

Direzione Progettazione e Realizzazione Lavori

Completamento della Tangenziale di Vicenza 1º Stralcio Completamento

PROGETTO DEFINITIVO

PROGETTAZIONE: ANAS DPRL

I PROGETTISTI:

ing. Antonio Scalamandré Ordine Ing. di Frosinone n.1063

ing. Angela Maria Carbone Ordine Ing. di Roma n. 35599

IL GEOLOGO:

geol. Serena Majetta Ordine Geol. del Lazio n.928

IL RESPONSABILE DEL SIA:

arch. Giovanni Magarò Ordine Arch. di Roma n.16183

IL COORDINATORE PER LA SICUREZZA IN FASE DI PROGETTAZIONE:

geom. FABIO QUONDAM

VISTO: IL RESPONSABILE DEL PROCEDIMENTO:

ing. Anna Maria Nosari

PROTOCOLLO

DATA

ASSISTENZA AL GRUPPO DI PROGETTAZIONE ANAS

ing. FILIPPO VIARO Ordine Ing. di Parma n. 827A

ing. PIER PAOLO CORCHIA Ordine Ing. di Parma n. 751A

arch. SERGIO BECCARELLI Ordine Arch. di Parma n. 377 - Strade e Idraulica

- Strutture

- Ambiente

GEOTECNICA

Relazione geotecnica generale

CODICE PROGETTO PROGETTO LIV. PROG. N. PROG. DPVE08 D 1401		NOME FILE TOOEGOOGETRE01A		REVISIONE	SCALA:	
		CODICE TOO EGOOGET REO 1		A		
С						
В						
А	EMISSIONE		Maggio 2018			
REV.	DESCRIZIONE		DATA	REDATTO	VERIFICATO	APPROVATO

GEOTECNICA Relazione Geotecnica Generale

T00GE00GETRE01- A

Relazione Geotecnica Generale

SOMMARIO

1 PREMESSE	3
2 RIFERIMENTI: NORMATIVE, DOCUMENTI E BIBLIOGRAFIA	4
2.1 DOCUMENTI	4
2.2 RIFERIMENTI BIBLIOGRAFICI	4
2.3 NORMATIVE DI RIFERIMENTO	4
3 INQUADRAMENTO GENERALE	6
3.1 INQUADRAMENTO DELL'OPERA	6
3.2 INQUADRAMENTO GEOLOGICO GENERALE	6
4 INDAGINI GEOTECNICHE	8
4.1 CAMPAGNA D'INDAGINI GEOGNOSTICA 2013	8
4.2 CAMPAGNA D'INDAGINI GEOGNOSTICA 2014	8
4.3 CAMPAGNA D'INDAGINI GEOGNOSTICA 2018	8
4.3.1 Sondaggi geognostici	9
4.3.2 PROVE SPT	9
4.3.3 PROVE PENETROMETRICHE STATICHE	10
4.3.4 PRELIEVO CAMPIONI E PROVE DI LABORATORIO	10
4.3.5 PROVE SISMICHE	12
4.3.6 RILIEVO PIEZOMETRICO	13
5 CARATTERIZZAZIONE GEOTECNICA DEI TERRENI	14
5.1 DEFINIZIONE DELLE UNITA' GEOTECNICHE	14
5.1.1 INTERPRETAZIONE DELLE INDAGINI GEOTECNICHE	14
5.1.1.1 PROVE PENETROMETRICHE DINAMICHE	15
5.1.1.2 PROVE PENETROMETRICHE STATICHE CON PIEZOCONO (CPTU) E CONO SISMICO (SCPTU)	19
5.1.1.3 PROVE DI LABORATORIO	25
5.2 QUADRO DI SINTESI CARATTERISTICHE GEOTECNICHE	27
6 ANALISI DEI CEDIMENTI DEI RILEVATI	28
6.1 METODO DI CALCOLO DEI CEDIMENTI	28

Completamento della tangenziale di Vicenza – 1° Stralcio

T00GE00GETRE01- A

Relazione Geotecnica Generale

6.1.1	decorso dei cedimenti nel tempo	29
6.2 CALC	OLO DEI CEDIMENTI DEI RILEVATI	33
7 AN	IALISI DI STABILITA'	41
7.1 METC	DDO DI CALCOLO	41
7.2 CARIO	CHI	43
7.3 RISUL	_TATI	43
ALLEGATI		

1 PREMESSE

Nel presente documento vengono affrontati gli aspetti geotecnici del progetto definitivo "Completamento della Tangenziale di Vicenza – I Stralcio – Completamento".

Il tracciato di progetto si sviluppa con andamento circa EW dallo svincolo della S.P. 26 fino alla bretella di collegamento alla base militare DIN, in corrispondenza dell'attraversamento del fiume Bacchiglione.

La caratterizzazione geotecnica sviluppata in questa Relazione rappresenta il quadro di riferimento rispetto al quale sono state effettuate le verifiche geotecniche delle opere, per le quali si rimanda alle specifiche relazioni di calcolo.

Le azioni sismiche di progetto sono state definite a partire dalla pericolosità sismica di base dei siti interessati in accordo con quanto previsto dal D.M. 14 gennaio 2018 e con riferimento all'elaborato di progetto specifico (Relazione Sismica).

RIFERIMENTI: NORMATIVE, DOCUMENTI E BIBLIOGRAFIA 2

Erdbaumechanik Wien, Edit. H. Brandl.

2.1 DOCUMENTI

[Rif. 1]	Relazione geologica, geomorfologica ed idrogeologica generale – T00GE01GEORE01
[Rif. 2]	Relazione sismica- T00GE00GETRE02
[Rif. 3]	Profilo geotecnico – T00GE00GETFG01

2.2 RIFERIMENTI BIBLIOGRAFICI

[Rif. 4]	Viggiani C "Fondazioni" – Hevelius Edizioni
[Rif. 5]	Lancellotta R. "Geotecnica" - Zanichelli
[Rif. 6]	Bruschi A. "Prove geotecniche in situ" – Dario Flaccovio Editore
[Rif. 7]	Mancuso C, "Misure dinamiche in sito" – Hevelius Edizioni
[Rif. 8]	Jamiolkowski M., Ghionna V.N., Lancellotta R., Pasqualini E. (1988) "New correlations of pene-
	tration tests for design practice" Proceedings of I International Symposium on Penetration
	Testing, ISOPT I, Orlando.
[Rif. 9]	Jamiolkowski, M., Lo Presti, D.C.F. and Garizio, G.M. (2001). "Correlation between Relative Den-
	sity and Cone Resistance for Silica Sands". Jubilee Volume 75 th Anniversary of K. Terzaghi's.

- [Rif. 10] Reese L.C., Cox W.R., Koop F.D. (1974) "Analysis of laterally loaded piles in sand"Proc. VI Offshore Technology Conference, OTC 2080, Houston, Texas.
- [Rif. 11] Stroud M.A. (1974) "The standard penetration test in insensitive clays and soft rocks" Proceedings ESOPT I.
- [Rif. 12] Stroud M.A. (1988) "The Standard Penetration Test – Its application and interpretation" Penetration Testing in UK, Proceedings of the Geotechnical Conference organized by ICE, Birmingham.

2.3 NORMATIVE DI RIFERIMENTO

[Rif. 13]	DM 14.01.2008, "Norme Tecniche per le Costruzioni"
[Rif. 14]	Circ. Min. II. TT. 02.02.2009, n. 617, "Istruzioni per l'applicazione delle Nuove norme tecniche
	per le costruzioni di cui al decreto ministeriale 14.01.2008"
[Rif. 15]	Raccomandazioni AGI Giugno 1977, "Programmazione ed esecuzione delle indagini geotec-
	niche"

[Rif. 16]	Raccomandazioni AGI maggio 1994 "Raccomandazioni sulle prove geotecniche di laborato-
	rio"
[Rif. 17]	Linee guida AGI 2005 "Aspetti geotecnici della progettazione in zona sismica"
[Rif. 18]	UNI EN 1997-1:2005 "Eurocodice 7 - Progettazione geotecnica - Parte 1: Regole generali"
[Rif. 19]	UNI EN 1998-5:2005 "Eurocodice 8 - Progettazione delle strutture per la resistenza sismica -
	Parte 5: Fondazioni, strutture di contenimento ed aspetti geotecnici"

3 INQUADRAMENTO GENERALE

3.1 INQUADRAMENTO DELL'OPERA

La porzione di territorio interessata dal tracciato stradale in oggetto ricade interamente nella provincia di Vicenza e si sviluppa nel settore settentrionale dell'area urbana di Vicenza.

Il tracciato ricade nel territorio comunale di Vicenza, ad eccezione del tratto in cui è prevista la rotatoria con viabilità di accesso alla base militare del DIN che è di pertinenza comunale di Caldogno.



Figura 1. Inquadramento del tracciato stradale di progetto (in rosso)

3.2 INQUADRAMENTO GEOLOGICO GENERALE

Rimandando alla Relazione Geologica di progetto per maggiori dettagli, nel seguito si delineano brevemente i caratteri geologici dell'area.

Il territorio appartiene al potente materasso alluvionale padano-veneto costituito, alla base, da sedimenti di formazione marina (sabbie, marne e argille) depositatesi nel Quaternario Antico o Pleistocene inferiore. Con il Pleistocene Medio iniziano a formarsi i più antichi depositi di tipo continentale contemporaneamente alla fusione dei ghiacciai e delle glaciazioni Donau e Gunz. Fenomeni di subsidenza, oscillazioni eustatiche, movimenti tettonici legati alle ultime fasi dell'orogenesi alpina determinarono il definitivo instaurarsi di un ambiente continentale, caratterizzato da un potente accumulo di materiali detritici fluvioglaciali e fluviali.

Nell' inquadramento generale (estratto da studio geologico del PAT di Vicenza), il territorio presenta a sud di Vicenza una zona di rilievi collinari appartenenti alle propaggini più settentrionali dei Monti Berici costituiti da calcari, calcareniti, arenarie e marne oligoceniche-eoceniche con inclusioni vulcanitiche basaltiche appartenenti al sistema eruttivo oligocenico-paleocenico degli Euganei-Berici_Lessini. A nord di Vicenza, settore in cui ricade il tracciato di progetto, si estende una zona di pianura che appartiene al dominio delle alluvioni recenti e antiche del sistema Bacchiglione-Tesina-Astichello, depositate dai fiumi a seguito del trasporto dei sedimenti lungo la piana corrispondente alla media Pianura Veneta.

Le glaciazioni quaternarie sono state interessate da numerosi oscillazione termiche minori che hanno causato un'alternanza di progressioni e regressioni del fronte glaciale. Nel territorio in studio sono presenti i depositi delle fasi Rissiana e Rissiana Antica. I depositi allineati secondo cerchie aventi convessità rivolta verso la pianura sono stati rimodellati e parzialmente smantellati a più riprese durante i periodi interglaciali da imponenti scaricatori glaciali che corrispondevano approssimativamente agli attuali percorsi dei maggiori fiumi, asportando materiale sciolto per poi trasportarlo verso sud dove, depositato, ha dato luogo a vasti terrazzi degradanti verso le zone di media pianura.

Nell'ambito della pianura a nord di Vicenza entro cui si sviluppa il tracciato in progetto, caratterizzata dalla presenza di un materasso alluvionale differenziato e collocata a sud della "Fascia delle risorgive", i terreni quaternari sono costituiti da materiali detritici continentali di deposito fluvioglaciale/alluvionale, molto variabili dal punto di vista granulometrico e tessiturale, geneticamente legati alla sovrapposizione ed interdigitazione delle conoidi subalpine dei principali corsi d'acqua ed alle loro divagazioni nell'area di pianura.

Dal punto di vista geologico, quindi, l'area è caratterizzata dalla presenza dei sedimenti di origine fluviale e fluvioglaciale tipici della media Pianura Veneta. Il sottosuolo dell'alta e media pianura è costituito prevalentemente da grandi conoidi ghiaiosi deposti dai corsi d'acqua prealpini allo sbocco dalle vallate montane. Nella fascia di alta pianura, a ridosso dei rilievi prealpini, i differenti conoidi sono tra loro sovrapposti, a causa dell'ampia divagazione dei fiumi, determinando un sottosuolo pressoché ghiaioso, indifferenziato anche per qualche centinaio di metri. A valle, nella media pianura, i conoidi di differente età non sono sovrapposti tra loro ma risultano nettamente separati da spessi livelli limoso-argillosi che arrivano quasi ad avvolgere i conoidi stessi; il sottosuolo mostra una struttura stratigrafica caratterizzata da alternanza di livelli alluvionali ghiaiosi con livelli limoso-argillosi, per spessori di centinaia di metri.

Il sottosuolo nel territorio studiato è quindi caratterizzato da una serie sedimentaria alluvionale, costituita da una potente successione di limi ed argille prevalenti, all'interno della quale si intercalano in profondità orizzonti e lenti più grossolane sabbioso-ghiaiose. La serie è riferibile ad ambienti di sedimentazione fluviali di bassa energia, con frequenti condizioni palustri o marine, e con temporanei e localizzati episodi fluviali o torrentizi d'energia maggiore.

4 INDAGINI GEOTECNICHE

Le indagini sulle quali è basata la caratterizzazione geotecnica, contenuta nella presente relazione, sono relative a più campagne d'indagine che si sono succedute nel corso dei vari livelli di progettazione:

4.1 CAMPAGNA D'INDAGINI GEOGNOSTICA 2013

La campagna di indagine geognostica del 2013 è stata così articolata:

• n.4 prove CPTU

4.2 CAMPAGNA D'INDAGINI GEOGNOSTICA 2014

La campagna di indagine geognostica del 2014 è stata così articolata:

• n.8 pozzetti esplorativi.

4.3 CAMPAGNA D'INDAGINI GEOGNOSTICA 2018

La campagna di indagine geognostica del 2018 è stata così articolata:

- n.3 sondaggi geotecnici verticali a carotaggio continuo (S1_D_DH S2_D_PZ S3_D_PZ) finalizzati alla definizione della sequenza stratigrafica, con n. 14 prove SPT in foro e prelievo di n. 8 campioni indisturbati e n. 6 campioni rimaneggiati da sottoporre a prove di laboratorio geotecnico
- condizionamento del foro di sondaggio S1_D_DH (prof. 20 m dal p.c.) con tubazione cieca in PVC da 3" per la realizzazione della prova down-hole
- condizionamento dei fori di sondaggio S2_D_PZ e S3_D_PZ (prof. 25 m dal p.c.) con piezometro a tubo aperto in PVC da 2" attestati rispettivamente a 7.70 e 20 m dal p.c.
- n. 2 prove CPTU e n. 1 prova S-CPTU
- n. 1 prova simica down-hole
- n. 2 indagini sismiche MASW E n. 1 indagine simica a rifrazione

L'ubicazione delle indagini eseguite è riportata nella "Planimetria ubicazione indagini" (T00GE00GEOPU01A-01). Rimandando agli elaborati T00GE00GEORE05A "Documentazione indagini geognostiche", T00GE00GEORE06A "Documentazione prove di laboratorio" e T00GE00GEORE07A "Documentazione indagini geofisiche" si riporta di seguito una sintesi delle indagini realizzate.

4.3.1 SONDAGGI GEOGNOSTICI

Sondaggio	Quota (m s.l.m.)	Profondità (m dal p.c.)
S1_D_DH	40.0	20
S2_D_PZ	37.6	25
S3_D_PZ	38.7	25

I 3 sondaggi geotecnici hanno intercettato, per gran parte della verticale investigata, depositi costituiti da un'alternanza di limo argilloso-sabbioso e sabbia limosa. Sono stati inoltre rinvenuti locali livelli di ghiaia in scarsa matrice sabbioso-limosa (2.2-3.9 m dal p.c. in S1_D_DH, 5.2-5.8 m dal p.c. in S2_D_PZ e 3,9-7.1 m dal p.c. in S3_D_PZ). La sequenza stratigrafica è chiusa, in corrispondenza di tutti i sondaggi eseguiti, da uno strato di terreno vegetale dello spessore massimo di circa 1.00 m

4.3.2 PROVE SPT

Nel corso della realizzazione dei sondaggi geotecnici S1_D_DH, S2_D_PZ e S3_D_PZ sono state realizzate le seguenti prove SPT in foro:

Sondaggio	Profondità(m dal p.c.)	N° colpi
	1.50-1.95	3/4/3
S1_D_DH	5.50-5.95	2/2/3
31_0_011	12.00-12.45	3/2/3
	16.00-16.45	5/7/8
	5.00-5.45	4/4/5
	8.30-8.75	2/3/2
S2_D_PZ	13.50-13.95	4/5/5
	16.00-16.45	3/4/5
	20.00-20.45	5/4/6
	5.70-6.00	28/R
	12.00-12.45	3/2/3
S3_D_PZ	15.00-15.45	5/7/7
	19.00-19.45	6/7/8
	22.00-22.45	7/9/11

4.3.3 PROVE PENETROMETRICHE STATICHE

Lungo il tracciato di progetto sono state realizzate n. 3 prove penetrometriche statiche CPTU. Nella prova denominata S-CPTU03 è stato inserito un piezocono sismico fornito di accelerometri che ha permesso l'acquisizione delle onde sismiche di taglio. A quote prefissate è stata arrestata la penetrazione della punta e sono state eseguite prove di dissipazione delle sovrappressioni nel tempo.

Rimandando all'elaborato T00GE00GEORE05A "Documentazione indagini geognostiche" per le relative schede e grafici, si riporta di seguito l'elenco delle prove penetrometriche realizzate e la sintesi dei risultati.

Prove penetrometriche statiche

Sigla	Est	Nord	Quota p.c. (m s.l.m.)	Profondità (m dal p.c.)	n. dissipazioni
CPTU1_D	1 696 211.54	5 050 435.58	39.73	24.80	2
CPTU2_D	1 697 076.08	5 050 473.78	38.06	20.00	2
SCPTU3_D	1 697 262.54	5 050 572.77	38.74	20.00	1

4.3.4 PRELIEVO CAMPIONI E PROVE DI LABORATORIO

Durante la realizzazione dei sondaggi S1_D_DH, S2_D_PZ – S3_D_PZ sono stati prelevati i seguenti campioni da sottoporre alle prove di laboratorio geotecnico:

	e rimaneggiati

campion mastarbatic manegati				
Sondaggio	Campioni indisturbati	Campioni rimaneggiati		
	(m dal p.c.)	(m dal p.c.)		
S1_D_DH	CI1(7.0-7.5)	CR2(0.5 1.0)		
	CI2(10.0-10.5)	CR1(8.0 8.5)		
	CI3(14.5-15.0)			
S2_D_PZ	CI1(3.0-3.4)	CR2(0.5-1.0)		
	CI2(11.2-11.7)	CR3(14.0-14.5)		
		CR1(15.5-16.0)		
S3_D_PZ	CI1(3.0-3.5)	CR1(20.5 21.0)		
	CI2(7.5-8.0)			
	CI3(17.0-17.5)			

Dei campioni prelevati sono stati analizzati quelli indicati dalla Committenza effettuando le seguenti determinazioni:

- caratteristiche generali: contenuto d'acqua (W), peso specifico dei grani (γ_s), peso di volume naturale (γ_n), peso di volume secco (γ_d), porosità (n), indice dei vuoti (e), grado di saturazione (S_r);
- curva granulometrica mediante analisi granulometrica per setacciatura e/o sedimentazione;

- limiti di Atterberg;
- angolo d'attrito interno e coesione mediante prove di taglio consolidata non drenata CIU;
- coesione non drenata mediante prova triassiale UU;
- prova di compressione edometrica;

Di seguito si riportano le tabelle contenenti i risultati delle prove di laboratorio geotecnico, la prima relativa ai campioni indisturbati e rimaneggiati e la seconda ai campioni prelevati nei pozzetti, rimandando per i relativi certificati all'elaborato T00GE00GEORE07A (Documentazione prove di laboratorio geotecnico).

