COMMITTENTE

PRO	GETTAZIONE:					4		
						GRUE		ALFERR EDELLO STATO ITALIANE
DIRE	EZIONE TECNIC	CA						
U.O.	INFRASTRUTI	TURE SU	JD					
PRO	GETTO DEFINI	TIVO						
	va linea Ferran la rete ferrovia			La Mar	tella p	er il col	legame	ento di Matera
NUOV	/A LINEA FERRANDII	NA – MATE	RA LA N	/IARTELLA				
	ERE CIVILI - Opero le di calcolo muro e					toscarpa a	a SX su	FV02 - Rela-
								SCALA:
								-
COM	MESSA LOTTO FAS	E ENTE	TIPO DOC	C. OPERA/	DISCIPLIN	NA PRO	GR. RE	V.
ΙΑ	5 F 0 1 D	7 8	CL	MU	7 3 0	0 0	2 A	
Rev.	Descrizione	Redatto	Data	Verificato	Data	Approvato	Data	Autorizzato Data
Α	EMISSIONE DEFINITIVA	E. Sellari	Luglio 2019	C. Toraldo	Luglio	F.GERNONE	Luglio 2019	D. TIBERTI Luglio 2019

Rev.	Descrizione	Redatto	Data	Verificato	Data	Approvato	Data	Autorizzato Data
Α	EMISSIONE DEFINITIVA	E. Sellari	Luglio 2019	C. Toraldo	Luglio	F.GERNONE	Luglio 2019	D. TIBERTI
								R S. R. S. R. A. A. S. R. A. A. S. R. A. A. S. C.
								A second

File: IA5F01D78CLMU7300002A

RELAZIONE DI CALCOLO MURO ESISTENTE AI SENSI DELLE NTC 2018

COMMESSA IA5F LOTTO CODIFICA 01 D 78 DOCUMENTO CL MU7300 002

REV.

FOGLIO 2 di 46

Sommario

1	INT	RODUZIONE	4
2	NOR	RMATIVA E DOCUMENTAZIONE DI RIFERIMENTO	5
2.1	Noi	RMATIVA DI RIFERIMENTO	5
2.2	Do	CUMENTI DI RIFERIMENTO	5
3	DES	CRIZIONE DEL TRACCIATO	6
4	INQ	UADRAMENTO STRATIGRAFICO	13
5	VER	IFICHE AI SENSI DELLA NORMATIVA NTC2018	14
5.1	VER	RIFICA AI SENSI DEL CAPITOLO 8 DELLE NTC2018	14
5	.1.1	Verifiche in condizioni sismiche	14
5	.1.2	Caratteristiche dei materiali ai sensi del capitolo 8 delle NTC 2018	17
5	.1.3	Combinazioni di calcolo	18
5.2	AN	VALISI DEI CARICHI	19
5	.2.1	Azioni statiche	19
5	.2.2	Azioni variabili	19
6	ANA	LISI E VERIFICA MURO S2 - (KM 8+841- KM 18+851)	21
6.1	INP	OUT	21
6.2	Azı	IONI	23
6.4	VE	RIFICHE GEOTECNICHE	25
6	.4.1	Verifica allo scorrimento	27
6	.4.2	Verifica al ribaltamento	27
6	.4.3	Verifica al carico limite della fondazione	28
6	.4.4	Verifica di stabilità globale	29
6.5	VE	RIFICHE STRUTTURALI	31
6	5.5.1	Calcolo sollecitazioni soletta di fondazione	31
6	.5.2	Calcolo sollecitazioni paramento verticale	32

RELAZIONE DI CALCOLO MURO ESISTENTE AI SENSI DELLE NTC 2018

COMMESSA IA5F LOTTO 01 CODIFICA D 78 DOCUMENTO CL MU7300 002 REV. A FOGLIO 3 di 46

33	3 Schema delle armature	6.5.3
33	4 Verifica	6.5.4
915) 34	NALISI E VERIFICA MURO S4 - (KM 18+851 - KI	7 ANA
34	Input	7.1 INP
36	Azioni	7.2 Azı
38	VERIFICHE GEOTECNICHE	7.4 VEI
40	1 Verifica allo scorrimento	7.4.1
40	2 Verifica al ribaltamento	7.4.2
41	3 Verifica al carico limite della fondazione	7.4.3
42	4 Verifica di stabilità globale	7.4.4
44	VERIFICHE STRUTTURALI	7.5 VEI
44	1 Calcolo sollecitazioni soletta di fondazione	7.5.1
45	2 Calcolo sollecitazioni paramento verticale	7.5.2
46	3 Schema delle armature	7.5.3
46	4 Verifica	7.5.4

RELAZIONE DI CALCOLO MURO ESISTENTE AI SENSI DELLE NTC 2018

COMMESSA LOTTO CODIFICA IA5F 01 D 78

DOCUMENTO CL MU7300 002 REV. FOGLIO

1 INTRODUZIONE

Nella presente relazione vengono descritte le verifiche ai fini dell'adeguamento sismico dei muri di sostegno della linea Ferrandina – Matera La Martella e per il collegamento della linea con la linea storica Battipaglia–Potenza-Metaponto e illustra gli interventi necessari ai fini della manutenzione della sede e adeguamento sismico delle opere.

Tutte le geometrie dei muri utilizzate provengono dagli elaborati grafici del progetto esecutivo depositato e sono opere collaudate, di conseguenza sono classificate come **opere esistenti**.

Di conseguenza le suddette verifiche sono state strutturate come dettagliatamente descritto nel seguito.

La **prima fase** consiste nella verifica dei singoli muri di sostegno ai sensi delle normative vigenti all'epoca dalla progettazione/costruzione (Decreto Ministero Lavori Pubblici, 11 Marzo 1988 - Circolare Ministero Lavori Pubblici, 24 settembre 1988, Decreto Ministeriale Lavori Pubblici, 9 gennaio 1996 - Norme tecniche per il calcolo, l'esecuzione ed il collaudo delle strutture in cemento armato, normale e precompresso e per le strutture metalliche e Decreto Ministeriale Lavori Pubblici, 16 Gennaio 1996 - Norme tecniche per le costruzioni in zone sismiche) per escludere o rilevare che il Progetto «originario» della struttura non fosse affetto da errori e/o gravi carenze.

La **seconda fase** consiste nell'adeguamento sismico delle opere:

- la verifica sismica ai sensi delle NTC2018 nel caso in cui le verifiche secondo DM88 sono soddisfatte
- la verifica secondo il capitolo 8 delle NTC2018.

Se le verifiche della seconda fase non dovessero risultare soddisfatte si procede al dimensionamento dell'intervento di adeguamento descritto negli appositi elaborati.

Per maggiori dettagli si rimanda alla "Relazione tecnica descrittiva delle opere civili minori" [IA5F01D78RGOC0000001] e allegati (elaborati grafici del progetto esecutivo dell'epoca).

Argomento di questa relazione è la seconda fase.

D 78

CALCOLO DΙ **MURO** ESISTENTE AI SENSI DELLE NTC 2018

COMMESSA LOTTO CODIFICA IA5F

DOCUMENTO CL MU7300 002

2 NORMATIVA E DOCUMENTAZIONE DI RIFERIMENTO

2.1 NORMATIVA DI RIFERIMENTO

L'interpretazione dei risultati e la redazione della presente relazione sono stati effettuati nel rispetto della Normativa in vigore e di alcune Raccomandazioni.

I principali riferimenti normativi sono i seguenti:

- [N.1]. Nuove norme sismiche per il calcolo strutturale D.M. 17-01-18 (NTC-2018).
- [N.2]. Circolare n. 7 del 21gennaio 2019 Istruzioni per l'applicazione dell'«Aggiornamento delle "Norme tecniche per le costruzioni"» di cui al decreto ministeriale 17 gennaio 2018.

2.2 **DOCUMENTI DI RIFERIMENTO**

Inoltre si fa riferimento ai seguenti documenti:

- IA5F00R09RGCS000X001A Nuova linea Ferrandina Matera La Martella per il collegamento di Matera con la rete ferroviaria nazionale (NPP.016) "Relazione interventi su rilevati e trincee".
- [D2]. IA5F01D78RGOC0000001 "Relazione tecnica descrittiva delle opere civili minori"
- [D3]. IA5F01D78ROOC0000001 "Relazione tecnica descrittiva indagini opere civili minori esistenti"

e ai seguenti riferimenti bibliografici:

- [D4]. R. Lancellotta, Geotecnica, Zanichelli;
- [D5]. C. Viggiani, Fondazioni, Hevelius, 1999;
- [D6]. C.R. I. Clayton, J. Milititsky, R.I. Woods, Earth Pressure and Earth Retaining Structures, 1993 (traduzione italiana a cura di M. Cecconi, G.M.B. Viggiani, La spinta delle terre e le opere di sostegno, Hevelius, 2006)

RELAZIONE DI CALCOLO MURO ESISTENTE AI SENSI DELLE NTC 2018

COMMESSA LOTTO CODIFICA IA5F 01 D 78

DOCUMENTO CL MU7300 002 REV. FOGLIO A 6 di 46

3 DESCRIZIONE DEL TRACCIATO

Nella presente paragrafo viene descritta la modalità esecutiva per le verifiche dei muri di sostegno che si incontrano lungo la tratta Ferrandina - Matera La Martella.

Il tracciato attraversa i Comuni di Ferrandina, Pomarico, Miglionico e Matera, facenti parte della provincia di Matera, Regione Basilicata.

La tratta Ferrandina - Matera La Martella ha inizio alla pk 230+821 della LS Battipaglia - Potenza–Metaponto (cui è associata la pk 0+00 di progetto) e si sviluppa per 19+543.89 km fino al nuovo impianto di Matera La Martella.

Il tracciato si stacca dalla linea esistente curvando in direzione Matera e si inserisce sul sedime esistente prima dell'imbocco della galleria Miglionico. Pertanto i primi 2.2 km saranno realizzati su nuova sede; fino alla pk 1+057.35 il tracciato si sviluppa in rilevato (RI01), con altezza massima di circa 6-7m in approccio al viadotto "Nuovo Basento" (VI13), che si estende per circa 1,15 km. Si passa nuovamente in rilevato (RI02) fino ad imboccare la galleria artificiale GA01 alla pk 2+345.60; dalla pk 2+438.45 alla pk 8+709.39 si sviluppa la galleria naturale GN01, per poi ripresentare l'imbocco sottoforma di galleria artificiale fino alla pk 8+904.39. All'uscita della galleria il tracciato è caratterizzato da una successione di sezioni in rilevato e trincea che si interpongono tra gli undici viadotti presenti, fino alla progressiva finale in corrispondenza della stazione "Matera La Martella" (pk 19+543.89).

La successione dei diversi muri (lato sx e lato dx) è elencata nella seguente Tabella 1:

Tabella 1. WBS per i muri di sostegno.

<u>WBS</u>	<u>Descrizione</u>	<u>pk iniziale</u>	<u>pk finale</u>
MU51	MURO DI CONTRORIPA A SX SU TR01	8+855.26	9+077.30
MU52	MURO DI CONTRORIPA A DX SU TR01	8+856.64	9+087.12
MU53	MURO SI SOSTEGNO A SX SU RI03	9+083.17	9+624.33
MU54	MURO SI SOSTEGNO A SX SU RI04	9+664.81	9+698.84
MU55	MURO SI SOSTEGNO A DX SU RI04	9+664.30	9+767.62
MU56	MURO DI CONTRORIPA A SX SU TR02	9+718.16	9+899.96
MU57	MURO DI CONTRORIPA A DX SU TR02	9+767.62	9+900.62
MU58	MURO DI SOSTEGNO A DX SU RI05	10+251.51	10+361.00
MU59	MURO DI CONTRORIPA A SX SU TR03	10+427.66	10+536.10
MU60	MURO DI CONTRORIPA A DX SU TR03	10+418.11	10+569.93
MU61	MURO DI CONTRORIPA A SX TR04	11+833.82	12+035.91
MU62	MURO DI CONTRORIPA A DX SU TR04	11+821.39	12+068.84
MU63	MURO DI CONTRORIPA A SX SU TR05	13+296.60	13+439.53
MU64	MURO DI CONTRORIPA A DX SU TR05	13+294.42	13+431.55
MU65	MURO DI CONTRORIPA A SX SU TR06	14+312.95	14+904.91
MU66	MURO DI CONTRORIPA A DX SU TR06	14+301.63	14+897.52
MU67	MURO DI CONTRORIPA A SX SU TR07	17+372.82	17+615.82
MU68	MURO DI CONTRORIPA A DX SU TR07	17+372.82	17+577.82

RELAZIONE DI CALCOLO MURO ESISTENTE AI SENSI DELLE NTC 2018

COMMESSA LOTTO CODIFICA 1A5F 01 D 78

DOCUMENTO CL MU7300 002 FOGLIO

<u>WBS</u>	<u>Descrizione</u>	pk iniziale	<u>pk finale</u>
MU69	MURO DI CONTRORIPA A SX SU TR08	17+800.85	17+973.50
MU70	MURO DI CONTRORIPA A DX SU TR08	17+800.09	17+972.74
MU71	MURO DI CONTRORIPA A SX SU TR09	18+426.82	18+729.69
MU72	MURO DI CONTRORIPA A DX SU TR09	18+415.74	18+820.23
MU73	MURO DI CONTRORIPA A SX SU FV02	18+841.85	18+915.85
MU74	MURO DI CONTRORIPA A DX SU FV02	18+842.69	19+365.24

In particolare nella seguente Tabella 2 si riportano tutti i muri di sostegno distinti tra muri di sottoscarpa e muri di controripa presenti lungo la linea sia in destra che in sinistra e la relativa WBS muri di appartenenza: i muri di sottoscarpa sono indicati con la lettera S seguiti dall'altezza del paramento, in maniera analoga sono indicati quelli di controripa con la C seguita dall'altezza del paramento. In prossimità del viadotto Rio Conche i muri di sottoscarpa presentano uno spessore della soletta maggiore, per cui sono stati classificati differentemente e indicati con la lettera S, l'altezza del paramento e il simbolo *

Di seguito la legenda:

S4

C5	muri di co	ntroripa av	enti altezza	del paramento	pari a 5 m
~~			******		P *****

C4 muri di controripa aventi altezza del paramento pari a 4 m

C3 muri di controripa aventi altezza del paramento pari a 3 m

C2 muri di controripa aventi altezza del paramento pari a 2 m

S6 muri di sottoscarpa aventi altezza del paramento pari a 6 m (spessore soletta di 0.9m)

muri di sottoscarpa aventi altezza del paramento pari a 4 m (spessore soletta di 0.6m)

S2 muri di sottoscarpa aventi altezza del paramento pari a 2 m (spessore soletta di 0.5m)

S6* muri di sottoscarpa zona Rio Conche aventi altezza del paramento pari a 6 m (spessore soletta di 1.2 m)

S4* muri di sottoscarpa zona Rio Conche aventi altezza del paramento pari a 4 m (spessore soletta di 1 m)

S2* muri di sottoscarpa zona Rio Conche aventi altezza del paramento pari a 2 m (spessore soletta di 0.8m)

Sono inoltre indicati i cordoli con l'etichetta H0.

LINEA FERRANDINA-MATERA LA MARTELLA

PROGETTO DEFINITIVO
COLLEGAMENTO DI MATERA CON LA RETE FERROVIARIA NAZIONALE

DI CALCOLO **MURO ESISTENTE AI SENSI DELLE NTC 2018**

COMMESSA IA5F

LOTTO 01 CODIFICA D 78 DOCUMENTO CL MU7300 002

FOGLIO 8 di 46

Tabella 2. Muri di sostegno.

