B = 100 cm
Altezza sezione	H = 80,00 cm

Altezza	sezione	H = 80,00 cm						
Verifich	e presso-fle	<u>essione</u>						
N°	Х	M	N	N_u	Mu	A_{fi}	A_{fs}	CS
1	0,50	-940,25 (-940,25)	93,73	123,71	-1240,99	22,62	45,24	1,32
2	1,88	-496,75 (-666,22)	70,30	67,25	-637,29	22,62	22,62	0,96
3	3,25	-217,29 (-317,23)	46,87	95,51	-646,45	22,62	22,62	2,04
4	4,63	-63,03 (-111,68)	23,43	138,57	-660,42	22,62	22,62	5,91
5	6,00	0,00 (0,00)	0,00	0,00	0,00	22,62	22,62	1000,00
<u>Verifich</u>								
N°	Х	A_{sw}	V	V_{Rd}	V_{Rsd}	V_{Rcd}		FS
1	0,50	0,00	389,62	348,69	0,00	0,00		0.895
2	1,88	0,00	256,18	276,19	0,00	0,00		1.078
3	3,25	0,00	151,07	272,96	0,00	0,00		1.807
4	4,63	0,00	73,56	269,73	0,00	0,00		3.667
5	6,00	0,00	21,50	266,50	0,00	0,00		12.398

Verifica sezioni piedritto destro [Combinazione n° 3 - SLU (Approccio 2) - Sisma Vert. negativo]

B = 100 cm Base sezione H = 80.00

Altezza	sezione	H = 80,00 cm						
Verifich	e presso-fle	<u>ssione</u>						
N°	Х	N.	l N	Nu	Mu	A_{fi}	A_{fs}	CS
1	0,50	-791,37 (-791,37)	93,73	147,80	-1247,84	22,62	45,24	1,58
2	1,88	-393,85 (-544,07)	70,30	83,01	-642,40	22,62	22,62	1,18
3	3,25	-154,09 (-237,64)	46,87	129,68	-657,54	22,62	22,62	2,77
4	4,63	-33,89 (-68,69)	23,43	236,10	-692,06	22,62	22,62	10,08
5	6,00	0,00 (0,00	0,00	0,00	0,00	22,62	22,62	1000,00
Verifich	e taglio							
N°	X	A_{sw}	V	V_{Rd}	V_{Rsd}	V_{Rcd}		FS
1	0,50	0,00	-355,76	348,69	0,00	0,00		0.980
2	1,88	0,00	-227,08	276,19	0,00	0,00		1.216

272,96

269,73

266,50

0,00

0,00

0,00

 \textbf{V}_{Rsd}

0,00

0,00

0,00

 V_{Rcd}

2.161

5.128

FS

100.000

<u>Verifica sezioni fondazione [Combinazione n° 4 - SLU (Approccio 2) - Sisma Vert. positivo]</u>

-126,29

-52,60

0,00

B = 100 cm Base sezione Altezza sezione H = 100,00 cm

3,25

4,63

6,00

3

4

5

Verifiche taglio N°

0,00

0,00

0,00

N°	Х	M	N	Nu	Mu	A_{fi}	A_{fs}	CS
1	0,00	0,00 (0,00)	-22,20	-1088,63	-304,23	22,62	22,62	50,43
2	2,67	539,42 (619,69)	353,27	590,59	1035,99	22,62	22,62	1,67
3	5,30	439,67 (460,90)	372,74	963,32	1191,16	22,62	22,62	2,58
4	8,00	659,48 (771,17)	392,71	510,61	1002,70	22,62	22,62	1,30
5	10,60	0,00 (0,00)	22,20	8242,18	-2303,98	22,62	22,62	381,91

 \textbf{V}_{Rd}

Secondo stralcio funzionale: Matelica Nord – Matelica Sud/Castelra
imondo Nord

🧮 Marche Umbria S.p.A.												
	iarche Umb	ria ə.p.A.		Opera L0703	Tratto 212	Settore E	CEE 38	WBS 013800	ld. doc. REL	N. prog. 01	Rev. A	Pag. di Pag. 156 di 168
1	0,00	0,00		0,00	297,70)	0,0	00	0,00		100.0	00
2	2,67	0,00	-9	5,39	350,27	,	0,0	00	0,00		3.6	72
3	5,30	0,00	2	5,23	353,00)	0,0	00	0,00		13.9	90
4	8,00	0,00	13	2,73	355,80)	0,0	00	0,00		2.6	81
5	10,60	0,00		0,00	303,75	5	0,0	00	0,00		100.0	00

<u>Verifica sezioni piedritto sinistro [Combinazione nº 4 - SLU (Approccio 2) - Sisma Vert. positivo]</u>

Base sezione B = 100 cm Altezza sezione H = 80,00 cm

N°	Х	M	N	Nu	Mu	A_{fi}	A_{fs}	CS
1	0,50	-791,37 (-791,37)	126,27	201,54	-1263,15	22,62	45,24	1,60
2	1,88	-393,85 (-544,07)	94,70	113,54	-652,30	22,62	22,62	1,20
3	3,25	-154,09 (-237,64)	63,13	178,93	-673,51	22,62	22,62	2,83
4	4,63	-33,89 (-68,69)	31,57	332,40	-723,29	22,62	22,62	10,53
5	6,00	0,00 (0,00)	0,00	0,00	0,00	22,62	22,62	1000,00
erifiche	e taglio Y	٨	V	V	V- ·	V		ES

verillich	e taglio						
N°	X	A_{sw}	V	V_{Rd}	V_{Rsd}	V_{Rcd}	FS
1	0,50	0,00	355,76	353,18	0,00	0,00	0.993
2	1,88	0,00	227,08	279,56	0,00	0,00	1.231
3	3,25	0,00	126,29	275,20	0,00	0,00	2.179
4	4,63	0,00	52,60	270,85	0,00	0,00	5.149
5	6,00	0,00	0,00	266,50	0,00	0,00	100.000

Verifica sezioni piedritto destro [Combinazione n° 4 - SLU (Approccio 2) - Sisma Vert. positivo]

Base sezione B = 100 cm Altezza sezione H = 80,00 cm

Verifich	e presso-fle	ssione						
N°	X	M	N	Nu	Mu	A_{fi}	A_{fs}	CS
1	0,50	-941,22 (-941,22)	126,27	168,18	-1253,65	22,62	45,24	1,33
2	1,88	-497,51 (-667,11)	94,70	91,59	-645,18	22,62	22,62	0,97
3	3,25	-217,75 (-317,83)	63,13	130,68	-657,86	22,62	22,62	2,07
4	4,63	-63,19 (-111,97)	31,57	190,98	-677,42	22,62	22,62	6,05
5	6,00	0,00 (0,00)	0,00	0,00	0,00	22,62	22,62	1000,00
Verifich	e taglio							

