COMMITTENTE:

PROGETTAZIONE:

DIREZIONE TECNICA U.O. OPERE CIVILI E GESTIONE DELLE VARIANTI

PROGETTO DEFINITIVO

Nuova linea Ferrandina - Matera La Martella per il collegamento di Matera con la rete ferroviaria nazionale

MIGLIORAMENTO SISMICO, FUNZIONALE, ARCHITETTONICO DEL FABBRICATO VIAGGIATORI DELLA STAZIONE DI MATERA LA MARTELLA

OPERE CIVILI

FABBRICATO TECNOLOGICO	SCALA:
Relazione di calcolo Fondazioni e Elevazioni	
-	

COMMESSA LOTTO FASE ENTE TIPO DOC. OPERA / DISCIPLINAPROGR. REV.

I A F 5 0 2 D 0 9	C L F V	0 2 0 0	0 0 4	В
---	---------	---------	-------	---

Rev.	Descrizione	Redatto	Data	Verificato	Data	Approvato	Data	Autorizzato Data
В	EMISSIONE ESECUTIVA	L.Cardinali	Luglio 2019	S Di Spigno	Luglio 2019	F. Gernone	Luglio 2019	A. Vattozeji Luglia 2029 V se
А	EMISSIONE ESECUTIVA	L.Cardinali	Feb. 2019	S.Di Spigno	Feb. 2019	F. Gernone	Feb. 2019	TTALFERR S.F. I'VILLE Gestion I'VILLE Gestion I' ING. Argetz Gegneri della N' A20783
								U.O. Opere C Dott

ITALFERR GRUPPO FERROVIE DELLO STATO ITALIANE	Nuova linea Ferrandina - Matera La Martella STAZIONE DI MATERA "LA MARTELLA" FABBRICATO TECNOLOGICO
RELAZIONE DI CALCOLO	PROGETTO LOTTO CODIFICA DOCUMENTO REV. FOGLIO IA5F 02 D09 CL FV02 00004 B 2 di 69

INDICE

1 PREMESSA	4
2 NORMATIVE DI RIFERIMENTO	4
3 DESCRIZIONE DELL'INTERVENTO	5
3.1 Caratteristiche architettoniche e strutturali	5
4 CARATTERISTICHE GEOTECNICHE DEL TERRENO	6
5 CARATTERISTICHE DEI MATERIALI IMPIEGATI	6
6 SICUREZZA E PRESTAZIONI ATTESE	7
6.1 Vita nominale (§ 2.4.1 NTC 2018)	7
6.2 Classe d'uso (§ 2.4.2 NTC 2018)	7
6.3 Periodo di riferimento per l'azione sismica (§ 2.4.3 NTC 2018)	8
7 ANALISI DEI CARICHI	8
7.1 Peso proprio delle strutture	8
7.2 Carichi permanenti portati (§ 3.1.3 NTC 2018)	9
7.2.1 Solai	10
7.2.2 Tamponature e tramezzature	11
7.3 Carichi variabili (§ 3.1.4 NTC 2018)	11
7.3.1 Sovraccarichi variabili legati alla destinazione d'uso	11
7.1 Azioni della temperatura (§ 3.5 NTC 2018)	12
7.2 Azioni variabili da vento (§ 3.3 NTC 2018)	13
7.3 Azioni variabili da neve (§ 3.4 NTC 2018)	15
7.4 Valutazione dell'azione sismica (§ 3.2 NTC 2018)	16
7.4.1 Categoria del sottosuolo e condizioni topografiche	16
7.4.2 Classe di duttilità	17
7.4.3 Regolarità	18
7.4.4 Tipologie strutturali e fattori di comportamento (§7.4.3 NTC 2018)	18
7.4.5 Valutazione dell'azione Sismica	19
8 METODO DI ANALISI	22
8.1 Combinazioni di carico	23
8.2 Modello di calcolo	23
8.2.1 Carichi e combinazioni	25
9 SOLLECITAZIONI E VERIFICHE STRUTTURALI	28
9.1 Deformate significative della struttura	28
9.2 Verifiche solaio	31
9.3 Verifiche trave longitudinale 30 x 60	34
9.1 Verifiche trave trasversale 30 x 60	37
9.1 Verifiche trave 50 x 30	43
9.1 Verifiche pilastri	48
9.1.1 Pilastri 30x70	51

	Nuova linea Ferrandina - Matera La Martella
GRUPPO FERROVIE DELLO STATO ITALIANE	STAZIONE DI MATERA "LA MARTELLA" FABBRICATO TECNOLOGICO
RELAZIONE DI CALCOLO	PROGETTO LOTTO CODIFICA DOCUMENTO REV. FOGLIO IA5F 02 D09 CL FV02 00004 B 3 di 69

9.1.2	Pilastri 30x40	56
9.1 Ve	rifiche fondazioni	61
9.1.1	Verifiche trave rovescia (120x60x75)	65
9.1.1	Verifiche trave 40x65	67
9.1.1	Verifiche carico limite	68

GRUPPO FERROVIE DELLO STATO ITALIANE	Nuova linea Ferrandina - Matera La Martella STAZIONE DI MATERA "LA MARTELLA" FABBRICATO TECNOLOGICO
RELAZIONE DI CALCOLO	PROGETTO LOTTO CODIFICA DOCUMENTO REV. FOGLIO IA5F 02 D09 CL FV02 00004 B 4 di 69

1 PREMESSA

Nell'ambito della realizzazione della nuova Linea Ferrandina – Matera "La Martella" per il collegamento della città di Matera alla rete ferroviaria nazionale, in particolare con Salerno, per l'accesso al sistema AV/AC, e con Taranto, attraverso la linea Battipaglia-Potenza-Metaponto-Taranto, si prevede un intervento di adeguamento funzionale, architettonico e strutturale della Stazione di Matera "La Martella".

Il presente elaborato costituisce relazione di calcolo strutturale e geotecnica per la progettazione definitiva del fabbricato tecnologico ubicato in adiacenza al Fabbricato di Stazione.

2 NORMATIVE DI RIFERIMENTO

La progettazione è conforme alle Normative vigenti nonché alle istruzioni dell'Ente FF.SS.

La Normativa cui viene fatto riferimento nelle fasi di calcolo e progettazione è la seguente:

- Norme Tecniche per le Costruzioni D.M. 17-01-18 (NTC-2018)
- Circolare n. 617 del 2 febbraio 2009 Istruzioni per l'Applicazione Nuove Norme Tecniche Costruzioni di cui al Decreto Ministeriale 14 gennaio 2008
- RFI DTC-INC-PO SP IFS 001 A Specifica per la progettazione e l'esecuzione dei ponti ferroviari e di altre opere minori sotto binario
- RFI DTC-INC-CS SP IFS 001 A specifica per la progettazione geotecnica delle opere civili ferroviarie
 - UNI ENV 1992-1-1 Parte 1-1: Regole generali e regole per gli edifici.
 - UNI EN 206-1/2001 Calcestruzzo. Specificazioni, prestazioni, produzione e conformità.
- Ordinanza del Presidente del Consiglio dei Ministri n. 3274 del 20/3/2003 Primi elementi in materia di criteri generali per la classificazione sismica del territorio nazionale e di Normative tecniche per le costruzioni in zona sismica.

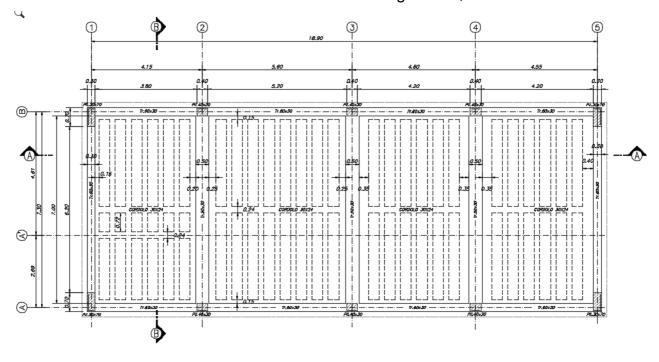
GRUPPO FERROVIE DELLO STATO ITALIANE	Nuova linea Ferrandina - Matera La Martella STAZIONE DI MATERA "LA MARTELLA" FABBRICATO TECNOLOGICO
RELAZIONE DI CALCOLO	PROGETTO LOTTO CODIFICA DOCUMENTO REV. FOGLIO IA5F 02 D09 CL FV02 00004 B 5 di 69

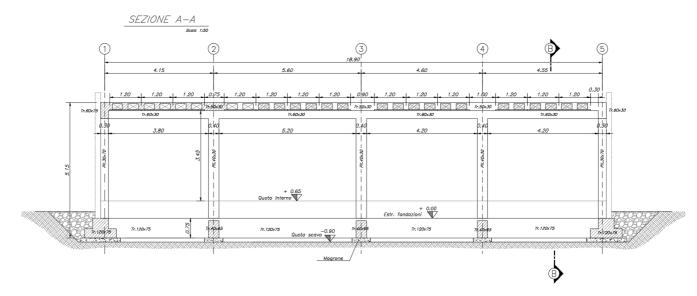
3 DESCRIZIONE DELL'INTERVENTO

3.1 Caratteristiche architettoniche e strutturali

Forma: rettangolare;

Dimensioni: \sim 19.6 x 8.00 m x m;


Livelli: 1;


Altezza: ~4.40 m da estradosso fondazione;

Struttura: telaio in c.a.;

Copertura: piana in latero-cemento;

Fondazioni: continua a travi rovesce e travi di collegamento;

GRUPPO FERROVIE DELLO STATO ITALIANE	Nuova linea Ferrandina - Matera La Martella STAZIONE DI MATERA "LA MARTELLA" FABBRICATO TECNOLOGICO
RELAZIONE DI CALCOLO	PROGETTO LOTTO CODIFICA DOCUMENTO REV. FOGLIO IA5F 02 D09 CL FV02 00004 B 6 di 69

4 CARATTERISTICHE GEOTECNICHE DEL TERRENO

Si riportano di seguito i parametri geotecnici adottati nel calcolo:

• Peso dell'unità di volume $\gamma = 19$

• Angolo di attrito φ . =30°

• Coesione non drenata c'=0

In mancanza di indicazioni più precise, a vantaggio di sicurezza si considera la presenza della falda con piezometrica alla quota di intradosso delle fondazioni.

5 CARATTERISTICHE DEI MATERIALI IMPIEGATI

Per la realizzazione del manufatto si prevede l'utilizzo dei seguenti materiali:

Calcestruzzo per elevazioni – C30/37;

Rck 37 N/mm²
 f_{ck} 30 N/mm²

Calcestruzzo per fondazioni - C25/30;

Rck 30 N/mm²
 f_{ck} 24.9 N/mm²
 E_{cm} 31447 N/mm²

Acciaio ordinario per armatura - B450 C;

• $f_{tk} > 540 \text{ N/mm}^2$;

• $f_{yk} > 450 \text{ N/mm}^2$;

• $E_s = 210000 \text{ N/mm}^2$

GRUPPO FERROVIE DELLO STATO ITALIANE	Nuova linea Ferrandina - Matera La Martella STAZIONE DI MATERA "LA MARTELLA" FABBRICATO TECNOLOGICO
RELAZIONE DI CALCOLO	PROGETTO LOTTO CODIFICA DOCUMENTO REV. FOGLIO IA5F 02 D09 CL FV02 00004 B 7 di 69

6 SICUREZZA E PRESTAZIONI ATTESE

6.1 Vita nominale (§ 2.4.1 NTC 2018)

La vita nominale di un'opera strutturale V_n è intesa come il numero di anni nel quale la struttura, purché soggetta alla manutenzione ordinaria, deve potere essere usata per lo scopo al quale è destinata. La vita nominale dei diversi tipi di opere è quella riportata nella Tabella 6.I.

Tabella 6 I - Vita nominale per diversi tipi di opere

	Tipi di costruzione	
1	Costruzioni tempotanee e provvisorie	10
2	Costruzioni con livelli di prestazioni ordinarie	50
3	Costruzioni con livelli di prestazioni elevati	100

Per la valutazione della sicurezza del manufatto in progetto è stata assunta una vita utile di 50 anni.

6.2 Classe d'uso (§ 2.4.2 NTC 2018)

In presenza di azioni sismiche, con riferimento alle conseguenze di una interruzione di un eventuale collasso, le costruzioni sono suddivise in classi d'uso definite in Tabella 6.II.

Tabella	6.II –	Classi	d	'uso	

Classi d'uso

Classe I

Costruzioni con presenza solo occasionale di persone, edifici agricoli.

Costruzioni il cui uso preveda normali affollamenti, senza contenuti pericolosi per l'ambiente e

Classe

senza funzioni pubbliche e sociali essenziali. Industrie con attività non pericolose per l'ambiente. Ponti, opere infrastrutturali, reti viarie non ricadenti in Classe d'uso III o in Classe d'uso IV, reti ferroviarie la cui interruzione non provochi ituazioni di emergenza. Dighe il cui collasso non provochi conseguenze rilevanti.

Costruzioni il cui uso preveda affollamenti significativi. Industrie con attività pericolose per Classe l'ambiente. Reti viarie extraurbane non ricadenti in Classe d'uso IV. Ponti e reti ferroviarie la cui interruzione provochi situazioni di emergenza. Dighe rilevanti per le conseguenze di un loro eventuale collasso.

Costruzioni con funzioni pubbliche o strategiche importanti, anche con riferimento alla gestione della protezione civile in caso di calamità. Industrie con attività particolarmente pericolose per l'ambiente. Reti viarie di tipo A o B, di cui al D.M. 5 novembre 2001, n.6792, "Norme Classe funzionali e geometriche per la costruzione delle strade", e di tipo C quando appartenenti ad itinerari di collegamento tra capoluoghi di provincia non altresì serviti da strade di tipo A o B. Ponti e reti ferroviarie di importanza critica per il mantenimento delle vie di comunicazione, particolarmente dopo un evento sismico. Dighe connesse al funzionamento di acquedotti e a impianti di produzione di energia elettrica.

6.3 Periodo di riferimento per l'azione sismica (§ 2.4.3 NTC 2018)

Le azioni sismiche su ciascuna costruzione devono essere valutate in relazione ad un periodo di riferimento V_R che si ricava, per ciascun tipo di costruzione, moltiplicandone la vita nominale V_N per il coefficiente d'uso C_U . Tale coefficiente assume i valori riportati in Tabella 6.III.

	Tabella	<u>6.III – Classi d'uso</u>		
Classe d'uso	I	II	III	IV
Coefficiente C_U	0.7	1.0	1.5	2.0

Poiché l'opera in progetto ricade nella classe III, il coefficiente d'uso C_U assume il valore di 1.5. Il periodo di riferimento è dunque:

 $V_R = C_U V_n = 1.5 \times 50 \text{ anni} = 75 \text{ anni}.$

7 ANALISI DEI CARICHI

I carichi e i sovraccarichi sono stati valutati tenendo conto di quanto prescritto dalle Nuove Norme Tecniche per le Costruzioni (NTC 2018).

Al fine di valutare le sollecitazioni agenti sulla struttura sono state considerate le seguenti azioni elementari.

7.1 Peso proprio delle strutture

Per la determinazione dei pesi propri strutturali dei più comuni materiali possono essere assunti i valori dei pesi dell'unità di volume riportati in tabella 3.1.I delle NTC 2018.

	Nuova linea Ferrandina - Matera La Martella				
ITALFERR	STAZIONE DI MATERA "LA MARTELLA"				
GRUPPO FERROVIE DELLO STATO ITALIANE	FABBRICATO TECNOLOGICO				
RELAZIONE DI CALCOLO	PROGETTO LOTTO CODIFICA DOCUMENTO REV. FOGLIO IA5F 02 D09 CL FV02 00004 B 9 di 69				

Tab. 3.1.I - Pesi dell'unità di volume dei principali materiali

MATERIALI	PESO UNITÀ DI VOLUME [kN/m³]			
Calcestruzzi cementizi e malte				
Calcestruzzo ordinario	24,0			
Calcestruzzo armato (e/o precompresso)	25,0			
Calcestruzzi "leggeri": da determinarsi caso per caso	14,0 ÷ 20,0			
Calcestruzzi "pesanti": da determinarsi caso per caso	28,0 ÷ 50,0			
Malta di calce	18,0			
Malta di cemento	21,0			
Calce in polvere	10,0			
Cemento in polvere	14,0			
Sabbia	17,0			
Metalli e leghe				
Acciaio	78,5			
Ghisa	72,5			
Alluminio	27,0			
Materiale lapideo				
Tufo vulcanico	17,0			
Calcare compatto	26,0			
Calcare tenero	22,0			
Gesso	13,0			
Granito	27,0			
Laterizio (pieno)	18,0			
Legnami	·			
Conifere e pioppo	4,0 ÷ 6,0			
Latifoglie (escluso pioppo)	6,0 ÷ 8,0			
Sostanze varie				
Acqua dolce (chiara)	9,81			
Acqua di mare (chiara)	10,1			
Carta	10,0			
Vetro	25,0			

7.2 Carichi permanenti portati (§ 3.1.3 NTC 2018)

Nella progettazione delle strutture, sono considerati carichi permanenti non strutturali i carichi non rimovibili durante il normale esercizio della costruzione, quali quelli relativi a tamponature esterne, divisori interni, massetti, isolamenti, pavimenti e rivestimenti del piano di calpestio, intonaci, controsoffitti, impianti e altro, ancorché in qualche caso sia necessario considerare situazioni transitorie in cui essi non siano presenti.

