

ASSE VIARIO MARCHE – UMBRIA E QUADRILATERO DI PENETRAZIONE INTERNA MAXI LOTTO 2

LAVORI DI COMPLETAMENTO DELLA DIRETTRICE PERUGIA ANCONA:
SS. 318 DI "VALFABBRICA". TRATTO PIANELLO – VALFABBRICA
SS. 76 "VAL D'ESINO". TRATTI FOSSATO VICO – CANCELLI E ALBACINA – SERRA SAN QUIRICO
"PEDEMONTANA DELLE MARCHE", TRATTO FABRIANO – MUCCIA – SFERCIA

PROGETTO DEFINITIVO

CONTRAENTE GENERALE:

DIRPA 2

Il responsabile del Contraente Generale:

Il responsabile Integrazioni delle Prestazioni Specialistiche:

Ing. Federico Montanari

Ing. Salvatore Lieto

PROGETTAZIONE: Associazione Temporanea di Imprese Mandataria: Mandanti:

RESPONSABILE DELLA PROGETTAZIONE PER l'ATI

Ing. Antonio Grimaldi

GEOLOGO

Dott. Geol. Fabrizio Pontoni

COORDINATORE DELLA SICUREZZA IN FASE DI PROGETTAZIONE Ing. Michele Curiale

IL RESPONSABILE DEL PROCEDIMENTO	
Ing. Iginio Farotti	

2.1.3 PEDEMONTANA DELLE MARCHE

3° stralcio funzionale: Castelraimondo nord – Castelraimondo sud 4° stralcio funzionale: Castelraimondo sud – innesto S.S. 77 a Muccia

IDROLOGIA E IDRAULICA

Relazione idrologica

SCALA:

DATA:

Settembre 2020

Codice Unico di Progetto (CUP) F12C03000050021 (Assegnato CIPE 23-12-2015)

	Opera			Tratto Settore		CEE		WBS			I	Id. doc.		N. prog.		R	lev.										
Codice Elaborato:	L	0	7	0	3	2	1	3	1 I F	=]	0	3	- 16		I	0	0	0	0	R	Ε	L		0	1		В

REV.	DATA	DESCRIZIONE	R	edatto	Controllato	Approvato
В	Marzo 2020	Emissione PE	PROGIN	E.Abbasciano	S.Lieto	A.Grimaldi
В	Sett 2020	Emissione a seguito istruttoria ANAS	PROGIN E.Abbasciano		S.Lieto	A.Grimaldi

 3° stralcio funzionale: Castelraimondo nord – Castelraimondo sud 4° stralcio funzionale: Castelraimondo sud – innesto S.S. 77 a Muccia Relazione idrologica

Opera	Tratto	Settore	CEE	WBS	ld. doc.	N. progr.	REV.	Pag. di Pag.				
L0703	2 13	E	03	O10000	REL	01	В	2 di 44				

INDICE

1.	PREMESSA	3
2.	AREA OGGETTO DI STUDIO	4
3.	SINTESI DELLA NORMATIVA DI RIFERIMENTO	6
3.1	NORMATIVA NAZIONALE	6
3.2	NORMATIVA REGIONALE	8
3.3	PIANIFICAZIONE TERRITORIALE	8
4.	IL PIANO STRALCIO DI BACINO PER L'ASSETTO IDROGEOLO	OGICO
	(PAI) DELL'ADB REGIONALE DELLE MARCHE	11
5 .	VALUTAZIONI IDROLOGICHE	14
5.1	CURVE DI POSSIBILITÀ PLUVIOMETRICA LEGGE DI GUMBEL	14
5.2	CURVE DI POSSIBILITÀ PLUVIOMETRICA DA PROGETTO DEFINITIVO,	
PRC	OCEDURA VAPI	19
5.3	CURVE DI POSSIBILITÀ PLUVIOMETRICA VAPI AGGIORNATO	23
5.4	REGIONALIZZAZIONE TERRITORIO MARCHIGIANO (CIMA-2016)	30
5.5	CONFRONTO TRA LE METODOLOGIE UTILIZZATE	32
5.6	STIMA DEI DEFLUSSI	34
5.7	STIMA DEI DEFLUSSI PER BREVI DURATE	43
6.	CONSIDERAZIONI GEOMORFOLOGICHE	44

3° stralcio funzionale: Castelraimondo nord – Castelraimondo sud 4° stralcio funzionale: Castelraimondo sud – innesto S.S. 77 a Muccia Relazione idrologica

Opera L0703	Tratto	Settore	CEE	WBS Ol0000	ld. doc. REL	N. progr.	REV.	Pag. di Pag. 3 di 44
10/03	213	L	0.5		KLL	UI	D	3 di 44

PREMESSA

La presente relazione descrive lo studio idrologico per la caratterizzazione dei parametri delle leggi di pioggia del Progetto Esecutivo dei seguenti stralci funzionali:

- 3° stralcio funzionale: compreso tra lo svincolo di Castelraimondo nord e lo svincolo di Castelraimondo sud;
- 4° stralcio funzionale: compreso tra lo svincolo di Castelraimondo sud e l'innesto con la S.S. 77 a Muccia.

Gli stralci funzionali di cui sopra rientrano nell'ambito degli interventi di completamento della Pedemontana delle Marche definiti e finanziati nella Delibera CIPE 64/2016 - "Aggiornamento del quadro infrastrutturale della delibera n. 13/2004".

L'intervento in progetto riguarda una nuova infrastruttura stradale, di lunghezza pari a 13,1 km circa, composta da un asse principale e tre svincoli, che si sviluppa, da Nord verso Sud, attraverso un tracciato con sezione tipo C1 secondo il D.M. 05/11/2001, che si collega a progr. 0+000 allo stralcio funzionale precedente ed a progr. 13+100 (in corrispondenza della rotatoria SP 132 Varanese).

Il presente Progetto Esecutivo (PE) è stato sviluppato sulla base del Progetto Definitivo approvato.

Nel seguito, vengono illustrati e descritti gli studi e le indagini sviluppati per la caratterizzazione pluviometrica delle aree oggetto di intervento. Saranno ricavati sia il regime pluviometrico che le portate nelle sezioni di chiusura dei maggiori bacini idrografici che l'infrastruttura incontra. Vengono illustrati, inoltre, le modalità di calcolo dei parametri idrologici con riferimento a diversi approcci procedurali e prendendo in considerazione il regime più conservativo.

Saranno esposte le impostazioni teoriche adottate per la schematizzazione dei fenomeni naturali, le ipotesi semplificative assunte e le metodologie di calcolo utilizzate rispettivamente per l'idraulica fluviale e per i fenomeni fisici propri dell'interferenza tra le strutture di attraversamento e corso d'acqua e dell'idraulica di piattaforma.

3° stralcio funzionale: Castelraimondo nord – Castelraimondo sud 4° stralcio funzionale: Castelraimondo sud – innesto S.S. 77 a Muccia Relazione idrologica

Opera	Tratto	Settore	CEE	WBS	ld. doc.	N. progr.	REV.	Pag. di Pag.
L0703	213	Е	03	010000	REL	01	В	4 di 44

2. AREA OGGETTO DI STUDIO

Il territorio in esame è costituito dalla fascia pedemontana che si sviluppa a ridosso del versante appenninico marchigiano tra le valli dei fiumi Esino a nord e Chienti a sud. La strada di progetto, lunga circa 13'100 km, attraversa la valle del fiume Potenza. I principali centri abitati che vengono toccati dal nuovo asse viario sono, Castelraimondo e Camerino.

Procedendo da nord verso sud, vengono di seguito localizzati e descritti i principali corsi d'acqua intercettati dal tracciato stradale, la maggior parte provenienti da O-SO con direzione di scorrimento perpendicolare alla catena appenninica da cui hanno origine e con la caratteristica comune di essere affluenti o subaffluenti del principale corso d'acqua della zona, il Potenza:

- Rio Lapidoso: proviene da ovest ed è attraversato dal Viadotto Castelraimondo. Confluisce nel Fiume Potenza in corrispondenza dell'abitato di Castelraimondo. Alla sezione dell'attraversamento presenta una lunghezza dell'asta di 4.80 km e un bacino a monte di 10.05 km²;
- Fiume Potenza: è il principale corso d'acqua attraversato lungo il tracciato stradale di progetto. Proveniente dal crinale appenninico umbro-marchigiano situato ad occidente, percorre una valle alluvionale relativamente ampia in cui sorgono Pioraco e Castelraimondo. Alla sezione dell'attraversamento, poco a monte di Castelraimondo, (Viadotto "Potenza") ha una lunghezza dell'asta di 29.52 km e un bacino a monte di 181.70 km²;
- Torrente Palente: ha origine dai rilievi sud-occidentali che contornano la valle del Fiume Chienti e scorre per un tratto ai piedi del versante occidentale del colle di Camerino, confluendo nel Potenza poco a monte di Castelraimondo. Il nuovo tracciato stradale corre lungo la valle del torrente. Alla sezione dell'attraversamento (Viadotto "Cesara") ha una lunghezza dell'asta di 8.32 km e un bacino a monte di 18.26 km²;

Nella restante parte del tracciato vengono inoltre attraversate o intercettate le testate di alcuni fossi minori o piccoli compluvi tributari dei corsi d'acqua principali. La maggior parte di queste incisioni, di modesta dimensione, viene attraversata mediante tombini circolari o scatolari. Per i fossi più importanti sono stati previsti attraversamenti mediante ponti.

 3° stralcio funzionale: Castelraimondo nord – Castelraimondo sud 4° stralcio funzionale: Castelraimondo sud – innesto S.S. 77 a Muccia Relazione idrologica

Opera	Tratto	Settore	CEE	WBS	ld. doc.	N. progr.	REV.	Pag. di Pag.
L0703	213	Е	03	O10000	REL	01	В	5 di 44

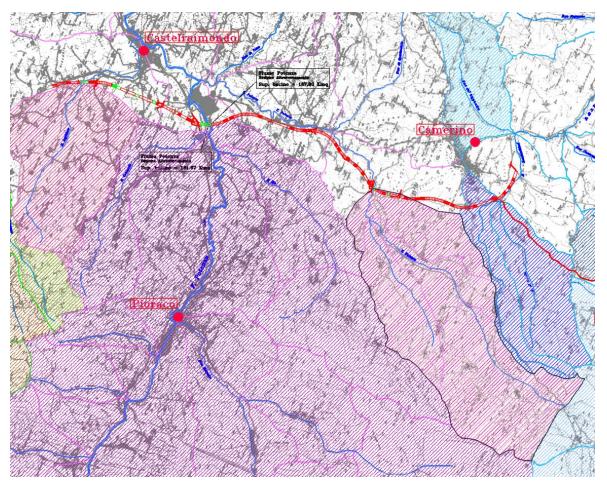


Figura 1: Inquadramento bacini principali

3° stralcio funzionale: Castelraimondo nord – Castelraimondo sud 4° stralcio funzionale: Castelraimondo sud – innesto S.S. 77 a Muccia Relazione idrologica

Opera	Tratto	Settore	CEE	WBS	ld. doc.	N. progr.	REV.	Pag. di Pag.
L0703	213	Е	03	010000	REL	01	В	6 di 44

3. SINTESI DELLA NORMATIVA DI RIFERIMENTO

Si riportano i principali riferimenti normativi e gli strumenti di pianificazione e di tutela presenti sul territorio, a scala nazionale e regionale, al fine di fornire un quadro esaustivo della normativa vigente nel campo idrologico - idraulico, ambientale e di difesa del suolo.

3.1 NORMATIVA NAZIONALE

Rd 25/07/1904 n° 523

Testo unico delle disposizioni di legge intorno alle opere idrauliche delle diverse categorie.

Dpr 15/01/1972 n° 8

Trasferimento alle regioni a statuto ordinario delle funzioni amministrative statali in materia di urbanistica e di viabilità, acquedotti e lavori pubblici di interesse regionale e dei relativi personali ed uffici.

L. 319/76 (legge merli)

Norme per la tutela delle acque dall'inquinamento. La legge sancisce l'obbligo per le regioni di elaborare il piano di risanamento delle acque.

Dpr 24/7/1977 n° 616

Trasferimento delle funzioni statali alle regioni

L. 183/89

Norme per il riassetto organizzativo e funzionale della difesa del suolo. Scopo della legge è la difesa del suolo, il risanamento delle acque, la fruizione e la gestione del patrimonio idrico per gli usi di razionale sviluppo economico e sociale, la tutela degli aspetti ambientali ad essi connessi. Vengono individuate le attività di pianificazione, di programmazione e di attuazione; vengono istituiti il comitato nazionale per la difesa del suolo e l'autorità di bacino. Vengono individuati i bacini idrografici di rilievo nazionale, interregionale e regionale e date le prime indicazioni per la redazione dei piani di bacino.

L. 142/90

Ordinamento delle autonomie locali.

DI 04/12/1993 n° 496

3° stralcio funzionale: Castelraimondo nord – Castelraimondo sud 4° stralcio funzionale: Castelraimondo sud – innesto S.S. 77 a Muccia Relazione idrologica

Opera	Tratto	Settore	CEE	WBS	ld. doc.	N. progr.	REV.	Pag. di Pag.
L0703	213	E	03	O10000	REL	01	В	7 di 44

Disposizioni urgenti sulla riorganizzazione dei controlli ambientali e istituzione della agenzia nazionale per la protezione dell'ambiente. (convertito con modificazioni dalla I. 61/94).

L. 36/94 (legge galli)

Disposizioni in materia di risorse idriche.

Dpr 14/4/94

Atto di indirizzo e coordinamento in ordine alle procedure ed ai criteri per la delimitazione dei bacini idrografici di rilievo nazionale ed interregionale, di cui alla legge 18 maggio 1989, n. 183.

Dpr 18/7/95

Approvazione dell'atto di indirizzo e coordinamento concernente i criteri per la redazione dei piani di bacino.

Dpcm 4/3/96

Disposizioni in materia di risorse idriche (direttive di attuazione della legge galli).

Decreto legislativo 31/3/1998, nº 112

Conferimento di funzioni e compiti amministrativi dello stato alle regioni ed agli enti locali, in attuazione del capo i della legge 15 marzo 1997, n. 59

Dpcm 29/9/98

Atto di indirizzo e coordinamento per l'individuazione dei criteri relativi agli adempimenti di cui all'art. 1, commi 1 e 2, del decreto-legge 11 giugno 1989, n. 180. Il decreto indica i criteri di individuazione e perimetrazione delle aree a rischio idrogeologico e gli indirizzi per la definizione delle norme di salvaguardia.

