COMMITTENTE

PROGETTAZIONE:

DIREZIONE TECNICA U.O. INFRASTRUTTURE SUD

PROGETTO DEFINITIVO

Nuova linea Ferrandina - Matera La Martella per il collegamento di Matera con la rete ferroviaria nazionale

NUOVA LINEA FERRANDINA – MATERA LA MARTELLA

OPERE CIVILI
Opere di sostegno
MU73 - Muro di sottoscarpa a DX su FV02
Dimensionamento dell'intervento di adeguamento sismico

SCALA:
00414

COMMESSA LOTTO FASE ENTE TIPO DOC. OPERA/DISCIPLINA PROGR. REV.

Rev.	Descrizione	Redatto	Data	Verificato	Data	Approvato	Data	Autorizzato Data
Α	EMISSIONE	E.SELLARI	Luglio 2019	C.TORALDO	Luglio	F.GERNONE	07/2019	D.TIBERTI
			2019	Steine Vorald	, 2019 >	Obio Perus	ب	Luglio 2019
								\ \ \ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \
								STATE !
								-3-38 E

File: IA5F01D78CLMU7300003A

LINEA FERRANDINA-MATERA LA MARTELLA

PROGETTO DEFINITIVO COLLEGAMENTO DI MATERA CON LA RETE FERROVIARIA NAZIONALE

DIMENSIONAMENTO DELL'INTERVENTO DI ADEGUAMENTO SISMICO

COMMESSA IA5F

LOTTO 01 CODIFICA D 78 DOCUMENTO CL MU7300 003

REV. A

FOGLIO 2 di 32

Sommario

1	INTRODUZIONE	3
2	NORMATIVA E DOCUMENTAZIONE DI RIFERIMENTO	4
2.1	Normativa di riferimento	4
2.2	DOCUMENTI DI RIFERIMENTO	4
3	DESCRIZIONE DEL TRACCIATO	5
4	INQUADRAMENTO STRATIGRAFICO	12
5	VERIFICHE DELL'INTERVENTO DI ADEGUAMENTO SISMICO	13
5.1	CARATTERISTICHE DEI MATERIALI	14
5.2	CRITERI DI VERIFICA DELLE SEZIONI IN C.A.	15
5.	.2.1 Verifiche per gli stati limite ultimi a flessione-pressoflessione	15
5.	.2.2 Verifica agli stati limite ultimi a taglio	15
5.3	METODO DI ANALISI - CALCOLO PARATIA	15
6	MODELLO DI CALCOLO	17
6.1	RISULTATI	24
6.2	VERIFICHE	28

DIMENSIONAMENTO DELL'INTERVENTO DI ADEGUAMENTO SISMICO

COMMESSA LOTTO 1A5F 01

CODIFICA D 78 DOCUMENTO CL MU7300 003 REV.

3 di 32

1 INTRODUZIONE

Nella presente relazione vengono descritte le verifiche ai fini dell'adeguamento sismico dei muri di sostegno della linea Ferrandina – Matera La Martella e per il collegamento della linea con la linea storica Battipaglia–Potenza-Metaponto e illustra gli interventi necessari ai fini della manutenzione della sede e adeguamento sismico delle opere.

Tutte le geometrie dei muri utilizzate provengono dagli elaborati grafici del progetto esecutivo depositato e sono opere collaudate, di conseguenza sono classificate come **opere esistenti**.

Di conseguenza le suddette verifiche sono state strutturate come dettagliatamente descritto nel seguito.

La **prima fase** consiste nella verifica dei singoli muri di sostegno ai sensi delle normative vigenti all'epoca dalla progettazione/costruzione (Decreto Ministero Lavori Pubblici, 11 Marzo 1988 - Circolare Ministero Lavori Pubblici, 24 settembre 1988, Decreto Ministeriale Lavori Pubblici, 9 gennaio 1996 - Norme tecniche per il calcolo, l'esecuzione ed il collaudo delle strutture in cemento armato, normale e precompresso e per le strutture metalliche e Decreto Ministeriale Lavori Pubblici, 16 Gennaio 1996 - Norme tecniche per le costruzioni in zone sismiche) per escludere o rilevare che il Progetto «originario» della struttura non fosse affetto da errori e/o gravi carenze.

La **seconda fase** consiste nell'adeguamento sismico delle opere:

- la verifica sismica ai sensi delle NTC2018 nel caso in cui le verifiche secondo DM88 sono soddisfatte
- la verifica secondo il capitolo 8 delle NTC2018.

Se le verifiche della seconda fase non dovessero risultare soddisfatte si procede al dimensionamento dell'intervento di adeguamento descritto negli appositi elaborati.

Per maggiori dettagli si rimanda alla "Relazione tecnica descrittiva delle opere civili minori" [IA5F01D78RGOC0000001] e allegati (elaborati grafici del progetto esecutivo dell'epoca).

Di fatto l'unica verifica non soddisfatta nella seconda fase risulta essere quella di scorrimento sul piano di posa, al fine di adeguare la struttura si prevede di realizzare al piede del muro un cordolo su pali trivellati phi 600 mm in c.a. di lunghezza 8 m ad interasse 1.80m, per il cui dimensionamento si rimanda al cap. 5.

Argomento di questa relazione è il dimensionamento dell'intervento di adeguamento per i muri tipo S2 e S4 della WBS MU73 che ricade a destra del della Fermata La Martella FV74.

Nelle verifiche a favore di sicurezza si procederà con gli scarichi associati al muro di altezza maggiore S4e si estenderà l'intervento al muro tipo S2.

Per completezza nel cap. 3 si descrive il tracciato.

DIMENSIONAMENTO DELL'INTERVENTO DI ADEGUAMENTO SISMICO

COMMESSA LOTTO CODIFICA 1A5F 01 D 78

DOCUMENTO CL MU7300 003 FOGLIO

2 NORMATIVA E DOCUMENTAZIONE DI RIFERIMENTO

2.1 NORMATIVA DI RIFERIMENTO

L'interpretazione dei risultati e la redazione della presente relazione sono stati effettuati nel rispetto della Normativa in vigore e di alcune Raccomandazioni.

I principali riferimenti normativi sono i seguenti:

- [N.1]. Nuove norme sismiche per il calcolo strutturale D.M. 17-01-18 (NTC-2018).
- [N.2]. Circolare n. 7 del 21gennaio 2019 Istruzioni per l'applicazione dell'«Aggiornamento delle "Norme tecniche per le costruzioni"» di cui al decreto ministeriale 17 gennaio 2018.

