COMMITTENTE:

PROGETTAZIONE:

DIREZIONE TECNICA U.O. OPERE CIVILI E GESTIONE DELLE VARIANTI

PROGETTO DEFINITIVO

Nuova linea Ferrandina - Matera La Martella per il collegamento di Matera con la rete ferroviaria nazionale

MIGLIORAMENTO SISMICO E OPERE DI COMPLETAMENTO DEI VIADOTTI ESISTENTI DELLA LINEA FERRANDINA MATERA

Relazione di calcolo

Miglioramento sismico VI08 - Viadotto Gravina

						SCALA:
						-
COMMESSA	LOTTO FASE	ENTE TIPO DOC	C. OPERA/DISCIPLINA	PROGR.	REV.	
I A 5 F	0 1 D	0 9 C L	V I 0 8 0 0	0 0 2	A	

Rev.	Descrizione	Redatto	Data	Verificato	Data	Approvat	Data	Autorizzato Data
А	Emissione Esecutiva	P.Tortolini	Luglio 2019	S.Di Spigno /F.Bonifacio	Luglio 2019	F.Gernone	Luglio 2019	A.Vittošzi Lugio 2019 Evalucia Julia Antoro
			-	#	•	1		IRR S.p.A. Gestlone of programme in delta Pro
								ITALFE re Civilia bott. Ing. A
								U.O. Opere Do rdine degli

File: IA5F01D09CLVI0800002A_Miglioramento GENERALE Gravina.docx	n. Elab.:

PROGETTO DEFINITIVO

Relazione di calcolo

COMMESSA LOTTO CODIFICA DOCUMENTO REV. FOGLIO

IA5F 01D 09CL VI0800002 A 1 di 38

INDICE

1. INTRODUZ	IONE	2
2. RIFERIMEN	NTI NORMATIVI	3
3. DESCRIZIO	ONE DELL'OPERA	4
4. DESCRIZIO	ONE DEGLI INTERVENTI DI MIGLIORAMENTO	5
4.1 Sostituz	zione degli appoggi e ricostruzione dei ritegni dell'impalcato	5
4.2 Interver	nti di rinforzo dei fusti pila	5
5. MATERIAL	l	6
6. ANALISI DE	EI CARICHI	7
	permanenti	
	da traffico	
7. AZIONE SI	SMICA	9
8. COMBINAZ	ZIONI DELLE AZIONI	13
9. METODO D	DI ANALISI E MODELLI AGLI EF	14
9.1 Modella	zione globale del viadotto	14
9.2 Modella	zione della campata reticolare	17
10. RISULTATI	DELLE ANALISI	18
10.1.1 A	Analisi modale del modello globale	18
10.1.2 A	Analisi modale del modello con impalcato reticolare	19
10.1.3 S	Sollecitazioni delle pile	20
10.1.4 A	Azioni in fondazione	28
11. VERIFICA I	DEGLI INTERVENTI DI MIGLIORAMENTO SISMICO DELL'IMPA	ALCATO
	te di parete del primo campo	
	/erifiche di resistenza	
	/erifiche di instabilità	
	Conclusioni	
11.2 Elemen 11.2.1.1	to interno del controvento inferiore	
	Verifiche di resistenza Verifiche di instabilità	
	Conclusioni	
11.2.2	/OHGIOSIOHI	

PROGETTO DEFINITIVO

Relazione di calcolo	COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
	IA5F	01D	09CL	VI0800002	Α	2 di 38

1. INTRODUZIONE

Oggetto della presente relazione è la definizione degli interventi di miglioramento sismico del viadotto VI08 "Gravina", nell'ambito del progetto definitivo per la realizzazione della Nuova linea ferroviaria Ferrandina – Matera La martella per il collegamento di Matera con la rete ferroviaria nazionale.

La presente relazione risulta intrinsecamente collegata al documento IA5F01D09CLVI0800001A relazione di calcolo – Vulnerabilità sismica del viadotto VI08 Gravina, redatto nell'ambito del medesimo progetto ed al quale si rimanda per eventuali ulteriori dettagli relativamente alle strutture esistenti.

