COMMITTENTE

PROGETTAZIONE:

DIREZIONE TECNICA U.O. INFRASTRUTTURE SUD

PROGETTO DEFINITIVO

Nuova linea Ferrandina - Matera La Martella per il collegamento di Matera con la rete ferroviaria nazionale

NUOVA LINEA FERRANDINA – MATERA LA MARTELLA

OPERE CIVILI - GEOTECNICA

File: IA5F01D78RHGE0005005A

Relazione di calcolo rilevato di completamento linea storica

				SCALA:
COMMESSA I A 5 F	LOTTO FASE 0 1 D	ENTE TIPO DOC. 7 8 R H	OPERA/DISCIPLINA GE0005	EV.

Rev.	Descrizione	Redatto	Data	Verificato	Data	Approvato	Data	Autorizzato Data
Α	EMISSIONE DEFINITIVA	E. Sellari	Luglio 2019	C.Toraldo	Luglio 2019	F.GERNONE	Luglio 2019	D. VIBERTA
						,		Post of the Control o
								T. College
								- 5 3 A
								J G

Nuova linea Ferrandina - Matera La Martella per il collegamento di Matera con la rete ferroviaria nazionale

NUOVA LINEA FERRANDINA – MATERA LA MARTELLA

Relazione di calcolo rilevato di completamento linea storica

PROGETTO LOTTO CODIFICA DOCUMENTO REV. D 78 RH GE0005 005

FOGLIO 2 DI 16

1	INTRO	DDUZIONE	3
2	DOCU	MENTI DI RIFERIMENTO E NORMATIVA	3
2.1	Do	CUMENTI DI RIFERIMENTO	3
2.2	No	RMATIVA E STANDARD DI RIFERIMENTO	3
2.3	Sol	TWARE	3
3	INQUA	ADRAMENTO GEOTECNICO	4
4	VERIF	ICHE RILEVATI	5
4.1	Ana	ALISI DI STABILITÀ	5
	4.1.1	Metodologia di calcolo	5
	4.1.2	Carichi di progetto	6
	4.1.3	Combinazioni di carico e verifiche	7
4.2	STI	MA DEI CEDIMENTI	9
	4.2.1	Metodologia di calcolo	9
	4.2.2	Combinazioni di carico e verifiche	9
5	RILEV	ATO H=5M	10
5.1	Ana	ALISI DI STABILITÀ	10
	5.1.1	Modello di calcolo	10
	5.1.2	Risultati delle analisi	12
5.2	Ana	ALISI DEI CEDIMENTI	14
	5.2.1	Modello di calcolo	14
	522	Risultati delle analisi	14

S ITALFERR	rete ferrovia	aria nazio			gamento di Matera con la
Relazione di calcolo rilevato di completamento linea storica	PROGETTO IA5F	LOTTO 01	CODIFICA DOCUMENTO D 78 RH GE0005 005	REV.	FOGLIO 3 DI 16

1 INTRODUZIONE

Nella presente relazione si riportano le verifiche di stabilità e dei cedimenti dei rilevati RI23 per completamento della linea storica.

2 DOCUMENTI DI RIFERIMENTO E NORMATIVA

2.1 Documenti di riferimento

- [D1] IA5F00D78RBGE0005001 Relazione geotecnica generale;
- [D2] IA5F00D78PEGE0005009 Profilo geotecnico Ramo B.

2.2 Normativa e standard di riferimento

- [N1] D.M. 17/01/2018: Aggiornamento delle "Norme Tecniche per le Costruzioni"
- [N2] Circolare 21/01/2019 n.7 C.S.LL.PP. Istruzioni per l'applicazione dell' "Aggiornamento delle Norme Tecniche per le Costruzioni" di cui al D.M. 17/01/2018

2.3 Software

Per le analisi sono stati utilizzati i seguenti codici di calcolo:

- [S1] Paratie Plus Software dedicato al calcolo e alla progettazione delle opere di sostegno flessibili e alle analisi di stabilità;
- [S2] Plaxis 2D Software di calcolo agli elementi finiti per analisi geotecniche.