2.2 DOCUMENTI DI RIFERIMENTO

Inoltre si fa riferimento ai seguenti documenti:

[D1]. IA5F00R09RGCS000X001A – Nuova linea Ferrandina - Matera La Martella per il collegamento di Matera con la rete ferroviaria nazionale (NPP.016) "Relazione interventi su rilevati e trincee".

e ai seguenti riferimenti bibliografici:

- [D2]. R. Lancellotta, Geotecnica, Zanichelli;
- [D3]. C. Viggiani, Fondazioni, Hevelius, 1999;
- [D4]. C.R. I. Clayton, J. Milititsky, R.I. Woods, Earth Pressure and Earth Retaining Structures, 1993 (traduzione italiana a cura di M. Cecconi, G.M.B. Viggiani, La spinta delle terre e le opere di sostegno, Hevelius, 2006)

LINEA FERRANDINA-MATERA LA MARTELLA
PROGETTO DEFINITIVO
COLLEGAMENTO DI MATERA CON LA RETE FERROVIARIA NAZIONAL

DIMENSIONAMENTO DELL'INTERVENTO DI ADEGUAMENTO SISMICO

MMESSA LOTTO CODIFICA IA5F 01 D 78 DOCUMENTO CL MU7300 003 REV. FOGLIO

3 DESCRIZIONE DEL TRACCIATO

Il tracciato attraversa i Comuni di Ferrandina, Pomarico, Miglionico e Matera, facenti parte della provincia di Matera, Regione Basilicata.

La tratta Ferrandina - Matera La Martella ha inizio alla pk 230+821 della LS Battipaglia - Potenza–Metaponto (cui è associata la pk 0+00 di progetto) e si sviluppa per 19+543.89 km fino al nuovo impianto di Matera La Martella.

Il tracciato si stacca dalla linea esistente curvando in direzione Matera e si inserisce sul sedime esistente prima dell'imbocco della galleria Miglionico. Pertanto i primi 2.2 km saranno realizzati su nuova sede; fino alla pk 1+057.35 il tracciato si sviluppa in rilevato (RI01), con altezza massima di circa 6-7m in approccio al viadotto "Nuovo Basento" (VI13), che si estende per circa 1,15 km. Si passa nuovamente in rilevato (RI02) fino ad imboccare la galleria artificiale GA01 alla pk 2+389.34; dalla pk x+xxx alla pk x+xxx si sviluppa la galleria naturale GN01, per poi ripresentare l'imbocco sottoforma di galleria artificiale in corrispondenza della pk x+xxx (fino alla pk 8+855.30). All'uscita della galleria il tracciato è caratterizzato da una successione di sezioni in rilevato e trincea che si interpongono tra gli undici viadotti presenti, fino alla progressiva finale in corrispondenza della stazione "Matera La Martella" (pk 19+543.89).

La successione dei diversi muri (lato sx e lato dx) è elencata nella seguente Tabella 1:

Tabella 1. WBS per i muri di sostegno.

<u>WBS</u>	<u>Descrizione</u>	<u>pk iniziale</u>	pk finale
MU51	MURO DI CONTRORIPA A SX SU TR01	8+855.26	9+077.30
MU52	MURO DI CONTRORIPA A DX SU TR01	8+856.64	9+087.12
MU53	MURO SI SOSTEGNO A SX SU RI03	9+083.17	9+624.33
MU54	MURO SI SOSTEGNO A SX SU RI04	9+664.81	9+698.84
MU55	MURO SI SOSTEGNO A DX SU RI04	9+664.30	9+767.62
MU56	MURO DI CONTRORIPA A SX SU TR02	9+718.16	9+899.96
MU57	MURO DI CONTRORIPA A DX SU TR02	9+767.62	9+900.62
MU58	MURO DI SOSTEGNO A DX SU RI05	10+251.51	10+361.00
MU59	MURO DI CONTRORIPA A SX SU TR03	10+427.66	10+536.10
MU60	MURO DI CONTRORIPA A DX SU TR03	10+418.11	10+569.93
MU61	MURO DI CONTRORIPA A SX TR04	11+833.82	12+035.91
MU62	MURO DI CONTRORIPA A DX SU TR04	11+821.39	12+068.84
MU63	MURO DI CONTRORIPA A SX SU TR05	13+296.60	13+439.53
MU64	MURO DI CONTRORIPA A DX SU TR05	13+294.42	13+431.55
MU65	MURO DI CONTRORIPA A SX SU TR06	14+312.95	14+904.91
MU66	MURO DI CONTRORIPA A DX SU TR06	14+301.63	14+897.52
MU67	MURO DI CONTRORIPA A SX SU TR07	17+372.82	17+615.82
MU68	MURO DI CONTRORIPA A DX SU TR07	17+372.82	17+577.82
MU69	MURO DI CONTRORIPA A SX SU TR08	17+800.85	17+973.50

DIMENSIONAMENTO DELL'INTERVENTO DI ADEGUAMENTO SISMICO

COMMESSA LOTTO CODIFICA DOCUMENTO REV. FO IASF 01 D 78 CL MU7300 003 A 6

<u>WBS</u>	<u>Descrizione</u>	pk iniziale	pk finale
MU70	MURO DI CONTRORIPA A DX SU TR08	17+800.09	17+972.74
MU71	MURO DI CONTRORIPA A SX SU TR09	18+426.82	18+729.69
MU72	MURO DI CONTRORIPA A DX SU TR09	18+415.74	18+820.23
MU73	MURO DI SOTTOSCARPA A SX SU FV02	18+841.85	18+915.85
MU74	MURO DI SOTTOSCARPA A DX SU FV02	18+842.69	19+365.24

In particolare, nella seguente Tabella 2 si riportano tutti i muri di sostegno distinti tra muri di sottoscarpa e muri di controripa presenti lungo la linea sia in destra che in sinistra e la relativa WBS muri di appartenenza: i muri di sottoscarpa sono indicati con la lettera S seguiti dall'altezza del paramento, in maniera analoga sono indicati quelli di controripa con la C seguita dall'altezza del paramento. In prossimità del viadotto Rio Conche i muri di sottoscarpa presentano uno spessore della soletta maggiore, per cui sono stati classificati differentemente e indicati con la lettera S, l'altezza del paramento e il simbolo *

Di seguito la legenda:

C5 muri di controripa aventi altezza del paramento pari a 5 m

C4 muri di controripa aventi altezza del paramento pari a 4 m

C3 muri di controripa aventi altezza del paramento pari a 3 m

C2 muri di controripa aventi altezza del paramento pari a 2 m

S6 muri di sottoscarpa aventi altezza del paramento pari a 6 m (spessore soletta di 0.9m)

S4 muri di sottoscarpa aventi altezza del paramento pari a 4 m (spessore soletta di 0.6m)

S2 muri di sottoscarpa aventi altezza del paramento pari a 2 m (spessore soletta di 0.5m)

S6* muri di sottoscarpa zona Rio Conche aventi altezza del paramento pari a 6 m (spessore soletta di 1.2 m)

S4* muri di sottoscarpa zona Rio Conche aventi altezza del paramento pari a 4 m (spessore soletta di 1 m)

S2* muri di sottoscarpa zona Rio Conche aventi altezza del paramento pari a 2 m (spessore soletta di 0.8m)

Sono inoltre indicati i cordoli con l'etichetta H0.

Tabella 2. Muri di sostegno.

