COMMITTENTE

PROGETTAZIONE:

D	IP	F7	NE	TE	CN	ICA
ப	IR				C) IV	ILA

U.O. INFRASTRUTTURE SUD

PROGETTO DEFINITIVO

Nuova linea Ferrandina - Matera La Martella per il collegamento di Matera con la rete ferroviaria nazionale

NUOVA LINEA FERRANDINA – MATERA LA MARTELLA

OPERE CIVILI

Opere D'Arte Minori – Sottovia e interferenze idrauliche – Tombini

IN11 - Tombino alla pk 14+959,42 - RAMO A

Relazione di calcolo opera esistente ai sensi del D.M. '96

SCALA:
_

COMMESSA LOTTO FASE ENTE TIPO DOC. OPERA/DISCIPLINA PROGR. REV.

 I A 5 F
 0 1
 D
 7 8
 C L
 I N 1 1 0 0
 0 0 1
 A

Rev.	Descrizione	Redatto	Data	Verificato	Data	Approvato	Data	Autorizzato Data
А	EMISSIONE DEFINITIVA	E.SELLARI	07/2019	N.MANGUSO	07/2019 >	F.GERNONE	07/ 2019	D. TIBERTI 07/2019
				702.0				1.5. pr.A.
								A FEBRE President president Jag. Do.
								ITA Grupp Doll Doll Logil Ing
								Ordine d

Tile. IASI 01D/06EliN1100001A	File: IA5F01D78CLIN1100001A		n. Elab.:
-------------------------------	-----------------------------	--	-----------

Nuova linea Ferrandina - Matera La Martella per il collegamento di Matera con la rete ferroviaria nazionale

NUOVA LINEA FERRANDINA – MATERA LA MARTELLA

Relazione di calcolo opera esistente ai sensi del D.M. '96

PROGETTO LOTT

LOTTO CODIFICA DOCUMENTO
01 D 78 CL IN1100 001

REV.

FOGLIO 3 DI 30

INDICE

1	PREMESSA	4
2.	GEOMETRIA DELLA STRUTTURA	6
3.	TOMBINO ESISTENTE	7
3.1.	VERIFICHE SECONDO LA NORMA ORIGINARIA	7
3.1.1	. NORMATIVA DI RIFERIMENTO	7
3.1.2	. GEOMETRIA	8
3.1.3	. MATERIALI	8
3.1.4	. ANALISI DEI CARICHI	8
3.1.5	. COMBINAZIONI DI CARICO	13
3.1.6	. MODELLAZIONE ADOTTATA	15
3.1.7	. CARATTERISTICHE DELLE SOLLECITAZIONI	17
3.1.7	.1. INVILUPPO TENSIONI AMMISSIBILI	17
3.1.7	.2. INVILUPPO FESSURAZIONI	21
3.1.8	VERIFICHE	24

I ITALFERR	Matera con	la rete fer	ina - Matera La Martella roviaria nazionale ANDINA – MATERA LA M	•	· ·
Relazione di calcolo opera esistente ai sensi del D.M. '96	PROGETTO IA5F	LOTTO 01	CODIFICA DOCUMENTO D 78 CL IN1100 001	REV.	FOGLIO 4 DI 30

1. PREMESSA

Nella presente relazione di calcolo sono condotte le verifiche, **ai sensi delle norme vigenti all'epoca della progettazione/costruzione**, relativamente ad un sottopasso esistente lungo la linea ferroviaria "Ferrandina-Matera La Martella", già realizzato con una struttura scatolare in c.a.. Lo scatolare in oggetto è situato alla progressiva 14+959,42 (progressiva storica 14+794,00).

In generale le verifiche dei manufatti esistenti sono svolte secondo i seguenti criteri:

- a) verifica del manufatto esistente in conformità alle norme vigenti all'epoca della progettazione/costruzione, che è oggetto della presente relazione: se la verifica risulta soddisfatta si procede ad un'analisi di vulnerabilità dell'opera effettuata ai sensi delle NTC 2018 agli SLV (punto b)); se la verifica non risulta soddisfatta si procede alla progettazione di un nuovo scatolare ai sensi delle NTC 2018 (punto c));
- b) verifica del manufatto esistente in conformità al D.M. 17/01/2018 e alla Circolare 21/01/2019 n. 7 agli SLV: se la verifica risulta soddisfatta non si rendono necessari interventi sull'opera; se la verifica non risulta soddisfatta si procede alla progettazione di un nuovo scatolare in c.a. ai sensi delle NTC2018 (punto c));
- c) dimensionamento del manufatto ex-novo con stesse dimensioni nette interne, in conformità al D.M. 17/01/2018
 e alla Circolare 21/01/2019 n. 7, da eseguirsi nei casi in cui le verifiche di cui ai punti a) oppure b) dessero esito negativo.

Si riportano di seguito una sezione longitudinale e una trasversale dello scatolare tipo, volte ad individuare le grandezze impiegate nelle verifiche e nel successivo dimensionamento.

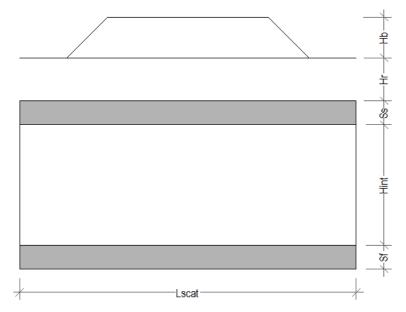


Figura 1. Sezione longitudinale dello scatolare

I ITALFERR	Matera con	la rete fei	ina - Matera La Martella rroviaria nazionale ANDINA – MATERA LA N		·
Relazione di calcolo opera esistente ai sensi del D.M. '96	PROGETTO IA5F	LOTTO 01	CODIFICA DOCUMENTO D 78 CL IN1100 001	REV.	FOGLIO 5 DI 30

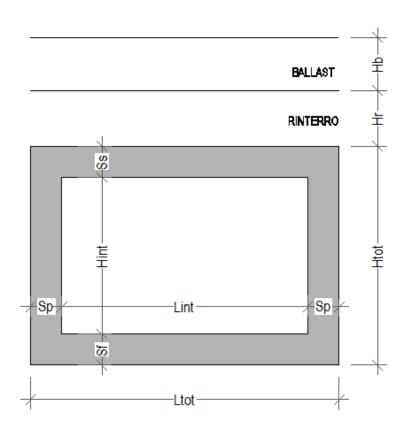


Figura 2. Sezione trasversale dello scatolare

I ITALFERR	Matera con	la rete fer	ina - Matera La Martella rroviaria nazionale ANDINA – MATERA LA N		•
Relazione di calcolo opera esistente ai sensi del D.M. '96	PROGETTO IA5F	LOTTO 01	CODIFICA DOCUMENTO D 78 CL IN1100 001	REV.	FOGLIO 6 DI 30

2. GEOMETRIA DELLA STRUTTURA

Il tombino esistente sottopassa la linea ferroviaria ad una distanza fra piano ferro ed estradosso soletta pari a 3.80 m, di cui spessore medio ballast più armamento pari a 0.80 m e la rimanente parte il rinterro. Esso ha dimensioni interne 2.00×2.00 m, con piedritti, soletta superiore e soletta inferiore di spessore 35 cm. Nel seguito verrà esaminata una striscia di scatolare avente lunghezza di 1.00 m. Nella figura [Fig. 2] di cui al paragrafo precedente sono riportate schematicamente la geometria dell'opera e la simbologia adottata.