WBS	muro	da	а	sviluppo	posizione
[-]	[-]	[m]	[m]	[m]	[-]
MU51	C5	8855.3	8965.27	109.97	SX
MU51	C4	8965.27	8985.27	20	sx
MU51	C3	8985.27	9015.28	30.01	sx
MU51	C2	9015.28	9045.28	30	sx
MU51	H0	9045.28	9077.3	32.02	sx
MU53	S2	9083.17	9097.08	13.91	sx
MU53	S4	9097.08	9110.98	13.9	sx
MU53	S6	9110.98	9159.66	48.68	sx
MU53	S4	9159.66	9308.68	149.02	sx
MU53	S2*	9308.68	9385.17	76.49	sx
MU53	S4*	9385.17	9479.18	94.01	sx
MU53	S6*	9479.18	9551.92	72.74	sx
MU53	S4*	9551.92	9608.55	56.63	sx
MU53	S6*	9608.55	9624.33	15.78	sx
MU54	S4*	9664.86	9681.83	16.97	sx
MU54	S2*	9681.83	9698.84	17.01	sx
MU56	H0	9718.16	9762.87	44.71	sx
MU56	C2	9762.87	9767.84	4.97	sx
MU56	C3	9767.84	9847.31	79.47	sx
MU56	C2	9847.31	9872.14	24.83	sx
MU56	H0	9872.14	9899.96	27.82	sx
MU59	H0	10427.66	10536.1	108.44	sx
MU61	H0	11833.82	11905.78	71.96	sx
MU61	C2	11905.78	11979.72	73.94	sx
MU61	H0	11979.72	12035.91	56.19	sx
MU63	НО	13296.6	13334.8	38.2	sx
MU63	C2	13334.8	13404.01	69.21	sx
MU63	НО	13404.01	13439.53	35.52	sx
MU65	НО	14312.95	14347.38	34.43	sx
MU65	C2	14347.38	14372.05	24.67	sx

RELAZIONE DI CALCOLO MURO ESISTENTE AI SENSI DELLE NTC 2018

COMMESSA IA5F LOTTO CODIFICA 01 D 78 DOCUMENTO CL MU7300 002 REV. A

FOGLIO 9 di 46

WBS	muro	da	а	sviluppo	posizione
[-]	[-]	[m]	[m]	[m]	[-]
MU65	C3	14372.05	14391.78	19.73	sx
MU65	C4	14391.78	14500.3	108.52	sx
MU65	C3	14500.3	14658.15	157.85	SX
MU65	C4	14658.15	14682.82	24.67	sx
MU65	C5	14682.82	14781.48	98.66	sx
MU65	C4	14781.48	14825.87	44.39	sx
MU65	C3	14825.87	14875.2	49.33	SX
MU65	C2	14875.2	14885.07	9.87	SX
MU65	H0	14885.07	14904.91	19.84	sx
MU67	НО	17372.82	17417.82	45	SX
MU67	C2	17417.82	17502.82	85	sx
MU67	C3	17502.82	17577.82	75	sx
MU67	C2	17577.82	17597.82	20	SX
MU67	НО	17597.82	17615.82	18	SX
MU69	H0	17800.85	17815.65	14.8	SX
MU69	C2	17815.65	17830.45	14.8	SX
MU69	C3	17830.45	17845.25	14.8	SX
MU69	C4	17845.25	17864.98	19.73	SX
MU69	C5	17864.98	17924.18	59.2	SX
MU69	C4	17924.18	17938.97	14.79	SX
MU69	C3	17938.97	17953.77	14.8	SX
MU69	C2	17953.77	17963.64	9.87	SX
MU69	НО	17963.64	17973.5	9.86	SX
MU71	H0	18426.82	18446.55	19.73	SX
MU71	C2	18446.55	18456.46	9.91	SX
MU71	C3	18456.46	18471.21	14.75	SX
MU71	C4	18471.21	18505.74	34.53	SX
MU71	C5	18505.74	18550.14	44.4	SX
MU71	C4	18550.14	18574.8	24.66	SX
MU71	C3	18574.8	18599.46	24.66	SX
MU71	C2	18599.46	18673.46	74	SX

RELAZIONE DI CALCOLO MURO ESISTENTE AI SENSI DELLE NTC 2018

COMMESSA IA5F LOTTO CODIFICA 01 D 78 DOCUMENTO CL MU7300 002 REV. F

FOGLIO 10 di 46

WBS	muro	da	а	sviluppo	posizione
[-]	[-]	[m]	[m]	[m]	[-]
MU71	НО	18673.46	18729.69	56.23	sx
MU73	S2	18841.85	18851.72	9.87	sx
MU73	S4	18851.72	18915.85	64.13	SX
MU52	C5	8855.64	9020.56	164.92	dx
MU52	C4	9020.56	9040.47	19.91	dx
MU52	C3	9040.47	9055.33	14.86	dx
MU52	C2	9055.33	9060.29	4.96	dx
MU52	НО	9060.29	9087.12	26.83	dx
MU55	S6*	9664.3	9690.13	25.83	dx
MU55	S4*	9690.13	9713.98	23.85	dx
MU55	S2*	9713.98	9723.91	9.93	dx
MU55	S4*	9723.91	9733.84	9.93	dx
MU55	\$6*	9733.84	9753.71	19.87	dx
MU55	S4*	9753.71	9759.67	5.96	dx
MU55	S2*	9759.67	9767.62	7.95	dx
MU57	НО	9767.62	9900.62	133	dx
MU58	S4	10251.51	10267.32	15.81	dx
MU58	S6	10267.32	10326.47	59.15	dx
MU58	S4	10326.47	10351.12	24.65	dx
MU58	S2	10351.12	10361	9.88	dx
MU60	НО	10418.11	10424.03	5.92	dx
MU60	C2	10424.03	10443.75	19.72	dx
MU60	C4	10443.75	10507.83	64.08	dx
MU60	C2	10507.83	10522.61	14.78	dx
MU60	НО	10522.61	10569.93	47.32	dx
MU62	НО	11821.39	11839.14	17.75	dx
MU62	C2	11839.14	11874.63	35.49	dx
MU62	C3	11874.63	11894.35	19.72	dx
MU62	C4	11894.35	11992.8	98.45	dx
MU62	C3	11992.8	12017.58	24.78	dx
MU62	C2	12017.58	12037.29	19.71	dx

RELAZIONE DI CALCOLO MURO ESISTENTE AI SENSI DELLE NTC 2018

COMMESSA IA5F LOTTO CODIFICA 01 D 78 DOCUMENTO CL MU7300 002 REV. I

FOGLIO 11 di 46

WBS	muro	da	a	sviluppo	posizione
[-]	[-]	[m]	[m]	[m]	[-]
MU62	НО	12037.29	12068.84	31.55	dx
MU64	НО	13294.42	13330.93	36.51	dx
MU64	C2	13330.93	13404.92	73.99	dx
MU64	НО	13404.92	13431.55	26.63	dx
MU66	НО	14301.63	14326.3	24.67	dx
MU66	C2	14326.3	14350.96	24.66	dx
MU66	C3	14350.96	14375.63	24.67	dx
MU66	C4	14375.63	14400.29	24.66	dx
MU66	C5	14400.29	14469.35	69.06	dx
MU66	C4	14469.35	14498.95	29.6	dx
MU66	C3	14498.95	14523.61	24.66	dx
MU66	C2	14523.61	14657.79	134.18	dx
MU66	C3	14657.79	14692.32	34.53	dx
MU66	C4	14692.32	14790.97	98.65	dx
MU66	C3	14790.97	14825.5	34.53	dx
MU66	C2	14825.5	14850.17	24.67	dx
MU66	НО	14850.17	14897.52	47.35	dx
MU68	НО	17372.82	17507.95	135.13	dx
MU68	C2	17507.95	17557.98	50.03	dx
MU68	НО	17557.98	17577.82	19.84	dx
MU70	НО	17800.09	17819.83	19.74	dx
MU70	C2	17819.83	17829.69	9.86	dx
MU70	C3	17829.69	17839.56	9.87	dx
MU70	C4	17839.56	17933.28	93.72	dx
MU70	C3	17933.28	17943.15	9.87	dx
MU70	C2	17943.15	17953.01	9.86	dx
MU70	НО	17953.01	17972.74	19.73	dx
MU72	НО	18415.74	18440.4	24.66	dx
MU72	C2	18440.4	18450.27	9.87	dx
MU72	C3	18450.27	18470	19.73	dx
MU72	C4	18470	18504.53	34.53	dx

RELAZIONE DI CALCOLO MURO ESISTENTE AI SENSI DELLE NTC 2018

COMMESSA IA5F LOTTO CODIFICA 01 D 78 DOCUMENTO CL MU7300 002

EV. F

FOGLIO 12 di 46

WBS	muro	da	а	sviluppo	posizione
[-]	[-]	[m]	[m]	[m]	[-]
MU72	C5	18504.53	18558.79	54.26	dx
MU72	C4	18558.79	18603.19	44.4	dx
MU72	C3	18603.19	18657.45	54.26	dx
MU72	C2	18657.45	18687.05	29.6	dx
MU72	H0	18687.05	18820.23	133.18	dx
MU74	S4	18842.69	18916.68	73.99	dx
MU74	НО	19246.85	19365.24	118.39	dx

Nella presente relazione verranno analizzati i muri che interessano la WBS MU73:

WBS	muro	da	а	sviluppo	posizione
[-]	[-]	[m]	[m]	[m]	[-]
MU73	S2	18841.9	18851.72	9.87	sx
MU73	S4	18851.7	18915.85	64.13	SX

RELAZIONE DI CALCOLO MURO ESISTENTE AI SENSI DELLE NTC 2018

COMMESSA LOTTO 1A5F 01

CODIFICA D 78 DOCUMENTO CL MU7300 002 EV. FOGLIO

4 INQUADRAMENTO STRATIGRAFICO

Si riportano di seguito i terreni su cui poggiano i muri di sostegno lungo il tracciato, con i parametri fisici e meccanici ad essi assegnati:

- U1c, con parametri $\gamma = 19 \text{ kN/m}^3$, c = 15 kPa, $\phi = 30^\circ$, rappresenta i depositi alluvionali recenti ed è presente nel tratto in corrispondenza dell'uscita della galleria (pk 8+855 pk 10+522);
- U2 rappresenta le argille subappenniniche ed è presente in diversi punti lungo il tracciato, per tale motivo i parametri risultano leggermente diversi tra loro: si riporta di seguito una tabella con i valori dei parametri del terreno U2 al variare della progressiva.

Terreno	Progressive	γ	С	φ
U2	11+900 – 12+000	19	30	22
U2	13+335 – 13+400	19	31	22
U2	14+348 – 14+885	19	29	22
U2	15+500 – 17+600	19	27	22
U2	17+815 – 17+963	19	35	22
U2	18+446 – 18+915	19	28	22

Il terreno spingente può essere di due tipologie: nel caso in cui vi è un muro di controripa il terreno spingente è un terreno di riporto, costituito da $\gamma = 18 \text{ kN/m}^3$, c = 0 kPa, $\phi = 30^\circ$; per i muri di sottoscarpa il terreno a tergo del muro è il rilevato ferroviario, caratterizzato da $\gamma = 19 \text{ kN/m}^3$, c = 0 kPa, $\phi = 38^\circ$.

Per l'inquadramento geologico si rimanda alla "Relazione geotecnica generale" (IA5F01D78RHGE0005001) e ai relativi profili geotecnici.

	Terreno spingente			Terreno di fondazione		
	Rilevato			U2		
	У с ф			Υ	С	ф
	KN/m^3	Кра	(°)	KN/m^3	Кра	(°)
S2	19	0	38	19	28	22
S4	19	0	38	19	28	22

RELAZIONE DI CALCOLO MURO ESISTENTE AI SENSI DELLE NTC 2018

OMMESSA IA5F LOTTO CODIFICA 01 D 78 DOCUMENTO CL MU7300 002 REV. F

14 di 46

5 VERIFICHE AI SENSI DELLA NORMATIVA NTC2018

Ai fini dell'adeguamento sismico dei muri di sostegno la seconda fase prevede:

- La sola verifica sismica secondo il capitolo 8 delle NTC2018 nel caso in cui le verifiche secondo DM88 sono soddisfatte.
- La verifica secondo il capitolo 8 delle NTC2018 nel caso in cui le verifiche secondo DM88 non sono soddisfatte.

In tal caso non essendo presenti vizi progettuali si prevede la sola verifica sismica.

5.1 VERIFICA AI SENSI DEL CAPITOLO 8 DELLE NTC2018

Secondo il par. 8.5.4.2 "Costruzioni di calcestruzzo armato o di acciaio" della Circolare 21-01-2019 i fattori di confidenza, sono determinati in funzione del livello di conoscenza acquisito secondo la seguente tabella.

Tabella C8.5.IV – Livelli di conoscenza in funzione dell'informazione disponibile e conseguenti metodi di analisi ammessi e valori dei fattori di confidenza, per edifici in calcestruzzo armato o in acciaio

Livello di conoscenza	Dettagl		Dettagli strutturali Proprietà dei materiali		FC (*)	
LC1		Progetto simulato in accordo alle norme dell'epoca e indagini limitate in situ	Valori usuali per la pratica costruttiva dell'epoca e <i>prove limitate</i> in situ	Analisi lineare statica o dinamica	1,35	
LC2	Da disegni di carpenteria originali con rilievo visivo a campione; in	C2 carpenteria originali con rilievo visivo a campione; in incompleti con indagini limitate in situ; in alternativa indagini estese in		Dalle specifiche originali di progetto o dai certificati di prova originali, con prove limitate in situ; in alternativa da prove estese in situ	Tutti	1,20
LC3	alternativa rilievo completo ex-novo	Elaborati progettuali completi con indagini limitate in situ; in alternativa indagini esaustive in situ	Dai certificati di prova originali o dalle specifiche originali di progetto, con prove estese in situ; in alternativa da prove esaustive in situ	Tutti	1,00	

^(*) A meno delle ulteriori precisazioni già fomite nel § C8.5.4.

A favore di sicurezza si assume un livello di conoscenza LC1 che si intende raggiunto quando sia stata effettuata l'analisi storico-critica commisurata al livello considerato (con riferimento al§ C8.5.1), la geometria della struttura sia nota in base ai disegni originali (effettuando un rilievo visivo a campione per verificare l'effettiva corrispondenza del costruito ai disegni); il corrispondente fattore di confidenza è FC=1,35.

Per maggiore chiarezza si rimanda alla "Relazione tecnica descrittiva indagini opere civili minori esistenti" (IA5F01D78ROOC0000001).

5.1.1 Verifiche in condizioni sismiche

Per i muri le verifiche sismiche riguardano il ribaltamento, lo scorrimento sul piano di posa, il carico limite, la stabilità globale del complesso muro+terreno, nonché l'aspetto strutturale delle singole parti dell'opera, sia in elevazione che in fondazione.

In conformità con il paragrafo 7.11.6.2.1 delle NTC18, l'analisi della sicurezza dei muri di sostegno in condizioni sismiche è stata eseguita mediante i metodi pseudo – statici.

RELAZIONE DI CALCOLO MURO ESISTENTE AI SENSI DELLE NTC 2018

COMMESSA LOTTO CODIFICA IA5F 01 D 78 DOCUMENTO CL MU7300 002 REV. FOG

15 di 46

Se la struttura può spostarsi, l'analisi pseudo – statica si esegue mediante i metodi dell'equilibrio limite. Il modello di calcolo deve comprendere l'opera di sostegno, il volume di terreno a tergo dell'opera, che si suppone in stato di equilibrio limite attivo, e gli eventuali sovraccarichi agenti sul volume suddetto.

Nell'analisi pseudo – statica, l'azione sismica è rappresentata da una forza statica equivalente pari al prodotto delle forze di gravità per un opportuno coefficiente sismico.

Nelle verifiche, i valori dei coefficienti sismici orizzontale k_h e verticale k_v possono essere valutati mediante le espressioni

$$k_h = \beta_m \cdot a_{max}/g$$

$$k_v = \pm 0.5 \cdot k_h$$

dove

 β_m = coefficiente di riduzione dell'accelerazione massima attesa al sito;

a_{max} = accelerazione orizzontale massima attesa al sito;

g = accelerazione di gravità.