I ITALFERR	rete ferrovia	aria nazio		·	gamento di Matera con la
Relazione di calcolo rilevato di completamento linea storica	PROGETTO IA5F	LOTTO 01	CODIFICA DOCUMENTO D 78 RH GE0005 005	REV.	FOGLIO 4 DI 16

3 INQUADRAMENTO GEOTECNICO

Come riportato nelle relazione geotecnica, la successione stratigrafica nel sito in esame è costituita da depositi alluvionali attuali (unità U1B) per spessori variabili da 6 a 21 m al di sotto dei quali è presente l'argilla subappenninica. In corrispondenza del tratto con il nuovo rilevato lo spessore dell'unità 1B è pari a circa 7 m; i parametri geotecnici caratteristici delle due unità sono riepilogati in tabella.

Unità	da [m]	a [m]	γ [kN/m³]	φ' [°]	c' [kPa]	c _u [kPa]	E _{op} [MPa]	v [-]	k [m/s]
UG1B	p.c.	14.0	19.5	30	2.5	-	30	0.25	1E-6
UG2	14.0	-	19.0	27	22	225	50	0.25	1E-8

La falda è stata considerata a 3 m dal piano campagna.

Per il rilevato ferroviario invece sono stati considerati i seguenti parametri:

Unità	γ [kN/m³]	φ' [°]	c' [kPa]	c _u [kPa]	E _{op} [MPa]	v [-]
Rilevato	20.0	38	0	-	40	0.25

II ITALFERR	rete ferrovia	ria nazio			amento di Matera con la
Relazione di calcolo rilevato di completamento linea storica	PROGETTO IA5F	LOTTO 01	CODIFICA DOCUMENTO D 78 RH GE0005 005	REV.	FOGLIO 5 DI 16

4 VERIFICHE RILEVATI

Per la valutazione della stabilità e dei cedimenti dei rilevati sono state analizzate le soluzioni tipologiche presenti in progetto nella loro configurazione più gravosa, ovvero:

- rilevato ferroviario di altezza pari a 5 m con scarpate di pendenza 2/3;

4.1 Analisi di stabilità

4.1.1 Metodologia di calcolo

Le verifiche di stabilità sono state effettuate con il codice di calcolo Paratie Plus.

PARATIE PLUS offre la possibilità di calcolare la stabilità complessiva del versante in cui può o meno essere presente un'opera di sostegno flessibile.

PARATIE PLUS prevede il calcolo della stabilità per mezzo dei seguenti metodi:

- Metodo di Bishop semplificato;
- Metodo di Janbu semplificato;
- Metodo di Morgenstern & Price.

Tutti questi, appartenenti alla famiglia dei metodi all'equilibrio limite, si basano sull'individuare una porzione di terreno instabile mobilitata lungo di una potenziale superficie di scorrimento.

Il coefficiente di sicurezza associato ad una superficie è calcolato imponendo le condizioni di equilibrio nelle quali vengono introdotte le resistenze offerte del terreno affette da tale coefficiente di sicurezza. Variando secondo diversi criteri la superficie di scorrimento, è possibile determinare la configurazione associata al coefficiente di sicurezza minimo.

Tutti i metodi suddividono la regione di terreno mobilitata in conci verticali compresi tra la sommità del terreno e la superficie di scorrimento e istituiscono le condizioni di equilibrio generali e relative ai singoli conci. Poiché nella scrittura delle condizioni di equilibrio del singolo concio è necessario includere le azioni che esso scambia con i conci adiacenti, si ottiene un sistema risolvente in cui le incognite (il coefficiente di sicurezza e le azioni interne fra i conci) superano le equazioni disponibili.

La differenza fra i diversi metodi risiede nel modo in cui il problema viene reso staticamente determinato: in generale vengono introdotte ulteriori ipotesi, diverse da un metodo all'altro, relativamente alle azioni di interazione fra conci adiacenti.

Il metodo di Morgenstern & Price, utilizzato nelle analisi riportate nella presente relazione, ipotizza che l'inclinazione delle forze tra i conci vari con la posizione x del concio, secondo una legge f(x) nota a meno di un moltiplicatore λ introdotto come variabile aggiuntiva. Il coefficiente di sicurezza è ottenuto imponendo condizioni di equilibrio generali sia alla traslazione sia alla rotazione.