L. 267/98 (legge Sarno)

Conversione in legge del dl 180/98 recante misure urgenti per la prevenzione del rischio idrogeologico ed a favore delle zone colpite da disastri franosi nella regione Campania. La legge impone alle autorità di bacino nazionali e interregionali la redazione dei piani stralcio per la tutela dal rischio idrogeologico e le misure di prevenzione per le aree a rischio.

L. 365/00 (legge Soverato)

Conversione in legge del dl 279/00 recante interventi urgenti per le aree a rischio idrogeologico molto elevato ed in materia di protezione civile, nonché a favore delle zone della regione Calabria

3° stralcio funzionale: Castelraimondo nord – Castelraimondo sud 4° stralcio funzionale: Castelraimondo sud – innesto S.S. 77 a Muccia Relazione idrologica

Opera	Tratto	Settore	CEE	WBS	ld. doc.	N. progr.	REV.	Pag. di Pag.
L0703	213	E	03	O10000	REL	ΟI	В	8 di 44

danneggiate dalle calamità di settembre e ottobre 2000. La legge individua gli interventi per le aree a rischio idrogeologico e in materia di protezione civile; individua la procedura per l'adozione dei progetti di piano stralcio; prevede un'attività straordinaria di polizia idraulica e di controllo sul territorio.

Decreto legislativo 3 aprile 2006, n. 152

Tale decreto ha riorganizzato le autorità di bacino introducendo i distretti idrografici. Disciplina, in attuazione della legge 15 dicembre 2004, n. 308, la difesa del suolo e la lotta alla desertificazione, la tutela delle acque dall'inquinamento e la gestione delle risorse idriche. Sostituisce ed integra il dl 152/99.

NTC 2008 "Norme tecniche per le costruzioni" - D.M. 14 Gennaio 2008 (D.M. 14/1/08) e

Circolare 2 febbraio 2009, n. 617 - Istruzioni per l'applicazione delle "Nuove norme tecniche per le costruzioni" di cui al D.M. 14 gennaio 2008

3.2 NORMATIVA REGIONALE

Legge regionale n° 18 del 22/6/1998

Disciplina delle risorse idriche.

Legge regionale 17/5/1999, n° 10

Riordino delle funzioni amministrative della Regione e degli Enti Locali nei settori dello sviluppo economico ed attività produttive, del territorio, ambiante e infrastrutture, dei servizi alla persona e alla comunità, nonché dell'ordinamento ed organizzazione amministrativa.

Legge regionale 25/5/1999, n° 13

Disciplina regionale della difesa del suolo.

Legge regionale 9/6/2006, n° 5

Disciplina della derivazioni di acqua pubblica e delle occupazioni del demanio idrico.

3.3 PIANIFICAZIONE TERRITORIALE

L'autorità di Bacino competente per il territorio in oggetto è l'Autorità di Bacino (AdB) Regionale delle Marche che ha redatto il Piano Stralcio di Bacino per l'Assetto Idrogeologico (PAI). L'esigenza del P.A.I. si può desumere dall'esame seguente di dispositivi normativi.

La legge 18.05 1989 n. 183 "Norme per il riassetto organizzativo e funzionale per la difesa del suolo", è il cardine degli attuali strumenti pianificatori di gestione del territorio ed è nata a valle di

3° stralcio funzionale: Castelraimondo nord – Castelraimondo sud 4° stralcio funzionale: Castelraimondo sud – innesto S.S. 77 a Muccia Relazione idrologica

Opera L0703	Tratto 213	Settore E	CEE 03	WBS Ol0000	ld. doc. REL	N. progr. 01	REV. B	Pag. di Pag. 9 di 44

un percorso normativo piuttosto complesso e di modesta attuazione a causa delle diverse fonti statali, regionali e provinciali che ne fanno parte.

La suddetta Legge si propone di perseguire i seguenti principali scopi ed obiettivi:

- Difesa da alluvioni;
- Tutela della risorsa idrica come alimento e strumento di igiene;
- Uso dell'acqua visto nell'insieme delle diverse utilizzazioni fondamentali per attività economiche: agricoltura, industria, energia e trasporto;
- Tutela dell'acqua come strumento di tutela ambientale;
- Tutela dal rischio idrogeologico in generale.

L'attuazione degli scopi della Legge 183/89 è stata affidata principalmente, dopo una serie ampia e ramificata di indagini conoscitive, al Piano di Bacino Idrografico la cui caratteristica deve essere quella di far prevalere la nuova filosofia di difesa del suolo rispetto a qualunque altro piano o programma di settore con contenuti di tutela ambientale.

Il ritardo nell'attuazione ha fatto sì che il legislatore proponesse una serie di normative tampone:

- II D.P.C.M. 23.03.1990;
- D.P.R. 07.01.1992;
- Il Decreto Legislativo 275/93;
- La Legge 493 del 1993;
- La legge 37 del 1994;
- II D.P.R. 18 Luglio del 1995;
- La Legge 31.12.1996 n. 677;

Dopo la calamità che ha colpito Sarno ed altri Comuni della Campania del maggio 1998 è stato emanato il D.L. 11 giugno 1998, n. 180 convertito con la Legge 3.08.1998, n. 267, che contiene oltre alle misure urgenti per le zone colpite dall'evento catastrofico, anche talune novità ai fini della difesa delle aree a rischio di frane ed alluvioni in tutto il territorio nazionale. Le più significative sono di seguito elencate:

- l'attivazione di misure di salvaguardia da parte delle Autorità di Bacino e delle Regioni con piani stralcio per le aree a maggior rischio idraulico ed idrogeologico, laddove ancora non operanti;
- un piano di interventi di prevenzione e messa in sicurezza delle aree a rischio;
- un potenziamento delle Regioni, delle Autorità di Bacino, dei Servizi tecnici, nonché un'integrazione nelle misure di controllo, nei piani di emergenza e in quelli di protezione civile;
- la dotazione del Ministero dell'Ambiente di una struttura atta a valutare gli intereventi urgenti.

L'ultima modifica sostanziale del "Decreto Sarno" è il D.P.C.M 29.09.1998 "Atto di indirizzo e coordinamento per l'individuazione dei criteri relativi agli adempimenti di cui all'Art. 1, commi 1 e 2, del D.L. 11 giugno 1998, n. 180.

Secondo la Legge 267/98 le Autorità di Bacino e le Regioni avrebbero dovuto adottare entro il 30.06.1999 i piani stralcio di bacino e quindi avrebbero dovuto individuare a mezzo di tale

3° stralcio funzionale: Castelraimondo nord – Castelraimondo sud 4° stralcio funzionale: Castelraimondo sud – innesto S.S. 77 a Muccia Relazione idrologica

Opera	Tratto	Settore	CEE	WBS	ld. doc.	N. progr.	REV.	Pag. di Pag.
L0703	213	E	03	O10000	REL	01	В	10 di 44

strumento la perimetrazione e le misure di salvaguardia delle aree a rischio idrogeologico.

Dal punto di vista delle scadenze il D.P.C.M. 27 agosto 1998 concede una proroga per adozione e approvazione del piano stralcio di bacino rispettivamente al 30 giugno del 2001 (poi anticipato a fine aprile) ed al 30 giugno del 2002.

In seguito al tragico episodio verificatosi con la distruzione del campeggio di Soverato in Calabria, il 12 ottobre 2000 è stato emanato il decreto-legge n.279 recante "Interventi urgenti per le aree a rischio idrogeologico molto elevato e in materia di protezione civile, nonché a favore di zone colpite da calamità naturali", poi convertito in legge con modificazioni con la Legge 11 dicembre 2000 n. 365. Tale normativa anticipa, come detto sopra, l'adozione dei Piani Stralcio di Bacino e propone aggiornamenti sugli interventi per le aree a rischio idrogeologico ed in materia di protezione civile.

3° stralcio funzionale: Castelraimondo nord – Castelraimondo sud 4° stralcio funzionale: Castelraimondo sud – innesto S.S. 77 a Muccia Relazione idrologica

Opera	Tratto	Settore	CEE	WBS	ld. doc.	N. progr.	REV.	Pag. di Pag.
L0703	213	Е	03	O10000	REL	01	В	11 di 44

4. IL PIANO STRALCIO DI BACINO PER L'ASSETTO IDROGEOLOGICO (PAI) DELL'ADB REGIONALE DELLE MARCHE

Il PAI dell'AdB Regionale delle Marche è redatto ai sensi dell'art. 17 comma 6-ter della Legge 18 maggio 1989 n.183, come prescritto dall'art. 1 della Legge 3 agosto 1998 n. 267 e dall'art. 1 bis della Legge 11 dicembre 2000 n. 365. Esso è lo strumento conoscitivo, normativo e tecnico-operativo mediante il quale sono pianificate e programmate le azioni e le norme d'uso finalizzate alla conservazione, alla difesa ed alla valorizzazione del suolo, alla prevenzione del rischio idrogeologico, sulla base delle caratteristiche fisiche ed ambientali del territorio interessato. L'assetto idrogeologico comprende:

- a) l'assetto idraulico, riguardante le aree a rischio idraulico;
- b) l'assetto dei versanti, riguardante le aree a rischio di frane e valanghe.

Il Piano approvato dall'AdB persegue gli obiettivi previsti dalle leggi di settore, quelli particolari riferiti alle specificità dei singoli bacini e le finalità previste all'art. 3 della L n.183/89, con particolare riferimento ai contenuti di cui all'art. 17, comma 3, lettere b), c), d), f), l), m) e dell'art. 1, comma 1, della L. n. 267/98 e della Legge Regionale 25 maggio 1999 n. 13.

Le finalità del Piano per l'assetto idraulico sono:

- a) la individuazione secondo la procedura definita nel Piano stesso, della fascia di territorio inondabile assimilabile a piene con tempi di ritorno fino a 200 anni dei principali corsi d'acqua dei bacini regionali;
- b) la definizione, per le dette aree e per i restanti tratti della rete idrografica, di una strategia di gestione finalizzata a salvaguardare le dinamiche idrauliche naturali, con particolare riferimento alle esondazioni e alla evoluzione morfologica degli alvei, a favorire il mantenimento o il ripristino dei caratteri di naturalità del reticolo idrografico;
- c) la definizione di una politica di prevenzione e di mitigazione del rischio idraulico attraverso la formulazione di azioni e norme di piano e tramite la predisposizione di un assetto di progetto dei corsi d'acqua, definito nei tipi di intervento, nelle priorità di attuazione e nel fabbisogno economico di massima.

Nell'Art. 7 delle norme di attuazione (All. D) viene definita la fascia di territorio inondabile pertinente a piene con tempi di ritorno fino a 200 anni. La fascia di territorio inondabile assimilabile a piene con tempi di ritorno fino 200 anni comprende il relativo alveo di piena così come definito nell'allegato indicato all'Articolo 3, comma 2, lettera d), "Indirizzi d'uso del territorio per la salvaguardia dai fenomeni di esondazione".

La fascia di territorio con probabilità di inondazione corrispondente a piene con tempi di ritorno fino a 200 anni costituisce, nei territori non urbanizzati, l'ambito di riferimento naturale per il massimo deflusso idrico ed ha la funzione del contenimento e laminazione naturale delle piene nonché la funzione della salvaguardia della qualità ambientale dei corsi d'acqua. La fascia che, anche successivamente alla realizzazione degli interventi per la mitigazione del rischio idraulico previsti dal presente Piano, risulta inondabile per piene con tempi di ritorno fino a 200 anni, costituisce l'ambito territoriale definitivo di deflusso delle piene.

Il confronto del tracciato della strata di progetto con le fasce limite di esondazione, dedotte dall'Autorità di Bacino Marche (vedi Tav. Geologica e Geomorfologia), mostra che l'infrastruttura di progetto non ricade in zone a rischio di alluvione. Per comodità di lettura la sovrapposizione con il tracciato stradale è altresì riprodotta nella figura seguente.

3° stralcio funzionale: Castelraimondo nord – Castelraimondo sud 4° stralcio funzionale: Castelraimondo sud – innesto S.S. 77 a Muccia Relazione idrologica

Opera	Tratto	Settore	CEE	WBS	ld. doc.	N. progr.	REV.	Pag. di Pag.
L0703	213	Е	03	O10000	REL	01	В	12 di 44

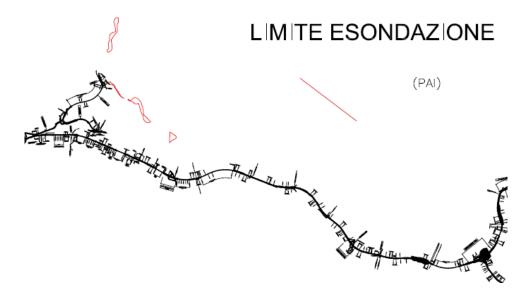


Figura 2: Aree di esondazione

 3° stralcio funzionale: Castelraimondo nord – Castelraimondo sud 4° stralcio funzionale: Castelraimondo sud – innesto S.S. 77 a Muccia Relazione idrologica

Opera	Tratto	Settore	CEE	WBS	ld. doc.	N. progr.	REV.	Pag. di Pag.
L0703	213	Е	03	O10000	REL	01	В	13 di 44

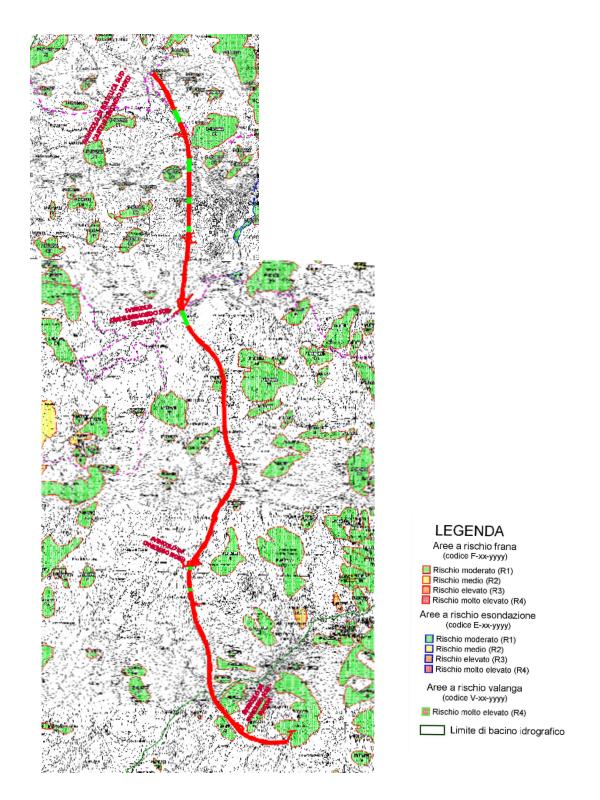


Figura 3: Stralcio planimetrico PAI

3° stralcio funzionale: Castelraimondo nord – Castelraimondo sud 4° stralcio funzionale: Castelraimondo sud – innesto S.S. 77 a Muccia Relazione idrologica

Opera	Tratto	Settore	CEE	WBS	ld. doc.	N. progr.	REV.	Pag. di Pag.
L0703	213	Е	03	010000	REL	01	В	14 di 44

VALUTAZIONI IDROLOGICHE

La stima delle portate attese lungo i corsi d'acqua intercettati dal nuovo tracciato stradale è stata approntata mediante gli usuali metodi di trasformazione afflussi-deflussi, a partire dai dati di pioggia rilevati dalle stazioni pluviografiche prossime all'area in esame ed interpretati mediante la sitribuzione di Gumbel, nonché mediante una analisi basata sulle tecniche di regionalizzazione (studio VAPI del GNDCI) e sull'adozione di un modello di variabile aleatoria cosiddetto "a due componenti estreme" (TCEV) così come riportato nel progetto definitivo, successivamente, ad integrazione degli studi idrologici, sono state elaborate le leggi di pioggia a partire dalla procedura VAPI aggiornata così come da rapporto "GNDCI Linea 1. Rapporto di sintesi sulla valutazione delle piene in Italia" – "SINTESI DEL RAPPORTO REGIONALE PER I COMPARTIMENTI DI BOLOGNA, PISA, ROMA E ZONA EMILIANA DEL BACINO DEL PO" e sono state analizzate le leggi di pioggia ricavate nello studio idrologico: "Regionalizzazione delle precipitazioni" Fondazione Cima, 2016 (https://www.regione.marche.it/Regione-Utile/Protezione-Civile/Progettie-Pubblicazioni/Studi-Meteo-Idro#Studi- Idrologici-e-Idraulici).

