COMMITTENTE

PROGETTAZIONE:

n	IP	F7		NE	TE		ICA
L	IR		w			-	ILA

U.O. INFRASTRUTTURE SUD

PROGETTO DEFINITIVO

Nuova linea Ferrandina - Matera La Martella per il collegamento di Matera con la rete ferroviaria nazionale

NUOVA LINEA FERRANDINA – MATERA LA MARTELLA

OPERE CIVILI
Opere D'Arte Minori – Sottovia e interferenze idrauliche – Tombini
IN18 – Tombino in c.a. sotto NV02
Relazione di calcolo

SCALA:
-

COMMESSA	LOTTO	FASE	ENIE	TIPO DOC.	OPERA/DISCIPLINA	PROGR.	REV
I A 5 F	0 1	D	7 8	CL	I N 1 8 0 0	0 0 1	Α

Rev.	Descrizione	Redatto	Data	Verificato	Data	Approvato	Data	Autorizzato Data
А	EMISSIONE DEFINITIVA	E.SELLARI	07/2019	N.MANCUSO	07/2019	F.GERNONE	07/ 2019	D. TIBERTI 07/2019
								S. p.A. perito Suro Ligentia rttberst ov. di Napa
								FAN FERRITORY DEPO PROPERTY OF THE PROPERTY OF
								OU Do Od Adine degili

	File: IA5F01D78CLIN1800001A		n. Elab.:
--	-----------------------------	--	-----------

Nuova linea Ferrandina - Matera La Martella per il collegamento di Matera con la rete ferroviaria nazionale

NUOVA LINEA FERRANDINA – MATERA LA MARTELLA

Relazione di calcolo

PROGETTO LOTTO CODIFICA DOCUMENTO REV. FOGLIO

IA5F 01 D 78 CL IN1800 001 A 3 DI 77

INDICE

1	PRE	MESSA	5
2	NOR	RMATIVA DI RIFERIMENTO	6
3		reriali	
J			
	3.1	CALCESTRUZZO	7
	3.2	ACCIAIO B450C	7
	3.1	VERIFICA S.L.E.	8
	3.1.1	Verifiche alle tensioni	8
	3.1.2	Verifiche a fessurazione	9
4	INQ	UADRAMENTO GEOTECNICO	.11
	4.1	TERRENO DI RICOPRIMENTO/RINTERRO	. 11
	4.2	INTERAZIONE TERRENO-STRUTTURA	. 11
5	CAR	ATTERIZZAZIONE SISMICA	. 13
	5.1	VITA NOMINALE E CLASSE D'USO	. 13
	5.2	PARAMETRI DI PERICOLOSITÀ SISMICA	. 13
6	SOF	TWARE DI CALCOLO	. 18
	6.1	ORIGINE E CARATTERISTICHE DEI CODICI DI CALCOLO ADOTTATI	. 18
	6.2	Unità di misura	. 18
	6.3	Grado di Affidabilità del codice	. 18
	6.4	VALUTAZIONE DELLA CORRETTEZZA DEL MODELLO	. 18
	6.5	CARATTERISTICHE DELL'ELABORAZIONE	. 19
	6.6	GIUDIZIO FINALE SULLA ACCETTABILITÀ DEI CALCOLI	. 19

Nuova linea Ferrandina - Matera La Martella per il collegamento di Matera con la rete ferroviaria nazionale

NUOVA LINEA FERRANDINA – MATERA LA MARTELLA

	PROGETTO	LOTTO	CODIFICA DOCUMENTO	REV.	FOGLIO
Relazione di calcolo	IA5F	01	D 78 CL IN1800 001	Α	4 DI 77

	6.7	PROGRAMMI DI SERVIZIO	19
7	TON	MBINO SCATOLARE 2.00X2.00M	20
8	COI	MBINAZIONI DI CARICO	33
	8.1	CONDIZIONI DI CARICO:	34
9	DIA	AGRAMMI DELLE SOLLECITAZIONI	38
10	VEI	RIFICA DELLE SEZIONI IN C.A.	42
	10.1	VERIFICA SOLETTA INFERIORE	43
	10.2	VERIFICA SOLETTA SUPERIORE	47
	10.3	VERIFICA PIEDRITTI	52
	10.4	TABELLA RIASSUNTIVA ARMATURE	56
11	TON	MBINO SEZIONE AD "U"	57
	11.4	SPINTA DEL SOVRACCARICO SUL RILEVATO Q1=10 KN/M	60
12	DIA	AGRAMMI DELLE SOLLECITAZIONI	62
13	VEI	RIFICA DELLE SEZIONI IN C.A.	67
	13.1	VERIFICA SOLETTA INFERIORE	68
	12.2	Venicia diedultei	72

S ITALFERR	Nuova linea Ferrandina - Matera La Martella per il collegamento Matera con la rete ferroviaria nazionale NUOVA LINEA FERRANDINA – MATERA LA MARTELLA				
Relazione di calcolo	PROGETTO IA5F	LOTTO 01	CODIFICA DOCUMENTO D 78 CL IN1800 001	REV.	FOGLIO 5 DI 77

1 PREMESSA

Il presente documento si inserisce nell'ambito della redazione degli elaborati tecnici di progetto definitivo delle opere relative alla nuova linea Ferrandina-Matera La Martella per il collegamento di matera con la rete ferroviaria nazionale.

In particolare, ha per oggetto le verifiche secondo il metodo semiprobabilistico agli Stati Limite (S.L.) del tombino scatolare sulla viabilità IN18 alla progressiva 0+398.33.

Il tombino si rende necessario per garantire la continuità idraulica del nuovo tracciato stradale.

La sezione trasversale retta ha una larghezza interna di L_{int} = 2.00 m ed un'altezza netta di H_{int} = 2.00 m; lo spessore della platea di fondazione è di S_f = 0.40 m, lo spessore dei piedritti è di S_p = 0.30 m e lo spessore della soletta di copertura è di S_s = 0.30 m.

Quanto riportato di seguito consentirà di verificare che il dimensionamento della struttura è stato effettuato nel rispetto dei requisiti di resistenza richiesti all'opera.

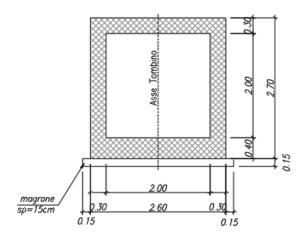


Fig. 1 – Sezione trasversale dell'opera

S ITALFERR	Nuova linea Ferrandina - Matera La Martella per il collegamento Matera con la rete ferroviaria nazionale NUOVA LINEA FERRANDINA – MATERA LA MARTELLA				
Relazione di calcolo	PROGETTO IA5F	LOTTO 01	CODIFICA DOCUMENTO D 78 CL IN1800 001	REV.	FOGLIO 6 DI 77

2 NORMATIVA DI RIFERIMENTO

La progettazione è conforme alle normative vigenti nonché alle istruzioni dell'Ente FF.SS.

La normativa cui viene fatto riferimento nelle fasi di calcolo e progettazione è la seguente:

- L. n. 64 del 2/2/1974"Provvedimento per le costruzioni con particolari prescrizioni per le zone sismiche".
- L. n. 1086 del 5/11/1971"Norme per la disciplina delle opere di conglomerato cementizio armato, normale e precompresso ed a struttura metallica".
- Norme Tecniche per le Costruzioni D.M. 17-01-18;
- Circolare n. 7 del 21 Gennaio 2019 Istruzioni per l'Applicazione Nuove Norme Tecniche Costruzioni di cui al Decreto Ministeriale 17 gennaio 2018;
- Regolamento (UE) N.1299/2014 del 18 novembre 2014 della Commissione Europea. Relativo alle specifiche tecniche di interoperabilità per il sottosistema "infrastruttura" del sistema ferroviario dell'Unione Europea.
- Eurocodici EN 1991-2: 2003/AC:2010.
- RFI DTC SI MA IFS 001 B del 2018 Manuale di Progettazione delle Opere Civili.
- RFI DTC SI SP IFS 001 B del 2018 Capitolato generale tecnico di Appalto delle opere civili.
- CNR-DT207/2008 Istruzioni per la valutazione delle azioni e degli effetti del vento sulle costruzioni.
- UNI EN 206-1:2006 Parte 1: Calcestruzzo-Specificazione, prestazione, produzione e conformità;
- Decreto del Presidente del Consiglio Superiore dei Lavori Pubblici n. 361 del 26 settembre 2017,Linee guida per la messa in opera del calcestruzzo strutturale;
- EUROCODICE 2 Progettazione delle strutture di calcestruzzo
- EUROCODICE 7: progettazione geotecnica
- Eurocodice 8. Progettazione delle strutture per la resistenza sismica

S ITALFERR	Nuova linea Ferrandina - Matera La Martella per il collegamento Matera con la rete ferroviaria nazionale NUOVA LINEA FERRANDINA – MATERA LA MARTELLA				
Relazione di calcolo	PROGETTO IA5F	LOTTO 01	CODIFICA DOCUMENTO D 78 CL IN1800 001	REV.	FOGLIO 7 DI 77

3 MATERIALI

Il calcestruzzo adottato corrisponde alla Classe C30/37, mentre l'acciaio in barre ad aderenza migliorata corrisponde alla classe B450C. Di seguito vengono elencate le specifiche.

3.1 Calcestruzzo

Per le strutture in elevazione si adotta un calcestruzzo con le caratteristiche riportate di seguito:

Classe di resistenza: Elevazione	C30/37		
Resistenza a compressione cubica caratteristica	$R_{ck} =$	37	N/mm^2
Resistenza a compressione cilindrica caratteristica	$f_{ck} =$	30.71	N/mm^2
Resistenza a compressione cilindrica media	$f_{cm} =$	38.71	N/mm^2
Resistenza a trazione semplice	$f_{ctm} =$	2.94	N/mm^2
Resistenza a trazione per flessione	$f_{ctm} =$	3.53	N/mm^2
Modulo elastico secante medio	$E_{cm} =$	33019	N/mm^2
Resistenza caratteristica a trazione semplice (5%)	$f_{ctk} =$	2.06	N/mm^2
Resistenza caratteristica a trazione semplice (95%)	$f_{ctk} =$	3.82	N/mm^2
Coefficiente di sicurezza SLU:	$\gamma_{c} =$	1.5	
Resistenza di calcolo a compressione cilindrica SLU:	$f_{cd} =$	17.4	N/mm^2
Resistenza di calcolo a trazione semplice (5%) - SLU:	$f_{ctd} =$	1.37	N/mm^2
Coefficiente di sicurezza SLE:	$\gamma_c =$	1.0	
Resistenza di calcolo a compressione cilindrica SLE:	$f_{cd} =$	30.7	N/mm^2
Resistenza di calcolo a trazione semplice (5%) - SLE:	$f_{ctd} =$	2.06	N/mm^2
Massime tensioni di compressione in esercizio:			
Combinazione rara	$\sigma_{c,ad} =$	18.43	N/mm ²
Combinazione quasi permanente	$\sigma_{c,ad} =$	13.82	N/mm^2

Classe di esposizione XA1

3.2 Acciaio B450C

Tensione caratteristica di snervamento: $f_{yk} = 450 \text{ MPa};$

Tensione di progetto: $f_{yk} = 450 \text{ MPa};$

Tensione di progetto: $f_{yk} = f_{yd} / \gamma_m$

Modulo Elastico $E_s = 210'000 \text{ MPa}.$

S ITALFERR	Nuova linea Ferrandina - Matera La Martella per il collegamento o Matera con la rete ferroviaria nazionale NUOVA LINEA FERRANDINA – MATERA LA MARTELLA				
Relazione di calcolo	PROGETTO IA5F	LOTTO 01	CODIFICA DOCUMENTO D 78 CL IN1800 001	REV.	FOGLIO 8 DI 77

3.1 Verifica S.L.E.

La verifica nei confronti degli Stati limite di esercizio, consiste nel controllare, con riferimento alle sollecitazioni di calcolo corrispondenti alle Combinazioni di Esercizio il tasso di Lavoro nei Materiali e l'ampiezza delle fessure attesa, secondo quanto di seguito specificato

3.1.1 ____ Verifiche alle tensioni

La verifica delle tensioni in esercizio consiste nel controllare il rispetto dei limiti tensionali previsti per il calcestruzzo e per l'acciaio per ciascuna delle combinazioni di carico caratteristiche "Rara" e "Quasi Permanente"; i valori tensionali nei materiali sono valutati secondo le note teorie di analisi delle sezioni in c.a. in campo elastico e con calcestruzzo "non reagente a trazione" adottando come limiti di riferimento, trattandosi nel caso in specie di opere Ferroviarie, quelli indicati nel documento "Specifica per la progettazione e l'esecuzione dei ponti ferroviari e di altre opere minori sotto binario RFI DTC INC PO SP IFS 001 A del 2019 ", ovvero:

Strutture in c.a.

Tensioni di compressione del calcestruzzo

Devono essere rispettati i seguenti limiti per le tensioni di compressione nel calcestruzzo:

- per combinazione di carico caratteristica (rara): 0,55 f_{ek};
- per combinazioni di carico quasi permanente: 0,40 f_{ck};
- per spessori minori di 5 cm, le tensioni normali limite di esercizio sono ridotte del 30%.

Tensioni di trazione nell'acciaio

Per le armature ordinarie, la massima tensione di trazione sotto la combinazione di carico caratteristica (rara) non deve superare $0.75~f_{vk}$.

Per il caso in esame risulta in particolare :

CALCESTRUZZO

$$\sigma_{cmax\ QP}$$
 = $(0,40\ f_{ck})$ = 12.00 MPa (Combinazione di Carico Quasi Permanente)
$$\sigma_{cmax\ R}$$
 = $(0,55\ f_{ck})$ = 16.50 MPa (Combinazione di Carico Caratteristica - Rara)

<u>ACCIAIO</u>

S ITALFERR	Nuova linea Ferrandina - Matera La Martella per il collegamento Matera con la rete ferroviaria nazionale NUOVA LINEA FERRANDINA – MATERA LA MARTELLA				
Relazione di calcolo	PROGETTO IA5F	LOTTO 01	CODIFICA DOCUMENTO D 78 CL IN1800 001	REV.	FOGLIO 9 DI 77

$\sigma_{s max} =$	$(0,75 f_{yk}) =$	338	MPa	Combinazione di Carico Caratteristica(Rara)
--------------------	-------------------	-----	-----	---

3.1.2 Verifiche a fessurazione

La verifica di fessurazione consiste nel controllare l'ampiezza dell'apertura delle fessure sotto combinazione di carico frequente e combinazione quasi permanente. Essendo la struttura a contatto col terreno si considerano condizioni ambientali aggressive; le armature di acciaio ordinario sono ritenute poco sensibili [NTC – Tabella 4.1.IV]

In relazione all'aggressività ambientale e alla sensibilità dell'acciaio, l'apertura limite delle fessure è riportato nel prospetto seguente:

Tabella 1 – Criteri di scelta dello stato limite di fessurazione e Condizioni Ambientali

	Gruppi di		Armatura				
Gruppi di Condizioni ambientali Combinazi		Combinazione di azione	Sensibile	Poco sensibile			
			Stato limite	wd	Stato limite	wd	
	Ordinarie	frequente	ap. fessure	≤w ₂	ap. fessure	≤w ₃	
а	a Ordinarie	quasi permanente	ap. fessure	\leq w ₁	ap. fessure	≤w ₂	
h	Agamagiya	frequente	ap. fessure	\leq w ₁	ap. fessure	≤w ₂	
b	Aggressive	quasi permanente	decompressione	-	ap. fessure	\leq w ₁	
	Malta Agamassiya	frequente	formazione fessure	-	ap. fessure	≤w₁	
С	Molto Aggressive	quasi permanente	decompressione	-	ap. fessure	\leq w ₁	

Tabella 4.1.III - Descrizione delle condizioni ambientali

CONDIZIONI AMBIENTALI	CLASSE DI ESPOSIZIONE				
Ordinarie	X0, XC1, XC2, XC3, XF1				
Aggressive	XC4, XD1, XS1, XA1, XA2, XF2, XF3				
Molto aggressive	XD2, XD3, XS2, XS3, XA3, XF4				

Risultando:

S ITALFERR	Nuova linea Ferrandina - Matera La Martella per il collegamento Matera con la rete ferroviaria nazionale NUOVA LINEA FERRANDINA – MATERA LA MARTELLA				
Relazione di calcolo	PROGETTO IA5F	LOTTO 01	CODIFICA DOCUMENTO D 78 CL IN1800 001	REV.	FOGLIO 10 DI 77

 $w_1 = 0.2 \text{ mm}$

 $w_2 = 0.3 \text{ mm}$

 $w_3 = 0.4 \text{ mm}$

Data la maggior restrittività, alle prescrizioni normative presenti in NTC si sostituiscono in tal caso quelle fornite dal "Manuale di Progettazione delle Opere Civili" secondo cui la verifica nei confronti dello stato limite di apertura delle fessure va effettuata utilizzando le sollecitazioni derivanti dalla combinazione caratteristica (rara).

Per strutture in condizioni ambientali aggressive o molto aggressive, qual è il caso delle strutture in esame così come identificate nel DM 17.1.2018, per tutte le strutture a permanente contatto con il terreno e per le zone non ispezionabili di tutte le strutture, l'apertura convenzionale delle fessure dovrà risultare:

$$\delta_f \leq w_1 = 0.2 \ mm$$

Riguardo infine il valore di calcolo delle fessure da confrontare con i valori limite fissati dalla norma, si è utilizzata la procedura riportata al C4.1.2.2.4.5 della Circolare n. 7/19.

II ITALFERR	Nuova linea Ferrandina - Matera La Martella per il collegamento d Matera con la rete ferroviaria nazionale NUOVA LINEA FERRANDINA – MATERA LA MARTELLA				•
Relazione di calcolo	PROGETTO IA5F	LOTTO 01	CODIFICA DOCUMENTO D 78 CL IN1800 001	REV.	FOGLIO 11 DI 77

4 INQUADRAMENTO GEOTECNICO

4.1 Terreno di ricoprimento/rinterro

Per il terreno di ricoprimento dell'opera sono state assunte le seguenti caratteristiche geotecniche :

 $\gamma = 20 \text{ kN/m}^3$ peso di volume naturale

 $\varphi' = 35^{\circ}$ angolo di resistenza al taglio

c' = 0 kPa coesione drenata

4.2 Interazione terreno-struttura

La stratigrafia di calcolo viene di seguito descritta:

Sono presenti depositi alluvionali recenti (unità U1c) per spessori pressochè costante e pari a 5-7 m circa. Al di sotto di questo deposito è presente l'argilla subappenninica.

La successione stratigrafica lungo lo sviluppo dell'opera è rappresentata nel profilo stratigrafico longitudinale.

Il livello massimo di falda si trova a circa 3 m dal piano campagna.

Parametri	Unità 1c	Unità 2
γ (kN/m³)	18-19	19-20
φ (°)	29-31	21-23
c' (kPa)	12-17	29-31
c _u (kPa)	-	200-250
v _s (m/s)	200-250	250-350
E ₀ (MPa)	300-400	400-800
k (m/s)	1.0 X10 ⁻⁴ -1.5 X10 ⁻⁴	9.0 X 10 ⁻⁹ - 5.0 X 10 ⁻⁷

Di seguito sono trattati gli aspetti di natura geotecnica riguardanti l'interazione terreno-struttura relativamente all'opera in esame.

Per la determinazione della costante di sottofondo si può fare riferimento alle seguenti formulazioni assimilando il comportamento del terreno a quello di un mezzo elastico omogeneo (formula di Vesic)

$$k = \frac{0.65 \, E}{1 - v^2} * \sqrt[12]{\frac{Eb^4}{(E_c I)_{fond}}}$$

dove:

h = altezza della trave;

- b = dimensione trasversale della trave;

J = inierzia della trave;

- $E_c = modulo di elasticità del calcestruzzo$

- v = coefficiente di Poisson del terreno;

- E = modulo elastico medio del terreno sottostante.

$$E = \begin{bmatrix} 300000 & kN/m^2 \\ n = & 0.3 \end{bmatrix}$$

$$B = \begin{bmatrix} 2.6 & m \\ L = & 15.00 & m \end{bmatrix}$$

$$L/B = 5.77$$

$$c_t = 1.79$$

$$K_w = 70881 & kN/m^3$$

Cautelativamente si limita, ai fini del calcolo, il valore della costante di sottofondo a circa 70000 kN/m³.

S ITALFERR	Nuova linea Ferrandina - Matera La Martella per il collegamento o Matera con la rete ferroviaria nazionale NUOVA LINEA FERRANDINA – MATERA LA MARTELLA				
Relazione di calcolo	PROGETTO IA5F	LOTTO 01	CODIFICA DOCUMENTO D 78 CL IN1800 001	REV.	FOGLIO 13 DI 77

5 CARATTERIZZAZIONE SISMICA

Nel seguente paragrafo è riportata la valutazione dei parametri di pericolosità sismica utili alla determinazione delle azioni sismiche di progetto dell'opera cui si riferisce il presente documento, in accordo a quanto specificato a riguardo dal D.M. 17 gennaio 2018 e relativa circolare applicativa.

5.1 Vita nominale e classe d'uso

Per la valutazione dei parametri di pericolosità sismica è necessario definire, oltre alla localizzazione geografica del sito, la Vita nominale dell'opera strutturale (V_N) , intesa come il numero di anni nel quale la struttura, purché soggetta alla manutenzione ordinaria, deve potere essere usata per lo scopo al quale è destinata, e la Classe d'Uso a cui è associato un coefficiente d'uso (C_U)

Per l'opera in oggetto si considera una vita nominale: $V_N = 75$ anni (categoria 2: "Altre opere nuove a velocità V < 250 Km/h"). Riguardo invece la Classe d'Uso, all' opera in oggetto corrisponde una Classe II a cui è associato un coefficiente d'uso pari a (NTC – Tabella 2.4.II): $C_u = 1$.