N°	X	A_{sw}	V	V_{Rd}	V_{Rsd}	V_{Rcd}	FS
1	0,50	0,00	-389,73	353,18	0,00	0,00	0.906
2	1,88	0,00	-256,39	279,56	0,00	0,00	1.090
3	3,25	0,00	-151,30	275,20	0,00	0,00	1.819
4	4,63	0,00	-73,73	270,85	0,00	0,00	3.674
5	6,00	0,00	-21,56	266,50	0,00	0,00	12.362

<u>Verifica sezioni fondazione [Combinazione n° 5 - SLU (Approccio 2) - Sisma Vert. positivo]</u>

Base sezione B = 100 cmAltezza sezione H = 100,00 cm

Verifiche presso-flessione

Secondo stralcio funzionale: Matelica Nord – Matelica Sud/Castelraimondo

		ILATERO	Nord								
	iarche Um	bria S.p.A.	Opera L0703	Tratto 212	Settore E	CEE 38	WBS 013800	ld. doc. REL	N. prog. 01	Rev. A	Pag. di Pag. 157 di 168
N°	Х	M	N		Nu		Mu	\mathbf{A}_{fi}	Afs		CS
1 2	0,00 2,67	0,00 (0,00) 650,86 (759,29)	22,20 392,22		242,18 519,96	-2303 1006	•	2,62 2,62	22,62		1,91
3	2,67 5,30	439,67 (457,87)	392,22		972,96		•	2,62	22,62 22,62		1,33 2.61
	4 8,00 545,89 (630,97)		352,78		575,78	•		2,62	22,62		
5	-, (,- ,		-22,20		• • • • • • • • • • • • • • • • • • • •		2,62	22,62 50,43		•	
Verifich N° 1 2 3 4 5	ne taglio X 0,00 2,67 5,30 8,00 10,60	0,00 -2	V 0,00 28,86 21,63 31,11 0,00	V _R , 303,75 355,73 353,00 350,20 297,70	5 3)	V ₈ 0,0 0,0 0,0 0,0	00 00 00 00	V _{Rcd} 0,00 0,00 0,00 0,00 0,00 0,00		100.0 2.7 16.3 3.4 100.0	61 19 64
Base se		dritto sinistro [Combina: B = 100 cm H = 80,00 cm	zione n° 5 - S	SLU (Appro	occio 2) - Si	isma Vert.	positivo]				

Verifich	e presso-fle	ssione						
N°	Х	M	N	N_{u}	M_{u}	A_{fi}	A_{fs}	CS
1	0,50	-941,22 (-941,22)	126,27	168,18	-1253,65	22,62	45,24	1,33
2	1,88	-497,51 (-667,11)	94,70	91,59	-645,18	22,62	22,62	0,97
3	3,25	-217,75 (-317,83)	63,13	130,68	-657,86	22,62	22,62	2,07
4	4,63	-63,19 (-111,97)	31,57	190,98	-677,42	22,62	22,62	6,05
5	6,00	0,00 (-14,26)	0,00	0,00	-615,47	22,62	22,62	43,16
Verifich	e taglio							
N°	X	A_{sw}	V	V_{Rd}	V_{Rsd}	V_{Rcd}		FS
1	0,50	0,00	389,73	353,18	0,00	0,00		0.906
2	1,88	0,00	256,39	279,56	0,00	0,00		1.090
3	3,25	0,00	151,30	275,20	0,00	0,00		1.819

270,85

266,50

0,00

0,00

0,00

0,00

3.674

12.362

<u>Verifica sezioni piedritto destro [Combinazione nº 5 - SLU (Approccio 2) - Sisma Vert. positivo]</u>

73,73

21,56

Base sezione B = 100 cm

4,63

6,00

0,00

0,00

4

5

Altezza	sezione	H = 80,00 cm						
Verifiche	e presso-fle	ssione						
N°	X	N	/ N	N_{u}	M_u	A_{fi}	A_{fs}	CS
1	0,50	-791,37 (-791,37	126,27	201,54	-1263,15	22,62	45,24	1,60
2	1,88	-393,85 (-544,07	94,70	113,54	-652,30	22,62	22,62	1,20
3	3,25	-154,09 (-237,64	63,13	178,93	-673,51	22,62	22,62	2,83
4	4,63	-33,89 (-68,69) 31,57	332,40	-723,29	22,62	22,62	10,53
5	6,00	0,00 (0,00	0,00	0,00	0,00	22,62	22,62	1000,00
Verifiche	e taglio							
N°	Х	A_{sw}	V	V_{Rd}	V_{Rsd}	V_{Rcd}		FS
1	0,50	0,00	-355,76	353,18	0,00	0,00		0.993
2	1,88	0,00	-227,08	279,56	0,00	0,00		1.231
3	3,25	0,00	-126,29	275,20	0,00	0,00		2.179
4	4,63	0,00	-52,60	270,85	0,00	0,00		5.149

Secondo stralcio funzionale: Matelica Nord – Matelica Sud/Castelra
imondo Nord

Opera L0703	Tratto 212	Settore E	CEE 38	WBS O13800	ld. doc. REL	N. prog. 01	Rev. A	Pag. di Pag. 158 di 168
----------------	---------------	--------------	-----------	---------------	-----------------	----------------	-----------	-------------------------------

5 6,00 0,00 0,00 266,50 0,00 0,00 100.000

Secondo stralcio funzionale: Matelica Nord – Matelica Sud/Castelraimondo

Opera L0703	Tratto 212	Settore E	CEE 38	WBS 013800	ld. doc. REL	N. prog. 01	Rev. A	Pag. di Pag. 159 di 168
----------------	---------------	--------------	-----------	---------------	-----------------	----------------	-----------	-------------------------------

Verifiche combinazioni SLE

Simbologia adottata ed unità di misura

Indice sezione

Ascissa/Ordinata sezione, espresso in m

Momento flettente, espresso in kNm Taglio, espresso in kN

Sforzo normale, espresso in kN

N Afi Afs Area armatura inferiore, espressa in cmq Area armatura superiore, espressa in cmq

Tensione nell'armatura disposta in corrispondenza del lembo inferiore, espresse in kPa

Tensione nell'armatura disposta in corrispondenza del lembo superiore, espresse in kPa Tensione nel calcestruzzo, espresse in kPa

Tensione tangenziale nel calcestruzzo, espresse in kPa

Area armature trasversali nella sezione, espressa in cmq

Verifica sezioni fondazione [Combinazione n° 6 - SLE (Rara)]