Le caratteristiche geometriche hanno la seguente simbologia:

Spessore medio del ballast + armamento	H_b	[m]
Spessore traversina + rotaie (35 cm)	H_{tb}	[m]
Larghezza traversina	L_{tb}	[m]
Spessore del rinterro	$H_{\rm r}$	[m]
Larghezza totale del sottopasso	L_{tot}	[m]
Larghezza utile del sottopasso	$\mathrm{L}_{ ext{int}}$	[m]
Spessore della soletta	S_{5}	[m]
Spessore piedritti	S_p	[m]
Spessore fondazione	S_{f}	[m]
Altezza libera del sottopasso	$\mathbf{H}_{ ext{int}}$	[m]
Altezza totale del sottopasso	H_{tot}	[m]
Larghezza striscia di calcolo	ь	[m]

F ITALFERR	Matera con	la rete fei	ina - Matera La Martella roviaria nazionale ANDINA – MATERA LA N		
Relazione di calcolo opera esistente ai sensi del D.M. '96	PROGETTO	LOTTO	CODIFICA DOCUMENTO	REV.	FOGLIO
	IA5F	01	D 78 CL IN1100 001	A	7 DI 30

3. TOMBINO ESISTENTE

3.1. VERIFICHE SECONDO LA NORMA ORIGINARIA

Nel presente paragrafo si riportano i calcoli statici relativi allo scatolare esistente, di cui in premessa, eseguiti ripercorrendo quanto previsto dalla normativa vigente al momento della realizzazione. Le azioni sismiche non sono state prese in considerazione in questa fase in quanto il comune su cui ricade lo scatolare non era classificato come sismico all'epoca della realizzazione dello scatolare stesso.

3.1.1. NORMATIVA DI RIFERIMENTO

Tutte le calcolazioni sono state eseguite nel rispetto delle normative vigente al tempo della realizzazione dello scatolare. In particolare si è fatto riferimento:

- Legge 5 Novembre 1971, n. 1086 "Norme per la disciplina delle opere di conglomerato cementizio armato, normale e precompresso ed a struttura metallica";
- Circolare 14 Febbraio 1974 del Ministero dei Lavori Pubblici "Istruzioni per l'applicazione della legge 5 Novembre 1971, n. 1086";
- Decreto Ministeriale del 12 Febbraio 1982 "Criteri generali per la verifica della sicurezza delle costruzioni e dei carichi e sovraccarichi";
- Circolare 24 Maggio 1982 n. 22631 del Ministero dei Lavori Pubblici "Istruzioni relative ai carichi, ai sovraccarichi e ai criteri generali per la verifica di sicurezza delle costruzioni";
- Decreto Ministeriale 1 Aprile 1983 "Norme tecniche per l'esecuzione delle opere in cemento armato normale, precompresso e per le strutture metalliche";
- Istruzioni del Consiglio Nazionale delle Ricerche, CNR UNI 10012-67 "Ipotesi di carico sulle costruzioni";
- Circolare n. 54 LC. 6/27215 in data 15 luglio 1945 del Servizio dei Lavori e Costruzioni delle Ferrovie e relative tabelle dei sovraccarichi;
- Decreto Ministeriale del 19/6/1984 "Norme tecniche per le costruzioni in zona sismica";
- Decreto Ministeriale del 21/1/1981 "Norme tecniche riguardanti le indagini sui terreni e sulle rocce, la stabilità dei pendii naturali e delle scarpate, i criteri generali e le prescrizioni per la progettazione l'esecuzione e il collaudo delle opere di sostegno delle terre e delle opere di fondazione";
- La circolare FS n. 44/b del 9/10/1982 "Istruzioni tecniche per manufatti sotto binario da costruire in zona sismica".

S ITALFERR	Matera con	la rete fei	ina - Matera La Martella roviaria nazionale ANDINA – MATERA LA N		
Relazione di calcolo opera esistente ai sensi del D.M. '96	PROGETTO IA5F	LOTTO 01	CODIFICA DOCUMENTO D 78 CL IN1100 001	REV.	FOGLIO 8 DI 30

3.1.2. <u>GEOMETRIA</u>

Larghezza utile	Lint	2. 00 m	luce interna scatolare
Altezza libera	Hint	2.00 m	altezza interna scatolare
Spessore piedritti	Sp	0.35 m	
Spessore soletta	Ss	0.35 m	
Spessore fondazione	Sf	0.35 m	
Altezza ballast	Hb	0.80 m	
Rinterro (superiore)	Hr	3.00 m	
Lunghezza traversa	Ltb	2.30 m	
Altezza traversa	Htb	0.35 m	
Ricoprimento	Hric	3.80 m	Hb+Hr
Larghezza totale	Ltot	2.70 m	Lint+2xSPp
Altezza totale	Htot	2.70 m	Hint+SPs+SPf

3.1.3. MATERIALI

Per le opere in c.a. si adotta:

- un calcestruzzo C (20/25) le cui caratteristiche principali sono:

Resistenza cilindrica caratteristica: $f_{ck} = 20 \ \text{N/mmq}$ Resistenza cubica caratteristica: $R_{ck} = 25 \ \text{N/mmq}$

- acciaio da cemento armato normale FeB 38K (controllato) ad aderenza migliorata:

tensione ammissibile: $\sigma = 2200 \text{ Kg/cm}^2$

3.1.4. <u>ANALISI DEI CARICHI</u>

Si riportano di seguito i carichi utilizzati per il calcolo delle sollecitazioni e le verifiche delle sezioni della struttura in esame.

Peso proprio della struttura (condizione DEAD)

Il *peso proprio* delle solette e dei piedritti viene calcolato automaticamente dal programma di calcolo utilizzato considerando per il calcestruzzo γ = 25 kN/m³.

Peso specifico calcestruzzo armato	γds	25 kN/m ³	
peso singolo piedritto	Pp	8.75 kN/m	y cls x Sp
peso soletta superiore	Pss	8.75 kN/m	ycls x Ss
peso soletta inferiore	Psf	8.75 kN/m	$\gamma cls \times Sf$

S ITALFERR	Nuova linea Ferrandina - Matera La Martella per il collegamento Matera con la rete ferroviaria nazionale NUOVA LINEA FERRANDINA – MATERA LA MARTELLA				
Relazione di calcolo opera esistente ai sensi del D.M. '96	PROGETTO IA5F	LOTTO 01	CODIFICA DOCUMENTO D 78 CL IN1100 001	REV.	FOGLIO 9 DI 30

Carichi permanenti portati (condizione PERM)

peso specifico ballast	γb	18 kN/m^3	
altezza ballast	Hb	$0.80 \mathrm{m}$	
peso ballast	Pb	14.40 kN/m	$\gamma b \times Hb$
peso specifico rinterro	γr	19 kN/m^3	
altezza rinterro	Hr	3.00 m	
peso rinterro	Pr	57.00 kN/m	$\gamma r \times Hr$
Permanente totale	G2p	71.40 kN/m	Pb + Pr
Permanente nodi 1 e 2	G2P	12.50 kN	G2p x Sp / 2

I carichi concentrati nei nodi 1 e 2 (i nodi tra la soletta superiore e i piedritti), rappresentano il carico permanente sulla soletta di copertura dovuto al peso della zona sovrastante la metà dello spessore del piedritto (la modellazione dello scatolare è stata fatta in asse piedritto).

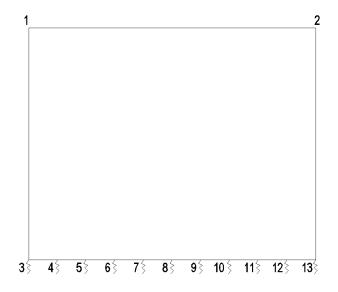


Figura 3. Numerazione dei nodi nel modello strutturale.

