COMMITTENTE

PROGETTAZIONE:

D	IR	EZ	Ю	NE	ΞΤ	Έ	C۱	N۱	CA	١
---	----	----	---	----	----	---	----	----	----	---

U.O. INFRASTRUTTURE SUD

PROGETTO DEFINITIVO

Nuova linea Ferrandina - Matera La Martella per il collegamento di Matera con la rete ferroviaria nazionale

NUOVA LINEA FERRANDINA – MATERA LA MARTELLA

OPERE CIVILI
Opere D'Arte Minori – Sottovia e interferenze idrauliche – Tombini IN26 – Tombino in c.a. sotto NV02
Relazione di calcolo

SCALA:
-

COMMESSA	LOTTO	FASE	ENIE	TIPO DOC.	OPERA/DISCIPLINA	PROGR.	REV.
I A 5 F	0 1	D	7 8	CL	I N 2 6 0 0	0 0 1	В

Rev.	Descrizione	Redatto	Data	Verificato	Data	Approvato	Data	Autorizzato Data
Α	EMISSIONE DEFINITIVA	E.SELLARI	07/2010	N.MANCUSO	07/2010	F.GERNONE	07/2010	D. TIBERTI
Α	LIMISSIONE DEI INTTVA		07/2019		07/2019		07/ 2019	Dicembre 2020
В	Emissione a seguito	E.SELLARI	Dicembre	N.MANCUSO	Dicembre	F.GERNONE	Dicembre	Start Start
Б	osservazioni CSLLPP		2020	Mich Moveus	2020	Fobsio Perusu	2020	S S S S S S S S S S S S S S S S S S S
				, ,				
								Direction of the second of the
								- 9 D C E
								dine

File: DOCUMENTO1	n. Elab.:

Nuova linea Ferrandina - Matera La Martella per il collegamento di Matera con la rete ferroviaria nazionale

NUOVA LINEA FERRANDINA – MATERA LA MARTELLA

Relazione di calcolo

PROGETTO LOTTO CODIFICA DOCUMENTO REV. FOGLIO

IASF 01 D 78 CL IN2600 001 B 3 DI 94

INDICE

1	PREMESSA	4
2	NORMATIVA DI RIFERIMENTO	
3	MATERIALI	
3.1	CALCESTRUZZO	
	ACCIAIO B450C	
3.3	VERIFICA S.L.E.	
	VERIFICHE ALLE TENSIONI	
	VERIFICHE A FESSURAZIONE	
4	INQUADRAMENTO GEOTECNICO	
4.1	TERRENO DI RICOPRIMENTO/RINTERRO	
	INTERAZIONE TERRENO-STRUTTURA	
5	CARATTERIZZAZIONE SISMICA	
5.1	VITA NOMINALE E CLASSE D'USO	
	PARAMETRI DI PERICOLOSITÀ SISMICA	
6	SOFTWARE DI CALCOLO	
6.1	ORIGINE E CARATTERISTICHE DEI CODICI DI CALCOLO ADOTTATI	
6.2	UNITÀ DI MISURA	
6.3	GRADO DI AFFIDABILITÀ DEL CODICE	
6.4	VALUTAZIONE DELLA CORRETTEZZA DEL MODELLO	
6.5	CARATTERISTICHE DELL'ELABORAZIONE	
6.6	GIUDIZIO FINALE SULLA ACCETTABILITÀ DEI CALCOLI	
6.7	PROGRAMMI DI SERVIZIO	
7	TOMBINO SCATOLARE 1.72X1.72M	
7.1	GEOMETRIA	
7.2	MODELLO DI CALCOLO	
	VALUTAZIONE DELLA RIGIDEZZA DELLE MOLLE	
	ANALISI DEI CARICHI	
	PESO PROPRIO DELLA STRUTTURA E CARICHI PERMANENTI PORTATI	
7.3.2	SPINTA SULLE PARETI DOVUTA AL TERRENO ED AL SOVRACCARICO PERMANENTE	22
	RIPARTIZIONE DEI CARICHI MOBILI VERTICALI	
7.5	SPINTA DEL SOVRACCARICO SUL RILEVATO Q1=20 KN/M	24
7.5.1	FRENATURA	25
7.5.2	RITIRO DIFFERENZIALE DELLA SOLETTA DI COPERTURA	26
7.6	AZIONE SISMICA INERZIALE	28
7.7	SPINTA SISMICA TERRENO	30
8	COMBINAZIONI DI CARICO	32
8.1	CONDIZIONI DI CARICO:	33
DIA	GRAMMI DELLE SOLLECITAZIONI	37
9	VERIFICA DELLE SEZIONI IN C.A.	41
9.1	VERIFICA SOLETTA INFERIORE	42
9.2	VERIFICA SOLETTA SUPERIORE	46
9.3	VERIFICA PIEDRITTI	51
10	MURO DI SOSTEGNO	57

S ITALFERR	Nuova linea Ferrandina - Matera La Martella per il collegamento de Matera con la rete ferroviaria nazionale NUOVA LINEA FERRANDINA – MATERA LA MARTELLA					
Relazione di calcolo	PROGETTO	LOTTO	CODIFICA DOCUMENTO	REV.	FOGLIO	
	IA5F	01	D 78 CL IN2600 001	B	5 DI 94	

1 PREMESSA

Il presente documento si inserisce nell'ambito della redazione degli elaborati tecnici di progetto definitivo delle opere relative alla nuova linea Ferrandina-Matera La Martella per il collegamento di matera con la rete ferroviaria nazionale.

In particolare, ha per oggetto le verifiche secondo il metodo semiprobabilistico agli Stati Limite (S.L.) del tombino scatolare sulla viabilità IN26 alla progressiva 2+341.55.

Il tombino si rende necessario per garantire la continuità idraulica del nuovo tracciato stradale.

L'opera consiste in un tombino circolare che in fase di calcolo viene assimilato ad una sezione scatolare come descritto successivamente.

La sezione trasversale retta ha una larghezza interna di $L_{int} = 1.72$ m ed un'altezza netta di $H_{int} = 1.72$ m; lo spessore della platea di fondazione è di $S_f = 0.35$ m, lo spessore dei piedritti è di $S_p = 0.35$ m e lo spessore della soletta di copertura è di $S_s = 0.30$ m.

Quanto riportato di seguito consentirà di verificare che il dimensionamento della struttura è stato effettuato nel rispetto dei requisiti di resistenza richiesti all'opera.

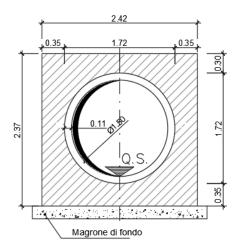


Fig. 1 – Sezione trasversale dell'opera

S ITALFERR	Nuova linea Ferrandina - Matera La Martella per il collegamento Matera con la rete ferroviaria nazionale NUOVA LINEA FERRANDINA – MATERA LA MARTELLA					
Relazione di calcolo	PROGETTO	LOTTO	CODIFICA DOCUMENTO	REV.	FOGLIO	
	IA5F	01	D 78 CL IN2600 001	B	6 DI 94	

2 NORMATIVA DI RIFERIMENTO

La progettazione è conforme alle normative vigenti nonché alle istruzioni dell'Ente FF.SS.

La normativa cui viene fatto riferimento nelle fasi di calcolo e progettazione è la seguente:

- L. n. 64 del 2/2/1974"Provvedimento per le costruzioni con particolari prescrizioni per le zone sismiche".
- L. n. 1086 del 5/11/1971"Norme per la disciplina delle opere di conglomerato cementizio armato, normale e precompresso ed a struttura metallica".
- Norme Tecniche per le Costruzioni D.M. 17-01-18;
- Circolare n. 7 del 21 Gennaio 2019 Istruzioni per l'Applicazione Nuove Norme Tecniche Costruzioni di cui al Decreto Ministeriale 17 gennaio 2018;
- Regolamento (UE) N.1299/2014 del 18 novembre 2014 della Commissione Europea. Relativo alle specifiche tecniche di interoperabilità per il sottosistema "infrastruttura" del sistema ferroviario dell'Unione Europea.
- Eurocodici EN 1991-2: 2003/AC:2010.
- RFI DTC SI MA IFS 001 B del 2018 Manuale di Progettazione delle Opere Civili.
- RFI DTC SI SP IFS 001 B del 2018 Capitolato generale tecnico di Appalto delle opere civili.
- CNR-DT207/2008 Istruzioni per la valutazione delle azioni e degli effetti del vento sulle costruzioni.
- UNI EN 206-1:2006 Parte 1: Calcestruzzo-Specificazione, prestazione, produzione e conformità;
- Decreto del Presidente del Consiglio Superiore dei Lavori Pubblici n. 361 del 26 settembre 2017,Linee guida per la messa in opera del calcestruzzo strutturale;
- EUROCODICE 2 Progettazione delle strutture di calcestruzzo
- EUROCODICE 7: progettazione geotecnica
- Eurocodice 8. Progettazione delle strutture per la resistenza sismica

S ITALFERR	Nuova linea Ferrandina - Matera La Martella per il collegamento Matera con la rete ferroviaria nazionale NUOVA LINEA FERRANDINA – MATERA LA MARTELLA				
Relazione di calcolo	PROGETTO	LOTTO	CODIFICA DOCUMENTO	REV.	FOGLIO
	IA5F	01	D 78 CL IN2600 001	B	7 DI 94

3 MATERIALI

Il calcestruzzo adottato corrisponde alla Classe C30/37, mentre l'acciaio in barre ad aderenza migliorata corrisponde alla classe B450C. Di seguito vengono elencate le specifiche.

3.1 CALCESTRUZZO

Per le strutture in elevazione si adotta un calcestruzzo con le caratteristiche riportate di seguito:

Classe di resistenza: Elevazione	C30/37		
Resistenza a compressione cubica caratteristica	$R_{ck} =$	37	N/mm^2
Resistenza a compressione cilindrica caratteristica	$f_{ck} =$	30.71	N/mm^2
Resistenza a compressione cilindrica media	$f_{cm} =$	38.71	N/mm^2
Resistenza a trazione semplice	$f_{ctm} =$	2.94	N/mm^2
Resistenza a trazione per flessione	$f_{ctm} =$	3.53	N/mm^2
Modulo elastico secante medio	$E_{cm} =$	33019	N/mm^2
Resistenza caratteristica a trazione semplice (5%)	$f_{ctk} =$	2.06	N/mm^2
Resistenza caratteristica a trazione semplice (95%)	$f_{ctk} =$	3.82	N/mm^2
Coefficiente di sicurezza SLU:	$\gamma_c =$	1.5	
Resistenza di calcolo a compressione cilindrica SLU:	$f_{cd} =$	17.4	N/mm^2
Resistenza di calcolo a trazione semplice (5%) - SLU:	$f_{ctd} =$	1.37	N/mm^2
Coefficiente di sicurezza SLE:	$\gamma_c =$	1.0	
Resistenza di calcolo a compressione cilindrica SLE:	$f_{cd} =$	30.7	N/mm^2
Resistenza di calcolo a trazione semplice (5%) - SLE:	$f_{ctd} =$	2.06	N/mm^2
Massime tensioni di compressione in esercizio:			
Combinazione rara	$\sigma_{c,ad} =$	18.43	N/mm^2
Combinazione quasi permanente	$\sigma_{c,ad} =$	13.82	N/mm^2

Classe di esposizione XA1

3.2 ACCIAIO B450C

Tensione caratteristica di snervamento: $f_{yk} = 450 \text{ MPa};$

Tensione di progetto: $f_{yk} = 450 \text{ MPa};$

Tensione di progetto: $f_{yk} = f_{yd} \, / \, \gamma_m$

 $Modulo \ Elastico \\ E_s = 210'000 \ MPa.$

II ITALFERR	Nuova linea Ferrandina - Matera La Martella per il collegamento Matera con la rete ferroviaria nazionale NUOVA LINEA FERRANDINA – MATERA LA MARTELLA					
Relazione di calcolo	PROGETTO	LOTTO	CODIFICA DOCUMENTO	REV.	FOGLIO	
	IA5F	01	D 78 CL IN2600 001	B	8 DI 94	

3.3 VERIFICA S.L.E.

La verifica nei confronti degli Stati limite di esercizio, consiste nel controllare, con riferimento alle sollecitazioni di calcolo corrispondenti alle Combinazioni di Esercizio il tasso di Lavoro nei Materiali e l'ampiezza delle fessure attesa, secondo quanto di seguito specificato

3.3.1 VERIFICHE ALLE TENSIONI

La verifica delle tensioni in esercizio consiste nel controllare il rispetto dei limiti tensionali previsti per il calcestruzzo e per l'acciaio per ciascuna delle combinazioni di carico caratteristiche "Rara" e "Quasi Permanente"; i valori tensionali nei materiali sono valutati secondo le note teorie di analisi delle sezioni in c.a. in campo elastico e con calcestruzzo "non reagente a trazione" adottando come limiti di riferimento, trattandosi nel caso in specie di opere Ferroviarie, quelli indicati nel documento "Specifica per la progettazione e l'esecuzione dei ponti ferroviari e di altre opere minori sotto binario RFI DTC INC PO SP IFS 001 A del 2019 ", ovvero:

Strutture in c.a.

Tensioni di compressione del calcestruzzo

Devono essere rispettati i seguenti limiti per le tensioni di compressione nel calcestruzzo:

- per combinazione di carico caratteristica (rara): 0,55 f_{ek} ;
- per combinazioni di carico quasi permanente: 0,40 fek;
- per spessori minori di 5 cm, le tensioni normali limite di esercizio sono ridotte del 30%.

Tensioni di trazione nell'acciaio

Per le armature ordinarie, la massima tensione di trazione sotto la combinazione di carico caratteristica (rara) non deve superare $0.75~f_{yk}$.

Per il caso in esame risulta in particolare :

CALCESTRUZZO

$$\sigma_{cmax\ QP}$$
 = $(0,40\ f_{ck})$ = 12.00 MPa (Combinazione di Carico Quasi Permanente)
$$\sigma_{cmax\ R}$$
 = $(0,55\ f_{ck})$ = 16.50 MPa (Combinazione di Carico Caratteristica - Rara)

ACCIAIO

S ITALFERR	Matera con	la rete fer	ina - Matera La Martella roviaria nazionale ANDINA – MATERA LA M		
Relazione di calcolo	PROGETTO	LOTTO	CODIFICA DOCUMENTO	REV.	FOGLIO
	IA5F	01	D 78 CL IN2600 001	B	9 DI 94

$$\sigma_{s \text{ max}} = (0,75 \text{ f}_{yk}) =$$
338 MPa Combinazione di Carico Caratteristica(Rara)

3.3.2 <u>VERIFICHE A FESSURAZIONE</u>

La verifica di fessurazione consiste nel controllare l'ampiezza dell'apertura delle fessure sotto combinazione di carico frequente e combinazione quasi permanente. Essendo la struttura a contatto col terreno si considerano condizioni ambientali aggressive; le armature di acciaio ordinario sono ritenute poco sensibili [NTC – Tabella 4.1.IV]

In relazione all'aggressività ambientale e alla sensibilità dell'acciaio, l'apertura limite delle fessure è riportato nel prospetto seguente:

Tabella 1 – Criteri di scelta dello stato limite di fessurazione e Condizioni Ambientali

			Armatura				
		Combinazione di azione	Sensibile	Poco sensibile			
esigenza	sigenza –		Stato limite	wd	Stato limite	wd	
	a Ordinarie frequente quasi permanente		ap. fessure	≤w ₂	ap. fessure	≤w ₃	
a			ap. fessure	≤w ₁	ap. fessure	≤w ₂	
b	frequente		ap. fessure	\leq w ₁	ap. fessure	≤w ₂	
D	Aggressive	quasi permanente	decompressione	-	ap. fessure	\leq w ₁	
	Male Access	frequente	formazione fessure	-	ap. fessure	\leq w ₁	
c Molto Aggressive		quasi permanente	decompressione	-	ap. fessure	\leq w ₁	

Tabella 4.1.III - Descrizione delle condizioni ambientali

CONDIZIONI AMBIENTALI	CLASSE DI ESPOSIZIONE					
Ordinarie	X0, XC1, XC2, XC3, XF1					
Aggressive	XC4, XD1, XS1, XA1, XA2, XF2, XF3					
Molto aggressive	XD2, XD3, XS2, XS3, XA3, XF4					

Risultando:

S ITALFERR	Matera con	la rete fer	ina - Matera La Martella roviaria nazionale ANDINA – MATERA LA M	•	ŭ
Relazione di calcolo	PROGETTO	LOTTO	CODIFICA DOCUMENTO	REV.	FOGLIO
	IA5F	01	D 78 CL IN2600 001	В	10 DI 94

 $w_1 = 0.2 \text{ mm}$

 $w_2 = 0.3 \text{ mm}$

 $w_3 = 0.4 \text{ mm}$

Data la maggior restrittività, alle prescrizioni normative presenti in NTC si sostituiscono in tal caso quelle fornite dal "Manuale di Progettazione delle Opere Civili" secondo cui la verifica nei confronti dello stato limite di apertura delle fessure va effettuata utilizzando le sollecitazioni derivanti dalla combinazione caratteristica (rara).

Per strutture in condizioni ambientali aggressive o molto aggressive, qual è il caso delle strutture in esame così come identificate nel DM 17.1.2018, per tutte le strutture a permanente contatto con il terreno e per le zone non ispezionabili di tutte le strutture, l'apertura convenzionale delle fessure dovrà risultare:

$$\delta_f \leq w_1 = 0.2 \ mm$$

Riguardo infine il valore di calcolo delle fessure da confrontare con i valori limite fissati dalla norma, si è utilizzata la procedura riportata al C4.1.2.2.4.5 della Circolare n. 7/19.

I ITALFERR	Nuova linea Ferrandina - Matera La Martella per il collegamento o Matera con la rete ferroviaria nazionale NUOVA LINEA FERRANDINA – MATERA LA MARTELLA					
Relazione di calcolo	PROGETTO	LOTTO	CODIFICA DOCUMENTO	REV.	FOGLIO	
	IA5F	01	D 78 CL IN2600 001	B	11 DI 94	

4 INQUADRAMENTO GEOTECNICO

4.1 TERRENO DI RICOPRIMENTO/RINTERRO

Per il terreno di ricoprimento dell'opera sono state assunte le seguenti caratteristiche geotecniche :

 $\gamma = 20 \text{ kN/m}^3$ peso di volume naturale

 $\varphi' = 35^{\circ}$ angolo di resistenza al taglio

c' = 0 kPa coesione drenata

4.2 INTERAZIONE TERRENO-STRUTTURA

La stratigrafia di calcolo viene di seguito descritta:

Sono presenti depositi alluvionali recenti (unità U1c) per spessori pressochè costante e pari a 5-7 m circa. Al di sotto di questo deposito è presente l'argilla subappenninica.

La successione stratigrafica lungo lo sviluppo dell'opera è rappresentata nel profilo stratigrafico longitudinale.

Il livello massimo di falda si trova a circa 3 m dal piano campagna.

Parametri	Unità 1c	Unità 2
γ (kN/m³)	18-19	19-20
φ (°)	29-31	21-23
c' (kPa)	12-17	29-31
c _u (kPa)	-	200-250
v _s (m/s)	200-250	250-350
E ₀ (MPa)	300-400	400-800
k (m/s)	1.0 X10 ⁻⁴ -1.5 X10 ⁻⁴	9.0 X 10 ⁻⁹ - 5.0 X 10 ⁻⁷

Di seguito sono trattati gli aspetti di natura geotecnica riguardanti l'interazione terreno-struttura relativamente all'opera in esame.

Per la determinazione della costante di sottofondo si può fare riferimento alle seguenti formulazioni assimilando il comportamento del terreno a quello di un mezzo elastico omogeneo (formula di Vesic)

$$k = \frac{0.65 \, E}{1 - v^2} * \sqrt[12]{\frac{Eb^4}{(E_c J)_{fond}}}$$

dove:

h = altezza della trave;

- b = dimensione trasversale della trave;

J = inierzia della trave;

- $E_c = modulo di elasticità del calcestruzzo$

- v = coefficiente di Poisson del terreno;

- E = modulo elastico medio del terreno sottostante.

$$E = \begin{bmatrix} 300000 & kN/m^2 \\ n = & 0.3 \end{bmatrix}$$

$$B = \begin{bmatrix} 2.4 & m \\ L = & 15.00 & m \end{bmatrix}$$

$$L/B = 6.20$$

$$c_t = 1.83$$

$$K_w = 74557 \quad kN/m^3$$

Cautelativamente si limita, ai fini del calcolo, il valore della costante di sottofondo a circa 74000 kN/m³.

S ITALFERR	Matera con	la rete fer	ina - Matera La Martella roviaria nazionale ANDINA – MATERA LA M		Ü
Relazione di calcolo	PROGETTO	LOTTO	CODIFICA DOCUMENTO	REV.	FOGLIO
	IA5F	01	D 78 CL IN2600 001	B	13 DI 94

5 CARATTERIZZAZIONE SISMICA

Nel seguente paragrafo è riportata la valutazione dei parametri di pericolosità sismica utili alla determinazione delle azioni sismiche di progetto dell'opera cui si riferisce il presente documento, in accordo a quanto specificato a riguardo dal D.M. 17 gennaio 2018 e relativa circolare applicativa.

5.1 VITA NOMINALE E CLASSE D'USO

Per la valutazione dei parametri di pericolosità sismica è necessario definire, oltre alla localizzazione geografica del sito, la Vita nominale dell'opera strutturale (V_N) , intesa come il numero di anni nel quale la struttura, purché soggetta alla manutenzione ordinaria, deve potere essere usata per lo scopo al quale è destinata, e la Classe d'Uso a cui è associato un coefficiente d'uso (C_U)

Per l'opera in oggetto si considera una vita nominale: $V_N = 75$ anni (categoria 2: "Altre opere nuove a velocità V < 250 Km/h"). Riguardo invece la Classe d'Uso, all' opera in oggetto corrisponde una Classe II a cui è associato un coefficiente d'uso pari a (NTC – Tabella 2.4.II): $C_u = 1$.

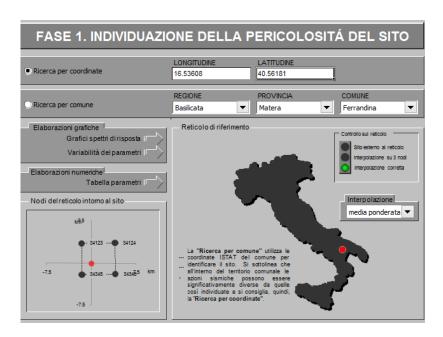
I parametri di pericolosità sismica vengono quindi valutati in relazione ad un periodo di riferimento V_R che si ricava per ciascun tipo di costruzione, moltiplicando la vita nominale V_N per il coefficiente d'uso C_U , ovvero:

$$V_R = V_N \cdot C_U$$

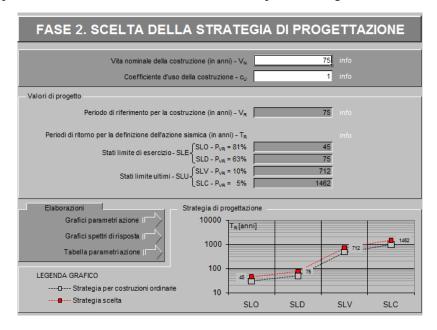
Pertanto, per l'opera in oggetto, il periodo di riferimento è pari a $V_R = 75x1 = 75$ anni

Il calcolo viene eseguito con il metodo pseudostatico. In queste condizioni l'azione sismica è rappresentata da una forza statica equivalente pari al prodotto delle forze di gravità per un opportuno coefficiente sismico.

5.2 PARAMETRI DI PERICOLOSITÀ SISMICA

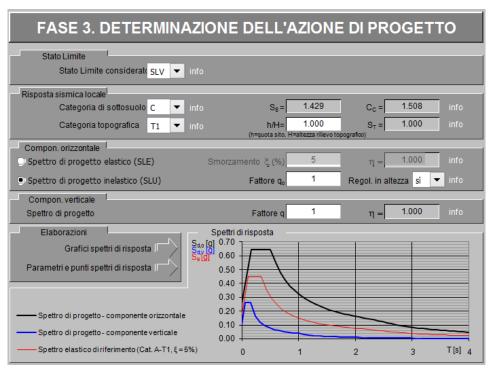

La valutazione dei parametri di pericolosità sismica, che ai sensi del D.M. 17-01-2018, costituiscono il dato base per la determinazione delle azioni sismiche di progetto su una costruzione (forme spettrali e/o forze inerziali) dipendono, come già in parte anticipato in precedenza, dalla localizzazione geografica del sito, dalle caratteristiche della costruzione (Periodo di riferimento per valutazione azione sismica / V_R) oltre che dallo Stato Limite di riferimento/Periodo di ritorno dell'azione sismica.

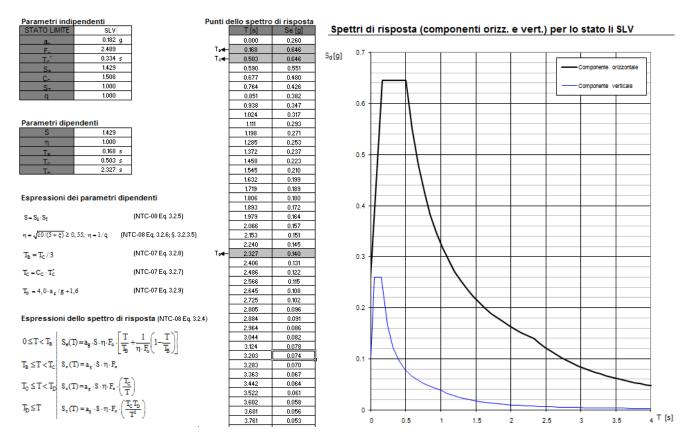
- Categoria sottosuolo C


In accordo a quanto riportato in Allegato A delle Norme Tecniche per le costruzioni DM 17.01.18, si ottiene per il sito in esame:

II ITALFERR	Matera con	la rete fer	ina - Matera La Martella roviaria nazionale ANDINA – MATERA LA N		·
Relazione di calcolo	PROGETTO	LOTTO	CODIFICA DOCUMENTO	REV.	FOGLIO
	IA5F	01	D 78 CL IN2600 001	B	14 DI 94

La pericolosità sismica di base è stata definita sulla base delle coordinate geografiche del sito di realizzazione dell'opera:


I parametri utilizzati per la definizione dell'azione sismica sono riportati di seguito.



L'azione sismica è stata calcolata per mezzo del foglio di calcolo Spettri-NTCver.1.0.3 messo a disposizione dal Consiglio Superiore dei Lavori Pubblici.

S ITALFERR	Matera con	la rete fer	ina - Matera La Martella roviaria nazionale ANDINA – MATERA LA M		
Relazione di calcolo	PROGETTO	LOTTO	CODIFICA DOCUMENTO	REV.	FOGLIO
	IA5F	01	D 78 CL IN2600 001	B	15 DI 94

Di seguito si riportano gli spettri di risposta orizzontale e verticale allo Stato limite di salvaguardia della vita SLV utilizzati per il calcolo dell'azione sismica.

II ITALFERR	Matera con	la rete fer	ina - Matera La Martella roviaria nazionale ANDINA – MATERA LA N		·
Relazione di calcolo	PROGETTO	LOTTO	CODIFICA DOCUMENTO	REV.	FOGLIO
	IA5F	01	D 78 CL IN2600 001	B	16 DI 94

Il calcolo viene eseguito con il metodo pseudo statico, si eseguirà un calcolo elastico assumendo un fattore di struttura unitario. In queste condizioni l'azione sismica è rappresentata da una forza statica equivalente pari al prodotto delle forze di gravità per un opportuno coefficiente sismico.