I valori dei carichi permanenti non strutturali sono descritti di seguito.

7.2.1 **Solai**

• Parapetto

•	Pesi	propri	elementi	strutturali
---	------	--------	----------	-------------

• Pesi propri elementi strutturali	
Soletta sup in c.a. 0.04 x 25	1.00 KN/m ²
Nervature 0.2 x 0.22 x 25/0.6	1.83 KN/m ²
Alleggerimenti 0.40 x 0.22 x 10/0.6	1.47 KN/m ²
Predalla inf in c.a. 0.04 x 25	1.00 KN/m ²
Totale	5.30 KN/m ²
 Pesi propri elementi non strutturali 	
Massetto delle pendenze (0.04+0.011) /2 x 18	1.35 KN/m ²
Coibente	0.25 KN/m ²
Guaina e membrana in polietilene	0.30 KN/m ²
Malta di allettamento 0.03 x 20	0.60 KN/m ²
Pavimentazione 0.03*20	0.50 KN/m ²
Incidenza fasce piene/rompi tratta	0.10 KN/m ²
Incidenza impianti	0.50 KN/m ²
Totale	3.60 KN/m ²
Totale permanenti	8.90 KN/m ²

1.20 KN/m

GRUPPO FERROVIE DELLO STATO ITALIANE	Nuova linea Ferrandina - Matera La Martella STAZIONE DI MATERA "LA MARTELLA" FABBRICATO TECNOLOGICO
RELAZIONE DI CALCOLO	PROGETTO LOTTO CODIFICA DOCUMENTO REV. FOGLIO IA5F 02 D09 CL FV02 00004 B 11 di 69

7.2.2 Tamponature e tramezzature

• Tramezzature interne 0.2 x 4.1 x 18

14.76 KN/ml

• Tamponature esterne 0.2 x 4.8 x 25

24.00 KN/ml

7.3 Carichi variabili (§ 3.1.4 NTC 2018)

7.3.1 Sovraccarichi variabili legati alla destinazione d'uso

Copertura accessibile per sola manutenzione

0.50 KN/m²

Tab. 3.1.II - Valori dei sovraccarichi per le diverse categorie d'uso delle costruzioni

Cat.	Ambienti	q _k [kN/m²]	Q _k [kN]	H _k [kN/m]
	Ambienti ad uso residenziale			
A	Aree per attività domestiche e residenziali; sono compresi in questa categoria i locali di abitazione e relativi servizi, gli alberghi (ad esclusione delle aree soggette ad affollamento), camere di degenza di ospedali	2,00	2,00	1,00
	Scale comuni, balconi, ballatoi	4,00	4,00	2,00
	Uffici			
В	Cat. B1 Uffici non aperti al pubblico	2,00	2,00	1,00
	Cat. B2 Uffici aperti al pubblico	3,00	2,00	1,00
	Scale comuni, balconi e ballatoi	4,00	4,00	2,00
	Ambienti suscettibili di affollamento			
	Cat. C1 Aree con tavoli, quali scuole, caffè, ristoran- ti, sale per banchetti, lettura e ricevimento	3,00	3,00	1,00
	Cat. C2 Aree con posti a sedere fissi, quali chiese, teatri, cinema, sale per conferenze e attesa, aule universitarie e aule magne	4,00	4,00	2,00
С	Cat. C3 Ambienti privi di ostacoli al movimento delle persone, quali musei, sale per esposizioni, aree d'accesso a uffici, ad alberghi e ospedali, ad atri di stazioni ferroviarie	5,00	5,00	3,00
	Cat. C4. Aree con possibile svolgimento di attività fisiche, quali sale da ballo, palestre, palcoscenici.	5,00	5,00	3,00
	Cat. C5. Aree suscettibili di grandi affollamenti, quali edifici per eventi pubblici, sale da concerto, palazzetti per lo sport e relative tribune, gradinate e piattaforme ferroviarie.	5,00	5,00	3,00
		Secondo ca	tegoria d'uso se	rvita, con le
	Scale comuni, balconi e ballatoi	seguenti limitazioni		
		≥4,00	≥4,00	≥2,00

Cat.	Ambienti	q _k [kN/m²]	Q _k [kN]	H _k [kN/m]
	Ambienti ad uso commerciale			
	Cat. D1 Negozi	4,00	4,00	2,00
D	Cat. D2 Centri commerciali, mercati, grandi magaz- zini	5,00	5,00	2,00
	Scale comuni, balconi e ballatoi	Secondo	o categoria d'uso	servita
	Aree per immagazzinamento e uso commerciale ed uso industriale			
E	Cat. E1 Aree per accumulo di merci e relative aree d'accesso, quali biblioteche, archivi, magazzini, depositi, laboratori manifatturieri	≥ 6,00	7,00	1,00*
	Cat. E2 Ambienti ad uso industriale	da valutarsi caso per caso		
	Rimesse e aree per traffico di veicoli (esclusi i			
	ponti)			
F-G	Cat. F Rimesse, aree per traffico, parcheggio e sosta di veicoli leggeri (peso a pieno carico fino a 30 kN)	2,50	2 x 10,00	1,00**
r-G	Cat. G Aree per traffico e parcheggio di veicoli me- di (peso a pieno carico compreso fra 30 kN e 160	da valutarsi caso per caso e comunqu		
	kN), quali rampe d'accesso, zone di carico e scarico merci.	5,00	non minori di 2 x 50,00	1,00**
	Coperture			
H-I-K	Cat. H Coperture accessibili per sola manutenzione e riparazione	0,50	1,20	1,00
	Cat. I Coperture praticabili di ambienti di categoria d'uso compresa fra A e D	secondo categorie di appartenenza		
	Cat. K Coperture per usi speciali, quali impianti, eliporti.	da valutarsi caso per caso		

^{*} non comprende le azioni orizzontali eventualmente esercitate dai materiali immagazzinati.

7.1 Azioni della temperatura (§ 3.5 NTC 2018)

Date le dimensioni dell'opera, le azioni termiche sono state trascurate.

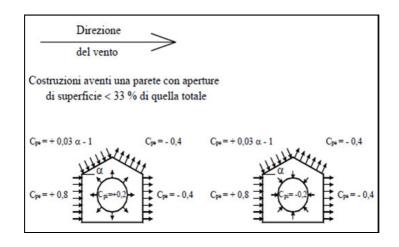
^{**} per i soli parapetti o partizioni nelle zone pedonali. Le azioni sulle barriere esercitate dagli automezzi dovranno essere valutate caso per caso.

ITALFERR GRUPPO FERROVIE DELLO STATO ITALIANE	Nuova linea Ferrandina - Matera La Martella STAZIONE DI MATERA "LA MARTELLA" FABBRICATO TECNOLOGICO
RELAZIONE DI CALCOLO	PROGETTO LOTTO CODIFICA DOCUMENTO REV. FOGLIO IA5F 02 D09 CL FV02 00004 B 13 di 69

7.2 Azioni variabili da vento (§ 3.3 NTC 2018)

Il carico provocato dal vento sarà valutato tenendo conto di quanto prescritto dalle Norme Tecniche per le Costruzioni, (DM 17 gennaio 2018) al § 3.3..

Tab. 3.3.I -Valori dei parametri $v_{b,0'}$ $a_{0'}$ k_s

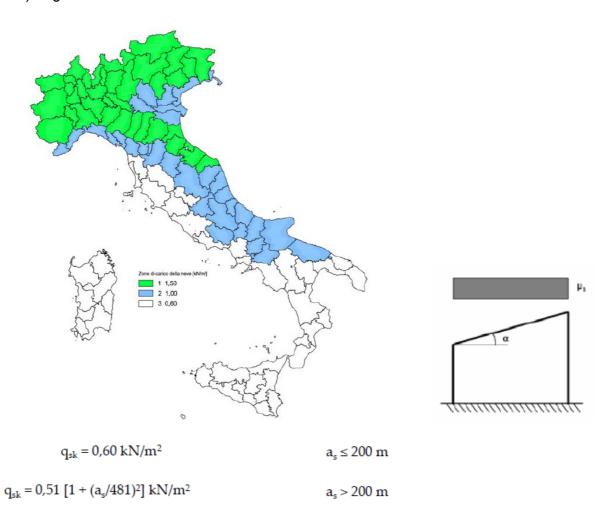

Zona	Descrizione	v _{b,0} [m/s]	a ₀ [m]	$k_{\mathfrak{s}}$
1	Valle d'Aosta, Piemonte, Lombardia, Trentino Alto Adige, Veneto, Friuli Venezia Giulia (con l'eccezione della pro- vincia di Trieste)	25	1000	0,40
2	Emilia Romagna	25	750	0,45
3	Toscana, Marche, Umbria, Lazio, Abruzzo, Molise, Puglia, Campania, Basilicata, Calabria (esclusa la provincia di Reggio Calabria)	27	500	0,37
4	Sicilia e provincia di Reggio Calabria	28	500	0,36
5	Sardegna (zona a oriente della retta congiungente Capo Teulada con l'Isola di Maddalena)	28	750	0,40
6	Sardegna (zona a occidente della retta congiungente Capo Teulada con l'Isola di Maddalena)	28	500	0,36
7	Liguria	28	1000	0,54
8	Provincia di Trieste	30	1500	0,50
9	Isole (con l'eccezione di Sicilia e Sardegna) e mare aperto	31	500	0,32

	Nuova linea Ferrandina - Matera La Martella		
ITALFERR	STAZIONE DI MATERA "LA MARTELLA"		
GRUPPO FERROVIE DELLO STATO ITALIANE	FABBRICATO TECNOLOGICO		
RELAZIONE DI CALCOLO	PROGETTO LOTTO CODIFICA DOCUMENTO REV. FOGLIO IA5F 02 D09 CL FV02 00004 B 14 di 69		

Si procede al calcolo delle pressione del vento.

$$p = q_r c_e c_p c_d$$

Į.			•
Velocità base di riferimento:	\mathbf{V}_{b}	27	m/s
Velocità base di riferimento a livello del mare	V _{b,0}	27	m/s
Coefficiente di altitudine	Ca	1	
Parametro Tab. 3.3. I	a_0	500	m
Parametro Tab. 3.3. I	\mathbf{k}_{s}	0,37	
Altitudine sul livello del mare	as	400	m
Velocità di riferimento:	Vr	27	m/s
Coefficiente di ritorno	Cr	1	-"
Tempo di ritorno	Tr	50	anni
Pressione del vento:	p	0,92	KN/m ²
Pressione cinetica di riferimento	qr	455,625	N/m ²
densità dell'aria	r_{o}	1,25	Kg/m ³
Coefficiente di esposizione	Ce	1,89	
Coefficiente di pressione	Cp	1	
Coefficiente dinamico	\mathbf{C}_{d}	1	


Elementi Sopravento (0.8+0.2)	0.92	kN/m²
Elementi Sottovento e copertura piana (0.4+0.2)	0.55	kN/m²
Pressione interna (0.2)	0.18	kN/m ²

Date le dimensioni dell'opera e la presenza di azioni sismiche, vista l'entità delle azioni dovute al vento, queste sono state trascurate.

GRUPPO FERROVIE DELLO STATO ITALIANE	Nuova linea Ferrandina - Matera La Martella STAZIONE DI MATERA "LA MARTELLA" FABBRICATO TECNOLOGICO		
RELAZIONE DI CALCOLO	PROGETTO LOTTO CODIFICA DOCUMENTO REV. FOGLIO IA5F 02 D09 CL FV02 00004 B 15 di 69		

7.3 Azioni variabili da neve (§ 3.4 NTC 2018)

Il carico provocato dalla neve sulle coperture piane o inclinate sarà valutato tenendo conto di quanto prescritto dalle Norme Tecniche per le Costruzioni, (DM 17 gennaio 2018) al § 3.4.

Tab. 3.4.II - Valori del coefficiente di forma

Coefficiente di forma	0°≤ α ≤ 30°	30° < α < 60°	α ≥ 60°
μ1	0,8	$0.8 \cdot \frac{(60-\alpha)}{30}$	0,0
		•	

Coefficiente di forma della copertura Coefficiente di esposizione	μ ₁ C _e	0,8 1	Angolo copertura α=0° Esposizione normale
Coefficiente termico	C_t	1	-
Valore del carico neve al suolo	q s	0,5	KN/m ²

 $\boldsymbol{q}_{\scriptscriptstyle{\text{S}}} = \boldsymbol{q}_{\scriptscriptstyle{\text{S}k}} \cdot \boldsymbol{\mu}_{i} \cdot \boldsymbol{C}_{\scriptscriptstyle{\text{E}}} \cdot \boldsymbol{C}_{\scriptscriptstyle{\text{t}}}$

ITALFERR GRUPPO FERROVIE DELLO STATO ITALIANE	Nuova linea Ferrandina - Matera La Martella STAZIONE DI MATERA "LA MARTELLA" FABBRICATO TECNOLOGICO		
RELAZIONE DI CALCOLO	PROGETTO LOTTO CODIFICA DOCUMENTO REV. FOGLIO IA5F 02 D09 CL FV02 00004 B 16 di 69		

7.4 Valutazione dell'azione sismica (§ 3.2 NTC 2018)

7.4.1 Categoria del sottosuolo e condizioni topografiche

Dai dati disponibili si stabilisce che il terreno di fondazione rientra nella categoria di sottosuolo nella **categoria E**, come definita nella tabella 3.2.II delle NTC 2018.

Tab. 3.2.II – Categorie di sottosuolo che permettono l'utilizzo dell'approccio semplificato.

Categoria	Descrizione
A	Ammassi rocciosi affioranti o terreni molto rigidi caratterizzati da valori di velocità delle onde di taglio superiori a 800 m/s, eventualmente comprendenti in superficie terreni di caratteristiche meccaniche più scadenti con spessore massimo pari a 3 m.
В	Rocce tenere e depositi di terreni a grana grossa molto addensati o terreni a grana fina molto consistenti, caratterizzati da un miglioramento delle proprietà meccaniche con la profondità e da valori di velocità equivalente compresi tra 360 m/s e 800 m/s.
С	Depositi di terreni a grana grossa mediamente addensati o terreni a grana fina mediamente consistenti con pro- fondità del substrato superiori a 30 m, caratterizzati da un miglioramento delle proprietà meccaniche con la profondità e da valori di velocità equivalente compresi tra 180 m/s e 360 m/s.
D	Depositi di terreni a grana grossa scarsamente addensati o di terreni a grana fina scarsamente consistenti, con profondità del substrato superiori a 30 m, caratterizzati da un miglioramento delle proprietà meccaniche con la profondità e da valori di velocità equivalente compresi tra 100 e 180 m/s.
Е	Terreni con caratteristiche e valori di velocità equivalente riconducibili a quelle definite per le categorie C o D, con profondità del substrato non superiore a 30 m.

In condizioni topografiche superficiali semplici si può adottare la seguente classificazione:

Tab. 3.2.III - Categorie topografiche

Categoria	Caratteristiche della superficie topografica
T1	Superficie pianeggiante, pendii e rilievi isolati con inclinazione media i ≤ 15°
T2	Pendii con inclinazione media i > 15°
T3	Rilievi con larghezza in cresta molto minore che alla base e inclinazione media 15° ≤ i ≤ 30°
T4	Rilievi con larghezza in cresta molto minore che alla base e inclinazione media i > 30°

Le su esposte categorie topografiche si riferiscono a configurazioni geometriche prevalentemente bidimensionali, creste o dorsali allungate, e devono essere considerate nella definizione dell'azione sismica se di altezza maggiore di 30 m.

L'area interessata risulta classificabile come T1.

In riferimento a quanto indicato nel §3.2.3.2.1 delle NTC 2018 per la definizione dello spettro elastico in accelerazione è necessario valutare il valore del coefficiente $S=S_S^*S_T$ e di C_C in base alla categoria di sottosuolo e alle condizioni topografiche; si fa riferimento nella valutazione dei coefficienti alle tabelle che seguono.