Dal confronto con le leggi di pioggia ricavate sono state scelte le leggi che risultano più gravose per i bacini del tratto in esame.

5.1 CURVE DI POSSIBILITÀ PLUVIOMETRICA LEGGE DI GUMBEL

Relativamente alla prima metodologia di analisi, per la costruzione delle curve segnalatrici di possibilità pluviometrica sono state acquisite le serie storiche riportate negli Annali Idrologici (disponbili sul Sistema Informativo Regionale Meteo-Idro-Pluviometrico) e delle precipitazioni brevi ed intense relative alle stazioni pluviografiche di Pioraco e Camerino aggiornate all'anno 2019. Tali pluviometri mostrano campioni di misure sufficientemente numerosi e sono ubicati nell'area di pertinenza dei bacini idrografici di interesse.

Sulle serie storiche delle precipitazioni brevi ed intense è stata svolta un'analisi statistica mediante il metodo dei momenti per la stima dei parametri della legge di Gumbel, che consente di determinare le altezze massime di pioggia previste per le durate caratteristiche 1, 3, 6, 12, 24 al variare del tempo di ritorno.

Le tabelle riassuntive delle elaborazioni svolte vengono di seguito riportate. In particolare sono state costruite le curve segnalatrici di possibilità pluviometrica delle stazioni analizzate per i tempi di ritorno di 10, 20, 30, 50, 100, 200 anni e sono stati riportati i valori dei parametri caratteristici a ed n ricavati per estrapolazione dall'espressione analitica delle curve $h_d = ad^n$, con h_d altezza massima di pioggia attesa di durata pari a d.

Nella tabelle seguenti sono rappresentate le piogge per le durate caratteristiche di 1, 3, 6, 12, 24 ore per le stazioni di Pioraco e Camerino fornite dal Sistema Informativo Regionale Meteo-Idro-Pluviometrico:

2.1.3 PEDEMONTANA DELLE MARCHE 3° stralcio funzionale: Castelraimondo nord – Castelraimondo sud 4° stralcio funzionale: Castelra
imondo sud – innesto S.S. 77 a Muccia Relazione idrologica

Opera	Tratto	Settore	CEE	WBS	ld. doc.	N. progr.	REV.	Pag. di Pag.
L0703	213	Е	03	O10000	REL	01	В	15 di 44

Altezze	e di piogg	ia misura	te nella s	tazione di I	Pioraco
Anno	1h	3h	6h	12h	24h
1952	16.4	21.4	26.2	41	58.4
1953	12	28	36.4	36.8	40
1954	15.6	21.6	31.6	43.8	46.4
1955	20	29	40	46.4	85.6
1956	13.6	21	23.2	25.2	30.4
1957	37.6	47.6	51.6	54.6	90.6
1958	22	45.8	46	51.4	54.2
1959	30.2	44.4	44.6	45.4	45.4
1960	19.6	28.6	37	58.6	70.4
1961	24.2	32.4	46.4	90.2	113.6
1962	16.2	20.6	28.6	42.2	47.8
1963	20.8	26.6	29.4	41	59.2
1964	20.2	31.4	34	44.4	60.6
1965	16.8	28.6	29.6	35.4	60
1966	28.2	30.6	44	48	52.6
1967	22	32.6	61.6	88.4	100.6
1968	31	44.4	45.6	58.2	72.2
1969	24	25.2	25.2	33.6	48
1970	22	39.4	39.4	50.2	57.2
1971	19.4	29.6	37.6	59.2	64.4
1972	23.2	24.6	38.6	38.6	45
1973	14	19.8	34	49.4	82.6
1974	38.6	48.8	57.2	60.2	60.2
1975	17	30	30.8	38	64
1976	31	35	42.8	50.8	65.6
1977	15.4	23.2	37.4	46.4	53.4
1978	22.6	27.2	39	49	59.2
1979	35	46.2	46.2	46.2	56.4
1980	22.8	24	45	45	64.2
1981	20.8	27	37	40.4	40.4
1982	30	62	65	88.2	109.6
1983	25.8	35	42.6	44.8	49.8
1984	28.4	34.2	48	54.6	63
1985	22	34	34.6	34.8	39.4
1986	26	29.4	30.6	37	60
1987	31	48.8	57.4	57.4	62.4

2.1.3 PEDEMONTANA DELLE MARCHE 3° stralcio funzionale: Castelraimondo nord – Castelraimondo sud 4° stralcio funzionale: Castelra
imondo sud – innesto S.S. 77 a Muccia Relazione idrologica

Opera	Tratto	Settore	CEE	WBS	ld. doc.	N. progr.	REV.	Pag. di Pag.
L0703	213	Е	03	O10000	REL	01	В	16 di 44

Altezze	di piogg	ia misura	te nella s	tazione di I	Pioraco
Anno	1h	3h	6h	12h	24h
1988	32	32	34.4	46.2	52.6
1989	23.2	33.4	36.4	44	49.6
1990	16	29.6	48	59.4	82
1991	25.4	35	56.8	80.2	82.6
1992	20.6	30	37.8	47.2	61.4
1993	12.2	20.6	33.6	42.8	51.6
1994	37	45.4	46.6	58.6	61.8
1995	9.8	16.2	19	30.8	31.4
1996	21.2	34.6	44.4	57.4	70.8
1997	18	28	39.2	62.6	78
1998	21.8	28.4	36	52	76.2
1999	37	45.8	49.2	63.2	81
2000	27.6	43.2	53.4	53.4	54.6
2001	19.8	29.8	42.6	53.4	68.6
2002	19.8	37	44.6	53.8	63.2
2003	30.2	37.6	52	57.6	57.6
2004	20	45.8	51	51.2	62.2
2005	28.4	34.4	49.6	53.2	58.6
2006	27.6	31.4	35.8	58.8	58.8
2007	26.6	32.6	32.6	37.4	38.6
2008	16.2	29.4	44.2	62.6	72.4
2009	22.6	36.2	36.2	43.2	75
2010	14.8	18.2	27	42.2	70.4
2011	16	33.6	52.4	73.8	116.6
2012	15.4	32.8	54.8	82	117.2
2013	19.8	39.4	70	120.4	173.2
2014	25.8	39	50.2	54.4	59.8
2015	39.6	43.6	66	90	101.6
2016	23.6	27.2	33.8	42.2	66.8
2017	32.8	74.4	88.6	88.6	89.4
2018	31.4	31.4	37.4	42.4	69.4
2019	45	48.4	48.4	57.4	78

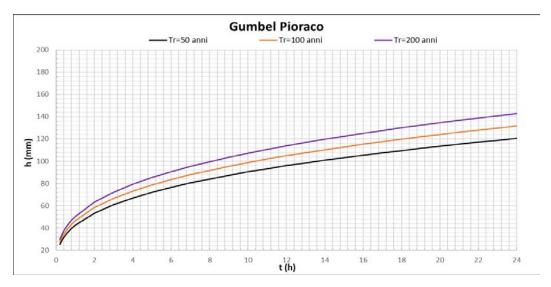
2.1.3 PEDEMONTANA DELLE MARCHE 3° stralcio funzionale: Castelraimondo nord – Castelraimondo sud 4° stralcio funzionale: Castelra
imondo sud – innesto S.S. 77 a Muccia Relazione idrologica

Opera	Tratto	Settore	CEE	WBS	ld. doc.	N. progr.	REV.	Pag. di Pag.
L0703	213	Е	03	O10000	REL	01	В	17 di 44

Altezze	di pioggia	a misurat	e nella st	azione di Ca	amerino
Anno	1h	3h	6h	12h	24h
1951	21.2	28.2	33.4	43.2	53.4
1952	35.8	35.8	37	52.4	59.6
1953	12	18.6	23.2	28.8	49.8
1954	26.8	26.8	26.8	43.6	44.6
1955	49.2	53.4	53.8	53.8	70
1957	16.4	36.4	54.6	74.6	100
1958	16.8	20.4	27.6	38.8	45.6
1959	32	49	57.4	57.4	57.4
1960	15	24.4	33.6	38.4	54
1961	17.8	18.2	27.4	32.4	42.2
1962	14	23	31.6	42.2	50.4
1963	30.2	38.2	38.2	41.2	57.2
1964	46	83.2	90	102.8	105.6
1965	19	26.2	50	64.2	83.6
1966	15.2	32	43.8	49	50
1967	15	19.2	20.2	28.4	37
1968	20	49.2	54.6	62.6	82.6
1970	13	17	17.6	23	31.4
1971	11.6	23	41.4	60.8	64.2
1972	13	20.6	24.4	30.4	37.4
1991	17.4	27.4	30.2	46.6	47.8
1992	18.4	21.8	35.6	50.8	83.6
1993	6.8	17.4	26.8	33	43.4
1994	17.6	19.6	26.6	48.2	65
1995	23.6	36.2	43.6	43.6	49.6
1996	16.8	23.4	29.2	34	53
2008	17.6	27	39.2	54.6	80.4
2009	34.8	56.8	57	57	69.4
2010	63.8	66	66	66	69.4
2011	20.6	24.8	37.2	41.4	41.4
2012	20.6	31.6	48.6	75.2	125.6
2013	15.6	31.6	58.2	108.6	154.6
2014	22	28.2	38.6	60.6	67.4
2015	35.8	40	60.8	81	88.2
2016	29.6	30.8	30.8	33	57
2017	17.8	20.2	25.8	36.4	61.8
2018	12	22.4	42	45.6	70
2019	27	29	31.4	35.8	50.4

 3° stralcio funzionale: Castelraimondo nord – Castelraimondo sud 4° stralcio funzionale: Castelraimondo sud – innesto S.S. 77 a Muccia Relazione idrologica

Opera Tratto Settore CEE WBS Id. doc. N. progr. REV. Pag. di Pag. L0703 2 13 E 03 Q00000 REL 01 B 1 8 di 44									
	Opera	Tratto	Settore	CEE	WBS	ld. doc.	N. progr.	REV.	Pag. di Pag.
	L0703	213	E	03	Ol0000	REL	01	B	18 di 44


Si riportano di seguito i parametri della legge di pioggia del tipo:

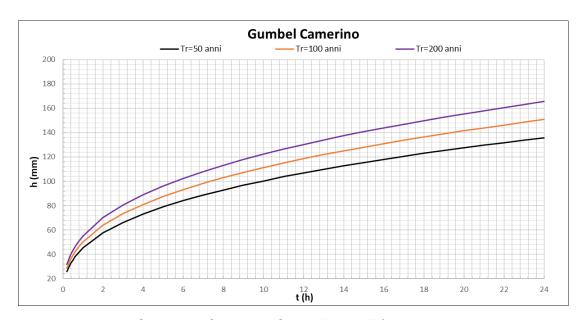
 $h = a t^n$

ricavate dai valori misurati nelle stazioni pluviometriche:

T _r (anni)	a (mm ore ⁻ⁿ)	n
50	42.49	0.328
100	46.44	0.328
200	50.38	0.328

Stazione di Pioraco – Parametri a ed n delle curve di possibilità pluviometrica

Stazione di Pioraco -curve di possibilità pluviometrica



3° stralcio funzionale: Castelraimondo nord – Castelraimondo sud 4° stralcio funzionale: Castelraimondo sud – innesto S.S. 77 a Muccia Relazione idrologica

Opera	Tratto	Settore	CEE	WBS	ld. doc.	N. progr.	REV.	Pag. di Pag.
L0703	213	Е	03	O10000	REL	01	В	19 di 44

T _r (anni)	a (mm ore ⁻ⁿ)	n
50	45.27	0.346
100	50.23	0.346
200	55.17	0.346

Stazione di Camerino – Parametri a ed n delle curve di possibilità pluviometrica

Stazione di Camerino - Curve di possibilità pluviometrica

5.2 CURVE DI POSSIBILITÀ PLUVIOMETRICA DA PROGETTO DEFINITIVO, PROCEDURA VAPI

La procedura delineata nel rapporto VAPI presente nel progetto definitivo e di seguito riportata, assume, quale legge di distribuzione probabilistica per la variabile casuale i(t), massimo annuale dell'intensità di pioggia di durata oraria o suboraria t, la *Two Component Extreme Value* (TCEV), secondo cui i valori estremi di una grandezza idrologica provengono da due diverse popolazioni: una degli eventi normali e un'altra degli eventi eccezionali (outliers), legati a differenti fenomeni meteorologici.

La funzione di distribuzione di probabilità della h(t) dipende a sua volta da 4 parametri:

$$\Lambda_1$$
, Λ_2 , θ_1 , θ_2

che esprimono il numero medio annuo di eventi stocasticamente indipendenti superiori una soglia prefissata per ciascuna delle due popolazioni (Λ_1 e Λ_2), e il loro valore medio (θ_1 e θ_2).