Figura 1 – Viadotto Gravina (VI08) della linea Ferrandina-Matera

PROGETTO DEFINITIVO

Relazione di calcolo	COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
	IA5F	01D	09CL	VI0800002	Α	3 di 38

2. RIFERIMENTI NORMATIVI

- Legge 5 novembre 1971 n. 1086: Norme per la disciplina delle opere di conglomerato cementizio armato normale e precompresso ed a struttura metallica.
- D.P.R. n. 380/2001 Testo unico delle disposizioni legislative e regolamentari in materia edilizia;
- Decreto Ministeriale del 17 gennaio 2018: "Aggiornamento delle «Norme tecniche per le costruzioni»", G.U. n.8 del 20 febbraio 2018.
- Circolare 21 gennaio 2019, n. 7 Istruzioni per l'applicazione dell' «Aggiornamento delle "Norme tecniche per le costruzioni" di cui al D.M. 17 gennaio 2018.
- RFI DTC SI PS MA IFS 001 A: "Manuale di progettazione delle opere civili Parte II sez.2: Ponti e strutture " del 30/12/2016.
- RFI DTC SI CS MA IFS 001 A: Manuale di progettazione delle opere civili Parte II sez.3.: Corpo stradale" del 30/12/2016.
- Regolamento (UE) N.1299/2014 della Commissione del 18 novembre 2014 relativo alle specifiche tecniche di interoperabilità per il sottosistema "infrastruttura" del sistema ferroviario dell'Unione Europea.
- EN 1991-2 "Eurocodice 1 Azioni sulle strutture Parte 2 : carichi da traffico sui ponti"
- EN 1992-1 "Eurocodice 2 Progettazione delle strutture in calcestruzzo Parte 1-1 : Regole generali e regole per edifici"
- EN 1992-1 "Eurocodice 2 Progettazione delle strutture in calcestruzzo Parte 2: ponti di calcestruzzo Progettazione e dettagli costruttivi."
- EN 1993-1 "Eurocodice 3 Progettazione delle strutture di acciaio Parte 1-1: Regole generali e regole per edifici"
- EN 1993-1-8 "Eurocodice 3 Progettazione delle strutture di acciaio Parte 1-8: Progettazione dei collegamenti"
- EN 1993-1-9 "Eurocodice 3 Progettazione delle strutture di acciaio Parte 1-8: Fatica"
- EN 1993-2 "Eurocodice 3 Progettazione delle strutture di acciaio Parte 2: Ponti di acciaio"
- EN 1994-2 "Eurocodice 4 Progettazione delle strutture composte acciaio- calcestruzzo -Parte 2 : Ponti"
- EN 1997-1 "Eurocodice 7 Progettazione geotecnica- Parte 1 : Regole generali."
- UNI EN 1337 Appoggi strutturali.

3. DESCRIZIONE DELL'OPERA

Il viadotto Gravina (VI08), compreso tra le progressive km 14+974 e km 15+ 865 della Nuova linea Ferrandina-Matera La Martella per il collegamento di Matera con la rete ferroviaria nazionale, sviluppa una lunghezza complessiva di 891 metri.

Il viadotto, a singolo binario, si compone di 28 campate: 27 sono impalcati in c.a.p. in semplice appoggio di luce pari a 30m; la campata di scavalco del fiume Gravina, invece, è un impalcato in acciaio (con struttura reticolare a via inferiore, ancora in semplice appoggio) di luce 81m.

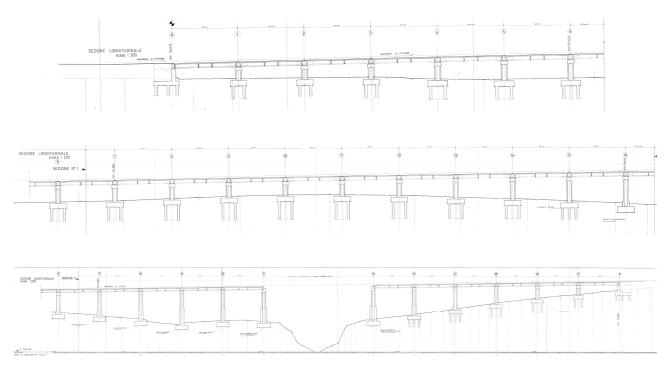


Figura 2: Sezione longitudinale viadotto (da elaborati originali di progetto)

Le pile hanno altezza variabile e sezione monocellulare in c.a.; per le pile più alte è previsto un cambio di sezione. Le fondazioni sono costituite da plinti, di dimensioni variabili, fondati su pali (D1200) o su micropali.

Le spalle sono costituite da strutture in c.a. (muro frontale di spessore 2.00m, muri andatori di spessore variabile tra 1.0m e 0.5 m, zattera di fondazione di spessore 2.00m) con fondazione su pali D1200.

PROGETTO DEFINITIVO

Relazione di calcolo	COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
	IA5F	01D	09CL	VI0800002	Α	5 di 38

4. DESCRIZIONE DEGLI INTERVENTI DI MIGLIORAMENTO

Le analisi di vulnerabilità condotte hanno messo in luce la sostanziale non idoneità delle strutture del viadotto a far fronte alle azioni sismiche di progetto associate alla sismicità del sito e alla tipologia di opera in questione.

