

PAGE

GRE CODE

1 di/of 15

TITLE:

AVAILABLE LANGUAGE: IT

GRE.EEC.R.73.IT.W.14180.05.027.01

INTEGRALE RICOSTRUZIONE DELL'IMPIANTO EOLICO DI MONTEMAGGIORE BELSITO

PROGETTO DEFINITIVO

Relazione sul calcolo della gittata massima

File: GRE.EEC.R.73.IT.W.14180.05.027.01 - Relazione gittata massima elementi rotanti

CLASSIFICATION PUBLIC				UTI	LIZAT	ION SC	OPE	BAS	BASIC DESIGN											
Belsito		GRE	EEC	R	7	3	Ι	Т	W	1 4	1	8	0	(0 5	0	2	7	0	1
Montemaggiore		GROUP	FUNCION	TYPE ISS		SUER COL		UNTRY	TEC		PLANT			Ι	SYSTEM		ROGRESSIVE		REVISION	
PROJECT	/ PLANT							G	RE C	ODE										
	COLLABO	RATORS				VE	RIFIE	DBY			VALIDATED BY									
					lá	aciofa	ano	(GRE)		laciofano (GRE)									
					G	RE V	/ALI	DATI	ON											
REV.	DATE		DESCRIPTION						1	PREPARED			VERIFIED				APPROVED			
00	10/07/2020	Prima en	Prima emissione					D	Grado	Gradogna N. Novati				L. Lavazza						
01	15/07/2020	Integrati	commen	nti								In TOLL					L. Lavazza			
											Nov	ati			M Terzi			a	/2772	

This document is property of Enel Green Power S.p.A. It is strictly forbidden to reproduce this document, in whole or in part, and to provide to others any related information without the previous written consent by Enel Green Power S.p.A.

Engineering & Construction

GRE CODE

GRE.EEC.R.73.IT.W.14180.05.027.01

PAGE

2 di/of 15

INDEX

1.	INTRO	DUZIONE	. 3					
	1.1.	DESCRIZIONE DEL PROPONENTE	. 3					
	1.2.	CONTENUTI DELLA RELAZIONE	. 3					
2.	INQUA	DRAMENTO TERRITORIALE	. 3					
3.	GLI AE	ROGENERATORI E IL LORO FUNZIONAMENTO	. 5					
4.	4. ANALISI STORICA DEGLI INCIDENTI							
5.	ROTTU	RA PALA E CALCOLO DELLA GITTATA MASSIMA	. 8					
	5.1.	INTRODUZIONE E IPOTESI ALLA BASE DEL MODELLO DI CALCOLO	. 8					
	5.2.	AEROGENERATORE DI RIFERIMENTO	. 9					
	5.3.	CALCOLO DELLA GITTATA MASSIMA	10					
	5.4.	RISULTATI	12					
6.	5. CONCLUSIONI							

GRE.EEC.R.73.IT.W.14180.05.027.01

PAGE

3 di/of 15

Engineering & Construction

1. INTRODUZIONE

Stantec S.p.A., in qualità di Consulente Tecnico, è stata incaricata da Enel Green Power S.p.A. ("EGP") di redigere il progetto definitivo per il potenziamento dell'esistente impianto eolico ubicato nei Comuni di Montemaggiore Belsito e Sclafani Bagni (PA) in località "Cozzo Vallefondi", costituito da 18 aerogeneratori di potenza nominale pari a 0,85 MW, per una potenza totale installata di 15,3 MW.

L'energia prodotta dagli aerogeneratori, attraverso il sistema di cavidotti interrati in media tensione, viene convogliata a due cabine MT separate, una ubicata nell'area dell'impianto di Montemaggiore Belsito, l'altra all'interno dell'area di impianto di Sclafani Bagni.

Il progetto proposto prevede l'installazione di nuove turbine eoliche in sostituzione delle esistenti, in linea con gli standard più alti presenti sul mercato, e consentirà di ridurre il numero di macchine da 18 a 6, per una nuova potenza installata prevista pari a 36 MW, diminuendo in questo modo l'impatto visivo, in particolare il cosiddetto "effetto selva". Inoltre, la maggior efficienza dei nuovi aerogeneratori comporterà un aumento considerevole dell'energia specifica prodotta, riducendo in maniera proporzionale la quantità di CO_2 equivalente.