	Nuova linea Ferrandina - Matera La Martella		
ITALFERR .	STAZIONE DI MATERA "LA MARTELLA"		
GRUPPO FERROVIE DELLO STATO ITALIANE	FABBRICATO TECNOLOGICO		
RELAZIONE DI CALCOLO	PROGETTO LOTTO CODIFICA DOCUMENTO REV. FOGLIO IA5F 02 D09 CL FV02 00004 B 17 di 69		

Tab. 3.2.IV – Espressioni di S_S e di C_C

Categoria sottosuolo	S _S	C _C
A	1,00	1,00
В	$1,00 \le 1,40 - 0,40 \cdot F_o \cdot \frac{a_g}{g} \le 1,20$	$1,10\cdot(T_C^*)^{-0,20}$
С	$1,00 \le 1,70 - 0,60 \cdot F_o \cdot \frac{a_g}{g} \le 1,50$	$1,05 \cdot (T_C^*)^{-0,33}$
D	$0.90 \le 2.40 - 1.50 \cdot F_o \cdot \frac{a_g}{g} \le 1.80$	$1,25 \cdot (T_{\rm c}^*)^{-0,50}$
E	$1,00 \le 2,00 - 1,10 \cdot F_o \cdot \frac{a_g}{g} \le 1,60$	1,15 · (T _C *) ^{-0,40}

Tab. 3.2.V – Valori massimi del coefficiente di amplificazione topografica S_T

Categoria topografica	Ubicazione dell'opera o dell'intervento	S _T
T1	-	1,0
T2	In corrispondenza della sommità del pendio	1,2
Т3	In corrispondenza della cresta di un rilievo con	1,2
	pendenza media minore o uguale a 30°	
T4	In corrispondenza della cresta di un rilievo con	1,4
	pendenza media maggiore di 30°	

Il valore del coefficiente di amplificazione topografica è posto pari a S_T = 1 Il valore del coefficiente di amplificazione stratigrafica è posto pari a S_S = 1.532 (SLV) Il valore del coefficiente di amplificazione stratigrafica è posto pari a S_S = 1.600 (SLD) Il valore del coefficiente C_C è posto pari a C_C = 1.767 (SLV) Il valore del coefficiente C_C è posto pari a C_C = 1.814 (SLD)

7.4.2 Classe di duttilità

La costruzione oggetto della presente relazione, soggetta all'azione sismica, non dotata di appositi dispositivi dissipativi, è stata progettata considerando un comportamento strutturale dissipativo. Nel comportamento strutturale dissipativo, gli effetti combinati delle azioni sismiche e delle altre azioni sono calcolati tenendo conto delle non linearità di comportamento (di materiale sempre, geometriche quando rilevanti). In particolare è stata adottata la Classe di duttilità bassa (CD "B").

ITALFERR GRUPPO FERROVIE DELLO STATO ITALIANE	Nuova linea Ferrandina - Matera La Martella STAZIONE DI MATERA "LA MARTELLA" FABBRICATO TECNOLOGICO				
RELAZIONE DI CALCOLO	PROGETTO LOTTO CODIFICA DOCUMENTO REV. FOGLIO IA5F 02 D09 CL FV02 00004 B 18 di 69				

7.4.3 Regolarità

La struttura risponde a tutti i requisiti di regolarità in pianta ed in elevazione elencati nel §7.2.2 NTC 2018:

- Regolare in pianta
- Regolare in altezza

7.4.4 Tipologie strutturali e fattori di comportamento (§7.4.3 NTC 2018)

Come citato nelle NTC 2018 al §7.3.1, quando si utilizza *l'analisi lineare per sistemi dissipativi*, come avviene per gli stati limite ultimi, gli effetti delle azioni sismiche sono calcolati, quale che sia la modellazione per esse utilizzata, riferendosi allo *spettro di progetto ottenuto assumendo un fattore di comportamento q maggiore dell'unità* (§ 3.2.3.5).

La resistenza delle membrature e dei collegamenti dovrà essere valutata assicurando al contempo il soddisfacimento dei requisiti di duttilità fissati nei paragrafi successivi.

Il valore del fattore di comportamento q da utilizzare per ciascuna direzione della azione sismica, dipende dalla tipologia strutturale, dal suo grado di iperstaticità e dai criteri di progettazione adottati e tiene conto convenzionalmente delle non linearità di materiale e delle sue capacità dissipative.

Esso può essere calcolato tramite la seguente espressione:

$$q_{lim} = q_0 * K_R$$

dove:

 \mathbf{q}_{0} è il valore massimo del fattore di comportamento allo SLV che dipende dal livello di duttilità attesa, dalla tipologia strutturale e dal rapporto α_{u}/α_{1} tra il valore dell'azione sismica per il quale si verifica la formazione di un numero di cerniere plastiche tali da rendere la struttura labile e quello per il quale il primo elemento strutturale raggiunge la plasticizzatine a flessione.

K_R è un fattore riduttivo che dipende dalle caratteristiche di regolarità in altezza della costruzione, con valore pari ad 1 per costruzioni regolari in altezza e pari a 0,8 per costruzioni non regolari in altezza. Per le costruzioni non regolari in pianta, si possono

GRUPPO FERROVIE DELLO STATO ITALIANE	Nuova linea Ferrandina - Matera La Martella STAZIONE DI MATERA "LA MARTELLA" FABBRICATO TECNOLOGICO				
RELAZIONE DI CALCOLO	PROGETTO LOTTO CODIFICA DOCUMENTO REV. FOGLIO IA5F 02 D09 CL FV02 00004 B 19 di 69				

adottare valori di α_u / α_1 pari alla media tra 1,0 ed i valori di volta in volta forniti per le diverse tipologie costruttive (vedi NTC 2018 par. 7.4.3).

 ${\bf Tab.~7.3.II-Valori~massimi~del~valore~di~base~qo~del~fattore~di~comportamento~allo~SLV~per~diverse~tecniche~costruttive~ed~in~funzione~della~tipologia~strutturale~e~della~classe~di~duttilita~CD~$

	qo	
Tipologia strutturale	CD"A"	CD"B"
Costruzioni di calcestruzzo (§ 7.4.3.2)		
Strutture a telaio, a pareti accoppiate, miste (v. § 7.4.3.1)	$4.5 \alpha_{\rm u} / \alpha_{\rm l}$	$3.0 \alpha_{\rm u} / \alpha_{\rm l}$
Strutture a pareti non accoppiate (v. § 7.4.3.1)	$4.0 \ \alpha_{\mathrm{u}} / \ \alpha_{\mathrm{l}}$	3,0
Strutture deformabili torsionalmente (v. § 7.4.3.1)	3,0	2,0
Strutture a pendolo inverso (v. § 7.4.3.1)	2,0	1,5
Strutture a pendolo inverso intelaiate monopiano (v. § 7.4.3.1)	3,5	2,5

Nel caso in esame, trattasi di struttura a telaio di un piano regolare in pianta, quindi si ha $\alpha_{\rm u}/\alpha_{\rm l}$ = 1,1, con q₀= 3.0 $\alpha_{\rm u}/\alpha_{\rm l}$ = 3.3.

Con $K_R = 1.0$, si ottiene il fattore di struttura orizzontale pari a $\mathbf{q} = \mathbf{K}_R * \mathbf{q}_0 = \mathbf{3.3}$.

7.4.5 Valutazione dell'azione Sismica

Si utilizzerà un'analisi dinamica lineare con spettro di progetto $S_d(T)$ ottenuto sostituendo nello spettro elastico $S_e(T)$ definito nel §3.2.3.2 delle NTC'08 il parametro η con 1/q, dove q è il fattore di struttura conforme alla tipologia della struttura, al suo grado di iperstaticità, alla regolarità e non linearità del materiale.

Si riporta di seguito il riepilogo della caratterizzazione sismica del suolo interessato dall'intervento ed i parametri adottati nei calcoli successivi.

Sito in esame.

latitudine: 16.56350°

longitudine: 40.65420°

Classe: III

Vita nominale: 75

Parametri e punti dello spettro di risposta orizzontale per lo stato limite SLV

Parametri indipendenti

STATO LIMITE	SLV
ag	0.169 g
F _o	2.509
T _C *	0.342 s
Ss	1.532
Cc	1.767
S _T	1.000
q	3.300

Parametri dipendenti

S	1.532	
η	0.303	
T _B	0.201 s	
Tc	0.604 s	
T _D	2.278 s	

Espressioni dei parametri dipendenti

$S = S_S \cdot S_T$	(NTC-08 Eq. 3.2.5)
$\eta = \sqrt{10/(5+\xi)} \ge 0,55; \ \eta = 1/q$	(NTC-08 Eq. 3.2.6; §. 3.2.3.5)
$T_B = T_C/3$	(NTC-07 Eq. 3.2.8)
$T_{\mathbb{C}} = C_{\mathbb{C}} \cdot T_{\mathbb{C}}^*$	(NTC-07 Eq. 3.2.7)
$T_{\rm D} = 4,0 \cdot a_{\rm g} / g + 1,6$	(NTC-07 Eq. 3.2.9)

Espressioni dello spettro di risposta (NTC-08 Eq. 3.2.4)

$$\begin{split} 0 &\leq T < T_B & S_e(T) = a_g \cdot S \cdot \eta \cdot F_o \cdot \left[\frac{T}{T_B} + \frac{1}{\eta \cdot F_o} \left(1 - \frac{T}{T_B} \right) \right] \\ T_B &\leq T < T_C & S_e(T) = a_g \cdot S \cdot \eta \cdot F_o \\ T_C &\leq T < T_D & S_e(T) = a_g \cdot S \cdot \eta \cdot F_o \cdot \left(\frac{T_C}{T} \right) \\ T_D &\leq T & S_e(T) = a_g \cdot S \cdot \eta \cdot F_o \cdot \left(\frac{T_C T_D}{T^2} \right) \end{split}$$

Lo spettro di progetto $S_d(T)$ per le verifiche agli Stati Limite Ultimi è ottenuto dalle espressioni dello spettro elastico $S_e(T)$ sostituendo η con 1/q, dove q è il fattore di struttura. (NTC-08 § 3.2.3.5)

Punti dello spettro di risposta

	T [s]	Se [g]
	0.000	0.260
T _B ◀	0.201	0.197
Tc◀	0.604	0.197
	0.684	0.174
	0.763	0.156
	0.843	0.141
	0.923	0.129
	1.002	0.119
	1.082	0.110
	1.162	0.103
	1.242	0.096
	1.321	0.090
	1.401	0.085
	1.481	0.080
	1.560	0.076
	1.640	0.073
	1.720	0.069
	1.799	0.066
	1.879	0.063
	1.959	0.061
	2.039	0.058
	2.118	0.056
	2.198	0.054
T₀◀	2.278	0.052
	2.360	0.049
	2.442	0.046
	2.524	0.043
	2.606	0.040
	2.688	0.038
	2.770	0.035
	2.852	0.034
	2.934	0.034
	3.016	0.034
	3.098	0.034
	3.180	0.034
	3.262	0.034
	3.344	0.034
	3.426	0.034
	3.508	0.034
	3.590	0.034
	3.672	0.034
	3.754	0.034
	3.836	0.034
	3.918	0.034
	4.000	0.034

Parametri e punti dello spettro di risposta orizzontale per lo stato limiteSLD

Parametri indipendenti

STATO LIMITE	SLD
ag	0.064 g
F _o	2.529
T _C *	0.320 s
Ss	1.600
Cc	1.814
S _T	1.000
q	1.000

Parametri dipendenti

S	1.600	
η	1.000	
T _B	0.194 s	
Tc	0.581 s	
T _D	1.855 s	

Espressioni dei parametri dipendenti

$$S = S_S \cdot S_T$$
 (NTC-08 Eq. 3.2.5)

$$\eta = \sqrt{10/(5+\xi)} \ge 0.55$$
; $\eta = 1/q$ (NTC-08 Eq. 3.2.6; §. 3.2.3.5)

$$T_B = T_C / 3$$
 (NTC-07 Eq. 3.2.8)

$$T_C = C_C \cdot T_C^*$$
 (NTC-07 Eq. 3.2.7)

$$T_D = 4, 0 \cdot a_g / g + 1,6$$
 (NTC-07 Eq. 3.2.9)

Espressioni dello spettro di risposta (NTC-08 Eq. 3.2.4)

$$\begin{split} 0 &\leq T < T_B & S_e(T) = a_g \cdot S \cdot \eta \cdot F_o \cdot \left[\frac{T}{T_B} + \frac{1}{\eta \cdot F_o} \left(1 - \frac{T}{T_B} \right) \right] \\ T_B &\leq T < T_C & S_e(T) = a_g \cdot S \cdot \eta \cdot F_o \\ T_C &\leq T < T_D & S_e(T) = a_g \cdot S \cdot \eta \cdot F_o \cdot \left(\frac{T_C}{T} \right) \\ T_D &\leq T & S_e(T) = a_g \cdot S \cdot \eta \cdot F_o \cdot \left(\frac{T_C T_D}{T^2} \right) \end{split}$$

Lo spettro di progetto $S_d(T)$ per le verifiche agli Stati Limite Ultimi è ottenuto dalle espressioni dello spettro elastico $S_o(T)$ sostituendo η con 1/q, dove q è il fattore di struttura. (NTC-08 § 3.2.3.5)

Punti dello spettro di risposta

	T [s]	Se [g]
	0.000	0.102
T _B ◀	0.194	0.258
Tc◀	0.581	0.258
	0.641	0.233
	0.702	0.213
	0.763	0.196
	0.823	0.182
	0.884	0.169
	0.945	0.158
	1.005	0.149
	1.066	0.140
	1.127	0.133
	1.187	0.126
	1.248	0.120
	1.309	0.114
	1.369	0.109
	1.430	0.105
	1.491	0.100
	1.551	0.097
	1.612	0.093
	1.673	0.090
	1.734	0.086
	1.794	0.083
T _D ◀	1.855	0.081
	1.957	0.073
	2.059	0.066
	2.161	0.059
	2.263	0.054
	2.366	0.050
	2.468 2.570	0.046 0.042
	2.672	0.042
	2.774	0.039
	2.876	0.034
	2.979	0.034
	3.081	0.031
	3.183	0.027
	3.285	0.027
	3.387	0.024
	3.489	0.023
	3.591	0.022
	3.694	0.020
	3.796	0.019
	3.898	0.018
	4.000	0.017
		2.211

GRUPPO FERROVIE DELLO STATO ITALIANE	Nuova linea Ferrandina - Matera La Martella STAZIONE DI MATERA "LA MARTELLA" FABBRICATO TECNOLOGICO				
RELAZIONE DI CALCOLO	PROGETTO LOTTO CODIFICA DOCUMENTO REV. FOGLIO IA5F 02 D09 CL FV02 00004 B 22 di 69				

8 METODO DI ANALISI

L'analisi e le verifiche geotecniche sono redatte secondo quanto previsto dal *Decreto Ministeriale 17 gennaio 2018*.

Per la *verifica della struttura*, compresi gli elementi di fondazione, sono state definite delle combinazioni di carico secondo i coefficienti parziali delle azioni riportati nella colonna *A1* della *tabella 2.6.I* delle NTC 2018, di seguito riportata.

Per la *verifica della resistenza del terreno* è stato adottato *l'approccio 2*, che prevede l'impiego di un'unica combinazione, secondo i coefficienti parziali delle azioni riportati nella colonna *A1* della *tabella 2.6.I* delle NTC 2018, di seguito riportata.

Nell'approccio 2 i coefficienti γ_M di riduzione dei parametri geotecnici sono pari ad 1, mentre il coefficiente γ_M di riduzione del carico limite è pari a 2.3.

Tab. 2.6.I – Coefficienti parziali per le azioni o per l'effetto delle azioni nelle verifiche SLU

		Coefficiente	EQU	A1	A2
		$\gamma_{\mathtt{F}}$			
Carichi permanenti Gı	Favorevoli	Υ _{G1}	0,9	1,0	1,0
	Sfavorevoli		1,1	1,3	1,0
Carichi permanenti non strutturali G2 ⁽¹⁾	Favorevoli	Υ _{G2}	0,8	0,8	0,8
	Sfavorevoli		1,5	1,5	1,3
Azioni variabili Q	Favorevoli	ΥQi	0,0	0,0	0,0
	Sfavorevoli		1,5	1,5	1,3

Nel caso in cui l'intensità dei carichi permanenti non strutturali o di una parte di essi (ad es. carichi permanenti portati) sia ben definita in fase di progetto, per detti carichi o per la parte di essi nota si potranno adottare gli stessi coefficienti parziali validi per le azioni permanenti.

Nella Tab. 2.6.I il significato dei simboli è il seguente:

γ_{G1} coefficiente parziale dei carichi permanenti G₁;

γ_{G2} coefficiente parziale dei carichi permanenti non strutturali G2;

γ_{Oi} coefficiente parziale delle azioni variabili Q.

Le verifiche sono state condotte avvalendosi dei programmi di analisi e calcolo di strutture SAP 2000 plus 20.2.0 della Computers & Structures, Inc.