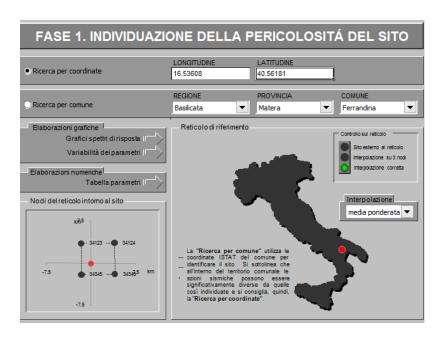
I parametri di pericolosità sismica vengono quindi valutati in relazione ad un periodo di riferimento V_R che si ricava per ciascun tipo di costruzione, moltiplicando la vita nominale V_N per il coefficiente d'uso C_U , ovvero:

$$V_R = V_N \cdot C_U$$

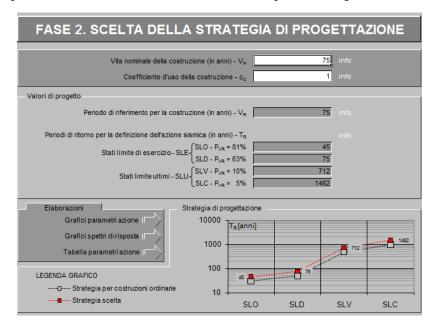
Pertanto, per l'opera in oggetto, il periodo di riferimento è pari a $V_R = 75x1 = 75$ anni

Il calcolo viene eseguito con il metodo pseudostatico. In queste condizioni l'azione sismica è rappresentata da una forza statica equivalente pari al prodotto delle forze di gravità per un opportuno coefficiente sismico.

5.2 Parametri di pericolosità sismica

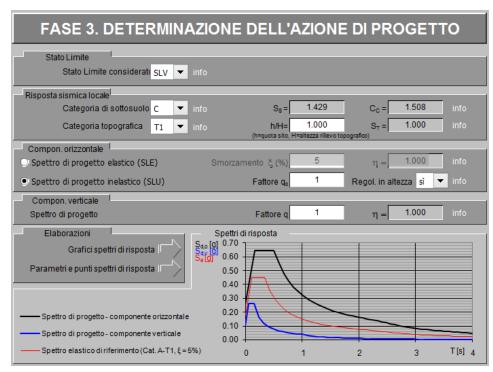

La valutazione dei parametri di pericolosità sismica, che ai sensi del D.M. 17-01-2018, costituiscono il dato base per la determinazione delle azioni sismiche di progetto su una costruzione (forme spettrali e/o forze inerziali) dipendono, come già in parte anticipato in precedenza, dalla localizzazione geografica del sito, dalle caratteristiche della costruzione (Periodo di riferimento per valutazione azione sismica / V_R) oltre che dallo Stato Limite di riferimento/Periodo di ritorno dell'azione sismica.

- Categoria sottosuolo C


In accordo a quanto riportato in Allegato A delle Norme Tecniche per le costruzioni DM 17.01.18, si ottiene per il sito in esame:

II ITALFERR	Nuova linea Ferrandina - Matera La Martella per il collegamento di Matera con la rete ferroviaria nazionale NUOVA LINEA FERRANDINA – MATERA LA MARTELLA				
Relazione di calcolo	PROGETTO IA5F	LOTTO 01	CODIFICA DOCUMENTO D 78 CL IN1800 001	REV.	FOGLIO 14 DI 77

La pericolosità sismica di base è stata definita sulla base delle coordinate geografiche del sito di realizzazione dell'opera:


I parametri utilizzati per la definizione dell'azione sismica sono riportati di seguito.

L'azione sismica è stata calcolata per mezzo del foglio di calcolo Spettri-NTCver.1.0.3 messo a disposizione dal Consiglio Superiore dei Lavori Pubblici.

S ITALFERR	Nuova linea Ferrandina - Matera La Martella per il collegamento Matera con la rete ferroviaria nazionale NUOVA LINEA FERRANDINA – MATERA LA MARTELLA				
Relazione di calcolo	PROGETTO IA5F	LOTTO 01	CODIFICA DOCUMENTO D 78 CL IN1800 001	REV.	FOGLIO 15 DI 77

Di seguito si riportano gli spettri di risposta orizzontale e verticale allo Stato limite di salvaguardia della vita SLV utilizzati per il calcolo dell'azione sismica.

Parametri indipendenti			
STATO LIMITE	SLV		
a.	0.182 g		
Fo	2,489		
T _c *	0.334 s		
S ₌	1.429		
C _c	1.508		
S _T	1.000		
a	1.000		

Parametri dipendenti						
S	1.429					
η	1.000					
	0.168 s					

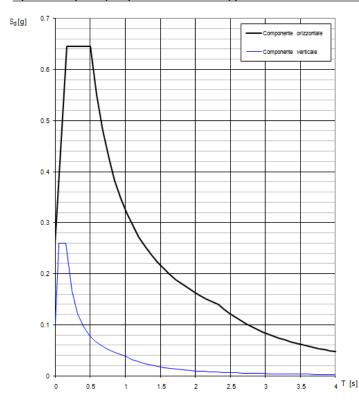
Espressioni dei parametri dipendenti S_S_S_T (NTC-08 Eq. 3.2.5)

$$\begin{split} T_B &= T_C/3 & \text{(NTC-07 Eq. 3.2.8)} \\ T_C &= C_C \cdot T_C^4 & \text{(NTC-07 Eq. 3.2.7)} \\ T_5 &= 4,0 \cdot a_\pm/g + 1,6 & \text{(NTC-07 Eq. 3.2.8)} \end{split}$$

 $\eta = \sqrt{10/(5+\xi)} \ge 0.55$; $\eta = 1/q$ (NTC-08 Eq. 3.2.6; §. 3.2.3.5)

Espressioni dello spettro di risposta (NTC-08 Eq. 3.2.4)

$$\begin{split} 0 \leq T < T_{\text{B}} & \qquad S_{\text{e}}(T) = a_{\text{g}} \cdot S \cdot \eta \cdot F_{\text{e}} \cdot \left[\frac{T}{T_{\text{g}}} + \frac{1}{\eta \cdot F_{\text{e}}} \left(1 - \frac{T}{T_{\text{g}}} \right) \right] \\ T_{\text{g}} \leq T < T_{\text{c}} & \qquad S_{\text{e}}(T) = a_{\text{g}} \cdot S \cdot \eta \cdot F_{\text{e}} \\ T_{\text{c}} \leq T < T_{\text{D}} & \qquad S_{\text{e}}(T) = a_{\text{g}} \cdot S \cdot \eta \cdot F_{\text{e}} \cdot \left(\frac{T_{\text{c}}}{T} \right) \\ T_{\text{D}} \leq T & \qquad S_{\text{e}}(T) = a_{\text{g}} \cdot S \cdot \eta \cdot F_{\text{e}} \cdot \left(\frac{T_{\text{c}}T_{\text{D}}}{T^{2}} \right) \end{split}$$


Punti dello spettro di risposta 0.000 0.168 0.260 0.503 0.646 0.590 0.551 0.677 0.480 0.764 0.426 0.851 0.382 0.938 0.347 1.024 0.317 1.111 0.293 1.198 0.271 1.372 0.237 1.458 1.545 0.210 1.632 1.719 0.199 0.189 1.806 0.180 1.893 0.172 1.979 0.164 0.157 2.066 2.153 2.240 2.327 0.151 0.145 0.140 2.406 0.131 2.486 0.122 2.566 0.115 2.645 0.108 2.725 2.805 0.096 2.884 2.964 0.086 3.044 3.124 0.078 3.203 0.074 3.283 0.070 3.442 0.064 0.061

3.602

3.681 3.761 0.058

0.056

Spettri di risposta (componenti orizz. e vert.) per lo stato li SLV

S ITALFERR	Matera con	la rete fer	ina - Matera La Martella rroviaria nazionale ANDINA – MATERA LA M	•	
Relazione di calcolo	PROGETTO IA5F	LOTTO 01	CODIFICA DOCUMENTO D 78 CL IN1800 001	REV.	FOGLIO 17 DI 77

Il calcolo viene eseguito con il metodo pseudo statico, si eseguirà un calcolo elastico assumendo un fattore di struttura unitario. In queste condizioni l'azione sismica è rappresentata da una forza statica equivalente pari al prodotto delle forze di gravità per un opportuno coefficiente sismico.

S ITALFERR	Nuova linea Ferrandina - Matera La Martella per il collegamento de Matera con la rete ferroviaria nazionale NUOVA LINEA FERRANDINA – MATERA LA MARTELLA				•
Relazione di calcolo	PROGETTO IA5F	LOTTO 01	CODIFICA DOCUMENTO D 78 CL IN1800 001	REV.	FOGLIO 18 DI 77

6 SOFTWARE DI CALCOLO

6.1 Origine e caratteristiche dei codici di calcolo adottati

Per le analisi delle strutture è stato utilizzato il Sap 2000 v.14.1 prodotto, distribuito ed assistito da Computers and Structures, Inc.1995 University Ave. Berkeley. Questa procedura è sviluppata in ambiente Windows, permette l'analisi elastica lineare e non di strutture tridimensionali con nodi a sei gradi di libertà utilizzando un solutore ad elementi finiti. Gli elementi considerati sono frame (trave), con eventuali svincoli interni o rotazione attorno al proprio asse. I carichi sono applicati sia ai nodi, come forze o coppie concentrate, sia sulle travi, come forze distribuite, trapezie, concentrate, come coppie e come distorsioni termiche. A supporto del programma è fornito un ampio manuale d'uso contenente fra l'altro una vasta serie di test di validazione sia su esempi classici di Scienza delle Costruzioni, sia su strutture particolarmente impegnative e reperibili nella bibliografia specializzata.

Tale programma fornisce in output, oltre a tutte le caratteristiche geometriche e di carico delle strutture, i risultati relativi alle sollecitazioni indotte nelle sezioni degli elementi presenti.

6.2 Unità di misura

Le unità di misura adottate sono le seguenti:

- lunghezze: m

- forze: kN

- masse: kN massa

- temperature: gradi centigradi

- angoli: gradi sessadecimali o radianti

- si assume l'uguaglianza 1 kN = 100 kg

6.3 Grado di affidabilità del codice

L'affidabilità del codice di calcolo e' garantita dall'esistenza di un ampia documentazione di supporto. E' possibile inoltre ottenere rappresentazioni grafiche di deformate e sollecitazioni della struttura.

6.4 Valutazione della correttezza del modello

Il modello di calcolo adottato e' da ritenersi appropriato in quanto non sono state riscontrate labilità, le reazioni vincolari equilibrano i carichi applicati, la simmetria di carichi e struttura dà origine a sollecitazioni simmetriche.

I ITALFERR	Nuova linea Ferrandina - Matera La Martella per il collegamento Matera con la rete ferroviaria nazionale NUOVA LINEA FERRANDINA – MATERA LA MARTELLA				·
Relazione di calcolo	PROGETTO IA5F	LOTTO 01	CODIFICA DOCUMENTO D 78 CL IN1800 001	REV.	FOGLIO 19 DI 77

6.5 Caratteristiche dell'elaborazione

Tutte le analisi strutturali sono state eseguite su di una workstation dedicata avente le seguenti caratteristiche tecniche:

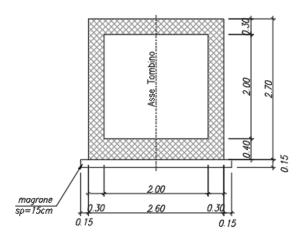
- Tipo Intel i7
- Memoria centrale 8 Gb;
- Lunghezza in bit della parola 64 bit;
- Memoria di massa 1 Hard disk da 500 Gb.

6.6 Giudizio finale sulla accettabilità dei calcoli

Si ritiene che i risultati ottenuti dalla elaborazione siano accettabili e che le ipotesi poste alla base della formulazione del modello matematico siano valide come dimostrato dal comportamento dei materiali.

All'interno del pacchetto Sap 2000 sono inoltre presente una serie di test per il benchmark del solutore, che consentono di comprovare l'affidabilita' del codice di calcolo e paragonare risultati ottenuti con le soluzioni esatte.

6.7 Programmi di servizio


Per le verifiche delle sezioni si adotta il programma: "RC-SEC" – Autore GEOSTRU Software.ANALISI DEI CARICHI E FASI

T ITALFERR	Nuova linea Ferrandina - Matera La Martella per il collegamento Matera con la rete ferroviaria nazionale NUOVA LINEA FERRANDINA – MATERA LA MARTELLA				
Relazione di calcolo	PROGETTO IA5F	LOTTO 01	CODIFICA DOCUMENTO D 78 CL IN1800 001	REV.	FOGLIO 20 DI 77

7 TOMBINO SCATOLARE 2.00X2.00M

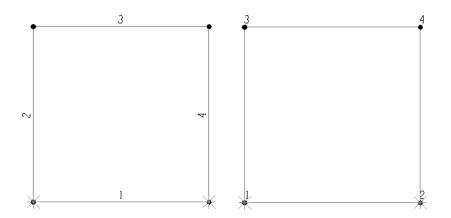
La dimensione interna è di 2.00m e l'altezza interna pari a 2.00m, con soletta superiore di spessore 0.30m, piedritti di spessore 0.30m e soletta inferiore di spessore 0.40m.

Nel seguito verrà esaminata una striscia di scatolare avente lunghezza di 1.00 m. In figura si riporta schematicamente la geometria dell'opera.

7.1 Geometria

DATI GEOMETRICI				
Grandezza	Simbolo	Valore U.M	[.	
larghezza totale scatolare	L_{tot}	2.60 m		
larghezza utile scatolare	L_{int}	2.00 m		
larghezza interasse	L_{a}	2.30 m		
spessore soletta superiore	Ss	0.30 m		
spessore piedritti	S_p	0.30 m		
spessore fondazione	S_{f}	0.40 m		
altezza totale scatolare	H_{tot}	2.70 m		
altezza libera scatolare	\mathbf{H}_{int}	2.00 m		
spessore pacchetto stradale superiore	H_{Psup}	0.15 m		
spessore ricoprimento superiore	H_{Rsup}	0.00 m		
spessore pacchetto stradale inferiore	H_{Pinf}	0.00 m		
spessore ricoprimento inferiore	H_{Rinf}	0.00 m		

S ITALFERR	Matera con	la rete fer	ina - Matera La Martella roviaria nazionale ANDINA – MATERA LA N	•	
Relazione di calcolo	PROGETTO IA5F	LOTTO 01	CODIFICA DOCUMENTO D 78 CL IN1800 001	REV.	FOGLIO 21 DI 77


7.2 Modello di calcolo

Il modello di calcolo attraverso il quale è schematizzata la struttura è quello del telaio chiuso su letto di molle alla Winkler.

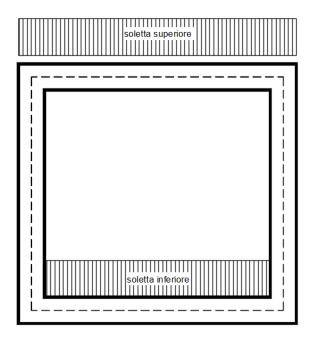
Il modello considerato per l'analisi è quello di uno scatolare di profondità unitaria (1.00m) soggetto alle azioni da traffico di norma e quelle permanenti. In corrispondenza dei vertici dello scatolare sono state inserite delle zone rigide pari a metà spessore degli elementi.

Il terreno di fondazione è stato modellato utilizzando la schematizzazione alla Winkler con un opportuno coefficiente di sottofondo.

Di seguito si riporta lo schema di calcolo.

Numerazione aste e nodi

7.2.1 Valutazione della rigidezza delle molle

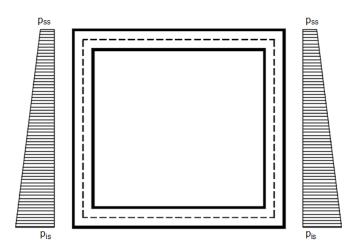

Si considera lo scatolare appoggiato su di un letto di molle (schematizzazione alla Winkler) assegnando alle aste di fondazione del modello un valore di "linear spring" pari a K= 70000 kN/mc.

7.3 Analisi dei carichi

S ITALFERR	Matera con	la rete fer	ina - Matera La Martella rroviaria nazionale ANDINA – MATERA LA M	•	
Relazione di calcolo	PROGETTO IA5F	LOTTO 01	CODIFICA DOCUMENTO D 78 CL IN1800 001	REV.	FOGLIO 22 DI 77

7.3.1 Peso proprio della struttura e carichi permanenti portati

Soletta superiore	- Peso proprio	7.50 kN/m
	- Totale	7.50 kN/m
	- Peso pacchetto pavimentazione 15 cm	3.00 kN/m
	- Peso terreno ricoprimento	0.00 kN/m
	- Totale	3.00 kN/m
Soletta inferiore	- Peso proprio	10.00 kN/m
	- Totale	10.00 kN/m
	Paca pacabetta parimentazione 0 cm	0.00 1-N/m
	- Peso pacchetto pavimentazione 0 cm	0.00 kN/m
	- Peso terreno ricoprimento	0.00 kN/m
	- Peso terreno ricoprimento	0.00 kN/m
<u>Piedritti</u>	- Peso terreno ricoprimento	0.00 kN/m

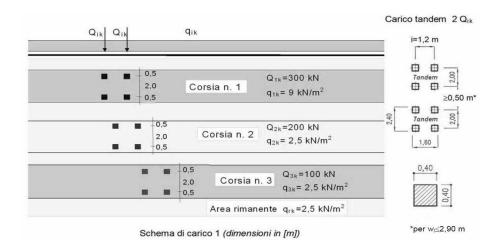

Per tenere in conto dei carichi agenti sul semispessore degli elementi considerati nel modello di calcolo, si applicano delle forze concentrate nei nodi tra soletta superiore e piedritti con valore pari a 0.45 kN.

II ITALFERR	Nuova linea Ferrandina - Matera La Martella per il collegamento d Matera con la rete ferroviaria nazionale NUOVA LINEA FERRANDINA – MATERA LA MARTELLA				•
Relazione di calcolo	PROGETTO IA5F	LOTTO 01	CODIFICA DOCUMENTO D 78 CL IN1800 001	REV.	FOGLIO 23 DI 77

7.3.2 Spinta sulle pareti dovuta al terreno ed al sovraccarico permanente

Per il rinterro si prevede un terreno avente angolo di attrito $\varphi = 35^{\circ}$ ed un peso di volume $\gamma = 20 \text{ kN/m}^3$, il coefficiente di spinta viene calcolato, considerando l'elevata rigidezza dello scatolare, utilizzando la formula Ko=1-sin φ ', per cui si ottiene un valore di Ko=0.43. Le spinte in asse soletta superiore ed asse soletta inferiore valgono:

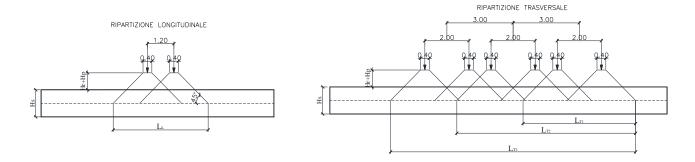
$$p_{ss}$$
 = $K_o * (H_r + H_p + S_s/2) * \gamma$ = 2.6 kN/m
 p_{is} = $p_{ss} + K_o * \gamma * (S_s/2 + H_{int} + S_r/2)$ = 22.6 kN/m



Per tenere in conto dei carichi agenti sul semispessore degli elementi considerati nel modello di calcolo, si applicano delle forze concentrate nei nodi tra piedritto e soletta superiore con valore pari a 0.29 kN ed inferiore con valore pari a 4.69 kN.

7.4 Ripartizione dei carichi mobili verticali

Le azioni variabili del traffico definite nello Schema di Carico 1 sono costituite da carichi concentrati e da carichi uniformemente distribuiti. Tale schema è da assumere a riferimento sia per le verifiche globali, sia per le verifiche locali.



Il numero delle colonne di carichi mobili e la loro disposizione sono quelli massimi compatibili con la larghezza della carreggiata considerata, per i ponti di 1a Categoria.

Posizione	Carico asse Q _{ik} [kN]	q _{ik} [kN/m²]
Corsia Numero 1	300	9
Corsia Numero 2	200	2,5
Corsia Numero 3	100	2,5
Altre corsie	0,00	2,50

La ripartizione dei carichi si effettua considerando il carico isolato da 150 kN con impronta quadrata di lato 0.4 m.

Il carico è schematizzato da due assi da 150 kN disposti ad interasse di 1.20m.

Si procede al calcolo dei carichi per metro lineare riferiti al baricentro della soletta per i diversi treni di carico.

Si considera una larghezza di ripartizione trasversale massima pari alla larghezza della corsia di carico di 3.00 m pertanto:

I ITALFERR	Nuova linea Ferrandina - Matera La Martella per il collegamento de Matera con la rete ferroviaria nazionale NUOVA LINEA FERRANDINA – MATERA LA MARTELLA
5	PROGETTO LOTTO CODIFICA DOCUMENTO REV. FOGLIO
Relazione di calcolo	IA5F 01 D 78 CL IN1800 001 A 25 DI 77

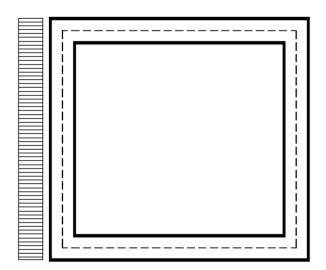
$$q_{1k} = \frac{600}{L_L x L_{T1}}$$

$$L_L = 2.07 \text{ m} \qquad q_{2k} = 9.0 \text{ kN/m}^2$$

$$L_{T1} = 2.87 \text{ m} \qquad q_{1k} = 100.7 \text{ kN/m}^2$$

$$L_{T2} = 5.87 \text{ m} \qquad q_{1k} = 82.1 \text{ kN/m}^2$$

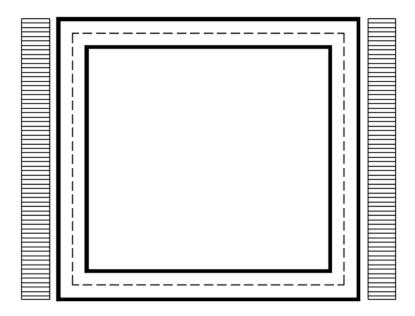
$$L_{T3} = 8.87 \text{ m} \qquad q_{1k} = 65.2 \text{ kN/m}^2$$


Per tenere in conto le carichi agenti sul semispessore degli elementi considerati nel modello di calcolo, si applicano delle forze concentrate nei nodi tra soletta superiore e piedritti con valore pari a 15.11 kN per i carichi concentrati e valore pari a 1.35 kN per il carico distribuito.

Il calcolo dello scatolare viene eseguito per una striscia trasversale di 1.00m.