1.1. DESCRIZIONE DEL PROPONENTE

Enel Green Power S.p.A., in qualità di soggetto proponente del progetto, è la società del Gruppo Enel che dal 2008 si occupa dello sviluppo e della gestione delle attività di generazione di energia da fonti rinnovabili.

Enel Green Power è presente in 29 Paesi nel mondo: in 18 gestisce delle capacità produttive mentre in 11 è impegnata nello sviluppo e costruzione di nuovi impianti. La capacità gestita totale è di circa 46 GW, corrispondenti a più di 1.200 impianti.

In Italia, il parco di generazione di Enel Green Power è rappresentato da tutte le 5 tecnologie rinnovabili del gruppo: idroelettrico, eolico, fotovoltaico, geotermia e biomassa. Attualmente nel Paese conta una capacità gestita complessiva di oltre 14 GW.

1.2. CONTENUTI DELLA RELAZIONE

La presente relazione riporta la valutazione della gittata massima che si ottiene attraverso il moto percorso da una pala distaccatasi dall'aerogeneratore.

Il capitolo 2 fornisce un inquadramento territoriale del sito, mentre il Capitolo 3 descrive in generale le caratteristiche tecniche e costruttive di un aerogeneratore moderno di grossa taglia ed espone brevemente il suo funzionamento.

Nel capitolo 4 è riportata una breve analisi storica e statistica degli incidenti sugli aerogeneratori, focalizzato sulle pale.

Il capitolo 5 affronta il metodo di calcolo della gittata massima, mentre nel capitolo 6 sono riportate le conclusioni con riferimento alle posizioni degli aerogeneratori di nuova costruzione in sito.

2. INQUADRAMENTO TERRITORIALE

Il sito, oggetto del presente elaborato, è ubicato a circa 50 km a Sud-Est di Palermo ed a qualche km ad ovest delle Madonie, nei comprensori comunali di Montemaggiore Belsito (PA) e Sclafani Bagni (PA), Regione Sicilia.

L'area interessata si sviluppa lungo i crinali di un'area collinare. I crinali hanno sviluppo ad arco in direzione Est-Ovest.

L'impianto in progetto ricade interamente entro i confini comunali di Montemaggiore Belsito e Sclafani Bagni, in particolare all'interno dei seguenti riferimenti cartografici:

- Foglio di mappa catastale del Comune di Montemaggiore Belsito nº 21;
- Foglio di mappa catastale del Comune di Sclafani Bagni nº 13-14;
- Fogli I.G.M. in scala 1:25.000, codificati 259-II-NO Alia;
- Carta tecnica regionale CTR in scala 1:10.000, foglio nº 609140.

Di seguito è riportato l'inquadramento territoriale dell'area di progetto e la configurazione

Engineering & Construction

GRE CODE

GRE.EEC.R.73.IT.W.14180.05.027.01

PAGE

4 di/of 15

proposta su ortofoto.

Figura 2-1: Inquadramento generale dell'area di progetto

Figura 2-2: Configurazione proposta su ortofoto

Di seguito è riportato in formato tabellare un dettaglio sulla locazione delle WTG di nuova costruzione:

GRE CODE

GRE.EEC.R.73.IT.W.14180.05.027.01

Engineering & Construction

5 di/of 15

PAGE

Tabella 1: Inquadramento territoriale WTG							
ID	Comune Est Nord		Altitudine [m s.l.m.]				
MB-01	Montemaggiore Belsito	392155,10	4185035,00	967			
MB-02	Montemaggiore Belsito	392626,00	4185291,00	1001			
MB-03	Montemaggiore Belsito	393155,00	4185406,00	956			
MB-04	Montemaggiore Belsito	393729,00	4185401,00	971			
MB-05	Sclafani Bagni	394324,00	4185869,00	1021			
MB-06	Sclafani Bagni	394954,00	4185932,00	1015			