	Nuova linea Ferrandina - Matera La Martella			
ITALFERR	STAZIONE DI MATERA "LA MARTELLA"			
GRUPPO FERROVIE DELLO STATO ITALIANE	FABBRICATO TECNOLOGICO			
RELAZIONE DI CALCOLO	PROGETTO LOTTO CODIFICA DOCUMENTO REV. FOGLIO IA5F 02 D09 CL FV02 00004 B 23 di 69			

8.1 Combinazioni di carico

Ai fini del dimensionamento e delle verifiche degli elementi strutturali agli stati limite si sono utilizzate le combinazioni delle azioni riportate nella normativa ponti che si richiamano nel seguito:

- Combinazione fondamentale (SLU):

$$\gamma_{G1}G_1 + \gamma_{G2}G_2 + \gamma_{O1}Q_{K1} + \gamma_{O2}\psi_{02}Q_{K2} + \gamma_{O3}\psi_{03}Q_{K3} + \dots$$

In cui:

• γ_{GI} è il coefficiente parziale dei carichi permanenti	1	3
---	---	---

• γ_{O1} è il coefficiente parziale delle azioni variabili 1.5

• ψ_{02} è il coefficiente di combinazione 0.5 (neve)

• ψ_{02} è il coefficiente di combinazione 0.0 (coperture)

- Combinazione sismica:

$$E + G_1 + G_2 + \psi_{21}Q_{K1} + \psi_{22}Q_{K2} + \psi_{23}Q_{K3} + \dots$$

In cui:

• ψ_{02} è il coefficiente di combinazione 0.0 (neve)

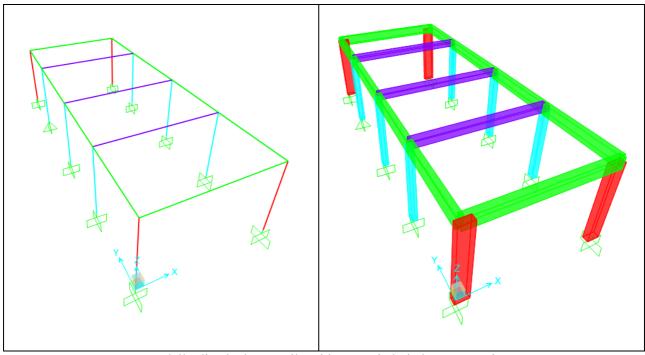
• ψ_{02} è il coefficiente di combinazione 0.0 (copertura)

Le azioni sismiche saranno combinate nelle due direzioni orizzontali come segue:

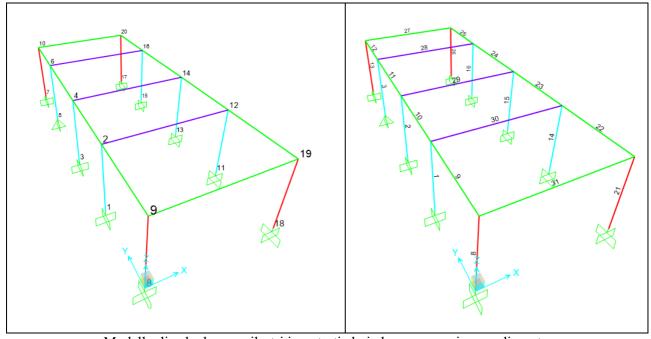
$$1.00 \times E_x + 0.30E_y + 0.30E_z$$

con permutazione circolare dei coefficienti moltiplicativi.

Nel caso in esame non sarà consideratala componente verticale, in quanto la struttura in esame non ricade nei casi previsti dalla normativa.

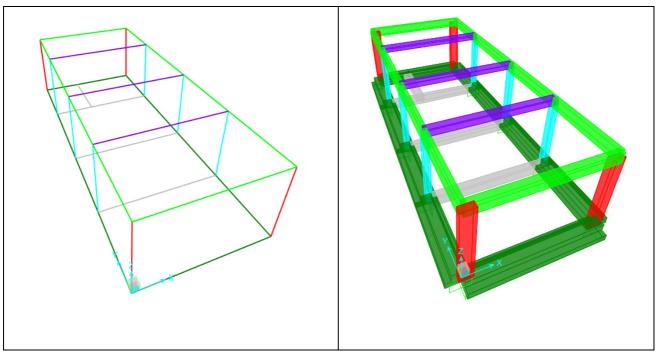

8.2 Modello di calcolo

L'analisi delle sollecitazioni indotte sulla struttura dai carichi statici e dinamici è stata effettuata mediante l'utilizzo di modelli agli elementi finiti. I modelli sono stati realizzati con l'ausilio del programma di calcolo "SAP2000" ver.20.2.0. Gli elementi strutturali sono stati modellati mediante elementi tipo "frame", aventi caratteristiche geometriche e meccaniche degli elementi reali. Sono stati realizzati due modelli di calcolo differenti, che si differenziano tra di loro per la modellazione dell'interazione con il terreno. Il primo modello, impiegato per le verifiche di resistenza degli elementi di elevazione, presenta vincoli di incastro alla base dei pilastri. Il secondo modello, utilizzato per la verifica degli elementi di fondazione, presenta travi di fondazioni modellate mediante elementi tipo "frame" vincolati al terreno mediante molle elastiche lineari.

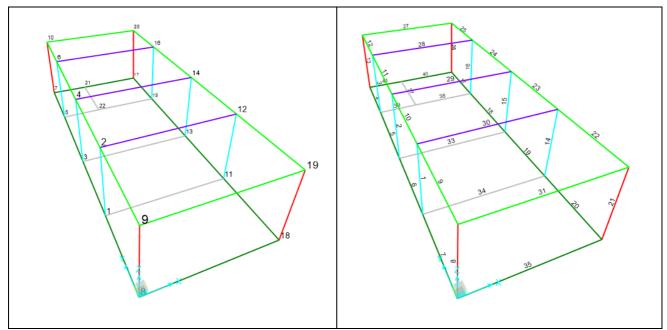

ITALFERR GRUPPO FERROVIE DELLO STATO ITALIANE	Nuova linea Ferrandina - Matera La Martella STAZIONE DI MATERA "LA MARTELLA" FABBRICATO TECNOLOGICO	
RELAZIONE DI CALCOLO	PROGETTO LOTTO CODIFICA DOCUMENTO REV. FOGLIO IA5F 02 D09 CL FV02 00004 B 24 di 69	

La presenza dei solai è stata tenuta in conto mediante l'assegnazione dei carichi verticali alle travi secondo l'orditura dei travetti, e mediante l'assegnazione di un vincolo di "diaphram" a tutti i nodi appartenenti al piano del solaio.

Il peso proprio delle strutture è calcolato in automatico dal programma di calcolo.L'analisi a spettro di risposta si basa sull'assegnazione dello spettro di progetto previsto dalla normativa e su un'analisi modale a 12 modi di vibrare. Gli effetti sono stati combinati secondo il *metodo CQC*.Nelle figure seguenti si riportano i due modelli utilizzati con indicazione della numerazione delle aste e dei nodi al fine di una migliore comprensione dei risultati derivanti dall'analisi numerica effettuata.



Modello di calcolo con pilastri incastrati al piede - geometria



Modello di calcolo con pilastri incastrati al piede – numerazione nodi e aste

ITALFERR GRUPPO FERROVIE DELLO STATO ITALIANE	Nuova linea Ferrandina - Matera La Martella STAZIONE DI MATERA "LA MARTELLA" FABBRICATO TECNOLOGICO		
RELAZIONE DI CALCOLO	PROGETTO LOTTO CODIFICA DOCUMENTO REV. FOGLIO IA5F 02 D09 CL FV02 00004 B 25 di 69		

Modello di calcolo su suolo elastico - geometria

Modello di calcolo su suolo elastico – numerazione nodi e aste

8.2.1 Carichi e combinazioni

Di seguito sono riportati i casi di carico definiti nel modello. I valori dei carichi assegnati alle travi sono stati dedotti dalle reazioni vincolari ricavate dal modello utilizzato per il solaio. Il carico sulle travi di bordo trasversali è stato calcolato mediante area di influenza, sulla base dei carichi considerati.

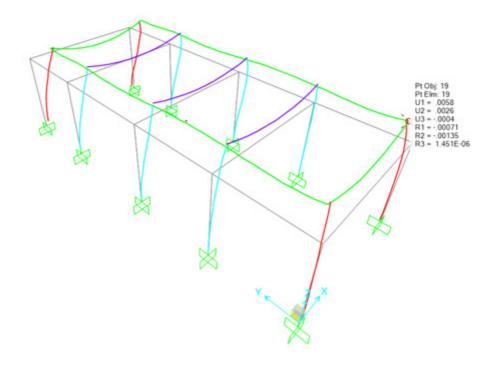
TABLE:	Load Case De	Load Case Definitions		
Case	Туре	Description		
MODAL	LinModal	Analisi modale		
Рр	LinStatic	Carico permanente elementi strutturali (Pp struttura + Pp solaio)		
Perm	LinStatic	Carico permanente elementi non strutturali (Ppp solaio + tamp + tramezz.)		
Var	LinStatic	Carico variabile copertura		
Neve	LinStatic	Carico neve		
Sisma X_SLV	LinRespSpec	Sisma SLV direzione trasversale		
Sisma Y_SLV	LinRespSpec	Sisma SLV direzione longitudinale		
Sisma X_SLD	LinRespSpec	Sisma SLD direzione trasversale		
Sisma Y_SLD	LinRespSpec	Sisma SLD direzione longitudinale		

Di seguito sono riportate le combinazioni di carico definiti nel modello.

SLU	combinazione SLU da Normativa
SLV_Sx+0,3Sy+P	combinazione SLV in direzione long.
SLV_Sy+0,3Sx+P	combinazione SLV in direzione trasv.
SLD_Sx+0,3Sy+P	combinazione SLD in direzione long.
SLD_Sy+0,3Sx+P	combinazione SLD in direzione trasv.
COMB1	combinazione carichi permanenti
ENVE	inviluppo SLU e SLV
fond_SLV_Sx+0,3Sy+P	combinazione SLV in direzione long. con azione sismica amplificata per
	gerarchia delle resistenze in fondazione
fond_SLV_Sy+0,3Sx+P	combinazione SLV in direzione trasv. con azione sismica amplificata per
	gerarchia delle resistenze in fondazione
ENVE_fond	inviluppo fond_SLV

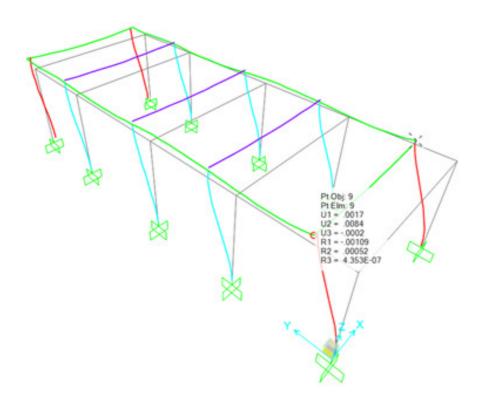
TABLE: Combination Definition				
ComboName	ComboType	AutoDesign	CaseName	ScaleFactor
SLU	Linear Add	No	Рр	1.3
SLU			Perm	1.3
SLU			Var	1
SLU			Neve	0.75
SLV_Sx+0.35Sy+P	Linear Add	No	Рр	1
SLV_Sx+0.35Sy+P			Perm	1
SLV_Sx+0.35Sy+P			Sisma X_SLV	1
SLV_Sx+0.35Sy+P			Sisma Y_SLV	0.3
SLV_Sy+0.35Sx+P	Linear Add	No	Рр	1
SLV_Sy+0.35Sx+P			Perm	1
SLV_Sy+0.35Sx+P			Sisma X_SLV	0.3
SLV_Sy+0.35Sx+P			Sisma Y_SLV	1
SLD_Sx+0.35Sy+P	Linear Add	No	Рр	1
SLD_Sx+0.35Sy+P			Perm	1
SLD_Sx+0.35Sy+P			Sisma X_SLD	1
SLD_Sx+0.35Sy+P			Sisma Y_SLD	0.3
SLD_Sy+0.35Sx+P	Linear Add	No	Рр	1
SLD_Sy+0.35Sx+P			Perm	1
SLD_Sy+0.35Sx+P			Sisma X_SLD	0.3
SLD_Sy+0.35Sx+P			Sisma Y_SLD	1
ENVE	Envelope	No	SLU	1
ENVE			SLV_Sx+0.35Sy+P	1
ENVE			SLV_Sy+0.35Sx+P	1
fond_SLV_Sx+0.35Sy+P	Linear Add	No	Рр	1
fond_SLV_Sx+0.35Sy+P			Perm	1
fond_SLV_Sx+0.35Sy+P			Sisma X_SLV	1.646
fond_SLV_Sx+0.35Sy+P			Sisma Y_SLV	0.494
fond_SLV_Sy+0.35Sx+P	Linear Add	No	Рр	1
fond_SLV_Sy+0.35Sx+P			Perm	1
fond_SLV_Sy+0.35Sx+P			Sisma X_SLV	0.503
fond_SLV_Sy+0.35Sx+P			Sisma Y_SLV	1.678
ENVE_fond	Envelope	No	SLU	1
ENVE_fond			fond_SLV_Sx+0.35Sy+P	1
ENVE_fond			fond_SLV_Sy+0.35Sx+P	1

	Nuova linea Ferrandina - Matera La Martella
ITALFERR GRUPPO FERROVIE DELLO STATO ITALIANE	STAZIONE DI MATERA "LA MARTELLA" FABBRICATO TECNOLOGICO
RELAZIONE DI CALCOLO	PROGETTO LOTTO CODIFICA DOCUMENTO REV. FOGLIO IA5F 02 D09 CL FV02 00004 B 28 di 69

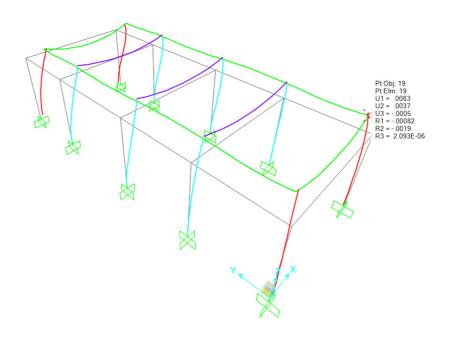

9 SOLLECITAZIONI E VERIFICHE STRUTTURALI

Le analisi e le verifiche sono state condotte con il metodo degli stati limite (SLU ed SLE) utilizzando i coefficienti parziali prescritti dalle Nuove Norme Tecniche per le Costruzioni (NTC 2018).

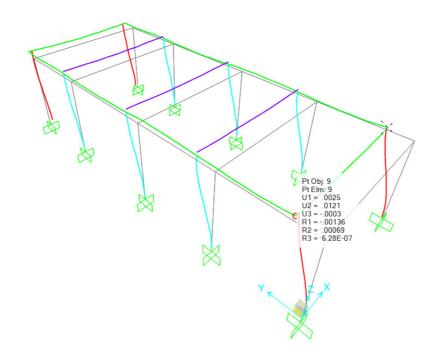
L'analisi delle sollecitazioni è stata effettuata in campo elastico lineare, per l'analisi sismica si è effettuata una analisi dinamica modale.


9.1 Deformate significative della struttura

Nel seguito vengono riportate le deformate maggiormente significative della struttura.



combinazione sismica SLV-Sx+0.3Sy+P


	Nuova linea Ferrandina - Matera La Martella		
ITALFERR	STAZIONE DI MATERA "LA MARTELLA"		
GRUPPO FERROVIE DELLO STATO ITALIANE	FABBRICATO TECNOLOGICO		
RELAZIONE DI CALCOLO	PROGETTO LOTTO CODIFICA DOCUMENTO REV. FOGLIO IA5F 02 D09 CL FV02 00004 B 29 di 69		

 $combinazione\ sismica\ SLV_Sy+0.30Sx+P$

 $combinazione\ sismica\ SLD\text{-}Sx+0.3Sy+P$

combinazione sismica SLD-Sy+0.3Sx+P

TABLE: Joint Displacements				
Joint	OutputCase	U1	U2	Umax=(U1^2+U2^2)^0.5
Text	Text	mm	mm	mm
19	SLV_Sx+0.30Sy+P	5.76	2.55	6.30
19	SLV_Sy+0.30Sx+P	1.73	8.38	8.56
19	SLD_Sx+0.30Sy+P	8.32	3.66	9.09
19	SLD_Sy+0.30Sx+P	2.49	12.08	12.33

Secondo quanto riportato nel §7.3.3.3 delle NTC2018, gli spostamenti d_E della struttura sotto l'azione sismica di progetto allo SLV si ottengono moltiplicando i valori di spostamento massimo d_{Ee} per il fattore \Box_d che nel caso specifico vale q.

Si ha quindi:

 $d_{Emax} = 8.56 \text{ mm}$

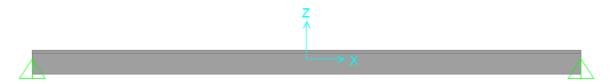
$$d_{Ee} = d_{Emax} \ x \ \Box_d = 8.56 \ x \ 3.3 = 28.2 \ mm = 2.82 \ cm$$

Secondo quanto riportato nel §7.3.7.2 delle NTC2018, gli spostamenti interpiano in presenza dell'azione sismica allo SLD devono essere inferiori ai limiti indicati per evitare che gli elementi non strutturali subiscano danni tali da rendere la costruzione temporaneamente inagibile.

Gli spostamenti orizzontali massimi allo SLD risultano:

 $d_{rmax} = 12.33 \text{ mm}$

si pone a favore di sicurezza il limite:



 d_{rmax} < 0.005 h = 0.005 x 4000 = 20mm con h= altezza del piano La verifica è soddisfatta.

9.2 Verifiche solaio

I valori del momento flettente di progetto e del taglio sollecitante di progetto sono stati determinati mediante un modello del solaio realizzato con il programma di calcolo "SAP2000" ver.20.2.0.

Di seguito si riporta un'immagine dello schema statico per esso adottato e le relative sollecitazioni utilizzate per la verifica.

Per il dimensionamento e la verifica dei travetti del solaio sono stati usati i seguenti valori caratteristici dei carichi.