7.5 Spinta del sovraccarico sul rilevato q₁=20 kN/m

$$q_1$$
= 20.00 kN/m²
 $p_1(str)$ = q_1*K_0 = 8.53 kN/m²


a) Spinta sul piedritto sinistro

S ITALFERR	Matera con	la rete fer	ina - Matera La Martella roviaria nazionale ANDINA – MATERA LA M	•	Ĭ
Relazione di calcolo	PROGETTO IA5F	LOTTO 01	CODIFICA DOCUMENTO D 78 CL IN1800 001	REV.	FOGLIO 26 DI 77

Per tenere in conto dei carichi agenti sul semispessore degli elementi considerati nel modello di calcolo, si applicano delle forze concentrate nei nodi tra piedritto sinistro e soletta superiore con valore pari a 1.28 kN ed inferiore con valore pari a 1.71 kN.

b) Spinta su entrambi i piedritti

Per tenere in conto dei carichi agenti sul semispessore degli elementi considerati nel modello di calcolo, si applicano delle forze concentrate nei nodi tra piedritti e soletta superiore con valore pari a 1.28 kN ed inferiore con valore pari a 1.71 kN.

7.5.1 Frenatura

$$Q_3 = 0.6*(2Qk1)+0.1*q_{1k}*w_1*L = 367 kN$$

S ITALFERR	Matera con	la rete fer	ina - Matera La Martella roviaria nazionale ANDINA – MATERA LA N		•
Relazione di calcolo	PROGETTO IA5F	LOTTO 01	CODIFICA DOCUMENTO D 78 CL IN1800 001	REV.	FOGLIO 27 DI 77

7.5.2 Ritiro differenziale della soletta di copertura

Si considera uan variazione termica uniforme equivalente sulla soletta superiore come da calcolo seguente. Il calcolo viene condotto secondo le indicazioni dell'EUROCODICE 2-UNI EN1992-1-1 Novembre 2005 e DM 14-01-2008

Modulo elastico secante medio

Cls a t=0				
R_{ck}	=	37	N/mm ²	Resistenza a compressione cubica caratteristica
\mathbf{f}_{ck}	=	30.71	N/mm ²	Resistenza a compressione cilindrica caratteristica
\mathbf{f}_{cm}	=	38.71	N/mm^2	Resistenza a compressione cilindrica media
α	=	1.0E-05		

Tempo e ambiente

 E_{cm}

 $= 33019 \text{ N/mm}^2$

ts	=	2	gg	età del calcestruzzo in giorni, all'inizio del ritiro per essiccamento
\mathbf{t}_0	=	2	gg	età del calcestruzzo in giorni al momento del carico
t	=	25550	gg	età del calcestruzzo in giorni
$h_0 \text{=} 2A_c/u$	=	600	mm	dimensione fittizia dell'elemento di cls
Ac	=	300000	mm ²	sezione dell'elemento
u	=	1000	mm	perimetro a contatto con l'atmosfera
RH	=	75	%	umidità relativa percentuale

Coefficiente di viscosità φ (t,t0) e modulo elastico ECt a tempo "t"

$$\phi(t,t_0) = \varphi_0 \beta_c(t,t_0) = 1.982$$

$$\phi_0 = \phi RH \beta_c(f_{cm}) \beta_c(t_0) = 131.52 \text{ coeff nominale di viscosità}$$

$$\varphi_{RH} = 1 + \left[\frac{1 - RH/100}{0.1 \sqrt[5]{h_0}} \alpha_1 \right] \alpha_2 = 1.271 \text{ coeff che tiene conto dell'umidità}$$

$$\alpha_1 = \begin{cases} (35/f_{cm})^{0.7} & \text{per } f_{cm} > 35MPa \\ 1 & \text{per } f_{cm} \leq 35MPa \end{cases} = 0.932 \text{ coeff per la resistenza del cls}$$

$$\alpha_2 = \begin{cases} (35/f_{cm})^{0.2} & \text{per } f_{cm} > 35MPa \\ 1 & \text{per } f_{cm} \leq 35MPa \end{cases} = 0.980 \text{ coeff per la resistenza del cls}$$

Nuova linea Ferrandina - Matera La Martella per il collegamento di Matera con la rete ferroviaria nazionale

NUOVA LINEA FERRANDINA – MATERA LA MARTELLA

Rel	azio	ne	di	cal	CO	l۸
1/6	αΔιν	ЛIC	uı	Cal	CU	ıv

SETTO LOTTO CODIFICATION SET 01 D 78

CODIFICA DOCUMENTO D 78 CL IN1800 001 V. FOGLIO

28 DI **77**

$$\beta_C(f_{cm}) = \frac{16.8}{\sqrt{f_{cm}}} =$$

$$\beta_c(t_0) = \frac{1}{(0.1 + t_0^{0.20})} =$$

$$t_o = t_0 \left(\frac{9}{2 + t_0^{1.2}} + 1 \right)^{\alpha} \ge 0.5 =$$

α =

$$\beta_c(t,t_0) = \left[\frac{(t-t_0)}{(\beta_{\mu}+t-t_0)}\right]^{0.3} =$$

$$\beta_H = 1.5[1 + (0.012 RH)^{18}] h_0 + 250\alpha_3 \le 1500\alpha_3 =$$

$$\alpha_3 = \begin{cases} (35/f_{cm})^{0.5} & per \ f_{cm} > 35MPa \\ 1 & per \ f_{cm} \leq 35MPa \end{cases} =$$

2.700 coeff che tiene conto della resistenza del cls

0.649 coeff. per l'evoluzione della viscosità nel tempo

6.19 coeff. per la variabilità della viscosità nel tempo

coeff per il tipo di cemento (-1 per classe S, 0 per classe N, 1 per classe R)

0.984 coeff per la variabilità della viscosità nel tempo

1382.5 coeff che tiene conto dell'umidità

0.951 coeff per la resistenza del calcestruzzo

Il modulo elastico a tempo "t" è pari a:

$$E_{cm}(t,t_0)=\frac{E_{cm}}{1+\varphi(t,t_0)}=$$

11072916 kN/m²

Deformazioni di ritiro

$$\varepsilon_s(t,t_0) = \varepsilon_{cd}(t) + \varepsilon_{ca}(t) =$$

0.000345 deformazione di ritiro ε (t,t₀)

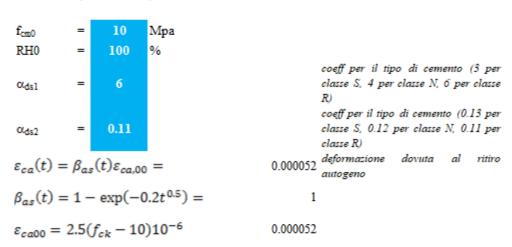
$$\varepsilon_{cd}(t) = \beta_{ds}(t, t_s) K_b \varepsilon_{cd,0} =$$

0.000293 deformazione al ritiro per essiccamento

$$\beta_{ds}(t, t_s) = \left[\frac{(t - t_s)}{(t - t_s) + 0.04 \sqrt{h_0^3}} \right] = 0.977507$$

K_h =

0.7 parametro che dipende da h_{θ} secondo il prospetto seguente


Valori di k

ħ _o	*
100	1,0
200	0,85
300	0,75
≥500	0.70

S ITALFERR	Matera con	la rete fer	ina - Matera La Martella rroviaria nazionale ANDINA – MATERA LA N	•	
Balantana di salasta	PROGETTO	LOTTO	CODIFICA DOCUMENTO	REV.	FOGLIO
Relazione di calcolo	IA5F	01	D 78 CL IN1800 001	Α	29 DI 77

Valori di Kh intermedi a quelli del prospetto vengono calcolati tramite interpolazione lineare

$$\varepsilon_{cd,0} = 0.85 \left[(200 + 100 \alpha_{ds1}) \exp(-\alpha_{ds2} \frac{f_{cm}}{f_{cm0}}) \right] 10^{-6} \beta_{RH} = 0.000428$$

 $\beta_{RH} = 1.55 \left[1 - \left(\frac{RH}{RHO} \right)^3 \right] = 0.896094$

Variazione termica uniforme equivalente agli effetti del ritiro:

$$\Delta T_{\text{ritiro}} = -\frac{\varepsilon_s(t, t_0) E_{\text{cm}}}{(1 + \phi(t, t_0)) E_{\text{cm}} \alpha} = -11.55 \text{ °C}$$

I fenomeni di ritiro vengono considerati agenti solo sulla soletta di copertura

7.6 Azione sismica inerziale

Per il calcolo dell'azione sismica si utilizza il metodo dell'analisi pseudostatica in cui l'azione sismica è rappresentata da una forza statica equivalente pari al prodotto delle forze di gravità per un opportuno coefficiente sismico k. Le forze sismiche sono pertanto le seguenti:

Forza sismica orizzontale $F_h = k_h^* W$

Forza sismica verticale $F_v = k_v * W$

I valori dei coefficienti sismici orizzontale k_h e verticale k_v possono essere valutati mediante le espressioni: k_h = a_{max}/g

$$k_v = \pm 0.5 * k_h$$

Con riferimento alla nuova classificazione sismica del territorio nazionale ai fini del calcolo dell'azione sismica secondo il DM 17/01/2018 viene assegnata all'opera una vita nominale $V_N \ge 75$ anni ed una II classe d'uso $C_u = 1.0$; segue un periodo di riferimento $V_R = V_N * C_u = 75$ anni.

S ITALFERR	Matera con	la rete fer	ina - Matera La Martella roviaria nazionale ANDINA – MATERA LA M		·
Relazione di calcolo	PROGETTO IA5F	LOTTO 01	CODIFICA DOCUMENTO D 78 CL IN1800 001	REV.	FOGLIO 30 DI 77

A seguito di tale assunzione si ottiene allo stato limite ultimo SLV in funzione della Latitudine e Longitudine del sito in esame un valore dell'accelerazione pari a a_g = 0.182 g.

In assenza di analisi specifiche della risposta sismica locale l'accelerazione massima può essere valutata con la relazione:

$$a_{max} = S * a = S_s * S_t * a_g$$

dove assumendo un terreno di tipo C ed in base al fattore di amplificazione del sito F₀ si ottiene:

S_s= 1.429 Coefficiente di amplificazione stratigrafica

 $S_T=1$ Coefficiente di amplificazione topografica

ne deriva che:

$$a_{max}$$
= 1.429 * 1 * 0.182 g = 0.260 g

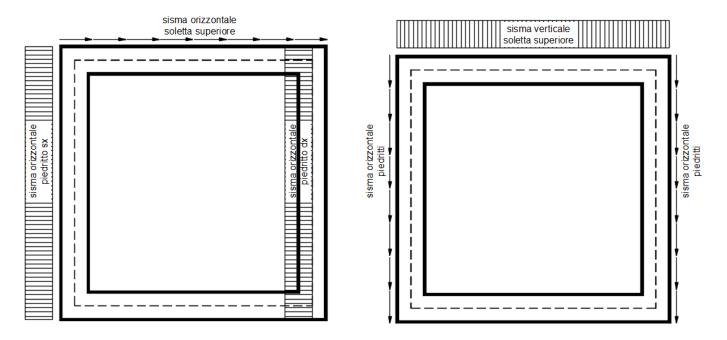
$$k_h = a_{max}/g = 0.260$$

$$k_v = \pm 0.5 * k_h = 0.130$$

Sisma orizzontale

$$F_{sis} = a_{max} * \gamma * H_{tot}$$
 14.04 kN/m (carico applicato sulla parete)
$$F_{inp} = \alpha * S_p * \gamma * 1m$$
 = 1.95 kN/m (inerzia piedritti)
$$Totale = 1.95 \text{ kN/m}$$
 (piederitto sx)
$$Totale = 1.95 \text{ kN/m}$$
 (piederitto dx)
$$F_{inr} = \alpha * (H_p + H_r) * \gamma_r * 1m = 0.78 \text{ kN/m}$$
 (inerzia pavimentazione e riempimento)
$$F_{ins} = \alpha * S_s * \gamma_{cls} * 1m = 1.56 \text{ kN/m}$$
 (inerzia soletta superiore)
$$Totale = 2.34 \text{ kN/m}$$
 (soletta superiore)

Per tenere in conto dei carichi agenti sul semispessore degli elementi considerati nel modello di calcolo, si applicano delle forze concentrate nei nodi tra piedritto sinistro e soletta superiore con valore pari a 2.40 kN ed inferiore con valore pari a 3.20 kN. Si applicano delle forze concentrate nei nodi tra piedritto destro e soletta superiore con valore pari a 0.29 kN ed inferiore con valore pari a 0.39 kN.


S ITALFERR	Matera con	la rete fer	ina - Matera La Martella roviaria nazionale ANDINA – MATERA LA N	•	·
Relazione di calcolo	PROGETTO IA5F	LOTTO 01	CODIFICA DOCUMENTO D 78 CL IN1800 001	REV.	FOGLIO 31 DI 77

Sisma verticale

$$\begin{split} F_{inp} = & \ 0.5 * \alpha * S_p * \gamma * 1m & = \ 0.98 & kN/m & \text{(inerzia piedritti)} \\ F_{inr} = & \ 0.5 * \alpha * (H_p + H_r) * \gamma_r * 1m & = \ 0.39 & kN/m & \text{(inerzia pavimentazione e riempimento)} \\ F_{ins} = & \ 0.5 * \alpha * S_s * \gamma_{cls} * 1m & = \ 0.78 & kN/m & \text{(inerzia soletta superiore)} \\ & & \quad \text{Totale} & = \ 1.17 & kN/m & \text{(soletta superiore)} \end{split}$$

Per tenere in conto le carichi agenti sul semispessore degli elementi considerati nel modello di calcolo, si applicano delle forze concentrate nei nodi tra soletta superiore e piedritti con valore pari a 0.18 kN.

Gli effetti dell'azione sismica saranno valutati tenendo conto delle masse associate ai seguenti carichi gravitazionali: $G_1 + G_2 + \psi_{2j} \, Q_{kj}$

Per tenere in conto dei carichi agenti sul semispessore degli elementi considerati nel modello di calcolo, si applicano delle forze concentrate nei nodi tra piedritto e soletta superiore con valore pari a 1.28 kN ed inferiore con valore pari a 1.71 kN.

7.7 Spinta sismica terreno

Le spinte delle terre potranno essere determinate secondo la teoria di Wood. secondo la quale la risultante dell'incremento di spinta per effetto del sisma su una parete di altezza H viene determinato con la seguente espressione:

I ITALFERR	Matera con	la rete fer	ina - Matera La Martella roviaria nazionale ANDINA – MATERA LA M		·
Relazione di calcolo	PROGETTO IA5F	LOTTO 01	CODIFICA DOCUMENTO D 78 CL IN1800 001	REV.	FOGLIO 32 DI 77

$$\Delta S_E = (a_{max}/g) * \gamma * H_{tot}{}^2 = 38 \ kN/m$$

 $Tale\ risultante\ applicata\ ad\ un'altezza\ pari\ ad\ H_{tot}/2.sar\`a\ considerata\ agente\ su\ uno\ solo\ dei\ piedritti\ dell'opera.$

S ITALFERR	Matera con	la rete fer	ina - Matera La Martella roviaria nazionale ANDINA – MATERA LA M	•	·
Relazione di calcolo	PROGETTO IA5F	LOTTO 01	CODIFICA DOCUMENTO D 78 CL IN1800 001	REV.	FOGLIO 33 DI 77

8 COMBINAZIONI DI CARICO

Ai fini delle verifiche degli stati limite si è fatto riferimento alle seguenti combinazioni delle azioni.

Combinazione fondamentale, generalmente impiegata per gli stati limite ultimi (SLU):

$$\gamma_{G1} \cdot G_1 + \gamma_{G2} \cdot G_2 + \gamma_{P} \cdot P + \gamma_{O1} \cdot Q_{k1} + \gamma_{O2} \cdot \psi_{02} \cdot Q_{k2} + \gamma_{O3} \cdot \psi_{03} \cdot Q_{k3} + \dots$$

Combinazione caratteristica (rara), generalmente impiegata per gli stati limite di esercizio (SLE) irreversibili:

$$G_1 + G_2 + P + Q_{k1} + \psi_{02} \cdot Q_{k2} + \psi_{03} \cdot Q_{k3} + \dots$$

Combinazione frequente, generalmente impiegata per gli stati limite di esercizio (SLE) reversibili, utilizzata nella verifica a Fessurazione:

$$G_1 + G_2 + P + \psi_{11} \cdot Q_{k1} + \psi_{22} \cdot Q_{k2} + \psi_{23} \cdot Q_{k3} + \dots$$

Combinazione quasi permanente, generalmente impiegata per gli stati limite di esercizio (SLE) a lungo termine;

$$G_1 + G_2 + P + \psi_{21} \cdot Q_{k1} + \psi_{22} \cdot Q_{k2} + \psi_{23} \cdot Q_{k3} + \dots$$

Combinazione sismica, impiegata per gli stati limite ultimi e di esercizio connessi all'azione sismica E:

$$E + G_1 + G_2 + P + \psi_{21} \cdot Q_{k1} + \psi_{22} \cdot Q_{k2} + \dots$$

dove:

$$E=\pm~1.00~x~E_Y\pm~0.3~x~E_Z$$

avendo indicato con E_Y e E_Z rispettivamente le componenti orizzontale e verticale dell'azione sismica.

I coefficienti di amplificazione dei carichi γ e i coefficienti di combinazione ψ sono riportati nelle tabelle seguenti.

In particolare nel calcolo della struttura si è fatto riferimento alla combinazione A1 STR (Approccio 1 – Combinazione 1) per le verifiche strutturali ed A1 GEO (Approccio 1 – Combinazione 2) per le verifiche geotecniche.

8.1 Condizioni di carico:

Le condizioni di carico elementari sono le seguenti

- 1 Peso proprio elementi strutturali e non strutturali (g1)
- 2 Carichi permanenti portati (g₂)
- 3 Spinta delle terre calcolata con i coefficienti A1+M1 (g_{3 str})
- 4 Ritiro e viscosità (ε_2)
- 5 Variazioni termiche (ε₃)
- 6 Gruppo di carico con valore caratteristico del carico $\underline{\text{tandem per } M_{\text{max}}}$ (GR-T)
- 7 Gruppo di carico con valore caratteristico del carico uniforme (GR-U)
- 8 Gruppo di carico con valore caratteristico del carico tandem per T_{max} (GR-T)
- 10 Gruppo di carico 2a con frenatura (GR-Fr)
- 11 Spinta dovuta al sovraccarico accidentale 20kN/m su parete sx calcolato con i coefficienti A1+M1 (q9str)
- 12 Spinta dovuta al sovraccarico accidentale 20kN/m su parete sx calcolato con i coefficienti A2+M2 (q9geo)
- 13 Spinta delle terre calcolata con i coefficienti A2+M2 (g_{3geo})
- 14 Sisma orizzontale (q_{6x})
- 15 Sisma verticale (q_{6z})

L'opera principale è trattata con le combinazioni tipiche dei ponti ai sensi del DM 17/01/2018 e s.m.i.

Nella fase sismica si considerano agenti i carichi da traffico con un coefficiente ψ_{2j} pari a 0.2

II ITALFERR	Nuova linea Ferrandina - Matera La Martella per il collegamento di Matera con la rete ferroviaria nazionale NUOVA LINEA FERRANDINA – MATERA LA MARTELLA				
Relazione di calcolo	PROGETTO IA5F	LOTTO 01	CODIFICA DOCUMENTO D 78 CL IN1800 001	REV.	FOGLIO 35 DI 77

Tabella 5.1.IV - Valori caratteristici delle azioni dovute al traffico

		Carichi su marciapiedi e piste ciclabili				
Gruppo di azioni	Carichi verticali			Carichi orizz	Carichi verticali	
	Modello principale (Schemi di carico 1, 2, 3, 4, 6)	Veicoli speciali	Folla (Schema di carico 5)	Frenatura q₃	Forza centrifuga q ₄	Carico uniformemente distribuito
1	Valore caratteristico					Schema di carico 5 con valore di combinazione 2,5 kN/m²
2 a	Valore frequente			Valore caratteristico		
2 b	Valore frequente				Valore caratteristico	
3 (*)						Schema di carico 5 con valore caratteristico 5,0 kN/m ²
4 (**)			Schema di carico 5 con valore caratteristico 5,0 kN/m ²			Schema di carico 5 con valore caratteristico 5,0 kN/m ²
5 (***)	Da definirsi per il singolo progetto	Valore caratteristico o nominale				

(***) Da considerare solo se si considerano veicoli speciali

La Tab. 5.1.V fornisce i valori dei coefficienti parziali delle azioni da assumere nell'analisi per la determinazione degli effetti delle azioni nelle verifiche agli stati limite ultimi, il significato dei simboli è il seguente:

 $\gamma_{\rm GI}$ coefficiente parziale del peso proprio della struttura, del terreno e dell'acqua, quando pertinente;

 $\gamma_{\rm G2}$ coefficiente parziale dei pesi propri degli elementi non strutturali;

 $\gamma_{\rm Q}$ coefficiente parziale delle azioni variabili da traffico;

 γ_{Qi} coefficiente parziale delle azioni variabili.

I valori dei coefficienti ψ_{0j} , ψ_{1j} e ψ_{2j} per le diverse categorie di azioni sono riportati nella Tab. 5.1.VI.

Tabella 5.1.V – Coefficienti parziali di sicurezza per le combinazioni di carico agli SLU

eeggeeen par saar ar seen essa per te comernas sem ar carree agr. sse					
		Coefficiente	EQU ⁽¹⁾	A1 STR	A2 GEO
Carichi permanenti	favorevoli sfavorevoli	γ _{G1}	0,90 1,10	1,00 1,35	1,00 1,00
Carichi permanenti non strutturali ⁽²⁾	favorevoli sfavorevoli	γ _{G2}	0,00 1,50	0,00 1,50	0,00 1,30
Carichi variabili da traffico	favorevoli sfavorevoli	γQ	0,00 1,35	0,00 1,35	0,00 1,15
Carichi variabili	favorevoli sfavorevoli	γQi	0,00 1,50	0,00 1,50	0,00 1,30
Distorsioni e presollecitazioni di progetto	favorevoli sfavorevoli	γ ε1	0,90 1,00 ⁽³⁾	1,00 1,00 ⁽⁴⁾	1,00 1,00
Ritiro e viscosità, Variazioni termiche, Cedimenti vincolari	favorevoli sfavorevoli	$\gamma_{\epsilon 2}, \gamma_{\epsilon 3}, \gamma_{\epsilon 4}$	0,00 1,20	0,00 1,20	0,00 1,00

⁽¹⁾ Equilibrio che non coinvolga i parametri di deformabilità e resistenza del terreno; altrimenti si applicano i

 $\textbf{Tabella 5.1.VI} \textbf{-} \textit{Coefficienti} \hspace{0.1cm} \psi \hspace{0.1cm} \textit{per le} \hspace{0.1cm} \textit{azioni variabili per ponti stradali e pedonali}$

Azioni	Gruppo di azioni (Tabella 5.1.IV)	Coefficiente Ψ ₀ di combinazione	Coefficiente ψ_1 (valori frequenti)	Coefficiente ψ ₂ (valori quasi permanenti)
	Schema 1 (Carichi tandem)	0,75	0,75	0,0
	Schemi 1, 5 e 6 (Carichi distribuiti	0,40	0,40	0,0
Azioni da traffico (Tabella 5.1.IV)	Schemi 3 e 4 (carichi concentrati)	0,40	0,40	0,0
	Schema 2	0,0	0,75	0,0
	2	0,0	0,0	0,0
	3	0,0	0,0	0,0
	4 (folla)		0,75	0,0
	5	0,0	0,0	0,0
Vento q₅	Vento a ponte scarico SLU e SLE Esecuzione	0,6 0,8	0,2	0,0 0,0
	Vento a ponte carico	0,6		
Neve q₅	SLU e SLE	0,0	0,0	0,0
	esecuzione	0,8	0,6	0,5
Temperatura	T_k	0,6	0,6	0,5

⁽²⁾ Nel caso in cui i carichi permanenti non strutturali (ad es. carichi permanenti portati) siano compiutamente definiti si potranno adottare gli stessi coefficienti validi per le azioni permanenti.