Sinteticamente le parti strutturali su cui si deve intervenire sono:

- Appoggi
- Elevazioni Pile
- Fondazioni Pile
- Campata reticolare in acciaio

4.1 Sostituzione degli appoggi e ricostruzione dei ritegni dell'impalcato

Dovranno essere sostituiti tutti gli appoggi delle campate in cap; si prevede l'impiego di appoggi a calotta sferica conformi alle prescrizioni RFI in materia di dispositivi di appoggio. Si manterrà la medesima disposizione di vincolo della situazione attuale.

Per quanto riguarda la travata reticolare, è previsto l'adeguamento degli appoggi esistenti mediante l'introduzione rinforzi metallici che impediscano il ribaltamento del dispositivo che le analisi condotte dimostrano essere il meccanismo determinante la crisi dell'appoggio in condizioni sismiche.

È prevista, inoltre, la realizzazione di nuovi elementi per il ritegno sismico degli impalcati in acciaio per evitare la possibilità di perdita d'appoggio delle travi.

4.2 Interventi di rinforzo dei fusti pila

Tutti le pile saranno interessate da interventi di rinforzo mediante allargamento della sezione resistente. Mediamente l'intervento prevede la realizzazione di uno spessore compreso tra 50 e 60 cm con l'aggiunta due strati di armatura opportunamente annegata nel plinto di fondazione, ovvero per gli interventi da realizzare in quota, nelle pile che presentano un cambio di sezione, l'ammarraggio delle nuove armature avverrà nel fusto della pila esistente.

PROGETTO DEFINITIVO

Relazione di calcolo

COMMESSA LOTTO CODIFICA DOCUMENTO REV. FOGLIO

IA5F 01D 09CL VI0800002 A 6 di 38

5. MATERIALI

Non essendo disponibili prove specifiche sui materiali del viadotto in esame, ma essendo state fatte ampie campagne di indagini su altri viadotti della medesima linea, i cui esiti hanno confermato le proprietà dei materiali da costruzioni indicati negli elaborati di progetto, si è deciso, nelle analisi e verifica sismica di impiegare i valori di resistenza indicati nei disegni e relazioni originali di progetto ridotti applicando il fattore di confidenza FC=1.2 (livello di conoscenza LC2).

Di seguito si riportano le caratteristiche dei materiali risultanti dal progetto.

Pile/Spalle

• Materiali di progetto

Calcestruzzo R_{ck} 250 Kg/cm2

Acciaio armature FeB38k

Impalcati acciaio

• Materiali di progetto

Acciaio da carpenteria Fe430

Impalcati in cap

• Materiali di progetto

Calcestruzzo travi R_{ck} 500 Kg/cm2 Calcestruzzo soletta R_{ck} 300 Kg/cm2

Acciaio armature ordinarie FeB38k

Acciaio armature precompressione fptk>1860Mpa

Nuova linea Ferrandina – Matera La Martella per il collegamento di Matera con la
rete ferroviaria nazionale

PROGETTO DEFINITIVO

Relazione di calcolo	COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
	IA5F	01D	09CL	VI0800002	Α	7 di 38

6. ANALISI DEI CARICHI

6.1 Carichi permanenti

I seguenti valori dei carichi sono stati estrapolati dalle relazioni del progetto originale, i cui elaborati sono stati riportati nell'apposito paragrafo.

Impalcato cap

Area di una trave ≈ 1.01 m²

pp travi (3 x 1.03m ² x 25kN/m ³)	77.25	kN/m
pp soletta (7.40m x 0.25m x 25kN/m³)	46.25	kN/m
pp cordoli (2 x 0.15m ² x 25 kN/m ³)	7.5	kN/m
pp impermeab (7.4m x 2kN/m²)	14.8	kN/m
pp ballast (4.0m x 0.70m x 18 kN/m³)	50.4	kN/m
pp corrimano+canaletta	5	kN/m

Per un peso complessivo ~ 200 kN/m

Impalcato acciaio

peso proprio + armamento ~ 50 kN/m

Il valore sopra riportato è stato estrapolato dalla relazione di calcolo del progetto originale. Il dato è stato comunque verificato attraverso la modellazione tridimensionale della struttura alla quale sono state associate le caratteristiche geometriche e sezionali effettivamente presenti. Infatti il modello fornisce un peso strutturale pari a

G1 = 43 kN/m (da modello)

La restante parte di carico di circa 7 kN/m è imputabile ai carichi permanenti portati (G2), il cui valore appare realistico, considerato che solo l'armamento (singolo binario) pesa intorno a 4 kN/m a cui si dovranno aggiungere i pesi dei camminamenti e dalle altre opere di finitura.