In assenza di analisi specifiche della risposta sismica locale, l'accelerazione massima può essere valutata con la relazione

$$a_{max} = S{\cdot}a_g = S_S{\cdot}S_T{\cdot}a_g$$

dove

S = coefficiente che comprende l'effetto dell'amplificazione stratigrafica (S_S) e dell'amplificazione topografica (S_T) di cui al paragrafo 3.2.3.2 delle NTC18.

Nella precedente espressione, il coefficiente di riduzione dell'accelerazione massima attesa al sito è pari a:

 $\beta_{\rm m} = 0.38$ nelle verifiche allo stato limite ultimo (SLV)

 $\beta_m = 0.47$ nelle verifiche allo stato limite di esercizio (SLD)

Nel caso di muri liberi di traslare o di ruotare intorno al piede, si può assumere che l'incremento di spinta dovuta al sisma agisca nello stesso punto di quella statica. Negli altri casi, in assenza di studi specifici, si deve assumere che tale incremento sia applicato a metà altezza del muro.

Lo stato limite di ribaltamento deve essere trattato impiegando coefficienti parziali unitari sulle azioni e sui parametri geotecnici (paragrafo 7.11.1 delle NTC18) e utilizzando valori di β_m incrementati del 50% rispetto a quelli innanzi indicati e comunque non superiori all'unità.

Nelle verifiche di sicurezza si deve controllare che la resistenza del sistema sia maggiore delle azioni nel rispetto della condizione 6.2.1 delle NTC18, ponendo pari all'unità i coefficienti parziali sulle azioni e sui parametri geotecnici e impiegando le resistenze di progetto con i coefficienti parziali γ_R indicati nella Tabella 7.11.III delle NTC18.

RELAZIONE DI CALCOLO MURO ESISTENTE AI SENSI DELLE NTC 2018

COMMESSA LOTTO CODIFICA IA5F 01 D 78 DOCUMENTO CL MU7300 002 REV. FOGI

Verifica	Coefficiente parziale (R3)
Carico limite	$\gamma_R = 1.2$
Scorrimento	$\gamma_R = 1.0$
Ribaltamento	$\gamma_R = 1.0$
Resistenza del terreno a valle	$\gamma_R = 1.2$

Tabella 7.11.III delle NTC18 – Coefficienti parziali per le verifiche agli stati limite ultimi (SLV) dei muri di sostegno.

In condizioni sismiche deve essere soddisfatta la verifica di stabilità del complesso muro – terreno con i criteri indicati al paragrafo 7.11.4 delle NTC18.

Utilizzando il metodo pseudo – statico, le componenti orizzontale e verticale della forza statica equivalente sono pari a:

 $F_h = k_h W$

 $F_v = k_v W$

conk_h e k_v definiti come segue (paragrafo 7.11.3.5.2 delle NTC18):

 $k_h = \beta_s \cdot a_{max}/g$

 $k_v = \pm 0.5 \cdot k_h$

dove $\beta_s = 0.38$ è un coefficiente di riduzione dell'accelerazione massima attesa al sito, relativo allo Stato Limite di salvaguardia della Vita.

La verifica di sicurezza deve essere effettuata con lo stesso approccio utilizzato in condizioni statiche ponendo pari all'unità i coefficienti parziali sulle azioni e sui parametri geotecnici e impiegando le resistenze di progetto con un coefficiente di progetto $\gamma_R = 1.2$.

Secondo il paragrafo 6.5.3.1.1 delle NTC18, ai fini della verifica a traslazione sul piano di posa di muri di sosegno con fondazioni superficiali, non si deve in generale considerare il contributo della resistenza passiva antistante il muro.

Inoltre, la verifica allo scorrimento, nelle analisi svolte in termini di tensioni efficaci, viene effettuata trascurando ogni contributo della coesione (paragrafo C6.2.2 della Circolare 2 Febbraio 2009, n. 617 C.S.LL.PP.).

La capacità portante viene valutata attraverso la formula di Brinch-Hansen, nel caso generale:

LINEA FERRANDINA-MATERA LA MARTELLA

PROGETTO DEFINITIVO

COLLEGAMENTO DI MATERA CON LA RETE FERROVIARIA NAZIONALE

RELAZIONE DI CALCOLO MURO ESISTENTE AI SENSI DELLE NTC 2018

OMMESSA IA5F LOTTO CODIFICA 01 D 78 DOCUMENTO CL MU7300 002 REV. F

17 di 46

$$Q_{lim} = c \cdot N_c \cdot s_c \cdot d_c \cdot i_c \cdot b_c \cdot g_c + q \cdot N_q \cdot s_q \cdot d_q \cdot i_q \cdot b_q \cdot g_q + \frac{1}{2} \cdot \gamma \cdot B \cdot N_\gamma \cdot s_\gamma \cdot d_\gamma \cdot i_\gamma \cdot b_\gamma \cdot g_\gamma$$

dove:

 γ = peso di volume del terreno di fondazione;

B = larghezza efficace della fondazione (depurata dell'eventuale eccentricità del carico $B = B_f - 2e$);

c' = coesione del terreno di fondazione;

q = sovraccarico del terreno sovrastante il piano di fondazione;

 N_y , N_c , N_q = fattori di capacità portante;

 s_y , s_c , s_q = fattori di forma della fondazione;

d_y, d_c, d_q = fattori di profondità del piano di posa della fondazione;

 i_y , i_c , i_q = fattori di inclinazione del carico;

b_y, b_c, b_q = fattori di inclinazione della base della fondazione;

gy, gc, gq = fattori di inclinazione del piano campagna.

5.1.2 Caratteristiche dei materiali ai sensi del capitolo 8 delle NTC 2018

Il progetto strutturale prevede l'uso dei materiali con le caratteristiche meccaniche minime riportate di seguito.

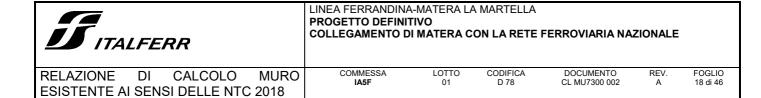
Per l'acciaio di armatura:

Barre ad aderenza migliorata, saldabile, tipo FeB38k dotato delle seguenti caratteristiche meccaniche:

tensione caratteristica di snervamento: fyk \geq 375MPa

Resistenza di calcolo dell'acciaio per la verifica LC1 (FC=1.35):

Resistenza di calcolo a rottura per trazione e deformazione corrispondente:


fyd = fyk/FC 278 MPa

 $\varepsilon yd = fyd/Es$ 0.158%

Per il Calcestruzzo per fondazione e elevazione muro in opera

Classe di resistenza: C20/25

Resistenza di calcolo del calcestruzzo per la verifica LC1 (FC=1.35):

Per la valutazione delle caratteristiche meccaniche del calcestruzzo in sito, adoperate per le verifiche strutturali del muro, si rimanda alla relazione tecnico-descrittiva indagini opere civili minori esistenti: "IA5F01D78ROOC0000001".

5.1.3 Combinazioni di calcolo

La combinazione di carico allo stato limite ultimo in condizioni sismiche (SLV) è dunque del tipo:

$$G_1 + G_2 + \sum_{i} \psi_{2j} Q_{kj}$$
 [2.5.7]

Nelle combinazioni si intende che vengano omessi i carichi Q_{kj} che danno un contributo favorevole ai fini delle verifiche e, se del caso, i carichi G_2 .

in cui il coefficiente di combinazione è stato assunto pari a 0.2.

5.2 ANALISI DEI CARICHI

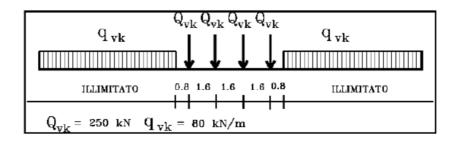
Per i muri di sostegno di sottoscarpa vanno considerate anche le azioni permanenti che gravano su di essi.

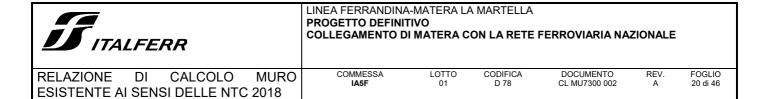
Le azioni sulle opere di sostegno vengono valutate come descritto nelle NTC 2018 e nella Circolare esplicativa, sia per quanto riguarda la fase statica che quella sismica.

5.2.1 Azioni statiche

Per il muro si considera un carico permanente "pballast", dovuto ad uno strato di pietrisco ($\gamma_{ballast}=18.00 \text{ kN/m}^3$) dello spessore di 60 cm e ad uno strato di super compattato ($\gamma=25.00 \text{ kN/m}^3$) dello spessore di 30 cm posizionato sul terreno a tergo del muro, per cui si ha:

$$q = 18*0.6+25*0.3=18.3 \text{ kN/m}^2$$


A questo vi si aggiunge il peso del rilevato, di altezza variabile a seconda della progressiva considerata.


Si riporta di seguito una tabella riassuntiva con i carichi permanenti al variare dell'altezza del rilevato:

Progressiva	Altezza rilevato	$q_{ m perm}$	q _{terr}	$q_{\mathrm{perm,tot}}$
9+083 – 9+308	0.3	18.3	5.7	24
9+308 – 9+624	1	18.3	19	37.3
9+664 – 9+767	2	18.3	38	56.3
9+664 – 9+681	3	18.3	57	75.3

5.2.2 Azioni variabili

Le azioni variabili da traffico ferroviario da portare in conto sono quelle dovute al treno di carico LM71, costituito da quattro assi da 250 kN disposti ad interasse 1.6 m e un carico distribuito di 80 kN/m in entrambe le direzioni, a partire da 0.8 m dagli assi d'estremità e per una lunghezza illimitata.

Non viene considerato l'incremento dinamico. Il sovraccarico ferroviario viene considerando distribuito all'interno del ballast con una pendenza 1 a 4, con un angolo di diffusione di 45° all'interno del super compattato e con un angolo pari all'angolo d'attrito del terreno nel terreno stesso (spessore variabile), per cui:

- larghezza di diffusione:

$$L_d = 2.3 + 2 * \left(\frac{s_{ballast}}{4} + s_{s.comp} + s_{terreno} * tan\varphi\right)$$

Dal confronto dei due carichi agente si è riscontrato che il carico di 250 kN genera la condizione più gravosa, per cui:

- carico agente:

$$q_{ferroviario} = \frac{250 * 4}{L_d * (0.8 + 4.8 + 0.8)}$$

I risultati sono riportati di seguito all'interno dei fogli di calcolo per ciascun muro di sottoscarpa, in quanto lo spessore del rilevato sovrastante varia lungo il tracciato.

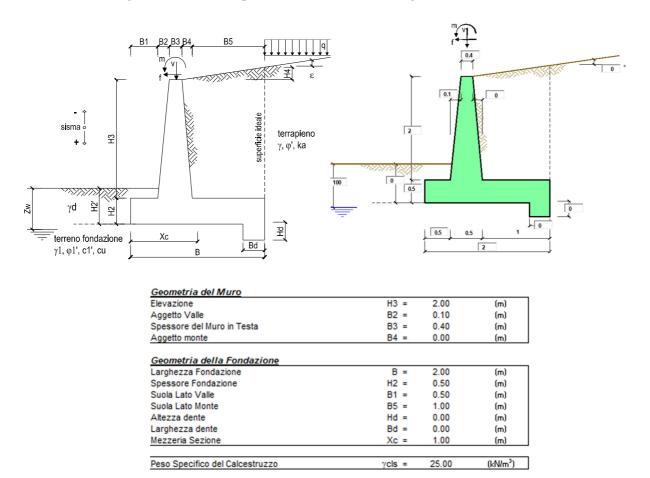
Di seguito si riportano i valori dei carichi variabili ottenuti al variare dell'altezza del rilevato a tergo del muro:

Progressiva	Altezza rilevato	L_{d}	q _{ferroviario}
9+083 - 9+308	0.3	3.668	42.598
9+308 - 9+624	1	4.76	32.825
9+664 – 9+767	2	6.32	24.723
9+664 – 9+681	3	7.88	19.828

Per i muri di sottoscarpa in corrispondenza delle sezioni 44 e 45 si ha una lunghezza di diffusione di 8.66 e quindi un carico variabile di 18.04 kN/m².

6 ANALISI E VERIFICA MURO S2 – (KM 8+841- KM 18+851)

Per l'analisi sismica, si considera che l'opera abbia una Vita Nominale V_N di 50 anni, ricada in classe d'uso II (coefficiente d'uso C_U =1.00) e, quindi una Vita di Riferimento V_R = V_N · C_U di 50 anni.


Con riferimento allo Stato Limite di Salvaguardia della Vita (SLV), i parametri sismici sono di seguito riportati.

Categoria sismica	${ m a_g}$	S_{S}	a _{max} /g
[-]	[-]	[-]	[-]
С	0.146	1.48	0.216

Tabella 3 – Parametri sismici dal Km 18+841 - Km 18+915.

6.1 INPUT

Le caratteristiche geometriche sono riportate sinteticamente nel seguente schema:

RELAZIONE DI CALCOLO MURO ESISTENTE AI SENSI DELLE NTC 2018

COMMESSA LOTTO CODIFICA DOCUMENTO REV. FOGLIO IA5F 01 D 78 CL MU7300 002 A 22 di 46

oue	Angolo di attrito del terrapieno	()	φ'	38.00	38.00	38.00
Dati errapieno	Peso Unità di Volume del terrapieno	(kN/m³)	7	20.00	20.00	20.00
Ter	Angolo di attrito terreno-superficie ideale	()	δ	25.33	25.33	25.33
ione	Condizioni		drenate	Non Drenate		
Fondazi	Coesione Terreno di Fondazione	(kPa)	c1'	28.00	28.00	28.00
	Angolo di attrito del Terreno di Fondazione	(1)	φ1'	22.00	22.00	22.00
eno	Peso Unità di Volume del Terreno di Fondazione	(kN/m^3)	γ1	19.00	19.00	19.00
	Peso Unità di Volume del Rinterro della Fondazione	(kN/m³)	γd	19.00	19.00	19.00
Dati Terr	Profondità "Significativa" (n.b.: consigliata H = 2*B)	(m)	Hs	3.40		
Da	Modulo di deformazione	(kN/m²)	E	60000		

	Accelerazione sismica	a _ç /g	0.146	(-)
	Coefficiente Amplificazione Stratigrafico	Ss	1.48	(-)
io:	Coefficiente Amplificazione Topografico	S_T	1	(-)
Dati Sismici	Coefficiente di riduzione dell'accelerazione massima	β_s	0.38	(-)
	Coefficiente sismico orizzontale	kh	0.0821104	(-)
	Coefficiente sismico verticale	kv	0.0411	(-)
	Muro libero di traslare o ruotare	•	si 🔾	no

			SLE		STR/GEO		EQU	
	Coeff. di Spinta Attiva Statico	ka	0.217		0.217		0.217	
i di	Coeff. Di Spinta Attiva Sismica sisma +	kas+	0.261		0.261		0.261	
Spinta	Coeff. Di Spinta Attiva Sismica sisma -	kas-	0.266		0.266		0.266	
Φ	Coeff. Di Spinta Passiva	kp	2.198		2.198		2.198	
ဝိ	Coeff. Di Spinta Passiva Sismica sisma +	kps+	2.076		2.076		2.076	
	Coeff. Di Spinta Passiva Sismica sisma -	kps-	2.066		2.066		2.066	

Per la verifica a ribaltamento i dati sismici sono i seguenti:

	Accelerazione sismica	a _g /g	0.146	(-)
	Coefficiente Amplificazione Stratigrafico	Ss	1.48	(-)
Dati Sismici	Coefficiente Amplificazione Topografico	ST	1	(-)
Sisi	Coefficiente di riduzione dell'accelerazione massima	β_s	0.57	(-)
ati	Coefficiente sismico orizzontale	kh	0.1231656	(-)
	Coefficiente sismico verticale	kv	0.0616	(-)
	Muro libero di traslare o ruotare	(si 🔾) no

			SI	LE	STR/G	SEO	EC	งก
	Coeff. di Spinta Attiva Statico	ka	0.399		0.399		0.399	
E G	Coeff. Di Spinta Attiva Sismica sisma +	kas+	0.580		0.580		0.580	
officienti Spinta	Coeff. Di Spinta Attiva Sismica sisma -	kas-	0.616		0.616		0.616	
∯ S	Coeff. Di Spinta Passiva	kp	2.198		2.198		2.198	
ဝိ	Coeff. Di Spinta Passiva Sismica sisma +	kps+	2.015		2.015		2.015	
	Coeff. Di Spinta Passiva Sismica sisma -	kps-	1.990		1.990		1.990	

				valori caratteristici	valori di	progetto
Carichi	<u>Agenti</u>			SLE - sisma	STR/GEO	EQU
Carichi permanenti	Sovraccarico permanente Sovraccarico su zattera di monte	(kN/m²)	qp	75.30	75.30	75.30
Carichi	Forza Orizzontale in Testa permanente	(kN/m)	fp	0.00	0.00	0.00
S Lea	Forza Verticale in Testa permanente	(kN/m)	vp	0.00	0.00	0.00
	Momento in Testa permanente	(kNm/m)	mp	0.00	0.00	0.00
_	Sovraccarico Accidentale in condizioni statiche	(kN/m^2)	q	19.80	19.80	19.80
Condizioni Statiche	Forza Orizzontale in Testa accidentale in condizioni statiche	(kN/m)	f	0.00	0.00	0.00
Statiche	Forza Verticale in Testa accidentale in condizioni statiche	(kN/m)	V	0.00	0.00	0.00
S &	Momento in Testa accidentale in condizioni statiche	(kNm/m)	m	0.00	0.00	0.00
	Coefficienti di combinazione condizione frequer	nte Ψ1	1.00	condizione quasi perma	nente Ψ2	0.00
E 5	Sovraccarico Accidentale in condizioni sismiche	(kN/m^2)	qs	3.96		
Condizioni Sismiche	Forza Orizzontale in Testa accidentale in condizioni sismiche	(kN/m)	fs	0.00	4 4	
on Sism	Forza Verticale in Testa accidentale in condizioni sismiche	(kN/m)	VS	0.00	7 7	
0 0	Momento in Testa accidentale in condizioni sismiche	(kNm/m)	ms	0.00		

RELAZIONE DI CALCOLO MURO ESISTENTE AI SENSI DELLE NTC 2018

COMMESSA IA5F LOTTO CODIFICA 01 D 78 DOCUMENTO CL MU7300 002 FOGLIO 23 di 46

6.2 AZIONI

FORZE VERTICALI

- Peso del Muro	(Pm)		SLE	STR/GEO	EQU			
Pm1 =	(B2*H3*/cls)/2	(kN/m)	2.50	2.50	2.50			
Pm2 =	(B3*H3*/cls)	(kN/m)	20.00	20.00	20.00			
Pm3 =	(B4*H3*/cls)/2	(kN/m)	0.00	0.00	0.00			
Pm4 =	(B*H2*/cls)	(kN/m)	25.00	25.00	25.00			
Pm5 =	(Bd*Hd*ycls)	(kN/m)	0.00	0.00	0.00			
Pm =	Pm1 + Pm2 + Pm3 + Pm4 + Pm5	(kN/m)	47.50	47.50	47.50			
- Peso del terre	- Peso del terreno e sovr. perm. sulla scarpa di monte del muro (Pt)							
Pt1 =	(B5*H3* ₇ ')	(kN/m)	40.00	40.00	40.00			
Pt2 =	(0,5*(B4+B5)*H4*\gamma')	(kN/m)	0.00	0.00	0.00			
Pt3 =	(B4*H3* ₇ ')/2	(kN/m)	0.00	0.00	0.00			
Sovr =	qp * (B4+B5)	(kN/m)	0.00	0.00	0.00			
Pt =	Pt1 + Pt2 + Pt3 + Sovr	(kN/m)	40.00	40.00	40.00			
- Sovraccarico	- Sovraccarico accidentale sulla scarpa di monte del muro							
Sovr acc. Stat q * (B4+B5)		(kN/m)	19.8	19.8				
Sovr acc. Sism qs * (B4+B5)			3.96					

MOMENTI DELLE FORZE VERT. RISPETTO AL PIEDE DI VALLE DEL MURO

- Muro (Mm)			SLE	STR/GEO	EQU		
Mm1 =	Pm1*(B1+2/3 B2)	(kNm/m)	1.42	1.42	1.42		
Mm2 =	Pm2*(B1+B2+0,5*B3)	(kNm/m)	16.00	16.00	16.00		
Mm3 =	Pm3*(B1+B2+B3+1/3 B4)	(kNm/m)	0.00	0.00	0.00		
Mm4 =	Pm4*(B/2)	(kNm/m)	25.00	25.00	25.00		
Mm5 =	Pm5*(B - Bd/2)	(kNm/m)	0.00	0.00	0.00		
Mm =	Mm1 + Mm2 + Mm3 + Mm4 + Mm5	(kNm/m)	42.42	42.42	42.42		
- Terrapieno e	sovr. perm. sulla scarpa di monte del muro						
Mt1 =	Pt1*(B1+B2+B3+B4+0,5*B5)	(kNm/m)	60.00	60.00	60.00		
Mt2 =	Pt2*(B1+B2+B3+2/3*(B4+B5))	(kNm/m)	0.00	0.00	0.00		
Mt3 =	Pt3*(B1+B2+B3+2/3*B4)	(kNm/m)	0.00	0.00	0.00		
Msovr =	Sovr*(B1+B2+B3+1/2*(B4+B5))	(kNm/m)	0.00	0.00	0.00		
Mt =	Mt1 + Mt2 + Mt3 + Msovr	(kNm/m)	60.00	60.00	60.00		
- Sovraccarico accidentale sulla scarpa di monte del muro							
Sovr acc. Stat *(B1+B2+B3+1/2*(B4+B5)) (kNm/m)		(kNm/m)	29.7	29.7			
Sovr acc. Sism *(B1+B2+B3+1/2*(B4+B5)) (kNm/m)			5.94				

RELAZIONE DI CALCOLO MURO ESISTENTE AI SENSI DELLE NTC 2018

COMMESSA IA5F LOTTO CODIFICA 01 D 78 DOCUMENTO CL MU7300 002 FOGLIO 24 di 46

REV. A

	MURO E DEL TERRAPIENO ntale e verticale del muro (Ps)		
Ps h =	Pm*kh	(kN/m)	3.90
Ps v =	Pm*kv	(kN/m)	1.95
13 1-	THI KY	(Kitili)	1.55
	ntale e verticale del terrapieno a tergo del muro (Pts)		
Ptsh =	Pt*kh	(kN/m)	3.28
Ptsv =	Pt*kv	(kN/m)	1.64
- Incremento or	rizzontale di momento dovuto all'inerzia del muro (MPs h)		
MPs1 h=	kh*Pm1*(H2+H3/3)	(kNm/m)	0.24
MPs2 h=	kh*Pm2*(H2 + H3/2)	(kNm/m)	2.46
MPs3 h=	kh*Pm3*(H2+H3/3)	(kNm/m)	0.00
MPs4 h=	kh*Pm4*(H2/2)	(kNm/m)	0.51
MPs5 h=	-kh*Pm5*(Hd/2)	(kNm/m)	0.00
MPs h=	MPs1+MPs2+MPs3+MPs4+MPs5	(kNm/m)	3.22
	m 37 m 32 m 33 m 34 m 35	(Marin)	0.22
- Incremento ve	erticale di momento dovuto all'inerzia del muro (MPs v)		
MPs1 v=	kv*Pm1*(B1+2/3*B2)	(kNm/m)	0.06
MPs2 v=	kv*Pm2*(B1+B2+B3/2)	(kNm/m)	0.66
MPs3 v=	kv*Pm3*(B1+B2+B3+B4/3)	(kNm/m)	0.00
MPs4 v=	kv*Pm4*(B/2)	(kNm/m)	1.03
MPs5 v=	kv*Pm5*(B-Bd/2)	(kNm/m)	0.00
MPs v=	MPs1+MPs2+MPs3+MPs4+MPs5	(kNm/m)	1.74
- Incremento or	rizzontale di momento dovuto all'inerzia del terrapieno (M	Pts h)	
MPts1 h=	kh*Pt1*(H2 + H3/2)	(kNm/m)	4.93
MPts2 h=	kh*Pt2*(H2 + H3 + H4/3)	(kNm/m)	0.00
MPts3 h=	kh*Pt3*(H2+H3*2/3)	(kNm/m)	0.00
MPts h=	MPts1 + MPts2 + MPts3	(kNm/m)	4.93
- Incremento ve	erticale di momento dovuto all'inerzia del terrapieno (MPt	s v)	
MPts1 v=	kv*Pt1*((H2 + H3/2) - (B - B5/2)*0.5)	(kNm/m)	2.46
MPts2 v=	kv*Pt2*((H2 + H3 + H4/3) - (B - B5/3)*0.5)	(kNm/m)	0.00
MPts3 v=	kv*Pt3*((H2+H3*2/3)-(B1+B2+B3+2/3*B4)*0.5)	(kNm/m)	0.00
MPts v=	MPts1 + MPts2 + MPts3	(kNm/m)	2.46
	The same of the sa	()	

LINEA FERRANDINA-MATERA LA MARTELLA

PROGETTO DEFINITIVO

COLLEGAMENTO DI MATERA CON LA RETE FERROVIARIA NAZIONALE

DI CALCOLO MURO **ESISTENTE AI SENSI DELLE NTC 2018**

COMMESSA IA5F

LOTTO 01 CODIFICA D 78 DOCUMENTO CL MU7300 002

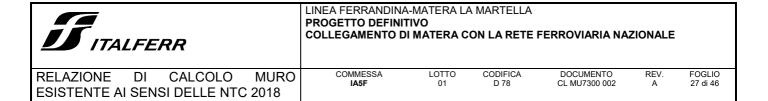
FOGLIO 25 di 46

VERIFICHE GEOTECNICHE 6.4

CONDIZIONE SISMICA +

	SPINTE DEL TERRENO E DEL SOVRACCARICO - Spinta condizione sismica +				EQU
Sst1 stat =	0,5**/**(H2+H3+H4+Hd)**ka	(kN/m)	13.55	13.55	13.55
Sst1 sism =	0,5*/**(1+kv)*(H2+H3+H4+Hd)**kas*-Sst1 stat	(kN/m)	3.46	3.46	3.46
Ssq1 perm=	qp*(H2+H3+H4+Hd)*kas*	(kN/m)	49.22	49.22	49.22
Ssq1 acc =	qs*(H2+H3+H4+Hd)*kas*	(kN/m)	2.59	2.59	2.59
- Componente	prizzontale condizione sismica +				
Sst1h stat =	Sst1 stat*cosō	(kN/m)	12.25	12.25	12.25
Sst1h sism =	Sst1 sism*cosõ	(kN/m)	3.13	3.13	3.13
Ssq1h perm=	Ssq1 perm*cosõ	(kN/m)	44.49	44.49	44.49
Ssq1h acc=	Ssq1 acc*cosō	(kN/m)	2.34	2.34	2.34
- Componente	verticale condizione sismica +				
Sst1v stat =	Sst1 stat*senő	(kN/m)	5.80	5.80	5.80
Sst1v sism =	Sst1 sism*senő	(kN/m)	1.48	1.48	1.48
Ssq1v perm=	Ssq1 perm*senδ	(kN/m)	21.06	21.06	21.06
Ssq1v acc=	Ssq1 acc*senő	(kN/m)	1.11	1.11	1.11
- Spinta passiv	a sul dente				
Sp=1/2*7 ₁ '(1+kv) Hd ² *kps*+(2*c ₁ *kps* ^{0.5} +γ1' (1+kv) kps**H2')*Hd	(kN/m)	0.00	0.00	0.00

MOMENTI DE - Condizione si		SLE	STR/GEO	EQU	
MSst1 stat = MSst1 sism= MSst2 stat = MSst2 sism = MSsq1 = MSsq2 = MSp =	Sst1h stat * ((H2+H3+H4+hd)/3-hd) Sst1h sism* ((H2+H3+H4+Hd)/3-Hd) Sst1v stat* B Sst1v sism* B Ssq1h * ((H2+H3+H4+Hd)/2-Hd) Ssq1v * B \$\gamma_1\frac{1}{2}\text{*c1}\text{*kps}\text{*0.5} + \gamma\text{1\text{*tkps}}\text{*H2}\text{*)*Hd}^2/2	(kNm/m) (kNm/m) (kNm/m) (kNm/m) (kNm/m) (kNm/m) (kNm/m)	10.21 2.61 11.60 2.96 58.53 44.33 0.00	10.21 2.61 11.60 2.96 58.53 44.33 0.00	10.21 2.61 11.60 2.96 58.53 44.33 0.00
MOMENTI DOVUTI ALLE FORZE ESTERNE Mfext1 = mp+ms Mfext2 = (fp+fs)*(H3 + H2) Mfext3 = (vp+vs)*(B1 +B2 + B3/2)		(kNm/m) (kNm/m) (kNm/m)		0.00 0.00 0.00	



RELAZIONE DI CALCOLO MURO ESISTENTE AI SENSI DELLE NTC 2018

COMMESSA IA5F LOTTO CODIFICA 01 D 78 DOCUMENTO CL MU7300 002 FOGLIO 26 di 46

CONDIZIONE SISMICA -

SPINTE DEL T	ERRENO E DEL SOVRACCARICO ione sismica -		SLE	STR/GEO	EQU
Sst1 stat =	0,5*/'*(H2+H3+H4+Hd)**ka	(kN/m)	13.55	13.55	13.55
Sst1 sism =	0,5*/*(1-kv)*(H2+H3+H4+Hd)**kas*-Sst1 stat	(kN/m)	2.37	2.37	2.37
Ssq1 perm=	qp*(H2+H3+H4+Hd)*kas*	(kN/m)	50.01	50.01	50.01
Ssq1 acc =	qs*(H2+H3+H4+Hd)*kas*	(kN/m)	2.63	2.63	2.63
	orizzontale condizione sismica -				
Sst1h stat =	Sst1 stat*cosō	(kN/m)	12.25	12.25	12.25
Sst1h sism =	Sst1 sism*cosδ	(kN/m)	2.14	2.14	2.14
Ssq1h perm=	Ssq1 perm*cosδ	(kN/m)	45.20	45.20	45.20
Ssq1h acc=	Ssq1 acc*cosō	(kN/m)	2.38	2.38	2.38
	verticale condizione sismica -				
Sst1v stat =	Sst1 stat*senő	(kN/m)	5.80	5.80	5.80
	Sst1 sism*senő	(kN/m)	1.02	1.02	1.02
	Ssq1 perm*senő	(kN/m)	21.40	21.40	21.40
Ssq1v acc=	Ssq1 acc*senő	(kN/m)	1.13	1.13	1.13
- Spinta passiv					
Sp=½*γ ₁ '(1-kv)) Hd ² *kps'+(2*c ₁ '*kps ^{-0.5} + ⁻ /1' (1-kv) kps'*H2')*Hd	(kN/m)	0.00	0.00	0.00
	LLA SPINTA DEL TERRENO E DEL SOVRACCARICO	Γ	SLE	STR/GEO	EQU
- Condizione si	smica -	L			
MSst1 stat =	Sst1h stat * ((H2+H3+H4+hd)/3-hd)	(kNm/m)	10.21	10.21	10.21
MSst1 sism=	Sst1h sism* ((H2+H3+H4+Hd)/3-Hd)	(kNm/m)	1.79	1.79	1.79
MSst2 stat =	Sst1v stat* B	(kNm/m)	11.60	11.60	11.60
MSst2 sism =	Sst1v sism* B	(kNm/m)	2.03	2.03	2.03
MSsq1 =	Ssq1h * ((H2+H3+H4+Hd)/2-Hd)	(kNm/m)	59.47	59.47	59.47
MSsq2 =	Ssq1v * B	(kNm/m)	45.05	45.05	45.05
MSp =	γ_1 *Hd3*kps*/3+(2*c1*kps* $^{0.5}$ + γ 1**kps**H2')*Hd²/2	(kNm/m)	0.00	0.00	0.00
MOMENTI DO	VUTI ALLE FORZE ESTERNE				
Mfext1 =		(kNm/m)		0.00	
Mfext2 =	mp+ms (fp+fs)*(H3 + H2)	(kNm/m)		0.00	
Mfext3 =	(vp+vs)*(B1 +B2 + B3/2)	(kNm/m)		0.00	
micklo -	(TP-13) (D1 TD2 T D3/2)	(KINIIVIII)		0.00	

6.4.1 Verifica allo scorrimento

F	s =	(N*f + Sp) / T	0.66	<	1
C f	oefficiente =	di attrito alla base (f) tgo1'	0.40	(-)	
	isultante fo =	orze orizzontali (T) Sst1h + Ssq1h + fp + fs +Ps h + Ptsh	69.15	(kN/m)	
R N		orze verticali (N) Pm+ Pt + vp + vs + Sst1v + Ssq1v + Ps v + Ptsv	113.24	(kN/m)	

(Caso più gravoso in corrispondenza della condizione sismica -)

La verifica a scorrimento non risulta soddisfatta, pertanto l'opera necessita di un intervento di miglioramento sismico, come descritto nell'apposita relazione.