Sigla campione	Sigla di Iaboratorio	Profondità di	prelievo (m)	Peso di volume naturale γη (KN/m3)	Peso volume del secco yd (KN/m3)	Contenuto d'acqua W (%)	Peso specifico dei grani	Porosità n (%)	Indice dei vuoti (-)	Grado di saturazione G (%)			Distribuzione granulometrica (%)					Limiti di Atterberg (%)			Contenuto in sostanza organica	Prova di taglio	drenata CIU	Prova triassiale UU	Prova di	compressibilità edometrica
		da	a								Argilla	Limo	Sabbia	Ghiaia	Ciottoli	WL	WP	IP	IC	IL	%	Angolo di attrito (°)	Coesione (KPa)	Cu media (kPa)	Modulo edometrico E _{ed} (MPa)	Coefficiente di compressibilità mv (MPa)
SIDDH-CII	T.476/18	7,00	7,50	17,27	12,64	36,59	2,59	51,13	1,05	90,47	31,00	58,00	11,00	0,00	0,00	40,20	23,16	17,04	0,2	0,79					1,6	6,1E-01
S1 D DH - C12	T.477/18	10,00	10,50	19,59	15,56	25,94	2,73	42,93	0,75	93,88	18,00	53,00	29,00	0,00	0,00	37,40	22,12	15,28	0,75	0,25				148,835	13,6	7,36E-02
SI D DH - CI3	T.478/18	14,50	15,00	18,28	13,81	32,43	2,6	46,79	0,88	95,57	29,00	53,00	16,00	2,00	0,00	34,50	18,75	15,75	0,13	0,87		30,33	25,62		5,2	1,92E-01
S1 D DH - Crl	T.479/18	0,50	1,00				2,59				27,00	40,00	31,00	2,00	0,00	60,00	36,58	23,42								
S1 D DH - Cr2	T.480/18	8,00	8,50				2,65				21,00	46,00	31,00	2,00	0,00	41,00	25,63	15,37								
S2 D Pz - CI1	T.481/18	3,00	3,40	19,63	15,76	24,57	2,7	41,58	0,71	93,11	24,00	44,76	30,24	1,00	0,00	53,20	27,04	26,16	1,09	-0,09					1,7	5,89E-01
S2 D Pz - CI2	T.482/18	11,20	11,70	19,79	16,41	20,6	2,56	35,88	0,56	94,23	38,50	48,50	13,00	0,00	0,00	44,80	22,06	22,74	1,06	-0,06	3,66	28,82	30,03			
S2 D Pz - Crl	T.483/18	0,50	1,00				2,67				27,00	54,00	18,00	1,00	0,00	61,60	36,60	25,00								
S2 D Pz - Cr2	T.484/18	14,00	14,50								40,00	48,00	12,00	0,00	0,00	48,70	26,18	22,52								
S2 D Pz - Cr3	T.485-18	15,50	16,00	18,48	14,00	32,17	2,69				6,00	56,00	38,00	0,00	0,00	n.d.	n.d.	n.d.				32,86	18,66			
S3 D Pz - CII	T.486/18	3,00	3,50	17,57	13,07	34,43	2,65	50,72	1,03	88,72	7,00	35,00	58,00	0,00	0,00	n.d.	n.d.	n.d.							4,2	2,35E-01
S3 D Pz - CI2	T.487/18	7,50	8,00	18,6	14,59	27,52	2,51	41,96	0,72	95,67	30,00	42,00	28,00	0,00	0,00	51,50	27,86	23,64	1,01	-0,01				46,011	2,40	4,09E-01
S3 D Pz - CI3	T.488/18	17,00	17,50	19,10	15,33	24,72	2,62	41,57	0,72	90,43	13,00	71,00	16,00	0,00	0,00	32,50	20,52	11,98	0,65	0,35					12,50	7,99E-02
S3 D Pz - Crl	T.489/18	20,50	21,00				2,71				19,00	65,00	16,00	0,00	0,00	30,00	21,49	8,51								
Sigla campione	Sigla di Iaboratorio	Profondità di	prelievo (m)	Peso di volume naturale γn (KN/m3)	Peso volume del secco yd (KN/m3)	Contenuto d'acqua W (%)	Peso specifico dei grani	Porosità n (%)	Indice dei vuoti e (-)	Grado di saturazione G (%)			Distribuzione granulometrica (%)					Limiti di Atterberg (%)			Contenuto in sostanza organica	Prova di taglio	drenata CIU	Prova triassiale UU		compressibilità edometrica
Sigla campion	Sigla di Iaboratorio	qa Profondità di	prelievo (m)	Peso di volume naturale yn (KN/m3)	Peso volume del secco 7d (KN/m3)	Contenuto d'acqua W (%)	Peso specifico dei grani	Porosità n (%)	Indice del vuoti e (-)	Grado di saturazione G (%)	Argilla	Limo	S Distribuzione granulometrica (%)	Ghisia	Ciettoli	WL	WP	Limiti di 石Herberg (%)	IC	m.	Contenuto in sostanza organica		Coesione (KPa)	Co media (kPa)	Modulo	Coefficiente di
SIDDH-CII				Peso di volume naturale yn (KN/m3)	Peso volume del (Km/m) y cosas del (Km/m) p cosas del (Km/m) del (Contenuto 6'99 d'acqua W (%)	Peso specifico dei grani	Porosità n (%)	Indice del vuoti e	Grado di Saturazione G (%)	Argilla 31,00	Limo 58,00		Ghisia	Ciettoli 0,00	WL 40,20	WP 23,16		IC 0,2	п.		Angolo di	Coesione	Cu media	Modulo edometrico F _{rd}	Coefficiente di compressibilità my
	T.476/18	da	a										Sabbia				23,16	IP				Angolo di	Coesione	Cu media	Modulo edometrico E _{ed} (MPa)	Coefficiente di compressibilità mv (MPa)
SI D DH - CII	T.476/18 T.477/18	da 7,00 10,00	a 7,50	17,27	12,64 15,56	36,59	2,59	51,13	1,05	90,47	31,00	58,00	Sabbia	0,00	0,00	40,20	23,16 22,12	IP 17,04	0,2	0,79		Angolo di	Coesione	Cu media (kPa)	Modulo edometrico E _{ed} (MPa) 1,6	Coefficiente di compressibilità mv (MPs) 6,1E-01
SI D DH - CII SI D DH - CI2	T.476/18 T.477/18 T.478/18	da 7,00 10,00	a 7,50 10,50	17,27 19,59	12,64 15,56	36,59 25,94	2,59 2,73	51,13 42,93	1,05	90,47 93,88	31,00 18,00	58,00 53,00	Sabbia 11,00 29,00	0,00	0,00	40,20 37,40	23,16 22,12 18,75	IP 17,04 15,28	0,2	0,79 0,25		Angolo di attrito (°)	Coesione (KPa)	Cu media (kPa)	Modulo edometrico E _{ed} (MPa) 1,6 13,6	Coefficiente di compressibilità mv (MPa) 6,1E-01 7,36E-02
SI D DH - CII SI D DH - CI2 SI D DH - CI3	T.476/18 T.477/18 T.478/18 T.479/18	da 7,00 10,00 14,50	a 7,50 10,50 15,00	17,27 19,59	12,64 15,56	36,59 25,94	2,59 2,73 2,6	51,13 42,93	1,05	90,47 93,88 95,57	31,00 18,00 29,00	58,00 53,00 53,00	Sabbia 11,00 29,00 16,00	0,00 0,00 2,00	0,00 0,00 0,00	40,20 37,40 34,50	23,16 22,12 18,75 36,58	17,04 15,28 15,75	0,2	0,79 0,25		Angolo di attrito (°)	Coesione (KPa)	Cu media (kPa)	Modulo edometrico E _{ed} (MPa) 1,6 13,6	Coefficiente di compressibilità mv (MP4) 6,1E-01 7,36E-02 1,92E-01
SI D DH - CII SI D DH - CI2 SI D DH - CI3 SI D DH - CrI	T.476/18 T.477/18 T.478/18 T.479/18 T.480/18	da 7,00 10,00 14,50 0,50	a 7,50 10,50 15,00 1,00	17,27 19,59	12,64 15,56	36,59 25,94	2,59 2,73 2,6 2,59	51,13 42,93	1,05	90,47 93,88	31,00 18,00 29,00 27,00	58,00 53,00 53,00 40,00	Sabbia 11,00 29,00 16,00 31,00	0,00 0,00 2,00 2,00	0,00 0,00 0,00 0,00	40,20 37,40 34,50 60,00	23,16 22,12 18,75 36,58	IP 17,04 15,28 15,75 23,42	0,2	0,79 0,25		Angolo di attrito (°)	Coesione (KPa)	Cu media (kPa)	Modulo edometrico E _{ed} (MPa) 1,6 13,6	Coefficiente di compressibilità mv (MPa) 6,1E-01 7,36E-02
SI D DH - CII SI D DH - CI2 SI D DH - CI3 SI D DH - CI3 SI D DH - CI2 SI D DH - CI2 SI D DH - CI2 SI D PZ - CII	T.476/18 T.477/18 T.478/18 T.479/18 T.480/18 T.481/18 T.482/18	da 7,00 10,00 14,50 0,50 8,00 3,00	a 7,50 10,50 15,00 1,00 8,50	17,27 19,59 18,28	12,64 15,56 13,81	36,59 25,94 32,43	2,59 2,73 2,6 2,59 2,65 2,7 2,56	51,13 42,93 46,79	1,05 0,75 0,88	90,47 93,88 95,57	31,00 18,00 29,00 27,00 21,00	58,00 53,00 53,00 40,00 46,00	Sabbia 11,00 29,00 16,00 31,00	0,00 0,00 2,00 2,00 2,00	0,00 0,00 0,00 0,00	40,20 37,40 34,50 60,00 41,00	23,16 22,12 18,75 36,58 25,63	17,04 15,28 15,75 23,42 15,37	0,2 0,75 0,13	0,79 0,25 0,87		Angolo di attrito (°)	Coesione (KPa)	Cu media (kPa)	Modulo edometrico E _{nd} (MPa) 1,6 13,6 5,2	Coefficiente di compressibilità my (MPa). 6,1E-01 7,36E-02 1,92E-01
\$1 DDH - CT1 \$1 DDH - CT2 \$1 DDH - CT2 \$1 DDH - CT3 \$1 DDH - CT4 \$1 DDH - CT2 \$2 DPz - CT1 \$2 DPz - CT1	T.476/18 T.477/18 T.478/18 T.479/18 T.480/18 T.481/18 T.482/18 T.482/18	da 7,00 10,00 14,50 0,50 8,00 3,00 11,20	a 7,50 10,50 15,00 1,00 8,50 3,40	17,27 19,59 18,28	12,64 15,56 13,81	36,59 25,94 32,43 24,57	2,59 2,73 2,6 2,59 2,65 2,7	51,13 42,93 46,79	1,05 0,75 0,88	90,47 93,88 95,57	31,00 18,00 29,00 27,00 21,00 24,00	58,00 53,00 53,00 40,00 46,00 44,76	Sabbia 11,00 29,00 16,00 31,00 31,00 30,24	0,00 0,00 2,00 2,00 2,00 1,00	0,00 0,00 0,00 0,00 0,00	40,20 37,40 34,50 60,00 41,00 53,20	23,16 22,12 18,75 36,58 25,63 27,04	17,04 15,28 15,75 23,42 15,37 26,16	0,2 0,75 0,13	0,79 0,25 0,87	*	Angolo di attrito (°)	Coesione (KPa)	Cu media (kPa)	Modulo edometrico E _{nd} (MPa) 1,6 13,6 5,2	Coefficiente di compressibilità my (MPa). 6,1E-01 7,36E-02 1,92E-01
SI DDH-CI3 SI DDH-CI3 SI DDH-CI3 SI DDH-CI3 SI DDH-CI3 SI DDH-C2 SI DDH-C2 SI DDH-C2 SI DDH-C2 SI DDH-C2 SI DDH-C3 SI DDH-C3 SI DDH-C4 SI DDH-C4 SI DDH-C4 SI DDH-C4 SI DDH-C4 SI DDH-C4 SI DH-C4 SI DH-C4 SI DH-C4 SI DH-C4	T.476/18 T.477/18 T.478/18 T.479/18 T.480/18 T.481/18 T.482/18 T.483/18 T.483/18	da 7,00 10,00 14,50 0,50 8,00 11,20 0,50 14,00	a 7,50 10,50 15,00 1,00 8,50 3,40 11,70	17,27 19,59 18,28 19,63 19,79	12,64 15,56 13,81 15,76	36,59 25,94 32,43 24,57 20,6	2,59 2,73 2,6 2,59 2,65 2,7 2,56 2,67	51,13 42,93 46,79	1,05 0,75 0,88	90,47 93,88 95,57	31,00 18,00 29,00 27,00 21,00 24,00 38,50 27,00 40,00	58,00 53,00 53,00 40,00 46,00 44,76 48,50	Sabbia 11,00 29,00 16,00 31,00 30,24 13,00	0,00 0,00 2,00 2,00 2,00 1,00 0,00 1,00	0,00 0,00 0,00 0,00 0,00 0,00 0,00	40,20 37,40 34,50 60,00 41,00 53,20 44,80	23,16 22,12 18,75 36,58 25,63 27,04 22,06	17,04 15,28 15,75 23,42 15,37 26,16 22,74 25,00 22,52	0,2 0,75 0,13	0,79 0,25 0,87	*	Angolo di attrito (*) 30,33	Coesione (KPa) 25,62	Cu media (kPa)	Modulo edometrico E _{nd} (MPa) 1,6 13,6 5,2	Coefficiente di compressibilità mv (MP4) 6,1E-01 7,36E-02 1,92E-01
SI DDH-CII SI DDH-CI2 SI DDH-CI3 SI DDH-CI3 SI DDH-CI3 SI DDH-CI4 SI DDH-CI2 SI DPz-CI2 SI DPz-CI2 SI DPz-CI2 SI DPz-CI2 SI DPz-CI3	T.476/18 T.477/18 T.478/18 T.479/18 T.480/18 T.481/18 T.482/18 T.482/18 T.484/18 T.484/18 T.485-18	da 7,00 10,00 14,50 0,50 8,00 11,20 0,50 14,00	a 7,50 10,50 15,00 1,00 8,50 3,40 11,70 1,00 14,50	17,27 19,59 18,28 19,63 19,79	12,64 15,56 13,81	36,59 25,94 32,43 24,57	2,59 2,73 2,6 2,59 2,65 2,7 2,56 2,67	51,13 42,93 46,79 41,58 35,88	1,05 0,75 0,88 0,71 0,56	90,47 93,88 95,57 93,11 94,23	31,00 18,00 29,00 27,00 21,00 24,00 38,50 27,00 40,00 6,00	58,00 53,00 53,00 40,00 46,00 44,76 48,50 54,00	Sabbia 11,00 29,00 16,00 31,00 31,00 30,24 13,00 18,00	0,00 0,00 2,00 2,00 2,00 1,00 0,00	0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,0	40,20 37,40 34,50 60,00 41,00 53,20 44,80 61,60	23,16 22,12 18,75 36,58 25,63 27,04 22,06 36,60	17,04 15,28 15,75 23,42 15,37 26,16 22,74 25,00	0,2 0,75 0,13	0,79 0,25 0,87	*	Angolo di attrito (°)	Coesione (KPa)	Cu media (kPa)	Modulo edometric F _{ref} (MPa) 1,6 13,6 5,2 1,7	Coefficiente di compressibilità nu (MPa) (MPa) 6.1E-01 7.36E-02 1.92E-01 5,89E-01
SI DDH-CII SI DDH-CI2 SI DDH-CI3 SI DPZ-CI1 SI DPZ-CI3 SI DPZ-CI3 SI DPZ-CI3 SI DPZ-CI3 SI DPZ-CI3	T.476/18 T.477/18 T.478/18 T.479/18 T.480/18 T.481/18 T.482/18 T.483/18 T.484/18 T.484/18 T.485-18	da 7,00 10,00 14,50 0,50 8,00 3,00 11,20 0,50 14,00 15,50 3,00	a 7,50 10,50 15,00 1,00 8,50 3,40 11,70 1,00 14,50 16,00 3,50	17,27 19,59 18,28 19,63 19,79	12,64 15,56 13,81 15,76 16,41	36,59 25,94 32,43 24,57 20,6	2,59 2,73 2,6 2,59 2,65 2,7 2,56 2,67 2,69 2,65	51,13 42,93 46,79 41,58 35,88	1,05 0,75 0,88 0,71 0,56	90,47 93,88 95,57 93,11 94,23	31,00 18,00 29,00 27,00 21,00 24,00 38,50 27,00 40,00 6,00 7,00	58,00 53,00 53,00 40,00 44,76 48,50 54,00 48,00 56,00 35,00	Sabbia 11,00 29,00 16,00 31,00 31,00 31,00 18,00 12,00 38,00 58,00	0,00 0,00 2,00 2,00 1,00 0,00 1,00 0,00 0	0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,0	40,20 37,40 34,50 60,00 41,00 53,20 44,80 61,60 48,70 n.d.	23,16 22,12 18,75 36,58 25,63 27,04 22,06 36,60 26,18 n.d.	17,04 15,28 15,75 23,42 15,37 26,16 22,74 25,00 22,52 n.d. n.d.	0,2 0,75 0,13 1,09 1,06	0,79 0,25 0,87 -0,09 -0,06	*	Angolo di attrito (*) 30,33	Coesione (KPa) 25,62	Cu media (kPa) 148,835	Modulo edometric F _{ref} (MPa) 1,6 13,6 13,6 5,2 1,7	Coefficiente di compressibilità nu (MPa) (MPa) 6.1E-01 7.36E-02 1.92E-01 5,89E-01
SI DDH-CI2 SI DDH-CI2 SI DDH-CI3 SI DDH-C2 SI DPZ-CI3 SI DPZ-CI3 SI DPZ-CI3 SI DPZ-CI3 SI DPZ-CI3	T.476/18 T.477/18 T.478/18 T.478/18 T.480/18 T.480/18 T.482/18 T.483/18 T.483/18 T.483/18 T.485/18 T.485/18 T.485/18	da 7,00 10,00 14,50 0,50 8,00 11,20 0,50 14,00 15,50 3,00 7,50	a 7,50 10,50 15,00 1,00 8,50 3,40 11,70 14,50 16,00 3,50 8,00	17,27 19,59 18,28 19,63 19,79	12,64 15,56 13,81 15,76 16,41 14,00 13,07	36,59 25,94 32,43 24,57 20,6 32,17 34,43 27,52	2,59 2,73 2,6 2,59 2,65 2,7 2,56 2,67 2,69 2,65 2,51	51,13 42,93 46,79 41,58 35,88	1,05 0,75 0,88 0,71 0,56	90,47 93,88 95,57 93,11 94,23	31,00 18,00 29,00 27,00 21,00 24,00 38,50 40,00 6,00 7,00 30,00	58,00 53,00 53,00 40,00 44,76 48,50 54,00 48,00 35,00 42,00	Sabbia 11.00 29.00 16.00 31.00 30.24 13.00 18.00 12.00 38.00 58.00 28.00	0,00 0,00 2,00 2,00 1,00 0,00 0,00 0,00	0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,0	40,20 37,40 34,50 60,00 41,00 53,20 44,80 61,60 48,70 n.d. 51,50	23,16 22,12 18,75 36,58 25,63 27,04 22,06 36,60 26,18 n.d. 27,86	IP 17,04 15,28 15,75 23,42 15,37 26,16 22,74 25,00 22,52 n.d. n.d. 23,64	0,2 0,75 0,13 1,09 1,06	0,79 0,25 0,87 -0,09 -0,06	*	Angolo di attrito (*) 30,33	Coesione (KPa) 25,62	Cu media (kPa)	Module edometrico F _{ref} (MPa) 1,6 13,6 5,2 1,7 4,2 2,40	Coefficiente di compressibilità nu (M2) (M2) 6.1E-01 7.36E-02 1.92E-01 5.89E-01 4.09E-01 4.09E-01
SI D DH - CTI SI D DH - CT2 SI D DZ - CT1 SI D DZ - CT2 SI D PZ - CT3	T.476/18 T.477/18 T.478/18 T.478/18 T.480/18 T.481/18 T.483/18 T.483/18 T.485/18 T.485/18 T.485/18 T.485/18 T.485/18	da 7,00 10,00 14,50 0,50 8,00 3,00 11,20 0,50 14,00 3,00 15,50 3,00 7,50 17,00	a 7,50 10,50 15,00 1,00 8,50 3,40 11,70 1,00 14,50 16,00 3,50	17,27 19,59 18,28 19,63 19,79	12,64 15,56 13,81 15,76 16,41 14,00 13,07	36,59 25,94 32,43 24,57 20,6	2,59 2,73 2,6 2,59 2,65 2,7 2,56 2,67 2,69 2,65 2,51	51,13 42,93 46,79 41,58 35,88	1,05 0,75 0,88 0,71 0,56	90,47 93,88 95,57 93,11 94,23	31,00 18,00 29,00 27,00 21,00 24,00 38,50 27,00 40,00 6,00 7,00	58,00 53,00 53,00 40,00 44,76 48,50 54,00 48,00 56,00 35,00	Sabbia 11,00 29,00 16,00 31,00 31,00 31,00 18,00 12,00 38,00 58,00	0,00 0,00 2,00 2,00 1,00 0,00 1,00 0,00 0	0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,0	40,20 37,40 34,50 60,00 41,00 53,20 44,80 61,60 48,70 n.d.	23,16 22,12 18,75 36,58 25,63 27,04 22,06 36,60 26,18 n.d.	17,04 15,28 15,75 23,42 15,37 26,16 22,74 25,00 22,52 n.d. n.d.	0,2 0,75 0,13 1,09 1,06	0,79 0,25 0,87 -0,09 -0,06	*	Angolo di attrito (*) 30,33	Coesione (KPa) 25,62	Cu media (kPa) 148,835	Modulo edometric F _{ref} (MPa) 1,6 13,6 13,6 5,2 1,7	Coefficiente di compressibilità nu (MPa) (MPa) 6.1E-01 7.36E-02 1.92E-01 5,89E-01

4.3.5 PROVE SISMICHE

Nel foro di sondaggio S1_D_DH profondo 20 m, opportunamente condizionato, è stata realizzata n. 1 prova sismica Down-Hole che ha consentito di individuare la seguente sismostratigrafia.

Sismostrato	Profondità	dal p.c. (m)	V_P	Vs
Sistriostrato	da	a	m/s	m/s
1°	0.0	2.1	358	69
2°	2.1	15.1	936	146
3°	15.1	20.0	1.317	197

Tabella 1: Vicenza (VI). Indagine down-hole S1_D_DH. Suddivisione del sottosuolo in sismostrati

n. *1 indagine sismica a rifrazione tomografica RIFRA L 1*di cui si riportano di seguito le preudosezioni sismiche tomografiche

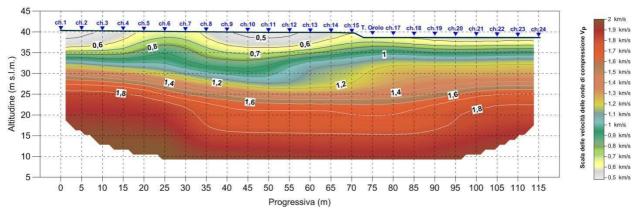


Figura 2. Vicenza. Tomografia sismica in onde P. Pseudosezione

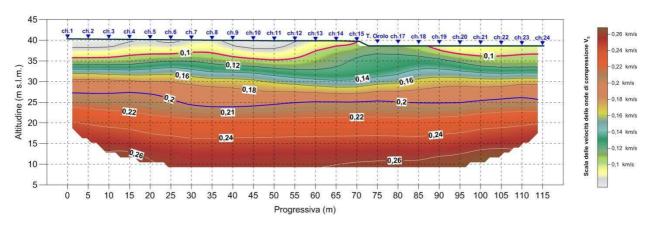


Figura 3. Vicenza. Tomografia sismica in onde S. Pseudosezione sismica tomografica

n. 2 indagini sismiche MASW che hanno permesso di calcolare il valore della velocità equivalente, di propagazione delle onde di taglio, V_{s,eq} pari a 223 m/s (MASW2) e 218 m/s (MASW3), ai sensi delle NTC 2018, il sottosuolo può essere attribuito alla Categoria "C".

I dettagli riguardanti tali prove sono riportati nell'elaborato T00GE00GE0RE07A Documentazione indagini geofisiche.

4.3.6 RILIEVO PIEZOMETRICO

Su richiesta della Committenza, i fori di sondaggio S2_D_PZ e S3_D_PZsono stati attrezzati con piezometri a tubo aperto attestati rispettivamente alla profondità di 7.7 m e 20.0 m dal p.c. In data 02/05/2018 è stato effettuato il rilievo del livello idrico nei due piezometri che è risultato pari a 1.50 m dal p.c. in S2_D_PZ e di 2.50 m dal p.c. in S3_D_PZ.

5 CARATTERIZZAZIONE GEOTECNICA DEI TERRENI

Per la definizione delle caratteristiche fisico-meccaniche delle unità geotecniche interessate dalla realizzazione dell'opera sono stati interpretati e utilizzati i dati di tutte le campagne di indagine eseguite dal 2013 al 2018. Nel seguito vengono descritti ed interpretati, per ciascuna unità geotecnica individuata, i risultati delle indagini in sito e di laboratorio con l'obiettivo di definire i principali parametri fisici e meccanici (rigidezza e resistenza) dei terreni di fondazione.

Per ciascuna formazione/materiale e per ciascun parametro geotecnico rappresentativo, i dati relativi alle diverse campagne di indagine sono riportati, ove possibile, in forma grafica. I principali parametri rappresentativi di ciascuna formazione sono quindi successivamente riassunti per semplicità, in tabelle riepilogative. I parametri di calcolo riportati nelle tabelle delle singole unità geotecniche sono da intendersi come valori caratteristici.

5.1 DEFINIZIONE DELLE UNITA' GEOTECNICHE

Come è possibile dedurre dall'inquadramento geologico, l'area oggetto dell'intervento è interessata da sedimenti alluvionali caratterizzati da granulometrie comprese fra quella delle sabbie a quelle delle argille. I depositi alluvionali sono ricoperti superficialmente da terreni di riporto di origine antropica, a granulometria eterogenea. In sintesi sono presenti le seguenti unità geotecniche:

- Unità geotecnica *Ug1*: alluvioni argillose limose prevalenti, si tratta di terreni alluvionali prevalentemente coesivi;
- Unità geotecnica *Ug2*: alluvioni limoso sabbiose, si tratta di terreni alluvionali limoso sabbiosi poco addensati;
- Unità geotecnica *Ug3*: Ghiaia in matrice sabbiosa

5.1.1 INTERPRETAZIONE DELLE INDAGINI GEOTECNICHE

Ai fini della caratterizzazione dei terreni è stato fatto riferimento ai risultati delle:

- prove penetrometriche dinamiche SPT eseguite nei fori di sondaggio;
- prove penetrometriche statiche con piezocono (CPTU).
- prove di laboratorio eseguite sui campioni indisturbati e rimaneggiati;

5.1.1.1 PROVE PENETROMETRICHE DINAMICHE

Per i depositi prevalentemente incoerenti, i parametri geotecnici di resistenza al taglio e di deformabilità sono stati stimati sulla base dell'interpretazione delle prove penetrometriche dinamiche SPT e delle prove penetrometriche statiche CPT/CPTU.

Le prove SPT sono state effettuate sia all'interno dei terreni prevalentemente sabbiosi, in cui non è possibile il prelievo di campioni indisturbati, sia nei terreni a grana fina.

La *Figura 4* riporta i risultati del numero di colpi, N'_{SPT}, in funzione della profondità ottenuti dalla campagna di indagine del 2018.

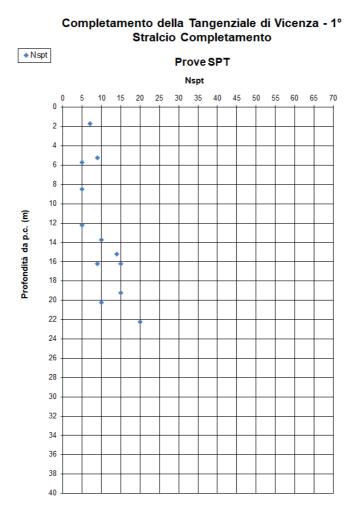


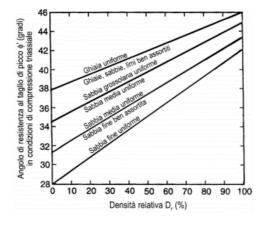
Figura 4. Risultati numero di colpi corretto, N'spt

Il numero di colpi riportato in *Figura 4* è stato corretto tenendo conto dell'influenza delle sovrappressioni interstiziali. La relazione utilizzata per la correzione è quella di Terzaghi & Peck (1948), i quali suggerirono che, nel caso di sabbie limose, quando N_{SPT}>15 la resistenza penetrometrica si debba ridurre secondo:

$$N'_{SPT} = 15 + 0.5(N_{SPT} - 15)$$

Successivamente per ogni valore di N'_{SPT} , è stato stimato il corrispondente stato di addensamento del terreno, attraverso la determinazione della densità relativa Dr. Dalla densità relativa Dr, è stato infine possibile ricavare il valore dell'angolo di resistenza al taglio φ '.

Nello specifico per la valutazione della densità relativa Dr si è fatto riferimento alla relazione proposta da Skempton (1986):


$$D_r = \sqrt{\frac{C_N \cdot N_{SPT}}{60}}$$

avendo assunto per il fattore C_N la formulazione proposta per sabbie fini:

$$C_N = \frac{2}{1 + \frac{\sigma'_v}{100}}$$

Per la valutazione dell'angolo d'attrito φ ' a partire dalla densità relativa, si è fatto riferimento alle correlazioni proposte da *Schmertmann* (1978), in funzione delle caratteristiche granulometriche dei terreni:

Schmertmann (1978)	
sabbia fine uniforme>	φ≒28+0.14*D _R
sabbie fini ben gradate - sabbia media uniforme>	φ≒31.5+0.115*D _R
sabbia media ben gradata - sabbia grossa uniforme>	φ≒34.5+0.1*D _R
sabbie e ghiaie poco limose - ghiaietto uniforme>	φ≒38+0.08*D _R

Nella Figura 5 si riporta l'andamento dell'angolo di attrito con la profondità.

I risultati delle prove SPT possono anche essere impiegati, in prima approssimazione, per la valutazione della rigidezza dei terreni utilizzando la correlazione di natura empirica proposta da Denver (1982):

dove i parametri s1 ed s2 variano in funzione della distribuzione granulometrica. Nella *Figura 6* si riporta l'andamento del modulo di Young con la profondità.

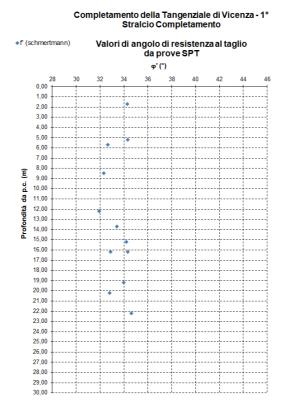


Figura 5. Angolo di resistenza al taglio - Risultati prove SPT

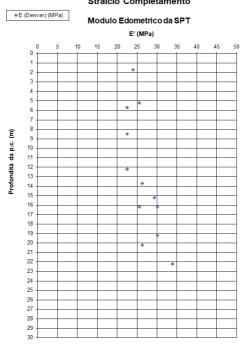


Figura 6. Modulo di Young – Risultati prove SPT

Completamento della Tangenziale di Vicenza - 1° Stralcio Completamento

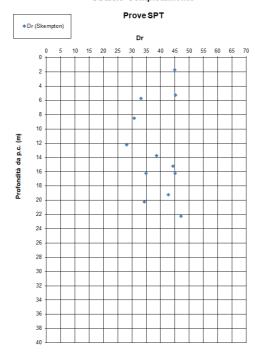


Figura 7. Densità Relativa – Risultati prove SPT

5.1.1.2 PROVE PENETROMETRICHE STATICHE CON PIEZOCONO (CPTU) E CONO SISMICO (SCPTU)

Nell'area in esame sono state eseguite prove penetrometriche statiche CPTU (con piezocono) e SCPTU (con cono sismico).