Pulvino pila

Peso pulvino 1.60m x 3.20m x 5.50m x 25kN/m³ = 704 kN Ritegni $(0.9m \times 5.5m + 4 \times 1m \times 1.15m) \times 0.3m \times 25kN/m³ =$ 71.6KN Per un peso complessivo ~ 775 kN

PROGETTO DEFINITIVO

Relazione di calcolo	COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
	IA5F	01D	09CL	VI0800002	Α	8 di 38

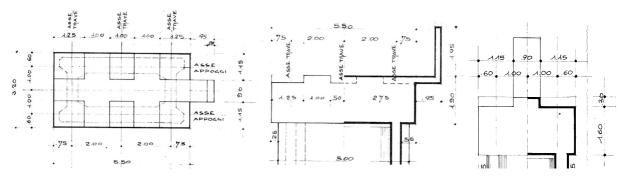


Figura 3 - Pianta e prospetto pulvino

6.2 Carico da traffico

Ai fini delle analisi di adeguamento sismico dell'opera si considera la coesistenza del traffico ferroviario previsto per le nuove strutture (LM71 o SW2) nella percentuale del 20% (sia in termini di masse che di pesi).

Resta inteso che, coerentemente con l'inquadramento generale del progetto del quale la presente relazione è parte integrante, il miglioramento delle opere ai sensi delle NTC 2018 è <u>limitato all'ambito sismico</u> (rif. elab. IA5F01D09ROVI0000001A). Pertanto i suddetti carichi da traffico ferroviario (LM71 o SW2) sono stati considerati solo per le analisi di adeguamento sismico e non per le verifiche dei requisiti relativi agli stati limite SLE e SLU statico.

COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
IA5F	01D	09CL	VI0800002	Α	9 di 38

7. **AZIONE SISMICA**

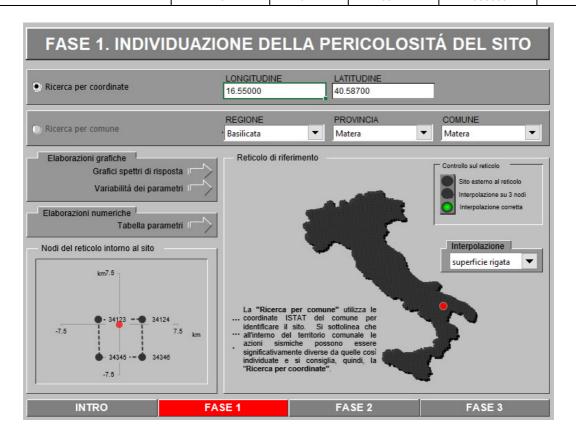
Lo spettro di progetto è stato identificato nel rispetto del §2.4 e del §3.2 delle norme NTC2018. Si definiscono quindi i parametri per individuare lo spettro da utilizzare nelle analisi di adeguamento:

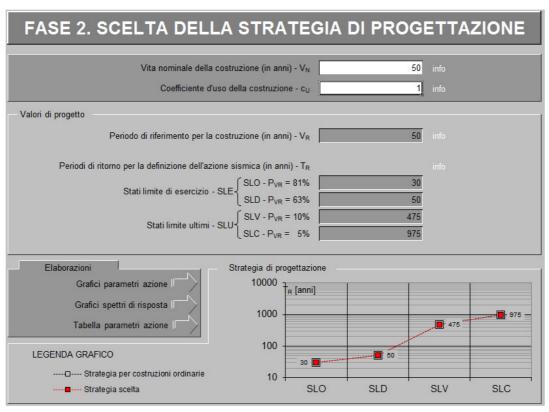
V _N	=	50 [anni]
Classe d'uso		II
Cu	=	1
V _R	=	50 x 1 = 50 [anni]
Categoria di sottosuolo	=	Е

Vista l'elevata estensione del viadotto, per l'analisi di miglioramento sismico, si sono distinte due differenti categorie topografiche: per tutte le pile, ad esclusione delle pile P21 e P22, si fa riferimento alla categoria T1, per le pile 21 e 22 si fa riferimento alla categoria T4.

L'azione sismica viene determinata a partire dalla definizione della pericolosità sismica di base del sito in cui ricade l'opera, definita mediante spettro di risposta elastico in accelerazione in accordo a quanto prescritto al § 3.2 NTC2018, espresso da uno spettro normalizzato riferito ad uno smorzamento convenzionale del 5%, moltiplicato per il valore dell'accelerazione orizzontale massima a_q su sito di riferimento rigido orizzontale. Per la sua determinazione si è fatto uso del software free SPETTRI-NTC ver. 1.0.3 fornito dal MIT, del quale si riportano i passaggi essenziali, con simboli come dal punto citato delle NTC 2018 e riferimento al sito in cui è ubicata l'opera. Si riporta in Figura la determinazione dello spettro elastico allo SLV per il caso del viadotto in esame.