I ITALFERR	Nuova linea Ferrandina - Matera La Martella per il collegamento o Matera con la rete ferroviaria nazionale NUOVA LINEA FERRANDINA – MATERA LA MARTELLA					
Relazione di calcolo	PROGETTO	LOTTO	CODIFICA DOCUMENTO	REV.	FOGLIO	
	IA5F	01	D 78 CL IN2600 001	B	17 DI 94	

6 SOFTWARE DI CALCOLO

6.1 ORIGINE E CARATTERISTICHE DEI CODICI DI CALCOLO ADOTTATI

Per le analisi delle strutture è stato utilizzato il Sap 2000 v.14.1 prodotto, distribuito ed assistito da Computers and Structures, Inc.1995 University Ave. Berkeley. Questa procedura è sviluppata in ambiente Windows, permette l'analisi elastica lineare e non di strutture tridimensionali con nodi a sei gradi di libertà utilizzando un solutore ad elementi finiti. Gli elementi considerati sono frame (trave), con eventuali svincoli interni o rotazione attorno al proprio asse. I carichi sono applicati sia ai nodi, come forze o coppie concentrate, sia sulle travi, come forze distribuite, trapezie, concentrate, come coppie e come distorsioni termiche. A supporto del programma è fornito un ampio manuale d'uso contenente fra l'altro una vasta serie di test di validazione sia su esempi classici di Scienza delle Costruzioni, sia su strutture particolarmente impegnative e reperibili nella bibliografia specializzata.

Tale programma fornisce in output, oltre a tutte le caratteristiche geometriche e di carico delle strutture, i risultati relativi alle sollecitazioni indotte nelle sezioni degli elementi presenti.

6.2 UNITÀ DI MISURA

Le unità di misura adottate sono le seguenti:

- lunghezze: m

- forze: kN

- masse: kN massa

- temperature: gradi centigradi

- angoli: gradi sessadecimali o radianti

- si assume l'uguaglianza 1 kN = 100 kg

6.3 GRADO DI AFFIDABILITÀ DEL CODICE

L'affidabilità del codice di calcolo e' garantita dall'esistenza di un ampia documentazione di supporto. E' possibile inoltre ottenere rappresentazioni grafiche di deformate e sollecitazioni della struttura.

6.4 VALUTAZIONE DELLA CORRETTEZZA DEL MODELLO

Il modello di calcolo adottato e' da ritenersi appropriato in quanto non sono state riscontrate labilità, le reazioni vincolari equilibrano i carichi applicati, la simmetria di carichi e struttura dà origine a sollecitazioni simmetriche.

II ITALFERR	Matera con	la rete fer	ina - Matera La Martella roviaria nazionale ANDINA – MATERA LA M		
Relazione di calcolo	PROGETTO	LOTTO	CODIFICA DOCUMENTO	REV.	FOGLIO
	IA5F	01	D 78 CL IN2600 001	B	18 DI 94

6.5 CARATTERISTICHE DELL'ELABORAZIONE

Tutte le analisi strutturali sono state eseguite su di una workstation dedicata avente le seguenti caratteristiche tecniche:

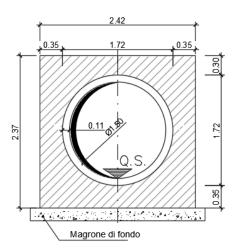
- Tipo Intel i7
- Memoria centrale 8 Gb;
- Lunghezza in bit della parola 64 bit;
- Memoria di massa 1 Hard disk da 500 Gb.

6.6 GIUDIZIO FINALE SULLA ACCETTABILITÀ DEI CALCOLI

Si ritiene che i risultati ottenuti dalla elaborazione siano accettabili e che le ipotesi poste alla base della formulazione del modello matematico siano valide come dimostrato dal comportamento dei materiali.

All'interno del pacchetto Sap 2000 sono inoltre presente una serie di test per il benchmark del solutore, che consentono di comprovare l'affidabilita' del codice di calcolo e paragonare risultati ottenuti con le soluzioni esatte.

6.7 PROGRAMMI DI SERVIZIO


Per le verifiche delle sezioni si adotta il programma: "RC-SEC" – Autore GEOSTRU Software.ANALISI DEI CARICHI E FASI

S ITALFERR	Nuova linea Ferrandina - Matera La Martella per il collegamento Matera con la rete ferroviaria nazionale NUOVA LINEA FERRANDINA – MATERA LA MARTELLA				
Relazione di calcolo	PROGETTO	LOTTO	CODIFICA DOCUMENTO	REV.	FOGLIO
	IA5F	01	D 78 CL IN2600 001	B	19 DI 94

7 TOMBINO SCATOLARE 1.72X1.72M

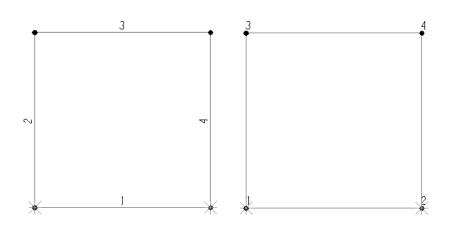
La dimensione interna è di 1.72m e l'altezza interna pari a 1.72m, con soletta superiore di spessore 0.30m, piedritti di spessore 0.35m e soletta inferiore di spessore 0.35m.

Nel seguito verrà esaminata una striscia di scatolare avente lunghezza di 1.00 m. In figura si riporta schematicamente la geometria dell'opera.

7.1 GEOMETRIA

DATI GEOMETRICI						
Grandezza	Simbolo	Valore U.M.				
larghezza totale scatolare	L_{tot}	2.42 m				
larghezza utile scatolare	L_{int}	1.72 m				
larghezza interasse	La	2.07 m				
spessore soletta superiore	S_{ϵ}	0.30 m				
spessore piedritti	S_p	0.35 m				
spessore fondazione	S_{f}	0.35 m				
altezza totale scatolare	H_{tot}	2.37 m				
altezza libera scatolare	\mathbf{H}_{int}	1.72 m				
spessore pacchetto stradale superiore	H_{Psup}	0.15 m				
spessore ricoprimento superiore	H_{Rsup}	3.57 m				
spessore pacchetto stradale inferiore	H_{Pinf}	0.00 m				
spessore ricoprimento inferiore	H_{Rinf}	0.00 m				

7.2 MODELLO DI CALCOLO


I ITALFERR	Nuova linea Ferrandina - Matera La Martella per il collegamento Matera con la rete ferroviaria nazionale NUOVA LINEA FERRANDINA – MATERA LA MARTELLA				
Relazione di calcolo	PROGETTO	LOTTO	CODIFICA DOCUMENTO	REV.	FOGLIO
	IA5F	01	D 78 CL IN2600 001	B	20 DI 94

Il modello di calcolo attraverso il quale è schematizzata la struttura è quello del telaio chiuso su letto di molle alla Winkler.

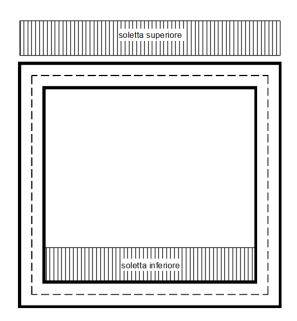
Il modello considerato per l'analisi è quello di uno scatolare di profondità unitaria (1.00m) soggetto alle azioni da traffico di norma e quelle permanenti. In corrispondenza dei vertici dello scatolare sono state inserite delle zone rigide pari a metà spessore degli elementi.

Il terreno di fondazione è stato modellato utilizzando la schematizzazione alla Winkler con un opportuno coefficiente di sottofondo.

Di seguito si riporta lo schema di calcolo.

Numerazione aste e nodi

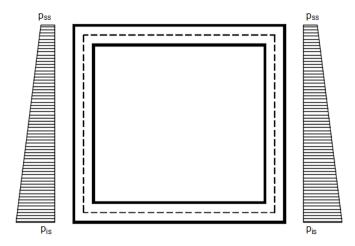
7.2.1 VALUTAZIONE DELLA RIGIDEZZA DELLE MOLLE


Si considera lo scatolare appoggiato su di un letto di molle (schematizzazione alla Winkler) assegnando alle aste di fondazione del modello un valore di "linear spring" pari a K=74000 kN/mc.

7.3 ANALISI DEI CARICHI

7.3.1 PESO PROPRIO DELLA STRUTTURA E CARICHI PERMANENTI PORTATI

Soletta superiore	- Peso proprio	7.50 kN/m
	- Totale	7.50 kN/m
	- Peso pacchetto pavimentazione 15 cm	3.00 kN/m
	- Peso terreno ricoprimento	71.40 kN/m
	- Totale	74.40 kN/m
Soletta inferiore	- Peso proprio	8.75 kN/m
	- Totale	8.75 kN/m
	- Peso pacchetto pavimentazione 0 cm	0.00 kN/m
	- Peso terreno ricoprimento	0.00 kN/m
	- Totale	0.00 kN/m
<u>Piedritti</u>	- Peso proprio	8.75 kN/m
	- Totale	8.75 kN/m

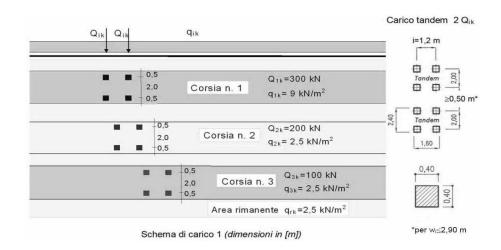

Per tenere in conto dei carichi agenti sul semispessore degli elementi considerati nel modello di calcolo, si applicano delle forze concentrate nei nodi tra soletta superiore e piedritti con valore pari a 13.02 kN. Al fine di considerare le porzioni di struttura relative al cerchio inscritto nella sezione scatolare, nei quattro nodi di vertice si considera un carico, dovuto al peso proprio, pari a 4.00 kN.

S ITALFERR	Nuova linea Ferrandina - Matera La Martella per il collegamento Matera con la rete ferroviaria nazionale NUOVA LINEA FERRANDINA – MATERA LA MARTELLA				
Relazione di calcolo	PROGETTO	LOTTO	CODIFICA DOCUMENTO	REV.	FOGLIO
	IA5F	01	D 78 CL IN2600 001	B	22 DI 94

7.3.2 SPINTA SULLE PARETI DOVUTA AL TERRENO ED AL SOVRACCARICO PERMANENTE

Per il rinterro si prevede un terreno avente angolo di attrito $\varphi = 35^{\circ}$ ed un peso di volume $\gamma = 20 \text{ kN/m}^3$, il coefficiente di spinta viene calcolato, considerando l'elevata rigidezza dello scatolare, utilizzando la formula Ko=1-sin φ ', per cui si ottiene un valore di Ko=0.43. Le spinte in asse soletta superiore ed asse soletta inferiore valgono:

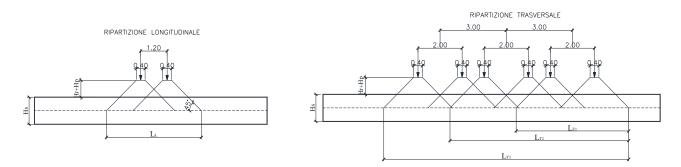
$$p_{ss}$$
= $K_o * (H_f + H_p + S_s/2) * \gamma$ = 33.0 kN/m
 p_{is} = $p_{ss} + K_o * \gamma * (S_s/2 + H_{int} + S_f/2)$ = 50.4 kN/m



Per tenere in conto dei carichi agenti sul semispessore degli elementi considerati nel modello di calcolo, si applicano delle forze concentrate nei nodi tra piedritto e soletta superiore con valore pari a 4.85 kN ed inferiore con valore pari a 8.96 kN.

7.4 RIPARTIZIONE DEI CARICHI MOBILI VERTICALI

Le azioni variabili del traffico definite nello Schema di Carico 1 sono costituite da carichi concentrati e da carichi uniformemente distribuiti. Tale schema è da assumere a riferimento sia per le verifiche globali, sia per le verifiche locali.



Il numero delle colonne di carichi mobili e la loro disposizione sono quelli massimi compatibili con la larghezza della carreggiata considerata, per i ponti di 1a Categoria.

Posizione	Carico asse Q _{ik} [kN]	q _{ik} [kN/m²]
Corsia Numero 1	300	9
Corsia Numero 2	200	2,5
Corsia Numero 3	100	2,5
Altre corsie	0,00	2,50

La ripartizione dei carichi si effettua considerando il carico isolato da 150 kN con impronta quadrata di lato 0.4 m.

Il carico è schematizzato da due assi da 150 kN disposti ad interasse di 1.20m.

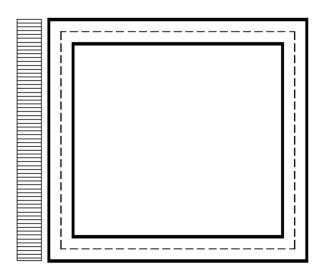
Si procede al calcolo dei carichi per metro lineare riferiti al baricentro della soletta per i diversi treni di carico.

Si considera una larghezza di ripartizione trasversale massima pari alla larghezza della corsia di carico di 3.00 m pertanto:

$$q_{1k} = \frac{600}{L_L x L_{T1}}$$

I ITALFERR	Nuova linea Ferrandina - Matera La Martella per il collegamento Matera con la rete ferroviaria nazionale NUOVA LINEA FERRANDINA – MATERA LA MARTELLA				
Relazione di calcolo	PROGETTO	LOTTO	CODIFICA DOCUMENTO	REV.	FOGLIO
	IA5F	01	D 78 CL IN2600 001	B	24 DI 94

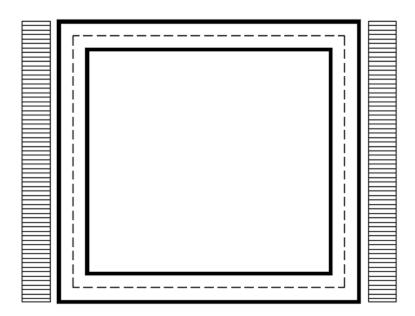
9.0 kN/m^2	$q_{2k} =$	6.20 m	$L_L=$
13.8 kN/m^2	$q_{1k} =$	7.00 m	$L_{T1}=$
16.1 kN/m^2	$q_{1k} =$	10.00 m	$L_{T2}=$
14.9 kN/m ²	$q_{1k} =$	13.00 m	L _{T3} =


Per tenere in conto le carichi agenti sul semispessore degli elementi considerati nel modello di calcolo, si applicano delle forze concentrate nei nodi tra soletta superiore e piedritti con valore pari a 2.42 kN per i carichi concentrati e valore pari a 1.58 kN per il carico distribuito.

Il calcolo dello scatolare viene eseguito per una striscia trasversale di 1.00m.

7.5 SPINTA DEL SOVRACCARICO SUL RILEVATO Q1=20 KN/M

$$q_1$$
= 20.00 kN/m²
 $p_1(str)$ = q_1*K_0 = 8.53 kN/m²


a) Spinta sul piedritto sinistro

Per tenere in conto dei carichi agenti sul semispessore degli elementi considerati nel modello di calcolo, si applicano delle forze concentrate nei nodi tra piedritto sinistro e soletta superiore con valore pari a 1.28 kN ed inferiore con valore pari a 1.49 kN.

b) Spinta su entrambi i piedritti

II ITALFERR	Nuova linea Ferrandina - Matera La Martella per il collegamento Matera con la rete ferroviaria nazionale NUOVA LINEA FERRANDINA - MATERA LA MARTELLA				
Relazione di calcolo	PROGETTO	LOTTO	CODIFICA DOCUMENTO	REV.	FOGLIO
	IA5F	01	D 78 CL IN2600 001	B	25 DI 94

Per tenere in conto dei carichi agenti sul semispessore degli elementi considerati nel modello di calcolo, si applicano delle forze concentrate nei nodi tra piedritti e soletta superiore con valore pari a 1.28 kN ed inferiore con valore pari a 1.49 kN.

7.5.1 FRENATURA

L'opera risulta molto interrata per cui si ritiene trascurabile l'effetto della frenatura sulla struttura in esame.

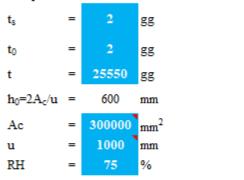
II ITALFERR	Nuova linea Ferrandina - Matera La Martella per il collegamento Matera con la rete ferroviaria nazionale NUOVA LINEA FERRANDINA – MATERA LA MARTELLA				
Relazione di calcolo	PROGETTO	LOTTO	CODIFICA DOCUMENTO	REV.	FOGLIO
	IA5F	01	D 78 CL IN2600 001	B	26 DI 94

7.5.2 RITIRO DIFFERENZIALE DELLA SOLETTA DI COPERTURA

Si considera uan variazione termica uniforme equivalente sulla soletta superiore come da calcolo seguente. Il calcolo viene condotto secondo le indicazioni dell'EUROCODICE 2-UNI EN1992-1-1 Novembre 2005 e DM 14-01-2008

Cls a t=0			_
R_{ck}	=	37	N/mm ²
\mathbf{f}_{ck}	=	30.71	N/mm^2
\mathbf{f}_{cm}	=	38.71	N/mm^2
α.	=	1.0E-05	
Eam	=	33019	N/mm^2

Resistenza a compressione cubica caratteristica Resistenza a compressione cilindrica


caratteristica Resistenza a compressione cilindrica

media

Modulo elastico secante medio

Tempo e ambiente

 E_{cm}

età del calcestruzzo in giorni, all'inizio del ritiro per essiccamento età del calcestruzzo in giorni al momento del carico età del calcestruzzo in giorni

dimensione fittizia dell'elemento di cls

sezione dell'elemento

perimetro a contatto con l'atmosfera umidità relativa percentuale

Coefficiente di viscosità φ (t,t0) e modulo elastico ECt a tempo "t"

$$\phi(t,t_0) = \varphi_0 \, \beta_c(t,t_0) =$$

$$\phi_0 = \phi RH \beta_c(f_{cm}) \beta_c(t_0) =$$

131.52 coeff nominale di viscosità

$$\varphi_{RH} = 1 + \left\lfloor \frac{1 - RH/100}{0.1 \sqrt[9]{h_0}} \alpha_1 \right\rfloor \alpha_2 =$$

1.271 coeff che tiene conto dell'umidità

$$\alpha_1 = \begin{cases} (35/f_{cm})^{0.7} & per \, f_{cm} > 35MPa \\ 1 & per \, f_{cm} \leq 35MPa \end{cases} =$$

0.932 coeff per la resistenza del cls

$$\alpha_2 = \begin{cases} (35/f_{cm})^{0.2} & per \ f_{cm} > 35MPa \\ 1 & per \ f_{cm} \leq 35MPa \end{cases} =$$

0.980 coeff per la resistenza del cls

Nuova linea Ferrandina - Matera La Martella per il collegamento di Matera con la rete ferroviaria nazionale

NUOVA LINEA FERRANDINA – MATERA LA MARTELLA

_					
Re	lazio	ne di	cal	CO	lO

GETTO	LOTTO
A5F	01

O CODIFICA DOCUMENTO D 78 CL IN2600 001

REV.

FOGLIO **27 DI 94**

$$\beta_{\mathcal{C}}(f_{cm}) = \frac{16.8}{\sqrt{f_{cm}}} =$$

$$\beta_c(t_0) = \frac{1}{(0.1 + t_0^{0.20})} =$$

$$t_o = t_0 \left(\frac{9}{2 + t_0^{1.2}} + 1 \right)^{\alpha} \ge 0.5 =$$

α =

$$\beta_c(t, t_0) = \left[\frac{(t - t_0)}{(\beta_u + t - t_0)}\right]^{0.3} =$$

$$\beta_H = 1.5[1 + (0.012 \, RH)^{18}] \, h_0 + 250 \alpha_3 \leq 1500 \alpha_3 =$$

$$\alpha_3 = \begin{cases} (35/f_{cm})^{0.5} & per \ f_{cm} > 35MPa \\ 1 & per \ f_{cm} \leq 35MPa \end{cases} =$$

2.700 coeff che tiene conto della resistenza

0.649 coeff. per l'evoluzione della viscosità

6.19 coeff. per la variabilità della viscosità nel tempo

coeff per il tipo di cemento (-1 per classe S, 0 per classe N, 1 per classe R)

0.984 coeff per la variabilità della viscosità nel tempo

1382.5 coeff che tiene conto dell'umidità

0.951 coeff per la resistenza del calcestruzzo

Il modulo elastico a tempo "t" è pari a:

$$E_{cm}(t,t_0) = \frac{E_{cm}}{1 + \varphi(t,t_0)} =$$

11072916 kN/m²

Deformazioni di ritiro

$$\varepsilon_s(t,t_0) = \varepsilon_{cd}(t) + \varepsilon_{ca}(t) =$$

0.000345 deformazione di ritiro ε (t,t₀)

$$\varepsilon_{cd}(t) = \beta_{ds}(t, t_s) K_b \varepsilon_{cd,0} =$$

0.000293 deformazione al ritiro per essiccamento

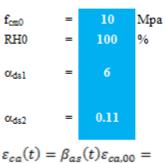
$$\beta_{ds}(t, t_s) = \left[\frac{(t - t_s)}{(t - t_s) + 0.04 \sqrt{h_0^3}}\right] = 0.97750$$

K_h =

0.7 paran

parametro che dipende da h_o secondo il prospetto seguente

Valori di k


ħ _o	40
100	1,0
200	0,85
300	0,75
≥500	0,70

I ITALFERR	Nuova linea Ferrandina - Matera La Martella per il collegamento d Matera con la rete ferroviaria nazionale NUOVA LINEA FERRANDINA – MATERA LA MARTELLA
Relazione di calcolo	PROGETTO LOTTO CODIFICA DOCUMENTO REV. FOGLIO
Relazione di Calcolo	IA5F 01 D 78 CL IN2600 001 B 28 DI 94

Valori di Kh intermedi a quelli del prospetto vengono calcolati tramite interpolazione lineare

$$\varepsilon_{cd,0} = 0.85 \left[(200 + 100 \alpha_{ds1}) \exp(-\alpha_{ds2} \frac{f_{cm}}{f_{cm0}}) \right] 10^{-6} \beta_{RH} = 0.000428$$

$$\beta_{RH} = 1.55 \left[1 - \left(\frac{RH}{RHO} \right)^3 \right] = 0.896094$$

coeff per il tipo di cemento (3 per classe S, 4 per classe N, 6 per classe R)

coeff per il tipo di cemento (0.13 per classe S, 0.12 per classe N, 0.11 per classe R) deformazione dovuta al ritiro

$$a(t) = \beta_{as}(t)\varepsilon_{ca,00} = 0.0000$$

$$\beta_{as}(t) = 1 - \exp(-0.2t^{0.5}) =$$

$$\varepsilon_{ca00} = 2.5(f_{ck} - 10)10^{-6}$$
 0.000052

Variazione termica uniforme equivalente agli effetti del ritiro:

$$\Delta T_{\text{ritiro}} = -\frac{\varepsilon_s(t, t_0) E_{\text{cm}}}{(1 + \phi(t, t_0)) E_{\text{cm}} \alpha} = -11.55 \text{ °C}$$

I fenomeni di ritiro vengono considerati agenti solo sulla soletta di copertura

7.6 AZIONE SISMICA INERZIALE

Per il calcolo dell'azione sismica si utilizza il metodo dell'analisi pseudostatica in cui l'azione sismica è rappresentata da una forza statica equivalente pari al prodotto delle forze di gravità per un opportuno coefficiente sismico k. Le forze sismiche sono pertanto le seguenti:

Forza sismica orizzontale $F_h = k_h^* W$

Forza sismica verticale $F_v = k_v * W$

I valori dei coefficienti sismici orizzontale k_h e verticale k_v possono essere valutati mediante le espressioni: k_h = a_{max}/g

$$k_v = \pm 0.5 * k_h$$

I ITALFERR	Matera con	la rete fer	ina - Matera La Martella roviaria nazionale ANDINA – MATERA LA N		•
Deleviene di celecte	PROGETTO	LOTTO	CODIFICA DOCUMENTO	REV.	FOGLIO
Relazione di calcolo	IA5F	01	D 78 CL IN2600 001	В	29 DI 94

Con riferimento alla nuova classificazione sismica del territorio nazionale ai fini del calcolo dell'azione sismica secondo il DM 17/01/2018 viene assegnata all'opera una vita nominale $V_N \ge 75$ anni ed una II classe d'uso $C_u = 1.0$; segue un periodo di riferimento $V_R = V_N * C_u = 75$ anni

A seguito di tale assunzione si ottiene allo stato limite ultimo SLV in funzione della Latitudine e Longitudine del sito in esame un valore dell'accelerazione pari a a_g = 0.182 g.

In assenza di analisi specifiche della risposta sismica locale l'accelerazione massima può essere valutata con la relazione:

$$a_{max} = S * a = S_s * S_t * a_g$$

dove assumendo un terreno di tipo C ed in base al fattore di amplificazione del sito Fo si ottiene:

S_s= 1.429 Coefficiente di amplificazione stratigrafica

 $S_T=1$ Coefficiente di amplificazione topografica

ne deriva che:

$$a_{max}$$
= 1.429 * 1 * 0.182 g = 0.260 g

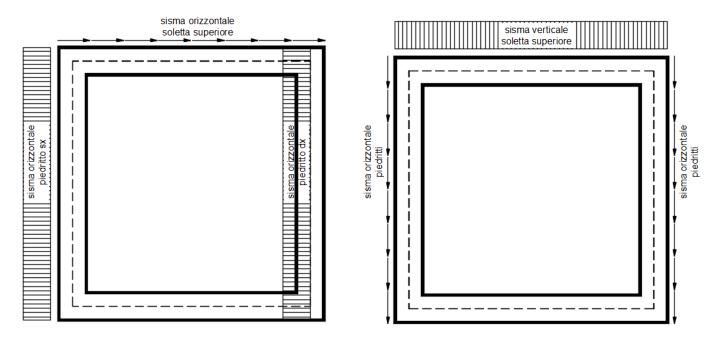
$$k_h = a_{max}/g = 0.260$$

$$k_v = \pm 0.5 * k_h = 0.130$$

Sisma orizzontale

$$F_{sis} = a_{max} * \gamma * H_{tot}$$
 12.33 kN/m (carico applicato sulla parete)
$$F_{inp} = \alpha * S_p * \gamma * 1m$$
 = 2.28 kN/m (inerzia piedritti) (piederitto sx)
$$Totale = 14.60 \text{ kN/m}$$
 (piederitto dx) (piederitto dx) (inerzia pavimentazione e riempimento)
$$F_{inr} = \alpha * (H_p + H_r) * \gamma_r * 1m$$
 = 19.35 kN/m (inerzia pavimentazione e riempimento)
$$F_{ins} = \alpha * S_s * \gamma_{cls} * 1m$$
 = 1.56 kN/m (inerzia soletta superiore)
$$Totale = 20.91 \text{ kN/m}$$
 (soletta superiore)

Per tenere in conto dei carichi agenti sul semispessore degli elementi considerati nel modello di calcolo, si applicano delle forze concentrate nei nodi tra piedritto sinistro e soletta superiore con valore pari a 2.19 kN ed inferiore con valore pari a 2.56 kN. Si applicano delle forze concentrate nei nodi tra piedritto destro e soletta superiore con valore pari a 0.34 kN ed inferiore con valore pari a 0.40 kN.


S ITALFERR	Matera con	la rete fer	ina - Matera La Martella roviaria nazionale ANDINA – MATERA LA M		·
Relazione di calcolo	PROGETTO	LOTTO	CODIFICA DOCUMENTO	REV.	FOGLIO
	IA5F	01	D 78 CL IN2600 001	B	30 DI 94

Sisma verticale

$$\begin{split} F_{inp} = & \ 0.5 * \alpha * S_p * \gamma * 1m & = \ 1.14 & kN/m & \text{(inerzia piedritti)} \\ F_{inr} = & \ 0.5 * \alpha * (H_p + H_r) * \gamma_r * 1m & = \ 9.67 & kN/m & \text{(inerzia pavimentazione e riempimento)} \\ F_{ins} = & \ 0.5 * \alpha * S_s * \gamma_{cls} * 1m & = \ 0.78 & kN/m & \text{(inerzia soletta superiore)} \\ & & \quad \text{Totale} & = \ 10.46 & kN/m & \text{(soletta superiore)} \end{split}$$

Per tenere in conto le carichi agenti sul semispessore degli elementi considerati nel modello di calcolo, si applicano delle forze concentrate nei nodi tra soletta superiore e piedritti con valore pari a 1.83 kN.

Gli effetti dell'azione sismica saranno valutati tenendo conto delle masse associate ai seguenti carichi gravitazionali: $G_1 + G_2 + \psi_{2j} \, Q_{kj}$

Per tenere in conto dei carichi agenti sul semispessore degli elementi considerati nel modello di calcolo, si applicano delle forze concentrate nei nodi tra piedritto e soletta superiore con valore pari a 1.28 kN ed inferiore con valore pari a 1.49 kN.