B = 100 cm Base sezione Altezza sezione H = 100,00 cm

Verifiche presso-flessione

N°	X	M	N	$A_{\rm fi}$	A_{fs}	σ_{fs}	σ_{fi}	σ_{c}
1	0,00	0,00	0,00	22,62	22,62	120	22	2
2	2,67	112,86	185,20	22,62	22,62	13413	23070	1076
3	5,30	5,63	185,20	22,62	22,62	2983	2220	203
4	8,00	118,27	185,20	22,62	22,62	14021	25544	1132
5	10.60	0.00	0.00	22.62	22.62	120	22	2

Verifiche taglio

Х	A_{sw}	V	τα
0,00	0,00	0,43	-8
2,67	0,00	-80,42	-101
5,30	0,00	0,84	1
8,00	0,00	84,02	106
10,60	0,00	-0,43	8
	0,00 2,67 5,30 8,00	0,00 0,00 2,67 0,00 5,30 0,00 8,00 0,00	0,00 0,00 0,43 2,67 0,00 -80,42 5,30 0,00 0,84 8,00 0,00 84,02

Verifica sezioni piedritto sinistro [Combinazione n° 6 - SLE (Rara)]

B = 100 cm Base sezione Altezza sezione H = 80,00 cm

Verifiche presso-flessione

N°	Х	M	N	A_{fi}	A_{fs}	σ_{fs}	σ_{fi}	σ_{c}
1	0,50	-322,35	110,00	22,62	45,24	97468	39904	3549
2	1,88	-130,03	82,50	22,62	22,62	68255	19054	1835
3	3,25	-36,84	55,00	22,62	22,62	13374	6006	526
4	4,63	-4,58	27,50	22,62	22,62	9	936	68
5	6,00	0,00	0,00	22,62	22,62	0	0	0

Verifiche taglio

N°	Х	A_{sw}	V	τς
1	0,50	0,00	185,20	296
2	1,88	0,00	99,16	159
3	3,25	0,00	41,02	66
4	4,63	0,00	9,96	16
5	6,00	0,00	0,00	0

Secondo stralcio funzionale: Matelica Nord – Matelica Sud/Castelraimondo Nord

Opera L0703	Tratto 212	Settore E	CEE 38	WBS 013800	ld. doc. REL	N. prog. 01	Rev. A	Pag. di Pag. 160 di 168
----------------	---------------	--------------	-----------	---------------	-----------------	----------------	-----------	-------------------------------

Verifica sezioni piedritto destro [Combinazione n° 6 - SLE (Rara)]

Base sezione B = 100 cm Altezza sezione H = 80,00 cm

Verifiche presso-flessione

N°	Х	M	N	A_{fi}	A_{fs}	σ_{fs}	σ_{fi}	σ_{c}
1	0,50	-322,35	110,00	22,62	45,24	97468	39904	3549
2	1,88	-130,03	82,50	22,62	22,62	68255	19054	1835
3	3,25	-36,84	55,00	22,62	22,62	13374	6006	526
4	4,63	-4,58	27,50	22,62	22,62	9	936	68
5	6.00	0.00	0.00	22.62	22.62	0	0	0

Verifiche taglio N° Х A_{sw} ٧ τc -185,20 -296 1 0,50 0,00 1,88 0,00 -99,16 2 -159 3 3,25 0,00 -41,02 -66 4 -9,96 4,63 0,00 -16 0,00 5 6,00 0,00 0

Verifica sezioni fondazione [Combinazione n° 7 - SLE (Frequente)]

Base sezione B = 100 cm Altezza sezione H = 100,00 cm

Verifiche presso-flessione

N°	Х	IVI	N	Afi	Afs	σ fs	Offi	σα
1	0,00	0,00	0,00	22,62	22,62	120	22	2
2	2,67	112,86	185,20	22,62	22,62	13413	23070	1076
3	5,30	5,63	185,20	22,62	22,62	2983	2220	203
4	8,00	118,27	185,20	22,62	22,62	14021	25544	1132
5	10,60	0,00	0,00	22,62	22,62	120	22	2

Verifiche taglio N° Х A_{sw} το 0,00 0,00 0,43 -8 1 2 2,67 0,00 -80,42 -101 3 5,30 0,00 0,84 1 4 8,00 0,00 84,02 106 5 10,60 0,00 -0,43 8

Verifica sezioni piedritto sinistro [Combinazione n° 7 - SLE (Frequente)]

Base sezione B = 100 cmAltezza sezione H = 80,00 cm

Verifiche presso-flessione

N°	Х	M	N	A_{fi}	A_{fs}	σ_{fs}	σ_{fi}	σ_{c}
1	0,50	-322,35	110,00	22,62	45,24	97468	39904	3549
2	1,88	-130,03	82,50	22,62	22,62	68255	19054	1835
3	3,25	-36,84	55,00	22,62	22,62	13374	6006	526
4	4,63	-4,58	27,50	22,62	22,62	9	936	68
5	6,00	0,00	0,00	22,62	22,62	0	0	0

Secondo stralcio funzionale: Matelica Nord – Matelica Sud/Castelraimondo Nord

Opera L0703	Tratto 212	Settore E	CEE 38	WBS 013800	ld. doc. REL	N. prog. 01	Rev. A	Pag. di Pag. 161 di 168
----------------	---------------	--------------	-----------	---------------	-----------------	----------------	-----------	-------------------------------

Verifich	e taglio			
N°	х	A_{sw}	V	$ au_c$
1	0,50	0,00	185,20	296
2	1,88	0,00	99,16	159
3	3,25	0,00	41,02	66
4	4,63	0,00	9,96	16
5	6,00	0,00	0,00	0

Verifica sezioni piedritto destro [Combinazione n° 7 - SLE (Frequente)]

Base sezione B = 100 cm Altezza sezione H = 80,00 cm

Verifiche presso-flessione

N° X M N

N°	Х	M	N	A_{fi}	A_{fs}	σ_{fs}	Ofi	σα
1	0,50	-322,35	110,00	22,62	45,24	97468	39904	3549
2	1,88	-130,03	82,50	22,62	22,62	68255	19054	1835
3	3,25	-36,84	55,00	22,62	22,62	13374	6006	526
4	4,63	-4,58	27,50	22,62	22,62	9	936	68
5	6.00	0.00	0.00	22.62	22.62	0	0	Ω

Verifiche taglio N° Х Asw το 1 0,50 0,00 -185,20 -296 2 -99,16 -159 1,88 0,00 3 3,25 0,00 -41,02 -66 4 4,63 0,00 -9,96 -16 5 0,00 6,00 0,00 0

