COMMITTENTE:

PROGETTAZIONE:

DIREZIONE TECNICA U.O. OPERE CIVILI E GESTIONE DELLE VARIANTI

PROGETTO DEFINITIVO

Nuova linea Ferrandina - Matera La Martella per il collegamento di Matera con la rete ferroviaria nazionale

MIGLIORAMENTO SISMICO E OPERE DI COMPLETAMENTO DEI VIADOTTI ESISTENTI DELLA LINEA FERRANDINA MATERA

Relazione di calcolo

SPALLA B

					_
					SCALA:
					-
COMMESSA	LOTTO FASE	ENTE TIPO DOC.	OPERA/DISCIPLINA	PROGR. RE	EV.
I A 5 F	0 1 D	0 9 C L	V I 1 3 0 4	$\begin{bmatrix} 0 & 0 & 2 \end{bmatrix}$	

Rev.	Descrizione	Redatto	Data	Verificato	Data	Approvato	Data	Autorizzato
A	Emissione Esecutiva	F.Oliveti	Lug.2019	S. DiSpigno	Lug.2010	F.Gernone	Lug.2019	lle varianti zzi Incià di Rom
					40	so tex	usie	5.p.A. Ione delle v. Iovittozzi Ra Provinciä
								ERR S
			-					ITALI Civilia t. Ing. N°
								Opere Dot degli Ir
			-					U.O. C

File: IA5F01D09CLVI1304001A_Relazione di calcolo spalla B.docx	n. Elab.:

INDICE

1		PREM	IESSA	. 4
	1.1		Descrizione dell'opera	. 4
	1.2		Scopo della relazione	. 7
2		NOR	MATIVA DI RIFERIMENTO1	11
3		MAT	ERIALI	13
	3.1		Calcestruzzo	13
	3.2		Acciaio da armatura ordinaria	13
4		DESC	CRIZIONE DEL MODELLO DI CALCOLO	14
	4.1		Modello di Calcolo	14
5		ANAI	LISI DEI CARICHI	16
	5.1		Carichi da impalcato	16
		5.1.1	Pesi strutturali impalcato (G1)	16
		5.1.2	Carichi permanenti portati impalcato (G2)	16
		5.1.3	Azioni variabili da traffico ferroviario	16
	5.2		Vento	20
	5.3		Neve	21
	5.4		Resistenze parassite appoggi impalcato	21
	5.5		Azione sismica (E)	22
	5.6		Spinte del terreno	23
		5.6.1	Fase statica2	23
		5.6.2	Fase sismica	23
		5.6.3	Carichi a tergo della spalla2	24
6		COM	BINAZIONI DI CARICO2	26
7		ANAI	LISI STRUTTURALE	31
8		Verifi	ca di Resistenza della Spalla B	39
	8.1		Premessa	39
	8.2		Verifica della Soletta direzione Trasversale	10
		8.2.1	Sezione Centrale	4 1
		8.2.2	Sezione Incastro2	19

 VI13 - Nuovo Basento
 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 Relazione di calcolo - SPALLA B
 IA5F
 01
 D09CL
 VI1304002
 A
 3 di 89

	8.3	Verifica della Soletta direzione Longitudinale	57
	8.3.1	Sezione Centrale	57
	8.3.2	Sezione di sbalzo soletta	65
	8.4	Verifica della Sezione di Base del muro laterale	72
	8.5	Verifica della Mensola del muro laterale	80
9	INCII	DENZE	89

VIII. Norma Danasta	COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO	-
VI13 – Nuovo Basento	COMMESSA	LOTTO	CODIFICA	DOCOMENTO	NEV.	FOGLIO	
Relazione di calcolo - SPALLA B	IA5F	01	D09CL	VI1304002	Α	4 di 89	

1 PREMESSA

1.1 Descrizione dell'opera

Il viadotto VII3 Nuovo Basento, ubicato alla progressiva km 1+056.07 della nuova linea Ferrandina – Matera La Matterella per il collegamento di Matera con la rete ferroviaria nazionale, si compone di 22 campate sviluppando una lunghezza complessiva di 1 km e 114 metri. Il viadotto presenta uno sviluppo planimetrico inizialmente curvilineo (R= 600m) per poi terminare in rettifilo.

Sono presenti due tipologie di impalcati: impalcati misti con travi d'acciaio e soletta di calcestruzzo di luci 31 e 38m e impalcati con struttura reticolare a via inferiore di luci 60 e 85m con attacco diretto del binario.

Le pile sono a sezione circolare piena di diametro 3.6m, con altezze, misurate dallo spiccato delle fondazioni al piano appoggi, comprese tra 7 e poco oltre i 14 metri. Le fondazioni sono di tipo profondo con pali trivellati di diametro 1.2m; si incontrano due tipologie di fondazione delle pile una a 9 pali (corrente) ed una a 12 pali, impiegata in corrispondenza delle campate di maggiore luce.

La spalla A è di tipo scatolare con altezza del muro frontale di 6.0m, questa è fondata su una platea di pali di diametro 1.2m.

La spalla B viene realizzata tramite una struttura scatolare cava, la cui carpenteria è studiata per adattarsi alla presenza della spalla del viadotto Basento esistente (VI01) che in questa area si affianca al viadotto in progetto, La struttura è caratterizzata da un ingombro planimetrico di 23x 9.7m ed è fondata su pali di diametro 1.2m.

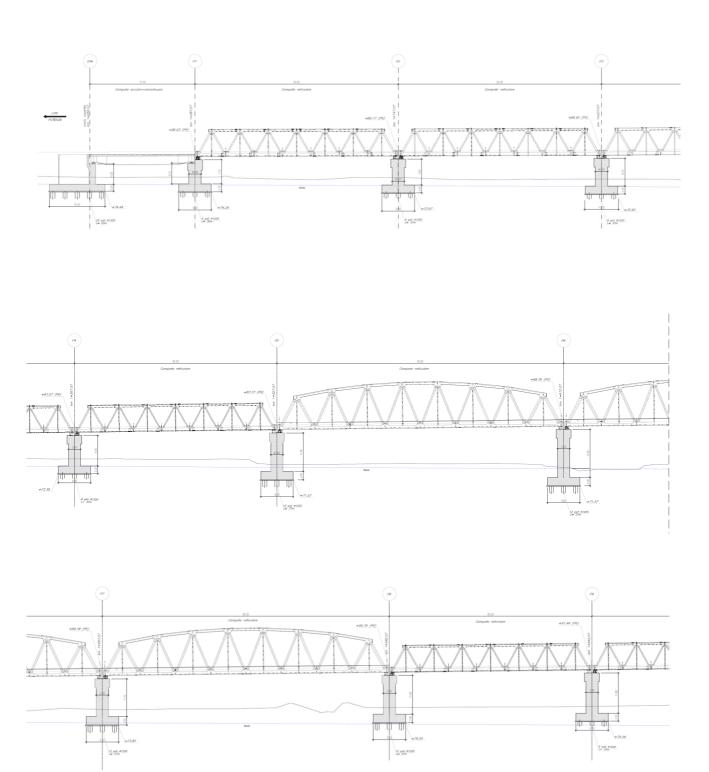


Figura 1: Sezione longitudinale viadotto VI13 Nuovo Basento

VI13 – Nuovo Basento	COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
Relazione di calcolo - SPALLA B	IA5F	01	D09CL	VI1304002	Α	6 di 89

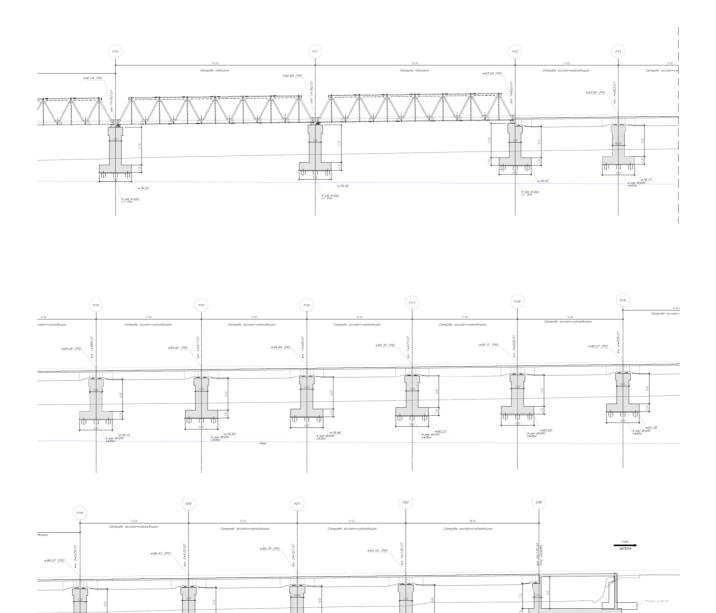


Figura 2: Sezione longitudinale viadotto VI13 Nuovo Basento

1.2 Scopo della relazione

Il presente documento riporta le analisi e verifiche strutturali condotte per il dimensionamento in nel rispetto dei requisiti di resistenza e deformabilità richiesti dalle normative vigenti della spalla B.

La spalla B del nuovo viadotto Basento VI13 sarà realizzata in prossimità della vecchia spalla del ponte esistente che in tale area risulta affiancato alla nuova opera.

Al fine di risolvere l'interferenza con la struttura pre-esitente, il muro frontale della nuova opera è stato avanzato rispetto all'esistente di una decina di metri. La nuova spalla pertanto al fine di raccordarsi con il rilevato E l'opera esistente è costituita da una struttura scatolare cava di lunghezza massima 26.5m. Essa, a meno del muro frontale di spessore 2,5m, è costituita da pareti di spessore 0,8m e da un solettone di copertura avente lo stesso spessore dei muri laterali.

Il plinto di fondazione ha uno spessore di 2.3m e raccorda 18 pali trivellati di diametro 1200mm e lunghezza 30m.

Per la realizzazione degli scavi delle fondazioni dell'opera è prevista la realizzazione di una paratia di micropali a protezione dell'opera esistente in affiancamento.

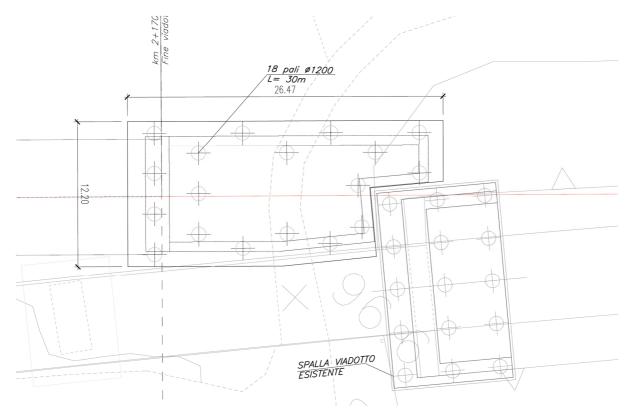


Figura 3: Stralcio planimetria spalla B

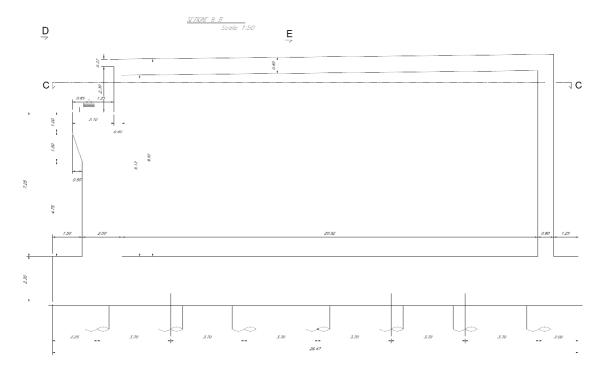


Figura 4: Sezione longitudinale Spalla B (asse tracciato)

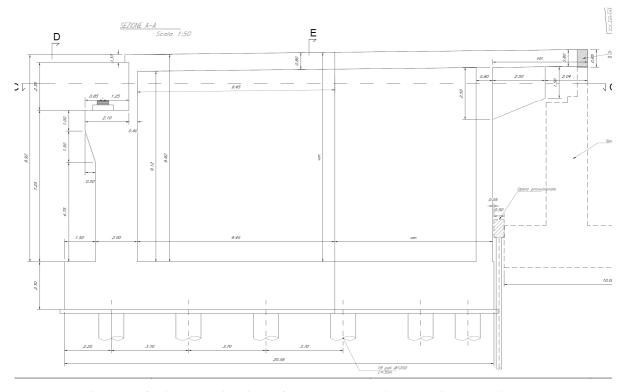


Figura 5: Sezione longitudinale Spalla B (lato adiacente viadotto esistente)

VI13 – Nuovo BasentoCOMMESSALOTTOCODIFICADOCUMENTOREV.FOGLIORelazione di calcolo - SPALLA BIA5F01D09CLVI1304002A9 di 89

VI13 – Nuovo BasentoCOMMESSALOTTOCODIFICADOCUMENTOREV.FOGLIORelazione di calcolo - SPALLA BIA5F01D09CLVI1304002A10 di 89

VI13 – Nuovo Basento	COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
Relazione di calcolo - SPALLA B	IA5F	01	D09CL	VI1304002	Α	11 di 89