I ITALFERR	Nuova linea Ferrandina - Matera La Martella per il collegamento Matera con la rete ferroviaria nazionale NUOVA LINEA FERRANDINA – MATERA LA MARTELLA				
Relazione di calcolo opera esistente ai sensi del D.M. '96	PROGETTO IA5F	LOTTO 01	CODIFICA DOCUMENTO D 78 CL IN1100 001	REV.	FOGLIO 10 DI 30

Spinta del terreno (condizioni SPTSX e SPTDX)

Le caratteristiche del rinterro, di seguito riportate, sono state determinate con indagini in sito SPT:

Ø=38°	angolo di attrito
$\gamma_r = 19 \text{ kN/m}^3$	peso specifico rinterro
$C_u = 0$	coesione non drenata

angolo di attrito rinterro		38 [°]	0.663 [rad]
coefficiente spinta attiva ka		0.238	(1 - senO) / (1 + senO)
coefficiente spinta riposo ko		0.384	(1 - senØ)
coefficiente spinta passiva kp		4.204	(1 + senØ) / (1 - senØ)
Pressione estradosso soletta superiore	P1	27.44 kN/m^2	$ko \propto (Pb + Pr)$
Pressione asse soletta superiore	P2	28.72 kN/m^2	$ko \times (Pb + Pr + \gamma r \times Ss / 2)$
Pressione asse soletta inferiore	Р3	45.88 kN/m^2	$ko \times [Pb + Pr + \gamma r \times (Ss + Hint + Sf / 2)]$
Pressione intradosso soletta inferiore	P4	47.16 kN/m^2	$ko \times (Pb + Pr + \gamma r \times Htot)$
Forza concentrata asse soletta superiore	F1	4.91 kN/m	(P1 + P2) / 2 x Ss / 2
Forza concentrata asse soletta inferiore	F2	8.14 kN/m	(P3+P4) / 2 x Sf / 2

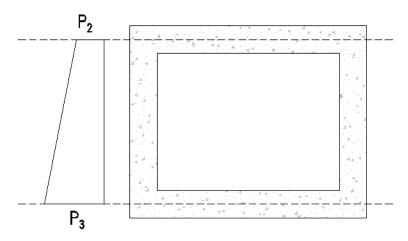


Figura 4. Spinte del terreno

I carichi concentrati nei nodi 1 e 3 (per la SPTSX) oppure 2 e 13 (per la SPTDX) rappresentano la parte di spinta del terreno esercitata su 1/2 spessore della soletta sup. e su 1/2 spessore della soletta inferiore.

S ITALFERR	Nuova linea Ferrandina - Matera La Martella per il collegamento Matera con la rete ferroviaria nazionale NUOVA LINEA FERRANDINA – MATERA LA MARTELLA				
Relazione di calcolo opera esistente ai sensi del D.M. '96	PROGETTO IA5F	LOTTO 01	CODIFICA DOCUMENTO D 78 CL IN1100 001	REV.	FOGLIO 11 DI 30

Carichi accidentali, ripartizione carichi verticali (condizione ACCM)

I carichi ferroviari sono stati desunti in conformità alla Circolare n. 54/1945 delle Ferrovie dello Stato.

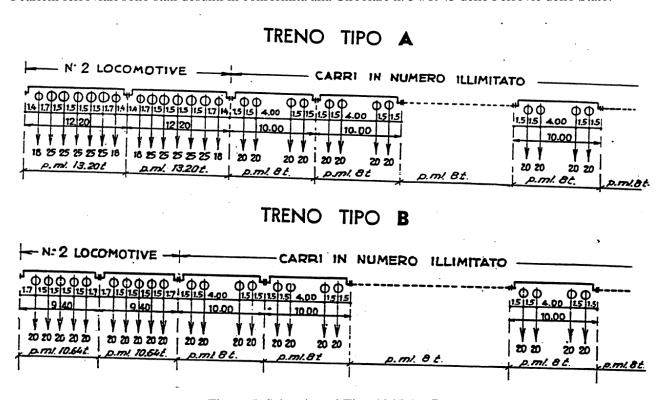


Figura 5. Schemi treni Tipo 1945 A e B

Si riportano di seguito una schematizzazione della diffusione dei carichi ferroviari rispettivamente attraverso ballast, rinterro e soletta.

I ITALFERR	Matera con	la rete fei	ina - Matera La Martella roviaria nazionale ANDINA – MATERA LA N	•	
Relazione di calcolo opera esistente ai sensi del D.M. '96	PROGETTO IA5F	LOTTO 01	CODIFICA DOCUMENTO D 78 CL IN1100 001	REV.	FOGLIO 12 DI 30

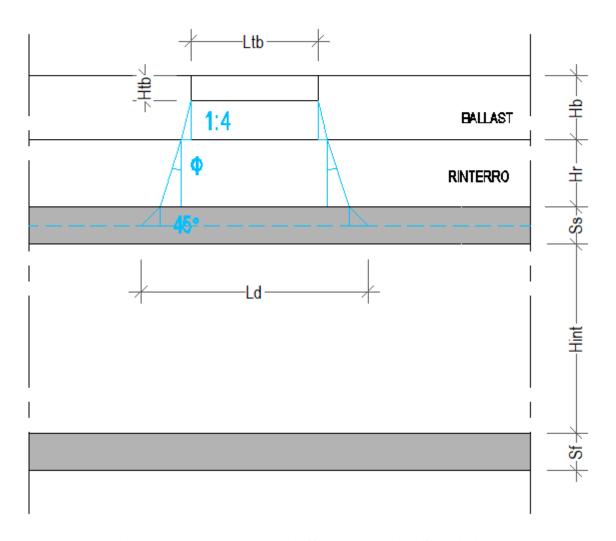


Figura 6. Schema modalità di diffusione dei carichi ferroviari

Ldb	0 ,2 3 m	Diffusione 1:4 nel ballast
Ldr	4,69 m	Diffusione secondo angolo attrito
Ldc	0 ,3 5 m	Diffusione 45° nel cls
Ld	7,56 m	Ltb + Ldb + Ldr + Ldc
	Tipo A	* Circolare n.54/1945
q1	132,00 kN/m	* Circolare n.54/1945
Pq1*	17,45 kN/m^2	q1 / Ld
S	80,15 kN/m^2	Pss + G2p
P	17,45 kN/m^2	Pq1*
i	1,00	1 + 0.4/(1+0.2xL) + 0.6/(1+4xP/S)
Pq1	17,45 kN/m^2	$q1 \times i / Ld$
	Ldr Ldc Ld q1 Pq1* S P	I.dr 4,69 m I.dc 0,35 m I.d 7,56 m Tipo A q1 132,00 kN/m Pq1* 17,45 kN/m^2 S 80,15 kN/m^2 P 17,45 kN/m^2 i 1,00

I ITALFERR	Matera con	la rete fer	ina - Matera La Martella roviaria nazionale ANDINA – MATERA LA M		
Relazione di calcolo opera esistente ai sensi del D.M. '96	PROGETTO IA5F	LOTTO 01	CODIFICA DOCUMENTO D 78 CL IN1100 001	REV.	FOGLIO 13 DI 30

Spinta sui piedritti prodotta dal sovraccarico (condizioni SPACCSX e SPACCDX)

Carico distribuito per treno di carico	Sq1	6.71 kN/m^2	(q1 / Ld) × Ko
Spinta semispessore soletta superiore	Fq1sup	1.17 kN/m	Sq1 x Ss / 2
spinta semispessore soletta inferiore	Fq1inf	1.17 kN/m	$Sq1 \times Sf / 2$

Frenatura e avviamento (condizione AVV)

La forza di frenatura ferroviari è assunta pari ad 1/5 del sovraccarico.

Avviamento e frenatura qAv 3.49 kN/m Pq1 / 5

Azioni termiche (condizione TERM)

Variazione termica uniforme	∆Tunif	+-15.00 [°]	Sulla soletta superiore
Variazione termica differenziale	∆Tdiff	+-5.00 [°]	Sulla soletta superiore
	Gradiente	+-14.29 [°/m]	∆ Tdiff / Ss
Ritiro igrometrico (condizione RITIRO)			

Variazione termica uniforme equivalente

3.1.5. <u>COMBINAZIONI DI CARICO</u>

Le azioni descritte nel paragrafo precedente ed utilizzate nelle combinazioni di carico vengono di seguito riassunte:

ΔTritiro -[10.42°]

Sulla soletta superiore

Peso proprio	DEAD
Carichi permanenti	PERM
Spinta del terreno sulla parete sinistra	SPTSX
Spinta del terrenno sulla parete destra	SPTDX
Carico Accidentale LM71	ACCM
Spinta del carico acc. (TIPO A)Sulla parete	SPACCSX
Spinta del carico acc. (TIPO A)Sulla	SPACCDX
Avviamento e frenatura	AVV
Variazione termica sulla soletta superiore	ENV_TERM
Ritiro	RITIRO

La 4 condizioni di carico:

 Δ Tuniforme =±15°

 $=\pm5^{\circ}$

∆Tdifferenziale

e le loro 4 combinazioni sono state preventivamente inviluppate nella condizione ENV_TERM, la quale viene impiegata nelle successive combinazioni di carico per massimizzare gli effetti termici.