Campata centrale: solaio H= 4+22+4 cm

Pesi propri elementi strutturali 3.18 kN/m
Pesi propri elementi non strutturali 2.16 kN/m
Sovraccarico variabile 0.60 kN/m
Sovraccarico variabile da neve 0.30 kN/m

Le combinazioni utilizzate sono le seguenti:

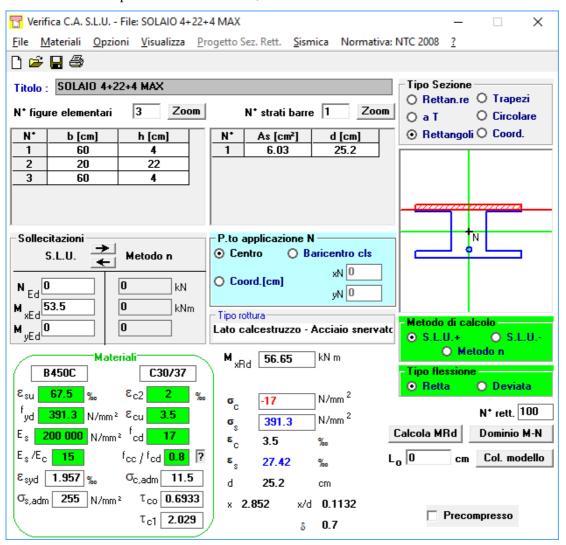
$$F_d = 1.3 \times G + 1.5 \times Q_{var} + 1.5 \times 0.5 \times Q_{neve}$$

In cui:

G è la somma dei pesi propri elementi strutturali + pesi propri elementi non strutturali;

Q var è il sovraccarico variabile per il solaio H=4+22+4;

Q nev è il sovraccarico variabile dovuto alla presenza della neve.


Verifica a flessione (solaio 4+22+4)

Di seguito si riporta il diagramma delle sollecitazioni flettenti.

	Nuova linea Ferrandina - Matera La Martella STAZIONE DI MATERA "LA MARTELLA" FABBRICATO TECNOLOGICO	
GRUPPO FERROVIE DELLO STATO ITALIANE		
RELAZIONE DI CALCOLO	PROGETTO LOTTO CODIFICA DOCUMENTO REV. FOGLIO IA5F 02 D09 CL FV02 00004 B 32 di 69	

Armatura inferiore presente in mezzeria 3 Ø16

La verifica è soddisfatta.

GRUPPO FERROVIE DELLO STATO ITALIANE	Nuova linea Ferrandina - Matera La Martella STAZIONE DI MATERA "LA MARTELLA" FABBRICATO TECNOLOGICO		
RELAZIONE DI CALCOLO	PROGETTO LOTTO CODIFICA DOCUMENTO REV. FOGLIO IA5F 02 D09 CL FV02 00004 B 33 di 69		

Verifica a taglio (solaio 4+22+4)

Di seguito si riporta il diagramma delle sollecitazioni taglianti.

Per la verifica si prende in consederazione il valore del taglio all'appoggio del travetto.

DATI SEZIONE		
Base	20	[cm]
Altezza	30	[cm]
Copriferro	4	[cm]

ARMATURA LONGITUDINALE			
N° barre	Diametro	Area	u.m.
3	16	603	[mm²]
			[mm ²]

MATERIALI			
Ca	Calcestruzzo		
R _{ck}	37	[MPa]	
f _{ck}	30.71	[MPa]	
f _{cd}	17.40	[MPa]	
Acciaio			
f _{yk}	450	[MPa]	
f _{yd}	391.30	[MPa]	

SOLLECITAZIONI		
N _{ed}	0	[kN]
V_{ed}	29.44	[kN]

RISULTATI		
k	1.88	
Area sezione	60000	mm ²
Armatura totale	603	mm ²
PI	0.01160	
$\sigma_{\it cp}$	0.00	MPa
v _{min}	0.50	
$V_{Rd,min}$	25.94	kN
V _{Ed}	29.44	
V_{Rd}	38.54	kN
SEZIONE VERIFICATA		
Clear		Calcola

Menù

Il travetto non necessita di armatura a taglio.

	Nuova linea Ferrandina - Matera La Martella STAZIONE DI MATERA "LA MARTELLA"	
ITALFERR		
GRUPPO FERROVIE DELLO STATO ITALIANE	FABBRICATO TECNOLOGICO	
RELAZIONE DI CALCOLO	PROGETTO LOTTO CODIFICA DOCUMENTO REV. FOGLIO IA5F 02 D09 CL FV02 00004 B 34 di 69	

9.3 Verifiche trave longitudinale 30 x 60

Flessione

I momenti flettenti di calcolo utilizzati per il dimensionamento e la verifica delle travi sono quelli ottenuti dall'analisi globale della struttura.

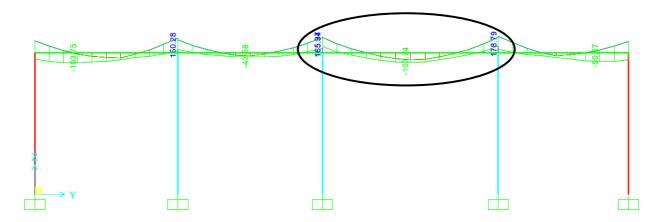
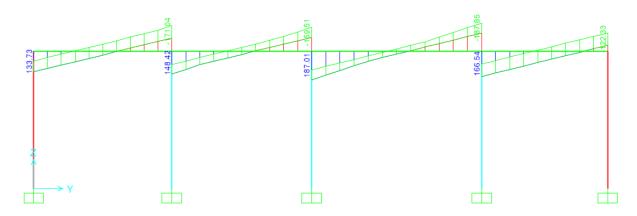
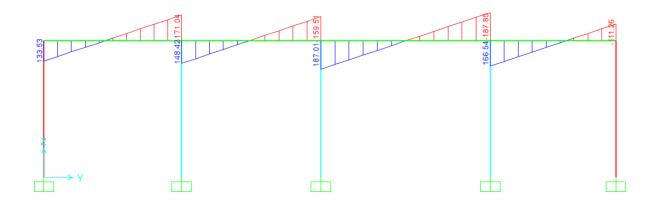
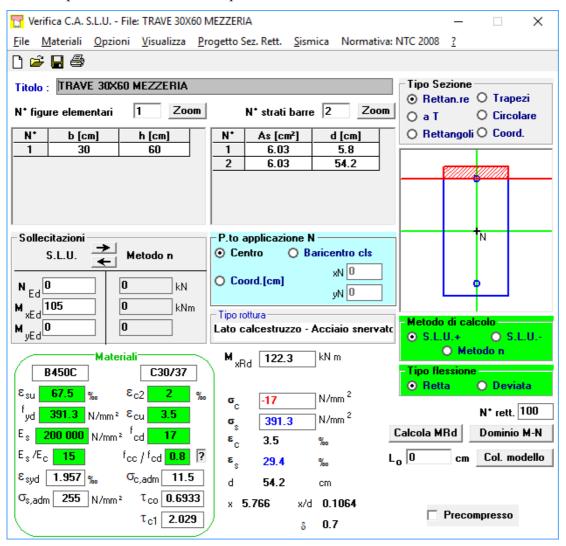




Diagramma del momento – combinazione ENVE

 $Diagramma\ del\ taglio-combinazione\ ENVE$

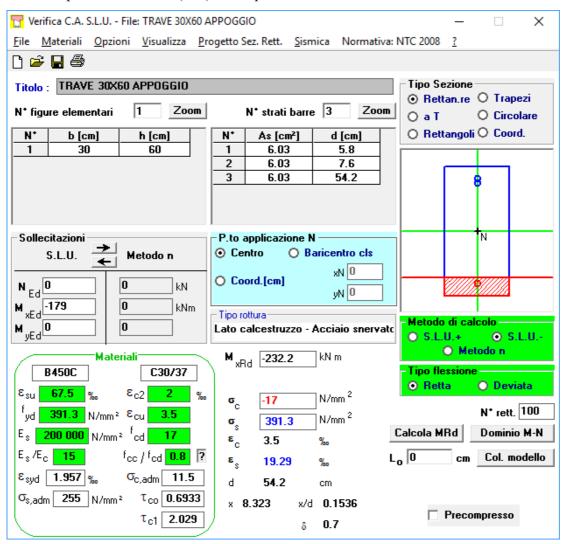


 $Diagramma\ del\ taglio-combinazione\ SLU$

ITALFERR GRUPPO FERROVIE DELLO STATO ITALIANE	Nuova linea Ferrandina - Matera La Martella STAZIONE DI MATERA "LA MARTELLA" FABBRICATO TECNOLOGICO
RELAZIONE DI CALCOLO	PROGETTO LOTTO CODIFICA DOCUMENTO REV. FOGLIO IA5F 02 D09 CL FV02 00004 B 35 di 69

Momento in campata

Armatura presente 3 Ø16 inf 3 Ø16 sup


Risulta: M_{Sd}<M_{Rd.}

La verifica è soddisfatta.

	Nuova linea Ferrandina - Matera La Martella STAZIONE DI MATERA "LA MARTELLA"	
ITALFERR		
GRUPPO FERROVIE DELLO STATO ITALIANE	FABBRICATO TECNOLOGICO	
RELAZIONE DI CALCOLO	PROGETTO LOTTO CODIFICA DOCUMENTO REV. FOGLIO IA5F 02 D09 CL FV02 00004 B 36 di 69	

Momento all'appoggio

Armatura presente 3 Ø16 inf (3+3) Ø16 sup

Risulta: M_{Sd}<M_{Rd.}

La verifica è soddisfatta.

Taglio

Al fine di escludere la formazione di meccanismi inelastici dovuti la taglio, le sollecitazioni di taglio di calcolo sono state ottenute sommando il contributo dovuto ai carichi gravitazionali agenti sulla trave, considerata incernierata alle estremità, alle sollecitazioni di taglio corrispondenti alla formazione delle cerniere plastiche nella trave e prodotte dai momenti resistenti delle due sezioni esterme amplificati per un fattore di sovraresistenza $\square_{R,d}$ assunto pari a 1 per la struttura calcolata in bassa duttilità.

$$V_{Ed} = \gamma_{Rd} \frac{M_{Rd,1} + M_{Rd,2}}{l_{t}} + \frac{q \times l}{2}$$

In cui:

 $\gamma_{Rd} = 1.0$ per strutture progettate in CD" B".

$$M_{Rd1} = 232.2 \text{ kNm}$$
 $M_{Rd2} = 122.3 \text{ kNm}$

$$l_t = 5.6 - 0.4 = 5.20 \text{ m}$$

A vantaggio di sicurezza, la componente statica del taglio (q x L / 2) è stata dedotta dal valore massimo di taglio riscontrato per la combinazione a SLU (187.85 kN). A vantaggio di sicurezza, la verifica a taglio nella zona critica è stata condotta forzando il valore $cotg(\Box) = 1$, anche se la struttura è calcolata come CD"B".

DATI SEZIONE			
Base	30	[cm]	
Altezza	60	[cm]	
Copriferro	4	[cm]	

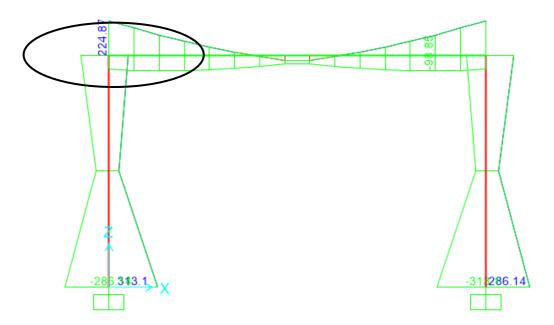
ARMATURA TRASVERSALE				
N°	Diametro	Area	Passo	Inclinazione
[-]	[mm]	[mm ²]	[cm]	[°]
2	10	157	10	90

MATERIALI				
	Calcestruzz	0		
R _{ck}	37	[MPa]		
f _{ck}	30.71	[MPa]		
f _{cd}	17.40	[MPa]		
	Acciaio			
f _{yk}	450	[MPa]		
f _{y d}	391.30	[MPa]		

SOLLECITAZIONI		
N _{ed}	0	[kN]
$V_{\rm ed}$	256	[kN]

	DIG. 11 T. T.	
	RISULTATI	
$\sigma_{\it cp}$	0.00	
α_c	1.00	
ω_{st}	0.12	
cotg ⊕	1.00	
V _{Rsd}	309.79	kN
V _{Rcd}	657.81	kN
V _{Ed}	256.02	kN
V_{Rd}	309.79	
SEZ	IONE VERIFICAT	A
Clear		Calcola
Imposta Cotg O	х	
Valore	1	Menù

La trave è stata verificata con armatura trasversale pari a Ø10/10


$$V_{Ed} < V_{RD} = \min(V_{Rsd}; V_{Rcd})$$

La verifica è soddisfatta.

9.1 Verifiche trave trasversale 30 x 60

ITALFERR GRUPPO FERROVIE DELLO STATO ITALIANE	Nuova linea Ferrandina - Matera La Martella STAZIONE DI MATERA "LA MARTELLA" FABBRICATO TECNOLOGICO	
RELAZIONE DI CALCOLO	PROGETTO LOTTO CODIFICA DOCUMENTO REV. FOGLIO IA5F 02 D09 CL FV02 00004 B 38 di 69	

I momenti flettenti di calcolo utilizzati per il dimensionamento e la verifica delle travi sono quelli ottenuti dall'analisi globale della struttura.

 $Diagramma\ del\ momento-combinazione\ ENVE$

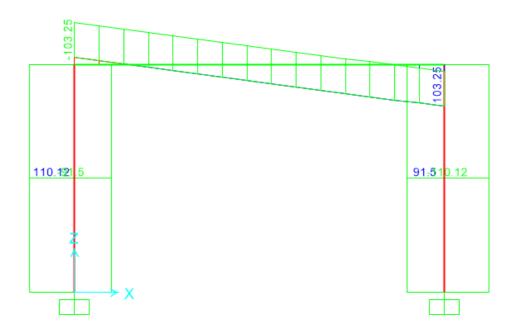
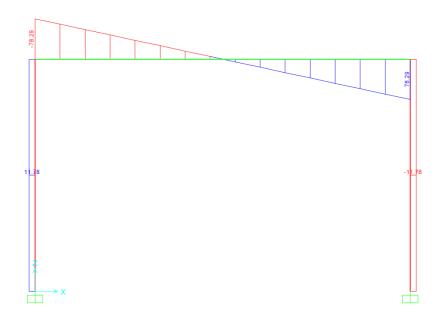
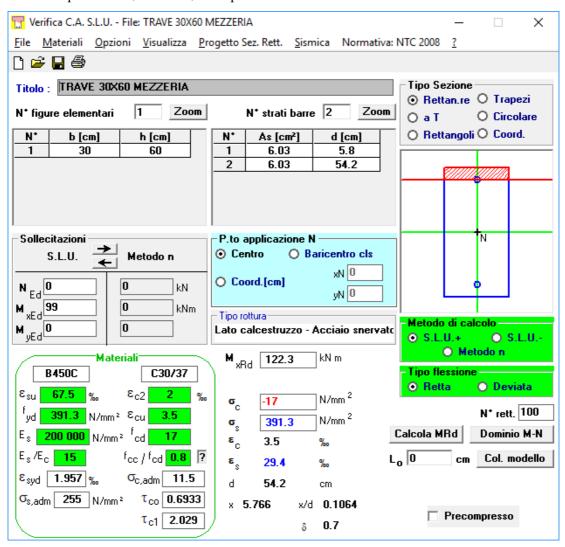



Diagramma del taglio – combinazione ENVE

	Nuova linea Ferrandina - Matera La Martella	
ITALFERR	STAZIONE DI MATERA "LA MARTELLA"	
GRUPPO FERROVIE DELLO STATO ITALIANE	FABBRICATO TECNOLOGICO	
RELAZIONE DI CALCOLO	PROGETTO LOTTO CODIFICA DOCUMENTO REV. FOGLIO IA5F 02 D09 CL FV02 00004 B 39 di 69	

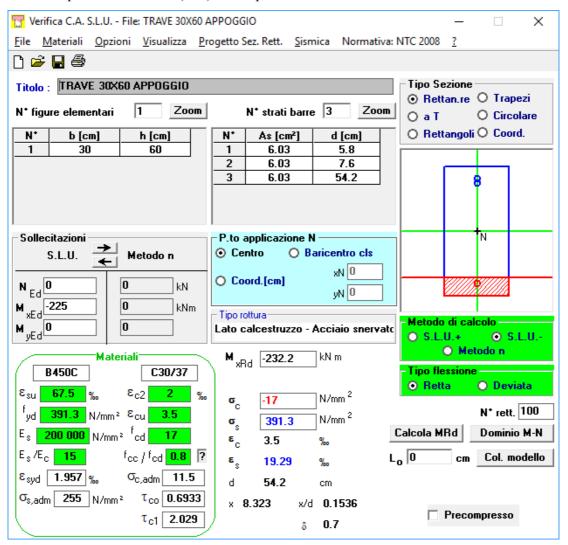


 ${\it Diagramma~del~taglio-combinazione~SLU}$

ITALFERR GRUPPO FERROVIE DELLO STATO ITALIANE	Nuova linea Ferrandina - Matera La Martella STAZIONE DI MATERA "LA MARTELLA" FABBRICATO TECNOLOGICO	
RELAZIONE DI CALCOLO	PROGETTO LOTTO CODIFICA DOCUMENTO REV. FOGLIO IA5F 02 D09 CL FV02 00004 B 40 di 69	

Momento in campata

Armatura presente 3 Ø16 inf 3 Ø16 sup



Risulta: M_{Sd}<M_{Rd}

La verifica è soddisfatta.