2 NORMATIVA DI RIFERIMENTO

- Legge 5 novembre 1971 n. 1086: Norme per la disciplina delle opere di conglomerato cementizio armato normale e precompresso ed a struttura metallica.
- D.P.R. n. 380/2001 Testo unico delle disposizioni legislative e regolamentari in materia edilizia;
- Decreto Ministeriale del 17 gennaio 2018: "Aggiornamento delle «Norme tecniche per le costruzioni»", G.U. n.8 del 20 febbraio 2018.
- Circolare 21 gennaio 2019, n. 7 Istruzioni per l'applicazione dell' «Aggiornamento delle "Norme tecniche per le costruzioni" di cui al D.M. 17 gennaio 2018.
- RFI DTC SI PS MA IFS 001 A: "Manuale di progettazione delle opere civili Parte II sez.2 : Ponti e strutture " del 30/12/2016.
- RFI DTC SI CS MA IFS 001 A: Manuale di progettazione delle opere civili Parte II sez.3. : Corpo stradale" del 30/12/2016.
- Regolamento (UE) N.1299/2014 della Commissione del 18 novembre 2014 relativo alle specifiche tecniche di interoperabilità per il sottosistema "infrastruttura" del sistema ferroviario dell'Unione Europea.
- EN 1991-2 "Eurocodice 1 Azioni sulle strutture Parte 2 : carichi da traffico sui ponti"
- EN 1992-1 "Eurocodice 2 Progettazione delle strutture in calcestruzzo Parte 1-1 : Regole generali e regole per edifici"
- EN 1992-1 "Eurocodice 2 Progettazione delle strutture in calcestruzzo Parte 2: ponti di calcestruzzo Progettazione e dettagli costruttivi."
- EN 1993-1 "Eurocodice 3 Progettazione delle strutture di acciaio Parte 1-1 : Regole generali e regole per edifici"
- EN 1993-1-8 "Eurocodice 3 Progettazione delle strutture di acciaio Parte 1-8: Progettazione dei collegamenti"
- EN 1993-1-9 "Eurocodice 3 Progettazione delle strutture di acciaio Parte 1-8: Fatica"
- EN 1993-2 "Eurocodice 3 Progettazione delle strutture di acciaio Parte 2 : Ponti di acciaio"
- EN 1994-2 "Eurocodice 4 Progettazione delle strutture composte acciaio- calcestruzzo Parte 2 : Ponti"
- EN 1997-1 "Eurocodice 7 Progettazione geotecnica- Parte 1 : Regole generali."

• UNI EN 1337 – Appoggi strutturali.

VI13 – Nuovo Basento	COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
Relazione di calcolo - SPALLA B	IA5F	01	D09CL	VI1304002	Α	13 di 89

3 MATERIALI

3.1 Calcestruzzo

• Getti in elevazione di pile e spalle (compresi baggioli e ritegni)

Classe C32/40

Resistenza a compressione di progetto $f_{cd} = 0.85 \ f_{ck} \ / \ 1.5 = 18.1 \ Mpa$

Modulo elastico Ecm = 22000 $(f_{cm}/10)^{0.3}$ = 33 Gpa

Classe di esposizione = XC4

Classe di consistenza min = S3

Rapporto $a/c_{max} = 0.50$

Copriferro minimo armatura ordinaria = 40 mm

• Getti di fondazione

Classe C25/30

Resistenza a compressione di progetto $f_{cd} = 0.85 f_{ck} / 1.5 = 14.2 \text{ Mpa}$

Modulo elastico Ecm = 22000 $(f_{cm}/10)^{0.3} = 31$ Gpa

Classe di esposizione = XC2

Classe di consistenza min = S3

Rapporto $a/c_{max} = 0.60$

Copriferro minimo armatura ordinaria = 40 mm

• Magrone

Classe C12/15

Classe di esposizione = X0

3.2 Acciaio da armatura ordinaria

Acciaio tipo B450 C ($f_{yk} = 450 \text{ MPa}$)

Tensione di snervamento di calcolo $f_{yd} = f_{yk}/1.15 = 391 \text{ Mpa}$

VI13 – Nuovo Basento	COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
Relazione di calcolo - SPALLA B	IA5F	01	D09CL	VI1304002	Α	14 di 89

4 DESCRIZIONE DEL MODELLO DI CALCOLO

Le analisi sono state condotte mediante l'ausilio del software SAP 2000, capace di gestire analisi lineari e non lineari. Il software è stato impiegato per la modellazione dell'intera opera, finalizzata all'analisi strutturale. Il modello richiama le caratteristiche geometriche della spalla B.

Dal modello sono state dedotte le sollecitazioni elementari agenti nei diversi elementi strutturali dell'opera le quali, combinate in seguito, hanno fornito i valori delle sollecitazioni con cui sono state effettuate le verifiche di sicurezza previste dalle Normative di riferimento. Dallo stesso modello sono state poi ricavate le sollecitazioni trasmesse alle sottostrutture necessarie ai fini delle verifiche geotecniche e strutturali del sistema terreno-fondazione; entrambe riportate nella specifica relazione di calcolo e pertanto non contenute nel presente documento.

4.1 Modello di Calcolo

Il modello agli elementi finiti è stato realizzato in modo da rappresentare accuratamente le caratteristiche geometriche e inerziali della spalla a partire dall'estradosso delle fondazioni.

La struttura è stata modellata mediante elementi finiti di tipo piastra (*shell*), attraverso i quali è stata rappresentata fedelmente l'effettiva geometria dell'opera. I vari elementi shell impiegati si differenziano a seconda degli effettivi spessori relativi agli elementi che schematizzano.

A favore di sicurezza, la fondazione è stata schematizzata attraverso un incastro perfetto alla base dello spiccato della fondazione stessa.

Sono stati realizzati due modelli geometricamente identici che si differenziano unicamente per l'assunzione del valore del modulo elastico del calcestruzzo.

Il modello con modulo non-fessurato è stato impiegato per tutte le analisi che coinvolgono i carichi variabili, quelli da traffico, i carichi permanenti ed i pesi propri. Lo stesso modello è stato anche usato per valutare le azioni indotte da deformazioni impresse, quali azioni termiche e ritiro, in seguito opportunamente scalate in funzione della natura del fenomeno e in base a quanto indicato dalla NTC18 al cap. 4.1.1.1, in quanto il modello impiegato è perfettamente lineare.

Mentre il modello con modulo elastico ridotto è stato impiegato nelle analisi sismiche.

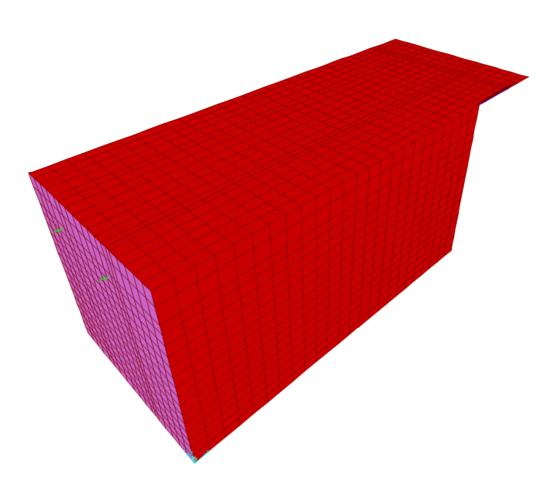


Figura 6: Vista anteriore modello EF Spalla B

VI13 – Nuovo Basento	COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
Relazione di calcolo - SPALLA B	IA5F	01	D09CL	VI1304002	Α	16 di 89

5 ANALISI DEI CARICHI

Si riportano di seguito i carichi utilizzati per il calcolo delle sollecitazioni e le corrispondenti verifiche degli elementi strutturali dell'opera.

5.1 Carichi da impalcato

5.1.1 Pesi strutturali impalcato (G1)

Rimandando alla relazione di calcolo dell'impalcato in sezione mista da 38m (IA5F01D09CLVII300004A) per ulteriori dettagli relativamente all'analisi dei carichi, di seguito si riporta il peso dell'impalcato supportato dalla spalla oggetto di verifica.

Impalcato sezione mista 38m G1= 113 KN/m

5.1.2 Carichi permanenti portati impalcato (G2)

Rimandando alla relazione di calcolo dell'impalcato in sezione mista da 38m (IA5F01D09CLVI1300004A),per ulteriori dettagli relativamente all'analisi dei carichi, di seguito si riporta il peso relativo all'impalcato supportato dalla spalla oggetto di verifica.

Impalcato sezione mista 38m G2= 89.2 KN/m

Pertanto il valore complessivo al metro lineare dei carichi G₂ è pari a 85 kN/m.

La stessa entità del carico è stata applicata alla soleta superiore dell'opera scatolare considerando che il modello è realizzato con elementi bidimensionali, pertanto i carichi relativi alla sovrastruttura ferroviaria sono stati applicati tenendo conto dell'effettiva ripartizione delle sollecitazioni attraverso il ballast e quindi ricoprendo una lunghezza equivalente della soletta pari a 3,5m.

5.1.3 Azioni variabili da traffico ferroviario

Di seguito sono illustrati i modelli di traffico adottati per il calcolo delle sollecitazioni.

Traffico normale: Treno LM71

Questo treno di carico schematizza gli effetti statici prodotti dal traffico ferroviario normale e risulta articolato come da figura seguente:

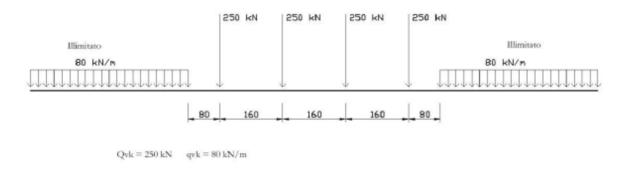


Figura 5.2.1 - Treno di carico LM71

Per questo modello è prevista un'eccentricità di applicazione del carico rispetto all'asse teorico del binario pari a s/18 (s = 1435 mm, scartamento):

 $e_{LM71} = 80 \text{ mm}$

I valori caratteristici del carco LM71 summenzionati devono essere incrementati per il coefficiente di adattamento α = 1.1

Traffico pesante: Treno SW/2

Questo treno di carico schematizza gli effetti statici prodotti dal traffico ferroviario pesante e risulta articolato come da figura seguente:

Fig. 5.2.2 Treno di carico SW

	Qwk (KN/m)	A (m)	C(m)
SW/2	150	25.00	7.00

Traffico scarico

Il "treno scarico" è rappresentato da un carico uniformemente distribuito pari a 10 KN/m.

VI13 – Nuovo Basento	COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
Relazione di calcolo - SPALLA B	IA5F	01	D09CL	VI1304002	Α	19 di 89

Frenatura/ avviamento

I valori caratteristici dell'azione sono calcolati secondo le seguenti formule:

Avviamento Q1a,k = 33 KN/m * L \leq 1000 KN (modelli LM71 SW/0 SW/2)

Frenatura $Q1b,k = 20 \text{ KN/m} * L \le 6000 \text{ KN}$ (modelli LM71 SW/0)

Frenatura Q1b,k = 35 KN/m * L (modelli SW/2)

I valori caratteristici devono essere moltiplicati per il coefficiente α .

• LM71 (α =1.1):

Avviamento Q1a,k [KN]	Frenatura Q1b,k [KN]
1100	836

• SW/2 (α =1.0):

Avviamento Q1a,k [KN]	Frenatura Q1b,k [KN]
1000	1254

Serpeggio

Si considera una forza orizzontale concentrata agente sulla sommità della rotaia più alta di intensità pari a Qsk=100KN. A tale carico si applica il coefficiente di adattamento α, menzionato in precedenza.

[KN]	LM71 (α=1.1)	SW2 (α=1.0)
Azione serpeggio	110	100

VI13 – Nuovo Basento	COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
Relazione di calcolo - SPALLA B	IA5F	01	D09CL	VI1304002	Α	20 di 89

Forza centrifuga

L'impalcato ospita un tratto in rettifilo, non è dunque presente azione centrifuga.

Ai fini della massimizzazione degli effetti dei carichi ferroviari sulle strutture oggetto di studio, sono stati presi in esame i seguenti gruppi di carico:

	Carco verticale	Frenatura/avviamento*	Forza centrifuga	Serpeggio
LM71 gr1	1	0.5	1	1
LM71 gr3	1	1	0.5	0.5
SW/2 gr1	1	0.5	1	1
SW/2 gr3	1	1	0.5	0.5

^{*} Si considera l'azione (frenatura/avviamento) con intensità più alta.

5.2 Vento

Cautelativamente, la pressione del vento sulle strutture dell'impalcato viene considerata pari a 2.5KN/m2.

La pressione del vento si applica ad una superficie convenzionale del treno caratterizzata da un'altezza di 4m a partire dal piano del ferro oltre alla superficie dell'impalcato direttamente investita.

Nel caso in esame si ha:

	L=31m; L=48m
H impalcato	3.8 m
H treno	4 m

La forza orizzontale al metro lineare applicata sugli impalcati di luce 31 e 38 metri è dunque pari a :

 $F_{vento} = 2.5 \text{ KN/m*} (4+3.8) \text{m m} = 18.45 \text{ kN/m}$ Ponte carico

 $F_{\text{vento}*} = 2.5 \text{ KN/m*} 3.8 \text{m} = 9.05 \text{ kN/m}$ Ponte scarico

Si fa notare che nel calcolo delle sollecitazioni sull'impalcato si tiene conto del fatto che è presente un'eccentricità verticale tra il centro di applicazione della forza orizzontale dovuta al vento e l'impalcato, pertanto nel modello di calcolo all'azione orizzontale viene associato un momento torcente, applicato sulle due travi in parti uguali, che deriva dalla summenzionata eccentricità, secondo lo schema riportato di seguito:

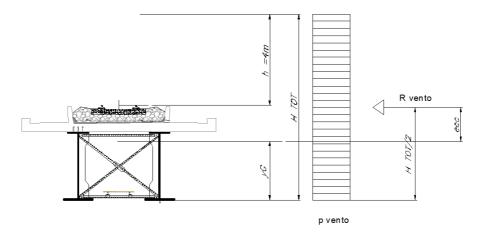


Figura 7: schema di applicazione azione del vento

5.3 Neve

L'azione della neve non viene considerata nei calcoli in quanto non dimensionante.