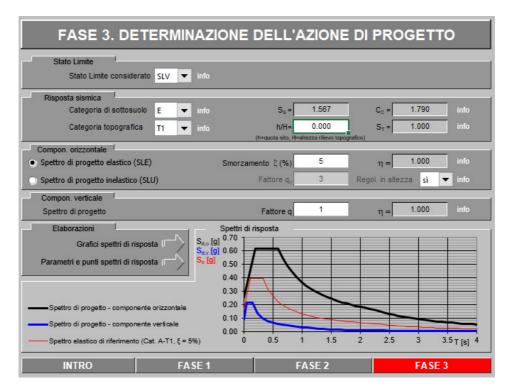
SLATO	T _R	\mathbf{a}_{g}	F _o	T _C *
LIMITE	[anni]	[g]	[-]	[s]
SLO	30	0.040	2.458	0.289
SLD	50	0.055	2.496	0.303
SLV	475	0.159	2.477	0.331
SLC	975	0.205	2.497	0.334




PROGETTO DEFINITIVO

Relazione di calcolo

COMMESSA LOTTO CODIFICA DOCUMENTO REV. FOGLIO


IA5F 01D 09CL VI0800002 A 10 di 38

Stato limite di collasso - SLV categoria T1

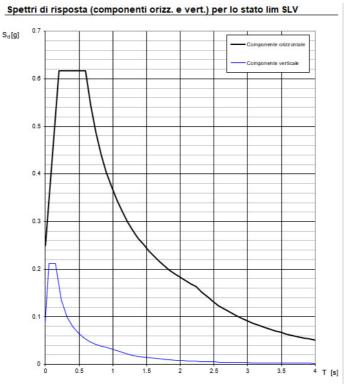
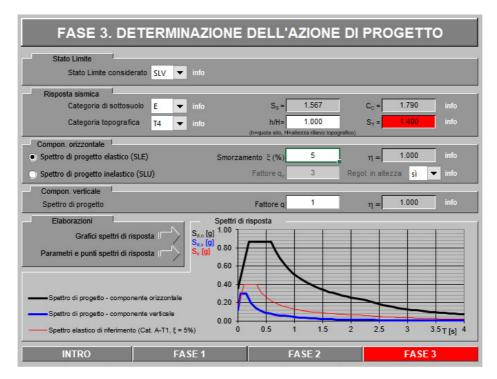



Figura 4- Spettro elastico SLV cat T1

Stato limite di collasso – SLV categoria T4

Spettri di risposta (componenti orizz. e vert.) per lo stato lim SLV

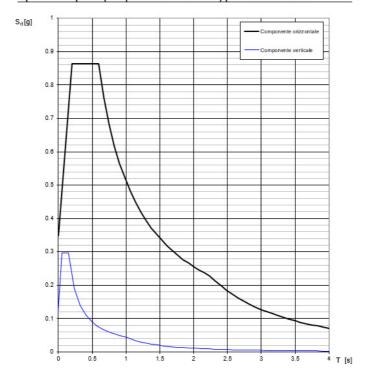


Figura 5- Spettro elastico SLV cat. T4

PROGETTO DEFINITIVO

Relazione di calcolo	COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
	IA5F	01D	09CL	VI0800002	Α	13 di 38

8. COMBINAZIONI DELLE AZIONI

Ai fini delle verifiche si è fatto riferimento alla combinazione sismica:

$$G_1 + G_2 + P + E + \sum_i \psi_{2i} \cdot Q_{ki}$$

Gli effetti dell'azione sismica sono valutati tenendo conto delle masse associate ai carichi gravitazionali:

$$G_K + \sum_i \psi_{2i} \cdot Q_{ki}$$

Le NTC 2018 prevedono l'applicazione di un'aliquota del 20% del carico ferroviario in presenza dell'azione sismica di progetto allo SLU, sia per il nuovo che per l'esistente, quindi con il relativo valore di ψ_2 pari a 0.20. Analogo fattore si applica per la valutazione delle masse eccitate per le analisi dinamiche ai fini della risposta sismica del viadotto.

	SLV1	SLV2	SLV3	SLV4
Peso proprio (permanente + portato)	1.00	1.00	1.00	1.00
Carico accidentale (treno)	0.20	0.20	0.20	0.20
Sisma long	1.00	1.00	0.30	0.30
Sisma trasv	0.30	0.30	1.00	1.00
Sisma vert	0.30	-0.30	0.30	-0.30

PROGETTO DEFINITIVO

Relazione di calcolo	COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
	IA5F	01D	09CL	VI0800002	Α	14 di 38

9. METODO DI ANALISI E MODELLI AGLI EF

La metodologia di analisi con cui è stata valutata la risposta simica del viadotto post-interventi di adeguamento/miglioramento sismico è l'analisi dinamica modale associata allo spettro di risposta.

