COMMITTENTE:

PROGETTAZIONE:

DIREZIONE TECNICA U.O. OPERE CIVILI E GESTIONE DELLE VARIANTI

PROGETTO DEFINITIVO

Nuova linea Ferrandina - Matera La Martella per il collegamento di Matera con la rete ferroviaria nazionale MIGLIORAMENTO SISMICO E OPERE DI COMPLETAMENTO DEI VIADOTTI ESISTENTI DELLA LINEA FERRANDINA MATERA

Relazione di calcolo

0 3

I A 5 F

Impalcato reticolare metallico L=60m

D

							SCALA:
							-
COMMESSA	LOTTO FASE	ENTE	TIPO DOC.	OPERA/DISCIPLINA	PROGR.	RE\	/.

V I 1 3 0 0

0 0 1

CL

0 9

Rev.	Descrizione	Redatto	Data	Verificato	Data	Approvato	Data	Autorizzato Data 😤
Α	Emissione Esecutiva	I.Lardani	Luglio 2019	F.Bonifacio	Luglio 2019	F.Gernone	Luglio 2019	A. dellezi Tradio 2019 Tovallezi Tovallezi
				7		-		FERR S.p., Agestlone Argeloup. Argeloup. President & Marceloup. President & Marceloup. P. 420783
								ITAL pere Civill, Dott. Ing egli Ingegr

File: IA5F01D09CLVI1300001A_Relazione_reticolare 60m.doc	n. Elab.:

PROGETTO DEFINITIVO

Relazione di calcolo campata 60m

COMMESSA IA5F LOTTO 03 D09 CODIFICA CL DOCUMENTO VI1300001 REV.

FOGLIO 2 di 65

INDICE

1	IN	NTRODUZIONE	4
1	1.1	Descrizione dell'opera	4
1	.2	Scopo della relazione	7
2	N	ORMATIVA DI RIFERIMENTO	8
3	М	IATERIALI	Q
•	141		
4	ΑI	NALISI DEI CARICHI	10
4	l.1	CARICHI PERMANENTI	10
4	l.2	SOVRACCARICHI ACCIDENTALI	11
	4.2	2.1 Treni di carico	11
	4.2	2.2 Azioni orizzontali	14
4	1.3	AZIONI CLIMATICHE	16
	4.3	3.1 Variazione termica	16
	4.3	3.2 Azione del vento	16
4	1.4	AZIONI ECCEZIONALI	17
4	l.5	AZIONI SISMICHE	18
4	l.6	CONDIZIONI ELEMENTARI E COMBINAZIONI DI CARICO	21
5	M	IODELLO DI CALCOLO E CRITERI DI VERIFICA	24
5	5.1	Verifica requisiti analisi statica	26
6		ARATTERISTICHE INERZIALI DEGLI ELEMENTI	
G	5.1	BRIGLIE INFERIORI	28
	6.2	BRIGLIE SUPERIORI	
		LONGHERINE	
		TRAVERSI	
		CONTROVENTI INFERIORI	
		CONTROVENTI SUPERIORI	
		CONTROVENTI DI PARETE	
		ERIFICHE DI RESISTENZA E STABILITA' - SLU	
8	VI	ERIFICHE SLE	42

PROGETTO DEFINITIVO

Relazione di calcolo campata 60m

COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
IA5F	03 D09	CL	VI1300001	Α	3 di 65

8.1 Verifiche dell'inflessione impalcato nel piano ver	rticale 42
8.2 Verifiche dell'inflessione impalcato nel piano ori	zzontale42
8.3 Verifica dello sghembo	43
8.4 Comfort dei passeggeri	44
9 REAZIONI VINCOLARI	46
10 ALLEGATO A1	47
10.1 Verifiche elementi strutturali acciaio – ratio <1	47
10.2 Valori massimi delle sollecitazioni di taglio	56
10.3 Valori massimi delle sollecitazioni di compressioni	one e trazione65

PROGETTO DEFINITIVO

Relazione di calcolo campata 60m

COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
IA5F	03 D09	CL	VI1300001	Α	4 di 65

1 INTRODUZIONE

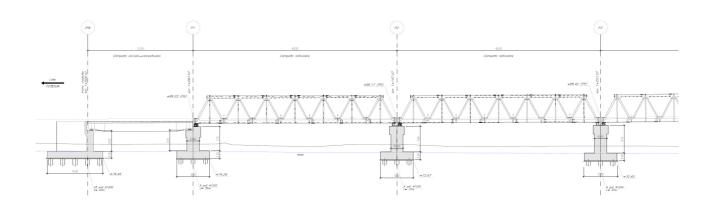
1.1 Descrizione dell'opera

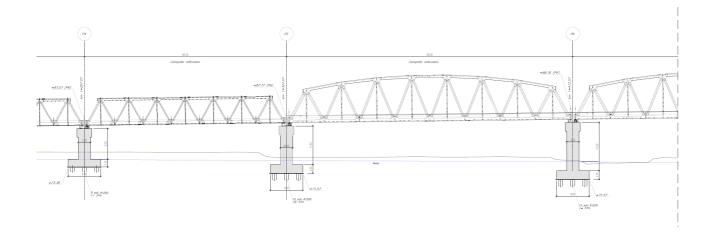
Il viadotto VI13 Nuovo Basento, ubicato alla progressiva km 1+056.07 della nuova linea Ferrandina – Matera La Matterella per il collegamento di Matera con la rete ferroviaria nazionale, si compone di 22 campate sviluppando una lunghezza complessiva di 1 km e 114 metri. Il viadotto presenta uno sviluppo planimetrico inizialmente curvilineo (R= 600m) per poi terminare in rettifilo. Il viadotto è in salita, il tracciato cumula un dislivello tra l'ingresso e l'uscita dall'opera di circa 11.6m.

Sono presenti due tipologie di impalcati: impalcati misti con travi d'acciaio e soletta di calcestruzzo di luci 31 e 38m e impalcati con struttura reticolare a via inferiore di luci 60 e 85m con attacco diretto del binario.

Le pile sono a sezione circolare piena di diametro 3.6m, con altezze, misurate dallo spiccato delle fondazioni al piano appoggi, comprese tra 7 e poco oltre i 14 metri. Le fondazioni sono di tipo profondo con pali trivellati di diametro 1.2m; si incontrano due tipologie di fondazione delle pile una a 9 pali (corrente) ed una a 12 pali, impiegata in corrispondenza delle campate di maggiore luce.

La spalla A è di tipo scatolare con altezza del muro frontale di 6.0m, questa è fondata su una platea di pali di diametro 1.2m.

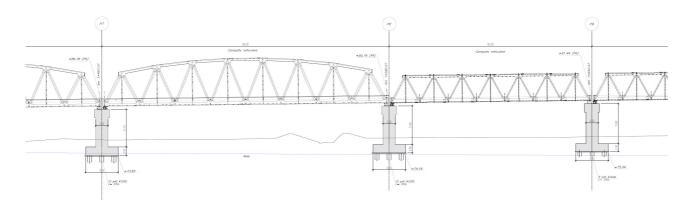

La spalla B viene realizzata tramite una struttura scatolare cava, la cui carpenteria è studiata per adattarsi alla presenza della spalla del viadotto Basento esistente (VI01) che in questa area si affianca al viadotto in progetto. La struttura è caratterizzata da un ingombro planimetrico di 23x 9.7m ed è fondata su pali di diametro 1.2m.

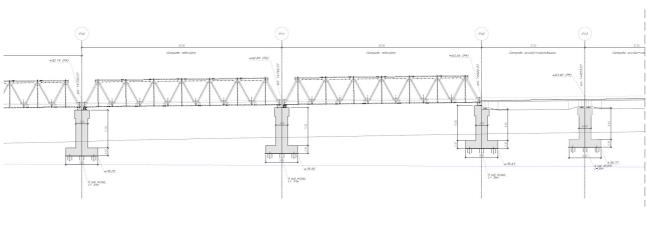


PROGETTO DEFINITIVO

Relazione di calcolo campata 60m

COMMESSA LOTTO CODIFICA DOCUMENTO REV. FOGLIO 1A5F 03 D09 CL VI1300001 A 5 di 65




Figura 1: Sezione longitudinale viadotto VI13 Nuovo Basento

PROGETTO DEFINITIVO

Relazione di calcolo campata 60m

COMMESSA LOTTO CODIFICA DOCUMENTO REV. FOGLIO 6 di 65

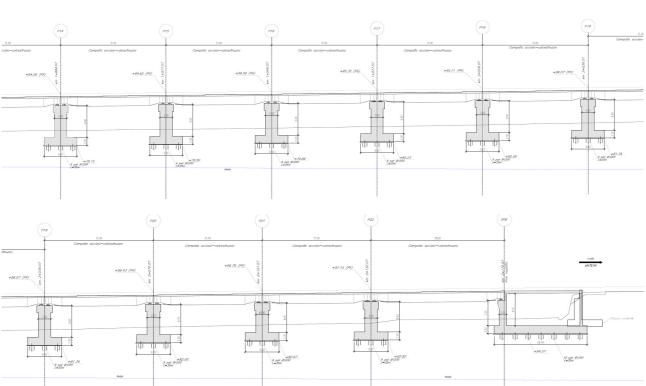


Figura 2: Sezione longitudinale viadotto VI13 Nuovo Basento

PROGETTO DEFINITIVO

Relazione di calcolo campata 60m

COMMESSA LOTTO CODIFICA DOCUMENTO REV. FOGLIO 1A5F 03 D09 CL VI1300001 A 7 di 65

1.2 Scopo della relazione

L'oggetto della presente relazione di calcolo riguarda l'impalcato in carpenteria metallica reticolare di luce pari a 60 m, luce di calcolo 58.6 m, costituita da 12 maglie di lunghezza 4.185 m previste in retto, con altezza baricentrica di 7.85 m, interasse delle pareti di 6.28 m.

Tutte le giunzioni in opera fra i vari elementi strutturali sono previste con bulloni A.R. di classe 8.8 lavoranti a taglio.

Gli apparecchi d'appoggio, in acciaio di fusione, rispettano le tipologie in uso presso le Ferrovie.

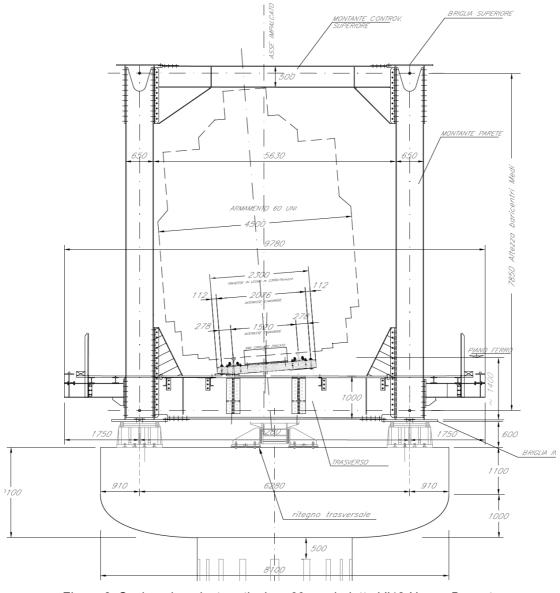


Figura 3: Sezione impalcato reticolare 60m, viadotto VI13 Nuovo Basento

PROGETTO DEFINITIVO

Relazione di calcolo campata 60m

COMMESSA LOTTO CODIFICA DOCUMENTO REV. FOGLIO IA5F 03 D09 CL VI1300001 A 8 di 65

2 NORMATIVA DI RIFERIMENTO

- Legge 5 novembre 1971 n. 1086: Norme per la disciplina delle opere di conglomerato cementizio armato normale e precompresso ed a struttura metallica.
- D.P.R. n. 380/2001 Testo unico delle disposizioni legislative e regolamentari in materia edilizia:
- Decreto Ministeriale del 17 gennaio 2018: "Aggiornamento delle «Norme tecniche per le costruzioni»", G.U. n.8 del 20 febbraio 2018.
- Circolare 21 gennaio 2019, n. 7 Istruzioni per l'applicazione dell' «Aggiornamento delle "Norme tecniche per le costruzioni" di cui al D.M. 17 gennaio 2018.
- RFI DTC SI PS MA IFS 001 C: "Manuale di progettazione delle opere civili Parte II sez.2: Ponti e strutture".
- RFI DTC SI CS MA IFS 001 C: Manuale di progettazione delle opere civili Parte II sez.3.: Corpo stradale".
- Regolamento (UE) N.1299/2014 della Commissione del 18 novembre 2014 relativo alle specifiche tecniche di interoperabilità per il sottosistema "infrastruttura" del sistema ferroviario dell'Unione Europea.
- EN 1991-2 "Eurocodice 1 Azioni sulle strutture Parte 2 : carichi da traffico sui ponti"
- EN 1992-1 "Eurocodice 2 Progettazione delle strutture in calcestruzzo Parte 1-1 : Regole generali e regole per edifici"
- EN 1992-1 "Eurocodice 2 Progettazione delle strutture in calcestruzzo Parte 2: ponti di calcestruzzo - Progettazione e dettagli costruttivi."
- EN 1993-1 "Eurocodice 3 Progettazione delle strutture di acciaio Parte 1-1 : Regole generali e regole per edifici"
- EN 1993-1-8 "Eurocodice 3 Progettazione delle strutture di acciaio Parte 1-8: Progettazione dei collegamenti"
- EN 1993-1-9 "Eurocodice 3 Progettazione delle strutture di acciaio Parte 1-8: Fatica"
- EN 1993-2 "Eurocodice 3 Progettazione delle strutture di acciaio Parte 2 : Ponti di acciaio"
- EN 1994-2 "Eurocodice 4 Progettazione delle strutture composte acciaio- calcestruzzo Parte 2 : Ponti"
- EN 1997-1 "Eurocodice 7 Progettazione geotecnica- Parte 1 : Regole generali."

PROGETTO DEFINITIVO

Relazione di calcolo campata 60m

COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
IA5F	03 D09	CL	VI1300001	Α	9 di 65

UNI EN 1337 – Appoggi strutturali.

3 MATERIALI

Gli acciai impiegati per impieghi strutturali sono conformi alla normativa nazionale (DM 17.1.2018) e quella comunitaria (EN 10025), nonché alle linee guida RFI (dm 14.1.2008 e istruzione FS 44M Acciaio per carpenteria metallica:

- S355 J2 (elementi saldati)
- S355 J0 (elementi non saldati)

Bulloni:

• Viti classe M8.8 e dadi classe 8

Approvvigionamento, collaudo e controllo delle lavorazioni di officina dei materiali, nonché controlli da eseguire durante l'accettazione provvisoria e montaggio in opera della struttura, secondo RFI DTC SI PS SP IFS 001 A. La classe di esecuzione prevista è la exc3 eccetto per i camminamenti ed i grigliati per i quali si puo' utilizzare la classe di esecuzione exc2.

PROGETTO DEFINITIVO

Relazione di calcolo campata 60m

COMMESSA LOTTO CODIFICA DOCUMENTO REV. FOGLIO 1A5F 03 D09 CL VI1300001 A 10 di 65

4 ANALISI DEI CARICHI

Le verifiche dell'opera vengono effettuate in base alla seguente analisi dei carichi.

4.1 CARICHI PERMANENTI

Peso proprio G1

L interasse pile = 60m

L calcolo = 58.60 m

Peso travata G1 = 58 kN/m

G1 = 3415 kN (56.9 KN/m)

NB. il valore deriva dalla modellazione agli elementi finiti dell'opera, in cui sono stati rappresentati tutti gli elementi strutturali con lunghezze a filo ferro, tale peso è stato poi incrementato del 25% per tenere in conto di impiantamenti, bullonature, ringrossi ecc..

Permanenti portati G2

• Armamento:

4 kN/m

• Barriere fonoassorbenti:

4 kN/m², h=4m \Rightarrow 16 kN/m su entrambi i lati;

Parapetto:

2.5 kN/m su entrambi i lati.

• Camminamenti e altre opere di finitura:

7.5 kN/m su entrambi i lati.

G2 = 56 KN/m

PROGETTO DEFINITIVO

Relazione di calcolo campata 60m

COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
IA5F	03 D09	CL	VI1300001	Α	11 di 65

4.2 SOVRACCARICHI ACCIDENTALI

4.2.1 Treni di carico

I carichi verticali sono definiti attraverso dei modelli di carico; in particolare, sono forniti due treni di carico distinti: il primo rappresentativo del traffico normale (LM 71) ed il secondo di quello pesante (SW2).

Traffico normale: Treno LM71

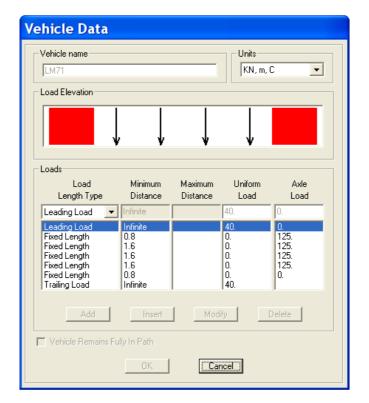
Questo treno di carico schematizza gli effetti statici prodotti dal traffico ferroviario normale e risulta costituito da:

- quattro assi da 250 kN disposti ad interasse di 1.60 m;
- una stesa uniforme di 80 kN/m in entrambe le direzioni, a partire da 0.8 m dagli assi d'estremità e per una lunghezza illimitata.