5.4 Resistenze parassite appoggi impalcato

L'entità di tale forza (Fa), diretta secondo l'asse del viadotto, vale per travi in semplice appoggio:

- Spalle Fa = f(Vg + Vq)
- Pile Fa = f(0.2*Vg + Vq)

con

Vg Reazione verticale massima associata ai carichi permanenti,

Vq Reazione verticale massima associata ai carichi mobili dinamicizzati.

VI13 – Nuovo Basento	COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
Relazione di calcolo - SPALLA B	IA5F	01	D09CL	VI1304002	Α	22 di 89

5.5 Azione sismica (E)

Per il viadotto in esame si assumono le seguenti caratteristiche dell'opera:

- Vita utile Vu = 75 anni
- Classe d'uso II (Cu =1.0)

Pertanto l'azione sismica allo stato limite ultimo (salvaguardia della vita SLV) è caratterizzata da un tempo di ritorno di Tr = 712 anni.

SLV	Tr = 712 anni
ag [g]	0.183
Fo	2.488
T*c [s]	0.332

Considerate le caratteristiche dei terreni di fondazione (vedasi relazione geotecnica) e quelle topografiche si assume una categoria di sottosuolo "C" ($S_S = 1.426$) ed un coefficiente topografico T1 ($S_T = 1.0$).

In definitiva dunque le due componenti degli spettri sismici per lo SLV sono i seguenti:

SLV	componente Orizz.	Componente Vert.
ag [g]	0.183	0.106
Fo,v	2.488	0.943
Tb [s]	0.167	0.05
Tc [s]	0.502	0.15
T _D [s]	2.334	1.00
η	1	1

VI13 – Nuovo Basento	COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
Relazione di calcolo - SPALLA B	IA5F	01	D09CL	VI1304002	Α	23 di 89

5.6 Spinte del terreno

5.6.1 Fase statica

La spalla in favore di sicurezza viene considerata quale rigida ai fini della valutazione della spinta orizzontale della terra. La forza statica è stata dunque valutata attraverso il coefficiente di spinta a riposo calcolata con la relazione:

$$K_0 = 1$$
-sen (ϕ ');

Nel caso in esame tale coefficiente vale: $K_0=1$ -sen $(38^\circ)=0.384$.

La pressione statica è stata applicata alle mesh della spalla seguendo un incremento lineare verso il basso.

5.6.2 Fase sismica

La sovra-spinta sismica del terreno a tergo della spalla viene calcolata secondo la teoria di Wood:

$$\Delta S = \frac{\alpha_s}{g} \cdot S_s \cdot S_T \cdot \gamma_T H^2 \; ;$$

L' incremento di pressione sismica è stato applicato alle mesh della spalla seguendo un incremento lineare verso il basso.

Il metodo prevede l'individuazione di un coefficiente sismico orizzontale k_h ed uno verticale k_v , valutati secondo le seguenti espressioni:

$$k_h = \beta_m \cdot S_T \cdot S_S \cdot a_g / g$$

$$k_v=0.5 \cdot k_h$$

VI13 – Nuovo Basento	COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
Relazione di calcolo - SPALLA B	IA5F	01	D09CL	VI1304002	Α	24 di 89

Nel caso in esame si assume $\beta m = 1$ (strutture rigide).

Sulla base delle NTC08, il valore dell'accelerazione al suolo amplificata dai terreni presenti al di sotto della fondazione risulta pari a:

$$PGA = 0.017 g$$

Risulta dunque:

$$k_h = \beta_m * PGA/g = \beta_m * S_T * PGA/g = 1 * 1.0 * 0.183 = 0.183$$

$$k_v = \pm 0.085$$

5.6.3 Carichi a tergo della spalla

I carichi a tergo della spalla sono stati riportati sulle mesh del muro posteriore considerando il coefficiente di spinta a riposo k0.

Si individuano le seguenti due categorie di carico:

• Carichi Permanenti

Considerando il peso specifico del ballast di 20 kN/m^3 è stato applicata alle mesh del muro una pressione pari a 6.15 kN/m^2 .

Carichi Accidentali

I sovraccarichi accidentali sono stati distribuiti sulla parte centrale del muro posteriore per una larghezza di 3,5 m, utilizzando il coefficiente di spianta a riposo sono stati riportati i seguenti carichi:

VI13 – Nuovo Basento	COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
Relazione di calcolo - SPALLA B	IA5F	01	D09CL	VI1304002	Α	25 di 89

- 26 kN/m² per LM71 Uniforme e Concentrato;
- $16.5 \text{ kN/m}^2 \text{ per SW/2}$

6 COMBINAZIONI DI CARICO

Le singole azioni elementari vengono combinate come previsto dalla Normativa Ferroviaria RFI DTC SI PS MA IFS 001 B – Specifica per la progettazione e l'esecuzione dei ponti ferroviari e di altre opere minori sotto binario.

Si utilizzano i coefficienti parziali di sicurezza e i coefficienti di combinazione di seguito riportati:

	-				-					
		Coefficiente	EQU ⁽¹⁾	Al STR	A2 GEO	Combinazione eccezionale	Combinazione Sismica			
Carichi permanenti	favorevoli sfavorevoli	γ _{G1}	0,90 1,10	1,00 1,35	1,00 1,00	1,00 1,00	1,00 1,00			
Carichi permanenti non strutturali ⁽²⁾	favorevoli sfavorevoli	γ_{G2}	0,00 1,50	0,00 1,50	0,00 1,30	1,00 1,00	1,00 1,00			
Ballast ⁽³⁾	favorevoli sfavorevoli	γв	0,90 1,50	1,00 1,50	1,00 1,30	1,00 1,00	1,00 1,00			
Carichi variabili da traffico ⁽⁴⁾	favorevoli sfavorevoli	γο	0,00 1,45	0,00 1,45	0,00 1,25	0,00 0,20 ⁽⁵⁾	0,00 0,20 ⁽⁵⁾			
Carichi variabili	favorevoli sfavorevoli	γ _{Qi}	0,00 1,50	0,00 1,50	0,00 1,30	0,00 1,00	0,00 0,00			
Precompressione	favorevole sfavorevole	$\gamma_{\rm P}$	0,90 1,00 ⁽⁶⁾	1,00 1,00 ⁽⁷⁾	1,00 1,00	1,00 1,00	1,00 1,00			
Officiality of the non coinvolga i parametri di deformabilità e resistenza del terreno; altrimenti si applicano i valori di GEO. Nel caso in cui i carichi permanenti non strutturali (ad es. carichi permanenti portati) siano compiutamente definiti si potranno adottare gli stessi coefficienti validi per le azioni permanenti. Quando si prevedano variazioni significative del carico dovunto al ballast, se ne dovrà tener conto esplicitamente nelle verifiche. Le componenti delle azioni da traffico sono introdotte in combinazione considerando uno dei gruppi di carico gr della Tab. 5.2.IV. Aliquota di carico da traffico da considerare. 1.30 per instabilità in strutture con precompressione esterna 1.20 per effetti iconli										

Azioni		Ψο	Ψ1	Ψ2
Azioni singole	Carico sul rilevato a tergo delle spalle	0,80	0,50	0,0
da traffico	Azioni aerodinamiche generate dal transito dei convogli	0,80	0,50	0,0
	gr ₁	0,80 ⁽²⁾	0,80(1)	0,0
Gruppi di	gr ₂	0,80 ⁽²⁾	0,80(1)	-
carico	gr ₃	0,80 ⁽²⁾	0,80	0,0
	gr ₄	1,00	1,00(1)	0,0
Azioni del vento	F_{Wk}	0,60	0,50	0,0
Azioni da	in fase di esecuzione	0,80	0,0	0,0
neve	SLU e SLE	0,0	0,0	0,0
Azioni termiche	T _k	0,60	0,60	0,50

Si riportano di seguito, le combinazioni di carico sia per gli elementi di impalcato centrale che per quelli in prossimità delle spalle.

Le combinazioni di carico utilizzate per le verifiche delle sottostrutture allo stato limite SLU+SLV sono riportate nella tabella seguente.

VI13 - Nuovo BasentoCOMMESSALOTTOCODIFICADOCUMENTOREV.FOGLIORelazione di calcolo - SPALLA BIA5F01D09CLVI1304002A27 di 89

SLU+SLV SPALLE	Peso Proprio,G1	G2	Termica Uniforme	Termica Differenziale	Termica ritiro soletta	Termica ritiro setto	Vento Carico	LM71Uniforme	LM71 Centrp	LM71 IMPALCATO	Spinta terreno LM71 Sp B	SW2	SW2 IMPALCATO	SW2 muro Spalla B	Spinta terreno ballast Sp B	Spinta terreno Spalla B	Frenatura/Avviamento	Serpeggio Spalla B	SLV X	SLVY	SLV Z	Spinta sismica terreno Spalla B
SLU1	1.35	1.5	0.9	0.9	1.2	1.2	0.9	1.45	1.45	0	0	0	0	0	1.35	1.35	1.45	1.45	0	0	0	0
SLU2	1.35	1.5	0.9	0.9	1.2	1.2	0.9	1.45	0	1.45	0	0	0	0	1.35	1.35	1.45	1.45	0	0	0	0
SLU3	1.35	1.5	0.9	0.9	1.2	1.2	0.9	1.45	0	0	1.45	0	0	0	1.35	1.35	1.45	1.45	0	0	0	0
SLU4	1.35	1.5	0.9	0.9	1.2	1.2	0.9	0	0	0	0	1.45	0	0	1.35	1.35	1.45	1.45	0	0	0	0
SLU5	1.35	1.5	0.9	0.9	1.2	1.2	0.9	0	0	0	0	0	1.45	0	1.35	1.35	1.45	1.45	0	0	0	0
SLU6	1.35	1.5	0.9	0.9	1.2	1.2	0.9	0	0	0	0	0	0	1.45	1.35	1.35	1.45	1.45	0	0	0	0
SLU7	1.35	1.5	0.9	0.9	1.2	1.2	1.5	1.16	1.16	0	0	0	0	0	1.35	1.35	1.16	1	0	0	0	0
SLU8	1.35	1.5	0.9	0.9	1.2	1.2	1.5	1.16	0	1.16	0	0	0	0	1.35	1.35	1.16	1	0	0	0	0
SLU9	1.35	1.5	0.9	0.9	1.2	1.2	1.5	1.16	0	0	1.16	0	0	0	1.35	1.35	1.16	1	0	0	0	0
SLU10	1.35	1.5	0.9	0.9	1.2	1.2	1.5	0	0	0	0	1.16	0	0	1.35	1.35	1.16	1	0	0	0	0
SLU11	1.35	1.5	0.9	0.9	1.2	1.2	1.5	0	0	0	0	0	1.16	0	1.35	1.35	1.16	1	0	0	0	0
SLU12	1.35	1.5	0.9	0.9	1.2	1.2	1.5	0	0	0	0	0	0	1.16	1.35	1.35	1.16	1	0	0	0	0
SLU13	1.35	1.5	1.5	1.5	1.2	1.2	0.9	1.16	1.16	0	0	0	0	0	1.35	1.35	1.16	1	0	0	0	0
SLU14	1.35	1.5	1.5	1.5	1.2	1.2	0.9	1.16	0	1.16	0	0	0	0	1.35	1.35	1.16	1	0	0	0	0
SLU15	1.35	1.5	1.5	1.5	1.2	1.2	0.9	1.16	0	0	1.16	0	0	0	1.35	1.35	1.16	1	0	0	0	0
SLU16	1.35	1.5	1.5	1.5	1.2	1.2	0.9	0	0	0	0	1.16	0	0	1.35	1.35	1.16	1	0	0	0	0
SLU17	1.35	1.5	1.5	1.5	1.2	1.2	0.9	0	0	0	0	0	1.16	0	1.35	1.35	1.16	1	0	0	0	0

VI13 – Nuovo BasentoCOMMESSALOTTOCODIFICADOCUMENTOREV.FOGLIORelazione di calcolo - SPALLA BIA5F01D09CLVI1304002A28 di 89