^{(3) 1,30} per instabilità in strutture con precompressione esterna

^{(4) 1,20} per effetti locali

S ITALFERR	Nuova linea Ferrandina - Matera La Martella per il collegament Matera con la rete ferroviaria nazionale NUOVA LINEA FERRANDINA – MATERA LA MARTELLA					
Relazione di calcolo	PROGETTO IA5F	LOTTO 01	CODIFICA DOCUMENTO D 78 CL IN1800 001	REV.	FOGLIO 37 DI 77	

Tabella 6.2.II – Coefficienti parziali per i parametri geotecnici del terreno

PARAMETRO	GRANDEZZA ALLA QUALE	COEFFICIENTE	(M1)	(M2)
	APPLICARE IL	PARZIALE		
	COEFFICIENTE PARZIALE	$\gamma_{ m M}$		
Tangente dell'angolo di resistenza al taglio	tan φ′ _k	$\gamma_{\phi'}$	1,0	1,25
Coesione efficace	c′ _k	$\gamma_{e'}$	1,0	1,25
Resistenza non drenata	C _{uk}	Yeu	1,0	1,4
Peso dell'unità di volume	γ	γ_{γ}	1,0	1,0

I ITALFERR	Matera con l	Nuova linea Ferrandina - Matera La Martella per il collegame Matera con la rete ferroviaria nazionale NUOVA LINEA FERRANDINA – MATERA LA MARTELLA					
	PROGETTO	LOTTO	CODIFICA DOCUMENTO	REV.	FOGLIO		
Relazione di calcolo	IA5F	01	D 78 CL IN1800 001	Α	38 DI 77		

DIAGRAMMI DELLE SOLLECITAZIONI

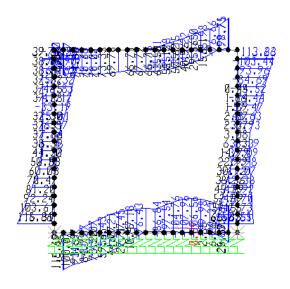


Fig. 2 – Inviluppo momenti flettenti SLU

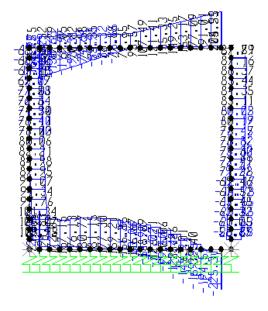


Fig. 3 – Inviluppo sforzi taglianti SLU

S ITALFERR	Nuova linea Ferrandina - Matera La Martella per il collegamento d Matera con la rete ferroviaria nazionale NUOVA LINEA FERRANDINA – MATERA LA MARTELLA
5	PROGETTO LOTTO CODIFICA DOCUMENTO REV. FOGLIO
Relazione di calcolo	IA5F 01 D 78 CL IN1800 001 A 39 DI 77

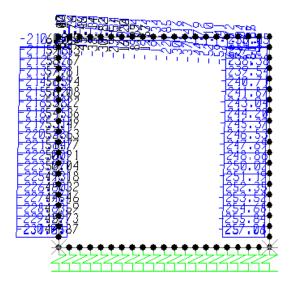


Fig. 4 – Inviluppo azioni assiali SLU

 $\label{eq:Fig.5} \textbf{Fig. 5} \textbf{ --Inviluppo momenti flettenti } \textbf{SLV}$

T ITALFERR	Nuova linea Ferrandina - Matera La Martella per il collegamento Matera con la rete ferroviaria nazionale NUOVA LINEA FERRANDINA – MATERA LA MARTELLA	di
Delegione di colonia	PROGETTO LOTTO CODIFICA DOCUMENTO REV. FOGLIO	
Relazione di calcolo	IA5F 01 D 78 CL IN1800 001 A 40 DI 77	

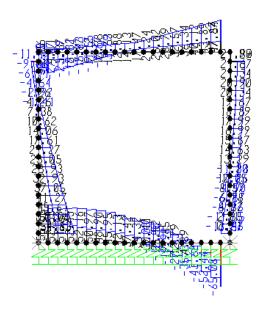


Fig. 6 – Inviluppo sforzi taglianti SLV

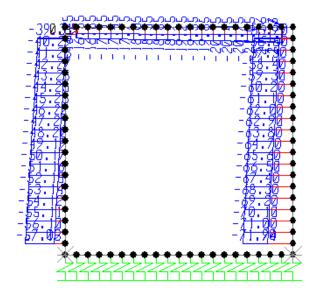


Fig. 7 – Inviluppo azioni assiali SLV

I ITALFERR	Matera con l	Nuova linea Ferrandina - Matera La Martella per il collegame Matera con la rete ferroviaria nazionale NUOVA LINEA FERRANDINA – MATERA LA MARTELLA					
5	PROGETTO	LOTTO	CODIFICA DOCUMENTO	REV.	FOGLIO		
Relazione di calcolo	IA5F	01	D 78 CL IN1800 001	Α	41 DI 77		

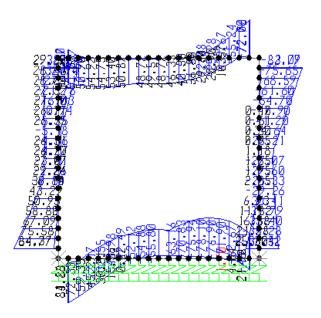


Fig.~8-Inviluppo~momenti~flettenti~SLE~rara

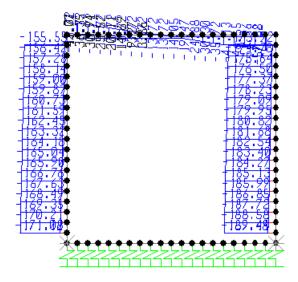


Fig. 9 – Inviluppo azioni assiali SLE rara

S ITALFERR	Nuova linea Ferrandina - Matera La Martella per il collegam Matera con la rete ferroviaria nazionale NUOVA LINEA FERRANDINA – MATERA LA MARTELLA					
Relazione di calcolo	PROGETTO IA5F	LOTTO 01	CODIFICA DOCUMENTO D 78 CL IN1800 001	REV.	FOGLIO 42 DI 77	

10 VERIFICA DELLE SEZIONI IN C.A.

Nelle tabelle seguenti sono indicati i valori delle sollecitazioni massime e i valori delle sollecitazioni per la verifica a fessurazione risultanti dalle combinazioni di cui al capitolo precedente.

Per le verifiche in corrispondenza dei nodi si considerano le sollecitazioni a filo elemento rigido.

	SLU STR						SLU SISMA				
Elemento strutturale	ID Asta	C.C. M _{max}	N (kN)	M _{max} (kNm)	T _{max} (kN)	ID Asta	C.C. M _{max}	N (kN)	M _{max} (kNm)	T _{max} (kN)	
soletta inferiore	1	SLU122	0.00	116.19	-225.31	1	SLUsisma25	0.00	34.73	-65.08	
soletta inferiore	1	SLU124	0.00	-107.96	•	1	SLUsisma25	0.00	-24.23	-	
soletta superiore	3	SLU122	79.28	-99.75	205.55	3	SLUsisma25	20.78	-21.63	47.84	
soletta superiore	3	SLU217	-54.28	78.59	1	3	SLUsisma25	16.86	13.19	-	
piedritti	2	SLU217	60.43	-78.59	109.12	2	SLUsisma9	2.95	-13.48	54.83	
piedritti	4	SLU217	114.47	66.62	87.81	4	SLUsisma9	43.86	9.66	21.90	
piedritti	2	SLU122	97.76	116.36	-	2	SLUsisma25	44.56	33.78		

	SLE RARA					SLE FREQUENTE			FREQUENTE SLE QUASI PERM			Œ
Elemento strutturale	ID Asta	C.C.	N (kN)	M _{max} (kNm)	ID Asta	C.C.	N (kN)	M _{max} (kNm)	ID Asta	C.C.	N (kN)	M _{max} (kNm)
soletta inferiore	1	SLEr39	0.00	84.26	1	SLEf19	0.00	20.57	1	SLEq1	0.00	7.18
soletta inferiore	1	SLEr39	0.00	-78.10	1	SLEf13	0.00	-42.01	1	SLEq1	0.00	-6.31
soletta superiore	3	SLEr39	57.62	-72.76	3	SLEf19	8.63	-13.71	3	SLEq1	8.21	-3.02
soletta superiore	3	SLEr39	-23.87	54.92	3	SLEf13	6.98	36.46	3	SLEq1	8.21	2.66
piedritti	2	SLEr39	57.65	-38.61	2	SLEf10	16.31	-3.43	2	SLEq1	19.84	-0.95
piedritti	4	SLEr39	189.48	25.80	4	SLEf7	25.09	1.34	4	SLEq1	19.84	0.95
piedritti	2	SLEr39	73.25	84.77	2	SLEf19	130.04	31.44	2	SLEq1	28.50	8.10

10.1 Verifica soletta inferiore

CARATTERISTICHE DI RESISTENZA DEI MATERIALI IMPIEGATI

CALCESTRUZZO - Classe: C30/37

Resis. compr. di progetto fcd: 17.000 MPa Resis. compr. ridotta fcd': 8.500 MPa Def.unit. max resistenza ec2: 0.0020 Def.unit. ultima ecu: 0.0035 Parabola-Rettangolo Diagramma tensione-deformaz.: 32836.0 Modulo Elastico Normale Ec: MPa Resis. media a trazione fctm: 2.900 MPa Coeff. Omogen. S.L.E.: 15.00 Coeff. Omogen. S.L.E.: 15.00

Sc limite S.L.E. comb. Frequenti:

Ap.Fessure limite S.L.E. comb. Frequenti:

Sc limite S.L.E. comb. Q.Permanenti:

Ap.Fess.limite S.L.E. comb. Q.Perm.:

0.200 mm

0.200 mm

ACCIAIO - Tipo: B450C

Resist. caratt. snervam. fyk:450.00MPaResist. caratt. rottura ftk:450.00MPaResist. snerv. di progetto fyd:391.30MPaResist. ultima di progetto ftd:391.30MPaDeform. ultima di progetto Epu:0.068

Modulo Elastico Ef 2000000 daN/cm²

Diagramma tensione-deformaz.:

Coeff. Aderenza istantaneo ß1*ß2:

Coeff. Aderenza differito ß1*ß2:

Sf limite S.L.E. Comb. Rare:

Bilineare finito

1.00

0.50

MPa

CARATTERISTICHE DOMINIO CONGLOMERATO

Forma del Do Classe Conglo	Poligonale C30/37	
N°vertice:	X [cm]	Y [cm]
1	-50.0 -50.0	0.0 40.0
3	50.0	40.0
4	50.0	0.0

DATI BARRE ISOLATE

N°Barra	X [cm]	Y [cm]	DiamØ[mm]
1	-42.4	7.6	16
2	-42.4	32.4	16
3	42.4	32.4	16
4	42.4	7.6	16

DATI GENERAZIONI LINEARI DI BARRE

N°Gen.Numero assegnato alla singola generazione lineare di barreN°Barra Ini.Numero della barra iniziale cui si riferisce la generazioneN°Barra Fin.Numero della barra finale cui si riferisce la generazione

N°Barre Numero di barre generate equidistanti cui si riferisce la generazione

Ø Diametro in mm delle barre della generazione

N°Gen.	N°Barra Ini.	N°Barra Fin.	N°Barre	Ø
1	1	4	8	16
2	2	3	8	16

ARMATURE A TAGLIO

Diametro staffe: 8 mm Passo staffe: 12.8 cm

Staffe: Una sola staffa chiusa perimetrale

CALCOLO DI RESISTENZA - SFORZI PER OGNI COMBINAZIONE ASSEGNATA

N Mx Vy		Sforzo normale [kN] applicato nel Baric. (+ se di compressione) Momento flettente [daNm] intorno all'asse X di riferimento delle coordinate con verso positivo se tale da comprimere il lembo sup. della sez. Componente del Taglio [kN] parallela all'asse Y di riferimento delle coordinat				
N°Comb.	N	Mx	Vy			
1	0.00	116.19	-225.31			
2	0.00	-107.96	0.00			
3	0.00	34.73	-65.08			
4	0.00	-24.23	0.00			

COMB. RARE (S.L.E.) - SFORZI PER OGNI COMBINAZIONE ASSEGNATA

Sforzo normale [kN] applicato nel Baricentro (+ se di compressione)

Momento flettente [kNm] intorno all'asse X di riferimento (tra parentesi Mom.Fessurazione) Mx

con verso positivo se tale da comprimere il lembo superiore della sezione

N°Comb.	N	Mx	My
1	0.00	84.26	0.00
2	0.00	-78.10	

COMB. FREQUENTI (S.L.E.) - SFORZI PER OGNI COMBINAZIONE ASSEGNATA

Sforzo normale [kN] applicato nel Baricentro (+ se di compressione) Mx

Momento flettente [kNm] intorno all'asse X di riferimento (tra parentesi Mom.Fessurazione)

con verso positivo se tale da comprimere il lembo superiore della sezione

N°Comb.	N	Mx	Му
1	0.00	20.57 (90.78)	0.00 (0.00)
2	0.00	-42.01 (-90.78)	0.00 (0.00)

COMB. QUASI PERMANENTI (S.L.E.) - SFORZI PER OGNI COMBINAZIONE ASSEGNATA

N	Sforzo normale [kin] applicato nel Baricentro (+ se di compressione)
M.	Manager Cotton to Clabor Cotton of all and a Vall of Color and a Manager to a

Momento flettente [kNm] intorno all'asse X di riferimento (tra parentesi Mom.Fessurazione) Mx

con verso positivo se tale da comprimere il lembo superiore della sezione

N°Comb.	N	Mx	Му
1	0.00	7.18 (90.78)	0.00 (0.00)
2	0.00	-6.31 (-90.78)	0.00 (0.00)

RISULTATI DEL CALCOLO

Sezione verificata per tutte le combinazioni assegnate

Copriferro netto minimo barre longitudinali: 6.8 cm Interferro netto minimo barre longitudinali: 7.8 cm Copriferro netto minimo staffe: 6.0 cm

VERIFICHE DI RESISTENZA IN PRESSO-TENSO FLESSIONE ALLO STATO LIMITE ULTIMO

Ver S = combinazione verificata / N = combin. non verificata

N Sforzo normale assegnato [kN] nel baricentro B sezione cls.(positivo se di compressione)

Mx Componente del momento assegnato [kNm] riferito all'asse x princ. d'inerzia
N Res Sforzo normale resistente [kN] nel baricentro B sezione cls.(positivo se di compress.)

Mx Res Momento flettente resistente [kNm] riferito all'asse x princ. d'inerzia
Mis.Sic. Misura sicurezza = rapporto vettoriale tra (N r,Mx Res,My Res) e (N,Mx,

fis.Sic. Misura sicurezza = rapporto vettoriale tra (N r,Mx Res,My Res) e (N,Mx,My) Verifica positiva se tale rapporto risulta >=1.000

As Totale Area totale barre longitudinali [cm²]. [Tra parentesi il valore minimo di normativa]

N°Comb	Ver	N	Mx	N Res	Mx Res	Mis.Sic.	As Totale
1	S	0.00	116.19	0.00	239.90	2.06	40.2(12.0)
2	S	0.00	-107.96	0.00	-239.90	2.22	40.2(12.0)
3	S	0.00	34.73	0.00	239.90	6.91	40.2(12.0)
4	S	0.00	-24.23	0.00	-239.90	9.90	40.2(12.0)

METODO AGLI STATI LIMITE ULTIMI - DEFORMAZIONI UNITARIE ALLO STATO ULTIMO

ec max	Deform. unit. massima del conglomerato a compressione
	Deform. unit. massima del conglomerato a compressione
Xc max	Ascissa in cm della fibra corrisp. a ec max (sistema rif. X,Y,O sez.)
Yc max	Ordinata in cm della fibra corrisp. a ec max (sistema rif. X,Y,O sez.)
es min	Deform. unit. minima nell'acciaio (negativa se di trazione)
Xs min	Ascissa in cm della barra corrisp. a es min (sistema rif. X,Y,O sez.)
Ys min	Ordinata in cm della barra corrisp. a es min (sistema rif. X,Y,O sez.)
es max	Deform. unit. massima nell'acciaio (positiva se di compress.)
Xs max	Ascissa in cm della barra corrisp. a es max (sistema rif. X,Y,O sez.)
Ys max	Ordinata in cm della barra corrisp. a es max (sistema rif. X,Y,O sez.)

N°Comb	ec max	Xc max	Yc max	es min	Xs min	Ys min	es max	Xs max	Ys max
1	0.00350	-50.0	40.0	-0.00039	-42.4	32.4	-0.01306	-42.4	7.6
2	0.00350	-50.0	0.0	-0.00039	-42.4	7.6	-0.01306	42.4	32.4
3	0.00350	-50.0	40.0	-0.00039	-42.4	32.4	-0.01306	-42.4	7.6
4	0.00350	-50.0	0.0	-0.00039	-42.4	7.6	-0.01306	42.4	32.4

POSIZIONE ASSE NEUTRO PER OGNI COMB. DI RESISTENZA

a, b, c Coeff. a, b, c nell'eq. dell'asse neutro aX+bY+c=0 nel rif. X,Y,O gen. x/d Rapp. di duttilità (travi e solette)[§ 4.1.2.1.2.1 NTC]: deve essere < 0.45

C.Rid. Coeff. di riduz. momenti per sola flessione in travi continue

N°Comb	а	b	С	x/d	C.Rid.
1	0.000000000	0.000511251	-0.016950028		
2	0.000000000	-0.000511251	0.003500000		
3	0.000000000	0.000511251	-0.016950028		
4	0.000000000	-0.000511251	0.003500000		

VERIFICHE A TAGLIO

Diam. Staffe: 8 mm

Passo	staffe	e:	12.8 cm [Passo massimo di normativa = 19.2 cm]							
Ver		S = com	nb. verificata a tagli	o / N = co	mb. non verifi	cata				
Ved		Taglio d	li progetto [kN] = V	/ ortogona	le all'asse ne	utro				
Vcd		Taglio d	ompressione resist	ente [kN]	lato conglome	rato [formul	a (4.1.28)N	ΓC]		
Vwd		Taglio r	esistente [kN] asso	rbito dalle	staffe [(4.1.18	B) NTC]				
d z		Altezza	utile media pesata	sezione o	rtogonale all'a	sse neutro	Braccio co	ppia interna	[cm]	
•		Vengon	o prese nella media	a le strisce	con almeno	un estremo	compresso.			
		I pesi de	ella media sono cos	stituiti dalle	e stesse lungh	ezze delle s	strisce.			
bw		Larghez	za media resistent	e a taglio	[cm] misurate	parallel. all'a	asse neutro			
		E' data	dal rapporto tra l'ar	ea delle so	opradette stris	ce resistent	i e Dmed.			
Ctg		Cotange	ente dell'angolo di i	nclinazion	e dei puntoni	di conglome	erato			
Acw			ente maggiorativo							
Ast		Area sta	affe+legature strett	am. neces	ssarie a taglio	per metro d	li pil.[cm²/m]			
A.Eff		Area sta	affe+legature effica	ci nella dir	ezione del tag	lio di combi	naz.[cm²/m]			
		Tra pare	entesi è indicata la	quota dell	'area relativa	alle sole leg	ature.			
		L'area d	lella legatura è rido	tta col fatt	ore L/d_max	con L=lungh	.legat.proiet	ta-		
		ta sulla	direz. del taglio e d	_max= ma	assima altezz	a utile nella	direz.del tag	lio.		
N°Comb	Ver	Ved	Vcd	Vwd	d z	bw	Ctg	Acw	Ast	A.Eff
1	S	225.31	869.39	227.89	37.3 29.7	100.0	2.500	1.000	7.8	7.9(0.0)
2	S	0.00	1260.62		37.3 29.7	100.0	1.000	1.000	0.0	7.9(0.0)
3	S	65.08	869.39		37.3 29.7	100.0	2.500	1.000	2.2	7.9(0.0)
4	S	0.00	1260.62	91.16	37.3 29.7	100.0	1.000	1.000	0.0	7.9(0.0)

COMBINAZIONI RARE IN ESERCIZIO - MASSIME TENSIONI NORMALI ED APERTURA FESSURE (NTC/EC2)

Ver S = comb. verificata/ N = comb. non verificata

Sc max Massima tensione (positiva se di compressione) nel conglomerato [Mpa] Xc max, Yc max Ascissa, Ordinata [cm] del punto corrisp. a Sc max (sistema rif. X,Y,O)

Sf min Minima tensione (negativa se di trazione) nell'acciaio [Mpa]

Xs min, Ys min
Ascissa, Ordinata [cm] della barra corrisp. a Sf min (sistema rif. X,Y,O)
Ac eff.
As eff.
Area di calcestruzzo [cm²] in zona tesa considerata aderente alle barre
Area barre [cm²] in zona tesa considerate efficaci per l'apertura delle fessure

N°Comb	Ver	Sc max	Xc max `	Yc max	Sf min	Xs min	Ys min	Ac eff.	As eff.
	-							1000 1000	

COMBINAZIONI RARE IN ESERCIZIO - APERTURA FESSURE [§ 7.3.4 EC2]