Nelle analisi sono state escluse, perché considerate non significative, le superfici di rottura superficiali che coinvolgono volumi di terreno ridotti e che comunque non interessano la sede stradale. A tal proposito si sottolinea che, nei calcoli, a favore di sicurezza, non è stato preso in conto in alcun modo l'effetto che la finitura a verde delle scarpate darà necessariamente, in termini di coesione efficace, allo strato più superficiale delle scarpate.

S ITALFERR	rete ferrovia	aria nazio			gamento di Matera con la
Relazione di calcolo rilevato di completamento linea storica	PROGETTO IA5F	LOTTO 01	CODIFICA DOCUMENTO D 78 RH GE0005 005	REV.	FOGLIO 6 DI 16

4.1.2 Carichi di progetto

I carichi di progetto considerati nelle analisi oggetto del presente documento sono i seguenti:

- Carico rappresentativo del pacchetto massicciata + armamento ferroviario;
- Sovraccarico rappresentativo del traffico ferroviario;
- Carico da azione sismica.

Il sovraccarico permanente è stato schematizzato per mezzo di una pressione uniformemente distribuita pari a 14.4 kPa, rappresentativo di uno strato di spessore pari a 0.80 m con un peso pari a 18.00 kN/m³. Il carico è stato applicato sulla sommità del rilevato sino ad una distanza pari a 0.60 m dai bordi, ovvero dove il ballast è effettivamente presente.

Il sovraccarico da traffico ferroviario è stato valutato per quanto riguarda il traffico normale (modello di carico LM71). Il carico dato dal treno LM71 risulta essere pari a 250 kN ad asse, con interasse pari a 1.6 m, ossia 250/1.6 = 156.25 kN/m. Per riportare il carico ferroviario dalla traversina, di larghezza pari a 2.4 m, al piano al di sotto del ballast si è considerata una diffusione con pendenza 1:4. Pertanto la pressione equivalente è stata valutata come applicata su una fascia di larghezza pari a 2,60 m, centrata in corrispondenza dell'asse della linea ferroviaria. La pressione considerata è stata assunta pertanto pari a 156.25/2.6 = 60.1 kPa.

Con riferimento al par. 7.11.4 delle NTC18, la verifica di stabilità in condizioni sismiche dei rilevati e dei fronti di scavo può essere condotta mediante metodi pseudo statici per i quali l'azione sismica è rappresentata da un'azione statica equivalente, costante nello spazio e nel tempo, proporzionale al peso del volume W di terreno potenzialmente instabile. Le componenti orizzontale e verticale della forza statica equivalente possono esprimersi come:

$$F_h = k_h \cdot W$$
 $F_v = k_v \cdot W$ dove:

 $k_h = \beta_s \cdot \frac{a_{\text{max}}}{g}$ (con $\beta_s = 0.38$ coefficiente di riduzione dell'accelerazione massima attesa al sito)

e
$$k_v = \pm 0.5 \cdot k_h$$
.

L'accelerazione massima a_{max} attesa al sito è pari a:

V_N	50	anni
C_{U}	1.0	classe d'uso II
V_R	50	anni
P_{VR} (SLV)	0.1	
T_R	475	anni
$a_{\rm g}$	0.150	g
S_S	1.5	cat. C
S_{T}	1	
a_{max}	0.225	g

I carichi e sovraccarichi sono stati inseriti nelle diverse verifiche agli SLU (statiche e sismiche) applicando laddove necessario gli opportuni coefficienti parziali di amplificazione come previsti dalla Normativa vigente.