6.4.2 Verifica al ribaltamento

Fr	=	Ms / Mr	3.12	>	1
	ento ribalta =	ante (Mr) MSst+MSsq+Mfext1+Mfext2+MSp+MPs+Mpts	32.81	(kNm/m)	
Mome Ms		izzante (Ms) Mm + Mt + Mfext3	102.42	(kNm/m)	

(Caso più gravoso in corrispondenza della condizione sismica -)

LINEA FERRANDINA-MATERA LA MARTELLA **PROGETTO DEFINITIVO**

COLLEGAMENTO DI MATERA CON LA RETE FERROVIARIA NAZIONALE

DI **CALCOLO MURO ESISTENTE AI SENSI DELLE NTC 2018**

COMMESSA IA5F

LOTTO 01 CODIFICA D 78 DOCUMENTO CL MU7300 002

FOGLIO 28 di 46

(kN/m²)

1.2

210.14

199.48

2.40

2.55

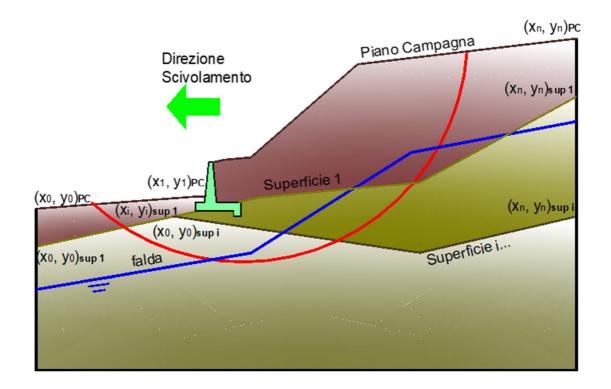
Nmin

Nmax

6.4.3 Verifica al carico limite della fondazione

Risultante forze verticali (N) N = Pm+ Pt + vp + vs + Sst1v + Ssq1v + Ps v + Ptsv	Nmin 113.24	Nmax 117.20	(kN/m)
Risultante forze orizzontali (T) T = Sst1h + Ssq1h + fp + fs +Ps h + Ptsh - Sp	69.15		(kN/m)
Risultante dei momenti rispetto al piede di valle (MM) ${\rm MM} = \Sigma {\rm M}$	77.28	83.22	(kNm/m
Momento rispetto al baricentro della fondazione (M) M = Xc*N - MM	35.97	33.99	(kNm/m
Formula Generale per il Calcolo del Carico Limite Unitrario (Brinch-Hansen, 1	970)		
Fondazione Nastriforme			
$qlim = c'Nc*ic + q_o*Nq*iq + 0,5*\gamma1*B*N\gamma*i\gamma$			
c1' coesione terreno di fondaz. φ1' angolo di attrito terreno di fondaz. γ ₁ peso unità di volume terreno fondaz.	28.00 22.00 19.00		(kN/mq) (°) (kN/m³)
q ₀ =/d*H2' sovraccarico stabilizzante	0.00		(kN/m²)
e = M / N eccentricità B*= B - 2e larghezza equivalente	0.32 1.36	0.29 1.42	(m) (m)
l valori di Nc, Nq e Ng sono stati valutati con le espressioni suggerite da Vesic (1975)			
$ \begin{aligned} Nq &= tg^2(45 + \phi'/2)^* e^{(x^* \log \phi')} & (1 \text{ in cond. nd}) \\ Nc &= (Nq - 1)/tg(\phi') & (2+\pi \text{ in cond. nd}) \\ N\gamma &= 2^*(Nq + 1)^* tg(\phi') & (0 \text{ in cond. nd}) \end{aligned} $	7.82 16.88 7.13		(-) (-) (-)
l valori di ic, iq e iγ sono stati valutati con le espressioni suggerite da Vesic (1975)			
$iq = (1 - T/(N + B*c'cotg\phi'))^m$ (1 in cond. nd) ic = iq - (1 - iq)/(Nq - 1) $i\gamma = (1 - T/(N + B*c'cotg\phi'))^{m+1}$	0.45 0.36 0.30	0.46 0.38 0.31	(-) (-)
(fondazione nastriforme m = 2)			

(Caso più gravoso in corrispondenza della condizione sismica -)


F = qlim*B*/N

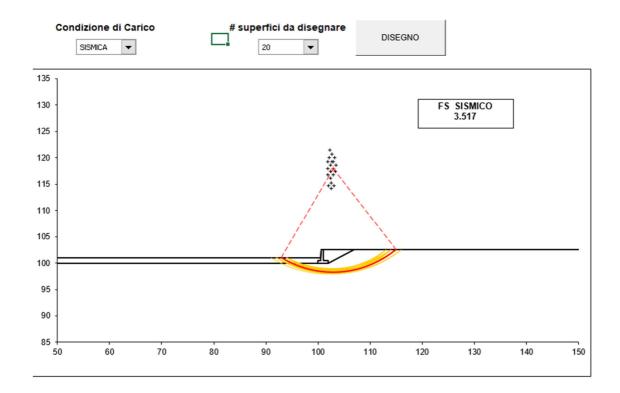
(carico limite unitario)

FS carico limite

6.4.4 Verifica di stabilità globale

	γ [kN/m³]	φ [°]	c [kPa]	Descrizione
materiale 1	20	38	0	Rilevato Ferroviario
materiale 2	19	22	28	Unità U2
materiale 3				
materiale 4				

azioni sismiche	a _g /g	0.146	(-)	S_s	1.48	$\mathbf{k}_{\mathbf{h}}$	0.0821	(-)
	β_{s}	0.38		\mathbf{S}_{T}	1	$\mathbf{k}_{\mathbf{v}}$	0.0411	(-)
x muro	100	(m)	y muro	100	(m)			


	p.c. va	lle		p.c. mo	nte		superfic	ie 1		sup	perfic	cie 2		superfic	cie 3			
		materiale 1		~			mate	riale 2			mate	riale 4		mate	riale 2		▽ falda	
	X	у		X	у		X	у		Х	(у		X	у		X	у
0	100.000	101.000	0	101.000	102.500	0	50.000	100.000	0				0			0	50.000	80.000
1	50.000	101.000	1	150.000	102.500	1	102.000	100.000	1				1			1	150.000	80.000
2			2			2	107.000	102.500	2				2			2		
3			3			3	150.000	102.500	3				3			3		

# Superfici Calcolate	FS Bishop			
1100	STATICO	6.550		
1100	SISMICO	3.517		

FS>1.2 VERIFICA SODDISFATTA

RELAZIONE DI CALCOLO MURO ESISTENTE AI SENSI DELLE NTC 2018

COMMESSA IA5F LOTTO CODIFICA 01 D 78 DOCUMENTO

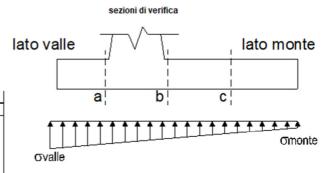
REV.

FOGLIO 31 di 46

6.5 VERIFICHE STRUTTURALI

6.5.1 Calcolo sollecitazioni soletta di fondazione

Reazione del terreno


ovalle = N/A+M/Wgg

σmonte = N/A-M/Wgg

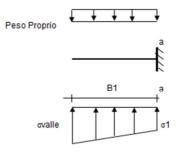
A = 1.0*B = 2.00 (m²)

 $Wgg = 1.0*B^2/6 = 0.67 (m^3)$

caso	N	M	ovalle	omonte
Caso	[kN]	[kNm]	[kN/m²]	[kN/m ²]
statico	115.35	25.67	96.18	19.17
	135.15	15.77	91.23	43.92
	120.54	34.51	112.04	8.50
sisma+	124.50	32.53	111.05	13.45
oio mo	113.24	35.97	110.57	2.67
sisma-	117.20	33.99	109.58	7.62

Mensola Lato Valle

Peso Proprio. PP =


Ma = $\sigma 1*B1^2/2 + (\sigma valle - \sigma 1)*B1^2/3 - PP*B1^2/2*(1±kv)$

Va = σ1*B1 + (σvalle - σ1)*B1/2 - PP*B1*(1±kv)

0000	σvalle	σ1	Ma	Va
caso	[kN/m ²]	[kN/m ²]	[kNm]	[kN]
statico	96.18	76.93	9.66	37.03
statico	91.23	79.40	9.35	36.41
sisma+	112.04	86.15	11.30	49.51
SiSilia	111.05	86.65	11.30	49.02
sisma-	110.57	83.60	11.20	48.78
SISIIId-	109.58	84.09	11.07	48.28

12.50

(kN/m)

b - c

b-c

σ2

B5 - B5/2

	Stv+Stq
,	ļ

Peso del Terrapieno

σmonte

Mensola Lato Monte

PP	=	12.50	(kN/m^2)	
PD	=	0.00	(kN/m)	

peso proprio soletta fondazione peso proprio dente

		Nmin	N max stat N	max sism	
pm	=	40.00	59.80	43.96	(kN/m ²)
pvb	=	40.00	59.80	43.96	(kN/m ²)
nvc	-	40.00	50.80	43.06	(kN/m^2)

$$\begin{split} \text{Mb=} &(\sigma_{monto}\text{-}(\text{pvb+PP})^*(1\pm kv))^*\text{BS}^2/2 + (\sigma 2\text{b-}\sigma_{monto})^*\text{BS}^2/6 - (\text{pm-pvb}))^*(1\pm kv)^*\text{BS}^2/3 + \\ &- (\text{Stv+Sqv})^*\text{BS-PD}^*(1\pm kv)^*(\text{BS-Bd/2})\text{-PD}^*\text{kh}^*(\text{Hd+H2/2})\text{+Msp+Sp}^*\text{H2/2} \end{split}$$

 $\begin{aligned} &\text{Mc} = (\sigma_{monta} - (pvc + PP)^*(1 \pm kv))^*(B5/2)^2/2 + (\sigma 2c - \sigma_{monta})^*(B5/2)^2/6 - (pm - pvc)^*(1 \pm kv)^*(B5/2)^2/3 + \\ &- (Stv + Sqv)^*(B5/2) - PD^*(1 \pm kv)^*(B5/2 - Bd/2) - PD^*kh^*(Hd + H2/2) + Msp + Sp^*H2/2 \end{aligned}$

 $Vb = (\sigma_{monto} - (pvb + PP)^*(1 \pm kv))^*B5 + (\sigma 2b - \sigma_{monto})^*B5/2 - (pm - pvb))^*(1 \pm kv)^*B5/2 - (Stv + Sqv) - PD^*(1 \pm kv)$

 $Vc = (\sigma_{monto} - (pvc + PP)^*(1 \pm kv))^*(B5/2) + (\sigma 2c - \sigma_{monto})^*(B5/2)/2 - (pm-pvc)^*(1 \pm kv)^*(B5/2)/2 - (Stv + Sqv) - PD^*(1 \pm kv)$

	omonte	σ2b	Mb	Vb	σ2c	Mc	Vc
caso	[kN/m ²]	[kN/m ²]	[kNm]	[kN]	[kN/m²]	[kNm]	[kN]
statico	19.17	57.68	-38.10	-41.93	38.42	-17.29	-39.70
	43.92	67.58	-38.10	-44.40	55.75	-16.98	-39.08
sisma+	8.50	60.27	-43.89	-49.72	34.39	-19.41	-46.05
	13.45	62.25	-43.98	-50.37	37.85	-19.37	-46.01
sisma-	2.67	56.62	-44.18	-50.03	29.65	-19.50	-46.43
	7.62	58.60	-44.10	-50.37	33.11	-19.42	-46.22

RELAZIONE DI CALCOLO MURO ESISTENTE AI SENSI DELLE NTC 2018

COMMESSA IA5F LOTTO CODIFICA 01 D 78 DOCUMENTO CL MU7300 002

=V. A FOGLIO 32 di 46

6.5.2 Calcolo sollecitazioni paramento verticale

Azioni sulla parete e Sezioni di Calcolo

Mt stat = $\frac{1}{2}$ Ka_{orizz.*} γ *(1±kv)*h²*h/3

 $\label{eq:Mtsism} \text{Mt sism} = \frac{1}{2} * \gamma * (\text{Kas}_{\text{crizz.}} * (1 \pm \text{kv}) - \text{Ka}_{\text{crizz.}}) * h^2 * h/2 \quad o * h/3$

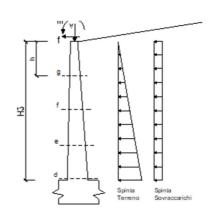
Mq = $\frac{1}{2} \text{Ka}_{\text{orizz}} + q + h^2$

 $M_{ext} = m+f*h$

 $M_{inerzia} = \Sigma Pm_i^*b_i^*kh$

 $N_{ext} = v$

N _{pp+inerzia}= $\Sigma Pm_i^*(1\pm kv)$


Vt stat = $\frac{1}{2}$ Ka_{orizz}* γ *(1±kv)*h²

Vt sism = 1/2 * \gamma * (Kas_{crizz} * (1±kv)-Ka_{crizz})*h²

 $Vq = Ka_{crizz}*q*h$

 $V_{ext} = f$

 $V_{inerzia} = \Sigma Pm_i^*kh$

condizione statica

sezione	h	Mt	Mq	M _{ext}	M _{tot}	N _{ext}	N _{pp}	N _{tot}
Sezione	[m]	[kNm/m]	[kNm/m]	[kNm/m]	[kNm/m]	[kN/m]	[kN/m]	[kN/m]
d-d	2.00	5.23	37.27	0.00	42.49	0.00	22.50	22.50
e-e	1.50	2.20	20.96	0.00	23.17	0.00	16.41	16.41
f-f	1.00	0.65	9.32	0.00	9.97	0.00	10.63	10.63
g-g	0.50	0.08	2.33	0.00	2.41	0.00	5.16	5.16

sezione	h	Vt	Vq	V _{ext}	V _{tot}
Sezione	[m]	[kN/m]	[kN/m]	[kN/m]	[kN/m]
d-d	2.00	7.84	37.27	0.00	45.11
e-e	1.50	4.41	27.95	0.00	32.36
f-f	1.00	1.96	18.63	0.00	20.59
g-g	0.50	0.49	9.32	0.00	9.81

condizione sismica +

sezione	h	Mt stat	Mt _{sism}	Mq	M _{ext}	M _{Inerzia}	M _{tot}	N _{ext}	N _{pp+Inerzia}	N _{tot}
	[m]	[kNm/m]	[kNm/m]	[kNm/m]	[kNm/m]	[kNm/m]	[kNm/m]	[kN/m]	[kN/m]	[kN/m]
d-d	2.00	5.23	1.48	37.46	0.00	1.78	45.94	0.00	23.42	23.42
e-e	1.50	2.20	0.62	21.07	0.00	0.98	24.88	0.00	17.08	17.08
f-f	1.00	0.65	0.18	9.36	0.00	0.43	10.63	0.00	11.06	11.06
g-g	0.50	0.08	0.02	2.34	0.00	0.10	2.55	0.00	5.37	5.37