Figura 4 – treno di carico LM71

È stata considerata un'eccentricità di carico pari a 1/8 dello scartamento: $e = \frac{s}{8} = \frac{143.5}{8} = 8 \text{ cm}$ Ogni rotaia è stata caricata con la seguente azione verticale:



PROGETTO DEFINITIVO

Relazione di calcolo campata 60m

 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 IA5F
 03 D09
 CL
 VI1300001
 A
 12 di 65

I valori caratteristici dei carichi mobili (LM71) attribuiti ai modelli di carico sono stati moltiplicati per un coefficiente di adattamento $\alpha = 1.10$.

Traffico pesante treno SW/2

Tale carico schematizza gli effetti statici prodotti dal traffico ferroviario pesante. Per tale modello di carico è stata considerata la seguente configurazione:

due stese di carico di intensità 150 kN/m, lunghe 25.00 m distanziate da un lasco di 7.00 m.

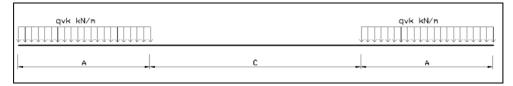
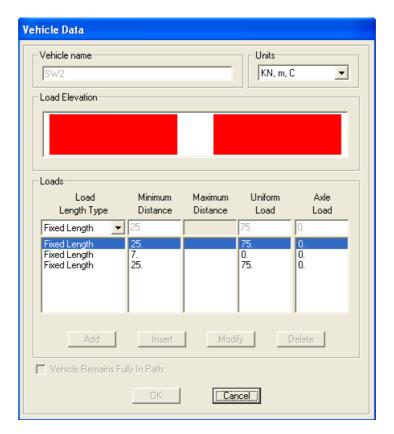


Figura 5 - treno di carico SW/2

Sulla singola rotaia risulta:

$$q_v = \frac{150}{2} = 75 \ kN/m$$



PROGETTO DEFINITIVO

Relazione di calcolo campata 60m

 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 IA5F
 03 D09
 CL
 VI1300001
 A
 13 di 65

Coefficienti dinamici

I coefficienti di incremento dinamico per linee con normale standard manutentivo sono stati determinati con la seguente equazione:

$$\Phi_3 = \frac{2.16}{\sqrt{L_{\text{th}}} - 0.2} + 0.73 \qquad \text{con la limitazione} \qquad 1 \le \Phi_3 \le 2$$

con la lunghezza Lφ valutata secondo la Tabella 1.4.2.5.3.1:

- Travi principali Lφ = L
- Longherine $L\phi = L + 3m$
- Travi trasversali intermedie Lφ = 2*L

Inoltre, per ponti metallici con armamento diretto occorrerà considerare un ulteriore coefficiente di adattamento dinamico β , dato da:

$$\beta=1$$
 per $L_{\Phi}\leq 8m$ e $L_{\Phi}>90m$

PROGETTO DEFINITIVO

Relazione di calcolo campata 60m

COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
IA5F	03 D09	CL	VI1300001	Α	14 di 65

$$\beta = 1.1$$
 per $8m \le L_{\Phi} \le 90m$

Si assumono i seguenti coefficienti dinamici:

	L [m]	L ф [m]	ф [-]	β [-]	φ*β [-]
travi principali	58.6	58.6	1.02	1.1	1.12
longherine	4.185	7.185	1.60	1.1	1.76
trasversi intermedi	6.28	12.56	1.38	1.1	1.51

4.2.2 Azioni orizzontali

Serpeggio

Si assume una forza orizzontale di 100 kN applicata alla sommità delle rotaie.

Avviamento e frenatura

Avviamento: $Q_{ak} = 33 * L \le 1000 kN$

Treno LM71: $Q_{ak} = 1000 kN;$

Treno SW2: $Q_{ak} = 1000 \ kN$

Frenatura:

treno LM71: $Q_{bk} = 20 * L \le 6000 kN = 1172 kN$

treno SW2: $Q_{hk} = 35 * L = 1806 \text{ kN}$

Per il treno di carico LM71 le precedenti forze devono essere moltiplicate per il coefficiente α = 1.1.

Nel modello di calcolo sono state considerate per ciascun treno di carico solamente le azioni (frenatura o avviamento) che determinano le sollecitazioni massime sulla struttura.

Centrifuga

Il valore caratteristico della forza centrifuga è valutato secondo le seguenti espressioni:

PROGETTO DEFINITIVO

Relazione di calcolo campata 60m

 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 IA5F
 03 D09
 CL
 VI1300001
 A
 15 di 65

$$Q_{tk} = \frac{v^2}{g \cdot r} (f \cdot Q_{vk}) = \frac{V^2}{127 \cdot r} (f \cdot Q_{vk})$$
 (5.2.9.a)

$$q_{tk} = \frac{v^2}{g \cdot r} (f \cdot q_{vk}) = \frac{V^2}{127 \cdot r} (f \cdot q_{vk})$$

$$(5.2.9.b)$$

dove:

Q_{tk}- q_{tk} = valore caratteristico della forza centrifuga [kN - kN/m];

 Q_{vk} - q_{vk} = valore caratteristico dei carichi verticali [kN - kN/m];

v = velocità di progetto espressa in m/s;

V = velocità di progetto espressa in km/h;

f = fattore di riduzione (definito in seguito);

g = accelerazione di gravità in m/s²;

r = è il raggio di curvatura in m.

$$f = \left[1 - \frac{V - 120}{1000} \left(\frac{814}{V} + 1,75\right) \cdot \left(1 - \sqrt{\frac{2,88}{L_f}}\right)\right]$$
 (5.2.10)

Raggio di curvatura r=600 m

Velocità di progetto V=100 km/h

Calcolo del coefficiente V2/ 127r

$$V^2/127r = 0.13$$

In definitiva, dunque, la forza centrifuga ha intensità pari a (f = 1):

13% del carico verticale del treno

Essa si considera agente verso l'esterno della curva, applicata alla quota di 1.8m dal piano del ferro.

PROGETTO DEFINITIVO

Relazione di calcolo campata 60m

COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
IA5F	03 D09	CL	VI1300001	Α	16 di 65

4.3 AZIONI CLIMATICHE

4.3.1 Variazione termica

Nelle verifiche dei singoli elementi è stata considerata una variazione termica uniforme, una variazione volumetrica ed una variazione termica non uniforme secondo quanto indicato sulla "Specifica per la progettazione e l'esecuzione dei ponti ferroviari e di altre opere minori sotto binario".

Variazione termica uniforme

La variazione termica uniforme volumetrica da considerare per un impalcato in acciaio ed armamento diretto risulta pari a ± 25 °C.

Per la determinazione delle escursioni degli apparecchi di appoggio è stata considerata una variazione termica uniforme di 25° * 1.5 = 37.5°C.

Variazione termica non uniforme

In aggiunta alla variazione termica uniforme è stato considerato un gradiente termico pari a 5°C tra intradosso ed estradosso di impalcato.

Per la verifica delle deformazioni orizzontali e verticali dell'impalcato sono state considerate delle differenze di temperatura tra estradosso ed intradosso e fra le superfici laterali più esterne degli impalcati di 10°C.

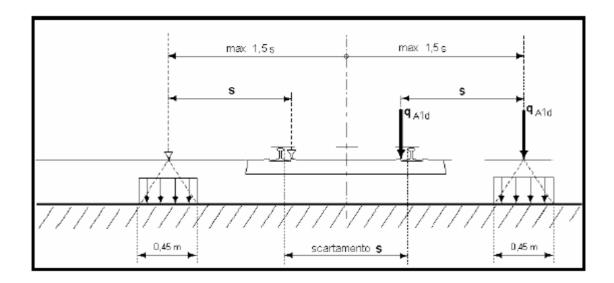
4.3.2 Azione del vento

L'azione del vento è stata distinta in:

- Vento su struttura scarica, ossia azione del vento sul ponte senza carichi mobili;
- Vento su struttura carica, ossia azione del vento sul ponte durante il transito dei veicoli.

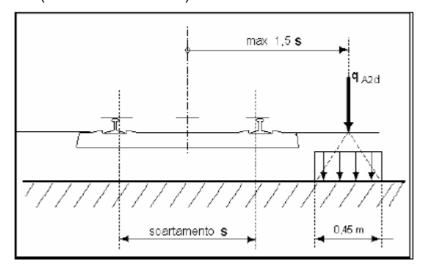
Per l'azione del vento cautelativamente si prevedono 2.5 kN/mq applicate nelle superfici esposte della travata metallica e dei treni di carico.

PROGETTO DEFINITIVO


Relazione di calcolo campata 60m

COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
IA5F	03 D09	CL	VI1300001	Α	17 di 65

4.4 AZIONI ECCEZIONALI

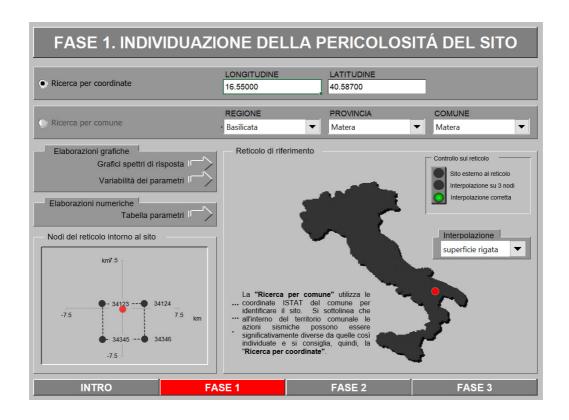

Deragliamento schema 1

Sono state considerate due stese di carico di lunghezza 6.40 m, intensità di 60 kN/m, ad una distanza pari allo scartamento S ed eccentriche rispettivamente 1.5 s e s.

Deragliamento schema 2

È stato considerato un carico lineare di lunghezza 20m, intensità 80*1.4 kN/m, eccentrico di 1.5s rispetto all'asse binari (80*1.4*20/5 = 448 kN).

4.5 AZIONI SISMICHE

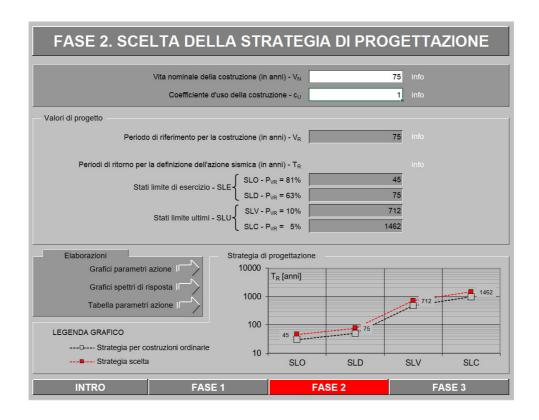

Lo spettro di progetto è stato ottenuto utilizzando il foglio di calcolo elettronico messo a disposizione dal Consiglio Superiore dei Lavori Pubblici.

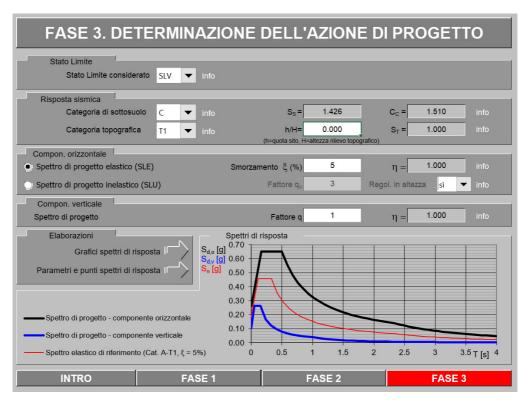
RFV

Α

FOGLIO

18 di 65

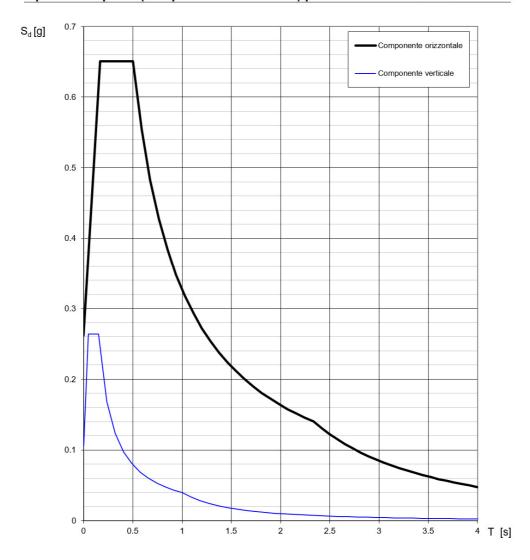



PROGETTO DEFINITIVO

Relazione di calcolo campata 60m

 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 IA5F
 03 D09
 CL
 VI1300001
 A
 19 di 65



PROGETTO DEFINITIVO

Relazione di calcolo campata 60m

COMMESSA LOTTO CODIFICA DOCUMENTO REV. FOGLIO 1A5F 03 D09 CL VI1300001 A 20 di 65

Spettri di risposta (componenti orizz. e vert.) per lo stato limite: SLV

PROGETTO DEFINITIVO

Relazione di calcolo campata 60m

COMMESSA LOTTO CODIFICA DOCUMENTO REV. FOGLIO 1A5F 03 D09 CL VI1300001 A 21 di 65

4.6 CONDIZIONI ELEMENTARI E COMBINAZIONI DI CARICO

Sono state verificate le seguenti combinazioni di carico:

- Combinazioni fondamentali SLU;
- · Combinazioni eccezionali;
- Combinazioni sismiche;
- · Combinazioni frequenti.

Per l'analisi della struttura sono stati considerati due gruppi di carico: il gruppo di carico 1 e il gruppo 3.

	Carco verticale	Frenatura/avviamento*	Forza centrifuga	Serpeggio
LM71 gr1	1	0.5	1	1
LM71 gr3	1	1	0.5	0.5
SW/2 gr1	1	0.5	1	1
SW/2 gr3	1	1	0.5	0.5

^{*} Si considera l'azione (frenatura/avviamento) con intensità più alta.

I coefficienti riportati nella tabella sottostante sono il prodotto γ*ψ:

carico	61	62	gradiente	serpeggio mezzeria	serpeggio appoggio	centrifuga LM71	centrifuga SW/2	avv/frenatura LM71	avv/frenatura SW/2	treno LM71	treno SW/2	vento treno carico	vento treno scarico	sisma x	y sisma y	sisma z
slu 1	1.35	1.50	0.90	1.45	0.00	1.45	0.00	0.73	0.00	1.45	0.00	0.90	0.00	0.00	0.00	0.00
slu 2	1.35	1.50	0.90	1.45	0.00	0.00	1.45	0.00	0.73	0.00	1.45	0.90	0.00	0.00	0.00	0.00
slu 3	1.35	1.50	0.90	0.00	1.45	1.45	0.00	0.73	0.00	1.45	0.00	0.90	0.00	0.00	0.00	0.00
slu 4	1.35	1.50	0.90	0.00	1.45	0.00	1.45	0.00	0.73	0.00	1.45	0.90	0.00	0.00	0.00	0.00
slu 5	1.35	1.50	0.90	1.45	0.00	1.45	0.00	0.73	0.00	1.45	0.00	0.00	0.90	0.00	0.00	0.00
slu 6	1.35	1.50	0.90	1.45	0.00	0.00	1.45	0.00	0.73	0.00	1.45	0.00	0.90	0.00	0.00	0.00
slu 7	1.35	1.50	0.90	0.00	1.45	1.45	0.00	0.73	0.00	1.45	0.00	0.00	0.90	0.00	0.00	0.00
slu 8	1.35	1.50	0.90	0.00	1.45	0.00	1.45	0.00	0.73	0.00	1.45	0.00	0.90	0.00	0.00	0.00
slu 9	1.35	1.50	0.90	0.73	0.00	0.73	0.00	1.45	0.00	1.45	0.00	0.90	0.00	0.00	0.00	0.00
slu 10	1.35	1.50	0.90	0.73	0.00	0.00	0.73	0.00	1.45	0.00	1.45	0.90	0.00	0.00	0.00	0.00

PROGETTO DEFINITIVO

Relazione di calcolo campata 60m

COMMESSA LOTTO
IA5F 03 D09

CODIFICA CL DOCUMENTO VI1300001

REV.

