COMMITTENTE

PROGETTAZIONE:

n	IP	F7		NE	TE		ICA
L	IR		w			-	ILA

U.O. INFRASTRUTTURE SUD

PROGETTO DEFINITIVO

Nuova linea Ferrandina - Matera La Martella per il collegamento di Matera con la rete ferroviaria nazionale

NUOVA LINEA FERRANDINA – MATERA LA MARTELLA

OPERE CIVILI

Opere D'Arte Minori – Sottovia e interferenze idrauliche – Tombini

IN14 – Tombino alla pk 0+379,23 – RAMO B

Relazione di calcolo opera esistente ai sensi delle NTC 2018

-
SCALA:

COMMESSA	LOTTO F	FASE I	ENTE T	TPO DOC.	OPERA/DISCIPLINA	PROGR.	REV
I A 5 F	0 1	D	7 8	CL	I N 1 4 0 0	0 0 2	Α

Rev.	Descrizione	Redatto	Data	Verificato	Data	Approvato	Data	Autorizzato Data
А	EMISSIONE DEFINITIVA	E.SELLARI	07/2019	N.MANCUSO	07/2019	F.GERNONE	07/ 2019	D. TIBERTI 8 07/2019
								S. P.A. series save gently a three Sud to Tiberti ov. di Napol
								A FERR Propositions Structures Infrastructures Dor Ling-Dor
								JT Grup DO DI In degil in

File: IA5F01D78CLIN1400002A	n. Elab.:

Nuova linea Ferrandina - Matera La Martella per il collegamento di Matera con la rete ferroviaria nazionale

NUOVA LINEA FERRANDINA – MATERA LA MARTELLA

Relazione di calcolo opera esistente ai sensi delle NTC 2018

PROGETTO LOTT

LOTTO CODIFICA DOCUMENTO
01 D 78 CL IN1400 002

REV.

FOGLIO 3 DI 35

INDICE

1.	PREMESSA	4
	GEOMETRIA DELLA STRUTTURA	
	TOMBINO ESISTENTE	
3.1.	VERIFICHE SECONDO LE NTC18	7
3.1.1	I. NORMATIVA DI RIFERIMENTO	7
3.1.2	2. GEOMETRIA	7
3.1.3	3. MATERIALI	8
3.1.4	4. ANALISI DEI CARICHI	8
3.1.5	5. COMBINAZIONI DI CARICO	17
3.1.6	6. MODELLAZIONE ADOTTATA	21
3.1.7	7. CARATTERISTICHE DELLE SOLLECITAZIONI	23
3.1.7	7.1. INVILUPPO SLV	23
3.1.8	8. VERIFICHE	28

S ITALFERR	Nuova linea Ferrandina - Matera La Martella per il collegamento di Matera con la rete ferroviaria nazionale NUOVA LINEA FERRANDINA – MATERA LA MARTELLA					
Relazione di calcolo opera esistente ai sensi delle NTC 2018	PROGETTO IA5F	LOTTO 01	CODIFICA DOCUMENTO D 78 CL IN1400 002	REV.	FOGLIO 4 DI 35	

1. PREMESSA

Nella presente relazione di calcolo sono condotte le verifiche, **ai sensi delle norme attualmente vigenti NTC18 agli SLV**, relativamente ad un sottopasso esistente lungo la linea ferroviaria "Ferrandina-Matera La Martella", già realizzato con una struttura scatolare in c.a.. Lo scatolare in oggetto è situato alla progressiva 0+379,23 (progressiva storica 0+502,00).

In generale le verifiche dei manufatti esistenti sono svolte secondo i seguenti criteri:

- a) verifica del manufatto esistente in conformità alle norme vigenti all'epoca della progettazione/costruzione: la verifica è già stata eseguita in una precedente relazione e risulta soddisfatta, per cui si procede alla verifica dello scatolare esistente ai sensi delle norme attualmente vigenti NTC18 agli SLV (punto b));
- b) verifica del manufatto esistente in conformità al D.M. 17/01/2018 e alla Circolare 21/01/2019 n. 7 agli SLV, che è oggetto della presente relazione: se la verifica risulta soddisfatta non si rendono necessari interventi sull'opera; se la verifica non risulta soddisfatta si procede alla progettazione di un nuovo scatolare in c.a. ai sensi delle NTC2018 (punto c));
- c) dimensionamento del manufatto ex-novo con stesse dimensioni nette interne, in conformità al D.M. 17/01/2018 e alla Circolare 21/01/2019 n. 7, qualora le verifiche di cui al punto b) non risultassero soddisfatte.

Si riportano di seguito una sezione longitudinale e una trasversale dello scatolare tipo, volte ad individuare le grandezze impiegate nelle verifiche e nel successivo dimensionamento.

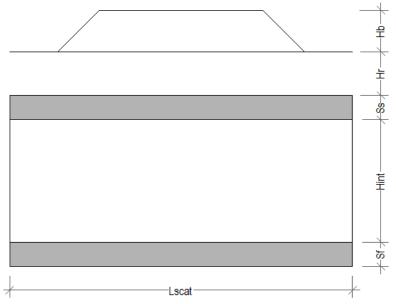


Figura 1. Sezione longitudinale dello scatolare

I ITALFERR	Nuova linea Ferrandina - Matera La Martella per il collegamento di Matera con la rete ferroviaria nazionale NUOVA LINEA FERRANDINA – MATERA LA MARTELLA					
Relazione di calcolo opera esistente ai sensi delle NTC 2018	PROGETTO IA5F	LOTTO 01	CODIFICA DOCUMENTO D 78 CL IN1400 002	REV.	FOGLIO 5 DI 35	

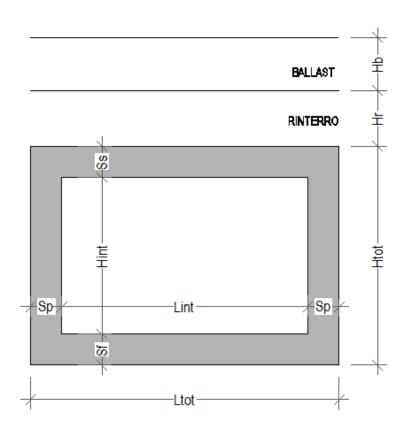


Figura 2. Sezione trasversale dello scatolare

I ITALFERR	Nuova linea Ferrandina - Matera La Martella per il Matera con la rete ferroviaria nazionale NUOVA LINEA FERRANDINA – MATERA LA MARTE				•
Relazione di calcolo opera esistente ai sensi delle NTC 2018	PROGETTO IA5F	LOTTO 01	CODIFICA DOCUMENTO D 78 CL IN1400 002	REV.	FOGLIO 6 DI 35

2. GEOMETRIA DELLA STRUTTURA

Il tombino esistente sottopassa la linea ferroviaria ad una distanza fra piano ferro ed estradosso soletta pari a 1.30 m, di cui spessore medio ballast più armamento pari a 0.80 m e la rimanente parte il rinterro. Esso ha dimensioni interne 5.00×2.25(h max) m, con piedritti, soletta superiore e soletta inferiore di spessore 60 cm. Nel seguito verrà esaminata una striscia di scatolare avente lunghezza di 1.00 m. Nella figura [Fig. 2] di cui al paragrafo precedente sono riportate schematicamente la geometria dell'opera e la simbologia adottata.

Le caratteristiche geometriche hanno la seguente simbologia:

Spessore medio del ballast + armamento	H_{b}	[m]
Spessore traversina + rotaie (35 cm)	H_{tb}	[m]
Larghezza traversina	L_{th}	[m]
Spessore del rinterro	H_{r}	[m]
Larghezza totale del sottopasso	L_{tot}	[m]
Larghezza utile del sottopasso	$L_{\mbox{\scriptsize int}}$	[m]
Spessore della soletta	$S_{\overline{s}}$	[m]
Spessore piedritti	S_{p}	[m]
Spessore fondazione	$S_{\mathbf{f}}$	[m]
Altezza libera del sottopasso	$H_{\mbox{\scriptsize int}}$	[m]
Altezza totale del sottopasso	H_{tot}	[m]
Larghezza striscia di calcolo	b	[m]

S ITALFERR	Nuova linea Ferrandina - Matera La Martella per Matera con la rete ferroviaria nazionale NUOVA LINEA FERRANDINA – MATERA LA MAR				
Relazione di calcolo opera esistente ai sensi delle NTC 2018	PROGETTO IA5F	LOTTO 01	CODIFICA DOCUMENTO D 78 CL IN1400 002	REV.	FOGLIO 7 DI 35

3. TOMBINO ESISTENTE

3.1. VERIFICHE SECONDO LE NTC18

Nel presente paragrafo si riportano i calcoli sismici relativi allo scatolare esistente, di cui in premessa, eseguiti secondo la norma attualmente vigente NTC18.