9.1 Modellazione globale del viadotto

Per l'opera in esame è prevista l'adozione del software per analisi ad elementi finiti "SAP2000 v.15.1.0", con il quale si conduce una modellazione ad elementi di tipo *frame*.

In particolare si modellano tutti gli elementi costituenti il viadotto: campate in cap, campata in acciaio e pile.

Per tener conto della distanza tra l'intradosso della fondazione (incastro) e l'attacco delle pile, è stato inserito un elemento *frame* rigido di lunghezza pari a metà spessore del plinto stesso.

Figura 6 – Modello di calcolo - vista globale

Si è considerata una rigidezza fessurata delle pile, dimezzando il valore del modulo elastico del materiale assegnato. Dove presente, si è tenuto conto delle variazioni di sezione lungo il fusto della pila.

Tutte le pile saranno sottoposte ad intervento di adeguamento sismico, per cui sono state modellate con una sezione maggiorata, per considerare il loror aumento di rigidezza rispetto alla modellazione di vulnerabilità sismica.

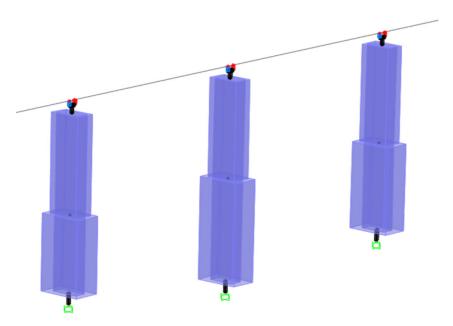


Figura 7 – Modello di calcolo - particolare: variazione sezione fusto pile

Per schematizzare i dispositivi di appoggio sono stati utilizzati elementi *frame* rigidi di collegamento tra pulvino e baricentro delle campate.

Visto lo schema statico degli impalcati, su ogni pila sarà presente un appoggio svincolato alla sola rotazione flessionale e un appoggio svincolato sia alla rotazione che alla traslazione longitudinale (parallela all'asse del viadotto).

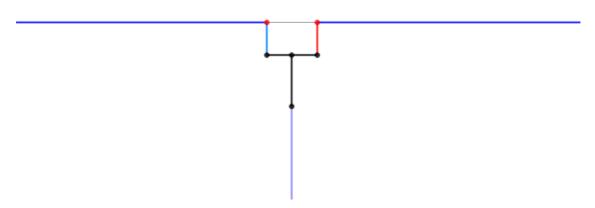


Figura 8 – Modello di calcolo - particolare: dispositivi di appoggio

I due tipi di impalcato sono stati modellati con elmenti *frame* a cui sono state attribuite le caratteristiche geometriche e inerziali coerenti con la loro reale geometria:

PROGETTO DEFINITIVO

Relazione di calcolo	COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
	IA5F	01D	09CL	VI0800002	Α	16 di 38

	Impalcato cap	Impalcato reticolare acciaio
A [mm2]	4.810	0.234
Jx [mm4]	3.440	1.261
Jy [mm4]	16.605	4.506
J tors. [mm4]	0.039	4.917
Avx [mm2]	1.85	-
Avy [mm2]	1.65	-

Le caratteristiche per gli impalcati, sopra indicate, sono state calcolate in base alla geometria degli stessi.

I carichi permanenti sono modellati come carichi statici applicati ai relativi elementi.

Gli effetti del traffico ferroviario sia in termini di azioni che di masse sono state considerate nello studio di vulnerabilità pari al 0.2 del valore caratteristico (ossia pari al valore quasi permanente).

Le masse sono state attribuite ai nodi di collegamento tra gli elementi di appoggio e i frame delle campate.

La tabella sottostante riporta i valori delle masse associate al modello:

	massa traslazionale	massa rotazionale
	ton	ton*m^2
Campata Acciaio	200	917*
Campata cap	302	1733*
Pulvino campata cap	72	-
Pulvino campata acciaio	154	-

^{*}le masse indicate comprendono sia quelle dovute ai pesi permanenti che quelle legate alla quota parte del carico variabile.

9.2 Modellazione della campata reticolare

Al fine di effettuare la verifica di adeguamento sismico dell'impalcato reticolare si esegue una modellazione più dettagliata della struttura, rispetto a quella impiegata per la modellazione dell'intero viadotto.

La struttura reticolare è stata modellata al vero, con tutti gli elementi che la compongono ed è stata inserita al di sopra delle pile P21 e P22, anch'esse modellate secondo la geometria effettiva. Le pile sono state poi considerate incastrate alla base.