Verifica sezioni fondazione [Combinazione n° 8 - SLE (Quasi Permanente)]

 $\begin{array}{ll} \text{Base sezione} & \quad \text{B = 100 cm} \\ \text{Altezza sezione} & \quad \text{H = 100,00 cm} \end{array}$

Verifiche presso-flessione М N° Х Ν $\boldsymbol{A}_{\text{fi}}$ $\boldsymbol{A}_{\text{fs}}$ σ_{fs} σ_{fi} σ_{c} 0,00 0,00 0,00 22,62 22,62 1 120 22 2 2 2,67 112,86 185,20 22,62 22,62 13413 23070 1076 3 5,30 5,63 185,20 22,62 22,62 2983 2220 203 4 8,00 118,27 185,20 22,62 22,62 14021 25544 1132 10,60 0,00 0,00 22,62 22,62 22 2

Verifiche taglio A_{sw} το 0,00 0,00 0,43 -8 1 2 2,67 0,00 -80,42 -101 3 5,30 0,00 0,84 1 4 8,00 0,00 84,02 106 5 10,60 0,00 -0,43 8

Verifica sezioni piedritto sinistro [Combinazione n° 8 - SLE (Quasi Permanente)]

Base sezione B = 100 cm

Secondo stralcio funzionale: Matelica Nord – Matelica Sud/Castelraimondo Nord

Opera L0703	Tratto 212	Settore E	CEE 38	WBS 013800	ld. doc. REL	N. prog. 01	Rev. A	Pag. di Pag. 162 di 168
----------------	---------------	--------------	-----------	---------------	-----------------	----------------	-----------	-------------------------------

Altezza sezione H = 80,00 cm

Verifiche presso-flessione

N°	Х	М	N	A_{fi}	A_{fs}	σ_{fs}	σ_{fi}	σ_{c}
1	0,50	-322,35	110,00	22,62	45,24	97468	39904	3549
2	1,88	-130,03	82,50	22,62	22,62	68255	19054	1835
3	3,25	-36,84	55,00	22,62	22,62	13374	6006	526
4	4,63	-4,58	27,50	22,62	22,62	9	936	68
5	6.00	0.00	0.00	22.62	22.62	0	0	0

Verifiche taglio

_				
N°	Х	A_{sw}	V	$ au_{c}$
1	0,50	0,00	185,20	296
2	1,88	0,00	99,16	159
3	3,25	0,00	41,02	66
4	4,63	0,00	9,96	16
5	6,00	0,00	0,00	0

Verifica sezioni piedritto destro [Combinazione n° 8 - SLE (Quasi Permanente)]

Base sezione B = 100 cm Altezza sezione H = 80,00 cm

Verifiche presso-flessione

N°	Х	M	N	Afi	A_{fs}	σ_{fs}	σ fi	σ_{c}
1	0,50	-322,35	110,00	22,62	45,24	97468	39904	3549
2	1,88	-130,03	82,50	22,62	22,62	68255	19054	1835
3	3,25	-36,84	55,00	22,62	22,62	13374	6006	526
4	4,63	-4,58	27,50	22,62	22,62	9	936	68
5	6.00	0.00	0.00	22.62	22.62	0	0	0

Verifiche	taglio

N°	X	A_{sw}	V	$ au_{c}$
1	0,50	0,00	-185,20	-296
2	1,88	0,00	-99,16	-159
3	3,25	0,00	-41,02	-66
4	4,63	0,00	-9,96	-16
5	6.00	0.00	0.00	0

Secondo stralcio funzionale: Matelica Nord – Matelica Sud/Castelraimondo Nord

Opera L0703	Tratto 212	Settore E	CEE 38	WBS 013800	ld. doc. REL	N. prog. 01	Rev. A	Pag. di Pag. 163 di 168
----------------	---------------	--------------	-----------	---------------	-----------------	----------------	-----------	-------------------------------