WBS	muro	da	a	sviluppo	posizione
[-]	[-]	[m]	[m]	[m]	[-]
MU51	C5	8855.3	8965.27	109.97	sx
MU51	C4	8965.27	8985.27	20	sx
MU51	C3	8985.27	9015.28	30.01	sx

DIMENSIONAMENTO DELL'INTERVENTO DI ADEGUAMENTO SISMICO

COMMESSA IA5F LOTTO 01 CODIFICA D 78 DOCUMENTO CL MU7300 003 REV. A

FOGLIO 7 di 32

WBS	muro	da	а	sviluppo	posizione
[-]	[-]	[m]	[m]	[m]	[-]
MU51	C2	9015.28	9045.28	30	SX
MU51	H0	9045.28	9077.3	32.02	SX
MU53	S2	9083.17	9097.08	13.91	sx
MU53	S4	9097.08	9110.98	13.9	SX
MU53	S6	9110.98	9159.66	48.68	sx
MU53	S4	9159.66	9308.68	149.02	SX
MU53	S2*	9308.68	9385.17	76.49	sx
MU53	S4*	9385.17	9479.18	94.01	SX
MU53	S6*	9479.18	9551.92	72.74	sx
MU53	S4*	9551.92	9608.55	56.63	sx
MU53	S6*	9608.55	9624.33	15.78	SX
MU54	S4*	9664.86	9681.83	16.97	SX
MU54	S2*	9681.83	9698.84	17.01	SX
MU56	H0	9718.16	9762.87	44.71	sx
MU56	C2	9762.87	9767.84	4.97	SX
MU56	C3	9767.84	9847.31	79.47	sx
MU56	C2	9847.31	9872.14	24.83	SX
MU56	H0	9872.14	9899.96	27.82	sx
MU59	H0	10427.66	10536.1	108.44	SX
MU61	H0	11833.82	11905.78	71.96	SX
MU61	C2	11905.78	11979.72	73.94	sx
MU61	H0	11979.72	12035.91	56.19	SX
MU63	H0	13296.6	13334.8	38.2	sx
MU63	C2	13334.8	13404.01	69.21	SX
MU63	H0	13404.01	13439.53	35.52	SX
MU65	H0	14312.95	14347.38	34.43	SX
MU65	C2	14347.38	14372.05	24.67	SX
MU65	C3	14372.05	14391.78	19.73	SX
MU65	C4	14391.78	14500.3	108.52	SX
MU65	C3	14500.3	14658.15	157.85	SX
MU65	C4	14658.15	14682.82	24.67	sx

DIMENSIONAMENTO DELL'INTERVENTO DI ADEGUAMENTO SISMICO

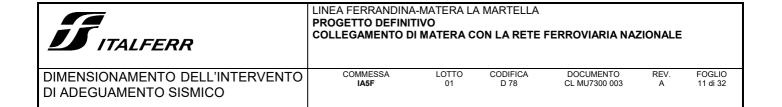
COMMESSA IA5F LOTTO 01 CODIFICA D 78 DOCUMENTO CL MU7300 003 REV. A FOGLIO 8 di 32

WBS	muro	da	а	sviluppo	posizione
[-]	[-]	[m]	[m]	[m]	[-]
MU65	C5	14682.82	14781.48	98.66	SX
MU65	C4	14781.48	14825.87	44.39	SX
MU65	C3	14825.87	14875.2	49.33	sx
MU65	C2	14875.2	14885.07	9.87	SX
MU65	H0	14885.07	14904.91	19.84	sx
MU67	H0	17372.82	17417.82	45	sx
MU67	C2	17417.82	17502.82	85	sx
MU67	C3	17502.82	17577.82	75	SX
MU67	C2	17577.82	17597.82	20	sx
MU67	H0	17597.82	17615.82	18	sx
MU69	H0	17800.85	17815.65	14.8	sx
MU69	C2	17815.65	17830.45	14.8	SX
MU69	C3	17830.45	17845.25	14.8	sx
MU69	C4	17845.25	17864.98	19.73	sx
MU69	C5	17864.98	17924.18	59.2	SX
MU69	C4	17924.18	17938.97	14.79	SX
MU69	C3	17938.97	17953.77	14.8	sx
MU69	C2	17953.77	17963.64	9.87	sx
MU69	H0	17963.64	17973.5	9.86	SX
MU71	H0	18426.82	18446.55	19.73	SX
MU71	C2	18446.55	18456.46	9.91	sx
MU71	C3	18456.46	18471.21	14.75	sx
MU71	C4	18471.21	18505.74	34.53	SX
MU71	C5	18505.74	18550.14	44.4	SX
MU71	C4	18550.14	18574.8	24.66	sx
MU71	C3	18574.8	18599.46	24.66	sx
MU71	C2	18599.46	18673.46	74	sx
MU71	H0	18673.46	18729.69	56.23	sx
MU73	S2	18841.85	18851.72	9.87	sx
MU73	S4	18851.72	18915.85	64.13	sx
MU52	C5	8855.64	9020.56	164.92	dx

DIMENSIONAMENTO DELL'INTERVENTO DI ADEGUAMENTO SISMICO

COMMESSA IA5F LOTTO 01 CODIFICA D 78 DOCUMENTO CL MU7300 003 REV. A FOGLIO 9 di 32

WBS	muro	da	a	sviluppo	posizione
[-]	[-]	[m]	[m]	[m]	[-]
MU52	C4	9020.56	9040.47	19.91	dx
MU52	C3	9040.47	9055.33	14.86	dx
MU52	C2	9055.33	9060.29	4.96	dx
MU52	H0	9060.29	9087.12	26.83	dx
MU55	S6*	9664.3	9690.13	25.83	dx
MU55	S4*	9690.13	9713.98	23.85	dx
MU55	S2*	9713.98	9723.91	9.93	dx
MU55	S4*	9723.91	9733.84	9.93	dx
MU55	S6*	9733.84	9753.71	19.87	dx
MU55	S4*	9753.71	9759.67	5.96	dx
MU55	S2*	9759.67	9767.62	7.95	dx
MU57	H0	9767.62	9900.62	133	dx
MU58	S4	10251.51	10267.32	15.81	dx
MU58	S6	10267.32	10326.47	59.15	dx
MU58	S4	10326.47	10351.12	24.65	dx
MU58	S2	10351.12	10361	9.88	dx
MU60	H0	10418.11	10424.03	5.92	dx
MU60	C2	10424.03	10443.75	19.72	dx
MU60	C4	10443.75	10507.83	64.08	dx
MU60	C2	10507.83	10522.61	14.78	dx
MU60	H0	10522.61	10569.93	47.32	dx
MU62	H0	11821.39	11839.14	17.75	dx
MU62	C2	11839.14	11874.63	35.49	dx
MU62	C3	11874.63	11894.35	19.72	dx
MU62	C4	11894.35	11992.8	98.45	dx
MU62	C3	11992.8	12017.58	24.78	dx
MU62	C2	12017.58	12037.29	19.71	dx
MU62	H0	12037.29	12068.84	31.55	dx
MU64	H0	13294.42	13330.93	36.51	dx
MU64	C2	13330.93	13404.92	73.99	dx
MU64	H0	13404.92	13431.55	26.63	dx