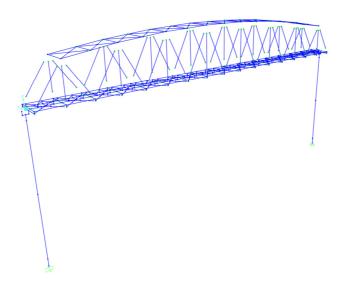


Figura 9 – Modello di calcolo della campata reticolare

Le masse considerate sono le seguenti:

Inoltre sono state considerate le masse aggiuntive per il pulvino e per le campate in cap che gravano sulle stesse pile, calcolate in maniera analoga a quanto descritto nel paragrafo precedente:

	M traslazionale	M rotazionale
	ton	ton*m2
massa impalcato cap	302	1377
massa treno impalcato cap	240	356
massa tot impalcato cap	542	1733
massa pulvino	154	•

PROGETTO DEFINITIVO

Relazione di calcolo	COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
	IA5F	01D	09CL	VI0800002	Α	18 di 38

10. RISULTATI DELLE ANALISI

Si riportano in sintesi i risultati dell'analisi dinamica lineare ottenuti.

10.1.1 Analisi modale del modello globale

Sono stati considerati un numero di modi la cui massa partecipante sia superiore all'85%, come richiesto dal DM18. Di seguito si riportano i modi di vibrare più significativi.

StepNum	Period	UX	UY	UZ	SumUX	SumUY	SumUZ
Unitless	Sec	Unitless	Unitless	Unitless	Unitless	Unitless	Unitless
1	0.905	3.5%	0.0%	0.0%	4%	0%	0%
2	0.827	3.4%	0.0%	0.0%	7%	0%	0%
3	0.765	3.3%	0.0%	0.0%	10%	0%	0%
4	0.722	4.3%	0.0%	0.0%	14%	0%	0%
5	0.718	4.7%	0.0%	0.0%	19%	0%	0%
6	0.691	3.1%	0.0%	0.0%	22%	0%	0%
7	0.665	0.0%	9.2%	0.0%	22%	9%	0%
28	0.339	5.1%	0.0%	0.0%	51%	39%	0%
75	0.063	0.0%	0.0%	5.2%	82%	82%	23%
127	0.041	0.0%	0.2%	0.0%	85%	85%	81%
142	0.039	0.0%	0.0%	0.0%	85%	85%	81%
186	0.023	0.0%	0.0%	0.6%	85%	86%	86%

PROGETTO DEFINITIVO

Relazione di calcolo	COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
	IA5F	01D	09CL	VI0800002	Α	19 di 38

10.1.2 Analisi modale del modello con impalcato reticolare

Sono stati considerati un numero di modi la cui massa partecipante sia superiore all'85%, come richiesto dal DM18. Di seguito si riportano i modi di vibrare più significativi.

StepNum	Period	UX	UY	UZ	SumUX	SumUY	SumUZ
Unitless	Sec	Unitless	Unitless	Unitless	Unitless	Unitless	Unitless
1	1.087	35.8%	0.0%	0.0%	36%	0%	0%
2	1.012	0.0%	26.8%	0.0%	36%	27%	0%
7	0.396	0.1%	0.0%	10.3%	60%	67%	10%
222	0.027	0.0%	0.0%	4.5%	79%	80%	85%
243	0.024	11.0%	0.0%	0.0%	90%	80%	88%
248	0.023	0.0%	5.9%	0.0%	100%	86%	88%

PROGETTO DEFINITIVO

Relazione di calcolo	COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
	IA5F	01D	09CL	VI0800002	Α	20 di 38

10.1.3 Sollecitazioni delle pile

Si riportano le sollecitazioni agenti alla base delle pile avendo assunto un fattore di struttura q=1.5.