Se si pone:

3° stralcio funzionale: Castelraimondo nord – Castelraimondo sud 4° stralcio funzionale: Castelraimondo sud – innesto S.S. 77 a Muccia Relazione idrologica

	iteluzione lai ologica										
Opera	Tratto	Settore	CEE	WBS	ld. doc.	N. progr.	REV.	Pag. di Pag.			
L0703	213	Е	03	O10000	REL	01	В	20 di 44			

$$\theta^* = \frac{\theta_2}{\theta_1} \qquad \qquad \Lambda^* = \frac{\Lambda_2}{\Lambda_1^{1/\theta^*}}$$

si può considerare la quaterna di parametri Λ^* , θ^* , Λ_1 e θ_1 .

La funzione di distribuzione di probabilità della variabile casuale massimo annuale della pioggia di durata t (x=h(t)) è espressa come segue:

$$F_{x}\left(x\right) = e^{\left(-\Lambda_{1} \cdot e^{\frac{-x}{\theta_{1}}} - \Lambda_{2} \cdot e^{\frac{-x}{\theta_{2}}}\right)} \tag{1}$$

La stima dei parametri può avvenire a differenti livelli di ragguaglio spaziale dei dati di pioggia (regionalizzazione):

- livello di regionalizzazione zero, in cui i parametri sono tutti stimati dalla singola serie di dati, qualora se ne possiedano nel sito d'interesse;
- livello di regionalizzazione uno, in cui i parametri Λ^* e θ^* sono stimati regionalmente e i parametri Λ_1 e θ_1 sono stimati puntualmente;
- livello di regionalizzazione due, in cui i parametri Λ^* , θ^* e Λ_1 sono stimati regionalmente e il parametro Λ_1 è stimato puntualmente;
- livello di regionalizzazione tre, in cui tutti i parametri sono stimati regionalmente. Il valore
 i(t,T) corrispondente a un periodo di ritorno T (durata media fra due superamenti
 consecutivi) si ricava in funzione di T e dei quattro parametri comunque stimati.

Al primo livello di regionalizzazione il territorio oggetto di studio ricade nella regione pluviometricamente omogenea (ossia nella quale si possa ritenere costante il coefficiente di asimmetria) denotata come B dell'Italia centrale; ciò implica la costanza dei parametri θ^* e Λ^* che assumono i seguenti valori (da Sistemi di Fognatura, Manuale di Progettazione, Hoepli 2001):

$$\theta^* = 1.509$$
 $\Lambda^* = 0.783$

Al secondo livello di regionalizzazione l'area in oggetto ricade nella sottozona B2 in cui si può ritenere costante il coefficiente di variazione η e di conseguenza il parametro Λ_1 (da Sistemi di Fognatura, Manuale di Progettazione, Hoepli 2001)

$$\eta = 5.205$$
 $\Lambda_1 = 43.6$

Fissati i parametri di forma e di scala della Distribuzione di Probabilità Cumulata (DPC) all'interno della sottozona omogenea, resta così univocamente determinata la relazione fra il periodo di ritorno ed il valore del coefficiente di crescita. Il valore del coefficiente di crescita può essere determinato in base alla seguente relazione, in forma semplificata:

$$K_{T} = \left(\frac{\theta^{*} \cdot Ln(\Lambda^{*})}{\eta} + \frac{Ln(\Lambda_{1})}{\eta}\right) + \frac{\theta^{*}}{\eta} \cdot Ln(T)$$

che con i parametri ricavati dalla distribuzione TCEV diventa:

$$K_T = 0.654 + 0.290 \cdot Ln(T)$$

Oppure risolvendo per via iterativa la relazione (1) innanzi riportata. Con riferimento alla seconda

3° stralcio funzionale: Castelraimondo nord – Castelraimondo sud 4° stralcio funzionale: Castelraimondo sud – innesto S.S. 77 a Muccia Relazione idrologica

Opera	Tratto	Settore	CEE	WBS	ld. doc.	N. progr.	REV.	Pag. di Pag.		
L0703	213	E	03	Ol0000	REL	01	B	21 di 44		

procedura si sono ottenuti i seguenti valori del coefficiente di crescita:

- T=50 anni K_T =1.834 - T=100 anni K_T =2.023 - T=200 anni K_T =2.216

Il terzo livello di regionalizzazione consiste nella individuazione dei legami tra i valori medi delle serie storiche ed i parametri geografici che caratterizzano i luoghi ove sono installate le stazioni di misura. Con riferimento alla procedura sviluppata presso l'Università di Roma (Calenda e Cosentino, 1996) per la regionalizzazione di un ampia zona dell'Italia Centrale, tra il promotorio di Piombino e la foce del Garigliano (sul litorale tirrenico) e la foce del Parecchia e quella del Trigno (sul litorale adriatico), si è considerata che al terzo livello la dipendenza dalla quota z della media dell'altezza giornaliera di pioggia $\mu_{\rm hd}$ segua una relazione lineare del tipo

 $\mu_{hd} = cz + d$

A partire da tale assunzione si è pervenuta alla seguente relazione

 $\mu_{it} = \mu_{i0}(b/(b+t))^m$

dove

m = $1/\ln(b/(b+24))*\ln(\eta*(c*z+d)/24/\mu_{i0})$

in cui si è indicato con μ_{it} l'intesità media della pioggia per un evento di durata t.

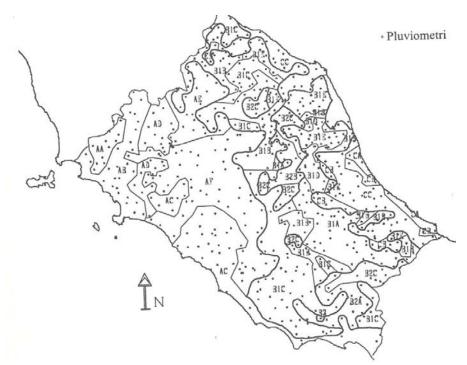
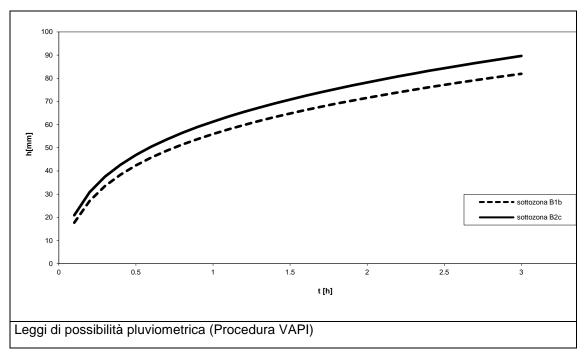


Figura 4: Zottozone pluviometriche omogenee


3° stralcio funzionale: Castelraimondo nord – Castelraimondo sud 4° stralcio funzionale: Castelraimondo sud – innesto S.S. 77 a Muccia Relazione idrologica

Opera	Tratto	Settore	CEE	WBS	ld. doc.	N. progr.	REV.	Pag. di Pag.
L0703	213	Е	03	O10000	REL	01	В	22 di 44

L'area in oggetto ricade nelle sottozone B1b e B2c per le quali i parametri dimensionali b, c, d, μ_{i0} assumono i seguenti valori (da Sistemi di Fognatura, Manuale di Progettazione, Hoepli 2001):

	b [h]	c[mm]	d [mm]	μ_{io} [mm/h]
B1b	0.1142	0.00857	59.03	123.8
B2c	0.0807	0.03198	41.52	148.4

Assumendo una quota rappresentativa pari a 700 msm, nella figura che segue si riportano le leggi di possibilità pluviometriche dedotte con la procedura VAPI riportata nella relazione di progetto Definitivo e facente capo a: Sistemi di Fognatura, Manuale di Progettazione, Hoepli 2001.

Nel corso delle successive elaborazioni idrologiche per la determinazione dei valori di portata si proceduto considerando sia le leggi pluviometriche dedotte in base ai dati relativi alle stazioni pluviografiche prossime all'area in esame che quelle derivanti dallo studio VAPI del GNDCI (in particolare si è considerata, operando a vantaggio di sicurezza, la sola e più gravosa legge di possibilità pluviometrica relativa alla sottozona B2c).

3° stralcio funzionale: Castelraimondo nord – Castelraimondo sud 4° stralcio funzionale: Castelraimondo sud – innesto S.S. 77 a Muccia Relazione idrologica

	retuzione fui ologica											
Opera	Tratto	Settore	CEE	WBS	ld. doc.	N. progr.	REV.	Pag. di Pag.				
L0703	213	Е	03	O10000	REL	01	В	23 di 44				

5.3 CURVE DI POSSIBILITÀ PLUVIOMETRICA VAPI AGGIORNATO

Nel presente paragrafo si ricavano le leggi di pioggia attraverso il VAPI, rapporto CNR-GNDCI.

DISTRIBUZIONE TCEV

L'adozione della legge TCEV è stata introdotta a seguito della constatazione del fatto che in numerosi pluviometri si sono registrati alcuni eventi assolutamente straordinari, la cui intensità supera di gran lunga le intensità inferiori di pari durata. Tali eventi sono indicati nella letteratura anglosassone come outliers.

La probabilità di questi eventi è fortemente sottostimata da una legge di Gumbel o da una legge lognormale. La distribuzione TCEV definisce la probabilità di non superamento di una mistura di due popolazioni di eventi definite come componente bassa, che include gli eventi che potremmo chiamare ordinari, e componente alta che include gli eventi che potremmo considerare straordinari, di cui fanno parte gli eventuali outliers.

La distribuzione TCEV si esprime:

$$P_X(x) = e^{-\Lambda_1 e^{-\frac{x}{\Theta_1}} - \Lambda_2 e^{-\frac{x}{\Theta_2}}}$$

dove X è la variabile, x è un generico valore di X e i parametri indicano:

- Λ_1 e Λ_2 il valore atteso del numero degli eventi che nell'intervallo di tempo unitario, ad esempio l'anno, che appartengono rispettivamente alla componente bassa e alla componente alta;
- Θ1 e Θ2 il valore atteso dell'intensità degli eventi che appartengono rispettivamente alla componente bassa e alla componente alta, in cui è ovviamente:
 Θ2 ≥Θ1

La TCEV può essere messa nella forma:

$$P_X(x) = e^{-e^{-\alpha_I(x-s_I)} - e^{-\alpha_2(x-s_2)}}$$

avendo posto:

$$\begin{split} \alpha_1 &= \frac{I}{\Theta_1} & \qquad \qquad \alpha_2 = \frac{I}{\Theta_2} \\ \varepsilon_1 &= \frac{\ln \Lambda_1}{\alpha_1} = \Theta_1 \ln \Lambda_1 & \qquad \qquad \varepsilon_2 = \frac{\ln \Lambda_2}{\alpha_2} = \Theta_2 \ln \Lambda_2 \end{split}$$

Perivando rispetto a x si ottiene la densità di probabilità della TCEV:

$$p_X(x) = \left(\frac{\Lambda_I}{\Theta_I} e^{-\frac{x}{\Theta_I}} + \frac{\Lambda_2}{\Theta_2} e^{-\frac{x}{\Theta_2}}\right) \cdot e^{-\Lambda_I e^{-\frac{x}{\Theta_I}} - \Lambda_2 e^{-\frac{x}{\Theta_2}}}$$

che può essere anche espressa nella forma:

$$p_X(x) = \left(\alpha_1 e^{-\alpha_1(x-\varepsilon_1)} + \alpha_2 e^{-\alpha_2(x-\varepsilon_2)}\right) \cdot e^{-e^{-\alpha_1(x-\varepsilon_1)} - e^{-\alpha_2(x-\varepsilon_2)}}$$

Sostituzione dei parametri $\Theta 2$ e $\Lambda 2$ Ponendo:

$$\Theta_* = \frac{\Theta_2}{\Theta_1}$$

$$\Lambda^* = \frac{\Lambda_2}{\Lambda_I^{1/\Theta^*}}$$

diventa:

3° stralcio funzionale: Castelraimondo nord – Castelraimondo sud 4° stralcio funzionale: Castelraimondo sud – innesto S.S. 77 a Muccia Relazione idrologica

Opera	Tratto	Settore	CEE	WBS	ld. doc.	N. progr.	REV.	Pag. di Pag.
L0703	213	Е	03	010000	REL	01	В	24 di 44

$$P_{X}\!\left(x\right)\!=e^{-\varLambda_{l}e^{-\frac{x}{\Theta_{l}}}}\!-\!\varLambda_{*}\varLambda_{l}^{l/\Theta_{*}}e^{-\frac{x}{\Theta_{*}\Theta_{l}}}$$

е

$$p_X(x) = \left(\frac{\Lambda_l}{\Theta_l}e^{-\frac{x}{\Theta_l}} + \frac{\Lambda^*\Lambda_l^{l/\Theta_*}}{\Theta_*\Theta_l}e^{-\frac{x}{\Theta_*\Theta_l}}\right)e^{-\Lambda_l e^{-\frac{x}{\Theta_l}} - \Lambda_*\Lambda_l^{l/\Theta_*}e^{-\frac{x}{\Theta_*\Theta_l}}}$$

Si osservi che è sempre:

 $\Theta^* > 1$:

 $\Lambda^* \ge 0$ poiché è $\Lambda 1 \ge 0$ e $\Lambda 2 \ge 0$.

Nella distribuzione TCEV i momenti di ordine r rispetto all'origine si esprimono (Versace e al., 1989):

$$\mu'_{r} = \Theta_{I}^{r} \left[\sum_{k=1}^{r} (-1)^{k} \binom{r}{k} (\ln \Lambda_{I})^{r-k} \Gamma^{(k)}(1) + \sum_{j=1}^{\infty} \frac{(-1)^{j} \Lambda_{*}^{j}}{j!} \sum_{k=1}^{r} (-1)^{k} k \binom{r}{k} (\ln \Lambda_{I})^{r-k} \Gamma^{(k-1)}(j/\Theta_{*}) \right]$$

L'espressione della media è quindi:

$$\mu = \Theta_{l} \left[\ln \Lambda_{l} + 0.5772 - \sum_{j=1}^{\infty} \frac{(-1)^{j} \Lambda_{*}^{j}}{j!} \Gamma\left(\frac{j}{\Theta_{*}}\right) \right] = \Theta_{l} \beta$$

con:

$$\beta(\Lambda_*, \Theta_*, \Lambda_I) = \ln \Lambda_I + 0.5772 - \sum_{j=1}^{\infty} \frac{(-1)^j \Lambda_*^j}{j!} \Gamma\left(\frac{j}{\Theta_*}\right)$$

Sostituendo si ottiene:

$$P_X(x) = e^{-\Lambda_l e^{-\frac{\beta}{\mu_X}x}} - \Lambda_* \Lambda_l^{1/\Theta_*} e^{-\frac{\beta}{\Theta_* \mu_X}x}$$

Si può dimostrare che:

il coefficiente di variazione teorico:

$$\gamma = \frac{\sigma}{\mu}$$

dipende da Λ_1 , Λ^* e Θ^* ed è indipendente da Θ_1 ;

• il coefficiente di asimmetria teorico:

$$\xi = \frac{\mu_3}{\sigma^3} = \frac{E\left[(X - \mu)^3 \right]}{\sigma^3}$$

dipende solo da $\Lambda^* \ \Box e \ \Theta^* \ ed \ \grave{e} \ indipendente \ da \ \Lambda_1 \ e \ \Theta_1 \ .$

STIMA REGIONALE DEI PARAMETRI DELLA TCEV

Nel caso delle piogge intense il numero degli eventi straordinari registrati da un singolo pluviometro è molto basso, e ciò rende impossibile una stima efficace dei parametri della componente alta facendo riferimento alle singole serie di osservazioni. È necessario quindi far ricorso a metodi regionali, in modo da utilizzare per la stima dei parametri tutte le osservazioni di una regione pluviometricamente omogenea. Il concetto di omogeneità pluviometrica risulterà definito dal modo in cui si sviluppa la procedura di regionalizzazione.