SLU+SLV SPALLE	Peso Proprio,G1	62	Termica Uniforme	Termica Differenziale	Termica ritiro soletta	Termica ritiro setto	Vento Carico	LM71Uniforme	LM71 Centrp	LM71 IMPALCATO	Spinta terreno LM71 Sp B	SW2	SW2 IMPALCATO	SW2 muro Spalla B	Spinta terreno ballast Sp B	Spinta terreno Spalla B	Frenatura/Avviamento	Serpeggio Spalla B	SLVX	SLV Y	SLVZ	Spinta sismica terreno Spalla B
SLU18	1.35	1.5	1.5	1.5	1.2	1.2	0.9	0	0	0	0	0	0	1.16	1.35	1.35	1.16	1	0	0	0	0
SLV1	1	1	0.5	0.5	1.2	1.2	0	0.2	0.2	0	0	0	0	0	1	1	0.2	0.2	1	0.3	0.3	1
SLV2	1	1	0.5	0.5	1.2	1.2	0	0.2	0	0.2	0	0	0	0	1	1	0.2	0.2	1	0.3	0.3	1
SLV3	1	1	0.5	0.5	1.2	1.2	0	0.2	0	0	0.2	0	0	0	1	1	0.2	0.2	1	0.3	0.3	1
SLV4	1	1	0.5	0.5	1.2	1.2	0	0	0	0	0	0.2	0	0	1	1	0.2	0.2	1	0.3	0.3	1
SLV5	1	1	0.5	0.5	1.2	1.2	0	0	0	0	0	0	0.2	0	1	1	0.2	0.2	1	0.3	0.3	1
SLV6	1	1	0.5	0.5	1.2	1.2	0	0	0	0	0	0	0	0.2	1	1	0.2	0.2	1	0.3	0.3	1
SLV7	1	1	0.5	0.5	1.2	1.2	0	0.2	0.2	0	0	0	0	0	1	1	0.2	0.2	0.3	1	0.3	1
SLV8	1	1	0.5	0.5	1.2	1.2	0	0.2	0	0.2	0	0	0	0	1	1	0.2	0.2	0.3	1	0.3	1
SLV9	1	1	0.5	0.5	1.2	1.2	0	0.2	0	0	0.2	0	0	0	1	1	0.2	0.2	0.3	1	0.3	1
SLV10	1	1	0.5	0.5	1.2	1.2	0	0	0	0	0	0.2	0	0	1	1	0.2	0.2	0.3	1	0.3	1
SLV11	1	1	0.5	0.5	1.2	1.2	0	0	0	0	0	0	0.2	0	1	1	0.2	0.2	0.3	1	0.3	1
SLV12	1	1	0.5	0.5	1.2	1.2	0	0	0	0	0	0	0	0.2	1	1	0.2	0.2	0.3	1	0.3	1

VI13 - Nuovo BasentoCOMMESSALOTTOCODIFICADOCUMENTOREV.FOGLIORelazione di calcolo - SPALLA BIA5F01D09CLVI1304002A29 di 89

SLE - SPALLA	Peso Proprio,G1	G2	Termica Uniforme	Termica Differenziale	Termica ritiro soletta	Termica ritiro setto	Vento Carico	LM71Uniforme	LM71 Centro	LM71 IMPALCATO	Spinta terreno LM71 Sp B	SW2	SW2 IMPALCATO	SW2 muro Spalla B	Spinta terreno ballast Sp B	Spinta terreno Spalla B	Frenatura/Avviamento	Serpeggio Spalla B
SLE1	1	1	0.5	0.5	1	1	0	1	1	0	0	0	0	0	1	1	1	1
SLE2	1	1	0.5	0.5	1	1	0	1	0	1	0	0	0	0	1	1	1	1
SLE3	1	1	0.5	0.5	1	1	0	1	0	0	1	0	0	0	1	1	1	1
SLE4	1	1	0.5	0.5	1	1	0	0	0	0	0	1	0	0	1	1	1	1
SLE5	1	1	0.5	0.5	1	1	0	0	0	0	0	0	1	0	1	1	1	1
SLE6	1	1	0.5	0.5	1	1	0	0	0	0	0	0	0	1	1	1	1	1
SLE7	1	1	0.5	0.5	1	1	1	0.8	0.8	0	0	0	0	0	1	1	0.8	0.8
SLE8	1	1	0.5	0.5	1	1	1	0.8	0	0.8	0	0	0	0	1	1	0.8	0.8
SLE9	1	1	0.5	0.5	1	1	1	0.8	0	0	0.8	0	0	0	1	1	0.8	0.8
SLE1 0	1	1	0.5	0.5	1	1	1	0	0	0	0	0.8	0	0	1	1	0.8	0.8
SLE1	1	1	0.5	0.5	1	1	1	0	0	0	0	0	0.8	0	1	1	0.8	0.8
SLE1	1	1	0.5	0.5	1	1	1	0	0	0	0	0	0	0.8	1	1	0.8	0.8

VI13 - Nuovo BasentoCOMMESSALOTTOCODIFICADOCUMENTOREV.FOGLIORelazione di calcolo - SPALLA BIA5F01D09CLVI1304002A30 di 89

SLE - SPALLA	Peso Proprio,G1	62	Termica Uniforme	Termica Differenziale	Termica ritiro soletta	Termica ritiro setto	Vento Carico	LM71Uniforme	LM71 Centro	LM71 IMPALCATO	Spinta terreno LM71 Sp B	SW2	SW2 IMPALCATO	SW2 muro Spalla B	Spinta terreno ballast Sp B	Spinta terreno Spalla B	Frenatura/Avviamento	Serpeggio Spalla B
SLE1	1	1	1	1	1	1	0	0.8	0.8	0	0	0	0	0	1	1	0.8	0.8
SLE1	1	1	1	1	1	1	0	0.8	0	0.8	0	0	0	0	1	1	0.8	0.8
SLE1	1	1	1	1	1	1	0	0.8	0	0	0.8	0	0	0	1	1	0.8	0.8
SLE1	1	1	1	1	1	1	0	0	0	0	0	0.8	0	0	1	1	0.8	0.8
SLE1	1	1	1	1	1	1	0	0	0	0	0	0	0.8	0	1	1	0.8	0.8
SLE1	1	1	1	1	1	1	0	0	0	0	0	0	0	0.8	1	1	0.8	0.8

VI13 – Nuovo Basento	COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
Relazione di calcolo - SPALLA B	IA5F	01	D09CL	VI1304002	Α	31 di 89

7 ANALISI STRUTTURALE

In accordo al §4.3.2 del D. Min. 17/01/2018, sono state valutate le azioni mediante un'analisi globale elastica introducendo opportuni accorgimenti per tenere conto degli effetti non lineari come ad esempio fessurazione, ritiro.

Assi di riferimento globale

 \mathbf{x} = asse longitudinale impalcato

y = asse trasversale impalcato

z = asse verticale impalcato

Di seguito si riportano i principali risultati delle analisi in termini di sollecitazioni e deformazioni.

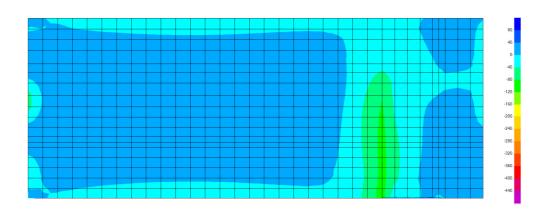


Figura 8: Soletta, M11 Peso Proprio

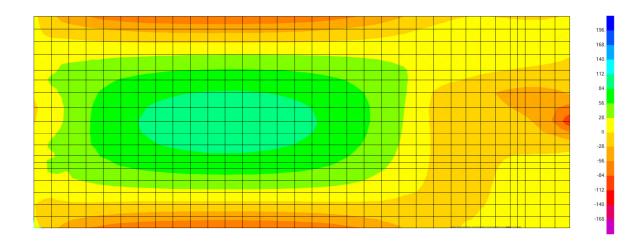


Figura 9: Soletta, M22 Peso Proprio

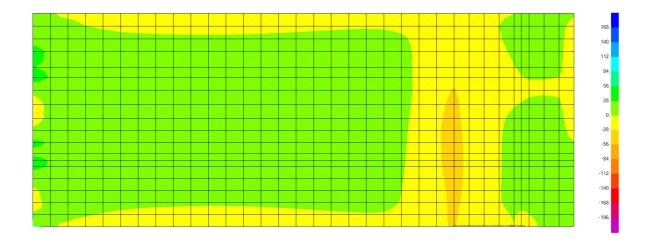


Figura 10: Soletta, M11 G2

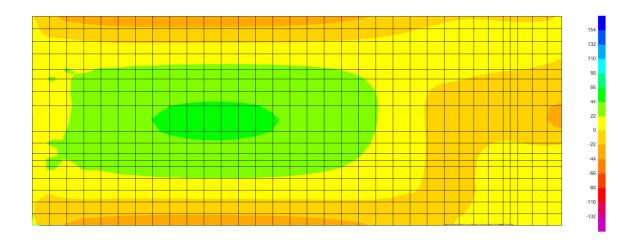


Figura 11: Soletta, M22 G2

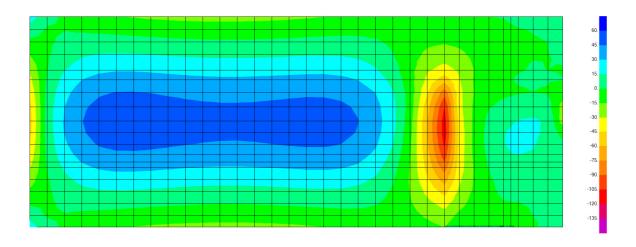


Figura 12:Soletta, M11 SW2 distribuito su spalla

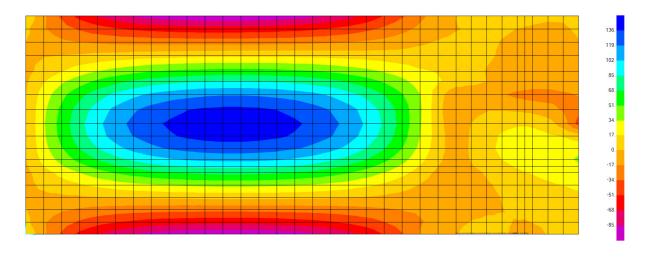


Figura 13: Soletta, M22 SW2 distribuito su Spalla

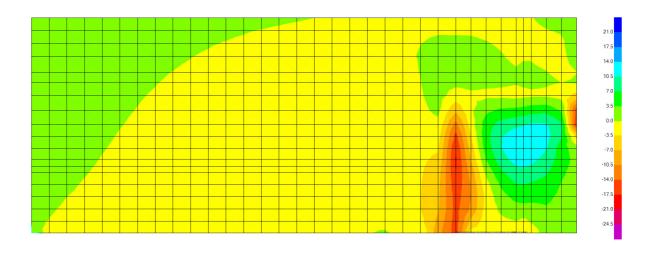


Figura 14: Soletta, M11 LM71 concentrato su sbalzo

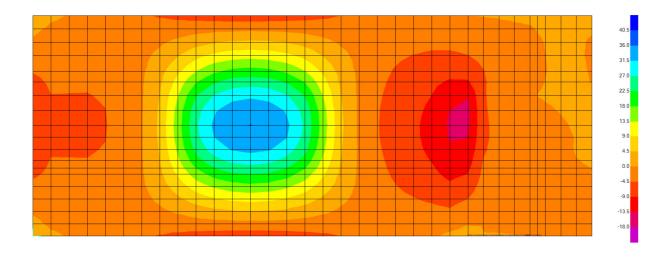


Figura 15: Soletta, M11 LM71 Concentrato al centro

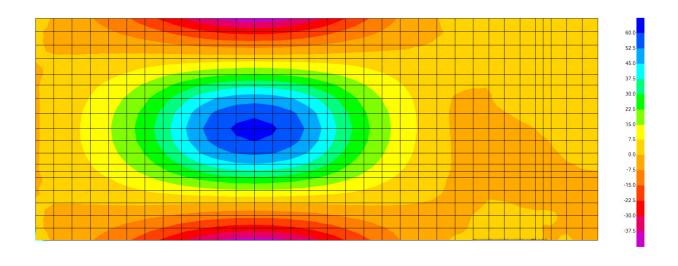


Figura 16: Soletta, M22 LM71 Concentrato al centro

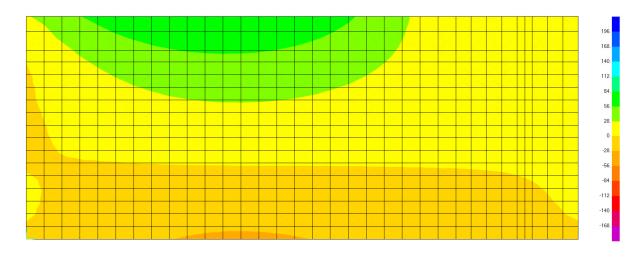


Figura 17: Muro Laterale, M22 Peso proprio

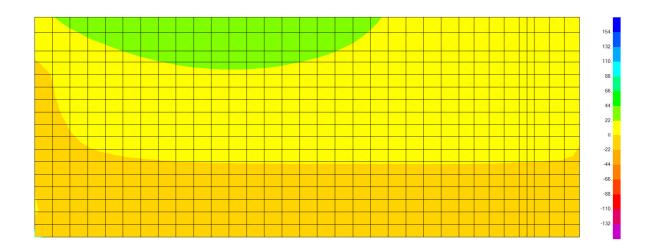


Figura 18: Muro Laterale, M22 G2

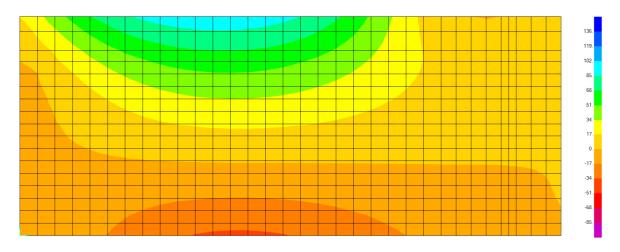


Figura 19: Muro Laterale, M22 SW2

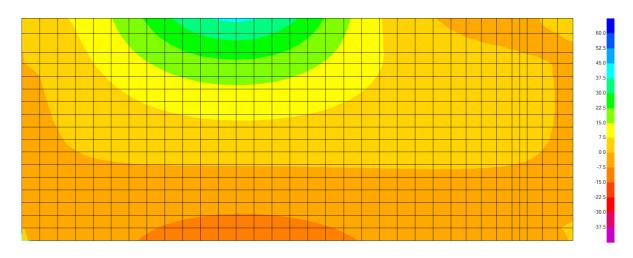


Figura 20: Muro Laterale, M22 LM71 centro

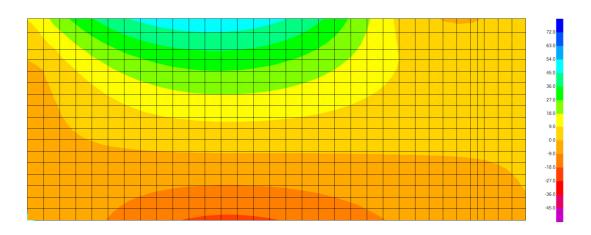


Figura 21: Muro Laterale, LM71 Uniforme

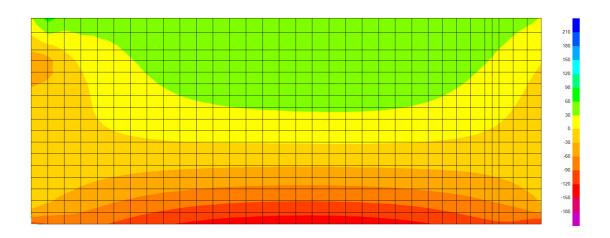


Figura 22: Muro Laterale, M22 SLVY

VI13 – Nuovo Basento	COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO	-
Relazione di calcolo - SPALLA B	IA5F	01	D09CL	VI1304002	Α	39 di 89	

8 Verifica di Resistenza della Spalla B

8.1 Premessa

Per poter dimensionare e verificare le armature della spalla sono state estrapolate le sollecitazioni agenti sulle seguenti sezioni di verifica:

- 1. Verifica della soletta di copertura in direzione trasversale dir. Y;
- 2. Verifica della soletta di copertura in direzione longitudinale dir. X;
- 3. Verifica del Muro laterale;
- 4. Verifica della Mensola di sostegno della copertura in accostamento alla spalla esistente.