3.1.1. NORMATIVA DI RIFERIMENTO

Tutte le calcolazioni sono state eseguite nel rispetto delle normativa NTC18 attualmente vigente.. In particolare si è fatto riferimento:

Γ		
-	D.M. 17.01.2018	Nuove Norme Tecniche per le Costruzioni
-	Circolare 21 Gennaio 2019, n. 7	Istruzione per l'applicazione dell'Aggiornamento delle
		"Norme Tecniche per le Costruzioni" di cui al DM 17
		gennaio 2018
-	RFI DTC INC PO SP IFS 001 A	Specifica per la progettazione e l'esecuzione dei ponti
		ferroviari e di altre opere minori sottobinario
-	RFI DTC INC CS SP IFS 001 A	Specifica per la progettazione geotecnica delle opere
		civili ferroviarie
-	EN 1992-1-1-1:2004	Eurocode 2: Design of concrete structures – Part 1-1:
		General rules and rules of building

3.1.2.GEOMETRIA

Larghezza utile	Lint	5,00 m	luce interna scatolare
Altezza libera	Hint	2,25 m	altezza interna scatolare
Spessore piedritti	Sp	0,60 m	
Spessore soletta	Ss	0,60 m	
Spessore fondazione	Sf	0,60 m	
Altezza ballast	Hb	0,80 m	
Rinterro (superiore)	Hr	0,50 m	
Altezza pacchetto stradale	Hs	0,00 m	
Lunghezza traversa	Ltb	2,3 0 m	
Altezza traversa	Htb	0,35 m	
Ricoprimento	Hric	1,30 m	Hb+Hr
Larghezza totale	Ltot	6,20 m	Lint+2xSPp
Altezza totale	Htot	3,45 m	Hint+SPs+SPf

S ITALFERR	Matera con	la rete fer	ina - Matera La Martella rroviaria nazionale ANDINA – MATERA LA M	•	
Relazione di calcolo opera esistente ai sensi delle NTC 2018	PROGETTO IA5F	LOTTO 01	CODIFICA DOCUMENTO D 78 CL IN1400 002	REV.	FOGLIO 8 DI 35

3.1.3. <u>MATERIALI</u>

Per le opere in c.a. si adotta:

- un calcestruzzo C (20/25) le cui caratteristiche principali sono:

Resistenza cilindrica caratteristica: $f_{ck} = 20 \text{ N/mmq}$

Modulo elastico: $E_c=32300 \text{ Nmm}^2$

- acciaio da cemento armato normale FeB 38K (controllato) ad aderenza migliorata:

tensione caratteristica di snervamento: $f_{yk} = 375 \text{ Nmm}^2$ Modulo di elasticità: E_s =206000 Nmm²

Sulla base delle conoscenza dell'opera esistente ai fini delle verifiche si è adottato un "livello di conoscenza" LC1, con corrispondente fattore di confidenza pari a FC=1,35, con il quale vengono ridotte le resistenze dei materiali esistenti.

3.1.4. ANALISI DEI CARICHI

Si riportano di seguito i carichi utilizzati per il calcolo delle sollecitazioni e le verifiche delle sezioni della struttura in esame.

Peso proprio della struttura (condizione DEAD)

Il *peso proprio* delle solette e dei piedritti viene calcolato automaticamente dal programma di calcolo utilizzato considerando per il calcestruzzo γ = 25 kN/m³.

Il peso proprio della struttura viene calcolato automaticamente dal programma di calcolo utilizzzato.

Peso specifico calcestruzzo armato	γds	25 kN/m^3	
peso singolo piedritto	Pp	15,00 kN/m	ycls x Sp
peso soletta superiore	Pss	15,00 kN/m	ycls x Ss
peso soletta inferiore	Psi	15,00 kN/m	yels x Sf

I ITALFERR	Matera con	la rete fer	ina - Matera La Martella roviaria nazionale ANDINA – MATERA LA M		
Relazione di calcolo opera esistente ai sensi delle NTC 2018	PROGETTO IA5F	LOTTO 01	CODIFICA DOCUMENTO D 78 CL IN1400 002	REV.	FOGLIO 9 DI 35

Carichi permanenti portati (condizione PERM)

peso specifico ballast	γb	18	kN/m^3	
altezza ballast	Hb	0,80	m	
peso ballast	Pb	14,40	kN/m	$\gamma b \times Hb$
peso specifico rinterro	γr	19	kN/m^3	
altezza rinterro	Hr	0,50	m	
peso rinterro	Pr	9,50	kN/m	$\gamma r \times Hr$
Permanente totale	G2p	23,90	kN/m	Pb + Pr
Permanente nodi 1 e 2	G2P	7,17	kN	G2p x Sp / 2

I carichi concentrati nei nodi 1 e 2 (i nodi tra la soletta superiore e i piedritti), rappresentano il carico permanente sulla soletta di copertura dovuto al peso della zona sovrastante la metà dello spessore del piedritto (la modellazione dello scatolare è stata fatta in asse piedritto).

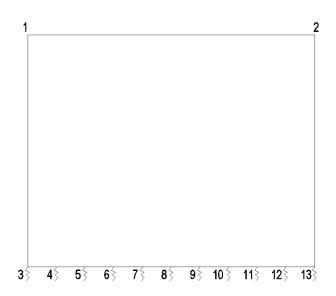


Figura 3. Numerazione dei nodi nel modello strutturale.

Spinta del terreno (condizioni SPTSX e SPTDX)

Le caratteristiche del rinterro, di seguito riportate, sono state determinate con indagini in sito SPT:

 $Ø=38^{\circ}$ angolo di attrito $\gamma r=19 \text{ kN/m}^3 \quad \text{peso specifico rinterro}$ $C_u=0$ coesione non drenata

I ITALFERR	Matera con	la rete fer	ina - Matera La Martella roviaria nazionale ANDINA – MATERA LA M		
Relazione di calcolo opera esistente ai sensi delle NTC 2018	PROGETTO IA5F	LOTTO 01	CODIFICA DOCUMENTO D 78 CL IN1400 002	REV.	FOGLIO 10 DI 35

angolo di attrito rinterro	Ø'	38 [°]	0,663 [rad]
coefficiente spinta attiva ka	ka	0,238	(1 - senØ) / (1 + senØ)
coefficiente spinta riposo ko	ko	0,384	(1 - senØ)
coefficiente spinta passiva kp	kp	4,204	(1 + senØ) / (1 - senØ)
Pressione estradosso soletta superiore	P1	9,19 kN/m^2	$ko \times (Pb + Pr)$
Pressione asse soletta superiore	P2	11,38 kN/m^2	$ko \times (Pb + Pr + \gamma r \times Ss / 2)$
Pressione asse soletta inferiore	Р3	32,19 kN/m^2	$ko \times [Pb + Pr + \gamma r \times (Ss + Hint + Sf / 2)]$
Pressione intradosso soletta inferiore	P4	34,38 kN/m^2	$ko \times (Pb + Pr + \gamma r \times Htot)$
Forza concentrata asse soletta superiore	F1	3,08 kN/m	(P1 + P2) / 2 x Ss / 2
Forza concentrata asse soletta inferiore	F2	9,99 kN/m	$(P3 + P4) / 2 \times Sf / 2$
coefficiente spinta passiva kp Pressione estradosso soletta superiore Pressione asse soletta superiore Pressione asse soletta inferiore Pressione intradosso soletta inferiore Forza concentrata asse soletta superiore	kp P1 P2 P3 P4 F1	4,204 9,19 kN/m^2 11,38 kN/m^2 32,19 kN/m^2 34,38 kN/m^2 3,08 kN/m	$(1 + sen\Theta) / (1 - sen\Theta)$ $ko \times (Pb + Pr)$ $ko \times (Pb + Pr + \gamma r \times Ss / 2)$ $ko \times [Pb + Pr + \gamma r \times (Ss + Hint + Sf / sen (Pb + Pr + \gamma r \times Htot))$ $(P1 + P2) / 2 \times Ss / 2$

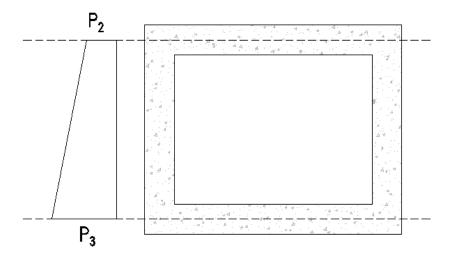


Figura 4. Spinte del terreno

I carichi concentrati nei nodi 1 e 3 (per la SPTSX) oppure 2 e 13 (per la SPTDX) rappresentano la parte di spinta del terreno esercitata su 1/2 spessore della soletta sup. e su 1/2 spessore della soletta inferiore.

Carichi accidentali, ripartizione carichi verticali (condizione ACCM)

In funzione delle caratteristiche geometriche dell'opera risulta più sfavorevole il carico dovuto al treno LM 71 rispetto al carico dovuto al treno SW/2.

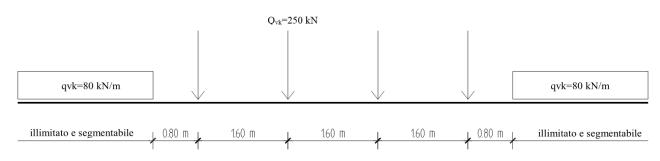


Figura 5. Treno LM71

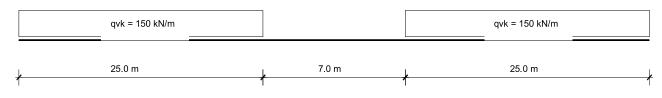


Figura 6. Treno SW/2

Per il calcolo del coefficiente dinamico Φ si fa riferimento al paragrafo 1.4.2 "effetti dinamici" delle istruzioni per la progettazione e l'esecuzione dei ponti ferroviari.

poiché risulta: H int < 5 m

L int < 8 m

Si ottiene considerando un ridotto standar manutentivo $\Phi_3 = 1.35$. In accordo al §5.2.2.2.3 NTC18 tale coefficiente dinamico nei casi di scatolari, con o senza solettone, aventi copertura h>1,0 può essere ridotto nella seguente maniera:

$$\Phi_{rid} = \Phi - \frac{h - 1,00}{10} \ge 1,0$$

dove h, in metri, è l'altezza della copertura dall'estradosso della struttura alla faccia superiore delle traverse [H_{ric}]. Per le strutture dotatate di una copertura maggiore di 2,50 m può assumersi un coefficiente di incremeento dinamico unitario.

Si riporta di seguito una schematizzazione della diffusione dei carichi ferroviari (LM71 e SW2) rispettivamente attraverso ballast, rinterro e soletta.