3. GLI AEROGENERATORI E IL LORO FUNZIONAMENTO

Un aerogeneratore (o turbina eolica) è, in generale, costituito dai seguenti sottosistemi principali:

- il rotore eolico, che trasforma l'energia cinetica del vento in energia meccanica mediante alcune pale, opportunamente sagomate secondo un profilo aerodinamico e montate su un asse orizzontale o verticale rispetto al terreno;
- l'apparato di conversione dell'energia meccanica in energia elettrica, basato su un generatore elettrico rotante azionato dal rotore eolico attraverso un sistema di trasmissione, che spesso comprende un moltiplicatore di giri per ottenere la velocità appropriata per il generatore;
- il convertitore statico di frequenza e tensione, se necessario per ottenere una potenza elettrica con caratteristiche diverse da quelle in uscita dal generatore ed appropriate all'impiego.

Nelle macchine ad asse orizzontale, come quelle dell'impianto eolico oggetto della presente relazione, il rotore ha di norma tre pale, generalmente costruite in vetroresina con eventuali rinforzi in fibra di carbonio. Le pale sono a passo variabile, cioè il loro angolo di calettamento al mozzo può essere variato da un servomeccanismo comandato dal sistema di controllo dell'aerogeneratore. Gli aerogeneratori ad asse orizzontale comprendono, oltre al rotore, i seguenti componenti strutturali principali:

- la navicella o gondola, in cui sono alloggiati gli alberi di trasmissione, il moltiplicatore di giri, il generatore, eventuali altri componenti elettrici e le apparecchiature ausiliarie e di controllo; la navicella viene orientata dal sistema di controllo per mantenere l'asse del rotore allineato alla direzione del vento;
- il sostegno, generalmente metallico con struttura tubolare o a traliccio, che ha la funzione di mantenere il rotore ad un'altezza opportuna rispetto al suolo (la velocità del vento tende ad aumentare con l'altezza) e appoggia, a sua volta, su una fondazione in calcestruzzo armato.

Il trasformatore presente in navicella innalza la tensione dell'energia prodotta e attraverso un sistema di cavidotti l'energia prodotta viene immessa nella rete elettrica nazionale.

GRE CODE

GRE.EEC.R.73.IT.W.14180.05.027.01

PAGE

7 di/of 15

Engineering & Construction

4. ANALISI STORICA DEGLI INCIDENTI

Diversi studi¹ condotti a livello internazionale tra il 1990 e il 2014 hanno evidenziato che la probabilità di guasto di una pala in un anno è compresa tra lo 0,1% e lo 0,7%. La variabilità dei dati è dovuta al differente numero di campioni, a differenti tassi di guasto e differenti ore di manutenzione dovute alla rottura.

Inoltre, uno studio² americano del 2013, effettuato su un campione di circa 10,000 aerogeneratori, caratterizzati dall'essere operativi da anni diversi, ha evidenziato che circa il 2% delle turbine (nei 10 anni di funzionamento) richiedono la sostituzione della pala, considerando però anche tutte le sostituzioni che avvengono nei primi due anni di funzionamento dovute a problemi durante il trasporto e la costruzione.

Lo studio evidenzia inoltre che la causa maggiore di rottura delle pale è dovuta all'impatto con i fulmini.

¹ Branner K., Ghadirian A., "Database about blade faults", 2014

² Lantz E. (NREL), "Operations Expenditures: Historical Trends And Continuing Challenges", 2013

GRE.EEC.R.73.IT.W.14180.05.027.01

PAGE

8 di/of 15

Engineering & Construction

5. ROTTURA PALA E CALCOLO DELLA GITTATA MASSIMA

In questa sezione viene riportata un'introduzione alla problematica della rottura di pala, le specifiche dell'aerogeneratore di riferimento e infine il calcolo della gittata massima.

5.1. INTRODUZIONE E IPOTESI ALLA BASE DEL MODELLO DI CALCOLO

La rottura improvvisa di una pala dell'aerogeneratore (o di un frammento di essa) è un fattore molto importante da analizzare in fase di progettazione e così come per la localizzazione dell' impianto eolico.

