COMMITTENTE:

PROGETTAZIONE:

DIREZIONE TECNICA U.O. OPERE CIVILI E GESTIONE DELLE VARIANTI

PROGETTO DEFINITIVO

Nuova linea Ferrandina - Matera La Martella per il collegamento di Matera con la rete ferroviaria nazionale

MIGLIORAMENTO SISMICO E OPERE DI COMPLETAMENTO DEI VIADOTTI ESISTENTI DELLA LINEA FERRANDINA MATERA

Relazione di calcolo

Vulnerabilità VI 02

						SCALA:
						-
COMMESSA	LOTTO FASE	ENTE TIPO DOC.	OPERA/DISCIPLINA	PROGR.	REV	7.
I A 5 F	$\begin{bmatrix} 0 & 3 \end{bmatrix}$	0 9 C L	$\begin{bmatrix} \mathbf{V} & \mathbf{I} & 0 & 2 & 0 & 0 \end{bmatrix}$	0 0 1	A	

Rev.	Descrizione	Redatto	Data	Verificato	Data	Approvato	Data	Autorizzato Data
A	Emissione Esecutiva	G. Grimaldi	Mar. 2019	S. Di Spigno	Mar. 2019	F. Gernone	Mar. 2019	A. Wattowzi
						1		RR S.p.A. estione de modelle vitto della Prov
								ALFE ille Ing. A N° A
								IT O. Opere Ch. Dott. Ine degli Ing

File: IA5F03D09CLVI0200001A	n. Elab.:

Nuova linea Ferrandina – Matera La Martella per il collegamento di Matera con la rete ferroviaria nazionale

PROGETTO DEFINITIVO

COMMESSA LOTTO CODIFICA DOCUMENTO REV. FOGLIO 1A5F 03 CL VI0200001 A 1 di 9

INDICE

1.	INTRODUZIONE	2
	RIFERIMENTI	
3.	SOFTWARE	3
4.	MATERIALI	4
5.	DESCRIZIONE DELL'OPERA	5
	ANALISI DEI CARICHI	
(6.1 Carichi permanenti	7
(5.2 Carico accidentale	8
7.	RISULTATI DELLE ANALISI E VERIFICHE	8

1. INTRODUZIONE

Oggetto della presente relazione è la definizione della vulnerabilità sismica del viadotto ferroviario "Conche" appartenente alla linea Ferrandina Matera.

Vista di un viadotto tipo della linea Ferrandina-Matera

In particolare si valuta la vulnerabilità in termini di resistenza, relativamente alle Pile in c.a. ed alle strutture di fondazione e agli apparecchi di appoggio. Si determina quindi l'indice di rischio in resistenza I_R relativamente al meccanismo di crisi indagato, ottenuto confrontando l'accelerazione di picco al suolo che porta alla crisi dell'elemento: PGA di capacità, con l'accelerazione di picco al suolo attesa nel sito: PGA di domanda:

$$I_{R} = \frac{PGA_{c}}{PGA_{d}}$$

Relazione di calcolo

Nuova linea Ferrandina – Matera La Martella per il collegamento di Matera con la rete ferroviaria nazionale

PROGETTO DEFINITIVO

COMMESSA LOTTO CODIFICA DOCUMENTO REV. FOGLIO IA5F 03 CL VI0200001 A 3 di 9

2. RIFERIMENTI

- [1] D.M. 17 gennaio 2018 (G.U. 20 febbraio 2018 n. 42) Aggiornamento delle «Norme tecniche per le costruzioni».
- [2] RFI DTC SI PS MA IFS 001 C Manuale di Progettazione delle Opere Civili -Parte II – Sezione 2 – Ponti e Strutture
- [3] Circolare 21 Gennaio 2019 n. 7 C.S.LL.PP. (G.U. n. 35 del 11 febbraio 2019) Istruzioni per l'applicazione dell'«Aggiornamento delle "Norme tecniche per le costruzioni"» di cui al decreto ministeriale 17 gennaio 2018.
- [4] Progetto DOC-Reluis 2005-2008 linea 3: Valutazione e riduzione del rischio sismico di ponti esistenti "linee guida e manuale applicativo per la valutazione della sicurezza sismica e il consolidamento dei ponti esistenti in c.a." marzo 2009
- [5] D.M. 9 gennaio 1996 «Norme tecniche per il calcolo, l'esecuzione ed il collaudo delle strutture in cemento armato, normale e precompresso e per le strutture metalliche».

3. SOFTWARE

- [1] CSPFEA, "Midas Civil v. 2018"
- [2] GEOSTRU 2011, RC-SEC
- [3] MICROSOFT, Excel 2010

Nuova linea Ferrandina – Matera La Martella per il collegamento di Matera con la rete ferroviaria nazionale

PROGETTO DEFINITIVO

Relazione di calcolo	COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
	IA5F	03	CL	VI 0200001	A	4 di 9

4. MATERIALI

Per le caratteristiche meccaniche dei materiali si demanda alla: Relazione IA5F03D09ROVI0000001.