S ITALFERR	Matera con	la rete fer	ina - Matera La Martella roviaria nazionale ANDINA – MATERA LA N	•	·
Relazione di calcolo opera esistente ai sensi delle NTC 2018	PROGETTO IA5F	LOTTO 01	CODIFICA DOCUMENTO D 78 CL IN1400 002	REV.	FOGLIO 12 DI 35

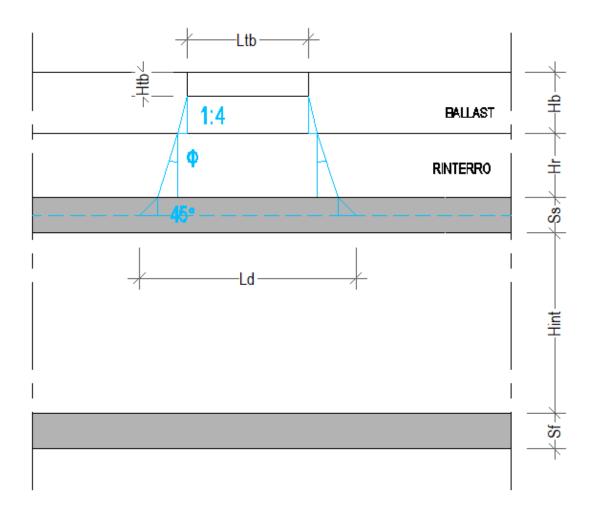


Figura 7. Schema modalità di diffusione dei carichi ferroviari

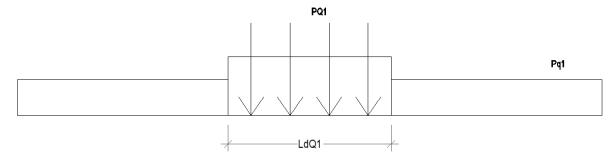


Figura 8. Carichi Treno LM71 su L_d

Sia per il calcolo delle sollecitazioni massime in mezzeria della soletta superiore che per quelle massime all'incastro con i piedritti di detta soletta, il carico dovuto al treno LM71 viene distribuito per tutta la larghezza LdQ1 del treno di carico.

S ITALFERR	Nuova linea Ferrandina - Matera La Martella per il collegamento Matera con la rete ferroviaria nazionale NUOVA LINEA FERRANDINA – MATERA LA MARTELLA				
Relazione di calcolo opera esistente ai sensi delle NTC 2018	PROGETTO IA5F	LOTTO 01	CODIFICA DOCUMENTO D 78 CL IN1400 002	REV.	FOGLIO 13 DI 35

Incremento dinamico	Ф3*	1,35	* valido per Hint<5m, Lint<8m
Incremento dinamico con ricoprimento	Ф3	1,32	Φ 3=1 per Hric >2,5m
Coefficiente di adattamento	α	1,10	
Larghezza di diffusione nel ballast	Ldb	0 ,23 m	Diffusione 1:4 nel ballast
Larghezza di diffusione nel rinterro	Ldr	0,78 m	Diffusione secondo angolo attrito
Larghezza di diffusione nel cls	Ldc	0 , 60 m	Diffusione 45° nel cls
Larghezza trasv. di diffusione del carico	Ld	3,91 m	Ltb + Ldb + Ldr + Ldc
Carico distribuito per treno LM71	q1	80,00 kN/m	
Carico concentrato per treno LM71	Q1	250,00 kN	
N°. carichi concentrati per treno LM71	NQ1	4	
Larghezza applicazione carichi conc. Q1	LaQ1	6,40 m	
Larghezza distribuzione carichi conc. Q1	LdQ1	6,40 m	
Carico ripartito verticale per LM71 (q1)	Pq1	29,74 kN/m^2	$q1 \times \Phi 3 \times \alpha / Ld$
Carico ripartito verticale per LM71 (Q1)	PQ1	58,08 kN/m^2	$Q1 \times NQ1 \times \Phi \times \alpha / (Ld \times LdQ1)$

Spinta sui piedritti prodotta dal sovraccarico (condizioni SPACCSX e SPACCDX)

Carico distribuito per treno LM71	Sq1	8,66 kN/m^2	$(q1 \times \alpha / Ld) \times Ko$
Carico concentrato per treno LM71	SQ1	16,91 kN/m^2	$Q1 \times NQ1 \times \alpha / (Ld \times LdQ1) \times Ko$
Spinta semispessore soletta superiore	Fq1sup	5,07 kN/m	SPQ1 x SPs / 2
spinta semispessore soletta inferiore	Fq1inf	5,07 kN/m	SPQ1 × SPi / 2

Frenatura e avviamento (condizione AVV)

La forza di frenatura del modello SW/2 agente su tutta la larghezza dello scatolare è pari a 35 kN/m, mentre quella di avviamento del modello LM71 è di 33 kN/m. Visto che il treno sfavorevole è quello LM71, anche per il calcolo della frenatura si considera il carico LM71 in avviamento. Distribuendo tale forza sulla larghezza di diffusione del carico si avrà:

Avviamento e frenatura LM71	Av	33,00 kN/	m
Avviamento e frenatura LM71 distribuiti	qAv	8,45 kN/	m Av / Ld

Azioni termiche (condizione:TERM)

Alla soletta superiore si applica una variazione termica uniforme pari a $\Delta t=\pm 15^{\circ}C$ ed una variazione nello spessore tra estradosso ed intradosso pari a $\Delta t=\pm 5^{\circ}C$.

Variazione termica uniforme	∆Tunif	+-15,00 [°]	Sulla soletta superiore
Variazione termica differenziale	∆Tdiff	+-5,00 [°]	Sulla soletta superiore
	Gradiente	+-8,33 [°/m]	∆ Tdiff / Ss

Ritiro (condizione: RITIRO)

Gli effetti del ritiro vanno valutati a "lungo termine" attraverso il calcolo dei coefficienti di ritiro finale ε_{cs} (t, t_0) e di viscosità ϕ (t, t_0), come definiti nell'EUROCODICE 2- UNI EN 1992-1-1 Novembre 2005 e D. M. 17-01-2018.

I fenomeni di ritiro vengono considerati agenti solo sulla soletta di copertura ed applicati nel modello come una variazione termica uniforme equivalente agli effetti del ritiro: ΔT_{ritiro} = -10.89°C.

Variazione termica uniforme equivalente

ΔTritiro -[10,89°]

Sulla soletta superiore

Azioni sismiche

Per il calcolo dell'azione sismica si utilizza il metodo dell' analisi pseudostatica in cui l'azione sismica è rappresentata da una forza statica equivalente pari al prodotto delle forze di gravità per un opportuno coefficiente sismico k. Le forze sismiche sono pertanto le seguenti:

Forza sismica orizzontale $F_h = k_h * W$

Forza sismica verticale $F_{v} = k_{v}^{*}W$

I valori dei coefficienti sismici orizzontale k_h e verticale k_v

 $k_h = a_{max}/g$

 $k_v = \pm 0.5 \times k_h$

Con riferimento alla nuova classificazione sismica del territorio nazionale, ai fini del calcolo dell'azione sismica secondo il DM 17/01/2018 viene assegnata all'opera una vita nominale $V_N >= 50$ anni ed una II classe d'uso $C_u = 1$; segue un periodo di riferimento $V_R = V_N * C_U = 50$ anni

A seguito di tale assunzione si ottiene allo stato limite ultimo SLV in funzione della Latitudine e Longitudine del sito in esame un valore dell'accelerazione pari a a_g=0.148 g, come desunto anche dalla relazione geotecnica.

In assenza di analisi specifiche della risposta sismica locale, l'accelerazione massima può essere valutata con la relazione:

$$a_{max} = S * a = S_s * S_t * a_g$$

dove assumendo un terreno di tipo C ed in base al fattore di amplificazione del sito F₀ si ottiene:

S_s=1.48 Coefficiente di amplificazione stratigrafica

S_T=1 Coefficiente di amplificazione topografica ne deriva che:

 $a_{max}=0.219g$

S ITALFERR	Nuova linea Ferrandina - Matera La Martella per il collegament Matera con la rete ferroviaria nazionale NUOVA LINEA FERRANDINA – MATERA LA MARTELLA				
Relazione di calcolo opera esistente ai sensi delle NTC 2018	PROGETTO IA5F	LOTTO 01	CODIFICA DOCUMENTO D 78 CL IN1400 002	REV.	FOGLIO 15 DI 35

Le forze di inerzia sullo **scatolare** (masse di peso proprio soletta superiore e piedritti, rinterro e ballast, 20% treno di carico,...) sono pari alle masse moltiplicate per kh e kv ove: $kh = \beta M \times S \times ag/g$ e kv = kh / 2. Essendo lo scatolare non libero di subire spostamenti relativi rispetto al terreno, $\beta M = 1$.

ai suvire sposiamenti retativi rispetto ai	terreno, $p M - 1$.		
vita nominale		V_N	50 anni
classe d'uso		CL	П
coefficiente d'uso		C_{U}	1,00
vita di riferimento = $C_U * V_N$		V_R	50 anni
probabilità di superamento nel pe	eriodo di riferimento	$P_{ m VR}$	10%
periodo di ritorno del sisma		T_R	475 anni
accelerazione massima orizzontale	ione della componente orizzontale	200	0,148 g
fattore amplificazione massima sp		ago Fo	2,501 sec
periodo inizio tratto a velocità co		T*c	0,345
categoria sottosuolo	T		C
categoria topografica			T1
amplificazione topografica		S_{T}	1,000
smorzamento viscoso convenzion	nale	ξ	5%
fattore di correzione per $\xi <> 5$	%	η	1,000
	$\begin{array}{ c c c } \hline \textbf{Tab.3.2.V} & S_S & C_C \\ \hline \end{array}$	S_{S} C_{C}	
	A 1,00 1,00		
	B 1,20 1,36		
	C 1,48 1,49	1,48 1,49	
	D 1,80 2,13		
	E 1,59 1,76		
coefficiente amplificazione stratig	rafica	S_{S}	1,478
coefficiente di amplificazione		S	1,478
coefficiente categoria sottosuolo		C_{C}	1,492
periodo inizio tratto a accelerazio	T_{B}	0,172 sec	
periodo inizio tratto a velocità co	T_{C}	0,515 sec	
periodo inizio tratto a spostamen	T_{D}	2,192 sec	
accelerazione massima orizzontale	ago,max	0,219 g	
accelerazioni per il calcolo del	le forze di inerzia agenti sullo scatolar	e	
$ao = kh = ago, max = S \times ag/g$	valore $PGA \times s$ catolare	ao = kh	0,2187 g
av = kv = kh / 2	valore $PGA \times scatolare$	av = kv	0,1094 g