Momento all'appoggio

Armatura presente 3 Ø16 inf (3+3) Ø16 sup

Risulta: M_{Sd}<M_{Rd}

La verifica è soddisfatta.

Taglio

Al fine di escludere la formazione di meccanismi inelastici dovuti la taglio, le sollecitazioni di taglio di calcolo sono state ottenute sommando il contributo dovuto ai carichi gravitazionali agenti sulla trave, considerata incernierata alle estremità, alle sollecitazioni di taglio corrispondenti alla formazione delle cerniere plastiche nella trave e prodotte dai momenti resistenti delle due sezioni esterme amplificati per un fattore di sovraresistenza $\square_{R,d}$ assunto pari a 1 per la struttura calcolata in bassa duttilità.

$$V_{Ed} = \gamma_{Rd} \frac{M_{Rd,1} + M_{Rd,2}}{l} + \frac{q \times l}{2}$$

In cui:

 $\gamma_{Rd} = 1.0$ per strutture progettate in CD" B".

TALFERR GRUPPO FERROVIE DELLO STATO ITALIANE	Nuova linea Ferrandina - Matera La Martella STAZIONE DI MATERA "LA MARTELLA" FABBRICATO TECNOLOGICO	
RELAZIONE DI CALCOLO	PROGETTO LOTTO CODIFICA DOCUMENTO REV. FOGLIO IA5F 02 D09 CL FV02 00004 B 42 di 69	

 $M_{Rd1}=232.2\;kNm$

 $M_{Rd2} = 122.3 \text{ kNm}$

$$l_t = 7.3 - 0.3 - 0.4*2 = 6.2 \text{ m}$$

A vantaggio di sicurezza, la componente statica del taglio (q x L / 2) è stata dedotta dal valore massimo di taglio riscontrato per la combinazione a SLU (78.3 kN). A vantaggio di sicurezza, la verifica a taglio nella zona critica è stata condotta forzando il valore $cotg(\Box) = 1$, anche se la struttura è calcolata come CD"B".

DATI SEZIONE			
Base	30	[cm]	
Altezza	60	[cm]	
Copriferro	4	[cm]	

ARMATURA TRASVERSALE				
N°	Diametro	Area	Passo	Inclinazione
[-]	[mm]	[mm ²]	[cm]	[°]
2	10	157	15	90

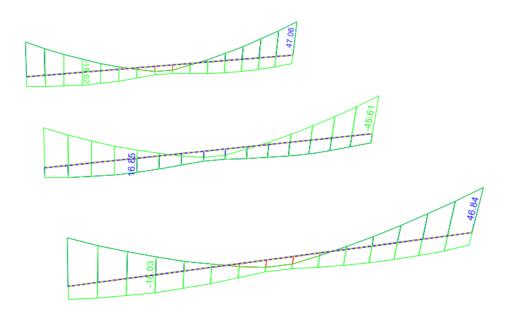
MATERIALI				
	Calcestruzz	0		
R _{ck}	37	[MPa]		
f _{ck}	30.71	[MPa]		
f _{cd}	17.40	[MPa]		
	Acciaio			
f _{yk}	450	[MPa]		
f _{yd}	391.30	[MPa]		

SOLLECITAZIONI			
N _{ed}	0	[kN]	
V_{ed}	135	[kN]	

	RISULTATI	
$\sigma_{\it cp}$	0.00	•
α_c	1.00	
ω_{st}	0.08	
cotg ⊕	1.00	
V_{Rsd}	206.53	kN
V _{Rcd}	657.81	kN
V _{Ed}	135.48	kN
V_{Rd}	206.53	
SEZ	IONE VERIFICAT	Calcola
Imposta Cotg Θ	х	
Valore	1	Menù

La trave è stata verificata con armatura trasversale pari a Ø10 passo 15

$$V_{Ed} < V_{RD} = \min(V_{Rsd}, V_{Rcd})$$


La verifica è soddisfatta.

	Nuova linea Ferrandina - Matera La Martella STAZIONE DI MATERA "LA MARTELLA"		
ITALFERR .			
GRUPPO FERROVIE DELLO STATO ITALIANE	FABBRICATO TECNOLOGICO		
RELAZIONE DI CALCOLO	PROGETTO LOTTO CODIFICA DOCUMENTO REV. FOGLIO IA5F 02 D09 CL FV02 00004 B 43 di 69		

9.1 Verifiche trave 50 x 30

Flessione

I momenti flettenti di calcolo utilizzati per il dimensionamento e la verifica delle travi sono quelli ottenuti dall'analisi globale della struttura.

 $Diagramma\ del\ momento-combinazione\ ENVE$

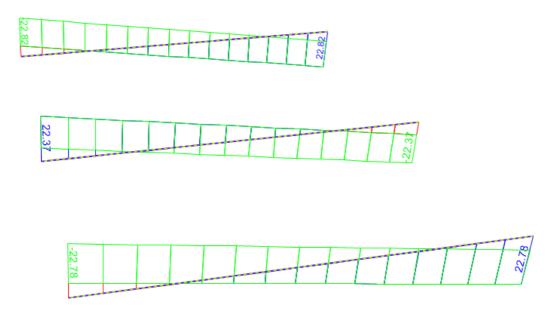
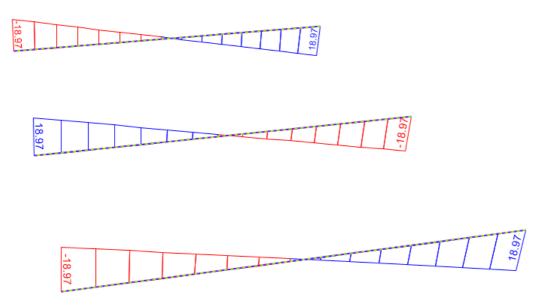
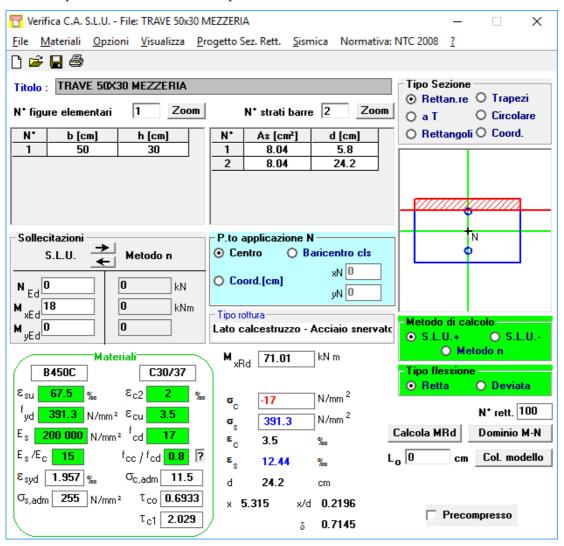



Diagramma del taglio – combinazione ENVE

	Nuova linea Ferrandina - Matera La Martella		
GRUPPO FERROVIE DELLO STATO ITALIANE	STAZIONE DI MATERA "LA MARTELLA" FABBRICATO TECNOLOGICO		
RELAZIONE DI CALCOLO	PROGETTO LOTTO CODIFICA DOCUMENTO REV. FOGLIO IA5F 02 D09 CL FV02 00004 B 44 di 69		

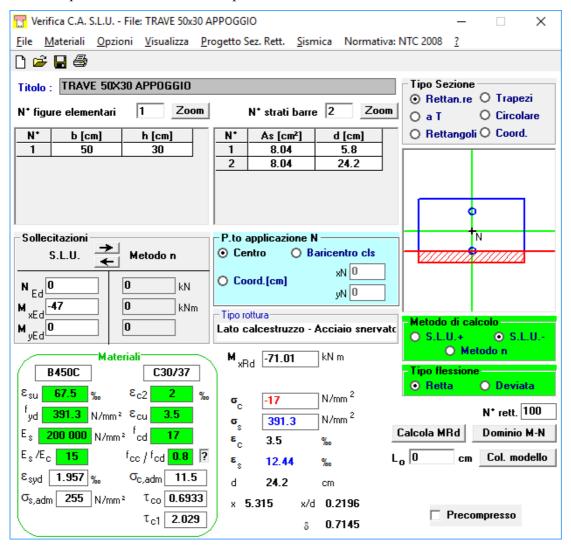


 $Diagramma\ del\ taglio-combinazione\ SLU$

ITALFERR GRUPPO FERROVIE DELLO STATO ITALIANE	Nuova linea Ferrandina - Matera La Martella STAZIONE DI MATERA "LA MARTELLA" FABBRICATO TECNOLOGICO		
RELAZIONE DI CALCOLO	PROGETTO LOTTO CODIFICA DOCUMENTO REV. FOGLIO IA5F 02 D09 CL FV02 00004 B 45 di 69		

Momento in campata

Armatura presente 4 Ø16 inf 4 Ø16 sup



Risulta: M_{Sd}<M_{Rd}

La verifica è soddisfatta.

Momento all'appoggio

Armatura presente 4 Ø16 inf 4 Ø16 sup

Risulta: M_{Sd}<M_{Rd}

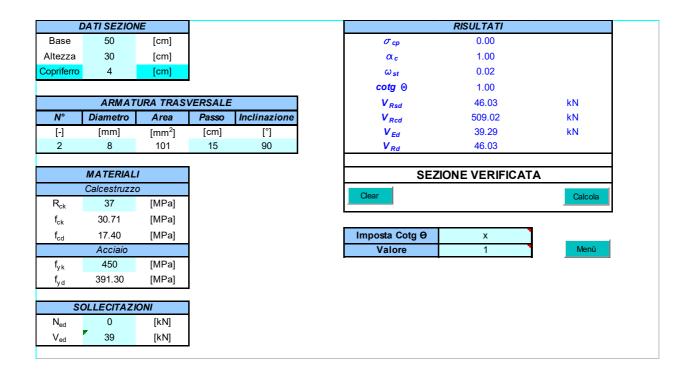
La verifica è soddisfatta.

Taglio

Al fine di escludere la formazione di meccanismi inelastici dovuti la taglio, le sollecitazioni di taglio di calcolo sono state ottenute sommando il contributo dovuto ai carichi gravitazionali agenti sulla trave, considerata incernierata alle estremità, alle sollecitazioni di taglio corrispondenti alla formazione delle cerniere plastiche nella trave e prodotte dai momenti resistenti delle due sezioni esterme amplificati per un fattore di sovraresistenza $\square_{R,d}$ assunto pari a 1 per la struttura calcolata in bassa duttilità.

$$V_{Ed} = \gamma_{Rd} \frac{M_{Rd,1} + M_{Rd,2}}{l_t} + \frac{q \times l}{2}$$

In cui:


TALFERR GRUPPO FERROVIE DELLO STATO ITALIANE	Nuova linea Ferrandina - Matera La Martella STAZIONE DI MATERA "LA MARTELLA" FABBRICATO TECNOLOGICO	
RELAZIONE DI CALCOLO	PROGETTO LOTTO CODIFICA DOCUMENTO REV. FOGLIO IA5F 02 D09 CL FV02 00004 B 47 di 69	

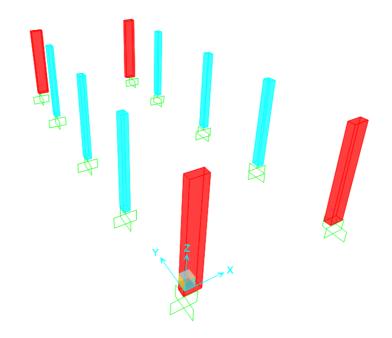
 $\gamma_{Rd} = 1.0$ per strutture progettate in CD"B".

 $M_{Rd1} = M_{Rd2} = 71 \text{ kNm}$

$$l_t = 7.3 - 0.3 = 7.0 \text{ m}$$

A vantaggio di sicurezza, la componente statica del taglio (q x L / 2) è stata dedotta dal valore massimo di taglio riscontrato per la combinazione a SLU (19.0 kN). A vantaggio di sicurezza, la verifica a taglio nella zona critica è stata condotta forzando il valore $cotg(\Box) = 1$, anche se la struttura è calcolata come CD"B".

La trave è stata verificata con armatura trasversale pari a Ø8/passo 15


$$V_{Ed} < V_{RD} = \min(V_{Rsd}, V_{Rcd})$$

La verifica è soddisfatta.

GRUPPO FERROVIE DELLO STATO ITALIANE	Nuova linea Ferrandina - Matera La Martella STAZIONE DI MATERA "LA MARTELLA" FABBRICATO TECNOLOGICO	
RELAZIONE DI CALCOLO	PROGETTO LOTTO CODIFICA DOCUMENTO REV. FOGLIO IA5F 02 D09 CL FV02 00004 B 48 di 69	

9.1 Verifiche pilastri

Di seguito si riportano le sollecitazioni massime di inviluppo derivanti dall'analisi del modello con pilastri incastrati al piede.

Pilastri 30x70 e pilastri 40x30

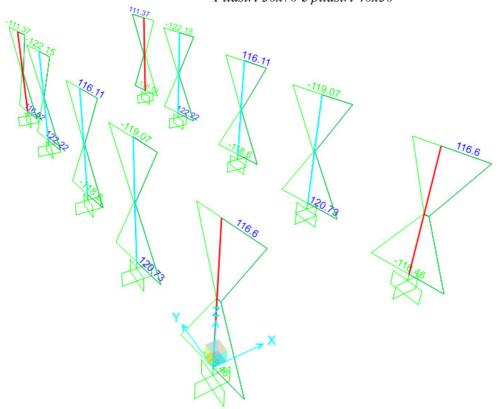
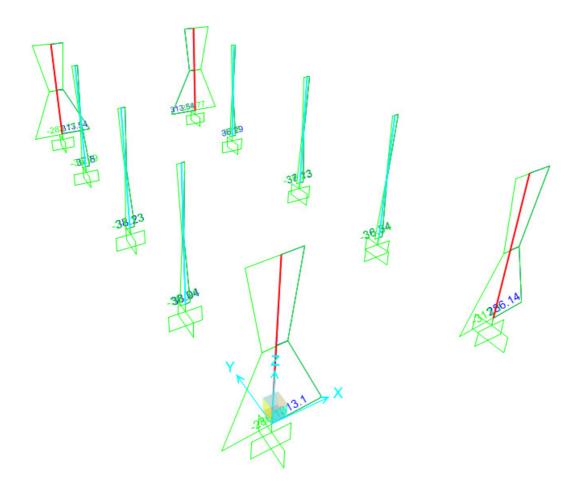
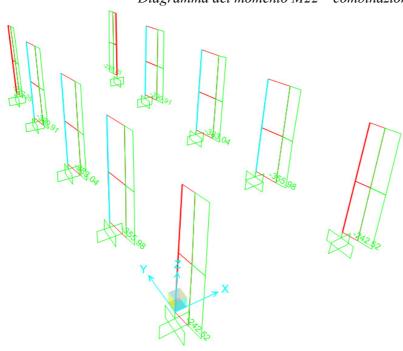
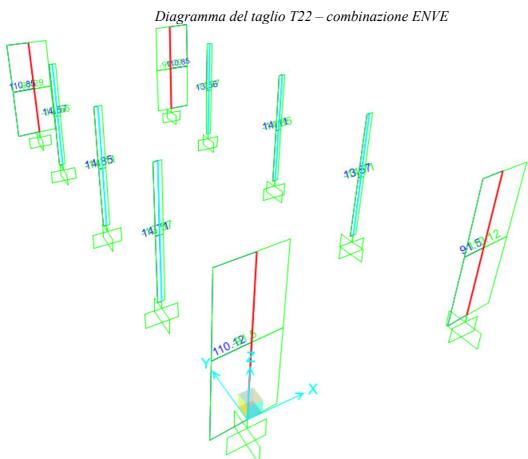




Diagramma del momento M33 – combinazione ENVE

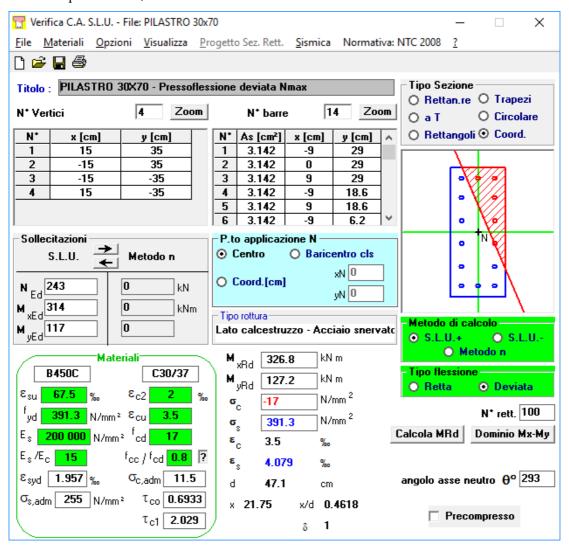
ITALFERR GRUPPO FERROVIE DELLO STATO ITALIANE	Nuova linea Ferrandina - Matera La Martella STAZIONE DI MATERA "LA MARTELLA" FABBRICATO TECNOLOGICO	
RELAZIONE DI CALCOLO	PROGETTO LOTTO CODIFICA DOCUMENTO REV. FOGLIO IA5F 02 D09 CL FV02 00004 B 49 di 69	