S ITALFERR	rete ferrovia	aria nazio			gamento di Matera con la
Relazione di calcolo rilevato di completamento linea storica	PROGETTO IA5F	LOTTO 01	CODIFICA DOCUMENTO D 78 RH GE0005 005	REV.	FOGLIO 7 DI 16

4.1.3 Combinazioni di carico e verifiche

Ai fini delle verifiche agli stati limite ultimi statici e sismici si riportano le combinazioni delle azioni riportate nelle NTC18:

-Combinazione fondamentale, generalmente impiegata per gli stati limite ultimi (SLU):

$$\gamma_{G1} \cdot G_1 + \gamma_{G2} \cdot G_2 + \gamma_P \cdot P + \gamma_{Q1} \cdot Q_{k1} + \gamma_{Q2} \cdot \psi_{02} \cdot Q_{k2} + \gamma_{Q3} \cdot \psi_{03} \cdot Q_{k3} + \dots$$

-Combinazione sismica, impiegata per gli stati limite ultimi e di esercizio connessi all'azione sismica E:

$$E + G_1 + G_2 + P + \psi_{21} \cdot Q_{k1} + \psi_{22} \cdot Q_{k2} + \dots$$

I coefficienti di amplificazione dei carichi γ e i coefficienti di combinazione Ψ sono riportati nelle tabelle seguenti.

Coefficie	nte		EQU(1)	A1	A2
Azioni permanenti	favorevoli	γG1	0,90	1,00	1,00
	sfavorevoli		1,10	1,35	1,00
Azioni permanenti non	favorevoli	YG2	0,00	0,00	0,00
strutturali ⁽²⁾	sfavorevoli		1,50	1,50	1,30
Ballast ⁽³⁾	favorevoli	γв	0,90	1,00	1,00
	sfavorevoli		1,50	1,50	1,30
Azioni variabili da traffi-	favorevoli	γο	0,00	0,00	0,00
CO ⁽⁴⁾	sfavorevoli	_	1,45	1,45	1,25
Azioni variabili	favorevoli	γOi	0,00	0,00	0,00
	sfavorevoli		1,50	1,50	1,30
Precompressione	favorevole	γP	0,90	1,00	1,00
	sfavorevo-		1,00(5)	1,00(6)	1,00
	le				
Ritiro, viscosità e cedi-	favorevole	γCe	0,00	0,00	0,00
menti non imposti appo-	sfavorevo-	d	1,20	1,20	1,00
sitamente	le				

Tabella 1: Coefficienti parziali di sicurezza per le combinazioni di carico agli SLU (Tab. 5.2.V - NTC2018).

	ψ_0	ψ1	ψ 2
Carico sul rilevato a tergo delle	0,80	0,50	0,0
spalle			
Azioni aerodinamiche generate	0,80	0,50	0,0
dal transito dei convogli			
gr_1	0,80(2)	0,80(1)	0,0
gr ₂	0,80(2)	0,80(1)	-
gr ₃	0,80(2)	0,80(1)	0,0
gr_4	1,00	1,00(1)	0,0
F_{Wk}	0,60	0,50	0,0
in fase di esecuzione	0,80	0,0	0,0
SLU e SLE	0,0	0,0	0,0
T_k	0,60	0,60	0,50
	spalle Azioni aerodinamiche generate dal transito dei convogli gr ₁ gr ₂ gr ₃ gr ₄ F _{Wk} in fase di esecuzione SLU e SLE	$\begin{array}{c} \text{Carico sul rilevato a tergo delle} \\ \text{spalle} \\ \text{Azioni aerodinamiche generate} \\ \text{dal transito dei convogli} \\ \\ \text{gr}_1 \\ \text{gr}_2 \\ \text{gr}_3 \\ \text{gr}_4 \\ \text{l},00 \\ \text{F}_{Wk} \\ \text{in fase di esecuzione} \\ \text{SLU e SLE} \\ \\ \end{array} \begin{array}{c} 0,80 \\ \\ 0,80 \\ \\ 0,80 \\ \\ \end{array}$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$

^{(1) 0,80} se è carico solo un binario, 0,60 se sono carichi due binari e 0,40 se sono carichi tre o più binari.

Quando come azione di base venga assunta quella del vento, i coefficienti ψ_0 relativi ai gruppi di carico delle azioni da traffico vanno assunti pari a 0,0.

Tabella 2: Coefficienti di combinazione Ψ agli SLU (Tab. 5.2.VI - NTC2018).

Per le combinazioni sismiche si considera Ψ pari a 0.20 per i carichi variabili da traffico.