La rottura di una pala, che spesso avviene alla radice di essa, è un evento che ha due cause principali:

- 1. Rottura del giunto di collegamento tra mozzo e pala;
- 2. Fenomeni di fatica sul profilo di pala causati dalla discontinuità della struttura.

Lo studio in oggetto ha lo scopo di analizzare, nell'eventualità che si verifichi il distacco di una pala, il moto di caduta da essa percorsa.

A differenza di un classico moto parabolico (es. moto del proiettile) in cui è possibile definire che l'angolo a cui vi è la gittata massima è 45°, la complessa struttura geometrica ed aerodinamica della pala porta a dover studiare in modo più approfondito il fenomeno del distacco di pala.

Di seguito, vengono riportate alcune definizioni ed ipotesi utili per la definizione e il calcolo della gittata massima, affrontato nei paragrafi successivi:

- Gittata (L): è la distanza percorsa lungo l'asse delle ascisse da un corpo lasciato in aria. Essa dipende fortemente dall'angolo di distacco, dalle caratteristiche della pala come dimensione, peso e profilo aerodinamico, dalla velocità di rotazione del corpo, dalla velocità del vento e dalle forze di attrito che agiscono sulla pala durante il volo.
- **Tempo di volo (T):** è l'intervallo di tempo che intercorre tra il distacco del corpo e il suo arrivo al suolo (il tempo trascorso in aria). Come definito per la gittata, esso dipende dalle caratteristiche della pala, dall'angolo di distacco e dalla velocità di rotazione del corpo.

Il calcolo della gittata massima dell'aerogeneratore necessita inoltre di alcune ipotesi semplificative, necessarie a descrivere il modello del moto parabolico:

- Viene considerato <u>il distacco della totalità della pala in modo istantaneo</u>. Questa ipotesi è assolutamente conservativa dato che non si considera la resistenza posta dalla pala;
- Viene considerata <u>la rotazione massima</u> (massimi giri al minuto) per la turbina al momento del distaccamento;
- Sono considerati <u>solamente gli effetti gravitazionali sul moto</u> e non gli effetti di attrito di aria e vento. Questa ipotesi è conservativa dato che trascurare gli effetti di aria e vento causa un incremento del valore della gittata massima della pala distaccata a favore di sicurezza. Gli effetti di portanza sul profilo della pala sono trascurati;
- Il moto della pala al momento del distacco è un moto complesso, che dipende strettamente dalle dimensioni della pala, dal suo peso e dalle forze aerodinamiche in gioco. Il modello teorico che meglio descrive il moto della pala è il "moto rotazionale complesso" che permette di descrivere il moto della pala tridimensionalmente. In questa analisi, trascurando gli effetti di aria e vento, <u>il moto della pala distaccata viene descritto attraverso il movimento del punto del centro di massa</u> (baricentro), posto ad 1/3 della lunghezza di pala. Tali considerazioni sono utili al fine di descrivere un moto dipendente solamente dagli effetti gravitazionali. Tale ipotesi, che non considera effetti di attrito e il moto rotazionale complesso, porta a sovrastimare il valore della gittata a favore di sicurezza;
- Non si considera alcuna mutazione della velocità del vento durante il volo. La velocità del vento durante il volo è bensì assunta pari a quella al momento del distacco e pari a quella a cui corrisponde la velocità massima di funzionamento.

GRE.EEC.R.73.IT.W.14180.05.027.01

PAGE

9 di/of 15

Engineering & Construction

5.2. AEROGENERATORE DI RIFERIMENTO

Gli aerogeneratori che verranno installati presso il nuovo impianto oggetto di questo studio saranno selezionati sulla base delle più innovative tecnologie disponibili sul mercato. La potenza nominale delle turbine previste sarà pari a massimo 6,0 MW. Il tipo e la taglia esatta dell'aerogeneratore saranno comunque individuati in seguito della fase di acquisto della macchina e verranno descritti in dettaglio in fase di progettazione esecutiva.