	La sezione viene assunta sempre fessurata anche nel caso in cui la trazione minima del calcestruzzo sia inferiore a fctm
Ver.	Esito della verifica
e1	Massima deformazione unitaria di trazione nel calcestruzzo (trazione -) valutata in sezione fessurata
e2	Minima deformazione unitaria di trazione nel calcestruzzo (trazione -) valutata in sezione fessurata
k1	= 0.8 per barre ad aderenza migliorata [eq.(7.11)EC2]
kt	= 0.4 per comb. quasi permanenti / = 0.6 per comb.frequenti [cfr. eq.(7.9)EC2]
k2	= 0.5 per flessione; = $(e1 + e2)/(2*e1)$ per trazione eccentrica [eq.(7.13)EC2]
k3	= 3.400 Coeff. in eq.(7.11) come da annessi nazionali
k4	= 0.425 Coeff. in eq.(7.11) come da annessi nazionali
Ø	Diametro [mm] equivalente delle barre tese comprese nell'area efficace Ac eff [eq.(7.11)EC2]
Cf	Copriferro [mm] netto calcolato con riferimento alla barra più tesa
e sm - e cm	Differenza tra le deformazioni medie di acciaio e calcestruzzo [(7.8)EC2 e (C4.1.7)NTC]
	Tra parentesi: valore minimo = 0.6 Smax / Es [(7.9)EC2 e (C4.1.8)NTC]
sr max	Massima distanza tra le fessure [mm]
wk	Apertura fessure in mm calcolata = sr max*(e_sm - e_cm) [(7.8)EC2 e (C4.1.7)NTC]. Valore limite tra parentesi
Mx fess.	Componente momento di prima fessurazione intorno all'asse X [kNm]
My fess.	Componente momento di prima fessurazione intorno all'asse Y [kNm]

Comb.	Ver	e1	e2	k2	Ø	Cf	e sm - e cm sr max	wk	Mx fess	My fess
1	S	-0.00100	0	0.500	16.0	68	0.00044 (0.00044) 366	0.163 (0.20)	90.78	0.00

2 S -0.00093 0 0.500 16.0 68 0.00041 (0.00041) 366 0.151 (0.20) -90.78	_	_		_								
	2	S	-0.00093	0	0.500	16.0	68	0.00041 (0.00041)	366	0.151 (0.20)	-90.78	0.00

COMBINAZIONI FREQUENTI IN ESERCIZIO - MASSIME TENSIONI NORMALI ED APERTURA FESSURE (NTC/EC2)

N°Comb	Ver	Sc max	Xc max	Yc max	Sf min	Xs min	Ys min	Ac eff.	As eff.
1	S	1.18	-50.0	40.0	-36.2	-42.4	7.6	1000	20.1
2	S	2.40	-50.0	0.0	-73.9	33.0	32.4	1000	20.1

COMBINAZIONI FREQUENTI IN ESERCIZIO - APERTURA FESSURE [§ 7.3.4 EC2]

Comb.	Ver	e1	e2	k2	Ø	Cf	e sm - e cm s	r max	wk	Mx fess	My fess
1	S	-0.00024	0	0.500	16.0	68	0.00011 (0.00011)	366	0.040 (0.20)	90.78	0.00
2	S	-0.00050	0	0.500	16.0	68	0.00022 (0.00022)	366	0.081 (0.20)	-90.78	0.00

COMBINAZIONI QUASI PERMANENTI IN ESERCIZIO - MASSIME TENSIONI NORMALI ED APERTURA FESSURE (NTC/EC2)

N°Comb	Ver	Sc max	Xc max \	c max	Sf min	Xs min	Ys min	Ac eff.	As eff.
1	S	0.41	-50.0	40.0	-12.6	-42.4	7.6	1000	20.1
2	S	0.36	-50.0	0.0	-11.1	33.0	32.4	1000	20.1

COMBINAZIONI QUASI PERMANENTI IN ESERCIZIO - APERTURA FESSURE [§ 7.3.4 EC2]

Comb.	Ver	e1	e2	k2	Ø	Ct	e sm - e cm s	r max	wk	Mx tess	My tess
1	S	-0.00009	0	0.500	16.0	68	0.00004 (0.00004)	366	0.014 (0.20)	90.78	0.00
2	S	-0.00007	0	0.500	16.0	68	0.00003 (0.00003)	366	0.012 (0.20)	-90.78	0.00

10.2 Verifica soletta superiore

CARATTERISTICHE DI RESISTENZA DEI MATERIALI IMPIEGATI

CALCESTRUZZO -	Classe:	C30/37	
	Resis. compr. di progetto fcd:	17.000	MPa
	Resis. compr. ridotta fcd':	8.500	MPa
	Def.unit. max resistenza ec2:	0.0020	
	Def.unit. ultima ecu:	0.0035	
	Diagramma tensione-deformaz.:	Parabola-Rettangolo	
	Modulo Elastico Normale Ec:	32836.0	MPa
	Resis. media a trazione fctm:	2.900	MPa
	Coeff. Omogen. S.L.E.:	15.00	
	Coeff. Omogen. S.L.E.:	15.00	
	Sc limite S.L.E. comb. Frequenti:	165.00	daN/cm ²
	Ap.Fessure limite S.L.E. comb. Freque	enti: 0.200	mm
	Sc limite S.L.E. comb. Q.Permanenti:	0.00	Мра
	Ap.Fess.limite S.L.E. comb. Q.Perm.:	0.200	mm
ACCIAIO -	Tipo:	B450C	
	Resist. caratt. snervam. fyk:	450.00	MPa
	Resist. caratt. rottura ftk:	450.00	MPa
	Resist. snerv. di progetto fyd:	391.30	MPa
	Resist. ultima di progetto ftd:	391.30	MPa
	Deform. ultima di progetto Epu:	0.068	
	Modulo Elastico Ef	2000000	daN/cm ²
	Diagramma tensione-deformaz.:	Bilineare finito	
	Coeff. Aderenza istantaneo ß1*ß2:	1.00	

Coeff. Aderenza differito ß1*ß2: 0.50 Sf limite S.L.E. Comb. Rare: 337.50 MPa

CARATTERISTICHE DOMINIO CONGLOMERATO

Forma del Do Classe Conglo	Poligonale C30/37		
N°vertice:	X [cm]	Y [cm]	
1	-50.0	0.0	
2	-50.0	30.0	
3	50.0	30.0	
4	50.0	0.0	

DATI BARRE ISOLATE

N°Barra	X [cm]	Y [cm]	DiamØ[mm]
1	-42.4	7.6	16
2	-42.4	22.4	16
3	42.4	22.4	16
4	42.4	7.6	16

DATI GENERAZIONI LINEARI DI BARRE

N°Gen. Numero assegnato alla singola generazione lineare di barre Numero della barra iniziale cui si riferisce la generazione
Numero della barra finale cui si riferisce la generazione
Numero di barre generate equidistanti cui si riferisce la generazione N°Barra Ini. N°Barra Fin.

N°Barre

Diametro in mm delle barre della generazione

N°Gen.	N°Barra Ini.	N°Barra Fin.	N°Barre	Ø
1	1	4	8	16
2	2	3	8	16

ARMATURE A TAGLIO

Diametro staffe:
Passo staffe: 8 mm 9.3 cm

Staffe: Una sola staffa chiusa perimetrale

CALCOLO DI RESISTENZA - SFORZI PER OGNI COMBINAZIONE ASSEGNATA

N	Sforzo normale [kN] applicato nel Baric. (+ se di compressione)
Mx	Momento flettente [daNm] intorno all'asse X di riferimento delle coordinate
	con verso positivo se tale da comprimere il lembo sup. della sez.
Vy	Componente del Taglio [kN] parallela all'asse Y di riferimento delle coordinate

N°Comb.	N	Mx	Vy
1	79.28	-99.75	205.55
2	-54.28	78.59	0.00
3	20.78	-21.63	47.84
4	16.86	13.19	0.00

COMB. RARE (S.L.E.) - SFORZI PER OGNI COMBINAZIONE ASSEGNATA

N	Sforzo normale [kN] applicato nel Baricentro (+ se di compressione)
Mx	Momento flettente [kNm] intorno all'asse X di riferimento (tra parentes

si Mom.Fessurazione)

con verso positivo se tale da comprimere il lembo superiore della sezione

N°Comb. Mx My 57.62 -72.76 0.00 2 -23.87 54.92 0.00

COMB. FREQUENTI (S.L.E.) - SFORZI PER OGNI COMBINAZIONE ASSEGNATA

Ν Sforzo normale [kN] applicato nel Baricentro (+ se di compressione)

Mx Momento flettente [kNm] intorno all'asse X di riferimento (tra parentesi Mom.Fessurazione)

con verso positivo se tale da comprimere il lembo superiore della sezione

N°Comb. Ν Mx My 0.00 (0.00) 8.63 1 -13.71 (-51.43) 2 36.46 (50.35) 0.00(0.00)6.98

COMB. QUASI PERMANENTI (S.L.E.) - SFORZI PER OGNI COMBINAZIONE ASSEGNATA

Ν Sforzo normale [kN] applicato nel Baricentro (+ se di compressione)

Mx Momento flettente [kNm] intorno all'asse X di riferimento (tra parentesi Mom.Fessurazione)

con verso positivo se tale da comprimere il lembo superiore della sezione

N°Comb. Ν 8.21 -3.02 (-57.33) 0.00 (0.00) 1 8.21 2.66 (58.51) 0.00(0.00)

RISULTATI DEL CALCOLO

Sezione verificata per tutte le combinazioni assegnate

Copriferro netto minimo barre longitudinali: 6.8 cm Interferro netto minimo barre longitudinali: 7.8 cm Copriferro netto minimo staffe: 6.0 cm

VERIFICHE DI RESISTENZA IN PRESSO-TENSO FLESSIONE ALLO STATO LIMITE ULTIMO

Ver S = combinazione verificata / N = combin. non verificata

Sforzo normale assegnato [kN] nel baricentro B sezione cls.(positivo se di compressione) Ν

Componente del momento assegnato [kNm] riferito all'asse x princ. d'inerzia Mx N Res Sforzo normale resistente [kN] nel baricentro B sezione cls.(positivo se di compress.)

Mx Res Momento flettente resistente [kNm] riferito all'asse x princ. d'inerzia

Misura sicurezza = rapporto vettoriale tra (N r,Mx Res,My Res) e (N,Mx,My) Mis.Sic.

Verifica positiva se tale rapporto risulta >=1.000

Area totale barre longitudinali [cm²]. [Tra parentesi il valore minimo di normativa] As Totale

N°Comb	Ver	N	Mx	N Res	Mx Res	Mis.Sic.	As Totale
1	S	79.28	-99.75	79.17	-167.60	1.68	40.2(9.0)
2	S	-54.28	78.59	-54.37	156.77	1.99	40.2(9.0)
3	S	20.78	-21.63	20.58	-162.86	7.53	40.2(9.0)
4	S	16.86	13.19	16.82	162.55	12.32	40.2(9.0)

METODO AGLI STATI LIMITE ULTIMI - DEFORMAZIONI UNITARIE ALLO STATO ULTIMO

Deform. unit. massima del conglomerato a compressione ec max Deform. unit. massima del conglomerato a compressione

Xc max	Ascissa in cm della fibra corrisp. a ec max (sistema rif. X,Y,O sez.)
Yc max	Ordinata in cm della fibra corrisp. a ec max (sistema rif. X,Y,O sez.)
es min	Deform. unit. minima nell'acciaio (negativa se di trazione)
Xs min	Ascissa in cm della barra corrisp. a es min (sistema rif. X,Y,O sez.)
Ys min	Ordinata in cm della barra corrisp. a es min (sistema rif. X,Y,O sez.)
es max	Deform. unit. massima nell'acciaio (positiva se di compress.)
Xs max	Ascissa in cm della barra corrisp. a es max (sistema rif. X,Y,O sez.)
Ys max	Ordinata in cm della barra corrisp. a es max (sistema rif. X,Y,O sez.)

N°Comb	ec max	Xc max	Yc max	es min	Xs min	Ys min	es max	Xs max	Ys max
1	0.00350	-50.0	0.0	-0.00027	-42.4	7.6	-0.00760	42.4	22.4
2	0.00350	-50.0	30.0	-0.00047	-42.4	22.4	-0.00820	-42.4	7.6
3	0.00350	-50.0	0.0	-0.00035	-42.4	7.6	-0.00786	42.4	22.4
4	0.00350	-50.0	30.0	-0.00036	-42.4	22.4	-0.00788	-42.4	7.6

POSIZIONE ASSE NEUTRO PER OGNI COMB. DI RESISTENZA

Coeff. a, b, c nell'eq. dell'asse neutro aX+bY+c=0 nel rif. X,Y,O gen. a. b. c Rapp. di duttilità (travi e solette)[§ 4.1.2.1.2.1 NTC]: deve essere < 0.45 x/d

C.Rid. Coeff. di riduz. momenti per sola flessione in travi continue

C.Rid.	x/d	С	b	а	N°Comb
		0.003500000	-0.000495494	0.000000000	1
		-0.012169792	0.000522326	0.000000000	2
		0.003500000	-0.000507233	0.000000000	3
		-0.011739349	0.000507978	0.000000000	4

VERIFICHE A TAGLIO

d|z

2

3

4

Diam. Staffe:

Passo staffe: 9.3 cm [Passo massimo di normativa = 19.2 cm]

S = comb. verificata a taglio / N = comb. non verificata Ver Ved Taglio di progetto [kN] = Vy ortogonale all'asse neutro

Taglio compressione resistente [kN] lato conglomerato [formula (4.1.28)NTC] Vcd Taglio resistente [kN] assorbito dalle staffe [(4.1.18) NTC] Vwd

Altezza utile media pesata sezione ortogonale all'asse neutro | Braccio coppia interna [cm] Vengono prese nella media le strisce con almeno un estremo compresso.

I pesi della media sono costituiti dalle stesse lunghezze delle strisce. Larghezza media resistente a taglio [cm] misurate parallel. all'asse neutro bw E' data dal rapporto tra l'area delle sopradette strisce resistenti e Dmed.

Cotangente dell'angolo di inclinazione dei puntoni di conglomerato Ctq Coefficiente maggiorativo della resistenza a taglio per compressione Acw Ast Area staffe+legature strettam. necessarie a taglio per metro di pil.[cm²/m] A.Eff Area staffe+legature efficaci nella direzione del taglio di combinaz.[cm²/m] Tra parentesi è indicata la guota dell'area relativa alle sole legature. L'area della legatura è ridotta col fattore L/d_max con L=lungh.legat.proietta-

N°Comb A.Eff Ver Ved Ast Vcd Vwd d | z bw Ctg Acw S 205.55 582.66 206.99 27.2| 19.6 100.0 2.500 1.016 10.7 10.8(0.0) 100.0 10.8(0.0) S 0.00 838.09 83.41 27.3 19.7 1.000 1.000 0.0 S 47.84 578.00 207.69 27.2 19.6 100.0 2.500 1.004 2.5 10.8(0.0) S 0.00 837.63 83.09 27.2| 19.6 100.0 1.000 1.003 0.0 10.8(0.0)

COMBINAZIONI RARE IN ESERCIZIO - MASSIME TENSIONI NORMALI ED APERTURA FESSURE (NTC/EC2)

ta sulla direz. del taglio e d_max= massima altezza utile nella direz.del taglio.

S = comb. verificata/ N = comb. non verificata Ver

Sc max Massima tensione (positiva se di compressione) nel conglomerato [Mpa]

Sf mir	n, Ys mi		Minima te Ascissa, (Area di ca	nsione (ne Ordinata [c Ilcestruzzo	egativa se di cm] della bar o [cm²] in zor	trazione) ra corrisp. na tesa co	nell'acciaio a Sf min (s nsiderata a	istema rif. X,` [Mpa] sistema rif. X,` derente alle t l'apertura de	Y,O) parre
N°Comb	Ver	Sc max	Xc max `	∕c max	Sf min	Xs min	Ys min	Ac eff.	As eff.
1 2	S S	8.02 6.06	-50.0 -50.0	0.0 30.0	-174.1 -149.2	33.0 -42.4	22.4 7.6	750 800	20.1 20.1

COMBINAZIONI RARE IN ESERCIZIO - APERTURA FESSURE [§ 7.3.4 EC2]

Ver. e1 e2 k1 kt k2 k3 k4 Ø Cf e sm		Esito della ve Massima deforma	erifica formazione u formazione u formazione u formazione u formazione u formazione u formazione formazione forma formazione for	unitaria di tra itaria di tra	razione nerzione nel rata [eq.() / = 0.6 pe 1) per traza annessi annessi arne tese conferimen e di accia Smax / Es m] sr max*(e	el calcestruzzo calcestruzzo 7.11)EC2] er comb.frequizione eccentri nazionali comprese nell to alla barra pio e calcestrus [(7.9)EC2	zzo [(7.8)EC2 e (C4.1.7)NTC] e (C4.1.8)NTC] [(7.8)EC2 e (C4.1.7)NTC]. Valo	e fessurat essurata	a	ctm	
My fe	ess.	Componente	momento d	i prima fes	surazione	e intorno all'as	sse Y [kNm]				
Comb.	Ver	e1	e2	k2	Ø	Cf	e sm - e cm s	sr max	wk	Mx fess	My fess
1	S S	-0.00137 -0.00115	0 0	0.500 0.500	16.0 16.0	68 68	0.00052 (0.00052) 0.00045 (0.00045)	333 339	0.174 (0.20) 0.152 (0.20)	-51.85 48.87	0.00
_	-	-0.00113	·				0.00045 (0.00045)		,	40.01	0.00

COMBINAZIONI FREQUENTI IN ESERCIZIO - MASSIME TENSIONI NORMALI ED APERTURA FESSURE (NTC/EC2)

N°Comb	Ver	Sc max	Xc max	Yc max	Sf min	Xs min	Ys min	Ac eff.	As eff.
1	S	1.51	-50.0	0.0	-33.4	33.0	22.4	750	20.1
2	S	4.02	-50.0	30.0	-93.0	-42.4	7.6	800	20.1

COMBINAZIONI FREQUENTI IN ESERCIZIO - APERTURA FESSURE [§ 7.3.4 EC2]

Comb.	Ver	e1	e2	k2	Ø	Cf	e sm - e cm s	sr max	wk	Mx fess	My fess
1	S	-0.00026	0	0.500	16.0	68	0.00010 (0.00010)	333	0.033 (0.20)	-51.43	0.00
2	S	-0.00073	0	0.500	16.0	68	0.00028 (0.00028)	339	0.095 (0.20)	50.35	0.00

COMBINAZIONI QUASI PERMANENTI IN ESERCIZIO - MASSIME TENSIONI NORMALI ED APERTURA FESSURE (NTC/EC2)

N°Comb	Ver	Sc max	Xc max	Yc max	Sf min	Xs min	Ys min	Ac eff.	As eff.
1	S	0.33	-50.0	0.0	-5.7	33.0	22.4	850	20.1
2	S	0.29	-50.0	30.0	-4.8	-42.4	7.6	850	20.1

COMBINAZIONI QUASI PERMANENTI IN ESERCIZIO - APERTURA FESSURE [§ 7.3.4 EC2]

Comb.	Ver	e1	e2	k2	Ø	Cf	e sm - e cm s	r max	wk	Mx fess	My fess
1	S	-0.00005	0	0.500	16.0	68	0.00002 (0.00002)	346	0.006 (0.20)	-57.33	0.00

S ITALFERR	Matera con	la rete fer	ina - Matera La Martella roviaria nazionale ANDINA – MATERA LA N	•	
Relazione di calcolo	PROGETTO IA5F	LOTTO 01	CODIFICA DOCUMENTO D 78 CL IN1800 001	REV.	FOGLIO 52 DI 77

2 S -0.00004 0 0.500 16.0 68 0.00001 (0.00001) 346 0.005 (0.20) 58.51 0.00

10.3 Verifica piedritti

CARATTERISTICHE DI RESISTENZA DEI MATERIALI IMPIEGATI

Classe:	C30/37	
Resis. compr. di progetto fcd:	17.000	MPa
Resis. compr. ridotta fcd':	8.500	MPa
Def.unit. max resistenza ec2:	0.0020	
Def.unit. ultima ecu:	0.0035	
Diagramma tensione-deformaz.:	Parabola-Rettangolo	
Modulo Elastico Normale Ec:	32836.0	MPa
Resis. media a trazione fctm:	2.900	MPa
Coeff. Omogen. S.L.E.:	15.00	
Coeff. Omogen. S.L.E.:	15.00	
Sc limite S.L.E. comb. Frequenti:	165.00	daN/cm²
•		mm
		Мра
Ap.Fess.limite S.L.E. comb. Q.Perm.:	0.200	mm
Tipo:	B450C	
Resist. caratt. snervam. fyk:	450.00	MPa
Resist. caratt. rottura ftk:	450.00	MPa
Resist. snerv. di progetto fyd:	391.30	MPa
Resist. ultima di progetto ftd:	391.30	MPa
Deform. ultima di progetto Epu:	0.068	
Modulo Elastico Ef	2000000	daN/cm²
Diagramma tensione-deformaz.:		
Coeff. Aderenza istantaneo ß1*ß2:	1.00	
	0.50	
Sf limite S.L.E. Comb. Rare:	337.50	MPa
	Resis. compr. di progetto fcd: Resis. compr. ridotta fcd': Def.unit. max resistenza ec2: Def.unit. ultima ecu: Diagramma tensione-deformaz.: Modulo Elastico Normale Ec: Resis. media a trazione fctm: Coeff. Omogen. S.L.E.: Coeff. Omogen. S.L.E.: Sc limite S.L.E. comb. Frequenti: Ap.Fessure limite S.L.E. comb. Frequenti: Ap.Fess.limite S.L.E. comb. Q.Permanenti: Ap.Fess.limite S.L.E. comb. Q.Perm.: Tipo: Resist. caratt. snervam. fyk: Resist. caratt. rottura ftk: Resist. snerv. di progetto fyd: Resist. ultima di progetto ftd: Deform. ultima di progetto Epu: Modulo Elastico Ef Diagramma tensione-deformaz.:	Resis. compr. di progetto fcd: 17.000 Resis. compr. ridotta fcd': 8.500 Def.unit. max resistenza ec2: 0.0020 Def.unit. ultima ecu: 0.0035 Diagramma tensione-deformaz.: Parabola-Rettangolo Modulo Elastico Normale Ec: 32836.0 Resis. media a trazione fctm: 2.900 Coeff. Omogen. S.L.E.: 15.00 Coeff. Omogen. S.L.E.: 15.00 Sc limite S.L.E. comb. Frequenti: 165.00 Ap.Fessure limite S.L.E. comb. Frequenti: 0.200 Sc limite S.L.E. comb. Q.Permanenti: 0.00 Ap.Fess.limite S.L.E. comb. Q.Perm.: 0.200 Tipo: B450C Resist. caratt. snervam. fyk: 450.00 Resist. caratt. rottura ftk: 450.00 Resist. snerv. di progetto fyd: 391.30 Resist. ultima di progetto Epu: 0.068 Modulo Elastico Ef 2000000 Diagramma tensione-deformaz.: Bilineare finito Coeff. Aderenza istantaneo ß1*ß2: 1.00 Coeff. Aderenza differito ß1*ß2: 0.50