7.7 SPINTA SISMICA TERRENO

Le spinte delle terre potranno essere determinate secondo la teoria di Wood. secondo la quale la risultante dell'incremento di spinta per effetto del sisma su una parete di altezza H viene determinato con la seguente espressione:

II ITALFERR	Matera con	la rete fer	ina - Matera La Martella roviaria nazionale ANDINA – MATERA LA N		·
Relazione di calcolo	PROGETTO	LOTTO	CODIFICA DOCUMENTO	REV.	FOGLIO
	IA5F	01	D 78 CL IN2600 001	B	31 DI 94

$$\Delta S_E = (a_{max}/g) * \gamma * H_{tot}{}^2 = 29 \ kN/m$$

 $Tale\ risultante\ applicata\ ad\ un'altezza\ pari\ ad\ H_{tot}/2.sar\`{a}\ considerata\ agente\ su\ uno\ solo\ dei\ piedritti\ dell'opera.$

S ITALFERR	Matera con	la rete fer	ina - Matera La Martella roviaria nazionale ANDINA – MATERA LA N		·
Relazione di calcolo	PROGETTO	LOTTO	CODIFICA DOCUMENTO	REV.	FOGLIO
	IA5F	01	D 78 CL IN2600 001	B	32 DI 94

8 COMBINAZIONI DI CARICO

Ai fini delle verifiche degli stati limite si è fatto riferimento alle seguenti combinazioni delle azioni.

Combinazione fondamentale, generalmente impiegata per gli stati limite ultimi (SLU):

$$\gamma_{G1} \cdot G_1 + \gamma_{G2} \cdot G_2 + \gamma_{P} \cdot P + \gamma_{O1} \cdot Q_{k1} + \gamma_{O2} \cdot \psi_{O2} \cdot Q_{k2} + \gamma_{O3} \cdot \psi_{O3} \cdot Q_{k3} + \dots$$

Combinazione caratteristica (rara), generalmente impiegata per gli stati limite di esercizio (SLE) irreversibili:

$$G_1 + G_2 + P + Q_{k1} + \psi_{02} \cdot Q_{k2} + \psi_{03} \cdot Q_{k3} + \dots$$

Combinazione frequente, generalmente impiegata per gli stati limite di esercizio (SLE) reversibili, utilizzata nella verifica a Fessurazione:

$$G_1 + G_2 + P + \psi_{11} \cdot Q_{k1} + \psi_{22} \cdot Q_{k2} + \psi_{23} \cdot Q_{k3} + \dots$$

Combinazione quasi permanente, generalmente impiegata per gli stati limite di esercizio (SLE) a lungo termine;

$$G_1 + G_2 + P + \psi_{21} \cdot Q_{k1} + \psi_{22} \cdot Q_{k2} + \psi_{23} \cdot Q_{k3} + \dots$$

Combinazione sismica, impiegata per gli stati limite ultimi e di esercizio connessi all'azione sismica E:

$$E + G_1 + G_2 + P + \psi_{21} \cdot Q_{k1} + \psi_{22} \cdot Q_{k2} + \dots$$

dove:

$$E = \pm 1.00 \text{ x } E_Y \pm 0.3 \text{ x } E_Z$$

avendo indicato con E_Y e E_Z rispettivamente le componenti orizzontale e verticale dell'azione sismica.

I coefficienti di amplificazione dei carichi γ e i coefficienti di combinazione ψ sono riportati nelle tabelle seguenti.

In particolare nel calcolo della struttura si è fatto riferimento alla combinazione A1 STR (Approccio 1 – Combinazione 1) per le verifiche strutturali ed A1 GEO (Approccio 1 – Combinazione 2) per le verifiche geotecniche.

8.1 CONDIZIONI DI CARICO:

Le condizioni di carico elementari sono le seguenti

- 1 Peso proprio elementi strutturali e non strutturali (g₁)
- 2 Carichi permanenti portati (g₂)
- 3 Spinta delle terre calcolata con i coefficienti A1+M1 (g_{3 str})
- 4 Ritiro e viscosità (ε_2)
- 5 Variazioni termiche (ε_3)
- 6 Gruppo di carico con valore caratteristico del carico tandem per M_{max} (GR-T)
- 7 Gruppo di carico con valore caratteristico del carico <u>uniforme</u> (GR-U)
- 8 Gruppo di carico con valore caratteristico del carico tandem per T_{max} (GR-T)
- 10 Gruppo di carico 2a con frenatura (GR-Fr)
- 11 Spinta dovuta al sovraccarico accidentale 20kN/m su parete sx calcolato con i coefficienti A1+M1 (q9str)
- 12 Spinta dovuta al sovraccarico accidentale 20kN/m su parete sx calcolato con i coefficienti A2+M2 (q_{9geo})
- 13 Spinta delle terre calcolata con i coefficienti A2+M2 (g_{3geo})
- 14 Sisma orizzontale (q_{6x})
- 15 Sisma verticale (q_{6z})

L'opera principale è trattata con le combinazioni tipiche dei ponti ai sensi del DM 17/01/2018 e s.m.i.

Nella fase sismica si considerano agenti i carichi da traffico con un coefficiente ψ_{2j} pari a 0.2

I ITALFERR	Nuova linea Ferrandina - Matera La Martella per il collegamento di Matera con la rete ferroviaria nazionale NUOVA LINEA FERRANDINA – MATERA LA MARTELLA					
Relazione di calcolo	PROGETTO	LOTTO	CODIFICA DOCUMENTO	REV.	FOGLIO	
	IA5F	01	D 78 CL IN2600 001	B	34 DI 94	

Tabella 5 1 IV - Valori caratteristici delle azioni dovute al traffico

			Carichi su marciapiedi e piste ciclabili				
	Carichi verticali			Carichi orizz	ontali	Carichi verticali	
Gruppo di azioni	Modello principale (Schemi di carico 1, 2, 3, 4, 6)	Veicoli speciali	Folla (Schema di carico 5)	Frenatura q₃	Forza centrifuga q ₄	Carico uniformemente distribuito	
1	Valore caratteristico					Schema di carico 5 con valore di combinazione 2,5 kN/m²	
2 a	Valore frequente			Valore caratteristico			
2 b	Valore frequente				Valore caratteristico		
3 (*)						Schema di carico 5 con valore caratteristico 5,0 kN/m²	
4 (**)			Schema di carico 5 con valore caratteristico 5,0 kN/m ²			Schema di carico 5 con valore caratteristico 5,0 kN/m ²	
5 (***)	Da definirsi per il singolo progetto	Valore caratteristico o nominale					

La Tab. 5.1.V fornisce i valori dei coefficienti parziali delle azioni da assumere nell'analisi per la determinazione degli effetti delle azioni nelle verifiche agli stati limite ultimi, il significato dei simboli è il seguente:

 $\gamma_{\rm GI}$ coefficiente parziale del peso proprio della struttura, del terreno e dell'acqua, quando pertinente;

 $\gamma_{\rm G2}$ coefficiente parziale dei pesi propri degli elementi non strutturali;

 $\gamma_{\rm Q}$ coefficiente parziale delle azioni variabili da traffico;

 γ_{Qi} coefficiente parziale delle azioni variabili.

I valori dei coefficienti ψ_{0j} , ψ_{1j} e ψ_{2j} per le diverse categorie di azioni sono riportati nella Tab. 5.1.VI.

Tabella 5.1.V - Coefficienti parziali di sicurezza per le combinazioni di carico agli SLU

30 1						
		Coefficiente	EQU ⁽¹⁾	A1 STR	A2 GEO	
Carichi permanenti	favorevoli sfavorevoli	γ _{G1}	0,90 1,10	1,00 1,35	1,00 1,00	
Carichi permanenti non strutturali ⁽²⁾	favorevoli sfavorevoli	γ _{G2}	0,00 1,50	0,00 1,50	0,00 1,30	
Carichi variabili da traffico	favorevoli sfavorevoli	γQ	0,00 1,35	0,00 1,35	0,00 1,15	
Carichi variabili	favorevoli sfavorevoli	γ _{Qi}	0,00 1,50	0,00 1,50	0,00 1,30	
Distorsioni e presollecitazioni di progetto	favorevoli sfavorevoli	γ ε1	0,90 1,00 ⁽³⁾	1,00 1,00 ⁽⁴⁾	1,00 1,00	
Ritiro e viscosità, Variazioni termiche, Cedimenti vincolari	favorevoli sfavorevoli	$\gamma_{\epsilon 2}, \gamma_{\epsilon 3}, \gamma_{\epsilon 4}$	0,00 1,20	0,00 1,20	0,00 1,00	

⁽¹⁾ Equilibrio che non coinvolga i parametri di deformabilità e resistenza del terreno; altrimenti si applicano i

 $\textbf{Tabella 5.1.VI} - Coefficienti \ \psi \ per \ le \ \ azioni \ variabili \ per \ ponti \ stradali \ e \ pedonali$

Azioni	Gruppo di azioni (Tabella 5.1.IV)	Coefficiente Ψ₀ di combinazione	Coefficiente ψ 1 (valori frequenti)	Coefficiente Ψ2 (valori quasi permanenti)
	Schema 1 (Carichi tandem)	0,75	0,75	0,0
	Schemi 1, 5 e 6 (Carichi distribuiti	0,40	0,40	0,0
	Schemi 3 e 4 (carichi concentrati)	0,40	0,40	0,0
Azioni da traffico	Schema 2	0,0	0,75	0,0
(Tabella 5.1.IV)	2	0,0	0,0	0,0
	3	0,0	0,0	0,0
	4 (folla)		0,75	0,0
	5	0,0	0,0	0,0
Vento q₅	Vento a ponte scarico SLU e SLE Esecuzione	0,6 0,8	0,2	0,0 0,0
	Vento a ponte carico	0,6		
Mono a	SLU e SLE	0,0	0,0	0,0
Neve q₅	esecuzione	0,8	0,6	0,5
Temperatura	T_k	0,6	0,6	0,5

⁽²⁾ Nel caso in cui i carichi permanenti non strutturali (ad es. carichi permanenti portati) siano compiutamente definiti si potranno adottare gli stessi coefficienti validi per le azioni permanenti.

^{(3) 1,30} per instabilità in strutture con precompressione esterna

^{(4) 1,20} per effetti locali

II ITALFERR	Matera con	la rete fer	ina - Matera La Martella roviaria nazionale ANDINA – MATERA LA N		·
Relazione di calcolo	PROGETTO	LOTTO	CODIFICA DOCUMENTO	REV.	FOGLIO
	IA5F	01	D 78 CL IN2600 001	B	36 DI 94

Tabella 6.2.II – Coefficienti parziali per i parametri geotecnici del terreno

PARAMETRO	GRANDEZZA ALLA QUALE	COEFFICIENTE	(M1)	(M2)
	APPLICARE IL	PARZIALE		
	COEFFICIENTE PARZIALE	$\gamma_{ m M}$		
Tangente dell'angolo di resistenza al taglio	$tan \phi'_k$	$\gamma_{\phi'}$	1,0	1,25
Coesione efficace	c′ _k	$\gamma_{e'}$	1,0	1,25
Resistenza non drenata	c_{uk}	$\gamma_{\rm cu}$	1,0	1,4
Peso dell'unità di volume	γ	γ_{γ}	1,0	1,0

DIAGRAMMI DELLE SOLLECITAZIONI

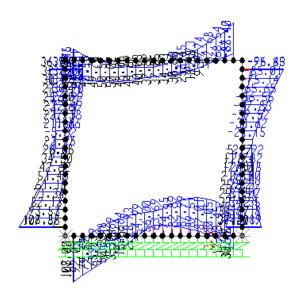


Fig. 2 – Inviluppo momenti flettenti SLU

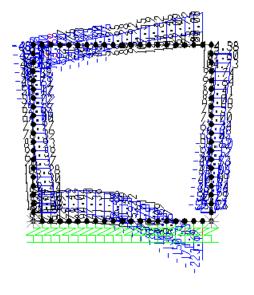


Fig. 3 – Inviluppo sforzi taglianti SLU

S ITALFERR	Nuova linea Ferrandina - Matera La Martella per il collegamento Matera con la rete ferroviaria nazionale NUOVA LINEA FERRANDINA – MATERA LA MARTELLA	di
Delamina Products	PROGETTO LOTTO CODIFICA DOCUMENTO REV. FOGLIO	
Relazione di calcolo	IA5F 01 D 78 CL IN2600 001 B 38 DI 94	

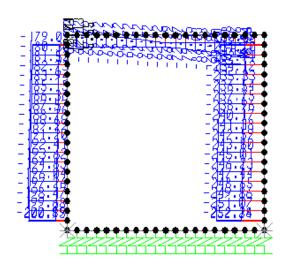


Fig. 4 – Inviluppo azioni assiali SLU

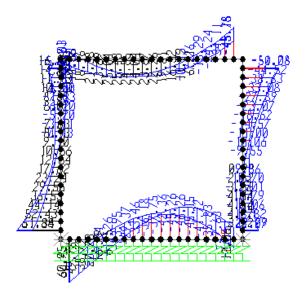
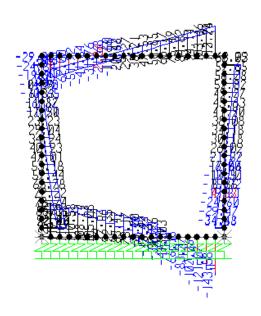



Fig. 5 –Inviluppo momenti flettenti SLV

S ITALFERR	Nuova linea Ferrandina - Matera La Martella per il collegamen Matera con la rete ferroviaria nazionale NUOVA LINEA FERRANDINA – MATERA LA MARTELLA	ito di
Dela-lana di salasta	PROGETTO LOTTO CODIFICA DOCUMENTO REV. FOGLI	0
Relazione di calcolo	IA5F 01 D 78 CL IN2600 001 B 39 DI 9)4

 $Fig.\ 6-Inviluppo\ sforzi\ taglianti\ SLV$

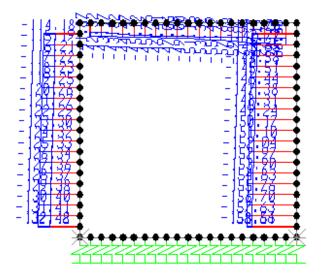
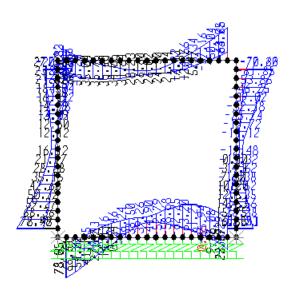



Fig. 7 – Inviluppo azioni assiali SLV

I ITALFERR	Nuova linea Ferrandina - Matera La Martella per il collegament Matera con la rete ferroviaria nazionale NUOVA LINEA FERRANDINA – MATERA LA MARTELLA						
Relazione di calcolo	PROGETTO IA5F	LOTTO 01	CODIFICA DOCUMENTO D 78 CL IN2600 001	REV.	FOGLIO 40 DI 94		

 $Fig.\ 8-Inviluppo\ momenti\ flettenti\ SLE\ rara$

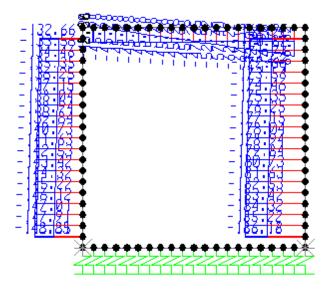


Fig. 9 – Inviluppo azioni assiali SLE rara

S ITALFERR	Nuova linea Ferrandina - Matera La Martella per il colleg Matera con la rete ferroviaria nazionale NUOVA LINEA FERRANDINA – MATERA LA MARTELLA					
Relazione di calcolo	PROGETTO	LOTTO	CODIFICA DOCUMENTO	REV.	FOGLIO	
	IA5F	01	D 78 CL IN2600 001	B	41 DI 94	

9 VERIFICA DELLE SEZIONI IN C.A.

Nelle tabelle seguenti sono indicati i valori delle sollecitazioni massime e i valori delle sollecitazioni per la verifica a fessurazione risultanti dalle combinazioni di cui al capitolo precedente.

Per le verifiche in corrispondenza dei nodi si considerano le sollecitazioni a filo elemento rigido.

			SLU STR			SLU SISMA					
Elemento strutturale	ID Asta	C.C. M _{max}	N (kN)	M _{max} (kNm)	T _{max} (kN)	ID Asta	C.C. M _{max}	N (kN)	M _{max} (kNm)	T _{max} (kN)	
soletta inferiore	1	SLU122	0.00	108.07	-223.69	1	SLUsisma9	0.00	60.95	-143.58	
soletta inferiore	1	SLU124	0.00	-89.51	•	1	SLUsisma25	0.00	-46.26	-	
soletta superiore	3	SLU122	118.61	-88.40	190.03	3	SLUsisma25	68.16	-45.75	113.24	
soletta superiore	3	SLU124	11.11	50.57	-	3	SLUsisma25	42.08	25.43	-	
piedritti	2	SLU217	41.88	-39.98	134.46	2	SLUsisma9	80.43	-8.00	92.40	
piedritti	4	SLU217	191.40	37.22	114.58	4	SLUsisma9	151.08	4.54	63.09	
piedritti	2	SLU122	119.04	107.55	•	2	SLUsisma25	100.83	61.84	-	

	SLE RARA					SLE FREQUENTE			SLE QUASI PERMANENTE			
Elemento strutturale	ID Asta	C.C.	N (kN)	M _{max} (kNm)	ID Asta	C.C.	N (kN)	M _{max} (kNm)	ID Asta	C.C.	N (kN)	M _{max} (kNm)
soletta inferiore	1	SLEr39	0.00	78.55	1	SLEf7	0.00	25.11	1	SLEq1	0.00	20.62
soletta inferiore	1	SLEr39	0.00	-63.20	1	SLEf13	0.00	-35.57	1	SLEq1	0.00	-29.47
soletta superiore	3	SLEr39	86.89	-64.66	3	SLEf19	42.78	-20.18	3	SLEq1	41.12	-16.66
soletta superiore	3	SLEr39	18.40	35.76	3	SLEf13	41.32	23.84	3	SLEq1	41.12	19.26
piedritti	2	SLEr39	72.69	-20.46	2	SLEf10	107.61	4.51	2	SLEq1	110.76	6.29
piedritti	4	SLEr39	186.16	16.88	4	SLEf7	113.01	-5.98	4	SLEq1	110.76	-6.29
piedritti	2	SLEr39	88.93	78.48	2	SLEf19	136.42	32.44	2	SLEq1	118.87	27.23

S ITALFERR	Nuova linea Ferrandina - Matera La Martella per il colleg Matera con la rete ferroviaria nazionale NUOVA LINEA FERRANDINA – MATERA LA MARTELLA PROGETTO LOTTO CODIFICA DOCUMENTO REV.						
Relazione di calcolo	PROGETTO	LOTTO	CODIFICA DOCUMENTO	REV.	FOGLIO		
	IA5F	01	D 78 CL IN2600 001	B	42 DI 94		

9.1 VERIFICA SOLETTA INFERIORE

CARATTERISTICHE DI RESISTENZA DEI MATERIALI IMPIEGATI

CALCESTRUZZO -	Classe:	C30/37	MD-
	Resis. compr. di progetto fcd:	17.000	MPa
	Resis. compr. ridotta fcd':	8.500	MPa
	Def.unit. max resistenza ec2:	0.0020	
	Def.unit. ultima ecu:	0.0035	
	Diagramma tensione-deformaz.:	Parabola-Rettangolo	MD-
	Modulo Elastico Normale Ec:	32836.0	MPa
	Resis. media a trazione fctm:	2.900	MPa
	Coeff. Omogen. S.L.E.:	15.00	
	Coeff. Omogen. S.L.E.:	15.00	
	Sc limite S.L.E. comb. Frequenti:	165.00	daN/cm ²
	Ap.Fessure limite S.L.E. comb. Freque		mm
	Sc limite S.L.E. comb. Q.Permanenti:	0.00	Мра
	Ap.Fess.limite S.L.E. comb. Q.Perm.:	0.200	mm
ACCIAIO -	Tipo:	B450C	
	Resist. caratt. snervam. fyk:	450.00	MPa
	Resist. caratt. rottura ftk:	450.00	MPa
	Resist. snerv. di progetto fyd:	391.30	MPa
	Resist. ultima di progetto ftd:	391.30	MPa
	Deform. ultima di progetto Epu:	0.068	
	Modulo Elastico Ef	2000000	daN/cm ²
	Diagramma tensione-deformaz.:	Bilineare finito	
	Coeff. Aderenza istantaneo ß1*ß2:	1.00	
	Coeff. Aderenza differito ß1*ß2:	0.50	
	Sf limite S.L.E. Comb. Rare:	337.50	MPa

CARATTERISTICHE DOMINIO CONGLOMERATO

Forma del Do	Poligonale	
Classe Conglo	C30/37	
N°vertice:	X [cm]	Y [cm]
1	-50.0	0.0
2	-50.0	35.0
3	50.0	35.0
4	50.0	0.0

DATI BARRE ISOLATE

N°Barra	X [cm]	Y [cm]	DiamØ[mm]
1	-42.4	7.6	16
2	-42.4	27.4	16
3	42.4	27.4	16
4	42.4	7.6	16

DATI GENERAZIONI LINEARI DI BARRE

Numero assegnato alla singola generazione lineare di barre Numero della barra iniziale cui si riferisce la generazione Numero della barra finale cui si riferisce la generazione Numero di barre generate equidistanti cui si riferisce la generazione Diametro in mm delle barre della generazione N°Gen. N°Barra Ini. N°Barra Fin.

N°Barre

N°Gen.	N°Barra Ini.	N°Barra Fin.	N°Barre	Ø
1	1	4	8	16
2	2	3	8	16

ARMATURE A TAGLIO

N

Diametro staffe: 8 mm Passo staffe: 10.7 cm

Staffe: Una sola staffa chiusa perimetrale

CALCOLO DI RESISTENZA - SFORZI PER OGNI COMBINAZIONE ASSEGNATA

N Mx Vy		olicato nel Baric. (+ se di compressione) m] intorno all'asse X di riferimento delle coordinate le da comprimere il lembo sup. della sez. [kN] parallela all'asse Y di riferimento delle coordinate	
N°Comb.	N	Mx	Vy
1	0.00	108.07	-223.69
2	0.00	-89.51	0.00
3	0.00	60.95	-143.58
4	0.00	-46.26	0.00

COMB. RARE (S.L.E.) - SFORZI PER OGNI COMBINAZIONE ASSEGNATA

N Sforzo normale [kN] applicato nel Baricentro (+ se di compressione)

Mx Momento flettente [kNm] intorno all'asse X di riferimento (tra parentesi Mom.Fessurazione)

con verso positivo se tale da comprimere il lembo superiore della sezione

N°Comb.	N	Mx	Му
1	0.00	78.55	0.00
2	0.00	-63.20	0.00

COMB. FREQUENTI (S.L.E.) - SFORZI PER OGNI COMBINAZIONE ASSEGNATA

N Sforzo normale [kN] applicato nel Baricentro (+ se di compressione)

Mx Momento flettente [kNm] intorno all'asse X di riferimento (tra parentesi Mom.Fessurazione)

con verso positivo se tale da comprimere il lembo superiore della sezione

N°Comb.	N	Mx	Му
1	0.00	25.11 (69.01)	0.00 (0.00)
2	0.00	-35.57 (-69.01)	0.00 (0.00)

COMB. QUASI PERMANENTI (S.L.E.) - SFORZI PER OGNI COMBINAZIONE ASSEGNATA

11	Ciorzo normale [itt] applicate nel bancentro (* de di compressione)
Mx	Momento flettente [kNm] intorno all'asse X di riferimento (tra parentesi Mom.Fessurazione)
IVIX	
	con verse positivo se tale da comprimero il lamba superiore della sezione

con verso positivo se tale da comprimere il lembo superiore della sezione

Sforzo normale [kN] applicato nel Baricentro (+ se di compressione)

N°Comb.	N	Mx	Му
1	0.00	20.62 (69.01)	0.00 (0.00)
2	0.00	-29.47 (-69.01)	0.00 (0.00)

RISULTATI DEL CALCOLO

Sezione verificata per tutte le combinazioni assegnate

Copriferro netto minimo barre longitudinali: 6.8 cm Interferro netto minimo barre longitudinali: 7.8 cm Copriferro netto minimo staffe:

VERIFICHE DI RESISTENZA IN PRESSO-TENSO FLESSIONE ALLO STATO LIMITE ULTIMO

S = combinazione verificata / N = combin. non verificata Ver

Sforzo normale assegnato [kN] nel baricentro B sezione cls.(positivo se di compressione) N

Mx Componente del momento assegnato [kNm] riferito all'asse x princ. d'inerzia N Res Sforzo normale resistente [kN] nel baricentro B sezione cls.(positivo se di compress.)

Momento flettente resistente [kNm] riferito all'asse x princ. d'inerzia Mx Res Mis.Sic. Misura sicurezza = rapporto vettoriale tra (N r,Mx Res,My Res) e (N,Mx,My)

Verifica positiva se tale rapporto risulta >=1.000

As Totale Area totale barre longitudinali [cm²]. [Tra parentesi il valore minimo di normativa]

N°Comb	Ver	N	Mx	N Res	Mx Res	Mis.Sic. As Totale
1	S	0.00	108.07	0.00	200.52	1.86 40.2(10.5)
2	S	0.00	-89.51	0.00	-200.52	2.24 40.2(10.5)
3	S	0.00	60.95	0.00	200.52	3.29 40.2(10.5)
4	S	0.00	-46.26	0.00	-200.52	4.33 40.2(10.5)

METODO AGLI STATI LIMITE ULTIMI - DEFORMAZIONI UNITARIE ALLO STATO ULTIMO

ec max	Deform. unit. massima del conglomerato a compressione
	Deform. unit. massima del conglomerato a compressione
Xc max	Ascissa in cm della fibra corrisp. a ec max (sistema rif. X,Y,O sez.)
Yc max	Ordinata in cm della fibra corrisp. a ec max (sistema rif. X,Y,O sez.)
es min	Deform. unit. minima nell'acciaio (negativa se di trazione)
Xs min	Ascissa in cm della barra corrisp. a es min (sistema rif. X,Y,O sez.)
Ys min	Ordinata in cm della barra corrisp. a es min (sistema rif. X,Y,O sez.)
es max	Deform. unit. massima nell'acciaio (positiva se di compress.)
Xs max	Ascissa in cm della barra corrisp. a es max (sistema rif. X,Y,O sez.)
Ys max	Ordinata in cm della barra corrisp. a es max (sistema rif. X,Y,O sez.)