DIMENSIONAMENTO DELL'INTERVENTO DI ADEGUAMENTO SISMICO

COMMESSA IA5F LOTTO 01

CODIFICA D 78 DOCUMENTO CL MU7300 003 REV. A

FOGLIO 10 di 32

WBS	muro	da	а	sviluppo	posizione
[-]	[-]	[m]	[m]	[m]	[-]
MU66	H0	14301.63	14326.3	24.67	dx
MU66	C2	14326.3	14350.96	24.66	dx
MU66	C3	14350.96	14375.63	24.67	dx
MU66	C4	14375.63	14400.29	24.66	dx
MU66	C5	14400.29	14469.35	69.06	dx
MU66	C4	14469.35	14498.95	29.6	dx
MU66	C3	14498.95	14523.61	24.66	dx
MU66	C2	14523.61	14657.79	134.18	dx
MU66	C3	14657.79	14692.32	34.53	dx
MU66	C4	14692.32	14790.97	98.65	dx
MU66	C3	14790.97	14825.5	34.53	dx
MU66	C2	14825.5	14850.17	24.67	dx
MU66	H0	14850.17	14897.52	47.35	dx
MU68	H0	17372.82	17507.95	135.13	dx
MU68	C2	17507.95	17557.98	50.03	dx
MU68	H0	17557.98	17577.82	19.84	dx
MU70	H0	17800.09	17819.83	19.74	dx
MU70	C2	17819.83	17829.69	9.86	dx
MU70	C3	17829.69	17839.56	9.87	dx
MU70	C4	17839.56	17933.28	93.72	dx
MU70	C3	17933.28	17943.15	9.87	dx
MU70	C2	17943.15	17953.01	9.86	dx
MU70	H0	17953.01	17972.74	19.73	dx
MU72	H0	18415.74	18440.4	24.66	dx
MU72	C2	18440.4	18450.27	9.87	dx
MU72	C3	18450.27	18470	19.73	dx
MU72	C4	18470	18504.53	34.53	dx
MU72	C5	18504.53	18558.79	54.26	dx
MU72	C4	18558.79	18603.19	44.4	dx
MU72	C3	18603.19	18657.45	54.26	dx
MU72	C2	18657.45	18687.05	29.6	dx

WBS	muro	da	a	sviluppo	posizione
[-]	[-]	[m]	[m]	[m]	[-]
MU72	H0	18687.05	18820.23	133.18	dx
MU74	S4	18842.69	18916.68	73.99	dx
MU74	H0	19246.85	19365.24	118.39	dx

Nella presente relazione verranno analizzati i muri che interessano la WBS MU73 :

WBS	muro	da	а	sviluppo	posizione
[-]	[-]	[m]	[m]	[m]	[-]
MU73	S2	18841.9	18851.72	9.87	SX
MU73	S4	18851.7	18915.85	64.13	SX

4 INQUADRAMENTO STRATIGRAFICO

Per l'inquadramento geologico si rimanda alla "Relazione geotecnica generale" (IA5F01D78RHGE0005001) e ai relativi profili geotecnici.

	Te	erreno spingent	te	Terreno di fondazione			
	Rilevato				U2		
	Υ	С	ф	Υ	С	ф	
	KN/m^3	Кра	(°)	KN/m^3	Кра	(°)	
S4	19	0	38	19	28	22	

Per l'analisi sismica, si considera che l'opera abbia una Vita Nominale V_N di 50 anni, ricada in classe d'uso II (coefficiente d'uso C_U =1.00) e, quindi una Vita di Riferimento V_R = V_N · C_U di 50 anni.

Con riferimento allo Stato Limite di Salvaguardia della Vita (SLV), i parametri sismici sono di seguito riportati.

Categoria sismica	$a_{ m g}$	S_{S}	$a_{ m max}/g$
[-]	[-]	[-]	[-]
С	0.146	1.48	0.216

Tabella 3 – Parametri sismici.

DIMENSIONAMENTO DELL'INTERVENTO DI ADEGUAMENTO SISMICO

COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.
IA5F	01	D 78	CL MU7300 003	Α

FOGLIO

5 VERIFICHE DELL'INTERVENTO DI ADEGUAMENTO SISMICO

Ai fini dell'adeguamento strutturale dei muri di sostegno si prevede la realizzazione al piede del muro di un cordolo su pali trivellati phi 600 mm in c.a. di lunghezza 8 m ad interasse 1.20 m.

Sono state condotte le verifiche locali dei pali, valutando in corrispondenza delle sezioni caratteristiche le sollecitazioni esterne e i corrispondenti stati tensionali.

L'azione agente in testa è stata calcolata a partire dalle azioni sul paramento, che sono valutate considerando quest'ultimo incastrato nella soletta di fondazione.

Sii sono calcolate le forze di scorrimento alla base del muro per le differenti combinazione SLE, SLU e SLV, che sono state opportunamente applicate alla testa dei pali di fondazione, per i quali sono state determinate lungo il fusto le caratteristiche di sollecitazioni in termini di sforzo normale, momento e taglio.

Le combinazioni di carico, considerate ai fini delle verifiche, sono stabilite in modo da garantire la sicurezza in conformità a quanto prescritto nelle norme di riferrimento.

Per i pali sono state effettuate le verifiche con riferimento ai seguenti stati limite SLU di tipo strutturale (STR): raggiungimento della resistenza negli elementi strutturali secondo la combinazione A1+M1+R1, i cui valori dei coefficienti parziali sono riportati nel seguito.

Per la combinazione agli stati limite ultimi sismica (SLV) si è considerato:

$$G_1+G_2+\psi_0\cdot Q_k$$

Con $\psi_0 = 0.2$

Ai fini delle verifiche degli stati limite di esercizio (tensioni) si definiscono le seguenti combinazioni:

$$G_1 + G_2 + Q_{k1}$$

Sono state svolte le verifiche strutturali di resistenza e fessurazione al fine di determinare l'armatura dei pali stessi.

Carichi	Effetto	Coeff. Parziale	A1 (STR)	SLE	SLV
Permanenti	favorevole		1.00	1.00	1.00
Permanenti	sfavorevole	γG	1.30	1.00	1.00
\/aviahili	favorevole		0.00	0.00	0.20
Variabili	sfavorevole	γο	1.50	1.00	0.20

DIMENSIONAMENTO DELL'INTERVENTO DI ADEGUAMENTO SISMICO

COMMESSA LOTTO
IA5F 01

CODIFICA D 78 DOCUMENTO

EV. FOGLIO

Tab. 6.2.II - Coefficienti parziali per i parametri geotecnici del terreno

Parametro	Grandezza alla quale applicare il coefficiente parziale	Coefficiente parziale γ_{M}	(M1)	(M2)
Tangente dell'angolo di resi- stenza al taglio	$ an {\phi'}_k$	$\gamma_{m{arphi}'}$	1,0	1,25
Coesione efficace	c′ _k	Ye	1,0	1,25
Resistenza non drenata	c_{uk}	γ_{cu}	1,0	1,4
Peso dell'unità di volume	γγ	γ_{γ}	1,0	1,0

5.1 CARATTERISTICHE DEI MATERIALI

Il progetto strutturale prevede l'uso dei materiali con le caratteristiche meccaniche minime riportate di seguito.