S ITALFERR	Nuova linea Ferrandina - Matera La Martella per il collegament Matera con la rete ferroviaria nazionale NUOVA LINEA FERRANDINA – MATERA LA MARTELLA				
Relazione di calcolo opera esistente ai sensi delle NTC 2018	PROGETTO IA5F	LOTTO 01	CODIFICA DOCUMENTO D 78 CL IN1400 002	REV.	FOGLIO 16 DI 35

Forze di inerzia (condizione SismaH)

Forza di inerzia treno di carico - (%)	%	20%	
Forza orizzontale sulla soletta di copertura	F'h	11,05 kN/m	$(Pss+Pb+Pr+\%PQ1) \times kh$
Forza orizzontale su singolo piedritto	F"h	3,28 kN/m	Pp x kh

Forze di inerzia (condizione SismaV)

Forza di inerzia treno di carico - (%)	%	20%	
Forza verticale sulla soletta di copertura	F"v	5,52 kN/m	(Pss+Pb+Pr+%PQ1) x kv

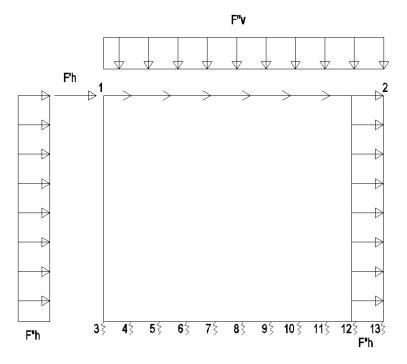


Figura 9. Forze sismiche agenti sulla struttura

Spinta sismica terreno - Teoria di WOOD (condizioni SPSDX e SPSSX)

Forza distribuita su uno solo dei piedritti	qW	22,11 kN/m	$(\%PQ1+G2p+\gamma r \times Htot) \times (ago,max)$
Forza concentrata nodo superiore piedritto	QWsup	6,63 kN	$qW \times Ss / 2$
Forza concentrata nodo inferiore piedritto	QWinf	6,63 kN	$qW \times Sf / 2$

I ITALFERR	Nuova linea Ferrandina - Matera La Martella per il collegament Matera con la rete ferroviaria nazionale NUOVA LINEA FERRANDINA – MATERA LA MARTELLA				
Relazione di calcolo opera esistente ai sensi delle NTC 2018	PROGETTO IA5F	LOTTO 01	CODIFICA DOCUMENTO D 78 CL IN1400 002	REV.	FOGLIO 17 DI 35

3.1.5. COMBINAZIONI DI CARICO

Gli effetti dei carichi verticali, dovuti alla presenza dei convogli, vengono sempre combinati con le altre azioni derivanti dal traffico ferroviario, adottando i coefficienti di cui alla Tabella 5.2.IV del DM 17/01/2018 di seguito riportata. In particolare, per ogni gruppo viene individuata una azione dominante che verrà considerata per intero; per le altre azioni, vengono definiti diversi coefficienti di combinazione. Ogni gruppo massimizza una particolare condizione alla quale la struttura dovrà essere verificata.

Tab. 5.2.III - Carichi mobili in funzione del numero di binari presenti sul ponte

Numero	Binari	Traffico	normale	
di binari	Carichi	caso a ⁽¹⁾	caso b ⁽¹⁾	Traffico pesante ⁽²⁾
1	Primo	1,0 (LM 71"+"SW/0)	-	1,0 SW/2
	Primo	1,0 (LM 71"+"SW/0)	-	1,0 SW/2
2	secondo	1,0 (LM 71"+"SW/0)	-	1,0 (LM 71"+"SW/0)
	Primo	1,0 (LM 71"+"SW/0)	0,75 (LM 71"+"SW/0)	1,0 SW/2
- 2	secondo	1,0 (LM 71"+"SW/0)	0,75 (LM 71"+"SW/0)	1,0 (LM 71"+"SW/0)
≥3	Altri	-	0,75 (LM 71"+"SW/0)	-

⁽¹⁾ LM71 "+" SW/0 significa considerare il più sfavorevole fra i treni LM 71, SW/0

Tab. 5.2.IV -Valutazione dei carichi da traffico

Tab. 5.2.1V - valuatione are carron an ray fee							
TIPO DI CARICO	Azioni verticali		1	Azioni orizzont			
Gruppi di carico	Carico verticale (1)	Treno scarico	Frenatura e avviamento	Centrifuga	Serpeggio	Commenti	
Gruppo 1	1,0	-	0,5 (0,0)	1,0 (0,0)	1,0 (0,0)	massima azione verticale e laterale	
Gruppo 2 (2)	-	1,0	0,0	1,0 (0,0)	1,0 (0,0)	stabilità laterale	
Gruppo 3 (2)	1,0 (0,5)	-	1,0	0,5 (0,0)	0,5 (0,0)	massima azione longitudinale	
G ruppo 4	0,8 (0,6;0,4)	-	0,8 (0,6;0,4)	0,8 (0,6;0,4)	0,8 (0,6;0,4)	Fessurazione	

⁽¹⁾ Includendo tutti i valori (F; a; etc..)

⁽²⁾Salvo i casi in cui sia esplicitamente escluso

⁽²⁾ La simultaneità di due o tre valori caratteristici interi (assunzione di diversi coefficienti pari ad 1.0), sebbene improbabile, è stata considerata come semplificazione per i gruppi di carico 1,2 e 3 senza che ciò abbia significative conseguenze progettuali

I valori campiti in grigio rappresentano l'azione dominante.

S ITALFERR	Nuova linea Ferrandina - Matera La Martella per il collegamento Matera con la rete ferroviaria nazionale NUOVA LINEA FERRANDINA – MATERA LA MARTELLA				
Relazione di calcolo opera esistente ai sensi delle NTC 2018	PROGETTO IA5F	LOTTO 01	CODIFICA DOCUMENTO D 78 CL IN1400 002	REV.	FOGLIO 18 DI 35

Nelle tabelle sopra riportate è indicato un coefficiente per gli effetti a sfavore di sicurezza e, tra parentesi, un coefficiente, minore del precedente, per gli effetti a favore di sicurezza.

In fase di combinazione, ai fini delle verifiche degli SLV, si sono considerati i soli Gruppo 1 e 3.

Nella tabella 5.2.III vengono riportati i carichi da utilizzare in caso di impalcati con due, tre o più binari caricati.

I Gruppi definiscono le azioni che nelle diverse combinazioni sono generalmente definite come Qki.

I coefficienti di amplificazione dei carichi γ e i coefficienti di combinazione ψ sono riportati nelle tabelle seguenti.

In particolare nel calcolo della struttura scatolare si fa riferimento alla combinazione A1 STR.

Tab. 5.2.V - Coefficienti parziali di sicurezza per le combinazioni di carico agli SLU

Coefficie	EQU ⁽¹⁾	A1	A2		
Azioni permanenti	favorevoli	YG1	0,90	1,00	1,00
	sfavorevoli		1,10	1,35	1,00
Azioni permanenti non	favorevoli	YG2	0,00	0,00	0,00
strutturali ⁽²⁾	sfavorevoli		1,50	1,50	1,30
Ballast(3)	favorevoli	ΥВ	0,90	1,00	1,00
	sfavorevoli		1,50	1,50	1,30
Azioni variabili da traffi-	favorevoli	γο	0,00	0,00	0,00
CO ^(±)	sfavorevoli		1,45	1,45	1,25
Azioni variabili	favorevoli	γOi	0,00	0,00	0,00
	sfavorevoli		1,50	1,50	1,30
Precompressione	favorevole	γP	0,90	1,00	1,00
	sfavorevo-		1,00(5)	1,00(6)	1,00
	le				
Ritiro, viscosità e cedi-	favorevole	γCe	0,00	0,00	0,00
menti non imposti appo-	sfavorevo-	d	1,20	1,20	1,00
sitamente	le				

⁽¹⁾ Equilibrio che non coinvolga i parametri di deformabilità e resistenza del terreno; altrimenti si applicano i valori della colonna A2.

⁽²⁾ Nel caso in cui l'intensità dei carichi permanenti non strutturali, o di una parte di essi (ad esempio carichi permanenti portati), sia ben definita in fase di progetto, per detti carichi o per la parte di essi nota si potranno adottare gli stessi coefficienti validi per le azioni permanenti.

⁽³⁾ Quando si prevedano variazioni significative del carico dovuto al ballast, se ne dovrà tener conto esplicitamente nelle verifiche.

⁽⁴⁾ Le componenti delle azioni da traffico sono introdotte in combinazione considerando uno dei gruppi di carico gr della Tab. 5.2.IV.

⁽⁵⁾ 1,30 per instabilità in strutture con precompressione esterna

^{6 1,20} per effetti locali

Tab. 5.2.VI - Coefficienti di combinazione Ψ delle azioni

Azioni		ψο	ψ,	Ψ2
Azioni singole	Carico sul rilevato a tergo delle	0,80	0,50	0,0
	spalle			
da traffico	Azioni aerodinamiche generate	0,80	0,50	0,0
	dal transito dei convogli			
	gr_1	0,80(2)	0,80(1)	0,0
Gruppi di	gr_2	0,80(2)	0,80(1)	-
carico	gr_3	0,80(2)	0,80(1)	0,0
	gr ₄	1,00	1,00(1)	0,0
Azioni del vento	F_{Wk}	0,60	0,50	0,0
Azioni da	in fase di esecuzione	0,80	0,0	0,0
neve	SLU e SLE	0,0	0,0	0,0
Azioni termiche	T_{k}	0,60	0,60	0,50

⁽¹⁾0,80 se è carico solo un binario, 0,60 se sono carichi due binari e 0,40 se sono carichi tre o più binari.