N°Comb	ec max	Xc max	Yc max	es min	Xs min	Ys min	es max	Xs max	Ys max
1	0.00350	-50.0	35.0	-0.00039	42.4	27.4	-0.01051	-42.4	7.6
2	0.00350	-50.0	0.0	-0.00039	-42.4	7.6	-0.01051	42.4	27.4
3	0.00350	-50.0	35.0	-0.00039	42.4	27.4	-0.01051	-42.4	7.6
4	0.00350	-50.0	0.0	-0.00039	-42.4	7.6	-0.01051	42.4	27.4

POSIZIONE ASSE NEUTRO PER OGNI COMB. DI RESISTENZA

a, b, c Coeff. a, b, c $\$ nell'eq. dell'asse neutro aX+bY+c=0 $\$ nel rif. X,Y,O $\$ gen. Rapp. di duttilità (travi e solette)[§ 4.1.2.1.2.1 NTC]: deve essere < 0.45 x/d

C.Rid. Coeff. di riduz. momenti per sola flessione in travi continue

N°Comb	а	b	С	x/d	C.Rid.
1	0.000000000	0.000511304	-0.014395644		
2	0.000000000	-0.000511304	0.003500000		
3	0.000000000	0.000511304	-0.014395644		
4	0.000000000	-0.000511304	0.003500000		

VERIFICHE A TAGLIO

Diam. Staffe: 8 mm

Passo	o staffe	e:	10.7 c	m [Pass	so massimo (di normativ	/a = 19.2 c	m]		
Ver Ved Vcd Vwd d z		Taglio Taglio Taglio Altezza Vengoi I pesi d	mb. verificata a tagli di progetto [kN] = V compressione resist resistente [kN] asso u tile media pesata no prese nella medi lella media sono cos	ortogona ente [kN] rbito dalle sezione d a le strisce stituiti dalle	ale all'asse neu lato conglome staffe [(4.1.18 ortogonale all'a e con almeno u e stesse lungh	utro rato [formul 8) NTC] sse neutro un estremo e ezze delle s	Braccio co compresso.	ppia interna	[cm]	
Ctg Acw Ast A.Eff	Acw Coefficiente maggiorativo della resistenza a taglio per compressione Ast Area staffe+legature strettam. necessarie a taglio per metro di pil.[cm²/m]									
N°Comb	Ver	Ved	Vcd	Vwd	d z	bw	Ctg	Acw	Ast	A.Eff
1 2 3 4	S S S	223.69 0.00 143.58 0.00	722.85 1048.13 722.85 1048.13	90.67 226.67	32.3 24.7 32.3 24.7 32.3 24.7 32.3 24.7	100.0 100.0 100.0 100.0	2.500 1.000 2.500 1.000	1.000 1.000 1.000 1.000	9.3 0.0 6.0 0.0	9.4(0.0) 9.4(0.0) 9.4(0.0) 9.4(0.0)

COMBINAZIONI RARE IN ESERCIZIO - MASSIME TENSIONI NORMALI ED APERTURA FESSURE (NTC/EC2)

Ver	S =	comb.	. verificata	/ N	= comb	. non verific	cata

Massima tensione (positiva se di compressione) nel conglomerato [Mpa] Sc max Xc max, Yc max Ascissa, Ordinata [cm] del punto corrisp. a Sc max (sistema rif. X,Y,O)

Minima tensione (negativa se di trazione) nell'acciaio [Mpa] Sf min

Ascissa, Ordinata [cm] della barra corrisp. a Sf min (sistema rif. X,Y,O) Xs min, Ys min Ac eff. Area di calcestruzzo [cm²] in zona tesa considerata aderente alle barre As eff. Area barre [cm²] in zona tesa considerate efficaci per l'apertura delle fessure

N°Comb	Ver	Sc max	Xc max \	rc max	Sf min	Xs min	Ys min	Ac eff.	As eff.
	-							850 850	

0.500 16.0

COMBINAZIONI RARE IN ESERCIZIO - APERTURA FESSURE 18 7 3 4 FC21

1

S

-0.00118

	I RARE IN ESER					•	rioro a f	otm		
Ver.		a sezione viene assunta sempre fessurata anche nel caso in cui la trazione minima del calcestruzzo sia inferiore a fctm sito della verifica								
e1		lassima deformazione unitaria di trazione nel calcestruzzo (trazione -) valutata in sezione fessurata								
e2		Minima deformazione unitaria di trazione nel calcestruzzo (trazione -) valutata in sezione fessurata								
k1		: 0.8 per barre ad aderenza migliorata [eq.(7.11)EC2]								
kt		= 0.4 per comb. quasi permanenti / = 0.6 per comb.frequenti [cfr. eq.(7.9)EC2]								
k2		= 0.5 per flessione; =(e1 + e2)/(2*e1) per trazione eccentrica [eq.(7.13)EC2]								
k3	= 3.400 Coeff	= 3.400 Coeff. in eq.(7.11) come da annessi nazionali								
k4	= 0.425 Coeff	= 0.425 Coeff. in eq.(7.11) come da annessi nazionali								
Ø	Diametro [mm	Diametro [mm] equivalente delle barre tese comprese nell'area efficace Ac eff [eq.(7.11)EC2]								
Cf	Copriferro [mi	m] netto calcol	ato con r	iferiment	o alla barra p	iù tesa				
e sm - e cm	Differenza tra	le deformazio	ni medie	di acciaio	o e calcestru	zzo [(7.8)EC2 e (C4.1.7)NTC]				
	Tra parentesi:	: valore minime	0.6 S	max / Es	[(7.9)EC2	e (C4.1.8)NTC]				
sr max	Massima dista	anza tra le fess	sure [mm	1]						
wk	Apertura fess	ure in mm cald	olata = s	r max*(e	_sm - e_cm)	[(7.8)EC2 e (C4.1.7)NTC]. Valore limite tra parente	si			
Mx fess.		momento di pr								
My fess.	Componente	momento di pr	ima fess	urazione	intorno all'as	se Y [kNm]				
Comb. Ver	e1	e2	k2	Ø	Cf	e sm - e cm sr max	wk	Mx fess		

68

0.00050 (0.00050)

346

0.172 (0.20)

My fess

0.00

69.01

2	S	-0.00095	0	0.500	16.0	68	0.00040 (0.00040)	346	0.138 (0.20)	-69.01	0.00
---	---	----------	---	-------	------	----	-------------------	-----	--------------	--------	------

COMBINAZIONI FREQUENTI IN ESERCIZIO - MASSIME TENSIONI NORMALI ED APERTURA FESSURE (NTC/EC2)

N°Comb	Ver	Sc max	Xc max	Yc max	Sf min	Xs min	Ys min	Ac eff.	As eff.
1	S	1.93	-50.0	35.0	-52.8	-42.4	7.6	850	20.1
2	S	2.73	-50.0	0.0	-74.8	33.0	27.4	850	20.1

COMBINAZIONI FREQUENTI IN ESERCIZIO - APERTURA FESSURE [§ 7.3.4 EC2]

Comb.	Ver	e1	e2	k2	Ø	Cf	e sm - e cm s	sr max	wk	Mx fess	My fess
1	S	-0.00038	0	0.500	16.0	68	0.00016 (0.00016)	346	0.055 (0.20)	69.01	0.00
2	S	-0.00053	0	0.500	16.0	68	0.00022 (0.00022)	346	0.078 (0.20)	-69.01	0.00

COMBINAZIONI QUASI PERMANENTI IN ESERCIZIO - MASSIME TENSIONI NORMALI ED APERTURA FESSURE (NTC/EC2)

N°Comb	Ver	Sc max	Xc max \	c max	Sf min	Xs min	Ys min	Ac eff.	As eff.
1	S	1.58	-50.0	35.0	-43.4	-42.4	7.6	850	20.1
2	S	2.26	-50.0	0.0	-62.0	33.0	27.4	850	20.1

COMBINAZIONI QUASI PERMANENTI IN ESERCIZIO - APERTURA FESSURE [§ 7.3.4 EC2]

Comb.	Ver	e1	e2	k2	Ø	Cf	e sm - e cm s	sr max	wk	Mx fess	My fess
1	S	-0.00031	0	0.500	16.0	68	0.00013 (0.00013)	346	0.045 (0.20)	69.01	0.00
2	S	-0.00044	0	0.500	16.0	68	0.00019 (0.00019)	346	0.064 (0.20)	-69.01	0.00

9.2 VERIFICA SOLETTA SUPERIORE

CARATTERISTICHE DI RESISTENZA DEI MATERIALI IMPIEGATI

CALCESTRUZZO -	Classe:	C30/37	
	Resis. compr. di progetto fcd:	17.000	MPa
	Resis. compr. ridotta fcd':	8.500	MPa
	Def.unit. max resistenza ec2:	0.0020	
	Def.unit. ultima ecu:	0.0035	
	Diagramma tensione-deformaz.:	Parabola-Rettangolo	
	Modulo Elastico Normale Ec:	32836.0	MPa
	Resis. media a trazione fctm:	2.900	MPa
	Coeff. Omogen. S.L.E.:	15.00	
	Coeff. Omogen. S.L.E.:	15.00	
	Sc limite S.L.E. comb. Frequenti:	165.00	daN/cm²
	Ap.Fessure limite S.L.E. comb. Freque		mm
	Sc limite S.L.E. comb. Q.Permanenti:	0.00	Мра
	Ap.Fess.limite S.L.E. comb. Q.Perm.:	0.200	mm
ACCIAIO -	Tipo:	B450C	
	Resist. caratt. snervam. fyk:	450.00	MPa
	Resist. caratt. rottura ftk:	450.00	MPa
	Resist. snerv. di progetto fyd:	391.30	MPa
	Resist. ultima di progetto ftd:	391.30	MPa
	Deform. ultima di progetto Epu:	0.068	
	Modulo Elastico Ef	2000000	daN/cm²
	Diagramma tensione-deformaz.:	Bilineare finito	
	Coeff. Aderenza istantaneo ß1*ß2:	1.00	

Coeff. Aderenza differito ß1*ß2: 0.50 Sf limite S.L.E. Comb. Rare: 337.50 MPa

CARATTERISTICHE DOMINIO CONGLOMERATO

Forma del Do Classe Conglo	Poligonale C30/37	
N°vertice:	X [cm]	Y [cm]
1	-50.0	0.0
2	-50.0	30.0
3	50.0	30.0
4	50.0	0.0

DATI BARRE ISOLATE

X [cm]	Y [cm]	DiamØ[mm]
-42.4	7.6	16
-42.4	22.4	16
42.4	22.4	16
42.4	7.6	16
	-42.4 -42.4 42.4	-42.4 7.6 -42.4 22.4 42.4 22.4

DATI GENERAZIONI LINEARI DI BARRE

N°Gen. Numero assegnato alla singola generazione lineare di barre Numero della barra iniziale cui si riferisce la generazione Numero della barra finale cui si riferisce la generazione N°Barra Ini. N°Barra Fin.

N°Barre Numero di barre generate equidistanti cui si riferisce la generazione

Diametro in mm delle barre della generazione

N°Gen.	N°Barra Ini.	N°Barra Fin.	N°Barre	Ø
1	1	4	8	16
2	2	3	8	16

ARMATURE A TAGLIO

Diametro staffe: 8 mm
Passo staffe: 10.0 cm
Staffe: Una

Staffe: Una sola staffa chiusa perimetrale

CALCOLO DI RESISTENZA - SFORZI PER OGNI COMBINAZIONE ASSEGNATA

N	Sforzo normale [kN] applicato nel Baric. (+ se di compressione)
Mx	Momento flettente [daNm] intorno all'asse X di riferimento delle coordinate
	con verso positivo se tale da comprimere il lembo sup. della sez.
Vy	Componente del Taglio [kN] parallela all'asse Y di riferimento delle coordinate

N°Comb.	N	Mx	Vy
1	118.61	-88.40	190.03
2	11.11	50.57	0.00
3	68.16	-45.75	113.24
4	42.08	25.43	0.00

COMB. RARE (S.L.E.) - SFORZI PER OGNI COMBINAZIONE ASSEGNATA

N	Sforzo normale [kN] applicato nel Baricentro	(+ se di compressione)
---	--	------------------------

Mx Momento flettente [kNm] intorno all'asse X di riferimento (tra parentesi Mom.Fessurazione)

con verso positivo se tale da comprimere il lembo superiore della sezione

N°Comb.	N	Mx	Му
1	86.89	-64.66	0.00
2	18.40	35.76	0.00

COMB. FREQUENTI (S.L.E.) - SFORZI PER OGNI COMBINAZIONE ASSEGNATA

Ν Sforzo normale [kN] applicato nel Baricentro (+ se di compressione)

Mx Momento flettente [kNm] intorno all'asse X di riferimento (tra parentesi Mom.Fessurazione)

con verso positivo se tale da comprimere il lembo superiore della sezione

N°Comb.	N	Mx	Му
1	42.78	-20.18 (-55.50)	0.00 (0.00)
2	41.32	23.84 (54.39)	0.00 (0.00)

COMB. QUASI PERMANENTI (S.L.E.) - SFORZI PER OGNI COMBINAZIONE ASSEGNATA

Sforzo normale [kN] applicato nel Baricentro (+ se di compressione) Ν

Mx Momento flettente [kNm] intorno all'asse X di riferimento (tra parentesi Mom.Fessurazione)

con verso positivo se tale da comprimere il lembo superiore della sezione

N°Comb.	N	Mx	Му
1	41.12	-16.66 (-56.55)	0.00 (0.00)
2	41.12	19.26 (55.55)	0.00 (0.00)

RISULTATI DEL CALCOLO

Sezione verificata per tutte le combinazioni assegnate

Copriferro netto minimo barre longitudinali: 6.8 cm Interferro netto minimo barre longitudinali: 7.8 cm Copriferro netto minimo staffe: 6.0 cm

VERIFICHE DI RESISTENZA IN PRESSO-TENSO FLESSIONE ALLO STATO LIMITE ULTIMO

Ver S = combinazione verificata / N = combin. non verificata

Sforzo normale assegnato [kN] nel baricentro B sezione cls.(positivo se di compressione) Ν

Componente del momento assegnato [kNm] riferito all'asse x princ. d'inerzia Mx N Res Sforzo normale resistente [kN] nel baricentro B sezione cls.(positivo se di compress.)

Mx Res Momento flettente resistente [kNm] riferito all'asse x princ. d'inerzia

Misura sicurezza = rapporto vettoriale tra (N r,Mx Res,My Res) e (N,Mx,My) Mis.Sic.

Verifica positiva se tale rapporto risulta >=1.000

Area totale barre longitudinali [cm²]. [Tra parentesi il valore minimo di normativa] As Totale

N°Comb	Ver	N	Mx	N Res	Mx Res	Mis.Sic.	As Totale
1	S	118.61	-88.40	118.46	-170.77	1.93	40.2(9.0)
2	S	11.11	50.57	11.16	162.10	3.21	40.2(9.0)
3	S	68.16	-45.75	68.11	-166.71	3.64	40.2(9.0)
4	S	42.08	25.43	42.11	164.60	6.47	40.2(9.0)

METODO AGLI STATI LIMITE ULTIMI - DEFORMAZIONI UNITARIE ALLO STATO ULTIMO

Deform. unit. massima del conglomerato a compressione ec max

Deform. unit. massima del conglomerato a compressione

Xc max	Ascissa in cm della fibra corrisp. a ec max (sistema rif. X,Y,O sez.)
Yc max	Ordinata in cm della fibra corrisp. a ec max (sistema rif. X,Y,O sez.)
es min	Deform. unit. minima nell'acciaio (negativa se di trazione)
Xs min	Ascissa in cm della barra corrisp. a es min (sistema rif. X,Y,O sez.)
Ys min	Ordinata in cm della barra corrisp. a es min (sistema rif. X,Y,O sez.)
es max	Deform. unit. massima nell'acciaio (positiva se di compress.)
Xs max	Ascissa in cm della barra corrisp. a es max (sistema rif. X,Y,O sez.)
Ys max	Ordinata in cm della barra corrisp. a es max (sistema rif. X,Y,O sez.)

N°Comb	ec max	Xc max	Yc max	es min	Xs min	Ys min	es max	Xs max	Ys max
1	0.00350	-50.0	0.0	-0.00020	-42.4	7.6	-0.00742	42.4	22.4
2	0.00350	-50.0	30.0	-0.00037	-42.4	22.4	-0.00790	-42.4	7.6
3	0.00350	-50.0	0.0	-0.00028	-42.4	7.6	-0.00765	42.4	22.4
4	0.00350	-50.0	30.0	-0.00032	-42.4	22.4	-0.00777	-42.4	7.6

POSIZIONE ASSE NEUTRO PER OGNI COMB. DI RESISTENZA

Coeff. a, b, c nell'eq. dell'asse neutro aX+bY+c=0 nel rif. X,Y,O gen. a. b. c Rapp. di duttilità (travi e solette)[§ 4.1.2.1.2.1 NTC]: deve essere < 0.45 x/d

C.Rid. Coeff. di riduz. momenti per sola flessione in travi continue

C.Rid	x/d	С	b	а	N°Comb
		0.003500000	-0.000487481	0.000000000	1
		-0.011772890	0.000509096	0.000000000	2
		0.003500000	-0.000497730	0.000000000	3
		-0.011588415	0.000502947	0.000000000	4

VERIFICHE A TAGLIO

bw

Ctg

Acw Ast

A.Eff

Diam. Staffe:

Passo staffe: 10.0 cm [Passo massimo di normativa = 19.2 cm]

S = comb. verificata a taglio / N = comb. non verificata Ver Ved Taglio di progetto [kN] = Vy ortogonale all'asse neutro

Taglio compressione resistente [kN] lato conglomerato [formula (4.1.28)NTC] Vcd Taglio resistente [kN] assorbito dalle staffe [(4.1.18) NTC] Vwd

Altezza utile media pesata sezione ortogonale all'asse neutro | Braccio coppia interna [cm]

d|z Vengono prese nella media le strisce con almeno un estremo compresso.

I pesi della media sono costituiti dalle stesse lunghezze delle strisce. Larghezza media resistente a taglio [cm] misurate parallel. all'asse neutro E' data dal rapporto tra l'area delle sopradette strisce resistenti e Dmed. Cotangente dell'angolo di inclinazione dei puntoni di conglomerato Coefficiente maggiorativo della resistenza a taglio per compressione Area staffe+legature strettam. necessarie a taglio per metro di pil.[cm²/m]

Area staffe+legature efficaci nella direzione del taglio di combinaz.[cm²/m] Tra parentesi è indicata la guota dell'area relativa alle sole legature. L'area della legatura è ridotta col fattore L/d_max con L=lungh.legat.proiettata sulla direz. del taglio e d_max= massima altezza utile nella direz.del taglio.

N°Comb	Ver	Ved	Vcd	Vwd	d z	bw	Ctg	Acw	Ast	A.Eff
1	S	190.03	585.69	192.05	27.1 19.5	100.0	2.500	1.023	9.9	10.1(0.0)
2	S	0.00	836.95	77.30	27.3 19.7	100.0	1.000	1.002	0.0	10.1(0.0)
3	S	113.24	581.78	192.63	27.2 19.6	100.0	2.500	1.013	5.9	10.1(0.0)
4	S	0.00	840.58	77.17	27.2 19.6	100.0	1.000	1.008	0.0	10.1(0.0)

COMBINAZIONI RARE IN ESERCIZIO - MASSIME TENSIONI NORMALI ED APERTURA FESSURE (NTC/EC2)

S = comb. verificata/ N = comb. non verificata Ver

Sc max Massima tensione (positiva se di compressione) nel conglomerato [Mpa]

Sf min Minima tensione (negativa se di traz Xs min, Ys min Ascissa, Ordinata [cm] della barra co Ac eff. Area di calcestruzzo [cm²] in zona te			
x Yc max Sf min	Xs min Ys min	Ac eff.	As eff.
0 0.0 -145.4	33.0 22.4	900	20.1 20.1
1	a tensione (negativa se di a, Ordinata [cm] della bari li calcestruzzo [cm²] in zon arre [cm²] in zona tesa co x Yc max Sf min	a tensione (negativa se di trazione) nell'acciaio a, Ordinata [cm] della barra corrisp. a Sf min (s li calcestruzzo [cm²] in zona tesa considerata a l'arre [cm²] in zona tesa considerate efficaci per x Yc max Sf min Xs min Ys min 0 0.0 -145.4 33.0 22.4	0 0.0 -145.4 33.0 22.4 900

COMBINAZIONI RARE IN ESERCIZIO - APERTURA FESSURE [§ 7.3.4 EC2]

Ver. e1 e2 k1 kt k2 k3 k4 Ø Cf e sm sr ma wk Mx fe	ess.	Esito della vi Massima dei Minima defo = 0.8 per ba = 0.4 per ci = 3.400 Coe = 0.425 Coe Competro [n Copriferro [n Differenza tr Tra parentes Massima dis Apertura fes Componente	erifica formazione u rmazione u rmazione u nure ad adere omb. quasi p sssione; =(e1 ff. in eq.(7.1 ff. in eq.(7.1 m] equivaler nm] netto cal a le deforma si: valore mir tanza tra le sure in mm o e momento de	unitaria di tra itaria di tra inza miglio ermanenti + e2)/(2*e 1) come da 1) come da 1) come da delle ba colato con zioni medi imo = 0.6 essure [mr calcolata = i prima fes	razione nel zione nel rata [eq.() / = 0.6 pe 1) per trazi annessi a annessi a annessi riferimen e di accia Smax / Esm] sr max*(e surazione surazione surazione surazione surazione nel controllo di surazione surazione surazione nel controllo di surazione surazione surazione nel controllo di surazione surazione surazione surazione nel controllo di surazione	el calcestruzzo calcestruzzo (7.11)EC2] er comb.frequione eccentri nazionali nazionali to alla barra pio e calcestrus [(7.9)EC2]	zzo [(7.8)EC2 e (C4.1.7)NTC] e (C4.1.8)NTC] [(7.8)EC2 e (C4.1.7)NTC]. Valo sse X [kNm]	e fessurata essurata	a	ctm	
Comb.	Ver	e1	e2	k2	Ø	Cf	e sm - e cm s	sr max	wk	Mx fess	My fess
1	S	-0.00115	0	0.500	16.0	68	0.00044 (0.00044)	353	0.154 (0.20)	-53.31	0.00
2 COMBIN	s I azion i	-0.00069 FREQUENTI IN	0 I ESERCIZ	0.500 IO - MA	16.0 SSIME 1	68 F <mark>ensioni n</mark>	0.00026 (0.00026) IORMALI ED APERTURA F	333 ESSURI	0.088 (0.20) E (NTC/EC2)	51.14	0.00

CC AZIONI FREQUENTI IN ESERCIZIO - MASSIME TENSIONI NOF (TURA FESSURE (NTC/ECZ)

N°Comb	Ver	Sc max	Xc max	Yc max	Sf min	Xs min	Ys min	Ac eff.	As eff.
1	S	2.21	-50.0	0.0	-41.3	33.0	22.4	850	20.1
2	S	2.62	-50.0	30.0	-51.2	-42.4	7.6	850	20.1

COMBINAZIONI FREQUENTI IN ESERCIZIO - APERTURA FESSURE [§ 7.3.4 EC2]

Comb.	Ver	e1	e2	k2	Ø	Cf	e sm - e cm si	r max	wk	Mx fess	My fess
1 2	S S	-0.00033 -0.00041	0	0.500 0.500	16.0 16.0	68 68	,	346 346	0.043 (0.20) 0.053 (0.20)	-55.50 54.39	0.00 0.00

COMBINAZIONI QUASI PERMANENTI IN ESERCIZIO - MASSIME TENSIONI NORMALI ED APERTURA FESSURE (NTC/EC2)

N°Comb	Ver	Sc max	Xc max	Yc max	Sf min	Xs min	Ys min	Ac eff.	As eff.
1 2	-	1.82 2.11							

COMBINAZIONI QUASI PERMANENTI IN ESERCIZIO - APERTURA FESSURE [§ 7.3.4 EC2]

Comb.	Ver	e1	e2	k2	Ø	Cf	e sm - e cm s	r max	wk	Mx fess	My fess
1	S	-0.00027	0	0.500	16.0	68	0.00010 (0.00010)		0.034 (0.20)	-56.55	0.00
2	S	-0.00032	0	0.500	16.0	68	0.00012 (0.00012)		0.041 (0.20)	55.55	0.00

9.3 VERIFICA PIEDRITTI

CARATTERISTICHE DI RESISTENZA DEI MATERIALI IMPIEGATI

CALCESTRUZZO -	Classe:	C30/37	
	Resis compr. di progetto fcd:	17 000	٨

MPa Resis. compr. di progetto tca: 8.500 MPa Resis. compr. ridotta fcd': Def.unit. max resistenza ec2: 0.0020 0.0035 Def.unit. ultima ecu: Diagramma tensione-deformaz.: Parabola-Rettangolo Modulo Elastico Normale Ec: 32836.0 MPa Resis. media a trazione fctm: 2.900 MPa Coeff. Omogen. S.L.E.: 15.00

Coeff. Omogen. S.L.E.: 15.00 Sc limite S.L.E. comb. Frequenti: 165.00

Sc limite S.L.E. comb. Frequenti:165.00daN/cm²Ap.Fessure limite S.L.E. comb. Frequenti:0.200mmSc limite S.L.E. comb. Q.Permanenti:0.00MpaAp.Fess.limite S.L.E. comb. Q.Perm.:0.200mm

ACCIAIO - Tipo: B450C

Resist. caratt. snervam. fyk:450.00MPaResist. caratt. rottura ftk:450.00MPaResist. snerv. di progetto fyd:391.30MPaResist. ultima di progetto ftd:391.30MPaDeform. ultima di progetto Epu:0.068

Modulo Elastico Ef 2000000 daN/cm²

Diagramma tensione-deformaz.:

Coeff. Aderenza istantaneo ß1*ß2:

Coeff. Aderenza differito ß1*ß2:

Sf limite S.L.E. Comb. Rare:

Bilineare finito

0.50

0.50

MPa

CARATTERISTICHE DOMINIO CONGLOMERATO

Forma del D Classe Congl	Poligonale C30/37	
N°vertice:	X [cm]	Y [cm]
1	-50.0 -50.0	0.0 35.0
3	50.0	35.0
4	50.0	0.0

DATI BARRE ISOLATE

N°Barra	X [cm]	Y [cm]	DiamØ[mm]
1	-42.8	7.2	16
2	-42.8	27.8	16
3	42.8	27.8	16
4	42.8	7.2	16

DATI GENERAZIONI LINEARI DI BARRE

N°Gen.Numero assegnato alla singola generazione lineare di barreN°Barra Ini.Numero della barra iniziale cui si riferisce la generazioneN°Barra Fin.Numero della barra finale cui si riferisce la generazione

N°Barre Numero di barre generate equidistanti cui si riferisce la generazione

Ø Diametro in mm delle barre della generazione

N°Gen.	N°Barra Ini.	N°Barra Fin.	N°Barre	Ø
1	1	4	8	16
2	2	3	3	16

ARMATURE A TAGLIO

Diametro staffe: 8 mm Passo staffe: 18.6 cm

Staffe: Una sola staffa chiusa perimetrale

CALCOLO DI RESISTENZA - SFORZI PER OGNI COMBINAZIONE ASSEGNATA

N Sforzo normale [kN] applicato nel Baric. (+ se di compressione)

Mx Momento flettente [daNm] intorno all'asse X di riferimento delle coordinate
con verso positivo se tale da comprimere il lembo sup. della sez.

Vy Componente del Taglio [kN] parallela all'asse Y di riferimento delle coordinate

N°Comb.	N	Mx	Vy
1	41.88	-39.98	134.46
2	191.40	37.22	114.58
3	119.04	107.55	0.00
4	80.43	-8.00	92.40
5	151.08	4.54	63.09
6	100.83	61.84	0.00

COMB. RARE (S.L.E.) - SFORZI PER OGNI COMBINAZIONE ASSEGNATA

N Sforzo normale [kN] applicato nel Baricentro (+ se di compressione)

Mx Momento flettente [kNm] intorno all'asse X di riferimento (tra parentesi Mom.Fessurazione)

con verso positivo se tale da comprimere il lembo superiore della sezione

N°Comb.	N	Mx	Му
1	72.69	-20.46	0.00
2	186.16	16.88	0.00
3	88.93	78.48	0.00

COMB. FREQUENTI (S.L.E.) - SFORZI PER OGNI COMBINAZIONE ASSEGNATA

N Sforzo normale [kN] applicato nel Baricentro (+ se di compressione)

Mx Momento flettente [kNm] intorno all'asse X di riferimento (tra parentesi Mom.Fessurazione)

con verso positivo se tale da comprimere il lembo superiore della sezione

N°Comb.	N	Mx	Му
1	107.61	4.51 (0.00)	0.00 (0.00)
2	113.01	-5.98 (0.00)	0.00 (0.00)
3	136.42	32.44 (89.69)	0.00 (0.00)

COMB. QUASI PERMANENTI (S.L.E.) - SFORZI PER OGNI COMBINAZIONE ASSEGNATA

N	Sforzo normale [kN] applicato nel Baricentro	(+ se di compressione)

Mx Momento flettente [kNm] intorno all'asse X di riferimento (tra parentesi Mom.Fessurazione)

con verso positivo se tale da comprimere il lembo superiore della sezione

N°Comb.	N	Mx	Му
1	110.76	6.29 (4487.84)	0.00 (0.00)
2	110.76	-6.29 (0.00)	0.00 (0.00)
3	118.87	27.23 (90.76)	0.00 (0.00)

RISULTATI DEL CALCOLO

Sezione verificata per tutte le combinazioni assegnate

Copriferro netto minimo barre longitudinali: 6.4 cm Interferro netto minimo barre longitudinali: 7.9 cm Copriferro netto minimo staffe: 5.6 cm

VERIFICHE DI RESISTENZA IN PRESSO-TENSO FLESSIONE ALLO STATO LIMITE ULTIMO

Ver S = combinazione verificata / N = combin. non verificata

N Sforzo normale assegnato [kN] nel baricentro B sezione cls.(positivo se di compressione)
Mx Componente del momento assegnato [kNm] riferito all'asse x princ. d'inerzia

N Res Sforzo normale resistente [kN] nel baricentro B sezione cls. (positivo se di compress.)