Durante l'esecuzione delle prove sono stati misurati i seguenti parametri:

- q_c è la resistenza alla punta;
- f_s è la resistenza laterale;

ai quali si aggiunge:

- u₂ è la pressione interstiziale misurata alla base del cono nel caso di punta equipaggiata con piezocono;
- V_s e V_p è la velocità delle onde nel caso di punta equipaggiata con cono sismico.

Da tali parametri misurati è possibile stimare, tramite correlazioni empiriche presenti in letteratura, i parametri geotecnici del terreno, con i criteri illustrati nei seguenti paragrafi. La resistenza alla punta misurata, q_c , viene corretta in funzione delle caratteristiche geometriche della punta effettivamente utilizzata, mediante la seguente espressione:

$$q_t = q_c + (1 - \frac{A_n}{A_c}) \cdot u_2 = q_c + (1 - a) \cdot u_2$$

dove:

- An è l'area interna del manicotto
- A_c è l'area di base del cono
- $a = A_n / A_c$ è una costante caratteristica dello strumento

Identificazione della litologia

Robertson nel 1990 ha proposto una carta di classificazione in funzione della resistenza alla punta normalizzata (Q):

$$Q = \frac{q_t - \sigma_{v0}}{p_a}$$

e del rapporto di attrito normalizzato (F):

$$F = \frac{fs}{qt - \, \sigma_{v0}}$$

dove, oltre ai simboli già noti, σ_{vo} è la tensione geostatica verticale totale.

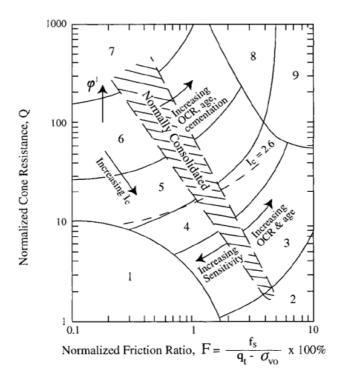


Figura 8. Diagramma Q-F di Robertson, 1990

Le aree numerate all'interno della carta identificativo i vari tipi di terreno in nove zone secondo la Tabella 2.

SBT _n zone	Proposed common
Robertson (1990)	SBT description
1	Sensitive fine-grained
2	Clay - organic soil
3	Clays: clay to silty clay
4	Silt mixtures: clayey silt & silty clay
5	Sand mixtures: silty sand to sandy silt
6	Sands: clean sands to silty sands
7	Dense sand to gravelly sand
8	Stiff sand to clayey sand*
9	Stiff fine-grained*

* Overconsolidated or cemented

Tabella 2: Soil Behavior Type zone (Robertson, 1990)

Le più recenti *Soil Behavioral Type* (SBT) *Charts* (Robertson, 2010) si basano su un criterio di normalizzazione ad esponente (n) variabile, in relazione al tipo di terreno esaminato. Le espressioni analitiche utilizzate sono rappresentate nella seguente *Figura 9*.

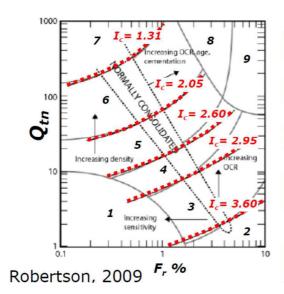
L'esponente n è funzione dell'indice di materiale I_c (Soil Behaviour Type Index). Quindi si giunge alla determinazione di Q_{tn} attraverso successive iterazioni.

Soil Behavioral Type by CPT

 Use of CPT Material Index (I_c) for identification of soil type (Robertson & Wride, 1998):

$$I_c = \sqrt{(3.47 - \log Q)^2 + (1.22 + \log F)^2}$$
 sands: $I_c < 2.05$ clays: $I_c > 2.95$

· Modified normalized tip resistance (Robertson 2004):


$$Q = Q_m = \frac{(q_t - \sigma_{vo})}{\sigma_{am}} \cdot \left(\frac{\sigma_{am}}{\sigma_{vo}}\right)^n = \frac{(q_t - \sigma_{vo})}{(\sigma_{am} \cdot \sigma_{vo}')^n}$$

- Exponent n = 0.5 (sands), 0.75 (silts), n = 1.0 (clays)
- · Iterate to find exponent n (Robertson 2009 CGJ):

$$n = 0.381 \cdot I_e + 0.05 \cdot (\sigma_{vo}'/\sigma_{atm}) - 0.15 \le 1.0$$

Figura 9. SBT by Robertson, 2009

In definitiva la classe di comportamento del materiale, può essere condensata in unico indice *(material idex, Ic)*, identificando i terreni in base alla seguente *Tabella 3*.

Zona	SBT, Classe di Comportamento	$\mathbf{I}_{\mathbf{c}}$
1	Argille sensitive	N/A
2	Terreni organici, torbe	> 3.60
3	Argille → limi argillosi	$2.95 \div 3.6$
4	$ Limi \ arg. \rightarrow argille \ limose $	$2.60 \div 2.95$
5	Sabbie limose → limi sabb.	$2.05 \div 2.60$
6	Sabbie pulite \rightarrow sabbie lim.	$1.31 \div 2.05$
7	Sabbie ghiaiose → sabbie dense	< 1.31
8	Sabbie molto dense, sabbie argillose	N/A
9	Terreni a grana fine molto consistenti	N/A

Tabella 3: SBT (Robertson, 2009)

Tale metodologia, opportunamente implementata nel codice di elaborazione dati, verrà nel seguito utilizzata per il riconoscimento del tipo di materiale, che si rende necessario caso per caso per individuare le correlazioni empiriche maggiormente idonee da applicare in fase di caratterizzazione geotecnica.

A tal fine verranno considerati i seguenti valori di frontiera:

Ic > 2.60 \rightarrow terreni francamente coesivi;

Ic < 2.60 \rightarrow terreni francamente incoerenti.

Peso di volume del terreno

Il peso di volume totale del terreno in posto è stato stimato mediante la seguente correlazione empirica proposta da *Mayne, Peuchen e Bouwmeester* [ISFOG – 2010]:

$$\gamma_t = 1.95 \cdot \gamma_w \cdot \left(\frac{f_s}{\sigma_{atm}}\right)^{0.06} \cdot \left(\frac{\sigma'_v}{\sigma_{atm}}\right)^{0.06}$$

La correlazione è stata validata sperimentalmente dagli autori come riportato nel grafico di . Trattandosi di una formula ricorsiva, una prima stima del peso di volume viene fatta mediante la seguente correlazione:

$$\gamma_t = 12 + 1.5 \cdot \ln(fs + 1)$$

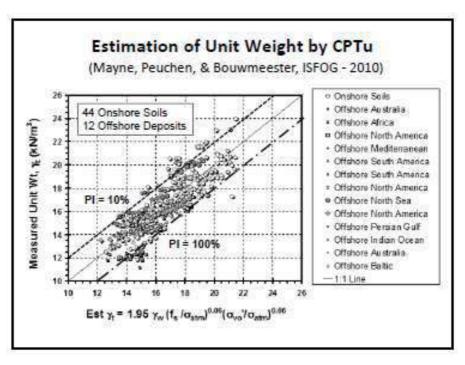


Figura 10. Peso di volume naturale del terreno

Velocità delle onde di taglio e modulo di deformabilità

Il modulo di taglio dinamico G₀ (ovvero riferito a piccolissime deformazioni) è stato stimato mediante la seguente correlazione empirica proposta da Mayne & Rix (1993) valida per i terreni a grana fine:

$$G_0 = 406 \cdot q_t^{0.695} \cdot e^{-1.13}$$

Mentre per i terreni incoerenti è stata utilizzata la seguente correlazione proposta da Lo Presti [1988]:

$$V_{\rm s} = 277 \cdot q_c^{0.13} \cdot {\sigma_v'}^{0.27}$$
 (q_c e σ_v' in MPa)

Il modulo di taglio G₀ si determina dalla velocità Vs mediante la seguente espressione:

$$G_0 = \rho_t \cdot V_s^2 = \frac{\gamma_t}{g} \cdot V_s^2$$

dove, oltre ai simboli già noti, $g = 9.81 \text{ m/s}^2$ è la costante di accelerazione gravitazionale.

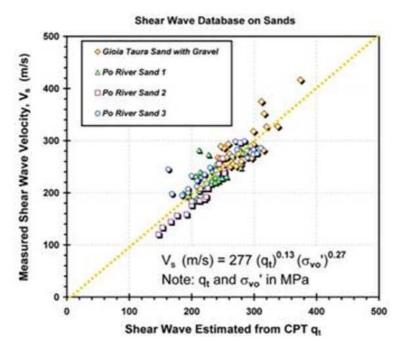


Figura 11. Correlazione di Lo presti

Inoltre, è stata considerata una correlazione valida per tutti i tipi di terreno, a partire dall'indice di comportamento del terreno, Ic (Robertson, 2009):

$$G_0 = 0.0188 \cdot \left[10^{(0.55 \cdot Ic + 1.68)}\right] \cdot (q_t - \sigma_{v0})$$

Il modulo di deformazione elastico iniziale (a piccole deformazioni) E₀ si determina dal modulo G₀ mediante la seguente espressione:

$$E_0 = 2(1+v)G_0$$

dove \mathbf{v} è il coefficiente di Poisson.

Nel caso di valutazione di cedimenti di rilevati, i moduli elastici "operativi" (E') saranno assunti pari a $1/10 \div 1/15$ di quello iniziale (E_0).

Nella valutazione dei cedimenti immediati dei rilevati il modulo di deformazione in condizioni non drenate (Eu) può essere stimato sulla base della correlazione empirica proposta da Duncan & Buchignani (1976):

Dove il coefficiente k è valutato con il grafico di *Figura 12*. Nel caso in esame è stato assunto un coefficiente k=500

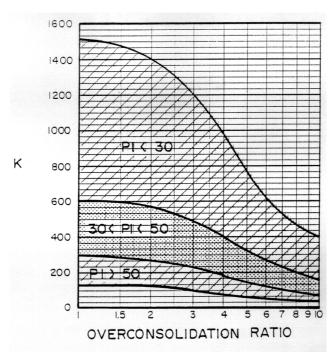


Figura 12. Duncan&Buchigani

Parametri di resistenza drenati

L'angolo di resistenza al taglio in condizione drenate è stato stimato mediante la seguente correlazione empirica proposta da Durgunouglu & Mitchell [1975] valida per sabbie N.C., non cementate:

$$\varphi' = 14.4 + 4.8 \cdot \ln(qt) - 4.5 \cdot \ln \sigma'_v$$

Aggiungendo che per sabbie O.C. l'angolo di resistenza al taglio così ottenuto va aumentato di 1-2°. Resistenza al taglio non drenata

Per terreni coesivi, la relazione che lega la resistenza al taglio non drenata cu alla resistenza penetrometrica statica q_t è la seguente:

$$c_u = (q_t - \sigma_{vo})/N_{kt}$$

dove N_k è un fattore di portanza generalmente compreso tra 10 e 25.Nel caso in esame è stato assunto un valore di N_k = 20.

Coefficiente di consolidazione primaria verticale

Il coefficiente di consolidazione primaria verticale c_v può essere ricavato dalle prove CPT secondo la seguente correlazione (G. Ferioli, 1999):

$$c_v = 10^{0.583 \cdot \ln[(\frac{q_c}{f_s})/3534]}$$
 cm²/s

L'insieme di tutti i risultati delle prove CPTU sono riportati nell'allegato 1.

5.1.1.3 PROVE DI LABORATORIO

Per i depositi coesivi la caratterizzazione geotecnica è stata fatta oltre che dall'interpretazione delle prove in sito e delle prove penetrometriche statiche CPTU (vedasi 5.1.1.3), anche dai risultati delle prove di laboratorio.

<u>Classificazione</u>

La classificazione di questi terreni avverrà essenzialmente sui risultati delle seguenti prove di laboratorio:

- analisi granulometriche;
- pesi di volume naturale;
- contenuti d'acqua naturale;
- limiti di Atterberg.

Caratteristiche di resistenza

Per la determinazione delle caratteristiche di resistenza dei depositi coesivi ci si è basati principalmente sui risultati delle prove di laboratorio: taglio diretto, prove triassiali UU e CU.

In corrispondenza dei livelli coesivi durante l'esecuzione dei sondaggi sono state eseguite prove speditive di *Pocket Penetometer* (PP) per la stima della resistenza al taglio in condizioni non drenate.

Caratteristiche di deformabilità

Le caratteristiche di deformabilità dei depositi coesivi possono essere stimati:

- sulla base dei risultati delle indagini sismiche in sito (prove RE.MI, SCPTU);
- dalle prove penetrometriche statiche CPT/CPTU;
- dalle prove edometriche di laboratorio;
- da correlazioni di letteratura.

Caratteristiche di consolidazione

I valori del coefficiente di consolidazione primaria verticale sono stati determinati dalle prove edometriche di laboratorio e con correlazioni empiriche in funzione del limite liquido (LL), vedasi ad esempio le seguenti:

$$cv = exp [-10.552 + (164.074/LL)]$$
 [cm²/s]

$$cv = 0.009 (LL - 0.1)$$
 [cm²/s] NAVFAC-DM7.1. (1971)

Il coefficiente di consolidazione secondaria, è stato stimato con la correlazione proposta nel NAVFAC-DM 7.1 (1982, vedasi figura seguente), in funzione del contenuto naturale di acqua (wn).

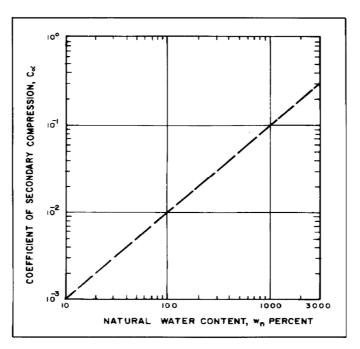


Figura 13. Abaco di calcolo del coefficiente di consolidazione secondaria da w_n

In appendice 2 si riportano i risultati delle prove di laboratorio

5.2 QUADRO DI SINTESI CARATTERISTICHE GEOTECNICHE

Nella tabella seguente, sono sintetizzati i campi di variazione delle principali caratteristiche fisiche e geotecniche delle 3 unità (Ug1, Ug2, Ug3) interessate dalle opere in progetto, determinati dall'analisi delle prove in sito e di laboratorio, a partire dai quali è stato definito il modello geotecnico di calcolo ovvero i valori operativi utilizzati nelle analisi e nei calcoli di progetto.

Tabella 4: Caratteristiche geotecniche principali delle unità Ug1, Ug2 e Ug3

				Unità geotec-	Unità geo-	Unità geo-
Caratteristiche geotecnic	he delle unità ge	principali	nica	tecnica	tecnica	
J	S		Ug1	Ug2	Ug3	
Peso unità di volume		У	[kN/m³]	18.5	19	19
Limite liquido	determinati sulla	WL	[%]	-	-	-
Indice di plasticità	frazione fine,	I _P	[%]	20	_	_
Indice di consistenza	d<0.42mm	I _C	[%]	1.4	-	-
Grado di sovraconsolidazione m	nedio	OCR	[-]	≅ 3 (per z <2÷3 m dal p.c.)	-	-
Coefficnete di consolidazione pi	rimaria	Cv	[cm²/s]	0,002		
Coefficiente di compressibilità		Сс	[-]	0.250	_	_
Indice dei vuoti iniziale		e_0	[-]	0.8		
Coefficiente di rigonfiamento		Cs	[-]	0.035	_	-
Densità relativa da prove SPT		Dr	[%]	-	≅ 40	≅ 40
	da prove labora-	ϕ'	[°]	28 ÷ 30	-	-
Parametri di resistenza in tensioni efficaci	torio (taglio di- retto e triassiali)	C'	[kPa]	5 ÷ 10	-	-
	da prove N _{SPT}	$\phi'_{ ext{picco}}$	[°]	-	30 ÷ 32	32 ÷ 34
Parametri di resistenza in tensioni totali	Da prove CPTU	CU	[kPa]	50 ÷ 100	-	-
Daramatri di dafarmaziona	da prove edome- triche	E'	[MPa]	5 ÷ 10	-	-
Parametri di deformazione	da prove SPT	E′	[MPa]	≅ 25 (per z >20 m dal p.c)	20 ÷ 25	25 ÷ 30
	Da Duncan&Bu- chignani	Eu	[MPa]	≅25		

6 ANALISI DEI CEDIMENTI DEI RILEVATI

Lungo lo sviluppo il tracciato presenta rilevati di altezza dell'ordine di 1-1.5 m, solo in corrispondenza delle rampe di accesso alle opere d'arte maggiori le altezze di rilevato aumentano fino ad un massimo di 6.0 m circa. La valutazione dei cedimenti è stata pertanto eseguita per le sezioni di approccio alle opere d'arte considerando la massima altezza di rilevato. Per i rilevati si prevedono scarpate a pendenza 2 (verticale) / 3 (orizzontale) con berma di larghezza 2.0 m per altezze di scavo maggiori di 5 m.

Lo spessore della zona compressibile (di interesse per i cedimenti) è stato stabilito assumendo che, alla profondità per cui l'incremento delle tensioni verticali ($\Delta \sigma z$) risulta inferiore a (0.10) σv ', il contributo per il calcolo del cedimento indotto può essere considerato trascurabile.

Di seguito si descrivono le metodologie di calcolo ed i risultati dell'analisi.

6.1 METODO DI CALCOLO DEI CEDIMENTI

La valutazione dei cedimenti dei rilevati nelle diverse sezioni è stata effettuata impiegando sia un approccio edometrico che un approccio elastico. Facendo ricorso alla teoria del semispazio elastico omogeneo ed isotropo, è possibile definire in ogni punto del sottosuolo e con valore costante sull'impronta della fondazione, i valori delle corrispondenti tensioni indotte. Il corpo di carico del rilevato viene ad essere suddiviso in corpi di carico riconducibili a quelli di *Figura 14* che consentono di determinare le tensioni indotte in forma analitica chiusa.

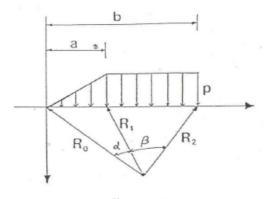


Figura 14.

Con tale modello le espressioni delle tensioni indotte, dal singolo corpo di carico, sono:

$$\Delta \sigma z = \frac{p}{\pi} \left[\beta + \frac{x\alpha}{a} - \frac{z}{R_2^2} (x - b) \right]$$

$$\Delta \sigma x = \frac{p}{\pi} \left[\beta + \frac{x\alpha}{a} + \frac{z}{R_2^2} (x - b) + \frac{2z}{a} \log \frac{R_1}{R_0} \right]$$

$$\Delta \sigma y = \nu (\Delta \sigma x + \Delta \sigma z)$$

Ricavati ad ogni profondità z il corrispondente valore di $\Delta \sigma$ x, $\Delta \sigma$ y, $\Delta \sigma$ z, dovuto alla sovrapposizione degli effetti dei singoli corpi di carico, è possibile ricavare il corrispondente valore della ϵ z attraverso l'espressione:

$$\varepsilon_{z} = \frac{\Delta \sigma z - \nu (\Delta \sigma y + \Delta \sigma x)}{E}$$

noti i valori del modulo di deformabilità E ed il coefficiente di Poisson v.

Suddividendo il terreno al disotto della fondazione in strati di spessore Δ zi, è possibile valutare il valore del cedimento dello strato i-esimo attraverso l'espressione:

$$\delta z_{i} = \frac{\Delta \sigma_{zi} - \nu \left(\Delta \sigma_{yi} + \Delta \sigma_{xi} \right)}{E_{i}} \Delta z_{i}$$

il cedimento complessivo sarà pari alla somma dei cedimenti dei singoli strati e quindi pari a:

$$\delta z_{j} = \sum_{i} \delta z_{i} = \sum_{i} \frac{\Delta \sigma_{zi} - \nu \left(\Delta \sigma_{yi} + \Delta \sigma_{xi}\right)}{E_{i}} \Delta z_{i}$$

Poiché il sottosuolo sul quale è collocato il rilevato è costituito da n strati, il cedimento complessivo è pari alla somma dei cedimenti dei singoli strati

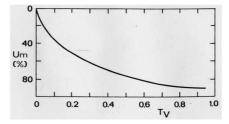
$$\delta_{tot} = \sum\nolimits_{j} \delta_{zj}$$

Il calcolo può essere esteso o su tutto lo spessore dello schema geotecnico definito, o esteso fino ad una profondità massima, intesa come quella profondità alla quale, il rapporto tra l'incremento di tensione media nel sottosuolo per effetto del sovraccarico dovuto al rilevato e la tensione efficace media cioè $\Delta \sigma$ m/ σ m0, (con $\Delta \sigma_m = (\Delta \sigma zi + \Delta \sigma yi + \Delta \sigma xi)/3$ e σ' m $_0 = (\sigma'$ vo + 2k0 σ' v $_0$)/3) sia una certa percentuale definita in precedenza (10%). Il cedimento immediato si sviluppa all'applicazione del carico e viene valutato mediante il modulo Eu (in condizioni non drenate).

6.1.1 DECORSO DEI CEDIMENTI NEL TEMPO

La presenza di terreni a grana fine, comporta che con l'applicazione di un carico sul terreno insorga una deformazione iniziale a volume costante del complesso scheletro solido-acqua, che viene ad essere identificato come cedimento immediato o non-drenato, ed una deformazione graduale nel tempo connessa con la dissipazione delle sovrappressioni indotte dall'applicazione del carico (cedimento di consolidazione primaria). Per prevedere l'andamento del cedimento nel tempo, viene utilizzata la teoria della consolidazione (Terzaghi, 1923), con la quale noto il cedimento totale δ tot, è possibile risalire al valore cedimento al tempo t δ (t) attraverso la relazione:

$$\delta_t = Um \cdot \delta_{tot}$$


Il grado di consolidazione medio Um è funzione del fattore tempo Tv, che assume la seguente espressione:

$$Tv = \frac{cv \cdot t}{H^2}$$

funzione del tempo t al quale si sta valutando, il coefficiente di consolidazione cv, ed il massimo percorso di drenaggio H che è funzione delle condizioni al contorno.

In questo caso lo strato di torbe presenta un solo contorno drenante, quindi il massimo percorso di drenaggio H è pari allo spessore dello strato.

Uv (%)	Tv
0	0
5	0,0017
10	0,0077
15	0,0177
20	0,0314
25	0,0491
30	0,0707
35	0,0962
40	0,126
45	0,159
50	0,196
55	0,238
60	0,286
65	0,342
70	0,403
75	0,477
80	0,567
85	0,684
90	0,848
95	1,129
100	∞

Sono molto utili le correlazioni tra le due grandezze Um e Tv, espresse attraverso le relazioni (Sivaram e Swamee, 1977):

$$Tv = \frac{(\pi/4) \cdot Um^{2}}{(1 - Um^{5.6})^{0.357}}$$

$$Um = \frac{(4 \cdot Tv/\pi)^{0.5}}{\left\lceil 1 + \left(\frac{4Tv}{\pi}\right)^{2.8} \right\rceil^{0.179}}$$

Quando i tempi di consolidazione risultano eccessivamente lunghi, il processo di consolidazione può essere accelerato attraverso l'installazione di dreni verticali e precarica.

I dreni previsti sono prefabbricati a nastro con disposizione a quinconce ad interasse 1,5 m x 1,5 m.

Il modello teorico per il calcolo della consolidazione mediante dreni verticali, introduce l'ipotesi che il flusso in direzione verticale, sia trascurabile rispetto a quello in direzione radiale e che le deformazioni avvengano solo in direzione verticale.

La risoluzione dell'equazione della consolidazione (Barron, 1948), consente di ricavare che in presenza di dreni, il grado di consolidazione medio (Uh) può essere valutato attraverso l'espressione:

$$U_h = 1 - e^{-\frac{8T_h}{F}}$$

con:

$$T_h = \frac{c_h \cdot t}{d_e^2}$$

 c_h = coefficiente di consolidazione in presenza di solo flusso orizzontale = k_h / m_v γ_w ;

k_h = coefficiente di permeabilità in direzione orizzontale;

m_v = coefficiente di compressibilità monodimensionale;

 γ_w = peso specifico dell'acqua;

 d_e = diametro equivalente del cilindro di terreno che drena (pari a 1,13 volte i nel caso di disposizione a maglia quadrata);

$$F = \frac{n^2}{n^2 - 1} \ln(n) - \frac{3n^2 - 1}{4n^2}$$

n = rapporto tra il diametro de del cilindro di terreno e il diametro d_w del dreno.

Il valore di d_w per i dreni prefabbricati a nastro si valuta in funzione del suo spessore (b) e della sua larghezza (a), attraverso l'espressione $d_w = 2(a+b)/p$.

La soluzione espressa in precedenza, fa riferimento al caso ideale, dove il dreno possa essere installato senza effettuare alcun rimaneggiamento del terreno e senza resistenze al moto del fluido nel suo interno.

Per tener conto del rimaneggiamento (effetto "smear" – Hansbo, 1979, 1981) hanno suggerito di introdurre la seguente espressione di F(n):

$$F_S = \ln\left(\frac{n}{s}\right) + \frac{k_h}{k_R}\ln(s) - 0.75$$

con:

s = rapporto tra il diametro della zona disturbata ds e il diametro del dreno dw;

n = rapporto tra il diametro de del cilindro di terreno e il diametro dw del dreno;

k_h = coefficiente di permeabilità in direzione orizzontale;

k_R = coefficiente di permeabilità ridotta della zona adiacente il dreno a causa del disturbo;

L'influenza, della resistenza idraulica che si sviluppa all'interno dei dreni può essere messa in conto attraverso l'espressione:

$$F_R = \ln(n) - 0.75 + \pi \cdot z \cdot (2l - z) \cdot \frac{k_h}{q_w}$$

con:

qw = capacità idraulica del dreno = kw Aw;

n = rapporto tra il diametro de del cilindro di terreno e il diametro dw del dreno;

A_w = area del dreno;

I = lunghezza caratteristica del dreno (pari a metà lunghezza se il dreno confina con due strati drenanti);

z = generica profondità.

Poiché l'espressione proposta viene a dipendere dalla profondità (F è infatti funzione di z) al fine di valutare il grado di consolidazione medio è necessario portare in conto un valore medio della resistenza idraulica, valutato a varie profondità z lungo la lunghezza caratteristica del dreno.