Le azioni descritte nel paragrafo precedente ed utilizzate nelle combinazioni di carico vengono di seguito riassunte:

Peso proprio	DEAD
Carichi permanenti	PERM
Spinta del terreno sulla parete sinistra	SPTSX
Spinta del terrenno sulla parete destra	SPTDX
Carico Accidentale LM71	ACCM
Spinta del carico acc. (LM71)Sulla parete	SPACCSX
Spinta del carico acc. (LM71)Sulla parete	SPACCDX
Avviamento e frenatura	AVV
Variazione termica sulla soletta superiore	ENV_TERM
Ritiro	RITIRO
Azione sismica orizzontale	Sisma H
Azione sismica Verticale	Sisma V
Incremento sismico della spinta sul terreno	SPSDX/SX

La 4 condizioni di carico:

 Δ Tuniforme =±15°

 Δ Tdifferenziale = $\pm 5^{\circ}$

e le loro 4 combinazioni sono state preventivamente inviluppate nella condizione ENV_TERM, la quale viene impiegata nelle successive combinazioni di carico per massimizzare gli effetti termici.

⁽²⁾ Quando come azione di base venga assunta quella del vento, i coefficienti ψ₀ relativi ai gruppi di carico delle azioni da traffico vanno assunti pari a 0,0.

T ITALFERR	Nuova linea Ferrandina - Matera La Martella per il collegam Matera con la rete ferroviaria nazionale NUOVA LINEA FERRANDINA – MATERA LA MARTELLA					
Relazione di calcolo opera esistente ai sensi delle NTC 2018	PROGETTO IA5F	LOTTO 01	CODIFICA DOCUMENTO D 78 CL IN1400 002	REV.	FOGLIO 20 DI 35	

Si procede alla determinazione delle sole combinazioni di carico SLV:

Combinazione sismica, impiegata per gli stati limite ultimi connessi all'azione sismica E:

$$E + G_1 + G_2 + P + \psi_{21} {\cdot} Q_{k1} + \psi_{22} {\cdot} Q_{k2} + \ \dots$$

dove:

$$E = \pm 1.00 \text{ x } E_Y \pm 0.30 \text{ x } E_Z$$
 oppure $E = \pm 0.30 \text{ x } E_Y \pm 1.00 \text{ x } E_Z$

	Combinazioni di Carico Sismiche										
	SH1	SH2	SH3	SH4	SV1	SV2	SV3	SV4			
DEAD	1	1	1	1	1	1	1	1			
PERM	1	1	1	1	1	1	1	1			
SPTSX	1	1	1	1	1	1	1	1			
SPTDX	1	1	1	1	1	1	1	1			
ACCM	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2			
SPACCSX	0	0	0	0	0	0	0	0			
SPACCDX	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2			
AVV	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2			
ENV_TERM	-0.5	-0.5	-0.5	-0.5	-0.5	-0.5	-0.5	-0.5			
RITIRO	0	0	0	0	0	0	0	0			
Sisma H	1	1	1	1	0.3	0.3	0.3	0.3			
Sisma V	0.3	-0.3	0.3	-0.3	-1	1	-1	1			
SPSDX	0	0	1	1	0	0	0.3	0.3			
SPSSX	1	1	0	0	0.3	0.3	0	0			

Le combinazioni sismiche vanno eseguite in entrambe le direzioni pertanto le combinazioni SH sono ripetute per Sisma H = -1 e le combinazioni SV per Sisma V = -0.3.

S ITALFERR	Nuova linea Ferrandina - Matera La Martella per il collegame Matera con la rete ferroviaria nazionale NUOVA LINEA FERRANDINA – MATERA LA MARTELLA					
Relazione di calcolo opera esistente ai sensi delle NTC 2018	PROGETTO IA5F	LOTTO 01	CODIFICA DOCUMENTO D 78 CL IN1400 002	REV.	FOGLIO 21 DI 35	

3.1.6. <u>MODELLAZIONE ADOTTATA</u>

Il modello di calcolo attraverso il quale viene schematizzata la struttura è quello di telaio chiuso su letto di molle alla Winkler. Il programma di calcolo utilizzato è un programma ad elementi finiti, il Sap 2000.

Le caratteristiche delle aste modellate con elementi frame sono le seguenti:

Asta 1 = Sezione 100×60 cmq (soletta superiore)

Aste 2.3 = Sezione 100×60 cmq (piedritti)

Aste 4.5 = Sezione 100×60 cmq (soletta inferiore)

L'opera è stata considerata vincolata alla base mediante dei vincoli cedevoli in funzione delle caratteristiche elastiche del terreno di sottofondo.

La soletta inferiore viene divisa in 10 elementi per poter schematizzare, tramite le molle applicate, l'interazione terreno-struttura. Per la rigidezza delle molle, nel il caso in esame, si assume il valore del Modulo di reazione verticale desunto dalla relazione geotecnica:

 $Ks = 10000 \text{ kN/m}^3$

Rigidezza molle nodali SAP

	10000 kN/m^3
	0,560 m
ks x Linfl x 1	5600 kN/m
	0,560 m
1,5 x ks x Linfl x 1	8400 kN/m
	0,580 m
2,0 x ks x Linfl x 1	11600 kN/m
	13
	2
	11
	10
	5,60 m
	2, 85 m
	1,5 x ks x Linfl x 1

T ITALFERR	Nuova linea Ferrandina - Matera La Martella per il collegame Matera con la rete ferroviaria nazionale NUOVA LINEA FERRANDINA – MATERA LA MARTELLA					
Relazione di calcolo opera esistente ai	PROGETTO	LOTTO	CODIFICA DOCUMENTO	REV.	FOGLIO	
sensi delle NTC 2018	IA5F	01	D 78 CL IN1400 002	Α	22 DI 35	

Nodo	X Z
1	0,000 2,850
2	5,600 2,850
3	0,000 0,000
4	0,560 0,000
5	1,120 0,000
6	1,680 0,000
7	2,240 0,000
8	2,800 0,000
9	3,3 60 0,000
10	3,920 0,000
11	4,4 80 0 , 000
12	5,040 0,000
13	5,600 0,000

Figura 10. Numerazione nodi modello SAP

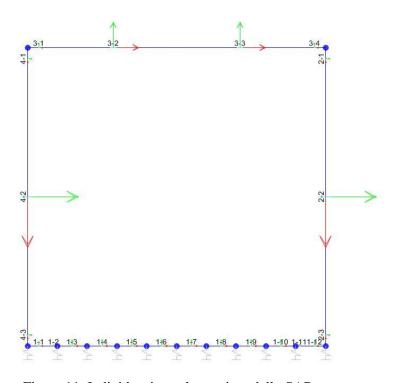


Figura 11: Individuazione elementi modello SAP

3.1.7. CARATTERISTICHE DELLE SOLLECITAZIONI

3.1.7.1. Inviluppo SLV

Frame	Station	OutputCase	CaseType	StepType	P	V2	1	VI3
1	0,3	ENVELOPE SLV	Combination	Max		0,0	142,4	153,9
1	0,56	ENVELOPE SLV	Combination	Max		0,0	146,3	117,6
1	0,56	ENVELOPE SLV	Combination	Max		0,0	112,1	117,6
1	0,84	ENVELOPE SLV	Combination	Max		0,0	116,3	86,4
1	1,12	ENVELOPE SLV	Combination	Max		0,0	120,5	54,5
1	1,12	ENVELOPE SLV	Combination	Max		0,0	86,8	54,5
1	1,4	ENVELOPE SLV	Combination	Max		0,0	91,0	30,4
1	1,68	ENVELOPE SLV	Combination	Max		0,0	95,2	5,2
1	1,68	ENVELOPE SLV	Combination	Max		0,0	70,1	5,2
1	1,96	ENVELOPE SLV	Combination	Max		0,0	74,3	-14,5
1	2,24	ENVELOPE SLV	Combination	Max		0,0	78,5	-35,4
1	2,24	ENVELOPE SLV	Combination	Max		0,0	50,8	-35,4
1	2,52	ENVELOPE SLV	Combination	Max		0,0	55,0	-50,1
1	2,8	ENVELOPE SLV	Combination	Max		0,0	59,2	-62,0
1	2,8	ENVELOPE SLV	Combination	Max		0,0	29,7	-62,0
1	3,08	ENVELOPE SLV	Combination	Max		0,0	33,9	-59,9
1	3,36	ENVELOPE SLV	Combination	Max		0,0	38,1	-59,0
1	3,36	ENVELOPE SLV	Combination	Max		0,0	6,5	-59,0
1	3,64	ENVELOPE SLV	Combination	Max		0,0	10,7	-51,4
1	3,92	ENVELOPE SLV	Combination	Max		0,0	14,9	-44,9
1	3,92	ENVELOPE SLV	Combination	Max		0,0	-20,0	-44,9
1	4,2	ENVELOPE SLV	Combination	Max		0,0	-15,8	-31,5
1	4,48	ENVELOPE SLV	Combination	Max		0,0	-11,6	-19,3
1	4,48	ENVELOPE SLV	Combination	Max		0,0	-69,7	-19,3
1	4,76	ENVELOPE SLV	Combination	Max		0,0	-65,5	4,2
1	5,04	ENVELOPE SLV	Combination	Max		0,0	-61,3	28,4
1	5,04	ENVELOPE SLV	Combination	Max		0,0	-120,8	28,4
1	5,3	ENVELOPE SLV	Combination	Max		0,0	-116,9	65,8
1	0,3	ENVELOPE SLV	Combination	Min		0,0	117,7	42,0
1	0,56	ENVELOPE SLV	Combination	Min		0,0	121,6	10,9
1	0,56	ENVELOPE SLV	Combination	Min		0,0	79,8	10,9
1	0,84	ENVELOPE SLV	Combination	Min		0,0	84,0	-14,5
1	1,12	ENVELOPE SLV	Combination	Min		0,0	88,2	-43,1
1	1,12	ENVELOPE SLV	Combination	Min		0,0	47,0	-43,1
1	1,4	ENVELOPE SLV	Combination	Min		0,0	51,2	-59,5
1	1,68	ENVELOPE SLV	Combination	Min		0,0	55,4	-77,1
1	1,68	ENVELOPE SLV	Combination	Min		0,0	28,3	-77,1
1	1,96	ENVELOPE SLV	Combination	Min		0,0	32,5	-87,3
								-98,6