La verifica allo stato limite ultimo richiesta dalle NTC18 per la stabilità dei fronti di scavo e rilevati in condizioni statiche, paragrafo 6.8.2, prevede l'utilizzo della combinazione 2 A2+M2+R2 dell'approccio 1.

I coefficienti da utilizzare sono riportati nelle tabelle che seguono.

Parametro	Grandezza alla quale applicare il coefficiente parziale	Coefficiente parziale γ_M	(M1)	(M2)
Tangente dell'angolo di resi- stenza al taglio	$tan{\phi'}_k$	$\gamma_{\phi'}$	1,0	1,25
Coesione efficace	c′ _k	$\gamma_{c'}$	1,0	1,25
Resistenza non drenata	c_{uk}	γ_{cu}	1,0	1,4
Peso dell'unità di volume	ΥΥ	γ_{γ}	1,0	1,0

Tabella 3: Coefficienti parziali per i parametri geotecnici del terreno.

COEFFICIENTE	R2
γ_{R}	1,1

Tabella 4: Coefficienti parziali per le verifiche di stabilità globale (R2) - (Tab. 6.8.I– NTC18).

La verifica di stabilità in condizioni sismiche è condotta mediante l'applicazione del metodo cosiddetto pseudo-statico. Anche in questo caso deve verificarsi che la resistenza del sistema sia maggiore delle azioni, impiegando lo stesso approccio mostrato per le condizioni statiche, ma applicando coefficienti parziali sulle azioni e sui parametri geotecnici pari all'unità e riducendo le resistenze tramite un coefficiente parziale $\gamma_R = 1.2$ (paragrafo 7.11.4 delle NTC18).

S ITALFERR	Nuova linea Ferrandina - Matera La Martella per il collegamento di Matera con rete ferroviaria nazionale NUOVA LINEA FERRANDINA – MATERA LA MARTELLA				
Relazione di calcolo rilevato di completamento linea storica	PROGETTO IA5F	LOTTO 01	CODIFICA DOCUMENTO D 78 RH GE0005 005	REV.	FOGLIO 9 DI 16

4.2 Stima dei cedimenti

4.2.1 Metodologia di calcolo

L'analisi di interazione terreno-struttura è stata condotta con un modello FEM 2D utilizzando il programma di calcolo Plaxis 2D. In particolare sono state implementate le seguenti fasi di calcolo:

- Fase 0 Fase geostatica iniziale;
- Fase 1 Realizzazione del rilevato ferroviario in 60 giorni (analisi di consolidazione);
- Fase 2 Fase di consolidazione per 10 anni da fine costruzione (dissipazione delle sovrappressioni interstiziali negli strati di terreno a grana fine).

4.2.2 Combinazioni di carico e verifiche

La stima dei cedimenti indotti dai rilevati, richiede una analisi allo stato limite di esercizio in cui deve essere rispettata la condizione:

 $E_d \leq C_d$

dove E_d è il valore di progetto dell'effetto delle azioni e C_d è il prescritto valore limite dell'effetto delle azioni. I cedimenti stimati devono infatti essere compatibili con la funzionalità dei rilevati in progetto.

In particolare è stato verificato che il cedimento residuo non fosse superiore a 5 cm.

I ITALFERR	Nuova linea Ferrandina - Matera La Martella per il collegamento di Matera con rete ferroviaria nazionale NUOVA LINEA FERRANDINA – MATERA LA MARTELLA				
Relazione di calcolo rilevato di completamento linea storica	PROGETTO IA5F	LOTTO 01	CODIFICA DOCUMENTO D 78 RH GE0005 005	REV.	FOGLIO 10 DI 16

5 Rilevato H=5m

5.1 Analisi di stabilità

5.1.1 Modello di calcolo

Nelle figure che seguono si riporta un'immagine del modello di calcolo effettuato con il software Paratie Plus e le condizioni imposte al programma per la ricerca della superficie critica.