Nel caso di uno strato compressibile, in cui lo spessore h è interessato dai dreni solo per lo spessore h_1 , il grado di consolidazione medio (U_m) , viene valutato, attraverso l'ipotesi che la consolidazione si sviluppi solo radialmente nel tratto interessato dai dreni h_1 (da valutare tramite l' U_h) e solo verticalmente nel tratto h_2 (da valutare tramite il grado di consolidazione medio U_m stimato in base alla Teoria di Terzaghi), e sovrapponendo quindi gli effetti con la seguente espressione:

$$Um = \frac{Uh \cdot \delta 1 + Uv \cdot \delta 2}{\delta 1 + \delta 2}$$

Con δ_1 e δ_2 i cedimenti rispetti dello strato interessato dai dreni (h_1) e la restante porzione dello strato compressibile non interessata da dreni (h_2).

6.2 CALCOLO DEI CEDIMENTI DEI RILEVATI

Il calcolo del cedimento è stato condotto tramite l'ausilio di fogli di calcolo. In funzione della natura incoerente o coesiva dei terreni di fondazione si è proceduto al calcolo delle seguenti componenti dei cedimenti totali attesi al piano di posa dei rilevati medesimi:

- Strati di natura incoerente: cedimento immediato;
- Strati di natura coesiva: cedimento immediato;
- cedimento di consolidazione primaria con valutazione del decorso nel tempo dello stesso;

Di seguito si riportano per i rilevati più significativi, ovvero quelli in corrispondenza delle opere d'arte, i principali risultati.

RILEVATO DI APPROCCIO PONTE OROLO

In corrispondenza dei rilevati di approccio del ponte Orolo, le indagini geotecniche (sondaggio S01_D) evidenziano la presenza di depositi limosi argillosi fino a 10.0 m circa intercalati localmente da lenti di ghiaia sabbiosa/limo sabbioso di spessore 1.5÷2.5 m.

Nella seguente tabella si riassume la stratigrafia, i parametri geotecnici utilizzati per le unità geotecniche, ed il livello di falda.

Sezione rilevato H=6.7 m – Sez SP-B							
Profondità da	Unità geotec-	γ [kN/m3]	E' [MPa]	Eu [MPa]	Cc	Cs	OCR
p.c.[m]	nica	\ \ \[\(\(\(\) \\ \) \]	L [IVII a]		Cc	Cs	OCK
0.0÷2.50	Ug1	18.5	5	25	0.250	0.035	3
2.50÷4.0	Ug3	19.0	30	-	-	-	-
4.0÷6.0	Ug2	19.0	20	-	-	-	-
6.0÷8.50	Ug1	18.5	10	25	-	-	-
da 8.50 m	Ug2	19.0	20	-	-	-	-
Falda: a p.c.		•				<u>'</u>	

Tabella 5: Stratigrafia e parametri geotecnici – sezione di calcolo ponte Orolo

Nella seguente tabella si riassumono i principali risultati.

Cedimento totale in asse	Cedimento immediato in asse	Cedimento consolidazione			
[mm]	[mm]	[mm]			
449	181	268			

Tabella 6: Risultati cedimenti – Sezione di calcolo ponte Orolo

I cedimenti totali massimi stimati in asse rilevato sono dell'ordine di 45 cm, di cui immediato 18 cm e consolidazione 27 cm. In relazione alla successione stratigrafica viene valutato il decorso dei cedimenti nel tempo. Nell'allegato 2 si riportano i fogli di calcolo.

Con riferimento all'unità Ug1, che di fatto governa la natura differita dei cedimenti nel tempo, sono state eseguite prove finalizzate alla valutazione della permeabilità e quindi alla stima del coefficiente di consolidazione c_v . I risultati complessivamente disponibili conducono ad una stima di $c_v = (1 \div 5) \cdot 10^{-07} \text{ m}^2/\text{s}$; si assume di calcolo $c_v = 2 \cdot 10^{-07} \text{ m}^2/\text{s}$.

Nella seguente *Figura 15* è mostrato il decorso dei cedimenti nel tempo (nell'allegato 2 sono mostrati il dettaglio dei calcoli). Si stima un tempo di consolidazione di circa 2-3 mesi, compatibile con i tempi realizzativi previsti per l'opera.

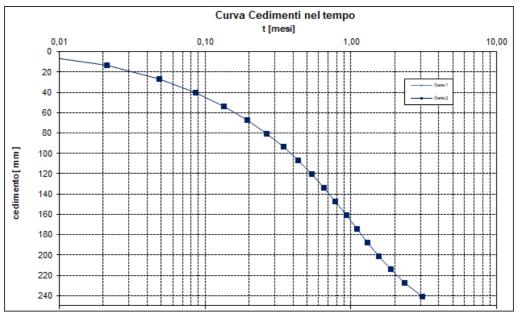


Figura 15. Decorso dei cedimenti nel tempo

RILEVATO DI APPROCCIO PONTE ZUBANA

In corrispondenza dei rilevati di approccio del ponte Zubana, le indagini geotecniche (sondaggio S02_D) evidenziano la presenza di depositi limosi argillosi fino a 4.0 m circa dal p.c., poi si evidenza la presenza di depositi incoerenti costituiti da limi sabbiosi e sabbia fino alla profondità di circa 20 m. A partire dai 20 m dal p.c. si rileva la presenza di limi argillosi consistenti.

Nella seguente tabella si riassume la stratigrafia, i parametri geotecnici utilizzati per le unità geotecniche, ed il livello di falda.

Sezione rilevato H=6.9 m – Sez SP-B pk 1+055.03														
Profondità da	Unità geotec-	γ[kN/m3]	E' [MPa]	Eu [MPa]	C		OCR							
p.c.[m]	nica	\ \ [CITIVITY] \		Lu [ivii a]	Cc	C _S	OCK							
0.0÷4.0	Ug1	18.5	5	25	0.250	0.035	3							
4.0÷5.0	Ug2	19.0	20	-	-	-	-							
5.0÷7.0	Ug3	19.0	30	-	-	-	-							
70÷19.0	Ug2	19.0	20	-	-	-	-							
da 19.0 m	Ug1	18.5	25	-	-	-	-							
Falda: a p.c.	•	•	•	•		•	•							

Tabella 7: Stratigrafia e parametri geotecnici – sezione di calcolo ponte Zubana Nella seguente tabella si riassumono i principali risultati (nell'allegato 3 si riportano i fogli di calcolo):

Cedimento totale in asse	Cedimento immediato in asse	Cedimento consolidazione
[mm]	[mm]	[mm]
494	183	310

Tabella 8: Risultati cedimenti – Sezione di calcolo ponte Zubana – H=6.9 m

I cedimenti totali massimi stimati in asse rilevato sono dell'ordine di 49.3 cm, di cui immediato 18.3 cm e consolidazione 31 cm. In relazione alla successione stratigrafica viene valutato il decorso dei cedimenti nel tempo.

Con riferimento all'unità Ug1, che di fatto governa la natura differita dei cedimenti nel tempo, sono state eseguite prove finalizzate alla valutazione della permeabilità e quindi alla stima del coefficiente di consolidazione c_v . I risultati complessivamente disponibili conducono ad una stima di $c_v = (1 \div 5) \cdot 10^{-07} \text{ m}^2/\text{s}$; si assume di calcolo $c_v = 2 \cdot 10^{-07} \text{ m}^2/\text{s}$.

Nella seguente *Figura 16* è mostrato il decorso dei cedimenti nel tempo in assenza di interventi (curva verde). Si stima un tempo di consolidazione di circa 6-7 mesi, non compatibili con i tempi realizzativi previsti per l'opera.

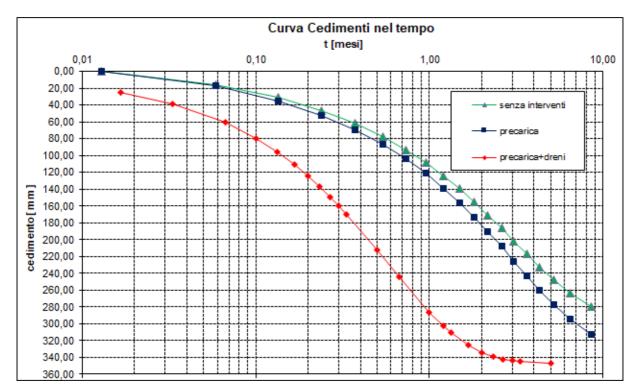


Figura 16. Decorso dei cedimenti nel tempo - Ponte Zubana

Per la necessità di ridurre i tempi di consolidazione a circa 60-90 gg, compatibili con le fasistiche previste, si prevede l'inserimento di dreni verticali a nastro, L = 10.0 m disposti a quinconce con interasse di 1.5 m e precarica di altezza pari ad 1.0 m. In Figura 16 sono mostrate a confronto le curve del decorso dei cedimenti nel tempo, con e senza interventi. Si osserva che in presenza di interventi nei primi 3 mesi si dissipa il 100% dei cedimenti. Il trattamento interessa un porzione di circa 100 m a tergo le spalle fino ad una altezza del rilevato pari a circa 3 m. A tale proposito, per meglio dettagliare l'estensione dell'intervento, è stata considerata una sezione di calcolo senza dreni con un rilevato di altezza pari a 3 m, la quale fornisce i seguenti risultati in termini di cedimenti:

Cedimento totale in asse	Cedimento immediato in asse	Cedimento consolidazione
[mm]	[mm]	[mm]
220	60	160

Tabella 9: Risultati cedimenti – Sezione di calcolo ponte Zubana – H=3.0 m senza dreni

I cedimenti totali massimi stimati in asse rilevato sono dell'ordine di 22 cm, di cui immediato 6 cm e consolidazione 16 cm.

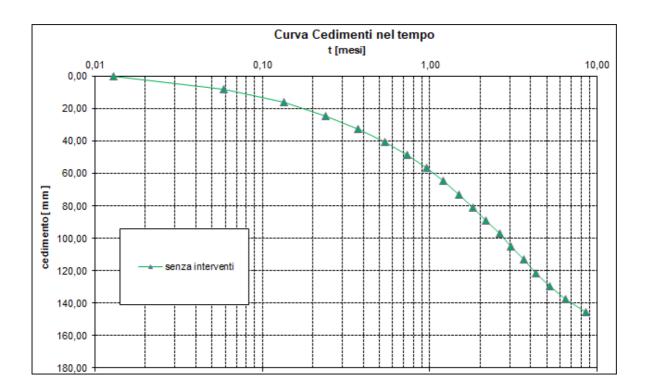


Figura 17. Decorso dei cedimenti nel tempo - Ponte Zubana - H=3.0 m senza dreni

In *Figura 17* è mostrato il decorso dei cedimenti nel tempo senza dreni e senza precarica da cui si evince che il cedimento residuo da scontare dopo tre mesi è circa 4.2 cm, quindi inferiore a 5 cm (come prescritto da Capitolato Speciale d'Appalto Anas).

L'obiettivo dell'intervento è quello di ridurre a valori trascurabili i cedimenti differenziali tra il rilevato-viadotto nonché le coazioni indotte dal rilevato sui pali di fondazione. Questi ultimi potranno essere realizzati, ovvero collegati al plinto, solo al termine dei processi di consolidazione.

Quanto previsto verrà verificato sperimentalmente mediante monitoraggio dei cedimenti del rilevato in costruzione; i dati via via acquisiti consentiranno di verificare le previsioni progettuali, ed operare le scelte sugli eventuali aggiustamenti in corso d'opera (calibrazione dei tempi di attesa ed altezza di precarico).

RILEVATO DI APPROCCIO VIADOTTO BACCHIGLIONE

In corrispondenza dei rilevati di approccio del Viadotto Bacchiglione, le indagini geotecniche (sondaggio S03_D) evidenziano la presenza di depositi limosi argillosi fino a 5.0 m circa dal p.c., poi si evidenza la presenza di depositi incoerenti costituiti da ghiaie sabbiose per uno spessore di circa 3 m. Tra 8.0 m e 20 m dal p.c. si rileva la presenza di limi sabbiosi e successivamente si individuano limi argillosi consistenti.

Nella seguente tabella si riassume la stratigrafia, i parametri geotecnici utilizzati per le unità geotecniche, ed il livello di falda.

	Sezione rilevato H=5.4 m – Sez SP-B														
Profondità da	Unità geotec-	γ [kN/m3]	E' [MPa]	Eu [MPa]	Cc	C _S	OCR								
p.c.[m]	nica	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \		La [ivii a]	Cc	CS	OCIV								
0.0÷5.0	Ug1	18.5	5	25	0.250	0.035	3								
3.0÷5.0	Ug1	18.5	5	25	-	-	-								
5.0÷8.0	Ug3	19.0	30	-	-	-	-								
8.0÷20.0	Ug2	19.0	20	-	-	-	-								
da 20.0 m	Ug1	18.5	25	-	-	-	-								
Falda: a p.c.		•				•									

Tabella 10: Stratigrafia e parametri geotecnici – sezione di calcolo Viadotto Bacchiglione Nella seguente tabella si riassumono i principali risultati (nell'allegato 4 si riportano i fogli di calcolo):

Cedimento totale in asse	Cedimento immediato in asse	Cedimento consolidazione
[mm]	[mm]	[mm]
390	127	263

Tabella 11: Risultati cedimenti – Sezione di calcolo Viadotto Bacchiglione

I cedimenti totali massimi stimati in asse rilevato sono dell'ordine di 39 cm, di cui immediato 12.7 cm e consolidazione 26.3 cm. In relazione alla successione stratigrafica viene valutato il decorso dei cedimenti nel tempo considerando una altezza di drenaggio pari a 2.5 m.

Nella seguente *Figura 18* è mostrato il decorso dei cedimenti nel tempo in assenza di interventi (curva verde). Si stima un tempo di consolidazione di circa 10 mesi, non compatibili con i tempi realizzativi previsti per l'opera.

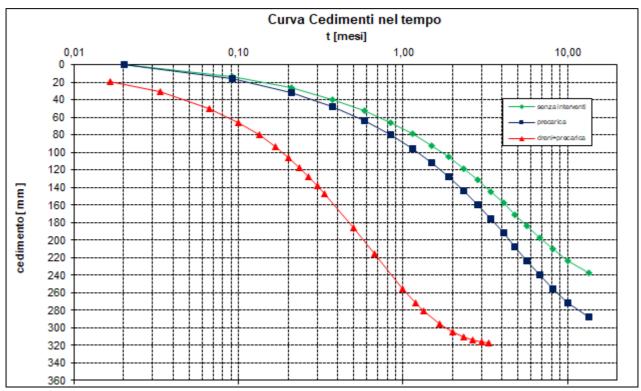


Figura 18. Decorso dei cedimenti nel tempo - Rilevato di approccio Viadotto Bacchiglione

Per la necessità di ridurre i tempi di consolidazione a circa 60-90 gg, compatibili con le fasistiche previste, si prevede l'inserimento di dreni verticali a nastro, L = 10.0 m disposti a quinconce con interasse 1.5 m e precarica di altezza pari ad 1.0 m. In *Figura 18* sono mostrate a confronto le curve del decorso dei cedimenti nel tempo, con e senza interventi. Si osserva che in presenza di interventi (curva rossa) nei primi 3 mesi si dissipa quasi il 100% dei cedimenti. Il trattamento interessa un porzione di circa 100 m a tergo della spalla SP1 dove l'unita incoerente Ug3 risulta più superficiale e l'altezza di drenaggio è pari a circa 1,5 m.

A tale proposito, per meglio dettagliare l'estensione dell'intervento, è stata considerata una sezione di calcolo senza dreni a circa 100 m da inizio intervento (sezione B10), la quale fornisce i seguenti risultati in termini di cedimenti:.

Cedimento totale in asse	Cedimento immediato in asse	Cedimento consolidazione
[mm]	[mm]	[mm]
340	129	211

Tabella 12: Risultati cedimenti – Sezione B10 – senza interventi

I cedimenti totali massimi stimati in asse rilevato sono dell'ordine di 34 cm, di cui immediato 12.9 cm e consolidazione 21.1 cm.

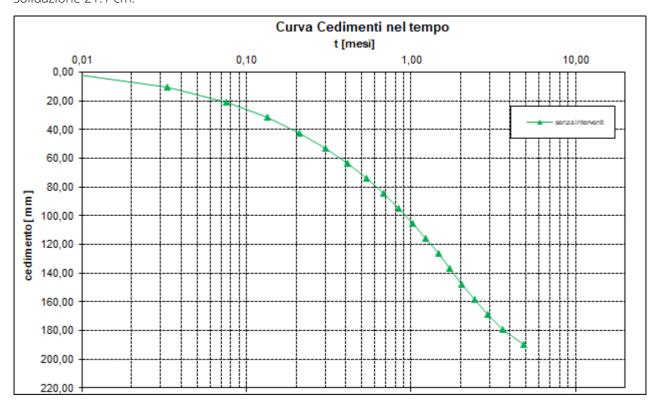


Figura 19. Decorso dei cedimenti nel tempo - Sezione B10 - senza interventi

In *Figura 21* è mostrato il decorso dei cedimenti nel tempo senza dreni e senza precarica da cui si evince che il cedimento residuo da scontare dopo tre mesi è circa 3 cm, quindi inferiore a 5 cm (come prescritto da Capitolato Speciale d'Appalto Anas).

Quanto previsto verrà verificato sperimentalmente mediante monitoraggio dei cedimenti del rilevato in costruzione; i dati via via acquisiti consentiranno di verificare le previsioni progettuali, ed operare le scelte sugli eventuali aggiustamenti in corso d'opera (calibrazione dei tempi di attesa ed altezza di precarico).

7 ANALISI DI STABILITA'

Nel presenta paragrafo si riportano le verifiche di stabilità delle scarpate dei rilevati. La verifica viene svolta per la sezione di massima altezza che si ha in corrispondenza delle rampe di accesso al viadotto (altezza 6.0 m circa). Per i rilevati si prevedono scarpate a pendenza 2 (verticale) / 3 (orizzontale) con berma di larghezza 2.0 m per altezze di scavo maggiori di 6 m.

7.1 METODO DI CALCOLO

Le verifiche di stabilità per le scarpate dei rilevati sono state svolte sia in condizioni statiche che sismiche in accordo a quanto previsto dalla normativa vigente.

L'esame delle condizioni di stabilità è stato condotto utilizzando gli usuali metodi dell'equilibrio limite. Per la valutazione dei fattori di sicurezza alla stabilità globale si è impiegato un codice di calcolo denominato GEO-SLOPE 2012, in cui la ricerca delle superfici critiche viene svolta attraverso la generazione automatica di un elevato numero di superfici di potenziale scivolamento. Sono state cautelativamente considerate ipotesi di deformazione piana. In particolare, in questa sede si fa riferimento al metodo semplificato di Bishop che prevede superfici di scorrimento circolari nei terreni.

Nelle analisi sono state ovviamente tralasciate le superfici più corticali in quanto poco significative e per le quali non risulta idonea una analisi convenzionale all'equilibrio limite.

Il coefficiente di sicurezza FS a rottura lungo la superficie di scorrimento viene definito come rapporto tra la resistenza al taglio disponibile lungo la superficie S e quella effettivamente mobilitata lungo la stessa superficie:

$$FS = \frac{\int\limits_{S} \tau_{\text{disp}}}{\int\limits_{s} \tau_{\text{mob}}}$$

Per le verifiche in condizioni sismiche, si è fatto riferimento all'approccio pseudo-statico secondo cui le azioni sismiche si assimilano ad un'azione statica equivalente. Secondo il suddetto approccio, si definiscono le forze statiche orizzontali F_h e verticali F_v pari al prodotto fra il peso del volume di terreno sottoposto all'azione dinamica ed un coefficiente sismico, rispettivamente, orizzontale e verticale:

 $F_h = \gamma k_h$ forza orizzontale per unità di volume

 $F_v = \gamma k_v$ forza verticale per unità di volume

dove:

γ = peso nell'unità di volume del terreno

In accordo alla normativa vigente, per le analisi in esame, la componente orizzontale (ah) dell'accelerazione è stata legata all'accelerazione massima attraverso la seguente relazione:

$$k_h = \beta_s \cdot a_{max} / g$$

$$k_v = \pm k_h/2$$

dove:

 k_h = coefficiente sismico in direzione orizzontale;

 k_v = coefficiente sismico in direzione verticale;

 β s = 0,38, coefficiente di riduzione indicato dalla normativa in condizioni ultime.

In accordo alla normativa vigente per rilevati in materiali sciolti e fronti di scavo, le analisi di stabilità vengono condotte secondo la combinazione (A2+M2+R2).

Nel caso di verifiche in condizioni statiche allo stato limite ultimo, i parametri di resistenza del terreno devono essere abbattuti a mezzo dei coefficienti parziali di seguito riportati.

- γ_{ϕ} = 1,25 coefficiente parziale per la tangente dell'angolo di resistenza al taglio
- $\gamma_{c'} = 1,25$ coefficiente parziale per la coesione drenata
- $\gamma_{cu} = 1.4$ coefficiente parziale per la coesione non drenata

L'analisi viene quindi condotta con i seguenti parametri geotecnici di calcolo:

• $tan(\phi'_d) = tan(\phi'_k) / \gamma_{\phi'}$ angolo di resistenza al taglio

• $\mathbf{C'_d} = \mathbf{C'_k} / \gamma_{\mathbf{C'}}$ coesione drenata

• $\mathbf{C}_{ud} = \mathbf{C}_{k}' / \gamma_{c}'$ coesione non drenata

La resistenza a scorrimento del terreno è stata abbattuta del coefficiente parziale γ_R = 1,1 previsto per le verifiche di sicurezza di opere di materiali sciolti e fronti di scavo.

Le verifiche in condizioni sismiche allo stato limite ultimo, in accordo alla normativa vigente, vengono condotte ponendo pari all'unità i coefficienti parziali dei parametri di resistenza del terreno e riducendo la resistenza del terreno mediante il coefficiente parziale $\gamma_R = 1,2$.

7.2 CARICHI

Le analisi di stabilità dei rilevati sono state svolte considerando un carico accidentale stradale di 20 kPa; in condizioni statiche, viene amplificato con il coefficiente parziale per le azioni $\gamma_F = 1,3$ (Tabella 6.2.I NTC 2018). In condizioni sismiche, il valore di accelerazione massima, a_{max} , in superficie è stato definito dalle analisi di risposta sismica locale. In particolare, è stato fatto riferimento al valore più cautelativo ottenuto dalle analisi allo SLV che è pari a 0.334g, ottenendo così:

$$k_h = 0.38 \cdot 0.334 = 0.126$$

$$k_v = 0.15/2 = 0.063$$

In condizioni sismiche è stato considerato un ulteriore sovraccarico pari a 4 kPa.

7.3 RISULTATI

Nelle figure seguenti si riportano la geometria della sezione analizzata e i risultati delle analisi di stabilita sia in condizioni statiche che in condizioni sismiche.