	tipo		Ned	Med x	Med y	Ved x	Ved y
	sez	comb.	KN	KNm	KNm	KNm	KNm
PILA16 - FRAME16		SLV1 MAX	-11727	68415	19706	1103	3942
		SLV2 MAX	-12696	-68415	-19706	-1103	-3942
		SLV3 MAX	-11765	20526	65689	3676	1183
FRA	Α	SLV4 MAX	-12657	-20526	-65689	-3676	-1183
- 9	A	SLV1 min	-11727	68415	19706	1103	3942
-A1		SLV2 min	-12696	-68415	-19706	-1103	-3942
E		SLV3 min	-11765	20526	65689	3676	1183
		SLV4 min	-12657	-20526	-65689	-3676	-1183
		SLV1 MAX	-12888	73356	22916	1167	3824
18		SLV2 MAX	-13947	-73356	-22916	-1167	-3824
Σ		SLV3 MAX	-12936	22012	76389	3892	1149
PILA17 - FRAME18	Α	SLV4 MAX	-13898	-22012	-76389	-3892	-1149
7 - 1	^	SLV1 min	-12888	73356	22916	1167	3824
[A1		SLV2 min	-13947	-73356	-22916	-1167	-3824
E		SLV3 min	-12936	22012	76389	3892	1149
		SLV4 min	-13898	-22012	-76389	-3892	-1149
	Α	SLV1 MAX	-14561	77310	27348	1239	3564
.20		SLV2 MAX	-15711	-77310	-27348	-1239	-3564
Æ		SLV3 MAX	-14610	23193	91166	4130	1070
PILA18 - FRAME20		SLV4 MAX	-15662	-23193	-91166	-4130	-1070
		SLV1 min	-14561	77310	27348	1239	3564
LA1		SLV2 min	-15711	-77310	-27348	-1239	-3564
₫		SLV3 min	-14610	23193	91166	4130	1070
		SLV4 min	-15662	-23193	-91166	-4130	-1070
	A	SLV1 MAX	-16320	80500	39127	1584	3320
22		SLV2 MAX	-17543	-80500	-39127	-1584	-3320
RAME22		SLV3 MAX	-16362	24149	130431	5280	996
F.		SLV4 MAX	-17502	-24149	-130431	-5280	-996
ون 1		SLV1 min	-16320	80500	39127	1584	3320
PILA19 -		SLV2 min	-17543	-80500	-39127	-1584	-3320
		SLV3 min	-16362	24149	130431	5280	996
		SLV4 min	-17502	-24149	-130431	-5280	-996
- 42	A	SLV1 MAX	-15386	78875	30606	1307	3451
\20 \NE2		SLV2 MAX	-16528	-78875	-30606	-1307	-3451
PILA20 - FRAME24		SLV3 MAX	-15417	23663	102025	4357	1036
		SLV4 MAX	-16496	-23663	-102025	-4357	-1036

PROGETTO DEFINITIVO

Relazione di calcolo

COMMESSA LOTTO CODIFICA DOCUMENTO REV. FOGLIO

IA5F 01D 09CL VI0800002 A 21 di 38

	tipo		Ned	Med x	Med y	Ved x	Ved y
	sez	comb.	KN	KNm	KNm	KNm	KNm
		SLV1 min	-15386	78875	30606	1307	3451
		SLV2 min	-16528	-78875	-30606	-1307	-3451
		SLV3 min	-15417	23663	102025	4357	1036
		SLV4 min	-16496	-23663	-102025	-4357	-1036
		SLV1 MAX	-13826	77224	24574	1167	3747
33		SLV2 MAX	-14855	-77224	-24574	-1167	-3747
FRAME33	А	SLV3 MAX	-13850	23168	81917	3892	1125
FRA		SLV4 MAX	-14831	-23168	-81917	-3892	-1125
		SLV1 min	-13826	77224	24574	1167	3747
PILA23		SLV2 min	-14855	-77224	-24574	-1167	-3747
E		SLV3 min	-13850	23168	81917	3892	1125
		SLV4 min	-14831	-23168	-81917	-3892	-1125
		SLV1 MAX	-11935	70298	19989	1094	3958
57		SLV2 MAX	-12949	-70298	-19989	-1094	-3958
Σ	A	SLV3 MAX	-11988	21093	66632	3647	1189
PILA24 - FRAME57		SLV4 MAX	-12897	-21093	-66632	-3647	-1189
		SLV1 min	-11935	70298	19989	1094	3958
-A2		SLV2 min	-12949	-70298	-19989	-1094	-3958
1		SLV3 min	-11988	21093	66632	3647	1189
		SLV4 min	-12897	-21093	-66632	-3647	-1189

	tipo		Ned	Med x	Med y	Ved x	Ved y
	sez	comb.	KN	KNm	KNm	KNm	KNm
	В	SLV1 MAX	-9551	51612	14993	1038	3760
17		SLV2 MAX	-10459	-51612	-14993	-1038	-3760
ME		SLV3 MAX	-9589	15483	49978	3460	1128
FRAME17		SLV4 MAX	-10421	-15483	-49978	-3460	-1128
	ь	SLV1 min	-9551	51612	14993	1038	3760
PILA16		SLV2 min	-10459	-51612	-14993	-1038	-3760
ll l		SLV3 min	-9589	15483	49978	3460	1128
		SLV4 min	-10421	-15483	-49978	-3460	-1128
6		SLV1 MAX	-9527	48304	15221	1055	3519
FRAME19		SLV2 MAX	-10483	-48304	-15221	-1055	-3519
KAN		SLV3 MAX	-9574	14497	50738	3518	1056
F.	В	SLV4 MAX	-10435	-14497	-50738	-3518	-1056
PILA17		SLV1 min	-9527	48304	15221	1055	3519
		SLV2 min	-10483	-48304	-15221	-1055	-3519
<u>. </u>		SLV3 min	-9574	14497	50738	3518	1056