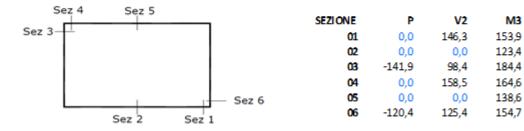
Nuova linea Ferrandina - Matera La Martella per il collegamento di Matera con la rete ferroviaria nazionale

FOGLIO

24 DI 35

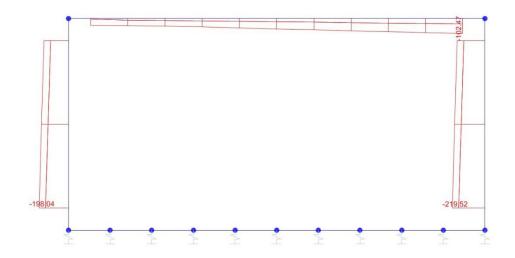
NUOVA LINEA FERRANDINA – MATERA LA MARTELLA

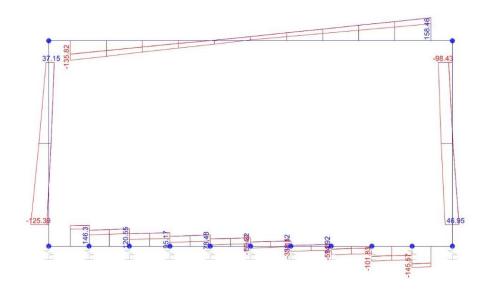
Relazione di calcolo opera esistente ai sensi delle NTC 2018


PROGETTO LOTTO CODIFICA DOCUMENTO REV.

1A5F 01 D 78 CL IN1400 002 A

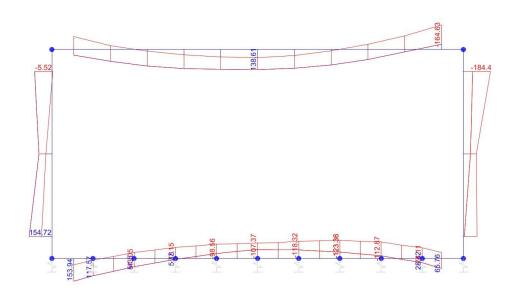
1	2,24	ENVELOPE SLV	Combination	Min	0,0	9,6	-98,6
1	2,52	ENVELOPE SLV	Combination	Min	0,0	13,8	-102,4
1	2,8	ENVELOPE SLV	Combination	Min	0,0	18,0	-107,4
1	2,8	ENVELOPE SLV	Combination	Min	0,0	-11,4	-107,4
1	3,08	ENVELOPE SLV	Combination	Min	0,0	-7,2	-108,4
1	3,36	ENVELOPE SLV	Combination	Min	0,0	-3,0	-118,3
1	3,36	ENVELOPE SLV	Combination	Min	0,0	-35,2	-118,3
1	3,64	ENVELOPE SLV	Combination	Min	0,0	-31,0	-120,3
1	3,92	ENVELOPE SLV	Combination	Min	0,0	-26,8	-123,4
1	3,92	ENVELOPE SLV	Combination	Min	0,0	-59,6	-123,4
1	4,2	ENVELOPE SLV	Combination	Min	0,0	-55,4	-117,5
1	4,48	ENVELOPE SLV	Combination	Min	0,0	-51,2	-112,9
1	4,48	ENVELOPE SLV	Combination	Min	0,0	-101,8	-112,9
1	4,76	ENVELOPE SLV	Combination	Min	0,0	-97,6	-92,6
1	5,04	ENVELOPE SLV	Combination	Min	0,0	-93,4	-74,1
1	5,04	ENVELOPE SLV	Combination	Min	0,0	-145,6	-74,1
1	5,3	ENVELOPE SLV	Combination	Min	0,0	-141,7	-42,0
2	0,3	ENVELOPE SLV	Combination	Max	-141,9	-24,9	-63,2
2	1,425	ENVELOPE SLV	Combination	Max	-158,8	5,2	-48,7
2	2,55	ENVELOPE SLV	Combination	Max	-175,6	47,0	-6,9
2	0,3	ENVELOPE SLV	Combination	Min	-185,8	-98,4	-184,4
2	1,425	ENVELOPE SLV	Combination	Min	-202,6	-78,4	-88,6
2	2,55	ENVELOPE SLV	Combination	Min	-219,5	-49,2	-93,2
3	0,3	ENVELOPE SLV	Combination	Max	-5,7	-94,1	40,0
3	0,8	ENVELOPE SLV	Combination	Max	-12,0	-69,7	80,9
3	1,3	ENVELOPE SLV	Combination	Max	-15,9	-45,2	112,5
3	1,8	ENVELOPE SLV	Combination	Max	-18,4	-20,8	131,1
3	2,3	ENVELOPE SLV	Combination	Max	-20,9	3,6	136,7
3	2,8	ENVELOPE SLV	Combination	Max	-23,4	28,0	138,6
3	3,3	ENVELOPE SLV	Combination	Max	-25,9	54,1	129,5
3	3,8	ENVELOPE SLV	Combination	Max	-28,4	80,2	106,3
3	4,3	ENVELOPE SLV	Combination	Max	-30,9	106,3	69,2
3	4,8	ENVELOPE SLV	Combination	Max	-33,4	132,4	18,1
3	5,3	ENVELOPE SLV	Combination	Max	-35,9	158,5	-34,6
3	0,3	ENVELOPE SLV	Combination	Min	-45,8	-135,8	-86,5
3	0,8	ENVELOPE SLV	Combination	Min	-48,3	-107,8	-25,6
3	1,3	ENVELOPE SLV	Combination	Min	-51,5	-79,8	11,7
3	1,8	ENVELOPE SLV	Combination	Min	-57,9	-51,8	37,7
3	2,3	ENVELOPE SLV	Combination	Min	-64,3	-23,8	52,4
3	2,8	ENVELOPE SLV	Combination	Min	-70,6	4,3	55,9
	-/-				,-	-,-	/-


3	3,3 ENVELOPE SLV	Combination	Min	-77,0	26,8	41,8
3	3,8 ENVELOPE SLV	Combination	Min	-83,4	49,3	9,4
3	4,3 ENVELOPE SLV	Combination	Min	-89,7	71,7	-35,1
3	4,8 ENVELOPE SLV	Combination	Min	-96,1	94,2	-91,9
3	5,3 ENVELOPE SLV	Combination	Min	-102,5	116,7	-164,6
4	0,3 ENVELOPE SLV	Combination	Max	-120,4	37,1	118,0
4	1,425 ENVELOPE SLV	Combination	Max	-137,3	16,2	87,7
4	2,55 ENVELOPE SLV	Combination	Max	-154,2	-14,1	154,7
4	0,3 ENVELOPE SLV	Combination	Min	-164,3	-19,2	-5,5
4	1,425 ENVELOPE SLV	Combination	Min	-181,2	-67,7	42,0
4	2,55 ENVELOPE SLV	Combination	Min	-198,0	-125,4	70,3


M3

I ITALFERR	Nuova linea Ferrandina - Matera La Martella per il collegamento Matera con la rete ferroviaria nazionale NUOVA LINEA FERRANDINA – MATERA LA MARTELLA						
Relazione di calcolo opera esistente ai sensi delle NTC 2018	PROGETTO IA5F	LOTTO 01	CODIFICA DOCUMENTO D 78 CL IN1400 002	REV.	FOGLIO 26 DI 35		

Diagrammi di inviluppo delle sollecitazioni: ENVELOPE SLV



Sforzo normale

Taglio

S ITALFERR	Matera con	la rete fer	ina - Matera La Martella roviaria nazionale ANDINA – MATERA LA N		
Relazione di calcolo opera esistente ai sensi delle NTC 2018	PROGETTO IA5F	LOTTO 01	CODIFICA DOCUMENTO D 78 CL IN1400 002	REV.	FOGLIO 27 DI 35

Momento Flettente

I valori V e M dei diagrammi corrispondono a quelli riportati nella tabella, mentre il valore dello sforzo normale P nei diagrammi (valore massimo) differisce da quello di verifica della tabella, pari a quello di compressione minimo.

3.1.8. <u>VERIFICHE</u>

Nel seguito si riportano gli esiti delle verifiche ai sensi del D. M. 17 gennaio 2018.

Le verifiche sono state utilizzate le seguenti resitenze:

- Acciaio

$$f_y = 375 \, N/mm^2$$

- Calcestruzzo

$$f_c = 18.52 \, N/mm^2$$

Per quanto riguarda i coefficienti di sicurezza si è fatto riferimento, coerentemente a quanto previsto al capitolo 8 e C8 del D.M 17 gennaio 2018 e relative istruzioni per l'applicazione (Circolare 21 gennaio 2019 n. 7 del C.S.LL.PP.)

Per le verifiche nei confronti di meccanismi duttili (pressoflessione):

- Acciaio

$$\gamma_{s} = 1.00$$

Calcestruzzo

$$\gamma_c = 1.00$$

Per le verifiche nei confronti di meccanismi fragili (taglio):

- Acciaio

$$\gamma_{\rm s} = 1.15$$

Calcestruzzo

$$\gamma_c = 1.50$$

Per maggiori dettagli si rimanda sulla caratterizzazione delle resistenze dei materiali in sito si rimanda agli elaborati IA5F01D78ROOC0000001 e IA5F01D78RGOC0000001.