8.2 Verifica della Soletta direzione Trasversale

Per il dimensionamento della soletta in questa direzione, sono stati individuati due sezioni critiche:

- Sezione centrale (massimo momento positivo);
- Sezione Incastro soletta-muro laterale (massimo momento negativo).

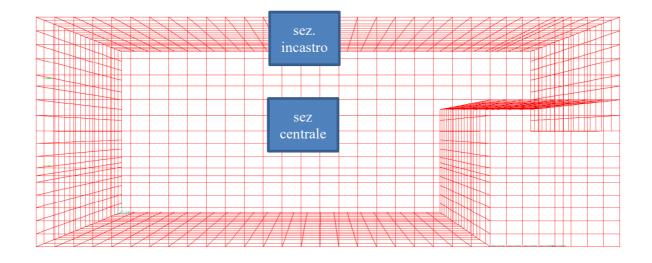


Figura 23: Sezioni di verifica soletta di copertura

VI13 – Nuovo Basento	COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
Relazione di calcolo - SPALLA B	IA5F	01	D09CL	VI1304002	Α	41 di 89

8.2.1 Sezione Centrale

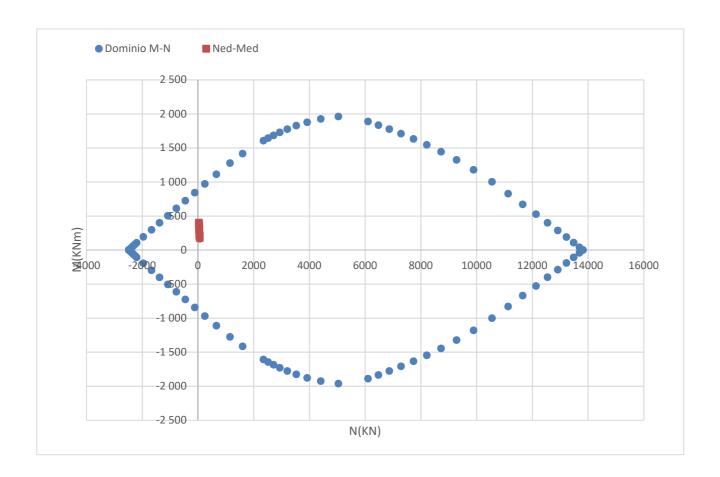
Ai fini del dimensionamento e verifica delle armature è stata considerata una sezione di larghezza un metro.

Si considera, un'armatura di progetto composta da Φ 24 passo 15 cm inferiormente e superiormente, per una percentuale d'armatura di 0.90%.

• Verifica Presso-Flessione

La tabella seguente riporta le sollecitazioni integrali estratte dal modello ed i risultati delle verifiche per pressoflessione ($\rho = M_{Ed}/M_{Rd}$).

Combinationi	N	MEd	MRd	ρ
Combinazioni	(KN/m)	(KNm/m)	(KNm/m)	(-)
SLU1	36	378	888	0.43
SLU2	45	313	888	0.35
SLU3	46	313	888	0.35
SLU4	35	402	888	0.45
SLU5	54	212	888	0.24
SLU6	55	212	888	0.24
SLU7	42	345	888	0.39
SLU8	49	293	888	0.33
SLU9	50	293	888	0.33
SLU10	41	364	888	0.41
SLU11	56	212	888	0.24
SLU12	57	212	888	0.24



VI13 – Nuovo Basento COMMESSA LOTTO CODIFICA DOCUMENTO REV. FOGLIO Relazione di calcolo - SPALLA B IA5F 01 D09CL VI1304002 A 42 di 89

	N	MEd	MRd	ρ
Combinazioni	(KN/m)	(KNm/m)	(KNm/m)	(-)
SLU13	38	360	888	0.40
SLU14	45	308	888	0.35
SLU15	46	308	888	0.35
SLU16	37	379	888	0.43
SLU17	52	227	888	0.26
SLU18	53	227	888	0.26
SLV1	66	176	888	0.20
SLV2	67	167	888	0.19
SLV3	68	167	888	0.19
SLV4	66	180	888	0.20
SLV5	69	153	888	0.17
SLV6	69	153	888	0.17
SLV7	65	178	888	0.20
SLV8	67	169	888	0.19
SLV9	67	169	888	0.19
SLV10	65	181	888	0.20
SLV11	68	155	888	0.17
SLV12	68	155	888	0.17

VI13 – Nuovo Basento	COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
Relazione di calcolo - SPALLA B	IA5F	01	D09CL	VI1304002	Α	43 di 89

Le verifiche risultano sempre soddisfatte.

• Verifica taglio

Di seguito le sollecitazioni integrali estratte dal modello ed i risultati della verifica a taglio nella direzione principale della sezione (ρ = V_{Ed}/V_{Rd}).

Combinationi	Ved	Vrd	p
Combinazioni	(KN/m)	(KN/m)	(-)
SLU1	56	400	0.14
SLU2	30	400	0.08
SLU3	30	400	0.08
SLU4	39	400	0.10
SLU5	20	400	0.05
SLU6	20	400	0.05
SLU7	50	400	0.13
SLU8	30	400	0.07
SLU9	30	400	0.07
SLU10	37	400	0.09
SLU11	21	400	0.05
SLU12	21	400	0.05
SLU13	48	400	0.12
SLU14	28	400	0.07
SLU15	28	400	0.07
SLU16	35	400	0.09
SLU17	19	400	0.05
SLU18	19	400	0.05

VI13 – Nuovo BasentoCOMMESSALOTTOCODIFICADOCUMENTOREV.FOGLIORelazione di calcolo - SPALLA BIA5F01D09CLVI1304002A45 di 89

	Ved	Vrd	p
Combinazioni	(KN/m)	(KN/m)	(-)
SLV1	20.39	400	0.05
SLV2	16.84	400	0.04
SLV3	16.82	400	0.04
SLV4	18.08	400	0.05
SLV5	15.37	400	0.04
SLV6	15.37	400	0.04
SLV7	23.26	400	0.06
SLV8	19.70	400	0.05
SLV9	19.68	400	0.05
SLV10	20.94	400	0.05
SLV11	18.23	400	0.05
SLV12	18.24	400	0.05

La sezione non necessita di armatura a taglio.

Le verifiche risultano sempre soddisfatte.

Per completezza, di seguito si riporta il calcolo della resistenza a taglio della sezione.

Resistenza a a taglio per sezioni rettangolari non armate a taglio (D.M. 14/01/2008)

classe cls	R _{ck}	40	N/mm²
resist. Caratteristica cilindrica	f_{ck}	33	N/mm ²

 VI13 - Nuovo Basento
 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 Relazione di calcolo - SPALLA B
 IA5F
 01
 D09CL
 VI1304002
 A
 46 di 89

	f_{cd}	19	
coeff. parziale	y c	1.5	
larghezza membratura resistene a V	b _w	1000	mm
altezza membratura resistene a V	Н	800	mm
altezza utille	d	720	mm
area della sezione	Атот	720000	mm²
diametro ferro longitudinale	øl	24	mm
area armatura	Asl	452.4	mm²
	strato	2	
	passo	150	mm
	n _f /strato	7	
area armatura totale	A _{f tot}	6032	mm²
percentuale di armatura	ρΙ	0.0084	
sforzo assiale dovuto ai carichi o precompressione	N	0	N
ok	Оср	0.00	N/mm²
	k	1.53	
	Vmin	0.38	
taglio resistente	V_{Rd1}	400	kN
	V_{Rd2}	274	kN
]
	V_{Rd}	400	kN

VI13 – Nuovo Basento	COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
Relazione di calcolo - SPALLA B	IA5F	01	D09CL	VI1304002	Α	47 di 89

• Verifica Fessurazione

Si riporta la tabella delle sollecitazioni di flessione allo stato limite di esercizio:

Combinazioni	N (KN/m)	My (KNm/m)
SLE1	126	122
SLE2	131	102
SLE3	121	102
SLE4	126	125
SLE5	141	76
SLE6	135	76
SLE7	131	113
SLE8	135	97
SLE9	127	97
SLE10	130	115
SLE11	142	76
SLE12	138	76
SLE13	62	131
SLE14	66	115
SLE15	58	115
SLE16	61	134
SLE17	73	94
SLE18	69	94

Nella combinazione SLE più sfavorevole, la sezione presenta le seguenti tensioni (II stadio):

VI13 – Nuovo Basento	COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FUGLIU
Relazione di calcolo - SPALLA B	IA5F	01	D09CL	VI1304002	Α	48 di 89

 $\sigma_s = 141 \text{ MPa}$

Si procede pertanto alla verifica dell'ampiezza delle fessure nelle due direzioni di orditura delle armature:

note	1	NPUT	
altezza sezione	h sez	800	mm
base sezione	В	1000	mm
copriferro	copriferro	50	mm
diametro medio barre	Ф (barre)	24	mm
numero barre al m	n.barre	7	-
classe cls	cls C	32	MPa
posizione asse neutro (Da programma VCA SLU)	x AN	204	mm
tensione max barre (Da programma VCA SLU)	σs	147	MPa
(0.6 carichi brevi; 0.4 lunga durata)	kt	0.6	-
(0.8 barre ad. migliorata; 1.6 liscie)	k1	0.8	-
(0.5 per flessione; 1 trazione)	k2	0.5	-
	k3	3.4	-
	k4	0.425	-

OUTPUT				
diff. def. armature-cls				
ε sm -ε cm	4.28E-04 -			
distanza max fessure				
s r, max	385.29 mm			
ampiezza fessure:				
wk	0.16 mm			
LIMITE	0.20 mm			
Sez. verificata				

VI13 – Nuovo Basento	COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO	_
Relazione di calcolo - SPALLA B	IA5F	01	D09CL	VI1304002	Α	49 di 89	

8.2.2 Sezione Incastro

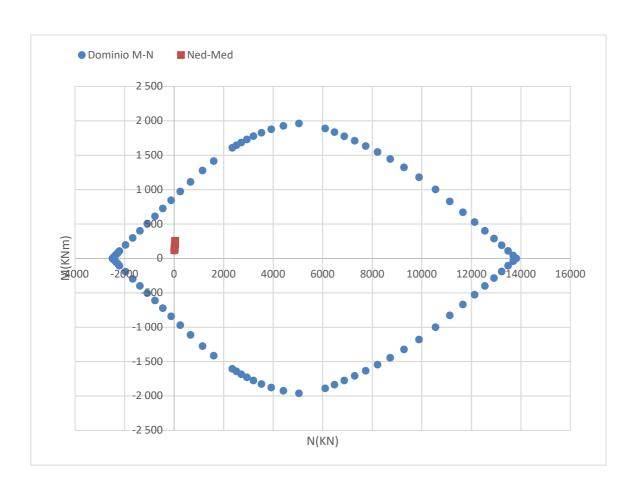
Ai fini del dimensionamento e verifica delle armature è stata considerata una sezione di larghezza un metro.

Si considera, un'armatura di progetto composta da Φ 24 passo 15 cm inferiormente e superiormente, per una percentuale d'armatura di 0.90%.

• Verifica Presso-Flessione

La tabella seguente riporta le sollecitazioni integrali estratte dal modello ed i risultati delle verifiche per pressoflessione ($\rho = M_{Ed}/M_{Rd}$).