Verifiche fessurazione

Simbo	logia adottata e	d unità di misura								
N°	Indice se	ezione								
Xi		Ordinata sezione,								
M _p Mn		to, espresse in kNı to, espresse in kNı								
W _k		ta, espresse ili kivi za fessure, espress								
Wlim		a limite fessure, es								
S		a media tra le fess								
Esm	Deform	azione nelle fessur	e, espresse in [%]							
<u>Verif</u>	ica fessuraz	ione fondazio	one [Combina	azione n° 6 - SL	E (Rara)]					
N°	х	$A_{\rm fi}$	A_{fs}	Мр	Mn	M	w	W _{lim}	S _m	€sm
1	0,07	22,62	22,62	470,24	-470,24	-0,24	0,00	100,00	0,00	0,000
2	2,67	22,62	22,62	470,24	-470,24	112,86	0,00	100,00	0,00	0,000
3	5,30	22,62	22,62	470,24	-470,24	5,63	0,00	100,00	0,00	0,000
4	8,00	22,62	22,62	470,24	-470,24	118,27	0,00	100,00	0,00	0,000
5	10,54	22,62	22,62	470,24	-470,24	-0,24	0,00	100,00	0,00	0,000
<u>Verif</u>	ica fessuraz	ione piedritto	o sinistro [Co	mbinazione n°	6 - SLE (Rara)]					
N°	х	Afi	Afs	Мр	Mn	М	w	Wlim	Sm	€ sm
1	0,50	22,62	45,24	311,48	-334,99	-322,35	0,00	100,00	0,00	0,000
2	1,88	22,62	22,62	305,94	-305,94	-130,03	0,00	100,00	0,00	0,000
3	3,25	22,62	22,62	305,94	-305,94	-36,84	0,00	100,00	0,00	0,000
4	4,63	22,62	22,62	305,94	-305,94	-4,58	0,00	100,00	0,00	0,000
5	6,00	22,62	22,62	305,94	-305,94	0,00	0,00	100,00	0,00	0,000
Verif	ica fessurazi	ione piedritto	o destro [Con	nbinazione n° 6	i - SLE (Rara)]					
N°	х	Afi	A _{fs}	Мр	Mn	М	w	Wlim	Sm	€ sm
				Mp 311,48	Mn -334,99	M -322,35	w 0,00	W lim 100,00	s m 0,00	E sm 0,000
1	0,50	22,62	45,24	311,48	-334,99	-322,35	0,00	100,00	0,00	0,000
1 2	0,50 1,88	22,62 22,62	45,24 22,62	311,48 305,94	-334,99 -305,94	-322,35 -130,03	0,00 0,00	100,00 100,00	0,00 0,00	0,000 0,000
1 2 3	0,50 1,88 3,25	22,62 22,62 22,62	45,24 22,62 22,62	311,48 305,94 305,94	-334,99 -305,94 -305,94	-322,35 -130,03 -36,84	0,00 0,00 0,00	100,00 100,00 100,00	0,00 0,00 0,00	0,000 0,000 0,000
1 2 3 4	0,50 1,88	22,62 22,62	45,24 22,62	311,48 305,94	-334,99 -305,94	-322,35 -130,03	0,00 0,00	100,00 100,00	0,00 0,00	0,000 0,000
1 2 3 4 5	0,50 1,88 3,25 4,63 6,00	22,62 22,62 22,62 22,62 22,62	45,24 22,62 22,62 22,62 22,62	311,48 305,94 305,94 305,94	-334,99 -305,94 -305,94 -305,94 -305,94	-322,35 -130,03 -36,84 -4,58	0,00 0,00 0,00 0,00	100,00 100,00 100,00 100,00	0,00 0,00 0,00 0,00	0,000 0,000 0,000 0,000
1 2 3 4 5	0,50 1,88 3,25 4,63 6,00	22,62 22,62 22,62 22,62 22,62 22,62 ione fondazio	45,24 22,62 22,62 22,62 22,62 22,62	311,48 305,94 305,94 305,94 305,94 305,94	-334,99 -305,94 -305,94 -305,94 -305,94	-322,35 -130,03 -36,84 -4,58 0,00	0,00 0,00 0,00 0,00 0,00 0,00	100,00 100,00 100,00 100,00 100,00	0,00 0,00 0,00 0,00	0,000 0,000 0,000 0,000 0,000
1 2 3 4 5 <u>Verif</u> N°	0,50 1,88 3,25 4,63 6,00	22,62 22,62 22,62 22,62 22,62 22,62 ione fondazio	45,24 22,62 22,62 22,62 22,62 22,62 one [Combination of the combination of the combinatio	311,48 305,94 305,94 305,94 305,94 305,94 azione n° 7 - SL	-334,99 -305,94 -305,94 -305,94 -305,94 E [Frequente]]	-322,35 -130,03 -36,84 -4,58 0,00	0,00 0,00 0,00 0,00 0,00 0,00	100,00 100,00 100,00 100,00 100,00	0,00 0,00 0,00 0,00 0,00 0,00	0,000 0,000 0,000 0,000 0,000
1 2 3 4 5 Verif N° 1	0,50 1,88 3,25 4,63 6,00 Fica fessurazi	22,62 22,62 22,62 22,62 22,62 22,62 ione fondazio A _{fi} 22,62	45,24 22,62 22,62 22,62 22,62 22,62 20ne [Combination Area 22,62	311,48 305,94 305,94 305,94 305,94 305,94 azione n° 7 - SL Mp 470,24	-334,99 -305,94 -305,94 -305,94 -305,94 E [Frequente]] Mn -470,24	-322,35 -130,03 -36,84 -4,58 0,00 M -0,24	0,00 0,00 0,00 0,00 0,00 0,00	100,00 100,00 100,00 100,00 100,00 W lim 0,30	0,00 0,00 0,00 0,00 0,00 0,00	0,000 0,000 0,000 0,000 0,000 0,000
1 2 3 4 5 Verif N° 1 2	0,50 1,88 3,25 4,63 6,00 Fica fessurazi X 0,07 2,67	22,62 22,62 22,62 22,62 22,62 22,62 ione fondazio A _{fi} 22,62 22,62	45,24 22,62 22,62 22,62 22,62 22,62 22,62 4ss 22,62 22,62	311,48 305,94 305,94 305,94 305,94 305,94 azione n° 7 - SL Mp 470,24 470,24	-334,99 -305,94 -305,94 -305,94 -305,94 E [Frequente]] Mn -470,24 -470,24	-322,35 -130,03 -36,84 -4,58 0,00 M -0,24 112,86	0,00 0,00 0,00 0,00 0,00 0,00	100,00 100,00 100,00 100,00 100,00 100,00	0,00 0,00 0,00 0,00 0,00 0,00 s _m 0,00 0,00	0,000 0,000 0,000 0,000 0,000 0,000
1 2 3 4 5 Verif N° 1 2 3	0,50 1,88 3,25 4,63 6,00 fica fessurazi X 0,07 2,67 5,30	22,62 22,62 22,62 22,62 22,62 22,62 ione fondazio A _{fi} 22,62 22,62 22,62	45,24 22,62 22,62 22,62 22,62 22,62 22,62 22,62 22,62 22,62	311,48 305,94 305,94 305,94 305,94 305,94 azione n° 7 - SL Mp 470,24 470,24 470,24	-334,99 -305,94 -305,94 -305,94 -305,94 E [Frequente]] Mn -470,24 -470,24 -470,24	-322,35 -130,03 -36,84 -4,58 0,00 M -0,24 112,86 5,63	0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,0	100,00 100,00 100,00 100,00 100,00 100,00 W lim 0,30 0,30 0,30	0,00 0,00 0,00 0,00 0,00 0,00 s _m 0,00 0,00 0,00	0,000 0,000 0,000 0,000 0,000 0,000
1 2 3 4 5 5 Verif N° 1 2 3 4	0,50 1,88 3,25 4,63 6,00 fica fessurazi X 0,07 2,67 5,30 8,00	22,62 22,62 22,62 22,62 22,62 22,62 ione fondazio A _{fi} 22,62 22,62 22,62 22,62 22,62	45,24 22,62 22,62 22,62 22,62 22,62 22,62 22,62 22,62 22,62 22,62	311,48 305,94 305,94 305,94 305,94 305,94 Mp 470,24 470,24 470,24 470,24	-334,99 -305,94 -305,94 -305,94 -305,94 E [Frequente]] Mn -470,24 -470,24 -470,24 -470,24	-322,35 -130,03 -36,84 -4,58 0,00 M -0,24 112,86 5,63 118,27	0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,0	100,00 100,00 100,00 100,00 100,00 100,00 w _{lim} 0,30 0,30 0,30 0,30	0,00 0,00 0,00 0,00 0,00 0,00 s _m 0,00 0,00 0,00	0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000