Con regionalizzazione delle variabili $\dot{X}i$ ($i = 1 \dots n$) s'intende l'aggregazione di tali variabili in gruppi

3° stralcio funzionale: Castelraimondo nord – Castelraimondo sud 4° stralcio funzionale: Castelraimondo sud – innesto S.S. 77 a Muccia Relazione idrologica

C T " C " CTT WDC III NI DD/ Down di							
	Opera L0703	N. progr. REV. Pag. di Pag. 01 B 25 di 44	WBS 0100000	02	Settore E	Tratto 213	

con caratteristiche stocastiche comuni. Nel caso di variabili distribuite sul territorio, come le piogge, si richiede generalmente che tali raggruppamenti abbiano anche riferimenti geografici. Secondo la procedura proposta da Versace e al. (1989) vengono considerati tre livelli di regionalizzazione, individuando:

- al primo livello *regioni omogenee* rispetto ai parametri A_* e $^{\Theta_*}$, da cui deriva l'omogeneità anche rispetto al *coefficiente di asimmetria*;
- al secondo livello *zone omogenee* anche rispetto al parametro Λ_1 , da cui deriva l'omogeneità anche rispetto al *coefficiente di variazione*;
- al terzo livello sottozone omogenee rispetto alla dipendenza del parametro Θ_1 e quindi della media da alcune grandezze geografiche locali (quota, distanza dal mare, orientamento dei versanti).

Si procede come segue:

a) al primo livello di regionalizzazione:

in base ai valori dei coefficienti di asimmetria empirici, s'individuano, in prima approssimazione, delle regioni omogenee;

in ciascuna regione viene eseguita la stima dei parametri A_* e $^{\Theta_*}$ con il metodo proposto da Fiorentino e Gabriele (1985), applicando il criterio della massima verosimiglianza a tutte le variabili che ricadono in essa;

con la legge standardizzata si determinano gli intervalli di confidenza, con livello di significatività α , del coefficiente di asimmetria, e si verifica se l'ipotesi di omogeneità è verificata, con quel livello di significatività, per le regioni individuate;

se tale condizione non è soddisfatta, si modificano le regioni e si riprende la procedura;

b) al secondo livello di regionalizzazione, avendo fissato i valori di A_* e $^{\Theta_*}$ determinati al primo livello:

in base ai valori dei coefficienti di variazione empirici, s'individuano, in prima approssimazione, delle zone omogenee;

si stimano con il criterio della massima verosimiglianza i parametri $^{\Lambda}$ 1, relativi a ciascuna stazione:

si determinano i coefficienti di variazione della componente base di ciascuna stazione tramite la:

$$\gamma_{I,i} = \frac{1,2825}{\ln \Lambda_{I,i} + 0,57722} \tag{4.1}$$

in ciascuna zona omogenea si calcola il coefficiente di variazione della zona $^{\gamma}$ 1 come media dei $^{\gamma}$ 1, i relativi a quella zona;

per ciascuna zona omogenea si calcola la stima di $^{\mathcal{O}}$ 1 introducendo $^{\gamma}$ 1 nella (4.1); con la legge standardizzata si determinano gli intervalli di confidenza, con livello di significatività $^{\alpha}$, del coefficiente di variazione, e si verifica se l'ipotesi di omogeneità è verificata, con quel livello di significatività, per le zone individuate;

se questa condizione non è soddisfatta, si modificano le zone e si riprende la procedura;

c) al terzo livello di regionalizzazione, avendo fissato i valori di $^{\Lambda_*}$, $^{\Theta_*}$ e $^{\Lambda}$ 1 determinati ai precedenti livelli, per cui risulta fissato il parametro $^{\beta}$:

s'individuano, in prima approssimazione, in base all'andamento della media con la quota z, le sottozone omogenee;

s'interpolano gli andamenti di $\mu(z)$ con la legge prescelta, e si verifica l'adattamento; se l'adattamento non risulta soddisfacente, si modificano le sottozone e si riprende la procedura.

3° stralcio funzionale: Castelraimondo nord – Castelraimondo sud 4° stralcio funzionale: Castelraimondo sud – innesto S.S. 77 a Muccia Relazione idrologica

Opera L0703	Tratto 213	Settore E	CEE 03	WBS 010000	ld. doc. REL	N. progr. 01	REV. B	Pag. di Pag. 26 di 44			

APPLICAZIONE DELLA METODOLOGIA VAPI ALLA ZONA DI INTERESSE

Sul territorio in questione sono stati eseguiti vari studi nel rispetto dei criteri del Progetto VAPI, ai differenti livelli della procedura gerarchica e per le differenti grandezze idrologiche, a cura dell'U.O. 1.31 (ENEL S.p.a. Unità di Idrologia di Mestre) e dell'U.O. 1.41 (DISTART Università di Bologna).

L'area di indagine, che comprende parte dell'Emilia-Romagna e l'intera regione Marche (SIMN Bologna), gran parte della regione Toscana (SIMN Pisa), l'intera regione Umbria e parte della regione Lazio (SIMN Roma), è stata inoltre recentemente estesa ad alcuni bacini idrografici di competenza dell'Ufficio Idrografico del Po di Parma, così da ricoprire totalmente la regione Emilia-Romagna.

Una panoramica dettagliata dei risultati ottenuti dalle U.O. sopra ricordate è contenuta nelle seguenti memorie e rapporti tecnici:

- "Valutazione delle piogge estreme in Romagna e Marche" [Franchini e Galeati, 1994] e "La regionalizzazione delle piogge intense mediante modello TCEV. Una applicazione alla regione Romagna Marche" [Franchini e Galeati, 1994], per quanto riguarda la modellazione statistica dei dati pluviometrici relativi agli eventi massimi annuali osservati nel territorio del compartimento SIMN di Bologna.
- "Il fattore di riduzione delle piogge all'area. Stima di una legge interpretativa" [Benaglia, 1996], per quanto riguarda la modellazione del fattore di riduzione areale delle piogge intense (ARF) osservate nelle stazioni pluviometriche dislocate nel bacino del Reno e bacini limitrofi.
- "Analisi regionale dei massimi annuali delle portate al colmo per la regione Romagna Marche" [Franchini e Galeati, 1996] e "Analisi delle portate massime annuali su intervalli di assegnata durata nei corsi d'acqua della regione Romagna Marche" [Franchini e Galeati, 1998] per quanto riguarda la modellazione statistica degli eventi idrometrici massimi annuali osservati nel territorio del compartimento SIMN di Bologna; "La valutazione regionale del rischio di piena con il metodo della portata indice" [Brath e Franchini, 1998] per quanto riguarda la modellazione statistica degli eventi idrometrici massimi annuali osservati nell'Italia settentrionale; "La stima della portata indice mediante metodi indiretti" [Brath et al., 1999b] per quanto riguarda la medellazione della portata indice con riferimento ai dati disponibili sul territorio del compartimento SIMN di Bologna e sui bacini appenninici emiliano affluenti in sponda destra del Po compresi tra i fiumi Scrivia e Panaro sui quali ha competenza l'Ufficio Idrografico per il Po.
- "Valutazione delle piogge intense nell'Italia centrosettentrionale" [Brath et al., 1998], per quanto riguarda la modellazione statistica dei dati pluviometrici relativi agli eventi massimi annuali osservati nel territorio di competenza dei compartimenti SIMN di Bologna, Pisa e Roma. Questo studio è stato ultimamente affinato considerando anche i dati pluviometrici relativi ai bacini idrografici affluenti in destra Po, dallo Scrivia al Panaro, gestiti dell'Ufficio Idrografico del Po di Parma. I risultati sono raccolti in "Valutazione regionale degli indici di rischio idropluviometrico in alcune regioni dell'Italia centrale e settentrionale" [Brath et al., 1999a] ed in "La valutazione delle piogge intense su base regionale" [Brath e Franchini, 1999].

Gli studi citati ed in particolare "La valutazione delle piogge intense su base regionale" (A. Brath, M. Franchini, 1998) ha come oggetto la particolarizzazione del Metodo VAPI-piogge al territorio appartenente alle regioni amministrative Emilia-Romagna e Marche.

I modelli regionali VAPI si basano sull'ipotesi di esistenza di regioni compatte e idrologicamente omogenee all'interno delle quali le portate di colmo normalizzate rispetto ad una portata di riferimento – la portata indice – siano descrivibili da una stessa distribuzione di probabilità, denominata curva di crescita.

In particolare l'area in esame valgono i seguenti valori dei parametri della curva di crescita:

3° stralcio funzionale: Castelraimondo nord – Castelraimondo sud 4° stralcio funzionale: Castelraimondo sud – innesto S.S. 77 a Muccia Relazione idrologica

Opera	Tratto	Settore	CEE	WBS	ld. doc.	N. progr.	REV.	Pag. di Pag.
L0703	213	E	03	O10000	REL	01	В	27 di 44

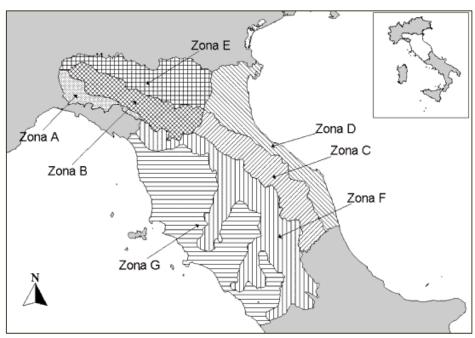


Figura 5: Zottozone pluviometriche omogenee

L'intero territorio indagato risulta in definitiva suddiviso in 7 SZO omogenee nei confronti delle precipitazioni intense, visualizzate in Fig. 4, le cui curve di crescita, che determinano in maniera univoca la relazione fra periodo di ritorno T e valore del coefficiente probabilistico di crescita K_T:

$$T = \frac{1}{1 - F_{K}(k)} = \frac{1}{1 - \exp(-\Lambda_{1} e^{-\eta_{k}} - \Lambda_{*} \Lambda_{1}^{JJ \theta_{*}} e^{-\eta_{k} J \theta_{*}})}$$
(4.2)

risultano completamente definite dai parametri riportati in tabella:

Sottozona	$\Lambda *$	θ*	Λ_1	η
A	0.109	2.361	24.70	4.001
В	1.528	1.558	39.20	5.335
С	1.528	1.558	25.70	4.913
D	0.361	2.363	29.00	4.634
E	0.044	3.607	30.45	4.135
F	0.144	2.042	33.03	4.321
G	0.221	3.322	30.78	4.628

Un ulteriore tabella mostra i parametri per la stima del K_T in finzione della durata dell'evento pluviometrico:

3° stralcio funzionale: Castelraimondo nord – Castelraimondo sud 4° stralcio funzionale: Castelraimondo sud – innesto S.S. 77 a Muccia Relazione idrologica

Opera	Tratto	Settore	CEE	WBS	ld. doc.	N. progr.	REV.	Pag. di Pag.				
L0703	2 13	Е	03	O10000	REL	01	В	28 di 44				

Sottozona	$\Lambda *$	θ*	Λ_1	η	durata (ore)
A	0.109	2.361	24.70	4.001	Tutte
В	1.528	1.558	13.65	4.280	1
			19.35	4.629	3
			26.20	4.932	6
			39.20	5.335	≥12 e 1g
С	1.528	1.558	13.65	4.280	1
			14.70	4.354	3
			20.25	4.674	6
			25.70	4.913	≥12 e 1g
D	0.361	2.363	29.00	4.634	Tutte
E	0.044	3.607	13.60	3.329	1
			19.80	3.704	3
			23.65	3.882	6
			30.45	4.135	≥ 12 e 1g
F	0.073	1.406	21.01	3.713	1
	0.144	2.042	33.03	4.321	≥ 3 e 1g
G	0.131	1.820	16.28	3.571	1
	0.770	2.391	24.71	5.140	3
	0.380	2.592	26.21	4.633	6
	0.303	2.799	30.01	4.680	12
	0.221	3.322	30.78	4.628	24 e 1g

nella tabella seguente sono riportati i valori di K_T ottenuti numericamente dall'equazione (4.2) per i valori del periodo di ritorno di maggior interesse pratico

T (anni)	2	5	10	20	25	40	50	100	200	500	1000
SZO A	0.93	1.24	1.46	1.70	1.78	1.95	2.04	2.34	2.68	3.18	3.57
SZO B	1.01	1.30	1.51	1.71	1.77	1.90	1.97	2.17	2.37	2.63	2.83
SZO C	1.01	1.33	1.55	1.77	1.84	1.98	2.05	2.27	2.48	2.77	2.99
SZO D	0.87	1.19	1.44	1.72	1.82	2.02	2.13	2.45	2.79	3.23	3.57
SZO E	0.93	1.22	1.43	1.64	1.72	1.89	1.98	2.32	2.78	3.53	4.13
SZO F	0.93	1.23	1.43	1.65	1.72	1.87	1.95	2.20	2.47	2.86	3.17
SZO G	0.88	1.22	1.50	1.87	2.01	2.32	2.47	2.96	3.46	4.12	4.61

PIOGGIA INDICE

Per ottenere il valore della precipitazione indice di durata d cui fare riferimento per calcolare il valore della precipitazione di assegnata durata e tempo di ritorno per la regione in esame si propone l'utilizzo di una formulazione analoga alla classica curva di possibilità climatica del tipo:

$$m(h_{d}) = m(h_{1}) \cdot d^{n}$$

$$n = \left(Ln \left[m(h_{g}) \right] - Ln \left[m(h_{1}) \right] - Ln(r) \right) / Ln(24)$$
(4.3)

in cui:

m(h_d)=media del massimo annuale dell'altezza puntuale di precipitazione di durata d (ore);

m(h_g)=media del massimo annuale dell'altezza puntuale di precipitazione giornaliera;

m(h₁)=media del massimo annuale dell'altezza puntuale di precipitazione in 1 ora;

r= m(h_q)/ m(h₂₄)=0.89 nella regione esaminata

Per una pratica applicazione delle relazioni sopra riportate, vengono fornite le mappe isoparametriche di m(h1) e di m(hg) per l'intero territorio di indagine (vedi Brath e Franchini [1999]

3° stralcio funzionale: Castelraimondo nord – Castelraimondo sud 4° stralcio funzionale: Castelraimondo sud – innesto S.S. 77 a Muccia Relazione idrologica

Opera	Tratto	Settore	CEE	WBS	ld. doc.	N. progr.	REV.	Pag. di Pag.
L0703	2 13	Е	03	010000	REL	01	В	29 di 44

per le SZO A, B, C, D, E, e Brath et al. [1998] per le SZO G e F).