CARATTERISTICHE DOMINIO CONGLOMERATO

Forma del Do	Poligonale	
Classe Conglo	C30/37	
N°vertice:	X [cm]	Y [cm]
1	-50.0	0.0
2	-50.0	30.0
3	50.0	30.0
4	50.0	0.0

DATI BARRE ISOLATE

N°Barra	X [cm]	Y [cm]	DiamØ[mm]
1	-42.8	7.2	16
2	-42.8	22.8	16
3	42.8	22.8	16
4	42.8	7.2	16

DATI GENERAZIONI LINEARI DI BARRE

N°Barra Ini. Numero della barra iniziale cui si riferisce la generazione N°Barra Fin. Numero della barra finale cui si riferisce la generazione

N°Barre Numero di barre generate equidistanti cui si riferisce la generazione

Diametro in mm delle barre della generazione

N°Gen.	N°Barra Ini.	N°Barra Fin.	N°Barre	Ø
1	1	4	8	16
2	2	3	3	16

ARMATURE A TAGLIO

Diametro staffe: 8 mm Passo staffe: 18.4 cm

Staffe: Una sola staffa chiusa perimetrale

CALCOLO DI RESISTENZA - SFORZI PER OGNI COMBINAZIONE ASSEGNATA

Sforzo normale [kN] applicato nel Baric. (+ se di compressione) N Mx Momento flettente [daNm] intorno all'asse X di riferimento delle coordinate con verso positivo se tale da comprimere il lembo sup. della sez. ۷у

Componente del Taglio [kN] parallela all'asse Y di riferimento delle coordinate

N°Comb.	N	Mx	Vy
1	60.43	-78.59	109.12
2	114.47	66.62	87.81
3	97.76	116.36	0.00
4	2.95	-13.48	54.83
5	43.86	9.66	21.90
6	44.56	33.78	0.00

COMB. RARE (S.L.E.) - SFORZI PER OGNI COMBINAZIONE ASSEGNATA

Sforzo normale [kN] applicato nel Baricentro (+ se di compressione)

Mx Momento flettente [kNm] intorno all'asse X di riferimento (tra parentesi Mom.Fessurazione)

con verso positivo se tale da comprimere il lembo superiore della sezione

N°Comb.	N	Mx	Му
1	57.65	-38.61	0.00
2	189.48	25.80	0.00
3	73.25	84.77	0.00

COMB. FREQUENTI (S.L.E.) - SFORZI PER OGNI COMBINAZIONE ASSEGNATA

Sforzo normale [kN] applicato nel Baricentro (+ se di compressione)

Momento flettente [kNm] intorno all'asse X di riferimento (tra parentesi Mom.Fessurazione) Mx

con verso positivo se tale da comprimere il lembo superiore della sezione

N°Comb.	N	Mx	Му
1	16.31	-3.43 (-62.92)	0.00 (0.00)
2	25.09	1.34 (380.67)	0.00 (0.00)
3	130.04	31.44 (61.73)	0.00 (0.00)

COMB. QUASI PERMANENTI (S.L.E.) - SFORZI PER OGNI COMBINAZIONE ASSEGNATA

Mx	Momento flettente [kNm] intorno all'asse X di riferimento (tra parentesi Mom.Fessurazione) con verso positivo se tale da comprimere il lembo superiore della sezione				
N°Comb.	N	Mx	Му		
1 2 3	19.84 19.84 28.50	-0.95 (-57.33) 0.95 (1621.47) 8.10 (59.61)	0.00 (0.00) 0.00 (0.00) 0.00 (0.00)		

RISULTATI DEL CALCOLO

Sezione verificata per tutte le combinazioni assegnate

Copriferro netto minimo barre longitudinali: 6.4 cm Interferro netto minimo barre longitudinali: 7.9 cm Copriferro netto minimo staffe: 5.6 cm

VERIFICHE DI RESISTENZA IN PRESSO-TENSO FLESSIONE ALLO STATO LIMITE ULTIMO

Ver	S = combinazione	verificata / N = con	mbin non verificata	

N Sforzo normale assegnato [kN] nel baricentro B sezione cls.(positivo se di compressione)

Mx Componente del momento assegnato [kNm] riferito all'asse x princ. d'inerzia
N Res Sforzo normale resistente [kN] nel baricentro B sezione cls.(positivo se di compress.)

Mx Res Momento flettente resistente [kNm] riferito all'asse x princ. d'inerzia
Mis.Sic. Misura sicurezza = rapporto vettoriale tra (N r,Mx Res,My Res) e (N,Mx,My)

Verifica positiva se tale rapporto risulta >=1.000

As Totale Area totale barre longitudinali [cm²]. [Tra parentesi il valore minimo di normativa]

N°Comb	Ver	N	Mx	N Res	Mx Res	Mis.Sic.	As Totale
1	S	60.43	-78.59	60.33	-104.22	1.33	30.2(9.0)
2	S	114.47	66.62	114.32	172.60	2.58	30.2(9.0)
3	S	97.76	116.36	97.65	171.16	1.47	30.2(9.0)
4	S	2.95	-13.48	2.96	-99.33	7.38	30.2(9.0)
5	S	43.86	9.66	43.99	166.48	16.88	30.2(9.0)
6	S	44.56	33.78	44.56	166.53	4.90	30.2(9.0)

METODO AGLI STATI LIMITE ULTIMI - DEFORMAZIONI UNITARIE ALLO STATO ULTIMO

ec max	Deform. unit. massima del conglomerato a compressione
	Deform. unit. massima del conglomerato a compressione
Xc max	Ascissa in cm della fibra corrisp. a ec max (sistema rif. X,Y,O sez.)
Yc max	Ordinata in cm della fibra corrisp. a ec max (sistema rif. X,Y,O sez.)
es min	Deform. unit. minima nell'acciaio (negativa se di trazione)
Xs min	Ascissa in cm della barra corrisp. a es min (sistema rif. X,Y,O sez.)
Ys min	Ordinata in cm della barra corrisp. a es min (sistema rif. X,Y,O sez.)
es max	Deform. unit. massima nell'acciaio (positiva se di compress.)
Xs max	Ascissa in cm della barra corrisp. a es max (sistema rif. X,Y,O sez.)
Ys max	Ordinata in cm della barra corrisp. a es max (sistema rif. X,Y,O sez.)

N°Comb	ec max	Xc max	Yc max	es min	Xs min	Ys min	es max	Xs max	Ys max
1	0.00350	-50.0	0.0	-0.00085	-42.8	7.2	-0.01028	42.8	22.8
2	0.00350	-50.0	30.0	-0.00019	-42.8	22.8	-0.00819	-42.8	7.2
3	0.00350	-50.0	30.0	-0.00022	-42.8	22.8	-0.00829	-42.8	7.2
4	0.00350	-50.0	0.0	-0.00095	-42.8	7.2	-0.01060	42.8	22.8
5	0.00350	-50.0	30.0	-0.00035	-42.8	22.8	-0.00870	-42.8	7.2
6	0.00350	-50.0	30.0	-0.00035	-42.8	22.8	-0.00869	-42.8	7.2

POSIZIONE ASSE NEUTRO PER OGNI COMB. DI RESISTENZA

a, b, c

x/d C.Rid.		Rapp. di duttilità (travi e solette)[§ 4.1.2.1.2.1 NTC]: deve essere < 0.45 Coeff. di riduz. momenti per sola flessione in travi continue								
N°Comb	а	b	С	x/d	C.Rid.					
1	0.000000000	-0.000604306	0.003500000							
2	0.000000000	0.000512559	-0.011876780							
3	0.000000000	0.000517316	-0.012019477							
4	0.000000000	-0.000618210	0.003500000							
5	0.000000000	0.000534879	-0.012546358							
6	0.000000000	0.000534696	-0.012540869							

VERIFICHE A TAGLIO

bw

Diam. Staffe: 8 mm

Passo staffe: 18.4 cm [Passo massimo di normativa = 19.2 cm]

 $\begin{array}{ll} \text{Ver} & \text{S = comb. verificata a taglio / N = comb. non verificata} \\ \text{Ved} & \text{Taglio di progetto [kN] = Vy ortogonale all'asse neutro} \\ \end{array}$

Vcd Taglio compressione resistente [kN] lato conglomerato [formula (4.1.28)NTC]

Vwd Taglio resistente [kN] assorbito dalle staffe [(4.1.18) NTC]

d | z Altezza utile media pesata sezione ortogonale all'asse neutro | Braccio coppia interna [cm]

Vengono prese nella media le strisce con almeno un estremo compresso. I pesi della media sono costituiti dalle stesse lunghezze delle strisce. Larghezza media resistente a taglio [cm] misurate parallel. all'asse neutro E' data dal rapporto tra l'area delle sopradette strisce resistice Dmed. Cotangente dell'angolo di inglinazione dei puntoni di conglomente.

Ctg Cotangente dell'angolo di inclinazione dei puntoni di conglomerato
Acw Coefficiente maggiorativo della resistenza a taglio per compressione
Ast Area staffe+legature strettam. necessarie a taglio per metro di pil.[cm²/m]
A.Eff Area staffe+legature efficaci nella direzione del taglio di combinaz.[cm²/m]
Tra parentesi è indicata la quota dell'area relativa alle sole legature.

L'area della legatura è ridotta col fattore L/d_max con L=lungh.legat.proiettata sulla direz. del taglio e d_max= massima altezza utile nella direz.del taglio.

N°Comb	Ver	Ved	Vcd	Vwd	d z	bw	Ctg	Acw	Ast	A.Eff
1	S	109.12	607.49	109.48	27.7 20.5	100.0	2.500	1.012	5.4	5.5(0.0)
2	S	87.81	601.42	107.26	27.3 20.1	100.0	2.500	1.022	4.5	5.5(0.0)
3	S	0.00	870.35	42.96	27.3 20.1	100.0	1.000	1.019	0.0	5.5(0.0)
4	S	54.83	601.90	109.76	27.7 20.5	100.0	2.500	1.000	2.7	5.5(0.0)
5	S	21.90	596.65	107.87	27.4 20.2	100.0	2.500	1.009	1.1	5.5(0.0)
6	S	0.00	865.22	43.15	27.4 20.2	100.0	1.000	1.009	0.0	5.5(0.0)
										, ,

COMBINAZIONI RARE IN ESERCIZIO - MASSIME TENSIONI NORMALI ED APERTURA FESSURE (NTC/EC2)

Ver S = comb. verificata/ N = comb. non verificata

Sc max
Massima tensione (positiva se di compressione) nel conglomerato [Mpa]
Xc max, Yc max
Ascissa, Ordinata [cm] del punto corrisp. a Sc max (sistema rif. X,Y,O)
Sf min
Minima tensione (negativa se di trazione) nell'acciaio [Mpa]
Xs min, Ys min
Ascissa, Ordinata [cm] della barra corrisp. a Sf min (sistema rif. X,Y,O)
Ac eff.
Area di calcestruzzo [cm²] in zona tesa considerata aderente alle barre
Area barre [cm²] in zona tesa considerate efficaci per l'apertura delle fessure

N°Comb	Ver	Sc max	Xc max \	rc max	Sf min	Xs min	Ys min	Ac eff.	As eff.
1	S	5.33	-50.0	0.0	-156.9	21.4	22.8	723	10.1
2	S	2.76	-50.0	30.0	-20.8	-42.8	7.2	750	20.1
3	S	9.21	-50.0	30.0	-195.9	-42.8	7.2	750	20.1

COMBINAZIONI RARE IN ESERCIZIO - APERTURA FESSURE [§ 7.3.4 EC2]

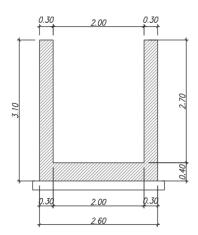
La sezione viene assunta sempre fessurata anche nel caso in cui la trazione minima del calcestruzzo sia inferiore a fctm Esito della verifica

Ver. Es

I ITALFERR	Nuova linea Ferrandina - Matera La Martella per il collegamento Matera con la rete ferroviaria nazionale NUOVA LINEA FERRANDINA – MATERA LA MARTELLA					
Relazione di calcolo	PROGETTO IA5F	LOTTO 01	CODIFICA DOCUMENTO D 78 CL IN1800 001	REV.	FOGLIO 56 DI 77	

e1 e2 k1 kt k2 k3 k4 Ø Cf e sm - sr max wk Mx fes My fes	(6S.	Minima e 0.8 pe = 0.4 p = 0.5 pe = 3.400 = 0.425 Diametro Coprifer Differen: Tra pare Massima Aperture Compon	deformazi er barre ac er comb. or r flessione Coeff. in e Coeff. in e o [mm] eq ro [mm] no za tra le d entesi: valo a distanza a fessure i nente mon	one unita d aderenz quasi per e; =(e1 + eq.(7.11) eq.(7.11) uivalente etto calco eformazio ore minim tra le fes n mm cal nento di p	ria di tra ca miglio manenti e2)/(2*e come da come da delle ba lato con oni medi io = 0.6 ssure [m colata = rima fes	azione norata [eci / = 0.6 i / = 0.6 i.1) per ta annes a annes arre tesa riferimise di acci Smax / im] si si max ssurazio	nel calcest q.(7.11)EC per comb razione e si naziona si naziona e comprese ento alla b ciaio e cal Es [(7.5)	truzzo (traz C2] .frequenti ccentrica ali se nell'area carra più te cestruzzo B)EC2 e (C	[(7.8)EC2 e (C 4.1.8)NTC] B)EC2 e (C4.1 { [kNm]	ta in sezione f C2] - 	essurata			
Comb.	Ver	e1		e2	k2	Ø	Cf		е	sm - e cm s	sr max	wk	Mx fess	My fess
1 2 3	S S S	-0.00116 -0.00020 -0.00151		0 0 0	0.500 0.500 0.500	16.0 16.0 16.0	64		0.00006	(0.00047) (0.00006) (0.00059)	413 319 319	0.194 (0.20) 0.020 (0.20) 0.192 (0.20)	-51.59 75.67 51.96	0.00 0.00 0.00
COMBINA	AZIONI	FREQUENT	TI IN ESE	RCIZIO	- MA	SSIME	TENSI	ONI NOR	MALI ED AF	ERTURA F	ESSURI	E (NTC/EC2)		
N°Comb	Ver	Sc max	Xc max	Yc max	: 8	Sf min	Xs min	Ys min	Ac eff.	As eff.				
1 2 3	S S S	0.43 0.16 3.42	-50.0 -50.0 -50.0	0.0 30.0 30.0		-8.5 0.4 -46.9	21.4 -42.8 -42.8	22.8 7.2 7.2	723 0 800	10.1 0.0 20.1				
COMBINA	AZIONI	FREQUENT	TI IN ESE	ERCIZIO	- APE	RTUR	A FESS	URE [§ 7	.3.4 EC2]					
Comb.	Ver	e1		e2	k2	Ø	Cf	:	е	sm - e cm s	sr max	wk	Mx fess	My fess
1 2 3	S S S	-0.00007 0.00000 -0.00039		0 0 0	0.500 0.500 0.500	16.0 16.0 16.0	64		0.00003	(0.00003) (0.00003) (0.00014)	413 0 326	0.010 (0.20) 0.000 (0.20) 0.046 (0.20)	-62.92 380.67 61.73	0.00 0.00 0.00
COMBINA	AZIONI	QUASI PER	RMANEN	ITI IN ES	SERCIZ	ZIO -	MASSIN	IE TENSI	ONI NORMA	ALI ED APEI	RTURA	FESSURE (NTC	C/EC2)	
N°Comb	Ver	Sc max	Xc max	Yc max	: 5	Sf min	Xs min	Ys min	Ac eff.	As eff.				
1 2 3	S S S	0.11 0.12 0.88	-50.0 -50.0 -50.0	0.0 30.0 30.0		0.4 0.4 -13.3	21.4 -42.8 -42.8	22.8 7.2 7.2	0 800	0.0 20.1				
COMBINA	AZIONI	QUASI PER	RMANEN	ITI IN ES	SERCIZ	ZIO - A	PERTU	RA FESS	URE [§ 7.3.4	EC2]				
Comb.	Ver	e1		e2	k2	Ø	Cf		е	sm - e cm s	sr max	wk	Mx fess	My fess
1 2 3	S S S	-0.00005 0.00000 -0.00011		0 0 0	0.500 0.500	16.0 16.0				(0.00014) (0.00004)	0 326	0.000 (0.20) 0.000 (0.20) 0.013 (0.20)	-57.33 1621.47 59.61	0.00 0.00 0.00

10.4 Tabella riassuntiva armature


	Tabella armature									
Elemento strutturale	Arm. Sup.	Arm. Inf.	Spille	Incidenza						
soletta inferiore	Ф16/10	Ф16/10	Ф10/30х30	130 kg/m3						
soletta superiore	Ф16/10	Ф16/10	Ф12/30х30	180 kg/m3						
piedritti	Ф16/20	Ф16/10	Ф8/30x30	125 kg/m3						

11 TOMBINO SEZIONE AD "U"

La dimensione interna è di 2.00m e l'altezza interna pari a 2.70m, , piedritti di spessore 0.30m e soletta inferiore di spessore 0.40m.

Nel seguito verrà esaminata una striscia di sezione ad "U" avente lunghezza di 1.00 m. In figura si riporta schematicamente la geometria dell'opera.

S ITALFERR	Nuova linea Ferrandina - Matera La Martella per il collegamento Matera con la rete ferroviaria nazionale NUOVA LINEA FERRANDINA – MATERA LA MARTELLA				
Relazione di calcolo	PROGETTO IA5F	LOTTO 01	CODIFICA DOCUMENTO D 78 CL IN1800 001	REV.	FOGLIO 58 DI 77

11.1 Geometria

DATI GEOMETE	RICI		
Grandezza	Simbolo	Valore	U.M.
larghezza totale scatolare	L_{tot}	2.60	m
larghezza utile scatolare	L_{int}	2.00	m
larghezza interasse	La	2.30	m
spessore soletta superiore	Ss	0.00	m
spessore piedritti	S_p	0.30	m
spessore fondazione	$S_{\mathbf{f}}$	0.40	m
altezza totale scatolare	H_{tot}	3.10	m
altezza libera scatolare	\mathbf{H}_{int}	2.70	m
spessore pacchetto stradale superiore	H_{Psup}	0.00	m
spessore ricoprimento superiore	H_{Rsup}	0.00	m
spessore pacchetto stradale inferiore	H_{Pinf}	0.00	m
spessore ricoprimento inferiore	H_{Rinf}	0.00	m

11.2 Modello di calcolo

Il modello di calcolo attraverso il quale è schematizzata la struttura è quello del telaio chiuso su letto di molle alla Winkler.

Il modello considerato per l'analisi è quello di uno sezione ad "U" di profondità unitaria (1.00m) soggetto alle azioni da traffico di norma e quelle permanenti. In corrispondenza dei vertici dello sezione ad "U" sono state inserite delle zone rigide pari a metà spessore degli elementi.

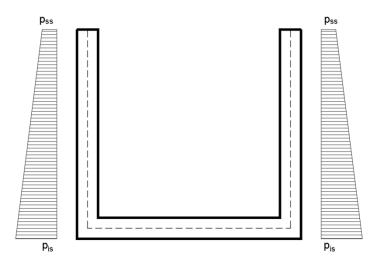
S ITALFERR	Nuova linea Ferrandina - Matera La Martella per il collegamen Matera con la rete ferroviaria nazionale NUOVA LINEA FERRANDINA – MATERA LA MARTELLA				
Relazione di calcolo	PROGETTO IA5F	LOTTO 01	CODIFICA DOCUMENTO D 78 CL IN1800 001	REV.	FOGLIO 59 DI 77

Il terreno di fondazione è stato modellato utilizzando la schematizzazione alla Winkler con un opportuno coefficiente di sottofondo.

11.2.1 Valutazione della rigidezza delle molle

Si considera lo sezione ad "U" appoggiato su di un letto di molle (schematizzazione alla Winkler) assegnando alle aste di fondazione del modello un valore di "linear spring" pari a K= 70000 kN/mc.

11.3 Analisi dei carichi


11.3.1 Peso proprio della struttura e carichi permanenti portati

Soletta inferiore	- Peso proprio	_	10.00 kN/m
	-	Totale	10.00 kN/m
	- Peso pacchetto pavimentazione 0 cm	n	0.00 kN/m
	- Peso terreno ricoprimento		0.00 kN/m
	-	Totale	0.00 kN/m
<u>Piedritti</u>	- Peso proprio	_	7.50 kN/m
	-	Totale	7.50 kN/m

11.3.2 Spinta sulle pareti dovuta al terreno ed al sovraccarico permanente

Per il rinterro si prevede un terreno avente angolo di attrito $\phi = 35^{\circ}$ ed un peso di volume $\gamma = 20$ kN/m³, il coefficiente di spinta viene calcolato, considerando l'elevata rigidezza dello sezione ad "U", utilizzando la formula Ko=1-sin ϕ ', per cui si ottiene un valore di Ko=0.43. Le spinte in asse soletta superiore ed asse soletta inferiore valgono:

Per tenere in conto dei carichi agenti sul semispessore degli elementi considerati nel modello di calcolo, si applicano delle forze concentrate nei nodi tra piedritto e soletta inferiore con valore pari a 5.12 kN.