Elemento strutturale: Pali, cordoli di collegamento

Classe di resistenza = C25/30

 $\gamma c = peso specifico = 25.00 \text{ kN/m}3$

Rck = resistenza cubica = 30.00 N/mm2

fck = resistenza cilindrica caratteristica = 0.83·Rck = 24.9 N/mm2

fcm = resistenza cilindrica media = fck + 8 = 32.9 N/mm2

fctm = resistenza a trazione media = $0.30 \cdot \text{fck}2/3 = 2.56 \text{ N/mm}2$

fcfm = resistenza a traz. per flessione media = 1.20·fctm = 3.07 N/mm2

fcfk = resistenza a traz. per flessione caratt. = 0.70·fcfm = 1.79 N/mm2

Ecm = modulo elast. tra $0 = 0.40 \text{fcm} = 22000 \cdot (\text{fcm}/10)0.3 = 31447 \text{ N/mm}$

Per l'acciaio di armatura:

Tipo = B 450 C

 $\gamma a = peso specifico = 78.50 \text{ kN/m}3$

fy nom = tensione nominale di snervamento = 450 N/mm2

ft nom = tensione nominale di rottura = 540 N/mm2

fyk min = minima tensione caratteristica di snervamento = 450 N/mm2

DIMENSIONAMENTO DELL'INTERVENTO DI ADEGUAMENTO SISMICO

COMMESSA LOTTO CODIFICA DOCUMENTO REV. FOGLIO 1A5F 01 D 78 CL MU7300 003 A 15 di 32

ftk min = minima tensione caratteristica di rottura = 540 N/mm2

(ft/fy)k min = minimo rapporto tra i valori caratteristici = 1.15

(ft/fy)k max = massimo rapporto tra i valori caratteristici = 1.35

(fy/fy nom)k = massimo rapporto tra i valori nominali = 1.25

(Agt)k = allungamento caratteristico sotto carico massimo = 7.5 %

E = modulo di elasticità dell'acciaio = 206000 N/mm2

Diametro del mandrino per prove di piegamento a 90° e successivo raddrizzamento senza cricche:

 $\emptyset < 12 \text{ mm} \rightarrow 4 \emptyset;$

 $12 \le \emptyset \le 16 \text{ mm} \rightarrow 5 \emptyset;$

 $16 < \emptyset \le 25 \text{ mm} \rightarrow 8 \emptyset;$

 $25 < \emptyset \le 40 \text{ mm} \rightarrow 10 \text{ }\emptyset.$

5.2 CRITERI DI VERIFICA DELLE SEZIONI IN C.A.

Per le sezioni in cemento armato si effettuano:

- -verifiche per gli stati limite ultimi a presso-flessione;
- -verifiche per gli stati limite ultimi a taglio;
- -verifiche per gli stati limite di esercizio.

5.2.1 Verifiche per gli stati limite ultimi a flessione-pressoflessione

Allo stato limite ultimo, le verifiche a flessione o presso-flessione vengono condotte confrontando (per le sezioni più significative) le resistenze ultime e le sollecitazioni massime agenti, valutando di conseguenza il corrispondente fattore di sicurezza.

5.2.2 Verifica agli stati limite ultimi a taglio

La verifica allo stato limite ultimo per azioni di taglio è condotta secondo quanto prescritto dal D.M. 14/01/2008, per elementi privi di armatura trasversale resistente a taglio.

$$V_{\text{Rd,c}} = \max \left\{ \begin{bmatrix} 0.18 \\ \gamma_c \cdot k \cdot (100 \cdot \rho_1 \cdot f_{ck})^{1/3} + 0.15 \cdot \sigma_{cp} \end{bmatrix} \cdot b_w \cdot d; (v_{min} + 0.15 \cdot \sigma_{cp}) \cdot b_w \cdot d \right\}$$

5.3 METODO DI ANALISI - CALCOLO PARATIA

Il calcolo agli elementi finiti delle paratie è stato effettuato utilizzando il codice PARATIE PLUS prodotto dalla "CeAs" – Milano – ITA.

LOTTO **CODIFICA DOCUMENTO FOGLIO**

CL MU7300 003

DIMENSIONAMENTO DELL'INTERVENTO DI ADEGUAMENTO SISMICO

PARATIE analizza il comportamento meccanico di una struttura di sostegno flessibile di uno scavo in terreno o roccia, ponendo l'accento sull'aspetto dell'interazione "locale" fra parete e terreno.

Lo studio di una parete flessibile è condotto attraverso una simulazione numerica del reale: il programma stabilisce e risolve un sistema di equazioni algebriche la cui soluzione permette di riprodurre abbastanza realisticamente l'effettivo comportamento dell'opera.

IA5F

La simulazione numerica utilizzata l'analisi non lineare secondo un modello "a molle" elasto plastiche" per la parte terreno. La schematizzazione in elementi finiti avviene in questo modo:

- si analizza un problema piano (nel piano Y-Z): i gradi di libertà nodali attivi sono lo spostamento laterale e la rotazione fuori piano: gli spostamenti verticali sono automaticamente vincolati (di conseguenza le azioni assiali nelle pareti verticali non sono calcolate);
- la parete flessibile vera e propria è schematizzata da una serie di elementi finiti BEAM verticali;
- il terreno è simulato attraverso un doppio letto di molle elasto-plastiche connesse agli stessi nodi della parete;

Lo scopo di PARATIE PLUS è lo studio di un problema definito; in altre parole, il programma analizza la risposta, durante le varie fasi realizzative, di una parete caratterizzata in tutte le sue componenti (altezza, infissione e spessore della parete, entità dei tiranti, ecc.). Il problema è ricondotto a uno schema piano in cui viene analizzata una "fetta" di parete di larghezza unitaria, come mostrato nella Figura seguente.

La modellazione numerica dell'interazione terreno-struttura è del tipo "TRAVE SU SUOLO ELASTICO". Le pareti di sostegno vengono rappresentate con elementi finiti trave il cui comportamento è definito dalla rigidezza flessionale EJ, mentre il terreno viene simulato attraverso elementi elastoplastici monodimensionali (molle) connessi ai nodi delle paratie; ad ogni nodo convergono uno o al massimo due elementi terreno:

Il limite di questo schema sta nell'ammettere che ogni porzione di terreno, schematizzata da una "molla", abbia comportamento del tutto indipendente dalle porzioni adiacenti; l'interazione fra le varie regioni di terreno è affidata alla rigidezza flessionale della parete.

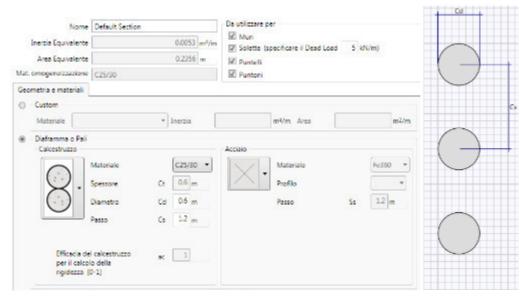
PARATIE calcola internamente e aggiorna costantemente tale parametro, sulla base del modulo elastico (Young) e la geometria del muro. In altre parole, ad ogni passo, la rigidezza K della "molla" viene calcolata dalla seguente equazione:

$$k = a \cdot \frac{E_s \cdot t}{L}$$

dove

è un fattore di scala posto pari a 1 a

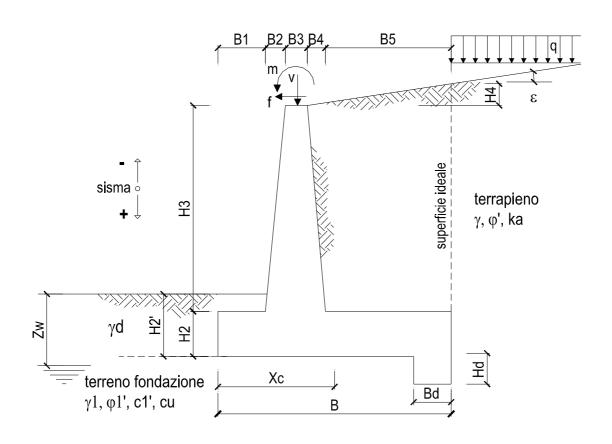
Es è il modulo di Young del terreno


è l'interasse della molla t

L è un parametro geometrico che tiene conto della geometria del muro

6 MODELLO DI CALCOLO

Nella seguente tabella si riporta lo spessore equivalente dei pali phi 600 posti ad interasse 1.20 m.