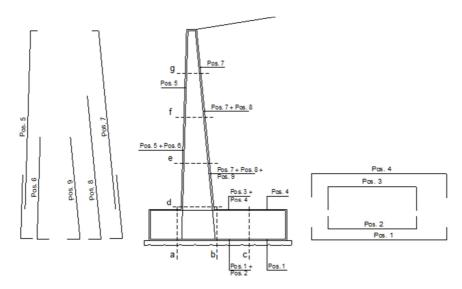
sezione	h	h Vt stat Vt sism Vq		Vq	V _{ext}	V _{ext} V _{inerzia}		
	[m]	[kN/m]	[kN/m]	[kN/m]	[kN/m]	[kN/m]	[kN/m]	
d-d	2.00	7.84	2.22	37.46	0.00	1.85	49.36	
e-e	1.50	4.41	1.25	28.09	0.00	1.35	35.10	
f-f	1.00	1.96	0.55	18.73	0.00	0.87	22.12	
g-g	0.50	0.49	0.14	9.36	0.00	0.42	10.42	

condizione sismica -

	Condizione diameter									
sezione	h	Mt stat	Mt _{sism}	Mq	M _{ext}	M _{inerzia}	M _{tot}	N _{ext}	N _{pp+Inerzia}	N _{tot}
	[m]	[kNm/m]	[kNm/m]	[kNm/m]	[kNm/m]	[kNm/m]	[kNm/m]	[kN/m]	[kN/m]	[kN/m]
d-d	2.00	5.23	1.01	38.06	0.00	1.78	46.08	0.00	21.58	21.58
e-e	1.50	2.20	0.43	21.41	0.00	0.98	25.02	0.00	15.73	15.73
f-f	1.00	0.65	0.13	9.52	0.00	0.43	10.72	0.00	10.19	10.19
g-g	0.50	0.08	0.02	2.38	0.00	0.10	2.58	0.00	4.94	4.94

sezione	h	Vt stat	Vt _{slam}	Vq	V _{ext}	V _{Inerzia}	V _{tot}
	[m]	[kN/m]	[kN/m]	[kN/m]	[kN/m]	[kN/m]	[kN/m]
d-d	2.00	7.84	1.52	38.06	0.00	1.85	49.27
e-e	1.50	4.41	0.85	28.55	0.00	1.35	35.16
f-f	1.00	1.96	0.38	19.03	0.00	0.87	22.24
g-g	0.50	0.49	0.09	9.52	0.00	0.42	10.52

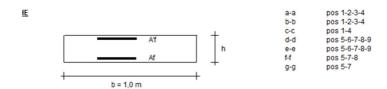
RELAZIONE DI **CALCOLO MURO ESISTENTE AI SENSI DELLE NTC 2018**


COMMESSA IA5F

LOTTO 01 CODIFICA D 78 DOCUMENTO CL MU7300 002

Calcola

FOGLIO 33 di 46


6.5.3 Schema delle armature

ARMATURE

pos	n°/ml	φ	II strato	pos	n°/ml	φ	II strato
1	5.0	14		5	5.0	10	
2	0.0	0		6	0.0	0	Г
3	0.0	0	<u></u>	7	5.0	24	
4	5.0	14	.	8	0.0	0	Г
				9	0.0	0	Ė

6.5.4 Verifica

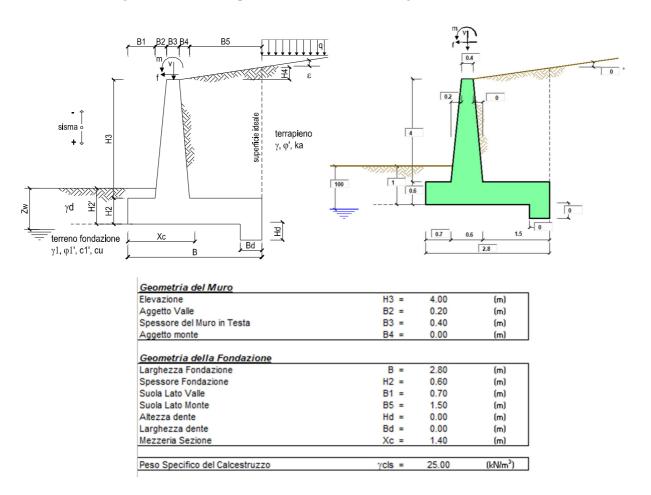
Sez.	M	N	h	Af	A'f	Mu
(-)	(kNm)	(kN)	(m)	(cm ²)	(cm²)	(kNm)
a-a	11.30	0.00	0.50	7.70	7.70	97.28
b - b	-44.18	0.00	0.50	7.70	7.70	97.28
C-C	-19.50	0.00	0.50	7.70	7.70	97.28
d - d	46.08	21.58	0.50	22.62	3.93	263.61
e -e	25.02	15.73	0.48	22.62	3.93	246.58
f-f	10.72	10.19	0.45	22.62	3.93	229.75
g - g	2.58	4.94	0.43	22.62	3.93	213.09

(n.b.: M+ tende le fibre di intradosso, M- tende le fibre di estradosso)

Sez.	W	b.	V	ø staffe	i orizz.	ivert		V	
Sez.	V _{Ed}		V_{rd}	ø stalle	I OHZZ.	i vert.	θ	V _{Red}	_
(-)	(kN)	(m)	(kN)	(mm)	(cm)	(cm)	(°)	(kN)	
a-a	49.51	0.50	149.90	10	25	25	21.8	347.93	Armatura a taglio non necessaria
b - b	50.37	0.50	149.90	10	25	25	21.8	347.93	Armatura a taglio non necessaria
C-C	46.43	0.50	149.90	10	25	25	21.8	347.93	Armatura a taglio non necessaria
d-d	49.36	0.50	217.12	10	25	25	21.8	347.93	Armatura a taglio non necessaria
e -e	35.16	0.48	210.63	10	25	25	21.8	328.30	Armatura a taglio non necessaria
f-f	22.24	0.45	204.05	10	25	25	21.8	308.66	Armatura a taglio non necessaria
q-q	10.52	0.43	197.37	10	25	25	21.8	289.03	Armatura a taglio non necessaria

7 ANALISI E VERIFICA MURO S4 – (KM 18+851 - KM 18+915)

Per l'analisi sismica, si considera che l'opera abbia una Vita Nominale V_N di 50 anni, ricada in classe d'uso II (coefficiente d'uso C_U =1.00) e, quindi una Vita di Riferimento V_R = V_N · C_U di 50 anni.


Con riferimento allo Stato Limite di Salvaguardia della Vita (SLV), i parametri sismici sono di seguito riportati.

Categoria sismica	${ m a_g}$	S_{S}	$a_{ m max}/g$
[-]	[-]	[-]	[-]
С	0.146	1.48	0.216

Tabella 4 – Parametri sismici dal Km 18+841 - Km 18+915.

7.1 INPUT

Le caratteristiche geometriche sono riportate sinteticamente nel seguente schema:

RELAZIONE DI CALCOLO MURO ESISTENTE AI SENSI DELLE NTC 2018

COMMESSA LOTTO CODIFICA DOCUMENTO REV. FOGLIO IA5F 01 D 78 CL MU7300 002 A 35 di 46

Dati Terrapieno	Angolo di attrito del terrapieno Peso Unità di Volume del terrapieno Angolo di attrito terreno-superficie ideale	(°) (kN/m³) (°)	φ' γ' δ	38.00 20.00 25.33	38.00 20.00 25.33	38.00 20.00 25.33
ione	Condizioni		drenate	Non Drenate		
Fondazie	Coesione Terreno di Fondazione	(kPa)	c1'	28.00	28.00	28.00
For	Angolo di attrito del Terreno di Fondazione	(1)	φ1'	22.00	22.00	22.00
S.	Peso Unità di Volume del Terreno di Fondazione	(kN/m³)	71	19.00	19.00	19.00
Tem	Peso Unità di Volume del Rinterro della Fondazione	(kN/m³)	γd	19.00	19.00	19.00
i i	Profondità "Significativa" (n.b.: consigliata H = 2*B)	(m)	Hs	3.40		
Dati	Modulo di deformazione	(kN/m²)	E	60000		

mici	Accelerazione sismica	a _q /g	0.146	(-)
	Coefficiente Amplificazione Stratigrafico	Ss	1.48	(-)
	Coefficiente Amplificazione Topografico	ST	1	(-)
	Coefficiente di riduzione dell'accelerazione massima	β_s	0.38	(-)
ati	Coefficiente sismico orizzontale	kh	0.0821104	(-)
	Coefficiente sismico verticale	kv	0.0411	(-)
	Muro libero di traslare o ruotare	•	si 🔾	no

_			SL	.E	STR/G	SEO	EC	วบ
	Coeff. di Spinta Attiva Statico	ka	0.217		0.217		0.217	
ē	Coeff. Di Spinta Attiva Sismica sisma +	kas+	0.261		0.261		0.261	
efficienti Spinta	Coeff. Di Spinta Attiva Sismica sisma -	kas-	0.266		0.266		0.266	
	Coeff. Di Spinta Passiva	kp	2.198		2.198		2.198	
ဝိ	Coeff. Di Spinta Passiva Sismica sisma +	kps+	2.076		2.076		2.076	
	Coeff. Di Spinta Passiva Sismica sisma -	kps-	2.066		2.066		2.066	

Per la verifica a ribaltamento i dati sismici sono i seguenti:

	Accelerazione sismica	a _ç /g	0.146	(-)
	Coefficiente Amplificazione Stratigrafico	S_{S}	1.48	(-)
Dati Sismici	Coefficiente Amplificazione Topografico	ST	1	(-)
Sisi	Coefficiente di riduzione dell'accelerazione massima	β_s	0.57	(-)
ati	Coefficiente sismico orizzontale	kh	0.1231656	(-)
_	Coefficiente sismico verticale	kv	0.0616	(-)
	Muro libero di traslare o ruotare	•	si () no

			SI	LE	STR/G	SEO	EC	งก
	Coeff. di Spinta Attiva Statico	ka	0.399		0.399		0.399	
E G	Coeff. Di Spinta Attiva Sismica sisma +	kas+	0.580		0.580		0.580	
officienti Spinta	Coeff. Di Spinta Attiva Sismica sisma -	kas-	0.616		0.616		0.616	
∯ S	Coeff. Di Spinta Passiva	kp	2.198		2.198		2.198	
ဝိ	Coeff. Di Spinta Passiva Sismica sisma +	kps+	2.015		2.015		2.015	
	Coeff. Di Spinta Passiva Sismica sisma -	kps-	1.990		1.990		1.990	

				valori caratteristici	valori di	progetto
Carichi	<u>Agenti</u>			SLE - sisma	STR/GEO	EQU
Carichi permanenti	Sovraccarico permanente Sovraccarico su zattera di monte	(kN/m²)	qp	75.30	75.30	75.30
Carichi	Forza Orizzontale in Testa permanente	(kN/m)	fp	0.00	0.00	0.00
De C	Forza Verticale in Testa permanente	(kN/m)	vp	0.00	0.00	0.00
	Momento in Testa permanente	(kNm/m)	mp	0.00	0.00	0.00
_	Sovraccarico Accidentale in condizioni statiche	(kN/m ²)	q	19.80	19.80	19.80
io Pe	Forza Orizzontale in Testa accidentale in condizioni statiche	(kN/m)	f	0.00	0.00	0.00
Condizioni Statiche	Forza Verticale in Testa accidentale in condizioni statiche	(kN/m)	V	0.00	0.00	0.00
ਤੂ ਲ	Momento in Testa accidentale in condizioni statiche	(kNm/m)	m	0.00	0.00	0.00
	Coefficienti di combinazione condizione frequer	ite Ψ1	1.00	condizione quasi perma	nente Ψ2	0.00
E 5	Sovraccarico Accidentale in condizioni sismiche	(kN/m^2)	qs	3.96		
Condizioni Sismiche	Forza Orizzontale in Testa accidentale in condizioni sismiche	(kN/m)	fs	0.00	4 4	
Sisn	Forza Verticale in Testa accidentale in condizioni sismiche	(kN/m)	VS	0.00	4 4	
0 0	Momento in Testa accidentale in condizioni sismiche	(kNm/m)	ms	0.00		

RELAZIONE DI CALCOLO MURO ESISTENTE AI SENSI DELLE NTC 2018

COMMESSA IA5F LOTTO CODIFICA 01 D 78 DOCUMENTO CL MU7300 002 FOGLIO 36 di 46

7.2 AZIONI

FORZE VERTICALI

- Peso del Muro	(Pm)		SLE	STR/GEO	EQU		
Pm1 =	(B2*H3*/cls)/2	(kN/m)	10.00	10.00	10.00		
Pm2 =	(B3*H3*/cls)	(kN/m)	40.00	40.00	40.00		
Pm3 =	(B4*H3*/cls)/2	(kN/m)	0.00	0.00	0.00		
Pm4 =	(B*H2*/cls)	(kN/m)	42.00	42.00	42.00		
Pm5 =	(Bd*Hd*/cls)	(kN/m)	0.00	0.00	0.00		
Pm =	Pm1 + Pm2 + Pm3 + Pm4 + Pm5	(kN/m)	92.00	92.00	92.00		
- Peso del terreno e sovr. perm. sulla scarpa di monte del muro (Pt)							
Pt1 =	(B5*H3* ₇ ')	(kN/m)	120.00	120.00	120.00		
Pt2 =	(0,5*(B4+B5)*H4*\gamma')	(kN/m)	0.00	0.00	0.00		
Pt3 =	(B4*H3*/')/2	(kN/m)	0.00	0.00	0.00		
Sovr =	qp * (B4+B5)	(kN/m)	0.00	0.00	0.00		
Pt =	Pt1 + Pt2 + Pt3 + Sovr	(kN/m)	120.00	120.00	120.00		
- Sovraccarico accidentale sulla scarpa di monte del muro							
Sovr acc. Stat	(kN/m)	29.7	29.7				
Sovr acc. Sism	qs * (B4+B5)	(kN/m)	5.94				