11.4 Spinta del sovraccarico sul rilevato q₁=10 kN/m

$$q_1 = 10.00 \text{ kN/m}^2$$

 $p_1(\text{str}) = q_1 * K_0 = 4.26 \text{ kN/m}^2$

Per tenere in conto dei carichi agenti sul semispessore degli elementi considerati nel modello di calcolo, si applicano delle forze concentrate nei nodi tra piedritto sinistro e soletta inferiore con valore pari a 0.00 kN

11.5 Azione sismica inerziale

Per il calcolo dell'azione sismica si utilizza il metodo dell'analisi pseudostatica in cui l'azione sismica è rappresentata da una forza statica equivalente pari al prodotto delle forze di gravità per un opportuno coefficiente sismico *k*. Le forze sismiche sono pertanto le seguenti:

Forza sismica orizzontale $F_h = k_h^* W$

Forza sismica verticale $F_v = k_v * W$

I valori dei coefficienti sismici orizzontale k_h e verticale k_v possono essere valutati mediante le espressioni: k_h = a_{max}/g

$$k_v = \pm 0.5 * k_h$$

S ITALFERR	Nuova linea Ferrandina - Matera La Martella per il collegamento d Matera con la rete ferroviaria nazionale NUOVA LINEA FERRANDINA – MATERA LA MARTELLA					
Relazione di calcolo	PROGETTO IA5F	LOTTO 01	CODIFICA DOCUMENTO D 78 CL IN1800 001	REV.	FOGLIO 61 DI 77	

Con riferimento alla nuova classificazione sismica del territorio nazionale ai fini del calcolo dell'azione sismica secondo il DM 14/01/2008 viene assegnata all'opera una vita nominale $V_N \ge 75$ anni ed una classe d'uso II $C_u = 1.0$; segue un periodo di riferimento $V_R = V_N * C_u = 75$ anni

A seguito di tale assunzione si ottiene allo stato limite ultimo SLV in funzione della Latitudine e Longitudine del sito in esame un valore dell'accelerazione pari a a_g = 0.182 g.

In assenza di analisi specifiche della risposta sismica locale l'accelerazione massima può essere valutata con la relazione:

$$a_{max} = S * a = S_s * S_t * a_g$$

dove assumendo un terreno di tipo C ed in base al fattore di amplificazione del sito Fo si ottiene:

S_s= 1.429 Coefficiente di amplificazione stratigrafica

 $S_T=1$ Coefficiente di amplificazione topografica

ne deriva che:

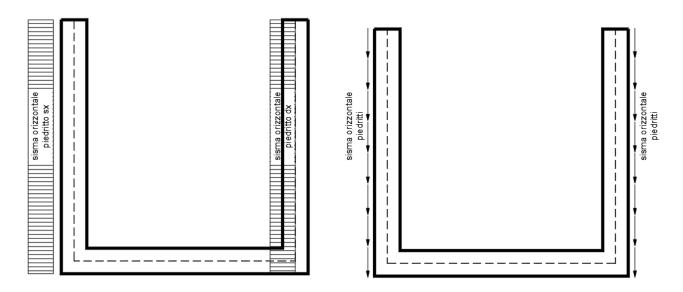
$$a_{max}$$
= 1.429 * 1 * 0.182 g = 0.260 g

$$k_h = a_{max}/g = 0.260$$

$$k_v = \pm 0.5 * k_h = 0.130$$

Sisma orizzontale

$$F_{sis} = a_{max} * \gamma * H_{tot}$$
 12.33 kN/m (carico applicato sulla parete)
$$F_{inp} = \alpha * S_p * \gamma * 1m$$
 = 2.28 kN/m (inerzia piedritti)
$$Totale = 14.60 \text{ kN/m}$$
 (piederitto sx)
$$Totale = 2.28 \text{ kN/m}$$
 (piederitto dx)


Per tenere in conto dei carichi agenti sul semispessore degli elementi considerati nel modello di calcolo, si applicano delle forze concentrate nei nodi tra piedritto sinistro e soletta inferiore con valore pari a 3.62 kN. Si applicano delle forze concentrate nei nodi tra piedritto destro e soletta inferiore con valore pari a 0.39 kN.

Sisma verticale

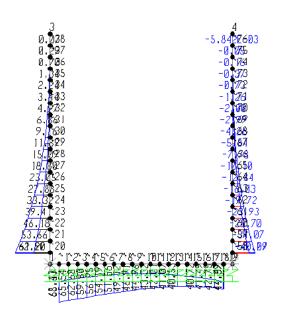
$$F_{inp} = 0.5 * \alpha * S_p * \gamma * 1m = 1.14 \text{ kN/m}$$
 (inerzia piedritti)

S ITALFERR	Nuova linea Ferrandina - Matera La Martella per il collegament Matera con la rete ferroviaria nazionale NUOVA LINEA FERRANDINA – MATERA LA MARTELLA				
Relazione di calcolo	PROGETTO IA5F	LOTTO 01	CODIFICA DOCUMENTO D 78 CL IN1800 001	REV.	FOGLIO 62 DI 77

Gli effetti dell'azione sismica saranno valutati tenendo conto delle masse associate ai seguenti carichi gravitazionali: $G_1 + G_2 + \psi_{2j} \, Q_{kj}$

Per tenere in conto dei carichi agenti sul semispessore degli elementi considerati nel modello di calcolo, si applicano delle forze concentrate nei nodi tra piedritto e soletta inferiore con valore pari a 1.71 kN.

11.6 Spinta sismica terreno


Le spinte delle terre potranno essere determinate secondo la teoria di Wood. secondo la quale la risultante dell'incremento di spinta per effetto del sisma su una parete di altezza H viene determinato con la seguente espressione:

$$\Delta S_E = (a_{max}/g) * \gamma * H_{tot}^2 = 50 \text{ kN/m}$$

Tale risultante applicata ad un'altezza pari ad Htot/2.sarà considerata agente su uno solo dei piedritti dell'opera.

12 DIAGRAMMI DELLE SOLLECITAZIONI

S ITALFERR	Nuova linea Ferrandina - Matera La Matera con la rete ferroviaria naziona NUOVA LINEA FERRANDINA – MATI	ale	ento di
5	PROGETTO LOTTO CODIFICA DOC	UMENTO REV. FOG	LIO
Relazione di calcolo	IA5F 01 D 78 CL IN18	00 001 A 63 DI	77

 ${\bf Fig.~10-Inviluppo~momenti~flettenti~SLU}$

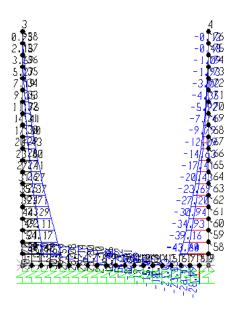


Fig. 11 – Inviluppo sforzi taglianti SLU

I ITALFERR	Nuova linea Ferrandina - Matera La Martella per il collegamento Matera con la rete ferroviaria nazionale NUOVA LINEA FERRANDINA – MATERA LA MARTELLA
5	PROGETTO LOTTO CODIFICA DOCUMENTO REV. FOGLIO
Relazione di calcolo	IA5F 01 D 78 CL IN1800 001 A 64 DI 77

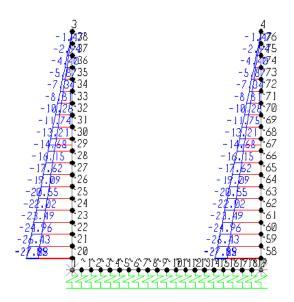


Fig. 12 – Inviluppo azioni assiali SLU

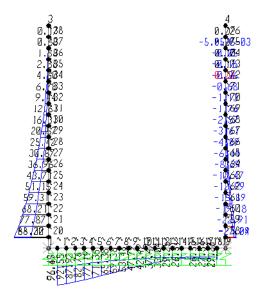


Fig. 13 –Inviluppo momenti flettenti SLV

I ITALFERR	Nuova linea Ferrandina - Matera La Martella per il collegamento Matera con la rete ferroviaria nazionale NUOVA LINEA FERRANDINA – MATERA LA MARTELLA	o di
5	PROGETTO LOTTO CODIFICA DOCUMENTO REV. FOGLIO	
Relazione di calcolo	IA5F 01 D 78 CL IN1800 001 A 65 DI 77	

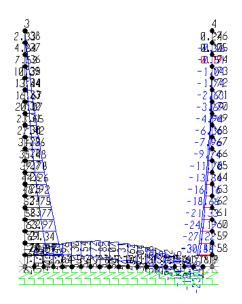
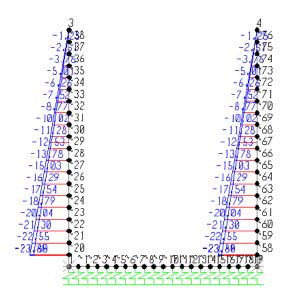



Fig. 14 – Inviluppo sforzi taglianti SLV

 $Fig.\ 15-Inviluppo\ azioni\ assiali\ SLV$

S ITALFERR	Nuova linea Ferrandina - Matera La Martella per il colle Matera con la rete ferroviaria nazionale NUOVA LINEA FERRANDINA – MATERA LA MARTELLA				
Relazione di calcolo	PROGETTO	LOTTO	CODIFICA DOCUMENTO	REV.	FOGLIO
Neiazione di calcolo	IA5F	01	D 78 CL IN1800 001	Α	66 DI 77

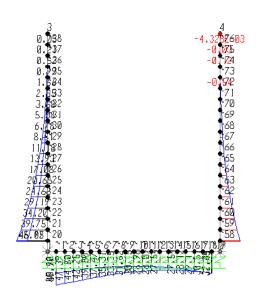


Fig. 16 – Inviluppo momenti flettenti SLE rara

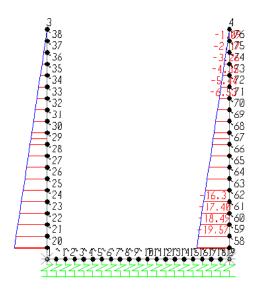


Fig. 17 – Inviluppo azioni assiali SLE rara

S ITALFERR	Nuova linea Ferrandina - Matera La Martella per il colle Matera con la rete ferroviaria nazionale NUOVA LINEA FERRANDINA – MATERA LA MARTELLA				
Relazione di calcolo	PROGETTO IA5F	LOTTO 01	CODIFICA DOCUMENTO D 78 CL IN1800 001	REV.	FOGLIO 67 DI 77

13 VERIFICA DELLE SEZIONI IN C.A.

Nelle tabelle seguenti sono indicati i valori delle sollecitazioni massime e i valori delle sollecitazioni per la verifica a fessurazione risultanti dalle combinazioni di cui al capitolo precedente.

Per le verifiche in corrispondenza dei nodi si considerano le sollecitazioni a filo elemento rigido.

	SLU STR						SLU SISMA			
Elemento strutturale	ID Asta	C.C. M _{max}	N (kN)	M _{max} (kNm)	T _{max} (kN)	ID Asta	C.C. M _{max}	N (kN)	M _{max} (kNm)	T _{max} (kN)
soletta inferiore	1	SLU27	0.00	68.43	31.24	1	SLUsisma9	0.00	96.63	52.72
soletta inferiore	1	SLU4	0.00	17.19	•	1	SLUsisma1	0.00	22.18	-
piedritti	2	SLU4	0.00	0.00	59.67	2	SLEq1	0.00	0.00	75.09
piedritti	4	SLU4	0.00	0.00	-43.80	4	SLUsisma1	4.55	0.11	-32.44
piedritti	2	SLU26	27.95	62.20	-	2	SLUsisma9	21.65	88.70	

	SLE RARA				SLE FREQUENTE			SLE QUASI PERMANENTE				
Elemento strutturale	ID Asta	c.c.	N (kN)	M _{max} (kNm)	ID Asta	C.C.	N (kN)	M _{max} (kNm)	ID Asta	C.C.	N (kN)	M _{max} (kNm)
soletta inferiore	1	SLEr11	0.00	50.10	1	SLEf7	0.00	42.99	1	SLEq1	0.00	32.33
soletta inferiore	1	SLE _r 1	0.00	21.45	1	SLEf1	0.00	21.45	1	SLEq1	0.00	21.45
piedritti	2	SLU328	0.00	0.00	2	SLEf1	0.00	0.00	2	SLEf14	0.00	0.00
piedritti	4	SLU320	0.00	0.00	4	SLEr35	0.00	0.00	4	SLEf3	0.00	0.00
piedritti	2	SLEr11	20.70	46.07	2	SLEf7	20.70	39.58	2	SLEf19	20.70	34.72

0.50

337.50 MPa

13.1 Verifica soletta inferiore

CARATTERISTICHE DI RESISTENZA DEI MATERIALI IMPIEGATI

CALCESTRUZZO -	Classe:	C30/37	
	Resis. compr. di progetto fcd:	17.000	MPa
	Resis. compr. ridotta fcd':	8.500	MPa
	Def.unit. max resistenza ec2:	0.0020	
	Def.unit. ultima ecu:	0.0035	
	Diagramma tensione-deformaz.:	Parabola-Rettangolo	
	Modulo Elastico Normale Ec:	32836.0	MPa
	Resis. media a trazione fctm:	2.900	MPa
	Coeff. Omogen. S.L.E.:	15.00	
	Coeff. Omogen. S.L.E.:	15.00	
	Sc limite S.L.E. comb. Frequenti:	165.00	daN/cm ²
	Ap.Fessure limite S.L.E. comb. Freque	nti: 0.200	mm
	Sc limite S.L.E. comb. Q.Permanenti:	0.00	Мра
	Ap.Fess.limite S.L.E. comb. Q.Perm.:	0.200	mm
ACCIAIO -	Tipo:	B450C	
	Resist. caratt. snervam. fyk:	450.00	MPa
	Resist, caratt, rottura ftk:	450.00	MPa
	Resist. snerv. di progetto fyd:	391.30	MPa
	Resist. ultima di progetto ftd:	391.30	MPa
	Deform. ultima di progetto Epu:	0.068	
	Modulo Elastico Ef	2000000	daN/cm²
	Diagramma tensione-deformaz.:	Bilineare finito	
	Coeff. Aderenza istantaneo ß1*ß2:	1.00	
	Coom, Additional Total Interior IST ISE.	1.00	

Coeff. Aderenza differito ß1*ß2:

Sf limite S.L.E. Comb. Rare:

CARATTERISTICHE DOMINIO CONGLOMERATO

Forma del Do Classe Conglo	Poligonale C30/37	
N°vertice:	X [cm]	Y [cm]
1	-50.0	0.0
2	-50.0	40.0
3	50.0	40.0
4	50.0	0.0

DATI BARRE ISOLATE

N°Barra	X [cm]	Y [cm]	DiamØ[mm]
1	-42.4	7.6	16
2	-42.4	32.4	16
3	42.4	32.4	16
4	42.4	7.6	16

DATI GENERAZIONI LINEARI DI BARRE

N°Gen.	Numero assegnato alla singola generazione lineare di barre
N°Barra Ini.	Numero della barra iniziale cui si riferisce la generazione
N°Barra Fin.	Numero della barra finale cui si riferisce la generazione

N°Barre Numero di barre generate equidistanti cui si riferisce la generazione

Ø Diametro in mm delle barre della generazione

N°Gen.	N°Barra Ini.	N°Barra Fin.	N°Barre	Ø
1 2	1 2	4	8	16 16

ARMATURE A TAGLIO

Diametro staffe: 8 mm Passo staffe: 19.1 cm

Staffe: Una sola staffa chiusa perimetrale

CALCOLO DI RESISTENZA - SFORZI PER OGNI COMBINAZIONE ASSEGNATA

N Mx Vy		Momento flettente [da con verso positivo se	Sforzo normale [kN] applicato nel Baric. (+ se di compressione) Momento flettente [daNm] intorno all'asse X di riferimento delle coordinate con verso positivo se tale da comprimere il lembo sup. della sez. Componente del Taglio [kN] parallela all'asse Y di riferimento delle coordinate					
N°Comb.	N	Mx	Vy					
1	0.00	68.43	31.24					
2	0.00	17.19	0.00					
3	0.00	96.63	52.72					
4	0.00	22.18	0.00					

COMB. RARE (S.L.E.) - SFORZI PER OGNI COMBINAZIONE ASSEGNATA

N Sforzo normale [kN] applicato nel Baricentro (+ se di compressione)

Mx Momento flettente [kNm] intorno all'asse X di riferimento (tra parentesi Mom.Fessurazione)

con verso positivo se tale da comprimere il lembo superiore della sezione

 N°Comb.
 N
 Mx
 My

 1
 0.00
 50.10
 0.00

 2
 0.00
 21.45
 0.00

COMB. FREQUENTI (S.L.E.) - SFORZI PER OGNI COMBINAZIONE ASSEGNATA

N Sforzo normale [kN] applicato nel Baricentro (+ se di compressione)

Mx Momento flettente [kNm] intorno all'asse X di riferimento (tra parentesi Mom.Fessurazione)

con verso positivo se tale da comprimere il lembo superiore della sezione

N°Comb.	N	Mx	Му
1	0.00	42.99 (89.18)	0.00 (0.00)
2	0.00	21.45 (89.18)	0.00 (0.00)

COMB. QUASI PERMANENTI (S.L.E.) - SFORZI PER OGNI COMBINAZIONE ASSEGNATA

N Sforzo normale [kN] applicato nel Baricentro (+ se di compressione)

Mx Momento flettente [kNm] intorno all'asse X di riferimento (tra parentesi Mom.Fessurazione)

con verso positivo se tale da comprimere il lembo superiore della sezione

N°Comb.	N	Mx	Му
1	0.00	32.33 (89.18)	0.00 (0.00)
2	0.00	21.45 (89.18)	0.00 (0.00)

RISULTATI DEL CALCOLO

Sezione verificata per tutte le combinazioni assegnate

Copriferro netto minimo barre longitudinali: 6.8 cm Interferro netto minimo barre longitudinali: 7.8 cm Copriferro netto minimo staffe: 6.0 cm

VERIFICHE DI RESISTENZA IN PRESSO-TENSO FLESSIONE ALLO STATO LIMITE ULTIMO

Ver S = combinazione verificata / N = combin. non verificata

N Sforzo normale assegnato [kN] nel baricentro B sezione cls.(positivo se di compressione)

Mx Componente del momento assegnato [kNm] riferito all'asse x princ. d'inerzia
N Res Sforzo normale resistente [kN] nel baricentro B sezione cls.(positivo se di compress.)

Mx Res Momento flettente resistente [kNm] riferito all'asse x princ. d'inerzia
Mis.Sic. Misura sicurezza = rapporto vettoriale tra (N r,Mx Res,My Res) e (N,Mx,My)

Verifica positiva se tale rapporto risulta >=1.000

As Totale Area totale barre longitudinali [cm²]. [Tra parentesi il valore minimo di normativa]

N°Comb	Ver	N	Mx	N Res	Mx Res	Mis.Sic. As Totale
1	S	0.00	68.43	0.00	239.05	3.49 30.2(12.0)
2	S	0.00	17.19	0.00	239.05	13.91 30.2(12.0)
3	S	0.00	96.63	0.00	239.05	2.47 30.2(12.0)
4	S	0.00	22.18	0.00	239.05	10.78 30.2(12.0)

METODO AGLI STATI LIMITE ULTIMI - DEFORMAZIONI UNITARIE ALLO STATO ULTIMO

ec max	Deform. unit. massima del conglomerato a compressione
	Deform. unit. massima del conglomerato a compressione
Xc max	Ascissa in cm della fibra corrisp. a ec max (sistema rif. X,Y,O sez.)
Yc max	Ordinata in cm della fibra corrisp. a ec max (sistema rif. X,Y,O sez.)
es min	Deform. unit. minima nell'acciaio (negativa se di trazione)
Xs min	Ascissa in cm della barra corrisp. a es min (sistema rif. X,Y,O sez.)
Ys min	Ordinata in cm della barra corrisp. a es min (sistema rif. X,Y,O sez.)
es max	Deform. unit. massima nell'acciaio (positiva se di compress.)
Xs max	Ascissa in cm della barra corrisp. a es max (sistema rif. X,Y,O sez.)
Ys max	Ordinata in cm della barra corrisp. a es max (sistema rif. X,Y,O sez.)

N°Comb	ec max	Xc max	Yc max	es min	Xs min	Ys min	es max	Xs max	Ys max
1	0.00350	-50.0	40.0	-0.00057	42.4	32.4	-0.01384	-42.4	7.6
2	0.00350	-50.0	40.0	-0.00057	42.4	32.4	-0.01384	-42.4	7.6
3	0.00350	-50.0	40.0	-0.00057	42.4	32.4	-0.01384	-42.4	7.6
4	0.00350	-50.0	40.0	-0.00057	42.4	32.4	-0.01384	-42.4	7.6

POSIZIONE ASSE NEUTRO PER OGNI COMB. DI RESISTENZA

a, b, c Coeff. a, b, c nell'eq. dell'asse neutro aX+bY+c=0 nel rif. X,Y,O gen. x/d Rapp. di duttilità (travi e solette)[§ 4.1.2.1.2.1 NTC]: deve essere < 0.45 C.Rid. Coeff. di riduz. momenti per sola flessione in travi continue

N°Comb a b c x/d C.Rid.