I ITALFERR	Matera con	la rete fei	ina - Matera La Martella roviaria nazionale ANDINA – MATERA LA N		
Relazione di calcolo opera esistente ai sensi delle NTC 2018	PROGETTO IA5F	LOTTO 01	CODIFICA DOCUMENTO D 78 CL IN1400 002	REV.	FOGLIO 29 DI 35

	Funzioni SI	I U/ N-M-V	+ SIF ne	r Sezione l	Rettangolare					
	I GIIZIOIII OI		, i oll po	COLIGIC	tottarigolaro					
	Oggetto:									
	TOMBINO II	N14 - Esist	ente NTC18							
	Sezione n°.									
	Dati di Inpu	ıt:								
В	Base sezion		are		1000	mm	Geometria	della Se	zione:	
Н	Altezza sezio				600	mm		Н		
c'	Copriferro a	ırmatura su	ip. compres	sa	50	mm		As'	c'	
С	Copriferro a		•		50	mm				
d	Altezza utile	e = H-c			550	mm				В
fck	Resistenza o	caratt. Cilin	drica calces	truzzo	18.52	MPa				
fyk	Resistenza o	aratt. Sner	vamento ad	ciaio	375.0	MPa		As	С	
Ned	Sforzo norm	nale di calco	olo [(+)Trazi	ione]	0.0	kN				
Med	Momento fl				153.9	kNm				
Ved	Taglio di cal	colo [(+)]			146.3	kN				
Ted	Torsione di	calcolo [(+)]		0	kNm				
Fi1	1° diametro	armatura t	esa		16					
Fi2	2° diametro	armatura t	esa		20					
n1	N°. Barre 1°	armatura t	esa		4					
n2	N°. Barre 2°	armatura t	esa		4					
As'	Armatura su	periore co	mpressa		2512	mmq				
As	Armatura in	feriore tesa	Э		2061	mmq				
Fi Staffe	Diametro st	affe			0	mm				
s. Staffe	Passo staffe	j			200	mm				
bracci	Numero Bra	cci staffe			0					
$cot\theta$	(proiez.orizz	z.)/(proiez.\	ert.) punto	ne cls	1.0	[range: 1,	0-2,5]			
alpha	angolo staff	fe/piegati ri	ispetto all'o	rizzontale	90.0°					
Asw	Area a taglio	per unità	di lunghezza	3	0	mmq/m	0.00	cmq/m		
<r-f-p></r-f-p>	Combinaz. S	SLE (rara,fre	equente,qpe	erm)	R					
Msle	Momento d	i esercizio	[(+)]		0.0	kNm				
Nsle	Sforzo norm	nale di eser	cizio [(+)Tra	zione]	0.0	kN				
wk-lim	Stato limite	apertura fe	essure (Freq	.Perm)	0.20	mm				
sigcR-lim	Tensione lin	nite cls con	nb. Rara		0.60 fck					
sigcP-lim	Tensione lin	nite cls con	nb. Quasi Pe	erm.	0.45 fck					
sigsR-lim	Tensione lin	nite acc. Co	mb. Rara		0.80 fyk					
	Dati di Out	put:								
	SLU - Momo	ento e Tag	lio resistent	i						
Mrd	Momento u	ltimo resist	ente		405	kNm	Coeff.Sfru	tt.		38%
Vrd	Taglio ultim	o resistente	2		202	kN	Coeff.Sfru	tt.		72%
Trd	Momento to	orcente ulti	imo resister	nte	0	kNm	Coeff.Sfru	tt.		

S ITALFERR	Matera con	la rete fer	ina - Matera La Martella roviaria nazionale ANDINA – MATERA LA N		
Relazione di calcolo opera esistente ai sensi delle NTC 2018	PROGETTO IA5F	LOTTO 01	CODIFICA DOCUMENTO D 78 CL IN1400 002	REV.	FOGLIO 30 DI 35

	Funzioni SLU(N-M-V) + SLE per	Sezione Rettangolare				
	Oggetto:					
	TOMBINO IN14 - Esistente NTC18					
	Sezione n°. 02					
	Dati di Input:					
В	Base sezione rettangolare	1000	mm	Geometria	della Sez	vione:
Н	Altezza sezione rettangolare	600		Geometria	H	<u></u>
c'	Copriferro armatura sup. compress		mm		As'	c'
С	Copriferro armatura inf. Tesa		mm		Α3	C
d	Altezza utile = H-c		mm			В
fck	Resistenza caratt. Cilindrica calcest					D
fyk	Resistenza caratt. Snervamento acc				As	С
Ned	Sforzo normale di calcolo [(+)Trazio				Λ3	
Med	Momento flettente di calcolo [(+)]	123.4				
Ved	Taglio di calcolo [(+)]	0.0				
Ted	Torsione di calcolo [(+)]		kNm			
Fi1	1° diametro armatura tesa	20	KIVIII			
Fi2	2° diametro armatura tesa					
n1	N°. Barre 1° armatura tesa	8				
n2	N°. Barre 2° armatura tesa					
As'	Armatura superiore compressa	804	mmq			
As	Armatura inferiore tesa		mmq			
Fi Staffe	Diametro staffe		mm			
s. Staffe	Passo staffe	200	mm			
bracci	Numero Bracci staffe	0				
cotθ	(proiez.orizz.)/(proiez.vert.) punton	e cls 1.0	[range: 1,0	0-2,5]		
alpha	angolo staffe/piegati rispetto all'or					
Asw	Area a taglio per unità di lunghezza		mmq/m	0.00	cmq/m	
<r-f-p></r-f-p>	Combinaz. SLE (rara,frequente,qper					
Msle	Momento di esercizio [(+)]	0.0	kNm			
Nsle	Sforzo normale di esercizio [(+)Traz					
wk-lim	Stato limite apertura fessure (Freq.	Perm) 0.20	mm			
sigcR-lim	Tensione limite cls comb. Rara	0.60 fck				
sigcP-lim	Tensione limite cls comb. Quasi Per	m. 0.45 fck				
sigsR-lim	Tensione limite acc. Comb. Rara	0.80 fyk				
	Dati di Output:					
	SLU - Momento e Taglio resistenti					
Mrd	Momento ultimo resistente	490	kNm	Coeff.Sfru	tt.	25%
Vrd	Taglio ultimo resistente	216	kN	Coeff.Sfru	tt.	0%
Trd	Momento torcente ultimo resistent	e 0	kNm	Coeff.Sfru	tt.	

I ITALFERR	Matera con	la rete fer	ina - Matera La Martella roviaria nazionale ANDINA – MATERA LA N		
Relazione di calcolo opera esistente ai sensi delle NTC 2018	PROGETTO IA5F	LOTTO 01	CODIFICA DOCUMENTO D 78 CL IN1400 002	REV.	FOGLIO 31 DI 35

	Funzioni SLU(N-M-V) + SLE per	Sezione Ret	tangolare					
	Oggetto:							
	TOMBINO IN14 - Esistente NTC18							
	Sezione n°. 03							
	Dati di Input:							
В	Base sezione rettangolare		1000	mm	Geometria	della Sez	vione:	
Н	Altezza sezione rettangolare			mm	Geometria	H	ione.	
c'	Copriferro armatura sup. compres	53		mm		As'	c'	
С	Copriferro armatura inf. Tesa	3a		mm		Α3	C	
d	Altezza utile = H-c			mm				В
fck	Resistenza caratt. Cilindrica calces	truzzo	18.52					В
fyk	Resistenza caratt. Snervamento ac		375.0			As	С	
Ned	Sforzo normale di calcolo [(+)Trazi		-141.9			Λ3		
Med	Momento flettente di calcolo [(+)]	onej	184.4					
Ved	Taglio di calcolo [(+)]		98.4					
Ted	Torsione di calcolo [(+)]			kNm				
Fi1	1° diametro armatura tesa		16	KIVIII				
Fi2	2° diametro armatura tesa		20					
n1	N°. Barre 1° armatura tesa		4					
n2	N°. Barre 2° armatura tesa		4					
As'	Armatura superiore compressa		•	mmq				
As	Armatura inferiore tesa			mmq				
Fi Staffe	Diametro staffe			mm				
s. Staffe	Passo staffe		200	mm				
bracci	Numero Bracci staffe		0					
$cot\theta$	(proiez.orizz.)/(proiez.vert.) puntor	ne cls	1.0	[range: 1,	0-2,5]			
alpha	angolo staffe/piegati rispetto all'o		90.0°					
Asw	Area a taglio per unità di lunghezza		0	mmq/m	0.00	cmq/m		
<r-f-p></r-f-p>	Combinaz. SLE (rara,frequente,qpe		R					
Msle	Momento di esercizio [(+)]		0.0	kNm				
Nsle	Sforzo normale di esercizio [(+)Tra	zione]	0.0	kN				
wk-lim	Stato limite apertura fessure (Freq	.Perm)	0.20	mm				
sigcR-lim	Tensione limite cls comb. Rara		0.60 fck					
sigcP-lim	Tensione limite cls comb. Quasi Pe	rm.	0.45 fck					
sigsR-lim	Tensione limite acc. Comb. Rara		0.80 fyk					
	Dati di Output:							
	SLU - Momento e Taglio resistent	i						
Mrd	Momento ultimo resistente		441	kNm	Coeff.Sfru	tt.	4	2%
Vrd	Taglio ultimo resistente		221	kN	Coeff.Sfru	tt.	4	4%
Trd	Momento torcente ultimo resisten	te	0	kNm	Coeff.Sfru	tt.		