MOMENTI DELLE FORZE VERT. RISPETTO AL PIEDE DI VALLE DEL MURO

- Muro (Mm)			SLE	STR/GEO	EQU	
Mm1 =	Pm1*(B1+2/3 B2)	(kNm/m)	8.33	8.33	8.33	
Mm2 =	Pm2*(B1+B2+0,5*B3)	(kNm/m)	44.00	44.00	44.00	
Mm3 =	Pm3*(B1+B2+B3+1/3 B4)	(kNm/m)	0.00	0.00	0.00	
Mm4 =	Pm4*(B/2)	(kNm/m)	58.80	58.80	58.80	
Mm5 =	Pm5*(B - Bd/2)	(kNm/m)	0.00	0.00	0.00	
Mm =	Mm1 + Mm2 + Mm3 + Mm4 + Mm5	(kNm/m)	111.13	111.13	111.13	
- Terrapieno e	sovr. perm. sulla scarpa di monte del muro					
Mt1 =	Pt1*(B1+B2+B3+B4+0,5*B5)	(kNm/m)	246.00	246.00	246.00	
Mt2 =	Pt2*(B1+B2+B3+2/3*(B4+B5))	(kNm/m)	0.00	0.00	0.00	
Mt3 =	Pt3*(B1+B2+B3+2/3*B4)	(kNm/m)	0.00	0.00	0.00	
Msovr =	Sovr*(B1+B2+B3+1/2*(B4+B5))	(kNm/m)	0.00	0.00	0.00	
Mt =	Mt1 + Mt2 + Mt3 + Msovr	(kNm/m)	246.00	246.00	246.00	
- Sovraccarico accidentale sulla scarpa di monte del muro						
Sovr acc. Stat	*(B1+B2+B3+1/2*(B4+B5))	(kNm/m)	60.885	60.885		
Sovr acc. Sism	*(B1+B2+B3+1/2*(B4+B5))	(kNm/m)	12.177			

RELAZIONE DI CALCOLO MURO ESISTENTE AI SENSI DELLE NTC 2018

COMMESSA LOTTO CODIFICA DOCUMENTO REV. FOGLIO IA5F 01 D 78 CL MU7300 002 A 37 di 46

	MURO E DEL TERRAPIENO entale e verticale del muro (Ps)		
Ps h =	Pm*kh	(kN/m)	7.55
Ps v =	Pm*kv	(kN/m)	3.78
F3 V-	FIII KY	(KIVIII)	3.70
- Inerzia orizzo	ntale e verticale del terrapieno a tergo del muro (Pts)		
Ptsh =	Pt*kh	(kN/m)	9.85
Ptsv =	Pt*kv	(kN/m)	4.93
- Incremento o	rizzontale di momento dovuto all'inerzia del muro (MPs	h)	
MPs1 h=	kh*Pm1*(H2+H3/3)	(kNm/m)	1.59
MPs2 h=	kh*Pm2*(H2 + H3/2)	(kNm/m)	8.54
MPs3 h=	kh*Pm3*(H2+H3/3)	(kNm/m)	0.00
MPs4 h=	kh*Pm4*(H2/2)	(kNm/m)	1.03
MPs5 h=	-kh*Pm5*(Hd/2)	(kNm/m)	0.00
MPs h=	MPs1+MPs2+MPs3+MPs4+MPs5	(kNm/m)	11.16
III 3 11-	mi 31 mi 32 mi 33 mi 34 mi 33	(KIVIII)	11.10
 Incremento ve 	erticale di momento dovuto all'inerzia del muro (MPs v)		
MPs1 v=	kv*Pm1*(B1+2/3*B2)	(kNm/m)	0.34
MPs2 v=	kv*Pm2*(B1+B2+B3/2)	(kNm/m)	1.81
MPs3 v=	kv*Pm3*(B1+B2+B3+B4/3)	(kNm/m)	0.00
MPs4 v=	kv*Pm4*(B/2)	(kNm/m)	2.41
MPs5 v=	kv*Pm5*(B-Bd/2)	(kNm/m)	0.00
MPs v=	MPs1+MPs2+MPs3+MPs4+MPs5	(kNm/m)	4.56
- Incremento or	rizzontale di momento dovuto all'inerzia del terrapieno	(MPts h)	
MPts1 h=	kh*Pt1*(H2 + H3/2)	(kNm/m)	25.62
MPts2 h=	kh*Pt2*(H2 + H3 + H4/3)	(kNm/m)	0.00
MPts3 h=	kh*Pt3*(H2+H3*2/3)	(kNm/m)	0.00
MPts h=	MPts1 + MPts2 + MPts3	(kNm/m)	25.62
la accompata	erticale di momento dovuto all'inerzia del terrapieno (M	Dtn + ()	
		,	10.10
MPts1 v=	kv*Pt1*((H2 + H3/2) - (B - B5/2)*0.5)	(kNm/m)	10.10
MPts2 v=	kv*Pt2*((H2 + H3 + H4/3) - (B - B5/3)*0.5)	(kNm/m)	0.00
MPts3 v=	kv*Pt3*((H2+H3*2/3)-(B1+B2+B3+2/3*B4)*0.5)	(kNm/m)	0.00
MPts v=	MPts1 + MPts2 + MPts3	(kNm/m)	10.10

LINEA FERRANDINA-MATERA LA MARTELLA
PROGETTO DEFINITIVO

COLLEGAMENTO DI MATERA CON LA RETE FERROVIARIA NAZIONALE

RELAZIONE DI CALCOLO MURO ESISTENTE AI SENSI DELLE NTC 2018

COMMESSA IA5F LOTTO CODIFICA 01 D 78 DOCUMENTO CL MU7300 002

STR/GEO

FOGLIO 38 di 46

7.4 VERIFICHE GEOTECNICHE

CONDIZIONE SISMICA +

- Spinta condiz	TERRENO E DEL SOVRACCARICO ione sismica +		SLE	STR/GEO	EQU
Sst1 stat =	0,5*/*(H2+H3+H4+Hd)**ka	(kN/m)	45.87	45.87	45.87
Sst1 sism =	0,5*/'*(1+kv)*(H2+H3+H4+Hd)**kas*-Sst1 stat	(kN/m)	11.72	11.72	11.72
Ssq1 perm=	qp*(H2+H3+H4+Hd)*kas*	(kN/m)	87.19	87.19	87.19
Ssq1 acc =	qs*(H2+H3+H4+Hd)*kas*	(kN/m)	4.76	4.76	4.76
- Componente	orizzontale condizione sismica +				
Sst1h stat =	Sst1 stat*cosō	(kN/m)	41.46	41.46	41.46
Sst1h sism =	Sst1 sism*cosõ	(kN/m)	10.59	10.59	10.59
Ssq1h perm=	Ssq1 perm*cosδ	(kN/m)	78.81	78.81	78.81
Ssq1h acc=	Ssq1 acc*cosō	(kN/m)	4.30	4.30	4.30
- Componente	verticale condizione sismica +				
Sst1v stat =	Sst1 stat*senδ	(kN/m)	19.63	19.63	19.63
Sst1v sism =	Sst1 sism*senő	(kN/m)	5.02	5.02	5.02
Ssq1v perm=	Ssq1 perm*senδ	(kN/m)	37.31	37.31	37.31
Ssq1v acc=	Ssq1 acc*senō	(kN/m)	2.04	2.04	2.04
- Spinta passiv	a sul dente				
Sp=1/2*γ ₁ '(1+kv) Hd ² *kps*+(2*c ₁ '*kps* ^{0.5} +γ1' (1+kv) kps**H2')*Hd	(kN/m)	0.00	0.00	0.00

- Condizione sismica +			SLE	STR/GEO	EQU
MSst1 stat =	Sst1h stat * ((H2+H3+H4+hd)/3-hd)	(kNm/m)	63.57	63.57	63.57
MSst1 sism=	Sst1h sism* ((H2+H3+H4+Hd)/3-Hd)	(kNm/m)	16.25	16.25	16.25
MSst2 stat =	Sst1v stat* B	(kNm/m)	54.96	54.96	54.96
MSst2 sism =	Sst1v sism* B	(kNm/m)	14.04	14.04	14.04
MSsq1 =	Ssq1h * ((H2+H3+H4+Hd)/2-Hd)	(kNm/m)	191.16	191.16	191.16
MSsq2 =	Ssq1v * B	(kNm/m)	110.17	110.17	110.17
MSp =	γ_1 *Hd3*kps*/3+(2*c1*kps*0.5+ γ 1*kps**H2')*Hd2/2	(kNm/m)	0.00	0.00	0.00

MOMENTI DOVUTI ALLE FORZE ESTERNE

Mfext1 =	mp+ms	(kNm/m)	0.00
Mfext2 =	(fp+fs)*(H3 + H2)	(kNm/m)	0.00
Mfext3 =	(vp+vs)*(B1 +B2 + B3/2)	(kNm/m)	0.00

RELAZIONE DI CALCOLO MURO ESISTENTE AI SENSI DELLE NTC 2018

COMMESSA IA5F LOTTO CODIFICA 01 D 78 DOCUMENTO CL MU7300 002 FOGLIO 39 di 46

CONDIZIONE SISMICA -

- Spinta condiz	ERRENO E DEL SOVRACCARICO		SLE	STR/GEO	EQU
	0,5*/*(H2+H3+H4+Hd)**ka	(kN/m)	45.87	45.87	45.87
Sst1 sism =	0,5*/*(1-kv)*(H2+H3+H4+Hd)**kas*-Sst1 stat	(kN/m)	8.03	8.03	8.03
Ssq1 perm=	qp*(H2+H3+H4+Hd)*kas*	(kN/m)	88.60	88.60	88.60
Ssq1 acc =	qs*(H2+H3+H4+Hd)*kas*	(kN/m)	4.84	4.84	4.84
33q1 acc =	43 (11211131141114) kas	(KIVIII)	4.04	4.04	4.04
- Componente	orizzontale condizione sismica -				
Sst1h stat =	Sst1 stat*cosō	(kN/m)	41.46	41.46	41.46
Sst1h sism =	Sst1 sism*cosõ	(kN/m)	7.26	7.26	7.26
Ssq1h perm=	Ssq1 perm*cosδ	(kN/m)	80.08	80.08	80.08
Ssq1h acc=	Ssq1 acc*cosō	(kN/m)	4.37	4.37	4.37
- Componente	verticale condizione sismica -				
Sst1v stat =	Sst1 stat*senō	(kN/m)	19.63	19.63	19.63
Sst1v sism =	Sst1 sism*senő	(kN/m)	3.44	3.44	3.44
Ssq1v perm=	Ssq1 perm*senő	(kN/m)	37.91	37.91	37.91
Ssq1v acc=	Ssq1 acc*senő	(kN/m)	2.07	2.07	2.07
- Spinta passiv	a sul dente				
Sp=½*γ₁'(1-kv)) Hd ² *kps'+(2*c ₁ '*kps' ^{0.5} +'/1' (1-kv) kps'*H2')*Hd	(kN/m)	0.00	0.00	0.00
MOMENTI DE	LLA SPINTA DEL TERRENO E DEL SOVRACCARICO ismica -		SLE	STR/GEO	EQU
MSst1 stat =	Sst1h stat * ((H2+H3+H4+hd)/3-hd)	(kNm/m)	63.57	63.57	63.57
MSst1 sism=	Sst1h sism* ((H2+H3+H4+Hd)/3-Hd)	(kNm/m)	11.13	11.13	11.13
MSst2 stat =	Sst1v stat* B	(kNm/m)	54.96	54.96	54.96
MSst2 sism =	Sst1v sism* B	(kNm/m)	9.62	9.62	9.62
MSsq1 =	Ssq1h * ((H2+H3+H4+Hd)/2-Hd)	(kNm/m)	194.24	194.24	194.24
MSsq2 =	Ssq1v * B	(kNm/m)	111.94	111.94	111.94
MSp =	γ_1 '*Hd 3 *kps * /3+(2*c1'*kps $^{*0.5}$ + γ 1'*kps * *H2')*Hd 2 /2	(kNm/m)	0.00	0.00	0.00
	VUTI ALLE FORZE ESTERNE				
Mfext1 =	mp+ms	(kNm/m)		0.00	
Mfext2 =	(fp+fs)*(H3 + H2)	(kNm/m)		0.00	
Mfext3 =	(vp+vs)*(B1 +B2 + B3/2)	(kNm/m)		0.00	

7.4.1 Verifica allo scorrimento

Fs	=	(N*f + Sp) / T	0.71	<	1
-	fficiente d =	i attrito alla base (f) tgφ1'	0.40	(-)	
	tante forz	re orizzontali (T) Sst1h + Ssq1h + fp + fs +Ps h + Ptsh	150.58	(kN/m)	
	tante forz	te verticali (N) Pm+ Pt + vp + vs + Sst1v + Ssq1v + Ps v + Ptsv	266.34	(kN/m)	

FOGLIO 40 di 46

(Caso più gravoso in corrispondenza della condizione sismica -)

La verifica a scorrimento non risulta soddisfatta, pertanto l'opera necessita di un intervento di miglioramento sismico, come descritto nell'apposita relazione.

7.4.2 Verifica al ribaltamento

Fr	=	Ms / Mr	1.95	>	1
	ento ribalta =	Inte (Mr) MSst+MSsq+Mfext1+Mfext2+MSp+MPs+Mpts	183.21	(kNm/m)	
Mome Ms		zzante (Ms) Mm + Mt + Mfext3	357.13	(kNm/m)	

(Caso più gravoso in corrispondenza della condizione sismica -)

qlim

FS carico limite

LINEA FERRANDINA-MATERA LA MARTELLA PROGETTO DEFINITIVO COLLEGAMENTO DI MATERA CON LA RETE FERROVIARIA NAZIONALE

RELAZIONE DI CALCOLO MURO ESISTENTE AI SENSI DELLE NTC 2018

 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 IA5F
 01
 D 78
 CL MU7300 002
 A
 41 di 46

203.63

1.22

1.30

Nmin

Nmax

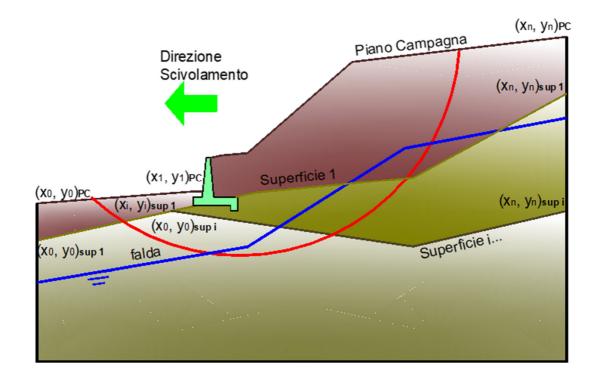
213.30

(kN/m²)

1.2

7.4.3 Verifica al carico limite della fondazione

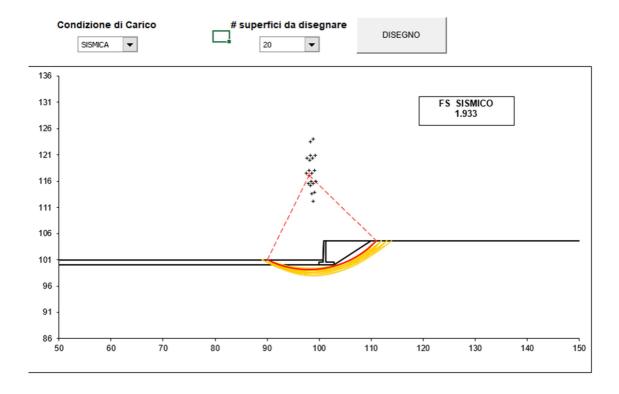
Risultante forz N =	e verticali (N) Pm+ Pt + vp + vs + Sst1v + Ssq1v + Ps v + Ptsv	Nmin 266.34	Nmax 272.28	(kN/m)
Risultante forz	e orizzontali (T) Sst1h + Ssq1h + fp + fs +Ps h + Ptsh - Sp	150.58		(kN/m)
Risultante dei r	nomenti rispetto al piede di valle (MM) ΣM	213.27	225.45	(kNm/m)
Momento rispe M =	tto al baricentro della fondazione (M) Xc*N - MM	159.60	155.74	(kNm/m)
Formula Gen	erale per il Calcolo del Carico Limite Unitrario (Brinch-Hansen, 1	970)		
Fondazione Na	striforme			
qlim = c'Nc*ic	+ q ₀ *Nq*iq + 0,5*γ1*Β*Nγ*iγ			
c1' φ1' '/1	coesione terreno di fondaz. angolo di attrito terreno di fondaz. peso unità di volume terreno fondaz.	28.00 22.00 19.00		(kN/mq) (°) (kN/m³)
q ₀ =γd*H2*	sovraccarico stabilizzante	19.00		(kN/m²)
e = M / N B*= B - 2e	eccentricità larghezza equivalente	0.60 1.60	0.57 1.66	(m) (m)
I valori di Nc, N	q e Ng sono stati valutati con le espressioni suggerite da Vesic (1975)			
$Nq = tg^{2}(45 + q)$ $Nc = (Nq - 1)/tq$ $N\gamma = 2*(Nq + 1)$	$g(\phi')$ (2+ π in cond. nd)	7.82 16.88 7.13		(-) (-)
I valori di ic, iq	e i _/ sono stati valutati con le espressioni suggerite da Vesic (1975)			
iq = (1 - T/(N + ic = iq - (1 - iq)) $i\gamma = (1 - T/(N + ic = iq - iq))$	/(Nq - 1)	0.36 0.27 0.22	0.37 0.28 0.22	(-) (-) (-)
(fondazione na	astriforme m = 2)			
_				2.