) Stantec

Si riportano di seguito le caratteristiche tecniche dell'aerogeneratore (in grassetto i valori necessari per il calcolo della gittata):

Potenza nominale	6,0 MW				
Diametro del rotore D	170 m				
Lunghezza della pala r _{tip}	83,5 m				
Corda massima della pala	4,5 m				
Area spazzata	22.698 m ²				
Altezza al mozzo H _m	115 m				
Classe di vento IEC	IIIA				
Velocità cut-in	3 m/s				
Velocità nominale	10 m/s				
Velocità cut-out	25 m/s				
Giri al minuto rotore n	8,8				

Nell'immagine seguente è rappresentata una turbina con rotore di diametro pari a 170 m e potenza fino a 6,0 MW:

individuare la gittata massima al "tip" della pala, sommando la lunghezza che vi è tra il "tip" e il raggio baricentrico.

Per il calcolo della gittata è stato ipotizzato un numero di giri pari a 8,8 rpm, valore riscontrato da dati tecnici dell'aerogeneratore.

5.3. CALCOLO DELLA GITTATA MASSIMA

In questo paragrafo viene riportato il calcolo della gittata massima secondo le ipotesi definite al paragrafo 4.1 e per l'aerogeneratore di riferimento definito al paragrafo 4.2.

Il primo passo per il calcolo della gittata massima è la descrizione delle leggi orarie del moto parabolico della pala distaccata. Considerando che la massa e la geometria sono concentrate in un punto (baricentro), che il corpo si trova in un campo di gravità uniforme ed indipendente dal tempo e che si trascurano le forze di attrito legate alla resistenza dell'aria, si applicano le seguenti equazioni di moto:

$$\begin{cases} x(t) = x_o + v_{gx}t \\ y(t) = y_o + v_{gy}t - \frac{1}{2}gt^2 \end{cases}$$
(4.1)

GRE CODE GRE.EEC.R.73.IT.W.14180.05.027.01

PAGE

11 di/of 15

Dove:

- x_o e y_o sono le posizioni iniziali della pala al momento del distacco. Esse dipendono dall'angolo di distacco e dal raggio baricentrico;
- $v_{gx} \in v_{gy}$ sono rispettivamente la componente orizzontale e verticale della velocità iniziale di distacco " v_g , definita al raggio baricentrico. La velocità di distacco " v_g " si calcola a partire dalla velocità angolare " ω " (e quindi dal numero di giri al minuto della turbina "n") e dal raggio baricentrico " r_g " come di seguito:

$$v_g = \omega \cdot r_g = \frac{2\pi n}{60} \cdot r_g = 27,03 \, m/s$$
 (4.2)

- g è la costante di gravitazione universale pari a 9,81 m/s²
- t è la variabile tempo. Impostando y(t) = 0 (corpo arrivato a terra), si ottiene di conseguenza il tempo di volo e la condizione in cui calcolare la gittata.

Per prima cosa, è quindi necessario definire le posizioni iniziali e le velocità del corpo distaccato. Il moto parabolico del corpo viene descritto in Figura 4-2, dove il rotore della turbina eolica (fino al raggio baricentrico) è rappresentato con il cerchio blu:

Figura 4-2: Traiettoria della pala distaccata

Come visibile dalla Figura 4-2, le posizioni iniziali ($x_o \in y_o$) e le componenti ($v_{gx} \in v_{gy}$) della velocità di distacco v_g dipendono strettamente dal raggio baricentrico r_g , dall'altezza di mozzo H_m , e dall'angolo di distacco ϑ definito in senso orario tra l'asse della pala e l'orizzontale. Essendo l'angolo di distacco variabile nel tempo, è necessario calcolare la gittata al variare dell'angolo di distacco per evidenziare quale è la condizione in cui si ottiene la massima gittata.