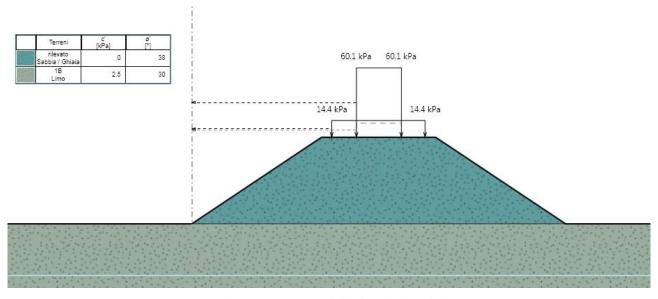


Figura 1: Rilevato H=5m - modello di calcolo stabilità statica.

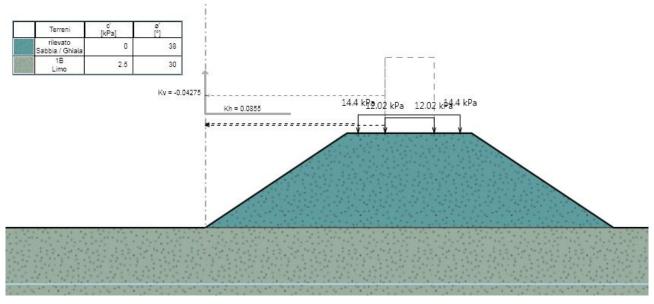


Figura 2: Rilevato H=5m - modello di calcolo stabilità sismica.

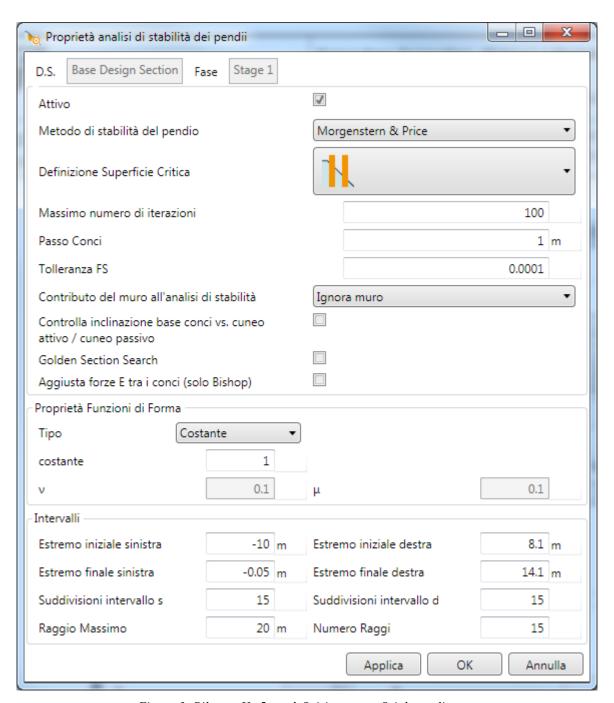


Figura 3: Rilevato H=5m – definizione superfici da analizzare.

S ITALFERR	Nuova linea Ferrandina - Matera La Martella per il collegamento di Matera con la rete ferroviaria nazionale NUOVA LINEA FERRANDINA – MATERA LA MARTELLA				
Relazione di calcolo rilevato di completamento linea storica	PROGETTO IA5F	LOTTO 01	CODIFICA DOCUMENTO D 78 RH GE0005 005	REV.	FOGLIO 12 DI 16

5.1.2 Risultati delle analisi

A seguire i risultati ottenuti in condizioni statiche e sismiche.

- verifica in condizioni statiche

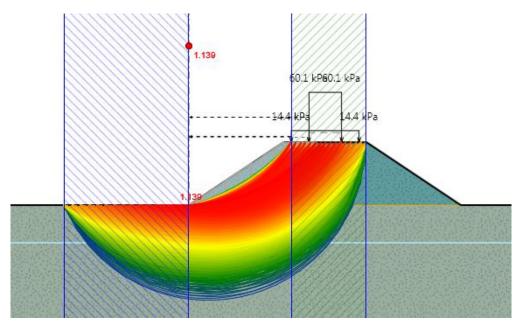


Figura 4: Rilevato H=5m - verifica di stabilità in condizione statica.