I ITALFERR	Nuova linea Ferrandina - Matera La Martella per il collegamento Matera con la rete ferroviaria nazionale NUOVA LINEA FERRANDINA – MATERA LA MARTELLA						
Relazione di calcolo opera esistente ai sensi delle NTC 2018	PROGETTO IA5F	LOTTO 01	CODIFICA DOCUMENTO D 78 CL IN1400 002	REV.	FOGLIO 32 DI 35		

	Funzioni SL	II/ N-M-V) + SI F per	r Sezione I	Pettangolare					
	T UIIZIOIII OL	O(14-141- V) + OLL pe	GEZIONE I	vettarigolai e					
	Oggetto:									
	TOMBINO IN	14 - Esiste	ente NTC18							
	Sezione n°. (
	Dati di Input	:								
В	Base sezione	rettangol	are		1000	mm	Geometria	della Se	zione:	
Н	Altezza sezio				600	mm		Н		
c'	Copriferro ar	matura su	ip. compres	sa	50	mm		As'	c'	
С	Copriferro ar	matura in	f. Tesa		50	mm				
d	Altezza utile :	= H-c			550	mm				В
fck	Resistenza ca	ratt. Cilin	drica calces	truzzo	18.52	MPa				
fyk	Resistenza ca	ratt. Sner	vamento ad	ciaio	375.0	MPa		As	С	
Ned	Sforzo norma	ale di calco	olo [(+)Trazi	ione]	0.0	kN				
Med	Momento fle				164.6	kNm				
Ved	Taglio di calc	olo [(+)]			158.5	kN				
Ted	Torsione di c	alcolo [(+)]		0	kNm				
Fi1	1° diametro a	armatura t	esa		16					
Fi2	2° diametro a	armatura t	esa		20					
n1	N°. Barre 1° a	armatura t	esa		4					
n2	N°. Barre 2° a	armatura t	esa		4					
As'	Armatura sup	periore co	mpressa		2512	mmq				
As	Armatura info	eriore tesa	3		2061	mmq				
Fi Staffe	Diametro sta	ffe			0	mm				
s. Staffe	Passo staffe				200	mm				
bracci	Numero Brad	ci staffe			0					
$cot\theta$	(proiez.orizz.)/(proiez.v	ert.) punto	ne cls	1.0	[range: 1,	0-2,5]			
alpha	angolo staffe	/piegati ri	spetto all'o	rizzontale	90.0°					
Asw	Area a taglio	per unità	di lunghezza	3	0	mmq/m	0.00	cmq/m		
<r-f-p></r-f-p>	Combinaz. SL	E (rara,fre	equente,qpe	erm)	R					
Msle	Momento di	esercizio [[(+)]		0.0	kNm				
Nsle	Sforzo norma	ale di eser	cizio [(+)Tra	zione]	0.0	kN				
wk-lim	Stato limite a	pertura fe	essure (Freq	.Perm)	0.20	mm				
sigcR-lim	Tensione limi	ite cls con	nb. Rara		0.60 fck					
sigcP-lim	Tensione limi	ite cls con	nb. Quasi Pe	rm.	0.45 fck					
sigsR-lim	Tensione limi	ite acc. Co	mb. Rara		0.80 fyk					
	Dati di Outp	ut:								
	SLU - Mome	nto e Tagl	lio resistent	i						
Mrd	Momento ult	imo resist	ente		405	kNm	Coeff.Sfru	tt.		41%
Vrd	Taglio ultimo	resistente	2		209	kN	Coeff.Sfru	tt.		76%
Trd	Momento to	rcente ulti	imo resister	nte	0	kNm	Coeff.Sfru	tt.		

S ITALFERR	Matera con	la rete fer	ina - Matera La Martella roviaria nazionale ANDINA – MATERA LA N		
Relazione di calcolo opera esistente ai sensi delle NTC 2018	PROGETTO IA5F	LOTTO 01	CODIFICA DOCUMENTO D 78 CL IN1400 002	REV.	FOGLIO 33 DI 35

	Funzioni SLU(N-M-V) + SLE per	Sezione Rettangolare				
	Oggetto:					
	TOMBINO IN14 - Esistente NTC18					
	Sezione n°. 05					
	Dati di Input:					
В	Base sezione rettangolare	1000	mm	Geometria	della Sez	vione:
Н	Altezza sezione rettangolare		mm	Geometria	H	ione.
c'	Copriferro armatura sup. compressa		mm		As'	c'
С	Copriferro armatura inf. Tesa		mm		Α3	C
d	Altezza utile = H-c		mm			В
fck	Resistenza caratt. Cilindrica calcestr					L.
fyk	Resistenza caratt. Snervamento acc				As	С
Ned	Sforzo normale di calcolo [(+)Trazio				73	
Med	Momento flettente di calcolo [(+)]	138.6				
Ved	Taglio di calcolo [(+)]	0.0				
Ted	Torsione di calcolo [(+)]		kNm			
Fi1	1° diametro armatura tesa	20	KIVIII			
Fi2	2° diametro armatura tesa					
n1	N°. Barre 1° armatura tesa	8				
n2	N°. Barre 2° armatura tesa					
As'	Armatura superiore compressa	804	mmq			
As	Armatura inferiore tesa		mmq			
Fi Staffe	Diametro staffe		mm			
s. Staffe	Passo staffe	200	mm			
bracci	Numero Bracci staffe	0				
cotθ	(proiez.orizz.)/(proiez.vert.) puntone	e cls 1.0	[range: 1,	0-2,5]		
alpha	angolo staffe/piegati rispetto all'oriz					
Asw	Area a taglio per unità di lunghezza		mmq/m	0.00	cmq/m	
<r-f-p></r-f-p>	Combinaz. SLE (rara,frequente,qperi					
Msle	Momento di esercizio [(+)]	0.0	kNm			
Nsle	Sforzo normale di esercizio [(+)Trazi	one] 0.0	kN			
wk-lim	Stato limite apertura fessure (Freq.P	erm) 0.20	mm			
sigcR-lim	Tensione limite cls comb. Rara	0.60 fck				
sigcP-lim	Tensione limite cls comb. Quasi Perr	m. 0.45 fck				
sigsR-lim	Tensione limite acc. Comb. Rara	0.80 fyk				
	Dati di Output:					
	SLU - Momento e Taglio resistenti					
Mrd	Momento ultimo resistente	490	kNm	Coeff.Sfru	tt.	28%
Vrd	Taglio ultimo resistente	216	kN	Coeff.Sfru	tt.	0%
Trd	Momento torcente ultimo resistente	e 0	kNm	Coeff.Sfru	tt.	

S ITALFERR	Nuova linea Ferrandina - Matera La Martella per il collegamento d Matera con la rete ferroviaria nazionale NUOVA LINEA FERRANDINA – MATERA LA MARTELLA					
Relazione di calcolo opera esistente ai sensi delle NTC 2018	PROGETTO IA5F	LOTTO 01	CODIFICA DOCUMENTO D 78 CL IN1400 002	REV.	FOGLIO 34 DI 35	

	Funzioni SLU(N-M-V) + SLE per	Sezione Rettangolare					
	Oggetto:						
	TOMBINO IN14 - Esistente NTC18						
	Sezione n°. 06						
	Dati di Input:						
В	Base sezione rettangolare	1000	mm	Geometria	della Se	vione:	
Н	Altezza sezione rettangolare		mm	Geometria	H	<u>lone.</u>	
c'	Copriferro armatura sup. compress		mm		As'	c'	
С	Copriferro armatura inf. Tesa		mm		Λ3	C	
d	Altezza utile = H-c		mm				В
fck	Resistenza caratt. Cilindrica calcest						ь
fyk	Resistenza caratt. Snervamento aco				As	С	
Ned	Sforzo normale di calcolo [(+)Trazio				7.3		
Med	Momento flettente di calcolo [(+)]	154.7					
Ved	Taglio di calcolo [(+)]	125.4					
Ted	Torsione di calcolo [(+)]		kNm				
Fi1	1° diametro armatura tesa	16	KIVIII				
Fi2	2° diametro armatura tesa	20					
n1	N°. Barre 1° armatura tesa	4					
n2	N°. Barre 2° armatura tesa						
As'	Armatura superiore compressa		mmq				
As	Armatura inferiore tesa		mmq				
Fi Staffe	Diametro staffe		mm				
s. Staffe	Passo staffe	150	mm				
bracci	Numero Bracci staffe	2					
$cot\theta$	(proiez.orizz.)/(proiez.vert.) punton	e cls 2.5	[range: 1,	0-2,5]			
alpha	angolo staffe/piegati rispetto all'or						
Asw	Area a taglio per unità di lunghezza		mmq/m	15.08	cmq/m		
<r-f-p></r-f-p>	Combinaz. SLE (rara,frequente,qper						
Msle	Momento di esercizio [(+)]	0.0	kNm				
Nsle	Sforzo normale di esercizio [(+)Traz	ione] 0.0	kN				
wk-lim	Stato limite apertura fessure (Freq. l	Perm) 0.20	mm				
sigcR-lim	Tensione limite cls comb. Rara	0.60 fck					
sigcP-lim	Tensione limite cls comb. Quasi Per	m. 0.45 fck					
sigsR-lim	Tensione limite acc. Comb. Rara	0.80 fyk					
	Dati di Output:						
	SLU - Momento e Taglio resistenti						
Mrd	Momento ultimo resistente	436	kNm	Coeff.Sfrutt.			36%
Vrd	Taglio ultimo resistente	218	kN	Coeff.Sfrutt.			57%
Trd	Momento torcente ultimo resistent	re 7	kNm	Coeff.Sfru	tt.		

II ITALFERR	Nuova linea Ferrandina - Matera La Martella per il collegamento di Matera con la rete ferroviaria nazionale NUOVA LINEA FERRANDINA – MATERA LA MARTELLA					
Relazione di calcolo opera esistente ai sensi delle NTC 2018	PROGETTO IA5F	LOTTO 01	CODIFICA DOCUMENTO D 78 CL IN1400 002	REV.	FOGLIO 35 DI 35	

SINTESI VERIFICHE SEZIONI NOTEVOLI:								
SL	VERIF	SEZ01	SEZ02	SEZ03	SEZ04	SEZ05	SEZ06	
SLU	Med/Mrd	38%	25%	42%	41%	28%	36%	
SLU	Ved/Vrd	72%	0%	44%	76%	0%	57%	
	MAX	72%	25%	44%	76%	28%	57%	
	MAX	76%						

IL TOMBINO OGGETTO DELLA PRESENTE RELAZIONE RISULTA IDONEO ALLE AZIONI SISMICHE DI PROGETTO PREVISTE DALLE NTC 2018, PERTANTO NON SE NE PREVEDE LA DEMOLIZIONE.