S ITALFERR	Matera con	la rete fei	ina - Matera La Martella roviaria nazionale ANDINA – MATERA LA N		
Relazione di calcolo opera esistente ai sensi del D.M. '96	PROGETTO IA5F	LOTTO 01	CODIFICA DOCUMENTO D 78 CL IN1100 001	REV.	FOGLIO 14 DI 30

Si analizza la combinazione per carichi nominali.

	TA01	TA02	TA03	TA04	TA05	TA06	TA07	TA08
DEAD	1	1	1	1	1	1	1	1
PERM	1	1	1	1	1	1	1	1
SPTSX	1	1	1	1	+0,6	+0,6	1	1
SPTDX	1	1	+0,6	+0,6	+0,6	+0,6	+0,6	+0,6
ACCM	1	1	1	1	1	1	+0,8	+0,8
SPACCSX	1	1	1	1	1	1	+0,8	+0,8
SPACCDX	1	1	0	0	0	0	0	0
AVV	1	1	1	1	1	1	1	1
ENV_TERM	+0,6	-0,6	+0,6	-0,6	+0,6	-0,6	+0,6	-0,6
RITIRO	1	1	1	1	1	1	1	1

Le combinazioni di carico TA01, TA021, TA03, TA04, TA05 e TA06 sono riferite alle verifiche tensionali alle Tensioni Ammissibili. Le combinazioni dei carico TA07 e TA08 sono riferite alle verifiche di fessurazione.

S ITALFERR	Matera con	la rete fei	ina - Matera La Martella roviaria nazionale ANDINA – MATERA LA N		·
Relazione di calcolo opera esistente ai sensi del D.M. '96	PROGETTO IA5F	LOTTO 01	CODIFICA DOCUMENTO D 78 CL IN1100 001	REV.	FOGLIO 15 DI 30

3.1.6. <u>MODELLAZIONE ADOTTATA</u>

Il modello di calcolo attraverso il quale viene schematizzata la struttura è quello di telaio chiuso su letto di molle alla Winkler. Il programma di calcolo utilizzato è un programma ad elementi finiti, il Sap 2000.

Le caratteristiche delle aste modellate con elementi frame sono le seguenti:

Asta 1 = Sezione 100×35 cmq (soletta superiore)

Aste 2.3 = Sezione 100×35 cmq (piedritti)

Aste 4.5 = Sezione 100×35 cmq (soletta inferiore)

L'opera è stata considerata vincolata alla base mediante dei vincoli cedevoli in funzione delle caratteristiche elastiche del terreno di sottofondo.

La soletta inferiore viene divisa in 10 elementi per poter schematizzare, tramite le molle applicate, l'interazione terreno-struttura. Per la rigidezza delle molle, nel il caso in esame, si assume il valore del Modulo di reazione verticale desunto dalla relazione geotecnica:

 $K_s = 10000 \text{ kN/m}^3$

Rigidezza molle nodali SAP

ks		10000 kN/m^3
nodi centrali (6,7,8,9,10)		
Linfl		0 , 235 m
Kcentrale	ks x Linfl x 1	2350 kN/m
nodi intermedi (4,5,11,12)		
Linfl		0 ,235 m
Kintermedio	1,5 x ks x Linfl x 1	3525 kN/m
nodi estremità (3,13)		
Linfl		0 , 293 m
Kestremità	2,0 x ks x Linfl x 1	5850 kN/m
Nodi		
N.nodi		13
N.nodi sup		2
N.nodi inf		11
N.spazi inf		10
Linterasse		2,35 m
Hinterasse		2,35 m

I ITALFERR	Matera con	la rete fer	ina - Matera La Martella roviaria nazionale ANDINA – MATERA LA M		
Relazione di calcolo opera esistente ai sensi del D.M. '96	PROGETTO IA5F	LOTTO 01	CODIFICA DOCUMENTO D 78 CL IN1100 001	REV.	FOGLIO 16 DI 30

Nodo	\mathbf{X}	Z					
1	0,000	2,350					
2	2,350	2,350					
3	0,000	0,000					
4	0,235	0,000					
5	0,470	0,000					
6	0,705	0,000					
7	0,940	0,000					
8	1,175	0,000					
9	1,410	0,000					
10	1,645	0,000					
11	1,880	0,000					
12	2,115	0,000					
13	2,350	0,000					

Figura 7. Numerazione nodi modello SAP

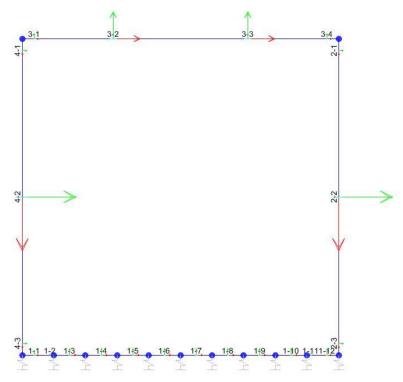
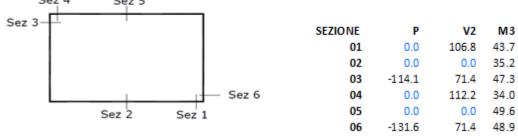


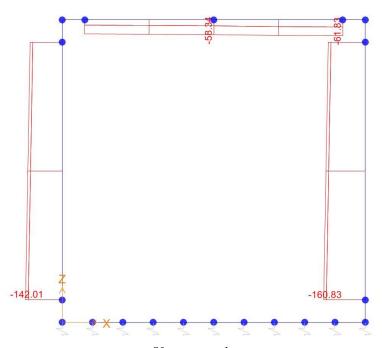
Figura 8: Individuazione elementi modello SAP

S ITALFERR	Matera con	la rete fei	ina - Matera La Martella roviaria nazionale ANDINA – MATERA LA N		
Relazione di calcolo opera esistente ai sensi del D.M. '96	PROGETTO IA5F	LOTTO 01	CODIFICA DOCUMENTO D 78 CL IN1100 001	REV.	FOGLIO 17 DI 30