verifica in condizioni sismiche kv+

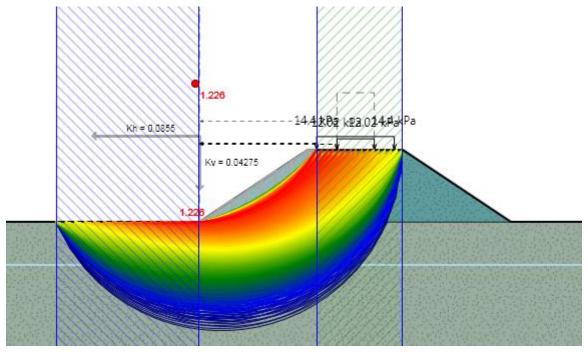


Figura 5: Rilevato H=5m - verifica di stabilità in condizione sisma +.

- verifica in condizioni sismiche kv-

I ITALFERR	Nuova linea Ferrandina - Matera La Martella per il collegamento di Matera con rete ferroviaria nazionale NUOVA LINEA FERRANDINA – MATERA LA MARTELLA				
Relazione di calcolo rilevato di completamento linea storica	PROGETTO IA5F	LOTTO 01	CODIFICA DOCUMENTO D 78 RH GE0005 005	REV.	FOGLIO 13 DI 16

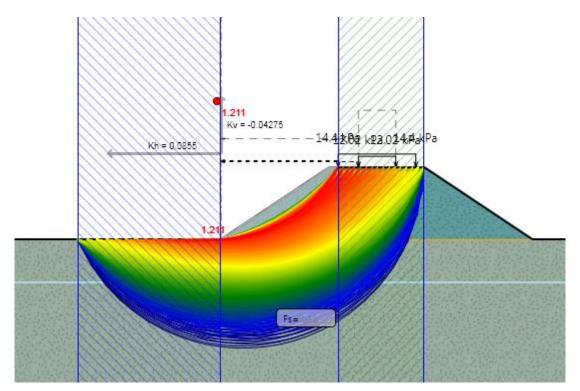


Figura 6: Rilevato H=5m - verifica di stabilità in condizione sisma -.

Nella tabella che segue si riassumono i fattori di sicurezza ottenuti.

Condizione di calcolo	FS		FS da NTC2018 (γ _R)
Statica	1.139	>	1.1
Sismica +	1.266	>	1.2
Sismica -	1.211	2	1.2

S ITALFERR	Nuova linea Ferrandina - Matera La Martella per il collegamento di Matera con rete ferroviaria nazionale NUOVA LINEA FERRANDINA – MATERA LA MARTELLA				
Relazione di calcolo rilevato di completamento linea storica	PROGETTO IA5F	LOTTO 01	CODIFICA DOCUMENTO D 78 RH GE0005 005	REV.	FOGLIO 14 DI 16

5.2 Analisi dei cedimenti

5.2.1 Modello di calcolo

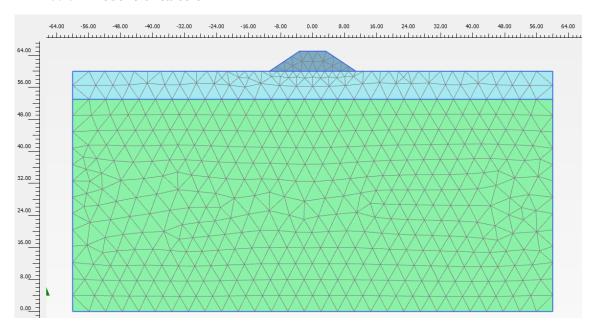


Figura 7: Rilevato H=5m - modello di calcolo cedimenti.

5.2.2 Risultati delle analisi

5.2.2.1 Risultati di fase 1

- Δu

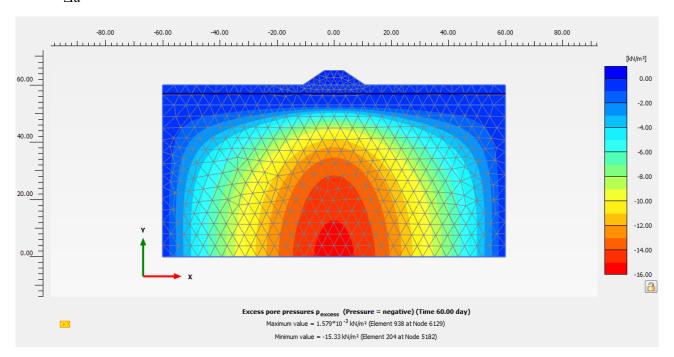


Figura 8: Rilevato H=5m - fase 1: Δu .