FOGLIO 22 di 65

carico	61	62	gradiente	serpeggio mezzeria	serpeggio appoggio	centrifuga LM71	centrifuga SW/2	avv/frenatura LM71	avv/frenatura SW/2	treno LM71	treno SW/2	vento treno carico	vento treno scarico	sisma x	sisma y	sisma z
slu 11	1.35	1.50	0.90	0.00	0.73	0.73	0.00	1.45	0.00	1.45	0.00	0.90	0.00	0.00	0.00	0.00
slu 12	1.35	1.50	0.90	0.00	0.73	0.00	0.73	0.00	1.45	0.00	1.45	0.90	0.00	0.00	0.00	0.00
slu 13	1.35	1.50	0.90	0.73	0.00	0.73	0.00	1.45	0.00	1.45	0.00	0.00	0.90	0.00	0.00	0.00
slu 14	1.35	1.50	0.90	0.73	0.00	0.00	0.73	0.00	1.45	0.00	1.45	0.00	0.90	0.00	0.00	0.00
slu 15	1.35	1.50	0.90	0.00	0.73	0.73	0.00	1.45	0.00	1.45	0.00	0.00	0.90	0.00	0.00	0.00
slu 16	1.35	1.50	0.90	0.00	0.73	0.00	0.73	0.00	1.45	0.00	1.45	0.00	0.90	0.00	0.00	0.00
slu 17	1.35	1.50	0.90	0.58	0.00	0.58	0.00	1.16	0.00	1.16	0.00	1.50	0.00	0.00	0.00	0.00
slu 18	1.35	1.50	0.90	0.58	0.00	0.00	0.58	0.00	1.16	0.00	1.16	1.50	0.00	0.00	0.00	0.00
slu 19	1.35	1.50	0.90	0.00	0.58	0.58	0.00	1.16	0.00	1.16	0.00	1.50	0.00	0.00	0.00	0.00
slu 20	1.35	1.50	0.90	0.00	0.58	0.00	0.58	0.00	1.16	0.00	1.16	1.50	0.00	0.00	0.00	0.00
slu 21	1.35	1.50	0.90	0.58	0.00	0.58	0.00	1.16	0.00	1.16	0.00	0.00	1.50	0.00	0.00	0.00
slu 22	1.35	1.50	0.90	0.58	0.00	0.00	0.58	0.00	1.16	0.00	1.16	0.00	1.50	0.00	0.00	0.00
slu 23	1.35	1.50	0.90	0.00	0.58	0.58	0.00	1.16	0.00	1.16	0.00	0.00	1.50	0.00	0.00	0.00
slu 24	1.35	1.50	0.90	0.00	0.58	0.00	0.58	0.00	1.16	0.00	1.16	0.00	1.50	0.00	0.00	0.00
slu 25	1.35	1.50	1.50	0.00	0.00	0.58	0.00	1.16	0.00	1.16	0.00	0.90	0.00	0.00	0.00	0.00
slu 26	1.35	1.50	1.50	0.58	0.00	0.00	0.58	0.00	1.16	0.00	1.16	0.90	0.00	0.00	0.00	0.00
slu 27	1.35	1.50	1.50	0.00	0.58	0.58	0.00	1.16	0.00	1.16	0.00	0.90	0.00	0.00	0.00	0.00
slu 28	1.35	1.50	1.50	0.00	0.58	0.00	0.58	0.00	1.16	0.00	1.16	0.90	0.00	0.00	0.00	0.00
slu 29	1.35	1.50	1.50	0.58	0.00	0.58	0.00	1.16	0.00	1.16	0.00	0.00	0.90	0.00	0.00	0.00
slu 30	1.35	1.50	1.50	0.58	0.00	0.00	0.58	0.00	1.16	0.00	1.16	0.00	0.90	0.00	0.00	0.00
slu 31	1.35	1.50	1.50	0.00	0.58	0.58	0.00	1.16	0.00	1.16	0.00	0.00	0.90	0.00	0.00	0.00
slu 32	1.35	1.50	1.50	0.00	0.58	0.00	0.58	0.00	1.16	0.00	1.16	0.00	0.90	0.00	0.00	0.00
slv 1	1.00	1.00	0.50	0.20	0.00	0.20	0.00	0.20	0.00	0.20	0.00	0.00	0.00	1.00	0.30	0.30
slv 2	1.00	1.00	0.50	0.20	0.00	0.20	0.00	0.20	0.00	0.20	0.00	0.00	0.00	-1.00	-0.30	0.30
slv 3	1.00	1.00	0.50	0.20	0.00	0.20	0.00	0.20	0.00	0.20	0.00	0.00	0.00	1.00	0.30	-0.30
slv 4	1.00	1.00	0.50	0.20	0.00	0.20	0.00	0.20	0.00	0.20	0.00	0.00	0.00	-1.00	-0.30	-0.30
slv 5	1.00	1.00	0.50	0.20	0.00	0.00	0.20	0.00	0.20	0.00	0.20	0.00	0.00	1.00	0.30	0.30
slv 6	1.00	1.00	0.50	0.20	0.00	0.00	0.20	0.00	0.20	0.00	0.20	0.00	0.00	-1.00	-0.30	0.30
slv 7	1.00	1.00	0.50	0.20	0.00	0.00	0.20	0.00	0.20	0.00	0.20	0.00	0.00	1.00	0.30	-0.30
slv 8	1.00	1.00	0.50	0.20	0.00	0.00	0.20	0.00	0.20	0.00	0.20	0.00	0.00	-1.00	-0.30	-0.30
slv 9	1.00	1.00	0.50	0.00	0.20	0.20	0.00	0.20	0.00	0.20	0.00	0.00	0.00	1.00	0.30	0.30
slv 10	1.00	1.00	0.50	0.00	0.20	0.20	0.00	0.20	0.00	0.20	0.00	0.00	0.00	-1.00	-0.30	0.30
slv 11	1.00	1.00	0.50	0.00	0.20	0.20	0.00	0.20	0.00	0.20	0.00	0.00	0.00	1.00	0.30	-0.30

PROGETTO DEFINITIVO

Relazione di calcolo campata 60m

 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 IA5F
 03 D09
 CL
 VI1300001
 A
 23 di 65

carico	61	62	gradiente	serpeggio mezzeria	serpeggio appoggio	centrifuga LM71	centrifuga SW/2	avv/frenatura LM71	avv/frenatura SW/2	treno LM71	treno SW/2	vento treno carico	vento treno scarico	sisma x	sisma y	sisma z
slv 12	1.00	1.00	0.50	0.00	0.20	0.20	0.00	0.20	0.00	0.20	0.00	0.00	0.00	-1.00	-0.30	-0.30
slv 13	1.00	1.00	0.50	0.00	0.20	0.00	0.20	0.00	0.20	0.00	0.20	0.00	0.00	1.00	0.30	0.30
slv 14	1.00	1.00	0.50	0.00	0.20	0.00	0.20	0.00	0.20	0.00	0.20	0.00	0.00	-1.00	-0.30	0.30
slv 15	1.00	1.00	0.50	0.00	0.20	0.00	0.20	0.00	0.20	0.00	0.20	0.00	0.00	1.00	0.30	-0.30
slv 16	1.00	1.00	0.50	0.00	0.20	0.00	0.20	0.00	0.20	0.00	0.20	0.00	0.00	-1.00	-0.30	-0.30
sle 1	1	1	0.5	8.0	0	8.0	0	0.4	0	0.8	0	0	0	0	0	0
sle 2	1	1	0.5	8.0	0	0	8.0	0	0.4	0	8.0	0	0	0	0	0
sle 3	1	1	0.5	0	0.8	8.0	0	0.4	0	0.8	0	0	0	0	0	0
sle 4	1	1	0.5	0	0.8	0	8.0	0	0.4	0	0.8	0	0	0	0	0
sle 5	1	1	0.5	8.0	0	8.0	0	0.4	0	8.0	0	0	0	0	0	0
sle 6	1	1	0.5	8.0	0	0	8.0	0	0.4	0	8.0	0	0	0	0	0
sle 7	1	1	0.5	0	0.8	0.8	0	0.4	0	0.8	0	0	0	0	0	0
sle 8	1	1	0.5	0	8.0	0	8.0	0	0.4	0	8.0	0	0	0	0	0

Di seguito si riportano le combinazioni eccezionali:

carico	61	62	gradiente	serpeggio	centrifuga	avv/frenatura	treno	vento treno carico	deragliamento sch. 1	deragliamento sch. 2
ecc 1	1	1	0.5	0	0	0	0	0	1	0
ecc 2	1	1	0.5	0	0	0	0	0	0	1

PROGETTO DEFINITIVO

Relazione di calcolo campata 60m

COMMESSA LOTTO CODIFICA DOCUMENTO REV. FOGLIO 1A5F 03 D09 CL VI1300001 A 24 di 65

5 MODELLO DI CALCOLO E CRITERI DI VERIFICA

Per il calcolo delle sollecitazioni e per l'analisi strutturale sono stati realizzati dei modelli agli elementi finiti con il programma di calcolo SAP2000 Plus v.15.1.0. L'analisi statica effettuata è di tipo elastico lineare e le verifiche sono state effettuate agli stati limite in conformità alle Normative Vigenti), in particolare le verifiche sono state condotte adottando il metodo degli stati limite secondo quanto indicato al par 2.2 del DM 17.1.2018 limitando le tensioni dei materiali secondo quanto indicato nell'opportuna sezione del Manuale di progettazione delle opere civili RFI DTC SI PS MA IFS 001 C.

Di seguito viene rappresentato il modello tridimensionale con il quale sono stati valutati gli effetti globali in termini di resistenza, di deformazione e di stabilità.

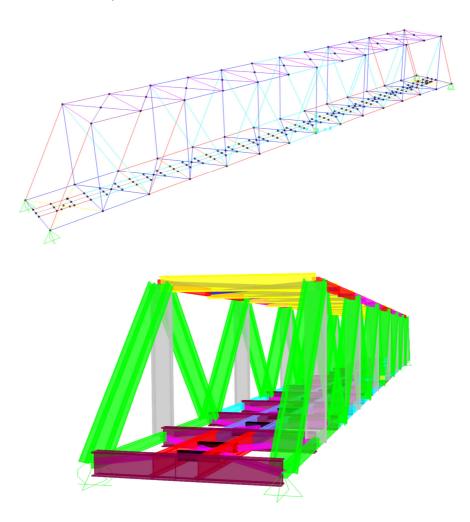


Figura 6: Modello FEM

PROGETTO DEFINITIVO

Relazione di calcolo campata 60m

COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
IA5F	03 D09	CL	VI1300001	Α	25 di 65

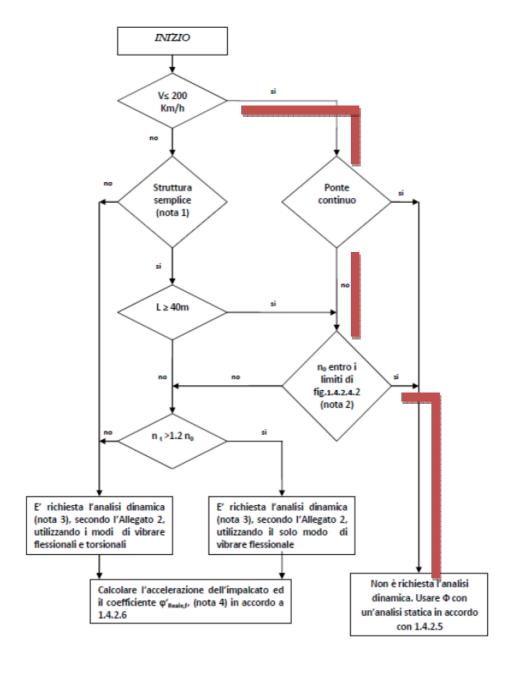
Sono stati utilizzati degli elementi trave (frame) con le seguenti caratteristiche geometriche:

ELEMENTO	b sup	t sup	b inf	t inf	Н	hw	tw	A tot	L
inferiori	m	m	m	m	m	m	m	m2	m
briglia inferiore tipo 1	0	0	0.34	0.02	0.670	0.65	0.02	0.0396	4.185
briglia inferiore tipo 2	0	0	0.46	0.035	0.685	0.65	0.02	0.0582	4.185
briglia inferiore tipo 3	0	0	0.46	0.04	0.690	0.65	0.02	0.0628	4.185
trasverso - HEM1000	0.302	0.040	0.302	0.04	1.01	0.928	0.021	0.0436	6.28
diag controv inf 1° campo (HEM400)	0.307	0.040	0.307	0.040	0.432	0.352	0.021	0.0320	7.55
diagonale controv. inf (T-IPE500)	0.2	0.016	0	0	0.25	0.234	0.0102	0.0056	7.55
longherina tipo 1	0.3	0.025	0.3	0.025	0.814	0.764	0.016	0.0272	4.185
longherina tipo 2 (HEB600)	0.3	0.030	0.3	0.030	0.600	0.54	0.0155	0.0264	4.185
trasversi longherine	0.2	0.015	0.2	0.015	0.4	0.37	0.01	0.0097	1.52

	b sup	t sup	b inf	t inf	Н	hw	tw	A tot	L
superiori	m	m	m	m	m	m	m	m2	m
briglia superiore tipo 1	0.8	0.02	0.135	0.02	0.640	0.6	0.02	0.0454	4.185
briglia superiore tipo 2	0.8	0.035	0.135	0.02	0.655	0.6	0.02	0.0574	4.185
briglia superiore tipo 3	0.8	0.04	0.135	0.02	0.660	0.6	0.02	0.0614	4.185
montante controvento sup	0.22	0.04	0.22	0.04	0.5	0.42	0.016	0.0243	6.28
diagonale controv. Sup (T-IPE400)	0.18	0.0135	0	0	0.2	0.1865	8.60E-03	0.0040	7.55

	b sup	t sup	b inf	t inf	Н	hw	tw	A tot	L
parete	m	m	m	m	m	m	m	m2	m
diagonale parete estremità (2 campi)	0.5	0.035	0.5	0.035	0.5	0.43	0.016	0.0419	8.9
diagonale parete (corrente)	0.45	0.025	0.45	0.025	0.5	0.45	0.016	0.0297	8.9
montante parete	0.22	0.02	0.22	0.02	0.5	0.46	0.016	0.0162	7.85

Per l'analisi e le verifiche in condizioni sismiche sono state considerate le **masse** relative ai G1, G2 e al 20% treno di carico.


PROGETTO DEFINITIVO

Relazione di calcolo campata 60m

COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
IA5F	03 D09	CL	VI1300001	Α	26 di 65

5.1 Verifica requisiti analisi statica

Con riferimento al diagramma di flusso indicato al §2.5.1.4.2.4 del Manuale Progettazione Ponti (RFI DTC SI PS MA IFS 001 B) e riportato sotto per maggiore chiarezza, si procede alla verifica dell'applicabilità del metodo di analisi statica degli effetti del traffico ferroviario sull'opera.

PROGETTO DEFINITIVO

Relazione di calcolo campata 60m

COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
IA5F	03 D09	CL	VI1300001	Α	27 di 65

Trattandosi di un viadotto a travi poggiate con velocità di progetto < 200 km/h (100 km/h), l'applicabilità del metodo è definita dalla frequenza propria dell'impalcato (n_o), che deve soddisfare la seguente relazione.

$$n_{0 inf} < n < n_{0 sup}$$

dove n è prima frequenza flessionale dell'impalcato

La condizione risulta soddisfatta in quanto :

$$\begin{split} &n=2.31~\text{Hz}\\ &n_{0~\text{sup}}=94.76^*\text{L}^{-0.748}=4.51~\text{Hz}\\ &n_{0~\text{inf}}=23.58^*\text{L}^{-0.592}=2.12~\text{Hz} &\text{per }20\text{m} < \text{L} < 100\text{m}\\ &\text{assumendo quale luce di calcolo L=}~58.6\text{m}. \end{split}$$

L'immagine seguente mostra la deformata modale corrispondente al I modo flessionale dell'impalcato desunto dal modello agli EF.

| Deformed Shape (MODAL) - Mode 2 - T = 0.35009; f = 2.85637

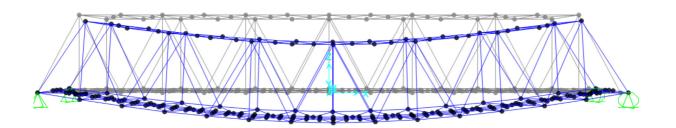


Figura 7: Deformata primo modo flessionale

PROGETTO DEFINITIVO

Relazione di calcolo campata 60m

 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 IA5F
 03 D09
 CL
 VI1300001
 A
 28 di 65

6 CARATTERISTICHE INERZIALI DEGLI ELEMENTI

6.1 BRIGLIE INFERIORI

Le briglie inferiori vengono previste con tre differenti profili, come schematizzato nella figura seguente:

SectionName	Material	Shape	t3	t2	Area	133	122	AS2	AS3	W33	W22
Text	Text	Text	m	m	m2	m4	m4	m2	m2	m3	m3
briglia inf - tipo 1	S355	General	0.4572	0.254	0.0396	0.0019	0.0028	0.013	0.0068	4.32E-03	1.65E-02
briglia inf - tipo 2	S355	General	0.4572	0.254	0.0582	0.0026	0.0045	0.013	0.0161	5.05E-03	1.96E-02
briglia inf - tipo 3	S355	General	0.4572	0.254	0.0628	0.0027	0.0049	0.013	0.0184	5.12E-03	2.13E-02

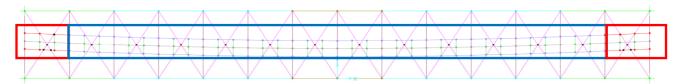
6.2 BRIGLIE SUPERIORI

Le briglie superiori vengono previste con tre differenti profili, come schematizzato nella figura seguente:

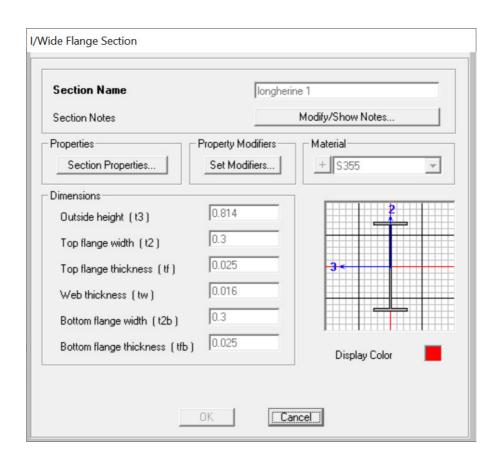
priglia sup - tipo 1 briglia sup - tipo 1 briglia sup - tipo 2 briglia sup - tipo 2 briglia sup - tipo 3 briglia sup - tipo 3 briglia sup - tipo 2 briglia sup - tipo 2 briglia sup - tipo 2 briglia sup - tipo 1

briglia sup - tipo 1 briglia sup - tipo 1 briglia sup - tipo 2 briglia sup - tipo 2 briglia sup - tipo 2 briglia sup - tipo 3 briglia sup - tipo 3 briglia sup - tipo 2 briglia sup - tipo 1 briglia sup - tipo 2 briglia sup - tipo 2 briglia sup - tipo 2 briglia sup - tipo 3 briglia sup - tipo 3 briglia sup - tipo 2 briglia sup - tipo 2 briglia sup - tipo 2 briglia sup - tipo 3 briglia s

SectionName	Material	Shape	t3	t2	Area	133	122	AS2	AS3	W33	W22
Text	Text	Text	m	m	m2	m4	m4	m2	m2	m3	m3
briglia sup - tipo 1	S355	General	0.4572	0.254	0.0454	0.0025	0.003	0.012	0.0187	6.37E-03	4.44E-02
briglia sup - tipo 2	S355	General	0.4572	0.254	0.0574	0.0032	0.0036	0.012	0.0307	7.18E-03	5.33E-02
briglia sup - tipo 3	S355	General	0.4572	0.254	0.0614	0.0033	0.0038	0.012	0.0347	7.18E-03	5.63E-02


PROGETTO DEFINITIVO

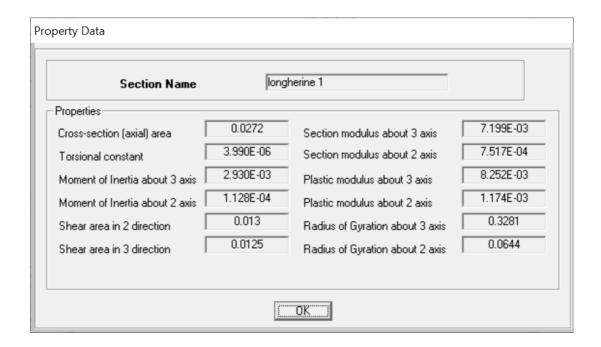
Relazione di calcolo campata 60m


COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
IA5F	03 D09	CL	VI1300001	Α	29 di 65

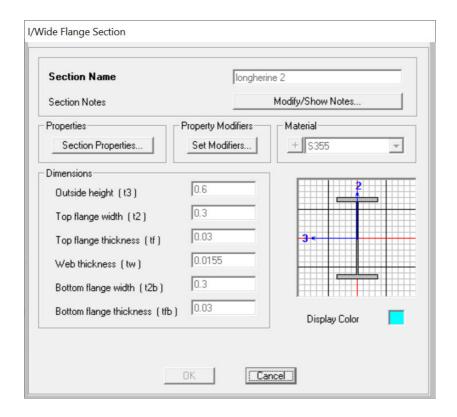
6.3 LONGHERINE

Le longherine vengono previste con i seguenti profili:

Per i primi campi alle due estremità del ponte (riquadri rossi) vengono impiegati profili composti saldati (longherine tipo 1);



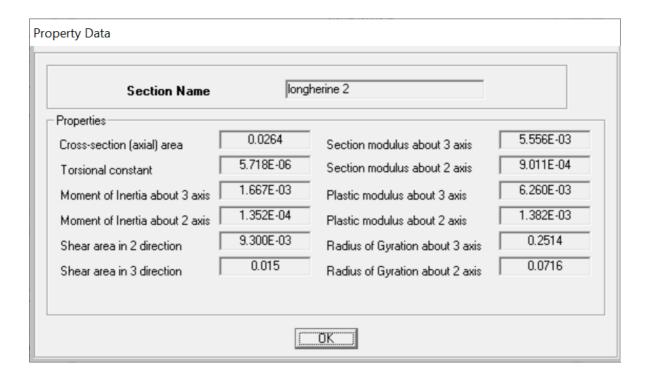
PROGETTO DEFINITIVO


Relazione di calcolo campata 60m

 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 IA5F
 03 D09
 CL
 VI1300001
 A
 30 di 65

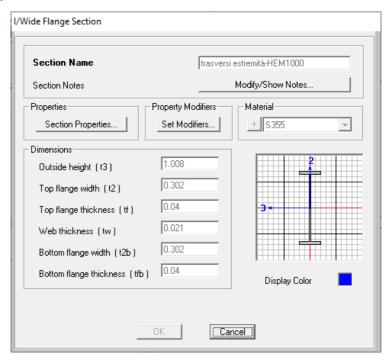
Per gli altri campi (riquadro blu) vengono impiegati profili commerciali HEB600 (longherine tipo 2).

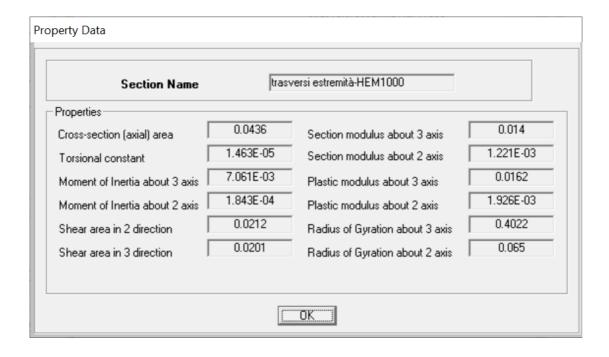


PROGETTO DEFINITIVO

Relazione di calcolo campata 60m

 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

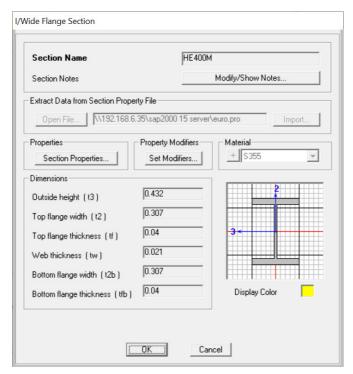

 IA5F
 03 D09
 CL
 VI1300001
 A
 31 di 65



6.4 TRAVERSI

Si distinguono i trasversi di estremità (HEM1000) da quelli correnti (HEM800), in funzione delle seguenti geometrie:

PROGETTO DEFINITIVO

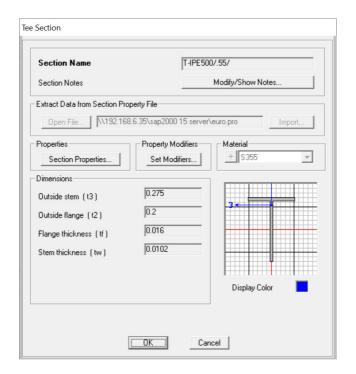

Relazione di calcolo campata 60m

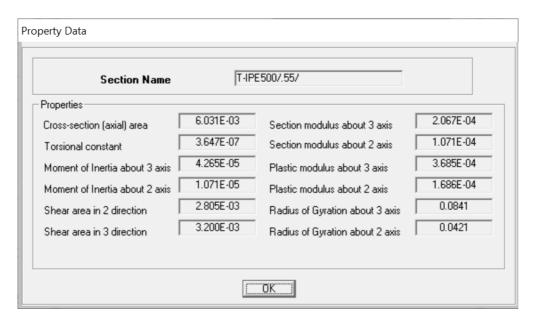
COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
IA5F	03 D09	CL	VI1300001	Α	33 di 65

6.5 CONTROVENTI INFERIORI

I diagonali che compongono i controventi inferiori si distinguono in due tipologie:

- I controventi del primo campo (per ciascun lato) sono profili HEM400
- I controventi dei campi 2° e 3° (per ciascun lato) sono profili T-HE500M/.5/
- I controventi dei campi centrali sono profili T-IPE500/.55/




PROGETTO DEFINITIVO

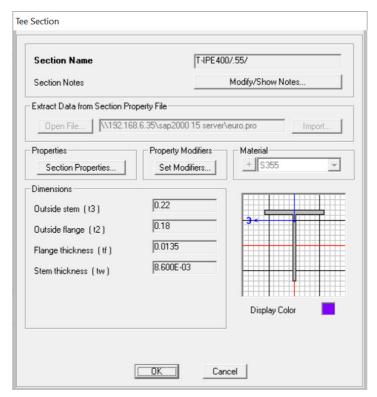
Relazione di calcolo campata 60m

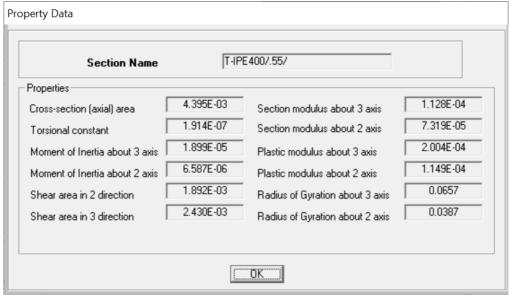
 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 IA5F
 03 D09
 CL
 VI1300001
 A
 34 di 65

PROGETTO DEFINITIVO

Relazione di calcolo campata 60m

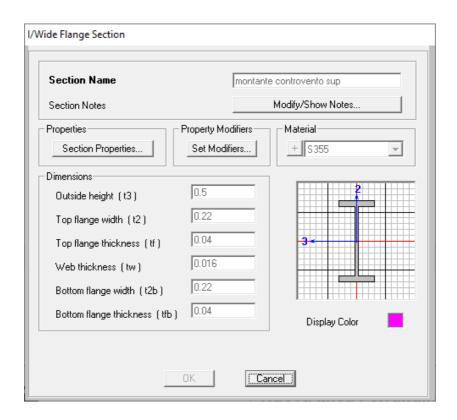

COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
IA5F	03 D09	CL	VI1300001	Α	35 di 65

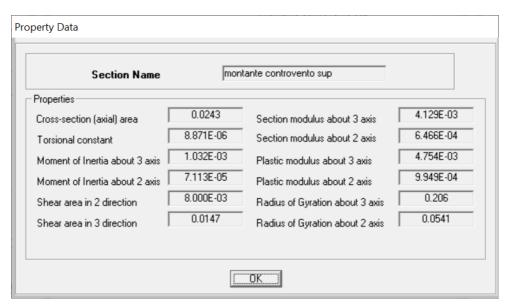

6.6 CONTROVENTI SUPERIORI

I diagonali che compongono i controventi superiori sono profili T-IPE400/.55/.

I montanti sono dei profili in composizione saldata.

Le figure seguenti mostrano la geometria degli elementi descritti.

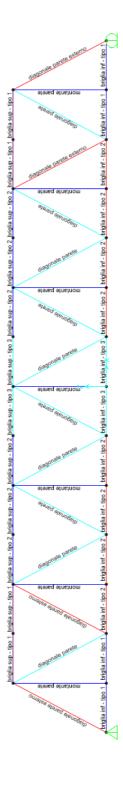



PROGETTO DEFINITIVO

Relazione di calcolo campata 60m

 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 IA5F
 03 D09
 CL
 VI1300001
 A
 36 di 65

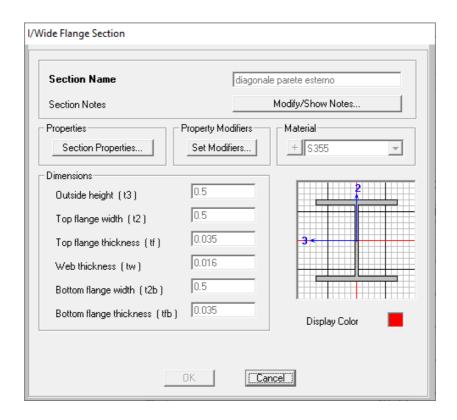

PROGETTO DEFINITIVO

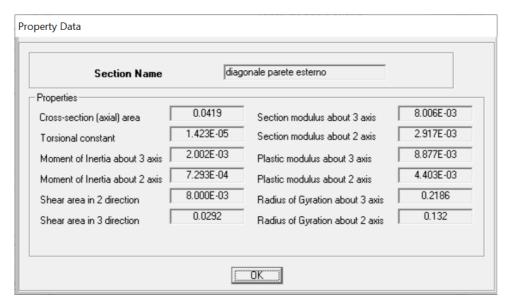
Relazione di calcolo campata 60m

COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
IA5F	03 D09	CL	VI1300001	Α	37 di 65

6.7 CONTROVENTI DI PARETE

I diagonali di parete sono profili in composizione saldata; essi sono stati differenziati tra controventi "esterni" (di dimensioni maggiori) e "correnti".

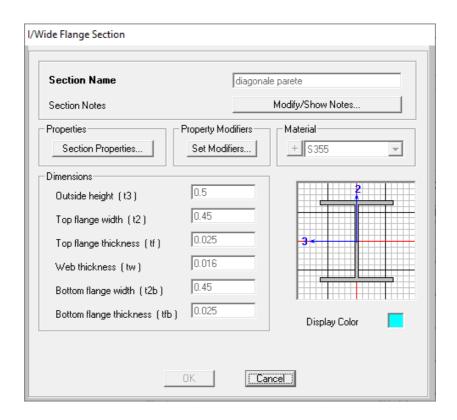


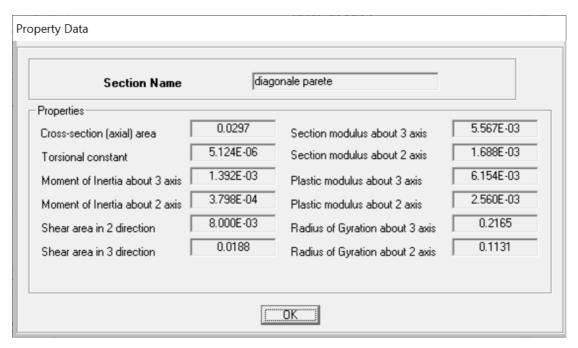

PROGETTO DEFINITIVO

Relazione di calcolo campata 60m

 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 IA5F
 03 D09
 CL
 VI1300001
 A
 38 di 65



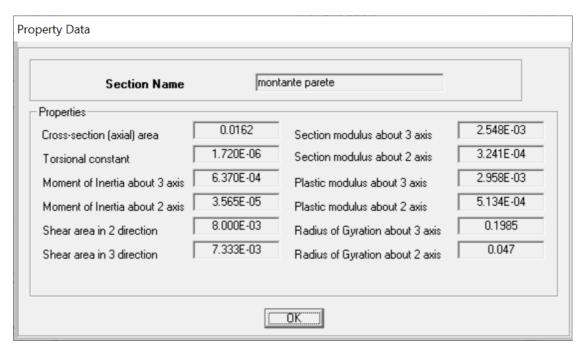

PROGETTO DEFINITIVO

Relazione di calcolo campata 60m

 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 IA5F
 03 D09
 CL
 VI1300001
 A
 39 di 65

PROGETTO DEFINITIVO

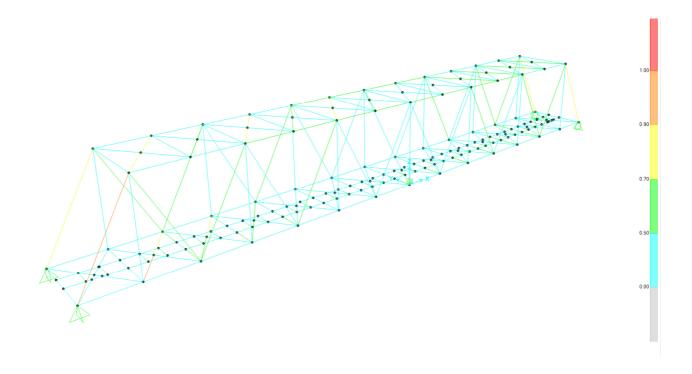

Relazione di calcolo campata 60m

 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 IA5F
 03 D09
 CL
 VI1300001
 A
 40 di 65

Anche i montanti di parete sono profili in composizione saldata.

PROGETTO DEFINITIVO


Relazione di calcolo campata 60m

COMMESSA LOTTO CODIFICA DOCUMENTO REV. FOGLIO 1A5F 03 D09 CL VI1300001 A 41 di 65

7 VERIFICHE DI RESISTENZA E STABILITA' - SLU

Si riportano di seguito le verifiche agli SLU dei singoli elementi costituenti l'impalcato.

Le verifiche di resistenza degli elementi risultano soddisfatte. Di seguito si riporta l'immagine che rappresenta gli esiti delle verifiche allo SLU espressi tramite il tasso di lavoro della sezione ("Ratio" <1) per tutti gli elementi costituenti l'impalcato.

Nell'allegato A1 si riportano le verifiche per ciascun elemento e le relative tabelle.

PROGETTO DEFINITIVO

Relazione di calcolo campata 60m

COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
IA5F	03 D09 CL		VI1300001	Α	42 di 65

8 VERIFICHE SLE

8.1 Verifiche dell'inflessione impalcato nel piano verticale

Sono stati considerati agenti i treni di carico LM71 e SW2 incrementati con il corrispondente coefficiente dinamico e con il coefficiente α .