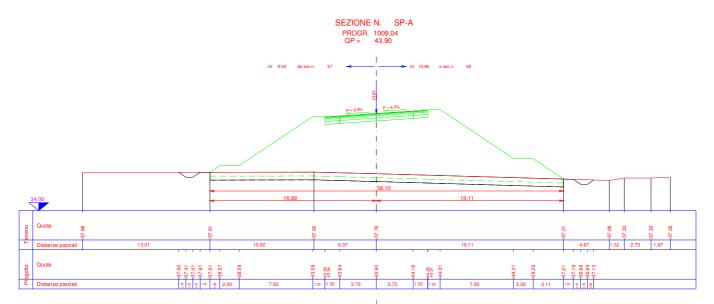


Figura 20. Sezione calcolo - Tangenziale di Vicenza

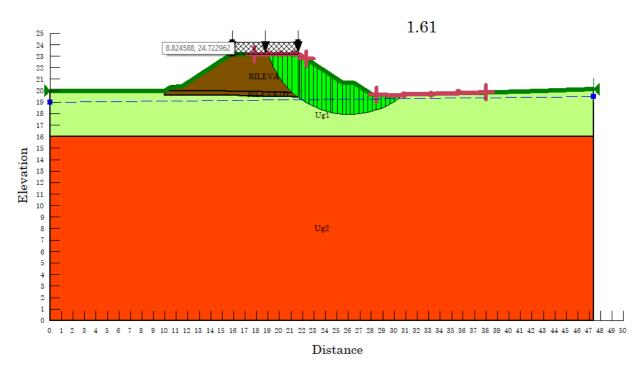


Figura 21. Analisi di stabilità in condizioni statiche

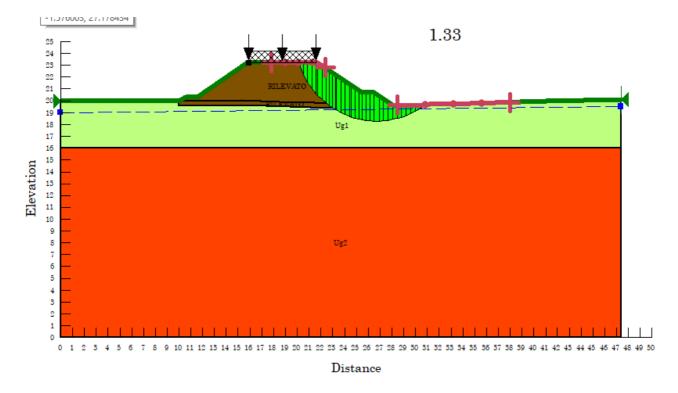
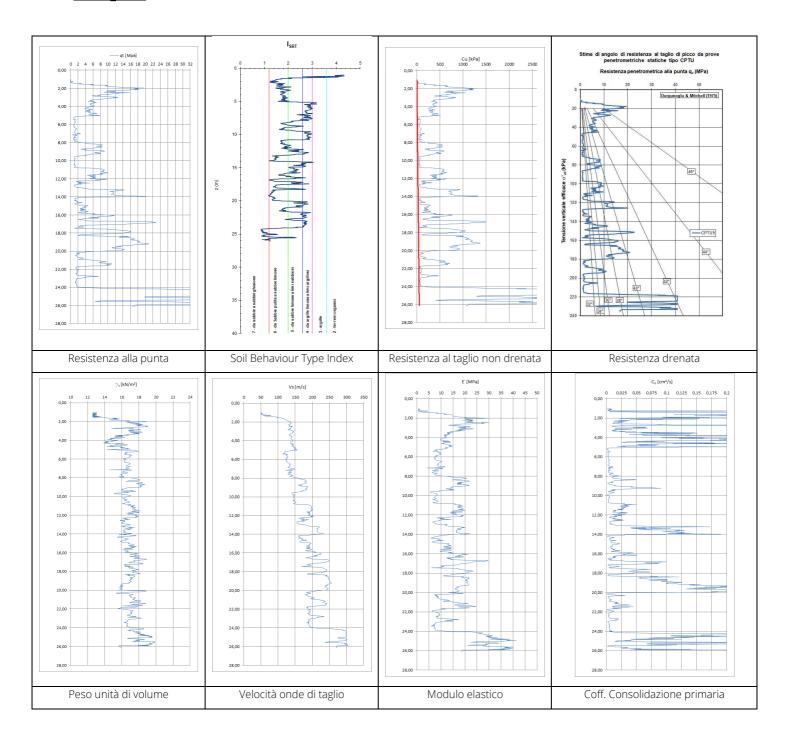
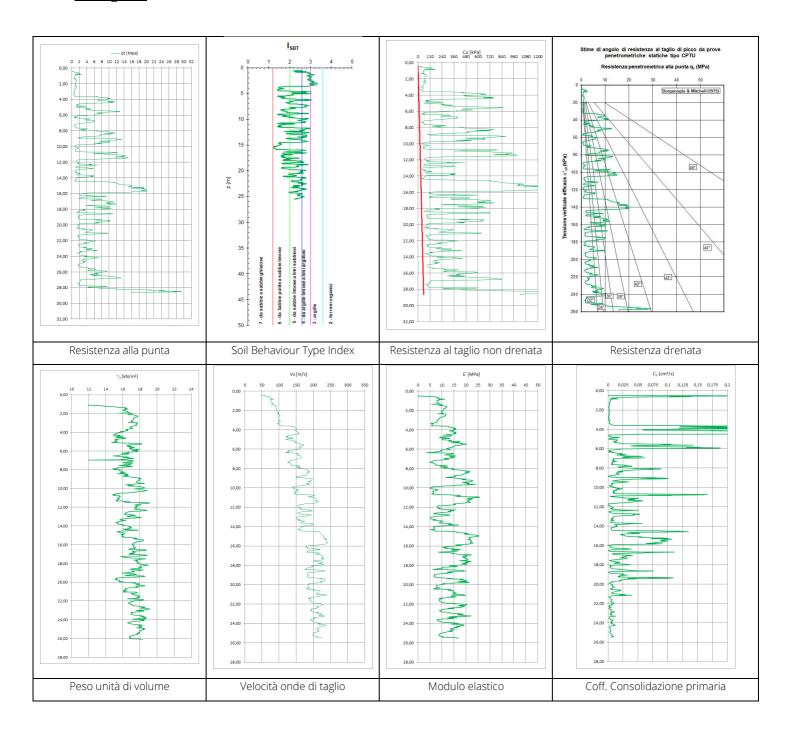
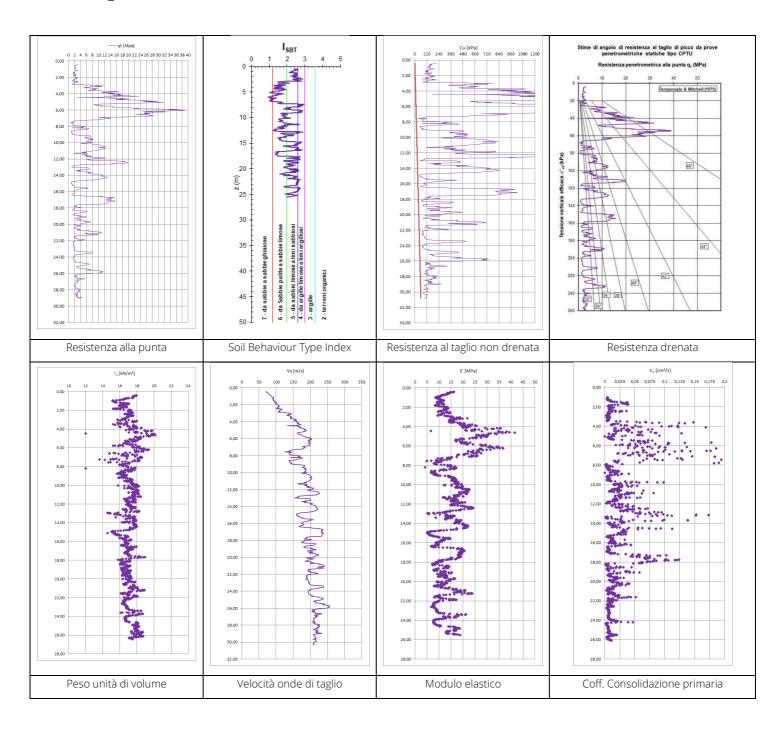



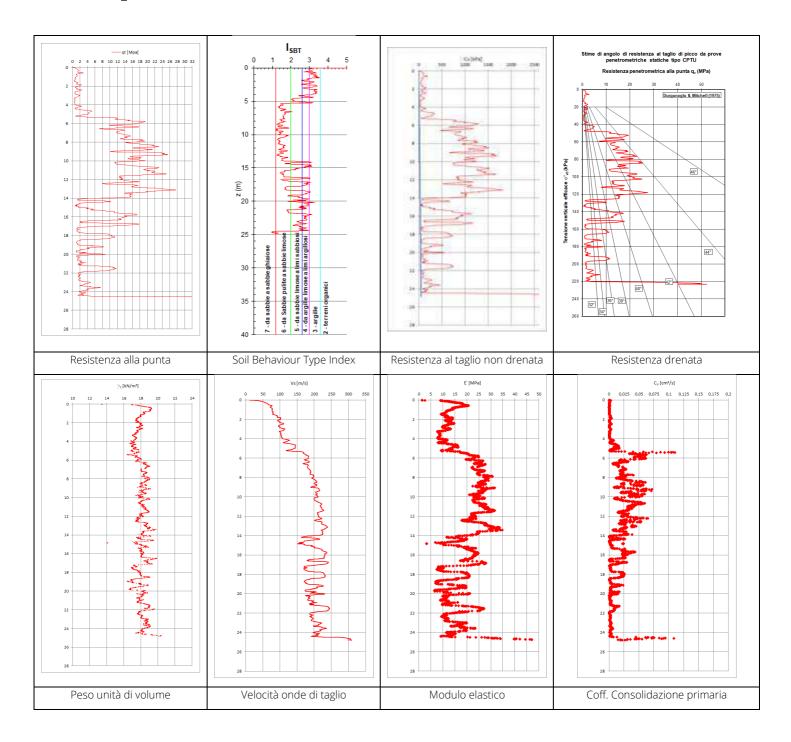
Figura 22. Analisi di stabilità in condizioni sismiche


ALLEGATO 1 - RISULTATI PROVE CPTU

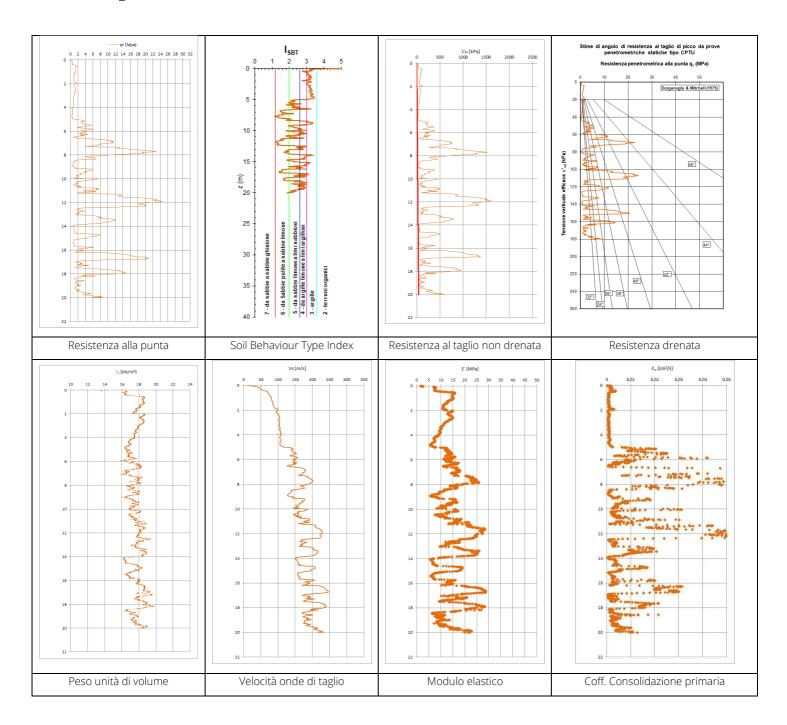
CPTU9_2013



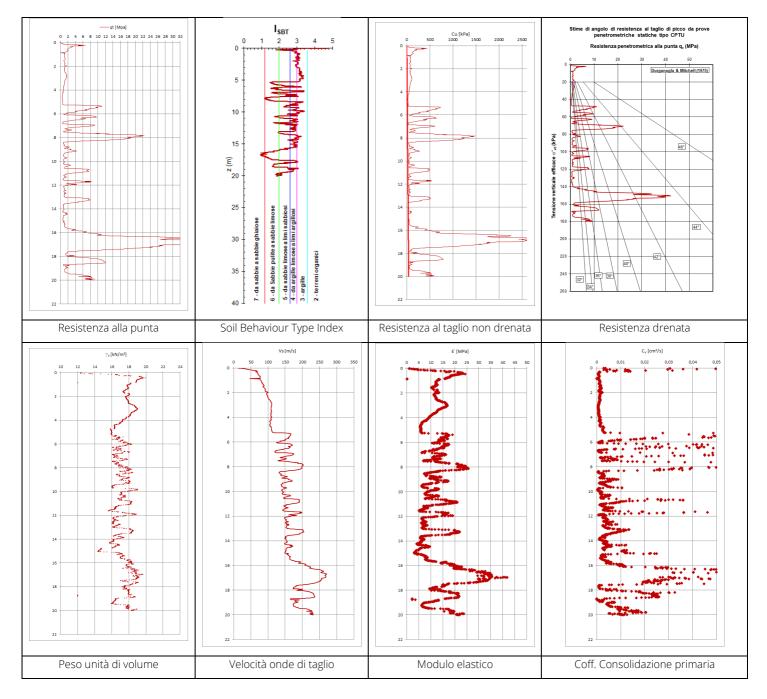
CPTU8 2013



CPTU7_2013

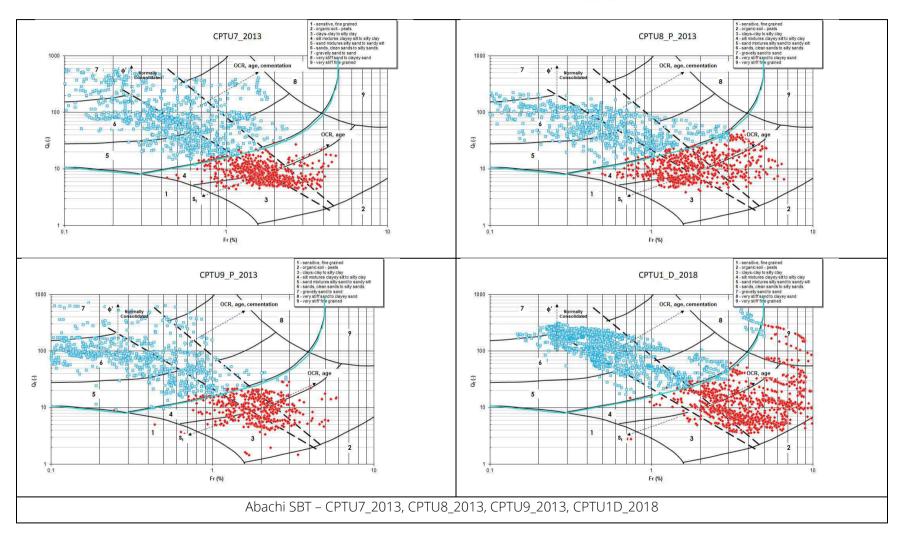


CPTU1D 2018



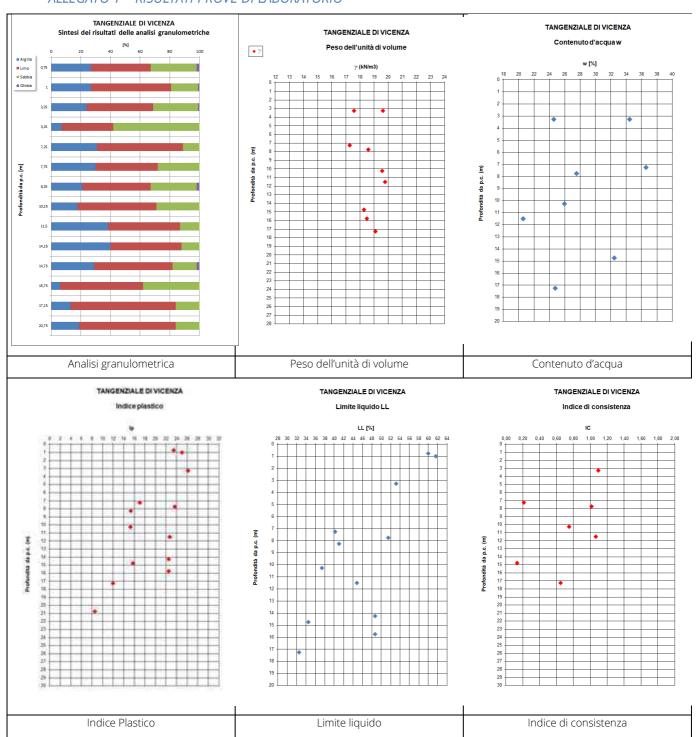
CPTU2D 2018

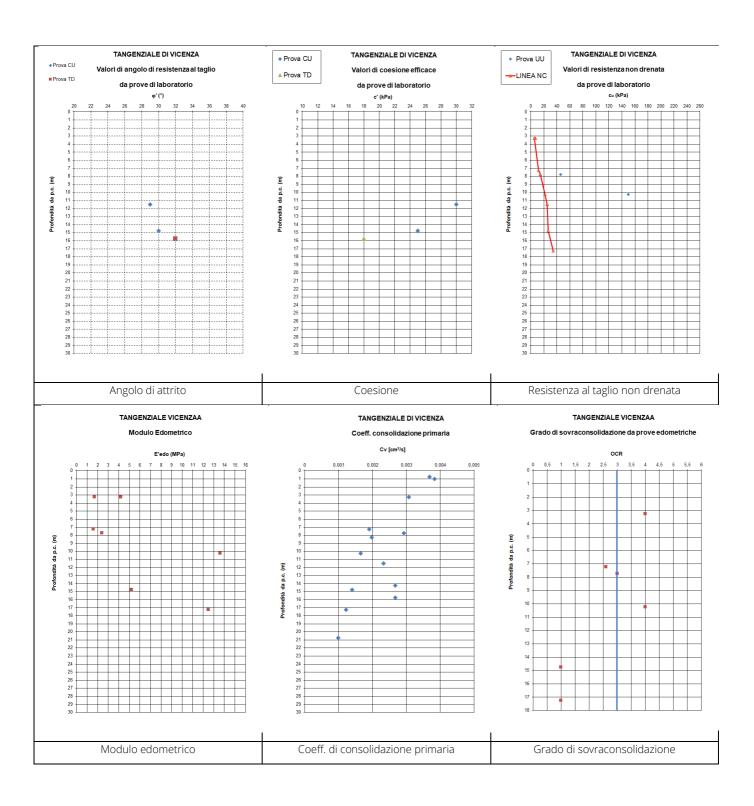
SCPTU3D 2018



Direzione Progettazione e Realizzazione Lavori

Completamento della tangenziale di Vicenza – 1° Stralcio


T00GE00GETRE01- A



ALLEGATO 1 - RISULTATI PROVE DI LABORATORIO

Completamento della tangenziale di Vicenza – 1° Stralcio

T00GE00GETRE01- A

Relazione Geotecnica Generale

ALLEGATO 2 – CEDIMENTI RILEVATO DI APPROCCIO PONTE OROLO

		CCIO PONTE																							
EZIONE	SP-2	pk 0+154,17																							
TOT (cm)	44,9	asse																							
ist (cm)	18,1	asse																							
CON (CM)	26,7	asse																							
					DATI TER	RENI																			
-	DATI RILEV	ATO			Ug1	1	Ug2	2	Terreno	3	Ug3	- 4	Ug1	5	Ug1	6									
	H(m)=	6,7	Altezza rilevato		Cc	0,25	E' (kPa)	20000	Cc		E' (kPa)	30000	Cc	0,25	E' (kPa)	10000									
	200	18	gamma ril (kN/n		Cs	0,035	E'ed	24000	Cs		E'ed	36000	Cs	0,035	E'ed	12000									
			Larghezza base		OCR	3	V 3	0,25	OCR 3		V 3v	0,25	OCR 3	10.0	V 3	0,25	-								
	q (kPa)=	120,6	Pressione		γ (kN/m³) v'	18,5 0,3	γ (kN/m³)	19	γ (kN/m³) v'	0,3	γ (kN/m³)	19	γ (kN/m³) v'	18,5 0,3	γ (kN/m³)	10,5									
	Zwsup (m)=	0	profondità falda :	superiore	e ₀	0.8			e ₀				e ₀	0,8										44.9	
	Zw _{INF} (m)=	-	profondità falda i		- 0	0.0	1		- 00	-			- 00	0,0.										7.1,0	
	X(m)=	5.00		ALCOLO CEDIMENTO															edom	E'ed.OPER	elastico	E'oper		edometrico	elastico
	z(m)	H(m)	Terreno	gamma	- 0	u	-	-2	В	O.	$\Delta\sigma_z$	$\Delta \sigma_{V}$	$\Delta\sigma_{x}$	$\sigma'_{z0} + \Delta \sigma_z$	e ₀	Сс	Cs	е	82	(kPa)	elastico e₂ (E'oper)		$\Delta \sigma_z / \sigma_o$		Δw(E' _{OPER})(cn
	2(111)	Ei(iii)	Tellello	yanına	σ _{z0} ' (kPa)	(kPa)	σ _{z0} (kPa)	σ _{zmax} (kPa)	(rad)	(rad)	(kPa)	(kPa)	(kPa)	(kPa)	e0	CC	US	е	82	(NEa)	∘z (∟ OPER)	(NFa)	70510 0	An(onl)	TAMIL OPER)(CII
0,5	0,25	0,5	1	18,5	2,1	2,5	4,63	6,38	-1,56	3,115		71,8	118,6	122,7	0,8	0,25	0.04	0,462	0,1877	642,6	0,13302	477,4	56,75	9,38	6,65
1,0	0,75	0,5	1	18,5	6,4	7,5	13,88	19,13	-1,53	3,063	120,6	70,5	114,5	127,0	0,8				0,1235	976,8	0,08967	725,6	18,92	6,17	4,48
1,5		0,5	1	18,5	10,6	12,5	23,13	31,88	-1,51	3,010	120,6	69,3	110,5	131,2	0,8				0,0946		0,07038		11,35	4,73	3,52
2,0		0,5	1	18,5	14,9	17,5	32,38	44,63	-1,48	2,958	120,6	68,1	106,5	135,4	0,8				0,0762		0,05803		8,10	3,81	2,90
2,5		0,5	1	18,5	19,1	22,5	41,63	57,38	-1,45	2,906	120,5	66,9	102,6	139,6	0,8				7 0,0629		0,04897		6,30	3,15	2,45
3,0		0,5	4	19,0 19.0	23,5 28.0	27,5 32.5	51,00 60.50	8 8	-1,43 -1.40	2,854	120,4 120,4	54,8 53.8	98,7 94.8	143,9 148,4		(4)	100	-		36000,0 36000.0		30000,0		0,17	0,14
4.0		0.5	4	19.0	32.5	37.5	70.00	8	-1,40	2,752	120,4	52.8	91.1	152.7		200	744	82		36000,0		30000,0		0.17	0.14
4.5		0.5	2	19.0	37.0	42.5	79.50	8	-1,35	2.701	120.1	62.2	87.3	157,1	9	32.	100	12		24000.0	100000000000000000000000000000000000000	20000,0		0.25	0,21
5,0		0,5	2	19,0	41,5	47,5	89,00	-	-1,33	2,652	119,9	61,1	83,7	161,4	-	-	-	-		24000,0		20000,0		0,25	0,21
5,5		0,5	2	19,0	46,0	52,5	98,50	-	-1,30	2,602	119,6	59,9	80,2	165,6	-	-	-	-	0,0050	24000,0		20000,0		0,25	0,21
6,0		0,5	2	19,0	50,5	57,50	108,00	-	-1,28	2,554	119,3	58,8	76,8	169,8	-	-	-	-		24000,0		20000,0		0,25	0,21
6,5		0,5	6	18,5	54,9	62,5	117,38	-	-1,25	2,506		48,1	73,4	173,9	-	-	-	-	0,0099		0,00886			0,50	0,44
7,0 7.5		0,5 0.5	6	18,5 18.5	59,1 63.4	67,5 72.5	126,63 135.88	-	-1,23 -1,21	2,459	118,6 118.2	47,2 46,3	70,2 67.0	177,7 181.6	-	-	-	-	0,0099		0,00898	10000,0		0,49 0.49	0,45 0.45
8.0		0,5	2	19,0	67.8	77.5	145,25	-	-1,21	2,413	117,7	54,5	64,0	185,5	-	-	-			24000.0		20000,0		0,49	0,45
8,5		0,5	2	19,0	72,3	82,5	154,75	-	-1,16	2,322	117,2	53,5	61,1	189,4	-	-	-	-		24000,0		20000,0		0,24	0,22
9,0		0,5	2	19,0	76,8	87,5	164,25	-	-1,14	2,278	116,6	52,5	58,3	193,4	-	-	-	-		24000,0		20000,0		0,24	0,22
9,5	9,25	0,5	2	19,0	81,3	92,5	173,75	-	-1,12	2,235	116,0	51,5	55,6	197,3	-	-	-	-	0,0048	24000,0	0,00446	20000,0	1,43	0,24	0,22
10,0		0,5	2	19,0	85,8	97,5	183,25	-	-1,10	2,193	115,4	50,5	53,0	201,1	-	-	-	-		24000,0		20000,0		0,24	0,22
10,5		0,5	2	19,0	90,3	102,5	192,75	-	-1,08	2,152	114,7	49,6	50,5	204,9	-	-	-	-		24000,0		20000,0		0,24	0,22
11,0		0,5 0,5	2	19,0 19.0	94,8 99.3	107,5	202,25	-	-1,06 -1.04	2,112		48,6	48,2	208,7	-	-	-	-		24000,0 24000.0		20000,0		0,24	0,22 0,22
11,5 12,0	,=-	0,5	2	19,0	103.8	117,5	221,75		-1,04	2,072	113,2 112,4	47,7	45,9 43,7	212,5 216,2		-	-	-	-,	24000,0		20000,0		0,24 0,23	0,22
12,5		0,5	2	19.0	108,3	122.5	230,75		-1,02	1,996	111,6	46.0	41.7	219.8		-	-			24000,0		20000,0		0,23	0,22
13,0		0,5	2	19.0	112.8	127,5	240,25	-	-0.98	1,960	110,7	45,1	39.7	223.5	-	-	-	-		24000.0		20000.0		0,23	0,22
13,5		0,5	2	19,0	117,3	132,5	249,75	-	-0,96	1,924	109,9	44,3	37,8	227,1	-	-	-	-	0,0046	24000,0	0,00447	20000,0	0,94	0,23	0,22
14,0		0,5	2	19,0	121,8	137,5	259,25	-	-0,94	1,889	109,0	43,5	36,0	230,7	-	-	-	-		24000,0		20000,0		0,23	0,22
14,5		0,5	2	19,0	126,3	142,5	268,75	-	-0,93	1,855	108,0	42,7	34,3	234,3	-	-	-	-		24000,0		20000,0		0,23	0,22
15,0		0,5	2	19,0	130,8	147,5	278,25	-	-0,91	1,821	107,1	42,0	32,7	237,9	-	-	-	-		24000,0		20000,0		0,22	0,22
15,5 16,0	15,25 15,75	0,5 0,5	2	19,0 19,0	135,3 139,8	152,5 157,5	287,75 297,25	-	-0,89 -0,88	1,789	106,2 105,2	41,2 40,5	31,2 29,7	241,4 244,9	-	-	-	-		24000,0 24000,0		20000,0		0,22 0,22	0,22 0,22
16,0		0,5	2	19,0	144,3	162,5	306,75	-	-0,86	1,727	105,2	39,8	28,4	244,9	-	-	-	-		24000,0		20000,0		0,22	0,22
17,0		0,5	2	19,0	148,8	167,5	316,25	-	-0,85	1,697	103,2	39,1	27,0	252,0	-	-	-	-		24000,0		20000,0		0,22	0,22
17,5		0,5	2	19,0	153,3	172,5	325,75	-	-0,83	1,667	102,2	38,4	25,8	255,5	-	-	-	-		24000,0		20000,0		0,21	0,22
18,0		0,5	2	19,0	157,8	177,5	335,25	-	-0,82	1,639	101,2	37,7	24,6	259,0	-	-	-	-	0,0042	24000,0	0,00428	20000,0	0,64	0,21	0,21
18,5		0,5	2	19,0	162,3	182,5	344,75	-	-0,81	1,611	100,2	37,1	23,5	262,5	-	-	-	-		24000,0		20000,0		0,21	0,21
19,0 19.5		0,5	2	19,0	166,8	187,5	354,25	-	-0,79	1,584	99,2	36,5	22,4	265,9	-	-	-	-		24000,0		20000,0		0,21	0,21
	19,25	0,5	2	19.0	171,3	192,5	363,75	-	-0,78	1,558	98,2	35,9	21,4	269,4	-	-	-	-	0,0041	24000,0	0,00419	20000,0	0,57	0,20	0,21