 $Diagramma\ del\ momento\ M22-combinazione\ ENVE$

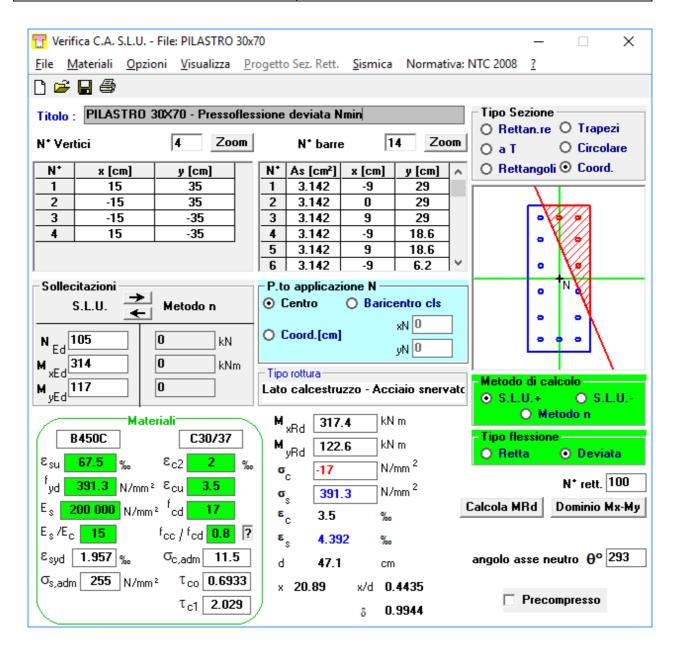
 $Diagramma\ dello\ sforzo\ assiale-combinazione\ ENVE$

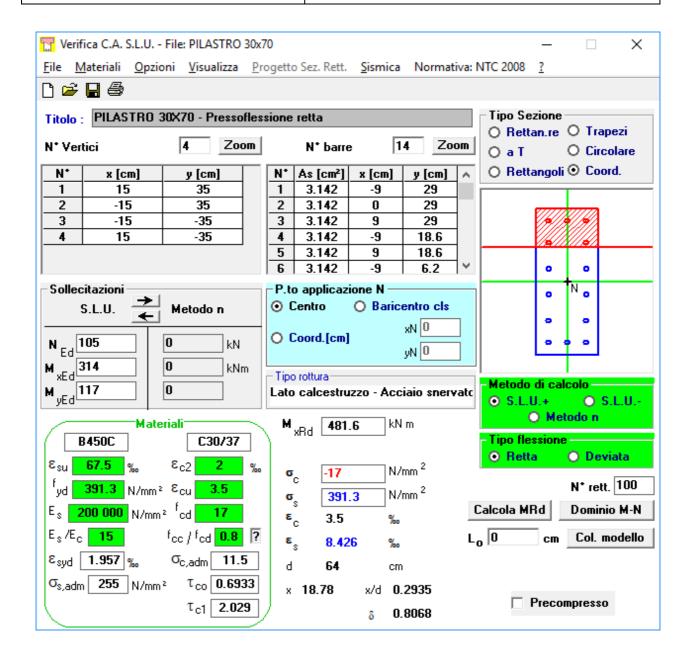
	Nuova linea Ferrandina - Matera La Martella		
II ITALFERR	STAZIONE DI MATERA "LA MARTELLA"		
GRUPPO FERROVIE DELLO STATO ITALIANE	FABBRICATO TECNOLOGICO		
RELAZIONE DI CALCOLO	PROGETTO LOTTO CODIFICA DOCUMENTO REV. FOGLIO IA5F 02 D09 CL FV02 00004 B 50 di 69		

 $Diagramma\ del\ taglio\ T33-combinazione\ ENVE$


	Nuova linea Ferrandina - Matera La Martella		
ITALFERR	STAZIONE DI MATERA "LA MARTELLA"		
GRUPPO FERROVIE DELLO STATO ITALIANE	FABBRICATO TECNOLOGICO		
RELAZIONE DI CALCOLO	PROGETTO LOTTO CODIFICA DOCUMENTO REV. FOGLIO IA5F 02 D09 CL FV02 00004 B 51 di 69		

9.1.1 Pilastri 30x70


Presso-flessione


Si riporta di seguito la verifica a pressoflessione dei pilastri. Le sollecitazioni considerate sono quelle ricavate dalle analisi dei modelli. A vantaggio di sicurezza sono considerati come contemporanei i valori massimi di Mx e My con i valori di sforzo assiale massimo e minimo.

Armatura presente 14 Ø20

Gerarchia delle resistenze

Il criterio di gerarchia delle resistenze non si applica alle sezioni in sommità dei pilastri. Per la verifica dei pilastri, e in particolare per la sezione di base dei pilastri si adotta come momento di calcolo il maggiore tra il momento risultante dall'analisi ed il momento $M_{C,rd}$ della sezione di sommità del pilastro. L'armatura nel pilastro viene mantenuta costante, quindi la verifica è automaticamente soddisfatta.

Taglio

Al fine di escludere la formazione di meccanismi inelastici dovuti al taglio, le sollecitazioni di taglio da utilizzare per le verifiche e il dimensionamento delle armature si ottengono dalla condizione di equilibrio del pilastro soggetto all'azione dei momenti resistenti nelle sezioni di estremità superiore $M_{c,Rd}^s$ e $M_{c,Rd}^i$ secondo l'espressione:

$$V_{Ed} = \gamma_{Rd} \frac{M^{s}_{c,Rd} + M^{i}_{c,Rd}}{l_{p}}$$

In cui:

- $\gamma_{Rd} = 1.1$ per strutture progettate in CD"B"
- $M_{c,Rd}^s = M_{c,Rd}^s = 481.6 \text{ kNm}$
- $l_P = 4.5 0.70 = 3.80 \text{ m}$

•

DATI SEZIONE			
Base	30	[cm]	
Altezza	70	[cm]	
Copriferro	4	[cm]	

ARMATURA TRASVERSALE				
N°	Diametro	Area	Passo	Inclinazione
[-]	[mm]	[mm ²]	[cm]	[°]
2	10	157	10	90

MATERIALI		
	Calcestruzz	0
R _{ck}	37	[MPa]
f _{ck}	30.71	[MPa]
f _{cd}	17.40	[MPa]
	Acciaio	
f _{yk}	450	[MPa]
f _{yd}	391.30	[MPa]

SOLLECITAZIONI		
N _{ed}	0	[kN]
V_{ed}	279	[kN]

RISULTATI	
0.00	
1.00	
0.12	
1.00	
365.11	kN
775.27	kN
278.82	kN
365.11	
ONE VERIFICAT	Α
	Calcola
	0.00 1.00 0.12 1.00 365.11 775.27 278.82

Imposta Cotg Θ	х	
Valore	1	Menù

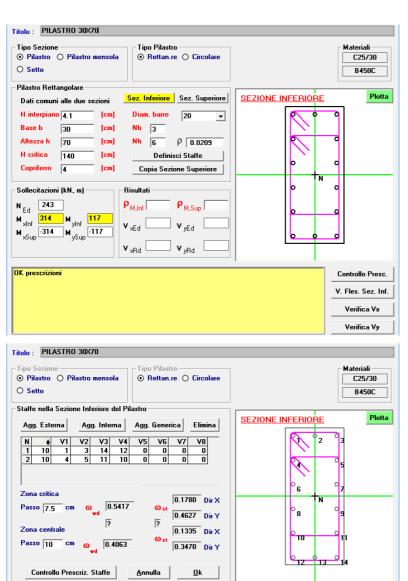
Il pilastro è stato verificato con armatura trasversale pari a Ø10/passo 10.

$$V_{Ed} < V_{RD} = \min(V_{Rsd}, V_{Rcd})$$

La verifica è soddisfatta.

Prescrizioni costruttive

Di seguito si riportano gli estratti del software impiegato per la verifica del rispetto delle prescrizioni costruttive nei pilastri. Nelle figure è riportato il reale quantitativo di armatura a taglio e la corretta disposizione di staffe e spille.



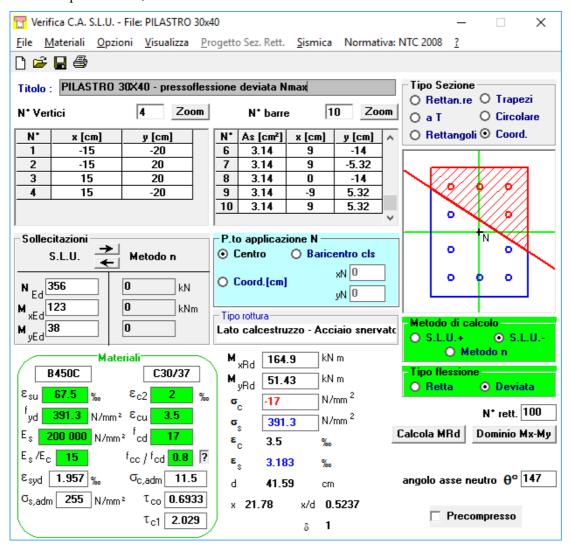
Controllo Presc.

V. Fles. Sez. Inf.

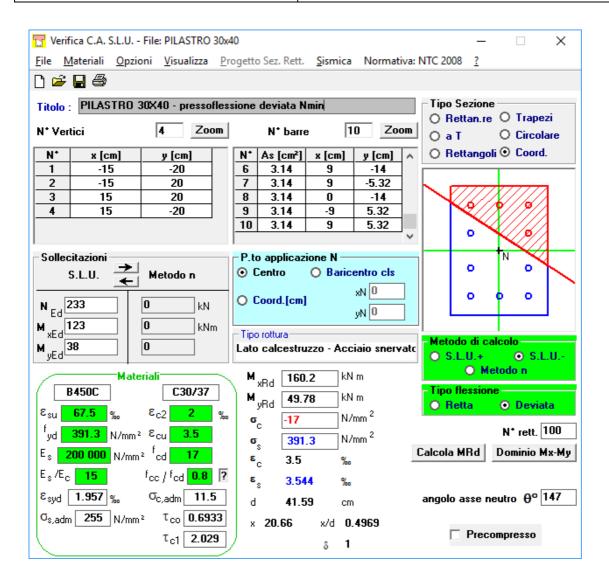
Verifica Vx

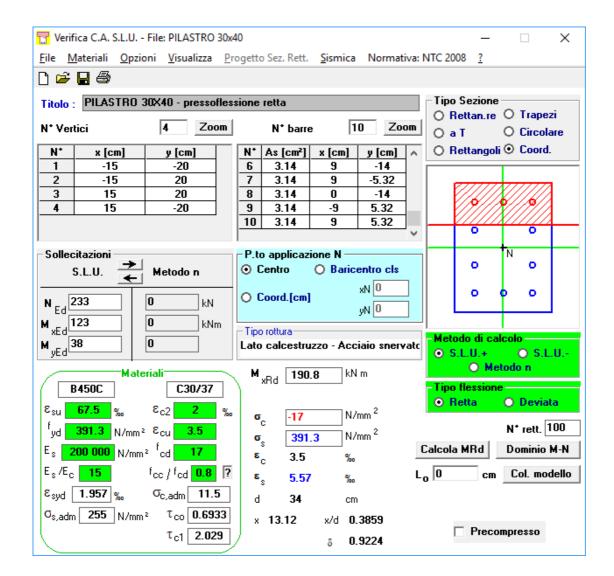
Verifica Vy

OK prescrizioni


ITALFERR GRUPPO FERROVIE DELLO STATO ITALIANE	Nuova linea Ferrandina - Matera La Martella STAZIONE DI MATERA "LA MARTELLA" FABBRICATO TECNOLOGICO
RELAZIONE DI CALCOLO	PROGETTO LOTTO CODIFICA DOCUMENTO REV. FOGLIO IA5F 02 D09 CL FV02 00004 B 56 di 69

9.1.2 Pilastri 30x40


Presso-flessione


Si riporta di seguito la verifica a pressoflessione dei pilastri. Le sollecitazioni considerate sono quelle ricavate dalle analisi dei modelli. A vantaggio di sicurezza sono considerati come contemporanei i valori massimi di Mx e My con i valori di sforzo assiale massimo e minimo.

Armatura presente 10 Ø20

Gerarchia delle resistenze

Il criterio di gerarchia delle resistenze non si applica alle sezioni in sommità dei pilastri. Per la verifica dei pilastri, e in particolare per la sezione di base dei pilastri si adotta come momento di calcolo il maggiore tra il momento risultante dall'analisi ed il momento $M_{C,rd}$ della sezione di sommità del pilastro. L'armatura nel pilastro viene mantenuta costante, quindi la verifica è automaticamente soddisfatta.

Taglio

Al fine di escludere la formazione di meccanismi inelastici dovuti al taglio, le sollecitazioni di taglio da utilizzare per le verifiche e il dimensionamento delle armature si ottengono dalla condizione di equilibrio del pilastro soggetto all'azione dei momenti resistenti nelle sezioni di estremità superiore $M_{c,Rd}^{s}$ e $M_{c,Rd}^{i}$ secondo l'espressione:

$$V_{Ed} = \gamma_{Rd} \frac{M^{s}_{c,Rd} + M^{i}_{c,Rd}}{l_{p}}$$

In cui:

GRUPPO FERROVIE DELLO STATO ITALIANE	Nuova linea Ferrandina - Matera La Martella STAZIONE DI MATERA "LA MARTELLA" FABBRICATO TECNOLOGICO
RELAZIONE DI CALCOLO	PROGETTO LOTTO CODIFICA DOCUMENTO REV. FOGLIO IA5F 02 D09 CL FV02 00004 B 59 di 69

- $\gamma_{Rd} = 1.1$ per strutture progettate in CD"B"
- $M_{c,Rd}^s = M_{c,Rd}^s = 190.8 \text{ kNm}$
- $l_P = 4.5 0.70 = 3.80 \text{ m}$

Il pilastro è stato verificato con armatura trasversale pari a Ø8/passo 15

$$V_{Ed} < V_{RD} = \min(V_{Rsd}, V_{Rcd})$$

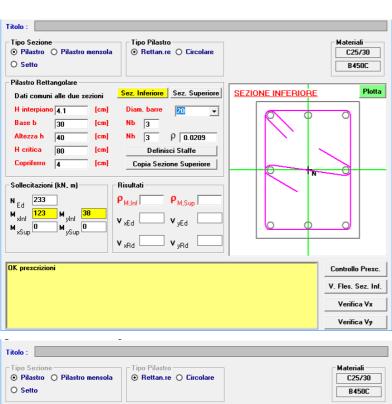
DATI SEZIONE		
Base	30	[cm]
Altezza	70	[cm]
Copriferro	4	[cm]

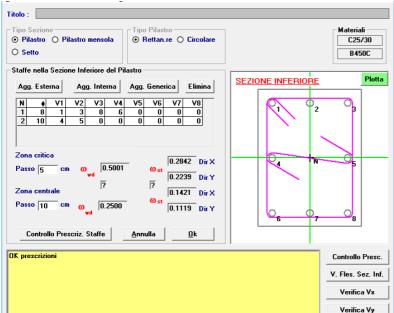
ARMATURA TRASVERSALE				
N°	Diametro	Area	Passo	Inclinazione
[-]	[mm]	[mm ²]	[cm]	[°]
2	8	101	15	90

MATERIALI		
	Calcestruzz	0
R _{ck}	37	[MPa]
f _{ck}	30.71	[MPa]
f_{cd}	17.40	[MPa]
Acciaio		
f _{yk}	450	[MPa]
f _{yd}	391.30	[MPa]

SOLLECITAZIONI		
N _{ed}	0	[kN]
$V_{\rm ed}$	110	[kN]

	RISULTATI	
$\sigma_{\it cp}$	0.00	
α_c	1.00	
ω_{st}	0.05	
cotg ⊕	1.00	
V_{Rsd}	155.78	kN
V _{Rcd}	775.27	kN
V _{Ed}	110.46	kN
V_{Rd}	155.78	
CE:	ZIONE VERIFICAT	· A
3EZ	LIONE VERIFICAT	Α
Clear		Calcola


Imposta Cotg Θ	х	
Valore	1	Menù


La verifica è soddisfatta.

Prescrizioni costruttive

Di seguito si riportano gli estratti del software impiegato per la verifica del rispetto delle prescrizioni costruttive nei pilastri. Nelle figure è riportato il reale quantitativo di armatura a taglio e la corretta disposizione di staffe e spille.