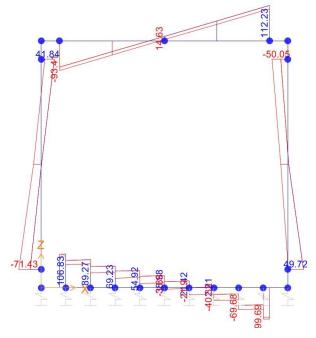

3.1.7. <u>CARATTERISTICHE DELLE SOLLECITAZIONI</u>

3.1.7.1. Inviluppo Tensioni Ammissibili

Frame	Station	OutputCase	CaseType	StepType	P	V2	M3
1	0.175	ENVELOPE TA	Combination	Max	0.	0 106.3	43.7
1	0.235	ENVELOPE TA	Combination	Max	0.	0 106.8	37.3
1	0.235	ENVELOPE TA	Combination	Max	0.	0 87.2	37.3
1	0.47	ENVELOPE TA	Combination	Max	0.	0 89.3	16.6
1	0.47	ENVELOPE TA	Combination	Max	0.	0 67.2	16.6
1	0.705	ENVELOPE TA	Combination	Max	0.	0 69.2	0.5
1	0.705	ENVELOPE TA	Combination	Max	0.	0 52.9	0.5
1	0.94	ENVELOPE TA	Combination	Max	0.	0 54.9	-12.1
1	0.94	ENVELOPE TA	Combination	Max	0.	0 36.9	-12.1
1	1.175	ENVELOPE TA	Combination	Max	0.	0 39.0	-18.3
1	1.175	ENVELOPE TA	Combination	Max	0.	0 19.4	-18.3
1	1.41	ENVELOPE TA	Combination	Max	0.	0 21.4	-17.7
1	1.41	ENVELOPE TA	Combination	Max	0.	0 0.2	-17.7
1	1.645	ENVELOPE TA	Combination	Max	0.	0 2.2	-12.8
1	1.645	ENVELOPE TA	Combination	Max	0.	0 -20.8	-12.8
1	1.88	ENVELOPE TA	Combination	Max	0.	0 -18.7	-3.5
1	1.88	ENVELOPE TA	Combination	Max	0.	0 -55.9	-3.5
1	2.115	ENVELOPE TA	Combination	Max	0.	0 -53.8	12.6
1	2.115	ENVELOPE TA	Combination	Max	0.	0 -93.7	12.6
1	2.175	ENVELOPE TA	Combination	Max	0.	0 -93.2	18.6
1	0.175	ENVELOPE TA	Combination	Min	0.	0 100.4	18.6
1	0.235	ENVELOPE TA	Combination	Min	0.	0 100.9	12.5
1	0.235	ENVELOPE TA	Combination	Min	0.	0 73.5	12.5
1	0.47	ENVELOPE TA	Combination	Min	0.	0 75.6	-5.0
1	0.47	ENVELOPE TA	Combination	Min	0.	0 47.7	-5.0
1	0.705	ENVELOPE TA	Combination	Min	0.	0 49.8	-17.6
1	0.705	ENVELOPE TA	Combination	Min	0.	0 30.9	-17.6
1	0.94	ENVELOPE TA	Combination	Min	0.	0 32.9	-26.8
1	0.94	ENVELOPE TA	Combination	Min	0.	0 13.7	-26.8
1	1.175	ENVELOPE TA	Combination	Min	0.	0 15.8	-32.0
1	1.175	ENVELOPE TA	Combination	Min	0.	0 -3.9	-32.0
1	1.41	ENVELOPE TA	Combination	Min	0.	0 -1.8	-34.9
1	1.41	ENVELOPE TA	Combination	Min	0.	0 -21.9	-34.9
1		ENVELOPE TA	Combination	Min	0.		
1		ENVELOPE TA	Combination	Min	0.		
1		ENVELOPE TA	Combination	Min	0.		
1	1.88	ENVELOPE TA	Combination	Min	0.	0 -69.7	-30.6
1	2.115	ENVELOPE TA	Combination	Min	0.	0 -67.6	-17.7
1	2.115	ENVELOPE TA	Combination	Min	0.	0 -99.7	-17.7
1	2.175	ENVELOPE TA	Combination	Min	0.	0 -99.2	-12.1
2	0.175	ENVELOPE TA	Combination	Max	-132.	9 -22.2	-19.8

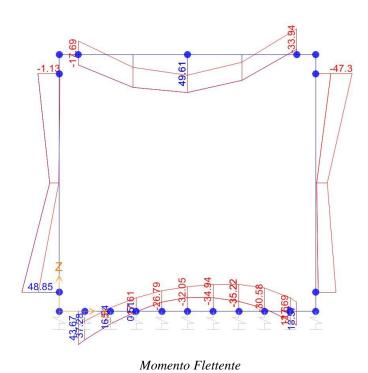


2	1.175 ENVELOPE TA	Combination	Max	-141.6	2.1	-1.0
2	2.175 ENVELOPE TA	Combination	Max	-150.4	49.7	-3.4
2	0.175 ENVELOPE TA	Combination	Min	-143.3	-50.1	-47.3
2	1.175 ENVELOPE TA	Combination	Min	-152.1	-22.7	-14.9
2	2.175 ENVELOPE TA	Combination	Min	-160.8	1.9	-26.3
3	0.175 ENVELOPE TA	Combination	Max	-20.6	-83.0	13.7
3	0.675 ENVELOPE TA	Combination	Max	-22.3	-34.2	43.0
3	1.175 ENVELOPE TA	Combination	Max	-24.1	14.6	49.6
3	1.675 ENVELOPE TA	Combination	Max	-25.8	63.4	33.5
3	2.175 ENVELOPE TA	Combination	Max	-27.6	112.2	-6.9
3	0.175 ENVELOPE TA	Combination	Min	-54.9	-93.4	-17.7
3	0.675 ENVELOPE TA	Combination	Min	-56.6	-44.6	16.8
3	1.175 ENVELOPE TA	Combination	Min	-58.3	4.2	26.9
3	1.675 ENVELOPE TA	Combination	Min	-60.1	53.0	9.9
3	2.175 ENVELOPE TA	Combination	Min	-61.8	101.8	-34.0
4	0.175 ENVELOPE TA	Combination	Max	-114.1	41.9	27.7
4	1.175 ENVELOPE TA	Combination	Max	-122.8	1.5	12.3
4	2.175 ENVELOPE TA	Combination	Max	-131.6	-34.8	48.9
4	0.175 ENVELOPE TA	Combination	Min	-124.5	11.6	-1.1
4	1.175 ENVELOPE TA	Combination	Min	-133.3	-23.8	0.8
4	2.175 ENVELOPE TA	Combination	Min	-142.0	-71.4	27.1
	Sez 4 Sez 5					



S ITALFERR	TROCETTO ESTITO COSMICK BOCOMENTO NEV.					
Relazione di calcolo opera esistente ai	PROGETTO	LOTTO	CODIFICA DOCUMENTO	REV.	FOGLIO	
sensi del D.M. '96	IA5F	01	D 78 CL IN1100 001	Α	19 DI 30	

Diagrammi di inviluppo delle sollecitazioni: ENVELOPE TA

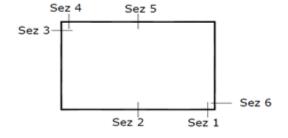


Sforzo normale

Taglio

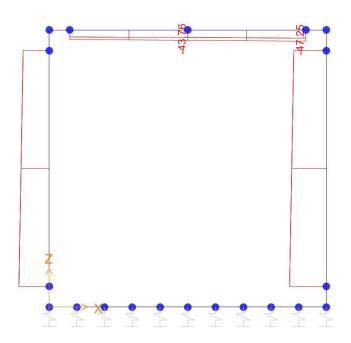
I ITALFERR	Matera con	la rete fei	ina - Matera La Martella rroviaria nazionale ANDINA – MATERA LA N	•	· ·
Relazione di calcolo opera esistente ai sensi del D.M. '96	PROGETTO IA5F	LOTTO 01	CODIFICA DOCUMENTO D 78 CL IN1100 001	REV.	FOGLIO 20 DI 30

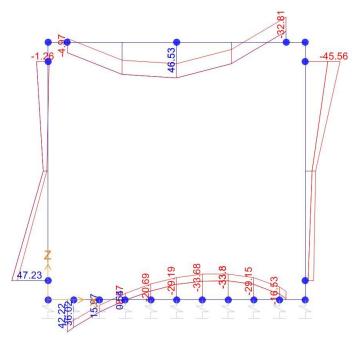
I valori V e M dei diagrammi corrispondono a quelli riportati nella tabella, mentre il valore dello sforzo normale P nei diagrammi (valore massimo) differisce da quello di verifica della tabella, pari a quello di compressione minimo.