N° 1 2 3 4 5 5 Veriff N° 1 2 3 4 4 5 5	0,50 1,88 3,25 4,63 6,00 fica fessurazi X 0,07 2,67 5,30	22,62 22,62 22,62 22,62 22,62 22,62 ione fondazio A _{fi} 22,62 22,62 22,62	45,24 22,62 22,62 22,62 22,62 22,62 22,62 22,62 22,62 22,62	311,48 305,94 305,94 305,94 305,94 305,94 azione n° 7 - SL Mp 470,24 470,24 470,24	-334,99 -305,94 -305,94 -305,94 -305,94 E [Frequente]] Mn -470,24 -470,24 -470,24	-322,35 -130,03 -36,84 -4,58 0,00 M -0,24 112,86 5,63	0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,0	100,00 100,00 100,00 100,00 100,00 100,00 W lim 0,30 0,30 0,30	0,00 0,00 0,00 0,00 0,00 0,00 s _m 0,00 0,00 0,00	0,000 0,000 0,000 0,000 0,000 0,000
1 2 3 4 5 5 Verif N° 1 2 3 4 5	0,50 1,88 3,25 4,63 6,00 Fica fessurazi X 0,07 2,67 5,30 8,00 10,54	22,62 22,62 22,62 22,62 22,62 22,62 ione fondazio A _{fi} 22,62 22,62 22,62 22,62 22,62 22,62	45,24 22,62 22,62 22,62 22,62 22,62 22,62 22,62 22,62 22,62 22,62 22,62	311,48 305,94 305,94 305,94 305,94 305,94 Mp 470,24 470,24 470,24 470,24 470,24	-334,99 -305,94 -305,94 -305,94 -305,94 E [Frequente]] Mn -470,24 -470,24 -470,24 -470,24	-322,35 -130,03 -36,84 -4,58 0,00 M -0,24 112,86 5,63 118,27 -0,24	0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,0	100,00 100,00 100,00 100,00 100,00 100,00 w _{lim} 0,30 0,30 0,30 0,30	0,00 0,00 0,00 0,00 0,00 0,00 s _m 0,00 0,00 0,00	0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000
1 2 3 4 5 Verif N° 1 2 3 4 5	0,50 1,88 3,25 4,63 6,00 fica fessurazi X 0,07 2,67 5,30 8,00 10,54	22,62 22,62 22,62 22,62 22,62 22,62 22,62 22,62 22,62 22,62 22,62 22,62	45,24 22,62 22,62 22,62 22,62 22,62 22,62 22,62 22,62 22,62 22,62 22,62 22,62 22,62 25,62	311,48 305,94 305,94 305,94 305,94 305,94 azione n° 7 - SL Mp 470,24 470,24 470,24 470,24 470,24	-334,99 -305,94 -305,94 -305,94 -305,94 E [Frequente]] Mn -470,24 -470,24 -470,24 -470,24 -470,24 -470,24	-322,35 -130,03 -36,84 -4,58 0,00 M -0,24 112,86 5,63 118,27 -0,24	0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,0	100,00 100,00 100,00 100,00 100,00 W _{lim} 0,30 0,30 0,30 0,30 0,30	0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,0	0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000
1 2 3 4 5 Verif N° 1 2 3 4 5 5	0,50 1,88 3,25 4,63 6,00 fica fessurazi X 0,07 2,67 5,30 8,00 10,54	22,62 22,62 22,62 22,62 22,62 22,62 22,62 22,62 22,62 22,62 22,62 22,62	45,24 22,62 22,62 22,62 22,62 22,62 22,62 22,62 22,62 22,62 22,62 22,62 22,62 25,62 25,62 25,62 26,62 27,62 28,62 28,62 28,62 28,62 28,62 28,62 28,62 28,62 28,62 28,62 28,62 28,62 28,62 28,62 28,62 28,62 28,62 28,62	311,48 305,94 305,94 305,94 305,94 305,94 azione n° 7 - SL Mp 470,24 470,24 470,24 470,24 470,24 Mp	-334,99 -305,94 -305,94 -305,94 -305,94 E [Frequente]] Mn -470,24 -470,24 -470,24 -470,24 -470,24 -470,24 -470,24 Mn	-322,35 -130,03 -36,84 -4,58 0,00 M -0,24 112,86 5,63 118,27 -0,24	0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,0	100,00 100,00 100,00 100,00 100,00 100,00 Wiim 0,30 0,30 0,30 0,30	0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,0	0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000
1 2 3 4 5 Verif N° 1 2 3 4 5 Verif N°	0,50 1,88 3,25 4,63 6,00 fica fessuraz X 0,07 2,67 5,30 8,00 10,54	22,62 22,62 22,62 22,62 22,62 22,62 22,62 22,62 22,62 22,62 22,62 22,62	45,24 22,62 22,62 22,62 22,62 22,62 22,62 22,62 22,62 22,62 22,62 22,62 22,62 25,62 25,62 25,62 26,62 27,62 27,62 27,62 27,62 27,62	311,48 305,94 305,94 305,94 305,94 azione n° 7 - SL Mp 470,24 470,24 470,24 470,24 470,24 Mp mbinazione n° Mp 311,48	-334,99 -305,94 -305,94 -305,94 -305,94 E [Frequente]] Mn -470,24 -470,24 -470,24 -470,24 -470,24 -470,24 -470,24 Mn -334,99	-322,35 -130,03 -36,84 -4,58 0,00 M -0,24 112,86 5,63 118,27 -0,24 M -322,35	0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,0	100,00 100,00 100,00 100,00 100,00 100,00 Whim 0,30 0,30 0,30 0,30 0,30	0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,0	0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000
1 2 3 4 5 5 Veriff N° 1 2 3 4 5 5	0,50 1,88 3,25 4,63 6,00 fica fessurazi X 0,07 2,67 5,30 8,00 10,54	22,62 22,62 22,62 22,62 22,62 22,62 22,62 22,62 22,62 22,62 22,62 22,62	45,24 22,62 22,62 22,62 22,62 22,62 22,62 22,62 22,62 22,62 22,62 22,62 22,62 25,62 25,62 25,62 26,62 27,62 28,62 28,62 28,62 28,62 28,62 28,62 28,62 28,62 28,62 28,62 28,62 28,62 28,62 28,62 28,62 28,62 28,62 28,62	311,48 305,94 305,94 305,94 305,94 305,94 azione n° 7 - SL Mp 470,24 470,24 470,24 470,24 470,24 Mp	-334,99 -305,94 -305,94 -305,94 -305,94 E [Frequente]] Mn -470,24 -470,24 -470,24 -470,24 -470,24 -470,24 -470,24 Mn	-322,35 -130,03 -36,84 -4,58 0,00 M -0,24 112,86 5,63 118,27 -0,24	0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,0	100,00 100,00 100,00 100,00 100,00 100,00 Wiim 0,30 0,30 0,30 0,30	0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,0	0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000