Riassumendo:

Resistenza del CLS pile $fcd = 17.3 ext{ N/mm}^2$ Tensione di snervamento dell'Acciaio $fyd = 313 ext{ N/mm}^2$

Tensione ultima dell'Acciaio $fu = 313 \text{ N/mm}^2$

Coefficienti di sicurezza per meccanismi duttili:

coeff parziale del calcestruzzo $\gamma_c = 1$

coeff parziale dell'acciaio $\gamma_s = 1$

Coefficienti di sicurezza per meccanismi fragili:

coeff parziale del calcestruzzo $\gamma_c = 1.5$

coeff parziale dell'acciaio $\gamma_s = 1.15$

Per la determinazione delle caratteristiche di rigidezza del calcestruzzo si fa riferimento al DM96 §2.1.3, da cui risulta: E_c = 5700 * $\sqrt{R_{ck}}$

	RbK [Kg/cm2]	Ec _{DM96} [KN/m2]
Trave cap	500	40305086.53
Trasverso	500	40305086.53
Soletta	300	31220185.78
Pulvino	300	31220185.78
Pila	250	28500000

Nuova linea Ferrandina – Matera La Martella per il collegamento di Matera con la re	ete
ferroviaria nazionale	

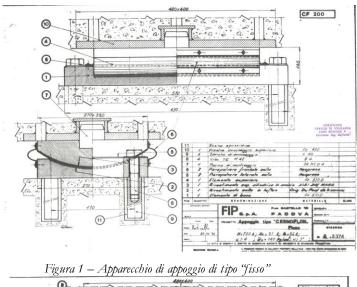
PROGETTO DEFINITIVO

COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
IA5F	03	CL	VI 0200001	A	5 di 9

5. DESCRIZIONE DELL'OPERA

L'opera oggetto delle analisi è un viadotto ferroviario appartenente alla line Ferrandina-Matera con collegamento a binario singolo. Il viadotto è costituito da un singolo impalcato in c.a.p. in semplice appoggio di lunghezza pari a 30 [m].

Le spalle sono costituite da strutture in c.a. (muro frontale di spessore 2.00 [m], muri andatori di spessore variabile 1/0.5 [m], zattera di fondazione di spessore 2.00 [m]) con fondazione su pali di diametro f = 1.2 [m].


Di seguito delle tabelle riassuntive dei dati del viadotto in esame:

Viadotto "Conche"							
n° Pila	H Pila [m]	Fondazione	Dimensioni plinto	n° pali	L viadotto [m]		
-	-	-	-	-	30		

VIADOTTO						SPALLA A								
VI	ADOTTO	Terreno	Campate	H_{min}	H _{max}	Fondazione	T_{fond}	T _{pulv}	F	Н	Dimer	nsioni	ф	Pali
VI02	Conche	С	1	-	-	Р			5.5		11.5	9.2	1200	9
						SPALLA B								
						Fondazione T _{fond} T _{pulv} F H Dim			Dimer	nsioni	ф	Pali		
						Р					13.4	9.2	1200	9

Gli appoggi prevedono uno schema di tipo fisso-mobile, in particolare con la configurazione di 3 appoggi fissi (cerniera) e 3 appoggi mobili unidirezionali (carrello) del tipo come mostrato nelle figg. seguenti:

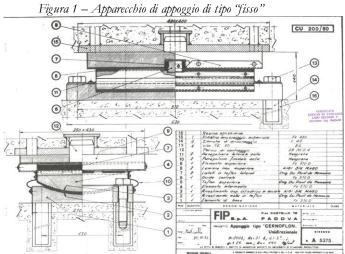


Figura 2 – Apparecchio di appoggio di tipo "mobile"

Nelle figura seguente si riporta la sezione dell'impalcato, estratto degli elaborati di progetto originali:

Relazione di calcolo

Nuova linea Ferrandina – Matera La Martella per il collegamento di Matera con la rete ferroviaria nazionale

PROGETTO DEFINITIVO

COMMESSA LOTTO CODIFICA DOCUMENTO REV. FOGLIO
1A5F 03 CL VI0200001 A 7 di 9

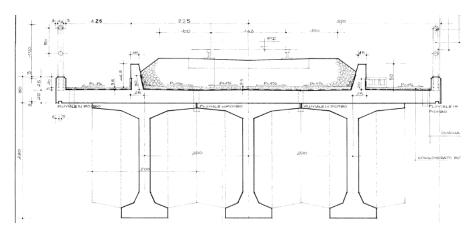


Figura 3 - Sezione trasversale impalcato

6. ANALISI DEI CARICHI

6.1 Carichi permanenti

Impalcato

Area di una trave = 1.03 m^2

Peso travi	1x29x3x25	2175 kN
Ringrosso in corrispondenza dei traversi	1.5x0.9x1.80x2x3x25	364 kN
Traversi di testata	1.80x5.40x0.40x2x25	194 kN
Traversi di campate	1.80x5.40x0.30x2x25	146 kN
Soletta	7.40x0.25x30x25	1388 kN
Cordoli	2x(0.20x0.25)x30x25	$75\mathrm{kN}$
Para-Ballast	2x(0.20x0.50)x30x25	150 kN
Ballast	4x0.70x30x18	1512 kN
Impermeabilizzante	7.4x30x30	666 kN
Corrimano e canalette	4x30	120 kN
Per un peso complessivo		$G1+G2 \sim 6800 \text{ kN}$

6.2 Carico accidentale

Il carico accidentale da traffico ferroviario è stato considerato in accordo al progetto di origine, nella fattispecie il treno di carico "A", definito nel Manuale di Progettazione R.F.I. parte II sez. II 2.11.2.5:

3668 KN

Treno di tipo A 132 x 2 x 12.20+80.0 x (30-12.20 x 2) (carico relativo ad una singola campata)

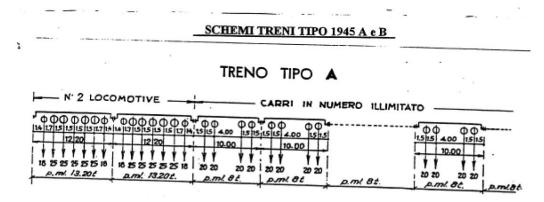


Figura 4 - Schema treno "A"

7. RISULTATI DELLE ANALISI E VERIFICHE

Data la conformazione del viadotto a singola campata, per i risultati della vulnerabilità sismica si rimanda a quanto determinato per il viadotto "Basento" VI01 in virtù dell'analogia di calcolo.