3.1.7.2. Inviluppo Fessurazioni

Frame	Station	OutputCase	CaseType	StepType	Р	V2		M3
1	0.175	ENVELOPE FESS	Combination	Max	(0.0	103.1	42.2
1	0.235	ENVELOPE FESS	Combination	Max	(0.0	103.6	36.0
1	0.235	ENVELOPE FESS	Combination	Max	(0.0	84.3	36.0
1	0.47	ENVELOPE FESS	Combination	Max	(0.0	86.3	16.0
1	0.47	ENVELOPE FESS	Combination	Max	(0.0	64.6	16.0
1	0.705	ENVELOPE FESS	Combination	Max	(0.0	66.7	0.6
1	0.705	ENVELOPE FESS	Combination	Max	(0.0	50.7	0.6
1	0.94	ENVELOPE FESS	Combination	Max	(0.0	52.7	-11.6
1	0.94	ENVELOPE FESS	Combination	Max	(0.0	35.1	-11.6
1	1.175	ENVELOPE FESS	Combination	Max	(0.0	37.2	-20.1
1	1.175	ENVELOPE FESS	Combination	Max	(0.0	18.1	-20.1
1	1.41	ENVELOPE FESS	Combination	Max	(0.0	20.1	-24.6
1	1.41	ENVELOPE FESS	Combination	Max	(0.0	-0.5	-24.6
1	1.645	ENVELOPE FESS	Combination	Max	(0.0	1.5	-24.7
1	1.645	ENVELOPE FESS	Combination	Max	(0.0	-20.8	-24.7
1	1.88	ENVELOPE FESS	Combination	Max	(0.0	-18.7	-20.0
1	1.88	ENVELOPE FESS	Combination	Max	(0.0	-54.7	-20.0
1	2.115	ENVELOPE FESS	Combination	Max	(0.0	-52.7	-7.3
1	2.115	ENVELOPE FESS	Combination	Max	(0.0	-91.3	-7.3
1	2.175	ENVELOPE FESS	Combination	Max	(0.0	-90.7	-1.9
1	0.175	ENVELOPE FESS	Combination	Min	(0.0	103.0	33.0
1	0.235	ENVELOPE FESS	Combination	Min	(0.0	103.5	26.8
1	0.235	ENVELOPE FESS	Combination	Min	(0.0	84.1	26.8
1	0.47	ENVELOPE FESS	Combination	Min	(0.0	86.2	6.8
1	0.47	ENVELOPE FESS	Combination	Min	(0.0	64.5	6.8
1	0.705	ENVELOPE FESS	Combination	Min	(0.0	66.5	-8.6
1	0.705	ENVELOPE FESS	Combination	Min	(0.0	50.6	-8.6
1	0.94	ENVELOPE FESS	Combination	Min	(0.0	52.6	-20.7
1	0.94	ENVELOPE FESS	Combination	Min	(0.0	35.1	-20.7
1	1.175	ENVELOPE FESS	Combination	Min	(0.0	37.2	-29.2
1	1.175	ENVELOPE FESS	Combination	Min	(0.0	18.0	-29.2
1	1.41	ENVELOPE FESS	Combination	Min	(0.0	20.1	-33.7
1	1.41	ENVELOPE FESS	Combination	Min	(0.0	-0.6	-33.7
1	1.645	ENVELOPE FESS	Combination	Min	(0.0	1.4	-33.8
1	1.645	ENVELOPE FESS	Combination	Min	(0.0	-20.9	-33.8
1	1.88	ENVELOPE FESS	Combination	Min	(0.0	-18.9	-29.1
1	1.88	ENVELOPE FESS	Combination	Min	(0.0	-54.9	-29.1
1	2.115	ENVELOPE FESS	Combination	Min	(0.0	-52.9	-16.5
1	2.115	ENVELOPE FESS	Combination	Min	(0.0	-91.4	-16.5
1	2.175	ENVELOPE FESS	Combination	Min	(0.0	-90.9	-11.1
2	0.175	ENVELOPE FESS	Combination	Max	-138	3.5	-30.1	-29.3
2	1.175	ENVELOPE FESS	Combination	Max	-147	7.3	-9.9	-8.9
2	2.175	ENVELOPE FESS	Combination	Max	-156	5.0	14.7	-3.8


2	0.175 ENVELOPE FESS	Combination	Min	-138.5	-41.8	-45.6
2	1.175 ENVELOPE FESS	Combination	Min	-147.3	-21.6	-13.5
2	2.175 ENVELOPE FESS	Combination	Min	-156.0	2.9	-10.9
3	0.175 ENVELOPE FESS	Combination	Max	-28.5	-80.2	13.4
3	0.675 ENVELOPE FESS	Combination	Max	-30.3	-33.1	41.7
3	1.175 ENVELOPE FESS	Combination	Max	-32.0	13.9	46.5
3	1.675 ENVELOPE FESS	Combination	Max	-33.8	61.0	27.8
3	2.175 ENVELOPE FESS	Combination	Max	-35.5	108.0	-14.5
3	0.175 ENVELOPE FESS	Combination	Min	-40.3	-80.2	-5.0
3	0.675 ENVELOPE FESS	Combination	Min	-42.0	-33.1	23.3
3	1.175 ENVELOPE FESS	Combination	Min	-43.8	13.9	28.1
3	1.675 ENVELOPE FESS	Combination	Min	-45.5	61.0	9.4
3	2.175 ENVELOPE FESS	Combination	Min	-47.3	108.0	-32.8
4	0.175 ENVELOPE FESS	Combination	Max	-110.7	27.7	15.1
4	1.175 ENVELOPE FESS	Combination	Max	-119.4	-11.3	6.2
4	2.175 ENVELOPE FESS	Combination	Max	-128.2	-57.6	47.2
4	0.175 ENVELOPE FESS	Combination	Min	-110.7	16.0	-1.2
4	1.175 ENVELOPE FESS	Combination	Min	-119.4	-23.0	1.6
4	2.175 ENVELOPE FESS	Combination	Min	-128.2	-69.3	40.1


SEZIONE	P	M3
01	0.0	42.2
02	0.0	33.8
03	-110.7	45.6
04	0.0	32.8
05	0.0	46.5
06	-128.2	47.2

S ITALFERR	Matera con	la rete fei	ina - Matera La Martella rroviaria nazionale ANDINA – MATERA LA N	•	•
Relazione di calcolo opera esistente ai	PROGETTO	LOTTO	CODIFICA DOCUMENTO	REV.	FOGLIO
sensi del D.M. '96	IA5F	01	D 78 CL IN1100 001	Α	23 DI 30

Diagrammi di inviluppo delle sollecitazioni: ENVELOPE FESS

Sforzo normale

Momento Flettente

S ITALFERR	Matera con	la rete fer	ina - Matera La Martella roviaria nazionale ANDINA – MATERA LA M	•	ŭ
Relazione di calcolo opera esistente ai sensi del D.M. '96	PROGETTO IA5F	LOTTO 01	CODIFICA DOCUMENTO D 78 CL IN1100 001	REV.	FOGLIO 24 DI 30

Il valore M dei diagrammi corrisponde a quello riportato nella tabella, mentre il valore dello sforzo normale P nei diagrammi (valore massimo) differisce da quello di verifica della tabella, pari a quello di compressione minimo.

3.1.8. <u>VERIFICHE</u>

	Funzioni TA(N-M-V) + FESS per Sezion	ne Rettangolare				
	Oggetto:					
	TOMBINO IN11 - Esistente Norma origina	nia				
	Sezione n°. 01					
	Dati di Input:					
В	Base sezione rettangolare	1000	mm	Geometria	della Sez	ione:
Н	Altezza sezione rettangolare	350	mm		Н	
c'	Copriferro armatura sup. compressa	50	mm		As'	ď
C	Copriferro armatura inf. Tesa	50	mm			
d	Altezza utile = H-c	300	mm	•		E
Rck	Resistenza caratt. Cubica calcestruzzo		MPa			
sa-adm	Tensione ammissibile acciaio	220	MPa	•	As	c
sc-adm	Tensione ammissibile cls compressione	8.50	MPa			
tau-co	Tensione limite no armatura taglio		MPa			
N	Sforzo normale [(+)Trazione]	······	kN			
M	Momento flettente [(+)]	······	kNm			
V	Taglio [(+)]	106.8	kN			
F11	1º diametro armatura tesa	20	·			
Fi2	2º diametro armatura tesa					
n1	N°. Barre 1° armatura tesa	5				
n2	N°. Barre 2° armatura tesa					
As	Armatura superiore compressa	1047	mmq	•	•	
As	Armatura inferiore tesa	1571	mmq	•	•	
Fi Staffe	Diametro staffe	0	mm		•	
s. Staffe	Passo staffe	200	mm	•	•	
bracci	Numero Bracci staffe	0		•	•	
cotθ	(proiez.orizz.)/(proiez.vert.) puntone cls	1.0	[range: 1,0)-2,5]	•	
alpha	angolo staffe/piegati r ispetto all'orizzont	ale 90.0°			•	
Asw	Area a taglio per unità di lunghezza		mmq/m	0.00	cmq/m	
M-fess	Momento per fessurazione [(+)]	42.2	kNm			
N-fess	Sforzo normale per fessurazione [(+)Traz.] 0.0	kN			
wk-lim	Stato limite apertura fessure (Freq.Perm)		mm			
	Dati di Output					
	TA - Tensioni e ampiezza fessure					
Sigs-sup	Tensione barre superiori [(-)Compresso]	-21	Мра	Coeff.Sfrut	t.	10%
Sigs-inf	Tensione barre inferiori [(+)Teso]	104	Мра	Coeff.Sfrut	t.	47%
Sigc-sup	Tensione cls superiore [(-)Compresso]	-3	Мра	Coeff.Sfrut	t.	36%
tau-c	Tensione tangenziale calcestruzzo	0.40	Мра	Coeff.Sfrut	t.	74%
Mcr	Momento di prima fessurazione	59	kNm			"
wk	Ampiezza di fessura	0.10	mm	Coeff.Sfrut	t.	51%
						