A partire dalla geometria del muro si ha:

DIMENSIONAMENTO DELL'INTERVENTO DI ADEGUAMENTO SISMICO
 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 IA5F
 01
 D 78
 CL MU7300 003
 A
 18 di 32

OPERA Esempio

DATI DI PROGETTO:

Geometria del Muro

Elevazione	H3	=	4.00	(m)
Aggetto Valle	B2	=	0.20	(m)
Spessore del Muro in Testa	В3	=	0.40	(m)
Aggetto monte	B4	=	0.00	(m)

Geometria della Fondazione

Larghezza Fondazione	B =	2.80	(m)
Spessore Fondazione	H2 =	0.60	(m)
Suola Lato Valle	B1 =	0.70	(m)
Suola Lato Monte	B5 =	1.50	(m)
Altezza dente	Hd =	0.00	(m)
Larghezza dente	Bd =	0.00	(m)
Mezzeria Sezione	Xc =	1.40	(m)

Peso Specifico del Calcestruzzo γ cis = 25.00 (kN/m ³)

DIMENSIONAMENTO DELL'INTERVENTO DI ADEGUAMENTO SISMICO

COMMESSA LOTTO CODIFICA DOCUMENTO REV. FOGLIO IA5F 01 D 78 CL MU7300 003 A 19 di 32

CONDIZIONE STATICA

	TERRENO E DEL SOVRACCARICO condizione statica		SLE	STR/GEO		
St =	0,5*γ'*(H2+H3+H4+Hd)²*ka	(kN/m)	45.87	59.63		
Sq perm =	q*(H2+H3+H4+Hd)*ka	(kN/m)	72.30	93.99		
Sq acc =	q*(H2+H3+H4+Hd)*ka	(kN/m)	19.75	29.62		
- Componente	orizzontale condizione statica					
Sth =	St*cosδ	(kN/m)	41.46	53.90		
Sqh perm =	Sq perm*cosδ	(kN/m)	65.35	84.95		
Sqh acc =	Sq acc*cosδ	(kN/m)	17.85	26.77		
- Componente						
Stv =	St*sen δ	(kN/m)	19.63	25.52		
Sqv perm=	Sq perm*senδ	(kN/m)	30.94	40.22		
Sqv acc =	Sq acc*senδ	(kN/m)	8.45	12.67		
- Spinta passiv	- Spinta passiva sul dente					
Sp=½*g1'*Hd2	$1^{11} \frac{1}{2} \frac{4}{\gamma_1}$ "Hd ^{2*} kp+(2*c ₁ "*kp ^{0.5} + γ 1"*kp*H2')*Hd	(kN/m)	0.00	0.00		

CONDIZIONE SISMICA+

SPINTE DEL TERRENO E DEL SOVRACCARICO		SLE	STR/GEO
- Spinta condizione sismica +		SLL	STIVOLO
Sst1 stat = $0.5^*\gamma^{*}(H2+H3+H4+Hd)^{2}$ ka	(kN/m)	45.87	45.87
Sst1 sism = $0.5^*\gamma^{*}(1+kv)^*(H2+H3+H4+Hd)^2*kas^+-Sst1$ stat	(kN/m)	11.72	11.72
Ssq1 perm= qp*(H2+H3+H4+Hd)*kas ⁺	(kN/m)	87.19	87.19
Ssq1 acc = qs*(H2+H3+H4+Hd)*kas+	(kN/m)	4.76	4.76
- Componente orizzontale condizione sismica +			
Sst1h stat = Sst1 stat* $\cos \delta$	(kN/m)	41.46	41.46
Sst1h sism = Sst1 sism* $\cos \delta$	(kN/m)	10.59	10.59
Ssq1h perm= Ssq1 perm*cosδ	(kN/m)	78.81	78.81
Ssq1h acc= Ssq1 acc* $\cos\delta$	(kN/m)	4.30	4.30
- Componente verticale condizione sismica +			
Sst1v stat = Sst1 stat*sen δ	(kN/m)	19.63	19.63
Sst1v sism = Sst1 sism*sen δ	(kN/m)	5.02	5.02
Ssq1v perm= Ssq1 perm*sen _δ	(kN/m)	37.31	37.31
Ssq1v acc= Ssq1 acc*sen δ	(kN/m)	2.04	2.04
- Spinta passiva sul dente			
$Sp=\frac{1}{2}*_{\gamma_1}'(1+kv) \ Hd^2*kps^+ + (2*c_1'*kps^{+0.5} +_{\gamma}1' \ (1+kv) \ kps^{+*}H2')^*Hd$	(kN/m)	0.00	0.00

Quindi allo SLE:

Risultante forze orizzontali (T)

T = Sth + Sqh + f 124.65 (kN/m)

Quindi allo SLU:

Risultante forze orizzontali (T)

T = Sth + Sqh + f 165.62 (kN/m)

Quindi allo SLV:

Risultante forze orizzontali (T)

T = Sst1h + Ssq1h + fp + fs + Ps h + Ptsh 152.58 (kN/m)

Nella seguente tabella si riportano le sollecitazioni agenti in testa ai pali per unità di lunghezza per le differenti combinazioni:

Tabella 4. Forza agente in testa.

SLE (kN/m)	SLU (kN/m)	SLV (kN/m)
124.65	165.62	152.58

Nelle seguenti figure si riportano i modelli utilizzati per la determinazione di sollecitazioni e le verifiche.