Direzione Progettazione e Realizzazione Lavori

Completamento della tangenziale di Vicenza – 1° Stralcio

T00GE00GETRE01- A

20,5 20,2	25	0,5	2	19,0	180,3	202,5	382,75	-	-0,75	1,507	96,2	34,7	19,5	276,4	-	-	-	-	0,0040 24000,0	0,00413 20000,0	0,53	0,20	0,21
21.0 20.7	75	0.5	2	19.0	184.8	207.5	392,25	-	-0.74	1,483	95.2	34.2	18,7	279.9		-	-	-	0.0040 24000.0	0.00410 20000.0	0.52	0.20	0.20
21,5 21,2		0,5	2	19,0	189,3	212,5	401,75	-	-0.73	1,459	94.2	33,6	17,9	283,4	-	-	-	-	0.0039 24000.0	0,00406 20000,0	0.50	0,20	0.20
22,0 21,7		0,5	2	19,0	193,8	217,5	411,25	_	-0,72	1,436	93,2	33,1	17,1	286,9	_	-	-	-	0,0039 24000,0	0.00403 20000.0		0.19	0,20
22,5 22,2		0,5	2	19,0	198,3	222,5	420,75		-0,71	1,414	92,2	32,6	16,3	290,4		-		-	0,0038 24000,0	0,00400 20000,0		0.19	0,20
23.0 22.7		0,5	2	19.0	202.8	227.5	430.25	-	-0,71	1,392	91.2	32,1	15,6	293.9		-	-	-	0.0038 24000,0	0,00396 20000,0		0,19	0.20
																-		- :					
23,5 23,2		0,5	2	19,0	207,3	232,5	439,75	-	-0,69	1,370	90,2	31,6	15,0	297,5	-	-	-		0,0038 24000,0	0,00393 20000,0		0,19	0,20
24,0 23,7		0,5	2	19,0	211,8	237,5	449,25	-	-0,67	1,349	89,3	31,1	14,4	301,0	-	-	-	-	0,0037 24000,0	0,00389 20000,0		0,19	0,19
24,5 24,2		0,5	2	19,0	216,3	242,5	458,75	-	-0,66	1,329	88,3	30,6	13,8	304,5	-	-	-	-	0,0037 24000,0	0,00386 20000,0		0,18	0,19
25,0 24,7		0,5	2	19,0	220,8	247,5	468,25	-	-0,65	1,309	87,4	30,2	13,2	308,1	-	-	-	-	0,0036 24000,0	0,00383 20000,0		0,18	0,19
25,5 25,2		0,5	2	19,0	225,3	252,5	477,75	-	-0,65	1,290	86,4	29,7	12,6	311,7	-	-	-	-	0,0036 24000,0	0,00379 20000,0		0,18	0,19
26,0 25,7		0,5	2	19,0	229,8	257,5	487,25	-	-0,64	1,271	85,5	29,3	12,1	315,2	-	-	-	-	0,0036 24000,0	0,00376 20000,0		0,18	0,19
26,5 26,2	25	0,5	2	19,0	234,3	262,5	496,75	-	-0,63	1,253	84,6	28,9	11,6	318,8	-	-	-	-	0,0035 24000,0	0,00372 20000,0	0,36	0,18	0,19
27,0 26,7	75	0,5	2	19,0	238,8	267,5	506,25	-	-0,62	1,235	83,7	28,4	11,2	322,4	-	-	-	-	0,0035 24000,0	0,00369 20000,0	0,35	0,17	0,18
27,5 27,2	25	0,5	2	19,0	243,3	272,5	515,75	-	-0,61	1,218	82,8	28,0	10,7	326,0	-	-	-	-	0,0034 24000,0	0,00365 20000,0	0,34	0,17	0,18
28,0 27,7	75	0,5	2	19,0	247,8	277,5	525,25	-	-0.60	1,201	81,9	27,7	10,3	329,6	-	-	-	-	0.0034 24000.0	0,00362 20000,0	0,33	0,17	0,18
28,5 28,2	25	0.5	2	19,0	252,3	282,5	534,75	-	-0.59	1.184	81.0	27,3	9.9	333.3	-	-	_	_	0,0034 24000,0	0,00359 20000,0		0.17	0.18
29,0 28,7		0.5	2	19,0	256,8	287,5	544,25		-0,58	1,168	80,2	26,9	9,5	336,9		_	_		0,0033 24000,0	0,00355 20000,0		0,17	0,18
29,5 29,2		0,5	2	19,0	261,3	292,5	553,75		-0,58	1,152	79.3	26,5	9,2	340.6					0,0033 24000,0	0,00352 20000,0		0.17	0.18
30.0 29.7		0.5	2	19.0	265.8	297.5	563,25		-0.57	1,137	78,5	26,2	8,8	344.2					0.0033 24000.0	0.00349 20000.0		0,16	0,17
30,5 30,2		0,5	2	19,0	270,3	302,5	572,75	_	-0,56	1,122	77,6	25,8	8,5	347,9		_		_	0,0032 24000,0	0.00345 20000,0		0,16	0,17
31,0 30,7		0,5	2	19,0	274,8	307,5	582,25		-0,55	1,107	76,8	25,5	8,2	351,6					0,0032 24000,0	0,00343 20000,0	0,28	0,16	0,17
		0,5	2			312,5	591,75	-		1,093					-	-	-		0,0032 24000,0	0,00339 20000,0			
31,5 31,2			2	19,0	279,3			-	-0,55		76,0	25,2	7,9	355,3	-	-	-	-				0,16	0,17
32,0 31,7		0,5		19,0	283,8	317,5	601,25	-	-0,54	1,079	75,2	24,8	7,6	359,0	-	-	-	-	0,0031 24000,0	0,00336 20000,0		0,16	0,17
32,5 32,2		0,5	2	19,0	288,3	322,5	610,75	-	-0,53	1,065	74,5	24,5	7,3	362,7	-	-	-	-	0,0031 24000,0	0,00332 20000,0		0,16	0,17
33,0 32,7		0,5	2	19,0	292,8	327,5	620,25	-	-0,53	1,051	73,7	24,2	7,0	366,4	-	-	-	-	0,0031 24000,0	0,00329 20000,0		0,15	0,16
33,5 33,2		0,5	2	19,0	297,3	332,5	629,75	-	-0,52	1,038	72,9	23,9	6,8	370,2	-	-	-	-	0,0030 24000,0	0,00326 20000,0		0,15	0,16
34,0 33,7		0,5	2	19,0	301,8	337,5	639,25	-	-0,51	1,025	72,2	23,6	6,5	373,9	-	-	-	-	0,0030 24000,0	0,00323 20000,0		0,15	0,16
34,5 34,2		0,5	2	19,0	306,3	342,5	648,75	-	-0,51	1,013	71,5	23,3	6,3	377,7	-	-	-	-	0,0030 24000,0	0,00320 20000,0		0,15	0,16
35,0 34,7		0,5	2	19,0	310,8	347,5	658,25	-	-0,50	1,001	70,7	23,0	6,1	381,5	-	-	-	-	0,0029 24000,0	0,00317 20000,0		0,15	0,16
35,5 35,2	25	0,5	2	19,0	315,3	352,5	667,75	-	-0,49	0,989	70,0	22,8	5,9	385,3	-	-	-	-	0,0029 24000,0	0,00314 20000,0	0,22	0,15	0,16
36,0 35,7	75	0,5	2	19,0	319,8	357,5	677,25	-	-0,49	0,977	69,3	22,5	5,7	389,1	-	-	-	-	0,0029 24000,0	0,00311 20000,0	0,22	0,14	0,16
36,5 36,2	25	0,5	2	19,0	324,3	362,5	686,75	-	-0,48	0,966	68,6	22,2	5,5	392,9	-	-	-	-	0,0029 24000,0	0,00309 20000,0	0,21	0,14	0,15
37,0 36,7	75	0,5	2	19,0	328,8	367,5	696,25	-	-0.48	0,954	68,0	22,0	5,3	396.7	-	-	-	_	0.0028 24000.0	0,00306 20000,0	0.21	0,14	0,15
37,5 37,2	25	0,5	2	19,0	333,3	372,5	705,75	_	-0.47	0,943	67,3	21,7	5,1	400.5	_	_	_	_	0.0028 24000.0	0.00303 20000.0		0.14	0,15
38,0 37,7	75	0,5	2	19,0	337,8	377,5	715,25	_	-0.47	0,933	66,6	21,5	5,0	404.4	_	-	_	_	0,0028 24000,0	0,00300 20000,0	0,20	0,14	0,15
38,5 38,2		0,5	2	19,0	342,3	382,5	724,75	_	-0,46	0,922	66,0	21,2	4,8	408.2	_	_	_	_	0,0027 24000,0	0,00297 20000,0		0.14	0,15
39.0 38.7		0.5	2	19,0	346,8	387.5	734.25	_	-0.46	0.912	65,3	21.0	4,7	412.1	_	_	_	_	0.0027 24000.0	0,00295 20000,0		0.14	0.15
39.5 39.2		0.5	2	19.0	351.3	392.5	743.75		-0.45	0.902	64.7	20.8	4.5	416.0					0.0027 24000.0	0,00292 20000,0		0.13	0.15
40,0 39,7		0.5	2	19,0	355,8	397,5	753,25		-0,45	0,892	64,1	20,5	4,4	419.9				-	0,0027 24000,0	0,00289 20000,0		0.13	0,14
40,5 40,2		0,5	2	19,0	360,3	402,5	762,75	-	-0,43	0,882	63,5	20,3	4,2	423.7	-	_	-		0,0027 24000,0	0,00287 20000,0		0,13	0.14
41.0 40.7		0,5	2	19,0	364.8	407.5	772,25		-0,44	0,873	62.9	20,3	4,1	427.7		-	-		0.0026 24000,0	0,00284 20000,0		0,13	0,14
								-							-	-	-					,	
41,5 41,2		0,5	2	19,0	369,3	412,5	781,75	-	-0,43	0,863	62,3	19,9	4,0	431,6		-	-	-	0,0026 24000,0	0,00282 20000,0		0,13	0,14
42,0 41,7		0,5	2	19,0	373,8	417,5	791,25	-	-0,43	0,854	61,7	19,7	3,8	435,5	-	-	-	-	0,0026 24000,0	0,00279 20000,0		0,13	0,14
42,5 42,2		0,5	2	19,0	378,3	422,5	800,75	-	-0,42	0,845	61,2	19,5	3,7	439,4	-	-	-	-	0,0025 24000,0	0,00277 20000,0		0,13	0,14
43,0 42,7		0,5	2	19,0	382,8	427,5	810,25	-	-0,42	0,836	60,6	19,3	3,6	443,4	-	-	-	-	0,0025 24000,0	0,00274 20000,0		0,13	0,14
43,5 43,2		0,5	2	19,0	387,3	432,5	819,75	-	-0,41	0,828	60,1	19,1	3,5	447,3	-	-	-	-	0,0025 24000,0	0,00272 20000,0		0,13	0,14
44,0 43,7		0,5	2	19,0	391,8	437,5	829,25	-	-0,41	0,819	59,5	18,9	3,4	451,3	-	-	-	-	0,0025 24000,0	0,00270 20000,0		0,12	0,13
44,5 44,2		0,5	2	19,0	396,3	442,5	838,75	-	-0,41	0,811	59,0	18,7	3,3	455,2	-	-	-	-	0,0025 24000,0	0,00267 20000,0		0,12	0,13
45,0 44,7		0,5	2	19,0	400,8	447,5	848,25	-	-0,40	0,803	58,4	18,5	3,2	459,2	-	-	-	-	0,0024 24000,0	0,00265 20000,0		0,12	0,13
45,5 45,2	25	0,5	2	19,0	405,3	452,5	857,75	-	-0,40	0,795	57,9	18,3	3,1	463,2	-	-	-	-	0,0024 24000,0	0,00263 20000,0	0,14	0,12	0,13
46,0 45,7	75	0,5	2	19,0	409,8	457,5	867,25	-	-0,39	0,787	57,4	18,1	3,0	467,2	-	-	-	-	0,0024 24000,0	0,00261 20000,0	0,14	0,12	0,13
46,5 46,2	25	0,5	2	19,0	414,3	462,5	876,75	-	-0,39	0,780	56,9	18,0	2,9	471,2	-	-	-	-	0,0024 24000,0	0,00258 20000,0	0,14	0,12	0,13
47,0 46,7	75	0,5	2	19,0	418,8	467,5	886,25	-	-0,39	0,772	56,4	17,8	2,9	475,2	-	-	-	-	0,0024 24000,0	0,00256 20000,0		0,12	0,13
47,5 47,2		0,5	2	19,0	423,3	472,5	895,75	-	-0,38	0,765	55,9	17,6	2,8	479,2	-	-	_	-	0,0023 24000,0	0,00254 20000,0		0,12	0,13
48,0 47,7		0,5	2	19,0	427,8	477.5	905,25	_	-0,38	0,757	55,4	17,4	2,7	483,2	_	_	_	_	0,0023 24000,0	0,00252 20000,0		0,12	0,13
48,5 48,2		0,5	2	19,0	432,3	482,5	914.75	_	-0,38	0,750	55,0	17,3	2,6	487.2	_	_	_	_	0,0023 24000,0	0,00250 20000,0		0.11	0,12
49.0 48.7		0.5	2	19.0	436.8	487.5	924.25		-0.37	0,743	54.5	17.1	2.6	491.3				_	0.0023 24000.0	0,00248 20000,0		0.11	0,12
49,5 49,2		0,5	2	19.0	441.3	492,5	933,75		-0,37	0,736	54,5	17.0	2.5	495.3					0,0023 24000,0	0,00246 20000,0		0.11	0,12
50.0 49.7		0,5	2	19,0	441,3	492,5			-0,37		53.6	16.8	2,5	499,3					0.0023 24000,0	0.00244 20000.0		0,11	0,12
50,0 49,7	0	0,5		19,0	445,6	491,5	343,25		-0,56	0,730	55,6	10,0	2,4	499,5					0,0022 24000,0	0,00244 20000,0	0, 12	U, I I	U, IZ

Direzione Progettazione e Realizzazione Lavori

Completamento della tangenziale di Vicenza – 1° Stralcio

T00GE00GETRE01- A

RILEVAT	O DI APPROCCIO	PONTE ORO	LO - DECOR	SO CEDIMENT	I NEL TEMPO		
SEZIONE	SP-2	pk 0+154,17					
$c_v(cm^2/s)$	2,0E-03						
H (m)	1,2						

					Ug1			
U _m	$T_{\rm v}$	w (cm)	w _{TOT} (cm)	w _{TOT} (mm)	t (s)	t (anni)	t (mesi)	v (cm/anno)
0	0,0000	0,00	0,00	0,00	0	0,00	0,00	#DIV/0!
5	0,0017	1,34	1,34	13,40	12240	0,00	0,00	3452,30
10	0,0077	2,68	2,68	26,80	55440	0,00	0,02	978,15
15	0,0177	4,02	4,02	40,20	127440	0,00	0,05	586,89
20	0,0314	5,36	5,36	53,60	226080	0,01	0,09	428,39
25	0,0491	6,70	6,70	67,00	353520	0,01	0,13	331,58
30	0,0707	8,04	8,04	80,40	509040	0,02	0,19	271,71
35	0,0962	9,38	9,38	93,80	692640	0,02	0,26	230,15
40	0,1260	10,72	10,72	107,19	907200	0,03	0,35	196,94
45	0,1590	12,06	12,06	120,59	1144800	0,04	0,44	177,85
50	0,1960	13,40	13,40	133,99	1411200	0,04	0,54	158,62
55	0,2380	14,74	14,74	147,39	1713600	0,05	0,65	139,74
60	0,2860	16,08	16,08	160,79	2059200	0,07	0,78	122,27
65	0,3420	17,42	17,42	174,19	2462400	0,08	0,94	104,80
70	0,4030	18,76	18,76	187,59	2901600	0,09	1,10	96,21
75	0,4770	20,10	20,10	200,99	3434400	0,11	1,31	79,31
80	0,5670	21,44	21,44	214,39	4082400	0,13	1,55	65,21
85	0,6840	22,78	22,78	227,79	4924800	0,16	1,87	50,16
90	0,8480	24,12	24,12	241,19	6105600	0,19	2,32	35,79
95	1,1290	25,46	25,46	254,59	8128800	0,26	3,09	20,89
100	1,E+03	26,80	26,80	267,99	7200000000	228,31	2739,73	0,01

Completamento della tangenziale di Vicenza – 1° Stralcio

T00GE00GETRE01- A

Relazione Geotecnica Generale

ALLEGATO 3 – CEDIMENTI RILEVATO DI APPROCCIO PONTE ZUBANA

F	RILEVATO	DI APPROC	CIO PONTE ZUBANA																						
5	SEZIONE	SP-2	pk 1+055,03																						
ν	V _{TOT} (cm)	49,4	asse																						
	v _{ist} (cm)	18,3	asse																						
		31.0	asse																						
٧	v _{CON} (cm)	31,0	dose																						
r	OATI RILEV	MTO			DATI TERI		11-0	2	Tomore	3	11-4	4	Toward	5		6									
L			Altorra cilcusto		Terreno Ug	0,25	Ug2 E' (kPa)	20000	Terreno	3	Ug1_cons E' (kPa)	25000	Terreno	5	E' (kPa)	30000									
+	H(m)=	18	Altezza rilevato gamma ril (kN/m3)		Cc Cs		E'ed	24000	Cc		E'ed	30000	Cc		E'ed	36000									
	Bbase=		Larghezza base		OCR	3	L'eu	0,25	OCR	9	L eu	0.25	OCR		L eu	0,25									
	q (kPa)=		Pressione		√ (kN/m ³)	18.5	7 (kN/m ³)		γ (kN/m ³)		7 (kN/m ³)	18.5	7 (kN/m ³)		7 (kN/m ³)	19									
	q (ia u)	124,2	, ressent		v	0,3	/ (lawin /	10.	v'	0,3	(lawin)	10.5	v	0,3	(lawin)	13									
8	Zw _{SUP} (m)=	Ö	profondità falda superio	re	e ₀	0.8			e ₀				e ₀		-									49,4	
	Zwine (m)=		profondità falda inferiore			1-4-								-	•										
	X(m)=	102	ASCISSA DI CALCOLO		MENTO														adam	E'	alastia -	E'		edometrico	elastico
		10 NA						0.60	112		12	- 20	520	45 2019			0		edom	E'ed,OPER	elastico	E'OPER	400		
	z(m)	H(m)	Terreno	gamma		U	σ _{z0}	o zmax	β	α	$\Delta\sigma_z$	Δσ _y	Δσχ	$\sigma_{z0} + \Delta \sigma_z$	z e ₀	Cc	Cs	е	e _z	(kPa)	ε _z (E' _{OPER})	(kPa)	$\Delta \sigma_z / \sigma'_o$	Δw(cm)	ΔW(E'OPER)(
-	0.05			10.5	(kPa)	(kPa)	(kPa)	(kPa)	(rad)	(rad)	(kPa)	(kPa)	(kPa)	(kPa)	0.0	0.00		0.155	0.405	055.5	0.4045	107	50.45		
,5	0,25	0,5	1	18,5	2,1	2,5	4,63	6,38	-1,56	3,116		73,9	122,2	126,3	0,8	0,25			0,1894	655,7	0,13421	487,1	58,45	9,47	6,71
.0	0,75	0,5	1	18,5 18.5	6,4	7,5	13,88	19,13 31,88	-1,53	3,065		72,7	118,1	130,6 134.8	8,0	0,25			0,1251	992,4	0,09081	737,2	19,48	6,26 4,81	4,54
.0	1,25 1,75	0,5		18,5	10,6 14,9	12,5 17,5	32.38	44.63	-1,51 -1,48	3,014	124,2 124,2	71,5 70,3	114,1	134,8	0,8	0,25			0.0963	1290,1 1595,4	0,07148		11,69 8,35	3.89	3,57 2.95
,5	2,25	0,5		18,5	19,1	22,5	41,63	57,38	-1,46	2,963		69,1	106,2	143,2	0,8	0,25			0,0778	1925.4	0,05910		6,49	3,22	2,95
.0	2,25	0,5	1	18,5	23,4	27,5	50,88	70,13	-1,48	2,862		67.9	100,2	147,4	0,8	0,25			0.0541	2293.1	0.04286		5,31	2,70	2,14
.5	3,25	0,5	- 1	18,5	27,6	32,5	60,13	82,88	-1,43	2,812		66.7	98.4	151,6	0,8	0,25				2712,5	0.03694		4,49	2,70	1,85
.0	3,75	0,5	1 4	18.5	31,9	37,5	69,38	95,63	-1,38	2,763		65.5	94.6	155,7	0,8	0,25			0.0387			2377.8	3,89	1,93	1,59
.5	4,25	0,5	2	19,0	36,3	42,5	78,75	33,03	-1.36	2,713		64,4	90.9	159,9	0,0	0,23	0,04			24000,0		20000,0		0,26	0,21
.0	4,25	0,5	2	19.0	40.8	47.5	88.25		-1.33	2.665	123,7	63.2	87.2	164.2					0.0051	24000.0		20000,0		0.26	0,21
.5	5.25	0.5	6	19.0	45.3	52.5	97.75		-1.31	2.617	123.3	51.7	83.7	168.5	-	-			0.0034	36000.0	-	30000.0		0.17	0.15
.0	5.75	0,5	6	19,0	49,8	57,50	107,25		-1,28	2,569	123,0	50,8	80,2	172,7		-		-	0.0034	36000.0		30000.0		0.17	0,15
.5	6.25	0.5	6	19.0	54.3	62.5	116.75	-	-1.26	2.523	122.7	49.9	76,8	176.9	-	-	-	-	0.0034	36000.0		30000.0		0.17	0.15
.0	6.75	0.5	6	19.0	58.8	67.5	126.25	-	-1.24	2.477	122.3	49.0	73.5	181.1	-	-	-	-	0.0034	36000.0		30000.0		0.17	0.15
,5	7.25	0.5	2	19,0	63.3	72,5	135.75	-	-1.22	2.431	121,9	57,7	70,3	185.1	-	-	-	-	0.0051	24000.0		20000,0		0.25	0.22
.0	7,75	0.5	2	19,0	67,8	77,5	145,25		-1.19	2,387	121.4	56,6	67,3	189,2	-	-	-	-	0.0051	24000.0		20000,0		0,25	0,23
.5	8.25	0.5	2	19,0	72.3	82,5	154,75		-1.17	2.343	120.9	55,6	64.3	193.2	-	-	-	-	0.0050	24000.0		20000,0		0,25	0,23
.0	8.75	0.5	2	19.0	76.8	87.5	164.25		-1.15	2.300	120,4	54.6	61.4	197.2		-	-	-	0.0050	24000.0		20000.0		0.25	0,23
.5	9,25	0,5	2	19,0	81,3	92,5	173,75	-	-1,13	2,258	119,8	53,6	58,7	201,1	-	-	-	-	0,0050	24000,0	0,00459	20000,0	1,47	0,25	0,23
,0	9,75	0,5	2	19,0	85,8	97,5	183,25	-	-1,11	2,216	119,2	52,6	56,0	204,9	-	-	-	-	0,0050	24000,0	0,00460	20000,0	1,39	0,25	0,23
,5	10,25	0,5	2	19,0	90,3	102,5	192,75	-	-1,09	2,176		51,6	53,5	208,8	-	-	-	-		24000,0		20000,0		0,25	0,23
,0	10,75	0,5	2	19,0	94,8	107,5	202,25	-	-1,07	2,136	117,8	50,7	51,1	212,6	-	-	-	-	0,0049	24000,0	0,00462	20000,0	1,24	0,25	0,23
,5	11,25	0,5	2	19,0	99,3	112,5	211,75	-	-1,05	2,097	117,1	49,7	48,7	216,3	-	-	-	-	0,0049	24000,0	0,00462	20000,0	1,18	0,24	0,23
,0	11,75	0,5	2	19,0	103,8	117,5	221,25	-	-1,03	2,059			46,5	220,1	-	-	-	-		24000,0		20000,0		0,24	0,26
,5	12,25	0,5	2	19,0	108,3	122,5	230,75	-	-1,01	2,022		48,0	44,4	223,8	-	-	-	-		24000,0		20000,0		0,24	0,23
,0	12,75	0,5	2	19,0	112,8	127,5	240,25	-	-0,99	1,986		47,1	42,3	227,4	-	-	-	-	0,0048			20000,0		0,24	0,23
,5	13,25	0,5	2	19,0	117,3	132,5	249,75	-	-0,98	1,950	113,8	46,3	40,4	231,1	-	-	-	-	0,0047	24000,0		20000,0		0,24	0,23
,0	13,75	0,5	2	19,0	121,8	137,5	259,25	-	-0,96	1,916		45,4	38,5	234,7	-	-	-	-		24000,0		20000,0		0,24	0,23
,5	14,25	0,5	2	19,0	126,3	142,5	268,75	-	-0,94	1,882		44,6	36,8	238,3	-	-	-		0,0047	24000,0		20000,0		0,23	0,23
,0	14,75	0,5	2	19,0	130,8	147,5	278,25	-	-0,92	1,849		43,9	35,1	241,9	-	-	-	-		24000,0		20000,0		0,23	0,23
,5	15,25	0,5	2	19,0	135,3	152,5	287,75	-	-0,91	1,817	110,2	43,1	33,5	245,4	-	-	-	-	0,0046	24000,0		20000,0		0,23	0,23
,0	15,75	0,5	2	19,0	139,8	157,5	297,25	-	-0,89	1,785	109,2	42,3	32,0	249,0	-	-	-			24000,0		20000,0		0,23	0,23
,5	16,25	0,5	2	19,0	144,3	162,5	306,75	-	-0,88	1,755		41,6	30,5	252,5	-	-	-	-		24000,0		20000,0		0,23	0,23
,0	16,75	0,5	2	19,0	148,8	167,5	316,25	-	-0,86	1,725		40,9	29,1	256,0	-	-	-	-		24000,0		20000,0		0,22	0,22
,5	17,25	0,5	2	19,0	153,3	172,5	325,75	-	-0,85	1,696	106,3	40,2	27,8	259,5	-	-	-			24000,0		20000,0		0,22	0,22
,0	17,75	0,5	2	19,0	157,8	177,5	335,25	-	-0,83	1,667	105,3	39,5	26,6	263,0	-	-	-	-	0,0044			20000,0		0,22	0,22
,5	18,25	0,5	2	19,0	162,3	182,5	344,75	-	-0,82	1,640		38,9	25,4	266,5	-	-	-		-,	24000,0		20000,0		0,22	0,22
,0	18,75	0,5	2	19,0	166,8	187,5	354,25	-	-0,81	1,613		38,3	24,3	270,0	-	-	-	-		24000,0		20000,0		0,22	0,22
,5	19,25	0,5	4	18,5	171,1	192,5	363,63	-	-0,79	1,586		31,4	23,2	273,4	-	-	-			30000,0		25000,0		0,17	0,18
.0	19,75	0.5	4	18,5	175,4	197,5	372,88	-	-0,78	1,561	101,2	30,8	22,2	276,6	-	-	-	-	0,0034	30000,0	0,00352	25000,0	0,58	0,17	0,18