Si definiscono quindi:

• Le posizioni iniziali (x_o e y_o) come:

$$x_o = -r_g \cos \vartheta$$
; $y_o = H_m + r_g \sin \vartheta$ (4.3)

• Le componenti (v_{gx} e v_{gy}) della velocità di distacco v_g come:

		GRE CODE				
CCCI		GRE.EEC.R.73.IT.W.14180.05.027.01				
	Stantec (PAGE				
Green Power	•	12 di/of 15				
Engineering & Construction		12 0/01 15				

$$v_{qx} = v_q \sin \vartheta$$
; $v_{qy} = v_q \cos \vartheta$ (4.4)

Sono state quindi definite le condizioni iniziali del distacco di pala. È necessario ora, a partire dalle equazioni di moto (4.1), ottenere i valori di Tempo di volo (T) e Gittata (L) definiti sul baricentro della pala distaccata.

Imponendo y(t) = 0 nell'equazione 4.1, condizione a cui corrisponde il raggiungimento a terra del corpo dopo il volo, e avendo definito le condizioni iniziale nelle equazioni 4.3 e 4.4, si possono calcolare quindi <u>la gittata *L* e il tempo di volo *T*:</u>

$$\begin{cases} L = x_o + v_{gx}T \\ 0 = y_o + v_{gy}T - \frac{1}{2}gT^2 \end{cases}$$
(4.5)

Risolvendo la seconda equazione di secondo grado nella variabile T e trascurando i risultati dell'equazione che evidenziano tempi negativi, si può quindi ottenere il valore del tempo di volo T, pari a:

$$T[s] = \frac{v_{gy} + \sqrt{v_{gy}^2 + 2gy_0}}{g} = \frac{v_g \cos \vartheta + \sqrt{(v_g \cos \vartheta)^2 + 2g \cdot (H_m + r_g \sin \vartheta)}}{g} \quad (4.6)$$

Definito il tempo di volo T, dalla prima equazione (4.5), si ottiene quindi la gittata L, definita nel baricentro di pala:

$$L[m] = x_o + v_{gx}T = -r_g\cos\vartheta + v_g\sin\vartheta \cdot \left(\frac{v_g\cos\vartheta + \sqrt{(v_g\cos\vartheta)^2 + 2g\cdot(H_m + r_g\sin\vartheta)}}{g}\right) (4.7)$$

Ottenuta la gittata nel baricentro di pala *L*, per ottenere la gittata al "tip" della pala, è sufficiente sommare i restanti 2/3 della lunghezza di pala (ovvero la distanza tra il tip della pala e il raggio baricentrico, rispetto all'origine):

$$L_{tip} = L + (\frac{2}{2} \cdot r_{tip})$$
 (4.8)

Come già evidenziato, tutte le grandezze definite precedentemente dipendono dall'angolo di distacco ϑ , variabile nel tempo. Vengono quindi riportati di seguito un riassunto delle ipotesi di calcolo ed i valori di gittata ottenuti al variare dell'angolo ϑ , al fine di individuare la gittata massima e l'angolo a essa corrispondente.

5.4. RISULTATI

I valori assunti per il calcolo della gittata nella presente analisi sono i seguenti:

- Diametro rotore D_{rotore} = 170 m
- Lunghezza di Pala r_{tip}: 83,5 m;
- Altezza mozzo H_m: 115 m;
- Numero di giri n: 8,8 rpm;
- Raggio baricentrico $r_g:$ 29,33 (distanza tra centro mozzo e 1/3 della lunghezza di pala)

GRE.EEC.R.73.IT.W.14180.05.027.01

PAGE

13 di/of 15

Engineering & Construction

Sono	riportati	di	seguito	i	valori	ottenuti	di	gittata	massima,	al	variare	dell'angolo	di
distac	со θ:												