1	0.000000000	0.000535135	-0.017905393
2	0.000000000	0.000535135	-0.017905393
3	0.000000000	0.000535135	-0.017905393
4	0.000000000	0.000535135	-0.017905393

VERIFICHE A TAGLIO

Diam. Staffe: 8 mm

Pass	o staffe:	:	19.1 c	m [Pass	o massimo (di normativ	/a = 19.2 c	m]						
Ver Ved			S = comb. verificata a taglio / N = comb. non verificata Taglio di progetto [kN] = Vy ortogonale all'asse neutro											
Vcd			Taglio on progetto [kN] – Vy ortogoriale all asse neutro Taglio compressione resistente [kN] lato conglomerato [formula (4.1.28)NTC]											
Vwd			esistente [kN] asso				,	•						
d z		Altezza	utile media pesata	sezione o	rtogonale all'a	sse neutro	Braccio co	ppia interna	[cm]					
•		Vengon	o prese nella media	a le strisce	con almeno	un estremo	compresso.							
		I pesi de	ella media sono cos	stituiti dalle	e stesse lungh	ezze delle s	strisce.							
bw	· ·													
	E' data dal rapporto tra l'area delle sopradette strisce resistenti e Dmed.													
Ctg		Cotangente dell'angolo di inclinazione dei puntoni di conglomerato												
Acw			Coefficiente maggiorativo della resistenza a taglio per compressione											
Ast		Area staffe+legature strettam necessarie a taglio per metro di pil.[cm²/m]												
A.Eff	A.Eff Area staffe+legature efficaci nella direzione del taglio di combinaz.[cm²/m]													
			entesi è indicata la											
			lella legatura è rido											
		la sulla	direz. del taglio e d	_max- ma	assima ailezza	a utile nella	direz.dei tag	IIIO.						
N°Comb	Ver	Ved	Vcd	Vwd	d z	bw	Ctg	Acw	Ast	A.Eff				
1	S	31.24	872.97	153.35	37.4 29.8	100.0	2.500	1.000	1.1	5.3(0.0)				
2	S	0.00	1265.81	61.34	37.4 29.8	100.0	1.000	1.000	0.0	5.3(0.0)				
3	Š	52.72	872.97		37.4 29.8	100.0	2.500	1.000	1.8	5.3(0.0)				
4	Š	0.00	1265.81		37.4 29.8	100.0	1.000	1.000	0.0	5.3(0.0)				
•	•	0.00		5 5 1						3.0(3.3)				

COMBINAZIONI RARE IN ESERCIZIO - MASSIME TENSIONI NORMALI ED APERTURA FESSURE (NTC/EC2)

Ver S = comb. verificata/ N = comb. non verificata

Massima tensione (positiva se di compressione) nel conglomerato [Mpa] Sc max Xc max, Yc max Ascissa, Ordinata [cm] del punto corrisp. a Sc max (sistema rif. X,Y,O)

Minima tensione (negativa se di trazione) nell'acciaio [Mpa] Sf min

Ascissa, Ordinata [cm] della barra corrisp. a Sf min (sistema rif. X,Y,O) Xs min, Ys min Ac eff. Area di calcestruzzo [cm²] in zona tesa considerata aderente alle barre As eff. Area barre [cm²] in zona tesa considerate efficaci per l'apertura delle fessure

N°	Comb	Ver	Sc max	Xc max	Yc max	Sf min	Xs min	Ys min	Ac eff.	As eff.
	-	-	2.97 1.27							

0.500 16.0

COMBINAZIONI RARE IN ESERCIZIO - APERTURA FESSURE [§ 7.3.4 EC2]

S

-0.00059

1

	La sezione viene assunta sempre fessurata anche nel caso in cui la trazione minima del calcestruzzo sia inferiore a fctm
Ver.	Esito della verifica
e1	Massima deformazione unitaria di trazione nel calcestruzzo (trazione -) valutata in sezione fessurata
e2	Minima deformazione unitaria di trazione nel calcestruzzo (trazione -) valutata in sezione fessurata
k1	= 0.8 per barre ad aderenza migliorata [eq.(7.11)EC2]
kt	= 0.4 per comb. quasi permanenti / = 0.6 per comb.frequenti [cfr. eq.(7.9)EC2]
k2	= 0.5 per flessione; =(e1 + e2)/(2*e1) per trazione eccentrica [eq.(7.13)EC2]
k3	= 3.400 Coeff. in eq.(7.11) come da annessi nazionali
k4	= 0.425 Coeff. in eq.(7.11) come da annessi nazionali
Ø	Diametro [mm] equivalente delle barre tese comprese nell'area efficace Ac eff [eq.(7.11)EC2]
Cf	Copriferro [mm] netto calcolato con riferimento alla barra più tesa
e sm - e cm	Differenza tra le deformazioni medie di acciaio e calcestruzzo [(7.8)EC2 e (C4.1.7)NTC]
	Tra parentesi: valore minimo = 0.6 Smax / Es [(7.9)EC2 e (C4.1.8)NTC]
sr max	Massima distanza tra le fessure [mm]
wk	Apertura fessure in mm calcolata = sr max*(e_sm - e_cm) [(7.8)EC2 e (C4.1.7)NTC]. Valore limite tra parentesi
Mx fess.	Componente momento di prima fessurazione intorno all'asse X [kNm]

68

My fe		Componente momento di prima fessurazione intorno all'asse Y [kNm]								
Comb.	Ver	e1	e2	k2	Ø	Cf	e sm - e cm sr max	wk	Mx fess	My fess

0.00026 (0.00026)

360

0.095 (0.20)

0.00

89.18

2	S	-0.00025	0	0.500	16.0	68	0.00011 (0.00011)	360	0.040 (0.20)	89.18	0.00
---	---	----------	---	-------	------	----	-------------------	-----	--------------	-------	------

COMBINAZIONI FREQUENTI IN ESERCIZIO - MASSIME TENSIONI NORMALI ED APERTURA FESSURE (NTC/EC2)

N°Comb	Ver	Sc max	Xc max	Yc max	Sf min	Xs min	Ys min	Ac eff.	As eff.
1	S	2.55	-50.0	40.0	-75.2	-33.0	7.6	950	20.1
2	S	1.27	-50.0	40.0	-37.5	-33.0	7.6	950	20.1

COMBINAZIONI FREQUENTI IN ESERCIZIO - APERTURA FESSURE [§ 7.3.4 EC2]

Comb.	Ver	e1	e2	k2	Ø	Cf	e sm - e cm s	r max	wk	Mx fess	My fess
1	S	-0.00051	0	0.500	16.0	68	0.00023 (0.00023)	360	0.081 (0.20)	89.18	0.00
2	S	-0.00025	0	0.500	16.0	68	0.00011 (0.00011)	360	0.040 (0.20)	89.18	0.00

COMBINAZIONI QUASI PERMANENTI IN ESERCIZIO - MASSIME TENSIONI NORMALI ED APERTURA FESSURE (NTC/EC2)

N°Comb	Ver	Sc max	Xc max \	c max	Sf min	Xs min	Ys min	Ac eff.	As eff.
1	S	1.92	-50.0	40.0	-56.5	-23.6	7.6	950	20.1
2	S	1.27	-50.0	40.0	-37.5	-33.0	7.6	950	20.1

COMBINAZIONI QUASI PERMANENTI IN ESERCIZIO - APERTURA FESSURE [§ 7.3.4 EC2]

Comb.	Ver	e 1	e2	k2	Ø	Ct	e sm - e cm s	r max	wk	Mx tess	My tess
1	S	-0.00038	0	0.500	16.0	68	0.00017 (0.00017)	360	0.061 (0.20)	89.18	0.00
2	S	-0.00025	0	0.500	16.0	68	0.00011 (0.00011)	360	0.040 (0.20)	89.18	0.00

13.2 Verifica piedritti

CARATTERISTICHE DI RESISTENZA DEI MATERIALI IMPIEGATI

CALCESTRUZZO -	Classe:	C30/37	
	Resis. compr. di progetto fcd:	17.000	MPa
	Resis. compr. ridotta fcd':	8.500	MPa
	Def.unit. max resistenza ec2:	0.0020	
	Def.unit. ultima ecu:	0.0035	
	Diagramma tensione-deformaz.:	Parabola-Rettangolo	
	Modulo Elastico Normale Ec:	32836.0	MPa
	Resis. media a trazione fctm:	2.900	MPa
	Coeff. Omogen. S.L.E.:	15.00	
	Coeff. Omogen. S.L.E.:	15.00	
	Sc limite S.L.E. comb. Frequenti:	165.00	daN/cm²
	Ap.Fessure limite S.L.E. comb. Freque		mm
	Sc limite S.L.E. comb. Q.Permanenti:	0.00	Мра
	Ap.Fess.limite S.L.E. comb. Q.Perm.:	0.200	mm
ACCIAIO -	Tipo:	B450C	
710017110	Resist. caratt. snervam. fyk:	450.00	MPa
	Resist. caratt. rottura ftk:	450.00	MPa
	Resist. snerv. di progetto fyd:	391.30	MPa
	Resist. ultima di progetto ftd:	391.30	MPa
	Deform. ultima di progetto Epu:	0.068	
	h - 2		

Modulo Elastico Ef 2000000 daN/cm²

Diagramma tensione-deformaz.:

Coeff. Aderenza istantaneo ß1*ß2:

Coeff. Aderenza differito ß1*ß2:

Sf limite S.L.E. Comb. Rare:

Bilineare finito

1.00

0.50

MPa

CARATTERISTICHE DOMINIO CONGLOMERATO

Forma del Do Classe Conglo		Poligonale C30/37
N°vertice:	X [cm]	Y [cm]
1	-50.0	0.0
2	-50.0	30.0
3	50.0	30.0
4	50.0	0.0

DATI BARRE ISOLATE

N°Barra	X [cm]	Y [cm]	DiamØ[mm]
1	-42.8	7.2	16
2	-42.8	22.8	16
3	42.8	22.8	16
4	42.8	7.2	16

DATI GENERAZIONI LINEARI DI BARRE

N°Gen.Numero assegnato alla singola generazione lineare di barreN°Barra Ini.Numero della barra iniziale cui si riferisce la generazioneN°Barra Fin.Numero della barra finale cui si riferisce la generazione

N°Barre Numero di barre generate equidistanti cui si riferisce la generazione

Ø Diametro in mm delle barre della generazione

N°Gen.	N°Barra Ini.	N°Barra Fin.	N°Barre	Ø
1	1	4	8	16
2	2	3	3	16

ARMATURE A TAGLIO

Diametro staffe: 8 mm Passo staffe: 19.1 cm

Staffe: Una sola staffa chiusa perimetrale

CALCOLO DI RESISTENZA - SFORZI PER OGNI COMBINAZIONE ASSEGNATA

N Mx			applicato nel Baric. (+ se di compressione) aNm] intorno all'asse X di riferimento delle coordinate
Vy			tale da comprimere il lembo sup. della sez. io [kN] parallela all'asse Y di riferimento delle coordinate
N°Comb.	N	Mx	Vy

iv Comb.	IN	IVIA	v y
1	0.00	0.10	59.67
2	0.00	0.10	-43.80
3	27.95	62.20	0.00
4	0.00	0.10	75.09
5	4.55	0.11	-32.44

6 21.65 88.70 0.00

COMB. RARE (S.L.E.) - SFORZI PER OGNI COMBINAZIONE ASSEGNATA

N Sforzo normale [kN] applicato nel Baricentro (+ se di compressione)

Mx Momento flettente [kNm] intorno all'asse X di riferimento (tra parentesi Mom.Fessurazione)

con verso positivo se tale da comprimere il lembo superiore della sezione

N°Comb. N Mx My 1 0.00 0.00 0.00

COMB. FREQUENTI (S.L.E.) - SFORZI PER OGNI COMBINAZIONE ASSEGNATA

N Sforzo normale [kN] applicato nel Baricentro (+ se di compressione)

Mx Momento flettente [kNm] intorno all'asse X di riferimento (tra parentesi Mom.Fessurazione)

con verso positivo se tale da comprimere il lembo superiore della sezione

N°Comb. N Mx My
1 0.00 0.00 (89.18) 0.00 (0.00)

COMB. QUASI PERMANENTI (S.L.E.) - SFORZI PER OGNI COMBINAZIONE ASSEGNATA

N Sforzo normale [kN] applicato nel Baricentro (+ se di compressione)

Mx Momento flettente [kNm] intorno all'asse X di riferimento (tra parentesi Mom.Fessurazione)

con verso positivo se tale da comprimere il lembo superiore della sezione

 N°Comb.
 N
 Mx
 My

 1
 0.00
 0.00 (89.18)
 0.00 (0.00)

RISULTATI DEL CALCOLO

Sezione verificata per tutte le combinazioni assegnate

Copriferro netto minimo barre longitudinali: 6.4 cm Interferro netto minimo barre longitudinali: 7.9 cm Copriferro netto minimo staffe: 5.6 cm

VERIFICHE DI RESISTENZA IN PRESSO-TENSO FLESSIONE ALLO STATO LIMITE ULTIMO

Ver S = combinazione verificata / N = combin. non verificata

N Sforzo normale assegnato [kN] nel baricentro B sezione cls.(positivo se di compressione)

Mx Componente del momento assegnato [kNm] riferito all'asse x princ. d'inerzia
N Res Sforzo normale resistente [kN] nel baricentro B sezione cls.(positivo se di compress.)

Mx Res Momento flettente resistente [kNm] riferito all'asse x princ. d'inerzia

Mis.Sic. Misura sicurezza = rapporto vettoriale tra (N r,Mx Res,My Res) e (N,Mx,My)

Verifica positiva se tale rapporto risulta >=1.000

As Totale Area totale barre longitudinali [cm²]. [Tra parentesi il valore minimo di normativa]

N°Comb	Ver	N	Mx	N Res	Mx Res	Mis.Sic.	As Totale
1	S	0.00	0.10	0.00	162.62	999.00	30.2(9.0)
2	S	0.00	0.10	0.00	162.62	999.00	30.2(9.0)
3	S	27.95	62.20	28.14	165.09	2.65	30.2(9.0)
4	S	0.00	0.10	0.00	162.62	999.00	30.2(9.0)
5	S	4.55	0.11	4.59	163.02	999.00	30.2(9.0)
6	S	21.65	88.70	21.86	164.54	1.85	30.2(9.0)

METODO AGLI STATI LIMITE ULTIMI - DEFORMAZIONI UNITARIE ALLO STATO ULTIMO

ec max	Deform. unit. massima del conglomerato a compressione
	Deform. unit. massima del conglomerato a compressione
Xc max	Ascissa in cm della fibra corrisp. a ec max (sistema rif. X,Y,O sez.)
Yc max	Ordinata in cm della fibra corrisp. a ec max (sistema rif. X,Y,O sez.)
es min	Deform. unit. minima nell'acciaio (negativa se di trazione)
Xs min	Ascissa in cm della barra corrisp. a es min (sistema rif. X,Y,O sez.)
Ys min	Ordinata in cm della barra corrisp. a es min (sistema rif. X,Y,O sez.)
es max	Deform. unit. massima nell'acciaio (positiva se di compress.)
Xs max	Ascissa in cm della barra corrisp. a es max (sistema rif. X,Y,O sez.)
Ys max	Ordinata in cm della barra corrisp. a es max (sistema rif. X,Y,O sez.)

$N^{\circ}Comb$	ec max	Xc max	Yc max	es min	Xs min	Ys min	es max	Xs max	Ys max
1	0.00350	-50.0	30.0	-0.00045	42.8	22.8	-0.00902	-42.8	7.2
2	0.00350	-50.0	30.0	-0.00045	42.8	22.8	-0.00902	-42.8	7.2
3	0.00350	-50.0	30.0	-0.00039	42.8	22.8	-0.00881	-42.8	7.2
4	0.00350	-50.0	30.0	-0.00045	42.8	22.8	-0.00902	-42.8	7.2
5	0.00350	-50.0	30.0	-0.00044	42.8	22.8	-0.00898	-42.8	7.2
6	0.00350	-50.0	30.0	-0.00040	42.8	22.8	-0.00886	-42.8	7.2

POSIZIONE ASSE NEUTRO PER OGNI COMB. DI RESISTENZA

a, b, c	Coeff. a, b, c nell'eq. dell'asse neutro aX+bY+c=0 nel rif. X,Y,O gen.
x/d	Rapp. di duttilità (travi e solette)[§ 4.1.2.1.2.1 NTC]: deve essere < 0.45
C.Rid.	Coeff. di riduz. momenti per sola flessione in travi continue

N°Comb	а	b	С	x/d	C.Rid.
1	0.000000000	0.000548965	-0.012968960		
2	0.000000000	0.000548965	-0.012968960		
3	0.000000000	0.000540001	-0.012700031		
4	0.000000000	0.000548965	-0.012968960		
5	0.000000000	0.000547502	-0.012925054		
6	0.000000000	0.000542013	-0.012760403		

VERIFICHE A TAGLIO

bw

Ctg

Acw

Ast

A.Eff

Diam. Staffe:	8 mm
---------------	------

Passo staffe: 19.1 cm [Passo massimo di normativa = 19.2 cm]

Ver	S = comb. verificata a taglio / N = comb. non verificata
Ved	Taglio di progetto [kN] = Vy ortogonale all'asse neutro
Vcd	Taglio compressione resistente [kN] lato conglomerato [formula (4.1.28)NTC]
Vwd	Taglio resistente [kN] assorbito dalle staffe [(4.1.18) NTC]

d | z Altezza utile media pesata sezione ortogonale all'asse neutro | Braccio coppia interna [cm]

Vengono prese nella media le strisce con almeno un estremo compresso.

I pesi della media sono costituiti dalle stesse lunghezze delle strisce.

Larghezza media resistente a taglio [cm] misurate parallel. all'asse neutro E' data dal rapporto tra l'area delle sopradette strisce resistenti e Dmed.

Cotangente dell'angolo di inclinazione dei puntoni di conglomerato Coefficiente maggiorativo della resistenza a taglio per compressione Area staffe+legature strettam. necessarie a taglio per metro di pil.[cm²/m]

Area staffe+legature efficaci nella direzione del taglio di combinaz.[cm²/m]

Tra parentesi è indicata la quota dell'area relativa alle sole legature.

L'area della legatura è ridotta col fattore L/d_max con L=lungh.legat.proiettata sulla direz. del taglio e d_max= massima altezza utile nella direz.del taglio.

N°Comb	Ver	Ved	Vcd	Vwd	d z	bw	Ctg	Acw	Ast	A.Eff
1 2	-			104.26 2 104.26 2						

II ITALFERR	Matera con	Nuova linea Ferrandina - Matera La Martella per il collegamento Matera con la rete ferroviaria nazionale NUOVA LINEA FERRANDINA – MATERA LA MARTELLA						
Relazione di calcolo	PROGETTO IA5F	LOTTO 01	CODIFICA DOCUMENTO D 78 CL IN1800 001	REV.	FOGLIO 76 DI 77			

3	S	0.00	863.52	41.62 27.4 20.2	100.0	1.000	1.005	0.0	5.3(0.0)
4	S	75.09	593.53	104.26 27.4 20.2	100.0	2.500	1.000	3.8	5.3(0.0)
5	S	32.44	593.33	104.23 27.4 20.2	100.0	2.500	1.000	1.6	5.3(0.0)
6	S	0.00	862.87	41.64 27.4 20.2	100.0	1.000	1.004	0.0	5.3(0.0)

COMBINAZIONI RARE IN ESERCIZIO - MASSIME TENSIONI NORMALI ED APERTURA FESSURE (NTC/EC2)

Ver S = comb. verificata/ N = comb. non verificata

Sc max
Massima tensione (positiva se di compressione) nel conglomerato [Mpa]
Xc max, Yc max
Ascissa, Ordinata [cm] del punto corrisp. a Sc max (sistema rif. X,Y,O)
Sf min
Minima tensione (negativa se di trazione) nell'acciaio [Mpa]

Xs min, Ys min
Ascissa, Ordinata [cm] della barra corrisp. a Sf min (sistema rif. X,Y,O)
Ac eff.
As eff.
Area di calcestruzzo [cm²] in zona tesa considerata aderente alle barre
Area barre [cm²] in zona tesa considerate efficaci per l'apertura delle fessure

N°Comb Sf min Xs min Ys min Ac eff. Sc max Xc max Yc max As eff. Ver S 1 2.97 -50.0 40.0 -87.6 -42.4 7.6 950 20.1

COMBINAZIONI RARE IN ESERCIZIO - APERTURA FESSURE [§ 7.3.4 EC2]

La sezione viene assunta sempre fessurata anche nel caso in cui la trazione minima del calcestruzzo sia inferiore a fctm

Ver. Esito della verifica

e1 Massima deformazione unitaria di trazione nel calcestruzzo (trazione -) valutata in sezione fessurata e2 Minima deformazione unitaria di trazione nel calcestruzzo (trazione -) valutata in sezione fessurata

k1 = 0.8 per barre ad aderenza migliorata [eq.(7.11)EC2]

kt = 0.4 per comb. quasi permanenti / = 0.6 per comb.frequenti [cfr. eq.(7.9)EC2] k2 = 0.5 per flessione; =(e1 + e2)/(2*e1) per trazione eccentrica [eq.(7.13)EC2]

k3 = 3.400 Coeff. in eq.(7.11) come da annessi nazionali k4 = 0.425 Coeff. in eq.(7.11) come da annessi nazionali

Ø Diametro [mm] equivalente delle barre tese comprese nell'area efficace Ac eff [eq.(7.11)EC2]

Cf Copriferro [mm] netto calcolato con riferimento alla barra più tesa

e sm - e cm Differenza tra le deformazioni medie di acciaio e calcestruzzo [(7.8)EC2 e (C4.1.7)NTC]

Tra parentesi: valore minimo = 0.6 Smax / Es [(7.9)EC2 e (C4.1.8)NTC]

sr max Massima distanza tra le fessure [mm]

wk Apertura fessure in mm calcolata = sr max*(e_sm - e_cm) [(7.8)EC2 e (C4.1.7)NTC]. Valore limite tra parentesi

Mx fess. Componente momento di prima fessurazione intorno all'asse X [kNm]
My fess. Componente momento di prima fessurazione intorno all'asse Y [kNm]

Comb. Ver e1 e2 k2 Ø Cf My fess e sm - e cm sr max wk Mx fess S -0.00059 1 0 0.500 16.0 68 0.00026 (0.00026) 360 0.095 (0.20) 89.18 0.00

COMBINAZIONI FREQUENTI IN ESERCIZIO - MASSIME TENSIONI NORMALI ED APERTURA FESSURE (NTC/EC2)

Ver Ac eff. N°Comb Sc max Xc max Yc max Sf min Xs min Ys min As eff. S 2.55 -50.0 40.0 -75.2 -33.0 7.6 950 20.1

COMBINAZIONI FREQUENTI IN ESERCIZIO - APERTURA FESSURE [§ 7.3.4 EC2]

Cf Comb. Ver e1 e2 k2 Ø e sm - e cm sr max Mx fess My fess S -0.00051 0 0.500 16.0 68 0.00023 (0.00023) 360 0.081 (0.20) 89.18 0.00

COMBINAZIONI QUASI PERMANENTI IN ESERCIZIO - MASSIME TENSIONI NORMALI ED APERTURA FESSURE (NTC/EC2)

 $N^{\circ}Comb$ Ver Sc max Xc max Yc max Sf min Xs min Ys min Ac eff. As eff. S 1.92 -50.0 40.0 -56.5 -23.6 7.6 950 20.1

COMBINAZIONI QUASI PERMANENTI IN ESERCIZIO - APERTURA FESSURE [§ 7.3.4 EC2]

S ITALFERR	Matera con	la rete fer	ina - Matera La Martella rroviaria nazionale ANDINA – MATERA LA M	•	
Balantana Paralanta	PROGETTO	LOTTO	CODIFICA DOCUMENTO	REV.	FOGLIO
Relazione di calcolo	IA5F	01	D 78 CL IN1800 001	Α	77 DI 77

Comb.	Ver	e1	e2	k2	Ø	Cf	e sm - e cm sr max		wk	Mx fess	My fess
1	S	-0.00038	0	0.500	16.0	68	0.00017 (0.00017)	360	0.061 (0.20)	89.18	0.00