Secondo stralcio funzionale: Matelica Nord – Matelica Sud/Castelra
imondo Nord

	Monche II	mbria 8.p./	1									
	marche o	moria 3 .p. <i>F</i>	As .	Opera L0703	Tratto 212	Settore E	CEE 38	WBS 013800	ld. doc. REL	N. prog. 01	Rev. A	Pag. di Pag. 164 di 168
4	4,63	22,62	22,62	305,94	-30	05,94	-4,58	3 0,0	00	0,30	0,00	0,000
5	6,00	22,62	22,62	305,94	-30	05,94	0,00	0,0	00	0,30	0,00	0,00
Vouif	ioo foossuus	iana niaduista	dastua [Com	hinariana n	°7 CIF/F	-uaa-t-a\'	•					
verii	ica iessuraz	ione piedritto	destro (Com	ibinazione n	/ - SLE (F	requente	L					
N°	Х	Afi	A_{fs}	Мр		Mn	N		w	Wlim	Sm	€ si
1	0,50	22,62	45,24	311,48		34,99	-322,35			0,30	0,00	0,000
2	1,88	22,62	22,62	305,94		05,94	-130,03			0,30	0,00	0,000
3	3,25	22,62	22,62	305,94		05,94	-36,84			0,30	0,00	0,000
4 5	4,63 6,00	22,62	22,62	305,94		05,94 05,94	-4,58 0,00			0,30	0,00 0,00	0,000
5	6,00	22,62	22,62	305,94	-30	J3, 3 4	0,00	J 0,0	00	0,30	0,00	0,000
<u>Verif</u>	ica fessuraz	ione fondazio	one [Combina	zione n° 8 -	SLE (Quasi	i Permaner	nte)]					
N°	х	A_{fi}	A_{fs}	Мр		Mn	N	1	w	W _{lim}	Sm	€ sı
1	0,07	22,62	22,62	470,24	-47	70,24	-0,24	4 0,0	00	0,20	0,00	0,00
2	2,67	22,62	22,62	470,24	-47	70,24	112,86	5 0,0		0,20	0,00	0,000
3	5,30	22,62	22,62	470,24	-47	70,24	5,63	3 0,0		0,20	0,00	0,00
4	8,00	22,62	22,62	470,24		70,24	118,27			0,20	0,00	0,00
5	10,54	22,62	22,62	470,24	-47	70,24	-0,24	4 0,0	00	0,20	0,00	0,000
<u>Verif</u>	ica fessuraz	ione piedritto	sinistro [Cor	mbinazione	n° 8 - SLE (Quasi Pern	nanente)]					
N°	х	A_{fi}	\mathbf{A}_{fs}	Мр		Mn	N	1	w	Wlim	Sm	€ sr
1	0,50	22,62	45,24	311,48	-33	34,99	-322,35	5 0,0	00	0,20	0,00	0,000
2	1,88	22,62	22,62	305,94	-30	05,94	-130,03			0,20	0,00	0,00
3	3,25	22,62	22,62	305,94	-30	05,94	-36,84	4 0,0		0,20	0,00	0,00
4	4,63	22,62	22,62	305,94		05,94	-4,58			0,20	0,00	0,00
5	6,00	22,62	22,62	305,94	-30	05,94	0,00	0,0	00	0,20	0,00	0,00
<u>Verif</u>	ica fessuraz	ione piedritto	destro [Com	ıbinazione n	° 8 - SLE (C	Quasi Perm	anente)]					
N°	Х	Afi	\mathbf{A}_{fs}	Мр		Mn	N	1	w	Wlim	Sm	8 sı
1	0,50	22,62	45,24	311,48	-33	34,99	-322,35			0,20	0,00	0,00
2	1,88	22,62	22,62	305,94		05,94	-130,03			0,20	0,00	0,00
3	3,25	22,62	22,62	305,94		05,94 05,94	-36,84			0,20	0,00	0,00
4	4,63	22,62	22,62	305,94		05,94 05,94	-4,58			0,20	0,00	0,000
5	6,00	22,62	22,62	305,94		05,94	0,00			0,20	0,00	0,000
_	0,00	22,02	22,02	303,3 +	3.	,	3,00	0,0		-,	0,00	0,0

Secondo stralcio funzionale: Matelica Nord – Matelica Sud/Castelraimondo Nord

Opera L0703	Tratto 212	Settore E	CEE 38	WBS 013800	ld. doc. REL	N. prog. 01	Rev. A	Pag. di Pag. 165 di 168
----------------	---------------	--------------	-----------	---------------	-----------------	----------------	-----------	-------------------------------

Inviluppo sollecitazioni nodali

Inviluppo sollecitazioni fondazione

X [m]	M _{min} [kNm]	M _{max} [kNm]	V _{min} [kN]	V _{max} [kN]	N _{min} [kN]	N _{max} [kN]
0,00	0,00	0,00	0,00	0,56	-22,26	22,25
2,67	-726,69	-112,86	-128,86	-65,73	185,20	392,22
5,30	-553,83	-5,63	-30,45	31,98	185,20	372,74
8,00	-732,80	-118,27	70,02	132,73	185,20	392,71
10,60	0,00	0,00	-0,56	0,00	-22,26	22,25

Inviluppo sollecitazioni piedritto sinistro

Y [m]	M _{min} [kNm]	M _{max} [kNm]	V _{min} [kN]	V _{max} [kN]	N _{min} [kN]	N _{max} [kN]
0,50	-941,22	-322,35	185,20	389,73	93,73	143,00
1,88	-497,51	-130,03	99,16	256,39	70,30	107,25
3,25	-217,75	-36,84	41,02	151,30	46,87	71,50
4,63	-63,19	-4,58	9,96	73,73	23,43	35,75
6,00	0,00	0,00	0,00	21,56	0,00	0,00

Inviluppo sollecitazioni piedritto destro

Y [m]	M _{min} [kNm]	M _{max} [kNm]	V _{min} [kN]	V _{max} [kN]	N _{min} [kN]	N _{max} [kN]
0,50	-941,22	-322,35	-389,73	-185,20	93,73	143,00
1,88	-497,51	-130,03	-256,39	-99,16	70,30	107,25
3,25	-217,75	-36,84	-151,30	-41,02	46,87	71,50
4,63	-63,19	-4,58	-73,73	-9,96	23,43	35,75
6,00	0,00	0,00	-21,56	0,00	0,00	0,00

Inviluppo pressioni terreno

Inviluppo pressioni sul terreno di fondazione

X [m]	σ _{tmin} [kPa]	σ_{tmax} [kPa]
0,00	0	14
2,67	0	31
5,30	15	36
8,00	0	30
10,60	0	14

Inviluppo verifiche stato limite ultimo (SLU)

Verifica sezioni fondazione (Inviluppo)