LM71					
LM71	L/600	u3	verifica		
[m]	[mm]	[mm]	[-]		
58.6	97.7	35.8	ok		

		SW/2	
SW/2	L/600	u3	verifica
[m]	[mm]	[mm]	[-]
58.6	97.7	38.8	ok

8.2 Verifiche dell'inflessione impalcato nel piano orizzontale

Considerando la presenza del treno di carico LM71, incrementato con il corrispondente coefficiente dinamico e con il coefficiente α , l'azione del vento, la forza laterale (serpeggio), la forza centrifuga e gli effetti della variazione di temperatura lineare fra i due lati dell'impalcato stabilita al §5.2.2.4, l'inflessione nel piano orizzontale dell'impalcato non deve produrre:

- una variazione angolare maggiore di quella fornita nella successiva Tab. 5.2.VIII;
- un raggio di curvatura orizzontale minore dei valori di cui alla citata tabella.

Tabella 5.2.VIII - Massima variazione angolare e minimo raggio di curvatura

Velocità	Variazione	Raggio minimo di curvatura		
[km/h]	Angolare massima	Singola campata	Più campate	
V ≤ 120	0,0035 rd	1700 m	3500 m	
120 < V ≤ 200	0,0020 rd	6000 m	9500 m	
200 < V	0,0015 rd	14000 m	17500 m	

Raggio di curvatura:

$$R = \frac{L^2}{8*\delta_h}$$

PROGETTO DEFINITIVO

Relazione di calcolo campata 60m

 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 IA5F
 03 D09
 CL
 VI1300001
 A
 43 di 65

Per una velocità di percorrenza inferiore a 120 km/h, è stato verificato che:

Rotazione

rotazione max	0.0015	rad
limite	0.0035	rad
verifica	ok	

Raggio di curvatura

L	58.6	m
δh max	15.95	mm
R	26912	m
R limite min	3500	m
verifica	ok	

8.3 Verifica dello sghembo

La torsione dell'impalcato del ponte è stata calcolata considerando il treno di carico LM71 incrementato con il corrispondente coefficiente dinamico e con il coefficiente α . Per una velocità minore di 120 km/h il limite di sghembo è pari a 4.5mm/3m.

 $\begin{array}{lll} \text{per} & V \!\! \leq 120 \text{ km/h}; & t \!\! \leq 4,5 \text{ mm/3m} \\ \text{per} & 120 \!\! < \!\! V \!\! \leq 200 \text{ km/h}; & t \!\! \leq 3,0 \text{ mm/3m} \end{array}$

per V > 200 km/h; $t \le 1.5 \text{ mm/3m}$

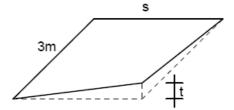


Figura 5.2.14 - Sghembo ammissibile

Dal modello di calcolo si leggono gli abbassamenti massimi delle longherine a 3 m dagli appoggi sotto il passaggio del treno di carico LM71 e SW/2 incrementati per il coefficiente dinamico:

Treno LM71

u3 esterno curva 7.29 mm u3 interno curva 7.13 mm

PROGETTO DEFINITIVO

Relazione di calcolo campata 60m

 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 IA5F
 03 D09
 CL
 VI1300001
 A
 44 di 65

S (scartamento) 1435 mm i 1522 mm

t max 0.1555 mm/3m

verifica ok

Treno SW/2

u3 esterno curva	8.37	mm
u3 interno curva	8.19	mm

S (scartamento) 1435 mm i 1522 mm

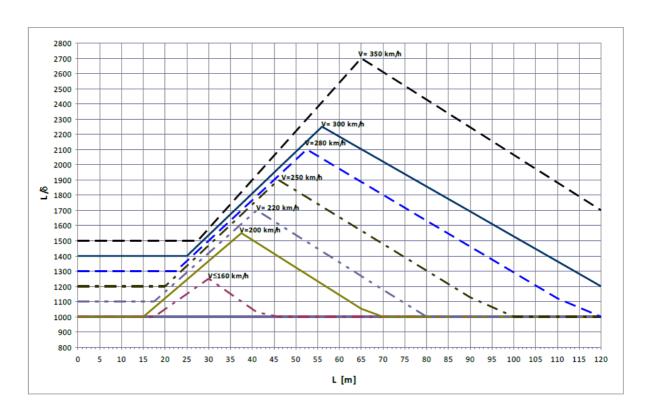
t max 0.1690 mm/3m

verifica ok

8.4 Comfort dei passeggeri

Il comfort di marcia per i passeggeri è controllato limitando i valori della freccia verticale dei ponti ferroviari in funzione della luce e del numero delle campate consecutive, dello schema statico del ponte e della velocità V di percorrenza del convoglio.

L'inflessione verticale deve calcolarsi in asse al binario, considerando il modello di carico LM71 con il relativo incremento dinamico e con il coefficiente α ; in caso di ponte a doppio binario dovrà considerarsi carico un solo binario e calcolarsi la freccia in asse a tale binario carico, applicando un solo modello di carico LM71 con il relativo incremento dinamico e con il coefficiente α .


Nella successiva figura sono riportati i valori del limite di deformabilità, validi per viadotti con impalcati semplicemente appoggiati aventi tre o più campate:

PROGETTO DEFINITIVO

Relazione di calcolo campata 60m

COMMESSA LOTTO CODIFICA DOCUMENTO REV. FOGLIO 1A5F 03 D09 CL VI1300001 A 45 di 65

L	58.6	m
δ LM71 (verticale)	35.69	mm
L/δ limite (da abaco)	1000	mm
L/δ	1642	-
verifica: $L/\delta > L/\delta$ limite	ok	
L/δ limite (da abaco) L/δ	1000 1642	

PROGETTO DEFINITIVO

Relazione di calcolo campata 60m

COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
IA5F	03 D09	CL	VI1300001	Α	46 di 65

9 REAZIONI VINCOLARI

Lo schema dei vincoli della travata metallica è il seguente:

Apparecchio di appoggio di tipo fisso

Apparecchio di appoggio di tipo unidirezionale disposto in direzione trasversale

Apparecchio di appoggio di tipo unidirezionale disposto in direzione longitudinale

Apparecchio di appoggio di tipo unidirezionale disposto in direzione trasversale

Si riportano le reazioni massime e minime, per i singoli appoggi, per la combinazione SLU e per la combinazione SLV nelle condizioni più gravose:

	SLU			SLV			
	N	F trasv	F long	N	F trasv	F long	
	[kN]	[kN]	[kN]	[kN]	[kN]	[kN]	
Fisso	6400	1850	2300	4250	3700	3750	
Unidir. long	6400	1850	0	4250	3700	0	
Unidir. trasv	6400	0	2300	4250	0	3750	
Multidir.	6400	0	0	4250	0	0	

PROGETTO DEFINITIVO

Relazione di calcolo campata 60m

 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 IA5F
 03 D09
 CL
 VI1300001
 A
 47 di 65

10 ALLEGATO A1

10.1 Verifiche elementi strutturali acciaio - ratio <1

TABLE: St	eel Design 1 - Summary Data - Euro	code 3-2005				
Frame	DesignSect	DesignType	Ratio	RatioType	Combo	Location
Text	Text	Text	Unitless	Text	Text	m
br-i_14	briglia inf - tipo 1	Beam	0.375	PMM	slu 6	2.0925
br-i_13	briglia inf - tipo 1	Beam	0.248	PMM	slu 6	4.185
br-i_12	briglia inf - tipo 2	Beam	0.459	PMM	slu 6	2.0925
br-i_11	briglia inf - tipo 2	Beam	0.450	PMM	slu 6	2.0925
br-i_10	briglia inf - tipo 2	Beam	0.615	PMM	slu 6	0
br-i_9	briglia inf - tipo 2	Beam	0.623	PMM	slu 6	4.185
br-i_8	briglia inf - tipo 3	Beam	0.611	PMM	slu 6	0
br-i_7	briglia inf - tipo 3	Beam	0.609	PMM	slu 6	4.19
br-i_6	briglia inf - tipo 2	Beam	0.579	PMM	slu 6	0
br-i_5	briglia inf - tipo 2	Beam	0.565	PMM	slu 2	4.185
br-i_4	briglia inf - tipo 2	Beam	0.365	PMM	slu 6	2.0925
br-i_3	briglia inf - tipo 2	Beam	0.366	PMM	slu 8	2.0925
br-i_2	briglia inf - tipo 1	Beam	0.270	PMM	slu 6	0
br-i_1	briglia inf - tipo 1	Beam	0.352	PMM	slu 6	2.0925
br-i_28	briglia inf - tipo 1	Beam	0.230	PMM	slu 11	2.0925
br-i_27	briglia inf - tipo 1	Beam	0.188	PMM	slu 2	4.185
br-i_26	briglia inf - tipo 2	Beam	0.285	PMM	slu 11	2.0925
br-i_25	briglia inf - tipo 2	Beam	0.271	PMM	slu 11	2.0925
br-i_24	briglia inf - tipo 2	Beam	0.392	PMM	slu 12	2.0925
br-i_23	briglia inf - tipo 2	Beam	0.393	PMM	slu 12	2.0925
br-i_22	briglia inf - tipo 3	Beam	0.406	PMM	slu 11	2.095
br-i_21	briglia inf - tipo 3	Beam	0.408	PMM	slu 11	2.095
br-i_20	briglia inf - tipo 2	Beam	0.404	PMM	slu 12	2.0925
br-i_19	briglia inf - tipo 2	Beam	0.407	PMM	slu 12	2.0925
br-i_18	briglia inf - tipo 2	Beam	0.301	PMM	slu 4	2.0925
br-i_17	briglia inf - tipo 2	Beam	0.335	PMM	slu 2	2.0925
br-i_16	briglia inf - tipo 1	Beam	0.284	PMM	slv 1	0
br-i_15	briglia inf - tipo 1	Beam	0.364	PMM	slu 1	2.0925
m_s_7	montante controvento sup	Beam	0.246	PMM	slu 2	0
m_s_6	montante controvento sup	Beam	0.192	PMM	slu 2	0
m_s_8	montante controvento sup	Beam	0.215	PMM	slu 2	0
m_s_5	montante controvento sup	Beam	0.164	PMM	slu 2	0
m_s_4	montante controvento sup	Beam	0.077	PMM	slv 13	0
m_s_3	montante controvento sup	Beam	0.130	PMM	slu 22	3.14

PROGETTO DEFINITIVO

Relazione di calcolo campata 60m

COMMESSA LOTTO CODIFICA DOCUMENTO REV. FOGLIO 1A5F 03 D09 CL VI1300001 A 48 di 65

TABLE: Steel Design 1 - Summary Data - Eurocode 3-2005							
Frame	DesignSect	DesignType	Ratio	RatioType	Combo	Location	
Text	Text	Text	Unitless	Text	Text	m	
m_s_2	montante controvento sup	Beam	0.176	PMM	slu 6	3.14	
m_s_1	montante controvento sup	Beam	0.372	PMM	slu 6	3.14	
m_s_9	montante controvento sup	Beam	0.215	PMM	slu 2	0	
m_s_10	montante controvento sup	Beam	0.131	PMM	slu 2	0	
m_s_11	montante controvento sup	Beam	0.082	PMM	slv 5	0	
m_s_12	montante controvento sup	Beam	0.117	PMM	slu 22	3.14	
m_s_13	montante controvento sup	Beam	0.291	PMM	slu 6	3.14	
br-s_12	briglia sup - tipo 1	Beam	0.519	PMM	slu 8	2.0925	
br-s_11	briglia sup - tipo 1	Beam	0.504	PMM	slu 8	0	
br-s_10	briglia sup - tipo 2	Beam	0.613	PMM	slu 8	2.0925	
br-s_9	briglia sup - tipo 2	Beam	0.628	PMM	slu 4	0	
br-s_8	briglia sup - tipo 2	Beam	0.720	PMM	slu 4	2.0925	
br-s_7	briglia sup - tipo 3	Beam	0.684	PMM	slu 4	0	
br-s_6	briglia sup - tipo 3	Beam	0.684	PMM	slu 4	2.095	
br-s_5	briglia sup - tipo 2	Beam	0.723	PMM	slu 4	0	
br-s_4	briglia sup - tipo 2	Beam	0.630	PMM	slu 4	2.0925	
br-s_3	briglia sup - tipo 2	Beam	0.637	PMM	slu 8	0	
br-s_2	briglia sup - tipo 1	Beam	0.534	PMM	slu 6	0	
br-s_1	briglia sup - tipo 1	Beam	0.553	PMM	slu 6	0	
br-s_24	briglia sup - tipo 1	Beam	0.412	PMM	slu 10	2.0925	
br-s_23	briglia sup - tipo 1	Beam	0.418	PMM	slu 10	0	
br-s_22	briglia sup - tipo 2	Beam	0.587	PMM	slu 2	2.0925	
br-s_21	briglia sup - tipo 2	Beam	0.593	PMM	slu 2	0	
br-s_20	briglia sup - tipo 2	Beam	0.710	PMM	slu 2	2.0925	
br-s_19	briglia sup - tipo 3	Beam	0.675	PMM	slu 2	0	
br-s_18	briglia sup - tipo 3	Beam	0.670	PMM	slu 2	2.095	
br-s_17	briglia sup - tipo 2	Beam	0.695	PMM	slu 2	0	
br-s_16	briglia sup - tipo 2	Beam	0.576	PMM	slu 10	2.0925	
br-s_15	briglia sup - tipo 2	Beam	0.567	PMM	slu 10	0	
br-s_14	briglia sup - tipo 1	Beam	0.415	PMM	slu 14	0	
br-s_13	briglia sup - tipo 1	Beam	0.391	PMM	slu 12	0	
d_p_1	diagonale parete esterno	Brace	0.921	PMM	slu 6	0	
d_p_2	diagonale parete	Brace	0.665	PMM	slu 6	0	
d_p_3	diagonale parete esterno	Brace	0.632	PMM	slu 6	4.44794	
d_p_4	diagonale parete	Brace	0.415	PMM	slu 2	4.44794	
d_p_5	diagonale parete	Brace	0.654	PMM	slu 2	0	
d_p_6	diagonale parete	Brace	0.302	PMM	slu 2	8.89588	
d_p_7	diagonale parete	Brace	0.404	PMM	slu 2	4.44912	
d_p_8	diagonale parete	Brace	0.384	PMM	slu 2	4.44912	
d_p_9	diagonale parete	Brace	0.300	PMM	slu 2	8.89588	

PROGETTO DEFINITIVO

Relazione di calcolo campata 60m

COMMESSA LOTTO CODIFICA DOCUMENTO REV. FOGLIO 1A5F 03 D09 CL VI1300001 A 49 di 65

TABLE: St	teel Design 1 - Summary Data - Euro	ocode 3-2005				
Frame	DesignSect	DesignType	Ratio	RatioType	Combo	Location
Text	Text	Text	Unitless	Text	Text	m
d_p_10	diagonale parete	Brace	0.639	PMM	slu 2	4.44794
d_p_11	diagonale parete	Brace	0.412	PMM	slu 2	8.89588
d_p_12	diagonale parete esterno	Brace	0.578	PMM	slu 8	0
d_p_13	diagonale parete	Brace	0.593	PMM	slu 6	0
d_p_14	diagonale parete esterno	Brace	0.870	PMM	slu 6	4.44794
m_p_1	montante parete	Column	0.314	PMM	slv 5	0
m_p_2	montante parete	Column	0.156	PMM	slu 1	7.85
m_p_3	montante parete	Column	0.164	PMM	slu 2	3.925
m_p_4	montante parete	Column	0.231	PMM	slu 2	3.925
m_p_5	montante parete	Column	0.205	PMM	slu 2	3.925
m_p_6	montante parete	Column	0.154	PMM	slu 3	7.85
m_p_7	montante parete	Column	0.240	PMM	slv 9	0
d_p_15	diagonale parete esterno	Brace	0.734	PMM	slu 6	0
d_p_16	diagonale parete	Brace	0.571	PMM	slu 6	0
d_p_17	diagonale parete esterno	Brace	0.516	PMM	slu 14	0
d_p_18	diagonale parete	Brace	0.352	PMM	slu 10	4.44794
d_p_19	diagonale parete	Brace	0.553	PMM	slu 2	4.44794
d_p_20	diagonale parete	Brace	0.249	PMM	slu 2	8.89588
d_p_21	diagonale parete	Brace	0.366	PMM	slu 2	4.44912
d_p_22	diagonale parete	Brace	0.401	PMM	slu 2	4.44912
d_p_23	diagonale parete	Brace	0.275	PMM	slu 2	8.89588
d_p_24	diagonale parete	Brace	0.612	PMM	slu 2	4.44794
d_p_25	diagonale parete	Brace	0.367	PMM	slu 2	8.89588
d_p_26	diagonale parete esterno	Brace	0.521	PMM	slu 14	0
d_p_27	diagonale parete	Brace	0.546	PMM	slu 6	0
d_p_28	diagonale parete esterno	Brace	0.749	PMM	slu 6	0
m_p_8	montante parete	Column	0.440	PMM	slu 6	0
m_p_9	montante parete	Column	0.150	PMM	slu 6	0
m_p_10	montante parete	Column	0.198	PMM	slu 2	3.925
m_p_11	montante parete	Column	0.263	PMM	slu 2	3.925
m_p_12	montante parete	Column	0.235	PMM	slu 2	3.925
m_p_13	montante parete	Column	0.139	PMM	slu 2	0
m_p_14	montante parete	Column	0.335	PMM	slu 6	0
tr_126	trasversi correnti-HEM800	Beam	0.466	PMM	slu 15	0.91959
tr_128	trasversi correnti-HEM800	Beam	0.490	PMM	slu 1	0
tr_129	trasversi correnti-HEM800	Beam	0.456	PMM	slu 15	0
tr_131	trasversi correnti-HEM800	Beam	0.481	PMM	slu 1	0
tr_132	trasversi correnti-HEM800	Beam	0.477	PMM	slu 13	0.91473
tr_134	trasversi correnti-HEM800	Beam	0.500	PMM	slu 3	0
tr_135	trasversi correnti-HEM800	Beam	0.456	PMM	slu 13	0