Stantec

Angolo	Posizion baric	e iniziale entro	Compor	enti v _g	Tempo di	Gittata L	Gittata @ tip
[°]	×o	xo yo		v _{gy} [m/s]	Volo T [s]	[m]	L _{tip} [m]
0	-29,33	115,00	0,00	27,03	8,33	-29,33	26,33
5	-29,22	117,56	2,36	26,93	8,36	-9,53	46,14
10	-28,89	120,09	4,69	26,62	8,36	10,34	66,01
15	-28,33	122,59	7,00	26,11	8,33	29,91	85,58
20	-27,56	125,03	9,25	25,40	8,26	48,83	104,50
25	-26,59	127,40	11,42	24,50	8,17	66,78	122,45
30	-25,40	129,67	13,52	23,41	8,05	83,46	139,13
35	-24,03	131,82	15,50	22,14	7,91	98,64	154,30
40	-22,47	133,86	17,38	20,71	7,75	112,11	167,77
45	-20,74	135,74	19,11	19,11	7,56	123,73	179,40
50	-18,86	137,47	20,71	17,38	7,35	133,42	189,09
55	-16,82	139,03	22,14	15,50	7,13	141,15	196,81
60	-14,67	140,40	23,41	13,52	6,90	146,92	202,59
65	-12,40	141,59	24,50	11,42	6,66	150,81	206,48
70	-10,03	142,56	25,40	9,25	6,42	152,93	208,59
75	-7,59	143,33	26,11	7,00	6,17	153,40	209,07
80	-5,09	143,89	26,62	4,69	5,92	152,39	208,06
85	-2,56	144,22	26,93	2,36	5,67	150,07	205,74
90	0,00	144,33	27,03	0,00	5,42	146,63	202,30
95	2,56	144,22	26,93	-2,36	5,19	142,25	197,92
100	5,09	143,89	26,62	-4,69	4,96	137,10	192,77
105	7,59	143,33	26,11	-7,00	4,74	131,34	187,01
110	10,03	142,56	25,40	-9,25	4,53	125,11	180,78
115	12,40	141,59	24,50	-11,42	4,33	118,55	174,21
120	14,67	140,40	23,41	-13,52	4,15	111,75	167,41
125	16,82	139,03	22,14	-15,50	3,97	104,80	160,47
130	18,86	137,47	20,71	-17,38	3,81	97,78	153,44
135	20,74	135,74	19,11	-19,11	3,66	90,73	146,39
140	22,47	133,86	17,38	-20,71	3,52	83,69	139,36
145	24,03	131,82	15,50	-22,14	3,40	76,70	132,37
150	25,40	129,67	13,52	-23,41	3,28	69,76	125,43
155	26,59	127,40	11,42	-24,50	3,18	62,89	118,56
160	27,56	125,03	9,25	-25,40	3,08	56,08	111,75
165	28,33	122,59	7,00	-26,11	3,00	49,34	105,00
170	28,89	120,09	4,69	-26,62	2,93	42,64	98,31
175	29,22	117,56	2,36	-26,93	2,87	35,98	91,64
180	29,33	115,00	0,00	-27,03	2,82	29,33	85,00

Dall'analisi si può evidenziare che la massima gittata si ottiene per un angolo di distacco ϑ pari a 75° ed è pari a 209,07 m.

Si riporta di seguito il grafico che mostra la gittata al "tip" in funzione dell'angolo di distacco:

Figura 4-3: Gittata al tip vs. angolo di distacco

GRE.EEC.R.73.IT.W.14180.05.027.01

PAGE

15 di/of 15

Engineering & Construction

6. CONCLUSIONI

Di seguito viene riportata l'analisi degli elementi sensibili all'eventuale rottura di una pala dell'impianto in progetto.

In particolare, per ciascuna delle posizioni proposte degli aerogeneratori di nuova costruzione si riporta in tabella la distanza del ricettore sensibile "RC" più vicino (unità abitativa) e la distanza dalla strada provinciale più vicina.

Aerogeneratore	Distanza da recettore sensibile (RC) più vicino	Distanza da strada provinciale più vicina			
MB-01	420 metri (da RC 18)				
MB-02	480 metri (da RC 19)	>500 metri			
MB-03	>500 metri				
MB-04	>500 metri				
MB-05	>500 metri				
MB-06	>500 metri				

<u>Come visibile dalla tabella tutti gli aerogeneratori si trovano a distanze dagli elementi sensibili superiori rispetto alla gittata massima.</u>

Inoltre, le numerose ipotesi semplificative di calcolo rispetto al caso reale causano anche un aumento del valore reale di gittata massima.

Infine, la probabilità che il rotore, distaccandosi, percorra esattamente la direzione ottimale per l'impatto con l'elemento sensibile è molto bassa e garantisce una riduzione del rischio a priori.