II ITALFERR	Nuova linea Ferrandina - Matera La Martella per il collegamento di Matera con rete ferroviaria nazionale NUOVA LINEA FERRANDINA – MATERA LA MARTELLA				
Relazione di calcolo rilevato di completamento linea storica	PROGETTO IA5F	LOTTO 01	CODIFICA DOCUMENTO D 78 RH GE0005 005	REV.	FOGLIO 15 DI 16

- Cedimenti verticali a 60 giorni

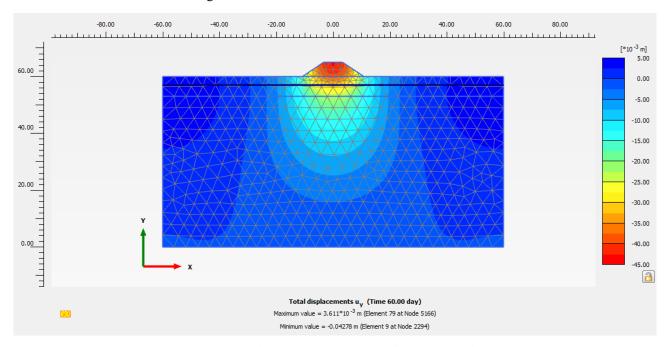


Figura 9: Rilevato H=5m - fase 1: cedimenti verticali.

5.2.2.2 Risultati di fase 2

- Δu

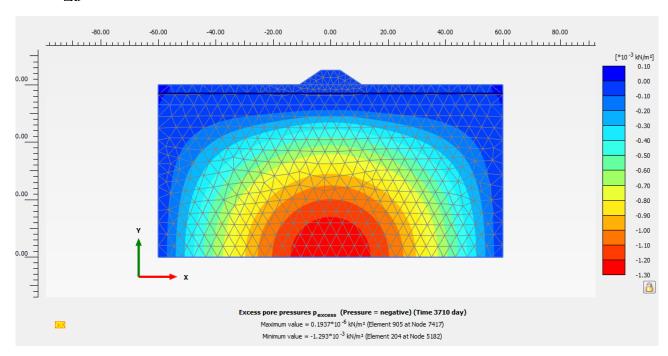


Figura 10: Rilevato H=5m - fase 2: Δu .

S ITALFERR	Nuova linea Ferrandina - Matera La Martella per il collegamento di Matera con rete ferroviaria nazionale NUOVA LINEA FERRANDINA – MATERA LA MARTELLA				
Relazione di calcolo rilevato di completamento linea storica	PROGETTO IA5F	LOTTO 01	CODIFICA DOCUMENTO D 78 RH GE0005 005	REV.	FOGLIO 16 DI 16

- Cedimenti verticali a 10 anni

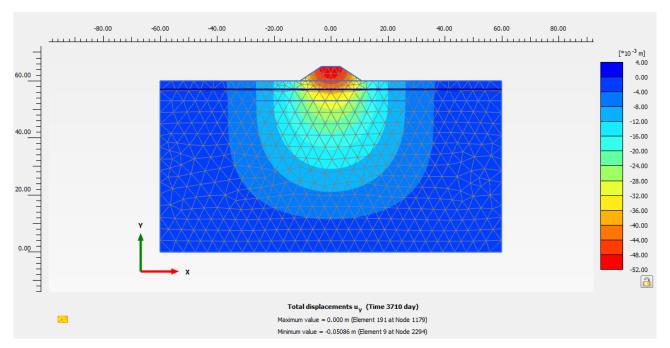


Figura 11: Rilevato H=5m - fase 2: cedimenti verticali.

Il cedimento residuo è inferiore a 1 cm.