PROGETTO DEFINITIVO

Relazione di calcolo campata 60m

COMMESSA LOTTO CODIFICA DOCUMENTO REV. FOGLIO 1A5F 03 D09 CL VI1300001 A 50 di 65

TABLE: S	teel Design 1 - Summary Data - Euro	code 3-2005				
Frame	DesignSect	DesignType	Ratio	RatioType	Combo	Location
Text	Text	Text	Unitless	Text	Text	m
tr_137	trasversi correnti-HEM800	Beam	0.489	PMM	slu 1	0
tr_138	trasversi correnti-HEM800	Beam	0.466	PMM	slu 13	0
_ tr_140	trasversi correnti-HEM800	Beam	0.501	PMM	slu 1	0.42651
tr_141	trasversi correnti-HEM800	Beam	0.461	PMM	slu 13	0.42079
tr_143	trasversi correnti-HEM800	Beam	0.502	PMM	slu 1	0.44693
tr_144	trasversi correnti-HEM800	Beam	0.532	PMM	slu 1	0.47862
tr_146	trasversi correnti-HEM800	Beam	0.513	PMM	slu 1	0.47319
tr_147	trasversi estremità-HEM1000	Beam	0.363	PMM	slu 5	0.44644
tr_149	trasversi estremità-HEM1000	Beam	0.319	PMM	slu 3	0
tr_150	trasversi correnti-HEM800	Beam	0.484	PMM	slu 13	0.90013
tr_152	trasversi correnti-HEM800	Beam	0.515	PMM	slu 3	0
tr_153	trasversi correnti-HEM800	Beam	0.492	PMM	slu 13	0.87579
tr_155	trasversi correnti-HEM800	Beam	0.532	PMM	slu 3	0
tr_156	trasversi correnti-HEM800	Beam	0.489	PMM	slu 13	0.8417
tr_158	trasversi correnti-HEM800	Beam	0.529	PMM	slu 3	0
tr_159	trasversi correnti-HEM800	Beam	0.544	PMM	slu 1	0.95742
tr_161	trasversi correnti-HEM800	Beam	0.533	PMM	slu 3	0
tr_162	trasversi estremità-HEM1000	Beam	0.387	PMM	slu 14	0.89309
tr_164	trasversi estremità-HEM1000	Beam	0.350	PMM	slu 3	0
tr_165	trasversi estremità-HEM1000	Beam	0.371	PMM	slu 5	0.81685
tr_167	trasversi estremità-HEM1000	Beam	0.345	PMM	slu 1	0
tr_283	trasversi estremità-HEM1000	Beam	0.373	PMM	slu 7	0.8168
tr_285	trasversi estremità-HEM1000	Beam	0.341	PMM	slu 3	0.4527
c-s_25	T-IPE400/.55/	Beam	0.331	PMM	slv 9	0
c-s_2	T-IPE400/.55/	Beam	0.332	PMM	slv 9	0
c-s_3	T-IPE400/.55/	Beam	0.685	PMM	slu 6	0
c-s_28	T-IPE400/.55/	Beam	0.681	PMM	slu 6	0
c-s_29	T-IPE400/.55/	Beam	0.366	PMM	slv 9	0
c-s_6	T-IPE400/.55/	Beam	0.370	PMM	slv 9	1.88667
c-s_7	T-IPE400/.55/	Beam	0.770	PMM	slu 6	0
c-s_32	T-IPE400/.55/	Beam	0.758	PMM	slu 6	0
c-s_33	T-IPE400/.55/	Beam	0.329	PMM	slv 9	1.88667
c-s_10	T-IPE400/.55/	Beam	0.334	PMM	slv 9	1.88667
c-s_11	T-IPE400/.55/	Beam	0.623	PMM	slu 6	0
c-s_36	T-IPE400/.55/	Beam	0.656	PMM	slu 2	0
c-s_37	T-IPE400/.55/	Beam	0.379	PMM	slu 2	0
c-s_14	T-IPE400/.55/	Beam	0.393	PMM	slu 12	1.88737
c-s_15	T-IPE400/.55/	Beam	0.429	PMM	slu 16	0
c-s_40	T-IPE400/.55/	Beam	0.473	PMM	slu 4	0
c-s_41	T-IPE400/.55/	Beam	0.525	PMM	slu 6	1.88667

PROGETTO DEFINITIVO

Relazione di calcolo campata 60m

 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 IA5F
 03 D09
 CL
 VI1300001
 A
 51 di 65

TABLE: Steel Design 1 - Summary Data - Eurocode 3-2005							
Frame	DesignSect	DesignType	Ratio	RatioType	Combo	Location	
Text	Text	Text	Unitless	Text	Text	m	
c-s_18	T-IPE400/.55/	Beam	0.555	PMM	slu 2	1.88667	
c-s_19	T-IPE400/.55/	Beam	0.293	PMM	slv 9	0	
c-s_44	T-IPE400/.55/	Beam	0.307	PMM	slv 13	0	
c-s_45	T-IPE400/.55/	Beam	0.557	PMM	slu 6	1.88667	
c-s_22	T-IPE400/.55/	Beam	0.549	PMM	slu 2	1.88667	
c-s_23	T-IPE400/.55/	Beam	0.304	PMM	slv 9	0	
c-s_48	T-IPE400/.55/	Beam	0.314	PMM	slv 9	0	
c-s_24	T-IPE400/.55/	Beam	0.629	PMM	slu 6	1.88667	
c-s_47	T-IPE400/.55/	Beam	0.668	PMM	slu 6	1.88667	
c-s_46	T-IPE400/.55/	Beam	0.267	PMM	slv 9	0	
c-s_21	T-IPE400/.55/	Beam	0.272	PMM	slv 9	0	
c-s_20	T-IPE400/.55/	Beam	0.600	PMM	slu 6	1.88667	
c-s_43	T-IPE400/.55/	Beam	0.585	PMM	slu 6	1.88667	
c-s_42	T-IPE400/.55/	Beam	0.304	PMM	slu 12	0	
c-s_17	T-IPE400/.55/	Beam	0.281	PMM	slu 12	0	
c-s_16	T-IPE400/.55/	Beam	0.473	PMM	slu 2	0	
c-s_39	T-IPE400/.55/	Beam	0.434	PMM	slu 6	3.77335	
c-s_38	T-IPE400/.55/	Beam	0.495	PMM	slu 2	0	
c-s_13	T-IPE400/.55/	Beam	0.460	PMM	slu 8	0	
c-s_12	T-IPE400/.55/	Beam	0.297	PMM	slu 12	0	
c-s_35	T-IPE400/.55/	Beam	0.290	PMM	slu 12	0	
c-s_34	T-IPE400/.55/	Beam	0.716	PMM	slu 6	0	
c-s_9	T-IPE400/.55/	Beam	0.722	PMM	slu 6	0	
c-s_8	T-IPE400/.55/	Beam	0.338	PMM	slv 9	1.88667	
c-s_31	T-IPE400/.55/	Beam	0.334	PMM	slv 9	1.88667	
c-s_30	T-IPE400/.55/	Beam	0.811	PMM	slu 6	0	
c-s_5	T-IPE400/.55/	Beam	0.802	PMM	slu 6	0	
c-s_4	T-IPE400/.55/	Beam	0.301	PMM	slv 9	0	
c-s_27	T-IPE400/.55/	Beam	0.300	PMM	slv 9	0	
c-s_26	T-IPE400/.55/	Beam	0.730	PMM	slu 6	0	
c-s_1	T-IPE400/.55/	Beam	0.781	PMM	slu 6	0	
1	trasversi correnti-HEM800	Beam	0.475	PMM	slu 9	0	
2	trasversi correnti-HEM800	Beam	0.454	PMM	slu 15	0	
3	trasversi correnti-HEM800	Beam	0.465	PMM	slu 1	0	
4	trasversi correnti-HEM800	Beam	0.444	PMM	slu 13	0	
5	trasversi correnti-HEM800	Beam	0.485	PMM	slu 11	0	
6	trasversi correnti-HEM800	Beam	0.466	PMM	slu 13	0	
7	trasversi correnti-HEM800	Beam	0.479	PMM	slu 1	0	
8	trasversi correnti-HEM800	Beam	0.435	PMM	slu 13	0	
9	trasversi correnti-HEM800	Beam	0.496	PMM	slu 1	0	

PROGETTO DEFINITIVO

Relazione di calcolo campata 60m

 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 IA5F
 03 D09
 CL
 VI1300001
 A
 52 di 65

TABLE: St	teel Design 1 - Summary Data - Euro	code 3-2005				
Frame	DesignSect	DesignType	Ratio	RatioType	Combo	Location
Text	Text	Text	Unitless	Text	Text	m
10	trasversi correnti-HEM800	Beam	0.441	PMM	slu 15	0
11	trasversi correnti-HEM800	Beam	0.491	PMM	slu 1	0
12	trasversi correnti-HEM800	Beam	0.443	PMM	slu 15	0
13	trasversi correnti-HEM800	Beam	0.489	PMM	slu 1	0
14	trasversi correnti-HEM800	Beam	0.451	PMM	slu 7	0
15	trasversi estremità-HEM1000	Beam	0.298	PMM	slu 1	0
16	trasversi estremità-HEM1000	Beam	0.294	PMM	slu 7	0
17	trasversi correnti-HEM800	Beam	0.497	PMM	slu 9	0
18	trasversi correnti-HEM800	Beam	0.476	PMM	slu 13	0
19	trasversi correnti-HEM800	Beam	0.508	PMM	slu 9	0
20	trasversi correnti-HEM800	Beam	0.487	PMM	slu 13	0
21	trasversi correnti-HEM800	Beam	0.508	PMM	slu 1	0
22	trasversi correnti-HEM800	Beam	0.491	PMM	slu 13	0
23	trasversi correnti-HEM800	Beam	0.503	PMM	slu 1	0
24	trasversi correnti-HEM800	Beam	0.490	PMM	slu 13	0
25	trasversi estremità-HEM1000	Beam	0.320	PMM	slu 9	0
26	trasversi estremità-HEM1000	Beam	0.313	PMM	slu 15	0
27	trasversi estremità-HEM1000	Beam	0.345	PMM	slu 5	0
28	trasversi estremità-HEM1000	Beam	0.361	PMM	slu 13	0
29	trasversi estremità-HEM1000	Beam	0.329	PMM	slu 7	0.38045
30	trasversi estremità-HEM1000	Beam	0.357	PMM	slu 7	0
c_i_3	T-IPE500/.55/	Beam	0.947	PMM	slu 6	1.88667
c_i_32	T-IPE500/.55/	Beam	0.905	PMM	slu 6	0
c_i_33	T-IPE500/.55/	Beam	0.346	PMM	slu 2	0
c_i_6	T-IPE500/.55/	Beam	0.338	PMM	slu 6	0
c_i_7	T-IPE500/.55/	Beam	0.542	PMM	slu 6	0
c_i_36	T-IPE500/.55/	Beam	0.601	PMM	slu 2	1.88667
c_i_37	T-IPE500/.55/	Beam	0.350	PMM	slu 2	0
c_i_10	T-IPE500/.55/	Beam	0.309	PMM	slu 2	0
c_i_11	T-IPE500/.55/	Beam	0.318	PMM	slu 2	0
c_i_40	T-IPE500/.55/	Beam	0.405	PMM	slu 2	0
c_i_41	T-IPE500/.55/	Beam	0.328	PMM	slu 2	0
c_i_14	T-IPE500/.55/	Beam	0.356	PMM	slu 2	0
c_i_15	T-IPE500/.55/	Beam	0.170	PMM	slu 2	0
c_i_44	T-IPE500/.55/	Beam	0.288	PMM	slu 2	1.88737
c_i_45	T-IPE500/.55/	Beam	0.266	PMM	slu 4	0
c_i_18	T-IPE500/.55/	Beam	0.246	PMM	slu 2	1.88667
c_i_19	T-IPE500/.55/	Beam	0.199	PMM	slu 2	0
c_i_48	T-IPE500/.55/	Beam	0.311	PMM	slu 2	1.88667
c_i_49	T-IPE500/.55/	Beam	0.264	PMM	slu 2	0

PROGETTO DEFINITIVO

Relazione di calcolo campata 60m

 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 IA5F
 03 D09
 CL
 VI1300001
 A
 53 di 65

TABLE: St	teel Design 1 - Summary Data - Euro	code 3-2005				
Frame	DesignSect	DesignType	Ratio	RatioType	Combo	Location
Text	Text	Text	Unitless	Text	Text	m
c_i_22	T-IPE500/.55/	Beam	0.196	PMM	slu 2	1.88667
c_i_23	T-IPE500/.55/	Beam	0.196	PMM	slu 22	0
c_i_52	T-IPE500/.55/	Beam	0.279	PMM	slu 2	0
c_i_53	T-IPE500/.55/	Beam	0.442	PMM	slu 6	1.88667
c_i_26	T-IPE500/.55/	Beam	0.420	PMM	slu 6	3.77335
c_i_54	T-IPE500/.55/	Beam	0.317	PMM	slv 9	0
c_i_25	T-IPE500/.55/	Beam	0.284	PMM	slv 9	0
c_i_24	T-IPE500/.55/	Beam	0.292	PMM	slu 2	0
c_i_51	T-IPE500/.55/	Beam	0.307	PMM	slu 2	0
c_i_50	T-IPE500/.55/	Beam	0.254	PMM	slu 2	1.88667
c_i_21	T-IPE500/.55/	Beam	0.166	PMM	slu 21	0
c_i_20	T-IPE500/.55/	Beam	0.191	PMM	slu 4	1.88667
c_i_47	T-IPE500/.55/	Beam	0.222	PMM	slu 4	0
c_i_46	T-IPE500/.55/	Beam	0.328	PMM	slu 2	1.88667
c_i_17	T-IPE500/.55/	Beam	0.155	PMM	slu 2	0
c_i_16	T-IPE500/.55/	Beam	0.267	PMM	slu 4	0
c_i_43	T-IPE500/.55/	Beam	0.277	PMM	slu 4	0
c_i_42	T-IPE500/.55/	Beam	0.321	PMM	slu 2	0
c_i_13	T-IPE500/.55/	Beam	0.237	PMM	slu 2	0
c_i_12	T-IPE500/.55/	Beam	0.267	PMM	slu 2	0
c_i_39	T-IPE500/.55/	Beam	0.328	PMM	slu 2	0
c_i_38	T-IPE500/.55/	Beam	0.475	PMM	slu 2	0
c_i_9	T-IPE500/.55/	Beam	0.376	PMM	slu 6	0
c_i_8	T-IPE500/.55/	Beam	0.279	PMM	slv 9	0
c_i_35	T-IPE500/.55/	Beam	0.324	PMM	slu 2	0
c_i_34	T-IPE500/.55/	Beam	0.691	PMM	slu 2	0
c_i_5	T-IPE500/.55/	Beam	0.691	PMM	slu 6	0
c_i_4	T-IPE500/.55/	Beam	0.459	PMM	slv 9	0
c_i_31	T-IPE500/.55/	Beam	0.448	PMM	slv 9	0
L_15	longherine 2	Beam	0.171	PMM	slu 2	0
L_13	longherine 2	Beam	0.176	PMM	slu 2	0.46534
L_11	longherine 2	Beam	0.173	PMM	slu 2	0
L_21	longherine 2	Beam	0.171	PMM	slu 4	0
L_19	longherine 2	Beam	0.172	PMM	slu 4	0
L_17	longherine 2	Beam	0.169	PMM	slu 2	0
L_27	longherine 2	Beam	0.176	PMM	slu 6	0
L_25	longherine 2	Beam	0.173	PMM	slu 6	0
L_23	longherine 2	Beam	0.171	PMM	slu 6	0.46681
L_33	longherine 2	Beam	0.183	PMM	slu 6	0
L_31	longherine 2	Beam	0.180	PMM	slu 6	0

PROGETTO DEFINITIVO

Relazione di calcolo campata 60m

 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 IA5F
 03 D09
 CL
 VI1300001
 A
 54 di 65