Mx Res Momento flettente resistente [kNm] riferito all'asse x princ. d'inerzia
Mis.Sic. Misura sicurezza = rapporto vettoriale tra (N r,Mx Res,My Res) e (N,Mx,My)

Verifica positiva se tale rapporto risulta >=1.000

As Totale Area totale barre longitudinali [cm²]. [Tra parentesi il valore minimo di normativa]

N°Comb	Ver	N	Mx	N Res	Mx Res	Mis.Sic.	As Totale
1	S	41.88	-39.98	41.74	-123.34	3.10	30.2(10.5)
2	S	191.40	37.22	191.53	223.36		30.2(10.5)
3	S	119.04	107.55	119.25	215.34	2.00	30.2(10.5)
4	S	80.43	-8.00	80.18	-127.60	16.86	30.2(10.5)
5	S	151.08	4.54	151.09	218.88	40.70	30.2(10.5)
6	S	100.83	61.84	100.94	213.30	3.43	30.2(10.5)

METODO AGLI STATI LIMITE ULTIMI - DEFORMAZIONI UNITARIE ALLO STATO ULTIMO

ec max	Deform. unit. massima del conglomerato a compressione
	Deform. unit. massima del conglomerato a compressione
Xc max	Ascissa in cm della fibra corrisp. a ec max (sistema rif. X,Y,O sez.)
Yc max	Ordinata in cm della fibra corrisp. a ec max (sistema rif. X,Y,O sez.)
es min	Deform. unit. minima nell'acciaio (negativa se di trazione)
Xs min	Ascissa in cm della barra corrisp. a es min (sistema rif. X,Y,O sez.)
Ys min	Ordinata in cm della barra corrisp. a es min (sistema rif. X,Y,O sez.)
es max	Deform. unit. massima nell'acciaio (positiva se di compress.)
Xs max	Ascissa in cm della barra corrisp. a es max (sistema rif. X,Y,O sez.)
Ys max	Ordinata in cm della barra corrisp. a es max (sistema rif. X,Y,O sez.)

N°Comb	ec max	Xc max	Yc max	es min	Xs min	Ys min	es max	Xs max	Ys max
					40.0		0.01010	40.0	
1	0.00350	-50.0	0.0	-0.00088	-42.8	7.2	-0.01342	42.8	27.8
2	0.00350	-50.0	35.0	-0.00003	-42.8	27.8	-0.01011	-42.8	7.2
3	0.00350	-50.0	35.0	-0.00018	-42.8	27.8	-0.01071	-42.8	7.2
4	0.00350	-50.0	0.0	-0.00082	-42.8	7.2	-0.01317	42.8	27.8
5	0.00350	-50.0	35.0	-0.00011	-42.8	27.8	-0.01045	-42.8	7.2
6	0.00350	-50.0	35.0	-0.00022	-42.8	27.8	-0.01086	-42.8	7.2

a, b, c x/d C.Rid.	Rapp. di	duttilità (travi e solette)[§	utro aX+bY+c=0 nel rif. X 4.1.2.1.2.1 NTC]: deve e flessione in travi continue		
N°Comb	a	b	С	x/d	C.Rid.
1	0.000000000	-0.000608495	0.003500000		
2	0.000000000	0.000489721	-0.013640250		
3	0.000000000	0.000511140	-0.014389887		
4	0.000000000	-0.000599808	0.003500000		
5	0.000000000	0.000501853	-0.014064869		
6	0.000000000	0.000516382	-0.014573364		

VERIFICHE A TAGLIO

hw

Diam. Staffe: 8 mm

Passo staffe: 18.6 cm [Passo massimo di normativa = 19.2 cm]

 Ver
 S = comb. verificata a taglio / N = comb. non verificata

 Ved
 Taglio di progetto [kN] = Vy ortogonale all'asse neutro

 Vcd
 Taglio compressione resistente [kN] lato conglomerato [formula (4.1.28)NTC]

Vwd Taglio resistente [kN] assorbito dalle staffe [(4.1.18) NTC] d | z Altezza utile media pesata sezione ortogonale all'asse neutro | Braccio coppia interna [cm]

Vengono prese nella media le strisce con almeno un estremo compresso.
I pesi della media sono costituiti dalle stesse lunghezze delle strisce.
Larghezza media resistente a taglio [cm] misurate parallel. all'asse neutro

E' data dal rapporto tra l'area delle sopradette strisce resistenti e Dmed.

Ctg Cotangente dell'angolo di inclinazione dei puntoni di conglomerato

Acw Coefficiente maggiorativo della resistenza a taglio per compressione

Ast Area staffe+legature strettam. necessarie a taglio per metro di pil.[cm²/m]

A.Eff Area staffe+legature efficaci nella direzione del taglio di combinaz.[cm²/m]

Tra parentesi è indicata la quota dell'area relativa alle sole legature.

L'area della legatura è ridotta col fattore L/d_max con L=lungh.legat.proiettata sulla direz. del taglio e d_max= massima altezza utile nella direz.del taglio.

$N^{\circ}Comb$	Ver	Ved	Vcd	Vwd	d z	bw	Ctg	Acw	Ast	A.Eff
1	S	134.46	752.65	134.82	32.7 25.5	100.0	2.500	1.007	5.4	5.4(0.0)
2	S	114.58	754.55	131.87	32.1 24.9	100.0	2.500	1.032	4.7	5.4(0.0)
3	S	0.00	1086.40	53.00	32.3 25.1	100.0	1.000	1.020	0.0	5.4(0.0)
4	S	92.40	756.50	134.65	32.7 25.5	100.0	2.500	1.014	3.7	5.4(0.0)
5	S	63.09	751.68	132.24	32.2 25.0	100.0	2.500	1.025	2.6	5.4(0.0)
6	S	0.00	1084.34	53.06	32.3 25.1	100.0	1.000	1.017	0.0	5.4(0.0)

COMBINAZIONI RARE IN ESERCIZIO - MASSIME TENSIONI NORMALI ED APERTURA FESSURE (NTC/EC2)

 Ver
 S = comb. verificata/ N = comb. non verificata

 Sc max
 Massima tensione (positiva se di compressione) nel conglomerato [Mpa]

 Xc max, Yc max
 Ascissa, Ordinata [cm] del punto corrisp. a Sc max (sistema rif. X,Y,O)

 Sf min
 Minima tensione (negativa se di trazione) nell'acciaio [Mpa]

 Xs min, Ys min
 Ascissa, Ordinata [cm] della barra corrisp. a Sf min (sistema rif. X,Y,O)

 Ac eff.
 Area di calcestruzzo [cm²] in zona tesa considerata aderente alle barre

 As eff.
 Area barre [cm²] in zona tesa considerate efficaci per l'apertura delle fessure

N°Comb	Ver	Sc max	Xc max	Yc max	Sf min	Xs min	Ys min	Ac eff.	As eff.
1	S	1.87	-50.0	0.0	-45.1	21.4	27.8	773	10.1
2	S	1.32	-50.0	35.0	-1.1	-42.8	7.2	750	20.1
3	S	6.09	-50.0	35.0	-138.8	-42.8	7.2	800	20.1

COMBINAZIONI RARE IN ESERCIZIO - APERTURA FESSURE [§ 7.3.4 EC2]

Ver.		Esito de	ella verifica											
e1										ıtata in sezion		a		
e2									ione -) valuta	ata in sezione	tessurata			
k1 kt			er barre ad						[cfr. eq.(7.9)]	EC21				
k2									eq.(7.13)EC2					
k3			Coeff. in 6						cq.(1.10)LO2	-1				
k4			Coeff. in e											
Ø									efficace Ac	eff [eq.(7.11)E	C21			
Cf			rro [mm] n							,	•			
e sm	- e cm	Differer	nza tra le d	eformazio	oni med	ie di ac	ciaio e cal	cestruzzo	(7.8)EC2 e (C4.1.7)NTC]				
							Es [(7.9	9)EC2 e (C	4.1.8)NTC]					
sr ma	ìΧ		na distanza				*/	\ r/ /))F00 (04)	4 7/1/17/17/1				
wk										1.7)NTC]. Valo	ore limite	tra parentesi		
Mx fe			nente mon nente mon											
My fe	:55.	Compo	Hente mon	iento di p	IIIIIa I C	SSUIAZIO	ine intorne	u ali asse i	[KINIII]					
Comb.	Ver	e1		e2	k2	Ø	Cf	:	6	e sm - e cm	sr max	wk	Mx fess	My fess
														,
1	S	-0.00032	2	0	0.500	16.0	64		0.00014	4 (0.00014)	427	0.058 (0.20)	-83.79	0.00
2	S	-0.00003	}	0	0.500		64			(0.00000)	319	0.001 (0.20)	178.99	0.00
3	S	-0.00099		Ō	0.500					2 (0.00042)	326	0.136 (0.20)	73.24	0.00
										,		(,		
COMBIN	AZION	FREQUEN	ITI IN ESE	ERCIZIO	- MA	ASSIME	TENSI	ONI NOR	MALI ED A	PERTURA F	ESSUR	E (NTC/EC2)		
N°Comb	Ver	Sc max	Xc max	Yc max	: 3	Sf min	Xs min	Ys min	Ac eff.	As eff.				
1	S	0.49	-50.0	35.0		2.3	-42.8	7.2						
2	S	0.52	-50.0	0.0		2.1	21.4	27.8						
3	S	2.53	-50.0	35.0		-34.0	-42.8	7.2	750	20.1				
COMBIN	AZION	FREQUEN	ITI IN ESE	ERCIZIO	- API	ERTUR	RA FESS	URE [§ 7	.3.4 EC2]					
Comb.	Ver	e1		e2	k2	Ø	Cf	:	e	e sm - e cm	sr max	wk	Mx fess	My fess
1	S	0.00000										0.000 (0.20)	0.00	0.00
2	S	0.00000	0.000	000								0.000 (0.20)	0.00	0.00
3	S	-0.00026	6	0	0.500	16.0	64		0.00010	0.00010)	319	0.033 (0.20)	89.69	0.00
COMBIN	AZION	QUASI PE	RMANEN	ITI IN ES	SERCI	ZIO -	MASSIN	IE TENSI	ONI NORM	ALI ED APE	RTURA	FESSURE (NTO	C/EC2)	
											RTURA	FESSURE (NTC	C/EC2)	
COMBIN N°Comb		Sc max	RMANEN Xc max				MASSIN Xs min		ONI NORM. Ac eff.	ALI ED APE As eff.	RTURA	FESSURE (NT	C/EC2)	
N°Comb	Ver	Sc max	Xc max	Yc max		Sf min	Xs min	Ys min	Ac eff.	As eff.	RTURA	FESSURE (NTC	C/EC2)	
					: 5						RTURA	FESSURE (NT	C/EC2)	

COMBINAZIONI QUASI PERMANENTI IN ESERCIZIO - APERTURA FESSURE [§ 7.3.4 EC2]

35.0

-27.6

-42.8

2.12

-50.0

Comb.	Ver	e1	e2	k2	Ø	Cf	e sm - e cm s	r max	wk	Mx fess	My fess
1	S	0.00000	0	0.500	16.0	64	0.00010 (0.00010)	0	0.000 (0.20)	4487.84	0.00
2	S	0.00000	0.00000				`		0.000 (0.20)	0.00	0.00
3	S	-0.00022	0	0.500	16.0	64	0.00008 (0.00008)	319	0.026 (0.20)	90.76	0.00

7.2

20.1

750

S ITALFERR	Nuova linea Ferrandina - Matera La Martella per il collegam Matera con la rete ferroviaria nazionale NUOVA LINEA FERRANDINA – MATERA LA MARTELLA					
Relazione di calcolo	PROGETTO	LOTTO	CODIFICA DOCUMENTO	REV.	FOGLIO	
	IA5F	01	D 78 CL IN2600 001	B	56 DI 94	

I ITALFERR	Nuova linea Ferrandina - Matera La Martella per il collegamen Matera con la rete ferroviaria nazionale NUOVA LINEA FERRANDINA – MATERA LA MARTELLA					
Relazione di calcolo	PROGETTO	LOTTO	CODIFICA DOCUMENTO	REV.	FOGLIO	
	IA5F	01	D 78 CL IN2600 001	B	57 DI 94	

10 MURO DI SOSTEGNO

Richiami teorici

Il calcolo dei muri di sostegno viene eseguito secondo le seguenti fasi:

- Calcolo della spinta del terreno
- Verifica a ribaltamento
- Verifica a scorrimento del muro sul piano di posa
- Verifica della stabilità complesso fondazione terreno (carico limite)
- Verifica della stabilità globale

Se il muro è in calcestruzzo armato: Calcolo delle sollecitazioni sia del muro che della fondazione, progetto delle armature e relative verifiche dei materiali.

Se il muro è a gravità: Calcolo delle sollecitazioni sia del muro che della fondazione e verifica in diverse sezioni al ribaltamento, allo scorrimento ed allo schiacciamento.

Calcolo della spinta sul muro

Valori caratteristici e valori di calcolo

Effettuando il calcolo tramite gli Eurocodici è necessario fare la distinzione fra i parametri caratteristici ed i valodi di calcolo (o di progetto) sia delle azioni che delle resistenze.

I valori di calcolo si ottengono dai valori caratteristici mediante l'applicazione di opportuni coefficienti di sicurezza parziali γ . In particolare si distinguono combinazioni di carico di tipo **A1-M1** nelle quali vengono incrementati i carichi e lasciati inalterati i parametri di resistenza del terreno e combinazioni di carico di tipo **A2-M2** nelle quali vengono ridotti i parametri di resistenza del terreno e incrementati i soli carichi variabili.

Metodo di Culmann

Il metodo di Culmann adotta le stesse ipotesi di base del metodo di Coulomb. La differenza sostanziale è che mentre Coulomb considera un terrapieno con superficie a pendenza costante e carico uniformemente distribuito (il che permette di ottenere una espressione in forma chiusa per il coefficiente di spinta) il metodo di Culmann consente di analizzare situazioni con profilo di forma generica e carichi sia concentrati che distribuiti comunque

S ITALFERR	Matera con	la rete fer	ina - Matera La Martella roviaria nazionale ANDINA – MATERA LA M		ŭ
Relazione di calcolo	PROGETTO	LOTTO	CODIFICA DOCUMENTO	REV.	FOGLIO
	IA5F	01	D 78 CL IN2600 001	B	58 DI 94

disposti. Inoltre, rispetto al metodo di Coulomb, risulta più immediato e lineare tener conto della coesione del masso spingente. Il metodo di Culmann, nato come metodo essenzialmente grafico, si è evoluto per essere trattato mediante analisi numerica (noto in questa forma come metodo del cuneo di tentativo). Come il metodo di Coulomb anche questo metodo considera una superficie di rottura rettilinea.

I passi del procedimento risolutivo sono i seguenti:

- si impone una superficie di rottura (angolo di inclinazione ρ rispetto all'orizzontale) e si considera il cuneo di spinta delimitato dalla superficie di rottura stessa, dalla parete su cui si calcola la spinta e dal profilo del terreno;
- si valutano tutte le forze agenti sul cuneo di spinta e cioè peso proprio (W), carichi sul terrapieno, resistenza per attrito e per coesione lungo la superficie di rottura $(R \ e \ C)$ e resistenza per coesione lungo la parete (A);
- dalle equazioni di equilibrio si ricava il valore della spinta S sulla parete.

Questo processo viene iterato fino a trovare l'angolo di rottura per cui la spinta risulta massima.

La convergenza non si raggiunge se il terrapieno risulta inclinato di un angolo maggiore dell'angolo d'attrito del terreno.

Nei casi in cui è applicabile il metodo di Coulomb (profilo a monte rettilineo e carico uniformemente distribuito) i risultati ottenuti col metodo di Culmann coincidono con quelli del metodo di Coulomb.

Le pressioni sulla parete di spinta si ricavano derivando l'espressione della spinta S rispetto all'ordinata z. Noto il diagramma delle pressioni è possibile ricavare il punto di applicazione della spinta.

Spinta in presenza di falda

Nel caso in cui a monte del muro sia presente la falda il diagramma delle pressioni sul muro risulta modificato a causa della sottospinta che l'acqua esercita sul terreno. Il peso di volume del terreno al di sopra della linea di falda non subisce variazioni. Viceversa al di sotto del livello di falda va considerato il peso di volume di galleggiamento

$$\gamma_{\text{a}} = \gamma_{\text{sat}} - \gamma_{\text{w}}$$

dove γ_{sat} è il peso di volume saturo del terreno (dipendente dall'indice dei pori) e γ_w è il peso specifico dell'acqua. Quindi il diagramma delle pressioni al di sotto della linea di falda ha una pendenza minore. Al diagramma così ottenuto va sommato il diagramma triangolare legato alla pressione idrostatica esercitata dall'acqua.

Spinta in presenza di sisma

S ITALFERR	Matera con	la rete fer	ina - Matera La Martella roviaria nazionale ANDINA – MATERA LA N	•	·
Relazione di calcolo	PROGETTO	LOTTO	CODIFICA DOCUMENTO	REV.	FOGLIO
	IA5F	01	D 78 CL IN2600 001	B	59 DI 94

Per tener conto dell'incremento di spinta dovuta al sisma si fa riferimento al metodo di Mononobe-Okabe (cui fa riferimento la Normativa Italiana).

La Normativa Italiana suggerisce di tener conto di un incremento di spinta dovuto al sisma nel modo seguente.

Detta ε l'inclinazione del terrapieno rispetto all'orizzontale e β l'inclinazione della parete rispetto alla verticale, si calcola la spinta S' considerando un'inclinazione del terrapieno e della parte pari a

$$\epsilon' = \epsilon + \ \theta$$

$$\beta' = \beta + \theta$$

dove $\theta = arctg(C)$ essendo C il coefficiente di intensità sismica.

Detta S la spinta calcolata in condizioni statiche l'incremento di spinta da applicare è espresso da

$$\Delta S = AS' - S$$

dove il coefficiente A vale

$$A = \frac{\cos^2(\beta + \theta)}{\cos^2\beta \cos\theta}$$

In presenza di falda a monte, nel coefficiente A si tiene conto dell'influenza dei pesi di volume nel calcolo di θ .

Adottando il metodo di Mononobe-Okabe per il calcolo della spinta, il coefficiente A viene posto pari a 1.

Tale incremento di spinta è applicato a metà altezza della parete di spinta nel caso di forma rettangolare del diagramma di incremento sismico, allo stesso punto di applicazione della spinta statica nel caso in cui la forma del diagramma di incremento sismico è uguale a quella del diagramma statico.

Oltre a questo incremento bisogna tener conto delle forze d'inerzia orizzontali e verticali che si destano per effetto del sisma. Tali forze vengono valutate come

$$F_{\text{iH}} = k_{\text{h}}W$$
 $F_{\text{iV}} = \pm k_{\text{v}}W$

dove Wè il peso del muro, del terreno soprastante la mensola di monte ed i relativi sovraccarichi e va applicata nel baricentro dei pesi.

S ITALFERR	Nuova linea Ferrandina - Matera La Martella per il collegamento de Matera con la rete ferroviaria nazionale NUOVA LINEA FERRANDINA – MATERA LA MARTELLA					
Balantana Parahada	PROGETTO	LOTTO	CODIFICA DOCUMENTO	REV.	FOGLIO	
Relazione di calcolo	IA5F	01	D 78 CL IN2600 001	В	60 DI 94	

Il metodo di Culmann tiene conto automaticamente dell'incremento di spinta. Basta inserire nell'equazione risolutiva la forza d'inerzia del cuneo di spinta. La superficie di rottura nel caso di sisma risulta meno inclinata della corrispondente superficie in assenza di sisma.

Verifica a ribaltamento

La verifica a ribaltamento consiste nel determinare il momento risultante di tutte le forze che tendono a fare ribaltare il muro (momento ribaltante M_r) ed il momento risultante di tutte le forze che tendono a stabilizzare il muro (momento stabilizzante M_s) rispetto allo spigolo a valle della fondazione e verificare che il rapporto M_s/M_r sia maggiore di un determinato coefficiente di sicurezza η_r .

Deve quindi essere verificata la seguente diseguaglianza

$$M_s \longrightarrow >= \eta_r$$
 M_r

Il momento ribaltante M_r è dato dalla componente orizzontale della spinta S, dalle forze di inerzia del muro e del terreno gravante sulla fondazione di monte (caso di presenza di sisma) per i rispettivi bracci. Nel momento stabilizzante interviene il peso del muro (applicato nel baricentro) ed il peso del terreno gravante sulla fondazione di monte. Per quanto riguarda invece la componente verticale della spinta essa sarà stabilizzante se l'angolo d'attrito terra-muro δ è positivo, ribaltante se δ è negativo. δ è positivo quando è il terrapieno che scorre rispetto al muro, negativo quando è il muro che tende a scorrere rispetto al terrapieno (questo può essere il caso di una spalla da ponte gravata da carichi notevoli). Se sono presenti dei tiranti essi contribuiscono al momento stabilizzante.

Questa verifica ha significato solo per fondazione superficiale e non per fondazione su pali.

Verifica a scorrimento

Per la verifica a scorrimento del muro lungo il piano di fondazione deve risultare che la somma di tutte le forze parallele al piano di posa che tendono a fare scorrere il muro deve essere minore di tutte le forze, parallele al piano di scorrimento, che si oppongono allo scivolamento, secondo un certo coefficiente di sicurezza. La verifica a scorrimento sisulta soddisfatta se il rapporto fra la risultante delle forze resistenti allo scivolamento F_r e la risultante delle forze che tendono a fare scorrere il muro F_s risulta maggiore di un determinato coefficiente di sicurezza η_s

S ITALFERR	Nuova linea Ferrandina - Matera La Martella per il collegamen Matera con la rete ferroviaria nazionale NUOVA LINEA FERRANDINA – MATERA LA MARTELLA					
Relazione di calcolo	PROGETTO	LOTTO	CODIFICA DOCUMENTO	REV.	FOGLIO	
	IA5F	01	D 78 CL IN2600 001	B	61 DI 94	

$$F_{r} \rightarrow = \eta_{s}$$

Le forze che intervengono nella F_s sono: la componente della spinta parallela al piano di fondazione e la componente delle forze d'inerzia parallela al piano di fondazione.

La forza resistente è data dalla resistenza d'attrito e dalla resistenza per adesione lungo la base della fondazione. Detta N la componente normale al piano di fondazione del carico totale gravante in fondazione e indicando con δ_f l'angolo d'attrito terreno-fondazione, con c_a l'adesione terreno-fondazione e con B_r la larghezza della fondazione reagente, la forza resistente può esprimersi come

$$F_{\text{r}} = N \ tg \ \delta_{\text{f}} + c_{\text{a}} B_{\text{r}}$$

La Normativa consente di computare, nelle forze resistenti, una aliquota dell'eventuale spinta dovuta al terreno posto a valle del muro. In tal caso, però, il coefficiente di sicurezza deve essere aumentato opportunamente. L'aliquota di spinta passiva che si può considerare ai fini della verifica a scorrimento non può comunque superare il 50 percento.

Per quanto riguarda l'angolo d'attrito terra-fondazione, δ_f , diversi autori suggeriscono di assumere un valore di δ_f pari all'angolo d'attrito del terreno di fondazione.

Verifica al carico limite

Il rapporto fra il carico limite in fondazione e la componente normale della risultante dei carichi trasmessi dal muro sul terreno di fondazione deve essere superiore a η_q . Cioè, detto Q_u , il carico limite ed R la risultante verticale dei carichi in fondazione, deve essere:

$$\frac{Q_u}{R} >= \eta_0$$

Si adotta per il calcolo del carico limite in fondazione il metodo di MEYERHOF.

I ITALFERR	Matera con I	Nuova linea Ferrandina - Matera La Martella per il collegamento Matera con la rete ferroviaria nazionale NUOVA LINEA FERRANDINA – MATERA LA MARTELLA PROGETTO LOTTO CODIFICA DOCUMENTO REV. FOGLIO					
Balantana Parahada	PROGETTO	LOTTO	CODIFICA DOCUMENTO	REV.	FOGLIO		
Relazione di calcolo	IA5F	01	D 78 CL IN2600 001	В	62 DI 94		

L'espressione del carico ultimo è data dalla relazione:

$$Q_{\text{u}} = c \ N_{\text{c}} d_{\text{c}} i_{\text{c}} + q N_{\text{q}} d_{\text{q}} i_{\text{q}} + 0.5 \gamma B N_{\gamma} d_{\gamma} i_{\gamma}$$

In questa espressione

- c coesione del terreno in fondazione;
- φ angolo di attrito del terreno in fondazione;
- γ peso di volume del terreno in fondazione;
- B larghezza della fondazione;
- D profondità del piano di posa;
- q pressione geostatica alla quota del piano di posa.

I vari fattori che compaiono nella formula sono dati da:

$$A=e^{\pi\;tg\;\phi}$$

$$N_q = A tg^2(45^\circ + \phi/2)$$

$$N_c = (N_q - 1) ctg \phi$$

$$N_{\gamma} = (N_{q} - 1) \text{ tg } (1.4\phi)$$

Indichiamo con K_p il coefficiente di spinta passiva espresso da:

$$K_p = tg^2(45^\circ + \phi/2)$$

I fattori de i che compaiono nella formula sono rispettivamente i fattori di profondità ed i fattori di inclinazione del carico espressi dalle seguenti relazioni:

Fattori di profondità

$$d_{\text{q}}=d_{\gamma}=1$$

$$per \phi = 0$$

$$d_{\text{q}} = d_{\text{y}} = 1 + 0.1 \frac{D}{B} \, K_{\text{p}}^{\text{0.5}} \qquad \text{per } \phi > 0 \label{eq:dq}$$

Fattori di inclinazione

Indicando con θ l'angolo che la risultante dei carichi forma con la verticale (espresso in gradi) e con ϕ l'angolo d'attrito del terreno di posa abbiamo:

$$i_c = i_q = (1 - \theta^{\circ}/90)^2$$

$$i_{\gamma} = (1 - \frac{\theta^{\circ}}{\phi^{\circ}})^{2} \qquad \qquad per \quad \phi > 0$$

$$i_{\gamma} = 0$$
 per $\phi = 0$

Verifica alla stabilità globale

La verifica alla stabilità globale del complesso muro+terreno deve fornire un coefficiente di sicurezza non inferiore a η_9 .

Viene usata la tecnica della suddivisione a strisce della superficie di scorrimento da analizzare. La superficie di scorrimento viene supposta circolare e determinata in modo tale da non avere intersezione con il profilo del muro o con i pali di fondazione. Si determina il minimo coefficiente di sicurezza su una maglia di centri di dimensioni 10x10 posta in prossimità della sommità del muro. Il numero di strisce è pari a 50.

Si adotta per la verifica di stabilità globale il metodo di Bishop.

Il coefficiente di sicurezza nel metodo di Bishop si esprime secondo la seguente formula:

S ITALFERR	Nuova linea Ferrandina - Matera La Martella per il collegamento Matera con la rete ferroviaria nazionale NUOVA LINEA FERRANDINA – MATERA LA MARTELLA					
Balantana Paralanta	PROGETTO	LOTTO	CODIFICA DOCUMENTO	REV.	FOGLIO	
Relazione di calcolo	IA5F	01	D 78 CL IN2600 001	В	64 DI 94	

$$\begin{array}{c} c_ib_i + (W_i - u_ib_i)tg\phi_i \\ \Sigma_i \ (\begin{array}{c} \\ \\ \end{array} \end{array}) \\ \eta = \begin{array}{c} \\ \\ \\ \end{array}$$

dove il termine *m* è espresso da

$$m = (1 + \frac{tg\varphi_i tg\alpha_i}{n}) \; cos\alpha_i$$

In questa espressione n è il numero delle strisce considerate, b_i e α_i sono la larghezza e l'inclinazione della base della striscia i_{esima} rispetto all'orizzontale, W_i è il peso della striscia i_{esima}, c_i e ϕ_i sono le caratteristiche del terreno (coesione ed angolo di attrito) lungo la base della striscia ed u_i è la pressione neutra lungo la base della striscia.

L'espressione del coefficiente di sicurezza di Bishop contiene al secondo membro il termine m che è funzione di η . Quindi essa viene risolta per successive approsimazioni assumendo un valore iniziale per η da inserire nell'espressione di m ed iterare finquando il valore calcolato coincide con il valore assunto.