I ITALFERR	LINEA FERRANDINA PROGETTO DEFINIT COLLEGAMENTO D	ΤΙVΟ		FERROVIARIA NA	ZIONALE	
DIMENSIONAMENTO DELL'INTERVENTO DI ADEGUAMENTO SISMICO	COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
	IA5F	01	D 78	CL MU7300 003	A	21 di 32

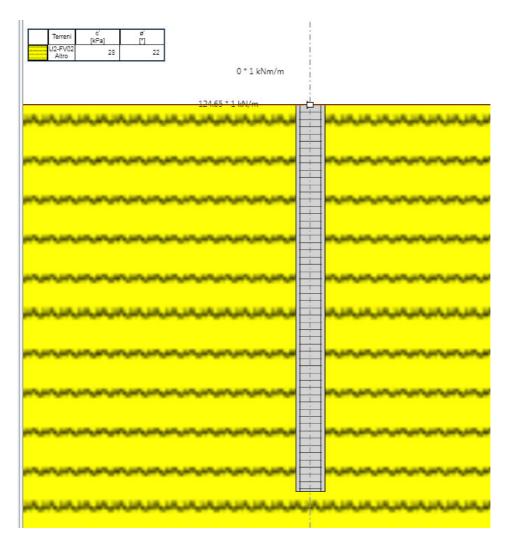


Figura 1 – Carico agente in condizione SLE

S ITALFERR	LINEA FERRANDINA PROGETTO DEFINIT COLLEGAMENTO D	ΓΙVΟ		FERROVIARIA NA	ZIONALE	
DIMENSIONAMENTO DELL'INTERVENTO DI ADEGUAMENTO SISMICO	COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
	IA5F	01	D 78	CL MU7300 003	A	22 di 32

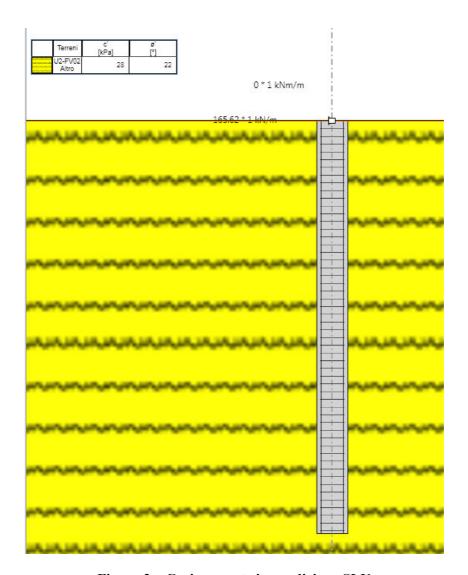
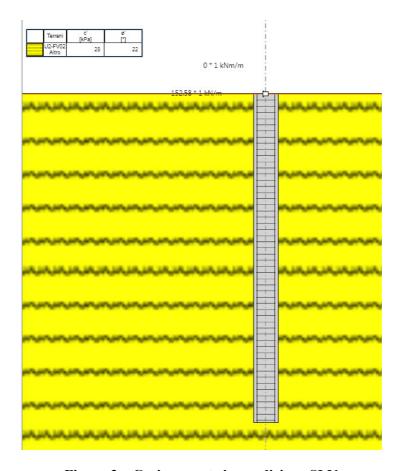



Figura 2 – Carico agente in condizione SLU

S ITALFERR	LINEA FERRANDINA PROGETTO DEFINIT COLLEGAMENTO D	ΓΙνο		FERROVIARIA NA	ZIONALE	
DIMENSIONAMENTO DELL'INTERVENTO DI ADEGUAMENTO SISMICO	COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
	IA5F	01	D 78	CL MU7300 003	A	23 di 32

 $Figura \ 3-Carico \ agente \ in \ condizione \ SLV$

I ITALFERR	LINEA FERRANDINA PROGETTO DEFINIT COLLEGAMENTO D	ΓΙνο		FERROVIARIA NA	ZIONALE	
DIMENSIONAMENTO DELL'INTERVENTO	COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
DI ADEGUAMENTO SISMICO	IA5F	01	D 78	CL MU7300 003	A	24 di 32

6.1 RISULTATI

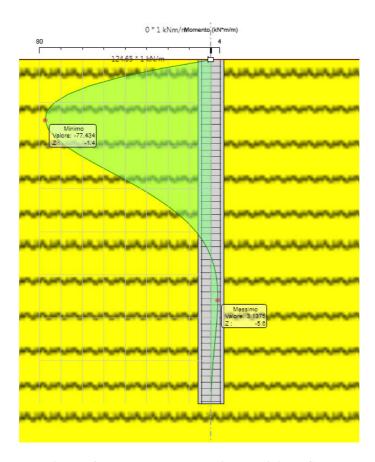


Figura 4 – Momento agente in condizione SLE

I ITALFERR	LINEA FERRANDINA PROGETTO DEFINI COLLEGAMENTO D	ΤΙVΟ		FERROVIARIA NA	ZIONALE	
DIMENSIONAMENTO DELL'INTERVENTO DI ADEGUAMENTO SISMICO	COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
	IA5F	01	D 78	CL MU7300 003	A	25 di 32

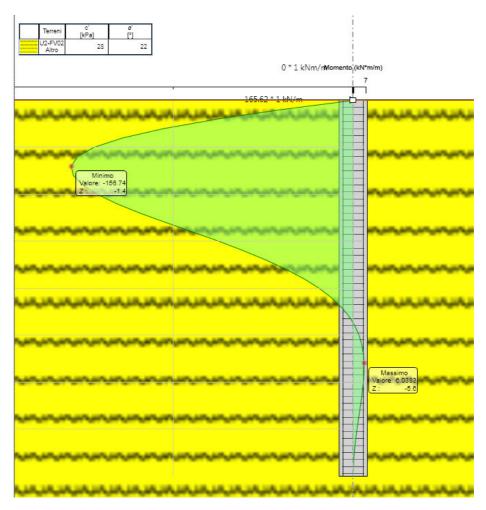


Figura 5 – Momento agente in condizione SLU

I ITALFERR	LINEA FERRANDINA PROGETTO DEFINIT COLLEGAMENTO D	ΤΙVΟ		FERROVIARIA NA	ZIONALE	
DIMENSIONAMENTO DELL'INTERVENTO DI ADEGUAMENTO SISMICO	COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
	IA5F	01	D 78	CL MU7300 003	A	26 di 32