TABLE: St	teel Design 1 - Summary Data - Euro	code 3-2005				
Frame	DesignSect	DesignType	Ratio	RatioType	Combo	Location
Text	Text	Text	Unitless	Text	Text	m
L_29	longherine 2	Beam	0.178	PMM	slu 6	0
_ L_39	longherine 2	Beam	0.188	PMM	slu 6	0
_ L_37	longherine 2	Beam	0.186	PMM	slu 6	0.46503
L_35	longherine 2	Beam	0.184	PMM	slu 2	0
L_45	longherine 2	Beam	0.193	PMM	slu 2	0.465
L_43	longherine 2	Beam	0.190	PMM	slu 2	0.465
L_41	longherine 2	Beam	0.188	PMM	slu 2	0.46667
L_51	longherine 2	Beam	0.196	PMM	slu 2	0
L_49	longherine 2	Beam	0.194	PMM	slu 2	0.465
L_47	longherine 2	Beam	0.192	PMM	slu 2	0
L_57	longherine 2	Beam	0.199	PMM	slu 4	0.46669
L_55	longherine 2	Beam	0.196	PMM	slu 4	0.46503
L_53	longherine 2	Beam	0.194	PMM	slu 4	0
L_63	longherine 2	Beam	0.205	PMM	slu 12	0
L_61	longherine 2	Beam	0.201	PMM	slu 12	0
L_59	longherine 2	Beam	0.196	PMM	slu 12	0.4634
L_69	longherine 2	Beam	0.210	PMM	slu 12	0
L_67	longherine 2	Beam	0.206	PMM	slu 12	0
L_65	longherine 2	Beam	0.201	PMM	slu 12	0
L_75	longherine 2	Beam	0.213	PMM	slu 12	0
L_73	longherine 2	Beam	0.209	PMM	slu 12	0
L_71	longherine 2	Beam	0.204	PMM	slu 12	0
L_81	longherine 2	Beam	0.213	PMM	slu 12	0
L_79	longherine 2	Beam	0.208	PMM	slu 12	0
L_77	longherine 2	Beam	0.204	PMM	slu 12	0
L_14	longherine 2	Beam	0.283	PMM	slu 2	0
L_12	longherine 2	Beam	0.288	PMM	slu 2	0.46534
L_10	longherine 2	Beam	0.284	PMM	slu 2	0
L_20	longherine 2	Beam	0.283	PMM	slu 2	0
L_18	longherine 2	Beam	0.287	PMM	slu 4	0.46284
L_16	longherine 2	Beam	0.284	PMM	slu 4	0
L_26	longherine 2	Beam	0.284	PMM	slu 4	0
L_24	longherine 2	Beam	0.291	PMM	slu 2	0
L_22	longherine 2	Beam	0.281	PMM	slu 1	0
L_32	longherine 2	Beam	0.282	PMM	slu 2	0
L_30	longherine 2	Beam	0.286	PMM	slu 2	0
L_28	longherine 2	Beam	0.284	PMM	slu 2	0
L_38	longherine 2	Beam	0.281	PMM	slu 2	0
L_36	longherine 2	Beam	0.286	PMM	slu 2	0
L_34	longherine 2	Beam	0.283	PMM	slu 2	0

PROGETTO DEFINITIVO

Relazione di calcolo campata 60m

 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 IA5F
 03 D09
 CL
 VI1300001
 A
 55 di 65

TABLE: St	teel Design 1 - Summary Data - Euro	code 3-2005				
Frame	DesignSect	DesignType	Ratio	RatioType	Combo	Location
Text	Text	Text	Unitless	Text	Text	m
L_44	longherine 2	Beam	0.282	PMM	slu 2	0
L_42	longherine 2	Beam	0.286	PMM	slu 4	0
L_40	longherine 2	Beam	0.283	PMM	slu 4	0
L_50	longherine 2	Beam	0.283	PMM	slu 4	0
L_48	longherine 2	Beam	0.286	PMM	slu 4	0
L_46	longherine 2	Beam	0.282	PMM	slu 2	0
L_56	longherine 2	Beam	0.282	PMM	slu 1	0
L_54	longherine 2	Beam	0.285	PMM	slu 2	0
L_52	longherine 2	Beam	0.280	PMM	slu 1	0
L_62	longherine 2	Beam	0.282	PMM	slu 1	0
L_60	longherine 2	Beam	0.284	PMM	slu 2	0
L_58	longherine 2	Beam	0.280	PMM	slu 1	0
L_68	longherine 2	Beam	0.281	PMM	slu 1	0
L_66	longherine 2	Beam	0.284	PMM	slu 1	0
L_64	longherine 2	Beam	0.280	PMM	slu 1	0
L_74	longherine 2	Beam	0.282	PMM	slu 1	0
L_72	longherine 2	Beam	0.283	PMM	slu 1	0
L_70	longherine 2	Beam	0.279	PMM	slu 1	0
L_80	longherine 2	Beam	0.280	PMM	slu 3	0
L_78	longherine 2	Beam	0.284	PMM	slu 1	0
L_76	longherine 2	Beam	0.280	PMM	slu 1	0
L_9	longherine 1	Beam	0.132	PMM	slu 5	0
L_2	longherine 1	Beam	0.174	PMM	slu 5	0
L_90	longherine 1	Beam	0.216	PMM	slu 16	0
L_83	longherine 1	Beam	0.196	PMM	slu 12	0
L_8	longherine 1	Beam	0.157	PMM	slu 5	0
L_1	longherine 1	Beam	0.134	PMM	slu 1	0
L_89	longherine 1	Beam	0.151	PMM	slu 11	0
L_82	longherine 1	Beam	0.248	PMM	slu 14	0

PROGETTO DEFINITIVO

Relazione di calcolo campata 60m

COMMESSA LOTTO CODIFICA DOCUMENTO REV. FOGLIO 1A5F 03 D09 CL VI1300001 A 56 di 65

10.2 Valori massimi delle sollecitazioni di taglio

TABLE: Ste	eel Design 7 - Beam Shear Forces -	Eurocode 3-200	05		
Frame	DesignSect	ComboLeft	VMajorLeft	ComboRight	VMajorRight
Text	Text	Text	KN	Text	KN
br-i_14	briglia inf - tipo 1	slu 5	141	slu 11	97
br-i_13	briglia inf - tipo 1	slu 1	110	slu 16	142
br-i_12	briglia inf - tipo 2	slu 16	111	slu 1	165
br-i_11	briglia inf - tipo 2	slu 1	181	slu 16	98
br-i_10	briglia inf - tipo 2	slu 31	79	slu 1	196
br-i_9	briglia inf - tipo 2	slu 1	196	slu 31	81
br-i_8	briglia inf - tipo 3	slu 31	81	slu 1	199
br-i_7	briglia inf - tipo 3	slu 1	199	slu 31	81
br-i_6	briglia inf - tipo 2	slu 31	82	slu 1	193
br-i_5	briglia inf - tipo 2	slu 1	193	slu 31	80
br-i_4	briglia inf - tipo 2	slu 16	103	slu 1	169
br-i_3	briglia inf - tipo 2	slu 3	160	slu 14	118
br-i_2	briglia inf - tipo 1	slu 6	161	slu 11	100
br-i_1	briglia inf - tipo 1	slu 11	92	slu 6	149
br-i_28	briglia inf - tipo 1	slu 11	125	slu 5	119
br-i_27	briglia inf - tipo 1	slu 23	115	slu 10	134
br-i_26	briglia inf - tipo 2	slu 2	125	slu 15	146
br-i_25	briglia inf - tipo 2	slu 15	156	slu 2	116
br-i_24	briglia inf - tipo 2	slu 2	95	slu 15	166
br-i_23	briglia inf - tipo 2	slu 15	165	slu 2	98
br-i_22	briglia inf - tipo 3	slu 2	97	slu 15	168
br-i_21	briglia inf - tipo 3	slu 15	168	slu 2	96
br-i_20	briglia inf - tipo 2	slu 2	96	slu 15	166
br-i_19	briglia inf - tipo 2	slu 15	167	slu 2	93
br-i_18	briglia inf - tipo 2	slu 2	110	slu 15	154
br-i_17	briglia inf - tipo 2	slu 5	152	slu 12	117
br-i_16	briglia inf - tipo 1	slu 12	126	slu 5	129
br-i_15	briglia inf - tipo 1	slu 5	125	slu 11	122
m_s_7	montante controvento sup	slu 2	70	slu 2	90
m_s_6	montante controvento sup	slu 2	52	slu 2	72
m_s_8	montante controvento sup	slu 2	60	slu 2	80
m_s_5	montante controvento sup	slu 2	43	slu 2	62
m_s_4	montante controvento sup	slu 21	29	slv 13	31
m_s_3	montante controvento sup	slu 22	52	slv 9	42
m_s_2	montante controvento sup	slu 6	67	slu 6	47
m_s_1	montante controvento sup	slu 6	132	slu 6	112
m_s_9	montante controvento sup	slu 2	60	slu 2	80

PROGETTO DEFINITIVO

Relazione di calcolo campata 60m

 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 IA5F
 03 D09
 CL
 VI1300001
 A
 57 di 65

TABLE: St	teel Design 7 - Beam Shear Forces -	Eurocode 3-20	05		
Frame	DesignSect	ComboLeft	VMajorLeft	ComboRight	VMajorRight
Text	Text	Text	KN	Text	KN
m_s_10	montante controvento sup	slu 2	32	slu 2	51
m_s_11	montante controvento sup	slu 23	32	slv 5	33
m_s_12	montante controvento sup	slu 22	47	slv 9	35
m_s_13	montante controvento sup	slu 6	105	slu 6	85
br-s_12	briglia sup - tipo 1	slu 6	31	slu 6	55
br-s_11	briglia sup - tipo 1	slu 24	54	slu 24	29
br-s_10	briglia sup - tipo 2	slu 23	25	slu 23	57
br-s_9	briglia sup - tipo 2	slu 23	37	slu 2	35
br-s_8	briglia sup - tipo 2	slu 2	33	slu 23	38
br-s_7	briglia sup - tipo 3	slu 23	41	slu 2	34
br-s_6	briglia sup - tipo 3	slu 2	32	slu 23	42
br-s_5	briglia sup - tipo 2	slu 23	42	slu 2	27
br-s_4	briglia sup - tipo 2	slu 2	27	slu 23	42
br-s_3	briglia sup - tipo 2	slu 22	66	slu 22	35
br-s_2	briglia sup - tipo 1	slu 6	42	slu 6	66
br-s_1	briglia sup - tipo 1	slu 6	62	slu 6	37
br-s_24	briglia sup - tipo 1	slv 9	19	slv 9	37
br-s_23	briglia sup - tipo 1	slv 1	46	slv 1	28
br-s_22	briglia sup - tipo 2	slu 2	32	slu 2	63
br-s_21	briglia sup - tipo 2	slu 2	64	slu 2	33
br-s_20	briglia sup - tipo 2	slu 2	46	slu 2	77
br-s_19	briglia sup - tipo 3	slu 2	79	slu 2	46
br-s_18	briglia sup - tipo 3	slu 2	44	slu 2	78
br-s_17	briglia sup - tipo 2	slu 2	71	slu 2	40
br-s_16	briglia sup - tipo 2	slu 2	25	slu 2	56
br-s_15	briglia sup - tipo 2	slv 9	54	slv 9	31
br-s_14	briglia sup - tipo 1	slu 6	34	slv 9	51
br-s_13	briglia sup - tipo 1	slv 9	40	slv 9	22
tr_126	trasversi correnti-HEM800	slu 13	508	slu 13	523
tr_128	trasversi correnti-HEM800	slu 3	778	slu 3	768
tr_129	trasversi correnti-HEM800	slu 15	511	slu 15	525
tr_131	trasversi correnti-HEM800	slu 1	775	slu 1	765
tr_132	trasversi correnti-HEM800	slu 15	511	slu 15	525
tr_134	trasversi correnti-HEM800	slu 1	775	slu 1	765
tr_135	trasversi correnti-HEM800	slu 13	519	slu 13	533
tr_137	trasversi correnti-HEM800	slu 3	766	slu 3	756
tr_138	trasversi correnti-HEM800	slu 15	536	slu 15	549
tr_140	trasversi correnti-HEM800	slu 1	754	slu 1	743
tr_141	trasversi correnti-HEM800	slu 15	549	slu 15	562
tr_143	trasversi correnti-HEM800	slu 1	725	slu 1	714

PROGETTO DEFINITIVO

Relazione di calcolo campata 60m

 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 IA5F
 03 D09
 CL
 VI1300001
 A
 58 di 65

TABLE: St	eel Design 7 - Beam Shear Forces -	Eurocode 3-200	05		
Frame	DesignSect	ComboLeft	VMajorLeft	ComboRight	VMajorRight
Text	Text	Text	KN	Text	KN
tr_144	trasversi correnti-HEM800	slu 15	581	slu 15	593
tr_146	trasversi correnti-HEM800	slu 1	707	slu 1	695
tr_147	trasversi estremità-HEM1000	slu 15	488	slu 15	500
tr_149	trasversi estremità-HEM1000	slu 1	535	slu 1	521
tr_150	trasversi correnti-HEM800	slu 13	519	slu 13	533
tr_152	trasversi correnti-HEM800	slu 3	766	slu 3	756
tr_153	trasversi correnti-HEM800	slu 15	534	slu 15	547
tr_155	trasversi correnti-HEM800	slu 1	752	slu 1	741
tr_156	trasversi correnti-HEM800	slu 13	554	slu 13	567
tr_158	trasversi correnti-HEM800	slu 3	733	slu 3	722
tr_159	trasversi correnti-HEM800	slu 15	581	slu 15	593
tr_161	trasversi correnti-HEM800	slu 1	707	slu 1	695
tr_162	trasversi estremità-HEM1000	slu 15	485	slu 15	497
tr_164	trasversi estremità-HEM1000	slu 3	536	slu 3	522
tr_165	trasversi estremità-HEM1000	slu 13	356	slu 13	368
tr_167	trasversi estremità-HEM1000	slu 3	321	slu 3	305
tr_283	trasversi estremità-HEM1000	slu 13	357	slu 13	368
tr_285	trasversi estremità-HEM1000	slu 3	320	slu 3	304
c-s_25	T-IPE400/.55/	slv 9	3	slu 6	2
c-s_2	T-IPE400/.55/	slu 22	2	slv 13	0
c-s_3	T-IPE400/.55/	slu 6	3	slv 5	1
c-s_28	T-IPE400/.55/	slv 9	2	slv 9	1
c-s_29	T-IPE400/.55/	slv 9	3	slv 9	1
c-s_6	T-IPE400/.55/	slu 23	2	slv 5	1
c-s_7	T-IPE400/.55/	slu 22	2	slv 9	1
c-s_32	T-IPE400/.55/	slu 2	3	slu 2	1
c-s_33	T-IPE400/.55/	slu 2	3	slu 2	1
c-s_10	T-IPE400/.55/	slu 23	2	slu 2	1
c-s_11	T-IPE400/.55/	slu 23	2	slu 2	1
c-s_36	T-IPE400/.55/	slu 2	3	slu 2	1
c-s_37	T-IPE400/.55/	slu 2	3	slu 2	1
c-s_14	T-IPE400/.55/	slu 23	2	slu 2	1
c-s_15	T-IPE400/.55/	slu 23	2	slu 2	1
c-s_40	T-IPE400/.55/	slu 2	3	slu 2	1
c-s_41	T-IPE400/.55/	slu 2	3	slu 2	1
c-s_18	T-IPE400/.55/	slu 23	2	slv 5	1
c-s_19	T-IPE400/.55/	slu 23	2	slu 2	1
c-s_44	T-IPE400/.55/	slv 5	2	slv 5	1
c-s_45	T-IPE400/.55/	slu 2	3	slv 5	1
c-s_22	T-IPE400/.55/	slu 6	3	slv 9	1

PROGETTO DEFINITIVO

Relazione di calcolo campata 60m

 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 IA5F
 03 D09
 CL
 VI1300001
 A
 59 di 65

TABLE: St	eel Design 7 - Beam Shear Forces -	Eurocode 3-20	05		
Frame	DesignSect	ComboLeft	VMajorLeft	ComboRight	VMajorRight
Text	Text	Text	KN	Text	KN
c-s_23	T-IPE400/.55/	slu 23	2	slv 5	0
c-s_48	T-IPE400/.55/	slv 9	3	slu 6	1
c-s_24	T-IPE400/.55/	slu 6	4	slu 6	1
c-s_47	T-IPE400/.55/	slu 2	2	slv 5	0
c-s_46	T-IPE400/.55/	slv 9	2	slv 5	1
c-s_21	T-IPE400/.55/	slu 23	2	slv 5	1
c-s_20	T-IPE400/.55/	slu 24	3	slv 5	1
c-s_43	T-IPE400/.55/	slu 2	3	slu 2	1
c-s_42	T-IPE400/.55/	slu 2	2	slv 5	1
c-s_17	T-IPE400/.55/	slu 23	2	slu 2	1
c-s_16	T-IPE400/.55/	slu 23	2	slu 2	1
c-s_39	T-IPE400/.55/	slu 2	3	slu 2	1
c-s_38	T-IPE400/.55/	slu 2	3	slu 2	1
c-s_13	T-IPE400/.55/	slu 23	2	slu 2	1
c-s_12	T-IPE400/.55/	slu 23	2	slu 2	1
c-s_35	T-IPE400/.55/	slu 2	3	slu 2	1
c-s_34	T-IPE400/.55/	slu 2	3	slu 2	1
c-s_9	T-IPE400/.55/	slu 23	2	slu 2	1
c-s_8	T-IPE400/.55/	slu 23	2	slu 2	1
c-s_31	T-IPE400/.55/	slu 12	2	slv 5	1
c-s_30	T-IPE400/.55/	slu 2	2	slv 5	1
c-s_5	T-IPE400/.55/	slu 22	3	slv 5	1
c-s_4	T-IPE400/.55/	slu 22	3	slv 5	1
c-s_27	T-IPE400/.55/	slv 9	2	slv 5	1
c-s_26	T-IPE400/.55/	slu 11	2	slv 5	0
c-s_1	T-IPE400/.55/	slu 6	4	slu 6	2
1	trasversi correnti-HEM800	slu 15	250	slu 15	246
2	trasversi correnti-HEM800	slu 1	336	slu 1	340
3	trasversi correnti-HEM800	slu 13	248	slu 13	244
4	trasversi correnti-HEM800	slu 3	337	slu 3	341
5	trasversi correnti-HEM800	slu 13	248	slu 13	244
6	trasversi correnti-HEM800	slu 3	337	slu 3	341
7	trasversi correnti-HEM800	slu 15	240	slu 15	236
8	trasversi correnti-HEM800	slu 1	341	slu 1	345
9	trasversi correnti-HEM800	slu 13	228	slu 13	224
10	trasversi correnti-HEM800	slu 3	347	slu 3	351
11	trasversi correnti-HEM800	slu 13	210	slu 13	206
12	trasversi correnti-HEM800	slu 3	357	slu 3	361
13	trasversi correnti-HEM800	slu 13	187	slu 13	183
14	trasversi correnti-HEM800	slu 3	370	slu 3	374