10.1TABULATO DI CALCOLO MURO

<u>Dati</u>

<u>Materiali</u>

Simbologia adottata

n° Indice materiale

Descrizione del materiale

Calcestruzzo armato

C Classe di resistenza del cls

A Classe di resistenza dell'acciaio

 γ Peso specifico, espresso in [kN/mc]

 $R_{\text{ck}} \hspace{1cm} \text{Resistenza caratteristica a compressione, espressa in [N/mmq]} \\$

E Modulo elastico, espresso in [N/mmq]

v Coeff. di Poisson

n Coeff. di omogenizzazione acciaio/cls

ntc Coeff. di omogenizzazione cls teso/compresso

Calcestruzzo armato

n°	Descr	С	Α	γ	Rck	E	ν	n	ntc
				[kN/mc]	[N/mmq]	[N/mmq]			
1	C32/40	C32/40	B450C	25.0000	40.000	33642.6	0.30	15.00	0.50
5	C32/40	C32/40	B450C	25.0000	40.000	33642.6	0.30	15.00	0.50

Acciai

Descr	fyk	fuk
	[N/mmq]	[N/mmq]
B450C	450.000	540.000

Geometria profilo terreno a monte del muro

Simbologia adottata

(Sistema di riferimento con origine in testa al muro, ascissa X positiva verso monte, ordinata Y positiva verso l'alto)

n° numero ordine del punto

X ascissa del punto espressa in [m]

Y ordinata del punto espressa in [m]

A inclinazione del tratto espressa in [°]

n°	Х	Y	A
	[m]	[m]	[°]
1	0.00	0.00	0.000
2	4.40	2.93	33.660
3	5.40	2.93	0.000
4	11.70	2.93	0.000
5	12.70	2.93	0.000
6	20.00	-2.29	-35.567

Inclinazione terreno a valle del muro rispetto all'orizzontale 0.000 [°]

<u>Falda</u>

Simbologia adottata

(Sistema di riferimento con origine in testa al muro, ascissa X positiva verso monte, ordinata Y positiva verso l'alto)

n° numero ordine del punto

X ascissa del punto espressa in [m]

Y ordinata del punto espressa in [m]

A inclinazione del tratto espressa in [°]

n°	Х	Y	Α
	[m]	[m]	[°]
1	-3.00	-8.80	0.000
2	18.00	-8.80	0.000

Geometria muro

Geometria paramento e fondazione

<u>Paramento</u>

Materiale	C32/40	
Altezza paramento	2.30	[m]
Altezza paramento libero	2.30	[m]
Spessore in sommità	0.40	[m]
Spessore all'attacco con la fondazione	0.40	[m]
Inclinazione paramento esterno	0.00	[°]
Inclinazione paramento interno	0.00	[°]

I ITALFERR	Matera con	Nuova linea Ferrandina - Matera La Martella per il collegamento Matera con la rete ferroviaria nazionale NUOVA LINEA FERRANDINA – MATERA LA MARTELLA PROGETTO LOTTO CODIFICA DOCUMENTO REV. FOGLIO					
	PROGETTO	LOTTO	CODIFICA DOCUMENTO	REV.	FOGLIO		
Relazione di calcolo	IA5F	01	D 78 CL IN2600 001	В	67 DI 94		

	one

Materiale	C32/40	
Lunghezza mensola di valle	0.00	[m]
Lunghezza mensola di monte	2.10	[m]
Lunghezza totale	2.50	[m]
Inclinazione piano di posa	0.00	[°]
Spessore	0.40	[m]
Spessore magrone	0.15	[m]

40

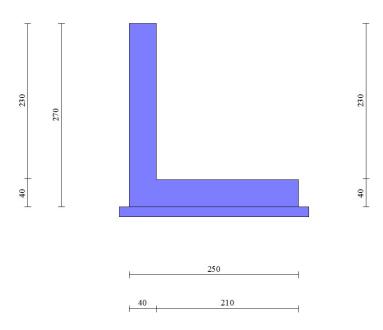


Fig. 1 - Sezione quotata del muro

Descrizione terreni

Parametri di resistenza

Simbologia adottata

n°	Indice del terreno
Descr	Descrizione terreno
γ	Peso di volume del terreno espresso in [kN/mc]
γs	Peso di volume saturo del terreno espresso in [kN/mc]
ф	Angolo d'attrito interno espresso in [°]
δ	Angolo d'attrito terra-muro espresso in [°]

c Coesione espressa in [N/mmq]

ca Adesione terra-muro espressa in [N/mmq]

Per calcolo portanza con il metodo di Bustamante-Doix

Cesp Coeff. di espansione laterale (solo per il metodo di Bustamante-Doix)

 τl Tensione tangenziale limite, espressa in [N/mmq]

n°	Descr	γ	γsat	ф	δ	С	са	Cesp	τΙ	
		[kN/mc]	[kN/mc]	[°]	[°]	[N/mmq]	[N/mmq]		[N/mmq]	
1	Riempimento	20.0000	20.0000	35.000	23.330	0.000	0.000			
2	Unità 1c	19.0000	19.0000	30.000	20.000	0.015	0.008			
3	Unità 2	19.0000	19.0000	22.000	14.670	0.030	0.015			

Stratigrafia

Simbologia adottata

nº Indice dello strato

H Spessore dello strato espresso in [m]

α Inclinazione espressa in [°]

Terreno dello strato

 $\hbox{Kwn, Kwt} \qquad \hbox{Costante di Winkler normale e tangenziale alla superficie espressa in Kg/cm2/cm} \\$

Per calcolo pali (solo se presenti)

Kw Costante di Winkler orizzontale espressa in Kg/cm²/cm

Ks Coefficiente di spinta

Cesp Coefficiente di espansione laterale (per tutti i metodi tranne il metodo di Bustamante-Doix)

Per calcolo della spinta con coeff. di spinta definiti (usati solo se attiva l'opzione 'Usa coeff. di spinta da strato')

Kststa, Kstsis Coeff. di spinta statico e sismico

n°	Н	α	Terreno	Kwn	Kwt	Kw	Ks	Cesp	Kststa	Kstsis
	[m]	[°]		[Kg/cm³]	[Kg/cm³]	[Kg/cm³]				
1	2.70	0.000	Riempimento	1.000	0.330	0.000	0.000	1.000	0.000	0.000
2	6.00	0.000	Unità 1c	1.000	0.330	0.000	0.000	1.000	0.000	0.000
3	3.00	0.000	Unità 2	0.000	0.000	0.000	0.000	1.000	0.000	0.000

S ITALFERR	Matera con	la rete fer	ina - Matera La Martella roviaria nazionale ANDINA – MATERA LA M		
Relazione di calcolo	PROGETTO	LOTTO	CODIFICA DOCUMENTO	REV.	FOGLIO
	IA5F	01	D 78 CL IN2600 001	B	69 DI 94

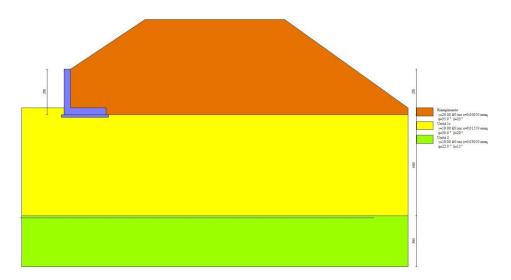


Fig. 2 - Stratigrafia

Condizioni di carico

Simbologia adottata

Carichi verticali positivi verso il basso.

Carichi orizzontali positivi verso sinistra.

Momento positivo senso antiorario.

V	Ascissa del punto di applicazione del carico concentrato espressa in [m]	
^	Ascissa dei punto di applicazione dei canco concentrato espressa in [m]	

Fx Componente orizzontale del carico concentrato espressa in [kN]

Fy Componente verticale del carico concentrato espressa in [kN]

M Momento espresso in [kNm]

Xi Ascissa del punto iniziale del carico ripartito espressa in [m]

X_f Ascissa del punto finale del carico ripartito espressa in [m]

Qi Intensità del carico per x=Xi espressa in [kN]

 $Q_f \hspace{1cm} \text{Intensità del carico per } x{=}X_f \text{ espressa in } [kN]$

Condizione nº 1 (Condizione 1) - VARIABILE TF

Coeff. di combinazione $\Psi_0 {=}\, 0.75 \, \hbox{-}\, \Psi_1 {=}\, 0.75 \, \hbox{-}\, \Psi_2 {=}\, 0.00$

Carichi sul terreno

n°	Tipo	X	Fx	Fy	М	Xi	Xf	Qi	Qf
		[m]	[kN]	[kN]	[kNm]	[m]	[m]	[kN]	[kN]
1	Distribuito					5.37	10.98	20.0000	20.0000

Normativa

Normativa usata: Norme Tecniche sulle Costruzioni 2018 (D.M. 17.01.2018) + Circolare C.S.LL.PP. 21/01/2019 n.7

Coeff. parziali per le azioni o per l'effetto delle azioni

Carichi	Effetto		Combinazioni statiche					Combinazioni sismiche		
			HYD	UPL	EQU	A1	A2	EQU	A1	A2
Permanenti strutturali	Favorevoli	γG1,fav	1.00	0.90	1.00	1.00	1.00	1.00	1.00	1.00
Permanenti strutturali	Sfavorevoli	γG1,sfav	1.00	1.10	1.30	1.30	1.00	1.00	1.00	1.00
Permanenti non strutturali	Favorevoli	γG2,fav	0.00	0.80	0.80	0.80	0.80	0.00	0.00	0.00
Permanenti non strutturali	Sfavorevoli	γG2,sfav	1.00	1.50	1.50	1.50	1.30	1.00	1.00	1.00
Variabili	Favorevoli	γQ,fav	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Variabili	Sfavorevoli	γQ,sfav	1.00	1.50	1.50	1.50	1.30	1.00	1.00	1.00
Variabili da traffico	Favorevoli	γQT,fav	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Variabili da traffico	Sfavorevoli	γQT,sfav	1.00	1.50	1.35	1.35	1.15	1.00	1.00	1.00

Coeff. parziali per i parametri geotecnici del terreno

Parametro		Combinazioni statiche			Combinazioni sismiche		
		M1	M1 M2		M2		
Tangente dell'angolo di attrito	γtan(φ')	1.00	1.25	1.00	1.00		
Coesione efficace	γς:	1.00	1.25	1.00	1.00		
Resistenza non drenata	γcu	1.00	1.40	1.00	1.00		
Peso nell'unita di volume	γγ	1.00	1.00	1.00	1.00		

Coeff. parziali γ_R per le verifiche agli stati limite ultimi STR e GEO

Verifica	Con	nbinazioni stat	iche	Combinazioni sismiche			
	R1	R2	R3	R1	R2	R3	
Capacità portante			1.40			1.20	
Scorrimento			1.10			1.00	
Resistenza terreno a valle			1.40			1.20	
Ribaltameno			1.15			1.00	
Stabilità fronte di scavo		1.10			1.20		

Descrizione combinazioni di carico

Con riferimento alle azioni elementari prima determinate, si sono considerate le seguenti combinazioni di carico:

- Combinazione fondamentale, impiegata per gli stati limite ultimi (SLU):

$$\gamma_{G1} \; G_1 \; + \; \gamma_{G2} \; G_2 \; + \; \gamma_{Q1} \; Q_{k1} \; + \; \gamma_{Q2} \; Q_{k2} \; + \; \gamma_{Q3} \; Q_{k3} \; + \; ...$$

- Combinazione caratteristica, cosiddetta rara, impiegata per gli stati limite di esercizio (SLE) irreversibili:

$$G_1 + G_2 + Q_{k1} + \Psi_{0,2} Q_{k2} + \Psi_{0,3} Q_{k3} + ...$$

S ITALFERR	Matera con	la rete fer	ina - Matera La Martella roviaria nazionale ANDINA – MATERA LA N	•	·
Relazione di calcolo	PROGETTO	REV.	FOGLIO		
	IA5F	B	71 DI 94		

- Combinazione frequente, impiegata per gli stati limite di esercizio (SLE) reversibili:

$$G_1 + G_2 + \Psi_{1,1} Q_{k1} + \Psi_{2,2} Q_{k2} + \Psi_{2,3} Q_{k3} + ...$$

- Combinazione quasi permanente, impiegata per gli effetti di lungo periodo:

$$G_1 + G_2 + \Psi_{2,1} Q_{k1} + \Psi_{2,2} Q_{k2} + \Psi_{2,3} Q_{k3} + ...$$

- Combinazione sismica, impiegata per gli stati limite ultimi connessi all'azione sismica E:

$$E + G_1 + G_2 + \Psi_{2,1} \ Q_{k1} + \Psi_{2,2} \ Q_{k2} + \Psi_{2,3} \ Q_{k3} + ...$$

I valori dei coeff. $\Psi_{0,j}$, $\Psi_{1,j}$, $\Psi_{2,j}$ sono definiti nelle singole condizioni variabili.par I valori dei coeff. γ_G e γ_Q , sono definiti nella tabella normativa.

In particolare si sono considerate le seguenti combinazioni:

Simbologia adottata

- γ Coefficiente di partecipazione della condizione
- Ψ Coefficiente di combinazione della condizione

Combinazione nº 1 - STR (A1-M1-R3)

Condizione	γ	Ψ	Effetto
Peso muro	1.00		Favorevole
Peso terrapieno	1.00		Favorevole
Spinta terreno	1.30		Sfavorevole
Condizione 1	1.35	1.00	Sfavorevole

Combinazione nº 2 - STR (A1-M1-R3) H + V

Condizione	γ	Ψ	Effetto
Peso muro	1.00		Favorevole
Peso terrapieno	1.00		Favorevole
Spinta terreno	1.00		Sfavorevole

Combinazione nº 3 - STR (A1-M1-R3) H - V

Condizione	· v	W	Effetto
Condizione	γ	I	Elletto

Condizione	γ	Ψ	Effetto
Peso muro	1.00		Sfavorevole
Peso terrapieno	1.00		Sfavorevole
Spinta terreno	1.00		Sfavorevole

Combinazione nº 4 - GEO (A2-M2-R2)

Condizione	γ	Ψ	Effetto
Peso muro	1.00		Sfavorevole
Peso terrapieno	1.00		Sfavorevole
Spinta terreno	1.00		Sfavorevole
Condizione 1	1.15	1.00	Sfavorevole

Combinazione nº 5 - GEO (A2-M2-R2) H + V

Condizione	γ	Ψ	Effetto
Peso muro	1.00		Sfavorevole
Peso terrapieno	1.00		Sfavorevole
Spinta terreno	1.00		Sfavorevole

Combinazione nº 6 - GEO (A2-M2-R2) H - V

Condizione	γ	Ψ	Effetto
Peso muro	1.00		Sfavorevole
Peso terrapieno	1.00		Sfavorevole
Spinta terreno	1.00		Sfavorevole

Combinazione nº 7 - EQU (A1-M1-R3)

Condizione	γ	Ψ	Effetto
Peso muro	1.00		Favorevole
Peso terrapieno	1.00		Favorevole
Spinta terreno	1.30		Sfavorevole
Condizione 1	1.35	1.00	Sfavorevole

Combinazione nº 8 - EQU (A1-M1-R3) H + V

Condizione	γ	Ψ	Effetto
Peso muro	1.00		Favorevole
Peso terrapieno	1.00		Favorevole
Spinta terreno	1.00		Sfavorevole

Combinazione nº 9 - EQU (A1-M1-R3) H - V

Condizione	γ	Ψ	Effetto
Peso muro	1.00		Favorevole
Peso terrapieno	1.00		Favorevole
Spinta terreno	1.00		Sfavorevole

Combinazione nº 10 - SLER

Condizione	γ	Ψ	Effetto
Peso muro	1.00		Sfavorevole

Condizione	γ	Ψ	Effetto
Peso terrapieno	1.00		Sfavorevole
Spinta terreno	1.00		Sfavorevole
Condizione 1	1.00	1.00	Sfavorevole

Combinazione nº 11 - SLEF

Condizione	γ	Ψ	Effetto
Peso muro	1.00		Sfavorevole
Peso terrapieno	1.00		Sfavorevole
Spinta terreno	1.00		Sfavorevole
Condizione 1	1.00	0.75	Sfavorevole

Combinazione nº 12 - SLEQ

Condizione	γ	Ψ	Effetto
Peso muro	1.00		Sfavorevole
Peso terrapieno	1.00		Sfavorevole
Spinta terreno	1.00		Sfavorevole

Dati sismici

Comune Matera

Provincia Matera

Regione Molise

Latitudine 40.561810

Longitudine 16.536080

Indice punti di interpolazione 34345 - 34346 - 34124 - 34123

Vita nominale 50 anni Classe d'uso II

Tipo costruzione Normali affollamenti

Vita di riferimento 50 anni

	Simbolo	U.M.		SLU	SLE
Accelerazione al suolo	ag	[m/s ²]		1.542	0.538
Accelerazione al suolo	ag/g	[%]		0.157	0.055
Massimo fattore amplificazione spettro orizzontale	F0			2.480	2.490
Periodo inizio tratto spettro a velocità costante	Tc*			0.332	0.307
Tipo di sottosuolo - Coefficiente stratigrafico	Ss		С	1.466	1.500
Categoria topografica - Coefficiente amplificazione topografica	St		T1	1.000	

Stato limite	Coeff. di riduzione βm	kh	kv
Ultimo	0.380	8.759	4.380
Ultimo - Ribaltamento	0.570	13.139	6.569
Esercizio	0.470	3.864	1.932

Forma diagramma incremento sismico **Stessa forma del diagramma statico**

Opzioni di calcolo

Spinta

Metodo di calcolo della spinta Culmann

Tipo di spinta Spinta attiva

Terreno a bassa permeabilità NO
Superficie di spinta limitata NO

Capacità portante

Metodo di calcolo della portanza Meyerhof

Criterio di media calcolo del terreno equivalente (terreni stratificati) Ponderata

Criterio di riduzione per eccentricità della portanza Bowles

Criterio di riduzione per rottura locale (punzonamento) Nessuna

Larghezza fondazione nel terzo termine della formula del carico limite (0.5BγN₊) Larghezza ridotta (B')

Fattori di forma e inclinazione del carico Solo i fattori di inclinazione

Se la fondazione ha larghezza superiore a 2.0 m viene applicato il fattore di riduzione per comportamento a piastra

Stabilità globale

Metodo di calcolo della stabilità globale Bishop

<u>Altro</u>

Partecipazione spinta passiva terreno antistante 0.00

Partecipazione resistenza passiva dente di fondazione 50.00

Componente verticale della spinta nel calcolo delle sollecitazioni NO

Considera terreno sulla fondazione di valle NO

Considera spinta e peso acqua fondazione di valle NO

<u>Spostamenti</u>

Non è stato richiesto il calcolo degli spostamenti

<u>Cedimenti</u>

Non è stato richiesto il calcolo dei cedimenti

Specifiche per le verifiche nelle combinazioni allo Stato Limite Ultimo (SLU)

Nuova linea Ferrandina - Matera La Martella per il collegamento di

Matera con la rete ferroviaria nazionale

NUOVA LINEA FERRANDINA – MATERA LA MARTELLA

Relazione di calcolo

PROGETTO LOTTO CODIFICA DOCUMENTO REV. FOGLIO
1A5F 01 D 78 CL IN2600 001 B 75 DI 94

	SLU	Eccezionale
Coefficiente di sicurezza calcestruzzo a compressione	1.50	1.00
Coefficiente di sicurezza acciaio	1.15	1.00
Fattore di riduzione da resistenza cubica a cilindrica	0.83	0.83
Fattore di riduzione per carichi di lungo periodo	0.85	0.85
Coefficiente di sicurezza per la sezione	1.00	1.00

Specifiche per le verifiche nelle combinazioni allo Stato Limite di Esercizio (SLE)

Paramento e fondazione muro

Condizioni ambientali Aggressive

Armatura ad aderenza migliorata SI

Verifica a fessurazione

Sensibilità armatura Poco sensibile

Metodo di calcolo aperture delle fessure NTC 2018 - CIRCOLARE 21 gennaio 2019, n. 7 C.S.LL.PP.

Valori limite aperture delle fessure:

w₁=0.20

 $w_2 = 0.20$

 $w_3 = 0.20$

Verifica delle tensioni

Valori limite delle tensioni nei materiali:

Combinazione	Calcestruzzo	Acciaio
Rara	0.55 fck	0.75 fyk
Frequente	1.00 fck	1.00 fyk
Quasi permanente	0.40 fck	1.00 fyk

S ITALFERR	Matera con	la rete fer	ina - Matera La Martella roviaria nazionale ANDINA – MATERA LA M		
Relazione di calcolo	PROGETTO	LOTTO	CODIFICA DOCUMENTO	REV.	FOGLIO
	IA5F	01	D 78 CL IN2600 001	B	76 DI 94

Risultati per inviluppo

Spinta e forze

Simbologia adottata

Ic Indice della combinazione

A Tipo azione

I Inclinazione della spinta, espressa in [°]

V Valore dell'azione, espressa in [kN]

Cx, Cy Componente in direzione X ed Y dell'azione, espressa in [kN]

Px, Py Coordinata X ed Y del punto di applicazione dell'azione, espressa in [m]

Ic	A	V	I	Cx	CY	Px	Py
		[kN]	[°]	[kN]	[kN]	[m]	[m]
1	Spinta statica	90.25	23.33	82.87	35.74	2.10	-1.27
	Peso/Inerzia muro			0.00	48.00/0.00	0.35	-1.85
	Peso/Inerzia terrapieno			0.00	125.97/0.00	1.13	-0.77
	Peso dell'acqua sulla fondazione di valle				0.00	0.00	0.00

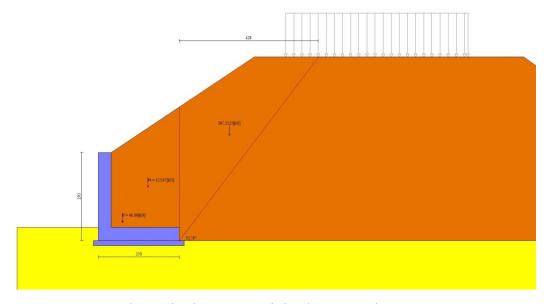


Fig. 3 - Cuneo di spinta (combinazione statica) (Combinazione n° 1)

S ITALFERR	Matera con	la rete fer	ina - Matera La Martella roviaria nazionale ANDINA – MATERA LA M		
Relazione di calcolo	PROGETTO	LOTTO	CODIFICA DOCUMENTO	REV.	FOGLIO
	IA5F	01	D 78 CL IN2600 001	B	77 DI 94

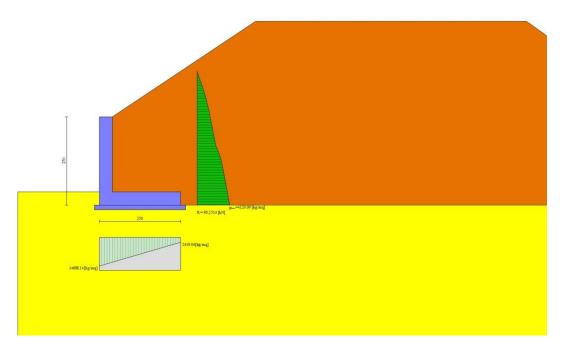


Fig. 4 - Diagramma delle pressioni (combinazione statica) (Combinazione $n^{\rm o}$ 1)

Verifiche geotecniche

Quadro riassuntivo coeff. di sicurezza calcolati

Simbologia adottata

 FS_{HYD}

Cmb	Indice/Tipo combinazione
S	Sisma (H: componente orizzontale, V: componente verticale)
FS sco	Coeff. di sicurezza allo scorrimento
FS _{RIB}	Coeff. di sicurezza al ribaltamento
FSQLIM	Coeff. di sicurezza a carico limite
FSSTAB	Coeff. di sicurezza a stabilità globale

FSUPL Coeff. di sicurezza a sollevamento

Coeff. di sicurezza a sifonamento

Cmb	Sismica	FS sco	FSRIB	FSQLIM	FS STAB	FS HYD	FSUPL
1 - STR (A1-M1-R3)		1.147		3.460			
2 - STR (A1-M1-R3)	H + V	1.059		2.868			
3 - STR (A1-M1-R3)	H - V	1.047		2.983			
4 - GEO (A2-M2-R2)					1.512		
5 - GEO (A2-M2-R2)	H + V				1.770		
6 - GEO (A2-M2-R2)	H - V				1.785		
7 - EQU (A1-M1-R3)			2.681				
8 - EQU (A1-M1-R3)	H + V		2.079				
9 - EQU (A1-M1-R3)	H - V		1.879				

Simbologia adottata

n° Indice combinazione

Rsa Resistenza allo scorrimento per attrito, espresso in [kN]

Rpt Resistenza passiva terreno antistante, espresso in [kN]

Rps Resistenza passiva sperone, espresso in [kN]

Rp Resistenza a carichi orizzontali pali (solo per fondazione mista), espresso in [kN]

Rt Resistenza a carichi orizzontali tiranti (solo se presenti), espresso in [kN]

R Resistenza allo scorrimento (somma di Rsa+Rpt+Rps+Rp), espresso in [kN]

T Carico parallelo al piano di posa, espresso in [kN]

FS Fattore di sicurezza (rapporto R/T)

n°	Rsa	Rpt	Rps	Rp	Rt	R	Т	FS
	[kN]	[kN]	[kN]	[kN]	[kN]	[kN]	[kN]	
3 - STR (A1-M1-R3) H - V	90.47	0.00	0.00			90.47	86.43	1.047

Verifica a carico limite

Simbologia adottata

n° Indice combinazione

N Carico normale totale al piano di posa, espresso in [kN]

Qu carico limite del terreno, espresso in [kN]

Qd Portanza di progetto, espresso in [kN]

FS Fattore di sicurezza (rapporto tra portanza di progetto e carico agente al piano di posa)

n°	N	Qu	Qd	FS	
	[kN]	[kN]	kN] [kN]		
2 - STR (A1-M1-R3) H + V	214.45	615.16	512.63	2.868	

Dettagli calcolo portanza

Simbologia adottata

n° Indece combinazione

Nc, Nq, Nγ Fattori di capacità portante

ic, iq, iγ Fattori di inclinazione del carico

dc, dq, dγ Fattori di profondità del piano di posa

gc, gq, gγ Fattori di inclinazione del profilo topografico

bc, bq, bγ Fattori di inclinazione del piano di posa

Fattori di forma della fondazione sc, sq, sγ Fattori di riduzione per punzonamento secondo Vesic pc, pq, pγ

Fattori per tener conto dell'effetto piastra. Per fondazioni che hanno larghezza maggiore di 2 m, il terzo termine della formula trinomia 0.5ByN₇ viene moltiplicato per questo

rγ fattore

D Affondamento del piano di posa, espresso in [m]

В' Larghezza fondazione ridotta, espresso in [m]

Altezza del cuneo di rottura, espresso in [m]

Peso di volume del terreno medio, espresso in [kN/mc]

Angolo di attrito del terreno medio, espresso in [°]

Coesione del terreno medio, espresso in [N/mmq]

Per i coeff. che in tabella sono indicati con il simbolo '--' sono coeff. non presenti nel metodo scelto (Meyerhof).

n°	Nc Nq Ny	ic iq iγ	dc dq dy	gc gq gy	bc bq bγ	sc sq sy	pc pq py	гү	D	B' H	γ	ф	С
									[m]	[m]	[kN/mc]	[°]	[N/mmq]
2		0.553	1.055					0.976	0.40	1.72	19.00	30.00	0.015
	18.401	0.553	1.028							2.17			
	15.668	0.053	1.028										

Verifica a ribaltamento

Simbologia adottata

n° Indice combinazione

Ms Momento stabilizzante, espresso in [kNm]

Mr Momento ribaltante, espresso in [kNm]

Fattore di sicurezza (rapporto tra momento stabilizzante e momento ribaltante) FS

La verifica viene eseguita rispetto allo spigolo inferiore esterno della fondazione

nº	Ms	Mr	FS
	[kNm]	[kNm]	
9 - EQU (A1-M1-R3) H - V	313.68	166.98	1.879

Verifica stabilità globale muro + terreno

Simbologia adottata

Ic Indice/Tipo combinazione

С Centro superficie di scorrimento, espresso in [m]

Raggio, espresso in [m] R

FS Fattore di sicurezza

Ic	С	R	FS
	[m]	[m]	
4 - GEO (A2-M2-R2)	0.00; 4.50	7.51	1.512

Dettagli strisce verifiche stabilità

Simbologia adottata

Le ascisse X sono considerate positive verso monte

Le ordinate Y sono considerate positive verso l'alto

Origine in testa al muro (spigolo contro terra)

W peso della striscia espresso in [kN]

Qy carico sulla striscia espresso in [kN]

lpha angolo fra la base della striscia e l'orizzontale espresso in [°] (positivo antiorario)

 $\boldsymbol{\varphi}$ angolo d'attrito del terreno lungo la base della striscia

c coesione del terreno lungo la base della striscia espressa in [N/mmq]

b larghezza della striscia espressa in [m]

u pressione neutra lungo la base della striscia espressa in [N/mmq]

Tx; Ty Resistenza al taglio fornita dai tiranti in direzione X ed Y espressa in [N/mmq]

n°	W	Qy	b	α	ф	С	u	Тх; Ту
	[kN]	[kN]	[m]	[°]	[°]	[N/mmq]	[N/mmq]	[kN]
1	5.62	9.72	7.35 - 0.42	72.377	29.256	0.000	0.0000	
2	14.84	9.72	0.42	63.654	29.256	0.000	0.0000	
3	21.19	9.72	0.42	57.056	29.256	0.000	0.0000	
4	26.19	9.72	0.42	51.503	29.256	0.000	0.0000	
5	30.32	6.68	0.42	46.569	29.256	0.000	0.0000	
6	33.81	0.00	0.42	42.054	29.256	0.000	0.0000	
7	36.81	0.00	0.42	37.842	29.256	0.000	0.0000	
8	38.16	0.00	0.42	33.861	29.256	0.000	0.0000	
9	38.02	0.00	0.42	30.058	29.256	0.000	0.0000	
10	37.56	0.00	0.42	26.397	29.256	0.000	0.0000	
11	36.82	0.00	0.42	22.849	29.256	0.000	0.0000	
12	35.82	0.00	0.42	19.392	29.256	0.000	0.0000	
13	33.44	0.00	0.42	16.007	24.791	0.012	0.0000	
14	33.92	0.00	0.42	12.678	24.791	0.012	0.0000	
15	32.20	0.00	0.42	9.393	24.791	0.012	0.0000	
16	30.29	0.00	0.42	6.139	24.791	0.012	0.0000	
17	28.18	0.00	0.42	2.905	24.791	0.012	0.0000	
18	29.22	0.00	0.42	-0.321	24.791	0.012	0.0000	
19	14.46	0.00	0.42	-3.547	24.791	0.012	0.0000	
20	5.42	0.00	0.42	-6.784	24.791	0.012	0.0000	
21	4.92	0.00	0.42	-10.044	24.791	0.012	0.0000	
22	4.22	0.00	0.42	-13.336	24.791	0.012	0.0000	
23	3.30	0.00	0.42	-16.675	24.791	0.012	0.0000	
24	2.12	0.00	0.42	-20.073	24.791	0.012	0.0000	
25	0.69	0.00	-3.21 - 0.42	-22.328	24.791	0.012	0.0000	

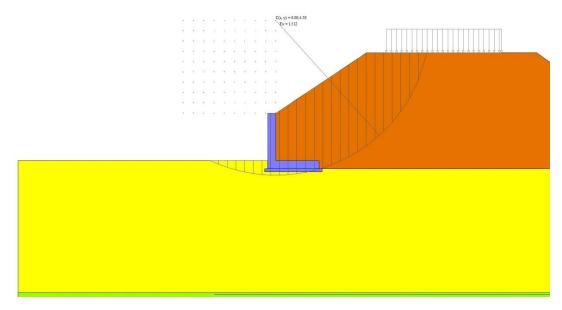


Fig. 5 - Stabilità fronte di scavo - Cerchio critico (Combinazione nº 4)

Sollecitazioni

Elementi calcolati a trave

Simbologia adottata

N Sforzo normale, espresso in [kN]. Positivo se di compressione.