Direzione Progettazione e Realizzazione Lavori

Completamento della tangenziale di Vicenza – 1° Stralcio

T00GE00GETRE01- A

20,5	20,25	0,5	4	18,5	179,6	202,5	382,13	-	-0,77	1,536	100,2	30,4	21,2	279,8	-	-	-	-	0,0033	30000,0	0,00349 25000,0	0,56	0,17	0,17
21,0	20,75	0,5	4	18,5	183,9	207,5	391,38	-	-0,76	1,511	99,2	29,9	20,3	283,1	-	-	-	-	0,0033	30000,0	0,00347 25000,0	0,54	0,17	0,17
21,5	21,25	0,5	4	18,5	188,1	212,5	400,63	-	-0,74	1,488	98,2	29,4	19,4	286,3	-	-	-	-		30000,0	0,00344 25000,0	0,52	0,16	0,17
22,0	21,75	0,5	4	18,5	192,4	217,5	409,88	-	-0,73	1,464	97,2	28,9	18,6	289,6	-	-	-	-	0,0032	30000,0	0,00341 25000,0	0,51	0,16	0,17
22,5	22,25	0,5	4	18,5	196,6	222,5	419,13	-	-0,72	1,442	96,2	28,5	17,8	292,8	-	-	-	-	0,0032	30000,0	0,00339 25000,0	0,49	0,16	0,17
23,0	22,75	0,5	4	18,5	200,9	227,5	428,38	-	-0,71	1,420	95,2	28,1	17,0	296,1	-	-	-	-	0,0032	30000,0	0,00336 25000,0	0,47	0,16	0,17
23,5	23,25	0,5	4	18,5	205,1	232,5	437,63	-	-0,70	1,398	94,2	27,6	16,3	299,4	-	-	-	-	0,0031	30000,0	0,00333 25000,0	0,46	0,16	0,17
24,0	23,75	0,5	4	18,5	209,4	237,5	446,88	-	-0,69	1,377	93,3	27,2	15,7	302,6	-	-	-	-	0,0031	30000,0	0,00330 25000,0	0,45	0,16	0,17
24,5	24,25	0,5	4	18,5	213,6	242,5	456,13	-	-0,68	1,357	92,3	26,8	15,0	305,9	-	-	-	-		30000,0	0,00327 25000,0	0,43	0,15	0,16
25,0	24,75	0,5	4	18,5	217,9	247,5	465,38	-	-0,67	1,337	91,3	26,4	14,4	309,2	-	-	-	-	0,0030	30000,0	0,00324 25000,0	0,42	0,15	0,16
25,5	25,25	0,5	4	18,5	222,1	252,5	474,63	-	-0,66	1,318	90,4	26,0	13,8	312,5	-	-	-	-	0,0030	30000,0	0,00322 25000,0	0,41	0,15	0,16
26,0	25,75	0,5	4	18,5	226,4	257,5	483,88	-	-0,65	1,299	89,4	25,7	13,3	315,8	-	-	-	-	0,0030	30000,0	0,00319 25000,0	0,40	0,15	0,16
26,5	26,25	0,5	4	18,5	230,6	262,5	493,13	-	-0,64	1,280	88,5	25,3	12,7	319,1	-	-	-	-	0,0029	30000,0	0,00316 25000,0	0,38	0,15	0,16
27,0	26,75	0,5	4	18,5	234,9	267,5	502,38	-	-0,63	1,262	87,6	25,0	12,2	322,4	-	-	-	-		30000,0	0,00313 25000,0	0,37	0,15	0,16
27,5	27,25	0,5	4	18,5	239,1	272,5	511,63	-	-0,62	1,245	86,7	24,6	11,8	325,8	-	-	-	-		30000,0	0,00310 25000,0	0,36	0,14	0,16
28,0	27,75	0,5	4	18,5	243,4	277,5	520,88	-	-0,61	1,227	85,8	24,3	11,3	329,1	-	-	-	-		30000,0	0,00307 25000,0	0,35	0,14	0,15
28,5	28,25	0,5	4	18,5	247,6	282,5	530,13	-	-0,61	1,211	84,9	23,9	10,9	332,5	-	-	-	-	0,0028	30000,0	0,00305 25000,0	0,34	0,14	0,15
29,0	28,75	0,5	4	18,5	251,9	287,5	539,38	-	-0,60	1,194	84,0	23,6	10,5	335,9	-	-	-	-		30000,0	0,00302 25000,0	0,33	0,14	0,15
29,5	29,25	0,5	4	18,5	256,1	292,5	548,63	-	-0,59	1,178	83,1	23,3	10,1	339,2	-	-	-	-	0,0028	30000,0	0,00299 25000,0	0,32	0,14	0,15
30,0	29,75	0,5	4	18,5	260,4	297,5	557,88	-	-0,58	1,163	82,3	23,0	9,7	342,6	-	-	-	-		30000,0	0,00296 25000,0	0,32	0,14	0,15
30,5	30,25	0,5	4	18,5	264,6	302,5	567,13	-	-0,57	1,148	81,4	22,7	9,3	346,0	-	-	-	-		30000,0	0,00294 25000,0	0,31	0,14	0,15
31,0	30,75	0,5	4	18,5	268,9	307,5	576,38	-	-0,57	1,133	80,6	22,4	9,0	349,5	-	-	-	-		30000,0	0,00291 25000,0	0,30	0,13	0,15
31,5	31,25	0,5	4	18,5	273,1	312,5	585,63	-	-0,56	1,118	79,8	22,1	8,7	352,9	-	-	-	-		30000,0	0,00288 25000,0	0,29	0,13	0,14
32,0	31,75	0,5	4	18,5	277,4	317,5	594,88	-	-0,55	1,104	78,9	21,8	8,3	356,3	-	-	-	-		30000,0	0,00286 25000,0	0,28	0,13	0,14
32,5	32,25	0,5	4	18,5	281,6	322,5	604,13	-	-0,54	1,090	78,1	21,5	8,0	359,8	-	-	-	-		30000,0	0,00283 25000,0	0,28	0,13	0,14
33,0	32,75	0,5	4	18,5	285,9	327,5	613,38	-	-0,54	1,076	77,4	21,3	7,8	363,2	-	-	-	-		30000,0	0,00280 25000,0	0,27	0,13	0,14
33,5	33,25	0,5	4	18,5	290,1	332,5	622,63	-	-0,53	1,063	76,6	21,0	7,5	366,7	-	-	-	-		30000,0	0,00278 25000,0	0,26	0,13	0,14
34,0	33,75	0,5	4	18,5	294,4	337,5	631,88	-	-0,53	1,050	75,8	20,8	7,2	370,2	-	-	-	-		30000,0	0,00275 25000,0	0,26	0,13	0,14
34,5	34,25	0,5	4	18,5	298,6	342,5	641,13	-	-0,52	1,037	75,1	20,5	7,0	373,7	-	-	-	-		30000,0	0,00273 25000,0	0,25	0,13	0,14
35,0	34,75	0,5	4	18,5	302,9	347,5	650,38	-	-0,51	1,025	74,3	20,3	6,7	377,2	-	-	-	-		30000,0	0,00270 25000,0	0,25	0,12	0,14
35,5	35,25	0,5	4	18,5	307,1	352,5	659,63	-	-0,51	1,013	73,6	20,0	6,5	380,7	-	-	-	-		30000,0	0,00268 25000,0	0,24	0,12	0,13
36,0	35,75	0,5	4	18,5	311,4	357,5	668,88	-	-0,50	1,001	72,9	19,8	6,3	384,2	-	-	-	-		30000,0	0,00265 25000,0	0,23	0,12	0,13
36,5	36,25	0,5	4	18,5	315,6	362,5	678,13	-	-0,49	0,989	72,1	19,6	6,1	387,8	-	-	-	-		30000,0	0,00263 25000,0	0,23	0,12	0,13
37,0	36,75	0,5	4	18,5	319,9	367,5	687,38	-	-0,49	0,978	71,4	19,3	5,9	391,3	-	-	-	-		30000,0	0,00261 25000,0	0,22	0,12	0,13
37,5	37,25	0,5	4	18,5	324,1	372,5	696,63	-	-0,48	0,967	70,8	19,1	5,7	394,9	-	-	-	-		30000,0	0,00258 25000,0	0,22	0,12	0,13
38,0	37,75	0,5	4	18,5	328,4	377,5	705,88	-	-0,48	0,956	70,1	18,9	5,5	398,4	-	-	-	-		30000,0	0,00256 25000,0	0,21	0,12	0,13
38,5	38,25	0,5	4	18,5	332,6	382,5	715,13	-	-0,47	0,945	69,4	18,7	5,3	402,0	-	-	-	-		30000,0	0,00254 25000,0	0,21	0,12	0,13
39,0	38,75	0,5	4	18,5	336,9	387,5	724,38	-	-0,47	0,935	68,7	18,5	5,1	405,6	-	-	-	-		30000,0	0,00251 25000,0	0,20	0,11	0,13
39,5	39,25	0,5	4	18,5	341,1	392,5	733,63	-	-0,46	0,924	68,1	18,3	5,0	409,2	-	-	-	-		30000,0	0,00249 25000,0	0,20	0,11	0,12
40,0	39,75	0,5	4	18,5	345,4	397,5	742,88	-	-0,46	0,914	67,5	18,1	4,8	412,8	-	-	-	-		30000,0	0,00247 25000,0	0,20	0,11	0,12
40,5	40,25	0,5	4	18,5	349,6	402,5	752,13	-	-0,45	0,904	66,8	17,9	4,7	416,4	-	-	-	-		30000,0	0,00245 25000,0	0,19	0,11	0,12
41,0	40,75	0,5	4	18,5	353,9	407,5	761,38	-	-0,45	0,895	66,2	17,7	4,5	420,1		-	-	-		30000,0	0,00243 25000,0	0,19	0,11	0,12
41,5	41,25	0,5	4	18,5	358,1	412,5	770,63	-	-0,44	0,885	65,6	17,5	4,4	423,7	-	-	-	-		30000,0	0,00240 25000,0	0,18	0,11	0,12
42,0	41,75	0,5	4	18,5	362,4	417,5	779,88	-	-0,44	0,876	65,0	17,3	4,3	427,4						30000,0	0,00238 25000,0	0,18	0,11	0,12
42,5	42,25 42,75	-1-	4	18,5	366,6 370,9	422,5 427,5	789,13	-	-0,43	0,867	64,4	17,1	4,1	431,0 434,7		-	-	-		30000,0	0,00236 25000,0	0,18	0,11	0,12 0,12
43,0		0,5	4	18,5			798,38	-	-0,43	0,858	63,8	17,0	4,0		-	-	-	-		30000,0	0,00234 25000,0	0,17	0,11	
43,5 44.0	43,25 43,75	0,5	4	18,5 18,5	375,1 379,4	432,5 437,5	807,63 816,88	-	-0,42 -0,42	0,849 0,840	63,2 62,7	16,8	3,9 3,8	438,4 442,1	- 1			-		30000,0 30000,0	0,00232 25000,0 0,00230 25000,0	0,17 0.17	0,11 0,10	0,12 0,12
44,0	44,25	0,5	4	18.5	379,4	442.5	826,13	-	-0,42 -0.42	0,840	62,7	16,6	3,8	442,1				-		30000,0	0,00230 25000,0	0,17	0,10	0,12
44,5 45.0	44,25	0,5	4	18.5	387.9	442,5	835.38		-0,42	0,832	61.6	16,4 16,3	3,7	445,7	-					30000,0	0,00226 25000,0	0,16	0,10	0,11
	44,75	0,5	4	18.5	392.1	447,5	844.63	-					3,6	449,4 453.2	-			-	-,	30000,0	0,00225 25000,0	-,		
45,5		0,5	4		392,1	452,5 457,5			-0,41	0,816	61,0	16,1 16.0								30000,0		0,16	0,10	0,11
46,0	45,75 46,25		4	18,5 18,5	400,6	457,5 462,5	853,88	-	-0,40	0,808 0,800	60,5	16,0	3,4	456,9 460,6				-		30000,0	0,00223 25000,0 0,00221 25000,0	0,15 0.15	0,10	0,11
46,5		0,5	4 4		400,6	462,5	863,13 872,38		-0,40		60,0	15,8 15.7	3,3							30000,0			0,10	0,11
47,0 47.5	46,75 47,25	0,5	4	18,5 18.5	404,9 409.1	467,5 472,5	872,38 881.63	-	-0,40 -0.39	0,792	59,5 59.0	15,7	3,2	464,3 468.1	-			-		30000,0	0,00219 25000,0 0,00217 25000,0	0,15 0.14	0,10 0.10	0,11
48.0	47,25	0,5	4	18.5	413.4	477.5	890.88	-		0,785 0.777	59,0 58.5	15,5	3,1 3.0	471.8	-			-		30000,0	0,00217 25000,0		0,10	0,11
		0,5	4			,-			-0,39	-,	58,5 58.0	15,4							-,			0,14	-,	0,11
48,5 49.0	48,25 48,75	0,5	4	18,5	417,6 421,9	482,5	900,13	-	-0,38	0,770		15,2	2,9	475,6 479,3	-			-	-,	30000,0	0,00214 25000,0	0,14 0.14	0,10	0,11
49,0		0,5	4	18,5 18,5	421,9	487,5 492,5	909,38 918,63		-0,38 -0,38	0,763 0,756	57,5 57,0	15,1 14,9	2,8 2,8	479,3						30000,0 30000,0	0,00212 25000,0 0,00210 25000,0	0,14	0,10	0,11
50,0	49,25 49,75	0,5	4	18.5	426,1	492,5	927,88		-0,36 -0,37	0,756	56.5	14,9	2,0	486.9						30000,0	0,00210 25000,0	0,13	0.09	0,11 0.10
50,0	49,75	0,5	4	10,0	430,4	491,5	321,00	-	-0,57	0,749	30,5	14,0	2,1	400,3		-	-	•	0,0019	50000,0	0,00203 25000,0	0,15	0,09	0,10

	O DEL TE	MPI DI COI	NSOLI	DAZIONE CO)N DRFN	I VER III	ALI			
MEGGE			1301	DALIGITE GC	JIV DICEIV	I VERTIO	\			
POTESI										
Coeff. di pe	rmeabilità d	orizzontale	k _h	3,00E-08	m/sec	(k _h =3*k _v)				
Coeff. perm	n. ridotto (ef	fetto smear)	k _r	2,00E-08	m/sec					
Modulo edo	ometrico me	edio	E _{ed}	3860	kPa					
Coeff. cons	olidazione	orizz.	Ch	4,00E-07	m²/sec					
Grado di co	onsolidazio	ne richiesto	Um	90%						
Spessore o	freno		t	3,00	mm					
larghezza d			W	100,00	mm					
_	quivalente d	del dreno	d _w	0,0656	m	2(t+w)/π				
Spaziatura			D	1,50	m					
			de	1,575	m	maglia a	quinconc	e		
larahezza l	oase del rile	wato	В	35.000	m					
	dreni neces		U	179,62		eno/m rileva	ato)	maglia a quir	conce	
quantita di	a.om neces	- Carro		1, 5,02	(metri di	CHOTHI HIGW	,	magna a quii		
Coefficiente	di effetto s	mear	s	1,5						
Raggio effe	tto smear		ds	0,098	m	(d _w s)				
Resistenza			_	-						
	lunghezza	dreno	1	10,00	m					
			Z	5,00	m					
Portata idra	aulica misu	rata in lab.	q'w	8,00E-05	m ³ /sec					
Portata effe	ettiva(*)		q _w	6,50E-05	m ³ /sec					
coefficiente	F		F ₁	2,74	a "quinc	once"	F = In(r	n/s) + k _h /k _r ln(s	s)-0.75+π z (2l-z)k _h /q _w
				04.00						
rapporto d _e	/d _w		n ₁	24,02	a "quinc	once"				
Tempo di	consolida	zione								
	а	"quinconce"	t ₁	4.891.386	[sec]		[mesi]			
						0,16	[anni]			
(*) Capacita	à effettiva									
		enze del flus	so. la p	resenza di bolle	d'aria nel	dreno e		-8	th → c⊾t	İ
		l dreno stess						U _m = 1 - e F	$T_h = \frac{c_h t}{d_o^2}$	
soluzione p	proposta:									
dreni L=	10,00	m;								
passo	1,50	m;	maglia	quinconce						
incidenza	179,62	m dreno/m	_							

10,00 m

con questo sistema, si ottiene una consolidazione dei primi

mesi

in circa

2

0,11

0,14

0,17

0,19

1,33

1,67

2,00

2,33

40

50

60

70

3456000

4320000

5184000

6048000

1,73E-01

2,16E-01

2,59E-01

3,02E-01

0,468

0,522

0,570

0,613

15,63

17,44

19,04

20,48

0,803

0,869

0,913

0,942

0,895

0,937

0,963

0,978

29,92

31,32

32,16

32,66

CEDIMENTO IN ASSE AL RILEVATO (x=0), DRENI H=6.9 m+precarica 1,0 m + dreni L=10 m c_v= 2,00E-07 m²s⁻¹ Strato 2 H= 2,0 m w_c= 33,4 cm 0,19 anni Τv Uν Uh U t t t t W **W**dreni (anni) (mesi) (gg) (s) (cm) (cm) 2,16E-03 0,052 0,020 0,072 0,00 0,02 43200 2,39 0,5 1,75 0,111 0,00 0,03 86400 4,32E-03 0,074 2,48 0.040 3,71 1 0,01 0,07 2 172800 8,64E-03 0,105 3,50 0,078 0,175 5,84 0,01 0,10 3 259200 1,30E-02 0,128 4,29 0,115 0,229 7,64 9,23 0,01 0,13 4 345600 1,73E-02 0,148 4,96 0,150 0,276 0,01 0,17 5 432000 2,16E-02 0,166 5,54 0,184 0,319 10,67 0,02 0,20 6 518400 2,59E-02 0,182 6,07 0,217 0,359 11,99 0,02 0,23 7 0,248 0.395 13.21 604800 3,02E-02 0.196 6,56 0,02 0,27 8 691200 3,46E-02 0,210 7,01 0,278 0,429 14,34 0,03 0,30 9 777600 3,89E-02 0,222 7,43 0,307 0,461 15,40 10 0,03 0,33 864000 4,32E-02 0,235 7,84 0,334 0,490 16,38 20,47 0,04 0,50 15 1296000 6,48E-02 0,287 9,60 0,457 0,613 20 1728000 8,64E-02 0,557 0,704 23,51 0,06 0,67 0,332 11,08 1,00 0,08 30 2592000 1,30E-01 0,406 13,56 0,705 0,825 27,55 0,10 1,20 36 3110400 1,56E-01 0,444 14,84 0,769 0.871 29,11

Completamento della tangenziale di Vicenza – 1° Stralcio

T00GE00GETRE01- A

Relazione Geotecnica Generale

ALLEGATO 4 – CEDIMENTI RILEVATO VIADOTTO BACCHIGLIONE

9	EZIONE	SP-1	CIO VIADOT 1+499																						
	TOT (cm)	39,0	asse																						
		12,7	asse																						
	ist (cm)																								
W	CON (CM)	26,3	asse																						-
					DATI TERR	ENIL																			
п	ATI RILEVA	NTO.			Terreno Ua1		Ug2	2	Terreno	3	Ug1 z>20 m	4	Terreno	5	Uq3	6	Terreno	7	Uq1 z>3 n	1 8					
ľ	H(m)=	College Colleg	Altezza rilev	ato		0.25	E' (kPa)	20000	Cc		E' (kPa)	25000	Cc		E' (kPa)	30000			E' (kPa)	5000					
		18	gamma ril (k			0.035	E'ed	24000	Cs		E'ed	30000	Cs		E'ed	36000			E'ed	6000					
	Bbase=	30	Larghezza b	ase	OCR	3	v'	0,25	OCR		v	0,25	OCR		v'	0,25	OCR		v'	0,25					
	q (kPa)=	97,2	Pressione		γ (kN/m³)	18,5	γ (kN/m ³)	19	$\gamma (kN/m^3)$		γ (kN/m ³)	18,5	$\gamma (kN/m^3)$		$\gamma (kN/m^3)$	19	$\gamma (kN/m^3)$		$\gamma (kN/m^3)$	18,5					
					v'	0,3			ν	0,3			ν	0,3			v'	0,3							
-									6		1		- 8	7										20206-04	
- 2	Zwsup (m)=	0	profondită fa	lda supe	e ₀	0.8			e ₀		l.,		e ₀				e ₀							39,3	
	Zwinf (m)=	0	profondità fa	lda inferi	ore																				
	X(m)=	0	ASCISSA D	CALCO	LO CEDIME	ENTO													edom	E'ed,OPER	elastico	E'OPER		edometrico	elastico
	z(m)	H(m)	Terreno	gamma	G _{z0}	u	σ _{z0}	σ'zmax	β	O.	$\Delta\sigma_z$	$\Delta \sigma_V$	$\Delta\sigma_{x}$	$\sigma'_{z0} + \Delta \sigma_z$	e ₀	Cc	Cs	е	e _z	(kPa)	ε _z (E' _{OPER})	(kPa)	$\Delta \sigma_z / \sigma'_o$	Δw(cm)	Δw(E'open)(c
		10.00			(kPa)	(kPa)	(kPa)	(kPa)	(rad)	(rad)	(kPa)	(kPa)	(kPa)	(kPa)						1 - 1		-1/2 -1/2			
0,5	0,25	0,5	1	18,5	2,1	2,5	4,63	6,38	-1,55	3,108	97,2	57,7	95,1	99,3	0,8	0,25	0,035	0,485	0,1749	555,7	0,12439	412,8	45,74	8,75	6,22
1,0	0,75	0,5	1	18,5	6,4	7,5	13,88	19,13	-1,52	3,042	97,2	56,5	91,0	103,6	0,8	0,25	0,035	0,600	0,1112	874,3	0,08153	649,5	15,25	5,56	4,08
1,5	1,25	0,5	1 1	18,5	10,6	12,5	23,13	31,88	-1,49	2,975	97,2	55,2	86,9	107,8	0,8	0,25	0,035	0,651	0,0828	1174,0	0,06252		9,15	4,14	3,13
2,0	1,75	0,5	1 1	18,5	14,9	17,5	32,38	44,63	-1,45	2,909	97,1	54,0	82,9	112,0	0,8	0,25	0,035	0,683	0,0648	1499,3	0,05034		6,53	3,24	2,52
2,5	2,25	0,5	1 1	18,5	19,1	22,5	41,63	57,38	-1,42	2,844	97,1	52,8	78,9	116,2	0,8	0,25	0,035	0,707	0,0518	1872,4	0,04138	1390,9	5,08	2,59	2,07
3,0	2,75 3,25	0,5	8	18,5 18,5	23,4 27,6	27,5 32,5	50,88 60,13	70,13	-1,39 -1,36	2,779	97,0 96,8	51,6 42,0	75,0 71,2	120,3 124,4	0,8	0,25	0,035	0,725	0,0418	2316,9 6000.0	0,03427 0,01370	1721,1	4,15 3,50	2,09 0,81	1,71 0,69
4.0	3,75	0,5	8	19.0	32.0	37.5	69,50	- 12	-1,36	2,652	96.6	41.0	67.5	128,6	- 0	200		82	0,0161	6000,0	0.01370		3,02	0,81	0.69
4.5	4.25	0,5	8	19.0	36.5	42.5	79.00	12	-1.29	2.589	96.3	40.1	63.9	132.8	- 1	1524	8	12	0.0161	6000.0	0.01407		2.64	0.80	0.70
5.0	4,75	0,5	8	19,0	41,0	47,5	88,50	-	-1,26	2,528	96,0	39,1	60,4	137,0	-	-	-	-	0,0160	6000,0	0,01423		2,34	0,80	0,71
5,5	5,25	0,5	6	19,0	45,5	52,5	98,00	-	-1,23	2,468	95,7	38,2	57,1	141,2	-	-	-	-	0,0027	36000,0	0,00239	30000,0	2,10	0,13	0,12
5,0	5,75	0,5	6	19,0	50,0	57,50	107,50	-	-1,20	2,409	95,2	37,3	53,9	145,2	-	-	-	-	0,0026	36000,0	0,00241	30000,0	1,90	0,13	0,12
5,5	6,25	0,5	6	19,0	54,5	62,5	117,00	-	-1,18	2,352	94,7	36,4	50,8	149,2	-	-	-	-	0,0026	36000,0	0,00243		1,74	0,13	0,12
7,0	6,75	0,5	6	19,0	59,0	67,5	126,50	-	-1,15	2,296	94,2	35,5	47,9	153,2	-	-	-	-	0,0026	36000,0	0,00244		1,60	0,13	0,12
7,5	7,25	0,5	6	19,0	63,5	72,5	136,00	-	-1,12	2,241	93,6	34,7	45,1	157,1	-	-	-	-	0,0026	36000,0	0,00245		1,47	0,13	0,12
3,0 3.5	7,75 8.25	0,5	6	19,0 19,0	68,0 72,5	77,5 82.5	145,50 155.00	-	-1,09 -1.07	2,188	92,9 92.2	33,8 39.7	42,5 40,0	160,9 164.7	-	-	-	-	0,0026 0.0038	36000,0 24000.0	0,00246	20000.0	1,37	0,13 0.19	0,12 0.18
9,0	8,75	0,5	2	19,0	77,0	87,5	164,50	-	-1,07	2,136	91,5	38,7	37,6	168,5	-	-	-	-	0,0038	24000,0	0,00362		1,19	0,19	0,18
9.5	9.25	0,5	2	19.0	81.5	92.5	174.00	-	-1.02	2,003	90.7	37.8	35.4	172.2	-		-	-	0.0038	24000,0	0.00362		1,11	0,13	0,10
0.0	9,75	0,5	2	19,0	86,0	97,5	183,50	-	-0,99	1,989	89,8	36,9	33,3	175,8		-	-	-	0,0037	24000,0	0,00361		1.04	0.19	0.18
0,5	10,25	0,5	2	19,0	90,5	102,5	193,00	-	-0,97	1,943	88,9	36,1	31,3	179,4		-	-	-	0,0037	24000,0	0,00360		0,98	0,19	0,18
1,0	10,75	0,5	2	19,0	95,0	107,5	202,50	-	-0,95	1,898	88,0	35,2	29,4	183,0	-	-	-	-	0,0037	24000,0	0,00359	20000,0	0,93	0,18	0,18
1,5	11,25	0,5	2	19,0	99,5	112,5	212,00	-	-0,93	1,855	87,1	34,4	27,7	186,6	-	-	-	-	0,0036	24000,0	0,00358		0,88	0,18	0,18
2,0	11,75	0,5	2	19,0	104,0	117,5	221,50	-	-0,91	1,813	86,1	33,6	26,0	190,1	-	-	-	-	0,0036	24000,0	0,00356		0,83	0,18	0,18
2,5	12,25	0,5	2	19,0	108,5	122,5	231,00	-	-0,89	1,772	85,1	32,9	24,5	193,6	-	-	-	-	0,0035	24000,0	0,00354		0,78	0,18	0,18
3,0	12,75	0,5	2	19,0	113,0	127,5	240,50	-	-0,87	1,733	84,1	32,2	23,1	197,1	-	-	-	-	0,0035	24000,0	0,00352		0,74	0,18	0,18
3,5 4.0	13,25 13,75	0,5	2 2	19,0 19,0	117,5 122,0	132,5 137,5	250,00 259,50	-	-0,85 -0,83	1,695 1,658	83,1 82,1	31,5 30,8	21,7 20,5	200,6 204,1	-		-	-	0,0035 0,0034	24000,0 24000,0	0,00349 0,00347		0,71	0,17 0,17	0,17 0.17
1,0 1.5	14,25	0,5	2	19,0	126,5	142.5	269,00	-	-0,83	1,656	81.1	30,8	19.3	207,6	-		-	-	0,0034	24000,0	0,00347		0.64	0,17	0,17
+,5 5,0	14,25	0,5	2	19,0	131,0	147,5	278,50		-0,61	1,588	80,1	29,5	18,2	211.1	- :				0,0034	24000,0	0,00344		0,64	0,17	0,17
5,5	15,25	0,5	2	19,0	135,5	152,5	288,00	-	-0,78	1,554	79.0	28,9	17,2	214,5	-	-	-	-	0,0033	24000,0	0,00338		0,58	0,16	0,17
5,0	15,75	0,5	2	19,0	140,0	157,5	297,50	-	-0,76	1,522	78,0	28,3	16,2	218,0	-	-	-	-	0,0032	24000,0	0,00334		0,56	0,16	0,17
5,5	16,25	0,5	2	19,0	144,5	162,5	307,00	-	-0,75	1,491	77,0	27,7	15,3	221,5	-	-	-	-	0,0032	24000,0	0,00331	20000,0	0,53	0,16	0,17
7,0	16,75	0,5	2	19,0	149,0	167,5	316,50	-	-0,73	1,461	75,9	27,1	14,4	224,9	-	-	-	-	0,0032	24000,0	0,00328		0,51	0,16	0,16
7,5	17,25	0,5	2	19,0	153,5	172,5	326,00	-	-0,72	1,431	74,9	26,6	13,6	228,4	-	-	-	-	0,0031	24000,0	0,00324		0,49	0,16	0,16
3,0	17,75	0,5	2	19,0	158,0	177,5	335,50	-	-0,70	1,403	73,9	26,0	12,9	231,9	-	-	-	-	0,0031	24000,0	0,00321		0,47	0,15	0,16
3,5	18,25	0,5	2	19,0	162,5	182,5	345,00	-	-0,69	1,376	72,9	25,5	12,2	235,4		-	-	-	0,0030	24000,0	0,00317		0,45	0,15	0,16
9,0 9.5	18,75	0,5	2	19,0	167,0	187,5	354,50	-	-0,67	1,349	71,9	25,1	11,6	238,9	-	-	-	-	0,0030	24000,0	0,00314		0,43	0,15	0,16
	19,25	0,5	2	19,0	171,5	192,5	364,00	-	-0,66	1,324	71,0	24,6	11,0	242,5	-	-	-	-	0,0030	24000,0	0,00310	20000,0	0,41	0,15	0,16