La stima dell'altezza di precipitazione puntuale di durata de tempo di ritorno T si ottiene moltiplicando il fattore di crescita opportuno, da selezionare fra quelli indicati in tabella o ottenuti dalla 4.2, per la precipitazione indice deducibile tramite le (4.3).

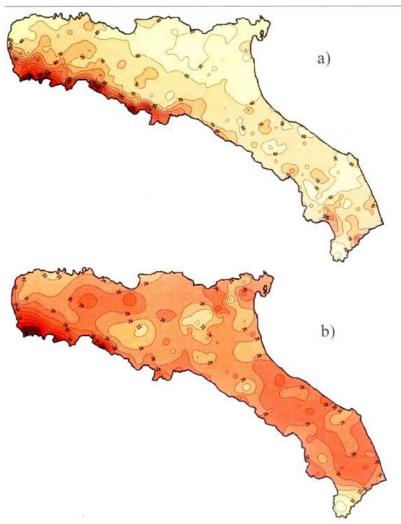


Figura 6: Isolinee delle altezze medie di pioggia massime annuali della durata di 1 giorno (a) e 1 ora (b)

Per tutti i corsi d'acqua di interesse, appartenenti alla "zona omogenea C", sono stati stimati valori dei parametri m1 e mG pari rispettivamente a 26 e 60.

La Tabella riporta i valori calcolati per i parametri a e n delle leggi di pioggia per i diversi tempi di ritorno di interesse.

Tr (anni)	50	100	200
Kt	2.05	2.27	2.48
а	53.30	58.92	64.56
n	0.30	0.30	0.30

3° stralcio funzionale: Castelraimondo nord – Castelraimondo sud 4° stralcio funzionale: Castelraimondo sud – innesto S.S. 77 a Muccia Relazione idrologica

Opera	Tratto	Settore	CEE	WBS	ld. doc.	N. progr.	REV.	Pag. di Pag.
L0703	2 13	Е	03	O10000	REL	01	В	30 di 44

Le curve di possibilità pluviometrica avranno il seguente andamento:

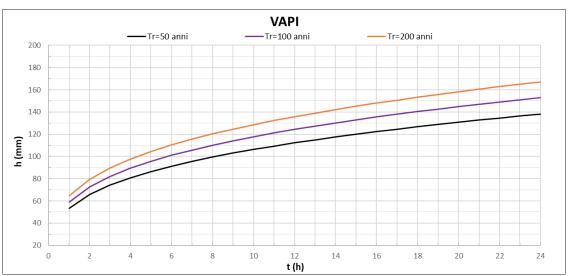


Figura 7: TCEV: Altezze di pioggia

5.4 REGIONALIZZAZIONE TERRITORIO MARCHIGIANO (CIMA-2016)

In data 17 febbraio 2015 è stata stipulata la convenzione tra il Commissario Delegato Maltempo Maggio 2014 e Fondazione CIMA per "La modellazione e definizione delle grandezze idrologiche utili alla progettazione per la messa in sicurezza strutturale e non strutturale del reticolo idrografico principale della Regione Marche" (Reg Int: 2015/28 – Nr. 670).

Obiettivo del lavoro è la definizione della regionalizzazione delle precipitazioni intense di durata 1, 3, 6, 12 e 24 ore con diversi tempi di ritorno per il territorio marchigiano.

Diverse sono le metodologie tecnico-scientifiche che possono essere utilizzate per giungere alla caratterizzazione statistica delle piogge intense. Alcune sono basate principalmente sull'analisi separata delle singole registrazioni effettuate alle stazioni di misura (analisi a sito singolo), altre sull'uso congiunto dei dati osservati in regioni estese (analisi regionale). L'esperienza nell'ambito del progetto Valutazione delle Piene in Italia (VAPI) del Gruppo Nazionale per la Difesa dalle Catastrofi Idrogeologiche (GNDCI) del CNR, ha mostrato che l'analisi regionale

risulta, per l'Italia, il metodo più adatto per la stima affidabile dei quantili dei massimi annuali di precipitazione per elevato periodo di ritorno.

Le scelte adottate per la regionalizzazione delle precipitazioni intense sul territorio della Regione Marche sono state le seguenti:

- analisi di frequenza con approccio regionale: l'approccio di tipo regionale consente di utilizzare contemporaneamente tutta l'informazione pluviometrica disponibile sul territorio. Esso è senz'altro da preferire ad un approccio a sito singolo, in quanto le valutazioni statistiche che ne risultano presentano una disomogeneità spaziale dovuta alla differente lunghezza delle serie storiche osservate ai diversi siti di misura. Inoltre la limitata estensione del campione osservato a sito singolo fa sì che l'incertezza associata alle stime sia inaccettabile, specialmente per gli eventi rari. L'uso di tutta l'informazione disponibile sul territorio consente invece di ridurre tale incertezza al massimo livello possibile.
- utilizzo dei valori massimi annuali di precipitazione per le brevi durate: lo scopo dello studio è quello di arrivare ad una migliore caratterizzazione delle portate al colmo di piena nei bacini di

3° stralcio funzionale: Castelraimondo nord – Castelraimondo sud 4° stralcio funzionale: Castelraimondo sud – innesto S.S. 77 a Muccia Relazione idrologica

Opera L0703	Tratto 213	Settore E	CEE 03	WBS Ol0000	ld. doc. REL	N. progr. 01	REV. B	Pag. di Pag. 31 di 44

medio-piccole dimensioni, intendendo con tale termine i bacini di scala fino ai 1500 km2. I tempi di risposta di tali bacini ad eventi estremi sono contenuti in poche ore e comunque non superano mai le 24 ore. Sono quindi stati analizzati i massimi annuali per le durate di 1, 3, 6, 12 e 24 ore forniti dal Centro Funzionale Regionale.

Determinato quindi quali fossero il metodo ed i dati da utilizzare per l'analisi, si sono identificati i diversi passi necessari per giungere alla caratterizzazione statistica delle piogge. La procedura di analisi statistica regionale prevede i seguenti passi:

- 1. scelta della distribuzione di probabilità genitrice: per poter eseguire una analisi statistica occorre prima di tutto identificare la distribuzione di probabilità più adatta a descrivere statisticamente le osservazioni. Nell'approccio di tipo regionale tale distribuzione è assunta unica, nella sua forma adimensionale, nella porzione di territorio ritenuta statisticamente omogenea. Essa deve quindi essere in grado di descrivere il comportamento d'insieme dei dati, in termini di variabilità nello spazio dei momenti di ordine superiore osservati. Inoltre essa deve prestarsi ad una stima dei parametri su base regionale attraverso una procedura ben definita in letteratura.
- 2. identificazione delle regioni omogenee: una volta scelta la forma della distribuzione di probabilità genitrice occorre identificare le porzioni di territorio su cui quest'ultima può essere assunta unica nella sua forma adimensionale.
- 3. stima dei parametri della curva di crescita che deriva dalla distribuzione di probabilità genitrice prescelta: attraverso le tecniche suggerite in letteratura per la distribuzione prescelta si passa poi alla stima dei parametri all'interno delle regioni omogenee, che definiscono la curva di crescita, ed alla verifica dell'omogeneità;
- 4. caratterizzazione della pioggia indice: la curva di crescita viene assunta unica all'interno di una regione omogenea nella sua forma adimensionale. Per consentire la particolarizzazione della distribuzione in un sito generico occorre procedere alla caratterizzazione spaziale del parametro di dimensionalizzazione denominato pioggia indice.
- 5. definizione delle linee segnalatrici di possibilità pluviometrica (LSPP): l'ultimo passo da compiere per la completa caratterizzazione delle precipitazioni in un sito generico del territorio analizzato è la definizione delle LSPP. Esse consentono, per assegnato periodo di ritorno, di disegnare un evento di precipitazione di progetto, il quale può essere utilizzato per la generazione delle portate al colmo di piena, con opportuna tecnica di trasformazione afflussi-deflussi.

La procedura di applicazione del metodo viene effettuata in ambito GIS utilizzando delle mappe interpolate dei valori di a ed n fornite dalla Regione Marche. Si è scelto di determinare solamente due parametri a ed n per tutti i bacini per velocizzare la procedura. I parametri per ogni attraversamento minore sono stati determinati mediando i valori interpolati relativi ad ogni singolo bacino. Infine, sono stati calcolati i valori di a ed n (Tabella 5) medi per tutti gli attraversamenti effettuando la media ponderata (i pesi della media sono le aree dei bacini) dei valori di tutti i bacini.

Parametri Reg. Marche						
a medio [mm]	n medio					
34.90	0.32					

Tabella 5 - Parametri a ed n

Il tracciamento delle curve segnalatrici di possibilità pluviometrica (LSPP) è stato effettuato applicando la seguente formula:

$$H(d,T) = 0.5711 \cdot \left[5.0286 \left(-\ln\left(\frac{T-1}{T}\right) \right)^{-0.0524} - 4.1950 \right] \cdot ad^{n}$$

3° stralcio funzionale: Castelraimondo nord – Castelraimondo sud 4° stralcio funzionale: Castelraimondo sud – innesto S.S. 77 a Muccia Relazione idrologica

Charge Trette Sathon CEE W/RS Id doc Ni pagair PE/ Pag di Pro									
	Opera L0703	Tratto 213	 Settore E	CEE 03	WBS 010000	ld. doc. REL	N. progr. 01	REV. B	Pag. di Pag. 32 di 44

Dove T è il tempo di ritorno e d la durata dell'evento. Le curve di possibilità pluviometrica avranno il seguente andamento:

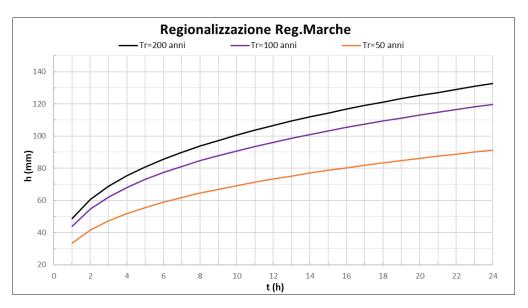


Figura 8 – Curve di probabilità pluviometrica Regionalizzazione Regione Marche.

5.5 CONFRONTO TRA LE METODOLOGIE UTILIZZATE

Nelle figure seguenti si riportano le curve di probabilità pluviometrica con fissato tempo di ritorno pari a 50 anni, 100 anni e 200 anni relative a tutte le metodologie trattate nei precedenti paragrafi.

Considerando i tempi di corrivazione dei bacini degli attraversamenti minori (dai 15 min alle 5 ore), dai diagrammi emerge che la curva di possibilità pluviometrica VAPI aggiornata risulta essere la più gravosa. Conseguentemente essa è stata presa a riferimento per il dimensionamento delle opere in progetto con i seguenti coefficienti per le curve:

Tr (anni)	50	100	200
Kt	2.05	2.27	2.48
а	53.30	58.92	64.56
n	0.30	0.30	0.30

3° stralcio funzionale: Castelraimondo nord – Castelraimondo sud 4° stralcio funzionale: Castelraimondo sud – innesto S.S. 77 a Muccia Relazione idrologica

Opera	Tratto	Settore	CEE	WBS	ld. doc.	N. progr.	REV.	Pag. di Pag.
L0703	213	Е	03	O10000	REL	01	В	33 di 44

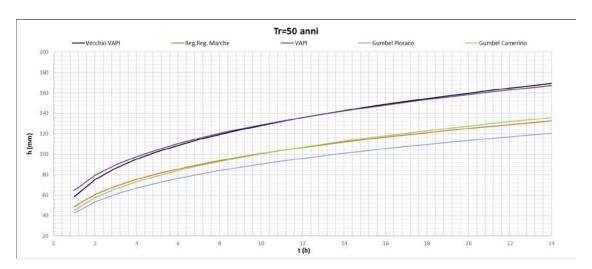


Figura 9 - Confronto curve di probabilità pluviometrica T=50 anni.

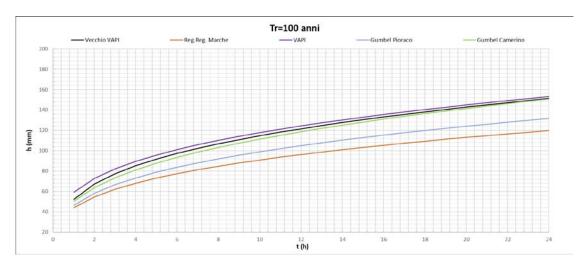


Figura 10 - Confronto curve di probabilità pluviometrica T=100 anni.

3° stralcio funzionale: Castelraimondo nord – Castelraimondo sud 4° stralcio funzionale: Castelraimondo sud – innesto S.S. 77 a Muccia Relazione idrologica

Opera	Tratto	Settore	CEE	WBS	ld. doc.	N. progr.	REV.	Pag. di Pag.	
L0703	2 13	Е	03	O10000	REL	01	В	34 di 44	

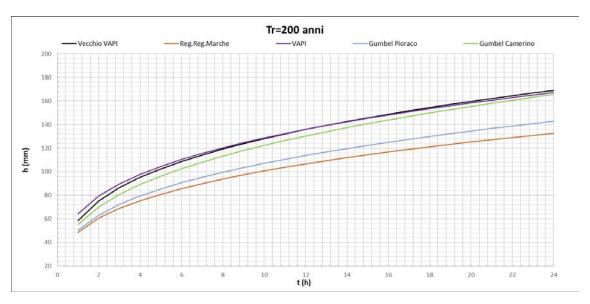


Figura 11 - Confronto curve di probabilità pluviometrica T=200 anni.