T Taglio, espresso in [kN]. Positivo se diretto da monte verso valle

M Momento, espresso in [kNm]. Positivo se tende le fibre contro terra (a monte)

Paramento

n°	X	Nmin	N _{max}	Tmin	Tmax	M _{min}	M _{max}
	[m]	[kN]	[kN]	[kN]	[kN]	[kNm]	[kNm]
1	0.00	0.00	0.00	0.00	0.00	0.00	0.00
2	-0.10	1.00	1.00	0.05	0.16	0.00	0.01
3	-0.20	2.00	2.00	0.20	0.46	0.01	0.04
4	-0.30	3.00	3.00	0.45	0.91	0.05	0.10
5	-0.40	4.00	4.00	0.80	1.50	0.11	0.22
6	-0.50	5.00	5.00	1.25	2.24	0.21	0.41
7	-0.60	6.00	6.00	1.80	3.11	0.36	0.68
8	-0.70	7.00	7.00	2.44	4.13	0.57	1.04
9	-0.80	8.00	8.00	3.19	5.29	0.85	1.51
10	-0.90	9.00	9.00	4.03	6.60	1.21	2.10
11	-1.00	10.00	10.00	4.98	8.05	1.66	2.83
12	-1.10	11.00	11.00	6.02	9.63	2.21	3.71
13	-1.20	12.00	12.00	7.14	11.35	2.87	4.76
14	-1.30	13.00	13.00	8.36	13.21	3.64	5.99
15	-1.40	14.00	14.00	9.65	15.18	4.54	7.41
16	-1.50	15.00	15.00	11.03	17.28	5.58	9.03
17	-1.60	16.00	16.00	12.48	19.50	6.75	10.87
18	-1.70	17.00	17.00	14.00	21.84	8.07	12.93
19	-1.80	18.00	18.00	15.60	24.29	9.55	15.24
20	-1.90	19.00	19.00	17.27	26.86	11.20	17.80
21	-2.00	20.00	20.00	19.00	29.54	13.01	20.61
22	-2.10	21.00	21.00	20.81	32.33	15.00	23.71
23	-2.20	22.00	22.00	22.68	35.23	17.17	27.08
24	-2.30	23.00	23.00	24.62	38.24	19.54	30.76

F ITALFERR	Matera con	la rete fer	ina - Matera La Martella roviaria nazionale ANDINA – MATERA LA M		
Relazione di calcolo	PROGETTO	LOTTO	CODIFICA DOCUMENTO	REV.	FOGLIO
	IA5F	01	D 78 CL IN2600 001	B	82 DI 94

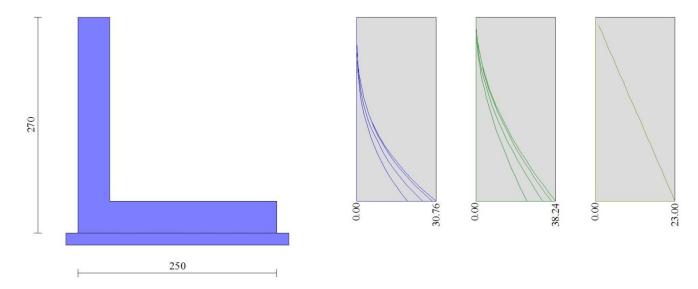
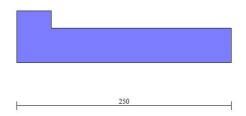



Fig. 6 - Paramento

Fondazione

n°	Х	Nmin	Nmax	Tmin	Tmax	Mmin	M _{max}
	[m]	[kN]	[kN]	[kN]	[kN]	[kNm]	[kNm]
1	0.00	0.00	0.00	-28.82	7.50	-80.76	-29.38
2	0.10	0.00	0.00	-33.99	2.32	-77.62	-29.86
3	0.20	0.00	0.00	-38.50	-2.38	-73.99	-29.86
4	0.30	0.00	0.00	-42.37	-6.60	-69.94	-29.40
5	0.40	0.00	0.00	-45.58	-10.34	-65.53	-28.53
6	0.50	0.00	0.00	-48.13	-13.59	-60.84	-27.32
7	0.60	0.00	0.00	-50.03	-16.36	-55.93	-25.81
8	0.70	0.00	0.00	-51.28	-18.65	-50.86	-24.05
9	0.80	0.00	0.00	-51.87	-20.46	-45.70	-22.08
10	0.90	0.00	0.00	-51.80	-21.78	-40.51	-19.97
11	1.00	0.00	0.00	-51.09	-22.60	-35.36	-17.74
12	1.10	0.00	0.00	-49.71	-22.94	-30.31	-15.46
13	1.20	0.00	0.00	-47.69	-22.80	-25.44	-13.17
14	1.30	0.00	0.00	-45.01	-22.19	-20.80	-10.92
15	1.40	0.00	0.00	-41.67	-21.09	-16.46	-8.75
16	1.50	0.00	0.00	-37.68	-19.51	-12.48	-6.72
17	1.60	0.00	0.00	-33.04	-17.46	-8.94	-4.86
18	1.70	0.00	0.00	-27.74	-14.93	-5.90	-3.24
19	1.80	0.00	0.00	-21.79	-11.91	-3.42	-1.89
20	1.90	0.00	0.00	-15.18	-8.42	-1.56	-0.87
21	2.00	0.00	0.00	-7.92	-4.45	-0.40	-0.23
22	2.10	0.00	0.00	0.00	0.00	0.00	0.00

I ITALFERR	Matera con I	Nuova linea Ferrandina - Matera La Martella per il collegamento di Matera con la rete ferroviaria nazionale NUOVA LINEA FERRANDINA – MATERA LA MARTELLA						
Balantana di salasta	PROGETTO	LOTTO	CODIFICA DOCUMENTO	REV.	FOGLIO			
Relazione di calcolo	IA5F	01	D 78 CL IN2600 001	В	83 DI 94			

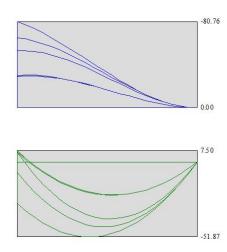


Fig. 7 - Fondazione

Verifiche strutturali Verifiche a flessione

Elementi calcolati a trave

Simbologia adottata

n°	indice sezione
Y	ordinata sezione espressa in [m]
В	larghezza sezione espresso in [cm]
Н	altezza sezione espressa in [cm]
Afi	area ferri inferiori espresso in [cmq]
Afs	area ferri superiori espressa in [cmq]
М	momento agente espressa in [kNm]
N	sforzo normale agente espressa in [kN]
Mu	momento ultimi espresso in [kNm]
Nu	sforzo normale ultimo espressa in [kN]
FS	fattore di sicurezza (rapporto tra sollecitazione ultima e sollecitazione agente)

Paramento

n°	В	Н	Afi	Afs	М	N	Mu	Nu	FS
	[cm]	[cm]	[cmq]	[cmq]	[kNm]	[kN]	[kNm]	[kN]	
1	100	40	8.04	12.57	0.00	0.00	0.00	0.00	1000.000
2	100	40	8.04	12.57	0.00	0.00	0.00	0.00	1000.000
3	100	40	8.04	12.57	0.00	0.00	0.00	0.00	1000.000
4	100	40	8.04	12.57	0.00	0.00	0.00	0.00	1000.000
5	100	40	8.04	12.57	0.00	0.00	0.00	0.00	1000.000
6	100	40	8.04	12.57	0.41	5.00	408.23	4981.53	996.307
7	100	40	8.04	12.57	0.68	6.00	467.12	4146.52	691.087
8	100	40	8.04	12.57	1.04	7.00	500.42	3378.24	482.605
9	100	40	8.04	12.57	1.51	8.00	478.50	2540.09	317.511
10	100	40	8.04	12.57	2.10	9.00	427.66	1832.32	203.591
11	100	40	8.04	12.57	2.83	10.00	375.63	1326.44	132.644
12	100	40	8.04	12.57	3.71	11.00	329.47	975.60	88.691
13	100	40	8.04	12.57	4.76	12.00	292.90	737.92	61.493
14	100	40	8.04	12.57	5.99	13.00	268.37	582.42	44.802
15	100	40	8.04	12.57	7.41	14.00	251.44	475.16	33.940
16	100	40	8.04	25.13	9.03	15.00	448.14	744.37	49.625
17	100	40	8.04	12.57	10.87	16.00	229.86	338.39	21.149
18	100	40	8.04	12.57	12.93	17.00	222.64	292.62	17.213
19	100	40	8.04	12.57	15.24	18.00	216.89	256.18	14.232
20	100	40	8.04	12.57	17.80	19.00	212.03	226.38	11.915
21	100	40	8.04	12.57	20.61	20.00	207.80	201.60	10.080
22	100	40	8.04	12.57	23.71	21.00	204.26	180.94	8.616
23	100	40	8.04	12.57	27.08	22.00	201.28	163.50	7.432
24	100	40	8.04	12.57	30.76	23.00	198.74	148.62	6.462

Fondazione

n°	В	Н	Afi	Afs	М	N	Mu	Nu	FS
	[cm]	[cm]	[cmq]	[cmq]	[kNm]	[kN]	[kNm]	[kN]	
1	100	40	12.57	12.57	-80.76	0.00	-173.17	0.00	2.144
2	100	40	12.57	12.57	-77.62	0.00	-173.17	0.00	2.231
3	100	40	12.57	12.57	-73.99	0.00	-173.17	0.00	2.341
4	100	40	12.57	12.57	-69.94	0.00	-173.17	0.00	2.476
5	100	40	12.57	12.57	-65.53	0.00	-173.17	0.00	2.643
6	100	40	12.57	12.57	-60.84	0.00	-173.17	0.00	2.846
7	100	40	12.57	12.57	-55.93	0.00	-173.17	0.00	3.096
8	100	40	12.57	12.57	-50.86	0.00	-173.17	0.00	3.405
9	100	40	12.57	12.57	-45.70	0.00	-173.17	0.00	3.790
10	100	40	12.57	12.57	-40.51	0.00	-173.17	0.00	4.275
11	100	40	12.57	12.57	-35.36	0.00	-173.17	0.00	4.898
12	100	40	12.57	12.57	-30.31	0.00	-173.17	0.00	5.713
13	100	40	12.57	12.57	-25.44	0.00	-173.17	0.00	6.808
14	100	40	12.57	12.57	-20.80	0.00	-173.17	0.00	8.328
15	100	40	12.57	12.57	-16.46	0.00	-173.17	0.00	10.524
16	100	40	12.57	12.57	-12.48	0.00	-173.17	0.00	13.873
17	100	40	12.57	12.57	-8.94	0.00	-173.17	0.00	19.368
18	100	40	12.57	12.57	-5.90	0.00	-173.17	0.00	29.367
19	100	40	12.57	12.57	-3.42	0.00	-173.17	0.00	50.708
20	100	40	12.57	12.57	-1.56	0.00	-173.17	0.00	110.905
21	100	40	12.57	12.57	-0.40	0.00	-173.17	0.00	431.561
22	100	40	12.57	12.57	0.00	0.00	0.00	0.00	1000.000

S ITALFERR	Matera con	la rete fer	ina - Matera La Martella roviaria nazionale ANDINA – MATERA LA N	•	·
Relazione di calcolo	PROGETTO	LOTTO	CODIFICA DOCUMENTO	REV.	FOGLIO
	IA5F	01	D 78 CL IN2600 001	B	85 DI 94

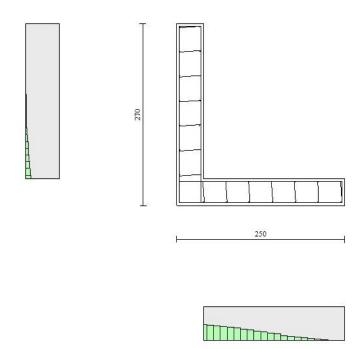


Fig. 8 - Paramento (Inviluppo)

Verifiche a taglio

Simbologia adottata

Is	indice sezione
Υ	ordinata sezione espressa in [m]
В	larghezza sezione espresso in [cm]
Н	altezza sezione espressa in [cm]
Asw	area ferri a taglio espresso in [cmq]
$cotg\theta$	inclinazione delle bielle compresse, θ inclinazione dei puntoni di calcestruzzo
V _{Rcd}	resistenza di progetto a 'taglio compressione' espressa in [kN]
V _{Rsd}	resistenza di progetto a 'taglio trazione' espressa in [kN]
V_{Rd}	$resistenza\ di\ progetto\ a\ taglio\ espresso\ in\ [kN].\ Per\ elementi\ con\ armature\ trasversali\ resistenti\ al\ taglio\ (A_{SW}>0.0)\ V_{Rd}=min(V_{Rcd},\ V_{Rsd}).$
Т	taglio agente espressa in [kN]
FS	fattore di sicurezza (rapporto tra sollecitazione resistente e sollecitazione agente)

Paramento

n°	В	Н	Asw	cotθ	VRcd	V _{Rsd}	V Rd	Т	FS
	[cm]	[cm]	[cmq]		[kN]	[kN]	[kN]	[kN]	
1	100	40	0.00		0.00	0.00	205.21	0.00	100.000
2	100	40	0.00		0.00	0.00	205.35	0.16	1284.344
3	100	40	0.00		0.00	0.00	205.48	0.46	442.516
4	100	40	0.00		0.00	0.00	205.62	0.91	225.358
5	100	40	0.00		0.00	0.00	205.76	1.50	136.926
6	100	40	0.00		0.00	0.00	205.90	2.24	92.100
7	100	40	0.00		0.00	0.00	206.04	3.11	66.210
8	100	40	0.00		0.00	0.00	206.18	4.13	49.903
9	100	40	0.00		0.00	0.00	206.32	5.29	38.967
10	100	40	0.00		0.00	0.00	206.46	6.60	31.278
11	100	40	0.00		0.00	0.00	206.59	8.05	25.671
12	100	40	0.00		0.00	0.00	206.73	9.63	21.457
13	100	40	0.00		0.00	0.00	206.87	11.35	18.219
14	100	40	0.00		0.00	0.00	207.01	13.21	15.676
15	100	40	0.00		0.00	0.00	207.15	15.18	13.645
16	100	40	0.00		0.00	0.00	242.58	17.28	14.038
17	100	40	0.00		0.00	0.00	207.43	19.50	10.638
18	100	40	0.00		0.00	0.00	207.57	21.84	9.506
19	100	40	0.00		0.00	0.00	207.70	24.29	8.552
20	100	40	0.00		0.00	0.00	207.84	26.86	7.739
21	100	40	0.00		0.00	0.00	207.98	29.54	7.042
22	100	40	0.00		0.00	0.00	208.12	32.33	6.438
23	100	40	0.00		0.00	0.00	208.26	35.23	5.912
24	100	40	0.00		0.00	0.00	208.40	38.24	5.449

Fondazione

n°	В	Н	Asw	cotθ	VRcd	VRsd	V Rd	Т	FS
	[cm]	[cm]	[cmq]		[kN]	[kN]	[kN]	[kN]	
1	100	40	0.00		0.00	0.00	219.24	-28.82	7.608
2	100	40	0.00		0.00	0.00	219.24	-33.99	6.451
3	100	40	0.00		0.00	0.00	219.24	-38.50	5.694
4	100	40	0.00		0.00	0.00	219.24	-42.37	5.175
5	100	40	0.00		0.00	0.00	219.24	-45.58	4.810
6	100	40	0.00		0.00	0.00	219.24	-48.13	4.555
7	100	40	0.00		0.00	0.00	219.24	-50.03	4.382
8	100	40	0.00		0.00	0.00	219.24	-51.28	4.276
9	100	40	0.00		0.00	0.00	219.24	-51.87	4.227
10	100	40	0.00		0.00	0.00	219.24	-51.80	4.232
11	100	40	0.00		0.00	0.00	219.24	-51.09	4.292
12	100	40	0.00		0.00	0.00	219.24	-49.71	4.410
13	100	40	0.00		0.00	0.00	219.24	-47.69	4.597
14	100	40	0.00		0.00	0.00	219.24	-45.01	4.871
15	100	40	0.00		0.00	0.00	219.24	-41.67	5.261
16	100	40	0.00		0.00	0.00	219.24	-37.68	5.818
17	100	40	0.00		0.00	0.00	219.24	-33.04	6.636
18	100	40	0.00		0.00	0.00	219.24	-27.74	7.904
19	100	40	0.00		0.00	0.00	219.24	-21.79	10.063
20	100	40	0.00		0.00	0.00	219.24	-15.18	14.444
21	100	40	0.00		0.00	0.00	219.24	-7.92	27.695
22	100	40	0.00		0.00	0.00	219.24	0.00	100.000

S ITALFERR	Matera con	la rete fer	ina - Matera La Martella roviaria nazionale ANDINA – MATERA LA M	•	
Relazione di calcolo	PROGETTO	LOTTO	CODIFICA DOCUMENTO	REV.	FOGLIO
	IA5F	01	D 78 CL IN2600 001	B	87 DI 94

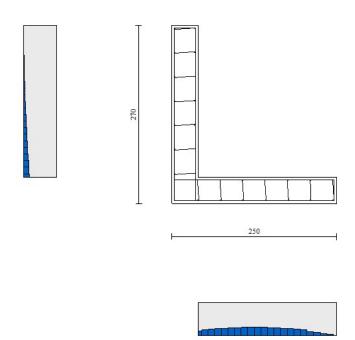


Fig. 9 - Paramento (Inviluppo)

Verifica delle tensioni

Simbologia adottata

n°	indice sezione
Υ	ordinata sezione, espressa in [m]
В	larghezza sezione, espresso in [cm]
н	altezza sezione, espressa in [cm]
Afi	area ferri inferiori, espresso in [cmq]
Afs	area ferri superiori, espressa in [cmq]
М	momento agente, espressa in [kNm]
N	sforzo normale agente, espressa in [kN]
σС	tensione di compressione nel cls, espressa in [N/mmq]
σfi	tensione nei ferri inferiori, espressa in [N/mmq]
σfs	tensione nei ferri superiori, espressa in [N/mmq]

Combinazioni SLER

<u>Paramento</u>

Tensione massima di compressione nel calcestruzzo	18.260	[N/mmq]
Tensione massima di trazione dell'acciaio	337.500	[N/mma]

n°	В	н	Afi	Afs	М	N	σC	σfi	σfs
	[cm]	[cm]	[cmq]	[cmq]	[kNm]	[kN]	[N/mmq]	[N/mmq]	[N/mmq]
1	100	40	8.04	12.57	0.00	0.00	0.000 (10)	0.000 (10)	0.000 (10)
2	100	40	8.04	12.57	0.00	1.00	0.002 (10)	0.033 (10)	0.037 (10)
3	100	40	8.04	12.57	0.01	2.00	0.005 (10)	0.062 (10)	0.077 (10)
4	100	40	8.04	12.57	0.05	3.00	0.009 (10)	0.083 (10)	0.127 (10)
5	100	40	8.04	12.57	0.11	4.00	0.013 (10)	0.092 (10)	0.188 (10)
6	100	40	8.04	12.57	0.21	5.00	0.019 (10)	0.084 (10)	0.267 (10)
7	100	40	8.04	12.57	0.36	6.00	0.026 (10)	0.057 (10)	0.365 (10)
8	100	40	8.04	12.57	0.57	7.00	0.036 (10)	0.000 (1)	0.491 (10)
9	100	40	8.04	12.57	0.85	8.00	0.049 (10)	0.136 (10)	0.663 (10)
10	100	40	8.04	12.57	1.21	9.00	0.068 (10)	0.428 (10)	0.899 (10)
11	100	40	8.04	12.57	1.66	10.00	0.093 (10)	0.949 (10)	1.204 (10)
12	100	40	8.04	12.57	2.21	11.00	0.125 (10)	1.742 (10)	1.575 (10)
13	100	40	8.04	12.57	2.87	12.00	0.163 (10)	2.824 (10)	2.011 (10)
14	100	40	8.04	12.57	3.64	13.00	0.207 (10)	4.205 (10)	2.512 (10)
15	100	40	8.04	12.57	4.54	14.00	0.258 (10)	5.898 (10)	3.081 (10)
16	100	40	8.04	25.13	5.58	15.00	0.263 (10)	4.326 (10)	3.277 (10)
17	100	40	8.04	12.57	6.75	16.00	0.382 (10)	10.275 (10)	4.438 (10)
18	100	40	8.04	12.57	8.07	17.00	0.456 (10)	12.989 (10)	5.234 (10)
19	100	40	8.04	12.57	9.55	18.00	0.538 (10)	16.074 (10)	6.114 (10)
20	100	40	8.04	12.57	11.20	19.00	0.629 (10)	19.545 (10)	7.083 (10)
21	100	40	8.04	12.57	13.01	20.00	0.729 (10)	23.419 (10)	8.143 (10)
22	100	40	8.04	12.57	15.00	21.00	0.838 (10)	27.710 (10)	9.299 (10)
23	100	40	8.04	12.57	17.17	22.00	0.957 (10)	32.435 (10)	10.555 (10)
24	100	40	8.04	12.57	19.54	23.00	1.086 (10)	37.608 (10)	11.913 (10)

Fondazione

Tensione massima di compressione nel calcestruzzo 18.260 [N/mmq]
Tensione massima di trazione dell'acciaio 337.500 [N/mmq]

n°	В	н	Afi	Afs	М	N	σс	σfi	σfs
	[cm]	[cm]	[cmq]	[cmq]	[kNm]	[kN]	[N/mmq]	[N/mmq]	[N/mmq]
1	100	40	12.57	12.57	-29.38	0.00	1.491 (10)	14.968 (10)	68.795 (10)
2	100	40	12.57	12.57	-29.86	0.00	1.515 (10)	15.216 (10)	69.935 (10)
3	100	40	12.57	12.57	-29.86	0.00	1.515 (10)	15.212 (10)	69.918 (10)
4	100	40	12.57	12.57	-29.40	0.00	1.492 (10)	14.981 (10)	68.856 (10)
5	100	40	12.57	12.57	-28.55	0.00	1.449 (10)	14.548 (10)	66.863 (10)
6	100	40	12.57	12.57	-27.35	0.00	1.388 (10)	13.936 (10)	64.051 (10)
7	100	40	12.57	12.57	-25.85	0.00	1.312 (10)	13.171 (10)	60.534 (10)
8	100	40	12.57	12.57	-24.09	0.00	1.223 (10)	12.277 (10)	56.425 (10)
9	100	40	12.57	12.57	-22.13	0.00	1.123 (10)	11.278 (10)	51.836 (10)
10	100	40	12.57	12.57	-20.02	0.00	1.016 (10)	10.200 (10)	46.881 (10)
11	100	40	12.57	12.57	-17.79	0.00	0.903 (10)	9.067 (10)	41.673 (10)
12	100	40	12.57	12.57	-15.51	0.00	0.787 (10)	7.903 (10)	36.324 (10)
13	100	40	12.57	12.57	-13.22	0.00	0.671 (10)	6.734 (10)	30.949 (10)
14	100	40	12.57	12.57	-10.96	0.00	0.556 (10)	5.583 (10)	25.659 (10)
15	100	40	12.57	12.57	-8.78	0.00	0.446 (10)	4.475 (10)	20.568 (10)
16	100	40	12.57	12.57	-6.74	0.00	0.342 (10)	3.435 (10)	15.790 (10)
17	100	40	12.57	12.57	-4.88	0.00	0.248 (10)	2.488 (10)	11.436 (10)
18	100	40	12.57	12.57	-3.25	0.00	0.165 (10)	1.658 (10)	7.621 (10)
19	100	40	12.57	12.57	-1.90	0.00	0.097 (10)	0.970 (10)	4.456 (10)
20	100	40	12.57	12.57	-0.88	0.00	0.045 (10)	0.447 (10)	2.056 (10)
21	100	40	12.57	12.57	-0.23	0.00	0.012 (10)	0.116 (10)	0.533 (10)
22	100	40	12.57	12.57	0.00	0.00	0.000 (10)	0.000 (10)	0.000 (10)

Combinazioni SLEF

<u>Paramento</u>

Tensione massima di compressione nel calcestruzzo 33.200 [N/mmq]