Direzione Progettazione e Realizzazione Lavori

Completamento della tangenziale di Vicenza – 1° Stralcio

T00GE00GETRE01- A

20 E	20.25	0.5	1 4	18.5	100.4	202.5	382.88		0.64	1 275	60.0	10.7	0.0	249.4		_			0.0022	20000 0	0.00247 25000.0	0.30	0.12	0.12
	20,25	0,5	4		180,4	202,5			-0,64	1,275	69,0	19,7	9,9		-			-	0,0023	30000,0			0,12	
21,0	20,75	- 1 -	4	18,5	184,6	207,5	392,13	-	-0,63	1,252	68,1	19,4	9,4	252,7	-	-	-	-	0,0023	30000,0	0,00244 25000,0		0,11	0,12
	21,25	0,5	4	18,5	188,9	212,5	401,38	-	-0,61	1,229	67,2	19,0	8,9	256,1	-	-	-	-	0,0022	30000,0	0,00241 25000,0		0,11	0,12
22,0	21,75	0,5	4	18,5	193,1	217,5	410,63	-	-0,60	1,207	66,3	18,7	8,4	259,4	-	-	-	-	0,0022	30000,0	0,00238 25000,0	0,34	0,11	0,12
22,5	22,25	0,5	4	18,5	197,4	222,5	419,88	-	-0,59	1,186	65,4	18,4	8,0	262,8	-	-	-	-	0,0022	30000,0	0,00235 25000,0	0,33	0,11	0,12
23,0	22,75	0,5	4	18,5	201,6	227,5	429,13	-	-0,58	1,166	64,5	18,0	7,6	266,1	-	-	-	-	0,0022	30000,0	0,00232 25000,0	0,32	0,11	0,12
23.5	23.25	0.5	4	18.5	205.9	232.5	438.38	-	-0.57	1,146	63.6	17.7	7.3	269.5	-	-	-	-	0.0021	30000.0	0,00230 25000,0	0.31	0.11	0.11
24.0	23.75	0,5	4	18.5	210,1	237.5	447.63		-0.56	1,127	62.8	17.4	6.9	272.9	-	-	-	-	0.0021	30000.0	0.00227 25000.0		0.10	0,11
	24,25	0,5	4	18.5	214,4	242.5	456.88	-	-0,55	1,108	62,0	17.1	6,6	276,3	-	-	-	_	0,0021	30000,0	0.00224 25000.0		0,10	0,11
25.0	24,75	0,5	4	18,5	218,6	247,5	466,13	-	-0,54	1,090	61,1	16,9	6,3	279,8					0,0020	30000,0	0,00224 25000,0		0,10	0,11
	25,25		4		222,9	252,5	475,38									_	_	-		30000,0	0,00221 25000,0		0.10	
25,5		0,5		18,5					-0,54	1,072	60,3	16,6	6,0	283,2	-	-	-	-	0,0020					0,11
26,0	25,75	0,5	4	18,5	227,1	257,5	484,63	-	-0,53	1,055	59,6	16,3	5,7	286,7	-	-	-	-	0,0020	30000,0	0,00216 25000,0		0,10	0,11
26,5	26,25	0,5	4	18,5	231,4	262,5	493,88	-	-0,52	1,038	58,8	16,1	5,5	290,2		-	-	-	0,0020	30000,0	0,00214 25000,0		0,10	0,11
	26,75	0,5	4	18,5	235,6	267,5	503,13	-	-0,51	1,022	58,0	15,8	5,2	293,6	-	-	-	-	0,0019	30000,0	0,00211 25000,0		0,10	0,11
27,5	27,25	0,5	4	18,5	239,9	272,5	512,38	-	-0,50	1,006	57,3	15,6	5,0	297,2	-	-	-	-	0,0019	30000,0	0,00209 25000,0	0,24	0,10	0,10
28,0	27,75	0,5	4	18,5	244,1	277,5	521,63	-	-0,50	0,991	56,5	15,3	4,8	300,7	-	-	-	-	0,0019	30000,0	0,00206 25000,0	0,23	0,09	0,10
28,5	28,25	0.5	4	18,5	248,4	282,5	530,88	_	-0,49	0,976	55,8	15,1	4,6	304,2	_	_	-	_	0.0019	30000,0	0,00204 25000,0	0,22	0,09	0,10
29.0	28.75	0.5	4	18.5	252.6	287.5	540.13		-0.48	0.962	55,1	14.9	4.4	307.8		_	_	_	0.0018	30000.0	0,00201 25000,0		0.09	0.10
29.5	29.25	0.5	4	18.5	256.9	292.5	549,38		-0.47	0.948	54.4	14.7	4,2	311.3					0.0018	30000,0	0,00199 25000,0		0.09	0.10
30.0	29,75	0,5	4	18.5	261.1	297.5	558.63		-0,47	0,934	53.8		4,2			- 1	- 1	-		30000,0	0.00197 25000.0		0,09	0.10
		-1-										14,4		314,9		-	-	-	0,0018					
30,5	30,25	0,5	4	18,5	265,4	302,5	567,88	-	-0,46	0,921	53,1	14,2	3,9	318,5	-	-	-	-	0,0018	30000,0	0,00194 25000,0		0,09	0,10
	30,75	0,5	4	18,5	269,6	307,5	577,13	-	-0,45	0,908	52,5	14,0	3,7	322,1	-	-	-	-	0,0017	30000,0	0,00192 25000,0		0,09	0,10
	31,25	0,5	4	18,5	273,9	312,5	586,38	-	-0,45	0,895	51,8	13,8	3,6	325,7	-	-	-	-	0,0017	30000,0	0,00190 25000,0		0,09	0,09
32,0	31,75	0,5	4	18,5	278,1	317,5	595,63	-	-0,44	0,883	51,2	13,7	3,4	329,3	-	-	-	-	0,0017	30000,0	0,00188 25000,0	0,18	0,09	0,09
32.5	32.25	0.5	4	18.5	282,4	322,5	604.88	-	-0,44	0,871	50,6	13.5	3.3	333.0		-	-	-	0.0017	30000.0	0,00186 25000,0	0.18	0.08	0.09
33.0	32,75	0,5	4	18.5	286.6	327.5	614,13	-	-0.43	0.859	50.0	13,3	3.1	336.6		_	-	-	0.0017	30000.0	0.00184 25000.0	0.17	0.08	0.09
33,5	33,25	0,5	4	18,5	290,9	332,5	623,38	_	-0,42	0,848	49,4	13,1	3,0	340,3		_	_	_	0,0016	30000,0	0,00182 25000,0		0,08	0.09
34.0	33,75	0,5	4	18,5	295,1	337,5	632,63	_	-0,42	0,836	48,8	12,9	2,9	344.0					0,0016	30000,0	0,00180 25000,0		0.08	0.09
		0,5	4												-	-	-	-					-,	
	34,25			18,5	299,4	342,5	641,88		-0,41	0,826	48,3	12,8	2,8	347,7	-	-	-	-	0,0016	30000,0	0,00178 25000,0		0,08	0,09
35,0	34,75	0,5	4	18,5	303,6	347,5	651,13	-	-0,41	0,815	47,7	12,6	2,7	351,4	-	-	-	-	0,0016	30000,0	0,00176 25000,0		0,08	0,09
35,5	35,25	0,5	4	18,5	307,9	352,5	660,38	-	-0,40	0,805	47,2	12,4	2,6	355,1	-	-	-	-	0,0016	30000,0	0,00174 25000,0		0,08	0,09
36,0	35,75	0,5	4	18,5	312,1	357,5	669,63	-	-0,40	0,795	46,7	12,3	2,5	358,8	-	-	-	-	0,0016	30000,0	0,00172 25000,0	0,15	0,08	0,09
36,5	36,25	0,5	4	18,5	316,4	362,5	678,88	-	-0,39	0,785	46,1	12,1	2,4	362,5	-	-	-	-	0,0015	30000,0	0,00170 25000,0	0,15	0,08	0,09
37.0	36,75	0,5	4	18.5	320,6	367.5	688,13	-	-0.39	0.775	45,6	12.0	2.3	366.3	-	-	-	-	0.0015	30000.0	0.00168 25000.0	0.14	0.08	0.08
37,5	37,25	0.5	4	18,5	324,9	372,5	697,38	_	-0,38	0,766	45,1	11,8	2,2	370,0	_	_	_	_	0,0015	30000,0	0,00166 25000,0	0.14	0.08	0.08
38.0	37,75	0,5	4	18,5	329,1	377,5	706,63	_	-0,38	0,756	44,6	11,7	2,2	373,8		_	_	_	0,0015	30000,0	0,00165 25000,0		0,07	0.08
38,5	38,25	0,5	4	18,5	333,4	382,5	715,88		-0,37	0,747	44,0		2,2	377,5						30000,0	0,00163 25000,0			0,08
												11,6			-	-	-	-	0,0015				0,07	
	38,75	0,5	4	18,5	337,6	387,5	725,13	-	-0,37	0,739	43,7	11,4	2,0	381,3	-	-	-	-	0,0015	30000,0	0,00161 25000,0		0,07	0,08
39,5	39,25	0,5	4	18,5	341,9	392,5	734,38	-	-0,37	0,730	43,2	11,3	2,0	385,1	-	-	-	-	0,0014	30000,0	0,00160 25000,0		0,07	0,08
40,0	39,75	0,5	4	18,5	346,1	397,5	743,63	-	-0,36	0,722	42,8	11,2	1,9	388,9	-	-	-	-	0,0014	30000,0	0,00158 25000,0	0,12	0,07	0,08
40,5	40,25	0,5	4	18,5	350,4	402,5	752,88	-	-0,36	0,713	42,3	11,0	1,8	392,7	-	-	-	-	0,0014	30000,0	0,00156 25000,0	0,12	0,07	0,08
41.0	40.75	0.5	4	18.5	354.6	407.5	762,13	-	-0.35	0.705	41.9	10.9	1.8	396.5		-	-	-	0.0014	30000.0	0.00155 25000.0	0.12	0.07	0.08
	41,25	0,5	4	18.5	358.9	412.5	771,38		-0,35	0.698	41.5	10.8	1.7	400.3		-	-		0.0014	30000.0	0,00153 25000,0		0.07	0.08
	41,75	0,5	4	18.5	363,1	417.5	780,63		-0,34	0,690	41,0	10,7	1.7	404.2			-		0.0014	30000,0	0.00152 25000.0		0,07	0.08
2.5	42,25	0,5	4	18,5	367.4	422.5	789,88			0,682	40,6	10,7		404,2					0,0014	30000,0	0,00152 25000,0		0,07	0,08
									-0,34				1,6			-	-	-						
3,0	42,75	0,5	4	18,5	371,6	427,5	799,13	-	-0,34	0,675	40,2	10,4	1,5	411,8	-	-	-	-	0,0013	30000,0	0,00149 25000,0		0,07	0,07
13,5	43,25	0,5	4	18,5	375,9	432,5	808,38	-	-0,33	0,668	39,8	10,3	1,5	415,7	-	-	-	-	0,0013	30000,0	0,00147 25000,0		0,07	0,07
4,0	43,75	0,5	4	18,5	380,1	437,5	817,63	-	-0,33	0,661	39,4	10,2	1,5	419,5	-	-	-	-	0,0013	30000,0	0,00146 25000,0	0,10	0,07	0,07
4,5	44,25	0,5	4	18,5	384,4	442,5	826,88	-	-0,33	0,654	39,0	10,1	1,4	423,4	-	-	-		0,0013	30000,0	0,00145 25000,0	0,10	0,07	0,07
5.0	44.75	0.5	4	18.5	388.6	447.5	836.13	-	-0.32	0.647	38.7	10.0	1.4	427.3	-	-	-		0.0013	30000.0	0.00143 25000.0		0.06	0.07
5,5	45,25	0.5	4	18,5	392,9	452,5	845,38		-0,32	0,640	38,3	9,9	1,3	431,2					0.0013	30000,0	0,00142 25000,0		0.06	0,07
	45,75	0,5	4	18.5	397.1	457.5	854.63		-0,32	0.634	37.9	9.8	1,3	435.0					0.0013	30000,0	0.00142 25000,0		0.06	0.07
		0,5	4											438,9					0,0013	30000,0			0,06	
6,5	46,25			18,5	401,4	462,5	863,88		-0,31	0,627	37,6	9,7	1,2			-	-				0,00139 25000,0			0,07
7,0	46,75	0,5	4	18,5	405,6	467,5	873,13	-	-0,31	0,621	37,2	9,6	1,2	442,8	-	-	-	-	0,0012	30000,0	0,00138 25000,0		0,06	0,07
	47,25	0,5	4	18,5	409,9	472,5	882,38	-	-0,31	0,615	36,9	9,5	1,2	446,7	-	-	-	-	0,0012	30000,0	0,00137 25000,0		0,06	0,07
18,0	47,75	0,5	4	18,5	414,1	477,5	891,63	-	-0,30	0,609	36,5	9,4	1,1	450,7	-	-	-	-	0,0012	30000,0	0,00136 25000,0	0,09	0,06	0,07
18,5	48,25	0.5	4	18,5	418,4	482,5	900,88		-0,30	0,603	36,2	9,3	1,1	454,6	_	_	-		0,0012	30000,0	0,00134 25000,0		0,06	0,07
19.0	48,75	0.5	4	18.5	422.6	487.5	910,13	_	-0,30	0,597	35,9	9.2	1,1	458.5			-		0.0012	30000.0	0,00133 25000,0		0.06	0,07
	49,25	0,5	4	18,5	426,9	492,5	919,38		-0,30	0,591	35,5	9,1	1,0	462,4					0,0012	30000,0	0,00133 25000,0		0.06	0,07
50,0	49,75	0,5	4	18,5	431,1	497,5	928,63	-	-0,29	0,586	35,2	9,1	1,0	466,3	-	-	-	-	0,0012	30000,0	0,00131 25000,0	0,08	0,06	0,07

	O DEL TE	MPI DI COI	NSOLI	DAZIONE CO)N DRFN	I VER III	ALI			
MEGGE			1301	DALIGITE GC	JIV DICEIV	I VERTIO	\			
POTESI										
Coeff. di pe	rmeabilità d	orizzontale	k _h	3,00E-08	m/sec	(k _h =3*k _v)				
Coeff. perm	n. ridotto (ef	fetto smear)	k _r	2,00E-08	m/sec					
Modulo edo	ometrico me	edio	E _{ed}	3860	kPa					
Coeff. cons	olidazione	orizz.	Ch	4,00E-07	m²/sec					
Grado di co	onsolidazio	ne richiesto	Um	90%						
Spessore o	freno		t	3,00	mm					
larghezza d			W	100,00	mm					
_	quivalente d	del dreno	d _w	0,0656	m	2(t+w)/π				
Spaziatura			D	1,50	m					
			de	1,575	m	maglia a	quinconc	e		
larahezza l	oase del rile	wato	В	35.000	m					
	dreni neces		U	179,62		eno/m rileva	ato)	maglia a quir	conce	
quantita di	a.om neces	- Carro		1, 5,02	(metri di	CHOTHI HIGW	,	magna a quii		
Coefficiente	di effetto s	mear	s	1,5						
Raggio effe	tto smear		ds	0,098	m	(d _w s)				
Resistenza			_	-						
	lunghezza	dreno	1	10,00	m					
			Z	5,00	m					
Portata idra	aulica misu	rata in lab.	q'w	8,00E-05	m ³ /sec					
Portata effe	ettiva(*)		q _w	6,50E-05	m ³ /sec					
coefficiente	F		F ₁	2,74	a "quinc	once"	F = In(r	n/s) + k _h /k _r ln(s	s)-0.75+π z (2l-z)k _h /q _w
				04.00						
rapporto d _e	/d _w		n ₁	24,02	a "quinc	once"				
Tempo di	consolida	zione								
	а	"quinconce"	t ₁	4.891.386	[sec]		[mesi]			
						0,16	[anni]			
(*) Capacita	à effettiva									
		enze del flus	so. la p	resenza di bolle	d'aria nel	dreno e		-8	th → c⊾t	İ
		l dreno stess						U _m = 1 - e F	$T_h = \frac{c_h t}{d_o^2}$	
soluzione p	proposta:									
dreni L=	10,00	m;								
passo	1,50	m;	maglia	quinconce						
incidenza	179,62	m dreno/m	_							

10,00 m

con questo sistema, si ottiene una consolidazione dei primi

mesi

in circa

2

	ITO IN ASSE AL RILEVATO (x=0		2,00E-07	m ² s ⁻¹					
H=5,4 m+	precarica 1,0 m + dreni L=10 m	c _v =	-						
		H=	2,5	m					
		w _c =	32,0	cm					
		t 90	0,19	anni					
t	t	t	t	Tv	Uv	w	Uh	U	W _{dren}
(anni)	(mesi)	(gg)	(s)			(cm)			(cm)
0,00	0,02	0,5	43200	1,38E-03	0,042	1,34	0,020	0,061	1,96
0,00	0,03	1	86400	2,76E-03	0,059	1,90	0,040	0,097	3,10
0,01	0,07	2	172800	5,53E-03	0,084	2,68	0,078	0,155	4,97
0,01	0,10	3	259200	8,29E-03	0,103	3,29	0,115	0,206	6,58
0,01	0,13	4	345600	1,11E-02	0,119	3,79	0,150	0,251	8,03
0,01	0,17	5	432000	1,38E-02	0,133	4,24	0,184	0,292	9,35
0,02	0,20	6	518400	1,66E-02	0,145	4,65	0,217	0,330	10,5
0,02	0,23	7	604800	1,94E-02	0,157	5,02	0,248	0,366	11,7
0,02	0,27	8	691200	2,21E-02	0,168	5,37	0,278	0,399	12,7
0,03	0,30	9	777600	2,49E-02	0,178	5,69	0,307	0,430	13,7
0,03	0,33	10	864000	2,76E-02	0,188	6,00	0,334	0,459	14,6
0,04	0,50	15	1296000	4,15E-02	0,230	7,35	0,457	0,582	18,5
0,06	0,67	20	1728000	5,53E-02	0,265	8,48	0,557	0,674	21,5
0,08	1,00	30	2592000	8,29E-02	0,325	10,39	0,705	0,801	25,6
0,10	1,20	36	3110400	9,95E-02	0,356	11,38	0,769	0,851	27,2
0,11	1,33	40	3456000	1,11E-01	0,375	11,99	0,803	0,877	28,0
0,14	1,67	50	4320000	1,38E-01	0,419	13,40	0,869	0,924	29,5
0,17	2,00	60	5184000	1,66E-01	0,459	14,66	0,913	0,953	30,4
0,19	2,33	70	6048000	1,94E-01	0,495	15,82	0,942	0,971	31,0
0,22	2,67	80	6912000	2,21E-01	0,528	16,88	0,961	0,982	31,3
0,25	3,00	90	7776000	2,49E-01	0,559	17,87	0,974	0,989	31,6
0,28	3,33	100	8640000	2,76E-01	0,588	18,79	0,983	0,993	31,7
0,42	5,00	150	12960000	4,15E-01	0,707	22,60	0,998	0,999	31,9
0,44	5,33	160	13824000	4,42E-01	0,726	23,22	0,999	1,000	31,9
0,46	5,50	165	14256000	4,56E-01	0,736	23,52	0,999	1,000	31,9
0,50	6,00	180	15552000	4,98E-01	0,762	24,36	0,999	1,000	31,9
0,56	6,67	200	17280000	5,53E-01	0,793	25,34	1,000	1,000	31,9
0,62	7,40	222	19180800	6,14E-01	0,822	26,28	1,000	1,000	31,9
0,68	8,20	246	21254400	6,80E-01	0,849	27,15	1,000	1,000	31,9
0,78	9,30	279	24105600	7,71E-01	0,879	28,12	1,000	1,000	31,9
0,91	10,93	328	28339200	9,07E-01	0,912	29,17	1,000	1,000	31,9
1,01	12,17	365	31536000	1,01E+00	0,930	29,74	1,000	1,000	31,9
1,39	16,67	500	43200000	1,38E+00	0,966	30,90	1,000	1,000	31,9
1,60	19,17	575	49680000	1,59E+00	0,976	31,21	1,000	1,000	31,9
4,17	50,00	1500	129600000	4,15E+00	0,996	31,86	1,000	1,000	31,9
5,56	66,67	2000	172800000	5,53E+00	0,997	31,88	1,000	1,000	31,9
6,94	83,33	2500	216000000	6,91E+00	0,997	31,88	1,000	1,000	31,9
8,33	100,00	3000	259200000	8,29E+00	0,997	31,88	1,000	1,000	31,9
9,72	116,67	3500	302400000	9,68E+00	0,997	31,87	1,000	1,000	31,9
11,11	133,33	4000	345600000	1,11E+01	0,997	31,87	1,000	1,000	31,9
12,50	150,00	4500	388800000	1,24E+01	0,997	31,87	1,000	1,000	31,9
25,00	300,00	9000	777600000	2,49E+01	0,996	31,84	1,000	1,000	31,9
90,28	1083,33	32500	2,808E+09	8,99E+01	0,994	31,79	1,000	1,000	31,9