(Caso più gravoso in corrispondenza della condizione sismica +)

F = qlim*B*/N


(carico limite unitario)

7.4.4 Verifica di stabilità globale


			γ [kN/m³]	φ [°]		c [kPa]			Desci	rizione							
	mate	eriale 1	20	38		0		F	Rilevato I	erroviario							
	mate	eriale 2	19	22		28			Uni	tà 2							
	mate	eriale 3															
	mate	eriale 4															
ŧ	azioni sismiche x muro																
		x mure	a _g /g β _s 100	0.146 0.38 (m)			S _s S _T 100	(m)	1.48	k _h k _v		.0821 .0411	(-) (-)				
	p.c. val		βs	0.38 (m)	у	muro	S _T		1 superfic	k _v		.0411	(-)		√ f	alda	
0		le	βs 100 p.c. mo	0.38 (m)	y	muro	100 cie 1	(m)	1 superfic	k _v	0	.0411	(-)	0	x 50.0		y 80.000

# Superfici		
Calcolate	Bish	
1001	STATICO	3.340
1001	SISMICO	1.933

FS>1.2 VERIFICA SODDISFATTA

RELAZIONE DI CALCOLO MURO ESISTENTE AI SENSI DELLE NTC 2018

COMMESSA IA5F LOTTO CODIFICA 01 D 78 DOCUMENTO CL MU7300 002

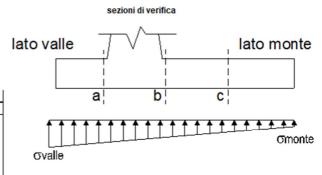
REV.

FOGLIO 44 di 46

7.5 VERIFICHE STRUTTURALI

7.5.1 Calcolo sollecitazioni soletta di fondazione

Reazione del terreno

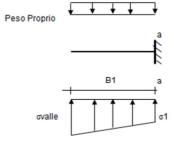

ovalle = N/A+M/Wgg

σmonte = N/A-M/Wgg

A = 1.0*B = 2.80 (m²)

 $Wgg = 1.0*B^2/6 = 1.31 (m^3)$

caso	N	M	ovalle	omonte
Caso	[kN]	[kNm]	[kN/m ²]	[kN/m²]
statico	272.21	116.10	186.07	8.37
Statico	301.91	96.79	181.90	33.75
sisma+	286.14	160.35	227.20	0.00
SiSilia	292.08	156.49	225.31	0.00
aiama	267.81	164.67	227.40	0.00
sisma-	273.75	160.81	224.59	0.00


Mensola Lato Valle

Peso Proprio.

PP = 15.00 (kN/m)

Ma = $\sigma 1*B1^2/2 + (\sigma valle - \sigma 1)*B1^2/3 - PP*B1^2/2*(1±kv)$ Va = $\sigma 1*B1 + (\sigma valle - \sigma 1)*B1/2 - PP*B1*(1±kv)$

	ovalle	σ1	Ma	Va
caso	[kN/m ²]	[kN/m ²]	[kNm]	[kN]
statico	186.07	141.64	38.28	104.20
Statico	181.90	144.86	37.87	103.87
sisma+	227.20	164.06	46.68	135.48
SiSilia	225.31	164.48	46.56	134.62
sisma-	227.40	159.82	46.67	134.73
SiSilia-	224.59	160.10	46.08	133.39

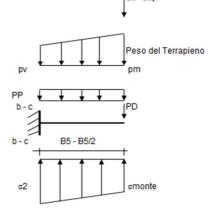
M	en	SO	la	La	to	Mo	nte

PP	=	15.00	(kN/m ²)
PD	=	0.00	(kN/m)

peso proprio soletta fondazione

peso proprio dente

			•	•	
		Nmin	N max stat N r	max sism	
pm	=	80.00	99.80	83.96	(kN/m^2)
pvb	=	80.00	99.80	83.96	(kN/m^2)
nvc	_	80.00	99.80	83.96	(kN/m^2)


$$\label{eq:mbeta-def} \begin{split} \text{Mb=}(\sigma_{monto}\text{-}(\text{pvb+PP})^*(1\pm kv))^*\text{BS}^2/2 + (\sigma 2b - \sigma_{monto})^*\text{BS}^2/6 - (\text{pm-pvb}))^*(1\pm kv)^*\text{BS}^2/3 + \\ -(\text{Stv+Sqv})^*\text{BS-PD}^*(1\pm kv)^*(\text{BS-Bd/2}) - \text{PD}^*\text{kh}^*(\text{Hd+H2/2}) + \text{Msp+Sp}^*\text{H2/2} \end{split}$$

 $Mc = (\sigma_{monto}^{-}(pvc+PP)^{*}(1\pm kv))^{*}(B5/2)^{2}/2 + (\sigma_{2}c - \sigma_{monto})^{*}(B5/2)^{2}/6 - (pm-pvc)^{*}(1\pm kv)^{*}(B5/2)^{2}/3 + (Stv+Sqv)^{*}(B5/2)-PD^{*}(1\pm kv)^{*}(B5/2)-PD^{*}(h^{*}(Hd+H2/2)+Msp+Sp^{*}H2/2)$

 $Vb = (\sigma_{monto} - (pvb + PP)^*(1 \pm kv))^*B5 + (\sigma 2b - \sigma_{monto})^*B5/2 - (pm - pvb))^*(1 \pm kv)^*B5/2 - (Stv + Sqv) - PD^*(1 \pm kv)$

 $Vc = (\sigma_{monto} - (pvc + PP)^*(1 \pm kv))^*(B5/2) + (\sigma 2c - \sigma_{monto})^*(B5/2)/2 - (pm - pvc)^*(1 \pm kv)^*(B5/2)/2 - (Stv + Sqv) - PD^*(1 \pm kv)$

	omonte	σ2b	Mb	Vb	σ2с	Mc	Vc
caso	[kN/m ²]	[kN/m ²]	[kNm]	[kN]	[kN/m²]	[kNm]	[kN]
statico	8.37	103.56	-152.08	-118.76	55.96	-65.06	-107.33
Statico	33.75	113.12	-151.73	-122.26	73.43	-64.23	-106.12
oiomou	0.00	109.94	-182.19	-146.78	42.29	-75.34	-129.69
sisma+	0.00	112.34	-182.76	-147.36	47.16	-75.73	-129.90
aiama	0.00	101.89	-180.34	-147.39	29.48	-73.55	-128.33
sisma-	0.00	104.82	-180.91	-147.23	35.72	-74.18	-128.76

Stv+Sta

RELAZIONE DI CALCOLO MURO ESISTENTE AI SENSI DELLE NTC 2018

COMMESSA IA5F LOTTO CODIFICA 01 D 78 DOCUMENTO CL MU7300 002

v. F

FOGLIO 45 di 46

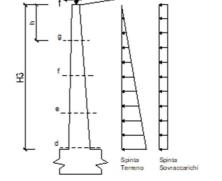
7.5.2 Calcolo sollecitazioni paramento verticale

Azioni sulla parete e Sezioni di Calcolo

Mt stat = $\frac{1}{2}$ Ka_{orizz}* γ *(1±kv)*h²*h/3

Mt sism = $\frac{1}{2} * \gamma * (Kas_{orizz} * (1\pm kv)-Ka_{orizz})*h^2*h/2 o *h/3$

 $\begin{array}{lll} Mq & = \ 1/2 \ Ka_{orizz} *q *h^2 \\ M_{ext} & = \ m + f *h \\ M_{inerzia} & = \ \Sigma Pm_i *b_i *kh \end{array}$


 $N_{ext} = v$

N $_{pp+inerzia}$ = $\Sigma Pm_i^*(1\pm kv)$

Vt stat = $\frac{1}{2}$ Ka_{crizz.}* γ *(1±kv)*h²

Vt sism = $\frac{1}{2} * \gamma * (Kas_{crizz} * (1\pm kv)-Ka_{crizz})*h^2$

Vq = $Ka_{crizz}^*q^*h$ V_{ext} = f $V_{inerzia}$ = ΣPm_i^*kh

condizione statica

sezione	h	Mt	Mq	M _{ext}	M _{tot}	N _{ext}	N _{pp}	N _{tot}
Sezione	[m]	[kNm/m]	[kNm/m]	[kNm/m]	[kNm/m]	[kN/m]	[kN/m]	[kN/m]
d-d	4.00	41.80	149.07	0.00	190.87	0.00	50.00	50.00
e-e	3.00	17.63	83.85	0.00	101.49	0.00	35.63	35.63
f-f	2.00	5.23	37.27	0.00	42.49	0.00	22.50	22.50
q-q	1.00	0.65	9.32	0.00	9.97	0.00	10.63	10.63

sezione	h	Vt	Vq	V _{ext}	V _{tot}
SCEIOIIC	[m]	[kN/m]	[kN/m]	[kN/m]	[kN/m]
d-d	4.00	31.35	74.54	0.00	105.89
e-e	3.00	17.63	55.90	0.00	73.54
f-f	2.00	7.84	37.27	0.00	45.11
g-g	1.00	1.96	18.63	0.00	20.59

condizione sismica +

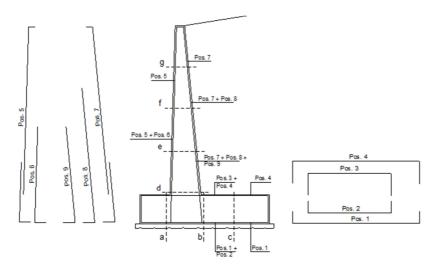
sezione	h	Mt stat	Mt _{sism}	Mq	M _{ext}	M _{inerzia}	M _{tot}	N _{ext}	N _{pp+Inerzia}	N _{tot}
	[m]	[kNm/m]	[kNm/m]	[kNm/m]	[kNm/m]	[kNm/m]	[kNm/m]	[kN/m]	[kN/m]	[kN/m]
d-d	4.00	41.80	11.82	149.84	0.00	7.66	211.12	0.00	52.05	52.05
e-e	3.00	17.63	4.99	84.28	0.00	4.16	111.06	0.00	37.09	37.09
f-f	2.00	5.23	1.48	37.46	0.00	1.78	45.94	0.00	23.42	23.42
g-g	1.00	0.65	0.18	9.36	0.00	0.43	10.63	0.00	11.06	11.06

sezione	h	Vt stat	Vt _{slam}	Vq	V _{ext}	V _{inerzia}	V _{tot}
	[m]	[kN/m]	[kN/m]	[kN/m]	[kN/m]	[kN/m]	[kN/m]
d-d	4.00	31.35	8.86	74.92	0.00	4.11	119.24
e-e	3.00	17.63	4.99	56.19	0.00	2.93	81.74
f-f	2.00	7.84	2.22	37.46	0.00	1.85	49.36
g-g	1.00	1.96	0.55	18.73	0.00	0.87	22.12

condizione sismica -

sezione	h	Mt stat	Mt _{sism}	Mq	M _{ext}	M _{Inerzia}	M _{tot}	Next	N _{pp+Inerzia}	N _{tot}
	[m]	[kNm/m]	[kNm/m]	[kNm/m]	[kNm/m]	[kNm/m]	[kNm/m]	[kN/m]	[kN/m]	[kN/m]
d-d	4.00	41.80	8.10	152.25	0.00	7.66	209.81	0.00	47.95	47.95
e-e	3.00	17.63	3.42	85.64	0.00	4.16	110.85	0.00	34.16	34.16
f-f	2.00	5.23	1.01	38.06	0.00	1.78	46.08	0.00	21.58	21.58
g-g	1.00	0.65	0.13	9.52	0.00	0.43	10.72	0.00	10.19	10.19

sezione	h	Vt stat	Vt _{slam}	Vq	V _{ext}	V _{inerzia}	V _{tot}
	[m]	[kN/m]	[kN/m]	[kN/m]	[kN/m]	[kN/m]	[kN/m]
d-d	4.00	31.35	6.07	76.12	0.00	4.11	117.66
e-e	3.00	17.63	3.42	57.09	0.00	2.93	81.07
f-f	2.00	7.84	1.52	38.06	0.00	1.85	49.27
g-g	1.00	1.96	0.38	19.03	0.00	0.87	22.24

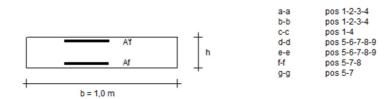

LINEA FERRANDINA-MATERA LA MARTELLA
PROGETTO DEFINITIVO

COLLEGAMENTO DI MATERA CON LA RETE FERROVIARIA NAZIONALE

RELAZIONE DI CALCOLO MURO ESISTENTE AI SENSI DELLE NTC 2018

COMMESSA IA5F LOTTO CODIFICA 01 D 78 DOCUMENTO CL MU7300 002 REV. FOGLIO A 46 di 46

7.5.3 Schema delle armature



ARMATURE

pos	n°/ml	φ	II strato	pos	n°/ml	φ	II strato
	5.0	20		-	E 0	4.4	
		20	_	5	5.0	14	_
2	0.0	0		6	0.0	0	Г
3	0.0	0	ΓΙ	7	5.0	20	
4	5.0	20		8	0.0	0	Г
				9	0.0	0	

Calcola

7.5.4 Verifica

Sez.	M	N	h	Af	A'f	Mu
(-)	(kNm)	(kN)	(m)	(cm ²)	(cm²)	(kNm)
a-a	46.68	0.00	0.60	15.71	15.71	228.32
b - b	-182.76	0.00	0.60	15.71	15.71	228.32
C-C	-75.73	0.00	0.60	15.71	15.71	228.32
d - d	211.12	52.05	0.60	15.71	7.70	241.12
e -e	111.06	37.09	0.55	15.71	7.70	214.67
f-f	46.08	21.58	0.50	15.71	7.70	188.86
g - g	10.72	10.19	0.45	15.71	7.70	164.53

(n.b.: M+ tende le fibre di intradosso, M- tende le fibre di estradosso)

Sez.	V _{Ed}	h	V_{rd}	ø staffe	i orizz.	i vert.	θ	V _{Red}	_
(-)	(kN)	(m)	(kN)	(mm)	(cm)	(cm)	(°)	(kN)	-
a-a	135.48	0.60	208.85	12	25	25	21.8	614.12	Armatura a taglio non necessaria
b - b	147.39	0.60	208.85	12	25	25	21.8	614.12	Armatura a taglio non necessaria
C-C	129.90	0.60	208.85	12	25	25	21.8	614.12	Armatura a taglio non necessaria
d - d	119.24	0.60	215.92	12	25	25	21.8	614.12	Armatura a taglio non necessaria
e -e	81.74	0.55	204.47	12	25	25	21.8	557.57	Armatura a taglio non necessaria
f-f	49.36	0.50	192.60	12	25	25	21.8	501.02	Armatura a taglio non necessaria
g - g	22.24	0.45	180.85	12	25	25	21.8	444.47	Armatura a taglio non necessaria