Combinationi	N	MEd	MRd	ρ
Combinazioni	(KN/m)	(KNm/m)	(KNm/m)	(-)
SLU1	47	-249	888	0.28
SLU2	36	-201	888	0.23
SLU3	36	-201	888	0.23
SLU4	46	-255	888	0.29
SLU5	23	-140	888	0.16
SLU6	23	-140	888	0.16
SLU7	42	-227	888	0.26
SLU8	33	-188	888	0.21
SLU9	33	-189	888	0.21
SLU10	42	-231	888	0.26
SLU11	23	-139	888	0.16
SLU12	23	-140	888	0.16
SLU13	46	-239	888	0.27



VI13 – Nuovo Basento COMMESSA LOTTO CODIFICA DOCUMENTO REV. FOGLIO Relazione di calcolo - SPALLA B IA5F 01 D09CL VI1304002 A 50 di 89

Combinazioni	N	MEd	MRd	ρ
Combinazioni	(KN/m)	(KNm/m)	(KNm/m)	(-)
SLU14	37	-201	888	0.23
SLU15	37	-201	888	0.23
SLU16	45	-244	888	0.27
SLU17	27	-152	888	0.17
SLU18	27	-152	888	0.17
SLV1	13	-119	888	0.13
SLV2	11	-113	888	0.13
SLV3	11	-113	888	0.13
SLV4	13	-120	888	0.14
SLV5	9	-104	888	0.12
SLV6	9	-104	888	0.12
SLV7	7 -130		888	0.15
SLV8	5	-123	888	0.14
SLV9	5	-123	888	0.14
SLV10	7	-131	888	0.15
SLV11	4	-115	888	0.13
SLV12	4	-115	888	0.13

VI13 – Nuovo Basento	COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
Relazione di calcolo - SPALLA B	IA5F	01	D09CL	VI1304002	Α	51 di 89

Le verifiche risultano sempre soddisfatte.

• Verifica taglio

Di seguito le sollecitazioni integrali estratte dal modello ed i risultati della verifica a taglio nella direzione principale della sezione (ρ = V_{Ed}/V_{Rd}).

	VEd	Vrd	p
Combinazioni	(KN/m)	(KN/m)	(-)
SLU1	291	400	0.73
SLU2	239	400	0.60
SLU3	239	400	0.60
SLU4	292	400	0.73
SLU5	179	400	0.45
SLU6	179	400	0.45
SLU7	269	400	0.67
SLU8	228	400	0.57
SLU9	228	400	0.57
SLU10	269	400	0.67
SLU11	180	400	0.45
SLU12	180	400	0.45
SLU13	268	400	0.67
SLU14	227	400	0.57
SLU15	227	400	0.57
SLU16	269	400	0.67
SLU17	179	179 400	
SLU18	179	400	0.45

VI13 - Nuovo BasentoCOMMESSALOTTOCODIFICADOCUMENTOREV.FOGLIORelazione di calcolo - SPALLA BIA5F01D09CLVI1304002A53 di 89

Combinations	VEd	Vrd	p
Combinazioni	(KN/m)	(KN/m)	(-)
SLV1	147	400	0.37
SLV2	140	400	0.35
SLV3	140	400	0.35
SLV4	147	400	0.37
SLV5	131	400	0.33
SLV6	131	400	0.33
SLV7	149	400	0.37
SLV8	142	400	0.35
SLV9	142	400	0.35
SLV10	149	400	0.37
SLV11	134	400	0.33
SLV12	134	400	0.33

La sezione non necessita di armatura a taglio.

Le verifiche risultano sempre soddisfatte.

Per completezza, di seguito si riporta il calcolo della resistenza a taglio della sezione.

Resistenza a a taglio per sezioni rettangolari non armate a taglio (D.M. 14/01/2008)

VI13 – Nuovo Basento	COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
Relazione di calcolo - SPALLA B	IA5F	01	D09CL	VI1304002	Α	54 di 89

resist. Caratteristica cilindrica	f_{ck}	33	N/mm ²
	f_{cd}	19	
coeff. parziale	Ус	1.5	
larghezza membratura resistene a V	b _w	1000	mm
altezza membratura resistene a V	Н	800	mm
altezza utille	d	720	mm
area della sezione	A _{TOT}	720000	mm²
diametro ferro longitudinale	øl	24	mm
area armatura	Asl	452.4	mm²
	strato	2	
	passo	150	mm
	n _f /strato	7	
area armatura totale	A _{f tot}	6032	mm²
percentuale di armatura	ρΙ	0.0084	
sforzo assiale dovuto ai carichi o precompressione	N	0	N
ok	Оср	0.00	N/mm²
	k	1.53	
	Vmin	0.38	
taglio resistente	V _{Rd1}	400	kN
	V _{Rd2}	274	kN
	V _{Rd}	400	kN

• Verifica Fessurazione

Si riporta la tabella delle sollecitazioni di flessione allo stato limite di esercizio:

VI13 – Nuovo Basento Relazione di calcolo - SPALLA B
 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 IA5F
 01
 D09CL
 VI1304002
 A
 55 di 89

	N	Му
Combinazioni	(KN/m)	(KNm/m)
SLE1	-29	-177
SLE2	-21	-144
SLE3	-21	-144
SLE4	-28	-181
SLE5	-12	-102
SLE6	-12	-102
SLE7	-25	-161
SLE8	-19	-135
SLE9	-19	-135
SLE10	-25	-165
SLE11	-12	-101
SLE12	-12	-101
SLE13	-30	-177
SLE14	-24	-150
SLE15	-24	-150
SLE16	-30	-180
SLE17	-17	-117
SLE18	-17	-117

Nella combinazione SLE più sfavorevole, la sezione presenta le seguenti tensioni (I stadio):

VI13 – Nuovo Basento	COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
Relazione di calcolo - SPALLA B	IA5F	01	D09CL	VI1304002	Α	56 di 89

Non è necessario pertanto procedere alla verifica dell'ampiezza delle fessure in quanto la tensione di trazione massima del calcestruzzo è inferiore al valore limite di apertura delle fessure (fctm/1.2).

8.3 Verifica della Soletta direzione Longitudinale

Per il dimensionamento della soletta in questa direzione, sono stati individuati due punti principali:

- Sezione centrale (Armatura Inferiore dir. X);
- Inizio dello sbalzo della soletta (Armatura Superiore dir. X).

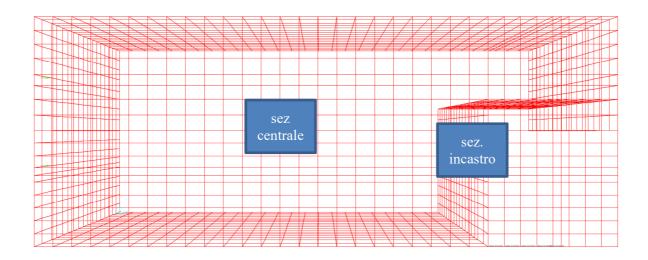


Figura 24: Sezioni di verifica soletta di copertura

8.3.1 Sezione Centrale

Ai fini del dimensionamento e verifica delle armature è stata considerata una sezione di larghezza un metro.

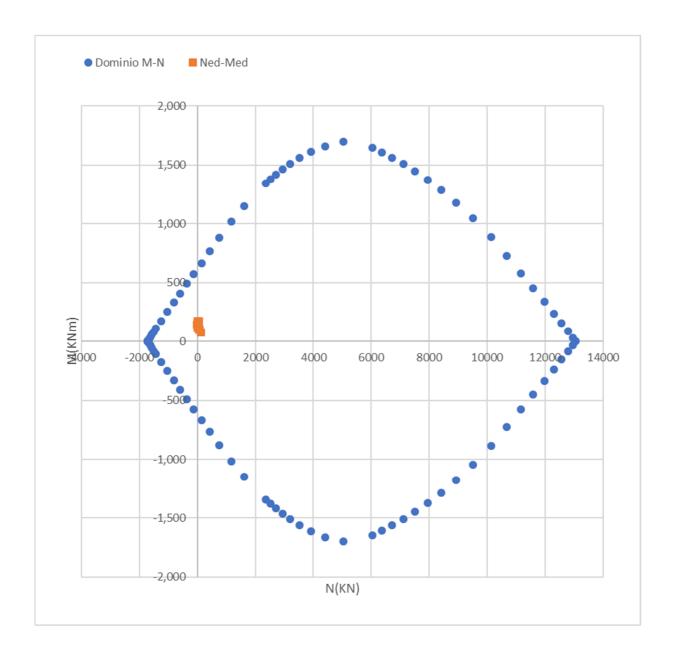
Si considera, un'armatura di progetto composta da Φ 20 passo 15 cm inferiormente e superiormente, per una percentuale d'armatura di 0.47%.

• Verifica Presso-Flessione

La tabella seguente riporta le sollecitazioni integrali estratte dal modello ed i risultati delle verifiche per pressoflessione ($\rho = M_{Ed}/M_{Rd}$).

VI13 – Nuovo Basento COMMESSA LOTTO CODIFICA DOCUMENTO REV. FOGLIO
Relazione di calcolo - SPALLA B IA5F 01 D09CL VI1304002 A 58 di 89

Combinazioni	N	MEd	MRd	ρ
Comomazioni	(KN/m)	(KNm/m)	(KNm/m)	(-)
SLU1	867	-74	1112	0.07
SLU2	847	-62	1112	0.06
SLU3	849	-62	1112	0.06
SLU4	877	-80	1112	0.07
SLU5	811	-40	1112	0.04
SLU6	813	-41	1112	0.04
SLU7	857	-67	1112	0.06
SLU8	841	-58	1112	0.05
SLU9	843	-58	1112	0.05
SLU10	866	-72	1112	0.07
SLU11	813	-41	1112	0.04
SLU12	814	-41	1112	0.04
SLU13	1031	-65	1112	0.06
SLU14	1015	-55	1112	0.05
SLU15	1017	-55	1112	0.05
SLU16	1039	-70	1112	0.06
SLU17	987	-38	1112	0.03
SLU18	988	-38	1112	0.03
SLV1	629	-58	971	0.06



VI13 – Nuovo BasentoCOMMESSALOTTOCODIFICADOCUMENTOREV.FOGLIORelazione di calcolo - SPALLA BIA5F01D09CLVI1304002A59 di 89

Combinazioni	N	MEd	MRd	ρ
Combinazioni	(KN/m)	(KNm/m)	(KNm/m)	(-)
SLV2	627	-56	971	0.06
SLV3	627	-56	971	0.06
SLV4	631	-59	971	0.06
SLV5	622	-53	971	0.05
SLV6	622	-53	971	0.05
SLV7	636	-110	971	0.11
SLV8	634	-109	971	0.11
SLV9	634	-109	971	0.11
SLV10	638	-111	971	0.11
SLV11	629	-106	971	0.11
SLV12	629	-106	971	0.11

VI13 – Nuovo Basento	COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
Relazione di calcolo - SPALLA B	IA5F	01	D09CL	VI1304002	Α	60 di 89

Le verifiche risultano sempre soddisfatte.

• Verifica taglio

Di seguito le sollecitazioni integrali estratte dal modello ed i risultati della verifica a taglio nella direzione principale della sezione (ρ = V_{Ed}/V_{Rd}).

	Ved	Vrd	p
Combinazioni	(KN)	(-)	(-)
SLU1	57	354	0.16
SLU2	31	354	0.09
SLU3	31	354	0.09
SLU4	40	354	0.11
SLU5	21	354	0.06
SLU6	21	354	0.06
SLU7	51	354	0.15
SLU8	31	354	0.09
SLU9	31	354	0.09
SLU10	38	354	0.11
SLU11	22	354	0.06
SLU12	22	354	0.06
SLU13	49	354	0.14
SLU14	29	354	0.08
SLU15	29	354	0.08
SLU16	36	354	0.10
SLU17	20	354	0.06
SLU18	20	354	0.06

VI13 – Nuovo Basento COMMESSA LOTTO CODIFICA DOCUMENTO REV. FOGLIO

Relazione di calcolo - SPALLA B IA5F 01 D09CL VI1304002 A 62 di 89

Combinazioni	Ved	Vrd	p
Combinazioni	(KN)	(-)	(-)
SLV1	21	354	0.06
SLV2	18	354	0.05
SLV3	18	354	0.05
SLV4	19	354	0.05
SLV5	16	354	0.05
SLV6	16	354	0.05
SLV7	24	354	0.07
SLV8	21	354	0.06
SLV9	21	354	0.06
SLV10	22	354	0.06
SLV11	19	354	0.05
SLV12	19	354	0.05

La sezione non necessita di armatura a taglio.

Le verifiche risultano sempre soddisfatte.