Tensione massima di trazione dell'acciaio 450.000 [N/mmq]

n°	В	Н	Afi	Afs	М	N	σc	σfi	σfs
	[cm]	[cm]	[cmq]	[cmq]	[kNm]	[kN]	[N/mmq]	[N/mmq]	[N/mmq]
1	100	40	8.04	12.57	0.00	0.00	0.000 (11)	0.000 (11)	0.000 (11)
2	100	40	8.04	12.57	0.00	1.00	0.002 (11)	0.033 (11)	0.037 (11)
3	100	40	8.04	12.57	0.01	2.00	0.005 (11)	0.062 (11)	0.077 (11)
4	100	40	8.04	12.57	0.05	3.00	0.009 (11)	0.083 (11)	0.127 (11)
5	100	40	8.04	12.57	0.11	4.00	0.013 (11)	0.092 (11)	0.188 (11)
6	100	40	8.04	12.57	0.21	5.00	0.019 (11)	0.084 (11)	0.267 (11)
7	100	40	8.04	12.57	0.36	6.00	0.026 (11)	0.057 (11)	0.365 (11)
8	100	40	8.04	12.57	0.57	7.00	0.036 (11)	0.000 (1)	0.491 (11)
9	100	40	8.04	12.57	0.85	8.00	0.049 (11)	0.136 (11)	0.663 (11)
10	100	40	8.04	12.57	1.21	9.00	0.068 (11)	0.428 (11)	0.899 (11)
11	100	40	8.04	12.57	1.66	10.00	0.093 (11)	0.949 (11)	1.204 (11)
12	100	40	8.04	12.57	2.21	11.00	0.125 (11)	1.742 (11)	1.575 (11)
13	100	40	8.04	12.57	2.87	12.00	0.163 (11)	2.824 (11)	2.011 (11)
14	100	40	8.04	12.57	3.64	13.00	0.207 (11)	4.205 (11)	2.512 (11)
15	100	40	8.04	12.57	4.54	14.00	0.258 (11)	5.898 (11)	3.081 (11)
16	100	40	8.04	25.13	5.58	15.00	0.263 (11)	4.326 (11)	3.277 (11)
17	100	40	8.04	12.57	6.75	16.00	0.382 (11)	10.275 (11)	4.438 (11)
18	100	40	8.04	12.57	8.07	17.00	0.456 (11)	12.989 (11)	5.234 (11)
19	100	40	8.04	12.57	9.55	18.00	0.538 (11)	16.074 (11)	6.114 (11)
20	100	40	8.04	12.57	11.20	19.00	0.629 (11)	19.545 (11)	7.083 (11)
21	100	40	8.04	12.57	13.01	20.00	0.729 (11)	23.419 (11)	8.143 (11)
22	100	40	8.04	12.57	15.00	21.00	0.838 (11)	27.710 (11)	9.299 (11)
23	100	40	8.04	12.57	17.17	22.00	0.957 (11)	32.435 (11)	10.555 (11)
24	100	40	8.04	12.57	19.54	23.00	1.086 (11)	37.608 (11)	11.913 (11)

Fondazione

Tensione massima di compressione nel calcestruzzo 33.200 [N/mmq]

Tensione massima di trazione dell'acciaio 450.000 [N/mmq]

n°	В	н	Afi	Afs	М	N	σс	σfi	σfs
	[cm]	[cm]	[cmq]	[cmq]	[kNm]	[kN]	[N/mmq]	[N/mmq]	[N/mmq]
1	100	40	12.57	12.57	-29.46	0.00	1.495 (11)	15.009 (11)	68.985 (11)
2	100	40	12.57	12.57	-29.91	0.00	1.518 (11)	15.241 (11)	70.051 (11)
3	100	40	12.57	12.57	-29.88	0.00	1.516 (11)	15.224 (11)	69.972 (11)
4	100	40	12.57	12.57	-29.40	0.00	1.492 (11)	14.982 (11)	68.859 (11)
5	100	40	12.57	12.57	-28.53	0.00	1.448 (11)	14.539 (11)	66.824 (11)
6	100	40	12.57	12.57	-27.32	0.00	1.386 (11)	13.921 (11)	63.981 (11)
7	100	40	12.57	12.57	-25.81	0.00	1.310 (11)	13.150 (11)	60.440 (11)
8	100	40	12.57	12.57	-24.05	0.00	1.220 (11)	12.253 (11)	56.315 (11)
9	100	40	12.57	12.57	-22.08	0.00	1.121 (11)	11.253 (11)	51.718 (11)
10	100	40	12.57	12.57	-19.97	0.00	1.013 (11)	10.174 (11)	46.760 (11)
11	100	40	12.57	12.57	-17.74	0.00	0.900 (11)	9.041 (11)	41.554 (11)
12	100	40	12.57	12.57	-15.46	0.00	0.785 (11)	7.879 (11)	36.212 (11)
13	100	40	12.57	12.57	-13.17	0.00	0.668 (11)	6.711 (11)	30.846 (11)
14	100	40	12.57	12.57	-10.92	0.00	0.554 (11)	5.563 (11)	25.569 (11)
15	100	40	12.57	12.57	-8.75	0.00	0.444 (11)	4.459 (11)	20.493 (11)
16	100	40	12.57	12.57	-6.72	0.00	0.341 (11)	3.422 (11)	15.729 (11)

n°	В	Н	Afi	Afs	М	N	σC	σfi	σfs
	[cm]	[cm]	[cmq]	[cmq]	[kNm]	[kN]	[N/mmq]	[N/mmq]	[N/mmq]
17	100	40	12.57	12.57	-4.86	0.00	0.247 (11)	2.478 (11)	11.390 (11)
18	100	40	12.57	12.57	-3.24	0.00	0.164 (11)	1.651 (11)	7.589 (11)
19	100	40	12.57	12.57	-1.89	0.00	0.096 (11)	0.965 (11)	4.437 (11)
20	100	40	12.57	12.57	-0.87	0.00	0.044 (11)	0.445 (11)	2.047 (11)
21	100	40	12.57	12.57	-0.23	0.00	0.011 (11)	0.115 (11)	0.530 (11)
22	100	40	12.57	12.57	0.00	0.00	0.000 (11)	0.000 (11)	0.000 (11)

Combinazioni SLEQ

Paramento

Tensione massima di compressione nel calcestruzzo 13.280 [N/mmq]

Tensione massima di trazione dell'acciaio 450.000 [N/mmq]

n°	В	Н	Afi	Afs	М	N	σс	σfi	σfs
	[cm]	[cm]	[cmq]	[cmq]	[kNm]	[kN]	[N/mmq]	[N/mmq]	[N/mmq]
1	100	40	8.04	12.57	0.00	0.00	0.000 (12)	0.000 (12)	0.000 (12)
2	100	40	8.04	12.57	0.00	1.00	0.002 (12)	0.033 (12)	0.037 (12)
3	100	40	8.04	12.57	0.01	2.00	0.005 (12)	0.062 (12)	0.077 (12)
4	100	40	8.04	12.57	0.05	3.00	0.009 (12)	0.083 (12)	0.127 (12)
5	100	40	8.04	12.57	0.11	4.00	0.013 (12)	0.092 (12)	0.188 (12)
6	100	40	8.04	12.57	0.21	5.00	0.019 (12)	0.084 (12)	0.267 (12)
7	100	40	8.04	12.57	0.36	6.00	0.026 (12)	0.057 (12)	0.365 (12)
8	100	40	8.04	12.57	0.57	7.00	0.036 (12)	0.000 (1)	0.491 (12)
9	100	40	8.04	12.57	0.85	8.00	0.049 (12)	0.136 (12)	0.663 (12)
10	100	40	8.04	12.57	1.21	9.00	0.068 (12)	0.428 (12)	0.899 (12)
11	100	40	8.04	12.57	1.66	10.00	0.093 (12)	0.949 (12)	1.204 (12)
12	100	40	8.04	12.57	2.21	11.00	0.125 (12)	1.742 (12)	1.575 (12)
13	100	40	8.04	12.57	2.87	12.00	0.163 (12)	2.824 (12)	2.011 (12)
14	100	40	8.04	12.57	3.64	13.00	0.207 (12)	4.205 (12)	2.512 (12)
15	100	40	8.04	12.57	4.54	14.00	0.258 (12)	5.898 (12)	3.081 (12)
16	100	40	8.04	25.13	5.58	15.00	0.263 (12)	4.326 (12)	3.277 (12)
17	100	40	8.04	12.57	6.75	16.00	0.382 (12)	10.275 (12)	4.438 (12)
18	100	40	8.04	12.57	8.07	17.00	0.456 (12)	12.989 (12)	5.234 (12)
19	100	40	8.04	12.57	9.55	18.00	0.538 (12)	16.074 (12)	6.114 (12)
20	100	40	8.04	12.57	11.20	19.00	0.629 (12)	19.545 (12)	7.083 (12)
21	100	40	8.04	12.57	13.01	20.00	0.729 (12)	23.419 (12)	8.143 (12)
22	100	40	8.04	12.57	15.00	21.00	0.838 (12)	27.710 (12)	9.299 (12)
23	100	40	8.04	12.57	17.17	22.00	0.957 (12)	32.435 (12)	10.555 (12)
24	100	40	8.04	12.57	19.54	23.00	1.086 (12)	37.608 (12)	11.913 (12)

Fondazione

Tensione massima di compressione nel calcestruzzo 13.280 [N/mmq]

Tensione massima di trazione dell'acciaio 450.000 [N/mmq]

n°	В	Н	Afi	Afs	М	N	σС	σfi	σfs
	[cm]	[cm]	[cmq]	[cmq]	[kNm]	[kN]	[N/mmq]	[N/mmq]	[N/mmq]
1	100	40	12.57	12.57	-30.18	0.00	1.531 (12)	15.378 (12)	70.679 (12)
2	100	40	12.57	12.57	-30.54	0.00	1.550 (12)	15.560 (12)	71.514 (12)
3	100	40	12.57	12.57	-30.41	0.00	1.543 (12)	15.497 (12)	71.226 (12)
4	100	40	12.57	12.57	-29.86	0.00	1.515 (12)	15.214 (12)	69.925 (12)
5	100	40	12.57	12.57	-28.92	0.00	1.467 (12)	14.735 (12)	67.722 (12)
6	100	40	12.57	12.57	-27.64	0.00	1.403 (12)	14.083 (12)	64.729 (12)
7	100	40	12.57	12.57	-26.07	0.00	1.323 (12)	13.284 (12)	61.057 (12)
8	100	40	12.57	12.57	-24.26	0.00	1.231 (12)	12.362 (12)	56.816 (12)
9	100	40	12.57	12.57	-22.26	0.00	1.129 (12)	11.340 (12)	52.119 (12)
10	100	40	12.57	12.57	-20.10	0.00	1.020 (12)	10.242 (12)	47.075 (12)

n°	В	Н	Afi	Afs	М	N	σC	σfi	σfs
	[cm]	[cm]	[cmq]	[cmq]	[kNm]	[kN]	[N/mmq]	[N/mmq]	[N/mmq]
11	100	40	12.57	12.57	-17.85	0.00	0.906 (12)	9.094 (12)	41.796 (12)
12	100	40	12.57	12.57	-15.54	0.00	0.789 (12)	7.918 (12)	36.394 (12)
13	100	40	12.57	12.57	-13.23	0.00	0.671 (12)	6.740 (12)	30.979 (12)
14	100	40	12.57	12.57	-10.96	0.00	0.556 (12)	5.583 (12)	25.662 (12)
15	100	40	12.57	12.57	-8.78	0.00	0.445 (12)	4.472 (12)	20.555 (12)
16	100	40	12.57	12.57	-6.73	0.00	0.342 (12)	3.431 (12)	15.768 (12)
17	100	40	12.57	12.57	-4.87	0.00	0.247 (12)	2.483 (12)	11.413 (12)
18	100	40	12.57	12.57	-3.25	0.00	0.165 (12)	1.654 (12)	7.601 (12)
19	100	40	12.57	12.57	-1.90	0.00	0.096 (12)	0.966 (12)	4.442 (12)
20	100	40	12.57	12.57	-0.87	0.00	0.044 (12)	0.446 (12)	2.048 (12)
21	100	40	12.57	12.57	-0.23	0.00	0.011 (12)	0.115 (12)	0.531 (12)
22	100	40	12.57	12.57	0.00	0.00	0.000 (12)	0.000 (12)	0.000 (12)

Verifica a fessurazione

Simbologia adottata

n° indice sezione

Y ordinata sezione espressa in [m]

B larghezza sezione espresso in [cm]

H altezza sezione espressa in [cm]

Af area ferri zona tesa espresso in [cmq]

Aeff area efficace espressa in [cmq]

M momento agente espressa in [kNm]

Mpf momento di prima fessurazione espressa in [kNm]

 $\epsilon \hspace{1cm} \text{deformazione espresso in } \%$

Sm spaziatura tra le fessure espressa in [mm] w apertura delle fessure espressa in [mm]

Combinazioni SLER

<u>Paramento</u>

Apertura limite fessure w_{lim}=0.20

n°	В	Н	Af	Aeff	М	Mpf	8	Sm	w
	[cm]	[cm]	[cmq]	[cmq]	[kNm]	[kNm]	[%]	[mm]	[mm]
1	100	40	0.00	0.00	0.00	0.00	0.0000000	0.00	0.000 (10)
2	100	40	0.00	0.00	0.00	2.41	0.0000000	0.00	0.000 (10)
3	100	40	0.00	0.00	0.01	10.38	0.0000000	0.00	0.000 (10)
4	100	40	0.00	0.00	0.05	26.87	0.0000000	0.00	0.000 (10)
5	100	40	0.00	0.00	0.11	60.42	0.0000000	0.00	0.000 (10)
6	100	40	0.00	0.00	0.21	143.28	0.0000000	0.00	0.000 (10)
7	100	40	0.00	0.00	0.36	565.29	0.0000000	0.00	0.000 (10)
8	100	40	0.00	0.00	0.57	725.24	0.0000000	0.00	0.000 (10)
9	100	40	12.57	750.00	0.85	291.95	0.0000000	0.00	0.000 (10)
10	100	40	12.57	750.00	1.21	207.04	0.0000000	0.00	0.000 (10)
11	100	40	12.57	750.00	1.66	171.37	0.0000000	0.00	0.000 (10)
12	100	40	12.57	750.00	2.21	151.99	0.0000000	0.00	0.000 (10)
13	100	40	12.57	750.00	2.87	139.96	0.0000000	0.00	0.000 (10)
14	100	40	12.57	750.00	3.64	131.85	0.0000000	0.00	0.000 (10)
15	100	40	12.57	750.00	4.54	126.07	0.0000000	0.00	0.000 (10)
16	100	40	25.13	750.00	5.58	135.80	0.0000000	0.00	0.000 (10)
17	100	40	12.57	750.00	6.75	118.47	0.0000000	0.00	0.000 (10)
18	100	40	12.57	750.00	8.07	115.87	0.0000000	0.00	0.000 (10)
19	100	40	12.57	750.00	9.55	113.79	0.0000000	0.00	0.000 (10)

n°	В	Н	Af	Aeff	М	Mpf	8	Sm	w
	[cm]	[cm]	[cmq]	[cmq]	[kNm]	[kNm]	[%]	[mm]	[mm]
20	100	40	12.57	750.00	11.20	112.08	0.0000000	0.00	0.000 (10)
21	100	40	12.57	750.00	13.01	110.67	0.0000000	0.00	0.000 (10)
22	100	40	12.57	750.00	15.00	109.48	0.0000000	0.00	0.000 (10)
23	100	40	12.57	750.00	17.17	108.47	0.0000000	0.00	0.000 (10)
24	100	40	12.57	750.00	19.54	107.60	0.0000000	0.00	0.000 (10)

<u>Fondazione</u>

Apertura limite fessure w_{lim}=0.20

n°	В	Н	Af	Aeff	М	Mpf	8	Sm	w
	[cm]	[cm]	[cmq]	[cmq]	[kNm]	[kNm]	[%]	[mm]	[mm]
1	100	40	12.57	750.00	-29.38	-100.46	0.0000000	0.00	0.000 (10)
2	100	40	12.57	750.00	-29.86	-100.46	0.0000000	0.00	0.000 (10)
3	100	40	12.57	750.00	-29.86	-100.46	0.0000000	0.00	0.000 (10)
4	100	40	12.57	750.00	-29.40	-100.46	0.0000000	0.00	0.000 (10)
5	100	40	12.57	750.00	-28.55	-100.46	0.0000000	0.00	0.000 (10)
6	100	40	12.57	750.00	-27.35	-100.46	0.0000000	0.00	0.000 (10)
7	100	40	12.57	750.00	-25.85	-100.46	0.0000000	0.00	0.000 (10)
8	100	40	12.57	750.00	-24.09	-100.46	0.0000000	0.00	0.000 (10)
9	100	40	12.57	750.00	-22.13	-100.46	0.0000000	0.00	0.000 (10)
10	100	40	12.57	750.00	-20.02	-100.46	0.0000000	0.00	0.000 (10)
11	100	40	12.57	750.00	-17.79	-100.46	0.0000000	0.00	0.000 (10)
12	100	40	12.57	750.00	-15.51	-100.46	0.0000000	0.00	0.000 (10)
13	100	40	12.57	750.00	-13.22	-100.46	0.0000000	0.00	0.000 (10)
14	100	40	12.57	750.00	-10.96	-100.46	0.0000000	0.00	0.000 (10)
15	100	40	12.57	750.00	-8.78	-100.46	0.0000000	0.00	0.000 (10)
16	100	40	12.57	750.00	-6.74	-100.46	0.0000000	0.00	0.000 (10)
17	100	40	12.57	750.00	-4.88	-100.46	0.0000000	0.00	0.000 (10)
18	100	40	12.57	750.00	-3.25	-100.46	0.0000000	0.00	0.000 (10)
19	100	40	12.57	750.00	-1.90	-100.46	0.0000000	0.00	0.000 (10)
20	100	40	12.57	750.00	-0.88	-100.46	0.0000000	0.00	0.000 (10)
21	100	40	12.57	750.00	-0.23	-100.46	0.0000000	0.00	0.000 (10)
22	100	40	0.00	0.00	0.00	0.00	0.0000000	0.00	0.000 (10)

Combinazioni SLEF

<u>Paramento</u>

Apertura limite fessure w_{lim}=0.20

ımı	e fessu	loon loop lim = 0.20	J							
	n°	В	Н	Af	Aeff	М	Mpf	8	Sm	w
		[cm]	[cm]	[cmq]	[cmq]	[kNm]	[kNm]	[%]	[mm]	[mm]
	1	100	40	0.00	0.00	0.00	0.00	0.0000000	0.00	0.000 (11)
	2	100	40	0.00	0.00	0.00	2.41	0.0000000	0.00	0.000 (11)
	3	100	40	0.00	0.00	0.01	10.38	0.0000000	0.00	0.000 (11)
	4	100	40	0.00	0.00	0.05	26.87	0.0000000	0.00	0.000 (11)
	5	100	40	0.00	0.00	0.11	60.42	0.0000000	0.00	0.000 (11)
	6	100	40	0.00	0.00	0.21	143.28	0.0000000	0.00	0.000 (11)
	7	100	40	0.00	0.00	0.36	565.29	0.0000000	0.00	0.000 (11)
	8	100	40	0.00	0.00	0.57	725.24	0.0000000	0.00	0.000 (11)
	9	100	40	12.57	750.00	0.85	291.95	0.0000000	0.00	0.000 (11)
	10	100	40	12.57	750.00	1.21	207.04	0.0000000	0.00	0.000 (11)
	11	100	40	12.57	750.00	1.66	171.37	0.0000000	0.00	0.000 (11)
	12	100	40	12.57	750.00	2.21	151.99	0.0000000	0.00	0.000 (11)
	13	100	40	12.57	750.00	2.87	139.96	0.0000000	0.00	0.000 (11)
	14	100	40	12.57	750.00	3.64	131.85	0.0000000	0.00	0.000 (11)
	15	100	40	12.57	750.00	4.54	126.07	0.0000000	0.00	0.000 (11)
	16	100	40	25.13	750.00	5.58	135.80	0.0000000	0.00	0.000 (11)
	17	100	40	12.57	750.00	6.75	118.47	0.0000000	0.00	0.000 (11)
	18	100	40	12.57	750.00	8.07	115.87	0.0000000	0.00	0.000 (11)
	19	100	40	12.57	750.00	9.55	113.79	0.0000000	0.00	0.000 (11)
	20	100	40	12.57	750.00	11.20	112.08	0.0000000	0.00	0.000 (11)
	21	100	40	12.57	750.00	13.01	110.67	0.0000000	0.00	0.000 (11)
	22	100	40	12.57	750.00	15.00	109.48	0.0000000	0.00	0.000 (11)
- [23	100	40	12.57	750.00	17.17	108.47	0.0000000	0.00	0.000 (11)

n°	В	н	Af	Aeff	М	Mpf	8	Sm	w
	[cm]	[cm]	[cmq]	[cmq]	[kNm]	[kNm]	[%]	[mm]	[mm]
24	100	40	12.57	750.00	19.54	107.60	0.0000000	0.00	0.000 (11)

Fondazione

Apertura limite fessure w_{lim} =0.20

n°	В	Н	Af	Aeff	М	Mpf	8	Sm	w
	[cm]	[cm]	[cmq]	[cmq]	[kNm]	[kNm]	[%]	[mm]	[mm]
1	100	40	12.57	750.00	-29.46	-100.46	0.0000000	0.00	0.000 (11)
2	100	40	12.57	750.00	-29.91	-100.46	0.0000000	0.00	0.000 (11)
3	100	40	12.57	750.00	-29.88	-100.46	0.0000000	0.00	0.000 (11)
4	100	40	12.57	750.00	-29.40	-100.46	0.0000000	0.00	0.000 (11)
5	100	40	12.57	750.00	-28.53	-100.46	0.0000000	0.00	0.000 (11)
6	100	40	12.57	750.00	-27.32	-100.46	0.0000000	0.00	0.000 (11)
7	100	40	12.57	750.00	-25.81	-100.46	0.0000000	0.00	0.000 (11)
8	100	40	12.57	750.00	-24.05	-100.46	0.0000000	0.00	0.000 (11)
9	100	40	12.57	750.00	-22.08	-100.46	0.0000000	0.00	0.000 (11)
10	100	40	12.57	750.00	-19.97	-100.46	0.0000000	0.00	0.000 (11)
11	100	40	12.57	750.00	-17.74	-100.46	0.0000000	0.00	0.000 (11)
12	100	40	12.57	750.00	-15.46	-100.46	0.0000000	0.00	0.000 (11)
13	100	40	12.57	750.00	-13.17	-100.46	0.0000000	0.00	0.000 (11)
14	100	40	12.57	750.00	-10.92	-100.46	0.0000000	0.00	0.000 (11)
15	100	40	12.57	750.00	-8.75	-100.46	0.0000000	0.00	0.000 (11)
16	100	40	12.57	750.00	-6.72	-100.46	0.0000000	0.00	0.000 (11)
17	100	40	12.57	750.00	-4.86	-100.46	0.0000000	0.00	0.000 (11)
18	100	40	12.57	750.00	-3.24	-100.46	0.0000000	0.00	0.000 (11)
19	100	40	12.57	750.00	-1.89	-100.46	0.0000000	0.00	0.000 (11)
20	100	40	12.57	750.00	-0.87	-100.46	0.0000000	0.00	0.000 (11)
21	100	40	12.57	750.00	-0.23	-100.46	0.0000000	0.00	0.000 (11)
22	100	40	0.00	0.00	0.00	0.00	0.0000000	0.00	0.000 (11)

Combinazioni SLEQ

<u>Paramento</u>

Apertura limite fessure w_{lim}=0.20

n°	В	н	Af	Aeff	М	Mpf	8	Sm	w
	[cm]	[cm]	[cmq]	[cmq]	[kNm]	[kNm]	[%]	[mm]	[mm]
1	100	40	0.00	0.00	0.00	0.00	0.0000000	0.00	0.000 (12)
2	100	40	0.00	0.00	0.00	2.41	0.0000000	0.00	0.000 (12)
3	100	40	0.00	0.00	0.01	10.38	0.0000000	0.00	0.000 (12)
4	100	40	0.00	0.00	0.05	26.87	0.0000000	0.00	0.000 (12)
5	100	40	0.00	0.00	0.11	60.42	0.0000000	0.00	0.000 (12)
6	100	40	0.00	0.00	0.21	143.28	0.0000000	0.00	0.000 (12)
7	100	40	0.00	0.00	0.36	565.29	0.0000000	0.00	0.000 (12)
8	100	40	0.00	0.00	0.57	725.24	0.0000000	0.00	0.000 (12)
9	100	40	12.57	750.00	0.85	291.95	0.0000000	0.00	0.000 (12)
10	100	40	12.57	750.00	1.21	207.04	0.0000000	0.00	0.000 (12)
11	100	40	12.57	750.00	1.66	171.37	0.0000000	0.00	0.000 (12)
12	100	40	12.57	750.00	2.21	151.99	0.0000000	0.00	0.000 (12)
13	100	40	12.57	750.00	2.87	139.96	0.0000000	0.00	0.000 (12)
14	100	40	12.57	750.00	3.64	131.85	0.0000000	0.00	0.000 (12)
15	100	40	12.57	750.00	4.54	126.07	0.0000000	0.00	0.000 (12)
16	100	40	25.13	750.00	5.58	135.80	0.0000000	0.00	0.000 (12)
17	100	40	12.57	750.00	6.75	118.47	0.0000000	0.00	0.000 (12)
18	100	40	12.57	750.00	8.07	115.87	0.0000000	0.00	0.000 (12)
19	100	40	12.57	750.00	9.55	113.79	0.0000000	0.00	0.000 (12)
20	100	40	12.57	750.00	11.20	112.08	0.0000000	0.00	0.000 (12)
21	100	40	12.57	750.00	13.01	110.67	0.0000000	0.00	0.000 (12)

n°	В	Н	Af	Aeff	М	Mpf	8	Sm	w
	[cm]	[cm]	[cmq]	[cmq]	[kNm]	[kNm]	[%]	[mm]	[mm]
22	100	40	12.57	750.00	15.00	109.48	0.0000000	0.00	0.000 (12)
23	100	40	12.57	750.00	17.17	108.47	0.0000000	0.00	0.000 (12)
24	100	40	12.57	750.00	19.54	107.60	0.0000000	0.00	0.000 (12)

Fondazione

Apertura limite fessure w_{lim} =0.20

n°	В	Н	Af	Aeff	М	Mpf	8	Sm	w
	[cm]	[cm]	[cmq]	[cmq]	[kNm]	[kNm]	[%]	[mm]	[mm]
1	100	40	12.57	750.00	-30.18	-100.46	0.0000000	0.00	0.000 (12)
2	100	40	12.57	750.00	-30.54	-100.46	0.0000000	0.00	0.000 (12)
3	100	40	12.57	750.00	-30.41	-100.46	0.0000000	0.00	0.000 (12)
4	100	40	12.57	750.00	-29.86	-100.46	0.0000000	0.00	0.000 (12)
5	100	40	12.57	750.00	-28.92	-100.46	0.0000000	0.00	0.000 (12)
6	100	40	12.57	750.00	-27.64	-100.46	0.0000000	0.00	0.000 (12)
7	100	40	12.57	750.00	-26.07	-100.46	0.0000000	0.00	0.000 (12)
8	100	40	12.57	750.00	-24.26	-100.46	0.0000000	0.00	0.000 (12)
9	100	40	12.57	750.00	-22.26	-100.46	0.0000000	0.00	0.000 (12)
10	100	40	12.57	750.00	-20.10	-100.46	0.0000000	0.00	0.000 (12)
11	100	40	12.57	750.00	-17.85	-100.46	0.0000000	0.00	0.000 (12)
12	100	40	12.57	750.00	-15.54	-100.46	0.0000000	0.00	0.000 (12)
13	100	40	12.57	750.00	-13.23	-100.46	0.0000000	0.00	0.000 (12)
14	100	40	12.57	750.00	-10.96	-100.46	0.0000000	0.00	0.000 (12)
15	100	40	12.57	750.00	-8.78	-100.46	0.0000000	0.00	0.000 (12)
16	100	40	12.57	750.00	-6.73	-100.46	0.0000000	0.00	0.000 (12)
17	100	40	12.57	750.00	-4.87	-100.46	0.0000000	0.00	0.000 (12)
18	100	40	12.57	750.00	-3.25	-100.46	0.0000000	0.00	0.000 (12)
19	100	40	12.57	750.00	-1.90	-100.46	0.0000000	0.00	0.000 (12)
20	100	40	12.57	750.00	-0.87	-100.46	0.0000000	0.00	0.000 (12)
21	100	40	12.57	750.00	-0.23	-100.46	0.0000000	0.00	0.000 (12)
22	100	40	0.00	0.00	0.00	0.00	0.0000000	0.00	0.000 (12)