Base sezione Altezza sezione	B = 100 cm H = 100,00 cm		
х	\mathbf{A}_{fi}	A_{fs}	cs
0,00	22,62	22,62	50,43
2,67	22,62	22,62	1,23
5,30	22,62	22,62	1,86
8,00	22,62	22,62	1,22

Secondo stralcio funzionale: Matelica Nord – Matelica Sud/Castelraimondo Nord

Opera L0703	Tratto 212	Settore E	CEE 38	WBS 013800	ld. doc. REL	N. prog. 01	Rev. A	Pag. di Pag. 166 di 168
----------------	---------------	--------------	-----------	---------------	-----------------	----------------	-----------	-------------------------------

10,60	22,62	22,62	50,43		
x	V_{Rd}		V_{Rsd}	V_{Rcd}	A_{sw}
0,00	300,73		0,00	0,00	0,00
2,67	334,49		0,00	0,00	0,00
5,30	334,49		0,00	0,00	0,00
8,00	334,49		0,00	0,00	0,00
10,60	300,73		0,00	0,00	0,00

Verifica sezioni piedritto sinistro (Inviluppo)

Base sezione Altezza sezione	B = 100 cm H = 80,00 cm				
Υ	${f A}_{ m fi}$	${\sf A}_{\sf fs}$	CS		
0,50	22,62	45,24	1,32		
	·	-			
1,88	22,62	22,62	0,96		
3,25	22,62	22,62	2,04		
4,63	22,62	22,62	5,91		
6,00	22,62	22,62	43,16		
.,	.,				_
Υ	V_{Rd}		V_{Rsd}	V_{Rcd}	A_{sw}
0,50	355,48		0,00	0,00	0,00
1,88	281,28		0,00	0,00	0,00
3,25	276,36		0,00	0,00	0,00
4,63	271,43		0,00	0,00	0,00
6,00	266,50		0,00	0,00	0,00

Verifica sezioni piedritto destro (Inviluppo)

Base sezione Altezza sezione	B = 100 cm H = 80,00 cm				
Υ	\mathbf{A}_{fi}	A_{fs}	cs		
0,50	22,62	45,24	1,32		
1,88	22,62	22,62	0,96		
3,25	22,62	22,62	2,04		
4,63	22,62	22,62	5,91		
6,00	22,62	22,62	43,28		
Υ	V_Rd		${f V}_{\sf Rsd}$	V_{Rcd}	A_{sw}
0,50	355,48		0,00	0,00	0,00
1,88	281,28		0,00	0,00	0,00
3,25	276,36		0,00	0,00	0,00
4,63	271,43		0,00	0,00	0,00
6,00	266,50		0,00	0,00	0,00

Inviluppo verifiche stato limite esercizio (SLE)

Verifica sezioni fondazione (Inviluppo)

Base sezione B = 100 cm

Secondo stralcio funzionale: Matelica Nord – Matelica Sud/Castelraimondo Nord

Opera L0703	Tratto 212	Settore E	CEE 38	WBS 013800	ld. doc. REL	N. prog. 01	Rev. A	Pag. di Pag. 167 di 168
----------------	---------------	--------------	-----------	---------------	-----------------	----------------	-----------	-------------------------------

Altezza sezione	H = 100,00 cm				
x	A_{fi}	A_{fs}	σ_{c}	$\sigma_{\rm fi}$	σ_{fs}
0,00	22,62	22,62	2	22	120
2,67	22,62	22,62	1076	23070	13413
5,30	22,62	22,62	203	2220	2983
8,00	22,62	22,62	1132	25544	14021
10,60	22,62	22,62	2	22	120
Х	τα		A_{sw}		
0,00	-8		0,00		
2,67	-101		0,00		
5,30	1		0,00		
8,00	106		0,00		
10,60	8		0,00		

Verifica sezioni piedritto sinistro (Inviluppo)

Base sezione Altezza sezione	B = 100 cm H = 80,00 cm				
A TECEPORE	11 00,00 011				
Υ	A_{fi}	A_{fs}	σ_{c}	σ_{fi}	σ_{fs}
0,50	22,62	45,24	3549	39904	97468
1,88	22,62	22,62	1835	19054	68255
3,25	22,62	22,62	526	6006	13374
4,63	22,62	22,62	68	936	9
6,00	22,62	22,62	0	0	0
Υ	τ _c		Asw		
0,50	296		0,00		
1,88	159		0,00		
3,25	66		0,00		
4,63	16		0,00		
6,00	0		0,00		

Verifica sezioni piedritto destro (Inviluppo)

Base sezione Altezza sezione	B = 100 cm H = 80,00 cm				
Υ	A_{fi}	A_{fs}	σα	σ fi	σ fs
0,50	22,62	45,24	3549	39904	97468
1,88	22,62	22,62	1835	19054	68255
3,25	22,62	22,62	526	6006	13374
4,63	22,62	22,62	68	936	9
6,00	22,62	22,62	0	0	0
Υ	$ au_{c}$		Asw		
0,50	-296		0,00		
1,88	-159		0,00		
3,25	-66		0,00		
4,63	-16		0,00		
6,00	0		0,00		

Secondo stralcio funzionale: Matelica Nord – Matelica Sud/Castelraimondo

Opera L0703	Tratto 212	Settore E	CEE 38	WBS 013800	ld. doc. REL	N. prog. 01	Rev. A	Pag. di Pag. 168 di 168
----------------	---------------	--------------	-----------	---------------	-----------------	----------------	-----------	-------------------------------

Verifiche geotecniche

Simbologia adottata

Indice della combinazione

IC Nc, Nq, N_g Nc, Nq, N_g qu Q_U Q_Y FSFattori di capacità portante
Fattori di capacità portante corretti per effetto forma, inclinazione del carico, affondamento, etc.
Portanza ultima del terreno, espressa in [kPa]
Portanza ultima del terreno, espressa in [kN]/m
Carico verticale al piano di posa, espressa in [kN]/m

Fattore di sicurezza a carico limite

IC	Nc	Nq	Nγ	N'c	N'q	Ν'γ	qu	\mathbf{Q}_{U}	\mathbf{Q}_{Y}	FS
1	21,47	11,24	7,36	29,02	13,14	8,60	1340	14200,36	210,20	67,56
2	21,47	11,24	7,36	0,98	0,48	26,98	878	9310,96	89,97	103,49
3	21,47	11,24	7,36	0,98	0,48	26,98	878	9310,85	89,97	103,49
4	21,47	11,24	7,36	4,92	2,38	7,60	458	4854,81	233,41	20,80
5	21,47	11,24	7,36	4,92	2,38	7,60	458	4854,81	233,41	20,80