Per completezza, di seguito si riporta il calcolo ella resistenza a taglio della sezione

Resistenza a taglio per sezioni rettangolari non armate a taglio (D.M. 14/01/2008)

			-
classe	cls R _{ck}	40	N/mm²

VI13 - Nuovo Basento		COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
Relazione di calcolo - SPAI	LLA B	IA5F	01	D09CL	VI1304002	Α	63 di 89

resist. Caratteristica cilindrica	f_{ck}	33	N/mm²
	f_{cd}	19	
coeff. parziale	у с	1.5	
larghezza membratura resistene a V	b _w	1000	mm
altezza membratura resistene a V	Н	800	mm
altezza utille	d	720	mm
area della sezione	Атот	720000	mm²
diametro ferro longitudinale	øl	20	mm
area armatura	Asl	314.2	mm²
	strato	2	
	passo	150	mm
	n _f /strato	7	
area armatura totale	A _{f tot}	4189	mm²
percentuale di armatura	ρΙ	0.0058	
sforzo assiale dovuto ai carichi o precompressione	N	0	N
ok	σср	0.00	N/mm ²
	k	1.53	
	Vmin	0.38	
taglio resistente	V _{Rd1}	354	kN
	V_{Rd2}	274	kN
	V_{Rd}	354	kN

•

• Verifica Fessurazione

Si riporta la tabella delle sollecitazioni di flessione allo stato limite di esercizio:

VI13 – Nuovo Basento COMMESSA LOTTO CODIFICA DOCUMENTO REV. FOGLIO Relazione di calcolo - SPALLA B IA5F 01 D09CL VI1304002 A 64 di 89

	N	Му
Combinazioni	(KN/m)	(KNm/m)
SLE1	126	122
SLE2	131	102
SLE3	121	102
SLE4	126	125
SLE5	141	76
SLE6	135	76
SLE7	131	113
SLE8	135	97
SLE9	127	97
SLE10	130	115
SLE11	142	76
SLE12	138	76
SLE13	62	131
SLE14	66	115
SLE15	58	115
SLE16	61	134
SLE17	73	94
SLE18	69	94

Nella combinazione SLE più sfavorevole, la sezione presenta le seguenti tensioni (I stadio):

							_
VI13 – Nuovo Basento	COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO	
Relazione di calcolo - SPALLA B	IA5F	01	D09CL	VI1304002	Α	65 di 89	

Non è necessario pertanto procedere alla verifica dell'ampiezza delle fessure in quanto la tensione di trazione massima del calcestruzzo è inferiore al valore limite di apertura delle fessure (fctm/1.2).

8.3.2 Sezione di sbalzo soletta

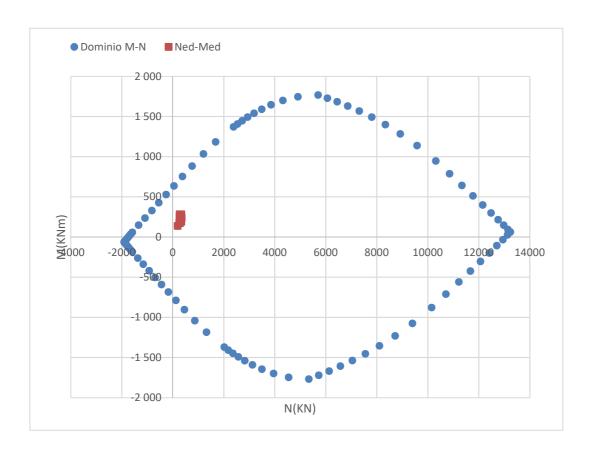
Ai fini del dimensionamento e verifica delle armature è stata considerata una sezione di larghezza un metro.

Si considera, un'armatura di progetto composta inferiormente da Φ 20 passo 15 cm e superiormente da Φ 22 passo 15 cm, per una percentuale d'armatura di 0.52%

• Verifica Presso-Flessione

La tabella seguente riporta le sollecitazioni integrali estratte dal modello ed i risultati delle verifiche per pressoflessione ($\rho = M_{Ed}/M_{Rd}$).

Combinazioni	N	Med	Mrd	ρ
Combinazioni	(KN/m)	(KNm/m)	(KNm/m)	(-)
SLU1	280	-247	-558	-0.44
SLU2	278	-247	-558	-0.44
SLU3	298	-231	-558	-0.41
SLU4	276	-284	-558	-0.51
SLU5	265	-172	-558	-0.31
SLU6	278	-172	-558	-0.31
SLU7	271	-233	-558	-0.42
SLU8	269	-234	-558	-0.42
SLU9	285	-221	-558	-0.40



VI13 – Nuovo Basento COMMESSA LOTTO CODIFICA DOCUMENTO REV. FOGLIO Relazione di calcolo - SPALLA B IA5F 01 D09CL VI1304002 A 66 di 89

Combinazioni	N (KN/m)	Med (KNm/m)	Mrd (KNm/m)	ρ (-)
SLU10	268	-263	-558	-0.47
SLU11	259	-173	-558	-0.31
SLU12	269	-173	-558	-0.31
SLU13	338	-251	-558	-0.45
SLU14	336	-251	-558	-0.45
SLU15	352	-239	-558	-0.43
SLU16	334	-281	-558	-0.50
SLU17	325	-191	-558	-0.34
SLU18	336	-191	-558	-0.34
SLV1	195	-137	-558	-0.25
SLV2	195	-137	-558	-0.25
SLV3	198	-135	-558	-0.24
SLV4	195	-143	-558	-0.26
SLV5	193	-127	-558	-0.23
SLV6	195	-127	-558	-0.23
SLV7	292	-143	-558	-0.26
SLV8	292	-143	-558	-0.26
SLV9	295	-141	-558	-0.25
SLV10	292	-148	-558	-0.27
SLV11	290	-133	-558	-0.24
SLV12	292	-133	-558	-0.24

VI13 – Nuovo Basento	COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
Relazione di calcolo - SPALLA B	IA5F	01	D09CL	VI1304002	Α	67 di 89

Le verifiche risultano sempre soddisfatte.

• Verifica taglio

Di seguito le sollecitazioni integrali estratte dal modello ed i risultati delle verifiche a taglio nella direzione principale della sezione ($\rho = V_{Ed}/V_{Rd}$).

Combinazioni	Ved	Vrd	p
	(KN/m)	(KN/m)	(-)
SLU1	229	354	0.65

FOGLIO

68 di 89

 VI13 - Nuovo Basento
 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.

 Relazione di calcolo - SPALLA B
 IA5F
 01
 D09CL
 VI1304002
 A

	Ved	Vrd	p
Combinazioni	(KN/m)	(KN/m)	(-)
SLU2	251	354	0.71
SLU3	222	354	0.63
SLU4	281	354	0.79
SLU5	153	354	0.43
SLU6	153	354	0.43
SLU7	215	354	0.61
SLU8	233	354	0.66
SLU9	209	354	0.59
SLU10	257	354	0.72
SLU11	154	354	0.43
SLU12	154	354	0.44
SLU13	224	354	0.63
SLU14	242	354	0.68
SLU15	218	354	0.62
SLU16	265	354	0.75
SLU17	163	354	0.46
SLU18	163	354	0.46
SLV1	123	354	0.35
SLV2	126	354	0.35
SLV3	121	354	0.34
SLV4	130	354	0.37
SLV5	112	354	0.32

VI13 – Nuovo Basento	COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
Relazione di calcolo - SPALLA B	IA5F	01	D09CL	VI1304002	Α	69 di 89

	Ved	Vrd	р
Combinazioni	(KN/m)	(KN/m)	(-)
SLV6	112	354	0.32
SLV7	126	354	0.36
SLV8	129	354	0.36
SLV9	125	354	0.35
SLV10	133	354	0.38
SLV11	115	354	0.33
SLV12	115	354	0.33

La sezione non necessita di armatura a taglio.

Le verifiche risultano sempre soddisfatte.

Per completezza, di seguito si riporta il calcolo della resistenza a taglio della sezione.

Resistenza a taglio per sezioni rettangolari non armate a taglio (D.M. 14/01/2008)

classe cls	Rck	40	N/mm²
resist. Caratteristica cilindrica	f _{ck}	33	N/mm ²
	f _{cd}	19	
coeff. parziale	уc	1.5	
larghezza membratura resistene a V	b _w	1000	mm
altezza membratura resistene a V	Н	800	mm
altezza utille	d	720	mm
area della sezione	Атот	720000	mm²

1			
diametro ferro longitudinale	øl	20	mm
area armatura	Asl	314.2	mm²
	strato	2	
	passo	150	mm
	n _f /strato	7	
area armatura totale	$A_{f tot}$	4189	mm²
percentuale di armatura	ρΙ	0.0058	
sforzo assiale dovuto ai carichi o precompressione	N	0	N
sforzo assiale dovuto ai carichi o precompressione ok	N σ _{cp}	0.00	N N/mm²
	$\sigma_{\sf cp}$	0.00	
	σ _{cp}	0.00 1.53	
ok	σ _{cp} k V _{min}	0.00 1.53 0.38	N/mm²

•

• Verifica Fessurazione

Si riporta la tabella delle sollecitazioni di flessione allo stato limite di esercizio:

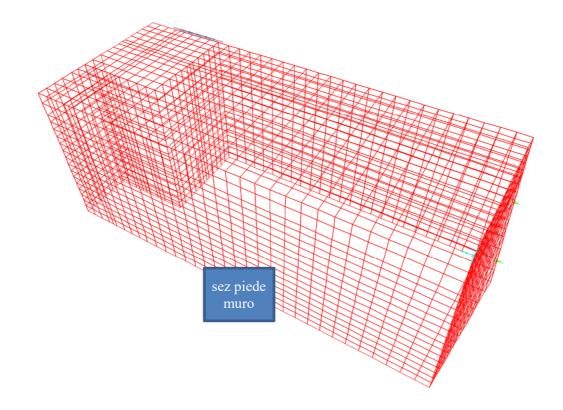
Combinazioni	N	Му
Combinazioni	(KN/m)	(KNm/m)
SLE1	126	122
SLE2	131	102
SLE3	121	102
SLE4	126	125
SLE5	141	76

 VI13 - Nuovo Basento
 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 Relazione di calcolo - SPALLA B
 IA5F
 01
 D09CL
 VI1304002
 A
 71 di 89

SLE6	135	76
SLE7	131	113
SLE8	135	97
SLE9	127	97
SLE10	130	115
SLE11	142	76
SLE12	138	76
SLE13	62	131
SLE14	66	115
SLE15	58	115
SLE16	61	134
SLE17	73	94
SLE18	69	94

Nella combinazione SLE più sfavorevole, la sezione presenta le seguenti tensioni (I stadio):


$$\sigma_c = 1.7 \text{ MPa} < 2.5 = \text{fctm}/1.2 \text{ (cls C32)}$$

Non è necessario pertanto procedere alla verifica dell'ampiezza delle fessure in quanto la tensione di trazione massima del calcestruzzo è inferiore al valore limite di apertura delle fessure (fctm/1.2).

8.4 Verifica della Sezione di Base del muro laterale

Ai fini del dimensionamento e verifica delle armature è stata considerata una sezione di larghezza un metro al piede del muro.

٧	/I13 – Nuovo Basento	COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
R	Relazione di calcolo - SPALLA B	IA5F	01	D09CL	VI1304002	Α	73 di 89

Si considera, un'armatura di progetto composta, lato interno ed esterno, da Φ 24 passo 15 per una percentuale d'armatura di 0.67%

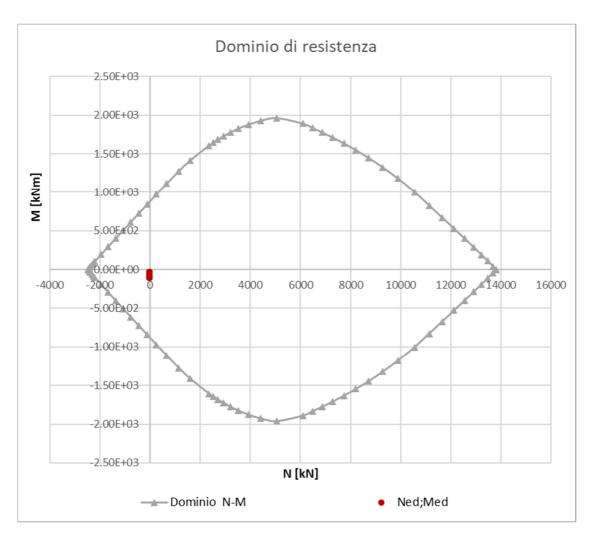
• Verifica Presso-Flessione

La tabella seguente riporta le sollecitazioni integrali estratte dal modello ed i risultati delle verifiche per pressoflessione deviata ($\rho = M_{Ed}/M_{Rd}$).

	N	Med	Mrd	ρ
Combinazioni	(KN/m)	(KNm/m)	(KNm/m)	(-)
SLU1	867	-74	1112	0.07
SLU2	847	-62	1112	0.06
SLU3	849	-62	1112	0.06
SLU4	877	-80	1112	0.07
SLU5	811	-40	1112	0.04
SLU6	813	-41	1112	0.04
SLU7	857	-67	1112	0.06
SLU8	841	-58	1112	0.05
SLU9	843	-58	1112	0.05
SLU10	866	-72	1112	0.07
SLU11	813	-41	1112	0.04
SLU12	814	-41	1112	0.04
SLU13	1031	-65	1112	0.06
SLU14	1015	-55	1112	0.05

VI13 – Nuovo Basento

COMMESSA LOTTO CODIFICA DOCUMENTO REV. FOGLIO


Relazione di calcolo - SPALLA B

IA5F 01 D09CL VI1304002 A 74 di 89

Cambinasiani	N	Med	Mrd	ρ
Combinazioni	(KN/m)	(KNm/m)	(KNm/m)	(-)
SLU15	1017	-55	1112	0.05
SLU16	1039	-70	1112	0.06
SLU17	987	-38	1112	0.03
SLU18	988	-38	1112	0.03
SLV1	629	-58	971	0.06
SLV2	627	-56	971	0.06
SLV3	627	-56	971	0.06
SLV4	631	-59	971	0.06
SLV5	622	-53	971	0.05
SLV6	622	-53	971	0.05
SLV7	636	-110	971	0.11
SLV8	634	-109	971	0.11
SLV9	634	-109	971	0.11
SLV10	638	-111	971	0.11
SLV11	629	-106	971	0.11
SLV12	629	-106	971	0.11

VI13 – Nuovo Basento	COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
Relazione di calcolo - SPALLA B	IA5F	01	D09CL	VI1304002	Α	75 di 89

Le verifiche risultano sempre soddisfatte

• Verifica taglio

Di seguito le sollecitazioni integrali estratte dal modello ed i risultati delle verifiche a taglio nelle due direzioni principali della sezione (ρ = V_{Ed}/V_{Rd}).