5.6 STIMA DEI DEFLUSSI

Per la stima dei deflussi lungo i corsi d'acqua oggetto dello studio si è proceduto alla delimitazione dei bacini imbriferi contribuenti ed al calcolo dei parametri fisici fondamentali:

- S = superficie del bacino (Kmq)
- L = lunghezza del percorso idraulico più lungo (Km)
- H_{max} = quota massima del bacino (m s.l.m.)
- H_{min} = quota minima del bacino (m s.l.m.)
- H_{med} = quota media del bacino (m s.l.m.)
- i = pendenza media dell'asta principale

Per la stima dei tempi di corrivazione dei singoli bacini si è ricorso alla nota formula di Giandotti (per bacini di superficie S > 1Kmq) :

$$T_{C} = \frac{4\sqrt{S} + 1.5L}{0.8\sqrt{H_{med} - H_{min}}}$$
 (1)

mentre per bacini di superficie minore (S < 1Kmq) si è considerata la formula di Kirplich

$$T_c = 0.95 L^{1.155} i^{-0.385}$$

3° stralcio funzionale: Castelraimondo nord – Castelraimondo sud 4° stralcio funzionale: Castelraimondo sud – innesto S.S. 77 a Muccia Relazione idrologica

Opera	Tratto	Settore	CEE	WBS	ld. doc.	N. progr.	REV.	Pag. di Pag.
L0703	213	Е	03	O10000	REL	01	В	35 di 44

Ad ogni modo si è stabilito un tempo di corrivazione minimo pari a 15 minuti.

Nelle tabelle seguenti vengono riportati i parametri fisici (superficie, lunghezza dell'asta principale, quota minima, media e massima sul livello del mare) e i tempi di corrivazione relativi ai bacini dei corsi d'acqua di interesse con sezione di chiusura in corrispondenza degli attraversamenti di progetto. Per alcune incisioni riportate in cartografia (fossi di scolo dei terreni agricoli, piccole canalizzazioni artificiali, etc.) non è stato possibile riconoscere con adeguata precisione il bacino naturale contribuente. I tombini per l'attraversamento di tali incisioni sono stati comunque dimensionati assicurando sezioni di deflusso adeguate.

Parametri fisici e tempi di corrivazione dei bacini idrografici agli attraversamenti minori di progetto

	Progressiva		S	L	Hmin	Hmax	Hmed	Тс
Bacino	km	Tipologia	kmq	km	msm	msm	msm	Н
B1	0+654	2x2	0.363	0.94	318	410	364	0.250
B2	1+050	DN1500	0.019	0.08	330	358	344	0.250
B3	1+140	DN1500	0.008					0.250
B4	1+980	DN1500	0.031	0.1	350	383	366.5	0.250
B5	2+560	DN1500	0.031	0.15	348	390	369	0.250
B6	3+165	DN1500	0.069	0.2	342	385	363.5	0.250
B7	3+317	DN1500	0.040	0.2	341	370	355.5	0.250
B8	3+582	2x2	0.172	0.65	328	407	367.5	0.250
B9	3+843	DN1500	0.010	0.17	319	321	320	0.250
B10	5+429	DN1500	0.065	0.2	344	416	380	0.250
B11	5+560	DN1500	0.080	0.2	340	412	376	0.250
B12	5+790	DN1500	0.171	0.45	338	433	385.5	0.250
B13	6+070	DN1500	0.083	0.15	334	406	370	0.250
B14	6+242	DN2000	0.357	0.15	333	443	388	0.250
B15	6+595	3x2	0.497	0.4	334	503	418.5	0.250
B16	6+968	DN1500	0.015	0.15	352	412	382	0.250
B17	7+080	DN1500	0.020	0.15	353	418	385.5	0.250
B18	7+246	DN1500	0.036	0.2	352	410	381	0.250
B19	7+461	DN1500	0.044	0.15	356	430	393	0.250
B20	7+527	DN1500	0.029	0.15	356	430	393	0.250
B21	7+665	DN1500	0.058	0.15	357	430	393.5	0.250
B22	7+915	2x2	0.228	0.2	364	515	439.5	0.250
B23	8+147	DN1500	0.141	0.2	372	520	446	0.250
B24	8+402	2x2	0.325	0.3	376	520	448	0.250
B25	9+724	4x4	1.215	1.2	392	610	501	0.743
B26	10+168	2x2	0.380	0.35	406	560	483	0.250
B27	10+664	2x2	0.204	0.3	415	659	537	0.250
B28	10+832	2x2	0.271	0.25	430	660	545	0.250
B29	10+990	DN1500	0.178	0.25	450	550	500	0.250
B30	11+859	DN2000	0.204	0.3	466	644	555	0.250
B31	12+191	DN1500	0.105	0.25	465	585	525	0.250
B32	12+340	DN1500	0.145	0.25	460	585	522.5	0.250
B33	12+560	DN1500	0.122	0.25	449	600	524.5	0.250
B34	12+670	DN1500	0.178	0.35	442	585	513.5	0.250
B35	11+700	inalveaz	0.080	0.37	473	566	519.5	0.250
B36	5+320	inalveaz	0.013	0.15	355	390	372.5	0.250

3° stralcio funzionale: Castelraimondo nord – Castelraimondo sud 4° stralcio funzionale: Castelraimondo sud – innesto S.S. 77 a Muccia Relazione idrologica

Opera	Tratto	Settore	CEE	WBS	ld. doc.	N. progr.	REV.	Pag. di Pag.
L0703	2 13	E	03	O100000	REL	01	В	36 di 44

Parametri fisici e tempi di corrivazione dei bacini idrografici agli attraversamenti di progetto

	Progressiva		S	L	Hmin	Hmax	Hmed	Тс
Bacino	km	Tipologia	kmq	km	msm	msm	msm	Н
A1	0+673	Viadotto Castelraimondo	9.98	5.42	315	600	457.5	2.18
A2	1+620	Viadotto Vallone	1.25	1.7	320	410	365	1.31
A3	2+220	Viadotto S. Anna	0.17	0.3	342	411	376.5	0.25
A4	2+630	Viadotto S. Pietro	0.17	0.23	340	411	375.5	0.25
A5	4+060	Viadotto Potenza	202.45	31.5	321	1571	946	5.21
A6	9+005	Viadotto Cesara	18.24	8.5	380	1400	890	1.65
A7	9+451	Viadotto Palente	3.17	1.4	380	620	500	1.05

Per la stima del deflusso su un bacino idrografico si è ricorso alla classica formula razionale che assegna ad un evento di piena la stessa probabilità di verificarsi della precipitazione che lo genera.

La schematizzazione alla base del metodo si basa su tre ipotesi fondamentali:

- 1. la pioggia critica ha durata pari al tempo di corrivazione;
- 2. la precipitazione si suppone di intensità costante per tutta la durata dell'evento;
- 3. il tempo di ritorno della portata è pari a quello della pioggia critica.

La portata di piena, in funzione del tempo di ritorno, è pari a:

$$Q = \frac{\varphi S h}{360 \cdot \tau_c} = \frac{\varphi S i}{360}$$

in cui:

- Q = portata di piena [m³/sec];
- $\varphi = \text{coefficiente di deflusso};$
- h = altezza di pioggia [mm] per una precipitazione di durata pari al tempo di corrivazione;
- i = intensità di pioggia [mm/ore];
- S = area del bacino [ha];
- T_C = tempo di corrivazione [ore], da individuare.

Il valore di h rappresenta l'altezza di precipitazione che cade in un dato sito in un tempo uguale al tempo di corrivazione t_c : infatti se la durata della precipitazione è inferiore al tempo t_c solo una parte del bacino S contribuirà alla formazione della portata, che risulterà pertanto di minore entità. Viceversa se la durata dell'evento è maggiore, l'intensità della pioggia sarà minore e quindi meno intenso il colmo di piena. Nella Figura è riportato uno schema del funzionamento del modello cinematico con tre precipitazioni di diversa durata (minore, uguale e maggiore rispetto al tempo di corrivazione).

Si noti come per un tempo di pioggia pari a quella di corrivazione l'idrogramma di piena assuma la forma triangolare.

3° stralcio funzionale: Castelraimondo nord – Castelraimondo sud 4° stralcio funzionale: Castelraimondo sud – innesto S.S. 77 a Muccia Relazione idrologica

Opera	Tratto	Settore	CEE	WBS	ld. doc.	N. progr.	REV.	Pag. di Pag.
L0703	213	Е	03	O10000	REL	01	В	37 di 44

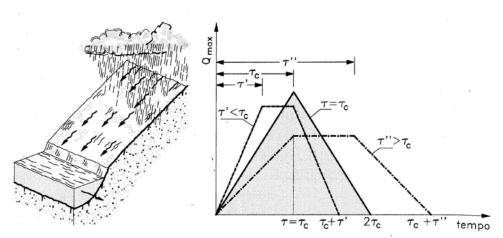


Figura 12: Metodo cinematico: confronto tra idrogrammi di piena

Il coefficiente di afflusso rappresenta l'aliquota di pioggia effettivamente contribuente al deflusso superficiale, in accordo con le considerazioni riportate nella relazione idraulica di progetto definitivo, per i bacini di grandi dimensioni è stato assunto il valore di 0.6. Tale valore appare cautelativo anceh in considerazione dei valori ricavati per studi analoghi effettuati dal Consorzio di Bonifica delle Marche nello "STUDIO PER LA MITIGAZIONE DEL RISCHIO IDROGEOLOGICO" INDAGINE CONDOTTA SUI BACINI IDROGRAFICO DEI FIUMI MISA, ESINO, MUSONE, POTENZA, CHIENTI E TENNA dove per il fiume Potenza si è individuato un valore medio pari a 0.25.

Nella tabella seguente si riportano i valori del coefficiente di afflusso suggeriti dal manuale "Hydraulic Engineering Circular No. 22, Third Edition URBAN DRAINAGE DESIGN MANUAL" per differenti tipi di superficie, come si può notare il valore considerato è cautelativo per i versanti studiati.

3° stralcio funzionale: Castelraimondo nord – Castelraimondo sud 4° stralcio funzionale: Castelraimondo sud – innesto S.S. 77 a Muccia Relazione idrologica

Opera	Tratto	Settore	CEE	WBS	ld. doc.	N. progr.	REV.	Pag. di Pag.
L0703	213	Е	03	O10000	REL	01	В	38 di 44

Type of Drainage Area	Runoff Coefficient, C*
Business:	
Downtown areas	0.70 - 0.95
Neighborhood areas	0.50 - 0.70
Residential:	
Single-family areas	0.30 - 0.50
Multi-units, detached	0.40 - 0.60
Multi-units, attached	0.60 - 0.75
Suburban	0.25 - 0.40
Apartment dwelling areas	0.50 - 0.70
Industrial:	
Light areas	0.50 - 0.80
Heavy areas	0.60 - 0.90
ricavy areas	0.00 0.00
Parks, cemeteries	0.10 - 0.25
Playgrounds	0.20 - 0.40
Railroad yard areas	0.20 - 0.40
Unimproved areas	0.10 - 0.30
Lawns:	
Sandy soil, flat, 2%	0.05 - 0.10
Sandy soil, average, 2 - 7%	0.10 - 0.15
Sandy soil, steep, 7%	0.15 - 0.20
Heavy soil, flat, 2%	0.13 - 0.17
Heavy soil, average, 2 - 7%	0.18 - 0.22
Heavy soil, steep, 7%	0.25 - 0.35
01	
Streets:	0.70 0.05
Asphaltic	0.70 - 0.95
Concrete	0.80 - 0.95
Brick	0.70 - 0.85
Drives and walks	0.75 - 0.85
Roofs	0.75 - 0.95

Per quanto attiene inoltre la concreta applicazione delle curve di possibilità pluviometriche biparametriche, nota l'ubicazione dei pluviometri di riferimento, sono state delimitate le aree di pertinenza di ciascuna stazione di misura mediante la classica tecnica dei topoieti. E' stata osservata la pertinenza di più pluviometri su alcuni bacini estesi (Potenza e Palente). Per questi corsi d'acqua sono state appositamente calcolate le nuove curve di possibilità pluviometrica dei bacini, operando una media pesata delle altezze di pioggia massime attese ai pluviometri rispetto alle aree di pertinenza ricavate dai topoieti.

proportionally smaller effect on runoff in these cases.

I risultati sono riportati nelle tabelle seguenti.

3° stralcio funzionale: Castelraimondo nord – Castelraimondo sud 4° stralcio funzionale: Castelraimondo sud – innesto S.S. 77 a Muccia Relazione idrologica

Opera	Tratto	Settore	CEE	WBS	ld. doc.	N. progr.	REV.	Pag. di Pag.			
L0703	2 13	Е	03	O10000	REL	01	В	39 di 44			

	d = 1 ora	d = 3 ore	d = 6 ore	d = 12 ore	d = 24 ore
Tr = 10 anni	36.40	51.30	61.94	74.92	94.77
Tr = 20 anni	41.09	58.29	70.51	85.04	107.54
Tr = 30 anni	43.80	62.33	75.45	90.87	114.91
Tr = 50 anni	47.23	67.42	81.68	98.22	124.18
Tr = 100 anni	51.75	74.17	89.95	108.00	136.53
Tr = 200 anni	56.30	80.95	98.25	117.81	148.90

Fiume Potenza – Altezze massime di pioggia h_d (mm) per le durate caratteristiche e diversi tempi di ritorno, mediate attraverso la tecnica dei topoieti

T _r (anni)	a (mm ore ⁻ⁿ)	n		
10	36.536	0.2964		
20	41.355	0.2978		
30	44.137	0.2984		
50	47.661	0.2990		
100	52.305	0.2999		
200	56.976	0.3006		

Fiume Potenza – Parametri a ed n delle curve di possibilità pluviometrica

	d = 1 ora	d = 3 ore	d = 6 ore	d = 12 ore	d = 24 ore
Tr = 10 anni	37.63	53.39	60.37	72.57	88.88
Tr = 20 anni	43.37	61.62	68.87	82.13	99.99
Tr = 30 anni	46.67	66.36	73.76	87.63	106.38
Tr = 50 anni	50.80	72.27	79.87	94.51	114.37
Tr = 100 anni	56.36	80.26	88.12	103.79	125.15
Tr = 200 anni	61.91	88.21	96.33	113.03	135.88

Torrente Palente – Altezze massime di pioggia h_d (mm) per le durate caratteristiche e diversi tempi di ritorno, mediate attraverso la tecnica dei topoieti

T _r (anni)	a (mm ore ⁻ⁿ)	n
10	38.307	0.2630
20	44.336	0.2546
30	47.806	0.2506
50	52.146	0.2430
100	58.002	0.2414
200	63.839	0.2374

Torrente Palente – Parametri a ed n delle curve di possibilità pluviometrica

Una volta calcolate le altezze di pioggia massime di durata pari ai tempi di corrivazione dei bacini con le leggi $h_d = ad^n$, utilizzando un valore di n pari a 0.51 nel caso di durate inferiori all'ora (come consigliato da alcuni Autori in base ad osservazioni sperimentali su varie stazioni di misura), si è proceduto al calcolo delle portate massime con tempi di ritorno pari a 50, 100, 200 anni, mediante la (2). Per quanto attiene invece l'applicazione della legge tri-parametrica si è fatto riferimento ai parametri riportati nel precedente paragrafo.