	Funzioni TA(N-M-V) + FESS per Sezion	e Rettangolare				
	Oggetto:					
	TOMBINO IN11 - Esistente Norma origina	ria				
	Sezione n°. 02					
	Dati di Input:					
В	Base sezione rettangolare	1000		<u>Geometria d</u>	tella Sez	ione:
Н	Altezza sezione rettangolare		mm		Н	
c'	Copriferro armatura sup. compressa	50	mm		As'	C
C	Copriferro armatura inf. Tesa	50	mm			
d	Altezza utile = H-c	300	mm			
Rck	Resistenza caratt. Cubica calcestruzzo	25	MPa			
sa-adm	Tensione ammissibile acciaio	220	MPa		As	C
sc-adm	Tensione ammissibile cls compressione	8.50	MPa			
tau-co	Tensione limite no armatura taglio	0.53	MPa			
N	Sforzo normale [(+)Trazione]	0.0	kN			
M	Momento flettente [(+)]	35.2	kNm			
V	Taglio [(+)]	0.0	kN			
Fi1	1º diametro armatura tesa	20	***************************************			
Fi2	2º diametro armatura tesa					
n1	N°. Barre 1° armatura tesa	6.5				
n2	N°. Barre 2° armatura tesa					
As	Armatura superiore compressa	1570	mmq	***************************************		
As	Armatura inferioretesa		mmq	***************************************		
FiStaffe	Diametro staffe	0	mm	***************************************		
s. Staffe	Passo staffe	200	mm	*		•
bracci	Numero Bracci staffe	0		*		•••••••
cotθ	(proiez.orizz.)/(proiez.vert.) puntone cls	1.0	[range: 1,0	0-2.51		•
alpha	angolo staffe/piegati rispetto all'orizzonta				•••••	•
Asw	Area a taglio per unità di lunghezza		mma/m	0.00 c	ma/m	•••••••
M-fess	Momento per fessurazione [(+)]		kNm			•
N-fess	Sforzo normale per fessurazione [(+)Traz.		kN			•
wk-lim	Stato limite apertura fessure (Freq.Perm)		mm			
	Dati di Output					
	TA - Tensioni e ampiezza fessure			†		••••••••
Sigs-sup	Tensione barre superiori [(-)Compresso]	-16	Mpa	Coeff.Sfrutt.		
Sigs-inf	Tensione barre inferiori [(+)Teso]		Мра	Coeff.Sfrutt.		309
Sigc-sup	Tensione cls superiore [(-)Compresso]		Мра	Coeff.Sfrutt.		269
tau-c	Tensione tangenziale cak estruzzo	······	Мра	Coeff.Sfrutt.		09
Mcr	Momento di prima fessurazione		kNm			
wk	Ampiezza di fessura		mm	Coeff.Sfrutt.		!
****	- Inpicted of read of	0.00		Joen.on att.		

	Funzioni TA(N-M-V) + FESS per Sezio	ne Rettangolare				
	Oggetto:					
	TOMBINO IN11 - Esistente Norma origin	aria				
	Sezione n°. 03					
	Dati di Input:		<u></u>			
В	Base sezione rettangolare	1000	mm	<u>Geometria</u>	della Sez	ione:
Н	Altezza sezione rettangolare	350	mm		Н	
c'	Copriferro armatura sup. compressa	50	mm		As'	c
C	Copriferro armatura inf. Tesa	50	mm			
d	Altezza utile = H-c	300	mm			
Rck	Resistenza caratt. Cubica calcestruzzo	25	MPa			
sa-adm	Tensione ammissibile acciaio	220	MPa		As	C
sc-adm	Tensione ammissibile cls compressione	8.50	MPa			
tau-co	Tensione limite no armatura taglio	0.53	MPa			
N	Sforzo normale [(+)Trazione]	-114.1	kN			
M	Momento flettente [(+)]	47.3	kNm			
V	Taglio [(+)]	71.4	kN			
F11	1º diametro armatura tesa	16				
Fi2	2º diametro armatura tesa					
n1	N°. Barre 1° armatura tesa	5				
n2	N°. Barre 2° armatura tesa	•••••				
Aځ	Armatura superiore compressa	669	mmq			
As	Armatura inferiore tesa	1005	mmq			
FiStaffe	Diametro staffe	0	mm			
s. Staffe	Passo staffe	200	mm			
bracci	Numero Bracci staffe	0				
cotθ	(proiez.orizz.)/(proiez.vert.) puntone cls	1.0	[range: 1,0)-2,5]		
alpha	angolo staffe/piegati rispetto all'orizzont					
Asw	Area a taglio per unità di lunghezza		mmq/m	0.00	cmq/m	
M-fess	Momento per fessurazione [(+)]	45.6	kNm			
N-fess	Sforzo normale per fessurazione [(+)Traz	.] -110.7	kN			
wk-lim	Stato limite apertura fessure (Freq.Perm) 0.20	mm			
	Dati di Output					
	TA - Tensioni e ampiezza fessure					
Sigs-sup	Tensione barre superiori [(-)Compresso]	-32	Mpa	Coeff.Sfrut	t.	149
Sigs-inf	Tensione barre inferiori [(+)Teso]	118	Мра	Coeff.Sfrut	t.	 549
Sigc-sup	Tensione cls superiore [(-)Compresso]	-4	Мра	Coeff.Sfrut	t.	489
tau-c	Tensione tangenziale calcestruzzo	0.26	Мра	Coeff.Sfrut	t.	509
Mcr	Momento di prima fessurazione	63	kNm			
wk	Ampiezza di fessura	0.14	mm	Coeff.Sfrut	t.	689