	VEd	VRd	p
Combinazioni	(KN/m)	(kN/m)	(-)
SLU1	24	402	0.06
SLU2	21	402	0.05
SLU3	21	402	0.05
SLU4	26	402	0.07
SLU5	14	402	0.03
SLU6	14	402	0.03
SLU7	22	402	0.05
SLU8	19	402	0.05
SLU9	19	402	0.05
SLU10	24	402	0.06
SLU11	14	402	0.03
SLU12	14	402	0.03
SLU13	20	402	0.05
SLU14	17	402	0.04
SLU15	17	402	0.04
SLU16	22	402	0.05
SLU17	12	402	0.03
SLU18	12	402	0.03

VI13 - Nuovo BasentoCOMMESSALOTTOCODIFICADOCUMENTOREV.FOGLIORelazione di calcolo - SPALLA BIA5F01D09CLVI1304002A77 di 89

	VEd	VRd	p
Combinazioni	(KN/m)	(kN/m)	(-)
SLV1	22	402	0.05
SLV2	21	402	0.05
SLV3	21	402	0.05
SLV4	22	402	0.05
SLV5	20	402	0.05
SLV6	20	402	0.05
SLV7	42	402	0.11
SLV8	42	402	0.10
SLV9	42	402	0.10
SLV10	43	402	0.11
SLV11	41	402	0.10
SLV12	41	402	0.10

La sezione non necessita di armatura a taglio.

Le verifiche risultano sempre soddisfatte.

Per completezza, di seguito si riporta il calcolo della resistenza a taglio della sezione

Verifica a taglio per sezioni rettangolari non armate a taglio (D.M. 14/01/2008)

classe cls	Rck	40	N/mm²
resist. Caratteristica cilindrica	f _{ck}	33	N/mm ²
	$f_{\sf cd}$	19	
coeff. parziale	уc	1.5	
larghezza membratura resistene a V	b _w	1000	mm
altezza membratura resistene a V	Н	800	mm
altezza utille	d	720	mm
area della sezione	Атот	720000	mm²
diametro ferro longitudinale	øl	24	mm
area armatura	Asl	452.4	mm²
	strato	2	
	passo	150	mm
	n _f /strato	7	
area armatura totale	$A_{f tot}$	6032	mm²
percentuale di armatura	ρΙ	0.0084	
sforzo assiale dovuto ai carichi o precompressione	N	20000	N
ok	σср	0.03	N/mm²
	k	1.53	
	Vmin	0.38	
taglio resistente	V _{Rd1}	402	kN
	V_{Rd2}	277	kN
	V_{Rd}	402	kN

• Verifica Fessurazione

Si riporta la tabella delle sollecitazioni di flessione allo stato limite di esercizio:

Combinazioni	N (KN/m)	Mx (KNm/m)	My (KNm/m)
SLE1	-753	17	-9
SLE2	-740	14	-8
SLE3	-741	14	-8
SLE4	-760	18	-10
SLE5	-715	10	-5
SLE6	-716	10	-5
SLE7	-747	16	-9
SLE8	-736	14	-7
SLE9	-737	14	-7
SLE10	-752	17	-9
SLE11	-716	10	-5
SLE12	-717	10	-5
SLE13	-964	13	-8
SLE14	-953	11	-7
SLE15	-954	11	-7
SLE16	-969	14	-9
SLE17	-933	7	-4
SLE18	-934	7	-4

Nella combinazione SLE più sfavorevole, la sezione risulta interamente compressa, non è necessario pertanto procedere alla verifica dell'ampiezza delle fessure.

8.5 Verifica della Mensola del muro laterale

Per il dimensionamento della mensola in questa direzione, è stata presa in considerazione la sezione con altezza massima, ovvero, h=2,5m.

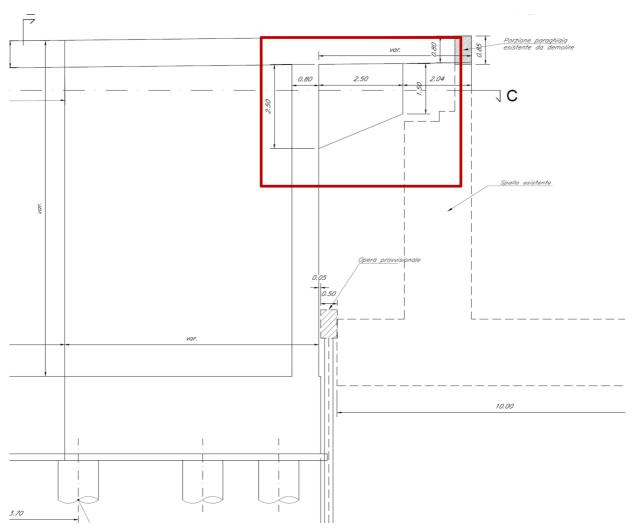


Figura 25: Mensolone di sostegno dello sbalzo della soletta di copertura

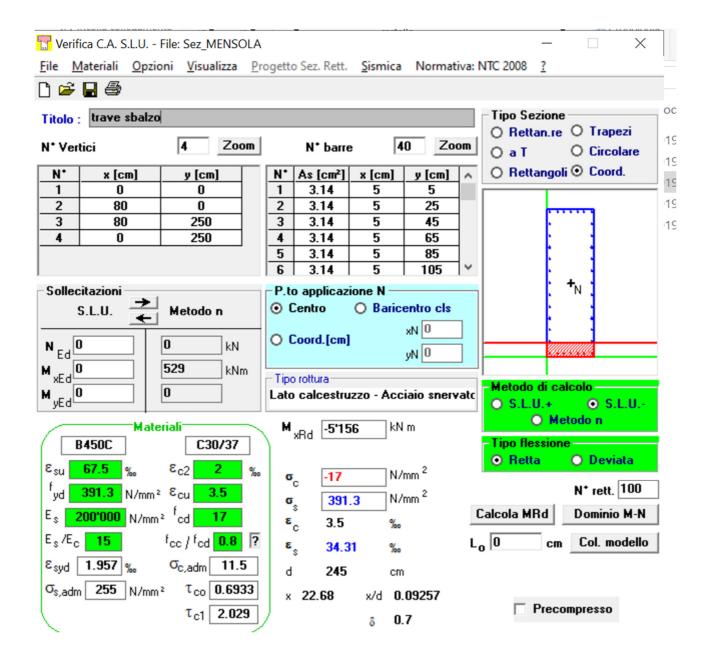
La sezione rettangolare presenta le seguenti dimensioni bxh= 0.8x2.5m

Si considera, un'armatura di progetto composta da $11~\Phi~20$ passo 20~cm sulle pareti laterali ed inferiormente e superiormente da $7~\Phi~20$, per una percentuale d'armatura di 0.57%.

• Verifica Presso-Flessione

La tabella seguente riporta le sollecitazioni integrali estratte dal modello ed i risultati delle verifiche per pressoflessione ($\rho = M_{Ed}/M_{Rd}$).

Combinazioni	MRd	MEd	ρ
	(KNm)	(KNm)	(-)
SLU1	-580	5150	0.11
SLU2	-635	5150	0.12
SLU3	-585	5150	0.11
SLU4	-617	5150	0.12
SLU5	-544	5150	0.11
SLU6	-545	5150	0.11
SLU7	-572	5150	0.11
SLU8	-616	5150	0.12
SLU9	-576	5150	0.11
SLU10	-601	5150	0.12
SLU11	-543	5150	0.11
SLU12	-544	5150	0.11
SLU13	-594	5150	0.12
SLU14	-637	5150	0.12
SLU15	-598	5150	0.12
SLU16	-623	5150	0.12
SLU17	-565	5150	0.11
SLU18	-566	5150	0.11


VI13 - Nuovo BasentoCOMMESSALOTTOCODIFICADOCUMENTOREV.FOGLIORelazione di calcolo - SPALLA BIA5F01D09CLVI1304002A82 di 89

	MRd	MEd	ρ
Combinazioni	(KNm)	(KNm)	(-)
SLV1	-435	5150	0.08
SLV2	-442	5150	0.09
SLV3	-435	5150	0.08
SLV4	-440	5150	0.09
SLV5	-430	5150	0.08
SLV6	-430	5150	0.08
SLV7	-425	5150	0.08
SLV8	-433	5150	0.08
SLV9	-426	5150	0.08
SLV10	-431	5150	0.08
SLV11	-420	5150	0.08
SLV12	-421	5150	0.08

Le verifiche risultano sempre soddisfatte.

VI13 - Nuovo BasentoCOMMESSALOTTOCODIFICADOCUMENTOREV.FOGLIORelazione di calcolo - SPALLA BIA5F01D09CLVI1304002A83 di 89

• Verifica taglio

Di seguito le sollecitazioni integrali estratte dal modello ed i risultati delle verifiche a taglio nelle due direzioni principali della sezione (ρ = V_{Ed}/V_{Rd}).

	VEd	Vrd	p
Combinazioni	(KN)	(KN)	(-)
SLU1	166	1495	0.11
SLU2	170	1495	0.11
SLU3	164	1495	0.11
SLU4	171	1495	0.11
SLU5	157	1495	0.10
SLU6	156	1495	0.10
SLU7	164	1495	0.11
SLU8	168	1495	0.11
SLU9	162	1495	0.11
SLU10	168	1495	0.11
SLU11	157	1495	0.10
SLU12	156	1495	0.10
SLU13	178	1495	0.12
SLU14	182	1495	0.12
SLU15	176	1495	0.12
SLU16	182	1495	0.12
SLU17	171	1495	0.11
SLU18	171	1495	0.11

VI13 – Nuovo BasentoCOMMESSALOTTOCODIFICADOCUMENTOREV.FOGLIORelazione di calcolo - SPALLA BIA5F01D09CLVI1304002A85 di 89

	VEd	Vrd	p
Combinazioni	(KN)	(KN)	(-)
SLV1	121	1495	0.08
SLV2	122	1495	0.08
SLV3	121	1495	0.08
SLV4	122	1495	0.08
SLV5	120	1495	0.08
SLV6	120	1495	0.08
SLV7	124	1495	0.08
SLV8	124	1495	0.08
SLV9	123	1495	0.08
SLV10	124	1495	0.08
SLV11	122	1495	0.08
SLV12	122	1495	0.08

La sezione presenta un'armatura a taglio composta da staffe a due bracci d14 e passo 20 cm.

Le verifiche risultano sempre soddisfatte.

VI13 – Nuovo Basento	COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
Relazione di calcolo - SPALLA B	IA5F	01	D09CL	VI1304002	Α	86 di 89

Per completezza, di seguito si riporta il calcolo ella resistenza a taglio della sezione nella direzione principale.

classe cls	Rck	40	N/mm²
resist. Caratteristica cilindrica	f _{ck}	35	N/mm ²
	$f_{\sf cd}$	20	
coeff. parziale	уc	1.5	
larghezza membratura resistente a V	b _w	800	mm
altezza membratura resistente a V	H	2000	mm
altezza utile	d	1950	mm
area della sezione	Атот	1560000	mm2
sforzo assiale dovuto ai carichi o precompressione	N	0	N
ok	σср	0.00	N/mm ²
	$lpha_{ t c}$	1.00	
Acciaio	f_{yk}	450	N/mm ²
	f_{yd}	391	N/mm ²
diametro staffe (spille)	Øw	14	mm
Area staffa (spilla)	$Aø_w$	154	mm²
0.9 d	Z	1755	mm
passo delle staffe	Sw	200	mm
	n.bracci	2	
angolo di inclinazione	θ	45.0	•
deve essere compreso tra 1 e 2.5	$\cot(\theta)$	1	
angolo di inclinazione armatura rispetto asse long	α	45	0
	cot(lpha)	1.00	
	As _w / s _w	1.54	mm²/mm

Taglio resistente per "taglio trazione"	V_{Rsd}	1495	kN
Taglio resistente per "taglio compressione"	V_{Rcd}	13923	kN
taglio resistente	V_{Rd}	1495	kN

• Verifica Fessurazione

Si riporta la tabella delle sollecitazioni di flessione allo stato limite di esercizio:

	Му
Combinazioni	(KNm)
SLE1	-476
SLE2	-514
SLE3	-479
SLE4	-501
SLE5	-451
SLE6	-452
SLE7	-472
SLE8	-502
SLE9	-475
SLE10	-492
SLE11	-452
SLE12	-453
SLE13	-499
SLE14	-529
SLE15	-501
SLE16	-519
SLE17	-479
SLE18	-479

VI13 – Nuovo Basento	COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
Relazione di calcolo - SPALLA B	IA5F	01	D09CL	VI1304002	Α	88 di 89

Nella combinazione SLE più sfavorevole, la sezione presenta le seguenti tensioni:

$$\sigma_{ct} = 0.56~\text{MPa} < \text{ fcm/1.2= 2.5 Mpa}$$
 (cls C32)

Non è necessario pertanto procedere alla verifica dell'ampiezza delle fessure in quanto la tensione di trazione massima del calcestruzzo è inferiore al valore limite di apertura delle fessure (fctm/1.2).

9 INCIDENZE

Si riportano di seguito le incidenze di ogni elemento strutturale:

Spalla		
Soletta	160	(kg/mc)
Muri Laterali	150	(kg/mc)
Plinto di fondazione	110	(kg/mc)