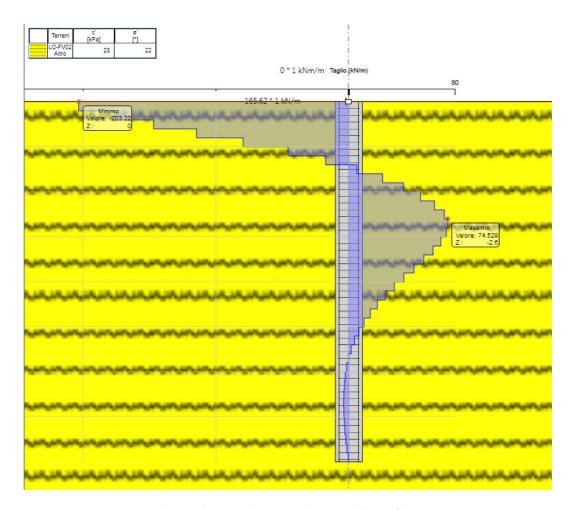


Figura 6 – Taglio agente in condizione SLU

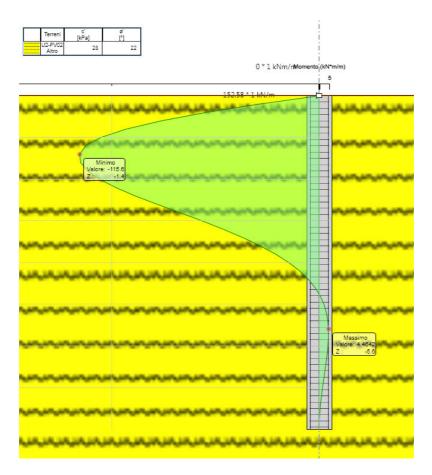
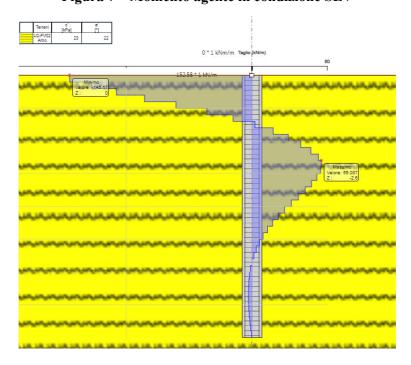
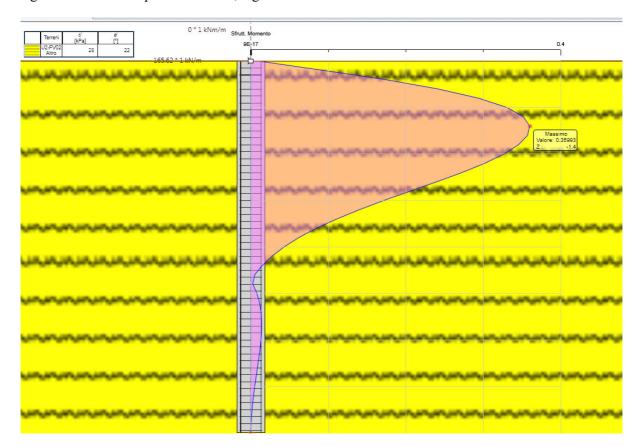
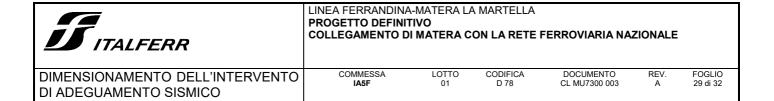


Figura 7 – Momento agente in condizione SLV




Figura 8 – Taglio agente in condizione SLV



6.2 VERIFICHE

La sezione è stata armata con armatura corrente longitudinale di 20phi22 e una spirale phi12/15 (opportunamente resa solidale all'armatura corrente), che corrisponde ad un'incidenza di 250 kg/m³.

Di seguito le verifiche a pressoflessione, taglio e a fessurazioni.

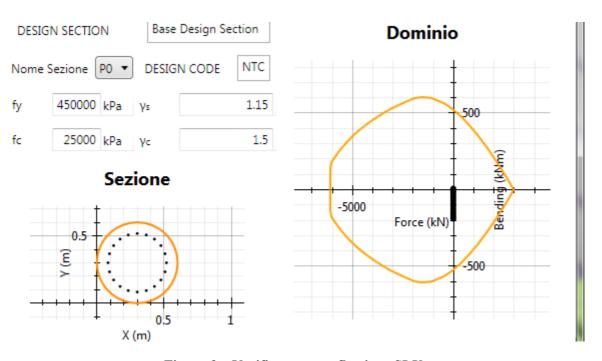
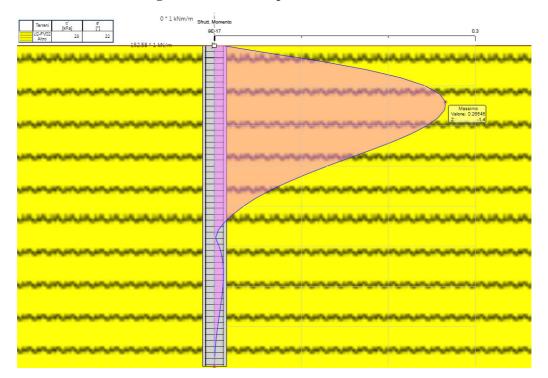
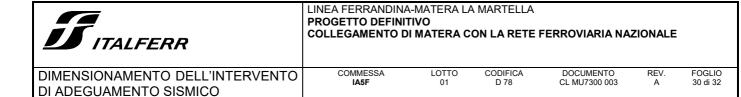




Figura 9 – Verifica a pressoflessione SLU.

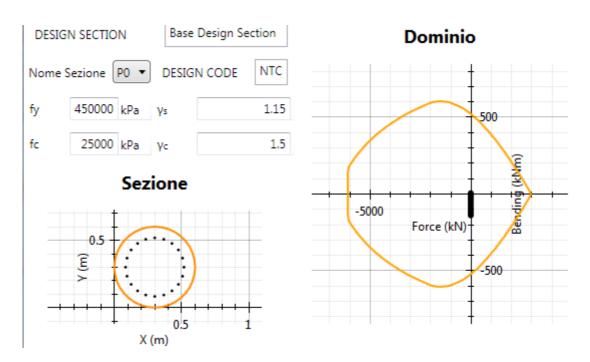
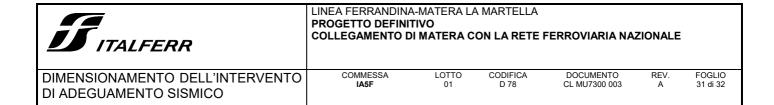


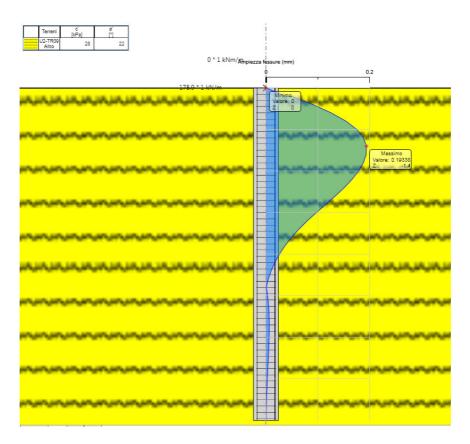
Figura 10 – Verifica a pressoflessione SLV.


Il taglio massimo che agisce in testa ai pali si registra in condizioni sismiche ed è pari a 203.22 kN/m, moltiplicando per l'interasse dei pali la verifica a taglio è condotta considerando un taglio di:

T=203.22 1.2=344.4 kN

da cui:

verifica a taglio sezione circolare


r	600	mm				
С	83	mm				
rs	517	mm				
α	0.58	rad				
Atot	1130973	mm^2				
Α	939630	$\mathrm{mm^2}$				
h	1118.3	mm	Rck	30		
d	929.1	mm	fck	24.9		
bw	1011.3	mm	γс	1.5		
1+(200/d)^0,5	1.464					
k	1.464		As	11	ф	22.0
Asl	4181	$\mathrm{mm^2}$				
Asl/(bw∙ d)	0.004					
ρ1	0.004		Vrd	368.01	kN	
vmin	0.309		Ved	243.86	KN	
vmin∙bw∙d	290681	N	Vrd/Ved	1.51	-	

Vrd 368007 N VERIFICATO

Non è necessaria apposita armatura a taglio.

I ITALFERR	LINEA FERRANDINA PROGETTO DEFINI COLLEGAMENTO D	TIVO		FERROVIARIA NA	ZIONALE	
DIMENSIONAMENTO DELL'INTERVENTO DI ADEGUAMENTO SISMICO	COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
	IA5F	01	D 78	CL MU7300 003	A	32 di 32

 $Figura\ 11-Verifica\ a\ fessurazione\ SLE,\ l'ampiezza\ massima\ <0.2\ mm,\ verifica\ soddisfatta.$