	Nuova linea Ferrandina - Matera La Martella		
GRUPPO FERROVIE DELLO STATO ITALIANE	STAZIONE DI MATERA "LA MARTELLA" FABBRICATO TECNOLOGICO		
RELAZIONE DI CALCOLO	PROGETTO LOTTO CODIFICA DOCUMENTO REV. FOGLIO IA5F 02 D09 CL FV02 00004 B 61 di 69		

9.1 Verifiche fondazioni

Come indicato nel DM 17 gennaio 2018 al § 7.2.5, le strutture di fondazione devono essere verificate considerando come azioni le resistenze degli elementi strutturali soprastanti, amplificate per il fattore di sovraresistenza ($\gamma_{RD} = 1.1$ per edifici in CD"B"). Nel caso in esame, tale effetto è stato conseguito individuando delle combinazioni di carico apposite, corrispondenti a quelle definite per lo SLV, nelle quali però le azioni sismiche in ogni direzione sono state amplificate per γ_{RD} e per il maggiore tra i rapporti tra le sollecitazioni di flessione individuate dal modello per lo SLV ed la resistenza a flessione dei pilastri. In particolare:

- •direzione longitudinale (pilastro 30x40): $\alpha_x = M_{Rd} / M_{Sd} \times \gamma_{RD} = 184 / 123 \times 1.1 = 1.646$
- •direzione trasversale (pilastro 30x70): $\alpha_y = M_{Rd} / M_{Sd} \times \gamma_{RD} = 479 / 314 \times 1.1 = 1.678$

I valori di M_{Rd} degli elementi sono stati dedotti da apposite verifiche a pressoflessione retta, sopra riportate. I valori di M_{Sd} degli elementi (nella direzione considerata) sono stati dedotti dalle analisi del modello con pilastri incastrati al piede nelle combinazioni di carico agli SLV (in direzione X e Y).

Di seguito si riportano le sollecitazioni massime di inviluppo derivanti dall'analisi del modello su suolo elastico. Sono evidenziati gli elementi più sollecitati per ogni tipo di sezione (a T rovescia e rettangolare)

	Nuova linea Ferrandina - Matera La Martella		
GRUPPO FERROVIE DELLO STATO ITALIANE	STAZIONE DI MATERA "LA MARTELLA" FABBRICATO TECNOLOGICO		
RELAZIONE DI CALCOLO	PROGETTO LOTTO CODIFICA DOCUMENTO REV. FOGLIO IA5F 02 D09 CL FV02 00004 B 62 di 69		

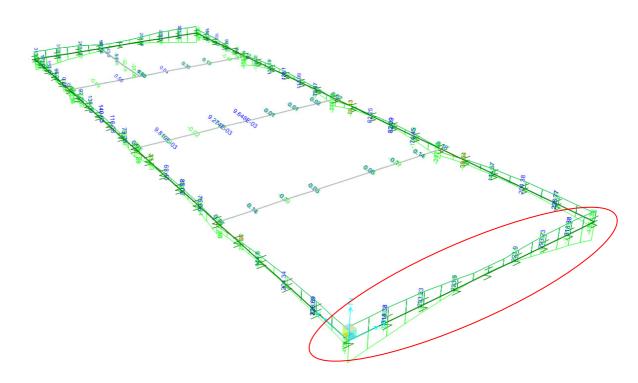


Diagramma del Momento M3 – combinazione ENVE_fond

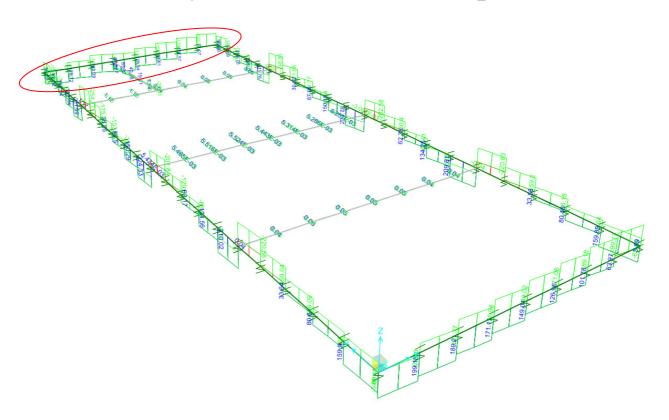


Diagramma del Taglio T2 – combinazione ENVE_fond

	Nuova linea Ferrandina - Matera La Martella		
GRUPPO FERROVIE DELLO STATO ITALIANE	STAZIONE DI MATERA "LA MARTELLA" FABBRICATO TECNOLOGICO		
RELAZIONE DI CALCOLO	PROGETTO LOTTO CODIFICA DOCUMENTO REV. FOGLIO IA5F 02 D09 CL FV02 00004 B 63 di 69		

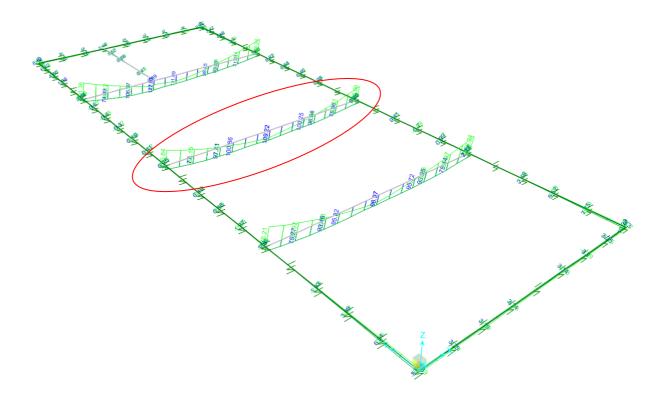


Diagramma del Momento M2 – combinazione ENVE_fond

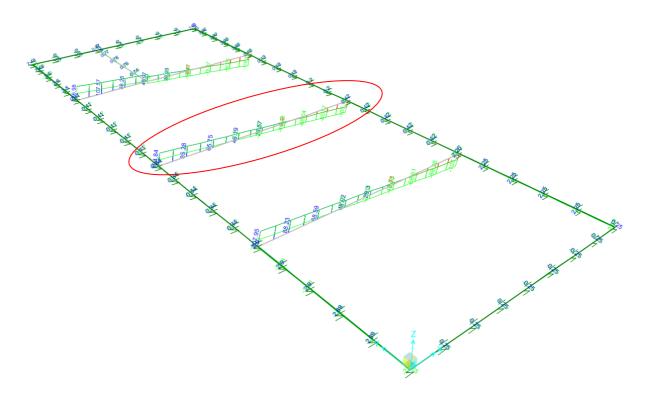


Diagramma del Taglio T3 – combinazione ENVE_fond

ITALFERR GRUPPO FERROVIE DELLO STATO ITALIANE	Nuova linea Ferrandina - Matera La Martella STAZIONE DI MATERA "LA MARTELLA" FABBRICATO TECNOLOGICO
RELAZIONE DI CALCOLO	PROGETTO LOTTO CODIFICA DOCUMENTO REV. FOGLIO IA5F 02 D09 CL FV02 00004 B 64 di 69

GRUPPO FERROVIE DELLO STATO ITALIANE	Nuova linea Ferrandina - Matera La Martella STAZIONE DI MATERA "LA MARTELLA" FABBRICATO TECNOLOGICO
RELAZIONE DI CALCOLO	PROGETTO LOTTO CODIFICA DOCUMENTO REV. FOGLIO IA5F 02 D09 CL FV02 00004 B 65 di 69

I collegamenti orizzontali delle fondazioni devono resistere ad un'azione assiale che per profilo stratigrafico tipo "E" (in assenza di indicazioni più precise si assimila cautelativamente ad un terreno tipo "D") vale:

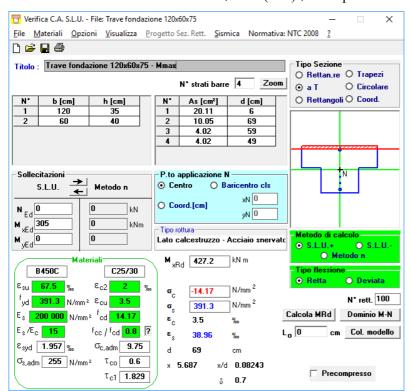
$$\pm~0.6~x~N_{sd}~x~a_{max}/g = 10~kN$$

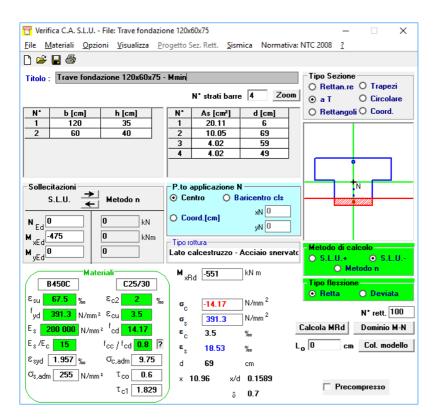
Dove

 $N_{sd} = \sim 64 \text{ kN}$ (dedotta da modello di calcolo per la combinazione ENVE)

$$a_{max} = a_g \ x \ g \ x \ S = 0.169 \ x \ 1.532 = 0.259 \ g$$

Vista la modesta entità di tale azione, è stata trascurata nelle verifiche.


9.1.1 Verifiche trave rovescia (120x60x75)


Pressoflessione

I valori massimi e minimi del momento flettente sulle travi rovesce sono stati dedotti dall'analisi del modello per la combinazione di inviluppo ENVE fond.

Armatura presente:base 10 Ø16

Anima $5 \ \emptyset 16 + (2+2) \ \emptyset 16$ in parete

Taglio

I valori massimi del taglio sulle travi rovesce sono stati dedotti dall'analisi del modello per la combinazione di inviluppo ENVE fond.

Di seguito si riportano gli estratti del foglio di calcolo impiegato per la verifica.

ARMATURA TRASVERSALE			
			1
Copriferro	4	[cm]	
Altezza	75	[cm]	
Base	60	[cm]	

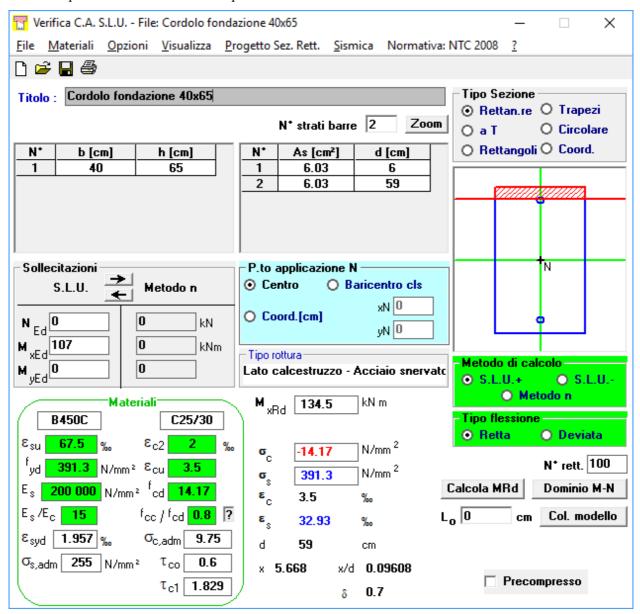
DATI SEZIONE

ARMATURA TRASVERSALE				
N°	Diametro	Area	Passo	Inclinazione
[-]	[mm]	[mm ²]	[cm]	[°]
2	8	101	10	90

MATERIALI				
	Calcestruzzo	0		
R _{ck}	30	[MPa]		
f _{ck}	24.90	[MPa]		
f _{cd}	14.11	[MPa]		
	Acciaio			
f _{yk}	450	[MPa]		
f _{yd}	391.30	[MPa]		

SOLLECITAZIONI			
N _{ed}	0	[kN]	
V_{ed}	200	[kN]	

La trave è stata verificata con armatura trasversale pari a Ø8/passo 10


ITALFERR GRUPPO FERROVIE DELLO STATO ITALIANE	Nuova linea Ferrandina - Matera La Martella STAZIONE DI MATERA "LA MARTELLA" FABBRICATO TECNOLOGICO		
RELAZIONE DI CALCOLO	PROGETTO LOTTO CODIFICA DOCUMENTO REV. FOGLIO IA5F 02 D09 CL FV02 00004 B 67 di 69		

9.1.1 Verifiche trave 40x65

Pressoflessione

I valori massimi e minimi del momento flettente sulle travi rovesce sono stati dedotti dall'analisi del modello per la combinazione di inviluppo ENVE_fond.

Armatura presente 3 Ø16 inf 3 Ø16 sup

Taglio

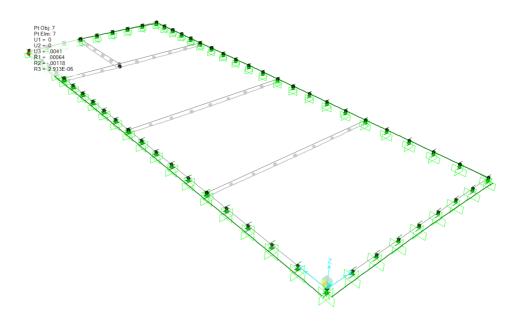
I valori massimi del taglio sulle travi rovesce sono stati dedotti dall'analisi del modello per la combinazione di inviluppo ENVE fond.

Di seguito si riportano gli estratti del foglio di calcolo impiegato per la verifica.

DATI SEZIONE			
Base	40	[cm]	
Altezza	65	[cm]	
Copriferro	4	[cm]	

ARMATURA TRASVERSALE				
N° Diametro Area Passo Inclinazione				
[-]	[mm]	[mm ²]	[cm]	[°]
2	8	101	10	90

MATERIALI						
	Calcestruzzo					
R _{ck}	30	[MPa]				
f _{ck}	24.90	[MPa]				
f _{cd}	14.11	[MPa]				
Acciaio						
f _{yk}	450	[MPa]				
f_{yd}	391.30	[MPa]				


SOLLECITAZIONI				
N _{ed}	0	[kN]		
V_{ed}	105	[kN]		

	RISULTATI	
$\sigma_{\it cp}$	0.00	
α_c	1.00	
ω_{st}	0.07	
cotg ⊛	1.00	
V_{Rsd}	215.97	kN
V _{Rcd}	774.64	kN
V _{Ed}	105.00	kN
V_{Rd}	215.97	
SEZI	ONE VERIFICAT	Α
Clear		Calcola
Imposta Cotg O	х	
Valore	1	Menù

La trave è stata verificata con armatura trasversale pari a Ø8/passo 10

9.1.1 Verifiche carico limite

Il valore massimo di spostamento verticale registrato in fondazione è pari a $\delta = 0.0035 m$ in corrispondenza del nodo 7 (pilastro d'angolo) per effetto della combinazione fond_SLV_Sx+0,3Sy+P...

Il coefficiente di fondazione (Winkler) adottato nel modello è pari a $K = 30000 \text{ kN/m}^3$.

La pressione massima in fondazione è calcolata come di seguito.

$$p = \delta \; x \; K \; x \; b = 0.0041 \; x \; 30000 \; x \; 1.2 = 147.6 \; kN/mq = \sim 15 \; t/mq = 1.5 \; daN/cmq$$

Il valore del carico limite è calcolato di seguito. Cautelativamente si è posto c'=0. Vengono omesse le verifiche di scorrimento.

in presenza di falda acquifera per "a" compreso tra 0 e D				
Parametri geotecnici del terreno				
Peso dell'unità di volume - terr. di fondazione saturo	$(\gamma_{\sf sat})$	t/mc	1,90	
Peso dell'unità di volume - terr. di fond. immerso	(γ')	t/mc	0,90	
Angolo di attrito interno	(φ)	٥	30,00	
Coesione	(c')	t/m²	0,00	
Kp			3,0000	
Peso dell'unità di volume - terreno di riporto	$(\gamma_{\rm r})$	t/mc	1,90	
Peso dell'unità di volume - terreno di riporto saturo	(γ_{rsat})	t/mc	1,90	
Peso dell'unità di volume - terreno di riporto immerso	(γ'_{r})	t/mc	0,90	
Peso specifico dell'acqua	$(\gamma_{\sf w})$	t/mc	1,00	

	Caratteristiche geometri	iche della fondazione			
	fondazione	В	m	1,20	
Lunghezza	fondazione	L	m	16,00	
	à larghezza	e _x	m	0,00	
Approfondi		D	m	1,30	
Inclinazione		i	٥	5,00	
	vedi schema)	а	m	0,75	
Larghezza		B'	m	1,20	
	Coefficenti di	fondazione			
Nq				18,4011	$e^{(\pi^*tg\;arphi^{})^*}\;tg^2$ (45°+ $arphi$ /2)
$N\gamma$				15,6680	(Nq - 1) tg (1,4 $arphi$)
Nc				30,1396	(Nq - 1) ctg $(arphi)$
	Fattori di forn	na			
S _c				1,0450	1+ 0,2 * Kp (B/L)
$s_q = s_\gamma$				1,0225	1+ 0,1 * Kp (B/L)
	Fattori di pro	fondità			
d _c				1,3753	1 + 0,2 Kp^1/2 * D/B
$d_q = d_\gamma$				1,1876	1+ 0,1 Kp^1/2 * D/B
	Fattori di inclinazione de	el carico			
$i_q = i_c$					(1 - i°/90) ²
i_{γ}				0,6944	(1 - i°/ φ) z
	Calcolo del	carico limite			
				34,2825	Nq $[\gamma_{r*}(D - a) + \gamma'_{r}a] * s_q * d_q * i_q$
			ı	7,1350	$0.5 * B' * \gamma' * N_{\gamma} * s_{\gamma} * d_{\gamma} * i_{\gamma}$
				0.0000	c' * Nc * s _c * d _c * i _c
			ŀ	,	$\gamma_{\rm w}$ * a
				,:-50	•
q_d		t/n	n²	41,4175	TOTALE