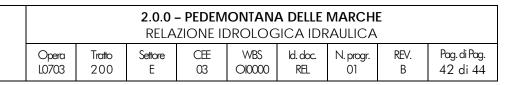
Per quanto riguarda la scelta del coefficiente di afflusso C da inserire nella relazione (2), si è utilizzato un valore pari a 0.6 per tutti i corsi d'acqua minori, essendo tale valore accettabile per bacini a deflusso moderatamente alto (categoria C del metodo del Curve Number) e di piccole

3° stralcio funzionale: Castelraimondo nord – Castelraimondo sud 4° stralcio funzionale: Castelraimondo sud – innesto S.S. 77 a Muccia Relazione idrologica

Opera	Tratto	Settore	CEE	WBS	ld. doc.	N. progr.	REV.	Pag. di Pag.
L0703	2 13	Е	03	O10000	REL	01	В	40 di 44

dimensioni. Tale valore è stato anche utilizzato per i corsi d'acqua il cui bacino presenta prevalentemente formazioni limo-argillose.

Nella tabella che segue si riportano i risultati delle elaborazioni condotte, per tre differenti valori del periodo di ritorno (i.e T=50, anni, T=100 anni, T=200 anni).



2.0.0 – PEDEMONTANA DELLE MARCHE RELAZIONE IDROLOGICA IDRAULICA											
Opera	Tratto	Settore	CEE	WBS	ld. doc.	N. progr.	REV.	Pag. di Pag.			
L0703	200	E	03	O10000	REL	01	B	41 di 44			

Altezze di pioggia e portate calcolate per i bacini minori

			T=50 a	anni			T=100) anni			T=200	anni	
Progr.	Tipologia	а	n	h	Q	а	n	h	Ø	а	n	h	Q
		mm/h^n		mm	mc/s	mm/h^n		mm	mc/s	mm/h^n		mm	mc/s
0+654	2x2	53.300	0.300	35.16	8.505	59.020	0.300	38.94	9.418	64.480	0.300	42.54	10.29
1+050	DN1500	53.300	0.300	35.16	0.442	59.020	0.300	38.94	0.489	64.480	0.300	42.54	0.53
1+140	DN1500	53.300	0.300	35.16	0.186	59.020	0.300	38.94	0.206	64.480	0.300	42.54	0.22
1+980	DN1500	53.300	0.300	35.16	0.725	59.020	0.300	38.94	0.802	64.480	0.300	42.54	0.88
2+560	DN1500	53.300	0.300	35.16	0.720	59.020	0.300	38.94	0.798	64.480	0.300	42.54	0.87
3+165	DN1500	53.300	0.300	35.16	1.615	59.020	0.300	38.94	1.788	64.480	0.300	42.54	1.95
3+317	DN1500	53.300	0.300	35.16	0.928	59.020	0.300	38.94	1.027	64.480	0.300	42.54	1.12
3+582	2x2	53.300	0.300	35.16	4.040	59.020	0.300	38.94	4.473	64.480	0.300	42.54	4.89
3+843	DN1500	53.300	0.300	35.16	0.235	59.020	0.300	38.94	0.260	64.480	0.300	42.54	0.28
5+429	DN1500	53.300	0.300	35.16	1.515	59.020	0.300	38.94	1.678	64.480	0.300	42.54	1.83
5+560	DN1500	53.300	0.300	35.16	1.867	59.020	0.300	38.94	2.067	64.480	0.300	42.54	2.26
5+790	DN1500	53.300	0.300	35.16	4.003	59.020	0.300	38.94	4.433	64.480	0.300	42.54	4.84
6+070	DN1500	53.300	0.300	35.16	1.950	59.020	0.300	38.94	2.160	64.480	0.300	42.54	2.36
6+242	DN2000	53.300	0.300	35.16	8.376	59.020	0.300	38.94	9.275	64.480	0.300	42.54	10.13
6+595	3x2	53.300	0.300	35.16	11.656	59.020	0.300	38.94	12.907	64.480	0.300	42.54	14.10
6+968	DN1500	53.300	0.300	35.16	0.341	59.020	0.300	38.94	0.377	64.480	0.300	42.54	0.41
7+080	DN1500	53.300	0.300	35.16	0.458	59.020	0.300	38.94	0.507	64.480	0.300	42.54	0.55
7+246	DN1500	53.300	0.300	35.16	0.839	59.020	0.300	38.94	0.930	64.480	0.300	42.54	1.02
7+461	DN1500	53.300	0.300	35.16	1.037	59.020	0.300	38.94	1.149	64.480	0.300	42.54	1.25
7+527	DN1500	53.300	0.300	35.16	0.689	59.020	0.300	38.94	0.763	64.480	0.300	42.54	0.83
7+665	DN1500	53.300	0.300	35.16	1.363	59.020	0.300	38.94	1.509	64.480	0.300	42.54	1.65
7+915	2x2	53.300	0.300	35.16	5.342	59.020	0.300	38.94	5.916	64.480	0.300	42.54	6.46
8+147	DN1500	53.300	0.300	35.16	3.299	59.020	0.300	38.94	3.652	64.480	0.300	42.54	3.99
8+402	2x2	53.300	0.300	35.16	7.633	59.020	0.300	38.94	8.452	64.480	0.300	42.54	9.23

			T=50 a	anni			T=100) anni			T=200	anni	
Progr.	Tipologia	а	n	h	Q	а	n	h	Q	а	n	h	Q
		mm/h^n		mm	mc/s	mm/h^n		mm	mc/s	mm/h^n		mm	mc/s
9+724	4x4	53.300	0.300	48.76	13.293	59.020	0.300	54.00	14.720	64.480	0.300	58.99	16.08
10+168	2x2	53.300	0.300	35.16	8.907	59.020	0.300	38.94	9.863	64.480	0.300	42.54	10.78
10+664	2x2	53.300	0.300	35.16	4.776	59.020	0.300	38.94	5.289	64.480	0.300	42.54	5.78
10+832	2x2	53.300	0.300	35.16	6.353	59.020	0.300	38.94	7.035	64.480	0.300	42.54	7.69
10+990	DN1500	53.300	0.300	35.16	4.170	59.020	0.300	38.94	4.617	64.480	0.300	42.54	5.04
11+859	DN2000	53.300	0.300	35.16	4.788	59.020	0.300	38.94	5.301	64.480	0.300	42.54	5.79
12+191	DN1500	53.300	0.300	35.16	2.459	59.020	0.300	38.94	2.723	64.480	0.300	42.54	2.98
12+340	DN1500	53.300	0.300	35.16	3.392	59.020	0.300	38.94	3.756	64.480	0.300	42.54	4.10
12+560	DN1500	53.300	0.300	35.16	2.862	59.020	0.300	38.94	3.170	64.480	0.300	42.54	3.46
12+670	DN1500	53.300	0.300	35.16	4.166	59.020	0.300	38.94	4.613	64.480	0.300	42.54	5.04
11+700	inalveaz	53.300	0.300	35.16	1.88	59.020	0.300	38.94	2.08	64.480	0.300	42.54	2.27
5+320	inalveaz	53.300	0.300	35.16	0.31	59.020	0.300	38.94	0.35	64.480	0.300	42.54	0.38

Altezze di pioggia e portate calcolate per i bacini principali

			T=50) anni			T=1	00 anni			T=200	anni	
Progr.	Tipologia	а	n	h	Q	а	n	h	Q	а	n	h	Q
		mm/h^n		mm	mc/s	mm/h^n		mm	mc/s	mm/h^n		mm	mc/s
0+673	Castelraimondo	53.300	0.300	67.29	51.498	59.020	0.300	74.52	57.025	64.480	0.300	81.41	62
1+620	Vallone	53.300	0.300	57.78	9.206	59.020	0.300	63.98	10.194	64.480	0.300	69.90	11
2+156	S. Anna	53.300	0.300	35.16	3.893	59.020	0.300	38.94	4.310	64.480	0.300	42.54	5
2+630	S. Pietro	53.300	0.300	35.16	4.099	59.020	0.300	38.94	4.539	64.480	0.300	42.54	5
4+060	Potenza	47.660	0.300	78.19	507.067	52.305	0.300	85.81	556.486	59.976	0.300	98.39	638
9+005	Cesara	53.300	0.300	61.95	114.148	59.020	0.300	68.60	126.398	64.480	0.300	74.95	138
9+451	Palente	45.781	0.243	46.36	23.312	58.000	0.241	58.72	29.530	63.840	0.237	64.62	32

200	2.0.0 – PEDEMONTANA DELLE MARCHE										
RFI AZIONE IDROLOGICA IDRAULICA											
112.12.12.12.13.14.12.13.14.12.13.14											
Settore	CEE	WBS	ld. doc.	N. progr.	REV.	Pag. di Pag.					

01

REL

43 di 44

O10000

Per i fiumi S. Anna, S Pietro e Palente, poiché la relazione idrologica di progetto definitivo fornivano valori di portate leggermente più elevati rispetto al presente studio idrologico, cautelativamente, nelle verifiche idrauliche, saranno adottati i valori del progetto definitivo:

Ε

03

Opera

L0703

Tratto

200

		T=200 anni		
Progr.	Tipologia	Q		
		mc/s		
2+156	S. Anna	5.4		
2+630	S. Pietro	5.4		
9+451	Palente	39.1		

5.7 STIMA DEI DEFLUSSI PER BREVI DURATE

Nel caso degli elementi di drenaggio della piattaforma stradale e dei fossi di guardia da verificare con piogge relative a tempi di ritorno di 50 anni, sono le piogge di breve durata ad interessare il dimensionamento dei manufatti, per questo, a favore di sicurezza, le valutazioni saranno fatte sulla base delle leggi di pioggia ricavate dalla distribuzione TCEV. I parametri della distribuzione sono di seguito riportati.

Le portate massime di deflusso sia lungo i versanti naturali che lungo la piattaforma stradale vengono calcolate mediante la formula razionale precedente (metodo della corrivazione), assumendo un tempo di corrivazione minimo pari a 5 minuti.

La legge di possibilità pluviometrica adottata è stata quella relativa alla stazione pluviometrica di Fabriano, per un tempo di ritorno Tr = 50 anni, modificata per durate inferiori all'ora.

E' stato osservato che i valori dei rapporti rd tra le altezze di durata d molto brevi e l'altezza oraria di precipitazione sono poco dipendenti dalla località, per cui è possibile stabilire delle relazioni univoche che ci permetto di estrapolare la legge oraria per le piogge di breve durata a partire dai seguenti rapporti noti:

δ (min)	1	2	3	4	5	10	15	30
$r_{\delta}=r_{h}/r_{1}$	0.130	0.180	0.229	0.272	0.322	0.489	0.601	0.811

L'estrapolazione della legge oraria per le brevi durate avviene imponendo il passaggio per le altezze ricavate dai rapporti di letteratura. Si impone:

- Il passaggio nel punto corrispondente ad una poggia di durata 30 minuti (0.5 ore)

$$a'(t) \cdot 0.5^{n'(t)} = h(30min)$$

- Il passaggio nel punto corrispondente ad una poggia di durata 1 minuto (0.017 ore)

$$a'(t) \cdot 0.017^{n'(t)} = r_{(1min)}/r_1 \cdot h(1ora)$$

2.0.0 – PEDEMONTANA DELLE MARCHE RELAZIONE IDROLOGICA IDRAULICA											
Settore	CEE	WBS	ld. doc.	N. progr.	REV.	Pag. di Pag.					
E	83	Ol0000	REL	01	A	44 di 44					

Risolvendo il sistema per il tempo di ritorno pario a 50 anni si ha:

Opera

L0703

Tratto

200

h=60.63 d^{0.486}

Il coefficiente di afflusso globale viene valutato come media pesata sulle aree contribuenti dei coefficienti di afflusso tipici di ciascuna superficie drenata ($C_1 = 0.50$ per la superficie delle scarpate e del terreno naturale e $C_2 = 0.90$ per le superfici asfaltate).

CONSIDERAZIONI GEOMORFOLOGICHE

I corsi d'acqua indagati, nei tratti interessati dagli attraversamenti presentano per lo più un andamento perpendicolare all'infrastruttura. Si è cercato di intervenire con le sistemazioni a monte ed a valle delle opere per i tratti strettamente necessari cercando di preservare la naturale configurazione dell'alveo attuale.

Una stabilizzazione a cavallo delle opere è necessaria per evitare fenomeni di divagazione dell'alveo, anche se gli alvei oggetto di intervento presentano andamenti grossomodo rettilinei. L'unica eccezione riguarda il Fiume Potenza per il quale, data l'estensione delle aree interessate dal passaggio della piena, non ha subito canalizzazioni in corrispondenza dell'opera per preservare la naturale evoluzione del corso d'acqua, l'unico accorgimento è stato quello di proteggere le pile dell'opera da eventuali escavazioni. Si tratta comunque di interventi puntuali e poco invasivi per i corsi d'acqua indagati che servono esclusivamente per regolarizzare il passaggio della piena in corrispondenza dell'opera.

Per quanto riguarda le variazioni altimetriche del fondo, si può inquadrare il problema attraverso la cosiddetta bilancia di Lane. Alterazioni dell'equilibrio generate da un incremento dell'energia della corrente (o potenza), una riduzione della portata solida o delle dimensioni dei sedimenti, possono causare un abbassamento generalizzato della quota del fondo, definito incisione (incision o degradation). Viceversa, nel caso di una riduzione di energia della corrente o di un incremento della quantità o dimensioni dei sedimenti trasportati, si verifica normalmente un innalzamento generalizzato della quota del fondo, indicato con il termine di sedimentazione (aggradation). Tali processi possono interessare tratti molto lunghi, fino ad un intero sistema fluviale, e possono alternarsi sistematicamente in tratti diversi del bacino. L'incisione tende infatti a migrare verso monte attravero il meccanismo di erosione regressiva (nickpoint migration), mentre a valle si possono avere fasi successive di sedimentazione indotte dal materiale prodotto dall'incisione ed eventualmente dall'allargamento indotto dall'instabilità delle sponde nei tratti a monte (SCHUMM et al., 1984; SIMON, 1989). Questi fenomeni esulano dal contesto localizzato in cui si inserisce l'opera e riguardano il sistema bacino nel complesso. Le opere in progetto tendono a creare delle condizioni di instabilità strettamente locali e legate nei tratti più prossimi all'opera stessa. Eventiali depositi di materiale o escavazione locale può essere gestita nell'ambito delle opportune manutenzioni periodiche e analisi delle opere durante l'esercizio dell'infrastruttura.