PROGETTO DEFINITIVO

Relazione di calcolo campata 60m

 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 IA5F
 03 D09
 CL
 VI1300001
 A
 60 di 65

TABLE: Steel Design 7 - Beam Shear Forces - Eurocode 3-2005						
Frame	DesignSect	ComboLeft	VMajorLeft	ComboRight	VMajorRight	
Text	Text	Text	KN	Text	KN	
15	trasversi estremità-HEM1000	slu 13	214	slu 13	209	
16	trasversi estremità-HEM1000	slu 3	337	slu 3	342	
17	trasversi correnti-HEM800	slu 15	240	slu 15	237	
18	trasversi correnti-HEM800	slu 1	341	slu 1	345	
19	trasversi correnti-HEM800	slu 13	228	slu 13	224	
20	trasversi correnti-HEM800	slu 3	347	slu 3	351	
21	trasversi correnti-HEM800	slu 15	211	slu 15	207	
22	trasversi correnti-HEM800	slu 1	358	slu 1	362	
23	trasversi correnti-HEM800	slu 13	187	slu 13	183	
24	trasversi correnti-HEM800	slu 3	370	slu 3	374	
25	trasversi estremità-HEM1000	slu 13	208	slu 13	203	
26	trasversi estremità-HEM1000	slu 3	345	slu 3	349	
27	trasversi estremità-HEM1000	slu 5	230	slu 5	226	
28	trasversi estremità-HEM1000	slu 11	270	slu 11	275	
29	trasversi estremità-HEM1000	slu 5	235	slu 5	230	
30	trasversi estremità-HEM1000	slu 11	268	slu 11	272	
c_i_3	T-IPE500/.55/	slu 22	6	slu 22	3	
c_i_32	T-IPE500/.55/	slv 13	4	slv 13	2	
c_i_33	T-IPE500/.55/	slv 9	5	slv 9	2	
c_i_6	T-IPE500/.55/	slu 21	4	slu 4	2	
c_i_7	T-IPE500/.55/	slu 21	4	slv 13	2	
c_i_36	T-IPE500/.55/	slu 2	6	slu 2	3	
c_i_37	T-IPE500/.55/	slu 4	5	slu 4	2	
c_i_10	T-IPE500/.55/	slu 23	3	slu 2	4	
c_i_11	T-IPE500/.55/	slu 23	3	slu 2	3	
c_i_40	T-IPE500/.55/	slu 2	7	slu 2	4	
c_i_41	T-IPE500/.55/	slu 2	7	slu 2	4	
c_i_14	T-IPE500/.55/	slu 23	3	slu 2	5	
c_i_15	T-IPE500/.55/	slu 23	3	slu 2	5	
c_i_44	T-IPE500/.55/	slu 2	7	slu 2	4	
c_i_45	T-IPE500/.55/	slu 2	7	slu 2	4	
c_i_18	T-IPE500/.55/	slu 23	3	slu 2	4	
c_i_19	T-IPE500/.55/	slu 23	3	slu 2	4	
c_i_48	T-IPE500/.55/	slu 2	6	slu 2	3	
c_i_49	T-IPE500/.55/	slu 2	6	slu 2	3	
c_i_22	T-IPE500/.55/	slu 23	4	slu 2	2	
c_i_23	T-IPE500/.55/	slu 23	3	slu 2	3	
c_i_52	T-IPE500/.55/	slv 1	4	slv 1	2	
c_i_53	T-IPE500/.55/	slu 2	5	slv 5	2	
c_i_26	T-IPE500/.55/	slu 22	6	slu 22	3	

PROGETTO DEFINITIVO

Relazione di calcolo campata 60m

 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 IA5F
 03 D09
 CL
 VI1300001
 A
 61 di 65

TABLE: Steel Design 7 - Beam Shear Forces - Eurocode 3-2005						
Frame	DesignSect	ComboLeft	VMajorLeft	ComboRight	VMajorRight	
Text	Text	Text	KN	Text	KN	
c_i_54	T-IPE500/.55/	slv 9	5	slu 22	3	
c_i_25	T-IPE500/.55/	slu 23	4	slv 5	2	
c_i_24	T-IPE500/.55/	slu 23	5	slv 5	2	
c_i_51	T-IPE500/.55/	slu 2	6	slu 2	3	
c_i_50	T-IPE500/.55/	slu 2	5	slu 2	2	
c_i_21	T-IPE500/.55/	slu 23	3	slu 2	3	
c_i_20	T-IPE500/.55/	slu 23	4	slu 2	2	
c_i_47	T-IPE500/.55/	slu 2	7	slu 2	4	
c_i_46	T-IPE500/.55/	slu 2	7	slu 2	4	
c_i_17	T-IPE500/.55/	slu 23	3	slu 2	4	
c_i_16	T-IPE500/.55/	slu 23	3	slu 2	3	
c_i_43	T-IPE500/.55/	slu 2	7	slu 2	4	
c_i_42	T-IPE500/.55/	slu 2	7	slu 2	4	
c_i_13	T-IPE500/.55/	slu 23	3	slu 2	3	
c_i_12	T-IPE500/.55/	slu 23	3	slu 2	4	
c_i_39	T-IPE500/.55/	slu 2	6	slu 2	3	
c_i_38	T-IPE500/.55/	slu 2	7	slu 2	4	
c_i_9	T-IPE500/.55/	slu 21	4	slv 13	2	
c_i_8	T-IPE500/.55/	slu 23	4	slu 2	3	
c_i_35	T-IPE500/.55/	slv 13	4	slv 13	2	
c_i_34	T-IPE500/.55/	slu 4	5	slu 4	2	
c_i_5	T-IPE500/.55/	slu 22	5	slv 9	2	
c_i_4	T-IPE500/.55/	slu 21	5	slv 13	2	
c_i_31	T-IPE500/.55/	slv 9	5	slu 22	3	
L_15	longherine 2	slu 13	190	slu 13	181	
L_13	longherine 2	slu 13	81	slu 3	83	
L_11	longherine 2	slu 15	181	slu 15	190	
L_21	longherine 2	slu 13	190	slu 13	181	
L_19	longherine 2	slu 13	81	slu 3	82	
L_17	longherine 2	slu 15	180	slu 15	189	
L_27	longherine 2	slu 13	192	slu 13	184	
L_25	longherine 2	slu 13	82	slu 3	82	
L_23	longherine 2	slu 15	180	slu 15	189	
L_33	longherine 2	slu 13	190	slu 13	181	
L_31	longherine 2	slu 13	81	slu 3	82	
L_29	longherine 2	slu 15	180	slu 15	189	
L_39	longherine 2	slu 13	190	slu 13	181	
L_37	longherine 2	slu 13	81	slu 3	82	
L_35	longherine 2	slu 15	180	slu 15	189	
L_45	longherine 2	slu 13	190	slu 13	181	

PROGETTO DEFINITIVO

Relazione di calcolo campata 60m

 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 IA5F
 03 D09
 CL
 VI1300001
 A
 62 di 65

TABLE: Steel Design 7 - Beam Shear Forces - Eurocode 3-2005						
Frame	DesignSect	ComboLeft	VMajorLeft	ComboRight	VMajorRight	
Text	Text	Text	KN	Text	KN	
L_43	longherine 2	slu 13	81	slu 3	81	
_ L_41	longherine 2	slu 15	180	slu 15	189	
_ L_51	longherine 2	slu 15	189	slu 15	180	
_ L_49	longherine 2	slu 3	81	slu 13	81	
_ L_47	longherine 2	slu 13	181	slu 13	190	
_ L_57	longherine 2	slu 13	189	slu 13	180	
L_55	longherine 2	slu 1	82	slu 15	81	
L_53	longherine 2	slu 15	181	slu 15	190	
L_63	longherine 2	slu 15	189	slu 15	180	
L_61	longherine 2	slu 3	82	slu 13	81	
L_59	longherine 2	slu 13	181	slu 13	190	
L_69	longherine 2	slu 15	187	slu 15	178	
L_67	longherine 2	slu 3	82	slu 13	80	
L_65	longherine 2	slu 13	181	slu 13	190	
L_75	longherine 2	slu 15	190	slu 15	181	
L_73	longherine 2	slu 3	82	slu 13	81	
L_71	longherine 2	slu 13	181	slu 13	190	
L_81	longherine 2	slu 15	190	slu 15	181	
L_79	longherine 2	slu 3	83	slu 13	81	
L_77	longherine 2	slu 13	181	slu 13	190	
L_14	longherine 2	slu 3	338	slu 3	329	
L_12	longherine 2	slu 15	81	slu 1	82	
L_10	longherine 2	slu 1	331	slu 1	340	
L_20	longherine 2	slu 3	337	slu 3	328	
L_18	longherine 2	slu 15	80	slu 1	83	
L_16	longherine 2	slu 1	332	slu 1	341	
L_26	longherine 2	slu 3	341	slu 3	332	
L_24	longherine 2	slu 15	81	slu 1	82	
L_22	longherine 2	slu 1	332	slu 1	341	
L_32	longherine 2	slu 3	339	slu 3	330	
L_30	longherine 2	slu 15	81	slu 1	81	
L_28	longherine 2	slu 1	330	slu 1	339	
L_38	longherine 2	slu 3	340	slu 3	331	
L_36	longherine 2	slu 15	81	slu 1	81	
L_34	longherine 2	slu 1	330	slu 1	339	
L_44	longherine 2	slu 3	340	slu 3	331	
L_42	longherine 2	slu 3	81	slu 13	81	
L_40	longherine 2	slu 1	330	slu 1	339	
L_50	longherine 2	slu 1	339	slu 1	330	
L_48	longherine 2	slu 13	81	slu 3	81	

PROGETTO DEFINITIVO

Relazione di calcolo campata 60m

 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 IA5F
 03 D09
 CL
 VI1300001
 A
 63 di 65

TABLE: Steel Design 7 - Beam Shear Forces - Eurocode 3-2005						
Frame	DesignSect	ComboLeft	VMajorLeft	ComboRight	VMajorRight	
Text	Text	Text	KN	Text	KN	
L_46	longherine 2	slu 3	331	slu 3	340	
L_56	longherine 2	slu 3	339	slu 3	330	
_ L_54	longherine 2	slu 3	81	slu 13	81	
L_52	longherine 2	slu 1	331	slu 1	340	
L_62	longherine 2	slu 1	339	slu 1	330	
L_60	longherine 2	slu 1	81	slu 15	81	
L_58	longherine 2	slu 3	330	slu 3	339	
L_68	longherine 2	slu 1	338	slu 1	329	
L_66	longherine 2	slu 1	81	slu 15	81	
L_64	longherine 2	slu 3	331	slu 3	340	
L_74	longherine 2	slu 1	340	slu 1	331	
L_72	longherine 2	slu 1	82	slu 15	81	
L_70	longherine 2	slu 3	330	slu 3	339	
L_80	longherine 2	slu 1	340	slu 1	331	
L_78	longherine 2	slu 1	82	slu 15	81	
L_76	longherine 2	slu 3	329	slu 3	338	
L_9	longherine 1	slu 13	160	slu 13	151	
L_2	longherine 1	slu 5	166	slu 5	175	
L_90	longherine 1	slu 13	170	slu 13	161	
L_83	longherine 1	slu 13	141	slu 13	151	
L_8	longherine 1	slu 3	171	slu 3	162	
L_1	longherine 1	slu 3	166	slu 3	175	
L_89	longherine 1	slu 3	180	slu 3	171	
L_82	longherine 1	slu 3	171	slu 3	180	
31	HE400M	slu 11	113	slu 6	115	
32	HE400M	slu 3	123	slu 3	118	
33	HE400M	slu 5	210	slu 5	197	
34	HE400M	slu 3	138	slu 3	141	
35	HE400M	slu 7	187	slu 7	173	
36	HE400M	slu 3	138	slu 3	140	
37	HE400M	slu 11	112	slu 6	116	
38	HE400M	slu 3	125	slu 3	120	
39	HE400M	slu 5	209	slu 5	196	
40	HE400M	slu 1	104	slu 1	106	
41	HE400M	slu 9	183	slu 9	172	
42	HE400M	slu 3	108	slu 3	103	
43	HE400M	slu 11	168	slu 11	157	
44	HE400M	slu 3	105	slu 3	100	
45	HE400M	slu 5	208	slu 5	194	
46	HE400M	slu 3	98	slu 3	101	

PROGETTO DEFINITIVO

Relazione di calcolo campata 60m

 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 IA5F
 03 D09
 CL
 VI1300001
 A
 64 di 65

TABLE: Steel Design 7 - Beam Shear Forces - Eurocode 3-2005						
Frame	DesignSect	ComboLeft	VMajorLeft	ComboRight	VMajorRight	
Text	Text	Text	KN	Text	KN	
L_7	longherine 1	slu 11	155	slu 11	155	
L_4	longherine 1	slu 7	125	slu 7	117	
L_87	longherine 1	slu 5	126	slu 5	135	
L_84	longherine 1	slu 11	163	slu 11	162	
L_6	longherine 1	slu 5	269	slu 5	271	
L_5	longherine 1	slu 13	118	slu 13	114	
L_3	longherine 1	slu 5	245	slu 5	242	
L_88	longherine 1	slu 5	237	slu 5	239	
L_86	longherine 1	slu 15	105	slu 15	110	
L_85	longherine 1	slu 5	260	slu 5	258	

PROGETTO DEFINITIVO

Relazione di calcolo campata 60m

COMMESSA LOTTO CODIFICA DOCUMENTO REV. FOGLIO 1A5F 03 D09 CL VI1300001 A 65 di 65

10.3 Valori massimi delle sollecitazioni di compressione e trazione

TABLE: Steel Design 8 - Brace Max Axial Load - Eurocode 3-2005						
Frame	DesignSect	ComboComp	PMaxComp	ComboTens	PMaxTens	
Text	Text	Text	KN	Text	KN	
d_p_1	diagonale parete esterno	slu 6	-6720	slu 6	-6677	
d_p_2	diagonale parete	slu 2	5436	slu 2	5467	
d_p_3	diagonale parete esterno	slu 6	-4664	slu 6	-4621	
d_p_4	diagonale parete	slu 2	3659	slu 2	3689	
d_p_5	diagonale parete	slu 6	-2806	slu 6	-2776	
d_p_6	diagonale parete	slu 2	2140	slu 2	2171	
d_p_7	diagonale parete	slu 6	-1331	slu 6	-1301	
d_p_8	diagonale parete	slu 16	-1232	slu 16	-1202	
d_p_9	diagonale parete	slu 4	2007	slu 4	2037	
d_p_10	diagonale parete	slu 16	-2633	slu 16	-2603	
d_p_11	diagonale parete	slu 4	3495	slu 4	3525	
d_p_12	diagonale parete esterno	slu 8	-4406	slu 8	-4363	
d_p_13	diagonale parete	slu 4	5216	slu 4	5246	
d_p_14	diagonale parete esterno	slu 8	-6391	slu 8	-6348	
d_p_15	diagonale parete esterno	slu 12	-5178	slu 12	-5135	
d_p_16	diagonale parete	slu 16	4353	slu 16	4383	
d_p_17	diagonale parete esterno	slu 12	-3683	slu 12	-3640	
d_p_18	diagonale parete	slu 16	2936	slu 16	2966	
d_p_19	diagonale parete	slu 12	-2317	slu 12	-2287	
d_p_20	diagonale parete	slu 16	1655	slu 16	1685	
d_p_21	diagonale parete	slu 12	-1120	slu 12	-1090	
d_p_22	diagonale parete	slu 2	-1243	slu 2	-1213	
d_p_23	diagonale parete	slu 14	1744	slu 14	1774	
d_p_24	diagonale parete	slu 2	-2437	slu 2	-2407	
d_p_25	diagonale parete	slu 14	3048	slu 14	3079	
d_p_26	diagonale parete esterno	slu 10	-3843	slu 10	-3800	
d_p_27	diagonale parete	slu 14	4504	slu 14	4534	
d_p_28	diagonale parete esterno	slu 10	-5373	slu 10	-5330	