	Funzioni TA(N-M-V) + FESS per Şezio	ne Rettangolare				
	Oggetto:					
	TOMBINO IN11 - Esistente Norma origin	aria				
	Sezione n°. 04					
	Dati di Input:					
В	Base sezione rettangolare	1000	mm	Geometria	della Sez	ione:
Н	Altezza sezione rettangolare	350	mm		Н	
c'	Copriferro armatura sup. compressa	50	mm		As'	ረ
С	Copriferro armatura inf. Tesa	50	mm			
d	Altezza utile = H-c	300	mm			
Rck	Resistenza caratt. Cubica calcestruzzo	25	MPa			
sa-adm	Tensione ammissibile acciaio	220	MPa		As	С
sc-adm	Tensione ammissibile cls compressione	8.50	MPa			
tau-co	Tensione limite no armatura taglio	······	MPa			
N	Sforzo normale [(+)Trazione]		kN			
M	Momento flettente [(+)]		kNm			
V	Taglio [(+)]	112.2				
F11	1º diametro armatura tesa					
Fi2	2º diametro armatura tesa					
n1	N°. Barre 1° armatura tesa	4				
n2	N°. Barre 2° armatura tesa					
As	Armatura superiore compressa	669	mmq	·		***************************************
As	Armatura inferiore tesa		mmq	***************************************		***************************************
FiStaffe	Diametro staffe	0	mm		•••••	
s. Staffe	Passo staffe	200	mm	·		***************************************
bracci	Numero Bracci staffe	0		·		***************************************
cotθ	(proiez.orizz.)/(proiez.vert.) puntone cls	1.0	[range: 1,0)-2.51		***************************************
alpha	angolo staffe/piegati rispetto all'orizzont	************				***************************************
Asw	Area a taglio per unit à di lunghezza		mmq/m	0.00	cmq/m	***************************************
M-fess	Momento per fessurazione [(+)]		kNm			•
N-fess	Sforzo normale per fessurazione [(+)Traz		kN			
wk-lim	Stato limite apertura fessure (Freq.Perm		mm	·		
	Dati di Output			·		
	TA - Tensioni e ampiezza fessure			·		•
Sigs-sup	Tensione barre superiori [(-)Compresso]	-17	Mpa	Coeff.Sfrutt	 L	
Sigs-inf	Tensione barre inferiori [(+)Teso]		Мра	Coeff.Sfrutt		46
Sigc-sup	Tensione cls superiore [(-)Compresso]		Mpa	Coeff.Sfrutt		319
tau-c	Tensione tangenziale cak estruzzo		Мра	Coeff.Sfrutt		78
Mcr	Momento di prima fessurazione		kNm			
wk	Ampiezza di fessura		mm	Coeff.Sfrutt		579
	T.I.P.CEEG GITCEGG	0.11		Joen.on att		

	Funzioni TA(N-M-V) + FESS per Sezione R	ettangolare		
	Oggetto:			
	TOMBINO IN11 - Esistente Norma originaria			
	Sezione n°. 05			
	Dati di Input:			
В	Base sezione rettangolare	1000 mm	Geometria della Sez	<u>zione</u> :
Н	Altezza sezione rettangolare	350 mm	Н	
c'	Copriferro armatura sup. compressa	50 mm	As'	c
C	Copriferro armatura inf. Tesa	50 mm		
d	Altezza utile = H-c	300 mm		В
Rck	Resistenza caratt. Cubica calcestruzzo	25 MPa		
sa-adm	Tensione ammissibile acciaio	220 MPa	As	c
sc-adm	Tensione ammissibile cls compressione	8.50 MPa		
tau-co	Tensione limite no armatura taglio	0.53 MPa		
N	Sforzo normale [(+)Trazione]	0.0 kN		
M	Momento flettente [(+)]	49.6 kNm		
V	Taglio [(+)]	0.0 kN		
Fi1	1º diametro armatura tesa	20		
Fi2	2º diametro armatura tesa			
n1	N°. Barre 1° armatura tesa	6.5		
n2	N°. Barre 2° armatura tesa			
Αs	Armatura superiore compressa	1570 mmq		
As	Armatura inferiore tesa	2042 mmq		
FiStaffe	Diametro staffe	0 mm	······································	
s. Staffe	Passo staffe	200 mm		
bracci	Numero Bracci staffe	0		
cotθ	(proiez.orizz.)/(proiez.vert.) puntone cls	1.0 [range: 1,0	-2.51	
alpha	angolo staffe/piegati rispetto all'orizzontale	90.0°		
Asw	Area a taglio per unità di lunghezza	0 mmq/m	0.00 cmg/m	
M-fess	Momento per fessurazione [(+)]	46.5 kNm		
N-fess	Sforzo normale per fessurazione [(+)Traz.]	0.0 kN		
wk-lim	Stato limite apertura fessure (Freq.Perm)	0.20 mm		
•••••	Dati di Output:			
•••••	TA - Tensioni e ampiezza fessure			
Sigs-sup	Tensione barre superiori [(-)Compresso]	-23 Mpa	Coeff.Sfrutt.	10%
Sigs-inf	Tensione barre inferiori [(+)Teso]	92 Mpa	Coeff.Sfrutt.	42%
Sigc-sup	Tensione cls superiore [(-)Compresso]	-3 Mpa	Coeff.Sfrutt.	36%
tau-c	Tensione tangenziale calcestruzzo	0.00 Mpa	Coeff.Sfrutt.	0%
Mcr	Momento di prima fessurazione	61 kNm		
wk	Ampiezza di fessura	0.09 mm	Coeff.Sfrutt.	43%
		···		

	Funzioni TA(N-M-V) + FESS per Se	zione Rettangolare				
	Oggetto:					
	TOMBINO IN11 - Esistente Norma or	igin aria				
	Sezione n°. 06					
	Dati di Input:					
В	Base sezione rettangolare	1000	mm	Geometria	della Sez	ione:
Н	Altezza sezione rettangolare	350	mm		Н	
c'	Copriferro armatura sup. compressa	50	mm		As'	C
С	Copriferro armatura inf. Tesa	50	mm			
d	Altezza utile = H-c	300	mm			
Rck	Resistenza caratt. Cubica calcestruzzo	25	MPa			
sa-adm	Tensione ammissibile acciaio	220	MPa		As	С
sc-adm	Tensione ammissibile cls compression	ne 8.50	MPa			
tau-co	Tensione limite no armatura taglio	0.53	MPa			
N	Sforzo normale [(+)Trazione]	-131.6	kN			
M	Momento flettente [(+)]	48.9	kNm			
V	Taglio [(+)]	71.4	kN			
Fil	1º diametro armatura tesa	16	`			
Fi2	2º diametro armatura tesa					
n1	N°. Barre 1° armatura tesa	5				
n2	N°. Barre 2° armatura tesa					
Aځ	Armatura superiore compressa	669	mmq			
As	Armatura inferiore tesa	1005	mmq			
FiStaffe	Diametro staffe	0	mm		·	
s. Staffe	Passo staffe	200	mm		·	
bracci	Numero Bracci staffe	0			·	
cotθ	(proiez.orizz.)/(proiez.vert.) puntone	cls 1.0	[range: 1,0	-2,5]		
alpha	angolo staffe/piegati rispetto all'orizz					
Asw	Area a taglio per unità di lunghezza		mmq/m	0.00	cmq/m	
M-fess	Momento per fessurazione [(+)]	47.2	kNm			
N-fess	Sforzo normale per fessurazione [(+)	Fraz.] -128.2	kN		·	
wk-lim	Stato limite apertura fessure (Freq.P		mm		·	
	Dati di Output:					
	TA - Tensioni e ampiezza fessure					
Sigs-sup	Tensione barre superiori [(-)Compres	so] -34	Мра	Coeff.Sfrut	t.	159
Sigs-inf	Tensione barre inferiori [(+)Teso]	116	Мра	Coeff.Sfrut	t.	539
Sigc-sup	Tensione cls superiore [(-)Compresso] 4	Мра	Coeff.Sfrut	t.	509
tau-c	Tensione tangenziale cak estruzzo	0.26	Мра	Coeff.Sfrut	t.	509
Mcr	Momento di prima fessurazione	64	kNm			
wk	Ampiezza di fessura	0.13	mm	Coeff.Sfrut	t.	679

SINTESI VERIFICHE SEZIONI NOTEVOLI:							
SL	VERIF	SEZ01	SEZ02	SEZ03	SEZ04	SEZ05	SEZ06
TA	(sigs/sa-adm)s	10%	7%	14%	8%	10%	15%
TA	(sigs/sa-adm)i	47%	30%	54%	46%	42%	53%
TA	(sigc/sc-adm)s	36%	26%	48%	31%	36%	50%
TA	tau-c/tau-co	74%	0%	50%	78%	0%	50%
FES	wk/wklim	51%	31%	68%	57%	43%	67%
	MAX	74%	31%	68%	78%	43%	67%
	MAX	78%					

Si conclude che il Progetto <<originario>> è stato correttamente dimensionato nel rispetto delle norme vigenti all'epoca della progettazione/costruzione. Si procede pertanto in una successiva relazione, come indicato anche in premessa, alla verifica del tombino esistente secondo le NTC2018 agli SLV.